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Abstract

The central topic of this work are masses and mixing parameters of the η–η′ system, which are in-
vestigated within the framework of Wilson twisted mass lattice QCD, using gauge configurations
provided by the European Twisted Mass Collaboration. We present the first calculation with
Nf = 2+1+1 dynamical quark flavors performed at three different values of the lattice spacing
and multiple values of the light quark mass, corresponding to charged pion masses ranging from
∼ 230MeV to ∼ 500MeV. Moreover, we use selected ensembles which differ only by the value of
the strange quark mass while all other parameters are kept fixed in order to obtain information
on the strange quark mass dependence of our observables. This allows us to carry out chiral
and continuum extrapolations with well-controlled systematics for the mass of the η meson.
Using the standard method, the statistical error for the η′ turns out significantly larger due to
the large contributions of quark disconnected diagrams and autocorrelation effects. However,
employing an improved analysis method based on an excited state subtraction in the connected
pieces of the correlation function matrix, it becomes feasible to obtain a result for the η′ mass
with controlled systematics as well. The values for both masses Mη = 551(8)stat(6)sys MeV and
Mη′ = 1006(54)stat(38)sys(+64)ex MeV turn out to be in excellent agreement with experiment.

Considering matrix elements in the quark-flavor basis, one expects the mixing in the η–η′ system
to be described reasonably well by a single mixing angle φ and two decay constants fl, fs. The
required accuracy of the matrix elements is again guaranteed by the aforementioned, improved
analysis method, yielding a value of φ = 46.0(0.9)stat(2.7)

◦
sys for the mixing angle extrapolated to

the physical point. In addition we obtain results for the ratios fl/fPS = 0.859(07)stat(64)sys and
fs/fK = 1.166(11)stat(31)sys . We find that our data is indeed described well by a single mixing
angle, indicating that the η′ is mostly a flavor singlet state. Moreover, our results confirm that
the charm quark does not contribute to any of the two states within errors.

Apart from the flavor singlet sector, we also perform calculations of masses for the remaining
light pseudoscalar octet mesons. Matching these masses to two-flavor Wilson chiral perturbation
theory allows for a determination of the low energy constants W ′

6, W
′
8 and their linear combina-

tion c2 which controls the O
(
a2
)
mass splitting between charged and neutral pion. We study

the dependence of these low energy constants on the number of dynamical quark flavors and for
different choices of the lattice action.

Parts of this work have been previously published in journals [1–3] and conference proceedings
[4–6]; see also the list included on the next page.
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Introduction

The rise of modern theoretical physics is very closely tied to the concept of symmetries. In
fact, quantum field theories which are based on so-called local gauge symmetries have been
proven to be tremendously successful in describing elementary particle interactions and provide
the theoretical foundation for the present standard model of particle physics. Besides local
symmetries which are essential to the construction of quantum field theories, there are further
global symmetries. These include discrete symmetries such as parity (P), time-reversal (T ) or
charge conjugation (C), as well as continuous ones like chiral symmetry. However, while gauge
symmetries are required to be exact for theoretical reasons, many other symmetries are actually
broken in nature, leading to a wide range of intriguing phenomena. In principle, there are
several ways of breaking symmetries. Firstly, there is explicit symmetry breaking which refers
to a situation where a symmetry is violated (or only realized to some approximation) due to
terms in the Lagrangian that do not respect the symmetry in question, while the remaining parts
of the Lagrangian are indeed invariant. For instance, the presence of non-vanishing quark masses
explicitly violates chiral symmetry in quantum chromodynamics (QCD), hence it is only realized
as an approximate symmetry. Secondly, there is also the possibility of spontaneous symmetry
breaking, which refers to a situation where the Lagrangian itself is invariant under a given
symmetry, but the system develops a non-trivial vacuum expectation value, hence breaking the
symmetry of the ground state. An example for such a mechanism is found in chiral symmetry,
which is spontaneously broken by a non-vanishing quark condensate1.

Another kind of symmetry breaking is again related to strong interactions and concerns only
a specific subgroup of chiral symmetry, the so-called flavor singlet axial rotations. It was dis-
covered in the 70s that – while this symmetry holds at the classical level of the theory – it is
anomalously broken by quantization through the occurrence of topologically non-trivial gluon
field configurations. Formally, the symmetry breaking manifests itself in the non-invariance of
the fermionic integration measure of the partition function of the theory. This symmetry vio-
lation is expected to affect the observed hadron spectrum. It is believed that a prime example
for its impact is given by the unnaturally large mass splitting that is experimentally observed in
the nonet of the lowest-lying pseudoscalar mesons. This mass splitting between the η and the η′

meson is also known as the U (1)A problem of QCD. Naively, one would expect these two mesons

1Note that in the standard model the non-vanishing quark masses are actually generated by spontaneous
symmetry breaking as well by means of the Higgs mechanism. However, considering only QCD itself, the presence
of a mass term still constitutes an example of explicit symmetry breaking.

1



2 INTRODUCTION

to have approximately the same mass, taking into account only their respective quark contents.
The study of the system formed by these two mesons constitutes the central topic of this work.
Since QCD is nowadays commonly accepted as the fundamental theory of strong interactions,
it would be very desirable to verify that this mass splitting can indeed be reproduced from first
principles without additional model assumptions. Due to the highly non-trivial nature of the
effect, this represents a crucial test case for QCD.

However, performing this calculation from first principles is not a straightforward task. Unlike
quantum electrodynamics (QED), which can be treated perturbatively in its coupling constant
at all relevant energies, such an approach is not valid for QCD at low energies, as the value of its
coupling constant increases for decreasing energies. This peculiar feature is caused by the non-
abelian structure of QCD, allowing for self-interactions among gluons, which is not the case for
the gauge boson of QED, i.e. the photon. Therefore, it is necessary to use alternative methods
in the low energy regime of QCD, such as effective field theories or lattice QCD (LQCD). The
effective field theory of QCD is known as chiral perturbation theory (χPT) and is based on the
approximate chiral symmetry for the two (or three) lightest quark flavors, leading to an expansion
in small momenta and masses. However, this expansion requires a rapidly increasing number of
so-called low energy constants (LECs) for each additional order. Since these constants are not
known a priori, they have to be determined from experimental input. In this work we will mainly
use LQCD which relies on Monte-Carlo methods to numerically calculate correlation functions
from QCD in discrete Euclidean spacetime. This approach does not require any further input
besides the Lagrangian of QCD itself and only a few experimentally measured quantities in order
to set the scale and fix the physical parameters (i.e. quark masses). Therefore, it is suitable to
study the hadron spectrum from first principles. Nevertheless, the corresponding calculations
are demanding from a computational and technical point of view. This is primarily caused by
large contributions of quark disconnected diagrams, which are intrinsically noisy and difficult to
calculate with sufficient statistical precision. It is also reflected by the rather small set of world
data from LQCD for the masses of the η and η′ mesons which has been available prior to this
work as shown in figure 1. Furthermore, the studies that lead to these results involved only one
or two values of the lattice spacing and very few different quark masses, which makes a reliable
estimation of systematic errors unfeasible. In particular, there are only few data available at
smaller values of the pion mass and no clear picture arises concerning an extrapolation to the
physical point.

For our investigations we employ Nf = 2 + 1 + 1 dynamical flavors of Wilson twisted mass
quarks at maximal twist. This allows us to use powerful variance reduction techniques that are
required to tackle the quark disconnected diagrams which are essential for the properties of the
η–η′ system. We will employ simulations at several values of the lattice spacing a and many
different values for the quark masses, which will allow us to perform controlled continuum and
chiral extrapolations, leading to a rather complete assessment of the systematic uncertainties
in our study. Through special techniques we will achieve precise values for the masses of the η
and η′ mesons as well as mixing parameters, which has not been feasible in the past due to the
intrinsic noise in these quantities and the resulting computational cost.

A secondary aim of this work concerns a particular feature of our lattice formulation, namely
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Figure 1: LQCD results for Mη and Mη′ available in literature from different collaborations
(RBC/UKQCD [7], HSC [8], UKQCD [9]). Only data obtained from simulations with at least
Nf = 2 + 1 dynamical quark flavors have been included in this plot. The data are plotted as
a function of the squared mass of the lightest pseudoscalar meson (i.e. the charged pion) and
have been converted to physical units.

the isospin breaking through large O
(
a2
)
lattice artifacts. In general, there are infinitely many

different ways to formulate a certain gauge theory on a lattice, the only requirement is that
they have to be equivalent in the continuum. However, aside from the continuum limit they
may differ and an important criterion for the construction of lattice actions is to reduce possible
artifacts occurring at finite values of the lattice spacing. This potentially allows to perform
simulations at computationally cheaper (i.e. larger) values of the lattice spacings. While one of
the main benefits of Wilson twisted mass fermions is its property of so-called automatic O (a)
improvement, this does not exclude the possibility of large O

(
a2
)
artifacts in certain quantities.

In fact, a corresponding effect is observed in Wilson twisted mass lattice QCD (WtmLQCD)
for the difference between the masses of the charged and the neutral pion. Since in the Wilson
twisted mass formulation the neutral pion receives contribution from quark disconnected dia-
grams similar to those occurring in the η–η′ system, the precise determination of this splitting
is again computationally demanding. A systematic, quantitative investigation of these kind of



4 INTRODUCTION

lattice artifacts can be performed within the framework of Wilson chiral perturbation (WχPT).
It extends the expansion of standard χPT to include powers of the lattice spacing, hence intro-
ducing additional LECs which parametrize effects induced by finite values of the lattice spacing.
In this context an additional advantage of LQCD is the possibility to study the properties of
further, artificial particles on the lattice, which can also be treated in the framework of WχPT,
hence giving additional input for the determination of LECs. An example for such a particle
is given by a neutral “connected-only” pion without the disconnected contributions which are
required in our formulation. Since we obtain the required observables in the pion sector as a
by-product of our study of the η–η′ system we can exploit these data to determine the low energy
constants which control the mass splitting for the charged and neutral pion at leading order in
the chiral expansion of WχPT. In addition, we will use data obtained in other lattice setups to
explore the dependence of these LECs on the details of the actual lattice action (e.g. number of
dynamical quark flavors or smearing) in order to gain some insight on how a twisted mass type
action with reduced isospin breaking effects could be defined.

The work is organized as follows: the theoretical foundations are discussed in chapter 1. This
includes a brief review of QCD itself and of selected topics of chiral perturbation theory which are
relevant to this work. A major part of this chapter is dedicated to a general introduction to lattice
QCD and the Wilson twisted mass formulation that has been employed in our investigations.
Chapter 2 outlines the relevant methods for hadron spectroscopy and related technical details
(e.g. definition of observables) of our studies. In addition, we include a summary of the statistical
methods used for the data analysis in this work. In chapter 3 we present the results and details
of our analysis. This covers the extraction of masses and decay parameters for pseudoscalar
flavor singlet and non-singlet mesons as well as the required extrapolations. We give results for
η and η′ masses extrapolated to the physical point, the mixing angle and further parameters
related to mixing derived from pseudoscalar matrix elements in the quark flavor basis. Moreover,
we detail the results of our analysis concerning Wilson chiral perturbation theory in the pion
sector and the determination of corresponding low energy constants. At the end of this work
we summarize the results of our studies and give an outlook on further possible investigations
and unresolved issues. The content of this work is complemented by three appendices, detailing
conventions, analytical results for correlation functions and some additional, technical details of
our fitting procedures.



Chapter 1

Theoretical Background

The purpose of this chapter is to provide an overview on the theoretical foundations for this
work. Starting with an introduction to quantum chromodynamics in the continuum, as the
underlying, fundamental quantum field theory describing strong interactions, some of the the-
oretical properties and relevant phenomenological aspects of QCD are discussed. Secondly, a
brief outline of chiral perturbation theory is included, which is required for certain parts of
the analysis of the results from our simulations. Next we focus on the formulation of QCD in
discretized Euclidean spacetime, a nowadays well-established approach that is known as lattice
QCD. In particular we shall consider Wilson twisted mass lattice QCD, which is the formulation
employed in our simulations and discuss several of its properties in detail. The final part of the
chapter is dedicated to meson spectroscopy on the lattice, again with particular emphasis on
the twisted mass formulation.

1.1 Quantum Chromodynamics

Quantum Chromodynamics is a local gauge theory that is commonly believed to be the fun-
damental theory of strong interactions. It is part of the standard model of particle physics,
which itself is a direct product of local gauge groups SU (3)⊗ SU (2)⊗U(1), incorporating also
electroweak interactions.

The fermionic particle content of QCD consists of quarks, which are assumed to be pointlike
particles described by Dirac fields qαi,A (x) in the fundamental representation of the gauge group
SU (Nc). These fields carry color charge denoted by the index A = 1, ..., Nc, where Nc = 3 is the
number of colors realized in nature. In addition, the quark fields exhibit a Dirac spinor index
α = 1, ..., 4, which we suppress in the following by using spinor fields instead of components
thereof. Finally, the lower index i refers to the quark flavor and is also employed to label the
respective quark mass mi. There are Nf = 6 different flavors known to be realized in nature,
denoted by u, d, s, c, b and t. For many purposes it is convenient to identify f ≡ qi(f) for a

5



6 CHAPTER 1. THEORETICAL BACKGROUND

given flavor f with index i(f)1.

Considering only global SU (Nc)-transformations, the corresponding free fermionic Lagrangian
with NF quark flavors reads

LF,free =

Nf∑

i=1

q̄i (x) (iγ
µ∂µ −mi) qi (x) , (1.1)

where the color fields qi,A have been arranged in qi (x) = (qi,1 (x) , ..., qi,Nc (x))
T .

The interaction between quarks is mediated by gluon fields Aa
µ (x) that belong to the adjoint

representation of SU (Nc). Since these are vector fields, they carry a spacetime index µ = 0, ..., 3
in addition to their color index a = 1, ..., N2

c −1. The emergence of this interaction is intrinsically
tied to the concept of local gauge invariance:

Under a local gauge transformation acting on some quark field q (x)

q (x) → Λ (x) q (x) , q̄ (x) → q̄ (x) Λ−1 (x) , Λ (x) ∈ SU (Nc) , (1.2)

one has
q̄ (x) ∂µq (x) → q̄ (x) ∂µq (x) + q̄ (x)Λ−1 (x) (∂µΛ (x)) q (x) , (1.3)

implying that the kinetic term in Eq. (1.1) needs to be modified in order to retain local gauge
invariance. This is achieved by replacing the standard derivative with a gauge-covariant deriva-
tive

Dµq (x) =
(
∂µ − igsT

aAa
µ

)
q (x) , (1.4)

where T a are the N2
c −1 generators of SU (Nc) and gs the coupling constant of the theory, which

determines the strength of the interaction. The generators satisfy the Lie algebra

[T a, T b] = ifabcT c , (1.5)

with SU (Nc) structure constants f
abc. For the special case of SU (3) a convenient representation

of the generators T a is given by T a = λa/2 where the λa are the eight Gell-Mann matrices
listed in appendix A.3. The covariant derivative Dµq (x) is by definition required to obey a
transformation rule similar to that of the quark color triplets q (x) themselves

Dµq (x) → Λ (x)Dµq (x) , (1.6)

leading to the following transformation behavior for the fields Aµ = T aAa
µ

Aµ → Λ (x)AµΛ
−1 (x)− i

gs
(∂µΛ (x)) Λ−1 (x) . (1.7)

Considering an infinitesimal gauge transformation

Λ (x) = exp (−iT aωa (x)) ≈ 1− iT aωa (x) , ωa (x) ≪ 1 , (1.8)

1For general indexing conventions see appendix A.1. Indices irrelevant to the current context will be suppressed
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where ωa (x) are the parameters of SU (Nc), one obtains

Aa
µ → Aa

µ + fabcωbAc
µ − 1

gs
∂µω

a . (1.9)

The corresponding field strength tensor is given by

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν , (1.10)

and transforms as
T aF a

µν → Λ (x)T aF a
µνΛ

−1 (x) , (1.11)

which yields
F a
µν → F a

µν + fabcωbF c
µν , (1.12)

for an infinitesimal gauge transformation. A gauge invariant quantity of dimension four, con-
sisting purely of gauge fields can either be constructed using only F a

µν but also from its dual

F̃ a
µν = ǫµνρσF

a,ρσ , (1.13)

where ǫµνρσ denotes the totally antisymmetric tensor of rank four.

Arranging the Nf quark flavors in ψ =
(
q1 (x) , ..., qNf

(x)
)T

and defining the quark mass matrix
M = diag

(
m1, ...,mNf

)
, the most general Lagrangian invariant under local SU (Nc) trans-

formations, compatible with Lorentz invariance, hermiticity and satisfying the constraints of
renormalizability reads [10–12]

LQCD

[
ψ, ψ̄, A

]
= ψ̄ (iγµDµ −M)ψ
︸ ︷︷ ︸

≡LF

− 1

4
F a
µνF

a,µν

︸ ︷︷ ︸

≡LG

− θ0
g2s

64π2
F a
µν F̃

a,µν

︸ ︷︷ ︸

≡Lθ

. (1.14)

For our purposes it is convenient to perform the quantization by means of the path integral
formulation, which will later allow for a natural extension to discretized spacetime. To this end
one defines the classical action of QCD

SQCD

[
ψ, ψ̄, A

]
=

∫

d4xLQCD

[
ψ, ψ̄, A

]
, (1.15)

such that the partition function (the path integral) of QCD is given by

Z =

∫

DψDψ̄DA exp
(
iSQCD

[
ψ, ψ̄, A

])
. (1.16)

1.1.1 General properties and parameters

As a result of the non-abelian structure of the Lagrangian in Eq. (1.14), it does not only contain
interactions between gauge fields and fermions via the covariant derivative but also triple and
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quartic self-interactions of the gauge fields. These are induced by the additional term gsf
abcAb

µA
c
ν

in the field strength tensor which is absent in an abelian gauge theory such as quantum elec-
trodynamics (QED) for which the gauge fields do not carry the corresponding group charge. It
is commonly assumed that these self-interactions of the gluon fields account for the fact that
only color-neutral objects can be observed directly, i.e. quarks and gluons are always bound in
hadrons such as mesons or baryons. This experimentally well-known, but not mathematically
rigorously proven property of QCD is called (color) confinement.

Moreover, the non-abelian structure of QCD allows for a feature that is known as asymptotic
freedom [10, 13, 14] which refers to the fact that QCD at short distances and large energies
resembles a free theory. This becomes apparent in the running coupling constant of QCD,
which reads to one-loop order in perturbation theory

g2s
(
µ2
)
=

48π2

(11Nc − 2Nf ) log
(

µ2

Λ2
QCD

) , (1.17)

for some energy scale µ2. For Nf < 11
2 Nc – which is fulfilled by Nc = 3 and Nf = 6 – the

coupling constant decreases for energies larger than the intrinsic scale ΛQCD. This particular
feature of QCD implies the failure of standard perturbation theory at low energies for which
gs ≈ 1 is not a small parameter anymore. The value of ΛQCD depends on the choice of the
renormalization scheme and the number of active quark flavors nf , i.e. the number of quarks for
which mi < µ holds. Literature values of ΛQCD in the widely used MS-renormalization scheme
and for various values of nf are usually of order

ΛQCD,MS ∼ 200 − 400MeV , (1.18)

e.g. recent, non-perturbative determinations [15,16] for two active quark flavors quote Λ
nf=2

QCD,MS
=

315 (30) MeV and Λ
nf=2

QCD,MS
= 310 (20) MeV, respectively.

Further fundamental parameters of QCD are given by the quark masses mi. As stated before,
quarks cannot be observed directly, which is why their masses have to be determined indirectly
from measurements of hadronic properties. Therefore, values for the quark masses are always de-
pendent on the renormalization scheme and scale. The Particle Data Group quotes the following
values [17]

mu = 2.3+0.7
−0.5 MeV md = 4.8+0.7

−0.3 MeV ms = 95(5)MeV
mc = 1.275(25)GeV mb = 4.18(3)GeV mt = 173.5(6)(8)GeV

. (1.19)

Apart from the top quark, these are the running masses in the MS-scheme defined at a scale of
µ = 2GeV for i = u, d, s, whereas for i = c, b the scale has been chosen to match the resulting
mass of the heavy quark itself, i.e. the quoted values are mMS

i (µ = mMS
i ). For the definition of

the top quark mass we refer to the notes included in [17]. Besides color charge and mass, quarks
also carry a fractional electric charge, which is +3/2 for u, c, t and −1/3 for d, s, b.

In principle, there is one more fundamental parameter (θ0) in the last term Lθ of the QCD
Lagrangian. This term is also known as the θ-term and gives rise to P- and CP-violating
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interactions. Naively, one would expect the parameter θ0 to be of natural size, i.e. θ0 =
O (1). However, it turns out in experiments that θ0 actually has to be very small and is even
compatible with zero. For instance, the neutron electric dipole moment dn, which should be
non-zero only in the presence of CP-violating interactions, has been restricted by experiment to
|dn| < 2.9 × 10−26 e cm [18]. Combining this value with theoretical predictions for dn results in
an upper bound for θ0. In [19] chiral perturbation theory with three quark flavors has been used
to derive |θ0| < 2.5 × 10−10. The smallness of θ0 represents the so-called strong CP-problem.
Since strong CP-violation itself is not within the scope of this work, Lθ will be dropped from
the full Lagrangian for the purpose of numerical simulations.

1.1.2 Chiral symmetry and anomaly

QCD features several exact symmetries, which include Lorentz invariance, local gauge invariance
and invariance under charge conjugation (C). In addition to these exact symmetries, it exhibits
certain approximate symmetries. In order to disclose them, we consider vanishing masses for all
Nf quark flavors and decompose ψ (x) in left- and right-handed components ψL (x), ψR (x)

ψL/R (x) = PL/Rψ (x) =
1

2
(1∓ γ5)ψ (x) . (1.20)

This procedure leads to a decoupling of left- and right-handed quark fields in the fermionic
Lagrangian LF in Eq. (1.14)

ψ̄i (x) (iγ
µDµ −mi)ψi (x) → ψ̄i,L (x) iγµDµψi,L (x) + ψ̄i,R (x) iγµDµψi,R (x) . (1.21)

Moreover, there is no mixing between left- and right-handed fields present in the gauge sector,
such that the full QCD Lagrangian in Eq. (1.14) is now invariant under a global U (Nf )L ⊗
U(Nf )R symmetry. In order to further study the properties of this symmetry, it is useful to
consider the decomposition into irreducible subgroups

SU (Nf )L ⊗ SU (Nf )R ⊗U(1)V ⊗U(1)A . (1.22)

The invariance under the SU (Nf )L ⊗ SU (Nf )R subgroup is known as chiral symmetry and the
case of vanishing quark masses is called the chiral limit. The left- and right-handed Noether
currents, that are induced by chiral symmetry read

Ja
µ,L/R = ψ̄ (x) γµPL/RT

aψ (x) . (1.23)

The vector and axial vector components of these currents can be separated, allowing us to define

V a
µ = Ja

µ,R + Ja
µ,L , (1.24)

Aa
µ = Ja

µ,R − Ja
µ,L . (1.25)

The divergences of these currents are given by

∂µV a
µ = ψ̄ (x) [M,T a] iψ (x) , (1.26)
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∂µAa
µ = ψ̄ (x) {M,T a} iγ5ψ (x) , (1.27)

implying conservation in the limit of vanishing quark masses.

Concerning the two U (1) factors, the corresponding singlet vector and singlet axial vector cur-
rents are given similar to Eqs. (1.24),(1.25) by

V 0
µ = ψ̄ (x)T 0γµψ (x) , (1.28)

A0
µ = ψ̄ (x)T 0γµγ5ψ (x) , (1.29)

where T 0 =
√

1/(2Nf )1Nf×Nf
. This normalization is chosen such that the trace condition in

Eq. (A.7) holds also for T 0. Unlike chiral symmetry, the invariance under global U (1)V actually
remains exact even for the case of massive quarks, i.e. the divergence of the corresponding
current vanishes

∂µV 0
µ = 0 , (1.30)

implying baryon number conservation.

However, the remaining U (1)A subgroup turns out to behave very differently. Although it is
a symmetry of the classical theory, it is anomalously broken due to quantum effects [20, 21].
In [22] it was shown that in the path integral formalism this becomes manifest in a shift of
the fermionic integration measure in the partition function in Eq. (1.16). Considering a global
U (1)A transformation

ψ → exp (iαγ5)ψ, ψ̄ → ψ̄ exp (iαγ5) , (1.31)

where α denotes the group generator, the fermionic integration measure transforms as

DψDψ̄ → exp

(

−iαNf

∫

d4x
g2s

32π2
F a
µν F̃

a,µν

)

DψDψ̄ ≡ exp

(

−2iαNf

∫

d4xω (x)

)

DψDψ̄ .
(1.32)

In this expression the topological charge density ω (x) has been defined, which represents a total
divergence

ω (x) =
g2s

64π2
F a
µν F̃

a,µν =
g2s

32π2
∂µKµ (1.33)

of a gauge-variant current Kµ (Chern-Simons 3-form)

Kµ = 2ǫµνρσ

(

Aν,a∂ρAσ,a − gs
3
fabcAν,aAρ,bAσ,c

)

. (1.34)

The associated topological charge (Pontryagin index)

Qt =

∫

d4xω (x) (1.35)

takes integer values and is related to distinct topological sectors of QCD. Since Qt is given as an
integral of a total divergence it may be rewritten as a surface integral by application of Stokes’
theorem

Qt ∼
∫

d4x ∂µKµ =

∮

dσµKµ . (1.36)
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Naively, such an integral would yield zero for gauge field configurations that vanish sufficiently
fast at infinity. However, it was realized by ’t Hooft that QCD allows for a particular kind of
field configuration, known as instantons, which cause non-zero contributions [23–25].

Furthermore, the aforementioned shift in the integration measure effectively adds a term to the
QCD Lagrangian which is of the same form as Lθ, hence it can be considered a shift of θ0

θ0 → θ0 + 2Nfα . (1.37)

The notion of θ0 as an angle is related to the fact that the topological contribution in the path
integral

Z ∼
∫

DψDψ̄ exp iSθ =

∫

DψDψ̄ exp iθ0Qt (1.38)

is invariant under any shift of θ0 by integer multiples of 2π. Note that in the chiral limit this
implies that one can always remove the θ-term by application of a global U (1)A transformation,
rendering the actual value of θ0 irrelevant.

Finally, the divergence of the singlet axial vector current takes the following explicit form

∂µA0
µ = ψ̄ (x) 2MT 0iγ5ψ (x) +

√

2Nf ω (x) . (1.39)

Therefore, the anomaly is present regardless of taking the chiral limit of the theory or considering
the case of massive quarks. It is only removed in the so-called large-Nc limit [26], i.e. sending
Nc → ∞ while keeping g2sNc = const. This behavior is caused by ω (x) being suppressed by a
factor g2s = O

(
N−1

c

)
. Together with the chiral limit this procedure restores the invariance of

the theory under U (1)A.

1.1.3 Spontaneous symmetry breaking and pseudoscalar mesons

From the physical values of the quark masses in Eq. (1.19) it is apparent that the quarks can be
arranged in two groups consisting of three light and three heavy flavors, respectively. The scale
that separates the two groups is roughly ∼ 1GeV, which happens to be the mass scale of the
lightest baryons. Since the divergences of the vector and axial vector currents in Eqs. (1.26) and
(1.27) are proportional to the quark mass matrix, one should clearly not expect chiral symmetry
to hold to a reasonable level in case of the heavy quarks flavors. Nevertheless, the approximate
chiral symmetry for the three light flavors proves particularly useful when dealing with QCD
at low energies, hence it is worthwhile to consider for now only u, d and s quarks, i.e. setting
Nf = 3.

In this case the approximate conservation of the currents in Eqs. (1.24) and (1.25) should result
in two octets of hadrons with opposite parity. However, this parity doubling is not observed
experimentally, hence chiral symmetry cannot be realized in the Wigner-Weyl mode, but has
to be spontaneously broken and realized in the Goldstone mode. If we assume that the chiral
group is spontaneously broken to its vector subgroup

SU (Nf )L ⊗ SU(Nf )R
SSB−→ SU (Nf )V , (1.40)
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one expects to find N2
f − 1 = 8 pseudoscalar pseudo-Goldstone bosons, inheriting their parity

assignments from the broken group generators. For the case of only the two lightest quark
flavors these can be identified with the pion triplet (π±, π0), which are indeed the lightest
mesons observed in nature [17]

M exp
π± = 139.57018(35)MeV, M exp

π0 = 134.9766(6)MeV ,
M exp

K± = 493.677(16)MeV, M exp
K0 =M exp

K̄0 = 497.614(24)MeV ,

M exp
η = 547.853(24)MeV.

(1.41)

For Nf = 3 the octet is completed by two charged kaons (K±), two neutral kaons (K0, K̄0) and
the η with heavier masses compared to the pions, which is mostly due to contributions of the
strange quark.

In addition to the octet mesons, there is a flavor singlet field associated to the U (1)A which is
experimentally identified with the η′ (up to mixing; see subsection 1.1.5). Naively, one would
expect the mass of this field to be of the order of the other octet mesons with strange quark
content. Surprisingly, it turns out that the mass found in experiment is roughly twice as large [17]

M exp
η′ = 957.78(6)MeV . (1.42)

This extraordinary large mass represents the so-called U (1)A-problem, i.e. the absence of a
ninth (pseudo-) Goldstone boson in the physical spectrum. In order to gain further insight on
how the U (1)A-anomaly generates an additional contribution to Mη′ it is useful to consider
flavor singlet and octet fields η0 and η8. In the chiral limit, flavor symmetry becomes exact and
one can identify the physical η,η′ with η8 and η0, respectively. This corresponds to ignoring any
mixing in the η–η′ system which will be discussed in subsection 1.1.5. Considering the matrix
element of the η0-field with the flavor singlet axial vector current in momentum space

〈0|A0
µ (0) |η0 (p)〉 = if0pµ , (1.43)

where the singlet decay constant f0 has been introduced, it is possible to determine the contri-
bution of the anomaly to the mass of the η0. To this end, one takes the divergence of the matrix
element in the chiral limit and applies Eq. (1.39), leading to

〈0| ∂µA0
µ (0) |η0 (p)〉 =

√
6 〈0|ω (0) |η0 (p)〉 = f0M

2
η0 . (1.44)

Again, it is only due to non-trivial, topological effects that this matrix element yields a non-zero
contribution as it vanishes to any finite order in perturbation theory. Therefore, the large mass
of the η′ has to be considered a generic non-perturbative effect. From Eq. (1.43) it follows that
f0 = O

(
O
√
Nc

)
holds in the chiral limit, because the matrix element on the left side involves one

quark loop counting as O (Nc) and one meson normalization factor which is of order O
(
1/
√
Nc

)
.

For additional insight into these counting rules see [27] and the discussion in the next subsection.
Together with Eq. (1.44), where the topological charge density ω (x) ∼ g2s yields another order
O
(
M−1

C

)
, this leads to M2

η0 = O
(
N−1

c

)
. This implies, that treating QCD in the large-Nc limit,

the squared physical η′ mass has to vanish as 1/Nc [27, 28]. As will be discussed in the next
subsection, this feature allows to consistently include the η′ in the framework of an effective field
theory.
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1.1.4 Chiral perturbation theory

One approach to tackle the non-perturbative regime of QCD is given by χPT [29,30], an effective
field theory exploiting the approximate chiral symmetry of QCD. The formalism required to
construct χPT as an effective field theory was developed in the late 60’s by Callan, Coleman,
Wess and Zumino and is known as “CCWZ”-formalism [31, 32]. For a modern formulation of
the procedure see [33]. Since we are mainly interested in applications of χPT to LQCD results
as well as certain features related to the mixing in the η–η′ system, we will restrict ourselves to
a discussion of the basic principles, avoiding several technical details. For the explicit inclusion
of discretized spacetime in the formulation of χPT we refer to section 1.3.5.

The fundamental principle which allows to obtain actual predictions from an effective field theory
relies on a conjecture by Weinberg [34]. It states that it is possible to determine S-matrix
elements in any quantum field theory perturbatively from the most general effective Lagrangian
respecting all the symmetries of the underlying theory while complying with the principles of
analyticity, unitarity and cluster decomposition. In general, this conjecture leads to an effective
Lagrangian consisting of an infinite number of terms and parameters called low energy constants,
whose numerical values cannot be fixed from the underlying symmetries alone. These LECs can
be considered to parametrize the ignorance towards processes at energies beyond the low energy
regime for which the effective theory is valid, hence they have to be determined from some
additional (experimental, LQCD) input.

In the case of χPT the effective Lagrangian describes the dynamics of Goldstone bosons (mesons)
and may also contain interactions involving further hadronic states (e.g. baryons). However, for
the purposes of this work it is sufficient to restrict ourselves to the mesonic case only. In order to
render χPT predictive, one first needs to introduce some counting scheme which allows to classify
terms in the effective Lagrangian as well as the resulting Feynman diagrams with respect to their
relative importance. To this end one employs Weinberg’s power counting scheme which basically
is an expansion in small momenta and masses. In this scheme one analyzes the behavior of terms
in the effective Lagrangian Leff , as well as that of amplitudes under rescaling of derivatives (or
momenta) and masses by a common expansion parameter δ, i.e.

p→ δp, mmeson → δMmeson, mq → δ2mq . (1.45)

This allows to arrange the terms L(n) in the effective Lagrangian according to the combined
number of derivatives and meson masses

Leff = L(0) + L(1) + L(2) + ... , (1.46)

and to assign a chiral dimension D to every amplitude, given by

M → δDM . (1.47)

The latter is then used to decide which diagrams contribute to a calculation of a certain order
in χPT. This procedure yields the desired perturbative expansion, that allows one to consider
only a finite subset of terms in the Lagrangian and diagrams contributing to the amplitude in
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question. Note that for the case of purely mesonic interactions there are only terms including an
even number of derivatives and meson masses in the effective Lagrangian in Eq. (1.46), because
quark masses count as O (δ) and all occurring Lorentz indices are contracted either by the metric
tensor gµν or the fourth order totally antisymmetric tensor ǫµνρσ.

Since we are interested in the η–η′ system we will need to include a singlet field into the effective
field theory. A systematic construction of the corresponding effective Lagrangian has originally
been given in by Gasser and Leutwyler in [30], although effective Lagrangians including the
singlet field have already been used in [28, 35, 36]. For our purposes it is convenient to mostly
stick to the formulation in [37–39], with some minor changes in notation. Furthermore we will
restrict all further discussion to the isospin symmetric limit mu = md ≡ ml, which is sufficient
for our applications.

As mentioned before, χPT describes the dynamics of Goldstone bosons, whereas QCD is formu-
lated in terms quarks and gluons. In general, the Goldstone fields are represented by matrix-
valued elements in H/G, where H is the full symmetry group of the Hamiltonian and G the
symmetry group of the ground state. For now let us consider the case of the standard chiral
group, i.e. H = SU(3)L × SU (3)R. and choose G = SU (3)V , which implements the pattern
of spontaneous chiral symmetry breaking as given in Eq. (1.40). This implies for the coset
space H/G = SU(3) and we choose the broken operators to be Xa = T a

L − T a
R, where T

a
L, T

a
R

are the generators of SU (3)L and SU (3)R, respectively. The unbroken generators are given by
T a = T a

L +T a
R, where again the T a are our standard generators of SU (3) defined in terms of the

Gell-Mann matrices. A convenient choice of basis for the Goldstone field U (x) is then given by

U (x) = exp (iϕ (x)) , (1.48)

where ϕ = 2T aϕa = λaϕa contains the dim (H) − dim (G) = 8 fields corresponding to the
broken generators Xa = T a

L −T a
R. With this choice, the field U (x) behaves linearly under chiral

transformations L,R ∈ U(3)L,R
U (x) → RU (x)L† , (1.49)

whereas the octet field ϕ itself transforms in a complicated, nonlinear way. In terms of meson
fields we have

ϕ =
√
2






1√
2
π0 + 1√

6
η8 π+ K+

π− − 1√
2
π0 + 1√

6
η8 K0

K− K̄0 − 2√
6
η8




 . (1.50)

If we extend the symmetry group of the Hamiltonian to H = U(3)L × U(3)R, an additional
singlet field is introduced which shows up as a phase in U (x)

U (x) = exp

(

iϕ (x) +
i

3
ϕ0 (x)

)

. (1.51)

For the singlet field we choose ϕ0 = 6T 0η0, such that its overall normalization agrees with our
previous definition of T 0 and we end up with the same form of the kinetic term as for the octet
mesons2. Nevertheless, pulling 1

3 out of φ0 turns out to be convenient for the construction of the

2Note that this choice differs by an additional factor of
√
6 from the convention used by [37–39], but matches the

one used in the review of η,η′-mixing by Feldmann [40] which we follow for the discussion in the next subsection.
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effective Lagrangian because the singlet field shows up as the phase of the determinant of U (x)

log detU = iϕ0 , (1.52)

without an additional numerical factor for this particular choice of normalization.

