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Abstract

One perspective for artificial intelligence research is to build machines that per-
form tasks autonomously in our complex everyday environments. This setting
poses challenges to the development of perception skills: A robot should be able
to perceive its location and objects in its surrounding, while the objects and the
robot itself could also be moving. Objects may not only be composed of rigid
parts, but could be non-rigidly deformable or appear in a variety of similar sha-
pes. Furthermore, it could be relevant to the task to observe object semantics.
For a robot acting fluently and immediately, these perception challenges demand
efficient methods.
This theses presents novel approaches to robot perception with RGB-D sen-

sors. It develops efficient registration, segmentation, and modeling methods for
scene and object perception. We propose multi-resolution surfel maps as a con-
cise representation for RGB-D measurements. We develop probabilistic regis-
tration methods that handle rigid scenes, scenes with multiple rigid parts that
move differently, and scenes that undergo non-rigid deformations. We use these
methods to learn and perceive 3D models of scenes and objects in both static
and dynamic environments.
For learning models of static scenes, we propose a real-time capable simulta-

neous localization and mapping approach. It aligns key views in RGB-D video
using our rigid registration method and optimizes the pose graph of the key
views. The acquired models are then perceived in live images through detection
and tracking within a Bayesian filtering framework.
An assumption frequently made for environment mapping is that the obser-

ved scene remains static during the mapping process. Through rigid multi-body
registration, we take advantage of releasing this assumption: Our registration
method segments views into parts that move independently between the views
and simultaneously estimates their motion. Within simultaneous motion seg-
mentation, localization, and mapping, we separate scenes into objects by their
motion. Our approach acquires 3D models of objects and concurrently infers
hierarchical part relations between them using probabilistic reasoning. It can be
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applied for interactive learning of objects and their part decomposition.
Endowing robots with manipulation skills for a large variety of objects is

a tedious endeavor if the skill is programmed for every instance of an object
class. Furthermore, slight deformations of an instance could not be handled by
an inflexible program. Deformable registration is useful to perceive such shape
variations, e.g., between specific instances of a tool. We develop an efficient de-
formable registration method and apply it for the transfer of robot manipulation
skills between varying object instances.
On the object-class level, we segment images using random decision forest

classifiers in real-time. The probabilistic labelings of individual images are fused
in 3D semantic maps within a Bayesian framework. We combine our object-class
segmentation method with simultaneous localization and mapping to achieve
online semantic mapping in real-time.
The methods developed in this thesis are evaluated in experiments on publicly

available benchmark datasets and novel own datasets. We publicly demonstrate
several of our perception approaches within integrated robot systems in the
mobile manipulation context.



Zusammenfassung

Wie können wir technische Systeme mit Fähigkeiten zur Umgebungswahrneh-
mung ausstatten, die es ihnen ermöglichen, intelligent zu handeln? Diese Fra-
gestellung kommt in der Forschung zur Künstlichen Intelligenz in den unter-
schiedlichsten Kontexten auf. Beispielsweise wollen wir zukünftig immer weitere
Bereiche in Fabriken automatisieren, die bisher ausschließlich menschlichen Ar-
beitern überlassen sind. Autonom fahrende Autos sind von einer kühnen Vision
zu einem Entwicklungstrend in der Automobilbranche geworden. In den letzten
Jahren haben wir auch einen großen Fortschritt in der Entwicklung von Robo-
terplattformen und -technologien gesehen, die uns einst in unseren Alltagsumge-
bungen unterstützen könnten. Aus diesen Entwicklungen ergeben sich stets neue
Herausforderungen an die Umgebungswahrnehmung durch intelligente Systeme.
In dieser Arbeit beschäftigen wir uns mit Herausforderungen der visuellen

Wahrnehmung in Alltagsumgebungen. Intelligente Roboter sollen sich selbst in
ihrer Umgebung zurechtfinden, und Wissen über den Verbleib von Objekten
erwerben können. Die Schwierigkeit dieser Aufgaben erhöht sich in dynamischen
Umgebungen, in denen ein Roboter die Bewegung einzelner Teile differenzieren
und auch wahrnehmen muss, wie sich diese Teile bewegen. Wenn ein Roboter
sich selbst in dieser Umgebung bewegt, muss er auch seine eigene Bewegung von
der Veränderung der Umgebung unterscheiden. Szenen können sich aber nicht
nur durch die Bewegung starrer Teile verändern. Auch die Teile selbst können
ihre Form in nicht-rigider Weise ändern.
Eine weitere Herausforderung stellt die semantische Interpretation von Sze-

nengeometrie und -aussehen dar. Wir erwarten, dass intelligente Roboter auch
selbständig neue Objekte entdecken können und die Zusammenhänge von Ob-
jekten begreifen. Die Bewegung von Objekten ist ein möglicher Hinweis, um
Objekte ohne weiteres Vorwissen über die Szene zu vereinzeln und Zusammen-
hänge zu erkunden. Wenn wir eine Kategorisierung der Objekte vorgeben, sollen
Roboter auch lernen, diese Kategorien in Bildern wiederzuerkennen.
Neben Genauigkeit und Zuverlässigkeit von Algorithmen zur Wahrnehmung,

muss auch die Effizienz der Verfahren im Blick gehalten werden, da oft eine
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flüssige und sofortige Handlung durch Roboter gewünscht ist. Dynamische Um-
gebungen verlangen oft ebenfalls Effizienz, wenn ein Algorithmus in Echtzeit den
Veränderungen in der Szene folgen soll.
Seit einigen Jahren sind RGB-D Kamerasensoren kommerziell und kosten-

günstig erhältlich. Diese Entwicklung hatte einen starken Einfluß auf die For-
schung im Bereich der Computer Vision. RGB-D Kameras liefern sowohl dichte
Farb- als auch Tiefenmessungen in hoher Auflösung und Bildrate. Wir entwickeln
unsere Methoden in dieser Arbeit für die visuelle Wahrnehmung mit dieser Art
von Sensoren.
Eine typische Formulierung von Wahrnehmung ist es, einen Zustand oder eine

Beschreibung zu finden, um Messungen mit Erwartungen in Einklang zu brin-
gen. Für die geometrische Wahrnehmung von Szenen und Objekten entwickeln
wir effiziente dichte Methoden zur Registrierung von RGB-D Messungen mit
Modellen. Mit dem Begriff “dicht” beschreiben wir Ansätze, die alle verfügbaren
Messungen in einem Bild verwenden, im Vergleich zu spärlichen Methoden, die
das Bild beispielsweise zu einer Menge von interessanten Punkten in texturierten
Bereichen reduzieren.
Diese Arbeit gliedert sich in zwei Teile. Im ersten Teil entwickeln wir effizi-

ente Methoden zur Repräsentation und Registrierung von RGB-D Messungen.
In Kapitel 2 stellen wir eine kompakte Repräsentation von RGB-D Messun-
gen vor, die unseren effizienten Registrierungsmethoden zugrunde liegt. Sie fasst
Messungen in einer 3D Volumenelement-Beschreibung in mehreren Auflösungen
zusammen. Die Volumenelemente beinhalten Statistiken über die Punkte inner-
halb der Volumen, die wir als Oberflächenelemente bezeichnen. Wir nennen un-
sere Repräsentation daher Multi-Resolutions-Oberflächenelement-Karten (engl.
multi-resolution surfel maps, MRSMaps). Wir berücksichtigen in MRSMaps die
typische Fehlercharakteristik von RGB-D Sensoren, die auf dem Prinzip der Pro-
jektion von texturiertem Licht beruhen. Bilder können effizient in MRSMaps ag-
gregiert werden. Die Karten unterstützen auch die Fusion von Bildern aus meh-
reren Blickpunkten. Wir nutzen solche Karten für die Modell-Repräsentation
von Szenen und Objekten.
Kapitel 3 führt eine Methode zur effizienten, robusten, und genauen Registrie-

rung von MRSMaps vor, die Rigidheit der betrachteten Szene voraussetzt. Die
Registrierung schätzt die Kamerabewegung zwischen den Bildern und gewinnt
ihre Effizienz durch die Ausnutzung der kompakten multi-resolutionalen Dar-
stellung der Karten. Während das Verfahren grobe bis feine Fehlregistrierungen
korrigiert, wird Genauigkeit durch die Registrierung auf der feinsten gemeinsa-
men Auflösung zwischen den Karten erreicht. Die Verwendung von Farbe und
lokalen Form- und Texturbeschreibungen erhöht die Robustheit des Verfahrens
durch die Verbesserung der Assoziation von Oberflächenelementen zwischen den
Karten. Die Registrierungsmethode erzielt hohe Bildverarbeitungsraten auf ei-
ner CPU. Wir demonstrieren hohe Effizienz, Genauigkeit und Robustheit unserer
Methode im Vergleich zum bisherigen Stand der Forschung auf Vergleichsdaten-



sätzen.
In Kapitel 4 lösen wir uns von der Annahme, dass die betrachtete Szene zwi-

schen Bildern statisch ist. Wir erlauben nun, dass sich rigide Teile der Szene
bewegen dürfen, und erweitern unser rigides Registrierungsverfahren auf die-
sen Fall. Wir formulieren ein allgemeines Expectation-Maximization Verfahren
zur dichten 3D Bewegungssegmentierung mit effizienten Approximationen durch
Graph Cuts und variationaler Inferenz. Unser Ansatz segmentiert die Bildberei-
che der einzelnen Teile, die sich unterschiedlich zwischen Bildern bewegen. Er
findet die Anzahl der Segmente und schätzt deren Bewegung. Wir demonstrieren
hohe Segmentierungsgenauigkeit und Genauigkeit in der Bewegungsschätzung
unter Echtzeitbedingungen für die Verarbeitung.
Schließlich entwickeln wir in Kapitel 5 ein Verfahren für die Wahrnehmung von

nicht-rigiden Deformationen zwischen zwei MRSMaps. Auch hier nutzen wir die
multi-resolutionale Struktur in den Karten für ein effizientes Registrieren von
grob zu fein. Wir schlagen Methoden vor, um aus den geschätzten Deforma-
tionen die lokale Bewegung zwischen den Bildern zu gewinnen. Wir evaluieren
Genauigkeit und Effizienz des Verfahrens.
Der zweite Teil dieser Arbeit widmet sich der Verwendung unserer Karten-

repräsentation und Registrierungsmethoden für die Wahrnehmung von Szenen
und Objekten. Kapitel 6 verwendet MRSMaps und unsere rigide Registrierungs-
methode, um 3D Modelle von Szenen und Objekten zu lernen. Die Registrierung
liefert die Kamerabewegung zwischen Schlüsselansichten auf Szene und Objekt.
Diese Schlüsselansichten sind MRSMaps von ausgewählten Bildern aus der Ka-
merafahrt. Wir registrieren nicht nur zeitlich aufeinanderfolgende Schlüsselan-
sichten, sondern stellen auch räumliche Beziehungen zwischen weiteren Paaren
von Schlüsselansichten her. Die räumlichen Beziehungen werden in einem Si-
multanen Lokalisierungs- und Kartierungsverfahren (engl. simultaneous locali-
zation and mapping, SLAM) gegeneinander abgewogen, um die Blickposen der
Schlüsselansichten in einem gemeinsamen Koordinatensystem zu schätzen. Von
ihren Blickposen aus können die Schlüsselansichten dann in dichten Modellen
übereinandergelegt werden. Wir entwickeln eine effiziente Methode, um neue
räumliche Beziehungen zu entdecken, sodass die Kartierung in Echtzeit erfolgen
kann. Weiterhin beschreiben wir ein Verfahren, um Objektmodelle im Kamera-
bild zu detektieren und initiale grobe Posenschätzungen herzustellen. Für das
Verfolgen der Kamerapose bezüglich der Modelle, kombinieren wir die Genau-
igkeit unserer Registrierung mit der Robustheit von Partikelfiltern. Zu Beginn
der Posenverfolgung, oder wenn das Objekt aufgrund von Verdeckungen oder
extremen Bewegungen nicht weiter verfolgt werden konnte, initialisieren wir das
Filter durch Objektdetektion. Das Verfahren verfolgt die Pose von Objekten in
Echtzeit.
In Kapitel 7 wenden wir unsere erweiterten Registrierungsverfahren für die

Wahrnehmung in nicht-rigiden Szenen und für die Übertragung von Objekthand-
habungsfähigkeiten von Robotern an. Wir erweitern unseren rigiden Kartierungs-



ansatz aus Kapitel 6 auf dynamische Szenen, in denen sich rigide Teile bewegen.
Die Methode extrahiert wiederum Schlüssenansichten aus RGB-D Video, die nun
gegen weitere Ansichten bewegungssegmentiert werden. Die Bewegungssegmente
werden zueinander in Bezug gesetzt, um Äquivalenz- und Teilebeziehungen von
Objekten probabilistisch zu inferieren, denen die Segmente entsprechen. Unsere
Registrierungsmethode liefert Bewegungschätzungen zwischen den Segmentan-
sichten der Objekte, die wir als räumliche Beziehungen in einem SLAMVerfahren
nutzen, um die Blickposen der Segmente zu schätzen. Aus diesen Blickposen wie-
derum können wir die Bewegungssegmente in dichten Objektmodellen vereinen.
Objekte einer Klasse teilen oft eine gemeinsame Topologie von funktionalen

Elementen. Während Instanzen sich in Form unterscheiden können, entspricht
die Korrespondenz von funktionalen Elementen oft auch einer Korrespondenz in
den Formen der Objekte. Wir nutzen diese Eigenschaft aus, um die Handhabung
eines Objektes durch einen Roboter auf neue Objektinstanzen derselben Klasse
zu übertragen. Formkorrespondenzen werden durch unsere deformierbare Regis-
trierung ermittelt. Wir beschreiben Handhabungsfähigkeiten durch Greifposen
und Bewegungstrajektorien von Bezugssystemen im Objekt wie z. B. Werkzeu-
gendeffektoren.
Abschließend in Teil II entwickeln wir einen Ansatz, der Kategorien von Objek-

ten in RGB-D Bildern erkennt und segmentiert (Kapitel 8). Die Segmentierung
basiert auf Ensemblen randomisierter Entscheidungsbäume, die Geometrie- und
Texturmerkmale zur Klassifikation verwenden. Die Verfügbarkeit von dichter
Tiefe ermöglicht es, die Merkmale gegen Skalenunterschiede im Bild zu nor-
malisieren. Wir fusionieren Segmentierungen von Einzelbildern einer Szene aus
mehreren Ansichten in einer semantischen Objektklassenkarte mit Hilfe unseres
SLAM-Verfahrens.
Die vorgestellten Methoden werden auf öffentlich verfügbaren Vergleichsda-

tensätzen und eigenen Datensätzen evaluiert. Einige unserer Ansätze wurden
auch in integrierten Robotersystemen für mobile Objekthantierungsaufgaben
öffentlich demonstriert. Sie waren ein wichtiger Bestandteil für das Gewinnen
der RoboCup-Roboterwettbewerbe in der RoboCup@Home Liga in den Jahren
2011, 2012 und 2013.
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1. Introduction

How can we endow machines with the perception skills that enable them to
act intelligently? Artificial intelligence research poses this question in many
contexts such as the automation of the factories of the future, self-driving cars,
and robots that assist in our homes. While in recent years, research has achieved
tremendous progress in these areas, many challenges remain.
In this thesis, we consider challenges for visual perception in everyday en-

vironments. Intelligent robots need to perceive the whereabouts of themselves
and objects in their surrounding. Difficulty increases in dynamic scenes: a robot
should distinguish what parts in a scene are moving and how they change. This
becomes even more challenging while a robot is moving. Then, it must differ-
entiate its ego-motion from the motion of parts in the scene. Scene variations
could not only be caused by moving rigid parts, but the parts themselves may
vary in shape by non-rigid deformations.
A further challenge is the semantic interpretation of scene geometry and ap-

pearance. Intelligent robots should be able to discover novel objects and parse
the semantic relation of objects. Without prior knowledge on the objects in a
scene, motion can be used as a cue for singularizing objects and understanding
their relations. Robots can also learn to recognize the category of objects in
images.
Besides accuracy and robustness of perception algorithms, efficiency is another

important dimension, as robots should act fluently and immediately. Frequently,
dynamics also pose constraints on efficiency, as the algorithm has to keep track
of changes in real-time.
The recent broad availability of RGB-D cameras had significant impact on the

field of computer vision. These cameras provide dense color and depth images at
high resolution and frame-rate. We present novel efficient approaches to visual
perception with such sensors.
Perception can typically be phrased as finding a state or description that

brings observations in alignment with expectations. For the geometric percep-
tion of scenes and object instances, we develop efficient dense registration meth-
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1. Introduction

ods that allow for aligning RGB-D measurements and models. The notion of
dense describes approaches that utilize all available measurements in an image,
in contrast to sparse approaches that, for instance, reduce an image to a set of
interest points in textured image regions.
Underlying our efficient registration methods is a concise representation of

RGB-D measurements. We represent RGB-D images densely in multi-resolution
surfel maps(MRSMaps). The maps transform the images into a 3D volume el-
ement (voxel) representation that maintains statistics on the RGB-D measure-
ments at multiple resolutions. We consider the error characteristics typical to
textured-light projecting RGB-D cameras and propose an efficient aggregation
technique for RGB-D images. The maps not only support the storage of a single
image. They can also fuse images from multiple view points, such that they are
suitable as multi-view models of scenes and objects.
We develop methods to register MRSMaps of
• rigid scenes,

• scenes with multiple rigid parts that move differently, and

• scenes with continuous shape deformations.
In static scenes, efficient rigid registration of RGB-D images recovers the cam-

era motion between the images. The method is efficient through the concise rep-
resentation in MRSMaps. It exploits the multi-resolution structure of the maps
for correcting for coarse to fine misalignments, and achieves accuracy through
utilizing the finest resolution common between the maps. Robustness of the reg-
istration is obtained by the use of color and local shape-texture descriptions for
making associations. By registering an image towards a model, we find the pose
of the camera relative to the model. Such models can represent rigid scenes or
objects. Rigid registration also enables to learn the models of static scenes and
objects. While the camera is moving, we estimate the motion of the camera by
aligning the images in a common model frame through simultaneous localization
and mapping (SLAM).
We also study the perception in dynamic scenes in which the moving parts

are rigid. Motion is a fundamental grouping cue that we combine with geometry
and texture hints for dense motion segmentation. We extend rigid registration
towards rigid multi-body registration in order to find the moving parts between
two images and estimates their motion. We formulate a general expectation-
maximization (EM) framework for dense 3D motion segmentation with efficient
approximations through graph cuts and variational inference. We utilize the
method to discover the moving objects in RGB-D video and to build dense
models. By observing the objects split and merge, we reason on part hierarchies,
i.e., our approach acquires scene semantics in an unsupervised way.
For perceiving continuous deformations of objects, we develop an efficient de-

formable registration method. The method extends a state-of-the-art approach
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1.1. Key Contributions

to the efficient processing of RGB-D measurements by exploiting the multi-
resolution structure in MRSMaps. We apply the method for object manipula-
tion skill transfer. Objects of the same class often share a common topology
of functional parts. While instances of the same class may differ in shape, in
many cases, correspondences between the functional parts can be established by
matching shape between the objects. This can be exploited to transfer manip-
ulation skills between several objects of the same class, which would otherwise
be a tedious endeavor, if the skill would need to be programmed separately for
every single instance. Deformable registration recovers such shape variations.
To recognize objects by their category, we train random decision forest clas-

sifiers. The classifiers segments images efficiently into several object classes.
The availability of depth allows for scale-invariant recognition by geometry and
appearance. We make the observations of object-class semantics persistent in a
semantic map of the environment, such that a robot memorizes the whereabouts
of objects of specific categories.

1.1. Key Contributions
This thesis proposes novel approaches to efficient RGB-D environment percep-
tion. The approaches enable

• to acquire 3D models of scenes and objects,

• to perceive these models in live images,

• to observe moving rigid parts and shape variations in scenes,

• to parse the semantics of the environment from either motion cues or
pretrained object-class knowledge, and to make this knowledge persistent
in semantic models.

More specifically, this thesis makes the following contributions:

• We propose multi-resolution surfel maps(MRSMaps)—a concise represen-
tation of RGB-D measurements which is suitable for efficient registration
and allows for aggregating multiple images within a single multi-view map
(Ch. 2).

• Chapter 3 details an efficient, robust, and accurate registration method for
MRSMaps that assumes rigidness of the viewed scene. The registration
method achieves high frame rate on a CPU. We demonstrate state-of-the-
art results in run-time and accuracy.

• In Chapter 4 we release the assumption on static scenes, and propose
an efficient registration method for MRSMaps that segments scenes into

3
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the rigid parts that move differently between two images. The approach
concurrently estimates the rigid body motion of the parts.

• A run-time efficient deformable registration method for MRSMaps without
the assumption on the rigidness of parts is presented in Chapter 5.

• Chapter 6 utilizes MRSMaps and our rigid registration method to learn
3D models of scenes and objects in a key-view based SLAM approach for
which we demonstrate state-of-the-art results. We also propose means for
detecting objects in RGB-D images, to estimate their 6-degree-of-freedom
(DoF) pose, and to track them in real-time.

• Non-rigid registration enables novel approaches to semantic scene parsing
from motion cues (Ch. 7). We segment and estimate the motion of rigid
parts in a scene, and acquire models of these moving parts using SLAM
techniques. By observing the parts split and merge, we find hierarchi-
cal relations between them. We also develop an approach that applies
deformable registration for the transfer of robot skills between objects.

• In chapter 8 we propose an efficient object-class segmentation approach
based on random decision forests(RFs) that is trained on specific object-
classes. We make the segmentations of individual RGB-D images persis-
tent in a multi-resolution semantic map using our SLAM approach. Un-
certainty in the segmentation of individual images is fused in a 3D map
using a Bayesian framework. This approach yields state-of-the-art results
for RGB-D object-class segmentation.

A detailed discussion of our contributions in context with the state-of-the-art is
made in the individual chapters.

1.2. Publications
Parts of this thesis have been published in journals and conference proceedings.
The publications are provided in chronological order.

Journals:

• Jörg Stückler, Benedikt Waldvogel, Hannes Schulz, and Sven Behnke.
Dense Real-Time Mapping of Object-Class Semantics from RGB-D Video.
Accepted for publication in Journal of Real-Time Image Processing, to
appear 2014. Chapter 8.

• Jörg Stückler and Sven Behnke. Multi-Resolution Surfel Maps for Efficient
Dense 3D Modeling and Tracking. In Journal of Visual Communication
and Image Representation, January 2014. Chapters 2, 3, and 6.
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1.2. Publications

• Jörg Stückler, Dirk Holz, and Sven Behnke. RoboCup@Home: Demon-
strating Everyday Manipulation Skills in RoboCup@Home. In IEEE Ro-
botics & Automation Magazine, June 2012. Chapter 6.

Conferences:

• Jörg Stückler and Sven Behnke. Efficient Deformable Registration of
Multi-Resolution Surfel Maps for Object Manipulation Skill Transfer. In
Proceedings of the IEEE International Conference on Robotics and Au-
tomation (ICRA), 2014. Chapters 5 and 7.

• Jörg Stückler, David Droeschel, Kathrin Gräve, Dirk Holz, Michael Schrei-
ber, Angeliki Topalidou-Kyniazopoulou, Max Schwarz, and Sven Behnke.
Increasing Flexibility of Mobile Manipulation and Intuitive Human-Robot
Interaction in RoboCup@Home. RoboCup 2013, Robot Soccer World Cup
XVII, Springer, LNCS, 2014. Chapters 5, 6, and 7.

• Manus McElhone, Jörg Stückler, and Sven Behnke. Joint Detection and
Pose Tracking of Multi-Resolution Surfel Models in RGB-D. In Proceed-
ings of the 6th European Conference on Mobile Robots (ECMR), Barcelona,
Spain, September 2013. Chapter 6.

• Jörg Stückler and Sven Behnke. Efficient Dense 3D Rigid-Body Motion
Segmentation in RGB-D Video. In Proceedings of the British Machine
Vision Conference (BMVC), Bristol, UK, September 2013. Chapter 4.

• Jörg Stückler and Sven Behnke. Hierarchical Object Discovery and Dense
Modelling From Motion Cues in RGB-D Video. In Proceedings of the 23rd
International Joint Conference on Artificial Intelligence (IJCAI), Beijing,
China, August 2013. Chapter 7.

• Jörg Stückler, Ishrat Badami, David Droeschel, Kathrin Gräve, Dirk Holz,
Manus McElhone, Matthias Nieuwenhuisen, Michael Schreiber, Max Schw-
arz, and Sven Behnke. NimbRo@Home: Winning Team of the RoboCup-
@Home Competition 2012. RoboCup 2012, Robot Soccer World Cup XVI,
Springer, LNCS, 2013. Chapter 6.

• Jörg Stückler, Nenad Biresev, and Sven Behnke. Semantic Mapping Us-
ing Object-Class Segmentation of RGB-D Images. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, October 2012. Chapter 8.

• Jörg Stückler and Sven Behnke. Integrating Depth and Color Cues for
Dense Multi-Resolution Scene Mapping Using RGB-D Cameras. In Pro-
ceedings of the IEEE International Conference on Multisensor Fusion and
Information Integration (MFI), Germany, September 2012. Chapter 6.
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• Jörg Stückler and Sven Behnke. Model Learning and Real-Time Tracking
using Multi-Resolution Surfel Maps. In Proceedings of the AAAI Con-
ference on Artificial Intelligence (AAAI-12), Toronto, Canada, July 2012.
Chapter 6.

• Jörg Stückler, David Droeschel, Kathrin Gräve, Dirk Holz, Jochen Kläß,
Michael Schreiber, Ricarda Steffens, and Sven Behnke. Towards Robust
Mobility, Flexible Object Manipulation, and Intuitive Multimodal Inter-
action for Domestic Service Robots. RoboCup 2011, Lecture Notes in
Computer Science (LNCS), vol. 7416, 2012. Chapter 6.

• Jörg Stückler and Sven Behnke. Robust Real-Time Registration of RGB-
D Images using Multi-Resolution Surfel Representations. In Proceedings
of the German Conference on Robotics (ROBOTIK), Munich, Germany,
May 2012. Chapters 2 and 3.

• Jörg Stückler and Sven Behnke. Following Human Guidance to Coopera-
tively Carry a Large Object. In Proceedings of the 11th IEEE-RAS Inter-
national Conference on Humanoid Robots (Humanoids), Bled, Slovenia,
October 2011. Chapter 6.

• Jörg Stückler and Sven Behnke. Combining Depth and Color Cues for
Scale- and Viewpoint-Invariant Object Segmentation and Recognition using
Random Forests. In Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), Taipei, Taiwan, October
2010. Chapter 8.

The following conference publications are closely related with the methods pre-
sented in this thesis and have been written during the time as a research assis-
tant.

• Mark Schadler, Jörg Stückler, and Sven Behnke. Multi-Resolution Surfel
Mapping and Real-Time Pose Tracking using a Continuously Rotating 2D
Laser Scanner. In Proceedings of the IEEE International Symposium on
Safety, Security and Rescue Robotics (SSRR), Linköping, Sweden, Octo-
ber 2013.

This work is the outcome of a master thesis that I was supervising. It
transfers the RGB-D image representation, rigid registration, and scene
modeling methods that are presented in this thesis to mapping and local-
ization for mobile robot navigation with 3D laser scanners. It was used as
the mapping and localization component for our entry NimbRo Centauro
to the DLR SpaceBot Cup 2013.

• Torsten Fiolka, Jörg Stückler, Dominik Klein, Dirk Schulz, and Sven
Behnke. Distinctive 3D Surface Entropy Features for Place Recognition. In
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Proceedings of the 6th European Conference on Mobile Robots (ECMR),
Barcelona, Spain, September 2013.

• Torsten Fiolka, Jörg Stückler, Dominik Alexander Klein, Dirk Schulz, and
Sven Behnke. SURE: Surface Entropy for Distinctive 3D Features. In
Proceedings of Spatial Cognition 2012, Germany, September 2012.

The preceding two publications are outcomes of a master thesis I was
supervising. They present the SURE interest point detector and descrip-
tor for RGB-D images and 3D point clouds, and its application for place
recognition. The underlying representation are MRSMaps.

• German Martin Garcia, Dominik Alexander Klein, Jörg Stückler, Simone
Frintrop, and Armin B. Cremers. Adaptive Multi-cue 3D Tracking of Ar-
bitrary Objects. In Proceedings of DAGM-OAGM 2012, Graz, Austria,
August 2012.

This work is a publication of the results of a master thesis I was co-
supervising. It tracks position and bounding box of objects in 3D using
an adaptive shape and appearance model.

• Jochen Kläß, Jörg Stückler and Sven Behnke. Efficient Mobile Robot Nav-
igation using 3D Surfel Grid Maps. In Proceedings of the German Con-
ference on Robotics (ROBOTIK), Munich, Germany, May 2012.

This publication reports on a Diploma thesis I was supervising. It uses a
single resolution surfel grid for representing 3D laser scans of the environ-
ment. It tackles mapping, localization, and navigation with this represen-
tation.

• Bastian Oehler, Jörg Stückler, JochenWelle, Dirk Schulz, and Sven Behnke.
Efficient Multi-Resolution Plane Segmentation of 3D Point Clouds. In
Proceedings of the International Conference on Intelligent Robotics and
Applications (ICIRA), Aachen, Germany, December 2011.

This work presents the outcome of a Diploma thesis I was supervising.
Planes are extracted efficiently from depth images and 3D point clouds
within a multi-resolution Hough voting framework. The underlying repre-
sentation for the images and 3D point clouds are MRSMaps.
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1.3. Open-Source Software Releases
We provide an open-source implementation of MRSMaps1. The current release
includes our approaches to RGB-D image representation, registration, and scene
and object modeling and tracking. The release of our software gives other re-
searchers the opportunity to use and to build on top of our methods in their own
research, to compare their results to our approach, and to validate our methods.

1.4. Collaborations
Parts of this thesis have been developed in collaboration with others. The joint
object detection and tracking approach in a particle filter framework in Ch. 6
extends the master thesis of McElhone (2013) which I was supervising. I also
supervised the master thesis of Biresev (2012) which applied my previous work on
object-class segmentation using random forests (Stückler and Behnke, 2010) for
semantic mapping. The semantic mapping approach has been extended towards
online operation in Ch. 8. The approach operates also in real-time due to a GPU
variant of the random forest classifier implemented by Waldvogel (2013) whose
thesis was supervised by Hannes Schulz.

1http://code.google.com/p/mrsmap/
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RGB-D Representation and
Registration Methods
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2. RGB-D Image Representation in
Multi-Resolution Surfel Maps

In this chapter, we develop a novel representation for RGB-D measurements. It
is suited for single images as well as for aggregating several RGB-D images from
different view-points. We denote this representation multi-resolution surfel map
(MRSMap), since it maps RGB-D image content to surface elements(surfels) at
multiple 3D resolutions.
We design MRSMaps as an image representation that respects sensor charac-

teristics and provides the basis for efficient registration. We overlay voxel grids
at multiple resolutions over the RGB-D measurements. The point set measured
within a voxel is represented as surface element (surfel). When adding image
content to a map, we limit the maximum resolution for surfels with distance to
the sensor (see Fig. 2.1, left). If only one image is incorporated into a map, its
multi-resolution structure is local, since with increasing distance from the sensor

Figure 2.1.: Multi-resolution surfel maps represent RGB-D data as surfels at
multiple resolutions (left). The maximum resolution is limited with
distance to the sensor. We represent the data also at every lower
resolution, such that surfels can be easily compared and matched at
the finest resolution common between maps (right).
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

Figure 2.2.: Infrared textured light cameras provide RGB and depth images at
good quality and high framerates. Left: Asus Xtion Pro Live. Cen-
ter: RGB image. Right: Depth image (depth color coded).

origin, the maximum resolution decreases in which measurement statistics are
aggregated.
By restricting the resolution with distance, our maps capture distance depen-

dent degradation of measurement quality which is a typical property of RGB-D
sensors. When using local multi-resolution, it is beneficial to represent RGB-D
data at all resolutions concurrently – not only at the maximum resolution possi-
ble. In this way, maps that have been acquired from differing view-points can be
matched at the finest resolution common between the maps (see Fig. 2.1, right).
We choose to compress the measured point sets into sample mean and co-

variance. This makes the computational effort for comparing and matching the
content of a voxel constant and equal across resolutions. An appropriate choice
of the distance-dependent limit spares unnecessary computations on high detail
that corresponds to measurement noise, while it retains the fine-detailed scene
structure available in the data.

2.1. RGB-D Sensor Characteristics
Measurement principles of current RGB-D sensors are mainly based on triangu-
lation or time-of-flight. The Microsoft Kinect camera has had significant impact
in computer vision and robotics due to its simple use, good quality depth, and
low cost. Similar to textured-light stereo cameras for which a textured pattern
in the visible light spectrum is projected into the scene, these RGB-D cameras
project a speckle pattern in the infrared (IR) spectrum. It is measured with a
dedicated IR image sensor (see Fig. 2.2, left), while color is observed with an
additional RGB image sensor. The cameras provide VGA resolution (640×480)
depth and RGB images at a framerate of 30Hz. Some cameras such as the
Asus Xtion Pro Live time-synchronize both image types in hardware, which is
especially useful in moving scenes.
Depth is determined through correlation of the measured speckle pattern with

a stored reference measurement which is recorded on a planar target during
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2.1. RGB-D Sensor Characteristics

Figure 2.3.: Measurement principle of structured-light cameras. Left: Depth
is estimated by measuring disparity of points in an IR projected
speckle pattern towards a reference measurement. Right: Under
a Gaussian beam profile of the laser, the intensity profile of the
speckles flattens with distance from the optical axis.

factory calibration. Khoshelham and Elberink (2012) go into the details of the
measurement principle, which we briefly restate in the following. An object is
placed at a depth Zm from the IR sensor (see Fig. 2.3). It is visible at a specific
point in the projected speckle pattern. On the reference plane, depth Zr has
been measured for this point. The disparity d is the shift of the speckle point
between its position on the reference plane and its new image position when
measuring the object. We define D as the disparity of the speckle point on
the plane through the object parallel to the reference plane. The similarity of
triangles gives the relations

d

f
= D

Zm
(2.1)

and
D

Zr−Zm
= b

Zm
, (2.2)

where b is the baseline between IR camera and projector, and f is the focal
length of the camera. From these relations the 3D coordinates of the object are
determined by

Zm =
(
Zr + 1

fb
d

)−1

Xm = Zm
f

(xm−xc+ δx)

Ym = Zm
f

(ym−yc+ δy),

(2.3)

where (xm,ym) and (Xm,Ym,Zm) are the measured image and 3D positions of
the object, xc and yc are the optical center coordinates, and δx and δy correct for
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

lens distortion. Thus, measured depth is inversely related to disparity. Using the
recovered 3D position of each pixel in the depth image, corresponding points in
the RGB image can be found through projection. This process requires known
extrinsics between RGB and IR camera and the intrinsic calibration of the RGB
camera.
Khoshelham and Elberink (2012) identify three types of measurement errors

that do not stem from imperfect calibration. Assuming Gaussian noise in dis-
parity measurements, this noise can be propagated to the depth measurement
using first-order error propagation:

σ2
Zm =

(
∂Zm
∂d

)
σ2
d

(
∂Zm
∂d

)
= 1

(fb)2Z
4
mσ

2
d, (2.4)

hence, the standard deviation in depth is proportional to the squared depth
to the sensor. Depth is also involved in the calculation of the Xm and Ym
coordinates in 3D of the object point. By propagating disparity uncertainty to
Xm and Ym,

σ2
Xm =

(
∂Xm

∂d

)
σ2
d

(
∂Xm

∂d

)
= 1
f4b2

(xm−xc+ δx)2Z4
mσ

2
d,

σ2
Ym =

(
∂Ym
∂d

)
σ2
d

(
∂Ym
∂d

)
= 1
f4b2

(ym−yc+ δy)2Z4
mσ

2
d,

(2.5)

we see that also these standard deviations depend on the squared depth to the
sensor. Notably, they increase with distance from the optical center on the image
plane. A further effect is that for a specific number of points per unit area, point
density is inversely related to the squared depth to the sensor. Finally, since
disparity is discretized into 10 bits for encoding its value before transmitting it
via USB, the difference in depth between adjacent disparity discretizations,

∆Z(d) = Zm(d)−Zm(d−1) = 1
fb
Z2
m, (2.6)

is also proportional to the squared depth.
Measurement noise, however, is also affected by the local quality of the speckle

pattern, since it influences the quality of the disparity measurement. Assum-
ing a Gaussian IR laser beam that illuminates a diffraction element to produce
the speckle pattern, the intensity profile of the speckles flattens with distance
from the beam’s optical axis (Ohtsubo and Asakura, 1977). By this, dispar-
ity estimation through cross-correlation is less accurate with distance from the
optical axis. The beam’s optical axis approximately coincides with the image
sensor’s optical center at distances d� b, such that uncertainty in disparity can
be expressed as a function of distance from the optical center, i.e.

σd := σd(xm−xc+ δx,ym−yc+ δy). (2.7)
We conclude that these measurement properties should be incorporated into

image representations to model the measured depth readings.
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2.2. Multi-Resolution Surfel Maps

Figure 2.4.: Surfel view directions. We support up to six surfels for orthogonal
view directions onto the voxel faces.

2.2. Multi-Resolution Surfel Maps
In MRSMaps, we represent the joint color and shape distribution of RGB-D
measurements at multiple resolutions in 3D. We use octrees as a natural data
structure for this purpose. The tree subdivides the represented 3D volume into
cubic voxels at various resolutions, where resolution is defined as the inverse of
the cube’s side length. A node in the tree corresponds to a single voxel. Inner
nodes branch to at least one of eight child nodes, dividing the voxel of the inner
node into eight equally sized sub-voxels. The nodes at the same depth d in the
tree share a common cube resolution ρ(d) := 2dρ(0) which is a power of 2 of the
cube resolution of the root node at depth 0.
In each node of the tree, i.e., inner nodes as well as leaf nodes, we store

statistics on the joint spatial and color distribution of the points P within its
volume. The distribution is approximated with sample mean µ and covariance Σ
of the data, i.e., we model the data as normally distributed in a node’s volume.
We denote the local description of voxel content as surfel s. It describes the

local shape and color distribution within the voxel by the following attributes:

• mean µs ∈ R6 and covariance Σs ∈ R6, where the first three coordinates
µps model the 3D coordinates of the points within the voxel and the latter
three dimensions µcs =

(
µLs ,µ

α
s ,µ

β
s

)T
describe color,

• a surface normal ns ∈ R3 pointing to the sensor origin and normalized to
unit length,

• a local shape-texture descriptor hs.

Since we build maps of scenes and objects from several perspectives, multiple
distinct surfaces may be contained within a node’s volume. We model this
by maintaining multiple surfels in a node that are visible from different view
directions (see Fig. 2.4). We use up to six orthogonal view directions v ∈ V :=
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

Figure 2.5.: αβ chrominances for different luminance values.

Figure 2.6.: Lαβ color space example. From left to right: Color image, L-, α-,
β-channel.

{±ex,±ey,±ez} aligned with the basis vectors ex, ey, ez of the map reference
frame. When adding a new point p to the map, we determine the view direction
onto the point vp = Tmc p and associate it with the surfel belonging to the most
similar view direction,

v′ = argmax
v∈V

{
vT vp

}
. (2.8)

The transform Tmc maps p from camera to map frame.
By maintaining the joint distribution of points and color in a 6D Gaussian

distribution, we also model the spatial distribution of color. In order to sepa-
rate chrominance from luminance information and to represent chrominances in
Cartesian space, we choose a variant of the HSL color space. We define the Lαβ
color space through

L := 1
2 (max{R,G,B}+ min{R,G,B}) ,

α :=R− 1
2G−

1
2B, and

β :=
√

3
2 (G−B).

(2.9)

The chrominances α and β represent hue and saturation of the color (Hanbury,
2008) and L its luminance (see Figs. 2.5 and 2.6).
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2.2. Multi-Resolution Surfel Maps

Figure 2.7.: Multi-resolution surfel map aggregation from an RGB-D image. Top
left: RGB image of the scene. Top right: Maximum voxel resolution
coding, color codes octant of the leaf in its parent’s voxel (max.
resolution (0.0125m)−1). Bottom: 15 samples per color and shape
surfel at (0.025m)−1 (left) and at (0.05m)−1 resolution (right).

Surface normals n are determined from the eigen decomposition of the point
sample covariance in a local neighborhood at the surfel. We set the surface
normal to the eigenvector that corresponds to the smallest eigenvalue, and direct
the normal towards the view-point. Due to the discretization of the 3D volume
into voxels, surfels may only receive points on a small surface patch compared
to the voxel resolution. We thus smooth the normals by determining the normal
from the covariance of the surfel and adjacent surfels in the voxel grid.
Neighboring voxels can efficiently be found using precalculated look-up ta-

bles (Zhou et al., 2011). We store the pointers to neighbors explicitly in each
node to achieve better run-time efficiency than tracing the neighbors through
the tree. The octree representation is still more memory-efficient than a multi-
resolution grid, as it only allocates voxels that contain the 3D surface observed
by the sensor.

2.2.1. Modeling Measurement Errors
We control the maximum resolution in the tree to consider the typical property
of RGB-D sensors that measurement errors increase quadratically with depth
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

Figure 2.8.: 2D illustration of our local shape-texture descriptor. We determine
a local description of shape, chrominance (α, β), and luminance
(L) contrasts to improve the association of surfels. Each node is
compared to its 26 neighbors. We smooth the descriptors between
neighbors.

and with distance from the optical center on the image plane (see Sec. 2.1). We
adapt the maximum resolution ρmax(p) at a point p with the squared distance
to the optical center,

ρmax(p) = 1
λρ ‖p‖22

, (2.10)

where λρ is a factor that is governed by pixel as well as disparity resolution and
noise and can be determined empirically. Fig. 2.7 shows the map representation
of an RGB-D image in two example resolutions.

2.2.2. Shape-Texture Descriptor
We construct descriptors of shape and texture in the local neighborhood of each
surfel (see Fig. 2.8). Similar to fast point feature histograms(FPFHs) (Rusu
et al., 2009), we first build three-bin histograms hshs of the three angular surfel-
pair relations between the query surfel s and its up to 26 neighbors s′ at the
same resolution and view direction. The three angles are measured between the
normals of both surfels ](n,n′) and between each normal and the line ∆µ :=
µ− µ′ between the surfel means, i.e., ](n,∆µ) and ](n′,∆µ). Each surfel-
pair relation is weighted with the number of points in the neighboring node.
We smooth the histograms to better cope with discretization effects by adding
the histogram of neighboring surfels with a factor γ = 0.1 and normalize the
histograms by the total number of points.
Similarly, we extract local histograms of luminance hLs and chrominance hαs , hβs

contrasts. We bin luminance and chrominance differences between neighboring
surfels into positive, negative, or insignificant. The shape and texture histograms
are concatenated into a shape-texture descriptor hs of the surfel. Fig. 2.9 shows
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2.2. Multi-Resolution Surfel Maps

Figure 2.9.: Similarity in shape-texture descriptor for blob- (top left) and edge-
like structures (top right) and in planar, textureless structures (bot-
tom). The MRSMaps are shown as voxel centers at a single resolu-
tion each (left images). Feature similarity towards a reference point
(green dot) is visualized by colored sufel means (right images, red:
low, cyan: high similarity).

feature similarity on color blobs, edges, and planar structures determined using
the Euclidean distance between the shape-texture descriptors.

2.2.3. Efficient RGB-D Image Aggregation
Instead of computing mean and covariance in the nodes with a two-pass algo-
rithm, we use a one-pass update scheme with high numerical accuracy (Chan
et al., 1979). It determines the sufficient statistics S(P) :=∑

p∈P p and S2(P) :=∑
p∈P pp

T of the normal distribution from the statistics of two point sets PA

and PB through

S(PA∪B)← S(PA) +S(PB),

S2(PA∪B)← S2(PA) +S2(PB) + δδT

NANB(NA+NB) ,
(2.11)

where N(·) := |P(·)| and δ := NBS(PA)−NAS(PB). From these, we obtain
sample mean µ(P) = 1

|P|S(P) and covariance Σ(P) = 1
|P|−1S

2(P)−µµT .
Careful treatment of the numerical stability is required when utilizing one-pass

schemes for calculating the sample covariance (Chan et al., 1979). We require
a minimum sample size of |P| ≥ 10 to create surfels and stop incorporating
new data points if |P| ≥ 10,0001. The discretization of disparity and color
produced by the RGB-D sensor may cause degenerate sample covariances, which

1Using double precision (machine epsilon 2.2 ·10−16) and assuming a minimum standard
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

we robustly detect by thresholding the determinant of the covariance at a small
constant.
The use of an update scheme allows for an efficient incremental update of the

map. In the simplest implementation, each point is added individually to the
tree: Starting at the root node, the point’s statistics is recursively added to the
nodes that contain the point in their volume.
Adding each point individually is, however, not the most efficient way to gen-

erate the map. Instead, we exploit that by the projective nature of the camera,
neighboring pixels in the image project to nearby points on the sampled 3D
surface—up to occlusion effects. This means that neighbors in the image are
likely to belong to the same octree nodes. In effect, the size of the octree is
significantly reduced and the leaf nodes subsume local patches in the image (see
top-right of Fig. 2.7). Through the distance-dependent resolution limit, patch-
size does not decrease with distance to the sensor but even increases. We exploit
these properties and scan the image to aggregate the sufficient statistics of con-
tiguous image regions that belong to the same octree node. This measurement
aggregation allows to construct the map with only several thousand insertions
of node aggregates for a 640×480 image in contrast to 307,200 point insertions.
After the image content has been incorporated into the representation, we

precompute mean, covariance, surface normals, and shape-texture features.

