
Smoothed Analysis of
Selected Optimization Problems

and Algorithms

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Tobias Brunsch

aus

Karl-Marx-Stadt, jetzt Chemnitz

Bonn, 2014

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

1. Gutachter: Prof. Dr. Heiko Röglin

2. Gutachter: Prof. Dr. Marek Karpinski

Tag der Promotion: 28. Februar 2014

Erscheinungsjahr: 2014

Abstract

Optimization problems arise in almost every field of economics, engineering, and science.
Many of these problems are well-understood in theory and sophisticated algorithms exist
to solve them efficiently in practice. Unfortunately, in many cases the theoretically most
efficient algorithms perform poorly in practice. On the other hand, some algorithms are
much faster than theory predicts. This discrepancy is a consequence of the pessimism
inherent in the framework of worst-case analysis, the predominant analysis concept in
theoretical computer science.

We study selected optimization problems and algorithms in the framework of smoothed
analysis in order to narrow the gap between theory and practice. In smoothed analysis,
an adversary specifies the input, which is subsequently slightly perturbed at random.
As one example we consider the successive shortest path algorithm for the minimum-
cost flow problem. While in the worst case the successive shortest path algorithm takes
exponentially many steps to compute a minimum-cost flow, we show that its running time
is polynomial in the smoothed setting.

Another problem studied in this thesis is makespan minimization for scheduling with
related machines. It seems to be unlikely that there exist fast algorithms to solve this
problem exactly. This is why we consider three approximation algorithms: the jump
algorithm, the lex-jump algorithm, and the list scheduling algorithm. In the worst case,
the approximation guarantees of these algorithms depend on the number of machines. We
show that there is no such dependence in smoothed analysis.

We also apply smoothed analysis to multicriteria optimization problems. In particular,
we consider integer optimization problems with several linear objectives that have to be
simultaneously minimized. We derive a polynomial upper bound for the size of the set of
Pareto-optimal solutions contrasting the exponential worst-case lower bound.

As the icing on the cake we find that the insights gained from our smoothed analysis
of the running time of the successive shortest path algorithm lead to the design of a
randomized algorithm for finding short paths between two given vertices of a polyhedron.
We see this result as an indication that, in future, smoothed analysis might also result in
the development of fast algorithms.

3

4

Zusammenfassung

Optimierungsprobleme treten in allen wirtschaftlichen, naturwissenschaftlichen und tech-
nischen Gebieten auf. Viele dieser Probleme sind ausführlich untersucht und aus prak-
tischer Sicht effizient lösbar. Leider erweisen sich in vielen Fällen die theoretisch effi-
zientesten Algorithmen in der Praxis als ungeeignet. Auf der anderen Seite sind einige
Algorithmen viel schneller als die Theorie vorhersagt. Dieser scheinbare Widerspruch re-
sultiert aus dem Pessimismus, der dem in der theoretischen Informatik vorherrschenden
Analysekonzept, der Worst-Case-Analyse, innewohnt.

Um die Lücke zwischen Theorie und Praxis zu verkleinern, untersuchen wir ausge-
wählte Optimierungsprobleme und Algorithmen auf gegnerisch vorgegebenen Instanzen,
die durch ein leichtes Zufallsrauschen gestört werden. Solche perturbierten Instanzen
bezeichnen wir als semi-zufällige Eingaben. Als Beispiel betrachten wir den Successive-
Shortest-Path-Algorithmus für das Minimum-Cost-Flow-Problem. Während dieser Algo-
rithmus im Worst Case exponentiell viele Schritte benötigt, um einen Minimum-Cost-Flow
zu berechnen, zeigen wir, dass seine Laufzeit auf semi-zufälligen Eingaben polynomiell ist.

Ein weiteres Problem, das wir in dieser Arbeit untersuchen, ist die Minimierung des
Makespans für Scheduling auf unterschiedlich schnellen Maschinen. Es scheint, dass dieses
Problem nicht effizient gelöst werden kann. Daher betrachten wir drei Approximationsal-
gorithmen: den Jump-, den Lex-Jump- und den List-Scheduling-Algorithmus. Im Worst
Case hängt die Approximationsgüte dieser Algorithmen von der Anzahl der Maschinen
ab. Wir zeigen, dass das auf semi-zufälligen Eingaben nicht der Fall ist.

Des Weiteren betrachten wir ganzzahlige Optimierungsprobleme mit mehreren linea-
ren Zielfunktionen, die simultan minimiert werden sollen. Wir leiten eine polynomielle
obere Schranke für die Größe der Pareto-Menge auf semi-zufälligen Eingaben her, die im
Gegensatz zu der exponentiellen unteren Worst-Case-Schranke steht.

Mit den Erkenntnissen aus der Laufzeitanalyse des Successive-Shortest-Path-Algorith-
mus entwerfen wir einen randomisierten Algorithmus zur Bestimmung eines kurzen Pfades
zwischen zwei gegebenen Ecken eines Polyeders. Wir betrachten dieses Ergebnis als ein
Indiz dafür, dass in Zukunft Analysen auf semi-zufälligen Eingaben auch zu der Entwick-
lung schneller Algorithmen führen könnten.

5

6

Acknowledgments

The last four years have been an exciting experience and I enjoyed every single day despite
the uncountable moments I got stuck with research. In these times it was you, Heiko,
who motivated me with his unlimited optimism. Every now and then I have to smile
when I remember you saying that ‘this makes the problem only more interesting’. It took
me a while to believe you, but now I am convinced that you were right. Thanks to your
guidance and your brilliant ideas, which enlightened me in gloomy situations when no
approach seemed to work, I have reached far more than I ever expected or hoped for.
Furthermore, I thank Prof. Dr. Marek Karpinski and Prof. Dr. Tobias Friedrich for their
efforts as co-referees of this thesis.

I am also grateful having such fine colleagues here in Bonn. You often found it amusing
when I came along for lunch and then only had a salad. When you think twice you will
come to realize that it was not because of the food that I joined. Most notably you, Alex,
who did not just support me with his mathematical expertise in many fruitful discussions,
but also taught me correct German, made me laugh a lot. On top of that I really liked
your world history in a nutshell lectures for which I came home late several times.

Let me additionally thank my new colleagues Lena and Michael, who started reinforc-
ing our group last year. From the first moment we got on well with each other and formed
a nice team. Thank you for the pleasant conversations and for proofreading my thesis.
Your comments significantly improved the quality of this work. I am looking forward
to watching your progress and listening to your discussions about max-cut and k-means.
You sure will make our group shine bright.

Although I left Chemnitz for becoming a PhD student, I was always welcomed home
warmly by the group of Christoph Helmberg and Frank Göring. You provided me with
delicious cake and tea and listened to several of my talks. Despite the overwhelming
amount of information I put into my presentations you stayed interested and even asked
for more details. Your toughness is admirable. I enjoyed being temporarily part of your
group. Thank you for your kindness.

I also did not forget the research meetings with my coauthors Bodo Manthey, Cyriel
Rutten, Kamiel Cornelissen, and Tjark Vredeveld. Sometimes it was really frustrating
and only the cookies made me persevere. But somehow everything worked out in the end.

7

8

Maybe it is as Bodo once said: ‘every meeting with Heiko results in one paper’. It was a
pleasure working with you all.

Most of all I am indebted to my family. You have always been there for me such
that there were not many things I had to worry about. In particular you, mom and dad,
advanced my interest in mathematics culminating in this thesis. I can hardly express the
extend of my gratitude, but I hope that you know how I feel.

The last decade has been full of changes, not all of them being positive. You, Sina,
have been accompanying me all these years. You bring light into my life and make me
smile every day. You are wonderful. I love you!

Contents

1 Introduction 11
1.1 Smoothed Analysis . 13
1.2 The Minimum-Cost Flow Problem . 14

1.2.1 The Successive Shortest Path Algorithm 15
1.2.2 Related Work . 17
1.2.3 Our Results . 18

1.3 Finding Short Paths on Polyhedra . 21
1.3.1 Our Algorithm . 21
1.3.2 Related Work . 23
1.3.3 Our Results . 24

1.4 Scheduling . 25
1.4.1 Related Work . 27
1.4.2 Our Results . 28

1.5 Pareto-Optimal Solutions . 30
1.5.1 Model and Previous Work . 30
1.5.2 Our Results . 32

1.6 Outline and Bibliographical Notes . 37

2 Probabilistic Tools for Smoothed Analyses 39
2.1 Union Bound . 39
2.2 Principle of Deferred Decisions . 40
2.3 Interval Probability Bound . 41
2.4 Extraction of Fragile Worst-Case Properties 42
2.5 Discretization . 43

3 Some Probability Theory 45

4 The Successive Shortest Path Algorithm 53
4.1 Terminology and Notation . 53
4.2 Outline of Our Approach . 54
4.3 Analysis of the SSP Algorithm . 55

9

10 CONTENTS

5 Finding Short Paths on Polyhedra 65
5.1 Notation . 65
5.2 Degeneracy . 65
5.3 Outline of the Analysis . 66
5.4 The Parameter δ . 67
5.5 Analysis . 71
5.6 Some Probability Theory . 78

6 Scheduling Heuristics 81
6.1 Notation . 81
6.2 Unrestricted Machines . 82

6.2.1 Jump Optimal Schedules . 82
6.2.2 Upper Bounds for List Schedules and Lex-jump Optimal

Schedules . 86
6.2.3 Lower Bounds for List Schedules and Lex-jump Optimal

Schedules . 94
6.3 Restricted Machines . 98

6.3.1 Jump Neighborhood on Restricted Machines 98
6.3.2 Lex-jump Optimal Schedules on Restricted Identical Machines . . . 101

6.4 Table of Notation . 108

7 Counting Pareto-Optimal Solutions 109
7.1 Zero-Preserving Perturbations in the Bicriteria Case 109
7.2 Notation . 110
7.3 Outline of Our Approach . 112
7.4 Properties of (Weak) Pareto-optimal Solutions 120
7.5 Smoothed Number of Pareto-optimal Solutions 122
7.6 Higher Moments . 133
7.7 Zero-Preserving Perturbations . 138
7.8 A Lower Bound . 156
7.9 Some Probability Theory . 161
7.10 Some Analysis . 162

8 Conclusions and Open Problems 165
8.1 The Successive Shortest Path Algorithm 165
8.2 Finding Short Paths on Polyhedra . 166
8.3 Scheduling Heuristics . 167
8.4 Counting Pareto-Optimal Solutions . 167

Chapter 1

Introduction

Optimization problems play a central role in many areas of economics, engineering, and
science. Especially since the invention of the computer the interest in fast algorithms
for solving these problems has been growing rapidly among both practitioners and theo-
reticians. Today, many of these problems are well-understood. The knowledge we have
is, however, very inconsistent. In practice, the theoretically most efficient algorithms are
often outperformed by algorithms whose theoretical running time is much worse. This
unsatisfying discrepancy between theory and practice results from the pessimism inherent
in the framework of worst-case analysis, the predominant analysis concept in theoretical
computer science. In worst-case analysis, instances for a problem are considered on which
the algorithm at hand performs as badly as possible. There are many algorithms whose
worst cases are usually not encountered in practice. For these algorithms worst-case pre-
dictions about their running time behavior completely deviate from what can be observed
on real-life instances.

In order to narrow the gap between theory and practice, Spielman and Teng introduced
the framework of smoothed analysis. In smoothed analysis, the power of the adversary,
which creates artificially bad instances, is reduced by adding some amount of random
noise to these instances. Thus, smoothed analysis can be seen as a hybrid between worst-
case analysis and average-case analysis having the advantages of both: As in average-case
analysis, pathological instances that spoil the analysis are ruled out due to some amount
of randomness. As in worst-case analysis, good bounds usually indicate good behavior on
real-life instances.

In this thesis, we study selected optimization problems and algorithms in the frame-
work of smoothed analysis to explain why they usually behave significantly better than
theory predicts. In the first part we deal with the minimum-cost flow problem, which is
solvable in strongly-polynomial time. Orlin’s algorithm, which is the theoretically fastest
algorithm for this problem known today, is practically not competitive. The same holds
for some other strongly-polynomial time algorithms. These algorithms are outperformed
by the successive shortest path algorithm, which is one of the simplest algorithms for the

11

12 CHAPTER 1. INTRODUCTION

minimum-cost flow problem and has exponential worst-case running time. We show that
the successive shortest path algorithm has smoothed polynomial running time.

The ideas developed in part one turn out to be useful in a similar context that is studied
in the second part of this thesis. Here, we are interested in finding a short path between
two given vertices of a polyhedron. We analyze a randomized variant of the simplex method
with the shadow vertex pivot rule and show that it has expected polynomial running time
for some classes of polyhedra like flow polytopes.

In the third part we consider the scheduling problem. Here the task is to assign jobs
with individual sizes to machines with individual speeds in order to minimize the time
it takes to process all jobs. Even if all machines have the same speed this problem is
strongly NP-hard if the number of machines is part of the input. This can be seen
as an indication that no efficient algorithm for the scheduling problem exists and led
to the development of several approximation algorithms and heuristics. We study three
of them in this dissertation: the jump algorithm, the lex-jump algorithm, and the list
scheduling algorithm. The last one can also be used in an online setting. If the machines
have different speeds, then the worst-case approximation guarantees of these algorithms
depend on the number of machines. All known instances on which these algorithms show
such a dependency seem to be very artificial and are not likely to be encountered in
practice. We apply a smoothed analysis to derive upper bounds for the approximation
guarantees of the aforementioned algorithms. These bounds depend only on the amount
of random noise the instances are subject to. This gives evidence that no dependence on
the number of machines should be observed on real-life instances.

What all the previous problems have in common is that they consist of a single objec-
tive which has to be optimized. Apart from these single-criterion optimization problems
there exists a variety of multicriteria optimization problems with several conflicting ob-
jectives. For instance, in situations in which the economic point of view is of concern
one usually has to balance some quality aspects against the cost aspect. Without any
further information about how to weight these objectives, which would allow for a trans-
formation of this problem into a single-criterion optimization problem, the predominant
notion is the one of Pareto optimality. Solutions which cannot be improved in any of the
objectives without loss in any of the other objectives are called Pareto-optimal solutions
or Pareto optima. Pareto-optimal solutions are the reasonable trade-offs for a multiobjec-
tive optimization problem. Computing the set of Pareto optima, or Pareto set for short,
supports the decision maker in choosing the “optimal” solution (with respect to his possi-
bly complex, imprecise, and/or only subconsciously available weighting of the conflicting
objectives) and can sometimes be used as an algorithmic tool for solving a single-criterion
optimization problem. For both applications the Pareto set should be small to be useful.

We study integer optimization problems with multiple linear objective functions in the
fourth part of this thesis and analyze the number of Pareto-optimal solutions. Already
for two objectives, instances can be generated whose Pareto set is exponentially large

1.1. SMOOTHED ANALYSIS 13

in the number of variables. In contrast, typical real-life instances tend to have only a
small number of Pareto-optimal solutions. We support this observation by deriving a
polynomial smoothed upper bound.

In the remainder of this introduction we present the framework of smoothed analysis
and the problems and algorithms that we analyze in this dissertation more detailed.

1.1 Smoothed Analysis

Smoothed analysis was introduced by Spielman and Teng [ST04] to explain why the
simplex method is efficient in practice despite its exponential worst-case running time.
In the original model, an adversary chooses an arbitrary instance which is subsequently
slightly perturbed at random by adding some Gaussian noise. Thus, pathological instances
no longer dominate the analysis. Good smoothed bounds usually indicate good practical
behavior because in practice inputs are often subject to a small amount of random noise.
For instance, this random noise can stem from measurement errors, numerical imprecision,
or rounding errors. It can also model influences that cannot be quantified exactly but
for which there is no reason to believe that they are adversarial. Since its invention,
smoothed analysis has been successfully applied in a variety of contexts. Two recent
surveys [MR11, ST09] summarize some of these results.

We follow a more general model of smoothed analysis due to Beier and Vöcking [BV04].
In this model, the adversary is even allowed to specify the probability distribution of
the random noise. The influence he can exert is described by the so-called smoothing
parameter φ denoting the maximum density of the noise.

Let us describe these models more formally. As an example we assume that our
problem is parameterized by n variables x1, . . . , xn, which can take arbitrary real values,
and we do not care about how these values are encoded. The input size of an instance
consisting of the values x1, . . . , xn is defined as n. We consider an algorithm for this
problem whose running time Tn for n parameters depends on x1, . . . , xn. The worst-case
running time of this algorithm is defined as TWC(n) = supx1,...,xn∈R Tn(x1, . . . , xn), which is
a function in n. This model assumes that there is an omnipotent adversary who generates,
for a given integer n, the worst instance with n parameters for the algorithm at hand.

Smoothed analysis also assumes the existence of an adversary. However, in contrast
to worst-case analysis the power of the adversary is limited: In the model of Spielman
and Teng, the instance of the adversary is perturbed by adding independent Gaussian
random variables N1, . . . , Nn ∼ N (0, σ2). The smoothed running time of the algorithm
under consideration is then defined as

TSm(n, σ) = supx1,...,xn∈R EN1,...,Nn∼N (0,σ2) [Tn(x1 +N1, . . . , xn +Nn)]

and depends on n and, additionally, on σ. This model allows the adversary to specify the
mean of the random variables Xi = xi+Nxi for which the running time Tn(X1, . . . , Xn) is

14 CHAPTER 1. INTRODUCTION

considered, but not the type of the random noise. The standard deviation σ determines
the magnitude of the Gaussian noise: If σ is close to 0, then the instance of the adversary
is only changed slightly and we are close to worst-case analysis. Large values of σ make
the perturbed instance behave almost random. We say that the algorithm has smoothed
polynomial running time (in the model of Spielman and Teng) if the smoothed running
time TSm(n, σ) is polynomially bounded in n and 1/σ.

Problems and algorithms are often invariant under scaling. For our simple example
this means that Tn(x1, . . . , xn) = Tn(λx1, . . . , λxn) for any n ∈ N, any x1, . . . , xn ∈ R,
and any λ > 0. For these problems and algorithms, only values from [−1, 1] have to be
considered for x1, . . . , xn. If this is the case, then our model, which follows the model
of Beier and Vöcking, can be applied. Here, the adversary specifies probability density
functions f1, . . . , fn : [−1, 1] → [0, φ] according to which random variables Xi are drawn
independently of each other. The smoothed running time is then defined as

TSm(n, φ) = supf1,...,fn : [−1,1]→[0,φ] EX1∼f1,...,Xn∼fn [Tn(X1, . . . , Xn)]

and depends on n and φ: If φ = 1/2, then the adversary has to choose fi = f for any
i = 1, . . . , n, where f(z) = 1/2 for z ∈ [−1, 1] and f(z) = 0 otherwise, because the

integral
∫ 1

−1
fi(x) dx must be 1. That is, the smoothed running time TSm(n, 1/2) equals

the average-case running time when all parameters are drawn uniformly at random from
the interval [−1, 1]. On the other hand, the adversary can, for instance, specify intervals Ii
of length 1/φ that contain worst-case choices for the values xi (with respect to Tn) from
which the random variables Xi are drawn uniformly at random. That is, fi(z) = φ if
z ∈ Ii and fi(z) = 0 otherwise. Hence, if φ becomes large, then the smoothed running time
TSm(n, φ) approaches the worst-case running time TWC(n). We say that the algorithm has
smoothed polynomial running time (in our model) if the smoothed running time TSm(n, φ)
is polynomially bounded in n and φ.

Note that in our model the adversary can specify the type of random noise, contrasting
the model of Spielman and Teng. This makes this model more general. Furthermore, let
us remark that the previous considerations only highlight the essential differences between
the worst-case model, the smoothed model of Spielman and Teng, and our model. Usually
not all of the parameters are perturbed in order to obtain stronger theoretical results or
because the model would be unrealistic otherwise. This is why we do not introduce a
general smoothed input model but we present concrete models tailored to the problems
dealt within this dissertation.

1.2 The Minimum-Cost Flow Problem

Flow problems have gained a lot of attention in the second half of the twentieth century
to model, for example, transportation and communication networks [AMO93, FF62]. In
the minimum-cost flow problem we are given a simple directed graph G = (V,E), where

1.2. THE MINIMUM-COST FLOW PROBLEM 15

each edge e is assigned a capacity ue ≥ 0 which limits the amount of flow on it and a cost
ce ≥ 0 which states how much it costs to send one unit of flow over it. We call this graph
a flow network. For convenience, we assume that there are no directed cycles of length
two. Additionally, each node v is assigned a balance value bv ∈ R which states how much
flow the node supplies (bv > 0) or how much it demands (bv < 0). A feasible b-flow is a
function f : E → R≥0 that obeys the capacity constraint 0 ≤ f(e) ≤ ue for each edge e
and Kirchhoff’s law adapted to the balance values. That is, the effective outflow of each
node v equals its balance value, or formally, bv =

∑
e′=(v,w)∈E f(e′)−∑e=(u,v)∈E f(e). The

cost c(f) =
∑

e∈E f(e) · ce of a b-flow f is the product of the amount of flow sent over an
edge e times the cost ce of this edge, aggregated over all edges e. The minimum-cost flow
problem asks to compute a cheapest feasible b-flow, a so-called minimum-cost b-flow, if
one exists.

1.2.1 The Successive Shortest Path Algorithm

One algorithm for solving the minimum-cost flow problem is the successive shortest path
(SSP) algorithm. We start with introducing some essential notation in order to describe
this algorithm. For a pair e = (u, v), we denote by e−1 the pair (v, u). Let G be a flow
network with edge capacities ue and edge costs ce, and let f be a b-flow (for an appropriate
choice of balance values bv). The residual network Gf is the directed graph with vertex
set V , with edge set E ′ = Ef ∪ Eb, where Ef = {e : e ∈ E and f(e) < ue} is the set
of so-called forward edges and Eb = {e−1 : e ∈ E and f(e) > 0} is the set of so-called
backward edges, and with residual edge capacities and residual edge costs

u′e =

{
ue − f(e) if e ∈ E ,
f(e−1) if e−1 ∈ E and c′e =

{
ce if e ∈ E ,
−ce−1 if e−1 ∈ E .

In practice, the simplest way to implement the SSP algorithm is to transform the instance
to an equivalent instance with only one supply node (a node with positive balance value)
and one demand node (a node with negative balance value). For this, we add two nodes s
and t to the network which we call master source and master sink, edges (s, v) for any
supply node v, and edges (w, t) for any demand node w. The capacities of these auxiliary
edges (s, v) and (w, t) are set to bv > 0 and −bw > 0, respectively. The costs of the
auxiliary edges are set to 0. Now we set b′v = 0 for any node v /∈ {s, t} and b′s = −b′t =
max {Us, Ut}, where Us is the sum of the capacities of the auxiliary edges incident to s
and Ut is the sum of the capacities of the auxiliary edges incident to t. Note that Us 6= Ut
implies that there exists neither a feasible b′-flow for the transformed flow network nor a
feasible b-flow for the original flow network. A minimum-cost b′-flow f ′ for the transformed
flow network can easily be transformed into a minimum-cost b-flow f for the original flow
network by setting f(e) = f ′(e) for any edge e of the original flow network.

16 CHAPTER 1. INTRODUCTION

One example for the transformation of a multiple-source-multiple-sink minimum-cost
flow network into a single-source-single-sink minimum-cost flow network is depicted in
Figure 1.1. The balance values are given in the center of the nodes, the edge costs and
edge capacities are given for each edge e by the label ce, ue.

2, 3

1, 5 9, 2

3, 2

1, 4

7, 4

3, 6 2, 4

+3

+4

−5

−2

0

0

(a) Original minimum-cost flow
network

s

2, 3

1, 5 9, 2

3, 2

1, 4

7, 4

3, 6 2, 4
0

0

0 0

0

0

0, 3

0, 4

0, 2

0, 5

+7 −7 t

(b) Transformed minimum-cost flow network with mas-
ter source s and master sink t

Figure 1.1: Transformation of a multiple-source-multiple-sink minimum-cost flow network
into a single-source-single-sink minimum-cost flow network

In the remainder we use the term flow to refer to a feasible b′-flow for arbitrary balance
values b′v with the property that b′s = −b′t and b′v = 0 for any v /∈ {s, t}. We will denote
by |f | =

∑
e=(s,v)∈E f(e) the value of flow f , that is, the amount of flow shipped from s

to t in flow f .
The SSP algorithm for a minimum-cost flow network with a single source s, a single

sink t, and with bs = −bt = z > 0 is given as Algorithm 1.

Algorithm 1 SSP algorithm for single-source-single-sink minimum-cost flow networks
with bs = −bt = z.

1: start with the empty flow f0 ≡ 0
2: for i = 1, 2, . . . do
3: if |fi−1| = z then output fi
4: if Gfi−1

does not contain a (directed) s-t path then output an error message
5: find a shortest s-t path Pi in Gfi−1

with respect to the edge costs
6: augment the flow as much as possible∗ along path Pi to obtain a new flow fi
7: end for

∗The value |fi| of flow fi must not exceed z and fi must obey all capacity constraints.

1.2. THE MINIMUM-COST FLOW PROBLEM 17

Theorem 1.2.1. In any iteration i, the flow fi that is computed by Algorithm 1 is a mini-
mum-cost b(i)-flow for the balance values b

(i)
s = −b(i)

t = |fi| and b
(i)
v = 0 for any v /∈ {s, t}.

Theorem 1.2.1 is due to Jewell [Jew62], Iri [Iri60], and Busacker and Gowen [BG60].
We refer to Korte and Vygen [KV07] for a proof. As a consequence, no residual net-
work Gfi contains a directed cycle with negative total costs. Otherwise, we could augment
along such a cycle to obtain a b(i)-flow f ′ with smaller costs than fi. In particular, this
implies that the shortest paths in Gfi from s to nodes v ∈ V form a shortest path tree
rooted at s. Since the choice of the value z only influences the last augmentation of the
algorithm, the algorithm performs the same augmentations when run for two different
values z1 < z2 until the flow value |fi| exceeds z1. We will exploit this observation in our
analysis.

1.2.2 Related Work

Plenty of algorithms have been developed for the minimum-cost flow problem over the
last fifty years. The first pseudo-polynomial algorithm was the out-of-kilter algorithm
independently proposed by Minty [Min60] and by Fulkerson [Ful61]. The simplest pseudo-
polynomial algorithms are the primal cycle canceling algorithm by Klein [Kle67] and the
dual successive shortest path (SSP) algorithm by Jewell [Jew62], Iri [Iri60], and Busacker
and Gowen [BG60]. By introducing a scaling technique, Edmonds and Karp [EK72]
modified the SSP algorithm to obtain the capacity scaling algorithm, which was the first
polynomial-time algorithm for the minimum-cost flow problem.

The first strongly polynomial algorithms were given by Tardos [Tar85] and by Or-
lin [Orl84]. Later, Goldberg and Tarjan [GT89] proposed a pivot rule for the cycle
canceling algorithm to obtain the strongly polynomial minimum-mean cycle canceling
(MMCC) algorithm. The fastest known strongly polynomial algorithm up to now is
the enhanced capacity scaling algorithm due to Orlin [Orl93] and has a running time of
O(m log(n)(m+n log n)), where m = |E| is the number of edges and n = |V | is the number
of nodes of the flow network. For an extensive overview of minimum-cost flow algorithms
we suggest the paper of Goldberg and Tarjan [GT90], the paper of Vygen [Vyg02], and
the book of Ahuja et al. [AMO93].

Zadeh [Zad73] showed that the SSP algorithm has an exponential worst-case running
time. Contrary to this, the worst-case running times of the capacity scaling algorithm and
the MMCC algorithm are O(m(logU)(m+n log n)) [EK72] and O(m2n2 min{log(nC),m})
[RG94], respectively. Here, U denotes the maximum edge capacity and C denotes the max-
imum edge cost. In particular, the former is polynomial whereas the latter is even strongly
polynomial. However, the notions of pseudo-polynomial, polynomial, and strongly poly-
nomial algorithms always refer to worst-case running times, which do not always resemble
the algorithms’ behavior on real-life instances. Algorithms with large worst-case running
times do not inevitably perform poorly in practice. An experimental study of Király and

18 CHAPTER 1. INTRODUCTION

Kovács [KK12] indeed observes running time behaviors significantly deviating from what
the worst-case running times indicate. The MMCC algorithm is completely outperformed
by the SSP algorithm. The capacity scaling algorithm is the fastest of these three algo-
rithms, but its running time seems to be in the same order of magnitude as the running
time of the SSP algorithm.

1.2.3 Our Results

We explain why the SSP algorithm comes off so well by applying the framework of
smoothed analysis. Without loss of generality we can assume that all edge costs ce are
from the interval [0, 1]. This can be obtained by scaling down all edge costs equally. In
our input model the adversary does not fix the edge costs ce ∈ [0, 1] for each edge e,
but he specifies probability density functions fe : [0, 1] → [0, φ] according to which the
costs ce are randomly drawn independently of each other. As in worst-case analysis, the
flow network G, the edge capacities ue, and the balance values bv of the nodes are chosen
adversarially. We define the smoothed running time of an algorithm as the worst expected
running time the adversary can achieve and we prove the following theorem.

Theorem 1.2.2. The SSP algorithm requires O(mnφ) iterations in expectation and has
a smoothed running time of O(mnφ(m+ n log n)).

If φ is a constant – which seems to be a reasonable assumption if it models, for example,
measurement errors – then the smoothed bound simplifies to O(mn(m+n log n)). Hence,
it is unlikely to encounter instances on which the SSP algorithm requires an exponential
amount of time. Note, that the bound on the smoothed running time immediately follows
from the bound on the expected number of iterations as each iteration can be implemented
to run in time O(m+n log n) (see, e.g., the book of Korte and Vygen [KV07] for details).

Now let us compare the running times of the SSP algorithm and the strongly poly-
nomial MMCC algorithm. Radzik and Goldberg [RG94] presented a family of worst-case
instances on which the MMCC algorithm requires Ω(m2n) minimum-mean cost cycle can-
cellations, which for m = Ω(n log n) is already in the same order as the smoothed running
time of the SSP algorithm. Together with the observation that the best known algorithm
for computing minimum-mean cost cycles has a running time of Θ(mn) [DG97], this can
be viewed as the first theoretical indication for why the SSP algorithm clearly outper-
forms the strongly polynomial MMCC algorithm in experiments. However, admittedly
this comparison is not entirely fair because it compares the smoothed running time of the
SSP algorithm with the worst-case running time of the MMCC algorithm. For a com-
plete explanation why the SSP algorithm outperforms the MMCC algorithm in practice
a smoothed lower bound of the running time of the latter algorithm must be derived that
exceeds the upper bound stated in Theorem 1.2.2.

Although the MMCC algorithm was mainly considered for theoretical reasons and not
necessarily intended for practical purposes, this comparison serves as an example for a

1.2. THE MINIMUM-COST FLOW PROBLEM 19

phenomenon which can be explained by smoothed analysis but not by worst-case analysis.

In his master’s thesis, Rösner [Rös14] constructs an instance on which the SSP al-
gorithm requires Ω(mφ · min {n, φ}) iterations showing that the bound stated in Theo-
rem 1.2.2 is tight for φ = Ω(n).

Applications to Linear Programming A linear program (LP) is an optimization
problem where the objective function is linear and the set of feasible solutions is a polyhe-
dron P which is defined by linear constraints. It is a fundamental property of LPs that,
except for a few exceptions which are not relevant for this thesis, the optimal value is
attained in a vertex of the polyhedron.

A classic algorithm for solving linear programs is the simplex method. This algorithm
starts in some vertex x0 of the polyhedron P and walks along the edges of P such that
the objective value does not deteriorate. Usually, a vertex has several neighbors whose
objective values are better than its own value. A so-called pivot rule specifies which of
these neighbors should be visited next. The shadow vertex pivot rule has gained a lot of
attention among theoreticians due to the average-case analysis of Borgwardt [Bor86] and
due to Spielman and Teng [ST04] who showed that the simplex method with the shadow
vertex pivot rule, or shadow vertex method for short, has a polynomial running time if
the coefficients of the linear constraints are subject to Gaussian noise.

Let w denote the vector that describes the linear objective x 7→ wTx of the linear
program. The shadow vertex method computes a vector c such that the objective function
x 7→ cTx is optimized by x0 and no other vertex of P . Then it projects the polyhedron P
onto the 2-dimensional plane that is spanned by the vectors w and c. If we assume for
the sake of simplicity that P is bounded, then the resulting projection is a polygon Q.
The crucial properties of the polygon Q are as follows: both the projection of x0 and the
projection of the optimal solution x? are vertices of Q, and every edge of Q corresponds to
an edge of P . The shadow vertex method follows the edges of Q from the projection of x0

to the projection of x?. The aforementioned properties guarantee that this corresponds
to a feasible walk on the polyhedron P . For a complete and more formal description, we
refer the reader to [Bor86] or [ST04].

The result of Spielman and Teng, which has later been significantly improved by
Vershynin [Ver09], was a breakthrough in algorithm analysis and made smoothed analysis
a generally accepted alternative to worst-case analysis in theory. However, their smoothed
input model cannot be applied to all linear programs. There are many examples for
which perturbations of the constraints’ coefficients completely destroy the structure of
the problem the LP describes. One example is the linear program for the maximum flow
problem. In the maximum flow problem we are given a directed graph G = (V,E) with
two special nodes s, t ∈ V , which we refer to as the source and the sink, and with an
edge capacity ue ≥ 0 for each edge e. This graph is called a flow network. A feasible flow
is a function f : E → R≥0 that obeys all capacity constraints f(e) ≤ ue and Kirchhoff’s

20 CHAPTER 1. INTRODUCTION

law, that is,
∑

e′=(v,w)∈E f(e′) =
∑

e=(u,v)∈E f(e) for any v ∈ V \ {s, t}. In other words,
the in-flow and the out-flow of each node except the source and the sink are equal. The
objective of the maximum flow problem is to compute a flow f with maximum value
|f | =

∑
e′=(s,w)∈E fe′ −

∑
e=(u,s)∈E fe. The following maximum flow linear program is an

equivalent formulation of the maximum flow problem.

max
∑

e′=(s,w)∈E

fe′ −
∑

e=(u,s)∈E

fe

s.t. ∀e ∈ E : fe ≥ 0 (non-negativity constraints)

∀e ∈ E : fe ≤ ue (capacity constraints)

∀v ∈ V \ {s, t} :
∑

e′=(v,w)∈E

fe′ −
∑

e=(u,v)∈E

fe = 0 (Kirchhoff’s law)

As can be seen, all coefficients of the constraints are from {−1, 0, 1} and perturbing some
of them would completely destroy the structure of the problem. Hence, the results of
Spielman and Teng and of Vershynin do not have algorithmic consequences here. In the
remainder of this section we show an interesting connection between the SSP algorithm
and the shadow vertex method for the maximum flow linear program which allows us to
apply Theorem 1.2.2.

The empty flow f0 ≡ 0 is a vertex of the polytope defined by the linear constraints of
the maximum flow linear program. In particular, it is a feasible solution with minimum
costs for any cost vector c with positive entries. Hence, any such cost vector c is a valid
choice in the shadow vertex method. For this choice every feasible flow f is projected
to the pair π(f) := (|f |, c(f)), where c(f) denotes the cost of flow f . Theorem 1.2.1
guarantees that the projections π(fi) of the flows fi encountered by the SSP algorithm
are the vertices that define the lower envelope of the polygon that results from projecting
the polytope of feasible flows. There are two possibilities for the shadow vertex method
for the first step: it can choose to follow either the upper or the lower envelope of this
polygon. If it decides for the lower envelope, then it will encounter exactly the same
sequence of flows as the SSP algorithm.

This means that Theorem 1.2.2 can also be interpreted as a statement about the
shadow vertex method applied to the maximum-flow linear program:

Corollary 1.2.3. The shadow vertex method for the maximum flow linear program that
starts with the empty flow f0 ≡ 0 and draws a vector c ∈ (0, 1)|E| uniformly at random as
the second projection direction has expected polynomial running time.

Corollary 1.2.3 is not interesting with regard to algorithmic consequences for solving
the maximum flow problem. It is interesting itself since the described algorithm is a simple
variant of the simplex method with polynomial running time for the class of maximum
flow linear programs. We do not assume any further properties like smoothness – the flow
network including the edge capacities can be arbitrary.

1.3. FINDING SHORT PATHS ON POLYHEDRA 21

1.3 Finding Short Paths on Polyhedra

Motivated by the connection between the SSP algorithm for the minimum-cost flow prob-
lem and the shadow vertex method for the maximum flow linear program (see Section 1.2.3)
we consider the following problem: Given a matrix A = [a1, . . . , am]T ∈ Rm×n, a vector
b ∈ Rm, and two vertices x1 and x2 of the polyhedron P ={x ∈ Rn : Ax ≤ b}, find a short
path from x1 to x2 along the edges of P efficiently, where the length of a path is defined
as the number of its edges. In this context efficient means that the running time of the
algorithm is polynomially bounded in m, n, and the length of the path it computes. Note
that the polyhedron P does not have to be bounded. This problem is the algorithmic
version of the problem that asks for a small upper bound for the diameter d(P) of the
polyhedron P . The diameter of a polyhedron P is the smallest integer that bounds the
length of the shortest path between any two vertices of P from above.

The polynomial Hirsch conjecture states that d(P) is polynomially bounded in m
and n for any matrix A and any vector b. As long as this conjecture remains unresolved,
it is unclear whether there always exists a path of polynomial length between the given
vertices x1 and x2. Moreover, even if such a path exists, it is open whether there is a
polynomial time algorithm to find it.

1.3.1 Our Algorithm

Our algorithm is inspired by the shadow vertex pivot rule for the simplex method and the
insights we gain from the analysis of the successive shortest path algorithm (Chapter 4):
First choose two vectors w1, w2 ∈ Rn such that x1 uniquely minimizes wT

1 x subject to
x ∈ P and such that x2 uniquely maximizes wT

2 x subject to x ∈ P . Then project the
polyhedron onto the plane spanned by w1 and w2 in order to obtain a (possibly unbounded)
polygon P ′. Let us call the projection π. By the same arguments as for the shadow vertex
pivot rule, it follows that π(x1) and π(x2) are vertices of P ′ and that a path from π(x1)
to π(x2) along the edges of P ′ can be translated into a path from x1 to x2 along the edges
of P of same length. Hence, it suffices to compute such a path to solve the problem.
Again computing such a path is easy because P ′ is a two-dimensional polygon.

The vectors w1 and w2 are not uniquely determined, but they can be chosen from
cones that are determined by the vertices x1 and x2 and the polyhedron P . We choose w1

and w2 randomly from these cones. A more precise description of this algorithm is given
as Algorithm 2. Here, by N(x) we refer to the normalization N(x) = (1/‖x‖2) · x of a
vector x 6= 0.

Let us give some remarks on the algorithm above. The vectors u1, . . . , un in Line 1
and the vectors v1, . . . , vn in Line 2 must exist because x1 and x2 are vertices of P . The
only point where our algorithm makes use of randomness is in Line 3. By the choice of w1

and w2 in Line 4, x1 is the unique optimum of the linear program minwT
1 x s.t. x ∈ P

and x2 is the unique optimum of the linear program maxwT
2 x s.t. x ∈ P . The former

22 CHAPTER 1. INTRODUCTION

Algorithm 2 Shadow Vertex Algorithm

1: Determine n linearly independent rows uT
k of A for which uT

k x1 = bk.
2: Determine n linearly independent rows vT

k of A for which vT
k x2 = bk.

3: Draw vectors λ, µ ∈ (0, 1]n independently and uniformly at random.
4: Set w1 = −[N(u1), . . . , N(un)] · λ and w2 = [N(v1), . . . , N(vn)] · µ.
5: Use the function π : x 7→

(
wT

1 x,w
T
2 x
)

to project P onto the Euclidean plane and
obtain the shadow vertex polygon P ′ = π(P).

6: Walk from π(x1) along the edges of P ′ in increasing direction of the second coordinate
until π(x2) is found.

7: Output the corresponding path of P .

follows because for any y ∈ P with y 6= x1 there must be an index k ∈ [n] with uT
k x1 < bk.

The latter follows analogously. Note that ‖w1‖ ≤
∑n

k=1 λk · ‖N(uk)‖ =
∑n

k=1 λk ≤ n
and, similarly, ‖w2‖ ≤ n. The shadow vertex polygon P ′ in Line 5 has several important
properties: The projections of x1 and x2 are vertices of P ′ and all edges of P ′ correspond
to projected edges of P . Hence, any path on the edges of P ′ is the projection of a path on
the edges of P . Though we call P ′ a polygon, it does not have to be bounded. This is the
case if P is unbounded in the directions w1 or −w2. Nevertheless, there is always a path
from x1 to x2 which will be found in Line 6. For more details about the shadow vertex
pivot rule and formal proofs of these properties, we refer to the book of Borgwardt [Bor86].

π(x2)

π(x1)

0 ξ

η

Figure 1.2: Shadow polygon P ′

To provide some intuition why these statements hold true, consider the projection
depicted in Figure 1.2. We denote the first coordinate of the Euclidean plane by ξ and
the second coordinate by η. Since w1 and w2 are chosen such that x1 and x2 are, among
the points of P , optimal for the functions x 7→ wT

1 x and x 7→ wT
2 x, respectively, the

projections π(x1) and π(x2) of x1 and x2 must be the leftmost vertex and the topmost
vertex of P ′ = π(P), respectively. As P ′ is a (not necessarily bounded) polygon, this

1.3. FINDING SHORT PATHS ON POLYHEDRA 23

implies that if we start in vertex π(x1) and follow the edges of P ′ in the direction of
increasing values of η, then we will end up in π(x2) after a finite number of steps. This is
not only true if P ′ is bounded (as depicted by the dotted line and the dark gray area) but
also if P is unbounded (as depicted by the dashed lines and the dark gray plus the light
gray area). Moreover, note that the slopes of the edges of the path from π(x1) to π(x2)
are positive and monotonically decreasing.

1.3.2 Related Work

The diameter of polyhedra has been studied extensively in the last decades. In 1957,
Hirsch conjectured that the diameter d(P) of P is bounded by m − n for any matrix A
and any vector b (see Dantzig’s seminal book about linear programming [Dan63]). This
conjecture has been disproven by Klee and Walkup [KW67] who gave an unbounded coun-
terexample. However, it remained open for quite a long time whether the conjecture holds
for bounded polyhedra, so-called polytopes. More than fourty years later Santos [San10]
gave the first counterexample to this refined conjecture showing that there are polytopes P
for which d(P) ≥ (1 + ε) · m for some ε > 0. This is the best known lower bound to-
day. On the other hand, the best known upper bound of O(m1+logn) due to Kalai and
Kleitman [KK92] is only quasi-polynomial. It is still an open question whether d(P) is
always polynomially bounded in m and n. This has only been shown for special classes of
polyhedra like 0/1 polytopes, flow polytopes, and the transportation polytope. For these
classes of polyhedra bounds of m− n (Naddef [Nad89]), O(mn log n) (Orlin [Orl97]), and
O(m) (Brightwell et al. [BvdHS06]) have been shown, respectively. On the other hand,
there are bounds on the diameter of far more general classes of polyhedra that depend
polynomially on m, n, and on additional parameters. Recently, Bonifas et al. [BDE+12]
showed that the diameter of polyhedra P defined by integer matrices A is bounded by
a polynomial in n and a parameter that depends on the matrix A. They showed that
d(P) = O(∆2n4 log(n∆)), where ∆ is the largest absolute value of any sub-determinant
of A. Although the parameter ∆ can be very large in general, this approach allows to ob-
tain bounds for classes of polyhedra for which ∆ is known to be small. For example, if the
matrix A is totally unimodular, that is, if all sub-determinants of A are from {−1, 0, 1},
then their bound simplifies to O(n4 log n), improving the previously best known bound of
O(m3n16 log3(mn)) by Dyer and Frieze [DF94].

We are not only interested in the existence of a short path between two vertices of a
polyhedron but we want to compute such a path efficiently. It is clear that lower bounds
for the diameter of polyhedra have direct (negative) consequences for this algorithmic
problem. However, upper bounds for the diameter do not necessarily resolve the algo-
rithmic version of the problem as they might be non-constructive. The aforementioned
bounds of Orlin, Brightwell et al., and Dyer and Frieze are constructive, whereas the
bound of Bonifas et al. is not.

24 CHAPTER 1. INTRODUCTION

1.3.3 Our Results

We give a constructive upper bound for the diameter of the (not necessarily bounded)
polyhedron P = {x ∈ Rn : Ax ≤ b} for arbitrary matrices A ∈ Rm×n and arbitrary vec-
tors b ∈ Rm. This bound is polynomial in m, n, and a parameter 1/δ, which depends
only on the matrix A and is a measure for the angle between edges of the polyhedron P
and their neighboring facets. We say that a facet F of the polyhedron P is neighboring
an edge e if exactly one of the endpoints of e belongs to F . The parameter δ denotes the
smallest sine of any angle between an edge and a neighboring facet in P . If, for example,
every edge is orthogonal to its neighboring facets, then δ = 1. On the other hand, if
there exists an edge that is almost parallel to a neighboring facet, then δ ≈ 0. The formal
definition of δ is deferred to Section 5.4. We obtain the constructive bound by analyzing
Algorithm 2, which we will call shadow vertex method in the following.

Theorem 1.3.1. Given vertices x1 and x2 of P , the shadow vertex method efficiently
computes a path from x1 to x2 on the polyhedron P with expected length O(mn2/δ2).

Let us emphasize that the algorithm is very simple and its running time depends only
polynomially on m, n and the length of the path it computes.

Theorem 1.3.1 does not resolve the polynomial Hirsch conjecture as the value δ can be
exponentially small. Furthermore, it does not imply a good running time of the shadow
vertex method for optimizing linear programs because for the variant considered in this
thesis both vertices have to be known. Contrary to this, in the optimization problem one
has to determine the optimal vertex for a given linear objective. To compare our results
with the result by Bonifas et al. [BDE+12], we show that if A is an integer matrix, then
1/δ ≤ n ·∆2, which yields the following corollary.

Corollary 1.3.2. Let A ∈ Zm×n be an integer matrix and let b ∈ Rm be a real-valued
vector. Given vertices x1 and x2 of P , the shadow vertex method efficiently computes a
path from x1 to x2 on the polyhedron P with expected length O(∆4mn4).

This bound is worse than the bound of Bonifas et al., but it is constructive. Further-
more, if A is a totally unimodular matrix, then ∆ = 1. Hence, we obtain the following
corollary.

Corollary 1.3.3. Let A ∈ Zm×n be a totally unimodular matrix and let b ∈ Rm be a
vector. Given vertices x1 and x2 of P , the shadow vertex method efficiently computes a
path from x1 to x2 on the polyhedron P with expected length O(mn4).

The bound stated in Corollary 1.3.3 significantly improves upon the previously best
known constructive bound of O(m3n16 log3(mn)) due to Dyer and Frieze.

1.4. SCHEDULING 25

1.4 Scheduling

Parallelization is an important concept used to increase utilization of resources when pro-
cessing a bunch of tasks. It is present in almost all economical areas. One example is
the parallel manufacturing of parts which are later assembled to obtain the final product.
Scheduling theory, which dates back to the early fifties of the 20th century (see, for in-
stance, the work of Jackson [Jac55], Johnson [Joh54], and Smith [Smi56] and the survey
of Graham et al. [GLLK79]), has also influenced the design of modern operating systems.
Nowadays most of the computers have a multi-core processor that allows several processes
to be executed simultaneously. Universities and large companies even operate clusters of
hundreds of computers to enhance parallelization.

In many scenarios where parallelization is applied, minimizing the time it takes to
process a set of given tasks is one main objective. The more independent the tasks are of
each other the better they can be parallelized: If a task cannot be executed before another
task has been processed, then serialization of these two tasks is necessary preventing them
to be executed in parallel. In the scheduling variants we consider in this thesis, the tasks,
which we refer to as jobs, are completely independent of each other. This property holds,
for instance, for a typical set of user application processes which do not interact with each
other and, hence, can be assigned to different cores of a multi-core processor.

Let J = {1, . . . , n} be the set of jobs and let M = {1, . . . ,m} be the set of available
cores, which we refer to as machines. The time pij it takes to fully process a job j on a
machine i depends on the size pj > 0 of job j, usually called its processing requirement,
the speed si > 0 of machine i, and whether job j is allowed to be processed on machine i
or not. The set of machines on which job j may be processed is denoted by Mj ⊆ M .
With this notation we can define pij as follows:

pij =

{
pj/si if i ∈Mj ,

∞ otherwise .

If all machines i have the same speed, without loss of generality si = 1, then we call this
setting scheduling with identical machines. Otherwise, we call it scheduling with related
machines. Independently of these settings we distinguish between the scenario where
each job can be processed on each machine and the scenario where there are jobs that
are not allowed to be processed on all machines. We call these settings scheduling with
unrestricted machines and scheduling with restricted machines, respectively. In the former
setting we do not explicitly mention the sets Mj as they all equal set M .

A scheduling policy has to decide which jobs to process on which machine. We only
consider scenarios in which jobs have no arrival times or deadlines at which they have
to be processed. All jobs are available for processing right from the beginning. In the
scheduling variants we analyze in this thesis we do not allow jobs to migrate from one
machine to another during their time of execution. Consequently, any job is assigned to

26 CHAPTER 1. INTRODUCTION

exactly one machine where it is completely processed. The time it takes for a machine i
to process all jobs j assigned to it equals the sum of the times pij of these jobs. When the
assignment from jobs to machines, which we call a schedule, is known, then this time is
already determined and neither depends on the order in which the jobs are executed nor
on whether the jobs are allowed to be preempted (when execution is later resumed on the
same machine). The goal of the scheduling problems we consider here is to minimize the
time when the last machine finishes processing all of its jobs (assuming that all machines
start processing jobs at time 0), which is called the makespan of the given schedule.

For ease of explanation we assume that the jobs that are scheduled on a machine i
share this processor in such a way that they all finish at the same time. This does not
change the problem itself since we are only interested in minimizing the time when the
last job is processed completely. The advantage of this viewpoint is that the finishing
time of a job is well-defined without specifying an order in which the jobs are processed.
With this definition, the algorithms we want to study can be described much better.

An instance I of a scheduling problem consists of machine speeds s1, . . . , sm, processing
requirements p1, . . . , pn, and, in the restricted setting, sets M1, . . . ,Mn ⊆ M of allowed
machines. Even in the case that all speeds are equal, the problems under consideration
are known to be strongly NP-hard if the number m of machines is part of the input (see,
for example, Garey and Johnson [GJ79]). This has motivated a lot of research in the
previous decades on approximation algorithms for scheduling problems. Since some of
the theoretically best approximation algorithms are rather involved, a lot of research has
focused on simple heuristics like greedy algorithms and local search algorithms which are
easy to implement. While greedy algorithms make reasonable ad hoc decisions to obtain
a schedule, local search algorithms start with some schedule and iteratively improve the
current schedule by performing some kind of local improvements until no such is possible
anymore. In this thesis, we consider the following algorithms that can be applied to all
scheduling variants that we have described above:

• The list scheduling algorithm is a greedy algorithm that starts from an empty sched-
ule and a list of jobs. Then it repeatedly selects the next unscheduled job from the
list and assigns it to the machine on which it will be completed the earliest with
respect to the current partial schedule. We call any schedule that can be generated
by list scheduling a list schedule.

• The jump algorithm and the lex-jump algorithm are local search algorithms that
start with an arbitrary schedule and iteratively perform a local improvement step.
In each improvement step, one job is reassigned (it jumps) from a machine i to a
different machine i′ where it finishes earlier. In the jump algorithm, only jobs on
critical machines, that is, machines with maximum finishing time, are allowed to be
reassigned. In the lex-jump algorithm, each job can be reassigned at any time. A
schedule for which there is no jump improvement step or no lex-jump improvement
step is called jump optimal or lex-jump optimal, respectively.

1.4. SCHEDULING 27

For each of these three algorithms we are interested in their performance guarantees,
that is, the worst-case bound on the ratio of the makespan of a schedule returned by the
algorithm over the makespan of an optimal schedule. The final schedule returned by a
local search algorithm is called a local optimum. Usually, there are multiple local optima
for a given scheduling instance both for the jump and the lex-jump algorithm with varying
quality. As we do not know which local optimum is found by the local search, we will
always bound the quality of the worst local optimum. Since local optima for lex-jump and
pure Nash equilibria are the same (see for example [Vöc07]), this corresponds to bounding
the price of anarchy in the scheduling game that is obtained if jobs are selfish agents trying
to minimize their own completion time and if the makespan is considered as the social
welfare function. Similarly, the list scheduling algorithm can produce different schedules
depending on how the jobs in the list are ordered. Hence, also for the list scheduling
algorithm we will bound the quality of the worst schedule that can be obtained.

1.4.1 Related Work

The approximability of scheduling with makespan minimization is well understood. Cho
and Sahni [CS80] showed that the list scheduling algorithm has a performance guar-
antee of at most 1 +

√
2m− 2/2 for m ≥ 3 and that it is at least Ω(logm). Aspnes et

al. [AAF+97] improved the upper bound to O(logm) matching the lower bound asymptot-
ically. Hochbaum and Shmoys [HS88] designed a polynomial time approximation scheme
for this problem. Polynomial time approximation algorithms and polynomial time ap-
proximation schemes for special cases of the problem on restricted related machines are
given in, among others, [Li06, GK07, OLL08]. More work on restricted related machines
is discussed in the survey of Leung and Li [LL08].

In the last decade, there has been a strong interest in understanding the worst-case
behavior of local optima. We refer to the survey [Ang06] and the book [MAK07] for a com-
prehensive overview of the worst-case analysis and other theoretical aspects of local search.
It follows from the work of Cho and Sahni [CS80] that for the problem on unrestricted re-
lated machines the performance guarantee of the jump algorithm is

(
1+
√

4m− 3
)
/2. This

bound is tight [SV07]. Czumaj and Vöcking [CV07] showed that the performance guaran-
tee of the lex-jump algorithm is Θ

(
min{(logm)/(log logm), log(smax/smin)}

)
, where smax

and smin denote the speed of the fastest and the slowest machine, respectively. For the
problem on restricted related machines, Rutten et al. [RRSV12] showed that the per-
formance guarantee of the jump algorithm is

(
1 +

√
1 + 4(m− 1)smax/smin

)
/2 and that

this bound is tight up to a constant factor. Moreover, they showed that the performance
guarantee of the lex-jump algorithm is Θ

(
(logS)/(log logS)

)
, where S =

(∑m
i=1 si

)
/smin.

When all machines have the same speed, Awerbuch et al. [AART06] showed that the
performance guarantee of the lex-jump algorithm is Θ

(
(logm)/(log logm)

)
.

Up to now, smoothed analysis has been mainly applied to running time analyses
(see, for example, [ST09] for a survey). The first exception is the paper by Becchetti

28 CHAPTER 1. INTRODUCTION

et al. [BLMS+06] who introduced the concept of smoothed competitive analysis, which
is equivalent to smoothed performance guarantees for online algorithms. Schäfer and
Sivadasan [SS05] performed a smoothed competitive analysis for metrical task systems.
Englert et al. [ERV07] considered the 2-Opt algorithm for the traveling salesman problem
and determined, among others, the smoothed performance guarantee of local optima of
the 2-Opt algorithm. Hoefer and Souza [HS10] presented one of the first average case
analyses for the price of anarchy.