The effective Lagrangian has to be invariant under U (3)L × U(3)R transformations, which
motivates the treatment of the vacuum angle θ0 as an external field θ (x), transforming under
U (1)A rotations according to

θ → θ − 2Nfα . (1.53)

This transformation behavior is chosen in such a way that it cancels the shift in Eq. (1.37) which
is introduced by the fermionic integration measure of the path integral. The field U and the
quark mass matrix M are both required to transforms as

U → RUL† , M → RUL† , (1.54)

where L ∈ U(3)L and R ∈ U(3)R. In addition, for the singlet field we have

log detU → log det+2Nfα , (1.55)

hence one can build the invariant combination

θ̄ = log detU + θ , (1.56)

that turns out to be convenient for the construction of the effective Lagrangian. Furthermore
one introduces the usual external fields s (x), p (x), vµ (x), aµ (x) in the QCD Lagrangian

L̃QCD = L0
QCD − ψ̄ (s− iγ5p)ψ + ψ̄γµ (vµ + γ5aµ)ψ − θ (x)ω , (1.57)

where L0
QCD denotes the massless QCD Lagrangian without Lθ. Obviously, the original QCD

Lagrangian is recovered for the choice p = vµ = aµ = 0 and s = M . Defining lµ = vµ − aµ and
rµ = vµ + aµ one ends up with the following transformation behavior for the external currents

lµ → LlµL
† + iL∂µL

† , (1.58)

rµ → RrµR
† + iR∂µR

† , (1.59)

s+ ip→ R (s+ ip)L†. (1.60)

The covariant derivative acting on the field U takes the following, simple form

DµU = ∂µU + i [U, vµ]− i {U, aµ} = ∂µU + iUlµ − irµU . (1.61)

For the singlet field φ0 and the variable θ we have

Dµφ0 = ∂µφ0 − 2 tr [aµ] , Dµθ = ∂µθ + 2 tr [aµ] , (1.62)

implying that the covariant derivative acting on the invariant variable θ̄ is given by Dµθ̄ = ∂µθ̄
as expected. The most general effective Lagrangian to second order in the derivative expansion
reads [30,37]

L(0,2)
eff =− V0

(
θ̄
)
+ V1

(
θ̄
)
tr
[
DµU

†DµU
]
+ V2

(
θ̄
)
tr
[
(s+ ip)U †]+ V ∗

2

(
θ̄
)
tr
[
(s− ip)U

]
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+ V3
(
θ̄
)
Dµφ0D

µφ0 + V4
(
θ̄
)
Dµφ0D

µθ + V5
(
θ̄
)
DµθD

µθ , (1.63)

where the trace is understood to be taken in flavor space. In contrast to the standard SU(3)

case one cannot neglect the zeroth order term L(0)
eff = −V0

(
θ̄
)
in the effective Lagrangian, as

it is not an irrelevant constant anymore but a function of the invariant variable θ̄. In fact this
is true for all the potentials Vi which are not LECs as in the standard SU(3) case but become
functions of θ̄. They encode the dynamics of the singlet field φ0 and are not restricted by chiral
symmetry, i.e. they are each represented by an infinite power series in θ̄. As discussed in [30], the
potentials Vi

(
θ̄
)
can be expanded in powers of 1/Nc which allows to keep only a finite amount of

terms. To this end one considers a general connected (Q+ T )-point function GQ,T consisting of
the time-ordered product of Q quark currents Ji (xi) = q̄ (xi) Γiq (xi), where Γi denote matrices
acting in spin and flavor space, and T topological charge densities ω (xi)

GQ,T = 〈0|TJ (x1) ... J (xQ)ω (xQ+1) ... ω (xQ+T ) |0〉conn . (1.64)

This kind of Green function has a definite order in powers of Nc

GQ,T =

{
O
(
N1−T

c

)
for Q > 0

O
(
N2−T

c

)
for Q = 0

, (1.65)

which we exploit to reveal the large-Nc dependence of the generating functional Z̃ correspond-
ing to the Lagrangian L̃QCD in Eq. (1.57). For this purpose one introduces Nc-independent
functionals f1 (θ/Nc) and f2 (s, p, vµ, aµ, θ/Nc), such that Z̃ takes the following form

Z̃ = N2
c f1

(
θ

Nc

)

+Ncf2

(

s, p, vµ, aµ,
θ

Nc

)

+O
(
N0

c

)
. (1.66)

Plugging in an expansion of U in the meson fields φ, φ0 into the effective Lagrangian in Eq. (1.63)
and comparing the terms which are independent of φ and φ0 with the expression for Z̃ reveals
the large-Nc behavior of the potentials Vi

Vi
(
θ̄
)
= Nni

c vi

(
θ̄

Nc

)

, (1.67)

where n0 = 2, n1,2 = 1 and n3,4,5 = 0. The functions vi in the above expression do not depend
on Nc anymore. Moreover, parity implies that

Vi
(
θ̄
)
=
∑

n

V
(2n)
i θ̄2n, i = 0, 1, 3, 4, 5 , (1.68)

V2
(
θ̄
)
=
∑

n

V
(2n+1)
2 θ̄2n+1 . (1.69)

where the coefficients V
(2n)
0,1,3,4,5 and V

(2n+1)
2 are suppressed by increasing powers of 1/Nc. This

feature allows to introduce a unified power counting scheme

p = O (δ) , mq = O
(
δ2
)
,

1

Nc
= O

(
δ2
)

(1.70)
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and to keep only a finite number of terms in the potentials Vi. The form of the potentials
Vi in the Lagrangian in Eq. (1.63) is not unique but can be changed by some transformation
U → U exp if

(
θ̄
)
which leaves the overall structure of the Lagrangian invariant [30]. Here we

follow the approach in [37] and exploit this ambiguity to remove the term ∼ V4. At this point we
may also discard the vacuum angle by setting θ = 0, as it was only required for the construction
of the effective Lagrangian and not any actual physics. This additionally eliminates the last term
∼ V5 and implies θ̄ → φ0 =

√
6η0. Keeping only the terms that survive in the large Nc-limit the

relevant potentials read [30,37] 3

V0 = ǫ0 + 3τη20 +O
(
N−2

c

)
, (1.71)

V1 =
1

8
f2 +O

(
N−1

c

)
, (1.72)

V2 =
1

4
f2B2

(

1− i

√

2

3
Λ2η0

)

+O
(
N−1

c

)
, (1.73)

V3 =
1

24
f2Λ1 +O

(
N−2

c

)
. (1.74)

The very first term ǫ0 = O
(
N2

c

)
in V0 is just an irrelevant cosmological constant, whereas τ

coincides at leading order with the topological susceptibility from pure Yang-Mills theory [27,38],
i.e. τ = χt (0) |YM +O

(
N−1

c

)
, where

χt (0) |YM =

∫

dx4 〈0|Tω (x)ω (0) |0〉 |YM . (1.75)

Moreover, f = O
(
N

1/2
c

)
is identified with an universal, leading order octet (pion) decay constant

in the chiral limit, c.f. Eq. (1.84), and B0 is related to the non-vanishing chiral condensate
B0 ∼ 〈0| q̄q |0〉 signaling the spontaneous breakdown of chiral symmetry. The latter occurs only
in the combination χ = 2B0 (s+ ip), which becomes

χ = 2B0M , (1.76)

for the choice s = M , p = 0. Finally, the parameters Λ1, Λ2 are again specific to the inclusion
of the singlet field, they are absent in the SU (3) version of χPT. The leading order effective
Lagrangian now reads

Lδ0

eff =
1

8
f2tr

[
DµU

†DµU
]
+
1

8
f2tr

[
χ†U + U †χ

]
−3τη20 , (1.77)

where the form of the first two terms is identical to the ones in the standard SU (3) theory. For
the discussion of η,η′-mixing we also include the relevant terms appearing in the Lagrangian at
NLO [37,40]

Lδ2

eff =L5tr
[
DµU

†DµU
(
χ†U + U †χ

)]
+ L8tr

[
χ†Uχ†U + U †χU †χ

]
+

3Note that our normalization for the universal decay constant f is given by f =
√
2F , where F is the decay

constant used by the authors of [30,37]
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+
f2

4
Λ1∂µη0∂

µη0 + i
f2

4
Λ2η0tr

[
χ†U − U †χ

]
+ ... . (1.78)

Considering only terms including octet fields in the Lagrangian in Eq. (1.77) and choosing the
quark mass matrix to be diagonal and real, i.e. s = M one obtains the usual leading order
expressions for the masses of the corresponding mesons

M2
π = 2B0ml +O

(
δ4
)
, (1.79)

M2
K = B0 (ml +ms) +O

(
δ4
)
, (1.80)

M2
η =

2

3
B0 (ml + 2ms) +O

(
δ4
)
. (1.81)

Note that to this order one identifies Mη = Mη8 and that due to the assumption of exact
isospin symmetry the pion triplet becomes mass degenerate as well as the kaons, although
Mπ 6= MK 6= Mη still holds because of ml 6= ms. Combining these three expressions yields the
leading order Gell-Mann Okubo (GMO) mass relation

3M2
η = 4M2

K −M2
π +O

(
δ4
)
, (1.82)

implying that
3M2

η

4M2
K −M2

π

≈ 1 , (1.83)

which turns out to be accurate up to ∼ 6% employing the values of M exp
π± , M exp

K± and M exp
η as

listed in Eq. (1.41).

Before proceeding with the discussion of the mass for the η0-field, we briefly consider its decay
constant. In the chiral limit it receives two contributions from tree-level graphs, i.e. the standard
one from the first term in the Lagrangian in Eq. (1.77) and an additional one from the term
∼ Λ1 in Eq. (1.78). This implies that one actually has to deal with two distinct decay constants
for the octet and the singlet

f0 =
√

1 + Λ1f, f8 = f , (1.84)

even without taking any higher order loop graphs into account or considering massive quarks.
Note that the scale dependence of f0 due to its anomalous dimension is to this order absorbed
into Λ1 [37]. A dedicated discussion of mixing and decay constants is included in the next
subsection.

For the singlet field, the last term in Eq. (1.77) yields a non-vanishing mass in the chiral limit

M̊2
η′ =

12

f20
χt (0) |YM +O

(
N−2

c

)
. (1.85)

This expression represents the famous Witten-Veneziano formula in its original form [27]. To
leading order there is no mixing present and the singlet field η0 is identified with the η′. In
fact, the above mass contribution vanishes as O(N−1

c ), which is the expected behavior for M2
η′ .

However, for non-vanishing quark masses there is an additional contribution at leading order,
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which is induced by the second term in Eq. (1.77) similar to the masses of the octet mesons,
such that the mass of the singlet takes the form

M2
η′ =

12

f20
χt (0) |YM +

2

3
B0 (2ml +ms) +O

(
δ4
)
. (1.86)

Plugging in the leading order expressions for the octet meson masses in Eqs. (1.79)–(1.81) and
reshuffling of terms, leads to the full Witten-Veneziano formula [41] in its standard form

M2
U(1)A

≡ 12

f20
χt (0) |YM =M2

η′ +M2
η − 2M2

K +O
(
δ4
)
, (1.87)

where the mass contribution due to the U (1)A anomaly has been denoted by MU(1)A
.

1.1.5 Mixing in the η–η′ system

In the last subsection it has been shown that even in the chiral limit there are two different decay
constants f0, f8 required for the singlet and the octet field. Actually the situation becomes even
more involved for non-vanishing quark masses and if higher orders in the chiral expansion are
included, leading to mixing between octet and singlet states. In this subsection we will discuss
η,η′-mixing starting from the general definition via matrix elements and resort to χPT only for
the sake of disclosing relations and differences between mixing schemes. Since we are ultimately
interested in performing non-perturbative calculations directly from lattice QCD, it should – at
least in principle – be possible to access such matrix elements directly. The central aspects of
the subsequent discussion are based on the comprehensive review article by Feldmann [40] and
publications [42, 43]. Further relevant details, particularly on the χPT side of the subject can
again be found in [30,37].

In general, decay constants are defined for any pseudoscalar meson P from axial vector matrix
elements

〈0|Aa
µ |P (p)〉 = ifaPpµ , (1.88)

which leads to
〈0| ∂µAa

µ |P (0)〉 = faPM
2
P , (1.89)

for projection to zero momentum. Assuming that η and η′ are not flavor eigenstates, each of
them exhibits a coupling to the singlet and octet current A0

µ and A8
µ, respectively. Therefore,

one ends up with four independent decay constants for the η–η′ system, which are commonly
parametrized in terms of two decay constants f0, f8 and two mixing angles φ0, φ8

(
f8η f0η
f8η′ f0η′

)

=

(
f8 cosφ8 −f0 sinφ0
f8 sinφ8 f0 cosφ0

)

≡ Ξ (φ8, φ0) diag (f8, f0) . (1.90)

The choice of A0
µ, A

8
µ together with P = η, η′ in Eq. (1.88) defines the so-called singlet-octet

basis, which is special in the sense that the decay constants faP defined in Eq. (1.88) relate the
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singlet and octet fields ϕ0, ϕ8 introduced in the last section directly to the physical fields η,η′

via
ϕa =

(
faη
)−1

η +
(
faη′
)−1

η′ . (1.91)

Moreover, employing the effective Lagrangians in Eqs. (1.77),(1.78), it is possible to relate the
mixing parameters in the η–η′ system to the remaining octet decay constants fπ, fK and the
parameter Λ1

f20 =
(
f0η
)2

+
(
f0η′
)2

=
1

3

(
2f2K + f2π

)
+Λ1f

2
π , (1.92)

f28 =
(
f8η
)2

+
(
f8η′
)2

=
1

3

(
4f2K − f2π

)
, (1.93)

f0f8 sin
(
φ8 − φ0

)
= f0η f

8
η + f0η′f

8
η′ = −2

√
2

3

(
f2K − f2π

)
, (1.94)

where the parameter L5 has been expressed in terms of fπ and fK [37]. As pointed out in [40],
these expressions have certain implications concerning the mixing angles φ0, φ8. First of all,
from the last relation one infers that φ0 6= φ8 because the experimental values of fπ and fK are
given by [44]

f expπ = 130.41(3)(20)MeV, f expK = 156.1(2)(8)(2)MeV , (1.95)

such that fK ≈ 1.197fπ holds due to SU(3)F breaking effects. In the chosen basis and to the
given chiral order the additional, OZI-violating corrections are specific to the singlet sector,
i.e. the term ∼ Λ1 = O

(
N−1

c

)
affects neither f8 nor the angles φ0, φ8 but only the parameter

f0. From the experimental values of the meson masses in Eqs. (1.41),(1.42) and the Witten-
Veneziano formula in Eq. (1.87) it follows that the contribution of the U (1)A anomaly clearly
dominates over SU (3)F violations, i.e. M2

K−M2
π < M2

U(1)A
, leading to the expectation that the

mixing angles φ0, φ8 are rather small, hence

∣
∣
∣
∣

φ0 − φ8
φ0 + φ8

∣
∣
∣
∣
/≪1 . (1.96)

Therefore, one should not expect the mixing in the singlet-octet basis to be described to any
reasonable approximation by means of a single angle. The two angles only coincide for the case
of unbroken SU (3)F symmetry, for which they are in fact exactly zero in the chosen parametriza-
tion.

However, the fact that there are different types of contributions to the mixing, i.e. SU (3)F -
breaking and OZI-violating effects ∼ Λ1, can be exploited in order to choose a basis in which
the two resulting mixing angles do not exhibit a sizable splitting. To this end one introduces
the quark flavor basis with the axial vector currents A0

µ and A8
µ replaced by the combinations

Al
µ =

2√
3
A0

µ +

√

2

3
A8

µ =
1√
2

(
ūγµγ5u+ d̄γµγ5d

)
, (1.97)

As
µ =

√

2

3
A0

µ − 2√
3
A8

µ =s̄γµγ5s , (1.98)
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in which the light quarks and the strange quark contributions are disentangled. This is the
reason why this basis is more convenient in lattice simulations as its currents have the same
structure as the standard interpolating operators; see section 2.1, which allows direct access to
the corresponding matrix elements. In exact analogy to the singlet-octet basis this basis again
allows for a parametrization in terms of two decay constants and two mixing angles

(
f lη f sη
f lη′ f sη′

)

= Ξ (φl, φs) diag (fl, fs) , (1.99)

where the mixing matrix Ξ has the same form as the one defined in Eq. (1.90). In this basis the
relations between mixing parameters in the η–η′ system and fπ, fK, Λ1 read

f2l =
(
f lη
)2

+
(
f lη′
)2

= f2π +
2

3
Λ1f

2
π , (1.100)

f2s =
(
f sη
)2

+
(
f sη′
)2

= 2f2K − f2π +
1

3
Λ1f

2
π , (1.101)

flfs sin
(
φl − φs

)
= f lηf

s
η + f lη′f

s
η′ =

√
2

3
Λ1f

2
π . (1.102)

The most important feature of the quark flavor basis becomes manifest in the last expression,
which is now entirely given by an OZI-violating contribution ∼ Λ1, amounting to an additional
suppression of O

(
δ2
)
for the difference |φl − φs| compared to |φ0 − φ8|. The difference between

the mixing angles in the quark flavor basis does not receive any contribution from SU (3)F
breaking effects to the given order in the chiral expansion. Furthermore, in a SU (3)F symmetric
world the angles φl ≈ φs would take a value of

φSU(3)F
= arctan

√
2 , (1.103)

hence their numerical value is not expected to be small. Therefore, we have
∣
∣
∣
∣

φl − φs
φl + φs

∣
∣
∣
∣
≪ 1 . (1.104)

motivating a simplified mixing scheme in the quark flavor basis with only one angle φ

(
f lη f sη
f lη′ f sη′

)

= Ξ (φ) diag (fl, fs) +O (Λ1) , (1.105)

where Ξ (φ) ≡ Ξ (φ, φ). The mixing angle φ is related to the double ratio of amplitudes

tan2 (φ) = −
f lη′f

s
η

f lηf
s
η′
. (1.106)

Up to OZI-violating terms of O (Λ1) one has the following relations between the parameters of
the simplified mixing scheme in the quark flavor basis and those of the singlet-octet basis [42]

φ0 =φ− arctan
(√

2fl/fs

)

+O (Λ1) , (1.107)
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φ8 =φ− arctan
(√

2fs/fl

)

+O (Λ1) . (1.108)

This allows to convert the mixing parameters determined in the quark flavor basis into the angles
of the singlet-octet basis. However, such a conversion is again only exact up to subleading, OZI-
violating contributions. In this context the SU(3)F breaking becomes manifest in the decay
constant ratio fl/fs 6= 1. Similarly, the decay constants in the quark flavor basis and singlet-
octet basis are related up to an OZI-violating correction as well

f20 =
1

3

(
2f2l + f2s

)
+O (Λ1) , (1.109)

f28 =
1

3

(
f2l + 2f2s

)
+O (Λ1) , (1.110)

which completes the set of relations between both mixing schemes.

In the present discussion we have so far only considered axial vector currents, which occur
in the general definition of decay constants. However, one may also consider pseudoscalar
matrix elements in order to retrieve information on the mixing parameters. In principle, this
is possible due to the relation between axial vector and pseudoscalar matrix elements which
is given non-perturbatively by Eq. (1.39). Nonetheless, this relation itself is not sufficient for
any practical purposes, e.g. relating the mixing parameters defined from axial vector matrix
elements to pseudoscalar ones, mainly because it requires knowledge of the additional matrix
element involving the topological charge density. Therefore, one needs to gain further, detailed
insight on how the pseudoscalar matrix elements are linked to the mixing parameters, which can
again be achieved by the use of χPT. To this end it is most convenient to consider pseudoscalar
currents in the quark flavor basis in analogy to Eqs. (1.97),(1.98).

P l =
1√
2

(
ūγ5u+ d̄γ5d

)
, (1.111)

P s = s̄iγ5s , (1.112)

such that the matrix elements for pseudoscalar mesons P are given by

hiP = 2mi 〈0|P i |P〉 . (1.113)

In order to make contact with the quark flavor basis parametrization for axial vector matrix
elements in Eq. (1.99) one can use the effective Lagrangians in Eqs. (1.77),(1.78), leading to
expressions for the matrix elements hiP in terms of decay constants fl, fs, the mixing angle φ and
the parameters B0, L8, Λ2. Again, terms of O (Λ1) and O (Λ2) are only subleading corrections
and hence dropped to the order in the chiral expansion at which only one mixing angle is required
in the quark flavor basis. The parameters, B0 and L8 can be treated for expressions involving
meson masses and decay constants, such that they do not explicitly appear in the final result
either, which reads [40]

(
hlη hsη
hlη′ hsη′

)

= Ξ (φ) diag
(
M2

πfl,
(
2M2

K −M2
π

)
fs
)
+O (Λ1,Λ2) . (1.114)
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A crucial feature of this mixing scheme is given by the fact that it is intrinsically dependent on
χPT. Unlike in the axial vector case, it is not straightforward to obtain two different angles,
because this requires to take higher orders in the chiral expansion into account. While for the
axial vector currents this is trivially achieved by simply not employing χPT at all, one has
explicitly to take terms of O (Λ1,Λ2) into account in the case of pseudoscalar currents, hence
introducing additional dependence on a priori unknown low energy constants. The intrinsic
dependence on effective field theory is a drawback which cannot be avoided if one wants to
consider pseudoscalar matrix elements instead of their axial vector counterparts. However, the
angle φ itself can still be determined in exact analogy to Eq. (1.106) by simply replacing the
axial vector matrix elements by their respective pseudoscalar counterparts

tan (φ) =

√
√
√
√−

hlη′h
s
η

hlηh
s
η′
, (1.115)

because the terms involving meson masses and decay constant parameters on the right hand
side of Eq. (1.114) cancel exactly in this ratio.

Concerning the foregoing discussion of η,η′-mixing, a few concluding remarks are in order with
respect to our lattice simulations. First of all, one should be aware that avoiding the isospin
limit for light quarks introduces some additional mixing with the neutral pion, which would
lead to a more complicated mixing pattern. Although our simulations do in fact involve isospin
breaking of a very different kind, they are carried out for mu = md, hence there is no mixing
present between η,η′ and the neutral pion and the corresponding matrix elements are zero by
definition. This is why we do not need to consider the neutral pion in this particular context.

Secondly, one might probe gluonic contributions to the η,η′ by including a matrix element of
the topological charge density

Ag
P = 〈0| 2ω |P〉 . (1.116)

This allows for an additional mixing angle related to the gluonic content of the states which is
given by

tanφg = −Ag
η

Ag
η′
, (1.117)

However, we will consider only fermionic operators, hence such matrix elements are beyond the
scope of this work. The same applies for possible mixing with glueballs, which would require
implementation of gluonic operators as well. Nonetheless, the aforementioned gluonic mixing
angle enters also implicitly in an extension of the mixing scheme to include possible effects of
the charm quark.

This represents the third and last issue, i.e. one might question whether there really is no impact
of the charm quark on the η–η′ system. This scenario can be covered by an extended mixing
scheme, which includes the physical ηc as a third state. Again, such an extension is conveniently
discussed in the quark flavor basis [40]. To this end we consider an additional axial vector and
pseudoscalar current for the charm quark to the quark flavor basis

Ac
µ = c̄γµγ5c P c = c̄γ5c , (1.118)
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such that the resulting f iP, h
i
P for the two currents each yield a 3×3-matrix which we denote by

(
f iP
)
,
(
hiP
)
, now including flavor indices i = l, s, c and physical states P = η, η′, ηc. The extended

mixing scheme for axial vector and pseudoscalar matrix elements is then given by

(
f iP
)
= Ξ (φ, φg, φc) diag (fl, fs, fc) +O

(
Λ1, 1/m

2
c

)
, (1.119)

(
hiP
)
= Ξ (φ, φg, φc) diag

(
M2

πfl,
(
2M2

K −M2
π

)
fs,M

2
ηcfc

)
+O

(
Λ1,Λ2, 1/m

2
c

)
, (1.120)

employing the same single-angle mixing pattern for u, d and s that has already been introduced
for the case of the SU (3)F quark flavor basis and neglecting terms that are suppressed in the
1/mc expansion. The mixing matrix reads

Ξ (φ, φc, φg) =





cosφ − sinφ −φc sinφg
sinφ cosφ φc cosφg

φc sin (φg − φ) −φc cos (φg − φ) 1



 , (1.121)

implementing the additional assumption that the angle φc which parametrizes the charm admix-
ture to the two light states is a small quantity. Since there is a dynamic charm quark included
in our simulations it is in principle possible to investigate whether we observe a non-vanishing
charm quark contribution to η,η′.

1.2 Lattice QCD

In this section we introduce the formulation of QCD in discrete Euclidean spacetime, which
ultimately allows one to perform numerical simulations by means of Monte-Carlo methods. The
original approach of quantizing a gauge theory on a Euclidean spacetime lattice was established
in a paper by Wilson [45] which dates back to 1974. Since these days the procedure has become
a common tool to treat the non-perturbative regime of QCD, thus large parts of the following
presentation are based on standard textbooks [46–48].

1.2.1 QCD in Euclidean spacetime

Starting from the partition function of QCD in Eq. (1.16), the expectation value of any observable
O
[
ψ, ψ̄, A

]
is given by

〈O〉 = 1

Z

∫

DψDψ̄DA O
[
ψ, ψ̄, A

]
exp

(
iSQCD

[
ψ, ψ̄, A

])
. (1.122)

However, this expression itself is not yet suitable for numerical calculations. This is caused on
the one hand by the oscillating behavior of the functional ∼ exp (iSQCD) and on the other hand
by the fermion fields being represented by anti-commuting Grassmann variables which cannot
easily be implemented numerically. The first issue is resolved by applying a Wick rotation
x0 → −ix0, which transforms the Minkowski product into an Euclidean product

x2 = x20 − |~x|2 → −|xE |2 = −x20 − |~x|2 . (1.123)
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For the action this implies
iSQCD → −SQCD,E , (1.124)

such that the integrands in the expression for the expectation value 〈O〉 and the partition
function Z itself are each replaced by a real and exponentially damped, functional. From now
on we work solely in Euclidean spacetime, hence it is convenient to identify t ≡ x0 and suppress
the index E which has been used to label quantities in Euclidean spacetime.

The second obstacle can be circumvented by integrating out the fermionic fields analytically,
which is possible as Z is formulated in terms of classical fields ψ, ψ̄, Aµ only and does not
involve any operators. For the partition function this leads to

Z =

∫

DAdetD exp (−SG [A]) , (1.125)

where D = γµDµ −M denotes the Euclidean Dirac operator and SG the pure gauge part of the
QCD action. Provided that detD is a real and positive definite quantity, the exponential factor
in Z now simply represents a Boltzmann weight factor because the action SG [A] is real as well
and bounded from below. The functional determinant of the Dirac operator is given by the sum
of vacuum diagrams and encodes the dynamics due to fermionic degrees of freedom. Moreover,
it is also possible to integrate out the fermions in the expression for the expectation value 〈O〉.
However, this requires the application of Wick’s theorem to replace the time ordered product
of fermion fields in the observable O by a product of propagators D−1. Defining the effective
action

Seff [A] =

∫

d4x (− log detD + LG) , (1.126)

one ends up with an expression for 〈O〉

〈O〉 = 1

Z

∫

DAO
[
A,D−1

]
exp (−Seff [A]) , (1.127)

for which the integration measure depends only on the gauge fields. Albeit formulated in con-
tinuous Euclidean spacetime, this expression has a form which allows one to treat it numerically
for a given lattice formulation. Nonetheless, there is an additional subtlety which is related to
the fact that we are no longer working in Minkowski spacetime. This concerns the property
of Hilbert space positivity and the existence of a non-negative, hermitian Hamiltonian, which
are not guaranteed to hold in the Euclidean formulation. As it was shown by Osterwalder and
Schrader [49, 50], these two properties have to be replaced by a condition which is called re-
flection positivity in order to be able to retain the full quantum field theory from a particular
formulation in Euclidean spacetime.

Another complication is introduced by the fermionic determinant that arises as a consequence
of integrating out the Grassmann fields. The numerical treatment of this determinant in lattice
simulations turns out to be very expensive as it is a highly non-local object. Therefore, in the
early days of lattice QCD it was common practice to employ the choice detD ≡ 1 which is also
known as the quenched approximation. This is equivalent to the use of a pure Yang-Mills action
in the sea quark sector, i.e. setting the number of sea quarks Ns to zero. Obviously, for this
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Figure 1.1: Sum of quark connected and disconnected diagrams contributing to the η′ propagator

constraint any dynamical effects mediated by sea quarks are neglected. In modern days, it has
become feasible to include dynamical fermions, which turns out to be a crucial requirement to
tackle the η–η′ system. The reason for this lies in a significant sea quark contribution to the
propagator Gη′

(
p2
)
of the η′. This propagator can be decomposed in a connected diagram C

(
p2
)

and an infinite sum of disconnected loop graphsDi

(
p2
)
, with i = 0, 1, 2, ... internal fermion loops

as depicted in Fig. (1.1). The connected piece is just the usual Goldstone propagator which is
given by

C
(
p2
)
=

1

p2 +M2
π

. (1.128)

Following the presentation in [46], the zeroth order hairpin insertion D0

(
p2
)
can be expressed

in the large-Nc limit by

D0

(
p2
)
= −C

(
p2
) Nvλ

2

Nc
C
(
p2
)
, (1.129)

where λ2/Nc is a contribution induced by the anomaly and Nv denotes the number of valence
quarks. Each further loop insertion yields an additional factor of −Nsλ

2/NcC
(
p2
)
, leading to

a geometric series for the η′-propagator

Gη′
(
p2
)
= C

(
p2
)
(

1− Nv

Ns

)

+
Nv

Nc
C̃
(
p2
)
, C̃

(
p2
)
=

1

p2 +M2
π + λ2Ns/Nc

. (1.130)

In the unquenched case Ns = Nv = Nf > 0 the first term in Gη′
(
p2
)
vanishes and the remaining

expression yields a massive propagator, which becomes massless only in the limit Nc → ∞, as
expected. For partial quenching Nv > Ns > 0 there is still a massive η′-propagator but also
an additional Goldstone mode occurs by virtue of the first term in Gη′

(
p2
)
. However, in the

quenched case Ns = 0 the situation is fundamentally different, because only the very first
disconnected diagram in the bubble sum survives

Gη′
(
p2
)Ns=0

= C
(
p2
)
− C

(
p2
) Nv

Nc
λ2C

(
p2
)
. (1.131)

Besides the Goldstone propagator there is now a second state present which contains two poles
and that has negative norm. Apart from the fact that the latter violates the constraints of a
valid quantum field theory, this implies that there is no η′ meson present in quenched QCD
regardless of the actual choice of Nv and Nc.
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1.2.2 Lattice regularization

As a next step towards a lattice regularized version of QCD we formally redefine the covariant
derivative in terms of a limiting procedure

Dµ = lim
a→0

1

a
(U(x;x+ aµ̂)ψ (x+ aµ̂)− ψ (x)) , (1.132)

where U(x; y) is a SU (3) matrix in color space, which is called a parallel transporter and that
is required to transforms under local SU (3) transformations as

U(x; y) → Λ (x)U(x; y)Λ−1 (y) . (1.133)

The notation µ̂ refers to the unit vector in µ-direction and U(x; y) itself is given by

U(x; y) = exp



−iagsT a

y∫

x

dzµAa
µ (z)



 . (1.134)

It is convenient to introduce a shorthand notation for the parallel transporter

Uµ(x) ≡ U(x;x+ aµ̂) , (1.135)

such that the argument x refers to its position in spacetime and the index µ to its direction.
Note that the transformation law in Eq. (1.133) implies that U(x+ aµ̂;x) = Uµ(x)

† holds.
The parameter a will later be identified with the lattice spacing of the discretized theory. For
infinitesimal a one can replace the integral in Eq. (1.134) by a linear approximation

Uµ(x) = exp

(

−iagsT aAa
µ

(

x+
aµ̂

2

)

+O
(
a3
)
)

. (1.136)

Plugging this expression into Eq. (1.132) and taking the continuum limit a→ 0 reproduces the
standard covariant derivative as introduced in Eq. (1.4).

x+ aν̂

x+ aµ̂+ aν̂

x

x+ aµ̂

Figure 1.2: Graphic depiction of a plaquette with arrows denoting the orientation of the parallel
transporters. The origin of the first Uµ(x) in Eq. (1.137) is positioned in the lower left corner.

Keeping a finite in the expression for Dµ, it is rather straightforward to formulate a naive
discretization for the fermionic part LF of the QCD Lagrangian. For the purely gluonic part
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LG we still need to construct a suitable, gauge-invariant expression. To this end we introduce
the so-called plaquette U1×1

x,µν as the product of four parallel transporters with arguments chosen
in such a way that they describe a unit lattice square in spacetime

U1×1
x,µν = Uµ(x)Uν(x+ aµ̂)Uµ(x+ aν̂)† Uν(x)

† , (1.137)

The plaquette itself is not yet gauge-invariant, but this can be cured by taking its trace, which
we expand in a to obtain

tr
[
U1×1
x,µν

]
= tr [13×3]−

1

4
a2g2sF

a
µνF

a,µν +O
(
a6
)
. (1.138)

Besides the occurrence of an additional factor of g2a4, the second term on the right-hand side
exhibits the structure of LG.

In order to regularize QCD, one replaces the continuous Euclidean spacetime by a hyper-cubic
lattice with spacing a. Furthermore, any actual simulation requires a finite number of lattice
sites, hence one has to work in a finite volume specified by the extensions of the lattice in spatial
and time direction, which we denote by aT and aL, respectively. This requires some kind of
boundary conditions, which are chosen periodic in our simulations with exception of the quark
fields that are provided with anti-periodic boundary conditions in time direction. The latter
choice is a necessary condition to obtain reflection positivity.

While the quark fields ψ (x) are defined on the lattices sites themselves, the gauge fields are
incorporated by the so-called gauge links which are given by the linear approximation of the
parallel transporters as defined in Eq. (1.136) for finite (though still small) values of a. In this
context one introduces the notion of a gauge configuration U , which refers to the set of all gauge
links on a given lattice

U ≡ {Uµ(x)} . (1.139)

In lattice simulations one first generates n such gauge configurations {Uµ(x)}i, by some Markov
process

{Uµ(x)}1
W−→ {Uµ(x)}2

W−→ . . .
W−→ {Uµ(x)}n , (1.140)

such that they are distributed according to the weight

W [U ] = detD exp (−SG [U ]) . (1.141)

For the stochastic estimation 〈O〉n of the expectation value 〈O〉 this yields

〈O〉n =
1

n

n∑

i=1

O
(
{Uµ(x)}i

)
, (1.142)

with an error of O (1/
√
n), assuming statistically independent gauge configurations.

In the regularized theory the measure DA of the functional integral in the partition function is
replaced by a product over gauge links

∫

DA→
∫
∏

x,µ

dUµ(x) , (1.143)
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where on the right-hand side the gauge invariant Haar measure is employed for the integration
over the link variables, which are matrix-valued elements of the compact group SU (3); see most
standard textbooks for further details, e.g. [46, 47]. Similarly, the functional integration over
fermionic degrees of freedom changes to

∫

DψDψ̄ →
∫

dψ (x) dψ̄ (x) . (1.144)

Furthermore, the integration in the action is replaced by a finite sum over lattice sites and links.

Finally we remark that the notion of ”lattice regularization” refers to the fact that the intro-
duction of discrete Euclidean spacetime imposes an ultra-violet cutoff ∼ a−1 to all momenta.
As long as the volume is kept finite, the momenta p take discrete values, given by

p = ±2πn

aL
, n = 1, ..., L/2 . (1.145)

1.2.3 Lattice actions

In this subsection we turn to the actual discretization of the QCD action. We will focus on the
fermionic part of the action and restrict ourselves to a very brief introduction of lattice gauge
actions as the latter are only of indirect relevance to this work.

Let us start by defining the covariant forward and backward difference operators ∇µ and ∇∗
µ by

∇µψ (x) =
1

a
(Uµ(x)ψ (x+ aµ̂)− ψ (x)) , (1.146)

∇∗
µψ (x) =

1

a

(

ψ (x)− Uµ(x− aµ)†ψ (x− aµ̂)
)

, (1.147)

such that

Dnaive
µ =

1

2

(
∇µ +∇∗

µ

)
, (1.148)

reproduces the covariant derivative in Eq. (1.132) in the naive continuum limit (i.e. formally
sending a→ 0). The resulting fermionic lattice action reads

Snaive
F

[
ψ, ψ̄,U

]
= a4

∑

ψ̄ (x) (Dnaive +m0)ψ (x) . (1.149)

where Dnaive = γµD
naive
µ denotes the naive Dirac operator in Euclidean spacetime and m0 is the

bare quark mass. Although this action appears to be a valid choice, it is labeled naive as it
suffers from a major deficiency known as fermion doubling. This refers to the occurrence of a
multiplicity m = 2d in the fermionic spectrum, which is related to the spacetime dimension d.
To understand the origin of this multiplicity consider the naive Dirac operator in momentum
space

Dnaive (p) =
i

a
γµ sin (apµ) = iγµpµ +O

(
a2
)
, (1.150)
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which has zeros for pµ = 0, π/a. This yields 2d − 1 additional poles in the corresponding quark
propagator, which represent the doublers in the spectrum. In order to cure this problem, Wilson
introduced a modified version of the Dirac operator

DW =
1

2
γµ
(
∇µ +∇∗

µ

)
− 1

2
ar∇µ∇∗

µ , (1.151)

which differs by a term of O (a) from the naive discretization, such that the covariant deriva-
tive is still retained in the continuum. Valid choices for the parameter r are subject to the
constraint −1 ≤ r ≤ +1. Although the Wilson term vanishes in the continuum, it affects the
spectrum at finite values of the lattice spacing. This is again apparent from the momentum
space representation of the Wilson Dirac operator

DW (p) =
i

a
γµ sin (apµ) +

2r

a
sin2 (apµ) , (1.152)

where the second term yields an additional contribution of O (r/a) to the mass of the doublers
in the corresponding propagator, hence shifting them to the cutoff scale and effectively removing
them from the spectrum. However, the removal of doublers comes at a price as the Wilson term
explicitly breaks chiral symmetry at finite values of the lattice spacing. This issue will be ad-
dressed in more detail in the next subsection. The breaking of chiral symmetry introduces lattice
artifacts of O (a), whereas the naive action exhibits only artifacts of O

(
a2
)
. This represents a

serious drawback in numerical simulations as the computational cost increases for smaller values
of lattice spacing. Another complication concerns the renormalization of the bare quark mass,
which is no longer purely multiplicative but receives an additive contribution. Therefore, it is
convenient to introduce a subtracted bare quark mass

mq = m0 −mcrit , (1.153)

where the critical mass parameter mcrit has to be properly determined such that a well-defined
chiral limit is obtained, e.g such that the mass of the lightest pseudoscalar state vanishes in this
limit.

The full Wilson action reads

SW
[
ψ, ψ̄,U

]
= a4

∑

x

ψ̄ (DW +m0)ψ + SW
G [U ] , (1.154)

where SW
G denotes the Wilson plaquette action

SW
G [U ] = β

∑

x

∑

1≤µ<ν

(

1− 1

3
Re tr

[
U1×1
x,µν

]
)

. (1.155)

The parameter β = 6/g2s is related to the bare coupling constant of QCD and for β > 0 the
action is real and positive. In lattice simulations this action is usually rewritten by introducing
the hopping parameter

κ ≡ 1

2am0 + 8r
, (1.156)
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which is employed in a rescaling of the fermion fields

ψ (x) →
√

2κ

a3
ψ (x) , ψ̄ (x) →

√

2κ

a3
ψ̄ (x) . (1.157)

such that the resulting hopping parameter representation of the fermionic action takes the form

SW
F

[
ψ, ψ̄,U

]
=
∑

x

(

ψ̄ (x)ψ (x)− κψ̄ (x)
∑

µ

(

Uµ(x) (r + γµ)ψ (x+ aµ̂)

+Uµ(x− aµ̂)† (r − γµ)ψ (x− aµ̂)
)
)

. (1.158)

We remark that the Wilson action complies with reflection positivity, provided that the value
of the hopping parameter respects the constraint [51]

|κ| < 1

6
. (1.159)

Before closing this subsection, we briefly mention that there are several ways to implement
improvement with respect to cut-off effects of a given lattice formulation. As the computational
cost of lattice simulations increases significantly for smaller values of a, such improvements help
to avoid large corrections towards the continuum limit. A very general way to achieve such
an improvement has been introduced by Symanzik [52–54] and is therefore known as Symanzik
improvement program. It basically amounts to adding suitable counter terms ciOi to the action
SW

[
ψ, ψ̄,U

]
, i.e.

SW
[
ψ, ψ̄,U

]
→ SW

[
ψ, ψ̄,U

]
+
∑

i

ciOi

[
ψ, ψ̄,U

]
, (1.160)

where Oi

[
ψ, ψ̄,U

]
are operators restricted by the symmetries of the theory and the ci are

coefficients that may be tuned to cancel discretization effects. For the fermionic part of the
action it is possible add the so-called Sheikholeslami-Wohlert term δSsw

[
ψ, ψ̄,U

]
(also known

as clover term) [55] to the action, which is basically given by a single dimension-five operator

δSsw

[
ψ, ψ̄,U

]
= a5csw

∑

x

ψ̄ (x)
i

4
σµνF̂µν [U ]ψ (x) . (1.161)

where F̂µν [U ] denotes some lattice representation of the field strength tensor built from gauge
links. However, it is in general not sufficient to simply tune the coefficient csw to obtain O (a)-
improved results using this action. Instead there may be further, operator-specific coefficients
depending on the observable in question. The reason for this is that the occurrence of discretiza-
tion effects is not solely tied to the action itself, but they may also be introduced by certain
field combinations that are used to build observables, e.g. interpolating operators [56]. An
O (a)-improved fermionic action that does only require to tune a single parameter is obtained in
the Wilson twisted mass formulation of lattice QCD which will be detailed in the next section.
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Avoiding the discussion of any further technical details, we finally introduce two improved
versions of the Wilson plaquette action which are relevant to this work and that can be obtained
from the following generic gauge action

Sgeneric
G =

β

3

∑

x



b0
∑

1≤µ<ν

(
1− Re tr

[
U1×1
x,µν

])
+ b1

∑

µ6=ν

(
1−Re tr

[
U1×2
x,µν

])



 , (1.162)

for suitable choices of the parameters b0 and b1, which are subject to the normalization condi-
tion b0 = 1 − 8b1. In this expression U1×2

x,µν denotes rectangular (1 × 2) Wilson loops defined in
analogy to the plaquette in Eq. (1.137). For the choice b1 = 0 these rectangular loops do not
contribute and the original, unimproved Wilson plaquette action SW

G is recovered up to some
physically irrelevant constant. Choosing b1 = −1/12 yields the tree-level Symanzik improved

action StlSym
G [57, 58] which has been used in simulations by the European Twisted Mass Col-

laboration (ETMC) with two dynamical quark flavors. Finally, the gauge configurations used
in the computations for this work have been generated employing the even further improved
Iwasaki action SIwa

G , which is obtained for b1 = −0.331 [59–61].

