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Thoughts without content are empty, intuitions without concepts are blind.
The understanding can intuit nothing, the senses can think nothing.

Only through their unison can knowledge arise.

- Immanuel Kant
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Fröhlich for his astute guidance, amaranthine patience and consistent support. With his
experience, suggestions and motivations, he kept me in pursuit throughout the doctoral work.
Without his foster I would not have reached the project goals. I thank him for providing me an
opportunity to work under him on the topic.

I sincerely thank Prof. Dr. Martin Hofmann-Apitius; my co-adviser, for reviewing my work
and advising me with his valuable comments and suggestions. His vision for my scientific
pursuance, encouragement and impeccable believe in every dimension was instrumental and
morale boosting.

I feel beholden to Prof. Dr. Andreas Weber and Prof. Dr. Ulrich Jaehde who agreed to review
my thesis and be a part of my doctoral committee.

I would like to express my words of gratitude to Prof. Dr. Armin Cremers and Prof. Dr. Mathias
Jarke, for granting me the B-IT Research School scholarship to pursue my research. I acknowledge
the ‘State of Nordrhein-Westfalen (Germany)’ for the research funding provided via the graduate
school

I would like to thank my group members of ABI@B-IT specially; Khalid for providing his
enormously important suggestions, Yupeng, Gloria, Satya, Nikhil, Afshin and Gurnoor for useful
discussions and support. The computer infrastructure support I received from the Mr. Thomas
Theil and his group members was enormous. Finally, I would like to thank my parents, family
and all friends for their enthusiasm, and unflagging support.

iii



Abstract

Motivation

The postulate that biological molecules rather act together in intricate networks, pioneered
systems biology and popularized the study on approaches to reconstruct and understand
these networks. These networks give an insight of the underlying biological process and
diseases involving aberration in these pathways like, cancer and neuro degenerative diseases.
These networks can be reconstructed by two different approaches namely, data driven and
knowledge driven methods. This leaves a critical question of relying on either of them. Relying
completely on data driven approaches brings in the issue of overfitting, whereas, an entirely
knowledge driven approach leaves us without acquisition of any new information/knowledge.
This thesis presents hybrid approach in terms of integration of high throughput data and
biological knowledge to reverse-engineer the structure of biological networks in a probabilistic
way and showcases the improvement brought about as a result.

Accomplishments

The current work aims to learn networks from perturbation data. It extends the existing
Nested Effects Model (NEMs) for pathway reconstruction in order to use the time course
data, allowing the differentiation between direct and indirect effects and resolve feedback
loops. The thesis also introduces an approach to learn the signaling network from phenotype
data in form of images/movie, widening the scope of NEMs, which was so far limited to gene
expression data. Furthermore, the thesis introduces methodologies to integrate knoowledge
from different existing sources as probabilistic prior that improved the reconstruction accuracy
of the network and could make it biologically more rational. These methods were finally
integrated and for reverse engineering of more accurate and realistic networks.

Conclusion

The thesis added three dimensions to existing scope of network reverse engineering specially
Nested Effects Models in terms of use of time course data, phenotype data and finally the
incorporation of prior biological knowledge from multiple sources. The approaches developed
demonstrate their application to understand signaling in stem cells and cell division and
breast cancer. Furthermore the integrative approach shows the reconstruction of AMPK/EGFR
pathway that is used to identify potential drug targets in lung cancer which were also validated
experimentally, meeting one of the desired goals in systems biology.
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Chapter 1

Introduction

1.1 Biological Systems

Biological systems are remarkably complex. They owe their functionality and behavior not
only to their components (genes, proteins and other small molecules) but to the synergistic
output of complex interactions among them (Kitano, 2002). Therefore, deciphering a biological
system like cell needs not only the elucidation of the individual entities but also of the interplay
involved therein. To achieve this, two possible ways (Figure 1.1) have been proposed ; top-down
and bottom-up (Bruggeman and Westerhoff, 2007; Kitano, 2002). In the current work the focus
is on the reverse engineering of systems which is primarily considered as top-down approach.
The top-down approach treats the entire system as a black box and then tries to identify the
details of the components of the systems following a reductionist approach. It uses data as
the starting point and statistical data mining approaches are applied for a comprehensive
understanding of the biological system. The second way is the bottom-up approach, starting
from the lowest level of system organization. First, the details of the individual units of the
system are collected and then the entire system is constructed using these system components.

1.2 Networks in Biological systems

As it is about the interactions of the constituents rather than merely the constituent itself, at
a comprehensive level cellular systems can be conceivably represented as graphs or networks.
These networks abstractly represent a biological system, capturing their core characteristics.
In these circuits nodes represent the molecular entities and edges connecting pairs of vertices
correspond to the relation between them. The overall cellular system is an overlay of such
networks. Cellular systems comprise many diverse components and component interactions.
There are signal transduction, transcriptional and metabolic networks. These different net-
work types are not distinct from each other, but they are interconnected and operate together.
Every category has its own design principle and biological behavior (Palsson, 2006; Alon, 2006).
Therefore it is a prerequisite to go through these categories and their properties before making
an attempt to reconstruct them and understand their functioning.

1



1.2. NETWORKS IN BIOLOGICAL SYSTEMS CHAPTER 1. INTRODUCTION

Figure 1.1.: Modeling approaches in systems biology. Bottom-up systems biology is knowledge
driven; by contrast, top-down systems biology is systemic-data driven.

1.2.1. Categories of biological networks

Signaling Networks: In order to respond to changes in their immediate environmental
stimuli, cells must be able to receive and process signals. Signal transduction pathways govern
a cell’s response to extra-cellular stimuli, including, e.g., how a cell adapts its transcriptional
regulatory program in response to specific environmental changes. Signaling pathways (Figure
1.2) refer to the set of biochemical processes using which cells respond to internal or external
cues (Albert and Oltvai, 2007). The entire life history of cell starting from its proliferation,
differentiation, functioning unto its death is orchestrated by signaling pathways. Signaling
pathways in contrast to metabolic pathways convey information. They process and encode
along with receiving and transmitting information. Thus signaling involves a set of cascades
taking place between the receptor and effector.

Cell signals are mostly chemical in nature. Receptors (most often trans-membrane proteins)
bind to signaling molecules and subsequently transmit the signal via protein actions like ion
channel opening. Signal transduction systems can be simple, like- transfer of ions resulting in
the electrical potential difference of the cell, propagating the signal in the cell or more complex
signal transduction (Gutkind, 2000). Activation of receptors can trigger the synthesis of small
molecules called second messengers, which initiate and coordinate intra-cellular signaling
pathways via enzyme activation via phosphorylation It allows for intricate control of protein
function. At any one time, a cell is receiving and responding to numerous signals, and multiple

2



CHAPTER 1. INTRODUCTION 1.2. NETWORKS IN BIOLOGICAL SYSTEMS

signal transduction pathways are operating in its cytoplasm. Many points of cross talks exist
among these pathways. For instance, a single second messenger or protein kinase might play
a role in more than one pathway. Through this network of signaling pathways, the cell is
constantly integrating all the information it receives from its external environment.

Metabolic Networks: Metabolism in cellular systems produce energy, amino acids, and
other precursors required for the growth and maintenance of a cell. The set of biological net-
works associated with such activities fall into the category of metabolic networks. Metabolic
networks envisage the various chemical reaction involved in anabolism (construct molecules
from smaller units) and catabolism (breaking bigger molecules into smaller units and release
energy) 1. These networks bear a lot of small molecules and intermediate small molecules (Pals-
son, 2006). Such networks execute chemical changes of the involved molecules. As an example
consider glycolysis, where glucose (C6H12O6) is converted into pyruvate (CH3COCOO

−+H+).
The process releases energy used to form the high-energy compounds ATP (Adenosine Tri
Phosphate) and NADH (reduced Nicotinamide Adenine Di-Nucleotide) (Nelson et al., 2008).

Metabolic network mostly have been built manually through a four step process including an
initial reconstruction from gene-annotation coupled with information from online databases
e.g. KEGG (Kanehisa et al., 2014).

Transcriptional Networks: Transcriptional regulatory networks control the transcription
state of a genome. In general, they describe the connections between environmental cues
and transcriptional responses. They are comprised of nodes, the genes and their regulators,
joined together by edges, which represent physical and/or regulatory interactions. Physical
interactions between genes and TFs (Transcriptional Factors) can be delineated using two
conceptually and practically different strategies that are highly complementary (MacNeil and
Walhout, 2011). In addition to representing physical interactions, GRN edges can also represent
regulatory relationships that can, for instance, be inferred by correlating gene expression
profiles between genes and potential regulators.

Transcriptional networks are involved in the regulation the expression of thousands of genes
involved in different biological processes. These networks act as a control systems for various
biological processes like cellular development. Acting as a hardwired control system, they
invoke responses through sequential steps in the form of genomic regulatory codes. The
role of these systems is to specify and regulate the sets of genes that must be expressed in
specific spatial and temporal patterns. In physical terms, these control systems consist of
many thousands of modular DNA sequences. Each such module receives and integrates
multiple inputs, in the form of regulatory proteins (activators and repressors) that recognize
specific sequences within them (Davidson and Levin, 2005). The end result is the precise
transcriptional control of the associated genes. Some regulatory modules control the activities
of the genes encoding regulatory proteins.

It is worth mentioning that though these are different types of networks they do not always
exist in isolation but may be involved in a cross talk . For example, the pluripotent state in

1http://www.chem.qmul.ac.uk/iupac/bioinorg; Accessed: April 2013
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Figure 1.2.: Figure showing sharing of nodes and edges across different networks. (left) Pro-
portion of nodes and (right) edges shared across 12 KEGG pathways. Indicating
the properties of biological network for cross-talk with shared nodes (left) and
modularity with shared edges (right). A detailed list of the involved pathways and
the formula for the computation of this plot is available in appendix A

embryonic stem cells is maintained by a network of transcription factors and is influenced by
specific signaling pathways (Ng and Surani, 2011) or glycolytic enzymes acting as transcrip-
tional regulator (whan Kim and Dang, 2005). The former involves a cross talk of transcriptional
and signaling network, whereas the later illustrates the case of transcriptional and metabolic
networks. This increases the complexity in classification of biological networks.

1.2.2. Properties of biological networks

Robustness: Robustness is a ubiquitous property of biological systems (Kitano, 2004). Ro-
bustness is the property of a system to by virtue of which, it maintains its functionality caused
by internal or external perturbations (Rizk et al., 2009). In both engineering and biology, a sys-
tem must function under all likely interventions that come with the inherent properties of the
components and the environment (Alon, 2003) and sustain them. The networks operating in
the biological system must keep the concentrations of their components within tightly defined
bounds despite intra and extra cellular disturbances. The topology of these networks renders
the output of the pathway invariant against a large class of possible adverse fluctuations like-
changes in energy states or total protein concentrations (Steuer et al., 2011).

Dynamics: The molecular interactions within signaling networks operate in the order of
seconds to minutes at timescale while for trancriptional networks, it can be longer (Alon, 2006,
page:11). The components of a signaling pathway exhibit a dynamically coordinated behavior
in time and space for specificity in their response Kholodenko (2006). They respond to changes
in their environment and cell state, and they execute these responses on timescales that can
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CHAPTER 1. INTRODUCTION 1.2. NETWORKS IN BIOLOGICAL SYSTEMS

be observed via genomic technologies. The specificity in signal response is contributed by the
timing, amplitude and duration of signaling.

Cross-talk: Though life processes are diverse, yet the number of biological pathways es-
pecially signaling pathways is limited. The cross talks across different types of networks
has already been presented in the previous section. This part deals in a more generalized
way about cross talks. There is a sharing of some signaling pathways or a part of it across
biological processes (Figure 1.2). To illustrate, we consider MAPK cascades, which can be
activated/inactivated by many stimuli/perturbations (Figure 1.3)(Raman et al., 2007). They can
regulate diverse cellular phenomena ranging from proliferation, differentiation to apoptosis.
Hence, common components of a signaling pathway come-up with elicit effects in the same
signaling pathway. A characteristic feature of cellular signaling in eukaryotic cells is that com-
ponents are frequently shared among pathways, providing a potential for cross-talk. However,
this can also lead to an inappropriate response, if stimulus specific signals transmitted through
one pathway inadvertently cross-activate the other(s). Several known mechanisms can enable
signaling pathways with shared components to respond specifically to any one stimulus. Spa-
tial insulation can be achieved by localizing the pathways to different cellular compartments
or by incorporating the shared component into distinct macromolecular complexes through
scaffolding molecules.

Specificity: Though, the biological space is shared by many signaling pathways and cells re-
spond to a wide variety of stimuli, yet they maintain specificity (Kholodenko, 2006). Specificity
enables transmission of different signals by common components of signaling pathway, in
response to corresponding stimuli; eliciting distinct outputs (Komarova et al., 2005). A classical
example for specificity is the MAPK pathway ( mitogen -activated protein kinase) (Figure 1.3).
EGF induces transient MAPK activation, which results in cell proliferation, whereas a sustained
MAPK activation by NGF changes the cell fate and induces cell differentiation (Marshall, 1995;
Murphy and Blenis, 2006). Thus, cells respond to a myriad of stimuli using a limited number
of signaling pathways. These pathways do not simply transmit, but process, encode and
integrate signals. Specificity can be attributed to spatio-temporal activation profiles of the
same repertoire of signaling proteins (Hoffmann et al., 2002). This property of specificity paves
the way to understand the system behavior on specific stimuli/perturbation.

Modularity: A module in a network is a set of nodes that have strong interactions within
themselves and a common function. A module has defined input nodes and output nodes
that control the interactions with the rest of the network of interconnected nodes, each of
which has a state that depends on the integrated inputs from other nodes. A module also has
internal nodes that do not significantly interact with nodes outside the module (Alon, 2003).
The potential reason for network modularity is that individual modules serving a defined
biological function developed as one block during the evolutionary process. (Alon, 2003).

Such circumstances make biological networks an interesting as well as challenging domain
to study. These concepts, together with the current technological revolution in biology, may
eventually allow characterization and understanding of cell-wide networks, with great benefit
to medicine as well as develop an understanding the laws of nature operating and evolving
biological systems (Alon, 2003).
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Figure 1.3.: MAPK signaling pathways organized in modular cascades in which activation of
upstream kinases by cell surface receptors lead to sequential activation of a MAPK
module. The figure shows the major MAPK pathway components and their targets
for different stimulations. In green we have the normal signal flow pathways and
red lines indicate combined action (AND or OR). Dotted lines indicate signaling
cross-talks between MAPK modules. The figure thus represents the modular,
specific and cross talk nature in MPK pathways as an example. Redrawn from
www.cellsignaling.com [Accessed: March 2013]

1.3 Reverse Engineering

The reconstruction of mapping the intelligible structure of network among molecular com-
ponents from data is termed as data driven network inference (Stolovitsky and Califano, 2007).
Reverse engineering (or deconvolution) is the process of elucidating the structure of the sys-
tem by reasoning backward from observation of its behavior (Hartemink, 2005). Network
inference via reverse engineering is one of the challenges in Bioinformatics. In a way reverse
engineering analyzes the behavior of a system to characterize its architecture. It can monitor
these profiles and can traceback the pathways, helping one to experimentally validate the
predictions (Stolovitzky et al., 2007). Depending on the data used for inferring the network,
which, principally, may either come from DNA microarray, RNA-seq, proteomics or ChIP-
chip experiments, or combinations thereof, the biological interpretation of an edge in these
networks is dependent thereon. For expression data, inferred interactions may preferably
indicate transcription regulation, but can also correspond to protein-protein interactions
(Emmert-Streib et al., 2012; Tegnér et al., 2003).
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The ambition to achieve systematic, comprehensive and accurate reverse engineering of
biological networks makes systems biology much more demanding for experimental biologists
than the current practice of biology. A methodical experiment has to be performed and at
the same time the quality of measurement and data produced should be high to be used as a
reference point for simulation, modeling and prediction (Kitano, 2002; Hache et al., 2009).

	  	  
	  	  

	  	  

Network inference 

Inferred network 

Cellular system 

Expression profile 

Perturbation 

Figure 1.4.: Schematic diagram for the work-flow in reverse engineering of cellular networks
via perturbation technique.

1.3.1. Experimental techniques

A modern way to reverse engineering cellular networks is to perturb the cellular system and
observe its response. A specific perturbation perturbations forces the cell to find new equilib-
rium points and hence can activates specific pathways ultimately leading to corresponding
expression profiles. However non-perturbation techniques are most often encountered due to
their simplicity. Canvassed below are the various experimental techniques and sources of data
used for the purpose.

Non-perturbation techniques

The simplest experiment to generate data for network reverse engineering is measuring the
components of biological systems (genes/proteins) in different conditions. The conditions
can be time (Morrissey et al., 2010; Wang et al., 2006) or environment (Dhaeseleer et al., 2000;
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Carrera et al., 2009). These methods do not need any targeted perturbation of involved compo-
nents. For example- an expression data for a cell under different conditions of environmental
stress outline the pattern that define the connections between the genes/proteins (Carrera
et al., 2009). (Penfold and Wild, 2011)

Perturbation based techniques

Genetic interactions are best inferred when the genes explore a substantial dynamical range.
Traditionally, this has been achieved by systematic perturbations in simple organisms (e.g., by
large-scale gene knockouts or exogenous constraints) (Esvelt and Wang, 2013), which are not
easily obtained in more complex cellular systems (Basso et al., 2005). Perturbation data can be
used to deduce the biological networks via reverse engineering work-flow. The first step in such
reverse engineering of cellular system is the perturbation of a functioning system (di Bernardo
et al., 2005). However, as single perturbation cannot lead to conclusions in biological systems
and reveal the underlying network. For this we need to perturb different genes (entities) to
explicitly understand the dynamics of involved components (Stelniec-Klotz et al., 2012).

In organisms such as yeast such perturbations are easier, but in higher organisms/cells
(eukaryotic), it gets experimentally complicated. RNAi is the offers a practical way to perturb
multiple genes in these systems (Wang et al., 2011). Systematic RNA interference (RNAi)
perturbations allows performing such perturbation for specific genes in a cell (Tewari et al.,
2004). During the experiment a double-stranded RNA (with a sequence complementary to
a gene of interest) is introduced into a cell / organism, where it is recognized as exogenous
genetic material and activates the RNAi pathway (See BOX-1.1 for details) leading to a drastic
decrease in the expression of a targeted gene. This activity can be then measured in different
ways (see section 1.3.2).

RNA interference (RNAi) allows simultaneous screening of hundreds to thousands of genes
in a high content manner. This screening can be achieved by first performing a targeted RNA
interference followed by measuring the expression values for the entire cell. Network inference
often has the goal of generating testable hypotheses regarding biological interplay (Peér and
Hacohen, 2011). RNAi makes this possible by mapping the RNAi functional network to that
of the protein interaction networks (Ramanuj Dasgupta, 2004). It can help to identify new
regulators overlooked in RNAi screens thus generating testable hypothesis on gene function.

1.3.2. Data from experiments

The effect of above mentioned experimental techniques measure the system in terms of
activities of biomolecules (genes/proteins) for reverse engineering of the system. However, it
is important to measure the changes brought about by these perturbations simultaneously
for a large number of genes to get overall impact of perturbation on the cellular system. Gene
expression measurements offers the most obvious solution to the issue as per the “Central
Dogma of Molecular Biology” (Figure 1.5). They represent the level of transcriptional activity
of each gene under observation. High throughput technologies like microarrays (Brown and
Botstein, 1999), allow the researchers to monitor average mRNA concentrations in a cell
population on a genome-wide scale. Microarrays offer opportunities to identify gene deletion
consequences on entire genomes.
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Although, the activity measurement of involved molecules is mainly accomplished with
microarray techniques, other techniques like ChiP, SAGE and RNA-seq are also popular to
measure gene activity at mRNA level. The differential activity of cell can also be measured
in terms of protein expression. At protein level, techniques like RPPA (Pierobon et al., 2011),
mass spectrometry and western blotting is used. Although other high throughput techniques
are available, the current work is mainly based on microarray data.

DNA	   RNA	   PROTEIN	  Transcrip2on	   Transla2on	  

Replica2on	  

Figure 1.5.: The Central Dogma of Molecular Biology: The information flow from DNA infor-
mation to proteins.

Microarray Data

Microarrays (Schena et al., 1995) are widely used for the expression profiling of thousands of
genes simultaneously. It involves attaching probes (gene sequences) by robotic machines on a
pre-determined spots onto a chip. The mRNA produced as a result of activity of corresponding
gene in the cell of interest, binds to these probes which are complementary to the mRNA‘s.
To make the measurements of the mRNA‘s, they are labeled with a fluorescent dye. Certain
active genes produce more mRNA that attach to the chip and produce brighter areas whereas
spots that are not bright evidence lower activity of corresponding genes. The intensity of
fluorescence thus reflects the quantified presence of the mRNA‘s and ultimately the gene
expression.

1.4 Objectives

The objectives of the current work are as follows:

1. Extend Nested Effects Model (NEM) approach to time course data.

2. Develop a method to adapt NEMs to be able to use phenotype data.

3. Develop a method to integrate different sources of biological knowledge as probabilistic
consensus prior for network inference.

4. Apply and test the effect of informative prior in network inference via NEM.

1.5 Document road-map

The present document has been sectioned into 8 chapters. This chapter discussed the
biological aspects of introduction to the biological networks and reverse engineering along
with challenges and goals of this thesis. The upcoming chapters outline as follows:
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• Modeling Approaches: Chapter 2 gives an overview of recent approaches to map the de-
pendency structure between genes. The chapter gives an overview of reverse engineering
of biological systems via probabilistic graphical models and their state of art.

• Nested Effects Model: Chapter 3 describes Nested Effects Models to infer network from
perturbation data. The chapter describes the principle and mathematical formalism of
nested effects models and its different formulations.

• dynoNEM: Dynamic Nested Effects Model: The 4th chapter discusses a novel approach
called dynoNEM (Dynamic Nested Effects Models) to apply Nested Effects Models on
time-course perturbation data. The method was developed during current doctoral work.
The further improvement in the approach with MCMC based sampling is also discussed
in this chapter.

• Movie-NEM: dynoNEM with image data Chapter 5 proposes the use of image features
from movie as a source of time series data to reverse engineer biological network. The
novel MovieNEM approach is introduced in this chapter.

• Developing informative prior: The 6th chapter talks about the integrating information
from different heterogeneous sources of biological knowledge into one probabilistic
consensus prior. Such a prior can be used to improve network inference.

• Applying prior knowledge The seventh (7) chapter displays the application of the prob-
abilistic consensus prior and NEM on Non-Small Lung Cancer perturbation data.

• Conclusion and Outlook: The 8th and final chapter brings out the high level conclusive
messages and an exploration of future outlook in the direction. The chapter outlines the
accomplishments of the work and the possible future orientation of the research done
during the doctoral work.

The current chapter overviewed the biological concepts regarding biological network and tech-
nical details from a biologist point of view. The properties and of signaling pathways and their
importance were discussed. This was followed by a brief description of experiments and data
used to understand the structure and functioning of the signaling system in cell. Finally the
chapter came up with the plans and goals for the current work. In the next chapter; an overview
of methods to model these signaling systems is presented with a detailed description of Nested
Effects Model (NEM) as it is the in-focus tool for this dissertation.
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BOX 1.1: RNA Interference (RNAi)

RNA interference (RNAi) is a powerful tool to perform loss-of-function genetic screens
(Fire et al., 1998; Hannon, 2002). Certain small dsRNAs, such as short interfering RNAs
(siRNAs) and microRNAs (miRNAs) found in mammalian cells, regulate gene expression
via gene-silencing enzymatic complexes. RNAi offers certain advantages over insertional
mutation like- speed, flexibility and convenience.(Boehm and Hahn, 2011)

The work-flow for RNAi (Figure 1.6 drawn using pathway buildera)starts with the
introduction of a double stranded RNA (dsRNA) into the cell. These are recognized and
processed into small interfering RNAs (siRNAs) by Dicer. Dicer is a double-stranded-RNA-
specific ribonuclease from the RNase III protein family. The double stranded siRNAs are
passed to the RNA-induced silencing complex (RISC), and the complex becomes activated
by unwinding of the duplex. Activated RISC complexes can regulate gene expression
at many levels. Almost certainly, such complexes act by promoting RNA degradation
with siRNAs and translational inhibition with microRNAs. However, similar complexes
probably also target chromatin remodeling. In plants, amplification of the silencing signal
can also occur. The ways in which miRNAs cause silencing of their target mRNAs are
still debated. The mechanisms involved are likely to include: inhibition of translation;
triggering removal of the poly(A) tail from mRNAs (de-adenylation); disruption of cap-tail
interactions; and degradation of mRNAs by exonucleases and further translational
inhibition by micro RNAs (Hannon, 2002). The difference in the cell can then be accessed
based on microarray data.

Dicer 

siRNA 

RISC 

RISC* 

Degraded mRNA 

mRNA 

Figure 1.6.: Diagram representing overall scheme of RNAi process. Redrawn from Hannon
et al. using pathway builder

awww.proteinlounge.com ; Accessed February 2013
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Chapter 2

Reverse Engineering of Biological Networks

This chapter will deal with different paradigms of network reverse engineering popular in
bioinformatics and computational biology. The concept involved, state of art and conclusive
messages for these approaches will be explained in brief here. Although the thesis focuses on
Nested Effects Models, the chapter covers other approaches for the sake of completeness. For
every approach the formalism, state of art and critical points are entailed in the current chapter.
Bayesian Networks has been dealt rigorously in the present chapter as the basics for Nested
Effects Models (NEMs).

2.1 Introduction

The idea that biological molecules rather act together in intricate networks, pioneered
systems biology. This postulate has popularized the study on approaches to reconstruct and
understand networks. In the first chapter an introduction to biological systems together with
different experimental techniques that can be used to measure their activity were discussed.
Reconstructing networks from such data can offer insights in the functioning of biological
systems. However, it is an under-determined problem, as the number of interactions that can
be inferred exceeds the number of independent measurements (De Smet and Marchal, 2010).
At the same time, the properties of networks like dynamical behavior, modularity, cross-talk etc.
(See 1.2.2) make the task challenging. Different state-of-the-art tools for network inference use
specific assumptions and simplifications to deal with under determination, and this influences
the inference. The outcome of network inference therefore varies between tools and can be
highly complementary. In the current chapter the methods and tools available for network
reconstruction are discussed. For the ease of discussion the methods are categorized into
different classes based on the mathematical formalism adopted in there.

2.2 Approaches

The current state-of-the-art approaches for network inference rely on specific assumptions.
Each of these methods therefore, differ in terms of strategy, mathematical schema and ul-
timately the inferred network (De Smet and Marchal, 2010). This section presents these
categories and their underlying framework with illustration.
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2.2.1. Clustering and correlation based approaches

Though clustering is not precisely a network inference algorithm, it lends a framework to
analyze gene expression and group genes exhibiting similar expression profile into clusters
(Eisen et al., 1998). Each cluster contains a set of genes whose activities follow similar trend
(up-regulation and down-regulation). Such genes are said to be co-expressed. The rational
behind the use of clustering as a network inference tool is that there is a high chance of the
genes in a cluster to be functionally related or co-regulated (Dhaeseleer et al., 2000). This gives
rise to the concept of co-expression networks. Co-expression networks are constructed by
computing first a correlation matrix for genes and then a similarity score for each pair of genes
based on their expression pattern distances. This similarity can serve as the weight for the
corresponding edge.

Gene co-expression network have led to many interesting findings like discovery of con-
served genetic modules (Dhaeseleer et al., 2000; Stuart et al., 2003; Oldham et al., 2006), study
T-helper cell differentiation (Elo et al., 2007) and chronic fatigue syndrome (Presson et al.,
2008). Commendable efforts have also been made to study multiple microarray data sets with
such approaches (Lee et al., 2004). COXPRESdb; a databases of gene co-expression networks
for some model mammals have been constructed from large numbers of microarray data sets
(Obayashi et al., 2013). These models were further extended with weighted gene co-expression
networks (Horvath and Dong, 2008). The connected genes in co-expression networks often
show their relatedness in terms of enrichment for Gene Ontology categories (Horvath and
Dong, 2008; Stuart et al., 2003), indicating their functional relatedness in biological space.
Ultimately, this leads to the conclusion that such networks are biologically meaningful to a
certain extent.

Furthermore, a conditional model belonging to the class of correlation based models is
the ‘Gaussian Graphical Model’ (GGM) (Dempster, 1972). This is based on the assumption of
multivariate normal distribution of data. GGMs consider an edge between two vertices given
the rest of the observation, thus imparting the attribute of conditional models and hence the
partial correlation is used to define the edge between two vertices (Toh and Horimoto, 2002).

GGMs have also been used to reconstruct regulatory network from time series data (Liu
et al., 2012). In addition GGMs being based on partial correlation provide a stronger measure
for dependence Markowetz and Spang (2007). Correlation based networks indicate that two
genes are co-regulated, participate in common pathway, share a biological process, function
or location or even directly bind to one another (Hartemink, 2005). Such networks do show the
functional relatedness of bio-molecules, however they do not explicitly narrate the nature and
directionality of the function. This undermines the power of network based biological studies.

What co-expression network usually result into is an undirected graph (Ruan et al., 2010),
therefore not indicating the causation and direction of regulation. However, an edge inferred
by a GGM could be causal, but it is not guaranteed to be. Furthermore, co-expression net-
works might not distinguish direct gene interactions from indirect ones with an exception
to GGMs. Simple correlation based networks do not confirm a direct interaction among the
co-expressed genes, as genes separated by one or more intermediaries (indirect interaction)
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can still follow co-expression (Bansal et al., 2007). Gaussian graphical models (GGMs) cir-
cumvent indirect association effects by evaluating conditional dependencies in multivariate
Gaussian distributions. Another interesting aspect of such inference methods is that they
include neighborhoods overlooked in cluster analysis (Horvath and Dong, 2008) leading to an
intriguing geometric feature. Brunet et al. compared such networks with established networks
in yeast and concluded that such network may resemble gene regulatory networks but less
protein-protein interaction (PPI) or physical interaction networks (Xulvi-Brunet and Li, 2010).

The computational simplicity makes co-expression network based network inference a
commonly used approach. It offers an effective method for predicting gene functions and the
relationship between them at coarsely resolved scale. However, their limitations as discussed
above attenuate this methods in terms of understanding biological systems.

2.2.2. Information theory based approaches

Information theoretic approaches offer an alternative to classical linear dependency mea-
sures based on Pearson’s correlation. The advantage of the mutual information as the most
prominent example of information theoretic dependency measures is that it is able to cap-
ture non-linear correlations between variables (MacKay, 2003). It considers the entropy;
H(X), H(Y ) and joint entropy; H(X,Y ) of the involved pair of variables (i), here genes (Equa-
tion 2.1). MI or mutual information for a pair of genes is then defined as their combination

Hi =
∑
i

(P (Xi)log(P (Xi)) (2.1)

To further illustrate let us assume two genes G1 and G2. Their activity measurements can
be supposed to be drawn from random variable say X and Y . For the moment assume the
random variables are discrete. The random variable X for G1 can take the values as equation
2.2 and a similar equation holds for G2.

X =

{
0; with probability p

1; with probability 1− p
(2.2)

Using the equation 2.1 the entropy of G! (H(G1)) can be given as follows:

H(G1) = p log(p) + (1− p) log(1− p) (2.3)

Therefore the entropy is a property of the probability distribution. The joint entropy for
random variables X and Y can be given as

H(X,Y ) =
∑
X,Y

p(X,Y ) log(p(X,Y )) (2.4)
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The mutual information is defined according to equation2.5 (Shannon and Weaver, 1963;
Cover and Thomas, 1991).

MI(X,Y ) = H(X) +H(Y )−H(X,Y )

=
∑
X,Y

p(X,Y ) log
p(X,Y )

p(X) p(Y )
(2.5)

In case of continous random variables sums are replaced by integrals over the corresponding
probability densities.

MI(X,Y ) =

∫
X

∫
Y
p(x, y)log

(
p(x, y)

p(x)p(y)

)
dxdy (2.6)

Where, p(x,y) is now the joint probability density function of X and Y , and p(x) and p(y) are
the marginal probability density functions of X and Y respectively.

Thus, if two variables are independent the MI turns to zero and hence shows no dependence
and vice-versa. The mutual information between two variable is a more general measurement
of dependence than correlation and measures non linear dependency, often seen in cellular
systems (Brunel et al., 2010). It measures the reduction of uncertainty in Y after observing X.
Thus, a pairwise MI across expression profile decides the presence or absence of edge in such
networks or more precisely statistical independence or dependence of genes on each other
(Bansal et al., 2007; Hartemink, 2005).

Interesting MI based approach include the CLR method by Faith et al. (Faith et al., 2007)
and minet (available as R-package1) by Meyer et al. (Meyer et al., 2008). However, ARACNe
2 is the most famous member of this family network inference approach (Basso et al., 2005;
Margolin et al., 2006). Although it is a MI based approach it can distinguish between direct
and indirect relationship. It does not consider the MI alone but together with a principle
called ‘Data Process Inequality’ (DPI). For all pairs of genes (i, j) the mutual information Mij is
computed via Kernel density estimation (Duda et al., 2001) (Gaussian kernel density (Steuer
et al., 2002)). The DPI comes into picture to eliminate the weak edges. To illustrate, if gene i
interacts with j and j with k then ARACNe prunes an edge i↔ k if the condition in equation
2.7 holds (Basso et al., 2005). Therefore, for each such triplets the edge corresponding to the
lowest mutual information value is eliminated .

MIi,k ≤ min(MIi,j ,MIj,k) (2.7)

1http://bioconductor.org/packages/release/bioc/html/minet.html; Accessed: February 2013
2http://wiki.c2b2.columbia.edu/workbench/index.php/ARACNe; Accessed: February 2013
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ARACNe has been used in human B-cell data and could detect dense hubs, it could also
outline some validated transcriptional targets of the cMYC proto-oncogene. Later an extension
of ARCANe: TimeDelay-ARACNE was proposed to infer network from time-course expression
profiles (Zoppoli et al., 2010).

MI based methods specially ARCANe has certain advantages, e.g. it does not rely on a−priori
assumptions, does not need any heuristic search and does not require any discretization at
expression level (Margolin et al., 2006). Nevertheless, there are certain drawbacks in the
approach. The first issue with MI based approaches is owing to the symmetric nature of MI
i.e. MIi,j = MIj,i. This makes the inferred network undirected. Furthermore, such networks
cannot be guaranteed to yield causal interactions. However the TimeDelay-ARACNE attempts
to overcome the issue to some extent by including the time dimension into the picture (Zoppoli
et al., 2010). Another interesting aspect in ARCANe is the DPI. This condition is necessary
but not sufficient, that is, the inequality can be satisfied even if (i, k) are directly interacting.
Therefore the authors acknowledge that by applying this pruning step using DPI they may be
discarding some direct interactions as well (Bansal et al., 2007). ARACNe involves a number of
computational approximations and Monte Carlo simulations, which could make the method
unstable (Markowetz and Spang, 2007). Sample size requirement is another limitation for
such approaches as these methods perform acceptably well with high number of sample size
(Hartemink, 2005).