2.2.4. Handling of Image and Virtual Borders
Special care must be taken at the borders of the image and at virtual borders
where background is occluded (see Fig. 2.10). Nodes that receive such border
points only partially observe the underlying surface structure. When updated
with these partial measurements, the true surfel distribution is distorted towards
the visible points. In order to avoid this, we determine such nodes by scanning
efficiently through the image, and neglect them.
Conversely, foreground depth edges describe contours of measured surfaces.

We thus mark surfels as belonging to a contour if they receive foreground points
at depth discontinuities (example contours illustrated in Fig. 2.10).

2.3. Experiments
MRSMaps are designed as concise representations of RGB-D images as well as of
maps that aggregate many images from various view-points. In the subsequent
experiments, we demonstrate run-time and memory requirements of MRSMaps.

deviation of 10−4 in P, and reasonable map sizes (maximal radius smaller than 102 m), we
obtain a theoretical bound for the relative accuracy of the covariance entries in the order
of 10−6 at 104 samples (Chan and Lewis, 1979). More accurate but slower two-pass schemes
could be used for extremely large map or sample sizes, or smaller noise.
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Figure 2.10.: Left: 2D illustration of occlusion types. We detect surfels that
receive background and foreground points at depth discontinuities.
The visibility of structure in the background changes with the view-
point and is not consistent under view-point changes. Right, top:
found virtual background border surfels (cyan). Right, bottom:
foreground border surfels (cyan).

We utilize RGB-D sequences of the public RGB-D bechmark dataset (Sturm
et al., 2012). The dataset contains RGB-D image sequences with ground truth
information for the camera pose which has been measured using an external
optical motion capture system. We use full 640×480 VGA resolution images
and set the maximum resolution of our maps to (0.0125m)−1 throughout the
experiments which is a reasonable lower limit with respect to the minimum
measurement range of the sensor (ca. 0.4m) at a distance dependency of λρ =
0.02. The experiments have been conducted on a consumer-grade PC with an
Intel Core i7-4770K QuadCore CPU with a maximum clock speed of 3.50 GHz.

2.3.1. Single RGB-D Image Aggregation
The RGB-D benchmark dataset contains 47 sequences with a large variety in
scene content. In some sequences, the camera is swept in-hand through office
environments in various distances to surfaces. Other sequences observe mainly
distant parts of a large open indoor environment. There are also sequences, in
which the camera is attached on a mobile robot observing close-range and large
indoor scenes from a low horizontal perspective near the ground. To obtain
measurements in diverse scenes, we processed all the sequences contained in
the RGB-D benchmark by constructing a MRSMap for each RGB-D image and
measuring run-time and memory consumption.
Fig. 2.11 depicts the dependency of the MRSMap size in terms of nodes or

voxels on the median depth in an image. Map size exhibits inverse quadratic
relation to median depth which is indicated by a curve n(z) := a 1

(z−b)2 + c fitted
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

Figure 2.11.: Properties of MRSMap aggregation from single RGB-D images.
We show histograms and function fits (red curves) over all se-
quences of the RGB-D benchmark dataset (Sturm et al., 2012).
Left: number of nodes vs. median depth in image. Center: mem-
ory usage vs. number of nodes. Right: run-time vs. number of
nodes.

to the local median of the points. The local median has been determined from
points within a range of 0.1m depth. A median of 2,368 and up to 8,189 nodes
are instantiated, subsuming the 307,200 image pixels into 2 magnitudes less
elements.
We can also see from Fig. 2.11, that memory consumption is linear in the

number of nodes. Here, we fit a linear line to the acquired samples directly. We
measured the memory claimed for tree structure, voxel properties, surfels, shape-
texture descriptors, and node neighborhood pointers, which is 3,358 Bytes per
node at double precision for six view directions. If only a single view direction
is maintained in the nodes, we can safe 2,515 Bytes to reduce node size to 843
Bytes. A map with six view directions requires ca. 27.5MB for 8,189 nodes.
With a single view direction only about 6.9MB are used, which is about 5.6 times
larger than the 640×480 RGB-D image itself (ca. 1.2MB) if it is stored with
2 Bytes for Bayer-pattern encoding of RGB and 2 Bytes for disparity at each
pixel. We primarily design MRSMaps as a representation for image registration
and for aggregating RGB-D measurements from multiple view-points. High
memory efficiency is traded for run-time efficiency during registration for which
map content such as surfels, shape-texture descriptors, and node neighborhood
should be precalculated to gain significant speed ups.
The overall run-time to aggregate a MRSMap from an image scales approxi-

mately linearly with the number of nodes in the map (see Fig. 2.11). The timing
includes to mark foreground and background borders, and to precompute surfels,
node neighborhood, and shape-texture descriptors. The median overall run-time
in all 47 sequences is 16.5ms, while we measure 43.2ms at maximum. Most of
the individual processing steps such as tree construction and incorporation of
sufficient statistics, determination of node neighborhood, evaluation of surfels,
and calculation of the shape-texture descriptor also depend approximately lin-
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Figure 2.12.: Run-time of individual stages of MRSMap aggregation wrt. the
number of nodes. We show histograms and linear function fits (red
curves) over all sequences of the RGB-D benchmark dataset (Sturm
et al., 2012). Top left: tree construction. Top center: node neigh-
borhood precalculation. Top right: surfel evaluation (means, co-
variances, normals). Bottom left: shape-texture descriptor calcu-
lation. Bottom center: foreground border search. Bottom right:
background (virtual) border search.

early on the number of nodes (see Fig. 2.12). Searching for fore- and background
borders in the image naturally takes almost constant time with respect to the
number of nodes.

2.3.2. Multi-View Map Aggregation
The results in Fig. 2.13 on three sequences of the RGB-D benchmark dataset
demonstrate that MRSMaps efficiently store RGB-D sequences in multi-view
maps. In the freiburg2_desk sequence, the camera is moved in-hand on a circle
pointing inwards onto a cluttered table scene. We used the ground-truth pose
available to integrate the RGB-D images into a single MRSMap. The increase
in the number of nodes per iteration naturally depends on the degree of novelty
of the viewed scene content. After the aggregation of 2,111 RGB-D images, the
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2. RGB-D Image Representation in Multi-Resolution Surfel Maps

Figure 2.13.: Properties of MRSMap aggregation during incremental mapping
in the freiburg2_desk (top), the freiburg1_room (center), and the
freiburg3_long_office_household (bottom) sequence. Left: num-
ber of nodes. Center: memory usage. Right: run-time to update
tree structure and sufficient statistics.

map contains 44,174 octree nodes and uses only 141.46MB of memory com-
pared to the 2,473.8MB required to store the original 2,111 RGB-D images at
640×480 resolution. MRSMaps achieve a compression ratio of about 17.5 on
this sequence. The unsteady evolution of the number of nodes is explained by
alternating phases in which new scene content is observed and old parts are seen
again. Remarkably, run-time for tree construction and incorporation of suffi-
cient statistics only slowly increases with the number of nodes that are already
contained in the map. It keeps below 22.8ms throughout the sequence.
For the freiburg3_long_office_household sequence, our approach shows sim-

ilar properties like for the freiburg2_desk sequence. The camera also moves in
a circle around a table-top scene, mostly pointing inwards onto the tables. On
this sequence, 2,451 images are processed with a total size of ca. 2,872.3MB.
The MRSMap contains 127,974 nodes in the end and utilizes 409.8MB. The
update time reaches 31.1ms at maximum and varies around a median of 17.2ms
throughout the sequence. It indicates peaks in phases in which the number of
nodes increases quickly.
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Camera movement in the freiburg1_room sequence is qualitatively different
to the previous two sequences. Here, the camera sweeps through an office and
observes the scene content which is mostly placed near the walls from the inside
of the room. During the most part of this sequence the evolution of the number
of nodes is nearly linear since the camera does not rest on or reobserve previously
mapped scene content. At the end of the sequence after about 900 iterations,
when the camera moves to area seen at the beginning of the sequence, the
increase in the number of nodes is less strong. The final map consists of 197,090
nodes, utilizing 631.2MB of memory which corresponds to a compression ratio
of approx. 2.5 towards the original images (1,577.3MB).

2.4. Related Work
Storing raw 3D point clouds (Rusu et al., 2008) that have been acquired with
3D laser scanners or RGB-D cameras quickly becomes demanding in terms of
memory consumption. Also, neighborhood look-ups are frequently part of al-
gorithms that utilize the map representation, hence, the representation should
support these look-ups efficiently. Elseberg et al. (2013) propose an octree im-
plementation that can store point clouds of one billion points at 8GB of RAM.
Several compressive and more memory-efficient map representation have been
studied. They typically are designed for visualization or autonomous robot nav-
igation.
Vaskevicius et al. (2010) extract planar surface patches and demonstrate lower

memory consumption than point- or voxel-based map representations. However,
planarity is a strong assumption on the structure of the environment. In mobile
robotics, occupancy grid mapping is a widely used technique for representing
an environment in 2D (Thrun, 2002). This concept does not, however, directly
transfer to modeling the environment in a 3D grid due to its high memory usage.
Hornung et al. (2013) propose OctoMap, a framework that implements 3D oc-
cupancy mapping in octrees. Each leaf in the tree stores information about the
cell being occupied, free, or unknown. The maximum resolution is not adapted
to the measurement characteristics of the sensor, but every measurement is rep-
resented up to a common maximum resolution. To incorporate the modeling of
unknown and free space, raycasting is performed for each measurement. Ryde
and Hu (2010) represent occupied voxels at multiple resolutions in lists. This
approach can be seen as an alternative implementation of octrees without mak-
ing the tree structure explicit. In (Ryde and Corso, 2012) the authors adapt
counting bloom filters, an efficient hashing function, to store the occupied vox-
els in hash maps. Our representation respects sensor error characteristics by
choosing an adequate maximum resolution at each RGB-D image pixel. The
measured surface in a voxel is modeled by its mean and covariance and hence
provides a continuous surface representation as opposed to the discrete binary
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occupancy information. Furthermore, we model six view-directions onto surfaces
in each voxel. MRSMaps are specifically designed for efficient aggregation and
registration.
For outdoor terrain modeling, elevation maps are frequently used (Herbert

et al., 1989; Pfaff et al., 2007). A 2D grid is layed over the environment and the
height of the surface is stored in each grid cell. Multi-level surface maps (Triebel
et al., 2006) extend this 2.5 dimensional representation by maintaining multiple
surface heights in each grid cell.
Krainin et al. (2011) model surfaces as a set of local RGB-D patches (also

coined surfels). Signed distance functions (Curless and Levoy, 1996) are an
alternative way to represent surfaces in voxel grids. They have been applied
as map representation for RGB-D mapping in KinectFusion Newcombe et al.
(2011a). Similar to our method, the 3D normal distribution transform (3D-
NDT) represents 3D laser scans as Gaussian distributions in voxels of a 3D
grid (Magnusson et al., 2007).
There are also extensions to model the RGB color of points and to utilize color

for registration (Huhle et al., 2008). The authors propose to represent the spatial
distibution of color within a voxel as a Gaussian mixture model. We propose a
highly efficient image aggregation technique for point clouds that are organized
in an image structure. It is specifically suited for RGB-D images. The 3D-NDT
does not restrict the maximum resolution at a pixel to consider measurement
characteristics. Furthermore, we rapidly extract local shape-texture descriptors
from the map to improve the basin of convergence of our registration method.
Contours and multiple view-points are also not included in the 3D-NDT.

2.5. Summary
In this chapter, we proposed MRSMaps, a 3D multi-resolution representation
of RGB-D images and measurements from multiple view-points. The primary
purpose of our method is to provide a representation suitable for rapid regis-
tration. Our maps incorporate typical measurement characteristics of RGB-D
sensors. Since measurement noise, sampling density, and discretization effects
depend quadratically on depth as well as the distance from the optical center
on the image plane, we adapt the maximum resolution at each measurement to
its squared distance from the sensor. In effect, the maps exhibit local multi-
resolution structure.
We devised techniques to efficiently aggregate maps from images. We extract

local rotation- and approximately illumination-invariant shape-texture descrip-
tors that are intended to judge the correspondence of surfels between MRSMaps.
In our evaluation, we demonstrated run-time efficiency and memory require-
ments of our implementation for maps from single images as well as for maps
that incorporate images from multiple view-points. While a map of a single

26



2.5. Summary

RGB-D image requires more memory than the original image, the fusion of
multiple views in a single MRSMap is more memory-efficient than storing the
individual images. In MRSMaps, we trade off memory efficiency with run-time
efficiency and representation accuracy for registration purposes by preserving a
high degree of surface detail and precalculating features such as voxel neighbor-
hood, surface normals, and shape-texture descriptors.
In future work, we will evaluate the use of hash tables instead of a pointer-

based implementation of octrees to further increase efficiency. An implementa-
tion on GPU could also further improve run-time.
The applicability of MRSMaps is not restricted to RGB-D images. The mea-

surement principle of rotating 2D laser scanners also produces point clouds that
are organized image-like by stacking the individual 2D scan lines. In contrast to
the dependency on the squared distance from the sensor in RGB-D images, the
accuracy of 2D laser measurements is approximately linear in the distance. In
recent work, we applied MRSMaps for 3D laser-based mapping and localization
in rough terrain with mobile robots (Schadler et al., 2013).
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Many perceptual abilities involve the alignment of measurements, e.g., to deter-
mine the ego-motion of a camera, to track objects, or to observe changes in a
scene. We begin our investigation of RGB-D registration methods by devising
an efficient registration algorithm that estimates motion between MRSMaps un-
der the assumption that the observed scene remains rigid. In experiments, we
demonstrate that our approach performs accurately, robustly, and is computa-
tionally efficient to run on CPU.

3.1. Background
Our registration approaches are formulated as optimization problems of non-
linear functions. In the following, we will introduce basic concepts and notation.

3.1.1. Non-Linear Function Optimization
Let f : RN → R be a real-valued, twice Lipschitz continuously differentiable
function f(x) in N real variables. We aim at finding a minimizer x̂ at the
minimum of this function,

x̂= argmin
x

f(x). (3.1)

At x̂, f attains its minimum. We also call f the objective function.
If f is non-linear and non-convex, several local minima may exist. We therefore

define the concept of a local minimizer x̂ to yield a minimum of f in a local
neighborhood, i.e.,

∃ε ∈ R : ∀x ∈
{
x′ ∈ RN |

∥∥∥x′− x̂∥∥∥< ε
}

: f(x)≥ f(x̂). (3.2)

We say that f attains a local minimum at x̂.

29



3. Rigid Registration

Since f is twice continuously differentiable, we can find first- and second-order
derivatives,

∇f :=
(
∂f

∂x1
, . . . ,

∂f

∂xN

)
,

∇2f :=


∂2f

∂x1∂x1
. . . ∂2f

∂x1∂xN... . . . ...
∂2f

∂xN∂x1
. . . ∂2f

∂xN∂xN

 ,
(3.3)

where we denote ∇f as the gradient or Jacobian and ∇2f as the Hessian of f .
The Hessian is symmetric, i.e.,

(
∇2f

)
ij

=
(
∇2f

)
ji
.

Taylor-expansion yields first- (linear) and second-order (quadratic) approxi-
mations to f ,

f(x)≈ f̃(x) = f(x′) +∇f(x′)(x−x′), (3.4)

f(x)≈ f̃(x) = f(x′) +∇f(x′)(x−x′) + 1
2(x−x′)T ∇2f(x′)(x−x′), (3.5)

which we will utilize in iterative minimization schemes.
Global convergence of an optimization method means that it will find a min-

imum from any state. Local convergence restricts the basin of convergence to a
local neighborhood around the minimum x̂, i.e.

∃ε > 0, ε ∈ R : ∃δ ∈ (0,1)⊂ R : ∀i ∈ N+ :
‖x̂−x0‖ ≤ ε⇒ (f(xi)−f(x̂))≤ δ (f(xi−1)−f(x̂)) . (3.6)

3.1.1.1. Gradient Descent Methods

Gradient descent methods utilize the linear approximation to f in Eq. (3.4) to
determine several steps towards a local minimum. The simplest gradient descent
approach is the method of steepest descent (Kelley, 1999),

xi = xi−1−λ∇f(xi−1) (3.7)

in which we take steps −λ∇f(xi−1) towards a minimum.
Due to the linear approximation of f , the choice of λ determines if xi actually

decreases f towards f(xi−1). An important part of steepest descent algorithms
is hence to control λ. Typically, λ is gradually adjusted in a line-search in
which the result of the steepest descent iteration is tested to get closer to a local
minimum in f along the line defined by the linear approximation. If λ is set such
that f attains a local minimum along the line, the line-search is called exact.
The steepest descent algorithm with exact line-search provides linear conver-

gence rate, i.e., there is a constant δ ∈ (0,1)⊂ R such that for all i

(f(xi)−f(x̂))≤ δ (f(xi−1)−f(x̂)) . (3.8)
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It can be shown (e.g., Nesterov, 2004), that the convergence constant δ depends
on the minimum and maximum eigenvalues of the Hessian ∇f(x̂) at the local
minimum x̂ of f . Steepest descent typically becomes slow close to the mini-
mum and can exhibit slow convergence along valleys of the objective function.
However, it has global convergence guarantees.
Several gradient descent methods exist that improve convergence speed. For

general non-linear functions, the conjugate gradient descent method may yield
quadratic convergence rate, i.e., for all i,

(f(xi)−f(x̂))≤ δ (f(xi−1)−f(x̂))2 , (3.9)

and linear convergence in the worst case (Hager and Zhang, 2006).

3.1.1.2. Newton’s Method

If we use the local quadratic approximation in Eq. (3.5), we can set the derivative
∇f̃(x) = 0 to zero to obtain

∇f(x′) +∇2f(x′)(x−x′) = 0. (3.10)

This yields the second-order update scheme

xi = xi−1−λ
(
∇2f(xi−1)

)−1
∇f(xi−1), (3.11)

which is known as Newton’s method. Again, the step-length λ has to be chosen
appropriately. For convergence towards a local minimum at x̂, also the sufficient
condition x

(
∇2f(xi)

)
x > 0 must hold that the Hessian in each iteration is

positive definite.
Newton’s method has quadratic convergence rate. However, convergence can

only be guaranteed locally, i.e., for sufficiently small deviations from the mini-
mum for which the second-order approximation does not yield a maximum or
saddle point.

3.1.2. Non-Linear Least Squares Optimization
In non-linear least squares optimization we can write the objective function in
the form

f(x) = 1
2e

T (x)We(x), (3.12)

where e(x) := h(x)−z ∈RM is a vector of M residuals between h(x) and target
variables z ∈ RM , e and h are non-linear Lipschitz continuously differentiable
functions, and W ∈ RN×N is a weighting matrix.
Jacobian and Hessian of f are

∇f(x) =∇eT (x)We(x), (3.13)
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∇2f(x) =∇eT (x)W∇e(x) +∇2eT (x)We(x). (3.14)

The following iterative optimization methods utilize this special form to obtain
efficient algorithms.

3.1.2.1. The Gauss-Newton Method

The Gauss-Newton method exploits the local linearization

f(x)≈ f̃(x) = 1
2 ẽ

T (x)Wẽ(x), (3.15)

of the residuals e around x′

e(x)≈ ẽ(x) = e(x′) +∇e(x′)(x−x′) (3.16)

to yield

f̃(x) = 1
2e

T (x′)We(x′) + 1
2e

T (x′)W∇e(x′)(x−x′)

+ 1
2(x−x′)T∇eT (x′)We(x′) + 1

2(x−x′)T∇eT (x′)W∇e(x′)(x−x′). (3.17)

Taking the derivative with respect to x we obtain

∇f̃(x) =∇eT (x′)We(x′) +∇eT (x′)W∇e(x′)(x−x′). (3.18)

Setting ∇f̃(x) = 0 we finally arrive at

x= x′−
(
∇eT (x′)W∇e(x′)

)−1
∇eT (x′)We(x′). (3.19)

The Gauss-Newton method iteratively updates the estimate through

xi = xi−1−
(
∇eT (xi−1)W∇e(xi−1)

)−1
∇eT (xi−1)We(xi−1). (3.20)

Due to the linear approximation in Eq. (3.15), taking the full update may di-
verge. Damped Gauss-Newton methods only use a fraction of the update,

xi = xi−1−λ
(
∇eT (xi−1)W∇e(xi−1)

)−1
∇eT (xi−1)We(xi−1), (3.21)

for which line-search methods are suitable to adjust λ.
The Gauss-Newton method can be shown to demonstrate quadratic conver-

gence rate. Convergence can be proven locally (Kelley, 1999).
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3.1.2.2. The Levenberg-Marquardt Method

The Levenberg-Marquardt (LM) method can be seen as a hybrid of the steepest
descent and the damped Gauss-Newton method. For convergence of the damped
Gauss-Newton method, the matrix ∇eT (xi−1)W∇e(xi−1) must have full column
rank, be uniformly bounded, and be well-conditioned (Kelley, 1999). The LM
method provides a method with better global convergence properties that utilizes
efficient damped Gauss-Newton steps.
By formulating

xi = xi−1−
(
∇eT (xi−1)W∇e(xi−1) +λiI

)−1
∇eT (xi−1)We(xi−1) (3.22)

parameter λi adjusts between steepest descent and Gauss-Newton iterations.
Intuitively, if λi is large, the method will take a small step into mainly the
steepest descent direction

xi ≈ xi−1−
1
λi
∇eT (xi−1)We(xi−1). (3.23)

For vanishing λi, we have Gauss-Newton steps

xi ≈ xi−1−
(
∇eT (xi−1)W∇e(xi−1)

)−1
∇eT (xi−1)We(xi−1). (3.24)

Initially,
λ1 = τmax

{(
∇eT (x0)W∇e(x0)

)
ii

}
(3.25)

is set to a trade-off between steepest descent and Gauss-Newton (Madsen et al.,
2004) with free parameter τ .
In each iteration i, the new estimate xi is kept, if the gain ratio

ρ := f(xi−1)−f(xi)
f̃(xi−1)− f̃(xi)

(3.26)

is larger than zero and indicates that f̃(xi) well approximates f(xi) (Madsen
et al., 2004). If so, we decrease λi+1 = λimax

{
1
3 ,1− (2ρ−1)3

}
to perform steps

closer to Gauss-Newton. Otherwise, we set back xi = xi−1 and update λi+1 =
λiνi and νi+1 = 2νi to obtain steps closer to the steepest descent direction. In the
initial iteration, or if the LM-step is accepted, we reset the tracking parameter
to ν = 2.

3.1.2.3. Multiple Objectives

The non-linear least squares optimization can be extended to optimize for mul-
tiple objectives in a weighted sum

f(x) = 1
2

M∑
j=1

µje
T
j (x)Wjej(x), (3.27)
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3. Rigid Registration

with weights µj and residuals ej(x) := hj(x)− zj . Note that here the residuals
ej(x) may differ in dimensionality and in functions hj . We observe that the
residuals and weight matrices of the individual objectives can be stacked into a
single combined residual and block-diagonal weighting matrix

f(x) = 1
2 e

T (x)We(x), (3.28)

with

e(x) :=


√
µ1 e1(x)

...√
µM eM (x)

 (3.29)

and
W := diag(W1, . . . ,WM ) . (3.30)

3.2. Efficient Rigid Registration of
Multi-Resolution Surfel Maps

We utilize MRSMaps as a compact multi-resolution image representation for
our rigid registration approach. We have seen in Ch. 2 that MRSMaps can be
constructed efficiently which is an important prerequisite for fast registration.
In this section, we devise efficient means to align two MRSMaps that further
exploit the multi-resolution structure of the maps. Our approach recovers the
6-DoF rigid-body motion x∈ SE(3) between scene and model map in the Special
Euclidean Group SE(3).

3.2.1. Multi-Resolution Surfel Association
Starting from an initial coarse guess of the alignment, surfels are associated be-
tween both maps from coarse to fine, always using the finest common resolution
possible. Since associations between surfels are not known beforehand, they
need to be estimated in the registration process. Registration hence performs
two alternating steps: surfel association and surfel alignment which both need
to be addressed efficiently.
Our aim is to find for each surfel ss ∈ms in the scene map ms a corresponding

surfel sm ∈mm in the model map mm. We start iterating through the surfels
ss ∈ms from fine to coarse resolutions, and consider surfels in all view directions.
In order to choose the finest resolution possible between both maps, we skip
surfels in nodes for which a surfel association exists on finer resolutions already.
This way, we save redundant matches on coarse resolutions.
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3.2. Efficient Rigid Registration of Multi-Resolution Surfel Maps

Figure 3.1.: Multi-resolution surfel association between scene ss ∈ms and model
surfels sm ∈mm. Left: Associations A(s) are found for scene surfels
ss, s

′
s by finding the best match in a cubic query volume V(T (x)µ)

centered at the scene surfel mean position in the model map frame
under the current pose estimate x. Right: If an association is known
from the previous iteration, we search for best matches among the
direct neighbors N (V (Ai−1(ss))) in the voxel grid.

If a surfel ss is considered for association, we query a set of potential matches
Â(ss) = {sm ∈mm | close(sm, ss,x)} and establish the best match,

A(ss) = argmin
sm∈Â(ss)

{assoc-dist(ss, sm,x)} , (3.31)

where close(ss, sm,x) indicates neighborhood of surfels, and assoc-dist(ss, sm,x)
is a distance measure. The latter incorporates the Euclidean distance between
the surfel means and the similarity in shape-texture descriptor,

assoc-dist(ss, sm,x) =
∥∥∥µps,m−T (x)µps,s

∥∥∥
2
· ‖hs,s−hs,m‖2 . (3.32)

We denote the set of surfel associations by

A = {(ss, sm) ∈ms×mm | sm = A(ss)} . (3.33)

We use two ways to define the association neighborhood of a scene surfel ss.
Fig. 3.1 illustrates these association strategies. Let v(s) denote the view direction
of a surfel s. Initially, if the surfel has not been associated in a previous iteration
yet, we find all surfels sm in the model map, whose voxels V (sm) are within a
cubic volume V (T (x)µs,s). For each found surfel, we check if its mean is within
a specific spatial and color distance, if it is similar in shape-texture descriptor,
and if the view directions are compatible,

close(ss, sm,x)⇔ V (sm) ∈ V (T (x)µs,s) ∧ compatible(ss, sm,x), (3.34)

where

compatible(ss, sm,x)⇔ pos-compatible(ss, sm,x) ∧ col-compatible(ss, sm)
∧ descr-compatible(ss, sm) ∧ viewdir-compatible(ss, sm,x),

(3.35)
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3. Rigid Registration

pos-compatible(ss, sm,x)⇔
∥∥∥µps,m−T (x)µps,s

∥∥∥
2
≤ χp, (3.36)

col-compatible(ss, sm)⇔
∣∣∣µLs,s−µLs,m∣∣∣≤ χL

∧
∣∣∣µαs,s−µαs,m∣∣∣≤ χα ∧ ∣∣∣µβs,s−µβs,m∣∣∣≤ χβ.

(3.37)

descr-compatible(ss, sm)⇔‖hs,s−hs,m‖2 ≤ χh, (3.38)

viewdir-compatible(ss, sm,x)⇔ (T (x)v(ss))T v(sm)≥ χv, (3.39)
The cubic query volume is axis-aligned with the model map reference frame. Its
extents are multiples of the resolution ρ(ss) of the query surfel ss. Such cubic
volume queries are efficiently implemented in octree data structures.
If there is an association from previous iterations, we exploit it to find new

associations more efficiently. We assume that the pose change determined in the
previous iteration i−1 moves the scene surfel in the model map frame only by a
small amount. We then try to associate the scene surfel ss with the previously
associated surfel Ai−1(ss) or its direct neighbors in the voxel grid, i.e.,

close(ss, sm,x)⇔ V (sm) ∈N (V (Ai−1(ss))) ∧ compatible(ss, sm,x), (3.40)

where N (V (Ai−1(ss))) is the set of surfels contained in the voxel V (Ai−1(ss))
and its direct neighbors. Since we precalculate the 26-neighborhood of each
node, this look-up amounts to only constant time. Note that in the case that
no compatible association can be found under the current pose estimate, i.e.,
Ai(ss) = ∅, a volume query is used in the next iteration and a representative
surfel could be associated on a coarser resolution instead.
We process resolutions from fine to coarse. For every resolution, all surfels

are associated independently which allows the load within a resolution to be
distributed over multiple CPU cores.

3.2.2. Pose Estimation
3.2.2.1. Observation Model

Our goal is to register a scene map ms towards a model map mm. We for-
mulate our problem as finding the most likely pose x that maximizes the like-
lihood p(ms | x,mm) of observing the scene in the model map. We choose to
represent poses x= (q, t)T by translations t ∈R3 and by unit quaternions q ∈H
for a compact representation of the rotational part without singularities.
We determine the observation likelihood between scene and model map as

p(ms | x,mm) =
∏

(ss,sm)∈A
p(ss | x,sm), (3.41)
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where A is the set of surfel associations between the maps. The observation
likelihood of a surfel is defined in terms of deviation of the surfel mean from the
mean of its association under the current pose estimate,

p(ss | x,sm) = N (d(ss, sm,x);0,Σ(ss, sm,x)) ,
d(ss, sm,x) := µs,m−T (x)µs,s,
Σ(ss, sm,x) := Σs,m+R(q)Σs,sR(q)T ,

(3.42)

where R(q) is a rotation matrix that corresponds to q. We marginalize the
surfel distributions for the spatial dimensions, since color would be meaningless
far from the measured surface.
Due to the difference in view poses between images, the scene content may

be discretized differently between the maps. We compensate for inaccuracies
due to discretization effects through trilinear interpolation: Let V (A(ss)) be
the voxel that contains the associated surfel for the scene surfel ss, and let
µ′s,s := T (x)µs,s. If V (A(ss)) equals V (µ′s,s), i.e., the scene surfel ss is associated
with a model surfel sm within the voxel at the projected position of the scene
surfel, we determine a new mean µs,m and covariance Σs,m from the surfels

Sadj
(
µ′s,s

)
:=
{
sm ∈mm | V (sm) ∈Nadj

(
µ′s,s

)}
(3.43)

in the eight adjacent voxels Nadj
(
µ′s,s

)
to µ′s,s:

µs,m := 1∑
sw(V (s),µ′s,s)

∑
s∈Sadj(µ′s,s)

w(V (s),µ′s,s)µs

Σs,m := 1∑
sw(V (s),µ′s,s)2

∑
s∈Sadj(µ′s,s)

w(V (s),µ′s,s)2 Σs.
(3.44)

The interpolation weight

w(V (s),µ′s,s) := δx(V (s),µ′s,s) · δy(V (s),µ′s,s) · δz(V (s),µ′s,s) (3.45)

is determined from the inverse displacements

δx(V (s),µ′s,s) = eTx (ρ(s)−1− c(V (s)) +µ′s,s),
δy(V (s),µ′s,s) = eTy (ρ(s)−1− c(V (s)) +µ′s,s),
δz(V (s),µ′s,s) = eTz (ρ(s)−1− c(V (s)) +µ′s,s)

(3.46)

along the base vectors ex, ey, ez of the map frame, where ρ(s) is the resolution
of the surfel and c(V (s)) is the center position of voxel V (s).

37



3. Rigid Registration

3.2.2.2. Pose Optimization

We optimize the logarithm of the observation likelihood (Eq. (3.41))

L(x) =
∑

(ss,sm)∈A
ln(|Σ(ss, sm,x)|) +dT (ss, sm,x)Σ−1(ss, sm,x)d(ss, sm,x)

(3.47)
for the pose x in two stages: We apply fast approximate LM optimization to
initialize fine registration using Newton’s method.

Levenberg-Marquardt Optimization As detailed in Sec. 3.1.2.2, the LMmethod
is suitable for weighted non-linear least squares problems of the form

argmax
x

eT (x)We(x), (3.48)

where e(x) = y−f(x) is a vector of residuals and W is a weighting matrix.
Let A =

{
(s1
s, s

1
m), . . . ,(s|A|s , s

|A|
m )

}
be the set of associated surfels. We stack

the residuals for the associated surfels

e(x) =

 d(s1
s, s

1
m,x)

. . .

d(s|A|s , s
|A|
m ,x)

 (3.49)

and neglect the effect of the pose on the covariance to obtain a constant block-
diagonal weighting matrix

W (x) = diag
(
w
(
s1
s, s

1
m

)
Σ−1

(
s1
s, s

1
m,x

)
, . . . ,w

(
s|A|s , s|A|m

)
Σ−1

(
s|A|s , s|A|m ,x

))
.

(3.50)
We weight each surfel association additionally with the similarity w(ss, sm) :=
χh−‖h(ss)−h(sm)‖2 of the shape-texture descriptors.
LM optimization now performs damped Gauss-Newton steps

xi+1 = xi⊕
(
J (xi)TW (xi)J (xi) +λI

)−1
J (xi)TW (xi)e(xi) , (3.51)

where

J(x) :=

 J(s1
s, s

1
m,x)

. . .

J(s|A|s , s
|A|
m ,x)

 (3.52)

is the Jacobian stacked from individual Jacobians J(ss, sm,x) :=∇T (x)µs,s per
surfel association, and λ is a damping parameter that is adapted by the LM
method (see Sec. 3.1). The operator x⊕ x′ concatenates poses in SE(3) such
that T (x⊕x′) = T (x′)T (x).
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3.2. Efficient Rigid Registration of Multi-Resolution Surfel Maps

Due to the block-diagonal structure of W (x), this update decomposes into
simple sums over terms per association, i.e.,

J(x)TW (x)J(x) =
∑

(ss,sm)∈A
J(ss, sm,x)TW (ss, sm,x)J(ss, sm,x) (3.53)

and

J(x)TW (x)e(x) =
∑

(ss,sm)∈A
J(ss, sm,x)TW (ss, sm,x)d(ss, sm,x). (3.54)

During the LM optimization, we do not use trilinear interpolation of surfels.
We stop iterating the LM method, if the pose still not changes after surfel
association, or a maximum number of iterations is reached.

Optimization using Newton’s Method We fine-tune the registration by ap-
plying Newton’s method (see Sec.3.1.1.2) directly on the observation log-likeli-
hood (Eq. (3.47))

xi+1 = xi⊕
(
−
(
∇2L(xi)

)−1
(∇L(xi))

)
(3.55)

with trilinear interpolation and neglecting shape-texture descriptors. While
Newton’s method requires second-order derivatives, they can be efficiently cal-
culated analytically due to the simple form of the observation log-likelihood.
Our combined approach typically converges within 10-20 iterations of LM and

5 iterations of Newton’s method to a precise estimate. We parallelize the evalu-
ation of the inner sum terms in LM and the first- and second-order derivatives
in Newton’s method which yields a significant speed-up on multi-core CPUs.
The normalization constraint on the quaternion part of the pose x requires

special considerations for the optimization. We incorporate the normalization
by only optimizing for a compact 3-dimensional quaternion representation that
consists of the coefficients of the imaginary parts. The real part of the quaternion
can be recovered from the normalization constraint and its initial sign before the
optimization. This approach alone would only be valid for angular misalignments
below 90◦ as of the zero-crossing of the real part. To allow for arbitrary angular
misalignments, we compose the current pose estimate x from a constant part x′
and a subsequent pose change ∆x, i.e., T (x) = T (∆x)T (x′). In each iteration of
LM or Newton’s method, we set x′ = x and optimize for ∆x instead.

3.2.2.3. Pose Uncertainty

Censi (2007) proposes a closed-form approximation to the covariance of the
iterative closest points (ICP) pose estimate

Σx ≈
(
∂2L

∂x2

)−1(
∂2L

∂z∂x

)
Σz

(
∂2L

∂z∂x

)T (
∂2L

∂x2

)−1
, (3.56)

39



3. Rigid Registration

where L(x,z) is the objective function, x is the pose estimate and z are the mea-
surements used for the registration. It is an application of a general solution to
the covariance of non-linear optimization problems. In this sense, the approach
is also applicable to our setting.
Here, the objective function L is the observation log-likelihood in Eq. (3.47).

The measurements z are stacked from surfels

SA := {ss ∈ms | A(ss) 6= ∅}∪{sm ∈mm | ∃ss ∈ms : sm = A(ss)} (3.57)

that appear in associations. By letting SA =
{
s1, . . . , s|S|

}
we write

z :=
(
µTs,1, . . . ,µ

T
s,|S|

)T
. (3.58)

The measurement covariance

Σz := diag
(
Σs,1, . . . ,Σs,|S|

)
(3.59)

is a block-diagonal matrix composed from the surfel covariances.
Again we observe that due to the block-diagonal structure of Σz and the

summation over surfel associations in the observation log-likelihood L, the cal-
culation of the pose covariance decomposes into individual terms per surfel as-
sociation

Σx ≈
∑

(ss,sm)∈A

(
∂2l

∂x2

)−1 ∑
s∈{ss,sm}

(
∂2l

∂s∂x

)
Σs

(
∂2l

∂s∂x

)T( ∂2l

∂x2

)−1
, (3.60)

where l(ss, sm,x) := lnp(ss, sm,x). These terms can hence be calculated in-
dividually per surfel association which we exploit for parallel computation on
multi-core CPUs.
The uncertainty of the pose estimate can also be obtained for results of the LM

optimization. We may simply replace the Hessian ∂2L
∂x2 with its approximation

JT (x)W (x)J(x) made by the LM method:

Σx ≈
(
JT (x)W (x)J(x)

)−1
(
∂2L

∂z∂x

)
Σz

(
∂2L

∂z∂x

)T (
JT (x)W (x)J(x)

)−1
. (3.61)

The covariance of the pose estimate captures uncertainty along unobservable
dimensions, for instance, if the maps view a planar surface.

3.2.2.4. Regularization

If prior knowledge about the camera motion is known, we can utilize it to fur-
ther increase the robustness of the registration. The observation likelihood in
Eq. (3.41) is augmented with a prior on the pose estimate,

p(x |ms,mm) = η p(ms | x,mm)p(x). (3.62)
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We model this prior p(x) = N (x;µx,0,Σx,0) normal distributed about a mean
pose µx,0 with covariance Σx,0. We then optimize the logarithm of Eq. (3.62),

Lrgl(x) = L(x) + ln(N (x;µx,0,Σx,0)) . (3.63)

In order to incorporate both objectives, we augment our pose optimization
approach (Sec. 3.2.2.2) in two ways. First, we employ the multi-objective non-
linear least squares framework in Sec. 3.1.2.3 to implement the pose prior in the
LM optimization. We neglect the normalization of the normal distribution and
add the residual eprior(x) := x−µx,0 with weighting matrix Wprior := Σ−1

x,0. Fine
tuning of the registration then performs Newton’s method directly on Eq. (3.62).
Here, the prior contributes additional terms to first- and second-order derivatives
of the objective function.
A covariance estimate of the pose uncertainty can also be determined in the

regularized case. From Eq. (3.62) we observe that each factor contributes a
normal distributed estimate for the pose. Hence, we determine the regularized
pose estimate x ∼N

(
µrgl
x ,Σrgl

x

)
as normal distributed with the mean resulting

from the regularized registration, and the covariance

Σrgl
x ≈

(
Σ−1
x + Σ−1

x,0
)−1

, (3.64)

where Σx is the covariance estimate for the mean pose propagated from the
measurements (see Sec. 3.2.2.3).

3.3. Experiments
We evaluate our rigid registration approach on the publicly available RGB-D
benchmark dataset by Sturm et al. (2012) (see Sec. 2.3). As in Sec. 2.3, we
process full resolution 640×480 images and set the maximum resolution of our
maps to 0.0125m at a distance dependency of λρ = 0.02. For the assessment of
run-time efficiency of our implementation, we carry out the experiments on an
Intel Core i7-4770K QuadCore CPU at a maximum clock speed of 3.50 GHz.
We compare our method to other dense registration approaches, i.e., warp

(Steinbruecker et al., 2011), generalized iterative closest points (GICP) (Segal
et al., 2009), and 3D-NDT (Stoyanov et al., 2012). For our experiments, we
used a reimplementation of warp contained in the OpenCV library with default
settings but 14 iterations in the coarsest resolution and a maximum depth dif-
ference of 0.5m. The maximum distance for matches in GICP has been chosen
as dmax = 0.2m. 3D-NDT performs NDT to NDT registration and has been con-
figured to use the four scales 0.05m, 0.1m, 0.2m, and 0.4m. Higher resolutions
were not possible due to memory limitations. With fovis (Huang et al., 2011), we
also include a state-of-the-art sparse method that is based on matching interest
points for comparison.
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3.3.1. Evaluation Measure
The availability of ground-truth trajectories for the RGB-D benchmark sequences
allows for quantifying the accuracy of registration estimates. The relative pose
error (RPE) metric measures the pose difference of the relative ground truth
motion and the registration estimate between two frames t and t+ ∆,

E∆,t :=
(
T−1
t Tt+∆

)−1 (
T̂−1
t T̂t+∆

)
(3.65)

with ground truth poses Tt, Tt+∆ and registration estimate poses T̂t, T̂t+∆ (Sturm
et al., 2012). Time-sequential frame-to-frame registration can be evaluated by
considering time differences of ∆ = 1. Since rotational errors also influence
translational errors, we evaluate accuracy by translational error.

