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Abstract

Motivation

The postulate that biological molecules rather act together in intricate networks, pioneered
systems biology and popularized the study on approaches to reconstruct and understand
these networks. These networks give an insight of the underlying biological process and
diseases involving aberration in these pathways like, cancer and neuro degenerative diseases.
These networks can be reconstructed by two different approaches namely, data driven and
knowledge driven methods. This leaves a critical question of relying on either of them. Relying
completely on data driven approaches brings in the issue of overfitting, whereas, an entirely
knowledge driven approach leaves us without acquisition of any new information/knowledge.
This thesis presents hybrid approach in terms of integration of high throughput data and
biological knowledge to reverse-engineer the structure of biological networks in a probabilistic
way and showcases the improvement brought about as a result.

Accomplishments

The current work aims to learn networks from perturbation data. It extends the existing
Nested Effects Model (NEMs) for pathway reconstruction in order to use the time course
data, allowing the differentiation between direct and indirect effects and resolve feedback
loops. The thesis also introduces an approach to learn the signaling network from phenotype
data in form of images/movie, widening the scope of NEMs, which was so far limited to gene
expression data. Furthermore, the thesis introduces methodologies to integrate knoowledge
from different existing sources as probabilistic prior that improved the reconstruction accuracy
of the network and could make it biologically more rational. These methods were finally
integrated and for reverse engineering of more accurate and realistic networks.

Conclusion

The thesis added three dimensions to existing scope of network reverse engineering specially
Nested Effects Models in terms of use of time course data, phenotype data and finally the
incorporation of prior biological knowledge from multiple sources. The approaches developed
demonstrate their application to understand signaling in stem cells and cell division and
breast cancer. Furthermore the integrative approach shows the reconstruction of AMPK/EGFR
pathway that is used to identify potential drug targets in lung cancer which were also validated
experimentally, meeting one of the desired goals in systems biology.
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Chapter 1
Introduction

1.1 Biological Systems

Biological systems are remarkably complex. They owe their functionality and behavior not
only to their components (genes, proteins and other small molecules) but to the synergistic
output of complex interactions among them (Kitano, 2002). Therefore, deciphering a biological
system like cell needs not only the elucidation of the individual entities but also of the interplay
involved therein. To achieve this, two possible ways (Figure[L.I) have been proposed ; top-down
and bottom-up (Bruggeman and Westerhoff, 2007; Kitano, 2002). In the current work the focus
is on the reverse engineering of systems which is primarily considered as top-down approach.
The top-down approach treats the entire system as a black box and then tries to identify the
details of the components of the systems following a reductionist approach. It uses data as
the starting point and statistical data mining approaches are applied for a comprehensive
understanding of the biological system. The second way is the bottom-up approach, starting
from the lowest level of system organization. First, the details of the individual units of the
system are collected and then the entire system is constructed using these system components.

1.2 Networks in Biological systems

As it is about the interactions of the constituents rather than merely the constituent itself, at
a comprehensive level cellular systems can be conceivably represented as graphs or networks.
These networks abstractly represent a biological system, capturing their core characteristics.
In these circuits nodes represent the molecular entities and edges connecting pairs of vertices
correspond to the relation between them. The overall cellular system is an overlay of such
networks. Cellular systems comprise many diverse components and component interactions.
There are signal transduction, transcriptional and metabolic networks. These different net-
work types are not distinct from each other, but they are interconnected and operate together.
Every category has its own design principle and biological behavior (Palsson, 2006; Alon, 2006).
Therefore it is a prerequisite to go through these categories and their properties before making
an attempt to reconstruct them and understand their functioning.
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Figure 1.1.: Modeling approaches in systems biology. Bottom-up systems biology is knowledge
driven; by contrast, top-down systems biology is systemic-data driven.

1.2.1. Categories of biological networks

Signaling Networks: In order to respond to changes in their immediate environmental
stimuli, cells must be able to receive and process signals. Signal transduction pathways govern
a cell’s response to extra-cellular stimuli, including, e.g., how a cell adapts its transcriptional
regulatory program in response to specific environmental changes. Signaling pathways (Figure
refer to the set of biochemical processes using which cells respond to internal or external
cues (Albert and Oltvai, 2007). The entire life history of cell starting from its proliferation,
differentiation, functioning unto its death is orchestrated by signaling pathways. Signaling
pathways in contrast to metabolic pathways convey information. They process and encode
along with receiving and transmitting information. Thus signaling involves a set of cascades
taking place between the receptor and effector.

Cell signals are mostly chemical in nature. Receptors (most often trans-membrane proteins)
bind to signaling molecules and subsequently transmit the signal via protein actions like ion
channel opening. Signal transduction systems can be simple, like- transfer of ions resulting in
the electrical potential difference of the cell, propagating the signal in the cell or more complex
signal transduction (Gutkind, 2000). Activation of receptors can trigger the synthesis of small
molecules called second messengers, which initiate and coordinate intra-cellular signaling
pathways via enzyme activation via phosphorylation It allows for intricate control of protein
function. At any one time, a cell is receiving and responding to numerous signals, and multiple

2
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signal transduction pathways are operating in its cytoplasm. Many points of cross talks exist
among these pathways. For instance, a single second messenger or protein kinase might play
a role in more than one pathway. Through this network of signaling pathways, the cell is
constantly integrating all the information it receives from its external environment.

Metabolic Networks: Metabolism in cellular systems produce energy, amino acids, and
other precursors required for the growth and maintenance of a cell. The set of biological net-
works associated with such activities fall into the category of metabolic networks. Metabolic
networks envisage the various chemical reaction involved in anabolism (construct molecules
from smaller units) and catabolism (breaking bigger molecules into smaller units and release
energy) E These networks bear a lot of small molecules and intermediate small molecules (Pals+
son, 2006). Such networks execute chemical changes of the involved molecules. As an example
consider glycolysis, where glucose (Cs H120g) is converted into pyruvate (C H3COCOO™+H™).
The process releases energy used to form the high-energy compounds ATP (Adenosine Tri
Phosphate) and NADH (reduced Nicotinamide Adenine Di-Nucleotide) (Nelson et al., 2008).