2.2.3. ODE based approaches

In ODE based approaches the observed changes in activity of genes are related to each
other via a set of ordinary differential equation (one for every gene). The ODE‘s describe the
(instantaneous) change in each entity as a function of the levels of some network entities.
To illustrate let us assume three genes G1, G2 and G3 are interacting in such a way that G3 is
activated by G2 and G2. The activity of G3 in such case will be a function of G1 and G2 (Figure
2.1) in terms of their activities (represented with square brackets) (Equation 2.8). Law of mass
action is one of the popular ways to model these functions (f ) (Dilao and Muraro, 2010). Such
models are more often used in bottom up approach, nevertheless they have been applied to
infer networks from experimental data (Bansal et al., 2007; Chen et al., 2004; di Bernardo et al.,
2005; Li et al., 2008; Locke et al., 2005). These models being deterministic, infer causal relations
among genes rather than mere dependencies.

d([G3])

dt
= f([G1] · [G2]) (2.8)

2.2.4. Boolean Networks

Boolean networks were proposed as biological network modeling paradigm by Kaufman
et al. (Kauffman, 1993) They are a dynamic model of interactions between genes (rep-
resented by nodes) in a network. Boolean Networks consist of a directed graph G(V, E).
V ∈ (Gene1, Gene2...Genen) are the vertices of graph representing the genes that act like
Boolean variables. Boolean networks are based on the postulate that each vertex in a graph
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Figure 2.1.: A network with three genes with activities G1, G2 and G3 interacting and the corre-
sponding set ODE for the system. Redrawn from Karlebach et. al. kij represents
reaction rate constants for i on j, K represents synthesis rate constant for corre-
sponding genes and K̂i is the degradation rate constant for gene i. Provided at the
left is the activity measurement for the genes.

can attain two alternative levels: 1 or ON (active) and 0 or OFF (inactive). A Boolean func-
tion governs every vertex of the graph and they update the entire graph and referred as state
transition (Figure 2.2). A graph with n genes can then have 2n states.

Kauffman et al. used such models to analyze regulation and network stability in the yeast
transcriptional network (Kauffman et al., 2003). He showed that random regulation functions
make the network stable and biologically realistic functions increases the stability. Akutsu
and co-workers devised an algorithm to infer genetic networks from state transition tables
corresponding to time series of gene expression patterns(Akutsu et al., 1999). It has been
applied to study Yeast cell cycle with a literature based Boolean network (Li et al., 2004).
Lähdesmäki et al. developed an approach to find consistent Boolean networks from data
(Lähdesmäki et al., 2003). GINsim 3 (Gene Interaction Network simulation) was introduced
by Chaouiya et al. as is a computer tool to model and simulate genetic regulatory networks
(Gonzalez et al., 2006). The Boolean networks were later extended with multi valued logic
(de Jong, 2004; Schlatter et al., 2009). Shmulevich and colleagues extended this model with a
hybrid probabilistic Boolean networks to cope up with uncertainties in biology (Shmulevich
et al., 2002).

Boolean network are deterministic models that can model the dynamical behavior of a
network. They can provide important insights into the network like-existence and nature of
steady states, network robustness etc. Inherently, the model assumes the discretization of
states (0 or 1). These discretization efforts on genes can lead to loss of information within
the network. Furthermore, the modeling of self-down-regulation in genes is difficult with
these models. Another issue with such models is their computational expense while analyzing

3 http://gin.univ-mrs.fr ; Accessed: February, 2013
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G1 

G3 

G2 

 
    1 2 3 4 5 6 

G1 0 1 1 1 0 0 
G2 0 0 1 1 1 0 
G3 0 0 0 1 1 0 

Time Points 

A B 

Figure 2.2.: A Boolean network representation of the same data as in figure 2.1 with three genes
G1, G2 andG3 representing the trajectory of the system through time together with
discretized measurement of gene activities.

large networks, because the number of possible network states grows exponentially with the
number of network nodes.

2.2.5. Probabilistic approaches

Deterministic models e.g. Boolean network or ODE models cannot cope with the noise in
biological data. The measurement noise from experiments, uncertainty from experimental
effects (intervention experiments), together with inherent biological noise (Pedraza and van
Oudenaarden, 2005) disallows deterministic models to model biological networks robustly.
In real life reverse engineering inference algorithms must cope with uncertainties in the data
and relationships (between variables) (Frey and Jojic, 2005). Probability theory offers a mathe-
matically robust way to formulate inference algorithms when reasoning under uncertainty.
Therefore, a probabilistic approach becomes a preferred tool to model networks. Probabilistic
Graphical Model (PGM) is a framework that combines uncertainty (probabilities) and logical
structure (independence constraints) to compactly represent complex, real-world phenomena
(Koller and Friedman, 2009). Thus, they offer to absorb the uncertainties and noise in real
biological data (Bolouri, 2008).

In a probabilistic (graphical) model, molecules are represented as nodes. The measurements
for each node are supposed to be drawn from a random variable. For example, if we consider
genes as entities, their expression level can be the corresponding measurements. These
models use presumed probability distributions of certain inputs to calculate the implied
probability distribution for chosen output (Brémaud, 1998). Probabilistic models differs from
a deterministic model, where one can model the relationship between molecules based on
data with certainty. These models are popular way to represent a high dimensional system
and the complex probability distribution over it in a compact way (Koller and Friedman, 2009).
These model embodies the description of the joint probability distribution of all the random
variables of interest (Friedman, 2004). The model consists of random variable as nodes and
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edges as the relationship (Koller and Friedman, 2009). Probabilistic graphical models offer a
common conceptual architecture where biological and mathematical objects can be expressed
with a common, intuitive formalism as described below.

A probabilistic graphical model defines the independencies (conditional) among the nodes
induced by the graph structure as well as the factorization induced by the graph structure.
Bayes’ rule is used to perform statistical inference in such models. The central idea of Bayes
rule (Equation 2.9) is to update the belief in a hypothesis(X) given the additional evidence
(Y) and the background information. X being the variable we care for and Y the evidence.
Thus, the equation consists of three parts-posterior probability P (X|Y ) and the prior P (X),
likelihood P (Y |X) gives the probability of evidence assuming hypothesis to be true. The term
P (Y ) is independent of the hypothesis X and acts like a scaling factor. The overall function
helps to compute the conditional probabilities.

p(X|Y ) =
P (Y |X)P (X)

P (Y )
(2.9)

As the current thesis is very much inspired by Bayesian Networks, following section offers a
more detailed description for this model.

Bayesian Networks

Bayesian Networks (BNs) also known as belief networks are one of the most studied and
used PGMs. They are used for many applications in science and engineering (Chavez and
Cooper, 1990; Pearl, 1988). They provide a systematic representation of dependence among
variables in terms of joint probability distribution. A BN builds graph for data for conditional
independencies for all orders, thus two vertices are connected if no other vertex subset (S) can
explain the conditional statistical dependency. Considering a set of vertices G1, G2...Gn ∈ V
representing random variables in the graph G(V, E), two random variables G1 and G2 are
conditionally independent givenG3 ⊆ V \ {G2, G2} noted (G1 ⊥⊥ G2|G3), if the following holds

∀ G1, G2, G3 : P (G1|G2, G3) = P (G1|G3) (2.10)

While, ∀G3: P (G3) > 0. We will deal with this concept in detail in the upcoming description.

What is Bayesian Network?

A Bayesian network is a graphical model for probabilistic relationships among a set of
random variables (X1, X2...Xn) ∈ V . The relationship is encoded as a DAG; Directed Acyclic
Graph : G(V, E) via conditional independence assertions among the random variables Xi. The
DAG actually describes the dependency structure among the variables in a probabilistic way
(Pearl, 1988; David Heckerman, 1994).
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To illustrate we will consider a biological network as a graph consisting genes G1, G2...G5 as
vertices (Figure 2.3). Let us assume the expression of each gene is represented as a random
variable. The graph depicts G1 affecting G2 which in turn affects G3 and G4. These genes the
ultimately cause G5 to respond. A full specification of the joint distribution for these random
variables (assuming binary values) requires 31 (2n−1; (n is the number of vertices)) parameters
However around the Bayesian Network model formalism they can be described with fewer
parameters. The formalism has been entailed below.

Mathematical Formalism

The node attributes in BNs are defined in terms of a local probability distribution (LPD) and
joint probability distribution (JPD). This JPD is consistent with the independence assertions
embedded in the graph G. By applying the chain rule of probabilities and independence, the
JPD is expressed as a product of conditional probabilities (2.11) (Heckerman et al., 1995a).

P (Gn, Gn−1...G1) = P (Gn|Gn−1, Gn−2...G1)P (Gn−1, Gn−2...G1) (2.11)

This can be generalized as follows for the graph in figure 2.3

P (G) =

n∏
1

P (Gn|Gn−1, Gn−2...G1) (2.12)

The factorization of JPD over the graph structure. i.e. the local probability distribution for a
given node i only depends on its parent nodes πi.

P (G) =
n∏
1

P (Gi|πi) (2.13)

On considering the parametrization of local probabilities θ

P (G) =

n∏
1

P (Gi|πi, θ) (2.14)

The set πi consists of the parents of the random variableGi. Thus given the parents a random
variable is independent of all other random variables. Therefore, the JPD (joint probability
distribution) can be decomposed as the product of conditional probabilities, only if the Markov
assumption holds, that is, each variable Gi is independent of its non-descendants, given its
parent in the directed acyclic graph G. The conditional independence together with the local
probability distribution for random variables, layout the relationships between the variables.
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Figure 2.3.: A directed acyclic network with five genes G1, G2, G3, G4 and G5 and their condi-
tional independence in box (top-right)

A schematic overview of the theory underlying Bayesian networks is given in Figure 2.3. The
conditional independence for the given graph is shown in the figure. The JPD for the given
graph say G is given as equation 2.15.

P (G) = P (G5|G4, G3)P (G3|G2)P (G4|G2)P (G2|G1)P (G1) (2.15)

Why Bayesian Networks

The key feature of Bayesian networks is the fact that they provide a method for decompos-
ing a probability distribution into a set of local distributions. The independence semantics
associated with the network topology specifies how to combine these local distributions to
obtain the complete joint probability distribution over all the random variables represented
by the nodes in the network. This has three important consequences.

• Naı̈vely specifying a joint probability distribution with a table requires a number of
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values exponential in the number of variables. For systems in which interactions among
the random variables are sparse, Bayesian networks drastically reduce the number of
required values.

• Efficient inference algorithms allow for transmitting information between the local
distributions rather than working with the full joint distribution.

• The separation of the qualitative representation of the influences between variables from
the numeric quantification of the strength of the influences has a significant advantage
for network reverse engineering.

While building a Bayesian network model, one can focus first on specifying the qualitative
structure of the domain and then on quantifying the influences. When the model is built,
one is guaranteed to have a complete specification of the joint probability distribution. A
BN for a given data, can thus be inferred multiple Bayesian Network structures which are
likelihood equivalent, i.e. which equally well explain any data. In fact Bayesian Networks form
equivalence classes, namely Completed Partially Directed Acyclic Graphs (CPDAGs).

Inferring Network

The key problem that remains is to learn the network structure i.e. the dependencies be-
tween random variables given data. Specially in bioinformatics the elucidation of biochemical
circuitry (regulatory/signaling etc. ) from experimental data is the major objective. The dis-
covered graph G shows the dependencies across the genes, proteins or bio-molecules. The
inference is though difficult can be achieved with careful experiment design and learning
strategy (Needham et al., 2007).

To accomplish this, we need to infer a DAG satisfying the factorization (Equation 2.14) for
the JPD that generates the data (Neapolitan, 2003). The JPD is not sufficient for the causal
inference as it depends on the order of random variables too (Ellis, 2006; Heckerman et al.,
1995a), moreover we usually have the data and not the JPD. The search space for entire set of
possible networks grows exponentially with the number of random variables, making it an
intractable problem to search through all possible networks (Koller and Friedman, 2009). One
can test the independence of a pair of nodes for every subset of genes via constraint based
learning (Pearl, 2000; Spirtes et al., 2001). However, the bottleneck with such approach is the
computational feasibility if the graph is not sparse (Spirtes et al., 2001). Moreover this approach
is also sensitive to errors in individual tests. For these reasons score based approaches are
preferred.

Constraint based approaches use statistical conditional independence tests to find depen-
dencies and independencies between variables. They then construct a Bayesian network to
represent the set of independencies detected. Independence tests are often unreliable for
more than a few variables, and constraint-based methods are sensitive to failures in these tests.
This is because an edge can be incorrectly left out of a network based on the result of a single
failed test.
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Search-and-score methods treat structure learning as a model-selection problem. We define
a set of possible structures and a scoring function that evaluates how well a structure fits the
training data. We then use a search procedure to find a high-scoring structure. The space of
Bayesian networks with n nodes has 2O(n2) possible structures (super exponential), and the
problem of finding the best structure is in general NP-hard. Consequently, the search method
(such as hill climbing or an evolutionary algorithm) will not consider all possible structures,
and is not guaranteed to find the optimal structure. In this thesis, we use a search-and- score
method to learn structures from a fully observed data set.

The central idea in score based learning is to assign a score to each network structure. We
must find the directed acyclic graph G that best describes the data D. This is performed by
choosing a scoring function that evaluates each graph G (i.e. a possible network topology) with
respect to the dataD, and then searching for the graph G that maximizes the score one based
on Bayes rule equation 2.16. Here P (G) is the structure prior.

P (G|D) =
P (D|G)P (G)

P (D)
(2.16)

The logarithm of posterior probability of the graph given the data was defined as a score S
by Peèr et al. (Peér et al., 2001) (Equation 2.17).

S = log(P (D|G)) + log(P (G)) (2.17)

The marginal likelihood P (D|G) is the key component of Bayesian scoring metrics. It equals
the full model likelihood averaged over parameters of local probability distributions and
follows Baye‘s theorem (Heckerman et al., 1995a).

The concept of scores can then be applied to search all possible graph structures. Several
search methods have been developed to seek the best fitting network for a data in the search
space satisfying the above discussed mathematical formalisms. However, the problems turns
unfeasible when the number of parent for each node in the graph exceeds 1 (Chickering
et al., 1994). Exhaustively examining every possible graph is computationally expensive
(NP complete problem) as the number of possible graph structures is super-exponential in
the number of variables. This has motivated the use of heuristic approaches like- Monte
Carlo methods (Hesar et al., 2012) which can be further aided by model selection methods
(Chickering et al., 1997).

In case of not having large sample data, the structure prior P (G) and parameter prior
P (θ|G) can be handy Heckerman et al. (1995a). The parameter prior has been proposed by
many workers based on different assumptions of Bayesian networks namely- equivalence,
independence and modularity (David Heckerman, 1994; Cooper and Dietterich, 1992; Buntine,
1991). Structure priors can bias the network inference towards a specific graph space and
restrict the search bout this space. They can be non-informative like equal prior (Heckerman
et al., 1995b) or informative with expert knowledge (Madigan and Hutchinson, 1995). In case
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Figure 2.4.: (A) A feedback loop between two nodes A and B in rolled form. (B) Unrolled for the
same network over time showing time layers and interactions between the genes
across these layers. This forms the principle behind Dynamic Bayesian Networks

of reverse engineering of biological networks use of biological knowledge can prove vital as
prior and yield sensible network models. This aspect of Bayesian Network will be exploited in
chapter 5 and 6.

Dynamic Bayesian Networks :

Static Bayesian networks cannot handle temporal information. Furthermore, as BN model
are based on DAGs, modeling feedback loops; a common phenomenon in biology becomes
virtually impossible. The feedback loop in a graph is a cyclic element; turning a parent node
into the child for its own child (Figure 2.4 (A)) . This paralyzes the conditional dependence
framework of BNs. An extension of BN along the time dimension can overcome such situations
and is known as Dynamic Bayesian networks (DBN) (Needham et al., 2007; Murphy, 2002).
. They allow variables in a Bayesian network to be time dependent, in order to model time
series or sequences (Ghahramani, 1997). In order to understand a dynamic Bayesian network
we can simply unroll it across time. Unrolling a network converts it into its equivalent network
(Figure 2.4 (B)) organized into layers indexed in terms of time steps (or points) (Perrin et al.,
2003). The unrolled network shows how each variable at one time point ( T = t) affects the
variables at the next time point (T = t+ 1). This extension of BN will be provide a ground for
the work in chapter 4 of this thesis.

Application Stories :

Friedman et al. used Bayesian networks to establish regulatory relationships among yeast
(Sachharomyces cerevisae) genes with time-series data of gene expression (Friedman et al.,
2000). The approach was used to map several pathways from expression data (Hartemink et al.,
2002a,b; Peér et al., 2001; Yu et al., 2004). Péer et al., applied Bayesian networks to perturbation
gene expression data, with a similar but expanded goal: to identify regulatory relationships and
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in addition, to predict their nature of activation or inhibition. To do that, they incorporated
perturbations into the Bayesian framework. Yeang and Vingron integrated perturbation data
with knowledge from the literature into a joint model of regulation and metabolism and
created a framework for the prediction of regulatory interactions and pathways in Escherichia
coli (Yeang and Vingron, 2006). Banjo was developed by the group of Hartemink as a gene
network inference software (Hartemink, 2005). It is based on Bayesian networks formalism
and implements both Bayesian and Dynamic Bayesian networks. Therefore it can infer gene
networks from steady-state gene expression data or from time-series gene expression data (Yu
et al., 2004).

Beside being able to use noisy data directly from experiments, BNs offer additional features
like the option for a prior to integrate different types of knowledge (Bolouri, 2008) which will
be exploited in chapter 6 of this dissertation. Furthermore, they also offer flexibility in terms
of node and the effect on it via other nodes even in case of incomplete data and are easy
automate (Bolouri, 2008). This makes it an attractive choice to be used for biological network
reverse engineering.

The issue that limited the Bayesian network while handling cycles in biological network
was also resolve via the use of time differentiated data in Dynamic Bayesian Networks (DBN)
Ghahramani (1997); Murphy (2002). The exploitation of time delays in biological networks
allowed this by relaxing the acyclicity constraint of BN (Friedman, 1998). Ong et al. applied
DBNs to learn physiological changes that affect tryptophan metabolism in E. coli (Ong et al.,
2002). Perrin et al. applied DBNs on the S.O.S. DNA Repair network of E.coli (Perrin et al.,
2003).

Inferring gene regulatory networks from high throughput gene expression data is another
challenge. The reasons behind this include, fewer data points and also because of the random
noise that is present in experimental measurements. We need to find the optimal network
based on such data. The number of possible DAGs for the data set can be huge, even for small
number of genes. For example, 20 genes can have more than 1072 possible DAGs. Therefore,
effective methods for learning networks together with smart experimental designs are needed
to find a better solution (Kim et al., 2003).

The current chapter presented a brief overview of network reverse engineering methods with a
special focus on Bayesian Networks. BNs were discussed in detail as they will serve as the ground
for a big part of work done during the thesis as well as for Nested Effects Models (NEMs); the
major framework of this thesis. The next chapter will introduce these NEMs

26



Chapter 3

Nested Effects Model(s)

Following the last chapter on network reverse engineering methods, this chapter presents an
overview of Nested Effects Models which will the ‘prima focus’ for this thesis. The chapter explains
the principle and mathematical formalism for NEM. This will serve as the foundation for the
next chapters which aim to extend and compliment the NEMs in various dimensions.

3.1 Introduction

A cell when subjected to an external cue or stimuli responds in a complicated way in terms of
the activities of various bio-molecules like- gene or proteins. Biological networks or pathways
work like water ripples and the effect of disturbance are carried throughout the surrounding
bio-molecules according to upstream or downstream relations. The response propagation can
reflect the machinery of bio-molecular circuitry ultimately unveiling the network involved.
Even if the perturbed bio-molecule cannot be measured directly, other molecules linked
to it may be measured and therefore their activity can give an insight into the activity of
perturbed gene. Probabilistic graphical models are the representation of the dependency
structure between the components of a random variable as described in the last chapter.
However, the key in modeling such perturbation measurement based networks is mapping
of the downstream effects to perturbation. NEMs are a class of probabilistic methods that
explicitly addresses this issue of reverse engineering from such indirect measurements.

3.2 NEM(s)

NEMs (Nested Effects Models) are a class of probabilistic models to reconstruct a pathway
based on measurable transcriptional downstream response profiles of individual gene knock-
downs. Perturbation typically alters function of the biological system. A targeted perturbation
typically brings about an observable change in the steady-state expression/activity levels of
every gene in the network in the presence of the perturbation (Ideker et al., 2000; Badaloni
et al., 2012). Such changes can be much more informative as it also reveals the effects on the
downstream genes (bio-molecules) within the system (Nelander et al., 2008; Wagner, 2002).
The perturbed genes are called the S-genes (silenced genes) and the expression profile is
measured for E-genes (effect reporter genes). The NEM framework aims to systematically
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Figure 3.1.: General principle of Nested Effects Model (NEM)

model the upstream signal flow network between S-genes via a directed graph based on the
profiles of downstream genes (E-genes). The approach entails the nested effect on E-genes for
perturbation of every S-gene.

3.2.1. The approach

The NEM algorithm accepts a set of hypotheses in terms of networks among the per-
turbed/silenced genes. Each of these hypotheses is a graph G(V, E) : V ∈ S and makes
use of Bayesian scheme to score the fit to the data. However, the score is not unique to net-
works as different networks can have identical scores i.e. networks form likelihood equivalence
classes. One can then consider the entire list of network and the overall confidence in each
possible edge among the silenced genes. First, we present here the framework of NEMs as
proposed by Markowetz (Markowetz, 2005), followed by other frameworks and advancements
from Fröhlich et al. (Fröhlich et al., 2007a), Tresch et al. (Tresch and Markowetz, 2008), Zeller
et al. (Zeller et al., 2009) and Vaske et al. (Vaske et al., 2009)

Model semantics

To illustrate the semantics of NEMs let us assume a data matrix D. The matrix has the
dimensions E-genes× S-genes. It shows the phenotypic profiles (of E-genes E) for perturbed
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Figure 3.2.: Scheme of perturbation effects and their nested nature representing the principle
behind Nested Effects Models. Interventions of S-genes interrupts signal flow
through the pathway. S-genes regulate E-genes at secondary level. The E-gene
expression effects for downstream S-genes are nested within its upstream S-gene.

genes S. For simplicity we assume a binary data (observed effect and not observed effects).
For example,Dij = 1 means E-gene i shows an effect upon silencing of S-gene j andDij = 0
means E-gene i shows no effect upon silencing of S-gene j.

According to the model as described above, the effects observed when perturbing a gene
upstream forms a super-set to the effects observed for all other genes (Figure 3.2). To illustrate,
let us assume three genes S1, S2 and S3. Let, S1 be upstrem of S2 and S3 and S2 is upstream
of S3 as in figure 3.2. Each of these have effects gene (E-genes), E1, E2 and E3 respectively.
Perturbing S1 casts effects on the S-genes shows effect on their downstream genes S2 and S3; as
they are located downstream. They can be measured in terms of corresponding E-genes. Thus,
the effects of perturbing S1 forms a super set for the effects of S2 and S3 and so on (Figure 3.2).
The NEM estimates a graph G that depicts these causal relations across the S-genes as well
as the associations between E-genes and S-genes (Tresch and Markowetz, 2008; Markowetz,
2005).

Mathematical formalism

A general ‘Effects Model’ forms a matrixM of dimensionsA×O where,A is the action and
O is the observable. Thus, there is a binary value associated with every observableO for each
actionA (Tresch and Markowetz, 2008). For example, if actionAj has an effect of observable
Oi thenMij = 1; else 0.

Now, let us consider the case of gene perturbations where, every perturbation is an action
and one action can imply the other action. This forms our first graph Φ, i.e association among
actions. Additionally, we have the observable for each of these actions. These two association
can be modeled as an extension of the general effects model defined above, we call this Θ.
A Nested Effects Model or NEM , is a combination of these two components thus forming
an extension of a general effects model plus the relationships across the actions (Tresch and
Markowetz, 2008). It can be given as the product of Φ and Θ.
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M = ΦΘ (3.1)

To further illustrate the NEMs mathematically, let us consider two set of genes S and E
consisting of S and E-genes respectively. Let D be a binary matrix representing the effect of
every perturbation. Dij = 1, if E-gene i shows an effect in a targeted perturbation experiment
j, else 0 for no effect (Markowetz, 2005).

S1, S2, ...Sn ∈ S

E1, E2, ...Em ∈ E

D =


1 1 1
1 1 1
0 1 1
0 0 1


NEMs assume that perturbation of S-gene S yields measurable downstream effects for all

E-genes attached to S itself and all E-genes attached to any S-gene reachable from S in the
upstream signal flow network. Thus, the information for perturbation is carried to every gene in
the network according to connection between the perturbed genes and further communicated
to the corresponding downstream genes systematically. For example, in the network in figure
3.2 perturbing gene S1 will affect the gene S1 itself and the silencing information will then show
effect on genes the downstream genes i.e. E1. Similarly S2 being downstream to S1 will get the
silencing information and its downstream genes E2 will see the change in their expression.
Whereas, perturbing S2 will not affect S1 as there is no flow of information from S2 to S1. This
gives rise to the subset relationships among the E-genes (Equation 3.2). Such subset relations
being reflexive and transitive define a quasi order on the expression profile data. This brings in
the equivalence classes among networks in form of transitively closed graphs (Box 3.1).

S1 → S2 ⇔ {i : PS2(ES2 = 1)} ⊆ {i : PS1(ES1 = 1)} (3.2)

Based on the illustrations explained so far, the entire set of cross talk among signals and
effects can be organized in and as two binary matrices namely Φ and Θ. The matrix Φ. The
matrix Φ is of dimension |S| × |S|, and represents the connections among S-genes (signals).
Whereas, the matrix Θ of dimension |S| × |E|, represents the connection between signals and
effects (S and E-genes). Φij = 1 shows the presence of an association between signals i and
j, and Φij = 0 (i, j ∈ S). We also assume Φii = 1. If one assumes transitively closed S-gene
graphs Φ (as done in the following), then Θ is just an attachment graph. That means Θij = 1, if
and only if E-gene j is attached to S-gene i. We can now illustrate this organization in figure
3.2 with the following Φ and Θ matrices:
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Φ =


S1 S2 S3

S1 1 1 1
S2 0 1 1
S3 0 0 1

 ,Θ =


S1 S2 S3

E1 1 0 0
E2 1 1 0
E3 1 1 1


For a given dataD, Φ is the network hypothesis and NEM aims to infer the posterior to infer

the graph among signals (S-genes). Applying Bayes’ formula for network hypothesis Φ, we
have

P (Θ) =
P (D|Φ)P (Φ)

P (D)
(3.3)

Considering the association of E-genes to S-genes (Θ) the data likelihood becomes as follows

P (D|Φ) =
∏
i

P (Di|Φ,Θi = 1) (3.4)

If the effect of each perturbation is known, the model described above can be said to be a
complete model. However, in real condition the effect for each perturbation is not known.
Therefore, we marginalize over Θ to get overall likelihood as in equation 3.5

P (D|Φ) =
∏
k∈E

S∑
j=1

P (Di|Φ,Θi=j)P (Θi=j |Φ) (3.5)

Simplifying this for perturbation and effects (signals and effects), we have:

P (D|Φ) =

∫
Θ
P (D|Φ,Θ)P (Θ)

=
∏
k∈E

∑
s∈S

∏
t∈S

P (Dtk|Φ,Θsk = 1)P (Θsk = 1) (3.6)

The Bayesian structure in equation 3.3 allows a structure prior in the model. Such a prior
can be used to bias the network search towards prior knowledge (Fröhlich et al., 2007a). This
structure prior can be decomposed in terms of individual edge wise priors as in equation 3.7,
which are statistically independent. This avoids the overfitting of model when based only on
data.

P (Φ) =
∏
i,j

P (Φi,j) (3.7)
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Computing effect likelihood

The original work of Markowetz et al. is based on the assumption of having both positive
and negative control together with RNAi perturbation data (Markowetz, 2005). Positive and
negative controls refers to the conditions of having data with stimulation (but without RNAi)
and without stimulation respectively. This enables to simply count the observed knockdown
effects for every replicate in a perturbation experiment as a measurement for observables.
However, in absence of positive and negative controls, we cannot use the counting approach
to get effects matrix. In most of the cases we have only a single control compared to treatment
(RNAi effects).

Fröhlich et al. proposed a Beta Uniform Mixture models (BUM models) to address the
issue (Fröhlich et al., 2007a, 2008b). The model assumes the data matrix (D) to be composed
of p-values obtained via differential gene expression analysis (using methods like limma
(Smyth, 2004)) compared to a single control. Under the null hypothesis, the p-values will
have a uniform density corresponding to a flat horizontal line. Whereas, under the alternative
hypothesis, the p-values will have a distribution that has high density for small p-values and
the density will decrease as the p-values increase (Pounds and Morris, 2003). Thus, the overall
distribution is a mixture of p-values arising from these two hypotheses, whose shape can be
given as equation 3.8. The distribution can be visualized as in figure 3.3. The shape of the
probability density function (PDF) f(x|a, λ) is defined by a curve with asymptote at x = 0 and
follows a monotonic decrease to its minimum (Figure 3.3).

P (Dik) = γk + (1− γk) · f1(Dik), γ ∈ (0, 1) (3.8)

Thus under the alternative hypothesis, we will have a higher density for small P-values and a
strong decrease for increasing P-values. Further the mixing coefficient γ · P (Dik|Φ, θi) can be
given as:

P (Dik|Φ, θi) =

{
f1(Dik) if Φ shows an effect

1 otherwise
(3.9)

A better fit has been proposed (Fröhlich et al., 2008b) as a three component mixture of (1)
a uniform, (2) a Beta(1, βk) (βk > 2), and (3) a Beta(αk, 1) (αk < 1). This distribution can be
given as:

f(Dik) = π1k + π2kBeta(Dik, αk, 1) + π3kBeta(Dik, 1, βk) (3.10)

Where, π1k + π2k + π3k = 1 (πrk ≥ 0, r = 1, 2, 3).

Fröhlich et al. proposed that the beta distributions ((2) and (3)) used here are monotonously
decreasing convex functions. The minimum forBeta(1, β) is always 0, whereasmin (Beta(α, 1))
> 0. The density function f1 reflects the strength of the knock-down effect on E-gene i under
the alternative hypothesis. If it is greater 1 the alternative hypothesis would be accepted, and if
it is smaller 1 rejected. An Expectation Maximization algorithm can be used to fit such a model
(Dempster et al., 1977) and obtain the shape parameters for the distribution. To extract the
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Histogram of p-values and Beta-Uniform-Mixture (BUM) model

P-values

D
en

si
ty

 (%
)

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
10

Density fitted under BUM model: f(x)=λ + (1 − λ)ax(a−1)
With density for the noise component: π=λ + (1 − λ)a
With density for the signal component: f(x) − π=(1 − λ)a(x(a−1) − 1)

Figure 3.3.: A fitted BUM model to the histogram. The green line indicates the uniform part
and red the Beta part. The BUM model is represented by the blue line.

alternative distribution f1 let us start with π̂ = f(1) as the maximum uniform part of the BUM
model, then we have:

f(Dik) =
f(Dik)− π̂

1− π̂
(3.11)

We will use this model while generating artificial data for our simulation studies in upcoming
chapters.

Learning network structure

The S-gene graph in NEMs represents a quasi order 1 between S-genes. The number of
possible quasi orders increases exponentially with the number S-genes. Therefore, exhaustive
enumeration of the whole space of possible S-gene graphs is only possible for a small number
of S-genes. For example, for 4 S-genes (n = 4) there are 355 possible network structures and
for n=5 there are 6942 possible network structures. This brings in the heuristic methods into
the picture. A set of methods have been proposed to handle the issue (Markowetz and Spang,
2007; Fröhlich et al., 2007a). The simplest among these methods are the pairwise and triplet
inference methods (Markowetz and Spang, 2007).

1http://oeis.org/search?q=quasi+order&sort=&language=english&go=Search ; Accessed: February 2014
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S1 S2 S3 

E1 E2 E4 E3 E6 E5 

FP 

FN 

FN 

FN 

A B C 

E6 

E5 

E4 

E3 

E2 

E1 

S1 S2 S3 S1 S2 S3 

Figure 3.4.: Transitive closure in the model and the perturbation effect. (A) Shows a transi-
tively closed graph with the shortcut edge (S1 → S3) in red (B) Expected effect of
perturbation: without noise (C) Effect of noise in observed data. Redrawn from
Markowetz et al. 2007.

The pairwise relations can be inferred by choosing between four models for each gene pair
S1 and S2. In this case we can have only four possible models (Equation 3.12). For each pair a
Bayesian score for all these possible models can be computed and the one with maximum
aposteriori (MAP): (MS1,S2) is selected. The advantage is the reduction of search space. The
search space for n genes is

(
n
2

)
.4. This function grows quadratically with n. For example, in

case of 2 genes the search space will be 4 and in case of 3, 4 and 5 genes it will be 12, 24 and 40
respectively.

S1, S2 ⇒


S1 → S2

S1 ← S2

S1 ↔ S2 (indistinguishable) or

S1 ��↔ S2(no− relation)

(3.12)

Although the pairwise inference method is faster, it treats the involved edges independently.
In transitive graphs e.g. figure 3.4 (A), where we have a path S1 → S2 → S3, it is possible to
have shortcuts between S1 and S3 as an edge S1 → S3. In real data, noise (FP and FN in figure
3.4(C)) can cause non detection of edges or detection of spurious edges. For example, in figure
3.4 the FP and FN in the observed data can cause non detection of the edge S1 → S3 as their
perturbation effects do not overlap. Dealing with a collection of sub-models consisting triplets
of interacting vertices can address the issue to some extent.

The triplet method, offers a slight extension in terms of considering triplets of nodes in
a model compared to pairs. It extends the inference method beyond the assumption of
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independence between edges. In case of triples the models space for n gene is
(
n
3

)
.29. This

grows cubical as O(n3). Thus, for a three gene model, 29 possible quasi order structures
equivalently: transitively closed graphs can be scored to select the MAP model (MS1,S2,S3).
Later to combine the triplets in a model to one graph an edge-wise model averaging is used.
Since all possible triplets are scored, for each edge we can compute the frequency, in how
many sub-models it appears. This implies the count of an edge in a model (model‘s confidence
in an edge) (Markowetz and Spang, 2007). Thus for each edge the confidence function is given
as:

f(S1, S2) =
1

n− 2

∑
z�∈{S1,S2}

1[S1 → S2 ∈M(S1,S2,S3)] (3.13)

Where, 1[.] indicates the presence of corresponding edge in a model M(S1,S2,S3). The overall
graph is constructed from edges with confidence greater than a defined threshold. The triplet
approach takes into account that all possible triplets. Hence, there is no assumption of
independence; an advantage over the pairwise method. The transitive closure G∗ = (V, E∗)
of a graph G = (V, E) requires (i, k) ∈ E∗ ⇔ (i, j) ∈ E and (j, k) ∈ E ∀{i, j, k} ∈ V (BOX 3.1).
This means that if there is a path from S1 to Sn via some other nodes say (S2, . . . Sn−1), a path
directly reaching Sn cannot be disregarded. Although triplet methods do not always guarantee
to yield a transitively closed graph, they reach much closer to a quasi-order compared to the
pairwise approach (Markowetz and Spang, 2007). Another issue can be inclusion of spurious
edges owing to the consideration of smaller data and the noise in pairwise method is overcome
by the triples’ method.

Module network approach was proposed by Fröhlich et al. to address the issue of large
networks in NEMs (Fröhlich et al., 2007a). The module network approach is based on the
idea that a network consists of smaller sub-graphs called modules. The data set is first split
into sets of at most 4 nodes that serve as modules via hierarchical clustering based on p-value
density profiles. The network across these S-genes is learned via exhaustive search. To join
the modules Fröhlich et al. proposed two approaches (1) successively link pairs of modules
together using the pairwise model (Fröhlich et al., 2007a) and (2) guide the link of module
pairs via the increase of the log-likelihood of the complete network (Fröhlich et al., 2008b). It
establishes connection between modules by connecting pairs of nodes from different modules.
The module network approach can be applied to learn larger networks and is biologically more
sensible as the modular nature is evident in biological networks (see chapter 1).