1.4.2 Our Results

The performance guarantee of local search and greedy algorithms for scheduling problems
is well studied and understood. For most algorithms, matching upper and lower bounds
on their approximation ratio are known (see Table 1.1). The worst-case approximation
guarantees of the jump algorithm and the lex-jump algorithm are known for all scheduling
variants and it is constant only for the simplest case with unrestricted identical machines.
In all other cases it increases with the number m of machines. The lower bounds are
often somewhat contrived, however, and it is questionable whether they resemble typical
instances in practical applications. This is why we study these algorithms in the frame-
work of smoothed analysis, in which instances are subject to some degree of random noise.
By doing so, we find out for which heuristics and scheduling variants the lower bounds are
robust and for which they are fragile and not very likely to occur in practical applications.

As usual, due to a scaling argument we can assume without loss of generality that
all processing requirements are from the interval [0, 1] and that the slowest machine has
speed smin = 1. In our model the adversary specifies probability densities fj : [0, 1]→ [0, φ]
according to which the processing requirements pj are drawn at random independently of
each other. All others parameters, that is, the number m of machines, the machine speeds
smax := s1 ≥ . . . ≥ sm =: smin = 1 (in the case of non-identical machines), the number n
of jobs, and the sets M1, . . . ,Mn ⊆ M of allowed machines (in the case of restricted
machines), can be chosen arbitrarily by the adversary. We call such an instance I for
scheduling a φ-smooth instance. Formally, a φ-smooth instance is not a single instance
but a distribution over instances. We write I ∼ I to denote that the instance I is drawn
from the φ-smooth instance I.

In this thesis, we analyze the smoothed performance guarantee of the jump algorithm,
the lex-jump algorithm, and the list scheduling algorithm. As mentioned earlier, to define
the approximation guarantee of these algorithms on a given instance, we consider the worst
local optimum (for the jump algorithm and the lex-jump algorithm) or the worst order of
the jobs in the list (for the list scheduling algorithm). Now, the smoothed performance is
defined to be the worst expected approximation guarantee of any φ-smooth instance.

Our results for the jump and lex-jump algorithm are summarized in Table 1.1. The
smoothed performance guarantees for all variants of restricted machines turned out to be
robust against random noise. We show that even for large perturbations, that is, when φ

1.4. SCHEDULING 29

jump algorithm lex-jump algorithm
worst-case φ-smooth worst-case φ-smooth

unrestricted
identical

Θ(1) [FH79, SV07] Θ(1) Θ(1) [FH79, SV07] Θ(1)

unrestricted
related

Θ
(√
m
)

[CS80, SV07] Θ(φ) [6.2.1] Θ
(

logm
log logm

)
[CV07] Θ(log φ) [6.2.2, 6.2.3]

restricted
identical

Θ
(√
m
)

[RRSV12] Θ
(√
m
)

[6.3.1] Θ
(

logm
log logm

)
[AART06] Θ

(
logm

log logm

)
[6.3.2]

restricted
related

Θ
(√

m · smax

)
[RRSV12] Θ

(√
m · smax

)
[6.3.1] Θ

(
log S

log log S

)
[RRSV12] Ω

(
logm

log logm

)
[6.3.2]

Table 1.1: Worst-case and smoothed performance guarantees for the jump algorithm and
the lex-jump algorithm. Here, S =

∑m
i=1 si, and we assume without loss of generality that

smin = 1. With [6.X.Y] we refer to the section in this thesis where the bound is shown.

is a constant, the worst-case lower bounds carry over. This can be seen as an indication
that, in general, neither the jump algorithm nor the lex-jump algorithm yield a good
approximation ratio for scheduling with restricted machines in practice.

The situation is much more promising for the unrestricted variants. Here, the worst-
case bounds are fragile and do not carry over to the smoothed case. The interesting case
is the one of unrestricted and related machines. Even though both for the jump algorithm
and for the lex-jump algorithm the worst-case lower bound is not robust, there is a signif-
icant difference between these two: while the smoothed approximation ratio of the jump
algorithm grows linearly with the perturbation parameter φ, the smoothed approximation
ratio of the lex-jump algorithm grows only logarithmically in φ. This proves that also
in the presence of random noise lex-jump optimal schedules are significantly better than
jump optimal schedules. As mentioned earlier, this also implies that the smoothed price
of anarchy is Θ(log φ). Additionally, we show that the smoothed approximation ratio of
the list scheduling algorithm is Θ(log φ) in the model with unrestricted related machines,
even when the order of the list may be specified after the realizations of the processing
times are known. This indicates that both the lex-jump algorithm and the list scheduling
algorithm should yield good approximations on practical instances.

Our results particularly imply that the average-case performance guarantees for the
jump algorithm, the lex-jump algorithm, and the list-scheduling algorithm are constant.

In his bachelor’s thesis, Etscheid [Ets13] considers a smoothed input model where the
machine speeds rather then the processing requirements are perturbed. For the environ-
ment with unrestricted machines he obtains the same smoothed bounds for the jump,
the lex-jump, and the list scheduling algorithm as we did. For the environment with
restricted related machines, the worst-case bounds for the jump and the lex-jump algo-
rithm are rather robust against perturbations of processing requirements. Due to their
dependence on the machine speeds these bounds should, however, be more fragile in the
smoothed input model of Etscheid. Indeed, Etscheid derives bounds of Θ(m

√
φ) and

Θ(min {m, (log(mφ))/(log log(mφ))}) for the jump and the lex-jump algorithm.

30 CHAPTER 1. INTRODUCTION

1.5 Pareto-Optimal Solutions

In most real-life decision-making problems there is more than one objective to be opti-
mized. For example, when booking a train ticket, one wishes to minimize the travel time,
the fare, and the number of train changes. As different objectives are often conflicting,
usually no solution is simultaneously optimal in all criteria and one has to make a trade-off
between different objectives. The most common way to filter out unreasonable trade-offs
and to reduce the number of solutions the decision maker has to choose from is to deter-
mine the set of Pareto-optimal solutions, where a solution is called Pareto-optimal or a
Pareto optimum if no other solution is simultaneously better in all criteria.

Multiobjective optimization problems have been studied extensively in operations re-
search and theoretical computer science (see, for example, [Ehr05] for a comprehensive sur-
vey). In particular, many algorithms for generating the set of Pareto-optimal solutions for
various optimization problems such as the (bounded) knapsack problem [NU69, KW00],
the multiobjective shortest path problem [CM85, Han80, SA00], and the multiobjec-
tive network flow problem [Ehr99, MG98] have been proposed. Enumerating the set of
Pareto-optimal solutions is not only used as a preprocessing step to eliminate unreasonable
trade-offs, but often it is also used as an intermediate step in algorithms for solving op-
timization problems. For example, the Nemhauser–Ullmann algorithm [NU69] treats the
single-criterion knapsack problem as a bicriteria optimization problem in which a solution
with small weight and large profit is sought, and it generates the set of Pareto-optimal
solutions, ignoring the given capacity of the knapsack. After this set has been generated,
the algorithm returns the solution with the highest profit among all Pareto-optimal solu-
tions with weight not exceeding the knapsack capacity. This solution is optimal for the
given instance of the knapsack problem.

Generating the set of Pareto-optimal solutions, or Pareto set for short, only makes
sense if few solutions are Pareto-optimal. Otherwise, it is too costly and it does not
provide enough guidance to the decision maker. While, in many applications, it has been
observed that the Pareto set is indeed usually small (see, for example, [MHW01] for an
experimental study of the multiobjective shortest path problem), one can, for almost every
problem with more than one objective function, easily find instances with an exponential
number of Pareto-optimal solutions (see, for example, [Ehr05]).

1.5.1 Model and Previous Work

We consider a very general model of multiobjective optimization problems. An instance of
such a problem consists of d+1 objective functions V 1, . . . , V d+1 that are to be optimized
over a set S ⊆ {0, . . . ,K}n of feasible solutions for some integer K. While the set S and the
last objective function V d+1 : S → R can be arbitrary, the first d objective functions have
to be linear, that is, they are of the form V t(x) = V t

1x1+. . .+V t
nxn for x = (x1, . . . , xn) ∈ S

and t ∈ {1, . . . , d}. We assume without loss of generality that all objectives are to be

1.5. PARETO-OPTIMAL SOLUTIONS 31

minimized and that all coefficients V t
i are from the interval [−1, 1]. A solution x ∈ S is

called Pareto-optimal if there is no solution y ∈ S which is at least as good as x in all
of the objectives and even better than x in at least one. We will introduce this notion
formally in Section 7.2. The set of Pareto-optimal solutions is called the Pareto set. We
are interested in the size of this set. As a convention, we count distinct Pareto-optimal
solutions that coincide in all objective values only once. Since we compare solutions based
on their objective values, there is no need to consider more than one solution with exactly
the same values.

If one is allowed to choose the set S, the objective function V d+1, and the coefficients of
the linear objective functions V 1, . . . , V d arbitrarily, then, even for d = 1, one can easily
construct instances with an exponential number of Pareto-optimal solutions. For this
reason, Beier and Vöcking [BV04] introduced the model of φ-smooth instances, in which
an adversary can choose the set S and the objective function V d+1 arbitrarily while he
can only specify a probability density function f ti : [−1, 1]→ [0, φ] for each coefficient V t

i

according to which it is chosen independently of the other coefficients.

The smoothed number of Pareto-optimal solutions depends on the number n of integer
variables, the maximum integer K, and the perturbation parameter φ. It is defined to be
the largest expected number of Pareto-optimal solutions the adversary can achieve by any
choice of S ⊆ {0, . . . ,K}n, V d+1 : S → R, and the densities f ti : [−1, 1] → [0, φ]. In the
following we assume that the adversary has made arbitrary fixed choices for these entities.
Then we can associate with every matrix V ∈ Rd×n the number PO(V) of Pareto-optimal
solutions in S when the coefficients V t

i of the d linear objective functions take the values
given in V . Assuming that the adversary has made worst-case choices for S, V d+1, and
the densities f ti , the smoothed number of Pareto-optimal solutions is the expected value
EV [PO(V)], where the coefficients in V are chosen according to the densities f ti . For c ≥ 1
we call EV [POc(V)] the c-th moment of the smoothed number of Pareto-optimal solutions.

Beier and Vöcking [BV04] showed that for the binary bicriteria case (that is, K =
d = 1) the smoothed number of Pareto-optimal solutions is O(n4φ) and Ω(n2). The
upper bound was later simplified and improved by Beier et al. [BRV07] to O(n2φ). In
his PhD thesis [Bei04], Beier conjectured that the smoothed number of Pareto-optimal
solutions is polynomially bounded in n and φ for K = 1 and every constant d. This
conjecture was proven by Röglin and Teng [RT09], who showed that for binary solutions
and for any fixed d ≥ 1, the smoothed number of Pareto-optimal solutions is O((n2φ)f(d)),
where the function f is roughly f(d) = 2dd!. They also proved that for any constant c
the c-th moment of the smoothed number of Pareto-optimal solutions is bounded by
O
((

(n2φ)f(d)
)c)

. Recently, Moitra and O’Donnell [MO11] improved the bound for the

smoothed number of Pareto-optimal solutions significantly to O(n2dφd(d+1)/2). However,
it remained unclear how to improve the bound for the moments by their methods.

32 CHAPTER 1. INTRODUCTION

1.5.2 Our Results

Besides general φ-smooth instances, we additionally consider the special case of quasicon-
cave density functions. This means that we assume that every coefficient V t

i is chosen
independently according to its own density function f ti : [−1, 1] → [0, φ] with the addi-
tional requirement that for every density f ti there is a value xti ∈ [−1, 1] such that f ti
is monotonically increasing in the interval [−1, xti] and monotonically decreasing in the
interval [xti, 1]. We do not think that this is a severe restriction because all natural
perturbation models, like Gaussian or uniform perturbations, use quasiconcave density
functions. Furthermore, quasiconcave densities capture the essence of a perturbation:
each coefficient V t

i has an unperturbed value xti and the probability that the perturbed
coefficient takes a value z becomes smaller with increasing distance |z − xti|. We will call
these instances quasiconcave φ-smooth instances in the following.

We present significantly improved bounds for the smoothed number of Pareto optima
and the moments, answering two questions posed by Moitra and O’Donnell [MO11].

Theorem 1.5.1. For any d ≥ 1, the smoothed number of Pareto-optimal solutions is
(K+ 1)2(d+1)2 ·O(n2dφd(d+1)) for general φ-smooth instances and (K+ 1)2(d+1)2 ·O(n2dφd)
for quasiconcave φ-smooth instances.

The bound of Theorem 1.5.1 for quasiconcave φ-smooth instances improves the previ-
ously best known bound of O(n2dφd(d+1)/2) in the binary case (which is, however, valid also
for non-quasiconcave densities) and it answers a question posed by Moitra and O’Donnell
whether it is possible to improve the factor of φd(d+1)/2 in their bound [MO11].

Theorem 1.5.2. For any d ≥ 1, there is a quasiconcave φ-smooth instance for K = 1 such
that the smoothed number of Pareto-optimal solutions is Ω(min{nf(d)φd, 2Θ(n)}), where
f(1) = 2 and f(d) = d− 1.5 for d ≥ 2.

Theorem 1.5.1 and Theorem 1.5.2 together show that the exponents of both n and φ
are linear in d. The minimum in Theorem 1.5.2 is no severe restriction because the number
of Pareto-optimal solutions never exceeds 2n in the binary case. Furthermore, for d = 1
this bound matches the upper bound of O(n2φ) of Beier et al. [BRV07].

The following result bound higher moments of the smoothed number of Pareto-optimal
solutions.

Theorem 1.5.3. For any d ≥ 1 and any constant c ∈ N, the c-th moment of the smoothed
number of Pareto-optimal solutions is (K + 1)(c+1)2(d+1)2 · O((n2dφd(d+1))c) for general φ-
smooth instances and (K+1)(c+1)2(d+1)2 ·O((n2dφd)c) for quasiconcave φ-smooth instances.

This answers a question in [MO11] whether it is possible to improve the bounds for the
moments in [RT09] and it yields better concentration bounds for the smoothed number of
Pareto-optimal solutions. Our results also have immediate consequences for the expected

1.5. PARETO-OPTIMAL SOLUTIONS 33

running times of various algorithms because most heuristics for generating the Pareto set
of some problem (including the ones mentioned at the beginning of the introduction) have
a running time that depends linearly or quadratically on the size of the Pareto set. The
improved bounds on the smoothed number of Pareto-optimal solutions and the second
moment of this number yield improved bounds on the smoothed running times of these
algorithms.

Beier and Vöcking originally only considered φ-smooth instances for binary bicriteria
optimization problems (that is, for the case K = d = 1). The above described canonical
generalization of this model to binary multiobjective optimization problems, on which
Röglin and Teng’s [RT09] and Moitra and O’Donnell’s results [MO11] are based, ap-
pears to be very general and flexible on the first glance. However, one aspect limits its
applicability severely and makes it impossible to formulate certain multiobjective linear
optimization problems in this model. The weak point of the model is that it assumes that
every binary variable xi appears in every linear objective function as it is not possible to
set some coefficients V t

i deterministically to zero.
Already Spielman and Teng [ST04] and Beier and Vöcking [BV06] observed that the

zeros often encode an essential part of the combinatorial structure of a problem and they
suggested to analyze zero-preserving perturbations in which it is possible to either choose
a density f ti according to which the coefficient V t

i is chosen or to set it deterministi-
cally to zero. Zero-preserving perturbations have been studied in [SST06] and [BV06]
for analyzing smoothed condition numbers of matrices and the smoothed complexity of
binary optimization problems. For the smoothed number of Pareto-optimal solutions no
upper bounds are known that are valid for zero-preserving perturbations (except trivial
worst-case bounds), and in particular the bounds proven in [RT09] and [MO11] do not
seem to generalize easily to zero-preserving perturbations. In this thesis, we present new
techniques for analyzing the smoothed number of Pareto-optimal solutions that can also
be used for analyzing zero-preserving perturbations.

Theorem 1.5.4. For any d ≥ 1, the smoothed number of Pareto-optimal solutions is (K+
1)(d+1)5 ·O((nφ)d

3+d2+d) for general φ-smooth instances with zero-preserving perturbations
and (K+1)(d+1)5 ·O(nd

3+d2+dφd) for quasiconcave φ-smooth instances with zero-preserving
perturbations.

Note, that for constant K like in the binary case the factor (K+ 1)poly(d) is a constant
for fixed d. We will see that they allow us not only to extend the smoothed analysis to
linear multiobjective optimization problems that are not captured by the previous model
without zero-preserving perturbations, but that they also enable us to bound the smoothed
number of Pareto-optimal solutions in problems with non-linear objective functions. In
particular, the number of Pareto-optimal solutions for polynomial objective functions can
be bounded by Theorem 1.5.4.

Moreover note that our analysis also covers the general case when the set S is an arbi-
trary subset of {−K, . . . ,K}n. In this case, consider the shifted set S ′ = {x+ u : x ∈ S} ⊆

34 CHAPTER 1. INTRODUCTION

{0, . . . , 2K} for u = (K, . . . ,K) and the functions W 1, . . . ,W d+1 : S ′ → R, defined as
W tx = V tx for t = 1, . . . , d and W d+1x = V d+1(x− u). The Pareto set with respect to S
and

{
V 1, . . . , V d+1

}
and the Pareto set with respect to S ′ and

{
W 1, . . . ,W d+1

}
are iden-

tical except for a shift of (V 1u, . . . , V du, 0) in the image space. Hence, the sizes of both
sets are equal. All aforementioned results can be applied for S ′ and

{
W 1, . . . ,W d+1

}
, so

they also hold for S and
{
V 1, . . . , V d+1

}
if one replaces K by 2K.

Let us remark that for the bicriteria case d = 1, which was studied by Beier and
Vöcking, zero-preserving perturbations are not more powerful than other perturbations
(see Section 7.1). Zero-preserving perturbations become interesting when we consider
more than two objectives.

Applications to Path Trading Berger et al. [BRvdZ11] study a model for routing in
networks. In their model there is a graph G = (V,E) whose vertex set V is partitioned
into mutually disjoint sets V1, . . . , Vk. We can think of G as the Internet graph whose
vertices are owned and controlled by k different autonomous systems (ASes). We denote
by Ei ⊆ E the set of edges inside Vi. The graph G is undirected, and each edge e ∈ E
has a length `e ∈ R≥0. The traffic is modeled by a set of requests, where each request is
characterized by its source node s ∈ V and its target node t ∈ V . The Border Gateway
Protocol (BGP) determines for each request (s, t) the order in which it has to be routed
through the ASes. We say that a path P from s to t is valid if it connects s to t and visits
the ASes in the order specified by the BGP protocol. This means that the first AS has
to choose a path P1 inside V1 from s to some node in V1 that is connected to some node
v2 ∈ V2. Then the second AS has to choose a path P2 inside V2 from v2 to some node in V2

that is connected to some node v3 ∈ V3 and so on. For simplicity, the costs of routing a
packet between two ASes are assumed to be zero, whereas AS i incurs costs of

∑
e∈Pi `e

for routing the packet inside Vi along path Pi. In the common hot-potato routing, every
AS is only interested in minimizing its own costs for each request. To model this, there
are k objective functions that map each valid path P to a cost vector (C1(P), . . . , Ck(P)),
where

Ci(P) =
∑

e∈P∩Ei

`e for i ∈ {1, . . . , k} .

In [BRvdZ11] the problem of path trading is considered. If there is only one request,
then no AS has an incentive to deviate from the hot-potato strategy. The problem becomes
more interesting if there are multiple requests that have to be satisfied. Consider, for
example, the three ASes depicted in Figure 1.3 and assume that there are three requests
(s1, t1), (s2, t2), and (s3, t3). Moreover, assume that the BGP specifies that any request
from s ∈ Vi to t ∈ Vj shall be routed directly from AS i to AS j. If all ASes follow
the hot-potato strategy, then they decide for the routes (s1, u1, w2, s1), (s2, u2, w3, t2), and
(s3, u3, w1, t3). Each AS i incurs costs of 1 for the request (si, ti) and costs of 9 for the
request (sj, tj) for which tj ∈ Vi.

1.5. PARETO-OPTIMAL SOLUTIONS 35

s1 = t3 s2 = t1

s3 = t2

1

1

1

9

9

9

2

2
2

u1

v1

w1

w2

v2

u2

u3 w3

v3

AS1 AS2

AS3

Figure 1.3: A network graph with three autonomous systems

Now assume that AS i routes request (si, ti) from si to vi. Then it incurs costs of 2
(instead of 1) for this route, which is worse than if it had chosen the hot-potato route.
However, if all ASes agree on this new strategy, then each AS i only incurs costs of 2
(instead of 9) for the request (sj, tj) for which tj ∈ Vi. Hence, the total costs of each AS
for satisfying the three requests (si, ti) is 4 instead of 10.

The path trading problem asks whether there exist routes for given requests (si, ti)
such that the total costs of each involved AS is less or equal the total costs it would incur
if all would follow the hot-potato strategy. Such routes are called feasible path trades.

Consider K requests (s1, t1), . . . , (sK, tK) and si-ti-paths P1, . . . , PK that comply with
the BGP. For an edge e ∈ E let xe ∈ {0, . . . ,K} be the number of paths P1, . . . , PK that

contain edge e. We can encode the routes P1, . . . , PK by an integer vector x ∈ {0, . . . ,K}|E|
consisting of the values xe. Let S denote the set of encodings of all valid routes P1, . . . , PK.
The question whether there is a feasible path trade for the requests (si, ti) reduces to the
question whether the vector x? that encodes the hot-potato routes P ?

1 , . . . , P
?
K is not

Pareto-optimal with respect to S and {C1, . . . , Ck}, where the objectives Ci : S → R,

Ci(x) =
∑
e∈Ei

`exe ,

describe the total costs of AS i for the routes encoded by x. As the Pareto set can be
exponentially large in the worst case, Berger et al. [BRvdZ11] proposed to study φ-smooth
instances in which an adversary chooses the graph G and a density fe : [0, 1]→ [0, φ] for
every edge length `e according to which it is chosen. It seems as if we could easily apply
the results in [RT09] and [MO11] to bound the smoothed number of Pareto-optimal
paths because all objective functions Ci are linear in the binary variables xe, e ∈ E.

36 CHAPTER 1. INTRODUCTION

Note, however, that different objective functions contain different variables xe because the
coefficients of all xe with e /∈ Ei are set to zero in Ci. This is an important combinatorial
property of the path trading problem that has to be obeyed. In the model in [RT09]
and [MO11] it is not possible to set coefficients deterministically to zero. The best we can
do is to replace each zero by a uniform density on the interval [0, 1/φ]. Then, however,
an AS would incur positive costs for any edge and not only for its own edges that are
used, which does not resemble the structure of the problem. Theorem 1.5.4, which allows
zero-preserving perturbations, yields immediately the following result.

Corollary 1.5.5. The smoothed number of Pareto-optimal valid paths is polynomially
bounded in |E|, φ, and K for any constant number k of ASes.

Applications to Non-linear Objective Functions Even though we assumed above
that the objective functions V 1, . . . , V d are linear, we can also extend the smoothed anal-
ysis to non-linear objective functions. We consider first the bicriteria case d = 1. As
above, we assume that the adversary has chosen an arbitrary set S of feasible solutions
and an arbitrary injective objective function V 2 : S → R. In addition to that the ad-
versary can choose m1 arbitrary functions I1

i : S → {0, . . . ,K}, i ∈ {1, . . . ,m1}. The
objective function V 1 : S → R is defined to be a weighted sum of the functions I1

i :

V 1(x) =

m1∑
i=1

w1
i I

1
i (x) ,

where each weight w1
i is randomly chosen according to a density f 1

i : [−1, 1] → [0, φ]
given by the adversary. There is a wide variety of functions V 1(x) that can be expressed
in this way. We can, for example, express every polynomial if we let I1

1 , . . . , I
1
m1

be its
monomials. Note, that the value K then depends on the set S and the maximum degree
of the monomials.

We can linearize the problem by introducing a binary variable for every function I1
i .

Using the function π : S → {0, . . . ,K}m1 , defined by π(x) = (I1
1 (x), . . . , I1

m1
(x)), the set

of feasible solutions becomes S ′ = {π(x) : x ∈ S} ⊆ {0, . . . ,K}m1 . For this set of feasible
solutions we define W 1 : S ′ → R and W 2 : S ′ → R as follows:

W 1(y) =

m1∑
i=1

w1
i yi and W 2(y) = min

{
V 2(x) : x ∈ S and π(x) = y

}
.

One can easily verify that the problem defined by S, V 1, and V 2 and the problem de-
fined by S ′, W 1, and W 2 are equivalent and have the same number of Pareto-optimal
solutions. The latter problem is linear and hence we can apply the result by Beier
et al. [BRV07], which yields that the smoothed number of Pareto-optimal solutions is
bounded by poly(K+ 1) ·O(m2

1φ). This shows in particular that the smoothed number of

1.6. OUTLINE AND BIBLIOGRAPHICAL NOTES 37

Pareto-optimal solutions is polynomially bounded in the number of monomials, the max-
imum integer in the monomials’ ranges, and the density parameter for every polynomial
objective function V 1.

We can easily extend these considerations to multiobjective problems with d ≥ 2. For
these problems the adversary chooses an arbitrary set S, numbers m1, . . . ,md ∈ N, and
an arbitrary injective objective function V d+1 : S → R. In addition to that he chooses
arbitrary functions I ti : S → {0, . . . ,K} for t ∈ {1, . . . , d} and i ∈ {1, . . . ,mt}. Every
objective function V t : S → R is a weighted sum of the functions I ti :

V t(x) =
mt∑
i=1

wtiI
t
i (x) ,

where each weight wti is randomly chosen according to a density f ti : [−1, 1]→ [0, φ] chosen
by the adversary. Similar as the bicriteria case, also this problem can be linearized.
However, the previously known results about the smoothed number of Pareto-optimal
solutions can only be applied if every objective function V t is composed of exactly the
same functions I ti . Theorem 1.5.4 yields the following result.

Corollary 1.5.6. The smoothed number of Pareto-optimal solutions for multiobjective op-
timization problems with non-linear integral objectives is polynomially bounded in

∑t
i=1 mi,

K, and φ.

As a special case of non-linear objective functions we consider polynomials. Now, our
set S is again a subset of {0, . . . ,K}n and the objective functions V t, t ∈ {1, . . . , d}, are
polynomials. That is, the objectives V t are weighted sums of monomials. The adversary
can specify a φ-bounded density on [−1, 1] for every weight according to which it is
chosen. We call such an instance a φ-smooth instance with polynomial objective functions.
Denote the total number of monomials by m and let ∆ denote the maximum degree of
the monomials. Then the following corollary holds.

Corollary 1.5.7. For any d ≥ 1, the smoothed number of Pareto-optimal solutions is
(K∆ + 1)(d+1)5 · O((mφ)d

3+d2+d) for general φ-smooth instances with polynomial objective
functions and (K∆ + 1)(d+1)5 · O(md3+d2+dφd) for quasiconcave φ-smooth instances with
polynomial objective functions.

1.6 Outline and Bibliographical Notes

In Chapter 2 we introduce the essential techniques that are used throughout this thesis.
Fundamental theorems concerning random variables are stated in Chapter 3. Subse-
quently, we prove the results about the successive shortest path algorithm (Chapter 4),
about finding short paths on polyhedra (Chapter 5), about the jump, the lex-jump, and

38 CHAPTER 1. INTRODUCTION

the list scheduling algorithm (Chapter 6), and about Pareto-optimal solutions (Chapter 7).
Chapter 8 is devoted to conclusions and directions of future research.

The results of Chapter 4 have been presented in preliminary form at the following con-
ference:

? [BCMR13] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and Heiko Röglin.
Smoothed analysis of the successive shortest path algorithm. In Proceedings of the
24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1180–1189,
2013.

The results of Chapter 5 have been presented in preliminary form at the following con-
ference:

? [BR13] Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the
shadow vertex algorithm. In Proceedings of the 40th International Colloquium on
Automata, Languages and Programming (ICALP), Part I, pages 279–290, 2013.

The results of Chapter 6 have been presented in part in preliminary form at the following
conference:

? [BRRV11] Tobias Brunsch, Heiko Röglin, Cyriel Rutten, and Tjark Vredeveld.
Smoothed performance guarantees for local search. In Proceedings of the 19th An-
nual European Symposium on Algorithms (ESA), pages 772–783, 2011.

This publication will also appear in Mathematical Programming, Series A. These results
have also appeared in the PhD thesis of Cyriel Rutten [Rut13].

The results of Chapter 7 have been presented in part in preliminary form at the following
conferences:

? [BR11] Tobias Brunsch and Heiko Röglin. Lower bounds for the smoothed number
of pareto optimal solutions. In Proceedings of the 8th Annual Conference on Theory
and Applications of Models of Computation (TAMC), pages 416–427, 2011.

? [BR12] Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multi-
objective optimization. In Proceedings of the 44th ACM Symposium on Theory of
Computing (STOC), pages 407–426, 2012.

Chapter 2

Probabilistic Tools for Smoothed
Analyses

In this chapter we present several important tools and techniques that are often used in
smoothed or other probabilistic analyses, particularly in this thesis. For a better under-
standing we will also give motivations for these tools and show exemplary applications
illustrating their usefulness.

2.1 Union Bound

Given n events A1, . . . , An, the probability of the union A =
⋃n
i=1Ai is bounded by

Pr [A] ≤∑n
i=1 Pr [Ai]. If the events Ai are pairwise disjoint, then we even have equality.

On the other hand, the more events Ai can occur simultaneously, the worse the quality
of the union bound. If, for instance, A1 = . . . = An = A, then the union bound yields
Pr [A] ≤∑n

i=1 Pr [A] = n ·Pr [A]. This means that we lose a factor of n.

We often have a non-trivial bound Pr [Ai] ≤ p for each event Ai and are interested
in the probability of an event B ⊆ A. In other words, event B is “covered” by the
events Ai whose probabilities we can bound from above. Applying a union bound, we
obtain Pr [B] ≤ np. Note that this bound is non-trivial only for p < 1/n.

The union bound is a very simple tool. Nevertheless, it can make an analysis much
shorter if one is only interested in an upper bound. As an example, we consider a deck of
32 cards containing 4 aces and 28 other cards. Let us assume that there are four players,
each of which draws two cards uniformly at random from the deck and keeps them as
hand cards. What is the probability of event A that at least one of the players has two
aces? If we are interested in the exact value, then one way to compute this value is to
analyze the probability of the complementary event Ā. We can express event Ā as the
disjoint union of the events B0, . . . , B4, where Bi denotes the event that exactly i players
draw exactly one ace whereas the other players do not draw any ace. Due to a symmetry

39

40 CHAPTER 2. PROBABILISTIC TOOLS FOR SMOOTHED ANALYSES

argument and further considerations we obtain that the probability of event Bi equals
Pr [Bi] =

(
4
i

)
·2i ·

((
4
i

)
·
(

28
8−i

))
/
((

32
8

)
·
(

8
i

))
. Consequently, the probability of event A equals

Pr [A] = 1−
4∑
i=0

(
4

i

)
· 2i ·

(
4
i

)
·
(

28
8−i

)(
32
8

)
·
(

8
i

) ≈ 0.0482 .

Even for such a simple random experiment the analysis is not trivial. Let us now denote
by Ai the event that player i draws two aces. With this notion, event A is the union of
the events A1, . . . , A4. This union is not disjoint as there might be two players that both
draw two aces. However, this is very unlikely. Hence, a union bound should yield a good
approximation. The probability of each event Ai equals Pr [Ai] =

(
4
2

)
/
(

32
2

)
. Applying a

union bound yields

Pr [A] ≤ 4 ·
(

4
2

)(
32
2

) ≈ 0.0484 .

This bound is very close to the exact value of Pr [A]. The example above demonstrates
that a union bound is sometimes a good alternative to an exact analysis if one is only
interested in an upper bound.

2.2 Principle of Deferred Decisions

We consider an event A = A(X, Y) which depends on the independent random vectors X
and Y . Let Pr [A |Y = y] denote the probability of event A to occur under the condition
that Y = y, that is, whether A occurs now only depends on X. The principle of deferred
decisions states that if Pr [A |Y = y] ≤ p for any possible realization y of Y , then Pr [A] ≤
p. The same holds true if we exchange both upper bounds by lower bounds or by equalities.

In many analyses handling the whole amount of information about a random experi-
ment is very difficult. Sometimes, a part of this information is not essential for bounding
or computing the probability of a given event A. If this is the case, then we can reduce the
randomness of the experiment to the intrinsic portion X by letting an adversary specify
the irrelevant part Y arbitrarily.

For an application of the principle of deferred decisions we consider the following exam-
ple (compare [MU05], Exercise 1.15). Given n independent random variables X1, . . . , Xn

that are uniformly drawn from [0, 1), what is the probability that the fractional part
R(S) := S − bSc of the sum S =

∑n
i=1 Xi falls into a given interval [a, b] ⊆ [0, 1)?

Without the principle of deferred decisions this is an overwhelming task. We could,
for instance, compute the density of S and integrate it over the set A =

⋃n−1
k=0 [a+k, b+k].

Both subproblems are very challenging. With the principle of deferred decisions the
problem becomes much easier: We observe that for any fixed real s the fractional part
R(s + X1) of s + X1 is uniformly distributed on [0, 1). In consequence, the probability
that R(s + X1) falls into the interval [a, b] equals the length b − a of the interval [a, b],

2.3. INTERVAL PROBABILITY BOUND 41

independently of the choice of s. Now we fix the random vector (X2, . . . , Xn) arbitrarily,
say (X2, . . . , Xn) = (x2, . . . , xn), and set s =

∑n
i=2 xi. Then S = s + X1. As X1 and

X2, . . . , Xn are independent of each other, we obtain

Pr [R(S) ∈ [a, b] | (X2, . . . , Xn) = (x2, . . . , xn)]

= Pr [R(s+X1) ∈ [a, b] | (X2, . . . , Xn) = (x2, . . . , xn)]

= b− a

due to previous considerations. As this equation holds for any possible realization of
(X2, . . . , Xn), the principle of deferred decisions yields Pr [R(S) ∈ [a, b]] = b− a.

2.3 Interval Probability Bound

The interval probability bound is probably the simplest observation tailored to the input
model of smoothed analysis. In its pure form it states that the probability that a random
variable which is drawn according to a probability density f : R → [0, φ] falls into a
given interval I of length ` is bounded from above by `φ. This statement can easily be
generalized to an arbitrary number n of random variables and to arbitrary measurable
sets in Rn. In this thesis we will only consider Cartesian products of intervals of same
length, that is, hypercubes.

The interval probability bound becomes more interesting when we combine it with the
principle of deferred decisions. Let C be a function mapping points (y1, . . . , yn) from Rn

to an arbitrary hypercube C(y1, . . . , yn) ⊆ Rk with side length ` and let Y1, . . . , Yn
and Z1, . . . , Zk be independent random variables that are drawn according to proba-
bility densities fi : R → [0, φ] and gj : R → [0, φ], respectively. Then the probabil-
ity Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Yn)] that (Z1, . . . , Zk) falls into the random hypercube
C(Y1, . . . , Yn) is bounded from above by (`φ)k = `kφk.

Again, this statement can be further generalized: Let X1, . . . , Xm be independent
random variables drawn according to probability densities fi : R → [0, φ]. Further-
more, let A ∈ R(n+k)×m be a matrix with linearly independent rows. We consider the
random variables Y1, . . . , Yn, Z1, . . . , Zk that are defined by (Y1, . . . , Yn, Z1, . . . , Zk)

T =
A · (X1, . . . , Xm)T, that is, they are linearly independent linear combinations of the ran-
dom variables X1, . . . , Xm. As before, the function C maps a tuple (y1, . . . , yn) to a
hypercube with side length `. Röglin and Teng [RT09] already observed that the proba-
bility Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Yn)] that (Z1, . . . , Zk) falls into the random hypercube
C(Y1, . . . , Yn) is bounded from above by `kφn+k · g(A) for some appropriate function g.
If we compare this bound with the bound `kφk for the simple setting discussed before,
then we observe the same dependence on `. This result implies that linearly independent
linear combinations of random variables can, in some sense, be treated like independent
random variables by sacrificing a factor of φn · g(A).

42 CHAPTER 2. PROBABILISTIC TOOLS FOR SMOOTHED ANALYSES

Sometimes it would be desirable to dispose of the additional factor φn. Without
further restrictions to the densities this might be very difficult or even impossible. In
this thesis we give a very natural restriction for the densities for which the dependence
on φ decreases from φn+k to φk: If all densities fi are quasiconcave, that is, each of them
is monotonically increasing up to some point starting from which it is monotonically
decreasing, then the probability Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Yn)] that (Z1, . . . , Zk) falls
into the random hypercube C(Y1, . . . , Yn) is bounded from above by `kφk · h(A) for some
appropriate function h.

For the details and a proof we refer to Theorem 3.3. In Theorem 5.6.1 and Theo-
rem 7.9.1 we consider specific classes of matrices A and derive adequate upper bounds for
g(A) and h(A).

2.4 Extraction of Fragile Worst-Case Properties

Smoothed analysis is used to explain why some algorithms behave much better in practice
than in the worst case. For this to work, worst-case instances need to have an inherent
property that is not robust against random noise. The strategy of the extraction of fragile
worst-case properties makes this fact explicit and splits the analysis into two parts: In
the first part, we identify a property of worst-case instances which dominates worst-case
analyses but is unlikely to be encountered in practice. For this part we consider arbitrary
inputs and make no assumptions like smoothness. In the second part we show that the
extracted property is fragile in the smoothed input model.

This separation into two parts increases the reusability of insights gained from the
analysis. All results from the first part do not depend on the smoothed input model
and are also valid for worst-case analyses or smoothed analyses with a different input
model. The bachelor’s thesis of Etscheid [Ets13] about scheduling algorithms serves as an
example. Etscheid analyzes the same scheduling heuristics as we consider in Chapter 6
but for a different input model. In this model the machine speeds rather than the jobs’
processing requirements are perturbed. Several statements used to bound the performance
guarantees of the lex-jump algorithm and the list scheduling algorithm from above in the
setting with unrestricted related machines also proved valuable in the analysis of Etscheid.

Note that the strategy as it is described above only works if there is a strict separa-
tion into good and bad instances for the algorithm at hand. Usually, the measure which
describes how good the algorithm performs on which instance is not that binary. This
is why, in general, the property identified in the first part of the analysis is parameter-
ized. Let us illustrate this with the following example. We consider a heuristic for an
optimization problem on a set I of instances. For an instance I ∈ In of input length n
the heuristic computes a solution which is worse than the optimal solution by a factor of
α(I) ≥ 1. Thus, the worst-case approximation factor of the heuristic, which we allow to
be a function in n, is α?(n) = maxI∈In α(I) which can be arbitrarily large. Now let us

2.5. DISCRETIZATION 43

turn to a smoothed analysis. In the first part of the analysis we introduce a property Pt
for which we show that for any t ≥ 1 each instance I with α(I) ≥ t has propery Pt. This
is the part of the analysis that exposes the nature of worst-case instances for the heuristic
at hand: Instances that cause the approximation factor to be larger than some value t
must have property Pt.

In the second part of the analysis we show that instances which have property Pt are
unlikely to be encountered in the smoothed input model if t is large. This explains why
worst-case instances can be considered degenerate in some sense. For this, we consider
arbitrary densities that are bounded by the smoothing parameter φ and fix them once
and for all. These densities define a probability distribution on the set In of instances I
with input length n which we express by I ∼ In. Let us denote by Et = Et(I) the event
that an instance I has property Pt. The next step is to derive an upper bound g(n, φ, t)
for the probability of event Et where g(n, φ, t) → 0 for fixed n and φ and for t → ∞.
This upper bound must be valid independly of the probability densities. Hence, for any
feasible choice of probability densities one can conclude that

PrI∼In [α(I) ≥ t] ≤ PrI∼In [I has property Pt] = PrI∼In [Et] ≤ g(n, φ, t) , (2.1)

where the first inequality stems from part one and the second inequality stems from part
two of the analysis. This bound can be used to obtain a bound that holds with high
probability. Let t̂(n, φ) be a function for which g(n, φ, t̂(n, φ)) ≤ 1/n for any n and any φ.
Then, with high probability, the heuristic has an approximation ratio of at most t̂(n, φ).

Inequality (2.1) can also be used to bound the expectation of α(I). Using the well-
known formula E [X] =

∫∞
0

Pr [X ≥ x] dx for non-negative random variables X we obtain

EI∼In [α(I)] =

∫ ∞
0

PrI∼In [α(I) ≥ t] dt ≤ 1 +

∫ ∞
1

g(n, φ, t) dt .

As a concrete example for the extraction of fragile worst-case properties we consider
the lex-jump algorithm and the list scheduling algorithm for scheduling with unrestriced
related machines in the model described in Section 1.4.2. We show that any instance I
on which these algorithms generate a schedule whose makespan is larger than the optimal
makespan by a factor α(I) ≥ t has the following property Pt: at least half of the jobs of I
have a processing requirement of at most 2−t/6+3. As this bound decreases exponentially
with t, this implies that the expected approximation ratios of the lex-jump algorithm and
the list scheduling algorithm are O(log φ) on unrestricted related machines.

2.5 Discretization

A strong technique for analyzing counting problems is discretization. We are interested
in a discrete random variable N that takes positive integers and we want to bound the
expected value of N . We are not given direct information about N , but we have N
random variables X1, . . . , XN with domain [0, `] and the following properties:

44 CHAPTER 2. PROBABILISTIC TOOLS FOR SMOOTHED ANALYSES

(1) Pr [∃i : Xi ∈ [t, t+ ε)] ≤ k1ε for arbitrary real numbers t and ε > 0 and an appro-
priate constant k1,

(2) Pr [∃i, j : i 6= j and |Xi −Xj| < ε]→ 0 for ε→ 0, and

(3) N ≤ k2 for an appropriate constant k2.

Then E [N] ≤ k1`. To get a better feeling for this concept let us give a very abstract view
of how to bound the expectation of the number N of augmentation steps of the successive
shortest path (SSP) algorithm for the minimum-cost flow problem in the model described
in Section 1.2.3. We identify the ith iteration of the SSP algorithm with the length Xi

of the path the SSP algorithm augments along in this iteration. We can show that the
lengths Xi are monotonically increasing. As the cost of each edge is at most 1 and as
each path contains at most n edges, this implies that Xi ∈ [0, n] for any iteration i. Now
we can translate the three properties above as follows.

(1) For arbitrary real numbers t and ε > 0 the probability that the SSP algorithm aug-
ments along a path whose length lies in the interval [t, t+ε) is (at most) proportional
to ε. Essentially, we show that Pr [∃i : Xi ∈ [t, t+ ε)] ≤ 2mφε.

(2) It is unlikely that the lengths of the augmenting paths of two consecutive iterations
differ only by a tiny amount. In particular, Pr [∃i 6= j : |Xi −Xj| < ε] ≤ 2n2nφε,
which tends to 0 as ε tends to 0.

(3) The worst-case number of iterations of the SSP algorithm is finite.

These three properties imply that the expected number of augmentation steps of the
successive shortest path algorithm is bounded by E [N] ≤ 2mφn = O(mnφ).

We do not prove the correctness of discretization formally here, but describe the idea
how the claimed bound can be derived. If we choose a large integer n and partition the
interval [0, `] into n subintervals I1, . . . , In of length `/n, then each interval contains at
most one variable Xi with high probability (Property (2)). Hence, the expected number of
Xi’s in an interval Ik equals the probability that Ik contains a variable Xi. The probability
for this event is bounded by k1 · (`/n) for each interval (Property (1)). Since we have n
intervals, we obtain the claimed bound by linearity of expectation. Property (3) is used to
cover the failure event that there is an interval which contains more than one variable Xi.
In this case, we bound N by its worst-case bound yielding an additional term of f(n) · k2,
where f(n) → 0 for n → ∞. As we can choose n arbitrarily large for the analysis, this
additional term can be neglected.

Discretization can also be generalized to higher dimensions and to partitioning the
interval [0, `] into variable sized subintervals. Often, the most effort for applying dis-
cretization is spent on proving Property (1).

Chapter 3

Some Probability Theory

In this chapter we state three theorems about random variables that are applied in this
dissertation. The first two of them are well-known and we only list them for the sake of
completeness. Theorem 3.3 considers linear combinations of independent random vari-
ables. A special case of this theorem has already been stated by Röglin and Teng ([RT09],
Lemma 3.3). The theorem turns out to be useful in Chapter 5 (see Theorem 5.6.1) and
in Chapter 7 (see Theorem 7.9.1).

Theorem 3.1 (Markov’s inequality). Let X be a nonnegative random variable. For any
real t > 0 the probability that X exceeds t can be bounded from above by

Pr[X ≥ t] ≤ E [X]

t
.

Theorem 3.2 (Hoeffding’s inequality). Let X1, . . . , Xn be independent random variables,
let X =

∑n
j=1Xj, and let µ = E [X]. If each random variable Xj takes values in [aj, bj]

for some reals aj and bj, then for any t > 0 the probability that X deviates from its
expectation can be bounded from above by

Pr [X ≤ E[X]− t] ≤ exp

(
−2t∑n

j=1(bj − aj)2

)
and

Pr [X ≥ E[X] + t] ≤ exp

(
−2t∑n

j=1(bj − aj)2

)
.

The following theorem bounds the probability that linear combinations of independent
random variables fall into a hypercube of side length ε that depends on other linear
combinations of these variables. For more explanation see the discussion about the interval
probability bound in Chapter 2.

45

46 CHAPTER 3. SOME PROBABILITY THEORY

Theorem 3.3. Let m ≤ n be integers and let X1, . . . , Xn be independent random variables,
each with a probability density function fi : [−1, 1] → [0, φ], let A ∈ Rm×n be a matrix of
rank m, let k ∈ [m− 1] be an integer, let (Y1, . . . , Ym−k, Z1, . . . , Zk)

T = A · (X1, . . . , Xn)T

be the linear combinations of X1, . . . , Xn given by A, and let C be a function mapping
a tuple (y1, . . . , ym−k) ∈ Rm−k to a hypercube C(y1, . . . , ym−k) ⊆ Rk with side length ε.
Then

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤
(2mα)m−k

| det(Â)|
· φmεk ,

where Â is an arbitrary full-rank m × m-submatrix of A and α denotes the maximum
absolute value of the entries of Â. If all densities fi are quasiconcave, then even the
stronger bound

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ 2k ·
∑
I

| det(ÂI)|
| det(Â)|

· φkεk

holds. The sum runs over all tuples I = (i1, . . . , ik) for which 1 ≤ i1 < . . . < ik ≤ m. For
such a tuple I, matrix ÂI is the (m−k)× (m−k)-submatrix of Â that is obtained from Â
by removing the last k rows and the columns with the numbers i ∈ I.

Let us remark that Röglin and Teng [RT09] gave the proof for the first claim of
Theorem 3.3 for binary matrices. This proof can be generalized to arbitrary matrices and
we only state it for the sake of completeness. Most part of the work has to be done for
proving the second claim of Theorem 3.3. Note, that a function f : [a, b] → R is called
quasiconcave if there exists a real x ∈ [a, b] such that f is monotonically increasing on
[a, x] and monotonically decreasing on [x, b].

It is not clear that the bound stated in the second claim is stronger than the one from
the first claim. However, in this thesis our focus is on the exponent of φ.

Proof. First of all we show that we can assume w.l.o.g. that n = m. Otherwise, we can
choose m indices i1 < . . . < im ∈ [n] for which the matrix A′ = [ai1 , . . . , aim] is a full-
rank square submatrix of A. For the sake of simplicity let us assume that ik = k for
k = 1, . . . ,m. We apply the principle of deferred decisions and assume that Xm+1, . . . , Xn

are fixed arbitrarily to some values xm+1, . . . , xn.
Let A′′ = [am+1, . . . , an], A′′1 = A′′|1,...,m−k, A′′2 = A′′|m−k+1,...,m, and x = (xm+1, . . . , xn).

Let us further introduce the random vector (Y ′1 , . . . , Y
′
m−k, Z

′
1, . . . , Z

′
k) = A′ · (X1, . . . , Xm)

and the function C ′(Y ′1 , . . . , Y
′
m−k) = C((Y ′1 , . . . , Y

′
m−k) +A′′1 · x)−A′′2 · x. Observing that

(Y ′1 , . . . , Y
′
m−k) + A′′1 · x = (Y1, . . . , Ym−k) and (Z ′1, . . . , Z

′
k) + A′′2 · x = (Z1, . . . , Zk), we

obtain

(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k) ⇐⇒ (Z ′1, . . . , Z
′
k) ∈ C(Y1, . . . , Ym−k)− A′′2 · x

⇐⇒ (Z ′1, . . . , Z
′
k) ∈ C ′(Y ′1 , . . . , Y ′m−k) .

47

The probability of the last event can be bounded by applying Theorem 3.3 for the m×m-
matrix A′.

In the remainder of this proof we assume that n = m. As matrix A is a full-rank
square matrix, its inverse A−1 exists and we can write

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Yn−k)] =

∫
y∈Rn−k

∫
z∈C(y)

fY,Z(y, z)dzdy

=

∫
y∈Rn−k

∫
z∈C(y)

| det(A−1)| · fX
(
A−1 · (y, z)

)
dzdy

= | det(A−1)| ·
∫
y∈Rn−k

∫
z∈C(y)

fX
(
A−1 · (y, z)

)
dzdy

≤ | det(A−1)| · εk ·
∫
y∈Rn−k

max
z∈Rk

fX
(
A−1 · (y, z)

)
dy ,

where fY,Z denotes the common density of the variables Y1, . . . , Yn−k, Z1, . . . , Zk and fX =∏n
i=1 fi denotes the common density of the variables X1, . . . , Xn. The second equality is

due to a change of variables. In general, we can bound the integral in the formula above
by∫

y∈Rn−k
max
z∈Rk

fX
(
A−1 · (y, z)

)
dy ≤

∫
y∈[−nα,nα]n−k

max
z∈Rk

fX
(
A−1 · (y, z)

)
dy

≤
∫
y∈[−nα,nα]n−k

φndy = (2nα)n−kφn = (2mα)m−kφm ,

where the first inequality is due to the fact that all variables Yi can only take values in
the interval [−nα, nα] as all entries of matrix A are from [−α, α] and as all variables Xj

can only take values in the interval [−1, 1].
To prove the statement about quasiconcave functions we first consider arbitrary rect-

angular functions, i.e., functions that are constant on a given interval, and zero otherwise.
This will be the main part of our analysis. Afterwards, we analyze sums of rectangular
functions and, finally, we show that quasiconcave functions can be approximated by such
sums.

Lemma 3.4. For i ∈ [n] let φi ≥ 0, let Ii ⊆ R be an interval of length `i, and let
fi : R→ R be the function

fi(x) =

{
φi if x ∈ Ii,
0 otherwise.

Moreover, let f : Rn → R be the function f(x1, . . . , xn) =
∏n

i=1 fi(xi) and let A ∈ Rn×n

be an invertible matrix. Then∫
y∈Rn−k

max
z∈Rk

f
(
A−1 · (y, z)

)
dy ≤ 2kχ ·

∑
I

(
| det(AI)| ·

∏
i/∈I

`i

)

48 CHAPTER 3. SOME PROBABILITY THEORY

where χ =
∏n

i=1 φi and where the sum runs over all tuples I = (i1, . . . , ik) for which
1 ≤ i1 < . . . < ik ≤ n. For such a tuple I, matrix AI is the (n− k)× (n− k)-submatrix
of A that is obtained from A by removing the last k rows and the columns with the numbers
i ∈ I.

Proof. Function f takes the value χ on the n-dimensional box Q =
∏n

i=1 Ii and is zero
otherwise. Hence, ∫

y∈Rn−k
max
z∈Rk

f
(
A−1 · (y, z)

)
dy = χ · vol(Q′)

for

Q′ =
{
y ∈ Rn−k : ∃z ∈ Rk such that A−1 · (y, z) ∈ Q

}
=
{
y ∈ Rn−k : ∃z ∈ Rk∃x ∈ Q such that (y, z) = A · x

}
= (P · A)(Q) ,

where P :=
[
In−k,O(n−k)×k

]
is the projection matrix that removes the last k entries from

a vector of length n. In the remainder of this proof we bound the volume of M(Q) where
M :=P ·A ∈ R(n−k)×n. Let ai=:c0

i and bi=:c1
i be the left and the right bound of interval Ii,

respectively. For an index tuple I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ n, and a bit tuple
J = (j1, . . . , jk) ∈ {0, 1}k, let

F J
I =

n∏
i=1

{
{cjtit} if i = it ∈ I ,
Ii if i /∈ I ,

be one of the 2k ·
(
n
k

)
(n−k)-dimensional faces of Q. We show that M(Q) ⊆ ⋃I

⋃
JM

(
F J
I

)
.

Let y ∈M(Q), i.e., there is a vector x ∈ Q for which y = M ·x. Now, consider the polytope

R = {(x′, s′) ∈ Rn × Rn : M · x′ = y′ and x′ + s′ = b′ and x′, s′ ≥ 0} ,
where y′ = y−M ·a and b′ = b−a for a = (a1, . . . , an) and b = (b1, . . . , bn). This polytope
is bounded and non-empty because (x− a, b− x) ∈ R. Consequently, there exists a basic
feasible solution (x?, s?). As there are 2n variables and 2n − k constraints, this solution
has at least k zero-entries, i.e., there are indices 1 ≤ i1 < . . . < ik ≤ n for which either
x?it = 0 (in that case we set jt := 0) or x?it = b′it (in that case we set jt := 1) for any
t ∈ [k]. Now, consider the vector x̂ = x? + a ∈ [0, b′] + a = Q. We obtain M · x̂ = y and
x̂it = cjtit for all t ∈ [k]. Hence, x ∈ F J

I for I = (i1, . . . , ik) and J = (j1, . . . , jk), and thus
y ∈M

(
F J
I

)
.

Due to this observation we can bound the volume of M(Q) by
∑

I

∑
J vol

(
M
(
F J
I

))
.

It remains to bound the volume vol
(
M
(
F J
I

))
. For this, we enumerate the indices of [n]\I

by 1 ≤ î1 < . . . < în−k ≤ n. Now, we define vectors ti ∈ Rn−k and a vector v ∈ Rn as
follows.

ti =

{
0 if i ∈ I ,
et if i = ît ,

and vi =

{
0 if i /∈ I ,
cjtit if i = it .

