
Shape Retrieval Methods for Architectural
3D Models

Dissertation

zur
Erlangung des Doktorgrades (Dr. rer. nat.)

der
Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inf. Raoul Henrik Joseph Frédéric Wessel

aus Koblenz

Bonn, April 2013

Universität Bonn
Institut für Informatik II

Friedrich-Ebert-Allee 144, D-53113 Bonn

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Dekan: Prof. Dr. U.-G. Meißner

1. Referent: Prof. Dr. Reinhard Klein
2. Referent: Prof. Dr. Tobias Schreck

Tag der mündlichen Prüfung: 17.01.2014
Erscheinungsjahr: 2014

CONTENTS

Zusammenfassung v

Abstract vii

Acknowledgements viii

1 Introduction 1
1.1 Motivation . 2
1.2 Goals . 3
1.3 Contributions . 4
1.4 Outline . 4
1.5 Preliminaries . 6

1.5.1 3D Object Retrieval as a Special Case of Information Re-
trieval . 6

1.5.2 Leave-one-out Tests . 7
1.5.3 Retrieval Metrics . 9
1.5.4 Robust Estimation of Conditional Probabilities 12

I Feature-based Shape Retrieval for 3D Architectural Con-
text Models 21

2 Learning Distinctive Local Object Characteristics 23
2.1 Introduction . 23
2.2 Related Work . 25

2.2.1 Comparing Global Shape Descriptors 25
2.2.2 Comparing Local Shape Descriptors 27
2.2.3 An Overview on Shape Descriptors 28
2.2.4 Supervised Learning in Shape Retrieval 33
2.2.5 3D Shape Benchmarks 34

2.3 Class Distribution Descriptors 35
2.3.1 Combining Class Distribution Descriptors 35

i

CONTENTS

2.3.2 Comparing Class Distribution Descriptors 39
2.4 Results on Princeton Shape Benchmark 39

2.4.1 Experimental Setup . 39
2.4.2 Evaluation . 41

2.5 A Benchmark for 3D Architectural Data 47
2.5.1 Classification Schemes 48
2.5.2 Benchmark Models . 49
2.5.3 Retrieval results . 50

2.6 Conclusion . 52

3 Learning the Compositional Structure of Man-Made Objects 55
3.1 Introduction . 55
3.2 Related Work . 57
3.3 Feature Selection and Descriptor Computation 58

3.3.1 Feature Selection . 58
3.3.2 Descriptor Computation 59
3.3.3 Integrating Feature Locations 61
3.3.4 Spatial Relationship between Features 62
3.3.5 Modified Feature Vectors and Kernel Functions 62
3.3.6 Modified Combination of Class Distribution Descriptors . 64

3.4 Results . 64
3.4.1 Experimental Setup . 64
3.4.2 Evaluation . 65
3.4.3 Timings . 66

3.5 Conclusion . 67

4 Beyond Shape: Groups, Materials, and Text for 3D Retrieval 71
4.1 Introduction . 71

4.1.1 Generalization Issues . 74
4.1.2 Contribution . 74

4.2 Intrinsic Groupings for Feature Localization 74
4.3 Material Descriptors . 77
4.4 Textual Annotations . 77
4.5 Combining Shape, Material, Text, and Different Localization Strate-

gies . 79
4.6 Conclusion . 80

ii

CONTENTS

II Graph-based Shape Retrieval for 3D Architectural Build-
ing Models 83

5 Analyzing and Indexing Building Models 85
5.1 Introduction . 85
5.2 Room Connectivity Graphs . 86

5.2.1 Node Attributes . 87
5.2.2 Edge Attributes . 87

5.3 Related Work . 88
5.3.1 Model Graphs . 90
5.3.2 Skeleton Graphs . 91
5.3.3 Reeb Graphs . 93
5.3.4 Summary . 94

5.4 Room Connectivity Graph Extraction 94
5.4.1 Automatic Story Segmentation 94
5.4.2 Floor Plan Generation 98
5.4.3 Room Detection . 99
5.4.4 Door and Window Detection 105
5.4.5 Detection of Vertical Connections and Room Refinement . 105

5.5 Searching for Structures in Room Connectivity Graphs 107
5.6 Results . 107
5.7 Conclusion . 108

6 Retrieval and Classification with Room Connectivity Graphs 119
6.1 Introduction . 119
6.2 Related Work . 120

6.2.1 Edit Distances . 121
6.2.2 Graph Kernels . 121
6.2.3 Graph Embeddings . 123

6.3 Method Overview . 123
6.4 Node and Edge Attributes . 125

6.4.1 Node Attributes . 125
6.4.2 High-level Node Attributes 126
6.4.3 Edge Attributes . 128

6.5 Approximate Graph Edit Distances 129
6.5.1 Algorithm . 129
6.5.2 Cost Functions . 130

6.6 Bag-of-Subgraphs Construction 132
6.6.1 Subgraph Mining . 133
6.6.2 Codebook Generation 133
6.6.3 Subgraph Embeddings 134

iii

CONTENTS

6.7 Evaluation . 134
6.7.1 Methods and Parameters 135
6.7.2 Influence of Attributes 136
6.7.3 Retrieval Results . 136
6.7.4 Classification Results . 137
6.7.5 Timings . 137

6.8 Conclusion . 138

III Closure 145

7 Conclusions 147
7.1 Summary . 147
7.2 Future Work . 149

Bibliography 151

iv

ZUSAMMENFASSUNG

In dieser Arbeit werden neue Methoden zur inhaltsbasierten Suche nach 3D Mod-
ellen aus dem Bereich der Architektur vorgestellt. Dabei werden grundsätzlich
zwei Typen von Architekturmodellen unterschieden. Der erste Typ umfasst so-
genannte Kontextobjekte, die für die detaillierte Ausgestaltung eines neuen Ge-
bäudeentwurfs verwendet werden. Hierzu zählen beispielsweise Inneneinrich-
tungsgegenstände wie Möbel, sowie Modelle zur Umgebungsgestaltung wie z.B.
Pflanzen oder Zäune. Der zweite Typ von Modellen umfasst die eigentlichen
Gebäudemodelle. Um eine effiziente und auf das Anforderungsprofil der Nutzer
zugeschnittene inhaltsbasierte Suche für beide Modelltypen zu ermöglichen, ist
die Entwicklung von individuellen Suchmechanismen notwendig. Kontextobjekte
wie z.B. Einrichtungsgegenstände, die eine bestimmte, gemeinsame Funktion er-
füllen (wie z.B. Sitzmöbel) weisen oftmals eine global ähnliche Form auf. Nichts-
destotrotz werden sie aus architektonischer Sichtweise als unterschiedlichen Ob-
jektunterklassen zugehörig angesehen (z.B. Sessel, Drehstuhl, Lehnstuhl). Die
Unterscheidung wird oft anhand kleiner geometrischer Details getroffen und ist
bisweilen nur einem Experten auf dem Gebiet der Architektur möglich. Gebäude
auf der anderen Seite werden meist anhand der Struktur ihrer zugrundeliegenden
Grundrisse und Raumpläne unterschieden. Topologische Raumplaneigenschaften
sind beispielsweise der Ausgangspunkt, um Wohngebäude von Gewerbebauten zu
unterscheiden.

Der erste Beitrag dieser Arbeit ist ein neuer Metadeskriptor zur Suche nach
Kontextobjekten, der unter Verwendung eines überwachten Lernansatzes verschie-
dene Typen lokaler Formdeskriptoren miteinander kombiniert. Der Ansatz er-
möglicht die Unterscheidung von Objektklassen anhand kleiner geometrischer
Abweichungen und integriert zugleich Expertenwissen aus dem Bereich der Ar-
chitektur. Die Methode wird zunächst anhand einer Datenbank bestehend aus all-
gemeinen 3D Objekten getestet. Im zweiten Schritt erfolgt eine Evaluation anhand
von 3D Objekten aus dem Architekturbereich. Im Folgenden wird der Ansatz um
eine neue Methode zur geschickten räumlichen Lokalistation von Formdeskrip-
toren erweitert. Zusätzlich wird Wissen über räumliche Anordnungen von Ob-
jektkomponenten ausgenutzt, um die Suchergebnisse weiter zu verbessern. Im
zweiten Teil der Arbeit wird mit dem Raumverbindungsgraphen (RVG) ein Kon-

v

ZUSAMMENFASSUNG

zept zur effektiven Beschreibung eines Gebäudes anhand seiner Grundrisse und
Raumpläne vorgestellt. Zunächst wird erläutert, wie ein RVG aus einem 3D
Gebäudemodell erzeugt werden kann. Im Anschluss wird diskutiert, wie gezielt
und effizient nach Substrukturen in diesem Graphen gesucht werden kann. Ab-
schließend wird ein als Bag-of-Subgraphs bezeichneter neuer Deskriptor einge-
führt, bei dem ein attributierter Graph mithilfe von Subgrapheinbettungen in eine
Vektorrepräsentation überführt wird. Die Suchperformanz dieses Deskriptors wird
dann anhand einer Datenbank von Modellen mit verschiedenen Grundriss- und
Raumplantypen evaluiert.

Alle in dieser Arbeit vorgestellten Methoden wurden mit dem Ziel entwick-
elt, eine möglichst automatisierte Indexierung und Suche zu gewährleisten, die
so wenig wie möglich menschliche Interaktion erfordert. Dementsprechend sind
für alle Verfahren lediglich Polygonsuppen als Eingabe erforderlich, die nicht
manuell repariert oder strukturiert werden müssen. Der menschliche Arbeits-
aufwand beschränkt sich auf die Erstellung von Groundtruth für die verwende-
ten überwachten Lernverfahren in Form manueller Annotation von 3D Objekten,
sowie der Bereitstellung von Informationen über die Orientierung von Gebäude-
modellen und der zur Modellierung verwendeten Maßeinheit.

vi

ABSTRACT

This thesis introduces new methods for content-based retrieval of architecture-
related 3D models. We thereby consider two different overall types of architectu-
ral 3D models. The first type consists of context objects that are used for detailed
design and decoration of 3D building model drafts. This includes e.g. furnishing
for interior design or barriers and fences for forming the exterior environment. The
second type consists of actual building models. To enable efficient content-based
retrieval for both model types that is tailored to the user requirements of the ar-
chitectural domain, type-specific algorithms must be developed. On the one hand,
context objects like furnishing that provide similar functions (e.g. seating furni-
ture) often share a similar shape. Nevertheless they might be considered to belong
to different object classes from an architectural point of view (e.g. armchair, el-
bow chair, swivel chair). The differentiation is due to small geometric details and
is sometimes only obvious to an expert from the domain. Building models on the
other hand are often distinguished according to the underlying floor- and room
plans. Topological floor plan properties for example serve as a starting point for
telling apart residential and commercial buildings.

The first contribution of this thesis is a new meta descriptor for 3D retrieval
that combines different types of local shape descriptors using a supervised lear-
ning approach. The approach enables the differentiation of object classes accor-
ding to small geometric details and at the same time integrates expert knowledge
from the field of architecture. We evaluate our approach using a database contai-
ning arbitrary 3D models as well as on one that only consists of models from the
architectural domain. We then further extend our approach by adding a sophisti-
cated shape descriptor localization strategy. Additionally, we exploit knowledge
about the spatial relationship of object components to further enhance the retrie-
val performance. In the second part of the thesis we introduce attributed room
connectivity graphs (RCGs) as a means to characterize a 3D building model ac-
cording to the structure of its underlying floor plans. We first describe how RCGs
are inferred from a given building model and discuss how substructures of this
graph can be queried efficiently. We then introduce a new descriptor denoted as
Bag-of-Attributed-Subgraphs that transforms attributed graphs into a vector-based
representation using subgraph embeddings. We finally evaluate the retrieval per-

vii

ABSTRACT

formance of this new method on a database consisting of building models with
different floor plan types.

All methods presented in this thesis are aimed at an as automated as possible
workflow for indexing and retrieval such that only minimum human interaction
is required. Accordingly, only polygon soups are required as inputs which do not
need to be manually repaired or structured. Human effort is only needed for offline
groundtruth generation to enable supervised learning and for providing informati-
on about the orientation of building models and the unit of measurement used for
modeling.

viii

ACKNOWLEDGEMENTS

First of all I would like to thank my supervisor Prof. Dr. Reinhard Klein who
put trust in me when assigning me to the PROBADO project in order to face the
challenges arising from the domain of architectural shape retrieval. I can hardly
think of anybody else who has that much of an ability to inspire people for new
ideas. The many controversial yet always fruitful and salutary discussions will
never be forgotten.

I am also very grateful to Prof. Dr. Tobias Schreck who kindly agreed to serve
as an external reviewer.

When I joined the Bonn Computer Graphics group my office mates were Dr.
Jan Meseth and Dr. Ákos Balasz, whom I want to deeply thank for their gentle
welcome. I would also like to thank Ferenc Kahlesz and Dr. Gero Müller who
additionally to my aforementioned office mates ensured a life besides research,
especially in my first years as a PhD student. I always enjoyed the atmosphere
in the research group consisting of so many nice and brilliant colleagues over
all these years that I can hardly thank someone else in particular - except for
Roland Ruiters, who helped me so many times by discussing all sorts of research
questions not only from the field of computer graphics, but also from cosmology,
nuclear physics, thermodynamics, and Matrioshka brains - thanks a lot.

Additionally, I would like to thank my co-authors, Rafael Baranowski, René
Berndt, Dr. Ina Blümel, Dr. Marcin Novotni, Sebastian Ochmann, Dr. Ruwen
Schnabel, Richard Vock, and Roland Wahl.

I will not forget to mention the German Research Foundation for funding most
of the work that I conducted for this thesis as part of the PROBADO project under
grants GZ 554975(1) Oldenburg BIB 48 OLof 01-02, INST 3299/1-1, and KL
1142/8-2. Additional thanks for funding go to the University of Bonn and to the
German National Library of Science and Technology, especially to Dr. Irina Sens.

Last but not least I would like to thank my family for enabling me to pursue
an academic career - thank you.

ix

ACKNOWLEDGEMENTS

x

CHAPTER 1

INTRODUCTION

During the recent five decades, architectural drafting has undergone a major para-
digm shift from analog to digital techniques [Fal98]. Traditionally, the process of
planning a new building was built on paper-based drawings as well as on physi-
cal scale models. The first milestones of the paradigm shift were marked by the
development of graphical human/machine interfaces at MIT in the mid-1960s.
Building on ideas of computer graphics pioneer Ivan Sutherland that first became
manifested in Sketchpad [Sut64], these computers with highly specialized inter-
faces already allowed simple architectural and engineering drafts in 2D and 3D.
The motivation was to simplify the drafting process by minimizing the amount of
repetitive drawing, by allowing to make changes to existing drafts, and by sup-
porting geometric constraints for primitive generation (e.g. perpendicular/parallel
planes). Additionally, command-driven frameworks like the Integrated Civil En-
gineering System [Roo65] were invented. These academic developments were
quickly picked up by companies from the fields of architecture, engineering, and
construction (AEC), amongst them e.g. the famous architecture and engineering
firm Skidmore, Owings & Merrill LLP (SOM) with the Building Optimization
Program, or General Motors with the Design Augmented by Computer (DAC-
1). Although at this point 3D drafting was intensively researched at universities
and used by some larger AEC companies, early commercial CAD products only
allowed 2D drafting until the late 1970s and early 1980s.

With the introduction of the personal computer starting its triumphant advance in
the late 1970s, sophisticated graphics hardware became more and more afford-
able. Consequently, this led to a mushrooming of available commercial 2D and
3D CAD software in the 1980s, including the introduction of products like Auto-
CAD (Autodesk), Microstation (Bentley), CATIA (Dassault Systèmes), or Allplan
(Nemetschek). Although 3D modeling software was available from this point on,
it took more than another decade until architectural drafting in 3D finally became
the preferred method of choice over 2D digital drafting, which might have been at
least partially caused by architects’ customization to traditional analog 2D draft-
ing boards.

1

CHAPTER 1. INTRODUCTION

Today, 3D drafting software following the guidelines of Building Information
Modeling (BIM) covers the complete lifecycle of a building, starting from design
drafts over design development, construction documentation, production, docu-
mentation of the current condition up to building operation [ETSL08]. Modern
BIM software is sometimes referred to as 4D, 5D, 6D, or even 7D CAD, as ad-
ditionally to the three geometric dimensions, parameters including schedule time,
cost-related information, energy and sustainability concerns, and as-built facility
management information are integrated into the drafting process [Hol11]. Nev-
ertheless, 3D drafting and the resulting building models remain the centerpieces
of AEC planning processes and can be considered as the virtual basis of modern
construction industry.

Apart from the pure geometry of the building itself, 3D drafting also includes
interior design aspects and shaping of the surrounding exterior environment. Es-
pecially when filing a new draft as a tender, buildings are enriched by encapsulated
detailed 3D models representing furniture, greening, or functional elements like
doors and windows. In contrast to the building itself, these elements are usually
not modeled from scratch by the architect, but are rather taken from respective
databases in order to cheapen and shorten the drafting process. Currently, there
exists a large amount of freely available models, but also a lot of high-quality
collections that are brought to the market by specialized firms.

1.1 Motivation
Integrating already existing 3D models representing furniture, greening, or func-
tional elements in a new draft is an efficient means to facilitate, cheapen, and
shorten the architectural design process, see [Blü13]. The main ingredients for
successful reuse are efficient methods to search and browse model collections.
The straightforward solution to this task would be to use manually assigned meta-
data to enable textual search and retrieval. However, there are several reasons that
render this approach rather intractable in the long term. First, the number of free
as well as commercially available 3D models is growing at an increasing rate,
making manual metadata generation more and more expensive in general. Sec-
ond, when looking at existing databases with manual annotations1 it can be noted
that the available metadata is often inconsistent or incomplete. Additionally, it is
not precise enough to represent fine-grained architectural classification schemes
like e.g. the widely used Getty Art & Architecture Thesaurus [Pet94]. Coping
with this problem would require a huge number of high-salaried AEC experts
to annotate the growing stockpile of models. Considering the reasons hindering

1See e.g. the ArchibasePlanet.com project by Daniil Placida, created in 2001, available at
http://www.archibaseplanet.com/ [last accessed on 22 January 2013]

2

http://www.archibaseplanet.com/

1.2. GOALS

efficient and cheap manual metadata generation it seems necessary to develop
retrieval systems that require no or only minimum human preprocessing and yet
provide satisfying search results. One such approach is the usage of content-based
retrieval, i.e. a system in which retrieval is conducted based on the data contained
in the document itself instead of manually generated metadata. For the case of 3D
models, this means retrieval is relying on the object geometry and, optionally, on
additional content like e.g. textures or surface materials.

Apart from complete integration of existing models into new drafts, searching
building collections for inspirational as well as teaching purposes is of particular
interest to the AEC community, see [Blü13]. This leads to the necessity to also be
able to search and browse building models in a meaningful way. In contrast to the
above mentioned context objects like furniture or functional elements there exist
a huge number of possibilities how to categorize building models, e.g. according
to the shape of the ground plan, 3D form characteristics, form typology/building
type, or building function (for more detailed overviews we refer to [Neu05, MB97,
Pet94]). Consequently, fine-grained manual annotation of building models would
require even more effort than annotation of the context objects. Additionally,
buildings are largely defined by the structure of their underlying floor plans in
terms of the spatial arrangement of floors and rooms. Starting the preliminary
design of a building with a given schedule of spaces, architects arrange rooms,
floors, and their connections in graphs representing topological structures. These
topologies strongly characterize buildings and express their internal organization.
However, such structures can hardly be described textually at all. Therefore, there
is also the necessity for a content-based retrieval system tailored to the specific
properties of building models particularly incorporating means to integrate the
search for topological structures.

1.2 Goals
The overall goal of this thesis is to facilitate drafting processes in the field of ar-
chitecture by providing the designer tools for efficient search of 3D architectural
context objects and building models, either for integration into the new draft or
for inspirational purposes. This should be realized using content-based retrieval
systems for 3D models that take into account the differing requirements to search
and browse for context objects on the one hand and building models on the other
hand. To allow an as automated as possible ingest of models into the retrieval
system we aim at a framework that is able to handle largely varying quality of
geometry representations, which is a challenge that always comes along when
dealing with real world 3D data. The first step to reach the overall goal is to
develop a robust shape descriptor for context objects that is able to address the

3

CHAPTER 1. INTRODUCTION

challenges imposed by fine-grained architectural classification schemes. A wide
range of global and local 3D shape descriptors has been developed and success-
fully tested in the past, see e.g. [JH99, KFR03, Nov03, OOFB08]. Our goal is
to enhance the performance of these descriptors by additionally exploiting know-
ledge about the underlying AEC domain. The second step to reach the overall goal
is to make 3D building models searchable according to the underlying structure of
their floor plans, i.e. the topology of rooms and floors. Retrieval methods build-
ing on comparison of topological properties of 3D shapes have been presented in
the past, e.g. in [HSKK01, ZTS02, EMM03b, SSGD03]. In contrast to these ap-
proaches, we aim at characterizing building models according to an automatically
computed segmentation into high-level semantic entities like rooms and stories
instead of low-level geometric primitives. Apart from the pure search task, such
a characterization is also beneficial to a designer to get a deeper understanding of
built architecture.

1.3 Contributions
The contributions of this thesis can be summarized as:

• A new meta-descriptor for more efficient 3D object retrieval. The class
distribution descriptor allows to combine arbitrary local and global shape
descriptors and incorporates domain specific expert knowledge.

• A new method for component relationship aware shape retrieval. We
introduce a method for learning the distinctiveness of spatial relationships
between object components.

• A new topological descriptor for 3D building models. We present room
connectivity graph as a means to capture the topological arrangement of
rooms and stories in a building. We show how to enrich this graph with
certain attributes to enable targeted retrieval.

• A new efficient method for graph-based retrieval using Bags-of-attribu-
ted Subgraphs. We convert attributed graphs into a vector-based represen-
tation using embeddings of subgraphs which accelerates similarity search.

1.4 Outline
Part I of this thesis deals with efficient search for architectural context objects. We
first show how the incorporation of knowledge about a certain data domain like

4

1.4. OUTLINE

e.g. architecture can be exploited to boost the retrieval performance of state-of-
the-art shape descriptors. To this end we introduce the class distribution descrip-
tor (CDD). Given an arbitrary shape descriptor originating from some object, this
meta descriptor states the probabilities for the object belonging to certain classes.
Domain knowledge is incorporated by estimating the conditional probabilities us-
ing a supervised learning approach. Furthermore, we show how CDDs built from
different (local) shape descriptors can be combined and evaluate the improved
retrieval performance both on a set of general 3D models and on a set with partic-
ularly architecture-related models. To further exploit domain-specific knowledge
about architectural 3D models we make use of the fact that such man-made objects
are mostly comprised of certain geometric primitives i.e. planes, cylinders, cones,
spheres, and tori. We use this observation to learn which spatial relationships of
certain (partial) primitives are most significant for certain object classes to further
enhance the descriptiveness of the CDDs. In the end of Part I we demonstrate the
versatility of CDDs by building meta descriptors from non-shape related model
features, i.e. texture and textual information.

In Part II of this thesis we concentrate on retrieval of 3D building models
based on their floor plans. We first introduce attributed room connectivity graphs
as a means to characterize room and floor topology of a building. We then de-
velop algorithms to infer RCGs from 3D building models represented as unstruc-
tured polygon clouds requiring only minimal human interaction. The suitability of
RCG building representations for retrieval purposes is shown by searching build-
ing databases for attributed query graphs in terms of subgraph isomorphisms. Ad-
ditionally to this approach relying on exact graph matching we develop a method
for fast and fuzzy similarity computation between any two RCGs. The algorithm
is based on an embedding of the RCGs into a finite vector space. By that, graph
similarity determination boils down to easy and quick comparison of two vectors.
Furthermore, we use this vector-based representation for floor plan classification.
We evaluate the results and compare them to the performance of a human classi-
fier.

All algorithms presented in this thesis are designed to work on static 3D mod-
els represented as unstructured polygon soups. Currently, parametric 3D CAD
models that play an increasing important role in the AEC industry (see [SEL04]
for an overview) are not supported explicitly. However, it is possible to de-
rive a static instance from the parametric model and apply the developed algo-
rithms to it. Except for the content of Chapter 4, most of the methods and algo-
rithms described in this thesis have already been published at international con-
ferences in the field of computer graphics, multimedia indexing, and architecture
[WBK08b, WBK08a, WBK09, WK10, WOV+11a]. Additionally, a more detailed
description of our methods presented in [WOV+11a] was published as a technical
report [WOV+11b].

5

CHAPTER 1. INTRODUCTION

Figure 1.1: Simplified scheme of a general IR system according to [BYRN99].

1.5 Preliminaries
In this Section we will first introduce basic concepts about information retrieval
and performance evaluation of information retrieval systems, followed by a brief
introduction to density estimation with kernel classifiers, which is a prerequisite
for both parts of this thesis.

1.5.1 3D Object Retrieval as a Special Case of Information Re-
trieval

Figure 1.1 shows the simplified concept of an information retrieval system (IR
system) [BYRN99]. The purpose of an IR system is to make a set of documents
searchable in a meaningful way as well as to provide interfaces to do so. The
term documents thereby is not restricted to textual documents but applies to all
types of data including e.g. images, audio, video, and 3D graphics. Provided the
documents from the IR system’s repository, certain representation functions are
used to construct the internal document representation2 from the raw data. This

2Depending on the context, the document representation is often denoted as (sets of) descrip-
tor(s) or feature(s).

6

1.5. PRELIMINARIES

document representation must provide a compact characterization of the under-
lying document. The index finally subsumes all document representations. In
classic text retrieval, it might e.g. consist of inverted lists [BYRN99], for im-
age retrieval it might e.g. consist of a database of SIFT-based Bag-of-Features
descriptors [Low04].

Retrieval in an IR system starts with the user formulating a query. It is im-
portant to note that the query format and the format of the indexed documents do
not necessarily need to be identical. For example, if the indexed documents are
images and the representation function is some sort of classifier assigning each
image a textual label, then the query can easily be formulated in terms of a search
string. In cases where document format and query format are in fact identical, one
speaks of query by example3. Once the query is formulated, the internal query
representation is computed. This representation can be but does not necessarily
need to be identical to the document representation. Finally, given the query rep-
resentation, the IR system searches the index for matching documents and delivers
them to the user, starting with the most relevant one.

In the following we will briefly discuss the particular components of an IR
system in our special case of 3D architectural object retrieval (see Figure 1.2).
The documents to be indexed consist of 3D models that are represented as un-
structured polygon soups. They are characterized using various global and local
shape descriptors (see Section 2.2.3 for further details), and topological descrip-
tors that describe the spatial arrangement of rooms and stories of 3D building
models. The index itself consists only of a simple data structure maintaining the
descriptors in memory. Queries are mainly formulated following the query by
example paradigm, i.e. either a 3D model or, like in the case of search for topo-
logical substructures in buildings, a 2D floor plan sketch is provided. The type of
matching procedure that is used to find document representations that are similar
to the query representation depends on the descriptors involved. For vector-based
descriptions like e.g. Zernike moments or the class distribution descriptor, simi-
larity can be determined using e.g. L2 distance or the χ2 metric. For graph-based
representations we will use approximate graph edit distances, Bags-of-attributed-
Subgraphs, graph kernels, and constrained subgraph isomorphism computation.

1.5.2 Leave-one-out Tests

Shape retrieval performance is usually tested with the help of a dataset containing
pre-classified models. We denote the set of model classes by C = {C1, ..., C|C|},
where |C| denotes the number of classes. Classes Ci are sets themselves contain-

3Note that this term does not mean the homonymous query language for relational databases.

7

CHAPTER 1. INTRODUCTION

Figure 1.2: Scheme of a typical 3D object retrieval system.

8

1.5. PRELIMINARIES

ing a certain number of models. The size of class Ci, i.e. the number of models
it contains, is indicated by the cardinality |Ci|. The performance of the retrieval
system is evaluated using a series of

∑|C|
i=1 |Ci| leave-one-out tests. For each test,

exactly one model is selected to function as query object for the rest of the remain-
ing dataset. LetM = {m1, . . . ,m|M|} denote the set of models in the database,
let mq denote the query object, and let M\mq := {m|(m ∈ M) ∧ (m 6= mq)}
denote the set of all models inM except for the current query object. Then the
retrieval system computes the similarity between mq and all remaining models
m ∈ M\mq and delivers a result list RLmq in which all remaining database ob-
jects are sorted according to their similarity to the query object, starting with the
most similar one. The term RLmq[i] denotes the i-th object in the retrieval list.
For each retrieval list resulting from the leave-one-out tests, a retrieval quality
measure can be computed (see below). The performance of the complete sys-
tem is measured by either averaging the retrieval quality measures of each single
leave-one-out test (micro averaging) or by first computing the average retrieval
quality per model class and then averaging over all classes (macro averaging),
see [Shi08]. If not stated differently, all retrieval performance evaluations in this
thesis are quality measures averaged over all models (micro averaging).

1.5.3 Retrieval Metrics

Precision and Recall

Precision-Recall plots are common tools to efficiently visualize the performance
of a retrieval systems [BYRN99]. In contrast to the retrieval metrics described
below, the quality is not measured by a single scalar value but by a set of several
value pairs, each consisting of a precision and a recall value4. To understand the
measure, we first define the sets of relevant as well as found objects in a retrieval
list RLmq considering the k objects most similar to the query object. The set Fkmq
of found objects simply denotes the first k objects in the retrieval list. The setRmq

of relevant objects denotes those objects that belong to the same class as the query
object, i.e. Rmq = {m|m ∈ ζ(mq) ∧ (m 6= mq)}, where ζ(m) ∈ C denotes the
class that object m belongs to. We can then define precision and recall at the k-th

4Note that this description of precision and recall is motivated by our application to perfor-
mance evaluation of a document retrieval system. For definition and usage of precision and recall
in the classification context where both are single-value metrics, we refer to [Pow11].

9

CHAPTER 1. INTRODUCTION

position of the retrieval list:

precision(RLmq, k) =
|Fkmq ∧Rmq|
|Fkmq|

, (1.1)

recall(RLmq, k) =
|Fkmq ∧Rmq|
|Rmq|

. (1.2)

Recall denotes the fraction of relevant objects found when considering the first k
results with respect to the overall number of relevant objects. Precision denotes the
fraction of relevant objects amongst the first k results. Intuitively speaking, recall
answers to the question: “How many of the relevant documents were found?”
Precision answers to the question: “Besides the relevant documents, how many
non-relevant documents were found?”

Precision and recall are computed for all positions k at which the retrieved
object belongs to the same class as the query object. This will result in a set
of |ζ(mq)| − 1 pairs of precision-recall values. Let us consider an example to
get an intuitive understanding of a certain precision-recall value pair, namely
{(0.8), (0.5)}: The set of retrieved documents for query object mq that con-
tains 50% of all documents relevant to the query, namely those belonging to class
ζ(mq), contains 80% of relevant results and 20% of non-relevant results.

To allow comparison between different retrieval lists, precision-recall val-
ues are usually interpolated at a set of certain distinct recall values, like e.g.
{0.05, 0.10, . . . , 1.00}. Precision-recall at recall values that are smaller than 1

|ζ(mq)|
is undefined which causes the resulting plot to start always at a recall value above
0. A perfect retrieval result would lead to a precision-recall plot consisting of a
horizontal line with constant precision values of 1.

Precision-recall diagrams are usually equipped with an additional plot that
visualizes the hypothetical retrieval performance of a randomized retrieval system,
i.e. the order in the retrieval list was determined at random. To generate this plot,
several hundred randomized results are usually averaged. The random plot helps
to get an impression of the complexity of the underlying retrieval problem. The
more classes are involved, the worse the performance of the randomized retrieval
system becomes, indicating that the retrieval problem becomes harder and harder.

Single-Value Retrieval Metrics

Although less expressive than a complete precision recall plot, single-valued re-
trieval metrics are nonetheless often used for evaluation of a document retrieval
system. They come in especially handy if certain parameters of the system must
be tuned, as the retrieval performance of different parameter settings can be eas-
ier compared automatically. Before describing the particular retrieval metrics, we

10

1.5. PRELIMINARIES

first define an indicator function

χ(RLmq, i) =

{
1, if RLmq[i] ∈ ζ(mq),
0, else, (1.3)

stating whether the i-th element in the retrieval list belongs to the class of the
query object.

First Nearest Neighbor (1-NN): This metric simply compares the first result in
the retrieval list with the query object regarding their class memberships:

∆1−NN(RLmq) = χ(RLmq, 1). (1.4)

The 1-NN performance of a retrieval system is identical to that of a one-nearest
neighbor classifier that contains the remaining database objects as training exam-
ples and is used to classify the left out query object [DHS01].

Tiers: The k-Tier denotes the fraction of relevant documents that have already
been found amongst the first k · (|ζ(mq)| − 1) results, which is exactly the same
as the recall of the retrieval list at the k · (|ζ(mq)| − 1)-th position (c.f. Equation
1.2):

∆k−T ier(RLmq) =
|Rmq ∧ {RLmq[1], . . . , RLmq[k · (|ζ(mq)| − 1)]}|

|Rmq|

=
|Rmq ∧ Fk·(|ζ(mq)|−1)

q |
|Rmq|

= recall(RLmq, k · (|ζ(mq)| − 1)). (1.5)

Usually, 1-Tier and 2-Tier are used for evaluation. The 1-Tier can thereby be
thought of as a measure stating how close the result is to that of a perfect retrieval
system, which would require only the first |ζ(mq)| − 1 positions in the retrieval
list to provide full recall.

Discounted Cumulative Gain (DCG): DCG [JK00] takes a typical human be-
havior into account that occurs when examining retrieval result lists. In general,
only the first view results are important, results in the middle or at the end of the
list are usually not examined at all. This phenomenon is most obviously revealed
when thinking of results of web search engines. DCG pays attention to this be-
havior by discounting results that are farther away from the top of the retrieval
list. The DCG then reads:

∆DCG(RLmq) =
χ(RLmq, 1) +

∑|M|−1
i=2

χ(RLmq ,i)

log(i)

1 +
∑|ζ(mq)|−1

i=2
1

log(i)

. (1.6)

11

CHAPTER 1. INTRODUCTION

As can be seen, the discount for results at the end of the retrieval list is achieved
by dividing by a logarithmically increasing weight. The denominator represents
the highest achievable DCG for the particular class ζ(mq) and functions as a nor-
malizer.

For all single value retrieval metrics, ∆(.) ∈ [0, 1] holds, where 0 corresponds
to the worst possible result and 1 corresponds to the best possible result. Like in
the case of precision and recall, the single value retrieval performance measure-
ments of each leave-one-out test are finally averaged. For micro averaging, the
performance of the retrieval system then reads

∆micro
(.) =

1

|M|
∑
mq∈M

∆(.)(RLmq), (1.7)

for macro averaging, it reads

∆macro
(.) =

1

|C|

|C|∑
i=1

1

|Ci|
∑
mq∈Ci

∆(.)(RLmq). (1.8)

1.5.4 Robust Estimation of Conditional Probabilities
Estimating conditional probabilities p(C|x) denotes the problem of determining
the probability that given an observation5 x ∈ X which was inferred from some
document, this document belongs to class C. Computation of such densities is no
easy problem. In general, there are two approaches, namely parametric and non-
parametric density estimation [DHS01]. Parametric density estimation methods
explicitly model the class-conditional probabilities p(x|C) (e.g. using a Gaussian
Mixture Model) and optimize parameters of the function such that they best fit the
data (e.g. using Maximum Likelihood estimation). Non-parametric estimation
denotes purely data-driven approaches to estimate the density functions, i.e. the
class-conditional probabilities are not modeled.

One way to estimate the conditional probabilities is to use modified super-
vised kernel hyperplane classifiers. Considering binary classification (i.e. C =
{C+, C−}), the original purpose of a classifier is to find a discriminant function
g : X → {+1,−1} that predicts the belonging of a document to a certain class,
given an observation x that was derived from this document:

g(x) =

{
+1, if x indicates C+,
−1, else. (1.9)

5alternative names are cases, inputs, instances, or patterns [SS01]

12

1.5. PRELIMINARIES

Kernel hyperplane classifiers can be modified such that they not only predict hard
class assignments, but provide a class probability. In the following we will briefly
discuss two popular and robust hyperplane classifiers, namely Support Vector
Machines (SVMs) [SS01] and Nonlinear Kernel Discriminant Analysis (NKDA)
[RS99]. We will show how these classifiers can be used to robustly estimate con-
ditional probabilities in a binary as well as a multicategory scenario.

Hyperplane Classifiers

Consider the set of empirical training data

{(x1, y1), · · · , (xm, ym) ∈ X × {±1}}, (1.10)

where xi ∈ X denotes the observation and yi denotes the class label6 of the doc-
ument that xi was derived from. Let us consider the case that the observations
belong to a finite dimensional vector space, which means X = Rd. The idea of a
hyperplane classifier is to learn an optimally separating hyperplane from a set of
hyperplanes in a vector spaceH in which an inner product< ., . > is defined, such
that the decision function for an unknown observation x ∈ Rd can be expressed
in terms of

g(x) = sgn(〈w, x〉+ b), where w ∈ H, b ∈ R. (1.11)

Support Vector Machines (SVMs)

Figure 1.3: Linear Support Vector Machine
The separating hyperplane maximizes the mar-
gin between the support vectors (encircled dots)
of both classes.