Metabolic network mostly have been built manually through a four step process including an
initial reconstruction from gene-annotation coupled with information from online databases
e.g. KEGG (Kanehisa et al., 2014).

Transcriptional Networks: Transcriptional regulatory networks control the transcription
state of a genome. In general, they describe the connections between environmental cues
and transcriptional responses. They are comprised of nodes, the genes and their regulators,
joined together by edges, which represent physical and/or regulatory interactions. Physical
interactions between genes and TFs (Transcriptional Factors) can be delineated using two
conceptually and practically different strategies that are highly complementary (MacNeil and
Walhout,2011). In addition to representing physical interactions, GRN edges can also represent
regulatory relationships that can, for instance, be inferred by correlating gene expression
profiles between genes and potential regulators.

Transcriptional networks are involved in the regulation the expression of thousands of genes
involved in different biological processes. These networks act as a control systems for various
biological processes like cellular development. Acting as a hardwired control system, they
invoke responses through sequential steps in the form of genomic regulatory codes. The
role of these systems is to specify and regulate the sets of genes that must be expressed in
specific spatial and temporal patterns. In physical terms, these control systems consist of
many thousands of modular DNA sequences. Each such module receives and integrates
multiple inputs, in the form of regulatory proteins (activators and repressors) that recognize
specific sequences within them (Davidson and Levin, 2005). The end result is the precise
transcriptional control of the associated genes. Some regulatory modules control the activities
of the genes encoding regulatory proteins.

It is worth mentioning that though these are different types of networks they do not always
exist in isolation but may be involved in a cross talk . For example, the pluripotent state in

http://www.chem.qmul.ac.uk/iupac/bioinorg; Accessed: April 2013
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Figure 1.2.: Figure showing sharing of nodes and edges across different networks. (left) Pro-
portion of nodes and (right) edges shared across 12 KEGG pathways. Indicating
the properties of biological network for cross-talk with shared nodes (left) and
modularity with shared edges (right). A detailed list of the involved pathways and
the formula for the computation of this plot is available in appendix A

embryonic stem cells is maintained by a network of transcription factors and is influenced by
specific signaling pathways (Ng and Surani, 2011) or glycolytic enzymes acting as transcrip-
tional regulator (whan Kim and Dang, 2005). The former involves a cross talk of transcriptional
and signaling network, whereas the later illustrates the case of transcriptional and metabolic
networks. This increases the complexity in classification of biological networks.

1.2.2. Properties of biological networks

Robustness: Robustness is a ubiquitous property of biological systems 2004). Ro-
bustness is the property of a system to by virtue of which, it maintains its functionality caused
by internal or external perturbations (Rizk et al.,|2009). In both engineering and biology, a sys-
tem must function under all likely interventions that come with the inherent properties of the
components and the environment and sustain them. The networks operating in
the biological system must keep the concentrations of their components within tightly defined
bounds despite intra and extra cellular disturbances. The topology of these networks renders
the output of the pathway invariant against a large class of possible adverse fluctuations like-
changes in energy states or total protein concentrations (Steuer et al., 2011).

Dynamics: The molecular interactions within signaling networks operate in the order of
seconds to minutes at timescale while for trancriptional networks, it can be longer
page:11). The components of a signaling pathway exhibit a dynamically coordinated behavior
in time and space for specificity in their response Kholodenko|(2006). They respond to changes
in their environment and cell state, and they execute these responses on timescales that can

4
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be observed via genomic technologies. The specificity in signal response is contributed by the
timing, amplitude and duration of signaling.

Cross-talk: Though life processes are diverse, yet the number of biological pathways es-
pecially signaling pathways is limited. The cross talks across different types of networks
has already been presented in the previous section. This part deals in a more generalized
way about cross talks. There is a sharing of some signaling pathways or a part of it across
biological processes (Figure[1.2). To illustrate, we consider MAPK cascades, which can be
activated/inactivated by many stimuli/perturbations (Figure[I.3) (Raman et al.,2007). They can
regulate diverse cellular phenomena ranging from proliferation, differentiation to apoptosis.
Hence, common components of a signaling pathway come-up with elicit effects in the same
signaling pathway. A characteristic feature of cellular signaling in eukaryotic cells is that com-
ponents are frequently shared among pathways, providing a potential for cross-talk. However,
this can also lead to an inappropriate response, if stimulus specific signals transmitted through
one pathway inadvertently cross-activate the other(s). Several known mechanisms can enable
signaling pathways with shared components to respond specifically to any one stimulus. Spa-
tial insulation can be achieved by localizing the pathways to different cellular compartments
or by incorporating the shared component into distinct macromolecular complexes through
scaffolding molecules.

Specificity: Though, the biological space is shared by many signaling pathways and cells re-
spond to a wide variety of stimuli, yet they maintain specificity (Kholodenko, 2006). Specificity
enables transmission of different signals by common components of signaling pathway, in
response to corresponding stimuli; eliciting distinct outputs (Komarova et al., 2005). A classical
example for specificity is the MAPK pathway ( mitogen -activated protein kinase) (Figure[1.3).
EGF induces transient MAPK activation, which results in cell proliferation, whereas a sustained
MAPK activation by NGF changes the cell fate and induces cell differentiation (Marshall, 1995;
Murphy and Blenis, 2006). Thus, cells respond to a myriad of stimuli using a limited number
of signaling pathways. These pathways do not simply transmit, but process, encode and
integrate signals. Specificity can be attributed to spatio-temporal activation profiles of the
same repertoire of signaling proteins (Hoffmann et al.,{2002). This property of specificity paves
the way to understand the system behavior on specific stimuli/perturbation.