49

Let T = [t1, . . . , tn]T = [eî1 , . . . , eîn−k] ∈ Rn×(n−k), F ′ =
∏n−k

t=1 Iît ⊆ Rn−k, and consider

the linear function φ : F ′ → F J
I , defined as φ(x) = Tx + v. Function φ is the canonical

bijection from F ′ to the face F J
I : If y = φ(x), then yît = eT

t x+ 0 = xt for t ∈ [n− k] and

yit = 0Tx+cjtit = cjtit for t ∈ [k]. Now consider the function ψ = M◦φ : F ′ →M(F J
I). Note,

that both F ′ and M(F J
I) are subsets of Rn−k and that ψ(x) = MTx+Mv = AIx+Mv

for the (n− k)× (n− k)-submatrix AI :=MT = PAT of A containing the rows of A with
the numbers 1, . . . , n− k and the columns of A with the numbers î1, . . . , în−k. If ψ is not
injective, then ψ(F ′) = M(F J

I) is not full-dimensional, i.e., vol
(
M
(
F J
I

))
= 0. Otherwise,

we obtain

vol
(
M
(
F J
I

))
=

∫
ψ(F ′)

1dx =

∫
F ′
| det Dψ(x)|dx =

∫
F ′
| det(AI)|dx

= | det(AI)| · vol(F ′) = | det(AI)| ·
n−k∏
t=1

|Iît | = | det(AI)| ·
n−k∏
t=1

ˆ̀it
.

This yields∫
y∈Rn−k

max
z∈Rk

f
(
A−1 · (y, z)

)
dy = χ · vol(M(Q)) ≤ χ ·

∑
I

∑
J

vol
(
M
(
F J
I

))
≤ χ ·

∑
I

∑
J

(
| det(AI)| ·

n−k∏
t=1

ˆ̀it

)

= 2kχ ·
∑
I

(
| det(AI)| ·

∏
i/∈I

`i

)
.

In the next step we generalize the statement of Lemma 3.4 to sums of rectangular
functions.

Corollary 3.5. Let N1, . . . , Nn be positive integers, let φi,k ≥ 0 be a non-negative real,
let Ii,k ⊆ R be an interval of length `i,k, and let fi,k : R→ R be the function

fi,k(x) =

{
φi,k if x ∈ Ii,k ,
0 otherwise ,

i ∈ [n], k ∈ [Ni]. Furthermore, let fi : R → R be the step function fi =
∑Ni

k=1 fi,k, let
f : Rn → R be the function f(x1, . . . , xn) =

∏n
i=1 fi(xi), and let A ∈ Rn×n be an invertible

matrix. Then∫
y∈Rn−k

max
z∈Rk

f
(
A−1 · (y, z)

)
dy ≤ 2k ·

∑
I

(
| det(AI)| ·

(∏
i/∈I

σi

)
·
(∏
i∈I

χi

))
,

50 CHAPTER 3. SOME PROBABILITY THEORY

where σi =
∑Ni

k=1 φi,k · `i,k and χi =
∑Ni

k=1 φi,k and where the sum runs over all tuples
I = (i1, . . . , ik) for which 1 ≤ i1 < . . . < ik ≤ n. For such a tuple I, matrix AI is the
(n− k)× (n− k)-submatrix of A that is obtained from A by removing the last k rows and
the columns with the numbers i ∈ I.

Proof. For indices ki ∈ [Ni] let fk1,...,kn(x1, . . . , xn) =
∏n

i=1 fi,ki(xi). This function is of
the form assumed in Lemma 3.4 and takes only values zero and χk1,...,kn =

∏n
i=1 φi,ki . We

can write function f as

f(x1, . . . , xn) =
n∏
i=1

fi(xi) =
n∏
i=1

Ni∑
ki=1

fi,ki(xi) =

N1∑
k1=1

. . .

Nn∑
kn=1

n∏
i=1

fi,ki(xi)

=

N1∑
k1=1

. . .

Nn∑
kn=1

fk1,...,kn(x1, . . . , xn) ,

i.e., as a sum of rectangular functions. For the sake of simplicity we write
∑

ki
instead of∑Ni

ki=1 and
∑

ki : i∈(i1,...,i`)
instead of

∑
ki1
. . .
∑

ki`
. We can bound the integral as follows:∫

y∈Rn−k
max
z∈Rk

f
(
A−1 · (y, z)

)
dy =

∫
y∈Rn−k

max
z∈Rk

∑
ki : i∈[n]

fk1,...,kn
(
A−1 · (y, z)

)
dy

≤
∫
y∈Rn−k

∑
ki : i∈[n]

max
z∈Rk

fk1,...,kn
(
A−1 · (y, z)

)
dy

=
∑

ki : i∈[n]

∫
y∈Rn−k

max
z∈Rk

fk1,...,kn
(
A−1 · (y, z)

)
dy

≤
∑

ki : i∈[n]

(
2kχk1,...,kn ·

∑
I

(
| det(AI)| ·

∏
i/∈I

`i,ki

))

= 2k ·
∑

ki : i∈[n]

∏
i∈[n]

φi,ki ·
∑
I

(
| det(AI)| ·

∏
i/∈I

`i,ki

)
= 2k ·

∑
I

| det(AI)| ·
∑

ki : i∈[n]

∏
i∈[n]

φi,ki ·
∏
i/∈I

`i,ki

 ,

where the second inequality is due to Lemma 3.4. Now

∑
ki : i∈[n]

∏
i∈[n]

φi,ki ·
∏
i/∈I

`i,ki

 =
∑

ki : i∈[n]

(∏
i∈I

φi,ki ·
∏
i/∈I

(φi,ki · `i,ki)
)

51

fi

gi

x

y

Figure 3.1: Area of a quasi-concave function covered by a “stack” of rectangles with
approximately the same area

=

(∑
ki : i∈I

∏
i∈I

φi,ki

)
·

 ∑
ki : i/∈I

∏
i/∈I

(φi,ki · `i,ki)

=

(∏
i∈I

∑
ki

φi,ki

)
·
(∏
i/∈I

∑
ki

(φi,ki · `i,ki)
)

=

(∏
i∈I

χi

)
·
(∏
i/∈I

σi

)
,

which completes the proof of Corollary 3.5.

To finish the proof of Theorem 3.3 we round the probability densities fi as follows:
For an arbitrarily small positive real δ let gi := dfi/δe · δ, i.e., we round fi up to the next
integral multiple of δ. As the densities fi are quasiconcave, there is a decomposition of gi
such that gi =

∑Ni
k=1 fi,k where

fi,k =

{
φi,k : x ∈ Ii,k ,
0 : otherwise ,

and χi :=

Ni∑
k=1

φi,k = max
x∈[−1,1]

gi(x) ,

where Ii,k are intervals of length `i,k and φi,k are positive reals. The second property is
the interesting one and stems from the quasiconcaveness of fi. Informally speaking the
two-dimensional shape bounded by the horizontal axis and the graph of gi is a stack of
rectangles aligned with axes (see Figure 3.1). Therefore, the sum χi of the rectangles’
heights which appears in the formula of Corollary 3.5 is approximately φ. Without the
quasiconcaveness χi might be unbounded.

Applying Corollary 3.5, we obtain∫
y∈Rn−k

max
z∈Rk

fX
(
A−1 · (y, z)

)
dy =

∫
y∈Rn−k

max
z∈Rk

n∏
i=1

fi
((
A−1 · (y, z)

)
i

)
dy

52 CHAPTER 3. SOME PROBABILITY THEORY

≤
∫
y∈Rn−k

max
z∈Rk

n∏
i=1

gi
((
A−1 · (y, z)

)
i

)
dy

≤ 2k ·
∑
I

| det(AI)| ·
(∏
i/∈I

Ni∑
ki=1

(φi,ki · `i,ki)
)
·
(∏
i∈I

χi

)

= 2k ·
∑
I

| det(AI)| ·
(∏
i/∈I

∫
[−1,1]

gidx

)
·
(∏
i∈I

χi

)
.

Since 0 ≤
∫

[−1,1]
gidx ≤

∫
[−1,1]

(fi+δ)dx = 1+2δ and 0 ≤ χi ≤ supx∈[−1,1] fi(x)+δ ≤ φ+δ,

this implies∫
y∈Rn−k

max
z∈Rk

fX
(
A−1 · (y, z)

)
dy ≤ 2k ·

∑
I

| det(AI)| ·
(∏
i/∈I

(1 + 2δ)

)
·
(∏
i∈I

(φ+ δ)

)
= 2k ·

∑
I

| det(AI)| · (1 + 2δ)n−k · (φ+ δ)k .

As this bound is true for arbitrarily small reals δ > 0, it also holds for δ = 0 and we
obtain

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Yn−k)] ≤ | det(A−1)| · εk ·
∫
y∈Rn−k

max
z∈Rk

fX
(
A−1 · (y, z)

)
dy

≤ 2k ·
∑
I

| det(AI)|
| det(A)| · φ

kεk .

Chapter 4

The Successive Shortest Path
Algorithm

This chapter is devoted to the study of the successive shortest path (SSP) algorithm in the
framework of smoothed analysis. After introducing some notation that we will use in the
remainder of this chapter we give an outline of our analysis of the SSP algorithm. There
we will also discuss a connection to the analysis of the worst-case bound in the integer
case. The main technical section of this chapter is devoted to the proof of Theorem 1.2.2
(Section 4.3).

4.1 Terminology and Notation

Consider the run of the SSP algorithm on the flow network G. We denote the set
{f0, f1, . . .} of all flows encountered by the SSP algorithm by F0(G). Furthermore, we set
F(G) = F0(G) \ {f0}. (We omit the parameter G if it is clear from the context.)

By f0 and fmax, we denote the empty flow and the maximum flow, i.e., the flow that
assigns 0 to all edges e and the flow of maximum value encountered by the SSP algorithm,
respectively.

Let fi−1 and fi be two consecutive flows encountered by the SSP algorithm and let Pi
be the shortest path in the residual network Gfi−1

, i.e., the SSP algorithm augments
along Pi to increase flow fi−1 to obtain flow fi. We call Pi the next path of fi−1 and the
previous path of fi. To distinguish between the original network G and some residual
network Gf in the remainder of this chapter, we refer to the edges in the residual network
as arcs, whereas we refer to the edges in the original network as edges.

For a given arc e in a residual network Gf , we denote by e0 the corresponding edge
in the original network G, i.e., e0 = e if e ∈ E (i.e., e is a forward arc) and e0 = e−1 if
e /∈ E (i.e., e is a backward arc). An arc e is called empty (with respect to some residual
network Gf) if e belongs to Gf , but e−1 does not. Empty arcs e are either forward arcs

53

54 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

that do not carry flow or backward arcs whose corresponding edge e0 carries as much flow
as possible. We say that an arc becomes saturated (during an augmentation) when it is
contained in the current augmenting path, but it does not belong to the residual network
that we obtain after this augmentation.

In the remainder, a path is always a simple directed path. Let P be a path, and let u

and v be contained in P in this order. With u
P v, we refer to the subpath of P starting

from node u going to node v. We call any flow network G′ a possible residual network
(of G) if there is a flow f for G such that G′ = Gf . Paths in possible residual networks
are called possible paths.

4.2 Outline of Our Approach

We can concentrate on counting the number of augmenting steps of the SSP algorithm
since each step can be implemented to run in time O(m + n log n) using Dijkstra’s al-
gorithm (see, e.g., the book of Korte and Vygen [KV07] for details). To establish a
connection between our smoothed analysis and the worst-case analysis of the SSP algo-
rithm on instances with integral edge costs, let us first consider the case that all edge
costs are from {1, . . . , C}. In this case the length of any possible path is bounded by nC.
We will see that the lengths of the augmenting paths are monotonically increasing. If
there is no unique shortest path to augment flow along and ties are broken by choosing
one with the fewest number of arcs, then the number of successive augmenting paths
with the same length is bounded by O(mn). Hence, the SSP algorithm terminates within
O(mn2C) steps.

Now let us perturb the edge costs of such an integral instance independently by, for
example, uniform additive noise from the interval [−1, 1]. This scenario is not covered by
bounds for the integral case. Indeed, instances can be generated for which the number of
augmentation steps is exponential in m and n. Nevertheless, an immediate consequence
of Theorem 1.2.2 is that, in expectation, the SSP algorithm terminates within O(mnC)
steps on instances of this form. To see this, scale all edge costs by a factor of 1/(C + 1).
Each of these random variables is now drawn uniformly at random from an interval of
length 2/(C + 1) which is a subset of [0, 1]. Consequently, their probability densities are
of the form assumed by Theorem 1.2.2 and are bounded by (C + 1)/2 = O(C).

Our analysis of the SSP algorithm is based on the following idea: We identify a
flow fi ∈ F0 with a real number by mapping fi to the length `i of the previous path Pi of fi.
The flow f0 is identified with `0 = 0. In this way, we obtain a sequence L = (`0, `1, . . .)
of real numbers. We show that this sequence is strictly monotonically increasing with a
probability of 1. Since all costs are drawn from the interval [0, 1], each element of L is
from the interval [0, n]. To count the number of elements of L, we use discretization: We
partition the interval [0, n] into small subintervals of length ε and sum up the number of
elements of L in these intervals. By linearity of expectation, this approach carries over

4.3. ANALYSIS OF THE SSP ALGORITHM 55

to the expected number of elements of L. If ε is very small, then – with sufficiently high
probability – each interval contains at most one element. Thus, it suffices to bound the
probability that an element of L falls into some interval (d, d+ ε].

For this, assume that there is an integer i such that `i ∈ (d, d + ε]. By the previous
assumption that for any interval of length ε there is at most one path whose length is
within this interval, we obtain that `i−1 ≤ d. We show that the augmenting path Pi uses
an empty arc e. Moreover, we will see that we can reconstruct flow fi−1 without knowing
the cost of edge e0 that corresponds to arc e in the original network. Hence, we do not
have to reveal ce0 for this. However, the length of Pi, which equals `i, depends linearly
on ce0 , and the coefficient is +1 or −1. Consequently, the probability that `i falls into the
interval (d, d+ε] is bounded by εφ, as the probability density of ce0 is bounded by φ. Since
the arc e is not always the same, we have to apply a union bound over all 2m possible
arcs. Summing up over all n/ε intervals the expected number of flows encountered by the
SSP algorithm can be bounded by roughly (n/ε) · 2m · εφ = 2mnφ.

There are some parallels to the analysis of the smoothed number of Pareto-optimal
solutions in bicriteria linear optimization problems by Beier and Vöcking [BV06], although
we have only one objective function. In this context, we would call fi the loser, fi−1 the
winner, and the difference `i−d the loser gap. Beier and Vöcking’s analysis is also based on
the observation that the winner (which in their analysis is a Pareto-optimal solution and
not a flow) can be reconstructed when all except for one random coefficients are revealed.
While this reconstruction is simple in the setting of bicriteria optimization problems, the
reconstruction of the flow fi−1 in our setting is significantly more challenging and a main
difficulty in our analysis.

4.3 Analysis of the SSP Algorithm

Before we start with the analysis, note that due to our transformation of the general
minimum-cost flow problem to a single-source-single-sink minimum-cost flow problem the
cost perturbations only affect the original edges. The costs of the auxiliary edges are not
perturbed but set to 0. Thus, we will slightly deviate from what we described in the
outline by treating empty arcs corresponding to auxiliary edges separately.

Lemma 4.3.1. For any real ε > 0 the probability that there are two nodes u and v and
two distinct possible u-v-paths whose lengths differ by at most ε is bounded from above
by 2n2nεφ.

Proof. Fix two nodes u and v and two distinct possible u-v-paths P1 and P2. If we consider
the paths P1 and P2 as undirected paths by interpreting a directed edge (x, y) as an
undirected edge {x, y}, then the symmetric difference P1 ∆ P2 = (V (P1)∪V (P2), E(P1) ∆
E(P2)) of both paths does not contain a node of degree 1. On the other hand, not all
nodes can be isolated nodes because P1 6= P2. Consequently, the graph P1 ∆ P2 contains

56 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

a cycle. This cycle must contain an edge that does not correspond to an auxiliary edge
of the original graph G. Moreover, it corresponds to an edge e such that one of the paths
– without loss of generality path P1 – contains arc e or e−1, but the other one contains
neither of them. If we fix all edge costs except the cost of edge e, then the length of P2 is
already determined whereas the length of P1 depends on the cost ce. Hence, ce must fall
into a fixed interval of length 2ε in order for the path lengths of P1 and P2 to differ by
at most ε. The probability for this is bounded by 2εφ because ce is chosen according to
a density function that is bounded from above by φ. A union bound over all pairs (u, v)
and all possible u-v-paths concludes the proof.

According to Lemma 4.3.1 we can assume that there is no s-t-path of length 0 and
that the following property holds since it holds with a probability of 1.

Property 1. For any nodes u and v the lengths of all possible u-v-paths are pairwise
distinct.

Lemma 4.3.2. Let di(v) denote the distance from s to node v in the residual network Gfi.
Then the sequence

(
di(v)

)
i≥0

is monotonically increasing.

Proof. Let i ≥ 0 be an arbitrary integer. We show di(v) ≤ di+1(v) by induction on the
depth of node v in the shortest path tree Ti+1 of the residual network Gfi+1

rooted at s.
For the root s, the claim holds since di(s) = di+1(s) = 0. Now assume that the claim holds
for all nodes up to a certain depth k, consider a node v with depth k+1, and let u denote
its parent. Consequently, di+1(v) = di+1(u) + ce for e = (u, v). If arc e has been available
in Gfi , then di(v) ≤ di(u) + ce. If not, then the SSP algorithm must have augmented
along e−1 in step i + 1 to obtain flow fi+1 and, hence, di(u) = di(v) + ce−1 = di(v) − ce.
In both cases the inequality di(v) ≤ di(u) + ce holds. Applying the induction hypothesis
for node u, we obtain di(v) ≤ di(u) + ce ≤ di+1(u) + ce = di+1(v).

Definition 4.3.3. For a flow fi ∈ F0, we denote by `G−(fi) and `G+(fi) the length of
the previous path Pi and the next path Pi+1 of fi, respectively. By convention, we set
`G−(f0) = 0 and `G+(fmax) = ∞. If the network G is clear from the context, then we
simply write `−(fi) and `+(fi). By C we denote the cost function that maps reals x
from the interval

[
0, |fmax|

]
to the cost of the cheapest flow f with value x, that is,

C (x) = min {c(f) : |f | = x}.

The lengths `−(fi) correspond to the lengths `i mentioned in the outline. The apparent
notational overhead is necessary for formal correctness. In Lemma 4.3.5, we will reveal a
connection between the values `−(fi) and the function C . Based on this, we can focus on
analyzing function C .

Corollary 4.3.4. Let fi, fj ∈ F0 be two flows with i < j. Then `−(fi) ≤ `−(fj).

4.3. ANALYSIS OF THE SSP ALGORITHM 57

Proof. The claim follows from Lemma 4.3.2, the fact that the SSP algorithm does not
augment along the same path in two consecutive steps, and the fact that different paths
have different lengths (see Property 1).

Lemma 4.3.5. The function C is continuous, monotonically increasing, and piecewise
linear. The break points of C are the values of the flows f ∈ F0 with `−(f) < `+(f). For
each flow f ∈ F0, the slopes of C to the left and to the right of |f | equal `−(f) and `+(f),
respectively.

Proof. The proof follows from Theorem 1.2.1 and the observation that the cost of the flow
is linearly increasing when gradually increasing the flow along the shortest path in the
residual network until at least one arc becomes saturated. The slope of the cost function
is given by the length ` of that path: As long as no arc becomes saturated, the cost of
the flow increases by ∆f · ` if the flow increases by ∆f .

Example 4.3.6. Consider the flow network depicted in Figure 4.1a. The cost ce and the
capacity ue of an edge e are given by the notation ce, ue. Observe, that the costs ce are
not scaled down to the interval [0, 1] to make the example easier to read.

For each step of the SSP algorithm, Table 4.1 lists the relevant part of the augmenting
path (excluding s, s′, t′, and t), its length, the amount of flow that is sent along that
path, the value and the cost of the current flow, and the arcs that become saturated. As
can be seen in the table, the values |f | of the encountered flows f ∈ F0 are 0, 2, 3, 5,
7, 10, and 12. These are the breakpoints of the cost function C , and the lengths of the
augmenting paths equal the slopes of C (see Figure 4.1b).

s t

u

v

w

1, 4

5, 5

6, 6

1, 2

1, 3

7, 6

1, 3

3, 50, 12 0, 12s′ t′

b(s) = 12 b(t) = −12

(a) Flow network G
1 2 3 4 5 6 7 8 9 10 11 12

10

20

30

40

50

60

70

80

90

100

0
x

C (x)

4
6

7

8

9

12

c

(b) Cost function C

Figure 4.1: A minimum-cost flow network and the corresponding cost function C

With the following definition, we lay the foundation for distinguishing between original
edges with perturbed costs and auxiliary edges whose costs are set to 0.

58 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

step 1 2 3 4 5 6
path u, v, w w w, v u v v, u
path length 4 6 7 8 9 12
amount of flow 2 1 2 2 3 2
current flow value 2 3 5 7 10 12
current flow cost 8 14 28 44 71 95
saturated arcs (u, v) (w, t′) (w, v) (s′, u) (v, t′) (v, u)

Table 4.1: The augmenting paths for network G

Definition 4.3.7. Let f ∈ F0 be an arbitrary flow. An empty arc e in the residual
network Gf that does not correspond to an auxiliary edge is called a good arc. We call f
a good flow if f 6= f0 and if the previous path of f contains a good arc in the previous
residual network. Otherwise, f is called a bad flow.

Now we derive a property of good arcs that are contained in the previous path of good
flows. This property allows us to bound the probability that one of the lengths `−(fi)
falls into a given interval of length ε.

Lemma 4.3.8. Let f ∈ F0 be a predecessor of a good flow for which `G−(f) < `G+(f) holds,
and let d ∈

[
`G−(f), `G+(f)

)
be an arbitrary real number. Additionally, let e be a good arc

in the next path of f , and let e0 be the edge in G that corresponds to e. Now change the
cost of e0 to c′e0 = 1 (c′e0 = 0) if e0 = e (e0 = e−1), i.e., when e is a forward (backward)
arc. In any case, the cost of arc e increases. We denote the resulting flow network by G′.
Then f ∈ F0(G′). Moreover, the inequalities `G

′
− (f) ≤ `G−(f) ≤ d < `G+(f) ≤ `G

′
+ (f) hold.

Proof. Let C and C ′ be the cost functions of the original network G and the modified
network G′, respectively. Both functions are of the form described in Lemma 4.3.5. In
particular, they are continuous and the breakpoints correspond to the values of the flows
f̃ ∈ F0(G) and f̂ ∈ F0(G′) with `G−(f̃) < `G+(f̃) and `G

′
− (f̂) < `G

′
+ (f̂), respectively.

We start with analyzing the case e0 = e. In this case, we set C ′′ = C ′ and observe that
by increasing the cost of edge e0 to 1 the cost of no flow can decrease. Hence, C ′′ ≥ C .
Since flow f does not use arc e, its costs remain unchanged, i.e., C ′′(|f |) = C (|f |).

If e0 = e−1, then we set C ′′ = C ′ + ∆e0 for ∆e0 = ue0 · ce0 . This function is also
piecewise linear and has the same breakpoints and slopes as C ′. Since the flow on edge e0

cannot exceed the capacity ue0 of edge e0 and since the cost on that edge has been reduced
by ce0 in G′, the cost of each flow is reduced by at most ∆e0 in G′. Furthermore, this
gain is only achieved for flows that entirely use edge e0 like f does. Hence, C ′′ ≥ C and
C ′′(|f |) = C (|f |).

Due to C ′′ ≥ C , C ′′(|f |) = C (|f |), and the form of both functions, the left-hand
derivative of C ′′ at |f | is at most the left-hand derivative of C at |f | (see Figure 4.2).

4.3. ANALYSIS OF THE SSP ALGORITHM 59

x

C (x)

c

|f |

C ′′(x)

Figure 4.2: Cost function C and function C ′′.

Since |f | is a breakpoint of C , this implies that |f | is also a breakpoint of C ′′ and that
the slope to the left of C ′′ at |f | is at most the slope to the left of C at |f |. For the same
reasons, the right-hand derivative of C ′′ at |f | is at least the right-hand derivative of C
at |f | and the slope to the right of C ′′ at |f | is at least the slope to the right of C at |f |.
These properties carry over to C ′. Hence, f ∈ F0(G′). Recalling d ∈

[
`G−(f), `G+(f)

)
and the fact that the slopes correspond to shortest s-t-path lengths, the stated chain of
inequalities follows.

Lemma 4.3.8 suggests Algorithm 3 (Reconstruct) for reconstructing a flow f based
on a good arc e that belongs to the shortest path in the residual network Gf and on a
threshold d ∈

[
`−(f), `+(f)

)
. The crucial fact that we will later exploit is that for this

reconstruction the cost ce0 of edge e0 does not have to be known. (Note that we only need
Reconstruct for the analysis in order to show that the flow f can be reconstructed.)

Algorithm 3 Reconstruct(e, d)

1: let e0 be the edge that corresponds to arc e in the original network G
2: change the cost of edge e0 to c′e0 = 1 if e is a forward arc or to c′e0 = 0 if e is a

backward arc
3: start running the SSP algorithm on the modified network G′

4: stop when the length of the shortest s-t-path in the residual network of the current
flow f ′ exceeds d

5: output f ′

Corollary 4.3.9. Let f ∈ F0 be a predecessor of a good flow, let e be a good arc in the
next path of f , and let d ∈

[
`−(f), `+(f)

)
be a real. Then Reconstruct(e, d) outputs flow f .

Proof. By applying Lemma 4.3.8, we obtain f ∈ F0(G′) and `G
′
− (f) ≤ d < `G

′
+ (f). To-

gether with Corollary 4.3.4, this implies that Reconstruct(e, d) does not stop before encoun-
tering flow f and stops once it encounters f . Hence, Reconstruct(e, d) outputs flow f .

60 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

Corollary 4.3.9 is an essential component of the proof of Theorem 1.2.2 but it only
describes how to reconstruct predecessor flows f of good flows with `−(f) < `+(f). In
the next part of this section we show that most of the flows are good flows.

Lemma 4.3.10. In any step of the SSP algorithm, any s-t-path in the residual network
contains at least one empty arc.

Proof. The claim is true for the empty flow f0. Now consider a flow fi ∈ F , its predecessor
flow fi−1, the path Pi which is a shortest path in the residual network Gfi−1

, and an
arbitrary s-t-path P in the current residual network Gfi . We show that at least one arc
in P is empty.

For this, fix one arc e = (x, y) from Pi that is not contained in the current residual
network Gfi since it became saturated through the augmentation along Pi. Let v be the

first node of P that occurs in the subpath y
Pi t of Pi, and let u be the last node in the

subpath s
P v of P that belongs to the subpath s

Pi x of Pi (see Figure 4.3). By the

choice of u and v, all nodes on the subpath P ′ = u
P v of P except u and v do not belong

to Pi. Hence, the arcs of P ′ are also available in the residual network Gfi−1
and have the

same capacity in both residual networks Gfi−1
and Gfi .

s tx yu v

P

Pi

P ′

C

e

Figure 4.3: Paths P and Pi in the residual network Gfi .

In the remainder of this proof, we show that at least one arc of P ′ is empty. Assume
to the contrary that none of the arcs is empty in Gfi and, hence, in Gfi−1

. This implies
that, for each arc e ∈ P ′, the residual network Gfi−1

also contains the arc e−1. Since Pi is
the shortest s-t-path in Gfi−1

and since the lengths of all possible s-t-paths are pairwise

distinct, the path s
Pi u

P v
Pi t is longer than Pi. Consequently, the path P ′ = u

P v

is longer than the path u
Pi v. This contradicts the fact that flow fi−1 is optimal since

the arcs of path u
Pi v and the reverse arcs e−1 of the arcs e of path P ′ form a directed

cycle C in Gfi−1
of negative costs.

We use the technique of discretization and partition the interval [0, n] into small subin-
tervals of length ε. That way we can treat the number of lengths `−(fi) that fall into a
given subinterval almost as a binary random variable. This may be wrong if there are
two possible s-t-paths whose lengths differ by at most ε. In this case, whose probability
tends to 0 (see Lemma 4.3.1), we will simply bound the number of augmentation steps of
the SSP algorithm by a worst-case bound according to the following lemma.

4.3. ANALYSIS OF THE SSP ALGORITHM 61

Lemma 4.3.11. The number |F0| of flows encountered by the SSP algorithm is bounded
by |F0| ≤ 3m+n.

Proof. We call two possible residual networks equivalent if they contain the same arcs.
Equivalent possible residual networks have the same shortest s-t-path in common. The
length of this path is also the same. Hence, for two distinct flows fi, fj ∈ F0, the residual
networks Gfi and Gfj are not equivalent due to Corollary 4.3.4 and Property 1. The
number of equivalence classes is bounded by 3m+n since there are m original edges and at
most n auxiliary edges. This completes the proof.

Lemma 4.3.12. There are at most n bad flows f ∈ F .

Proof. According to Lemma 4.3.10, the augmenting path contains an empty arc e in each
step. If e is an arc that corresponds to an auxiliary edge (this is the only case when e is
not a good arc), then e is not empty after the augmentation. Since the SSP algorithm
does not augment along arcs e−1 if e is an arc that corresponds to an auxiliary edge,
non-empty arcs that correspond to auxiliary edges cannot be empty a second time. Thus,
there can be at most n steps where the augmenting path does not contain a good arc.
This implies that there are at most n bad flows f ∈ F .

We can now bound the probability that there is a flow fi ∈ F whose previous path’s
length `−(fi) falls into a given subinterval of length ε. Though we count bad flows
separately, they also play a role in bounding the probability that there is a good flow
fi ∈ F such that `−(fi) falls into a given subinterval of length ε.

Lemma 4.3.13. For a fixed real d ≥ 0, let Ed,ε be the event that there is a flow f ∈ F
for which `−(f) ∈ (d, d + ε], and let Bd,ε be the event that there is a bad flow f ′ ∈ F for
which `−(f ′) ∈ (d, d+ ε]. Then the probability of Ed,ε can be bounded by

Pr [Ed,ε] ≤ 2mεφ+ 2 ·Pr [Bd,ε] .

Proof. Let Ad,ε be the event that there is a good flow f ∈ F for which `−(f) ∈ (d, d+ ε].
Since Ed,ε = Ad,ε∪Bd,ε, it suffices to show that Pr[Ad,ε] ≤ 2mεφ+Pr[Bd,ε] . Consider the
event that there is a good flow whose previous path’s length lies in the interval (d, d+ ε].
Among all these good flows, let f̂ be the one with the smallest value `−(f̂), i.e., f̂ is the
first good flow f encountered by the SSP algorithm for which `−(f) ∈ (d, d + ε], and

let f ? be its previous flow. Flow f ? always exists since f̂ cannot be the empty flow f0.
Corollary 4.3.4 and Property 1 yield `−(f ?) < `−(f̂). Thus, there can only be two cases:

If `−(f ?) ∈ (d, d + ε], then f ? is a bad flow by the choice of f̂ and, hence, event Bd,ε

occurs. The interesting case which we consider now is when `−(f ?) ≤ d holds. If this is

true, then d ∈ [`−(f ?), `+(f ?)) due to `+(f ?) = `−(f̂).

As f̂ is a good flow, the shortest path in the residual network Gf? contains a good arc
e = (u, v). Applying Corollary 4.3.9 we obtain that we can reconstruct flow f ? by calling

62 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

Reconstruct(e, d). The shortest s-t-path P in the residual network Gf? is the previous

path of f̂ and its length equals `−(f̂). Furthermore, P is of the form s
P u → v

P t,

where s
P u and v

P t are shortest paths in Gf? from s to u and from v to t, respectively.
These observations yield

Ad,ε ⊆
⋃
e∈E

Re,d,ε ∪
⋃
e∈E

Re−1,d,ε ∪Bd,ε ,

where Re,d,ε for an arc e = (u, v) denotes the following event: By calling Reconstruct(e, d),
we obtain a certain flow f . Let ` be the length of the shortest s-t-path in Gf that uses
arc e. Then event Re,d,ε occurs if ` ∈ (d, d+ ε]. Therefore, the probability of event Ad,ε is
bounded by ∑

e∈E

Pr [Re,d,ε] +
∑
e∈E

Pr [Re−1,d,ε] + Pr [Bd,ε] .

We conclude the proof by showing Pr[Re,d,ε] ≤ εφ. For this, let e0 be the edge corre-
sponding to arc e = (u, v) in the original network. If we fix all edge costs except cost ce0
of edge e0, then the output f of Reconstruct(e, d) is already determined. The same holds
for the shortest s-t-path in Gf that uses arc e since it is of the form s u→ v t where
P1 = s u is a shortest s-u-path in Gf that does not use v and where P2 = v t is a
shortest v-t-path in Gf that does not use u. The length ` of this path, however, depends
linearly on the cost ce0 . To be more precise, ` = `′ + ce = `′ + sgn(e) · ce0 , where `′ is the
length of P1 plus the length of P2 and where

sgn(e) =

{
+1 if e0 = e ,

−1 if e0 = e−1 .

Hence, ` falls into the interval (d, d + ε] if and only if ce0 falls into some fixed interval
of length ε. The probability for this is bounded by εφ as ce0 is drawn according to a
distribution whose density is bounded by φ.

Corollary 4.3.14. The expected number of augmentation steps the SSP algorithm per-
forms is bounded by 2mnφ+ 2n.

Proof. Let X = |F| be the number of augmentation steps of the SSP algorithm. For reals
d, ε > 0, let Ed,ε and Bd,ε be the events defined in Lemma 4.3.13, let Xd,ε be the number
of flows f ∈ F for which `−(f) ∈ (d, d + ε], and let Zd,ε = min {Xd,ε, 1} be the indicator
variable of event Ed,ε.

Since all costs are drawn from the interval [0, 1], the length of any possible s-t-path
is bounded by n. Furthermore, according to Corollary 4.3.4, all lengths are non-negative
(and positive with a probability of 1). Let Fε denote the event that there are two possible

4.3. ANALYSIS OF THE SSP ALGORITHM 63

s-t-paths whose lengths differ by at most ε. Then for any positive integer k, we obtain

X =
k−1∑
i=0

Xi·n
k
,n
k

=
k−1∑
i=0

Zi·n
k
,n
k

if Fn
k

does not occur ,

≤ 3m+n if Fn
k

occurs .

With the concept of discretization we obtain

E [X] ≤
k−1∑
i=0

E
[
Zi·n

k
,n
k

]
+ 3m+n ·Pr

[
Fn
k

]
=

k−1∑
i=0

Pr
[
Ei·n

k
,n
k

]
+ 3m+n ·Pr

[
Fn
k

]
≤ 2mnφ+ 2 ·

k−1∑
i=0

Pr
[
Bi·n

k
,n
k

]
+ 3m+n ·Pr

[
Fn
k

]
≤ 2mnφ+ 2n+ 3m+n ·Pr

[
Fn
k

]
.

The second inequality is due to Lemma 4.3.13 whereas the third inequality stems from
Lemma 4.3.12. The claim follows since Pr

[
Fn/k

]
→ 0 for k → ∞ in accordance with

Lemma 4.3.1.

Proof of Theorem 1.2.2. Since each step of the SSP algorithm runs in time O(m+n log n)
using Dijkstra’s algorithm (see, e.g., the book of Korte and Vygen [KV07] for details),
applying Corollary 4.3.14 yields the desired result.

64 CHAPTER 4. THE SUCCESSIVE SHORTEST PATH ALGORITHM

Chapter 5

Finding Short Paths on Polyhedra

In this chapter we study the problem of finding a short path between two given vertices x1

and x2 of a polyhedron P = {x ∈ Rn : Ax ≤ b} for a matrix A = [a1, . . . , am]T ∈ Rm×n

and a vector b ∈ Rm. In particular, we will give an upper bound on the expected length
of the path computed by the shadow vertex method (given as Algorithm 2) that depends
polynomially on m, n, and a parameter δ which describes the flatness of the vertices of P .
Section 5.2 explains why we can concentrate on analyzing non-degenerate polyhedra. In
Section 5.3 we give an outline of our analysis, which is inspired by our analysis of the
successive shortest path algorithm (Chapter 4), and present the main ideas. After that,
in Section 5.4, we introduce the parameter δ formally and discuss some of its properties.
Section 5.5 is devoted to the proof of Theorem 1.3.1. The probabilistic foundations of our
analysis are provided in Section 5.6.

5.1 Notation

Let us first introduce some notation. For an integer n ∈ N we denote by [n] the set
{1, . . . , n}. Let A ∈ Rm×n be an m × n-matrix and let i ∈ [m] and j ∈ [n] be indices.
With Ai,j we refer to the (m − 1) × (n − 1)-submatrix obtained from A by removing
the ith row and the jth column. We call the determinant of any k × k-submatrix of A a
sub-determinant of A of size k. By In we denote the n× n-identity matrix diag(1, . . . , 1)
and by Om×n the m × n-zero matrix. If n ∈ N is clear from the context, then we define
vector ei to be the ith column of In. For a vector x ∈ Rn we denote by ‖x‖ = ‖x‖2 the
Euclidean norm of x and by N(x) = (1/‖x‖) · x for x 6= 0 the normalization of vector x.

5.2 Degeneracy

A polyhedron P = {x ∈ Rn : Ax ≤ b} is called degenerate if there exists a vertex x
of P for which more than n of the linear inequalities are tight. That is, there exist n+ 1

65

66 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

distinct rows aT
i of A for which aT

i x = bi. Any degenerate polyhedron P can be made non-
degenerate by perturbing the vector b by a tiny amount of random noise. Thus, another
polyhedron P̃ is obtained that is non-degenerate with probability one. Any degenerate
vertex of P at which ` > n constraints are tight generates at most

(
`
n

)
vertices of P̃ that

are all very close to each other if the perturbation of b is small. We say that two vertices
of P̃ that correspond to the same vertex of P are in the same equivalence class.

If the perturbation of the vector b is small enough, then any edge between two vertices
of P̃ in different equivalence classes corresponds to an edge in P between the vertices
that generated these equivalence classes. We apply the shadow vertex method to the
polyhedron P̃ to find a path R between two arbitrary vertices from the equivalence classes
generated by x1 and x2, respectively. Then we translate this path into a walk from x1 to x2

on the polyhedron P by mapping each vertex on the path R to the vertex that generated
its equivalence class. This way, we obtain a walk from x1 to x2 on the polyhedron P
that may visit vertices multiple times and may also stay in the same vertex for some
steps. In the latter type of steps only the algebraic representation of the current vertex
is changed. As this walk on P has the same length as the path that the shadow vertex
algorithm computes on P̃ , the upper bound we derive for the length of R also applies to
the degenerate polyhedron P .

Of course the perturbation of the vector b might change the shape of the polyhedron P .
The bounds we derive for the (expected) length of the path computed by the shadow vertex
method only depend on the matrix A, which is the same for both polyhedra P and P̃ .
Consequently, the bounds we derive for the polyhedron P̃ and which also hold for the
polyhedron P are already expressed in the parameters of P .

5.3 Outline of the Analysis

In the remainder of this thesis we assume that the polyhedron P is non-degenerate, i.e.,
for each vertex x of P there are exactly n indices i for which aT

i x = bi. This implies that
for any edge between two vertices x and y of P there are exactly n− 1 indices i for which
aT
i x = aT

i y = bi. According to Section 5.2 this assumption is justified.
From the description of the shadow vertex method it is clear that the main step in

proving Theorem 1.3.1 is to bound the expected number of edges on the path from π(x1)
to π(x2) on the polygon P ′. In order to do this, we look at the slopes of the edges on this
path. As we discussed in Section 1.3.1, the sequence of slopes is monotonically decreasing.
We will show that due to the randomness in the objective functions w1 and w2, it is even
strictly decreasing with probability one. Furthermore all slopes on this path are bounded
from below by 0.

Instead of counting the edges on the path from π(x1) to π(x2) directly, we will count
the number of different slopes in the interval [0, 1] and we observe that the expected
number of slopes from the interval [0,∞) is twice the expected number of slopes from the

5.4. THE PARAMETER δ 67

interval [0, 1]. In order to count the number of slopes in [0, 1], we partition the interval
[0, 1] into several small subintervals and we bound for each of these subintervals I the
expected number of slopes in I. Then we use linearity of expectation to obtain an upper
bound on the expected number of different slopes in [0, 1], which directly translates into
an upper bound on the expected number of edges on the path from π(x1) to π(x2).

We apply the principle of discretization and choose the subintervals so small that,
with high probability, none of them contains more than one slope. Then the expected
number of slopes in a subinterval I = (t, t + ε] is approximately equal to the probability
that there is a slope in the interval I. In order to bound this probability, we use an
advanced version of the interval probability bound. The main idea is to split the random
draw of the vectors w1 and w2 in the shadow vertex method into two steps. The first
step reveals enough information about the realizations of these vectors to determine the
last edge e = (p̂, p?) on the path from π(x1) to π(x2) whose slope is bigger than t (see
Figure 5.1). Even though e is determined in the first step, its slope is not. We argue that
there is still enough randomness left in the second step to bound the probability that the
slope of e lies in the interval (t, t+ ε] from above, yielding Theorem 1.3.1.

We will now give some more details on how the random draw of the vectors w1 and w2

is partitioned. Let x̂ and x? be the vertices of the polyhedron P that are projected onto p̂
and p?, respectively. Due to the non-degeneracy of the polyhedron P , there are exactly
n−1 constraints that are tight for both x̂ and x? and there is a unique constraint aT

i x ≤ bi
that is tight for x? but not for x̂. In the first step the vector w1 is completely revealed while
instead of w2 only an element w̃2 from the ray {w2 + γ · ai : γ ≥ 0} is revealed. We then
argue that knowing w1 and w̃2 suffices to identify the edge e. The only randomness left
in the second step is the exact position of the vector w2 on the ray {w̃2 − γ · ai : γ ≥ 0},
which suffices to bound the probability that the slope of e lies in the interval (t, t+ ε].

5.4 The Parameter δ

In this section we define the parameter δ that describes the flatness of the vertices of the
polyhedron P and state some relevant properties.

Definition 5.4.1.

1. Let z1, . . . , zn ∈ Rn be linearly independent vectors and let ϕ ∈ (0, π/2] be the angle
between zn and the hyperplane span{z1, . . . , zn−1}. By δ̂({z1, . . . , zn−1} , zn) = sinϕ
we denote the sine of angle ϕ. Moreover, we set

δ(z1, . . . , zn) = min
k∈[n]

δ̂({zi : i ∈ [n] \ {k}} , zk) .

2. Given a matrix A = [a1, . . . , am]T ∈ Rm×n, we set

δ(A) = min {δ(ai1 , . . . , ain) : ai1 , . . . , ain linearly independent} .

68 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

The value δ̂({z1, . . . , zn−1} , zn) describes how orthogonal zn is to the hyperplane
spanned by the vectors z1, . . . , zn−1. If ϕ ≈ 0, that is, if zn is close to the span of
z1, . . . , zn−1, then δ̂({z1, . . . , zn−1} , zn) ≈ 0. On the other hand, if zn is orthogonal to
the vectors z1, . . . , zn−1, then ϕ = π/2 and, hence, δ̂({z1, . . . , zn−1} , zn) = 1. The value
δ̂({z1, . . . , zn−1} , zn) equals the distance between both faces of the parallelotope Q, given
by Q = {∑n

i=1 αi ·N(zi) : αi ∈ [0, 1]}, that are parallel to span{z1, . . . , zn−1} and is scale
invariant.

The value δ(z1, . . . , zn) equals twice the inner radius rn of the parallelotope Q and,
thus, is a measure of the flatness of Q: A value δ(z1, . . . , zn) ≈ 0 implies that Q is nearly
(n − 1)-dimensional. On the other hand, if δ(z1, . . . , zn) = 1, then the vectors z1, . . . , zn
are pairwise orthogonal, that is, Q is an n-dimensional unit cube.

The next lemma lists some useful statements concerning the parameter δ := δ(A)
including a connection to the parameters ∆1, ∆n−1, and ∆ introduced in the paper of
Bonifas et al. [BDE+12].

Lemma 5.4.2. Let z1, . . . , zn ∈ Rn be linearly independent vectors, let A ∈ Rm×n be a
matrix, let b ∈ Rm be a vector, and let δ = δ(A). Then the following claims hold true:

1. If M is the inverse of [N(z1), . . . , N(zn)]T, then

δ(z1, . . . , zn) =
1

maxk∈[n] ‖mk‖
≤

√
n

maxk∈[n] ‖Mk‖
,

where [m1, . . . ,mn] = M and [M1, . . . ,Mn] = MT.

2. If Q ∈ Rn×n is an orthogonal matrix, then δ(Qz1, . . . , Qzn) = δ(z1, . . . , zn).

3. Let y1 and y2 be two neighboring vertices of P = {x ∈ Rn : Ax ≤ b} and let aT
i be

a row of A. If aT
i · (y2 − y1) 6= 0, then |aT

i · (y2 − y1)| ≥ δ · ‖y2 − y1‖.

4. If A is an integral matrix, then 1/δ ≤ n∆1∆n−1 ≤ n∆2, where ∆, ∆1, and ∆n−1 are
the largest absolute values of any sub-determinant of A of arbitrary size, of size 1,
and of size n− 1, respectively.

Proof. First of all we derive a simple formula for δ̂({z1, . . . , zn−1} , zn). For this, as-
sume that the vectors z1, . . . , zn are normalized. Now consider a normal vector x 6= 0 of
span{z1, . . . , zn−1} that lies in the same halfspace as zn. Let ϕ ∈ (0, π/2] be the angle
between zn and span{z1, . . . , zn−1} and let ψ ∈ [0, π/2) be the angle between zn and x.
Clearly, ϕ+ ψ = π/2. Consequently,

δ̂({z1, . . . , zn−1} , zn) = sinϕ = sin
(π

2
− ψ

)
= cosψ =

zT
n x

‖x‖ .

The last fraction is invariant under scaling of x. Since x and zn lie in the same halfspace,
we can assume w.l.o.g. that zT

n x = 1. Hence, δ̂({z1, . . . , zn−1} , zn) = 1/‖x‖, where x is the

5.4. THE PARAMETER δ 69

unique solution of the equation [z1, . . . , zn−1, zn]T · x = (0, . . . , 0, 1)T = en. If the vectors
z1, . . . , zn are not normalized, then we obtain

δ̂({z1, . . . , zn−1} , zn) = δ̂({N(z1), . . . , N(zn−1)} , N(zn)) =
1

‖x‖ ,

where x = [N(z1), . . . , N(zn−1), N(zn)]−T · en. Since for the previous line of reasoning we
can relabel the vectors z1, . . . , zn arbitrarily, this implies

δ(z1, . . . , zn) = min
k∈[n]

1

‖[N(z1), . . . , N(zn)]−T · ek‖
=

1

max
{
‖x‖ : x is column of [N(z1), . . . , N(zn)]−T

} .
This yields the equation in Claim 1. Due to(

max
k∈[n]
‖Mk‖

)2

≤
∑
k∈[n]

‖Mk‖2 =
∑
k∈[n]

‖mk‖2 ≤ n ·
(

max
k∈[n]
‖mk‖

)2

we obtain the inequality

1

maxk∈[n] ‖mk‖
≤

√
n

maxk∈[n] ‖Mk‖

stated in Claim 1. For Claim 2 observe that

[N(Qz1), . . . , N(Qzn)]−T = [QN(z1), . . . , QN(zn)]−T

= (Q · [N(z1), . . . , N(zn)])−T

= ([N(z1), . . . , N(zn)]−1 ·QT)T

= Q · [N(z1), . . . , N(zn)]−T

for any orthogonal matrix Q. Therefore, we get

1

δ(Qz1, . . . , Qzn)
= max

{
‖x‖ : x is column of [N(Qz1), . . . , N(Qzn)]−T

}
= max

{
‖Qy‖ : y is column of [N(z1), . . . , N(zn)]−T

}
= max

{
‖y‖ : y is column of [N(z1), . . . , N(zn)]−T

}
=

1

δ(z1, . . . , zn)
.

For Claim 3 let y1 and y2 be two neighboring vertices of P . Then there are exactly n− 1
indices j for which aT

j ·(y2−y1) = 0. We denote them by j1, . . . , jn−1. If there is an index i

70 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

for which aT
i · (y2− y1) 6= 0, then aj1 , . . . , ajn−1 , ai are linearly independent. Consequently,

δ(aj1 , . . . , ajn−1 , ai) ≥ δ. Let us assume that aT
i · (y2 − y1) ≥ 0. (Otherwise, consider

aT
i · (y1− y2) instead.) Since y2− y1 is a normal vector of span{aj1 , . . . , ajn−1} that lies in

the same halfspace as ai, we obtain

aT
i · (y2 − y1)

‖y2 − y1‖
= δ̂(

{
aj1 , . . . , ajn−1

}
, ai) ≥ δ(aj1 , . . . , ajn−1 , ai) ≥ δ

and, thus, aT
i · (y2− y1) ≥ δ · ‖y2− y1‖. For proving Claim 4 we can focus on showing the

first inequality. The second one follows from ∆ ≥ max {∆1,∆n−1}. For this, it suffices to
show that for n arbitrary linearly independent rows aT

i1
, . . . , aT

in of A the inequality

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

≤ n∆1∆n−1

holds. By previous observations we know that

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

= ‖x‖

where x is the unique solution of Âx = en for Â = [N(ai1), . . . , N(ain)]T. Let Ã =
[ai1 , . . . , ain]T. Then

‖x‖2 =
n∑
k=1

x2
k =

n∑
k=1

(
det(Ân,k)

det(Â)

)2

=
n∑
k=1

det(Ãn,k) ·
∏n−1

j=1
1
‖aij ‖

det(Ã) ·∏n
j=1

1
‖aij ‖

2

=
n∑
k=1

(
det(Ãn,k) · ‖ain‖

det(Ã)

)2

≤
n∑
k=1

(
∆n−1 ·

√
n∆1

1

)2

= n2∆2
1∆2

n−1 .

Some of the equations need further explanation: Due to Cramer’s rule, we have xk =
det(Ā)/ det(Â), where Ā is obtained from Â by replacing the kth column by the right-
hand side en of the equation Âx = en. Laplace’s formula yields | det(Ā)| = | det(Ân,k)|.
Hence, the second equation is true. For the third equation note that the kth row of
matrix Â is the same as the kth row of matrix Ã up to a factor of 1/‖aik‖. The inequality
follows from | det(Ãn,k)| ≤ ∆n−1 since this is a sub-determinant of A of size n − 1, from
‖ain‖ ≤

√
n · ‖ain‖∞ ≤

√
n∆1, since ‖ain‖∞ is a sub-determinant of A of size 1, and from

| det(Ã)| ≥ 1 since Ã is invertible and integral by assumption. Hence,

1

δ̂(
{
ai1 , . . . , ain−1

}
, ain)

= ‖x‖ ≤ n∆1∆n−1 .

5.5. ANALYSIS 71

5.5 Analysis

For the proof of Theorem 1.3.1 we assume that ‖ai‖ = 1 for all i ∈ [m]. This entails
no loss of generality since normalizing the rows of matrix A (and scaling the right-hand
side b appropriately) does neither change the behavior of Algorithm 2 nor does it change
the parameter δ = δ(A).

For two functions f1 : Rn → R and f2 : Rn → R we denote by π = πf1,f2 the function
π : Rn → R2, defined by π(x) = (f1(x), f2(x)). For our analysis only linear functions are
of interest. We will treat an n-dimensional vector v as the linear function x 7→ vTx. By
P ′ = P ′f1,f2 we denote the projection π(P) of the polyhedron P onto the Euclidean plane.
If f1 and f2 are linear, then P ′ is a polygon and we denote by R = Rf1,f2 the path from
π(x1) to π(x2) along the edges of P ′.

Our goal is to bound the expected number of edges of the path R = Rw1,w2 which is
random since w1 and w2 depend on the realizations of the random vectors λ and µ (see
Line 4 of Algorithm 2). Each edge of R corresponds to a slope in (0,∞). These slopes
are pairwise distinct with probability one (see Lemma 5.5.3). Hence, the number of edges
of R equals the number of distinct slopes of R. In order to bound the expected number
of distinct slopes we first restrict our attention to slopes in the interval (0, 1].

Definition 5.5.1. For a real ε > 0 let Fε denote the event that there are three pairwise
distinct vertices z1, z2, z3 of P such that z1 and z3 are neighbors of z2 and such that∣∣∣∣wT

2 · (z2 − z1)

wT
1 · (z2 − z1)

− wT
2 · (z3 − z2)

wT
1 · (z3 − z2)

∣∣∣∣ ≤ ε .

Note that if event Fε does not occur, then all slopes of R differ by more than ε.
Particularly, all slopes are pairwise distinct. First of all we show that event Fε is very
unlikely to occur if ε is chosen sufficiently small.

Lemma 5.5.2. The probability that there are two neighboring vertices z1, z2 of P such
that |wT

1 · (z2 − z1)| ≤ ε · ‖z2 − z1‖ is bounded from above by 2mnε/δ.

Proof. Let z1 and z2 be two neighbors of P . Let ∆z = z2 − z1. Because the claim we
want to show is invariant under scaling, we can assume without loss of generality that
‖∆z‖ = 1. There are n− 1 indices i1, . . . , in−1 ∈ [m] such that aT

ik
z1 = bik = aT

ik
z2. Recall

that w1 = −[u1, . . . , un] · λ, where λ = (λ1, . . . , λn) is drawn uniformly at random from
(0, 1]n. There must be an index i such that ai1 , . . . , ain−1 , ui are linearly independent.
Hence, κ := uT

i ∆z 6= 0 and, thus, |κ| ≥ δ due to Lemma 5.4.2, Claim 3. We apply the
principle of deferred decisions and assume that all λj for j 6= i are already drawn. Then

wT
1 ∆z = −

n∑
j=1

λj · uT
j ∆z = −

∑
j 6=i

λj · uT
j ∆z︸ ︷︷ ︸

=:γ

−λi · κ .

72 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

Thus,

|wT
1 ∆z| ≤ ε ⇐⇒ λi · κ ∈ [γ − ε, γ + ε] ⇐⇒ λi ∈

[
γ

κ
− ε

|κ| ,
γ

κ
+

ε

|κ|

]
.

The probability for the latter event is bounded by the length of the interval, that is, by
2ε/|κ| ≤ 2ε/δ. Since we have to consider at most

(
m
n−1

)
≤ mn pairs of neighbors (z1, z2),

applying a union bound yields the additional factor of mn.

Lemma 5.5.3. The probability of event Fε tends to 0 for ε→ 0.

Proof. Let z1, z2, z3 be pairwise distinct vertices of P such that z1 and z3 are neighbors
of z2 and let ∆z := z2 − z1 and ∆′z := z3 − z2. We assume that ‖∆z‖ = ‖∆′z‖ = 1. This
entails no loss of generality as the fractions in Definition 5.5.1 are invariant under scaling.
Let i1, . . . , in−1 ∈ [m] be the n − 1 indices for which aT

ik
z1 = bik = aT

ik
z2. The rows

ai1 , . . . , ain−1 are linearly independent because P is non-degenerate. Since z1, z2, z3 are
distinct vertices of P and since z1 and z3 are neighbors of z2, there is exactly one index i`
for which aT

i`
z3 < bi` , i.e., aT

i`
∆′z 6= 0. Otherwise, z1, z2, z3 would be collinear which would

contradict the fact that they are distinct vertices of P . Without loss of generality assume
that ` = n − 1. Since aT

ik
∆z = 0 for each k ∈ [n − 1], the vectors ai1 , . . . , ain−1 ,∆z are

linearly independent.
We apply the principle of deferred decisions and assume that w1 is already fixed.