1.2.4 Symmetries on the lattice

While the standard Wilson action explicitly breaks chiral symmetry, it still shares the ordinary,
discrete symmetries of QCD. First of all we have invariance under charge conjugation, which for
our choice of representation of the Dirac matrices is defined by

C :







ψ (x) → iγ0γ2ψ̄ (x)T

ψ̄ (x) → −ψ (x)T iγ0γ2
Uµ(x) → Uµ(x)

∗
. (1.163)

Similarly, the regularized theory is invariant under parity and time-reversal, which are given by

P :







ψ (x0, ~x) → γ0ψ (x0,−~x)
ψ̄ (x0, ~x) → ψ̄ (x0,−~x) γ0
U0(x0, ~x) → U0(x0,−~x)†
Uk(x0, ~x) → Uk(x0,−~x− ak̂)† , k = 1, 2, 3

, (1.164)

and

T :







ψ (x0, ~x) → iγ0γ5ψ (−x0, ~x)
ψ̄ (x0, ~x) → ψ̄ (−x0, ~x) iγ0γ5
U0(x0, ~x) → U0(−x0 − a, ~x)†

Uk(x0, ~x) → Uk(−x0, ~x) , k = 1, 2, 3

, (1.165)

respectively. Besides the fact that invariance under the combined symmetries CPT is required
for any valid quantum field theory, it is in principle possible to violate discrete symmetries of
continuum QCD at finite values of the lattice spacing. Nonetheless, it is favorable to retain
as many such symmetries as possible in the regularized theory, as they are – for example –
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required to classify interpolating operators with respect to their quantum numbers. If such
regularization-dependent symmetry violations are present, they may introduce additional mixing
between states, which renders a reliable extraction more difficult. As we will see this is the case
for Wilson twisted mass fermions, which will be discussed in the next section.

Concerning the aforementioned explicit breaking of chiral symmetry by the Wilson term at
finite values of the lattice spacing, we remark that there is a no-go theorem by Nielsen and
Ninomiya [62–64] stating that it is impossible to construct a lattice action Slatt simultaneously
satisfying all of the following properties

1. Slatt is hermitian and local (to be more precise, by “local” we mean that the Dirac operator
has to be exponentially bounded).

2. Slatt is chirally symmetric in the limit of vanishing quark masses.

3. Slatt has the correct continuum limit.

4. There are no massless fermion doublers present in the spectrum.

In principle, this still allows for several ways to circumvent the occurrence of massless dou-
blers. However, many modern formulations either explicitly break chiral symmetry (Wilson
type fermions), or replace it by a different property that reproduces the correct chiral symmetry
in the continuum, i.e. the Ginsparg-Wilson relation [65]

{γ5,D} = aDγ5D , (1.166)

where D denotes the corresponding Dirac operator. This relation is fulfilled by the overlap
formulation [66,67] sacrificing strict locality of the Dirac operator and the domain wall formu-
lation [68] which is based on the introduction of an additional spacetime dimension. Although
these exactly chiral formulations have advantages such as a well-defined topological charge, they
come at a price, i.e. they are numerically much more expensive. For overlap fermions this
results from being not local in the strict sense as – for example – Wilson fermions are, whereas
for domain wall fermions this is simply caused by the additional spacetime dimension.

Another issue that needs to be addressed concerns once again global U (1)A transformations.
The reason for this is that one might question if and how the anomaly is realized in a lattice
regularized theory. In continuum QCD, the anomaly arises as a result of the integration measure
of the partition function requiring regularization and it is possible to derive the anomaly equation
of QCD directly from the famous triangle graph. In the latter case one needs to introduce
some regularization as well, because the corresponding diagrams exhibit a linear divergence.
However, in a lattice regularized theory, such as the Wilson formulation, the regularization is
already implemented at the level of the path integral, which explicitly breaks chiral symmetry
and effectively removes the anomalous term in Eq. (1.39) at finite values of the lattice spacing.
Although the correct anomaly may in principle be recovered in the continuum limit, it is not
obvious that this actually holds for any such lattice formulation.
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For Wilson fermions the subject has first been studied in [69], where it was shown that the
correct anomaly is indeed reproduced for Wilson fermions in the continuum limit as a residual
effect of the chiral symmetry breaking at finite values of the lattice spacing. Moreover, it was
shown that the flavor non-singlet currents are conserved in the chiral continuum limit, just as
it is the case for the chiral limit of standard QCD. Finally, we remark that one can actually
prove that the anomaly is reproduced in the continuum limit for a rather general class of lattice
actions subject to the following constraints [70]:

1. Slatt respects gauge invariance and has the correct continuum limit.

2. Its Dirac operator is local.

3. There are no massless fermion doublers present in the spectrum.

Leaving aside the fact that the existence of the correct continuum limit has not strictly been
proven for any formulation, these conditions are fulfilled by Wilson type fermions and apply
also to the other formulations that have been previously mentioned, with the exception of naive
fermions that obviously do not exhibit the last required property.

1.3 Wilson twisted mass formulation

In this section we introduce the Wilson twisted mass (Wtm) formulation of LQCD which is used
in our numerical studies. To illustrate the basic concept and features of this formulation we first
consider the case of a mass degenerate doublet of light quarks. In a second step we proceed with
the introduction of a non-degenerate doublet which is required to describe strange and charm
quarks. The implementation of a non-degenerate quark doublet leads to a somewhat more
complicated structure with respect to symmetries and renormalization. For a comprehensive
review of the subject we refer to [71].

1.3.1 Light sector

Starting from the action of continuum QCD in Eq. (1.15) for a light, mass-degenerate quark
doublet we consider an axial transformation of the corresponding doublet fields ψl, ψ̄l

ψl = exp

(
i

2
ωlγ5τ

3

)

χl , ψ̄l = χ̄l exp

(
i

2
ωlγ5τ

3

)

, (1.167)

where the parameter ωl denotes the twist angle in the light quark sector and χl, χ̄l are the light
quark doublet fields in the twisted basis as opposed to the physical basis, which is given in terms
of the original fields ψl, ψ̄l. Single quarks in the twisted basis will be denoted by χu, χd to
distinguish them from the ones in the physical basis whenever necessary. Applying such axial
transformations leaves the form of the action invariant, but the mass term picks up a phase
factor

M →M exp
(
iωlγ5τ

3
)
. (1.168)
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This allows us to write down the resulting continuum action of QCD in the twisted mass basis

Stm
F,l [χl, χ̄l, Aµ] =

∫

d4xχ̄l

(
γµDµ +mq + iµlτ

3
)
χl , (1.169)

where the bare untwisted quark mass mq and the bare twisted mass µl are related to M and ωl

via
M2 = m2

q + µ2l , tanωl =
µl
mq

. (1.170)

The index of the bare twisted mass µl is chosen in anticipation of this action being used for the
light quark doublet, as it does not yet include a mass splitting term for the two quarks. Note
that the choice of the Pauli-matrix for the twist-rotation is in principal arbitrary, although in
the present case of a mass degenerate doublet it is convenient to choose τ3 as it leads to a flavor-
diagonal lattice formulation. However, there is an additional constraint concerning the form of
a twisted mass term which is given by the demand that the fermionic integration measure in
the path integral has to be invariant under axial rotations

χl → exp

(
i

2
ωlγ5τ

3

)

χl , χ̄l → χ̄l exp

(
i

2
ωlγ5τ

3

)

, (1.171)

similar to the ones that relate the twisted mass basis to the standard basis of QCD. Otherwise
one would introduce additional, anomalous effects, altering the resulting physics. In practice,
this implies that the relevant transformations as given in Eq. (1.167) have to be traceless, which
is satisfied by the choice of τ3 (or any other Pauli matrix).

For the lattice regularized theory one applies the transformations in Eq. (1.167) to the Wilson
action in Eq. (1.154), which yields the Wilson twisted mass action for light quarks [72]

SWtm
F,l [χl, χ̄l,U ] = a4

∑

x

χ̄l

(
DW +m0 + iµlγ5τ

3
)
χl . (1.172)

Again, the bare quark mass m0 is related to the subtracted bare quark mass mq as defined in
Eq. (1.153). Similar to the case of the pure Wilson action, one obtains a hopping parameter
representation of the Wilson twisted mass action by applying the transformations in Eq. (1.157).
For later purposes we define the Wilson twisted mass Dirac operator for a light, degenerate quark
doublet by

Dl = DW +m0 + iµlγ5τ
3 . (1.173)

The crucial difference between the Wtm formulation and the continuum twisted mass for-
mulation lies in their respective transformation behavior under axial rotations as defined in
Eq. (1.171). Although these transformation leave the continuum twisted mass action invariant,
this does not hold for the lattice regularized version, because the Wilson term ∼ ar∇µ∇∗

µ is
not invariant under such transformations. Therefore, the transition from the standard Wilson
formulation to the Wilson twisted mass formulation yields a different lattice regularization and
is not just a change of basis as for the case of the continuum action. Depending on the value
of the twist angle ωl this leads to different lattice artifacts for observables compared to the
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standard Wilson formulation. We will discuss further implications of this property in the next
subsection.

To gain further insights into the Wtm formulation it is instructive to consider the relation
between currents in the physical and the twisted basis for all possible flavor structures of light
quarks. For the (pseudo-)scalar and (axial) vector currents the relation reads

Sa
l =ψ̄l

τa

2
ψl →

{
S̃a
l cosωl + iP̃ a

l sinωl , a = 0, 3

S̃a
l , a = 1, 2

, (1.174)

P a
l =ψ̄lγ5

τa

2
ψl →

{
P̃ a
l cosωl + iS̃a

l sinωl , a = 0, 3

P̃ a
l , a = 1, 2

, (1.175)

V a
l,µ =ψ̄lγµ

τa

2
ψl →

{

Ṽ a
l,µ , a = 0, 3

Ṽ a
l,µ cosωl + Ãb

l,µǫ
3ab sinωl , a = 1, 2

, (1.176)

Aa
l,µ =ψ̄lγµγ5

τa

2
ψl →

{

Ãa
l,µ , a = 0, 3

Ãa
l,µ cosωl + Ṽ b

l,µǫ
3ab sinωl , a = 1, 2

. (1.177)

In these relations Sa
l , P

a
l , V

a
l,µ and Aa

l,µ on the left-hand side denote the light quark currents

in the physical basis, whereas S̃a
l , P̃

a
l , Ṽ

a
µ and Ãa

µ on the right-hand side refer to currents in
the twisted mass basis, assuming the same form of the currents in both cases apart from the
replacements ψl ↔ χl and ψ̄l ↔ χ̄l. In the above list the currents with flavor-singlet structure
τ0

2 = 1
212×2 have been included explicitly, as they are relevant for our purposes concerning η and

η′ mesons. In general, rotating to the twisted basis does not only change the spin structure but
may also lead to mixing between currents with different γ-matrices depending on their respective
flavor structure. However, the above transformation rules are greatly simplified for a particular
choice of the twist angle, namely choosing ωl = ±π/2 which is known as maximal twist. This
corresponds to tuning m0 to its critical value mcrit, such that mq = 0. In this case there is no
mixing present between different spin structures for the twisted currents on the right hand side,
which is favorable as it leads to a much simpler pattern of renormalization.

As an example for Ward identities in the twisted basis, we briefly consider the partially conserved
vector current (PCVC) and the partially conserved axial vector current (PCAC) relations, which
differ from the standard identities

∂µṼ
a
l,µ =− 2µlP̃

b
l ǫ

3ab , (1.178)

∂µÃ
a
l,µ =2mqP̃

a
l + 2iµl

(

S̃0
l δ

3a + S̃3
l δ

0a
)

+
√

2Nfω (x) δ0a . (1.179)

From the PCVC relation one infers that the twisted quark mass (PCVC quark mass) renor-
malizes multiplicatively with Zµ = 1/ZP , where ZP denotes the pseudoscalar flavor non-singlet
renormalization constant. This incidentally implies that at maximal twist the light quark mass
ml renormalizes only multiplicatively as well

mR
l ≡ µRl =

1

ZP
µl , (1.180)
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as it is entirely given by the twisted mass µl for this special case. Clearly, this behavior is
favorable for practical purposes compared to Wilson fermions, for which the light quark mass
(i.e. the PCAC quark mass) is subject to additional, additive renormalization.

1.3.2 Properties and symmetries

The twisted mass formulation exhibits further advantages over the standard Wilson formulation
besides the aforementioned, multiplicative renormalization of the light quark mass at maximal
twist. Historically, the motivation to introduce the formulation was related to the occurrence of
exceptional gauge configurations in quenched simulations which lead to very small eigenvalues
for the Dirac operator. It can be shown that this is cured by introducing a twist term with
non-zero µl acting as an infrared cutoff on the eigenvalues [73]. However, the most prominent
advantage is the so-called automatic O (a) improvement which is obtained at maximal twist [74].
The denotation “O (a) improvement” refers to the absence of O (a) terms in a certain class of
observables namely those of even parity, i.e. such an observable in the regularized theory differs
at most by O

(
a2
)
terms from the one in the continuum

〈
O
[
ψl, ψ̄l,U

]〉cont
+O

(
a2
)
= 〈O [χl, χ̄l,U ]〉latt . (1.181)

where the superscripts “cont” and “latt” indicate that the corresponding expectation values are
to be evaluated employing continuum and lattice action, respectively. The term “automatic”
adverts to the fact that the improvement is achieved for all parity-even observables simultane-
ously by tuning only a single parameter, unlike the case of the usual Symanzik improvement
program that may involve the tuning of further, operator-dependent improvement coefficients.
It was first shown in [75, 76] for the quenched approximation that this way to obtain O (a)
improvement works in practice, i.e. it indeed leads to improved scaling properties compared
to standard Wilson fermions. Similarly for Nf = 2 dynamical quark flavors this was shown
in [77, 78] and there are strong indications that also for Nf = 2 + 1 + 1 simulations the scaling
behavior at maximal twist is improved [79]. For the details on how to tune to maximal twist
in actual simulations we refer to [79, 80], here we only briefly outline the basic idea. Taking
renormalization into account, the twist angle is given by the relation

tanωl =
µRl
mR

q

, (1.182)

where the renormalized masses are given by µRl = µl/ZP and mR
q = Zm (m0 −mcrit) with Zm

denoting the corresponding quark mass renormalization constant. From the lattice version of
the PCAC relation in Eq. (1.179) it is possible to define the PCAC quark mass

amPCAC =

∑

~x 〈0| ∇∗
0Ã

a
l,0 (x) P̃

a
l (0) |0〉

2
∑

~x 〈0| P̃ a
l (x) P̃ a

l (0) |0〉
, a = 1, 2 (1.183)

where in any actual simulation the right-hand side has to be evaluated at sufficiently large
Euclidean times; see also the dedicated discussion of correlation functions in section 2.2. The
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PCAC quark mass is related to mR
q by

mR
q =

ZA

ZP
mPCAC , (1.184)

where ZA denotes the axial vector flavor non-singlet renormalization constant. Therefore, the
critical line can be determined by tuning the PCAC quark mass to zero, as Eq. (1.182) now
takes the form

tanωl =
µl

ZAmPCAC
. (1.185)

For all further considerations we will assume maximal twist unless stated otherwise.

A drawback of the twisted mass formulation arises from the fact that the twisted mass term
explicitly breaks parity and time reversal as defined in Eqs. (1.164),(1.165) as well as the flavor
symmetry Fa of the action at finite values of the lattice spacing. This in principle allows for
additional mixing between states in the regularized theory as these broken symmetries are not
good quantum numbers anymore. However, although neither flavor symmetry nor P, T alone
are symmetries of the twisted mass action, the combination of any two of them remains a
symmetry. Invariance under PT is fulfilled because C and CPT are symmetries of the action. In
fact, successive application of P, T flips the sign of the twisted mass term twice, hence leaving
it invariant. Combining a discrete flavor rotation Fa with either P or T leads to the following
modified fermionic symmetries at maximal twist

Pa :

{
χl (x0, ~x) → iγ0τ

aχl (x0,−~x)
χ̄l (x0, ~x) → −χ̄l (x0,−~x) iτaγ0

, a = 1, 2 , (1.186)

T a :

{
χl (x0, ~x) → iγ0γ5τ

aχl (−x0, ~x)
χ̄l (x0, ~x) → χ̄l (−x0, ~x) iγ0γ5τa

, a = 1, 2 , (1.187)

which may be used in order to classify states in place of the standard symmetries. Note that
the additional flavor rotation is equivalent to a sign change of the twisted mass term.

The fact that the twisted mass term breaks flavor symmetry can also be exploited to obtain a
relation for the Dirac operator and its inverse, which proves useful in actual lattice simulations.
While the standard Wilson operator exhibits a property known as γ5-hermiticity, i.e.

DW = γ5D
†
Wγ5 , (1.188)

the hermitian conjugate of the twisted mass term picks up a sign, which effectively exchanges
the flavor components, leading to

Dxy
uu = γ5

(
Dyx

dd

)†
γ5 , Dxy

dd = γ5 (D
yx
uu)

† γ5 , (1.189)

where Dxy
uu = 1+τ3

2 Dxy
l and Dxy

dd = 1−τ3

2 Dxy
l refer to the up (χu) and down (χd) quark com-

ponents of the twisted mass Dirac operator. Here the double flavor index notation has been
used in anticipation of the case of a non-degenerate doublet, which will be discussed in the next
subsection. The spacetime index structure is relevant for applications to correlation functions.
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Since the light quark sector is flavor diagonal, the relation for the Dirac operator implies a
similar one for the corresponding propagators Gxy

uu =
(
Dxy

uu

)−1
and Gxy

dd =
(
Dxy

dd

)−1

Gxy
uu = γ5

(
Gyx

dd

)†
γ5 , Gxy

dd = γ5
(
Gyx

uu

)†
γ5 . (1.190)

This relation between up and down propagators simplifies the evaluation of certain correlation
functions and it is one of the essential ingredients of a very powerful variance reduction technique
exclusive to the twisted mass formulation of LQCD; see subsection 2.2.1 for further details.

Concerning the breaking of chiral symmetry at maximal twist, the situation is somewhat different
compared to standard Wilson fermions. While both formulations share the invariance under
U (1)V symmetry they exhibit a different breaking pattern of SU (2)V and SU (2)A symmetries.
To gain further insight, one considers the following twisted transformations

U (1)aV :

{

χl (x) → 1−iγ5τ3√
2

exp
(
i
2α

a
V τ

a
) 1+iγ5τ3√

2
χl (x)

χ̄l (x) → χ̄l (x)
1+iγ5τ3√

2
exp

(
i
2α

a
V τ

a
) 1−iγ5τ3√

2

, (1.191)

U (1)aA :

{

χl (x) → 1−iγ5τ3√
2

exp
(
i
2α

a
Aγ5τ

a
) 1+iγ5τ3√

2
χl (x)

χ̄l (x) → χ̄l (x)
1+iγ5τ3√

2
exp

(
i
2α

a
Aγ5τ

a
) 1−iγ5τ3√

2

, (1.192)

which correspond to the vector and axial vector subgroups U (1)aV and U (1)aA of the twisted
SU (2)V and SU (2)A. The group parameters are denoted by αa

V and αa
A, respectively and there

is no summation over group indices implied on the right-hand side. The ordinary Wilson and
Wilson twisted mass formulation are both invariant under U (1)3V but for the charged subgroups
given by a = 1, 2, it turns out that the twisted mass term is actually invariant under U (1)1V ⊗
U(1)2V ⊗U(1)3V , whereas the pure Wilson formulation is invariant under U (1)1A⊗U(1)2A⊗U(1)3V .
This implies that in the twisted mass formulation the charged vector current does not receive
renormalization and that in the massless case the theory exhibits an exact charged axial vector
symmetry. The former result can be used to show that the charged pion decay constant does not
require any renormalization [75,81,82] (see also the discussion of observables in subsection 2.2.3),
whereas the latter one is the reason why the charged pion is not affected by O

(
a2
)
cutoff effects

in the chiral limit unlike the neutral pion, as will be discussed in the subsection 1.3.5 in more
detail.

1.3.3 Heavy sector

For the inclusion of the strange degree of freedom, which is essential to study the η–η′ system,
it is necessary to introduce another doublet in the twisted mass formulation. In fact, it is an
intrinsic feature of WtmLQCD that quark fields can only be implemented in doublets due to the
required structure of the twisted mass term in flavor space. Again, we start form the standard
continuum action of QCD as given in Eq. (1.15), considering a doublet of heavy quarks, denoted
by ψh, ψ̄h. However, for technical reasons it is convenient to rewrite the general mass matrix M
in the following form

M →Mτ0 + µδτ
3 , (1.193)
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such that the mass splitting is explicitly given by the term ∼ µδτ
3, whereas the scalar M on the

right-hand side will be identified with the polar mass in the twisted basis. The bare masses for
strange and charm are then given by

mc,s =M ± µδ . (1.194)

Similar to the case of the light doublet, the continuum WtmLQCD action is related to the
standard QCD action by an axial transformation of the form

ψh = exp

(
i

2
ωhγ5τ

1

)

χh , ψ̄h = χ̄h exp

(
i

2
ωhγ5τ

1

)

, (1.195)

where χh, χ̄h denote the heavy quark doublet in the twisted basis and the choice of τ1 is what
has been used in actual simulations of ETMC [79]. We assume the twisted charm quark χc to
be the upper component of χh whereas the strange quark χs is the lower one. The resulting
action and its lattice regularized equivalent read [83]

Stm
F,h [χh, χ̄h, Aµ] =

∫

d4xχ̄h

(
γµDµ +mq + iµσγ5τ

1 + µδτ
3
)
χh , (1.196)

and
SWtm
F,h [χh, χ̄h,U ] = a4

∑

x

χ̄h

(
DW +m0 + iµσγ5τ

1 + µδτ
3
)
χh , (1.197)

respectively, such that the twisted mass Dirac operator for the heavy doublet takes the form

Dh = DW +m0 + iµσγ5τ
1 + µδτ

3 , (1.198)

where now again the term µδτ
3 is responsible for the mass splitting. In exact analogy to the

light sector, the polar mass M may be expressed in terms of mq and µσ via M2 = m2
q + µ2σ and

the relation for the heavy twist angle ωh

tanωh =
µσ
mq

, (1.199)

implies that at maximal twist also M = µσ holds. For the resulting quark masses at ωh = π/2 a
complication arises due to the different spin structure of the mass splitting term ∼ µδ compared
to the twist term ∼ µσ. While µσ obtains a factor Z−1

P similar to µl before, the mass splitting
µδ renormalizes with the inverse of the flavor non-singlet scalar renormalization factor ZS such
that the renormalized strange and charm quark mass are given by

mR
c,s = Z−1

P µσ ± Z−1
S µδ = Z−1

P (µσ ± Zµδ) , (1.200)

where the ratio
Z = ZP/ZS (1.201)

has been defined. As can be inferred from the second equality by dropping the overall factor
Z−1
P , the ratio Z is required even for the bare quark masses. The possible values of the bare

parameters µσ and µδ are constrained by the demand of positivity for the fermionic determinant,
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i.e. µσ > µδ, which together with the above definition of mR
s , m

R
c yields a constraint on the

ratio of pseudoscalar and scalar flavor non-singlet renormalization constants

Z =
µRσ
µRδ

<
mR

c −mR
s

mR
c +mR

s

< 1 , (1.202)

assuming mR
s < mR

c .

Applying the twist rotations in Eq. (1.195) to physical currents yields

Sa
h =ψ̄h

τa

2
ψh →

{
S̃a
h cosωh + iP̃ a

h sinωh , a = 0, 1

S̃a
h , a = 2, 3

, (1.203)

P a
h =ψ̄hγ5

τa

2
ψh →

{
P̃ a
h cosωh + iS̃a

h sinωh , a = 0, 1

P̃ a
h , a = 2, 3

, (1.204)

V a
h,µ =ψ̄hγµ

τa

2
ψh →

{

Ṽ a
h,µ , a = 0, 1

Ṽ a
h,µ cosωh + ǫ1abÃb

h,µ sinωh , a = 2, 3
, (1.205)

Aa
h,µ =ψ̄hγµγ5

τa

2
ψh →

{

Ãa
h,µ , a = 0, 1

Ãa
h,µ cosωh + ǫ1abṼ b

h,µ sinωh , a = 2, 3
. (1.206)

where again the twisted currents S̃a
h, P̃

a
h , Ṽ

a
h,µ, Ã

a
h,µ are assumed to have the same form as the

ones in the physical basis apart from the required replacements for the quark doublet fields
ψl ↔ χl and ψ̄l ↔ χ̄l.

Before turning to the discussion of maximal twist on the lattice, we briefly consider the PCVC
and PCAC relations in the twisted mass basis for heavy quarks

∂µṼ
a
h,µ = −2µσǫ

1abP b + 2iµδǫ
3abSb , (1.207)

∂µÃ
a
h,µ = 2mqP̃

a
h + 2iµσ

(

δ1aS̃0
h + δ0aS̃1

h

)

+ 2µδ

(

δ3aP̃ 0
h + δ0aP̃ 3

h

)

+
√

2Nfω (x) δ0a . (1.208)

Apparently, the structure of these relations is more complicated than for a degenerate quark
doublet, e.g. only the second component of the PCAC relation corresponds to the standard
QCD case, whereas now all other components receive additional contributions.

As discussed in the previous subsection an important advantage of the twisted mass formulation
is the feature of automatic O (a) improvement. For the case of a non-degenerate doublet this
is achieved in a similar manner as for the degenerate doublet. However, in principle, one might
have different bare untwisted quark masses ml,0, mh,0 for the light and the heavy sector instead
of a common mass m0 as used in Eqs. (1.172),(1.197). Nonetheless, it is possible and very
convenient to demand ml,0 = mh,0 ≡ m0 and tune only the light PCAC quark mass to zero to
obtain automatic O (a) improvement in both sectors simultaneously [80,83]. In fact, the PCAC
relation for the non-degenerate doublet in Eq. (1.208) allows to define a heavy PCAC quark
mass on the lattice in analogy to Eq. (1.183)

amh,PCAC =

∑

~x 〈0| ∇∗
0Ã

2
h,0 (x) P̃

2
h (0) |0〉

2
∑

~x 〈0| P̃ 2
h (x) P̃ 2

h (0) |0〉
, (1.209)
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which one might tune to zero separately, i.e. without making the choice ml,0 = mh,0. Note
that for any other component than a = 2 one needs to insert factors Z−1

A for the additional
terms in the PCAC relation for consistency with the renormalization of the PCAC quark mass
as defined in Eq. (1.183); see also the discussion in [80]. However, apart from the additional
effort of tuning a second parameter, such a method suffers from a very serious drawback, which
is the occurrence of quark disconnected diagrams in the correlation functions defining the PCAC
quark mass in Eq. (1.209) that are notoriously noisy and difficult to calculate. The reason for
this is the mass splitting term in the lattice action for the non-degenerate doublet, which renders
the heavy quark sector non-diagonal in flavor space, i.e. Dh exhibits off-diagonal components
Dxy

sc , D
xy
cs . These allow for explicitly flavor violating propagators Gxy

sc G
xy
cs between strange and

charm quarks, which are related to the flavor space components of the Dirac operator by the
relation

(
Gxy

cc Gxy
sc

Gxy
cs Gxy

ss

)

=

(
Dxy

cc Dxy
sc

Dxy
cs Dxy

ss

)−1

. (1.210)

The crucial point here is that the components on both sides are not directly related, e.g.
(Dxy

cc )
−1 6= Gxy

cc . Consequently, the γ5-trick for the non-degenerate doublet takes a non-diagonal
form as well

(
Gxy

cc Gxy
sc

Gxy
cs Gxy

ss

)

=

(

γ5 (G
yx
cc )

†
γ5 −γ5 (Gyx

cs )
†
γ5

−γ5 (Gyx
sc )

†
γ5 γ5 (G

yx
ss )

†
γ5

)

. (1.211)

Further implications of the flavor structure for the heavy quark doublet will be addressed in
the context of interpolating operators and correlation functions; see also the next chapter and
appendix B. In the following we shall restrict ourselves again to the case of maximal twist
ωl = ωh = π/2, which is also assumed to be fulfilled in any actual numerical study discussed in
this work.

1.3.4 Symmetries in the heavy sector

Due to the requirement of a mass splitting term for the heavy doublet, it is impossible to define a
flavor-diagonal action in this case. Some relevant implications concerning the resulting currents
in the twisted basis and renormalization have already been discussed in the last subsection.
However, this feature also affects the symmetries of the action, which in general is less symmetric
than the one for the degenerate doublet. In this subsection we include a dedicated discussion of
the symmetries for the case of a non-degenerate quark doublet in the twisted mass formulation.

Again we start by considering P and T , which are both violated in the twisted mass formulation
and need to be combined with a discrete rotation in flavor space Fa to retain a symmetry of
the action. In the light sector it was possible to use τ1 and τ2, but in the heavy sector the only
possible choice leading to the required invariance of the action behavior is given by τ3. The
resulting fermionic symmetries P3 = P ×F3 and T 3 = T × F3 of the twisted mass action read

P3 :

{
χl (x0, ~x) → iγ0τ

3χl (x0,−~x)
χ̄l (x0, ~x) → −χ̄l (x0,−~x) iτ3γ0

, (1.212)
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T 3 :

{
χl (x0, ~x) → iγ0γ5τ

3χl (−x0, ~x)
χ̄l (x0, ~x) → χ̄l (−x0, ~x) iγ0γ5τ3

, (1.213)

Similar to the case of the degenerate doublet the flavor rotation corresponds to a sign flip for
the twisted mass term µδ → −µδ and standard charge conjugation as defined in C in Eq. (1.163)
remains a symmetry of WtmLQCD as well. Further effects of the reduced number of symmetries
in the heavy quark sector concern the structure and mixing of interpolating operators which will
be discussed in detail in subsection 2.1.

Finally, we remark that the remnant chiral symmetry of the action is also reduced by the mass
splitting term, which is – for example – reflected by the occurrence of additional terms in the
PCAC and PCVC relations as we saw in the last subsection. The transformations corresponding
to the twisted versions of the U (1)aA,V subgroups for the heavy sector are given similar to

Eqs. (1.191), but with τ3 replaced by τ1 in the twist rotations

U (1)aV :

{

χl (x) → 1−iγ5τ1√
2

exp
(
i
2α

a
V τ

a
) 1+iγ5τ1√

2
χl (x)

χ̄l (x) → χ̄l (x)
1+iγ5τ1√

2
exp

(
i
2α

a
V τ

a
) 1−iγ5τ1√

2

, (1.214)

U (1)aA :

{

χL (x) → 1−iγ5τ1√
2

exp
(
i
2α

a
Aγ5τ

a
) 1+iγ5τ1√

2
χl (x)

χ̄l (x) → χ̄l (x)
1+iγ5τ1√

2
exp

(
i
2α

a
Aγ5τ

a
) 1−iγ5τ1√

2

, (1.215)

Considering the flavor non-singlet symmetries, a brief calculation reveals that the twist term
iµσγ5τ

1 is still invariant under U (1)1V ⊗U(1)2V ⊗U(1)3V , whereas the mass splitting term is only
invariant under U (1)3V , such that at maximal twist the symmetry of the sum of both terms is
reduced to U (1)3V as well. However, the singlet U (1)V factor remains unbroken for both terms
as expected.

1.3.5 Wilson chiral perturbation theory

Nowadays, lattice QCD simulations based on the Wilson discretization of the Dirac operator are
performed with light dynamical quarks [79,84–90]. For decreasing values of the light quark mass
at a fixed value of the lattice spacing the explicit breaking of chiral symmetry by the Wilson
term causes a subtle interplay between mass and discretization effects. Therefore it is important
to obtain an understanding of the size of these discretization effects, which in general depend
on the observables in question. For sufficiently small values of the light quark mass and close to
the continuum limit, the discretization effects can be described by Wilson chiral perturbation
theory, which represents an extension of continuum χPT to include powers of the lattice spacing
[91]. The following presentation of WχPT including the expressions relevant to this work is
based on the one given in the publication of our results [2]. For a recent review on applications
of χPT in the context of LQCD we also refer to [92].

First of all, we remark that the inclusion of terms proportional to powers of the lattice spacing
in the chiral expansion leads to an extended counting scheme, which is given by

p = O (δ) , mq = O
(
δ2
)
, a = O (δ) . (1.216)
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Note that in the context of WχPT we do not employ large-Nc counting rules. In general,
this extension leads to the occurrence of additional, numerically unknown LECs, compared to
standard χPT. These LECs depend on the choice of the lattice action and need to be determined
from suitable, numerical simulations. Since the WχPT-related part of this work relies on the
computation of light, pseudoscalar meson masses (i.e. the pion masses MPS ≡ Mπ± , Mπ0 and
the so-called connected neutral pion mass Mπ0,c, which is calculated from the quark connected
contributions to the neutral pion correlator) from Wilson twisted mass fermions, we may restrict
ourselves to the case of SU (2)f symmetry and do neither include strange nor charm quarks
explicitly. The resulting, partially quenched chiral Lagrangian depends on the renormalized
version of the twisted quark mass matrix, which we denote by M = mR

0 + iµRl τ
3 and must not

be confused with the polar mass in previous subsections. After removing a term of O (a) by a
suitable shift of the quark mass, the leading order Lagrangian reads [91,93]

Lδ2
WχPT =+

1

8
f2 tr

[
∂µΣ∂µΣ

†]− 1

4
f2B0 tr

[
M †Σ+Σ†M

]

− â2W ′
6

(

tr
[
Σ+ Σ†]

)2
− â2W ′

7

(

tr
[
Σ− Σ†]

)2
− â2W ′

8 tr
[
Σ2 + (Σ†)2

]
, (1.217)

where the field Σ collects the Goldstone bosons arising from the spontaneous breakdown of the
chiral group SU (2)L×SU(2)R, in analogy to the field U defined in Eqs. (1.50),(1.51). Again, the
trace is understood to be taken in flavor space and we introduced the convenient abbreviation
â = 2aW0 in the above expression. Compared to continuum two flavor χPT, the leading order
effective Lagrangian exhibits four additional LECs W0, W

′
6, W

′
7 and W ′

8, which are specific to
Wilson χPT and hence related to discretization effects.

Since WχPT predicts a non-trivial phase structure for Wilson type fermions in the lattice spacing
and quark mass plane [91, 94, 95], it is interesting to determine the numerical values of these
additional LECs. In fact, it can be shown that the sign of a certain combination of Wilson
LECs determines if either the so-called Aoki-scenario [94] or the Sharpe-Singleton-scenario [91]
is realized for a particular lattice formulation. The relevant combination of LECs is denoted by
c2 ∼ −(2W ′

6 +W ′
8) and the Aoki-scenario is indicated by positive values of this combination,

whereas the Sharpe-Singleton-scenario is expected for negative values. There is evidence for
both scenarios in LQCD investigations and the corresponding phase diagram has been studied by
several groups [80,96–106]. The Aoki-scenario was found to be realized in quenched simulations
and the Sharpe-Singleton-scenario has been observed in dynamical simulations employing the
Wilson twisted mass formulation at maximal twist [103–106]. In the twisted mass formulation,
the sign of c2 becomes manifest in the splitting of squared masses for the neutral pion and the
charged pion, which is directly proportional to c2 at leading order. A negative sign results in
a lighter neutral pion mass Mπ0 compared to the charged one, MPS. Therefore, measuring the
mass-splitting allows to determine c2 in the Wilson twisted mass formulation and gives access to
the involved LECs of WχPT. However, this method is rather challenging due to the disconnected
contributions that have to be evaluated for the neutral pion.

Before discussing the approach that is actually used in this work, we briefly mention that there
are other ways to extract the LECs of WχPT. One possibility is given by matching analytical
predictions for the spectrum of the Dirac operator in finite volume and with fixed index [107–113]
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to lattice data, which has been done in [113–116]. Furthermore, it is possible to compute the
LECs from the spectral density of the hermitian Wilson-Dirac operator [117–119] or from the
lattice calculations of the pion scattering length [120,121], which has been extended to a partially
quenched formulation in [122]. Considering a Wilson-type action for sea quarks and a different,
chirally invariant one for valence quarks it is possible to construct a corresponding mixed action
chiral effective Lagrangian [93, 123]. Such a mixed action setup has been studied in [124] for
overlap fermions on a Wilson twisted mass sea, which again allowed to determine the relevant
LECs.

In the present work we aim at calculating the LECs implementing an approach which has recently
been proposed in [125]. This method is also based on the computation of pseudoscalar mesons
masses employing Wilson twisted mass fermions. However, it does not require the neutral pion
mass to determine the LEC W ′

8, but only the splitting between the charged pion mass MPS and
the connected neutral pion mass Mπ0,c. Since for both of these quantities quark disconnected
diagrams are absent, such a determination is expected to have a much more favorable signal-
to-noise ratio compared to one that involves the full neutral pion correlator, allowing for an
extraction of W ′

8 with much better statistical precision. Nonetheless, the full neutral pion mass
Mπ0 is required for the determination of W ′

6, which is related to the mass-splitting M2
π0,c−M2

π0

between the connected and the full neutral pion. Within our study we will also consider higher
order corrections in the mass and lattice spacing to the splittings that determine the LECs. In
the following we shall discuss some technical details of the method and introduce the relevant
expressions from partially quenched WχPT which we match to the results of our lattice QCD
calculations.

As already discussed, our simulations employ Wilson twisted mass fermions at maximal twist
in order to obtain automatic O (a) improvement. This has to be taken into account at the level
of the effective theory by setting m0 = 0 in the effective Lagrangian in Eq. (1.217). The O

(
a2
)

splitting between MPS and Mπ0 is reproduced at finite values of the lattice spacing by the flavor
symmetry breaking twisted mass term in Eq. (1.172). Similarly, MPS also differs fromMπ0,c and
the corresponding, leading order expressions in partially quenched WχPT for the three masses
are given by [125–128]

M2
PS = 2B0µl ,

M2
π0 = 2B0µℓ − 8a2 (2w′

6 + w′
8) ,

M2
π0,c = 2B0µℓ − 8a2 w′

8 , (1.218)

where the notation

w′
i =

16W 2
0 W

′
i

f2
, i = 6, 8 , (1.219)

has been introduced. In the mass splittings

M2
PS −M2

π0,c = 8a2 w′
8 , (1.220)

1

2

(

M2
π0,c −M2

π0

)

= 8a2 w′
6 , (1.221)



46 CHAPTER 1. THEORETICAL BACKGROUND

the LECs are disentangled such that it is possible to determine them individually. Moreover,
from the expression for Mπ0 in Eq. (1.218) it can be inferred that the mass-splitting between
the charged and the neutral pion is controlled by the previously mentioned combination

c2 = −32W 2
0

f2
(2W ′

6 +W ′
8) . (1.222)

Using Eqs. (1.218),(1.219) this expression can be rewritten in terms of masses or the parameters
w′
i

c2 =
1

4a2
(
M2

π0 −M2
PS

)
= −2 (2w′

6 + w′
8) . (1.223)

As already mentioned, these WχPT expressions are partially quenched for the case of Nf =
2 + 1 + 1 dynamical quark flavors which we use in our simulations. Assuming that the strange
and the charm quark decouple from the light sector in these quantities they can be used for
Nf = 2 + 1 + 1 as well. The residual effects of the strange and the charm quark will then
introduce an additional dependence of the LECs on the corresponding heavy quark masses.

For higher order WχPT expressions of the pion mass and its decay constant, we refer to [129–131]
and [132] for the case of Nf = 2 and Nf = 2 + 1 + 1 dynamical quarks, respectively.