Modularity: A module in a network is a set of nodes that have strong interactions within
themselves and a common function. A module has defined input nodes and output nodes
that control the interactions with the rest of the network of interconnected nodes, each of
which has a state that depends on the integrated inputs from other nodes. A module also has
internal nodes that do not significantly interact with nodes outside the module (Alon, 2003).
The potential reason for network modularity is that individual modules serving a defined
biological function developed as one block during the evolutionary process. (Alon, 2003).

Such circumstances make biological networks an interesting as well as challenging domain
to study. These concepts, together with the current technological revolution in biology, may
eventually allow characterization and understanding of cell-wide networks, with great benefit
to medicine as well as develop an understanding the laws of nature operating and evolving
biological systems (Alon, 2003).
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Mitogen Inflammation Oxidative stress

Figure 1.3.: MAPK signaling pathways organized in modular cascades in which activation of
upstream kinases by cell surface receptors lead to sequential activation of a MAPK
module. The figure shows the major MAPK pathway components and their targets
for different stimulations. In green we have the normal signal flow pathways and
red lines indicate combined action (AND or OR). Dotted lines indicate signaling
cross-talks between MAPK modules. The figure thus represents the modular,
specific and cross talk nature in MPK pathways as an example. Redrawn from
www.cellsignaling.com [Accessed: March 2013]

1.3 Reverse Engineering

The reconstruction of mapping the intelligible structure of network among molecular com-
ponents from data is termed as data driven network inference (Stolovitsky and Califano, 2007).
Reverse engineering (or deconvolution) is the process of elucidating the structure of the sys-
tem by reasoning backward from observation of its behavior (Hartemink, 2005). Network
inference via reverse engineering is one of the challenges in Bioinformatics. In a way reverse
engineering analyzes the behavior of a system to characterize its architecture. It can monitor
these profiles and can traceback the pathways, helping one to experimentally validate the
predictions (Stolovitzky et al., 2007). Depending on the data used for inferring the network,
which, principally, may either come from DNA microarray, RNA-seq, proteomics or ChIP-
chip experiments, or combinations thereof, the biological interpretation of an edge in these
networks is dependent thereon. For expression data, inferred interactions may preferably
indicate transcription regulation, but can also correspond to protein-protein interactions
(Emmert-Streib et al., 2012; Tegnér et al.,|2003).

6
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The ambition to achieve systematic, comprehensive and accurate reverse engineering of
biological networks makes systems biology much more demanding for experimental biologists
than the current practice of biology. A methodical experiment has to be performed and at
the same time the quality of measurement and data produced should be high to be used as a
reference point for simulation, modeling and prediction (Kitano,|2002; Hache et al., 2009).

4 )

Perturbation

\Expression profilej f , ) \

\ CeIIuIarsystem) [ \ \Netwoiinference/

K Inferred network /

Figure 1.4.: Schematic diagram for the work-flow in reverse engineering of cellular networks
via perturbation technique.

1.3.1. Experimental techniques

A modern way to reverse engineering cellular networks is to perturb the cellular system and
observe its response. A specific perturbation perturbations forces the cell to find new equilib-
rium points and hence can activates specific pathways ultimately leading to corresponding
expression profiles. However non-perturbation techniques are most often encountered due to
their simplicity. Canvassed below are the various experimental techniques and sources of data
used for the purpose.

Non-perturbation techniques

The simplest experiment to generate data for network reverse engineering is measuring the
components of biological systems (genes/proteins) in different conditions. The conditions
can be time (Morrissey et al., 2010;Wang et al., 2006) or environment (Dhaeseleer et al., 2000;

7
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Carrera et al.,2009). These methods do not need any targeted perturbation of involved compo-
nents. For example- an expression data for a cell under different conditions of environmental
stress outline the pattern that define the connections between the genes/proteins (Carrera
et al., 2009). (Penfold and Wild, 2011)

Perturbation based techniques

Genetic interactions are best inferred when the genes explore a substantial dynamical range.
Traditionally, this has been achieved by systematic perturbations in simple organisms (e.g., by
large-scale gene knockouts or exogenous constraints) (Esvelt and Wang, |2013), which are not
easily obtained in more complex cellular systems (Basso et al.,|2005). Perturbation data can be
used to deduce the biological networks via reverse engineering work-flow. The first step in such
reverse engineering of cellular system is the perturbation of a functioning system (di Bernardo
et al.,|2005). However, as single perturbation cannot lead to conclusions in biological systems
and reveal the underlying network. For this we need to perturb different genes (entities) to
explicitly understand the dynamics of involved components (Stelniec-Klotz et al.,2012).

In organisms such as yeast such perturbations are easier, but in higher organisms/cells
(eukaryotic), it gets experimentally complicated. RNAi is the offers a practical way to perturb
multiple genes in these systems (Wang et al., 2011). Systematic RNA interference (RNAi)
perturbations allows performing such perturbation for specific genes in a cell (Tewari et al.,
2004). During the experiment a double-stranded RNA (with a sequence complementary to
a gene of interest) is introduced into a cell / organism, where it is recognized as exogenous
genetic material and activates the RNAi pathway (See BOX-1.1 for details) leading to a drastic
decrease in the expression of a targeted gene. This activity can be then measured in different
ways (see section 1.3.2).

RNA interference (RNAi) allows simultaneous screening of hundreds to thousands of genes
in a high content manner. This screening can be achieved by first performing a targeted RNA
interference followed by measuring the expression values for the entire cell. Network inference
often has the goal of generating testable hypotheses regarding biological interplay (Peér and
Hacohen, 2011). RNAi makes this possible by mapping the RNAi functional network to that
of the protein interaction networks (Ramanuj Dasgupta, 2004). It can help to identify new
regulators overlooked in RNAi screens thus generating testable hypothesis on gene function.

