Semantic Interpretation of User Queries for
Question Answering on Interlinked Data

Dissertation
zur
Erlangung des Doktorgrades (Dr. rer. nat.)
der
Mathematisch-Naturwissenschaftlichen Fakultit
der
Rheinischen Friedrich-Wilhelms-Universitit Bonn

vorgelegt von
Saeedeh Shekarpour
aus
Fasa, Iran

Bonn 2014

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultdt der Rheinischen
Friedrich-Wilhelms-Universitit Bonn

1. Gutachter: Prof. Dr. Soren Auer
2. Gutachterin: Prof. Dr. Stefan Wrobel

Tag der Promotion: 7th January 2015
Erscheinungsjahr: 2015

Acknowledgements

I would like to express my gratitude to the many people who supported me through this thesis. First
special thanks to my supervisor Prof. Dr. Soren Auer who always provided support throughout my
research, I have been very lucky to have a supervisor who cared so much about my work, and who
responded to my questions so quickly. His positive outlook and confidence in my research inspired me
and gave me confidence.

I am grateful to the colleagues and the friends from AKSW research group especially those who
made a direct contribution to the work like Prof. Dr. S6ren Auer, Dr. Axel C. Ngonga Ngoma and Dr.
Jens Lehman who discussed things over, read, wrote, offered comments, and assisted in the editing and
proofreading.

My completion of this thesis could not have been accomplished without the support of my dear friends;
special thanks to my first friend in Leipzig, Amrapali Zaveri for all her help, care and patience in getting
things done. My Iranian friends who relieved my homesickness with their companionship, affection and
encouragement.

Finally, I would like to thank my family, especially my mother, for their generous support, care, many
sacrifices and love. Your encouragement when the times got rough are much appreciated and duly noted.
This dissertation is dedicated to them.

il

Publications

This thesis is based on the following journal and conference publications, in which I have been an
author or a contributor:

Journal Publications, peer-reviewed

e In Press: Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Séren Auer,
“SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data”,
Journal of Web Semantics Science, Services and Agents on the World Wide Web, 2014.

o Published: Saeedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,
Sebastian Hellmann, and Claus Stadler, “Generating SPARQL queries Using Templates”, Web
Intelligence and Agent Systems Journal 11.3 (2013) pp. 283-295.

o Published: Edgard Marx, Tommaso Soru, Saecedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga
Ngomo, and Karin Breitman, “Towards an Efficient RDF Dataset Slicing”, Int. J. Semantic
Computing 7.4 (2013) p. 455.

e Published: Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, Saeedeh Shekarpour, and
Soren Auer, “An architecture of a distributed semantic social network”, Semantic Web 5.1 (2014)
pp- 77-95.

Conference Publications, peer-reviewed

e Submitted: Saeedeh Shekarpour and Soéren Auer, “Query Reformulation on RDF Knowledge
Bases using Hidden Markov Models”, Submitted to the Eighth International Conference on Web
Search and Web Data Mining, WSDM 2015, 2015.

e Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Soren Auer, “Question
Answering on Interlinked Data”, 22nd International World Wide Web Conference, WWW ’13, Rio
de Janeiro, Brazil, May 13-17, 2013, 2013 pp. 1145-1156.

o Published: Saeedeh Shekarpour, Konrad Hoffner, Jens Lehmann, and Soren Auer, “Keyword
Query Expansion on Linked Data Using Linguistic and Semantic Features”, 2013 IEEE Seventh
International Conference on Semantic Computing, Irvine, CA, USA, September 16-18, 2013, 2013
pp- 191-197.

o Published: Edgard Marx, Sacedeh Shekarpour, Séren Auer, and Axel-Cyrille Ngonga Ngomo,
“Large-scale RDF Dataset Slicing”, 2013 IEEE Seventh International Conference on Semantic
Computing, Irvine, CA, USA, September 16-18, 2013, 2013.

o Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Soren Auer, “Keyword-
Driven Resource Disambiguation over RDF Knowledge Bases”, Semantic Technology, Second
Joint International Conference, JIST 2012, Nara, Japan, December 2-4, 2012. Proceedings,
Springer, 2012 pp. 159-174.

e Published: Saeedeh Shekarpour, Soren Auer, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,
Sebastian Hellmann, and Claus Stadler, “Keyword-Driven SPARQL Query Generation Leveraging
Background Knowledge”, Proceedings of the 2011 IEEE/WIC/ACM International Conference on
Web Intelligence, WI 2011, Campus Scientifique de la Doua, Lyon, France, August 22-27, 2011,
2011 pp. 203-210.

Workshop and Doctoral Consutiom Publications, peer-reviewed

o Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer, “Query Segmen-
tation and Resource Disambiguation Leveraging Background Knowledge”, Proceedings of WoLE
Workshop, 2012.

e Published: Saeedeh Shekarpour, “DC Proposal: Automatically Transforming Keyword Queries to
SPARQL on Large-Scale Knowledge Bases”, The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part II, Springer,
2011 pp. 357-364.

vi

Abstract

The Web of Data contains a wealth of knowledge belonging to a large number of domains. Retrieving
data from such precious interlinked knowledge bases is an issue. By taking the structure of data
into account, it is expected that upcoming generation of search engines is approaching to question
answering systems, which directly answer user questions. But developing a question answering over
these interlinked data sources is still challenging because of two inherent characteristics: First, different
datasets employ heterogeneous schemas and each one may only contain a part of the answer for a certain
question. Second, constructing a federated formal query across different datasets requires exploiting links
between these datasets on both the schema and instance levels. In this respect, several challenges such as
resource disambiguation, vocabulary mismatch, inference, link traversal are raised. In this dissertation,
we address these challenges in order to build a question answering system for Linked Data. We present
our question answering system Siva, which transforms user-supplied queries (i.e. either natural language
queries or keyword queries) into conjunctive SPARQL queries over a set of interlinked data sources. The
contributions of this work are as follows:

1. A novel approach for determining the most suitable resources for a user-supplied query from
different datasets (disambiguation approach). We employed a Hidden Markov Model, whose
parameters were bootstrapped with different distribution functions.

2. A novel method for constructing federated formal queries using the disambiguated resources and
leveraging the linking structure of the underlying datasets. This approach essentially relies on a
combination of domain and range inference as well as a link traversal method for constructing a
connected graph, which ultimately renders a corresponding SPARQL query.

3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts, First, we
introduce a number of new query expansion features based on semantic and linguistic inferencing
over Linked Data. We evaluate the effectiveness of each feature individually as well as their
combinations, employing Support Vector Machines and Decision Trees. Second, we propose a
novel method for automatic query expansion, which employs a Hidden Markov Model to obtain
the optimal tuples of derived words.

4. We provide two benchmarks for two different tasks to the community of question answering
systems. The first one is used for the task of question answering on interlinked datasets (i.e.
federated queries over Linked Data). The second one is used for the vocabulary mismatch task.

We evaluate the accuracy of our approach using measures like mean reciprocal rank, precision, recall,
and F-measure on three interlinked life-science datasets as well as DBpedia. The results of our accuracy
evaluation demonstrate the effectiveness of our approach. Moreover, we study the runtime of our
approach in its sequential as well as parallel implementations and draw conclusions on the scalability of
our approach on Linked Data.

vii

Contents

1__Introduction

[1.I.1 Objective of a Question Answering System on Linked Datal
[1.1.2 Influence of a Question Answering System on Society| . .
|1.1.3 Existing Question Answering Systems|.
|1.1.4 Existing Search Engines on Linked Dataf.

[1.3 Challenges|
[1.3.1 Query Segmentation|
[1.3.2 Resource Disambiguation|
[1.3.3 Query Expansion|.
[1.3.4° QueryCleaning]
[1.3.5 Formal Query Construction|

1.4 Approach and Contribution|
[1.4.1 Query Segmentation and Resource Disambiguation|
[1.4.2 Query Expansion|
|[1.4.3 Formal Query Construction|

[2.5.1 Accuracy Metrics|.
[2.5.2 Accuracy Evaluation of Possible Graph Pattern Templates|

[<Be TN B NS R S S R

(N T NG T NG T N Sy G GG U G G g sy
—_—_ O O N N W === 00 0O

25
25
27
27
28
29
29
31
32
33
34
35

X

[2.5.3 Application Evaluation| o oL 37
[2.5.4 Comparative Study based on Relevance Feedback|. 37

.6 Related Workl 38
27 Conclusionand Future Work] oL o 40
[3__SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked |
[Datal 43
B.1 Introductionl 43
BZOVEIVIEW .« - . o ot e e e e 44
3.3 Problem and Prelimmariesl o oo 45
[3.3.1 Resource Disambiguation| 47
[3.3.2 Construction of Conjunctive Queries|. 48

[3.4 Resource Disambiguation using Hidden Markov Models| 49
[3.4.1 Bootstrapping the Model Parameters|. 50
[3.4.2 Evaluation of Bootstrapping| 52

[3.5 Query Graph Construction| 54
B.5.1 Formal Considerations| oo Lo 54
3.5.2 Approach| 55

B.6 FEvaluationl. 57
[3.6.1 Accuracy Benchmark over Interlinked Knowledge Bases| 58
[3.6.2 Accuracy Benchmark over DBpedia 59
3.63 RuntimeBenchmarkl 0 oL 60

BT RelatedWorkl 61
B.8 Discussionand Conclusion| Lo 62
[4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features| 67
41 Introductionl 67
4 App) S 68
|4.2.1 Extracting and Preprocessing of Data using Semantic and Linguistic Features| . 68
|4.2.2 Feature Selection and Feature Weighting] 70
|4.2.3 Setting the Classifier Threshold] 71

[@4.3 Experimentand Result) 72
4.3.1 Experimental Setup|. 72
BE3Z2 Resulld . . .o oooo oo e e e 72

44 Related Workl 74
4.4.1 Design Choices for Query Expansion| 74
4.4.2 Semantic Search and Question Answering Engines| 76

B3 Conclusionsl o o 77
[Query Reformulation on RDF Knowledge Bases using Hidden Markov Models] 79
1 Intr 0 1 79
52 Problem and Preliminariesl o oL 80
[5.3 Reformulating Query Using Hidden Markov Model| 81
[5.3.1 Bootstrapping the Model Parameters|. 82

04 FEvaluationl. 84
RS Related Workl o .. 87
[5.5.1 Query Expansion on Web of Documents| 87

|A__Keyword-Driven Resource Disambiguation over RDF Knowledge Bases|

owards an icient ataset Slicin

109

131

X1

cHAPTER 1

Introduction

Given the ever-increasing amount of information being published on the Web, organizing and in-
tegrating this information, data and knowledge is a major challenge. The Semantic Web initiative
responds to this challenge by introducing standards such as the Resource Description Framework (RDFﬂ
RDF—SchemeEl and OWIE' for publishing information in machine-readable formats. The heart of the
technologies behind Semantic Web is the RDF, which is a standard for describing Web resources. A
resource can be any thing (either physical or conceptual). For example, a resource can be a Web site, a
person, a device or anything else. The RDF data model expresses statements about Web resources in
the form of subject-predicate-object (triple). The subject denotes a resource; the predicate expresses a
property of subject or a relationship between the subject and the object; the object is either a resource
or literal. For example, the statement “Jack knows Alice” in RDF denotes the relationship “knowing’
between the two resources “Jack” and “Alice”. For identifying resources, RDF uses Uniform Resource
Identifiers (URIs)f| and Internationalized Resource Identifier (IRIsf] The rationale behind is that the
names of resources must be universally unique.

’

RDF is used by Semantic Web tools and frameworks to publish structured data whose meaning is
described in RDF Schema (RDFS) or the Web Ontology Language (OWL). In addition to the publishing
of structured data, RDF allows the interlinking and merging of data across the Web [[13] [14]. As a
result of the Semantic Web vision and, more importantly publishing large amounts of structured data
on the Web, the concept of the Web of Data emerged. The Web of Data refers to the set of knowledge
bases published according to the Linked Data principlesﬁ i.e. a set of best practices for publishing and
connecting structured data on the Web [[15] [T6].

Since its creation in 2007, the Linked Data Web has been growing at an astounding rate. Currently,
LOD Cloud reports publishing more than 31 Billion triplesﬂ The sheer amount of data contained
therein poses an important challenge as to how to query this amount of knowledge. In other words, it is
increasingly difficult for end users to find the information they are looking for on this enormous Web of
Data.

http://www.w3 .org/TR/rdfll—concepts/]
http://www.w3.org/TR/rdf-schema/|
http://www.w3 .org/TR/owl—ref/I

A URI is a string of characters used as unique identifier for a Web resource.

A generalization of URIs enabling the use of international character sets.
http://www.w3.org/DesignIssues/LinkedData .htmll
http://www4.wiwiss.fu-berlin. de/lodcloud/state/| (Last update: September 19th, 2011)

BT Y N S S

http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/rdf-schema/
http://www.w3.org/TR/owl-ref/
http://www.w3.org/DesignIssues/LinkedData.html
http://www4.wiwiss.fu-berlin.de/lodcloud/state/

1 Introduction

Moreover, by taking into account the structure of data on the Web of Data, it is expected that search
approaches directly provide answers to queries. Traditional information retrieval approaches are not
applicable here because they cannot exploit the internal structure of data due to their use of bag-of-words
semantics. Although traditional search services like Google have extended their functionality to provide
direct answers to simple queries which match certain templates, e.g., “Capital of Spain”, yet, they lack
the ability to answer complex queries or consolidate information from different resources (i.e. integration
of, and reasoning on, data on the Web.). These limitations are due to the inherently unstructured nature
of information in the Web of Documents. Thus, we need to investigate new search approaches relying
on the structure of data for retrieving information. With this consideration, retrieval of information is
more semantic-oriented leading to a more intelligent Web. We should note that a main obstacle to the
realization of this approach lies in the sheer size of the Data Web, which requires efficient and scalable
retrieval approaches.

1.1 Motivation

1.1.1 Objective of a Question Answering System on Linked Data

SPARQLEl is an RDF query language, which enables the retrieval of data from RDF knowledge
bases. SPARQL queries permit to express unambiguously which entities and relations are relevant to be
retrieved. In order to express information needs in terms of SPARQL queries, non-expert users have to
(a) understand the SPARQL concepts, (b) understand the SPARQL syntax (in absence of a visual query
builder) and (c) know what information structures (i.e. schemas) are actually available. In other words,
for a common user, textual query (either natural language or keyword-based) is a more convenient way
of retrieving information.

To enable common users to access the Data Web, it becomes necessary to simplify the access to the
Web of Data by providing search interfaces that resemble the search interfaces commonly used on the
document-based Web. [Figure T.T|envisions three phases of such search engines on the Web of Data: (a)
first, a user inserts a textual query, (b) then, it is transformed to a SPARQL query and (c) finally, the
SPARQL query is run and desired entities are retrieved. These entities are the actual resources that the
user desires.

1.1.2 Influence of a Question Answering System on Society

Advancing question answering can positively influence society in many ways, especially when, in
addition to textual interfaces, voice interfaces are provided. Voice interfaces are more accessible for
people with disabilities (e.g. vision impaired) or in situations in which typing is inconvenient (e.g. when
driving a car). In the following, we discuss the influence of question answering systems on four important
sectors of society: (i) science and technology, (ii) welfare, (iii) education, (iv) health and wellbeing (as
shown in [Figure T.2] As the proof of applicability, we exemplify the influence of two recent technologies
i.e. Google Glass and IBM Watson. Google Glass, developed by Google, is a optical head-mounted
display with an integrated computer. It has a voice interface that allows users to interact with Internet
services via natural language voice commands. Watson, developed by IBM, is an intelligent computer
system which is able to answer natural language questions. Watson was build on the IBM’s DeepQA
software technology which generates hypotheses, gathers massive evidence, and analyzes data [I7]. IBM
intends to market the DeepQA software to large corporations for various applications.

8 lhttp ://www.w3.org/TR/sparqll1- query/l

http://www.w3.org/TR/sparql11-query/

1.1 Motivation

Which television shows were created by Walt Disney?

select * where
{ ?v0 a dbo:TelevisionShow.
?2v0 dbo:creator dbr:Walt Disney. }

THE
WONDERFUL WORLD

i Td;fshgafo
T

i

v a a
- I’} &

Figure 1.1: A bird’s-eye view of the envisioned semantic search engine on the Web of Data: (a) an input textual
query (b) the equivalent SPARQL query and (c) the retrieved entities after running the SPARQL query.

Science and technology

The amount of structured as well as unstructured data is growing enormously. We need advanced
technologies to help us make sense of this data and make better decisions. Question answering is the area
which harnesses the right information to act upon and make us more aware of existing knowledge. A
question answering system can be integrated in various applications and devices like web and mobile
applications, GPS systems etc. Thus, completely new categories of science and ubiquitous technology
become possible. “Cognitive computing systems” is one of the emerging fields which models human
brain, reasons, senseﬂ IBM defines a cognitive computing system as “a system which learns and
interacts naturally with people to extend what either humans or machine could do on their own. They help
human experts make better decisions by penetrating the complexity of Big Data.” Watson is a cognitive
technology which processes information more like a human than a computer by understanding natural
language, generating hypotheses based on evidence and learning as it goes.

IBM aims to market the Watson technology in the healthcare, finance, marketing and service domains.
For instance, regarding finances, IBM states that: “the challenges the financial services industry faces are
complex. On the one hand, regulatory measures as well as social and governmental pressure for financial
institutions to be more inclusive, have increased; On the other hand, customers whom the industry serves,
are more empowered, demanding and sophisticated than ever before.” With Watson IBM, in particular,
aims to support three areas of finance: (a) increasing customer satisfaction and attracting new capital
using personalised advice as well as wealth advisor, (b) financial analysis and (c) risk management.

Welfare

It is necessary that information on the Web is accessible and usable to all users regardless of their
capabilities. Question answering systems as an emerging assistive technologyEl provide simpler access
to information especially when equipped with a voice interface. Thus, a question answering system will
benefit people with different capabilities like children, elderly people, disabled or vision impaired people
in particular. Since these groups of people are interested in minimum interactions with an application,

?lhttp://www.research.ibm.com/cognitive-computing|
10 Basically, assistive technology is referring to a device, piece of equipment or product devised to increase functional capabilities
of individuals. For example, a screen reader is a software application presenting what is displayed on the screen.

http://www.research.ibm.com/cognitive-computing

1 Introduction

Question
Answering
System

Voice Interface Textual Interface

Learning
Technology

Cognitive Assistive
Technology Technology

Healthcare
Assistant

‘ Health and
Wellbeing

Figure 1.2: Influence of a question answering system on society.

Science and
Technology

question answering systems help them by reducing the complexity of interacting with an application via
automatic access to information.