3.2.2. Connection of NEMs to Bayesian Networks

The formulation for NEMs (equation 3.6) as a Bayesian network was presented by Zeller et
al. in 2009 (Zeller et al., 2009). The BN setting requires to assume an acyclic graph between
S-genes.

To illustrate, the NEM graph can be seen as two component system, first being the observed
E-genes and second the perturbed S-genes. The S-genes component in the NEM represent
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BOX 3.1: Transitive Closure in Graphs

The transitive closure of a graph G = (V, E) is a graph G∗ = (V, E∗) such that E∗
contains an edge (u, v) if and only if G contains a path from u to v. In other words, the
transitive closure of a graph is a graph which contains an edge (u, v) whenever there is
a directed path from u to v. Algebraically, the transitive closure of a network can be
expressed as an infinite sum of the true direct network and all indirect effects along
paths of increasing lengths, which can be written in a closed form as an infinite-series
sum (Feizi et al., 2013). The transitive reduction of an acyclic graph G is the unique
smallest graph G = (V, E∗), i.e., with the least number of edges, such that (G∗) = G.
Intuitively, this means that the transitive closure is preserved by the reduction, i.e., no
information about reachability is lost. For an acyclic graph G it can be shown that the
G∗ can be obtained by removing each redundant edge Eu,v ∈ E from the original graph
G for which there is an indirect path, i.e., not including edge Eu,v, between u and v in
G (Bonaki et al., 2012). Figure 3.5 shows the transitive reduction of a directed graph
having 5 vertices.

G2 

G1 

G3 

G4 
G5 

G2 

G1 

G3 

G4 

G5 

A B 

Figure 3.5.: Diagram representing the phenomenon of transitive closure in graphs. Here
the graph A is reduced to B via transitive reduction. The red dashed edges
in graph A represent the transitive information flow in terms of indirect
edges

latent variables (not observed directly). This S-gene component (S) is rather observed through
the effect component; the E-genes (E). For simplicity, let us assume the effect component to
be a binary variable, i.e. they carry a value 1 and 0 in active and inactive states respectively.
These two components which can be combined into a single graph G(V, E), such that:

V (G) = S ∪ E (3.14)

Thus, the overall graph G is a DAG (Directed Acyclic Graph) consisting of the 2 levels in
hierarchy (1) latent variable S , and (2) observed effect component, representing the Φ and
Θ components respectively in the original NEM framework. In the graph G (Figure 3.6). An
effect e (e ∈ E) is observed when it is reachable from a signal s (s ∈ S). For example in figure
3.6. E1 is reachable from S1 as well as S2 so a signal from either of these vertices will lead to an
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S1 S1 S1 

E1 E2 E3 

O OR 1 O OR 1 O OR 1

Figure 3.6.: The Bayesian Network view of NEMs, with assumed Boolean observation (observ-
able E-genes) for simplicity

observation of effect of E1. On the other hand, E2 is reachable only from S2, therefore, there
an effect on E2 can only be observed with the signal S2.

Now, let Dse be the observation in our data for effect ese i.e. e caused by signal s. The
local probabilities L = P (Dse|ese), assuming the data independence, the likelihood for NEM
framework can be given as

P (D|G,L) =
∏
s∈S

∏
e∈E

P (Dse|ese) (3.15)

From a BN perspective, G consists of a set of random variables V and local probability
distribution parameters L. Thus, in NEM we have to model S(S ⊂ G) given the observed
effects e (e ∈ E,E ⊂ G). For the NEM graph G a node x (where, x ∈ S ∪E) is unaffected as long
as its immediate parents are affected (Equation 3.16):

P (x = 1|pa(x))

{
1 : if max(pa(x)) = 1

0 : otherwise
(3.16)

When a node (here S-gene ) is perturbed (S → S∗), the state of each node changes based on
the connections of the graph. This, in turn, determines the conditional probability distribution
of the observable nodes based on the data. For each dataDi (observed data under perturbation
of S-gene i) and observable e ∈ E (Zeller et al., 2009) we have equation 3.17. Where, the first
part scores the likelihood of a perturbation of e relative to the opposite (i.e. when e is not
perturbed).
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P (Di) =
∏

e∈E|Die=1

p(Die|e = 1)

p(Die|e = 0)
.
∏
e∈E

p(Die|e = 0) (3.17)

For a set ofnperturbations we have a set of corresponding dataD = {D1,D2...Dn}. Assuming
independence the data observations:

P (D) =
n∏
i=1

Di (3.18)

The optimal graph can be computed via maximization of this score discussed in Bayesian
Network section of last chapter (section 2.2.5).

P (G|D) =

∫
P (G,Θ|D)dΘ

∝ P (G)

∫
P (D|G,Θ)P (Θ)dΘ (3.19)

Considering the Bayesian Network setting introduced by Cooper and Herskovits (Cooper
and Herskovits, 1991) (See chapter 2) marginal p(D|G) can be calculated in closed form for
binary observations. In this context additional beta distribution priors (with shape parameters
α and β) for the binomial distributions, which observations are supposed to follow, can be
defined. Accordingly, the Cooper and Herskovits formula reads as:

P (D1 . . .Dn|G) =

N∏
j=1

∏
e∈ε

∏
i∈(0,1)

Γ(Ne,i,0 + αi)Γ(Ne,i,0 + βi)Γ(αi + βi)

Γ(Ne,i,0 + βi + βi)Γ(αi)Γ(βi)

∝
N∏
j=1

∏
e∈ε

∏
i∈(0,1)

Γ(Ne,i,0 + αi)Γ(Ne,i,0 + βi)

Γ(Ne,i,0 + βi + βi)
(3.20)

For the case of normally distributed observations the Cooper-Herskovits formula can be
derived as:

P (D1 . . .Dn|G) =
∏
e∈ε

∏
i∈(0,1)

(
1

2π

)Nek/2
√(

v

v +Ne,k

)
Γ((α+Ne,k)/2)

Γ(α/2)
.
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|β|α/2

|β + se,k + (vnek/(v +Ne,k))( ¯xe,k − µ)2|(α+Ne,k)/2

∝
∏
e∈ε

∏
i∈(0,1)

√(
v

v +Ne,k

)
Γ((α+Ne,k)/2)

|β + se,k + (vnek/(v +Ne,k))( ¯xe,k − µ)2|(α+Ne,k)/2
(3.21)

It is a major achievement of NEMs to restrict the topology of the underlying graphical
structure in a sensible yet highly efficient way, thus, tremendously reducing the size of the
search space. There is an arbitrary “core” network consisting of signal nodes, and there is
a very sparse “marginal” network connecting the signals to the effects. It is, however, by no
means necessary that the core network and the signal nodes coincide.
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Figure 3.7.: The factor graph model for NEMs. ω (in blue box) represents the transitive factor
and ρ (orange box) represents the interaction factors. On the left is the graph
(consisting of S1, S2 and S3) for which the factor graph is drawn

3.2.3. Factor Graph View

Vaske et al. translated the NEMs into Factor Graph model (Vaske et al., 2009). It is a way
to express NEMs as a factor graph model, which itself can be understood as a generalization
of a Bayesian Network. A factor graph is a bipartite graph that expresses which variables
are arguments of which local functions, via factorization of the function (Kschischang et al.,
2001). It is represented in terms of a hyper-graph where a factor node can connect more than
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one normal node. The factor graph model for NEM introduces two kinds of factor nodes
namely- (1) transitive factor (ω) for S − gene interactions and (2) interaction factor (ρ) for
S − gene↔ E − gene interaction (Figure3.7). The NEM likelihood for a S-gene graph can be
now represented as equation 3.22

P (D|Φ) =
∑
S

∏
γeA,γeB

P (γeS1 , γeS2 |ΦS1,S2 , θeS1,S2)P (Se,S1 |γeS1)P (Se,S2 |γeS2) (3.22)

The prior for the S-gene network can therefore be given as:

P (Φ) =

(∏
S
ωS(ΦS1S2 ,ΦS2S3 ,ΦS2S3)

) ∏
S1,S2∈S

ρS1,S2(ΦS1,S2)

 (3.23)

Thus the value 0 for ω leads to a intransitive graph and 1 to transitive interactions.

3.3 NEM: Methodology Advancements

NEMs are designed to learn signaling cascades among perturbed genes via mapping of high-
dimensional indirect effects (Markowetz and Spang, 2007; Markowetz, 2005). They estimate
the interaction among unobservable variables (namely S-genes) from a set of observable
downstream variables. Triplet method was introduced to infer network in the NEM framework
(Markowetz, 2005) as we described in section 3.2.1. Nevertheless, computing cost for such
inference method remains high. Markowetz et al. also introduced a model prior to penalize
topologies in order to reach a more reasonable network.

Fröhlich et al. added further advancements to NEM in many ways (Fröhlich et al., 2008b).
They also proposed the use of prior assumptions on the network structure via individual edge
priors. This could bias the scoring of possible network hypotheses towards the biological
realism. Furthermore, the module networks algorithm was introduced to infer networks of
larger size (say more than 30 genes). The idea was to reconstruct a larger network from a set
of smaller inferred graphs (Froehlich et al., 2007). Additionally their approach to use P-value
profile via a beta-uniform mixture was introduced rather than a discretization step of the
observed data, as originally proposed by Markowetz et al. (Markowetz, 2005), to take the
account of effects.

An expectation maximization approach was proposed for faster detection of local maxima
for posterior probability in NEM by Niederberger et al. (Niederberger et al., 2012) in form
of MC-EMiNEM. This was presented a “counter-part for clustering in interventional data”
(Niederberger et al., 2012).
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Anchang et al. proposed D-NEM (Dynamic NEMs) with the introduction of time dimension
in the NEMs to the modeling of perturbation time series measurements (Anchang et al., 2009).
They decomposed observed time delays of multiple step signaling processes into single steps.
This was further advanced by Fröhlich et al. by unrolling the signal flow over time in the
dynoNEM approach (Fröhlich et al., 2011). It circumvented the need for time consuming
Gibbs sampling of D-NEM, making the time series modeling via NEMs computationally more
feasible.

Initially the scope on NEM model was limited to omic measurements. Failmezger et al.
proposed an approach called MovieNEM (Failmezger et al., 2013). They used the phenotype
data in form of time lapse imaging to infer cellular networks. This was one of the novel attempts
to learn cellular network by observing phenotypic changes induced by targeted perturbation.

3.4 NEM: Example applications

Several attempts have been successfully made to utilize NEMs. Starting from the pioneering
example of the immune response in Drosophila melanogaster (Markowetz, 2005), followed by
transcriptional network in Saccharomyces cerevisiae (Markowetz and Spang, 2007). Fröhlich
etal. proposed its usability in learning the ER-α pathway in breast cancer cells (Froehlich et al.,
2007; Fröhlich et al., 2008b), and Zeller modeled synthetic lethality interactions network in S.
cerevisiae (Zeller et al., 2009) and the Rosetta data-set for S. cerevisiae (Vaske et al., 2009). We
exemplify some of these applications here:

Studying immune response in Drosophilla

Markowetz et al.’s work on D. melanogaster is based on the measurements made by Boutros
et al. where he used RNAi on selected genes to measure the effects on LPS (Lipopolysac-
charides) induced genes via microarrays (Boutros et al., 2002). The data set consists of 16
Affymetrix microarrays: four replicates of control experiments without LPS and without RNAi
(negative controls) four replicates of expression profiling after stimulation with LPS but with-
out RNAi (positive controls) and two replicates each of expression profiling after applying LPS
and silencing one of the four candidate genes tak, key, rel and mkk4/hep.

The inferred network shows a fork below tak, with key and rel on the one side (tak → key ↔
rel) and mkk4/hep (tak → mkk4/hep) on the other. Beside explaining this ‘fork-topology’ idea
of Boutros et al., the inferred architecture also provided hints for the cross-talk between the
two prongs of the fork (Figure 3.8). This can be attributed to the ability of NEMs to precisely
model the upstream-downstream effects of perturbation.

Application on human ER-α pathway

Fröhlich et al. employed the module network approach (Fröhlich et al., 2008b) to meet
the challenges to learn larger network in order to infer a 13 gene signaling involved in breast
cancer. The network inferred consisted of 13 genes to be influenced by ER (Estrogen Receptor)
status in breast cancer patients. These 13 genes was silenced via siRNAs, respectively, and the
effect on gene expression was studied on whole genome cDNA microarrays for human MCF-7
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Figure 3.8.: Applying NEM on the Boutros et al. data. (A) The heatmap represent the density
and (B) the inferred network with the E-gene map for perturbation

breast cancer cells. The induced edges were found to be robust via bootstrapping and most of
them were also confirmed by the literature.

Studying mediator network in yeast S.cerevisae

Niederberger et al. applied NEM with the MS-EMiNEM algorithm (see section 3.3) to get
new insights into the new insight into the signaling network involving the mediator subunits
(Niederberger et al., 2012). A mediator is a multiprotein complex that functions as a tran-
scriptional coactivator. They used mediator subunit deletion mutants in yeast. The subunits
perturbed were dMed2, dMed15, dMed20, dMed31 together with published intervention stud-
ies on Med7, Med10, Med19, Med20 and Med21. The inferred result confirmed the mediator
architecture, but also unveiled the organization of internal information flow in the mediator
complex pointing out the central role of C terminus of Med7 and Med19, and the peripheral
presence of the N-terminus of Med7.

3.5 Summary

Graphical models in general present a multivariate dependency structure among the random
variables. They can only answer biological questions if they succeed in reliably and accurately
reconstructing biologically relevant features of cellular networks. Unfortunately assessment
and benchmarking protocols of inference methods are still sparsely explored. Although gene
network inference algorithms are becoming accurate enough to be practically useful, especially
if expression data are available for steady state, efforts must be directed in assessing algorithm
performances. In recent years, network inference has become as common as clustering for
microarray data analysis. The algorithms designed or to be designed for the purpose should
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head towards being more ‘integrative’ by exploiting, protein-protein interaction data, sequence
data, protein modification data, metabolic data etc. and more in addition to expression profiles,
in the inference process (Workman et al., 2006). The mainstay of the thesis is to work in these
directions, in order to include other factors like, time, using phenotype data for network
inference. Furthermore, we also aim to use biological knowledge from multiple sources to
improve accuracy of network inferred, as well as make the inference process aware of the well
established interactions.

The chapter outlined the basic framework and an introduction to NEM(s) Nested Effects
Model. The details of NEM(s) semantics and formalism were explained here. The next chapter
will propose the use of time resolved data via an extension of NEM(s) developed during this
thesis called dynoNEM (Dynamic Nested Effects Model(s)).
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Chapter 4

dynoNEM: Dynamic Nested Effects Model(s)

This chapter presents an extension on the Nested Effects Models (NEMs). The novelty brought
about by the work presented here is a fast and efficient algorithm that can learn a biological
network from time point differentiated perturbation experiments. This can help to resolve
feedback loops and distinguish between slow and fast interactions and hence differentiate direct
edge from indirect edges in the cellular networks. The work has been published as a peer reviewed
research article and as a highlight paper at the 18th International Conference on Intelligent
Systems for Molecular Biology (ISMB 2011) (Appendix M). The work also extended the existing
nem R-package with the new dynoNEM software.

4.1 Motivation

The last chapter concluded with a short introduction to Nested Effects Models (NEMs)
showing how can one use data from perturbation experiments to understand the cellular ma-
chinery. The secondary effects of the gene perturbations were utilized to reconstruct features
of the pathway between upstream genes. The NEM method has been extensively applied and
extended to meet different biological goals on different data sets (Markowetz and Spang, 2003).
Initially NEMs were proposed to infer the networks for signaling cascades/pathways. These
pathways however are fast, eluding time as limiting factor in understanding these pathways
(Alon, 2006, page:11). But as discussed in section 1.2, cellular system have different classes of
network with different properties. To illustrate we consider a transcriptional network where we
have a distinct separation of time scales (Alon, 2006, page:8-11). The time taken transcription
factor binding is extremely short (in ms) while transcription and translation of genes can take
minutes and change in protein concentration can take even longer. In such networks we
observe the factor of time delays which may differ depending on the interactors. Considering
these time delays while reverse engineering of networks can change the way one can perceive
a biological network and make it biologically more rational.

The time delays in the system can be mapped for a system via temporal data. Such data
is a sequence of data instances from measurements at successive moments. This data thus
bears the information of the system that generated it and its behavior across time. This
information provides valuable insight into the dynamic mechanisms underlying the biological
processes being observed. Although, making inferences from such temporal data has statistical
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challenges (Werhli et al., 2006), it does open up new perspectives. This enables us to observe
not just the time intervals in which the interactions actually take place but can also lead to
the understanding of direct and indirect edges together with feedback loops, discussed in the
upcoming sections (Bolouri, 2008, page:154).

With the increasing availability of time-resolved data, it is desirable and helpful to integrate
the temporal aspects of data into the reverse engineering work-flow. Dynamic Bayesian
Network (DBN) (Friedman, 1998; Murphy and Mian, 1999; Bilmes, 2000; Ong et al., 2002;
Husmeier, 2003) is one of the pioneering models to learn a network from temporal data. The
differential equation systems based modeling of networks from such data was proposed by
Nelander et al. (Nelander et al., 2008). State-space regression models were also proposed to
address the issue (Rau et al., 2010). However NEMs can utilize high dimensional effects of
perturbations as well as the nested structure of these effects.

A naı̈ve approach to model temporal data is the use of static NEMs, which hereafter will be
referred as simpleDNEMs (Fröhlich et al., 2011). It considers the time point measurements for
perturbations being statistically independent. This makes the time point data equivalent to
measurements replicates. The static NEMs can then be applied on the data to infer the network
structure from it. However this approach faces the problems finding similar transitively
closed graphs (Flesch and Lucas, 2007). This limits the distinction of direct and indirect
edges in networks. Second, the simpleDNEMs does not explicitly take into account temporal
information and hence its power in modeling time scale separated networks.

Anchang et al. proposed a statistical method- Dynamic Nested Effects Model (D-NEM) for
the purpose (Anchang et al., 2009). The method is an extension of the NEM methods. D-NEM
assumes the time delays for signal propagation steps to be exponentially distributed with
rate constants as the major model parameters. The posterior distribution of the network is
computed via Gibbs sampling (Casella and George, 1992). The model actually intends to infer
the signaling time in the S-gene networks.

The D-NEM approach opens up the issue of temporal data modeling in NEM. It demon-
strated the power of temporal information and its ability to understand the time scale separated
networks with NEMs. The method distinguishes between the edges within a network in terms
of inferred signaling time (Anchang et al., 2009). However, inferring upstream signaling time
from downstream effects is biologically less reasonable and less realistic. Furthermore, the
use of Gibbs sampling make D-NEM as computationally demanding algorithm in terms of
speed (Casella and George, 1992). The forthcoming sections of this chapter will introduce a
new approach to model temporal data with NEMs, which is computationally much faster and
hence practically feasible.

4.2 dynoNEM

In NEMs the perturbation signal is assumed to propagate deterministically through the
whole S-gene network Φ. Without time information, such networks cannot model feedback
loops as cyclic pathways fall into the same equivalence class, namely a clique. Such infer-
ences though frequently encountered, are explicitly not feasible with static data. However, a
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time series measurements of perturbation effects can potentially overcome these limitations.
dynoNEM is an approach to infer network from such data via NEMs. dynoNEMs (Dynamic
Nested Effects Models) aims to extend the existing NEMs to the modeling of perturbation time
series measurements, adding the temporal dimension in network reverse engineering. The
approach complements the D-NEM approach of Anchang et al.

Figure 4.1.: The concept of dynoNEMs. (A) A static NEM with 3 S-genes is parametrized by a
directed graph. (B) Network toplogy of dynamic NEMs representing the temporal
data unrolled into three layers each representing a time point (C) The predicted
effects for perturbation (in red) for same graph along a time (T ) with Θ representing
the attachment of each E-gene to corresponding S-genes ultimately yielding the
weighted adjacency matrix Ψ for connections among S-genes.

4.2.1. Principle

The key idea behind dynoNEM is observing the data as slices along time and edge can occur
between nodes across these time slices. This phenomenon can be referred to as unrolling of
network along time. The unrolled network shows how a variable (node) affects variable in
the next time step. Let us start with a static NEM for 3 genes S1, S2 and S3 as in figure 4.1 (A).
Time point data adds time dimensions to the model. The space for NEM is of two types the
unobservable S-gene space and observable E-genes. At every time point we have the readings
for the observables. Based on these readings a circuit among the unobserved states can be
inferred across the time layers (Figure 4.1 (B)). This approach of unrolling the signal flow over
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time allowing computation in a way similar to ‘Dynamic Bayesian Networks’ (Ghahramani,
1997). The effects predicted based o this unrolling shows that the perturbation effect of S2 on
S3 and its direct descendant E-gene E3 is reached after 2 time steps and hence Ψ2 3 = 2.

Trivially in such unrolled network the states along consecutive layers of time are connected
following 1st order Markov assumption (Perrin et al., 2003). This means the state in current
time depends on its immediate previous time state. However in biology this condition does
not hold necessarily. This is because of time lags. Therefore, dynoNEM considers the higher
order Markov assumption distinguishing itself from usual Dynamic Bayesian Networks. In
contrast to DBNs in dynoNEMs each edge has a defined time delay. Therefore, in the unrolled
network there can appear edges from t−k to t(k > 1). This enable the dynoNEM to allow edges
between nodes skipping more than one time point. Furthermore, a classical NEM approach to
model in case of temporal data faces problem while operating on similar transitive closures
because static NEMs can principally only resolve networks up to these equivalence classes.

Now in context to NEMs, a network among S-genes is defined as an adjacency matrix where
an edge is supposed to exist if the adjacency matrix value is 1( i.e. Φi,j = 1). In case of time
series measurement the adjacency matrix Ψ can take on values different from 1, because it
represents an edge weighted graph. The following section explains the mathematical theory
involved in dynoNEMs.

4.2.2. Mathematical formalism

LetD be the data to be modeled. For the scenario here the data is a time series data, thus
D = {Di,j |t ∈ τ}, where τ is the set of time points (τ={1, . . . , T}). The measurements in D
can be p-values or some other quantification of effect of S-gene knockdown on the respective
E-genes. The data instanceDi,j(t) is the measure of E-gene j on perturbing S-gene i at time
point index t (not the time point itself). The static adjacency Φ is converted to a S×S weighted
adjacency matrix Ψ = Ψij , where Ψij = 0 means no edge and a value Ψij > 0 implies an
influence of node i on E-genes downstream of node j delayed by Ψij time steps

As described in section4.2.1 dynoNEM involves an unrolled network along the time series.
To achieve this unrolling each S-gene s is clubbed with a Boolean status at every time point
t. This describes the perturbation state of the gene at that time point. A perturbed gene s at
time point t acquire a state 0 Otherwise (i.e. without any perturbation) the state of S-gene s is
1. A knock-down at any time t thus switches the gene 1 → 0. The operating S-genes circuit
that dynoNEM aims to infer, can change the status for the gene. This switching will depend
on the location of genes (upstream/ downstream) and the time lag elapsed for a signal to
reach from one gene to other. To build upon, the NEM likelihood is give as equation 4.1 which
marginalizes as equation 4.2 (for details on NEM formulation please see 3.2.1)

P (D|Φ,Θ) =
∏
i∈ε

∏
k∈κ

P (Di k|Φ,Θ) (4.1)
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P (D|Φ) =
∏
k∈E

∑
j∈S

∏
i∈S

P (Di|Φ,Θi=j)P (Θi=j |Φ) (4.2)

For the time point observation we have our data D along three dimensions namely, time
(τ ), S-genes S and E-genes E yielding a |τ | × |S| × |E|matrix. Please recall that in NEMs the
data matrix was of dimension |S| × |E|. Thus,Dik(t) shows the effect i on pertubation signal k
at time point t, (where i ∈ E, k ∈ K and t ∈ τ ). Ψ and Θ refer to the matrix representing the
weighted S-gene connections and S-gene to E-gene connections respectively. On unrolling
the S-gene network along time t = 1→ T ∈ τ , i.e. in case of dynoNEMs the likelihood of data
given a network is represented as equation 4.3.

P (D|Ψ) =
∏
i∈E

∑
s∈κ

∏
k∈K

T∏
t=1

P (Dik(t)|Ψ,Θis = 1)Pr(Θis = 1) (4.3)

This extends the NEM (equation 4.1) to time dimensions, in two ways- first introducing the
status of each S-gene at a given time point and second, the consideration of S-gene status in
each perturbation experiment k.

Since the status of each S-gene depends on the parents and time layer, first part of equation
4.3 can be given as

P (Dik(t)|Ψ,Θis = 1)

=
∑

s(t)∈{0,1}

(
P (Di k(t)|S(t) = s(t),Θi s = 1) · Pr(S(t) = s(t)|Pa(s)(t))

)
(4.4)

S(t) represents the random variable for unobservable state of signal s at time t. The second
part of the equation 4.4 can be further represented as equation 4.5 based on the unrolling of
signal flow.

Pr(s(t) = 0|Pa(s(t)) = [r]) =

{
1 ∃p ∈ Pa(s(t)) : [p] = 1

0 otherwise

Pr(s(t) = 1|Pa(s(t)) = [r]) = 1− Pr(s(t) = 0|pa(s(t) = [r]) (4.5)

This means that a gene s is perturbed at a time t given any of its parents are perturbed at
previous time step t− 1. The local likelihoods form the first part in equation 4.4) that defines
the likelihood of observing an effect of perturbation s of E-gene i at a time instance t. It follows
a BUM model defined by Pounds et al. (Pounds and Morris, 2003) (for details please see section
3.2.1). Thus, this local likelihood follows the formalism as described below.
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P (Di k(t)|S(t) = s(t),Θi s = 1) =

{
f1(Dik(t)) [s(t)] = 0

1 [s(t)] = 1
(4.6)

Here the density function f1 defines the effect of perturbation on E-gene i (i ∈ E) under
alternative hypothesis of expecting an effect, which can be modeled with a three component
BUM model (Fröhlich et al. (2008b), please see section 3.2.1).

simpleDNEM

simpleDNEMs are based on the assumption of statistical independence of time points. With
this assumption the measurement of observable get statistically independent at every time
point. Thus we have :

P (Dik(t)|Ψ, s(t) = [s(t)],Θis = 1) = P (Dik(t)|Ψ,Θis = 1) (4.7)

The RHS can be denoted as equation 4.8.

P (Di,k(t)|Ψ,Θis = 1) ≡
T∏
t=1

P (Dik(t)}|Ψ,Θis = 1) (4.8)

This can be further expanded with classical NEM explained last chapter. However, the sim-
pleDNEM approach cannot model the time propagation effect because of the independence
assumption. The term ‘static NEM’ will be synonymously used in the text for simpleDNEMs.

4.2.3. Prior

In the above section, we introduced and defined Ψ, the weighted adjacency matrix as a
compact representation of the raw upstream network structure among S-genes and time delays
between perturbation events and downstream responses. Learning an upstream signaling
cascade now amounts to learning matrix Ψ based on the likelihood in equation 4.3. While
scoring candidate network structures Ψ we assume higher edge weights (i.e. observing an
effect after longer time lag) to be less likely than small edge weights. Moreover, in general,
edges x→ y are redundant, if their time lag is larger or equal than the length of some other
path from x to y, where the path length is defined here as the sum of the path’s time lags. We
have to ensure that such redundant edges, i.e. edges which are principally not observable do
not appear. In other words, addition of these edges to Ψ does not change the likelihood of our
model.

We specify our demands in form of a prior P(Ψ). Additionally to punishing higher edge
weights, P(Ψ) should enable us to include prior knowledge into the network scoring, i.e. to bias
the scoring toward known interactions. For this purpose, we assume to have a given matrix
of prior probabilities for each edge. Fröhlich et al. (2007) proposed a prior for Ψ. This prior
enables the inclusion of prior knowledge in the inference framework by affecting the scoring
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systems and will be exploited further in chapter 6 and 7 . The matrix Ψ̂ is the prior probabilities
for the edges in network matrix Ψ. The prior defined by Fröhlich is given as follows.

P (Ψ|ν) =
∏
i,j

1

2ν
exp

(
−|Ψi,j − Ψ̂i,j |

ν

)
(4.9)

where ν > 0 is an adjustable scaling parameter. The parameter ν can be chosen according
to the BIC criterion:

BIC = −2logP (D|Ψ) + log(|E|)
∑
ij

1{|Ψi,j − Ψ̂i,j | > 0} (4.10)

where,
∑

ij 1{|Ψi,j − Ψ̂i,j | > 0} is an estimate for the number of parameters in the model.

In the default case (which is employed in our subsequent studies throughout this chapter),
we suppose Ψ̂ to be an empty graph. This way sparse network structures are favored, inducing
a sparsity prior.

4.2.4. Structure learning

As an exhaustive search based approach to infer structure is practically and computationally
unfeasible, we need look forward to heuristic methods. Two learning methods were used to
learn the network structure in dynoNEMs.

Greedy hill climber

The greedy hill-climbing (GHC) algorithm in search space takes an initial graph, defines a
neighborhood via transformation/mutation operation, computes a score for every graph in
this neighborhood, and chooses the one which maximizes the score for the next iteration, until
the scoring function between two consecutive iterations does not improve. Thus, it accepts a
candidate solution if it is better than the current one. Nevertheless, it cannot find the global
maxima unless the heuristic landscape is convex. The algorithm gets stuck in a state if it has a
better score than any of its children, though the subsequent states of these children may offer
a better evaluation or the optimal state (maximum score for objective function i.e the network
likelihood) in the entire heuristic landscape (Chickering et al., 1995). Therefore, GHC does not
guarantee to find a globally optimal solution.

In case of dynoNEMs, network learning aims to find an optimal weighted adjacency matrix
Ψ. The matrix entry consists Ψi,j as the time delay for interaction between gene i and j such
that Ψi,j ∈ (0, . . . , T ). The GHC starts with an initial network Ψ and corresponding score S.
At every search step all operations (edge weight increase, decrease, edge reversal) are tested
for all edges permitting these respective operations in the network (Ψ) to get new matrix
(Ψ′)(Equation 4.11). For this purpose, we define three search operators (Equation 4.11). The
solution that increases the posterior likelihood most, is accepted. The search stops when
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the objective function i.e the network likelihood of existing network is better that all the
neighboring networks (obtained via above mentioned transformations).

1. edge weight increase

2. edge weight decrease

3. edge reversal (swapping the edge weights)

Ψ′i,j =


Ψi,j + 1 if Ψi,j < τ

Ψi,j − 1 if Ψi,j > 0

Ψj,i if Ψi,j 6= Ψj,i

(4.11)

The score S′ for this new network is computed in terms of likelihood for each operation.
The best score L′ and corresponding network is accepted as new score and so the matrix Ψ′.
Hence, at each search step, we accept the solution increasing the posterior likelihood most.
The final network is achieved when we do not observe any further improvement in the score.
This we refer to as Ψbest and the corresponding score Lbest

The GHC algorithm here requires O(|S|2) likelihood evaluations per search step, where each
likelihood computation itself has a time complexity of O(|τ ||E||S|2). Hence, each search step
requires O(|τ ||E||S|4) time.

Markov Chain Monte Carlo

Though, greedy hill climber (GHC) algorithms are simple and fast, they have certain limita-
tions (Russell et al., 1996). The GHC can fail to reach the globally optimal network structure as
it can get stuck in local maxima (Chickering et al., 1995). The number of possible structures
is super-exponential depending on the number of vertices in the graph. This raises the issue
of identifiability in structure learning, i.e. true network may not at all or at least not uniquely
determinable from limited data. An approximation of the true network is possible based on a
subset of possible structures (Friedman and Koller, 2003). Therefore, sampling based search
has been advocated to infer dependencies in graph from data in case of Bayesian networks
(Daly et al., 2011; Grzegorczyk and Husmeier, 2008). Therefore the dynoNEM was further aided
with a Markov Chain Monte Carlo based (MCMC) sampling (W R et al., 1995). A MCMC is
implemented here using the Metropolis Hastings algorithm (Robert and Casella, 2005).

MCMC is a class of sampling algorithms. It generates samples xi while exploring the state
space X using Markov chain mechanism i.e. the next state depends of only on current state
(order 1)(Andrieu et al., 2003). The purpose of MCMC is to sample from a (possibly high
dimensional) target distribution p(x). The working principle of Markov chain Monte Carlo
methods can be explained as moving from initial distribution to target distribution via a
Markov kernel K (Robert and Casella, 2009). This kernel equals a distribution proposing state
xt+1 when being in state xt. For network learning the target distribution is the posterior p(Ψ|D).
To sample from this distribution dynoNEM uses Metropolis-Hastings algorithm.
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Figure 4.2.: Moves to search the neighborhood of a network with initial network at the top

Metropolis Hastings algorithm is a general approach for producing a correlated sequence of
draws from a target distribution. The algorithm start with a random network and is altered
by picking an edge and one of the operations in equation 4.11 at random with equal proba-
bility (Figure 4.2). The likelihood is computed for each of these network with the dynoNEM
likelihood function (Equation 4.3).

The MCMC moves are accepted with a probability equivalent to the Hastings ratio (Equation
4.12) .

α = min

(
1,
P (D|Ψnew)P (Ψnew|νnew)P (νnew)N(Ψold)

P (D|Ψold)P (Ψold|νold)P (νold)N(Ψnew)

)
(4.12)

Where,N(·) is the number of reachable networks within one MCMC moves from the current
network. The convergence for MCMC (Figure 4.3)can be reached quickly via an initialization
with GHC (see section above) (Fröhlich et al., 2011). Once the convergence is reached (after
burnin) the algorithm reaches the target distribution and sampling begins. To avoid the
sampling of correlated networks a thinning with a factor 100 is used. This adds only every
100th network to the sample. Finally an edge wise weighted network is returned.

4.3 Results

To evaluate the performance of the algorithms, extensive set of simulation were performed
to study the effect of various parameters on the methods. The algorithms were compared
against simpleDNEMs as described in previous sections. Afterwards, an application to learn a
transcriptional network playing a role in murine stem cell development is shown (based on
data from Ivanova et al. (Ivanova et al., 2006)).

4.3.1. Simulations

Network sampling

To assess the reconstruction performance of dynoNEM, simulations were designed with
networks extracted from KEGG signaling pathways as base graphs. To generate a test graph
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Figure 4.3.: Convergence plot for MCMC based dynoNEM showing the log likelihoods across
sampling iterations.

first a base KEGG signaling pathway was selected randomly. From the selected pathway a core
starting node was picked at random. From this starting node a random walk was performed
in the graph, visiting each neighboring node with equal probability. The walk continued till
the algorithm had been visiting a prescribed number of nodes. Revisiting same nodes was
avoided. The sub-graph for the sampled node was extracted from the base KEGG graph. This
sub-graph served as the S-gene network. Further, to attach E-genes to each S-gene a uniform
random model was used. The time lags (time taken by signal to reach from gene S1 to S2) onto
the S-gene networks were had been visiting a prescribed number of nodes from a geometric
distribution with parameter p. While doing this, we ensured that the time lag for indirect edge
between nodes S1 and S2 was smaller than the sum of all other paths between S1 and S2, thus
avoiding edge redundancy. Furthermore the graph sampling ensured that at least one of the
sampled network was cyclic. This way of sampling allows to test the algorithm performance
on topologically biological graphs.