3.3.2. Accuracy
Tables 3.1 and 3.2 list median and maximum error of each method. We clas-
sify the sequences into static/dynamic (s/d) scenes, near/far (n/f) measure-
ments, and continuous/discontinuous (c/g) recordings. Remarkably, our method
achieves best performance in median as well as maximum error in most of the
sequences. In the 24 static scenes with close-range measurements and continu-
ous recordings, our approach is most accurate in 16 sequences (67%). GICP and
3D-NDT are outperformed by warp, fovis, and our approach which have been
designed for RGB-D image registration.
From the tables and Fig. 3.2, we see that our method performs very accurately

in the median and yields low maximum errors in static scenes with close-range
measurements that have been recorded without frame gaps (s,n,c). Overall, our
method performs clearly best in most of these sequences. In close-range, continu-
ous, and dynamic scenes (Fig. 3.3), the accuracy of all approaches degrades with
the degree of image coverage by dynamic objects. With only few portions of the
image containing dynamic objects, our approach performs very accurately and is
well competitive to the other approaches. In the freiburg3_walking sequences,
larger parts of the image are dynamic which seems to affect our approach more
strongly than 3D-NDT and fovis. In chapters 4 and 5 we will present non-rigid
registration methods for MRSMaps that better cope with dynamics in the scene.
In sequences with mostly distant measurements such as freiburg2_large_-

no_loop, geometric features are barely measurable due to sensor noise and dis-
cretization of disparity. Fovis as a sparse image registration approach has an
advantage on these sequences which indicates that point feature-based registra-
tion would complement our approach well. Further difficult scenes contain only
little geometric structure but fine-grained texture such as the freiburg1_floor or
the freiburg3_nostructure_texture sequences. In two out of three cases, warp
and fovis yield higher median accuracy. Also this could be addressed in our
registration method by including sparse interest points.
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Table 3.1.: Comparison of median relative pose error (RPE) in mm for in-
cremental registration on the sequences of the RGB-D benchmark
dataset (Sturm et al., 2012).

sequence prop. MRSMap
warp

(OpenCV) GICP 3D-NDT fovis

fr1 360 s,n,c 5.0 5.9 18.8 7.9 7.1
fr1 desk s,n,c 4.6 5.8 10.2 7.9 6.3
fr1 desk2 s,n,c 4.4 6.2 10.4 8.2 6.6
fr1 floor s,n,g 5.8 2.1 5.0 5.8 2.6
fr1 plant s,n,c 3.5 4.2 16.1 7.3 4.6
fr1 room s,n,c 3.5 4.6 10.2 6.1 5.4
fr1 rpy s,n,c 3.0 5.1 10.4 6.8 5.4
fr1 teddy s,n,c 4.5 6.1 21.3 8.9 7.1
fr1 xyz s,n,c 2.4 4.1 3.9 5.2 4.6
fr2 360 hemisphere s,f,c 27.3 40.6 18.2 53.8 10.4
fr2 360 kidnap s,f,g 24.9 30.0 14.6 46.0 11.8
fr2 coke d,n,c 2.9 3.3 5.9 12.1 3.6
fr2 desk s,n,c 2.2 2.1 6.0 4.4 2.5
fr2 desk with person d,n,g 2.3 2.1 5.1 4.1 2.0
fr2 dishes s,n,c 2.6 2.1 5.7 7.7 2.0
fr2 flowerbouquet d,n,c 2.8 2.3 4.8 13.8 1.8
fr2 flowerbouquet bg d,n,c 4.8 3.5 5.8 5.0 3.2
fr2 large no loop s,f,c 25.0 20.5 21.3 32.6 11.0
fr2 large with loop s,f,c 25.8 94.7 22.5 48.5 12.1
fr2 metallic sphere d,n,c 3.3 3.0 7.1 10.7 3.6
fr2 metallic sphere 2 d,n,c 5.5 3.3 9.4 9.6 6.2
fr2 pioneer 360 s,f,c 19.8 12.7 18.7 24.3 16.0
fr2 pioneer slam s,f,g 14.5 10.0 16.6 17.3 9.0
fr2 pioneer slam 2 s,f,g 11.4 6.4 16.1 16.5 7.7
fr2 pioneer slam 3 g,f,c 6.9 5.7 10.3 10.1 4.3
fr2 rpy s,n,c 1.7 1.7 1.3 4.1 1.7
fr2 xyz s,n,c 1.6 2.0 1.7 4.0 1.9
fr3 cabinet s,n,c 4.7 5.1 8.4 9.1 7.5
fr3 large cabinet s,n,c 8.3 13.9 15.5 13.1 10.4
fr3 long office househ. s,n,c 2.7 3.2 7.8 4.2 3.7
fr3 nostruct notext far s,n,c 9.3 40.4 8.6 13.8 11.3
fr3 nostruct notext near s,n,c 15.3 28.2 12.5 17.1 11.2
fr3 nostruct text far s,n,c 18.1 19.2 10.9 18.6 20.8
fr3 nostruct text near s,n,c 11.6 7.0 8.9 10.6 7.3
fr3 sitting halfsphere d,n,c 3.0 4.6 11.4 5.5 5.3
fr3 sitting rpy d,n,c 5.2 5.9 13.2 4.0 5.5
fr3 sitting static d,n,c 4.2 2.7 2.8 2.4 3.0
fr3 sitting xyz d,n,c 5.8 5.1 7.4 3.6 5.0
fr3 struct notxt far s,n,c 2.2 8.6 4.5 2.9 9.1
fr3 struct notxt near s,n,c 2.1 8.6 2.9 2.4 9.3
fr3 struct txt far s,n,c 5.5 8.1 7.1 5.4 8.8
fr3 struct txt near s,n,c 3.2 5.9 5.6 5.5 6.5
fr3 teddy s,n,c 2.7 3.5 11.5 11.3 3.4
fr3 walking halfsphere d,n,c 13.4 11.6 15.8 7.9 10.2
fr3 walking rpy d,n,c 18.5 15.6 20.7 10.8 11.3
fr3 walking static d,n,c 13.6 5.7 5.0 6.2 4.7
fr3 walking xyz d,n,c 22.1 14.1 12.6 11.5 10.5

no. of best perf. (s,n,c) 18 (16) 7 (2) 3 (3) 6 (1) 13 (2)
total median 4.1 4.2 7.5 7.7 4.5
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Table 3.2.: Comparison of maximum relative pose error (RPE) in mm for in-
cremental registration on the sequences of the RGB-D benchmark
dataset (Sturm et al., 2012).

sequence prop. MRSMap
warp

(OpenCV) GICP 3D-NDT fovis

fr1 360 s,n,c 41.8 75.4 88.3 148.1 43.1
fr1 desk s,n,c 25.9 131.8 54.9 26.6 34.2
fr1 desk2 s,n,c 22.7 147.4 261.2 46.3 49.9
fr1 floor s,n,g 413.1 3167 193.6 128.5 412.4
fr1 plant s,n,c 28.1 300.8 831.4 62.2 61.6
fr1 room s,n,c 45.0 167.8 212.6 51.2 55.1
fr1 rpy s,n,c 28.9 41.8 636.6 41.9 38.7
fr1 teddy s,n,c 79.4 381.1 356.6 126.6 82.4
fr1 xyz s,n,c 9.6 18.1 42.0 35.9 25.8
fr2 360 hemisphere s,f,c 6296 5.6e5 1516 3505 537.7
fr2 360 kidnap s,f,g 3124 1.0e5 103.9 1567 554.3
fr2 coke d,n,c 53.9 78.2 2571 1792 236.2
fr2 desk s,n,c 17.0 14.1 64.4 31.7 15.5
fr2 desk with person d,n,g 70.2 307.6 179.4 77.0 67.3
fr2 dishes s,n,c 65.0 2.8e4 2738 254.4 257.3
fr2 flowerbouquet d,n,c 66.1 1.3e4 2411 254.0 79.2
fr2 flowerbouquet bg d,n,c 26.9 2591 30.3 35.6 20.0
fr2 large no loop s,f,c 485.7 7.6e5 1289 1995 173.0
fr2 large with loop s,f,c 2177 5.1e5 1662 2176 220.6
fr2 metallic sphere d,n,c 50.0 8.6e4 1891 146.1 166.7
fr2 metallic sphere 2 d,n,c 69.4 8.0e5 1062 285.9 407.6
fr2 pioneer 360 s,f,c 173.1 3.2e4 1369 628.0 235.4
fr2 pioneer slam s,f,g 569.2 2.0e5 1785 1279 566.2
fr2 pioneer slam 2 s,f,g 908.6 1.6e5 1627 946.8 902.7
fr2 pioneer slam 3 s,f,g 153.6 1.8e5 1946 621.8 445.0
fr2 rpy s,n,c 30.0 189.5 28.7 56.2 11.0
fr2 xyz s,n,c 27.3 8.8 26.8 18.2 9.9
fr3 cabinet s,n,c 23.1 291 58.0 111.8 77.7
fr3 large cabinet s,n,c 120.4 4060 85.2 70.7 220.3
fr3 long office househ. s,n,c 16.1 34.0 209.1 40.3 35.6
fr3 nostruct notext far s,n,c 49.4 6.0e4 66.1 77.8 108.4
fr3 nostruct notext near s,n,c 57.8 3.2e4 182.1 144.6 79.3
fr3 nostruct text far s,n,c 57.7 1230 58.6 74.5 101.5
fr3 nostruct text near s,n,c 60.8 100.5 67.1 90.9 41.6
fr3 sitting halfsphere d,n,c 33.6 32.3 69.6 60.6 69.2
fr3 sitting rpy d,n,c 105.3 1.7e4 413.2 165.7 100.6
fr3 sitting static d,n,c 29.5 13.8 44.7 9.1 46.2
fr3 sitting xyz d,n,c 48.4 26.8 51.2 21.4 34.8
fr3 struct notxt far s,n,c 17.1 2579 23.2 19.2 62.4
fr3 struct notxt near s,n,c 13.2 1108 12.2 44.5 86.9
fr3 struct txt far s,n,c 23.0 39.0 23.3 21.4 45.2
fr3 struct txt near s,n,c 14.5 34.8 34.2 82.8 38.2
fr3 teddy s,n,c 323.0 5.2e4 310.6 714.5 73.5
fr3 walking halfsphere d,n,c 203.6 109.0 84.7 84.8 74.6
fr3 walking rpy d,n,c 1443 2.9e4 334.5 251.0 172.3
fr3 walking static d,n,c 128.8 97.3 39.7 32.2 61.3
fr3 walking xyz d,n,c 150.3 114.4 102.0 102.3 64.3

no. of best perf. (s,n,c) 22 (16) 3 (2) 2 (1) 6 (2) 14 (3)
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Figure 3.2.: Median (top) and maximum (bottom) translational RPE of the
registration estimate on static sequences of the RGB-D bechmark
dataset (close-range measurements, no frame gaps).
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Figure 3.3.: Median (left) and maximum (right) translational RPE of the regis-
tration estimate on sequences of the RGB-D bechmark dataset with
dynamic objects (close-range measurements, no frame gaps).

Figure 3.4.: Median translational error of the registration estimate for different
frame skips on the freiburg1_desk (left) and freiburg2_desk (right)
sequences (*results from (Steinbruecker et al., 2011)).

3.3.3. Robustness
In Fig. 3.4, we evaluate the robustness of our approach for skipping frames
on the freiburg1_desk and freiburg2_desk sequences1. Our approach achieves
similar accuracy than warp for small displacements, but retains the robustness
of ICP methods for larger displacements when warp fails. This property is
important for real-time operation, if frames need to be dropped eventually. On
both sequences, the distribution of translational errors made by our method
is narrow at small errors for small frame-gaps (see Fig. 3.5). With increasing

1Results for warp and GICP taken from (Steinbruecker et al., 2011).
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3.3. Experiments

Figure 3.5.: Histograms of translational errors of the registration estimate for dif-
ferent frame skips on the freiburg1_desk (top) and freiburg2_desk
(bottom) sequences.

frame gap, the histograms flatten towards larger translational errors. It can be
seen that outliers beyond 0.1m and 0.06m, respectively, are rare. Note that
freiburg1_desk sequence contains fast camera motion with strong motion blur,
while the camera moves slowly in freiburg2_desk.
Figs. 3.6 and 3.7 give further insights into the robustness of our method with

respect to translational and rotational camera motion between frames. We chose
both sequences to contain cluttered close-range scenery in the majority of frames,
such that the effect of varying distances on the results is small. Our approach
can handle translational and rotational motion of 0.2m and 0.2 rad well in most
cases, even on the freiburg1_desk sequence. The use of both shape-texture
descriptors as well as color increases the basin of convergence of our registration
method.

3.3.4. Run-Time
Our approach achieves ca. 23Hz in average on the sequences (see Table 3.3). It
is much more efficient than GICP or 3D-NDT, and demonstrates slightly faster
run-time than warp. Fovis requires lower run-time on the sequences. This is a
natural result, since it reduces the image to a set of interest points and registers
those instead of using all available measurements in the image.
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3. Rigid Registration

Table 3.3.: Comparison of average (std. dev.) runtime in milliseconds for incre-
mental registration on the RGB-D benchmark sequences.

sequence MRSMap
warp

(OpenCV) GICP 3D-NDT fovis

fr1 360 47.1 (15.9) 50.0 (10.7) 4601 (1919) 532.2 (306.0) 9.5 (2.4)
fr1 desk 66.1 (9.9) 69.9 (12.7) 2809 (1338) 315.2 (169.2) 8.5 (1.9)
fr1 desk2 65.8 (13.5) 63.1 (11.4) 3677 (2146) 341.6 (143.7) 8.4 (1.8)
fr1 floor 77.7 (10.3) 57.7 (13.0) 2197 (1020) 231.8 (79.6) 11.6 (2.5)
fr1 plant 49.9 (8.6) 60.4 (8.8) 3645 (2947) 626.9 (247.0) 8.5 (1.8)
fr1 room 58.1 (13.7) 63.9 (11.2) 3667 (2136) 403.0 (196.9) 8.9 (1.7)
fr1 rpy 63.0 (12.9) 63.6 (8.2) 4066 (4484) 455.2 (333.3) 8.5 (1.7)
fr1 teddy 44.8 (11.2) 63.7 (10.2) 4359 (3168) 665.5 (209.7) 8.9 (2.3)
fr1 xyz 68.2 (6.8) 71.3 (7.8) 2425 (766.4) 351.0 (99.6) 8.8 (1.7)
fr2 360 hemisphere 23.8 (5.9) 15.9 (8.9) 2858 (4602) 1223 (1062) 6.9 (3.2)
fr2 360 kidnap 21.9 (5.8) 20.0 (7.5) 2292 (1428) 1065 (898.9) 6.5 (2.5)
fr2 coke 47.8 (11.4) 31.6 (10.0) 2211 (4650) 653.8 (386.7) 6.2 (1.5)
fr2 desk 49.6 (6.9) 63.2 (7.2) 2266 (623.6) 500.2 (135.0) 8.3 (1.1)
fr2 desk with person 42.8 (7.5) 57.9 (5.2) 1988 (734) 528.5 (160.8) 7.7 (0.9)
fr2 dishes 52.7 (11.0) 34.4 (7.4) 2003 (4629) 519.6 (366.5) 8.2 (2.5)
fr2 flowerbouquet 50.2 (6.2) 36.0 (5.6) 2107 (3676) 706.8 (350.3) 6.0 (0.9)
fr2 flowerbouquet bg 48.5 (6.0) 37.9 (2.0) 1817 (655.5) 431.1 (107.9) 6.4 (1.0)
fr2 large no loop 26.7 (7.6) 36.8 (12.3) 3644 (5955) 942.2 (583.5) 7.1 (2.2)
fr2 large with loop 25.5 (7.7) 31.6 (17.2) 3559 (6745) 963.4 (628.3) 6.5 (2.2)
fr2 metallic sphere 49.4 (14.4) 31.3 (3.3) 2770 (5857) 699.7 (462.8) 6.2 (1.7)
fr2 metallic sphere 2 42.3 (12.1) 29.0 (6.7) 2129 (2817) 572.7 (308.7) 5.9 (1.6)
fr2 pioneer 360 36.2 (7.5) 25.4 (3.6) 4240 (7103) 834.6 (744.4) 5.5 (2.1)
fr2 pioneer slam 40.2 (8.6) 31.0 (8.0) 4598 (7189) 718.4 (563.8) 6.5 (2.4)
fr2 pioneer slam 2 40.0 (8.3) 31.8 (6.1) 4122 (5956) 843.3 (972.6) 7.9 (2.6)
fr2 pioneer slam 3 38.7 (7.4) 31.6 (7.8) 3008 (5252) 649.4 (400.1) 5.8 (2.3)
fr2 rpy 44.7 (9.5) 57.6 (9.3) 1424 (464.7) 489.5 (275.7) 7.4 (1.3)
fr2 xyz 52.1 (14.3) 63.8 (5.4) 1365 (345.0) 451.9 (127.1) 8.2 (1.2)
fr3 cabinet 54.0 (7.7) 32.5 (1.8) 2667 (1183) 511.7 (289.6) 6.7 (2.0)
fr3 large cabinet 29.6 (7.0) 31.5 (2.7) 2402 (733.5) 705.8 (324.9) 5.6 (1.2)
fr3 long office househ. 54.0 (13.8) 66.5 (8.7) 2620 (1502) 472.7 (199.1) 9.7 (1.3)
fr3 nostruct notxt far 32.2 (2.6) 26.3 (4.3) 2269 (843.6) 383.4 (133.9) 8.3 (2.7)
fr3 nostruct notxt near 55.7 (5.2) 24.6 (6.0) 2346 (1355) 287.3 (135.7) 9.2 (3.9)
fr3 nostruct txt far 29.7 (3.6) 60.2 (18.5) 2100 (943.7) 638.2 (228.8) 10.0 (3.8)
fr3 nostruct txt near 56.0 (6.3) 67.3 (11.6) 1870 (699.7) 218.8 (78.2) 10.6 (2.3)
fr3 sitting halfsphere 37.2 (7.4) 61.5 (15.6) 2290 (805.5) 476.6 (159.1) 6.2 (1.8)
fr3 sitting rpy 31.8 (8.8) 57.5 (17.7) 2633 (1939) 493.3 (215.3) 6.4 (2.0)
fr3 sitting static 31.2 (4.9) 74.5 (4.2) 1652 (424.6) 479.4 (141.5) 6.9 (0.9)
fr3 sitting xyz 29.4 (7.2) 63.4 (8.0) 1885 (424.6) 489.3 (152.6) 5.8 (1.2)
fr3 struct notxt far 38.9 (3.5) 30.1 (1.6) 2112 (502.5) 433.7 (129.3) 4.2 (0.5)
fr3 struct notxt near 73.1 (7.0) 29.8 (1.2) 1923 (319.4) 216.7 (82.6) 4.2 (0.5)
fr3 struct txt far 36.9 (4.0) 85.2 (8.4) 2390 (608.6) 472.6 (153.9) 12.2 (1.8)
fr3 struct txt near 59.6 (6.4) 62.1 (10.4) 2189 (558.2) 358.6 (164.7) 10.7 (1.8)
fr3 teddy 44.9 (11.1) 39.0 (7.8) 3172 (5292) 614.7 (244.3) 6.9 (1.7)
fr3 walking halfsphere 34.7 (10.2) 59.6 (9.6) 2538 (821.5) 485.1 (153.2) 6.8 (2.2)
fr3 walking rpy 33.4 (10.3) 55.2 (14.7) 3037 (3941) 542.6 (224.3) 6.6 (2.3)
fr3 walking static 28.5 (7.2) 62.9 (7.7) 1623 (404.8) 557.1 (171.7) 5.6 (1.3)
fr3 walking xyz 29.8 (9.5) 56.8 (12.5) 2075 (570.6) 509.3 (201.4) 5.3 (1.1)

average (std.dev.) 43.6 (15.4) 45.7 (19.0) 2632 (3829) 607.5 (478) 7.4 (2.5)
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3.3. Experiments

Figure 3.6.: Maximum translational error of the registration estimate in rela-
tion to ground truth translation and rotation on the freiburg1_desk
sequence.

Figure 3.7.: Maximum translational error of the registration estimate in rela-
tion to ground truth translation and rotation on the freiburg2_desk
sequence.
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3.4. Related Work
Estimating camera pose between two images from a monocular color or grayscale
camera is in general an ill-posed problem without knowledge about the 3D lo-
cation of observed features. The seminal works by Nister et al. (2004) and
Davison et al. (2007) proposed two competing approaches for estimating the
motion of a monocular camera from a sequence of images. Davison et al. (2007)
filter camera pose and 3D position of interest points in an extended Kalman
filter (EKF) framework. Nister et al. (2004) determine the relative poses of the
camera in three frames from interest point correspondences using the 5-point-
algorithm (Nister, 2004), random sample consensus (RANSAC), and refinement
through bundle adjustment. The idea of local bundle adjustment has also been
used in methods based on sliding windows (Mouragnon et al., 2006) and ap-
proaches that sparsify the camera trajectory in key frames (Klein and Murray,
2007).
The 3D geometry of interest points can be directly estimated from stereo

camera images to find relative camera poses in real-time. Nister et al. (2004)
proposed to estimate stereo camera motion using a 3-point algorithm and bundle
adjustment refinement. Howard (2008) enforce consistent rigid arrangement
of the interest point matches to further improve robustness of sliding window
bundle adjustment. Textured-light projecting RGB-D cameras share common
principles with stereo camera. Fovis (Huang et al., 2011) applies concepts from
stereo image processing to RGB-D cameras. The approach initializes interest
point matching and bundle adjustment with a coarse rotation estimate that is
obtained through image correlation.
In robotics and computer graphics, depth images are frequently registered by

variants of the ICP (Besl and McKay, 1992) algorithm. For instance, May et al.
(2009) match time-of-flight depth images using ICP. Such methods operate on
raw points directly and typically require subsampling to a managable image size
to achieve high frame rate. GICP (Segal et al., 2009) unifies the ICP formulation
for various error metrics such as point-to-point, point-to-plane, and plane-to-
plane. Magnusson et al. (2007) propose a registration method for the 3D-NDT.
The 3D grid discretization allows for efficient nearest neighbor look-ups. Scans
are registered by minimizing the matching likelihood of scene points to the 3D-
NDT model. In Color-NDT (Huhle et al., 2008), they propose to enrich 3D-
NDT with Gaussian mixture distributions of color in each cell, and propose
a registration method for this representation. More recently, Stoyanov et al.
(2012) extended the 3D-NDT to register a 3D-NDT of a scene point cloud to a
model 3D-NDT. To the best of our knowledge, none of the above ICP methods
is reported to support real-time capable scan-matching of RGB-D images.
Our approach bears similarities to 3D-NDT matching. However, we propose

novel methods to increase robustness and to enable high frame-rate operation
on RGB-D images: Our approach exploits measurement principles of RGB-D
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sensors to aggregate maps at high frame-rate. To register such views efficiently,
we propose a multi-resolution strategy to data association. This strategy is sup-
ported by the use of color and shape-texture descriptors to judge the compatibil-
ity between surfels. While 3D-NDT also supports a multi-resolution representa-
tion of 3D scans, their registration optimizes from coarse to fine resolutions, only
considering a single resolution at a time. Our highly efficient implementation
registers 640×480 RGB-D images at a frame rate of about 23Hz on a CPU.
In recent years, affordable depth cameras such as time-of-flight or structured-

light cameras (e.g. Microsoft Kinect, Asus Xtion) have become available. Paired
with the developments in computer vision on real-time dense depth estimation
from monocular image sequences, exploiting dense depth for robotic perception
is now a viable option. The premise is to increase the robustness of image regis-
tration over the use of sparse interest points detected in textured image regions.
It should be most beneficial in textureless environments that have geometric
structure. Efficient means have to be developed, however, to take full advantage
of the high frame rates and high-resolution images provided by such sensors.
Steinbruecker et al. (2011) proposed a method for dense real-time registration
of RGB-D images. They model the perspective warp between images through
view-pose changes and optimize for the best pose that explains the difference in
intensity. In our approach, we construct 3D representations of the images and
optimize for the relative pose between them. Note that our registration method
is more general, since our representation supports data fusion from multiple
view points. Hence, we also employ it for the registration of images to maps
that aggregate multiple views, e.g., for tracking multi-view object models.
Endres et al. (2012) match RGB interest points between frames, align them

using the depth measured at the interest points, and refine the registration esti-
mate with ICP. Our registration method incorporates shape and texture seam-
lessly and is also applicable to textureless shapes. In KinectFusion (Newcombe
et al., 2011a), depth images are aligned with a map that represents surface by a
signed distance function in a 3D voxel grid. The map is updated in each frame
with the aligned depth image. The registration method is based on ICP and
projects the current map into the depth image for data association. To achieve
real-time performance, the approach is implemented on GPU.

3.5. Summary
In this chapter, we introduced an efficient registration method for MRSMaps
in which we assume rigidness of the observed scene. Our method gains effi-
ciency from the concise representation of MRSMaps. The precalculation of sur-
fel means, covariance, normals, shape-texture descriptors, and voxel neighbors
in the map acquisition stage supports efficient registration.
Registration is performed in a dual iterative refinement procedure. Given

51



3. Rigid Registration

the latest pose estimate, we associate surfels between the maps on the finest
common resolution by efficient volume queries in the octree representation. If
an association for a surfel is available from previous iterations, we bootstrap the
association by only searching among the direct neighbors in the voxel grid. Surfel
associations are spared, if representative surfels on finer resolutions already have
a matching.
For aligning the maps from surfel associations, we optimize the observation

likelihood of one map in the other. Each surfel association contributes a normal-
distributed factor to the optimization objective. The logarithm of this objective
is optimized using a combination of the LM method for coarse registration and
Newton’s method for fine alignment.
In experiments, we demonstrate superior performance of our approach to

state-of-the-art methods for visual odometry in terms of accuracy and robustness
on an RGB-D benchmark dataset. Especially on static scenes with close-range
measurements and continuous recordings, our method outperforms the other ap-
proaches in accuracy on most sequences. The run-time of our algorithm is in
average ca. 23Hz and is competitive to the other dense registration methods.
In future work we will consider the implementation of our registration method

on GPU. While we designed our method to register maps that include images
from multiple view-points, our registration approach could further be tailored
for visual odometry purposes by associating surfels through back-projection into
the images. MRSMaps primarily model the distribution of depth measurements.
To also incorporate fine-grained texture information into the registration, sparse
interest points could be included into our map and registration algorithms.
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The rigid registration approach presented in the previous chapter assumes that
the complete scene moves with a single rigid-body motion. In this section,
we propose an image registration approach that releases this assumption: We
register RGB-D measurements of rigid image parts that move differently between
two images. We do not require the correct segmentation of the image to be known
a-priori, but estimate the segmentation into rigid parts concurrently with their
motion (see Fig. 4.1).
Several approaches to motion segmentation in monocular or stereo video have

been investigated. Sparse interest points have frequently been used to segment
the image into sets of interest points with common 3D rigid body motion (Gru-
ber and Weiss, 2004; Schindler and Suter, 2006; Rothganger et al., 2007; Ross
et al., 2010; Agrawal et al., 2005). Most recent methods for dense 3D motion seg-
mentation are still far from real-time performance (Sekkati and Mitiche, 2006;
Zhang et al., 2011; Wang et al., 2012; Roussos et al., 2012).
We develop an expectation-maximization framework that recovers motion seg-

ments, estimates their 3D rigid-body motion, and also finds the number of seg-
ments in the scene efficiently. Our formulation makes no difference between
background and foreground objects and, hence, copes with camera motion and
multiple moving objects in the scene. We exploit dense depth information from

Figure 4.1.: The objective of our rigid multi-body registration algorithm is to
estimate a segmentation Y of an image Iseg into segments that un-
dergo rigid body motions θk towards a reference image Iref .

53



4. Rigid Multi-Body Registration

RGB-D cameras and utilize our highly efficient image representation and rigid
registration techniques within a rapid segmentation method. By representing
RGB-D images in MRSMaps instead of using the raw images, our algorithm
operates on significantly less image sites which also facilitates efficient dense
inference of the segmentation.

4.1. Background
We formulate rigid multi-body registration within the expectation-maximization
(EM) framework. EM concurrently optimizes for parameters as well as recovers
latent, i.e., not directly observed variables, in a probabilistic model. In our multi-
body registration approach, we assign labels to image pixels for different moving
objects. This labeling problem is represented as a probabilistic graphical model,
for which we consider variational and graph-based approximations for efficient
inference. In the following, we introduce basic concepts and notation of EM and
probabilistic graphical models.

4.1.1. Expectation-Maximization
Let p(x | θ) be a probability distribution over the random variables x ∈ X,
parametrized by θ. If this distribution can be directly evaluated for observed
x ∈ X, we may use an optimization method from Sec. 3.1.1 to determine a
maximum likelihood (ML) solution for the parameters θ,

θML := argmax
θ

p(x | θ). (4.1)

EM comes into play, if the distribution p(x | θ) misses unobserved, latent
variables Y , and only a simple closed form for p(x,y | θ) exists. If it is difficult
to optimize the marginal

p(x | θ) =
∑
y∈Y

p(x,y | θ) (4.2)

for the parameters θ directly, EM provides an iterative approach that splits the
optimization into two simpler steps.
We begin the derivation of EM by applying the logarithm to the probability

distribution in Eq. (4.2),

lnp(x | θ) = ln
∑
y∈Y

p(x,y | θ). (4.3)

EM now constructs a tractable lower bound to Eq. (4.3), which is maximized
instead. If this bound gets closer to the actual objective in each iteration, EM
converges to a local maximum of Eq. (4.3).

54



4.1. Background

Since the logarithm is a concave function, we can apply Jensen’s inequality
f (∑iaixi)≥

∑
i f (aixi) with ai ≥ 0 and ∑iai = 1 to obtain

L(q,θ) :=
∑
y∈Y

q(y) ln p(x,y | θ)
q(y) ≤ ln

∑
y∈Y

q(y) p(x,y | θ)
q(y) , (4.4)

with a function q(y) that satisfies q(y)≥ 0 and ∑y∈Y q(y) = 1.
We closely follow Bishop (2006) to find the optimal choice of q(y) for the lower

bound. We show that

lnp(x | θ) = L(q,θ) + KL(q(y) ‖ p(y | x,θ)), (4.5)

in which
KL(q(y) ‖ p(y | x,θ)) :=−

∑
y∈Y

q(y) ln p(y | x,θ)
q(y) (4.6)

is the Kullback Leibler divergence (KL-divergence) between q(y) and p(y | x,θ).
Using Bayes’ rule we decompose

lnp(x,y | θ) = lnp(y | x,θ) + lnp(x | θ), (4.7)

and substitute into L(q,θ) to obtain

L(q,θ) =
∑
y∈Y

q(y)
(

ln p(y | x,θ)
q(y) + lnp(x | θ)

)
. (4.8)

Since ∑y∈Y q(y) = 1, we have

L(q,θ) = lnp(x | θ)−KL(q(y) ‖ p(y | x,θ)), (4.9)

so L(q,θ) is maximized, if the KL-divergence term vanishes, which happens when
q(y) = p(y | x,θ).
This result is utilized in a dual iterative algorithm (Bishop, 2006). Assuming

that we have a current estimate of the paramters θ from a previous iteration, we
maximize the lower bound L(q,θ) for the functional q(y). As we have seen, this
amounts to the minimization of the KL-divergence, which vanishes for q(y) =
p(y | x,θ). Hence, we need to determine the distribution p(y | x,θ) given the
current parameter estimate, which we call the expectation step (E-step).
In the maximization step (M-step), we hold the distribution q(y) from the

previous E-step fixed, and maximize L(q,θ) for a new parameter estimate θ̂,

θ̂ = argmax
θ

∑
y∈Y

q(y) lnp(x,y | θ)− q(y) lnq(y). (4.10)

It is apparent that only the first term depends on θ. This term can be interpreted
as the expectation of lnp(x,y | θ) conditioned on p(y | x,θ), hence the name
expectation-maximization.
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Figure 4.2.: Undirected graphical model of Markov random fields (MRFs) and
factor graph of conditional random fields (CRFs) with unary and
pairwise potentials.

The EM procedure can be proven to converge to a local maximum of the
objective in Eq. (4.2) (Dempster et al., 1977). The M-step increases the lower
bound and, hence, the log-likelihood in Eq. (4.2). Since we keep q(y) fixed from
the previous E-step, q(y) does not equal p(y | x, θ̂) such that the KL-divergence
term increases (but adding to the objective). The subsequent E-step will then
improve the lower bound by cancelling the KL-divergence.

4.1.2. Probabilistic Graphical Models for Image Labeling
Tasks

Random fields represent observations and spatial layout in images in a prob-
abilistic graphical model. Markov random fields(MRFs) (Geman and Geman,
1984) and conditional random fields(CRFs) (Lafferty et al., 2001) are variants
of undirected graphical models that are frequently used in the formulation of
image labeling problems.

4.1.2.1. Undirected Graphical Models

Undirected graphical models represent Markov properties of a probability distri-
bution p(X) over a set of random variables X = {X1, . . . ,XN} in an undirected
graph G= (V ,E). The nodes V of the graph correspond to the random variables
in X. Edge connectivity models conditional independency relations: Two sets
XA and XB of random variables are conditionally independent given a set XC ,
if there is no path between the nodes for the variables in XA to nodes for XB

other than through nodes for XC . This leads to the factorization of p(x) into
local potentials ϕ(xc)≥ 0 over maximal cliques c ∈ C of random variables Xc in
the graph,

p(x) = 1
Z

∏
c∈C

ϕ(xc) (4.11)
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where x denotes an instantiation of the random variable X, Xc is the set of
random variables contained in clique c, and Z := ∑

x∈X p(x) is the partition
function. This general kind of graphical model is also referred to as MRF or
Markov network (MN).
Undirected graphical models can alternatively be viewed in terms of energy

functions E(x) where
E(x) =

∑
c∈C
− lnϕ(xc), (4.12)

such that
p(x) = 1

Z
exp(−E(x)). (4.13)

Factor graphs (Kschischang et al., 2001) are intermediate representations of
graphical models that allow inference algorithms such as belief propagation (BP)
to be formulated in a concise way. The probability distribution of the graphical
model is written as a product of factors fc(xc)

p(x) =
∏
c
fc(xc) (4.14)

over sets of variables Xc :=X(fc). For undirected graphical models, the factors
correspond to the clique potentials. The partition function is subsumed in a
factor over the empty set of random variables. Factor graphs GF = (VF ,EF )
then represent the graphical model G = (V ,E) by nodes VF := V ∪Vf for the
random variables (V) and the factors (Vf ). Edges EF connect random variables
with the factor nodes they are involved in. We denote the neighbors of random
variables xc and factors fc by NF (xc) and NF (fc), respectively.

4.1.2.2. Image Modeling in Markov Random Fields

MRF models of images define the conditional probability distribution of the
latent variables Y given the observations X in a generative way (Geman and
Geman, 1984)

p(y | x) = 1
Z(x) p(x,y) = 1

Z(x) p(x | y)p(y), (4.15)

for which the partition function is Z(x) :=∑
y∈Y p(x,y) (see Fig. 4.2).

For typical MRFs, we assume stochastic independence between the obser-
vations xi at the image sites such that we specify the observation likelihood
p(xi | yi) at the individual site. The prior p(y) models the stochastic relation-
ships between spatial neighbors. Frequently, the latent variable yi depends on its
four direct neighbors N (yi) in the image grid. In the terminology of undirected
graphical models, the observation likelihood generates cliques (xi,yi)∈ CU of size
2 between the observations xi and latent variables yi. Each pair yc, y′c of neigh-
boring latent variables in the grid defines a clique (yc,y′c) ∈ CP . The resulting
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undirected graphical model has a maximal clique size of 2, and its distribution
is

p(y | x) = 1
Z(x)

∏
(xc,yc)∈CU

p(xc | yc)
∏

(yc,y′c)∈CP
ϕ(yc,y′c). (4.16)

We denote p(xc | yc) as a unary potential, since it only depends on one latent
variable, and ϕ(yc,y′c) are pairwise potentials. For the sake of notation simplicity,
we refer by xc, yc, and y′c to instantiations of random variables as well as the
random variables’ nodes in the graph.

4.1.2.3. Conditional Random Fields

CRFs do not explain the image in a generative model for p(y | x). Instead this
distribution is directly modeled as an undirected graphical model on y condi-
tioned on the observations x (Lafferty et al., 2001):

p(y | x) = 1
Z(x)

∏
yc∈C

ϕ(yc,x), (4.17)

where C is the set of cliques in the graphical model and ϕ(yc,x) are local po-
tentials on the variables yc within a clique conditioned on the observations x
(see Fig. 4.2). If we restrict the model to direct pairwise dependencies between
neighboring image sites, we have

p(y | x) = 1
Z(x)

∏
yc∈CU

ϕ(yc,x)
∏

(yc,y′c)∈CP
ϕ(yc,y′c,x). (4.18)

The important difference to MRFs is that every potential may depend on all the
observations.

4.1.2.4. Inference using Loopy Belief Propagation

4.1.2.5. Undirected Graphical Models

Exact inference is in general computationally intractable in graphs with loops
such as the MRF and CRF image models. Various approximate inference meth-
ods exist like simulated annealing, loopy belief propagation (LBP), Monte Carlo
Markov chain, or variational methods (Bishop, 2006). BP passes local messages
in factor graphs to either find the marginals p(xi) of random variables Xi ∈X
or the maximum-likelihood assignment xML = argmaxx∈X p(x).

Sum-Product Algorithm: The sum-product algorithm determines the marginals
of random variables (Bishop, 2006)

p(xi) =
∏

f∈NF (xi)
µf→xi(xi) (4.19)
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Figure 4.3.: Left: Local update scheme in a CRF for sum-product loopy belief
propagation. Right: Local update scheme in a CRF for its varia-
tional mean-field approximation.

from local messages µf→xi(xi) which are passed from neighboring factor nodes.
The message from a factor f to a variable node xi

µf→xi(xi) =
∑

x′=(x′1,...,x′M )∈X(f)\xi
f(xi,x′)

∏
m∈{1,...,M}

µx′m→f (x′m) (4.20)

is obtained from messages to f from neighboring variable nodes except xi. Mes-
sages from random variables to factor nodes

µxi→f (xi) =
∏

f ′∈NF (xi)\f
µf ′→xi(xi) (4.21)

conversely involve messages passed from neighboring factor nodes except the tar-
get factor node itself. Initially, we set µxi→f (xi) = 1 and µf→xi(xi) = f(xi). Evi-
dence at a subset of random variables can be incorporated by clamping the mes-
sages from the observed random variables to the observed distribution. Fig. 4.3
illustrates the local update scheme of LBP.

Max-Sum Algorithm: The max-sum algorithm determines the ML assignment
of the random variables (Bishop, 2006)

xML = argmax
x

p(x). (4.22)

By transforming the probability distribution p(x) into the log-domain, we obtain
an efficient algorithm that replaces the sums in Eqs. (4.19), (4.20), and (4.21)
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by the max-operator and the products by sums:

xML,i = argmax
xi

∑
f∈NF (xi)

µf→xi(xi), (4.23)

µf→xi(xi) = max
x′i=(x′1,...,x′M )∈X(f)\xi

lnf(xi,x′) +
∑

m∈{1,...,M}
µx′m→f (x′m), (4.24)

µxi→f (xi) =
∑

f ′∈NF (xi)\f
µf ′→xi(f

′). (4.25)

Care needs to be taken, if multiple assignments to local xi would maximize
Eq. (4.23). In this case, back-tracking needs to be performed to recover a correct
maximum-likelihood assignment (Bishop, 2006).
Sum-product and max-sum BP are exact inference algorithm for tree-struc-

tured graphs. A single sweep through the tree suffices to compute the marginals.
In graphs with loops, BP only yields approximate algorithms and needs to be
iterated. Initialization and scheduling of the message passing have a strong influ-
ence on the convergence and the quality of the local optimum that is found by the
algorithms. Since messages are exchanged only between direct neighbors in the
graph, it may take many iterations until contextual information is distributed to
distant nodes. This can be especially problematic in graphical models of images
with only pairwise spatial neighborhoods, leading to slow convergence or poor
local optima.

4.1.2.6. Inference using Variational Mean-Field Approximations

In variational approximate inference, we seek to replace a probability distribu-
tion p(x) with a functional q(x) with a specific form such that a good fit to the
original distribution can be obtained but inference is much simpler.
Variational mean-field approximations which are also referred to as factorized

approximations represent the distribution

p(x)≈ q(x) =
∏
i

qi(xi) (4.26)

by factors over subsets of the random variables X. Our goal is then to minimize
the KL-divergence between the distributions, i.e.,

q̂(x) = argmin
q(x)

KL(q(x) ‖ p(x)) (4.27)

with
KL(q(x) ‖ p(x)) :=

∑
x∈X

q(x) ln q(x)
p(x) . (4.28)
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For inference using the mean-field approximation, we derive a rule to update
the individual factors qj(xj) such that the KL-divergence in Eq. (4.28) is mini-
mized with respect to this factor. We first plug the factorized distribution into
the KL-divergence to obtain

KL(q(x) ‖ p(x)) =
∑
x∈X

∏
i

qi(xi) ln
∏
i qi(xi)
p(x) . (4.29)

By isolating the factor qj(xj) we have

KL(q(x) ‖ p(x)) =
∑
x∈X

qj(xj)
∏
i 6=j

qi(xi) ln
qj(xj)

∏
i6=j qi(xi)

p(x) , (4.30)

allowing to write

KL(q(x) ‖ p(x)) =
∑
x∈X

qj(xj)
∏
i 6=j

qi(xi)
lnqj(xj) +

∑
i6=j

lnqi(xi)− lnp(x)
 (4.31)

such that

KL(q(x) ‖ p(x)) = const

+
∑

xj∈Xj
qj(xj) lnqj(xj)−

∑
xj∈Xj

qj(xj)
∑

x′∈X\Xj

∏
i6=j

qi(xi) lnp(xj ,x′) (4.32)

up to terms constant in qj(xj). We abbreviate the second term through

lnp(xj) := const+
∑

x′∈X\Xj

∏
i6=j

qi(xi) lnp(xj ,x′). (4.33)

With the definition in Eq. (4.33) we see that Eq. (4.32) is the KL-divergence
KL(qi(xi) ‖ p(xj)) which is minimized if lnqi(xi) = lnp(xj). The constant term in
Eq. (4.33) needs not to be calculated explicity, since the probabilities∑xj p(xj) =
1 must sum to one which can be established through normalization. In typ-
ical inference algorithms, the local factors qi(xi) are iteratively updated us-
ing Eq. (4.33) and renormalization. Inference results in approximations of the
marginals of Xi.
In MRF and CRF models, we approximate the distributions

p(y | x)≈ q(y,x) =
∏
j

qj(yj ,x) (4.34)

by local factors qj(yj ,x) for each image site, in which the observations x are
constants. Combining the MRF model in Eq. (4.16) with the solution for the
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factorized approximation in Eq. (4.33) yields

lnqj(yj ,x) = const+
∑

y′∈Y \Yj

∏
i 6=j

qi(yi,x) lnp(yj ,y′ | x) = const

+
∑
y′

∏
i6=j

qi(yi,x)

lnp(yj | x) +
∑

(yj ,y)∈CP (yj)
lnp(yj ,y) +

∑
(y,y)∈CP \CP (yj)

lnp(y,y)


= const+ lnp(yj | x) +

∑
(yj ,yi)∈CP (yj)

∑
yi∈Yi

qi(yi,x) lnp(yj ,yi)

(4.35)

where CP (yj) is the set of cliques that involve yj . In this derivation we exploit
the normalization of the local factors and that terms independent of yj can be
subsumed in a constant. For the CRF model, analogous derivation yields

lnqj(yj ,x) = const+lnϕ(yj ,x)+
∑

(yj ,yi)∈CP (yj)

∑
yi∈Yi

qi(yi,x) lnϕ(yj ,yi,x). (4.36)

This local update scheme is illustrated in Fig. 4.3.
Note the exponential updates in contrast to the LBP updates (Sec. 4.1.2.4).

Mean-field approximations provide us with an alternative method for approx-
imate inference in MRFs and CRFs for image processing. Saito et al. (2012)
recently demonstrated that variational mean-field inference yields similar accu-
racy like LBP but faster convergence in image labeling tasks.

4.1.2.7. Inference using Graph Cuts

Graph cuts are efficient algorithms that can be utilized for finding maximum-
likelihood assignments of random variables (Boykov et al., 2001). While the
inference methods introduced in previous sections only update random variables
with local information, graph cuts make global decisions that potentially involve
large sets of random variables. In certain cases, graph cuts are exact. Otherwise
they often yield approximate algorithms with good lower bounds on the quality
of the found local maxima.

Binary Labeling Problems: We initially formulate graph cuts for binary la-
beling problems, i.e., each random variable takes on one of two labels {0,1}. We
restrict our investigation to grid-like graphical models on the random variables
with pairwise potentials. The energy function of the graphical model in this case
is

E(y) =
∑
yc∈CU

EU (yc) +
∑

(yc,y′c)∈CP
EP (yc,y′c), (4.37)

where we define EU (yc) :=− lnϕ(yc) and EP (yc,y′c) :=− lnϕ(yc,y′c).

62



4.1. Background

Figure 4.4.: Left: s-t-cut on a binary CRF with unary and pairwise potentials.
The cost of the cut is the sum of the log potentials of the cut edges
(dashed lines). Right: Possible moves for αβ-swap and α-expansion.

Graph cuts represent this energy function in an s/t-graph Gs/t =
(
Vs/t,Es/t

)
(Boykov and Veksler, 2006) (see Fig. 4.4). The nodes Vs/t := V ∪{s, t} contain
the image sites V and a source s and a sink t. The directed edges Es/t connect
nodes for image sites yc, y′c that appear in pairwise potentials (yc,y′c) ∈ CP . In
addition, each image site node is connected from the source and to the sink.
Each edge (v,v′) ∈ Es/t is assigned a weight: Edges for pairwise potentials have
weight w(yc,y′c) :=− lnϕ(yc,y′c), while weights of edges of nodes with source or
sink are set to the unary potentials, i.e., w(s,yc) :=− lnϕ(yc = 1) and w(yc, t) :=
− lnϕ(yc = 0).
We denote a partitioning S∪T ,S∩T = ∅ of the nodes in Gs/t such that s∈ S

and t ∈ T an s/t-cut. Each s/t-cut can be assigned a cost that is determined by
the weights of the edges that it “cuts”, i.e., edges (v,v′)∈ Es/t such that v and v′
are not within the same set S or T . A binary labeling directly corresponds to an
s/t-cut by assigning ∀yi ∈S : yi = 0 and ∀yi ∈ T : yi = 1. It can be shown (Boykov
et al., 2001) that a minimum energy labeling of the image sites can be found by
determining an s/t-cut with minimum cost, referred to as min-cut. Finding a
min-cut is equivalent to the max-flow problem of determining a flow from source
to sink with maximum edge weights. Several polynomial time algorithms exist
for the min-cut max-flow problem (e.g., see (Cook et al., 1998)). For the graph
cut optimization to be exact, i.e., to be guaranteed to find a global optimum
of the energy function, the pairwise potentials need to be regular (Kolmogorov
and Zabih, 2004), i.e.,

EP (0,0) +EP (1,1)≤ EP (0,1) +EP (1,0). (4.38)
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Multi-Label Problems: Boykov et al. (2001) proposed the α-expansion and
the α-β-swap algorithms to find approximate solutions for multi-label problems
in polynomial time which are in general NP-hard. In multi-label problems, each
image site i ∈ I is assigned a label yi from a set L = {l1, . . . , lM} of M labels.
We consider the same type of energy functions as in Eq. (4.37) with unary and
pairwise potentials.
The α-expansion algorithm performs expansion moves which allow to replace

the label at any site with a specific label α. In the α-β-swap algorithm, swap
moves only consider sites that are labeled α or β. The labeling of these sites can
be exchanged arbitrarily. Note that multiple sites can be reassigned within one
move in both schemes. Both algorithms then iterate randomly through labels α
(expansion) or pairs of labels α and β (swap) and determine a move that best
reduces the energy in Eq. (4.37). Boykov et al. (2001) showed that optimal ex-
pansion and swap moves can be found by transforming the optimization problem
to binary labeling problems and finding an s/t-min-cut.
For the optimality of the moves, however, the energy function is required to

satisfy certain conditions. α-expansion finds a local optimum, if the pairwise
potentials define a metric, i.e., for all α, β, γ

EP (α,β) ≥ 0 (non-negativity) (4.39)
EP (α,β) = 0 ⇔ α = β (coincidence) (4.40)

EP (α,β) = EP (β,α) (symmetry) (4.41)
EP (α,β) ≤ EP (α,γ) +EP (γ,β) (triangle inequality) (4.42)

Swap moves converge to a local optimum, if the pairwise potentials are semi-
metrics, i.e., at least Eqs. (4.39), (4.40), and (4.41) hold. These conditions are
equivalent to the submodularity of the modified energies E′(y) (Ramalingam
et al., 2008) that are optimized by the α-expansion and the α-β-swap algo-
rithms. Note, that while the individual moves are optimal, graph cuts only find
approximate solutions, i.e., local optima, for multi-label problems. Due to the
global optimization used for the moves, graph cuts often find better local optima
than algorithms based on local update schemes such as the max-sum-algorithm
(Sec. 4.1.2.4). For α-expansion the found locally optimal energy can be bound
to a constant factor from the global optimum (Boykov et al., 2001).

Label Costs: The pairwise potentials act as a smoothness regularizer that pre-
fer coherent segments. Delong et al. (2012) introduced the concept of label costs
into the graph cut optimization framework to also trade-off model complexity by
incurring costs for using a label. The energy function in Eq. (4.37) is augmented
with additional label-cost terms,

E(y) =
∑
yc∈CU

EU (yc) +
∑

(yc,y′c)∈CP
EP (yc,y′c) +

∑
L⊆L

EL(L), (4.43)
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where

EL(L) :=

hL if ∃yi : yi ∈ L,
0 otherwise.