There is only little research on the accessibility of interfaces of web search engines. Oppenheim was
one of the pioneers who challenged the accessibility of web search engine interfaces for vision impaired
and blind users [18]]. Yang proposed a specialized search engine for blind users [[19]]. This search engine
is constructed with an accessible interface and some improved functions for blind users (i.e., searching
assistance functions and specialized design). In September 2013, Google offered alternative access
modeﬂ such as the Chrome browser which supports assistive technologies including screen readers and
magnifiers. This browser offers people with low vision a number of tools, including full-page zoom and
high-contrast colour.

One of the recent technologies which is capable of helping blind and impaired vision people is
Google Glass technology. The OpenGlass ProjeclElis a project employing Google Glass technology to
develop applications enabling blind and visually impaired users to identify objects and environments via
established crowdsourcing technologies. The VisionAwareEl portal of the American Foundation for the
Blind describes two OpenGlass applications which have been developed so far as follows:

1. The Question-Answer application enables blind and visually impaired users to use Google Glass
to take a picture with a question attached, which is related to the context of the picture. Then
this question is submitted to Twittelﬂ or Amazon’s Mechanical Turk platfomﬁ where sighted
respondents answer. Finally, the answer is read aloud to the user through the speaker of the Google

http://www.google. com/accessibility/products/l
http://www.openshades. com/|
http://www.visionaware.org/|
“https://twitter.com/|

https://www.mturk. com/mturk/welcomel

http://www.google.com/accessibility/products/
http://www.openshades.com/
http://www.visionaware.org/
https://twitter.com/
https://www.mturk.com/mturk/welcome

1.1 Motivation

Glass headset.

2. The Memento application automatically recites notes when the blind or visually impaired user faces,
or looks at, a recognizable scene. To use Memento, sighted users must first record descriptions
or commentary about environmental features or a room setup. When a blind or visually impaired
person using Google Glass approaches the same spot, Google Glass will recognize the feature or
scene and read back the pre-recorded commentary.

Such examples show that assistive technology based on question answering enables completely new
opportunities to compensate for disabilities or varying capabilities.

Education

Leveraging recent question answering and assistive technologies (i.e. also IBM Watson and Google
Glass) opens new opportunities in education. For instance, these technologies assist learners as well as
researchers with finding information faster; or they support integrating data from different data sources
which will help teachers as well as researchers to make better decisions. In the following, we mention
different possibilities of using these two recent technologies in education.

Watson helps researchers to find information faster. IBM sayﬂ “The Economist estimates companies
spent $603 billion on research and development in 2012. That is a lot of information to wade through.
The IBM Watson Discovery Advisor is a research assistant that helps researchers collect information and
synthesize insights to stay updated on recent findings and share information with colleagues. New York
Genome Cente1|T_7| plans to use the IBM Watson cognitive computing system to analyze the genomic data
of patients diagnosed with a highly aggressive and malignant brain cancer, and to more rapidly deliver
personalized, life-saving treatment to patients of this disease.”

Google Glass, as a portable technology, has the potential to bring new possibilities to teachers and
students. Foradiarm a provider of enterprise software solutions for education institutions, reports the use
cases of Google Glass as follows:

1. “Google Search is phenomenal, and the Glass will allow the student as well as teacher to stay
connected to an interactive environment featuring online tools all the time. This could pave way to
a leap into the future of educational system. Teachers as well as students can refer fo topics related
to their studies on the go. No fiddling through phones in the middle of the lecture; all you have to
do is speak and voila, your search is done.

2. Teachers could use Google glass coupled with facial recognition to take attendance and could be
used to generate Student Information System. Just by looking at the student you will get access to
his/her student records with details of academic and non-academic performance, attendance etc.
Creating students reports, schedules and class timings for students is only the tip of the iceberg.”

Health and wellbeing

There is a vast amount of biomedical data (either structured or unstructured) which has been publisheﬂ
so far. A question answering system over such data can help researchers, doctors and ordinary people

16
17

http://www.ibm.com/smarterplanet/us/en/ibmwatson/work. htmll
http://www.nygenome. org/|
Bhttp://foradian. com/|

19 Regarding structured format, RDF biomedical datasets are available at: http://download.bio2rdf.org/release/3/

release.ntm

http://www.ibm.com/smarterplanet/us/en/ibmwatson/work.html
http://www.nygenome.org/
http://foradian.com/
http://download.bio2rdf.org/release/3/release.html
http://download.bio2rdf.org/release/3/release.html

1 Introduction

gain recent biomedical knowledge; for example about drugs, diseases etc. Researchers can leverage a
question answering system on biomedical data to update their knowledge about the recent findings in
their own field or related fields and thus make interesting discoveries. A question answering system helps
doctors in diagnosing and treatment phases like AskHermeﬂ . Previously, crowdsourcing
was one of the first attempts to assist ordinary people in order to find answers for their questions related
to health and wellbeing such as CreateHealth.iaEl Nowadays, a question answering system empowers
ordinary peoples to directly access information. In the following, we present the use cases of Watson as
well as Google Glass in the field of healthcare.

Healthcare is the first real use case of Watson. IBM declares‘zﬂz “In health care, Watson and Watson-like
technologies are now assisting doctors at Memorial Sloan Ketterinﬂin diagnosing patients by providing
a variety of possible causes for a set of symptoms. Watson can help doctors narrow down the options and
pick the best treatments for their patients. The doctor still does most of the thinking, but Watson is there
to make sense of the data and help make the process faster and more accurate.”

Several proofs of concept for Google Glass have been proposed in healthcare. In July 2013, Lucien
Engelen initiated research on the usability of Google Glass in the health care ﬁelﬂ This research was
carried out in operating rooms, ambulances, a trauma helicopter, general practice, and home care as well
as the use in public transportation for visually or physically impaireﬂ Research contained making
pictures, videos streaming to other locations dictating operative log, having students watch the procedures
and tele-consultation through Hangout. On June 20, 2013, Rafael J. Grossmann, a Venezuelan surgeon
practicing in the USA, was the first surgeon to ever demonstrate the use of Google Glass during a live
surgical procedureEl

In conclusion, question answering technology is increasingly penetrating various domains of society
and technology. However, most systems currently available mainly use unstructured and semi-structured
content or fixed, predefined structured data

1.1.3 Existing Question Answering Systems

In the following, we present a number of well-known question answering systems running on structured
or unstructured data.

1. IBM WatsonFZl is a question answering system developed by IBM. In 2011 it answered Jeopardy
questions and outperformed former human winners. Watson uses a corpus containing more than
200 million pages of unstructured information as well as semi-structured data like Wikipedia and
DBpedia. Watson applies advanced natural language processing, information retrieval, knowledge
representation, automated reasoning, and machine learning technologies to analyze the natural
language input query and find the answer in the corpus.

2. STARTFY was initiated by the InfoLab Group at the MIT in 1993. Up to now, this system can
answer millions of English questions about places, movies, people, dictionary definitions. START

Yhttp://www.askhermes.org/index2.html|

Yhhttp://createhealth.io/|

2http://www.ibm.com/smarterplanet/us/en/ibmwatson/work.html

23 Memorial Sloan Kettering Cancer Center is a cancer treatment and research institution founded in 1884 as the New York
Cancer Hospital.

2 [http ://exponential.singularityu. org/medicine/|

25 Recent findings at: http://brengkenniscentrum.nl/blog/2013/ 12/een—nieuw—perspectief—google—glass/|

%lhttp://www. forbes.com/fdc/welcome_mjx.shtml|

Thttp://www.ibm. com/smarterplanet/us/en/ibmwatson/|

*lhttp://start.csail.mit.edu/index. php|

http://www.askhermes.org/index2.html
http://createhealth.io/
http://www.ibm.com/smarterplanet/us/en/ibmwatson/work.html
http://exponential.singularityu.org/medicine/
http://brengkenniscentrum.nl/blog/2013/12/een-nieuw-perspectief-google-glass/
http://www.forbes.com/fdc/welcome_mjx.shtml
http://www.ibm.com/smarterplanet/us/en/ibmwatson/
http://start.csail.mit.edu/index.php

1.1 Motivation

receives natural language queries, then parses them in order to create parse trees, then it matches
the created trees against its knowledge base and provides the appropriate information to the user.

3. EphyraFﬂ is a modular framework for open domain question answering. Similar to other question
answering systems, Ephyra retrieves answers for a given natural language question. It uses the
whole of the Web as the underlying corpus.

4, WolframAlpthl is a question answering system which was developed by Wolfram research group
and released in 2009. It is a computational knowledge engine or answer engine run on a curated
structured datasetsEl It answers factual queries (i.e. phrased natural-language fact-based questions)
directly by computing the answer from different sources.

5. PowerAquaE| is a multi-ontology-based question answering system running on Linked Data sources.
It receives a natural language query as input and then returns answers drawn from the relevant
distributed resources on the Semantic Web. PowerAqua is not restricted to a single ontology and
therefore supports various domains.

6. TBSlEl is a template-based question answering system on a single Linked Data knowledge base
(i.e. DBpedia). It parses an input natural language question and then produces a SPARQL template
reflecting the internal structure of the question.

1.1.4 Existing Search Engines on Linked Data

In the following, we present existing search services, which have been launched on the Linked Data so

far.

1. Sindicd¥is a document-oriented index on Web of Data. Sindice collects RDF documents from
the Semantic Web and indexes them on resource URIs, Inverse Functional Properties (IFPs) and
keywords. This index allows applications to automatically locate documents containing semantic
resources via an APIL. Furthermore, Sindice offers a user interface through which human users can
retrieve these documents based on keywords, URIs, or IFPs.

2. SigmaEl is established on top of Sindice which gives a very visual and interactive access to the Web
of Data as a whole. Sigma is an entity-based retrieval service which employs large scale Semantic
Web indexing, logic reasoning, data aggregation heuristics, ad-hoc ontology consolidation, external
services and responsive user interaction to create entity descriptions. Sigma offers both a service
and an end user application to access the Web of Data as an integrated information space.

3. WatsonF_gl is a search service indexing ontologies as well as semantic documents. Watson collects
the available semantic content on the Web and then analyzes it to extract useful metadata and
indexes. Watson enables user to query semantic data using either keyword interface or APL.

http://www.ephyra.infoﬂ

http://www.wolframalpha.com/

Curated datasets are checked for quality either by a scientist or an expert in an associated field

http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index. jsp

http://autosparql—tbsl.dl—learner.orgA

http://sindice.com4

http://sig.ma/|

http://watson.kmi.open.ac.uk/WatsonWU14

http://www.ephyra.info/
http://www.wolframalpha.com/
http://poweraqua.open.ac.uk:8080/poweraqualinked/jsp/index.jsp
http://autosparql-tbsl.dl-learner.org/
http://sindice.com/
http://sig.ma/
http://watson.kmi.open.ac.uk/WatsonWUI/

1 Introduction

1.2 Problem

While various search approaches differ in their details, they can all be positioned on the following
spectrum: On one end of the spectrum are simple keyword search systems that rely on traditional
information retrieval approaches to retrieve resources that bear a label similar to the “the user’s input”.
We dub such approaches as data-semantics-unaware keyword search since they do not take the semantics
explicated by the data into consideration. The main advantage of such approaches is that they scale
well as they can make use of the results of decades of research carried out in the field of information
retrieval. On the other end of the spectrum, we find question answering systems, which assume a
natural-language query as input and convert this query into a full-fledged SPARQL query. These systems
rely on natural-language processing tools such as Part of Speech (POS) tagging and dependency parsers
to detect the relations between the elements of the query. The detected relations are then mapped to
SPARQL constructs. The basic idea behind our work is to devise a data-semantics-aware keyword search
approach, which stands in the middle of the spectrum as shown in Our approach, which is
called SINA, aims to achieve maximal flexibility by being able to generate SPARQL queries from both
natural-language queries and keyword queries. Several challenges need to be addressed to devise such an
approach. In the following sections, we introduce these challenges.

A

Question
Data-Semantics Answering
aware Systems
Our approach:
SINA
Information
Data-Semantics Retrieval
Systems
unaware
N
C
Keyword-based Natural language
query query

Figure 1.3: Comparison of search approaches.

1.3 Challenges

We aim to realize a search engine for the Data Web, which is as easy to use as search engines for the
Document Web, but allows to create complex queries and returns comprehensive structured query results.
In order to achieve this goal, a number of challenges are raised:

e Query Segmentation
e Resource Disambiguation

e Query Expansion

1.3 Challenges

e Query Cleaning
e Formal Query Construction
e Data Fusion on Linked Data

In the rest of this section, we briefly describe each challenge. In order to obtain a better insight on
these challenges, we use a few running examples throughout the discussion. Before presenting them,
we introduce the datasets employed in this dissertation. We employed four different knowledge bases:
first is DBpedia [23]] as an individual knowledge base. DBpedia is a large knowledge base extracted
from Wikipedia. Additionally, we used three interlinked knowledge bases i.e., Drugbank, Sider and
Diseasome which have been published in RDF. SiderEl contains information about drugs and their side
effects. Diseasome contains information about diseases and genes associated with these diseases.
Drugbank is a comprehensive knowledge base containing information about drugs, drug target (i.e.
protein) information, interactions and enzymes. As can be seen in[Figure T.4]the classes representing
drugs in Drugbank and Sider are linked using owl : sameAs and diseases from Diseasome are linked to
drugs in Drugbank using Diseasome :possible-Drug and Drugbank:possible-Disease-target
properties. Also, the diseases and side effects between Sider and Diseasome are linked using the
owl : sameAs property.

Drug interactions

Sider

enzymes

Drug |—>| Side Effect

references <-— targets

DrugBank

»

Diseasome

Figure 1.4: Schema interlinking between three datasets: DrugBank, Sider and Diseasome.

We use two query examples throughout our discussion in order to clarify better. Assume that the input
queries are as follows:

Example 1.1 What are the side effects of drugs used for Tuberculosis?

Example 1.2 Who produced films starring Natalie Portman?

37 http://sideeffects.embl.de/
38 http://diseasome.kobic.re.kr/
3 http://www.drugbank.ca/

1 Introduction

1.3.1 Query Segmentation

Query segmentation is the process of identifying the right segments of data items that occur in the
keyword queries. Regarding example [T] the input query ‘What is the side effects of drugs used for
Tuberculosis?’ is transformed to the 4-keyword tuple (side, effect, drug, Tuberculosis). This tuple can be
segmented into (‘side effect drug’, “Tuberculosis’) or (‘side effect’, ‘drug’, ‘Tuberculosis’). Similarly,
the query of example [2]can be segmented to (‘produce’, ‘film star’, ‘Natalie’, ‘Portman’) or (‘produce’,
‘film’, ‘star’,‘Natalie Portman’). Note that in both cases, the second segmentation is more likely to lead
to a query that contains the results intended by the user.

1.3.2 Resource Disambiguation

In addition to detecting the right segments for a given input query, we also have to map each of
these segments to a suitable resource in the underlying knowledge base. This step is dubbed entity
disambiguation and is of increasing importance since the size of knowledge bases and the hetero-
geneity of schemas on the Linked Data Web grows steadily. With respect to example [I] the seg-
ment ‘Tuberculosis’ is ambiguous when querying both Sider and Diseasome because it may refer
to the resource diseasome:Tuberculosis describing the disease Tuberculosis or to the resource
sider:Tuberculosis being the side effect caused by some drugs. Regarding the example[2] the seg-
ment ‘film’ is ambiguous because it may refer to the class dbo:Film (the class of all movies in DBpedia)
or to the properties dbo: film or dbp: £ilm (which relates festivals and the films shown during these
festivals). In fact in this step, we aim to map the input keywords to a suitable set of entity identifiers, i.e.
resources R = {ry, 2, ..., r,}. Note that several adjacent keywords can be mapped to a single resource,
i.e. m < n. Thus, for each segment, a suitable resource has to be determined.

1.3.3 Query Expansion

Automatic query expansion is a long-standing research topic in information retrieval. It is a way of
reformulating the input query in order to overcome the vocabulary mismatch problem. In case of a
vocabulary mismatch, schema-aware search systems are unable to retrieve data. For instance, consider
the input query altitude of Everest. The keyword altitude, should be matched to the keyword elevation,
because the relevant property resource has the label elevation and not altitude. Therefore, query expansion
can be a crucial step in question answering or keyword search pipeline. A naive way for automatic
query expansion adds words derived from linguistic resources. In this regard, expansions are synonyms,
hyponyms and hypernyms of the input keywords. In practice, this naive approach fails because of high
retrieval cost and substantially decreasing precision. Regarding Linked Data, a research question arising
here is whether interlinked data and vocabularies provide features, which can be taken into account for
query expansion and how effective those new semantic features are in comparison to traditional linguistic
ones.

1.3.4 Query Cleaning

The input query might contain some keywords, which semantically are either not related to the rest of
the keywords or extra (i.e. does not have any matched resource in the corresponding SPARQL query).
Since user usually is looking for information semantically closely related to each other, these unrelated
keywords (i.e. noise) should be cleaned. An example is the question “Through which countries does the
Yenisei river flow?” The keyword flow is not a stop word but does not have any matched resource in the

10

1.4 Approach and Contribution

corresponding SPARQL query of the benchmark (our benchmark contains a couple of natural language
queries and their equivalent SPARQL query); and therefore should be ignored.

1.3.5 Formal Query Construction

Once the resources are detected, adequate formal queries (i.e. SPARQL queries) have to be generated.
In order to generate a formal query (here: a conjunctive query), a connected subgraph G’ = (V’, E”) of the
knowledge base graph G = (V, E), called the query graph, has to be determined. The intuition behind
constructing such a query graph is that it has to fully cover the set of mapped resources R = {ry, ..., 7y}
In linked data, mapped resources r; may belong to different graphs G;. Thus, the query construction
algorithm must be able to traverse the links between datasets at both schema and instance levels. With
respect to the example[I] after applying disambiguation on the identified resources, we would obtain the
following resources from different datasets:

sider:sideEffect, diseasome:possibleDrug, diseasome: 1154. The appropriate conjunctive
query contains the following triple patterns which the second triple pattern bridges between the Drugbank
and Sider datasets.:

1. diseasome:1154 diseasome:possibleDrug ?vl .
2. ?vl owl:sameAs ?v2 .
3. ?7v2 sider:sideEffect ?v3 .

1.3.6 Data Fusion on Linked Data

We aim at an approach for question answering over a set of interlinked data sources. In this respect,
new challenges are raised that we have to deal with. A first challenge is that information for answering a
certain question can be spread among different datasets employing heterogeneous schemas. This makes
the mapping of the input keywords to data more challenging when compared to querying a single dataset.
An example is the query: “side effect and enzymes of drugs used for ASTHMA”. The answer to that
query can only be obtained by joining data from Sider (side effects) and Drugbank (enzymes, drugs).
The second challenge is constructing a formal query from the matched resources across different datasets
which have to exploit links between the different datasets on the schema and instance levels. An example
is the query: “side effects of drugs used for Tuberculosis”. Tuberculosis is defined in Diseasome, drugs
for curing Tuberculosis are described in Drugbank, while we find their side effects in Sider.