Data sampling

Following the graph sampled above corresponding perturbation data has to be generated.
This was achieved by simulated knockdown of each of the S-genes in the sampled networks.
The knock down simulation for the data was generated with the consideration of the time lags.
To illustrate, when a gene say S1 is perturbed then the gene S2 downstream of S1 was assumed
to be perturbed after the time lags involved between these genes i.e. when the signal reaches
S2 from S1. This created the status of S-genes (perturbed/unperturbed) at every time point.
Depending on this status the P-values for corresponding E-genes were simulated. The P-values
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Figure 4.4.: BUM model fit for generated data (m=5, n=200). The plot on the left shows the
histogram and on right is the corresponding QQ plot

followed a defined distribution, called f1 if their corresponding S-genes were perturbed at the
given time, otherwise, followed a uniform distribution (with a single control variable). Please
see section 3.2.1 for details.

The parameters for the f1 distribution in the BUM model were sampled randomly using a 3
component mixture of a uniform, and two Beta distributions with Beta(1, βi) & Beta(αi, 1) as
proposed by Fröhlich et al. (Fröhlich et al., 2009) (Equation 4.6).

Di,k(t) ∼ γ + (1− γ)f1(Di,k(t)), γ ∈ (0, 1) (4.13)

This helped to model the p-values for E-genes in a realistic fashion in unlike the in Markowetz
(2005), where the association are considered to be constrained in binary terms. After wards the
local effect likelihoods were estimated using again the f1 distribution, but this time with slightly
different parameters in order to simulate the estimation error of distribution parameters
occurring in practice

The data generation was repeated 100 times for each network and parameter configuration.

Network Reconstruction

The algorithms were used to reconstruct the sampled networks from the data generated
and their performance was compared against the simpleDNEM as described in section 4.1.
The performance were analyzed in terms of sensitivity (tpr), specificity (1− fpr) and balanced
accuracy (BAC).
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tpr =
100× TP
TP + FN

(4.14)

fpr =
100× FP
FP + TN

(4.15)

BAC =
tpr + (1− fpr)

2
(4.16)

The reconstructed networks were then analyzed for various dependencies as follows.

A. Dependency on number of S-genes

First factor under consideration for the analysis was the effect of number of S-genes on
the reconstruction performance. The sampled networks varied in terms of number of nodes
(m = {3, 5, 10, 15 and 20}). The other parameters (number of E-genes, time points and
parameters) were unvaried for this analysis (T=5, p=0.8 and E=200). The reconstructed
networks via GHC and MCMC algorithms (called dynoNEM.HC and dynoNEM.MCMC) were
compared against simpleDNEM approach. It revealed a significant improvement in terms of
sensitivity at equally high specificity compared to simpleDNEM (Figure 4.5).

Furthermore, increasing the number of S-genes increased the margin of improvement
brought about by dynoNEMs (GHC and MCMC). However this increase came at the cost
of reduced sensitivity. To illustrate; for smaller networks (m = 3) the performance margin
between GHC and MCMC was marginal. This margin got bigger improved with the increase
in network size but their absolute performance reduced. Nevertheless, both methods kept on
surpassing the simpleDNEM across all sizes. In terms of specificity the algorithms (including
simpleDNEM) performed well (close to 90%). A Wilcoxon pairwise test was performed to
observe the significance of improvement. The MCMC method was found to be significantly
better than the simpleDNEM (p-value=0.003) but GHC was not significant (p-value=0.09) at
the sensitivity level. There was no significant difference in terms of specificity (see Appendix
B).

B. Dependency on number of E-genes

In the second simulation the effect of number of E-genes was investigated. The perfor-
mance for a varying number of E-genes (|E| ={25, 100, 200 and 500}) for networks with 5,
10 and 15 S-genes. The data was simulated for a time series of length T = 10 with time lags
sampled from a geometric distribution (p = 0.8) were simulated. In all cases, the dynoNEM
(MCMC and GHC) led to a consistently better sensitivity than the simple DNEMs and high
specificity. The observed gain in sensitivity was up to 15-20% for smaller networks (n = 5) with
even with low number of E-genes (E = 25). However, increasing the number of E-genes re-
duced the difference between various algorithms under comparison. Larger networks (n = (10,
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15)) continued to be difficult to learn, but using higher number of E-genes showed improve-
ment in reconstruction compared to the use of fewer E-genes. The simulation demonstrated
that even with a low number of E-genes, dynoNEMs reach a rather good reconstruction sensi-
tivity (Figure 4.5). For instance, for n = 5 it was ovserved that just 25 E-genes are sufficient to
get a sensitivity >90%.

In terms of specificity for smaller networks (n = 5) it was constantly> 95% in close run with
the simple DNEMs. However, with increasing network size, i.e. larger n, the sensitivity drops
slightly to 80% (n = 10, 100 E-genes) and 70% (n = 15, 300 E-genes) ; lower than simple DNEMs.
The specificity nevertheless improves with increase in number of E-genes. The balanced
accuracy was also found to be better than the simple DNEMs. In all the terms the MCMC
approach outperformed the GHC approach. A pairwise Wilcoxon rank test with FDR cor-
rection revealed the significance of performance values of different methods (see Appendix B).

C. Dependency on length of time series

The length of time series in the experimental data can be instrumental in inferring graphs
especially in case of cycles or indirect edges. The affect of number of length of time series
was investigated in the third simulation for networks with n = 5 S-genes, m = 200 E-genes and
p fixed to 0.5 (Figure 4.6). As expected, an increase of the number of time points lead to a
strong improved sensitivity for both, dynoNEMs and static NEMs. The average difference
in sensitivity between both dynoNEM methods and simpleDNEMs remained between 15 to
20%. The dynoNEMs achieved a very high specificity close to 100%, even with a low number
of time points (especially for n=5 and 10), whereas static NEMs showed a slight decrease
of specificity with an increasing number of time points. The difference in sensitivities is
widened for larger number of S-genes (Figure 4.6).

A longer time series thus is needed for simple DNEMs to have better sensitivity, though
it could not overrun dynoNEMs for larger networks. Thus the dynoNEMs were much more
accurate in network reconstruction (see BAC plots in figure 4.6). The significance of improve-
ment in accuracy is available in Appendix B

D. Dependency on time lag distribution

The time lag between interaction by dynoNEM is modeled as a geometric distribution
controlled by parameter p (See Section 4.3.1). A high value for p results in sharper decline of
probability values over time lags and vice versa. To examine the effect of these time lags the
parameter p was varied across with values (0.2, 0.5 and 0.8). From the simulation it could be
observed that the sensitivity of dynoNEMs as well as simple DNEM improves with increasing
p, though performance of dynoNEMs remained superlative. The specificity however was
more comparable i.e. in the same range.
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Figure 4.5.: Dependencies of network reconstruction via dynoNEMs on the number of E-genes.
The plot shown here is for different number of S-genes (n=5, 10 and 15; from
bottom to top). On the extreme left is the Balanced accuracy plot (BAC).
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Figure 4.6.: Dependencies of network reconstruction via dynoNEMs on the length of time
series in terms on number of time points. The plot shown here is for different
number of S-genes (n=5, 10 and 15; from bottom to top). On the extreme left is the
Balanced accuracy plot (BAC).
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Figure 4.7.: Dependencies of network reconstruction via dynoNEMs on parameter for geomet-
ric distribution of time lags in simulated data. The plot shown here is for different
number of S-genes (n=5, 10 and 15; from bottom to top). On the extreme left is the
balanced accuracy plot (BAC).
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Since in this simulation T was (intentionally) much larger than the maximum time lag of 4,
the result showing an almost constant behavior of sensitivity, specificity over the whole pa-
rameter range was somewhat expected. It demonstrated that provided we have long enough
time series the reconstruction quality is independent of the shape of the time lag distribution.
Besides that, it is worth mentioning that our dynoNEMs achieved a sensitivity >90% with
a specificity of almost 100%, whereas simpleDNEMs had much lower average sensitivity of
∼80% and specificity of ∼90%. Variation of the number of network nodes did not reveal a
large impact on this general finding.

E. Dependency on network architecture

The next question to be answered is how does the nature of network topology affect the
reconstruction performance ? What happens if the graph is heavily cycled or is having a
number of indirect edge? For this we looked at individual sampled networks. For every
simulation the sampled graphs were looked for the presence of cycles (please note that at
least one of the 10 sampled graphs in every simulation were cyclic) and their corresponding
reconstruction accuracies were mapped. For a fair comparison we used the simulation where
the variables like- length of time series (=5), number of E-genes (=100) and time lags (p=0.5)
were same. The figure presents 4 selected networks with 15 S-genes. Here the networks N2
and N3 was the hardest to learn compared to N1 and N4(Figure 4.8(a and b)). It was observed
that on an average, dynoNEMs were better in reconstruction of these networks as compared
to simple DNEMs. However, reconstruction performance for these networks was slightly
worse than the average as anticipated. This is because getting probabilistic dependency
structure in case of cycles in a network is indeterminable.

With an aim to investigate if there were systematic differences in the reconstruction ac-
curacy of networks with indirect edges is affected by the time series length, we designed
a simulation where we extracted networks topology (n=10) in terms of indirect edges and
simulated data for it with 100 E-genes, time lags sampled with P = 0.5 and varying parameter
T the results revealed that for longer time series the reconstruction slightly improved whereas
for T=3 the results were highly restricted by the architecture (Figure 4.8(c and d)). Nonetheless,
a detailed investigation of the frequency with which individual edges were inferred clearly
revealed that dynoNEMs were in general able to identify feed-forward and feed-back loops
correctly with high accuracy, even from short time series (see section 4.3.2).

4.3.2. Reconstructing network motifs

Finally we also evaluated the ability of dynoNEM to reconstruct some fundamental network
motifs (Figure 4.9 (A-D)) The data for these reconstructions was simulated in the way as de-
scribed in section 4.3.1. The time points were kept to 5 and parameter p to 0.5 and 100 E-genes
were used for simulations. The investigations revealed the improvement in reconstructing
these motifs specially sensitivity with comparable specificity (Figure 4.9 (E-F)). This is obvious
as time differentiated data can map the dependencies and hence the cyclicity in network .
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Figure 4.8.: Reconstruction accuracy of networks based on the architecture (topology) of the
networks. On the top we have (b) 4 example cyclic networks (number of 1st
order cycles (C) given) and (b) the balanced accuracy of reconstruction with three
different methods. On the bottom is the (c) two example networks with direct and
(indicated with blue arrows) indirect edges and (d) their corresponding balanced
accuracy with the three approaches.

4.3.3. Convergence of the Markov chain

A critical issue for users of Markov Chain Monte Carlo (MCMC) methods in applications is
how to determine when it is safe to stop sampling and use the samples to estimate characteris-
tics of the distribution of interest. The phenomenon by virtue of which an MCMC sampler
reaches the target distribution is termed as the convergence of the sampler. The convergence
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Figure 4.9.: Reconstructing four network motifs (A) Feed forward (B) Feed back (C)Double feed

back and (D) Perceptron. The performance for reconstruction from simulated data
has been provided in (E) Sensitivity (F) Specificity

of the MCMC sampler is critical with regard to sampling from right distribution. The seeding
of MCMC sampling with a greedy hill climber makes a faster convergence possible in case of
dynoNEMs. The results were analyzed in terms of log likelihoods against the iteration index
(Figure 4.3). This proved a fast convergence of the MCMC algorithm in all cases.
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4.3. RESULTS CHAPTER 4. DYNONEM: DYNAMIC NESTED EFFECTS MODEL(S)

4.3.4. Application: Network inference from “murine stem cell development”
data

dynoNEMs were applied onto a data-set investigating molecular mechanisms of self-renewal
in murine embryonic stem cells (Ivanova et al., 2006).

The data

The developed methods were applied on RNAi microarray data from mouse embryonic stem
cells by Ivanova et al. (Ivanova et al., 2006). Ivanova and coworkers used RNAi loss-of-function
techniques to perturb a set of genes, followed by a global gene expression measurement. The
data set consists of time series microarray measurements for RNAi knockdowns of each of
the six genes namely, Nanog, Oct4, Sox2, Esrrb, Tbx3 and Tcl1. The cells were grown in the
presence of leukemia inhibitory factor (LIF), retaining their undifferentiated self renewing
state acting as positive controls. Differentiation associated changes in gene expression were
measured by replacing LIF with retinoic acid (RA), thus inducing differentiation of stem cells
(negative controls). RNAi silencing of the six afore mentioned genes was done in (LIF+, RA-) cell
cultures to investigate their potential for induced cell differentiation. Microarray expression
measurements at 6 to 7 time points in 1-day intervals were taken for the two controls (positive
and negative) and the RNAi assays.

The data-set consists of time series microarray measurements for RNAi knockdowns of each
of the six genes namely, Nanog, Oct4, Sox2, Esrrb, Tbx3 and Tcl1. The platform used was
Affymetrix MOE430A and MOE430B chips. The Affymetrix MOE430A chip was used in context
with the dynoNEM application. The six perturbed genes (Nanog, Oct4, Sox2, Esrrb, Tbx3 and
Tcl1) served as the S-genes for dynoNEM. The genes showing significant fold changes (≥2 fold
up/down-regulation across all time points) in response LIF depletion were selected as E-genes
(122 E-genes)(Anchang et al., 2009). The continuous expression data used was a transformed
data as binary values as described in Anchang et al. (2009). The E-gene values were set to be
1 if expression value is close to negative control else 0 The heat map for the processed data
along the time course is shown in figure 4.10.

Reverse engineering: Greedy Hill Climber

The dynoNEM model with GHC algorithm was applied on the data with a non-parametric
bootstrap procedure, where the E-genes are sampled from the original data with replacement
and network is reconstructed with these E-genes. We record how often each edge appeared
in 1000 (number of bootstrap) inferred networks (one network per bootstrap sample). We
then computed exact binomial distribution confidence intervals (95%) for the appearance
probability of each edge via R-package binom (Dorai-Raj, 2014). The validity of bootstrap
probabilities for edges was further checked in a simulation (see Supplementary Material). Only
edges with lower confidence bound >50% were regarded as reliable and shown in figure 4.11.
The median time lags for all edges were 1, i.e. had the same speed.

64



C
H

A
P

T
E

R
4.

D
Y

N
O

N
E

M
:D

Y
N

A
M

IC
N

E
ST

E
D

E
F

F
E

C
T

S
M

O
D

E
L

(S)
4.3.

R
E

SU
LT

S

N
a
n
o
g

O
c
t4

S
o
x
2

E
s
rr

b

T
b
x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a
n
o
g

O
c
t4

S
o
x
2

E
s
rr

b

T
b
x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a

n
o

g

O
c
t4

S
o
x
2

E
s
rr

b

T
b

x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a
n
o
g

O
c
t4

S
o
x
2

E
s
rr

b

T
b
x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a

n
o

g

O
c
t4

S
o
x
2

E
s
rr

b

T
b

x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a

n
o

g

O
c
t4

S
o
x
2

E
s
rr

b

T
b

x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a

n
o

g

O
c
t4

S
o
x
2

E
s
rr

b

T
b

x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

N
a
n
o
g

O
c
t4

S
o
x
2

E
s
rr

b

T
b
x
3

T
c
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

Na
no

g

O
ct

4

So
x2

Es
rrb

Tb
x3

Tc
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

Na
no

g

O
ct

4

So
x2

Es
rrb

Tb
x3

Tc
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

Na
no

g

O
ct

4

So
x2

Es
rrb

Tb
x3

Tc
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1T=1 T=2 T=3 T=4 T=5 T=6 T=7 T=8 

Time scale 

Na
no

g

O
ct

4

So
x2

Es
rrb

Tb
x3

Tc
l1

1415714_a_at
1428706_at
1416504_at
1416576_at
1417878_at
1450206_at
1448408_at
1421309_at
1448370_at
1449420_at
1433963_a_at
1421314_at
1448445_at
1417333_at
1417661_at
1421560_at
1423748_at
1428351_at
1436567_a_at
1418344_at
1424862_s_at
1448154_at
1416246_a_at
1448409_at
1448615_at
1449146_at
1449163_at
1426105_a_at
1419206_at
1421420_at
1421508_at
1421852_at
1422438_at
1422952_at
1451176_at
1424037_at
1424059_at
1451500_at
1427481_a_at
1425118_at
1451643_a_at
1425312_s_at
1454759_at
1434719_at
1436092_at
1455869_at
1418345_at
1451126_at
1435386_at
1418744_s_at
1450177_at
1424067_at
1453063_at
1423292_a_at
1415847_at
1419810_x_at
1416715_at
1417561_at
1417752_at
1422396_s_at
1450976_at
1426734_at
1429708_at
1422580_at
1456174_x_at
1448432_at
1417449_at
1418110_a_at
1418709_at
1417772_at
1448685_at
1418086_at
1418184_at
1423698_at
1424167_a_at
1451377_a_at
1434213_x_at
1436851_at
1419241_a_at
1450865_s_at
1448447_at
1418394_a_at
1449216_at
1419695_at
1427004_at
1427529_at
1427619_a_at
1428181_at
1436097_x_at
1428076_s_at
1456212_x_at
1416069_at
1416675_s_at
1451260_at
1418181_at
1421455_at
1452017_at
1455220_at
1427689_a_at
1433573_x_at
1421898_a_at
1430634_a_at
1436747_at
1439375_x_at
1447999_x_at
1449281_at
1419722_at
1420760_s_at
1426022_a_at
1424753_at
1448281_a_at
1417146_at
1448839_at
1423844_s_at
1424953_at
1421829_at
1419560_at
1421265_a_at
1450469_at
1421830_at
1450774_at
1447997_s_at

Nanog
Oct4
Sox2
Esrrb
Tbx3
Tcl1

< 0

0.5

> 1

Na
no

g

Oc
t4

So
x2

Es
rrb

Tb
x3Tc
l1

1415714_a_at

1428706_at

1416504_at

1416576_at

1417878_at

1450206_at

1448408_at

1421309_at

1448370_at

1449420_at

1433963_a_at

1421314_at

1448445_at

1417333_at

1417661_at

1421560_at

1423748_at

1428351_at

1436567_a_at

1418344_at

1424862_s_at

1448154_at

1416246_a_at

1448409_at

1448615_at

1449146_at

1449163_at

1426105_a_at

1419206_at

1421420_at

1421508_at

1421852_at

1422438_at

1422952_at

1451176_at

1424037_at

1424059_at

1451500_at

1427481_a_at

1425118_at

1451643_a_at

1425312_s_at

1454759_at

1434719_at

1436092_at

1455869_at

1418345_at

1451126_at

1435386_at

1418744_s_at

1450177_at

1424067_at

1453063_at

1423292_a_at

1415847_at

1419810_x_at

1416715_at

1417561_at

1417752_at

1422396_s_at

1450976_at

1426734_at

1429708_at

1422580_at

1456174_x_at

1448432_at

1417449_at

1418110_a_at

1418709_at

1417772_at

1448685_at

1418086_at

1418184_at

1423698_at

1424167_a_at

1451377_a_at

1434213_x_at

1436851_at

1419241_a_at

1450865_s_at

1448447_at

1418394_a_at

1449216_at

1419695_at

1427004_at

1427529_at

1427619_a_at

1428181_at

1436097_x_at

1428076_s_at

1456212_x_at

1416069_at

1416675_s_at

1451260_at

1418181_at

1421455_at

1452017_at

1455220_at

1427689_a_at

1433573_x_at

1421898_a_at

1430634_a_at

1436747_at

1439375_x_at

1447999_x_at

1449281_at

1419722_at

1420760_s_at

1426022_a_at

1424753_at

1448281_a_at

1417146_at

1448839_at

1423844_s_at

1424953_at

1421829_at

1419560_at

1421265_a_at

1450469_at

1421830_at

1450774_at

1447997_s_at

Nanog

Oct4

Sox2

Esrrb

Tbx3

Tcl1

< 0
0.5

> 1

Figure 4.10.: Heatmap for the murine stem cell development data along the time course, showing the propagation of perturbation
effect along the time scale from T = 1 to 8. The X-axis shows the binarized fold changes (fold change indicated in red
an no change in green) of for every perturbation and the Y-axis depicts the E-genes.
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The result were in general agreed with the D-NEM approach of Anachang et al. (Anchang
et al., 2009). The cascades like (1) Tbx → Esrrb → Oct4 → Tcl1, (2) Nanog → Oct4 → Tcl1
and (3) Sox2 → Oct4 → Tcl1; were mapped by the dynoNEM. Unlike D-NEM, dynoNEM
mapped cascade (2) and (3) to be a Y-structure rather that a part of a coherent linear path
with Nanog uptream of Sox2. Although, the D-NEM maps several indirect/direct interaction
pairs, dynoNEM maps only two of these (1) Tbx→ Oct4⇔ Tbx→ Esrrb→ Oct4 (2) Esrrb→
Tcl1⇔ Esrrb→ Oct4→ Tcl1.

Reverse engineering: Markov Chail Monte Carlo

Furthermore, the MCMC algorithm was applied on the same data set. The MCMC uses 50000
burnin and 50000 sampling iterations. The Bayes factor compared to the greedy hill climber
algorithm, obtained for the network on log scale was 19.356 indicating the high reliability of
the network. The resulting network was not very different from the GHC algorithm results but
contained different time lags (Figure 4.12). The network mapped showed two different kinds
of edges based on time lags. We refer the edge with time lags = 4 as slower and those = 1 as fast
interactions (red and green edges in figure

The reconstructed network could map the three cascades (1) Tbx→ Esrrb→ Oct4→ Tcl1,
(2) Nanog → Oct4 → Tcl1 and (3) Sox2 → Oct4 → Tcl1 similar to the GHC algorithm. The
shortcut observed in this network was the pair Sox2→ Oct4→ Tcl1⇔ Sox2→ Tcl1. This can
also be observed in D-NEM and dynoNEM GHC network. Though other such pairs were not
observed as in case of GHC algorithm. The most striking difference from GHC based network
is the cycle Oct4 → Tcl1 → Oct4. This cycle has edges with different time lags 1 and 4. This
marks that after certain time lags Tcl acts back on Oct4. 4.12).

Biological Implications

The murine stem cell network created here is transcriptional network with 6 regulators
(the S-genes here). Nanog and Sox2 according to a biological model explained by Ivanova et
al is considered as a global regulator (Ivanova et al., 2006) critical for pluripotency in stem
cells (Silva et al., 2009). It has been proposed that Nanog harnesses its partner Oct4 and Sox2
to create ground state pluripotency (Silva et al., 2009). Oct4 on the other hand controls the
transcription factor Tcl1 (Matoba et al., 2006). These biological findings can be comfortably
explained by the networks inferred by both dynoNEM models (GHC and MCMC). Furthermore,
biologically it is perceived that modestly raised levels of Nanog compensate for the loss of
Esrrb, Tbx and Tcl1, implying cross-talk between the two pathways (Rao and Orkin, 2006;
Ivanova et al., 2006) which is also explained by dynoNEM models. Thus the role of various
involved gene is well explained by the models.

4.3.5. Comparing GHC and MCMC

The network hypothesis for both the methods were found to be highly significant against
null hypothesis (p− value = 5.089× 10−4 for GHC as well as MCMC) via a permutation test
with 1000 permutations. This was done by sampling N random permutations of the node
labels keeping node degree distribution same as in the given network. An exact p-value is
computed by counting, how often the likelihood of the permuted network is bigger than that
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Figure 4.11.: Network for murine stem cell development data reverse engineered via Greedy
Hill Climber algorithm (top), Heatmaps (bottom) depict estimated perturbation
effects along the timescale 1 to 8. In the heat map the X-axis indicates the set of
E-genes for each S-gene shown via lines from node to the heatmap columns. The
Y-axis indicates the perturbation effect
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Figure 4.12.: Network for murine stem cell development data reverse engineered via MCMC
algorithm with edge labels indicating the time lag (top), Heatmaps (bottom)
depict estimated perturbation effects along the timescale 1 to 8. In the heat map
the X-axis indicates the set of E-genes for each S-gene shown via lines from node
to the heatmap columns. The Y-axis indicates the perturbation effect. The edge
labels depict the time delays in the signaling.
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Figure 4.13.: Literature network from Metacore for Ivanova data (left) and its comparison
with inferred networks via GHC and MCMC based dynoNEM. The plot (right)
represents two views: knowledge view represents the total number of edges
(among the S-genes) found in the literature and the number of these edges that
could be explained (Legend: Explained) based on dynoNEM inferred network.
The model view presents all the edges in the inferred network and how many of
these edges were explained (Legend: Explained) by the literature (MetacoreTM)
network. The corresponding list can be found in appendix C

of the given network. The network modification operations used are edge weight increase,
decrease and swap.

The network was compared with a literature curated network, created via MetaCoreTMtool
1. It can be observed that both the networks can be mostly explained by the literature (90%
to 100% edges). MCMC method could discover one new edge (See appendix B). This was
accompanied with cyclicity in pathway between Oct4 and Tcl1. On mapping the network onto
literature network both algorithms could explain exactly same literature pathways (Appendix
B). The main difference between GHC and MCMC based network is the cyclicity in terms of
pathway Oct4→ Tcl1→ Oct4. Comparing the E-gene S-gene association with the heatmaps
in figure 4.11 and 4.12 the difference is observed for the gene involved in this cyclic pathway.

4.3.6. dynoNEM vs D-NEM

dynoNEM are a computationally feasible model to reconstruct networks from time course
perturbation data. The proposed method distinguishes itself in two paradigms:

1. It estimates the time lag between perturbation and its downstream effect and not the

1http://thomsonreuters.com/products services/science/science products/a-z/metacore/ ; Accessed: March
2013
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actual signaling time. Nevertheless, it is unclear whether true signaling times on protein level
can be estimated from gene expression data

2. The structure learning method used in dynoNEM (GHC as well as MCMC) are fast an effi-
cient thanks to the unrolling of network along time which allows faster likelihood computation.

Avoiding the Gibbs sampling strategy employed by Anchang et al has been a critical ele-
ment in making dynoNEM efficient and hence practical in terms of computational resources.
To add MCMC algorithm can actually define the time lag for the interaction thus providing a
biologist the capability to distinguish the direct and indirect interactions.

4.4 Summary

dynoNEM is an attractive extension of NEMs framework introduced by Markowetz et al.
(Markowetz, 2005) from the static to the dynamic case by unrolling the network structure
over time. It enables the analysis of perturbation time series data and network inference from
it. They allow distinguishing between direct and indirect signaling and to resolve feedback
loops. It can serve as a useful tool to generate data-driven hypotheses about signaling and/or
transcriptional networks based on high-dimensional time series perturbation effects. Applying
the dynoNEMs to infer the network between six proteins (five transcription factors) playing
a key role in murine stem cell development, we achieved a good agreement with results
published by DNEM (Anchang et al., 2009) and with the biological literature.

This chapter presented dynoNEM a Nested Effects Models extension to reverse perturbation
based networks from time series data. The next chapter will introduce the dynoNEM based
network inference based on a new kind of data ‘microscopic image/video’ features, going beyond
gene expression data
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Chapter 5

MovieNEM: dynoNEM on phenotype data

Last chapter brought about a methodology to reverse engineer biological network using time
series gene-expression data. This chapter introduces a further extension of dynoNEM in the
direction to use of image features from microscopic movies to infer biological networks, thus
widening the scope of network inference to phenotypic data from the cell. The work has been
published in a peer review journal and presented at the German Conference in Bioinformatics
(GCB 2013) as a highlight paper (Appendix M).

5.1 Motivation

Learning gene network from RNAi perturbation data via NEMs and dynoNEMs has been
explained in previous chapters. The methods explained so far use gene expression data. Recent
times have seen gene-expression (microarray) data as the most conventional input for network
inference and has been established as the state of art (Lee and Tzou, 2009). The rationale
behind the choice is the “Central Dogma of Molecular Biology” (Figure 5.1). According to it, the
genome itself is not modified when the cell expresses its phenotypes, rather the phenotypes like
cellular differentiation, division or tumorigenesis are the outcomes of differential expression
of the genome or a part of it, talking to each other (Repsilber et al., 2002).

DNA$ RNA$ PROTEIN$Transcrip2on$ Transla2on$

Replica2on$

PHENOTYPE 

Figure 5.1.: ‘The Central Dogma’ of molecular biology extended upto phenotype.

Gene expression data provide means of measuring this differential expression via experi-
mental techniques such as RNA-seq and DNA microarrays. However, the cellular phenotype
is ultimately controlled and manipulated by genetic information via a network genes. There-
fore, these phenotypic features can act as an analogy for gene expression data at a different
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level. This concept directs towards the potential use of phenotypic data for the reverse en-
gineering of such networks. Perceiving phenotype signatures of cell is emerging as another
high-throughput data source that can serve as measurements to infer biological networks (Nir
et al., 2010).

Morphological cellular signatures and observable phenotypic features are emerging as
another set of data source, potentially exploitable to infer cellular networks. To illustrate, let
us consider the case of tissue morphogenesis or cell division. The details of spatio-temporal
patterns of molecules in a cell is reflected in the dynamicity of the morphology of the cell or
tissues. Observing the cell/tissue and its component along time and space gives the picture
of events within the biological system at a holistic level, shedding light on how interactions
among the biomolecules is orchestrated to generate complex structures and functions (Zerial
and Kalaidzidis, 2011).

Microscopic images can serve as a promising source of such morphological or phenotypic
features. Cellular imaging via microscopy offers a wealth of data on how cells respond to stimuli.
To exemplify; RNAi based perturbation of genes creates disturbances in the pathway and this is
evident in the physical visualization in terms of microscopic images. Although harnessing such
image based data to study biological systems is challenging (Evals et al., 2013). The advent
of image-based automated technologies and acquisition of high-throughput quantitative
imaging data (Ohya et al., 2005; Carpenter et al., 2006) has paved the way to a great extent in
this direction. Methods have recently been developed that attempt to use these technologies
to quantify shape (Bakal et al., 2007), DNA morphology (Moffat et al., 2006), and subcellular
localization of organelles or proteins (Perlman et al., 2004; Glory and Murphy, 2007) on a
single-cell level. Initial analysis was commonly performed by averaging single-cell results to
derive mean scores or by clustering such results (Neumann et al., 2006; Bakal et al., 2007).

To principally illustrate the use of microscopic images let us consider a hypothetical situation
where a gene (G4) controls the process of cytokinesis. Cytokinesis is the physical process
of cell division, where the cytoplasm of a parental cell divides into two daughter cells. It
happens concurrently with mitosis and meiosis. During this process protein filaments; forms
a contractile ring around the equator of the cell. The ring then gradually shrinks, drawing the
plasma membrane inward forming a cleavage furrow. Ultimately, the ring shrinks to the point
of formation of two separate cells each bound by its own plasma membrane 1. A microscopic
imagery can efficiently capture this event through time dimension. Thus, if the gene G4 is
perturbed or artificially switched off, the mitosis/meiosis will occur, but not the cytokinesis.
Similarly, the targeted perturbation of all the parental regulators (say G1, G2, G3 etc. ) of gene
G4 will result in a similar morphology and similar features in the images. Based on the imagery
data an insight into the signaling network (Figure 5.2) can be achieved. This hypothetical
example was proved by Evals et al. in their work on Drosophilla (Evals et al., 2013) with similar
observations in many organisms (Fededa and Gerlich, 2012).

Current chapter aims to exploit such image data from microscopic video to learn biological
networks from time lapse cell imaging in RNAi Knock-Downs. The dynoNEMs forms the main

1http://www.nature.com/scitable/definition/cytokinesis-100; Accessed: August 2013
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G1 

G2 G3 

G4 

Figure 5.2.: The hypothetical signaling network involving four genes (perturbation indicated
in red) for the cytokinesis pathway. The microscopic image of the cell shown at
bottom right corner, showing the non-separation of cells. Image based on and
redrawn from Evals et al. (2013).

framework of the methodology presented here. Henceforth, we refer to this methodology as
“movieNEM”

5.2 MovieNEM

“MovieNEM” is an application extension of dynoNEM introduced in the last chapter, towards
the use of image features from time lapse microscopic movies in order to infer networks. The
entire approach of MovieNEMs (Figure 5.3) consists of image feature extraction, estimation of
perturbation effects and network estimation via dynoNEMs and has been discussed under the
following heads.

5.2.1. Movie to features

The time-lapse microscope movies used in the work were downloaded from the Mitocheck
database 2 (Neumann et al., 2010). The database has about 22,000 knocked-down human
genes and are screened for cell cycle defects via time-lapse microscopy. Furthermore, for
illumination distinction, the nuclei of HeLa cells were fluorescently labeled by tagging the core
histone 2B with GFP (Green Fluorescent Protein). Images of these cells were taken in 30min
intervals over a period of 48 hours.

For the entire image analysis step, an open source software CellProfiler (Kamentsky et al.,
2011) was used. The software enables biologists without training in computer vision or pro-
gramming to quantitatively measure phenotypes from thousands of images automatically.

2http://www.mitocheck.org ; Accessed: August 2013
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Figure 5.3.: Overview of the MovieNEM approach: Individual movies are first fed into an
image processing pipeline consisting of four steps: (i) cell nuclei detection in
the individual movie frames; (ii) tracking of the nuclei over time; (iii) calculation
of morphological features; and (iv) calculation of cell cycle time. After image
processing features are grouped according to the binned cell cycle time. This allows
for estimating time-wise perturbation effects. Several movies, each showing one
perturbation, are processed in this way and the perturbation likelihoods collected
along the binned cell cycle time axis. This allows for applying Dynamic NEMs to
infer the network between perturbed genes via MCMC

The software contains already developed methods for many cell types and assays and is also
an open-source, flexible platform for the sharing, testing, and development of new methods
by image analysis experts. It contains: advanced algorithms for image analysis which, can
accurately identify crowded cells and non-mammalian cell types. The software is a modular
with a flexible design that allows analysis of new assays and phenotypes.

In the movies being used here, many cells were affected by a common gene perturbation.
Each movie was then processed with the following steps.

Cell nuclei detection in the individual frames of the movies

Detecting the cell nuclei is important to track cell division event. For this Otsu thresholding
(Otsu, 1979) was used. It is a clustering based image thresholding for image binarization.
It selects the threshold by minimizing the within-class variance of the two groups of pixels
separated by the thresholding operator. In addition, the watershed algorithm was used to
separate clustered nuclei (Malpica et al., 1997). As we realized that the watershed algorithm
often over-segmented nuclei we implemented a segmentation correction scheme in CellPro-
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filer based on Chen et al. (Chen et al., 2006). Standard CellProfiler features were used for the
morphological description of the nuclei.

Tracking of the nuclei over time

CellProfiler‘s nearest neighbor tracker was used to track the nuclei. Images in CellProfiler
are processed sequentially by frame. The method exploited the fact that the cells did not move
quickly between frames. In order to track objects (in our case nuclei), it associated the nuclei in
the frames before and after. This allowed the study nuclei in terms of lineages and the timing
characteristics in movies.

Calculation of morphological features

Once we have the images processed, it is important to measure features or descriptors.
CellProfiler can measure features that include area, shape, intensity, texture and Zernike shape
features (Appendix E). For the purpose of our work we used 85 features of different classes that
include AreaShape, Intensity, Texture, Radial and Zernike moments (Boland et al., 1998) (Table
5.1). These feature will play the role of measurements analogous to E-genes and form the basis
of network inference using dynoNEM.

Table 5.1.: Number of features used from different classes
SNo. Feature Class Number of Features

1. Area Shape 13
2. Intensity 16
3. Texture 14
4. Radial Distribution 12
5. Zernike 30

Total 85

Calculation of cell cycle time

The movie was recorded along an absolute time. This has to be converted into a relative
time reference frame, which we call “cell cycle time”. This frame defines time-points within an
idealized cell cycle. Mean cell cycle time T was computed as the quotient of the length of all
trajectories (in minutes), divided by the total number of division events observed in the movie.
This was done for every movie. With this we define the following scenarios in the cell cycle
time under specific conditions

1. For cells that were observed at time t between two division events at times t1 ≥ t2, we
define the (relative) cell cycle time r as the quotient

r =
(t− t1)

(t2 − t1)
(5.1)
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2. For cells that were observed before the first division event of their trajectory the cell cycle
time is defined as

r =
1− t

max(t1;T )
(5.2)

3. If cells in a trajectory of length tω were observed after the last cell division, we define

r =
(t− tn)

max(tω − tn;T )
(5.3)

4. Cells that never divided during the observation period were assigned the relative cell
cycle time as

r =
t

tω
(5.4)

Thus, we reach the state where data set in form of features measured along the cell cycle
time scale starting from raw movies.