(4.44)

Delong et al. (2012) propose modifications of the α-expansion and the α-β-swap
algorithms to consider label costs. In the case of α-expansion with label costs,
optimality bounds worsen with strength of the label cost terms, and run-time
efficiency empirically decreases by about 40% to 60% compared to standard α-
expansion. Both algorithms still provide very efficient algorithms that converge
to good solutions for several problems in practice. Remarkably, label costs
can be related with the Akaike information criterion (AIC) (Akaike, 1974) and
the Bayesian information criterion (BIC) (Schwarz, 1978) which are principled
Bayesian methods to trade-off model complexity.
Finally, we note that efficient graph cuts for higher-order or non-submodular

potentials are an active research topic (see e.g.,(Ramalingam et al., 2008; Kol-
mogorov and Rother, 2007; Fix et al., 2011)).

4.2. Efficient Rigid Multi-Body Registration of
RGB-D Images

Our approach to rigid multi-body registration segments moving rigid parts be-
tween two RGB-D images, i.e., it determines the number of rigid parts, their
3D rigid-body motion, and the image regions that map the parts. We as-
sume that an image I = (xi, . . . ,xN ) is partitioned into a set of discrete sites i
with observations xi such as pixels or map elements in a 3D representation.
Let Y = Y1× . . .× YN be the labeling domain of the image sites. The con-
crete labeling yi ∈ Yi = L := {O,1, . . . ,M} denotes the membership of site i in
one of the distinct motion segments M = {mk}Mk=1 or in the set of outliers O.
With y ∈ Y , we denote a concrete labeling of the whole image. All sites within
a segment move with a common six degree-of-freedom (6-DoF) rigid-body mo-
tion θk ∈ SE(3) between the segmented image Iseg and a reference image Iref .

4.2.1. An Expectation-Maximization Framework for Dense
3D Motion Segmentation of Rigid Parts

We explain the segmented image by the rigid-body motion of segments towards
the reference image, i. e., we seek rigid-body motions Θ = {θk}Mk=1 that maximize
the observation likelihood of the segmented image in the reference image:

argmax
Θ

p(Iseg |Θ, Iref ). (4.45)
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Figure 4.5.: We segment motion in an RGB-D image Iseg towards a reference
image Iref in an efficient expectation-maximization framework. In
the E-step, we evaluate the likelihood of image site labels yi under
the latest motion estimates θk. Efficient graph cuts yield a max-
imum likelihood labeling yML given the motion estimates, which
is then used to approximate the label likelihoods. In the M-step,
new motion estimates for each segment are found through image
registration which takes the soft assignment of sites to labels into
account.

In our formulation, the labeling of the image sites is a latent variable that we
estimate jointly with the rigid-body motions of the segments using EM (see
Sec. 4.1.1),

argmax
Θ

∑
y∈Y

p(y | Iseg ,Θ, Iref ) lnp(Iseg ,y |Θ, Iref ). (4.46)

where Θ is the latest motion estimate of the segments from the previous iteration
of the EM algorithm, and p(y | Iseg ,Θ, Iref ) is the posterior distribution of the
image labeling. Our EM approach is illustrated in Fig. 4.5. We further factorize

p(Iseg ,y |Θ, Iref ) = p(Iseg | y,Θ, Iref )p(y |Θ, Iref ). (4.47)

If we assume a uniform prior p(y | Θ, Iref ) over labelings without knowing the
image content, we can formulate our EM-objective as

argmax
Θ

∑
y∈Y

p(y | Iseg ,Θ, Iref ) lnp(Iseg | y,Θ, Iref ). (4.48)
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Figure 4.6.: We model the likelihood of an image labeling in a CRF with unary
and pairwise potentials. The unary potentials measure the likeli-
hood of observation between segmented and reference image under
the motion estimate of a label. The pairwise potentials penalize dif-
fering labelings between image sites with low contrast and curvature.

The EM algorithm alternates the following two steps in several iterations until
convergence, or until a maximum number of iterations is reached:

E-step: Determine the posterior distribution of the image labeling given the
latest motion estimates Θ to form the conditional expectation in (4.46).

M-step: Find new motion estimates Θ by maximizing the conditional expecta-
tion (4.46), given the posterior distribution of the image labeling.

4.2.2. Image Labeling Posterior
We model the likelihood of an image labeling y in a CRF (see Sec. 4.1.2.3)

p(y | Iseg ,Θ, Iref ) =
∏

yi∈CU
ϕ(yi, Iseg ,Θ, Iref )

∏
(yi,yj)∈CP

ϕ(yi,yj , Iseg ,Θ, Iref ), (4.49)

where ϕ(yi, Iseg ,Θ, Iref ) are unary potentials on the image sites i, and the pair-
wise potentials ϕ(yi,yj , Iseg ,Θ, Iref ) model interactions between image sites i and
j (see Fig. 4.6).

Unary Potentials: The unary potentials are given by the observation likelihood

ϕ(yi, Iseg ,Θ, Iref ) := p(xi | yi,Θ, Iref ) = p(xi | θyi , Iref ), (4.50)

which quantifies the likelihood to observe xi ∈ Iseg in Iref under the motion
estimate θyi for label yi. For the outlier label li = O, we set the observation
likelihood to a constant pO.
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Figure 4.7.: Ambiguity resolution. If sites i and i′ associate with the same site j
in the reference image for motion segments k and k′ (i.e. (i, j) ∈Ak

and (i′, j)∈Ak′), we include additional pairwise CRF terms between
them. The likelihood of the assignment of both sites to labels k
and k′ is set to a small value (large negative log-likelihood α).

Pairwise Smoothness Potentials: Between direct neighbors i and j in the
image representation, we use a contrast-sensitive Potts model (Boykov and Jolly,
2001)

lnϕS(yi,yj , Iseg) =−γ(xi,xj) δ(yi,yj), (4.51)

where we define

δ(yi,yj) :=

0 , if yi = yj ,

1 , if yi 6= yj ,
(4.52)

and γ(xi,xj) > 0 controls the strength of the coupling in dependence on the
difference between the observations at the image sites. We denote the set of
cliques between direct neighbors i, j by CP,S .

Pairwise Disambiguation Potentials: We also need to avoid multiple associ-
ations of image sites in the segmented image with the same image site in the
reference image (see Fig. 4.7). Otherwise, our approach could explain different
parts of the segmented image with the same part in the reference image, e.g., at
missing image overlap or in occluded regions.
The image site labelings decide for an association of sites between both images.

In order to prevent the graph cut optimization from establishing labelings that
would associate multiple times to a site in the reference image, we introduce
additional pairwise couplings. We consider sites i and j in the segmented image
that map to the same site in the reference image for different motion segments
k and k′, respectively. We define the pairwise potential

lnϕA(yi,yj) :=

−α if yi = k∧yj = k′

0 otherwise,
(4.53)
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where α sets the strength of the couplings. We refer to the set of sites with the
same association like site i by NA(i) and denote the induced coupled pairs by

CP,A := {(yi,yj) | i ∈NA(j)} . (4.54)

In the CRF model, we use both types of pairwise couplings CP = CP,S ∪CP,A
concurrently to enforce spatial coherence and to handle ambiguous associations.
The combined potential is

ϕ(yi,yj , Iseg ,Θ, Iref ) =

ϕS(yi,yj , Iseg) if (yi,yj) ∈ CP,S
ϕA(yi,yj) otherwise.

(4.55)

4.2.3. Efficient Approximate Solution of the
Expectation-Maximization Formulation

We propose an efficient approximate solution to the EM formulation. Firstly,
we see that the observation likelihood of the segmented image in the reference
image given motion estimates and labeling,

p(Iseg |Θ, Iref ,y), (4.56)

factorizes into the likelihood of the individual observations

p(Iseg |Θ, Iref ,y) =
N∏
i=1

p(xi | θyi , Iref ) (4.57)

since we assume stochastic independence between the observations and each
site is associated to exactly one segment given a specific labeling y. By this,
Eq. (4.46) becomes

argmax
Θ

∑
y∈Y

p(y | Iseg ,Θ, Iref )
N∑
i=1

lnp(xi | θyi , Iref ). (4.58)

Note that each term of the inner sum only depends on one of the image labels.
Since exact inference of the joint label likelihood p(y | Iseg ,Θ, Iref ) in a CRF

is not tractable even for a single labeling y, we need to resort to approxi-
mations. One possible crude approach would be to use inference algorithms
such as LBP (Sec. 4.1.2.4) to infer the marginal distribution over site label-
ings p(yi | Iseg ,Θ, Iref ), and to optimize

argmax
Θ

∑
y∈Y

N∑
i=1

p(yi | Iseg ,Θ, Iref ) lnp(xi | θyi , Iref ). (4.59)
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We apply a mean-field approximation (Sec. 4.1.2.6) to the joint label likelihood

p(y | Iseg ,Θ, Iref )≈
N∏
i=1

qi(yi | Iseg ,Θ, Iref ) (4.60)

to write

argmax
Θ

∑
y1∈Y1

. . .
∑

yN∈YN

 N∏
i=1

qi(yi | Iseg ,Θ, Iref )
 N∑

i=1
lnp(xi | θyi , Iref )

 (4.61)

in a principled way. Rearranging terms yields

argmax
Θ

N∑
i=1

∑
yi∈Yi

qi lnp(xi | θyi , Iref )·
∑
y1∈Y1

q1 . . .
∑

yi−1∈Yi−1

qi−1
∑

yi+1∈Yi+1

qi+1 . . .
∑

yN∈YN
qN , (4.62)

where we use the shorthand qi := qi(yi | Iseg ,Θ, Iref ). Since the factors are nor-
malized such that ∑yi∈Yi qi(yi | Iseg ,Θ, Iref ) = 1 (Sec. 4.1.2.6), we arrive at

argmax
Θ

N∑
i=1

∑
yi∈Yi

qi(yi | Iseg ,Θ, Iref ) lnp(xi | θyi , Iref ), (4.63)

which is equivalent to

argmax
Θ

M∑
k=0

N∑
i=1

qi(yi = k | Iseg ,Θ, Iref ) lnp(xi | θk, Iref ). (4.64)

In the E-step, the factors qi(yi | Iseg ,Θ, Iref ) are estimated in an iterative pro-
cess qt−1

i  qti using Eq. (4.36). Since this process only performs local updates,
the quality of the found local optimum strongly depends on the initial estimate
q0
i (yi). We therefore initialize the mean-field iterations with a ML-solution found
by graph cuts (Sec. 4.1.2.7)

yML = argmax
y∈Y

p(y | Iseg ,Θ, Iref ) (4.65)

such that

q0
i (yi | Iseg ,Θ, Iref ) =

1 if yi = yi,ML
0 otherwise.

(4.66)

Due to the pairwise ambiguity-resolving potentials, the pairwise potentials de-
fine a semi-metric, since transitivity is not satisfied. While α-expansions require
the pairwise potentials to be a metric, αβ-swaps are applicable for semi-metrics
(see Sec. 4.1.2.7).
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For an efficient algorithm, we are not required to run the mean-field iterations
until convergence. A single iteration suffices to improve the estimate for p(y |
Iseg ,Θ, Iref ), which also improves the lower bound of the EM-algorithm. As we
use graph cuts to seed the iterations, we typically obtain good solutions within
a few cycles of EM by reducing the KL-divergence between p(y | Iseg ,Θ, Iref )
and our approximation. We observe that according to Eq. (4.36), after a single
iteration the factors are

q1
i (yi | Iseg ,Θ, Iref ) = ηi exp

 lnp(xi | yi,Θ, Iref )+

∑
(yi,yj)∈CP (yi)

∑
yj∈Yj

q0
j (yj | Iseg ,Θ, Iref ) lnϕ(yi,yj , Iseg)

 , (4.67)

where ηi is a normalization factor such that ∑yi∈Yi q
1
i (yi | Iseg ,Θ, Iref ) = 1. Plug-

ging our ML-seed (Eq. (4.66)) into Eq. (4.67) yields

q1
i (yi | Iseg ,Θ, Iref ) = ηi p(xi | yi,Θ, Iref )

∏
(yi,yj)∈CP (yi)

ϕ(yi,yj,ML, Iseg). (4.68)

Interestingly, the factors q1
i (yi | Iseg ,Θ, Iref ) are local conditional probabilities

q1
i (yi | Iseg ,Θ, Iref ) = p(yi | yML \{yi}, Iseg ,Θ, Iref ) (4.69)

in the CRF conditioned on the ML-solution. Note that if the graph-cuts avoid
ambiguous associations, the corresponding pairwise terms vanish from eq. (4.68).
In summary, each image site i is assigned a weight for the reestimation of the

rigid-body motion θk in Eq. (4.64). The weight intuitively is the likelihood that
site i belongs to the segment with respect to the ML-labeling.

4.2.4. Model Complexity
The pairwise interaction terms prefer large motion segments and naturally con-
trol the number of segments to be small. In the case that a single 3D motion
segment occurs as multiple unconnected image segments in the image, our ap-
proach so far may still use different but redundant motion segments for the image
segments. To control model complexity, we enhance the graph cut optimization
in Sec. 4.2.3 with label costs (Delong et al., 2012), i.e., we use graph cuts to
optimize the augmented CRF energy function

E(y) =
−

∑
yi∈CU

lnϕ(yi, Iseg ,Θ, Iref )−
∑

(yi,yj)∈CP
lnϕ(yi,yj , Iseg ,Θ, Iref )−

∑
l∈L

lnϕ(l,y),

(4.70)
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Figure 4.8.: Online EM. The EM framework is used to segment RGB-D images
online by performing a few M- and E-steps per image. Typically,
one iteration per image suffices.

with per-label-costs

lnϕ(l,y) :=

−λ if l 6= 0∧∃yi ∈ y : yi = l

0 otherwise.
(4.71)

Each label is assigned the same cost λ except the outlier label for which we
impose no cost. Label costs have a natural interpretation of implementing in-
formation criteria such as the BIC (see Sec. 4.1.2.7).
We initialize the EM algorithm with a guess of the number of motion segments

(M = 1 in our experiments). While this guess influences the number of required
iterations, we found that it has only little effect on finding the correct number
of segments. To let our approach possibly increase the number of segments,
we append one additional, yet unsupported segment before the M-step. All
sites in segments that are yet unsupported in the image are assigned the outlier
data likelihood pO. By this, our EM algorithm prefers to explain sites that
misalign with the already existing segments by new motion segments. We define
a motion segment to be supported if it labels sites in the image and reject very
small segments as outliers. Unsupported segments (eventually the additional
segment) are discarded after the E-step.

4.2.5. Sequential Segmentation
While our EM formulation may in principle segment motion between arbitrary
images, we augment it to perform efficiently on image sequences. We segment
the first image Iseg in a sequence iteratively towards subsequent images Iref ,t. At
each new image at time t, our approach estimates the number of segments Mt,
a new segmentation yt, and new motion estimates Θt. Instead of starting our
EM procedure all over for each new image, we initialize the approach with the
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estimates from the last image Iref ,t−1. This way, the EM algorithm requires sig-
nificantly less iterations per image to converge (typically one iteration suffices).

4.2.6. Image Representation
The performance of our EM approach depends on the underlying image represen-
tation. Any representation is suitable that defines observation likelihood p(xi |
θyi , Iref ), image site neighborhood CP,S , and dissimilarity γ(xi,xj) for the pair-
wise interaction terms. To solve for the motion estimates of the segments in
Eq. (4.64), an image registration technique is required that allows to incorporate
individual weights for the image sites. To these ends, our compact MRSMaps
are an efficient choice.

4.2.6.1. Observation Likelihood

We interpret voxels x in the MRSMap as image sites. Given the labeling yi,
the surfel sseg,i in voxel xseg,i is observed at a corresponding surfel sref ,j in voxel
xref ,j under the rigid-body motion estimate θyi , i.e., we model the observation
likelihood

p(sseg,i|θyi , sref ,j) = N
(
d∗(sseg,i, sref ,j , θyi);0,Σ∗(sseg,i, sref ,j , θyi)

)
,

d∗(sseg,i, sref ,j , θyi) := µref ,j− (R∗(θyi)µseg,i+ t∗(θyi)) ,
Σ∗(sseg,i, sref ,j , θyi) := Σ′ref ,j +R∗(θyi)Σ′seg,iR

∗(θyi)T ,
(4.72)

If multiple surfels are contained within the voxels i and j for several view direc-
tions, we assign the best observation likelihood among all pairs of view directions.
Here, we take spatial as well as color information into account such that

R∗(θyi) =
(
R(θyi) 0

0 I3

)
∈ R6×6 (4.73)

rotates the surfel coordinates according to the motion estimate, and

t∗(θyi) =
(
t(θyi)

0

)
∈ R6×1 (4.74)

is the corresponding translation. Correlations between the point and color dis-
tributions cannot be considered since the color distribution is not comparable for
large spatial misalignments at which surface has not been measured. We hence
remove these correlations by setting the corresponding entries in the surfel co-
variances Σ′ref ,j and Σ′seg,i to zero. Furthermore, in order to improve robustness
for illumination changes, we neglect small luminance and chrominance differ-
ences.
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For the unary potentials, we additionally examine the consistency of the surfel
normals in the combined likelihood

ϕ(yi, Iseg ,Θ, Iref ) = N
(
d∗(sseg,i, sref ,j , θyi);0,Σ∗(sseg,i, sref ,j , θyi)

)
·N

(
arccos

(
nref ,j ,R(θyi)nseg,i

)
,σ2
n

)
(4.75)

with standard deviation σn. Since the rotation around the surface normal is not
observable, we do not use the term for pose optimization.
The evaluation of the observation likelihood involves the association of the

surfel sseg,i with a surfel sref ,j = Ak(sseg,i) from the reference image. The mean
position of the surfel sseg,i is transformed to the reference image according to the
motion estimate θyi . We then search for a matching surfel in the reference image
from coarse to fine resolutions. We adapt the search radius r = 2ρ(V (sseg,i))−1

to the resolution and find the association on the finest resolution possible. Each
motion segment requires its own set of associations

Ak :=
{(
sseg , sref

)
∈ Iseg× Iref | sref ,j = Ak(sseg,i)

}
. (4.76)

Care has to be taken at image borders, background at depth discontinuities,
and occlusions, since no association can be made and assigning a low likelihood
would be pessimistic. We assign the last observed data likelihood to such surfels.

4.2.6.2. Smoothness Cost Terms

We establish pairwise terms between all six direct neighbors of a voxel in the 3D
grid. In addition, we couple a voxel with its children and its parent voxel within
the octree. In this way, spatial coherence can be enforced despite the sparseness
of the 3D representation and across the discrete changes of the depth-dependent
resolution limit. We weaken pairwise couplings by the dissimilarity of surfels,

γ(xi,xj) := gs min
{

1,max
{

0,max
{
gn(1−nTi nj),

gLdL(si, sj), gαdα(si, sj),gβdβ(si, sj)
}
−g0

}}
, (4.77)

where gs, gn, gL, gα, and gβ are scale parameters,

dL(si, sj) =
∣∣∣µL,i−µL,j ∣∣∣ , (4.78)

dα(si, sj) = |µα,i−µα,j | , (4.79)
dβ(si, sj) =

∣∣∣µβ,i−µβ,j ∣∣∣ , (4.80)

and g0 handles illumination differences and noise. Fig. 4.9 illustrates our smooth-
ness terms in an example.
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Figure 4.9.: Pairwise interactions in MRSMaps. We visualize the smoothness
cost terms for direct voxel neighbors to the right (middle left), down
(middle right), and forward (bottom left) directions. Directions are
according to the shown camera frame (right: red, down: green, for-
ward: blue axis). Bottom right: maximum cost over all neighbors.
Costs are color-coded from blue (low) to red (high). Missing vox-
els either do not exist on the displayed resolution (0.025m) or they
have no valid neighbor in the specific direction.
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Figure 4.10.: Example segmentations (top, outliers dark red) towards a refer-
ence image (bottom) from the test sequences (left: small, middle:
medium, right: large).

4.2.6.3. Motion Estimation

The motion of the segments is estimated in the M-step. We apply our efficient
rigid registration method for MRSMaps to the optimization of the EM-objective
(Eq. (4.64)). We augment the algorithm to incorporate the weighting by the
mean-field factors

argmax
θyi

∑
(si,sj)∈Aθyi

q1
i (yi | Iseg ,Θ, Iref ) lnp(sseg,i | θyi , sref ,j). (4.81)

This weighted log-likelihood is optimized analogous to the approach in Sec. 3.2.2.
Since this registration procedure performs local optimization, a good initializa-

tion is important. During incremental EM, parts of the scene may start to move
at any time and split an existing segment. We initialize the motion estimate for
yet unsupported segments mk with an estimate of a supported segment m

k̂
. We

first identify which of the supported segments or the outlier set best explains
mk through

k̂ = argmax
k′∈{0,1,...,M}

∑
yi∈yML:yML,i=k′

q1
i (yi = k | Iseg ,Θ, Iref ). (4.82)

If this segment is not the outlier label, i.e., k̂ 6= 0, we set θk = θ
k̂
. Otherwise, we

use the largest segment.
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sequence small medium large

run-time in ms 200.2±42.3 213.1±54.7 138.7±37.5
error in M 0.05±0.29 0.11±0.43 -0.58±1.01

avg. seg. acc. 0.95 0.94 0.63
median trans. acc. in m 0.012 0.018 0.034
median rot. acc. in rad 0.047 0.029 0.049

Table 4.1.: Mean ± standard deviation of run-time and the error in the number
of segments, segmentation and motion estimate accuracy over all
frames of the test sequences.

sequence small medium large

error in M -0.09±0.35 0.04±0.45 -0.43±0.92
avg. seg. acc. 0.91 0.91 0.65

median trans. acc. in m 0.013 0.020 0.030
median rot. acc. in rad 0.045 0.030 0.048

Table 4.2.: Mean ± standard deviation of the error in the number of seg-
ments, segmentation and motion estimate accuracy under real-time
constraints.

4.3. Experiments
We evaluate segmentation and motion estimation accuracy of our approach on
three RGB-D video sequences with ground-truth information1. We recorded two
large objects (chairs), two medium sized objects (a watering can and a box), and
two small objects (a cereal box and a tea can) (see Fig. 4.10). The objects as well
as the camera have been moved during the recordings. The sequences contain
1,100 frames at 640×480 VGA resolution and at full 30Hz frame-rate. Ground

number of segments M

sequence 1 2 3 4

small 139.5±15.9 181.5±27.9 232.6±36.9 –
medium 142.7±19.4 166.2±30.9 224.2±46.8 298.9±50.8
large 102.4±17.3 125.6±24.2 158.5±30.4 192.3±37.0

Table 4.3.: Mean ± standard deviation of run-time (ms) for different number of
segments.

1available from http://www.ais.uni-bonn.de/download/rigidmultibody
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Figure 4.11.: Average segmentation accuracy vs. increasing rotational (top) and
translational (bottom) ground-truth object motion (left: small,
middle: medium, right: large objects). The mean is determined
for segment motion greater or equal the value on the x-axis.

truth of the 3D rigid-body motion has been obtained with an OptiTrack motion
capture system. We attached infrared reflective markers to the backside of the
objects. While recording the data, we took care that the reflective markers were
not visible for the RGB-D camera.
For frames at every 5 seconds, we manually annotated the individual object

parts that move throughout the sequences. Invalid depth readings or non-rigid
objects like arms and legs of persons are annotated with dont-care labels. Ad-
ditionally, we set pixels to dont care in the ground truth that project outside
the reference image due to camera motion. Not all annotated segments move
between a ground-truth frame and an arbitrary frame in the sequence. We au-
tomatically determine groups of objects that move jointly between the frames
(0.12 rad rotational and 0.05m translational motion) and merge their segments.
The sequences are processed sequentially, starting from each ground-truth la-

beled image as the image to be segmented. If not stated otherwise, the sequences
are processed frame-by-frame. In real-time mode, we drop frames if they would
arrive during the processing of a frame. The experiments have been run on an
Intel Core i7-4770K CPU at a maximum clock speed of 3.50GHz. We deter-
mined the parameters of our approach empirically, while for the MRSMaps we
use a maximum resolution of 0.0125m at a distance dependency of λρ = 0.014.
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Figure 4.12.: Average segmentation accuracy vs. rotational (top) and transla-
tional (bottom) ground-truth object motion (left: small, middle:
medium, right: large objects). The mean is determined in local
windows of width 0.2.

4.3.1. Evaluation Measures
We quantify segmentation accuracy with the measure proposed by Everingham
et al. (2010),

seg. acc.= true positives
true pos.+ false pos.+ false negatives , (4.83)

for which we back-project the resulting motion segmentation from the MRSMaps
into the segmented RGB-D images and account for the labeling of each pixel.
For each object, we associate the estimated segment with highest segmentation
accuracy. The average segmentation accuracy over objects in a sequence is
determined by the mean over all individual object segmentation accuracies in
all images. We also measure translational and rotational errors between ground-
truth and estimated motion.

4.3.2. Run-Time
The run-time of our approach is given in Tables 4.1 and 4.2. It segments images
fast at a frame rate of about 2 to 10Hz. As can be seen from Table 4.3 the
run-time depends on the number of segments. It also depends on the distance
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Figure 4.13.: Median rotational (top) and translational (bottom) error of the
camera motion estimate vs. increasing object segmentation ac-
curacy (left: small, middle: medium, right: large objects). The
median is determined for segmentation accuracies greater or equal
the value on the x-axis.

of the camera to the measured surfaces which explains the qualitative difference
in run-time between the large objects sequence to the other two sequences.

4.3.3. Segmentation Accuracy
Figs. 4.11 and 4.12 show average segmentation accuracy in dependency on the
actual translational and rotational motion of the objects. To visualize the ef-
fect of different degrees of object motion onto the segment accuracy, we vary a
threshold for the translational and rotational motion and determine the avg. seg-
mentation accuracy for those results for which the motion is above the threshold
in Fig. 4.11. Fig. 4.12 shows the median in rotational and translational accuracy
within a local window of size 0.2 in segmentation accuracy.
Most objects and the background in the sequences can be very well segmented.

The box-shaped objects show a drop in segmentation accuracy with rotation
since sides of the boxes become occluded. For the chairs (bottom row) it can be
seen that moderate object motion facilitates high segmentation accuracy. This is
explained by the distant hence noisy, structure-less, and untextured background
which allows only coarse misalignments to be detected. The chair feet cannot
be reliably segmented because of their thin and rotationally repetitive structure.
Besides this, our approach recovers the number of segments well in the sequences,
and achieves good overall accuracies in segmentation and motion estimates (see
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Figure 4.14.: Median rotational (top) and translational (bottom) error of the
camera motion estimate vs. object segmentation accuracy (left:
small, middle: medium, right: large objects). The median is de-
termined in local windows of width 0.2.

Tables 4.1 and 4.2). Notably, if frames are dropped to operate in real-time, we
obtain similar performance to processing all frames.

4.3.4. Motion Estimate Accuracy

The results in Figs. 4.13 and 4.14 demonstrate that our approach recovers cam-
era motion towards the objects accurately. In Fig. 4.13, we determine the median
pose accuracy for all results above the varied segmentation accuracy threshold,
while in Fig. 4.14 we show the local median in motion accuracy in dependency
of segmentation accuracy. While for many objects motion accuracy increases
with segmentation accuracy, the motion also seems well estimated for low seg-
mentation accuracies. Low segmentation accuracy often coincides with small
displacements of the objects. For the small objects, or for the background at
low segmentation accuracy, the pose estimates are less accurate. The small ob-
jects are difficult to track in angle with our depth-based registration method
due to measurement noise and hands of persons that touch the object to move
it. If the background is undersegmented, the registration arbitrates between the
background and a foreground object until motion is sufficiently large to split the
segment.
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4.4. Related Work
Several approaches to 3D motion segmentation have been proposed that repre-
sent images sparsely through interest points. Multi-body factorization methods
(Zelnik-Manor et al., 2006) find groups of points with common 3D rigid-body
motion through factorization of the measurement matrix. These approaches
have been extended to also cope with outliers and noisy observations (Gruber
and Weiss, 2004; Schindler and Suter, 2006; Rothganger et al., 2007). Exploiting
depth measurements for interest points from a calibrated stereo camera, Agrawal
et al. (2005) propose a real-time capable framework for 3D motion segmenta-
tion based on RANSAC and structure-from-motion (SfM). These approaches,
however, do not provide dense segmentations.
Some approaches segment 2D image motion densely based on optical flow.

Cremers and Soatto (2005) propose motion competition, a variational framework
for dense motion segmentation of monocular image sequences. They estimate the
2D parametric motion of multiple motion segments. Brox et al. (2006) extend
this approach towards non-parametric motions. Occlusions and multiple data
associations are explicitly modelled in the variational framework of Unger et al.
(2012), but the method is far from real-time performance. In our approach, we
also handle multiple data associations as additional pairwise labeling constraints
during graph cut optimization of the motion segmentation. Kumar et al. (2005)
segment scenes into 2D motion layers using a CRF model that incorporates
occlusions and lighting conditions. The work by Ayvaci and Soatto (2009) defines
an energy functional on a superpixel graph which is optimized using efficient
graph cuts. While these methods yield impressive results, they estimate motion
of 2D layers in the image and do not necessarily provide segments with consistent
3D rigid-body motion.
Weber and Malik (1997) proposed dense 3D motion segmentation between

monocular images from optical flow assuming an affine camera model. Sekkati
and Mitiche (2006) tackle dense 3D multibody SfM from monocular video in
a variational framework and demonstrate qualitative results. Using a stereo
camera, dense 3D scene flow aims at the concurrent 3D reconstruction and
motion estimation in dynamic scenes (Huguet and Devernay, 2007; Wedel and
Cremers, 2011). Superpixel segmentation can also be formulated based on color,
stereo depth, and stereo 3D flow simultaneously (Van den Bergh and van Gool,
2012). This approach operates at about 2Hz using a GPU for optical flow
computation and is not designed to find coherent segments of rigid-body motion.
With a stereo camera, Zhang et al. (2011) propose dense 3D multibody SfM using
an energy minimization framework. The approach relies on plane fitting to make
the segmentation robust and is reported to require ca. 10min per frame. Wang
et al. (2012) transfer the approach of Cremers and Soatto (2005) to 3D time-of-
flight images. They formulate a 3D optical flow constraint, and optimize for the
3D motion segmentation using level sets, but do not report on computational
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load. Recently, a variational framework has been proposed that integrates rigid-
body motion segmentation with dense 3D reconstruction (Roussos et al., 2012)
from monocular image sequences. The batch method requires about 8 to 9 sec
per frame on a GPU. We make efficient use of dense depth in RGB-D images
for 3D motion segmentation—also integrating texture cues. The frame-rate of
our approach is between 2 to 10Hz on a CPU.
Within the robotics community, early work on dense motion segmentation has

been pursued for the mapping of static and dynamic parts in environments using
2D laser scanners. Hähnel et al. (2003) propose an EM algorithm that filters
dynamic parts of the environment in order to make the 2D occupancy mapping
of the static environment parts robust. In simultaneous localization mapping
and moving object tracking (SLAMMOT) (Wang et al., 2004), dynamic objects
are segmented in laser scans through distance comparisons, and subsequently
tracked while concurrently mapping the environment statics in a SLAM frame-
work. Van de Ven et al. (2010) recently proposed a graphical model that in-
tegrates CRF-Matching (Ramos et al., 2007) and CRF-Clustering (Tipaldi and
Ramos, 2009) within a single framework for 2D scan-matching, moving object
detection, and motion estimation. They infer associations, motion segmentation,
and 2D rigid-body motion through inference in the model using max-product
LBP. We formulate dense 3D motion segmentation of RGB-D images using EM
and perform fast approximate inference using graph cuts.
Interactive vision is a line of research in robotics that frequently uses motion

cues to identify novel objects (Fitzpatrick, 2003; Kenney et al., 2009). Fitz-
patrick (2003) proposed a background subtraction method in color images which
segments the image into robot and object parts while the robot pokes objects.
He finds the point of first contact in an image sequence and determines the mov-
ing parts beforehand (robot) and afterwards (object). Kenney et al. (2009) also
perform background subtraction and find coherent object segments using graph
cuts. For segmentation, these approaches assume a static camera pose, whereas
our approach recovers camera and object motion concurrently. Furthermore,
our segmentation method is suitable for mobile manipulation scenarios, where
keeping the moved object within the field of view would involve camera motion.

4.5. Summary
We developed a general and efficient EM framework for dense sequential 3D
rigid-body motion segmentation in RGB-D video. We employ EM to infer image
labeling and motion estimates, and propose efficient approximations based on
variational inference and graph cuts. Our approach recovers the number of
motion segments and is suited for online operation in real-time. Our efficient
probabilistic image representation in MRSMaps and rapid registration method
facilitate fast performance. In experiments, we demonstrated high accuracy of
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our method with regards to segmentation and motion estimates. Our approach
also recovers the number of motion segments well.
The performance of our motion segmentation approach strongly depends on

the underlying image representation. In order to improve the segmentation of
fine-detailed structure and to increase the accuracy of motion estimation for
small objects, we could integrate interest points into our dense segmentation
approach. It could also be useful to adapt an oversegmentation of the image
such as superpixels or supervoxels to our approach. While we handle degrading
image overlap, segmentation evidence from multiple views could be beneficial to
increase overlap.
Future research could investigate the application of our EM framework to

different image representations and registration methods. For instance, motion
could be segmented in an efficient GPU implementation, in which image pix-
els are directly used as image sites. Registration could be performed through
RGB-D image warping as proposed by Steinbruecker et al. (2011). A further
interesting application of our approach could be the dense 3D motion segmen-
tation of video of a monocular camera. E.g., our method could be applied to
the dense tracking and mapping approach recently proposed by Newcombe et al.
(2011b).
As the rigid registration method used for the M-step has local convergence

properties, also motion estimation converges locally. By using a global alignment
method for registration as we will propose in Ch. 6 for object detection, global
convergence could be achieved. Salas-Moreno et al. (2013) recently demon-
strated that such a global registration method can be implemented for real-time
operation on GPUs which could facilitate real-time motion segmentation with a
global alignment method within our EM framework.
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5. Deformable Registration

In deformable registration, we do not need to make the assumption that the
whole scene or parts move rigidly between two images. Our approach is an effi-
cient, multi-resolution extension of the coherent point drift (CPD) method (My-
ronenko and Song, 2010), making CPD well suitable for the deformable regis-
tration of RGB-D measurements. The CPD method determines a displacement
field which assigns a motion to each point in a point cloud. It imposes local
smoothness on the displacement field to make the estimation procedure well-
posed and robust.
We transfer these concepts to our efficient multi-resolution surfel representa-

tion of RGB-D images. Each surfel moves within a displacement field which we
regularize for local smoothness. We utilize the compact local multi-resolution
structure of our maps to devise an efficient coarse-to-fine deformable registration
algorithm. Resolution decreases with distance in our MRSMaps, which creates
borders between adjacent resolutions. We extend the CPD approach to con-
sider registration constraints found for adjacent surfels on coarser resolutions.
The registration on finer resolutions is initialized from the result on the coarser
one. In addition to depth, we also utilize color and contour cues. We improve
robustness and efficiency of our algorithm by using a modified Gaussian kernel
with compact support. Finally, we present means to estimate the local rigid
transformation part of the displacement field at arbitrary points which will be
useful for transfering object manipulation skills of robots (Ch. 7).

5.1. Background: Coherent Point Drift
The CPD method proposed by Myronenko and Song (2010) performs non-rigid
deformable registration between two point clouds: We denote X = (x1 . . .xN )T

as the scene and Y = (y1 . . .yM )T as the model point cloud with D-dimensional
points xi,yj ∈ RD. We assume that the surface underlying the model point
cloud has been deformed towards the scene surface according to the displacement
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field v : RD→ RD such that points yj in the model cloud transform to a point
yj + v(yj) on the scene surface. The aim of the CPD method is to recover this
displacement field. Fig. 5.1 illustrates the CPD algorithm.

5.1.1. Mixture Model for Observations
CPD explains the scene point cloud X as a set of samples from a mixture model
on the deformed model cloud Y ,

p(xi | v,σ) =
M+1∑
j=1

p(ci,j) p(xi | ci,j ,v,σ), (5.1)

where ci,j is a shorthand for the 1-of-(M+1) encoding binary variable ci ∈BM+1

with the j-th entry set to 1. Naturally, ci indicates the association of xi to exactly
one of the mixture components. The model is a Gaussian mixture on the M
deformed model points and an additional uniform mixture component,

p(xi | v,σ) =
M∑
j=1

p(ci,j) N (xi;yj +v(yj),σ2) +p(ci,M+1) p(xi | ci,M+1), (5.2)

where σ is a standard deviation which is shared across all Gaussian mixture
components. The uniform component generates each sample in X with equal
probability p(xi | ci,M+1) = 1

N . Its prior probability w := p(ci,M+1) is a parameter
that is chosen according to the noise inherent to the data. If we further assume
equal prior likelihood for the association to each Gaussian mixture component,
we obtain p(ci,j) = (1−w) 1

M for all j ∈ {1, . . . ,M}.
By modeling the scene points as samples from a mixture model on the model

cloud, the CPD method does not make a hard association decision between the
point sets, but a scene point is theoretically associated to every model point.
The probability p(ci,j | xi,v,σ) quantifies the likelihood of the assignment of xi
to the model point yj . The closer the displacement field v transforms yj towards
xi, the more likely is the assignment of xi to yj .

5.1.2. Registration through Expectation-Maximization
The displacement field v is estimated through maximization of the logarithm of
the joint data-likelihood

lnp(X | v,σ) =
N∑
i=1

ln
M+1∑
j=1

p(ci,j) p(xi | ci,j ,v,σ). (5.3)

While a direct optimization of this objective function is not feasible, it lends itself
to the EM method (Sec. 4.1.1). The component associations c= {c1, . . . , cN} are
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Figure 5.1.: The CPD method deformably registers scene X and model cloud
Y in an EM framework. A GMM is imposed on the deformed
model cloud. In the E-step (top), each scene point xi is softly as-
signed to all model points yj according to the assignment probability
p(ci,j | xi,v,σ) of the scene point to the model point. The M-step
(bottom) then determines a new displacement field v̂ from these soft
associations.

treated as the latent variables to yield the EM objective

L(q,v,σ) :=
N∑
i=1

M+1∑
j=1

q(ci,j) ln p(ci,j) p(xi | ci,j ,v,σ)
q(ci,j)

, (5.4)

by exploiting q(c) =∏N
i=1

∏M+1
j=1 q(ci,j). In the M-step, the latest estimate q for

the distribution over component associations is held fixed to optimize for the
displacement field v and standard deviation σ

{v̂, σ̂}= argmax
v,σ

L(q,v,σ) (5.5)

with

L(q,v,σ) :=
N∑
i=1

M+1∑
j=1

q(ci,j) lnp(ci,j) p(xi | ci,j ,v,σ) =

const.− 1
2

N∑
i=1

M∑
j=1

q(ci,j)
(
D ln(2πσ2) + 1

σ2 ‖xi− (yj +v(yj))‖22
)
. (5.6)
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5. Deformable Registration

The E-step obtains a new optimum q̂ for the distribution q by the conditional
likelihood of the cluster associations given the latest displacement field estimate
v and standard deviation σ

q̂(ci,j) = p(ci,j | xi,v,σ) = p(ci,j) p(xi | ci,j ,v,σ)∑M+1
j′=1 p(ci,j′) p(xi | ci,j′ ,v,σ)

. (5.7)

For the Gaussian mixture components this corresponds to

q̂(ci,j) =
exp

(
− 1

2σ2 ‖xi− (yj +v(yj))‖22
)

(2πσ2)D/2 w
1−w

M
N +∑M

j′=1 exp
(
− 1

2σ2 ‖xi− (yj +v(yj))‖22
) . (5.8)

5.1.3. Regularized Deformation Field
It is a well known fact that estimating a function from a set of samples purely
from the data-likelihood easily is an ill-posed problem (Tikhonov and Arsenin,
1977). In our specific setting of the estimation of a displacement field, continuity
of the solution of Eq. (5.3) is violated since surfels would be assigned to their
closest counterparts in the other surfel set. A small perturbation of the surfels’
positions may lead to discontinuous changes in the solution. Hence, we need to
constrain the displacement field by either restricting it to a specific parametric
form or by using a regularizing prior that enforces smoothness.
Myronenko and Song (2010) augment the joint data-likelihood in Eq. (5.3)

with a prior p(v) = exp
(
−λ2 ‖v‖

2
H
)
:

lnp(X,v | σ) = lnp(X | σ,v)− λ2 ‖v‖
2
H . (5.9)

which implements Tikhonov regularization (Tikhonov and Arsenin, 1977) by
choosing the norm in a reproducing kernel Hilbert space (RKHS) H. It is
straightforward to extend the EM approach of the previous Sec. 5.1.2 to the
joint likelihood of data and displacement field,

Lregularized(q,v,σ) := lnp(v) +
N∑
i=1

M+1∑
j=1

q(ci,j) ln p(ci,j) p(xi | ci,j ,v,σ)
q(ci,j)

, (5.10)

i.e. the lower bound constructed by EM is added a term lnp(v) that neither
depends on the scene points nor the mixture component assignments. In the
E-step, the prior is a constant term and has no influence on the q that best
improves the lower bound (see Sec. 4.1.1), hence, Eq. (5.8) still applies. The
M-step optimizes the regularized conditional expectation in Eq. (5.10) for the
displacement field v and the standard deviation σ with fixed q.
It is possible to show that applying a Gaussian reproducing kernel g(y,y′) :=

exp
(
−‖y−y

′‖2
2

2β2

)
is equivalent to the regularization proposed in motion coherence
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theory (Myronenko, 2010). The Gaussian regularizer penalizes high frequencies
in the displacement field which can be seen from the equivalent formulation of
the norm in frequency domain

‖v‖2H =
∫ |V (ω)|2

g(ω) dω, (5.11)

where V (ω) is the Fourier transform of v, g(ω) is the Fourier transform of the
Gaussian function, and ω is a frequency.
A norm ‖Pv‖2 on the outcome of a linear differential operator P applied to

v also induces a RKHS (Smola et al., 1998). The reproducing kernel k(y,y′) is
equivalent to the Green’s function of the differential operator P ∗P

P ∗Pk(y,y′) = δ(y−y′), (5.12)
where P ∗ is the adjoint operator to P and δ is the Dirac function. A Green’s
function can be interpreted as defining a right-inverse integral operator to a
differential operator which is utilizable to solve the partial differential equation
Lv(y) = f(y) for v. A solution is v(y) =

∫
k(y,y′)f(y′)dy′ since

L
∫
k(y,y′)f(y′)dy′ =

∫
Lk(y,y′)f(y′)dy′ =

∫
δ(y−y′)f(y′)dy′ = f(y), (5.13)

for which we exploit the linearity of L to move it inside the integral. Conversely,
we can find a linear differential operator P for any RKHS (Smola et al., 1998;
Chen and Haykin, 2002). This alternative view in terms of differential operators
will be useful to derive a solution for v in the M-step (Eq. (5.9)).
For instance, the RKHS induced by a Gaussian kernel can be defined in terms

of the differential operator P with

‖Pv‖2 =
K∑
k=1

ak

∫ ∑
j1+···+jD=k

 ∂kv(y)
∂yj11 . . .∂yjDD

dy (5.14)

and ak := σ2k

k!2k (Chen and Haykin, 2002; Rasmussen and Williams, 2005).

5.1.4. Regularized Maximization Step
In the M-step, we optimize (5.10) for the displacement field v and the standard
deviation σ. Since a joint closed-form solution is not available, Myronenko and
Song (2010) optimize for v and σ alternately.

Standard Deviation: Setting the derivative of Eq. (5.10) for the standard de-
viation σ to zero yields

σ̂2 = 1
NPD

N∑
i=1

M∑
j=1

q(ci,j) ‖xi− (yj +v(yj))‖22 , (5.15)

where we define NP :=∑N
i=1

∑M
j=1 q(ci,j).
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Deformation Field: Analogous to the derivation in (Chen and Haykin, 2002),
we obtain the Euler-Lagrange equation for the functional in Eq. (5.10),

P ∗P v̂(y) = 1
σ2λ

N∑
i=1

M∑
j=1

q(ci,j) (xi− (yj + v̂(yj))) δ(y−yj). (5.16)

With the choice of a Gaussian kernel, this partial differential equation can be
solved using the Green’s function k(y,y′)≡ g(y,y′) of the operator P ∗P

v̂(y) =
∫
k(y,y′) 1

σ2λ

N∑
i=1

M∑
j=1

q(ci,j) (xi− (yj + v̂(yj))) δ(y′−yj)dy′ (5.17)

= 1
σ2λ

N∑
i=1

M∑
j=1

q(ci,j) (xi− (yj + v̂(yj))) k(y,yj) (5.18)

=
M∑
j=1

wjk(y,yj), (5.19)

with weights wj := 1
σ2λ

∑N
i=1 q(ci,j) (xi− (yj + v̂(yj))) ∈ RD. Note the resem-

blance to the representer’s theorem (Schölkopf et al., 2001): the solution is a
linear combination of data-dependent terms wj weighted with the kernel evalu-
ated at the data points yj .
To obtain a solution we need to evaluate the solution v̂(y) at the model points

yj and solve for the weights wj . Let W := (w1, . . . ,wM )T ∈ RM×D to write
v(y) =GW using the Gram matrix G∈RM×M with Gij := k(yi,yj). The weights
for the solution v̂(y) are

W = (λσ2 I+dP1G)−1 (PX−dP1Y ) , (5.20)

where P ∈ RM×N with Pji := q(ci,j) and dP1 := diag(P 1N×1) (Myronenko and
Song, 2010).
The solution for the weights W in Eq. (5.20) requires the inversion of a po-

tentially large M×M -matrix whose size depends on the size of the model point
cloud. To reduce complexity, Myronenko and Song (2010) propose to utilize a
low-rank approximation of G, Ĝ := QΛQT with the matrix Q of eigenvectors
and the diagonal matrix Λ containing the K largest eigenvalues of G. Using the
Woodbury identity, Eq. (5.20) is reformulated to arrive at

W ≈ 1
λσ2

(
I−dP1Q

(
λσ2Λ−1 +QTdP1Q

)−1
QT

)
(PX−dP1Y ). (5.21)

The outer inversion acts on aK×K-matrix, such that we can drastically improve
run-time over the M ×M -matrix inversion in Eq. (5.20) by choosing K �M .
The low-rank approximation constrains the solution for the displacement field in
a low-dimensional embedding, which further regularizes the displacement field.