SVMs belong to the category
of discriminative classifiers in
the sense that they directly
model the decision bound-
aries. In SVM learning, the
separating hyperplane is sup-
posed to be optimally in the
sense that it maximizes its dis-
tance to all training observa-
tions (maximum margin cri-
terion, see Figure 1.3). Let
us consider those observations
x+ and x− that are closest to
the hyperplane on either side

6alternative names are targets, outputs, or observation [SS01]

13

CHAPTER 1. INTRODUCTION

of the decision boundary. The
hyperplane is then to satisfy the following equations:

〈w, x+〉+ b = +1 and 〈w, x−〉+ b = −1. (1.12)

For any observation x, we can express the distance from the origin to x along the
hyperplane normal as

〈w, x〉
||w||

. (1.13)

By that, the distance between x+ and x− along the hyperplane normal and thereby
the margin of the classifier can be written as

〈w, (x+ − x−)〉
||w||

=
〈w, x+〉
||w||

− 〈w, x−〉
||w||

(1.14)

=
1− b
||w||

− −1− b
||w||

=
2

||w||
. (1.15)

It is obvious that maximizing the margin is equivalent to minimizing ||w||. Ad-
ditionally, the constraints imposed by the training set must hold and guarantee
g(xi) = yi. This leads to the following constrained optimization problem:

minimize
w∈H,b∈R

1

2
〈w,w〉 subject to yi(〈w, xi〉+ b) ≥ 1, i = 1, · · · ,m. (1.16)

Solving this quadratic programming problem leads to the following Lagrangian:

L(w, b, α) =
1

2
〈w,w〉 −

m∑
i=1

αi(yi(〈xi, w〉+ b)− 1), (1.17)

where αi denote the Lagrange multipliers. Those observations xi for which the
corresponding Lagrange multiplier evaluates to a value different from zero are
called Support Vectors, see Figure 1.3. Solving the dual optimization problem
(see [SS01, Bar12] for details) finally leads to the following decision function:

g(x) = sgn

(
m∑
i=1

yiαi 〈x, xi〉+ b

)
. (1.18)

Nonlinear Kernel Discriminant Analysis (NKDA)

NKDA is inspired by classical Linear Discriminant Analysis (LDA), which sub-
sumes a category of informative linear classifier. Informative in this context means

14

1.5. PRELIMINARIES

that in contrast to discriminative classifiers, the underlying generative statistics of
the classes, i.e. the class-conditional probabilities p(x|C), are explicitly modeled.
Suppose the densities can be parameterized, i.e. they read pθj(x|Cj), then param-
eter estimation is conducted by maximizing the (log)likelihood:

θ̂ = arg max
θ∈Θ

m∏
i=1

p(xi|yi)

= arg max
θ∈Θ

m∑
i=1

log p(xi|yi). (1.19)

In classical LDA, the observations are assumed to be distributed according to
two different multivariate Gaussian distributions with identical covariances but
differing means, i.e. pθj(x|C = j) ∝ N (x;µj,Σ). For binary classification, the
decision function can be written as

g(x) = sgn
[
log

[
p(C+|x)

p(C−|x

]]
(1.20)

= sgn
[
log

[
p(x|C+)p(C+)/p(x)

p(x|C−)p(C−)/p(x)

]]
= sgn

[
log

[
p(x|C+)

p(x|C−)

]
+ log

[
p(C+)

p(C−)

]]
.

Assuming that the class priors p(C) are uniform and inserting the parameterized
form pθ(x|C) we arrive at

g(x) = sgn [log p(x|C+)− log p(x|C−)]

= sgn [logN (x;µ+,Σ)− logN (x;µ−,Σ)]

= sgn
[

1

2
(x− µ−)TΣ−1(x− µ−)− 1

2
(x− µ+)TΣ−1(x− µ+)

]

= sgn

xT Σ−1(µ+ − µ−)︸ ︷︷ ︸
=:w

+
1

2
(µT−Σ−1µ− − µT+Σ−1µ+)︸ ︷︷ ︸

=:b

= sgn

[
xTw + b

]
= sgn [〈w, x〉+ b] . (1.21)

Note that this is exactly the form of the hyperplane classifier decision function in-
troduced in 1.11. A common way to determine a separating hyperplane is to force
the transformed training observations to be as close as possible to the training
labels:

{ŵ, b̂} = arg max
w∈H,b∈R

m∑
i=1

||yi − (〈xi, w〉+ b)||2. (1.22)

15

CHAPTER 1. INTRODUCTION

For the sake of simplicity, we will integrate the offset b into the linear map-
ping by using homogenous coordinates, i.e. x′i = (xi1, · · · , xid, 1)T and w′ =
(w1, · · · , wd, b)T . By defining X := (x′1, · · · , x′m)T and y := (y1, · · · , ym)T ,
Equation 1.22 can then be reformulated as

ŵ′ = arg max
w∈H,b∈R

m∑
i=1

||yi − 〈xi, w′〉 ||2 (1.23)

= arg max
w∈H,b∈R

||y −Xw′||2 (1.24)

The optimizing weight vector can be written as a linear combination of the train-
ing observations (see [RS99] for further details), i.e. w′ =

∑m
i=1 x

′
iαi = Xα.

Equation1.23 then reads

ŵ′ = arg max
w∈H,b∈R

||y −XXTα||2. (1.25)

The Gram or kernel matrix K := XXT can now be redefined according to Kij =〈
x′i, x

′
j

〉
. The optimal weights α̂ can be determined by computing α̂ = K−1y. The

decision function finally reads

g(x) = sgn

[
m∑
i=1

〈x′, x′i〉 α̂i

]
, (1.26)

where x′ ∈ Rd+1 denotes an unknown query observation x ∈ Rd converted to
homogenous coordinates.

The Kernel Trick

Equations 1.18 and 1.26 indicate that SVM as well as NKDA decision functions
are formulated in terms of dot products, or positive semidefinite kernels. Let us
consider a case in which the training observations cannot be separated well by
the described hyperplane classifiers (Figure 1.5a). Although there is no optimal
linear decision boundary in low-dimensional space, there might exist a mapping
Φ : x→ Φ(x) into a high-dimensional (or even infinite) feature space in which the
observations become linearly separable, see Figure 1.5b. In the depicted example,
the mapping reads Φ : R2 → R3 : (xx, xy) → (x2

x, x
2
y, xxxy). While in 2D, the

observations require a circle-shaped decision boundary for optimal separation, the
transformed observations in 3D only need a linear one. However, in general such
a mapping is not known and cannot be computed explicitely. The idea behind the
kernel trick is that this actual mapping does not need to be computed explicitly,
but only the dot products it induces, i.e. 〈Φ(x),Φ(x′)〉. For any algorithm that is

16

1.5. PRELIMINARIES

(a) (b)

Figure 1.4: Observation mapping to higher dimensional feature space to en-
able linear separation. a) Original 2D observations. The two classes are not
linearly separable. b) Observations after transformation to 3D by virtue of the
mapping Φ : R2 → R3 : (xx, xy) → (x2

x, x
2
y, xxxy). In the new feature space, the

data is linearly separable. This example is taken from [SS01].

formulated in terms of positive semidefinite kernels it is possible to construct an
algorithm that operates on an alternative positive semidefinite kernel. The hope is
that by choosing the right kernel, the observations will become linearly separable.

Probabilistic Classifier Ouput

So far, the described classifiers are able to produce binary output g(x) ∈ {+1,−1}
indicating the class that observation x is assumed to stem from. In the following
we will briefly describe how to infer probabilistic predictions.

SVM case For probabilistic SVM output, several methods have been proposed
[Vap98, Wah99, Pla99]. We will briefly describe the latter approach by Platt et
al. since it is widely used and provides good results with respect to concurring
methods. Platt et al. first define a continuous function g′(x) by dropping the
signum operator in Equation 1.18:

g′(x) =
m∑
i=1

yiαi 〈x, xi〉+ b. (1.27)

Platt’s idea for computing the class probabilities is to analyze SVM outputs on
real-world datasets. To this end he approximates the conditional decision function

17

CHAPTER 1. INTRODUCTION

probability p(g′|C) by histograms. His findings are that on either wrong side
of the margin (i.e. the histogram entries corresponding to p(g′|C+) ≤ −1 and
p(g′|C−) ≥ +1), the distribution of g′(.) is that of an exponential and can therefore
be modeled according to

p(g′(x)|C±) ∝ λ± exp(−λ±(1− g′(x))). (1.28)

With this model at hand the conditional probabilities can be computed by

p(C±|x) =
1

1 + exp(±(A · g′(x) +B))
, (1.29)

where A = −(λ+ + λ−) and B = λ+ − λ− + log p(C−)
p(C+

. Parameters A and B are
fit using maximum likelihood estimation from the training data, for further details
we refer to the original paper.

NKDA case For NKDA, the probability can be easily derived by taking a look at
the definition of the LDA decision function (Equation 1.20) as a likelihood ratio:

g(x) = sgn
[
log

[
p(C+|x)

p(C−|x)

]]
. (1.30)

Analogously to the SVM case, we drop the signum operator and arrive at a contin-
uous function g′(x) from which the probabilistic predictions can be easily deduced
after a few rearrangements:

g′(x) = log

[
p(C+|x)

p(C−|x

]
(1.31)

⇔ exp(g′(x)) =
p(C+|x)

p(C−|x)
=

1− p(C−|x)

p(C−|x)
=

1

p(C−|x)
− 1 (1.32)

⇔ p(C−|x) =
1

1 + exp(g′(x))
. (1.33)

Analogously, p(C+|x) = 1
1+exp(−g′(x))

holds.

Multicategory Classification

So far we introduced two robust methods for (probabilistic) classification that
are applicable to the binary two-class scenario. The overall strategy to extent
classification algorithms to the multicategory case is to divide the problem into
several binary subproblems. There are two main approaches [DHS01]:

18

1.5. PRELIMINARIES

• One-versus-all method For each class, one model is trained, resulting in
|C| classifiers in total. Positive training data are the observations from the
class itself, negative training data consists of the observation from all other
classes. For classification, the winner-takes-it-all strategy is used, i.e. the
unknown observation x is assigned the label of the classifier that provided
the highest value g′(x).

• One-versus-one method For each pair of classes, one model is trained,
resulting in |C| ·(|C|−1)/2 classifiers in total. Positive and negative training
data is provided by the two respective classes. For classification, the max-
wins voting is used, i.e. the unknown observation x is assigned the label of
the class that was predicted by most classifiers.

It is sometimes argued that the one-versus-one method might lead to better re-
sults, as binary subproblems intuitively seem to be easier solvable than those in
the one-versus-all setting, see e.g. [RT01]. While this might be true for rela-
tively weak classifiers like classical LDA, there is no empirical evidence which
approach works better if non-linear SVMs are used as classifiers [bDK05]. Nev-
ertheless, depending on the classifiers in use and the amount of data involved, the
one-versus-one method might be advantageous during training. Although there
are more classifiers to train (O(|C|2) instead of O(|C|)), the number of negative
examples in each training step can be tremendously smaller than in the one-versus-
all method, which might render a large classification problem computable in the
first place.

Multicategory Probabilistic Classification

The goal is to determine a discrete distribution over the conditional probabili-
ties, i.e. one wants to compute p(C1|x), · · · , p(C|C||x). Analogously to the two
approaches for hard category assignment, there are two according methods for
probabilistic classification.

• One-versus-all method Decision functions g′(.) are evaluated as described
above. For each class, the according probability p(Ci|x) is computed. Fi-
nally, all probabilities are normalized to sum up to 1.

• Pairwise coupling For each pair of classes {C+, C−}, conditional proba-
bilities p(C = C+|x,C ∈ {C+, C−}) and p(C = C−|x,C ∈ {C+, C−})
are computed. In an iterative scheme, these probabilities are combined to
finally arrive at p(C = Ci|x,C ∈ C).

While the first approach is straightforward, the second needs further explanation.
We thereby follow the description by Hastie and Tibshirani from their according

19

CHAPTER 1. INTRODUCTION

paper [HT98]. The observations of the conditional probability are first abbreviated
by rij := p(C = Ci|x,C ∈ {Ci, Cj}). Then they define

µij :=
p(C = Ci|x,C ∈ C)

p(C = Ci|x,C ∈ C) + p(C = Cj|x,C ∈ C)
. (1.34)

The idea behind pairwise coupling is now to estimate the sought-after probabili-
ties p̂(C = Ci|x,C ∈ C) such that the resulting µ̂ij are close to the observed con-
ditional probability rij . The similarity between µ̂ij and rij is determined by the
Kullback Leibler divergence [CT06], which is often thought of as a distance be-
tween distributions:

DKL =
∑
i<j

rij log
rij
µ̂ij

+
∑
i<j

(1− rij) log
1− rij
1− µ̂ij

. (1.35)

Optimal probabilities that minimize the Kullback Leibler divergence can be found
by using the following iterative scheme:

Algorithm 1 Pairwise Coupling
1: Input Conditional probability observations rij .
2: Output Conditional probability estimates p̂(C = Ci|x,C ∈ C).
3: Initialize p̂(C = Ci|x,C ∈ C) = 1

|C| .
4: while DKL not small enough do
5: Compute µij = p(C=Ci|x,C∈C)

p(C=Ci|x,C∈C)+p(C=Cj |x,C∈C) .

6: Update p̂(C = Ci|x,C ∈ C)← p̂(C = Ci|x,C ∈ C) ·
∑

i 6=j rij∑
i 6=j µ̂ij

7: Renormalize p̂(C = Ci|x,C ∈ C)← p̂(C=Ci|x,C∈C)∑|C|
i=1 p̂(C=Ci|x,C∈C)

8: end while

20

Part I

Feature-based Shape Retrieval for
3D Architectural Context Models

21

CHAPTER 2

LEARNING DISTINCTIVE LOCAL OBJECT

CHARACTERISTICS

2.1 Introduction

Most of the methods that were developed in the early days of 3D shape retrieval
are based on global shape representations like spherical harmonics descriptors
[SMKF04], Zernike moments descriptors [Nov03], or view-based descriptors
[CTSO03, Vra04, MD06]. Global in this context means that one single descriptor
characterizes an entire 3D model. Global descriptors that are encoded as vectors
allow fast and easy object comparison by computing some distance between the
associated vectors. As the affiliation of many 3D objects to a certain category is
not solely defined by global shape attributes, local features were introduced. In
contrast to global ones, local descriptors only characterize a part of the underlying
object’s geometry. The results presented in [MGGP06, GCO06], and especially
in [OOFB08] indicate that local features are able to further enhance the retrieval
performance. Additionally, to bridge the semantic gap between low level geomet-
ric descriptors and high level user intended object categories, supervised learning
approaches have been successfully used to improve global and local feature based
approaches [HLR05, SF06, FS06, ASYS08].

Summarizing the results of recent work on 3D shape retrieval, it has become
obvious that "...no single descriptor is capable of providing fine grain discrim-
ination required by prospective 3D search engines"[ASYS08], which especially
holds for detailed architectural object classification schemes. It therefore seems
promising to investigate how different types of descriptors can be combined to
boost the performance, additionally to the use of local features and the incorpora-
tion of supervised learning methods.

Regarding approaches relying on local features, there are mainly two different
ways to measure the similarity of two sets of local descriptors. The first approach
relies on determining a mapping between the descriptors of two objects. Object

23

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

similarity is then computed in terms of compatibility of corresponding descriptors,
or in terms of the distortion caused by a geometric transformation that is induced
by the descriptor correspondences [NDK05, FS06]. The second approach uses
histograms that approximate the global distribution of local descriptor or other
local properties of an object for comparison [LZQ06, OOFB08]. Both of these
methods face drawbacks. Establishing feature correspondences usually involves
the exhaustive use of non-trivially to determine thresholds on descriptor similarity,
position, orientation and spatial arrangement. Additionally, it can become quite
time-consuming due to combinatorial reasons. Histogram-based approaches, al-
though allowing easy comparison of two objects using e.g. the Kullback-Leibler
divergence, suffer from the drawback that certain highly discriminating local fea-
tures might have a relative low impact due to the descriptor agglomeration in the
histogram. Additionally, the spatial relationship between local features can not be
expressed appropriately.

Another problem arising from the use of local features is the impact of scale.
A priori it is not obvious how local a feature descriptor should be in order to be
most distinctive. Common approaches either rely on the usage of a single fixed
scale [MGGP06], a combination of several fixed scales [SF06, FS06], or on the
detection of a built-in feature scale [GCO06, OOFB08]. Most of these approaches
face the problem that accidentally choosing a less distinctive scale might lead to
decreased retrieval performance.

To overcome these drawbacks we introduce the new class distribution de-
scriptor (CDD). The CDD is a meta-descriptor that transforms geometric features
like spherical harmonics [SMKF04], Zernike moments [Nov03], or spin-images
[Joh97] into a representation stating how strongly the feature indicates certain ob-
ject classes. To this end we will use the robust conditional probability estimation
described in 1.5.4. The resulting CDD is uncoupled from the geometric feature
it was inferred from: First, it is independent of the feature type, and second it is
rather independent of the actual local feature geometry. Both of these properties
render CDDs appropriate for easy combination and comparison of different local
features without the need to take care of position and spatial arrangement.

Note that in contrast to other approaches (e.g. [FS06, LN07]) our method is
not restricted to similarity measurements between unknown query objects and the
objects contained in a training database, but it also allows comparison of two un-
known query objects. Additionally, our CDD combination scheme enables the
usage of multiple local feature scales and at the same time solves the above men-
tioned problems arising from less distinctive scales. In our experiments using
different types of local shape features we show that our method is superior to
common 3D shape retrieval approaches.

Summarizing the key contributions of this chapter, they are:

24

2.2. RELATED WORK

• A supervised learning approach allowing the easy use of arbitrary features
for 3D shape retrieval by avoiding the problem of generating feature corre-
spondences

• Combination of arbitrary features of different scales with no drawbacks
caused by accidentally chosen less distinctive scales

• A new benchmark containing architectural 3D context objects

• Experimental evaluation of our approach on a standard 3D model bench-
mark [SMKF04] as well as our new architecture benchmark

2.2 Related Work
In the following we will give an overview of the related work on 3D shape re-
trieval. There are several different schemes for grouping the approaches, see e.g.
[BKS+05, TV08]. The domain a descriptor operates on, e.g. the boundary surface
or interior properties, the preservation degree, i.e. how exactly the original model
can be reconstructed from the descriptor, and the type of represented information,
i.e. for example geometry or material properties are among the grouping criteri-
ons. Additionally, one usually distinguishes global and local descriptors. While
global descriptors characterize the complete shape of an object, local descriptors
only represent a part of it. Most shape descriptors can be used in a global as well
as in a local manner. Depending on whether global or local descriptors are used,
determining the similarity between two objects poses quite a different challenge.
Before summarizing the most important shape descriptors we will briefly describe
methods for descriptor comparison. We will thereby only discuss comparison of
vector-valued descriptors. For an overview on graph-based approaches we refer
to Part II of this thesis.

2.2.1 Comparing Global Shape Descriptors
A crucial ingredient for efficient comparison of global shape descriptors are cer-
tain invariance properties towards geometric transformations, which means for
example that similarity evaluation between two shapes should provide the same
result regardless of the objects’ current position in space with respect to transla-
tion and rotation. We will briefly list the most important invariance properties and
describe how they can be achieved. For a more detailed introduction, we refer to
[FK04].

• Invariance under Translation The object’s center of gravity is usually
used as a reference point for descriptor computation, e.g. for subsequent

25

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

volume discretization or as target point of the optical axis for view-based
descriptors. The center of gravity is relatively robust towards small changes
in the object’s geometry.

• Invariance under Rotation There are two basic ways to assure invariance
under rotation. One possibility is to transform the object into a somewhat
canonical orientation before descriptor computation. This method was espe-
cially popular in the early years of research on 3D shape retrieval. The most
common method is to align the object along its principal axes. However,
this method has two drawbacks. First, the principal axes are brittle regard-
ing even small changes in an object’s geometry. Second, the result is not
unique; taking into account flips along the planes spanned by the principal
axes there are 23 possible orientations, which calls for additional heuristics
for exact pinpointing (see e.g. [KPNK03]). The other possibility for achiev-
ing rotational invariance is not to manipulate the object itself but to instead
construct the descriptor in a way such that it becomes rotation invariant. A
popular way is to describe the shape by a function developed in a Fourier
basis. By carefully designing the descriptor in a way that a rotation of the
object would result in a time shift within the Fourier representation, one can
achieve invariance under rotation by dropping the phase information in the
descriptor.

• Invariance under Scaling The simplest way to achieve this invariance is
to isotropically scale the object such that its bounding box touches the unit
cube. However, this method is not very robust, as even a tiny bit of addi-
tional geometry can dramatically change the bounding box. A more effi-
cient way is to scale the object such that the average distance of all points
to the center of gravity is constant for all objects.

• Invariance under Pose Variation This property is especially interesting for
natural objects like human beings or animals. A common way to achieve
this invariance is to describe it in terms of intrinsic surface properties like
geodesic distances, as they are more stable under pose changes than prop-
erties measured with Euclidean geometry.

Invariance of a vector-valued descriptor ensures that each of its entries is compa-
rable to the according entry in another descriptor. Accordingly, comparing two
objects with respect to the underlying global descriptors usually consists of eval-
uating some metric between the corresponding vectors, including e.g. L1, L2, or
χ2-distance. A more sophisticated approach that is feasible in the case of his-
togram descriptors is the earth mover’s distance [RTG98]. It does not only incor-
porate comparison between corresponding descriptor entries (i.e. the i-th entry in

26

2.2. RELATED WORK

the first descriptor is compared to the i-th entry in the second descriptor) but it
rather computes the cost for an optimal rearrangement of the entries in one de-
scriptor such that they would best match those of the other one.

2.2.2 Comparing Local Shape Descriptors

The comparison of two objects that are characterized by sets of local features is a
far more challenging task than in the case of global descriptors. When presented
only two global descriptors, it is easy to see that it is exactly these two descriptors
that must be compared. In the case of local descriptors it is not clear at first glance
how the comparison must be conducted. In the following we will describe the two
main approaches for tackling this problem

Establishing feature correspondences The idea behind this approach is to de-
termine a mapping between two sets of local descriptors that takes descriptor sim-
ilarity as well as spatial relationships into account. Depending on the amount
of distortion that is induced by the mapping, the similarity between the two un-
derlying objects is determined. Körtgen et al. [KPNK03] try to find optimal
correspondences by minimizing a rather complex energy function that amongst
others contains terms for descriptor similarity and descriptor position. This leads
to a weighted bipartite graph matching problem that is solved using the Hun-
garian algorithm [Mun57]. Similar approaches are introduced in [NDK05] and
[WNK06], where object similarity is defined in terms of a thin-plate spline bend-
ing energy induced by previously determined pairwise feature correspondences.
Funkhouser et al. [FS06] use a heuristic similarity measure involving spherical
harmonics (SH) descriptor distances and similarity of spatial relationships. Fo-
cusing on recognition of small vehicles in point clouds from laser range scans,
RANSAC based approach for the detection of small compatible feature sets are
presented in [SMS+04] and [JH99].

Methods based on geometric hashing [LW88] are extremely popular in com-
puter vision but have also been applied to 3D shape retrieval [GCO06]. Although
this approach takes spatial relationships of features into account, it faces two ma-
jor drawbacks. First, the memory consumption for storing the hash tables is rather
high. Second, the degree of discretization of the transformation space and the Eu-
clidean space at which high quality retrieval results can be achieved is rather hard
to determine. Despite their ability to include spatial relationships of local features
into the object similarity measure, the described methods require to manually de-
fine a lot of pruning thresholds on descriptor similarity and spatial consistency,
rendering it hard to achieve good generalization results.

27

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

Histograms Methods based on histograms either approximate distributions of
local shape descriptors or they approximate distributions of relationships between
local shape descriptors.

The first approach is commonly known as the Bag-of-Features (BoF) paradigm.
BoF-based methods have recently gained increasing attention in the 3D shape re-
trieval community [LZQ06, LGW08, OBBG09, BBGO11]. The idea behind this
approach is inspired by the common Bag-of-Words approach [Har54] which is
used for text retrieval and classification. First, a codebook of local features is se-
lected with respect to a set of training objects. New objects are then characterized
by describing their local feature occurrences with respect to the before established
codebook. By that, local features are mapped into a single histogram, allowing for
easy comparison of two 3D objects. BoF-based descriptors are invariant under ro-
tation by construction1 as they lack the ability to represent positional information
of local features and their according descriptors as well as the spatial relationship
between several features. Loosely speaking, the resulting histogram only states
how often a certain descriptor appears in an object with respect to the total num-
ber of descriptors. In [LGW08], Li et al. try to alleviate this shortcoming by
additionally taking the distance between the object center and the local feature
into account. However, the exact spatial relationship between tuples of features
cannot be represented appropriately by a BoF approach2.

In contrast to the BoF method, the goal of the second approach is instead of
approximating the descriptor distribution directly, to rather characterize the rela-
tionship between any pair of descriptors in terms of similarity and dissimilarity,
respectively [PRM+00, OFCD02, ILSR02, IRSS03, OMT03]. A very basic ex-
ample of this type of method, the D2-descriptor, was introduced in [AKKS99]. In
this approach the "local descriptors" simply consist of points randomly sampled
from the object’s surface. A histogram is built that approximates the distribution
of the pairwise Euclidean distances between all points. Like in the BoF approach,
this second type histogram descriptor is invariant under rotation.

2.2.3 An Overview on Shape Descriptors
In the following we will briefly describe the most important types of shape de-
scriptors. Especially for the older methods we mostly summarize the vast descrip-
tions that can be found in [BKS+05] and [TV08]. We loosely follow the grouping
scheme in [BKS+05].

1Assumed that the underlying local descriptors are rotational invariant
2Nevertheless it is possible to concatenate several descriptors to a single one, add the according

information about spatial relationships, and build BoFs from these combined descriptors, see e.g.
[OB07]. However, regarding the exponential nature of the underlying combinatorial problem it is
doubtful that the resulting statistics can be expressed by a histogram appropriately.

28

2.2. RELATED WORK

(a) (b) (c)

Figure 2.1: Volume discretization. a) Shell bins. b) Sector bins. c) Combined
shell-sector bins. This example is taken from [BKS+05].

Simple Statistical Descriptors Statistical descriptors try to capture probabil-
ity distributions of global and local properties of 3D objects. In contrast to the
surface descriptors described further below, local surface properties of the object
like normals or curvature are not incorporated directly. Paquet et al. [PRM+00]
propose object volume to bounding box volume ratios as well as the distance
between the bounding box center and the center of mass. The resulting simple
descriptor is invariant under translation. Corney et al. [CRC+02] use the de-
viation of the object’s actual surface and its convex hull to characterize an ob-
ject. Shape distributions have been proposed by several researchers, including
[PRM+00, OFCD02, ILSR02, IRSS03, OMT03]. The common idea is to con-
struct histograms of local and global geometric properties including the angle dis-
tribution of surface point triples, the distribution of distances between random
surface point pairs, or the area distribution of triangles spanned by random sur-
face point triples. Another way to compare distributions of geometric properties
is to characterize them according to their moments instead of histograms, see e.g.
[PRM+00, ZC01, SV01, ETA02].

Volume-Based Descriptors The idea behind volume-based descriptors is to
first discretize the volume an object is located in. For each resulting bin, a func-
tion is evaluated that locally describes the object’s surface (or in some cases the
volume). Ankerst et al. [AKKS99] propose to divide the volume into shells, sec-
tors, or a combination of both, see Figure 2.1. The bin models are aligned around
the object’s center of gravity. A number of points are randomly sampled from the
object surface. It is then counted how many points fall into each bin. By that, the
shell model (Figure 2.1a) results in a rotation invariant descriptor while the other
two variants require pose normalization first. Suzuki et al. [SKO00] propose a

29

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

regular grid-like volume subdivision instead. By grouping certain bins, rotation
invariance at 90 degree intervals is achieved. A similar approach is described in
[VS01]. By applying a Fourier transformation to the descriptor, high frequencies
can be pruned leading to increased robustness towards small changes in the ge-
ometry. Ohbuchi et al. [OOIT02] slice the object into a fixed number of pieces
along each principal axis and compute statistics on sampled surface points per
slice including the moment of inertia, average distance to the particular axis and
the according variance.

There are several approaches that do not characterize the surface of an ob-
ject but rather the enclosed volume. In most cases, such descriptors can only be
applied to a model whose surface is closed and orientable by construction or is ap-
propriately converted by using a suitable surface reconstruction technique. Keim
[Kei99] and Novotni et al. [NK01] propose to measure object similarity in terms
of overlapping object volumes. Heczko et al. [HKSV02] introduce a method that
does not require a closed surface. The overall idea is to construct tetrahedrons
formed by each surface triangle and the object’s center of mass. The resulting
tetrahedrons are then intersected with a volume subdivision structure like the one
in Figure 2.1 and an according shape descriptor is constructed.

While most of the above presented volume-based descriptors require pose nor-
malization of the object to achieve rotation invariance, spherical harmonics (SH)
descriptors as introduced by Funkhouser et al. [FMK+03] provide this feature
intrinsically. The starting point is the combined volume subdivision scheme as
depicted in Figure 2.1c. While keeping the strict separation of the shells, the sep-
aration between sectors in one shell is relaxed. Instead of considering each bin
isolated, the surface point counts in each bin are considered as nodes of a contin-
uous spherical function located on the particular shell. The function is fitted using
a spherical harmonics basis. By dropping the phase information of the resulting
complex SH coefficients one arrives at one rotation invariant descriptor per shell.
A scale-invariant version of the local SH descriptor was presented in [NDK05].
The idea of considering continuous functions instead of isolated bins is followed
to its logical conclusion by Novotni et al. in their work about Zernike moments
descriptors [Nov03]. Instead of only using orthonormal Legendre polynomials
and Fourier basis functions to characterize each shell separately, Novotni adds the
Zernike polynomial as a third basis function to continuously characterize the vol-
ume across shell boundaries. A similar approach relying on Krawtchouk instead
of Zernike moments is presented by Mademlis et al. in [MAD+06].

Symmetry-based descriptors are presented in [KCD+03], [PSG+06], and
[Rus07a]. The idea is to parameterize an object according to its (local) degree
of symmetry. To this end, the desired space of symmetric transformations (e.g. all
planar reflections) is discretized. Additionally, a voxelized version of the object is
created. By documenting the object’s degree of symmetry with respect to each of

30

2.2. RELATED WORK

these transformations, a descriptor is computed which can be used to determine
object similarity.

Surface geometry descriptors The idea behind these descriptors is to locally
characterize the object’s surface at (randomly) selected locations. Paquet et al.
[PR00] compute histograms over the angle distribution between each of the first
two principal axes of a face and the according face normal. The histogram over
the normal angle distribution is the starting point for descriptor development in
[IW02] and [WCI04]. In [ZP01], the local principal curvatures are approximated
via quadric fitting and subsequently mapped onto a single value called shape in-
dex. The resulting descriptor is denoted as shape spectrum and is inferred by com-
puting a shape index histogram. In [ZP02], the space of planes intersecting the
model is first discretized. For each triangle it is computed how much it contributes
to any of the intersection planes in terms of area overlap and angle consistency. A
non-rotation invariant descriptor is constructed from the aggregated contributions.

The idea behind spin images [Joh97] is to efficiently characterize local sur-
face geometry. For some surface point, the associated spin image is oriented
along the surface normal. The surrounding local space is discretized using cylin-
drical shells centered on the normal and slicing planes that are perpendicular to
the normal. The surface point count inside each of the resulting bins is evalu-
ated. By construction, spin images are rotation invariant around the normal. They
have been used as local descriptors in numerous retrieval efforts, including e.g.
[ADBP04, LZQ06, MGGP06]. Körtgen et al. [KPNK03] introduce a straightfor-
ward extension of 2D shape contexts [BMP02] to three dimensions. For a number
of surface points, a histogram is computed that characterizes the angle and dis-
tance distribution to points in the local neighborhood. In [GCO06], geometrically
non-trivial parts of the mesh are represented by local descriptors incorporating
area and curvature. The descriptors are by construction scale invariant. Addition-
ally, in contrast to most other descriptors, the area of description is not restricted
to a spherical support.

Although providing certain invariance properties, none of the surface descrip-
tors presented so far is invariant towards isometric transformation. To alleviate this
drawback, several approaches have been developed that rely on intrinsic surface
properties which do not change under isometric transformation, e.g. geodesic dis-
tances. Accordingly, many methods use the Laplace-Beltrami operator (LBO) and
its approximations on a triangle mesh as a starting point. Reuter et al. [RWP06] in-
troduce Shape-DNA, a descriptor consisting of the first k eigenvalues of the mesh’s
Laplace-Beltrami spectrum. Rustamov picks up this approach and presents global
point signatures that consist of each vertex’ corresponding row in the Laplace-
Beltrami spectrum scaled by the square roots of the corresponding eigenvalues

31

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

[Rus07b]. A global descriptor is computed by constructing a histogram of the
pairwise distances of all global point signatures. These methods also triggered the
development of spectral methods that additionally incorporate the object’s inte-
rior, see e.g. [RWSN09, RLF09, Rus10]. However, these approaches are not pose
invariant any longer, since they depend on the embedding of the surface in the Eu-
clidean space. Descriptors based on heat kernels are closely related to the LBO-
based ones, as computing the heat kernel on a mesh actually boils down to little
more than evaluating the LBO. In contrast to the global point signatures by Rusta-
mov [Rus07b], multiscale Heat Kernel Signatures introduced by Sun et al. allow
for a certain localization of the descriptor’s support, depending on how much time
has passed since the beginning of the heat diffusion process. Improvements re-
garding scale invariance and applications of this approach have been presented
in [OBBG09, BK10, DLL+10, OMMG10, BBGO11]. Note that all descriptors
relying on an approximation of the LBO require a more or less intact mesh in
terms of connectivity, as otherwise the necessary computation of geodesics would
be faulty. For an excellent overview including additional descriptors for non-rigid
3D object retrieval as well as an exhaustive comparison of state-of-the-art methods
we refer to [LGB+12].

View-based descriptors The basic idea of view-based descriptors is to trans-
form one instance of the 3D similarity problem into several instances of 2D sim-
ilarity problems. Heczko et al. [HKSV02] compute orthogonal projections along
each principal axis of the model. From the resulting silhouettes, a constant num-
ber of points are sampled. The resulting distances from its center to the sampled
points are stored in a vector. By applying a Fourier transformation and subse-
quently dropping the phase information, a rotation invariant descriptor is con-
structed. Song et al. [SG02] render the model from different viewpoints. The
resulting 2D silhouettes are characterized by the degree of circularity, 2D Fourier
descriptors, moment invariants, and curvature scale space. For any two render-
ing viewpoints, the similarity of the according representations is computed. The
whole model is then represented and compared by a histogram built from these
distances. Alternatively, 2D Zernike moments, curvature histograms, and color
information have been proposed to characterize 2D views [Löf00, AVMD04]. In-
stead of only three projections along the principal axes, the light field descriptor
introduced by Chen et al. [CTSO03] is composed of all ten unique 2D views that
result from renderings from the corners of a dodecahedron looking through the
object’s center. Each silhouette is represented by according Zernike moments and
2D Fourier descriptors. To compare two objects, heuristics are used to find the
optimal rotation that minimizes the induced descriptor distances. An improve-
ment of this method is introduced in [MD06]. In this work, the optimal rotation

32

2.2. RELATED WORK

between the shapes is found using fast Fourier transformation, an approach sim-
ilar to those presented in [WNK06] and [Kaz07] for optimal alignment of SH
descriptors and the underlying model, respectively. Depth buffer descriptors are
introduced in [HKSV02] and [Vra04]. The model is again rendered from different
viewpoints, but instead of a flat image, the resulting content of the depth buffer
is used to characterize the particular view using a 2D Fourier descriptor. Depth
buffer images are also the starting point for Ohbuchi’s method [OOFB08], who
uses them to locate SIFT descriptors and subsequently constructs one global BoF
descriptor. A similar approach is presented in [LGS10], where one BoF descriptor
per view is computed and object similarity is defined in terms of the best matching
descriptor pair.

View-based shape descriptors also play an important role in sketch-based 3D
shape retrieval which has recently regained attention, see e.g. [YSSK10, ERB+12].
For an overview and evaluation of state-of-the-art methods from this domain we
refer to [LSG+12]. For a more thorough introduction to view-based 3D shape re-
trieval methods in general we refer to the recently published exhaustive survey by
Liu [Liu12].

2.2.4 Supervised Learning in Shape Retrieval
In [NPWK05], Novotni et al. use a Support Vector Machine (SVM) and Kernel-
based methods to implement relevance feedback for 3D shape retrieval using
global Zernike descriptors. In an iterative process, the user selects relevant and
non-relevant retrieved objects and is afterwards presented results that are im-
proved by the learning process. Relevance feedback is also addressed in [ASYS08],
where Akgül et al. present a linear score fusion approach. In the training step
they use an SVM in order to learn how to optimally combine similarity values
between two objects arising from different global shape descriptors. Hou et al.
[HLR05, HR07] also make use of SVMs. In the training step, they learn con-
ditional object class probabilities given a set of global shape descriptors. For
a query object, global shape descriptors are computed and the conditional class
probabilities are predicted based on the learned knowledge. Training objects be-
longing to the most likely class are returned as retrieval results. The approach pre-
sented in [LN07] combines elements of the supervised learning method presented
in [HR07] with view-based Light Field Descriptors [CTSO03]. In [SF06], the ap-
pearance likelihoods of local SH descriptors are mapped to their distinctiveness in
a training step. Given a query object, distinctive descriptors are selected according
to the learned mapping. The similarity between two objects is then determined by
the minimum Euclidean distance between all pairs of selected descriptors. Taking
into account spatial relationships between local features, Funkhouser et al. fur-
ther improve this method [FS06]. Amongst a large number of randomly chosen

33

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

surface features, a small set containing the most distinctive ones is determined
in a learning step for a database of training objects. Given a query object, ran-
domly located surface features are computed and correspondences to the distinc-
tive database features are established with respect to certain spatial constraints.
Note that this method as well as the above described one [LN07] is restricted to
searching similar objects only amongst the set of pre-classified training objects.

2.2.5 3D Shape Benchmarks

Along with the increasing importance of 3D shape retrieval methods, a number
of benchmarks differing in the field of interest the models belong to, in the object
representation, or in the type of classification scheme has been developed. The
well-known Princeton Shape Benchmark [SMKF04] contains objects from vari-
ous fields (e.g. planes, animals, plants, buildings). The models are represented
as triangle meshes without consistent normal orientation and connectivity. Its
hierarchic classification schemes include coarse levels which rather include func-
tional aspects as well as fine-grained levels corresponding to rather form-based
classifications. Another benchmark containing generic model classes is presented
in [FGLW08]. The included triangle meshes are pose-normalized according to
their principal axes. The proposed classification mainly follows a form-based
scheme, but there are also some classes that rather reflect functional aspects (e.g.
MusicalInstrument,MilitaryVehicle). In [JKIR06], the PRECISE
Engineering Shape Benchmark is presented, focusing on 3D objects related to
engineering. The models are represented as triangle meshes. The classification
scheme includes semantic- as well as shape-related categories. The McGill 3D
Shape Benchmark [ZSMS05] was especially designed for retrieval of articulated
objects, and consequently contains mostly animals and humans. Objects are rep-
resented by voxel grids as well as by triangle meshes. The classification scheme
is non-hierarchic and rather related to semantics than to form.

Several other benchmarks have been developed for different tracks of the
SHREC Shape Retrieval Contest as a part of the Shape Modeling International
conference (from 2006 to 2008, see [VRS+06, VtH07, VtH08]) and the Euro-
graphics Workshop on 3D Object Retrieval, respectively (since 2009, see [VtH09,
DSS+10, LSF+11, SBBF12]3). These benchmarks include datasets focusing on
miscellaneous aspects like watertight models, face models, partial models, etc.
The models contained in these benchmarks are collected from publicly available
3D repositories, from other benchmarks, or were generated for this event. The

3Please note that SHRECs from 2009 to 2012 include a total of 20 different tracks for each of
which exists an according publication. We therefore only cite the summary paper (2009) and the
proceedings (2010-2012), respectively.