5.2.2. Estimating perturbation effects

The perturbations effects in a cell are manifested in terms of the phenotype measured by
the set of features compared to a wild type. For illustration, let us consider the measurement
for a single feature from two images- one from a perturbed cell and other from a wild type cell.
The difference in these measurements is the phenotypic outcome of the perturbation. In order
to do so, we split the cell cycle time into 10 equally sized intervals and computed for each
trajectory and each feature the median value per interval. It should be noted that at this point
that there is one trajectory per individual cell. We typically obtained more than 50 median
feature values (corresponding to 50 cells) per interval from one movie. Manual inspection of
the data revealed that we could not assume feature values to follow any known parametric
distribution. Thus, treated and control conditions were compared via a Mann-Whitney U-test
(Hettmansperger, 2011).

We then fitted the distribution of P-values obtained for all 85 features at a given time step via a
Beta-uniform mixture (BUM) model, as described in chapter 4. The idea is that the distribution
of P-values can be decomposed into a uniform part (the null distribution) and a second part
(the alternative distribution), which itself can be modeled via two Beta distributions. It has
to be mentioned here that at each time point, the number of compared cells is different.
Therefore, the null distribution of P-values (the uniform part of the BUM model) also differs
between time points. However, we are here only interested in the alternative distribution
(describing the likelihood of an effect).

After having learned the BUM model, each P-value can be converted into a probability of
being generated by the null and the alternative distribution, respectively. Thus, for each per-
turbation, feature and interval, we calculate the probability of being phenotypically different
from the wild type.
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In order to account for possibly irrelevant features, we used a trick described earlier in
(Tresch and Markowetz, 2008). A dummy S-gene “null” was added to the signaling graph Ψ
which was always unconnected to all other S-genes, i.e. not predicting any downstream effects.
Features assigned to “null” are hence irrelevant and do not show significant effects in any of
the perturbation experiments.

5.3 Applying dynoNEM

After getting the perturbation data mentioned above along the time scale the dynoNEM
algorithm described in chapter 4 was applied onto the data set. For this purpose we used
the Markov Chain Monte Carlo implementation of the algorithm. We present the application
study in terms of simulated data and real experimental data.

5.3.1. Simulations

The network sampling followed the same protocol as in chapter 4. Besides, 85 features
(corresponding to image features) were attached randomly to the S-genes (with uniform
probability). A set of 10 simulation on networks with n ∈ {5, 10 and 15}were generated. The
time lags for edges between connected S-genes were sampled from the set {1, 2, 3 and 4} via
a geometric distribution P (X = k) = (1− p)kp with parameter p. It was ensured that at least
one of the sampled networks was cyclic as in our previous simulations.

To generate feature data for perturbation of each node in our sampled graph were knocked-
down in the way similar to that in chapter 4. This was achieved by following the dynoNEM
simulation approach. We sampled p-values for all features attached to perturbed S-gene from
the alternative part of the Beta-uniform mixture model f1, which is a mixture ofBeta(1, β) and
Beta(α, 1). The α parameter was sampled uniform randomly from [0.1, 0.2, . . . 0.9], whereas the
β parameter was drawn uniformly from [5, 6, . . . , 15]. The coefficient for the mixture of both
Beta distributions was sampled uniformly from [0.01, 0.02, . . . , 0.49]. P-values for unaffected
features were sampled from a uniform distribution. The length of simulated perturbation time
series was kept to 10 time steps in compliance with the experimental data (in the next section).
The sampling process was done independently for each time step and perturbation to simulate
different distribution characteristics. After p-value sampling, Beta-uniform mixture models
(BUM) ( Equation 5.5) were fitted to each time point and perturbation (Details in chapter 3),
allowing for computing local effect likelihoods.

p(Dik(t)|S(t) = s(t),Θsi = 1) (5.5)

The whole data generation process was repeated 10 times for each network.

The dynoNEM algorithm with 50,000 burn-in and 100,000 sampling iterations was executed.
The edges with a mean time lag less than 2 SDs away from 0 were discarded in order to filter
out edges with very large variance.

The simulations revealed a high reconstruction accuracy in terms of sensitivity and speci-
ficity overall, and the performance patterns were same as observed in chapter 4.
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In terms of the number of S-genes, time lag distribution the dynoNEM pattern matched
our observation in the last chapter for the dynoNEM algorithm (Figure 5.4 and 5.5). For the
simulation where we varied the number of S−genes, smaller network were reconstructed more
accurately while there was a small drop in the performance for larger networks. Nevertheless,
all the accuracies were more than 0.8 in terms of sensitivity and specificity. Similarly, for the
variation of time lag distribution in terms of exponential distribution parameter (p), the trend
was same as corresponding dynoNEM simulations. There was higher accuracy for more non
uniform distribution with increase in sensitivity and small decrease in specificity. Please recall
a smaller p results in more uniform time-lag distribution.
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Figure 5.4.: Simulation results for n = (5, 10 and 15) nodes with 10 networks (N1:N10) for every
size, p = 0.5 and 85 features. The box plots are for the sensitivity, specificity and
balanced accuracy.

Besides these simulations, we ran a new simulation to understand the effect of non-informative
features from image to understand the effect of noise in the data.

Dependency on Uninformative Features

Here we looked, in how far our results were influenced by unspecific / noisy image features.
For this purpose, we fixed n = 10; p = 0.5 and removed a varying number (5, 10, 40) of infor-
mative features from our dynoNEM model. Subsequently we added the same number (5, 10,
40) of unspecific features, for which p- values were drawn from a uniform (0, 1) distribution.
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Figure 5.5.: Simulation results for n = 10 nodes with 10 networks (N1:N10). The parameter for
time lag distribution was varies as 0.2, 0.5 and 0.8 for 85 features.

Therefore, these noise features had no relation to the network to be estimated. As it can be
observed, our method performed robustly against noise features with respect to reconstruc-
tion of the network topology (Figure 5.6). Even with 40 uninformative features the average
sensitivity and specificity was almost identical to the situation with 85 informative features,
which underlines the effectiveness of our feature selection approach described above.

5.3.2. Application

So far we have applied dynoNEM to microarray data to infer networks. The simulations
above suggest that it works on phenotype data as well (images/movie). Attempts have been
made to reverse engineer such networks from image data for instance, the work of Bakal
et al. (Bakal et al., 2007), based on hierarchical clustering of static images and the work of
Kaderali et al. (Kaderali et al., 2009), using probabilistic graphical model for only one binary
phenotypic variable in static images. A method for the inference of networks from time lapse
microscopy based on large numbers of statistical image features does not exist so far to our
knowledge. This section presents one such application to reverse engineer a cellular network
from movie/video data.
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Figure 5.6.: Simulation results for networks with n = 10 nodes, p = 0.5 and 5 to 40 non-
informative features. The plots are for the sensitivity, specificity and balanced
accuracy. The results shown here represent the distribution observed for 10 net-
works.

The Data

The time-lapse movies were downloaded from the Mitocheck database (Neumann et al.,
2010). The Mitocheck database 3 about 20,000 human genes were knocked-down and screened
for cell cycle defects via time-lapse microscopy. The nuclei of HeLa cells were fluorescent
labeled by tagging the core histone 2B with GFP. Images of these cells were taken in 30min
intervals over a period of 48 hours. The high-content data set from the database can be used
for an in-depth analysis of cell division phenotypes, making it suitable for movieNEM.

The movies from the database were processed as explained in the approach section of the
current chapter and the features were computed for perturbations and control(Figure 5.7).

3http://www.mitocheck.org/cgi-bin/mtc ; Accessed: January 2014
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Figure 5.7.: Histograms for some randomly selected images features from the movie data for
control sample showing differences in the distribution pattern.

A set of 22 genes were selected from the data set. The selection was based on the fact that
these 22 genes demonstrate significant phenotypic perturbation effects in our movies (Figure
5.8). According to a literature based network reconstruction these 22 genes are relatively
close to each other and are mainly involved into cell cycle, transcriptional regulation and cell
differentiation.

Subnetwork of 6 Genes

The first application we present is on perturbation movies for 6 selected genes out of the
22 defined above. The associated network was inferred by MovieNEM for these selected 6
genes. The purpose of the example is to visualize the results produced by MovieNEM. The
number of MCMC iterations in the burn-in and sample phase were both set to 100,000. Figure
5.9 presents the edge-wise posterior expectation network together with the observed and
predicted phenotypic effects and corresponding typical cell morphologies (phenotypes or
image features) at different time points.
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Figure 5.8.: Heatmap of perturbation effects (image features) at time point 1, 5 and 10 for all
22 genes. The heatmap depicts log p-value densities. The more red the stronger
the effect

Knocking down CREB1 exhibits perturbation effects at the first time point. STAT3 knock-
down affected fewer features than the CREB1 perturbation. This brought CREB1 at the up-
stream of all the other genes. The STAT3 gene is placed downstream of CREB1 in the network
graph as the effect bis seen much later for its knock down. Similar observations can be made,
for CREB1 and YY1, E2F5 and STAT3, YY1 and STAT3 and MDM2 and STAT3. The E2F5 showed
less interference with CREB1 putting them in a forked relation with YY1. The degree of phe-
notypic effects increases over time and this causes a development of subset relations in the
perturbation effects of different genes. We can observe that at time point t = 2 there is such
a relation between CREB1 and MDM2. At time point 4 yet more effects and corresponding
subset relations are observable, e.g. between E2F5 and YY1 as well as SP1 and MDM2. At the
final time point (t = 10) there is high degree of noisy subset relation among most of the genes.
The null associated features remain unaffected or show unchanged behavior during the time
course.

The dynoNEM model presented allows for making predictions of knock down effects on
image features sets. Thus, according to the model inferred here, features assigned to STAT3 will
exhibit significant perturbation effects throughout the time course because of its downstream
location. This is evident from the heatmaps (Figure 5.9). On the other hand, the gene at the
upstream will show perturbation effects at the first time point and will maintain its status
throughout the later time points as there is no other gene affecting it along the time. CREB1 is
an example for this case. The intermediate nodes will evolve their perturbation effect along
the time line. To illustrate; MDM2 features at time point 1 should react only to MDM2 and
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Figure 5.9.: Inferred MovieNEM model for 6 genes. Heatmaps represent estimated perturba-
tion effects at different time points. The ordering of phenotypic features in the
heatmaps is due to the MovieNEM model, and gray lines indicate the maximum
likelihood of features to perturbed genes. null indicates a dummy S-gene, to which
features with unspecific response could be assigned during the MCMC procedure.
The edge labels on the graph indicate the time lags for corresponding edges.
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YY1 knock-down, which is again in agreement with the data. However, at time point 2 MDM2
assigned features are predicted to show effects also under CREB1 and at time point 4 also
under SP1 and E2F5 perturbation. All these predictions for effect on features can be observed
in the heatmap and verified.

Furthermore, a permutation test was conducted on our network to check if the inferred
network could have been expected by chance. For this purpose we permuted the node labels
in each network 1000 times and calculated for each permuted network its likelihood (Equation
3.6). All of these likelihoods were inferior to that of our inferred network. The p-value for
the network was found to be ∼ 5.89 × 10−4. The presented application demonstrates that
dynoNEMs are able to learn network structures, which are in agreement with the observed
phenotypic data.

The network was also validated with literature based networks from Metacore TM. The
results showed the graph to completely (100%) explainable by the literature (Figure 5.11).

Complete Network

Finally we applied MovieNEM in the same way as described above to infer the complete
network among the selected 22 genes with significant phenotype (Figure 5.10). As mentioned
above, these 22 genes are mainly involved into cell cycle, transcriptional regulation and cell
differentiation. Again our permutation test for edge-wise posterior expectation network scored
better than 1000 random S-gene permutations.

Again for the literature based validation, we investigated, in how far our edge-wise posterior
expectation network contained edges, which were explainable by paths contained in the
literature network (knowledge view). This way all 122 edges could be mapped to known
literature pathways from Metacore TM(Figure 5.11 b). Moreover, out of these paths more than
80% had a length shorter than 3 (Figure 5.11 a).

On the other hand, not very surprisingly the literature network contained additional inter-
actions, which could not be observed in our estimated networks. In consequence 60% of all
paths between the 22 genes within the literature network corresponded to paths within our
estimated network (Model view). This can have two reasons: Either the additional literature
known interactions exist in reality, but MovieNEM could not infer them or they do not exist in
HeLa cells and are not inferred. An important factor for false negatives is that we can only infer
interactions between genes that show a clear phenotypic knock-down effect. If, for example,
proteins A and B can independently activate C, then the knockdown effect of A may be partially
compensated by B. In this case we would only see a weak or no knock-down phenotype of A
and consequently the edge A→ C could be missed in our MovieNEM model.

5.3.3. Biological implications

Our MovieNEM inferred CDK1, CDC25A, CDKN1A and E2F5 as central hub nodes. All
these proteins play an important role into G1/S and (except for E2F5) G2/M phase transitions
according to their GO annotation. All these genes were found to be associated with mitosis
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Figure 5.10.: NEM results for perturbation data for 22 genes. (Top) Inferred network for all 22
perturbed genes in the data without transitive closure. The edge color and edge
labels indicate the time lag. (Bottom) Estimated perturbation effects at different
time points for the 22 genes for the inferred network. null indicates a dummy
S-gene, to which features with unspecific response could be assigned during the
MCMC procedure.

85



5.4. SUMMARY CHAPTER 5. MOVIENEM: DYNONEM ON PHENOTYPE DATA

22−gene Network 6−gene Network

0

25

50

75

100

Knowledge View Model View Knowledge View Model View
Views

Fr
ac

tio
n 

on
 % View

Knowledge View
Model View

Validation of inferred network with literature

Path lengths for validation by literature

Path length

Fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0 3.5 4.0

0
20

40
60

80

Path lengths for literature explained by model

Path length

Fr
eq

ue
nc

y

2 4 6 8

0
50

10
0

15
0

A B C 

22−gene Network 6−gene Network

0

25

50

75

100

Knowledge View Model View Knowledge View Model View
Views

Fr
ac

tio
n 

on
 % View

Knowledge View
Model View

Validation of inferred network with literature

Figure 5.11.: Validation of inferred neworks (22 gene and 6 genes) against literature based
networks. (A) Histogram for the lengths of the path in the literature network
that explained the edges inferred by MovieNEM (in the 22 gene network). (B)
Histogram for the lengths of the path in the inferred network (22 gene network)
that explained the edges in the literature based network. (C) Fraction of edges(in
%) validated for 22 gene and 6 gene networks. The Y-axis represents the fraction
of edges in inferred network that were explained by the literature (Knowledge
view) and the fraction of edges in literature network that were explained by the
inferred network (Model view)

related GO terms. CDC25A, E2F5 and CDK1 have an extraordinary high in-degree, whereas
CDKN1A has a high number of outgoing interactions. CDKN1A and CDK1 are both involved
into Ras signaling. It is known that CDKN1A binds to and inhibits CDK1 (Dulic et al., 1998),
which is in agreement with the inferred edge CDKN1A → CDK1 in our model. E2F5 is a
transcription factor playing a role into cell cycle control (GO annotation) and is inhibited by
CDKN1A (Dimri et al., 1996), which is reflected by the edge CDKN1A→ E2F5 in our inferred
network.

5.4 Summary

The work opened up a new paradigm of learning cellular pathway structures from pheno-
typic perturbation effects recorded in time-lapse movies. dynoNEM forms the core of the
movieNEM approach (Fröhlich et al., 2011). Extending dynoNEMs to movieNEM required
dealing with image data which were aligned along the time scale of the cell cycle. The features
from these images then underwent statistical testing and scoring via a Mann-Whitney test
(Hettmansperger, 2011). For this the distribution of each feature across different cells were
compared for control against treatment. The large number of samples (cells) made the entire
process robust and sensitive for detection of effects compared to the use of. One might also
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imagine comparing each feature in a single treated cell against the population of control cells
as an alternative. This would probably be less sensitive, but could also be valuable, if cell by
cell differences are of relevance.

The simulations demonstrated the high sensitivity and specificity of the approach. The
application of the approach to movies of 22 siRNA knock-downs from the Mitocheck database,
where all estimated interactions were explainable by literature known pathways, proved the
potential of MovieNEMs.

The MovieNEM detects and exploits phenotypic differences developed as a response to the
targeted perturbation of the cell. In our application, all phenotypic differences are derived
from merely one fluorescence staining of the cell (GFP-histone tagging). A significant increase
in power of our method can be expected, if multiple staining was used, and the individual
fluorescence labels were indicative of the biological process under investigation.

A basic assumption of our present MovieNEM approach is that phenotypic perturbation
effects should occur at some point during the cell cycle and then remain until the end of the
cell cycle. This assumption may not be fulfilled in all cases. Even more, some perturbations
may not yield a phenotypic effect at all. In such cases MovieNEM is not applicable. Finally, it
is worth emphasizing that MovieNEM up to now is certainly not an approach for large scale
network reconstruction. This is due to the huge network space (increasing exponentially with
the number of network nodes), which makes sampling based methods (as well as heuristic
approaches) computationally slow.

The reconstruction of cellular networks affords a better insight into the organization of a cell.
Targeted RNAi screens have revealed their great potential for this purpose during the last years.
Given the fact that the combination with omics-data is not always possible or affordable, image
based techniques can offer a promising alternative. Our MovieNEM approach is therefore a
step towards better exploiting this information rich data to uncover biological mechanisms.

The chapter proposed a method MovieNEM for learning a cellular network from image (movie)
data using dynoNEM. The MovieNEM was applied onto real biological data. The approach
outlined here proved to be high accuracy in terms of network reconstruction from phenotype
data. Next chapter will propose the use of existing biological knowledge together with data to
further improve the accuracy of network reconstruction via probabilistic methods
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Chapter 6

The Network Prior

The last chapter augmented the network inference approach for perturbation data by extending
the NEMs, via introduction of temporal information in the data. This chapter will focus on
use of a prior in network learning from data. The chapter will introduce newly developed
method to integrate information from multiple sources as a structure prior in the inference
process. The experiment and findings entailed here were presented at the European Conference
on Computational Biology (ECCB 2012) and have been also published in a peer review journal
(Appendix M). The work also resulted in a new R-package software (available on request).

6.1 Introduction

6.1.1. Motivation

So far, approaches to infer network from experimental data (static and time-course) has
been put forward in this thesis. Probabilistic graphical models methods, such as Bayesian
Networks or NEMs have been highly successful to infer cellular networks from high throughput
experiments. These models allow inferring features of complex cellular networks directly from
data. A challenge in that context is the typical low signal to noise ratio in experimental data.
To illustrate, high throughput data like microarray is high dimensional, but a limitation is the
number of replicates, and the unavoidable measurement noise. A network inferred from such
data can bear edges that are not very likely or not possible in reality. The edge just represents
an artifact in data. Reverse engineering of networks is thus challenging and often fails to reach
the reliable level of accuracy.

Network inference approaches typically attempt to find a network topology that maximizes a
score for the given data. However, one of the greatest challenges involved in network inference
is search space explosion (Aijö and Lähdesmäki, 2009). This implies that even with a moderate
number of variables (vertices), the graph space can be astronomic. However, every possible
graph in principle from this space is not plausible practically (Mukherjee and Speed, 2008).
Nevertheless, while learning the network this search space can be constrained to certain
graphs (Heckerman et al., 1995c). This is achieved by the use of a structure prior that biases
the search towards the plausible networks in the search space. This not only makes the search
process easier, but also contributes to scientific rationality of the inferred network.
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Incorporating prior knowledge into the learning process has thus been identified as a way
to address this problem, and principle a mechanism for doing so has been devised, e.g. by
Mukherjee and Speed (Mukherjee and Speed, 2008), and Fröhlich et al., (Fröhlich et al., 2007a).
The prior needed for such a purpose comes from the domain or expert knowledge. In biology,
such knowledge is distributed in the form of databases, knowledge-bases and even biological
literature and annotations, like- GO terms. Although there is a lot of knowledge and infor-
mation, their integration into one quantitative prior gets difficult due to the heterogeneous
nature of the different information sources (e.g. GO, KEGG, HPRD, etc.). The current chapter
precisely answers the call.

6.1.2. State of art

In the past most authors have concentrated on integrating one particular information
resource into the learning process (Imoto et al., 2002; Tamada et al., 2003; Nariai et al., 2004;
Tamada et al., 2005; Imoto et al., 2006; James et al., 2009): E.g. gene regulatory networks were
inferred from a combination of gene expression data with transcription factor binding motifs
in promoter sequences (Tamada et al., 2003), protein-protein interactions (Nariai et al., 2004),
evolutionary information (Tamada et al., 2005), KEGG pathways (Imoto et al., 2006) and GO
annotation (James et al., 2009).

On the technical side several approaches for integrating prior knowledge into the inference of
probabilistic graphical models have been published: In (Larsen et al., 2007) and (Eyad Almasri
et al., 2008) the authors only generate candidate structures with significance above a certain
threshold according to prior knowledge. Another idea is to introduce a probabilistic Bayesian
prior over network structures. Fröhlich et al. introduced a prior for individual edges based
on the a-priori assumed degree of belief (Fröhlich et al., 2007b). Mukherjee et al. describes a
more general set of priors, which can also capture global network properties, such as scale-
free behavior (Mukherjee and Speed, 2008). Using a similar form of prior as Fröhlich et al.,
but additionally combining multiple information sources via a linear weighting scheme was
proposed later proposed (Werhli and Husmeier, 2007). The weights are sampled together
with rest of the parameters and the network structure in a specifically designed Markov Chain
Monte Carlo algorithm for Bayesian Network inference.

In contrast, (Gao and Wang, 2011) treat different information sources as statistically inde-
pendent. Consequently, the overall prior is just the product over the priors for the individual
information sources. The advantage of the approach is that it is independent from a particular
class of probabilistic network models (e.g. Bayesian Networks). The limitation is its strong
assumption of statistical independence of information source, which in reality is unlikely since
biological knowledge in different databases is not orthogonal to each other.

Most of the methods described above allow a limited number of sources or are not flexible to
include new sources of knowledge. In addition, some assumption used during the integration
(independence of biological knowledge (Gao and Wang, 2011)) are implausible. The aim of this
chapter to address these issues and analyze the effects of various factors (data size, network
size, knowledge sources, etc.) on network reconstruction.
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6.1.3. Challenges

Though necessary, defining such prior has two major challenges. First, defining the sources
of knowledge and second condensing them to one prior. The first challenges can be met with
several knowledge sources available in biology and is discussed in section 6.2. Considering
the heterogeneity and complexity of these data, abstracting them into one robust prior gets
challenging. Hence, a framework is needed to combine these heterogeneous sources of in-
formation into a quantitative Bayesian prior. Besides, each knowledge source on network
structure is an incomplete recapitulation of the underlying biology, and may include false
positive and false negative knowledge. Therefore, one has to consider the issue while con-
structing a prior. Thus, incorporating structure priors network inference pipeline poses several
interesting scientific challenges. The upcoming sections will entail on how to meet these
challenges.

6.2 Knowledge sources

The approaches presented here primarily use the GO annotation, pathways databases,
protein domain annotation (InterPro - (Mulder et al., 2002)) and protein domain interac-
tions (DOMINE (Raghavachari et al., 2008)) as the sources of biological knowledge. However,
new sources can be added if available. The details of these sources and the corresponding
measurement is described in the following sections.

GO similarity

The Gene Ontology (GO) has been developed to offer controlled vocabulary for aiding in
the annotation of molecular attributes for different model organisms. Predicting the map
of potential physical interactions between proteins by fully exploring the knowledge buried
in two GO annotations has been explored. Interacting proteins often function in the same
biological process, which assumes that two proteins acting in the same biological process are
more likely to interact than two proteins involved in different processes.

Briefly, for GO annotation we used the default similarity measure for gene products im-
plemented in the R-package GOSim (Fröhlich et al., 2007a), which resembles the functional
similarity proposed by (Schlicker et al., 2006) on the basis of the information theoretic GO
term proximity measure by (Lin, 1998). Protein domain annotation was compared on the basis
of a binary vector representation via the cosine similarity.

Sim(t1, t2) =
2ICms(t1, t2)

IC(t1) + IC(t2)
(6.1)

where, IC is the information content of term t defined as:

IC(t) = −logP (t) (6.2)
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and ICms is the minimum subset of two GO terms t1 and t2 given as

ICms(t1, t2) = max
t′∈Pa(t1,t2)

(
ICt′

)
(6.3)

Protein-Protein Interactions

Protein-protein interaction (PPI) data can be instrumental to understand biology at a system-
wide level. They present the known knowledge about the pairs of proteins that interact in
living system and hence can be an important source of knowledge for our approach. PPIs have
traditionally been measured using a variety of assays, such as immunoprecipitation and yeast
two-hybrid (Y2-H). Such knowledge resides in various databases, like IntAct, HPRD etc. The
entire set of known interaction referred as interactome can be structured as a graph. Here
we use the interaction data from the PathwaysCommons database (Cerami et al., 2011). To
compute a confidence value for each interaction between a pair of genes/proteins we can
work at the level of this graph in different ways: One way is to look at the shortest path distance
between the two entities. Another way is to employ diffusion kernels (Kondor and Lafferty,
2002). To calculate the shortest path distance between two nodes the function sp.between
function based on Dijkastra’s algorithm is used from R-package RBGL. The edge confidence is
then computed as the inverse shortest path distance.

dA,B =
1

min
1:n

(path(A,B))
(6.4)

Protein Domain Annotation

Hahne et al. (Hahne et al., 2008) and Fröhlich et al. (Fröhlich et al., 2008a) found that proteins
in distinct KEGG pathways are enriched for certain protein domains, i.e. proteins with similar
domains are more likely to act in similar biological pathways. The confidence of interaction
between two proteins can be seen as a function of the similarity of the domain annotations of
proteins. Protein domain annotation can be retrieved from the InterPro database (Mulder et al.,
2002). For each protein we constructed a binary vector, where each component represents
one InterPro domain. A “1” in a component indicates that the protein is annotated with the
corresponding domain. Otherwise, a “0” is filled in. The similarity between two binary vectors
u, v (domain signatures) is presented in terms of the cosine similarity.

Sdomain =
〈u, v〉
‖u‖‖v‖

(6.5)

Domain-Domain Interactions

Two proteins are more likely to interact if they contain domains, which can potentially
interact. The DOMINE database collates known and predicted domain-domain interactions
(Raghavachari et al., 2008). Calculation for edge confidence (IAB) based on the domine
database is done as follows:

IAB =
H

DA.DB
(6.6)
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where H is the number of hit pairs found in the DOMINE database and DA and DB are the
number of domains in proteins A and B, respectively.

6.3 Prior

Let D denote our experimental data and Φ the network graph (represented by an m × m
adjacency matrix), which we would like to infer from this data. According to Bayes’ rule the
probability of network Φ given dataD is given as

P (Φ
∣∣D) =

P (D
∣∣Φ)P (Φ)

P (D)
(6.7)

where P (Φ) is the prior. We assume that P (φ) can be decomposed into

P (Φ) =
m∏
i,j

P (Φij) (6.8)

e.g.

p(Φij) =
1

ν
exp

(
−1

ν
|Φij − Φ̂ij |

)
(6.9)

where Φ̂ is a matrix of prior edge confidences Fröhlich et al. (2007b). A value of Φ̂ij close to
1, indicates a high prior degree of belief in the existence of the edge i→ j. Our purpose is to
compile Φ̂ with consistency from n available information sources. We suppose that each of
these sources allows for obtaining an edge confidence matrix by itself, i.e. altogether with n
information sources we have n edge confidence matrices X(1), X(2), . . . , X(n).

6.4 LFM: Latent Factor Model

6.4.1. Mathematical formalism

The Latent Factor Model is based on the idea that the prior information encoded in matrices
X(1), X(2), . . . , X(n) all originate from the true, but unknown network Φ (Figure 6.1). This
specifically implies that direct correlations between edge confidences across matrices can be
explained by this hidden dependency. In other words Φ is a latent factor explaining correlations
between the X(k) (k = 1, ..., n). We use this notion to conduct joint Bayesian inference on Φ as
well as additional parameters θ given X(1), X(2), . . . , X(n):

P (Φ, θ
∣∣X(1), X(2), . . . , X(n)) =

∏n
k=1 P (X(k)

∣∣Φ, θ)P (Φ)P (θ)

P (X(1), X(2), . . . , X(n))
(6.10)

The idea behind this equation is that we can identify Φ̂ with the posterior P (Φ, θ
∣∣X(1:n)).

In other words, the prior edge confidences Φ̂ are identical to the posterior edge probabilities
learned from our n information sources X(1), . . . , X(n).
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X(1) X(2) X(3) 

Φ 

X(1) 

X(2) 

X(3) 

Figure 6.1.: A general Latent Factor Model (LFM). The random variables x1, x2 and x3 are highly
related variables (left) and an assumption that these related random variables
originate from a common, true but unknown variable φ results a Bayesian network
(right) in case of networks φ is the true but unknown network.

The entries of each matrixX(k) can be assumed to follow beta distributions. More specifically
we have:

P (X
(k)
ij

∣∣α,Φij = 1) = Be(X
(k)
ij , α

(k), 1) (6.11)

P (X
(k)
ij

∣∣β,Φij = 0) = Be(X
(k)
ij , 1, β

(k)) (6.12)

and P (X(k) | θ,Φ) =
∏m
i,j P (X

(k)
ij | θ, Φij)

Please note that α and β are vectors. That means α(k) and β(k) are specific for source k. If the
values in matrix X(k) are all either very high (close to 1) or low (close to 0) parameters α(k) and
β(k) will have a large magnitude. Consequently, P (X

(k)
ij

∣∣θ, Φij) will be large, i.e. source k has a

large impact. On the other hand, if values in X(k) are rather uniformly distributed, parameters
α(k) and β(k) will be close to 1, which implies P (X

(k)
ij

∣∣θ, Φij) to be close to 0. Thus, such an
information source has only small impact. By introducing source specific beta distribution
parameters we are therefore, able to weight these source individually.

We employ an adaptive Markov Chain Monte Carlo (MCMC) strategy (Robert and Casella,
2004) to learn the latent variable Φ together with parameters θ = (α, β). For this purpose we
define MCMC moves in network space as well as in parameter space. More specifically, in
network space MCMC moves are; edge insertion, deletion and reversal. In parameter space α
and β are adapted on log-scale using a multivariate Gaussian transition kernel. This is done
every 10th iteration. The covariance matrix of the transition kernel is initialized to the identity
matrix and every 100th iteration updated to the empirical covariance matrix. The number
of burnin steps used is 100000 and number of sampling iterations is 400000 for our MCMC
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algorithm here. The convergence of the sampling process has been shown in figure 6.2
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Figure 6.2.: The plot showing convergence of the adaptive MCMC sampling. Along the x-axis
are the burnin and sampling iterations (every 100th)and the y-axis show the log
likelihood for the samples (see equation 6.10)

6.5 NOM: Noisy-OR Model

6.5.1. Mathematical Formalism

The Noisy-OR represents a non-deterministic disjunctive relation between an effect and its
possible causes and has been extensively used in artificial intelligence (Pearl, 1988). The Noisy-
OR model assumes that the relation between the causes and the effect is non-deterministic,
allowing the presence of the effect in absence of any of the modeled causes. The Noisy-OR
principle is governed by two hallmarks: First, each cause has a probability to produce the effect
and second, the probability of each cause being sufficient to produce the effect is independent
of the presence of other causes (Figure 6.3).

In our case X(1)
ij , X(2)

ij , . . . , X(n)
ij are interpreted as causes and Φ̂ij as effect. The link between

both is given by
Φ̂ij = 1−

∏
k

(1−X(k)
ij ) (6.13)
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X(1) X(2) X(n) 

Φ ⌃ 

. . . . . .   

Figure 6.3.: A generalized view of a Noisy-OR model showing the relation between causes X1:n

and effect φ through a Noisy-OR function

In consequence Φ̂ij becomes close to 1, if the edge i→ j has a high confidence in at-least
one information source because then the product gets close to 0. Hence, in the Noisy-OR
model high edge confidences in one information source can overrule low confidences in other
information sources. This is in contrast to the LFM model, where a high-level of agreement
between information sources is required in order to achieve high values in Φ̂.

In addition to the above described Noisy-OR model, which integrates edge confidences
directly into the consensus prior, we also experimented with a variant based on relative ranks,
which is in the spirit of (Marbach et al., 2012): Within each matrix X(k) we first assigned each
edge confidence X(k)

ij to its rank R(k)
ij in descending order. Then, we converted these absolute

ranks into relative ranks by dividing each rank value by the maximum rank:

R
(k)
ij ←

R
(k)
ij

maxij R
(k)
ij

(6.14)

Matrices R(1)
ij , R(2)

ij , . . . , R(n)
ij consisting of relative ranks were then considered in Eq. (6.13)

rather than the original matrices X(1)
ij , X(2)

ij , . . . , X(n)
ij . We call this method NOM.RNK in the

following.

6.6 Simulation results

6.6.1. Reconstruction from simulated sources

In a first series of validation experiments, we looked in how far the true network could be
recovered purely from the inferred prior edge confidence matrix Φ̂ after applying a certain
threshold. This was solely based on the knowledge without any network inference algorithm
and data involved. This allowed us to investigate if our proposed models could really infer the
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correct consensus knowledge based of information from many sources. For this reconstruction
we simulated artificial knowledge for a KEGG subgraph under study.

Graph sampling

To start with our validation we needed reference networks to be tested. For this purpose
we generated 10 networks with 10, 20, 40 and 60 nodes each. These networks later on served
as our ground truth. To obtain our ground truth networks we parsed XML files of all KEGG
signaling pathways and converted them into graphs via the R-package KEGGgraph (Zhang
and Wiemann, 2009). Then, we randomly picked one of these graphs and performed a random
walk starting from a randomly selected core node. The random walk was stopped once a
predefined number of distinct nodes had been visited, and the corresponding sub-network
was returned as a ground truth network.

To evaluate the performance of a prior edge confidence matrix relative to the ground truth
network we looked at sensitivity and specificity at different probability cutoffs. In addition we
also computed the balanced accuracy (= average of sensitivity and specificity) at each cutoff.
We then defined the optimal Balanced Accuracy (oBAC) to be the maximum balanced accuracy
over all cutoffs.

Simulating knowledge sources

We first simulated matrices X(1), X(2), . . . , X(n) by sampling from Be(1, β) and Be(α, 1)
distributions according Eq. 6.12. The whole simulation was repeated 10 times for different
parameter combinations, network sizes m and number of information sources. We compared
our LFM, NOM and NOM.RNK approaches against a set of other proposed priors namely.