90



5.2. Efficient Coarse-To-Fine Deformable Registration of Multi-Resolution
Surfel Maps

Myronenko and Song (2010) further propose to use the fast Gauss trans-
form (FGT) (Greengard and Strain, 1991) to efficiently evaluate matrix product
expressions PZ that involve the matrix P of mixture component association
probabilities between X and Y . The FGT utilizes a truncated series expansion
of the Gaussian to evaluate a weighted sum of Gaussians centered at a set of
source positions at a set of target positions. If the number of sources and targets
is N and M , respectively, the approach reduces the run-time complexity from
O(NM) to only O(N +M).

5.2. Efficient Coarse-To-Fine Deformable
Registration of Multi-Resolution Surfel Maps

The run-time complexity of the CPD algorithm depends at least quadratically
on the size of the model point set through the construction of the Gram matrix.
If we do not apply the low-rank approximation it is even cubic in the size of
the model cloud due to the inversion of the Gram matrix. By processing the
resolutions from coarse to fine we can keep the size of the point clouds as small
as possible. The displacement field of coarse resolutions can be used to initialize
the displacement on the next finer resolution such that the number of iterations
required to converge is dramatically decreased.
We represent the RGB-D measurements by a scene and model MRSMap. The

means of the surfels within each resolution ρ(d) at depth d of the maps define
scene and model point clouds Xd :=

(
xd,1, . . . ,xd,Nd

)
and Yd :=

(
yd,1, . . . ,yd,Md

)
.

Note that we assume that the view-point of the camera onto both maps is known
and that we can extract the surfels that the camera views onto.
We iterate from coarse to fine resolutions, starting at the coarsest resolution

ρ(0) at depth 0 in the map. Let d be the current depth processed. Our aim is
to find the displacement field vd from scene to model point clouds Xd, Yd and
the standard deviation σd.

5.2.1. Per-Resolution Initialization
We initialize the registration on each depth with the displacement field vd−1 of
the previous coarser resolution. Each mean yd,i on the current depth is mapped
to its displacement

vd−1(yd,i) =
Md−1∑
j=1

wd−1,j k(yd,i,yd−1,j) (5.22)

according to the coarser resolution displacement field which we abbreviate as

vd−1(Yd) =G(Yd,Yd−1) Wd−1, (5.23)
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where G(Yd,Yd−1)∈RMd×Md−1 is a Gram matrix with gij := k(yd,i,yd−1,j). Sub-
sequently, we utilize v(Yd) =GdWd to solve for the initial weight matrix

Wd←G−1
d G(Yd,Yd−1) Wd−1. (5.24)

on the current depth.
If we use a low-rank approximation, we have two alternatives to initialize Wd.

We may compensate for the effect of the low-rank approximation on the found
weights through

Wd← Ĝ−1
d G(Yd,Yd−1) G−1

d−1 Ĝd−1Wd−1. (5.25)

This approach requires the inversion of the low-rank approximation Ĝd and the
full-rank Gram matrix G−1

d−1. While the former is in O(K3) due to Ĝ−1
d =

QΛ−1QT , the latter is in O(M3). Notably, both inversion could be precom-
puted once, for instance, if the model cloud is an object map, or for sequential
registration of scene maps towards a persisting model map.
Alternatively, we can exploit that in the MRSMap the surfels at the current

resolution are descendants of surfels on depth d−1 with corresponding displace-
ments Ĝd−1Wd−1. Let φ : N→N be an index function that maps each yd,i in Yd
to its parent surfel yd−1,j in Yd−1. We define the mapping Φ : yd,i 7→ yd,φ(i) and
establish vd(Yd) = vd−1(Φ(Yd)) through

Wd← Ĝ−1
d vd−1(Φ(Yd)). (5.26)

The standard deviation σd← σd−1 is simply initialized from the result σd−1
of the previous iteration.

5.2.2. Resolution-Dependent Kernel with Compact Support
Gaussian kernels produce a dense Gram matrix with potentially very small en-
tries (see Fig. 5.2). The smaller the scale β the larger the condition number
of the Gram matrix and, hence, the less numerically stable is the inversion of
the Gram matrix (Fornberg and Zuev, 2007). Furthermore, sparse matrices can
be inverted much more efficiently than dense matrices using sparse matrix fac-
torizations such as the LU- or Cholesky-decompositions. We therefore use a
modified Gaussian kernel with compact support (Genton, 2002) instead, i.e.,

k(y,y′) = ϕl,k(y,y′) g(y,y′), (5.27)

where ϕl,k ∈ C2k is a Wendland kernel (Wendland, 1995) with l= bD/2c+k+1∈
N.
The family of Wendland kernels is positive-definite and has compact support,

hence also our modified Gaussian kernel is a valid kernel with compact sup-
port. Since our points are 7-dimensional and we require a kernel that is once

92
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Figure 5.2.: Gaussian kernels produce a dense Gram matrix whose condition
number decreases quickly with size. We use a modified Gaussian
kernel with compact support to sparsify the Gram matrix. Left:
kernels for β = 1. Center: Example gram matrix at resolution
ρ(d)−1 = 0.025m for Gaussian kernel (β = 10). Right: Example
gram matrix at resolution ρ(d)−1 = 0.025m for sparsified Gaussian
kernel (β = 10).

differentiable (ϕl,k ∈ C1), we utilize

ϕ5,1(y,y′) = max

0,
(

1− ‖y−y
′‖2

16β

)6 (6‖y−y′‖2
16β + 1

) . (5.28)

We adapt the scale βd = β0 ρ(d)−1 of the kernel kd(y,y′) to the current resolu-
tion ρ(d). This way spatial smoothing is performed from low to high frequencies
which is required as high frequencies in the displacement field are only observ-
able on fine resolutions due to the sampling theorem. The required amount of
smoothing, i.e., the magnitude of β0 depends on the strength of deformations in
the observations.

5.2.3. Handling of Resolution-Borders
Since we use a distance-dependent resolution limit in MRSMaps, surfels have
redundant counterparts in ancestor nodes on coarser resolutions, but they may
not be represented at finer resolutions. This leads to surfels whose local context
is in parts only present at coarser resolutions. We denote the set of surfels with
this property as resolution border surfels.
We still constrain the deformation of resolution border surfels to the displace-

ment field in the complete local context of the surfels (see Fig. 5.3). We include
the means Xd−1 of the scene surfels from the previous coarser resolution into
the scene point set. Secondly, we add a further prior on the displacement field
vd to Eq. (5.9),

lnp(Xd,vd | σd,vd−1) = lnp(Xd | σd,vd) + lnp(vd | vd−1)− λ2 ‖vd‖
2
H . (5.29)
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Figure 5.3.: Since we adapt the maximum resolution in MRSMaps with distance
from the sensor, the represented parts of the surface may reduce
with resolution. In our coarse-to-fine scheme, we condition the dis-
placement field at resolution borders ỹd+1,j on the deformation field
of the coarser resolution. We also include scene points from the
coarser resolution to include missing support in the fine resolution
scene cloud.

to favor compatibility with the displacement field vd−1 of the coarser resolution
at the resolution border surfels. While the E-step is unchanged, we need to
consider this prior in the M-step.
Let Ỹd ⊆ Yd be the means of the resolution border surfels at the current reso-

lution. We model the prior

lnp(vd | vd−1) :=−1
2

Md∑
j=1

γ(yd,j)
∥∥∥vd(yd,j)−vd−1(yd,j)

∥∥∥2
2
, (5.30)

with

γ(yd,j) :=

σ−2
γ if yd,j ∈ Ỹd

0 otherwise.
(5.31)

Again, we adapt σγ := σγ,0 ρ(d)−1 to the current resolution.
With this additional prior term, we obtain the Euler-Lagrange equation

P ∗P v̂d(y) = 1
σ2
dλ

Md∑
j=1

w′d,j δ(y−yj), (5.32)
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where we now define

w′d,j := 1
σ2
dλ

Nd∑
i=1

q(ci,j) (xd,i− (yd,j + v̂d(yd,j)))


+ 1
λ
γ(yd,j)

(
vd−1(yd,j)− v̂d(yd,j)

)
. (5.33)

Using the Green’s function k(y,y′) we solve for v̂d(y):

v̂d(y) =
Md∑
j=1

w′d,j k(y,yd,j). (5.34)

The weights are determined by evaluating the displacement field at Yd,

v̂d(yd,j′) =
Md∑
j=1

w′d,j k(yd,j′ ,yd,j) (5.35)

such that we substitute v̂d(yd,j′) in Eq. (5.33) to yield

w′d,j = 1
σ2
dλ

Nd∑
i=1

Pjixd,i

− 1
σ2
dλ

Nd∑
i=1

Pji

yd,j
+ 1
σ2
dλ

Nd∑
i=1

Pji

+γ(yd,j)
 v̂d(yd,j) + 1

λ
γ(yd,j)vd−1(yd,j). (5.36)

By rearranging terms and taking the transpose we have

σ2
d λw

′T
d,j +

Nd∑
i=1

Pji

+σ2 γ

 G(yd,j ,Yd) W ′d =

Nd∑
i=1

Pjixd,i

−
Nd∑
i=1

Pji

 yd,j +σ2
d γ(yd,j)vd−1(yd,j)

T , (5.37)

such that we obtain the system of linear equations(
σ2
d λI+

(
dP1 +σ2

d dΓ
)
Gd
)
W ′d = PXd−dP1Yd+σ2

d dΓvd−1(Yd), (5.38)

where we used the shorthand dΓ := diag(γ(Yd)). We finally arrive at the update
formula for the weights

W ′d =
(
σ2
d λI+

(
dP1 +σ2

d dΓ
)
Gd
)−1 (

PXd−dP1Yd+σ2
d dΓvd−1(Yd)

)
, (5.39)

using the full-rank Gram matrix and

W ′d ≈
1
λσ2

d

(
I−

(
dP1 +σ2

d dΓ
)
Qd

(
λσ2

dΛ−1
d +QTd

(
dP1 +σ2

d dΓ
)
Qd
)−1

QTd

)
(
PXd−dP1Yd+σ2

d dΓvd−1(Yd)
)
. (5.40)

with the low-rank approximation Ĝd =QdΛdQTd .
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5.2.4. Convergence Criteria
We iterate the EM steps on each resolution until convergence. One condition
examines the relative change

∆Lt :=
∣∣∣∣∣Lt−Lt−1

Lt−1

∣∣∣∣∣ ,Lt := 1
2λ
∥∥∥vd,t∥∥∥2

H
(5.41)

in the norm of the displacement field∥∥∥vd,t∥∥∥2
H

= tr(W T
d,tGd,tWd,t). (5.42)

If this rate decreases below a threshold, the estimate of the displacement field
is assumed to have converged.
A second criterion is required due to the FGT approximation for the evaluation

of matrix product expressions that involve q. Since the Gaussian is truncated
there may exist a yd,j for which q(ci,j) = 0 for all xd,i at sufficiently small σd. If
this is the case, we assume that we reached the smallest achievable σd on the
current resolution and resume the registration on the next finer resolution. At
the beginning of the EM steps on each new resolution, we search for an adequate
σd by scaling it up by a factor of 2 until all yd,j have non-zero weighting for some
xd,i through the FGT.

5.2.5. Color and Contour Cues
The CPD method is not limited to registration in the spatial domain. We use
the full six-dimensional spatial and color mean of the surfels. In addition, we
add contours determined as surfels at foreground borders as a seventh point
dimension. We set the contour value of a point to βd if it is on a foreground
border, or 0 otherwise. This places points closer in feature space that are either
on or off contours.

5.3. Local Deformations
The continuous displacement field allows us to estimate the local infinitesimal
deformation at any point in terms of translation and rotation between both
surfaces (see Fig. 5.4). These local deformation quantities can be estimated in
each direction between scene and model surface. Since the displacement field is
defined to act on points on the model surface, we first investigate the direction
from model to scene.

5.3.1. Local Deformations from Model to Scene
It is well known in continuum mechanics (e.g., Batra, 2006) how infinitesimal
local deformations can be estimated from a continuous deformation function
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Figure 5.4.: We estimate local transformations T , i.e., rotation and translation,
from model to scene (top) and scene to model (bottom).

φ : R3 7→ R3 that maps the position of infinitesimal particles in an elastic body
to their deformed location. Our displacement field v defines such a deformation
function in a straightforward way,

φ(y) := y+v(y). (5.43)

The infinitesimal deformation at a point y is then specified by the Jacobian of
the deformation function at y,

∇yφ(y) = I+∇yv(y). (5.44)

As long as we use differentiable kernels in our estimation algorithm, we may
write

∇yφ(y) = I+
M∑
i=1

wi∇yk(yi,y). (5.45)

Rotation R(y) and strain S(y) are obtained through polar decomposition of the
Jacobian ∇yφ(y) =RU , i.e.,

R(y) = UV T , (5.46)
S(y) = V ΣV T , (5.47)

where ∇yφ(y) = UΣV T is the singular value decomposition (SVD) of the Jaco-
bian. The translation t(y) = v(y) is set to the displacement at y.
To query the local deformation of a point y from a deformable registration

result for MRSMaps, we first find the finest resolution ρ(d) in which the point
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y is represented in the model map. Translation, rotation, and strain are then
determined via the displacement field vd.
In the case of the use of a low-rank approximation, the weights W of the

displacement field v are computed with respect to a low-dimensional embedding
of the kernel k(y,y′). Hence, Eq. (5.45) is not directly applicable. Analogously
to the problem of estimating the displacements at fine resolutions from the dis-
placement field of coarser resolution, we propose two alternatives. It is possible
to establish a weight matrix W ′ that establishes the same displacement field v
like W with the original Gram matrix G through W ′ :=G−1 Ĝ W . We can then
calculate the Jacobian as

∇yφ(y) = I+
M∑
i=1

w′i∇yk(yi,y). (5.48)

Alternatively, the inversion of G can be avoided by estimating translation and
rotation from the local displacements around y (Arun et al., 1987). We determine
the local means of model points yi and deformed model points yv,i := yi+v(yi)

µy :=
∑M
i=1 g(y,yi, r)yi∑M
i=1 g(y,yi, r)

, (5.49)

µyv :=
∑M
i=1 g(y,yi, r)yv,i∑M
i=1 g(y,yi, r)

, (5.50)

and the centered model points and their deformed counterparts

yi := yi−µy, (5.51)
yv,i := yv,i−µvy . (5.52)

Singular value decomposition of the scatter matrix

D :=
M∑
i=1

g(y,yi, r)yv,i yTi = UΣV T (5.53)

yields rotation R(y)≈ U Ĩ V T , where

Ĩ :=

 1 0 0
0 1 0
0 0 det(UV T )

 (5.54)

establishes det(R(y)) = 1. The translation is recovered from t(y)≈ µvy−R(y)µy.

5.3.2. Local Deformations from Scene to Model
A closed-form solution to the local deformations from scene to model would
require the inverse v−1(x) of the displacement field v for a scene point x. Since
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such an inverse is not available, we approximate the inverse displacement

v−1(x) =− 1∑M
i=1 g(x,yi+v(yi), r)

M∑
i=1

g(x,yi+v(yi), r)v(yi). (5.55)

with the displacements of model points yi that deform close to x. We can then
use the closed-form approach in Eqs. (5.45) and (5.46) to determine the local
rotation R(x) =R(x+v−1(x))T . The translation is t(x) = v−1(x).
For estimating rotation and translation while using low-rank approximations,

we again have both options to estimate the local deformation as in Sec. 5.3.1.
While the first approach is unchanged, in the second one we modify Eqs. (5.49)
and (5.53) to consider the spatial distance between x and yi + v(yi) for the
weighting, i.e.,

µy :=
∑M
i=1 g(x,yi+v(yi), r)yi∑M
i=1 g(x,yi+v(yi), r)

, (5.56)

µyv :=
∑M
i=1 g(x,yi+v(yi), r)yv,i∑M
i=1 g(x,yi+v(yi), r)

, (5.57)

D :=
M∑
i=1

g(x,yi+v(yi), r)yv,i yTi . (5.58)

Rotation R(x) = R(y)T and translation t(x) = −R(y)T t(y) are obtained from
the inverse of the transformation result T (y).

5.4. Experiments

5.4.1. Quantitative Evaluation
We evaluate accuracy and run-time of our registration approach on synthet-
ically deformed RGB-D images. For our experiments we used an Intel Core
i7-4770K CPU (max. 3.50GHz) and 32GB of RAM. We chose two sequences
of the RGB-D benchmark dataset (Sturm et al., 2012) for our experiments. In
the freiburg2_desk sequence the camera observes a table-top scene. The planar
surfaces create local aperture problems that need to be adressed by smoothness
regularization. The freiburg3_teddy sequence contains views on a teddy bear
with salient yellow and brown coloring. We process 500 randomly deformed
frames per sequence to assess the accuracy of our method in recovering defor-
mation as well as the run-time required to align the images.
We synthetically generate deformations in order to have ground truth avail-

able for assessing registration accuracy (see Figs. 5.5 and 5.6). Each frame is
randomly deformed by adding Gaussian noise to the 3D Euclidean dimensions.
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Figure 5.5.: Top row: Example RGB-D image (left) of the freiburg2_desk se-
quence with synthetic deformations (right). Bottom row: Estimated
(left) and ground-truth (right) displacement field.

We sample the Gaussian noise in image coordinates and choose a standard de-
viation uniformly between 100 and 200 pixels in the x- and y- direction of the
image separately. Each of ten Gaussians applies up to 0.1m distortion. In total
we normalize the applied deformation to a maximum of 0.1m in each direction.
We assess the performance of several variants of our approach. Full-rank

methods are marked by “F”, whereas we denote low-rank approximations by
“L”. The variants F−− and F−+ do not use color for registration, while the
second sign indicates the use of the contour cue. The methods tagged with “*”
do not include surfels from coarser resolutions from the scene cloud and do not
constrain the displacement field on the resulting field of the coarser resolution.
However, we initialize weights from the coarser resolutions and iterate from
coarse to fine. For all full-rank approaches we set β0 = 160. The low-rank
approximations have been run with β0 = 20.
Tables 5.1 and 5.2 summarize the average run-time in milliseconds spent per

frame. Using additional cues such as color and contours increases the run-time
slightly. The variants utilizing low-rank approximations are significantly faster
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Figure 5.6.: Top row: Example RGB-D image (left) of the freiburg3_teddy se-
quence with synthetic deformations (right). Bottom row: Estimated
(left) and ground-truth (right) displacement field.

in the registration step, while the preparation step is more expensive. This
preparation step would only be needed to be executed once for a fixed object
model. In this case, our low-rank coarse-to-fine registration method achieves a
frame rate between 1 to 5Hz. The run-time of plain concurrent processing of
all the surfels in the MRSMap requires run-time of 10 to 30 seconds per image
using low-rank approximations. Similarly plain registration of RGB-D images
takes several seconds at a downsampling factor of 8 (resolution 80×60). Larger
image resolutions could not be processed due to memory limitations.
Figs. 5.7 and 5.8 demonstrate the accuracy of our approach. Using color and

contour cues gives best performance on the finest resolution (0.025m). Not using
color, contours, or coarse-to-fine registration degrades performance. We notice
that using low-rank approximations only slighly decreases accuracy.

5.4.2. Deformable Registration and Local Transformation
Examples

In Fig. 5.9 we show typical results of our low-rank deformable registration
method on RGB-D image segments of objects. Examples for estimated local
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Table 5.1.: Comparison of average run-time in milliseconds per image using full-
rank Gram matrices.

sequence F F−+ F+− F−− F*

fr2 desk, prepare 344 330 340 325 344
fr2 desk, register 7802 6621 1826 1848 5278
fr2 desk, total 8216 7020 2235 2243 5693

fr3 teddy, prepare 141 135 139 133 141
fr3 teddy, register 3697 3340 1367 1494 3435
fr3 teddy, total 3921 3559 1589 1711 3659

Table 5.2.: Comparison of average run-time in milliseconds per image using the
low-rank approximation to the Gram matrix.

sequence L L−+ L+− L−− L*

fr2 desk, prepare 437 423 433 417 438
fr2 desk, register 643 464 553 348 425
fr2 desk, total 1149 957 1056 835 933

fr3 teddy, prepare 222 216 220 214 221
fr3 teddy, register 467 335 390 268 290
fr3 teddy, total 772 634 693 565 594

transformations can be found in Fig. 5.10. The local transformations are esti-
mated from scene to model using our sample-based approach (Sec. 5.3.2). The
local coordinate frames are well positioned at their counterparts in both image
segments. Also the orientation reflects the local bending of the surface, if it is
sufficiently densely sampled. In the example of the humanoid robot, the orienta-
tion change seems to be underestimated: At the maximum resolution available,
the sampling of the surface is not dense enough to recover the orientation change
from the sample displacements. The sampling rate could be improved with an
RGB-D sensor with higher depth resolution and less noisy measurements. Also
in future work, one could investigate the deformation of the surfel covariances
and normals for the registration and the estimation of local transformations.

5.5. Related Work
Many approaches to deformable registration represent scene and model surface
by meshes or point clouds and estimate the local deformation of vertices or
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Figure 5.7.: Median accuracy in m for deformable registration of synthetically
deformed RGB-D images on the freiburg2_desk dataset. Left:
0.1m, middle: 0.05m, right: 0.025m resolutions.

points. These methods can be characterized by the way they determine corre-
spondences between the surfaces, the space of local transformations they model,
and the type of regularization they apply to enforce local smoothness or rigid-
ity. Allen et al. (2003) learn a shape-space of human bodies through deformable
registration. They adapt the ICP algorithm to perform deformable registra-
tion between measured meshes of persons. Instead of estimating a single global
rigid transformation, they determine a local rigid transformation at each vertex
through energy minimization. The data terms of the energy measure the squared
distance of vertices towards the closest counterparts in the other mesh after the
transformation has been applied. To enforce smoothness of local transformations
of neighboring vertices in the mesh, the difference between the local transforms
is minimized concurrently. Amberg et al. (2007) take a similar approach to align
arbitrary meshes. They, however, allow for local affine transformations at the
vertices. Moreover, they propose an exact solution to the quadratic optimiza-
tion problem that improves convergence. In addition to local transforms at each
vertex, Li et al. (2008) include a global rigid transformation that applies on the
complete mesh. Their energy formulation facilitates rigidness of the local affine
transformations. The approach in Willimon et al. (2013) enforces alignment of
boundaries to register RGB-D images of clothing. Their data term takes the
difference in depth in the image into account.
The above methods establish only a single correspondence for each point or

vertex. It has been observed that the basin of convergence and accuracy can be
improved by allowing each surface element to be softly assigned with multiple
elements of the other surface. Anguelov et al. (2004) model the correspondence
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Figure 5.8.: Median accuracy in m for deformable registration of synthetically
deformed RGB-D images on the freiburg3_teddy dataset. Left:
0.1m, middle: 0.05m, right: 0.025m resolutions.

of vertices between scene and model in a MRF and infer the ML correspon-
dences through LBP. The unary potentials measure the similarity in spin image
descriptors (Johnson, 1997), while pairwise potentials prefer to keep discrete
nearness and farness relations. Myronenko and Song (2010) and Jian and Ve-
muri (2011) model the point clouds in Gaussian mixture models(GMMs). As
detailed, the CPD method by Myronenko and Song (2010) estimates probabilis-
tic assignments of points and optimizes for the displacement field between source
and model. Spatial smoothness of the solution is obtained through regularizing
higher-order derivatives in the displacement field using a Gaussian kernel. Jian
and Vemuri (2011) impose GMMs on both point sets and minimize the L2-norm
between the mixture densities. They regularize the displacements using thin-
plate splines as an alternative regularization kernel that minimizes only up to
second-order derivatives (Chui and Rangarajan, 2003). Sagawa et al. (2009) ex-
tend the non-rigid ICP method of Allen et al. (2003) with soft assignments. The
local transforms of each point are applied to its local neighbors and weighted
averages of their errors with the other surface are used as data terms. Within a
modeling system for deformable objects, Wand et al. (2009) perform registration
by estimating the deformation field. The displacement at a point is modeled as
a linear combination of the displacement vectors at control points. The weights
themselves adapt to the local deformation in the source cloud and decay with
distance of the control points from the query point.
A quite different approach has been utilized by Santa and Kato (2012). They

represent the displacement field as polynomial functions and optimize for the
coefficients to align the surfaces.
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Figure 5.9.: Deformable registration examples.

Since these methods are susceptible to finding local optima, several approaches
add constraints on the registration to correct for coarse misalignments. Such con-
straints are found using local features or by optimizing for isometric consistency.
The non-rigid ICP approaches in (Allen et al., 2003) and (Amberg et al., 2007)
support further energy terms that align points with feature correspondences.
Anguelov et al. (2004) use similarity in spin images directly for the data terms.
Tevs et al. (2009) extract slippage interest points (Bokeloh et al., 2008), describe
the local surrounding of the interest points using mean curvature histograms,
and determine isometrically consistent correspondences through RANSAC. Lo-
cal descriptors based on heat diffusion recently attracted attention due to their
affine-invariance (Sun et al., 2009; Raviv et al., 2011). The approach in (Sahilli-
oglu and Yemez, 2012) finds isometrically consistent correspondences for points
with locally maximal Gaussian curvature in an EM framework. In (Sahillioglu
and Yemez, 2011), the authors use a similar approach to determine dense cor-
respondences in a mesh through a coarse-to-fine search.
In the context of stereo and depth image processing, scene flow methods also

recover displacement fields. For instance, the approach by Herbst et al. (2013)
computes the 3D flow of RGB-D image pixels that maximizes color and depth
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Figure 5.10.: We estimate local transformations from the displacement field from
model to scene. The arrows point into the direction of the trans-
formation from scene to model.

consistency in a regularized variational framework. It requires about 8 to 30
seconds on a CPU for processing a 320×240 image.
Most of the presented methods focus on best accuracy but often consider

run-time efficiency as a secondary objective. We develop an efficient deformable
registration method based on CPD that aligns RGB-D images efficiently while
being sufficiently accurate for robotic applications.

5.6. Summary
We developed an efficient deformable registration method that non-rigidly aligns
MRSMaps. It extends CPD with coarse-to-fine processing to keep the amount
of points per resolution low and the algorithm well tractable. We also utilize
color and contours as further features for data association.
For coarse-to-fine registration, the displacement fields of finer resolutions are
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initialized with the coarser registration results. The resolutions in our maps
are not fully redundantly represented, but the modeled surface parts may shrink
with resolution due to the distance-dependent maximum resolution in MRSMaps.
We propose means to respect this property in our coarse-to-fine registration
method and condition the displacement field at the borders of a resolution on
the solution from the coarser resolution.
As proposed by Myronenko and Song (2010) we apply the FGT and low-rank

approximations to the Gram matrix. The latter implies complications in evalu-
ating the displacement field at points that are not contained in the model point
set. To still obtain a general solution of the displacement field, the Gram matrix
needs to be inverted. As the dense Gram matrices of Gaussian kernels quickly
become ill-conditioned, we sparsify the Gaussian kernel for improved condition-
ing. The sparsity of the Gram matrix can also be exploited to further improve
the efficiency of matrix manipulations such as multiplication and inversion.
From the displacement fields, we derive local deformations, i.e., local rotation,

translation, and strain using results from continuum mechanics. Again, the
use of low-rank approximations induces difficulties, for which we propose two
alternative solutions. The first involves the inversion of the Gram matrix, while
the second approach approximates local deformation from the displacement of
the model points. We also propose a way to estimate local deformations in
the inverse direction from scene to model. We apply these local deformations
to transfer grasp poses and motion trajectories for object manipulation skill
transfer in Ch. 7.
In experiments, we evaluate the accuracy and run-time of our registration

method. We utilize two image sequences that observe a table-top scene and
an object with strong curvature and coloring. The images are synthetically
deformed which provides ground-truth deformations. Finally, we demonstrate
typical results for registration of views on deformed objects and local deforma-
tions estimated from the displacement field.
The high efficiency of our approach would allow for sequential registration

of the current frame in a video towards a model map. If a model is given a-
priori, significant computational load can be transfered to pre-processing that
only needs to be done once for the model. Our method then aligns images at a
rate of 1 to 5Hz on a CPU. In future work, we will explore potential applications,
for instance, to track the pose of human bodies or hands.
Our current approach does not consider the covariances of surfels in the GMM.

In order for the covariances to be utilized, an efficient variant of the Gauss trans-
form with variable, non-diagonal covariances would have to be investigated. Al-
ternatively, the evaluation of the likelihood of the surfels under the Gaussian
mixture model could be implemented on GPU. The deformation of the covari-
ances could also be considered in future extensions.
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6. Modeling and Tracking of Rigid
Scenes and Objects

Scene and object perception becomes challenging for robots if they shall perform
tasks in environments that have not been specifically arranged. Robots need
to be able to determine their own location in the environment and the types
and placement of objects around them. This allows them to execute tasks,
manipulate things for a purpose, or understand the actions of others.
A further requirement frequently is that robots should act immediately and

fluently. This chapter develops a method for efficient 3D perception of objects
and indoor scenes using RGB-D cameras. We learn dense 3D models and track
the pose of the camera with respect to these models in real-time at high frame
rate. Our method efficiently runs on CPUs—in contrast to many approaches
that strongly rely on massive parallel computation on GPUs. While GPUs may
not be available on light-weight or low-cost robot platforms, our main argument
is that we devised an efficient way to represent 3D models and to align RGB-D
images to them.
Our approach to 3D modeling and tracking is based on our MRSMaps and

our efficient yet robust rigid registration method. Since we represent surfels for
multiple distinct view-directions, we can integrate many images into multi-view
3D models.
We propose a SLAM approach for this purpose that constructs a graph of

spatial constraints between key views onto the scene or an object. These spatial
constraints are obtained with our registration method. In order to recover the
camera trajectory, we optimize the joint likelihood of the view poses. For online
mapping, we propose a loop-closing strategy that finds new spatial constraints
between key views efficiently. The key views can then be overlayed in one multi-
view 3D model from their optimized poses.
The acquired models can be used for tracking the camera motion in real-time

on a CPU by registering the current RGB-D image to the model. By the multi-
resolution nature of our maps, our method keeps track of objects in a wide range
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of distances and speeds.
In many applications, the initial pose for tracking objects is not known a-

priori. We adapt a state-of-the-art approach to our MRSMap representation for
estimating the pose of models in a 3D point cloud. We integrate this method
with tracking in a particle filter framework for global object localization. To
cope with the six-dimensional pose space, we utilize registration to keep the
particles focussed on the relevant part of the state space.

6.1. Background

6.1.1. Simultaneous Localization and Mapping
SLAM refers to the problem of estimating the trajectory of a sensor from obser-
vations of map elements, while concurrently building and estimating the state
of the map. The problem is formally stated as the estimation of sensor poses
xp =

{
xp,0, . . . ,xp,T

}
and states of map elements xm =

{
xm,1, . . . ,xm,M

}
given

measurements z = {z1, . . . , zZ} and controls u= {u1, . . . ,uU},

p(xp,xm | z,u). (6.1)

While for bundle adjustment (BA) controls are usually not considered, the pos-
terior of SLAM is a hidden Markov model (HMM) with motion model

p(xp,t | ut,xp,t−1), (6.2)

where ut is the control applied in xp,t−1 to reach xp,t. The observation likelihood
is

p(ztk | xp,t,xm,k), (6.3)

where ztk is the observation of map element xm,k made in pose xp,t. Usually not
all map elements are observable in each pose. The observation of a map element
is often assumed to be independent from other elements in the map. By this,
the joint posterior factorizes into

p(xp,xm | z,u) = p(x0)
T∏
t=1

p(xp,t | ut,xp,t−1)
∏
k∈Zt

p(ztk | xp,t,xm,k), (6.4)

where p(x0) is a prior on the reference frame of the first sensor pose, and k ∈Zt
indexes map elements that are observed as ztk in pose xp,t.
The estimates of the map elements are only correlated with other map ele-

ments through sensor poses that observe both elements simultaneously. Also,
sensor poses are correlated through the poses they originate from by controls, or
by observing the same map element. This makes the correlation structure sparse
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which is exploited for efficient optimization. In the SLAM community, the solu-
tion of such sparse non-linear least squares problems is also referred to as graph
optimization, as the sparse structure is also reflected in a graph G = (V ,E) of
constraints between the optimization variables. Sensor poses and states of map
elements are vertices v ∈ V in this constaint graph. Edges e∈ E between vertices
correspond to optimization constraints that are due to controls between sensor
poses, or observations of map elements from a sensor pose.

6.1.2. SLAM Graph Optimization as Sparse Non-Linear Least
Squares

We explain motions and observations by non-linear functions of the state vari-
ables, affected by Gaussian noise,

xp,t ∼N (g(xp,t−1,ut),Σu,t) (6.5)
ztk ∼N

(
h(xp,t,xm,k),Σz,tk

)
(6.6)

The prior p(x0) = N (µx,0,Σx,0) is also modeled normal distributed around a
prior mean µx,0 with covariance Σx,0. With these probability distributions, the
log-likelihood of the SLAM posterior has a quadratic form, i.e.,

lnp(xp,xm | z,u)≈ const.− 1
2(x0−µx,0)TΣ−1

x,0(x0−µx,0) (6.7)

− 1
2

T∑
t=1

(xp,t−g(xp,t−1,ut))TΣ−1
u,t(xp,t−g(xp,t−1,ut)) (6.8)

− 1
2

T∑
t=1

∑
k∈Zt

(ztk−h(xp,t,xm,k))TΣ−1
z,tk(ztk−h(xp,t,xm,k)).

(6.9)

Let x=
(
xTp,1, . . . ,x

T
p,T ,x

T
m,1, . . . ,x

T
m,M

)T
be the full state of the SLAM problem.

We define the residuals

e0(x) := x0−µx,0, (6.10)
eu,t(x) := xp,t−g(xp,t−1,ut), (6.11)
ez,tk(x) := ztk−h(xp,t,xm,k), (6.12)

(6.13)
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and matrices W0 := Σ−1, Wu,t := Σ−1
u,t , and Wz,tk := Σ−1

z,tk to write

lnp(xp,xm | z,u)≈ const.− 1
2e0(x)TW0e0(x) (6.14)

− 1
2

T∑
t=1

eu,t(x)TWu,teu,t(x) (6.15)

− 1
2

T∑
t=1

∑
k∈Zt

ez,tk(x)TWz,tkez,tk(x), (6.16)

which has the form of non-linear least squares problems introduced in Sec. 3.1.2.
As in Sec. 3.1.2.3, we stack the residuals in a vector of residuals e(x), and form
a block-diagonal weight matrix W from the weights of the individual residuals
to solve this multi-objective optimization problem. The sparsity of this non-
linear least squares problem is apparent from the dependency of the residuals
on only a few poses or map elements. Kuemmerle et al. (2011) provide the
g2o software framework to solve sparse non-linear least squares problems with
a variety of solvers such as preconditioned conjugate gradient descent (Kelley,
1995), or using efficient sparse matrix inversion such as sparse LU- or Cholesky-
decomposition (Davis, 2006) within LM optimization.

6.1.3. Particle Filters
Particle filters (e.g. Thrun et al., 2005) implement recursive Bayesian filters with

discrete weighted samples Xτ =
{
x

[i]
τ

}N
i=1

of the state trajectory posterior

p(x0:t | z1:t,u1:t) , (6.17)

with importance weights Wτ =
{
w

[i]
τ

}N
i=1

, where x0:t := {x1, . . . ,xt} is the state
trajectory to be estimated, z1:t := {z1, . . . , zt} is the set of image observations
from the start of filtering up to time t, and u1:t := {u1, . . . ,ut} are the corre-
sponding controls. The filtered estimate of p(xt | z1:t,u1:t) for the latest time
step t is given by Xt.
In each time step t, particles X t are sampled from a proposal distribution

q(xt) by propagating the set of samples Xt−1 from the previous time step in an
informed way. In order to match the resulting distribution of particles Xt with
the state posterior for xt, the particles are reweighted by the mismatch between
target, i.e. state posterior, and proposal distribution,

w
[i]
t = target distribution

proposal distribution w
[i]
t−1. (6.18)
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A simple approach is to propagate the particles according to the state-transition
model p(xt | xt−1,ut). By this, the weights

w
[i]
t = η p

(
zt | x[i]

t

)
(6.19)

are determined by the observation likelihood for the individual particles. The
constant η is a normalization factor that is shared among the particles. It
vanishes since the scale of the weights can be normalized to sum to one.
Since the particles are not directly sampled from the state posterior but from

an intermediate proposal distribution, the particle distribution may degenerate
over time and spread the particles in areas of the state space that are unlikely
under the state posterior. Only a few particles receive high weights and a large
fraction of the particles is dissipated with low weights. This effect can be reduced
by using a more informed proposal distribution that also considers the measure-
ment instead of only controls. Doucet et al. (2000) prove that the optimal
proposal distribution in the sense of minimizing the variance of the importance
weights is

q (xt) = p
(
xt | x[i]

t−1, zt,ut

)
. (6.20)

The importance weights in this case can be shown to be

w
[i]
t := η p

(
zt | x[i]

t−1,ut

)
= η

∫
p(zt | xt) p

(
xt | x[i]

t−1,ut

)
dxt. (6.21)

See (Arulampalam et al., 2002) for a derivation. Often, a closed-form solution
to the improved proposal distribution as well as to the importance weights is
not available and both need to be approximated.

6.2. Scene and Object Modeling with
Multi-Resolution Surfel Maps

Our MRSMap representation and rigid registration techniques are efficient tools
for learning 3D models of objects or indoor scenes. Such 3D models are, for
instance, useful for robot perception to detect and track objects, to plan grasps
on the object, or to localize the robot in an environment. Our approach does
not require prior knowledge on objects and scenes such as CAD-models. Instead
our method learns models from RGB-D image sequences. We devise an efficient
SLAM approach that estimates the motion of the camera, such that the im-
ages can be overlayed into a consistent multi-view 3D model, represented in a
MRSMap. Once the model is available, it can be tracked in the live images of
the camera.
Naïve sequential registration of images, i.e., visual odometry, would be prone

to drift, which would not allow to overlay the images in a consistent map. Such
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Figure 6.1.: Learned MRSMaps of indoor scenes and associated key view graphs.
Top: freiburg1_room. Bottom: freiburg2_desk. Key views (poses
visualized by coordinate frames) are extracted along the camera
trajectory. Spatial constraints between key views (black lines) are
established using our registration method. The surfel distributions
are visualized by samples from the surfels at ρ−1 = 0.05m for two
distinct view directions.

drift can be avoided, if images are not only registered to each other in temporal
sequence, but if further images are related to each other that view overlapping
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parts of the scene. Registration inaccuracies can then be traded in a SLAM
framework. Larger drifts in the trajectory estimate typically occur when the
sensor views new, previously unmapped volume. As soon as the sensor reaches
known volume again, the drift-prone part of the trajectory is linked with the
older parts of the trajectory through image registration. SLAM then distributes
the accumulated drift along the trajectory to balance the registration estimates
and to adjust the pose differences. This event is denoted as loop closure.
Our modeling approach is a variant of graph-based SLAM. We extract a set

of key views vi ∈ V along the camera trajectory. Each key view vi = (xi,mi)
is described by a camera pose xi and a MRSMap mi. In order to keep track
of the camera motion, the current image is registered towards the closest key
view in the map which we denote as reference key view vref . Since registration
quality degrades with the view pose difference between images, a new key view
is generated from the current image if the camera moved sufficiently far, i.e., if
the rotational or translational distance towards the reference key view reached
a threshold. The rigid registration result xji (Sec. 3.2.2.2) with its covariance
estimate Σ(xji ) (Sec. 3.2.2.3) between the new key view vi and its reference vj
is a spatial constraint that we maintain as edges eij ∈ E in a graph G = (V ,E) of
key views (see Fig. 6.1).
We find additional spatial constraints between key views in a hypothesis-and-

test scheme that also detects loop-closures. It tests one spatial constraint per
frame to enable online operation.
Graph optimization then yields an estimate of the key view poses. On-line

operation is achieved by iterating the graph optimization only once per frame.
Finally, we fuse the key views by overlaying their images in one multi-view
MRSMap from their resulting pose estimates.

6.2.1. Constraint Detection

On each frame, we test for one new constraint between the current reference vref
and other key views vcmp. We choose any key view whose pose estimate is
sufficiently close to the reference key view. It is important to validate the reg-
istration of the key views, since if the key views barely or fully not overlap, our
registration method may find suboptimal solutions that—if included—could let
the pose graph optimization diverge. We examine the matching likelihood of
each of the MRSMaps to the other. In order to test a constraint only once,
we maintain lists of key view pairs that have already been tested. If a new
constraint is added, we empty these lists for the involved key views such that
constraints can be tested again from the optimized poses that now consider the
new constraint.
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6.2.1.1. Map Matching Likelihood

Let ms be the map for which we evaluate the likelihood of being observed in the
other map mm, and let x be the relative pose estimated through registration.
Analogous to Sec. 4.2.6.1, we define the observation likelihood of the surfel as

p(ss | sm,x) = N (d∗(ss, sm,x);0,Σ∗(ss, sm,x)) N
(
arccos(nTmR(x)ns),(σn0 )2) ,

(6.22)
where we take the spatial and color distribution of the surfels into account.
We also measure the compatibility of the surface normals (Eq. (4.75)) with a
uncertainty parameter σn0 .
We limit the observation likelihood of outlier matches of surfels and surfels

without matches to pO. In this way, the matching likelihood

p(ms |mm,x) =
∏

ss∈ms

p(ss | sm,x) (6.23)

accounts for the overlap between the views. If a scene surfel is behind a model
surfel along its view direction, i.e., the scene surfel is seen through the model
surfel, we assign a probability pT < pO to penalize such unreasonable observa-
tions.
We associate each surfel ss ∈ms with a surfel sm ∈mm that yields best obser-

vation likelihood within a cubic search volume. If multiple view directions are
represented, we choose the surfel sm for which the view direction vm best matches
to the rotated view direction R(x)vs. We adapt the cube length l = 2ρ(ss)−1 of
the search volume to the resolution of the surfel ss. We only query surfels in mm

that are on the same resolution like ss, since we want to measure the overlap of
the level of detail of both maps.

6.2.1.2. Constraint Validation

The matching likelihood in Eq. (6.23) is directional and, hence, we evaluate it in
both directions. We cannot use a global threshold for deciding if a constraint xji
should be added, as the matching likelihood clearly depends on image content
which leads to varying distributions of surfels across resolutions. Instead we
require the matching likelihoods p(mi |mj ,x

j
i ) and p(mj |mi,(xji )−1) of a new

constraint to be at least a fraction γm of the matching likelihoods of the key
views with themselves,

(
p(mi |mj ,x

j
i )≥ γm p(mi |mi, id)

)
∧
(
p(mj |mi,x

i
j)≥ γm p(mj |mj , id)

)
,

(6.24)
where id is the pose corresponding to the identity transform.
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6.2.2. Key-View Pose Graph Optimization
In our key-view-based SLAM approach, the map elements correspond to the
complete MRSMaps attached to the key views. A key view’s sensor pose and
the reference frame of its map coincide, such that in our case the SLAM posterior
reduces to

p(x | z) = p(x0)
N∏
i=1

∏
j∈Zi

p(zij | xi,xj) (6.25)

where N is the number of key views, zij := xji are registration estimates from
key views i to j, and j ∈ Zi indexes the set of key views j that key view i has
been registered to.
Our registration approach yields an estimate of the covariance Σ(xji ) of the

pose estimate, such that the probability of the relative pose observation zij is

p(zji | xi,xj) = N
(
xji ;xj	xi,Σ(xji )

)
, (6.26)

where 	 finds the relative pose from key view i to key view j, i.e., T (xj 	
xi) = T (xj)−1T (xi). This operator is non-linear for our pose parametrization in
translations and quaternions.
By taking the logarithm of Eq. (6.25) we obtain

lnp(x | z) = const.− 1
2(x0−µx,0)TΣ−1

x,0(x0−µx,0) (6.27)

− 1
2

N∑
i=1

∑
j∈Zi

(xji − (xj	xi))TΣ−1
z,ik(x

j
i − (xj	xi)). (6.28)

We see that our SLAM problem transforms into a sparse non-linear least squares
problem as in Sec. 6.1.2. We solve this graph optimization problem within the
g2o framework (Kuemmerle et al., 2011) by the LMmethod with sparse Cholesky
decomposition for matrix inversion.

6.2.3. Obtaining Scene and Object Models from Key View
Graphs

Once the pose of each key view is known, we overlay the key views in a single
MRSMap. The resulting map is multi-view, i.e., it contains a scene or object
model from various view points. A multi-view map does not exhibit the local
multi-resolution structure of a map created from a single view-point. Rather
the local multi-resolution maps of each image are overlayed in a complex multi-
resolution structure. For this fusion process we construct the tree directly from
the original RGB-D measurements. Each key view corresponds to an RGB-D
image which is transformed into the common map frame according to the pose
estimate of the key view.
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Figure 6.2.: Learned MRSMaps of objects. The surfel distributions are visu-
alized by samples from the surfels at ρ−1 = 0.05m (top row) and
ρ−1 = 0.025m (bottom row) for two distinct view directions.

For creating object models, we restrict the fused model to the measurements
on the object. A simple approach to segment the object out of the images is
to place the object on a planar surface and to manually select a convex hull
around the object on the support plane. Those RGB-D measurements are then
extracted that project onto the plane from a specific height interval and into the
convex hull.