1.3.2. Data from experiments

The effect of above mentioned experimental techniques measure the system in terms of
activities of biomolecules (genes/proteins) for reverse engineering of the system. However, it
is important to measure the changes brought about by these perturbations simultaneously
for a large number of genes to get overall impact of perturbation on the cellular system. Gene
expression measurements offers the most obvious solution to the issue as per the “Central
Dogma of Molecular Biology” (Figure[L.5). They represent the level of transcriptional activity
of each gene under observation. High throughput technologies like microarrays (Brown and
Botstein, 1999), allow the researchers to monitor average mRNA concentrations in a cell
population on a genome-wide scale. Microarrays offer opportunities to identify gene deletion
consequences on entire genomes.
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Although, the activity measurement of involved molecules is mainly accomplished with
microarray techniques, other techniques like ChiP, SAGE and RNA-seq are also popular to
measure gene activity at mRNA level. The differential activity of cell can also be measured
in terms of protein expression. At protein level, techniques like RPPA (Pierobon et al., 2011),
mass spectrometry and western blotting is used. Although other high throughput techniques
are available, the current work is mainly based on microarray data.

N == [ == ()

Figure 1.5.: The Central Dogma of Molecular Biology: The information flow from DNA infor-
mation to proteins.

Microarray Data

Microarrays (Schena et al.,|1995) are widely used for the expression profiling of thousands of
genes simultaneously. It involves attaching probes (gene sequences) by robotic machines on a
pre-determined spots onto a chip. The mRNA produced as a result of activity of corresponding
gene in the cell of interest, binds to these probes which are complementary to the mRNA's.
To make the measurements of the mRNA's, they are labeled with a fluorescent dye. Certain
active genes produce more mRNA that attach to the chip and produce brighter areas whereas
spots that are not bright evidence lower activity of corresponding genes. The intensity of
fluorescence thus reflects the quantified presence of the mRNA‘s and ultimately the gene
expression.

1.4 Objectives
The objectives of the current work are as follows:
1. Extend Nested Effects Model (NEM) approach to time course data.
2. Develop a method to adapt NEMs to be able to use phenotype data.

3. Develop a method to integrate different sources of biological knowledge as probabilistic
consensus prior for network inference.

4. Apply and test the effect of informative prior in network inference via NEM.

1.5 Document road-map

The present document has been sectioned into 8 chapters. This chapter discussed the
biological aspects of introduction to the biological networks and reverse engineering along
with challenges and goals of this thesis. The upcoming chapters outline as follows:
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e Modeling Approaches: Chapter[2|gives an overview of recent approaches to map the de-
pendency structure between genes. The chapter gives an overview of reverse engineering
of biological systems via probabilistic graphical models and their state of art.

o Nested Effects Model: Chapter[3|describes Nested Effects Models to infer network from
perturbation data. The chapter describes the principle and mathematical formalism of
nested effects models and its different formulations.

¢ dynoNEM: Dynamic Nested Effects Model: The h chapter discusses a novel approach
called dynoNEM (Dynamic Nested Effects Models) to apply Nested Effects Models on
time-course perturbation data. The method was developed during current doctoral work.
The further improvement in the approach with MCMC based sampling is also discussed
in this chapter.

e Movie-NEM: dynoNEM with image data Chapter[5|proposes the use of image features
from movie as a source of time series data to reverse engineer biological network. The
novel MovieNEM approach is introduced in this chapter.

¢ Developing informative prior: The @h chapter talks about the integrating information
from different heterogeneous sources of biological knowledge into one probabilistic
consensus prior. Such a prior can be used to improve network inference.

e Applying prior knowledge The seventh (7) chapter displays the application of the prob-
abilistic consensus prior and NEM on Non-Small Lung Cancer perturbation data.

¢ Conclusion and Outlook: The h and final chapter brings out the high level conclusive
messages and an exploration of future outlook in the direction. The chapter outlines the
accomplishments of the work and the possible future orientation of the research done
during the doctoral work.

The current chapter overviewed the biological concepts regarding biological network and tech-
nical details from a biologist point of view. The properties and of signaling pathways and their
importance were discussed. This was followed by a brief description of experiments and data
used to understand the structure and functioning of the signaling system in cell. Finally the
chapter came up with the plans and goals for the current work. In the next chapter; an overview
of methods to model these signaling systems is presented with a detailed description of Nested
Effects Model (NEM) as it is the in-focus tool for this dissertation.
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BOX 1.1: RNA Interference (RNAI)

RNA interference (RNAI) is a powerful tool to perform loss-of-function genetic screens
(Fire et al.,|1998; Hannon, 2002). Certain small dsSRNAs, such as short interfering RNAs
(siRNAs) and microRNAs (miRNAs) found in mammalian cells, regulate gene expression
via gene-silencing enzymatic complexes. RNAi offers certain advantages over insertional
mutation like- speed, flexibility and convenience.(Boehm and Hahn,2011)

The work-flow for RNAi (Figure drawn using pathway builder?)starts with the
introduction of a double stranded RNA (dsRNA) into the cell. These are recognized and
processed into small interfering RNAs (siRNAs) by Dicer. Dicer is a double-stranded-RNA-
specific ribonuclease from the RNase III protein family. The double stranded siRNAs are
passed to the RNA-induced silencing complex (RISC), and the complex becomes activated
by unwinding of the duplex. Activated RISC complexes can regulate gene expression
at many levels. Almost certainly, such complexes act by promoting RNA degradation
with siRNAs and translational inhibition with microRNAs. However, similar complexes
probably also target chromatin remodeling. In plants, amplification of the silencing signal
can also occur. The ways in which miRNAs cause silencing of their target mRNAs are
still debated. The mechanisms involved are likely to include: inhibition of translation;
triggering removal of the poly(A) tail from mRNAs (de-adenylation); disruption of cap-tail
interactions; and degradation of mRNAs by exonucleases and further translational
inhibition by micro RNAs (Hannon, 2002). The difference in the cell can then be accessed
based on microarray data.
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Figure 1.6.: Diagram representing overall scheme of RNAi process. Redrawn from Hannon
et al. using pathway builder