1. An independent prior (IP), which just takes the product of all matrices X(k) (mimicking
the method by Gao et al. (Gao and Wang, 2011))

2. A variant of IP working on relative ranks (IP.RNK) in the same way as described for the
NOM method

3. An unweighted average prior (MP), which takes the arithmetic mean of all matrices X(k)

4. A variant of MP, which works on relative ranks (MP.RNK) and is thus identical with the
approach proposed by Marbach et al.(Marbach et al., 2012)

Evaluation results

A. Dependency on network size

The objective of this study is to observe the effect of number of nodes (network size) on
our proposed priors as well as the dependence of overall reconstruction accuracy of network.
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Figure 6.4.: The reconstruction performance during simulation for networks of different size.
On the bottom right corner is the corresponding oBAC (optimal Balanced Accuray).
The shape parameters for the simulations were kept to α = 2, β = 2 and number of
information sources = 6.
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It can be observed that the LFM approach performs better with larger networks as com-
pared to the smaller network. This is evident in terms of better sensitivity and specificity.
Decreasing the number of network nodes from m = 20 to m = 10 yielded a drastic perfor-
mance loss of LFM (Figure 6.4). This may be explained be the fact that the LFM method
learns from the entries in the matricesX(k). The larger these matrices, the more independent
observations LFM has to learn from. In contrast, increasing the number of network nodes
from m = 20 to 40 and m = 60 for n = 6 sources and α = 2, β = 2 did not influence the
previously observed good performance of LFM significantly. The difference across the size of
networks was not prominently observed for other priors as in the case of LFM models.

B. Dependency on number of sources

In order to look into the dependency of number of knowledge sources that can be used to
learn a consensus prior, we designed a simulation where the number of these sources was
varied and it‘s reconstruction accuracy was observed.

We simulated the network reconstruction using our approaches for different number of
sources viz. 1, 2, 3, 4, 5 and 6 sources, for networks of size m = 20 and α = 2, β = 2. In this
situation we could observe that increasing the number of sources helped to improve the
accuracy for most methods (Figure 6.5). The oBAC of our methods were similar to those of
the other approaches for a low number of sources (1, 2 and 3 sources). However, with an
increasing number of sources (4, 5 and 6) the performance of LFM increased constantly. For
NOM an optimum was reached for n = 4 sources, after which the performance declined
again, suggesting an increasing loss of specificity.

C. Dependency on shape parameters

To understand the affect of the shape parameters in our information sources we used data
generated with different shape parameter pairs and learn the overall network from it. This
could give us the information about the affect on learning process with the strength or value
range of information beside parameter dependence. To understand the dependency on α
and β we first varied both parameters in the range 2, 3, 4 and fixed n = 6 for networks with
m = 20 nodes.

Our results (Figure 6.6) indicate a dependency of the priors, on the beta distribution shape
parameters. Under most parameter settings the methods using relative ranks performed
better than their counterparts using raw edge confidences. This was not true for NOM versus
NOM.RNK, however, were the opposite behavior was observed: NOM.RNK compared to
NOM lacks specificity. Almost all the models performed better for highly correlated sources
(i.e. higher α and β values see Figure 6.7). However, the LFM model performed well even
with an overall low correlation among sources, which can be interpreted by the ability of
the approach to down-weight uninformative/weakly correlated sources. The same held true
for MP.RNK. IP was comparable to the other methods for only two parameter combinations
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Figure 6.5.: The reconstruction performance during simulation for different number of sources
from m = 1 to m = 6. On the bottom right is the corresponding Optimal Balanced
Accuracy. The shape parameters for the simulations were kept to α = 2, β = 2 and
number of nodes m=20.
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(α = 4, β = 2) and (α = 4, β = 4). In both cases numerically the beta distribution yields
relatively high values in the X(k) matrices, hence the product does not as quickly tend to 0 as
with lower values. NOM could beat LFM only for α = 2, β = 4. In this case confidence values
for non-existing edges are relatively concentrated around 0, and LFM lacks sensitivity. On the
other hand LFM performed significantly better than NOM for α = 2, β = 2 and α = 3, β = 2
and α = 3, β = 2. In these cases confidence values for existing edges are relatively high, and
NOM lacks specificity. In general it was observable that LFM, MP, MP.RNK, IP and IP.RNK are
extremely specific methods, whereas NOM is highly sensitive. Consequently LFM gives the
best results in terms of balanced accuracy at low edge probability cut-offs whereas, the NOM
does the same at higher cut-offs. The correlation of entries in matrices X(k) were dependent
on the beta distribution parameters (Figure 6.71). For example α = 4, β = 4 yielded high
correlations (median 0.7), whereas α = 2, β = 2 lead to much weaker ones (median 0.2)

The sources with high value for α and low β results the higher mean value (α=4, β=2) for the
source (behavior of β distribution). This can be observed in the figure 6.7. It can be observed
in figure 6.6 that for these cases the IP performed well otherwise had lower accuracy achieved.

For the quantitative priors from our simulation results we defined the presence (adjacency =
1) or absence (adjacency = 0) of an edge in the network at various probability cut-offs (0 to
0.95). It was observed that the LFM gives the best results in terms of sensitivity and specificity
at lower probability cut-offs whereas, the NOM does the same at higher cut-offs. In terms of
balanced accuracy the optimal balanced accuracy for LFM is obtained at a cut-off of 0.10 but
for the NOM this goes to 0.95. The scene however changes for real data as the confidence from
real information sources is not as high as the simulated one and the missing information.
This leads to decrease in the probability cut-offs for the NOM model in this case. Compared
to this the independent prior method fails to perform because of low of missing information.

D. Weighting of Information Sources

We tested, in how far the automatic weighting of sources provided by the LFM method was
able to filter out irrelevant/noisy information. For this purpose we added an artificial source,
which contained values sampled uniform randomly between 0 and 1. Figure 6.8 depicts the
posterior expectations for and parameters, which were retrieved for individual information
sources for 10 sampled networks with nodes. The picture clearly reveals that the posterior
expectation of parameters for the noise source was always close to 1, which indicates an
influence close to 0 in the likelihood function (Equation 6.12). Hence, the noise source was
filtered out effectively.

6.6.2. Inferring KEGG pathway

In a second round of experiments we reconstructed networks sampled from KEGG based on
existing biological knowledge encoded in GO, PathwayCommons, InterPro and DOMINE. We
ran the whole simulation for networks of different sizes (m = 10, 20, 40 and 60).

101



6.6. SIMULATION RESULTS CHAPTER 6. THE NETWORK PRIOR

●

●

●

●
● ● ● ● ● ● ● ●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
iti
vi
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

IP

●

●

● ● ● ● ● ● ● ● ● ●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
iti
vi
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

MP

● ● ● ● ● ● ● ● ● ● ●

●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
itiv
ity

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

NOM

●

●

●

●

●

●

●

● ● ● ● ●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
iti
vi
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

IP.RNK

● ●

● ● ● ● ● ● ● ● ● ●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
iti
vi
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

MP.RNK

● ● ● ● ● ● ● ● ● ● ●

●0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
itiv
ity

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

NOM.RNK

●

●

●

●

●

●

●

●

●
●

●
●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Se
ns
iti
vi
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

LFM

● ● ● ● ● ● ● ● ● ● ● ●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ifi
ci
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

IP

●

● ● ● ● ● ● ● ● ● ● ●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ifi
ci
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

MP

● ● ● ● ● ●
●

●

●

●

●

●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ific
ity

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

NOM

●
● ● ● ● ● ● ● ● ● ● ●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ifi
ci
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

IP.RNK

●

●

● ● ● ● ● ● ● ● ● ●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ifi
ci
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

MP.RNK

● ● ● ● ● ● ● ● ●

●

●

●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ific
ity

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

NOM.RNK

● ● ● ● ● ● ● ● ● ● ● ●

0.0

0.3

0.6

0.9

0.00 0.25 0.50 0.75 1.00
Probability

Sp
ec
ifi
ci
ty

Parameter

●

A2B2
A2B3
A2B4
A3B2
A3B3
A3B4
A4B2
A4B4

LFM

0.00

0.25

0.50

0.75

1.00

A2B2 A2B3 A2B4 A3B2 A3B3 A3B4 A4B2 A4B4
Size of network

O
pt

im
al

 B
al

an
ce

d 
Ac

cu
ra

cy Method
IP
IP.RNK
LFM
MP
MP.RNK
NOM
NOM.RNK

Parameter sets 

Figure 6.6.: Performance of reconstruction with sources sampled from varying α (A) and β (B).
The corresponding oBAC in the bottom right corner. The network size was kep
constant at m=20 and number of sources = 6

Our studies revealed a significant improvement of our suggested methods (LFM, NOM,
NOM.RNK) compared to the other models in all cases (Figure 6.9). These findings were
underlined by a pairwise Wilcoxon signed rank test to assess the statistical significance of
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Figure 6.9.: Performance measurements for KEGG subgraph reconstruction based on real
knowledge and comparison with STRING database. Plot showing the balanced
accuracies of networks with varying number of nodes (20, 40 and 60) created just
from different kinds of prior knowledge (bottom right)
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the observed differences (Table 6.1). At the same time no statistically significant differences
between NOM, LFM and NOM.RNK could be observed in terms of oBAC here. The IP prior
revealed a oBAC which was almost constantly at 0.5. The reason for this behavior is that
multiplicative nature of the IP method often yields numerically very small values, hence
making IP close to a pure sparsity prior.

We also compared the reconstruction performance of our priors to a reconstruction with
confidence scores from the STRING database (von Mering et al., 2003). The comparison
showed a clear and significant advantage of our priors over the STRING in terms of higher
oBAC (Figure 6.9, Table 6.1 and Tables D.1). Most methods showed a very low dependency on
the network size, except for the LFM method, which improved the more nodes the network
had. The reason for this behavior is that the LFM method essentially learns from the entries of
the edge confidence matrices. Having larger matrices implies more information to learn from,
hence the performance increases.

Table 6.1.: Pairwise Wilcoxon test for model performance comparison (false discovery rates)
for m = 60. For m = 10, 20 and 40 see Appendix D.1.)

Methods IP IP.RNK LFM MP MP.RNK NOM NOM.RNK
IP.RNK 0.0091 - - - - - -

LFM 0.0036 0.0036 - - - - -
MP 0.2503 0.0249 0.0036 - - - -

MP.RNK 0.0036 0.6953 0.0036 0.0036 - - -
NOM 0.0036 0.0433 0.0137 0.0036 0.0091 - -

NOM.RNK 0.0036 0.0333 0.0182 0.0036 0.0137 0.3889 -
STRING 0.0036 0.0068 0.0036 0.1466 0.0036 0.0036 0.0036

6.7 Improving Network Reconstruction

6.7.1. Reconstruction via NEM

NEMs (see chapter 3 and 4) allow the use of a structure prior while network learning from
perturbation data. Main idea of the inference framework by Markowetz et al.: A network
hypothesis is a directed graph between S-genes. Attached to each S-gene are several E-genes.
Knocking down a S-gene interrupts signal flow in the downstream pathway, and hence an
effect of E-genes attached to itself and downstream genes is expected. The position of the
E-genes is introduced as a model parameter Θ = {θi|θj ∈ {1, ..., n}, i = 1, ...,m}, i.e θi = j, if
E-gene i is attached to S-gene j. The posterior probability of a network hypothesis φ is given
as:

P (φ|D) ∝ P (D|φ)P (φ) (6.15)

The equation above (Equation 6.15) allows one to specify a prior P (φ) on the network
structure itself. This can be thought of as biasing the score of possible network hypotheses
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towards prior knowledge.

Priors in NEM

NEMs (chapter 3, 4) allow specifying priors at two levels:

• S-gene prior: The P (φ) prior in the equation 6.15 in real sense of term refers to the S-
gene prior. The S-gene prior describes the prior probability of connections among the
S-genes as the name suggests. The S-gene prior represents the degree of belief can be
very different for each edge in the network of dimensions S × S (3.7).

• E-gene prior: The E-gene prior provides a prior probability of association of the E-genes
with corresponding S-genes. The principles of the prior are same as above while, the
dimensions are S × E (giving a rectangular matrix). Each entry in the matrix is the
probability of association of an E-gene to S-gene. This supports in selecting affected
E-genes for each perturbation and hence mapping of E-genes to S-genes.

Model Selection

Using prior in network inference raises an important issue of an inferential dilemma, i.e.
whether to believe prior assumptions/prior knowledge or the data. A pure data driven ap-
proach will not incorporate any biological background, whereas a complete prior or knowledge
based assumptions do not give any new information and prevents learning. Practically this
questions amounts to set the parameter ν in equation. 6.9 in the right manner. One way of
dealing with it is to find the parameter ν that minimizes the Akaike information criterion (AIC)
(Equation 6.16) reaches minima (Fröhlich et al., 2007a).

AIC(ν, φopt) = −2logP (D|φopt) + 2d(ν, φopt) (6.16)

Here d(ν, φopt) denotes the number of free parameters (i.e. the number of unknown edges)
in the network structure φopt optimizing. This approach is relevant for static NEMs, for the
dynoNEMs the parameter ν in integrated into the MCMC strategy.

One can either use one of the priors (S-gene or E-gene) for NEMs or both together. Our
simulation studies show the effect of these combinations of priors (compared to different
methods for prior) on the network reconstruction accuracy for NEMs.

Simulations

To examine the effect of using prior knowledge in NEMs we first ran a set of simulations on
static NEMs and dynoNEMs (MCMC). The aim was to evaluate the effect of different types
of priors as discussed in the last chapter as well as to check the significance of improvement
of results while using S-gene or E-gene priors (or both). Please note that the parameter ν is
sampled itself from an exponential distribution in case of dynoNEM (MCMC), i.e. there is no
parameter optimization.
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Network Sampling

For these simulations the graph sampling was done in a biologically as most as possible
realistic way. First, a S-gene graph was sampled using the method similar as in chapter 5. The
E-gene attachment to S-genes was done here by using a biological graph. For this purpose
a KEGG graph was constructed with 3776 nodes and 29878 edges by merging ∼80 KEGG
graphs (See Appendix H). The S-genes were mapped onto this larger graph. These S-genes
on the graph were considered as the seed nodes and then the genes attached downstream
were extracted as E-genes via a random walk (downstream). For each network size to be
tested via simulations we sampled 10 networks with this approach. A diffusion kernel (Kondor
and Lafferty, 2002) was then computed for the S-gene× E-gene matrix using the pathClass
R package (Johannes et al., 2011). The diffusion kernel matrix actually gives the amount of
diffused information from one node to the other in a graph. Thus, it can consider all alternative
paths between two nodes. The matrix value is interpreted as the probability for attaching
E-genes to S-genes after normalizing the row sum to 1 (Please remember that in chapter 4 a
uniform probability was used to sample the E-gene attachment).

Data simulation

The effects on E-genes (sampled from∼ 3800 genes as explained above) were simulated via
a BUM (Beta Uniform Mixture) model ( see chapter 5). The BUM model was generated as per
the effects observed on E-genes attached from real biological pathway.

Reconstruction

For simulations following conditions were considered.

• NEM without prior (NP)

• NEM with different priors e.g. sparsity prior (Sparse), IP, MP, NOM based S-gene prior
(NOM), LFM, IP.RNK, MP.RNK and NOM.RNK based S-gene prior.

Furthermore we also looked at the effect of adding the E-gene prior to the best results we
obtain in the simulations discussed above. This includes the following sets:

• NEM only with S-gene prior

• NEM only with E-gene prior

• NEM with both S and E-gene priors

Sparsity prior

Each single gene is controlled by a limited number of other genes, which is small compared
to the total gene content (Bailly-Bechet et al., 2010). This is the governing principle for sparsity
priors. It tends the edges to have a minimum prior probability to bias the networks towards
sparse (very few edges) topology. In the simulations performed here the sparsity prior is a
matrix of 0’s
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Each of these E-gene priors were generated using the NOM model as they are sufficiently
fast to compute for large data sets and at the same time provide sufficiently good results as
observed in last chapter. However, for S-genes all the sets of priors discussed in last chapter (IP,
IP.RNK, MP, MP.RNK, NOM, NOM.RNK and LFM) were used. We compared our results against
a completely data driven approach i.e. without any prior.

Static NEMs

Static NEMs are used to learn network from static perturbation data (see chapter 3). First
the effect of above mentioned priors were investigated on the NEMs. The simulation method
used was similar as explained before. The parameters affecting the use of priors were analyzed
as follows:

A. Dependency on number of S-genes

Larger networks are usually more difficult to learn from the data than smaller ones. It is
expected that for larger networks (higher number of S-genes) priors can be very useful.

To undertand the effect of number of S-gene (i.e. the number of knockdowns) in NEM learn-
ing with prior, a set of networks with number of S-genes=(5, 10, 15 and 20) were generated.
The set of 11 priors discussed in section above were compared against each other and the
solely data driven approach (NP) (Figure 6.10). The results showed the smaller network (n=5)
have better reconstruction accuracy even without prior (Sensitivity∼ 80%, Specificity∼ 90%).
The sparsity prior and the IP proved to hamper the sensitivity but maintained good specificity.
As the network became larger the sensitivity reduced for all the priors. The specificity for
smaller network without prior was∼90% (n=5) and it reduced to∼65% (n=20) (all cases for 50
E-genes sampled by the method explained above i.e. random walk along the merged KEGG
graph).

Observing the behavior of different priors was as per the expectation. IP and sparsity priors
showed high specificity and low sensitivity. NOM based methods were better in terms of
sensitivity but poor in specificity as seen before in our early simulations. Nevertheless, the
LFM maintained good sensitivity and specificity. Ranked methods performed better than
their non ranked counterparts. In general for all the sizes the priors seemed to improve the
reconstruction accuracies.

B. Dependency on number of E-genes

During our simulation we also varied the number of E-genes for each of the S-gene network
(n={5, 10,15 and 20}). Availability of fewer genes is less informative for network inference via
NEM, whereas more E-genes can lead to a more accurate network inference in the absence of
a prior. A biological prior can be extremely helpful to learn a network.
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Figure 6.10.: Reconstruction of network via NEM; showing the effect of number of S − genes
and E − genes. The plots show sensitivity, specificity (1 − fpr) and balanced
accuracy in order from left to right
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In our simulation we ran NEM with different set of E-genes (50, 100, 200 and 500) to analyze
the above mentioned dependency. As anticipated with fewer E-genes the completely data
driven reconstruction returned poor results. Use of prior (specially non-sparsity and non
IP) priors improved the reconstruction even with smaller number of E-genes. For example
the reconstruction of a network (n=10, E=100) without prior had a sensitivity of∼ 70% and
specificity of ∼ 85. Using an LFM prior improved the sensitivity to ∼80% and maintaining
similar specificity at the same time. Thus the trend demonstrated an increase in sensitivity
and decrease in specificity with increasing E-genes. The reconstruction without any prior
needed more E-gene information for higher sensitivity, whereas, similar sensitivities could be
attained with the use of prior even with very low number of E-genes (Figure 6.10). Overall,
adding more E-genes increases the balanced accuracy however with sufficiently high number
of E-genes, the positive effect of prior saturates.

C. Dependency on Prior sets

Our next objective was to sudy the effect of using S-gene priors and E-gene priors individu-
ally or together. For this we used the LFM based S-gene prior and NOM based E-gene prior.
The reason was that in our current implementation the LFM method becomes prohibitively
slow for larger numbers of genes.

The use of S-gene and E-gene priors at the sensitivity level is very much comparable to the
reconstruction without prior, but a clear advantage of these priors in established in terms
of specificities. The use of combined prior knowledge (S-gene and E-genes) increased the
sensitivity by a difference of about 20% for a data with 50 E-genes. However, at individual
level S-gene priors were found to be more effective than the standalone E-gene priors. This
is explained by the nature of NEM where, S-gene prior actually maps the network while
E-gene prior contributes to association probability of E-genes to S-genes. Nevertheless, the
combined prior brought a small improvement ( 2-8%) compared to the standalone S-gene
priors.

First of all a comparison was made among different possible S-gene priors for NEM as
discussed above. Sparse priors tend to make the networks carry low number of edges. This is
evident in the results as the networks reconstructed with sparse prior have low sensitivity and
high specificity (Figure 6.10.

In the above described simulations different methods were used to generate prior (namely:
IP, IP.RNK, MP, MP.RNK, NOM, NOM.RNK and LFM). The ranked priors plus the NOM and
LFM outperformed the non ranked versions. The sparsity prior as expected showed very high
specificity and low sensitivity and was matched only by the IP method. The reason for this
behavior is that the IP prior with an increasing number of information sources tends to lead
to values close to 0, as discussed above. The cases where we do not use a prior was although
acceptable but was outflanked by most of the priors except for sparsityprior and IP. The LFM
showed the best specificity for larger networks as observed before. The other methods showed
performance trends similar to each other (Figure 6.10).. In terms of the balanced accuracy the
NOM matched the ranked methods that performed at par with the LFM method.
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Dynamic NEMs (dynoNEM)

Dynamic NEMs (dynoNEM) are used to learn network from dynamic perturbation data (see
chapter 4). The simulation and learning was followed in the same fashion as static NEMs. For
the purpose of studies here the MCMC approach was used with burnin = 50000 and 100000
samples. As we have mentioned before the scale parameter ν trades the degree of influence of
a prior against the likelihood of the model. A large ν reduces the influence of the prior, whereas
a smaller ν increases it. The parameter ν is included in the sampling process for the MCMC
based dynoNEM. Thus, it will exploit this mechanism to handle the prior while learning a
network from data and prior.

The method used for generating prior here was only NOM for E-gene priors, being com-
putationally faster as we did in case of our simulations with static NEMs. Nevertheless, for
the S-gene priors all the defined methods were used The results were analyzed based on the
following factors:

A. Dependency on number of S-genes

The use of different priors in simulations with dynoNEMs showed similar improvements in
results as in case of the static NEMs. The inclusion of a prior based on the existing knowledge
brought in better network reconstruction accuracy compared to the inference with any prior
(NP) or the sparsity priors (Figure 6.11). It was observed that sparsity prior as seen before
showed high specificity but low sensitivity. The ranked versions were found to outperform
the non-ranked version of priors. The LFM and NOM was at par with the best methods. The
ranked methods (MP.RNK, IP.RNK and NOM.RNK) also performed better than the NP and
sparsity prior.

B. Dependency on number of E-genes

The performance trend observed for the E-genes was again similar to that in the static
NEMs. Increasing the number of E-genes decreased the effect of any of the priors. This was
more in case of sensitivity and less when we observed the specificity. In terms of specificity
most of the priors performed at par with each other except NOM. We have seen such be-
havior of NOM based prior during our initial simulations. Overall, at the level of balanced
accuracy the LFM seemed to provide minor advantages over NOM and ranked priors in case
of large networks. However, this advantage was lost for smaller networks as they were easy to
construct even without prior.

C. Dependency on number of time points

As shown before (chapter 4) dynoNEM algorithm shows better reconstruction with more
time points (Figure 6.12). Prior from biological knowledge can be used to possibly compensate
for lower number of time points. In order to explore this we ran a simulation of dynoNEMs
with 15 nodes and three different time points 3, 5 and 10. The priors are expected to yield
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Figure 6.11.: Reconstruction of network via dynoNEM; showing the effect of number of S −
genes andE−genes. The plots show sensitivity, specificity (1−fpr) and balanced
accuracy in order from left to right
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Figure 6.12.: Reconstruction of network via dynoNEM; showing the effect number of time
point measurements in data. The plots show sensitivity, specificity (1− fpr) and
balanced accuracy in order from left to right

better dynoNEM reconstruction accuracy as compared to the reconstruction with prior even
for lower number of time points.

The results of the simulation showed that all the priors except sparsity prior and IP im-
proved the sensitivity. The reconstruction without prior showed a sensitivity of∼80% for 10
time points, but introducing a prior like LFM improved the sensitivity up to a range of∼90%.
Nevertheless, this improvement was found to depend on the prior used. The only exception
to this was IP and the sparsity priors. This was again because of the nature of these priors, i.e.
numerically very small edge confidences. The ranked priors as well as the LFM outperformed
the other priors. The NOM prior also performed well and comparable to the ranked priors
and LFM. But the results on non ranked MP and IP did not show a great advantage over
other priors. Furthermore, the trend observed along the number of time points was same as
observed in the dynoNEM chapter (chapter 4).

In terms of specificity the performance difference was not as clear as in case of sensitivity.
However, the IP and sparse prior showed the best specificity, though their overall balanced
accuracy was poor. Furthermore, all the other priors showed comparable balanced accuracy.

D. Dependency on time lag

In our simulation for dynoNEMs we have seen that for more uniformly distributed time
lags the reconstruction shows lower sensitivity. The objective of this simulation was to check
if the use of priors compensate for the time lag dependency. It is expected that the use of prior
knowledge will improve the sensitivity of reconstruction even for low values of parameter
and for higher values the gain caused by the use of prior will diminish. The reconstruction
specificity of dynoNEM has already been shown to be high (chapter 4). Hence a big leap in
specificity performance is not expected
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In order to investigate this we ran a simulation for 10 networks of n = 15 (number of S-genes)
with parameters 0.3, 0.5 and 0.8. The number of E-genes attached to the network were kept
200. The results did not demonstrate to overcome the time lag dependency. There appears
to be an increasing sensitivity when using priors, but this was found to be true for all time
lags. The sensitivity at the parameter value 0.3 already showed a substantial improvement for
ranked priors and LFM (Figure 6.13).
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Figure 6.13.: Reconstruction of network via dynoNEM; showing the effect of exponential dis-
tribution parameter defining the time lag. The plots show sensitivity, specificity
(1− fpr) and balanced accuracy in order from left to right.

6.8 Application

6.8.1. dynoNEM Application: Murine Stem Cell Network

We defined the dynoNEM model in chapter 4 with an application on time course data from
murine stem cells to reconstruct network for 6 genes (Please see chapter 4 to know more about
the data). To check the effect prior in real world with NEM models we extracted the prior
knowledge for these 6 genes and ran the dynoNEM method with this prior. The results showed
to have brought improvement over our sparse prior method that we used in chapter 4. For
the purpose we used the Noisy-OR prior (S-gene prior) as during our simulations it showed to
have very good results. Moreover the murine stem cell network is a small network of 6 S-genes,
and as we have seen LFM is not the most obvious choice for small networks. Furthermore, the
MCMC based dynoNEM was used with the MCMC chain starting with the greedy hill climber
output for faster convergence. The number of burnins was set to 50000 and samples to 100000.

The reconstructed network (Figure 6.14 a) showed better results compared to the results
without the prior. The inferred network had higher number of edges and most of it could be
explained using the literature network obtained from MetaCoreTM(Figure 6.14 (b)). From the
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other side the model could explain the literature network better that the one inferred without
the use of a prior. Looking at the literature network and the inferred network presented the
fact that most of the paths described by the model are explained by the literature (Figure 6.14
(d) and (e)).

The results shows the inference with prior actually retrieved more edges that the one without
it (10 compared to 7). Out of these 10 edges 9 could be explained by the literature compared
to 6 out of 7 in the inference without using a prior. From the point of view of the literature
based network (Figure 6.14 (d) ), only one extra edge was explained by the literature. This is
not surprising as the literature network contained additional interactions, which could not be
observed in our estimated networks.

As more comprehensive analysis we tried to reconstruct the network with different set of
priors. It was observed that reconstruction with non ranked priors especially MP, IP was as
good as the one with a sparsityprior. NOM and NOM.RNK was found to perform well and had
a slight edge over the other methods. This was the reason we finally selected our network with
NOM prior. The LFM prior based network was acceptable and better than the non ranked
priors, however for such small network we have observed the drawback with LFM at theoretical
as well as practical level.

6.9 Summary

We developed and proposed two new methods to integrate different sources of biologi-
cal information as quantitative prior knowledge for network learning in biological network
reconstruction via NEM. Our approach is based on the assumption of relatedness in biologi-
cal data, which is biologically realistic. Furthermore, our approach takes into consideration
diverse sources like database information, ontological information, literature as well as pro-
tein domain data. The current approach allows not only to include existing heterogeneous
information sources but is flexible enough to include new ones. With the simulations and
validation we reached a better performance. As the database for the biological information
and annotation grows, larger number of correlated information can be compiled into prior
knowledge ultimately leading to far more realistic models from experimental data in biology.

With the above set of experiments it was shown the use of biological prior improved the
network reconstruction from data. Furthermore, the use of prior also facilitated better network
inference even with smaller sample size. As databases for biological information and annotation
grow, a larger amount of correlated information can be compiled into prior knowledge, which
ultimately can be utilized to more realistic probabilistic model inference from experimental data.
We showed the improvement achieved with static and dynoNEMs while using prior knowledge.
The next chapter will present a novel example in Non Small Cell Lung Cancer cells for 20 genes
and the associated prior knowledge via the use static NEMs and priors.
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Figure 6.14.: Applying priors in Murine Stem Cell Data to reconstruct network via dynoNEM
and prior knowledge. For the network reconstructed without using a prior (only
data) see figure 4.12
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Chapter 7

Reconstructing EGFR/AMPK Signaling in NSCLC

The thesis so far presented a detailed description of Nested Effects Model and its extensions.
The last chapter presented few methods to combine different sources of knowledge as network
prior. A simulation experiment was also presented in the last chapter depicting the use of prior
in inferring networks using NEM followed by an application of dynoNEM to reconstruct parts
of a network known to be involved into murine stem cell development. The current chapter
will present an application of NEM on inferring a network of different proteins that have been
experimentally found to play a role into drug sensitivity in Non Small Cell Lung Cancer (NSCLC).
The major outcome of the analysis is, besides the network structure itself, a putative novel drug
target, namely AMPK. Activation of this target in followup experiments leads to a significant
down-regulation of a number of cell proliferation markers. The work has been submitted to a
peer review journal for publication (Appendix M).

7.1 Lung Cancer

Lung cancer, also known as carcinoma of the lung, refers to the uncontrolled cell growth
in tissues of the lung. Being the second prevalent cancer in both men and women, lung
cancer accounts for 12% of all new cases of cancers reported worldwide (van Meerbeeck et al.,
2011). The global scenario (Figure 7.1) has shown lung cancer as the leading cause of cancer
related death worldwide. It caused about 1.5 million deaths globally in 2010 (Lancet, 2013).
The symptoms of lung cancer include cough, chest discomfort, weight loss, and sometimes
hemoptysis. However, many patients with metastatic disease do not exhibit any clinical
symptoms (Robert S. Porter, 2009) 1. About 85% of lung cancer cases are related to smoking
cigarette 2.

It is classified into two major categories; (1) Small cell lung cancer (SCLC) and (2) Non-Small
cell lung cancer (NSCLC)

1http://www.merckmanuals.com/professional/pulmonary disorders/tumors of the lungs/lung carcinoma.html
; Accessed: January 2014

2http://www.cancer.gov/cancertopics/pdq/prevention/lung/HealthProfessional/page2 ; Accessed: January 2014
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Figure 7.1.: Lung cancer cases around the world . Shows the geographical distribution as well
as the rank of lung cancer among different types of cancers, in terms of fatality.
The figure is based on data from: Cancer Research UK

7.1.1. Small Cell Lung Cancer

SCLC; also termed as oat cell cancer, is a malignant epithelial tumor consisting of small
cells with scant cytoplasm. It typically involves only small cells (Junker and Petersen, 2009). It
accounts for about 15% of the cases reported with lung cancer. It usually starts in the bronchi
close to the center of the chest and tends to grow and spread quickly. The tumor can spread
to distant parts of the body even the brain, before being diagnosed (D’Angelo and Pietanza,
2010).

7.1.2. Non-Small Cell Lung Cancer

NSCLC is a disease in which malignant (cancer) cells are formed in the lung tissues. About
85% of lung cancers are NSCLC (Reck et al., 2013). The clinical behavior of NSCLC is more
diverse depending on histologic type. However, ∼ 40% of patients have metastatic disease
outside the chest at the time of diagnosis (Robert S. Porter, 2009; Goldstraw et al., 2011). Driver
mutations have been identified primarily in adenocarcinoma, although attempts are being
made to identify similar mutations in squamous cell carcinoma (RS et al., 2012).

NSCLC can be categorized into following major sub groups based on chemical makeup, size,
and shape when viewed under microscope.
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Squamous cell carcinoma: About 25% to 30% of all lung cancers are squamous cell carcinomas
(SCC) 3. SCCs start in flat squamous cells that form the inner layer of the airways in the lungs.
They are often linked to smoking and often found in the middle of the lungs, near bronchus
(Roth et al., 2011).

Adenocarcinoma: About 40% of lung cancers are adenocarcinomas. They start in squamous
cells that secrete mucus like substance. This type of lung cancer also occurs mainly in current
or former smokers, nevertheless, it is also the most common type of lung cancer seen in
non-smokers. It is more common in women and it is more likely to occur in younger people
than other types of lung cancer. It is usually found in outer parts of the lung. The tumor tends
to grow slower than other types of lung cancer, and is more likely to be found before it has
spread outside the lung.

In the work presented here we focus on the NSCLC (adenomcarcinoma). The data that is
presented here resulted from a cooperation with a group led by Prof. Holger Sültmann at the
National Center for Tumor Disease (NCT) in Heidelberg. All experiments were carried out in
his group based on H1650 cells.

7.2 Motivation

Lung cancer is a highly heterogeneous malignancy. It is obligatory to know about the etiology
and pathogenesis of the disease in order to control it. Understanding the activity of signaling
molecules affecting cell growth and survival in lung cancer can serve as the key to future
therapy work flow. The identification of a complex containing the tumor suppressor LKB1
as the critical upstream kinase required for the activation of AMP-activated protein kinase
(AMPK) by metabolic stress has been reported representing the first clear link between AMPK
and cancer (Hardie and Alessi, 2013; Hawley et al., 2003). Furthermore, the tumor genome
sequencing data can be used to study frequent mutations in NSCLC (Thomas. et al., 2013).
Genes like TP53, EGFR, STK11 (LKB1) etc. can have somatic mutations that affect cancer
driving signaling pathways together with cellular processes representing putative drug target
sites (Imielinski et al., 2012).

Epidermal growth factor receptor (EGFR) is one of the therapeutic targets for NSCLC. EGFR
is a protein found on the cell surface and it helps the cells to grow and divide. Some NSCLC
cells have too much EGFR, which causes them to grow faster. Several drugs e.g. Erlotinib,
Cetuximab and Afatinab target EGFR in order to control tumor. Many of these therapies
induce an initial positive response. Nevertheless, in many cases, the tumors turn insensitive to
these therapies and evolve more aggressive and resistant phenotypes (Holohan et al., 2013;
Mumenthaler et al., 2011). For example, Erlotinib turns off the EGFR pathway leading to
tumor cell death but in many cases the therapeutic benefits lower due to EGFR mutation to a
drug resistant state (Chong and Jänne, 2013). To overcome such treatment failures new target
need to be discovered. These challenges posed by drug resistance in cancer can be met via

3http://www.cancer.org/cancer/lungcancer-non-smallcell/detailedguide/non-small-cell-lung-cancer-what-is-
non-small-cell-lung-cancer; Accessed: January 2014
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a polypharmacogenic approach (Innocenti, 2012; Al-Lazikani et al., 2012), by studying the
combinatorial perturbation in-silico.

Nested Effects Model (NEM) can be useful for such studies with an aim to understand sig-
naling pathway as well as effects of perturbation. Thus it makes an ideal scenario for NEM
application. We focus here is on the AMPK/EGFR pathway and its subunits. The traditional
paradigm for drug discovery in light of growing difficulties like insensitivity of EGFR based
treatment and resistance development needs new drugs that can potentially slow the progres-
sion of NSCLC. Therefore, we exploit the inferred network to identify potential drug targets
for therapeutic purposes in NSCLC. The choice of these subunits under study stems from
prior, unpublished experiments carried out in the lab of Prof. Sültmann at NCT in Heidelberg
(Germany), which demonstrated a link of these proteins to Erlotinib sensitivity.