Thus, wT
1 ∆z and wT

1 ∆′z are fixed as well. Moreover, we assume that wT
1 ∆z 6= 0 and

wT
1 ∆′z 6= 0 since this happens almost surely due to Lemma 5.5.2. Now consider the matrix

M = [ai1 , . . . , ain−2 ,∆z, ain−1] and the random vector (Y1, . . . , Yn−1, Z)T = M−1 · w2 =
M−1 · [v1, . . . , vn] · µ. For fixed values y1, . . . , yn−1 let us consider all realizations of µ for
which (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then

wT
2 ∆z =

(
M · (y1, . . . , yn−1, Z)T

)T
∆z

=
n−2∑
k=1

yk · aT
ik

∆z + yn−1 ·∆T
z ∆z + Z · aT

in−1
∆z

= yn−1 ,

i.e., the value of wT
2 ∆z does not depend on the outcome of Z since ∆z is orthogonal to

all aik . For ∆′z we obtain

wT
2 ∆′z =

(
M · (y1, . . . , yn−1, Z)T

)T
∆′z

=
n−2∑
k=1

yk · aT
ik

∆′z + yn−1 ·∆T
z ∆′z + Z · aT

in−1
∆′z

= yn−1 ·∆T
z ∆′z︸ ︷︷ ︸

=:κ

+Z · aT
in−1

∆′z

5.5. ANALYSIS 73

as ∆′z is orthogonal to all aik except for k = ` = n− 1. The chain of equivalences∣∣∣∣wT
2 ∆z

wT
1 ∆z

− wT
2 ∆′z

wT
1 ∆′z

∣∣∣∣ ≤ ε

⇐⇒ wT
2 ∆′z

wT
1 ∆′z

∈
[
wT

2 ∆z

wT
1 ∆z

− ε, w
T
2 ∆z

wT
1 ∆z

+ ε

]
⇐⇒ wT

2 ∆′z ∈
[
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − ε · |wT

1 ∆′z|,
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z + ε · |wT

1 ∆′z|
]

⇐⇒ Z · aT
in−1

∆′z ∈
[
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − κ− ε · |wT

1 ∆′z|,
wT

2 ∆z

wT
1 ∆z

· wT
1 ∆′z − κ+ ε · |wT

1 ∆′z|
]

implies, that for event Fε to occur Z must fall into an interval I = I(y1, . . . , yn−1) of
length 2ε · |wT

1 ∆′z|/|aT
in−1

∆′z|. The probability of this is bounded from above by

2n · 2ε · |wT
1 ∆′z |

|aT
in−1

∆′z |

δ(r1, . . . , rn) ·mink∈[n] ‖rk‖
=

4n · |wT
1 ∆′z|

δ(r1, . . . , rn) ·mink∈[n] ‖rk‖ · |aT
in−1

∆′z|︸ ︷︷ ︸
=:γ

·ε ,

where [r1, . . . , rn] = M−1 · [v1, . . . , vn]. This is due to (Y1, . . . , Yn−1, Z)T = [r1, . . . , rn] ·
µ and Theorem 5.6.1. Since the vectors r1, . . . , rn are linearly independent, we have
δ(r1, . . . , rn) > 0 and mink∈[n] ‖rk‖ > 0. Furthermore, |aT

in−1
∆′z| > 0 since in−1 is the

constraint which is not tight for z3, but for z2. Hence, γ <∞, and thus

Pr

[∣∣∣∣wT
2 ∆z

wT
1 ∆z

− wT
2 ∆′z

wT
1 ∆′z

∣∣∣∣ ≤ ε

]
→ 0

for ε → 0. As there are at most m3n triples (z1, z2, z3) we have to consider, the claim
follows by applying a union bound.

Let p 6= π(x2) be a vertex of R. We call the slope s of the edge incident to p to the
right of p the slope of p. As a convention, we set the slope of π(x2) to 0 which is smaller
than the slope of any other vertex p of R.

Let t ≥ 0 be an arbitrary real, let p̂ be the right-most vertex of R whose slope is
larger than t, and let p? be the right neighbor of p̂ (see Figure 5.1). Furthermore, let x̂
and x? be the neighboring vertices of P with π(x̂) = p̂ and π(x?) = p?, respectively, and
let i = i(x?, x̂) ∈ [m] be the index for which aT

i x
? = bi and for which x̂ is the (unique)

neighbor x of x? for which aT
i x < bi. This index is unique due to the non-degeneracy of

the polyhedron P . For an arbitrary real γ ≥ 0 we consider the vector w̃2 = w2 + γ · ai.
Lemma 5.5.4. Let π̃ = πw1,w̃2 and let R̃ = Rw1,w̃2 be the path from π̃(x1) to π̃(x2) in the
projection P̃ ′ = P ′w1,w̃2

of polyhedron P . Furthermore, let p̃? be the left-most vertex of R̃
whose slope does not exceed t. Then p̃? = π̃(x?).

74 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

π(x2)

π(x1)

R
p̂

>t

P ′>t

≤ t
≤ t

p?

Figure 5.1: Slopes of the vertices of R

Let us reformulate the statement of Lemma 5.5.4 as follows: The vertex p̃? is defined
for the path R̃ of polygon P̃ ′ with the same rules as used to define the vertex p? of the
original path R of polygon P ′. Even though R and R̃ can be very different in shape,
both vertices, p? and p̃?, correspond to the same solution x? in the polyhedron P , that is,
p? = π(x?) and p̃? = π̃(x?). Let us remark that Lemma 5.5.4 is a significant generalization
of Lemma 4.3.8.

Proof. We consider a linear auxiliary function w̄2 : Rn → R, given by w̄2(x) = w̃T
2 x−γ ·bi.

The paths R̄ = Rw1,w̄2 and R̃ are identical except for a shift by −γ · bi in the second
coordinate because for π̄ = πw1,w̄2 we obtain

π̄(x) = (wT
1 x, w̃

T
2 x− γ · bi) = (wT

1 x, w̃
T
2 x)− (0, γ · bi) = π̃(x)− (0, γ · bi)

for all x ∈ Rn. Consequently, the slopes of R̄ and R̃ are exactly the same (see Figure 5.2a).

0 ξ

η

R̄

−γ · biR̃

(a) Relation between R̄ and
R̃

0 ξ

η

R

R̄
p?

(b) Relation between R̄ an
R

Figure 5.2: Relations between R, R̃, and R̄

Let x ∈ P be an arbitrary point from the polyhedron P . Then

w̃T
2 x = wT

2 x+ γ · aT
i x ≤ wT

2 x+ γ · bi .

5.5. ANALYSIS 75

The inequality is due to γ ≥ 0 and aT
i x ≤ bi for all x ∈ P . Equality holds, among others,

for x = x? due to the choice of ai. Hence, for all points x ∈ P the two-dimensional points
π(x) and π̄(x) agree in the first coordinate while the second coordinate of π(x) is at least
the second coordinate of π̄(x) as w̄2(x) = w̃T

2 x − γ · bi ≤ wT
2 x. Additionally, we have

π(x?) = π̄(x?). Thus, path R̄ is below path R but they meet at point p? = π(x?). Hence,
the slope of R̄ to the left (right) of p? is at least (at most) the slope of R to the left
(right) of p? which is greater than (at most) t (see Figure 5.2b). Consequently, p? is the
left-most vertex of R̄ whose slope does not exceed t. Since R̄ and R̃ are identical up to a
shift of −(0, γ · bi), π̃(x?) is the left-most vertex of R̃ whose slope does not exceed t, i.e.,
π̃(x?) = p̃?.

Lemma 5.5.4 holds for any vector w̃2 on the ray ~r = {w2 + γ · ai : γ ≥ 0}. As ‖w2‖ ≤ n
(see Section 1.3.1), we have w2 ∈ [−n, n]n. Hence, ray ~r intersects the boundary of [−n, n]n

in a unique point z. We choose w̃2 = w̃2(w2, i) := z and obtain the following result.

Corollary 5.5.5. Let π̃ = πw1,w̃2(w2,i) and let p̃? be the left-most vertex of path R̃ =
Rw1,w̃2(w2,i) whose slope does not exceed t. Then p̃? = π̃(x?).

Note, that Corollary 5.5.5 only holds for the right choice of index i = i(x?, x̂). The
vector w̃2(w2, i) is defined for any vector w2 ∈ [−n, n]n and any index i ∈ [m]. In the
remainder, index i is an arbitrary index from [m].

We can now define the following event that is parameterized in i, t, and a real ε > 0
and that depends on w1 and w2.

Definition 5.5.6. For an index i ∈ [m] and a real t ≥ 0 let p̃? be the left-most vertex
of R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t and let y? be the corresponding vertex
of P . For a real ε > 0 we denote by Ei,t,ε the event that the conditions

• aT
i y

? = bi and

• wT
2 (ŷ−y?)/wT

1 (ŷ−y?) ∈ (t, t+ε], where ŷ is the neighbor y of y? for which aT
i y < bi,

are met. Note, that the vertex ŷ always exists and that it is unique since the polyhedron P
is non-degenerate.

Let us remark that the vertices y? and ŷ, which depend on the index i, equal x? and x̂
if we choose i = i(x?, x̂). For other choices of i, this is, in general, not the case.

Observe that all possible realizations of w2 from the line L := {w2 + x · ai : x ∈ R}
are mapped to the same vector w̃2(w2, i). Consequently, if w1 is fixed and if we only
consider realizations of µ for which w2 ∈ L, then vertex p̃? and, hence, vertex y? from
Definition 5.5.6 are already determined. However, since w2 is not completely specified, we
have some randomness left for event Ei,t,ε to occur. This allows us to bound the probability
of event Ei,t,ε from above (see proof of Lemma 5.5.8). The next lemma shows why this
probability matters.

76 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

Lemma 5.5.7. For reals t ≥ 0 and ε > 0 let At,ε denote the event that the path R = Rw1,w2

has a slope in (t, t+ ε]. Then At,ε ⊆
⋃m
i=1 Ei,t,ε.

Proof. Assume that event At,ε occurs. Let p̂ be the right-most vertex of R whose slope
exceeds t, let p? be the right neighbor of p̂, and let x̂ and x? be the neighboring vertices
of P for which π(x̂) = p̂ and π(x?) = p?, where π = πw1,w2 . Moreover, let i = i(x?, x̂) be
the index for which aT

i x
? = bi but aT

i x̂ < bi. We show that event Ei,t,ε occurs.
Consider the left-most vertex p̃? of R̃ = Rw1,w̃2(w2,i) whose slope does not exceed t and

let y? be the corresponding vertex of P . In accordance with Corollary 5.5.5 we obtain
y? = x?. Hence, aT

i y
? = bi, i.e., the first condition of event Ei,t,ε holds. Now let ŷ be the

unique neighbor y of y? for which aT
i y < bi. Since y? = x?, we obtain ŷ = x̂. Consequently,

wT
2 (ŷ − y?)

wT
1 (ŷ − y?) =

wT
2 (x̂− x?)

wT
1 (x̂− x?) ∈ (t, t+ ε] ,

since this is the smallest slope of R that exceeds t and since there is a slope in (t, t+ ε] by
assumption. Hence, event Ei,t,ε occurs since the second condition for event Ei,t,ε to happen
holds as well.

With Lemma 5.5.7 we can now bound the probability of event At,ε.

Lemma 5.5.8. For reals t ≥ 0 and ε > 0 the probability of event At,ε is bounded by
Pr[At,ε] ≤ 4mn2ε/δ2.

Proof. Due to Lemma 5.5.7 it suffices to show that Pr[Ei,t,ε] ≤ (1/m) · 4mn2ε/δ2 =
4n2ε/δ2 for any index i ∈ [m]. We apply the principle of deferred decisions and as-
sume that vector λ ∈ (0, 1]n is not random anymore, but arbitrarily fixed. Thus, vec-
tor w1 is already fixed. Now we extend the normalized vector ai to an orthonormal ba-
sis {q1, . . . , qn−1, ai} of Rn and consider the random vector (Y1, . . . , Yn−1, Z)T = QTw2

given by the matrix vector product of the transpose of the orthogonal matrix Q =
[q1, . . . , qn−1, ai] and the vector w2 = [v1, . . . , vn] · µ. For fixed values y1, . . . , yn−1 let
us consider all realizations of µ such that (Y1, . . . , Yn−1) = (y1, . . . , yn−1). Then w2 is fixed
up to the ray

w2(Z) = Q · (y1, . . . , yn−1, Z)T =
n−1∑
j=1

yj · qj + Z · ai = w + Z · ai

for w =
∑n−1

j=1 yj · qj. All realizations of w2(Z) that are under consideration are mapped
to the same value w̃2 by the function w2 7→ w̃2(w2, i), i.e., w̃2(w2(Z), i) = w̃2 for any
possible realization of Z. In other words, if w2 = w2(Z) is specified up to this ray, then
the path Rw1,w̃2(w2,i) and, hence, the vectors y? and ŷ used for the definition of event Ei,t,ε,
are already determined.

5.5. ANALYSIS 77

Let us only consider the case that the first condition of event Ei,t,ε is fulfilled. Other-
wise, event Ei,t,ε cannot occur. Thus, event Ei,t,ε occurs iff

(t, t+ ε] 3 w
T
2 · (ŷ − y?)

wT
1 · (ŷ − y?)

=
wT · (ŷ − y?)
wT

1 · (ŷ − y?)︸ ︷︷ ︸
=:α

+Z · a
T
i · (ŷ − y?)
wT

1 · (ŷ − y?)︸ ︷︷ ︸
=:β

.

The next step in this proof will be to show that the inequality |β| ≥ δ/n is necessary for
event Ei,t,ε to happen. For the sake of simplicity let us assume that ‖ŷ − y?‖ = 1 since β
is invariant under scaling. If event Ei,t,ε occurs, then aT

i y
? = bi, ŷ is a neighbor of y?, and

aT
i ŷ 6= bi. That is, by Lemma 5.4.2, Claim 3 we obtain |aT

i · (ŷ − y?)| ≥ δ · ‖ŷ − y?‖ = δ
and, hence,

|β| =
∣∣∣∣ aT

i · (ŷ − y?)
wT

1 · (ŷ − y?)

∣∣∣∣ ≥ δ

|wT
1 · (ŷ − y?)|

≥ δ

‖w1‖ · ‖ŷ − y?)‖
≥ δ

n · 1 .

Summarizing the previous observations we can state that if event Ei,t,ε occurs, then |β| ≥
δ/n and α + Z · β ∈ (t, t+ ε] ⊆ [t− ε, t+ ε]. Hence,

Z ∈
[
t− α
β
− ε

|β| ,
t− α
β

+
ε

|β|

]
⊆
[
t− α
β
− ε

δ
n

,
t− α
β

+
ε
δ
n

]
=: I(y1, . . . , yn−1) .

Let Bi,t,ε denote the event that Z falls into the interval I(Y1, . . . , Yn−1) of length 2nε/δ.
We showed that Ei,t,ε ⊆ Bi,t,ε. Consequently,

Pr [Ei,t,ε] ≤ Pr [Bi,t,ε] ≤
2n · 2nε

δ

δ(QTv1, . . . , QTvn)
≤ 4n2ε

δ2
,

where the second inequality is due to Theorem 5.6.1: By definition, we have

(Y1, . . . , Yn−1, Z)T = QTw2 = QT · [v1, . . . , vn] · µ = [QTv1, . . . , Q
Tvn] · µ .

The third inequality stems from the fact that δ(QTv1, . . . , Q
Tvn) = δ(v1, . . . , vn) ≥ δ,

where the equality is due to the orthogonality of Q (Claim 2 of Lemma 5.4.2).

Lemma 5.5.9. Let Y be the number of slopes of R = Rw1,w2 that lie in the interval (0, 1].
Then E[Y] ≤ 4mn2/δ2.

Proof. For a real ε > 0 let Fε denote the event from Definition 5.5.1. Recall that all
slopes of R differ by more than ε if Fε does not occur. Let Zt,ε be the random variable
that indicates whether R has a slope in the interval (t, t+ ε] or not, i.e., Zt,ε = 1 if there
is such a slope and Zt,ε = 0 otherwise. Then for any integer k ≥ 1

Y ≤
{∑k−1

i=0 Z i
k
, 1
k

if F 1
k

does not occur ,

mn otherwise .

78 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

This is true since
(
m
n−1

)
≤ mn is a worst-case bound on the number of edges of P and,

hence, of the number of slopes of R. Consequently,

E [Y] ≤
k−1∑
i=0

E
[
Z i
k
, 1
k

]
+ Pr

[
F 1
k

]
·mn =

k−1∑
i=0

Pr
[
A i

k
, 1
k

]
+ Pr

[
F 1
k

]
·mn

≤
k−1∑
i=0

4mn2 · 1
k

δ2
+ Pr

[
F 1
k

]
·mn =

4mn2

δ2
+ Pr

[
F 1
k

]
·mn ,

where the second inequality stems from Lemma 5.5.8. The claim follows since the bound
on E[Y] holds for any integer k ≥ 1 and since Pr[Fε] → 0 for ε→ 0 in accordance with
Lemma 5.5.3.

Proof of Theorem 1.3.1. Lemma 5.5.9 bounds only the expected number of edges on the
path R that have a slope in the interval (0, 1]. However, the lemma can also be used
to bound the expected number of edges whose slope is larger than 1. For this, one only
needs to exchange the order of the objective functions x 7→ wT

1 x and x 7→ wT
2 x in the

projection π. Then any edge with a slope of s > 0 becomes an edge with slope 1/s. Due
to the symmetry in the choice of w1 and w2, Lemma 5.5.9 can also be applied to bound
the expected number of edges whose slope lies in (0, 1] for this modified projection, which
are exactly the edges whose original slope lies in [1,∞).

Formally we can argue as follows. Consider the vertices x′1 = x2 and x′2 = x1, the
directions w′1 = −w2 and w′2 = −w1, and the projection π′ = πw′1,w′2 , yielding a path R′

from π′(x′1) to π′(x′2). Let X be the number of slopes of R and let Y and Y ′ be the number
of slopes of R and of R′, respectively, that lie in the interval (0, 1]. The paths R and R′

are identical except for the linear transformation (x, y) 7→ (−y,−x). Consequently, s is
a slope of R if and only if 1/s is a slope of R′ and, hence, X ≤ Y + Y ′. One might
expect equality here but in the unlikely case that R contains an edge with slope equal
to 1 we have X = Y + Y ′ − 1. The expectation of Y is given by Lemma 5.5.9. Since
this result holds for any two vertices x1 and x2 it also holds for x′1 and x′2. Note, that w′1
and w′2 have exactly the same distribution as the directions the shadow vertex algorithm
computes for x′1 and x′2. Therefore, Lemma 5.5.9 can also be applied to bound E[Y ′] and
we obtain E[X] ≤ E[Y] + E[Y ′] ≤ 8mn2/δ2.

The proof of Corollary 1.3.2 follows immediately from Theorem 1.3.1 and Claim 4 of
Lemma 5.4.2.

5.6 Some Probability Theory

The following theorem is variant of Theorem 3.3 for uniformly distributed random vari-
ables X1, . . . , Xn, square matrices, and k = 1, expressed in the parameter δ that has been
introduced in Definition 5.4.1.

5.6. SOME PROBABILITY THEORY 79

Theorem 5.6.1. Let X1, . . . , Xn be random variables that are independently and uni-
formly drawn from the interval (0, 1], let A = [a1, . . . , an] ∈ Rn×n be an invertible matrix,
let (Y1, . . . , Yn−1, Z)T = A · (X1, . . . , Xn)T be the linear combinations of X1, . . . , Xn given
by A, and let I : Rn−1 → {[x, x+ ε] : x ∈ R} be a function mapping a tuple (y1, . . . , yn−1)
to an interval I(y1, . . . , yn−1) of length ε. Then the probability that Z lies in the interval
I(Y1, . . . , Yn−1) is bounded by

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖
.

Proof. First of all note, that the density fi of the random variable Xi takes the value 1 on
the interval (0, 1] and is 0 otherwise. Hence, we can apply the second claim of Theorem 3.3
for m = n, φ = 1, k = 1, and Â = A and obtain

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2 ·
n∑
i=1

| det(An,i)|
| det(A)| · ε ,

where An,i denotes the (n − 1) × (n − 1)-submatrix of A obtained from A by removing
the last row and column i. Now we bound the fraction | det(An,i)|/| det(A)|. To do this,
consider the equation Ax = en. We obtain

|xi| =
| det([a1, . . . , ai−1, en, ai+1, . . . , an])|

| det(A)| =
| det(An,i)|
| det(A)| ,

where the first equality is due to Cramer’s rule and the second equality is due to Laplace’s
formula. Hence,

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2ε ·
∑
i∈[n]

|xi| = 2ε · ‖x‖1 ≤ 2
√
nε · ‖x‖2

Now consider the equation Ãy = en for the normalized matrix Ã = [N(a1), . . . , N(an)] and
let b1, . . . , bn be the columns of Ã−1. Vector y = Ã−1en is the nth column of the matrix
Ã−1, i.e., y = bn. Thus, we obtain ‖y‖ ≤ maxi=1,...,n ‖bi‖ ≤

√
n/δ(a1, . . . , an), where

second inequality is due to Claim 1 of Lemma 5.4.2. Due to A = Ã ·diag(‖a1‖, . . . , ‖an‖),
we have

x = A−1en = diag

(
1

‖a1‖
, . . . ,

1

‖an‖

)
· Ã−1en = diag

(
1

‖a1‖
, . . . ,

1

‖an‖

)
· y .

Consequently, ‖x‖ ≤ ‖y‖/mink∈[n] ‖ak‖ and, thus,

Pr [Z ∈ I(Y1, . . . , Yn−1)] ≤ 2
√
nε · ‖y‖

mink∈[n] ‖ak‖
≤ 2nε

δ(a1, . . . , an) ·mink∈[n] ‖ak‖
.

80 CHAPTER 5. FINDING SHORT PATHS ON POLYHEDRA

Chapter 6

Scheduling Heuristics

In this chapter we study the smoothed performance guarantees of popular local search
and greedy algorithms for scheduling: the jump algorithm, the lex-jump algorithm, and
the list scheduling algorithm. In Section 6.2, we provide asymptotically matching upper
and lower bounds on the smoothed performance guarantees of these algorithms in the
environment with unrestricted related machines. In Section 6.3, we show that neither the
jump algorithm nor the lex-jump algorithm benefit from smoothing in the setting with
restricted machines.

6.1 Notation

Consider an instance I for the scheduling problem with a job set J = {1, . . . , n}, processing
requirements p1, . . . , pn ∈ [0, 1], a set M = {1, . . . ,m} of machines with speeds smax:=s1 ≥
. . . ≥ sm=:smin = 1 (in the case of non-identical machines), and the setsM1, . . . ,Mn ⊆M
of allowed machines (in the case of restricted machines). For a schedule σ : J → M we
denote by Ji(σ) ⊆ J the set of jobs assigned to machine i according to σ. The (total)
processing requirement on a machine i is defined as

∑
j∈Ji(σ) pj and the load of machine i

is defined as Li(I, σ) =
∑

j∈Ji(σ) pij. The makespan Cmax(I, σ) of σ can be written as

Cmax(I, σ) = maxi∈M Li(I, σ). The optimal makespan, i.e., the makespan of an optimal
schedule is denoted by C?

max(I). By Jump(I), Lex(I), and List(I) we denote the set
of all feasible jump optimal schedules, lex-jump optimal schedules, and list schedules,
respectively, according to instance I.

If the instance I is clear from the context, then we simply write Li(σ) instead of
Li(I, σ), Cmax(σ) instead of Cmax(I, σ), and C?

max instead of C?
max(I). If the schedule σ is

clear as well, we simplify our notation further to Li and Cmax and we write Ji instead of
Ji(σ). In Appendix 6.4, the notation is summarized in a table.

81

82 CHAPTER 6. SCHEDULING HEURISTICS

6.2 Unrestricted Machines

In this section we establish matching lower and upper bounds for the smoothed perfor-
mance guarantees of the jump algorithm, the lex-jump algorithm, and the list scheduling
algorithm. If all machines have the same speed, then all of these algorithms have a con-
stant worst-case approximation guarantee. Consequently, also the smoothed performance
guarantee is constant. The only interesting environment in the unrestricted setting is the
one with related machines which we are going to study in the remainder.

6.2.1 Jump Optimal Schedules

We show that the smoothed performance guarantee of the jump algorithm grows linearly
with the smoothing parameter φ and is independent of the number of jobs and machines.
In particular, it is constant if the smoothing parameter is constant which it is, for instance,
in an average-case analysis with uniform distributions. In proving our results, we make
use of the following proposition which follows from Cho and Sahni [CS80].

Proposition 6.2.1. For any scheduling instance I with m unrestricted related machines
and n jobs

max
σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

≤ 1 +
√

4 min{m,n} − 3

2
≤ 1

2
+
√
n .

Theorem 6.2.2. For any φ-smooth instance I with unrestricted and related machines,

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

]
< 5.1φ+ 2.5 = O(φ) .

Proof. First note that, if m > n, then neither the optimal schedule nor any jump-optimal
schedule assign any job to any of the slowest m−n machines. Hence, we can ignore these
slowest m−n machines, and therefore we can assume that m ≤ n. We will prove an upper
bound on the performance guarantee of jump optimal schedules that decreases when the
sum of processing requirements Q =

∑
j∈J pj increases and that is valid for every instance.

Then we will argue that for φ-smooth instances Q is usually not too small, which yields
the theorem.

Let σ denote an arbitrary jump optimal schedule for some arbitrary processing re-
quirements pj ∈ [0, 1]. Moreover, let i be an arbitrary machine, let machine imax be a
critical machine in schedule σ, and let j be a job assigned to machine imax by schedule σ.
By jump optimality of σ it follows that

Cmax(σ) = Limax ≤ Li +
pj
si
≤ Li +

pmax

si
,

where pmax denotes the processing requirement of the largest job. The previous inequality
yields that si · Cmax(σ) ≤ si · Li + pmax for all machines i ∈ M . A summation over all

6.2. UNRESTRICTED MACHINES 83

machines i ∈M yields∑
i∈M

si · Cmax(σ) ≤
∑
i∈M

si · Li +
∑
i∈M

pmax =
∑
i∈M

si · Li +m · pmax

≤
∑
i∈M

si · Li + n (6.1)

because m ≤ n and pmax ≤ 1. Observing, that si · Li equals the total processing require-
ment on machine i, it follows that

∑
i∈M si ·Li =

∑
j∈J pj = Q. Dividing Inequality (6.1)

by the sum of the machine speeds, we obtain the following upper bound on the makespan
of any jump optimal schedule σ:

Cmax(σ) ≤ Q∑
i∈M si

+
n∑
i∈M si

.

Using the well-known bound C?
max ≥ Q/

∑
i∈M si, which stems from the fact that the total

processing requirement on any machine i in any optimal schedule is at most si ·C?
max, we

obtain

Cmax(σ) ≤ Q∑
i∈M si

+
n∑
i∈M si

≤
(

1 +
n

Q

)
· C?

max .

Hence,

max
σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

≤ 1 +
n

Q
. (6.2)

We will see that, with high probability, Q is in the order of Ω(n/φ) yielding an approxima-
tion factor of O(φ) in this case. In the other case, we only get a worst-case approximation
factor of O(

√
n) from Proposition 6.2.1. However, as the latter case is sufficiently unlikely,

we obtain the desired bound of O(φ) for the smoothed performance guarantee of the jump
algorithm.

Let F denote the failure event that Q ≤
(
n −
√
n lnn

)
/(2φ). We define Xj to be

independent random variables drawn uniformly from [0, 1/φ] for all jobd j ∈ J . Then
Pr[pj ≥ a] ≥ Pr[Xj ≥ a] for any a ∈ R. This is due to the fact that all processing
requirements pj are drawn according to probability densities fj : [0, 1]→ [0, φ]. Let X =∑

j∈J Xj. Observe, that the expected value of X is n/(2φ). Then it follows that Pr[Q ≥
a] ≥ Pr[X ≥ a] for any a ∈ R. Hence,

Pr [F] = Pr

[
Q ≤ n−

√
n lnn

2φ

]
≤ Pr

[
X ≤ n−

√
n lnn

2φ

]

= Pr

[
E [X]−X ≥

√
n lnn

2φ

]
≤ exp

(
− lnn

2

)
=

1√
n
, (6.3)

84 CHAPTER 6. SCHEDULING HEURISTICS

where the last inequality follows from Hoeffding’s inequality [Hoe63] (see Theorem 3.2).
Now consider the random variable

Z =

{
1/2 +

√
n if event F occurs ,

1 + n/Q otherwise ,

and let Y = maxσ∈Jump(I)

(
Cmax(I, σ)/C?

max(I)
)
. Due to Proposition 6.2.1 and Inequal-

ity (6.2) we have Y ≤ Z. We denote by F the complement of F and obtain

E
I∼I

[Y] ≤ E
I∼I

[Z] ≤ E
I∼I

[
Z| F

]
+ E

I∼I
[Z| F] · Pr

I∼I
[F]

≤
(

1 +
2φn

n−
√
n lnn

)
+

1/2 +
√
n√

n

≤ 2.5 +
2φ

1−
√

ln(n)/n
< 2.5 + 5.1φ .

For the third inequality, we used Inequality (6.3) and Q > (n−
√
n lnn)/(2φ) if event F

does not hold. The last inequality holds since

max
n∈N

2

1−
√

ln(n)/n
< 5.1 ,

where the maximum is attained for n = 3. This is true since ln(x)/x takes its unique
locale maximum at x = e. Thus,

max
n∈N

2

1−
√

ln(n)/n
= max

{
2

1−
√

ln(2)/2
,

2

1−
√

ln(3)/3

}
< max {4.9, 5.1} = 5.1 .

Corollary 6.2.3. The average-case performance guarantee of the worst jump optimal
schedule for scheduling with unrestricted and related machines is Θ(1).

Next, we show that the upper bound on the smoothed performance guarantee provided
in Theorem 6.2.2 is tight up to constant factor.

Theorem 6.2.4. There is a class of φ-smooth instances I with unrestricted and related
machines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

]
= Ω(φ) .

Proof. It suffices to consider φ > 2. For such values of φ we construct a φ-smooth
instance I with n = m = d4φ2 + 1e jobs and machines. Note, that due to Proposition 6.2.1
we need Ω(φ2) jobs and machines in order to construct an instance with a smoothed
performance guarantee of Ω(φ). Let

s1 =
n− 1

4φ
≥ φ > 2 and s2 = . . . = sn = 1 .

6.2. UNRESTRICTED MACHINES 85

We assume that the processing requirement p1 is chosen uniformly from the interval
[1− 1/φ, 1] while the processing requirements of all other jobs are chosen uniformly from
the interval [0, 1/φ]. As we only consider the case φ > 2, job 1 is larger than all the other
jobs. In an optimal schedule, job 1 is scheduled on machine 1, and all other machines
process exactly one job (see Figure 6.1). Hence,

C?
max = max

{
p1

s1

, p2, . . . , pn

}
≤ max

{
1

s1

,
1

φ

}
=

1

φ
.

We show that, with high probability, there exists a jump optimal schedule σ for which
Cmax(σ) > 1 − 1/φ. In order to find such a schedule σ, we first schedule job 1 on
machine 2. Then we consider the remaining jobs one after another and assign unassigned
jobs to machine 1 until either L1 ∈

[
L2 − 1/(φs1), L2

)
, which is the interesting case,

or until all jobs are scheduled. Any job that remains unscheduled is then exclusively
assigned to one empty machine. Let E denote the event that Q2 :=

∑n
j=2 pj ≥ s1. Note

that E[Q2] = (n − 1)/(2φ) = 2s1. We will see that event E holds with high probability
with respect to φ.

s1 ≈ φ s2 = 1

p1 ≤ 1

sn = 1

p2 ≤ 1
φ

pn ≤ 1
φ

Figure 6.1: Optimal schedule

s1 ≈ φ s2 = 1

p1 ≈ 1

p2 = 1
2φ
± 1

2φ

≤ 1
φs1

pl = 1
2φ
± 1

2φ

Figure 6.2: Machines 1 and 2 of
schedule σ if event E occurs

Consider the case that event E occurs. Then schedule σ is such that L1 ∈
[
L2 −

1/(φs1), L2

)
since Q2/s1 ≥ 1 ≥ p1 = L2 and pj ≤ 1/φ for all jobs j = 2, . . . , n (see

Figure 6.2). Now, we argue that schedule σ is jump optimal. First observe that machine 2
defines the makespan since L2 > max {L1, p2/1, . . . , pn/1}. Job 1, which is the only job
assigned to that machine, cannot jump to a machine i > 2 because these have the same
speed as machine 2. Furthermore, it cannot jump to machine 1 because

L1 +
p1

s1

≥ L2 −
1

φs1

+
1− 1/φ

s1

= L2 +
1− 2/φ

s1

> L2

as φ > 2. Hence, σ is a jump optimal schedule with

Cmax(σ)

C?
max

≥ L2

1/φ
=

p1

1/φ
≥ 1− 1/φ

1/φ
= φ− 1 . (6.4)

86 CHAPTER 6. SCHEDULING HEURISTICS

It remains to determine the probability of event E . Recalling that E[Q2] = 2s1, s1 =
(n− 1)/(4φ), and n ≥ 4φ2 + 1, this probability can be bounded by applying Hoeffding’s
inequality [Hoe63] (see Theorem 3.2) as follows:

Pr
[
E
]

= Pr [Q2 < s1] = Pr

[
E [Q2]−Q2 > s1

]
≤ exp

(−2s2
1

(n− 1)/φ2

)
= exp

(
−2 ·

(
(n− 1)/(4φ)

)2

(n− 1)/φ2

)
= exp

(
−n− 1

8

)
≤ exp

(
−φ

2

2

)
.

Let X = maxσ∈Jump(I)
Cmax(I,σ)
C?max(I)

. By applying Inequality (6.4), the smoothed performance
guarantee of the jump algorithm can be bounded from below as follows:

E
I∼I

[X] ≥ E
I∼I

[X| E] · Pr
I∼I

[E] ≥ (φ− 1) ·
(

1− exp

(
−φ

2

2

))
= (φ− 1)− (φ− 1) · exp

(
−φ

2

2

)
> φ− 1.14 = Ω(φ) ,

where the last inequality follows because h(φ) := (φ − 1) · exp(−φ2/2) < 0.14 for φ > 2:
For such values φ we have h′(φ) · exp(φ2/2) = −φ2 + φ + 1 ≤ −2φ + φ + 1 ≤ −1, that
is, function h is monotonically decreasing for φ ≥ 2 and, hence, maxφ≥2 h(φ) = h(2) =
exp(−2) < 0.14.

6.2.2 Upper Bounds for List Schedules and Lex-jump Optimal
Schedules

Although the worst-case bound on the performance guarantee on unrestricted related
machines for the list scheduling algorithm is slightly worse than the one for the lex-
jump algorithm, we show that the smoothed performance guarantee of both algorithms
is O(log φ). In the next subsection, we show that this bound is asymptotically tight.

Theorem 6.2.5. Let α > 0 be an arbitrary real. For φ ≥ 2 and any φ-smooth instance I
with unrestricted and related machines

Pr
I∼I

[
max

σ∈Lex(I)∪List(I)

Cmax(I, σ)

C?
max(I)

≥ α

]
≤
(

32φ

2α/6

)n/2
and

E
I∼I

[
max

σ∈Lex(I)∪List(I)

Cmax(I, σ)

C?
max(I)

]
≤ 18 log2 φ+ 30 = O(log φ) .

Note that the assumption φ ≥ 2 in Theorem 6.2.5 is no real restriction as for φ ∈ [1, 2)
any φ-smooth instance is a 2-smooth instance. Hence, for these values we can apply all
bounds from Theorem 6.2.5 when substituting φ by 2. In particular, the expected value
is a constant.

6.2. UNRESTRICTED MACHINES 87

Corollary 6.2.6. The average-case performance guarantee of the worst lex-jump optimal
schedule and the worst list schedule for scheduling with unrestricted related machines is a
constant.

In the remainder of this section, we will use the following notation (see also Ap-
pendix 6.4). Let Ji,j(σ) denote the set of all jobs that are scheduled on machine i and
have index at most j, that is, Ji,j(σ) = Ji(σ) ∩ {1, . . . , j}. If σ is clear from the context,
then we just write Ji,j. We start with observing an essential property that both lex-jump
optimal schedules and list schedules have in common.

Definition 6.2.7. We call a schedule σ on machines 1, . . . ,m with speeds s1, . . . , sm a
near list schedule, if we can index the jobs in such a way that

Li′ +
pj
si′
≥ Li −

∑
`∈Ji,j−1(σ)

p`
si

(6.5)

for all machines i′ 6= i and all jobs j ∈ Ji(σ). With NL(I) we denote the set of all near
list schedules for instance I.

Inequality (6.5) can be interpreted as follows. Assume that the jobs are already indexed
correctly and imagine that on each machine the jobs form a stack, ordered from top
to bottom ascendingly according to their index. Now, consider an arbitrary job j on
machine i (see Figure 6.3a). Inequality (6.5) states that the completion time of job j
after removing all jobs above j is minimized on machine i in case only job j is allowed to
move (see Figure 6.3b). In particular, the job j on a machine i with the smallest index
does not benefit from changing to any other machine because for this job Ji,j−1(σ) = ∅
and, hence,

Li′ +
pj
si′
≥ Li −

∑
`∈Ji,j−1(σ)

p`
si

= Li .

Lemma 6.2.8. For any instance I the relation Lex(I) ∪ List(I) ⊆ NL(I) holds.

Note that in general neither Lex(I) ⊆ List(I) nor List(I) ⊆ Lex(I) holds (see Fig-
ure 6.4). Moreover, there also exist near list schedules that are neither in Lex(I) nor in
List(I) (see Figure 6.4c), that is, near list schedules are a non-trivial generalization of
both lex-jump optimal schedules and list schedules.

Proof of Lemma 6.2.8. For any schedule σ ∈ Lex(I), we can index the jobs arbitrarily
and, by definition, even the stronger inequality Li′ + pj/si′ ≥ Li holds. For σ ∈ List(I)
we can index the jobs in reverse order in which they appear in the list that was used for
list scheduling. That is, the job that is scheduled first is labelled as n, whereas the last
job that is scheduled is labelled as 1. Consider an arbitrary job j ∈ Ji(σ) and a machine
i′ 6= i. Let L′i, L

′
i′ and Li, Li′ denote the loads of machines i and i′ before assigning

88 CHAPTER 6. SCHEDULING HEURISTICS

i i′

j

(a) Jobs on machine i, including
job j, visualized as a stack

i i′

j
j≥ 0

(b) Job j does not benefit from jumping
to machine i′

Figure 6.3: Interpretation of Inequality (6.5)

s2 = 2

p3 = 1

s1 = 3

p1 = 1

p2 = 3

(a) A list schedule which is
not lex-jump optimal

s2 = 4

p3 = 2

s1 = 7

p1 = 1

p2 = 1

(b) A lex-jump optimal
schedule which is no list
schedule

s2 = 4

p3 = 2

s1 = 7

p2 = 1

p1 = 1

p4 = 1
8

(c) A near list schedule which is
neither lex-jump optimal nor a list
schedule

Figure 6.4: Relationship between Lex(I), List(I), and NL(I)

job j to machine i and the loads of i and i′ in the final schedule, respectively. Then
L′i + pj/si ≤ L′i′ + pj/si′ because j is assigned to machine i according to list scheduling.
Since Li = L′i +

∑
`∈Ji,j p`/si and Li′ ≥ L′i′ , this implies

Li′ +
pj
si′
≥ L′i′ +

pj
si′
≥ L′i +

pj
si

= Li −
∑

`∈Ji,j−1

p`
si
.

In the remainder, we fix an instance I and consider an arbitrary schedule σ ∈ NL(I)
with appropriate indices of the jobs for which Inequality (6.5) holds. To prove Theo-
rem 6.2.5, we show that in case the ratio of Cmax(I, σ) over C?

max(I) is large, then in-
stance I needs to have many very small jobs (see Corollary 6.2.17). This holds even when
the instance I is deterministically picked by some adversary. This observation allows us
to prove the main theorem of this subsection by showing that for any φ-smooth instance,

6.2. UNRESTRICTED MACHINES 89

there are only “few” small jobs in expectation. The latter implies that a large ratio only
happens with (exponentially) small probability.

In our proofs, we adopt some of the notation also used by Czumaj and Vöcking [CV07]
(see also Appendix 6.4). Given a schedule σ, we set c = bCmax(σ)/C?

maxc − 1. Recall
that the machines are ordered such that s1 ≥ . . . ≥ sm. For any integer k ≤ c let
Hk = {1, . . . , ik} for

ik = max {i ∈M : Li′ ≥ k · C?
max for all i′ ≤ i} .

That is, ik + 1 is the first machine (the one with the smallest index) whose load is less
than k · C?

max, if such a machine exists, and m + 1 otherwise. Note that ik = m for all
k ≤ 0 and, hence, Hk = M for such k (see Figure 6.5). Further, define Rk = Hk \Hk+1

for all k ∈ {0, . . . , c− 1} and Rc = Hc. That is, (Rc, Rc−1, . . . , R0) is a partition of the
set M of machines and R−1 = R−2 = . . . = ∅. Note that this classification always refers
to schedule σ even if additionally other schedules are considered.

(c+ 1) · C∗
max

c · C∗
max

(c− 1) · C∗
max

(c− 2) · C∗
max

0 · C∗
max

1 · C∗
max

1 2 3 4 m

Hc = Hc−1

Hc−2

M = H0 = H−1 = ...

Figure 6.5: Machine classification by Czumaj and Vöcking

We can summarize the relevant properties of this classification as follows:

Property 1. For each machine i ∈ Hk, Li ≥ k · C?
max.

Property 2. Machine ik+1, if it exists, is the first machine in M \Hk, that is, the machine
with the least index, and, hence, a fastest machine in M \Hk.

Property 3. Lik+1 < k · C?
max for all k ∈ {1, . . . , c}, and L1 < (c+ 2) · C?

max.

As mentioned before, we need to show that there are many small jobs. To do so,
we will show that the speeds of the machines in low classes, that is, R0 and R1, are
exponentially small with respect to the machines in the highest class Rc (Lemma 6.2.14)
and that the machines in low classes have to process a high volume (Lemma 6.2.13). We
start by showing that the highest class is nonempty.

90 CHAPTER 6. SCHEDULING HEURISTICS

Lemma 6.2.9. Machine 1 is in class Rc.

Proof. Let i be a critical machine, that is, a machine that defines the makespan of the
schedule σ. If i = 1, then we obtain L1/C

?
max = Cmax(σ)/C?

max > c. Otherwise we apply
Inequality (6.5) for the job j = min {` ∈ Ji} with the smallest index on machine i and for
machine 1. This yields L1 + pj/s1 ≥ Li. Hence,

L1

C?
max

≥ Li
C?

max

−
pj
s1

C?
max

≥ Cmax(σ)

C?
max

− 1 ≥ c ,

where the second inequality is due to the fact that any job can contribute at most C?
max

to the makespan of a fastest machine.

Let t and k be integers satisfying 0 ≤ t ≤ k ≤ c. Several times we will consider
the first jobs on some machine i ∈ Hk which contribute at least t · C?

max to the load of
machine i. We denote the set of these jobs by Ji,≥t. Formally, Ji,≥t = Ji,jti for jti =
min{j :

∑
`∈Ji,j p`/si ≥ t ·C?

max}. Consequently, a job j ∈ Ji belongs to Ji,≥t if and only if∑
`∈Ji,j−1

p`/si < t ·C?
max. Using this notation, Lemma 6.2.10 and Corollary 6.2.11 restrict

the machines on which a job in Ji,≥t can be scheduled in an optimal schedule.

Lemma 6.2.10. Let k1 > k2 and t ≤ k1 be positive integers, let i1 ∈ Hk1 and i2 ∈M \Hk2

be machines in Hk1 and not in Hk2, respectively, and let j ∈ Ji1,≥t be a job on machine i1.
Then the load job j would contribute to machine i2 is bounded from below by pj/si2 >
(k1 − k2 − t) · C?

max (see Figure 6.6).

i1 i2
Hk1

Hk2

j

< t · C?
max

j > (k1 − k2 − t) · C?
max

Figure 6.6: Main property of near list schedules

6.2. UNRESTRICTED MACHINES 91

Proof. We apply Inequality (6.5) for machine i1, for the first machine i′2 that does not
belong to Hk2 , and for job j to obtain Li′2 + pj/si′2 ≥ Li1 −

∑
`∈Ji1,j−1

p`/si1 , which implies

pj/si′2 ≥ Li1 −Li′2 −
∑

`∈Ji1,j−1
p`/si1 . By the choice of the machines i1 and i′2 and Proper-

ties 1 and 3 we obtain Li1 ≥ k1 · C?
max and Li′2 < k2 · C?

max. Furthermore, j ∈ Ji1,≥t yields∑
`∈Ji1,j−1

p`/si1 < t · C?
max. Hence, pj/si′2 > (k1 − k2 − t) · C?

max. The claim follows since
si′2 ≥ si2 .

Corollary 6.2.11. Let i ∈ Hk be an arbitrary machine and let t ∈ {1, . . . , k} be an
integer. Then in any optimal schedule any job j ∈ Ji,≥t is assigned to machines from
Hk−t−1.

Proof. Assume, for contradiction, that there is a job j ∈ Ji,≥t that is assigned to a machine
i′ ∈M \Hk−t−1 by an optimal schedule. In accordance with Lemma 6.2.10 this job causes
a load of more than (k− (k− t− 1)− t) ·C?

max = C?
max on this machine contradicting the

assumption that the considered schedule is optimal.

Czumaj and Vöcking [CV07] showed that in a lex-jump optimal schedule the speeds
of any two machines which are at least two classes apart differ by a factor of at least 2.
Aspnes et al. [AAF+97] showed a slightly weaker property for list schedules which carries
over to near list schedules.

Lemma 6.2.12. Let k ∈ {5, . . . , c} and assume Hk 6= ∅. The speed of any machine in
class Hk is at least twice the speed of any machine in M \Hk−4.

Proof. We may assume that M \ Hk−4 6= ∅, since otherwise all machines have a load
larger than C?

max as Hk 6= ∅. Let i0 ∈ Hk and i2 ∈ M \Hk−4 be arbitrary machines and
consider the jobs from

⋃
i∈Hk Ji,≥2. If we would assign only these jobs to machines in Hk,

then there would be a machine with load at least 2 · C?
max. Consequently, in an optimal

schedule at least one job in
⋃
i′∈Hk Ji′,≥2 is assigned to some machine i? ∈ M \ Hk, say

job j ∈ Ji1,≥2. Since job j contributes at most C?
max to the load of machine i? in this

optimal schedule, this implies pj/si? ≤ C?
max and, hence, pj/si0 ≤ C?

max as si0 ≥ si? . Due
to Lemma 6.2.10, the load that would be contributed by job j on machine i2 is bounded
by pj/si2 > (k − (k − 4) − 2) · C?

max = 2 · C?
max. The inequality pj/si0 ≤ C?

max, which we
observed before, yields si0 ≥ 2 · si2 as claimed in the lemma.

We want to show that machines in low classes, that is, machines in R0 ∪ R1, have
exponentially small speeds (with respect to c) compared to the speeds of the machines in
a high class, that is, those in Rc. Lemma 6.2.12 already implies that the machine speeds
would double every five classes if no class Rk was empty. Although there might be empty
classes Rk, we show that there are not too many of them. To be a bit more precise, we
show that the union of two neighbored classes is not empty. This is done in Lemma 6.2.14
which follows from the next lemma.

92 CHAPTER 6. SCHEDULING HEURISTICS

The machines i ∈ Hk, k ≥ 2, are overloaded compared to an optimal schedule, even if
we just consider the first few jobs j ∈ Ji,≥t on them (where t ≥ 2). On the other hand,
in Corollary 6.2.11 we showed that in any optimal schedule these jobs are not assigned to
machines in much lower classes, that is, to machines from M \Hk−t−1. Consequently, in
any optimal schedule the machines in Hk−t−1 \Hk consume the current overload of Hk.

Lemma 6.2.13. Let t ≤ k be positive integers. In any optimal schedule the total process-
ing requirement on all machines in Hk−t−1\Hk is at least

∑c
r=k

∑
i∈Rr(t+r−k−1)·si·C?

max.

Note that Lemma 6.2.13 also holds for the case t = k where Hk−t−1 = H−1 = M .

Proof. Applying Corollary 6.2.11 with h(r):=t+(r−k) for arbitrary integers r ∈ {k, . . . , c}
yields that in any optimal schedule σ? all jobs in

⋃c
r=k

⋃
i∈Rr Ji,≥h(r) are assigned to ma-

chines in Hk−t−1 as r − h(r) − 1 = k − t − 1 for any index r. Furthermore, in σ? the
processing requirement on any machine i ∈ Hk is at most si · C?

max, that is, the machines
in Hk−t−1 \ Hk must consume the remainder. Hence, these machines must process jobs
with total processing requirement at least

c∑
r=k

∑
i∈Rr

∑
`∈Ji,≥h(r)

p` −
c∑

r=k

∑
i∈Rr

si · C?
max ≥

c∑
r=k

∑
i∈Rr

(h(r)− 1) · si · C?
max .

This yields the claimed bound as h(r)− 1 = t+ r − k − 1.

Some machine classes Rk might be empty. Now we show that this cannot be the case
for two consecutive classes.

Lemma 6.2.14. Hk−2 \Hk 6= ∅ for any k ∈ {1, . . . , c− 1}.

Proof. Let i′ be a slowest machine in Hk. In any optimal schedule σ? the processing
requirement on any machine i ∈ Hk−2 \ Hk is at most si · C?

max ≤ si′ · C?
max. Applying

Lemma 6.2.13 for t = 1 implies

|Hk−2 \Hk| · si′ · C?
max ≥

c∑
r=k

∑
i∈Rr

(r − k) · si · C?
max ≥

c∑
r=k

(r − k) · si′ · C?
max · |Rr| .

It follows that |Hk−2 \Hk| ≥
∑c

r=k(r− k) · |Rr| ≥ (c− k) · |Rc| ≥ 1 since k < c and since
Rc 6= ∅ due to Lemma 6.2.9.

We can now show that machine speeds double every six classes. To be more formal:

Lemma 6.2.15. Let 0 ≤ k2 ≤ k1 ≤ c be integers, let i1 be any machine of Rk1 and let
i2 ∈ Rk2. Then si1 ≥ si2 · 2b∆/6c where ∆ = k1 − k2.

6.2. UNRESTRICTED MACHINES 93

Proof. We prove the claim by induction. For ∆ ∈ {0, . . . , 5}, the claim trivially holds as
si1 ≥ si2 . Assume that the claim holds up to some integer ∆? ≥ 5. We show that it is also
true for ∆ = ∆?+1 ≥ 6. Note that for such ∆ we have k1 ≥ 6. According to Lemma 6.2.14
the class Hk1−6 \Hk1−4 ⊆ M \Hk1−4 contains at least one machine. Let i′ be the fastest
machine in Hk1−6 \ Hk1−4. Then si′ ≥ si2 . Lemma 6.2.12 and the induction hypothesis
imply si1 ≥ 2si′ and si′ ≥ si2 · 2b(∆−6)/6c, respectively. Hence, si1 ≥ si2 · 2b∆/6c.

Since the machines in low classes are exponentially slower than the machines in high
classes (with respect to c) and as their aggregated total processing requirement in an
optimal schedule is large (Lemma 6.2.13), it follows that many jobs have processing re-
quirements exponentially small in c.

Lemma 6.2.16. Let i ∈ M \ H2 be an arbitrary machine. Then each job j assigned to
machine i by an optimal schedule has processing requirement at most pj ≤ 2−c/6+2.

Proof. For c ≤ 12 the claim is true since we rescale all processing requirements to be at
most 1. Assume c ≥ 13. Consider an optimal schedule σ? and let j be a job processed
on a machine i ∈ M \ H2 = R1 ∪ R0 according to σ?. Note that M \ H2 6= ∅ due to
Lemma 6.2.14. Then pj/si ≤ C?

max, that is,

pj ≤ si · C?
max . (6.6)

To bound si · C?
max, consider the job j′ = min{` ∈ J1(σ)} with the smallest index on

machine 1 of schedule σ and consider the first machine i′ ∈ Hc−3 \ Hc−1 = Rc−3 ∪ Rc−2

which exists due to Lemma 6.2.14 and c ≥ 13. Applying Inequality (6.5), we obtain
Li′(σ)+pj′/si′ ≥ L1(σ), that is, pj′ ≥ si′ · (L1(σ)−Li′(σ)). Since machine 1 belongs to Hc

due to Lemma 6.2.9 and since machine i′ is the first machine that does not belong to
Hc−1, we have L1(σ) ≥ c ·C?

max and Li′(σ) < (c− 1) ·C?
max, which implies pj′ ≥ si′ ·C?

max.
Lemma 6.2.15 yields si′ ≥ si ·2b(c−3−1)/6c. Applying Inequality (6.6) and pj′ ≤ 1 according
to our input model we obtain

pj ≤ si · C?
max ≤ si′ · C?

max · 2−b(c−4)/6c ≤ pj′ · 2−c/6+2 ≤ 2−c/6+2 .

Corollary 6.2.17. The processing requirement of at least n/2 jobs is at most 2−c/6+2.

Proof. Lemma 6.2.13 for k = t = 2 implies that the total processing requirement of all jobs
assigned to machines from M \H2 = H−1 \H2 according to σ? is at least

∑
i∈H2

si ·C?
max

which is an upper bound for the total processing requirement of all jobs assigned to
machines in H2 according to σ?. Since all jobs assigned to machines from M \H2 by an
optimal schedule have processing requirement at most 2−c/6+2 due to Lemma 6.2.16, at
least half of the jobs have processing requirement at most 2−c/6+2.

Since having many so small jobs is unlikely when the processing requirements have
been smoothed, it follows that the approximation factor, which is between c+1 and c+2,
cannot be too high, yielding Theorem 6.2.5.

94 CHAPTER 6. SCHEDULING HEURISTICS

Proof of Theorem 6.2.5. If Cmax(σ)/C?
max ≥ α, then at least n/2 jobs have processing

requirement at most 2−α/6+3 due to Corollary 6.2.17 and c = bCmax(σ)/C?
maxc−1 ≥ α−2.

The probability that one specific job is that small is bounded by φ · 2−α/6+3 = 8φ · 2−α/6
in the smoothed input model. Hence, the probability that the processing requirement of
at least n/2 jobs is at most 2−α/6+3, is bounded from above by

∑
k≥n

2

(
n

k

)(
8φ · 2−α/6

)k ≤∑
k≥n

2

(
n

k

)(
8φ · 2−α/6

)n/2
≤ 2n ·

(
8φ · 2−α/6

)n/2
=
(
32φ · 2−α/6

)n/2
.

This yields

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

≥ α

]
≤
(

32φ

2α/6

)n/2
.