“www.proteinlounge.com ; Accessed February 2013
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Chapter 2
Reverse Engineering of Biological Networks

This chapter will deal with different paradigms of network reverse engineering popular in
bioinformatics and computational biology. The concept involved, state of art and conclusive
messages for these approaches will be explained in brief here. Although the thesis focuses on
Nested Effects Models, the chapter covers other approaches for the sake of completeness. For
every approach the formalism, state of art and critical points are entailed in the current chapter
Bayesian Networks has been dealt rigorously in the present chapter as the basics for Nested
Effects Models (NEMs).

2.1 Introduction

The idea that biological molecules rather act together in intricate networks, pioneered
systems biology. This postulate has popularized the study on approaches to reconstruct and
understand networks. In the first chapter an introduction to biological systems together with
different experimental techniques that can be used to measure their activity were discussed.
Reconstructing networks from such data can offer insights in the functioning of biological
systems. However, it is an under-determined problem, as the number of interactions that can
be inferred exceeds the number of independent measurements (De Smet and Marchal, 2010).
At the same time, the properties of networks like dynamical behavior, modularity, cross-talk etc.
(See make the task challenging. Different state-of-the-art tools for network inference use
specific assumptions and simplifications to deal with under determination, and this influences
the inference. The outcome of network inference therefore varies between tools and can be
highly complementary. In the current chapter the methods and tools available for network
reconstruction are discussed. For the ease of discussion the methods are categorized into
different classes based on the mathematical formalism adopted in there.

2.2 Approaches

The current state-of-the-art approaches for network inference rely on specific assumptions.
Each of these methods therefore, differ in terms of strategy, mathematical schema and ul-
timately the inferred network (De Smet and Marchal, [2010). This section presents these
categories and their underlying framework with illustration.
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2.2.1. Clustering and correlation based approaches

Though clustering is not precisely a network inference algorithm, it lends a framework to
analyze gene expression and group genes exhibiting similar expression profile into clusters
(Eisen et al.,|1998). Each cluster contains a set of genes whose activities follow similar trend
(up-regulation and down-regulation). Such genes are said to be co-expressed. The rational
behind the use of clustering as a network inference tool is that there is a high chance of the
genes in a cluster to be functionally related or co-regulated (Dhaeseleer et al.,|2000). This gives
rise to the concept of co-expression networks. Co-expression networks are constructed by
computing first a correlation matrix for genes and then a similarity score for each pair of genes
based on their expression pattern distances. This similarity can serve as the weight for the
corresponding edge.

Gene co-expression network have led to many interesting findings like discovery of con-
served genetic modules (Dhaeseleer et al.,2000; Stuart et al., 2003; Oldham et al.,[2006), study
T-helper cell differentiation (Elo et al., 2007) and chronic fatigue syndrome (Presson et al.,
2008). Commendable efforts have also been made to study multiple microarray data sets with
such approaches (Lee et al., 2004). COXPRESdDb; a databases of gene co-expression networks
for some model mammals have been constructed from large numbers of microarray data sets
(Obayashi et al.;,2013). These models were further extended with weighted gene co-expression
networks (Horvath and Dong, 2008). The connected genes in co-expression networks often
show their relatedness in terms of enrichment for Gene Ontology categories (Horvath and
Dong, 2008; Stuart et al.,[2003), indicating their functional relatedness in biological space.
Ultimately, this leads to the conclusion that such networks are biologically meaningful to a
certain extent.

Furthermore, a conditional model belonging to the class of correlation based models is
the ‘Gaussian Graphical Model’ (GGM) (Dempster,|1972). This is based on the assumption of
multivariate normal distribution of data. GGMs consider an edge between two vertices given
the rest of the observation, thus imparting the attribute of conditional models and hence the
partial correlation is used to define the edge between two vertices (Toh and Horimoto, 2002).

GGMs have also been used to reconstruct regulatory network from time series data (Liu
et al.,2012). In addition GGMs being based on partial correlation provide a stronger measure
for dependence Markowetz and Spang (2007). Correlation based networks indicate that two
genes are co-regulated, participate in common pathway, share a biological process, function
or location or even directly bind to one another (Hartemink, 2005). Such networks do show the
functional relatedness of bio-molecules, however they do not explicitly narrate the nature and
directionality of the function. This undermines the power of network based biological studies.

What co-expression network usually result into is an undirected graph (Ruan et al., 2010),
therefore not indicating the causation and direction of regulation. However, an edge inferred
by a GGM could be causal, but it is not guaranteed to be. Furthermore, co-expression net-
works might not distinguish direct gene interactions from indirect ones with an exception
to GGMs. Simple correlation based networks do not confirm a direct interaction among the
co-expressed genes, as genes separated by one or more intermediaries (indirect interaction)
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can still follow co-expression (Bansal et al., 2007). Gaussian graphical models (GGMs) cir-
cumvent indirect association effects by evaluating conditional dependencies in multivariate
Gaussian distributions. Another interesting aspect of such inference methods is that they
include neighborhoods overlooked in cluster analysis (Horvath and Dong,|2008) leading to an
intriguing geometric feature. Brunet et al. compared such networks with established networks
in yeast and concluded that such network may resemble gene regulatory networks but less
protein-protein interaction (PPI) or physical interaction networks (Xulvi-Brunet and Li, 2010).

The computational simplicity makes co-expression network based network inference a
commonly used approach. It offers an effective method for predicting gene functions and the
relationship between them at coarsely resolved scale. However, their limitations as discussed
above attenuate this methods in terms of understanding biological systems.