Chapter 2

Spectroscopy and analysis methods

The focus of this chapter lies on methods that are commonly employed in lattice calculations
and relevant to this work. Large parts of it are dedicated to hadron spectroscopy, compris-
ing its theoretical foundations, as well as the interpolating operators, correlation functions and
observables that have actually been investigated in our studies. The most important tool re-
viewed in the context of the extraction of observables is the variational approach, leading to a
generalized eigenvalue problem for the determination of energies and amplitudes of the desired
states. Moreover, we discuss renormalization that has to be performed at the level of correlation
functions and how we set the scale in our simulations as well as the the required extrapolations
(i.e. chiral extrapolation, finite size effects and continuum limit) to obtain physical results for
our observables.

Furthermore, we include a section on data analysis, which deals mainly with the methods of
error estimation and fitting used in our investigations. Besides these more general aspects, we
also briefly describe the factorizing fit model that we employ for certain parts of the analysis in
addition to the generalized eigenvalue problem.

2.1 Interpolating operators

As we are interested in the lightest pseudoscalar mesons (i.e. the octet mesons and the η′) which
are classified by quantum numbers JP (C) = 0P (C), the simplest possible operators are given by
local bilinears

O (x) = cΓ ¯ψ (x)Γψ (x) , (2.1)

where again ψ (x), ψ̄ (x) denote quark fields in the physical basis and Γ contains a spin and flavor
structure composed of Dirac and Pauli matrices. The factor cΓ has been introduced for reasons
of computational convenience and takes a value of either 1 or i such that the resulting operator
is hermitean. From a theoretical point of view it is possible to allow for anti-hermitean operators
as well, but this would yield purely imaginary correlators in addition to the real ones, leading
to certain avoidable complications for the further analysis. Now the flavor and spin structure of

47



48 CHAPTER 2. SPECTROSCOPY AND ANALYSIS METHODS

Γ (C,P,T )
(
P1,T 1

) (
P2,T 2

) (
P3,T 3

)

(1sτ
0) (+,+,+) (+,+) (+,+) (+,+)

(1sτ
1) (+,+,+) (+,+) (−,−) (−,−)

(1sτ
2) (+,+,+) (−,−) (+,+) (−,−)

(1sτ
3) (+,+,+) (−,−) (−,−) (+,+)

(γ5τ
0) (+,−,−) (−,−) (−,−) (−,−)

(γ5τ
1) (+,−,−) (−,−) (+,+) (+,+)

(γ5τ
2) (+,−,−) (+,+) (−,−) (+,+)

(γ5τ
3) (+,−,−) (+,+) (+,+) (−,−)

(γ0τ
0) (−,+,−) (+,−) (+,−) (+,−)

(γ0τ
1) (−,+,−) (+,−) (−,+) (−,+)

(γ0τ
2) (−,+,−) (−,+) (+,−) (−,+)

(γ0τ
3) (−,+,−) (−,+) (−,+) (+,−)

(γ0γ5τ
0) (−,−,+) (−,+) (−,+) (−,+)

(γ0γ5τ
1) (−,−,+) (−,+) (+,−) (−,+)

(γ0γ5τ
2) (−,−,+) (+,−) (−,+) (−,+)

(γ0γ5τ
3) (−,−,+) (+,−) (+,−) (−,+)

Table 2.1: Quantum numbers (C, P, T , P1,2,3, T 1,2,3) for operators in the physical and twisted
basis involving all four Dirac and flavor structures. The twisted mass symmetries P1,2,3, T 1,2,3

are also symmetries in the physical basis and equivalent to standard P and T with respect to the
resulting quantum numbers in this case. Note that any further normalization factors of actual
interpolating operators do not affect the quantum numbers.

Γ has to be chosen in such a way that it reproduces the (valence) flavor structure and quantum
numbers of the desired states, i.e. the correct behavior under P and C; cf. table (2.1) where
the quantum numbers from physical (C, P, T ) and twisted mass symmetries in the light (P,
T ) and heavy sector (P, T ) have been listed for all four flavor and spin structures. Within this
work we restrict ourselves to scalar, pseudoscalar, vector and axial vector operators build from
1s, γ0 and γ5, which means that we will not consider any operators involving factors of γi. The
constraint J = 0 is satisfied by projecting to zero momentum and using only local operators.

After choosing the operators in the physical basis one has to apply the twist rotation using
ωl = ωh = π/2 to obtain the operators that are actually used in our lattice simulations at
maximal twist. Considering operators made solely of light quarks the operators used in our
numerical simulation are in principle very similar to the currents discussed in subsections 1.3.1
and 1.3.3, besides some normalization factors. As mentioned before, the twisted mass formula-
tion requires to introduce quark fields in doublets, implying that if one wants to use particular
flavor components separately, one needs to introduce an additional flavor projector. However,
such projections have not been considered at the level of the currents in Eqs. (1.203)–(1.206). In
general, this is the case for any operator involving the non-degenerate doublet and as we will see,
this procedure introduces additional mixing between operators of different spin in the twisted
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basis. For the pion sector such complications do not occur as the corresponding interpolating
operators consist solely of light quarks.

2.1.1 Pion sector

For the charged pion with quantum numbers 0− there are two spin structures available in the
physical basis which exhibit the correct quantum numbers i.e. pseudoscalar and vector currents
as can be inferred from table (2.1). In addition, one may also consider the physical axial vector,
because it is already known from the relations for the currents in Eqs. (1.205),(1.206) that in
the twisted basis the flavor non-diagonal components of the vector and axial vector current mix
at O (a) if the tuning to maximal twist is not assumed to be perfect, which one expects to be
the case in any actual simulation. The resulting interpolating operators in the twisted basis are
then given by

1√
2
ψ̄liγ5τ

aψl →
1√
2
χ̄liγ5τ

aχ ≡ Pa
l , a = 1, 2 , (2.2)

1√
2
ψ̄lγ0τ

aψl →
1√
2
χ̄liγ0γ5iǫ

3abτ bχ≡ Aa
l , a = 1, 2 , (2.3)

1√
2
ψ̄liγ0γ5τ

aψl →
1√
2
χ̄lγ0iǫ

3abτ bχ ≡ Aa
l , a = 1, 2 , (2.4)

where we used calligraphic symbols to denote the interpolating operators in the twisted basis
such that they are distinguishable from the currents defined before. The index l refers to the
light sector to avoid any further ambiguities. In principle, any combination of these operators
can be used to build correlation functions, although varying only the flavor structure does not
yield any additional information, e.g. replacing P 1 by P 2. This is due to the residual U (1)3V
symmetry of the twisted mass formulation which implies that the two charged pions are exactly
mass degenerate.

In practice it is most convenient to exploit this ambiguity stemming from the flavor structure
by using eigenstates of C which correspond to the flavor projectors τ± =

(
τ1 ± iτ2

)
/2 instead

of employing τ1 and τ2 separately, as it simplifies the formal structure of the operators and
the resulting correlation functions; see also the following the subsection. The corresponding
operators are then given by

1√
2
ψ̄liγ5τ

±ψl →
1√
2
χ̄liγ5τ

±χ ≡ P±
l , (2.5)

1√
2
ψ̄lγ0τ

±ψl →
1√
2
± χ̄liγ0γ5τ

±χ≡ A±
l , (2.6)

1√
2
ψ̄liγ0γ5τ

±ψl →
1√
2
± χ̄lγ0τ

±χ ≡ A±
l . (2.7)

Finally, we remark that in our study we restrict ourselves to the use of pseudoscalar and axial
vector operators in the twisted basis. The reason for this is simply that the twisted mass vector
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current turns out to be too noisy, such that it does not give any improvement for the signal
quality. Besides, it is not explicitly needed for any particular observable we are interested in.

Concerning the interpolating operators in the physical basis the situation for the neutral pion
is rather similar to the one for the charged pion, besides the fact that the flavor structure has
to be replaced by the third component and that only pseudoscalar and axial vector currents
may contribute. In fact, any further mixing is ruled out by twisted mass symmetries or flavor
symmetry even if not considering maximal twist at all. The interpolating operators in the
physical and the twisted basis are given by

1√
2
ψ̄liγ5τ

3ψl → − 1√
2
χ̄lχ ≡ S0

l , (2.8)

1√
2
ψ̄liγ0γ5τ

3ψl →
1√
2
χ̄liγ0γ5τ

3χ≡ A3
l . (2.9)

2.1.2 Kaon sector

Unlike the pions, the kaons are all mass degenerate states in the twisted mass formulation.
However, a complication arises from the fact that one of the quark doublets is non-degenerate,
which requires the use of an additional flavor projector to separate strange and charm quarks in
the operators in the physical basis, leading to a more involved mixing structure in the twisted
basis. This is the reason why it is in principle more convenient to use a mixed action setup
with a flavor diagonal action in the valence sector to calculate kaon related quantities. In such
a setup one does not need to deal with explicit flavor symmetry violation for strange and charm
quarks, avoiding a complicated mixing structure in the twisted basis and unphysical transitions
between states. Such an analysis was performed in [133]. Nonetheless, in our study we want to
work with the unitary action for consistency reasons. We remark that since the kaon itself is
not in the main focus of this work we did not include a dedicated discussion of the heavy-light
currents in the previous section and for any further technical details concerning the kaon and
D-meson sector we refer to [80,134]. Here we will only illustrate the basic ideas that lead to the
interpolating fields that have actually been used in our studies.

In principle it is possible to employ all four available spin structures in the physical basis, i.e.
S, P , V and A, however, for our purposes it is sufficient to restrict ourselves to scalar and
pseudoscalar sector, which can be treated separately from vector and axial vector sector, as
mixing only occurs within each of these two groups. Furthermore, the vector and axial vector
case can be treated in exact analogy and also it turns out that the additional operators do not
improve the signal quality for any of the observables that are relevant to our investigations.
Therefore, starting in the physical basis we consider the following operators

S±, phys
neutral = ψ̄l

(
1± τ3

2

)

ψh =

{
ūc
d̄s

, (2.10)

S±, phys
charged = ψ̄l

(
τ1 ± iτ2

2

)

ψh =

{
ūs
d̄c

, (2.11)
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P±, phys
neutral = ψ̄liγ5

(
1± τ3

2

)

ψh =

{
ūiγ5c
d̄iγ5s

, (2.12)

P±, phys
charged = ψ̄liγ5

(
τ1 ± iτ2

2

)

ψh=

{
ūiγ5s
d̄iγ5c

. (2.13)

(2.14)

Assuming again maximal twist and applying the twist rotations as defined in Eqs. (1.167),(1.195)
one obtains the corresponding operators in the twisted basis

S±, phys
neutral →

1

2

{
+χ̄uχc − χ̄uχs + χ̄uiγ5χc + χ̄uiγ5χs

+χ̄dχc + χ̄dχs + χ̄diγ5χc − χ̄diγ5χs
≡ S±,tm

neutral , (2.15)

S±, phys
charged →

1

2

{
−χ̄uχc + χ̄uχs + χ̄uiγ5χc + χ̄uiγ5χs

+χ̄dχc + χ̄dχs − χ̄diγ5χc + χ̄diγ5χs
≡ S±,tm

charged , (2.16)

P±, phys
neutral →

1

2

{
+χ̄uχc − χ̄uχs − χ̄uiγ5χc − χ̄uiγ5χs

+χ̄dχc + χ̄dχs − χ̄diγ5χc + χ̄diγ5χs
≡ P±,tm

neutral , (2.17)

P±, phys
charged →

1

2

{
−χ̄uχc + χ̄uχs − χ̄uiγ5χc − χ̄uiγ5χs

+χ̄dχc + χ̄dχs + χ̄diγ5χc − χ̄diγ5χs
≡ P±,tm

charged , (2.18)

where we denoted single quarks in the twisted basis by χf , χ̄f with f = u, d, s, c. The superscript
tm has been introduced to distinguish the present operators from the final ones and to indicate
that the spin structure implied by the operator symbol (S, P) actually still refers to the physical
basis. Although we had to keep the doublet structure in the light sector in order to apply the
twist rotations, we can now drop all operators involving the up quark as they do not contain
additional information. This effectively reduces the numbers of operators by a factor of two and
is a direct consequence of the P1,2 and P3 symmetries in the light and heavy sector, respectively.
Furthermore, it is convenient to disentangle the different spin and flavor combinations because
this greatly simplifies the resulting correlation functions. Besides, it has the advantage that
renormalization factors are avoided at the level of building the correlation function, such that
they only need to added later in the analysis. The disentanglement can be achieved by applying
a rotation RK ∈ SO(4) to the original vector of operators in the twisted basis, i.e.

(Sc
lh,Ss

lh,Pc
lh,Ps

lh)
T = RK

(

S±, tm
neutral,S

±, tm
charged,P

±, tm
neutral,P

±, tm
charged

)T
(2.19)

where the subscript lh of the final interpolating operators refers to the light and heavy quarks
that occur in each bilinear. The index K for the rotation matrix has been introduced in antic-
ipation of a similar matrix occurring for the case of the η–η′ system and RK has the following
form

RK =
1

2







+1 +1 −1 +1
+1 +1 +1 −1
+1 −1 +1 +1
−1 +1 +1 +1






. (2.20)

The final set of interpolating operators read

Sc
lh = χ̄dχc , Ss

lh = χ̄dχs , Pc
lh = χ̄diγ5χc , Ps

lh = χ̄diγ5χs . (2.21)
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2.1.3 Flavor singlet sector

In the flavor singlet sector one needs to consider operators exclusively consisting of either light or
heavy quarks, but no mixed operators as for the kaon. Again, for the heavy quarks an additional
flavor structure is required to project out the non-degenerate strange and charm components.
Concerning the spin structure, we restrict ourselves to pseudoscalar currents in the physical
basis. In principle, it would be very useful to be able to study axial vector matrix elements
as well, because they are required for a determination of mixing parameters without resorting
to chiral perturbation theory for the case of the decay constant parameters fl, fs. However,
in practice they turn out to be to noisy to allow for any meaningful analysis. Here we quote
the axial vector operators solely for the sake of completeness and because they have not been
discussed elsewhere for the case of heavy quarks in the twisted basis. For all further technical
discussions we will restrict ourselves to the pseudoscalar case. In the light sector there are two
operators in the physical basis, which are given by

P0,phys
l =

1√
2
ψ̄liγ5ψl , (2.22)

A0,phys
l =

1√
2
ψ̄liγ0γ5ψl , (2.23)

while in the heavy sector we have two operators for each spin structure corresponding to charm
(“+”) and strange (“-”) components

P±,phys
h = ψ̄hiγ5

1± τ3

2
ψh , (2.24)

A±,phys
h = ψ̄hiγ0γ5

1± τ3

2
ψh . (2.25)

In the light sector it is straightforward to obtain the final operators similar to the case of the
neutral pion by applying the twist rotation in Eq. (1.167) at maximal twist, which yields

P0,phys
l → − 1√

2
χ̄hτ

3χh ≡ S3
l , (2.26)

A0,phys
l → 1√

2
χ̄hiγ0γ5χh≡ A0

l . (2.27)

For the heavy sector the application of Eq. (1.195) at maximal twist leads to a mixing between
spin structures, i.e. a mixing of scalar and pseudoscalar currents on the one hand and vector
and axial vector currents on the other hand

P±,phys
h → χ̄h

(
−τ1 ± iγ5τ

3
)
χh ≡ P±,tm

h , (2.28)

A±,phys
h → χ̄h

(
iγ0γ5 ∓ iγ0τ

2
)
χh≡ A±,tm

h , (2.29)

where the superscript tm is employed similar to the case of the kaon to distinguish the present
operators from the final ones. Besides, the spin structure indicated by the operator symbol still
refers to the physical basis. In fact, the mixing in the heavy sector is maximal in the sense
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that even for the case of non-maximally twisted quarks no further mixing occurs, which can
also be inferred from table (2.1). For the further discussion we can now restrict ourselves to the
case of the (physical) pseudoscalar operators because the remaining steps can be performed in
exact analogy for the axial vector. In order to disentangle the contributions of different spin one
applies a rotation in flavor space Rη,η′ ∈ SO(3) to the vector of interpolating operators

(
S3
l ,S1

h,P3
h

)T
= Rη,η′

(

S3
l ,P+,tm

h ,P−,tm
h

)T
, (2.30)

where

Rη,η′ =






+1 0 0
0 − 1√

2
− 1√

2

0 + 1√
2

− 1√
2




 . (2.31)

In principle, it is not required to include the light sector in the rotation as it is not affected,
however, including it will allow for a more compact notation in following discussions. The final
set of interpolating operators in the heavy sector reads

S1
h =

1√
2
χ̄hτ

1χh =
1√
2
(χ̄cχs + χ̄sχc) , (2.32)

P3
h =

1√
2
χ̄hτiγ5τ

3χh=
1√
2
(χ̄ciγ5χc − χ̄siγ5χs) . (2.33)

Before closing this section, we remark that in addition to the local operator discussed here, we
also employ fuzzing which allows to create spatially non-local operators that can be used to
increase our operators basis in many applications. Further details about this technique can be
found in [135,136].

2.2 Correlation functions and extraction of observables

In Eq. (1.127) we defined the expectation value of an arbitrary observable in LQCD after per-
forming a Wick rotation to Euclidean spacetime and integrating out the Grassmann fields to
allow for numerical treatment. Considering hadron spectroscopy one usually studies n-point
functions of suitable interpolating operators, which for mesons made up of two valence quarks
simplifies to the special case of 2-point functions (or matrices thereof), which are formally given
in continuous Euclidean spacetime by

COiOj
(x, y) = 〈0|TOi (x)Oj (y) |0〉 =

1

Z

∫

DAOi (x)Oj (y) exp (−Seff [A]) , (2.34)

where Oi, Oj in the time-ordered product denote operators at source and sink that in practice
have to be appropriately chosen to couple to the desired states. We remark that for our purposes
it is sufficient to consider operators projected to zero momentum by summation over spatial
components, which is why we restrict ourselves to the time dependence x0, y0 for the operators
Oi (x) Oj (y) in the following discussion.
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Since we are interested in the particle spectrum of our lattice theory we need to establish a
relation between correlation functions and the eigenvalues of the corresponding Hamiltonian H.
For this we start by rewriting the above expression using the transfer matrix exp (aH)

COiOj
(x0, y0) =

1

Z tr [Oi (x0)Oj (y0) exp (−HT )] (2.35)

with
Z = tr [exp (−HT )] . (2.36)

In these expressions T/a denotes the lattice size in time direction. Furthermore, we separated
the time dependence of the operators by means of appropriate factors of the transfer matrix,
i.e. Oi (x0) = exp (Hx0)Oi exp (−Hx0) and use the cyclic property of the trace to obtain

COiOj
(x0, y0) =

1

Z tr [Oi exp (−H (x0 − y0))Oj exp (H (x0 − y0 − T ))] . (2.37)

Finally, defining t = x0 − y0 and inserting a complete set of eigenstates |m〉, H |m〉 = Em |m〉
yields

COiOj
(t) =

1
∑

n
exp (−EnT )

∑

m,n

〈n| Oi |m〉 exp (−Emt) 〈m| Oj |n〉 exp (En (t− T )) (2.38)

For sufficiently large values of T and E1 − E0 > 0 we may write

Z =
∑

n

exp (−EnT ) = exp (−E0T ) (1 +O (exp (−E1T ))) . (2.39)

At this point it is instructive to consider the two possible cases i = j and i 6= j separately to
gain further insight into the analytic structure of the correlation functions. First we will restrict
ourselves to the choice of equal operators at source and sink i = j. Keeping only the lowest
lying state and defining its mass by m(1) = E1 − E0 we are left with

COiOi
(t) = |〈0| Oi |0〉|2 + |〈0| Oi |1〉|2

(

exp
(

−m(1)t
)

+ exp
(

m(1)t−m(1)T
))

. (2.40)

The very first term is only present if the operatorOi exhibits a non-vanishing vacuum expectation
value. In general this will be the case unless it is explicitly ruled out by any symmetry, i.e. a non-
zero vacuum expectation value arises only if the operator is even under all discrete symmetries
of the theory (e.g. T 1,2,3,P1,2,3), which in practice turns out to be a very restrictive condition.
In fact, for the interpolating operators that have been discussed in the previous subsection, a
vacuum expectation value occurs only for one of the operators relevant to the neutral pion, i.e.
the scalar operator S0

l in Eq. (2.8) which is relevant to the neutral pion and that transforms
even under all symmetries, c.f. table 2.1. The correlation functions that are actually used in
our analysis are defined without this first term, which means that one has to subtract it before
sewing together the disconnected graphs for the neutral pion.

The remaining two terms show a cosh-like behavior in time, i.e.

COiOi
(t) ∼ 2 |〈0|Oi |1〉|2 exp

(

m(1)T

2

)

cosh

(

m(1)

(
T

2
− t

))

, (2.41)
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which allows to extract the mass of the ground state by fitting the correlation at large Euclidean
times t. A complementary method is given by the effective mass

meff = log

( COiOi
(t)

COiOi
(t+ 1)

)

(2.42)

that for large Euclidean times t asymptotically approaches a plateau from which one can de-
termine the mass of the ground state as well. Moreover, we remark that one may exploit the
symmetry of the correlation function to further improve the signal quality by shifting the origin
in time to T/2, i.e. replacing t→ t−T/2 and average over positive an negative times to improve
the signal quality. However, the correlation between data at positive and negative times usually
tends to be very large, such that this yields only a rather moderate improvement in practice.

For the case of cross-correlators, i.e. different operators at source and sink i 6= j, the situation
is slightly more complicated, because instead of Eq. (2.40) one obtains

COiOj
(t) = 〈0| Oi |0〉 〈0| Oj |0〉+ 〈0| Oi |1〉 〈0| Oj |1〉∗ exp

(

−m(1)t
)

+ 〈0| Oi |1〉∗ 〈0| Oj |1〉 exp
(

m(1) (t− T )
)

. (2.43)

First of all we remark that again a non-vanishing vacuum expectation value may be present if
is not prohibited by symmetries for any of the two operators Oi, Oj . To reveal further details
of the functional dependence on Euclidean time one rewrites this expression in terms of real
Ri,j = Re 〈0| Oi,j |1〉 and imaginary parts Ii,j = Im 〈0| Oi,j |1〉 of the amplitudes, performs the
shift t→ t− T/2 and removes its vacuum expectation value, resulting in

COiOj
(t) = exp

(

−m(1)T

2

)(

(RiRj + IiIj) cosh
(

m(1)t
)

+ i (RiIj − IiRj) sinh
(

m(1)t
))

.

(2.44)
Depending on the behavior of the operators under T 1,2,3 symmetry as listed in table 2.1 (or
standard time reversal for operators in the physical basis), either the cosh-like or the sinh-like
contributions survive. For example, the operators S3

l , S1
h and P3

h that are relevant to the flavor
singlet sector and correspond to pseudoscalar operators in the physical basis transform odd
under T 1,2 or T 3, respectively, which is why all resulting cross-correlators are cosh-like. Note
that the actual form of the correlators is also affected by the choice of boundary conditions,
which in our simulations are antiperiodic in time for the quark fields (and periodic in the spatial
components). This has to be taken into account when averaging over positive and negative
t-values.

Before we discuss how correlation functions are calculated numerically in the next subsection,
we briefly consider the correlation functions resulting from the interpolating operators that have
been used in this work. For the charged pion as well as the kaon sector, these correlation
functions take a particularly simple form, i.e. they consist only of a single quark connected
contribution. In general, on the lattice we will consider two-point correlation function matrices
of the form

C (t) = a3
∑

~x

〈0| ~O (0)⊗ ~O (x)† |0〉 , (2.45)
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where ~O denotes a suitable vector of interpolating operators, occurring at source (0) and sink
(x). Note that here the hermitean conjugate is understood to be taken element-wise on the
vector of interpolating operators ~O (x). For the charged pion only light quarks contribute and
the full correlation function matrix in the above equation, involving all operators defined in
Eqs. (2.5)–(2.7), can be written as

Cπ±

= a3
∑

~x

〈0|T ~O− (0)⊗ ~O+ (x) |0〉 , (2.46)

where we defined ~O± =
(
P±
l ,A±

l ,V±
l

)T
and applied the relation O+

i =
(
O−

i

)†
, which holds for

any of the operators labeled by i = 1, 2, 3. A single matrix element is described by the following
generic expression

Cπ±

O+
i
O−

j

(t) = −a3
∑

~x

tr
[

γ5
(
G0x

uu

)†
γ5ΓiG

0x
uuΓj

]

, (2.47)

where Γi,j denotes the Dirac structure of the operators O±
i,j . Note that in the above expressions

translational invariance on the lattice has been exploited to put one of the operators at the
origin and the sum indicates the projection to zero momentum by summation over spatial
components. Moreover, γ5-hermiticity has been used to replace a down quark propagator by
an up quark propagator. In fact, we also apply γ5-hermiticity in exactly the same way for any
other correlation function to allow for a unified implementation of certain routines in our codes.

In the kaon sector the vector of interpolating operators in Eq. (2.45) is given by the operators
in Eq. (2.21), i.e.

~OK = (Sc
lh ,Sc

lh ,Sc
lh ,Sc

lh)
T . (2.48)

Again it is possible to describe all resulting correlation functions by a single, generic expression

CK
ij (t) = −a3

∑

~x

tr
[

γ5
(
G0x

uu

)†
γ5ΓiG

0x
fifjΓj

]

, (2.49)

where fi,j = s, c denotes the heavy quark flavor in each operator and Γi,j again the Dirac
structure at source and sink. Note that in the above expression we introduced the simplified
notation CK

ij (t) ≡ CK
OK

i OK
j

(t) which is unambiguous, if the same vector of interpolating operators

is used at source and sink.

For the case of the neutral pion and the flavor singlet sector the resulting correlation functions
involve disconnected diagrams leading to a more complicated structure, which is why they have
been listed explicitly in appendix B. In particular they contain relative signs and factors and
non-trivial structures in flavor space for the heavy quark operators occurring for η, η′.

Finally, we remark that the size of the resulting correlation matrices may be increased by the
additional use of fuzzed operators as mentioned before. In this case every matrix element COiOj

is replaced by a 2× 2 submatrix

CLF
ij (t) = a3

∑

~x

〈0|T ~OLF
i (0)⊗ ~OLF

j (x)† |0〉 , ~OLF
i,j =

(
OL

i,j ,OF
i,j

)T
, (2.50)
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which is built from local and fuzzed operators OL
i,j and OF

i,j , respectively. However, this has no
influence on the flavor structure, i.e. these submatrices are diagonal in flavor space and hence
all further analysis steps, e.g. rotations in flavor space, can be trivially extended to cover this
case as well.

2.2.1 Calculation of correlation functions

For the numerical evaluation of correlation functions we resort to stochastic methods as described
in [136], which allow to extract the information contained in the gauge configurations more
efficiently than by the use of simple point sources, which are non-zero only for a single spin-color
component. Before detailing the actual procedures, we remark that any inversions that are
required to calculate correlation functions within this work have been performed using the open
source tmLQCD suite [137]. The basic idea behind any stochastic method is the introduction
of randomly generated sources ξx,rA,α, where the index r = 1, ..., R denotes different samples for
each gauge configuration. The indices A and α label color and spin. Since most of the following
discussion is independent of flavor structures we will suppress flavor indices in this context unless
explicitly needed. In the limit of a large number of samples R → ∞ we demand the following
relations

lim
R→∞

1

R

R∑

r=1

(

ξx,rA,α

)∗
ξy,rB,β = δAB δαβ δ

xy (2.51)

and

lim
R→∞

1

R

R∑

r=1

ξx,rA,αξ
y,r
B,β = 0 . (2.52)

Note that these relations are independent of the actual form of the noise that is used for the
generation of the sources. In order to estimate the desired correlation function one needs to
invert the lattice Dirac operator D = Dl,Dh on every sample for each gauge configuration

φx,rA,α =
(

Dxy,r
AB,αβ

)−1
ξrB,β , (2.53)

such that in the limit of a large number of samples R the propagator
(

Dxy
AB,αβ

)−1
is recovered

from the following unbiased estimator

lim
R→∞

1

R

R∑

r=1

(

ξy,rBβ

)∗
φx,rA,α = lim

R→∞

1

R

R∑

r=1

(

ξy,rB,β

)∗ (
Dz

AC,αγ

)−1
ξz,rC,γ =

(

Dxy
AB,αβ

)−1
. (2.54)

Of course, in actual calculations one uses a finite number of sources, which introduces some
remnant stochastic noise. Usually, one demands that R has to be chosen large enough, such
that the remaining stochastic noise is of similar size as the gauge noise. Denoting the total
number of source degrees of freedom (“volume”) by V (i.e. spin, color and spacetime), the
noise scales as

√
V /

√
R, whereas the signal is of O (1). This is the reason why the direct use



58 CHAPTER 2. SPECTROSCOPY AND ANALYSIS METHODS

of Eq. (2.54) is still rather inefficient and more sophisticated methods of variance reduction are
applied in most actual simulations.

For the evaluation of connected diagrams we employ stochastic timeslice sources using the so-
called one-end-trick [136,138,139], which allows for much better variance reduction. Instead of

applying Eq. (2.54) one considers the product
(

φx,rA,α

)∗
φy,rB,β, where the φ

x,r
A,α are obtained similar

to what has been described before, besides that the stochastic sources used for the inversion are
now non-zero for only one particular timeslice t0 (which is why they are called “time-slice
source”). The time-slice is chosen randomly for every gauge configuration to avoid introducing
unnecessary autocorrelation while retaining translational invariance for sufficiently large sets of
gauge configurations. Averaging over a large number of samples R yields an unbiased estimator
for the product of two propagators, i.e.

lim
R→∞

1

R

R∑

r=1

(

φx,rA,α

)∗
φy,rB,β = lim

R→∞

1

R

R∑

r=1

((
Dxz

AC,αγ

)−1
ξz,rC,γ

)∗ (
Dyw

BD,βδ

)−1
ξw,r
D,δ

=
((
Dxz

AC,αγ

)†
)−1 (

Dyz
BC,βγ

)−1
. (2.55)

From this expression it is possible to obtain the connected, zero-momentum correlation function
by summation over the spatial components and taking the trace over the remaining open indices.
As discussed in [136], this leads to a favorable signal-to-noise ratio of O (1) even for using only a
single sample, compared to O(

√
R/

√
V ) for the approach that has been considered first. Despite

the improved variance reduction, Eq. (2.55) does not yet allow for arbitrary Dirac structure at
the source, which is why an additional extension to the method is required. Such an extension
is provided by introducing so-called linked sources

ξx0y0,~x,r
A,αβ = δαβδ

x0y0ζ~x,rA , (2.56)

which share an identical stochastic noise field ζ~x,rA for the four possible values β = 0, 1, 2, 3 of
the Dirac index. Again, these sources are non-zero only on a certain time-slice y0. The use of
two linked sources in the evaluation of Eq. (2.55) instead of standard time-slice sources allows to
introduce an arbitrary Dirac structure Γ at source y0, requiring now four instead of one inversion.
Moreover, it is even possible to evaluate connected pieces of correlators involving spatially non-
local operators (like those generated by application of fuzzing or other smearing techniques)
employing only a minor modification to the sources and at the prize of three additional inversions.
The modified linked sources are of the form Fξx0y0,~x,r

A,αβ where F denotes a suitable product of
links, implementing the required spatial structure. These sources are often referred to as “fuzzed”
or “smeared” sources, depending on the actual technique that is used to implement spatially
non-local operators. The aforementioned, additional inversions of the Dirac operator are then
performed on these sources and together with the inversions on the standard linked sources this
ultimately allows to build correlations functions with any desired spatial and Dirac structure at
source an sink as discussed in [136].

Although the preceding considerations are equally valid for a degenerate and a non-degenerate
doublet, we remark that in order to invert the heavy doublet one projects out the single, non-
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degenerate flavors, i.e. one solves1

(
φcc
φcs

)

= D−1
h

(
1
0

)

,

(
φsc
φss

)

= D−1
h

(
0
1

)

. (2.57)

For the evaluation of disconnected diagrams we use stochastic volume sources with complex
Gaussian noise [136]. Although the corresponding calculations rely on exactly the same basic
identities for stochastic sources which have just been discussed, one usually has to take additional
care with respect to variance reduction. This is because disconnected diagrams are significantly
noisier than the connected ones and in fact, using the naive stochastic estimate for a single loop
with Dirac structure Γ

lim
R→∞

1

R

R∑

r=1

(ξr)∗ Γφr = tr
[
D−1Γ

]
(2.58)

turns out to be insufficient for almost any practical purposes. Note that having established the
basic principles of the stochastic method in the preceding discussion, we may now again suppress
color, spin and spacetime indices for further considerations, as it has been done in the above
equation. The trace on both sides of the equation acts on color, spin and spacetime.

A very powerful method of variance reduction, which is exclusive to the case of a degenerate
quark doublet in the twisted mass formulation, is again based on the application of the one-
end-trick [140]. The method relies on the following identity relating the u and d components
Du = Dl

(
1 + τ3

)
/2, Dd = Dl

(
1− τ3

)
/2 of the twisted mass Dirac operator for light quarks Dl

Du −Dd = 2iµlγ5 , (2.59)

which can easily be inferred from the definition in Eq. (1.173). Together with the identity

D−1
d (Dd −Du)D

−1
u = D−1

u −D−1
d , (2.60)

one obtains a corresponding expression for the propagators

Γ
(
D−1

u −D−1
d

)
= −2iµlΓDdγ5Du , (2.61)

where again an additional Dirac structure Γ has been added to allow for the different types
of interpolating operators in our simulations. Application of the γ5-trick in Eq. (1.190) on the
right-hand side allows to transform the d propagator into an u propagator, leading to

− 2iµlΓγ5
(
D−1

u

)†
D−1

u = Γ
(
D−1

u −D−1
d

)
, (2.62)

The left-hand side of this relation can be evaluated efficiently using the one-end-trick

lim
R→∞

1

R

R∑

r=1

φrΓγ5 (φ
r)∗ =

(
D−1

u −D−1
d

)
Γ , (2.63)

1Note that in the actual implementation of the tmLQCD suite, the two components of the doublets are
exchanged, i.e. the strange quark is the upper component and the charm the lower one, such that one has
to make the replacements φcc ↔ φss and φcs ↔ φsc to match with the actual code. However, for reasons of
consistency we kept the notation that is used throughout this work.
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with a signal-to-noise ratio of O (1). This improved behavior compared to Eq. (2.58) is caused
by the additional, implicit sum over spacetime indices of the stochastic sources used for φr,
(φr)∗ and the fact that the stochastic estimation of a rather large constant is avoided due to
considering the difference of the two propagators on the right-hand side instead of estimating
them separately. However, the fact that we need the difference of propagators on the right hand
side is also the reason why this method is restricted to operators that exhibit a matching flavor
structure, i.e. τ3 in the twisted basis. Moreover, it is not applicable in the heavy quark sector
due to the off-diagonal components of Dh, D

−1
h in flavor space.

Another more general, though less effective method is given by the hopping parameter expansion
[136, 141], which we apply in all those cases for which the one-end-trick cannot be used. The
idea behind this method is to rewrite the Dirac operator D = Dl,Dh by

D−1
h = B −BHB +B (HB)2 −B (HB)3 +D−1

h (HB)4 , (2.64)

with Dh = (1 +HB)A, B = 1/A and H the so-called two flavor hopping matrix. The last term
in this representation can be estimated stochastically for any Dirac structure Γ by

ΓD−1
h (HB)4 = lim

R→∞

1

R

R∑

r=1

(ξr)∗ (BH) Γφr , (2.65)

whereas the other terms can be calculated directly without the need for any inversions. This
method yields an improvement of a factor & 1.5 compared to Eq. (2.58) at a fixed number of
stochastic samples R. For further details we refer to [136] and references therein.

2.2.2 Generalized eigenvalue problem

In the first part of this section it has been discussed how the ground state can be extracted from a
single correlation function. However, if one wants to deal with higher lying states systematically,
it is necessary to consider matrices of correlation function as defined in Eq. (2.45) instead of
a single correlator. The reason for this is that any element of the correlation function matrix
involves an infinite number of states, i.e.

Cij (t) =
N∑

n=1

Â
(n)
i

(

Â
(n)
j

)∗ (
exp

(

−E(n)t
)

± exp
(

E(n) (t− T )
))

(2.66)

where Â
(n)
i = 〈0| Oi |n〉 denote matrix elements, which are related to the physical amplitudes

A
(n)
i via A

(n)
i =

√
2E(n)Â

(n)
i . Note that in our applications these matrix elements are real by

definition, i.e. one might as well drop the complex conjugation in the above expression. For
our purposes we will identify E(n) with the mass m(n) of the n-th state. The basic idea behind
using a matrix of correlation functions is to employ a variational approach on a finite subset of
states |n〉, n = 1, ..., N where N corresponds to the number of interpolating operators, leading
to a generalized eigenvalue problem (GEVP) [142–144]

C (t) v(n) (t, t0) = λ(n) (t, t0) C (t0) v(n) (t, t0) , t0 < t , (2.67)
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where λ(n) (t, t0), v
(n) (t, t0) denote eigenvalues (also referred to as principal correlators) and

eigenvectors, respectively. Since our correlation function matrices are symmetric and positive
definite by definition, such a GEVP can be reduced to a standard eigenvalue problem by applying
a Cholesky decomposition C (t0) = LLT on the right-hand side, where L is a triangular matrix,
allowing us to rewrite Eq. (2.67)

(

L−1C (t)
(
L−1

)T
)

LT v(n) (t, t0) = λ(n) (t, t0)L
T v(n) (t, t0) (2.68)

which may be treated numerically by any standard solver.

Taking into account the periodic boundary conditions for mesons, masses are obtained from
solving

λ(n)(t, t0)

λ(n)(t+ 1, t0)
=

exp
(
−m(n)t

)
+ exp

(
−m(n) (T − t)

)

exp
(
−m(n) (t+ 1)

)
+ exp

(
−m(n) (T − (t+ 1))

) , (2.69)

for m(n). For the case of the η–η′ system the state with lowest mass should correspond to the η
and the second one to the η′. All other mesons (π±, π0 and K) that are considered in this work
are given by the ground states of the corresponding correlation function matrices. Note that
the resulting masses are independent of the actual choice of basis, as SO (N) rotations in flavor
space leave the eigenvalues invariant and affect only the eigenvectors, i.e. one may use any linear
combinations of interpolating operators as long as the rank of the matrix remains unaffected.
Moreover, masses are invariant under renormalization, which is why one does need not take care
of renormalization as long as we are only interested in masses and avoid linear combinations
of operators that require relative renormalization factors. This is one of the reasons why we
introduced the rotations in flavor space in Eqs. (2.20),(2.31) for kaon and flavor singlet sector,
respectively.

As already mentioned, the time extend of the lattice T should be chosen sufficiently large to
avoid pollution due to additional excited state contributions. Concerning the choice of values for
t, we remark that they should be as large as possible, because the extracted eigenvalues receive
corrections of O

(
exp

(
−∆E(n)t

))
compared to the ones corresponding to the “true” eigenstates

of the Hamiltonian. Here ∆E(n) denotes the distance to the nearest energy level. However,
in [144] it was shown that the first order corrections in perturbation theory to any energy level
E(n) with n ≤ N are in fact given by O

(
exp

(
−
(
E(N+1) − E(n)

)
t
))

which usually exhibits much
better convergence in t compared to the aforementioned corrections, due to the larger splitting
(
E(N+1) −E(n)

)
> ∆E(n). In this paper it is also discussed how to minimize the higher order

corrections, i.e. how to recover the improved t-behavior of the first order corrections, which
leads to a condition for t0, namely to choose t0 > t/2 (and both sufficiently large). The reason
for this that the mixing occurring can be shown to be exponentially suppressed in t0. Moreover,
the form of the first order corrections also implies that the lowest lying states converge fastest in
t and that it is generally favorable to use as many operators as possible, as this leads to larger
splittings E(N+1)−E(n). However, in numerical simulations the possible choices for t0 are often
strongly restricted by the noise increasing in t, such that there is always a trade-off between
systematic effects and statistical errors. This is particularly true for the flavor singlet sector
where large disconnected contributions occur, although in general it depends on the channel
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that is investigated. For the actual choice of parameters that have been used in our simulation
and some further discussion on the subject we refer to appendix C.