As for n = 1 any schedule σ ∈ NL(I) is optimal, we just consider the case n ≥ 2. For
k ≥ 1 let αk = 6k log2 φ+ 30, that is, 2αk/6 = 32φk. If α ≥ αk, then we obtain

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

≥ α

]
≤ Pr

I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

≥ αk

]
≤
(
φ1−k)n/2 ≤ φ1−k ≤ 21−k

as φ ≥ 2. Since αk+1 − αk = 6 log2 φ, we obtain

E
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

]
=

∫ ∞
0

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

≥ α

]
dα

≤ α1 +
∞∑
k=1

∫ αk+1

αk

Pr
I∼I

[
max

σ∈NL(I)

Cmax(I, σ)

C?
max(I)

≥ α

]
dα

≤ α1 + 6 log2 φ ·
∞∑
k=1

21−k = 18 log2 φ+ 30 .

6.2.3 Lower Bounds for List Schedules and Lex-jump Optimal
Schedules

In this subsection, we show that the upper bound for the smoothed performance guarantee
of the lex-jump algorithm and the list scheduling algorithm, given in Theorem 6.2.5, is
tight up to a constant factor. We provide a φ-smooth instance for which the worst lex-
jump optimal schedule as well as the worst list schedule is worse than the optimal schedule
by a factor of Ω(log φ), independent of the processing times’ realizations.

6.2. UNRESTRICTED MACHINES 95

Theorem 6.2.18. There is a class of φ-smooth instances I with unrestricted and related
machines such that, for any I ∈ I,

max
σ∈Lex(I)

Cmax(I, σ)

C?
max(I)

= Ω(log φ) and max
σ∈List(I)

Cmax(I, σ)

C?
max(I)

= Ω(log φ) .

To prove this theorem, we present a φ-smooth instance. In Algorithm 4, we implicitely
give a permutation of the jobs such that the list scheduling algorithm, when using this
permutation, results in a schedule σ which we will show is also lex-jump optimal. The
schedule σ resembles the worst-case example constructed by Czumaj and Vöcking [CV07]:
Machines are partitioned into classes indexed by 0, 1, . . . , r. We will show that in σ, each
machine in class i has a load of approximately i, whereas the optimal makespan is bounded
by 3. Hence, we can lower bound the performance guarantee in the order of the number r
of classes. For this construction we use r = Θ(log φ) classes instead of Θ(logm/ log logm)
classes as Czumaj and Vöcking did.

As scaling of all processing requirements does not change the approximation ratio, for
sake of simplicity we do not consider probability densities fj : [0, 1] → [0, φ] but scaled
densities f ′j : [0, 2r+1] → [0, φ/2r+1] for an appropriate integer r. This simplifies many
terms.

Let φ ≥ 4 and consider an integer r = blog4 φc ≥ 1, i.e., φ ≥ 4r = 22r. The machines
are partitioned into machine classes Mk for k = 0, . . . , r, such that machine class Mk

contains r!/k! machines of speed 2k. Also the jobs are partitioned into job classes J` for
` = 1, . . . , r such that a job class J` contains r!/(` − 1)! jobs each having a processing
requirement uniformly drawn from

[
2`, 2` + 2r+1/φ

)
⊆ (0, 2r+1). Note that the density of

this instance is bounded by φ/2r+1 which is valid in the variant of our model that we use
in this subsection. The permutation of the jobs is such that the list scheduling algorithm
considers the jobs in the same order as Algorithm 4.

Algorithm 4

1: for k = 1, . . . , r do
2: for ` = r, r − 1, . . . , k do
3: Schedule r!/`! arbitrary jobs of class J` according to list scheduling.
4: end for
5: end for

Note that for any job class J` all ` · r!/`! = r!/(`− 1)! jobs have been scheduled. Let σ
be the resulting schedule. First, we show a key property of σ.

Lemma 6.2.19. For any index ` = 1, . . . , r each machine in M` is assigned exactly ` jobs
of job class J` and no other jobs. The machines in M0 remain empty.

Proof. Let σ(k, `) denote the partial schedule after processing Line 3 of iteration (k, `)
of Algorithm 4. Within the (k, `)th iteration, we call a machine i ∈ M` used if a job of

96 CHAPTER 6. SCHEDULING HEURISTICS

class J` has already been assigned to i during that iteration. Otherwise, we call machine i
unused. We show the two claims below inductively and simultaneously. The lemma then
follows straightforwardly from the second claim since the last iteration is (r, r).

Claim 1. During iteration (k, `), r!/`! jobs of class J` are assigned to r!/`! distinct ma-
chines (i.e., all machines) of class M`.

Claim 2. In the partial schedule σ(k, `) each machine in class M`′ is assigned

k′ =

{
k : `′ ≥ ` ,

min {k − 1, `′} : `′ < ` ,

jobs of class J`′ and no other jobs.

Figure 6.7 visualizes the partial schedule σ(k, `). Machine i with speed si = 2i is
a representative for all machines in class Mi. With Li we refer to the current load of
machine i and with L′i to the load of machine i at the end of iteration (k, k), i.e., in the
partial schedule σ(k, k). In phase (k, `), r!/`! jobs of size roughly 2` are being assigned
to the r!/`! machines in M`. All machines in M`′ for `′ > ` just received a job of roughly
size 2`

′
. All machines in M`′ for `′ ∈ {k, . . . , `− 1} will still receive a single job of size

roughly 2`
′

during iteration k of the outer loop. Figure 6.7 follows from the observations.

≈ 2r

≈ 2`

≈ 2`−1 ≈ 2k

r ` `− 1 k k − 1 k − 2 1 0

Li ≈ (k−1)·2i+2i

2i = k

L′i ≈ (k−1)·2i+2i

2i = k

Li ≈ (k−1)·2i

2i = k − 1

L′i ≈ (k−1)·2i+2i

2i = k

Li ≈ i·2i

2i = i

L′i ≈ i·2i

2i = i

Figure 6.7: The partial schedule σ(k, `)

First, we validate the claims for the first iteration (1, r). As only r!/r! = 1 job
of class Jr has to be scheduled and since all machines are still empty, the job will be
scheduled on the fastest machine which is the single machine in Mr. Hence, both claims
hold true for the first iteration. Now, consider an arbitrary iteration (k, `) and assume
both claims hold true for all previous iterations. Consider a job j ∈ J` which needs to be
assigned to a machine during iteration (k, `). We show that job j will always be assigned

6.2. UNRESTRICTED MACHINES 97

to an unused machine i ∈M`. To see this, first note that the previous iteration was either
(k, `+ 1) or (k − 1, k − 1).

Let i ∈ M` be an unused machine. By the second claim, we know that this machine
carries k − 1 jobs of class J`. Consequently, we can upper bound its load by

Li +
pj
si
<
k · (2` + 2r+1/φ)

2`
= k +

k

φ
· 2r+1−` ≤ k +

`

22r
· 2r+1−` ≤ k +

1

2r
,

where we used that k ≤ `, φ ≥ 22r, and `/2` ≤ 1/2 for all integers ` ≥ 1.
Consider a machine machine h which is either used (in that case let `′ = `) or in

class M`′ for some `′ ∈ {`+ 1, . . . , r}. By Claim 2, this machine carries k jobs of class J`′
and thus

Lh +
pj
sh
≥ k · 2`′ + 2`

2`′
= k + 2`−`

′
> k +

1

2r
> Li +

pj
si
.

Finally, consider a machine h ∈ M`′ for some `′ ∈ {1, . . . , `− 1}. Again by Claim 2,
it carries min {k − 1, `′} jobs of class J`′ and thus

Lh +
pj
sh
≥ min {k − 1, `′} · 2`′ + 2`

2`′
= min {k − 1, `′}+ 2`−`

′

≥ (k −max {k − `′, 1}) + 2max{k−`′,1} ≥ k + 1 > Li +
pj
si
,

where the second inequality follows from ` ≥ max {k, `′ + 1} and the third inequality
follows from 2i − i ≥ 1 for all positive integers i.

With this complete case analysis we have shown that job j will be assigned to an
unused machine i ∈ M`. We conclude that during iteration (k, `), each of the r!/`! jobs
to be assigned will be assigned to an unused machine in M`. Note that |M`| = r!/`!, and
hence for each job there always exists such an unused machine. The first claim and the
second claim follow immediately.

Lemma 6.2.20. Schedule σ is lex-jump optimal.

Proof. It follows from Lemma 6.2.19 that the load of any machine i ∈M` can be bounded
by

` ≤ Li ≤ `+ ` · 2r+1

2`φ
≤ `+

`

2`
· 2r+1

22r
≤ `+

1

2
· 2r+1

22r
< `+ 1 .

If a job j assigned to machine i ∈M` would jump to another machine i′ ∈M`′ , then

Li′ +
pj
si′
≥ `′ +

2`

2`′
= `− (`− `′) + 2`−`

′ ≥ `+ 1 > Li ,

where the last inequality follows from 2k−k ≥ 1 for all integers k. Thus, any job would be
worse off by jumping to another machine, and hence schedule σ is lex-jump optimal.

98 CHAPTER 6. SCHEDULING HEURISTICS

We conclude this subsection by proving Theorem 6.2.18.

Proof of Theorem 6.2.18. We consider schedule σ constructed above which is both a list
schedule and a lex-jump optimal schedule. By Lemma 6.2.19 the load of the single machine
inMr is at least r. Hence, Cmax(σ) ≥ r. Now, consider a schedule σ′ in which each machine
in M` processes a single job from job class J`+1, ` = 0, . . . , r − 1. The single machine
in Mr remains empty. Then the load of any machine i ∈ M` with job j assigned to it is
bounded as follows:

Li =
pj
si
≤ 2`+1 + 2r+1/φ

2`
≤ 2 +

2r+1

22r
= 2 + 21−r ≤ 3 .

Hence, C?
max(I) ≤ Cmax(I, σ′) ≤ 3 and Cmax(σ)/C?

max(I) ≥ r/3 = Ω(r) = Ω(log φ).

6.3 Restricted Machines

In this section, we provide lower bound examples showing that the worst-case performance
guarantees of the jump algorithm and the lex-jump algorithm for all environments with
restricted machines are robust against random noise. Our lower bounds are in the order of
the worst-case bounds and hold in particular for φ = 2. In our lower bound constructions
all processing requirements are chosen uniformly at random from intervals of length 1/2.
This means that even with large perturbations the worst-case lower bounds still apply.

6.3.1 Jump Neighborhood on Restricted Machines

Rutten et al. [RRSV12] showed that the makespan of a jump optimal schedule is at most
a factor of 1/2 +

√
m− 3/4 away from the optimal makespan on restricted identical

machines. On restricted related machines they showed that the makespan of a jump
optimal schedule is not more than a factor of 1/2 +

√
(m− 1) · smax + 1/4 away from the

makespan of an optimal schedule, assuming that smin = 1. They provided two examples
showing that the bound on identical machines is tight and the one on related machines
is tight up to a constant factor. We show that even on φ-smooth instances these bounds
are tight up to a constant factor.

As in [RRSV12], we construct an example with two job classes and three machine
classes. The first machine class consists of only one machine and this machine is the
slowest among all machines. The first class of jobs can only be scheduled on machines
in the first two classes, whereas the jobs in the second class are allowed on all machines.
To construct a bad example, we schedule all jobs in the first class on the slowest machine
and use the jobs of the second class to fill the machines in the second machine class so
that the schedule will be jump optimal, with high probability.

6.3. RESTRICTED MACHINES 99

Theorem 6.3.1. For every φ ≥ 2 there exists a class of φ-smooth instances I on restricted
related machines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

]
= Ω (

√
m · smax) ,

assuming without loss of generality that smin = 1.

Proof. It suffices to show the theorem for φ = 2 and m ≥ 3. We set s :=smax/smin = smax.
Let z > 2 be an arbitrary integer, let

m′ = m− 2 ≥ 1 , k′ =

√
m′

s
≤
√
m′ , and k = dk′e .

In the remainder we assume that
√
m′s ≥ 17. This is possible because we only want to

derive an asymptotic bound. We consider the following φ-smooth instance I. The set M
of machines is partitioned into three classes M1, M2, and M3 such that

|M1| = 1 , |M2| = k , and |M3| = m′ − (k − 1) > m′ − k′ ≥ 0 .

The machine in M1 has speed 1, the machines in M2 have speed s′ = max{1, s · k′/k} ∈
[1, s], and the machines in M3 have speed s. Let the set J of jobs be partitioned into two
subsets J1 and J2, consisting of

|J1| = b2zsk′c and |J2| = d32zs · (m′ − k′)e ≤ d32zs · |M3|e

jobs whose processing requirements are independently and uniformly drawn from [1/2, 1]
and from [0, 1/2], respectively. The jobs in J1 are only allowed to be scheduled on the
machines in M1∪M2, whereas the jobs in J2 are allowed to be scheduled on any machine.

First, we construct a schedule σ′ to bound the optimal makespan: Use the list schedul-
ing algorithm to schedule all jobs in J1 on the machines in M2, and all jobs in J2 on the
machines in M3. Figure 6.8 depicts schedule σ′. Machine i is a representative for all
machines in class Mi.

Along the same lines as in [Gra66], it follows that for all machines i ∈M2

Li ≤

∑
j∈J1

pj

|M2| + max
j∈J1

pj

s′
≤
|J1|·1
|M2| + 1

s′
≤

2zsk′

k
+ 1

s′
≤

2zsk′

k

s · k′
k

+
1

1
= 2z + 1 .

Similarly, for all machines i ∈M3

Li ≤

∑
j∈J2

pj

|M3| + max
j∈J2

pj

s
≤
|J2|· 12
|M3| + 1

2

s
≤

32zs·|M3|
2·|M3| + 1

s
≤ 16z + 1 .

100 CHAPTER 6. SCHEDULING HEURISTICS

. 2zsk′
k

s2 ≥ s · k′k

. 32zs·|M3|·12
|M3|

s3 = ss1 = 1

J1 J2

Figure 6.8: Schedule σ′

Consequently, C?
max ≤ Cmax(σ′) ≤ 17z. Before we proceed with constructing a ‘bad’

jump optimal schedule σ, we observe that

s′ ≤ 2s · k′/k (6.7)

due to 1 ≤ (
√
m′+ 1)/k ≤ 2

√
m′s/k = 2s · k′/k. We construct a jump optimal schedule σ

on the φ-smooth instance I whose makespan exceeds zsk′ with high probability: Schedule
all jobs in J1 on the single machine in M1. Then zsk′ − 1 ≤ L1 ≤ 2zsk′. Next, start
assigning jobs from J2 to the machines in M2 according to the list scheduling algorithm
with an arbitrary job permutation, until

(a) either J2 becomes empty, or until

(b) Li ∈
[
L1 − 1/(2s′), L1

)
for all i ∈M2. If there remain unscheduled jobs in J2, then

we assign them to the machines in M3 using the list scheduling algorithm.

Let Q =
∑

j∈J2
pj be the total processing requirement of all jobs from class J2 and let E

denote the event that Q > 4z(sk′)2 = 4zsm′. Note, that

E[Q] =
|J2|

4
≥ 8zs · (m′ − k′) = 8zsm′ ·

(
1− k′

m′

)
= 8zsm′ ·

(
1− 1√

m′s

)
> 6zsm′

as
√
m′s ≥ 17 by our initial assumption. If event E occurs, then∑

i∈M2

s′ · L1 ≤ |M2| ·
(

2s · k
′

k

)
· 2zsk′ = 4z(sk′)2 < Q

due to Inequality (6.7), i.e., the algorithm will end up in Case (b) because pj ≤ 1/2 for
any job j ∈ J2. This shows that no machine i ∈M2 is critical. With the same argument

6.3. RESTRICTED MACHINES 101

as for the analysis of σ′ we can show that the load of any machine i ∈ M3 is bounded
from above by 16z+1 < 17z−1 ≤ z ·

√
m′ · s−1 = zsk′−1 ≤ L1, i.e., the machine in M1

is the unique critical machine. As each job on this machine has processing requirement
at least 1/2 and due to the property of the loads of the machines in M2 in Case (b),
schedule σ is jump optimal and Cmax(σ) = L1 ≥ zsk′ − 1.

It remains to determine the probability Pr[E]. Applying Hoeffding’s inequality [Hoe63]
(see Theorem 3.2), we obtain

Pr
[
E
]

= Pr [Q ≤ 4zsm′] ≤ Pr [Q− E[Q] ≤ −2zsm′]

≤ exp

(
−2 · (2zsm′)2

|J2| ·
(

1
2

)2

)
≤ exp

(
− 32z2s2m′2

32zsm′ + 1

)
,

which becomes arbitrarily close to 0 when z increases. Hence, for sufficiently large inte-
gers z

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

]
≥ E

I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

∣∣∣∣ E] · Pr
I∼I

[E] ≥ zsk′ − 1

17z
· 17

18

≥
√

(m− 2) · smax − 1
z

18
= Ω (

√
m · smax) .

Corollary 6.3.2. For every φ ≥ 2 there exists a class of φ-smooth instances I on re-
stricted identical machines such that

E
I∼I

[
max

σ∈Jump(I)

Cmax(I, σ)

C?
max(I)

]
= Ω(

√
m) .

Remark. In the proof of Theorem 6.3.1 we introduce an arbitrary integer z. We argue that
there exists a sufficiently large value for z such that the desired result follows. Choosing
an even larger value for z implies that the results above not only hold in expectation but
also with high probability.

6.3.2 Lex-jump Optimal Schedules on Restricted Identical Ma-
chines

In this subsection, we show that for φ ≥ 8 there exist instances on which the approximation
ratio of the lex-jump algorithm in the restricted setting is in the same order as the worst-
case performance guarantee.

As in Section 6.2.3, we construct an instance with several job classes and machine
classes and a bad lex-jump optimal schedule for which the loads of the machines are
gradually decreasing with increasing machine class index. By setting the sets Mj of
allowed machines equal to the union of only one or two machine classes and choosing

102 CHAPTER 6. SCHEDULING HEURISTICS

to schedule the jobs on the wrong machines, we can enforce that jobs cannot leave the
machine class on which they are scheduled in the lex-jump optimal solution, whereas the
optimal makespan is still small.

Theorem 6.3.3. For every φ ≥ 8 there exists a class of φ-smooth instances I on restricted
identical machines such that

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C?
max(I)

]
= Ω

(
logm

log logm

)
.

First, we introduce the φ-smooth instance I for φ ≥ 8. Given an integer k ≥ 68,
consider the following recurrence formula:

a0 = k2 , a1 = k3 , and ah =

⌈(
ah−1

ah−2

− 7

15

)
· ah−1

⌉
for h ≥ 2 .

The sequence (ah)h≥0 is chosen such that ah/ah−1 ≈ ah−1/ah−2 − 7/15, that is, the ratio
between two consecutive elements decreases by approximately 7/15, starting with a1/a0 =
k. Let z be the smallest integer h for which ah/ah−1 ≤ 1. Due to rounding issues the
fraction ah/ah−1 does not decrease exactly by 7/15 each time. However, the deviation
caused by rounding is at most 1/ah−1 ≤ 1/k2 � 1/15 for h ≤ z: The sequence (ah)h≥0 is
monotonically increasing as long as the ratio ah/ah−1 is at least 1, and hence, ah−1 ≥ a0 =
k2. Summarizing these observations, (ah)

z−1
h=0 is a strictly increasing sequence, whereas

the sequence (ah/ah−1)zh=1 is a decreasing sequence, where the difference between two
consecutive elements is at least 7/15 − 1/15 = 2/5. We will bound the number z from
above later in the analysis.

We consider z job classes J1, . . . ,Jz and as many machine classes M1, . . . ,Mz. Each
machine class Mh contains mh = ah−1 machines with speed 1 (as we have identical ma-
chines). Each job class Jh consists of two subclasses J A

h and J B
h of size ah and of size

bh = 17mh = 17ah−1, respectively. We call the jobs in class J A
h large jobs as they have

processing requirements uniformly drawn from [7/8, 1] and can be processed on machines
in Mh ∪Mh+1. As a convention let Mz+1 := ∅. Jobs in class J B

h are called small jobs
because they have processing requirements uniformly drawn from [0, 1/8] and can only be
processed on machines in Mh.

The schedule σ = σ(I) for an instance I ∈ I is obtained by scheduling the jobs
in Jh on the machines in Mh using the LPT (longest processing time) algorithm. This
algorithm is a special variant of the list scheduling algorithm where the list of jobs is
ordered monotonically decreasing with respect to the processing requirements. That is,
the largest job is the first one scheduled by the LPT algorithm, whereas the smallest
job will be scheduled last. Note, that the LPT algorithm first schedules all jobs from
the classes J A

h before it considers a job from a class J B
h . Schedule σ(I) is visualized in

Figure 6.9. Machine h is a representative for the machines in class Mh. In expectation,

6.3. RESTRICTED MACHINES 103

the average load of a machine in class Mh is

|J A
h | · 15

16
+ |J B

h | · 1
16

mh

=
ah · 15

16
+ 17ah−1 · 1

16

ah−1

=
15

16

ah
ah−1

+
17

16
.

1 2 z

J1 JzkJ2

≈ 15
16
a1
a0

+ 17
16

≥ 15
16k

≈ 15
16
a2
a1

+ 17
16

≈ 15
16

az
az−1

+ 17
16

Figure 6.9: Schedule σ(I)

We show that schedule σ is lex-jump optimal with high probability. To be more spe-
cific, we show lex-jump optimality when the total processing requirements QA

h =
∑

j∈JAh
pj

and QB
h =

∑
j∈JBh

pj of the classes J A
h and J B

h are close to their expectations for all

h = 1, . . . , z. Let EAh and EBh denote the events that∣∣QA
h − E

[
QA
h

] ∣∣ ≤ mh

16
and

∣∣QB
h − E

[
QB
h

] ∣∣ ≤ mh

32
, respectively .

Moreover, let E =
⋂z
h=1

(
EAh ∩ EBh

)
denote the event that the events EAh and EBh are

simultaneously true for all h = 1, . . . , z. By EAh , EBh , and E we refer to the complement
of EAh , EBh , and E .

First, we analyze the sequence a0, a1, . . . , az to obtain bounds for the number z of
machine and job classes and for the number m of machines.

Lemma 6.3.4. For any h = 1, . . . , z the following inequality holds:

ah
ah−1

≤ k − (h− 1) · 2

5
.

Proof. The claim is true for h = 1. By definition of ah,

ah
ah−1

≤

(
ah−1

ah−2
− 7

15

)
· ah−1 + 1

ah−1

≤ ah−1

ah−2

− 6

15
=
ah−1

ah−2

− 2

5

for any h = 2, . . . , z as ah−1 ≥ a0 = k2 ≥ 15. The claim follows by induction.

104 CHAPTER 6. SCHEDULING HEURISTICS

Corollary 6.3.5. The number z of machine and job classes is bounded by 5k/2.

Proof. Applying Lemma 6.3.4 for h = z − 1 we obtain 1 < az−1/az−2 ≤ k − (z − 2) · 2/5.
Hence, z < (k − 1) · 5/2 + 2 < 5k/2.

Lemma 6.3.6. The number m of machines is bounded from above by Γ(k′ + 3) for k′ =
d5k/2e, where Γ denotes the gamma function.

Proof. By induction we show that ah ≤ k2 · (2/5)h · k′!/(k′ − h)! for any h = 0, . . . , z − 1.
Note that z ≤ 5k/2 ≤ k′ due to Corollary 6.3.5. For h = 0 the claim holds because a0 = k2.
For h ≥ 1 we apply Lemma 6.3.4 to get ah/ah−1 ≤ k− (h− 1) · 2/5 ≤ (k′− (h− 1)) · 2/5.
The induction hypothesis for ah−1 yields

ah ≤
2

5
· (k′ − (h− 1)) · k2 ·

(
2

5

)h−1

· k′!

(k′ − (h− 1))!
= k2 ·

(
2

5

)h
· k′!

(k′ − h)!
.

Recalling that mh = ah−1 we can bound the number m of machines by observing that

m

k2
=

z∑
h=1

mh

k2
=

z−1∑
h=0

ah
k2
≤

z−1∑
h=0

k′!

(k′ − h)!
≤ k′! · e .

Hence, m ≤ e · k2 · k′! ≤ (k′ + 2)! = Γ(k′ + 3).

Lemma 6.3.7. Event E occurs with probability at most 10k · exp(−k/2).

Proof. We bound the probability for the events EAh and EBh to occur. Recalling that
mh = ah−1 ≥ a0 = k2, ah ≤ k · ah−1 (see Lemma 6.3.4), bh = 17mh, and k ≥ 68 we obtain

Pr
[
EAh
]

= Pr
[∣∣∣QA

h − E[QA
h]
∣∣∣ > mh

16

]
≤ 2 exp

(
− 2

(
mh
16

)2

ah ·
(

1
8

)2

)

= 2 exp

(
−ah−1

ah
· ah−1

2

)
≤ 2 exp

(
−ah−1

2k

)
≤ 2 exp

(
−k

2

)
and

Pr
[
EBh
]

= Pr
[∣∣∣QB

h − E[QB
h]
∣∣∣ > mh

32

]
≤ 2 exp

(
− 2

(
mh
32

)2

bh ·
(

1
8

)2

)

= 2 exp

(
− mh

17mh

· ah−1

8

)
≤ 2 exp

(
− k2

136

)
≤ 2 exp

(
−k

2

)
.

Each of the first inequalities stems from Hoeffding’s inequality [Hoe63] (see Theorem 3.2).
A union bound yields

Pr
[
E
]

= Pr

[
z⋃

h=1

(
EAh ∪ E

B

h

)]
≤ 2z · 2 exp

(
−k

2

)
≤ 10k · exp

(
−k

2

)
due to Corollary 6.3.5.

6.3. RESTRICTED MACHINES 105

As event E occurs with high probability and as

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C?
max(I)

]
≥ E

I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C?
max(I)

∣∣∣∣ E] · Pr
I∼I

[E] ,

to prove Theorem 6.3.3 it suffices to bound the expected value conditioned on event E
by Ω

(
(logm)/(log logm)

)
. Therefore, in the remainder of this section we assume that

event E happens.

Lemma 6.3.8. The loads of the machines within the same class differ only slightly. In
particular, |Li − Li′| ≤ 1/8 for any machines i, i′ ∈Mh.

Proof. Suppose to the contrary that there exist two machines i, i′ ∈Mh for which Li−Li′ >
1/8. Recall that according to the LPT rule all large jobs (from classes J A

h) will be assigned
to the machines before the small jobs (from classes J B

h) are assigned. After all large jobs
have been assigned to the machines in Mh, the difference in load between any two machines
in Mh is at most 1 since pj ≤ 1 for all jobs j.

Since the processing time of all small jobs is bounded by 1/8, Li − Li′ > 1/8 implies
that no small job is assigned to machine i nor to any machine that has load at least Li.
Hence, all small jobs are assigned to the machines from class Mh that have load less
than Li. Note that there are at most mh − 1 such machines.

As the difference in load between machine i and any other machine in Mh is at most 1
after all large jobs have been scheduled, the total amount of processing requirements of
the small jobs in class Mh is bounded by QB

h ≤ (mh − 1) · 1 < 17mh/16 − mh/32 =
E[QB

h]−mh/32 contradicting the assumption that event EBh holds.

Lemma 6.3.9. For any machine i ∈Mh the inequality
∣∣Li−(E[QA

h]+E[QB
h]
)
/mh

∣∣ ≤ 7/32
holds, i.e., the load of machine i is close to the expected average machine load in class Mh.

Proof. By applying the triangle inequality we obtain

∣∣∣∣∣∣Li −
E
[
QA
h

]
+ E

[
QB
h

]
mh

∣∣∣∣∣∣ ≤
∣∣∣∣Li − QA

h +QB
h

mh

∣∣∣∣+

∣∣∣∣QA
h − E

[
QA
h

]∣∣∣∣
mh

+

∣∣∣∣QB
h − E

[
QB
h

]∣∣∣∣
mh

≤

∣∣∣∣∣∣Li −
∑

i′∈Mh

Li′

|Mh|

∣∣∣∣∣∣+
1

16
+

1

32
≤ 1

8
+

1

16
+

1

32
=

7

32
,

where the second inequality holds since EAh and EBh are true. The third inequality is due
to Lemma 6.3.8.

106 CHAPTER 6. SCHEDULING HEURISTICS

Lemma 6.3.10. Schedule σ is lex-jump optimal.

Proof. We have to show that Li′ + pj ≥ Li holds for any machine i ∈Mh, any job j ∈ Ji,
and any machine i′ ∈ Mj. Let i ∈ Mh be an arbitrary machine. First, consider the last
job j that has been assigned to i. If there is no such job, then we are done. Otherwise,
Li′ + pj ≥ Li for any machine i′ ∈ Mh as this job was assigned to machine i by the LPT
algorithm. Furthermore, job j is a smallest job on machine i due to the LPT rule. Hence,
Li′ + pj′ ≥ Li for any machine i′ ∈Mh and any job j′ ∈ Ji assigned to machine i.

For the small jobs on machine i the set of allowed machines equals Mh, so nothing
more has to be shown for them. For large jobs j on machine i it remains to show that
Li′+pj ≥ Li for any machine i′ ∈Mh+1. Recalling that ah = d(ah−1/ah−2)− 7/15) · ah−1e
for h ≥ 2, mh = ah−1, and bh/mh = 17 we observe that

E
[
QA
h+1

]
+ E

[
QB
h+1

]
mh+1

=
|J A

h+1| · 15
16

+ |J B
h+1| · 1

16

mh+1

=
15
16
· ah+1 + 1

16
· bh+1

mh+1

=
15

16
· ah+1

ah
+

1

16
· bh+1

mh+1

≥ 15

16
·
(

ah
ah−1

− 7

15

)
+

1

16
· bh
mh

=
15

16
· ah
ah−1

+
1

16
· bh
mh

− 7

16
=

E
[
QA
h

]
+ E

[
QB
h

]
mh

− 7

16

for any h = 1, . . . , z − 1. This implies

Li′ + pj ≥
E
[
QA
h+1

]
+ E

[
QB
h+1

]
mh+1

− 7

32
+

7

8
≥

E
[
QA
h

]
+ E

[
QB
h

]
mh

− 7

16
+

21

32

=
E
[
QA
h

]
+ E

[
QB
h

]
mh

+
7

32
≥ Li ,

where the first and the last inequality are due to Lemma 6.3.9.

Finally, we can prove Theorem 6.3.3.

Proof of Theorem 6.3.3. As mentioned before, due to Lemma 6.3.7 it suffices to bound
the expected value conditioned on event E . If event E holds, then schedule σ = σ(I) is
lex-jump optimal (see Lemma 6.3.10), i.e., σ ∈ Lex(I), and has makespan

Cmax ≥ max
i∈M1

Li ≥
QA

1 +QB
1

m1

≥ E[QA
1] + E[QB

1]

m1

−
m1

16
+ m1

32

m1

=
15
16
k3 + 1

16
· 17k2

k2
− 3

32
≥ 15

16
k ,

where the third inequality is due to the occurrence of EA1 and EB1 . Now, consider the
following schedule σ′:

6.3. RESTRICTED MACHINES 107

• For h = 1, . . . , z − 1 spread the jobs of class J A
h evenly among the machines in

class Mh+1. As |J A
h | = ah = mh+1 = |Mh+1|, each machine is assigned exactly one

large job.

• Spread the jobs of class J A
z evenly among the machines in class Mz. As |J A

z | =
az ≤ az−1 = mz = |Mz|, each machine is assigned at most one such large job.

• For h = 1, . . . , z spread the jobs of class J B
h evenly among the machines in class Mh.

As |J B
h | = 17mh = 17 · |Mh|, each machine is assigned exactly 17 of these small

jobs.

Note that with ‘evenly’ we refer to the number of jobs on each machine and not to the
load. Figure 6.10 shows schedule σ′ where each machine h is a representative for all
machines in class Mh.

1 2 z − 1

J B
1 J B

z−1J B
2

≤ 17
8

z

J B
z

≤ 1 ≤ 1 ≤ 1

≤ 1
≤ 17

8 ≤ 17
8

≤ 17
8

J A
2J A

1 J A
z−1 J A

zJ A
z−2

Figure 6.10: Schedule σ′

As each machine contains at most 2 large jobs and 17 small jobs, the makespan of
schedule σ′ and, hence, C?

max is bounded by 2·1+17·1/8 ≤ 5. This implies Cmax(σ)/C?
max ≥

3k/16 = Ω(Γ−1(m)) due to Lemma 6.3.6. Hence,

E
I∼I

[
max

σ∈Lex(I)

Cmax(I, σ)

C?
max(I)

∣∣∣∣ E] ≥ E
I∼I

[
Cmax(I, σ(I))

C?
max(I)

∣∣∣∣ E] = Ω
(
Γ−1(m)

)
= Ω

(
logm

log logm

)
.

Remark. Lemma 6.3.7 establishes that event E occurs with high probability. Hence, if
we choose k suitably large, then the stated results not only hold in expectation, but also
with high probability.

The bound of Ω
(
(logm)/(log logm)

)
of Theorem 6.3.3 carries over to the environment

with restricted related machines. In this environment it does, however, not match the
known worst-case upper bound of O

(
(logS)/(log logS)

)
for S =

∑
i si/sm due to Rutten

et al. [RRSV12].

108 CHAPTER 6. SCHEDULING HEURISTICS

6.4 Table of Notation

In the table below, the notation used in this chapter is summarized.

J set of jobs 1, . . . , n
M set of machines 1, . . . ,m
pj ∈ [0, 1] processing requirement of job j
si ≥ 1 speed of machine i
smin = 1 minimum speed of the machines
smax maximum speed of the machines
Mj ⊆M set of machines on which job j is allowed to be scheduled
σ : J →M a schedule
σ? an optimal schedule
Cmax(σ) makespan of schedule σ
C?

max = Cmax(σ?) optimal makespan
Ji(σ) ⊆ J set of jobs assigned to machine i in schedule σ
Li(σ) :=

∑
j∈Ji(σ) pj/si; load of machine i in schedule σ

Ji,j(σ) :=Ji(σ) ∩ {1, . . . , j}
jti := min

{
j :

∑
`∈Ji,j(σ) p`/si ≥ t · C?

max

}
Ji,≥t(σ) :=Ji,jti (σ)

c :=
⌊
Cmax(σ)
C?max

⌋
− 1

ik := max {i ∈M : Li′ ≥ k · C?
max ∀ i′ ≤ i}, assuming s1 ≥ . . . ≥ sm

Hk :={1, . . . , ik} ⊆M
Rk :=Hk \Hk+1 for k = 0, . . . , c− 1
Rc :=Hc

Chapter 7

Counting Pareto-Optimal Solutions

This chapter is devoted to the study of the number of Pareto-optimal solutions of integer
linear multiobjective optimization problems. In Section 7.1 we show that in the bicrite-
ria case (d = 1) the model with zero-preserving perturbations is not more general than
the model of φ-smooth instances. After introducing some notation in Section 7.2, we
present an outline of our approach and our methods in Section 7.3. In Section 7.5 we
prove our result about the first moment (Theorem 1.5.1) and in Section 7.6 our results
about higher moments (Theorem 1.5.3) of the smoothed number of Pareto-optimal solu-
tions. In Section 7.7 we consider zero-preserving perturbations and prove Theorem 1.5.4.
Section 7.8 again considers non-zero preserving perturbations. There the lower bound
for the smoothed number of Pareto-optimal solutions for the binary setting stated in
Theorem 1.5.2 is derived.

7.1 Zero-Preserving Perturbations in the Bicriteria

Case

Let us first of all remark that we can assume that the adversarial objective V d+1 is
injective. If not, then let v1, . . . , v` be the values taken by V d+1 and let ∆ = mini 6=j |vi−vj|.
Now, consider an arbitrary injective function δ : S → [0,∆) and define the new adversarial
objective as W d+1x = V d+1x+ δ(x). Obviously, this function is injective and it preserves
the order of the solutions in S. That is, if V d+1x < V d+1y for x, y ∈ S, then also
W d+1x < W d+1y. Let x be a Pareto optimum with respect to S and {V 1, . . . , V d+1}
and let x2, . . . , xm, m ≥ 1, be all the other solutions for which V kxi = V kx for any
k ∈ {1, . . . , d+ 1}. These are all Pareto optima but, due to our convention, we only count
them once. Without loss of generality let x be the solution that minimizes W d+1 among
these solutions. Then x is also Pareto-optimal with respect to S and {V 1, . . . , V d,W d+1}.

Now we demonstrate by an example that, in the bicriteria case, which was studied
in [BV04], zero-preserving perturbations are not more powerful than other perturbations

109

110 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

because they can be simulated by the right choice of S ⊆ {0, . . . ,K}n and the objective
function V 2 : S → R. Assume, for instance, that the adversary has chosen S and V 2 and
that he has decided that the first coefficient V 1

1 of the first objective function should be
deterministically set to zero. Also assume without loss of generality that V 2 is injective.
We can partition the set S in classes of solutions that agree in all components except
for the first one. That is, two solutions x ∈ S and y ∈ S belong to the same class if
xi = yi for all i ∈ {2, . . . , n}. All solutions in the same class have the same value in the
first objective V 1 as they differ only in the binary variable x1, whose coefficient has been
set to zero. We construct a new set of solutions S ′ that contains for every class only the
solution with smallest value in V 2. It is easy to see that the number of Pareto-optimal
solutions is the same with respect to S and with respect to S ′ because all solutions in
S \ S ′ are dominated by solutions in S ′.

Then we transform the set S ′ ⊆ {0, . . . ,K}n into a set S ′′ ⊆ {0, . . . ,K}n−1 by dropping
the first component of every solution. Furthermore, we define a function W 2 : S ′′ → R
that assigns to every solution x ∈ S ′′ the same value that V 2 assigns to the corresponding
solution in S ′. One can easily verify that the Pareto set with respect to S ′ and V 2 is
identical with the Pareto set with respect to S ′′ and W 2. The only difference is that in
the latter problem we have eliminated the coefficient that is deterministically set to zero.
Such an easy reduction of zero-preserving perturbations to other perturbations does not
seem to be possible for d ≥ 2 anymore.

7.2 Notation

For the sake of simplicity we write V tx instead of V t(x), even for the adversarial objec-
tive V d+1. With V k1...ktx we refer to the vector (V k1x, . . . , V ktx). In our analysis, we
will shift the solutions x ∈ S by a certain vector u ∈ {0, . . . ,K}n and consider the val-
ues V t · (x − u). For the linear objectives we mean the value V tx − V tu, where V tu is
well-defined even for a shift vector u ∈ {0, . . . ,K}n \ S. For the adversarial objective,
however, we define V d+1 · (x − u) := V d+1x. It should not be confused with V d+1y for
y = x − u. Throughout this chapter let ε > 0 be a small real for which 1/ε is integral.
Let b = (b1, . . . , bd) ∈ Rd be a vector such that bk/ε is an integer for any k. We call the
set B =

{
(y1, . . . , yd) ∈ Rd : yk ∈ (bk, bk + ε] for any k

}
an ε-box and b the corner of B.

For a vector x ∈ {−K, . . . ,K}n the expression BV (x) denotes the unique ε-box B for
which V 1...dx ∈ B. We call B the ε-box of x and say that x lies in B. By Bε we denote
the set of all ε-boxes with a corner b ∈ {−nK,−nK + ε, . . . , nK − 2ε, nK − ε}d. Hence,
|Bε| = (2nK/ε)d. If all coefficients V k

i of V are from [−1, 1], which is true for any of the
models considered in this chapter, and if for any k = 1, . . . , d there is an index i for which
|V k
i | < 1, which holds with probability 1 in any of our models, then the ε-box of any vector

x ∈ {−K, . . . ,K}n belongs to Bε. Note that all vectors x constructed in this chapter are
from {−K, . . . ,K}n. Hence, without further explanation we assume that BV (x) ∈ Bε.

7.2. NOTATION 111

We will extensively use tuples instead of sets. The reason for this is that we are
not only interested in certain components of a vector or matrix, but we also want to
describe in which order they are considered. This will be clear after the introduction
of the following notation. Let n,m be positive integers and let a1, . . . , an, b1, . . . , bm be
arbitrary and not necessarily pairwise distinct reals. We define [n] = (1, . . . , n), [n]0 =
(0, 1, . . . , n), |(a1, . . . , an)| = n and (a1, . . . , an) ∪ (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm).
Note, that always |(a1, . . . , an) ∪ (b1, . . . , bm)| = n+m. This is different from sets, where
| {a1, . . . , an} ∪ {b1, . . . , bm} | < n + m if {a1, . . . , an} and {b1, . . . , bm} have at least one
element in common. By (a1, . . . , an)\(b1, . . . , bm) and (a1, . . . , an)∩(b1, . . . , bm) we denote
the tuples we obtain by removing all elements that (do not) belong to (b1, . . . , bm) from
(a1, . . . , an). We write (a1, . . . , an) ⊆ (b1, . . . , bm) if ak ∈ (b1, . . . , bm) for any index k ∈ [n].
Let x be a vector and let A be a matrix. By x|i1...in = x|(i1,...,in) we denote the column
vector (xi1 , . . . , xin)T, by A|(i1,...,in) we denote the matrix consisting of the rows i1, . . . , in
of matrix A (in this order).

For an index set I ⊆ [n] and a vector y ∈ {0, . . . ,K}n let SI(y) denote the set of all solu-
tions z ∈ S for which zi = yi for any index i ∈ I. For the sake of simplicity we also use the
notation SI(ŷ) for vectors ŷ ∈ {0, . . . ,K}|I| whose components are labeled as yi1 , . . . , yi|I|
(assuming that I = (i1, . . . , i|I|)) to describe the set {z ∈ S : zi = ŷi for any i ∈ I}.

With In we refer to the n × n-identity matrix diag(1, . . . , 1) and with Om×n to the
m × n-matrix whose entries are all zero. If the number of rows and columns are clear,
then we drop the indices.

For a set M ⊆ Rn and a vector y ∈ Rn we define M + y := {x+ y : x ∈M}, the
Minkowski sum of M and {y}.

Definition 7.2.1. Let S ⊆ Rn be a set of solutions and let f1, . . . , fd : S → R be functions.

1. Let x, y ∈ Rn be vectors. We say that x dominates y (with respect to {f1, . . . , fd}),
if fi(x) ≤ fi(y) for any i ∈ [d] and fi(x) < fi(y) for at least one i ∈ [d]. We say
that x dominates y strongly (with respect to {f1, . . . , fd}), if fi(x) < fi(y) for any
i ∈ [d].

2. Let x ∈ Rn be a vector. We call x Pareto-optimal or a Pareto optimum (with respect
to S and {f1, . . . , fd}), if x is an element of S and if no solution y ∈ S dominates x.
We call x weakly Pareto-optimal or a weak Pareto optimum (with respect to S and
{f1, . . . , fd}), if x is an element of S and if no solution y ∈ S dominates x strongly.

We focus on Pareto-optimal solutions. The notion of strong dominance and weak
Pareto optimality is a mere concept that we need in our analysis of the model with
zero-preserving perturbations.

112 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

7.3 Outline of Our Approach

To prove our results we adapt and improve methods from the previous analyses by Moitra
and O’Donnell [MO11] and by Röglin and Teng [RT09] and combine them in a novel way.
Since all coefficients of the linear objective functions lie in the interval [−1, 1], for every
solution x ∈ S the vector V 1...dx lies in the hypercube [−nK, nK]d. The first step is
to partition this hypercube into ε-boxes. If ε is very small (exponentially small in n),
then it is unlikely that there are two different solutions x ∈ S and y ∈ S that lie in
the same ε-box B unless x and y differ only in positions that are not perturbed in any
of the objective functions, in which case we consider them as the same solution. In the
remainder of this section we assume that no two solutions lie in the same ε-box. Then, in
order to bound the number of Pareto-optimal solutions, it suffices to count the number
of non-empty ε-boxes.

In order to prove Theorem 1.5.1 we show that for any fixed ε-box the probability
that it contains a Pareto-optimal solution is bounded by kndφdεd for a sufficiently large
k = k(K, d). This implies the theorem as the number of ε-boxes is (2nK/ε)d. Fix an
arbitrary ε-box B. In the following we will call a solution x ∈ S a candidate if there is
a realization of V such that x is Pareto-optimal and lies in B. If there was only a single
candidate x ∈ S, then we could bound the probability that there is a Pareto-optimal
solution in B by the probability that this particular solution x lies in B. This probability
can easily be bounded from above by εdφd. However, in principle, every solution x ∈ S
can be a candidate and a union bound over all of them leads to a factor of |S| in the
bound, which we have to avoid.

Following the ideas of Moitra and O’Donnell, we divide the draw of the random ma-
trix V into two steps. In the first step some information about V is revealed that suffices
to limit the set of candidates to a single solution x ∈ S. The exact position V 1...dx of
this solution is determined in the second step. If the information that is revealed in the
two steps is chosen carefully, then there is enough randomness left in the second step to
bound the probability that x lies in the ε-box B. In Moitra and O’Donnell’s analysis
the coefficients in the matrix V are partitioned into two groups. In the first step the
first group of coefficients is drawn, which suffices to determine the unique candidate x,
and in the second step the remaining coefficients are drawn, which suffices to bound the
probability that x lies in B. The second part consists essentially of d(d+1)/2 coefficients,
which causes the factor of φd(d+1)/2 in their bound. Since the coefficients from the first
and the second draw are independent of each other, Moitra and O’Donnell can apply the
principle of deferred decisions to complete their analysis.

We improve the analysis by a different choice of how to break the draw of V into two
parts. As in the previous analysis, most coefficients are drawn in the first step. Only d2

coefficients of V are drawn in the second step. However, these coefficients are not left
completely random as in [MO11] because after the other coefficients have been drawn
there can still be multiple candidates for Pareto-optimal solutions in B. Instead, the

7.3. OUTLINE OF OUR APPROACH 113

randomness is reduced further by drawing d(d − 1) linear combinations of these random
variables in the first step. These linear combinations have the property that, after they
have been drawn, there is a unique candidate x whose position can be described by d linear
combinations that are linearly independent of the linear combinations already drawn in
the first step. Unlike in the analysis of Moitra and O’Donnell we do not have independent
random variables. Even worse, for some realizations of the linear combinations of the first
step the conditional probability that x lies in B can be very large. This is why we cannot
apply the principle of deferred decisions here.

In [RT09] it was observed that linearly independent linear combinations of independent
random variables behave in some respect similar to independent random variables. With
this insight one can argue that in the second step there is still enough randomness to
bound the probability that x lies in B. While the analysis in [RT09] yields only a bound
proportional to φd

2
εd, we prove an improved result for quasiconcave densities that yields

the desired bound proportional to φdεd.

For analyzing higher moments, it does not suffice to bound the probability that a fixed
ε-box contains a Pareto-optimal solution. Instead, in order to bound the cth moment, we
sum over all c-tuples (B1, . . . , Bc) of ε-boxes the probability that all ε-boxes B1, . . . , Bc

simultaneously contain a Pareto-optimal solution. We bound this probability from above
by kncdφcdεcd for a sufficiently large k = k(K, d, c). Since there are (2nK/ε)cd different
c-tuples of ε-boxes, this implies the bound of f(K, d, c) ·O((n2φ)cd) for the cth moment of
the smoothed number of Pareto-optimal solutions.

Let us fix a c-tuple (B1, . . . , Bc) of ε-boxes. The approach to bound the probability
that all of these ε-boxes contain simultaneously a Pareto-optimal solution is similar to
the approach for the first moment. We divide the draw of V into two steps. In the
first step enough information is revealed to identify for each of the ε-boxes Bi a unique
candidate xi ∈ S for a Pareto-optimal solution in Bi. If we do this carefully, then there
is enough randomness left in the second step to bound the probability that V 1...dxi ∈ Bi

for every i ∈ [c]. Again most coefficients are drawn in the first step and some linear
combinations of the other cd2 coefficients are also drawn in the first step. However, we
cannot simply repeat the construction for the first moment independently c times because
then there might be (strong) dependencies between the events V 1...dxi ∈ Bi for different i.
In order to bound the probability that in the second step all xi lie in their corresponding
ε-boxes Bi, we need to ensure that the events V 1...dxi ∈ Bi are (almost) independent after
the information from the first step has been revealed.

The general approach to handle zero-preserving perturbations is closely related to the
approach for bounding the first moment for non-zero-preserving perturbations. However,
additional complications have to be handled. The main problem is that we cannot easily
guarantee anymore that the linear combinations in the second step are linearly indepen-
dent of the linear combinations revealed in the first step. Essentially, the revealed linear
combinations describe the positions of some auxiliary solutions. For non-zero-preserving

114 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

perturbations revealing this information is not critical as no solution has in any objective
function exactly the same value as x. For zero-preserving solutions it can, however, hap-
pen that the auxiliary solutions take exactly the same value as x in one of the objective
functions. Then there is not enough randomness left in the second step anymore to bound
the probability that x lies in this objective in the ε-interval described by the ε-box B.

In the remainder of this section we will present some more details on our analysis.
We first present a simplified argument to bound the smoothed number of Pareto-optimal
solutions. Afterwards we will briefly discuss which changes to this argument are necessary
to bound higher moments and to analyze zero-preserving perturbations.

Smoothed Number of Pareto-optimal Solutions As an important building block
in the proof of Theorem 1.5.1 we use an insight from [MO11] about how to test whether
a given ε-box contains a Pareto-optimal solution. Let us fix an ε-box B = (b1, b1 + ε] ×
. . .× (bd, bd + ε] with corner b = (b1, . . . , bd). The following algorithm takes as parameters
the matrix V and the ε-box B and it returns a solution x(0).

Witness(V,B)

1: Set Rd+1 = S.
2: for t = d, d− 1, . . . , 0 do
3: Set Ct = {z ∈ Rt+1 : V 1...tz ≤ b|1...t}.
4: Set x(t) = arg min{V t+1z : z ∈ Ct}.
5: Set Rt = {z ∈ Rt+1 : V t+1z < V t+1x(t)}.
6: end for
7: return x(0)

The actual Witness function that we use in the proof of Theorem 1.5.1 is more complex
because it has to deal with some technicalities. In particular, the case that some set Ct
is empty has to be handled. For the purpose of illustration we ignore these technicalities
here and assume that Ct is never empty. The crucial oberservation that has been made
by Moitra and O’Donnell is that if there is a Pareto-optimal solution x ∈ S that lies
in B, then x(0) = x (assuming that no two solutions lie in the same ε-box). Hence, the
solution x(0) returned by the Witness function is the only candidate for a Pareto-optimal
solution in B. While this statement and the following reasoning are true for any d ∈ N,
we want to illustrate the case d = 2, in which there are one adversarial and two linear
objective functions. For this, assume that B contains a single solution x which is Pareto-
optimal and that x is very close to the corner b of B which can be assumed if B is very
small. Then V tz ≤ bt is equivalent to V tz < V tx for any t ∈ [d].

Consider the situation depicted in Figure 7.1a. The first and the second objective
value of each solution determine a point in the Euclidean plane. The additional value
depicted next to this point represents the third objective value of each solution. Let us
consider the situation before entering the loop. All points in Figure 7.1a are encircled

7.3. OUTLINE OF OUR APPROACH 115

meaning that R3 contains all solutions, i.e., R3 = S. Now let us analyze the loop. The
set C2 contains all solutions that have smaller first and second objective values than x
(gray area in Figure 7.1b). Among these solutions we pick the one with the smallest third
objective value and denote it by x(2). Set R2 contains all solutions with a smaller third
objective value (encircled points in Figure 7.1c). Note, that in particular no solution
of the gray region is considered anymore. On the other hand, x belongs to R2 due to
Pareto-optimality.

The set C1 contains all solutions from R2 that have a smaller first objective value
than x (encircled points in the gray area in Figure 7.1d). Among these solutions x(1) is
the one with the smallest second objective value. Set R1 contains all solutions from R2

with a smaller second objective value (encircled points in Figure 7.1e). This set still
contains x, but no points from the gray region.

In the final iteration t = 0 we obtain C0 = R1 since there is no restriction in the
construction of C0 anymore and C0 6= ∅ since x ∈ R1. Solution x(0) is among the remaining
solutions the one with the smallest first objective value (Figure 7.1f). This solution
equals x and is now returned.

Our goal is to execute the Witness function and to obtain the solution x(0) without
revealing the entire matrix V . We will see that it is indeed possible to divide the draw
of V into two steps such that in the first step enough information is revealed to execute the
Witness function and such that in the second step there is still enough radnomness left to
bound the probability that x(0) lies in B. For this let I ⊆ [n] be a set (or rather a tuple) of
indices and assume that we know in advance which values the solutions x(0), . . . , x(d) take
at these indices, i.e., assume that we know a(0) = x(0)|I , . . . , a(d) = x(d)|I before executing
the Witness function. Then we can reconstruct x(0), . . . , x(d) without having to reveal the
entire matrix V . This can be done by the following algorithm, which gets as additional
parameters the set I and the matrix A = (a(0), . . . , a(d)).

Witness(V, I, A,B)

1: Set Rd+1 =
⋃d
t′=0 SI

(
a(t′)

)
.

2: for t = d, d− 1, . . . , 0 do
3: Set Ct = {z ∈ Rt+1 : V 1...tz ≤ b|1...t} ∩ SI

(
a(t)
)
.

4: Set x(t) = arg min{V t+1z : z ∈ Ct}.
5: Set Rt = {z ∈ Rt+1 : V t+1z < V t+1x(t)} ∩⋃t−1

t′=0 SI
(
a(t′)

)
.

6: end for
7: return (x(0), . . . , x(d))

The additional restriction of the set Rd+1 does not change the outcome of the Witness
function as all solutions x(0), . . . , x(d) generated by the first Witness function are contained
in the set Rd+1 defined in Line 1 of the second Witness function. Similarly one can argue
that the additional restrictions in Lines 3 and 5 do not change the outcome of the algorithm
because all solutions x(t) generated by the first Witness function satisfy the restrictions

116 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

[t]

V 1

V 2

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x

(a) Initial situation
V 1

V 2

x(2)

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x

(b) Determination of x(2)

V 1

V 2

x(2)

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x

(c) Determination of R2

V 1

V 2

x(2)

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x(1)

x

(d) Determination of x(1)

V 1

V 2

x(2)

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x(1)

x

(e) Determination of R1

V 1

V 2

x(2)

2

11

4

5

3

10
7

1
9

6

8

14

13

12
x(1)

x(0)x

(f) Determination of x(0)

Figure 7.1: Execution of the Witness function for three objectives

that are made in the second Witness function. Hence, if a(0) = x(0)|I , . . . , a(d) = x(d)|I ,
then both Witness functions generate the same x(0).

We will now discuss how much information about V needs to be revealed in order to
execute the second Witness function, assuming that the additional parameters I and A
are given. We assume that the coefficients V t

i are revealed for every t ∈ [d] and i /∈ I. For
the remaining coefficients only certain linear combinations need to be known in order to
be able to execute the Witness function. By carefully looking at the Witness function, one
can deduce that for t ∈ [d] only the linear combinations V t|I · x(t)|I , . . . , V t|I · x(d)|I and
V t|I · (x(t−1) − x(0))|I , . . . , V t|I · (x(t−1) − x(t−2))|I need to be known. These terms can be
viewed as linear combinations of the random variables V t

i , t ∈ [d], i ∈ I, with coefficients
from {−K, . . . ,K}. In addition to the already fixed random variables V t

i , t ∈ [d], i /∈ I

7.3. OUTLINE OF OUR APPROACH 117

the following d linear combinations determine the position V 1...dx of x = x(0):

V 1
I · x(0)|I , . . . , V d

I · x(0)|I .