6.3. Object Detection and Real-Time Tracking
Once a model of a scene or an object is available, it can be used for detecting
the object in a scene and estimating its pose, and keeping track of the object
pose.

6.3.1. Detecting Objects and Estimating Pose with
Multi-Resolution Surfel Maps

Tracking requires an initial guess on the object pose. In many applications,
however, the object’s pose is not known a-priori and needs to be estimated from
the images. We adapt a state-of-the-art approach to object detection and pose
estimation in point clouds to our MRSMap framework.
Our object detection method is based on the surfel-pair voting algorithm pro-

posed by Drost et al. (2010) which has been recently extended for RGB-D images
with color by Choi and Christensen (2012a). Our contribution is a pose voting
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Figure 6.3.: Surfel-pairs, features, and constructed reference frames. Left: We
describe geometry, luminance, and color between two surfels by dis-
tance, angular relations of normals, and luminance and color con-
trasts. Right: A surfel-pair defines a unique pose in the map frame
by aligning the normal of the reference surfel sr with the x-axis
of the map frame and rotating the paired surfel si by an angle α
around the x-axis onto the half-plane spanned by the x- and positive
y-direction.

scheme that utilizes surfel-pairs at multiple resolutions in varying local neigh-
borhoods. The aim of object detection and pose estimation is to find an object
in an RGB-D image by aligning a MRSMap ms of the image with an object
model MRSMap mm.

6.3.1.1. Local Colored Surfel-Pair Relations at Multiple Resolutions

As in (Drost et al., 2010), we describe the geometric relation between a pair of
surfels f(sr, si) := (fs(sr, si),fc(sr, si)) with the geometric descriptors

fs(sr, si) :=
(∥∥∥µpr−µpi ∥∥∥2

, ∠
(
nr,µ

p
r−µ

p
i

)
, ∠

(
ni,µ

p
r−µ

p
i

)
, ∠(nr,ni)

)
(6.29)

that measure distance and angles between means and normals (see Fig. 6.3,
left). In addition, we incorporate color by the three luminance and chrominance
contrasts

fc(sr, si) :=
(
µLr −µLi , µαr −µαi , µβr −µ

β
i

)
. (6.30)

Different to the approach of Drost et al. (2010), we only consider surfel-
pairings for a reference surfel sr in a local neighborhood around the surfel. The
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Figure 6.4.: Surfel-pair voting. Each association of surfel-pairs between scene
and model votes for a 6-DoF camera pose relative to the model in
a two-dimensional Hough space.

radius rρ = λr ρ(sr)−1 of the neighborhood is set in relation with the surfel’s
resolution. We also neglect surfel-pairs with similar normals, luminance, and
chrominances to avoid ambiguous pose voting from planar, textureless regions.

6.3.1.2. Multi-Resolution Pose Voting

A surfel-pair defines a unique coordinate frame through the normal direction of
the reference surfel and the difference between the means as long as the difference
is not parallel to the normal, which is unlikely to happen in practice. This frame
is used to define the pose of the surfel-pair relative to the reference frame of a
map. We follow the approach of Drost et al. (2010) and decompose this pose
into a transformation T gsr that moves the mean µr of the reference surfel into the
map origin and aligns its normal nr with the map x-axis (see Fig. 6.3, right).
A final rotation around the x-axis with angle α(sr, si) moves the paired surfel
mean µi into the half-plane spanned by the x- and y-axes with positive y-values.
If we decompose the pose in this way, all pairings of the reference surfel share
the same transformation T gsr and only differ in angle α.
From a correct match of surfel-pairs between two maps we are able to estimate

the pose difference between the maps. Let (ss,r, ss,i) and (sm,r, sm,i) be two
matching surfel-pairs in scene and model map, respectively. The pose difference
Tms between the map reference frames can be determined from

Tms =
(
Rx(α(sm,r, sm,i))T gsm,r

)−1 (
Rx(α(ss,r, ss,i))T gss,r

)
=
(
T gsm,r

)−1
Rx(α) T gss,r

(6.31)
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with α = α(ss,r, ss,i)−α(sm,r, sm,i).
For object detection problems, however, correct matches of surfel-pairs be-

tween scene and model map are not known a-priori, but need to be estimated
with the object pose. Drost et al. (2010) propose a Hough voting scheme in
which surfel-pairs are matched according to their geometric descriptor and cast
votes for the object pose. For efficient matching, hash keys are determined
from the descriptors to map surfel-pairs in a hash table. The descriptors of the
surfel-pairs are quantized into a number of bins per dimension to form the keys.
From a matching of surfel-pairs, a potential object pose is determined by the

index r of the matched model reference surfel sm,r and the angle α=α(ss,r, ss,i)−
α(sm,r, sm,i) that aligns the surfel-pairs (see Fig. 6.4). Hough voting is efficiently
performed in this two-dimensional pose space. Each model reference surfel is
considered individually in the Hough space, while the angles α are discretized
into a number of bins. To increase the precision of the Hough procedure, we
attribute a continuous angle estimate for a surfel match to the two closest angle
bins.
We process scene reference surfels per available resolution, and, to achieve

fast run-time, sample a fraction of the scene reference surfels uniformly without
replacement. Pose votes are separately accumulated in a Hough space for each
scene reference surfel ss,r. The local surfel-pairings of the reference surfel ss,r
with other scene surfels ss,i are matched with surfel-pairs (sm,r, sm,i) via their
descriptors through efficient hash map look-ups. Multiple matchings may be re-
trieved for the scene pair. Each matching votes for a pose in the two-dimensional
Hough space. After all pairings for the scene reference surfel ss,r have been
processed, the bin that accumulated most pose votes is determined and a pose
hypothesis is extracted. We also include pose hypotheses from Hough space bins
that received a fraction of votes below the maximum. Each pose hypothesis is
assigned a score that corresponds to its accumulated votes.
In order to find the most consistent pose hypotheses across all scene reference

surfels, we merge the pose hypotheses using agglomerative clustering with a
threshold on the linear and angular distance of the poses. Since agglomerative
clustering depends on the ordering of the pose hypotheses, we sort the hypotheses
for their scores in descending order. The algorithm finally returns the top C
clusters which accumulate the highest score of pose hypotheses.

6.3.1.3. Pose Verfication

The resulting pose hypotheses of our voting method are only coarse object pose
estimates. Also, the voting method does only consider positive information for
matching. It does not validate if pose hypotheses would observe parts of the
model in front of actual measurements, i.e. the measurements would be seen
through the model. We therefore perform a pose verification step to increase
the rate of retrieving correct hypothesis.
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Each pose hypothesis is registered towards the model from its pose estimates
using a few iterations of LM registration (see Sec. 3.2.2). We determine the
matching likelihood of scene to model map for the optimized poses according to
Sec. 6.2.1.1 and reorder the pose hypotheses by their matching likelihood.

6.3.2. Tracking through Registration
The aim of tracking is to maintain an estimate of the camera pose towards
a model in real-time while the camera is continuously streaming new images.
This necessitates efficient and robust means to align the current image with the
model.
A simple approach is to aggregate the current RGB-D image in a MRSMap

and align it with the model using our rigid registration method. As we perform
tracking, we have a pose estimate xmt−1 available from the last frame t− 1 to
initialize the registration of the current frame. In the first frame, we obtain an
estimate of the object pose through our object detection method (see Sec. 6.3.1)
Map aggregation and registration is made even more efficient by saving un-

necessary computations in image regions that are unlikely to view the model.
We only aggregate image points into a MRSMap that are likely under the spa-
tial distribution of the object model, given the last camera pose estimate xmt−1.
Mean µO and covariance ΣO of this distribution are readily obtained from the
sum of surfel statistics |P|, S(P), and S2(P) over all view directions in the root
node of the tree.
We transform this distribution into the camera frame,

µcO :=R(xmt−1)TµO, (6.32)
Σc
O :=R(xmt−1)TΣOR(xmt−1), (6.33)

(6.34)

and find those image pixels p that are likely under the distribution, i.e.

− 1
2(p−µcO)T (Σc

O)−1(p−µcO)≥−χm, (6.35)

We adapt the threshold χm := km ‖µcO‖2 to the distance of the model mean
from the camera. This compensates for the effects of camera rotation, i.e., the
farer the camera from the object, the larger the object model is displaced in the
camera image by the same amount of camera rotation.

6.3.3. Object Tracking with Particle Filters
Our detection method often yields multiple object hypotheses that need to be
verified further through post-processing. We improve the robustness of our pose
verification method by evaluating the matching likelihood of the pose hypotheses
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Figure 6.5.: Auto-regressive state-transition model. Particles are propagated ac-
cording to the twist ξt estimated from the previous two time steps,
affected by Wiener process noise dWt.

over multiple frames within a particle filter framework. For instance, details that
allow for disambiguating views on the object may not be immediately visible in
the first frame. The particle filter resumes tracking from the detected pose
hypotheses using an auto-regressive motion model and an improved proposal
distribution that utilizes our MRSMap registration method.
A further advantage of using a particle filter over tracking-by-optimization

is the maintenance of multiple pose hypotheses instead of only a single one. In
difficult situations such as fast camera motions, partial occlusions, or ambiguous
views on the object, tracking with a single hypothesis may fail, since it does
not represent uncertainty in pose. In our particle filter framework, tracking-
by-optimization is performed with several pose hypotheses. It is integrated
with object detection to initialize the tracked poses or to reinitialize the filter if
tracking cannot be resumed.

6.3.3.1. State-Transition Model

We propagate each particle with a guess of its current velocity using an auto-
regressive (AR) state dynamics model. For representing 6-DoF poses and veloc-
ities we choose the SE(3) group and its associated Lie algebra se(3). Members
T ∈ SE(3) are homogenous transformation matrices while elements ξ ∈ se(3) are
twists ξ =

(
vT ,ωT

)T
with linear and angular velocities v and ω. The exponential

map T = exp(ξ̂∆t) transforms twists into transformation matrices. Its inverse
is the logarithmic map ξ̂∆t = log(T ). With ξ̂ we denote the representation of
twists as matrices in R4×4,

ξ̂ :=


0 −ωz ωy vx
ωz 0 −ωx vy
−ωy ωx 0 vz

0 0 0 0

 (6.36)
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There exists a one-to-one mapping T (x) between poses x parametrized in trans-
lation vector and quaternion for rotation, and homogeneous transformation ma-
trices, thus we will continue to refer to the particle state as poses x.
As in Choi and Christensen (2012b) we model the state-transition by the

first-order, discrete-time AR state dynamics

T (xt) = T (xt−1) exp
(
ξ̂t−1 ∆t+dWt

√
∆t
)

ξ̂t−1 = λAR
1

∆t log
(
T (xt−2)−1T (xt−1)

)
,

(6.37)

with process parameter λAR. Uncertainty in the state transition is introduced
through the Wiener process noise dWt

√
∆t with dWt = ∑6

i=1 εi,tEi. The ran-
dom variable εt ∼ N (0,Σξ) is normal distributed and adds noise in the twist
coordinates through the basis elements Ei of se(3),

E1 :=


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 ,E2 :=


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , E3 :=


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 ,
(6.38)

E4 :=


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 ,E5 :=


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , E6 :=


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 .
(6.39)

This state-transition model estimates the velocity of a particle from the poses
of the last two time steps. The process parameter λAR allows for adjusting the
scale of this velocity according to the confidence in the velocity estimate. We
parametrize the noise εi,t = ε0i,t+εvi,t |v| with constant noise ε0i,t and a component
εvi,t that scales with linear or rotational velocity.

6.3.3.2. Observation Model

Observations are RGB-D images zt. We transform the current image into a
MRSMap ms,t and determine the likelihood of observing the current image in
the model map using the matching likelihood in Sec. 6.2.1.1,

p(zt | xt) = p(ms,t | xt,mm). (6.40)

6.3.3.3. Improved Proposal Distribution

If we would utilize the state-transition model for the proposal distribution, many
particles would be required to cover the 7-dimensional pose space well for ac-
curate and robust tracking. Instead, we propose to use an improved proposal
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Figure 6.6.: Particle filtering with improved proposal distributions. Each parti-
cle is registered from its predicted pose. The registration is regular-
ized by the pose distribution determined from the state-transition
model. Regularized registration yields an improved proposal that
the particles are sampled from.

distribution that also considers the current RGB-D image zt to obtain a good
guess on the pose of the particles already in the sampling step. The particles
Xt−1 are first propagated individually according to the motion model towards
new predictions X t−1. We optimize the predicted particle poses to align the
current image with the model using our registration method (see Fig. 6.6). The
improved proposal distribution

p
(
x

[i]
t | x

[i]
t−1, zt,ut

)
= p

(
x

[i]
t |mm,x

[i]
t−1,ms,t

)
= η[i] p(ms,t | x[i]

t ,mm)p
(
x

[i]
t | x

[i]
t−1

)
.

(6.41)

is normal distributed with the regularized registration estimate x̃[i]
t as mean

with associated uncertainty Σ
(
x̃

[i]
t

)
(see Sec. 3.2.2.4). In order to approximate

p
(
x

[i]
t | x

[i]
t−1

)
with a normal distribution in x[i]

t , we apply the unscented trans-
form (Julier and Uhlmann, 1997). We propagate sigma points of the process
noise through the state-transition model and recover mean and covariance of
the pose distribution from the propagated sigma points.

6.3.3.4. Importance Weights

The importance weights Wt of the particles are reweighted according to the
mismatch between the target and the proposal distribution (see Sec. 6.1.3).
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With our choice of proposal distribution, the importance weights are

w[i] = p
(
zt | x[i]

t−1,ut

)
=
(
η[i]
)−1

=
∫
p(ms,t | xt,mm)p

(
xt | x[i]

t−1, ξt

)
dxt.

(6.42)

The weights correspond to the observation likelihood under the predicted dis-
tribution for the particle’s pose according to the state-transition model. We
consider the uncertainty in the predicted pose for our observation likelihood in
Eq. (6.23), and propagate the uncertainty in twist to the difference measures
between surfels and normals.
The matching likelihood of surfels in Eq. (6.22) has two factors which both

involve the pose variable in a non-linear mapping. Due to the neglectance of
correlations between spatial and color dimensions, we can focus on the spatial
dimensions and define the differences between the spatial and the color surfel
distributions as

dp(ss, sm,xt) := µps,m−T (xt)µps,s, and
dc(ss, sm,xt) := µcs,m−µcs,s,

(6.43)

respectively. Pose uncertainty only propagates to the spatial difference. In order
to propagate twist uncertainty, we reformulate the spatial difference as a function
of twist ξ, the pose from the previous time step xt−1, and the time increment
∆t,

dp(ss, sm, ξ,xt−1,∆t) := µps,m−T (xt−1) exp
(
ξ̂∆t

)
µps,s. (6.44)

Using first-order error propagation, we obtain the covariance contributed to the
spatial difference

Σp
ξ(ss, sm, ξ,xt−1,∆t) := Jpξ Σξ

(
Jpξ

)T
, (6.45)

with Jpξ := ∇ξdp(ss, sm, ξ,xt−1,∆t). It adds to the spatial covariances of the
surfels, such that the total covariance of the spatial difference is

Σp(ss, sm, ξ,xt−1,∆t) := Σp
s,m+R(xt)Σp

s,sR(xt)T + Σp
ξ(ss, sm, ξ,xt−1,∆t),

(6.46)
where T (xt) = T (xt−1) exp

(
ξ̂∆t

)
. To determine the derivative Jpξ , we approxi-

mate the spatial difference by

dp(ss, sm, ξ,xt−1,∆t)≈ µps,m−T (xt−1)
(
I+ ξ̂∆t

)
µps,s (6.47)

through truncating the series expansion of the exponential map. The derivative
for ξ then approximately is

Jpξ ≈−∆t T (xt−1)
(
∇ξ ξ̂

)
µps,s. (6.48)
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We also consider twist uncertainty for the angular difference dn(ss, sm,xt) :=
arccos(nTmR(xt)ns) of the normals. We rephrase the angular difference in terms
of the rotational velocity ω of the twist, previous pose, and time difference, i.e.,

dn(ss, sm,ω,xt−1,∆t) := arccos(nTmR(xt−1) exp(ω̂∆t) ns), (6.49)

and approximate the exponential map such that

dn(ss, sm,ω,xt−1,∆t)≈ arccos(nTmR(xt−1) (I+ ω̂∆t) ns), (6.50)

Through first-order error propagation, we determine the variance

σnξ (ss, sm,ω,xt−1,∆t)2 := Jnξ Σξ

(
Jnξ
)T
, (6.51)

where we defined Jnξ := ∇ωdn(ss, sm,ω,xt−1,∆t). It contributes to the total
variance of the normal estimate

(σn(ss, sm,ω,xt−1,∆t))2 := (σn0 )2 +
(
σnξ (ss, sm,ω,xt−1,∆t)

)2
. (6.52)

The derivative approximately is

Jnξ ≈−
∆t√

1−dn(ss, sm,xt)2
nTmR(xt−1) (∇ωω̂) ns. (6.53)

In summary, the resulting observation likelihood for the scene map ms of the
current image zt is

p(ms |mm,xt−1, ξt)≈
∏

ss∈ms

p(ss | sm,xt−1, ξt) (6.54)

=
∏

ss∈ms

∫
p(ss | sm,xt)p(xt | xt−1, ξt)dxt−1 (6.55)

with ∫
p(ss | sm,xt)p(xt | xt−1, ξt)dxt−1 = (6.56)

N (dp(ss, sm,xt);0,Σp(ss, sm, ξt,xt−1,∆t)) (6.57)
·N (dc(ss, sm);0,Σc(ss, sm)) (6.58)
·N

(
dn(ss, sm,xt),(σn(ss, sm,ωt,xt−1,∆t))2) , (6.59)

and Σc(ss, sm) := Σc(ss) + Σc(sm).
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Figure 6.7.: Improved proposals on particle clusters. We gain computational ef-
ficiency by clustering closeby particles and establishing an improved
proposal per cluster.

6.3.3.5. Efficient Approximation to the Improved Proposal Distribution

Registering each particle individually at high frame rates would be computa-
tionally demanding. Instead, we propose to identify modes of the density es-
timate p(xt | Xt−1), to cluster the particles that belong to the mode, and to
perform only a single registration per cluster. Fig. 6.7 illustrates this approach.
We employ a clustering of the particles with a fixed threshold on translation
and rotation. For efficient clustering, a kd-tree is constructed from the posi-
tion estimates of the particles. Particles in a limited volume and with similar
orientations are clustered together until all particles have been assigned.
In order to construct an improved proposal for each cluster as in Eq. (6.41),

registration is performed starting from the mean of a cluster. The pose distri-
bution for the state-transition model is approximated using the mean velocity
of the particles in the cluster and their mean pose from the previous time step.
The resulting improved proposal is used to sample the particles in the same

cluster. The importance weights of each particle are still evaluated separately
for each particle by using individually predicted pose estimates x[i]

t in Eq. (6.54).
Surfel associations are shared between the particles within a cluster to further
increase efficiency. If the particles are distributed within a single cluster, we
limit the processing of the RGB-D image to the relevant parts as in Sec. 6.3.2.
We further note that when the estimate of the tracker is good, the discrete

distribution given by the particles typically has a single mode. However, after
initialization or when uncertainy increases, multiple modes need to be consid-
ered.
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Figure 6.8.: Joint object detection, pose estimation, and tracking in a particle
filter framework.

6.3.4. Joint Object Detection, Pose Estimation, and Tracking
in a Particle Filter Framework

We integrate object detection and pose estimation with our particle filter track-
ing approach in a joint framework (see Fig. 6.8). It not only allows for tracking
without a-priori knowledge of the object pose, but also makes tracking robust
for occlusions and registration failures.

6.3.4.1. Initialization

We use our surfel-pair voting algorithm (Sec. 6.3.1) to efficiently find C0 pose
hypotheses for an object in a scene. Pose verification as detailed in Sec. 6.3.1.3 is
not immediately required. Instead, the multiple pose hypotheses will be resolved
by the particle filter over time. From each pose hypothesis, we sample NC
particles from a normal distribution centered at the pose hypothesis.

6.3.4.2. Tracking

Once initialized, tracking proceeds using the particle filter approach described
in Sec. 6.3.3. In each iteration, we set the number of particles Nt to

Nt = max{Nmin,NC ·min{Ct−1,C0}} , (6.60)

where Nmin is the minimum number of particles used, and Ct−1 is the number of
clusters tracked in the last iteration. Limiting the considered number of clusters
to C0 prevents from unbound growth of the number of particles.

6.3.4.3. Reinitialization

For extreme camera movements, the motion model could propagate the particles
far away from the actual camera pose. Also if the object is occluded in large
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Figure 6.9.: Example images from object tracking sequences (from left to right:
humanoid fast, box medium, chair fast, cereal1, watering can2).

angular velocity
(rad/s)

linear velocity
(m/s)

object distance
(m) occlusions

sequence mean std mean std mean max

humanoid slow 0.37 0.39 0.26 0.23 0.97 1.26 none
humanoid medium 0.53 0.55 0.40 0.36 0.99 1.42 none
humanoid fast 0.59 0.79 0.47 0.46 1.01 1.52 none
box slow 0.37 0.36 0.23 0.22 1.23 1.42 none
box medium 0.41 0.43 0.36 0.33 1.35 2.49 none
box fast 0.63 0.75 0.47 0.49 1.39 1.89 none
chair slow 0.37 0.59 0.32 0.53 1.37 1.75 none
chair medium 0.46 0.51 0.38 0.34 1.37 1.51 none
chair fast 0.58 0.65 0.52 0.53 1.46 1.91 none
watering can1 0.23 0.24 0.20 0.20 1.21 1.44 full
watering can2 0.26 0.24 0.24 0.20 1.13 1.38 partial
cereal1 0.26 0.25 0.25 0.20 1.09 1.57 partial
cereal2 0.23 0.23 0.18 0.16 0.82 1.01 partial

Table 6.1.: Properties of the object tracking sequences.

parts, or the object leaves the field-of-view of the camera, tracking may not
be possible. We detect tracking failures if too few surfels could be matched
between scene and model, or if the maximum observation likelihood drops. We
reinitialize the particle filter using our object detection method until the track
is maintained again.

6.4. Experiments
We use the RGB-D benchmark dataset (Sturm et al., 2012) to evaluate our
SLAM approach in indoor scenes. This dataset has also been used to assess our
rigid registration approach in Ch. 3.
For object modeling and tracking, we use the RGB-D object tracking dataset1.

It also provides 640×480 VGA resolution image sequences recorded with an Asus
Xtion Pro Live camera at 30Hz. The sequences contain up to 1100 frames, and

1available from http://www.ais.uni-bonn.de/download/objecttracking
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part parameter setting

MRSMaps distance-dependent resolution factor λρ 0.02
object detection neighborhood radius factor λr 16
object detection detected top hypotheses C0 5
object tracking image cut-out, object proximity km 0.5
object tracking AR process parameter λAR 0.4
object tracking constant angular variance ε0i,t 0.001
object tracking velocity-dependent angular variance εvi,t 0.1
object tracking constant linear variance ε0i,t 0.01
object tracking velocity-dependent linear variance εvi,t 0.1
object tracking minimum number of particles Nmin 25
object tracking number of particles per cluster NC 10

Table 6.2.: Default parameter settings.

have ground truth trajectories available that have been recorded with an Opti-
Track motion capture system. The dataset consists of 13 sequences of 5 objects.
Fig. 6.9 shows example images from the sequences. Three objects of varying
sizes (a humanoid robot, a box, and a chair) are contained in test sequences
with slow, moderate, and fast camera motion. The dataset also includes two
test sequences with difficult occlusion situations on a cereal box and a watering
can. Table 6.1 lists properties of the sequences such as angular and linear camera
velocity and distance to the objects.
Run-time and real-time evaluation have been conducted on a PC with an Intel

Core i7-4770K QuadCore CPU at a maximum clock speed of 3.50 GHz. If not
stated otherwise, we use the parameter settings in Table 6.2 which have been
determined empirically.

6.4.1. Evaluation Measures
For the evaluation of SLAM systems, Sturm et al. (2012) propose to assess the
translational average root mean squared error (RMSE) of the RPE measure over
all time steps and time differences,

1
T

T∑
∆=1

 1
T

T∑
t=1

∥∥∥trans(E∆,t)
∥∥∥2

2


1
2

(6.61)

where T is the length of the trajectory in time steps, and trans extracts the
translational components of the pose difference E∆,t. The measure quantifies
not only frame-to-frame pose differences or the difference of pose estimates at
the start and end of the trajectory, but also considers all intermediate time
differences between poses.
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The root mean squared absolute trajectory error (ATE) (Sturm et al., 2012)
is an alternative measure that has a more intuitive interpretation: The position
trajectory estimate is aligned with the ground-truth trajectory, and the RMSE of
the position differences is calculated. Alignment is required since the reference
frames of both trajectory estimates are different. It is simplified, since the
measurement times in both trajectories are known such that the association of
the poses is determined.
We also employ the RPE and the ATE measures to quantify tracking accuracy.

6.4.2. SLAM in Indoor Scenes
We demonstrate accuracy and run-time efficiency of our SLAM approach on
sequences of the RGB-D benchmark dataset. In Table 6.3 and Fig. 6.10, we
compare our approach with RGB-D SLAM, a method that matches and aligns
interest points between frames and also performs pose graph-optimization using
the g2o framework. In eight out of eleven sequences, our method outperforms
RGB-D SLAM in terms of RPE, if we process all frames in the sequences. When
run under real-time constraints, our approach is required to drop frames. As we
do not use a real-time operating system, the real-time constraint is a source of
randomness. Hence, we average the performance of our method over 10 runs.
In real-time mode, our method achieves similar accuracy in ATE and RPE than
if we process every frame. When using all frames, our dense approach in aver-
age achieves an improvement towards RGB-D SLAM in ATE by about 0.013m
and in RPE by about 0.028m. For real-time, our method yields an average
improvement of 0.012m and 0.024m, respectively.
Typical trajectories and maps obtained can be seen in Figs. 6.11 and 6.1. The

estimates well follow the ground truth trajectory. In both sequences, the camera
is moving on a long trajectory loop through office scenes. In freiburg1_room
the camera moves on a loopy trajectory while mostly pointing outward of the
motion curve, while in freiburg2_desk it looks inwards onto a table-top scene.
The freiburg1_room sequence contains many smaller trajectory loops which are
not closed within the sequence. Hence, the overall trajectory loop is closed by
our approach, but drift remains in some parts of the trajectory.
Table 6.4 details the run-time required by our method. In average, it is ca.

61ms and at most 223ms. The average run-time per sequence mostly depends
on camera pose tracking which requires the registration of the current image with
the closest key view in the map. The variability in time consumed for registra-
tion is explained by the diversity of distance of the camera from the measured
surfaces in the sequences. Adding a new key view involves the estimation of
the pose covariance and the evaluation of the base-line matching likelihood for
constraint validation. This takes about 5.6ms in average. We do not check
for new constraints though when adding a new key view. To check for a new
constraint, the key views need to be registered and the matching likelihood is
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Table 6.3.: Accuracy of our SLAM approach and RGB-D SLAM in absolute
trajectory (ATE) and relative pose error (RPE).

RMSE ATE in m RMSE RPE in m

sequence
ours
all

fames

ours
real-
time

RGB-D
SLAM

ours
all

frames

ours
real-
time

RGB-D
SLAM

freiburg1_360 0.076 0.074 0.079 0.115 0.115 0.103
freiburg1_desk 0.028 0.032 0.023 0.048 0.055 0.049
freiburg1_desk2 0.038 0.050 0.043 0.077 0.091 0.102
freiburg1_plant 0.025 0.026 0.091 0.040 0.042 0.142
freiburg1_room 0.056 0.062 0.084 0.112 0.123 0.219
freiburg1_rpy 0.028 0.029 0.026 0.039 0.041 0.042
freiburg1_teddy 0.061 0.051 0.076 0.089 0.091 0.138
freiburg1_xyz 0.015 0.013 0.014 0.022 0.021 0.021
freiburg2_desk 0.058 0.057 0.095 0.103 0.106 0.143
freiburg2_rpy 0.029 0.029 0.019 0.040 0.042 0.026
freiburg2_xyz 0.023 0.023 0.026 0.031 0.032 0.037
average difference
to RGB-D SLAM

-0.013 -0.012 -0.028 -0.024

evaluated between the key views in both directions. This amounts to approx-
imately 27.3ms in average. Fig. 6.12 gives further insights into the evolution
of run-time in the freiburg1_room and freiburg2_desk sequences. While the
run-time for pose graph optimization exhibits approximately linear growth, it
uses only a small fraction of the total time. Clearly, for mapping larger volumes,
a different SLAM back-end would be required that limits run-time consumption
to a constant. Such back-ends are still subject to active research.

6.4.3. Learning 3D Object Models
For learning object models, we process the sequences off-line. In each frame,
new constraints between all pairs of key views are tested and added, if their
map matching is valid (see Sec. 6.2.1.2). The registration of the 5% edges with
worst residuals in the SLAM graph are reestimated. If the camera trajectory
returns close to the camera view pose of the start of the sequence, we include
an edge between the first and the last key view. After all frames are processed,
the registration estimates are recomputed from the new relative pose estimates.
We show the recovered camera trajectories for all 5 objects in Fig. 6.13.

Fig. 6.2 shows models learned with our approach. The estimated trajectory
follows the ground truth estimate accurately. For comparison, we show the tra-
jectory obtained, if we only tracked towards a closest key view. The trajectory
estimate would drift in scenes that contain extended periods in which the camera
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Figure 6.10.: Accuracy of our SLAM approach and RGB-D SLAM in absolute
trajectory (ATE) and relative pose error (RPE).

Figure 6.11.: Ground truth (black) and trajectory estimates obtained using all
frames (blue) and in real-time (red) on the freiburg1_room (left)
and freiburg2_desk (right) sequences.

views novel scene content. Pose graph optimization corrects for the drift.

We provide the minimum, median, and maximum ATE in Table 6.5. The me-
dian accuracy is between 1-3 cm. In sequences without loops, pure registration
performs similar well as graph optimization. Graph optimization quantitatively
improves the trajectory estimate for sequences with long loops.
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Table 6.4.: Average (max.) run-time in ms and max. graph size of our SLAM
approach on RGB-D benchmark sequences.

sequence tracking key view
addition

constraint
addition

graph
optim. total

freiburg1_360 45.3 (118.1) 4.5 (8.7) 23.6 (64.5) 1.6 (5.8) 51.3 (142.3)
freiburg1_desk 65.8 (127.9) 6.5 (9.4) 32.8 (70.4) 1.0 (3.4) 74.7 (157.3)
freiburg1_desk2 66.0 (133.1) 6.6 (9.1) 40.1 (146.2) 1.3 (4.3) 80.0 (222.7)
freiburg1_plant 49.2 (92.5) 5.1 (7.6) 23.7 (57.8) 1.9 (8.7) 54.4 (122.1)
freiburg1_room 56.1 (133.0) 5.7 (9.9) 28.6 (76.0) 1.8 (6.7) 63.3 (153.5)
freiburg1_rpy 62.5 (96.9) 6.6 (8.2) 33.2 (50.9) 1.1 (5.1) 69.6 (134.1)
freiburg1_teddy 46.3 (123.5) 4.3 (6.3) 19.4 (73.7) 3.1 (13.1) 54.4 (133.1)
freiburg1_xyz 67.3 (114.1) 6.4 (8.3) 28.2 (37.9) 0.2 (0.8) 68.2 (121.3)
freiburg2_desk 49.7 (107.7) 5.1 (6.3) 24.7 (65.8) 1.4 (6.1) 52.2 (121.4)
freiburg2_rpy 46.1 (72.8) 5.3 (6.8) 21.8 (33.3) 0.4 (1.4) 46.8 (94.2)
freiburg2_xyz 54.1 (89.7) 5.4 (8.3) 24.3 (65.0) 0.3 (0.9) 54.7 (119.1)

overall 55.3 (133.1) 5.6 (9.9) 27.3 (146.2) 1.3 (13.1) 60.9 (222.7)

Figure 6.12.: Timing on the freiburg1_room (top) and freiburg2_desk (bottom)
sequences.

6.4.4. Object Detection and Pose-Estimation

In Table 6.6, we compare several variants of our object detection and pose es-
timation method to demonstrate the effects of multi-resolution processing, pose
validation, and subsampling. We detect up to 50 pose hypotheses in 1,000 frames
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Figure 6.13.: Ground truth (black) and trajectory estimates obtained without
graph optimization (blue) and with graph optimization (red) on
the object model training sequences.

of each sequence and average results. Results for variants with subsampling of
surfel-pairs have been additionally averaged over 10 runs with different random
subsamplings. We accept a pose hypothesis as true positive, if it is within an
angular and a linear distance to the ground truth pose of 15◦ and 0.2m, respec-
tively. Otherwise, it is a false positive. A false negative is accounted for if no
true positive has been found.
The unvalidated variants already provide high recall rates and high average

ranks for the first occurence of a true positive. Subsampling surfel-pairs at the
same neighborhood radius does barely harm results. Only on the humanoid slow
sequence, using every surfel-pair shows an improvement, while on the chair slow
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w/o graph optimization with graph optimization

sequence loop min median max min median max

humanoid yes 19.0 68.3 353.3 2.0 14.5 63.5
box yes 19.9 68.6 182.0 4.4 20.5 35.9
chair yes 32.5 126.3 408.8 0.4 25.7 94.7

watering can no 4.0 15.7 47.3 5.1 17.8 51.8
cereal no 4.2 19.7 65.5 7.9 19.0 62.5

Table 6.5.: Absolute trajectory error in mm obtained by incremental mapping
without graph optimization and by our object modeling approach
(with graph optimization).

sequence it performs worse than subsampling. This could be explained by the
small size and redundant shapes of the humanoid object. Dense sampling sup-
ports in disambiguating the few surfel matches. Conversely, surfels on the chair
have many redundant matchings for which subsampling seems to be beneficial.
Redundancy stems here from the small relative context with respect to the scale
of the chair’s shape.
For the neighborhood radius factor λr there is no clear best choice between

λr = 8 and λr = 16. On the humanoid slow and chair slow sequences, the recall
rates behave differently with respect to the settings of λr. This supports our
observation that the parameter depends on the scale of the object shapes.
The run-time of the unvalidated variants clearly is affected by the choice of

neighborhood radius factor and subsampling. On all sequences, subsampling the
surfel-pairs and using λr = 8 is significantly faster than the other variants.
While validating the pose hypotheses through registration degrades run-time

performance, it significantly improves the recall rates to very high values close
to 1, even if only the top 5 pose hypotheses are considered. In the majority of
cases, it also clearly increases the accuracy of the pose estimate. It keeps the
high ranking for the true pose hypothesis.

6.4.5. Object Tracking
Tables 6.7 and 6.8 show the accuracy of our tracking methods on the object
tracking dataset, while Table 6.9 contains timing results. As particle filtering
and real-time processing involves a source of randomness, we average results
over 20 runs.
When all frames are processed without real-time constraints, our particle fil-

ter approach exhibits smaller median and maximum ATE in the majority of
sequences. We attribute this to the use of a motion model that prevents the
registration from overfitting to the available observations. Since we evaluate
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Table 6.6.: Average recall for various max. number of top hypotheses, first true
positive rank, and run-time in s of different variants of our object
detection and pose estimation method.

sequence variant avg. recall rank accuracy time

5 20 50 trans rot

humanoid
slow

all, λr = 16 0.89 0.90 0.90 1.23 0.087 0.112 0.48
sub, λr = 8 0.86 0.90 0.91 1.98 0.085 0.120 0.26
sub, λr = 16 0.85 0.87 0.88 1.58 0.086 0.109 0.42
sub, λr =∞ 0.85 0.87 0.87 1.57 0.087 0.110 0.59
sub, λr = 8, val. 0.96 0.99 0.99 1.37 0.042 0.046 1.18
sub, λr = 16, val. 0.96 0.998 0.999 1.56 0.042 0.045 1.39

box
slow

all, λr = 16 0.99 0.99 0.99 1.02 0.052 0.049 6.32
sub, λr = 8 0.94 0.94 0.94 1.07 0.070 0.059 0.86
sub, λr = 16 0.99 0.99 0.99 1.03 0.053 0.047 1.73
sub, λr =∞ 0.87 0.87 0.87 1.05 0.068 0.057 2.18
sub, λr = 8, val. 0.97 0.98 0.98 1.19 0.049 0.049 1.92
sub, λr = 16, val. 0.998 0.998 0.998 1.10 0.049 0.049 2.47

chair
slow

all, λr = 16 0.78 0.78 0.78 1.08 0.087 0.064 1.89
sub, λr = 8 0.79 0.79 0.80 1.16 0.112 0.086 0.28
sub, λr = 16 0.82 0.82 0.82 1.07 0.094 0.067 0.51
sub, λr =∞ 0.91 0.91 0.91 1.17 0.091 0.063 0.72
sub, λr = 8, val. 0.96 0.97 0.97 1.15 0.044 0.043 1.51
sub, λr = 16, val. 0.94 0.94 0.95 1.18 0.044 0.044 1.69

cereal 2

all, λr = 16 0.97 0.97 0.97 1.08 0.051 0.107 0.26
sub, λr = 8 0.96 0.97 0.97 1.15 0.052 0.108 0.15
sub, λr = 16 0.97 0.97 0.97 1.08 0.051 0.107 0.26
sub, λr =∞ 0.97 0.97 0.97 1.08 0.051 0.107 0.41
sub, λr = 8, val. 0.991 0.997 0.997 1.30 0.049 0.091 0.41
sub, λr = 16, val. 0.99 0.995 0.995 1.35 0.049 0.090 0.54

watering
can 2

all, λr = 16 0.99 0.99 0.99 1.004 0.048 0.055 0.41
sub, λr = 8 0.98 0.98 0.98 1.02 0.060 0.064 0.21
sub, λr = 16 0.99 0.99 0.99 1.004 0.048 0.055 0.40
sub, λr =∞ 0.99 0.99 0.99 1.006 0.049 0.057 0.58
sub, λr = 8, val. 1.00 1.00 1.00 1.007 0.027 0.035 0.91
sub, λr = 16, val. 1.00 1.00 1.00 1.009 0.026 0.034 0.99

pure tracking performance without reinitialization, the watering can 1 sequence
could not be processed by both methods, as it contains a full occlusion. Remark-
ably, the particle filter is able to track on the cereal 1 sequence despite partial
occlusions and only one plane of the box-shaped object being visible at times.
Tracking-by-optimization fails on this sequence.
Under real-time constraints, the improved robustness of the particle filter com-
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incremental registration particle filter

sequence min median max min median max

humanoid slow 1.4 20.3 235.0 1.8 17.3 39.7
humanoid medium 1.7 23.0 124.8 1.7 18.7 85.4
humanoid fast 1.4 23.4 339.2 1.6 20.3 123.6
box slow 4.2 22.7 78.1 3.7 21.1 49.1
box medium 13.2 43.6 642.7 7.0 33.3 191.1
box fast 0.4 22.5 158.4 3.4 18.2 73.7
chair slow 2.5 16.5 74.2 0.9 23.6 93.9
chair medium 3.0 19.7 66.3 1.8 16.8 69.9
chair fast 1.8 23.6 114.7 2.9 33.0 224.0
cereal 1 – – – 1.8 27.1 278.4
cereal 2 2.5 24.2 523.6 1.3 20.8 138.2
watering can 1 (full occlusion) – – – – – –
watering can 2 1.1 17.9 161.2 0.7 17.4 97.1

Table 6.7.: Absolute trajectory error in mm obtained for object tracking (all
frames processed) by incremental registration and particle filtering
(without reinitialization).

incremental registration particle filter

sequence min median max min median max

humanoid slow 1.4 20.0 270.6 1.6 17.5 87.3
humanoid medium 1.4 23.1 343.1 1.0 19.8 288.5
humanoid fast 2.0 24.7 742.2 0.2 21.6 125.2
box slow 1.8 26.8 100.0 0.9 21.5 50.9
box medium – – – 2.9 42.7 203.9
box fast 0.9 25.9 240.0 1.1 19.9 78.6
chair slow 1.2 17.0 73.3 0.6 22.2 187.8
chair medium 0.9 19.5 77.0 0.8 18.4 99.0
chair fast 1.4 25.0 182.5 2.5 33.6 250.4
cereal 1 – – – 0.5 28.6 365.2
cereal 2 – – – 0.4 20.9 142.4
watering can 1 (full occlusion) – – – – – –
watering can 2 0.1 18.0 276.7 0.2 18.5 149.2

Table 6.8.: Absolute trajectory error in mm obtained for object tracking (real-
time processing) by incremental registration and particle filtering
(without reinitialization).

pared to tracking-by-optimization becomes even more apparent. Again, particle
filtering provides better accuracy in most sequences. Tracking-by-optimization
now additionally fails in some of the 20 runs on the box medium and cereal 2
sequences. Our particle filter approach handles all 20 runs robustly.
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incremental registration particle filter

sequence avg. time
(all frames)

frames used
(real-time)

avg. time
(all frames)

frames used
(real-time)

humanoid slow 28.4 85.5 35.5 65.2
humanoid medium 27.5 86.6 35.8 66.0
humanoid fast 29.0 84.7 36.8 68.1
box slow 35.8 63.8 58.0 48.8
box medium 36.0 – 56.4 54.2
box fast 31.0 80.8 48.2 53.1
chair slow 39.3 54.7 65.1 42.9
chair medium 39.7 56.1 64.7 42.8
chair fast 39.5 59.2 62.6 45.4
cereal 1 – – 21.8 98.4
cereal 2 25.0 – 28.8 92.9
watering can 2 21.8 97.9 24.8 95.5

Table 6.9.: Average timing in ms and frames used in % in real-time mode for ob-
ject tracking by incremental registration and particle filtering (with-
out reinitialization).

Tracking-by-optimization in average processes frames at 32.1ms, i.e., 31.2Hz.
Throughout the sequences, the average processing rate is close to the 30Hz
image acquisition rate of the camera (ca. 33.3ms). If an image arrives before
the processing is finished, frames need to be dropped eventually. Particle filtering
introduces run-time overhead, but still is very efficient at 44.9ms in average. It
demonstrates robustness to the dropping of frames.

6.4.6. Joint Object Detection, Pose Estimation, and Tracking
In Fig. 6.14, we show results of joint detection and tracking in global object
localization experiments. We start tracking in each of 1,000 frames of the se-
quences, for which we initialize tracking with our object detection method. We
used a different random subsampling of the surfel-pairs in each initialization.
Instead of explicitly validating the pose hypotheses after detection, the particle
filter validates the hypotheses over multiple frames. Precision and recall are here
determined by measuring the angular and linear distance of the particles to the
ground truth pose.
When all frames are processed, precision converges with the recall rates to

high values. While the box seems to be a simple shape at first, its planarity at
rectangular angles and high symmetry about the object center pose difficulties
to our approach. Its rectangular shape often makes only one or two sides of the
box being visible for extended periods of time. Due to motion blur, only little
texture cues are available to resolve the symmetry. Hence, the tracker converges
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Figure 6.14.: Evolution of precision and recall during global localization on the
object tracking sequences.

to the wrong symmetric pose hypothesis in some cases. This problem can be
counteracted by making a symmetry-breaking prior available. To demonstrate
this, we implemented this prior by only accepting detected poses within 144◦ of
the true pose. Our approach then converges with high precision and recall rates
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Figure 6.15.: Joint object detection, pose estimation, and tracking on the wa-
tering can 1 sequence. The track is lost due to a full occlusion
(3rd image). Our approach detects this event and reinitializes the
tracker through object detection (3rd and 4th image) until the filter
is on track again (right).

close to values of 1 (see top-right Fig. 6.14). For some of the sequences a small
increase in recall is visible over time. This is caused by pose hypotheses that
require multiple tracking iterations to align well with the object.
Processing the sequences in real-time only slightly decreases the performance

of our method on most sequences. Performance on the box slow sequence is
more strongly affected, caused by the shape of the object as discussed above.
Fig. 6.15 demonstrates reinitialization on the watering can 1 sequence. As

soon as large parts of the object are occluded, the tracker is reinitialized with our
object detection method. Reinitialization is repeated until the tracker maintains
a likely estimate as before the loss of the track.

6.4.7. Public Demonstration
The object tracking approach in Sec. 6.3.2 has been demonstrated publicy as a
perception component of mobile manipulation robots at several RoboCup@Home
competitions (Stückler et al., 2012; Stückler et al., 2012b, 2013, 2014)2. In the fi-
nal of the RoboCup@Home competition 2011 in Istanbul, Turkey, service robot
Cosero (team NimbRo@Home) showcased the cooperative carrying of a table
with a human and the cooking of an omelett (Stückler et al., 2012; Stückler
et al., 2012b) (see Fig. 6.16). For carrying the table, it tracked a MRSMap
model of the table to perceive its lifting and lowering by the human through the
estimated pitch rotation. In the omelett-cooking demonstration, the robot ap-
proached a cooking plate which it perceived through tracking a MRSMap model.
After fetching the bottle of omelett mixture and opening it, Cosero moved in
front of the cooking plate and poured the omelett-mixture into the pan on the
plate. The demonstration was well received by the jury that consisted of rep-
resentatives from science, industry, and media, and the executive committee of
the RoboCup@Home league. It was an important contribution to winning.

2Videos of the performance of the robots can be found at:
http://www.youtube.com/watch?v=nG0mJiODrYw, v=q041IvZ_FVU, v=tUhuHIbbEBA,
and v=I1kN1bAeeB0
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Figure 6.16.: Public demonstrations of object tracking for visual servoing in mo-
bile manipulation tasks. Left: Cosero tracks the table for per-
ceiving the lowering and lifting of the table while it cooperatively
carries the table with a human at RoboCup 2011. Right: For
switching the cooking plate on and pouring omelett-mixture into
the pan, it tracked the pose of the cooking plate (RoboCup 2011).