In addition to the masses of the states it is possible to retain the corresponding amplitudes A
(n)
i

from the eigenvectors in Eq. (2.67). To this end one defines dual vectors u(n) to the vectors of
matrix elements Â(n) satisfying

(

u(n), Â(n)
)

=

N∑

i=1

(

u
(n)
i

)∗
Â

(n)
i = δnm , 0 ≤ n,m < N . (2.70)

The dual vectors fulfill Eq. (2.67), i.e.

C (t) u(n) = λ(n)(t, t0)C (t0)u(n) , (2.71)

implying that the original eigenvectors v(n) (t, t0) and the vectors u(n) are related by a simple
coefficient c

u(n) = cv(n) (t, t0) . (2.72)

From the relation
(

u(m), C (t) u(n)
)

= δmn
(

exp
(

−m(n)t
)

± exp
(

m(n) (t− T )
))

, (2.73)

it is possible to determine the coefficients c

c = ±
√(

exp
(
−m(n)t

)
± exp

(
m(n) (t− T )

))

(
v(n) (t, t0) , C (t) v(n) (t, t0)

) , (2.74)

where the sign ambiguity arises from taking the square root. In fact, the overall sign of the
amplitudes is just a convention and for our purposes we choose the positive branch. The final
result for the single amplitudes is obtained by plugging Eqs. (2.72),(2.74) into the relation

C (t)u(n) =
(

exp
(

−m(n)t
)

± exp
(

m(n) (t− T )
))

Â(n) , (2.75)

and by adding the normalization factor relating matrix elements and amplitudes, which yields

A
(n)
i =

N∑

j=1
Cij (t) v(n)j (t, t0)

√
(
v(n) (t, t0) , C (t) v(n) (t, t0)

) (
exp

(
−m(n)t

)
± exp

(
m(n) (t− T )

)) . (2.76)

Note that unlike masses, the extraction of amplitudes crucially depends on the choice of the
linear combinations for interpolating operators in flavor space and on possible renormalization
factors. This issue will be discussed in more detail in the next subsection.
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2.2.3 Observables and renormalization

Within our studies the central observables comprise masses as well as decay constants and mixing
parameters (if applicable). Whereas the extraction of the meson masses we are interested in
(i.e. MPS, Mπ0 , Mπ0,c, MK , Mη, Mη′) is rather straightforward from the generalized eigenvalue
problem in Eq. (2.67), the remaining observables require some additional care with respect
to renormalization. In fact, all of the interpolating operators that have been introduced in
subsection 2.1 require renormalization to obtain physical matrix elements and amplitudes. In
addition it is necessary to ensure that the operators used for the determination of the matrix
elements correspond to the correct currents in the physical basis. If we were always to use
directly the corresponding operators in the twisted basis this would not be an issue, however,
for the kaon and the flavor singlet sector we employ an additional change of basis for practical
reasons which has to be reversed to retain the correct matrix elements. Besides, we remark
that for the determination of quantities related to matrix element it is required to use matrix
elements from local operators only, although further operators may be present in the correlation
function matrix in order to increase the basis in this case as well.

However, for this work we need to take renormalization factors explicitly into account only
for the kaon and flavor singlet sector, because we do not consider any quantities related to
matrix element for the neutral pion and the decay constant fPS of the charged pion can be
determined without the need for any renormalization. The latter is a consequence of the twisted
mass symmetries which have been discussed in section 1.3. Here, we briefly illustrate how the
expression is obtained that we actually use to extract fPS in our simulations. Starting from the
general definition of decay constants in Eq. (1.88) and applying the axial rotations at maximal
twist, one obtains in the twisted basis

fPS =
〈0| Ṽ 2,R

l |π±〉
M2

PS

=
〈0| Ṽ 2,R

l P̃ 1,R
l |0〉

√
2M

3/2
PS

, (2.77)

where we introduced the superscript R to denote renormalized currents. Note that the vector
current in the twisted basis does not require any actual renormalization. The flavor index for
the axial vector current in the physical basis has been fixed to a = 1 for the sake of clarity,
implying that in the twisted basis we are left with the a = 2 component of the twisted vector
current. However, the following considerations similarly apply to the case a = 2 and can easily
be extended to matrix elements obtained from the interpolating operators defined in Eq. (2.5)
that are linear combinations of the flavor components a = 1, 2 and which we use in practice in
our analysis. Applying the PCVC relation in Eq.(1.178) it is possible to trade the vector current
for a pseudoscalar current [75,81,82], which leads to the following expression

fPS = 2µl
〈0| P̃ 1

l |π±〉
M2

PS

. (2.78)

Note that in this expression the pseudoscalar flavor non-singlet renormalization factors ZP of the
light quark massmR

l = Z−1
P µl and the current P 1,R

l = ZPP
1
l cancel such that no renormalization

is required at all. The occurrence of the quark mass due to the use of the PCVC relation in the
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definition of the decay constants is the reason why it is convenient to use interpolation operators
renormalized only up to a factor of ZP , implying that our correlation function matrices need
to be renormalized only up to an factor Z2

P . For any other quantities that we calculate (i.e.
mixing angles in the η–η′ system) only ratios of matrix elements are required, hence any global
normalization factors can be ignored for them as well. Therefore, we omitted this factor in
all of our actual calculations although we kept it in the following discussion for consistency

reasons only. On the lattice we determine fPS from the amplitude A
(π±)
P+
l

= 〈0| P+
l |π±〉 =

√
2MPS 〈0| P+

l P−
l |0〉, which is obtained directly from the GEVP as described in the previous

section.

In principle, similar considerations apply for the kaon sector, although a complication arises
from the fact that one has to employ interpolating operators made of light and heavy quarks.
The corresponding relation for the kaon decay constant fK in the twisted mass formulation is
given by

fK = (µl + µs)
〈0| P+,tm

neutral |K〉
M2

K

, (2.79)

where µs = denotes the bare strange quark mass at maximal twist, which requires the ratio of
pseudoscalar and scalar flavor non-singlet renormalization constants Z defined in Eq. (1.201).
Again a factor Z−1

P stemming from the renormalized light and strange quark mass (c.f. Eq. (1.200))
cancels with a factor pulled out of the matrix element in the twisted mass formulation. There-
fore, we only need the ratio Z for the renormalization of the interpolating operators in Eq. (2.21),
i.e. only the scalar operators obtain a factor Z−1 and the pseudoscalar ones remain unaffected.
However, the above relation does not actually require a matrix element with the interpolating
operator d̄iγ5s in Eq. (2.21) but with the composite interpolating operator P+,tm

neutral in the “origi-
nal” twisted basis. The reason to introduce the operator basis in Eq. (2.21) was on the one hand
to allow for a significant simplification of the resulting correlation function and on the other
hand to avoid any renormalization at the level of building correlation functions. The missing
factors of Z can now easily be included while rotating back to the original basis before solving
the GEVP, which gives access to the amplitude required in the above equation.

The correlation function matrix that we calculate is given by

CK (t) = a3
∑

~x

〈0|T ~OK (0)⊗
(

~OK (x)
)†

|0〉 , (2.80)

whereas the one we actually need as input for the GEVP reads

CK
tm (t) = a3

∑

~x

〈0|T
(

RT
K
~OK (0)

)

⊗
(

RT
K

(

~OK (x)
)†
)

|0〉 , (2.81)

where ~OK is the vector of interpolating operators in Eq. (2.21) and the subscript tm refers to
the original twisted basis. Note that in the above expression the hermitean conjugate is to be
taken element-wise on the vector ~OK . This implies that we can obtain the latter matrix simply
by reversing the rotation in flavor space, i.e.

CK
tm (t) = RT

KCK (t)RK . (2.82)
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Considering the required renormalization factor this reads

CK,R
tm (t) = Z2

PR
T
Kdiag

(
Z−1, Z−1, 1, 1

)
CK (t) diag

(
Z−1, Z−1, 1, 1

)
RK

=
(
RR

K

)T CK (t)RR
K , (2.83)

where in the second line we defined the renormalized rotation matrix

RK =
1

2







+Z−1 +Z−1 −Z−1 +Z−1

+Z−1 +Z−1 +Z−1 −Z−1

+1 −1 +1 +1
−1 +1 +1 +1






. (2.84)

Applying the GEVP to this matrix one finally obtains the required amplitude for the calculation
of fK.

In the flavor singlet sector we want to determine the mixing parameters fl, fs and φ in the quark
flavor basis from Eq. (1.114), i.e. using pseudoscalar matrix elements in the physical basis as
given in Eq. (1.113). On the lattice this implies that we need to calculate the corresponding
amplitudes in the twisted basis to obtain the matrix elements hiP as defined in Eq. (1.113), i.e.

A
(P)
l = 〈0| S3

l |P〉 , A(P)
c,s = 〈0| P±,tm

h |P〉 , P = η, η′ , (2.85)

where we included the charm quark only for the sake of completeness. For the definition of
the interpolating fields S3

l and P±,tm
h see Eqs. (2.26),(2.28), respectively. Similar to the case of

the kaon this requires to reverse the rotation in flavor space that had been used to simplify the
structure of the correlation functions before solving the GEVP. The correlation matrix that we
actually build is given by

Cη,η′ (t) = a3
∑

~x

〈0|T ~Oη,η′ (0)⊗
(

~Oη,η′ (x)
)†

|0〉 , (2.86)

where ~Oη,η′ =
(

S3
l ,P

−,tm
h ,P+,tm

h

)T
. It is related to the correlation function matrix in the

original basis by

Cη,η′

tm (t) = a3
∑

~x

〈0|T
(

RT
η,η′

~Oη,η′ (0)
)

⊗
(

RT
η,η′

(

~Oη,η′ (x)
)†
)

|0〉

= RT
η,η′Cη,η′ (t)Rη,η′ . (2.87)

Pulling out a global factor of ZP from the vector of interpolating operators, the renormalized
correlation function matrix is given by

Cη,η′,R
tm (t) = Z2

P

(
RR

η,η′
)T Cη,η′,R

tm (t)RR
η,η′ , (2.88)

where we defined

RR
η,η′ =






+Z−1 0 0
0 − 1√

2Z
− 1√

2Z

0 + 1√
2

− 1√
2




 . (2.89)
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As a technical aside we remark that is also possible to exchange the order of interpolating
operators after building the matrix by an additional rotation in flavor space, which is useful if
one wants to analyze only a particular submatrix. Moreover, it is worthwhile to mention that
in the twisted basis only the scalar flavor non-singlet renormalization constant ZS occurs but
not its flavor singlet counterpart ZS0 . This is an important feature as ZS and ZS0 differ at
two loop order in perturbation theory [145], unlike pseudoscalar flavor non-singlet ZP and flavor
singlet ZP 0 renormalization constants which are identical to all orders. This can be considered
an intrinsic advantage of the twisted mass formulation.

Finally, we mention that the mixing angle φ can be calculated directly from Eq. (1.115) on the
lattice using the corresponding amplitudes from the GEVP applied to the correlation function

matrix Cη,η′,R
tm (t), i.e.

tan (φ) =

√
√
√
√−A

(η′)
l A

(η)
s

A
(η)
l A

(η′)
s

. (2.90)

Note that in order to check for the validity of the assumptions that led to the definition of a
single mixing angle in the quark flavor basis we will also calculate φl and φs separately, which
are given as single ratios of the amplitudes corresponding to pseudoscalar matrix elements in
the physical basis, i.e.

tan (φl) =
A

(η′)
l

A
(η)
l

, tan (φs) = − A
(η)
s

A
(η′)
s

. (2.91)

2.2.4 Scale setting and extrapolations

Up to this point we have discussed how to extract observables from lattice simulations. However,
in order to make contact with actual physics, there are additional steps required. First of all, it is
necessary to set the scale in our simulations to obtain observables in physical units instead of the
lattice spacing a. This requires to fix a single, dimension-full quantity which can be measured
on the lattice. Although in principle any dimension-full quantity could be used it is favorable to
choose one that can be measured precisely at moderate computational cost. Within this work,
we employ the Sommer parameter r0, which represents a hadronic length scale that is implicitly
defined from the following relation involving the force F (r) between to static quarks [146]

r2F (r)
∣
∣
r=r(x)

= x , (2.92)

by setting x = 1.65, i.e. r0 = r (1.65). Measuring this parameter on a given ensemble of gauge
configurations yields a result in terms of lattice units, i.e. r0/a. In practice, we then perform
separate chiral extrapolations for each value of the lattice spacing and use the resulting rχ0 /a
to obtain dimensionless quantities at the each value of the the corresponding lattice spacing.
After performing all further extrapolations for a given observable (i.e. chiral extrapolations,
continuum extrapolation and taking care of possible finite size effects) one may use the continuum
extrapolated value r0 ≡ rχ0 to convert the final results to physical units. For numerical values
used in our investigations we refer to the general discussion of our setup included at the beginning
of chapter 3.
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As just mentioned, besides setting the scale it is also necessary to take care of the dependence
on further input parameters of our simulations, i.e. the quarks masses which in general are not
a priori set to their physical values. To this end one has to run simulations at different values
of the corresponding parameters and to perform chiral extrapolations to the physical point,
employing a suitable proxy for each quark mass, e.g. M2

PS and M2
K for ml and ms. Note that

in our simulations we do not measure any quantities that are expected to depend significantly
on the value of the charm quark mass which is why we can safely neglect any such dependence
for all practical purposes. However, observables may also exhibit lattice artifacts, i.e. a residual
dependence on the lattice spacing a which should be of O

(
a2
)
in our simulations at maximal

twist. Still, they may be sizable as it is the case for the neutral pion, which has already been
discussed in detail in subsection 1.3.5. In principle the required extrapolations can be performed
simultaneously, provided that sufficient theoretical input is available, e.g. corresponding formu-
las from WχPT. However, for the η–η′ system the corresponding formulas are not available in
the literature, which is why we will perform a separate scaling test, including any residual lattice
spacing dependence in a systematic error. For the required chiral extrapolations it turns out to
be sufficient for our applications to consider the leading order dependence on MPS and MK as
given by standard χPT, c.f. Eqs. (1.79)–(1.81) and Eq. (1.87).

Finally we mention that also finite size effects may occur, which can be investigated by vary-
ing the spatial lattice size L/a while keeping the remaining parameters fixed. Typically, one
expects the resulting corrections for pseudoscalar mesons to scale with the mass of the light-
est pseudoscalar M light

PS , i.e. they should be of order O(exp(−M light
PS L)). For many cases one

has M light
PS = MPS, although, due to the mass splitting between charged and neutral pion in

WtmLQCD and the fact that Mπ0 < MPS holds, one expects the corrections in some applica-
tions rather to be of order O (exp (−Mπ0L)). However, for our purposes finite size effects will
turn out to be negligible within errors, which is why we do not go into further detail regarding
this particular subject. We only mention that it is also possible to systematically include finite
size corrections in dedicated chiral fits employing WχPT [129,147,148], however, this is clearly
beyond the scope of this work.

2.3 Data analysis

The previous sections of this chapter focused on the technical details of building correlation func-
tions and extracting observables from lattice simulations. However, for meaningful physical pre-
and postdictions also a careful statistical analysis is required, because all of our calculations are
based on Monte-Carlo methods. Besides systematic errors, which are usually hard to quantify,
statistical errors themselves an be evaluated and treated in a systematic way. In this section we
include a brief overview on the methods of statistical error analysis and fitting that have been
used in this work. Most of these methods are nowadays considered standard techniques and for
further reading we refer to any standard textbook, e.g. [46].

The statistical errors in Monte-Carlo simulations arise from the fact that one can only use a
finite number of samples N (i.e. number of gauge configurations) in any actual simulation.
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A simple estimate for the error introduced by this restriction for any primary observable O is
related to the samples variance σ2N , which is defined by

σ2N =
1

N − 1

N∑

n=1

(

(On)2 − 〈O〉2
)

, 〈O〉 = 1

N

N∑

n=1

On . (2.93)

where On denotes the n-th measurement of O. Note that in this expression the factor 1/ (N − 1)
(instead of 1/N) is required to obtain an unbiased estimator, because the expectation value of O
has been estimated by the measured mean value. The standard error is then given by σN/

√
N .

However, this error estimate exhibits a significant drawback as it requires the all measurements
of O to be uncorrelated, which one may not expect to be fulfilled in any actual computation.
Therefore, it is often referred to as naive error. In the following we will discuss what kind
of correlations may occur and how they can be dealt with in order to obtain a reliable error
estimate.

2.3.1 Autocorrelation

One important source of correlation in the data is given by autocorrelation, i.e. correlation in
simulation time. In order to treat these correlations one introduces the autocorrelation function

Γ (n−m) = 〈(On − 〈O〉) (Om − 〈O〉)〉 , (2.94)

where τ = n−m denotes “Monte-Carlo time” to distinguish it from Euclidean time t. A measure
for the autocorrelation is then given by the integrated autocorrelation time τint which is defined
as

τint =
1

2

∞∑

τ=−∞

Γ (|τ |)
Γ (0)

. (2.95)

Another possibility is to consider the exponential decay of the autocorrelation function

Γ (n−m) ∼ exp−τ/τc, , (2.96)

which yields an autocorrelation time τc that is typically of the same order as τint. In practice,
one considers two measurements On, Om to be independent in simulation time if they satisfy
|n−m| ≥ τint. However, one should stress that actual simulations always include only a finite
number of measurements such that correlations at time scales similar or even larger than the
length of our sample of measurements cannot be detected.

There are several ways that allow to incorporate the effects of autocorrelation into an error
estimate. The most simple method is to use only gauge configurations which are separated by
at least τint in simulation time. However, this has two major disadvantages. The first one is
given by the fact that τ is not a priori known for a given observable such that one may have
to perform more measurements than actually needed. The second disadvantage is the loss of
residual information contained in the gauge configurations that lie in between every pair of
independent configurations. Since the generation of configurations with dynamical quarks is
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numerically very expensive this is something one would like to avoid as well. One possibility
to take all available measurements into account is given by a modification to the naive error
estimate σN which involves the computation of τint. In general, the resulting estimate for the
full error σcorrN (i.e. taking correlations into account) will be larger and one can show that σcorrN

is given by [149]
(σcorrN )2 = 2τintσ

2
N . (2.97)

However, this estimate requires a precise determination of τint, which can only be achieved
from a sufficiently large sample size. Besides, estimating the error of τint is technically rather
involved [150]. The particular method of error estimation described in [150] is also referred to
as the “Γ-method”.

Another simple but effective technique to deal with autocorrelation is given by blocking, which
refers to the data being arranged in blocks of a given block length Nb before performing the
actual analysis using the B = N/Nb block averages Bn instead of the single measurements. Note
that this blocks are required to contain only successive measurements, i.e. the order of the data
sequence should not be affected. Then the error can be estimated from

σ2O,N,Nb
=

1

B (B − 1)

B∑

n=1

(

Bn − 1

B

B∑

m=1

Bm

)2

. (2.98)

For a sufficiently large block size Nb – i.e. Nb should be of the order of τint in units of Monte-
Carlo time – the blocks are statistically independent and the resulting error estimate is no
longer affected by correlations. In practice one usually varies the block length until the error
stays constant, i.e. fluctuation occur from further increasing the block size. This procedure
allows to avoid the calculation of τint, although the latter can still provide a useful cross-check.
Throughout this work we rely on blocking in our error analysis, while the Γ-method is used only
for cross-checks.

2.3.2 χ2-fitting

Apart from the correlations in simulations time that have just been discussed, further correlations
may also arise among observables depending on some lattice parameter. In lattice QCD one
usually considers correlation functions Cij (t) as discussed in the previous section which depend
on the Euclidean time t. For such functions correlations are not restricted to correlations between
measurements on different gauge configurations but may also occur for measurements at different
values of t. This has to be taken into account when fitting some model function f (t, ~χ) to the
data, where ~χ denotes a vector of fit parameters.

To this end, one considers the gauge average 〈Cij (t)〉 over N independent configurations (or
blocks). In order to determine the correlations between averages at different t and to estimate
the statistical uncertainty on each average one defines the correlation matrix

Ct1t2 =
1

N (N − 1)

N∑

n=1

(
Cn
ij (t1)− 〈Cij (t1)〉

) (
Cn
ij (t2)− 〈Cij (t2)〉

)
. (2.99)
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The inverse of this correlation matrix occurs in the definition of the correlated χ2

χ2
corr =

∑

t1,t2

(〈Cij (t1)〉 − f (t1, ~χ))
(
C−1

)

t1t2
(〈Cij (t2)〉 − f (t2, ~χ)) , (2.100)

which one needs to minimize in order to find the best fit, i.e. the optimal values the elements
for the parameter vector ~χ. The argument that leads to the minimization condition for χ2

corr

is that the probability distribution of 〈Cij (t)〉 which yields the observed correlation should be
maximal. Note that for the uncorrelated case the matrix Ct1t2 becomes diagonal and the usual,
uncorrelated χ2 is recovered as the diagonal elements of Ct1t2 simply reproduce the standard
variances. For further details we refer to any textbook on statistics.

Besides simple linear fits that are used at various occasions in our analysis, a non-trivial example
for such a fit is given by the following factorizing fit model

Cij(t) =
∑

n

A
(n)
i A

(n)
j

2m(n)

[

exp(−m(n)t) + exp(−m(n)(T − t))
]

(2.101)

which we apply to the correlation matrices Cij to complement or cross-check our GEVP analysis
in certain cases. Note, however, that in any actual application in our studies of η, η′ we restrict
ourselves to the use of the uncorrelated χ2, because the correlation matrix turns out much too
noisy to allow for a meaningful numerical inversion of the correlation matrix. This approach is
justified, because we use the bootstrap method discussed in the next subsection to calculate the
errors on all relevant fit parameters and do not employ the resulting χ2 in other applications
or to make any statistical statements. We remark that in principle one could also use some
truncation method (e.g. a singular value decomposition together with a cut in the resulting
singular values) to invert the correlation matrix, however, this would introduce some additional
model dependence, which we would like to avoid.

2.3.3 Bootstrap method

A very powerful tool to deal with correlations in the context of error analysis is given by the
bootstrap method. It is based on resampling, i.e. starting from N independent gauge config-
urations (or blocks) one randomly chooses NB new samples. This is done by sampling with
replacement, such that single gauge configurations may enter the new sample multiple times
or even not at all. In our applications we will always choose each bootstrap sample to be of
the same size as the original sample. The analysis is then performed on every sample and the
resulting errors can be estimated from the variance in the bootstrap means.

This method has a significant advantage over other methods to deal with correlations, which
is that errors are without much ado propagated trough all stages of the analysis by simply
performing all required operations on every bootstrap sample. It also allows to easily include
known errors of further quantities that enter the analysis by resampling. Moreover it can be
trivially combined with blocking by replacing simple measurements with blocks in the generation
of bootstrap samples. For these reasons we employ bootstrapping for the determination of
statistical errors throughout this work.



Chapter 3

Analysis and results

In this third and final chapter we present the details of our analysis and discuss the physical
results obtained from our simulations. The first section details our lattice setup for Nf = 2+1+1
dynamical quark flavors which has been used for all η,η′ related investigations and which is also
a major part of the setup that has been used in the determination of low energy constants for
WχPT. The next four sections are devoted to our study of η and η′ mesons. In section 3.2
we discuss the extraction of masses for flavor singlet and non-singlet mesons as well as the
determination of the decay constants for the flavor non-singlets which are needed for certain
parts of our analysis. In the third section we present the details of the chiral extrapolation in
the light quark mass for theMη as well as the correction for mistuned values of the strange quark
mass in our simulations. We also perform scaling tests and perform a continuum extrapolation.
At this stage, corresponding extrapolations for the η′ are still omitted due to large errors of Mη′ .
The discussion of mixing in the η–η′ system is postponed until section 3.5, where the results
for the mixing angle from the standard analysis method is presented together with the more
comprehensive results of mixing parameters obtained from an improved analysis method.

Most of the results presented in sections 3.2, 3.3 and some parts of section 3.5 have been
published in [1, 4, 5]. However, we point out that the actual numbers presented here may
differ within errors from the ones in the aforementioned publications, which is due to minor
improvements in statistics for certain ensembles and the inclusion of additional data points.
Moreover, for the presentation in this work we have enforced consistent statistics throughout
all of our investigations. We stress that none of this has any impact on the physical results
as the resulting deviations lie all within errors of the originally published values. In fact, most
deviations are much smaller than the respective error itself.

The results from an improved analysis method for the flavor singlet sector as discussed in
section 3.4 have been partially published in [3, 6], which is also true for some parts of the
results for the mixing parameters of the η,η′ system, that are discussed in section 3.5. Using
this improved analysis method it becomes feasible to perform extrapolations for M ′

η as well and
to determine further mixing parameters beside the angle φ. The two sections 3.4 and 3.5 contain
the most central physical results of our investigations, i.e. the final values for Mη, M

′
η and the

71
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mixing angle φ.

The last section of this chapter is dedicated to our analysis of low energy constants, which is
based on our calculations of masses in the pion sector. All of the results in this section have
been published in [2].

3.1 Lattice action and parameters

In this work we use gauge configurations produced by the European Twisted Mass Collaboration
[79,134,151] with the fermionic action described by Eqs. (1.172),(1.197) and the Iwasaki gauge
action that is given by the generic gauge action in Eq. (1.162) for a particular choice of parameters
as discussed in the text. Further details of these configurations are described in [79]. A summary
of the ensembles that are used in this investigation can be found in table 3.1. The first letters
A, B and D used to denote the ensembles refer to the different values of the lattice spacing
aA = 0.0863(4)fm, aB = 0.0779(4)fm and aD = 0.0607(2)fm, corresponding to βA = 1.90,
βB = 1.95 and βD = 2.10, respectively [151]. In this table we have also listed the number of
gauge configurations N , and the number of stochastic samples per gauge configurations Ns used
to estimate the disconnected contributions as described in subsection 2.2.1. We remark that the
physical volumes of these ensembles are mostly larger than 3 fm with only a few exceptions and
they correspond to values of MPSL larger than 3.3. The physical spatial volumes range from
(1.9 fm)3 to (2.8 fm)3.

As discussed in subsection 2.2.4 we will use the Sommer parameter r0 [146] to study the scaling
behavior of our results. We use the values of rχ0 /a extrapolated to the chiral limit at each β-value
separately. For the A and B ensembles we employ the values given in [79]. For the ensembles
at the finest lattice spacings these values have not bee yet available which is why we performed
the extrapolation by ourselves. The three values for rχ0 /a are listed in table 3.2. For setting
the physical scale one could in principle use the results of [151], where the scale has been set
from a chiral fit to data for fPS and mPS and the physical value of fπ. However, this involves
only two data points at β = 2.10, hence has to be considered rather preliminary. Therefore, we
prefer to set the scale in our investigation using a value of r0 = 0.45(2) fm. The 5% error covers
the statistical uncertainty and spread quoted [151], allowing room for systematic uncertainties.
Besides, this method allows to update our results as soon as an update of the scale setting
becomes available.

In order to fix the light and strange quark masses to their physical values we employ the ex-
perimental values of Mπ0,exp ≈ 135MeV and MK0,exp ≈ 498MeV. The motivation for using
the masses of the neutral mesons results from the fact that our simulations do not incorporate
electromagnetic effects. Using the masses of the neutral mesons one may expect to reduce un-
certainties related to this approximation. For further discussion on this subject we refer to [152]
and references therein.

Concerning heavy quark mass dependence we remark that for our ensembles the bare values
of aµσ and aµδ were kept fixed at each value of β, and only the value of the light twisted



3.1. LATTICE ACTION AND PARAMETERS 73

ensemble β aµℓ aµσ aµδ L/a N Ns Nb

A30.32 1.90 0.0030 0.150 0.190 32 1367 24 5
A40.24 1.90 0.0040 0.150 0.190 24 2630 32 10
A40.32 1.90 0.0040 0.150 0.190 32 863 24 4
A60.24 1.90 0.0060 0.150 0.190 24 1251 32 5
A80.24 1.90 0.0080 0.150 0.190 24 2449 32 10
A100.24 1.90 0.0100 0.150 0.190 24 2493 32 10

A80.24s 1.90 0.0080 0.150 0.197 24 2517 32 10
A100.24s 1.90 0.0100 0.150 0.197 24 2312 32 10

B25.32 1.95 0.0025 0.135 0.170 32 1484 24 5
B35.32 1.95 0.0035 0.135 0.170 32 1251 24 5
B55.32 1.95 0.0055 0.135 0.170 32 1545 24 5
B75.32 1.95 0.0075 0.135 0.170 32 922 24 4
B85.24 1.95 0.0085 0.135 0.170 24 573 32 2

D15.48 2.10 0.0015 0.120 0.1385 48 1045 24 10
D20.48 2.10 0.0020 0.120 0.1385 48 434 24 5
D30.48 2.10 0.0030 0.120 0.1385 48 474 24 3
D45.32sc 2.10 0.0045 0.0937 0.1077 32 1887 24 10

Table 3.1: The ensembles which are included in our investigations. The notation that is used to
label the ensembles is the same as in [79]. In addition we give the number of configurations N ,
the number of stochastic samples Ns for all ensembles and the bootstrap block length Nb.

β 1.90 1.95 2.10
rχ0 /a 5.231(38) 5.710(41) 7.538(58)

Table 3.2: Values of the chirally extrapolated Sommer parameter rχ0 /a for the three values of β.

mass parameter aµl is varied. The resulting kaon masses on these ensembles are rather close to
the physical value although deviations of up to 10% [79] occur, which is particularly the case
for the A and D ensembles. In addition, one may consider the D-meson masses whose values
exhibit a large uncertainty. Nevertheless, they are also close to physical [79], implying that the
resulting values of the charm quark mass lie in a reasonable range as well. In order to estimate
effects of different value of the strange quark mass we will use ensembles A80.24 and A100.24 for
which additional ensembles with re-tuned values of aµσ and aµδ are available. In table 3.1 these
ensembles are denoted by A80.24s and A100.24s, where the suffix “s” refers to the re-tuning
with respect to the strange quark mass, i.e. they reproduce the physical kaon mass value more
accurately than the original A80.24 and A100.24 ensembles; see also the left panel of figure 3.4.
In particular, these ensembles will be used to estimate the strange quark mass dependence of
Mη. Further details on this will be discussed in section 3.3 in more detail.
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β 1.90 1.95 2.10
Z 0.6703(8) 0.6859(9) 0.7493(11)

Table 3.3: Values for Z from matching mixed action (Osterwalder-Seiler) to unitary approach.

As discussed in sections 2.1 and 2.2, we need the ratio Z of pseudoscalar and scalar flavor non-
singlet renormalization constants for several purposes, i.e. the calculation of fK and the mixing
parameters in the flavor singlet sector. The chirally extrapolated values of Z at each value of
the lattice spacing have been evaluated non-perturbatively for our situation in [153] and can be
found in table 3.3.

3.2 Masses and flavor non-singlet decay constants

This section is dedicated to the extraction of masses for the light pseudoscalar flavor singlet and
non-singlet mesons. First we give an overview on our results for flavor non-singlet masses and
decay constants which are required for various purposes in our analysis concerning the flavor
singlet states as well as the determination of low energy constants from WχPT. Since the masses
of η and η are in the main focus of this work we dedicate a separate subsection to discuss the
extraction of them in more detail. Moreover, we also include the results for the neutral pion
masses, because the corresponding analysis is very similar (though simpler) to the one in the
flavor singlet sector.

3.2.1 Charged pion and kaon

For the charged pion as well as the kaon the determination of masses is straightforward as
both are the ground states of their respective correlation function matrices. Moreover, the
resulting statistical errors are small (typically ≪ 1%), because the required correlation functions
in Eqs. (2.47),(2.49) involve only quark connected diagrams. In both cases we use fuzzing to
increase our operator basis by a factor of two, such that a plateau in the effective mass is reached
for smaller values of t, which further decreases the statistical errors. For the charged pion this
leads to a 4×4 correlation matrix from pseudoscalar and axial vector operators P±

l and A±
l . For

the kaon we end up with an 8× 8 matrix using the interpolating operators in Eq. (2.21). Both,
masses and the amplitudes that are required for the decay constants fPS , fK are calculated by
solving the GEVP and performing a single-state fit to the resulting eigenvalues at sufficiently
large t. The details of our GEVP and fitting procedures are explained in appendix C, together
with fit ranges, χ2 values and further technical details.

Our results are listed in table 3.4. However, we remark that most of the values forMPS, fPS have
been published before [79]. Nonetheless, we have recalculated the pion mass values with our
statistics to allow for a more consistent analysis. Moreover, we have added the missing values
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ensemble aMPS aMK afPS afK

A30.32 0.12358(30) 0.25150(29) 0.06452(21) 0.07236(45)
A40.24 0.14484(44) 0.25884(43) 0.06577(24) 0.07432(57)
A40.32 0.14140(30) 0.25666(23) 0.06839(18) 0.07429(36)
A60.24 0.17277(48) 0.26695(52) 0.07209(20) 0.07699(46)
A80.24 0.19870(35) 0.27706(61) 0.07581(13) 0.07886(46)
A100.24 0.22127(32) 0.28807(34) 0.07936(14) 0.08050(51)

A80.24s 0.19822(33) 0.25503(33) 0.07845(16) 0.07639(18)
A100.24s 0.22118(33) 0.26490(74) 0.07857(14) 0.07780(45)

B25.32 0.10685(43) 0.21240(50) 0.05728(21) 0.06489(37)
B35.32 0.12496(45) 0.21840(28) 0.06105(17) 0.06771(41)
B55.32 0.15396(31) 0.22799(34) 0.06545(11) 0.07001(35)
B75.32 0.18036(39) 0.23753(32) 0.06908(14) 0.07176(30)
B85.24 0.19373(64) 0.24392(59) 0.07039(26) 0.07226(42)

D15.48 0.06954(26) 0.16897(85) 0.04373(19) 0.04818(33)
D20.48 0.08000(36) 0.17273(38) 0.04486(19) 0.04833(17)
D30.48 0.09801(25) 0.17760(23) 0.04735(15) 0.05026(16)
D45.32sc 0.11991(37) 0.17570(84) 0.04825(14) 0.04584(37)

Table 3.4: Results of aMPS, aMK for all ensembles and the corresponding values for the charged
pion decay constant afPS and the kaon decay constant afK. Most of the pion and kaon mass
values as well as the pion decay constants have been published already in [79]. However, we have
recomputed the pion related observables as well as the missing kaon masses with our statistics.
The values for fK have not been determined from the unitary action before.

for MK and fK . The values for the kaon decay constant have not been previously calculated
using the unitary action. It should be noted that the numbers of gauge configurations used for
the missing kaon quantities are usually smaller than those that have been used for the pion and
flavor singlet sector as detailed in table 3.1. The reason for this is that we did not recalculate
all of kaon masses but only the missing ones and used resampling whenever the corresponding
errors enter our analysis. Since the required accuracy for MK and fK can be reached with
(much) smaller numbers of configurations than one needs in the flavor singlet sector, this helps
to save a substantial amount of computation time.

All errors quoted in table 3.4 are purely statistical and have been calculated using the bootstrap
method with 1000 bootstrap samples. Neither the pion related quantities nor those for the kaon
show any sizable autocorrelation effects. However, for consistency reasons we have employed the
same blocking as in the analysis of the flavor singlet sector; see next subsection for details.
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3.2.2 Flavor singlet and neutral pion masses

In the flavor singlet sector we have calculated all the contractions required to build the correlation
function matrix in the rotated twisted basis as given in Eq. (2.86). The numerical techniques
for the evaluation of the connected and disconnected diagrams can be found in subsection 2.2.1.
For the latter we used the same numbers of stochastic samples Ns in the light and heavy sector
and the actual values of Ns for each ensemble are listed in table 3.1. In order to check that
the stochastic noise introduced by our methods is of the same order (or even smaller) than the
gauge noise we have increased Ns from 24 to 64 for ensemble B25.32. This increase in Ns did
not further reduce the error of the masses.

Again, we use local and fuzzed operators to enlarge our correlation matrix by a factor two.
Besides the interpolating operators in Eqs. (2.26),(2.32) and (2.33), one corresponding operators
involving the γ-matrix combination iγ0γ5, which would further increase the correlation matrix.
However, the corresponding correlation functions turn out to be too noisy to give any further
improvement. In fact in the heavy sector the resulting signal is indistinguishable from zero
within errors for certain matrix elements. The values for the number of gauge configurations N
investigated per ensemble are the ones listed in table 3.1.

The error analysis is again performed using the bootstrap method and in order to compensate
for autocorrelation we employ blocking with blocks of length Nb. The values of Nb are given in
table 3.1 and have been chosen in such a way that the blocks are statistically independent. In
general, autocorrelation appears to be relevant for the flavor singlet sector and particularly for
Mη′ it seems to be significant, which is why we have computed the integrated autocorrelation
time τint in units of Monte-Carlo trajectories of length 1 (see also subsection 2.3.1) for the
elements of the correlation matrix Cη,η′ (t) at fixed Euclidean time t/a = 3 on several ensembles.
It turns out that the matrix elements involving light quarks are the ones most strongly affected
by autocorrelation. For all other elements of the correlation function matrix we observe only
mild effects. For instance, for ensemble D15.48 the matrix element with only light quark content
yields τint = 9(2), while the elements without any light quark content have at most τint = 1.3(2).
Note that our normalization in the definition of the integrated autocorrelation time in Eq. (2.95)
is such that τint = 0.5 corresponds to the absence of any autocorrelation. However, for the
calculation of the actual errors we have varied the length of the blocks used in the bootstrap
analysis and found that for a block length of Nb ≥ 10 the error for all elements of Cη,η′ (t)
for ensemble D15.48 remains constant within error. The latter method gives τint = 7(2) for
the matrix elements with light quark content, which is consistent with the result from the Γ-
method. The choice Nb = 10 corresponds for D15.48 to 20 Monte-Carlo trajectories of length 1;
see [154] for a description of the hybrid Monte-Carlo (HMC) algorithm that has been used for
the generation of the gauge configurations.

Moreover, the observed autocorrelation depends on the lattice spacing, i.e. for increasing
values of the lattice spacing the autocorrelation decreases. For example, the matrix element
Cη,η′ (t)S3

l
S3
l
, involving only light quarks, exhibits an integrated autocorrelation time of τint =

6(1) for B25.32 and τint = 4(1) for A30.32, compared to the aforementioned τint = 9(2) for
D15.48. A significant dependence on the quark mass has not been observed.
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ensemble aMπ0 aMπ0,c aMη aMη′

A30.32 0.061(04) 0.2111(33) 0.286(15) 0.49(06)
A40.24 0.069(07) 0.2375(25) 0.281(18) 0.39(06)
A40.32 0.081(05) 0.2275(31) 0.281(11) 0.49(09)
A60.24 0.101(11) 0.2544(26) 0.290(07) 0.59(09)
A80.24 0.122(16) 0.2659(25) 0.302(07) 0.60(08)
A100.24 0.157(18) 0.2883(14) 0.315(10) 0.50(07)

A80.24s 0.151(12) 0.2649(16) 0.270(10) 0.54(09)
A100.24s 0.186(14) 0.2841(16) 0.280(05) 0.66(12)

B25.32 0.060(04) 0.1836(21) 0.234(20) 0.50(08)
B35.32 0.071(06) 0.1919(17) 0.237(10) 0.59(09)
B55.32 0.132(08) 0.2177(19) 0.249(09) 0.60(10)
B75.32 0.156(13) 0.2360(12) 0.253(14) 0.44(07)
B85.24 0.119(18) 0.2480(11) 0.260(13) 0.51(12)

D15.48 0.056(03) 0.1124(15) 0.192(15) 0.37(07)
D20.48 0.065(04) 0.1170(16) N/A N/A
D30.48 0.086(05) 0.1296(15) 0.205(16) 0.38(04)
D45.32sc 0.089(09) 0.1480(09) 0.201(09) 0.30(04)

Table 3.5: Results of aMπ0 , aMπ0,c, aMη , aMη′ for all ensembles. For D20.48 we were not able
to extract reliable values for aMη and aMη′ within the statistics we used, due to bad plateaux
in both relevant principal correlators.