A crucial observation our analysis is based upon is that if the vectors x(0)|I , . . . , x(d)|I
are linearly independent, then also all of the above mentioned linear combinations are
linearly independent. In particular, the d linear combinations that determine the position
of x cannot be expressed by the other linear combinations. Usually, however, it is not
possible to find a subset I ⊆ [n] of indices such that the vectors x(0)|I , . . . , x(d)|I are
linearly independent. By certain technical modifications of the Witness function we will
ensure that there always exists such a set I with |I| ≤ d + 1. Since we do not know the
set I and the matrix A in advance, we apply a union bound over all valid choices for these
parameters, which yields a factor of f(K, d) ·O(nd) in the bound for the probability that
there exists a Pareto-optimal solution in B.

Röglin and Teng [RT09] observed that the linear independence of the linear combina-
tions implies that even if the linear combinations needed to execute the Witness function
are revealed in the first step, there is still enough randomness in the second step to prove
an upper bound on the probability that V 1...dx lies in a fixed ε-box B that is proportional
to εd. The bound proven in [RT09] is, however, not strong enough to improve Moitra
and O’Donnell’s result [MO11] because the dependence on φ is in the order of Θ(φd

2
)

which is worse than the dependence of Θ(φd(d+1)/2) proven by Moitra and O’Donnell. We
show that for quasiconcave density functions the dependence in [RT09] can be improved
significantly to Θ(φd), which yields the improved bound of O(n2dφd) in Theorem 1.5.1 for
the binary case.

Higher Moments The analysis of higher moments is based on running the Witness
function multiple times. As described above, we bound for a fixed c-tuple (B1, . . . , Bc)
of ε-boxes the probability that all of them contain a Pareto-optimal solution. For this,
we run the Witness function c times. This way, we get for every j ∈ [c] a sequence
x(j,0), . . . , x(j,d) of solutions such that x(j,0) is the unique candidate for a Pareto-optimal
solution in Bj.

As above, we would like to execute the c calls of the Witness function without having
to reveal the entire matrix V . Again if we know for a subset I ⊆ [n] the values that the
solutions x(j,t), j ∈ [c], t ∈ [d], take at these positions, then we do not need to reveal
the coefficients V t

i with i ∈ I to be able to execute the calls of the Witness function. As
in the case of the first moment, it suffices to reveal some linear combinations of these
coefficients.

In order to guarantee that these linear combinations are linearly independent of the
linear combinations that determine the positions of the solutions x(j,0), j ∈ [c], we need
to coordinate the calls of the Witness function. Otherwise it might happen, for example,
that the linear combinations revealed for executing the first call of the witness function

118 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

determine already the position of x(2,0), the candidate for a Pareto-optimal solution in B2.
Assume that the first call of the Witness function returns a sequence x(1,0), . . . , x(1,d) of
solutions and that I1 ⊆ [n] is a set of indices that satisfies the desired property that
x(1,0)|I1 , . . . , x(1,d)|I1 are linearly independent. In order to achieve that all solutions gener-
ated in the following calls of the Witness function are linearly independent of these linear
combinations, we do not start a second independent call of the Witness function, but we
restrict the set of feasible solutions first. Instead of choosing x(2,0), . . . , x(2,d) among all
solutions from S, we restrict the set of feasible solutions for the second call of the Witness
function to S ′ = SI1(x

(2,0)). Although we do not know x(2,0) in advance, we can assume
to know some of its entries due to a technical trick. Essentially, all solutions generated in
call r of the Witness function have to coincide with x(r,0) in all positions that have been
selected in one of the previous calls.

This and some additional tricks allow us to ensure that in the end there is a set
I ⊆ [n] with |I| ≤ (d + 1)c such that all vectors x(j,t)|I , j ∈ [c], t ∈ [d] are linearly
independent. Then we can again use the bound proven in [RT09] to bound the probability
that V 1...dx(j,0) ∈ Bj simultaneously for every j ∈ [c] from above by a term proportional to
εcdφcd

2
. With our improved bound for quasiconcave density functions, we obtain a bound

proportional to εcdφcd. Together with a union bound over all valid choices for I and the
values x(j,t)|I , j ∈ [c], t ∈ [d], we obtain a bound of kncdεcdφcd on the probability that all
candidates x(j,0) lie in their corresponding ε-boxes for a sufficiently large k = k(K, d, c).
Together with the bound of O((nK)cd/εcd) for the number of c-tuples (B1, . . . , Bc) this
implies Theorem 1.5.3.

Zero-preserving Perturbations If we use the same Witness function as above, then
it can happen that there is a Pareto-optimal solution x in the ε-box B that does not
coincide with the solution x(0) returned by the Witness function. This problem occurs,
for example, if V d ·x(d−1) = V d ·x(0), which we cannot exclude if we allow zero-preserving
perturbations. On the other hand if we knew in advance that V d · x(d−1) = V d · x(0), then
we could bound the probability of V dx(0) ∈ (bd, bd + ε] already after the solution x(d−1)

has been generated. Hence, if we were only interested in bounding this probability, we
could terminate the Witness function already after x(d−1) has been generated. Instead of
terminating the Witness function at this point entirely, we keep in mind that V dx(0) has
already been determined and we restart the Witness function with the remaining objective
functions only.

Let us make this a bit more precise. As long as the solutions x(t) generated by the
Witness function differ in all objective functions from x, we execute the Witness function
without any modification. Only if a solution x(t) is generated that agrees with x in some
objective functions, then we deviate from the original Witness function. Let K ⊆ [d]
denote the objective functions in which x(t) coincides with x. Then we can bound at
this point the probability that V t · x ∈ (bt, bt + ε] simultaneously for all t ∈ K. In or-

7.3. OUTLINE OF OUR APPROACH 119

der to also deal with the other objectives t /∈ K, we restart the Witness function. In
this restart, we ignore all objective functions in K and we execute the Witness func-
tion as if only objectives t /∈ K were present. Additionally we restrict in the restart
the set of feasible solutions to those that coincide in the objectives t ∈ K with x, i.e.,
to {y ∈ S : V t · y = V t · x for all t ∈ K}. With similar techniques as in the analysis of
higher moments we ensure that different restarts lead to linearly independent linear com-
binations.

This exploits that every Pareto-optimal solution x is also Pareto-optimal with respect
to only the objective functions V t with t /∈ K if the set S is restricted to solutions
that agree with x in all objective functions V t with t ∈ K. This property guarantees
that whenever the Witness function is restarted, x is still a Pareto-optimal solution with
respect to the restricted solution set and the remaining objective functions.

It can happen that we have to restart the Witness function d times before a unique
candidate for a Pareto-optimal solution in B is identified. As in each of these restarts
at most d solutions are generated, the total number of solutions that is generated can
increase from d + 1, as in the case of non-zero-preserving perturbations, to roughly d2.
The set I ⊆ [n] of indices restricted to which these solutions are linearly independent has
a cardinality of at most d3. The reason for this increase is that we have to choose more
indices to obtain linear independence due to the fixed zeros. Taking a union bound over
all valid choices of I, of the values that the generated solutions take at these positions, and
the possibilities when and due to which objectives the restarts occur, yields Theorem 1.5.4.
This theorem relies again on the result about linearly independent linear combinations
of independent random variables from [RT09] and its improved version for quasiconcave
densities that we show in this thesis.

Lower Bound For the construction of a lower bound example for the model without
zero-preserving perturbations we consider the following generalization of the knapsack
problem which we call restricted multi-profit knapsack problem. Here, we are given n
objects a1, . . . , an, each with a weight wi and a profit vector pi ∈ Rd for an integer d ≥ 1.
By a vector s ∈ {0, 1}n we describe which objects to put into the knapsack. In this
variant of the knapsack problem we are additionally given a set S ⊆ {0, 1}n that encodes
which combinations of objects are allowed to be put into the knapsack. We want to
simultaneously minimize the total weight and maximize all total profits of the objects.
Thus, our multiobjective optimization problem, which we denote by KS({a1, . . . , an}), can
be written as

minimize
∑n

i=1wi · si and maximize
∑n

i=1(pi)j · si for all j ∈ [d]

subject to (s1, . . . , sn) is a feasible solution from S.

For S = {0, 1}n we simply write K({a1, . . . , an}) instead of KS({a1, . . . , an}). First of all
note, that the restricted multi-profit knapsack problem only serves as a tool to construct

120 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

a lower bound example. There is no obvious practical application behind it. Secondly,
we break with the convention that we want to simultaneously minimize all objectives.
We can easily transform the restricted multi-profit knapsack problem into an equivalent
pure multiobjective minimization problem. However, we find that maximizing positive
profits is much more intuitive than minimizing negative costs. Of course, the notion of
domination has to be adapted accordingly.

The idea of our lower bound construction is as follows: Assume that we have already
chosen weights and profits for the objects a1, . . . , an as well as a set S. Let W be the
total weight and Pi be the ith total profit of these objects. For each dimension i ∈ [d]
we introduce an additional object bi with a weight that exceeds W . The ith profit of bi
exceeds Pi, whereas all of its other profits are (approximately) zero. As the set of feasible
solutions for this new instance we now consider the set S ′ = S × {0, 1}d, i.e., the choice
of the objects a1, . . . , an is restricted as before, whereas the objects b1, . . . , bd can be put
into the knapsack arbitrarily. The crucial point of adding the objects b1, . . . , bd is, that
a solution (x1, . . . , xn, y1, . . . , yd) is Pareto-optimal for the new instance if and only if
(x1, . . . , xn) is Pareto-optimal for the old instance. Hence, instead of a Pareto-optimal
solution (x1, . . . , xn) we now have the Pareto-optimal solutions (x1, . . . , xn, y1, . . . , yd) for
any choice (y1, . . . , yd) ∈ {0, 1}d. That is, we created 2d clones of the the original Pareto
set. This is what we call the copy step.

We repeat this copy step several times to increase the size of the Pareto set. Due to
this, the profits of the additional objects grow exponentially and finally exceed 1, which is
the limit according to our input model. To deal with inadmissibly high profits, we break
the large objects into smaller objects whose profits are again in the interval [0, 1]. As
these small objects together are supposed to behave like the large object, we adapt the
set of solutions in such a way that we only allow to choose all or none of them. This is
what we call the split step.

The more copy steps we perform, the larger the Pareto set becomes. On the other
hand, each copy step also creates more and larger objects. These objects have to be broken
into many small objects, which increases the number of objects used for the instance. As
we want to maximize the size of the Pareto set as a function of the number of objects,
there is a trade-off between creating a large Pareto set and creating not too many objects.
This problem and the question how to choose the initial objects and their profits will be
handled in the analysis.

7.4 Properties of (Weak) Pareto-optimal Solutions

In this section we will identify the main properties of (weakly) Pareto-optimal solutions
that lay the foundation for all variants of the Witness function. In the model without
zero-preserving perturbations we only need properties of Pareto optima. In the model
with zero-preserving perturbations, however, much more work has to be done and there

7.4. PROPERTIES OF (WEAK) PARETO-OPTIMAL SOLUTIONS 121

we need the notion of weak Pareto optimality.
We start with an observation that is valid for both Pareto-optimal solutions and weak

Pareto-optimal solutions.

Proposition 7.4.1. Let S ⊆ Rn be a set of solutions, let f1, . . . , fd : S → R be functions,
let x? be a (weak) Pareto optimum with respect to S and {f1, . . . , fd}, and let S ′ ⊆ S be
a subset of solutions that contains x?. Then x? is (weakly) Pareto-optimal with respect
to S ′ and {f1, . . . , fd}.

The core idea of the Witness functions is given by the following lemma.

Lemma 7.4.2. Let S ⊆ Rn be a set of solutions, let f1, . . . , ft+1 : S → R, t ≥ 1, be
functions, and let x? be a weak Pareto optimum with respect to S and {f1, . . . , ft+1}. We
consider the set C ⊆ S of solutions that dominate x? strongly with respect to {f1, . . . , ft}.

(I) If C = ∅, then x? is weakly Pareto-optimal with respect to S and {f1, . . . , ft}.

(II) If C 6= ∅, then ft+1(x?) ≤ minx∈C ft+1(x) =: f̂ . Furthermore, if ft+1(x?) < f̂ , then x?

is weakly Pareto-optimal with respect to R :={x ∈ S : ft+1(x) < f̂} and {f1, . . . , ft}.

Proof. Claim (I) of Lemma 7.4.2 holds due to the definition of weak Pareto optimal-
ity. Let us consider Claim (II). If the inequality ft+1(x?) ≤ f̂ does not hold, then
x̂ = arg minx∈C ft+1(x) dominates x? strongly with respect to {f1, . . . , ft+1}. This is a
contradiction since x? is weakly Pareto-optimal with respect to S and {f1, . . . , ft+1}.

Now let us show that x? is weakly Pareto-optimal with respect to R and {f1, . . . , ft}
if ft+1(x?) < f̂ . The condition ensures that x? ∈ R. Assume, for the contrary, that there
exists a y ∈ R that dominates x? strongly with respect to {f1, . . . , ft}. Since R ⊆ S, this
implies y ∈ C. Due to y ∈ R we obtain the contradiction ft+1(y) < f̂ ≤ ft+1(y), where
the second inequality follows from the definition of f̂ and y ∈ C.

If the functions f1, . . . , ft in Lemma 7.4.2 are injective, we can also obtain a statement
about Pareto optima.

Corollary 7.4.3. Let S ⊆ Rn be a set of solutions, let f1, . . . , ft+1 : S → R, t ≥ 1, be
functions, where f1, . . . , ft are injective, and let x? be a Pareto optimum with respect to S
and {f1, . . . , ft+1}. We consider the set C ⊆ S of solutions that dominate x? strongly with
respect to {f1, . . . , ft}.

(I) If C = ∅, then x? is Pareto-optimal with respect to S and {f1, . . . , ft}.

(II) If C 6= ∅, then ft+1(x?) < minx∈C ft+1(x) =: f̂ . Furthermore, x? is Pareto-optimal
with respect to R :={x ∈ S : ft+1(x) < f̂} and {f1, . . . , ft}.

122 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Proof. First of all we observe that a solution y ∈ S dominates x? with respect to
{f1, . . . , ft} if and only if y dominates x? strongly with respect to {f1, . . . , ft}. This
is due to the injectivity of the functions f1, . . . , ft. Consequently, Claim (I) follows from
the definition of Pareto optimality. Let us consider Claim (II). Assume for the contrary
that f̂ ≤ ft+1(x?). In this case, the solution x̂ = arg minx∈C ft+1(x) would dominate x?

with respect to {f1, . . . , ft+1} contradicting the assumption that x? is Pareto-optimal.
Hence, ft+1(x?) < f̂ .

Due to Lemma 7.4.2, x? is weakly Pareto-optimal with respect to R and {f1, . . . , ft}
because any Pareto optimum is also a weak Pareto optimum. As these functions are
injective, x? is even Pareto-optimal with respect to R and {f1, . . . , ft}.

For the model with zero-preserving perturbations we need one more lemma that allows
us to handle non-injectivity appropriately.

Lemma 7.4.4. Let S ⊆ Rn be a set of solutions, let f1, . . . , ft+1 : S → R, t ≥ 1, be
functions, and let x? be a Pareto optimum with respect to S and {f1, . . . , ft+1}. Further-
more, let K ⊆ [t + 1] be a tuple of indices and let S ′ be a subset of {x ∈ S : fk(x) =
fk(x

?) for all k ∈ K}. Then x? is Pareto-optimal with respect to S ′ and {fk : k ∈
[t+ 1] \K}.

Proof. Assume, for the contrary, that x? is not Pareto-optimal. Then there exists a
solution y ∈ S ′ such that y dominates x? with respect to {fk : k ∈ [t + 1] \ K}. Since
fk(y) = fk(x

?) for all k ∈ K, solution y also dominates x? with respect to {f1, . . . , ft+1}.
This contradicts the assumption that x? is Pareto-optimal.

7.5 Smoothed Number of Pareto-optimal Solutions

Throughout this section we consider the model without zero-preserving perturbations. To
prove Theorem 1.5.1 we assume w.l.o.g. that n ≥ d + 1 and consider the function given
as Algorithm 5 which we call the Witness function. It is very similar to the one suggested
by Moitra and O’Donnell, but with an additional parameter I. This parameter is a tuple
of forbidden indices: it restricts the set of indices we are allowed to choose from. For
the analysis of the smoothed number of Pareto-optimal solutions we will set I = (). The
parameter becomes important in the next section when we analyze higher moments.

Let us give some remarks about the Witness function. Note, that C0 = R1 since
V 1...tz < V 1...tx is no restriction if t = 0. In Line 6 ties are broken by taking the lexico-
graphically first solution x(t). For t ≥ 1 the index it in Line 8 exists because V 1x(t) < V 1x
which implies x(t) 6= x.

Unless stated otherwise, we assume that the OK-event occurs. That means that
|V k · (y − z)| ≥ ε for every k ∈ [d] and for any two distinct solutions y 6= z ∈ S and
that for any k ∈ [d] there is an index i ∈ [n] such that |V k

i | < 1. The first property

7.5. SMOOTHED NUMBER OF PARETO-OPTIMAL SOLUTIONS 123

Algorithm 5 Witness(V, x, I)

1: Set Id+1 = I.
2: Set Rd+1 = SId+1

(x).
3: for t = d, d− 1, . . . , 0 do
4: Set Ct = {z ∈ Rt+1 : V 1...tz < V 1...tx}.
5: if Ct 6= ∅ then
6: Set x(t) = arg min{V t+1z : z ∈ Ct}.
7: if t = 0 then return x(t)

8: Set it = min{i ∈ [n] : x
(t)
it
6= xit}.

9: Set It = It+1 ∪ (it).
10: Set Rt = {z ∈ Rt+1 : V t+1z < V t+1x(t)} ∩ SIt(x).
11: else
12: Set it = min([n] \ It+1).
13: Set It = It+1 ∪ (it).

14: Set x
(t)
i =

{
min({0, . . . ,K} \ {xi}) if i = it ,

xi otherwise .

15: Set Rt = Rt+1 ∩ SIt(x).
16: end if
17: end for
18: return (⊥, . . . ,⊥)

ensures, amongst others, that there is a unique arg min in Line 6 and that the functions
V 1, . . . , V d are injective. The latter property, which holds with probability 1, ensures that
BV (x) ∈ Bε for any vector x ∈ {−K, . . . ,K}n. Later we will see that the OK-event occurs
with sufficiently high probability.

Before we start to analyze the Witness function, let us discuss the differences between
the function Witness(V,B) described in Section 7.3 and the function Witness(V, x, I) given
as Algorithm 5. As described in Section 7.3 for the illustrative case d = 2, the param-
eters B and x play exactly the same role if B = BV (x) assuming that the OK-event
holds. As stated earlier, the additional parameter I in the function Witness(V, x, I) has
no meaning for the analysis of the first moment. To prove Theorem 1.5.1, we simply set
it to the empty tuple.

In the remainder of this section we only consider the case that x is Pareto-optimal,
that I is an arbitrary index tuple that contains pairwise distinct indices, and that the
number |I| of indices contained in I is at most n− (d+ 1). This ensures that the indices
i0, . . . , id exist.

Lemma 7.5.1. The call Witness(V, x, I) returns the vector x(0) = x.

Proof. We show the following claim by induction on t.

124 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Claim 3. For any t ∈ [d + 1], solution x is Pareto-optimal with respect to Rt and
{V 1, . . . , V t}.

If Claim 3 holds, then for t = 1 we obtain that x is Pareto-optimal with respect to R1

and {V 1}. In particular, x ∈ R1 = C0 6= ∅, i.e., x(0) = x. This solution will be returned
in iteration t = 0.

Note, that the functions V 1, . . . , V d are injective due to the assumption that the OK-
event occurs. This allows us to apply Corollary 7.4.3. Recalling that x ∈ SI′(x) for any
index tuple I ′, Claim 3 is true for t = d+ 1 by assumption and due to Proposition 7.4.1.

Now let us assume that the claim holds for some value t + 1 and consider set Ct. We
distinguish between two cases. If Ct = ∅, then Rt = Rt+1 ∩ SIt(x) and the claim follows
from the induction hypothesis and from Corollary 7.4.3, Claim (I), and Proposition 7.4.1.
If Ct 6= ∅, then Rt = R′t ∩ SIt(x) for R′t = {z ∈ Rt+1 : V t+1z < V t+1x(t)}. Hence, the
claim follows from the induction hypothesis and from Corollary 7.4.3, Claim (II), and
Proposition 7.4.1.

At a first glance it seems odd to compute a solution x by calling a function with x as
parameter. However, we will see that not all information about x is required to execute
the call Witness(V, x, I). To be a bit more precise, the indices i0, . . . , id and the entries at
the positions i ∈ I ∪ (i0, . . . , id) of the vectors x(t) constructed during the execution of the
Witness function suffice to simulate the execution of Witness without knowing x completely
(see Lemma 7.5.4). We will call these information a certificate (see Definition 7.5.2). For
technical reasons we will assume that we have some additional information about x.

For our purpose it is not necessary to know how to obtain the required information
about x to reconstruct it. It suffices to know that the set of possible certificates is
sufficiently small (see Lemma 7.5.7) and that for at least one of them the simulation of
the execution of Witness returns x (see Lemma 7.5.4). This is one crucial property which
will help us to bound the expected number of Pareto-optimal solutions.

Definition 7.5.2. Let x(0), . . . , x(d) be the vectors and I1 be the index tuple constructed
during the call Witness(V, x, I) and set i0 = min

(
[n] \ I1

)
and I0 = I1 ∪ (i0). We call

the pair (I0, A0) for A0 =
[
x(d), . . . , x(0)

]
the (V, I)-certificate of x. The pair (I0, A) for

A = A0|I0 is called the restricted (V, I)-certificate of x. We call a pair (I ′, A′) a (restricted)
I-certificate, if there exist a realization V for which OK(V) is true and a Pareto-optimal
solution x ∈ S such that (I ′, A′) is the (restricted) (V, I)-certificate of x. By C (I) we
denote the set of all restricted I-certificates.

For the analysis of the first moment we only need restricted I-certificates. Our analysis
of higher moments requires more knowledge about the vectors x(t) than just the values xi
for i ∈ I0. The additional indices are, however, depending on further calls of the Witness
function which we do not know a priori. This is why we have to define two types of
certificates. For the sake of reusability we formulate some statements more general than
necessary for this section.

7.5. SMOOTHED NUMBER OF PARETO-OPTIMAL SOLUTIONS 125

Lemma 7.5.3. Let V be an arbitrary realization where OK(V) is true, let x be a Pareto-
optimal solution with respect to S and V , and let (I0, A) be the restricted (V, I)-certificate
of x. Then I0 = (j1, . . . , j|I|+d+1) consists of pairwise distinct indices and

A =

xj1 . . . xj|I| xj|I|+1

∗ . . . ∗
...

... xj|I|+1

.
...

...
...

...
. . . xj|I|+d ∗

xj1 . . . xj|I| xj|I|+1
. . . xj|I|+d xj|I|+d+1

T

∈ {0, . . . ,K}(|I|+d+1)×(d+1) ,

where each ‘ ∗’-entry can be an arbitrary value from {0, . . . ,K} independently of the other
‘ ∗’-entries and where z for z ∈ {0, . . . ,K} can be an arbitrary value from {0, . . . ,K}\{z}.

Proof. Lemma 7.5.1 implies that the last column of A equals x
(0)
I0

= x|I0 . Hence, it suffices
to consider the first d columns of A. Note, that I = (j1, . . . , j|I|) and j|I|+1, . . . , j|I|+d+1 =
id, . . . , i0. The construction of the sets Rt yields Rt ⊆ SIt(x) (see Lines 2, 10, and 15).

Index it is always chosen such that it /∈ It+1: If it is constructed in Line 8, then x
(t)
it
6= xit .

Since in that case we have x(t) ∈ Ct ⊆ Rt+1 ⊆ SIt+1(x), index it cannot be an element
of It+1. In Line 12, index it is explicitely constructed such that it /∈ It+1. The same
argument holds for index i0. Hence, the indices of I0 are pairwise distinct.

Now, consider the column of A corresponding to vector x(t) for t ∈ [d]. If Ct = ∅, then
the form of the column follows directly from the construction of x(t) in Line 14 and from the
fact that the indices of I0 are pairwise distinct. If Ct 6= ∅, then x(t) ∈ Ct ⊆ Rt+1 ⊆ SIt+1(x),
i.e., x(t) agrees with x in all indices i ∈ It+1. By the choice of it in Line 8 we get

x
(t)
it
∈ {0, . . . ,K} \ {xit}. This concludes the proof.

Let (I0, A0) be the (V, I)-certificate of x and let J ⊇ I0 be a tuple of pairwise distinct
indices. We consider the following variant of the Witness function given as Algorithm 6
that uses information about x given by the index tuple J , the matrix A = A0|J with
columns a(d), . . . , a(0), a shift vector u and the ε-box B = BV (x − u) instead of vector x
itself. The meaning of the shift vector will become clear when we analyze the probability
of certain events. We will see that not all information about V needs to be revealed to
execute the new Witness function, i.e., we have some randomness left which we can use
later. With the choice of the shift vector we can control which information has to be
revealed for executing the Witness function.

Lemma 7.5.4. Let (I0, A0) be the (V, I)-certificate of x, let J ⊇ I0 be an arbitrary tuple
of pairwise distinct indices, let A = A0|J , let u ∈ {0, . . . ,K}n be an arbitrary vector, and
let B = BV (x− u). Then the call Witness(V, J, A,B, u) returns vector x.

Before we give a formal proof of Lemma 7.5.4 we try to give some intuition for it.
Instead of considering the whole set S of solutions we restrict it to vectors that look like

126 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Algorithm 6 Witness(V, J, A,B, u)

1: Let b be the corner of B.
2: Set Rd+1 =

⋃d
s=0 SJ

(
a(s)
)
.

3: for t = d, d− 1, . . . , 0 do
4: Set Ct = {z ∈ Rt+1 : V 1...t · (z − u) ≤ b|1...t} ∩ SJ

(
a(t)
)
.

5: if Ct 6= ∅ then
6: Set x(t) = arg min{V t+1z : z ∈ Ct}.
7: if t = 0 then return x(t)

8: Set Rt = {z ∈ Rt+1 : V t+1z < V t+1x(t)} ∩⋃t−1
s=0 SJ

(
a(s)
)
.

9: else
10: Set x(t) = (⊥, . . . ,⊥).
11: Set Rt = Rt+1 ∩

⋃t−1
s=0 SJ

(
a(s)
)
.

12: end if
13: end for
14: return x(0)

the vectors we want to reconstruct in the next rounds, i.e., we intersect the current set
with the set

⋃t−1
s=0 SJ

(
a(s)
)

in round t. That way we only deal with subsets of the original
sets, but we do not lose the vectors we want to reconstruct since J ⊇ I0. This restriction
to the essential candidates of solutions allows us to execute this variant of the Witness
function with only partial information about V .

Proof. Let R′t, C ′t, and x′(t) denote the sets and vectors constructed during the execution
of the call Witness(V, J, A,B, u) and let Rt, Ct, and x(t) denote the sets and vectors
constructed during the execution of call Witness(V, x, I). We prove the following claims
simultaneously by induction.

Claim 4. R′t ⊆ Rt for any t ∈ [d+ 1].

Claim 5. x′(t) = x(t) for any t ∈ [d]0 for which Ct 6= ∅.

Claim 6. x(s) ∈ R′t for any t ∈ [d+ 1] and for any s ∈ [t− 1]0 for which Cs 6= ∅.

With these claims Lemma 7.5.4 follows immediately: Since x(0) = x and C0 6= ∅ due
to Lemma 7.5.1, we obtain x′(0) = x(0) (Claim 5). Hence, the call Witness(V, J, A,B, u)
returns x′(0) = x.

Let us first focus on the shift vector u and compare Line 4 of the first Witness function
(Algorithm 5) with Line 4 of the second Witness function (Algorithm 6). The main
difference is that in the first version we have the restriction V 1...tz < V 1...tx, whereas in
the second version we seek for solutions z for which V 1...t · (z − u) ≤ b|1...t. As b is the
corner of the ε-box B = BV (x− u), these restrictions are equivalent for solutions z ∈ S.

7.5. SMOOTHED NUMBER OF PARETO-OPTIMAL SOLUTIONS 127

This is due to the equivalences

V 1...t · (z − u) ≤ b|1...t ⇐⇒ V 1...t · (z − u) < V 1...t · (x− u) ⇐⇒ V 1...tz < V 1...tx .

The first equivalence is due to the occurrence of the OK-event. Now, we prove the
statements by downward induction over t. Let t = d + 1. Lemma 7.5.3 yields a(s)

∣∣
I

=

x|I for any s ∈ [d]0, i.e.,
⋃d
s=0 SJ

(
a(s)
)
⊆ SI(x) because I ⊆ I0 ⊆ J . Consequently,

R′d+1 ⊆ Rd+1 (Claim 4). Consider an arbitrary index s ∈ [(d+ 1)− 1]0 for which Cs 6= ∅.
Then x(s) ∈ Cs ⊆ Rs+1 ⊆ S (see Line 6) and, thus, x(s) ∈ SJ

(
a(s)
)
. Hence, x(s) ∈ R′d+1

(Claim 6).
For the induction step let t ≤ d. By the observation above we have C ′t = {z ∈

R′t+1 : V 1...tz < V 1...tx} ∩ SJ
(
a(t)
)

and Ct = {z ∈ Rt+1 : V 1...tz < V 1...tx}. Since R′t+1 ⊆
Rt+1, we obtain C ′t ⊆ Ct. We first consider the case Ct = ∅ which implies C ′t = ∅ and
t ≥ 1 in accordance with Lemma 7.5.1 since C0 6= ∅. Then R′t = R′t+1∩

⋃t−1
s=0 SJ

(
a(s)
)

and

Rt = Rt+1 ∩ SIt(x). According to Lemma 7.5.3, all vectors x(0), . . . , x(t−1) agree with x
on the indices i ∈ It as It ⊆ I0 ⊆ J . Thus,

⋃t−1
s=0 SJ

(
a(s)
)
⊆ SIt(x). As R′t+1 ⊆ Rt+1

due to the induction hypothesis, Claim 4, we obtain R′t ⊆ Rt (Claim 4). For Claim 5
nothing has to be shown here. Let s ∈ [t − 1]0 be an index for which Cs 6= ∅. Then
x(s) ∈ R′t+1 by Claim 6 of the induction hypothesis, x(s) ∈ SJ

(
a(s)
)
, and consequently

x(s) ∈ R′t (Claim 6).
Finally, let us consider the case Ct 6= ∅. Claim 6 of the induction hypothesis yields

x(t) ∈ R′t+1. Since x(t) ∈ SJ
(
a(t)
)

and V 1...tx(t) < V 1...tx, also x(t) ∈ C ′t and, thus, C ′t 6= ∅.
Hence, x′(t) = x(t) as C ′t ⊆ Ct (Claim 5). The remaining claims have only to be validated if
t ≥ 1. Then R′t = {z ∈ R′t+1 : V t+1z < V t+1x(t)}∩⋃t−1

s=0 SJ
(
a(s)
)
, because x′(t) = x(t), and

Rt = {z ∈ Rt+1 : V t+1z < V t+1x(t)} ∩ SIt(x). With the same argument used for the case
Ct = ∅ we obtain R′t+1 ∩

⋃t−1
s=0 SJ

(
a(s)
)
⊆ Rt+1 ∩ SIt(x) and, hence, R′t ⊆ Rt (Claim 4).

Consider an arbitrary index s ∈ [t − 1]0 for which Cs 6= ∅. Then x(s) ∈ Cs ⊆ Rs+1 ⊆ Rt.
In particular, V t+1x(s) < V t+1x(t) (see Line 10) and, hence, V t+1x(s) < V t+1x′(t) because
x′(t) = x(t). Furthermore, x(s) ∈ R′t+1 due to the induction hypothesis, Claim 6, and
x(s) ∈ SJ

(
a(s)
)
. Consequently, x(s) ∈ R′t (Claim 6).

As mentioned earlier, with the shift vector u we control which information of V has
to be revealed to execute the call Witness(V, J, A,B, u). While Lemma 7.5.4 holds for any
vector u, we have to choose u carefully for our probabilistic analysis to work. We will see
that the choice u? = u?(J,A), given by

u?i =

|xi − 1| if i = i0 ,

xi if i ∈ J \ (i0) ,

0 otherwise ,

(7.1)

is appropriate since xi − u?i = 0 for all i ∈ J \ (i0) and |xi0 − u?i0| = 1 (cf. Lemma 7.5.9).
Recall, that i0 is the index that has been added to I1 in the definition of the (V, I)-

128 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

certificate to obtain I0 and note, that u? ∈ {0, . . . ,K}n. Moreover, the values xi are given
in the last column of A for any index i ∈ J (see Lemma 7.5.3). Hence, if (I0, A0) is the
(V, I)-certificate of x, then vector u? can be defined when a tuple J ⊇ I0 and the matrix
A = A0|J are known; we do not have to know the solution x itself.

For bounding the number of Pareto-optimal solutions consider the functions χI0,A,B(V)
parameterized by an arbitrary restricted I-certificate (I0, A), and an arbitrary ε-box B ∈
Bε, defined as follows: χI0,A,B(V) = 1 if the call Witness(V, I0, A,B, u

?(I0, A)) returns a
solution x′ ∈ S for which BV

(
x′ − u?(I0, A)

)
= B, and χI0,A,B(V) = 0 otherwise.

Corollary 7.5.5. Assume that OK(V) is true. Then the number PO(V) of Pareto-
optimal solutions is at most

∑
(I0,A)∈C (I)

∑
B∈Bε

χI0,A,B(V).

Proof. Let x be a Pareto-optimal solution, let (I0, A) be the restricted (V, I)-certificate
of x, and letB = BV

(
x−u?(I0, A)

)
∈ Bε be the ε-box of x−u?(I0, A). Due to Lemma 7.5.4,

the call Witness(V, I0, A,B, u
?(I0, A)) returns vector x. Hence, χI0,A,B(V) = 1. It remains

to show that this assignment x 7→ (I0, A,B) given in the previous lines is injective.
Otherwise we would count the occurence of two distinct Pareto-optimal solutions x1 and x2

only once in the sum stated in Corollary 7.5.5.
Let x1 and x2 be distinct Pareto-optimal solutions and let (I

(1)
0 , A1) and (I

(2)
0 , A2)

be the restricted (V, I)-certificates of x1 and x2, respectively. If (I
(1)
0 , A1) 6= (I

(2)
0 , A2),

then x1 and x2 are mapped to distinct triplets. Otherwise, u?(I
(1)
0 , A1) = u?(I

(2)
0 , A2) and,

hence, BV

(
x1−u?(I(1)

0 , A1)
)
6= BV

(
x2−u?(I(2)

0 , A2)
)

because OK(V) is true and x1 6= x2.
Consequently, also in this case x1 and x2 are mapped to distinct triplets.

Corollary 7.5.5 immediately implies a bound on the expected number of Pareto-optimal
solutions.

Corollary 7.5.6. The expected number of Pareto-optimal solutions is bounded by

EV [PO(V)] ≤
∑

(I0,A)∈C (I)

∑
B∈Bε

PrV [EI0,A,B] + (K + 1)n ·PrV

[
OK(V)

]
,

where EI0,A,B denotes the event that the call Witness(V, I0, A,B, u
?(I0, A)) returns a vec-

tor x′ for which BV

(
x′ − u?(I0, A)

)
= B.

Proof. By applying Corollary 7.5.5, we obtain

EV [PO(V)]

= EV

[
PO(V)

∣∣OK(V)
]
·PrV [OK(V)] + EV

[
PO(V)

∣∣OK(V)
]
·PrV

[
OK(V)

]
≤ EV

 ∑
(I0,A)∈C (I)

∑
B∈Bε

χI0,A,B(V)

∣∣∣∣∣∣OK(V)

 ·PrV [OK(V)] + |S| ·PrV

[
OK(V)

]

7.5. SMOOTHED NUMBER OF PARETO-OPTIMAL SOLUTIONS 129

≤ EV

 ∑
(I0,A)∈C (I)

∑
B∈Bε

χI0,A,B(V)

+ (K + 1)n ·PrV

[
OK(V)

]
=

∑
(I0,A)∈C (I)

∑
B∈Bε

PrV [EI0,A,B] + (K + 1)n ·PrV

[
OK(V)

]
.

We will see that the first term of the sum in Corollary 7.5.6 can be bounded indepen-
dently of ε and that the limit of the second term tends to 0 for ε → 0. First of all, we
analyze the size of the restricted certificate space.

Lemma 7.5.7. The size of the restricted certificate space C (I) for I = () is bounded by
|C (I)| ≤ (K + 1)(d+1)2nd.

Proof. If OK(V) is true and if x is Pareto-optimal with respect to V , then exactly d indices
i1, . . . , id are created during the execution of the call Witness(V, x, I). The index i0 is
determined deterministicly depending on the indices i1, . . . , id. Matrix A of any restricted
I-certificate (I0, A) is a (d+ 1)× (d+ 1)-matrix with entries from {0, . . . ,K}. Hence, the
number of possible restricted I-certificates is bounded by (K + 1)(d+1)2nd.

Let us now fix an arbitrary I-certificate (I0, A0), a tuple J ⊇ I0, and an ε-box B ∈ Bε.
We want to analyze the probability PrV [EJ,A,B] where A = A0|J . By VJ and VJ we denote
the part of the matrix V 1...d that belongs to the indices i ∈ J and to the indices i /∈ J ,
respectively. We apply the principle of deferred decisions and assume that VJ is fixed as
well, i.e., we will only exploit the randomness of VJ .

As motivated above, the call Witness(V, J,A,B, u) can be executed without the full
knowledge of VJ . To formalize this, we introduce matrices Qk that describe the linear
combinations of V k

J that suffice to be known:

Qk =
[
p(d), . . . , p(k), p(k−2) − p(k−1), . . . , p(0) − p(k−1)

]
∈ {−K, . . . ,K}|J |×d (7.2)

for p(t) = p(t)(J,A, u) = a(t)−u|J where a(t) are the columns of matrix A =
[
a(d), . . . , a(0)

]
and t ∈ [d]0. Note, that the matrices Qk = Qk(J,A, u) depend on the pair (J,A) and on
the vector u.

Lemma 7.5.8. Let u ∈ {0, . . . ,K}n be an arbitrary shift vector and let U and W be
two realizations of V such that UJ = WJ and Uk

J · q = W k
J · q for any index k ∈ [d]

and any column q of the matrix Qk(J,A, u). Then the calls Witness(U, J,A,B, u) and
Witness(W,J,A,B, u) return the same result.

Lemma 7.5.8 states that for different realizations UJ and WJ of VJ the modified Witness
function outputs the same result. Actually, in the proof we will even see that the complete
execution of both calls is identical. This means, that solution x is already determined
if these realizations are known. However, there is still randomness left in the objective
values V 1x, . . . , V dx which allows us to bound the probability that x falls into box B (see
Corollary 7.5.11).

130 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Proof. We fix an index k ∈ [d] and analyze which information of V k
J is required for the

execution of the call Witness(V, J, A,B, u). For the execution of Line 4 we need to know
V k · (z − u) for solutions z ∈ SJ

(
a(t)
)

in all rounds t ≥ k. Since we can assume V k
J

to be

known, this means that V k
J ·
(
z|J − u|J

)
= V k

J ·
(
a(t) − u|J

)
= V k

J · p(t) must be revealed.

For t ≥ k vector p(t) is a column of Qk. The execution of Line 6 does not require further
information about V k

J : The only iteration where we might need information about V k
J is

iteration t = k − 1. However, as Ct ⊆ SJ
(
a(t)
)
, we obtain

x(t) = arg min{V t+1z : z ∈ Ct} = arg min{V t+1

J
z|J : z ∈ Ct}

because all solutions z ∈ Ct agree on the entries with indices i ∈ J . Since V t+1

J
= V k

J
is

known, x(t) can be determined without any further information. Note, that this does not
imply that V t+1x(t) is already specified.

It remains to consider Line 8. Only in round t = k− 1 we need information about V k.
In that round it suffices to know V k

J ·
(
z|J − x(t)|J

)
for any solution z ∈ ⋃t−1

s=0 SJ
(
a(s)
)
.

Hence, for z ∈ SJ
(
a(s)
)
, s ∈ [t− 1]0 = [k − 2]0, the linear combinations

V k
J ·
(
z|J − x(t)|J

)
= V k

J ·
((
a(s) − u|J

)
−
(
a(k−1) − u|J

))
= V k

J ·
(
p(s) − p(k−1)

)
must be revealed. For s ∈ [k − 2]0, vector p(s) − p(k−1) is a column of Qk.

As U and W agree on all necessary information, both calls return the same result.

We will now see why u? = u?(J,A) defined in Equation (7.1) is a good shift vector.

Lemma 7.5.9. Let Q =
[
p̂(d), . . . , p̂(0)

]
where p̂(t) = p(t)

(
J,A, u?(J,A)

)∣∣
I0

. Then

|Q| =

0 . . . 0 + ∗ . . . ∗
...

... 0
.

...
...

...
...

. . . + ∗
0 . . . 0 0 . . . 0 1

T

∈ {0, . . . ,K}(|I|+d+1)×(d+1) ,

where |Q| denotes the matrix Q′ for which q′ij = |qij|. Each ‘ ∗’-entry can be an arbitrary
value from {0, . . . ,K} independently of the other ‘ ∗’-entries. Similarly, each ‘ +’-entry
can be an arbitrary value from {1, . . . ,K} independently of the other ‘ +’-entries.

Proof. Let I0 = (j1, . . . , j|I|+d+1), i.e., i0 = j|I|+d+1. According to Lemma 7.5.3 and the

7.5. SMOOTHED NUMBER OF PARETO-OPTIMAL SOLUTIONS 131

construction of vector u? in Equation (7.1) we obtain

Q =

xj1 xj1
...

...
xj|I| xj|I|
xj|I|+1

xj|I|+1
. . . xj|I|+1

∗
...

...
. . . xj|I|+d xj|I|+d

∗ . . . ∗ xj|I|+d+1

−

xj1 . . . xj1
...

...
xj|I| . . . xj|I|
xj|I|+1

. . . xj|I|+1

...
...

xj|I|+d . . . xj|I|+d
|xj|I|+d+1

− 1| . . . |xj|I|+d+1
− 1|

.

The claim follows since |a − b| ≤ K, a − a 6= 0, and
∣∣a − |a − 1|

∣∣ = 1 for any a, b ∈
{0, . . . ,K}.
Lemma 7.5.10. For any k ∈ [d] the columns of the matrix Qk

(
J,A, u?(J,A)

)
and the

vector p(0) are linearly independent.

Proof. Let p̂(t) = p(t)
∣∣
I0

for any t ∈ [d]0. It suffices to show that the columns of the

submatrix Q̂k = Qk

∣∣
I0

and the vector p̂(0) are linearly independent. Consider the matrix

Q =
[
p̂(d), . . . , p̂(0)

]
. Due to Lemma 7.5.9 the last d+ 1 rows of Q form a lower triangular

matrix and the entries on the principal diagonal are from the set {−K, . . . ,K} \ {0}.
Consequently, the vectors p̂(t) are linearly independent. As these vectors are the same as
the columns of matrix Q̂1 plus vector p̂(0) (see Equation 7.2), the claim holds for k = 1.
Now let k ≥ 2. We consider an arbitrary linear combination of the columns of Q̂k and
the vector p̂(0) and show that it is zero if and only if all coefficients are zero.

0 =
d∑
t=k

λt · p̂(t) +
k−2∑
t=0

λt ·
(
p̂(t) − p̂(k−1)

)
+ µ · p̂(0)

=
d∑
t=k

λt · p̂(t) +
k−2∑
t=1

λt · p̂(t) −
(
k−2∑
t=0

λt

)
· p̂(k−1) + (λ0 + µ) · p̂(0) .

As the vectors p̂(t) are linearly independent, we first get λt = 0 for t ∈ [d]\{k − 1}, which
yields λ0 = 0 due to

∑k−2
t=0 λt = 0 and, finally, µ = 0 because of λ0 +µ = 0. This concludes

the proof.

Corollary 7.5.11. For an arbitrary restricted I-certificate (I0, A) the probability of the
event EI0,A,B is bounded by

PrV [EI0,A,B] ≤ (2γK)γ−dφγεd

for γ = d(d+ 1), and by
PrV [EI0,A,B] ≤ 2d(γK)γ−dφdεd

if all densities are quasiconcave.

132 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Proof. Event EI0,A,B occurs if the output of the call Witness(V, I0, A,B, u
?(I0, A)) is a

vector x′ for which BV

(
x′ − u?(I0, A)

)
= B. We apply the principle of deferred decisions

and assume that V |I0 is arbitrarily fixed. Now let us further assume that the linear
combinations of V k

I0
given by the columns of matrix Qk = Qk(I0, A, u

?(I0, A)) are known
for any k ∈ [d]. That is, for some fixed values we consider all realizations of V for which the
linear combinations of V k

I0
given by the columns of Qk equal these values. In accordance

with Lemma 7.5.8, vector x′ is therefore already determined, i.e., it is the same for all
realizations of V that are still under consideration.

The equality BV

(
x′ − u?(I0, A)

)
= B holds if and only if

V k ·
(
x′ − u?(I0, A)

)
= V k

I0
·
(
x′ − u?(I0, A)

)∣∣
I0

+ V k
I0
·
(
x′ − u?(I0, A)

)∣∣
I0
∈ (bk, bk + ε]

holds for any k ∈ [d], where b = (b1, . . . , bd) is the corner of B. Since(
x′ − u?(I0, A)

)∣∣
I0

= a(0) − u?(I0, A)|I0 = p(0)

for the vector p(0) = p(0)
(
I0, A, u

?(I0, A)
)
, this is equivalent to the event that

V k
I0
· p(0) ∈ (bk, bk + ε]− V k

I0
·
(
x′ − u?(I0, A)

)∣∣
I0

=: Ck ,

where Ck is an interval of length ε depending on x′ and hence on the linear combinations
of VI0 given by the matrices Qk. By C we denote the d-dimensional hypercube C =∏d

k=1Ck with side length ε defined by the intervals Ck.

For any k ∈ [d] let Q′k ∈ {−K, . . . ,K}|I0|×(d+1) be the matrix consisting of the columns
of Qk and the vector p(0). These matrices form the diagonal blocks of the matrix

Q′ =

Q′1 O . . . O
O

...
...

. O
O . . . O Q′d

 ∈ {−K, . . . ,K}d·(|I|+d+1)×d·(d+1) .

Lemma 7.5.10, applied for J = I0, implies that matrix Q′ has full rank. We permute the
columns ofQ′ to obtain a matrixQ whose last d columns belong to the last column of one of
the matrices Q′k. That is, the vectors (p(0), 0|I0|, . . . , 0|I0|), . . . , (0|I0|, . . . , 0|I0|, p(0)) form the
last d columns of Q′. Let the rows of Q be labeled by Qj1,1, . . . , Qjm,1, . . . , Qj1,d, . . . , Qjm,d

assuming that I0 = (j1, . . . , jm). We introduce random variables Xj,k = V k
j , j ∈ I0,

k ∈ [d], labeled in the same fashion as the rows of Q. Event EI0,A,B holds if and only if
the d linear combinations of the variables Xj,k given by the last d columns of Q fall into
the d-dimensional hypercube C depending on the linear combinations of the variables Xj,k

given by the remaining columns of Q. The claim follows by applying Theorem 7.9.1 for the
matrix QT and k = d and due to the fact that the number of columns of Q is γ = d·(d+1).
Hence, PrV [EI0,A,B] ≤ (2γK)γ−dφγεd in general and PrV [EI0,A,B] ≤ 2d(γK)γ−dφdεd if all
densities are quasiconcave.

7.6. HIGHER MOMENTS 133

Proof of Theorem 1.5.1. We begin the proof by showing that the OK-event is likely to
happen. For any index t ∈ [d] and any solutions x 6= y ∈ S the probability that

∣∣V tx −
V ty

∣∣ ≤ ε is bounded by 2φε. To see this, choose one index i ∈ [n] such that xi 6= yi and
apply the principle of deferred decisions by fixing all coefficients V t

j for j 6= i. Then the
value V t

i must fall into an interval of length 2ε/|xi − yi| ≤ 2ε. The probability for this
is bounded from above by 2εφ. A union bound over all indices t ∈ [d] and over all pairs

(x, y) ∈ S × S for which x 6= y yields PrV

[
OK(V)

]
≤ 2(K + 1)2ndφε.

For general densities we set s = (2γK)γ−dφγ, for quasiconcave densities we set s =
2d(γK)γ−dφd, where γ = d · (d+ 1). With I = () we obtain

EV [PO(V)] ≤
∑

(I0,A)∈C (I)

∑
B∈Bε

PrV [EI0,A,B] + (K + 1)n ·PrV

[
OK(V)

]
≤

∑
(I0,A)∈C (I)

∑
B∈Bε

s · εd + (K + 1)n · 2(K + 1)2ndφε

= |C (I)| · |Bε| · s · εd + 2(K + 1)3ndφε

≤ (K + 1)(d+1)2nd ·
(

2nK
ε

)d
· s · εd + 2(K + 1)3ndφε

= 2d(K + 1)(d+1)2Kdn2d · s+ 2(K + 1)3ndφε .

The first inequality is due to Corollary 7.5.6. The second inequality is due to Corol-
lary 7.5.11. The third inequality stems from Lemma 7.5.7. Since this bound is true for
arbitrarily small ε > 0, we obtain

EV [PO(V)] ≤ 2d(K + 1)(d+1)2Kdn2d · s .
Substituting s and γ by their definitions yields

EV [PO(V)] ≤ 2d(K + 1)(d+1)2Kdn2d · (2d(d+ 1)K)d(d+1)−dφd(d+1)

= (K + 1)2(d+1)2 ·O
(
n2dφd(d+1)

)
for general densities and

EV [PO(V)] ≤ 2d(K + 1)(d+1)2Kdn2d2d(d(d+ 1)K)d(d+1)−dφd

= (K + 1)2(d+1)2 ·O
(
n2dφd

)
for quasiconcave densities.

7.6 Higher Moments

As in Section 7.5, we consider the model without zero-preserving perturbations. The
basic idea behind our analysis of higher moments is the following: If the OK-event occurs,

134 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

then we can count the cth power of the number PO(V) of Pareto-optimal solutions by
counting all c-tuples (B1, . . . , Bc) of ε-boxes where each ε-boxBi contains a Pareto-optimal
solution xi. We can bound this value as follows: First, call Witness(V, x1, ()) to obtain a

vector x′1 and consider the index tuple I
(1)
0 that contains all indices created in this call and

one additional index. In the second step, call Witness(V, x2, I
(1)
0) to obtain a vector x′2 and

consider the tuple I
(2)
0 consisting of the indices of I

(1)
0 , the indices created in this call, and

one additional index. Now, call Witness(V, x3, I
(2)
0) and so on. For the call Witness(V, x, I)

to be well-defined, in Section 7.5 we assumed |I| ≤ n − (d + 1). Consequently, here we

have to ensure that |I(c−1)
0 | ≤ n − (d + 1), i.e., n ≥ c · (d + 1). We can assume this for

fixed integers c and d because all of our results are presented in O-notation.

If (x1, . . . , xc) is a tuple of Pareto-optimal solutions with V 1...dxi ∈ Bi for i ∈ [c], then
(x′1, . . . , x

′
c) = (x1, . . . , xc) due to Lemma 7.5.1. As in the analysis of the first moment, we

use the variant of the Witness function that uses certificates of the vectors x` instead of the
vectors itself to simulate the calls. Hence we can reuse several statements of Section 7.5.

Unless stated otherwise, let V be a realization such that OK(V) is true and fix arbitrary
solutions x1, . . . , xc ∈ S with V 1...dxi ∈ Bi for i ∈ [c] that are Pareto-optimal with respect
to V .

Definition 7.6.1. Let I
(0)
0 = () and let (I

(`)
0 , A

(`)
0) be the (V, I

(`−1)
0)-certificate of x` defined

in Definition 7.5.2, ` = 1, . . . , c. We call the pair (I, A) for I = I
(c)
0 , A = (A(1), . . . , A(c)),

and A(`) = A
(`)
0

∣∣
I
, the (restricted) V -certificate of (x1, . . . , xc). We call a pair (I ′0, A

′) a
c-certificate, if there is a realization V for which OK(V) is true and if there are Pareto-
optimal solutions x1, . . . , xc ∈ S such that (I ′0, A

′) is the V -certificate of (x1, . . . , xc).
By Cc we denote the set of all c-certificates.

Note, that I
(0)
0 ⊆ . . . ⊆ I

(c)
0 and |I(`)

0 | = |I(`−1)
0 | + d + 1 for ` ∈ [c]. We now consider

the functions χI,A, ~B(V), parameterized by an arbitrary c-certificate (I, A) ∈ Cc and a

vector ~B = (B1, . . . , Bc) ∈ Bc
ε of ε-boxes, which is defined as follows: χI,A, ~B(V) = 1

if for any ` ∈ [c] the call Witness(V, I, A(`), B`, u
?(I, A(`))) returns a solutions x′` such

that BV

(
x′` − u?(I, A(`))

)
= B`, and χI,A, ~B(V) = 0 otherwise. Recall that the vector

u? = u?(I, A(`)) is defined in Equation 7.1.

Corollary 7.6.2. Assume that OK(V) is true. Then the cth power of the number PO(V)
of Pareto-optimal solutions is at most

∑
(I,A)∈Cc

∑
~B∈Bcε

χI,A, ~B(V).

Proof. The cth power of the number PO(V) of Pareto-optimal solutions equals the number
of c-tuples (x1, . . . , xc) of Pareto-optimal solutions. Let (x1, . . . , xc) be such a c-tuple, let
(I, A) be the V -certificate of (x1, . . . , xc), and let B` = BV

(
x`− u?(I, A(`))

)
∈ Bε. Due to

Lemma 7.5.4, Witness(V, I, A(`), B`, u
?(I, A(`))) returns vector x` for any ` ∈ [c]. Hence,

7.6. HIGHER MOMENTS 135

χI,A, ~B(V) = 1 for ~B = (B1, . . . , Bc). As in the proof of Corollary 7.5.5 we have to show

that this assignment (x1, . . . , xc) 7→ (I, A, ~B) is injective.
Let (x1, . . . , xc) and (y1, . . . , yc) be distinct c-tuples of Pareto-optimal solutions, i.e.,

there is an index ` ∈ [c] such that x` 6= y`, and let (I1, A1) and (I2, A2) be their V -
certificates. If (I1, A1) 6= (I2, A2), then both tuples are maped to distinct triplets. Oth-

erwise, u?(I1, A
(`)
1) = u?(I2, A

(`)
2) and, thus, BV

(
x` − u?(I1, A

(`)
1)
)
6= BV

(
y` − u?(I2, A

(`)
2)
)

since OK(V) holds and x` 6= y`. Consequently, also in this case (x1, . . . , xc) and (y1, . . . , yc)
are mapped to distinct triplets.

Corollary 7.6.2 immediately implies a bound on the cth moment of the number of
Pareto-optimal solutions.