Figure 7.2.: List of genes selected for perturbation and summarised GO terms (focus on cell
division, proliferation etc.). Green cells indicate annotation i.e. corresponding
genes (columns) are annotated with the term (rows). A detailed list of the GO
categories for these genes is available in appendix I.1
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7.3 Data

7.3.1. Expression data

As mentioned in the last section the idea behind these experiments is to understand more
about the AMPK-signaling activity and its influence in EGFR-based therapy resistance in lung
cancer. A set of genes (Figure 7.2) for the knockdown experiments was selected with regard to
their known or putative interaction with AMPK and EGFR or role in drug sensitivity. In total 20
genes were selected (See appendix I.1). Knockdowns for these selected genes via siRNA were
conducted and the subsequent effects of downstream genes and proteins measured via gene
expression microarray experiments. The knockdown-efficiency was proven before the array
experiment with a level > 70% transcript reduction. The expression measurements were done
with series in H1650 cells comprising 20 gene knockdowns and controls. All experiments were
done in triplicates. The array platform used was Illumina Whole-Genome Gene Expression
Bead Array Chips (Chen et al., 2012). It consists of oligonucleotides immobilized to beads held
in micro wells on the surface of an array substrate. Further, the data was preprocessed by the
LUMI software and quantile normalized.

BOX 7.1: Reverse Phase Protein Array (RPPA)

Reverse Phase Protein Arrays (RPPA) have been termed as direct descendent of minia-
turized immunoassays (Mueller et al., 2010). Reverse phase protein microarrays are also
referred to as ‘protein microarrays’, ‘lysate arrays’, and ‘tissue lysate arrays’, but not all protein
microarrays are reverse phase microarrays. There exist three classes of protein microarrays
(1) forward phase, (2) sandwich, and (3) reverse phase. A Forward phase (antibody array)
is the one where, multiple antibodies are immobilized onto a surface to capture proteins
from a sample. Sandwich arrays use a pair of antibodies to capture and detect the protein
of interest. Each antibody in a sandwich assay detects unique epitopes of the same analyte
in the sample. The reverse phase format consists of immobilizing the analyte protein on a
surface and probing the array with a single antibody directed against the analyte of interest.
RPPA has the advantage of higher throughput, higher sensitivity and better dynamic range
compared to other protein measurement methods like western blot.

A 
 

B C D A 
 

B C D 

A* 

A* 

Figure 7.3.: Reverese Phase Protein Array
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7.3.2. Protein array data

Furthermore, reverse-phase protein array technology RPPA (protein quantification; see
BOX 7.1) via multiplex immunoassays (LUMINEX) and Western blotting was used to quantify
the expression of 107 proteins in cancer relevant pathways (e.g. EGFR, MAPK, JAK/STAT,
PI3K/AKT) in the same lung cancer cell line. 23 (14 unique) of these were the S-genes. These
cells were processed to inhibit or activate AMPK protein by drugs in different concentrations
(low, medium, high). Together with this, we also had knockdowns for AMPK subunits: PRKAA1
and PRKAB1 as well as EGFR, MTOR and RPS6KB by siRNA approach. Further annotations
were given if the antibody recognized native or phosphorylated protein.

With this data, it would be very useful to apply the Nested Effects Model in order to get
more insights about downstream effects and putative hierarchy of these genes in the AMPK
signaling. More specifically, we here used the gene expression data for learning the network
model and the RPPA data for independent validation.

7.4 Data Analysis

The expression data was processed and analyzed for differentially expressed genes for each
perturbation using the limma package. This set of differentially expressed genes will serve as
the E-genes for the NEM algorithm.

7.4.1. Data processing

The lumi package (Du et al., 2008) from Bioconductor 4 was used to read in and prepare the
data for analysis.

As mentioned before, the data has been quantile normalized. The data was then checked
for its quality via diagnostic plots using the arrayQualityMetrics package (Kauffmann et al.,
2009) from Bioconductor. This created diagnostic plots like boxplots, MA plots, heatmap etc.
The signs of batch effect were evident in these plots (Figure 7.4 (A)). Please recall that the data
generation experiment was performed in two batches. To get rid of the batch effect we used
the ComBat function from sva package (Johnson et al., 2007). The ComBat function uses an
Empirical Bayes method to combine the batches. It estimates parameters for location and
scale adjustment (LS) of each batch for each gene independently. Pooling information for
multiple genes in each batch brings out the pattern that genes with similar expression follow.
This information is then used to adjust the batches in order to eliminate the batch effect. Thus
the batch effects were removed (Figure 7.4 (B)).

7.4.2. Selecting E-genes

Selection of E-genes is a critical process in order to get the best results from NEM. As
mentioned before we selected differentially expressed genes (probes) for each perturbation
in order to filter in the E-genes. This assured the selection of the probes that are significantly
affected by corresponding perturbation. The limma package (Smyth, 2004) from Bioconductor

4http://www.bioconductor.org/ ; Accessed: December, 2013
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Figure 7.4.: Batch effect in the expression data. (A) Heat map for the data showing batch effect
(2 batches) (B) Data after removing batch effect

was used to select the differentially expressed genes for each perturbation. limma stands for
Linear Models for Microarray Data. It implements several methods for linear modeling of
microarray data that can be used to identify differentially expressed genes. After fitting a linear
model for each probe in the data, it uses an empirical Bayes method for assessing differential
expression. It computes statistical test and returns the p-values and log fold change for each
gene. We selected a dual condition of p-values < 0.05 and log fold change > 1.5. This was
repeated for all the perturbations. We could get 388 probes from all perturbations to be used
E-genes.

7.4.3. BUM model fitting

Based on the p-values obtained after analyzing the expression we data we used a Beta-
Uniform Mixture (BUM) model fit to get the p-value density for all perturbations. This is same
as explained in chapter 4. An example BUM model fit (Histogram and QQ-plot) for ESPL1 has
been shown in figure 7.5. The p-value density is a matrix of the dimension E-genes× S-genes.
This matrix will serve as the input to NEM algorithm. The results showed that some genes
(e.g. PRKAA1 and SRC) have highly pronounced effects and some other (e.g. GSK3A), showing
minimum effect of perturbation (Figure 7.6).

7.5 Applying NEM

Once our input data was ready in terms of log p value density from the mRNA expression
data, we applied the NEM algorithm to it.
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Figure 7.5.: BUM fit for ESPL1 perturbation: histogram and QQ-plot. In the histogram black
line represents the mixture model curve and red: the extracted alternative distribu-
tion.

7.5.1. Running NEM with different S-gene priors

First of all we ran the NEM with all the priors for S-genes described in previous chapter (IP,
MP, NOM, IP.RNK, MP.RNK, NOM.RNK and LFM). Together with these priors we also run NEMs
with a sparsity prior as well as without any prior for comparison purpose. The knowledge
sources integrated in our prior were: PPI data from PathwayCommons, KEGG pathway, Protein
Domain knowledge and Gene Ontology annotations. The LFM priors were computed via the
MCMC approach explained in the previous chapter (please see chapter 6) for 50,000 burnin
and 200,000 sampling iterations. Other priors were also computed as explained (please see
chapter 6).

We ran an NEM instance with every prior and the input data. For this an NEM algorithms
were run indipendently with the input data i.e. the log p-value density and corresponding
S-gene priors. Thus we had iferred network for a run with every type of prior defined earlier as
well as sparsity prior and without any any prior.

7.5.2. Validation against literature

The results from each NEM instance were compared against a literature-derived network
from MetaCore TM. The comparison was performed in a two-pronged approach. The first
one reflected the edges in the NEM derived network and explained by literature, while the
second traced out the pathways that exist in the literature network and explained by the NEM
modes (Please recall that we did similar comparisons before in chapter 4,5 and 6). We refer
to them as Knowledge View (KV) and Model View (MV) respectively. It must be noted that
the literature used for validation was not used to compute the prior in order to minimize
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Figure 7.6.: Heatmap for the log p-value density matrix used as the input data.

bias during validation. Nonetheless, there are likely dependencies (for example between PPI
and pathway information and the literature used in MetaCore TM). Hence, this is a principle
limitation of the literature based validation discussed in the following.

The validation results outlined the effect of using prior for network inference via NEM very
clearly (Figure 7.7). The NOM, NOM.RNK and LFM based networks could explain more edges
existing in literature network than the model without using any prior (NP). The sparsity prior,
as expected, showed fewer edges and hence explains very few edges. On the other hand KV
score which reflects the inferred network edges being explained by the literature showed better
results in case of IP, IP.RNK and LFM. On an average NOM and LFM seemed to perform better
than other priors. The reason behind such discrepancies between LFM and NOM can be
explained based on the nature of the two priors. LFM has higher specificity as we observed
in chapter 6, whereas NOM is more sensitive. Therefore, LFM accepts fewer edges compared
to the NOM or NOM.RNK. The high MV score of NOM are actually caused by this property of
the prior. The IP and MP based priors are affected by numeric constraints of multiplication or
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Figure 7.7.: Validation scores for NEM network reconstruction accuracy achieved with dif-
ferent priors. The bars depict KV, MV and the average of the KV and MV scores
((KV+MV)/2).

addition of small numbers. Therefore, they return high KV scores, but very low MV scores. The
NEM network retrieved without using prior is completely data driven and performs well when
validated against literature (compared to IP or MP based priors) but is outperformed by LFM
and NOM based priors.

Furthermore, permutation test was conducted in order to check, if the network was inferred
by chance. The node labels were permuted 1000 times and for each permuted network the
likelihood was computed according to the NEM likelihood equation (Equation 7.1). The
likelihoods of all permuted networks were found to be lower than that of the inferred network
and hence our network was found to be significantly better than a random network (p-value
= 5.89× 10−4).

P (D|Φ) =
∏
k∈E

∑
s∈S

∏
t∈S

P (Dtk|Φ,Θsk = 1)P (Θsk = 1) (7.1)

For further studies we consider the network derived with NOM based priors as they show
the best average for the two validation scores.
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Figure 7.8.: Histogram for the bootstrap probabilities in the inferred network. The plot shows
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many majority of edges (close to 0))

7.5.3. Bootstrap

To understand the robustness of our inferred network we ran a bootstrap for reconstruction
of these networks with the best performing prior (NOM). 1000 bootstrap iteration steps were
used to infer a bootstrapped network from NEM. The bootstrap process re-samples E-genes
with replacement and reconstructs network with these samples to assess the statistical stability
of the overall network. The results of the bootstrap returned the confidence in every edge of the
inferred network. This confidence actually reflects the number of times the edge was accepted
out of all bootstrap iterations, we term this as bootstrap edge probability. The bootstrap results
confirmed that there were few edges with high confidence (> 0.5) and a large proportion of
edges show a very small (close to 0) confidences (Figure 7.8). The edges with low bootstrap
probability < 0.5 were not accepted in our network. A transitive closure of remaining edges
was computed because in principle from static data the NEM model can only resolve the
network structure up to equivalence classes. These equivalence classes are transitively closed
graphs (see chapter 3). Figure 7.9 was our final network for analysis purpose.
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Figure 7.9.: Inferred network and E-gene map.(Top) Transitively reduced graph (Bottom) Effect
mapping (effects plot) for E-genes (columns) on perturbation of every S-gene
(along rows). The effects plot shows the upstream location of PRKAA1
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7.6 Results

7.6.1. Inferred network

The network inferred showed many already known pathways in EGFR/AMPK signaling and
found some interesting new links (Figure 7.9). As mentioned many of the edges were validated
at protein level that represents signaling network in biological action. In total, six new edges
were discovered. The network showed PRKAA1 as the main upstream regulator and many
alternative cascades were detected throughout the signaling pathway.

As the network (Figure 7.9) is a graph after applying a transitive reduction (i.e. indirect edges
removed), it is not unique. A detailed visualization of the network is in the figure 7.9 where
the edge width represents the bootstrap confidence in each edge. The NEM could model not
only the infer the network among S-genes, but also predicts effects on downstream on E-genes
(Figure 7.9 (down)). Most downstream effects can be directly related to PRKAB1 and RPS6KB1.
Knock-down of PRKAA1 yields effects on almost all other genes (except for ESPL1, ITGB4 and
STIK11). This is reflected by the color code in the heatmap .

7.7 Validation

7.7.1. Literature based validation

We used same Metacore based networks again to validate the bootstrapped networks against
literature. However, this time we look at two different properties, (1) Edge bootstrap probability
and, (2) The length of path explaining every edge

As most of the edges as explained in the previous section, could be explained by literature
pathways (Appendix J), we investigated the length of these paths in more detail. Out of all
the explained edges ∼80% of edges were explained by path lengths ≤ 4. ∼ 40% of these
explained pathways were mapped by literature based pathway of length≤ 3 (Figure 7.11 A).
The mean path length for explanation by literature was found to be <3. The NEM based
network could explain the literature network mostly with longer paths. 60% of the explained
edges in literature, were explained by had a path length shorter than or equal to 5 (Figure
7.11(B)).

7.7.2. Validating with experimental data

It is advantage to validate the retrieved network based on independent data set that itself
was not used to infer the network. So far, we used other sources of network (here literature) to
validate. However, an experimental validation is the best and most straightforward corrobora-
tion for our approach. We used the RPPA data described in the section 7.3 to validate parts
of the inferred networks. The data consists of knockdowns for five different genes namely:
PRKAA1 and PRKAB1, EGFR, MTOR and p70S6K. The data were normalized against FCP house-
keeping protein. A limma analysis on the data returned the log fold changes in the expression
of proteins and the corresponding p-values for all five knockdowns.
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Figure 7.11.: Cumulative frequencies of path lengths. (A) Inferred network explained by litera-
ture (B) Literature network explained by inferred network.
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First, we observed the overall effects of each perturbation. Figure 7.13, shows the log p-value
densities for every knockdown in RPPA experiment. Knocking PRKAA1 down affected most
of the measured protein, i.e. the effect was propagated throughout the other proteins in the
signaling cascade. This is in agreement with our inferred network that positions PRKAA1
most upstream along a long path. The second rank in terms of most effective perturbation
(in terms of propagation of effect along the cascade) went to MTOR. Looking at our NEM
network, MTOR is also located at the upstream of most of the other genes, but downstream of
PRKAA1. The heatmap shows that some protein measurements under MTOR is nested within
PRKAA1. Nevertheless, in our inferred network, the path from PIK3C3 (immediate downstream
of MTOR) shows a bifurcation. These observations at protein level boost our confidence in the
inferred network.

S1 S2 S3 

S1 S2 S3 

S1 S2 S3 

Figure 7.12.: Schema for validation of the network by looking at downstream nodes for every
perturbation. The red cross on a node indicates its perturbation and the grey
nodes depict the effect of perturbation on the downstream nodes. The affected
downstrean nodes are computed by a breadth first search algorithm

From our NEM model we can make predictions on perturbation effects. If S-gene s is
knocked-down, then all S-genes reachable from s (i.e. accessible via a directed path in the
network) should exhibit significant effects as well as all their attached E-genes (Figure 7.12).
The RPPA data allows to partialy validate these predictions. For each of the 5 knockdowns
a number of phospho and total protein concentrations (∼ 107) of network proteins were
measured. Consequently, we can check, whether a knockdown of S-gene s on protein level
indeed yields significant effects on S-gene q, placed downstream of s in the NEM inferred
network.

The knockdown for EGFR showed a negative change in the protein kinase RPS6KB1 (Figure
7.14(A)). In our inferred network RPS6KB1 is located downstream of EGFR (Figure 7.9. The
bootstrap probability for this edge was found to be 1 (Figure 7.9(B)). This means the edge was
inferred during almost every bootstrap iteration. The EGFR knockdown shows the immediate
effect at its downstream neighbor at protein level.
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Figure 7.13.: Heatmap for log p-value densities observed in RPPA data for each of the five
knockdown experiments.

The second knockdown for protein kinase RPS6KB1 (p70S6K) had two downstream S-genes
PRKAB1 and itself. In the inferred network the bootstrap probability for the RPS6KB1 →
PRKAB1 edge is 0.81 (Figure 7.9). The change for PRKAB1 after knocking down RPS6KB1 was
found to negatively change by two folds (Figure 7.14(B)). This significant shift shows the effect
of RPS6KB1 on PRKAB1 as suggested by our inferred network.

PRKAB1 has been found to be located downstream of PRKAA1 (catalytic subunit of AMPK)
by NEM. Knocking down PRKAA1 (AMPK) displayed immediate effect on PRKAB1 with a log
fold change of∼ -1.5 (Figure 7.14(C)). The edge between PRKAA1 and PRKAB1 has a bootstrap
probability of 1.0 (Figure 7.9). Thus, this observation at protein level is also in agreement with
our network.

PRKAB1 is a regulatory subunit of the AMPK affected the protein kinase RPS6KB1. Inter-
estingly, knockdown of PRKAB1 displays an effect for the phosphorylated RPS6KB1 (Figure
7.14(D)). The observed log fold change was∼ -2 for phosphorylated protein, whereas much
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Figure 7.14.: Knock down for five genes (EGFR, RPS6KB1, PRKAA1 PRKAB1 and mTOR) in
terms of log fold changes of network proteins via RPPA. The downstream genes
showing significant changes have been provided in the box on the left hand side.
The corresponding significant measured protein have been highlighted in green.
(log fold changes of all proteins in L.2)
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Figure 7.15.: Mean confidence for outgoing and in coming edges for nodes in the inferred
network

smaller for non-phosphorylated protein. RPS6KB1 can be found downstream of PRKAB1 with
a bootstrap edge probability of 0.98, which is extremely high. This observation proves another
inference of NEM to be correct at protein level.

Knocking down MTOR did not produce any significant change for any protein than MTOR
itself (negative fold change > 2) (Figure 7.14(E)). Here, the RPPA data did not provide any
validation results.

The network is inferred with data at mRNA level and the validation with protein level data,
depicting the signaling network in action and the effect of signaling cascade. Many of the edge
we observed in our inferred network using knowledge and NEM were verified and found to be
true at protein level. Since, the measurements were not made for all the proteins (E-genes and
S-genes) in RPPA, our validation was limited to selected edges. Furthermore, a time resolved
data can enhance the power of validation as it will actually take into account the time delays
involved in signaling as well as translation.

7.7.3. Biological implications

Few vertices/nodes in the inferred network had higher mean probability for outgoing edge,
while others showed higher mean probability for incoming edges (Figure 7.15). The nodes
showing the former quality act as regulator for the downstream proteins and usually affect
many genes directly or indirectly. Examples of such node are PRKAA1, SRC, RAF1 and WDR3.
These proteins act as the major controllers for the downstream proteins and affecting these
genes can propagate the effects along different directions in course of signaling. Other proteins
like the protein kinases; p70S6K and p90S6K (RPS6KB1 and RPS6KA1) have higher probability
for incoming edges, indicating that they can be regulated in many ways. This means that in
order to cast an effect on then a direct or multi-target approach is needed.
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PRKAA1 plays a key role in the control of cell growth, proliferation and autophagy through
the regulation of mTOR activity, which is consistently deregulated in cancer cells (Chapuis
et al., 2010). It has been shown by Guertin et al. that mTOR serves as a central integrator of
nutrient and growth factors controlling cell growth in all eukaryotes and is deregulated in most
human cancers (Guertin et al., 2009). It has also been shown that mTORC1 can be suppressed
following AMPK activation (Hahn-Windgassen et al., 2005; Gwinn et al., 2008). The network
inferred here is in compliance with these facts (PRKAA1→WDR3→ RAF1→MTOR ).

PRKAA1 (AMPK Subunit α) in the inferred network is found at the most upstream position
in the inferred network. It is known to regulate the activities of some key metabolic enzymes
through phosphorylation (Shackelford and Shaw, 2009). WDR3 has been shown to be con-
trolled via P53, and P53 in turn by PRKAA1 (McMahon et al., 2010). The WDR family of genes
have been found to play critical role in cell cycle and apoptosis (Clemen et al., 2008). The
edge PRKAA1→WDR3 depicts the regulation of WDR3 by the PRKAA1 in the inferred network.
Thus, the network displays the regulator role of the AMPK gene. Furthermore, the PRKAB1
(AMPK Subunit β) being a regulatory subunit of the AMP-activated protein kinase was shown
to be directly in downstream to the PRKAA1. These two subunits together could regulate the
ribosomal protein kinase RPS6KB1 (PRKAA1→ PRKAB⇔ RPS6KB1)

Subunits of Glycogen synthase kinase-3 (GSK3A and GSK3B) are known for their role in cell
division, proliferation, motility and survival together with a number of pathological conditions
including cancer and diabetes, and is increasingly seen as an important component of neu-
rological diseases (Forde and Dale, 2007). Regulation of GSK-3 is important for the normal
development, regulation of metabolism, neuronal growth and differentiation and modula-
tion of cell death (Kockeritz et al., 2006). Our network shows GSK3A and GSK3B subunits to
be present downstream of some key regulators like EGFR, PIK3C3, BCL10, MTOR, etc. This
perhaps means that there exist many alternative ways to regulate GSKs.

p70S6K and p90S6K (RPS6KA1 and RPS6KB1 respectively) are located downstream of PIK3C3
in our inferred network. These kinase proteins play critical roles in translational regulation.
mTOR/p70S6K pathway is considered a central regulator in various malignant tumors and can
arrest the G0/G1 phase and induced apoptosis of cells (Ruvinsky et al., 2006). Our networks
depict that there can be more than one pathway regulating p70S6K, specially outlining the
role of LKB1 (STK11), TSC1 and EGFR.

7.7.4. AMPK as a Potential Drug Target for NSCLC

These findings based on our inferred network are not only consistent with previous studies,
but also present many new interactions that are potentially interesting. These potential inter-
actions can serve as the starting points for combinatorial treatment of NSCLC and probably
for other tumors.

Tumorigenic transformation is perceived as a result of changes in signaling pathways caused
by genetic or epigenetic factors (Shaw and Cantley, 2006). Several anti-cancer drugs target
components these signaling pathways. An example is EGFR inhibitor Erlotinib (Paez et al.,
2004). However, resistance to these targeted therapies is a major concern in cancer research
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Figure 7.16.: Effect of drug treatment in different concentrations on log fold changes of network
proteins. (A) Inhibition treatment at three concentrations, high (1 µM ), medium
(5 µM ) and low (1 µM ) (B) Activation treatment at three concentrations high (100
µM ), medium (50 µM ) and low (10 µM )

(Holohan et al., 2013). Combinatorial treatments against target holds considerable promise
(Yarden and Pines, 2012). Our work presented here is a step in this direction. So far, we
presented a method to infer signaling network involving AMPK and EGFR. This part of the
chapter will lead in this direction. This suggests a central regulatory role of AMPK (PRKAA1
specifically) on the whole network. Hence, PRKAA1 may be an interesting drug target.

This hypothesis was validated via the available RPPA data. These data contains phospho-
rylation specific measurements of∼ 107 proteins. We analyzed the GO annotation for these
protein. Most network proteins are involved in cell-cycle, apopotosis and cell-proliferation
(Appendix K). This suggests to see network proteins as markers for the success of a AMPK
targeting therapy. We selected two compounds (1) Compound C, with inhibitory effect on
PRKAA1, and (2) A-769662, with activation effect on PRKAA1. The log-fold changes of proteins
with interesting GO terms were observed after PRKAA1 targeting drug with inhibitory and
activating effects (Figure 7.17 and L.4). The results showed most of the measured proteins to be
interesting as they were associated with the biological processes of our interest. Furthermore,
the treatment with inhibiting drug showed down regulation of many of these proteins. This
establishes the top level position of AMPK in our inferred network. This also indicates that the
perturbation of some of these proteins can be interesting.

Our protein array data has the drug treatment in three concentrations low, medium and
high for both activating and inhibitory actions. Observing the effect of these different levels of
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concentrations indicates that a high concentration of AMPK inhibitor down-regulates most of
the network proteins (S-genes + E-genes). The effect of the highest concentration (100µM )
(Figure 7.16) is caused by the upstream location of PRKAA1 in the signaling network. This also
shows that PRKAA1 is an interesting drug target being a master controller for most of the other
proteins which has already been found to be interesting in our GO analysis. AMPK inhibition
yields no effect on most cell proliferation markers. On the other hand AMPK activation with
high (10µM ) concentrations leads to a down-reglation of most cell proliferation markers.
Hence, AMPK activation - in addition to EGFR treatment - could be an interesting therapeutic
option.

7.8 Summary

Here we presented study of NSCLS cells after perturbation of key players of AMPK/EGFR
pathways. Our application on perturbation effects in NSCLC at the methodology level proved
the importance of using prior in NEMs. The results presented another proof that the use of
consensus probabilistic prior computed from multiple sources of knowledge can drastically
improve the accuracy of NEMs. This integrative approach not only inferred more of the known
pathways, but also enabled us to recognize new pathway links that were unknown before.

At the level of biological knowledge the chapter unveiled many interesting links among the
proteins which can serve as alternative links unknown to community until now, but may exist
in real life cellular processes or filled up the missing links. The various ways that can control
and regulate the functioning of a biological process not only enhanced our knowledge, but also
created space for future research in treatment and management of tumors via combinatorial
therapy. The use of experimental data to validate the inferred networks leveraged a stronger
confidence in the hypothesis of the thesis that an integrative approach to reconstruct/reverse
engineer cellular network is more powerful that solely data driven approaches.

Finally we presented the role of some crucial players in the EGFR/AMPK signaling pathway.
The drug effect data for activation and inhibition of PRKAA1 supported it is critical role in
the pathway. Based on the inferred network, drug-dose data and GO analysis we proposed
PRKAA1 as a potential subject for studying its role in cancer as drug target.

This chapter presented an application of Nested Effects Models in combination of the devel-
oped consensus probabilistic prior from multiple knowledge sources. The results unveiled many
interesting avenues in terms of new pathway links which were otherwise undiscovered without
the use of prior (only data drive approach). The upcoming final chapter of the thesis will bring
out the conclusive message of the thesis together with future outlook.
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Figure 7.17.: log fold changes drug treatment for network proteins (S-genes). (Left) The plot
for activation treatment (dose concentration: high (100 µM ), medium (50 µM )
and low (10 µM ). (Right) The plot for inhibitory treatment (dose concentration:
high (1 µM ), medium (5 µM ) and low (1 µM )). A complete plot for all proteins
can be found in appendix L.
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Chapter 8

Conclusion and Outlook

This chapter draws together, the conclusions reached based on the research presented in this
thesis. First, the main accomplishments are summarized, followed by a discussion of the future
outlook in the domain, entailing the potential avenues for further research. Finally, the chapter
ends with the impact brought about by this thesis in the field of data plus knowledge driven
reconstruction of cellular networks followed by a conclusive sum-up.

8.1 The urge for ‘Integrative Systems Biology’

Systems biology is one of the latest trends in life science research. It has been driven by ad-
vances in technologies. These technologies provide a suite of ‘omics′ (Lederberg and Mccray,
2001) techniques generating data, which carries a whole range of measurements for genes,
proteins and metabolites. The state of art methods today use this−omics data as the key to
disentangle the complex architecture of biological systems. However, besides the data, we also
have established knowledge in literature and databases that can be also important to under-
stand the structure and function of a biological system. The data coming from high throughput
experiments, s typically noisy and not always reproducible, the knowledge is restricted and
incomplete. Nevertheless, if they can be used complementarily the reconstruction and hence
understanding biological systems may become more realistic. Therefore, the emerging issue is
to integratively use generated data (one or more sources) together with knowledge to get more
comprehensive insights into biological systems. The incentive expected is that all of these,
when combined in some way, will provide detailed picture of important biological processes,
such as development, aging, disease, to the benefit of the augmentation of new knowledge
and disease treatment/management.

8.2 Accomplishments

This thesis aimed to work in this direction by developing new methods to learn the architec-
ture and design of biological systems from different types of data and knowledge integratively.
The following subsections summarize the contributions of this thesis made with respect to the
reverse engineering of biological networks based on Nested Effects Models (NEM) (Markowetz,
2005).
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8.2. ACCOMPLISHMENTS CHAPTER 8. CONCLUSION AND OUTLOOK

8.2.1. Network from time-course data

In this thesis we introduced a new algorithm called dynoNEM for network inference. dynoNEMs
extended the NEM framework towards the use of time course gene expression data coming
from targeted RNAi perturbation experiments (Fröhlich et al., 2011). The dynoNEMs enabled
the exploitation of temporal data with their ability to use the time factor together with down-
stream perturbation effects. DynoNEMs model these dynamic effects of perturbation by
unrolling the network structure over time. The dynoNEM returns a directed edge-weighted
graph where, the edge weight refers to the time lag (time-point interval).

The dynoNEM method allows distinguishing direct perturbation effects from indirect effect
and also facilitates the resolution of feedback loops. These advantages are of great help in
biology for improving the network reconstruction accuracy (Feizi et al., 2013). This effect
was demonstrated in the dynoNEM chapter with many simulations in order to study the
dependency of the algorithm on parameters like network size (S-genes), number of E-genes
(measurement of effect genes), number of time points etc. The reconstruction of murine stem
cell network served as an application example.

8.2.2. Learning from phenotype data

The dynoNEMs could use the time course expression data to learn the networks among
the perturbed genes. However, such perturbation observation and measurements are not
limited to expression data. Phenotype data in the form of cellular images can also represent
perturbation effects. To harness such data the thesis proposed an extension of dynoNEM in
the form of MovieNEM (Failmezger et al., 2013).

The underlying principle of MovieNEM approach is that perturbation can yield differences in
cellular phenotype. These differences can be depicted in terms of measurable morphological
features. The MovieNEM method quantifies these morphological features in terms of image
features from time laps microscopic movies. As it uses the images from movie, the time factor
is inherent in the data. These features are extracted from the image and then are statistically
tested for their association with perturbation. These associated features can be used to infer
the cellular networks. The dynoNEM uses these features as an analogue to the E-genes and
leverages its network inference algorithm to this data to infer the involved network that caused
these phenotypes.

MovieNEM approach is a step towards better exploitation of this information-rich data
to reverse engineer cellular networks. It widens the scope of applicability of NEMs. During
the research presented in the thesis, time lapse cell imaging data resulting from RNAi knock
downs was used to infer cellular networks involved in cell cycle. The resulting network showed
very high reconstruction accuracy when compared against literature based networks. The
MovieNEM also showed its robustness against non-informative features. As omics data is not
always available or affordable, MovieNEM as an image-based techniques can be considered as
an alternative.

140



CHAPTER 8. CONCLUSION AND OUTLOOK 8.2. ACCOMPLISHMENTS

8.2.3. Integrating knowledge

High throughput data bears the problem of inherent noise together with a comparably low
number of samples, limiting the accuracy of network reconstruction. These bottlenecks of
using only high throughput data may be addressed by incorporating an informative prior
based on existing scientific knowledge, during network reconstruction. Therefore, after paving
the way for new types of data (time-course and phenotype data) to infer networks, the next goal
was to achieve the integration of biological knowledge in network inference algorithm. This
required an approach to integrate knowledge from different sources ranging from database and
knowledge-base to literature. Different methods were proposed to compute and integrated
prior knowledge by combining knowledge from multiple sources. Latent Factor Models (LFM)
and Noisy-OR Models (NOM) along with few other approaches were proposed to form an
informative prior (Praveen and Fröhlich, 2013). These methods generate a matrix of confidence
values ranging from 0 to 1 for each edge in the network based on the existing knowledge.

The simulations proved their usability on artificial as well as real experimental data. The
proposed frameworks allowed the use of diverse information sources, like pathway databases,
GO terms and protein domain data, etc and were found to be flexible enough to integrate new
sources of knowledge. The performance was observed to reconstruct random KEGG graphs
with high accuracy and later with artificial expression data. The method was applied on the
murine stem cell data, where we used dynoNEM together with biological knowledge from
different databases and other sources of knowledge to infer the network. The work showed
advantage of using prior knowledge in network inference by increasing the reconstruction
accuracy compared to the network inferred without using prior knowledge. Integrating knowl-
edge into computer systems can solve complex problems that normally require a high-level of
human expertise (Feigenbaum and McCorduck, 1983). But such integration requires knowl-
edge acquisition, computable representation, refinement and validation (Payne, 2012). In this
thesis we have shown these concepts in action.

8.2.4. Applying the integrative prior

As mentioned above the drawbacks of using only experimental data to reconstruct biologi-
cal networks can be overcome by incorporating informative prior from multiple knowledge
sources. After proposing methods to combine different in the inference process, these meth-
ods were applied using NEM. The data used for application was from a targeted perturbation
experiment for 20 genes involved in AMPK pathway.

An empirical evaluation, showed that the use of integrative informative prior knowledge
obtained using the proposed approaches can improve the network reconstruction. Specially
LFM and NOM boosted both the number of true regulatory interactions present and the
predictive performance of the learnt model. The comparison was done with to a network
reconstructed solely from expression data and some other priors via validation against litera-
ture based networks. The data were also validated experimentally using reverse phase protein
arrays. The results established that use of biological knowledge enhances the power of NEM to
reconstruct pathways.

141



8.3. IMPACT CHAPTER 8. CONCLUSION AND OUTLOOK

8.2.5. Identifying therapeutic targets in NSCLC

The resulting model for the AMPK/EGFR signaling obtained via the developed integrative
approach was used to identify new potential drug targets for NSCLC followed by their ex-
perimental validation. Furthermore, these targets were experimentally validated, with two
compounds for activation and inhibition of PRKAA1 and were also validated on mouse models.
This not only proposed the alternative therapy in case of loss of sensitivty for EGFR targeting
treatments in NSCLC but also added the polypharmacogeny perspective in the treatment.
Thus, the thesis could meet one of the most desired goals of therapeutic application in systems
biology.

8.3 Impact

In chapter 1, we presented the generalized workflow for network reverse engineering (Figure
1.4). The overall impact of the research performed in this thesis are new blocks added to
this framework as well as improvements in some existing blocks (Figure 8.1). At the level of
the method was empowered to be able to use the time course data and the phenotype data
was also added the image/movie data into the picture. The new network inference methods
appended to the framework were dynoNEM and movieNEM. Finally the aiding the network
reconstruction process with established knowledge was another important key impact of the
thesis. Thus, improving the entire network reverse engineering framework in many ways.

8.4 Future outlook

The task of cellular pathway reconstruction is one of the biggest challenges of the post-
genomic era. The work described in this dissertation are only few advancements and steps
towards the goal of automated reconstruction of cellular pathways. The following subsections
outline potential avenues for future research in the domain.

8.4.1. Data Integration

The methods discussed in this thesis considered a single source of data and knowledge
sources. However, Surowiecki’s philosophy of wisdom of crowds discusses multiple intelligence
(Surowiecki, May 25, 2004). With this he reasons that a properly structured group can come up
with the better or right answer to a problem, than an individual. Applying the same principle
in reverse engineering of biological networks is a reasonable approach. The problem to be
addressed here is the presence or absence of an edge in a potential network and the crowd can
be various sources of data or various reverse engineering approaches. The key to model such
method is to structure the crowd in order to reach the best possible decision. Certain ways
have been suggested performing such integrative reverse engineering (Lemmens et al., 2009;
Marbach et al., 2012).

The methods proposed to integrate prior knowledge from multiple sources can be adapted
and applied to combine data from multiple experiments. Furthermore, the proposed integra-
tion methods can also be used to combine the networks inferred by different approaches, thus
yielding the effect analogous to boosting in statistical learning. This will more rational way
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Figure 8.1.: Contributing towards the network reverse engineering and modeling cycle in sys-
tems biology. In black is the existing pipeline before and in red is the contribution
of this thesis.

as the proposed methods (LFM) assumes the different sources to be a result of real related
biological process.