For the details of the GEVP and fitting procedures used to extract Mη , M
′
η as well as further

technical details we again refer to appendix C. For the masses we solely used the bootstrap
method combined with blocking to analyze effects of autocorrelation. We found that the η is
only mildly affected by autocorrelation, whereas the η′ state shows significant effects. The latter
is in agreement with what has been found earlier in the Nf = 2 setup [140]. Again, for ensemble
D15.48 a block size of Nb = 10 seems to result in statistically independent blocks. However, we
stress that with the numbers of configurations used in our investigations we can not use Nb > 20,
because the number of blocks becomes too small. Therefore, we cannot exclude autocorrelation
occurring on longer scales.

An overview of the masses together with their respective errors can be found in table (3.5).
In addition we have listed the results for the neutral pion which also involves the calculation
of disconnected diagrams. The analysis for the π0 is performed in exactly the same way as
the one for the flavor singlet mesons, however, autocorrelation is a much less significant factor
compared to the η′ and rather comparable to the case of the η. For the neutral pion we have
calculated the 4×4 correlation function matrix built from the interpolating operators S0

l and A3
l

in Eqs. (2.8),(2.9) and again using local and fuzzed operators. Since only light quarks contribute
no further rotation is required and the GEVP is applied to the resulting correlation function
matrix. We refrained from calculating the corresponding decay constant as it is not required for
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Figure 3.1: (a) Effective masses in lattice units determined from solving the GEVP for a 3× 3
matrix with t0/a = 1 for ensemble B25.32. (b) The same as in the left panel, but for a 6 × 6
matrix. For comparison also the fit results (see text) for the two lowest states are shown (cf.
table 3.5).

any of our purposes. Besides, it is expected to exhibit rather large statistical errors.

In the left panel of figure 3.1, we show the effective masses determined from solving the GEVP
on a 3 × 3 matrix for ensemble B25.32 built from local operators only. Note that only for
the purpose of this plot, we kept t0/a = 1 fixed. One observes that the ground state is very
well determined, such that it can be extracted from a simple plateau fit. For the he second
state, i.e. the η′, the situation is very different as it is much more noisy and any attempt of a
mass determination seems questionable, at least from a 3×3 matrix. As previously discussed in
subsection 2.2.2, enlarging the operator basis of the correlation function matrix may significantly
reduce the contributions of excited states to the lowest lying states and an extraction of Mη′

may become feasible due to the generally smaller statistical errors at smaller values of t.

This effect can be observed for the 6 × 6 matrix that is shown in the right panel of figure 3.1
and for which fuzzed operators have been used in addition to the local ones. The final fit results
and errors for the masses are indicated by the horizontal bands in figure 3.1. For the η′ we do
not determine them directly from a constant fit to the plateau, but from a three state cosh fit to
the eigenvalues, possibly also using larger values of t0 when solving the GEVP, see appendix C.
As shown in the plot, the procedure yields very good agreement with a plateau fit for the η, but
gives slightly lower values for the η′. From this one may conclude that the extraction of the η′

mass is affected by non-negligible systematic uncertainties.

The third state in the left panel of figure 3.1 appears to be in the region where one would
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Figure 3.2: (a) Squared flavor content of η for B25.32 from 3 × 3 matrix using local operators
only. (b) Squared flavor content of η′ for B25.32.

expect the ηc mass value. Unfortunately, the signal is lost at t/a = 5, which renders a reliable
extraction impossible. Note that qualitatively the two plots in figure 3.1 are rather independent
of the particular choice of the ensemble.

In order to gain further confidence in the identification of the η and η′ states, we also determine

the flavor content of the two states, which are given by the elements of the eigenvectors v
(n)
i (t, t0)

obtained from solving the GEVP for the renormalized correlation function matrix in the original
twisted basis which is given in Eq. (2.88). The index i = l, s, c labeling the elements of the
eigenvector corresponds to the flavors entering the interpolating operators in the physical basis.
Note that for this definition we assumed the eigenvectors to be appropriately normalized, i.e.
∣
∣v(n) (t, t0)

∣
∣
2
= 1. In the left panel of figure 3.2 we exemplarily show the flavor content of the η

for ensemble B25.32. Indeed, as one would expect from phenomenology, the η is dominated by
strange quark content, while the second state, that is shown in the right panel of figure 3.2 is
dominated by light quarks, which one expects for the η′. It should be noted though that since
we do not include a gluonic operator in our analysis we only obtain information on the relative
quark content. Clearly, for both states the charm contribution is compatible with zero.

Figure 3.3 shows the results forMη (filled symbols) andMη′ (open symbols) for all our ensembles
as a function of the squared pion mass. For this plot we expressed all quantities in units of r0.
All the masses shown in this plot are listed in table 3.5 and have been obtained from solving
the GEVP for a 6 × 6 matrix, for further details we refer to appendix C. The results of this
procedure have been independently cross-checked using the factorizing fit model in Eq. (2.101).
From figure 3.3 one infers that the η meson mass can be extracted with high statistical precision,
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while the η′ meson mass is more noisy. This behavior can be understood as in the SU (3)F
symmetric limit the η meson is a flavor octet with all disconnected contributions vanishing,
while the η′ is the flavor singlet with non-vanishing disconnected contributions.
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Figure 3.3: Masses for η (filled symbols) and η′ (open symbols) in units of chirally extrapolated
r0 (listed in table 3.2) as a function of (r0MPS)

2.

Finally, before turning to the discussion of the quark mass dependence, we mention that as some
of our ensembles have a value of MPSL < 3.5 it is interesting to estimate possible finite size
corrections to Mη and Mη′ . In our investigations we have included two ensembles which differ
only in L/a, i.e. A40.24 and A40.32 which have MPSL = 3.5 and MPSL = 4.5, respectively. On
these two ensembles both masses agree within their respective errors. From table 3.5 it is obvious
that the values forMη agree particularly precisely. Furthermore, for the kaon mass the finite size
corrections turn out to be below 1% on these ensembles. As a consequence of this, we conclude
that the finite size corrections to Mη and Mη′ will not significantly impact our analysis at the
current level of precision, which is why we neglect them for all further considerations. However,
we are aware that for a really definite conclusion more ensembles with different L/a-values are
needed.
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3.3 Chiral extrapolations and scaling artifacts for η,η′

The lattice calculations described in the previous section have all been carried out for unphysical
values of the quark masses. Therefore, it is necessary to perform a careful chiral extrapolation
in order to obtain physical results for Mη. Moreover, every lattice simulation employs a finite
value of the lattice spacing, hence it is also required to perform an extrapolation in the lattice
spacing to reach the continuum limit. In this section we first discuss the strange quark mass
dependence for the mass of the η and perform a scaling test after shifting the relevant ensembles
to a common strange quark mass value. In a second step we correct all our ensembles for the
mistuning in the strange quark mass value and perform the extrapolation to the physical point.
Finally, we discuss the results of this analysis.

Concerning the η′, we remark that its mass in figure 3.3 mass shows rather large fluctuations
and no consistent picture regarding quark mass dependence and lattice artifacts. This is mainly
caused by the large noise in the η′ state, which has the effect that the signal for the extracted
mass is lost at rather small t-values. Therefore, the values of the mass for the η′ are likely to
be affected by non-negligible systematic uncertainties for most of our ensembles and have to
be considered only as an upper bound, because a plateau in the mass is not reached. For this
reason we will postpone dealing with the issue of performing an extrapolation in the light quark
mass for Mη′ until the next section.

3.3.1 Strange quark mass dependence and scaling test

The results displayed in figure 3.3 have been obtained using the bare values of aµσ and aµδ as
used for the production of the ensembles. However, these values did not reproduce the physical
values of the kaon and D-meson masses as discussed in [79, 134]. In the left panel of figure 3.4
we show the kaon mass as a function of the squared pion mass for all ensembles at the coarsest
lattice spacing. From this plot it is evident that the two ensembles A80.24s and A100.24s with a
re-tuned value of the strange quark mass yield values for the kaon mass that are much closer to
the physical one; see also [79,151]. The right panel of figure 3.4 contains a corresponding plot for
r0Mη which exhibits a very similar pattern as the one observed for the kaon mass. Besides the
fact that the strange quark mass has been re-tuned for two of the A-ensembles, we remark that
the physical strange and charm quark mass values differ also among the A, B and D ensembles.
Therefore, one cannot draw any definite conclusion from figure 3.3 regarding lattice artifacts
and the extrapolation to the physical points. However, one can infer from this plot that the
light quark mass dependence of the η mass is rather weak.

Before we actually carry out an extrapolation of all our data, we can perform a scaling test for
Mη. To this end, one has to compare Mη at the three available values of the lattice spacing for
fixed values of the renormalized quark masses (e.g. by demanding r0MPS, r0MK, r0MD) and
the physical volume. As stated before, we do not expect the volume to have any sizable effect
and also the charm quark mass value should have only little influence given our uncertainties.
Therefore, we disregard effects from slightly different physical volumes at the different β-values
and the differences in the charm quark mass for the following considerations. Since we do not
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Figure 3.4: (a) The kaon mass in units of r0 and (b) r0Mη as a function of (r0MPS)
2 for all

A ensembles. The dotted and solid curves in (a) represent the fitted gK in Eq. (3.4) and the
shifted g̃K (see text), respectively.

have simulations at the three values of the lattice spacing with matched values of the strange
quark mass, we need to perform an interpolation in MK for a scaling test. For this purpose we
have to rely on the two pairs of A ensembles for which the strange quark mass has been varied,
i.e. (A80.24, A80.24s) and (A100.24, A100.24s). To be more precise, the two ensembles within
each pair differ in the values of aµσ and aµδ, whereas aµl is identical, but different for the two
pairs. From these ensembles we can estimate the derivative Dη of M2

η with respect to M2
K and

use it to correct for the mismatch in r0MK. However, we stress that using this estimate for
all our ensembles one neglects any possible dependence of Dη on the light, strange and charm
quark masses as well as on the lattice spacing.

The idea behind this interpolation is to treat the masses of the kaon and the η as functions
M2 =M2[M2

PS,M
2
K] which is motivated from leading order χPT (c.f. Eqs. (1.80),(1.81)) and to

define the dimensionless quantity

Dη(µl, µσ, µδ, β) ≡
d(aMη)

2

d(aMK)2
. (3.1)

Within errors the estimates obtained from (A80.24, A80.24s) and (A100.24 A100.24s) agree and
for the average over the two pairs of ensembles we obtain Dη = 1.60(18)stat . Assuming that
the value of Dη is independent of the quark mass values µl, µσ, µδ and the lattice spacing, we
can use Dη to correct two sets of ensembles S1, S2, namely S1 = {A40.32, B35.32,D30.48} and
S2 = {A60.24, B55.24,D45.24} to a common value of of r0MK ≈ 1.34 using

(r0Mη)
2 = (r0Mη)

2 +Dη ∆K , (3.2)



3.3. CHIRAL EXTRAPOLATIONS AND SCALING ARTIFACTS FOR η,η′ 83

D30.48
B35.32
A40.32

linear fit
average

a2/r20

r 0
M

η

0.050.040.030.020.010

2

1.5

1

0.5

(a)

D45.32sc
B55.32
A60.24

linear fit
average

a2/r20

r 0
M

η

0.050.040.030.020.010

2

1.5

1

0.5

(b)

Figure 3.5: (a) r0Mη as a function of (a/r0)
2 for the ensembles A40.32, B35.32 and D30.46

(b) The same as in the left panel, but for the ensembles A60.24, B55.32 and D45.32sc. The
continuum extrapolated values r0M

a→0
η are horizontally displaced for legibility.

where ∆K is the difference in the squared kaon mass values in units of r0. Note that for each set
the three points have approximately equal values of r0MPS, i.e. r0MPS ≈ 0.73 and r0MPS ≈ 0.90
for S1 and S2, respectively.

The resulting values of r0Mη for the sets S1, S2 are plotted as a function of (a/r0)
2 in the

left and right panel of figure 3.5, respectively. Both data sets are compatible with a constant
continuum extrapolation giving r0M

a→0
η,S1,const

= 1.447(45)stat and r0M
a→0
η,S2,const

= 1.480(34). In
figure 3.5 these results are indicated by the horizontal lines. In addition, we can perform a
linear extrapolation, resulting in r0M

a→0
η,S1,lin

= 1.60(25)stat and r0M
a→0
η,S2,lin

= 1.61(14)stat , which
is also shown in the figure. The differences in between the two values from constant and linear
extrapolations for each set are

r0∆M
a→0
η,S1

= 0.15(25)stat , r0∆M
a→0
η,S2

= 0.13(13)stat . (3.3)

In the following we will use them to estimate the systematic uncertainty related to the continuum
extrapolation. Both results agree well, although the one for S1 exhibits twice the error, which
is mainly due to the smaller set of configurations used for D30.48. Therefore, we will quote
an 8% relative error from ∆Ma→0

η,S2
/Ma→0

η,S2,const
for our mass estimates, which we assume to be a

conservative figure.

In order to obtain a more complete picture, we also attempt to correct all our ensembles for the
slightly mistuned value of the strange quark mass. To this end, we first perform a linear fit to
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the values of (r0MK)2 for the A-ensembles, leaving out A80.24s and A100.24s, i.e.

gK[(r0MPS)
2, a, b] = a+ b (r0MPS)

2 . (3.4)

The resulting curve is then shifted such that (r0M
exp
K )2 = gK[(r0Mπ)

2, ã, b] and we denote this
new function by g̃K = gK[(r0MPS)

2, ã, b]. From this procedure we obtain ã = 1.24(11)stat and
b = 0.564(8)stat

1. In the left panel of figure 3.4 we show the two curves corresponding to gK and
g̃K . As it turns out, the kaon masses for the two re-tuned ensembles A80.24s and A100.24s are
already very close to g̃K .

The next step is to compute the difference of the squared kaon mass values to g̃ for all our
ensembles, i.e.

δK[(r0MPS)
2] = (r0MK)

2[(r0MPS)
2]− g̃K[(r0MPS)

2] , (3.5)

which is then used correct the measured M2
η [(r0MPS)

2] by virtue of the following relation

(r0M η)
2[(r0MPS)

2] = (r0Mη)
2[(r0MPS)

2] +Dη · δK[(r0MPS)
2] . (3.6)

In the left panel of figure 3.6 we show the resulting values of r0Mη for all our ensembles as a
function of (r0MPS)

2 and it is evident that all the data fall on a single curve within statistical
uncertainties. This confirms that Mη is not affected by large lattice artifacts. Again, we point
out that we ignored the µl, µσ, µδ and β dependence of the derivative Dη and that with the
present set of data we are not able to estimate the systematic uncertainties stemming from
this approximation. Moreover, we remark that the errors of the data points in this plot are
highly correlated because they include the error of the derivative Dη (µl, µσ, µδ, β). This large
correlation of the point errors is also reflected by the error band displayed in the left panel of
figure 3.6. However, the nice result appears to confirm the validity of our assumptions.

3.3.2 Extrapolation to the physical point

Having corrected our data for the mismatch of the strange quark masses by fixing of MK to
its physical value M exp

K and correcting Mη as described in the previous subsection, we can now
perform the extrapolation to the physical point, i.e. apply a linear fit to all corrected data
points for (r0Mη)

2[(r0MPS)
2]. Using r0 = 0.45(2) fm as discussed in section 3.1, the fit yields

r0Mη

[
r20M

2
π

]
= 1.26(9)stat(10)sys and converted to physical units

Mη(Mπ) = 551(30)stat(44)sys MeV , (3.7)

where we employed the experimental value of the neutral pion mass in Eq. (1.41) forMπ. Taking

the SU(2) chiral limit we obtain r0M̊
SU(2)
η = 1.24(10)stat(10)sys or

M̊SU(2)
η = 542(32)stat(43)sys MeV . (3.8)

1Note that here we decided to include the error on rχ0 /a in the error of the fit parameters, which has not been
done in the original publication [1]. Moreover, at the time of the aforementioned publication less ensembles and
partly lower statistics were available. However, these changes have no significant effect on further results.
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Figure 3.6: (a) Values of r0Mη as a function of (r0MPS)
2 as explained in the text. (b) GMO

ratio from Eq. (1.83) as a function of (r0MPS)
2 for all available ensembles. Experimental values

are horizontally displaced for legibility. Note that the errors of the data points in (a) are highly
correlated as they include the error of the derivative Dη (µl, µσ, µδ, β).

For the estimation of the systematic error we used the ratio ∆Ma→0
η /Ma→0

η,const as discussed in the
previous subsection. We remark that for the results in physical units the error on r0 = 0.45(2)
yields a very significant contribution.

Since the procedure that has been applied to deal with the mistuning of the strange quark
mass relies on the assumption that the derivative Dη is independent on the bare quark mass
parameters µl, µσ, µδ and the lattice spacing, it is be desirable to perform a cross-check. To this
end we employ two approaches which are both based on an attempt to build quantities for which
most of the strange quark mass dependence is canceled. As a first possible approach, we study
the ratio obtained from the Gell-Mann-Okubo relation as given in Eq. (1.83), which becomes
rigorous in the SU (3) symmetric case and is violated only by a few percent for physical values of
the corresponding meson masses. Therefore, one expects the strange quark mass dependence of
the ratio 3M2

η /(4M
2
K −M2

π) to be weak. In the right panel of figure 3.6 we show the GMO ratio

as a function of (r0MPS)
2 together with a linear extrapolation, indicated by the solid line and

the shaded error band. It is interesting to see that the data points for the ratio from A80.24 and
A80.24s as well asA100.24 and A100.24s agree within errors, which confirms that a large part
of the strange quark mass dependence is canceled in the GMO ratio. Furthermore, all the data
points align onto a single curve within errors, independent of the value of the lattice spacing, as
well as the strange and the charm quark mass. The linear fit in (r0MPS)

2 to our data for the
ratio yields

(
3M2

η /(4M
2
K −M2

π)
)

Mπ
= 0.970(47)stat , (3.9)
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for the physical value of the (neutral) pion mass. The result is in agreement with the experimen-
tal value (3M2

η /(4M
2
K −M2

π))
exp = 0.925, and again, we can obtain an estimate for the physical

mass of Mη using the experimental values of Mπ0 and MK0 , i.e.

Mη = 559(14)stat(45)sys MeV , (3.10)

which is also in good agreement with experiment. Besides, we remark that our value for Dη =
1.60(18)stat is in rather good agreement to the value 4/3 that one would naively expect from
Eq. (1.82).

Secondly, from figure 3.4 it appears that Mη and MK have a similar strange quark mass depen-
dence, which motivates to study the ratio Mη/MK. In the left panel of figure 3.7 we show this
ratio as a function of (r0MPS)

2 for all available ensembles. It is evident that all data points data
points fall on the same curve withing errors and in particular the points within two pairs of A
ensembles with re-tuned strange quark mass, i.e. (A80.24s, A80.24s) and (A100.24, A100.24s),
agree well within errors. This confirms that indeed most of the strange quark mass dependence
cancels in the ratio Mη/MK. In the right panel of figure 3.7 we also show the ratio Mη/MK

as a function of (r0MPS)
2 and indeed there appears to be no significant correction within the

present errors compared to the plot shown in the left panel. However, note that for Mη/MK

the derivative Dη (µl, µσ, µδ, β) has again been used, which leads to correlated and thus slightly
larger errors. Performing a linear extrapolation of the ratio (Mη/MK)2 in (r0MPS)

2 to the
physical pion mass point for all available data gives

(Mη/MK)Mπ
= 1.123(26)stat , (3.11)

which agrees well with the experimental value (Mη/MK)
exp = 1.100. The result of this fit is

indicated by the solid line and the shaded error band in the left panel of figure 3.7, where also
the extrapolated value is shown together with the experimental one. Using the experimental
value of MK0 = 498 MeV to convert to physical units we obtain

Mη = 559(13)stat(45)sys MeV . (3.12)

where the systematic error has been estimated as discussed in the previous subsection. Note that
in this analysis the scale r0 = 0.45(2) fm enters the final result only through the determination
of the physical pion mass point. Since the slope of the extrapolation in (r0MPS)

2 is rather
small, the statistical uncertainty in Mη turns out significantly smaller than the one obtained
for the direct extrapolation of (r0Mη)

2. Moreover, we remark that we have performed the same
extrapolation also for the corrected ratio Mη/MK , yielding

(Mη/MK)Mπ
= 1.110(49)stat (3.13)

and
Mη = 0.547(25)stat(44)sys MeV , (3.14)

respectively, which is indeed in excellent agreement with the direct extrapolation of (Mη/MK)2,
again confirming that most of the strange quark mass dependence cancels in the ratio (Mη/MK)2.
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Figure 3.7: (a)Mη/MK as a function of (r0MPS)
2 for all available ensembles. (b) The same as in

the left panel, but determined from the ms-corrected r0Mη values and the corresponding values
of the kaon mass (see text). Experimental values are horizontally displaced for legibility. The
larger errors in (b) are highly correlated as they are dominated by the error of the derivative
Dη (µl, µσ , µδ, β).

At the very end of section 3.2 we discussed finite size corrections to Mη and concluded that they
are negligible for any of our purposes. Nevertheless, one might still ask how finite size corrections
to MK and MPS influence our extrapolations. However, it turns out that also this influence is
smaller than our statistical uncertainty for several reasons. First of all, the observed pion mass
dependence of Mη is very weak, such that any finite size effects entering MPS are not expected
to have significant impact on the extrapolation of Mη. Secondly, the corrections entering MK

appear to be small, e.g. for the two ensembles A40.24, A40.32 we have aMK = 0.25884(43)stat
and aMK = 0.25666(23)stat , respectively, see also table 3.4. Finally, only a few ensembles have
small MPSL, thus a small change due to finite size effects for these ensembles is not expected to
affect the fit result significantly.

3.4 Removal of excited states for η, η′

From the analysis that has been detailed in the previous two sections it was not possible to
obtain a sufficient signal-to-noise ratio for the mass of the η′ meson to allow for a reliable
extrapolation. As stated before, the large statistical errors for this state as shown in figure 3.3
include also systematic effects due to the use of a three state cosh-fit to its eigenvalues, which
is required because for most ensembles the effective mass does not reach a plateau (c.f. the left
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panels of figures 3.1,3.9). Therefore, we considered the values for Mη′ only as an upper bound.
Clearly, it would be desirable to improve this situation to be able to make physical statements
about the η′ as well. One rather obvious possibility to achieve the required improvement is to
increase the operator basis by including additional, suitable interpolating operators, i.e. those
corresponding to the physical axial vector current. Unfortunately, it turns out that this does not
help in practice, because the resulting correlation functions are much noisier than those obtained
for the physical pseudoscalar current. In fact, for the heavy sector many of the resulting quark
disconnected contributions give only noise and no signal at all. Moreover, it is not possible to
apply the very efficient twisted mass variance reduction method based on the one-end-trick for
the corresponding quark disconnected diagrams in the light sector.

However, there is another possibility to obtain a significant improvement for the extraction of η′

mass (and further observables) using a powerful method to separate ground and excited states
which has first been proposed in [155] and that has already been successfully employed for the
case of the η2 for two dynamical quark flavors in [140]. In the following we will describe this
method and apply it to our data.

The method is based on the assumption that the quark disconnected diagrams give a sizable
contribution only to the η and η′ states but are negligible for any heavier state with the same
quantum numbers. Considering the fluctuations of the topological charge which are expected
to give a dominant contribution to the mass of the η′, this assumption would be valid if these
fluctuation mainly couple to the η and η′ states. Still, the validity of this assumption needs to
be carefully checked from our data and may introduce systematic uncertainties.

Since the quark connected contributions exhibit a constant signal-to-noise ratio, it is in principle
possible to determine the respective ground states at sufficiently large t/a with very high statis-
tical accuracy and without any significant contamination from higher states. After fitting the
respective ground states of the connected correlators, we can use it to subtract the excited state
contributions such that the full connected correlators are replaced by correlators that contain
only the ground state. This procedure is shown for one of our ensembles in the left panel of
figure 3.8, where the original connected correlator is given by the curve consisting of red squares
and the ground state without excited states subtracted is depicted by black circles. It is also
clearly visible that the statistical errors are extremely small, i.e. they are covered by the data
symbols over the entire range in t/a. In a second step we add the disconnected contributions
in the usual way to obtain the full correlation functions, which is shown in the right panel of
figure 3.8. Note that for sufficiently large t/a this reproduces the original ground state very
well by construction, i.e. the modified correlator asymptotically approaches the original one and
they agree within errors for t & 8.

However, we remark that using a unitary action this procedure is in practice restricted to the
connected correlation functions corresponding to physical light and strange quarks. This is
due to the violation of flavor symmetry in the heavy sector of the twisted mass formulation,
implying that the four connected contribution in the heavy sector will all yield the same ground
state. This ground state corresponds to an artificial particle, i.e. a connected-only, neutral pion-
like particle made out of strange quarks. Therefore, we will restrict ourselves in the following
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Figure 3.8: (a) Connected contribution to Cll (t) ≡ Cη,η′

S3
l
S3
l

(t) from local light quark operators

with and without excited states subtracted for ensemble B25.32. (b) The same as in the left
panel, but for the full correlator.

discussion to the analysis of a 2×2 correlation function matrix corresponding to (local) physical
operators made of light and strange quarks, although one should note that it is still necessary
to first build the full matrix in order to apply the rotations and renormalization as discussed in
section 2.2.

Now, if the aforementioned assumption holds, i.e. the disconnected diagrams are relevant only to
the two lowest states η, η′ one should obtain a plateau in the effective mass at very low values of
t/a after solving the GEVP. The result of the procedure is shown in the right panel of figure 3.9
for the ensemble A100.24. Indeed, one observes a plateau for both states starting basically at
the lowest possible value of t/a. Furthermore, a comparison with the effective masses from the
standard 6 × 6 matrix in the left panel of figure 3.9 reveals that the plateau values agree very
well within their respective errors. However, the data in the right panel allows for a much better
accuracy in the determination of both masses as the point errors are much smaller at such low
values of t/a.

We have applied this procedure to built the correlation function matrices with the excited states
removed in the connected pieces for all our ensembles listed in table 3.1. The remaining analysis
is performed basically along the same line as described in the previous subsections, only that
now we can use a plateau fit for the η′ as well. Of course, one also needs to adjust fit ranges for
both states, which is detailed in appendix C. The results for the masses are given in table 3.6.
In addition we have included the corresponding values for MU(1)A

, i.e. the contribution of the
anomaly to the η′ mass as given by the square root of the left-hand side of the Veneziano Witten
formula in Eq. (1.87).
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Figure 3.9: Effective masses for ensemble A100.24 from (a) a 6×6 matrix using local and fuzzed
operators and (b) a 2× 2 matrix with excited states removed in quark connected contributions.

In figure 3.4 we show an overview of the masses for for all ensembles. Most remarkably, the
errors on the η′ masses are decreased by roughly a factor ∼ 5 compared to what was shown in
figure 3.3 from the standard method. In addition, the errors on the ground state masses are
substantially improved, allowing us to perform an even more precise analysis for the η mass
as well. Concerning possible finite size corrections to the mass of the η we remark that they
again appear to be negligible as the values for A40.24 and A40.32 in table 3.6 still agree within
statistical errors. Similarly, no significant deviations are observed for the η′, although the larger
fluctuations for this state render any definite statement difficult.

3.4.1 Scaling behavior and strange quark mass dependence

In order to perform a scaling test for the mass of the η we proceed in exactly the same way
as described in the previous section. First we calculate the derivative Dη using the two pairs
of ensembles (A80.24, A80.24s) and (A100.24, A100.24s) while making the same assumptions
as before, i.e. we neglect any dependence of Dη on µl, µσ, µδ and the lattice spacing. We
find Dη = 1.47(11)stat , which is in agreement with the result obtained previously using masses
obtained from solving the GEVP for 6×6 matrix. In a second step we use this value to shift the
three ensembles in each of the two sets S1, S2 with fixed MPS to a common value of the kaon
mass r0MK ≈ 1.34. The results for the two sets of ensembles S1 and S2 are shown in the left and
right panels of figure 3.11, respectively. It is apparent from these two plots that the data are
perfectly compatible with a constant extrapolation which yields r0M

→0
η,S1,const

= 1.433(13)stat and

r0M
→0
η,S2,const

= 1.456(13) in agreement with the results from the full correlation function matrix.

Performing linear extrapolations gives r0M
a→0
η,S1,lin

= 1.47(9)stat and r0M
a→0
η,S2,lin

= 1.44(5)stat ,
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Figure 3.10: Masses for η (filled symbols) and η′ (open symbols) in units of chirally extrapo-
lated r0 (listed in table 3.2) as a function of (r0MPS)

2 determined from the improved analysis
method, i.e. solving the GEVP for a 2×2 correlation function matrix build from local operators
corresponding to physical light and strange quarks only and with excited states removed in the
quark connected pieces.
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ensemble aMη aMη′ aMU(1)A

A30.32 0.2800(55) 0.480(17) 0.426(21)
A40.24 0.2834(35) 0.427(14) 0.358(18)
A40.32 0.2809(28) 0.458(22) 0.396(28)
A60.24 0.2908(46) 0.471(16) 0.405(20)
A80.24 0.3004(17) 0.479(23) 0.408(28)
A100.24 0.3063(24) 0.454(15) 0.366(19)

A80.24s 0.2686(30) 0.463(14) 0.395(17)
A100.24s 0.2763(13) 0.518(30) 0.452(33)

B25.32 0.2348(41) 0.414(19) 0.369(23)
B35.32 0.2363(23) 0.435(24) 0.386(29)
B55.32 0.2469(28) 0.480(26) 0.433(29)
B75.32 0.2537(23) 0.430(23) 0.369(28)
B85.24 0.2640(28) 0.453(28) 0.395(33)

D15.48 0.1891(64) 0.295(21) 0.257(30)
D30.48 0.1969(70) 0.288(21) 0.242(27)
D45.32sc 0.1898(22) 0.276(15) 0.223(20)

Table 3.6: Results of aMη, aMη′ for all ensembles from a 2×2-correlation function matrix (only
local operators) with excited states removed. In addition we list the resulting values for aMU(1)A
as defined in Eq. (1.87). Again, for D20.48 we were not able to extract reliable values for aMη

and aMη′ within the statistics we used.

respectively, also in agreement with the previous results within errors. Note that the errors
are now decreased by roughly a factor of three. In figure 3.11 the results from the constant
and linear extrapolations are indicated by solid and dotted lines. For the absolute differences
between the two extrapolations we obtain

r0∆M
a→0
η,S1

= 0.04(8)stat , r0∆M
a→0
η,S2

= 0.02(5)stat , (3.15)

indicating that any lattice artifacts are indeed very small. Note that for S1 and S2 the differ-
ences have actually even opposite, relative sign, unlike what has been observed from the standard
method (although within much larger errors). Considering again the ratio ∆Ma→0

η,S2
/Ma→0

η,S2,const

yields an relative deviation of ∼ 2.6%. However, in the following analysis we will always deter-
mine the systematic uncertainties from fitting the data at different values of the lattice spacing
separately and quote the maximal spread for the systematic error, which is also consistent with
our approach for dealing with the systematic uncertainties for further quantities for which we
cannot perform such a scaling test.

Although the data for the mass of the η′ have now much smaller errors compared to the previous
analysis, we cannot proceed in the same manner as for the η to make a definite statement about
scaling effects. The reason for this is that there is no obvious way to disentangle the effects of
different values of the strange quark mass from those of different values of the lattice spacings
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Figure 3.11: (a) r0Mη from a 2×2 matrix with excited states removed as a function of (a/r0)
2 for

the ensembles A40.32, B35.32 andD30.48 (b) The same as in the left panel, but for the ensembles
A60.24, B55.32 and D45.32sc. The continuum extrapolated values r0M

a→0
η are horizontally

displaced for legibility.

for this state. From figure 3.4 no clear picture arises regarding the influence of the strange
quark mass on the value of Mη′ for the two pairs of ensembles (A80.24, A80.24s) and (A100.24,
A100.24s). Moreover, comparing the data points for Mη′ in figure 3.4 corresponding to A- and
B-ensembles, one might conclude that within statistical errors no significant dependence on the
strange quark mass can be observed, although it is also not possible to exclude that there are
more subtle cancellations taking place between effects stemming from different values of the
strange quark mass and different values of the lattice spacing. Therefore, we are not able to
correct for any mistuning of the strange quark mass, as it was the case for Mη. On the other
hand, comparing the data at the coarsest and the finest lattice spacing there appears to be a
trend indicating some dependence on the lattice spacing, as the points for the D-ensembles lie
systematically lower than those for for the A-ensembles. In order to include these uncertainties
in our analysis, we will again perform the corresponding extrapolations for each value of the
lattice spacing separately. A more sophisticated approach might be given by the use of a chiral
fit, however, this would require the explicit inclusion of the η′ field within the framework of three
flavor WχPT to obtain the relevant formulas which to our knowledge has not been done so far.
We remark that the corresponding derivative Dη′ might also as well exhibit a dependence on the
light and strange quark mass, hence it would be desirable to have more ensembles with re-tuned
values of the strange quark mass, possibly also at different values of the lattice spacing to be
able to disentangle and estimate the systematic effects.
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3.4.2 Extrapolation to the physical point

Considering the negligibility of lattice artifacts for the mass of the η it is straightforward to
perform the extrapolation to the physical point by simply repeating the steps of the analysis
described in the previous section. Therefore we will restrict ourselves to a brief presentation
of the corresponding results. First, we correct again all values of Mη for the mismatch of the
strange quark mass by fixing MK to its physical value M exp

K and performing a corresponding
shift of Mη by virtue of Eq. (3.6) employing the value of Dη determined in the last subsection.
The linear fit to the corrected values (r0Mη)

2[(r0MPS)
2] which is shown in the left panel of

figure 3.12 leads to r0Mη

[
r20M

2
π

]
= 1.26(7)stat(1)sys using again r0 = 0.45(2) fm andMπ =M exp

π0

for the physical value of the pion mass. Converting to physical units gives

Mη(Mπ) = 551(11)stat(6)sys MeV , (3.16)

where the systematic error has been estimated from fitting the data at each value of the lattice
spacing separately. Note that the value for the physical η mass is in very good agreement
with the result previously given in Eq. (3.3.2) as well as with the experimental value M exp

η in

Eq. (1.41). In addition, for the SU (2) chiral limit we have r0M̊
SU(2)
η = 1.24(7)stat(2)sys, which

yields
M̊SU(2)

η = 543(11)stat(7)sys MeV , (3.17)

converting to physical units. As expected, this result agrees nicely with the one obtained from
the full correlation function matrix.

Again, we may extrapolate further quantities in order to check the validity of our correction
procedure for mistuned values of the strange quark mass. First, we consider the GMO ratio
defined in Eq. (1.83) determined directly from the data for together with and perform an ex-
trapolation in (r0MPS)

2. However, it turns out that taking the uncorrected values of Mη the
extrapolation misses the experimental value (3M2

η /(4M
2
K−M2

π))
exp = 0.925 considering only the

statistical error by more than 2σ, i.e. we obtain
(
3M2

η /(4M
2
K −M2

π)
)

Mπ
= 0.963(15)stat(35)sys.

This may be seen as a hint that the significantly increased statistical precision of the improved
analysis strategy allows to resolve a residual strange quark mass dependence which is not can-
celed in the ratio. Note that compared to the direct extrapolation the statistical precision is
even further enhanced for the case of dimensionless ratios because the physical value of r0 is
only required for fixing the physical point but not for the conversion to physical units. In
fact, considering only the B ensembles for which the value of the strange quark mass is close

to physical yields
(
3M2

η /(4M
2
K −M2

π)
)B

Mπ
= 0.928(27)stat , indicating that the systematic er-

ror is mainly caused by such a residual effect. Indeed, using the corrected values M̄η and
the corresponding values of the kaon mass to calculate the GMO ratio the extrapolation gives
(
3M2

η /(4M
2
K −M2

π)
)

Mπ
= 0.946(26)stat(22)sys, which agrees nicely with the experimental value

and exhibits a smaller systematic error compared to the result obtained from using the uncor-
rected values of Mη. For the physical value of the η mass we find

Mη = 554(8)stat(7)sys MeV , (3.18)
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Figure 3.12: (a) Values of r0Mη as a function of (r0MPS)
2. (b) GMO ratio from Eq. (1.83)

as a function of (r0MPS)
2 for all available ensembles using the ms-corrected r0Mη values and

the corresponding values of the kaon mass. Experimental values are horizontally displaced for
legibility. Note that the errors of the data points are highly correlated as they include the error
of the derivative Dη (µl, µσ, µδ, β).

in agreement with the result from the direct extrapolation and the experimental value. The
extrapolation for the corrected η masses is shown in the right panel of figure 3.12. Note that
the (correlated) point errors and the error band stemming from this procedure are affected by
the error on the derivative Dη which has been used to correct for the mistuning of the strange
quark mass. However, they are still significantly smaller than the ones we from the analysis of
the standard 6× 6 correlation function matrix in the right panel of figure 3.6.

A similar picture arises from the light quark mass extrapolation of the ratio Mη/MK which
is shown in figure 3.13. In the left panel we show the extrapolation using the uncorrected
values of Mη which yields (Mη/MK)Mπ

= 1.117(8)stat(23)sys, missing the experimental value
(Mη/MK)

exp = 1.100 again by roughly 2σ if taking only the statistical error into account.
However, note the extremely small errors in this plot, which lead to a relative statistical un-
certainty for the extrapolated value lying well below the 1% level. Like for the case of the
GMO ratio taking only the B ensembles into account gives nice agreement with the experi-
mental value, i.e. (Mη/MK)

B
Mπ

= 1.117(8)stat , whereas A and D ensembles give significantly
larger values. Therefore, we have also repeated the extrapolation using the corrected values
M̄η and the corresponding kaon masses, which is shown in the right panel of figure for com-
parison. Within the slightly larger statistical errors one again obtains excellent agreement, i.e.
(
Mη/MK

)

Mπ
= 1.099(16)stat(19)sys, which results in

Mη = 0.547(8)stat(9)sys MeV , (3.19)
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Figure 3.13: (a) Mη/MK as a function of (r0MPS)
2 for all available ensembles. (b) The same

as in the left panel, but determined from the ms-corrected r0Mη values and the corresponding
values of the kaon mass. Experimental values are horizontally displaced for legibility. The
larger errors in (b) are highly correlated as they are dominated by the error of the derivative
Dη (µl, µσ , µδ, β).

compatible with the results from direct and GMO ratio extrapolations.

In order to obtain our final result for the physical mass of the η we take the weighted average
from the three previously discussed methods used for the extrapolation in the light quark mass.
Accounting for any correlations, this yields

Mη = 551(8)stat(6)sys MeV . (3.20)

which is in excellent agreement with experiment and exhibits substantially smaller errors com-
pared to any result obtained from the standard method.

As discussed in the previous subsection it is not clear how to disentangle effects of the strange
quark mass (if any) from those of different values of the lattice spacing for the η′. Therefore, we

rely on a direct linear fit to the data for
(
r0Mη′

)2
as a function of (r0MPS)

2 to extrapolate to
the physical value of the pion mass. The result of this fit is shown in together with the direct
extrapolation for the η mass. Numerically, we obtain

Mη′ = 1006(54)stat(38)sys(+61)ex MeV , (3.21)

which represents our final result for physical mass of the η′ state. In order to quantify a possible
error introduced by the excited state removal in the connected contributions, we quote the
difference between the extrapolations with and without excited state removal as an additional
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Figure 3.14: Our results for r0Mη (filled symbols) (corrected for the mismatch in r0MK as
discussed in subsection 3.3.1) and r0Mη′ (open symbols). The fitted curves are linear functions
in (r0MPS)

2 as discussed in the text.

systematic error. Again, the standard systematic error has been determined from fits to the
data at single values of the lattice spacing and it is interesting to note that it actually turns out
to be the smallest of the three errors. Within the larger errors this result is again in very good
agreement with experiment, confirming that QCD indeed accounts for the significantly larger
mass of the η′ that is observed experimentally.