2.2.2. Information theory based approaches

Information theoretic approaches offer an alternative to classical linear dependency mea-
sures based on Pearson’s correlation. The advantage of the mutual information as the most
prominent example of information theoretic dependency measures is that it is able to cap-
ture non-linear correlations between variables (MacKay, 2003). It considers the entropy;
H(X), H(Y) and joint entropy; H (X, Y) of the involved pair of variables (i), here genes (Equa-
tion[2.1). MI or mutual information for a pair of genes is then defined as their combination

H; =) (P(X)log(P(X;)) 2.1)

%

To further illustrate let us assume two genes (G; and G». Their activity measurements can
be supposed to be drawn from random variable say X and Y. For the moment assume the
random variables are discrete. The random variable X for G; can take the values as equation
and a similar equation holds for Gs.

X = 0; with probability p 2.2)
1; with probability 1 —p
Using the equation[2.1|the entropy of G| (H (G4)) can be given as follows:
H(G1) =p log(p) + (1 —p) log(1 —p) (2.3)

Therefore the entropy is a property of the probability distribution. The joint entropy for
random variables X and Y can be given as

H(X,Y)=> p(X,Y) log(p(X,Y)) (2.4)
XY
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The mutual information is defined according to equatio (Shannon and Weaver, |1963;
Cover and Thomas)|,|1991).

_ o PEY)
_;;p(x, Y) log 20 () (2.5)

In case of continous random variables sums are replaced by integrals over the corresponding
probability densities.

MI(X,Y) = /X /Y p(z,y)log <m> dzdy (2.6)

Where, p(x,y) is now the joint probability density function of X and Y, and p(x) and p(y) are
the marginal probability density functions of X and Y respectively.

Thus, if two variables are independent the MI turns to zero and hence shows no dependence
and vice-versa. The mutual information between two variable is a more general measurement
of dependence than correlation and measures non linear dependency, often seen in cellular
systems (Brunel et al., 2010). It measures the reduction of uncertainty in Y after observing X.
Thus, a pairwise MI across expression profile decides the presence or absence of edge in such
networks or more precisely statistical independence or dependence of genes on each other
(Bansal et al.,|2007; [Hartemink, 2005).

Interesting MI based approach include the CLR method by Faith et al. (Faith et al., 2007)
and minet (available as R-packageﬂ) by Meyer et al. (Meyer et al., 2008). However, ARACNe
E]is the most famous member of this family network inference approach (Basso et al., 2005;
Margolin et al., 2006). Although it is a MI based approach it can distinguish between direct
and indirect relationship. It does not consider the MI alone but together with a principle
called ‘Data Process Inequality’ (DPI). For all pairs of genes (i, j) the mutual information M;; is
computed via Kernel density estimation (Duda et al.,|2001) (Gaussian kernel density (Steuer
et al.,[2002)). The DPI comes into picture to eliminate the weak edges. To illustrate, if gene i
interacts with j and j with £ then ARACNe prunes an edge i < k if the condition in equation
2.7/holds (Basso et al.,[2005). Therefore, for each such triplets the edge corresponding to the
lowest mutual information value is eliminated .

MIi,k S min(MIiJ, MIng) (27)

'http://bioconductor.org/packages/release/bioc/html/minet.html; Accessed: February 2013
*http:/ /wiki.c2b2.columbia.edu/workbench/index.php/ARACNe; Accessed: February 2013
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ARACNe has been used in human B-cell data and could detect dense hubs, it could also
outline some validated transcriptional targets of the cMYC proto-oncogene. Later an extension
of ARCANe: TimeDelay-ARACNE was proposed to infer network from time-course expression
profiles (Zoppoli et al., 2010).

MI based methods specially ARCANe has certain advantages, e.g. it does not rely on a—priori
assumptions, does not need any heuristic search and does not require any discretization at
expression level (Margolin et al., 2006). Nevertheless, there are certain drawbacks in the
approach. The first issue with MI based approaches is owing to the symmetric nature of MI
i.e. M I; ; = M1I; ;. This makes the inferred network undirected. Furthermore, such networks
cannot be guaranteed to yield causal interactions. However the TimeDelay-ARACNE attempts
to overcome the issue to some extent by including the time dimension into the picture (Zoppoli
et al.,|2010). Another interesting aspect in ARCANe is the DPI. This condition is necessary
but not sufficient, that is, the inequality can be satisfied even if (i, k) are directly interacting.
Therefore the authors acknowledge that by applying this pruning step using DPI they may be
discarding some direct interactions as well (Bansal et al., 2007). ARACNe involves a number of
computational approximations and Monte Carlo simulations, which could make the method
unstable (Markowetz and Spang, |2007). Sample size requirement is another limitation for
such approaches as these methods perform acceptably well with high number of sample size
(Hartemink;, 2005).

2.2.3. ODE based approaches

In ODE based approaches the observed changes in activity of genes are related to each
other via a set of ordinary differential equation (one for every gene). The ODE's describe the
(instantaneous) change in each entity as a function of the levels of some network entities.
To illustrate let us assume three genes GG1, G2 and G35 are interacting in such a way that Gs is
activated by G, and G». The activity of GG3 in such case will be a function of G; and G2 (Figure
in terms of their activities (represented with square brackets) (Equation. Law of mass
action is one of the popular ways to model these functions (f) (Dilao and Muraro, 2010). Such
models are more often used in bottom up approach, nevertheless they have been applied to
infer networks from experimental data (Bansal et al., 2007; Chen et al., 2004; di Bernardo et al.,
2005; Li et al., 2008; Locke et al.,|2005). These models being deterministic, infer causal relations
among genes rather than mere dependencies.