34

2.3. CLASS DISTRIBUTION DESCRIPTORS

underlying schemes mainly comprise form-based categories.

2.3 Class Distribution Descriptors
Overview The class distribution descriptor is an abstract meta-descriptor that
can be inferred from an arbitrary vector-based descriptor4. It states how strongly
the underlying descriptor indicates the object’s belonging to each element of a
predefined set of classes in terms of conditional probabilities. The idea is related
to the approach presented in [HR07]. In this paper, supervised learning methods
are used to predict conditional object class probabilities given global descriptors
computed for a query object. The pre-classified objects in the database that belong
to the most likely predicted class are returned as results. In our approach, we
follow a different way enabling us to take advantage of local feature descriptors.
Instead of using the conditional class probabilities as a classifier, we treat them as
a new meta-descriptor: Given a set of object classes C = {C1, ..., C|C|}, the class
distribution descriptor D(x) originating from an arbitrary local descriptor x ∈
X = Rd is the result of a transformation Φ mapping x into a space of conditional
probabilities:

D(x) = Φ(x) =

 p(C1|x)
...

p(C|C||x)

 . (2.1)

To point out the advantage of this representation over an underlying geometric
descriptor like SH or Zernike moments, let us consider a 3D model of an airplane,
for which two local descriptors are computed, one approximately located at the tail
and one in the cockpit. Although the geometry at these locations largely differs,
the two resulting CDDs will probably look similar, as both, the tail as well as the
cockpit, is highly significant for an airplane. This example also demonstrates how
the CDDs are uncoupled from local geometry and feature localization, rendering
feature correspondence determination unnecessary.

2.3.1 Combining Class Distribution Descriptors
Given CDDs that are derived from a set of l (local) descriptors x1, ..., xl charac-
terizing an object, we need to construct a representation that enables easy object
comparison. To this end we aim at computing one single CDD D(x1, ..., xl) that

4In this thesis we only consider vector-based descriptors as a starting point for CDD inference.
However, provided with an appropriate kernel it would be possible to derive CDDs from structured
data like graphs or strings as well.

35

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

incorporates the previously created CDDs. From a statistical point of view, this
descriptor should reflect the distribution of conditional class probabilities, given
the descriptors x1, ..., xl. It should therefore read

D(x1, ..., xl) :=

 p(C1|x1, ..., xl)
...

p(C|C||x1, ..., xl)

 .

Combinations of probabilistic classifier outputs have been widely discussed
in literature, see e.g. [Ued00, TvBDK00, HR07]. Supposing the local features
to be statistically independent and adopting the Bayesian point of view5 leads
to a widely used combination method known as product rule. In the following
we will show how the desired descriptor D(x1, ..., xl) can be computed by from
descriptors D(x1), ...,D(xl) using the product rule. Let us first consider only a
single class Ck. According to the Bayes theorem, we know that

p(Ck|x1, ..., xl) · p(x1, ..., xl) = p(Ck, x1, ..., xl) (2.2)
= p(x1, ..., xl, Ck) = p(x1, ..., xl|Ck) · p(Ck)

holds. Rearranging and demarginalizing provides

p(Ck|x1, ..., xl) =
p(x1, ..., xl|Ck) · p(Ck)

p(x1, ..., xl)
(2.3)

=
p(x1, ..., xl|Ck) · p(Ck)∑|C|
j=1 p(x1, ..., xl|Cj) · p(Cj)

. (2.4)

As the xi are supposed to be statistically independent (Naïve Bayes), the equation
can be simplified in the following way:

p(Ck|x1, ..., xl) =
p(Ck) ·

∏l
i=1 p(xi|Ck)∑|C|

j=1 p(Cj)
∏l

i=1 · p(xi|Cj)
. (2.5)

5Note that this assumption of a Naïve Bayes probabilistic model [Bar12] is only a heuristic. As
local features of one object might overlap, the independence assumption will become violated.

36

2.3. CLASS DISTRIBUTION DESCRIPTORS

By expanding the fraction by 1/
∏l

i=1 p(xi), we arrive at

p(Ck|x1, ..., xl) =

p(Ck)·
∏l

i=1 p(xi|Ck)∏l
i=1 p(xi)∑|C|

j=1 p(Cj)·
∏l

i=1 p(xi|Cj)∏l
i=1 p(xi)

(2.6)

=
p(Ck) ·

∏l
i=1

p(xi|Ck)
p(xi)∑|C|

j=1 p(Cj) ·
∏l

i=1
p(xi|Cj)

p(xi)

(2.7)

=
p(Ck) ·

∏l
i=1

p(Ck|xi)
p(Ck)∑|C|

j=1 p(Cj) ·
∏l

i=1
p(Cj |xi)
p(Cj)

(2.8)

=

1
p(Ck)l−1 ·

∏l
i=1 p(Ck|xi)∑|C|

j=1
1

p(Cj)l−1 ·
∏l

i=1 p(Cj|xi)
. (2.9)

As a priori all classes in C are supposed to be equally likely, i.e. p(C) = 1
|C|∀C ∈

C, the equation can be further simplified:

p(Ck|x1, ..., xl) =

∏l
i=1 p(Ck|xi)∑|C|

j=1

∏l
i=1 p(Cj|xi)

. (2.10)

It follows that the conditional probability for class Ck given a set of indepen-
dent features {x1, ..., xl} is distributed according to the product of the conditional
probabilities for class C given the single features xi, i.e.

p(Ck|x1, ..., xl) ∝
l∏

i=1

p(Ck|xi). (2.11)

By that, we can now aggregate the individual CDDs into a single one:

D(x1, ..., xl) =

 p(C1|x1, ..., xl)
...

p(C|C||x1, ..., xl)

 =

∏l

i=1 p(C1|xi)∑|C|
j=1

∏l
i=1 p(Cj |xi)
...∏l

i=1 p(C|C||xi)∑|C|
j=1

∏l
i=1 p(Cj |xi)

 (2.12)

=

⊗l
i=1D(xi)∑|C|

j=1

(⊗l
i=1D(xi)

)
[j]
, (2.13)

where
⊗l

i=1D(xi) denotes element-wise vector multiplication, and v[j] denotes
the j-th element of vector v. As no other combination method seems to clearly
outperform this strategy [TvBDK00, HR07], we compute combinations of CDDs

37

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

in this simple way. Choosing the product rule for CDD combination addition-
ally offers an essential advantage over methods like probability averaging, which
is another commonly used combination method. The product rule automatically
favors distinctive CDDs (those containing low entropy in the object class distribu-
tion) over less distinctive CDDs (those containing high entropy in the object class
distribution). This is especially useful when combining heterogeneous descriptors
because a priori, it is not obvious which descriptor types or scales are most dis-
tinctive. In the following we will take a closer look at this particular behavior of
combined CDDs:

Maximum entropy descriptors Given a set of CDDs {D(x1), ...,D(xl)}, with-
out loss of generality let us suppose the class distribution of the l-th descriptor has
maximum entropy, i.e. D(xl) = (1

|C| , ...,
1
|C|)

T . Then the combined CDD reads

D(x1, ..., xl) =

 p(C1|x1, ..., xl)
...

p(C|C||x1, ..., xl)

 =

1
|C|

∏l−1
i=1 p(C1|xi)∑|C|

j=1
1
|C|

∏l−1
i=1 p(Cj |xi)
...

1
|C|

∏l−1
i=1 p(C|C||xi)∑|C|

j=1
1
|C|

∏l−1
i=1 p(Cj |xi)

= D(x1, ..., xl−1).

This shows that adding an arbitrary amount of non-meaningful CDDs to an object
description does not change the resulting combined CDD in any way.

Minimum entropy descriptors Given a set of CDDs {D(x1), ...,D(xl)}, with-
out loss of generality let us suppose the class distribution of the l-th descriptor has
minimum entropy, i.e. the conditional class probability reads 1 for exactly one
class (denoted by Ĉ)) and 0 for all remaining classes,D(xl) = (0, ..., 0, 1, 0, ..., 0)T .
Then the combined CDD reads

D(x1, ..., xl) =

 p(C1|x1, ..., xl)
...

p(C|C||x1, ..., xl)

 =

0·
∏l−1

i=1 p(C1|xi)
1·
∏l−1

i=1 p(CĈ |xi)...
0·
∏l−1

i=1 p(CĈ−1|xi)
1·
∏l−1

i=1 p(CĈ |xi)
1·
∏l−1

i=1 p(CĈ |xi)
1·
∏l−1

i=1 p(CĈ |xi)
0·
∏l−1

i=1 p(CĈ+1|xi)
1·
∏l−1

i=1 p(CĈ |xi)...
0·
∏l−1

i=1 p(C|C||xi)
1·
∏l−1

i=1 p(CĈ |xi)

= (0, ...0, 1, 0, ..., 0)T = D(xl).

38

2.4. RESULTS ON PRINCETON SHAPE BENCHMARK

This shows that adding a distinctive descriptor to an object description strongly
changes the resulting CDD towards the new distinctive prediction.

Numerical aspects Multiplying a large number of values smaller than 1 which
is a prerequisite for CDD combination might inflict numerical problems. At a
certain point, intermediate results might run below the limit of floating point pre-
cision. We alleviate this problem by transforming the probabilities into the log-
arithmic domain. We subsequently consider the sums of the log-probabilities in-
stead of the product and finally retransform the result into the original domain by
computing the exponential.

2.3.2 Comparing Class Distribution Descriptors
To compute the similarity of two 3D objects, we must define a distance measure
between the two according combined CDDs. As CDDs represent a discrete prob-
ability distribution over the object classes, the natural similarity measure between
them is given by the Kullback-Leibler (KL) divergence, also known as relative
entropy [CT06]. Let p(C) and q(C) denote two probability distributions over the
set of object classes C, then the KL-divergence reads:

DKL(p, q) =

|C|∑
j=1

p(Cj) log
p(Cj)

q(Cj)
. (2.14)

As we are interested in a symmetric object similarity measure, we use the modified
version of KL-divergence in our experiments :

DKLsym(p, q) = DKL(p, q) +DKL(q, p). (2.15)

2.4 Results on Princeton Shape Benchmark
In this Section we will first give an overview of our experimental setup describing
the 3D objects and descriptors we use. We will then present our results and com-
pare them to the method described in [FS06]. We will further discuss the influence
of descriptor types and feature scales.

2.4.1 Experimental Setup
Dataset For our experiments we use a subset of the 3D objects contained in the
Princeton Shape Benchmark (PSB) [SMKF04]. The PSB is separated into two
sets. The training set contains 907 objects divided into 90 classes and the test set

39

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

contains 907 objects divided into 92 classes. Merging both subsets leads to 1814
objects in 161 classes. To ensure a certain amount of robustness when estimating
conditional class probabilities using the methods described in 1.5.4, we restrict
our evaluation to those PSB classes containing at least 20 objects in the merged
set. This leads to 739 objects divided into 21 classes, see Table 2.1. We divide

class objects class objects
biplane 28 commercial airplane 21
fighter jet 100 helicopter 35
enterprise like 22 human standing 100
human arms out 41 sword 31
face 33 head 32
two story home 21 city 20
dining chair 22 shelves 26
table rectangular 51 handgun 20
vase 22 potted plant 51
tree barren 22 ship 21
sedan 20

Table 2.1: PSB classes used in our experiments.

this set into a training set and a test set. For the training set, we randomly select
16 objects of each class, resulting in a total number of 336 training objects. The
remaining 403 objects are put into the test set. For all experiments involving our
CDDs we use the training set for learning the discriminant functions; retrieval is
done exclusively on the test set. Three methods are used for comparison, global
spherical harmonics descriptors [KFR03], global Zernike descriptors [Nov03] and
partial matching with priority driven search [FS06]. The two methods using global
shape descriptors do not require any training and are only evaluated on the test set.
Partial matching requires a leave-one-out classification. Query results can only be
found amongst the training objects, so for each query object, the remaining 402
models of the test set are used as training data.

Descriptors We use three different types of local shape descriptors as a basis
for CDD computation: SH descriptors [KFR03], Zernike descriptors [Nov03] and
spin images [Joh97]. Descriptor locations are randomly selected on the under-
lying triangle mesh with respect to the triangle areas. All triangle meshes are
normalized to their bounding boxes. To compute SH and Zernike moments, the
triangle meshes are transformed into voxel grids of size 128× 128× 128 in a pre-
processing step. SH and Zernike moments are computed on the voxel grid around
all randomly selected points. The resolution of the SH descriptors is set to eight

40

2.4. RESULTS ON PRINCETON SHAPE BENCHMARK

shells, each of which is represented by 16 coefficients. For each Zernike descrip-
tor we use 156 coefficients. To generate spin images, the meshes are transformed
into point clouds, each of it containing 250000 points per surface unit, leading to
approximately 100000 to 700000 points per object. Spin images are computed on
this point cloud around all randomly selected points. The required normals are
derived from the underlying triangles. Note that we do not use oriented normals
to build the spin-image, as the PSB objects do not provide consistent face orienta-
tions in general. The spin image resolution is set to 16×16 bins. All feature scales
mentioned in the next section describe the radius of the computed local descriptor.
All scales are measured with respect to the radius of the underlying object. We
compute 64 local shape descriptors of every type and scale. For comparison to
other methods and to show the impact of local CDDs, we also compute global
SH and Zernike moments located at the object centers. The resolution for both of
them is the same as for the according local descriptors.

CDD Computation For estimation of the conditional class probabilities we use
Nonlinear Kernel Discriminant Analysis as described in Section 1.5.4. As a ker-
nel, we use the standard radial basis function reading

k(x, x′) = exp

(
−|x− x

′|2

2σ2

)
. (2.16)

The optimal kernel width σ is determined separately for every of the |C|(|C|−1)/2
NKDA classifiers using 8-fold cross-validation [DHS01], each time leaving out
the descriptors of two of the 16 training models of both object classes. Note that
it is important to consistently assign all descriptors of a single model to either
the training set or to the validation set during cross-validation. Otherwise, over-
fitting would result, as the overlapping descriptors of one single model are not
independent and identically distributed (see [DHS01]).

2.4.2 Evaluation
Comparison to other methods We compare our method to three other shape
retrieval approaches. On the one hand, classic approaches relying on global fea-
tures without any supervised learning are represented by global spherical harmon-
ics (GSH) and global Zernike moments (GZM) descriptors. Partial matching with
priority driven search (PDS) on the other hand represents the method that is most
related to our approach as it incorporates local descriptors and supervised learn-
ing. As can be seen from the precision-recall plot in Figure 2.2, PDS and our
best performing method using local Zernike moments combined with local spin
images (LZM-LSI) perform at almost the same precision for the first recall value

41

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

of 0.05. For larger recall values, our approach clearly outperforms PDS as well as
the other methods. Table 2.2 shows the performance of all four methods regarding
additional quality criteria for shape retrieval as described in Section 1.5.3. The re-
trieval measures given in Table 2.2 additionally show the superior performance of
our method.

Figure 2.2: Comparison to other methods. The precision-recall plot shows
a comparison of our approach (CDD LZM-LSI) using a combination of local
Zernike moments descriptors and spin images to three other shape retrieval meth-
ods. Partial Matching with Priority Driven Search is denoted by PDS. Retrieval
by one single global descriptor is represented by GSH (using spherical harmonics)
and GZM (using Zernike moments).

Impact of local descriptors In order to show the importance of using local fea-
tures we compare the performance of a classic global Zernike moment descriptor
(GZM) and a CDD derived from one global Zernike moment descriptor (CDD

42

2.4. RESULTS ON PRINCETON SHAPE BENCHMARK

Method 1-NN 1-Tier 2-Tier DCG
CDD LZM-LSI 0.844 0.745 0.850 0.892
PDS 0.789 0.543 0.677 0.795
GSH 0.705 0.427 0.598 0.731
GZM 0.732 0.390 0.540 0.714

Table 2.2: Comparison to other methods. Evaluation of our approach (CDD
LZM-LSI) with respect to three other shape retrieval methods using standard re-
trieval metrics. Our algorithm shows superior performance regarding all quality
criteria.

Method 1-NN 1-Tier 2-Tier DCG
CDD LZM 0.757 0.636 0.767 0.834
CDD GZM 0.747 0.499 0.677 0.782
GZM 0.732 0.390 0.540 0.714

Table 2.3: Impact of local descriptors. The table shows three different methods
using CDDs based on local Zernike moments (CDD LZM) computed on scale 1.0,
CDDs based on one global Zernike moment (CDD GZM) and one global Zernike
moment (GZM).

GZM) with our approach based on CDDs derived from local Zernike moments
(CDD LZM). We include the CDD derived from the global descriptor in order to
guarantee a fair comparison such that both, the local descriptors as well as the
global one benefit from the supervised learning step. The results of the compar-
ison are shown in Figure 2.3 and in Table 2.3. Although the performance of the
global descriptor is definitely boosted by the CDD, it is still inferior to the CDDs
derived from local descriptors.

Combination of different descriptor types To investigate the influence of de-
scriptor type combinations, we select the best performing feature scales for every
single descriptor type and combine the according CDDs with each other, see Table
2.4. It shows that the combination of Zernike moments and spin images (LZM-
LSI) and the combination of SH descriptors and spin images (LSH-LSI) perform
best and further improve the retrieval performance of each single descriptor type
(see Figure 2.4 for the LZM-LSI combination). Although not reaching the quality
that is achieved if spin images are involved, the combination of SH and Zernike
moments (LZM-LSH) is superior to using these descriptors alone. The combina-
tion of all three descriptor types (LSH-LSI-LZM) does not improve the perfor-
mance any further.

43

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

Figure 2.3: Impact of local descriptors. GZM denotes retrieval with one global
Zernike moment. CDD GZM represents the same Zernike moment boosted by the
CDD. CDD LZM shows retrieval results for 64 local Zernike moments at scale 1.0
using CDDs.

Selection of the right scale Figure 2.5 and Table 2.5 show retrieval results us-
ing CDDs from SH computed on three different scales (LSH 0.25, LSH 0.5, LSH
1.0). It also shows the retrieval results that are achieved by combining the resulting
three CDDs into a single one (LSH combined). Like described in Section 2.3, the
results show that choosing the product rule as combination strategy automatically
favors distinctive feature. Without knowing which feature scale is most distinc-
tive, combining leads to a result that is even a bit better than the one achieved by
the optimal scale. This is due to the fact that although the overall performance of
the scales 0.25 and 1.0 is worse than that of scale 0.5, these scales might be more
distinctive for certain objects and thereby improve the performance if combined.

44

2.4. RESULTS ON PRINCETON SHAPE BENCHMARK

Figure 2.4: Combining different descriptor types. The combination of CDDs
derived from Zernike moments and CDDs derived from spin images further im-
proves the retrieval results.

Timings In Table 2.6 we provide information about the time consumption of
our approach. All experiments are run on an AMD AthlonTMX2 Dual Core6 with
2.21 GHz and 2 GB RAM using Windows XP operating system (32 Bit). Parts
of the training and the CDD computation are accelerated using an NVIDIA R©
GeForce R©8800. The timings for preprocessing include the voxel grid computa-
tion (for SH and Zernike moments) and the point cloud generation (for spin im-
ages), respectively, as well as the computation of 64 local descriptors of a certain
type. The timings for training and CDD computation are computed with respect
to objects represented by 64 descriptors of one type on the scales shown in Table
2.4. The time required to query an unknown object given in a mesh representation
is the sum of required preprocessing time and the CDD computation time. So far,
the query time for one object is dominated by the descriptor computation during

6Despite the two available cores the timings were made using only one core.

45

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

Figure 2.5: Selecting distinctive feature scales. The precision-recall plot shows
CDDs derived from local SH descriptors computed at three different scales. Com-
bination of the CDDs using the product rule leads to slightly better results than
the best individual scale.

46

2.5. A BENCHMARK FOR 3D ARCHITECTURAL DATA

CDD Method 1-NN 1-Tier 2-Tier DCG
LZM 0.5 0.757 0.636 0.767 0.834
LSI 2.0 0.824 0.716 0.810 0.880
LSH 0.5 0.742 0.633 0.746 0.835
LZM-LSI 0.844 0.745 0.850 0.892
LZM-LSH 0.769 0.678 0.782 0.856
LSH-LSI 0.861 0.744 0.845 0.896
LSH-LSI-LZM 0.821 0.751 0.841 0.893

Table 2.4: Combining different descriptor types. Results of experiments re-
garding combinations of CDDs derived from different types of local descriptors.
The value behind the descriptor name denotes the scale on which it was computed.

CDD Method 1-NN 1-Tier 2-Tier DCG
LSH 0.25 0.630 0.464 0.604 0.747
LSH 0.5 0.742 0.633 0.746 0.835
LSH 1.0 0.737 0.587 0.712 0.818
LSH combined 0.777 0.655 0.771 0.847

Table 2.5: Impact of descriptor scales. Retrieval results using CDDs derived
from local SH descriptors computed at three different scales.

the preprocessing step. Note that the focus of our work is on retrieval quality
rather than speed.

2.5 A Benchmark for 3D Architectural Data
Benchmarks consisting of 3D objects and classification schemes are a crucial pre-
requisite for developing shape retrieval methods, as only they allow to faithfully
evaluate the retrieval performance of new algorithms. In Section 2.4.2 we evalu-
ated our newly introduced class distribution descriptors using the generic Prince-
ton Shape Benchmark [SMKF04] which is commonly used in the shape retrieval
community. However, keeping in mind that we are mainly interested in retrieval
methods tailored to 3D models from the architectural domain, the PSB seems
no optimal choice for our purposes, as it contains models from various domains.
Unfortunately, existing benchmarks in general are not well suited for our domain-
specific retrieval. First, they either include only some models which are relevant
for architecture like the PSB, or they are tailored to a completely different data
domain (e.g. [JKIR06]). Second, the classification schemes of common bench-
marks usually do not match an architect’s requirements regarding model function

47

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

LSH LZM LSI
Preprocessing training set 58 min 234 min 174 min
Preprocessing test set 71 min 284 min 216 min
Preprocessing per object (average) 10.53 s 42.05 s 31.75 s
Training 45 min 46 min 50 min
CDD computation test set 25 min 26 min 27 min
CDD computation per object (average) 3.78 s 3.85 s 4.05 s
Query of one object 14.31 s 45.90 s 35.80 s

Table 2.6: Timings.

and form.
To overcome these drawbacks, we introduce a new 3D shape benchmark that

focuses on architectural data. It currently contains 2257 models consisting of
building elements (i.e. doors, pillars), furnishing (i.e. chairs, shelves), and en-
vironment elements (i.e. plants, trees). The models are either part of different
libraries of architectural CAD-applications or they belong to public services for
architects of furniture manufacturers. Along with the shape database we provide
classification schemes developed in close cooperation with architects to match
their specific requirements. We will evaluate our previously introduced class
distribution descriptor on the new benchmark and compare the results to those
achieved on the Princeton Shape Benchmark.

This Section is based on the work presented in [WBK09]. It should be
noted that the classification scheme presented in 2.5.1 was not contributed
by the author of this thesis but by the co-author of [WBK09], Dr. Ina
Blümel. We include the description of the classification scheme to ensure
a better understanding of our retrieval results on our new benchmark.

2.5.1 Classification Schemes
One of the eminent interests of architects is the concept of form. Regarding a
statement of the functionalism age, there is a particular relation between form
and function in the design process of buildings and objects: "[...] form ever fol-
lows function [...]" [Sul96]. The architectural drafting process is both, form- and
function-oriented. Architects are "[...] working from abstract problem formu-
lations to concrete solutions and splitting problems into subproblems iterative
and recursive processes that rely upon anticipations of possible solutions [...]"
[CR92]. While drafting buildings, architects first concentrate on the function of
rooms and components. Consequently, they mainly think of an object according
to its function during this phase. After defining the functions, more and more de-

48

2.5. A BENCHMARK FOR 3D ARCHITECTURAL DATA

tails are added to the draft. During this phase, architects rather think according
to form, provided that this form is suitable for the intended function. Figure 2.6
shows an example for the two different ways of classification.

Taking this into consideration, a component-classification has to be both form-
and function-oriented to allow intuitive searching within any stage of drafting. Be-
side classifications for building construction and technology (CI/SfB [Roy68], BS
ISO 12006-2/3 [Bri01, Bri07]) there exists a comprehensive, scientifically com-
piled vocabulary for the whole domain of art and architecture, the Getty Art &
Architecture Thesaurus (AAT) [Pet94]. We use AAT as a starting point for devel-
oping our classification scheme because it

• contains form-based and function-based classifications of components,

• is hierarchical analogous to the needs of architects within the design process
(from abstract problem formulations to concrete solutions),

• is currently consisting of around 34, 000 concepts, widely used by libraries
and archives and in compliance with ISO-Standards.

Taking into account the two ways in which architects define 3D object similar-
ity, we develop two hierarchic classification schemes, the first focusing on form
and the second focusing on function. Regarding both schemes, the shape of an
object serves as a starting point for retrieval and classification. Human beings are
able to conclude about an object’s function mostly by its form only. Consider e.g.
a rectangular plate. By its form, it could be considered a table board, or a part
of a wall, or a door. But as soon as a handle is attached at a specific position,
it can be immediately recognized as a door, i.e. one can conclude about an ob-
ject’s function by inspecting its form. If necessary, additionally taking the surface
material into account resolves ambiguities. On its finest level, the function-based
scheme contains 183 classes, while the form-based scheme contains 180 classes.
The classes are selected in a way such that most categories given in the AAT are
represented. The schemes are provided in the same file format that is used for the
PSB. Note that not all categories currently contain objects. In this first version of
the benchmark we concentrate on furnishings considering especially the office do-
main regarding the eminent request for furnishing models within the design stages
of detailing and visualization in architectural practice.

2.5.2 Benchmark Models
The original models collected for our benchmark exist in various file formats in-
cluding e.g. .3ds or .gsm. All models are converted into triangle meshes and
stored in the Wavefront OBJ format. The resulting files strongly vary in size,

49

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

class swivel class folding class side
super class: chairs by form and design

class office class kitchen class dining
super class: chairs by function and context

Figure 2.6: Form versus function. Objects may either be classified by form or
by function according to the perception within a certain stage of designing.

ranging from objects with only 12 triangles up to models with a total of 901300
triangles. As is usually the case when dealing with real-world data, the quality of
the meshes differs strongly with respect to consistent face orientation. There is
also no guarantee that the meshes are watertight.

2.5.3 Retrieval results

Given our new benchmark, we evaluate the retrieval performance of global Zernike
moments descriptors (GZM) as well as CDDs derived from local spin images
(LSI) and GZMs. To make sure that enough training data for each category is
available when using supervised methods, we again select all objects belonging
to categories containing at least 20 objects, resulting in 1817 models subdivided
in 25 classes using the form-based classification scheme, and 1774 models subdi-
vided in 26 classes using the function-based classification scheme. Parameters for
feature computation are chosen identical to those described in Section 2.4.1. We
randomly select 16 models from each category to build the training set. The re-
maining models form the test set. For each object in both sets we compute 64 spin
images and one global Zernike moments descriptor. We then perform the learning
step on the training dataset in the described way. Retrieval is conducted on the test
set computing CDDs for all local and global features. In Figure 2.7 and 2.8 we
show the results for both classification schemes. Additional retrieval performance
measurements can be found in Table 2.7. We compare the retrieval performance
on the test set using global Zernike moments (without learning), CDDs derived
from global Zernike moments descriptors and CDDs derived from the local spin-
images (both involving learning). To get an impression how much of a challenge

50

2.5. A BENCHMARK FOR 3D ARCHITECTURAL DATA

Figure 2.7: Retrieval results using global Zernike (CDD) descriptors. We
compare the retrieval performance achieved on the PSB to that achieved on the
form- and function-based classification scheme of our architecture benchmark.

our new benchmark poses, we compare the results to those achieved by the same
retrieval algorithms on the PSB (see Section 2.4.2). As can be seen in Figures
2.7 and 2.8 as well as in Table 2.7, the retrieval performance of all algorithms
running on the new benchmark is worse than that on the PSB, especially when
considering the good results that were achieved on the PSB using CDDs inferred
from local spin-images. This is most probably due to the fact that our benchmark
is restricted to architectural data, including classes that are very similar to each
other in terms of shape (see e.g. Figure 2.6). For both classification schemes, the
intra-class variability of global model shapes is still quite large, leading to similar
retrieval results using global Zernike moments descriptors (see Figure 2.7). As
the intra-class variability of local model shapes on the other hand is believed to be
smaller within the form-based classification than in the function based-one, local
descriptors provide better retrieval results regarding the form-based classification
(see Figure 2.8).

51

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

Figure 2.8: Retrieval results using local spin-images and supervised learning.
We again compare the retrieval performance achieved on the PSB to that achieved
on the form- and function-based classification scheme of our architecture bench-
mark.

2.6 Conclusion
Our first experimental evaluation of CDD performance on the generic Princeton
Shape Benchmark shows encouraging results. Using CDDs, we are able to boost
the performance of well-known global descriptors. Additionally, CDDs enable us
to successfully combine local descriptors of different type and different scale into
one single distinctive representation that outperforms CDDs derived from a sin-
gle descriptor regarding retrieval performance. With the introduction of the new
form- and function-based architecture benchmark providing very low inter-class
variability we notice a strong drop in the retrieval performance of all evaluated
retrieval methods. However, even in this much harder scenario, CDDs still prevail
over the other methods.

Descriptor performance From a technical point of view it seems quite remark-
able that CDDs from local spin images outperform CDDs from SH descriptors
and from Zernike moments descriptors, considering that they can be constructed
much more easily and do not require that much mathematical insight. Equipping

52

2.6. CONCLUSION

Descriptor 1-NN 1-Tier 2-Tier DCG
GZM Form 0.700 0.279 0.404 0.682
CDD GZM Form 0.685 0.322 0.466 0.708
CDD LSI 0.592 0.482 0.670 0.774
GZM Function 0.666 0.296 0.412 0.681
CDD GZM Function 0.659 0.352 0.482 0.707
CDD LSI Function 0.561 0.463 0.561 0.758
GZM PSB 0.729 0.405 0.532 0.719
CDD GZM PSB 0.739 0.510 0.681 0.770
CDD LSI PSB 0.824 0.716 0.810 0.880

Table 2.7: Comparison between retrieval results on PSB and architecture
benchmark. We evaluate global Zernike moments descriptors(GZM), meta de-
scriptors from global Zernike moments (CDD GZM) and meta descriptors from
local spin-images (CDD LSI).

a descriptor with invariance properties is usually accompanied by a loss of infor-
mation and descriptiveness. In contrast to the completely rotational invariant SH
and Zernike descriptors, spin images are only invariant under rotation around the
associated normal. We think that the higher retrieval performance of spin images
results from their better descriptiveness caused by less invariance demands.

Limitations and drawbacks The advantage gained by our supervised learning
approach requires the additional effort of creating ground truth, i.e. a training
set of 3D objects must be manually assigned to categories of some classification
scheme. Depending on the intra- and inter class variability in the data, the amount
of training data needed for improved retrieval can vary. Additionally, the query
processing time is larger due to the necessary prediction of conditional class prob-
abilities. However, regarding the results in Table 2.6 we believe that by further
optimization interactive response times are within the realms of possibility.

Future work To gain a better understanding of the supposed impact of the su-
pervised learning scheme we recommend to evaluate the performance of the pro-
posed local descriptors (LSH, LZM, LSI) using a standard Bag-of-Features ap-
proach. The combined performance of the local descriptors should be evaluated
by concatenating the resulting histograms of each single descriptor type. We also
suggest repeating the experiments using a Support Vector Machine with proba-
bilistic output, as available highly optimized state-of-the-art implementations of
this classifier are very likely to outperform our self-implemented NKDA. It would
also be interesting to investigate the applicability of the CDD approach to partial

53

CHAPTER 2. LEARNING DISTINCTIVE LOCAL OBJECT CHARACTERISTICS

shape retrieval. Depending on the amount of missing object geometry, we suggest
to use smaller descriptor scales in this scenario, if necessary.

Regarding the highly reduced effectiveness of shape retrieval methods on the
architecture benchmark it seems necessary to better tailor algorithms to this spe-
cific domain. We will pick up this thought in Section 3 of this thesis by adjusting
our feature localization method to the geometric properties of man-made objects.

Acknowledgements We would like to thank the following insitutions for pro-
viding 3D content: Leibniz University Hannover (Faculty of Architecture and
Landscape Sciences, AIDA), Nemetschek AG, Samas GmbH & Co. KG, Graphi-
soft Deutschland GmbH, Vitra AG, Wilkening + Hahne GmbH & Co. KG. We
would further like to thank MACE-Metadata for Architectural Contents in Eu-
rope for their cooperation within developing the classification schemes http://
www.mace-project.eu [last accessed 23 January 2013]. Additional thanks
go to Dr. Philip Shilane for providing results on PDS.

54

http://www.mace-project.eu
http://www.mace-project.eu

CHAPTER 3

LEARNING THE COMPOSITIONAL STRUCTURE OF

MAN-MADE OBJECTS

3.1 Introduction

Apart from the problems arising from similarity computation that we already dis-
cussed in Section 2.2.2, the usage of local features for 3D shape retrieval addition-
ally bears the challenge of feature selection/localization, i.e. the decision which
parts of the 3D object should be represented by a descriptor. In the previous chap-
ter we rather ignored this question by randomly localizing the descriptors on the
object surface and characterizing a surrounding sphere or a cylinder, respectively,
of fixed radius. In this Section we will investigate a more sophisticated feature
selection technique that is tailored to the domain of interest which consists of
man-made architectural objects. Additionally, we will introduce a method that
allows easy exploitation of information that is encoded in the spatial relationship
of features. We thereby overcome the drawbacks of common BoF approaches
(spatial relationship is discarded) as well as those of correspondence establishing
methods (complicated thresholding and poor generalization).

Most feature selection methods are based on local geometric properties of the
3D object. The idea is to identify features as parts of the object that are salient
in a geometric sense. Most approaches thereby focus on features that can be
robustly detected under object transformations like scaling, rotation, shearing, and
articulation, see e.g. [NDK05, GCO06, OOFB08, HH09]. The approach that we
will present in this chapter includes a selection method that is especially tailored to
3D models representing man-made objects, like the previously introduced context
models from architectural drafting. Due to common manufacturing processes,
these objects mainly consist of building blocks that can be assembled from parts
of certain shape primitives like planes, cylinders, spheres, cones and tori. These
structures are the starting point for our feature selection. We use the algorithm
presented in [SWK07] to decompose a 3D model into segments corresponding to

55

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

shape primitives. For each segment, we compute a shape descriptor. Depending
on the size of the underlying shape primitive, our algorithm produces features
ranging from very local to rather global (see e.g. Figure 3.1). Our feature selection
method is similar to the one presented in [FMA+10] using the mesh segmentation
algorithm presented in [AFS06]. However, in contrast to this method our approach
does not rely on an intact mesh connectivity which is often not available when
dealing with real world data. Instead we only require a point cloud which can be
easily obtained by densely sampling the underlying mesh. In addition to plane-,
cylinder-, and sphere-like shapes which are recognized in [AFS06], the algorithm
in [SWK07] supports cone- and tori-like shapes.

In contrast to shape retrieval approaches based on global descriptors where
object similarity can be determined in a straight forward way by computing the
distance between global descriptors, there is no such easy way for methods in-
volving local features, as we already described in Section 2.2.2. Using BoF-based
approaches, the spatial arrangement of local features is lost as soon as they are
described by histograms, just as it happens when objects arranged in a certain
order are put into a bag. In contrast, methods based on correspondence compu-
tation take feature similarity as well as their spatial relationship into account, but
in most cases they involve tricky manual parameter tuning, rendering it hard to
achieve good generalization results. In this chapter, we try to overcome the draw-
backs of the above mentioned approaches. We propose a probabilistic framework
for learning the compositional structure of 3D objects which is inspired by an
approach to 2D image retrieval by Ommer et al. [OB07, OB09]. In contrast to
common BoF-approaches it incorporates the relative position of single features as
well as the spatial relationship of feature tuples. To this end we extend the class
distribution descriptor approach presented in Chapter 2. Learning the class distri-
butions is then not only conducted with respect to a shape descriptor, but also with
respect to positional information. Using a supervised learning scheme, we over-
come the shortcomings of methods based on correspondence computation, as we
do not need to manually enforce cumbersome thresholds on descriptor similarity
or spatial distances. We finally compare our new approach to the results achieved
by our approach presented in Chapter 2 on the 3D architecture benchmark. Sum-
marizing the key contributions of this Chapter, they are:

• A new method for feature selection that is especially tailored to the domain
of 3D models representing man-made objects.

• A supervised learning framework for efficient similarity computation of lo-
cal feature sets incorporating their spatial relationship.

• An evaluation of our new approach using the architecture benchmark with
a subsequent discusson of the impact of our feature localization technique

56

3.2. RELATED WORK

as well as of the proposed incorporation of spatial feature relationships.

3.2 Related Work
There is a huge amount of literature on feature localization for 3D shapes. In the
following we will therefore concentrate on methods that have been used in the
context of 3D shape retrieval.

Randomly selected uniformly distributed features Probably the easiest way
for feature selection is to randomly select uniformly distributed points on the ob-
ject surface as feature centers. Feature radii are then usually determined accord-
ing to a manually chosen value. Mitra et al. [MGGP06] locally characterize 3D
shapes by probabilistic shape signatures based on spin-images [Joh97] computed
at randomly selected uniformly distributed points on the object’s surface. Pro-
viding good results for automatic scan alignment, the retrieval performance of
this method highly depends on the chosen local spin-image scale. Uniformly dis-
tributed surface points also serve as a starting point for multi-scale spherical har-
monics descriptor computation and subsequent distinction-based feature selection
in [SF06]. Furuya et al. [FO09] compute randomly localized dense multi-scale
SIFT descriptors and aggregate them in a BoF.

Geometry-based feature selection In [GCO06], local salient regions are de-
tected as mesh patches providing a high curvature relative to the surrounding area.
A region-growing approach is used to subsequently augment small salient patches
to larger regions. Shalom et al. [SSSCO08] use the shape-diameter function for
both, segmentation and part signature definition. Ohbuchi et al. [OOFB08, OF08]
introduce salient local visual features extracted as SIFT-features [Low04] from
rendered depth images1. A generalization of the SIFT algorithm to three dimen-
sions is presented in [NDK05]. In this work, Novotni et al. detect salient points
on a 3D voxel grid as local extrema of the scale space Laplacian-of-Gaussian.
For each detected salient point, they compute a local SH descriptor. Further
approaches based on scale spaces are presented in [LVJ05] and [ZHDQ08]. In
[HH09], Hu et al. present an approach to detect local salient mesh regions us-
ing extrema in the Laplace-Beltrami spectral domain of the mesh rather than in
the usual spatial domain, rendering this localization algorithm invariant to iso-
metric mesh deformations. An approach closely related to our own is presented
in [SWWK08]. Primitive shapes like planes, cylinders, etc. are detected in 3D

1Interestingly, randomly localized dense SIFT feature computation as presented in [FO09] and
subsequent BoF construction outperforms this saliency-driven approach.