Corollary 7.6.3. The cth moment of the number of Pareto-optimal solutions is bounded
by

EV [POc(V)] ≤
∑

(I,A)∈Cc

∑
~B∈Bcε

PrV

[
EI,A, ~B

]
+ (K + 1)cn ·PrV

[
OK(V)

]
,

where EI,A, ~B denotes the event that χI,A, ~B(V) = 1.

We omit the proof since it is exactly the same as the one of Corollary 7.5.6.

Lemma 7.6.4. The size of the certificate space is bounded by |Cc| ≤ (K + 1)c
2(d+1)2ncd.

Proof. Let (I, A) be an arbitrary c-certificate. Each matrix A(`) is a |I| × (d+ 1)-matrix

with entries from {0, . . . ,K}. Tuple I can be written as I = (i
(1)
d , . . . , i

(1)
0 , . . . , i

(c)
d , . . . , i

(c)
0),

created by c successive calls of the Witness function, where the indices i
(`)
0 are chosen

deterministically in Definition 7.5.2. Since |I| = c · (d+ 1) the claim follows.

Corollary 7.6.5. For an arbitrary c-certificate (I, A) and an arbitrary vector ~B ∈ Bc
ε of

ε-boxes the probability of the event EI,A, ~B is bounded by

PrV

[
EI,A, ~B

]
≤ (2γK)γ−cdφγεcd

for γ = cd(d+ 1), and by

PrV

[
EI,A, ~B

]
≤ 2cd(γK)γ−cdφcdεcd

if all densities are quasiconcave.

Proof. For indices k ∈ [d] and ` ∈ [c] consider the matrices Qk

(
I, A(`), u?`

)
for u?` =

u?(I, A(`)) defined in Equation (7.2). In accordance with Lemma 7.5.8, the output of the
call Witness(V, I, A(`), B`, u

?
`) is determined if VI and the linear combinations V k

I · q for

any index k ∈ [d] and any column q of the matrix Q
(`)
k = Qk(I, A

(`), u?`) are given. With

136 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

the same argument as in the proof of Corollary 7.6.5 event EI,A, ~B occurs if and only if VI ·[
p(`,1), . . . , p(`,d)

]
falls into some d-dimensional hypercube C` with side length ε depending

on the linear combinations VI ·Q(`)
k . In this notation, p(`,t) is short for p(t)(I, A(`), u?`).

Now, consider the matrix

Q′k =
[
Q

(1)
k , p(1,k), . . . , Q

(c)
k , p

(c,k)
]
∈ {−K, . . . ,K}|I|×c·(d+1) .

Note, that |I| = c · (d + 1) = γ/d. Due to Lemma 7.5.9, Q′k is a lower block triangular

matrix, due to Lemma 7.5.10 the columns of
[
Q

(`)
k , p

(`,k)
]

are linearly independent. Hence,
matrix Q′k is an invertible matrix and the same holds for the block diagonal matrix

Q′ =

Q′1 O . . . O
O

...
...

. O
O . . . O Q′d

 ∈ {−K, . . . ,K}γ×γ .
We permute the columns of Q′ to obtain a matrix Q where the last cd columns belong to
the columns p(1,1), . . . , p(1,d), . . . , p(c,1), . . . , p(c,d). We assume the rows of Q to be labeled
by Qj1,1, . . . , Qjm,1, . . . , Qj1,d, . . . , Qjm,d where I = (j1, . . . , jm) and introduce random vari-
ables Xj,k = V k

j , j ∈ I, k ∈ [d], indexed the same way as the rows of Q. Event EI,A, ~B holds
if and only if the cd linear combinations of the variables Xj,k given by the last cd columns
of Q fall into the cd-dimensional hypercube C =

∏c
`=1 C` with side length ε depending on

the linear combinations of the variables Xj,k given by the remaining columns of Q. The
claim follows by applying Theorem 7.9.1 for the matrix QT and k = cd and due to the
fact that the number of columns of Q is γ.

Proof of Theorem 1.5.3. In the proof of Theorem 1.5.1 we showed that the probability
that the OK-event does not hold is bounded by 2(K+ 1)2ndφε. For γ = cd(d+ 1), we set
s = (2γK)γ−cdφγ for general densities and s = 2cd(γK)γ−cdφcd in the case of quasiconcave
density functions. Then we obtain

EV [POc(V)] ≤
∑

(I,A)∈Cc

∑
~B∈Bcε

PrV

[
EI,A, ~B

]
+ (K + 1)cn ·PrV

[
OK(V)

]
≤

∑
(I,A)∈Cc

∑
~B∈Bcε

s · εcd + (K + 1)cn · 2(K + 1)2ndφε

= |Cc| · |Bc
ε| · s · εcd + 2(K + 1)(c+2)ndφε

≤ (K + 1)c
2(d+1)2ncd ·

(
2nK
ε

)cd
· s · εcd + 2(K + 1)(c+2)ndφε

= 2cd(K + 1)c
2(d+1)2Kcdn2cd · s+ 2(K + 1)(c+2)ndφε .

7.6. HIGHER MOMENTS 137

The first inequality is due to Corollary 7.6.3. The second inequality is due to Corol-
lary 7.6.5. The third inequality stems from Lemma 7.6.4. Since this bound is true for
arbitrarily small ε > 0, we obtain

EV [POc(V)] ≤ 2cd(K + 1)c
2(d+1)2Kcdn2cd · s .

Substituting s and γ by their definitions yields

EV [POc(V)] ≤ 2cd(K + 1)c
2(d+1)2Kcdn2cd · (2cd(d+ 1)K)cd(d+1)−cdφcd(d+1)

= (K + 1)(c+1)2(d+1)2 ·O
(
(n2dφd(d+1))c

)
for general densities and

EV [POc(V)] ≤ 2cd(K + 1)c
2(d+1)2Kcdn2cd · 2cd(cd(d+ 1)K)cd(d+1)−cdφcd

= (K + 1)(c+1)2(d+1)2 ·O
(
(n2dφd)c

)
for quasiconcave densities.

The proof of Theorem 1.5.3 yields that

EV [POc(V)] ≤ sc := 2c(d+1)2(cd(d+ 1))cd
2

(K + 1)(c+1)2(d+1)2n2cdφcβ

for β = d(d + 1) in general and β = d for quasiconcave densities. With the following
Corollary we bound the probability that PO(V) exceeds a certain multiple of s1. We ob-
tain a significantly better concentration bound than the one we would obtain by applying
Markov’s inequality for the first moment.

Corollary 7.6.6. The probability that the number of Pareto-optimal solutions is at least
λ · s1 for some λ ≥ 1 is bounded by

PrV [PO(V) ≥ λ · s1] ≤
(

1

λ

) 1
2
·
⌊

logK+1 λ

4(d+1)2

⌋
.

Proof. Let c? be the real for which (K+1)2c?(d+1)2 = λ1/2, i.e., c? = (logK+1 λ)/(4(d+1)2).
Observing that c ≤ 2c ≤ (K + 1)c for any c ∈ R and setting c = bc?c yields

PrV [PO(V) ≥ λ · s1] = PrV [POc(V) ≥ λc · sc1]

= PrV

[
POc(V) ≥ λc · sc1

EV [POc(V)]
· EV [POc(V)]

]
≤ EV [POc(V)]

λc · sc1
≤ sc
λc · sc1

=
2c(d+1)2(cd(d+ 1))cd

2
(K + 1)(c+1)2(d+1)2n2cdφcβ

λc · 2c(d+1)2(d(d+ 1))cd2(K + 1)4c(d+1)2n2cdφcβ

138 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

=
ccd

2
(K + 1)(c−1)2(d+1)2

λc
≤
(
c(d+1)2(K + 1)c(d+1)2

λ

)c

≤
(

(K + 1)c(d+1)2(K + 1)c(d+1)2

λ

)c

≤
(

(K + 1)2c?(d+1)2

λ

)c

=

(
1

λ

)c/2
=

(
1

λ

) 1
2
·
⌊

logK+1 λ

4(d+1)2

⌋
.

The first inequality is Markov’s inequality (see Theorem 3.1). The second inequality only
holds if c ≥ 1. However, for c = 0 the inequality PrV [PO(V) ≥ λ · s1] ≤ λ−c/2 is trivially
true.

7.7 Zero-Preserving Perturbations

In this section we consider the model with zero-preserving perturbations. To prove The-
orem 1.5.4 we will first show that we can concentrate on a special class of instances.

Lemma 7.7.1. Without loss of generality in each objective function except for the adver-
sarial one there are more than (d+1)3 perturbed coefficients, i.e., coefficients that are not
deterministically set to zero.

Proof. For an index k ∈ [d] let Pk be the tuple of indices i for which V k
i is a perturbed

coefficient, i.e., a coefficient which is not set to zero deterministically. Let K be the tuple
of indices k for which |Pk| ≤ (d + 1)3, let P =

⋃
k∈K Pk, and consider the decomposition

of S into subsets of solutions Sv = {x ∈ S : x|P = v}, v ∈ {0, . . . ,K}|P |. Let x ∈ Sv be an
arbitrary solution. If x is Pareto-optimal with respect to S and {V 1, . . . , V d+1}, then x is
also Pareto-optimal with respect to Sv and {V k : k ∈ [d+1]\K} due to Lemma 7.4.4. As
all remaining objective functions V k, k ∈ [d+ 1] \K, have more than (d+ 1)3 perturbed
coefficients, the instance with these objective functions and Sv as set of feasible solutions
has the desired form and we can apply Theorem 1.5.4 for each of these instances. Since
we now have (K + 1)|P | ≤ (K + 1)|K|·(d+1)3 instances, each having d− |K| linear and one
adversarial objective, we can bound the number of Pareto-optimal solutions by

(K + 1)|K|·(d+1)3 · c(d− |K|) · (K + 1)(d−|K|+1)5 · nα(d−|K|) · φβ(d−|K|)

from above, where c is the factor and α and β are the exponents of n and φ in the bound
stated in Theorem 1.5.4. These functions depend on the number of linear objectives and
whether the densities are quasiconcave or not. Since they are monotonically increasing,
we can bound the number of Pareto-optima simply by

(K + 1)|K|·(d+1)3 · c(d) · (K + 1)(d−|K|+1)5 · nα(d) · φβ(d) .

7.7. ZERO-PRESERVING PERTURBATIONS 139

Hence, it suffices to show that (K+1)|K|·(d+1)3+(d−|K|+1)5 ≤ (K+1)(d+1)5 . This is equivalent
to showing that b · a3 + (a− b)5 ≤ a5 for b = |K| and a = d+ 1. Note, that 0 ≤ b = |K| ≤
d = a− 1. By a chain of equivalences we obtain

b · a3 + (a− b)5 ≤ a5 ⇐⇒ a3 ≤ 1

b
· (a5 − (a5 − 5a4b+ 10a3b2 − 10a2b3 + 5ab4 − b5)

⇐⇒ a3 ≤ 5a4 − 10a3b+ 10a2b2 − 5ab3 + b4

= 5a · (a3 − 2a2b+ 2ab2 − b3) + b4

= 5a(a− b) · (a2 − ab+ b2) + b4 =: f(a, b) .

Applying the inequality ab ≤ (a+ b)2/4 yields

f(a, b) ≥ 5a(a− b) ·
(
a2 − (a+ b)2

4
+ b2

)
≥ 5a ·

(
a2

2
+

(a− b)2

4
+
b2

2

)
≥ 5

2
a3 ≥ a3 .

This concludes the proof.

Lemma 7.7.2. Without loss of generality for every i ∈ [n] exactly one of the coefficients
V 1
i , . . . , V

d
i is perturbed, whereas the others are deterministically set to zero.

Proof. We first show how to decrease the number of indices i for which V 1
i , . . . , V

d
i is

perturbed to at most one. For this, let S ′ = {(x, x, . . . , x) : x ∈ S} ⊆ {0, . . . ,K}dn be the
set of feasible solutions that contains for every x ∈ S the solution xd ∈ {0, . . . ,K}dn that
consists of d copies of x. For k ∈ [d] we define a linear objective function W k : S ′ → R
in which all coefficients W k

i with i /∈ Ik := {(k − 1)n+ 1, . . . , kn} are deterministically
set to zero. The coefficients W k

kn−n+1, . . . ,W
k
kn are chosen as the coefficients V k

1 , . . . , V
k
n ,

i.e., either randomly according to a density fki or zero deterministically. The objective
functionW d+1 maps every solution xd ∈ S ′ to V d+1x. The instance consisting of S ′ and the
objective functions W 1, . . . ,W d+1 has the desired property that every variable appears
in at most one of the objective functions W 1, . . . ,W d and it has the same smoothed
number of Pareto-optimal solutions as the instance consisting of S and the objective
functions V 1, . . . , V d+1. For every i ∈ [dn] for which none of the coefficients W 1

i , . . . ,W
d
i

is perturbed we can eliminate the corresponding variable from S ′.
This shows that any φ-smooth instance with S ⊆ {0, . . . ,K}n can be transformed into

another φ-smooth instance with S ⊆ {0, . . . ,K}` with ` ≤ dn in which every variable
appears in exactly one objective function and that has the same smoothed number of
Pareto-optimal solutions. As the bound proven in Theorem 1.5.4 depends polynomially
on the number of variables, we lose only a constant factor (with respect to n, φ, and K)
by going from S ⊆ {0, . . . ,K}n to S ′ ⊆ {0, . . . ,K}dn. This constant is hidden in the
O-notation.

In the remainder of this chapter we focus on instances having the structure described
in Lemma 7.7.1 and Lemma 7.7.2. Then (P1, . . . , Pd) is a partition of [n], where Pt denotes
the tuple of indices i for which V t

i is perturbed.

140 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

We consider the variant of the Witness function given as Algorithm 7, referred to as
the Witness0 function. The Witness0 function gets as parameters besides the usual V , x,
and I, a set K ⊆ [d] of indices of objective functions and a call number r ∈ N. In a call
of the Witness0 function only the adversarial objective function V d+1 and the objective
functions V t with t ∈ K are considered. The set of solutions is restricted to solutions that
agree with x in all positions Pk with k /∈ K. Additionally, as in the Witness function, only
solutions are considered that agree with x in all positions i ∈ I. By the right choice of I,
we can avoid choosing an index multiple times in different calls of the Witness0 function.
The parameter r simply corresponds to the number of the current call of the Witness0
function. The Witness0 function always returns some subset of S.

In the following we use the term round to denote an iteration of the for-loop starting
in Line 5. Now let us give some remarks about the Witness0 function. As a convention,
we set

⋂
k∈() SPk(x) = S (cf. Line 3). This is only important in the case where K = [d],

i.e., in the first call.

As in the Witness function, if round t = 0 is reached in a certain call r (this does not

have to be the case), then we obtain C(r)
0 = R(r)

1 since V k1...ktz < V k1...ktx (see Line 6) is
no restriction for t = 0. For the definition of x(r,t) in Line 8, ties are broken by taking
the lexicographically first solution. Though we did the same in the Witness function, it
is much more important here. In the model without zero-preserving perturbations the
functions V 1, . . . , V d are injective with probability 1. If this is the case, then no ties have
to be broken. In the model with zero-preserving perturbations, the functions V 1, . . . , V d

can be non-injective with probability 1: If there are two distinct solutions x, y ∈ S for
which x|Pk = y|Pk , then V kx = V ky.

The index rk defined in Line 13 is the number of the last call in which the objective
function V k has been considered. The index tr defined in Line 22 is the number of the
round in call number r of Witness0 in which the next recursive call of Witness0 was made.
We will see that, if the last call of the Witness0 function is the call with number r?+1, then
rk ∈ [r?] for each k ∈ [d] and there is at least one index k ∈ [d] for which rk = r?, i.e., the
objective function V k has been considered until the end. Furthermore, the indices tr are
defined for r = 1, . . . , r?. For the simulation of the Witness function information about the
solutions x(t) and the indices it are required. For the simulation of the Witness0 function
we additionally need the values rk and tr to know when to make a new recursive call (in
round t = tr in the call with number r) and which objectives to consider (objective V k

will be considered in the call with number r if and only if r ≤ rk).

In Line 15 it is always possible to find an index i ∈ Pk on which the current vector
x(r,t) and x disagree because this line is only reached if k ∈ Kneq, i.e., if x(r,t)|Pk 6= x|Pk . In
order for Line 27 to be feasible, we have to guarantee that Pk \ I 6= (). This follows since
we assumed |Pk| > (d+ 1)3 > d(d+ 1) in accordance with Lemma 7.7.1 and because there
are at most d calls of Witness0 with non-empty K with at most d+ 1 rounds each, and in
each round at most one index from Pk is added to I. Note, that it would be more precise

7.7. ZERO-PRESERVING PERTURBATIONS 141

Algorithm 7 Witness0(V, x,K, r, I)

1: Let K be of the form K = (k1, . . . , kdr).
2: Set kdr+1 = d+ 1.

3: Set R(r)
dr+1 = SI(x) ∩⋂k∈[d]\K SPk(x).

4: if dr = 0 then return R(r)
dr+1

5: for t = dr, dr − 1, . . . , 0 do
6: Set C(r)

t = {z ∈ R(r)
t+1 : V k1...ktz < V k1...ktx}.

7: if C(r)
t 6= ∅ then

8: Set x(r,t) = arg min{V kt+1z : z ∈ C(r)
t }.

9: Let Keq ⊆ K be the tuple of indices k for which x(r,t)|Pk = x|Pk .
10: Set Kneq = K \Keq.
11: for k ∈ K do
12: if k ∈ Keq then
13: Set rk = r.
14: else
15: Set ik = min{i ∈ Pk : x

(r,t)
i 6= xi}.

16: I 7→I ∪ (ik)
17: end if
18: end for
19: if Keq = () then

20: Set R(r)
t = {z ∈ R(r)

t+1 : V kt+1z < V kt+1x(r,t)} ∩ SI(x).
21: else
22: Set tr = t.
23: return Witness0(V, x,Kneq, r + 1, I)
24: end if
25: else
26: for k ∈ K do
27: Set ik = min(Pk \ I).
28: I 7→I ∪ (ik).
29: end for

30: Set x
(r,t)
i =

{
min({0, . . . ,K} \ {xi}) if i ∈ {ik1 , . . . , ikdr} ,
xi otherwise .

31: Set R(r)
t = R(r)

t+1 ∩ SI(x).
32: end if
33: end for
34: return ∅

142 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

to introduce the notation i
(r,t)
k rather than ik (cf. Line 15 and Line 27). Furthermore, we

could also write I
(r,t)
k instead of I. For the sake of readability we decided to drop these

additional indices and refer to index ik and tuple I of round t of call r in our proofs.

Before we analyze the Witness0 function, let us discuss similarities and differences to
the Witness function. The initial call Witness0(V, x, [d], 1, I) is very similar to the initial
call Witness(V, x, I). All objectives V 1, . . . , V d+1 are considered. Furthermore, d1 = d

and R(1)
d+1 = SI(x). Line 4 can be ignored in this call since d1 = d ≥ 1. Also the loop

of the Witness0 function is very similar to the loop of the Witness function. The sets C(r)
t

and R(r)
t and the solution x(r,t) are defined the same way as the sets Ct and Rt and the

solution x(t) in the Witness function.

However, there are two main differences to the Witness function in the body of the
loop. In the model with zero-preserving perturbations it is possible that V kx(r,t) = V kx
for some of the indices k. This happens, if x(r,t)|Pk = x|Pk (otherwise, it happens with
probability 0) and is a fundamental issue. If we would proceed running the loop as we
do it in the Witness function, then we might lose the crucial property that the function
returns {x} if x is Pareto-optimal. The tuple Keq contains the problematic indices k
for which x(r,t)|Pk = x|Pk . If Keq = (), then we proceed more or less as we did in the
Witness function (see Line 15 and Line 20). As discussed above, the case Keq 6= () has
to be treated differently. In this case we make use of Lemma 7.4.4 which implies that,
if x is Pareto-optimal, then it is also Pareto-optimal with respect to

⋂
k∈Keq

SPk(x) and

{V k : k ∈ Kneq ∪ (d+ 1)} (cf. Line 23 of the current call and Line 3 of the next call).

The second difference due to another issue with zero-preserving perturbations can be
sketched as follows. In each round t of the Witness function one index it is chosen. Since in
the model without zero-preserving perturbations all coefficients are perturbed, we can then
exploit the randomness in the coefficients V 1

it , . . . , V
d
it . In the model with zero-preserving

perturbations under the assumption given by Lemma 7.7.2, for each index i ∈ [n] exactly
one of the coefficients V 1

i , . . . , V
d
i is perturbed while the others are zero. Hence, we chose

one index ik ∈ Pk for each objective V k to ensure that we have one perturbed coefficient
V k
ik

per objective. These indices ik are chosen only for k ∈ Kneq (see Line 15). This is due

to the fact that for our analysis to work we need the additional property that x
(r,t)
ik
6= xik

which is impossible for k ∈ Keq by the definition of Keq and the requirement ik ∈ Pk.
However, as from now on we do not consider the objectives V k for k ∈ Keq anymore, we
do not have to choose indices ik for k ∈ Keq.

In the remainder of this section we only consider the case that x is Pareto-optimal.
Unless stated otherwise, we consider the case that the OK0-event occurs. This means that
|V k · (y−z)| ≥ ε for every k ∈ [d] and for any two solutions y, z ∈ S for which y|Pk 6= z|Pk .
We will later see that the OK0-event occurs with sufficiently high probability.

Lemma 7.7.3. The call Witness0(V, x, [d], 1, ()) returns the set {x(r?,tr?)} = {x}, where
r? = max {r1, . . . , rd}.

7.7. ZERO-PRESERVING PERTURBATIONS 143

Lemma 7.7.3 was also stated in [BR12] (Lemma 25) but Claim 1 of the proof was not
correct. Here, we rely on the concept of weak Pareto-optimality (see Definition 7.2.1) and
its properties (Lemma 7.4.2) since we cannot guarantee x to be Pareto-optimal in any
round. However, the Pareto-optimality will be given at the beginning of any call to the
Witness0 function.

Proof. It suffices to show the following claim.

Claim 7. Consider an arbitrary call Witness0(V, x,K, r, I). If K 6= (), then this call
results in another call to the Witness0 function (and does not terminate in Line 34).

If Claim 7 is true, then there will be recursive calls until the call Witness0(V, x, (), r, I).

This call immediately returns the set R(r)
dr+1 in Line 4. Since [d] \ () = [d], we obtain

R(r)
dr+1 = SI(x) ∩⋂k∈[d] SPk(x) = S[n](x) = {x}. Now consider the call with number r − 1

and the round tr−1 in this call in which Witness0(V, x, (), r, I) has been called. In this
round, Keq 6= () since Line 23 is reached. Hence, there is at least one index k ∈ Keq,
and for these indices, rk is set to r in Line 13. Now, as the next call is of the form
Witness0(V, x, (), r, I), this implies Kneq = (), i.e., all values rk for k ∈ [d] have been set
by now and, thus, r? = max{r1, . . . , rd} = r − 1, i.e., the number of the call we currently
consider.

Consider the solution x(r?,tr?) defined in Line 8 and let K be the tuple of call r?.
Since Kneq = () this implies Keq = K. Hence, x(r?,tr?)|Pk = x|Pk for any k ∈ K by

definition of Keq in Line 9. On the other hand, x(r?,tr?) ∈ C(r?)
tr?
⊆ R(r?)

tr?+1 ⊆ R(r?)
dr?+1 ⊆⋂

k∈[d]\K SPk(x). The first inclusion is due to the definition of C(r?)
tr?

in Line 6. The second

inclusion is due to the observation that always R(r)
t+1 ⊆ R(r)

t+2 ⊆ . . . ⊆ R(r)
dr+1 due to

the construction of the sets R(r)
t in Line 20 and Line 31. The construction of R(r?)

dr?+1

in Line 3 yields the third inclusion. Hence, x(r?,tr?)|Pk = x|Pk for any k ∈ [d] \ K, and
according to the previous observations, even for all k ∈ K. Consequently, x(r?,tr?) = x.
Summarizing all these results, we obtain that the call Witness0(V, x, [d], 1, ()) ends up in
the call Witness0(V, x, (), r, I) for some index tuple I which immediately returns the set

R(r)
dr+1 = {x} = {x(r?,tr?)}.

It remains to prove Claim 7. For this, consider an arbitrary call Witness0(V, x,K, r, I)
where K 6= (). First we show the following claim by induction on t.

Claim 8. In each round t that is reached, x is weakly Pareto-optimal with respect to R(r)
t+1

and {V k1 , . . . , V kt+1}.
To begin with, consider t = dr. As x is Pareto-optimal with respect to S and

{V 1, . . . , V d+1}, x is also Pareto-optimal with respect to
⋂
k∈[d]\K SPk(x) and {V k : k ∈

K ∪ (d + 1)} = {V k1 , . . . , V kdr+1} due to Lemma 7.4.4. Consequently, x is also Pareto-

optimal with respect to R(r)
dr+1 = SI(x) ∩ ⋂k∈[d]\K SPk(x) and {V k1 , . . . , V kdr+1} due to

144 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Proposition 7.4.1. Note, that this property is even stronger than weak Pareto-optimality.
We will need this strong version in the induction step when t = dr − 1.

Now consider a round t ≤ dr − 1 that is reached and assume that the induction
hypothesis is true for t + 1. We consider round t + 1 where R(r)

t+1 is defined, and distin-

guish between two cases. If C(r)
t+1 = ∅, then x is weakly Pareto-optimal with respect to

R(r)
t+1 = R(r)

t+2∩SI(x) and {V k1 , . . . , V kt+1} due to the induction hypothesis, Lemma 7.4.2,

Claim (I), and Proposition 7.4.1. Let us consider the more interesting case C(r)
t+1 6= ∅.

Since round t is reached, there is no call of the Witness0 function in round t + 1, i.e.,
Keq = () in round t + 1. The induction hypothesis and Lemma 7.4.2, Claim (II) yield
V kt+2x ≤ V kt+2x(r,t+1).

We will show that even V kt+2x < V kt+2x(r,t+1). For this, we assume for the contrary
that V kt+2x = V kt+2x(r,t+1) and distinguish between the cases t = dr − 1 and t < dr − 1.
If t = dr − 1, then we obtain V kdr+1x = V kdr+1x(r,dr) and V k1...kdrx(r,dr) < V k1...kdrx since
x(r,dr) ∈ C(r)

dr
. Hence, x(r,dr) ∈ R(r)

dr+1 dominates x with respect to {V k1 , . . . , V kdr+1} which

contradicts the fact that x is Pareto-optimal with respect to R(r)
dr+1 and {V k1 , . . . , V kdr+1}.

If t < dr − 1, then V kt+2x = V kt+2x(r,t+1) implies x|Pkt+2
= x(r,t)|Pkt+2

as we assume that
the OK0-event occurs. Consequently, kt+2 ∈ Keq in round t + 1, which contradicts the
previous observation that Keq = () in that round. This concludes the proof of Claim 8.

To finish the proof of Claim 7, let us assume that there is no further call to the
Witness0 function until round 0, i.e., we reach round 0. In accordance with Claim 8, x
is weakly Pareto-optimal with respect to R(r)

1 and {V k1}. Now let us consider round

t = 0. We obtain C(r)
0 = R(r)

1 since there are no restrictions in this round. Consequently,

C(r)
0 6= ∅ because x ∈ R(r)

1 . The solution x(r,0) minimizes V k1 among all solutions from C(r)
0 .

On the other hand, x(r,0) cannot dominate x strongly. Hence, V k1x(r,0) = V k1x, i.e.,
x(r,0)|Pk1 = x|Pk1 as we assumed that the OK0-event occurs. Therefore, k1 ∈ Keq, i.e.,
Keq 6= (), and thus, the Witness0 function is called again in Line 23.

Like for the simple Witness function, we show that it is enough to know some infor-
mation about the run of the Witness0 function to reconstruct the solution x. As before,
we call this data the certificate of x.

Definition 7.7.4. Let r1, . . . , rd and t1, . . . , tr? for r? = max{r1, . . . , rd} be the indices and
x(r,t) be the vectors constructed during the execution of the call Witness0(V, x, [d], 1, ()).
Furthermore, consider the tuple I at the moment when the last call to the Witness0
function terminates. The pair (I?, A) for I? = I ∪

(
i?1, . . . , i

?
d

)
, i?k = min(Pk \ I), and

A =
[
x(1,d1), . . . , x(1,t1), . . . , x(r?,dr?), . . . , x(r?,tr?)

]∣∣
I?

, is called the V -certificate of x. We

label the columns of A by a(r,t). Moreover, we call a pair (I ′, A′) a certificate if there is
some realization V such that OK0(V) is true and if there exists a Pareto-optimal solution
x ∈ S such that (I ′, A′) is the V -certificate of x. By C we denote the set of all certificates.

7.7. ZERO-PRESERVING PERTURBATIONS 145

We assume that the indices rk and tr (and hence also the indices dr) are implicitly
encoded in a given certificate. Later we will take these indices into consideration again
when we count the number of possible certificates.

Lemma 7.7.5. Let V be a realization for which OK0(V) is true and let (I?, A) be a V -
certificate of some Pareto-optimal solution x. Moreover, let the matrix A be of the form
A =

[
a(1,d1), . . . , a(1,t1), . . . , a(r?,dr?), . . . , a(r?,tr?)

]
. For a fixed index k ∈ [d] consider the

matrix M =
[
a(1,d1), . . . , a(1,t1), . . . , a(rk,drk), . . . , a(rk,trk)

]∣∣
J

for J = I? ∩ Pk =: (j1, . . . , jm).
Then M is of the form

M =

xj1 xj1 . . . xj1

∗
...

...
. . . xjm−1 xjm−1

∗ . . . ∗ xjm

 ∈ {0, . . . ,K}|J |×|J | ,
where each ‘ ∗’-entry can be an arbitrary value from {0, . . . ,K} independently of the other
‘ ∗’-entries and where z for z ∈ {0, . . . ,K} can be an arbitrary value from {0, . . . ,K}\{z}.

Proof. Consider the call Witness0(V, x, [d], 1, ()) and the resulting subsequent recursive
calls Witness0(V, x,K, r, I). By definition of rk we have r ≤ rk ⇐⇒ k ∈ K (see Line 13,
Line 10, and Line 23). In each call where r ≤ rk one vector x(r,t) is constructed in each
round t. Also, in each round except for the last round trk of the rth

k call, when k ∈ Keq

for the first and the last time, one index i ∈ Pk is chosen and added to I. Since J consists
of the chosen indices i ∈ Pk and the additional index i?k, matrix M is a square matrix.

We first consider the last column of M . As x(rk,trk) is the last vector constructed
before k is removed from K, index k must be an element of Keq in round trk of call rk,
i.e., x(rk,trk)

∣∣
Pk

= x|Pk . Hence, the last column of M has the claimed form because J ⊆ Pk.

Now consider the remaining columns of M . Due to the construction of the set R(r)
t in

Line 3, Line 20, and Line 31, all vectors z ∈ R(r)
t agree with x in the previously chosen

indices i. As in the case C(r)
t 6= ∅ vector x(r,t) is an element of C(r)

t ⊆ R(r)
t+1 and in the

case C(r)
t = ∅ vector x(r,t) is constructed appropriately, the upper triangle of M , excluding

the principal diagonal, has the claimed form. The form of the principal diagonal follows
from the choice of index i ∈ Pk: In Line 15 we chose i such that x

(r,t)
i 6= xi, in Line 30 we

construct x(r,t) explicitely such that x
(r,t)
i 6= xi.

Like in the model without zero-preserving perturbations we now consider a variant of
the Witness0 function given as Algorithm 8 which gets as additional parameters the V -
certificate of x, a shift vector u ∈ {0, . . . ,K}n, the ε-box B = BV (x − u), and a set S ′
of solutions that are still under consideration. Recall, that at the beginning of any call
to the original Witness0 function the set of solutions that have still to be considered is
restricted to a subset of

⋂
k∈[d]\K SPk(x) (see Line 3). The huge amount of information

146 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

that is necessary to restrict the current set of solutions that extemely is not given by the
V -certificate of x. Thus, we keep track of this set of remaining solutions by passing it as
a parameter. We will see how to update this set without too much knowledge about x
(cf. Line 13 of Algorithm 8).

Algorithm 8 Witness0(V,K, r, I
?, A,S ′, B, u)

1: Let K be of the form K = (k1, . . . , kdr).
2: Set kdr+1 = d+ 1.
3: Let b be the corner of B.
4: if dr = 0 then return S ′
5: Set R(r)

dr+1 = S ′ ∩⋃dr
s=tr
SI?
(
a(r,s)

)
.

6: for t = dr, dr − 1, . . . , 0 do
7: Set C(r)

t = {z ∈ R(r)
t+1 : V k1...kt · (z − u) ≤ b|k1...kt} ∩ SI?

(
a(r,t)

)
.

8: if C(r)
t 6= ∅ then

9: Set x(r,t) = arg min{V kt+1z : z ∈ C(r)
t }.

10: if t = tr then
11: Let Keq ⊆ K be the tuple of indices k for which rk = r.
12: Set Kneq = K \Keq.
13: return Witness0

(
V,Kneq, r + 1, I?, A,S ′ ∩⋂k∈Keq

SPk
(
x(r,t)

)
, B, u

)
14: else
15: Set R(r)

t = {z ∈ R(r)
t+1 : V kt+1z < V kt+1x(r,t)} ∩⋃t−1

s=tr
SI?
(
a(r,s)

)
.

16: end if
17: else
18: Set x(r,t) = (⊥, . . . ,⊥).

19: Set R(r)
t = R(r)

t+1 ∩
⋃t−1
s=tr
SI?
(
a(r,s)

)
.

20: end if
21: end for
22: return ∅

It is important to break ties in Line 9 the same way as we did in the original Witness0
function, i.e., we take the lexicographically first solution.

Lemma 7.7.6. Let (I?, A) be the V -certificate of x, let u ∈ {0, . . . ,K}n be an arbitrary
vector, and let B = BV (x−u). Then the call Witness0(V, [d], 1, I?, A,S, B, u) returns {x}.

Before we give a formal proof of Lemma 7.7.6 we try to give some intuition for it. As
for the simple variant of the Witness function we restrict the set of solutions to vectors that
look like the vectors we want to reconstruct in the next rounds of the current call, i.e., we
intersect the current set with the set

⋃t−1
s=tr
SI?
(
a(r,s)

)
in round t. That way we only deal

with subsets of the original sets, but we do not lose the vectors we want to reconstruct.
In order to reconstruct the vectors, we need more information than in the simple variant:

7.7. ZERO-PRESERVING PERTURBATIONS 147

we need to know in which rounds the recursive calls of Witness0 are made, in each call we
need to know which objective functions V k must not be considered anymore, and for each
of these objective functions we need to know the vector x|Pk . The information when the
recursive calls are made and which objective functions must not be considered anymore is
given in the certificate: The variable tr contains the round number when the recursive call
is made. The index rk contains the number of the call where index k has to be removed
from K. Hence, index k is removed in the tthrk round of call rk. If we can reconstruct Keq

and the vector x(r,t) in the round where we make the recursive call, then we can also
reconstruct the bits of x at indices i ∈ Pk for any index k ∈ Keq because x|Pk = x(r,t)|Pk
for these indices k (cf. Line 13).

Proof. We compare the execution of the call Witness0(V, x, [d], 1, ()) with the execution of
the call Witness0(V, [d], 1, I?, A,S, B, u) and show the following claim by induction on r.

Claim 9. If there is a call of the form Witness0(V, x,K, r, I) during the execution of
the call Witness0(V, x, [d], 1, ()), then there is a call Witness0(V,K, r, I

?, A,S ′, B, u) for
S ′ = ⋂k∈[d]\K SPk(x) during the execution of the call Witness0(V, [d], 1, I?, A,S, B, u).

If Claim 9 is true, then the correctness of Lemma 7.7.6 follows: In accordance with
Lemma 7.7.3, the call Witness0(V, x, [d], 1, ()) returns the set {x} 6= ∅. Hence, there is a
call of the form Witness0(V, x,K, r, I) for K = () (see Line 4). Due to Claim 9, there must
be also a call of the form Witness0(V, (), r, I

?, A,S ′, B, u) for S ′ =
⋂
k∈[d]\() SPk(x) = {x}.

This set is immediately returned in Line 4.
Let us prove Claim 9. Recalling that

⋂
k∈() SPk(x) = S it holds for r = 1. Now let us

consider an arbitrary call r+1 and assume that Claim 9 holds for r. That is, we can assume
that there are calls of the form Witness0(V, x,K, r, I) and Witness0(V,K, r, I

?, A,S ′, B, u)
for S ′ = ⋂k∈[d]\K SPk(x). We show that both calls are executed essentially the same way.

Formally, we prove the following claims by induction on t, where R′(r)t , C ′(r)t , x′(r,t), K ′eq,
andK ′neq refer to the sets, vectors, and tuples from the call Witness0(V,K, r, I

?, A,S ′, B, u).

Claim 10. R′(r)t ⊆ R(r)
t for any t ∈ {tr + 1, . . . , dr + 1}.

Claim 11. x′(r,t) = x(r,t) for any t ∈ {tr, . . . , dr} for which C(r)
t 6= ∅.

Claim 12. x(r,s) ∈ R′(r)t for any t ∈ {tr + 1, . . . , dr + 1} and for any s ∈ {tr, . . . , t − 1}
for which C(r)

s 6= ∅.
The induction step of the proof of Claim 9 follows from these claims: Let us assume

that there is a call of the form Witness0(V, x, K̂, r + 1, Î). By the definition of tr, this

call is executed in round tr of call r. Consequently, x(r,tr) ∈ C(r)
tr 6= ∅. Applying Claim 12

for s = tr and t = tr + 1, we obtain x(r,tr) ∈ R′(r)tr+1. As x(r,tr) ∈ C(r)
tr , the inequalities

V k1...ktrx(r,tr) < V k1...ktrx hold, which are equivalent to V k1...ktr · (x(r,tr)− u) ≤ b|k1...ktr due
to the occurence of the OK0-event. Furthermore, x(r,tr) ∈ SI?(a(r,tr)) by the definition

148 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

of a(r,tr). Hence, x(r,tr) ∈ C ′(r)tr (see Line 7), i.e., C ′(r)tr 6= ∅. Moreover, x′(r,tr) = x(r,tr)

in accordance with Claim 11. In round tr of the call Witness0(V,K, r, I
?, A,S ′, B, u)

Line 11 is reached. By the definition of the values rk we obtain K ′eq = Keq, and hence,

x′(r,tr)|Pk = x(r,tr)|Pk = x|Pk for any k ∈ K ′eq = Keq due to the definition of Keq. In Line 13,

there is a call of the form Witness0(V,K
′
neq, r+ 1, I?, A,S ′ ∩⋂k∈K′eq

SPk(x(r,tr)), B, u). The

correctness of Claim 9 follows because

K ′neq = K \K ′eq = K \Keq = Kneq = K̂ ,

where K̂ is the parameter from the call Witness0(V, x, K̂, r + 1, Î), and because

S ′ ∩
⋂

k∈K′eq

SPk(x(r,tr)), B, u) =
⋂

k∈[d]\K

SPk(x) ∩
⋂

k∈K′eq

SPk(x(r,tr))

=
⋂

k∈[d]\K

SPk(x) ∩
⋂

k∈K′eq

SPk(x)

=
⋂

k∈[d]\K′neq

SPk(x) .

Let us finish the proof of Lemma 7.7.6 by proving the Claims 10, 11, and 12 by down-
ward induction on t. For the beginning, consider t = dr + 1. We have R′(r)dr+1 =

S ′∩⋃dr
s=tr
SI?(a(r,s)) for S ′ = ⋂k∈[d]\K SPk(x) and R(r)

dr+1 = SI(x)∩⋂k∈[d]\K SPk(x). Due to

the construction of the vectors x(r,s) and the definition of a(r,s), a(r,s)|I = x(r,s)|I = x|I for
any s = tr, . . . , dr (see Lemma 7.7.5). The inclusion I? ⊇ I yields SI?(a(r,s)) ⊆ SI(a(r,s)) =

SI(x) for any s = tr, . . . , dr. Consequently, R′(r)dr+1 ⊆ R
(r)
dr+1. For Claim 11 nothing has to

be shown in the initial step t = dr + 1 of the induction. Let us consider Claim 12 and let
s ∈ {tr, . . . , dr} be an arbitrary index for which C(r)

s 6= ∅. Then

x(r,s) ∈ C(r)
s ⊆ R(r)

s+1 ⊆ R(r)
dr+1 ⊆

⋂
k∈[d]\K

SPk(x) .

Furthermore, x(r,s) ∈ SJ(a(r,s)) for any index tuple J due to the definition of a(r,s). Con-

sequently, x(r,s) ∈ R′(r)dr+1.
For the induction step let t ≤ dr. Due to the occurence of the OK0-event and the fact

that B = BV (x− u), we obtain

C ′(r)t = {z ∈ R′(r)t+1 : V k1...kt · (z − u) ≤ b|k1...kt} ∩ SI?(a(r,t))

= {z ∈ R′(r)t+1 : V k1...ktz < V k1...ktx} ∩ SI?(a(r,t))

and C(r)
t = {z ∈ R(r)

t+1 : V k1...ktz < V k1...ktx}. Since R′(r)t+1 ⊆ R(r)
t+1, we obtain C ′(r)t ⊆

C(r)
t . First, we consider the case C(r)

t = ∅ which implies C ′(r)t = ∅ and t ≥ tr + 1. The

7.7. ZERO-PRESERVING PERTURBATIONS 149

inequality follows from the fact that in round tr the Witness0(f) unction is called (Line 23

of Algorithm 7) which implies C(r)
tr 6= ∅. In this case, R′(r)t = R′(r)t+1 ∩

⋃t−1
s=tr
SI?(a(r,s)) and

R(r)
t = R(r)

t+1 ∩ SI(x), where I is the updated index tuple I. Due to the construction of
the vectors x(r,s) (see Lemma 7.7.5) and the definition of the vectors a(r,s), we know that
a(r,s)|I = x(r,s)|I = x|I for any s = tr, . . . , t− 1. As I? ⊇ I, this implies

⋃t−1
s=tr
SI?(a(r,s)) ⊆⋃t−1

s=tr
SI(a(r,s)) = SI(x). As R′(r)t+1 ⊆ R(r)

t+1 in accordance with the induction hypothesis,

Claim 10, we obtain R′(r)t ⊆ R(r)
t . For Claim 11 nothing has to be shown here. Let

s ∈ {tr, . . . , t − 1} be an arbitrary index for which C(r)
s 6= ∅. Then x(r,s) ∈ R′(r)t+1 by

Claim 12 of the induction hypothesis, x(r,s) ∈ SI?(a(r,s)), and consequently x(r,s) ∈ R′(r)t .

Let us finally consider the case C(r)
t 6= ∅. Claim 12 of the induction hypothesis yields

x(r,t) ∈ R′(r)t+1. Since x(r,t) ∈ SI?
(
a(r,t)

)
and V k1...ktx(r,t) < V k1...ktx, also x(r,t) ∈ C ′(r)t and,

thus, C ′(r)t 6= ∅. Hence, x′(r,t) = x(r,t) as C ′(r)t ⊆ C(r)
t . Claim 10 and Claim 12 have only to be

validated if t ≥ tr, i.e., we can assume that Keq = (). Then R′(r)t = {z ∈ R′(r)t+1 : V kt+1z <

V kt+1x(r,t)} ∩ ⋃t−1
s=tr
SI?(a(r,s)), because x′(r,t) = x(r,t), and R(r)

t = {z ∈ R(r)
t+1 : V kt+1z <

V kt+1x(r,t)}∩SI(x). With the same argument used for the case C(r)
t = ∅ we obtain R′(r)t+1 ∩⋃t−1

s=tr
SI?(a(r,s)) ⊆ R(r)

t+1 ∩ SI(x) and, hence, R′(r)t ⊆ R(r)
t . Consider an arbitrary index

s ∈ {tr, . . . , t − 1} for which C(r)
s 6= ∅. Then x(r,s) ∈ C(r)

s ⊆ R(r)
s+1 ⊆ R(r)

t . In particular,
V kt+1x(r,s) < V kt+1x(r,t) (see Line 20) and, hence, V kt+1x(r,s) < V kt+1x′(r,t) because x′(r,t) =

x(r,t). Furthermore, x(r,s) ∈ R′(r)t+1 due to the induction hypothesis, Claim 12, and x(r,s) ∈
SI?(a(r,s)). Consequently, x(r,s) ∈ R′(r)t .

By the choice of the vector u we can control which information about V has to be
known in order to be able to execute the call Witness0(V, [d], 1, I?, A,S, B, u). While
Lemma 7.7.6 is correct for any choice of u ∈ {0, . . . ,K}n, we have to choose u carefully in
order for the following probabilistic analysis to work. Later we will see that u? = u?(I?, A),
given by

u?i =

|xi − 1| if i ∈ (i?1, . . . , i

?
d) ,

xi if i ∈ I? \ (i?1, . . . , i
?
d) ,

0 otherwise ,

∈ {0, . . . ,K}n (7.3)

is well-suited for our purpose. Recall, that i?k ∈ Pk are the indices that have been added
to I in the definition of the V -certificate to obtain I?. Furthermore, xi is given by the
last column of A for any index i ∈ I? (cf. Lemma 7.7.3). Hence, vector u? can be defined
with the information that is contained in the V -certificate of x; we do not have to know
the vector x itself.

In the next step, we bound the number of Pareto-optimal solutions. For this, consider
the following function χI?,A,B(V), parameterized by an arbitrary certificate (I?, A) ∈ C
and an arbitrary ε-box B ∈ Bε, that is defined as follows: χI?,A,B(V) = 1 if the call

150 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Witness0(V, [d], 1, I?, A,S, B, u?(I?, A)) returns a set {x′} such that BV

(
x′− u?(I?, A)

)
=

B, and χI?,A,B(V) = 0 otherwise.

Corollary 7.7.7. Assume that OK0(V) is true. Then the number PO(V) of Pareto-
optimal solutions is at most

∑
(I?,A)∈C

∑
B∈Bε

χI?,A,B(V).

Proof. Let x be a Pareto-optimal solution, let (I?, A) be the V -certificate of x, and let
B = BV

(
x−u?(I?, A)

)
∈ Bε. Due to Lemma 7.7.6, Witness0(V, [d], 1, I?, A,S, B, u?(I?, A))

returns {x}. Hence, χI?,A,B(V) = 1. It remains to show that this function x 7→
(I?, A,B′) defined within the previous lines is injective. Let x1 and x2 be distinct Pareto-
optimal solutions and let (I?1 , A1) and (I?2 , A2) be the V -certificates of x1 and x2, re-
spectively. If (I?1 , A1) 6= (I?2 , A2), then x1 and x2 are mapped to distinct triplets. Oth-
erwise, u?(I?1 , A1) = u?(I?2 , A2) and, hence, BV

(
x1 − u?(I?1 , A1)

)
6= BV

(
x2 − u?(I?2 , A2)

)
because OK0(V) is true. Consequently, also in this case x1 and x2 are mapped to distinct
triplets.

Corollary 7.7.7 immediately implies a bound on the expected number of Pareto-optimal
solutions.

Corollary 7.7.8. The expected number of Pareto-optimal solutions is bounded by

EV [PO(V)] ≤
∑

(I?,A)∈C

∑
B∈Bε

PrV [EI?,A,B] + (K + 1)n ·PrV

[
OK0(V)

]
where EI?,A,B denotes the event that the call Witness0(V, [d], 1, I?, A,S, B, u?(I?, A)) re-
turns a set {x′} such that BV

(
x′ − u?(I?, A)

)
= B.

Proof. By applying Corollary 7.7.7, we obtain

EV [PO(V)]

= EV

[
PO(V)

∣∣OK0(V)
]
·PrV [OK0(V)] + EV

[
PO(V)

∣∣OK0(V)
]
·PrV

[
OK0(V)

]
≤ EV

 ∑
(I?,A)∈C

∑
B∈Bε

χI?,A,B(V)

∣∣∣∣∣∣OK0(V)

 ·PrV [OK0(V)] + |S| ·PrV

[
OK0(V)

]

≤ EV

 ∑
(I?,A)∈C

∑
B∈Bε

χI?,A,B(V)

+ (K + 1)n ·PrV

[
OK0(V)

]
=

∑
(I?,A)∈C

∑
B∈Bε

PrV [EI?,A,B] + (K + 1)n ·PrV

[
OK0(V)

]
.

7.7. ZERO-PRESERVING PERTURBATIONS 151

We will see that the first term of the sum in Corollary 7.7.8 can be bounded indepen-
dently of ε and that the second term tends to 0 for ε → 0. First of all, we analyze the
size of the certificate space.

Lemma 7.7.9. The size of the certificate space is bounded by

|C | = (K + 1)(d2+d)(d3+d2+d) ·O
(
nd

3+d2
)
.

Proof. Consider the execution of the call Witness0(V, x, [d], 1, ()), in which, among others,
the indices r1, . . . , rd are defined, and let r? = max{r1, . . . , rd} be the maximum of these
indices. Including the call with number 1, there can be at most d calls to the Witness0
function except for the call with number r? + 1 that terminates due to dr?+1 = 0. This is
because in each of the other calls at least one index k ∈ [d] is removed from the tuple K.
Hence, r1, . . . , rd ∈ [d]. Consequently, there are at most dd possibilities for these numbers.
In the rth call, the round number tr is an element of [dr]0 ⊆ [d]0, and hence, there are at
most (d+ 1)r

? ≤ (d+ 1)d possibilities to choose round numbers t1, . . . , tr? . In each round,
at most d indices i are added to the tuple I. As there are at most d calls and at most
d+ 1 rounds each call, tuple I contains at most d2 · (d+ 1) indices in total. Hence, there

are at most
∑d2(d+1)

k=1 nk ≤ d2 · (d + 1) · nd2·(d+1) choices for I. Once I is fixed, also the
indices in I? \I are fixed because the indices added to I in Definition 7.7.4 are determined
by I. The tuple I? contains |I| + d ≤ d3 + d2 + d indices. In each call r, at most d + 1
vectors x(r,t) are generated. Hence, matrix A has at most d · (d+ 1) columns and at most
d3 + d2 + d rows. This yields the claimed bound

|C | ≤ dd · (d+ 1)d · d2 · (d+ 1) · nd2(d+1) · (K + 1)d(d+1)·(d3+d2+d)

≤ 2d+1 · d2d+3 · nd3+d2 · (K + 1)(d2+d)(d3+d2+d)

= (K + 1)(d2+d)(d3+d2+d) ·O
(
nd

3+d2
)
.

In the next step we analyze how much information of V is required in order to perform
the call Witness0(V, [d], 1, I?, A,S, B, u). We will see that V does not need to be revealed
completely and that some randomness remains even after the necessary information to
perform the call has been revealed. This is the key observation for analyzing the probabil-
ity PrV [EI?,A,B]. For this, let V be an arbitrary realization, i.e., we do not condition on
the OK0-event anymore, and fix an index k ∈ [d]. Only the indices i ∈ Pk are relevant for
function V k. We set I?k = I?∩Pk and apply the principle of deferred decisions by assuming
that the coefficients of V k belonging to indices i /∈ I?k are fixed arbitrarily. We denote this
part of V k by V k

I?k
and concentrate on the remaining part of V k which we denote by V k

I?k
.

By the construction of index rk we know that only in the calls r = 1, . . . , rk information
about the function V k must be available as in all subsequent calls this function is not
considered anymore.

152 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Since in the rth call we consider only vectors that agree with one of the vectors
x(r,tr), . . . , x(r,dr) (see Line 5) in the indices i ∈ I?, it suffices to know all linear com-
binations V k

I?k
·
(
a(r,t)|I?k − u|I?k

)
. However, in call rk we would reveal too much information

about x such that there would be no randomness left. Therefore, we reveal those linear
combinations for all calls r ∈ [rk − 1] and analyze call rk more detailed like we did in the
case of non-zero-preserving perturbations:

Consider call number rk and let jk ∈ [drk] be the index for which kjk = k in round rk,
i.e., V k is the jth

k objective function in K in round rk . For this call the inequality
trk ≤ jk − 1 holds. This is due to the fact that x(rk,trk)

∣∣
Pk

= x|Pk , i.e., V kx(rk,trk) = V kx,

since this is the round when k is removed from tupleK. On the other hand, x(rk,trk) ∈ C(rk)
trk

,

which means that V ksx(rk,trk) < V ksx for all indices s = 1, . . . , trk , where k1, . . . , kdrk
denote the indices tuple K consists of in round rk. Hence, trk < jk as k = kjk .

There are only three lines where information about V is required: Line 7, Line 9, and
Line 15. For Line 7 the values V k

I?k
·
(
a(rk,t)|I?k − u|I?k

)
from round t = drk down to round jk

are needed. In Line 9 no additional information about V k
I? is needed since all considered

vectors agree on indices i ∈ I?k with each other. For Line 15 only in round jk − 1 the
values V k

I?k
·
(
a(rk,s)|I?k − a(rk,jk−1)|I?k

)
for s = trk , . . . , jk − 2 are required. We write the

linear combinations of V k
I?k

of the calls r = 1, . . . , rk− 1 and of call rk into the matrices Pk
and Qk, respectively, and obtain

Pk =
[
a(1,d1) − u|I? , . . . , a(1,t1) − u|I? , . . . , a(rk−1,drk−1) − u|I? , . . . , a(rk−1,trk−1) − u|I?

]∣∣
I?k

and

Qk =
[
a(rk,drk) − u|I? , . . . , a(rk,jk) − u|I? , a(rk,jk−2) − a(rk,jk−1), . . . , a(rk,trk) − a(rk,jk−1)

]∣∣
I?k
.

Using the notation p
(r,t)
k = a(r,t)

∣∣
I?k
− u|I?k we can write both matrices as

Pk =
[
p

(1,d1)
k , . . . , p

(1,t1)
k , . . . , p

(rk−1,drk−1)

k , . . . , p
(rk−1,trk−1)

k

]∣∣∣
I?k

and

Qk =
[
p

(rk,drk)

k , . . . , p
(rk,jk)
k , p

(rk,jk−2)
k − p(rk,jk−1)

k , . . . , p
(rk,trk)

k − p(rk,jk−1)
k

]∣∣∣
I?k

.

Note that the matrices Pk = Pk(I
?, A, u) and Qk = Qk(I

?, A, u) depend, among others,
on the choice of u. Matrix Qk has (drk − jk + 1) + ((jk− 2)− trk + 1) = drk − trk columns,
matrix Pk has

rk−1∑
r=1

(dr − tr + 1) =

rk∑
r=1

(dr − tr + 1)− (drk − trk + 1) = |I?k | − (drk − trk + 1)

columns. The last equation is due to the fact that in each call r < rk in each round
one index ik is chosen. In call r = rk one index ik is chosen in each round t > trk . The

7.7. ZERO-PRESERVING PERTURBATIONS 153

equation follows since I?k contains one index more than the number of indices ik that are
chosen during the execution of the Witness0 function (see Definition 7.7.4). Moreover,
observe that all entries of Pk and Qk are from {−K, . . . ,K}.