1.4 Approach and Contribution

To the best of our knowledge, our approach is the first approach for answering questions on interlinked
datasets by constructing a federated SPARQL query. Our approach led to the implementation of the SiNa
search engine. Siva is a Java based web application, which is available online. We deployed two demo
instances, one employing DBpedia as background knowledge@l and the second one operating on three
interlinked life-science datasetﬂ Siva has a simple interface similar to common search engines. All the
steps are carried out automatically by SiNa and the user does not have to interact with the system during
the search process. illustrates the high-level architecture of SiNa, which comprises of six main
components. Each component consumes the output of the previous component.

The challenges, which our approach has addressed so far, are as follows:

4 lhttp://sina.aksw.org/|
“'Ihttp://sina-linkeddata.aksw. org/l

11

http://sina.aksw.org/
http://sina-linkeddata.aksw.org/

1 Introduction

4* tuple of
resources

N :) | valid segments

Resource Retrieval

% Segment Validation % Query Construction :_"

ALK

Disambiguation

‘ Client
,,,,,, j===-=--------+ OWLAPI
Stanford ! 1
CoreNLP @ | query @ [result i :--r-_-_-_-_-:\‘jen 04 ----- '
A___l b 4 http client
T 1 1 : 1
v 4 : : 1 v
n n : | OPENLIN
Query Preprocessing Representation Ho y VIRTUOSO
i o0 4
‘ SPARQL o I

Qw keywords queries E E : v
1 [
1!
I
1
1
1
1
1
1
1
1
1
1
1
1
1

»

1

1

i

1

I 4

! (.) mapped resources
1

1

1 Underlying Interlinked
e ——————————— ___. Knowledge Bases
Server
Process
(1) (2] © Q
who is the author_, author _ ‘author' _ [dbr:Category:Author dbp:author dbo:Actor dbo:Art]
of Wikileaks? wikileaks ‘wikileaks' [dbr:WikiLeaks dbr:Category:WikiLeaks dbo:author]
(SR Q Q
dbo:author 1. SELECT * WHERE { ?v0 dbp:author dbr:WikiLeaks } dbr-Julian A
dbr:WikiLeaks 2. SELECT * WHERE { dbr:WikiLeaks dbo:author 2v0.} — ¢Pr-ulian-Assange
Figure 1.5: Architecture of the SiNa search engine.
e Query Segmentation (QS)

Resource Disambiguation (RD)

Query Expansion (QE)

Formal Query Construction (FQC)
e Data Fusion on Linked Data (DF on LD)
e Benchmark Creation

In addition to the contribution in the above challenges, we took part in the RDF Data Slicing (RDF DS)
project. corresponds each challenge to the list of publications which address it. Furthermore,
[Table 1.2] presents an overview of the structure of this dissertation. Each chapter is dedicated to one of
our publications, which addresses one or more challenges. [Appendix A]provides one of our papers [9]]
comprising a more experimental study on the approach employed for query segmentation and resource
disambiguation. The article associated with our contribution in the RDF Data Slicing projects are
included in[Appendix B] In the rest of this chapter, we briefly point out the methodology employed for

12

1.4 Approach and Contribution

each challenge as well as the research questions used for the evaluation and the achievements. In order to
gain a full insight, we refer you to the associated chapters and publications.

Challenges Publications
Query Segmentation 11|6L 94|11
Resource Disambiguation 116l o411
Query Expansion 517
Formal Query Construction [1t12flel[10
Data Fusion on Linked Data 1416
RDF Data Slicing 3118

Table 1.1: List of the challenges and the publications addressing them.

1.4.1 Query Segmentation and Resource Disambiguation

As shown in[Table T.2] our contribution on this part can be found in [chapter 3]or in our publications [[I}
[6L Ol [TT]]. We shortly describe the main attributes of the proposed model.

Methodology: To tackle this challenge, we propose an automatic query segmentation and resource
disambiguation approach leveraging background knowledge. We employ a Hidden Markov Model
(HMM) to obtain the optimal input query segmentation and disambiguation of possible matches in a
single step. In fact, query segmentation and resource disambiguation are mutually tightly interwoven.
Before running this model, we carry out two preprocessing functions as follows:

1. The segment validation which groups keywords to form segments. This function validates the
grouped segments with respect to the available resources in the underlying knowledge base(s).
Recognizing segments are based on a naive approach (we compare this approach with a gready

fashion in 9, [T1])).

2. The resource retrieval function obtains relevant resources from the underlying knowledge bases.
The retrieval is based on the string matching between valid segments and the rdfs:1label of
resources. Furthermore, more resources are inferred from lightweight owl : sameAs reasoning.

In this model, the input n-tuple of keywords is considered as the sequence of observations. The state
space is populated with states which a valid segment can be observed. Background knowledge (i.e.
semantic relatedness of two resources) is used for parameter estimation. The semantic relatedness is
defined in terms of two parameters: the distance between the two resources and the popularity of each

[QS & RD FQC QE DFon LD RDF DS

Template Inference Semantic Features — Query Reformulation
Chapter 2 |12 - v - - - - -
Chapter 3 [|1 4 - 4 - - v -
Chapter 4 |7 - - - v - - -
Chapter 5 [|5 - - - - 4 - -
Appendix A
Appendix B

Chapters

©
AN

o)
AV

Table 1.2: Overview of the thesis structure: chapters along with their corresponding publication & the addressed
challenges.

13

1 Introduction

of the resources. The distance between two resources is the path length between those resources. The
popularity of a resource is simply the connectivity degree (sum of both in and out degree) of the resource
with other resources available in the state space. We use the HITS algorithm for transforming these two
values to hub and authority values [[I] [6]].

Natural language processing (NLP) techniques are commonly used for text segmentation. We also
developed a technique which is a combination of named entity and multi-word unit recognition services
as well as POS-tagging for segmenting the input-query. Named entity, multi-word unit recognition and
POS-tagging fail in the case of an incomplete sentences (e.g. for keyword-based queries), we show that
our statistical approach is robust with respect to query expression variance (see [Appendix A)).

Evaluation: We rely on bootstrapping, a technique used to estimate an unknown probability dis-
tribution function. We test different bootstrapping methods for the HMM parameters using various
distributions (Normal, Zipf, Uniform) as well as an algorithm based on Hyperlink-Induced Topic Search
(HITS). The goal of ultimate evaluation was to determine effectiveness and efficiency the resource
disambiguation. We measured the effectiveness of our resource disambiguation approach using the Mean
Reciprocal Rank (MRR).

Results: Our proposed functions for HMM parameters produce the best results for both segmentation
and disambiguation. As the output, this model can provide a ranked list of all paths generating the
observation sequence with the corresponding probability. The following example shows a sample of the
output.

Example 1.3 Let us consider the query: What are the side effects of drugs
used for Tuberculosis?. The validated segments are: ‘side effect’, ‘drug’ and
‘Tuberculosis’. After the retrieval and pruning process, the state space contains the re-
sources listed in[Table 1.3] By running the Viterbi algorithm with the associated probabilities,
we obtain a ranked list of the chosen resources that the sequence {side effect, drug, Tubercu-
losis} is observable through them. In the following, we show the top-4 most likely paths
along with their associated probability.

1. 0.0033: Sider:sideEffect, Diseasome:possibleDrug, Diseasome:1154.
2. 0.0017: Sider:sideEffect, Diseasome:possibleDrug, Sider:C0041296.
3. 6.0257E-4: Sider:sideEffect, Sider:drugs, Diseasome 1154.
4. 4.0805E-4: Sider:sideEffect, Drugbank:Offer, Diseasome:1154.
Segment Resources Label Type
. 1. Sider:sideEffect side effect property
side effect 2. Sider:side_effects side effect class
1. Drugbank:drugs drug class
2. Drug bank:offer drug class
drug 3. Sider:drugs drug class
4. Diseasome:possibleDrug possible drug property
Tuberculosis 1. Diseasome:1154 tuberculosis instance
2. Sider:C0041296 tuberculosis instance

Table 1.3: The resources contained in the state space for a given query.

14

1.4 Approach and Contribution

1.4.2 Query Expansion

Our research and contribution in this field is divided in two parts. First, we introduce a number of
new query expansion features based on semantic and linguistic inferencing over Linked Open Data. We
evaluate the effectiveness of each feature individually as well as their combinations employing several
machine learning approaches. Second, we propose a method for automatic query expansion. We employ
a Hidden Markov Model (HMM) to obtain the optimal tuple of words. In the following, we shortly

describe each part. The first part is presented in [chapter 4]and the second part is presented in [chapter]

Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

The idea here is that automatic query expansion methods can use the graph structure of RDF and
follow interlinks between datasets.

Methodology: We introduce several semantic features for query expansion. In addition to linguistic
features (i.e. synonyms, hyponyms, hypernyms), the semantic features are defined as the following
semantic relations:

sameAs: deriving resources having the same identity as the input resource using owl:sameAs.
o seeAlso: deriving resources that provide more information about the input resource using rdfs:seeAlso.

o class/property equivalence: deriving classes or properties providing related descriptions for the
input resource using owl:equivalentClass and owl:equivalentProperty.

o superclass/-property: deriving all super classes/properties of the input resource by following the
rdfs:subClassOf or
rdfs:subPropertyOf property paths originating from the input resource.

o subclass/-property: deriving all sub resources of the input resource r; by following the rdfs:subClassOf
or
rdfs:subPropertyOf property paths ending with the input resource.

e broader concepts: deriving broader concepts related to the input resource r; using the SKOS
vocabulary properties skos:broader and skos:broadMatch.

e narrower concepts: deriving narrower concepts related to the input resource r; using skos:narrower
and skos:narrowMatch.

o related concepts: deriving related concepts to the input resource r; using skos:closeMatch,
skos:mappingRelation and skos:exactMatch.

Evaluation: When applying expansion methods, there is a risk of yielding a large set of irrelevant
words, which can have a negative impact on further processing steps. For this reason, we measure the
effectiveness of all linguistic as well as semantic features individually in order to decide which of those
are effective in query expansion. In order to do that we employ two kinds of classifiers (i.e., Support
Vector Machine (SVM) and Decision Tree). The second goal of our experimental study is how well a
linear weighted combination of features can predict the relevant words? We do this by using machine
learning methods to generate a linear combination of linguistic and semantic query expansion features
with the aim of maximizing the F'|-score and efficiency on different benchmark datasets.

Results: Interestingly, the setting with only semantic features result in an accuracy at least as high as
the setting with only linguistic features. This observation is an important finding that semantic features

15

1 Introduction

appear to be competitive with linguistic features. Our results allow developers of new search engines to
integrate automatic query expansion with good results without spending much time on its design. This
is important, since query expansion is usually not considered in isolation, but rather as one step in a
pipeline for question answering or keyword search systems.

Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

Methodology: In order to address the vocabulary mismatch problem, we introduce a novel method for
automatic query expansion with respect to background knowledge. We define the concept of triple-based
co-occurrence of words in RDF knowledge bases. Our method uses a Hidden Markov Model to determine
the most suitable derived words from linguistic resources. We test different bootstrapping methods for
the HMM parameters using various distributions as well as an algorithm based on Hyperlink-Induced
Topic Search (HITS).

Evaluation: We analyze the effect of this approach for both queries requiring expansion and those
which do not. The goal of our evaluation is to determine: (1) How effective is our method with regard
to a correct reformulation of queries which have vocabulary mismatch problem? (2) How robust is the
method for queries which do not have vocabulary mismatch problem?

Results: Our experimental study shows the feasibility and high accuracy of the method. This
implementation can provide a ranked list of all paths generating the observation sequence with the
corresponding probability.

Example 1.4 Let us consider the input query: altitude of Everest. The observation
list is shown in the first column of After constructing and pruning the state space,
it contains the words listed in the second column of (only a subset of state space is
presented). By running the Viterbi algorithm, we have a ranked list of the chosen words that
the sequence altitude of Everest is observable through. In the following, we show the
top-4 most likely paths along with their associated probability.

0.02451: altitude, Everest.
0.01681: elevation, Everest.
0.01145: length, Everest.
0.01145: height, Everest.
Observation States Origin Type
Everest Everest original keyword
altitude original keyword
elevation synonym
altitude he%gl:lt synonym
ceiling hyponym
level hyponym
distance hypernym

altitude Everest altitude Everest original keyword

Table 1.4: A subset of the state space along with the origin type, list of all observations for the given query
altitude Everest.

1.4.3 Formal Query Construction

We propose two methods for generating formal queries. In the first method presented in[chapter 2} we
use a set of predefined templates. This method is restricted to work only for a limited number of input

16

1.4 Approach and Contribution

keywords. In the second method presented in we do not have any predefined template and
instead we dynamically generate templates using inference over the type of the identified resources. Thus,
we do not have any limitation on the number of input keywords. In the following, we shortly present
these two methods.

Generating SPARQL Queries using Templates

Figure [2.2] shows an overview of our approach. Our approach firstly retrieves relevant IRIs related to
each user-supplied keyword from the underlying knowledge base and secondly injects them to a series
of graph pattern templates for constructing formal queries. To find these relevant IRIs, two steps as (1)
mapping keywords to IRIs and (2) ranking and selecting IRIs are carried out.

Knowledge
Base Graph

Keyword 1 — Pattern
o corresponds =¥ | Template
Keyword 2
generates

$ Classes
(O [Instances
_ Candidate
Mappings

— Object
Property

'

executed 4 SPARQL
in Quel

Figure 1.6: Overview of the proposed method.

Methodology: We propose a novel approach for generating SPARQL queries using graph pattern
templates. We define the concept of graph pattern template as a set of triple patterns containing
placeholders and variables. As an example, (s1, ?p1, ?01)(?01, p2, 7072) is a graph pattern template that
contains two triple pattern templates. Symbols preceded by question marks denote variables while
symbols without question marks are placeholders (e.g. s; and p, are placeholders). Placeholders are
replaced by IRIs associated with the input keywords. A placeholder can stand either for a property
(when occurring in the predicate position), an instance (when occurring at subject or object position)
or a class (when occurring at the object position). The SPARQL queries generated with our approach
are a restricted kind of SPARQL queries, since they use only basic graph patterns. We analysed 1,000
distinct queries from the query log of the public DBpedia endpointlz'zl and learned that the number of
IRIs is usually larger than the number of triple patterns occurring in the query. As a consequence of
this finding we decided to assume graph patterns for generating SPARQL queries for two user-supplied
keywords to consist of either one or two triple patterns. Therefore, this assumption leads to 17 possible
graph pattern templates. We perform an accuracy study on all combinatorial possible graph pattern
templates. This study showed that a filtered set of patterns limit the search space (thus leading to more
efficiency) without reducing the accuracy of our approach significantly. Consequently, we only consider
these patterns during the SPARQL-query generation process.

Example 1.5 After applying the mapping and ranking functions to the user query island
of germany, we obtain two IRIs, i.e. http://dbpedia.org/ontology/Island| with the

42 The DBpedia SPARQL endpoint is available at: fattp://dbpedia.org/sparql/| and the query log excerpt at:
|//download.openlinksw.com/support/dbpedia/}

17

http://dbpedia.org/ontology/Island
http://dbpedia.org/sparql/
ftp://download.openlinksw.com/support/dbpedia/
ftp://download.openlinksw.com/support/dbpedia/

1 Introduction

type class and http://dbpedia.org/resource/Germany| with the type instance. The
possible graph pattern templates for these two IRIs are:

1. (?island, a, dbo:Island), (?island, ?p, dbr:Germany)
2. (Zisland, a, dbo:Island), (dbr:Germany, ?p, ?island)

Our method would generate the following two queries:

1. SELECT * WHERE {
?island a dbo:Island
?island ?p dbr:Germany . }

2. SELECT * WHERE {
?island a dbo:Island .
dbr:Germany ?p ?island .}

Evaluation: We introduce two new accuracy metrics used for evaluation. Since the user’s intention in
keyword-based search is ambiguous, judging the correctness of the retrieved answers is a challenging
task. Therefore, we introduce the Correctness Rate (CR) as a measure for the preference of certain
RDF terms. This metric allows a user to rate the correctness of each individual answer based on its
own perception. Furthermore, we introduce fuzzy precision metric (FP), which measures the overall
correctness of a template’s corresponding answers with respect to a set of keyword queries Q.

This experiment was done in the following three levels:

1. Accuracy evaluation of possible graph pattern templates: In this study we aim at selecting those
templates that lead to a high accuracy

2. Application evaluation: we evaluated the approach based on the three metrics, i.e. fuzzy precision,
recall and f-score.

3. Comparative study based on relevance feedback: We compared our approach with a traditional
Web search engine (Google) and three Semantic Web search engines (Sindice, Sig.ma and Falcon).

Results: Since the approach is based on simple operations, it can generate and execute SPARQL
queries very efficiently. Another advantage of this approach is that it is completely agnostic of the
underlying knowledge base as well as its ontology schema. We implemented it as a Java Web application
which is publicly available at: [http://lod-query.aksw.orgl The whole query interpretation and
processing is performed typically on average in 15 seconds (while first results are already obtained
after one second) when using DBpedia as knowledge base. We currently use DBpedia as background
knowledge, but the approach is easily transferable to the whole Web of Data.

Generation of SPARQL Queries using Inference

Here, the goal is to construct a conjunctive queries (i.e. SPARQL queries) for a given set of resource
identifiers. We address automatic construction of conjunctive queries without using any predefined
templates.

Methodology: The core of SPARQL queries is basic graph patterns, which can be viewed as a query
graph QG. We define relevance probability for triple patterns. We aim at constructing QG with the
highest relevance probability. As a result of these considerations, we devise an algorithm that minimizes
the number of both free variables and triple patterns in a query graph.

Forward Chaining: One of the prerequisites of our approach is the inference of implicit knowledge on
the types of resources as well as domain and range information of the properties. To construct possible
query graphs, we generate in a first step an incomplete query graph I1QG such that the vertices are either

18

http://dbpedia.org/resource/Germany
http://lod-query.aksw.org

1.4 Approach and Contribution

equal or subset of the vertices (resp. edges) of the final query graph. In fact, an incomplete query graph
(IQG) contains a set of disjoint sub-graphs, i.e. there is no vertex or edge in common between the
sub-graphs. For the second step, we use an extension of the minimum spanning tree method that takes
subgraphs (and not sets of nodes) as input and generates a minimal spanning graph as output. Since in
the second step, the minimum spanning tree does not add any extra intermediate node (except nodes
connected by owl : sameAs links), it eliminates both the need of keeping an index over the neighborhood
of nodes, and of using exploration for finding paths between nodes.