57

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

laser range scans. In contrast to our approach, no local descriptors based on the
point supports of the shapes are computed. The primitives are directly used as
nodes in a graph-based algorithm searching for certain manually defined configu-
rations of primitives, forming simple shapes like building roofs. A similar method
restricted to the detection of configurations of planes is described in [VKH06].
For additional geometry-based feature selection methods and exhaustive stability
evaluations we refer to the recently published comprehensive articles by Yu et al.
[YWC12] and Dutagaci et al. [DCG12].

Distinction-based feature selection Selection based on the retrieval perfor-
mance of local features is introduced in [SF06] and used in [SF07, FS06]. Con-
sidering a set of pre-classified training objects, a number of random surface points
are sampled from all objects. For each of these points, a local SH descriptor is
computed characterizing the local surface geometry with respect to a certain ra-
dius. For each descriptor, it is determined how well it is suited for efficient object
retrieval. For new unknown objects, again local SH descriptors are computed
around randomly sampled surface points. The knowledge acquired during the
training step is used to predict the retrieval performance of these local descriptors
and only the most distinctive ones are finally used for retrieval.

3.3 Feature Selection and Descriptor Computation

In this Section, we will first describe how features of 3D models representing
man-made objects can be selected using shape primitives like planes, cylinders,
etc. After that we will show how the supporting regions of shape primitives can
be represented by descriptors.

3.3.1 Feature Selection

As a starting point for the detection of primitive shapes we use an unstructured 3D
point cloud which can be obtained by randomly sampling from a 3D mesh. We
employ the algorithm presented in [SWK07] which recognizes planes, spheres,
cylinders, cones, and tori in the point cloud. In the evaluation conducted in
[LSSK09], the segmentation provided by this approach showed increased robust-
ness compared to the method presented in [WK05]. In contrast to [AFS06], the
point cloud-based approach does not require an intact mesh connectivity and it is
not restricted to planes, cylinders, and spheres. In this Section we will only give
a very brief outline of the shape detection technique and the interested reader is
referred to the original paper.

58

3.3. FEATURE SELECTION AND DESCRIPTOR COMPUTATION

The data is decomposed into disjoint sets of points Sπi , each corresponding
to a detected shape proxy πi respectively, and a set of remaining points R that
consists of outliers as well as areas of more complex geometry for which primitive
shapes would give an inappropriate representation. For further processing, all
remaining points are ignored. Points that are represented by a shape primitive are
also called the support of a shape. Thus, given the point-cloudP = {p1, . . . , p|P|},
the output of the shape detection is the following:

P = Sπ1 ∪ . . . ∪ Sπl ∪R, (3.1)

where each subset (the support) Sπi is associated with a shape primitive πi. All
points in Sπi constitute a connected component and fulfill the condition

s ∈ Sπi ⇒ d(s, πi) < ε ∧ ^(ns, n(πi, s)) < α, (3.2)

where ns is the normal of point s, n(πi, s) denotes the normal of the primitive πi
at the point closest to s, and d(s, φi) denotes the Euclidean distance between s
and πi. The normals ns are thereby estimated on the point cloud. The parameters
ε and α are chosen by the user according to the sampling distance. The set R
contains all remaining, unassigned points.

Examples for the decomposition of several objects from our architecture bench-
mark (see Section 2.5) can be found in Figure 3.1. For the choice of parameters
concerning the primitive shape detection, we refer to Section 3.4.

3.3.2 Descriptor Computation
Theoretically, it would be possible to use the primitive shape type together with
certain properties (e.g. radius and height for a cylinder primitive) as a shape de-
scriptor. However, there are two reasons rendering this approach inefficient. First,
the primitive shape detection is not robust with respect to the type of the detected
primitive. For example, a set of points originating from a pipe might either be
identified as part of a cylinder primitive or as part of a torus primitive with a very
large radius (see e.g. the legs of the bench in Figure 3.1f). Second, such a descrip-
tor would not incorporate the fact that the underlying support points might only
represent a part of a primitive (e.g. only a hemisphere instead of a whole sphere).
We therefore do not characterize the local object part by the primitive itself but
rather by its support. Once the primitive shape is detected, we compute a spin

59

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

(a) armchair (b) easy chair (c) side chair

(d) bathtub (e) sink (f) bench

Figure 3.1: Detection of primitive shapes. Colors are chosen with respect to
the partially detected primitive types including plane (red), cylinder (green), torus
(grey), cone (purple), and sphere (yellow). Figure f) shows an example for the
instability of the shape detection. Two legs are identified as a cylinder, but one is
identified as part of a torus.

image [Joh97] representing the support points. By that, the discrete shape type is
described in a more continuous way.

We align the spin image axis according to the Z-axis of the underlying object.
Note that this representation is not invariant under rotations around the Z-axis of
the object. However, 3D models representing man-made objects are mostly mod-
eled in a way that their Z-axis is chosen according to the world’s up-direction.
Therefore, this choice does not put a severe restriction to our algorithm. Note that
our framework for learning the compositional structure of 3D objects is not re-
stricted to the usage of spin images. It would also be possible to use e.g. spherical
harmonics descriptors.

60

3.3. FEATURE SELECTION AND DESCRIPTOR COMPUTATION

3.3.3 Integrating Feature Locations

Figure 3.2: Spatial relationship be-
tween center and feature. The dotted
lines visualize the two components of the
spatial relationship Φ(M(m), x).

Let us briefly recall the definition of
the class distribution descriptor from
Section 2.3. For a given set of classes
C = {C1, ..., C|C|}, the CDD D(x) of
an arbitrary local descriptor x ∈ X =
Rd reads

D(x) =

 p(C1|x)
...

p(C|C||x)

 .

In the first step, we integrate the rela-
tive position of feature x inside the 3D
object into the CDD. Let M(m) ∈ R3

denote the center of mass of model
m, and let Φ(M(m), x) denote the
spatial relationship between the posi-
tion of feature x and the object center
M(m).There are several possibilities
how to choose Φ(M(m), x). In a set-
ting where the underlying object can
be rotated in an arbitrary way, the nat-
ural choice would be Φ(M(m), x) :=
||M(m) − P (x)||, where P (x) ∈ R3

denotes the 3D position of x. However,
as in our setting the Z-axes of the objects are consistently oriented, we follow an-
other approach allowing us to integrate more precise information about the spatial
relationship. We define

Φ(M(m), x) :=

(
δz(x)
δxy(x)

)
(3.3)

=

(
Mz(m)− Pz(x)√

(Mx(m)− Px(x))2 + (My(m)− Py(x))2

)
, (3.4)

where the subscripts denote the x, y, and z components of the 3D coordinates. We
thereby decompose the spatial relationship betweenM(m) and x into a signed dis-
tance along the z-axis which is represented by the first component of Φ(M(m), x).
The second component describes the unsigned distance between M(m) and x
when both are projected into the xy-plane. Please see Figure 3.2 for a visualiza-
tion of the two components.

61

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

So far, the size of the local feature is not incorporated. We therefore introduce
an additional parameter γ(x) describing the number of support points of feature
x with respect to the total number of points in the object. By that, the modified
CDD reads:

D′(x) =

 p(C1|x, δz(x), δxy(x), γ(x))
...

p(C|C||x, δz(x), δxy(x), γ(x))

 . (3.5)

3.3.4 Spatial Relationship between Features
In the second step, we will additionally consider the spatial relationship between
feature tuples (xi, xj) consisting of two features from the same object. As the
positions of P (xi) and P (xj) around the object center M(m) are fixed by δz and
δxy except for rotation around the Z-axis, we only need to additionally incorporate
the distance ||P (xi) − P (xj)|| =: δ(xixj) between P (xi) and P (yi) into our
framework. The according CDD is then given by:

D′(xi, xj) =

p(C1|xi, xj, δz(xi), δz(xj),

δxy(xi), δxy(xj), γ(xi), γ(xj), δ(xixj))
...

p(C|C||xi, xj, δz(xi), δz(xj),
δxy(xi), δxy(xj), γ(xi), γ(xj), δ(xixj))

 . (3.6)

Intuitively speaking, it describes how likely it is that the currently considered
object belongs to a certain object category, given the co-occurrence of features
xi and xj in a certain spatial arrangement.

3.3.5 Modified Feature Vectors and Kernel Functions
As described in Section 3.3.2 we use spin image coefficients x ∈ Rd as a descrip-
tor for the extracted shape primitives. Considering single features, this descriptor
has to be combined with the additional information about feature location and size
given by the parameters δz(x), δxy(x), γ(x). Note that simply defining

x′i := (x[1], ..., x[d], δz(x), δxy(x), γ(x))T (3.7)

and evaluating a kernel function k(x′i, x
′
j) in order to train the probabilistic clas-

sifier would lead to instabilities as the coefficients for spatial relationship and
relative feature size have a completely different meaning and scale compared to
the spin image coefficients, let alone the ratio of 3 to 156 coefficients. Although

62

3.3. FEATURE SELECTION AND DESCRIPTOR COMPUTATION

kernel-based discriminant functions are known to be able to implicitly weight cer-
tain feature entries, stability can be increased by introducing weighting factors
when considering feature entries that are measured on different scales. There-
fore, we modify the original simple RBF kernel (see Equation 2.16) from Section
2.4.1 by introducing weights to properly balance all coefficients in x′i. For single
features, we define

ks(x
′
i, x
′
j) := exp

(
−

(x′i − x′j)TWs(x
′
i − x′j)

2σ2

)
, (3.8)

where Ws is a diagonal matrix of size (d + 3) × (d + 3) containing weighting
factors for δz(x), δxy(x), γ(x). The vector D(Ws) ∈ Rd+3 constituted by the
diagonal elements of Ws reads:

D(Ws) := (1, · · · , 1, αδ, αδ, αγ). (3.9)

Please note that both descriptor entries δz(x) and δxy(x) that describe the relative
spatial position of the feature share the same weighting parameter αδ. In contrast,
the relative feature size γ(x) is weighted by another parameter αγ . Considering
a feature pair (xi, xj), the underlying shape descriptors must be combined into
one common vector. In this vector, we order xi and xj according to the size of
their point support. Without loss of generality, let xi be the local feature with
the larger point support. Then, incorporation of the additional information about
feature location, size, and spatial relationship leads to the following kernel input
vector x′ij:

x′ij = (xi[1], ..., xi[d], xj[1], ..., xj[d], δz(xi), δz(xj), (3.10)

δxy(xi), δxy(xj), γ(xi), γ(xj), δ(xixj))
T

The according kernel function reads

kt(x
′
ij, x

′
i′j′) := exp

(
−

(x′ij − x′i′j′)tWt(x
′
ij − x′i′j′)

2σ2

)
, (3.11)

whereWt is a (2d+7)×(2d+7) diagonal matrix containing the weighting factors
such that the diagonal D(Wt) ∈ R2d+7 reads:

D(Wt) := (1, · · · , 1, αδ, αδ, αγ, αδ, αδ, αγ, αδ). (3.12)

We determine all weighting factors as well as the kernel width σ completely au-
tomatically using cross-validation. During the NKDA training process, a discrim-
inant function for each pair of the |C| object classes is computed. This leads to
different αs and σ for each discriminant function, taking into account that feature
size and relative position are of varying importance depending on the considered
object categories.

63

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

3.3.6 Modified Combination of Class Distribution Descriptors
In order to finally compare the CDDs derived from different objects, the CDDs
of each single feature and of each feature pair must be combined into one single
CDD. To this end we use the combination technique presented in Section 2.3.1.
The resulting descriptor can be determined by multiplying and renormalizing the
CDDs computed so far:

D′(x1, ..., xd) =

⊗l
k=1D′(xk)

⊗l
i=1

⊗l
j>iD′(xi, xj)∑|C|

c=1

(⊗l
k=1D′(xk)

⊗l
i=1

⊗l
j>iD′(xi, xj)

)
[c]
.

3.4 Results
For our experiments, we use the 3D architecture benchmark presented in Section
2.5 along with the form-based classification scheme. We compare the results of
our newly introduced method involving sophisticated feature localization as well
as the incorporation of spatial feature relationships to our previously introduced
approach relying on CDDs computed on arbitrary localized spin images, see 2.5.3.

3.4.1 Experimental Setup
Dataset The dataset is identical to the one used in 2.5.3, i.e. all classes that
contain at least 20 objects are used for the evaluation, resulting in 25 classes with
a total of 1817 objects. We divide the data into a training set and a test set. For
the training set, we randomly select 16 objects of each class, the remaining 1417
objects are put into the test set.

Preprocessing and Shape Detection A point cloud representation is the pre-
requisite for computing primitive shapes as well as spin image descriptors. We
therefore normalize all meshes to the [−1,−1,−1] × [1, 1, 1] bounding box and
randomly sample 50000 points per unit area on the surface from the underlying
triangles. For the shape detection described in Section 3.3.1, we set α = 0.9 and
ε = 0.002. Note that the same parameter setting is used for the whole dataset.
Depending on the complexity of the underlying model, the number of detected
shapes varies between 10 to 200. For further descriptor computation, we select
those 32 shapes providing the largest point support. If less than 32 shapes are
detected, all of them are used.

Descriptors To evaluate our approach, we compute spin image descriptors de-
scribing the point support of every selected shape primitive. The spin images are

64

3.4. RESULTS

Method 1-NN 1-Tier 2-Tier DCG
Uniformly Selected Local SI 0.592 0.482 0.670 0.774
Shapes + SR 0.763 0.523 0.670 0.810

Table 3.1: Comparison to random feature selection. Our new algorithm in-
cluding shapes and spatial relationships shows superior quality to random feature
selection.

positioned at the center of gravity of the support points and oriented according to
the Z-axis of the object. The radius is chosen with respect to the support point
farthest from the center of gravity. For the comparison, we randomly select 64
uniformly distributed surface points as spin image centers. In this setting, spin
images are oriented according to the surface normal. For both settings, the spin
image resolution is set to 16× 16 bins.

Feature Tuples For an object with l detected shape features, we select those l/2
features providing the largest support to generate

(
l/2
2

)
2-tuples. For the maximum

number of l = 32 shapes, this leads up to 120 feature tuples.

3.4.2 Evaluation

The performance of our algorithm is shown in Figure 3.3 and in Table 3.1. Con-
sidering the precision-recall plot, our method (Shapes and Spatial Relationships)
outperforms the approach based on spin images centered at randomly selected uni-
formly distributed surface points (Uniformly Selected Local Spin Images)2. Table
3.1 shows the performance of both methods regarding additional quality criteria.
Again, our new method involving spatial relationships and feature selection ac-
cording to shape primitives achieves a higher retrieval performance. However, de-
spite the performance increase, the results are not satisfying yet, especially when
thinking of the excellent findings on the PSB presented in Chapter 2.

2Please note that the curve for random feature localization in Figure 3.3 shows a worse
performance than the according one in Figure 2.7. However, Tables 2.7 and 3.1 show iden-
tical results for the same experiment. Unfortunately, this behavior was caused by a bug con-
tained in the evaluation utilities accompanying the PSB that we used for earlier evaluations,
see http://shape.cs.princeton.edu/benchmark/psb_util.zip [last accessed
22 January 2013]. The routine computing precision-recall values is faulty in the sense that the
query object is also contained in the target dataset, rendering the results too good. However, this
bug is not contained in the computation of the other retrieval metrics.

65

http://shape.cs.princeton.edu/benchmark/psb_util.zip

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

Figure 3.3: Comparison between our new method and random feature lo-
calization. The new algorithm including shapes and spatial relationships shows
superior quality over random feature selection.

3.4.3 Timings

In Table 3.2, we provide information about the time consumption of our approach.
All experiments run on an Intel R©CoreTM2 Quad with 2.33 GHz and 4 GB RAM.
Shape detection, training and CDD computation are parallelized using OpenMP.
Training and CDD computation are additionally accelerated using an NVIDIA R©
GeForce R©8800. Preprocessing timings include point cloud generation, shape de-
tection and spin image descriptor computation for the shape and spatial relation-
ships based approach and point cloud generation and spin image descriptor com-
putation for the random feature selection based approach, respectively. Training
and CDD computation take longer if spatial relationships are taken into account
which is due to two reasons: First, feature tuples lead to an additional amount
of training vectors. Second, cross-validation must be performed to determine the

66

3.5. CONCLUSION

Uniformly Selected Local SI Shapes and SR
Preprocessing 1 h 15 min 15 h 00 min
Prepr. per object 2.5 s 29.7 s
Training Shapes 44 min 9 h 24 min
CDD computation 55 min 2 h 13 min
CDD comp. per object 2.3 s 5.6 s
Query time 4.8 s 35.3 s

Table 3.2: Timings. Preprocessing times are with respect to the whole dataset
including 1817 object. CDD computation times are with respect to the test set
including 1417 objects. Please note that the large deviation between this prepro-
cessing time for spin image generation and the one shown in Table 2.6 (about 12
times faster) results from the usage of a kd-tree for point range search as well as
from parallelization to four cores.

weighting factors αδ and αγ .

3.5 Conclusion
In this Chapter, we introduced an improved feature localization technique. Ex-
ploiting the fact that man-made objects mainly consist of shape primitives, we
used a decomposition algorithm to compute an according segmentation. Features
are localized at the according segments. Additionally, we incorporated the relative
position of single features as well as the spatial relationship of feature tuples into
our retrieval framework. In our experiments we could observe increased retrieval
performance for the architecture benchmark compared to our method presented in
Chapter 2. Nevertheless, the architecture benchmark still remains a hard task for
shape retrieval, which is most probably due to its fine granularity and the resulting
low inter-class variance. Even with our improved algorithm, results are still way
behind those achieved on the PSB, see Section 2.4.

Limitations While the incorporation of information about the relative position
of single features only slightly adds to the CDD computation time when compared
to the plain vanilla version from Chapter 2, the consideration of feature 2-tuples
increases the time amount quadratically, which is the reason why in this Section
we started with l ≤ 32 descriptors and considered only the largest l/2 descriptors
for tuple building. Although it would be desirable to take tuples consisting of
more than two descriptors into account with additional descriptions of their spatial
arrangement, such an approach is currently not feasible due to the ever increasing

67

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

time consumption for both, training and querying.
Another limitation is the belief in a consistent Z-axis alignment of the models.

Although this assumption holds quite well for architectural context objects re-
garding our experience, there is no guarantee that it generalizes when considering
arbitrary objects. This problem could be dealt with by using completely rotational
invariant shape descriptors. Accordingly, the description of relative position and
spatial relationship would have to be changed. One possibility would be to use
the description presented in [FS06] which works for rotational invariant descrip-
tors. Another possibility would be keep the spin image as a descriptor and orient
it along the axis through the surface point and the object’s center of gravity.

Future Work It should be investigated how the above mentioned limitations re-
garding the number of feature tuples as well as their size in terms of contained
features could be overcome. Instead of systematically considering all n-tuples,
we propose to use a sort of importance sampling to keep the tuple numbers low, at
least for the query step. The idea is to only consider features that have the potential
to lead to a discriminating CDD (one with low entropy) when built into a tuple.
This approach is somewhat similar to the method of distinctiveness-driven fea-
ture selection presented by Shilane et al. [SF06]. However, we suggest a stricter
supervised learning approach. In the following we will briefly outline our idea.

First, the training set must be divided into two parts. The first set is used to
train the conditional probability predictions like described above, including sin-
gle features and feature tuples up to the desired tuple size. After training, CDDs
are computed for features and tuples in the second set. For each resulting CDD,
the entropy of the class distribution is determined as a measure of distinctiveness.
Let us now consider one single tuple size n = n̂. Suppose the underlying ob-
ject contains a total of l features, then each feature is part of

(
l−1
ˆn−1

)
tuples. Each

feature is then assigned a score computed as the average entropy of all CDDs it
contributes to. In the next step, support vector regression (SVR) is used to learn
the relationship between single features and the resulting average entropy score.
Entropy score assignment and SVR are repeated for all desired values of n. When
presented a query object, SVR is used to predict one average entropy score for
each feature at each tuple size. Based on the prediction, importance sampling can
now be used to draw features for tuple construction according to a probability that
reflects the average entropy score distribution of all features in the object. The
sampling is to favor features that promise a low entropy for the given tuple size.
Note that this approach assumes quite a simplification. Suppose we consider the
distinctiveness of a feature tuple as a random variable conditioned on the descrip-
tors, then our method would work best if the underlying features were statistically
independent. However, we believe that despite this heuristic, the proposed pro-

68

3.5. CONCLUSION

cedure might be able to improve the retrieval performance and at the same time
decrease time consumption, at least for querying.

Acknowledgements We would like to thank Prof. Dr. Björn Ommer for pro-
viding insights to his work in [OB07].

69

CHAPTER 3. LEARNING THE COMPOSITIONAL STRUCTURE OF MAN-MADE OBJECTS

70

CHAPTER 4

BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT

FOR 3D RETRIEVAL

4.1 Introduction
The methods for 3D retrieval that have been presented so far in this part of the
thesis require only unstructured polygon soups as input, as in general there is no
guarantee on the quality of a given mesh. However, regardless of the mesh qual-
ity, depending on the underlying manufacturing process, many models contain
information exceeding pure geometric properties:

Grouping Several polygons might be assigned to a common group, see Figure
4.1. Depending on the underlying file format, hierarchical groupings might also
be supported. Groupings mainly result from two possible causes. First, designers
group polygons and existing groups to facilitate the modeling process as well as
subsequent rendering, e.g. to apply the same transformation or texturing to all
elements of the group. Second, existing (partial) 3D models might have been
integrated to the new object. Each such part usually constitutes an additional
group. An important aspects of the contained groups arises from the fact that they
are not related to certain geometric aspects like e.g. the primitive shapes that we
used for segmentation in the last chapter, but that they can also comprise arbitrary
polygons that form some sort of semantic entity.

Materials Apart from the overall shape, surface materials are the second impor-
tant property that enables human beings to unambiguously understand an object’s
function. Regarding our everyday experience, it is quite obvious that in most cases
the belonging of a 3D model to a certain class and the materials it is made of are
statistically dependent. Although there are only few examples in which the object
class uniquely determines the material and virtually none for the opposite case,
material properties at least give a hint to possible categorizations of an object.

71

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

(a) Original swivel chair (b) Bounding boxes of groups

(c) Exploded drawing showing single
groups

(d) Exploded drawing showing group
bounding boxes

Figure 4.1: Polygon groups inside a swivel chair. This example of a non-
hierarchical grouping is taken from our architecture benchmark described in Sec-
tion 2.5 (model id 5134).

72

4.1. INTRODUCTION

There is a vast amount of methods to describe the reflectance properties of an
object’s surface materials. Depending on the underlying file format, 3D objects
can include textures, simple Phong shading models [Pho75], more sophisticated
bidirectional reflectance distribution functions [NRH+77], or even bidirectional
texture functions [DvGNK99].

Textual Annotations Depending on the modeling process, a 3D object might
contain a certain amount of textual annotations. These annotations can be stored
in comment sections, but they may also be used as group or material identifiers,
see Figure 4.2. Annotations result either from user interaction, e.g. to assign
semantic meaning to a certain part of the object, or they result from the integration
of existing partial models into the new draft. In either case, because of their
hopefully semantic nature, such annotations might be helpful in order to identify
the underlying object class.

Figure 4.2: Textual annotations in a
graphics file excerpt. In this exam-
ple extracted from a Wavefront .obj
file (Architecture benchmark model id
4287), a group identifier (g [...]) as
well as a material identifier (usemtl
[...]) contain a very precise textual
annotation of the material itself, obvi-
ously zinc coated steel / metal.

In this chapter we will investi-
gate how these additional features that
come along for free with many but
not with all 3D models can be used
to further improve the performance of
our CDD-driven retrieval approach. To
this end we will first analyze how
the intrinsic grouping performs as a
segmentation and feature localization
method and compare it to random lo-
calization (Chapter 2) as well as to
shape-based localization (Chapter 3).
In the second step, we describe ma-
terial properties as well as the textual
annotations in the graphics file using
simple histogram descriptors. With the
class distribution descriptor at hand,
we are given a versatile tool that allows
the easy incorporation of these descriptors. Furthermore, we will investigate how
combinations of different feature localization methods, shape-related and non-
shape-related descriptors contribute to improved retrieval performance.

Note that although most approaches on 3D object retrieval focus on shape-
based similarity determination, the usage of material information and textual an-
notations is no entirely new concept but has already been proposed in several
papers, see e.g. [SH95, Löf00, TS04, LZL+12] (color/material) and [MKF04]

73

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

(textual annotations). Unfortunately, only [LZL+12] and [MKF04] provide eval-
uations on standard benchmarks (McGill 3D Shape Benchmark and PRECISE in
[LZL+12] and Princeton Shape Benchmark in [MKF04]) that additionally investi-
gate the performance gain caused by the usage of color/material and textual infor-
mation, respectively. In both papers, a slight increase in the retrieval performance
is reported in comparison to sole geometric descriptors.

4.1.1 Generalization Issues
When regarding the results of this Chapter, one should be aware of the fact that the
above mentioned groupings and textual annotations are highly dependent on the
modeling human being. For example, how to exactly group the parts of a swivel
chair like the one depicted in Figure 4.1 is up to the designer. The same object
might be grouped in two completely different ways by two different persons. If
the objects in certain classes of a model database only originate from a relatively
small group of designers (compared to the number of models), then it is very likely
that CDD computation overfits towards specific grouping or annotation schemes.
The trained CDD computer might therefore not generalize well when presented
new data from different designers. Note that this problem is not due to inherent
design flaws of our method but it arises from the available data which might be
biased regarding groupings and textual annotations. Although this problem might
also occur up to a certain degree with shape and material-based descriptors, we
believe that in these cases it is more or less negligible, as in contrast to grouping
or annotating, there seems to be more or less common sense about shape and
material properties of certain object classes, even among different designers.

4.1.2 Contribution
Please note that the Bag-of-Words descriptors for textual annotations and partic-
ularly the material histogram descriptor that we use should not be regarded as
the latest state of technology in either field of research. Instead of tweaking our
shape retrieval system to the last bit, our goal is rather to show the versatility of
our approach in terms of plugging in different segmentations and descriptors. The
contribution of this chapter is therefore rather exploitation and evaluation of the
methods presented in Chapter 2 and 3 than any fundamentally new ingredients.

4.2 Intrinsic Groupings for Feature Localization
In Section 3.3.1 we introduced primitive shape decomposition as a means for
model segmentation and subsequent spin image localization. This approach can

74

4.2. INTRINSIC GROUPINGS FOR FEATURE LOCALIZATION

Figure 4.3: Retrieval results using intrinsic grouping. Please see Section 4.2
for detailed explanations.

be generalized to arbitrary segmentations like the intrinsic grouping in a straight
forward way. We only consider non-hierarchical groupings in our experiments, as
the available data from the architecture benchmark does not contain any hierar-
chies. Analogously to our experiments in Chapter 3, we compute a Z-axis aligned
spin image for the support points of each group. We thereby consider up to 31
groups. If more groups are available, we only take the largest ones into account.
Additionally, we compute one global Z-axis aligned spin image that comprises the
complete model, as there is no guarantee that all parts of the object are assigned to
a group. Note that if there is no intrinsic grouping available, this global descriptor
is the only one characterizing the model.

In Figure 4.3 and Table 4.1 we depict the results of our experiments. For com-
parison, we include the performance graphs of the methods described in Chapter 2
(Random localization �) and Chapter 3 (Shapes + size + spatial relationship
�). In our first experiment (Intrinsic groups �) we do not include information
about spatial relationships, feature tuples, or feature size into the descriptor to ren-

75

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

Method 1-NN 1-Tier 2-Tier DCG
Random localization 0.592 0.482 0.670 0.774
Primitive Shapes with spatial relationships 0.763 0.523 0.670 0.810
Groupings no spatial relationships 0.750 0.384 0.511 0.744
Groupings with spatial relationships 0.807 0.486 0.608 0.793
Primitive Shapes and groupings with spatial
relationships

0.790 0.596 0.729 0.842

Table 4.1: Comparison of different approaches for descriptor localization
and consideration of features relationships. Combining orthogonal localization
techniques and incorporation of spatial relationships provides superior retrieval
performance.

der it more comparable to the random localization. For small recall values, this
localization technique performs slightly better, but with increasing recall, random
localization quickly gains the upper hand. Taking a closer look at the data as well
as the feature localization, this behavior turns out to be quite reasonable. First,
the architecture benchmark contains some classes that include objects that differ
only very little from each other. For example, there are tables that are basically
identical except for the dimensions of the table plate. Similarity determination
between such objects benefits from the very similar grouping and the subsequent
deterministic descriptor localization in contrast to the randomized one. Second
however, the result shows that the lack of knowledge about the spatial feature re-
lationships decreases the retrieval performance. Although not modeled explicitly,
the spatial relationship is implicitly characterized by the relatively large and vastly
overlapping randomly localized spin image descriptors leading to better general-
ization results for larger recall values. This fact becomes even more evident when
augmenting the descriptor by information about the spatial relationship and con-
sidering descriptor tuples (Intrinsic groups + size + spatial relationship �),
using the exact same technique and parameters as described in Chapter 3. Al-
though not reaching the result achieved with the primitive shape-based descriptor
localization, the retrieval performance is highly increased.

Assuming that the geometrically motivated descriptor localization using prim-
itive shapes and the rather semantically motivated one using intrinsic groupings
both encode somewhat orthogonal information, we finally combine both descrip-
tors (Shapes + intrinsic groups + size + spatial relationship �). The resulting
descriptors provide the best retrieval results of all methods so far.

76

4.3. MATERIAL DESCRIPTORS

Method 1-NN 1-Tier 2-Tier DCG
Random localization 0.592 0.482 0.670 0.774
Primitive Shapes with spatial relationships 0.763 0.523 0.670 0.810
Material information 0.577 0.275 0.392 0.673

Table 4.2: Material descriptor evaluation. The material descriptor alone is not
able to reach the performance of shape-based descriptors.

4.3 Material Descriptors

As already mentioned in the introduction, there exists a vast amount of more or
less complex and sophisticated methods to represent materials on 3D objects.
In the case of our architecture benchmark, the only available material descrip-
tions are textures and simple Phong models. There has been intensive research
on texture-based material retrieval and classification, see e.g. [VZ09, LSAR10].
Unfortunately, in our case textures are only available for a very small number
of objects, rendering this type of information more or less useless in our scenario.
However, the amount of models at least partially containing Phong model assigned
surfaces is quite large.

Following our previously described approach it would be possible to treat the
Phong coefficients of each single polygon together with its relative size as one
local descriptor which can be used to infer a corresponding CDD. However, it ap-
pears that these local reflection coefficients can hardly separate any object classes
at all. Instead, we construct a descriptor that characterizes the diffuse color dis-
tribution over the whole object. To this end we build a histogram containing
3 × 16 + 1 bins. Each of the three color channels is divided into 16 bins. The
additional bin is used for non-shaded polygons. Polygons contribute to the indi-
vidual bins according to their diffuse color and with respect to their relative size.
The resulting histogram descriptor is then converted to a corresponding CDD. The
retrieval performance of the material descriptor is depicted in Figure 4.4 (Mate-
rial information �) and Table 4.2. From the plot it becomes clear that material
alone is a rather poor descriptor for 3D object retrieval. However, in Section 4.5
we will show its ability to improve the retrieval performance when combined with
shape-based descriptors.

4.4 Textual Annotations

Deriving a CDD from each single textual annotation would require the usage of
elaborated string kernels, see [Gär03] for an overview. Analogously to the mate-

77

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

Figure 4.4: Retrieval results using material information. Please see Section
4.3 for detailed explanations.

rial description, we follow a simpler approach and characterize the global distri-
bution of textual annotations inside a 3D object using a Bag-of-Words approach
[Har54]. The idea is to first generate a codebook of words. For each document,
the number of occurrences of all codebook words is determined and written into
an according histogram. Finally, this histogram is normalized such that its entries
sum up to one. The resulting normalized descriptor can be easily compared using
standard kernels for vector data. Although there have been considerable research
efforts on efficient codebook selection (see [YP97] for an excellent overview), this
topic is considered less important today. First, modern hardware can easily handle
feature vectors containing several hundreds or even thousands of entries. Second,
with the introduction of highly efficient classification methods like SVMs it has
become clear that in many cases even sophisticated feature reduction methods do
not increase the performance [Joa98]. We therefore renounce feature selection in
our experiments, also in consideration of the fact that the total amount of distinct
annotations in the dataset is relatively small.

78

4.5. COMBINING SHAPE, MATERIAL, TEXT, AND DIFFERENT LOCALIZATION STRATEGIES

Method 1-NN 1-Tier 2-Tier DCG
Random localization 0.592 0.482 0.670 0.774
Primitive Shapes with spatial relationships 0.763 0.523 0.670 0.810
Textual annotations 0.562 0.283 0.404 0.684

Table 4.3: Bag-of-Words descriptor evaluation. The descriptor is not able to
reach the performance of shape-based descriptors.

We convert all textual annotations to lower case and split words at any non-
letter symbol. We then remove all words that are obviously only due to the
usage of certain modeling or conversion tools, like e.g. Autocad or Deep
Exploration. For the training set, we arrive at a codebook containing 73 dis-
tinct words. The histograms describing each 3D model are computed by counting
the exact codebook word occurrences1. CDD descriptors are trained and com-
puted using an RBF kernel again. The results of our retrieval experiments using
textual annotations are depicted in Figure 4.5 and Table 4.3. The retrieval perfor-
mance is quite similar to that achieved with the material descriptors. We believe
that this mainly results from the fact that a lot of textual annotations are used to
describe materials, such that both descriptors encode similar, non-orthogonal in-
formation. This hypothesis is supported by our findings gained in the combination
experiments described in the next Section.

4.5 Combining Shape, Material, Text, and Different
Localization Strategies

In our final experiments we try to combine the presented feature localization
strategies and the global descriptors characterizing material and textual annota-
tions. To this end we must introduce a weighting scheme that balances the in-
fluence of the single global descriptors and the set of local ones. The idea is to
treat the global descriptors as if there were many instances of them. We therefore
define the modified descriptor

Dm(x) =

⊗m
i=1D(x)∑|C|

j=1 (
⊗m

i=1D(x)) [j]
,

where m denotes the number of virtual instances of descriptor x. This parameter
can be automatically tuned during preprocessing and can then be applied to the

1The usage of more sophisticated methods including approximate (sub)string matching as well
as mapping schemes for synonyms from different languages might additionally increase robustness
and retrieval results.

79

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

Figure 4.5: Retrieval results using textual annotations. Please see Section 4.4
for detailed explanations.

test data. The results of our combination experiments are shown in Figure 4.6
and Table 4.4. Adding textual information to our previously best-performing ap-
proach using a combination of primitive shape-based and intrinsic groups-based
feature localization further improves the retrieval performance. However, adding
the material information does not increase the accuracy any further, which we be-
lieve is due to the fact that the information encoded by material and Bag-of-Words
descriptor is not that orthogonal.

4.6 Conclusion

In this Chapter we exploited our findings from Chapter 2 and 3 by using infor-
mation that exceeds pure shape features. By incorporating material and textual
annotations into our retrieval framework we were able to increase the overall
performance of our system. Additionally, we took advantage of model-inherent

80

4.6. CONCLUSION

Figure 4.6: Retrieval results using combined descriptors. Please see Section
4.5 for detailed explanations.

semantics-driven groupings which also added to our overall results. Despite these
improvements one should keep in mind that the data and the trained CDD com-
puters are potentially biased towards designer-specific groupings and annotations
as described in Section 4.1.1. Additionally, regarding the overall results on the ar-
chitecture benchmark it is obvious that although our methods brought quite some
progress, the shape retrieval problem for such fine-grained data still remains an
open problem.

Future Work An interesting challenge would be to investigate the influence of
hierarchical groupings on the retrieval performance if such data was available.
Additionally, for textured models, the influence of more sophisticated material
descriptors like the ones presented in [VZ09] should be analyzed. However, be-
fore such research can be conducted it is necessary to collect adequate data and
build an according benchmark. Regarding our experience with the setup of our ar-
chitecture benchmark we believe that acquiring a collection that homogeneously

81

CHAPTER 4. BEYOND SHAPE: GROUPS, MATERIALS, AND TEXT FOR 3D RETRIEVAL

Method 1-NN 1-Tier 2-Tier DCG
Random localization 0.592 0.482 0.670 0.774
Primitive Shapes + spatial relationships 0.763 0.523 0.670 0.810
Groupings 0.750 0.384 0.511 0.744
Groupings + spatial relationships 0.807 0.486 0.608 0.793
Primitive Shapes + groupings + spatial rela-
tionships

0.790 0.596 0.729 0.842

Primitive Shapes + groupings + spatial rela-
tionships + text

0.832 0.629 0.759 0.858

Primitive Shapes + groupings + spatial rela-
tionships + text + material

0.830 0.633 0.758 0.860

Table 4.4: Combination of all previously described features. Combining or-
thogonal localization techniques, incorporation of spatial relationships and addi-
tional information about material or textual annotations provides superior retrieval
performance.

provides high quality texturing and semantic grouping is going to be quite a chal-
lenge, especially if it is supposed to be freely available for other researchers.

82

Part II

Graph-based Shape Retrieval for 3D
Architectural Building Models

83

CHAPTER 5

ANALYZING AND INDEXING BUILDING MODELS

5.1 Introduction

In the previous chapters we introduced shape retrieval methods tailored to context
objects representing building elements, furnishing, and environment elements. In
the second part of this thesis we focus on the building models themselves. We in-
troduce means to analyze their structure and subsequently develop efficient meth-
ods for retrieval. While for context object retrieval the focus was on vector-based
descriptors to enable shape retrieval, in the following second part we will mainly
rely on structured shape representations, i.e. graphs. This is due to the reason
that for architectural drafting, the spatial and topological arrangement of rooms
and stories is most important. Such relationships can hardly be described using
vector-based descriptors but rather require structured data representations. An im-
portant aspect in building retrieval is the interior building topology. To understand
the development of building topologies in architects’ practice, we depict an early
part of the planning process in Figure 5.1. Starting the preliminary design of a
building with a given schedule of spaces (5.1(a)), architects arrange rooms and
their connections in graphs representing topological structures (5.1(b)). These
topologies strongly characterize buildings and express their internal organization
[Mit90]. In the next step, these abstract graphs are used as templates to develop
concrete 2D floor plans, see Figure 5.1(c) (here overlaid with the 3D building
models). As displayed in the figure, different floor plans can be generated out
of the same schedule of spaces through early decisions concerning the topology
and outer parameters like global building form. Taking all desirable drafting op-
portunities into consideration, floor plans are the most unambiguous means to
show the spatial organization (development structure, topology and disposition of
rooms, [Sch04]). Therefore they are a major ingredient for architectural drafting.
Eventually, the structural patterns formed by rooms and their connections refer to
building zones (e.g. private or public) and eventually to building types [MB97].