4((Gs)
2l _ p(61) - [Ga) 28)

2.2.4. Boolean Networks

Boolean networks were proposed as biological network modeling paradigm by Kaufman
et al. (Kauffman, |1993) They are a dynamic model of interactions between genes (rep-
resented by nodes) in a network. Boolean Networks consist of a directed graph G(V, E).
V € (Genei,Genes...Geney,) are the vertices of graph representing the genes that act like
Boolean variables. Boolean networks are based on the postulate that each vertex in a graph
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Figure 2.1.: A network with three genes with activities G1, G, and ('3 interacting and the corre-
sponding set ODE for the system. Redrawn from Karlebach et. al. k;; represents
reaction rate constants for i on j, K represents synthesis rate constant for corre-
sponding genes and Kj is the degradation rate constant for gene i. Provided at the
left is the activity measurement for the genes.

can attain two alternative levels: 1 or ON (active) and 0 or OF'F' (inactive). A Boolean func-
tion governs every vertex of the graph and they update the entire graph and referred as state
transition (Figure[2.2). A graph with n genes can then have 2" states.

Kauffman et al. used such models to analyze regulation and network stability in the yeast
transcriptional network (Kauffman et al., 2003). He showed that random regulation functions
make the network stable and biologically realistic functions increases the stability. Akutsu
and co-workers devised an algorithm to infer genetic networks from state transition tables
corresponding to time series of gene expression patterns(Akutsu et al., 1999). It has been
applied to study Yeast cell cycle with a literature based Boolean network (Li et al., 2004).
Lahdesmiki et al. developed an approach to find consistent Boolean networks from data
(Lahdesmaki et al.}2003). GINsim | (Gene Interaction Network simulation) was introduced
by Chaouiya et al. as is a computer tool to model and simulate genetic regulatory networks
(Gonzalez et al.,|2006). The Boolean networks were later extended with multi valued logic
(de Jong, 2004; Schlatter et al., 2009). Shmulevich and colleagues extended this model with a
hybrid probabilistic Boolean networks to cope up with uncertainties in biology (Shmulevich
et al., 2002).

Boolean network are deterministic models that can model the dynamical behavior of a
network. They can provide important insights into the network like-existence and nature of
steady states, network robustness etc. Inherently, the model assumes the discretization of
states (0 or 1). These discretization efforts on genes can lead to loss of information within
the network. Furthermore, the modeling of self-down-regulation in genes is difficult with
these models. Another issue with such models is their computational expense while analyzing

3 http://gin.univ-mrs.fr ; Accessed: February, 2013
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Time Points

123456

,000110

Figure 2.2.: A Boolean network representation of the same data as in ﬁgurewith three genes
G1, G2 and G5 representing the trajectory of the system through time together with
discretized measurement of gene activities.

large networks, because the number of possible network states grows exponentially with the
number of network nodes.

2.2.5. Probabilistic approaches

Deterministic models e.g. Boolean network or ODE models cannot cope with the noise in
biological data. The measurement noise from experiments, uncertainty from experimental
effects (intervention experiments), together with inherent biological noise (Pedraza and van
Oudenaarden, 2005) disallows deterministic models to model biological networks robustly.
In real life reverse engineering inference algorithms must cope with uncertainties in the data
and relationships (between variables) (Frey and Jojic, 2005). Probability theory offers a mathe-
matically robust way to formulate inference algorithms when reasoning under uncertainty.
Therefore, a probabilistic approach becomes a preferred tool to model networks. Probabilistic
Graphical Model (PGM) is a framework that combines uncertainty (probabilities) and logical
structure (independence constraints) to compactly represent complex, real-world phenomena
(Koller and Friedman, [2009). Thus, they offer to absorb the uncertainties and noise in real
biological data (Bolouri, 2008).

In a probabilistic (graphical) model, molecules are represented as nodes. The measurements
for each node are supposed to be drawn from a random variable. For example, if we consider
genes as entities, their expression level can be the corresponding measurements. These
models use presumed probability distributions of certain inputs to calculate the implied
probability distribution for chosen output (Brémaud, 1998). Probabilistic models differs from
a deterministic model, where one can model the relationship between molecules based on
data with certainty. These models are popular way to represent a high dimensional system
and the complex probability distribution over it in a compact way (Koller and Friedman, 2009).
These model embodies the description of the joint probability distribution of all the random
variables of interest (Friedman, 2004). The model consists of random variable as nodes and
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edges as the relationship (Koller and Friedman, |2009). Probabilistic graphical models offer a
common conceptual architecture where biological and mathematical objects can be expressed
with a common, intuitive formalism as described below.

A probabilistic graphical model defines the independencies (conditional) among the nodes
induced by the graph structure as well as the factorization induced by the graph structure.
Bayes' rule is used to perform statistical inference in such models. The central idea of Bayes
rule (Equation [2.9) is to update the belief in a hypothesis(X) given the additional evidence
(Y) and the background information. X being the variable we care for and Y the evidence.
Thus, the equation consists of three parts-posterior probability P(X|Y") and the prior P(X),
likelihood P(Y| X) gives the probability of evidence assuming hypothesis to be true. The term
P(Y) is independent of the hypothesis X and acts like a scaling factor. The overall function
helps to compute the conditional probabilities.

PY|X)P(X)

PXY) = =g

(2.9

As the current thesis is very much inspired by Bayesian Networks, following section offers a
more detailed description for this model.

Bayesian Networks

Bayesian Networks (BNs) also known as belief networks are one of the most studied and
used PGMs. They are used for many applications in science and engineering (Chavez and
Cooper, 1990; |Pearl, 1988). They provide a systematic representation of dependence among
variables in terms of joint probability distribution. A BN builds graph for data for conditional
independencies for all orders, thus two vertices are connected if no other vertex subset (S) can
explain the conditional statistical dependency. Considering a set of vertices Gy, Gs...Gy, € V
representing random variables in the graph G(V, £), two random variables G; and G, are
conditionally independent given G3 C V' \ {G2, G2} noted (G L G2|G?3), if the following holds

A Gl,GQ,Gg . P(G1|G2,G3) = P(G]_‘GJ) (2.10)

While, VG3: P(G3) > 0. We will deal with this concept in detail in the upcoming description.