Example 1.6 We look at the query: What is the side effects of drugs used
for Tuberculosis?. Assume the resource disambiguation process has identified the fol-
lowing resources:

1. diseasome:possibleDrug (type property)
Domain={diseasome:disease}, Range={drugbank:drugs}
2. diseasome:1154 (type instance)

Type={diseasome:disease}
3. sider:sideEffect (type property)

Domain={sider:drug}, Range={sider:sideeffect}

After running the IQGs generation, we will have two disjoint graphs shown in [Figure 1.7}
Then we connect these two disjoint graphs depicted in[Figure T.8]and thier corresponding
SPARQL queries are as follows:

The corresponding SPARQL queries are as follows:

1. SELECT * WHERE {

diseasome:1154 diseasome:possibleDrug ?v0 .
?vl sider:sideEffect ?v2 .
diseasome:1154 owl:SameAs ?v2 .}

2. SELECT * WHERE {

diseasome:1154 diseasome:possibleDrug ?v0 .
7vl sider:sideEffect v2 .
?v0 owl:SameAs ?vl .}
Graph 1 Graph 2

Figure 1.7: IQG for the Example

Evaluation: The goal of our evaluation was to determine effectiveness and efficiency of the query
construction with respect to accuracy and runtime. we measured the accuracy of the query construction
in terms of precision and recall. The results of the experimental study show high accuracy on our
benchmarks. In addition, in other to speedup runtime, we implement parallelization.

Results: The output of this algorithm is a set of graph templates. Each graph template represents a
comprehensive set of query graphs, which are isomorphic regarding edges.

19

1 Introduction

Template 1 Template 2

sideEffect

Figure 1.8: Generated query graph templates.

1.4.4 Data Fusion on Linked Data

The main challenges associated with data fusion on Linked Data are 1. How to disambiguate resources
retrieved from different datasets, and 2. How to generate a federated formal query using resources from
different datasets. This part of work has been published in [}, [6].

Methodology: Regarding the first challenge, our approach resembles a horizontal search, where query
segments derived from an input query are matched against all available datasets. Then, we extend the
Hidden Markov Model approach for disambiguating resources from different datasets. As an example of
this extension, we mention the extension of the state space with reasoning. It includes resources inferred
from lightweight owl : sameAs reasoning. Consequently, for extending the state space, for each state
representing a resource x we just include states for all resources y, which are in an owl : sameAs relation
with x. With respect to the second challenge, we construct a formal query (expressed in SPARQL) using
the disambiguated matches by traversing links in the underlying datasets. By taking links between the
matched resources (including owl : sameAs links) into account we obtain the minimum spanning graph
covering all matches in the different datasets.

Example 1.7 Let us consider the input query: Which are the drugs whose side
effects are associated with the gene TRPM67?. According to our approach, the
following federated SPARQL query (on two datasets, i.e. Diseasome and sider) is generated.

SELECT ?v2 WHERE {
?v0 diseasome:associatedGene diseasome:TRPM6 .
?v0 owl:sameAs ?vl .
?v2 sider:sideEffect ?vl .}

Evaluation: The goal of our evaluation was to determine effectiveness and efficiency of (1) the
resource disambiguation and (2) the query construction on interlinked datasets with respect to accuracy
and runtime. We measure the effectiveness of our resource disambiguation approach using the Mean
Reciprocal Rank (MRR) and the accuracy of the query construction in terms of precision and recall. Our
underlying knowledge base is life-science benchmark. We study the runtime in its mono-core and parallel
implementations and draw preliminary conclusions on the scalability of keyword search on Linked Data.

Results: The result of evaluation shows the effectiveness as well as scalability of this approach. We
are able to answer queries on distributed sources. The output is a federated query connecting resources
from different datasets.

1.4.5 Benchmark Creation

A significant contribution of this thesis is providing two benchmarks to the community of question
answering systems. We developed two benchmarks for two different tasks. First one is used for federated
queries over Linked Data task. The second one is used for query expansion task.

20

1.5 Conclusion and Future Work

Since there was no benchmark for federated queries over Linked Data, we created a benchmark
consisting of 25 queries (natural language queries and their equivalent SPARQL queries) on the three
interlinked datasets Drugbank, Sider and Diseasomq'ﬂ El] Currently, our created benchmark as an
standard benchmark is contributed in QALD—@ campaign. QALD-4 is the fourth in a series of evaluation
campaigns on multilingual question answering over linked data.

Moreover, since there is no benchmark for query expansion tasks over Linked Data we created
one benchmark dataset [[7]]. This benchmark contains 37 keyword queries obtained from the QALD-1
and QALD-2 benchmar The QALD-1 and QALD-2 benchmarks are essentially tailored towards
comparing question answering systems based on natural language queries. We extracted all those
keywords contained in the natural language queries requiring expansion for matching to the target
knowledge base resource. An example is the keywords wife and husband which should be matched to
dbpedia-owl:spouse.

1.4.6 RDF Data Slicing

Motivation: An increasing amount of structured data is being published on the Web as Linked Open
Data (LOD). Yet, consuming and using Linked Open Data within an organization is still a substantial
challenge because many of the LOD datasets are quite large. In this work, we focus on the selection and
extraction processes. Selection comprises the definition and specification of a relevant fragment of a
dataset, which is envisioned to be used internally by a consuming organization. Extraction processes the
dataset dump and extracts the relevant fragment.

Methodology: We devise a fragment of SPARQL dubbed SliceSPARQL, which enables the selection
of well-defined slices of datasets fulfilling typical information needs. SliceSPARQL supports graph
patterns for which each connected subgraph pattern involves a maximum of one variable or IRI in its join
conditions. This restriction guarantees the efficient processing of the query against a sequential dataset
dump stream [J3] [8].

Evaluation: The goal of our evaluation was to determine: 1. How efficient is the slicing approach for
various queries? 2. How does the slicing scale for datasets of different size? 3. How does our approach
compare to the traditional approach (i.e. loading complete dumps into the triple store and extracting by
querying).

Results: As a result, our evaluation shows that dataset slices can be generated an order of magnitude
faster than by using the conventional approach of loading the whole dataset into a triple store and
retrieving the slice by executing the query against the SPARQL endpoint of triple stores.

1.5 Conclusion and Future Work

Massive amount of structured data, which are distributed and interlinked has been published on Linked
Data. Yet, retrieving data from such precious interlinked knowledge bases is a challenge. Thus, a new
generation of search approaches is demanding to enable common users to easily but more semantically
retrieve knowledge. The aim of this thesis was to research and address challenges in the way of a semantic
search system on Linked Data. Such a system lies on a simple interface (i.e. textual query) similar to
traditional search engines, but it takes the structure of data into account, therefore, retrieval of data is
more semantic-oriented. During our research, we tackled a number of existing challenges (i.e. query

43 The benchmark queries are available at Ihttp ://wiki.aksw.org/Proj ects/lodqueryl
“Mhttp://greententacle.techfak.uni-bielefeld. de/~cunger/qa1d/|
#lhttp://www.sc.cit-ec.uni-bielefeld.de/qald-p forn =1,2.

21

http://wiki.aksw.org/Projects/lodquery
http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
http://www.sc.cit-ec.uni-bielefeld.de/qald-

1 Introduction

segmentation and disambiguation, query expansion, formal query construction and data fusion on Linked
Data). We summarize our contributions as follows:

1. A novel approach for determining the most suitable resources for a user-supplied query from
different datasets (disambiguation approach). We employed a Hidden Markov Model, whose
parameters were bootstrapped with different distribution functions.

2. A novel method for constructing federated formal queries using the disambiguated resources and
leveraging the linking structure of the underlying datasets. This approach essentially relies on a
combination of domain and range inference as well as a link traversal method for constructing a
connected graph, which ultimately renders a corresponding SPARQL query.

3. Regarding the problem of vocabulary mismatch, our contribution is divided into two parts: First, we
introduce a number of new query expansion features based on semantic and linguistic inferencing
over Linked Data. We evaluate the effectiveness of each feature individually as well as their
combinations, employing Support Vector Machines and Decision Trees. Second, we propose a
novel method for automatic query expansion, which employs a Hidden Markov Model to obtain
the optimal tuples of derived words.

4. We provide two benchmarks for two different tasks to the community of question answering
systems. The first one is used for the task of question answering on interlinked datasets (i.e.
federated queries over Linked Data). The second one is used for the vocabulary mismatch task.

In each part, we evaluate the accuracy of our approach using measures like mean reciprocal rank,
precision, recall, and F-measure. The results of our accuracy evaluation demonstrate the effectiveness
of our approach. Moreover, we study the runtime of our approach in its sequential as well as parallel
implementations and draw conclusions on the scalability of our approach on Linked Data.

Our proposed method for query segmentation and resource disambiguation as well as query expansion
achieved significant accuracy. Nevertheless, there is still room for further improvements. Furthermore,
there are challenges which have not been addressed yet. Below, we briefly mention research areas in
which we can extend the work.

1. Our proposed methods for query segmentation and resource disambiguation as well as query
expansion achieved significant accuracy. But its parameters were estimated using bootstrapping.
We ponder that the accuracy can be enhanced further using a learning approach. To employ a
learning approach, we need large enough benchmarks as training and test datasets.

2. Our method for query construction is limited to generating only conjunctive queries, we may
extend this method to be able to generate quantifiers, comparative as well as superlative clauses.

3. With respect to scalability, we must apply our approach on a bigger number of interlinked datasets
in order to figure out upcoming challenges.

4. Query cleaning is a challenge that was not addressed in this thesis; thus it is one of our main
focuses in future.

Apart from the above plans, we can extend our system to interact with traditional search engines. This
is because traditional search engines retrieve data from rich textual content on the Web. Researchers
separately have investigated information retrieval from structured and unstructured data. The envisioned
plan for future can be defined as a hybrid search which takes both the unstructured as well as structured

22

1.5 Conclusion and Future Work

data into account. Therefore, we can take advantage of the high amount of data, which is unstructured.
In other words, we aim at promoting search by a mutual benefit from both types of data (i.e. structured
and unstructured). With this respect, the following challenges are raised:

1. How can we retrieve data using an approach that combines schema-unaware techniques (i.e. infor-
mation retrieval techniques) and schema-aware techniques (NLP as well as inference techniques)?

2. How can structured data (resp. unstructured data) support data retrieval on unstructured data (resp.
structured)?

23

CHAPTER 2

Generating SPARQL Queries Using Templates/|

Abstract: The search for information on the Web of Data is becoming increasingly difficult due to
its considerable growth. Especially novice users need to acquire both knowledge about the underlying
ontology structure and proficiency in formulating formal queries (e. g. SPARQL queries) to retrieve
information from Linked Data sources. So as to simplify and automate the querying and retrieval of
information from such sources, this paper presents an approach for constructing SPARQL queries based
on user-supplied keywords. Our approach utilizes a set of predefined basic graph pattern templates for
generating adequate interpretations of user queries. This is achieved by obtaining ranked lists of candidate
resource identifiers for the supplied keywords and then injecting these identifiers into suitable positions
in the graph pattern templates. The main advantages of our approach are that it is completely agnostic
of the underlying knowledge base and ontology schema, that it scales to large knowledge bases and is
simple to use. We evaluate all 17 possible valid graph pattern templates by measuring their precision
and recall on 53 queries against DBpedia. Our results show that 8 of these basic graph pattern templates
return results with a precision above 70%. Our approach is implemented as a Web search interface and
performs sufficiently fast to provide answers within an acceptable time frame even when used on large
knowledge bases.

2.1 Introduction

Googldzlis the most widely used search engine in retrieving information from documents on the Web.
Recently, Google has extended its functionality so as to provide direct answers to queries which match
certain templates, e.g., “Capital of Spain”. However, web search engines still lack the ability to answer
complex queries or consolidate information from different resources (i.e. integration of, and reasoning
on, data on the Web.). These limitations are due to inherent unstructured nature of information in Web of
Documents.

The Semantic Web introduces technologies (RDF, OWL, SKOS, SPARQL, etc.) for publishing
machine-readable formats of informatiorEl The heart of the technologies behind the Semantic Web is

! Corresponding publication is: Saeedeh Shekarpour, Soren Auer, Axel-Cyrille Ngonga Ngomo, Daniel Gerber, Sebastian
Hellmann, and Claus Stadler, “Generating SPARQL queries Using Templates”, Web Intelligence and Agent Systems Journal
11.3 (2013) pp. 283-295

http://www.google. coml

http://www.w3 .org/TR/rdfll—concepts/]

[N

w

25

http://www.google.com
http://www.w3.org/TR/rdf11-concepts/

2 Generating SPARQL Queries Using Templates

the Resource Description Framework (RDF). RDF uses URISEl and IRIsEl to refer to entities (an entity
can be every thing) and is used by Semantic Web tools and frameworks to publish structured data whose
meaning is defined in ontologies described in RDF Schema(RDFS) or the Web Ontology Language
(OWL). In addition to the publishing of structured data, RDF allows the interlinking and merging of data
across the Web [[13] [14]]. As a result of the Semantic Web idea and more importantly the existence of
large amounts of structured data distributed across the Web, the idea of the Web of Data emerged. The
Web of Data refers to the set of knowledge bases published according to the Linked Data principles, i.e.,
a set of best practices for publishing and connecting structured data on the Web [[16].

Since its creation in 2007, the Linked Data Web has been growing at an astounding rate. Currently, it
amounts to more than 31 Billion triplesﬁ The mere amount of data contained therein poses an important
challenge as to how to query this amount of knowledge. In fact, it is increasingly difficult for end users
to find the information they are looking for. Services such as Sindice [26]], Sig.ma [27]], Swoogle [28]
or Watson offer simple search servicesﬂ but are either restricted to the retrieval of single RDF
documents or in the case of Sig.ma to the retrieval of information about a single entity from different
sources. Some servicesﬂ on the other hand load the complete the Data Web into a large triple store cluster
and enable issuing SPARQL queries on top of it. However, in order to express their information needs
in terms of SPARQL queries, users have to (a) understand the SPARQL concepts, (b) understand the
SPARQL syntax (in absence of a visual query builder) and (c) know what information structures are
actually available in order to formulate queries that also return results. To enable lay users to access the
Data Web, it becomes necessary to simplify the access to the Data Web by providing search interfaces
that resemble the search interfaces commonly used on the document-oriented Web. However, because
queries based on natural language (NL) are inherently ambiguous, their precise interpretation is extremely
challenging. While SPARQL queries permit to express unambiguously which entities and relations are
relevant for the query, keyword-based search as implemented in current web search engines does not
permit the explicit expression of relations. Services such as PowerAqud’[30] demand from the user to
enter a question in natural language, but this is often inconvenient because most users prefer to obtain
information by the lowest number of keywordsEl Another obstacle to the realization of this approach lies
in the sheer size of the Data Web, which requires very efficient and scalable query processing algorithms.

In this paper, we propose a novel approach for generating SPARQL queries based on user-supplied
keywords. Our approach presupposes the availability of background knowledge in the form of a set
of Linked Data sources upon which the user wants her search to be carried out. Based on a set of
user-supplied keywords, we first compute a list of candidate IRIs for each of the keywords issued by the
user. In a second step, we restrict the set of valid IRIs to those which are related to each other via a link in
the background knowledge. Finally, we use the filtered set of IRIs to generate SPARQL queries that aim
to encompass the semantics of the query supplied by the user. We currently use DBpedia as background
knowledge, but the approach is easily transferable to the whole Data Web. The basis for this claim is
simple. Knowledge bases differ in the schemas they use and not in their format, which is always RDF. As
our approach is clearly schema-agnostic, it can be deployed on any Linked Data source on the Web of
data. Since the approach is based on simple operations, it can generate and execute SPARQL queries

Uniform resource identifier, a string of characters used as unique identified for a resource.

3 Internationalized Resource Identifier, a generalization of URIs.

Shttp://wwwd.wiwiss. fu-berlin.de/lodcloud/state/|(Febrivary 25th, 2013)

7 These systems are available at: http: //sindice.com |http://sig.malfhttp://swoogle.umbc.edul|http: //kmi-web85.open|

ac.uk/WatsonWUI

$ For examplehttp: //lod.openlinksw.con|
9 http://poweraqua.open.ac.uk: 8®8®/poweraqua2]
10 http://www.keyworddiscovery.com/keyword-stats. htmll

26

http://www4.wiwiss.fu-berlin.de/lodcloud/state/
http://sindice.com
http://sig.ma
http://swoogle.umbc.edu
http://kmi-web05.open.ac.uk/WatsonWUI
http://kmi-web05.open.ac.uk/WatsonWUI
http://lod.openlinksw.com
http://poweraqua.open.ac.uk:8080/poweraqua2
http://www.keyworddiscovery.com/keyword-stats.html

2.2 Approach

tically interpreted user
Germany Island
fast/shallow 10 slow/thorough

See results for Germany and Island

Query Interpretation 1

Zsubject is-a Island .
Zsubject ?predicate Germany

Subject Predicate Object

Sylt geoRelated Germany
Rugen geoRelated Germany
East Frisian Islands geoRelated Germany
Mainau geoRelated Germany

Figure 2.1: Example query in GUI available at[Lod-query.aksw.org| for the search keywords germany and
island.

very efficiently. Another advantage of this approach is that it is completely agnostic of the underlying
knowledge base as well as its ontology schema.

This paper is organized as follows: In we present the background definitions and an
overview of the approach along with our method for choosing candidate IRIs. The subsequent section
introduces all possible graph pattern templates for pairs of IRIs. In[section 2.4 we describe our approach to
the construction of SPARQL queries based on graph pattern templates. We elaborate on our experimental
setup and the selection of graph patterns, as well as analyze our results in[section 3.6] The related work is

reviewed in We close with concluding remarks and an outlook on future work in the last
section.

2.2 Approach

2.2.1 Preliminaries

The basic assumption underlying our approach is that natural language queries cannot always be
converted into formal queries automatically. This is due to the meaning of some of the query elements
being either unknown, ambiguous, or implicit. For example, in the query *Which are the islands in
Germany?’, the relation between Germany and islands is indicated by are, but the precise relationship is
are located in. The problem of mapping a user query to a formal query gets even more complex when
the user uses keywords instead complete natural language queries, because even more information is
omitted. In addition, experience with classical search engines shows that users prefer to enter the lowest
possible number of keywords in order to retrieve information related to their query. For example, the
query mentioned above would be naturally expressed with the keywords Germany and islands.

27

lod-query.aksw.org

2 Generating SPARQL Queries Using Templates

In the context of the Semantic Web, the expected answer to a query is usually a set of RDF resources
linked by certain relations (representing a connected graph). Consequently, the second assumption
underlying our approach is that user-supplied keywords must play the role of anchor points (i.e., matched
nodes or edges of the RDF graph) that are to be used to retrieve knowledge from the background
knowledge via some form of bootstrapping. We illustrate the difficulties of the bootstrapping processing
with the following examples:

Example 2.8 Consider two keywords "Germany" and "capital” which a user uses to
search for an RDF graph containing Berlin as the answer. The corresponding SPARQL
query i

SELECT * WHERE {

dbr:Germany dbp:capital ?var .

}
and the desired answer is shown as an RDF triple as follows:
dbr:Germany dbp:capital dbr:Berlin .

Example 2.9 Consider two keywords "Germany" and "island" used with the intention to
search for the list of Germany’s islands. The suitable SPARQL query is:

SELECT * WHERE {
?island a dbo:Island
?island ?p dbp:Germany .