85

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Dwelling, 140 m2

Living room up to 60 m2 WC 3 m2 Storage/Utility 6 m2

Room(s) 12− 14 m2 Kitchen 10− 14 m2 Corridor as required
Bathroom 7− 10 m2 Eating 12− 18 m2

(a)

(b)

(c)

Figure 5.1: Architectural design chain. a) Schedule of spaces. b) Two possible
arrangements of spaces. c) Resulting buildings with floor plans.

5.2 Room Connectivity Graphs

Considering the importance of floor plans for describing and understanding archi-
tecture, it is obvious that state-of-the-art 3D shape retrieval methods solely based
on global or local geometric features are less suited for the domain of architectural
building models, as they cannot represent their topological structure.

To overcome these drawbacks, we propose attributed room connectivity graphs
(RCGs) as floor plan descriptors for building models. To our best knowledge, the
concept of simple non-attributed room connectivity graphs was first mentioned in
the area of robotics for modeling navigation planning problems [Lau83]. We pick
up this general concept and tailor it to the requirements of building and floorplan

86

5.2. ROOM CONNECTIVITY GRAPHS

retrieval. An RCG G = (V,E) consisting of nodes V and edges E characterizes
a single story or a whole building in terms of the topology of the underlying floor
plans. Rooms are represented by attributed nodes vi ∈ V . There is a large vari-
ety of interesting room properties that might be useful for building retrieval and
classification. It ranges from rather low-level geometric attributes like e.g. area,
window area, height, perimeter, or a geometry descriptor characterizing the basic
shape of the room, up to high-level semantic attributes like room type (corridor,
distributor, balcony, etc.). We collect all important room attributes in a vector and
attach it to the room node. Apart from the room nodes, each RCG contains exactly
one additional node vo that represents the outside world. This node is especially
important to characterize which rooms allow access to the surrounding environ-
ment. Edges ej ∈ E represent connections between rooms. These edges can be
assigned low-level attributes like width, height, geometry descriptors characteriz-
ing the basic shape of the connection, or high-level attributes like connection type
(door, window, staircase, elevator shaft, etc.).

5.2.1 Node Attributes

We distinguish two kinds of low-level room attributes, room types and room prop-
erties. The room type attribute atype(v) is a value stating whether a node v repre-
sents a room or the outside world. It reads

atype(v) =

{
room, if v represents a room,
world, if v represents the outside world, i.e. v = vO

Room properties are only assigned to the actual rooms excluding the outside world
node. Let us denote the set of nodes that does not contain the outside node vo by
V \{vo}. For each room node v ∈ V \{vo}, the vector

aprop(v) =

 aprop(v)[1]
...

aprop(v)[k]

 .

represents scalar-valued room properties aprop(v)[i] ∈ R.

5.2.2 Edge Attributes

Edges can represent three different kinds of connections: doors, windows, and
vertical connections including staircases and elevators. One can additionally dis-
tinguish connections within the building and connections that lead to the outside.

87

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Accordingly, the edge type attributes read

atype(e) =

doorinside, if e connects two rooms by a door,
dooroutside, if e connects a room to the outside world by a

door,
vertical, if e connects rooms of adjacent stories,
windowinside, if e connects two rooms by a window,
windowoutside, if e connects a rooms to the outside world by a

window.

Note that it would be possible to additionally characterize edges by their proper-
ties (e.g. window size) in a similar way as the room property vector. However, in
our work with experts from the architectural domain we came to understand that
vertical connections and doors play a far more important rule for understanding
the structure of a building than windows. In fact we will not use edges represent-
ing windows in our retrieval experiments but will instead include them as room
properties.

We use the representation of a 3D building model by attributed RCGs as a
starting point for retrieval and classification. After a review of the related work on
graph-based 3D shape retrieval and graph similarity computation in general, we
will describe the necessary building blocks for simple retrieval with RCGs, which
are:

• Extraction of RCGs We propose a method for error-tolerant extraction of
RCGs that is robust towards modeling errors. It is applicable to building
models in almost any format as it only relies on polygon soups.

• Simple room structure retrieval We show how simple room structures
can be found in a building model according to the extracted RCG. Retrieval
is based on node and edge attributes characterizing the type of room or
connection (e.g. door or window).

Although in the following we will extract RCGs from existing 3D models using
only geometric information contained in the associated polygon mesh, our concept
of RCGs is completely uncoupled from the underlying object representation. As
source, one might as well use a 2D sketch or a high-level BIM model that enables
easy extraction of rooms, stories, and connecting elements along with high-level
attributes.

5.3 Related Work
The idea behind graph-based 3D shape retrieval methods is to characterize an ob-
ject according to the linkage (graph edges) of its constituting parts (graph nodes).

88

5.3. RELATED WORK

Depending on the particular method, the semantic level of such parts ranges from
low-level triangles over higher-level shape primitives like cylinders and spheres
up to high-level entities that consist of a textual description rather than of pure
geometry. The linkage usually represents spatial proximity, i.e. it describes that
certain parts are either touching, close to each other, or connected in a certain
way. Graph-based representations can be relatively easy made invariant under
translation, rotation, scaling, and in certain cases also isometric transformation.
Additionally, they at least theoretically enable partial retrieval, which boils down
to subgraph matching. While these are obvious advantages over most vector-
based representations, the successful usage of graph-based methods requires to
overcome two major obstacles, which in our opinion is the main reason for their
limited success and decreasing impact in the 3D shape retrieval community:

• Robust extraction The extraction of features that constitute nodes must
be extremely robust towards small changes in the geometry, noise, and the
underlying representation (e.g. triangulation level), as adding just a single
node or edge can dramatically change the entire graph topology and thereby
faking structure that is not really present. Two similar objects might there-
fore result in quite different graph representations. In comparison, BoF
methods can easily stand additional local features, as each one of them
only marginally changes the resulting histogram distribution. Note how-
ever that there are some application scenarios in which the node extraction
is extremely reliable, for example when using Constructive Solid Geometry
(CSG) representations.

• Similarity computation Computing exact matchings by determining sub-
graph isomorphisms is known to be NP-complete [Coo71]. However, in
case nodes are added attributes that strongly decrease the number of com-
patible pairs in the query and the target graph, the resulting early exits dur-
ing solution tree exploration can render this problem tractable, at least for
searches in rather small databases. Unfortunately, considering the above
described problems of insufficiently robust node extraction, exact subgraph
matching is useless anyway in most cases, as no match would exist due to
clutter. Additionally, there are only few scenarios in which exact match-
ings are desired. Instead, fuzzy distance measures are required. Graph edit
distances are considered a loophole for this purpose, but computing them is
NP-hard as well [ZTW+09]. They allow insertion and deletion of nodes and
edges in either the query or the target graph, thereby enabling to determine a
similarity value in the absence of exactly overlapping structures. However,
the computational efforts required are high, which leads researchers to ex-
plore new methods for similarity determination. This includes graph kernels

89

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

and methods that are based on comparison of graph statistics represented as
vectors instead of the graphs themselves.

Retrieval methods relying on graph-based 3D object representations are usually
divided into three groups, including model graph-based, skeleton graph-based,
and Reeb graph-based methods. Please note that our newly introduced RCGs
best fit into the category of high-level attributed model graphs. We will briefly
introduce the most relevant methods of each group along with their particular
graph comparison methods. Regarding the older methods, we mainly rely on the
information contained in the survey by Tangelder et al [TV08].

5.3.1 Model Graphs
Model graph-based representations can usually be derived from 3D solid models,
which mainly includes boundary representations (B-rep) and Constructive Solid
Geometry (CSG). Elinson et al. [ENR97] construct attributed graphs from CAD
models that encode machining features. The high-level textual node and edge at-
tributes (e.g. drilling/milling feature, cutting tool radius)
constitute signatures that are compared using isomorphism checks. A similar ap-
proach is presented in [CR01], where a model dependency graph is constructed
and a heuristic largest common subgraph algorithm is used for similarity determi-
nation. Note that both approaches do not directly incorporate the underlying ge-
ometry as graph nodes but rather use attached high-level attributes. El-Mehalawi
et al. [EMM03a, EMM03b] also extract graphs from CAD models, but the node
attributes are more shape-related than in the preceding two approaches. A simple
graph retrieval method using vectors that subsume statistics about certain graph
properties is proposed, like e.g. the number of nodes of a certain type. For a more
sophisticated inexact comparison, a heuristic using clique matching is presented.
McWerther et al. [MPSR01] use similar node and edge attributes. They propose
two methods for graph comparison. On the one hand, the Invariant Topology Vec-
tor (ITV) is introduced, representing statistical properties of the graph, e.g. the
minimum and maximum degree. ITVs of two different graphs are compared using
the Euclidean distance. On the other hand, the Eigenvalues of the graph Laplacian
are used for comparison. By subsequently subdividing graphs using the Fiedler
vector [Fie73], partial similarity is analyzed. Wang et al. [WLHZ10] use an ap-
proximation for graph edit distances [RB09a] to compute the similarity between
attributed graphs. In contrast to the previously described approaches which lack a
decent evaluation, a pre-classified database of 200 models is used to estimate the
retrieval performance in terms of the standard methods described in Section 1.5.3.
The new method shows superior results when compared to ITV and graph spectra,
but also when compared to non-graph-based methods like light field descriptors

90

5.3. RELATED WORK

[CTSO03].
The methods described so far have in common that they are tailored to high-

quality CAD data which renders the robust node and edge extraction process al-
most trivial. However, in many scenarios only low-level representations are avail-
able, including polygon soups and point clouds. There exist several approaches
that try to overcome this drawback by extracting higher-level geometric primitives
from low-level representations to subsequently construct a model graph. Zucker-
berger et al. [ZTS02] use different segmentation strategies to partition watertight
meshes. The best fitting basic shape (sphere, cylinder, cone, or plane) is assigned
to each resulting patch, and neighboring patches are connected with edges. Verma
et al. [VKH06] present a method to recognize roof shapes in aerial LIDAR data. A
region growing approach is used to detect planes in the point data. Roof-topology
graphs are defined to describe configurations of planes for some simple build-
ing forms shaped like I, L and U. These configurations are searched for in the
set of the detected planes. In a second step, the detected simple shapes are ex-
tended to more complicated forms according to the plane configurations in the
point-cloud. A similar approach is described in [SWWK08], where point clouds
are partitioned into geometric primitives (planes, cylinders, spheres, cones, and
tori) using a RANSAC method. Neighboring primitives are connected via edges.
Previously defined proxies can then be search for in the resulting graph. Simi-
lar approaches have been proposed in the field of robotics to tackle the grasping
problem, see e.g. [NSB+12].

5.3.2 Skeleton Graphs
The medial axis of a 3D shape is the set of points located at the centers of those
spheres touching the boundary of the shape at at least two locations. The point
set forms a skeleton graph that captures the essential geometrical and topological
properties of the underlying shape. Dead ends and junctions constitute nodes in
the graph, edges are added according to the nodes’ respective connectivity on the
skeleton. Skeletal graphs are mostly constructed by transforming a model into
a volumetric representation like a voxel grid and by subsequently thinning the
shape until only a skeleton is left. However, some methods also work directly on
the polygon mesh. There exists a huge amount of papers proposing methods for
skeleton extraction, for the most recent and comprehensive surveys on this topic
we refer to [CSM07] and [BAB+08].

Sundar et al. [SSGD03] construct several skeletons by varying the thinning
parameter which results in a hierarchical structure. Additionally, the graphs are
made acyclic by only taking their minimum spanning tree into account. Each non-
terminal node is assigned a vector that contains the eigenvalues of the graph Lapla-
cian associated with the subgraph that is rooting in the particular node. Coarse

91

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

similarity determination between graphs is conducted using these spectral signa-
tures to restrict the search space for the subsequent graph matching process. Lou
et al. [LJI+03] attribute the extracted skeleton graph with additional properties
(e.g. edge/loop) and use decision tree-based graph matching for similarity de-
termination. An improved version of this method using multi-scale hierarchical
skeleton graphs can be found in [IJL+04]. There, local shape information is added
to the graph representation and a genetic algorithm is used for similarity determi-
nation. The method by Brennecke et al. [BI04] uses a polygonal mesh instead
of a volumetric representation to derive skeleton graphs. Similarity is computed
using maximum common subgraphs. Cornea et al. [CDS+05] represent the skele-
ton graph as a point set and additionally store the distance to the shape boundary
for each point. Similarity is computed using the earth mover’s distance (see Sec-
tion 2.2). In contrast to the before mentioned skeleton-based methods, Cornea
et al. evaluate their approach using a subset of the Princeton Shape Benchmark
(PSB) containing 99 classes. Comparing the results to those achieved with various
global shape descriptors in [SMKF04], this graph-based approach shows a rather
poor performance that except for the 1-NN value is only slightly better than that
of the D2 descriptor [AKKS99]. Interestingly, the 1-NN value is higher than in
all experiments in [SMKF04]. However, it should be noted that the results are not
completely comparable without further ado due to the differing PSB subsets that
were used in the experiments. Siddiqi et al. [SZM+08] assign a saliency value
to each segment of the skeleton graph that depends on its reconstruction capabil-
ity. Starting with the most salient segment, an acyclic directed graph is extracted.
The graph Laplacian spectrum of the subgraph rooting each node is computed,
which is quite similar to the method described in [SSGD03]. The sums of the
eigenvalues of each spectrum are subsumed in a vector that serves for fast com-
parison between different graphs. The top-ranking results are further refined using
a combination of bipartite graph matching and a greedy recursive algorithm. To
this end, node similarity is determined according to the mean curvature histogram
computed over the voxels in the particular segment. The method is evaluated using
a subset of the McGill database for articulated objects. The results suggest that it
does not outperform spherical harmonics (SH) descriptors or shape distributions.
Additionally it should be noted that far better results have been achieved on this
particular dataset using non-graph-based methods, see e.g. [LGF+10]. Hayashi
et al. [HRNS11] consider pairs of points lying on the skeleton and use feature
distributions (e.g. pairwise distance, maximum distance to boundary) to compare
two shapes. Bai et al. [BLYL13] characterize the shortest paths between all pairs
of skeleton end points by a vector of fixed length that encodes the distance to the
shape boundary along the path. Given two shapes, the similarity for all combi-
nation of end points is computed according to the vectors describing the attached
shortest paths. An optimal matching of the two end point sets is subsequently

92

5.3. RELATED WORK

computed using the Hungarian method.

5.3.3 Reeb Graphs

The term Reeb graph denotes the connectivity of level sets originating from a
Morse function that is defined on a manifold. Each connected component of the
level set represents a node. Spatially neighboring nodes (i.e. those originating
from adjacent level sets) are connected by an edge. Hilaga et al. [HSKK01] make
use of geodesic distances as a function for level set computation, which is espe-
cially suited for articulated objects, as the geodesics are isometric invariant. For
each point, they compute the sum of geodesic distances to all other points on the
shape. A multiresolution Reeb graph (MRG) is constructed from this function,
i.e. the codomain of the function is dissolved using subdivision schemes rang-
ing from coarse to fine. All nodes are assigned attributes characterizing the area
of the part of the shape that is associated with the node and the range in which
the length of shortest path originating from this node vary. A heuristic is used
to compare two graphs starting at the coarsest and finally iterating to the finest
level. Bespalov et al. [BRS03] exhaustively evaluate Hilaga’s approach using
solid CAD models. Their findings include that MRGs are prone to topological
changes in general and also suffer from low-quality mesh representations with
bad connectivity. Biasotti et al [BMM+03] investigate alternative functions for
constructing the level sets including Euclidean distances and geodesic distances
from curvature extrema. They use error tolerant graph isomorphism for similar-
ity determination. However, the brief evaluation does not provide any conclusive
results regarding the superiority of one distance function. Tung et al. [TS04] in-
troduce augmented Reeb graphs that include additional topological (consistency
check regarding wether parents of the neighbors of two nodes are also matched
in higher resolution level) and geometrical attributes (relative node position, vol-
ume, color, chords, curvature). An evaluation of this method can be found in
the SHREC 2007/2008 tracks on articulated watertight models [VtH07, BA08].
The method provided comparatively good results in both tracks, proving superior
when compared to several other feature-based approaches. In [BMSF06], Biasotti
et al. focus on partial matchings using extended Reeb graphs which incorporate
an additional SH descriptor that describes the shape associated to each node. A
similar approach relying on pose-oblivious shape signatures instead of the SH de-
scriptors is presented in [AK11]. Partial matching is also the focus of the work by
Tierny et al. [TVD09]. They robustify the Reeb graph extraction by getting rid
of structural distortions and achieve superior retrieval results when compared to
[BMSF06].

93

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

5.3.4 Summary

Taking an overall look at the graph-based methods it can be noted that in contrast
to feature-based approaches, many algorithms lack a decent evaluation regarding
their retrieval performance. However, it seems that careful and robust extraction
of nodes and edges can lead to powerful methods that are able to compete with
feature-based methods, or might even lead to a better performance, like e.g. in the
case of Wang et al. [WLHZ10].

5.4 Room Connectivity Graph Extraction

There exists a large variety of architectural 3D building models regarding quality
of modeling, formats, structuring, and semantic annotations. It ranges from pure
unstructured polygon soups without any semantics provided in simple triangle
mesh formats up to highly structured BIM models containing semantically anno-
tated hierarchies of building elements. Our goal is to provide a method for RCG
extraction that is applicable to as many building models as possible, regardless of
quality, format, and structuring. Our approach is therefore based on quite weak as-
sumptions about the object. It only requires an unstructured polygon soup, which
can be extracted from virtually any 3D representation. Additionally, the units of
measurement of the model as well as the coordinate plane corresponding to the
ground must be known. The extraction of RCGs is then conducted in three steps,
including segmentation into stories, room detection, and detection of connections
between rooms.

5.4.1 Automatic Story Segmentation

Assuming flat rooftops, building stories are in general bordered by a flooring and
a ceiling, both of which consist of relatively large patches that are parallel to the
ground. Our idea for story detection is to robustly identify those patches cor-
responding to flooring and ceiling. To this end, two main problems need to be
solved: First, architectural models contain furniture and staircases that include
patches which are also parallel to the ground and must not be mistaken as be-
longing to the flooring or ceiling. Second, the floor construction, i.e. the volume
between a ceiling and the flooring of the room above, often contains additional
large patches that are parallel to the ground, see e.g. the green planes in Figure
5.2. In the following we describe how to overcome these difficulties and identify
those patches that correspond to floorings and ceilings.

94

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

Floor Construction Detection We first determine the set of polygons that are
parallel to the ground. To this end, let dup = (dx, dy, dz)

t denote the vector in-
dicating the normalized up-direction of the scene containing the building model.
In most cases, dup equals (0, 0, 1)t as the XY plane usually corresponds to the
ground. Let P = {P1, ..., P|P|} denote the set of polygons constituting the scene,
and let n(Pi) denote the according face normal vectors. The set of all polygons
that are nearly parallel to the ground is given by

P|| = {Pi ∈ P : | < n(Pi), dup > | ≤ ε||},

where ε|| governs the maximum deviation between n(Pi) and dup in terms of the
cosine of the enclosed angle. Let P⊥dup denote the plane that is perpendicular to
dup and passes through the origin O = (0, 0, 0)t. For all polygons Pi ∈ P|| we
compute the distance to P⊥dup . All polygons that provide approximately the same
distance to P⊥dup (we use a maximum deviation of 1mm) are put into a common
bin. For each resulting bin we compute the sum of the included polygon areas.
Patches caused by furniture or staircases are much smaller than those caused by
floorings, ceilings and floor constructions. We therefore discard all bins with an
area sum below a certain threshold tfloorsize.

The thickness of flooring constructions is limited. It is generally determined
by the span, the load and the construction material, see e.g. [Hol07]. In buildings
up to four floors the distance between a ceiling and the flooring of the room above
is usually less than 0.4 meters, whereas multistory buildings, industrial buildings
or hall structures may have floor profiles up to two meters and more. As we
are mainly dealing with residential buildings, we collect all polygons within the
distance of 0.4 meters in a bin representing a flooring construction. Within one
flooring construction bin, the polygons with the maximum distance dmax to P⊥dup
constitute a flooring (see e.g. the blue planes in Figure 5.2), the ones with the
minimum distance dmin constitute a ceiling (see e.g. the red planes in Figure 5.2).
Note that in cases of poor modeling, the flooring of the upper story and the ceiling
of the lower story might be represented by the same polygons1. We represent the
k-th flooring construction FCk as a tuple FCk = (Pk, dkmin, dkmax) including the
set of polygons Pk = {Pi ∈ P : dkmin ≤ d(Pi, P⊥dup) ≤ dkmax} belonging to the
flooring construction as well as the distances between the ceiling and flooring level
to P⊥dup which are denoted by dmin and dmax. For simple structured buildings
with flat roofs the above described method provides exact estimates about the
location of single stories between the detected flooring structures. However, there
are several types of buildings that cannot be processed in this way:

1This would actually correspond to an infinitely thin ceiling which would never be constructed
in real life.

95

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Figure 5.2: Cross section through three-story residential building. Flooring
constructions located between ceilings (depicted in green) and floorings (depicted
in red) contain additional polygons (depicted in blue).

Split-level buildings In split-level homes (see Figure 5.3), the floor levels of
one or more parts of the house are located somewhere between the flooring and
ceiling of other parts of the house. In this case there is no global floor level for
each story but several local ones. As the Figure indicates, split-level structures
can be rather complex. Although in principle our methods for segmentation into
stories could be adopted to this challenge, we will concentrate on buildings with
global floor levels in this work.

Missing floor planes Many building models lack the flooring of their lowest
story, see e.g. Figure 5.4, preventing the story from being localized exactly. The
occurrence of this problem can be detected relatively easy by determining whether
the distance between the lowermost recognized horizontal plane and the lower side
of the bounding box exceeds the typical height of a story (usually 2.40 meters).
While for the depicted example it would be sufficient to assume that the flooring is
located right at the lower side of the bounding box, this is no convenient strategy
for arbitrary building models. In many cases there are some modeling artifacts
that exceed the level down to which the actual building walls are reaching. An
example is shown in Figure 5.5, where staircases and a small wall that is located
outside the building exceed the floor level. To deal with this problem we simply
propagate the height of the story located above assuming that both storys have

96

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

similar height. This is of course only a heuristic method and should eventually be
replaced by a more sophisticated approach.

Non-flat rooftops In buildings with non-flat roof tops, the uppermost story is
not located between two flooring structures, see Figure 5.4. This might result in
problems during the subsequent room localization. We will describe the conse-
quences in more detail in Section 5.4.3.

Figure 5.3: Cross section through split-level home. Instead of global floor levels
there are several local levels.

97

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Figure 5.4: Cross section through saddle roofed residential building with shed
dormer. Note that the lowermost flooring construction is not modeled.

5.4.2 Floor Plan Generation

As in architecture 2D floor plans are used to unambiguously show the spatial
organization of a story, we restrict ourselves to the use of horizontal cross sections
instead of the complete 3D representation to efficiently extract rooms, windows
and doors from building models. A horizontal cross section of a 3D polygon
soup results in a set of two-dimensional line segments that do not provide any
connectivity. We transfer this set into a two-dimensional halfedge representation
in which the line segments are connected with respect to their spatial relationship.
Computing three cross sections for each story at different height levels, we use the
resulting halfedge structures to derive the RCG.

We represent each line segment that originates from the horizontal cross sec-
tion by two vertices qi and qj , a halfedge hij leading from qi to qj and another
halfedge hji leading from qj to qi. We denote the vertices by Q = {q1, ..., q|Q|}
and the set of halfedges byH.

In the first preprocessing step, we determine the connectivity between the ver-
tices. Two vertices qi and qj with i 6= j are merged if the Euclidean distance

98

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

(a) Missing floor plane. In this build-
ing the lowermost flooring was not
modeled.

(b) Modeling artifacts. Staircases and a small
wall outside of the building (see arrows) exceed
the level of the hypothetical flooring (dashed
line)

Figure 5.5: Story localization problems originating from missing lowermost
floor plane. Additional modeling artifacts prohibit the usage of simple localiza-
tion heuristics relying on the bounding box.

between them is below a certain threshold ε∪ (see Figure 5.6a). One often en-
counters buildings containing double-sided modeled polygons, resulting in two
line segments that are very close to each other. After vertex merging, the directed
connection from vertex qi to vertex qj might therefore be represented by more
than a single halfedge. In this case we eliminate all halfedges from qi to qj but
one. In the second step, we compute the connectivity between vertices and half-
edges. For each halfedge hij we determine the Euclidean distance d(hij, q) to
every vertex q ∈ Q \ {qi, qj}. If d(hij, q) is below the above introduced threshold
ε∪, hij and its opposite halfedge hji are split into two halfedges. The resulting
halfedges are connected to the vertex (see Figure 5.6b). In all our experiments
we use ε∪ = 1mm. In the next preprocessing step we eliminate intersecting
halfedges. Intersecting halfedges hij and their opposite halfedges hji are split and
a new vertex is inserted at the point of intersection (see Figure 5.6c).

Note that the resulting graph still contains unintended gaps due to modeling
errors like the one depicted in Figure 5.8a. In the beginning of the room detection
described in the next paragraph we do not take care of these inconsistencies but
resolve them only after a first version of the RCG is constructed.

5.4.3 Room Detection

Our idea for the precise localization of rooms is to compute a horizontal cross sec-
tion located marginally below the story ceiling. In the resulting halfedge graph,
the rooms correspond to faces. The concept can be best understood by taking
a look at Figure 5.7. In 5.7a and 5.7b, the cross sections are localized slightly

99

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

(a) (b) (c)

Figure 5.6: Line segment processing steps. a) Merging of close vertices. b)
Halfedge split due to close vertex. c) Halfedge split and vertex insertion due to
halfedge intersection.

above the flooring and at breast height. As can be seen, the red intersecting struc-
ture does not enclose single room faces but the whole story face. This is due to
openings between the rooms. Only with a cross section located slightly below the
ceiling as depicted in Figure 5.7c, the story face brakes up into individual room
faces, as the openings usually do not reach that high. Given the halfedge graph
representation of the cross section, we determine the graph faces and thereby the
buildings of the room by walking along the halfedges, see Algorithm 2. However,
there are also buildings which our method cannot be applied to successfully, see
Figure 5.7d. Although the depicted cross section is located only millimeters below
the ceiling, the openings reaching right up there prevent the detection of a decent
room structure. Another problem arises from building with non-flat rooftops. As
the ceiling is missing, the cross section cannot be localized in the above described
way. Due to the slope of the rooftop, the area of the story resulting from the
cross section becomes smaller and smaller with increasing height. The only area-
preserving cross section can be conducted directly above the flooring. However,
at this height openings between the rooms might prevent the detection of sepa-
rated room faces. Note that in this work we do not deal with this problem but
concentrate on buildings with flat rooftops.

Distinguishing Rooms, Walls, and Facades Regarding the extracted faces, two
cases must be distinguished. A face can be circled on the inside (inside face) or

100

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

(a) (b)

(c) (d)

Figure 5.7: Cross sections for room detection (Buildings in a-c are identical,
Figure d shows another one). a) Cross section above flooring. Openings between
rooms cause the red intersection structure to enclose the whole story instead of
single rooms. No intersection with windows, but intersections with doors at this
height level. b) Cross section at breast height. Same as a), but windows become
intersected now. c) Cross section below ceiling. Openings do not reach high
enough to prevent the story face from braking into room faces. Window and door
intersections are not visible any longer. d) Failure case. Cross section below
ceiling does not result in separated rooms due to high-reaching openings.

on the outside (outside face). Inside faces correspond to either rooms or walls2.
Outside faces either represent rooms or walls lying completely inside another face
without being connected to it or they correspond to the facade. To distinguish

2Please note that theoretically our method might produce false rooms originating from atriums
that are completely enclosed by the building. However, the data available to us did not contain
such cases. In Section 5.4.5 we discuss how this problem could be dealt with.

101

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Algorithm 2 Face Determination
Input Halfedge graph HG = (nodes Q, halfedgesH)
Output Face set F

Function DetermineFaces(Halfedgegraph HG)
for all hij ∈ H do

if hij was not visited yet then
Create new face f
Assign f a pointer to hij
TraverseHalfedge(hij ,f ,hij)
Add f to F

end if
end for
Function TraverseHalfedge(halfedge h, face f , starting halfedge hstart
Mark h as visited
Assign h a pointer to f
qtarget ← target vertex of h
hnext ← next outgoing halfedge of qtarget in clockwise direction with respect to
h
if hnext 6= hstart then

TraverseHalfedge(hnext, f , hstart)
end if

between inside and outside faces, we compute the angle between the incoming
halfedge and the exiting halfedge with respect to clockwise direction for each of
the n vertices during the face traversal. Inside faces correspond to an angular sum
of (n− 2)π, outside faces correspond to a sum of (n + 2)π, where n denotes the
number of vertices. To determine which outside face corresponds to the facade
we pick an arbitrary vertex of each outside face and test whether it is located
inside one of the inside faces. The facade face is located outside of all inside
faces. Note that in case the building model consists of several tracts (see e.g.
Figure 5.11), there also exist several facade faces. In the RCG, all facade faces are
subsumed in the node representing the outside world, i.e. the one with attribute
type atype(v) = world (c.f. Section 5.2.1). The inside faces represent either
rooms or walls of the story building. In the next step we identify those faces that
belong to rooms. First, all faces with an area of less than 1m2 are discarded,
as according to DIN guidelines (see [Neu05]), rooms are larger in general. To
eliminate the remaining wall-representing faces, we additionally consider the face
perimeter. In general, walls have an elongated shape while rooms correspond to
rather quadratic-shaped structures. Considering a wall of width w with a cross

102

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

(a) Result of room detection. Unintended gaps between walls result in
rooms that are not separated

(b) Gap closing version I. Insertion of
two halfedges between existing nodes

(c) Gap closing version II. Insertion
of a new node with subsequent inser-
tion of two halfedges.

(d) Result after gap closing. Overall, four gap closing operations were
performed.

Figure 5.8: Room refinement. Closing operations are applied to unintended gaps
in the floor plan that caused a faulty room detection.

103

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

section area A and a quadratic room of the same area A, the perimeters Pwall and
Proom are given by

Pwall = 2

(
A

w
+ w

)
, (5.1)

Proom = 4
√
A.

Common wall widths range from 6cm to 40cm. Assuming the worst case of
w = 40cm, the wall perimeter evaluates to Pwall = 5A

m
+ 0.8m, which is much

larger than Proom for the remaining face with areas A ≥ 1m2. One could exploit
this observation and use area and perimeter as features to train a simple binary
classifier in order to robustly learn a decision boundary between rooms and walls.
However, it turns out that it is sufficient to use simple thresholding on the ratio A

P

between area and perimeter to robustly discriminate. We set the threshold to 0.25,
faces with larger area-to-perimeter ratio are classified as rooms, the remaining are
assigned to the wall class. Accordingly, for each detected room, a node v with
attribute atype(v) = room is stored in the RCG.

Gap Closing Figure 5.8a shows the problem of gaps between walls creating
connections between rooms that are actually intended to be separated. In the data
we found gaps ranging to a size of about 10cm. A naive approach to deal with this
problem would be to increase the threshold ε∪ that is used for the construction of
the halfedge graph. By that, gaps up to a size of ε∪ would be closed. The drawback
of this method is that the larger ε∪ is chosen, the more vertices are moved and the
floor plan shape changes. Walls would disappear due to this simplification and
structures like windows and doors would become more and more unrecognizable.

We follow a different approach that is inspired by topological simplification
techniques which were originally invented for mesh simplification, see [SZL92].
While this method concentrates on determining simplification operations that pre-
serve the topology, our algorithm identifies actions that would cause significant
topology changes, i.e. gap closing operations that eliminate unintended room
connections. A gap-closing operation can either be the insertion of two halfedges
between two vertices (Figure 5.8b) or the insertion of a new vertex on a halfedge
including the split of this halfedge and a subsequent insertion of two halfedges,
see Figure 5.8c. We denote a gap-closing operation to be valid if it splits the face
into two faces that still satisfy the room conditions (i.e. minimum area of 1m2

and area-to-perimeter ratio larger than 0.25. For each face we perform a sequence
of virtual gap-closing operations, until a valid one is found and conducted. The
resulting faces are tested for valid gap-closing operations recursively. We con-
sider gaps up to a size of 375mm (minimum window width according to DIN, see

104

5.4. ROOM CONNECTIVITY GRAPH EXTRACTION

[Neu05]), which is large enough to close most unintended gaps in our data but is
still small enough to not close window openings unintentionally, see Figure 5.8d.

5.4.4 Door and Window Detection
Instead of treading the cumbersome way of recognizing doors and windows as
geometric structures in the 3D model representation, we aim at identifying them
as regularity breaking elements in 2D cross sections. To this end, we compute two
more horizontal cross sections. The first one is located marginally above the story
flooring, such that it will intersect doors but not windows, see Figure 5.7a. The
second cross section is located at breast height (i.e. 1.40m above the flooring),
such that it will intersect both, windows and doors, see Figure 5.7b. For both ad-
ditional cross sections, we conduct the room detection in the above described way.
Windows and doors produce geometric inconsistencies in a wall. By determining
the inconsistencies between the three cross sections, these elements can be identi-
fied. Inconsistencies between the cross sections at breast height and the one below
the ceiling indicate the presence of either windows or doors. If a corresponding
inconsistency is also found in the cross section above the flooring, it indicates the
presence of a door. In Figure 5.9 we show three cross sections of one story at the
different height levels along with the inconsistent line segments that are contained
in the high cross section but not in the lower ones.

Once the inconsistent line segments have been identified, we must determine
whether they really correspond to doors or windows as there are also inconsis-
tencies caused by other structural differences. Figure 5.9 shows that each door
and window causes one pair of inconsistent segments in the two lower cross sec-
tions. According to DIN standards (see [Neu05]), there exist minimum widths for
windows (375mm) and doors (55cm), such that inconsistent segments caused by
these elements must provide according minimum lengths. All pairs of inconsis-
tent line segments are tested whether they provide these characteristics. Once a
pair of segments is identified to be a door or a window, we determine to which
faces the according halfedges in the cross section below the ceiling belong (note
that this might also be the face representing the outside world). We finally add
an edge to the room connectivity graph connecting the room nodes represent-
ing the determined faces. As an attribute type atype(e), the edge is either as-
signed door or window, potentially together with the differentiation between
inside/outside, c.f. Section 5.2.1.

5.4.5 Detection of Vertical Connections and Room Refinement
By a vertical connection we understand a structural element that allows a person
to move between floor levels. Typical examples for such elements are staircases

105

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

(a) Cross section below the
ceiling

(b) Cross section at breast
height

(c) Cross section above the
flooring

Figure 5.9: Cross sections through the story of a building. In b) and c) those
line segments that are only contained in a) are shown in red. Inconsistent segments
caused by doors are contained in both lower cross sections whereas inconsistent
segments caused by windows can only be found b).

and elevator shafts. Note that all vertical connections that are located inside of a
building require the presence of a hole in the flooring construction between the
two floor levels to enable access. Our method for recognition of vertical connec-
tions is based on the detection of such holes. Note however, that despite being
necessary for a vertical connection, the presence of a hole is not sufficient to indi-
cate bidirectional accessibility between the floor levels.

One might think of localizing vertical connections by simply detecting holes
in the flooring planes Pk. However, if the hole caused by the vertical connection
is located at an outside wall, this would only result in a reduction of the floor-
ing plane area, but not in a change of its topology. Instead, we transform the
vector-based representation of the flooring planes Pk into a discrete one by ren-
dering them using an orthographic projection along dup. Additionally, we render
an orthographic projection of the facade face, i.e. the outside face that borders the
entire story and perform a thinning operation by the number of pixels that corre-
spond to the outer wall width, e.g. 40cm. We then subtract the flooring bitmask
from the facade bitmask. Each remaining connected bitmask component repre-
sents a potential vertical connection. By pruning holes with too small area and
perimeter one can further constrain the set of possible connections. The rooms
which are connected by the new vertical component can be detected by projecting
an arbitrary point located inside the hole to the upper and lower story.

The detected holes would allow for additional refinement of the detected room.
Their shapes could be modified such that they would not contain the area that actu-
ally belongs to a hole. By that one could also eliminate the problem of faulty room
detection originating from enclosed atriums, as the refined atrium room should at
least theoretically have an area of zero. Note however that we did not implement
such a refinement step.

106

5.5. SEARCHING FOR STRUCTURES IN ROOM CONNECTIVITY GRAPHS

5.5 Searching for Structures in Room Connectivity
Graphs

The RCG represents a basic structure for retrieval of building models in databases.
With this representation at hand, an attributed query graph can be searched for in
a database of RCGs extracted from building models. An example for an interface
for query graph definition is shown in Figure 5.103. The search process requires
to determine subgraph isomorphisms with respect to node and edge attributes
and properties. Subgraph-isomorphism in general is known to be NP-complete
[Coo71]. However, there are two aspects that make this approach feasible to this
particular retrieval problem. First, the graphs we consider are in general not very
large. Second, the attributes and properties that are assigned to the nodes and the
edges efficiently accelerate the graph matching process.

While determining a subgraph isomorphism between an attributed query graph
and a RCG, we only match nodes and edges of the two graphs if their attributes
are similar. We therefore use global constraints describing the amount of similar-
ity the nodes or edges must provide such that they can be matched. Considering
the edge attributes we introduced, they result in a constraint involving the edge
type: Two edges can only match if they represent the same structure, that is either
door or vertical connection. Considering the node attributes, they result in two
constraints: First, two nodes can only match if they represent the same structure,
that is either a room or the outside world, second, two nodes can only match if
the area of their associated rooms differs only by a certain amount of square me-
ters. Although we restrict our experiments to these three constraints, the attributes
introduced so far allow for the construction of further constraints involving for
example the ratio between area and perimeter. Note that all constraints are global,
i.e. they hold for all the nodes and edges, respectively.

In case the graphs to be matched both provide an outside world node, these
nodes should be matched first to further accelerate the retrieval. If no such node
exists in the query graph, an arbitrary node can be chosen.

5.6 Results

RCG Extraction For the room connectivity graph extraction all thresholds are
chosen as described above. The threshold tfloorsize describing the minimum story
support size is set to 10m2. In Figures 5.11 to 5.15, examples of extracted RCGs

3Please note that the search interface was not developed by the author of this thesis but by the
PROBADO project partners from Technische Universität Darmstadt, Germany, notably by René
Berndt.