Figure 6.17.: Public demonstrations of object tracking for visual servoing in mo-
bile manipulation tasks. To grasp the watering can, Cosero ap-
proaches the can towards a predefined relative pose using our ob-
ject tracking method.

In 2012, Cosero pushed a chair to its designated location and watered a plant
with a watering can (Stückler et al., 2013) (see Figs. 6.17 and 6.18). For both
demonstrations, Cosero approached the objects using our tracking approach,
and grasped the objects at predefined grasp poses. The demonstrations were
important parts of the overall performance of the system that won the 2012
and 2013 RoboCup@Home German Open and the 2012 World Championship in
Mexico.
For winning the 2013 RoboCup@Home competition in Eindhoven, Nether-
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Figure 6.18.: Public demonstrations of object tracking for visual servoing in mo-
bile manipulation tasks. Left/center: Cosero approaches a chair
through tracking, grasps it, and pushes it to a desired location at
RoboCup 2012 and 2013. Right: Cosero positions itself in front of
a barbecue using our tracking approach at RoboCup 2013.

lands, object tracking also was a fundamental capability of Cosero (Stückler
et al., 2014) (see Fig. 6.18). In the Demo Challenge it pushed a chair to its
place. In the finals, it used a pair of tongs to pick and place sausages on a
barbecue. It perceived and approached the barbecue through tracking.

6.5. Related Work

6.5.1. SLAM with RGB-D Sensors
Early work on SLAM in robotics has focused on acquiring 2D maps using range
sensors such as laser scanners and sonars (e.g. (Grisetti et al., 2007)). Over the
last decades, some approaches have been proposed that estimate the 6 DoF tra-
jectory of a robot and a 3D map by means of 3D laser scan registration (Nuechter
et al., 2005). In computer vision, many approaches to SfM are based on the ex-
traction and matching of keypoints between images. Stereo vision is frequently
used to directly obtain depth measurements for keypoints (Se et al., 2001; Nis-
ter et al., 2004; Konolige et al., 2010). Efficient RANSAC methods can then be
applied to estimate the motion of the camera rig. This approach similarly ap-
plies if depth measurements are available from time-of-flight or structured-light
RGB-D cameras (Droeschel et al., 2009; Huang et al., 2011).
MonoSLAM (Davison et al., 2007), based on Extended Kalman Filters, was

one of the first methods that demonstrated feature-based online SLAM in real-
time with a monocular camera. Klein and Murray (2007) proposed a real-time
capable BA method within small workspaces. Current work on SfM in computer
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vision also includes real-time dense surface reconstruction from monocular videos
(Stuehmer et al., 2010; Newcombe et al., 2011b). Newcombe et al. (2011b)
proposed DTAM, an impressive method for dense tracking and mapping of small
workspaces that is real-time capable on GPU. It acquires dense models of key
frames which could be globally aligned into a dense model of the scene using
view-based dense SLAM methods such as our approach.
Closely related to our setting is KinectFusion, proposed by Newcombe et al.

(2011a). They incrementally register depth images to a map that is aggre-
gated from previous images and demonstrate remarkable performance for small
workspaces. The approach is applied for augmented reality user interfaces and
supports the tracking of the pose of objects and the camera in real-time. Since
KinectFusion is implemented on GPU, it has—due to memory restrictions—
stronger workspace limitation than CPU-based implementations like ours. Kin-
ectFusion represents the mapped surface with signed distance functions(SDFs)
(Curless and Levoy, 1996), and estimates the pose of the camera with respect to
the map by a variant of ICP. A depth image is generated from the SDF map and
the current pose, and registered with the measured image. Bylow et al. (2013)
propose a different approach for camera tracking and evaluate several weighting
functions for the SDF representation. In order to scale to larger workspaces,
KinectFusion has been extended using moving volumes (Whelan et al., 2012;
Roth and Vona, 2012). Due to their incremental nature, these approaches still
accumulate minor drift in the map estimate over time (Roth and Vona, 2012)
when the camera is swept into previously unseen areas.
This effect can be corrected through loop-closing like in our view-based SLAM

approach. For this, local submaps have to be built and eventually to be regis-
tered in a submap-based SLAM framework. Our framework supports a compact
representation of local submaps and registers individual RGB-D images as well
as entire local submaps that summarize many images. We detect loop closures
and find a best alignment of key views by jointly optimizing spatial constraints
between views. We determine the relative pose between views using our regis-
tration method and assess the uncertainty of the pose estimate. We also include
spatial constraints between further key views that are not direct neighbors in
temporal sequence, and verify the constraints by the quality of the image align-
ment. Very recently, Kerl et al. (2013) and Steinbruecker et al. (2013) followed
similar ideas for key-view based SLAM with SDF representations.
Some approaches have been proposed that also learn maps from depth and

RGB-D images in a trajectory optimization framework (May et al., 2009; Henry
et al., 2012; Engelhard et al., 2011). May et al. (2009) match time-of-flight
depth images using ICP and apply global relaxation over all images to build a
consistent 3D map. Henry et al. (2012) extract textured surface patches, register
them using the ICP algorithm to the model, and apply graph optimization to
obtain an accurate map. Our approach provides shape-texture information in
a compact representation that supports pose tracking from a wide range of
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distances, since the model is represented at multiple scales. Endres et al. (2012)
match RGB interest points between RGB-D images to obtain spatial relations
for pose graph SLAM. Our registration method incorporates shape and texture
seamlessly and is also applicable to textureless shapes.
The modeling of the geometry of objects from multiple views is a traditional

research topic in robotics and computer graphics. A diverse set of applications
exists for such explicit geometric map representations like, for instance, object
recognition or manipulation planning.
One early work of Chen and Medioni (1992) registers several range images

using an iterative least squares method. In order to acquire object models, the
authors propose to take four to eight views onto the object. Each view is then
registered to a map that is aggregated from the precedingly registered views.
If the content and sequence of scans is chosen carefully to include significant
overlap with the already acquired map, this procedure accumulates less error
than pairwise registration of successive views. Weise et al. (2011) match surface
patches between range images and align them globally to reconstruct 3D object
models. Krainin et al. (2011) learn models of objects with an approach similar
to (Henry et al., 2012). Schnabel et al. (2008) represent objects by graphs of
geometric shape primitives. Our map representation includes shape and texture
seamlessly and inherently supports tracking from a wide range of distances due
to its multi-scale structure.

6.5.2. Object Detection and 6-DoF Pose Estimation
Methods for object detection and 6-DoF pose estimation can be distinguished
into methods based on voting, RANSAC, and templates. The generalized Hough
transform (Ballard, 1981) underlies voting-based methods. In early work, ef-
ficient implementations have been proposed using hash tables (Lamdan and
Wolfson, 1988). These methods cast votes on the 6-DoF pose of 3D objects
from tuples of interest points or edges in grayscale or range images and have
been demonstrated for polyhedral objects. The SHOT (Tombari et al., 2010)
descriptor and its color extension C-SHOT (Tombari et al., 2011) define a unique
3D reference frame for interest points in point clouds and RGB-D images. This
allows for casting a vote on the object pose from only a single interest point
match to an object model. However, extracting stable reference frames at in-
terest points requires well sampled surfaces. Another recent approach by Drost
et al. (2010) uses pairs of surfels that also define a unique reference frame. The
surfel-pairs are described by the relation of the surface normals and the posi-
tion difference between the surfel points. The descriptors extracted from the
object model are hashed for efficient retrieval of surfel-pair matches with the
scene. The approach has been extended to incorporate visibility-context (Kim
and Medioni, 2011), contours (Choi et al., 2012), and RGB information (Choi
and Christensen, 2012a). We also use color and extend the method with local
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multi-resolution processing for improved run-time efficiency. Furthermore, we
disambiguate pose hypotheses over time in a particle filter framework.
Similar concepts like in voting approaches can often be used within RANSAC.

The seminal work by Lowe (2004) proposes an interest point detector and de-
scriptor coined scale-invariant feature transform (SIFT), and applies it in effi-
cient RANSAC for estimating object pose. The approach is robust to partial
occlusions and view-point changes, but requires well textured objects. Scalable
recognition of a multitude of object instances using SIFT is demonstrated in the
MOPED framework (Martinez et al., 2010). Schnabel et al. (2008) estimate the
pose of objects from a representation by graphs of geometric shape primitives
using RANSAC. The pose estimate retrieved from matches of surfel-pairs be-
tween scene and model can also be used to create pose hypotheses in a RANSAC
framework (Papazov et al., 2012).
Template-matching represents the object by templates that are correlated with

the scene at all possible locations. To estimate the 6-DoF pose of the object,
several templates are used for an object from different view points. Examples of
early approaches match contour templates of 3D objects in RGB images using
the Hausdorff (Olson and Huttenlocher, 1997) or Chamfer distance (Gavrila
and Philomin, 1999). In the same line of research, Hinterstoisser et al. (2012)
proposes LINE-2D and its RGB-D extension LINE-MOD. Their templates use
only the most dominant gradients to represent the objects. If depth is available,
they seamlessly integrate surface normals with 2D image gradient matching.
The LINE algorithms are efficiently implemented using SIMD instructions of
modern CPU architectures to operate in real-time. In contrast to the LINE
method, our approach detects multi-view 3D models of objects, such that the
management of multiple templates per object is not necessary. The VFH (Rusu
et al., 2010) and CVFH (Aldoma et al., 2011) methods represent point cloud
segments by histograms that quantify shape and view point. Lai et al. (2011)
retrieve object category, object view, and continuous 6-DoF pose in a multi-stage
classification approach for RGB-D image segments. Both approaches, however,
require a presegmentation of the point cloud or RGB-D image, respectively.

6.5.3. Object Tracking
A vast set of object tracking methods in computer vision estimate the image
location and bounding box of moving objects in RGB images. In the following,
we focus on tracking approaches that estimate 6-DoF pose. Tracking approaches
can be classified into tracking-by-optimization and tracking-by-detection.

6.5.3.1. Tracking-by-Optimization

In tracking-by-optimization, the pose estimate from the previous image is used
to initialize pose estimation for the current image. Frequently, non-linear least
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squares minimization is employed. The famous early method by Harris (1993)
aligned 3D edge models of objects with the current model. Since then, edge-
based methods have been revisited many times. The approaches by Drummond
and Cipolla (2002) and Comport et al. (2004) track edge-models using iteratively
re-weighted least squares (IRLS). Texture can also be combined with edge-based
approaches (Vacchetti et al., 2004) to achieve tracking with textured as well as
textureless objects. We propose tracking-by-optimization of dense 3D object
models represented by MRSMaps. Our registration method leverages shape as
well as texture cues for accurate tracking. The multi-resolution structure of
MRSMaps allows for a wide range of distances to the tracked object. We fur-
ther improve the robustness by embedding our registration method in a particle
filtering framework.
Recursive Bayesian filtering is also popular in tracking-by-optimization. In

contrast to Kalman filter approaches, particle filters can be applied for non-linear
state-transition and observation models, and are not restricted to Gaussian noise
models. The state density estimate is also not single mode, but could in principle
represent any multi-modal distribution. This makes particle filters more robust
for pose ambiguities, especially in the early phases of tracking when initialization
provided multiple pose hypotheses, or if the measurements do not constrain
poses to a single mode. Edge-models have been tracked within a particle filter
by Klein and Murray (2006). To achieve real-time tracking, an implementation
of the evaluation of the observation likelihood on GPU is required. Choi and
Christensen (2012b) track multiple edge-based templates of an object with a
particle filter. We obtain a highly accurate yet robust method that tracks dense
3D object models in real-time on a CPU. In the sampling step, we sample the
particles from a proposal distribution that improves the state-transition model
through alignment of the current image with the object.

6.5.3.2. Tracking-by-Detection

Tracking-by-detection applies a detection approach in each image to find the pose
of the object. A key ingredient is the real-time detection and pose estimation
from a single image without a prior guess. The LINE method as discussed above
(Hinterstoisser et al., 2012) can hence be seen as one instance of tracking-by-
detection methods. Lepetit and Fua (2006) develop an efficient interest point
detector, descriptor, and matching algorithm based on RFs. This makes pose
estimation from interest point matches efficient for real-time tracking.
In general, tracking-by-optimization incorporates a strong prior for determin-

ing the object’s pose in the current frame, and yields better temporal coherence
of the estimated trajectory. Tracking is often faster and more accurate than
detection. On the other hand, strong priors can also be violated, for instance,
at rapid object motion, occlusions, or if the object moves out of view.
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6.5.4. Joint Object Detection, Pose Estimation, and Tracking
In order to overcome the limits of either tracking-by-optimization or tracking-
by-detection, joint object detection and tracking aims at providing well and fast
initialization of optimization-based tracking. Tracking is also made more robust
when failures are detected and the track is reinitialized using a fast detection
method. As pointed out by Lepetit and Fua (2005) and Uchiyama and Marchand
(2012), joint object detection and tracking is an active research topic.
For initializing particle filter based tracking of edge templates, Choi and Chris-

tensen (2011) recognize object pose from SURF (Bay et al., 2006) interest point
matches with a set of key views stored for the object. In (Choi and Chris-
tensen, 2012b), the approach has been extended to detect the edge-templates
directly through template matching. Our approach tracks a dense multi-view 3D
model of the object that represents the object more compactly than by a set of
templates from discrete view points. Its run-time efficiency facilitates real-time
operation on a CPU.

6.6. Summary
We developed means for modeling static indoor environments and rigid objects
with RGB-D cameras. The models are acquired from RGB-D image sequences
in which the camera moves through the scene or views the object from multiple
view points. Our approach extracts key views represented as MRSMaps from
the sequences. We use our registration method to keep track of the camera
motion. It provides spatial constraints between the key views whose view poses
are optimized through pose-graph SLAM. We not only consider the registration
of key views in temporal sequence, but also find further constraints between key
views. In each frame, a new constraint is examined and eventually added to the
pose graph, if the key-view matching could be validated in terms of matching
likelihood. The key views are aligned in one MRSMap to obtain a multi-view
3D model. Our SLAM approach supports real-time operation on a CPU which
we demonstrate on sequences of the RGB-D benchmark dataset. It outperforms
a sparse interest-point-based approach to RGB-D SLAM on several sequences.
On sequences with long trajectory loops, SLAM is clearly superior to drift-prone
incremental registration.
Once a MRSMap model of an object is available, we use the model for perceiv-

ing the object in live RGB-D images. We propose an object detection and 6-DoF
pose estimation method that efficiently finds a coarse initial pose estimate at
high recall rates. It is based on surfel-pair voting and utilizes multiple resolu-
tions for efficiency. For each surfel, pairings with other surfels are established in
a local neighborhood that depends on the surfel’s resolution. Our experiments
indicate, that the scale of these neighborhoods is also related to the shape of the
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object and must be chosen appropriately.
We utilize our rigid registration method to track the 6-DoF pose of the ob-

jects in real-time. The registration is integrated in a particle filter for improved
proposals. By this, we combine the robustness of maintaining multiple hypothe-
ses during tracking with the accuracy of tracking-by-optimization. We evalu-
ate accuracy and run-time of our tracking approach and demonstrate real-time
tracking at high accuracy.
Tracking is initialized by our object detection method in a particle filter frame-

work for joint object detection, pose estimation, and tracking. If tracking cannot
be resumed, e.g., because of occlusions or extreme camera motions, we detect
this event and reinitialize the tracker.
We demonstrated object tracking through registration at several public occa-

sions at RoboCup@Home competitions. It was a building block for many mobile
manipulation demonstrations. The robot performances were well received and
have been important contributions to winning in 2011, 2012, and 2013.
In our current SLAM method, we search for loop-closures among key views

with similar view poses. For very long trajectory loops with strong drift, this
method may not be able to find a loop-closing constraint. A complementing
approach could define similarity in key views through signatures that concisely
describe the key view content.
The use of contours could further improve object detection and tracking. Ef-

ficient means would be required to extract expected contours from the model
during the pose voting and registration processes. One possible approach is
to project the model into the image plane for finding the contours. Another
possibility is to consider those surfels as lying on contours, whose normals are
perpendicular to the view direction.
A further line of research would be to transfer our approaches to object mod-

eling, detection, and tracking with multi-resolution SDF representations such as
the one proposed by Steinbruecker et al. (2013). Since SDFs are implicit surface
representations, it can be costly to extract explicit geometry, e.g., in the form
of a triangle mesh by algorithms such as fast marching cubes (Newman and
Yi, 2006). This is less an issue for a multi-view SDF model of an object, as
the explicit geometry could be extracted once in a preprocessing stage. The live
camera image could be represented in another SDF which would require efficient
methods to extract surface positions and normals. It is also possible to extract
surface normals efficiently from the RGB-D image with different approaches,
e.g., using integral images (Holz et al., 2011). However, representation of model
and current image would then not share the same properties as with MRSMaps.
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7. Non-Rigid Scene and Object
Perception

In this chapter, we go beyond the assumption of rigid scenes and objects for
perception and modeling. We first present an approach to learn dense models
of the moving objects in a scene (see Fig. 7.1). At its core is our efficient rigid
multi-body registration method (Ch. 4). We exploit motion as a fundamental
grouping cue. Our approach not only models distinct parts in a scene. It also
finds hierarchical part relations between the objects by observing them split and
merge over time. This way, a robot may discover the hierarchical decomposition
of the environment into objects in an unsupervised way.

Our second non-rigid perception technique matches object instances that vary
in shape through continuous deformations. We transfer object manipulation
skills defined for an example instance to new instances using deformable regis-
tration (Ch. 5).

Figure 7.1.: Left: By integrating motion segmentation with SLAM, we discover
objects and hierarchical part relations. Right: We transfer object
manipulation skills through shape matching.
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Figure 7.2.: We sequentially track the segmentation of the current image Icurr
towards a reference key view vref . After sufficient motion, we include
a new key view vi for the current image. Its segmentations Si−1

i
towards its previous reference key view vi−1 and Scurr

i towards the
current image are initialized from the tracked segmentation Sii−1.

7.1. Discovery and Dense Modeling of Object
Hierarchies in Dynamic Scenes

Many SLAM approaches, as also our method in Sec. 6.2, make the assumption
that the observed scene remains static during the mapping process. In this
section, we release this assumption: We develop SLAM in dynamic environments
in which we assume the moving parts to be rigid. We exploit motion as a
fundamental grouping cue that allows an agent to learn about the decomposition
of scenes into objects and parts.

We extend our key-view-based SLAM approach (Sec. 6.2) towards simulta-
neous motion segmentation, localization, and mapping (SMOSLAM). We still
extract key views from RGB-D video. Key views are now related using rigid
multi-body registration (Ch. 4) to discover the distinct moving parts between
pairs of key views. The found segments are attributed to individual objects. Our
approach examines the merging and splitting of segments, from which it infers
part and equivalence relations of objects. Concurrently, each object maintains
and optimizes an individual view pose graph for its segments. We overlay the
segments from their estimated view poses into dense object models.
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7.1.1. Discovery of Objects and Relations in RGB-D Video
We process RGB-D video sequentially. In order to localize the sensor with
respect to the moving parts in the scene, we register the current RGB-D image
towards a reference key view (see Fig. 7.2). We apply our rigid multi-body
registration method to segment the reference key view with respect to the current
image, and concurrently estimate the relative motion between the segments.

7.1.1.1. Key Views

The initial reference key view is set to the first image. We track the segmentation
Scurr

ref of a reference key view vref towards the current image Icurr using our on-
line EM-approach (Sec. 4.2.5). After sufficient motion of one of the segments, we
create a new key view vi from the current image and make it the new reference
key view. We also create a new key view, if the motion of the segments –
after a significant move – ceased. This event is detected from the magnitude
in rotational and translational velocity which is determined from the motion
estimates for a few most recent images.

7.1.1.2. Sequential Key View Segmentation

As illustrated in Fig. 7.2, we establish several segmentations between key views.
When a new key view vi is included, we already have a motion segmentation
Sii−1 between the new key view and its reference key view vi−1 available through
tracking. As will become apparent shortly, we also require the segmentation
Si−1
i in the opposite direction between the key views for the establishment of

object relations. We initialize this backward segmentation from the result of the
tracked forward segmentation. Few EM iterations suffice to let the segmentation
converge from this initialization. The new key view becomes the reference for
tracking towards the current image in the sequence. Its segmentation Scurr

i is
also initialized with the result of the previous tracking segmentation Sii−1.
For the initialization, segmentation transfer proceeds in two ways. If source

and target segmentation share the same segmented image, we simply set the
segmentation of the target equal to the source. If the segmentations are oppo-
site, i.e., source and target segment the same images in opposite directions, we
transfer the labeling: Each labeled image site in the segmented image of the
source is associated with a site in the segmented image of the target. It propa-
gates its label to its associated image site. To compensate for the different local
multi-resolution structures of both images, we further distribute this labeling
to unlabeled successors in the octree. We also set the motion estimates of the
initialized segments to the inverses of their counterparts.
As we segment between images, the observed scene content will not completely

overlap due to the limited field-of-view of the sensor and due to occlusions. In
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Figure 7.3.: We relate motion segmentations between pairs of key views. The
related pairs either segment key views in opposite directions (e.g.,
Sii−1 and Si−1

i ), or segment the same image (e.g., Si−1
i and Si+1

i ).

Sec. 4.2.6.1, we propose to handle this by memorizing the observation likeli-
hood of image sites that would transform beyond the field-of-view or that are
occluded. This information is only available through tracking. We thus also
transfer memorized observations between the segmentations.

7.1.1.3. Identifying Relations between Segments and Objects

Our goal is to assign motion segments to objects for dense modeling, and to
deduce a decomposition of the objects into parts by observing the objects split
and merge. Each motion segmentation contains a set of segments for which we
create objects. We relate segments between different motion segmentations to

Figure 7.4.: We determine part Π(m,m′) and equivalence relations E(m,m′) be-
tween segments m,m′ from their overlap.

156



7.1. Discovery and Dense Modeling of Object Hierarchies in Dynamic Scenes

determine, if the segments are either part of one another, or if they equivalently
observe the same object. These segment relations in turn provide knowledge
about part and equivalence relations between objects.

Relations between Segments: As a first step, we find part and equivalence
relations between segments of different segmentations. We relate segments by
their overlap in two ways. First, both segmentations S := Sba, S′ := Sca may share
the same segmented image. We denote such a pair of segmentations as adjacent.
We determine the overlap

ρ(mS,k,mS′,k′) :=

∣∣∣{i ∈ {1, . . . ,N} : yS,i = k∧yS′,i = k′
}∣∣∣∣∣∣{i ∈ {1, . . . ,N} : yS,i = k

}∣∣∣ (7.1)

of source segments mS,k ∈MS with target segments mS′,k′ ∈MS′ by directly
counting matching labelings of image sites in the segmented images. We denote
the labeling of image sites i ∈ {1, . . . ,N} in source and target segmentation as
yS,i ∈ YS and yS′,i ∈ YS′ , respectively. The overlap measure is directional and
quantifies the degree of inclusion of source segments in target segments. Hence,
we relate segmentations in both directions.
Opposite segmentations Sba, Sab between pairs of images can also be evaluated

for overlap. To count matches, the label of each image site in the segmented
image of the source is compared with the label of its associated site in the target
segmentation.
We take care of occlusions and outliers and discard them for the overlap

measure. Occlusions occur at image sites that would move behind another image
site in the connected image and would hence not be visible. The segmentation
at such sites is not well supported by observations and governed by context.
We process RGB-D video sequentially and measure the overlap of segments

between adjacent and opposite segmentations (see Fig. 7.3). Adjacent segmen-
tations Si−1

i , Si+1
i connect consecutive key views vi−1, vi, and vi+1 through a

center key view vi. The relation of opposite segmentations Si+1
i , Sii+1 connects

consecutive adjacent relations throughout the key view sequence.
We estimate part relations between segments from their overlap (see Fig. 7.4).

A segment m is part of segment m′, if it overlaps m′ by a specific amount χρ,
i.e.,

F0 : ρ(m,m′)≥ χρ =⇒ Π(m,m′). (7.2)

Two segments m and m′ observe a physical entity equivalently, if they are
part of each other,

F1 : ∀m∀m′ : Π(m,m′) ∧ Π(m′,m) ⇐⇒ E(m,m′). (7.3)

Obviously, E(m′,m) also holds by symmetry.
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Figure 7.5.: Each segment m is assigned an object o, which the segment is part
of (Π(m,o)) and equivalent to (E(m,o)). Segment relations induce
further part and equivalence relations to objects. Induced segment-
object relations (dashed) and their origin relations between segments
are depicted by common dash styles.

When a new segmentation is established, we find all new unrelated pairs of
segmentations and determine part and equivalence relations. We establish new
part relations between segments, then examine the new part relation for further
equivalence relations between segments.

Relations between Segments and Objects: Each segment m creates its own
object o= c(m) ∈O. A segment is part of and equivalent to its object,

F2 : ∀m∀o : o= c(m) =⇒ Π(m,o) ∧ E(m,o). (7.4)

Segments m are also part of an object o, if they are part of another segment m
that is itself part of o:

F3 : ∀m∀m′∀o : Π(m,m′) ∧ Π(m′,o) =⇒ Π(m,o). (7.5)

Analogeously, segment m is equivalent to an object o through equivalence with
a segment m that is equivalent to o:

F4 : ∀m∀m′∀o : E(m,m′) ∧ E(m′,o) =⇒ E(m,o). (7.6)

Fig. 7.5 illustrates how segment-object relations are induced by segment-segment
relations.
When new objects o or relations between segments m and m′ are added,

we examine if they induce novel segment-object relations by inspecting other
segment-object relations that involve segments m, m′, or object o. Furthermore,
if a relation between segment m and object o is included, it may induce addi-
tional segment-object relations which are searched for by inspecting part and
equivalence relations between other segments and m.
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Figure 7.6.: We infer part and equivalence relations between objects from
segment-object relations. Induced segment-object relations and
their origin relations are depicted by common dash styles.

Relations between Objects: From relations between segments and objects,
we can further conclude part and equivalence relations between objects (see
Fig. 7.6). If a segment m is part of two objects o and o′, but only is equivalent
to o′, then o must be part of o′, i.e.,

F5 : ∀m∀o∀o′ : Π(m,o) ∧ ¬E(m,o) ∧ E(m,o′) =⇒ Π(o,o′). (7.7)

If the segment is in an equivalence relation to both objects, the objects are
representing the same physical entity, i.e.,

F6 : ∀m∀o∀o′ : E(m,o) ∧ E(m,o′) =⇒ E(o,o′). (7.8)

By symmetry, also E(o′,o) holds.
The procedure to establish relations between objects is to consider only novel

relations between segments m and objects o or o′. For a new part relation
between segment m and object o, we search for equivalence relations of segment
m with other objects o′. If an equivalence relation between segment m and
object o is induced, we find all other objects o′ which m is equivalent to in order
to include equivalence of o and o′.

Object Pruning: Including objects for each segment in every motion segmenta-
tion generates many redundant, equivalent objects. We spare computation time
and merge objects that we infer to be equivalent. As our inference process gener-
ates relations between segments and other objects equivalently for both objects,
we can simply discard the newer object and all its relations with segments.

7.1.1.4. Probabilistic Reasoning on Segment and Object Relations

To cope better with imperfect segmentations and uncertain overlap decisions,
we perform probabilistic reasoning about segment and object relations. The
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relations identified in Sec. 7.1.1.3 are formulated in first-order logic and form
a knowledge base KB. We use Markov logic networks(MLNs) to transform the
set of hard constraints in first-order logic into a probabilistic interpretation. See
Richardson and Domingos (2006) for an introduction to first-order logic and
MLNs.
In terminology of first-order logic, each existing segment and object is a con-

stant in a finite set C. Generically, we refer to segments and objects through
variables m and o. Part and equivalence relations are expressed by predicates
r on variables and constants. The function o = C(m) assigns each object to its
creating segment. Eqs. (7.2),(7.3),(7.4)(7.5),(7.6),(7.7), and (7.8) define a set of
formulae F = {Fi}6i=0 over predicates and functions on segments and objects.
Each predicate and formula is grounded by inserting existing segments and ob-
jects for the variables. A possible world assigns a truth value to each ground
atom. Eq. (7.2) is a special case of grounded formula that we will interpret
as uncertain evidence of a grounded predicate that expresses a part-relation be-
tween segments. As we are only interested in beliefs on ground predicates within
our KB, inference is feasible by only considering those groundings of formulae
that involve segments, objects, and predicates that are identified through the
process in Sec. 7.1.1.3.
We define the MLN L on the formulae F . Each fomula F ∈ F is associated

a weight wF that expresses the importance of the formula. With the existing
segments and objects C, the MLN determines a MN ML,C (Sec. 4.1.2.1). Each
ground predicate ř in our KB is assigned a binary random variable xr whose
value is 1 if it is true, and 0 otherwise. For each grounded formula F̌ , the MN
contains a potential ϕF (xr1 , . . . ,xrR) on the R ground predicates in F̌ . Formulaes
of types F1 to F6 have a value of 1 if the formula is true, and 0 otherwise. For
formula F0 we express uncertainty through the degree of overlap: The relation
Π(ms,k,mt,l) is true with probability

p
(
Π(ms,k,mt,l)

)
=


ρ(ms,k,mt,l)−ρ0

1−ρ0
if ρ(ms,k,mt,l)≥ ρ0

0 otherwise
(7.9)

in dependency on the overlap of the segments with a zero probability threshold
ρ0. This yields the joint probability

p(x) = 1
Z

∏
F̌∈KB

ϕF (xr1 , . . . ,xrR)wF (7.10)

of possible worlds x in our KB.
We perform inference on this MN using sum-product LBP (Sec. 4.1.2.4). Re-

lations are regarded as valid, if their belief is above a threshold.
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Figure 7.7.: For each object o, we maintain a graph of view poses νok of the
segments that are part of the object. The segmentation Sji of key
views i and j provides relative motion estimates between segments,
which we include as spatial constraints between the segment view
poses.

7.1.2. Simultaneous Localization and Mapping of
Singularized Objects

Segments are dense RGB-D measurements of objects that move distinguishable
between two key views. With our reasoning approach (Sec. 7.1.1), we link the
segments of different key-view segmentations and identify which objects each
segment is part of. The segments view the objects from specific view poses. The
motion estimates of the segments are relative constraints between the segment
view poses. We estimate the view poses by pose-graph optimization analogously
to our SLAM approach in Sec. 6.2.
Each object o is created by a segment mo whose view pose ν(mo) ∈ Vo defines

the reference frame of the object SLAM graph. To establish a view pose graph for
all segments that belong to an object, we examine valid part-relations Π(m′,o)
of segments m′ with the object. These relations are induced by formulae of type
F3 (Eq. (7.5)) which link segment m′ to object o through other segments m.
If both segments share the same segmented key view, i.e., the segmentations

are adjacent, no motion could occur between the segments. Hence, the segments
reference the same view pose ν = ν(m) = ν(m′) ∈ V .
Otherwise, the motion estimate θm of segment m is a relative view pose obser-

vation xm′m := θm between the segmented key views. We include the observation
with its uncertainty estimate Σ(xm′m ) as spatial constraint eν(m),ν(m′) ∈ Eo be-
tween the segment view poses in the pose graph Go = (Vo,Eo) of object o. We
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Figure 7.8.: We segment motion between pairs of key views that are not in direct
temporal sequence. By this, we discover further relations between
segments and objects, and include additional spatial constraints in
the object SLAM graphs (black arrows: segmented key view pairs;
red arrows: related segmentations).

obtain the uncertainty estimate of the segment with our approach in Sec. 3.2.2.3.
Multiple segments mi within one segmentation can be part of the same ob-

ject. In this case, we also maintain just a single node ∀i : ν = ν(mi) for the
segments. If the segments have pose observations xi towards the same node
ν ′, we merge the observations into a single constraint eν,ν′ with pose covariance
Σ =

(∑
iΣ−1

i

)−1
and mean x= Σ

(∑
iΣ−1

i xi
)
, which follows from the product of

the normal distributed pose observations.
As in Sec. 6.2, the resulting object pose graph is optimized using the LM

method within the g2o framework (Kuemmerle et al., 2011).

7.1.3. Out-Of-Sequence Relations
Our approach discovers objects and relations by the motion that is observable
between the generated key views. So far, we only considered the segmentation
and relation of key views that are direct neighbors in the temporal key view
sequence. Key views can be segmented yet from larger relative pose distances.
This increases the capability of our algorithm to observe objects split and merge,

162



7.1. Discovery and Dense Modeling of Object Hierarchies in Dynamic Scenes

and adds new spatial constraints into the object SLAM graphs.
We search for segmentations of key views vi, vj for which the segmentation

Sji has not been incorporated yet. To only consider reasonable matches between
key views with large image overlap, we also require the relative motion between
the segments to be sufficiently small. We retrieve these relative motions from
view pose estimates maintained within the object SLAM graphs. As our new
segmentation is directional from key view vi to vj , we determine for each segment
mi in key view vi, if it is connected with any segment in key view vj by a view
pose node and if the relative pose estimate between the nodes for the segments
is small in at least one of the object SLAM graphs.
For temporally distant image pairs, our segmentation approach requires an

initial guess. We determine this guess from established segmentations with a
common intermediate key view vk. Our algorithm first identifies if there is a k
such that, in the object SLAM graphs, the segments of Ski are connected with
segments in Skj . If such a k exists, we propagate the segmentations in the order
Skj → Sjk → Sik → Ski to arrive at a guess S̃ji . The segmentation Sji is found
within a few EM iterations from this guess.
In order to propagate segmentations from S to S′, we need to distinguish

between adjacent and opposite segmentation pairs. Adjacent pairs S := Sjk,
S′ :=Sik segment the same key view, while opposite pairs are of the form S :=Skj ,
S′ := Sjk. In both cases, we relate segments mS with segments mS′ through
image overlap as in Sec. 7.1.1.3. If a segment mS is only part of a segment in
mS′ but not equivalent with it, we split segment mS′ into two segments: One
that equivalently overlaps with mS and a new segment m′S′ that explains the
remaining part of mS′ . In the opposite case, the motion estimates of segments
m̃S′ are set to the inverse of the estimates of segments mS that have best overlap
from S′ to S. For adjacent pairs, we set the motion estimate θ̃S′,m = θS′,m⊕(
θS,m

)−1
to the combined estimate ofmS′ and the segmentmS with best overlap.

The new segmentation Sji is related with all existing adjacent and opposite
segmentations to find new segment relations (Sec. 7.1.1.3). We add induced
relations and formulae (Sec. 7.1.1.3) to our knowledge base KB, and update the
object SLAM graphs with the new segments and motion estimates (Sec. 7.1.2).

7.1.4. Dense Models of Singularized Objects
We extract dense object models from the object SLAM graphs. First, we obtain
probabilistic interpretations of each segment by performing mean-field iterations
for the CRF segmentation (Sec. 4.2.3) until convergence. The soft-classified
segments are fused in the common reference frame of the object pose graph
using a log-odds filter. For segments that are only valid part of an object but
not in an equivalence relation, we only consider positive observations. Images
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Figure 7.9.: We transfer grasp poses, tool end-effector frames (left, displayed
as coordinate frames), and motion trajectories (right, red arrows)
between different instances of the same class of objects. The local
pose transformation at the grasps between the object instances is
estimated from the displacement field between the object shapes.

with equivalent segments also provide negative observations at image sites that
are most probable to belong to a different segment. We integrate this negative
evidence to improve the segmentation of the object.

7.2. Shape Matching for Object Manipulation Skill
Transfer

Objects with the same function often share a common topology of functional
parts such as handles and tool-tips (Tenorth et al., 2013). We propose to in-
terpret shape correspondences as correspondences between the functional parts.
We utilize these correspondences for object manipulation skill transfer.
In many object manipulation scenarios, controllers can be specified through

grasp poses and 6-DoF trajectories relative to the functional parts of an object.
With known correspondences of the functional parts, these grasps and motions
are transferable to other object instances.
In Ch. 5, we propose an efficient deformable registration method that provides

a dense displacement field between object shapes observed in RGB-D images.
From the displacements, local transformations can be estimated between points
on the object surfaces. We apply these local transformations to transfer grasps
and motion trajectories between the objects, which are defined relative to the
objects and their functional parts (illustrated in Fig. 7.9).
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7.2.1. Grasp Transfer
We define a grasp as a 6-DoF end-effector pose xexample

grasp relative to a reference
frame of the example object. When a new instance with different shape is
given, we estimate a displacement field between both shapes using deformable
registration (Ch. 5). The grasp pose is transformed onto the new object to a
pose xnew

grasp using the displacement field.
For the registration, we assume that the new object instance is segmented

from its surrounding, e.g., using a plane segmentation approach (Holz et al.,
2011). We represent the RGB-D image segment in a MRSMap. The orientation
of the new instance needs to coarsely match with the example object. As an
intialization step for the registration, the MRSMaps are brought into coarse
pose alignment by moving their spatial means onto each other. Deformable
registration between the MRSMaps then yields a displacement field v.
Since the new object is only partially visible, we register the smaller map of

the new object onto the multi-view model of the example object. I.e., in the
formalism of our deformable registration, the new object is the model and the
example object the scene. The method in Sec. 5.3.2 is the appropriate choice to
estimate the local deformation T̃

(
pexample

grasp
)
from the example object to the new

object, where pexample
grasp is the position of the grasp on the example object. The

grasp pose on the new object is

T
(
xnew

grasp
)

= T̃
(
pexample

grasp
)
T
(
xexample

grasp
)
. (7.11)

7.2.2. Motion Transfer
We express the usage of an object through the motion of a reference frame of
the object. If the object is a tool that affects another object, it is often useful to
define this reference frame at the tool’s end-effector. We transfer the reference
frame to a new object through deformable registration, and execute the same
motion with this frame as for the example object. The reference frame is a pose
xexample

ref on the example object. Its counterpart xnew
ref on the new object is found

through local deformation

T
(
xnew

ref
)

= T̃
(
pexample

ref
)
T
(
xexample

ref
)

(7.12)

The local transformation T̃
(
pexample

ref
)
is determined at the reference frame’s

example position pexample
ref .

The example motion of the reference frame is given as a trajectory Θexample
ref =(

θexample
ref ,0 , . . . , θexample

ref ,T
)
which typically starts at the current pose of the reference

frame. If the object is used as a tool on an affected object, the end of the trajec-
tory is constrained through the affected object. The motion can be parametrized
in dependence on the pose of the affected object.
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We make the trajectory relative to the start pose, i.e.,

Θ̂example
ref =

(
θ̂example

ref ,0 , . . . , θ̂example
ref ,T

)
, (7.13)

with T
(
θ̂example

ref ,t
)

= T−1
(
θexample

ref ,0
)
T
(
θexample

ref ,t
)
. The corresponding trajectory

for the new object is then Θnew
ref =

(
θnew

ref ,t
)T
t=0

where

T
(
θnew

ref ,t
)

= T
(
θnew

ref ,0
)
T
(
θ̂example

ref ,t
)
. (7.14)

The start pose of the reference frame for the new object can be found from the
local deformation from example to new object,

T
(
θnew

ref ,0
)

= T̃
(
pexample

ref
)
T
(
θexample

ref ,0
)
. (7.15)

We choose the start pose of the trajectory for the transformation, as it is close
to the object surface. By this, we intend that the displacement field estimate at
the reference pose is well supported by data evidence.
If multiple motions of a rigid object are concatenated in a sequence, it is

not necessary to perceive the deformation at each start of a motion. E.g., if
we assume the grasps to be fixed during all motions, we can initially store
the reference frames used relative to the grasp poses on the new object, and
recover the reference frames from the current grasp poses at the beginning of
each motion.
The robot does not directly move the reference frame, but generates object

motion with its end-effectors that act on the object through the grasp poses.
To generate the desired reference frame motion, the robot end-effectors that
grasp the object are thus moving on a trajectory Θnew

grasp =
(
θnew

grasp,t
)T
t=0

that is
constrained relative to the reference frame. We assume rigidness of the object
instances such that the relative pose of the grasp towards the reference frame
remains constant, i.e., for all t and t′,

T−1
(
θnew

ref ,t
)
T
(
θnew

grasp,t
)

= T−1
(
θnew

ref ,t′
)
T
(
θnew

grasp,t′
)
. (7.16)

This allows for writing

T
(
θnew

grasp,t
)

= T
(
θnew

ref ,0
)
T
(
θ̂example

ref ,t
)
T−1

(
θnew

ref ,0
)
T
(
θnew

grasp,0
)
. (7.17)

Also the start pose of the grasp is given through the local deformation from
example to new object,

T
(
θnew

grasp,0
)

= T̃
(
pexample

grasp
)
T
(
θexample

grasp,0
)
. (7.18)

Clearly, our approach assumes the object instances themselves to be rigid, and
cannot consider dynamics or complex causalities involved in the execution of a
task. Releasing these restrictions is a potential path for future research.
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7.3. Experiments

7.3.1. Hierarchical Object Discovery and Dense Modelling
We demonstrate and evaluate our approach to hierarchical object discovery and
dense modelling on two RGB-D sequences. The first sequence contains two
independently moving chairs in a static camera setup. The second sequence
displays a container with drawers in which the camera is moving througout the
sequence. The container is moved with respect to the static scene background,
before one of the drawers is pulled open.
Both sequences have been recorded with an Asus Xtion Pro Live RGB-D cam-

era. Ground truth motion could not be captured with a motion capture system,
as the optical markers would have been occluded during the recordings. For
reference, the accuracy of our motion segmentation and SLAM methods have
been assessed in chapters 4 and 6. For the MRSMaps we use a distance depen-
dency factor of λρ = 0.014 at a maximum resolution of 0.025m. All formulae
but F0 have been weighted by wF = 1. For F0 we used a weight of 10 to increase
the influence of these evidence relations. The lower bound for the overlap was
chosen as ρ0 = 0.5. Finally, we accept relations as valid, if their belief exceeds a
threshold of 0.8.

7.3.1.1. Chairs Sequence

Fig. 7.10 shows the sequence of the 14 key views extracted in the chairs sequence.
In addition, we show the 34 segmentations made between pairs of key views. It
can be seen, that many out-of-sequence segmentations between key view pairs
are established. They occur most frequently, where one chair stops moving while
the other chair is pushed.
All valid relations between segments and objects found by our approach are

shown in Fig. 7.11. At the end of the sequence, the MLN consists of 7,466 for-
mulae. To keep the graph-structure comprehensible, we do not display relations
with a belief below a threshold of 0.8. In the graph, the 5 objects cluster those
segments that are in equivalence relations with each object. Many relations
between segments are incorporated by relating out-of-sequence segmentations,
which are visible as smaller loops in the segment relations.
Figs. 7.12 and 7.13 show representative SLAM graphs of two of the found

objects. Out-of-sequence relations also produce loops in the pose graphs. Each
view pose is attributed multiple segmentations of the same key view towards
different other key views. While the right chair in Fig. 7.12 is only seen by
equivalent segments, the pose graph of the object that subsumes left chair and
background is more complex (Fig. 7.13). It not only has view poses for the seg-
ments that see the complete object, but also for segments that partially observe
it. If a segment in a key view represents only parts of the object, it appears
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Figure 7.10.: Extracted key views and segmentations on the chairs sequence.
Red arrows depict the temporal sequence of the key views. Black
arrows point from segmented to connected key view.
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Figure 7.11.: Graph of valid relations on the chairs sequence. Blue/cyan: part-relation, red/magenta: equivalence relation,
cyan/magenta: segment-object evidence relation.169



7. Non-Rigid Scene and Object Perception

Figure 7.12.: SLAM graph of one object (black circle) on the chairs sequence.
The view poses are shown as red circles, their interior displays the
key view corresponding to the view pose. Spatial constraints in
the pose graph are shown as red edges.
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Figure 7.13.: SLAM graph of one object (black circle) on the chairs sequence. The view poses are shown as red circles,
their interior displays the key view corresponding to the view pose. Spatial constraints in the pose graph are
shown as red edges.171
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in a different view pose node than segments within the same key view of the
complete object. This is necessary, since the parts move differently between the
segmented key views and create different spatial constraints.
The resulting objects and the hierarchical relations between them are shown

in Fig. 7.14. Our method finds left and right chair as well as the background
segment. It also includes two objects that are composed of the background
and either one of the chairs. We display the objects by overlaying the RGB-
D measurements of their segments from their estimated view poses. We use
segments that are in both part and equivalence relations with the objects.
The hierarchy reflects which segment splits and merges have been observed.

Between key views, often one chair has been moving with respect to the back-
ground and the other chair. Both chairs could also be observed to move simulta-
neously with respect to the background. Our approach correctly recognizes that
the background segment is part of the two objects that combine the background
with either one of the chairs.

7.3.1.2. Container Sequence

The container sequence is more difficult than the chairs sequence. The camera is
moving during the recording such that naive background subtraction would not
be possible. The objects, furthermore, have to be singularized in a three-level
hierarchy from drawer to container to background. Finally, large parts of the
drawer are occluded while the container is closed in which case only the front
panel of the drawer is visible.
Fig. 7.15 shows the 6 key views and 20 segmentations used by our approach.