Some desired answers to be retrieved are:

1:db:Sylt a dbo:Island .
db:Sylt dbp:country dbr:Germany .

2:db:Vilm a dbo:Island .
db:Vilm dbp:country dbr:Germany .

3:db:Mainau a dbo:Island

db:Mainau dbp:country dbr:Germany .

Here, we encounter two issues. First, we need to find a set of IRIs (anchor points) corresponding to
each keyword. Second, we have to construct suitable triple patterns based on the anchor points extracted
previously so as to retrieve appropriate data. These goals are achieved by the approach presented in the
following.

2.2.2 Terminology and Definitions

We call an IRI matching to a keyword an anchor point. The process of finding a sub-graph covering
all anchor points is called induction. Note, that most semantic search approaches (e.g., [30H34])) perform
induction first on the ontology level to extract appropriate graph pattern templates, and then apply those
templates to the instance level. We, however, do not separate induction in the ontology level from the

! for the prefixes see http://prefix.cc/[dbpedia | dbp | dbo | dbr]

28

2.2 Approach

instance level since ontology statements are usually available either in the knowledge base or via Linked
Data de-referencing as RDF triples. Consequently, instances and ontology statements are connected
based on rdf: type properties, allowing our induction not to have to separate between ontology and
instance knowledge. Formally, we base our approach on the following definitions:

Definition 1 (Keyword set). We define the set of user-supplied keywords as K = {ky, kp, ..., ky}.

Definition 2 (Knowledge base signature). The knowledge base signature KBS is represented by KBS =
(C, 1, P), where C denotes the set of classes, I denotes the instances of these classes and P denotes the set
of properties used in the relationships between classes or instances (also including datatype properties).

Definition 3 (Connected query result). A single connected query result denoted R = {(s, p, 0)|(s, p, 0) a triple},
consists of a set of triples which are connected through common subjects or objects, i.e.:

(IRl < 1)V (Y(s1,p1,01) € R : A(s2, p2,02) €R|

(sp =851 Vs =01Voy=01Vo0y=5]))

These sets of triples express sentences which represent a sort of integrated information around the user
keywords.

2.2.3 Overview

Knowledge

Graph
Keyword1 [Pattern
- -~4 corresponds =W | Template
~. to I
Keyword 2 N
N generates
T -
b \: . . -)
hY ™
§ Classes AR
A
O Icnstances 5 @ c¥ecuted SPARGL
_ Candidate in Que
Mappings
— Object
Property

Figure 2.2: Overview of the proposed method.

Figure 2.2 shows an overview of our approach. Our approach firstly retrieves relevant IRIs related to
each user-supplied keyword from the underlying knowledge base and secondly injects them to a series of
graph pattern templates for constructing formal queries. So as to find these relevant IRIs, the following
two steps are carried out:

2.2.4 Mapping Keywords to IRIs

The goal of this function is the retrieval of entities that match with the user-supplied keywords.
Matching entities and keywords is carried out by applying a string similarity function on the keywords

29

2 Generating SPARQL Queries Using Templates

#PRecall OFuzzyPrecision M F-score

Accuracy of Patterns for Category IP Accuracy of Patterns for Category CI
1 =
0.8
0.6
0.4
0.2
0 +— T T
IP.P1 IP.P2 IP.P3 IP.P4 IP.PS IP.P6 CL.p7 Cl.p8
Accuracy of Patterns for Category Il Accuracy of Patterns for Category CP
1 o 1
0.8 0.8 -
0.6 0.6
0.4 0.4
0.2 0.2 ;
0 | : /s : 0 | ST -— . i :
11.P9 11.P10 11.P11 1.P12 CP.P13 CP.P14

Figure 2.3: Accuracy of each categorized graph pattern.

and the label properties of all entities in the knowledge base. This similarity evaluation is carried out on
all types of entities (i.e., classes, properties and instances). As a result, for each keyword, we retrieve a
list of IRI candidates, i.e. anchor points.

Definition 4 (Mapping function). Let K be the set of user-supplied keywords. The mapping function
M : K — 2CVYIYP gpplies the sub-string similarity measure on each k; € K and on the rdfs:1abel of
all IRIs in our underlying knowledge base and returns the set APy, C C U1 U P (where C, I and P are
the sets of classes, instances and properties contained in the knowledge base respectively), whose labels
contain k; as a sub-string or are equivalent to k;.

Ranking and Selecting Anchor Points

This step aims at excluding anchor points which are probably unrelated to any interpretation of the user
keyword; thereby reducing the potentially high number of anchor points to a minimum. This reduction is
carried out by applying a ranking method over the string similarity score and the connectivity degree of
the previously detected IRIs in each APy,. For each u € APy, a specificity score, denoted by S, is defined
based on two parameters, i. e. a string similarity score and a connectivity degree.

The string similarity score o calculates the similarity of the rdfs:1label of u € APy, and of the
keyword k; by measuring the normalized edit distance between u,q¢.1ape1 and k;. As the query we use
for retrieving IRIs guarantees that k; is a substring of u;,p.;, computing the edit distance between these
two strings is equivalent to computing the difference in their length. Note that edit distance is the most
common string similarity metric for typos. We normalize the string similarity score of each label by
using the max-min normalization method to compute similarity values between 0 and 1. Consequently,

30

2.3 Graph Pattern Templates

0 (Uaper, ki) = 1 means that the two strings are equal. Formally,

Iulahel | - 61}‘1;2() Ivlabel|
» ,
o (gaper, ki) = 1 = ’ (2.1)
max |vjaper| — Ikil
veAP(k;)

We also compute a simplified approximation of the connectivity degree CD(u) for each u € APy,
by counting how often u occurs in the triples of the knowledge base. It is important to note that IRIs
with type class and property have higher CD values. In DBpedia, for example, classes have an
average connectivity degree of 14,022, while properties have in average 1,243 and instances 37. Since
connectivity degree values are exponential, we use the logarithm of these values to compute S («). The
intuition is that both string similarity score and connectivity degree has a direct effect on the specificity S
of each u. Therefore, the specifity for each u € AP(k;) is finally calculated as the multiplication of both
of these parameters as follows:

S (u) = o (uiaver, ki) % 1og(CD(u)) (2.2)

Definition 5 (Ranking and selection function). The ranking and selection function RS maps APy, to the
set Uy, as top-10 of the IRIs contained in APy, sorted in descending order based on S (u) where u € APy,.

2.3 Graph Pattern Templates

Throughout the paper, we use the standard notions of the RDF|E| and SPARQLEl specifications, such
as graph pattern, triple pattern and RDF graph. The SPARQL queries generated with our approach
are a restricted kind of SPARQL queries, since they use only basic graph patterns without blank nodes.
We analysed 1,000 distinct queries from the query log of the public DBpedia endpoinlEl and learned
that the number of IRIs is usually larger than the number of triple patterns occurring in the query. As a
consequence of this finding we decided to assume graph patterns for generating SPARQL queries for two
user-supplied keywords to consist of either one or two triple patterns.

Definition 6 (Graph pattern template). Let H be a set of placeholders and V be a set of variable
identifiers being disjoint from each other and from C U 1 U P. A graph pattern template is defined as
GPT ={(s,p,0)l(se VUH) A (p e VUH)A (0o € VU H)} that contains exactly two placeholders. Two
triple patterns being part of the same graph pattern template have to share a common subject or object.
In our triple pattern templates, a placeholder can stand either for a property (when occurring in the
predicate position), an instance (when occurring at subject or object position) or a class (when occurring
at the object position) depending on its position. After replacing the placeholders in a graph pattern
template with the detected IRIs, a graph pattern with triple patterns of the form (VUI)X(VUP)X(VUCUI)
is obtained.

Note that our notion of graph pattern templates is a slight restriction of the SPARQL basic graph
patterns in the general case, since our definition does not consider blank nodes and restricts the set of
possible IRIs at a certain position in the triple pattern. Definition [f]leads to the 17 possible graph pattern
templates shown in [Table 2.1] In this table, we subdivided the patterns in different categories, depending

12 http://www.w3.org/TR/rdf-schema/

13 http://www.w3.org/TR/rdf-sparql-query/

14 The DBpedia SPARQL endpoint is available at: fattp://dbpedia.org/sparql/|and the query log excerpt at:
|//download.openlinksw.com/support/dbpedia/}

31

http://dbpedia.org/sparql/
ftp://download.openlinksw.com/support/dbpedia/
ftp://download.openlinksw.com/support/dbpedia/

2 Generating SPARQL Queries Using Templates

Category Patterns Pattern Schema
IP.P1 (s, p, ?0)
IP.P2 (?s,p,0)

1IP.P3 (751, ?p1,01)(?s1, p2, 202)
1P.P4 (751, ?p1,01)(?02, P2, 7s1)
IP.P5 (s1,?p1, 201)(?s2, P2, 701)
IP.P6 (s1,?p1, 201)(?01, p2, 702)

Instance-Property (IP)

CLP7 (?s1,a,¢)(?s1,?7p1,01)
Class-Instance (CI) CLPS (51,0, ¢)(s2,2p1, 251)
IL.P9 (s, ?p,0)
ILP10 (s, 7p1, 2x)(?x, ?p2, 0)
Instance-Instance (II) P11 (s1,2p1, 20)(52, 2p2, 2%)
IL.P12 (?s, ?2p1,01)(2s, 2p2,02)
CP.P13 (?s,a,c)(?s, p, 70)
Class-Property (CP) | cppyy (s.a,)(%x, p.?s)
PPPI5 (s, p1, 2%)(?x, p2, 20)

Property-Property (PP) PP.P16 (751, p1, 20)(?s52, p2, 20)
PP.P17 (?s, p1,201)(?s, p2, 702)

Table 2.1: Categorization of all possible graph pattern templates for each typed pair of placeholders.

Category Patterns Pattern Schema
IP.P1 (s, p, ?0)

IP.P4 (751, ?p1,01)(?02, p2, ?s1)
IP.P6 (81, ?p1, ?01)(?01, p2, 102)

Instance-Property(IP)

CLP7 (?s1,a,¢)(?s1,7p1.01)

Class-Instance(CI) CIPS Ost.a.0)(s2,2p1, 251)
11.P9 (s, 7p,0)

Instance-Instance(Il) ILP10 (5,2p1, 20(7x, 22, 0)

Class-Property(CP) CPP14 (?s,a,¢c)(?x, p, ?s)
Property-Property(PP) -

Table 2.2: Appropriate identified graph pattern templates.

on whether they map instances to instances, classes to instances etc. Symbols preceded by question
marks denote variables while symbols without question marks are placeholders which will be replaced
by IRIs referring to the identified anchor points.

Example 2.10 After applying the mapping and ranking functions to the user keywords
(from Example EI), we obtain two IRIs, i.e. http://dbpedia.org/ontology/Island|
with the type class andfhttp://dbpedia.org/resource/Germany|with the type instance.
The possible graph pattern templates for these two IRIs are:

1. (%island, a, dbo:Island), (?island, ?p, dbr:Germany)
2. (7island, a, dbo:Island), (dbr:Germany, ?p, ?island)

As detailed in we performed an accuracy study on all combinatorial possible graph pattern
templates. This study showed that the patterns contained in[Table 2.2]limit the search space (thus leading
to more efficiency) without reducing the accuracy of our approach significantly. Consequently, we only
considered these patterns during the SPARQL-query generation process described below.

2.4 SPARQL Query Generation

Algorithm [T7] outlines the procedure for generating SPARQL queries based on the graph pattern
templates shown in After selecting the top ranked IRIs based on Definition 5] according to the

32

http://dbpedia.org/ontology/Island
http://dbpedia.org/resource/Germany

2.5 Evaluation

type of each pair of IRIs issued from the cross-product of Uy, a set of suitable graph pattern templates is
selected from [Table 2.2|for generating SPARQL queries.

Example 2.11 For the pair of IRIs http://dbpedia.org/resource/Germany| and
lhttp://dbpedia.org/ontology/Islandl our algorithm would generate the following
two queries:

1. SELECT * WHERE {
?island a dbo:Island .
?island 7?7p dbr:Germany . }

2. SELECT * WHERE {
?island a dbo:Island .
dbr:Germany ?p ?island . }

The results of this algorithm are the output of our approach. To validate the approach, we implemented
as a Java Web application which is publicly available at: http://lod-query.aksw.orgl A screenshot
of the search results is shown in[Figure 2.1] The whole query interpretation and processing is performed
typically on average in 15 seconds (while first results are already obtained after one second) when using
DBpedia as knowledge base.

Data : K Keyword Set, knowledge base KB
Result : A set of connected query results

1 foreach keyword k; do
2 retrieve APy;;
3 sort APg;;
4 RS (APg,) = top-10 ranked IRIs from APk;;
5 end
6 foreach u € RS(APg,) & u’ € RS(APg;) do
7 switch Category of u,u’ do
8 endsw
9 case Class-Instance
10 query(CLP7,u, u’);
11 query(CLP8,u, u’);
12 case Class-Property
13 ‘ query(CP.P14,u, u");
14 case Instance-Instance
15 query(ILP9,u, u’);

16
17 end

Algorithmus 1 : Query generation algorithm. The function query constructs the query based on the
query pattern given as first argument and the entity identifier to placeholder mapping supplied as 2nd
and 3rd argument.

query(ILP10,u, u’);

2.5 Evaluation

This section is divided to four parts. First, we introduce the accuracy metrics used for evaluation.
Second, we outline the results of an accuracy study on all valid graph pattern templates introduced in

33

http://dbpedia.org/resource/Germany
http://dbpedia.org/ontology/Island
http://lod-query.aksw.org

2 Generating SPARQL Queries Using Templates

with the aim of selecting those templates that lead to a high accuracy. Third, we evaluate
our whole application by using the metrics presented in the following subsection. In the last section, a
comparison study based on relevance feedback is presented.

2.5.1 Accuracy Metrics

Since the user’s intention in keyword-based search is ambiguous, judging the correctness of the
retrieved answers is a challenging task. Let us consider the following example:

Example 2.12 Given the keywords France and President the following RDF graphs
(i.e. answers) are presented to the user:

1. Nicolas_Sarkozy nationality France

Nicolas_Sarkozy a President
2. Felix_Faure birthplace France
Felix_Faure a President
3. Yasser_Arafat deathplace France
Yasser_Arafat a President

The input of the user can be interpreted in at least two ways:
1. Who is the current president of France?
2. Who are the people that have ever been presidents of France?

Depending on the meaning intended by the users, these patterns can be considered as being accurate or
not. If the second interpretation is correct, then Felix Faure, who was the president of France from 1895
to 1899, is a correct answer, else it is not. We only consider those answers correct that meet our original
intention whereas all other ones are considered incorrect. According to this the correct answers are (1)
and (2). However, among the correct answers note the difference in the involved predicates, namely
birthplace and nationality. An observation is that we can draw a distinction between whether an answer
contains statements relevant to our search intention and whether these statements are the preferred ones.
We will measure the preference of an answer based on the occurring RDF terms. RDF terms (short
terms) comprise each individual subject, object or predicate in the triples of the answer. In our example,
we prefer nationality over birthplace because if a person is born in one country may be president in a
different one, it is very unlikely that a president has a different nationality than the country he is president
in.

Therefore, besides distinguishing between answers related to different interpretations, we also differ-
entiate between pure answers (just containing preferred terms) and those which contain some impurity.
In fact, the correctness of an answer is not a bivalent value but based on the user’s perception. Rather,
it may vary between completely irrelevant and exactly correct. In essence, within this evaluation, we
address two main questions: 1) For how many of the keyword queries do the templates yield answers at
all with respect to the original intention? 2) If answers are returned, how correct are they?

Therefore, we introduce the Correctness Rate (CR) as a measure for the preference of certain RDF
terms. This metric allows a user to rate the correctness of each individual answer based on its own
perception.

34

2.5 Evaluation

Definition 7 (Correctness rate). For an individual answer a for a query g, we define CR,(a) as the
fraction of correct (preferred) RDF terms occurring in it.

correct terms
CRy(a) = ;
[total terms|

Based on the CR for individual answers, we can derive the average CR (ACR) for a set of answers:

Definition 8 (Average CR). For a given set of answers A of a query g, we define ACR,(A) as the
arithmetic mean of the CRs of its individual answers.

1
ACR(4) = 7+ > CRy(a)
acA

The ACR is the basis for the fuzzy precision metric (FP), which measures the overall correctness of a
template’s corresponding answers A, with respect to a set of keyword queries Q.

PP 2qe0 ACRy(Ay)
|queries with answers|

By using the fuzzy precision, we can now measure the quality of the results returned by each individual
graph pattern template. The rationale between our measurements is that a template is not required to
contribute answers to the set of all answers (as other templates of the same corresponding category may
compensate for that. However, if answers are provided, they are subject to the correctness evaluation.

We also measured the recall as the fraction of keyword queries for which answers were found:

|queries with answers|

Recall = -
|total queries|

Finally, we use the following definition of the F-Score [35]:

FP«R
FP+R

F=2x

2.5.2 Accuracy Evaluation of Possible Graph Pattern Templates

Since we are interested in using those graph pattern templates which typically result in precise answers
with respect to the user intention of keywords, we evaluated the accuracy of each graph pattern template
by running a SPARQL query containing each individual graph pattern template introduced in [Table 2]
by injecting a series of IRI pairs. We selected 40 natural language queriesiEl of the TREC-9 - question
answering track from which we extracted the two main keywords conveying the general meaning. The
selection was performed based on balancing between different query types (i.e. associations, similar
instances and characteristics) and expressibility by two keywords. For example, the query "How many
people live in Chile?’ can be expressed by the keywords Chile and population. Thereafter, the mapping
function was applied to these keywords and from the retrieved IRIs, the most suitable ones were manually
selected and assigned to the related dataset with regard to their type. We used DBpedia 3.5.1 [23]] as the
underlying knowledge base. After preparing the datasets, we performed a series of SPARQL queries for
each single graph pattern template over the corresponding dataset. The results of the SPARQL queries
along with the keywords were shown to two evaluators to score the CR metric for each individual answer.

15 Queries are available online at{http ://aksw.org/Proj ects/lodquery}

35

http://aksw.org/Projects/lodquery

2 Generating SPARQL Queries Using Templates

After rating CR for all retrieved answers related to a graph pattern template, fuzzy precision, recall and
F — score were computed. shows the accuracy of each graph pattern template based on these
three metrics. In the category Property-Property, the number of retrieved answers for all graph pattern
templates was zero.

Our results show that some pattern templates such as P1 in the Instance-Property category as well as
P7 and P8 in the Instance-Class category have a high fuzzy precision while their recall is low. In the case
of P11 from the Instance-Instance category we have a high recall while the fuzzy precision is low. Hence,
this graph pattern template generates a large number of irrelevant answers.