3.4.3 Discussion of results

In figure 3.15 we have included a compilation of our results for η and η′ masses obtained from
the standard (left panel) and excited state removal method (right panel), together with results
available in the literature for Nf = 2+1 flavor lattice QCD. ForMη we show the values corrected
for the mismatch in MK. We remark that in [156] η and η′ meson masses have been computed
using Nf = 2 + 1 flavors of overlap quarks at one value of the lattice spacing and large values
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Figure 3.15: Comparison of our results for Mη (filled symbols) (corrected for the mismatch in
MK as discussed in the text) and Mη′ (open symbols) in physical units for all three values of
the lattice spacing to results from the literature (RBC/UKQCD [7], HSC [8], UKQCD [9]. (a)
shows our results from the standard method and (b) the results from the excited state removal
method. The scale for our points was set using r0 = 0.45(2) fm.

of the pion mass, however, in this reference not enough details are given to be included in our
comparison figure 3.15. The results in [7] have been obtained using Nf = 2+1 flavors of domain
wall fermions and again for a single value of the lattice spacing a ≈ 0.1 fm but for three values
of the pion mass in a range from ∼ 400MeV to ∼ 700MeV. The corresponding data points
in figure 3.15 are labeled “RBC/UKQCD”. Another single data point is added from [8] by the
Hadron Spectrum Collaboration (HSC) for which Wilson fermions have been employed. Again,
it was not possible to include more recent results by the HSC [157] due to the lack of explicit,
numerical values in this reference for the relevant masses. Finally, in [9] data from staggered
fermions is presented for two different values of the lattice spacing with each of them also at a
different value value of the pion mass. In figure 3.15 the corresponding data points are labeled
“UKQCD”.

First of all, figure 3.15 shows that the results presented in this work increase the available world
data for η and η′ masses from lattice QCD with more than two dynamical quark flavors by
almost a factor of four (c.f. figure 1). In particular, our results are obtained at significantly
lower values of the pion mass than any other data available before. Moreover, our results
agree nicely with those obtained from domain wall and Wilson fermions, despite the fact that
no systematic uncertainties have been taken into account for this plot and also that we used
Nf = 2 + 1 + 1 dynamical quark flavors. Only for the mass of the η a significant tension is
observed when comparing to the results computed from staggered quarks, however, for the η′
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no such deviation is observed.

Moreover, figure 3.15 allows for a comparison of the statistical uncertainties in the different
studies. The plot in the left panel shows that our errors for Mη′ determined from the full 6× 6
correlation function matrix are much larger than those quoted by the other collaborations. For
the error on the mass of the η a similar, though less severe trend is observed. In the following
we discuss several possible causes that in principle might contribute to this discrepancy. One
source for the larger error on the η′ mass is the significant autocorrelation that we observe
for this state, c.f. subsection 3.2.2. At least this is the reason why the error on the data for
the η′ is larger than that for the η when comparing to results by other collaborations. For
the results by RBC/UKQCD [7] 300 configurations separated by 20 HMC trajectories have
been investigated and no autocorrelation among these configurations has been observed for the
investigated quantities. Similarly, the (HSC) [8] used 479 configurations also separated by 20
HMC trajectories. However, these two investigations were performed at a lattice spacing of
∼ 0.12 fm, which is significantly larger than our coarsest value. Compared to both studies we
have hence investigated a similar number of independent configurations per ensemble, but at
smaller values of the lattice spacing. Furthermore, our methods to compute quark disconnected
contributions are based on the use of stochastic noise, which is not the case for the methods
used by the two aforementioned collaborations. However, we have explicitly checked that the
stochastic noise is not dominantly contributing to the errors on our results, it is at most of the size
of the gauge noise or smaller. Compared to the HSC study we have used a much smaller number
of inversion per independent gauge configurations while RBC/UKQCD used a similar number.
Besides, the large operator basis employed by the HSC clearly allows for higher precision in the
extraction of the relevant states. The smaller errors found by RBC/UKQCD might be caused
by the better chiral properties of the domain wall formulation, the larger value of the lattice
spacing or the smaller volume in lattice units. Finally, we remark that the study using staggered
quarks by UKQCD [9] employs a similar method to deal with the disconnected contributions but
involves are significantly larger number of independent configurations. Additionally, we would
like to point out again that for the standard method the large error on our data for Mη′ also
reflects the systematic uncertainty in identifying a plateau in its effective mass, as discussed
earlier.

The situation concerning the errors changes drastically when comparing to our results from the
excited state removal method, which is shown in the right panel of figure 3.15. Since for this
method we are able to perform fits at much smaller values of Euclidean time, the errors are of
the same size or even smaller than those quoted by the other collaborations, depending on the
statistics used and the values of the light quark mass and the lattice spacing. In particular, one
observes a nice agreement within the much smaller errors for the η′ masses among the different
collaborations and excellent agreement of our data for the η masses with those obtained from
domain wall fermions by RBC/UKQCD and also the single data point by HSC seems more or
less compatible. The tension with the two data points computed from staggered fermions by
UKQCD remains and is now even more pronounced by the smaller errors. It is not clear to us
what kind of systematic effect is responsible for this latter observation.
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3.5 η, η′-mixing

The previous sections of this chapter have been mainly concerned with the extraction and
extrapolation of masses for the light pseudoscalar, flavor singlet mesons. In this section we
will focus on the extraction of the mixing parameters for the η–η′ system defined for the quark
flavor basis introduced in Eqs. (1.97),(1.98). Since we do not have direct access to the axial-
vector matrix elements, we have to employ the simplified mixing scheme in Eq. (1.105) which
relies on additional theoretical input from χPT, as detailed in subsection 1.1.5. In principle,
it is possible to calculate the relevant amplitudes either directly from the GEVP as discussed
in subsections 2.2.2 and 2.2.3 or from the factorizing fit model in Eq. (2.101). For consistency
reasons with respect to the previous analysis, it would be desirable to stick with the GEVP
approach, however, using the standard 6 × 6 correlation function matrix it turns out that this
approach does not allow to extract the relevant amplitudes for the first excited state with any
reasonable precision, as the signal for them is lost as very early values of t/a. Therefore, we
employ the factorizing fit model together with suitable priors for the masses of the first two
states as obtained from the GEVP analysis in order to compute these amplitudes. For the
factorizing fit we first rotate the the correlation function matrix back to the original twisted
basis as discussed in subsection 2.2.3 and for the further analysis we consider only light and
strange degrees of freedom (both, local and fuzzed), as the charm quark does not contribute
within errors. In fact, we checked explicitly that the results from fitting to a full 6×6 matrix are
in excellent agreement with those from a 4× 4 matrix, i.e. the resulting deviations (if any) are
much smaller than the average errors. Again, we would like to point out that the determination
of the mixing parameters requires the ratio of renormalization constants Z as input, for which
we use the values listed in table 3.3. The details of our fitting procedure can be found in
appendix C.2.

The results for the mixing angle φ defined from the double ratio of amplitudes in Eq. 2.90
are given in table 3.7 for local (φL) and fuzzed amplitudes (φF ) calculated from the standard
4 × 4 correlation function matrix without the charm sector. In addition, we have included
corresponding results for the two angles φl, φs in Eq. 2.91. The errors for the angles are more
or less of similar relative size compared to those obtained for the values of Mη′ determined from
the standard method. For the angle φ we will see that it is possible to perform an extrapolation
in the light quark mass to the physical point which will be discussed in the next subsection.
However, it is already obvious from the values in table 3.7 that no clear picture arises for φl
and φs, which we attribute to large systematic uncertainties in these quantities. Apparently,
some of these systematic effects cancel in the double ratio of amplitudes for the single angle φ,
which is not the case for the simple ratios of amplitudes required to obtain the values for the
angles φl and φs. Therefore, we will not consider them in the subsequent analysis and restrict
any further study of these quantities to the corresponding results from the excited state removal
method. Similarly, we refrain from computing the decay constant parameters fl and fs using
the standard method as this does not allow for any reliable extrapolations either.

For the case of the flavor singlet masses we obtained substantial improvement on the error of our
results from the application of the excited state removal method. The same method can also be
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ensemble φLl φLs φL φFl φFs φF

A30.32 57(15) 49(13) 56(15) 36(09) 53(13) 46(11)
A40.24 39(16) 41(11) 39(16) 43(11) 40(12) 41(13)
A40.32 56(18) 33(11) 54(18) 33(11) 44(11) 44(11)
A60.24 66(15) 29(13) 66(15) 30(13) 49(08) 49(08)
A80.24 73(07) 20(10) 73(07) 24(10) 48(06) 50(06)
A100.24 62(10) 37(10) 62(10) 39(09) 50(05) 51(05)

A80.24s 59(16) 36(16) 59(16) 41(16) 48(12) 50(12)
A100.24s 75(13) 20(16) 76(12) 25(16) 50(07) 54(07)

B25.32 74(13) 25(10) 73(13) 28(10) 52(06) 53(06)
B35.32 67(14) 19(07) 63(15) 22(08) 42(06) 41(07)
B55.32 74(11) 14(06) 73(11) 18(07) 43(06) 46(06)
B75.32 50(14) 52(15) 50(14) 52(15) 51(11) 51(11)
B85.24 60(16) 47(20) 61(16) 46(19) 54(13) 54(13)

D15.48 59(14) 25(09) 57(14) 29(09) 41(10) 42(10)
D30.48 65(11) 39(14) 64(11) 47(15) 53(12) 56(12)
D45.32sc 60(19) 57(15) 59(19) 58(15) 59(15) 58(15)

Table 3.7: Results for the mixing angles in Eqs. (2.91),(2.90) from a 4 × 4-correlation function
matrix using local (L) and fuzzed (F) operators for all ensembles. For D20.48 it was not possible
to extract reliable results within the statistics we used.

used to compute the mixing parameters. Note that for this procedure we are a priori restricted to
the use of a 2×2 matrix and we employ only local operators. Since the method allows to perform
fits to the principal correlators and also the corresponding eigenvectors at very small values of
t/a it enables us to determine the amplitudes directly from the GEVP in line with our previous
analysis for the masses. The parameters used for the GEVP analysis are the same that have
been used for the computation of the masses and can be found in appendix C.1. The numerical
results are given in table 3.8, where we have now included the decay constant parameters fl, fs
and again values for all three angles φl, φs and φ. For the statistical errors on the angles the
method yields an impressive improvement of about an order of magnitude. The relative errors
on the angles are typically . 4% for A and B-ensembles, while for the D-ensembles one observes
large errors up to ∼ 10% for the lightest quark mass. Furthermore, the values for all three angles
are now very close to each other and actually agree within errors on many ensembles. We will
discuss this observation in more detail in the next subsection. Similarly, the determination of
the remaining decay constant parameters appears to give consistent results with even smaller
relative errors of typically . 2%. The only relevant exception is given by the ensemble D30.48
for which significantly fewer gauge configuration have been used.
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ensemble afl afs φ φl φs

A30.32 0.0544(09) 0.0851(13) 49.2(1.5) 51.3(1.9) 47.0(1.4)
A40.24 0.0561(06) 0.0841(11) 45.7(1.4) 46.2(1.7) 44.9(1.2)
A40.32 0.0573(07) 0.0863(11) 45.6(1.7) 47.5(2.3) 43.9(1.4)
A60.24 0.0625(08) 0.0880(12) 49.1(1.8) 51.0(2.0) 47.2(1.7)
A80.24 0.0657(06) 0.0897(08) 49.9(1.1) 51.2(1.8) 48.5(0.7)
A100.24 0.0705(07) 0.0885(07) 50.0(0.9) 50.4(1.2) 49.5(0.8)

A80.24s 0.0680(07) 0.0825(08) 51.6(1.2) 53.3(1.1) 49.9(1.6)
A100.24s 0.0679(05) 0.0842(08) 53.7(0.5) 56.7(1.0) 50.6(1.2)

B25.32 0.0484(06) 0.0743(10) 49.3(2.0) 51.2(2.4) 47.4(1.8)
B35.32 0.0536(07) 0.0752(07) 49.7(1.3) 52.5(2.0) 46.8(1.1)
B55.32 0.0604(08) 0.0764(08) 51.7(1.0) 54.8(1.8) 48.5(0.9)
B75.32 0.0638(09) 0.0779(07) 51.1(1.0) 52.5(1.5) 49.8(1.2)
B85.24 0.0656(11) 0.0784(10) 52.9(1.2) 54.1(1.7) 51.6(1.5)

D15.48 0.0402(10) 0.0574(13) 41.6(4.9) 42.1(5.3) 41.1(4.5)
D30.48 0.0524(68) 0.0513(25) 53.9(6.8) 51.7(4.7) 55.9(9.0)
D45.32sc 0.0439(05) 0.0501(07) 44.8(3.1) 44.1(3.5) 45.5(2.7)

Table 3.8: Results for the η,η′-mixing parameters afl, afs and φ in the quark-flavor basis from
pseudoscalar matrix elements as given in Eq. (1.114). These values are obtained from a 2 × 2-
correlation function matrix with removed excited states. For comparison we also included the
results obtained using two individual angles φl, φs in Eq. (1.114), although to the given order
only a single mixing angle is predicted by the effective field theory. For D20.48 it was not
possible to extract reliable results within the statistics we used.

3.5.1 Chiral extrapolations

In the left panel of figure 3.16 we have plotted the values for the mixing angle in the quark flavor
basis determined from local amplitudes of a 4 × 4 correlation function matrix as a function of
(r0MPS)

2. This is again motivated from continuum three flavor χPT. In order to distinguish
the result from local amplitudes from that derived from their fuzzed counterparts the angle
is denoted by φL in this plot. In addition, we show results from the full 6 × 6 matrix using
amplitudes corresponding to fuzzed operators in the right panel. As stated in the previous
subsection, these results are in agreement with the ones determined from local amplitudes, and
in both cases we do neither observe a dependence on the lattice spacing nor on (r0MK)

2, at
least within the relatively large errors. Therefore, we perform a linear fit in (r0MPS)

2 which is
also shown in the two plots in figure together with the resulting error bands and the respective
values for φL,F at the physical pion mass. The two extrapolations are in good agreement and
we quote the value from a combined fit to local an fuzzed data as our result for the physical
mixing angle, i.e.

φ = 44(5)◦stat . (3.22)
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Figure 3.16: (a) mixing angle φL from local amplitudes of a 4× 4 matrix (no charm quark). (b)
mixing angle φF from fuzzed amplitudes of 6× 6 matrix (including charm quark)

Due to the very large statistical errors we refrain from giving any numerical estimate of possible
systematic effects. However, we have checked that our determination of the mixing angle is not
affected by the uncertainty on the ratio of renormalization constants Z. To this end we varied Z
in a large range from 0.4 to 1.0, which did not affect the extraction of the mixing angles at all. An
example for this is shown in the left panel of figure 3.17, where we plotted the dependence of φL

on Z for ensemble D15.48. It is clear from this plot that the variation introduced by Z is by far
smaller than the statistical uncertainty. We remark that this statement still holds even for the
much smaller errors on the mixing angles obtained from using the excited state removal method,
which will be discussed below. The same behavior is observed for the other ensembles, hence
we conclude that our evaluation of the mixing angle is not affected by systematic uncertainties
stemming from the Z ratio within our statistical errors.

In the right panel of figure 3.17 we show the results for the mixing angle φ from the improved
analysis method using a 2 × 2 correlation function matrix built from local operators only (c.f.
table 3.8) as a function of (r0MPS)

2. A comparison with figure 3.16 reveals that the data from
the standard and the improved method appear to be compatible, although the large statistical
errors resulting from the standard method render a definite statement difficult. Concerning
systematic effects introduced by scaling artifacts and mistuned values of the strange quark
mass, we remark that still no clear picture arises albeit that the errors are decreased by roughly
one order of magnitude compared to the standard approach. The situation is similar to the one
we observed for the mass of the η′: considering the data for the two sets of ensembles (A80.24,
A80.24s) and (A100.24, A100.24s) it appears that the value of the strange quark mass may have
some influence but this may depend on the value of the light quark mass and the lattice spacing
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Figure 3.17: (a) Z-dependence of the mixing angle φ from a 4 × 4 correlation function matrix
using local amplitudes for D15.48. (b) Mixing angle φ from local amplitudes of a 2 × 2 matrix
with excited states removed.

such that it is not possible to disentangle these effects with the available data. In particular,
at smaller values of the light quark mass the data for A- and B-ensembles agree again well
within errors, although these sets of ensembles have different strange quark mass. However,
with respect to the mass dependence of the mixing angle it is worthwhile to mention that our
data is consistent with the SU (3) flavor symmetry requirement φSU(3)F

= arctan
√
2 which is

indicated by the dotted, horizontal line the left panel of figure 3.17. In addition, we remark
that finite size effects appear to be negligible, the data for the two ensembles A40.24 and A40.32
agree very well within errors. Since it is not possible to further disentangle the systematic effects
(e.g. resolve a strange quark mass dependence), we employ the same procedure as discussed in
section 3.4, i.e. we fit each the data at each lattice spacing separately to obtain an estimate for
the systematic uncertainties. The data is again compatible with a linear fit in (r0MPS)

2 and at
the physical value of the pion mass we have

φ = 46.0(0.9)stat(2.7)
◦
sys , (3.23)

which is our final result for the mixing angle in the quark flavor basis using pseudoscalar matrix
elements.

Besides the mixing angle φ, we consider the angles φl, φs which are relevant to cross-check the
assumptions entering our mixing scheme. The results for φl and φs have been plotted in the left
and right panel of figure 3.18, respectively. Again, we have performed linear fits in (r0MPS)

2,
which are also shown in the plots together with the results at the physical pion mass that are
given by

φl = 47.7(1.2)stat(4.1)
◦
sys , φs = 44.3(0.9)stat(3.0)

◦
sys , (3.24)
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Figure 3.18: (a) Mixing angle φl and (b) mixing angle φs; both from local amplitudes of a 2× 2
matrix with excited states removed.

where the systematic uncertainties have been determined in the same way as for the angle φ
itself. The results are compatible within errors, although it is interesting to note that the values
and the extrapolated result for φl exhibit slightly larger statistical and systematical errors.
Notably, for φs there is very good agreement for the results within each of the two set (A80.24,
A80.24s) and (A100.24, A100.24s), indicating that the influence of the strange quark is smaller
for this quantity and in general more of the data points lie within the error band of the linear
fit. Moreover, we can also perform a direct linear extrapolation of the difference ∆φls = φl−φs,
which yields

∆φls = 2.8(1.1)stat(2.6)
◦
sys , (3.25)

compatible with zero within errors.

As discussed in the previous subsection, the application of the excited state removal method
allows also for an extraction of the decay constant parameters fl and fs to a rather high statistical
precision. We have plotted the results for fl and fs as a function of (r0MPS)

2 in the upper left
and right panels of figure 3.19, respectively. Visual inspection of the data for fl exhibits a rather
nonlinear curvature and may a non-trivial dependence on the value of the strange quark mass
as well as significant scaling artifacts, although the somewhat diverse results at the finest lattice
spacing do not allow for a definite statement. Furthermore, these effects seem not to be small
compared to the statistical errors. Therefore, one should not expect a simple, linear fit to allow
for a good description of the data. For fs one observes a very clear dependence on the value of
the strange quark mass, although from the data for (A80.24, A80.24s) and (A100.24, A100.24s)
this dependence does not necessarily appear to be constant with respect to the value of the light
quark mass. Considering the results at the finest lattice spacing there may also exist a more
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subtle interplay between quark mass dependence and scaling artifacts.

For these reasons it seems necessary to rather study suitable ratios quantities which cancel at
least some of the aforementioned effects instead of performing direct extrapolations of the decay
constant parameters themselves. Indeed, it turns out that this is possible by considering the
ratios fl/fPS and fs/fK using our lattice data for fPS and fK as given in table 3.4. The latter
choice may be considered motivated on the grounds that a similar approach using MK has
already been shown to work very well for the case of the η mass. The results for these ratios
are shown in the lower two panels of figure 3.19 again as a function of (r0MPS)

2. First of all,
it is apparent that for the case of fl/fPS some of the light quark mass dependence cancels and
the resulting curvature for each lattice spacing seems less severe and rather compatible with a
linear fit. The linear extrapolation using all available data is also shown in the plot and at the
physical value of the pion mass we have

fl/fPS = 0.859(7)stat(64)sys . (3.26)

However, from the plot it appears that there is still a rather sizable dependence on the lattice
spacing present while the strange quark mass dependence seems to cancel in ratio as all A-
ensembles fall on one single curve. In fact, the systematic error estimated from fitting the data
at each value of the lattice spacing separately is one order of magnitude larger than the statistical
error and there is clear trend towards larger values of fl/fPS extrapolated to the physical pion
mass for increasing value of the lattice spacing. Therefore, we additionally quote the result
of a linear fit restricted to the data at the finest lattice spacing, which yields (fl/fPS)

D =
0.924(22)stat .

For the ratio fs/fK most of the strange quark mass dependence is canceled and the data seems
almost perfectly linear in the light quark mass, exhibiting only a moderate slope. Moreover, for
this case there are no discernible scaling artifacts within errors and the data is well described
by a linear fit which gives

fs/fK = 1.166(11)stat(31)sys , (3.27)

at the physical value of the pion mass. Clearly, the systematic error is significantly smaller than
the one obtained for the physical value of fl/fPS, confirming the smallness of any residual lattice
artifacts or strange quark mass dependence for fs/fK .

3.5.2 Discussion of results

In this section we have computed the relevant mixing parameters of the η–η′ system in the
quark flavor basis using pseudoscalar matrix elements for light and strange degrees of freedom
as discussed in detail in subsection 1.1.5. Using the standard method it is only feasible to extract
the single mixing angle φ as the statistical and systematic uncertainties for all further quantities
are too large. Nonetheless, the result in Eq. (3.22) turns out to be in good agreement with
the one obtained from the excited state removal method in Eq. (3.23) and both are compatible
with most lattice determinations, i.e. an old UKQCD work [158] and more recent results by
RBC/UKQCD [7] as well as HSC [8, 157], which all quote values in between 40◦ and 50◦.
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Figure 3.19: (a) Quark flavor basis decay constant parameter r0fl as function of (r0MPS)
2. (b)

The same as in the left panel but for r0fs. (c) Decay constant ratio fl/fPS and (d) similar ratio
for fs using kaon decay constant fK instead of fPS.

However, the recent UKQCD investigation using staggered quarks [9] favors a smaller value of
34(3)◦. Our result indicates that the η exhibits a large flavor octet component while the η′ is
dominantly a flavor singlet state.

Comparing our result to experimental and phenomenological results [9,40,159] we find agreement
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with results from radiative decays and glueball mixing (∼ 42◦), while results from photon fusion
and charm-η production favor a value of ∼ 33◦. However, our final result for φ is slightly larger
than the average estimate from phenomenology [40]. Moreover, we remark that within the
statistical errors from the standard method no significant influence of the charm quark could be
observed, which is also expected on phenomenological grounds [40]. In fact, including the charm
operators in the correlation function matrix leads to almost identical values for the mixing with
slightly increased error due to additional noise introduced by the corresponding correlators.

Another issue that we are able to address concerns the validity of the assumptions that enter the
derivation of the single angle mixing scheme in the quark flavor basis, i.e. the smallness of the
OZI corrections and further, higher order terms that have been dropped due to the application of
χPT in order to use pseudoscalar matrix elements instead of axial vector ones. For this purpose
we computed the angles φl and φl using the excited state removal method, which – unlike the
standard method – yields sufficiently small errors to allow for a meaningful check. As discussed
previously, these angles are not well defined quantities to the given order in chiral perturbation
theory, however, their values should be very similar if the assumptions are valid to a reasonable
level. Indeed our physical results for φl and φl in Eq. (3.24) are compatible within errors and
the direct extrapolation of the difference in Eq. (3.25) agrees well with the phenomenological
estimate |φl − φs| < 5◦ given in [40]. These results confirm the validity of the assumption that
the aforementioned OZI corrections are small and that the quark flavor basis indeed allows to a
good approximation for a description in terms of a mixing scheme involving only one instead of
two angles.

In addition we have performed the first lattice calculation of the decay constant parameters fl
and fs completing the set of parameters of the mixing scheme. For the extrapolation to the
physical point we considered the ratios fl/fPS and fs/fK using our lattice data on fPS and fK
in order to decrease systematic effects. For the case of fl/fPS we still observe significant scaling
artifacts and the result in Eq. (3.26) is very likely to be underestimated. Indeed, the average
phenomenological estimate given in [40] is far off and lies not even within our rather large
estimate for the systematic error, which only covers the difference up to the result obtained at
the finest value of the lattice spacing, i.e. (fl/fPS)

D = 0.924(22)stat . Clearly, additional data at
the finest value of lattice spacing would be desirable to perform a more reliable analysis, as well
as input from WχPT which would allow for a more sophisticated fitting ansatz. For fs/fK the
cancellation of the strange quark mass dependence seem to work very well and scaling artifacts
are negligible. The physical value in Eq. (3.27) is in excellent agreement with the average
phenomenological value in [40]. Moreover, even the combined statistical and systematic error
on our result is smaller than the error quoted for the phenomenological estimate.

3.6 Determination of low-energy constants of WχPT

In this final section we present the results of our WχPT-based analysis concerning the mass
splittings in Eqs. (1.221) and (1.220). The central part of this analysis is again performed in
the Wilson twisted mass setup with Nf = 2 + 1 + 1 dynamical quark flavors and a major part
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of our efforts concerns the estimation of the systematic effects entering our determinations of
the LECs. In a second step we will vary the details of the lattice action in order to explore the
qualitative changes resulting for the values of the LECs. For this purpose we change the number
of dynamical quark flavors using Nf = 2 flavors of Wilson twisted mass fermions and replace
the Iwasaki gauge action by the tree-level Symanzik improved gauge action [77, 85, 136]. In
addition, we will study effects arising from smearing the gauge links in the covariant derivatives
entering Eq. (1.151). To this end, we consider data obtained from stout smearing [160], which is
analytic in the un-smeared link variables and hence suitable for numerical simulations using the
hybrid Monte Carlo algorithm. Finally, we consider results obtained from the inclusion of the
Sheikholeslami-Wohlert term as given in Eq. (1.161). All the results presented in this section
have been previously published in [2].

3.6.1 Nf = 2 + 1 + 1 WtmLQCD with Iwasaki gauge action

For the details of the setup used in our study involving Nf = 2+ 1+ 1 dynamical quark flavors
in the Wilson twisted mass formulation we refer to section 3.1 and in particular table 3.1 as
it involves the same ensembles and sets of gauge configurations that have been employed in
the η,η′ related investigations. The relevant values of the pseudoscalar meson masses for the
Nf = 2 + 1 + 1 ensembles are collected in tables 3.4 and 3.5.

In figure 3.20 we show the mass splittings defined in Eqs. (1.221, (1.220) that are directly
proportional to W ′

8 and W ′
6, respectively. From these two plots it is apparent that the lattice

data fulfill the conditionsW ′
8 < 0 andW ′

6 > 0 which is in agreement with bounds that have been
calculated in [107, 112, 125]. In the following we will address the systematic effects introduced
by lattice artifacts, the quark mass dependence and finite size effects to allow for meaningful a
determination of the values for the LECs W ′

6 and W ′
8.

First of all, we remark that in the “large cut-off effects” power counting and at leading order
in the WχPT Lagrangian, the mass splittings as given in Eqs. (1.221), (1.220) are expected to
be independent of the lattice spacing and the light quark mass. Therefore, any presence of such
effects might hint at effects entering at higher orders in the chiral expansion. Unfortunately, the
corresponding NLO expressions for the mass splittings are not available in the literature, hence
we rely on a separate study to estimate the systematic error. For this we consider the continuum
limit of the mass splittings at fixed light quark mass and perform a comparison of constant and
linear extrapolations in (r0MPS)

2. Concerning the continuum limit of the mass splittings, we
observe from the two plots in figure 3.20 that data exhibiting similar values of (MPSr0)

2 but
differing in the value of the lattice spacing seem rather compatible. In particular, this holds for
the larger lattice sizes, which in the plots are represented by filled symbols.

In the left panel of figure 3.21 we show the lattice spacing dependence of the two aforementioned
mass splittings at a common reference mass (MPSr0)

2 ≈ 0.55. For this purpose we have only
considered the largest lattice sizes L. Although the physical size of the lattice slightly changes
for different values of β, our lattices all satisfy L & 2.5 fm and MPSL & 4. Therefore, one should
not expect a large effect from the small mismatch in the physical volume. The plot in the
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Figure 3.20: Results for the mass splittings (a) (M2
PS−M2

π0,c)/a
2 in Eq. (1.220) and (b) (M2

π0,c−
M2

π0)/2a
2 in Eq. (1.221) in units of r0 as a function of (r0MPS)

2. The results are obtained from
Nf = 2 + 1 + 1 flavors of Wilson twisted mass fermions and the Iwasaki gauge action. The
mass splittings are directly related to the Wilson LECs W ′

8 and W ′
6. Filled and empty symbols

denote different lattice sizes. The label “(s,c)” identifies ensembles with a different values of the
strange and charm quark masses in the sea. In addition, the results of a chiral extrapolation
from a constant and a linear fit in (r0MPS)

2 have been included. The difference between these
two extrapolations enters the systematic error analysis.

left panel of figure 3.21 clearly suggest that the residual effects of different values of the lattice
spacing are small. At this point we recall that these lattice artifacts are of subleading order in
the chiral expansion. In order to give an estimate of these effects, we include in the systematic
error of our analysis the difference between the values of the mass splittings obtained from the
two finest lattice spacings.

Concerning the light-quark mass dependence one may expect the mass terms appearing at
NLO to contain a linear term in M2

PS. Moreover, a chiral logarithm of the form M2
PS log(M

2
PS)

may be present. Indeed, it was shown in [130] that such terms occur in the NLO WχPT
expression of the mass splitting between the charged and neutral pion masses. Since the exact
form of these logarithmic terms is yet unknown for the mass splittings in question, we restrict
ourselves to a linear chiral extrapolation in M2

PS. Besides, our data is not precise enough to
allow us to disentangle possible logarithmic contributions anyway. We use the result of the
linear extrapolation as the central value and estimate the systematic error introduced by the
light quark mass dependence from the difference to the results from the constant extrapolation.

Finally, we take finite volume effects into account by considering the two ensembles A40.24
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Figure 3.21: (a) Lattice spacing dependence of the mass splittings |M2
PS − M2

π0,c|/a2 (open

symbols) – and (M2
π0,c−M2

π0)/2a
2 (filled symbols) at a common reference mass (MPSr0)

2 ≈ 0.55
for the setup Nf = 2+1+1 dynamical flavors of Wilson twisted mass fermions and the Iwasaki
gauge action. For the sake of visibility, the absolute value of the mass splitting is given for
|M2

PS−M2
π0,c|/a2. (b) Pion mass-splitting, (M2

π0−M2
PS)/a

2, normalized according to Eq. (1.223)
in order to relate it to the combination of WχPT LECs c2. We show chiral extrapolations
corresponding to a constant and a linear fit in M2

PS.

and A40.32 which differ only by their respective lattice sizes, i.e. L ≈ 2.1 fm and 2.8 fm. The
difference between the values of the mass splittings from these two ensembles is added to the
systematic error. We expect this to be a conservative choice as these two ensembles exhibit
a rather small value of the light quark mass, hence finite size effects may be non-negligible.
Moreover, they belong to the set of ensembles employing the coarsest lattice spacing, for which
possible finite size effects induced by the neutral pion mass should be larger.

In subsection 1.3.5 it has been been pointed out that the determination of the WχPT LECs
from lattice data with Nf = 2 + 1 + 1 flavors assumes that the heavy sea quarks decouple
sufficiently from the light quark dynamics governing the pion sector. The residual heavy quark
mass dependence that enters W ′

6 and W ′
8 can be revealed by considering different values for the

strange and charm quark masses around their physical values. The effect of varying these masses
is shown in figure 3.20 by the points which are labeled “(s,c)”. In order to estimate the resulting
systematic effect we determine the difference between the mass splittings from ensembles A80.24
and A80.24s. We expect this to be a conservative choice for three reasons. First, for the ensemble
A80.24s the strange quark mass is very close to the physical point. Secondly, the change in the
strange quark mass is largest for the two ensembles A80.24 and A80.24s. Finally, the effect of
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w′
8 r

4
0 w′

8 W ′
8 (r

6
0W

2
0 )

sys. −2.9(4) −[571(32)MeV]4 −0.0138(22)

w′
6 r

4
0 w′

6 W ′
6 (r

6
0W

2
0 )

sys. +1.7(7) +[502(58)MeV]4 +0.0082(34)

c2 r
4
0 c2 −2 (2W ′

6 +W ′
8) (r

6
0W

2
0 )

lin. −1.1(2) −[444(28)MeV]4 −0.0050(10)
cst. −2.3(1) −[541(24)MeV]4 −0.0111(10)

Table 3.9: Results the WχPT LECsW ′
6,8 (w

′
6,8) and c2 from the Nf = 2+1+1 setup with Wtm

fermions and the Iwasaki gauge action. For the conversion to physical units r0 = 0.45(2) fm has
been used. The values in the last column are derived from Eq. (1.219) using r0f = 0.276(12)
from [79]. For W ′

6,8 the systematic error analysis (see text) has been incorporated in the overall
uncertainty indicated by the label “sys.” in the table. In the last two lines we give the results
of a constant and a linear chiral extrapolation of c2 in M2

PS with purely statistical errors; see
also the right panel of figure 3.21.

the strange sea quarks should be larger than that of the corresponding charm quarks.

In order to give an estimate for the systematic error induced by the previously discussed sys-
tematic effects, we combine them in quadrature. This procedure leads to the following values
for the mass splittings in the Wilson twisted mass setup with Nf = 2 + 1 + 1 dynamical quark
flavors and the Iwasaki gauge action

(
M2

PS −M2
π0,c

a2

)

r40 = −23.0 (0.7)stat (3.0)sys , (3.28)

(
M2

π0,c −M2
π0

2a2

)

r40 = +13.8 (0.6)stat (5.6)sys . (3.29)

The corresponding values of the Wilson LECs are collected in table 3.9. Note that the results
for w′

6 and w′
8 are indeed precise enough to give a definite sign for these LECs.

In addition, the combination of LECs c2, has been calculated directly the mass splitting M2
π0 −

M2
PS as given in Eq. (1.223). The results for this mass splitting are shown in the right panel

of figure 3.21 together with chiral extrapolations from a constant and a linear fit in M2
PS. In

table 3.9 we have listed the results from both extrapolations and quote only a statistical error on
these two numbers. The values arising from both extrapolations clearly favor a negative a sign
of c2. Furthermore, we remark that the NLO WχPT expressions for c2 have been given in [130].
Besides the Wilson LECs appearing already at leading order and the usual Gasser-Leutwyler
LECs, further parameters are encountered at NLO. However, a determination of these additional
parameters is beyond the scope of our study. Such an analysis should also include the decay
constants in addition to the pion masses and will be subject to future work. Earlier results
for the Gasser-Leutwyler LECs have been given from studies in [79, 151], where fits based on
continuum χPT have been directly applied to the lattice data.
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β L/a aµl aMPS aMπ0,c aMπ0 r0/a

3.90 32 0.0040 0.1338(02) 0.2080(30) 0.1100(080) 5.35(4)
3.90 24 0.0040 0.1362(07) 0.2120(30) 0.1090(070) 5.35(4)
3.90 16 0.0040 0.1596(30) 0.2226(95) N/A 5.35(4)
3.90 24 0.0064 0.1694(04) N/A 0.1340(100) 5.35(4)
3.90 16 0.0085 0.1940(05) N/A 0.1690(110) 5.35(4)
3.90 16 0.0074 0.1963(17) 0.2541(55) N/A 5.35(4)

4.05 32 0.0030 0.1038(06) 0.1500(30) 0.0900(060) 6.71(4)
4.05 20 0.0030 0.1191(41) 0.1571(62) N/A 6.71(4)
4.05 32 0.0060 0.1432(06) 0.1800(20) 0.1230(060) 6.71(4)

4.20 24 0.0020 0.0941(31) 0.1157(61) N/A 8.36(6)

Table 3.10: Results for the charged MPS, neutral connected Mπ0,c and neutral Mπ0 pion masses
from ETMC simulations with Nf = 2 flavors of Wilson twisted mass fermions at maximal twist
and the tree-level Symanzik improved gauge action [77]. In addition the values for the Sommer
scale r0 in the chiral limit is given for each value of the lattice spacing [78].

Finally, we note that extensions of the analytical expressions to SU (3) WχPT are currently not
available in the literature. In principle, the knowledge of the corresponding formulas would allow
for an inclusion of our data for the kaon sector, which would be very beneficial with respect to
the statistical errors on the derived quantities due to the absence of quark disconnected diagrams
for the relevant correlation functions.

3.6.2 Nf = 2 WtmLQCD with tree-level Symanzik improved gauge action

In this subsection, we again aim at a determination of the LECs W ′
6 and W ′

8. However, now we
consider the case of Nf = 2 dynamical flavors of Wilson twisted mass fermions and the tree-level
Symanzik improved (tlSym) gauge action. The relevant results for this setup (i.e. the masses in
the pion sector) have been given in [77,85,136]. Note that the available data set for this setup is
significantly smaller then the one we analyzed for the Nf = 2+ 1+ 1 case, such that this study
may suffer from an insufficient control of systematic effects. Nonetheless, it seems worthwhile to
try to perform at least a qualitative comparison with the Nf = 2+1+1 case in order to obtain
some information on the the size of cutoff effects in different lattice setups.

The lattice simulations that we considered in this work [77,161] were again performed at three
values of the lattice spacing a ≈ 0.08 fm, 0.07 fm and 0.05 fm corresponding to values of the
gauge coupling β = 3.90, 4.05 and β = 4.20, respectively. The charged pion mass MPS in these
simulations covers a range from ∼ 310MeV to ∼ 460MeV.The physical spatial lattice volumes
range from (1.3 fm)3 to (2.6 fm)3 and it is again possible to study possible finite size effects in
the desired quantities from ensembles which differ only by the lattice size. In table 3.10 we
have collected the values of the pseudoscalar meson masses for the Nf = 2 ensembles [77]. The
resulting mass splitting derived from Eqs. (1.221)-(1.220) are illustrated in figure 3.22.
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Figure 3.22: Results for the mass splittings from the lattice setup with Nf = 2 flavors of Wilson
twisted mass fermions and the tlSym gauge action. (a) (M2

PS−M2
π0,c)/a

2 in Eq. (1.221) and (b)

(M2
π0,c −M2

π0)/2a
2 in Eq. (1.220) as a function of M2

PS. The mass splittings are directly related

to the Wilson LECs W ′
8 and W ′

6. Open and filled symbols refer to a change in the lattice size.

Similar to the previous analysis we want to explore the systematic effects that may affect these
determinations. To this end, we proceed in the same way as for the Nf = 2+1+1 case. Again,
we can estimate possible finite size effects from ensembles which differ only by the physical
volume. For the coarsest lattice spacing corresponding to β = 3.90, a set of three ensembles with
L/a = 16, 24 and 32 is available for the case of (M2

PS−M2
π0,c)/a

2. The corresponding results are
illustrated in the left panel of figure. 3.23. From this plot it is apparent that within the current
statistical uncertainties, no clear signs of finite size effects are visible in the data. Moreover,
we observe that data obtained at two different values of the lattice spacings (corresponding to
β = 3.90 and 4.05) agree within errors. This may be seen as an indication that there are no
large lattice artifacts present in these mass splittings.