8.4.2. Going beyond network inference

The work explored mainly the integrative approach for network inference. However, beside
being used in network inference the integrative approaches can also be used in other purposes
like clustering. A clustering approach integrated with knowledge can lead to the evolution
of a semi supervised clustering method. Such approach will not use merely data, but the
knowledge as well to qualify data points in biologically more sensible clusters. The integration
of network topology with functional enrichment similarities (KEGG and GO data) can also
aid in recognition of functional modules in biological networks extending the concept of
topological modules (Langfelder and Horvath, 2007).
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8.5. SUMMING IT UP CHAPTER 8. CONCLUSION AND OUTLOOK

8.4.3. Generating testable hypotheses

The discovery of new pathways is not always possible by using existing knowledge or exper-
imental data. Getting new information out of biological systems often requires new experi-
ments. In case of NEMs we talk in terms of new perturbation experiments. The experiments
are based on certain hypotheses which are actually tested with the experiments. Deriving such
new testable hypotheses from a single set of experimental data has become a major obstacle
(Larsen et al., 2007). Generating such testable hypothesis are primarily based on the intuition
of researchers. An emerging and increasingly viable solution to this challenge is the use of
existing knowledge together with available data.

The NEMs yields a cellular pathway based on data. Furthermore, we can introduce high
confidence edges from established knowledge (prior) into the inferred network in order to get
a more comprehensive picture. Interesting genes in the network can be perturbed in-silico to
observe the effects. Interesting effects can be then tested experimentally in laboratories for
verification. A multiple perturbation can also be performed in-silico for a more clear insight. A
Boolean network based approach can be adopted for simulating such in-silico perturbations.
The work in this thesis is a step in this direction.

8.5 Summing it up

In this dissertation we dealt with the domains of network inference and knowledge inte-
gration, focusing mainly on targeted perturbation data. This thesis explored how to recover
features of cellular pathways from data and existing knowledge integratively. It was an attempt
to go beyond the gene expression data to infer cellular network. It looked forward to diverse
data type ranging from high throughput−omic data (NEM and dynoNEM on gene and protein
expression data) to phenotypic data (MovieNEM). Furthermore, it uncovered the potentials of
existing knowledge for improving networks inference focusing primarily on NEMs.

All in all, this thesis attempts to answer three key questions

1. How can we widen the scope data driven network inference beyond expression profiling?

2. Can we combine heterogeneous knowledge existing in biology in a consistent and quan-
titative way ?

3. Does the use of an informative prior improves the performance of network reconstruc-
tion method ?

The thesis and the research within do not claim to have found and proposed the best or the
only solutions towards these problems. Nevertheless, the thesis aimed to explore the space
around these issues and discover solutions to improve the existing methods or proposed some
possible approaches to handle the above mentioned problems. After proposing the methods
through this thesis, it remains an open argument to find better and alternative solutions. There
is a lot to be explored in the domain of network inference and data-knowledge integration.
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The most exciting challenge of all, is to explore the ways to use the reconstructed models to
better understand life; to understand how biological regulation works, how cross talk between
metabolic pathways and the perturbations/stimuli can control levels of metabolites in the
cell? It will lead to develop an understanding of diseases such as cancer, and more importantly
how to possibly rectify such failures will be the ultimate goal.

Finally the thesis opens up new areas to be explored. Pathway reconstruction or network
reverse engineering is not merely an issue of more advanced and sophisticated inference
techniques, but also a matter of careful experimental planning and design. Well designed
experiments focus on a pathway of interest and probe the information flow caused by inter-
ventions.
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Appendix A

Overlap for selected KEGG pathways

List of KEGG pathways used for figure 1.2

S.No Pathway ID Name Nodes Edges
1 hsa00010 Glycolysis / Gluconeogenesis - Homo sapiens 65 258
2 hsa04012 ErbB signaling pathway - Homo sapiens 87 214
3 hsa04020 Calcium signaling pathway - Homo sapiens 180 511
4 hsa04115 p53 signaling pathway - Homo sapiens 69 86
5 hsa04120 Ubiquitin mediated proteolysis - Homo sapiens 151 775
6 hsa04310 Wnt signaling pathway - Homo sapiens 85 226
7 hsa04350 TGF-beta signaling pathway - Homo sapiens 167 77
8 hsa05010 Alzheimer’s disease - Homo sapiens 327 1104
9 hsa05200 Pathways in cancer - Homo sapiens 62 104

10 hsa05213 Endometrial cancer - Homo sapiens 52 87
11 hsa05216 Thyroid cancer - Homo sapiens 29 49
12 hsa05217 Basal cell carcinoma - Homo sapiens 55 310

Plotting figure 1.2

The nodes for all these networks were extracted and a pairwise overlap analysis was done
for each pair. Finally the overlap was divided by the maximum number of nodes that can be
shared between two networks. The resulting matrix η with node overlap fraction was then
plotted to get figure 1.2 (left)

ηi,j =
Vi ∩ Vj

min(Vi, Vj)

A similar matrix ζ for edges was computed. all the edges for corresponding graph pair was
extracted and then an intersection was computed which was later normalized between 0 and
1 by divided with maximum number of edges that can be shared.

ζi,j =
Ei ∩ Ej

min(Ei, Ej)
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Appendix B

Wilcoxon rank test dynoNEM
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Appendix C

Evaluating MSC network against literature

GHC$ MCMC$
Knowledge$View$

#$ Inferred$Edge$ Explained$by$ #$ Inferred$Edge$ Explained$by$
1$ Nanog<>Oct4$ Nanog<>Oct4$ 1$ Nanog<>Oct4$ Nanog<>Oct4$
2$ Oct4<>Tcl1$ Oct4<>Tcl1$ 2$ Nanog<>Tcl1$ Nanog<>Oct4<>Tcl1$
3$ Sox2<>Oct4$ Sox2<>Oct4$ 3$ Oct4<>Tcl1$ Oct4<>Tcl1$
4$ Sox2<>Tcl1$ Sox2<>Oct4<>Tcl1$ 4$ Sox2<>Oct4$ Sox2<>Oct4$
5$ Esrrb<>Oct4$ Esrrb<>Oct4$ 5$ Sox2<>Tcl1$ Sox2<>Oct4<>Tcl1$
6$ Esrrb<>Tcl1$ Esrrb<>Oct4<>Tcl1$ 6$ Esrrb<>Oct4$ Esrrb<>Oct4$
7$ Tbx3<>Oct4$ Tbx3<>Oct4$ 7$ Tbx3<>Oct4$ Tbx3<>Oct4$
8$ Tbx3<>Esrrb$ Tbx3<>Oct4<>Esrrb$ 8$ Tbx3<>Esrrb$ Tbx3<>Oct4<>Esrrb$

$ $ $
9$ Tbx3<>Tcl1$ Tbx3<>Oct4<>Tcl1$

$ $ $
10$ Tcl1<>Oct4$ <<<$

Model$View$
#$ Literature$path$ Explained$by$model$ #$ Literature$path$ Explained$by$model$
1$ Nanog<>Oct4$ Nanog<>Oct4$ 1$ Nanog<>Oct4$ Nanog<>Oct4$
2$ Nanog<>Sox2$ <<<$ 2$ Nanog<>Sox2$ <<<$
3$ Nanog<>Esrrb$ <<<$ 3$ Nanog<>Esrrb$ <<<$
4$ Nanog<>Tbx3$ <<<$ 4$ Nanog<>Tbx3$ <<<$
5$ Nanog<>Tcl1$ Nanog<>Oct4<>Tcl1$ 5$ Nanog<>Tcl1$ Nanog<>Tcl1$
6$ Oct4<>Nanog$ <<<$ 6$ Oct4<>Nanog$ <<<$
7$ Oct4<>Sox2$ <<<$ 7$ Oct4<>Sox2$ <<<$
8$ Oct4<>Esrrb$ <<<$ 8$ Oct4<>Esrrb$ <<<$
9$ Oct4<>Tbx3$ <<<$ 9$ Oct4<>Tbx3$ <<<$
10$ Oct4<>Tcl1$ Oct4<>Tcl1$ 10$ Oct4<>Tcl1$ Oct4<>Tcl1$
11$ Sox2<>Nanog$ <<<$ 11$ Sox2<>Nanog$ <<<$
12$ Sox2<>Oct4$ Sox2<>Oct4$ 12$ Sox2<>Oct4$ Sox2<>Oct4$
13$ Sox2<>Esrrb$ <<<$ 13$ Sox2<>Esrrb$ <<<$
14$ Sox2<>Tbx3$ <<<$ 14$ Sox2<>Tbx3$ <<<$
15$ Sox2<>Tcl1$ Sox2<>Tcl1$ 15$ Sox2<>Tcl1$ Sox2<>Tcl1$
16$ Esrrb<>Nanog$ <<<$ 16$ Esrrb<>Nanog$ <<<$
17$ Esrrb<>Oct4$ Esrrb<>Oct4$ 17$ Esrrb<>Oct4$ Esrrb<>Oct4$
18$ Esrrb<>Sox2$ <<<$ 18$ Esrrb<>Sox2$ <<<$
19$ Esrrb<>Tbx3$ <<<$ 19$ Esrrb<>Tbx3$ <<<$
20$ Esrrb<>Tcl1$ Esrrb<>Tcl1$ 20$ Esrrb<>Tcl1$ Esrrb<>Oct4<>Tcl1$
21$ Tbx3<>Nanog$ <<<$ 21$ Tbx3<>Nanog$ <<<$
22$ Tbx3<>Oct4$ Tbx3<>Oct4$ 22$ Tbx3<>Oct4$ Tbx3<>Oct4$
23$ Tbx3<>Sox2$ <<<$ 23$ Tbx3<>Sox2$ <<<$
24$ Tbx3<>Esrrb$ Tbx3<>Esrrb$ 24$ Tbx3<>Esrrb$ Tbx3<>Esrrb$
25$ Tbx3<>Tcl1$ Tbx3<>Oct4<>Tcl1$ 25$ Tbx3<>Tcl1$ Tbx3<>Tcl1$
!

Figure C.1.: Data for Figure 4.13, showing the pathway in inferred network and its explainability
by literature and vie-versa.
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Appendix D

Wilcoxon rank test pathway reconstruction

Table D.1.: Pairwise Wilcoxon test for model performance comparison (false discovery rates)
for KEGG sub-graphs with m = 10 nodes

Methods IP IP.RNK LFM MP MP.RNK NOM NOM.RNK
IP.RNK - - - - - - -

LFM 0.0041 0.0041 - - - - -
MP 0.0203 0.0203 0.0352 - - - -

10 MP.RNK 0.0423 0.0423 0.0203 0.0304 - - -
NOM 0.0041 0.0041 0.2974 0.0041 0.0041 - -

NOM.RNK 0.0041 0.0041 1.0000 0.0099 0.0041 0.0041 -
STRING 0.0070 0.0070 0.0041 0.0945 0.5111 0.0041 0.0041
Methods IP IP.RNK LFM MP MP.RNK NOM NOM.RNK
IP.RNK 0.0036 - - - - - -

LFM 0.0036 0.2712 - - - - -
MP 0.0144 0.0064 0.0260 - - - -

20 MP.RNK 0.0036 0.6250 0.4200 0.0348 - - -
NOM 0.0036 0.0036 0.5773 0.0036 0.0091 - -

NOM.RNK 0.0036 0.0036 0.4648 0.0036 0.0064 0.1022 -
STRING 0.0036 0.0036 0.0036 0.0260 0.0036 0.0036 0.0036
Methods IP IP.RNK LFM MP MP.RNK NOM NOM.RNK
IP.RNK 0.0068 - - - - - -

LFM 0.0039 0.0980 - - - - -
MP 0.0594 0.2166 0.0091 - - - -

40 MP.RNK 0.0039 0.4038 0.0594 0.0201 - - -
NOM 0.0039 0.0495 0.6481 0.0039 0.0039 - -

NOM.RNK 0.0039 0.0039 0.9219 0.0039 0.0039 0.0091 -
STRING 0.0039 0.0068 0.0039 0.0383 0.0039 0.0039 0.0039
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Appendix E

Feature computed for movieNEM image data

Table E.1.: Features computed for the movieNEM image data using CellProfiler

Feature Class Feature Name

AreaShape Zernike
Texture InfoMeas1

AreaShape Compactness
Location MaxIntensity

RadialDistribution RadialCV
RadialDistribution FracAtD

AreaShape Eccentricity
RadialDistribution RadialCV
RadialDistribution FracAtD

AreaShape MaxFeretDiameter
AreaShape EulerNumber
Intensity StdIntensityEdge
Intensity MinIntensityEdge

AreaShape MinorAxisLength
Texture Entropy

RadialDistribution RadialCV
RadialDistribution MeanFrac
RadialDistribution RadialCV

AreaShape Perimeter
AreaShape FormFactor

RadialDistribution MeanFrac
Location CenterMassIntensity
Intensity StdIntensity
Texture Contrast

RadialDistribution MeanFrac
Texture SumEntropy

Intensity MedianIntensity
Texture DifferenceVariance

RadialDistribution FracAtD
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APPENDIX E. FEATURE COMPUTED FOR MOVIENEM IMAGE DATA

Table E.2.: Features computed for the movieNEM image data using CellProfiler (Continued
from last page)

Feature Class Feature Name

Texture DifferenceEntropy
RadialDistribution FracAtD

Intensity MinIntensity
Intensity IntegratedIntensityEdge
Intensity MaxIntensityEdge
Intensity UpperQuartileIntensity
Intensity MassDisplacement
Intensity MeanIntensity
Intensity MaxIntensity
Texture Correlation
Texture AngularSecondMoment
Texture SumVariance
Texture Variance

AreaShape Area
AreaShape MinFeretDiameter
Intensity LowerQuartileIntensity
Texture SumAverage
Texture InfoMeas2

AreaShape MedianRadius
AreaShape Extent

Texture InverseDifferenceMoment
RadialDistribution MeanFrac

AreaShape MajorAxisLength
AreaShape MeanRadius

Texture Gabor
AreaShape MaximumRadius
Intensity IntegratedIntensity
Intensity MeanIntensityEdge
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Appendix F

MetaCoreTMnetwork used for MovieNEM vali-
dation

The literature based network used to compare and validate the NEM inferred network for
cell cycle network was extracted from the database tool MetaCore TM. To retrieve the network
the list of input gene was same as the S-genes for the used in our MovieNEM network (chapter
5) data i.e the perturbed genes (see table F.1)

Table F.1.: List of input genes to retrieve network from MetaCore TM

PRC1 EZH2 CDK1 CDC25B CIZ1
PDIA3 MTA2 CTR9 RUNX2 FOXM1
CDK2 CDC25A SKP2 CDKN1A ING1
CDK4 SP1 MDM2 YY1 STAT3
E2F5 CREB1

Since it was not always possible to detect a direct relation between two genes of interest, we
used a shortest path algorithm implemented in the MetaCore TMtool. This algorithm takes the
nodes of interest and tries to identify all the paths available between every pair of input genes.
We set a maximum path length of 2. This means if there was a path between a pair of input
genes, with a path legth equal to 2 it was included in our network. Thus we could figure out
direct and indirect relations among the genes. Doing so also retrieved some genes which were
not a part of our list but were connecting the input genes. The small molecules in the network
thus retrieved were ommitted if they did not break the network. The entire network computed
has been shown in figure F.1. In the shown network, the genes that were the part of the input
list are shown in red and grey nodes are the connecting genes.
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Figure F.1.: Literature network for MovieNEM genes. S-genes have been colored in red. Red edges indicate inhibition whereas,
green indicates activation
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Appendix G

Literature validation: Cell Cycle network

Table G.1.: The edges in retrieved network by MovieNEM for cell cycle and their explanation
by MetaCore TM

Inferred Edge Explained By

PRC1→ CDC25A PRC1→ RacGAP1→ STAT3→ CDC25A
PRC1→ SKP2 PRC1→ RacGAP1→ STAT3→ SKP2
PRC1→ E2F5 PRC1→ PLK1→MDM2→HNF4-alpha→ E2F5

EZH2→ CDK1 (p34) EZH2→ 14-3-3 sigma→ CDK1 (p34)
EZH2→ CDC25B EZH2→ 14-3-3 sigma→ CDC25B
EZH2→ CDC25A EZH2→NANOG→ CDC25A

EZH2→ SKP2 EZH2→ RelB (NF-kB subunit)→ SKP2
EZH2→ CDK4 EZH2→ p21→ CDK4

EZH2→ SP1 EZH2→ PTEN→ SP1
EZH2→ YY1 EZH2→ p14ARF→ YY1

EZH2→ E2F5 EZH2→microRNA 124a-1→ E2F5
CDK1(p34)→ CIZ1 CDK1(p34)→ PLK1→ CIZ1

CDK1(p34)→ CDC25A CDK1(p34)→ CDC25A
CDC25B→ CDK1 (p34) CDC25B→ CDK1 (p34)

CDC25B→ CDC25A CDC25B→ CDK1 (p34)→ CDC25A
CDC25B→MDM2 CDC25B→ Androgen receptor→ YY1→MDM2

CDC25B→ E2F5 CDC25B→ CDK1 (p34)→ Rb protein→ E2F5
CIZ1→ CDK1(p34) CIZ1→ p21→ CDK1(p34)

CIZ1→ CTR9 CIZ1→ p21→ PLK1→ CTR9
CIZ1→ CDC25A CIZ1→ p21→ CDC25A

CIZ1→ E2F5 CIZ1→ p21→ CDK2→ E2F5
PDIA3→ PRC1 PDIA3→ p21→ CDK3→ PRC1

PDIA3→ CDK1(p34) PDIA3→ CDC25A→ CDK1(p34)
PDIA3→ CIZ1 PDIA3→ p21→ PLK1→ CIZ1

PDIA3→ CDC25A PDIA3→ CDC25A
MTA2→ FOXM1 MTA2→ p53→ FOXM1
MTA2→ CDC25A MTA2→NANOG→ CDC25A

CTR9→ CDK1 (p34) CTR9→ p21→ CDK1 (p34)
CTR9→ CDC25A CTR9→Oct-3/4→ CDC25A
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APPENDIX G. LITERATURE VALIDATION: CELL CYCLE NETWORK

Table G.2.: The edges in retrieved network and their explanation by MetaCore TMcontinued
from last page

Inferred Edge Explained By

RUNX2→ PRC1 RUNX2→ Rb protein→ CDK1 (p34)→ PRC1
RUNX2→ EZH2 RUNX2→ Rb protein→ EZH2

RUNX2→ CDK1 (p34) RUNX2→ Rb protein→ CDK1 (p34)
RUNX2→ CDC25B RUNX2→ Survivin→ CDC25B

RUNX2→ PDIA3 RUNX2→ Rb protein→ CDK1 (p34)→ PDIA3
RUNX2→MTA2 RUNX2→ Caspase-7→ SP1→MTA2

RUNX2→ CDC25A RUNX2→ Rb protein→ CDC25A
RUNX2→ SKP2 RUNX2→ Rb protein→ SKP2
RUNX2→ CDK4 RUNX2→ CDK4

RUNX2→ SP1 RUNX2→ Caspase-7→ SP1
RUNX2→MDM2 RUNX2→ Rb protein→MDM2
RUNX2→ STAT3 RUNX2→ Rb protein→ STAT3
RUNX2→ E2F5 RUNX2→ Rb protein→ E2F5
FOXM1→ SP1 FOXM1→ Cyclin B1→ SP1

CDK2→ CDK1 (p34) CDK2→ BAF250A→ CDK1 (p34)
CDK2→ CDC25B CDK2→ CDC25B

CDK2→ CIZ1 CDK2→ ESR1 (nuclear)→ CIZ1
CDK2→ PDIA3 CDK2→NF-Y→ PDIA3
CDK2→MTA2 CDK2→MTA2
CDK2→ CTR9 CDK2→ Chk1→ CTR9

CDK2→ FOXM1 CDK2→ FOXM1
CDK2→ CDC25A CDK2→ CDC25A

CDK2→ ING1 CDK2→ c-Myc→ ING1
CDK2→ CDK4 CDK2→ SKP2→ CDK4

CDK2→MDM2 CDK2→MDM2
CDK2→ STAT3 CDK2→ SP1→ STAT3

CDC25A→ CDK1 (p34) CDC25A→ CDK1 (p34)
SKP2→ CDK1 (p34) SKP2→ p21→ CDK1 (p34)

SKP2→ CIZ1 SKP2→ p21→ PLK1→ CIZ1
SKP2→ CDC25A SKP2→ p21→ CDC25A

SKP2→ SP1 SKP2→ c-Myc→ SP1
SKP2→MDM2 SKP2→ RASSF1→MDM2

p21→ CDK1 (p34) p21→ CDK1 (p34)
p21→ CIZ1 p21→ PLK1→ CIZ1

p21→ PDIA3 p21→ CDK1 (p34)→ PDIA3
p21→ CTR9 p21→ PLK1→ CTR9
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APPENDIX G. LITERATURE VALIDATION: CELL CYCLE NETWORK

Table G.3.: The edges in retrieved network and their explanation by MetaCore TMcontinued
from last page

Inferred Edge Explained By

p21→ FOXM1 p21→ Cyclin E→ FOXM1
p21→ CDC25A p21→ CDC25A

p21→ SKP2 p21→ STAT3→ SKP2
p21→ CDK4 p21→ CDK4

p21→ SP1 p21→ Caspase-3→ SP1
p21→MDM2 p21→ Caspase-3→MDM2

p21→ YY1 p21→ Caspase-3→ YY1
p21→ STAT3 p21→ STAT3
p21→ E2F5 p21→ CDK2→ E2F5

p21→ CREB1 p21→ c-Myc→ CREB1
ING1→ PRC1 ING1→ p53→ PRC1
ING1→ EZH2 ING1→ p53→ EZH2

ING1→ CDK1 (p34) ING1→ p73→ CDK1 (p34)
ING1→ CDC25B ING1→ p53→ CDC25B

ING1→ CIZ1 ING1→ ESR1 (nuclear)→ CIZ1
ING1→MTA2 ING1→ p16INK4→ SP1→MTA2
ING1→ CTR9 ING1→ p21→ PLK1→ CTR9

ING1→ FOXM1 ING1→ ESR1 (nuclear)→ FOXM1
ING1→ CDC25A ING1→ p21→ CDC25A

ING1→ CDK4 ING1→ p21→ CDK4
ING1→ SP1 ING1→ p16INK4→ SP1

ING1→MDM2 ING1→ p73→MDM2
ING1→ E2F5 ING1→ p53→ E2F5
CDK4→ PRC1 CDK4→ p21→ CDK3→ PRC1
CDK4→ EZH2 CDK4→ RUNX2→ Rb protein→ EZH2

CDK4→ CDK1 (p34) CDK4→ p21→ CDK1 (p34)
CDK4→ CDC25B CDK4→ FOXM1→ CDC25B
CDK4→ CDC25A CDK4→ p21→ CDC25A

CDK4→ SKP2 CDK4→ FOXM1→ SKP2
CDK4→ SP1 CDK4→ p21→ STAT3→ SP1

CDK4→MDM2 CDK4→ RUNX2→ Rb protein→MDM2
CDK4→ YY1 CDK4→ RUNX2→ Rb protein→ YY1

CDK4→ E2F5 CDK4→ RUNX2→ Rb protein→ E2F5
SP1→ CDC25A SP1→ CDC25A
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APPENDIX G. LITERATURE VALIDATION: CELL CYCLE NETWORK

Table G.4.: The edges in retrieved network and their explanation by MetaCore TMcontinued
from last page

Inferred Edge Explained By

SP1→ YY1 SP1→ YY1
SP1→ E2F5 SP1→ GFI-1→ E2F5

MDM2→ EZH2 MDM2→ p53→ EZH2
MDM2→ CDK1 (p34) MDM2→ p53→ CDK1 (p34)

MDM2→ CDC25B MDM2→ Chk2→ CDC25B
MDM2→ CIZ1 MDM2→ ESR1 (nuclear)→ CIZ1

MDM2→ CDC25A MDM2→ Chk2→ CDC25A
MDM2→ SKP2 MDM2→ p53→ SKP2
MDM2→ SP1 MDM2→ SP1
MDM2→ YY1 MDM2→ p53→ YY1

MDM2→ E2F5 MDM2→ p53→ E2F5
YY1→ CDK1 (p34) YY1→ CDK1 (p34)

YY1→ CDC25A YY1→HCF1→ CDC25A
YY1→ SKP2 YY1→ SKP2

E2F5→ CDK1 (p34) E2F5→ CDK1 (p34)
E2F5→ CDC25B E2F5→ c-Myc→ CDC25B
E2F5→ CDC25A E2F5→ c-Myc→ CDC25A

E2F5→ SKP2 E2F5→ CDK1 (p34)→ SKP2
CREB1→ PRC1 CREB1→ Elk-1→ PRC1

CREB1→ CDK1 (p34) CREB1→ CDK1 (p34)
CREB1→ CIZ1 CREB1→ SP1→ ESR1 (nuclear)→ CIZ1

CREB1→ CDC25A CREB1→ SP1→ CDC25A
CREB1→ SKP2 CREB1→ STAT1→ SKP2
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Appendix H

Merged KEGG graphs used for simulation

Table H.1.: Merged KEGG pathways used for NEM simulation)

ID Pathway Name

04014 Ras signaling pathway
04015 Rap1 signaling pathway
04010 MAPK signaling pathway
04012 ErbB signaling pathway
04310 Wnt signaling pathway
04330 Notch signaling pathway
04340 Hedgehog signaling pathway
04350 TGF-beta signaling pathway
04390 Hippo signaling pathway
04370 VEGF signaling pathway
04630 Jak-STAT signaling pathway
04064 NF-kappa B signaling pathway
04668 TNF signaling pathway
04066 HIF-1 signaling pathway
04068 FoxO signaling pathway
04020 Calcium signaling pathway
04070 Phosphatidylinositol signaling system
04151 PI3K-Akt signaling pathway
04150 mTOR signaling pathway
05200 Pathways in cancer
05202 Transcriptional misregulation in cancer
05206 MicroRNAs in cancer
05205 Proteoglycans in cancer
05204 Chemical carcinogenesis
05203 Viral carcinogenesis
05210 Colorectal cancer
05212 Pancreatic cancer
05214 Glioma
05216 Thyroid cancer
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APPENDIX H. MERGED KEGG GRAPHS USED FOR SIMULATION

Table H.2.: Merged KEGG pathways used for NEM simulation-contd)

ID Pathway Name

05310 Asthma
05322 Systemic lupus erythematosus
05323 Rheumatoid arthritis
05320 Autoimmune thyroid disease
05321 Inflammatory bowel disease (IBD)
05330 Allograft rejection
05332 Graft-versus-host disease
05340 Primary immunodeficiency
05010 Alzheimer’s disease
05012 Parkinson’s disease
05014 Amyotrophic lateral sclerosis (ALS)
05016 Huntington’s disease
05020 Prion diseases
04940 Type I diabetes mellitus
04930 Type II diabetes mellitus
04932 Non-alcoholic fatty liver disease (NAFLD)
04950 Maturity onset diabetes of the young
05030 Cocaine addiction
05031 Amphetamine addiction
05032 Morphine addiction
05033 Nicotine addiction
05034 Alcoholism
05410 Hypertrophic cardiomyopathy (HCM)
05412 Arrhythmogenic right ventricular cardiomyopathy (ARVC)
05414 Dilated cardiomyopathy
05416 Viral myocarditis
05221 Acute myeloid leukemia
05220 Chronic myeloid leukemia
05217 Basal cell carcinoma
05218 Melanoma
05211 Renal cell carcinoma
05219 Bladder cancer
05215 Prostate cancer
05213 Endometrial cancer
05222 Small cell lung cancer
05223 Non-small cell lung cancer
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APPENDIX H. MERGED KEGG GRAPHS USED FOR SIMULATION

Table H.3.: Merged KEGG pathways used for NEM simulation-contd)

ID Pathway Name

04080 Neuroactive ligand-receptor interaction
04060 Cytokine-cytokine receptor interaction
04512 ECM-receptor interaction
04514 Cell adhesion molecules (CAMs)
05166 HTLV-I infection
05162 Measles
05164 Influenza A
05161 Hepatitis B
05160 Hepatitis C
05168 Herpes simplex infection
05169 Epstein-Barr virus infection
05146 Amoebiasis
05144 Malaria
05145 Toxoplasmosis
05140 Leishmaniasis
05142 Chagas disease (American trypanosomiasis)
05143 African trypanosomiasis
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Appendix I

Literature network used for comparing NSCLC
network

The literature based network used to compare and validate the NEM inferred network for
NSCLC data was extracted from the database tool MetaCore TM. To retrieve the network the
list of input gene was same as the S-genes for the used NSCLC data i.e the perturbed genes
(see table I.1)

Table I.1.: List of input genes to retrieve network from MetaCore TM

STK11 PIK3C3 TRUB2 LEPR TSC2
TSC1 GSK3B GSK3A RAF1 ITGB4

PRKAB1 BCL10 EGFR ESPL1 SRC
WDR3 PRKAA1 RPS6KA1 MTOR RPSKB1

Since it was not always possible to detect a direct relation between two genes of interest, we
used a shortest path algorithm implemented in the MetaCore TMtool. This algorithm takes the
nodes of interest and tries to identify all the paths available between every pair of input genes.
We set a maximum path length of 2. This means if there was a path between a pair of input
genes, with a path legth equal to 2 it was included in our network. Thus we could figure out
direct and indirect relations among the genes. Doing so also retrieved some genes which were
not a part of our list but were connecting the input genes. The small molecules in the network
thus retrieved were ommitted if they did not break the network. The entire network computed
has been shown in figure I.1. In the shown network, the genes that were the part of the input
list are shown in red and grey nodes are the connecting genes.
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Figure I.1.: Literature network from MetaCore TMused for comparing and validating NSCLC networks. The network containg
additional nodes as the network was derived by a shortest pathlength agorithm for path length 2.
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Appendix J

NSCLC network explained by literature

Table J.1.: The edges in retrieved network and their explanation by MetaCore TM

Inferred Edge Explained By

BCL10→EGFR BCL10→JNK2(MAPK9)→GSK3B→MUC1→EGFR
EGFR→GSK3A EGFR→AKT1→GSK3A
EGFR→PIK3C3 EGFR→PIK3C3
ESPL1→ITGB4 none

GSK3A→TRUB2 GSK3A→EGR1→SRC→HNF4-alpha→TRUB2
GSK3B→GSK3A GSK3B→ETS1→GSK3A
ITGB4→PIK3C3 ITGB4→VIL2 (ezrin)→SRC→PIK3C3
LEPR→GSK3A LEPR→SRC→AKT(PKB)→GSK3A

STK11→GSK3A STK11→GSK3B→SREBP1 (nuclear)→GSK3A
MTOR→PIK3C3 MTOR→c-Myc→PIK3C3

RPS6KB1→PRKAB1 RPS6KB1→GSK3B→REV-ERBalpha→PRKAB1
RPS6KA1→RPS6KB1 RPS6KA1→GSK3B→RPS6KB1

PIK3C3→BCL10 PIK3C3→ PtdIns(45)P2→AKT(PKB)→BCL10
PIK3C3→TSC1 PIK3C3→MTOR→c-Myc→TSC1

PRKAA1→WDR3 PRKAA1→p53→GSK3B→NOTCH1 (NICD)→WDR3
PRKAB1→RPS6KB1 PRKAB1→PRKAA1→PKC-zeta→RPS6KB1

RAF1→MTOR RAF1→Aurora-A→SRC→c-Abl→MTOR
RAF1→SRC RAF1→Aurora-A→SRC
SRC→RAF1 SRC→RAF1

TRUB2→GSK3B none
TRUB2→LEPR none

TRUB2→RPS6KA1 none
TRUB2→TSC2 none
TSC1→GSK3A TSC1→MTOR→AKT(PKB)→GSK3A
TSC2→GSK3A TSC2→CDC42→RPS6KB1→GSK3A
WDR3→RAF1 none
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Appendix K

Selected GO terms for S-genes

To look at the functional role of S-gene under analysis we did a GO term annotation for thse
S-genes. We focussed on the Biological Process (BP) category. The GO terms of our interest are
terms associated with the following terms or the related terms:

1. Apoptosis

2. Cell proliferation

3. Cell cycle

4. Mitosis

5. Cell division

Most of the S-genes under consideration were found to be annotated with such terms. These
associted terms have been listed together with the corresponding genes on the nex page.
Please note that the list presented here contains only the annotations of our interest. The
complete list is not been mentioned here.
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BCL10& && && &&
& & & &

8915% biological_process% GO:0042981% regulation%of%apoptotic%process%
8915% biological_process% GO:0008219% cell%death%
8915% biological_process% GO:0006921% cellular%component%disassembly%involved%in%execution%phase%of%apoptosis%
8915% biological_process% GO:0002906% negative%regulation%of%mature%B%cell%apoptotic%process%
8915% biological_process% GO:0043280% positive%regulation%of%cysteineEtype%endopeptidase%activity%involved%in%apoptotic%process%
8915% biological_process% GO:2001238% positive%regulation%of%extrinsic%apoptotic%signaling%pathway%
8915% biological_process% GO:0001783% B%cell%apoptotic%process%
8915% biological_process% GO:0070231% T%cell%apoptotic%process%

EGFR% %% %% %%
1956% biological_process% GO:0008283% cell%proliferation%
1956% biological_process% GO:0050679% positive%regulation%of%epithelial%cell%proliferation%
1956% biological_process% GO:0043066% negative%regulation%of%apoptotic%process%
1956% biological_process% GO:0008284% positive%regulation%of%cell%proliferation%

1956% biological_process% GO:0031659%
positive%regulation%of%cyclinEdependent%protein%serine/threonine%kinase%activity%%
involved%in%G1/S%transition%of%mitotic%cell%cycle%

1956% biological_process% GO:0042127% regulation%of%cell%proliferation%
1956% biological_process% GO:0045930% negative%regulation%of%mitotic%cell%cycle%
1956% biological_process% GO:0048661% positive%regulation%of%smooth%muscle%cell%proliferation%

ESPL1% %% %% %%
9700% biological_process% GO:0000212% meiotic%spindle%organization%
9700% biological_process% GO:0000070% mitotic%sister%chromatid%segregation%
9700% biological_process% GO:0045143% homologous%chromosome%segregation%
9700% biological_process% GO:0006915% apoptotic%process%
9700% biological_process% GO:0000910% cytokinesis%
9700% biological_process% GO:0000278% mitotic%cell%cycle%
9700% biological_process% GO:0045842% positive%regulation%of%mitotic%metaphase/anaphase%transition%
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9700% biological_process% GO:0045875% negative%regulation%of%sister%chromatid%cohesion%
9700% biological_process% GO:0007059% chromosome%segregation%
9700% biological_process% GO:0007127% meiosis%I%

GSK3B% %% %% %%
2932% biological_process% GO:0000320% reEentry%into%mitotic%cell%cycle%
2932% biological_process% GO:0043066% negative%regulation%of%apoptotic%process%
2932% biological_process% GO:2000738% positive%regulation%of%stem%cell%differentiation%

Figure K.1.: Selected GO terms for S-genes.
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TSC2% %% %% %%
7249% biological_process% GO:0008285% negative%regulation%of%cell%proliferation%
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WDR3% %% %% %%
!

Figure K.2.: Selected GO terms for S-genes (Continued from last page)
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Appendix L

Log fold changes in RPPA data
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Figure L.1.: Heatmap: log fold changes for all proteins measured in RPPA for drug effect (A)

Activation (B) Inhibition.
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APPENDIX L. LOG FOLD CHANGES IN RPPA DATA
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Figure L.2.: Plot showing effect of knock down for five genes (EGFR, RPS6KB1, PRKAA1 PRKAB1
and mTOR) in terms of log fold changes at protein level obtained via RPPA. The
downstream S-genes computed via a breadthfirstsearch are provided in the box
on the left hand side. The measured protein located at immediate downstream
neighborhood have been highlighted in green.
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1. P. Praveen , A. Tresch, H. Fröhlich; Fast and Efficient Dynamic Nested Effects Models,
ISMB/ECCB European Conference on Computational Biology 2011, Viena (AUSTRIA),
July 2011
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