We discarded all templates with a fuzzy precision of less than 0.5, resulting in an increase of the overall
precision and only a small loss in recall. We monitored the ACR for a set of queries before and after the
reduction of graph pattern templates in the category IP and II, because most reductions occurred there. In
the category IP, all queries with ACR higher than 0.4 and in the category II with ACR higher than 0.6
were properly answered with the same accuracy. So, this reduction maintained precise results (i.e. high
ACR value).

As an interpretation of graph pattern templates, we present different scenarios in which a user is
interested in retrieving different kinds of information. This categorization is based on the matter of
information which is retrieved from the knowledge base.

Finding special characteristics of an instance Data type properties which emanate from in-
stances/classes to literals or simple types and also some kinds of object properties state characteristics
of an entity and information around them. So, in the simplest case of a query, a user intends to retrieve
specific information of an entity such as “Population of Canada” or “Language of Malaysia”. Since this
information is explicit, the simple graph patterns IP.P1, IP.P4 and IP.P6 can be used for retrieving this
kind of information.

Finding similar instances In this case, the user asks for a list of instances which have a specific
characteristic in common. Examples for these type of queries are: "Germany Island" or "Countries with
English as official language". A possible graph structure capturing potential answers for this query type
is depicted in [Figure 2.4] It shows a set of instances from the same class which have a certain property in
common. Graph pattern templates CI.P7, CL.P8, and CP.P14 retrieve this kind of information.

Instances
Iy

IE rdf:type

K |
O<"i) Mf:wm>o Class C
Pa\%/_’rdl:type

Figure 2.4: Similar instances with an instance in common.

Finding associations between instances Associations between instances in knowledge bases are
defined as a sequence of properties and instances connecting two given instances (cf. [Figure 2.3).
Therefore, each association contains a set of instances and object properties connecting them which is the

36

2.5 Evaluation

Category Recall Fuzzy precision F-score
General accuracy 0.625 0.724 0.670
Similar instances 0.700 0.735 0.717
Characteristics of an instance 0.625 0.700 0.660
Associations between instances 0.500 0.710 0.580

Table 2.3: Accuracy results.

purpose of the user query. As an example, the query Volkswagen Porsche can be used to find associations
between the two car makers. The graph pattern templates I1.P9 and I1.P10 extract these associations.

WO P O 2
X
hWO—PF1 () P2 =) ip

X Y
|1 O D_I __O D‘E ;O 934..0 |2

Figure 2.5: Associations between two instances.

2.5.3 Application Evaluation

In this step, we evaluated the approach based on the three previously defined metrics, i.e. fuzzy
precision, recall and f-score. The experimental setup consisted of giving a novice user 40 queries from
TREC 9, and asking him to run each of the queries against DBpedia using our prototype implementation.
Then, for each single answer of a query, he assigned CR according to his own intention. Subsequently,
fuzzy precision and recall were computed based on the user’s ratings. Note that since hyperlinks among
pages are inserted as wikilink in DBpedia and they do not convey special meaning between resources,
we removed all triples containing the IRIs attp://dbpedia.org/property/wikilink] [Table 23|
shows the evaluation results after running 40 queries against DBpedia. The overall precision of our
system is 0.72.

Essentially, the accuracy of this method, specifically recall, does not depend on using suitable graph
pattern templates, because on the one hand, the mapping approach for choosing relevant IRIs significantly
influences the results, and on the other hand the quality of the data in DBpedia severely affects the
accuracy. For example, the query “Greece population” returns the correct answer while the similar query
“Canada population” led to no results.

In addition to the overall evaluation, in order to make a comparison between functionality of the
approach for different types of queries (i.e. finding special characteristics of an instance, finding similar
instances and finding associations between instances) the employed queries were categorized based on
their type and a separate evaluation was computed for each type. Our evaluation in shows the
precision does not differ significantly for different types of queries, while the recall is type dependent. For
instance, in the category “similar instances” the recall is significantly higher rather than in the category
“association between instances” .

2.5.4 Comparative Study based on Relevance Feedback

In the relevance feedback evaluation, four users were asked to assess the quality of the results returned
by several engines by assigning a relevance score to these results. We employed an explicit relevance
feedback approach, in which the users could grade the output of the systems with values between 0 (not

37

http://dbpedia.org/property/wikilink

2 Generating SPARQL Queries Using Templates

B Graded score between 0-1 M Binary score

1 -
0.8 A
0.6 -
0.4 -
0.2 A
0 T T T T 1
Google Sindice Semantic sig.ma Falcons
Search

Figure 2.6: Relevance feedback comparison.

relevant) and 1 (very relevant) as well as with a binary score. The binary relevance feedback was meant to
indicate whether or not the presented results were relevant for a given query, while the graded relevance
feedback scored the relevance on the predefined scale. We compared our approach with a traditional
Web search engine (Google) and three Semantic Web search engines (Sindice, Sig.ma and Falcon) on 40
queries that were selected from Trec—ﬂ In addition, the users were asked to evaluate the engines based
on the top-10 results exclusively. Our search service currently is running on DBpedia data set, whereas
other search services are running on the whole of Web (Web of Data) which probably comparison of
the results is unfair. Therefore, to alleviate this problem, in the case of Google (resp. Sindice), user was
requested to limit the search domain to Wikipedia (DBpedia). Figure 2.6 shows the average of relevance
scores for both graded and binary scales. Alongside, Table 2.4]indicates the agreement rates among
assessors for each search service. Google scores best and consistently returns as rated highly relevant
results. Similarly, Sindice achieves a higher recall due to its larger index and is thus considered to be
more relevant by our assessors. On average, our search service (Semantic search) is at the third position.

2.6 Related Work

Several information retrieval and question answering approaches for the Semantic Web have been
developed over the past years. While several of these approaches are adaptation of document retrieval
approaches for the Semantic Web, some approaches have been devised especially with RDF data as focus.
In the following, we give an overview of these approaches.

"“lhttp://aksw.org/Projects/lodquery/files?get=queries.x1sx|

Category Google | Sindice | Sem. S. | Sig.ma | Falcons
4 agreements 0.8 0.325 0.475 0.275 0.425
3 agreements 0.2 0.475 0.3 0.475 0.525
2 agreements - 0.2 0.225 0.25 0.05

Table 2.4: Percentage of agreement rates in relevance feedback study.

38

http://aksw.org/Projects/lodquery/files?get=queries.xlsx

2.6 Related Work

Ontology-based information retrieval: Approaches falling into this category annotate and index
documents using a background ontology. The retrieval process is subsequently carried out by mapping
user query terms onto these semantic document annotations. The approaches described in [36H38]] are
examples of this paradigm. All these approaches use background knowledge to enhance the retrieval
accuracy. However, they do not utilize the background knowledge for semantically answering user
queries.

Swooglﬂ for example is a document-based search engine over ontologies. It enables users
to query ontologies using a keyword-based paradigm. As the result, it represents documents which
query-keywords occur somewhere in them. Swoogle crawls and indexes semantic web documents(SWD),
i.e. documents annotated by RDF or OWL. The metadata around SWDs such as basic information about
the SWDs as well as relations between them are extracted and indexed. Then, a ranking mechanism
different from IR ranking methods is applied to assign a weight to each SWD. A weak point of this
search engine is that relations between documents are limited to relations which explicitly has been
stated. Similarly, Watsorm gives access to semantic web documents. In addition, it allows retrieving
entities in documents. Moreover, Watson also provides APIs to external services. SindiceEl on the
other hand sticks with the document-centric paradigm but integrates data from different sources and
locates relevant sources for the data being queried. It benefits from an indexing approach developed
especially for linked data and integrates reasoning, SPARQL endpoint indexing and the ability to index
large repositories through the Sitemap extension.

In addition to document-centric approaches, entity-centric approaches have emerged over the past years.
S ig.Ma@l for example uses Sindice in the background to present users with aggregated information
about entities. It combines information about a single entity from different sources. Although it does
not provide a high-quality disambiguation engine, its interface facilitates the manual disambiguation of
entities to some extent by allowing users to easily reject irrelevant sources.

A lightweight data consolidation and reasoning approach is implemented by SWSEE| , which also
integrates entities from different sources. The data consolidation is based on two types of properties
ie., owl:sameaAs relating two equivalent entities and
owl:FunctionalProperty defining a class of properties whose value uniquely identifies an entity. SWSE
enables users to filter the resulting objects by specifying class expressions. In a similar fashion, Fal-
consEl implements an entity-centric approach to Semantic Web search. In addition to retrieving
entities, it can find relations between entities as well as characteristics of entities. However, the basis for
all these services are keyword indexing and retrieval relying on the matching user-issued keywords and
indexed terms.

Ontology-based question answering: Approaches falling into this category take a natural language
question or a keyword-based query and return matching knowledge fragments drawn from the knowledge
base as the answer. Two main categories of approaches achieve this goal. The first category relies on
using linguistic approaches for extracting complete triple-based patterns (including relations) from the
user query and matching these triples to the underlying ontology. Examples of such approaches are those
implemented by AquaLog [30] and OntoNL [31]]. AquaLog is a domain-specific question answering
system and it is the predecessor of PowerAqua which is a domain-agnostic system. PowerAqua

17 http://swoogle.umbc.edu

18 http://kmi-web05.open.ac.uk/WatsonWUI/
19 http://sindice.com/

20 http://sig.ma/

2! http://swse.deri.org

22 http://ws.nju.edu.cn/falcons/objectsearch/

39

2 Generating SPARQL Queries Using Templates

can automatically combine information from multiple ontologies at runtime. The input of this system
is a natural language query and the output is a list of ontology entities that are relevant. PowerAqua
lacks a deep linguistic analysis and can not handle complex queries. Pythia [42] is another question
answering system that employs a deep linguistic analysis. It can handle linguistically complex questions,
but it is highly dependent on a manually created lexicon. Therefore it fails to scale to datasets for
which the lexicon was not designed. Pythia was recently used as kernel for TBSL [43]], a more flexible
question-answering system that combines Pythia’s linguistic analysis and the BOA framework [44] 5] for
detecting properties to natural language patterns. The second category of approaches aims at detecting
entities in the user query and discovering relations between these entities by analyzing the knowledge
base. In this second category of approaches, RDF data is regarded as a directed graph and relations
among entities are found through sequences of links (e.g., using graph traversal). The graph traversal
approaches mainly visits nodes using different methods of exploration such as breadth first search [33]],
bidirectional search [46]], back tracking and top-k exploration [4§]]. All these approaches start the
exploration from a set of anchor points (nodes bound to the input IRIs) and search iteratively through the
graph until they find a connecting node, i.e., a node that links the paths traversed from all of the anchor
points. System examples for this second group are KIM [32]], OntoLook [A9] and [33] [34, (50| [51]1.

Sheth introduced the term semantic association for describing meaningful and complex relations
between entities. Our work differs from these approaches in that it is completely independent of the
underlying schema. Furthermore, schema information is in our approach just implicitly taken into account,
so a complex induction procedure is not required.

Keyword search on relational and XML data: Currently, keyword-based search is the most popular
and convenient way for finding information on the Web [53]]. Although the field of IR and database
approximately initiated at the same time, keyword-based search was studied mainly in the area of
IR; because users of databases are mainly experts who have knowledge about a specific language to
interact with a database system. From the last decade, research on keyword search on relational and
XML data attracted research interest. Recently, by emerging the tendency towards annotating web
documents and publishing a vast amount of structured data, this model of search has obtained more focus.
Essentially, current exposure of most Web users to keyword search, the large amount of research on the
successful application of keyword-based search in document retrieval and the acknowledged usability
of this paradigm are convincing reasons for employing the keyword search paradigm on the Semantic
Web. Meanwhile there exist many approaches such as for the relational domain and [58H60]| for
the XML domain. Especially the relational domain is relevant to our work due to the similarities to the
RDF data model. All these approaches are based on schema graphs (i.e. a graph where tables and their
primary-foreign key relations are represented as nodes and edges, respectively).

Our work lies in an entity-centric model which not only entities but also characteristics and association
of entities simply can be retrieved. Furthermore, it is independent of any linguistic analysis. The main
advantage is that we do not rely on an explicitly given schema, which is often missing for datasets on the
Web of Data. However, achieving sufficient performance for instant query answering is more an issue in
the RDF case, which is why our approach is currently limited to two keywords.

2.7 Conclusion and Future Work
We regard this work as a first step towards the user-friendly querying of the Data Web using rich

semantic structures. By tightly intertwining the keyword interpretation and query generation with the
available background knowledge we are able to obtain results of relatively good quality. We applied a

40

2.7 Conclusion and Future Work

number of techniques such as a thorough analysis of potential graph patterns so as to limit the search
space and enable instant question answering. A problem, however, beyond our control is the data quality
and coverage. Currently our evaluation is still limited to 150M facts comprised in DBpedia, yet due to
the generic nature and efficiency of the approach we will be able extend it quickly to the whole Data
Web. For doing so, we aim to apply some optimizations original to our approach, since we currently use
just a plain SPARQL interface. These optimizations will, for example, comprise the pre-computation
of views and statistical summaries for each of our graph pattern templates. A current limitation is the
restriction to two keywords. The rational behind this was to restrict the search space of possible query
interpretations, in order to return the most meaningful results to the user quickly in a compact form.
There are a number of possible advancements: (a) to allow a larger number of keywords or (b) to enable
users to refine obtained queries and to add additional constraints and (c) to make more extensive use of
linguistic features and techniques.

Acknowledgments

We would like to thank our colleagues from AKSW research group for their helpful comments and
inspiring discussions during the development of this approach. This work was supported by a grant from
the European Union’s 7th Framework Programme provided for the project LOD2 (GA no. 257943) and
by the Eurostars Project SCMS (E!4604).

41

CHAPTER 3

SINA: Semantic Interpretation of User Queries
for Question Answering on Interlinked Dataﬂ

Abstract: The architectural choices underlying Linked Data have led to a compendium of data sources
which contain both duplicated and fragmented information on a large number of domains. One way to
enable non-experts users to access this data compendium is to provide keyword search frameworks that
can capitalize on the inherent characteristics of Linked Data. Developing such systems is challenging
for three main reasons. First, resources across different datasets or even within the same dataset can be
homonyms. Second, different datasets employ heterogeneous schemas and each one may only contain a
part of the answer for a certain user query. Finally, constructing a federated formal query from keywords
across different datasets requires exploiting links between the different datasets on both the schema and
instance levels. We present SiNa, a scalable keyword search system that can answer user queries by
transforming user-supplied keywords or natural-languages queries into conjunctive SPARQL queries
over a set of interlinked data sources. SiNa uses a hidden Markov model to determine the most suitable
resources for a user-supplied query from different datasets. Moreover, our framework is able to construct
federated queries by using the disambiguated resources and leveraging the link structure underlying
the datasets to query. We evaluate SiNa over three different datasets. We can answer 25 queries from
the QALD-1 correctly. Moreover, we perform as well as the best question answering system from the
QALD-3 competition by answering 32 questions correctly while also being able to answer queries on
distributed sources. We study the runtime of SINA in its mono-core and parallel implementations and
draw preliminary conclusions on the scalability of keyword search on Linked Data.

3.1 Introduction

The principles underlying Linked Data have been applied worldwide to engender the Linked Open
Data Cloud, a compendium of more than 300 datasets and more than 31 billions triplesEl Within this
compendium, millions of resources are described, partly over several datasets [[61]]. The current standard
for accessing this wealth of data is the SPARQL query language. Yet, SPARQL is too complex to be used
by non-expert users. Consequently, several search approaches have been developed over the last years

! Corresponding publication is: Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and Séren Auer, “SINA:
Semantic Interpretation of User Queries for Question Answering on Interlinked Data”, Journal of Web Semantics Science,
Services and Agents on the World Wide Web, 2014

2 See Ihttp ://lod-cloud. net/state/l for more details.

43

http://lod-cloud.net/state/

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

to enable non-experts to access these datasets (e.g., [26] 28] [29] [62]]). While these approaches
differ in their details (see [section 5.3)), they can all be positioned on the following spectrum: On one

end of the spectrum are simple keyword search systems that rely on traditional information retrieval
approaches to retrieve resources that bear a label similar to the input of the user. We dub such approaches
data-semantics-unaware keyword search as they do not take the semantics explicated by the data into
consideration. The main advantage of such approaches is that they scale well as they can make use of
the results of decades of research carried out in the field of information retrieval. On the other end of
the spectrum, we find question answering systems, which assume a natural-language query as input and
convert this query into a full-fledged SPARQL query. These systems rely on natural-language processing
tools such as POS tagging and dependency parsers to detect the relations between the elements of the
query. The detected relations are then mapped to SPARQL constructs.

The basic idea behind this work is to devise a data-semantics-aware keyword search approach, which
stands in the middle of the spectrum. Our approach aims to achieve maximal flexibility by being able
to generate SPARQL queries from both natural-language queries and keyword queries. This goal is
achieved by limiting the type of formal queries (i.e. SPARQL queries) that our approach can generate
to conjunctive SPARQL queries. Several challenges need to be addressed to devise such an approach:
First, a query segmentation and disambiguation approach for mapping input query to resources has to be
devised. To do so, statistical information of the retrieved resources has to be retrieved. Then, a method
for generating conjunctive federated SPARQL queries, which can be sent to SPARQL endpoint to retrieve
relevant data must be developed.

In this paper, we show how our framework, Siva, implements these different steps. In contrast to
previous approaches, SiNaA can make use of the topology of Linked Data by exploiting links between
resources to devise federated SPARQL queries. Thus, it can deal with both retrieving data from either a
single dataset or several interlinked datasets. Consequently, it can be used over the whole of the Linked
Open Data Cloud. We present a thorough evaluation of our approach on three different datasets: We
use the QALD-1 to detect optimal parameters for Sina and present a first evaluation of the approach on
this benchmark dataset. We then run Sma on the QALD-3 benchmark and show that we can generate
the correct SPARQL queries for 32 of these queries, thus achieving the same results as the best system
tested in the benchmark. Finally, we evaluate SiNa in a federated scenario against the queries from the
life science domain used in [61]]. In an effort to make SiNa easily portable, we refrained from using
dataset-specific indexes and rely fully on the SPARQL endpoint when constructing SPARQL queries.
To ensure that our approach still achieves acceptable runtimes, we implemented both a parallel and a
sequential version of SiNa. In the second part of the evaluation, we thus present a study of SiNa’s runtime
on the QALD-3 benchmark.

This paper is organized as follows: In the subsequent section, we introduce the architecture of the
proposed search engine. In Section[3.3] we present the problem at hand in more detail and some of the
notations and concepts used in this work. Section [5.3]presents the proposed disambiguation method in
detail along with the evaluation of the bootstrapping. In Section [3.3] we then present the key steps of our
algorithm for constructing a conjunctive query. Our evaluation results are presented in Section [3.6 while
related work is reviewed in Section[3.3l We close with a discussion and future work.