As the motion of the objects is on a smaller scale, key views are related with large
temporal gaps between them. Our approach finds 4 objects in the sequence. In
addition to the singularized objects background, container, and drawer, it also
finds an object that combines background, container, and drawer. This is caused
by the sequence of split and merge events: the container is observed static with
the background while the drawer is moving. The valid relations inferred are
shown in Fig. 7.16. The MLN has 4,460 formulae after the last frame. As in the
chairs sequence, segments cluster at the objects with which they are equivalent.
Figs. 7.17 and 7.18 visualize the object SLAM graphs for the background

and the drawer objects. For the background, the segments observe the object
equivalently. Hence, each key view that is segmented for the background, is
included once as a view pose in the pose graph. This is also the case for the
drawer for most of the key views. For one key view, however, the whole visible
part of the drawer, as well as the front panel alone is segmented. While the
segments are determined to not be equivalent by their overlap, the front panel
is observed as part of the whole drawer. By this, a spatial constraint from the
front panel to the whole drawer is included in the pose graph. Remarkably,
although these individual segments are not directly equivalent through overlap,
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Figure 7.14.: Discovered objects (black circles) and valid part-relations (blue arrows, point from part to containing object)
on the chairs sequence.
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Figure 7.15.: Extracted key views and segmentations on the container sequence.
Red arrows depict the temporal sequence of the key views. Black
arrows point from segmented to connected key view.
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relation, cyan/magenta: segment-object evidence relation.
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Figure 7.17.: SLAM graph of one object (black circle) on the container sequence.
The view poses are shown as red circles, their interior displays the
key view corresponding to the view pose. Spatial constraints in
the pose graph are shown as red edges.
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Figure 7.18.: SLAM graph of one object (black circle) on the container sequence.
The view poses are shown as red circles, their interior displays the
key view corresponding to the view pose. Spatial constraints in
the pose graph are shown as red edges.
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Figure 7.19.: SLAM graph of one object (black circle) on the container sequence.
The view poses are shown as red circles, their interior displays the
key view corresponding to the view pose. Spatial constraints in
the pose graph are shown as red edges.
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Figure 7.20.: Discovered objects (black circles) and valid part-relations (blue
arrows, point from part to containing object) on the container
sequence.
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Figure 7.21.: Our method makes the drawer inside the container explicit. The
drawer segments are part of the shown container object (left). They
are not in equivalence relations with the object (right).

sequence tracking key view
addition

out-of-
sequence
relation

belief
propagation pruning

pose
graph
update

total

chairs 0.139 1.025 0.010 0.127 0.0002 0.001 0.301
(0.257) (2.042) (0.876) (6.597) (0.001) (0.003) (7.626)

container 0.208 0.921 0.017 0.092 0.0002 0.0001 0.329
(0.298) (1.444) (1.143) (12.268) (0.002) (0.004) (13.652)

Table 7.1.: Average (maximum) run-time in seconds for the individual parts of
the processing pipeling of our hierarchical object discovery and dense
modeling approach.

our probabilistic reasoning approach recognizes the segments as equivalent to
the drawer. The front panel overlaps to a large degree in both directions with
many other segments. Those segments have strong evidence to be equivalent
with the drawer.

Fig. 7.19 shows the object SLAM graph of the container. It is more complex
than the graphs of the drawer and the background, as it also includes view poses
for segments in part-relations with the container.

The discovered hierarchy between the objects can be seen in Fig. 7.20. Our
approach correctly discovers that the drawer is part of the container, which in
turn moves separately with respect to the background. All objects are part of
the combined object of background, container, and drawer. Fig. 7.21 displays
that our approach makes the drawer explicit as a part inside the container.
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Figure 7.22.: Cognitive service robot Cosero manipulates an unknown watering
can during the Open Challenge at RoboCup 2013.

7.3.1.3. Run-Time

The run-time of our approach on both sequences is shown in Table 7.1. Keeping
track of the current’s image segmentation with respect to the reference key view
requires run-time similar to the timing results in Ch. 4. Instantiating a new
key view vt involves two segmentations St−1

t and Stt−1 that are run for several
iterations until convergence. In average this takes 1.025 s on the chairs and
0.921 s on the container sequence. In each frame, we search for one new out-
of-sequence relation. If a new relation is included, one segmentation has to be
determined and the relations between segments and objects need to be updated.
This amounts in average to 0.01 s and 0.017 s. The maximum times of 0.876 s
and 1.143 s occur if a relation is established. We only search for out-of-sequence
relations, if no key view is added for the current image. MLN inference is also
efficient in average. It can, however, take many iterations and several seconds
to converge if ambiguous evidence needs to be balanced. Pruning objects and
object SLAM graphs as well as updating the object SLAM graphs with new
relations costs negligible time. In average, the total run-time is governed by the
time required for tracking and belief propagation. If new key views or out-of-
sequence relations are added, or if relational information is ambiguous, run-time
can peak up to a few seconds. In our current approach, both the estimation of
new segmentations as well as belief propagation is run until convergence. While
such peaks are infrequent and their magnitude is low, in future work instead,
peaks could be avoided by distributing the computational load from a single
image to multiple subsequent images.

7.3.2. Object Manipulation Skill Transfer
We publicly demonstrated our approach to object manipulation skill transfer
during the Open Challenge at RoboCup 2013 in Eindhoven, Netherlands. Our
robot Cosero transfered its skills for handling a watering can to another instance
of cans. The jury had the choice between two instances of cans that clearly
differed in shape from the example can. Fig. 7.22 shows images taken during
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the demonstration1.
We specified bimanual grasp poses and the can’s end-effector on the example

instance. The demonstration involved several actions in sequence: grasping the
can, lifting the can from the table, retracting the can close to the robot body,
approaching a plant, watering a plant, and placing the can back on the table.
We defined the lifting, retracting, and placing motion relative to the mean pose
of the grasps. Approaching and watering the plant have been specified relative
to the can’s end-effector. In several parts, the robot moves the can also with its
mobile base. Cosero successfully performed this demonstration which received
high scores from the jury consisting of team leaders. It was one important
contribution for winning the 2013 RoboCup@Home competition.

7.4. Related Work
7.4.1. Hierarchical Object Discovery and Dense Modelling
Image segmentation into meaningful objects is an actively researched topic in
computer vision (e.g., (Li et al., 2009; Arbelaez et al., 2011; Carreira and Smin-
chisescu, 2012)). Bottom-up cues for single-image segmentation such as tex-
ture (Cremers et al., 2007; Delong et al., 2012) or 3D-shape (Holz and Behnke,
2012; N. Silberman and Fergus, 2012) often do not suffice to find segment borders
that coincide with the boundaries of objects. Thus, they are frequently combined
with top-down cues to integrate spatial and semantic context (e.g., (Carreira and
Sminchisescu, 2012)). Motion is a further important bottom-up cue that can be
utilized in image sequences. In contrast to texture and shape, common motion
provides unambiguous segmentation hints for the constituent parts of a rigid
object.
The mapping of static as well as dynamic parts of environments from a se-

quence of measurements is investigated in the robotics community. Early work
focused on 2D mapping using laser scanners. Anguelov et al. (2002) learned
templates and object classes of non-stationary parts of an environment in a two-
level hierarchical model. Hähnel et al. (2003) filter dynamic objects and only
map the static parts of the environment in 2D. They then extract 3D models of
the dynamic parts by stitching the laser measurements. In SLAMMOT (Wang
et al., 2004), dynamic objects are detected in 2D laser scans and tracked while
SLAM maps the static environment. We integrate 3D motion segmentation in a
SLAM framework that also reasons about hierarchical relations between object
parts.
Several approaches have been recently proposed that learn 3D articulation

models of objects. Sturm et al. (2011) track the 3D rigid-body motion of planar
rectangles in RGB-D images and fit articulation models to the segments.

1A video can be found at http://www.youtube.com/watch?v=I1kN1bAeeB0
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Katz et al. (2012) track RGB image features and retrieve 3D trajectories of
the features from depth measurements of an RGB-D sensor. They segment the
features into groups with consistent 3D rigid-body motion in a generate-and-
test clustering algorithm. Finally, they fit articulation models to the 3D motion
trajectories of the segments. Our approach does not explicitly model the artic-
ulation of objects, but singularizes objects by their motion in an unsupervised
way. It learns dense multi-view models of the objects and hierarchical relations
between them. Articulation models could be fitted to the relative motion of a
part to its containing segment.
For unsupervised learning of object models, Ruhnke et al. (2009) propose an

approach to learn 3D object models from multiple 3D laser scans. To segment
the object, they fit planes to the background and remove the background from
the 3D scans. We do not make such strong assumptions on the structure of
the background. Instead, we track and map the background as one of the ob-
jects in the map. The work by Herbst et al. (2011) discovers objects using an
RGB-D camera through scene differencing. For this, they recover the camera
trajectory using an RGB-D SLAM approach, assuming that the SLAM method
is sufficiently robust to the changes in the scene. We formulate our problem to
simultaneously estimate the motion of all segments within an image, treating
background and foreground segments equally.

7.4.2. Object Manipulation Skill Transfer
Our approach to skill transfer can be seen as a variant of learning from demon-
stration which is actively researched in the robotics community (Billard et al.,
2008). Very recently, Schulman et al. (2013b) also proposed an approach in
which motion trajectories are transfered between shape variants of objects. They
primarily demonstrate tying knots in rope (Schulman et al., 2013b) and sutur-
ing (Schulman et al., 2013a), while they also show examples for folding shirts,
picking up plates, and opening a bottle. Their non-rigid registration method is
a variant of the thin plate spline robust point matching (TPS-RPM) algorithm.
We demonstrate bimanual tool-use, and propose to select tool end-effectors as
reference frames for the example trajectory, where it is appropriate. In contrast
to their method, we do not assume the estimated displacement field to be valid
at any pose on the motion trajectory. Instead, we make example motions relative
to reference frames. These reference frames are transformed between example
and new object.

7.5. Summary
We proposed two methods for perceiving objects and scenes that release assump-
tions on rigidness. The first method allows moving objects in a modeled scene
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while still assuming the individual objects to be rigid. With our rigid multi-body
registration approach, we segment pairs of key views in RGB-D image sequences
into the rigidly moving parts and estimate their 6-DoF motion. We acquire
dense 3D models of the moving objects by relating observed image segments to
the objects, and estimating the view poses of the segments through pose-graph
SLAM. We also observe equivalence of objects and part hierarchies from the
splitting and merging of segments. The relations between segments and objects
are reasoned on within a probabilistic framework to improve robustness for un-
certain decisions that would be conflicting in the deterministic case. The part
hierarchy and trajectory estimates in the object SLAM graphs could be used for
fitting articulation models between parts. In future work, we will investigate the
use of additional cues to motion, texture, and shape for segmentation such as
co-occurrence or pretrained object classifiers. Releasing the assumption on the
rigidness of the parts is also a reasonable next step for future research.
Our second perception approach is tightly coupled with robot control. We

transfer example motions for an object instance to new instances of the same
object class that differ in shape. We express the motion in terms of grasp poses
and a motion relative to a reference frame on the object. Our deformable reg-
istration method is used to transfer these poses and frames between the object
instances. Future research could involve the consideration of collisions, occlu-
sions, articulated and deforming objects, and physical aspects such as dynamics
and elasticity. The latter would also necessitate more complex physical models
which are to be perceived with the robot’s sensors.
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In the previous chapters we proposed methods for representing the geometry
and appearance of objects densely in MRSMaps. The models are used for pose
estimation and tracking, for parsing scenes for moving parts and hierarchical re-
lations between them, or for establishing correspondence between object shapes
in skill transfer. Robots that perform complex tasks in unstructured environ-
ments also require the ability to categorize surfaces into semantic classes. Made
persistent in a semantic map this knowledge is available for reasoning about
tasks and for communication with humans.
We propose a real-time approach to learn semantic maps from a moving RGB-

D camera. Our semantic mapping system integrates efficient SLAM with object-
class segmentation of RGB-D images. The RGB-D frame is segmented for object
classes using random decision forests(RFs) concurrently which is facilitated by
a real-time implementation on a GPU. Our image segmentation approach uses
depth for scale-invariance and incorporates shape and texture cues seamlessly
to provide a probabilistic labeling into object classes. The probabilistic image
labeling is fused in 3D within a Bayesian framework given the trajectory estimate
of SLAM. By this, segmentation evidence from various view points improves the
classification accuracy in the map.

8.1. RGB-D Object-Class Segmentation using
Random Decision Forests

8.1.1. Structure of Random Decision Forests
RFs F are ensembles of K binary decision trees Tk (Breiman et al., 1984). Each
node n in a tree classifies an example by a binary decision on a scalar feature
function that quantifies local appearance or shape in the image. In addition,
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Figure 8.1.: Random decision forests (RFs). Query pixels q are classified in a
binary decision cascade in each tree. Nodes in a tree cast binary
decisions on the pixels. Query pixels are soft classified by the em-
pirical class probability p(c | l(q)) of training pixels that arrive at
a leaf l(q). The posterior classification probability for the RF is
determined by the average over trees.

each node is associated with a distribution p(c | n) over class labels c ∈ C that
arrived at the node during training. Randomness is injected into the classifier
by considering only a random subset of the training data for generating a tree
and by sampling node functions from only a random subset of the available
binary decision functions. In this way, trees are decorrelated and generalization
performance increases.
The probabilistic labeling at a query pixel q is determined as the posterior

distribution over class labels encoded in the forest (illustrated in Fig. 8.1). In
this process, the example pixel is passed down each decision tree Tk, branching
at each node according to its binary decision criterion until a leaf node l is
reached. The posterior distribution is computed by averaging over the individual
distributions at the leaf nodes lk(q) that the example reaches, i.e.,

p(c | F , q) = 1
K

K∑
k=1

p(c | lk(q)).

8.1.2. RGB-D Image Features
As scalar feature functions (i.e., features) we determine differences in local re-
gions of depth or color. Dense depth is used to normalize the features for scale
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Figure 8.2.: Random decision forest features. Local shape and appearance at
a query pixel q is calculated from the difference of average values
in two offset regions. We exploit dense depth to normalize for scale
changes and scale relative offset locations ui and region extents wi,hi
with the inverse of the depth d(q) at the query pixel.

changes (see Fig. 8.2). More formally, we parametrize a feature evaluated at
pixel q by

fθ(q) :=
∑
p∈R1(q)φ1(p)
|R1(q)| −

∑
p∈R2(q)φ2(p)
|R2(q)| , (8.1)

where Rj(q) := R
(
q+ uj

d(q) ,
wj
d(q) ,

hj
d(q)

)
is the rectangular image region at the off-

set u that is normalized in offset position and size by the depth d(q) measured
at the query pixel. The features are configured by parameters θ that comprise
unnormalized offset positions uj , region extents wj , hj , and image channels φj .
Note, that we restrict comparisons to either two depth regions or between any
two regions in color channels, and represent color in the CIE Lab color space. In
the depth image, the region size |Rj(q)| counts the number of valid depth read-
ings in the region. If an offset region contains no valid depth measurement or
lies beyond the image, the pixel traverses to the right child node. We efficiently
implement region features using integral images.

Each node in the decision tree decides on the query pixels with a threshold τ
to either pass the pixel further to its left or right child. Individually, each
feature gives only small information about the object class at a pixel. Within
the cascades in the decision trees, however, the tests describe complex texture
and shape patterns which allows for accurate pixel classification.
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8.1.3. Training Procedure
We train each of theK decision trees with a subset D of images from the training
dataset. From each image we extractN pixels randomly for training. We stratify
the training examples by resampling to a uniform distribution in class labels in
order to normalize the amount of training examples for object size. We will,
however, have to consider the actual distribution of class labels in the training
images at later stages in order to incorporate the prior probability of each class
into the classifier.
We train the decision trees in a depth-first manner by choosing feature param-

eters θ and a threshold τ at each node and splitting the pixel set Q accordingly
into left and right subsets Ql and Qr:

Ql(θ,τ) := {q ∈Q | fθ(q)< τ} and
Qr(θ,τ) := {q ∈Q | fθ(q)≥ τ} .

(8.2)

Since the parameter space cannot be evaluated analytically, we sample P
random parameter sets and thresholds (e. g., P = 2000) and select feature and
threshold that yield maximal information gain

I(θ,τ) :=H(Q)−
∑

s∈{l,r}

|Qs(θ,τ)|
|Q|

H (Qs(θ,τ)) , (8.3)

where H(Q) :=−∑c∈C p(c |Q) log2 (p(c |Q)) is the Shannon entropy of the dis-
tribution of training class labels in pixel set Q. This splitting criterion finds
feature parameters and threshold that most distinctively separate the pixel set
at a node. Each node is split until a maximum depth is reached in the tree, or
the number of pixels lies below a minimum support threshold.
At each leaf node l, we want to maintain the distribution p(c | l,D) of pixels

of class c that arrive at the node from the original training set. Since we train
the decision tree from pixels with equally distributed class labels, we actually
measure the class distribution p(c | l,Q) of training pixels Q at the leaf, i.e.,

p(c | l,Q) := p(cq | l, q ∈Q) = p(cq | l, q ∈Q,q ∈D). (8.4)

The distribution of interest can be obtained by applying Bayes rule:

p(c | l,Q,D) = p(q ∈Q | cq, l, q ∈D) p(cq | l, q ∈D)
p(q ∈Q | l, q ∈D)

= p(q ∈Q | cq, q ∈D) p(cq | l, q ∈D)
p(q ∈Q | q ∈D) .

(8.5)

For the desired distribution we obtain

p(cq | l, q ∈D) = p(cq | l, q ∈Q) p(q ∈Q | q ∈D)
p(q ∈Q | cq, q ∈D) . (8.6)
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We further reformulate the probability of a pixel of class c to be included in the
class-equalized training data Q to

p(q ∈Q | cq, q ∈D) = p(cq | q ∈Q) p(q ∈Q | q ∈D)
p(cq | q ∈D) (8.7)

and obtain
p(cq | l, q ∈D) = p(cq | l, q ∈Q) p(cq | q ∈D)

p(cq | q ∈Q) . (8.8)

By design, p(cq | q ∈Q) is uniform among class labels and, hence, we incorporate
the distribution of classes in the complete training set into the leaf distributions
through

p(c | l,D) = η p(c | l,Q) p(c |D), (8.9)

where η−1 := p(c |Q) = 1/|C|.
We found that if there is a large imbalance of class pixel occurrences in the

image, single training pixels from frequent classes that reach a leaf may outweigh
many pixels from less frequent classes, and hence degrade segmentation accuracy
dramatically. In such unbalanced datasets we subtract a fraction ρ of the total
pixels that reached the leaf from each class count.

8.2. Dense Real-Time Semantic Mapping of
Object-Classes

8.2.1. Probabilistic 3D Mapping of Object-Class Image
Segmentations

Our online SLAM approach (see Ch. 6) provides an estimate for the motion
of the camera S, while object segmentation yields a probabilistic labeling Z
of the image according to the RGB-D images. Our aim is to fuse the object
segmentations from individual images into a 3D semantic map. We use our
efficient image aggregation techniques in MRSMaps to generate multi-resolution
voxel maps that store beliefs on object classification in each voxel.
Formally, we store the belief Bel(cv) in each voxel v to be labeled as one of

the object classes cv,
Bel(cv) = p(cv | Z,S). (8.10)

The labeled image pixels are projected into 3D to find corresponding voxels in
the map. The beliefs in each voxel v are then updated in a Bayesian framework
with the pixel observations q1:N := {q1, q2, . . . , qN} that fall into a voxel:

p(cv | q1:N ,S) =
∑

cq,1,...,cq,N

p(cv, cq,1, . . . , cq,N | q1:N ,S). (8.11)

189



8. Semantic Object-Class Perception

Figure 8.3.: Semantic mapping. From left to right: Ground-truth overlay on
RGB image of a scene; Samples from MRSMaps overlayed in 3D
and SLAM key view graph; Class belief for MRSMap samples in
semantic 3D map; Object-class segmentation backprojected from
semantic 3D map into image. Top: AIS Large Objects scene. Bot-
tom: NYU Depth v2 scene.

Note that the known trajectory can be neglected in the further derivation to
ease notation. Bayes rule yields

p(cv | q1:N ) =
∑

cq,1,...,cq,N

p(cv | cq,1, . . . , cq,N , q1:N )p(cq,1, . . . , cq,N | q1:N ). (8.12)

The left term is further factored using Bayes rule, while for the right term we
impose independence between pixel observations. This yields

p(cv | q1:N ) = p(cv)
∑

cq,1,...,cq,N

∏
i

ηi p(cq,i | cv) p(cq,i | qi), (8.13)

where ηi := 1/p(cq,i | c(qi+1), . . . , c(qN )) are normalization factors for each obser-
vation. The RF classifier provides the likelihood p(cq,i | qi) through p(cq,i | qi,F),
while the probability p(cv) =: Bel0(cv) incorporates prior knowledge on the be-
lief which we set to uniform in our experiments. For the distribution p(cq,i |
cv) = 1{cv}(cq,i) we assume a deterministic one-to-one mapping such that

p(cv | q1:N ,S) =Bel0(cv)
∏
i

ηi p(cq,i = cv | qi,F). (8.14)

This belief update can be performed recursively in a time-sequential manner
which is applied in our online semantic SLAM system.

190



8.3. Experiments

Figure 8.4.: Online semantic SLAM system. Each frame is segmented for object-
classes on GPU and processed for SLAM (CPU) in parallel. Results
are fused in 3D semantic maps.

8.2.2. Integrated Real-Time Semantic Mapping
We integrate object-class segmentation, SLAM, and semantic 3D fusion into a
real-time operating semantic mapping system (see Fig. 8.4). We use the GPU
implementation of our object-class segmentation method by Waldvogel (2013)
for real-time segmentation. Since object-class segmentation and SLAM are per-
formed on GPU and CPU, respectively, we can execute both components in
parallel. Once pose estimate and semantic labeling of the RGB-D image is
available, we fuse the labeling into the semantic map of the reference key view.
Each key view in the map maintains a local aggregated semantic map in

our approach, since the relative poses of the key views are subject to graph
optimization in each frame and, hence, a single global map cannot be maintained.
Global segmentation beliefs at a 3D position Bel(p) can be easily obtained by
combining the beliefs Bel(ckv) of individual key views k ∈K in a single estimate
according to

Bel(p) = η
∏
k

Bel(ckv), (8.15)

where η is a normalization constant and ckv is the classification of the maximum
resolution node v that contains p in key view k. Note that this process can
be significantly sped up by restricting the set of key views K to the views that
contain query pixels or have sufficient frustum overlap with whole query images.

8.3. Experiments
We evaluate run-time and recognition performance of our semantic SLAM me-
thod in extensive experiments. We used two datasets to demonstrate our ap-
proach on two different qualities of object classes. Both datasets have been
recorded using Microsoft Kinect cameras at VGA (640×480) RGB and depth
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image resolutions. Since ground truth for the camera trajectory is not available
for the datasets, the accuracy of the reconstruction could not be assessed.
The NYU Depth v2 dataset (Silberman et al., 2012) contains 590 RGB-D

sequences recorded in 464 scenes with 408,473 frames in total. It comes with
1449 images with manual ground-truth labeling of object-classes. We evaluate
on the four abstract object-classes ground, structure, furniture, and props that
distinguish all 35,064 object instances in the dataset. The dataset has been split
into disjunct training and test sets comprising 795 training and 654 test images
with ground truth in 359 and 231 sequences, respectively.
We also use the AIS Large Objects dataset introduced in Stückler et al. (2012a)

to classify four fine-grained object classes (large objects of props-type) from
background. It consists of 40 sequences in different scene configurations and has
been split into 30 training and 10 test sequences with 500 ground-truth labeled
images each (50 per test sequence). The test sequences comprise 5,234 frames
ranging between 254 and 858 frames per sequence.
We process the test sequences in real-time on a notebook PC with Intel Core

i7-3610QM CPU (2.3GHz) equipped with an NVIDIA GeForce GTX 675M
GPU. Since our method does not process images at full 30Hz image acqui-
sition rate, it is required to skip frames. For assessing the segmentation, we
compare segmentation accuracy of the direct RF maximum likelihood (ML) la-
beling with the ML labeling obtained by back-projecting the belief in the maps
into the test images. Each pixel in the test image queries its corresponding node
at maximum resolution in each key view. During SLAM, the image has been
registered towards a reference key view. We require that the image pixel was
visible in a key view and only consider those key views for which the correspond-
ing node’s resolution is equal or finer to the resolution in the reference key view.
The belief for the pixel is then queried from this set of key views according to
Eq. (8.15). We determine two kinds of labelings from the map: an instantaneous
segmentation that is retrieved from the map in its current state when the test
image is processed, and a final segmentation after the whole sequence has been
mapped.

8.3.1. NYU Depth v2 Dataset
For the NYU Depth v2 dataset, we train RFs on average class accuracy for the
four abstract structural object-classes. We optimize the hyper parameters of the
RF, such as maximum tree depth, using the Hyperopt (Bergstra et al., 2011)
framework and 5-fold cross validation on the training set. Hyperopt performs
informed search on the parameter space to efficiently find an optimal solution
within the parameter range specified. Still, to optimize the RF in a feasible
amount of time, rapid training is required. We therefore accelerate computa-
tionally expensive parts of RF training on GPUs. Our implementation is able
to train and test about 350 trees per day on a single NVIDIA GeForce GTX
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Table 8.1.: RF parameters used in our experiments.

NYU AIS
parameter Depth Large

v2 Objects

no. of trees 3 3
pixel samples per image 4537 2000
feature samples per node 5729 2000
threshold samples per node 20 50
max. offset radius (pixelm) 111 120
max. region size (pixelm) 3 10
max. tree depth 18 15
min. sample count in leaf 204 100
histogram bias ρ 0 0.2

Table 8.2.: Run-time per frame on the NYU Depth v2 dataset in ms.

processing step min avg max

image preprocessing 12.0 13.0 29.0
RF segmentation 32.0 44.4 67.0
SLAM 8.0 60.5 346.0

total 51.0 78.0 366.0

TITAN. See Table 8.1 for resulting parameters. On this dataset, the distribution
of pixels attributed to each object class is well-balanced, for which a setting of
ρ = 0 is found through hyper-parameter optimization. While a region size of 3
appears to be small, most features that are selected by the RF are 3×3 regions.
Table 8.3 shows average per-class, class, and pixel accuracy achieved on the

test set. Example segmentations are illustrated in Fig. 8.5. Note that the NYU
Depth v2 dataset provides a tool for in-filling missing depth readings that is
too time-expensive for real-time processing, but has been used in related work
on object-class segmentation (Silberman et al., 2012; Couprie et al., 2013). For
comparison, we also show results of our RF segmentation method on in-filled
depth images. Since we trained our RF method on in-filled images, we fill-in
the depth images during real-time experiments by constantly continuing depth
from the right, the left, the top, and the bottom in the specified order. In-
filling from the right first is motivated by the extrinsic setup of RGB and depth
camera. Pixels without valid depth reading cannot be labeled in the 3D map.
Hence, we discard them in the segmentation accuracy measure for the real-time
experiments.
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Ground truth

Random forest segmentation

Instantaneous map segmentation

Final map segmentation

Figure 8.5.: Example labelings on the NYU Depth v2 (3 left) and the AIS Large
Objects datasets (2 right).

The results clearly demonstrate that our RF approach already achieves state-
of-the-art performance on this dataset. The probabilistic fusion of the individual
image segmentations into 3D further boosts segmentation performance by about
2.2% for pixel accuracy and ca. 1.1% for average class accuracy. The larger
structural classes improve in segmentation accuracy, while the performance of
the smallest object-class (props) is decreased in the filtering process. The props
class was already difficult to segment by our image-based RF approach. We
attribute this to the fact that it has the most diversity in appearance, con-
tains difficult objects, and is in parts inconsistently labeled. For instance, in
bath room scenes, mirrors are labeled as props, which are difficult to distinguish
from the reflected surface. Also, carpets on the floor are difficult to distinguish
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Table 8.3.: Segmentation accuracy on the NYU Depth v2 test set for 4 structural
object-classes. (*) Comparison of segmentation results for in-filled
depth images.

method ground structure furniture props class avg. pixel avg.

RF 93.7 80.0 69.4 20.5 65.7 68.4
inst. map 95.1 82.3 74.5 14.7 66.4 70.2
final map 95.6 83.0 75.1 14.2 66.8 70.6

*Silberman et al. (2012) 68 59 70 42 59.6 58.6
*Couprie et al. (2013) 87.3 86.1 45.3 35.5 63.5 64.5
*RF (ours) 90.7 81.4 68.1 19.8 65.0 68.1

from the ground without considering the overall scene context. Our 3D fusion
method reduces the segments to the consistently reoccuring parts in the RF seg-
mentation. We note that few of the sequences could only be locally consistently
mapped by our RGB-D SLAM approach, mainly due to the fact that only far
distance measurements were available in frames or mostly a planar textureless
region was visible.
Minimum, average, and maximum run-time per frame in milliseconds for in-

dividual processing steps and the overall semantic mapping pipeline are shown
in Table 8.2. The average performance of semantic mapping is ca. 78ms, i.e.,
12.8Hz. The largest part of the processing time is consumed by the SLAM
method which is 60.5ms on average. The time spent for the SLAM method
strongly depends on the detail present in the image. If scenes are imaged from
close distance, finer resolutions will be represented in the MRSMaps. If new
spatial constraints need to be tested, a second image registration is performed
which can further increase SLAM run-time to at most 346ms. Nevertheless, the
overall run-time of our approach has not been larger than 366ms for the 231
test sequences. Note that the overall run-time is not a simple sum of the parts
since object-class segmentation and SLAM run in parallel.

8.3.2. AIS Large Objects Dataset
Table 8.1 lists RF parameters used for the AIS Large Objects dataset. The
dataset contains object classes of different sizes such as canisters, barrels, and
palettes, while large parts of the scene are attributed to the background class. A
histogram bias of ρ= 0.2 performs well on the dataset. The trained RF prefers
large region sizes. In fact, most selected features have region sizes with 10 pixels
width or height.
This dataset has been trained and real-time processed without depth in-filling.

From Table 8.5 we find that fusion into 3D strongly improves per-class accuracy
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Table 8.4.: Run-time per frame on the AIS Large Objects dataset in ms.

processing step min avg max

image preprocessing 10.9 11.2 17.9
RF segmentation 30.4 33.0 42.9
SLAM 19.5 49.2 175.3

total 43.3 64.6 190.5

Table 8.5.: Segmentation accuracy on the AIS Large Objects test set for 5 large
object-classes.

method bg. barrel canister human palette class avg.
(no bg.)

pixel avg.
(no bg.)

RF 97.2 89.5 44.2 58.8 83.3 74.6 (55.2) 92.9 (73.8)
inst. map 97.8 93.9 46.5 65.6 88.1 78.4 (58.8) 94.4 (79.1)
final map 98.0 94.0 47.5 65.4 88.9 78.8 (59.2) 94.6 (79.4)

as well as overall class and pixel accuracy.
In these test sequences, our semantic mapping achieved high frame-rates of

about 15.5Hz in average (64.6ms). Similar to the NYU Depth v2 dataset, most
processing time is spent for SLAM. The maximum overall run-time here is much
less, since less close-by scenery has been recorded than in NYU Depth v2.

8.4. Related Work
Many mapping approaches build geometric representations of the environment,
e.g., using sensors like 2D and 3D laser scanners, monocular and stereo cameras.
Comparably less systems map semantics. While most approaches use SLAM as a
front-end to obtain a sensor trajectory estimate (Zender et al., 2008; Vasudevan
et al., 2007; Meger et al., 2008; Nüchter and Hertzberg, 2008; Castle et al., 2010;
Civera et al., 2011), some methods also incorporate the spatial relation of objects
into SLAM. Tomono and Shin’ichi (2003), for example, detect polyhedral object
models in images and perform SLAM in 2D maps using the detected objects as
landmarks. In contrast to our approach, this method is restricted to objects with
clearly visible linear edges. Zender et al. (2008) apply SLAM in 2D maps using
laser scanners, recognize objects using SIFT features, and map their locations
in the 2D map. In addition to SIFT-based recognition, Vasudevan et al. (2007)
also detect doors in laser scans since they are important topological objects that
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connect rooms. Meger et al. (2008) combine semantic 2D mapping of objects
with attention mechanisms. In contrast, we build 3D semantic maps with dense
object information. Nüchter and Hertzberg (2008) use ICP, plane segmentation,
and reasoning to label planar segments in 3D maps that they acquire using 3D
laser scanners. They apply AdaBoost on Haar wavelets and SVM classifiers
on contour descriptions to detect objects and persons in the 3D maps. In our
approach, we segment the original image data and fuse segmentation evidence
from multiple views. Castle et al. (2010) and Civera et al. (2011) propose vision-
based mapping of objects. In both approaches, SLAM is solved through feature-
based monocular EKF-SLAM. Objects are recognized using SIFT features and
persistently maintained in the 3D feature map. The approach of Ranganathan
and Dellaert (2007) learns 3D constellation models of places composed of objects
using SIFT features. In this approach, the map consists of a set of places with
associated models. The aforementioned approaches, however, do not build dense
3D semantic maps. Closely related to our approach are the works by Lai et al.
(2012), Sengupta et al. (2013), and Salas-Moreno et al. (2013). Lai et al. (2012)
use the confidence score of an object detector to generate a dense soft labeling
of an image and integrate the labelings in a voxel representation. The approach
requires about 4 seconds per frame and, to the best of our knowledge, has not
yet been implemented to perform in real-time with SLAM in the loop. In urban
scenes, Sengupta et al. (2013) label stereo images using conditional random fields
and fuse the information in 3D stereo sequences. The run-time of this method is
reported to be within seconds per frame. The approach by Salas-Moreno et al.
(2013) recognizes specific object instances in a scene and estimates the pose
of the objects in a map using SLAM techniques. Our method provides dense
semantic classification of the surfaces in a map.
We integrate image-based object-class segmentation with SLAM from RGB-

D images into a semantic 3D mapping framework. Each image is segmented
pixel-wise into object classes and background. Based on the SLAM estimate,
this information is then projected into 3D to fuse object recognition results from
multiple views. This not only provides 3D segmentations of objects, but also
improves classification accuracy.
RFs have been applied to a variety of image segmentation problems such as

object-class segmentation (Shotton et al., 2008; Stückler and Behnke, 2010) and
human body part labeling (Shotton et al., 2011). Semantic texton forests, pro-
posed by Shotton et al. (2008), use simple features of luminance and color at
single pixels or comparisons between two pixels in a RF classifier. Using image-
level priors and a second stage of RFs, local and scene context is incorporated
into the classification framework. Recently, RFs have been successfully applied
for segmenting human body parts and tracking body pose in real-time using
depth images. Shotton et al. (2011) propose to normalize feature queries with
the available depth to obtain scale-invariant recognition. We extend RFs for
object-class segmentation by incorporating both depth and color features. As
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in previous own work (Stückler and Behnke, 2010), we use features in color and
depth and normalize for scale changes to gain an efficient classifier for RGB-D
images. For the problem of object-class segmentation, we also need to con-
sider that objects may vary strongly in size between the classes. We propose a
stratification mechanism to balance the training pixels over classes.

8.5. Summary
Our semantic mapping approach combines state-of-the-art object-class segmen-
tation of RGB-D images with accurate RGB-D SLAM. Both methods perform
real-time on GPU and CPU, respectively, such that an online semantic mapping
system can be integrated.
Our object-class segmentation method is based on RF and makes use of the

dense depth available for scale-invariant recognition. Using the camera pose
estimates of SLAM, the probabilistic labelings of individual images by our RF
approach are fused in multi-resolution voxel maps within a Bayesian framework.
In experiments, we demonstrate run-time efficiency and segmentation accu-

racy of our approach. We evaluated performance on two datasets with different
qualities of object classes. The NYU Depth v2 dataset consists of 590 sequences
recorded in indoor scenes, which we segment for structural object classes. Our
approach outperforms state-of-the-art approaches to object-class segmentation
on this massive dataset. Probabilistic fusion into 3D further increases segmenta-
tion accuracy. The whole processing pipeline operates online at approx. 12.8Hz
on average. The second dataset contains large objects that are segmented at
good accuracy with our approach. It also performs real-time on these sequences
at about 15.5Hz on average. The semantic information made persistent in our
maps could be used in many robotics applications such as object search and
manipulation, exploration, or navigation.
Directions for further research include augmenting the RF classifier with con-

cepts such as auto-context or hierarchical segmentation. The accuracy and ro-
bustness of the underlying SLAM approach also influences segmentation accu-
racy. The probabilistic semantic labelling of individual images could be used
as a prior in our object detection and tracking methods. This could improve
the robustness of the methods for clutter and occlusions. Semantic information
could also be incorporated into SLAM to improve data association.

198



9. Conclusions

In this thesis, we presented innovative approaches for RGB-D environment per-
ception. The approaches are based on multi-resolution surfel maps(MRSMaps),
a concise dense representation for RGB-D images and multi-view models.
MRSMaps store the statistics of RGB-D measurements within 3D voxels at

multiple resolutions. They respect typical error characteristics of RGB-D sen-
sors by adapting the maximum resolution used for a measurement with squared
distance from the sensor. We utilize image neighborhood to efficiently aggregate
maps from RGB-D images. The maps are designed for run-time efficient dense
registration at the expense of memory usage. Each surfel is added a description
of shape and texture in its local context to aid association during registration.
In experiments, we evaluate run-time and memory requirements for aggregat-

ing MRSMaps from single as well as multiple images. Single-image maps are
created at low run-times on a standard multi-core CPU. While a map of a single
image requires more memory than the RGB-D image itself, the strength of the
representation becomes apparent, if multiple images are stored in one map. We
achieve good compression rate, while the run-time for adding an image barely
increases with the number of integrated images. Hence, our representation is
well suitable for multi-view models of scenes and objects.
Our first registration method assumes the viewed scene to be rigid. It is di-

rectly applicable for visual odometry. Maps are aligned in a dual refinement
process that alternates between surfel association and probabilistic pose opti-
mization. We exploit the multi-resolution structure of the maps for efficient
association. While associations are made on all available resolutions to correct
coarse as well as fine misalignments, we find the finest common resolution be-
tween the maps. We consider the matching in position, color, and shape-texture
descriptor. Each component contributes to improve the basin of convergence of
the registration. We compare our registration method with other approaches on
a benchmark dataset, and demonstrate state-of-the-art results in run-time, ac-
curacy, and robustness compared to other dense methods. Sparse interest point
matching could well complement our approach in scenes, in which mostly far
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and noise-affected depth is measured.
We apply rigid registration for learning 3D models of scenes and objects.

Registration yields the camera motion between key views onto the scenes and
objects. We extract key views from RGB-D video and process the video online
by keeping track of the camera motion in the latest image through registration
towards a reference key view. The registration results are spatial constraints
between the view poses of the key views. We optimize for the view poses in a
pose graph SLAM approach. We additionally register key views that are not in
temporal sequence. An efficient hypothesis-and-test schedule allows for online
SLAM. From the optimized poses, we overlay the key views in dense MRSMap
models.
Object models are detected and tracked in real-time using registration. We

combine the accuracy of our registration method with the robustness of parti-
cle filtering in a real-time capable tracking approach. For object detection, we
propose a multi-resolution surfel-pair voting algorithm that detects objects and
estimates their pose efficiently at high recall rates. We integrate object detec-
tion with tracking in a joint framework that initializes the filter with coarse pose
estimates through detection. It also recovers from situations, in which tracking
cannot be resumed, through reinitialization. We equip robots with these ap-
proaches to perceive objects for the execution of mobile manipulation tasks.
These applications have been publicly demonstrated at RoboCup@Home com-
petitions in 2011, 2012, and 2013. The demonstrations were well received by
juries and were important contributions to winning the competitions.
We extend our rigid registration method for aligning and segmenting maps

of dynamic scenes in which the moving parts are rigid. We propose a general
EM framework for dense 3D motion segmentation for this purpose. A CRF
models the likelihood of observing parts under the motion of the segments, while
enforcing spatial coherence. We propose approximations based on graph cuts
and variational mean fields to gain efficiency. Our approach finds the number of
segments and estimates the rigid body motion of the segments. In experiments,
we demonstrate high accuracy in segmentation and motion estimates, also under
real-time constraints.
This rigid multi-body registration method is used to discover the moving ob-

jects in a dynamic scene. We integrate motion segmentation with our key view
based SLAM approach. Now, pairs of key views are segmented for motion. The
segments are related to each other in order to determine which objects a segment
is observing. The motion estimates of the segments yield spatial constraints be-
tween the view poses of segments onto the objects, which are optimized through
pose graph SLAM. Dense models of the singularized objects can then be retrieved
by overlaying the segments from their estimated view poses. By observing ob-
jects split and merge, we infer hierarchical part relations between the objects in
an unsupervised way.
Non-rigid deformations are recovered with our deformable registration me-
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thod. Our approach extends the CPD method for registering RGB-D measure-
ments. It exploits the multi-resolution structure of our maps to achieve run-
time efficiency. We propose means to estimate the local 6-DoF transformation
between maps at arbitrary points on the object surface from the estimated dis-
placement field. We evaluate accuracy and run-time efficiency of our approach.
It is superior in efficiency to aligning the raw RGB-D images using the CPD ap-
proach. If images are registered towards persistent models, we can precompute a
significant part of the workload. Our method then achieves frame-rates between
1 to 5Hz on a CPU. This facilitates applications in which deformations are to
be estimated at high frame rate, e.g., to track hands or deformable objects such
as clothing.
Objects with the same function frequently share a common topology of func-

tional parts. We employ deformable registration to establish shape correspon-
dences between objects and interpret these as correspondences between the func-
tional parts. This allows robots to transfer object manipulation skills to novel,
previously unseen objects of a known class of objects. We propose to define the
object manipulation skills in terms of grasp poses and motions relative to specific
reference frames such as tool end-effectors. These poses and frames are trans-
fered to new objects using local deformations estimated from the displacement
field between the object shapes. We also demonstrate this approach publicly at
the RoboCup@Home competition 2013.
To recognize objects by semantic categories, we train RFs to segment RGB-D

images into object classes. We fuse the semantic segmentations from multiple
view points in semantic maps. This makes object-class knowledge persistent for
a robot, e.g., to reason about tasks. Mapping is conducted online in real-time
due to a highly efficient implementation of the RF classifier on GPU and our
real-time capable SLAM approach that is executed in parallel on the CPU. Our
approach achieves state-of-the-art results for RGB-D object-class segmentation.

Outlook and Future Work. The methods presented in this thesis open several
directions for future research. One path is to transfer our approaches to differ-
ent modalities of sensors and algorithms that provide dense depth. For instance,
MRSMaps could be used to represent dense depth reconstructed with stereo cam-
eras. Existing approaches such as in (Geiger et al., 2010) already provide good
quality depth at high frame rate on CPUs. Recently, Newcombe et al. (2011b)
proposed DTAM, which estimates dense depth of key frames from images of
a moving monocular camera. These key frames could be consistently aligned
with our SLAM approach to acquire scene and object models. In (Schadler
et al., 2013), we recently applied SLAM with MRSMaps for mapping with 3D
laser scanners. We propose a particle filter that localizes the robot based on
odometry and matching 2D laser scan lines to a MRSMap, while the laser is
continuously rotating. Also, our general framework for dense 3D motion seg-
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mentation or principles of deformable registration could be applied to RGB-D
images of other sensor systems.
We investigate the perception methods in this thesis to advance the devel-

opment of intelligent robots that act autonomously in everyday environments.
Such environments are highly complex and multifaceted in their appearance and
composition. We can devise ever new types of objects and reconfigure our en-
vironments in nearly endless variations. To handle this complexity, approaches
are promising that learn about the environment in unsupervised ways and gen-
eralize knowledge to novel situations. This thesis provides foundations for future
research in these directions.
Our approach to unsupervised object discovery from motion cues could be

used for interactive perception of objects by robots. It enables robots to sin-
gularize objects through manipulating the objects. The robot could explore its
environment and novel objects to understand their composition into parts. Co-
occurence hints could be combined with motion to generate hypotheses about
single objects which are then tested through moving the objects. Once the
objects are singularized, commonalities in their appearance and geometry give
hints to categorize the objects in an unsupervised way.
Object-class segmentation could be extended for active learning in which the

classifier is adapted online from novel training samples. In this way, object
knowledge of a robot could be refined while it interacts with the environment.
Beliefs on object categories could be validated either by the robot itself, or
through communication with human users. This could enable life-long adapta-
tion of object-class knowledge in changing environments.
We demonstrate the use of deformable registration for object manipulation

skill transfer. Research could be invested to further understand how skill knowl-
edge can be generalized to novel objects. This does not only concern the transfer
of skills between instances of the same class. Knowledge about the usage of a
category of objects could also be applied to similar categories. In this thesis, we
assumed the manipulated objects to be rigid, and dynamics to be negligible for
the tasks. It is also desirable to consider physical properties of objects such as
mass, friction, and elasticity. It is an open research challenge to perceive these
properties with robot sensors and to build adequate models.
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Acronyms

3D-NDT 3D normal distribution transform.

AIC Akaike information criterion.
AR auto-regressive.
ATE absolute trajectory error.

BA bundle adjustment.
BIC Bayesian information criterion.
BP belief propagation.

CPD coherent point drift.
CRF conditional random field.

DoF degree-of-freedom.

EKF extended Kalman filter.
EM expectation-maximization.

FGT fast Gauss transform.
FPFH fast point feature histogram.

GICP generalized iterative closest points.
GMM Gaussian mixture model.

HMM hidden Markov model.

ICP iterative closest points.
IR infrared.
IRLS iteratively re-weighted least squares.
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Acronyms

KL-divergence Kullback Leibler divergence.

LBP loopy belief propagation.
LM Levenberg-Marquardt.

ML maximum likelihood.
MLN Markov logic network.
MN Markov network.
MRF Markov random field.
MRSMap multi-resolution surfel map.

RANSAC random sample consensus.
RF random decision forest.
RKHS reproducing kernel Hilbert space.
RMSE root mean squared error.
RPE relative pose error.

SDF signed distance function.
SfM structure-from-motion.
SIFT scale-invariant feature transform.
SLAM simultaneous localization and mapping.
SLAMMOT simultaneous localization mapping and moving

object tracking.
SMOSLAM simultaneous motion segmentation, localization,

and mapping.
surfel surface element.
SVD singular value decomposition.

TPS-RPM thin plate spline robust point matching.

voxel volume element.
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