107

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

are shown. Each colored face represents a room node in the graph. Edges between
room nodes are shown including the type connection (either door or window).
Figure 5.15 shows a problem we discovered in some building models. The arrow
points to a structure representing a window. In contrast to the other windows in
this story, the window pane and the facade are exactly in one line. Therefore, the
wall structure provides no inconsistency and the window cannot be detected.

Retrieval Figure 5.16 shows results of our retrieval experiments. As query we
use a graph representing the structure of a typical apartment including a corridor
that leads to four rooms (Figure 5.16a). The results shown in Figure 5.16b are
generated using the constrained subgraph matching without considering the area
and perimeter attributes. In Figure 5.17a we present timing results for subgraph
search in a database containing RCGs from 138 3D building models. In this ex-
periment we use the graph depicted in Figure 5.17b consisting of the outside node
that is connected to a corridor which leads to four rooms. All rooms are assigned
a size of 20 square meters. The value in the first column determines the required
area ratio of two rooms to make the associated nodes match. The area ratio of two
rooms is computed by dividing the smaller value by the larger one. With lower
constraints on the matching, the number of buildings that can be found in the re-
sult increases along with the query time. We can see that for reasonable match
ratios interactive search times can be achieved. Note that the number of result
buildings does not directly correspond to the number of matched subgraphs, as in
one building there might be more than just one match. All timings are with respect
to a web-based search, i.e. they are somewhat conservative as they additionally
include the times for data transfer to the server.

5.7 Conclusion
In this Chapter we introduced the room connectivity graph as a descriptor for com-
pact characterization of buildings. RCGs describe the topological relationships of
rooms and stories, but they can also be enriched to characterize the shape of single
rooms for example in terms of area or height. RCGs are thereby an abstract con-
cept that is decoupled from the actual representation of the building. RCGs might
be automatically derived from sources including for example 2D drawings using
an adapted room detection system like the on presented in Mace et al. [MLVT10],
3D laser scans, low-level 3D polygon data, or high-level BIM data. Another op-
tion would be to use semi-automated approaches like described in the work by
Weber et al. [WLRB+10].

Our system for automated extraction of RCGs uses 3D building models made
of low-level polygon soups as input. We transform the 3D RCG extraction prob-

108

5.7. CONCLUSION

lem to several problems involving 2D projections of the building. We first de-
compose the building into its stories. By computing cross sections we are able
to segment a story into single rooms. We try to improve the robustness of our
method towards modeling errors by introducing a gap closing heuristic. Horizon-
tal connections between rooms are found by detecting inconsistencies within the
associated walls. In a last step we determine vertical connections between stories
by searching for holes in the flooring planes. With the RCGs at hand, we investi-
gated their eligibility for a simple retrieval task using attributed query graphs for
constraint subgraph isomorphism search. We showed that by tightening thresh-
olds on node compatibility in terms of matching room area, interactive response
times could be achieved even for web-based searches on a database containing
138 RCGs.

Limitations During our development and experimentation we understood that
RCG extraction for arbitrary building is an extremely complicated task. We there-
fore concentrated on a set of rather good-natured building models that are re-
stricted in several ways:

• Our algorithm currently cannot process split-level buildings.

• Our algorithm will produce faulty results for buildings with non-flat rooftops
considering the stories that are intersected by the roof.

• The detection of vertical connections between stories is based on recogniz-
ing holes in the flooring. While holes are necessary for vertical connections
inside a building, they are not sufficient, and therefore vertical connections
could be faked.

• Missing floor planes in the lowermost story might lead to problems with the
room detection of that story.

• Cross sections at breast height might not cut through all windows. Espe-
cially in cellars, windows are often located above a level of two meters.

• Doors and windows that reach along the entire height of a wall are not
detected as inconsistencies. Therefore, no connection between two rooms
or one room and the outside world is detected. This problem occurs quite
often in modern building with virtually seamless glass facades.

While our algorithm could be improved regarding some of the limitations like
e.g. the segmentation of split-level buildings, we believe that non-flat rooftops,
high reaching openings, doors, and windows as well as the reliable detection of
conncetions via staircases might require an approach that operates on the entire

109

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

3D geometry instead of the 2D cross sections. Another possibility would be to
rather rely on a semi-automated system that presents RCG extraction suggestions
to the user which will then be improved iteratively.

Future Work First of all at it would be most important to conduct a systematic
evaluation of the extraction performance by comparing the automatically derived
results to a manually created groundtruth. By that, the most urgent improvements
could be determined. Additionally to overcoming the above mentioned limita-
tions, there are several features which would add nicely to RCG extraction. It
includes the detection of „rooms“ like terraces, balconies, and floors that are par-
tially open to the outside. Additionally, vertical connections that are attached to
the building but are located outside could be of interest. It would also be useful
to better characterize the shape of rooms. To this end one could use 2D shape
descriptors. Another method would be to classify rooms according to a certain set
of shape proxies like e.g. L-, C-, or T-shaped. One could also introduce a more
precise description of the spatial arrangement of different rooms.

Apart from RCG extraction, the comparison between two RCGs is an inter-
esting topic. With the methods presented in this Chapter, so far we can only find
topologically exactly matching subgraphs. For purposes like browsing or classifi-
cation, a fuzzy distance measure is required. We will introduce such a notion of
RCG similarity in the next Chapter.

Future Prospects Regarding the current situation in the AEC sector, there are
two developments that should be taken into consideration when thinking about
future uses for RCGs. First, BIM is used to cover the complete lifecycle of a
new buildings. Using according 3D BIM modeling tools results in building el-
ements that contain a much higher level of semantics, including the location of
and segmentation into rooms as well as connections between rooms. Inferring an
RCG from such a high-level description therefore does not only seem to become
more and more important due to the increasing usage of BIM, but it also seems to
be much easier manageable than RCG extraction from a low-level polygon soup.
Second, to allow the use of sophisticated retro fitting methods on legacy buildings
for which no 3D description exist at all, digitalization by laser scanning has be-
come the method of choice. To support this type of data, one could either adopt
RCG extraction to this low-level representation, or one could hope for efficient
tools that allow point cloud to BIM conversion4. However, there may be no free

4As a first step into this direction from the commercial sector, Autodesk c© recently (2012)
introduced the Point Cloud Feature Extraction for Autodesk c© Revit c©which allows the extraction
of floor planes and walls from point clouds.

110

5.7. CONCLUSION

lunch after all, as to us it seems that many problems that are relevant to RCG
extraction would also be relevant to solve the conversion problem.

111

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

(a) Web-based query graph definition interface. The size of the rooms can be easily varied
by adjusting the size of the corresponding icon. The current size in square meters is shown
for each room. Doors between rooms are represented by straight line, vertical connections are
depicted by the jagged lines. The outside node is represented by the blue icon. The slider at
the bottom can be used to steer how similar room sizes must be in order to make the associated
nodes match. Note that the different room colors are only used to visually distinguish rooms
of different connectivity level.

(b) Simple web-based result visualization. The
rooms of the matched target graph are highlighted in
blue. The two pictures on the left correspond to the
two stories that are spanned by the query graph.

(c) Corresponding 3D
stories of the result
building. (2D and 3D
representation are mir-
rored.)

Figure 5.10: Web-based RCG search interface. a) and b) show query graph
definition and result visualization. The search for this rather complex graph took
less than 2 seconds in a database of 138 buildings (including data transfer via
Internet).

112

5.7. CONCLUSION

Figure 5.11: Ground floor of a complex building containing two tracts. The
resulting room connectivity graphs consist of two connected components.

Figure 5.12: Cellar of a residential building.

113

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

Figure 5.13: Ground floor of a residential building.

Figure 5.14: Ground floor of a residential building.

114

5.7. CONCLUSION

Figure 5.15: First floor of a residential building. The arrow points to a window
that could not be detected by our method as the window pane is positioned exactly
in one line with the facade.

115

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

(a) (b)

Figure 5.16: Subgraph Retrieval Results. a) Graph representing a typical apart-
ment. All edges represent doors. b) Amongst the floor plans in Figure 5.11 to
5.15, the query graph is found twice in the floor plans of Figure 5.11 and once
in that of Figure 5.14. The corridor room is shown in green, the other rooms are
shown in blue.

116

5.7. CONCLUSION

Required
room area
match ratio

Found
buildings

Search time

0% 32 3.7s
10% 24 2.5s
20% 16 2.0s
30% 10 1.5s
40% 5 0.9s
50% 2 0.2s
60% 1 < 100ms
70% 1 < 100ms
>80% 0 < 100ms

(a) Timings for subgraph search. The time
consumption heavily depends on the desired area
match ratio.

(b) Query graph. All rooms are assigned a
size of 20 square meters.

Figure 5.17: Subgraph search evaluation. We investigate the influence of dif-
ferent room area match ratios on the performance when using the query graph
depicted in b).

117

CHAPTER 5. ANALYZING AND INDEXING BUILDING MODELS

118

CHAPTER 6

RETRIEVAL AND CLASSIFICATION WITH ROOM

CONNECTIVITY GRAPHS

6.1 Introduction

In the last Chapter we introduced room connectivity graphs as a means to charac-
terize the structure of a building. Due to the use of node attributes, RCGs cannot
only represent topological relationships, but they can also describe geometrical
properties of rooms. In a few simple experiments we showed that retrieval can
be conducted by defining an attributed query graph that is matched to RCG sub-
graphs in a database with respect to the defined attributes. While this type of
query might be desirable to identify buildings that provide some well-defined,
typical structure, the underlying search techniques using subgraph isomorphism
causes several drawbacks. First, it is not suited to serve as a continuous similarity
measure between two graphs, as it can only distinguish between either an exact
topological match (which could be assigned an additional value describing the
match quality) or no match at all. This is not only counterintuitive to the user, but
it also prohibits the development of efficient browsing and classification methods.
A solution to at least partially overcome the drawbacks would be to determine
maximum common subgraph isomorphisms [GJ90]. However, this problem is
known to be NP-hard as well. Second, although tighter constraints on the node
matching criterions narrow the response time, the approach does not scale very
well on larger datasets. Due to the lack of a metric, there is also no way to use
standard acceleration structures to reduce the required time amount such that it
would become sublinear in the number of RCGs in the database. Third, the more
node properties are used, the harder it becomes to manually define up to which
thresholds two nodes are still considered a match.

In this Chapter we introduce subgraph embeddings as a new method to deter-
mine fuzzy RCG similarity. The idea is to transform the structured graph represen-
tation into a vector-based one. To this end, we first decompose the RCG into a set

119

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

of subgraphs. For each subgraph, we compute the similarity to a set of codebook
graphs using a polynomial approximation on graph edit distances. Aggregating all
similarity values finally provides us with a single vector for each RCG that enables
fast retrieval, classification, and browsing. We additionally overcome the problem
of manually defining node match values by transforming the low-level geometric
room properties into semantically high-level room types. For evaluation we intro-
duce a classification scheme that is based on typical structural patterns of single
stories. We conduct retrieval and classification of single stories represented in
according RCGs using different strategies, namely approximate graph edit dis-
tances, Lipschitz embeddings, random walk graph kernels, and similarity of our
newly introduced subgraph embeddings. We thereby compare the impact of low-
level geometric room attributes as well as the derived semantically higher-level
room type features. We finally compare the retrieval performance of our method
to that achieved by human architecture experts. Results show that our approach
using subgraph embeddings and high-level attributes is superior to other methods
in terms of retrieval and classification performance with respect to our suggested
classification scheme. Summarizing the key contributions of this Chapter, they
are:

• Automated generation of semantically high-level room type attributes that
closely resemble an architect’s understanding of floor plans (Section 6.4).

• A novel method for measuring the structural similarity of stories from mod-
eled architectural buildings using attributed room connectivity graphs (Sec-
tion 6.5).

• A new vector-based representation of RCGs that is based on embeddings of
attributed subgraphs (Section 6.6).

This Chapter is based on the work presented in [WOV+11a] and
[WOV+11b]. It should be noted that the room type classification scheme
presented in 6.4.2 was not contributed by the author of this thesis but by
the co-author of [WOV+11a, WOV+11b], Dr. Ina Blümel.

6.2 Related Work

In the following we briefly summarize the related work on fuzzy graph similarity
including edit distances, graph kernels, and graph embeddings.

120

6.2. RELATED WORK

6.2.1 Edit Distances
The basic idea behind graph edit distances is to define graph dissimilarity by the
minimum amount of deformation that is necessary to transform one graph into
another [BA83, SF83]. The transformation thereby consists of a sequence of edit
operations that usually include substitution, deletion, and insertion of both, nodes
and edges, see Figure 6.1 for an example. Edit operations are assigned costs
which can be defined with respect to node and edge attributes or labels. Graph
dissimilarity is defined by the costs of the optimal least expensive edit path. While
the approach represents a quite flexible method, determining the optimal edit path
is NP-hard [ZTW+09]. Several polynomial approximation methods have been
proposed to overcome this drawback, see e.g. [EF84, RB09a, WZC94, ZTW+09].

Figure 6.1: Toy Example for Graph Edit Distances. The Figure shows the
gradual transformation of the graph on the left into the graph on the right. To this
end, a sequence of insert/delete/substitution operations is conducted.

In this paper we use approximate graph edit distances introduced by Riesen et
al. [RB09a] as a starting point. The idea is to find a mapping between two graphs
such that only the nodes and their local surrounding edge structure are optimally
matched instead of finding a globally optimal mapping. The approach has been
applied to various retrieval and classification tasks including datasets of letters,
fingerprints, images, molecules, proteins, and 3D CAD models [WLHZ10]. Its
retrieval performance is close to exact graph edit distances while at the same time
it only requires a fraction of the computation time. We will give a more detailed
description of this prerequisite for our new method in Section 6.5.

6.2.2 Graph Kernels
The idea behind graph kernels is to develop similarity measures between graphs
that are positive definite such that techniques originating from statistical learn-
ing theory which are defined in terms of inner products (e.g. classification with
SVMs) become applicable to structured data. Convolution kernels for discrete
structures including strings, trees, and graphs were introduced by Haussler [Hau99].

121

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

(a) Product graph construction. The two
input graphs are shown on the left, the result-
ing direct product graph on the right.

aA aD bB bC cE eA eD fF
aA 0 0 1 0 0 0 0 0
aD 0 0 0 0 0 0 0 0
bB 1 0 0 0 0 0 1 1
bC 0 0 0 0 0 0 0 0
cE 0 0 0 0 0 0 0 0
eA 0 0 0 0 0 0 0 0
eD 0 0 1 0 0 0 0 1
fF 0 0 1 0 0 0 1 0

(b) Adjacency matrix of the product
graph.

Figure 6.2: Toy Example for Direct Product Kernel. The two input graphs on
the left are combined to form the product graph according to Equation 6.1.

This very generic type of kernel aims at generalizing a mathematical convolution
to structured data. However, the adaption of this approach to concrete problem
seems to be rather hard, especially for graphs that lack a certain ordering in con-
trast to e.g. strings. A common strategy in graph kernel design is to incorporate
similarity of substructures like random walks, subtrees, cyclic patterns, or short-
est paths [Gär05, Bor07]. In Figure 6.2 we depict an intuitive example showing
a direct product graph that is constructed from two input graphs. Following the
description in [Gär05], the product graph G1 × G2 of two graphs G1 = (V1, E1)
and G2 = (V2, E2) is constructed according to:

V (G1 ×G2) = {(v1, v2) ∈ V1 × V2 : (v1 matches v2)}, (6.1)
E(G1 ×G2) = {((u1, u2), (v1, v2)) ∈ V (G1 ×G2) :

(u1, v1) ∈ E1 ∧ (u2, v2) ∈ E2 ∧ ((u1, v1) matches (u2, v2))},

where the term matches denotes that the nodes or edges are in some way compati-
ble. In Figure 6.2a we show an examples in which compatible nodes are indicated
by matching color. There is no constraint on the edge compatibility. The Figure
shows that substructures which are present in both input graphs are nicely con-
nected in one component of the resulting product graph. In this graph, walks of
a certain length l can be computed by raising the corresponding adjacency matrix
(see Figure 6.2b) to the power of l. Accordingly, Gärtner constructs a kernel by
first computing a weighted geometric series of the adjacency matrix and by then
using the summed up entries of the result as a kernel value.

Graph kernels have been successfully applied to a wide range of data. Gärtner
[Gär05] uses graph kernels relying on discrete node labels for molecule classifica-
tion. These kernels can be computed in polynomial time. Borgwardt et al. [Bor07]

122

6.3. METHOD OVERVIEW

extend this approach to incorporate arbitrary edge and node attributes for protein
function prediction. They relax the binary adjacency matrix and allow contin-
uous values to indicate partial compatibility. Segmentation graph kernels have
been used for image classification [HB07]. In the domain of 3D objects, Fisher
et al. [FSH11] use graph kernels to represent and learn the structural relationship
between several 3D models belonging to one scene.

6.2.3 Graph Embeddings

Graph embeddings represent a method to transform structural graph data into a
vector-based representation. Given a query graph, the similarity to a fixed number
of codebook graphs is computed using some graph matching method. The result-
ing vector is normalized. The vector-based representation offers several advan-
tages. Similarity search in a large database of embedded graphs can be conducted
in terms of feature vector comparison which is usually far more cost-effective than
any sort of graph matching. Additionally, acceleration structures can be used to
further reduce search times.

Bunke et al. [BR08, RB09b] compute Lipschitz embeddings using the previ-
ously introduced approximate edit distance [RB09a]. In contrast to graph retrieval
solely based on approximate edit distance, this method is much faster while at the
same time it provides competitive retrieval performance. A similar method spe-
cialized on graphs with fixed number of vertices is proposed in [RVRB10]. Ap-
proaches based on embeddings of subgraphs instead of complete graphs are pre-
sented in [BHAT05] and [OA10]. First, interest regions in an image are detected
and assigned discrete labels using a clustering method. Each region is represented
by a node and its according label. Neighboring regions are connected by edges.
Graph mining algorithms are then used to detect frequent subgraphs. Each image
is finally represented by the number of occurrences of a set of codebook graphs.
As a drawback, both approaches are restricted to discrete node labels and exact
graph matchings. Note that this method using substructures is in fact a Bag-of-
Features approach which is a popular strategy in text, image, and 3D retrieval.

6.3 Method Overview

Taking into account the shortcomings of building retrieval approaches based on
exact subgraph matchings with RCGs as described in the introduction, we develop
a search method that consists of three steps, generation of high-level room type
attributes, fuzzy RCG dissimilarity computation, and subgraph embeddings of
RCGs for efficient retrieval and classification.

123

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

High-Level Room Type Attributes RCGs contain automatically generated node
attributes that describe the geometric shape of the underlying room. We propose
a supervised learning method to derive semantically higher-level room type at-
tributes like e.g. corridor or access room based on the low-level attributes.
Our intuition is that these attributes much better resemble an architect’s under-
standing of building topology and floor plans and finally lead to better retrieval
and classification results.

Room Connectivity Graph Dissimilarity We introduce a fuzzy dissimilarity
measure for RCGs that is based on approximate graph edit distances [RB09a]. It
incorporates similarity of node and edge attributes. In contrast to previous meth-
ods for RCG retrieval, this algorithm requires only polynomial runtime, making
the approach more feasible for larger databases.

Bag-of-Subgraphs We propose a new approach for generating a vector-based
representation of RCGs that is inspired by Lipschitz embeddings of graphs
[RB09b]: Based on the approximate edit distance, we represent RCGs as embed-
dings of their contained subgraphs into a codebook of fixed length. The codebook
consists of subgraphs sampled from an RCG training set. This embedding is basi-
cally a Bag-of-Features representation, or loosely speaking, a Bag-of-Subgraphs.
The benefit of this representation is threefold. First, the vector-based represen-
tation facilitates retrieval and classification. Similarity search in a large database
of embedded graphs is reduced to feature vector comparison which is usually far
more cost-effective than any sort of graph matching. It also enables the use of
search acceleration methods like k-d trees. Additionally, standard methods from
machine learning like e.g. support vector machines (SVMs) can be directly ap-
plied for RCG classification without the need for special graph kernels. Second,
due to rather small subgraphs, the matching problem in general becomes better
tractable. Finally, partial similarities can be found easier. Consider for example
two graphs, each consisting of a single corridor with a largely different number
of rooms attached. Although the overall similarity of the graphs is small due to
the varying number of rooms, both graphs contain a considerable amount of very
similar subgraphs.

Notational Conventions To better understand the algorithm we first introduce
a few notational conventions:

• GS = (VS, ES) denotes the source graph consisting of a set of nodes VS and
a set of edges ES . Analogously, GT = (VT , ET) denotes the target graph.

124

6.4. NODE AND EDGE ATTRIBUTES

• vs denotes an arbitrary node in VS , i.e. vs ∈ VS , analogously, vt denotes a
node in VT .

• es denotes an arbitrary edge in ES , i.e. es ∈ ES , analogously, et denotes an
edge in ET .

• ess′ denotes an edge inES that connects nodes vs and vs′ , vs ∈ VS , vs′ ∈ VS ,
analogously, ett′ denotes an edge in ET that connects nodes vt and vt′

• Eadj(v) denotes the set of edges that are adjacent to node v.

• Vadj(v) denotes the set of nodes that are adjacent to node v.

• |.| denotes the cardinality of any node or edge set.

• A(v) denotes the area of the room associated to node v. A(V) denotes
summed area of all room nodes in V , i.e. A(V) =

∑
v∈V A(v).

• P (v) denotes the perimeter of the room associated to node v.

6.4 Node and Edge Attributes
In this Section we describe which low-level node and edge attributes are used
as a starting point for our new retrieval method. We will then describe how these
attributes can be transformed into high-level attributes representing architecturally
meaningful room types to enhance the retrieval and classification performance.

6.4.1 Node Attributes
Analogously to our description in Section 5.2.1 we distinguish two node types
including room nodes and the world node:

atype(v) =

{
room, if v represents a room,
world, if v represents the outside world, i.e. v = vO

For each room node v ∈ V \{vo}, we represent the following room properties in a
feature vector:

1. Relative number of doors in this room:

aprop(v)[1] =
|Eadj(v)|
|E|

125

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

2. Room area with respect to the total story area:

aprop(v)[2] =
A(v)

A(V \{vo})

3. Room area with respect to areas of adjacent rooms:

aprop(v)[3] =
A(v) · a1

prop(v)

A(Vadj(v))

4. Room contains windows:

aprop(v)[4] =

{
1, if v has windows,
0, else

5. Perimeter-to-area ratio:

aprop(v)[5] =
P (v)√
A(v)

Property (1) represents how much the room contributes to the connectivity of the
story. Attribute (2) globally characterizes the area of the room with respect to the
area of the whole story, while (3) describes the area with respect to the surround-
ing rooms. Property (4) is an indicator for the amenity value of the room. For
example, living rooms always contain windows while corridors or lumber-rooms
are often windowless. Property (5) is useful for the identification of corridor-like
rooms. In many cases, corridors serving as distributors in a story are stretched
relatively long but are not very wide. In contrast, rooms with high amenity value
tend to be more square-shaped. This difference can be characterized by computing
the perimeter-to-area ratio.

6.4.2 High-level Node Attributes
For classifying buildings there exist several criteria, e.g. building geometry or
building functions [MB97]. In this Chapter we will focus on distinguishing floor
plans. Accordingly, we consider classes based on structural patterns of single
stories as well as on properties of single rooms. In the following we will introduce
five classes of floor types that are of great importance to architectural planning
processes because they notably comprehend the crucial question of room access
and, based on this, the zoning of floors in interactive and private spaces. They
follow common guidelines of this field like discussed e.g. in [Sch04] and [Hen09].

126

6.4. NODE AND EDGE ATTRIBUTES

Floor Types The corridor type (Figure 6.3(a)) is characterized by a cor-
ridor which is the dominant path through the story. The corridor’s only purpose is
to connect rooms, it has no amenity value. The distributor type (Figure
6.3(b)) is similar to the corridor type. However, a large room instead of a corridor
serves as the connecting element. This room is often the biggest one of the story,
with amenity values itself. In a loft type floor (Figure 6.3(c)), the whole story
mainly consists of one large room which can contain several adjustable zones
with different functions. In a hierarchical floor (Figure 6.3(d)), there ex-
ists a separation between a dominant area which leads to further areas, where a
second distribution is conducted. This second distribution can be either the pre-
viously defined corridor or distributor type. Chain type (Figure 6.3(e)) floors
are characterized by access rooms that are arranged like a chain, so that the con-
nection only exists between one space and the next.

Like Schneider [Sch04] accurately described with the statement “After all,
the truly exciting solutions often lie on the line between two or more of these
categories[...]”, it has to be taken into account that some of the floors cannot
be assigned to a category with absolute certainty, neither by machine nor human
classifiers, which is supported by our findings in Section 6.7.3.

Predicting Room Types The introduced floor classes can be easily described
using architectural terms that characterize room types like corridor, access room,
or distributor with amenity value. Our idea is to transform low-level geometric
room attributes into high-level room type attributes. By that we are able to better
reflect an architect’s understanding of floor plans and could probably improve re-
trieval and classification performance. We identify corridors, distributors, access
rooms, and one-door spaces to be the high-level room types that are crucial for
floor characterization. To automatically derive the high-level room type from the
extracted low-level attributes we suggest to use supervised learning methods. Let

C = {C1, ..., C4}
= {corridor, distributor, access room, one-door space}

denote the set of room classes. Given a training set of low-level room attributes
aprop(vi) with assigned labels yi ∈ C we use a Support Vector Machine (LIBSVM
package [CL01]) to learn a discriminant function that maps geometric room at-
tributes to room classes. For increased robustness, we assign the rooms in the
testing set a vector alabel representing the predicted distribution over the room

127

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

classes rather than only the most likely one. The prediction reads

alabel(v) =

p(C = corridor | aprop(v))
p(C = distributor | aprop(v))
p(C = access room | aprop(v))
p(C = one-door space | aprop(v))

 .

Ground Truth Generation For the above described learning approach we need
ground truth, i.e. a set of low-level training attributes with assigned labels yi ∈ C
must be available. A possible way would be to assign the labels manually. How-
ever, a set of 100 RCGs might easily contain several thousand rooms, rendering
this method cumbersome. We instead generate pseudo ground truth for a large
number of rooms automatically. All graphs in the training set are assigned to one
of the classes described in 6.4.2. By that, we can infer the assignment of single
nodes to room types:

1. Rooms in the corridor class with high connectivity (more than two doors)
are most likely corridors.

2. Rooms in the distributor class with high connectivity (more than two
doors) are most likely distributors.

3. Rooms with exactly one door not belonging to the loft class are one-door
spaces.

4. Rooms with exactly two doors not belonging to the loft class are access
rooms.

Note that we do not assign labels to all rooms because of ambiguities. E.g., highly
connected rooms in the hierarchical floor class might be either corridors or
distributors, and the central room of a loft could be regarded as any of the above
defined room types depending on its connectivity. Our assumptions are of course
simplifications and only apply to RCGs that are perfectly and uniquely assignable
to a single class. Although most of our data are not that ideal, our assumptions
seem to be valid as shown by the results in Section 6.7.

6.4.3 Edge Attributes

As described in Section 6.4.2, our RCG classification scheme focuses on single
stories instead of complete buildings. As a consequence, we do not consider verti-
cal connections between stories but only doors. We distinguish doors connecting
two rooms and doors connecting the outside world and the building. Accordingly,

128

6.5. APPROXIMATE GRAPH EDIT DISTANCES

we define the edge type attributes of a subset of those presented in Section 5.2.2,
namely

atype(e) =

{
doorinside, if e connects two rooms,
dooroutside, if e connects a room to the outside world.

6.5 Approximate Graph Edit Distances
Riesen et al. [RB09a] introduce a polynomial approximation on the computation
of globally optimal edit paths. The idea is to find a mapping between two graphs
such that only the nodes and their local surrounding edge structure are optimally
matched (or deleted / inserted if necessary). This problem can be reduced to
bipartite graph matching. In the following we will describe this method in more
detail as it is an important building block for our subgraph embeddings.

6.5.1 Algorithm
With respect to the basic operations of edit distances, the following costs are de-
fined:

• cvsvt for substituting source node vs by target node vt,

• cεvt for inserting a node in the source graph GS that is matched to vt,

• cvsε for deleting node vs in the source graph if it is not matched against any
node in VT .

Node deletions and insertions can be interpreted as mapping a node to an addi-
tional ε-node. The above defined costs can be represented in a matrix CVSVT of
size [|VS|+ |VT |]× [|VS|+ |VT |]:

CVSVT =

c11 c12 · · · c1|VT | c1ε ∞ · · · ∞
c21 c22 · · · c2|VT | ∞ c2ε

.
...

... . . .
...

... ∞
c|VS |1 c|VS |2 · · · c|VS ||VT | ∞ · · · ∞ c|VS |ε
cε1 ∞ · · · ∞ 0 · · · · · · 0

∞ cε2 · · · ...
...

...
... . . . ∞

∞ · · · ∞ cε|VT | 0 · · · · · · 0

.

129

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

Each node can only be matched to one ε-node, which is enforced by the off-
diagonal values in the upper right and lower left part of the matrix reading infinity.
Note that all node matching costs which are not set to infinity are normalized such
that they lie1 between 0 and 1. Using this matrix, the optimal mapping can be
computed in O((|VS| + |VT |)3) using Munkres’ algorithm [Mun57] (also known
as Hungarian method). Once this mapping is computed, the approximate graph
edit distance dAGE(GS, GT) can be computed by adding all costs for the individual
nodes mappings and then normalizing by (|VS|+ |VT |).

6.5.2 Cost Functions
Following [RB09a], node substitution costs cvsvt consist of a term reflecting the
compatibility of the attached node attributes as well as a term describing the costs
to match the adjacent edges. We denote attributes by avi = {atype(vi), aprop(vi)}
and describe the compatibility of the node attributes by c(avs , avt). By the term
c(Eadj(vs), Eadj(vt)) we denote the costs for matching the adjacent edges of vs
and vt. Both terms are aggregated in the following equation:

cvsvt = λ1 · c(avs , avt) + (1− λ1) · c(Eadj(vs), Eadj(vt))
|Eadj(vs)|+ |Eadj(vt)|

. (6.2)

The weighting factor λ1 balances the influence of node attributes and edge match-
ing costs. The edge matching costs which are defined with respect to attached
edge attributes are again computed using Munkres’ algorithm in a way analo-
gously to the above defined one, using edge substitution, insertion, and deletion
and according costs ceset , cεet , cesε. Deletion and insertion costs can be defined
as either constant or dependent on the inserted/deleted node’s or edge’s attributes.
For further details on the algorithm we refer to [RB09a]. In our particular setting,
we use room and edge attributes to define appropriate cost functions.

Node Substitution Costs For low-level attributes, we define node substitution
in terms of the room type attribute atype(v) as well as the room property vector
aprop(v) (see Section 6.4.1):

clow−level(avs , avt) =

1√
5
||aprop(vs)− aprop(vt)||2,

if atype(vs) = atype(vt) = room
0, if atype(vs) = atype(vt) = world
∞, if atype(vs) 6= atype(vt),

where ||.||2 denotes the Euclidean distance. The motivation for the normalization
factor of

√
5 will be given in Section 6.6.2. The above definition ensures that both

1Actually, the matching costs might exceed 1 under certain circumstances, c.f. Section 6.6.2.

130

6.5. APPROXIMATE GRAPH EDIT DISTANCES

outside nodes are matched onto each other (atype(v) = world), and that no room
is matched against an outside node (atype(vs) 6= atype(vt)). The distance between
two nodes is defined in terms of their associated room property vectors.

For high-level room type attributes, we use the predicted label vector alabel(vs)
instead of aprop(vs):

chigh−level(avs , avt) =

χ2(alabel(vs), alabel(vt)),

if atype(vs) = atype(vt) = room
0, if atype(vs) = atype(vt) = world
∞, if atype(vs) 6= atype(vt),

Note that we now apply the χ2 distance instead of the Euclidean one, as alabel
represents a probability distribution.

Edge Substitution Costs We analogously define the edge matching costs

c(aes , aet) =

{
0, if atype(es) = atype(et) = 0
∞, if atype(es) 6= atype(et),

which ensures that doors leading to the outside are not matched onto doors inside
the building.

The algorithm presented so far finds a graph matching based on very local
structures constituted by a node and its adjacent edges. However, in architectural
planning the very important concepts of room access and connectivity can often
only be understood by considering larger structures that are spanned over several
rooms and doors. We therefore extend the edge substitution costs by an additional
term. Consider the node substitution of vs by vt. Let ess′ ∈ Eadj(vs) be an edge
adjacent to vs and let ett′ ∈ Eadj(vt) be an edge adjacent to vt. Instead of only
considering the similarity of edge type attributes atype(ess′) and atype(ett′), we ad-
ditionally incorporate the outdegree similarity of nodes vs′ and vt′ into cess′ett′ . By
that, we assure that matches preserve the topology more globally. To additionally
control the balance of topology preserving and attribute preserving room matches,
we introduce a weighting factor λ2. Our modified edge substitution costs then read

cess′ett′ = c(aess′ , aett′)

+ λ2 ·
min{|Vadj(vs′)|, |Vadj(vt′)|}
max{|Vadj(vs′)|, |Vadj(vt′)|}

+ (1− λ2) · c(avs , avt).

Edge Insertion and Deletion Costs We define insertion and deletion costs for
edges connecting rooms in terms of how much accessible area the two adjacent

131

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

rooms would gain or lose:

cεevv′ = cevv′ε =
1

2

[
A(v′)

A(Vadj(v))︸ ︷︷ ︸
loss/gain at v

+
A(v)

A(Vadj(v′))︸ ︷︷ ︸
loss/gain at v′

]
.

Consider e.g. a room that has only one door. If this door would be removed, the
room would lose all accessible adjacent area. Such a deletion operation should
be expensive. Furthermore, consider a corridor with a large number of rooms
attached. If this corridor would be cut off from one room, the impact should be
small, because there still remains a large accessible area. On the other hand, if an
additional room would be attached to such a corridor, the accessible area is also
not changed too much. Insertion and deletion should be cheap in such a case.

The costs for insertion / deletion of a door that connects to the outside world
are set to a constant, i.e.

cεevvo = cevvoε = κ ∈ [0, 1] .

Note that we currently do not check wether a room that is about to be connected
to the outside world is bordered by an outside wall at some point.

Node Insertion and Deletion Costs First, consider the deletion of a node vt
in the target graph. Along with the deletion of the associated room, all doors in
this room vanish, resulting in the deletion of associated edges. Second, consider
insertion of a new node in the target set which is subsequently matched against a
node vs in the source set. As the new room contains no doors, an edge insertion
operations must be conducted such that it can be matched against the already
existing node vs and its edges. As a consequence, we define node insertion and
deletion costs with respect to the according edge insertion and deletion costs:

cεvt =

∑
t′∈Vadj(vt)

cεett′

|Vadj(vt)|
and cvsε =

∑
s′∈Vadj(vs) cess′ε

|Vadj(vs)|
.

6.6 Bag-of-Subgraphs Construction

In the following we introduce the two building blocks for constructing the Bag-
of-Subgraphs, decomposition into subgraphs, codebook generation, and finally
subgraph embedding.

132

6.6. BAG-OF-SUBGRAPHS CONSTRUCTION

6.6.1 Subgraph Mining
Following the results on efficient subgraph mining presented in [LF06], we use
two different sampling strategies, Forest Fire (FF) and Random Walk (RW). In
the FF method, nodes are sampled in a pattern that is similar to a spreading fire.
First, a seed node is randomly chosen and burnt. From each node that is burnt, the
fire spreads to a random number of adjacent not-yet-burnt nodes which is chosen
with respect to a certain "burning" probability pFF . The procedure is iterated until
the desired number of nodes is burnt. The burnt nodes and the connecting edges
constitute the subgraph sample. Graphs mined in this way tend to be similar to
the node visiting patterns that result from breadth-first search. For our domain
of RCGs, FF is especially suited to extract distributors and their adjacent rooms
(see Figures 6.3(a) and 6.3(b)). The first step in the RW method also consists of
randomly selecting a seed node and marking it as visited. From every visited node,
the algorithm either jumps back to the seed node with probability pRW , or moves
to an adjacent unvisited node with probability 1− pRW . Once the desired number
of nodes has been visited, the sampling is constituted by the visited nodes and
the connecting edges. Random walks are effective to reflect chain-like structures
(see Figure 6.3(e)) similar to those generated by depth-first search. In Section 6.7
we describe how to choose the probabilities pFF and pRW as well as the different
sample sizes. Note that for both approaches the resulting subgraphs can overlap.

6.6.2 Codebook Generation
For codebook generation, we first split the set of RCGs into two approximately
equally sized sets. The training set is used for codebook generation and for com-
puting normalization offsets and scale factors, the testing set is used for evaluation.
In some cases, the RCGs extracted from different stories of the same building are
very similar to each other, sometimes even identical. To avoid a bias in our eval-
uation, we therefore put all stories of the same building in either the training set
or the test set. However, this might induce a slight overfitting problem during
high-level attribute learning, as identical RCGs could end up in different cross-
validation sets. In the next step, we sample a certain number of subgraphs from
the graphs in the training set. A common way to generate a codebook of fixed size
from a set of features is to conduct a clustering. For each resulting cluster, one
representative is selected and assigned to the codebook. In our setting, we use a k-
medoid method instead of k-means which is often used for vector-based features,
because computation of a "mean" graph is not straightforward2. For computing

2A possible solution to this problem is described in [GB02]. There, the weighted sum of
two graphs is defined in terms of applying a corresponding number of steps of the optimal edit
sequence between them.

133

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

the distance during the clustering we use approximate edit distances as described
in Section 6.5. We denote the codebook of subgraphs by Z = (Z1, ..., Zk). In
Section 6.7, Figure 6.4 we show the influence of the codebook size k onto the
retrieval result.

When computing the low-level matching costs clow−level(avs , avt), the similar-
ity of the associated property vectors must be evaluated. As we have no prior
knowledge if some of the properties are more important for ensuring good re-
trieval results with respect to our classification scheme, all entries should have the
same influence. To this end we normalize each dimension of the property vector
such that the entries regarding the complete training set lie between 0 and 1. We
later apply the normalization offsets and scale factors to the test data. By dividing
the Euclidean distance between the property vectors consisting of five entries by√

5 we ensure that the low level matching costs lie between 0 and 1 if they are
different from infinity, supposed the training data generalizes to the test data.