3.2 Overview
In this section, we describe the high-level architecture and implementation of the Siva search engine.

illustrates the architecture of Siva, which comprises six main components. Each component
consumes the output of the previous component:

44

3.3 Problem and Preliminaries

1. The query preprocessing component receives the textual input query and applies three functions:
1) Tokenization: extraction of individual keywords, removing punctuation and capitalization. 2)
Stop word removal: removal of common words such as articles and prepositions. Since in this
version, we do not recognize type of answers, thus wh-questions are removed as stop words. 3)
Word lemmatization: determining the lemma of the remaining keywords.

2. The segment validation component groups keywords to form segments. This component validates
the grouped segments with respect to the available resources in the underlying knowledge base(s).

3. The resource retrieval component obtains relevant resources from the underlying knowledge
bases. The retrieval is based on the string matching between valid segments and the rdfs:label
of resources. Furthermore, more resources are inferred from lightweight owl : sameAs reasoning.

4. The disambiguation component determines the best subset of resources for the given input query.

5. The query construction component results in formal queries (i.e. SPARQL query) using the
graph-structure of data.

6. The representation component shows the retrieved results after evaluating the generated SPARQL
queries.

We implemented Sina as a Java web application which is available online. We deployed two demo
instances, one employing DBpedia as background knowledgeﬂ and a second one operating on several
interlinked life-science datasetsﬂ Sina has a simple interface similar to common search engines. All
steps of SiNa are carried out automatically and the user does not have to interact with the system during
the search process. Moreover, SiNa is accessible via api.

3.3 Problem and Preliminaries

In this section, we introduce some crucial notions employed throughout the paper and describe the
main challenges that arise when transforming user queries to formal, conjunctive queries on linked data.

An RDF knowledge base can be viewed as a directed, labeled graph G; = (V;, E;) where V; is a set of
nodes comprising all entities and literal property values, and E; is a set of directed edges, i.e. the set of
all properties. We define linked data in the context of this paper as a graph G = (V =V, E = U E))
containing a set of RDF knowledge bases, which are linked to each other in the sense, that their sets of
nodes overlap, i.e. that V; N V; # 0.

In this work we focus on user-supplied queries in natural language, which we transform into an ordered
set of keywords by tokenizing, stop-word removal and lemmatization. Our input query thus is an n-tuple
of keywords, i.e. Q = (ky, ka, ..., k).

Challenge 1: Resource Disambiguation. In the first step, we aim to map the input keywords to a
suitable set of entity identifiers, i.e. resources R = {ry, r>...r;,,}. Note that several adjacent keywords can
be mapped to a single resource, i.e. m < n. In order to accomplish this task, the input keywords have
to be grouped together into segments. For each segment, a suitable resource is then to be determined.
The challenge here is to determine the right segment granularity, so that the most suitable mapping
to identifiers in the underlying knowledge base can be retrieved for constructing a conjunctive query
answering the input query.

3 lhttp://sina.aksw.org/|
“Ihttp://sina-linkeddata.aksw. org/l

45

http://sina.aksw.org/
http://sina-linkeddata.aksw.org/

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

Client
ssssss j------------+ OWLAPI
Stanford [&5 |)‘
CoreNLP @ | query @ | result i :--r-_-_-_-_-:\jenq< ----- !
4 b 4 httpclient |
A ': Lo : 1 :
v v o ! v !
. | [£7)) opENLINK I
“ Query Preprocessing - Representation i : _VIRTUOSO J
1 1 ot 4 !
SPARQL it I :
Ql keywords OI queries E E y v !
1 1
= Segment Validation = Query Construction € - : |
~ , . - |
4 - tuple of | '
N H pleo i '
| @lvalld segments QI o urees : :
1 1 1
! == Resource Retrieval == Disambiguation | :
b » | :
! f () mapped resources T i Underlying Interlinked i
; e ——————————— ___. Knowledge Bases :
R 000 T ————— 1
Server
Process
(1) (2] © Q
who is the author_, author _ ‘author' _ [dbr:Category:Author dbp:author dbo:Actor dbo:Art]
of Wikileaks? wikileaks ‘wikileaks' [dbr:WikiLeaks dbr:Category:WikiLeaks dbo:author]
(SR (6] Q
dbo:author 1. SELECT * WHERE { ?v0 dbp:author dbr:WikiLeaks } dbroJulian A
dbr:WikiLeaks 2. SELECT * WHERE { dbr:WikiLeaks dbo:author 2v0.} — ¢Pr-ulian-Assange

Figure 3.1: Architecture of Siva search engine.

For example, the question ‘What are the side effects of drugs used for Tuberculosis?’ is transformed
into the 4-keyword tuple (side, effect, drug, Tuberculosis). This tuple can be segmented into (‘side effect
drug’, “Tuberculosis’) or (‘side effect’, ‘drug’, ‘Tuberculosis’). Note that the second segmentation is more
likely to lead to a query that contains the results intended by the user. In addition to detecting the right
segments for a given input query, we also have to map each of these segments to a suitable resource in the
underlying knowledge base. This step is dubbed entity disambiguation and is of increasing importance
since the size of knowledge bases and schemes heterogeneity on the Linked Data Web grows steadily.
In this example, the segment ‘Tuberculosis’ is ambiguous when querying both Sider and Diseasome
because it may refer to the resource diseasome: Tuberculosis describing the disease Tuberculosis or
to the resource sider:Tuberculosis being the side effect caused by some drugs.

Challenge 2: Query Construction. Once the segmentation and disambiguation have been completed,
adequate SPARQL queries have to be generated based on the detected resources. In order to generate
a conjunctive query, a connected subgraph G’ = (V’, E’) of G called the query graph has to be de-
termined. The intuition behind constructing such a query graph is that it has to fully cover the set of
mapped resources R = {ry, ..., 1} while comprising a minimal number of vertices and edges (|V’| + |E’|).
In linked data, mapped resources r; may belong to different graphs G;. Thus, the query construction
algorithm must be able to traverse the links between datasets at both schema and instance levels. With

46

3.3 Problem and Preliminaries

respect to the previous example, after applying disambiguation on the identified resources, we would ob-
tain the following resources from different datasets: sider:sideEffect, diseasome:possibleDrug,
diseasome:1154. The appropriate conjunctive query contains the following triple patterns:

1. diseasome:1154 diseasome:possibleDrug ?vl
2. ?vl owl:sameAs ?v2
3. ?v2 sider:sideEffect ?v3

The second triple pattern bridges between the datasets Drugbank and Sider.

3.3.1 Resource Disambiguation

In this section, we present the formal notations for addressing the resource disambiguation challenge,
aiming at mapping the n-tuple of keywords Q = (ky, k2, ..., k,) to the m-tuple of resources R = (71, ..., F'in).

Definition 9 (Segment and Segmentation). For a given query

O = (ki,k, ..., k), the segment S ; j) is the sequence of keywords from start position i to end position j, i.e.,
Sy = (ki kis1, ..., kj). A query segmentation is an m-tuple of segments S G(Q) = (S 0,i)> S (i+1,j)s -+ S (1,n))
with non-overlapping segments arranged in a continuous order, i.e. for two continuous segments
S, Sx+1 2 Start(S x+1) = End(S) + 1. The concatenation of segments belonging to a segmentation forms
the corresponding input query Q.

Definition 10 (Resource Disambiguation). Let the segmentation
SG' =(S (10’1.), S(2i+1,j)’ vees SZ’l"n)) be the suitable segmentation for the given query Q. Each segment S* of
S G’ is first mapped to a set of candidate resources R; = {r1, r...rp} from the underlying knowledge base.
The aim of the disambiguation step is to detect an m-tuple of resources (r1,13,...,¥m) € Ry X Ry X... X Ry,
from the Cartesian product of the sets of candidate resources for which each r; has two important
properties: First, it is among the highest ranked candidates for the corresponding segment with respect
to the similarity as well as popularity and second it shares a semantic relationship with other resources
in the m-tuple. Semantic relationship refers to the existence of a path between resources.

The disambiguated m-tuple is appropriate if a query graph [capable of answering the input query] can
be constructed using all resources contained in that m-tuple. The order in which keywords appear in the
original query is partially significant for mapping. However, once a mapping from keywords to resources
is established the order of the resources does not affect the SPARQL query construction anymore. This is
a fact that users will write strongly related keywords together, while the order of only loosely related
keywords or keyword segments may vary. When considering the order of keywords, the number of
segmentations for a query Q consisting of n keywords is 2”1, However, not all these segmentations
contain valid segments. A valid segment is a segment for which at least one matching resource can be
found in the underlying knowledge base. Thus, the number of segmentations is reduced by excluding
those containing invalid segments.

Algorithm [2] shows a naive approach for finding all valid segments when considering the order of
keywords. It starts with the first keyword in the given query as first segment, then adds the next keyword
to the current segment and checks whether this addition would render the new segment invalid. This
process is repeated until we reach the end of the query. The input query is usually short. The number of
keywords is mainly less than dﬂ; therefore, this algorithm is not expensive. Table shows the set of
valid segments along with some samples of the candidate resources computed for the previous example
using the naive algorithm. Note that side effect drug’, ’side’, ’effect’ are not valid segments.

3 http://www.keyworddiscovery.com/keyword-stats.html?date=2012-08-01

47

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

Valid Segments Samples of Candidate Resources

side effect 1. sider:sideEffect 2. sider:side_effects

1. drugbank:drugs 2. class:Offer

3. sider:drugs 4. diseasome:possibledrug
tuberculosis 1. diseases: 1154 2. side_effects:C0041296

drug

Table 3.1: Generated segments and samples of candidate resources for a given query.

Data : ¢: n-tuple of keywords, knowledge base
Result : SegmentSet: Set of segments
1 SegmentSet=new list of segments;

2 start=1;

3 while start <=ndo

4 i = start,

5 while S (sqr1,) is valid do

6 S egmentS et.add(S (siar,i));
7 i++;

8 end

9 start++;

10 end

Algorithmus 2 : Naive algorithm for determining all valid segments taking the order of keywords into
account.

3.3.2 Construction of Conjunctive Queries

The second challenge addressed by this paper tackles the problem of generating a federated conjunctive
query leveraging the disambiguated resources i.e. R = (ry,...,7r,). Herein, we consider conjunctive
queries being conjunctions of SPARQL algebra triple patternﬂ We leverage the disambiguated resources
and implicit knowledge about them (i.e. types of resources, interlinked instances and schema as well as
domain and range of resources with the type property) to form the triple patterns.

For instance, for the running query which asks for a list of resources (i.e. side effects) which have a
specific characteristic in common (i.e. ’caused by drugs used for Tuberculosis’). Suppose the resources
identified during the disambiguation process are: sider:sideEffect, Diseasome:possibleDrug as
well as Diseasome: 1154. Suitable triple patterns which are formed using the implicit knowledge are:

1. Diseasome:1154 Diseasome:possibleDrug ?vl
2. ?vl owl:sameAs ?v2
3. ?v2 sider:sideEffect ?v3

The second triple pattern is formed based on interlinked data information. This triple connects the
resources with the type drug in the dataset Drugbank to their equivalent resources with the type drug in
the Sider dataset using owl : sameAs link. These triple patterns satisfy the information need expressed in
the input query. Since most of common queries commonly lack of a quantifier, thus conjunctive queries to
a large extend capture the user information need. A conjunctive query is called query graph and formally
defined as follows.

Definition 11 (Query Graph). Let a set R = {ry, ..., r,} of resources (from potentially different knowledge
bases) be given. A query graph QGgr = (V', E’) is a directed, connected multi-graph such that R C E'UV’.
Each edge e € E’ is a resource that represents a property from the underlying knowledge bases.
Two nodes n and n’ € V' can be connected by e if n (resp. n’) satisfies the domain (resp. range)
restrictions of e. Each query graph built by these means corresponds to a set of triple patterns, i.e.
0G = {(n,e,n")|(n,n’) € V> Ne € E}.

¢ Throughout the paper, we use the standard notions of the RDF and SPARQL specifications, such as graph pattern, triple
pattern and RDF graph.

48

3.4 Resource Disambiguation using Hidden Markov Models

3.4 Resource Disambiguation using Hidden Markov Models

In this section, we describe how we use a HMM for the concurrent segmentation of queries and
disambiguation of resources. First, we introduce the notation of HMM parameters and then we detail how
we bootstrap the parameters of our HMM for solving the query segmentation and entity disambiguation
problems.

Hidden Markov Models: Formally, a hidden Markov model (HMM) is a quintuple A = (X, ¥, A, B,)
where:

e X is a finite set of states. In our case, X is a subset of the resources contained in the underlying
graphs.

e Y denotes the set of observations. Herein, Y equals to the valid segments derived from the input
n-tuple of keywords.

e A: XXX — [0,1]is the transition matrix of which each entry g;; is the transition probability
Pr(S |S;) from state i to state j;

e B: X XY — [0,1] represents the emission matrix. Each entry b;;, = Pr(h|S;) is the probability of
emitting the symbol % from state i;

e 1 : X — [0, 1] denotes the initial probability of states.

Commonly, estimating the hidden Markov model parameters is carried out by employing supervised
learning. We rely on bootstrapping, a technique used to estimate an unknown probability distribution
function. Specifically, we bootstralﬂ the parameters of our HMM by using string similarity metrics (i.e.,
Levenshtein and Jaccard) for the emission probability distribution and more importantly the topology of
the graph for the transition probability. The results of the evaluation show that by using these bootstrapped
parameters, we achieve a high mean reciprocal rank (MRR) above 84% (discussed in Section[5.3.1).

Constructing the State Space: A-priori, the state space should be populated with as many states
as the total number of entities in the knowledge base. The number of states in X is thus potentially
large given that X will contain all RDF resources contained in the graph G on which the search is to
be carried out, i.e. X = V U E. For DBpedia, for example, X would contain more than 3 million states.
To reduce the number of states, we exclude irrelevant states based on the following observations: (1) A
relevant state is a state for which a valid segment can be observed (we described the recognition of valid
segments in [subsection 3.3.1). (2) A valid segment is observed in a state if the probability of emitting
that segment is higher than a given threshold 6. The probability of emitting a segment from a state is
computed based on the similarity score which we describe in[subsection 5.3.1] Thus, we can prune the
state space such that it contains solely the subset of the resources from the knowledge bases for which
the emission probability is higher than 6. In addition to these states, we add an unknown entity state
(UE) which represents all entities that were pruned. Based on this construction of state space, we are now
able to detect likely segmentations and disambiguation of resources, the segmentation being the labels
emitted by the elements of the most likely sequence of states. The disambiguated resources are the states
determined as the most likely sequence of states.

Extension of State Space with reasoning: A further extension of the state space can be carried out by
including resources inferred from lightweight owl : sameAs reasoning. We precomputed and added the
triples inferred from the symmetry and transitivity property of the owl : sameAs relation. Consequently,
for extending the state space, for each state representing a resource x we just include states for all
resources y, which are in an owl : sameAs relation with x.

7 For the bootstrapping test, we used 11 sample queries from the QALD benchmark 2012 training dataset.

49

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

3.4.1 Bootstrapping the Model Parameters

Our bootstrapping approach for the model parameters A and r is based on the HITS algorithm and
semantic relations between resources in the knowledge base. The rationale is that the semantic relatedness
of two resources can be defined in terms of two parameters: the distance between the two resources
and the popularity of each of the resources. The distance between two resources is the path length
between those resources. The popularity of a resource is simply the connectivity degree of the resource
with other resources available in the state space. We use the HITS algorithm for transforming these
two values to hub and authority values (as detailed below). An analysis of the bootstrapping shows
significant improvement of accuracy due to this transformation. In the following, we first introduce the
HITS algorithm, since it is employed within the functions for computing the two HMM parameters A and
n. Then, we discuss the distribution functions proposed for each parameter. Finally, we compare our
bootstrapping method with other well-known distribution functions.

Hub and Authority of States. Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm
that was developed originally for ranking Web pages [[63]). It assigns a hub and an authority value to each
Web page. The hub value estimates the value of links to other pages and the authority value estimates the
value of the content on a page. Hub and authority values are mutually interdependent and computed in a
series of iterations. In each iteration the authority value is updated to the sum of the hub scores of each
referring page; and the hub value is updated to the sum of the authority scores of each referring page.
After each iteration, hub and authority values are normalized. This normalization process causes these
values to converge eventually.

Since RDF data forms a graph of linked entities, we employ a weighted version of the HITS algorithm
in order to assign different popularity values to the states based on the distance between states. We
compute the distance between states employing weighted edges. For each two states S; and S ; in the state
space, we add an edge if there is a path of maximum length k between the two corresponding resources.
Note that we also take property resources into account when computing the path length.The weight of
the edge between the states S; and S ; is set to w; j = k — pathLength(i, j), where pathLength(i, j) is the
length of the path between the corresponding resources. The authority of a state can now be computed
by: auth(S ;) = Z w; ;j X hub(S ;). The hub value of a state is given by hub(S ;) = Z wj,j X auth(S ;). These

definitions of hub and authority for states are the foundation for computing the transition and initial
probabilities in the HMM.

Transition Probability. To compute the transition probability between two states, we take both,
the connectivity of the whole space state as well as the weight of the edge between the two states,
into account. The transition probability value decreases while increasing distance between states. For
example, transitions between entities in the same triple have a higher probability than transitions between
entities in triples connected through auxiliary intermediate entities. In addition to edges representing the
shortest path between entities, there is an edge between each state and the unknown entity (UE) state. The
transition probability of state S ; following state S; is denoted as a;; = Pr(S ;|S;). Note that the condition
g‘ Pr(S jIS;) = 1 holds.The transition probability from the state S; to UE is defined as:

a;yE = P}"(UE|Sl‘) =1 —hub(S,‘)

Consequently, a good hub has a smaller probability of transition to UE. The transition probability from

50

3.4 Resource Disambiguation using Hidden Markov Models

the state S; to the state S ; is computed by:

auth(s ;)
>, auth(Sy)

Va,-k>0

aij = Pr(Slei) = X hub(S,)

Here, the probabilities from state S; to the neighbouring states are uniformly distributed based on the
authority values. Consequently, states with higher authority values are more probable to be met.
Initial Probability. The initial probability 7(S;) is the probability that the model assigns to the initial

state S; at the beginning. The initial probabilities fulfill the condition) 7(S;) = 1. We denote states for
vS;
which the first keyword is observable by InitialS tates. The initial states are defined as follows:

auth(S ;) + hub(S ;)
> (auth(S ;) + hub(S ;))

VS jelnitialS tates

n(Si) =

In fact, 7(S;) of an initial state is uniformly distributed on both hub and authority values.

Emission Probability. Both the labels of states and the segments contain sets of words. For computing
the emission probability of the state S; and the emitted segment /2, we compare the similarity of the label
of state §; with the segment % in two levels, namely string-similarity and set-similarity level:

o The string-similarity level measures the string similarity of each word in the segment with the most
similar word in the label using the Levenshtein distance.

o The set-similarity level measures the difference between the label and the segment in terms of the
number of words using the Jaccard similarity.