Corollary 7.7.10. Let u ∈ {0, . . . ,K}n be an arbitrary shift vector, let (I?, A) ∈ C
be an arbitrary certificate, and let V and W be two realizations for which V k

I?k
= W k

I?k

and V k
I?k
· q = W k

I?k
· q for any index k ∈ [d] and any column q of one of the ma-

trices Pk(I
?, A, u) and Qk(I

?, A, u). Then the calls Witness0(V, [d], 1, I?, A,S, B, u) and
Witness0(W, [d], 1, I?, A,S, B, u) return the same result for any ε-box B ∈ Bε.

In the remainder of this section we assume that V k
I?k

and the ε-box B are fixed. In

accordance with Corollary 7.7.10, the output of the call Witness0(V, [d], 1, I?, A,S, B, u)
is determined if the linear combinations of V k

I?k
given by the columns of the matrices Pk

and Qk are fixed arbitrarily, i.e., it does not depend on the remaining randomness in the
coefficients. We are interested in the event EI?,A,B, i.e., in the event that the output is
a set {x′} such that V 1...d ·

(
x′ − u?(I?, A)

)
∈ B. Since (I?, A) is a V -certificate of x for

some V and x, the output is always of the form {x′} due to Lemma 7.7.6. Hence, event
EI?,A,B occurs if and only if for all indices k the relation V k

I?k
·
(
x′ − u?(I?, A)

)∣∣
I?k
∈ Ck

holds for some interval Ck of length ε that depends on the linear combinations of VI?`
given by P` and Q` for all indices ` ∈ [d].

Lemma 7.7.11. For any fixed index k ∈ [d] the columns of matrix Pk
(
I?, A, u?(I?, A)

)
,

of matrix Qk

(
I?, A, u?(I?, A)

)
, and the vector p

(rk,trk)

k are linearly independent.

Proof. Consider the square matrix Q̂k consisting of the vectors p
(r,t)
k , for r ∈ {1, . . . , rk}

and t ∈ {tr, . . . , dr}. Matrix Q̂k can be obtained from the matrix M of Lemma 7.7.5 by
subtracting the vector u?|I?k from any of its columns. Due to Lemma 7.7.5 and due to the

construction of u? = u?(I?, A) (see Equation 7.3) matrix Q̂k is a lower triangular matrix
and the elements of the principal diagonal are from the set {−K, . . . ,K} \ {0}. This is
because xi − u?i = xi − |xi − 1| ∈ {−1, 1} for i = i?k and xi − u?i = xi − xi 6= 0 for any
i ∈ I?k \ (i?k), where z for z ∈ {0, . . . ,K} represents an arbitrary value from {0, . . . ,K} not

equal to z. Hence, the vectors p
(r,t)
k are linearly independent.

The columns of matrix Qk and vector p
(rk,trk)

k are linear combinations of the vectors

p
(rk,trk)

k , . . . , p
(rk,drk)

k , whereas the columns of matrix Pk are the remaining columns of

matrix Q̂k. As the vectors p
(r,t)
k are linearly independent, it suffices to show that the

columns of matrix Qk and vector p
(rk,trk)

k are linearly independent. For this, we consider

an arbitrary linear combination of the columns of matrix Qk and vector p
(rk,trk)

k and show
that it is zero if and only if all coefficients are zero. For sake of simplicity, we drop the
index k in the remainder of this proof and write r, j, and p(r,t) instead of rk, jk, and p

(rk,t)
k ,

154 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

respectively.
dr∑
t=j

λt · p(r,t) +

j−2∑
t=tr

λt ·
(
p(r,t) − p(r,j−1)

)
+ µ · p(r,tr) = 0 .

If tr = j − 1, then this equation is equivalent to

dr∑
t=tr+1

λt · p(r,t) + µ · p(r,tr) = 0 .

Therefore, all coefficients are zero due to the linear independence of the vectors p(r,t).
If tr < j − 1, which is the only case remaining due to previous observations, then the
equation is equivalent to

dr∑
t=j

λt · p(r,t) +

j−2∑
t=tr+1

λt · p(r,t) −
(
j−2∑
t=tr

λt

)
· p(r,j−1) + (λtr + µ) · p(r,tr) = 0 .

The linear independence of the vectors p(r,t) implies λt = 0 for t ∈ {tr + 1, . . . , j − 2} ∪
{j, . . . , dr},

∑j−2
t=tr

λt = 0, and λtr + µ = 0. Consequently, also λtr = 0 and, thus, µ = 0.
That is, all coefficients are zero. In both cases, the linear independence of the columns
of Qk and the vector p(r,tr) follows.

Corollary 7.7.12. Let (I?, A) ∈ C be an arbitrary certificate and let B ∈ Bε be an
arbitrary ε-box. Then

PrV [EI?,A,B] ≤ (2γK)γ−dφγεd

for γ = d3 + d2 + d, and
PrV [EI?,A,B] ≤ 2d(γK)γ−dφdεd

if all densities are quasiconcave.

Proof. For a fixed index k ∈ [d] we write the columns of matrix Pk, of matrix Qk, and

vector p
(rk,trk)

k into one matrix Q′k ∈ {−K, . . . ,K}|I
?
k |×|I

?
k | (the number of columns is

(
|I?k |−

(drk − trk + 1)
)

+ (drk − trk) + 1 = |I?k | due to previous observations) and consider the
matrix

Q′ =

Q′1 0 . . . 0

0
.

...
...

. 0
0 . . . 0 Q′d

 ∈ {−K, . . . ,K}|I?|×|I?| .
This matrix has full rank due to Lemma 7.7.11. Now we permute the columns of Q′ to ob-
tain a matrix Q whose last d columns belong to the last column of one of the matrices Qk.

That is, the last d columns are (p
(r1,tr1)
1 , 0|I

?
2 |, . . . , 0|I

?
d |), . . . , (0|I

?
1 |, . . . , 0|I

?
d−1|, p

(rd,trd)

d). For

7.7. ZERO-PRESERVING PERTURBATIONS 155

any k ∈ [d] and any index ik ∈ I?k let Xi = V k
i be the ith coefficient of V k. Event EI?,A,B

holds if and only if the d linear combinations of the variables Xi given by the last d columns
of Q fall into a d-dimensional hypercube C depending on the linear combinations of the
variables Xi given by the remaining columns. The claim follows by applying Theorem 3.3
for matrix A = Q′T and due to the fact that |I?| ≤ γ (see proof of Lemma 7.7.9).

Proof of Theorem 1.5.4. We begin the proof by showing that the OK0-event is likely to
happen. For any index t ∈ [d] and any solutions x, y ∈ S for which x|Pt 6= y|Pt the
probability that

∣∣V tx− V ty
∣∣ ≤ ε is bounded by 2φε. To see this, choose one index i ∈ Pt

for which xi 6= yi and apply the principle of deferred decisions by fixing all coefficients V t
j

for j 6= i arbitrarily. Then the value V t
i must fall into an interval of length 2ε/|xi−yi| ≤ 2ε.

The probability for this is bounded by 2φε. A union bound over all indices t ∈ [d] and

over all pairs (x, y) ∈ S ×S for which x|Pt 6= y|Pt yields PrV

[
OK0(V)

]
≤ 2(K+ 1)2ndφε.

For γ = d3 +d2 +d, we set s = (2γK)γ−dφγ = Kγ−d ·O(φγ) for general density functions
and s = 2d(γK)γ−dφd = Kγ−d · O(φd) if all density functions are quasiconcave. Then we
obtain

EV [PO(V)] ≤
∑

(I?,A)∈C

∑
B∈Bε

PrV [EI?,A,B] + (K + 1)n ·PrV

[
OK0(V)

]
≤

∑
(I?,A)∈C

∑
B∈Bε

s · εd + (K + 1)n · 2(K + 1)2ndφε

= |C | · |Bε| · s · εd + (K + 1)n · 2(K + 1)2ndφε

= (K + 1)(d2+d)(d3+d2+d) ·O
(
nd

3+d2
)
·
(

2nK
ε

)d
· s · εd + 2(K + 1)3ndφε

= (K + 1)(d2+d)(d3+d2+d)+d ·O
(
nd

3+d2+d
)
· s+ 2(K + 1)3ndφε .

The first inequality is due to Corollary 7.7.8. The second inequality is due to Corol-
lary 7.7.12. The third inequality stems from Lemma 7.7.9. Since this bound is true for
arbitrarily small ε > 0, we obtain

EV [PO(V)] = (K + 1)(d2+d)(d3+d2+d)+d ·O
(
nd

3+d2+d
)
· s .

Substituting s and γ by their definitions yields

EV [PO(V)] = (K + 1)(d2+d)(d3+d2+d)+d ·O
(
nd

3+d2+d
)
· Kd3+d2+d−d ·O

(
φd

3+d2+d
)

= (K + 1)(d2+d+1)(d3+d2+d) ·O
(
(nφ)d

3+d2+d
)

= (K + 1)(d+1)5 ·O
(
(nφ)d

3+d2+d
)

for general densities and

EV [PO(V)] = (K + 1)(d2+d)(d3+d2+d)+d ·O
(
nd

3+d2+d
)
· Kγ−d ·O

(
φd
)

156 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

= (K + 1)(d2+d+1)(d3+d2+d) ·O
(
nd

3+d2+dφd
)

= (K + 1)(d+1)5 ·O
(
nd

3+d2+dφd
)

for quasiconcave densities.

7.8 A Lower Bound

In this section we present a lower bound example for the bound stated in Theorem 1.5.2.
This example is an instance for the restricted multi-profit knapsack problem. Without
loss of generality we assume that φ > d. The initial instance, which will be successively
modified during the copy step and the split step, is an instance with n0 objects a1, . . . , an0

with a total weight W < 1 and profit vectors from [0, 1/φ]d, and a set S0 ⊆ {0, 1}n0 of
allowed object combinations.

Starting with the initial instance, we perform n1 copy steps to increase the size of the
Pareto set. For this, consider n1 groups i ∈ [n1], each consisting of d objects bij, j ∈ [d],
with weight wi = (d + 1)i−1 and a profit vector pij ∈ Pij, where Pij is the Cartesian

product Pij =
∏d

`=1 P
(`)
ij of the intervals

P
(`)
ij =

[
mi − dmieφ ,mi

]
if ` = j ,[

0, dmie
φ

]
otherwise .

The value mi has to be chosen in such a way that the jth profit of object bij is guaranteed to
be larger than the jth total profit of all objects from groups i′ ≤ i, excluding object bij, and
the objects a1, . . . , an0 . If this is the case, then no solution that does not use object bij nor
objects from groups i′ > i can dominate any solution that uses object bij. We choose mi

as follows.

mi =

(
2φ

φ− d

)i−1

· n0 + 2d

φ− d −
d

φ− d ,

i.e., mi ≈ 2i−1n0/φ increases exponentially with i. The `th profit (pij)` of object bij for
` 6= j is very small compared to its jth profit. The intuition behind this choice is that
using object bij should only lead to a gain in the jth profit, but leave the remaining profits
nearly unchanged.

Lemma 7.8.1. For any group i ∈ [n1] the following inequality holds:

n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
+ (d− 1) · mi + 1

φ
≤ mi −

mi + 1

φ
.

7.8. A LOWER BOUND 157

Proof. Note, that the inequality is equivalent to

n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
≤ mi − d ·

mi + 1

φ
=
φ− d
φ
·mi −

d

φ
.

We show the claim by induction. For i = 1 we obtain

φ− d
φ
·mi −

d

φ
=

(
φ− d
φ
· n0 + 2d

φ− d −
d

φ

)
− d

φ
=
n0

φ
=
n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
.

Assume that the claim holds for some integer i. Then

n0

φ
+

i∑
k=1

(
mk + d · mk + 1

φ

)

=
n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
+

(
mi + d · mi + 1

φ

)
≤ mi − d ·

mi + 1

φ
+

(
mi + d · mi + 1

φ

)
= 2mi .

The inequality is due to the induction hypothesis. On the other hand,

φ− d
φ
·mi+1 −

d

φ
=

(
φ− d
φ
·
(

2φ

φ− d

)i
· n0 + 2d

φ− d −
d

φ

)
− d

φ

=
φ− d
φ
· 2φ

φ− d ·
(

2φ

φ− d

)i−1

· n0 + 2d

φ− d −
2d

φ

= 2

(
mi +

d

φ− d

)
− 2d

φ
≥ 2mi .

Lemma 7.8.1 immediately implies that the intervals P
(`)
ij are subsets of [0,∞). This

is intuitively clear but nevertheless important because we want to scale them down to
subintervals of [0, 1] later.

Corollary 7.8.2. For any i ∈ [n1] the inequality mi − dmie /φ ≥ 0 holds.

Proof. It suffices to show that mi − (mi + 1)/φ ≥ 0 for any i ∈ [n1]. Note, that

mi =

(
2φ

φ− d

)i−1

· n0 + 2d

φ− d −
d

φ− d ≥
n0 + 2d

φ− d −
d

φ− d ≥ 0

for any i ∈ [n1]. Consequently,

mi −
mi + 1

φ
≥ mi − d ·

mi + 1

φ
≥ n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
≥ 0 ,

where the second inequality is in accordance with Lemma 7.8.1.

158 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

With Lemma 7.8.1 we now have the technical support for proving that the copy step
indeed clones the Pareto set.

Lemma 7.8.3. Let S1 = S0 × {0, 1}n1d and let P0 and P1 denote the Pareto set of the
restricted multi-profit knapsack instance KS0({ai : i ∈ [n0]}) and KS1({ai : i ∈ [n0]} ∪
{bij : i ∈ [n1], j ∈ [d]}), respectively. Then P1 ⊇ P0 × {0, 1}n1d.

Proof. Let (y1, . . . , yn1d) ∈ {0, 1}n1d be arbitrary and let (x1, . . . , xn0) ∈ S0 be Pareto-
optimal with respect to KS0({ai : i ∈ [n0]}). We have to show that the solution z defined
as z = (x1, . . . , xn0 , y1, . . . , yn1d) ∈ S1 is Pareto-optimal for KS1({ai : i ∈ [n0]}∪ {bij : i ∈
[n1], j ∈ [d]}). For this, consider an arbitrary solution ẑ = (x̂1, . . . , x̂n0 , ŷ1, . . . , ŷn1) ∈ S1.
We show that ẑ does not dominate z. For this, we partition the bits n0 + 1, . . . , n0 + n1d
into n1 block containing d bits each. The bits of Block i describe which objects of Group i
to put into the knapsack.

Let i be the largest number k for which solution z and solution ẑ do not use exactly
the same objects from Group k. If no such group exists, then set i = 0. Now we
distinguish between three cases. If i = 0, then ẑ dominates z if and only if (x̂1, . . . , x̂n0)
dominates (x1, . . . , xn0). This cannot happen because (x1, . . . , xn0) is Pareto-optimal. In
the remainder of this proof we assume that i ≥ 1.

If ẑ uses more objects from Group i than z, then the difference in weight between ẑ
and z in the objects of Group i is at least wi. On the other hand, the absolute value of
the difference in weight between ẑ and z in the objects a1, . . . , an0 and the objects from
groups k < i is at most

W +
i−1∑
k=1

d · wk = W + d ·
i−1∑
k=1

(d+ 1)k−1 < 1 + d · (d+ 1)i−1 − 1

(d+ 1)− 1
= (d+ 1)i−1 = wi .

Thus, solution ẑ is heavier than solution z. The only case that remains to be considered
is the case that z uses at least as many objects from Group i as ẑ. Then there must be
an object bij used by solution z but not by solution ẑ. Then the jth profit of z is at least
mi − dmie /φ > mi − (mi + 1)/φ, whereas the jth profit of ẑ is at most

n0

φ
+

i−1∑
k=1

(
mk + d · mk + 1

φ

)
+ (d− 1) · mi + 1

φ
.

The first term is an upper bound for the jth total profit of the objects a1, . . . , an0 , each
term of the sum is an upper bound for the jth total profit of the objects of Group k for
some k ≤ i− 1, and the last term is an upper bound for the jth total profit of the objects
d− 1 objects bij′ , j

′ 6= j, from Group i. Lemma 7.8.1 finishes the proof.

As already mentioned in the outline, the objects profits of Group i can be as large
as mi, which is not valid if mi > 1. Hence, in the split step we break each object bij of

7.8. A LOWER BOUND 159

Group i into ki := dmie objects b
(1)
ij , . . . , b

ki
ij with weights w̃i = wi/ki and profit vectors

from
∏d

`=d P̃
(`)
ij , where

P̃
(`)
ij =

[
mi
ki
− 1

φ
, mi
ki

]
if ` = j ,[

0, 1
φ

]
otherwise .

Note, that after this split step all these intervals have a length of 1/φ and that their right
boundaries are at most 1. In combination with Corollary 7.8.2 this implies that all these
intervals are subintervals of [0, 1]. For an integer k ≥ 1 let ψk : {0, 1}d → {0, 1}k·d denote
the function that maps a vector (x1, . . . , xd) to the vector (x1, . . . , x1, . . . , xd, . . . , xd),
which contains exactly k copies of each value xi. In the split step we have to ensure that
either all objects b

(1)
ij , . . . , b

ki
ij are chosen, which resembles choosing object bij, or none of

them. This can be managed by defining the set of solutions appropriately. Formally, we
set

S̃1 = S0 ×
n1∏
i=1

{
ψki(x) : x ∈ {0, 1}d

}
⊆ {0, 1}n0 ×

n1∏
i=1

{0, 1}ki·d = {0, 1}n0+d·
∑n1
i=1 ki .

Our previous considerations immediately yield the following corollary.

Lemma 7.8.4. Let P0 denote the Pareto set of KS0({ai : i ∈ [n0]}). Then the instance

KS̃1({ai : i ∈ [n0]} ∪ {b(`)
ij : i ∈ [n1], j ∈ [d], ` ∈ [ki]}) consists of

n0 + d · n1 + d · n0 + 2d

φ+ d
·
(

2φ

φ− d

)n1

objects and the Pareto set has a size of at least |P0| · 2n1d.

Proof. The bound on the size of the Pareto set follows from Lemma 7.8.3 and the fact
that the instance KS̃1({ai : i ∈ [n0]} ∪ {b(`)

ij : i ∈ [n1], j ∈ [d], ` ∈ [ki]}) with split objects
resembles the instance KS1({ai : i ∈ [n0]} ∪ {bij : i ∈ [n1], j ∈ [d]}) with the original
objects. The number of objects is

n0 + d ·
n1∑
i=1

ki ≤ n0 + d ·
n1∑
i=1

(mi + 1) = n0 + d · n1 + d ·
n1∑
i=1

mi

and

n1∑
i=1

mi ≤
n0 + 2d

φ− d ·
n1∑
i=1

(
2φ

φ− d

)i−1

≤ n0 + 2d

φ− d ·

(
2φ
φ−d

)n1

2φ
φ−d − 1

=
n0 + 2d

φ− d ·
φ− d
φ+ d

·
(

2φ

φ− d

)n1

=
n0 + 2d

φ+ d
·
(

2φ

φ− d

)n1

.

160 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

The following lemma is due to Beier and Vöcking [BV04] (for d = 1) and Goyal and
Rademacher [GR12] (for d ≥ 2).

Lemma 7.8.5 ([BV04, GR12]). Let d ≥ 1 be a fixed integer. For any integer n0 ≥ 1 there
exists a random instance for the restricted multi-profit knapsack problem with n0 objects
a1, . . . , an0 with a total weight of W < 1 and profit vectors uniformly drawn from [0, 1/φ]d

as well as a set S0 ⊆ {0, 1}n0 such that the expected number of Pareto-optimal solutions of

KS0({ai : i ∈ [n0]}) is Ω(n
f(d)
0). The function f is defined as f(1) = 2 and f(d) = d− 1.5

for d ≥ 2.

Lemma 7.8.5 suggests how to choose the initial instance. Lemma 7.8.4 states how
many objects we create in the copy and in the split step to obtain a certain number of
Pareto-optimal solutions. It remains to balance both numbers by choosing n0 and n1

appropriately.

Proof of Theorem 1.5.2. Let n be an arbitrary positive integer. Without loss of generality
we assume that n ≥ 8d and φ ≥ 2d. For the moment let us assume that φ/d ≤ 2n/(4d)−1.
This is the interesting case leading to the first term in the minimum in Theorem 1.5.2.
Let

n̂1 = log2

(φ
d

)
∈
[
1,
n− 4d

4d

]
and n̂0 =

n− 2d ·
(
φ
d

)h − d · n̂1

1 +
(
φ
d

)h
for h = h(φ, d) = log2(φ/(φ− d)). In Lemma 7.10.2 we show that for φ > d the function
φ 7→ (φ/d)h takes only values in [1, 2]. This implies n̂0 ≥ (n − 4d − (n − 4d)/4)/3 =
(n−4d)/4 ≥ d since n ≥ 8d. Now we consider the random restricted multi-profit knapsack
problem from Lemma 7.8.5 with n0 := bn̂0c ≥ 1 objects and perform n1 := bn̂1c ≥ 1 copy
steps and, subsequently, a split step. In accordance with Lemma 7.8.4, the number N of
objects of this new instance is bounded by

N ≤ n0 + d · n1 + d · n0 + 2d

φ+ d
·
(

2φ

φ− d

)n1

≤ n̂0 + d · n̂1 + d · n̂0 + 2d

φ
·
(

2φ

φ− d

)n̂1

= n̂0 + d · n̂1 + (n̂0 + 2d) · d
φ
·
(
φ

d

)log2(2φ
φ−d)

= n̂0 + d · n̂1 + (n̂0 + 2d) ·
(
φ

d

)h
= n̂0 ·

(
1 +

(
φ

d

)h)
+ 2d ·

(
φ

d

)h
+ d · n̂1 = n .

The second equality follows from log2(2φ/(φ − d)) − 1 = log2(φ/(φ − d)) = h, the last
equality from the definition of n̂0. The bound on N implies that the new instance consists
of at most n objects. Due to Lemma 7.8.4 and Lemma 7.8.5 the expected number of
Pareto-optimal solutions of this instance is

Ω
(
n
f(d)
0 · 2n1d

)
= Ω

(
n̂
f(d)
0 · 2n̂1d

)
= Ω

((
n− 4d

4

)f(d)

·
(
φ

d

)d)
= Ω

(
nf(d)φd

)
.

7.9. SOME PROBABILITY THEORY 161

In the case φ/d > 2n/(4d)−1 we construct the same instance as above, but for the maximum
density φ′ = d · 2n/4d−1 ∈ [2d, φ). Consequently, n̂1 = n/(4d)− 1. As above, the expected
size of the Pareto set is Ω

(
nf(d) · 2n/4−d

)
= Ω(2Θ(n)).

7.9 Some Probability Theory

The following theorem is variant of Theorem 3.3 for integer matrices whose entries are
bounded by K.

Theorem 7.9.1. Let m ≤ n be integers and let X1, . . . , Xn be independent random vari-
ables, each with a probability density function fi : [−1, 1]→ [0, φ], let A ∈ {−K, . . . ,K}m×n
be a matrix of rank m, let k ∈ [m − 1] be an integer, let (Y1, . . . , Ym−k, Z1, . . . , Zk)

T =
A · (X1, . . . , Xn)T be the linear combinations of X1, . . . , Xn given by A, and let C be a
function mapping a tuple (y1, . . . , ym−k) ∈ Rm−k to a hypercube C(y1, . . . , ym−k) ⊆ Rk

with side length ε. Then

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ (2mK)m−kφmεk .

If all densities fi are quasiconcave, then even the stronger bound

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ 2k(mK)m−kφkεk

holds.

Proof. Let Â be an arbitrary full-rank m × m-submatrix of A. Applying Theorem 3.3,
for general densities we obtain

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤
(2mα)m−k

| det(Â)|
· φmεk ,

where α denotes the maximum absolute value of the entries of Â. As the entries of A
are from {−K, . . . ,K}, we obtain α ≤ K and | det(Â)| ≥ 1. Consequently, the probabil-
ity that (Z1, . . . , Zk) falls into the random hypercube C(Y1, . . . , Ym−k) can be bounded
by Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ (2mK)m−kφmεk. For quasiconcave densities,
Theorem 3.3 yields

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ 2k ·
∑
I

| det(ÂI)|
| det(Â)|

· φkεk ,

where the sum runs over all tuples I = (i1, . . . , ik) for which 1 ≤ i1 < . . . < ik ≤ m. For
such a tuple I, matrix ÂI is the (m−k)× (m−k)-submatrix of Â that is obtained from Â
by removing the last k rows and the columns with the numbers i ∈ I. Each matrix ÂI is

162 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

from {−K, . . . ,K}(m−k)×(m−k). Hence, | det(ÂI)| ≤ (m − k)! · Km−k. Furthermore, there
are

(
m
k

)
tuples (i1, . . . , ik) for which 1 ≤ i1 < . . . < ik ≤ m. This implies

Pr [(Z1, . . . , Zk) ∈ C(Y1, . . . , Ym−k)] ≤ 2k ·
(
m

k

)
· (m− k)! · Km−k · φkεk

≤ 2k ·mm−k · Km−k · φkεk

= 2k(mK)m−kφkεk .

7.10 Some Analysis

In this section we prove a technical claim that is required for constructing the lower bound
example in Section 7.8. In the proof we apply the following well-known theorem.

Theorem 7.10.1 (Rolle’s theorem). Let a < b be reals and let f : [a, b]→ R be a contin-
uous function that is differentiable on the interval (a, b). If f(a) = f(b), then there exists
a point ξ ∈ (a, b) for which f ′(ξ) = 0.

Lemma 7.10.2. For positive reals φ > d and h = log2(φ/(φ−d)) the chain of inequalities
1 ≤ (φ/d)h ≤ 2 holds.

Proof. With x = φ/d−1 > 0 we can restate these inequalities as 1 ≤ (1+x)log2(1+1/x) ≤ 2,
which is equivalent to 0 ≤ f̂(x) ≤ 1 for f̂(x) = log2(1 + x) · log2(1 + 1/x). The first
inequality is obviously true. In the remainder of this proof we show that f̂(x) is maximal
for x = 1, which is equivalent to showing that f(x) = ln(1 + x) · ln(1 + 1/x) is maximal
for x = 1. This implies f̂(x) ≤ f̂(1) = 1 for all x > 0. Due to f(x) = f(1/x) it suffices to
focus on values x ≥ 1. As f is continuously differentiable, we only have to show that x = 1
is the unique positive real x for which f ′(x) = 0. If this is true, then f and f̂ are monotonic
on (0, 1] and on [1,∞). Due to f̂(3) = f̂(1/3) = 2 · log2(4/3) = log2(16/9) < 1 = f̂(1) it
follows that f̂ takes its maximum at x = 1. The derivative of f is

f ′(x) =
1

1 + x
· ln(1 + 1/x) + ln(1 + x) · 1

1 + 1/x
·
(
− 1

x2

)
=
x · ln(1 + 1/x)− ln(1 + x)

x · (1 + x)
.

Scaling with x · (1 + x) · (1 + 1/x) and with x · (1 + x), respectively, yields that f ′(x) = 0
is equivalent to

(1 + x) · ln(1 + 1/x) = (1 + 1/x) · ln(1 + x) (7.4)

and to

x · ln(1 + 1/x) = ln(1 + x) (7.5)

7.10. SOME ANALYSIS 163

These equalities hold for x = 1. Now assume that there is another solution x > 1. We
can state Equation (7.4) as b ln a = a ln b for 1 < a := 1 + 1/x < 1 + x =: b. A chain of
equivalent transformations yields

b ln a = a ln b ⇐⇒ ln b+ ln ln a = ln a+ ln ln b ⇐⇒ g(a) = g(b)

for g(y) = ln y − ln ln y for any real y > 1. As g is differentiable on [a, b], Theorem 7.10.1
implies that there is a real ξ ∈ (a, b) for which g′(ξ) = 0. Since

g′(y) =
1

y
− 1

ln y
· 1

y
=

1

y
·
(

1− 1

ln y

)
,

we obtain ξ = e, and thus, 1 +x = b > ξ = e. This is a contradiction to Equation (7.5) as

x · ln(1 + 1/x) ≤ x · ln(exp(1/x)) = 1 < ln(1 + x) .

Hence, x = 1 is the only real for which f ′(x) = 0.

164 CHAPTER 7. COUNTING PARETO-OPTIMAL SOLUTIONS

Chapter 8

Conclusions and Open Problems

We have studied the successive shortest path algorithm for the minimum-cost flow problem
and the jump algorithm, the lex-jump algorithm, and the list scheduling algorithm for
scheduling with makespan minimization. These algorithms are well-understood in theory,
but there is a huge gap between the worst-case bounds and practical observations. We have
narrowed this gap by applying the framework of smoothed analysis, which benefits from
the advantages of both worst-case analysis and average-case analysis. With a smoothed
analysis we have also been able to show that integer optimization problems with multiple
linear objectives do usually not admit large Pareto sets.

The insights we gained from the analysis of the successive shortest path algorithm
suggested how to modify the shadow vertex method, a variant of the simplex method, in
order to find a short path between two given vertices of a polyhedron. This observation
gives hope that, in future, smoothed analyses will not only deepen the understanding of
the behavior of algorithms on real-life instances, but also reveal typical properties of these
instances which can be exploited algorithmically. This would be an important step from
the analysis of algorithms towards the design of efficient algorithms bringing theory and
practice closer together.

In the following sections we discuss open questions concerning the algorithms and
problems discussed in this thesis.

8.1 The Successive Shortest Path Algorithm

We showed that the successive shortest path (SSP) algorithm has a polynomial running
time in our smoothed input model. Initially, we motivated the study of the SSP algorithm
with the comparison to the minimum-mean cycle canceling (MMCC) algorithm, which is
faster in theory, but slower in practice. It would be nice to have a smoothed lower bound
for the running time of the MMCC algorithm that exceeds the smoothed upper bound
for the running time of the SSP algorithm. This could be seen as an explanation why the

165

166 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

SSP algorithm outperforms the MMCC algorithm on practical instances. Rösner [Rös14]
has already excluded the possibility that we can derive a significantly better smoothed
upper bound for the SSP algorithm if φ = Ω(n). In general, the best we can hope for is
an improvement by a factor of max {1, n/φ}.

The SSP algorithm is not the fastest algorithm for solving the minimum-cost flow
problem. Experimental studies (see [KK12]) show that the cost scaling algorithm due
to Goldberg and Tarjan [GT90] and the network simplex algorithm due to Kelly and
O’Neill [KO91] perform significantly better. It is an intriguing open problem to support
this observation theoretically by a smoothed analysis.

As a by-product we obtained that the shadow vertex method has expected polyno-
mial running time on any maximum-flow linear program if it draws a vector c ∈ [0, 1]|E|

uniformly at random as the second vector for the plane the maximum-flow polytope is
projected onto. In general, we believe that it is an interesting question to study whether
the strong assumption in Spielman and Teng’s [ST04] and Vershynin’s [Ver09] smoothed
analysis that all coefficients in the constraints are perturbed is necessary. In particular,
we find it an interesting open question to characterize for which class of linear programs
it suffices to perturb only the coefficients in the objective function or just the projection
in the shadow vertex method to obtain polynomial smoothed running time.

8.2 Finding Short Paths on Polyhedra

We considered the problem of finding a short path between two given vertices of a poly-
hedron and bounded the expected length of the path computed by the shadow vertex
method from above. This bound depends on the dimension of the polyhedron, the num-
ber of constraints used for its definition, and a parameter δ describing the flatness of the
polyhedron’s vertices. Whereas in general this parameter can be arbitrarily small, it is
polynomially bounded if the coefficients of the linear constraints form a totally unimodular
matrix.

The shadow vertex method we studied for finding short paths on polyhedra is ran-
domized. It would be interesting to know whether this variant can be derandomized.
Another intriguing question is whether we can dispose of the dependence on δ for gen-
eral polyhedra. This would resolve the polynomial Hirsch conjecture. Unfortunately,
without modifications to the algorithm this is not possible: If the given vertices of the
polyhedron are very flat, then there is nearly no randomness left for drawing the vectors
that define the plane on which the polyhedron is projected. This would imply that the
shadow vertex method for solving linear programs has polynomial running time. How-
ever, Murty [Mur80] and Goldfarb [Gol83, Gol94] showed that the shadow vertex method
requires an exponential number of iterations on certain instances.

Furthermore, it is open whether our results carry over to the simplex method with
shadow vertex pivot rule for solving linear programs. If we only consider Phase II where

8.3. SCHEDULING HEURISTICS 167

we are given a vertex of the polyhedron defined by the linear program, then we are in a
very similar situation. The only difference is that we are given one vector of the plane
of projection instead of another vertex of the polyhedron. This reduces the amount of
randomness we can exploit. To avoid this, we could add random noise to the linear
objective, either implicitly by applying smoothed analysis or explicitly by perturbing
the objective’s coefficients. In the latter case we have to ensure that the perturbations
are sufficiently small such that optimal solutions remain optimal. There are instances for
which this cannot be guaranteed, but there might be a chance to deal with these instances.
It seems to be much harder to handle Phase I of the simplex method. Here, we consider
a different polyhedron and it is not clear whether the flatness of its vertices can also be
bounded depending on the parameter δ of the original polyhedron.

8.3 Scheduling Heuristics

We studied the performance guarantees of the jump algorithm and the lex-jump algorithm
for different scheduling variants. For all variants with restricted machines the lower bounds
turned out to be rather robust against random noise, not only in expectation, but even
with high probability. We have also shown that the situation looks much better for
unrestricted machines where we obtained performance guarantees of Θ(φ) and Θ(log φ)
for the jump and lex-jump algorithm, respectively. The latter bound also holds for the
list scheduling algorithm and for the price of anarchy of routing on parallel links.

There are several interesting directions of research and we view our results only as a
first step towards fully understanding local search and greedy algorithms in the framework
of smoothed analysis. For example, we have only perturbed the processing requirements,
and it might be the case that the worst-case bounds for the restricted scheduling variants
break down if also the sets Mj are to some degree random.

Another interesting question is the following: We have always looked at the worst local
optimum since we do not know which local optimum is reached. It might, however, be the
case that the local optima reached in practice are better than the worst local optimum.
It would be interesting to study the quality of the local optimum reached under some
reasonable assumptions on how exactly the local search algorithms work.

8.4 Counting Pareto-Optimal Solutions

We studied the number of Pareto optima of optimization problems with several linear
objectives over a set of integer vectors in the framework of smoothed analysis. For quasi-
concave densities our bound is better than the bound of Moitra and O’Donnell [MO11].
Additionally, we could show that the exponents of the dimension n of the integer vectors
and φ are in the right order. For higher moments our bound is significantly better than

168 CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS

the bound of Röglin and Teng [RT09].
Maybe even more interesting are our results for the model of zero-preserving pertur-

bations suggested by Spielman and Teng [ST04] and Beier and Vöcking [BV06]. For this
model we proved the first non-trivial bound on the smoothed number of Pareto-optimal
solutions. We showed that this bound can be used to analyze multiobjective optimization
problems with polynomial and even more general objective functions. Furthermore, our
result implies that the smoothed running time of the algorithm proposed by Berger et
al. [BRvdZ11] to compute a path trade in a routing network is polynomially bounded for
any constant number of autonomous systems. We believe that there are many more such
applications of our result in the area of multiobjective optimization.

There are several interesting open questions. First of all it would be interesting to find
asymptotically tight bounds for the smoothed number of Pareto-optimal solutions. There
is still a gap between our upper bound of O(n2dφd) for quasiconcave φ-smooth instances
and our lower bound of Ω(nd−1.5φd). Only for the case d = 1 we have a matching lower
bound.

Especially for zero-preserving perturbations there is still a lot of work to do. We
conjecture that our techniques can be extended to also bound higher moments of the
smoothed number of Pareto optima for φ-smooth instances with zero-preserving pertur-
bations. However, we feel that even our bound for the first moment is too pessimistic
as we do not have a lower bound showing that setting coefficients to zero can lead to
larger Pareto sets. It would be very interesting to either prove a lower bound that shows
that zero-preserving perturbations can lead to larger Pareto sets than non-zero-preserving
perturbations or to prove a better upper bound for zero-preserving perturbations.

Bibliography

[AAF+97] James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts.
On-line routing of virtual circuits with applications to load balancing and
machine scheduling. Journal of the ACM, 44(3):486–504, 1997.

[AART06] Baruch Awerbuch, Yossi Azar, Yossi Richter, and Dekel Tsur. Tradeoffs in
worst-case equilibria. Theoretical Computer Science, 361:200–209, 2006.

[AMO93] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows - theory, algorithms and applications. Prentice Hall, 1993.

[Ang06] Eric Angel. A survey of approximation results for local search algorithms.
In Efficient Approximation and Online Algorithms, volume 3484 of LNCS,
pages 30–73. Springer, 2006.

[BCMR13] Tobias Brunsch, Kamiel Cornelissen, Bodo Manthey, and Heiko Röglin.
Smoothed analysis of the successive shortest path algorithm. In Proceed-
ings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1180–1189, 2013.

[BDE+12] Nicolas Bonifas, Marco Di Summa, Friedrich Eisenbrand, Nicolai Hähnle,
and Martin Niemeier. On sub-determinants and the diameter of polyhedra.
In Proceedings of the 28th ACM Symposium on Computational Geometry
(SoCG), pages 357–362, 2012.

[Bei04] René Beier. Probabilistic Analysis of Discrete Optimization Problems. PhD
thesis, Universität des Saarlandes, 2004.

[BG60] Robert G. Busacker and Paul J. Gowen. A procedure for determining a family
of miminum-cost network flow patterns. Technical Report Technical Paper
15, Operations Research Office, 1960.

[BLMS+06] Luca Becchetti, Stefano Leonardi, Alberto Marchetti-Spaccamela, Guido
Schäfer, and Tjark Vredeveld. Average case and smoothed competitive anal-
ysis for the multi-level feedback algorithm. Mathematics of Operations Re-
search, 31(3):85–108, 2006.

169

170 BIBLIOGRAPHY

[Bor86] Karl Heinz Borgwardt. A probabilistic analysis of the simplex method.
Springer, New York, NY, USA, 1986.

[BR11] Tobias Brunsch and Heiko Röglin. Lower bounds for the smoothed number
of Pareto optimal solutions. In Proceedings of the 8th Annual Conference on
Theory and Applications of Models of Computation (TAMC), pages 416–427,
2011.

[BR12] Tobias Brunsch and Heiko Röglin. Improved smoothed analysis of multiob-
jective optimization. In Proceedings of the 44th Annual ACM Symposium on
Theory of Computing (STOC), pages 407–426, 2012.

[BR13] Tobias Brunsch and Heiko Röglin. Finding short paths on polytopes by the
shadow vertex algorithm. In Proceedings of the 40th International Colloquium
on Automata, Languages and Programming (ICALP), Part I, pages 279–290,
2013.

[BRRV11] Tobias Brunsch, Heiko Röglin, Cyriel Rutten, and Tjark Vredeveld.
Smoothed performance guarantees for local search. In Proceedings of the 19th
Annual European Symposium on Algorithms (ESA), pages 772–783, 2011.

[BRV07] René Beier, Heiko Röglin, and Berthold Vöcking. The smoothed number of
Pareto optimal solutions in bicriteria integer optimization. In Proceedings of
the 12th International Conference on Integer Programming and Combinato-
rial Optimization (IPCO), pages 53–67, 2007.

[BRvdZ11] André Berger, Heiko Röglin, and Ruben van der Zwaan. Path trading: Fast
algorithms, smoothed analysis, and hardness results. In Proceedings of the
10th International Symposium on Experimental Algorithms (SEA), pages 43–
53, 2011.

[BV04] René Beier and Berthold Vöcking. Random knapsack in expected polynomial
time. Journal of Computer and System Sciences, 69(3):306–329, 2004.

[BV06] René Beier and Berthold Vöcking. Typical properties of winners and losers
in discrete optimization. SIAM Journal on Computing, 35(4):855–881, 2006.

[BvdHS06] Graham Brightwell, Jan van den Heuvel, and Leen Stougie. A linear bound on
the diameter of the transportation polytope. Combinatorica, 26(2):133–139,
2006.

[CM85] H. William Corley and I. Douglas Moon. Shortest paths in networks with
vector weights. Journal of Optimization Theory and Application, 46(1):79–86,
1985.

BIBLIOGRAPHY 171

[CS80] Yookun Cho and Sartaj Sahni. Bounds for list schedules on uniform proces-
sors. SIAM Journal on Computing, 9:91–103, 1980.

[CV07] Artur Czumaj and Berthold Vöcking. Tight bounds for worst-case equilibria.
ACM Transactions on Algorithms, 3(1):article 4, 2007.

[Dan63] George B. Dantzig. Linear programming and extensions. Rand Corporation
Research Study. Princeton University Press, 1963.

[DF94] Martin E. Dyer and Alan M. Frieze. Random walks, totally unimodular ma-
trices, and a randomised dual simplex algorithm. Mathematical Programming,
64:1–16, 1994.

[DG97] Ali Dasdan and Rajesh K. Gupta. Faster maximum and minimum mean
cycle algorithms for system-performance analysis. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 17:889–899,
1997.

[Ehr99] Matthias Ehrgott. Integer solutions of multicriteria network flow problems.
Investigacao Operacional, 19:229–243, 1999.

[Ehr05] Matthias Ehrgott. Multicriteria Optimization. Springer, 2005.

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorith-
mic efficiency for network flow problems. Journal of the ACM, 19(2):248–264,
1972.

[ERV07] Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and
probabilistic analysis of the 2-opt algorithm for the TSP. In Proceedings
of the 18th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1295–1304, 2007.

[Ets13] Michael Etscheid. Probabilistische Analyse der Qualität einfacher Schedu-
ling-Algorithmen. Bachelor’s thesis (in German), University of Bonn, 2013.

[FF62] Lester R. Ford, Jr. and Delbert R. Fulkerson. Flows in Networks. Princeton
University Press, 1962.

[FH79] Greg Finn and Ellis Horowitz. A linear time approximation algorithm for
multiprocessor scheduling. BIT, 19:312–320, 1979.

[Ful61] Delbert R. Fulkerson. An out-of-kilter algorithm for minimal cost flow prob-
lems. Journal of the SIAM Society, 9(1):18–27, 1961.

172 BIBLIOGRAPHY

[GJ79] Michael R. Garey and David S. Johnson. Computers and Intractibility: A
Guide to the Theory of NP-Completeness. W.H. Freeman & Co., 1979.

[GK07] Celia A. Glass and Hans Kellerer. Parallel machine scheduling with job
assignment restrictions. Naval Research Logistics, 54(3):250–257, 2007.

[GLLK79] Ronald L. Graham, Eugene L. Lawler, Jan K. Lenstra, and Alexander H.
G. Rinnooy Kan. Optimization and approximation in deterministic sequenc-
ing and scheduling: a survey. Annals of Discrete Mathematics, 5:287–326,
1979.

[Gol83] Donald Goldfarb. Worst-case complexity of the shadow vertex simplex algo-
rithm. Technical report, Columbia University, New York, May 1983.

[Gol94] Donald Goldfarb. On the complexity of the simplex method. In Advances
in Optimization and Numerical Analysis, volume 275 of Mathematics and Its
Applications, pages 25–38. Springer, 1994.

[GR12] Navin Goyal and Luis Rademacher. Lower bounds for the average and
smoothed number of Pareto optima. In Proceedings of the 32nd IARCS
Annual Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), pages 58–69, 2012.

[Gra66] Ronald L. Graham. Bounds for certain multiprocessing anomalies. Bell
System Technical Journal, 45:1563–1581, 1966.

[GT89] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circu-
lations by canceling negative cycles. Journal of the ACM, 36(4):873–886,
1989.

[GT90] Andrew V. Goldberg and Robert E. Tarjan. Finding minimum-cost circu-
lations by successive approximation. Mathematics of Operations Research,
15(3):430–466, 1990.

[Han80] Pierre Hansen. Bicriterion path problems. In Multiple Criteria Decision
Making: Theory and Applications, volume 177 of Lecture Notes in Economics
and Mathematical Systems, pages 109–127, 1980.

[Hoe63] Wassilij Hoeffding. Probability inequalities for sums of bounded random
variables. Journal of the American Statistical Association, 58(301):13–30,
1963.

[HS88] Dorit S. Hochbaum and David B. Shmoys. A polynomial approximation
scheme for machine scheduling on uniform processors: using the dual ap-
proximation approach. SIAM Journal on Computing, 17:539–551, 1988.

BIBLIOGRAPHY 173

[HS10] Martin Hoefer and Alexander Souza. Tradeoffs and average-case equilibria
in selfish routing. ACM Transactions on Computation Theory, 2(1):article 2,
2010.

[Iri60] Masao Iri. A new method for solving transportation-network problems. Jour-
nal of the Operations Research Society of Japan, 3(1,2):27–87, 1960.

[Jac55] James R. Jackson. Scheduling a production line to minimize maximum tar-
diness. Technical report, University of California, Los Angeles, 1955.

[Jew62] William S. Jewell. Optimal flow through networks. Operations Research,
10(4):476–499, 1962.

[Joh54] Selmer M. Johnson. Optimal two- and three-stage production schedules with
setup times included. Naval Research Logistics Quarterly, 1(1):61–68, 1954.

[KK92] Gil Kalai and Daniel J. Kleitman. A quasi-polynomial bound for the diameter
of graphs of polyhedra. Bulletin of the AMS, 26(2):315–316, 1992.

[KK12] Zoltán Király and Péter Kovács. Efficient implementations of minimum-
cost flow algorithms. Acta Universitatis Sapientiae, Informatica, 4(1):67–118,
2012.

[Kle67] Morton Klein. A primal method for minimal cost flows with applica-
tions to the assignment and transportation problems. Management Science,
14(3):205–220, 1967.

[KO91] Damian J. Kelly and Garrett M. O’Neill. The minimum cost flow problem
and the network simplex solution method. Master’s thesis, University College
Dublin, 1991.

[KV07] Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and
Algorithms. Springer, 4th edition, 2007.

[KW67] Victor Klee and David W. Walkup. The d-step conjecture for polyhedra of
dimension d < 6. Acta Mathematica, 117:53–78, 1967.

[KW00] Kathrin Klamroth and Margaret M. Wiecek. Dynamic programming ap-
proaches to the multiple criteria knapsack problem. Naval Research Logistics,
47(1):57–76, 2000.

[Li06] Chung-Lun Li. Scheduling unit-length jobs with machine eligibility restric-
tions. European Journal of Operational Research, 174:1325–1328, 2006.

174 BIBLIOGRAPHY

[LL08] Joseph Y. T. Leung and Chung-Lun Li. Scheduling with processing set
restrictions: A survey. International Journal of Production Economics,
116:251–262, 2008.

[MAK07] Wil P. A. J. Michiels, Emile H. L. Aarts, and Jan H. M. Korst. Theoretical
Aspects of Local Search. Springer, 2007.

[MG98] Adli Mustafa and Mark Goh. Finding integer efficient solutions for bicriteria
and tricriteria network flow problems using dinas. Computers & Operations
Research, 25(2):139–157, 1998.

[MHW01] Matthias Müller-Hannemann and Karsten Weihe. Pareto shortest paths is
often feasible in practice. In Proceedings of the 5th International Workshop
on Algorithm Engineering (WAE), pages 185–198, 2001.

[Min60] George J. Minty. Monotone networks. In Proceedings of the Royal Society of
London A, pages 194–212, 1960.

[MO11] Ankur Moitra and Ryan O’Donnell. Pareto optimal solutions for smoothed
analysts. In Proceedings of the 43rd Annual ACM Symposium on Theory of
Computing (STOC), pages 225–234, 2011.

[MR11] Bodo Manthey and Heiko Röglin. Smoothed analysis: Analysis of algorithms
beyond worst case. it - Information Technology, 53(6):280–286, 2011.

[MU05] Michael Mitzenmacher and Eli Upfal. Probability and Computing - Ran-
domized Algorithms and Probabilistic Analysis. Cambridge University Press,
2005.

[Mur80] Katta G. Murty. Computational complexity of parametric linear program-
ming. Mathematical Programming, 19(1):213–219, 1980.

[Nad89] Denis Naddef. The Hirsch conjecture is true for (0, 1)-polytopes. Mathemat-
ical Programming, 45:109–110, 1989.

[NU69] George L. Nemhauser and Zev Ullmann. Discrete dynamic programming and
capital allocation. Management Science, 15(9):494–505, 1969.

[OLL08] Jinwen Ou, Joseph Y.-T. Leung, and Chung-Lun Li. Scheduling parallel
machines with inclusive set restrictions. Naval Research Logistics, 55(4):328–
338, 2008.

[Orl84] James B. Orlin. Genuinely polynomial simplex and non-simplex algorithms
for the minimum cost flow problem. Technical report, Sloan School of Man-
agement, MIT, Cambridge, MA, 1984. Technical Report No. 1615-84.

BIBLIOGRAPHY 175

[Orl93] James B. Orlin. A faster strongly polynomial minimum cost flow algorithm.
Operations Research, 41(2):338–350, 1993.

[Orl97] James B. Orlin. A polynomial time primal network simplex algorithm for
minimum cost flows. Mathematical Programming, 78(2):109–129, 1997.

[RG94] Tomasz Radzik and Andrew V. Goldberg. Tight bounds on the number
of minimum-mean cycle cancellations and related results. Algorithmica,
11(3):226–242, 1994.

[Rös14] Clemens Rösner. Smoothed analysis of the SSP algorithm and local search.
Master’s thesis, University of Bonn, 2014.

[RRSV12] Cyriel Rutten, Diego Recalde, Petra Schuurman, and Tjark Vredeveld. Per-
formance guarantees of jump neighborhoods on restricted related parallel
machines. Operations Research Letters, 40:287–291, 2012.

[RT09] Heiko Röglin and Shang-Hua Teng. Smoothed analysis of multiobjective
optimization. In Proceedings of the 50th Annual IEEE Symposium on Foun-
dations of Computer Science (FOCS), pages 681–690, 2009.

[Rut13] Cyriel Rutten. The Power of Simple Scheduling Policies. PhD thesis, Maas-
tricht University, 2013.

[SA00] Anders J. V. Skriver and Kim Allan Andersen. A label correcting approach
for solving bicriterion shortest-path problems. Computers & Operations Re-
search, 27(6):507–524, 2000.

[San10] Francisco Santos. A counterexample to the Hirsch conjecture. CoRR,
abs/1006.2814, 2010.

[Smi56] Wayne E. Smith. Various optimizers for single-stage production. Naval Re-
search Logistics Quarterly, 3(1–2):59–66, 1956.

[SS05] Guido Schäfer and Naveen Sivadasan. Topology matters: Smoothed com-
petitiveness of metrical task systems. Theoretical Computer Science, 341(1–
3):3–14, 2005.

[SST06] Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng. Smoothed analysis
of the condition numbers and growth factors of matrices. SIAM Journal on
Matrix Analysis Applications, 28(2):446–476, 2006.

[ST04] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis of algorithms:
Why the simplex algorithm usually takes polynomial time. Journal of the
ACM, 51(3):385–463, 2004.

176 BIBLIOGRAPHY

[ST09] Daniel A. Spielman and Shang-Hua Teng. Smoothed analysis: an attempt to
explain the behavior of algorithms in practice. Communications of the ACM,
52(10):76–84, 2009.

[SV07] Petra Schuurman and Tjark Vredeveld. Performance guarantees of lo-
cal search for multiprocessor scheduling. Informs Journal on Computing,
19(1):52–63, 2007.

[Tar85] Éva Tardos. A strongly polynomial minimum cost circulation algorithm.
Combinatorica, 5(3):247–256, 1985.

[Ver09] Roman Vershynin. Beyond Hirsch conjecture: Walks on random polytopes
and smoothed complexity of the simplex method. SIAM Journal on Com-
puting, 39(2):646–678, 2009.

[Vöc07] Berthold Vöcking. Selfish load balancing. In Algorithmic Game Theory,
chapter 20. Cambridge University Press, New York, NY, USA, 2007.

[Vyg02] Jens Vygen. On dual minimum cost flow algorithms. Mathematical Methods
of Operations Research, 56(1):101–126, 2002.

[Zad73] Norman Zadeh. A bad network problem for the simplex method and other
minimum cost flow algorithms. Mathematical Programming, 5(1):255–266,
1973.

Index

arc, 53
backward arc, 53
empty arc, 53
forward arc, 53
saturated arc, 54

b-flow, 15
balance value, 15

capacity scaling algorithm, 17

demand node, 15
discretization, 43, 54, 60, 63, 67
domination, 111, 120

strong domination, 111

edge, 53
auxiliary edge, 15
backward edge, 15
capacity, 15, 19
cost, 15
forward edge, 15
residual capacity, 15
residual cost, 15

extraction of fragile worst-case properties,
42

flow, 16, 19, 53
cost, 15
empty flow, 53
maximum flow, 53
value, 16, 20

flow network, 15, 19, 53

greedy algorithm, 26

Hirsch conjecture
polynomial Hirsch conjecture, 21

Hoeffding’s inequality, 45, 84, 86, 101, 104

interval probability bound, 41, 45, 67

job, 25
finishing time, 26
processing requirement, 25

jump algorithm, 12, 26, 81, 82, 98

Kirchhoff’s law, 15, 19

lex-jump algorithm, 12, 26, 43, 81, 86, 94,
98

linear program, 19
linear constraint, 19

list scheduling, 12, 26, 43, 81, 86, 94, 99,
102

local search, 26
improvement step, 26
local optimum, 27

LPT algorithm, 102

machine, 25
critical machine, 26
load, 81
speed, 25
total processing requirement, 81

makespan, 26
Markov’s inequality, 45, 137
master sink, 15
master source, 15
maximum flow problem, 19

linear program, 20

177

178 INDEX

minimum-cost b-flow, 15
minimum-cost flow problem, 11, 14, 44
minimum-mean cycle canceling algorithm,

17
Minkowski sum, 111

optimization problem
multicriteria, 12, 30, 109, 119
single-criterion, 12

Pareto optimality
Pareto optimum, 12, 30, 111, 120
Pareto set, 12, 31
Pareto-optimal solution, 12, 30, 31,

109, 111, 120
weak Pareto optimum, 111, 121
weakly Pareto-optimal solution, 111,

120
polyhedron, 12, 19, 21, 65

degenerate, 65, 66
diameter, 21
polytope, 23

price of anarchy, 27
principle of deferred decisions, 40, 71, 72,

76, 112

quasiconcave function, 32, 42, 46, 161

residual network, 15, 53
restricted multi-profit knapsack problem,

119
Rolle’s theorem, 162

schedule, 26
jump optimal schedule, 26
lex-jump optimal schedule, 26
list schedule, 26
near list schedule, 87

scheduling, 12, 25
with identical machines, 25
with related machines, 25, 82
with restricted machines, 25

with unrestricted machines, 25
shadow vertex method, 65
simplex method, 12, 19, 21

pivot rule, 19
shadow vertex method, 19, 21
shadow vertex pivot rule, 12, 19, 21

sink, 19
smoothed analysis, 11, 13

smoothed polynomial running time, 14
smoothed running time, 13
smoothing parameter, 13

smoothed performance guarantee, 28
social welfare function, 27
source, 19
sub-determinant, 65
successive shortest path algorithm, 11, 15,

17, 44, 53, 65
supply node, 15

totally unimodular, 23

union bound, 39, 55, 56, 72, 73, 104

zero-preserving perturbations, 33