Unfortunately, due to lack of sufficient data it is not possible to investigate the quark mass
dependence of the mass splitting (M2

π0,c −M2
π0)/a

2 in a systematic way. Similar to the Nf =
2 + 1 + 1 case, we incorporate the deviation between a constant and a linear extrapolation in
M2

PS in the estimate of the systematic uncertainties. Again, we use the results of the linear fit
as our central value. This leads to the following values for the mass splittings

(
M2

PS −M2
π0,c

a2

)

r40 = −20.1 (2.3)stat (1.7)sys , (3.30)
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Figure 3.23: (a) Finite volume effects for the mass splittings |M2
PS −M2

π0,c|/a2 (open symbols)

and (M2
π0,c − M2

π0)/2a
2 (filled symbols). Note that the absolute value of the mass-splitting

is used in the case of empty symbols. (b) Results for (M2
π0 −M2

PS)/a
2 normalized according

to Eq. (1.223) in order to relate it to c2. In addition, we show a chiral extrapolation from a
constant and a linear fit in M2

PS is also shown. Results are obtained from the lattice setup with
the Nf = 2 flavors of Wilson twisted mass fermions and the tlSym gauge action.

(
M2

π0,c −M2
π0

2a2

)

r40 = +8.4 (3.3) ± (5.5) , (3.31)

The corresponding values of the Wilson LECs are collected in Tab. 3.11. We remark, that W ′
8

has recently been determined from a mixed action involving the same Nf = 2 lattice action in
the sea sector as used in our study, but with Neuberger overlap valence quarks [124]. The value
quoted in in this investigation W ′

8 (r
6
0W

2
0 ) = −0.0064(24), differs from our estimate in table 3.11

at the 2σ level. However, concerning this possible issue it should be stressed again that our
estimate does not include a complete estimate of the systematic error.

In the right panel of figure 3.23 we show the results for c2 determined in the Nf = 2 setup.
Again, more data would be required in order to explore the residual quark mass dependence of
c2. Therefore, we quote separately the results of a constant and a linear chiral extrapolation in
M2

PS

c2 r
4
0 [ cst. ] = −3.1(0.4)stat , (3.32)

c2 r
4
0 [ lin. ] = −0.5(1.5)stat . (3.33)

Note that these values are consistent with those obtained from the results for the pseudoscalar



116 CHAPTER 3. ANALYSIS AND RESULTS

w′
8 r

4
0 w′

8 W ′
8 (r

6
0W

2
0 )

-2.5(4) −[552(025)MeV]4 -0.0119(17)

w′
6 r

4
0 w′

6 W ′
6 (r

6
0W

2
0 )

+1.0(8) +[443(138)MeV]4 +0.0049(38)

Table 3.11: Results for the WχPT LECsW ′
6,8 (w

′
6,8) from the Nf = 2 setup using Wtm fermions

and the tree-level Symanzik improved gauge action. For the conversion to physical units again
r0 = 0.45(2) fm has been used. The values for W ′

6,8 have been derived from Eq. (1.219), using
r0f = 0.275(6) from [77] as input.

meson masses in [77]. Moreover, they are also very similar to the ones obtained in [129] for
K = −4c2 from an investigation of finite volume effects in the twisted mass formulation. We
stress that all the lattice measurements favor a negative sign of c2.

3.6.3 Discussion of results

Before closing this section, we address some additional details and issues regarding our analysis
of the WχPT LECs. First, we remark that two out of three quantities (i.e. W ′

6 and c2) depend
on the neutral pion mass Mπ0 , which receives large contributions from quark disconnected
diagrams. These diagrams clearly dominate the statistical error for W ′

6 and c2. In this context
it is interesting to note that the results for the neutral pion mass in table 3.5 indicate that the
relative error does not depend on the light quark mass, whereas it decreases when increasing
the lattice volume. For our simulations this actually implies that one obtains Mπ0 with smaller
relative statistical errors for ensembles at smaller light quark mass, because these ensembles
tend to have larger volumes.

Apart from this effect, the statistical errors do not allow us to perform a meaningful study of the
light quark mass dependence for the mass splittings related to the W ′

6 and c2, as can be inferred
from the corresponding plots in the right panels of figures 3.20 and 3.21. In principle, such
a mass dependence is expected to appear at NLO in the chiral expansion of WχPT, however,
we do neither see a clear trend towards such an dependence from our data nor can we exclude
that it is negligible within our errors. Nevertheless, it has to be pointed out that the possibility
of such a dependence is particularly relevant for the combination of LECs c2 ∼ − (2w′

6 + w′
8)

which allows for a partial cancellation of the effects stemming from w′
6 and w

′
8. The issue of NLO

terms affecting the determination c2 have also been discussed in [121]. As it has been previously
mentioned in subsection 1.3.5, the sign of c2 indicates whether either the Aoki (c2 > 0) or the
Sharpe-Singleton (c2 < 0) scenario is realized concerning the phase structure of Wilson fermions.
Still, our lattice data seems to be in favor of the latter scenario.

Concerning a possible dependence of the LECsW ′
6,8 and c2 on the lattice setup, we can compare

our results for Nf = 2 + 1 + 1 flavors of Wilson twisted mass fermions and the Iwasaki gauge
action with those obtained in the Nf = 2 setup with the tlSym gauge action. This comparison
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(
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Figure 3.24: Comparison of the values of the mass splittings (a) (M2
PS − M2

π0,c)/a
2 and (b)

(M2
π0,c − M2

π0)/2a
2 from different lattice setups. Results from stout smearing are labeled 1-

stout and the result from quenched simulations involving the clover term is denoted by cSW to
distinguish from the plain quenched setup; see text for further details.

does not reveal any significant difference between the two setups. Moreover, we can extend such
an comparison for the case of the mass splittings to further lattice actions, although we point
out that for most of these results a study of the full systematic uncertainties is not available.
Therefore, such an comparison has necessarily to remain at a qualitative level. In [79] a lattice
setup with Nf = 2 + 1 + 1 Wilson twisted mass fermions and the Iwasaki gauge action has
been considered, but in this case also one iteration of stout smearing was included. The mass
splittings obtained in this setup are compared to our results in figure 3.24. From this comparison
it appears that stout smearing reduces the size of the mass splitting (M2

PS −M2
π0,c)/a

2, while

(M2
π0,c −M2

π0)/a
2 remains unaffected within the statistical uncertainties. However, it should be

stressed that for the results in the setup involving stout smearing only a single ensemble has
been considered.

In the left panel of figure 3.24 we have included further estimates of the mass splitting (M2
PS −

M2
π0,c)/a

2 from two different types of quenched simulations, which differ only by the absence or
presence of the clover term. for both quenched setupsWilson twisted mass fermions and the plain
plaquette gauge action have been used. For the case without a clover term, the corresponding
results were taken from [162] and we have used results from different lattice spacings and quark
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masses to estimate the systematic uncertainties entering (M2
PS −M2

π0,c)/a
2. For the quenched

simulations in which the Sheikholeslami-Wohlert term is included, we follow [163], where the
non-perturbative determination of cSW was used. Considering the setups which do neither
include stout-smearing nor the clover term, it appears that the value of the mass splitting
(M2

PS −M2
π0,c)/a

2 is not affected by a simultaneous change of the gauge action and the number
of dynamical quark flavors. However, from the current data it is not possible to rule out that
changing only the number of flavors or the gauge action might still have a non-zero effect. To
this end, it would be required to include further actions and also increase the statistical precision
of the results.

Finally, we remark that the introduction of the clover term in the quenched setup leads to
a reduction of O

(
a2
)
effects, which can be seen in the left panel of figure 3.24 for the mass

splitting (M2
PS −M2

π0,c)/a
2. This result motivates the inclusion of a clover term in simulations

with dynamical quarks, an activity which at the time of writing this thesis has already been
started by the ETMC for the case of a degenerate doublet. Moreover, it would be interesting to
investigate if also the splitting (M2

π0,c −M2
π0)/2a

2 is reduced for such a setup.



Summary and outlook

In this work we have performed the first study of the η–η′ system from Nf = 2+1+1 dynamical
quark flavors using the Wilson twisted mass formulation. For this study we employed three
values of the lattice spacing and values of the light quark mass corresponding to charged pion
masses ranging from ∼ 230 to ∼ 500MeV. In addition, we investigated two dedicated pairs of
ensembles for which the value of the strange quark mass has been varied, whilst keeping the
remaining physical parameters fixed. Besides covering a large range of quark masses, the gauge
ensembles used in this work feature three values for the lattice spacing as well as many different
lattice volumes. The data set generated for this study more than triples the available world data
from lattice simulations involving three or more dynamical quark flavors.

These prerequisites allowed for an extrapolation of the mass of the η with well controlled sys-
tematics. Residual effects of lattice artifacts have been determined to be small from scaling tests
performed at two different values of the light quark mass. The difference between a constant and
a linear fit in (r0MPS)

2 has been used to assign a systematic error to the final result from the
extrapolation to physical values of the charged pion mass. In addition, we have accounted for
mistuned values of the strange quark mass by calculating the derivative of (r0Mη)

2 with respect
to (r0MK)2 to correct all our data by means of the procedure discussed in subsection 3.3.1. Be-
sides, finite size effect have been shown to be negligible within the available statistical precision.
Having estimated all systematic effects regarding the η meson, we finally presented a continuum
value for Mη which fully agrees with experimental data.

In case of the mass of the η′ meson we observed significantly larger gauge noise and also notable
effects of autocorrelation, resulting in much larger statistical errors. In fact, the values deter-
mined using the standard method (i.e. solving a GEVP directly for the full correlation function
matrix) can only serve as an upper bound on the mass. However, a significant improvement has
been achieved employing an analysis method which is based on the subtraction of the excited
states in the connected pieces of the correlation functions. This allowed for an even more precise
study of the η mass as well as for a meaningful calculation of the η′ mass. Additionally, it allows
to perform a chiral extrapolation in the light quark mass also for the mass of the η′. The final
results for the masses of both states are listed in in table 3.12, which includes an overview on all
our final, physical results for the η, η′ study. The resulting masses are both in excellent agree-
ment with experimental data, demonstrating that QCD does indeed account for the observed
large mass splitting between η and η′. Moreover, the present work has been the first study of the
η–η′ system including at least three dynamical quark flavors in which control over systematic
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Mη = 551(8)stat(6)sys MeV Mη′ = 1006(54)stat(38)sys(+61)ex MeV
φ = 46.0(0.9)stat(2.7)

◦
sys ∆φls = 2.8(1.1)stat(2.6)

◦
sys

fl/fPS = 0.859(7)stat(64)sys fs/fK = 1.166(11)stat(31)sys

Table 3.12: Collection of the final results of this work. Masses and mixing parameters are
extrapolated to the physical value of the charged pion mass. The quoted values all refer to the
improved analysis method. The third error on the η′ mass refers to our method. Note that the
result for fl/fPS is likely to be affected by significant lattice artifacts and hence too small.

effects has been achieved, e.g. regarding effects of different values of the quark masses and the
lattice spacing.

Furthermore, we have studied mixing parameters in the quark flavor basis for the flavor singlet
sector from pseudoscalar matrix elements. The final, physical results of this study are also
included in table 3.12. For the mixing angle φ we found good agreement with most other
lattice determinations and we observed only very moderate systematic uncertainties from scaling
artifacts or residual effects of the strange quark mass. Our final result for φ indicates that the
η is mainly an octet state while the η′ is indeed dominated by the flavor singlet component.
Possible contributions form the charm sector turned out to be compatible with zero for both
states.

The removal of excited states in the connected part of the correlation functions provided sig-
nificant improvement regarding the statistical error and it was only through this method that
the extraction of the remaining decay constant parameters became feasible as well. In order to
account for lattice artifacts and the dependence on the value of the strange quark mass we have
not extrapolated fl and fs directly but rather considered the ratios fl/fPS and fs/fK expecting
to cancel some of the effects. For fs/fK this worked well as most of the strange quark mass
dependence disappeared in the ratio and no sizable lattice artifacts have been observed. The
extrapolation to the physical value of the charged pion mass lead to a value that is in excellent
agreement with phenomenological studies within its very small statistical and systematic errors.
For the ratio fl/fPS we still observed significant lattice artifacts which is also reflected by the
larger systematic error on this quantity compared to the one obtained for fs/fK . Looking at
our lattice data for this quantity, the actual effects of scaling artifacts appear not to be entirely
covered by this error, hence our estimate at the physical value of the charged pion mass should
be considered a lower bound rather than a definite result. However, regarding the dependence
on the lattice spacing, there is a clear trend in the data for fl/fPS pointing towards larger values
at decreasing values of the lattice spacing which is expected from phenomenology. Finally, it
should again be stressed that using pseudoscalar matrix elements instead of axial vector ones
requires some additional input from chiral perturbation theory. The resulting mixing param-
eters are related to the ones defined from axial vector matrix elements only up to corrections
stemming from higher order terms in the standard chiral expansion and higher orders in 1/NC .
It is due to the anomaly that the mixing parameters defined from axial vector currents are not
directly related to the ones defined from pseudoscalar currents.
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Future investigations in the Nf = 2+1+1 setup concerning the light pseudoscalar flavor singlet
mesons may address the following issues and extensions which some of them will be addressed
in more detail below:

• Inclusion of gluonic operators.

• Further methods of variance reduction.

• Use of the stochastic distillation technique [164] to increase the operator basis.

• Inclusion of further ensembles with different values of the strange quark mass but fixed
physical parameters otherwise.

• Explicit test of the Veneziano-Witten formula combining our results for meson masses with
additional results from suitable quenched simulations.

• Simulation at the physical point.

The implementation of additional gluonic operators would in principle allow to study possible
gluonic contributions to the η and η′ states, using an extended mixing scheme as discussed
in [40]. However, this is very demanding from both the computational and theoretical point of
view. Such an extension involves the calculation of correlations between quark loops on the one
hand and purely gluonic contributions on the other hand, which is expected to give an extremely
noisy signal for the resulting correlation function. Besides, it is not clear how to define a local,
purely gluonic operator and using a non-local interpolating operator would cause additional
issues regarding renormalization.

In principle, it is also still possible to consider further methods of variance reduction. For
instance, in the heavy quark sector we cannot apply the one-end trick for the evaluation of the
quark disconnected diagrams as it is the case for the light sector. One possibility to tackle this
issue, would be the use of point-to-point correlators [140]. Such an improved variance reduction
might finally allow one to add axial vector operators in addition to the pseudoscalar ones, which
would be very desirable with respect to the study of the mixing parameters. However, this
approach would also introduce some additional model dependence. Attempts to generalize the
method used in the light sector to a non-degenerate doublet have so far not been successful,
because there is no simple relations between elements of the Dirac operator in flavor space and
the resulting propagators. At this point we remark that one might also consider to carry out
the entire analysis in a different lattice setup, employing a flavor diagonal action in the heavy
quark sector as well, which will be discussed below.

Using stochastic distillation to construct suitable interpolating fields instead of considering only
local (and fuzzed) operators would allow to systematically increase the operator basis. This
is expected to help reducing the excited state contamination in the lowest lying states, hence
allowing for fits to the principal correlators at smaller times, which might also significantly reduce
the statistical errors. Compared to the excited state removal method used in this work, this
would have the advantage that one does not rely on any additional assumption concerning the
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quark disconnected diagrams. Moreover, this would also allow for a more systematic approach
concerning the identification of further states, e.g. possible multi-particle states in the spectrum.

In case of the η′ we observed that it was not feasible to disentangle effects stemming from possible
scaling artifacts an different values of the strange quark mass. In fact, it is not obvious from the
data if there is a large effect contributing from any of the these sources, although some hints on
scaling artifacts are present. In order to be able to assess such systematics one would clearly
require additional simulations with different values of the strange quark mass, whilst keeping
the remaining physical parameters fixed. Ideally, this should even be done at more than one
lattice spacing.

Another – computationally very demanding – approach regarding the issue of quark mass de-
pendence would be based on simulations performed at the physical point. This should allow to
carry out a more direct computation of the desired quantities, eliminating the need for chiral
extrapolations. Consequently, one would obtain even better control over systematic effects re-
lated to finite values of the lattice spacing or finite size effects. Recently, the ETMC has started
the generation of corresponding gauge configurations in the Nf = 2 setup and it is expected
that these efforts will be extended to the Nf = 2 + 1 + 1 setup in the future, which would be
required for a study of η and η′ mesons.

Finally, it is also possible to study η and η′ mesons in a mixed action setup. In principle,
such an approach would allow to avoid the issues related to explicit flavor symmetry violation
in the heavy valence quark sector, leading to much simpler correlation functions and possibly
allowing for the use of more sophisticated methods of variance reduction. Nonetheless, in such
a setup one needs to perform a careful matching of valence quark masses and should proceed
with caution regarding the continuum limit, as this kind of setup violates unitarity and involves
partial quenching, which may pose a problem for the particular case of the η,η′ system, as
mentioned in subsection 1.2.1. Such a study is currently in progress employing the Osterwalder-
Seiler action and first results look promising considering possible issues of taking the continuum
limit [165].

In addition to our analysis of the light pseudoscalar flavor singlet sector we have determined
the WχPT LECs W ′

6, W
′
8 and c2, which parametrize the size of O(a2) lattice artifacts. For this

investigation we have again employed Nf = 2 + 1 + 1 flavors of Wilson twisted mass fermions
together with the Iwasaki gauge action. This allowed us to give a rather complete estimate of
the systematic uncertainties on our results for W ′

6 andW
′
8. The lattice data was found to satisfy

the recently derived bounds W ′
8 < 0 and W ′

6 > 0 [107,112,125].

Furthermore, we have studied the dependence of the mass splittings
(

M2
PS −M2

π0,c

)

/a2 and

(M2
π0,c − M2

π0)/2a
2 on the choice of the lattice action. Keeping in mind the qualitative na-

ture of this comparison, it is still tempting to propose an improved lattice action which should

lead to a reduced mass splitting
(

M2
PS −M2

π0,c

)

/a2. Considering the outcome of our com-

parison of actions, such an improved action based on dynamical twisted mass fermions should
involve in addition the Sheikholeslami-Wohlert term and smearing. However, further studies
are required to obtain a definite statement on this point and also to extend it to the case of
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(

M2
π0,c −M2

π0

)

/2a2. Note, that any partial cancellation of contributions from W ′
6 and W ′

8 to

c2 implies that the residual mass dependence of c2 becomes more sensitive to terms of higher
order in the chiral expansion. While this potential reduction of c2 would certainly be desirable,
it not possible to determine its value from the currently available lattice data.

The determination of the WχPT LECs is essential to make a quantitative statement about the
impact of O(a2) terms on physical quantities calculated from a given lattice action. In principle,
the knowledge of these LECs can be used to design a lattice action which exhibits smaller lattice
artifacts. This would allow to approach the continuum limit in a more controlled way. For this
purpose it would still be desirable to obtain the relevant LECs with higher statistical precision.
Moreover, an independent calculation of the Wilson WχPT LECs, as it has been presented
in this work, can be useful for χPT fits of light meson observables by constraining these fits
to lattice data. Therefore, the results of our study using full and connected-only neutral pion
masses together with charged pion masses may also be useful for other collaborations working
with Wilson-type fermions.

In summary, this thesis has demonstrated that Wilson twisted mass fermions at maximal twist
are very suitable to study the η-η′ system, since they allow – through special noise reduction
techniques – for precise calculations of the masses and mixing parameters. The results of this
study are overall in very good agreement with results from experiment and phenomenology,
confirming that QCD accounts for the observed properties of these mesons. In addition, we
were able to determine a set of low energy constants of WχPT using our results for masses
in the pion sector, which may lead to better control simulations with twisted mass fermions.
Finally, results of this study have indicated that adding a clover term to the Wilson twisted
mass action may allow to carry out simulations at the physical point. In fact, corresponding
activities have already been started for the case of Nf = 2 dynamical quark flavors.
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Appendix A

Conventions and definitions

A.1 Index conventions

Throughout this work Greek letters α, β, ... are used to denote Dirac indices running from 0 to
3. Similarly for Euclidean (and Lorentz) indices Greek letters are employed, but starting from
µ, ν, ... and again running from 0 to 3, whereas spatial vector components carry Latin indices
k, l, ... that run from 1 to 3. Group indices of the fundamental representations of SU (Nc) and
(S)U (Nf ) are labeled by A, B, ... and i, j, ..., respectively. Indices of the adjoint representations
are denoted by a, b, ... in both cases, but it will be clear from the context to which group we are
actually referring to. Repeated indices within one expression are always assumed to be summed
over, unless stated otherwise.

A.2 Pauli matrices

We choose the following representation for the generators τa

2 of SU (2)

τ1 =

(
0 1
1 0

)

, τ2 =

(
0 −i
i 0

)

, τ3 =

(
1 0
0 −1

)

, . (A.1)

They satisfy the usual (anti-)commutation relations
[

τa, τ b
]

= 2iǫabcτ c,
{

τa, τ b
}

= 2δab . (A.2)

The normalization is chosen such that

tr[τaτ b] = 2δab . (A.3)

Additionally, we define
τ0 = 12×2 , (A.4)

which also satisfies the above normalization condition.

125



126 APPENDIX A. CONVENTIONS AND DEFINITIONS

A.3 Gell-Mann matrices

For the case of SU (3), a representation of the traceless generators T a = λa

2 is given by the
Gell-Mann matrices λa, which have the following form

λ1 =





0 1 0
1 0 0
0 0 0



 , λ2 =





0 −i 0
i 0 0
0 0 0



 , λ3 =





1 0 0
0 −1 0
0 0 0



 , λ4 =





0 0 1
0 0 0
1 0 0



 ,

λ5 =





0 0 −i
0 0 0
i 0 0



 , λ6 =





0 0 0
0 0 1
0 1 0



 , λ7 =





0 0 0
0 0 −i
0 i 0



 , λ8 =
1√
3





1 0 0
0 1 0
0 0 −2



 .

(A.5)

The generators satisfy the commutation relations

[T a, T b] = ifabcT c , (A.6)

where fabc denotes the structure constants of SU (3). The normalization is chosen such that

tr[λaλb] = 4 tr[T aT b] = 2 δab . (A.7)

A.4 Dirac matrices

In Euclidean spacetime we work with the following chiral representation of the Dirac matrices

γµ =

(
0 σµ
σ†µ 0

)

, (A.8)

where σk = −iτk for k = 1, 2, 3 and σ0 = −τ0 = −12×2. They fulfill the standard anti-
commutation relation

{γµ, γν} = 2δµν . (A.9)

In addition we define
γ5 = γ1γ2γ3γ0 , (A.10)

which implies the following properties

γ†5 = γ5 , γ25 = 1 . (A.11)

In this chiral representation the projection operators on states of left- and right-handed chirality
are given by

PL/R =
1

2
(1∓ γ5) . (A.12)

The corresponding representation of the Dirac matrices in Minkowski space is given by the
replacements

γ0 → γ0 , γk → iγk , δµν → gµν , (A.13)

where the signature of gµν is given by (+,−,−,−).



Appendix B

Correlation function matrices

This appendix contains a list of the (unrenormalized) correlation function matrix elements for
the neutral pion and η, η′ mesons in the twisted basis, which have been implemented and used
for this work. The correlation functions for the charged pion and the kaon are excluded as they
consist only of a single, connected piece and thus do neither exhibit any relative factors or signs
nor a complicated flavor structure as it is the case for the strange and charm contributions to η
and η′ mesons.

We give the explicit, analytic expressions in terms of quark flavor dependent propagators and
γ-matrix combinations. We exploit all relevant symmetries to reduce the number of terms in the
final result and to reveal additional restrictions, e.g. contributions being explicitly real, imag-
inary or zero. However, keep in mind that one still needs to carefully match these expressions
with the actual conventions of the codes that perform the contractions numerically. In practice
those may differ from the analytical factors and signs that are given in this appendix.

Moreover, all correlation function matrices are symmetric by definition, hence we could in prin-
cipal restrict ourselves to calculate the diagonal elements and e.g. the upper triangle matrix.
However, it turns out that using all elements explicitly, gives a slightly better signal as the sym-
metric elements are not always numerically identical if they involve connected contributions.
This becomes particularly relevant for η and η′ as the corresponding correlation functions in-
volve much more terms than those for the other pseudoscalar mesons considered in this work.
The reason for this can be traced back to the non-trivial behavior of the spin, flavor and time in-
dex structure for connected pieces belonging to off-diagonal matrix elements under an exchange
of operators at source and sink. Therefore we include the analytic expressions of all matrix ele-
ments as they have been used in the actual implementation. This also applies to their respective
Dirac structure, i.e. we do keep the γ5-matrices stemming from the application of the γ5-trick
which is explicitly used by the code.

We use the following notations (c.f. sections 2.1, 2.2):

1. Correlation function matrix elements are functions of Euclidean time t and are denoted
by CP

OiOj
(t), where Oi, Oj refer to the fermionic bilinears (operators) at source and sink,
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respectively. In the present context we always refer to operators in the twisted basis
for labeling correlation functions and drop corresponding superscripts. Moreover, the
superscript P denotes the relevant particle(s) that occur as states in the spectrum of the
correlation function matrix.

2. Operators are denoted corresponding to their respective Dirac structure in the twisted
basis and obtain an additional index l, h that refers to light and heavy quark sector,
respectively.

3. Propagators are denoted by Gxy
fifj

, where the flavor indices fi and fj refer to the flavor of
the quark field at spacetime positions x, y, respectively.

B.1 Correlation functions for the neutral pion

For the neutral pion, one obtains the following correlation functions

Cπ0

S0
l
S0
l
(t) = a3

∑

~x

(

−Re tr
[
γ5
(
G0x

dd

)†
γ5 G

0x
uu

]
+ 2Re tr

[
G00

uu

]
Re tr

[
Gxx

uu

])

, (B.1)

Cπ0

S0
l
A3

l
(t) = a3

∑

~x

(

−Re tr
[
γ5
(
G0x

dd

)†
γ5 G

0x
uu iγ0γ5

]
+ 2Re tr

[
G00

uu

]
Re tr

[
Gxx

uu iγ0γ5
])

, (B.2)

Cπ0

A3
l
S0
l
(t) = a3

∑

~x

(

−Re tr
[
γ5
(
G0x

dd

)†
γ5 iγ0γ5G

0x
uu

]
+ 2Re tr

[
G00

uu iγ0γ5
]
Re tr
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where S0
l , A3

l are the scalar and axial vector operators for the π0 as defined in Eqs. (2.8),(2.9).
We remark that the disconnected loops stemming from the axial vector current

Re tr
[
Gyy

uu iγ0γ5
]
= tr

[(
Gyy

uu −Gyy
dd

)
iγ0γ5

]
, y = 0, x , (B.5)

can be implemented using efficient variance reduction via the one-end trick as discussed in
subsection 2.2.1. From the transformation behavior of the relevant currents under twisted sym-
metries in table (2.1) one can read off that the cross-correlators for the neutral pion behave
sinh-like.

B.2 Correlation functions for η, η′

For the η–η′ system the correlation functions are treated in the rotated twisted basis as given in
Eqs. (2.30),(2.31), such that the scalar and pseudoscalar contributions to operators in the heavy
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sector are disentangled. The relevant operators S3
l , S3

h and P0
h are defined in Eqs. (2.26), (2.32)

and (2.33) respectively, leading to
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The loops related to the light scalar current in twisted basis

Im tr
[
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uu s

]
= tr
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Gyy
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dd

)
iγ0γ5

]
, y = 0, x , (B.15)

can be calculated using the one-end trick, similar to the axial vector ones for the neutral pion.
The cross-correlators involving only pseudoscalar operators in the physical basis are always
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cosh-like. However, if we had included the physical axial vector current, the cross-correlators
between physical pseudoscalar and axial vector would be sinh-like, although the cross-correlators
within the axial vector sector itself are again cosh-like. Furthermore it should be noted that
the cross-correlators consisting purely of disconnected contributions are still positive definite
correlation functions, whereas the disconnected terms in all other matrix elements for η and η′

yield a negative contribution to the respective correlation functions.



Appendix C

Fitting details

C.1 Parameters for GEVP

In this appendix we give the details of our analysis of masses, decay constants and mixing
angles for which we employed the GEVP in Eq. (2.67). This requires a suitable choice of three
parameters for each state that we want to fit. Let us first consider the case of standard correlation
function matrices, i.e. without subtraction of excited states in the connected correlators for η, η′.
The parameters for the corresponding analysis are listed in Tab. (C.1) for η, η′ and in Tab. (C.2)
for the other octet mesons. For η, η′ also the resulting uncorrelated χ2/dof values have been
included. Many analysis details have already been included in Ref. [1] and most of the following
discussion is based on this paper.

The first parameter is the value of t0/a, which determines the correlation function matrix C (t0)
on the right-hand side of Eq. (2.67) and that has some impact on corrections due to higher
states [144]. In general it is advantageous to choose t0/a large, but in practice the actual choice
is constrained by the exponentially increasing noise that enters C (t0) for larger values t0/a. This
is particularly a problem if dealing with quantities involving disconnected diagrams such as η, η′

or the π0. Especially for the η′ there are in some cases only very few data points available, such
that it is necessary to choose a smaller value of t0/a as the value that one can choose for the
η. Besides the fact that we list parameters for multiple mesons in the same table, this is why
we replace t0/a by tn0/a, such that the additional superscript labels the corresponding states.
On the other hand, for ground state quantities involving only connected diagrams such as the
charged pion or the kaon one can work at rather large t/a for the extraction of masses due to
the absence of disconnected diagrams, hence it turns out that one does not need particularly
large values of t0/a in these cases either, e.g. for the kaon one can safely choose tK0 /a = 1

The remaining two parameters tn1/a and tn2/a simply determine the interval in t/a for which we
perform a fit to the corresponding eigenvalues λ(n) (t0, t). Due to the rather large difference in
the signal-to-noise ratio between the two lowest lying states in the η–η′ system, we employ two
different approaches to deal with fits to the ground state and the first excited state:
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ensemble tη0/a tη1/a tη2/a
(
χ2
)η
/dof tη

′

0 /a tη
′

1 /a tη
′

2 /a
(
χ2
)η′

/dof

A30.32 2 7 17 0.205 1 2 11 0.277
A40.24 2 7 16 0.135 1 2 10 0.185
A40.32 2 7 15 0.092 1 2 10 0.130
A60.24 2 7 15 0.137 1 2 10 0.296
A80.24 2 7 16 0.108 1 2 10 0.137
A100.24 2 7 15 0.214 1 2 11 0.137

A80.24s 2 7 17 0.230 1 2 11 0.440
A100.24s 2 7 16 0.086 1 2 10 0.116

B25.32 3 6 11 0.222 1 2 11 0.463
B35.32 2 8 17 0.110 1 2 10 0.433
B55.32 2 8 18 0.167 1 2 11 0.366
B75.32 2 8 14 0.301 1 2 10 0.338
B85.24 2 8 16 0.106 1 2 10 0.127

D15.48 3 8 16 0.190 2 3 12 0.114
D30.48 3 8 16 0.207 2 3 12 0.143
D45.32sc 3 8 19 0.174 2 3 18 0.105

Table C.1: Parameters of the GEVP applied to the 6×6 matrix from local and fuzzed operators.
Note that the ensemble D20.48 has been excluded from this table due to bad plateaux in both
principal correlators rendering a reliable fit unfeasible.

1. For the ground states (i.e. n = η, π±, π0,K and the connected-only quantities n =
π0conn, η

s
conn) we fit a single cosh in a region [tn1/a, t

n
2/a] to our data for λη(t, t0). The

lower bound of the fit-range tn1/a for any state n is chosen by visual inspection of the effec-
tive mass plot to lie at the beginning of the plateau and also such that further increasing
tn1/a does not change the value of the resulting mass within errors. The latter statement
similarly holds for the choice of the starting value tn0/a in Eq. (2.67). As mentioned be-
fore, choosing larger values of t0/a leads to improved (i.e. smaller) masses, though due to
noise it is only possible to moderately increase tn0/a until the error becomes too large and
dominates over any possible improvement.

2. For the first excited state (i.e. η′) we perform a three state cosh-fit to the data of λη
′

(t, t0),

starting from the lowest tη
′

1 /a possible, i.e. tη
′

1 /a = tη
′

0 /a+1 in order to use as many points
as possible. This is necessary because for many ensembles there is no clear plateau in the
effective masses reached before the signal is lost in noise. Therefore, this procedure is a
major source of systematic error for the determination of η′ masses, at least for those cases
where only few points are available. Only for the D ensembles it turns out to be possible to

choose tη
′

0 /a > 1, for all other ensembles we had to use tη
′

0 /a = 1. Note that this procedure
does not allow to extract the corresponding physical amplitudes of the η′-state, which we
determined separately from a factorizing fit model; see next section.
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ensemble tPS0 /a tPS1 /a tPS2 /a tπ
0

0 /a tπ
0

1 /a tπ
0

2 /a tK0 /a tK1 /a tK2 /a

A30.32 2 10 31 2 10 20 1 15 31
A40.24 2 10 23 2 10 15 1 12 23
A40.32 2 10 31 2 10 20 1 15 31
A60.24 2 10 23 2 10 15 1 12 23
A80.24 2 10 23 2 10 15 1 12 23
A100.24 2 10 23 2 10 15 1 12 23

A80.24s 2 10 23 2 10 15 1 12 23
A100.24s 2 10 23 2 10 15 1 12 23

B25.32 3 10 31 2 10 20 1 15 31
B35.32 3 10 31 2 10 20 1 15 31
B55.32 3 10 31 2 10 20 1 15 31
B75.32 3 10 31 2 10 20 1 15 31
B85.24 2 10 23 2 10 15 1 12 23

D15.48 3 10 47 3 10 20 1 15 47
D20.48 3 10 47 3 10 20 1 15 47
D30.48 3 10 47 3 10 20 1 15 47
D45.32sc 3 10 31 3 10 20 1 12 31

Table C.2: Parameters of the GEVP applied to the correlation function matrices from local and
fuzzed operators for the pions and the kaon. For the pions and the kaon we employ 4 × 4- and
8×8-matrices, respectively. The parameters for the π0conn are identical to the ones of the charged
pion

The upper bound of the fit range tn2/a is independently determined for every state n by the
last eigenvalue λ(n)(t2, t0) distinguishable from noise. In practice this implies that we have
t2/a = tmax/a = (T/a)/2 − 1 for quantities that receive only connected contributions, because
of the excellent signal-to-noise ration in these cases. Moreover, the value of tn2/a is not very
important for the fit, as eigenvalues at large t/a have typically large errors and therefore do not
contribute much to the fit.

Finally, we consider the case of correlation function matrices with subtracted excited states in
the connected contributions. This approach only applies to the η–η′ system and it is again
necessary to choose different fit parameters for η and η′. However, one needs only a single cosh
fit in both cases and it turns out that the corresponding fit ranges can be chosen identical for
all ensembles, regardless of lattice size, lattice spacing and light quark mass. This simplification
is possible for two reasons:

First of all, the mass of the η shows an almost perfect, constant plateau over a large part of the
t/a-range, as can be seen in the right panel Fig. (3.9). Nonetheless a small bias is observed if
one takes the very first point at t/a = 2 into account, hence we use tη1/a = 3, which resolves this
issue. This bias is most likely due to some residual excited state pollution. The choice of t0/a
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does not affect the results, besides decreasing the signal quality for larger values, thus we can
use t0 = 1/a for both states. For the mass of the η′ we do not see any bias depending on the

point at t/a = 2 within its larger errors, hence we set tη
′

1 /a = 2 for this case to obtain a better
signal.

The second reason is again given by the fact that eigenvalues at larger t/a do not give any
significant contribution, hence we choose tη2/a = 8 and tη

′

/a = 4 for the upper bounds of the fit
ranges. In many cases one could actually use (much) more points but this does neither change
the result within errors, nor give any improvement of the errors themselves.

Besides these parameters that are significant to the actual GEVP analysis, the approach of
removing the excited states at the level of correlation functions requires an additional fit to the
ground state of the connected correlators as discussed in section 3.4. The corresponding fit range
[t1/a, t2/a] is again chosen in a similar manner as for the GEVP, i.e. by visual inspection of the
data such that it clearly lies within the linear domain of the logarithmic correlation function. It
turns out that one can choose the lower bound safely to be t1/a = 10 for all ensembles, whereas
the upper bound is adjusted depending on the lattice size, leading to t2/a(L/a = 24) = 20,
t2/a(L/a = 32) = 25 and t2/a(L/a = 24) = 30. In principal one could also choose t2/a = tmax/a,
but this only results in slightly larger errors and does not lead to any significant change of the
fit result at all.

C.2 Parameters for factorizing fit

The factorizing fit model as detailed in Eq. (2.101) has only been used for the determination
of mixing angles from the original, full correlation function matrix without prior subtraction
of excited states in the connected correlators. In all other applications based on amplitudes
(i.e. fPS, fK and η,η′-mixing parameters from correlation function matrices with subtracted
excited states in the connected contributions) we use amplitudes calculated directly from the
GEVP as discussed in subsection 2.2.2 and using the parameters listed in the preceding section,
such that the entire analysis is consistently performed from the GEVP only. The reason for
using a factorizing fit instead of the GEVP in the first mentioned case is tied to the η′-state
which we extract from a three state cosh fit. Although this procedure allows to extract a mass
without reaching an actual plateau in the effective mass plot, it is not sufficient to determine
the corresponding physical amplitudes.

We apply the factorizing fit model directly to the renormalized matrix in the original twisted
basis in Eq. (2.88) and limit ourselves to n = 2 in Eq. (2.101), i.e. a two state fit. As discussed
before, the ratio of renormalization constants Z = ZP /ZS does not affect masses and angles,
but only amplitudes and the decay constants fl, fs. For the results of the angles we used the
values summarized in table 3.3. They have been obtained by matching a mixed action to the
unitary action and extrapolating to the chiral limit, see ref. [133]. These values agree well with
the RI-MOM determination of ETMC [153], and the method we discussed in the text.

Since we have already determined the masses from the GEVP, we use those together with their
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ensemble t1/a t2/a χ2
4×4 χ2

6×6

A30.32 6 18 0.252 0.561
A40.24 6 14 0.144 0.626
A40.32 6 15 0.466 0.628
A60.24 6 14 0.229 0.470
A80.24 6 14 0.204 0.545
A100.24 6 13 0.165 0.395

A80.24s 6 17 0.803 0.986
A100.24s 6 13 0.063 0.293

B25.32 6 16 0.326 0.857
B35.32 6 15 0.283 0.694
B55.32 6 16 0.836 0.774
B75.32 6 12 0.449 0.636
B85.24 6 14 0.172 0.469

D15.48 7 17 0.328 0.567
D30.48 7 15 0.423 0.491
D45.32sc 7 15 0.388 0.686

Table C.3: Parameters for the factorizing fit.

errors (see table 3.5) as priors to our factorizing fit. This leads to a more stable fit, but we
have checked that it does not affect the result. In our fits we always minimize an uncorrelated
χ2 function, because the correlation matrix is too noisy and we want to avoid additional model
independence, e.g. using a singular value decomposition and applying some cut to the resulting
spectrum. Table C.3 lists the input parameters and the resulting, uncorrelated χ2/dof for the
fits to the 4 × 4 (light and strange degrees of freedom, local and fuzzed operators) and 6 × 6
(light, strange, charm degrees of freedom and local and fuzzed operators) correlation function
matrix. The results quoted in the main text for the angles were determined using the 4 × 4
matrix, because the charm does not contribute. However, with the 6 × 6 matrix we obtain
almost identical results.

The values for the lower bound of the fit range t1/a are chosen to be constant for every value
of the lattice spacing, whereas the upper bound t2/a is determined by the requirement that
χ2/dof < 1, and such that it is close to the tη2/a used for the GEVP analysis.
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