6.6.3 Subgraph Embeddings
Consider a single RCG from the testing set. We first sample a certain number
of subgraphs in the above described way. We denote the resulting set by S =
(S1, ..., S|S|). Rather than characterizing each subgraph by its closest codebook
graph, we describe it by a Gibbs distribution over the codebook for increased
robustness. Let dAGE(Si, Zj) denote the approximate graph edit distance between
Si and Zj , then we compute the probabilistic codebook graph assignment variable
ai by

p(ai = j|Si) =
exp(−dAGE(Si, Zj))∑k
j′=1 exp(−dAGE(Si, Zj′))

.

Finally, we integrate the assignment variable into one vector bt which is the Bag-
of-Features. Each entry of bt(j), j = 1, ..., k represents a multivariate distribution
over the codebook. We can now compute bt by defining

b′t :=
n∑
i=1

(p(ai = 1|Si), ..., p(ai = k|Si))T ,

and by computing entries bt(j) =
b′t(j)−µj

σj
, where µj and σj are chosen in a way

such that b′t(j) is normalized to zero mean and unit variance of the training set.

6.7 Evaluation
We evaluate our newly introduced approach based on subgraph embeddings against
three other strategies regarding RCG retrieval performance using the classification

134

6.7. EVALUATION

scheme introduced in Section 6.4.2 and Figure 6.3. In the following we briefly
summarize the method and describe parameter settings.

6.7.1 Methods and Parameters
For approximate graph edit distances, we compute the distance between two
RCGs based on the algorithm described in 6.5. For Lipschitz embeddings, we first
split the set of graphs into a training and a testing set. All graphs in the training set
constitute the codebook. We then compute the distance of all graphs in the testing
set to all codebook graphs using approximate graph edit distances, resulting in a
vector of fixed length for each graph. The dissimilarity of two graphs is finally
measured using the L2 distance of the embeddings. For subgraph embeddings, we
follow the description in Section 6.6 to compute a vector-based Bag-of-Features
description for RCGs. Comparison of two RCGs is again based on the L2 distance
of the embeddings. We additionally evaluate the performance of graph kernels for
RCG comparison. Examining geometric random walk kernels as well as expo-
nential random walk kernels [Bor07], the latter provides a slightly better retrieval
performance, we therefore only comment on this kernel type. The similarity func-
tion of two graphs GS ,GT using an exponential random walk kernel k reads

k(GS, GT) =

|V (GS×GT)|∑
i,j=1

[
∞∑
k=0

(βA)k

k!

]
ij

, (6.3)

where V (GS × GT) denotes the nodes of the product graph GS × GT and A
denotes the adjacency matrix describing the similarity of connected node pairs in
V (GS × GT) (c.f. Section 6.2.2). To provide an evaluation that is comparable to
the methods described before, we define this similarity using the node matching
costs defined in Equation 6.2:

A[(vs, vt), (vs′ , vt′)] =

exp(cvsvt) · exp(cvs′vt′),

if ((vs, vt)(vs′vt′)) ∈ E(G1 ×G2)
0, else.

In our experiments the best results are achieved using β = 4 and evaluating the
sum in Equation 6.3 up to k = 4.

We use parameters λ1 = 0.6 (except for one setting described below) to bal-
ance node and edge matching costs and λ2 = 0.75 to weight topology and attribute
preservation (see Section 6.5).

For subgraph mining, we choose parameters as suggested in [LF06], leading
to a burning-probability pFF = 0.5 (which means that the fire spreads to two ad-
jacent nodes on the average) for FF sampling and to a backward jump probability

135

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

pRW = 0.15 for RW sampling. For each graph G = (V,E), we sample up to 6
subgraphs of all sizes between 1 and |V | nodes if possible. For codebook clus-
tering, we randomly select 3000 sampled subgraphs from the training set, a larger
number does not improve the results. In Figure 6.4 we show the influence of the
codebook size on the retrieval performance, which increases up to a codebook size
of about 100. We therefore use a codebook size of 100 in all other experiments.

Our dataset consists of 199 RCGs. The training and testing set are chosen in a
way such that both contain approximately half of the graphs. To reduce the influ-
ence of a potentially biased data configuration we conduct 8-fold cross-validation
using eight different splits of training and test data in all our experiments. Eval-
uation is always done exclusively on the testing set. The training set is used to
generate the codebook (for Lipschitz and subgraph embeddings) and for learning
high-level room types.

6.7.2 Influence of Attributes
For each of the above described methods we investigate the influence of room
attributes. We evaluate the complete absence of room attributes (i.e. aprop(v) =
const ∀v), low-level geometric attributes like described in Section 6.4.1, and high-
level room types introduced in Section 6.4.2. We additionally examine the influ-
ence of neglecting edges when evaluating approximate graph edit distances, i.e.
setting λ1 = 1 such that only room similarity is considered during matching.
Note however that there is implicit knowledge about adjacent edges integrated in
the low-level and high-level room attributes.

6.7.3 Retrieval Results
We first evaluate the retrieval performance of each of the four described methods
separately regarding the influence of attributes and topology. The results are vi-
sualized in precision-recall plots 6.5, 6.6, 6.7, and 6.8. Note that for the graph
kernels (Figure 6.8) we do not evaluate neglecting edges because construction of
the adjacency matrix A (see Equation 6.3) would then not be possible. As can be
seen in all four plots, using high-level room types instead of low-level attributes
boost the retrieval performance. We attribute this to the fact that the learned room
types are much closer to an architect’s understanding to the concept of floor plans
than its geometric properties alone. Incorporation of edges during the matching
improves the results in most cases to a performance that cannot be achieved using
only nodes and the implicit connectivity information encoded in the attributes.

In Figure 6.9, we compare the retrieval performance of all four methods using
the individually best setting with high-level room types and edges. Taking into
account the observation described in Section 6.4.2 that floors cannot be assigned

136

6.7. EVALUATION

to a category absolutely certain, neither by machine nor human classifiers, we
additionally provide the averaged retrieval performance achieved by three human
classifiers all having an educational background in architecture.

Approximate graph edit distances perform better than Lipschitz embeddings
for small recall values, for larger recall this tendency is inverted, which is consis-
tent with the results described in [RB09b]. The exponential random walk graph
kernel performs worst, except for quite large recall values it is superior to ap-
proximate graph edit distances. Our newly introduced method using subgraph
embeddings perform better than the three other methods, especially with increas-
ing recall. The human classifiers’ average retrieval performance is slightly worse
than the automatic methods for small recall values but unambiguously superior for
recall values larger than 0.2. Note that the human classifiers are always superior
in the settings where no room types are learned.

6.7.4 Classification Results
Additionally to pure retrieval, we evaluate the classification performance of vec-
tor-based subgraph and Lipschitz embeddings using standard C-SVM with an
RBF kernel provided in the LIBSVM package [CL01]. Like in the retrieval eval-
uation section, we analyze the influence of attributes and connectivity. We use
the training set to learn discriminant functions, predictions are conducted on the
test set. We use cross-validation on the training set to determine the necessary
SVM parameters. Results are again computed for eight different partitionings of
training and test set additionally providing error bars.

Table 6.1 gives an overview of our results. Note that for every feature setting,
subgraph embeddings perform better than Lipschitz embeddings. Using predic-
tions of room types based on geometric room attributes boosts the performance.
Additionally, combining topology and predicted room types leads to better results
than using only topology or only room attributes or their derived floor types.

6.7.5 Timings
In Table 6.2 we show timings for all four retrieval methods using room type pre-
dictions and edges. Codebook computation as well as attribute learning is a pre-
processing step that only needs to be conducted once. For the Lipschitz embed-
dings, we use the complete training set as codebook, which is why we do not need
to perform a clustering like for the subgraph embeddings. However, with an in-
creasing amount of data, clustering for codebook generation would be required as
well. Our newly introduced subgraph embeddings require a rather large amount
of time which is due to the relatively expensive embedding step. However, the
embedding must only be computed once which means that the query time should

137

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

Lipschitz embeddings Subgraph embeddings
Low-level attributes | no edges 56.9± 2.4 61.1± 2.1
No attributes | edges 63.3± 3.7 63.4± 3.5
Low-level attributes | edges 64.9± 3.0 65.0± 3.6
High-level attributes | no edges 75.9± 2.9 78.0± 3.2
High-level attributes | edges 77.0± 3.9 79.5± 2.6

Human classifier 79.1± 3.4

Table 6.1: Classification results. The table shows floor classification rates using
graph embeddings and subgraph embeddings with respect to different attribute
and connectivity settings.

AGED Lipschitz Subgraphs Graph kernels
Codebook creation - - 6.58 min -
Attribute learning 10 sec
Query time 55 ms 64 ms 1.39 s 1.875 s

Table 6.2: Timings. AGED denotes approximate graph edit distances. Codebook
generation and attribute learning times are with respect to a training set of ap-
proximately 100 RCGs. Query time per object is averaged over the whole testing
set.

nevertheless scale well with increasing database size. In contrast to approximate
graph edit distances and graph kernels, subgraph as well as Lipschitz embeddings
only require a vector comparison for retrieval, rendering these approaches suitable
for large databases.

6.8 Conclusion

In this Chapter we introduced a new method to efficiently compute similarity be-
tween large numbers of RCGs. Our approach relies on the embedding of the graph
in a finite vector space using a Bag-of-Subgraphs. The similarity between feature
subgraphs and a set of codebook graphs is computed with a modified version of
approximate graph edit distances [RB09a]. We use low-level room properties de-
scribing the connectivity as well as the shape as node attributes. Furthermore,
we use a supervised learning approach to transform these low-level geometric and
topological features into high-level room types that better reflect an architect’s un-
derstanding of a room. In our experiments we could show that our new method
using subgraph embeddings performs slightly better than related approaches, in-
cluding pure approximate graph edit distances (AGED), Lipschitz embeddings,

138

6.8. CONCLUSION

and an exponential random walk graph kernel. However, from our point of view,
the more interesting lesson learned is that obviously, using sophisticated meth-
ods for measuring node similarity seems to be far more important than the choice
of the overall graph matching algorithm. A large improvement of retrieval and
classification performance of all methods could be noted when using the high-
level attributes instead of the low-level ones. As the computation of the subgraph
embeddings is rather expensive, our approach currently requires more time than
computing AGED and Lipschitz embeddings. However, the overall computation
time is not that large (1.39 seconds on average) and for larger datasets, AGED will
at some point take longer to compute than the subgraph embeddings, especially if
acceleration structures are used.

Limitations Despite the good performance of the newly introduced subgraph
embeddings we can hardly conclude on the hypothetical performance of this ap-
proach if applied to other retrieval and classification problems involving graphs.
This is due to the fact that the story type scheme does not seem to allow a con-
sistent classification even by a human being, which is supported by the retrieval
and classification results achieved by our architecture experts (see Figure 6.9 and
Table 6.1). Another limitation is represented by our current subgraph sampling
scheme which consists of randomly sampling up to six subgraphs of sizes be-
tween 1 and |V | nodes. It is obvious that the larger the graphs become in terms
of nodes, the less stable our method will perform, as sampling a particular graph
of a certain size will become less and less likely due to the exponential growth of
the binomial coefficient. However, for the current dataset containing rather small
RCGs this problem does not seem to occur.

Future Work Future work should investigate the extension of our method from
RCGs representing single stories to graphs representing complete buildings. Anal-
ogously, the classification scheme should be extended to floor plan classes cov-
ering several stories (e.g. maisonette, split-level). When considering more than
one unit within one story, the classification has to be amplified towards outer ac-
cess. Additionally, the influence of further geometric attributes could be exam-
ined. Apart from the RCG specific application, we recommend to investigate the
performance of subgraph embeddings on other graph data in order to get a bet-
ter estimation of their real potential. Regarding the above mentioned sampling
problem that will inevitably occur when processing larger graphs like for example
proteins, we suggest to either develop some importance sampling strategy to coun-
teract the amount of randomness in the selection, or to combine it with a rather
completely non-probabilistic strategy like spectral graph decomposition using the
Fiedler vector [Fie73]. Such a decomposition could be used to construct a first

139

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

coarse segmentation. The resulting parts could then be processed using the proba-
bilistic sampling. However, the robustness and consistency of a decomposition for
graphs of the same object class might highly vary depending on the classification
scheme.

Acknowledgements We would like to thank Tobias Pohlmann from TIB, Tor-
ben Kohls from Leibniz University Hannover, and Anja Henkel for acting as hu-
man reference classifiers. Sincere thanks are given to the Faculty of Architecture
and Landscape Sciences of Leibniz University Hannover as well as to the Fac-
ulty of Architecture of Technische Universität Braunschweig for providing the
3D building models.

140

6.8. CONCLUSION

(a) corridor type (b) distributor type

(c) loft type (d) hierarchical type

(e) chain type

Figure 6.3: Floor types. Rooms serving as corridor or distributor are depicted in
blue, all other rooms in different shades of green. Doors are visualized in yellow,
windows in light blue. The pictograms in dark blue show ideal examples of the
different room types. Red spheres represent the outside world node (multiple
occurrences in one image are only for clearer visualization).

141

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random

40 Codebook Samples

200 Codebook Samples
100 Codebook Samples

10 Codebook Samples
20 Codebook Samples

Figure 6.4: Codebook size variation. The plot shows retrieval performance of
subgraph embeddings using high-level attributes and topological information und
varying codebook size.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random

No Attributes / Edges
High-level Attributes / Edges

Low-level Attributes / No Edges
High-level Attributes / No Edges

Low-level Attributes / Edges

Figure 6.5: Retrieval results for approximate graph edit distances.

142

6.8. CONCLUSION

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random

No Attributes / Edges
High-level Attributes / Edges

Low-level Attributes / No Edges
High-level Attributes / No Edges

Low-level Attributes / Edges

Figure 6.6: Retrieval results for Lipschitz embeddings.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Random

No Attributes / Edges
High-level Attributes / Edges

Low-level Attributes / No Edges
High-level Attributes / No Edges

Low-level Attributes / Edges

Figure 6.7: Retrieval results for subgraph embeddings (our method).

143

CHAPTER 6. RETRIEVAL AND CLASSIFICATION WITH ROOM CONNECTIVITY GRAPHS

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

High-level Attributes
Low-level Attributes

No Attributes
Random

Figure 6.8: Retrieval results for exponential random walk kernels.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P
re

ci
si

on

Recall

Approximate Graph Edit Distance
Lipschitz Embeddings

Random

Subgraph Embeddings

Exponential Random Walk
Human

Figure 6.9: Comparison of best performing strategies as well as human clas-
sifier performance. All methods use room type predictions and topological infor-
mation.

144

Part III

Closure

145

CHAPTER 7

CONCLUSIONS

7.1 Summary
The main motivation for our research on shape retrieval methods for objects from
the architectural domain was the occurring shift from 2D analogue to 3D digital
drafting. In order to efficiently reuse existing resources either for integration into
new drafts or for inspirational purposes, 3D content must be made searchable.
Context objects and building models thereby require different approaches, which
resulted in this thesis being comprised of two parts. While for context objects,
shape-related properties are most important for similarity determination, building
models are highly dominated by the topological arrangement of rooms and stories.

Part I: Context Models In the first part of this thesis we dedicated ourselves to
the challenge of improving shape retrieval by combining methods from supervised
learning and local shape descriptors. We thereby tried to overcome the disadvan-
tages that arise from the standard approaches involving local features: On the one
hand, establishing feature correspondences is a very cumbersome process. It often
requires to manually choose several parameters which makes it hardly automat-
able. On the other hand, Bag-of-Features representations can hardly include infor-
mation about the spatial relationship between descriptors. Additionally, a single,
actually highly descriptive feature might not have enough weight in the histogram
representation. As a solution, we proposed class distribution descriptors, a repre-
sentation that is uncoupled from the concrete type of the underlying feature. We
first showed that CDDs can boost the performance of virtually any local or global
descriptor due to the use of shape knowledge acquired in a training step. After
showing superior results on the generic Princeton Shape Benchmark we applied
our new method to dataset consisting only of architectural context object. Due to
the fine granularity, the retrieval results were less persuading than on generic data,
but yet our method performed better than the approaches we compare it to.

To further improve retrieval results we extended our method for computing

147

CHAPTER 7. CONCLUSIONS

CDDs such that it did not only comprise information about the geometry repre-
sented by local feature but also about its position relative to the object center and
relative to other features. To this end we used a decomposition of the object into
geometric shape primitives. In our experiments on the architectural benchmark we
could demonstrate enhanced retrieval performance. As a drawback of this method
we identified the computational complexity in the case of incorporation of spatial
relationship within larger feature tuples.

In the last Chapter of the first part we demonstrated the flexibility of our newly
introduced approach by computing CDDs from non-shape related features includ-
ing text and material properties. We additionally used intrinsic segmentation in-
formation as a feature localization method that is presumably orthogonal to the
decomposition into primitive shapes. By a smart combination of the resulting
CDDs from different features and segmentation strategies we were able to further
improve the retrieval quality. However, even when using the combined force of all
features, there is still room for improvement regarding the retrieval performance
on the architectural context object benchmark.

Part II: Building Models While in the first part of this thesis we could build on
the tremendous work on 3D shape descriptors that had been conducted over the
recent decade, the need for a description to capture the structural characteristics
of a building model required us to develop rather new methods. We introduced
the attributed room connectivity graph to represent the arrangement of rooms and
stories in a building as a graph with attributed nodes and edges. After introducing
this rather abstract concept we invented methods to extract RCG representations
from 3D building models consisting of polygon soups. We thereby had to re-
strict ourselves to a subset from the large variety of buildings, as certain shapes
and structures would require additional and more sophisticated extraction meth-
ods. We then demonstrated the feasibility of the RCG concept and our extraction
methods by searching a database of graphs for certain room substructures.

In the following Chapter we introduced several methods to compute a real
similarity value between two RCGs instead of only being able to search for sub-
structures. Based on approximate graph edit distances, we developed subgraph
embeddings as an efficient means to transform the graphs into a vector-based rep-
resentation that allows fast retrieval and browsing in even large databases. We
concluded by suggesting to investigate the applicability of our new method to
other retrieval problems involving graphs and pointed out the possible problems
that might occur if the graphs consist of a large number of nodes.

148

7.2. FUTURE WORK

7.2 Future Work
We already discussed rather concrete, technical future work that arises from our
research at the end of every Chapter. In the following we would therefore like to
briefly discuss future work in terms of a bit more abstract visions.

Since its introduction in the late 1990s, the field of shape retrieval in general
has been mostly concentrated on content that was generated using some standard
modeling software. This is a big difference when compared to the area of com-
puter vision, where the focus has ever since been on aquired images showing
real-life objects. The reason is as simple as obvious: While digital 2D acquisition
devices have been extremely cheap and easy to handle for a long period of time,
and even before digitalisation of analogue photos was widely used, 3D acquisition
devices have only recently become affordable to end users, like e.g. the Microsoft
Kinect. Despite improvements in object reconstruction from such devices like
e.g. presented in [IKH+11], they are still far less handy than their 2D counter-
parts. However, we believe that 3D geometry acquisition covering all thinkable
levels of quality will at some point become similarly important. Already even to-
day, laser scanning plays an ever increasing role. The resulting 3D reconstructions
of existing objects require a different approach regarding the requirements that al-
low retrieval. While usually a CAD file contains one more or less semantically
well-defined object, a 3D scan contains all sorts of objects, parts of objects, and
a lot of clutter. Retrieval and recognition require some sort of prior segmentation
in this case. By that, 3D shape retrieval becomes somewhat more similar to the
problems in computer vision.

Apart from acquiring 3D geometry, highly sophisticated modeling tools fol-
lowing the BIM paradigm have and will become ever more important in covering
the complete lifecycle of a modern building. This also includes highly flexible
parametric models representing context objects whose shape can be adopted to the
requirements of the particular building situation. Taking into account our above
remarks, we are confronted with a realm of 3D objects that breaks down into two
extrema: On the one hand, we acquire highly cluttered scenes consisting of un-
segmented geometric fragments, on the other hand we have access to semantically
highly enriched parameterized 3D BIM content. From our point of view, one of
the central challenges for the future is to bridge this gap, i.e. we must develop
methods to put more intelligence into e.g. point clouds, such that they eventu-
ally become as handy as BIM data. This will enable to efficiently handle legacy
buildings for which no sophisticated BIM model exists in terms of retrofitting,
but it will also ensure the searchability of this data for any thinkable purpose.
The pressing need to focus on these upcoming challenges in the domain of ar-
chitecture is underlined by two recent publications that address the problem of
indoor scene segmentation and understanding from 3D laser scans, see [NXS12]

149

CHAPTER 7. CONCLUSIONS

and [KMYG12].

150

BIBLIOGRAPHY

[ADBP04] Jürgen Assfalg, Alberto Del Bimbo, and Pietro Pala. Spin Images
for Retrieval of 3D Objects by Local and Global Similarity. In Pro-
ceedings of the Pattern Recognition, 17th International Conference
on (ICPR’04) Volume 3 - Volume 03, ICPR ’04, pages 906–909,
Washington, DC, USA, 2004. IEEE Computer Society.

[AFS06] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hier-
archical mesh segmentation based on fitting primitives. The Visual
Computer, 22(3):181–193, 2006.

[AK11] Warawit Areevijit and Pizzanu Kanongchaiyos. Reeb graph based
partial shape retrieval for non-rigid 3D object. In Proceedings of the
10th International Conference on Virtual Reality Continuum and Its
Applications in Industry, VRCAI ’11, pages 573–576, New York,
NY, USA, 2011. ACM.

[AKKS99] Mihael Ankerst, Gabi Kastenmüller, Hans-Peter Kriegel, and
Thomas Seidl. 3D Shape Histograms for Similarity Search and
Classification in Spatial Databases. In Proceedings of the 6th Inter-
national Symposium on Advances in Spatial Databases, SSD ’99,
pages 207–226, London, UK, UK, 1999. Springer-Verlag.

[ASYS08] Ceyhun Akgül, Bülent Sankur, Yücel Yemez, and Francis Schmitt.
Similarity score fusion by ranking risk minimization for 3D object
retrieval. In Proceedings of the 2008 EUROGRAPHICS Workshop
on 3D Object Retrieval, pages 1–9, April 2008.

[AVMD04] Tarik Filali Ansary, Jean-Philippe Vandeborre, Said Mahmoudi, and
Mohamed Daoudi. A Bayesian Framework for 3D Models Retrieval
Based on Characteristic Views. In Proceedings of the 3D Data Pro-
cessing, Visualization, and Transmission, 2nd International Sympo-
sium, 3DPVT ’04, pages 139–146, Washington, DC, USA, 2004.
IEEE Computer Society.

151

BIBLIOGRAPHY

[BA83] Horst Bunke and G. Allermann. Inexact graph matching for struc-
tural pattern recognition. Pattern Recognition Letters, 1(4):245–
253, 1983.

[BA08] Silvia Biasotti and Marco Attene. SHape REtrieval Contest 2008:
Stability Track on Watertight Models. Technical Report 01/2008,
Institute of Applied Mathematics and Information Technologies of
the CNR, 2008.

[BAB+08] Silvia Biasotti, Dominique Attali, Jean-Daniel Boissonnat, Herbert
Edelsbrunner, Gershon Elber, Michela Mortara, Gabriella Sanniti
di Baja, Michela Spagnuolo, and Mirela Tanase. Skeletal structures.
Springer, 2008. In Shape Analysis and Structuring.

[Bar12] David Barber. Bayesian Reasoning and Machine Learning. Cam-
bridge University Press, New York, NY, USA, 2012.

[BBGO11] Alexander M. Bronstein, Michael M. Bronstein, Leonidas J. Guibas,
and Maks Ovsjanikov. Shape google: Geometric words and expres-
sions for invariant shape retrieval. ACM Transactions on Graphics,
30(1):1:1–1:20, February 2011.

[bDK05] Kai bo Duan and S. Sathiya Keerthi. Which is the best multiclass
SVM method? An empirical study. In Proceedings of the Sixth
International Workshop on Multiple Classifier Systems, pages 278–
285, 2005.

[BHAT05] Eugen Barbu, Pierre Héroux, Sébastien Adam, and Éric Trupin. Us-
ing bags of symbols for automatic indexing of graphical document
image databases. In Graphics Recognition (GREC), pages 195–205,
2005.

[BI04] Angela Brennecke and Tobias Isenberg. 3D Shape Matching Using
Skeleton Graphs. In In Simulation and Visualization, pages 299–
310, 2004.

[BK10] Michael M. Bronstein and Iasonas Kokkinos. Scale-invariant heat
kernel signatures for non-rigid shape recognition. In Proceedings of
the 2010 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1704–1711, June 2010.

[BKS+05] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck,
and Dejan V. Vranić. Feature-based similarity search in 3D ob-
ject databases. ACM Computing Surveys, 37(4):345–387, December
2005.

152

BIBLIOGRAPHY

[Blü13] Ina Blümel. Metadatenbasierte Kontextualisierung architektonis-
cher 3D-Modelle. PhD thesis, Humboldt-Universität zu Berlin,
2013.

[BLYL13] Xiang Bai, Chunyuan Li, Xingwei Yang, and Longin Jan Late-
cki. Shape Retrieval and Classification Based on Geodesic Paths
in Skeleton Graphs. IGI Global, 2013. In Graph-Based Methods in
Computer Vision: Developments and Applications.

[BMM+03] Silvia Biasotti, Simone Marini, Michela Mortara, Giuseppe Patanè,
Michela Spagnuolo, and Bianca Falcidieno. 3D Shape Matching
through Topological Structures. In Ingela Nyström, Gabriella San-
niti di Baja, and Stina Svensson, editors, DGCI, volume 2886 of
Lecture Notes in Computer Science, pages 194–203. Springer, 2003.

[BMP02] Serge Belongie, Jitendra Malik, and Jan Puzicha. Shape matching
and object recognition using shape contexts. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 24(4):509–522, 2002.

[BMSF06] Silvia Biasotti, Simone Marini, Michela Spagnuolo, and Bianca Fal-
cidieno. Sub-part correspondence by structural descriptors of 3D
shapes. Computer-Aided Design, 38(9):1002 – 1019, 2006.

[Bor07] Karsten M. Borgwardt. Graph Kernels. PhD thesis, Ludwig-
Maximilians-University Munich, 2007.

[BR08] Horst Bunke and Kaspar Riesen. Graph classification based on
dissimilarity space embedding. In Proceedings of the 2008 Joint
IAPR International Workshop on Structural, Syntactic, and Statisti-
cal Pattern Recognition, SSPR & SPR ’08, pages 996–1007, Berlin,
Heidelberg, 2008. Springer-Verlag.

[Bri01] British Standards Institution. BS ISO 12006-2: Building construc-
tion - Organization of information about construction works - Part
2: Framework for classification of information. Beuth-Verlag,
November 2001.

[Bri07] British Standards Institution. BS ISO 12006-3: Building construc-
tion - Organization of information about construction works - Part
3: Framework for object-oriented information. Beuth-Verlag, Au-
gust 2007.

[BRS03] Dmitriy Bespalov, William C. Regli, and Ali Shokoufandeh. Reeb
Graph Based Shape Retrieval for CAD. Proceedings of DETC’03

153

BIBLIOGRAPHY

2003 ASME Design Engineering Technical Conferences, September
2003.

[BYRN99] Ricardo A. Baeza-Yates and Berthier Ribeiro-Neto. Modern Infor-
mation Retrieval. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1999.

[CDS+05] Nicu D. Cornea, M. Fatih Demirci, Deborah Silver, Ali Shokoufan-
deh, Sven J. Dickinson, and Paul B. Kantor. 3D Object Retrieval
using Many-to-many Matching of Curve Skeletons. In Proceedings
of the International Conference on Shape Modeling and Applica-
tions 2005, SMI ’05, pages 368–373, Washington, DC, USA, 2005.
IEEE Computer Society.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for sup-
port vector machines, 2001. Software available at http://www.
csie.ntu.edu.tw/~cjlin/libsvm [last accessed 7 Febru-
ary 2013].

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC ’71: Proceedings of the third annual ACM symposium on
Theory of computing, pages 151–158, New York, NY, USA, 1971.
ACM Press.

[CR92] Nigel Cross and Norbert Roozenburg. Modelling the design process
in engineering and in architecture. Journal of Engineering Design,
3(4):325–337, 1992.

[CR01] Vincent Cicirello and William C. Regli. Machining feature-based
comparisons of mechanical parts. In In International Conference
on Shape Modeling and Applications, pages 176Ű187. ACM SIG-
GRAPH, the Computer Graphics Society and EUROGRAPHICS,
IEEE Computer, pages 176–185. Society Press, 2001.

[CRC+02] Jonathan Corney, Heather Rea, Doug Clark, John Pritchard,
Michael Breaks, and Roddy Macleod. Coarse filters for shape
matching. Computer Graphics and Applications, IEEE, 22(3):65–
74, May / June 2002.

[CSM07] Nicu D. Cornea, Deborah Silver, and Patrick Min. Curve-skeleton
properties, applications, and algorithms. IEEE Transactions on Vi-
sualization and Computer Graphics, 13:530–548, May 2007.

154

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.csie.ntu.edu.tw/~cjlin/libsvm

BIBLIOGRAPHY

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory. John Wiley & Sons Inc., second edition, 2006.

[CTSO03] Ding-Yun Chen, Xiao-Pei Tian, Yu-Te Shen, and Ming Ouhyoung.
On visual similarity based 3D model retrieval. Computer Graphics
Forum, 22(3):223–232, September 2003.

[DCG12] Helin Dutagaci, Chun Pan Cheung, and Afzal Godil. Evaluation of
3D interest point detection techniques via human-generated ground
truth. The Visual Computer, 28(9):901–917, September 2012.

[DHS01] Richard O. Duda, Peter E. Hart, and David G. Stork. Pattern Clas-
sification. John Wiley & Sons, New York, NY, 2nd edition, 2001.

[DLL+10] Tamal K. Dey, Kuiyu Li, Chuanjiang Luo, Pawas Ranjan, Is-
sam Safa, and Yusu Wang. Persistent heat signature for pose-
oblivious matching of incomplete models. Computer Graphics Fo-
rum, 29(5):1545–1554, 2010.

[DSS+10] Mohamed Daoudi, Tobias Schreck, Michela Spagnuolo, Ioannis
Pratikakis, Remco C. Veltkamp, and Theoharis Theoharis, editors.
Eurographics Workshop on 3D Object Retrieval, Norrköping, Swe-
den, May 2, 2010, Proceedings. Eurographics Association, 2010.

[DvGNK99] Kristin J. Dana, Bram van Ginneken, Shree K. Nayar, and Jan J.
Koenderink. Reflectance and texture of real-world surfaces. ACM
Transactions on Graphics, 18(1):1–34, January 1999.

[EF84] Mohamed A. Eshera and King-Sun Fu. A graph distance measure
for image analysis. IEEE Transactions on Systems, Man, and Cy-
bernetics, 14(3):398–408, May 1984.

[EMM03a] Mohamed El-Mehalawi and Allen Miller. A database system of me-
chanical components based on geometric and topological similarity.
Part 1: representation. Computer-Aided Design, 35(1):83–94, Jan-
uary 2003.

[EMM03b] Mohamed El-Mehalawi and Allen Miller. A database system of me-
chanical components based on geometric and topological similar-
ity. Part 2: indexing, retrieval, matching, and similarity assessment.
Computer-Aided Design, 35(1):95–105, January 2003.

[ENR97] Alexei Elinson, Dana S. Nau, and William C. Regli. Feature-based
similarity assessment of solid models. In Proceedings of the fourth

155

BIBLIOGRAPHY

ACM symposium on Solid modeling and applications, SMA ’97,
pages 297–310, New York, NY, USA, 1997. ACM.

[ERB+12] Mathias Eitz, Ronald Richter, Tamy Boubekeur, Kristian Hilde-
brand, and Marc Alexa. Sketch-based shape retrieval. ACM Trans-
actions on Graphics(Proceedings of SIGGRAPH), 31(4):31:1–
31:10, 2012.

[ETA02] Michael Elad, Ayellet Tal, and Sigal Ar. Content based retrieval
of vrml objects: an iterative and interactive approach. In Proceed-
ings of the sixth Eurographics workshop on Multimedia 2001, pages
107–118, New York, NY, USA, 2002. Springer-Verlag New York,
Inc.

[ETSL08] Chuck Eastman, Paul Teicholz, Rafael Sacks, and Kathleen Lis-
ton. BIM Handbook: A Guide to Building Information Modeling
for Owners, Managers, Designers, Engineers and Contractors. Wi-
ley Publishing, 2008.

[Fal98] Kristine K. Fallon. Early computer graphics developments in the
architecture, engineering, and construction industry. IEEE Annals
of the History of Computing, 20(2):20–29, April 1998.

[FGLW08] Rui Fang, Afzal Godil, Xiaolan Li, and Asim Wagan. A New Shape
Benchmark for 3D Object Retrieval. In Proceedings of the 4th Inter-
national Symposium on Advances in Visual Computing, ISVC ’08,
pages 381–392, Berlin, Heidelberg, 2008. Springer-Verlag.

[Fie73] Miroslav Fiedler. Algebraic connectivity of graphs. Czechoslovak
Mathematical Journal, 98:298–305, 1973.

[FK04] Thomas Funkhouser and Michael Kazhdan. Shape-based retrieval
and analysis of 3D models. In ACM SIGGRAPH 2004 Course
Notes, SIGGRAPH ’04, New York, NY, USA, 2004. ACM.

[FMA+10] Alfredo Ferreira, Simone Marini, Marco Attene, Manuel J. Fon-
seca, Michela Spagnuolo, Joaquim A. Jorge, and Bianca Falcidieno.
Thesaurus-based 3D object retrieval with part-in-whole matching.
International Journal of Computer Vision, 89:327–347, September
2010.

[FMK+03] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen,
Alex Halderman, David Dobkin, and David Jacobs. A search en-
gine for 3D models. ACM Transactions on Graphics, 22(1):83–105,
2003.

156

BIBLIOGRAPHY

[FO09] Takahiko Furuya and Ryutarou Ohbuchi. Dense sampling and fast
encoding for 3D model retrieval using bag-of-visual features. In
Proceeding of the ACM International Conference on Image and
Video Retrieval, CIVR ’09, pages 26:1–26:8, New York, NY, USA,
2009. ACM.

[FS06] Thomas Funkhouser and Philip Shilane. Partial matching of 3D
shapes with priority-driven search. In Proceedings of the 2006
Symposium on Geometry Processing, pages 131–142, Aire-la-Ville,
Switzerland, Switzerland, 2006. EUROGRAPHICS Association.

[FSH11] Matthew Fisher, Manolis Savva, and Pat Hanrahan. Characteriz-
ing structural relationships in scenes using graph kernels. In SIG-
GRAPH ’11. ACM, 2011. To appear.

[Gär03] Thomas Gärtner. A survey of kernels for structured data. SIGKDD
Explorations Newsletter, 5(1):49–58, July 2003.

[Gär05] Thomas Gärtner. Kernels for Structured Data. PhD thesis, Univer-
sität Bonn, 2005.

[GB02] Simon Günter and Horst Bunke. Self-organizing map for clustering
in the graph domain. Pattern Recognition Letters, 23(4):405 – 417,
2002.

[GCO06] Ran Gal and Daniel Cohen-Or. Salient geometric features for par-
tial shape matching and similarity. ACM Transactions on Graphics,
25(1):130–150, 2006.

[GJ90] Michael R. Garey and David S. Johnson. Computers and In-
tractability; A Guide to the Theory of NP-Completeness. W. H.
Freeman & Co., New York, NY, USA, 1990.

[Har54] Zellig Harris. Distributional structure. Word, 10(23):146–162,
1954.

[Hau99] David Haussler. Convolution kernels on discrete structures. Techni-
cal Report UCS-CRL-99-10, University of California at Santa Cruz,
Santa Cruz, CA, USA, 1999.

[HB07] Zaïd Harchaoui and Francis Bach. Image classification with seg-
mentation graph kernels. In Proceedings of the 2007IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR ’07,
pages 1–8, 2007.

157

BIBLIOGRAPHY

[Hen09] Armin Hentschel. Nutzeransichten – Wohnarchitektur aus Sicht
ihrer Nutzer. PhD thesis, Humboldt-Universität zu Berlin, 2009.

[HH09] Jiaxi Hu and Jing Hua. Salient spectral geometric features for shape
matching and retrieval. The Visual Computer, 25(5-7):667–675,
2009.

[HKSV02] Martin Heczko, Daniel Keim, Dietmar Saupe, and Dejan V. Vranic.
Methods for similarity search on 3D databases. Datenbank-
Spektrum (in German), 2(2):54–63, 2002.

[HLR05] Suyu Hou, Kuiyang Lou, and Karthik Ramani. SVM-based seman-
tic clustering and retrieval of a 3D model database. Journal of Com-
puter Aided Design and Application, 2:155–164, 2005.

[Hol07] Klaus Holschemacher. Entwurfs- und Berechnungstafeln. Bauwerk
Verlag GmbH, Berlin, 2007.

[Hol11] Dominik Holzer. BIM’s Seven Deadly Sins. International Journal
of Architectural Computing, 9:463–480, December 2011.

[HR07] Suyu Hou and Karthik Ramani. Calligraphic interfaces: Classi-
fier combination for sketch-based 3D part retrieval. Computers &
Graphics, 31(4):598–609, 2007.

[HRNS11] Tomoki Hayashi, Benjamin Raynal, Vincent Nozick, and Hideo
Saito. Skeleton Features Distribution for 3D Object Retrieval. In
Proceedings of the 12th IAPR Machine Vision and Applications
(MVA2011), pages 377–380, Nara, Japan, 13-15, June 2011.

[HSKK01] Masaki Hilaga, Yoshihisa Shinagawa, Taku Kohmura, and
Tosiyasu L. Kunii. Topology matching for fully automatic simi-
larity estimation of 3D shapes. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, SIG-
GRAPH ’01, pages 203–212, New York, NY, USA, 2001. ACM.

[HT98] Trevor Hastie and Robert Tibshirani. Classification by pairwise cou-
pling. In Proceedings of the 1997 conference on Advances in Neu-
ral Information Processing Systems 10, NIPS ’97, pages 507–513,
Cambridge, MA, USA, 1998. MIT Press.

[IJL+04] Natraj Iyer, Subramaniam Jayanti, Kuiyang Lou, Yagnanarayanan
Kalyanaraman, and Karthik Ramani. A Multi-Scale Hierarchical
3D Shape Representation for Similar Shape Retrieval. In Horváth

158

BIBLIOGRAPHY

and Xirouchakis, editors, Proceedings of the TMCE 2004, April 12-
16, 2004, Lausanne, Switzerland, Edited by. ASME, April 2004.

[IKH+11] Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux,
Richard Newcombe, Pushmeet Kohli, Jamie Shotton, Steve Hodges,
Dustin Freeman, Andrew Davison, and Andrew Fitzgibbon. Kinect-
Fusion: real-time 3D reconstruction and interaction using a moving
depth camera. In Proceedings of the 24th annual ACM symposium
on User interface software and technology, UIST ’11, pages 559–
568, New York, NY, USA, 2011. ACM.