What is Bayesian Network?

A Bayesian network is a graphical model for probabilistic relationships among a set of
random variables (X1, X»...X,,) € V. The relationship is encoded as a DAG; Directed Acyclic
Graph: G(V, F) via conditional independence assertions among the random variables X;. The
DAG actually describes the dependency structure among the variables in a probabilistic way
(Pearl, 1988; David Heckerman, 1994).
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To illustrate we will consider a biological network as a graph consisting genes G, Gs...G5 as
vertices (Figure[2.3). Let us assume the expression of each gene is represented as a random
variable. The graph depicts G, affecting G» which in turn affects G5 and G4. These genes the
ultimately cause G5 to respond. A full specification of the joint distribution for these random
variables (assuming binary values) requires 31 (2" — 1; (n is the number of vertices)) parameters
However around the Bayesian Network model formalism they can be described with fewer
parameters. The formalism has been entailed below.

Mathematical Formalism

The node attributes in BNs are defined in terms of a local probability distribution (LPD) and
joint probability distribution (JPD). This JPD is consistent with the independence assertions
embedded in the graph G. By applying the chain rule of probabilities and independence, the
JPD is expressed as a product of conditional probabilities (Heckerman et al.,|1995a).

P(Gp,Gp1...G1) = P(Gp|Gr1, Gn2...G1)P(Gp—1, Gp_3...G1) (2.11)

This can be generalized as follows for the graph in figure

n

P(G) = [[ P(GnlGn-1,Gn2..G1) (2.12)
1

The factorization of JPD over the graph structure. i.e. the local probability distribution for a
given node i only depends on its parent nodes ;.

n

P(G) = [[ P(Gilm) (2.13)

1

On considering the parametrization of local probabilities 0

n

P(G) = [ [ P(Gilmi,0) (2.14)

1

The set 7; consists of the parents of the random variable G;. Thus given the parents a random
variable is independent of all other random variables. Therefore, the JPD (joint probability
distribution) can be decomposed as the product of conditional probabilities, only if the Markov
assumption holds, that is, each variable G; is independent of its non-descendants, given its
parent in the directed acyclic graph G. The conditional independence together with the local
probability distribution for random variables, layout the relationships between the variables.
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@ G;LG,| G,

@P{ G,) =P( G, G,)

P(G;) =P(G;| G,) @ @ P(G,) =P(G, G;)

@ P(G;) =P(G;| G; G,)

Figure 2.3.: A directed acyclic network with five genes G1, G2, G, G4 and G5 and their condi-
tional independence in box (top-right)

Gs1G,| G, G,

A schematic overview of the theory underlying Bayesian networks is given in Figure The
conditional independence for the given graph is shown in the figure. The JPD for the given

graph say G is given as equation|2.15

P(G) = P(G5|G4, G3)P(G3|G2) P(G4|G2) P(Ga|G1) P(G1) (2.15)

Why Bayesian Networks

The key feature of Bayesian networks is the fact that they provide a method for decompos-
ing a probability distribution into a set of local distributions. The independence semantics
associated with the network topology specifies how to combine these local distributions to
obtain the complete joint probability distribution over all the random variables represented
by the nodes in the network. This has three important consequences.

¢ Naively specifying a joint probability distribution with a table requires a number of
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values exponential in the number of variables. For systems in which interactions among
the random variables are sparse, Bayesian networks drastically reduce the number of
required values.

¢ Efficient inference algorithms allow for transmitting information between the local
distributions rather than working with the full joint distribution.

e The separation of the qualitative representation of the influences between variables from
the numeric quantification of the strength of the influences has a significant advantage
for network reverse engineering.

While building a Bayesian network model, one can focus first on specifying the qualitative
structure of the domain and then on quantifying the influences. When the model is built,
one is guaranteed to have a complete specification of the joint probability distribution. A
BN for a given data, can thus be inferred multiple Bayesian Network structures which are
likelihood equivalent, i.e. which equally well explain any data. In fact Bayesian Networks form
equivalence classes, namely Completed Partially Directed Acyclic Graphs (CPDAGS).

Inferring Network

The key problem that remains is to learn the network structure i.e. the dependencies be-
tween random variables given data. Specially in bioinformatics the elucidation of biochemical
circuitry (regulatory/signaling etc. ) from experimental data is the major objective. The dis-
covered graph G shows the dependencies across the genes, proteins or bio-molecules. The
inference is though difficult can be achieved with careful experiment design and learning
strategy (Needham et al.,[2007).

To accomplish this, we need to infer a DAG satisfying the factorization (Equation for
the JPD that generates the data (Neapolitan, 2003). The JPD is not sufficient for the causal
inference as it depends on the order of random variables too (Ellis, |2006; [ Heckerman et al.,
1995a), moreover we usually have the data and not the JPD. The search space for entire set of
possible networks grows exponentially with the number of random variables, making it an
intractable problem to search through all possible networks (Koller and Friedman, 2009). One
can test the independence of a pair of nodes for every subset of genes via constraint based
learning (Pearl, 2000; Spirtes et al., 2001). However, the bottleneck with such approach is the
computational feasibility if the graph is not sparse (Spirtes et al.,|2001). Moreover this approach
is also sensitive to errors in individual tests. For these reasons score based approaches are
preferred.

Constraint based approaches use statistical conditional independence tests to find depen-
dencies and independencies between variables. They then construct a Bayesian network to
represent the set of independencies detected. Independence tests are often unreliable for
more than a few variables, and constraint-based methods are sensitive to failures in these tests.
This is because an edge can be incorrectly left out of a network based on the result of a single
failed test.
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