[ILSR02] Cheuk Yiu Ip, Daniel Lapadat, Leonard Sieger, and William C.
Regli. Using shape distributions to compare solid models. In Pro-
ceedings of the seventh ACM symposium on Solid modeling and ap-
plications, SMA ’02, pages 273–280, New York, NY, USA, 2002.
ACM.

[IRSS03] Cheuk Yiu Ip, William C. Regli, Leonard Sieger, and Ali Shoko-
ufandeh. Automated learning of model classifications. In Proceed-
ings of the eighth ACM symposium on Solid modeling and applica-
tions, SM ’03, pages 322–327, New York, NY, USA, 2003. ACM.

[IW02] Horace H. S. Ip and William Y. F. Wong. 3D head models retrieval
based on Hierarchical facial region similarity. In Proceedings of the
15th International Conference on Vision Interface, pages 314–419,
May 2002.

[JH99] Andrew E. Johnson and Martial Hebert. Using spin images for ef-
ficient object recognition in cluttered 3D scenes. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 21(5):433–449,
1999.

[JK00] Kalervo Järvelin and Jaana Kekäläinen. Ir evaluation methods for
retrieving highly relevant documents. In Proceedings of the 23rd
annual international ACM SIGIR conference on Research and de-
velopment in information retrieval, SIGIR ’00, pages 41–48, New
York, NY, USA, 2000. ACM.

[JKIR06] Subramaniam Jayanti, Yagnanarayanan Kalyanaraman, Natraj Iyer,
and Karthik Ramani. Developing an engineering shape benchmark
for cad models. Computer-Aided Design, 38(9):939–953, 2006.

[Joa98] Thorsten Joachims. Text categorization with suport vector ma-
chines: Learning with many relevant features. In Proceedings of

159

BIBLIOGRAPHY

the 10th European Conference on Machine Learning, ECML ’98,
pages 137–142, London, UK, UK, 1998. Springer-Verlag.

[Joh97] Andrew Johnson. Spin-Images: A Representation for 3-D Surface
Matching. PhD thesis, Robotics Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA, August 1997.

[Kaz07] Michael Kazhdan. An Approximate and Efficient Method for Op-
timal Rotation Alignment of 3D Models. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 29(7):1221–1229, July
2007.

[KCD+03] Michael Kazhdan, Bernard Chazelle, David Dobkin, Thomas
Funkhouser, and Szymon Rusinkiewicz. A reflective symmetry de-
scriptor for 3D models. Algorithmica, 38(1), October 2003.

[Kei99] Daniel A. Keim. Efficient geometry-based similarity search of 3D
spatial databases. In Proceedings of the 1999 ACM SIGMOD inter-
national conference on Management of data, SIGMOD ’99, pages
419–430, New York, NY, USA, 1999. ACM.

[KFR03] Michael Kazhdan, Thomas Funkhouser, and Szymon Rusinkiewicz.
Rotation invariant spherical harmonic representation of 3D shape
descriptors. In Proceedings of the 2003 Symposium on Geometry
Processing, pages 156–164, 2003.

[KMYG12] Young Min Kim, Niloy J. Mitra, Dong-Ming Yan, and Leonidas
Guibas. Acquiring 3D indoor environments with variability and
repetition. ACM Transactions on Graphics, 31(6):138:1–138:11,
November 2012.

[KPNK03] Marcel Körtgen, Gil-Joo Park, Marcin Novotni, and Reinhard
Klein. 3D Shape Matching with 3D Shape Contexts. In The 7th
Central European Seminar on Computer Graphics, April 2003.

[Lau83] Jean-Paul Laumond. Model structuring and concept recognition:
two aspects of learning for a mobile robot. In Proceedings of the
Eighth international joint conference on Artificial intelligence - Vol-
ume 2, IJCAI’83, pages 839–841, San Francisco, CA, USA, 1983.
Morgan Kaufmann Publishers Inc.

[LF06] Jure Leskovec and Christos Faloutsos. Sampling from large graphs.
In Proceedings of the 12th ACM SIGKDD international conference

160

BIBLIOGRAPHY

on Knowledge discovery and data mining, KDD ’06, pages 631–
636, New York, NY, USA, 2006. ACM.

[LGB+12] Zhouhui Lian, Afzal Godil, Benjamin Bustos, Mohamed Daoudi,
Jeroen Hermans, Shun Kawamura, Yukinori Kurita, Guillaume
Lavoué, Hien Van Nguyen, Ryutarou Ohbuchi, Yuki Ohkita, Yuya
Ohishi, Fatih Porikli, Martin Reuter, Ivan Sipiran, Dirk Smeets,
Paul Suetens, Hedi Tabia, and Dirk Vandermeulen. A comparison
of methods for non-rigid 3D shape retrieval. Pattern Recognition,
46(1):449 – 461, 2012.

[LGF+10] Zhouhui Lian, Afzal Godil, Thomas Fabry, Takahiko Furuya,
Jeroen Hermans, Ryutarou Ohbuchi, Chang Shu, Dirk Smeets, Paul
Suetens, Dirk Vandermeulen, and Stefanie Wuhrer. SHREC’10
Track: Non-rigid 3D Shape Retrieval. In Mohamed Daoudi, To-
bias Schreck, Michela Spagnuolo, Ioannis Pratikakis, Remco C.
Veltkamp, and Theoharis Theoharis, editors, 3DOR, pages 101–
108. Eurographics Association, 2010.

[LGS10] Zhouhui Lian, Afzal Godil, and Xianfang Sun. Visual Similarity
Based 3D Shape Retrieval Using Bag-of-Features. Shape Modeling
and Applications, International Conference on, 0:25–36, 2010.

[LGW08] Xiaolan Li, Afzal Godil, and Asim Wagan. Spatially enhanced bags
of words for 3D shape retrieval. In Proceedings of the 2008 Inter-
national Symposium on Advances in Visual Computing, pages 349–
358, 2008.

[Liu12] Qiong Liu. A Survey of Recent View-based 3D Model Re-
trieval Methods. The Computing Research Repository (CoRR),
abs/1208.3670, 2012.

[LJI+03] Kuiyang Lou, Subramaniam Jayanti, Natraj Iyer, Yagnanarayanan
Kalyanaraman, Sunil Prabhakar, and Karthik Ramani. A reconfig-
urable 3D engineering shape search system part II: database index-
ing, retrieval and clustering. In Proceedings of the ASME 2003 In-
ternational Design Engineering Technical Conferences, pages 169–
178, September 2003.

[LN07] Hamid Laga and Masayuki Nakajima. A boosting approach to
content-based 3D model retrieval. In Proceedings of the 5th interna-
tional conference on Computer graphics and interactive techniques

161

BIBLIOGRAPHY

in Australia and Southeast Asia, pages 227–234, New York, NY,
USA, 2007. ACM.

[Löf00] Jobst Löffler. Content-based Retrieval of 3D Models in Distributed
Web Databases by Visual Shape Information. In Proceedings of
the International Conference on Information Visualisation, IV ’00,
pages 82–87, Washington, DC, USA, 2000. IEEE Computer Soci-
ety.

[Low04] David G. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–110,
2004.

[LSAR10] Ce Liu, Lavanya Sharan, Edward H. Adelson, and Ruth Rosenholtz.
Exploring features in a bayesian framework for material recogni-
tion. In CVPR, pages 239–246, 2010.

[LSF+11] Hamid Laga, Tobias Schreck, Alfredo Ferreira, Afzal Godil, Ioannis
Pratikakis, and Remco C. Veltkamp, editors. Eurographics Work-
shop on 3D Object Retrieval 2011, Llandudno, UK, April 10, 2011.
Proceedings. Eurographics Association, 2011.

[LSG+12] Bin Li, Tobias Schreck, Afzal Godil, Marc Alexa, Tamy Boubekeur,
Benjamin Bustos, J. Chen, Mathias Eitz, Takahiko Furuya, Kris-
tian Hildebrand, S. Huang, Henry Johan, Arjan Kuijper, Ryutarou
Ohbuchi, Ronald Richter, Jose M. Saavedra, Maximilian Scherer,
Tomohiro Yanagimachi, Gang-Joon Yoon, and Sang Min Yoon.
SHREC’12 Track: Sketch-Based 3D Shape Retrieval. In Michela
Spagnuolo, Michael M. Bronstein, Alexander M. Bronstein, and Al-
fredo Ferreira, editors, 3DOR, pages 109–118. Eurographics Asso-
ciation, 2012.

[LSSK09] Bao Li, Ruwen Schnabel, Jin Shiyao, and Reinhard Klein. Vari-
ational surface approximation and model selection. Computer
Graphics Forum, 28(7), October 2009.

[LVJ05] Chang Ha Lee, Amitabh Varshney, and David W. Jacobs. Mesh
saliency. ACM Transactions on Graphics, 24(3):659–666, 2005.

[LW88] Yehezkel Lamdan and Haim J. Wolfson. Geometric hashing: A gen-
eral and efficient model-based recognition scheme. In Proceedings
of the 2nd International Conference on Computer Vision, ICCV ’88,
pages 238–249, 1988.

162

BIBLIOGRAPHY

[LZL+12] Yong-Jin Liu, Yi-Fu Zheng, Lu Lv, Yu-Ming Xuan, and Xiao-Lan
Fu. 3D model retrieval based on color + geometry signatures. The
Visual Computer, 28(1):75–86, January 2012.

[LZQ06] Yi Liu, Hongbin Zha, and Hong Qin. Shape topics: A compact
representation and new algorithms for 3D partial shape retrieval.
In Proceedings of the 2006 IEEE Conference on Computer Vision
and Pattern Recognition, volume 2 of CVPR ’06, pages 2025–2032,
2006.

[MAD+06] Athanasios Mademlis, Apostolos Axenopoulos, Petros Daras, Dim-
itrios Tzovaras, and Michael G. Strintzis. 3D Content-Based Search
Based on 3D Krawtchouk Moments. In Proceedings of the Third In-
ternational Symposium on 3D Data Processing, Visualization, and
Transmission, 3DPVT ’06, pages 743–749, Washington, DC, USA,
2006. IEEE Computer Society.

[MB97] Walter Meyer-Bohe. Grundrisse öffentlicher Gebäude. Synoptische
Gebäudetypologie. Ernst & Sohn, 1997.

[MD06] Ameesh Makadia and Kostas Daniilidis. Light field similarity for
model retrieval. In SHREC2006 3D Shape Retrieval Contest, pages
32–35, 2006. Technical Report UU-CS-2006-030, Department of
Information and Computing Sciences, Utrecht University.

[MGGP06] Niloy J. Mitra, Leonidas Guibas, Joachim Giesen, and Mark Pauly.
Probabilistic fingerprints for shapes. In Proceedings of the 2006
Symposium on Geometry Processing, pages 121–130, 2006.

[Mit90] William J. Mitchell. The Logic of Architecture: Design, Computa-
tion, and Cognition. MIT Press, Cambridge, MA, USA, 1st edition,
1990.

[MKF04] Patrick Min, Michael Kazhdan, and Thomas Funkhouser. A Com-
parison of Text and Shape Matching for Retrieval of Online 3D
Models. In In Proceedings of the European Conference on Digi-
tal Libraries, pages 209–220, 2004.

[MLVT10] Sébastien Macé, Hervé Locteau, Ernest Valveny, and Salvatore Tab-
bone. A system to detect rooms in architectural floor plan images.
In Proceedings of the 9th IAPR International Workshop on Docu-
ment Analysis Systems, DAS ’10, pages 167–174, New York, NY,
USA, 2010. ACM.

163

BIBLIOGRAPHY

[MPSR01] David McWherter, Mitchell Peabody, Ali C. Shokoufandeh, and
William Regli. Database techniques for archival of solid models.
In Proceedings of the 2001 ACM symposium on Solid modeling and
applications, SAM ’01, pages 78–87, New York, NY, USA, 2001.
ACM Press.

[Mun57] James Munkres. Algorithms for the assignment and transportation
problems. Journal of the Society of Industrial and Applied Mathe-
matics, 5:32–38, 1957.

[NDK05] Marcin Novotni, Patrick Degener, and Reinhard Klein. Correspon-
dence Generation and Matching of 3D Shape Subparts. Technical
Report CG-2005-2, Universität Bonn, June 2005.

[Neu05] Ernst Neufert. Bauentwurfslehre. Vieweg, 38th edition, September
2005.

[NK01] Marcin Novotni and Reinhard Klein. A Geometric Approach to 3D
Object Comparison. In International Conference on Shape Model-
ing and Applications, pages 167–175, May 2001.

[Nov03] Marcin Novotni. 3D Zernike Descriptors for Content Based Shape
Retrieval. In Proceedings of the 8th ACM Symposium on Solid
Modeling and Applications, SAM ’03, pages 216–225. ACM Press,
2003.

[NPWK05] Marcin Novotni, Gil-Joo Park, Raoul Wessel, and Reinhard Klein.
Evaluation of kernel based methods for relevance feedback in 3D
shape retrieval. In Proceedings of the Fourth International Work-
shop on Content-Based Multimedia Indexing, CBMI ’05, June
2005.

[NRH+77] F. E. Nicodemus, J. C. Richmond, J. J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometric Considerations and Nomenclature for Re-
flectance. National Bureau of Standards, 1977.

[NSB+12] Matthias Nieuwenhuisen, Jörg Stückler, Alexander Berner, Rein-
hard Klein, and Sven Behnke. Shape-primitive based object recog-
nition and grasping. In Proceedings of the 7th German Conference
on Robotics (ROBOTIK), May 2012.

[NXS12] Liangliang Nan, Ke Xie, and Andrei Sharf. A search-classify ap-
proach for cluttered indoor scene understanding. ACM Transactions
on Graphics, 31(6):137:1–137:10, November 2012.

164

BIBLIOGRAPHY

[OA10] Bahadir Özdemir and Selim Aksoy. Image classification using sub-
graph histogram representation. In Proceedings of the 20th Interna-
tional Conference on Pattern Recognition, ICPR ’10, pages 1112–
1115, 2010.

[OB07] Björn Ommer and Joachim M. Buhmann. Learning the composi-
tional nature of visual objects. In Proceedings of the 2007 IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
’07, pages 1–8, June 2007.

[OB09] Björn Ommer and Joachim M. Buhmann. Learning the com-
positional nature of visual object categories for recognition.
IEEE Transactions on Pattern Analysis and Machine Intelligence,
32:501–516, 2009.

[OBBG09] Maks Ovsjanikov, Alexander M. Bronstein, Michael M. Bronstein,
and Leonidas J. Guibas. Shape Google: a computer vision approach
to isometry invariant shape retrieval. In Proceedings of the 12th
International Conference on on Computer Vision Workshops (ICCV
Workshops), pages 320–327, September 2009.

[OF08] Ryutarou Ohbuchi and Takahiko Furuya. Accelerating bag-of-
features SIFT algorithm for 3D model retrieval. In Proceedings of
the SAMT Workshop on Semantic 3D Media, pages 28–30, 2008.

[OFCD02] Robert Osada, Thomas Funkhouser, Bernard Chazelle, and David
Dobkin. Shape distributions. ACM Transactions on Graphics,
21(4):807–832, October 2002.

[OMMG10] Maks Ovsjanikov, Quentin Mérigot, Facundo Mémoli, and
Leonidas J. Guibas. One point isometric matching with the heat
kernel. Computer Graphics Forum, 29(5):1555–1564, 2010.

[OMT03] Ryutarou Ohbuchi, Takahiro Minamitani, and Tsuyoshi Takei.
Shape-Similarity Search of 3D Models by using Enhanced Shape
Functions. In Proceedings of the Theory and Practice of Com-
puter Graphics 2003, TPCG ’03, pages 97–, Washington, DC, USA,
2003. IEEE Computer Society.

[OOFB08] Ryutarou Ohbuchi, Kunio Osada, Takahiko Furuya, and Tomohisa
Banno. Salient local visual featuers for shape-based 3D model
retrieval. In Proceedings of the 2008 IEEE International Confer-
ence on Shape Modeling and Applications, SMI ’08, pages 93–102,
2008.

165

BIBLIOGRAPHY

[OOIT02] Ryutarou Ohbuchi, Tomo Otagiri, Masatoshi Ibato, and Tsuyoshi
Takei. Shape-similarity search of three-dimensional models using
parameterized statistics. In Proceedings of the 10th Pacific Confer-
ence on Computer Graphics and Applications, PG ’02, pages 265–,
Washington, DC, USA, 2002. IEEE Computer Society.

[Pet94] Toni Petersen. Art & Architecture Thesaurus. ACM Press, 1994.

[Pho75] Bui Tuong Phong. Illumination for computer generated pictures.
Communications of the ACM, 18(6):311–317, June 1975.

[Pla99] John C. Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In ADVANCES IN
LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press, 1999.

[Pow11] David M. W. Powers. Evaluation: From precision, recall and f-
factor to roc, informedness, markedness & correlation. Journal of
Machine Learning Technologies, 2011.

[PR00] Eric Paquet and Marc Rioux. Nefertiti: a tool for 3-d shape
databases management. Image and Vision Computing, 2000.

[PRM+00] Eric Paquet, Marc Rioux, Anil M. Murching, Thumpudi Naveen,
and Ali J. Tabatabai. Description of shape information for 2-d and
3-d objects. Signal Processing: Image Communication, pages 103–
122, 2000.

[PSG+06] Joshua Podolak, Philip Shilane, Aleksey Golovinskiy, Szymon
Rusinkiewicz, and Thomas Funkhouser. A Planar-Reflective Sym-
metry Transform for 3D Shapes. ACM Transactions on Graphics
(Proceedings of SIGGRAPH), 25(3), July 2006.

[RB09a] Kaspar Riesen and Horst Bunke. Approximate graph edit distance
computation by means of bipartite graph matching. Image and Vi-
sion Computing, 27(7):950–959, 2009.

[RB09b] Kaspar Riesen and Horst Bunke. Graph classification by means
of lipschitz embedding. IEEE Transactions on Systems, Man, and
Cybernetics, Part B: Cybernetics, 39:1472–1483, December 2009.

[RLF09] Raif M. Rustamov, Yaron Lipman, and Thomas Funkhouser. Inte-
rior distance using barycentric coordinates. In Proceedings of the
Symposium on Geometry Processing, SGP ’09, pages 1279–1288,
Aire-la-Ville, Switzerland, Switzerland, 2009. Eurographics Asso-
ciation.

166

BIBLIOGRAPHY

[Roo65] Daniel Roos. An integrated computer system for engineering prob-
lem solving. In Proceedings of the November 30–December 1,
1965, fall joint computer conference, part I, AFIPS ’65 (Fall, part
I), pages 423–433, New York, NY, USA, 1965. ACM.

[Roy68] Royal Institute of British Architects. Construction indexing man-
ual incorporating the authoritative United Kingdom version of the
international SfB classification system and superseding the RIBA
SfB/UDC Building Filing Manual 1961. Royal Institute of British
Architects, London, 1968.

[RS99] Volker Roth and Volker Steinhage. Nonlinear discriminant analysis
using kernel functions. In Advances in Neural Information Process-
ing Systems, pages 568–574. MIT Press, 1999.

[RT01] Volker Roth and Koji Tsuda. Pairwise coupling for machine recog-
nition of hand-printed japanese characters. In Proceedings of the
2001 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR ’01, pages 1120–1125, 2001.

[RTG98] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. A metric for
distributions with applications to image databases. In Proceedings
of the Sixth International Conference on Computer Vision, ICCV
’98, pages 59–, Washington, DC, USA, 1998. IEEE Computer So-
ciety.

[Rus07a] Raif M. Rustamov. Augmented symmetry transforms. In Proceed-
ings of the IEEE International Conference on Shape Modeling and
Applications 2007, SMI ’07, pages 13–20, Washington, DC, USA,
2007. IEEE Computer Society.

[Rus07b] Raif M. Rustamov. Laplace-beltrami eigenfunctions for deforma-
tion invariant shape representation. In Proceedings of the fifth Euro-
graphics symposium on Geometry processing, SGP ’07, pages 225–
233, Aire-la-Ville, Switzerland, Switzerland, 2007. Eurographics
Association.

[Rus10] Raif M. Rustamov. Robust volumetric shape descriptor. In 3DOR,
pages 1–5, 2010.

[RVRB10] Jonas Richiardi, Dimitri Van De Ville, Kaspar Riesen, and Horst
Bunke. Vector space embedding of undirected graphs with fixed-
cardinality vertex sequences for classification. In Proceedings of the

167

BIBLIOGRAPHY

20th International Conference on Pattern Recognition, ICPR ’10,
pages 902–905, Los Alamitos, USA, 2010.

[RWP06] Martin Reuter, Franz-Erich Wolter, and Niklas Peinecke. Laplace-
beltrami spectra as "shape-dna" of surfaces and solids. Computer-
Aided Design, 38(4):342–366, 2006.

[RWSN09] Martin Reuter, Franz-Erich Wolter, Martha Shenton, and Marc Ni-
ethammer. Laplace-beltrami eigenvalues and topological features of
eigenfunctions for statistical shape analysis. Computer-Aided De-
sign, 41(10):739–755, 2009.

[SBBF12] Michela Spagnuolo, Michael M. Bronstein, Alexander M. Bron-
stein, and Alfredo Ferreira, editors. Eurographics Workshop on 3D
Object Retrieval 2012, Cagliari, Italy, May 13, 2012. Proceedings.
Eurographics Association, 2012.

[Sch04] Friederike Schneider. Floor Plan Manual Housing. Birkhäuser,
third edition, April 2004.

[SEL04] Rafael Sacks, Charles M. Eastman, and Ghang Lee. Parametric
3D modeling in building construction with examples from precast
concrete. Automation in Construction, 13(3):291 – 312, 2004.

[SF83] Alberto Sanfeliu and King-Sun Fu. A distance measure between
attributed relational graphs for pattern recognition. IEEE Transac-
tions on Systems, Man, and Cybernetics, 13:353–362, 1983.

[SF06] Philip Shilane and Thomas Funkhouser. Selecting Distinctive 3D
Shape Descriptors for Similarity Retrieval. In Proceedings of the
2006 IEEE International Conference on Shape Modeling and Ap-
plications, SMI ’06, June 2006. Article No. 18.

[SF07] Philip Shilane and Thomas Funkhouser. Distinctive Regions of 3D
Surfaces. ACM Transactions on Graphics, 26(2), June 2007. Article
No. 7.

[SG02] Jeong-Jun Song and Forouzan Golshani. 3D Object Retrieval by
Shape Similarity. In Proceedings of the 13th International Con-
ference on Database and Expert Systems Applications, DEXA ’02,
pages 851–860, London, UK, UK, 2002. Springer-Verlag.

[SH95] David Slater and Glenn Healey. Combining color and geometric
information for the illumination invariant recognition of 3-d objects.

168

BIBLIOGRAPHY

In Proceedings of the Fifth International Conference on Computer
Vision, ICCV ’95, pages 563–, Washington, DC, USA, 1995. IEEE
Computer Society.

[Shi08] Philip Shilane. Shape Distinction for 3D Object Retrieval. PhD
thesis, Princeton University, April 2008.

[SKO00] Motofumi T. Suzuki, Toshikazu Kato, and Nobuyuki Otsu. A sim-
ilarity retrieval of 3D polygonal models using rotation invariant
shape descriptors. In Proceedings of the IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC) 2000, volume 4,
pages 2946–2952, 2000.

[SMKF04] Philip Shilane, Patrick Min, Michael Kazhdan, and Thomas
Funkhouser. The Princeton shape benchmark. In Proceedings of
the 2004 IEEE International Conference on Shape Modeling and
Applications, SMI ’04, pages 167–176, June 2004.

[SMS+04] Ying Shan, Bogdan Matei, Harpreet S. Sawhney, Rakesh Kumar,
Daniel Huber, and Martial Hebert. Linear Model Hashing and Batch
RANSAC for Rapid and Accurate Object Recognition. In Proceed-
ings of the 2004 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’04, pages 121–128, 2004.

[SS01] Bernhard Schölkopf and Alexander J. Smola. Learning with Ker-
nels: Support Vector Machines, Regularization, Optimization, and
Beyond. MIT Press, Cambridge, MA, USA, 2001.

[SSGD03] Hari Sundar, Deborah Silver, Nikhil Gagvani, and Sven J. Dickin-
son. Skeleton based shape matching and retrieval. In Proceedings
of the 2003 IEEE International Conference on Shape Modeling and
Applications, SMI ’03, pages 130–142, Los Alamitos, CA, USA,
2003. IEEE Computer Society.

[SSSCO08] Shy Shalom, Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Part
analogies in sets of objects. In Proceedings of the 2008 EURO-
GRAPHICS Workshop on 3D Object Retrieval, pages 33–40. EU-
ROGRAPHICS Association, 2008.

[Sul96] Louis Sullivan. The tall office building artistically considered. Lip-
pincott’s Magazine, 57:403–409, March 1896.

169

BIBLIOGRAPHY

[Sut64] Ivan E. Sutherland. Sketch pad a man-machine graphical commu-
nication system. In Proceedings of the SHARE design automa-
tion workshop, DAC ’64, pages 6.329–6.346, New York, NY, USA,
1964. ACM.

[SV01] Dietmar Saupe and Dejan V. Vranic. 3D Model Retrieval with
Spherical Harmonics and Moments. In Proceedings of the 23rd
DAGM-Symposium on Pattern Recognition, pages 392–397, Lon-
don, UK, UK, 2001. Springer-Verlag.

[SWK07] Ruwen Schnabel, Roland Wahl, and Reinhard Klein. Efficient
RANSAC for point-cloud shape detection. Computer Graphics Fo-
rum, 26(2):214–226, June 2007.

[SWWK08] Ruwen Schnabel, Raoul Wessel, Roland Wahl, and Reinhard Klein.
Shape recognition in 3D point-clouds. In V. Skala, editor, The 16th
International Conference in Central Europe on Computer Graphics,
Visualization and Computer Vision, WSCG ’08. UNION Agency-
Science Press, February 2008.

[SZL92] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen.
Decimation of triangle meshes. In Proceedings of the 19th annual
conference on Computer graphics and interactive techniques, SIG-
GRAPH ’92, pages 65–70, New York, NY, USA, 1992. ACM.

[SZM+08] Kaleem Siddiqi, Juan Zhang, Diego Macrini, Ali Shokoufandeh,
Sylvain Bouix, and Sven Dickinson. Retrieving articulated 3-d
models using medial surfaces. Machine Vision and Applications,
19(4):261–275, May 2008.

[TS04] Tony Tung and Francis Schmitt. Augmented Reeb Graphs for
Content-Based Retrieval of 3D Mesh Models. In SMI, pages 157–
166, 2004.

[TV08] Johan W. H. Tangelder and Remco C. Veltkamp. A survey of content
based 3D shape retrieval methods. Multimedia Tools and Applica-
tions, 39(3):441–471, 2008.

[TvBDK00] David M. J. Tax, Martijn van Breukelen, Robert P. W. Duin, and
Josef Kittler. Combining multiple classifiers by averaging or by
multiplying? Pattern Recognition, 33(9):1475–1485, September
2000.

170

BIBLIOGRAPHY

[TVD09] Julien Tierny, Jean-Philippe Vandeborre, and Mohamed Daoudi.
Partial 3D Shape Retrieval by Reeb Pattern Unfolding. Computer
Graphics Forum, 9999(9999), 2009.

[Ued00] Naonori Ueda. Optimal linear combination of neural networks for
improving classification performance. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 22(2):207–215, 2000.

[Vap98] Vladimir N. Vapnik. Statistical learning theory. Wiley, 1 edition,
September 1998.

[VKH06] Vivek Verma, Rakesh Kumar, and Stephen Hsu. 3D building detec-
tion and modeling from aerial LIDAR data. In Proceedings of the
2006 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR ’04, pages 2213–2220, Washington, DC, USA, 2006.
IEEE Computer Society.

[Vra04] Dejan V. Vranic. 3D Model Retrieval. PhD thesis, University of
Leipzig, 2004.

[VRS+06] Remco C. Veltkamp, Remco Ruijsenaars, Michela Spagnuolo,
Roelof van Zwol, and Frank B. ter Haar. SHREC 2006 - shape
retrieval contest. Technical Report UU-CS-2006-030, Department
of Information and Computing Sciences, June 2006.

[VS01] Dejan V. Vranic and Dietmar Saupe. 3D Shape Descriptor Based
on 3D Fourier Transform. In Proceedings of the EURASIP Confer-
ence on Digital Signal Processing for Multimedia Communications
and Services (ECMCS 2001) (editor K. Fazekas), pages 271–274,
Budapest, Hungary, September 2001.

[VtH07] Remco C. Veltkamp and Frank B. ter Haar. SHREC 2007 - shape
retrieval contest. Technical Report UU-CS-2007-015, Department
of Information and Computing Sciences, June 2007.

[VtH08] Remco C. Veltkamp and Frank B. ter Haar. SHape REtrieval Contest
(SHREC) 2008. In Proceedings of the 2008 IEEE International
Conference on Shape Modeling and Applications, SMI ’08, pages
215–216, 2008.

[VtH09] Remco C. Veltkamp and Frank B. ter Haar. Shrec 2009 - shape
retrieval contest. In 3DOR, pages 57–59, 2009.

171

BIBLIOGRAPHY

[VZ09] Manik Varma and Andrew Zisserman. A statistical approach to ma-
terial classification using image patch exemplars. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 31(11):2032–
2047, November 2009.

[Wah99] Grace Wahba. Support vector machines, reproducing kernel hilbert
spaces, and randomized gacv. In Bernhard Schölkopf, Christopher
J. C. Burges, and Alexander J. Smola, editors, Advances in kernel
methods, pages 69–88. MIT Press, Cambridge, MA, USA, 1999.

[WBK08a] Raoul Wessel, Rafael Baranowski, and Reinhard Klein. Learning
distinctive local object characteristics for 3D shape retrieval. In Pro-
ceedings of the 2008 International Workshop Vision, Modeling and
Visualization, VMV ’08, pages 167–178. Akademische Verlagsge-
sellschaft Aka GmbH, Heidelberg, October 2008.

[WBK08b] Raoul Wessel, Ina Blümel, and Reinhard Klein. The room con-
nectivity graph: Shape retrieval in the architectural domain. In
V. Skala, editor, The 16th International Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vision,
WSCG ’08. UNION Agency-Science Press, February 2008.

[WBK09] Raoul Wessel, Ina Blümel, and Reinhard Klein. A 3D shape bench-
mark for retrieval and automatic classification of architectural data.
In Proceedings of the 2009 EUROGRAPHICS Workshop on 3D Ob-
ject Retrieval, pages 53–56, March 2009.

[WCI04] Hau-San Wong, Kent K. T. Cheung, and Horace H. S. Ip. 3D head
model classification by evolutionary optimization of the Extended
Gaussian Image representation. Pattern Recognition, 37(12):2307–
2322, December 2004.

[WK05] Jianhua Wu and Leif Kobbelt. Structure recovery via hybrid
variational surface approximation. Computer Graphics Forum,
24(3):277–284, 2005.

[WK10] Raoul Wessel and Reinhard Klein. Learning the Compositional
Structure of Man-Made Objects for 3D Shape Retrieval. In EURO-
GRAPHICS 2010 Workshop on 3D Object Retrieval, pages 39–46,
May 2010.

[WLHZ10] Bin Wang, Dong Li, Kaimo Hu, and Hui Zhang. Shape similarity
assessment approach for cad models based on graph edit distance. In

172

BIBLIOGRAPHY

Short Paper Proceedings of the 2010 EUROGRAPHICS Workshop
on 3D Object Retrieval, pages 13–16, May 2010.

[WLRB+10] Markus Weber, Christoph Langenhan, Thomas Roth-Berghofer,
Marcus Liwicki, Andreas Dengel, and Frank Petzold. a.scatch: Se-
mantic structure for architectural floor plan retrieval. In Proceedings
of the 19th International Conference on Case-based Reasoning, IC-
CBR ’10, pages 510–524. Springer Verlag, Heidelberg, 7 2010.

[WNK06] Raoul Wessel, Marcin Novotni, and Reinhard Klein. Correspon-
dences between Salient Points on 3D Shapes. In L. Kobbelt,
T. Kuhlen, T. Aach, and R. Westermann, editors, Vision, Modeling,
and Visualization 2006 (VMV 2006), pages 365–372. Akademische
Verlagsgesellschaft Aka GmbH, Berlin, November 2006.

[WOV+11a] Raoul Wessel, Sebastian Ochmann, Richard Vock, Ina Blümel, and
Reinhard Klein. Efficient Retrieval of 3D Building Models Using
Embeddings of Attributed Subgraphs. In the 20th ACM Confer-
ence on Information and Knowledge Management (CIKM 2011) :
Posters, October 2011.

[WOV+11b] Raoul Wessel, Sebastian Ochmann, Richard Vock, Ina Blümel, and
Reinhard Klein. Efficient Retrieval of 3D Building Models Using
Embeddings of Attributed Subgraphs. Technical Report CG-2011-
2, University of Bonn, August 2011.

[WZC94] Jason T.L. Wang, Kaizhong Zhang, and Gung-Wei Chirn. The ap-
proximate graph matching problem. In Proceedings of the 4th In-
ternational Conference on Pattern Recognition, ICPR ’94, pages
B:284–288, 1994.

[YP97] Yiming Yang and Jan O. Pedersen. A comparative study on feature
selection in text categorization. In Proceedings of the Fourteenth
International Conference on Machine Learning, ICML ’97, pages
412–420, San Francisco, CA, USA, 1997. Morgan Kaufmann Pub-
lishers Inc.

[YSSK10] Sang Min Yoon, Maximilian Scherer, Tobias Schreck, and Arjan
Kuijper. Sketch-based 3D model retrieval using diffusion tensor
fields of suggestive contours. In Proceedings of the international
conference on Multimedia, MM ’10, pages 193–200, New York,
NY, USA, 2010. ACM.

173

BIBLIOGRAPHY

[YWC12] Tsz-Ho Yu, Oliver J. Woodford, and Roberto Cipolla. A Perfor-
mance Evaluation of Volumetric 3D Interest Point Detectors. Inter-
national Journal of Computer Vision, pages 1–18, September 2012.

[ZC01] Cha Zhang and Tsuhan Chen. Efficient feature extraction for 2D/3D
objects in mesh representation. In Proceedings of the 2001 Confer-
ence on Image Processing, volume 3 of ICIP 2001, pages 935–938,
October 2001.

[ZHDQ08] Guangyu Zou, Jing Hua, Ming Dong, and Hong Qin. Surface
matching with salient keypoints in geodesic scale space. Computer
Animation and Virtual Worlds, 19(3-4):399–410, 2008.

[ZP01] Titus B. Zaharia and Françoise J. Preteux. 3D shape-based retrieval
within the MPEG-7 framework. In Nonlinear Image Processing and
Pattern Analysis, volume 4304, pages 133–145, January 2001.

[ZP02] Titus B. Zaharia and Françoise J. Prêteux. Shape-based retrieval of
3D mesh models. In ICME (1), pages 437–440. IEEE, 2002.

[ZSMS05] Juan Zhang, Kaleem Siddiqi, Diego Macrini, and Ali Shokouf.
Retrieving articulated 3-D models using medial surfaces and their
graph spectra. In Proceedings of the 2005 International Conference
on Energy Minimization Methods in Computer Vision and Pattern
Recognition, pages 285–300, 2005.

[ZTS02] Emanuel Zuckerberger, Ayellet Tal, and Shymon Shlafman. Poly-
hedral surface decomposition with applications. Computers and
Graphics, 26(5):733–743, October 2002.

[ZTW+09] Zhiping Zeng, Anthony K. H. Tung, Jianyong Wang, Jianhua Feng,
and Lizhu Zhou. Comparing stars: on approximating graph edit
distance. Proceedings of the VLDB Endowment, 2:25–36, August
2009.

174

	Zusammenfassung
	Abstract
	Acknowledgements
	Introduction
	Motivation
	Goals
	Contributions
	Outline
	Preliminaries
	3D Object Retrieval as a Special Case of Information Retrieval
	Leave-one-out Tests
	Retrieval Metrics
	Robust Estimation of Conditional Probabilities

	I Feature-based Shape Retrieval for 3D Architectural Context Models
	Learning Distinctive Local Object Characteristics
	Introduction
	Related Work
	Comparing Global Shape Descriptors
	Comparing Local Shape Descriptors
	An Overview on Shape Descriptors
	Supervised Learning in Shape Retrieval
	3D Shape Benchmarks

	Class Distribution Descriptors
	Combining Class Distribution Descriptors
	Comparing Class Distribution Descriptors

	Results on Princeton Shape Benchmark
	Experimental Setup
	Evaluation

	A Benchmark for 3D Architectural Data
	Classification Schemes
	Benchmark Models
	Retrieval results

	Conclusion

	Learning the Compositional Structure of Man-Made Objects
	Introduction
	Related Work
	Feature Selection and Descriptor Computation
	Feature Selection
	Descriptor Computation
	Integrating Feature Locations
	Spatial Relationship between Features
	Modified Feature Vectors and Kernel Functions
	Modified Combination of Class Distribution Descriptors

	Results
	Experimental Setup
	Evaluation
	Timings

	Conclusion

	Beyond Shape: Groups, Materials, and Text for 3D Retrieval
	Introduction
	Generalization Issues
	Contribution

	Intrinsic Groupings for Feature Localization
	Material Descriptors
	Textual Annotations
	Combining Shape, Material, Text, and Different Localization Strategies
	Conclusion

	II Graph-based Shape Retrieval for 3D Architectural Building Models
	Analyzing and Indexing Building Models
	Introduction
	Room Connectivity Graphs
	Node Attributes
	Edge Attributes

	Related Work
	Model Graphs
	Skeleton Graphs
	Reeb Graphs
	Summary

	Room Connectivity Graph Extraction
	Automatic Story Segmentation
	Floor Plan Generation
	Room Detection
	Door and Window Detection
	Detection of Vertical Connections and Room Refinement

	Searching for Structures in Room Connectivity Graphs
	Results
	Conclusion

	Retrieval and Classification with Room Connectivity Graphs
	Introduction
	Related Work
	Edit Distances
	Graph Kernels
	Graph Embeddings

	Method Overview
	Node and Edge Attributes
	Node Attributes
	High-level Node Attributes
	Edge Attributes

	Approximate Graph Edit Distances
	Algorithm
	Cost Functions

	Bag-of-Subgraphs Construction
	Subgraph Mining
	Codebook Generation
	Subgraph Embeddings

	Evaluation
	Methods and Parameters
	Influence of Attributes
	Retrieval Results
	Classification Results
	Timings

	Conclusion

	III Closure
	Conclusions
	Summary
	Future Work

	Bibliography