Our similarity score is a combination of these two metrics. Consider the segment h = (k;, kis1, ..., k)
and the words from the label / divided into a set of keywords M and stopwords N, i.e. [= M U N. The
total similarity score between keywords of a segment and a label is then computed as follows:

j
2. argmax,, .y (o(m, k;))
bin = Pr(hlS;) = =

IM UK+ 0.1 x |N|

This formula is essentially an extension of the Jaccard similarity coefficient. The difference is that we
use the sum of the string-similarity score of the intersections in the numerator instead of the cardinality
of intersections. As in the Jaccard similarity, the denominator comprises the cardinality of the union of
two sets (keywords and stopwords). The difference is that the number of stopwords is down-weighted by
the factor 0.1 to reduce their influence since they do not convey much supplementary semantics.

Viterbi Algorithm for the K-best Set of Hidden States. The optimal path through the HMM for a
given sequence (i.e. input query keywords) generates disambiguated resources which form a correct
segmentation. The Viterbi algorithm or Viterbi path is a dynamic programming approach for finding
the optimal path through a HMM for a given input sequence. It discovers the most likely sequence of
underlying hidden states that might have generated a given sequence of observations. This discovered
path has the maximum joint emission and transition probability of the involved states. The sub-paths of
this most likely path also have the maximum probability for the respective sub sequence of observations.
The naive version of this algorithm just keeps track of the most likely path. We extended this algorithm
using a tree data structure to store all possible paths generating the observed query keywords. Thus,
our implementation can provide a ranked list of all paths generating the observation sequence with the
corresponding probability.

51

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

M Zip(X| a=0) Zip(X|a=0.5) W Zip(X|a=1) M Zip(Y|a=0) H Norm(X|a=0) Norm(X|a=0.5) ® Norm(X|a=1)
M Zip(Y|a=0.5) Zip(Y|a=1) Uni(dis,pop) Uni(hub,authority) HNorm(Y|a=0) M Norm(Y|a=0.5) ® Norm(Y|a=1)

£ ! £l

© ©

€ 038 € 08

3 8

S 06 o 06

= k=3

S 04 1 S 04

3 «

5 0.2 ﬂ 5 0.2

s o L _lac I s o

Q12 Q15 Q19 Q22 Q23 Q25 Q31 Q33 Q47 Q35 Q@83 Q12 Q15 Q19 Q22 Q23 Q25 Q31 Q33 Q47 Q35 Q83

Figure 3.2: MRR of different distributions per query for bootstrapping the transition probability.

Example 3.13 Let us consider the query: What are the side effects of drugs
used for Tuberculosis?. The validated segments are: ‘side effect’, ‘drug’ and
‘Tuberculosis’. After the retrieval and pruning process, the state space contains the re-
sources listed in [Table 3.1t

By running the Viterbi algorithm with the associated probabilities, we have a ranked list of
the chosen resources that the sequence {side effect, drug, Tuberculosis} is observable through
them. In the following, we show the top-4 most likely paths along with their associated
probability.

1. 0.0033: Sider:sideEffect, Diseasome:possibleDrug, Diseasome:1154.

2. 0.0017: Sider:sideEffect, Diseasome:possibleDrug, Sider:C0041296.
3. 6.0257E-4: Sider:sideEffect, Sider:drugs, Diseasome 1154.
4. 4.0805E-4: Sider:sideEffect, Drugbank:0ffer, Diseasome:1154.
Segment Resources Label Type
. 1. Sider:sideEffect side effect property
side effect 2. Sider:side_effects side effect class
1. Drugbank:drugs drug class
2. Drug bank:offer drug class
drug 3. Sider:drugs drug class
4. Diseasome:possibleDrug possible drug property
Tuberculosis 1. Diseasome:1154 tuberculosis instance
2. Sider:C0041296 tuberculosis instance

Table 3.2: The resources contained in the state space for a given query.

3.4.2 Evaluation of Bootstrapping

We evaluated the accuracy of our approximation of the transition probability A (which is basically
a kind of uniform distribution) in comparison with two other distribution functions, i.e., Normal and
Zipfian distributions. Moreover, to measure the effectiveness of the Aub and authority values, we ran the
distribution functions with two different inputs, i.e. distance and connectivity degree values as well as
hub and authority values. Note that for a given edge the source state is the one from which the edge
originates and the sink state is the one where the edge ends. We ran the distribution functions separately
with X being defined as the weighted sum of the normalized distance between two states and normalized
connectivity degree of the sink state:

Xij=aX distance(gi_g_j) + (1 = @) X (1 = connectivityDegrees ;)

52

3.4 Resource Disambiguation using Hidden Markov Models

Similarly, Y was defined as the weighted sum of the hub of the source state and the authority of the
sink state: ¥ = @ X hub(S;) + (1 — @) X (1 — authorithys,). In addition to measuring the effectiveness of
hub and authority, we also measured a similar uniform function with the input parameters distance and
connectivity degree defined as:

distance(S; - S j)

>, distance(S; — Sy)
VSk>0

ajj = X connectivitydegree(S ;)

Given that the model at hand generates and scores a ranked list of possible tuples of resources, we
compared the results obtained with the different distributions by looking at the mean reciprocal rank
(MRR) [[63]] they achieve. For each query ¢; € Q in the benchmark, we compare the rank r; assigned by
different algorithms with the correct tuple of resources and set MRR(A) = 19 QI Z . Note that if the correct

tuple of resources was not found, the reciprocal rank was assigned the value O We used 11 queries from
QALD2-Benchmark 2012 training dataset for bootstrappmﬂ The criterion of choosing the bootstrapped
queries was the number of the keywords as well as the associated resources. shows the MRR
achieved by bootstrapping the transition probability of this model with 3 different distribution functions
per query in 14 different settings. compares the average MRR for different functions employed
for bootstrapping the transition probability per setting. Our results show clearly that the proposed function
is superior to all other settings and achieves an MRR of approximately 81%. A comparison of the MRR
achieved when using hub and authority with that obtained when using distance and connectivity degree
reveals that using hub and authority leads to an 8% improvement on average. This difference is trivial in
Zipfian and Normal settings, but very significant in the case of a uniform distribution. Essentially, HITS
fairly assigns qualification values for the states based on the topology of the graph.

1_/
0.8 1
(o'
[a'
= 06 -
G
o
C
c 0.4 -
Q
=
0.2 A
0_
T AT I N
3 337 33%33F% 3 a3
XS x>x8>xx3Sx>28>4%s
aXxX ao>2¢egX¢gEgxE=2
NQ_NNQ.NLELLES—C:
IN] N O & 0 0 &£ 0 o ¢
Z o2 2 o 2)
= pd

Figure 3.3: Comparison of different functions and settings for bootstrapping the transition probability. Uni stands
for the uniform distribution, while Zip stands for the Zipfian and Norm for the normal distribution.

We bootstrapped the emission probability B with two distribution functions based on (1) Levenshtein
similarity metric, (2) the proposed similarity metric as a combination of the Jaccard and Levenshtein

$http://waw.sc.cit-ec.uni-bielefeld.de/qald-2|

53

http://www.sc.cit-ec.uni-bielefeld.de/qald-2

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

measures. We observed the MRR achieved by bootstrapping the emission probability of this model
employing those two similarity metrics per query in two settings (i.e. natural and reverse order of query
keywords). The results show no difference in MRR between these two metrics in the natural order.
However, in the reverse order the Levenshtein metric failed for 81% of the queries, while no failure was
observed with the combination of Jaccard and Levenshtein. Hence, our combination is robust with regard
to change of input keyword order. For bootstrapping the initial probability &, we compared the uniform
distribution on both — hub and authority — values with a uniform distribution on the number of states for
which the first keyword is observable. The result of this comparison shows a 5% improvement for the
proposed function. shows the mean of MRR for different values of the threshold § employed
for pruning the state space. A high value of 6 prevents inclusion of some relevant resources and a low
value adds irrelevant resources. It can be observed that the optimal value of 6 is in the range [0.6, 0.7].
Thus, we set 6 to 0.6 in the rest of our experiments.

1
0.8 / \

0.6 ~0

ean of MRR

M
o
N

0 T T T T T T T T T)
01 02 03 04 05 06 07 08 09 1 11

Theta
Figure 3.4: Mean MRR for different values of 6.

3.5 Query Graph Construction

The goal of query graph construction is generating a conjunctive query (i.e. SPARQL query) from
a given set of resource identifiers i.e., R = {ry,7,...r,}. The core of SPARQL queries are basic
graph patterns, which can be viewed as a query graph QG. In this section, we first discuss the formal
considerations underlying our query graph generation strategy and then describe our algorithm for
generating the query graph. The output of this algorithm is a set of graph templates. Each graph template
represents a comprehensive set of query graphs, which are isomorphic regarding edges. A query graph A
is isomorphic regarding its edges to a query graph B, if A can be derived from B by changing the labels
of edges.

3.5.1 Formal Considerations

A query graph QG consists of a conjunction of triple patterns denoted by (s;, p;, 0;). When the set
of resource identifiers R is given, we aim to generate a query graph QG satisfying the completeness
restriction, i.e., each r; in R maps to at least one resource in a triple pattern contained in QG. For a given
set of resources R, the probability of a generated query graph Pr(QG|R) being relevant for answering
the information need depends on the probability of all corresponding triple patterns to be relevant. We
assume that triple patterns are independent with regard to the relevance probability. Thus, we define
the relevance probability for a QG as the product of the relevance probabilities of the n containing
triple patterns. We denote the triple patterns with (s;, p;, 0;)i=1.., and their relevance probability with
Pr(s;, pi, 0;), thus rendering Pr(QGIR) = []}_, Pr(s;, pi, 0;). We aim at constructing QG with the highest
relevance probability, 1.€.

54

3.5 Query Graph Construction

arg max Pr(QGJR). There are two parameters that influence Pr(QG|R): (1) the number of triple pat-
terns and (2) the number of free variables, i.e. variables in a triple pattern that are not bound to any
input resource. Given that Y(s;, p;, 0;) : Pr(s;, p;, 0;) < 1, a low number of triple patterns increases the
relevance probability of QG. Thus, our approach aims at generating small query graphs to maximize the
relevance probability. Regarding the second parameter, more free variables increase the uncertainty and
consequently cause a decrease in Pr(QG|R). As a result of these considerations, we devise an algorithm
that minimizes the number of both the number of free variables and the number of triple patterns in
QG. Note that each triple pattern, the subject s; (resp. object 0;) should be included in the domain (resp.
range) of the predicate p; or be a variable. Otherwise, we assume the relevance probability of the given
triple pattern to be zero:

(s; ¢ domain(p;)) V (o; & range(p;)) = Pr(s;, p;, 0;) = 0.

Forward Chaining. One of the prerequisites of our approach is the inference of implicit knowledge
on the types of resources as well as domain and range information of the properties. We define the
comprehensive type (CT) of a resource r as the set of all super-classes of explicitly stated classes
of r (i.e., those classes associated with r via the rdf:type property in the knowledge base). The
comprehensive type of a resource can be easily computed using forward chaining on the rdf: type and
rdfs:subClassOf statements in the knowledge base. We can apply the same approach to properties
to obtain maximal knowledge on their domain and range. We call the extended domain and range of a
property p comprehensive domain (CD,,) and comprehensive range (CR,). We reduce the task of finding
the comprehensive properties (CP,_,») which link two resources r and 7’ to find properties p such that
the comprehensive domain (resp. comprehensive range) of p intersects with the comprehensive type of r
resp " or vice-versa. We call the set OP, (resp. IP,) of all properties that can originate from (resp. end
with) a resource r the set of outgoing (resp. incoming) properties of r.

3.5.2 Approach

To construct possible query graphs, we generate in a first step an incomplete query graph IQG(R) =
(V"”,E") such that the vertices V”’ (resp. edges E”) are either equal or subset of the vertices (resp.
edges) of the final query graph V” € V' (resp. E”” C E’). In fact, an incomplete query graph (IQG)
contains a set of disjoint sub-graphs, i.e. there is no vertex or edge in common between the sub-graphs:
10G = {gi(vi,e)lVg; # gj : viNv;j = 0 Ae;Ne;j =0} AnIQG connects a maximal number of the
resources detected beforehand in all possible combinations.

The 1QG is the input for the second step of our approach, which transforms the possibly incomplete
query graphs into a set of final query graphs QG. Note that for the second step, we use an extension of
the minimum spanning tree method that takes subgraphs (and not sets of nodes) as input and generates a
minimal spanning graph as output. Since in the second step, the minimum spanning tree does not add
any extra intermediate node (except nodes connected by owl : sameAs links), it eliminates both the need
of keeping an index over the neighbourhood of nodes, and of using exploration for finding paths between
nodes.

Generation of IQGs After identifying a corresponding set of resources R = {ry, r2, ...7,,} for the input
query, we can construct vertices V’ and primary edges of the query graph E” C E’ in an initial step. Each
resource r is processed as follows: (1) If r is an instance, CT of this vertex is equivalent to CT(r) and the
label of this vertex is 7. (2) If r is a class, CT of this vertex just contains r and the label of this vertex is a
new variable.

55

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

After the generation of the vertices for all resources that are instances or classes, the remaining
resources (i.e., the properties) generate an edge and zero (when connecting existing vertices), one (when
connecting an existing with a new vertex) or two vertices. This step uses the sets of incoming and
outgoing properties as computed by the forward chaining. For each resource r representing a property
we proceed as follows:

e If there is a pair of vertices (v, v") such that r belongs to the intersection of the set of outgoing
properties of v and the set of incoming properties of v’ (i.e. r € OP, N [Py), we generate an edge
between v and v’ and label it with . Note that in case several pairs (v, v") satisfy this condition, an
10QG is generated for each pair.

o Else, if there is a vertex v fulfilling the condition r € OP,, then we generate a new vertex u with
the CT, being equal to CR, and an edge labeled with the » between those vertices (v, u). Also, if
the condition r € IP, for v holds, a new vertex w is generated with CT,, being equal to CD, as well
as an edge between v and w labeled with r.

o If none of the above holds, two vertices are generated, one with CT equal to CD, and another one
with CT equal to CR,. Also, an edge between these two vertices with label r is created.

This policy for generating vertices keeps the number of free variables at a minimum. Note that whenever
a property is connected to a vertex, the associated CT of that vertex is updated to the intersection of
the previous CT and CD,, (CR,, respectively) of the property. Also, there may be different options for
inserting a property between vertices. In this case, we construct an individual /QG for each possible
option. If the output of this step generates an /QG that contains one single graph, we can terminate as
there is no need for further edges and nodes.

Example 3.14 We look at the query: What are the side effects of drugs used
for Tuberculosis?. Assume the resource disambiguation process has identified the
following resources:

1. diseasome:possibleDrug (type property)
(CD={diseasome:disease}, CR={drugbank:drugs}

2. diseasome:1154 (type instance)
CT={diseasome:disease}

3. sider:sideEffect (type property)
CD={sider:drug}, CR={sider:sideeffect?}

After running the IQGs generation, since we have only one resource with the type class or
instance, just one vertex is generated. Thereafter, since only the domain of possibleDrug
intersects with the CT of the node 1154, we generate: (1) a new vertex labeled ?v0 with the
CT being equal to

CR =possibleDrug, and (2) an edge labeled possibleDrug from 1154 to ?v0. Since,
there is no matched node for the property sideEffect we generate: (1) a new vertex labeled
vl with the CT being equal to sider:drug, (2) a new vertex labeled ?v2 with the CT being
equal to sider:sideeffect, (3) an edge labeled sideEffect from ?vl to ?v2.
shows the constructed /QG, which contains two disjoint graphs.

Connecting Sub-graphs of an IQG Since the query graph QG must be a connected graph, we need
to connect the disjoint sub-graphs in each of the /QGs. The core idea of our algorithm utilizes the
Minimum Spanning Tree (MST) approach, which builds a tree over a given graph connecting all the

56

3.6 Evaluation

Graph 1 Graph 2

Figure 3.5: 1QG for the Example[14]

vertices. We use the idea behind Prim’s algorithm [[66]], which starts with all vertices and subsequently
incrementally includes edges. However, instead of connecting vertices we connect individual disjoint
sub-graphs. Hence, we try to find a minimum set of edges (i.e., properties) to span a set of disjoint graphs
S0 as to obtain a connected graph. Therewith, we can generate a query graph that spans all vertices while
keeping the number of vertices and edges at a minimum. Since a single graph may have many different
spanning trees, there may be several query graphs that correspond to each /QG. We generate all different
spanning graphs because each one may represent a specific interpretation of the user query.

To connect two disjoint graphs we need to obtain edges that qualify for connecting a vertex in one
graph with a suitable vertex in the other graph. We obtain these properties by computing the set of
comprehensive properties CP (cf. [subsection 3.5.1) for each combination of two vertices from different
sub-graphs. Note that if two vertices are from different datasets, we have to traverse owl : sameAs links
to compute a comprehensive set of properties. This step is crucial for constructing a federated query
over interlinked data. In order to do so, we first retrieve the direct properties between two vertices
?v0 ?p ?vl. In case such properties exist, we add an edge between those two vertices to /QG. Then,
we retrieve the properties connecting two vertices via an owl: sameAs link. To do that, we employ
two graph patterns: (1) ?v0® owl:sameAs ?x. ?x ?p ?vl. (2) ?v® ?p ?x. ?x owl:sameAs ?vl.
The resulting matches to each of these two patterns are added to the /QG. Finally, we obtain properties
connecting vertices having owl : sameAs links according to the following pattern:

?7v0 owl:sameAs ?x. ?x 7p ?y. ?y owl:sameAs ?v1. Also, matches for this pattern are added
to the 10G.

For each connection discovered between a pair of vertices (v, v’), a different QG is constructed by
adding the found edge connecting those vertices to the original /QG. Note that the /QG resulting from
this process contains less unconnected graphs than the input /QG. The time complexity in the worst case
is O(|v]?) (with o] being the number of vertices).

Example 3.15 To connect two disjoint graphs i.e. Graph 1 and Graph 2 of the /10G
shown in Example[T4] we need to obtain edges that qualify for connecting either the vertex
1154 or 700 to either vertex ?vl or ?v2 in Graph 2. Forward chaining reveals the existence of
two owl : sameAs connections between two vertices i.e. (1) 1154 and ?v2, (2) 700 and ?vl.
Therefore, we can construct the first query graph template by adding an edge between 1154
and ?v2 and the second query graph template by adding an edge between 700 and ?vl. The

two generated query graph templates are depicted in [Figure 3.6]

3.6 Evaluation

Experimental Setup The goal of our evaluation was to determine effectiveness and efficiency of (1)
the resource disambiguation and (2) the query construction with respect to accuracy and runtime. We
employed four different knowledge bases: DBpedia as one individual knowledge base and the three
interlinked knowledge bases Drugbank, Sider and Diseasome. We measured the effectiveness of our
resource disambiguation approach using the Mean Reciprocal Rank (MRR). For each query g; € Q in the

57

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

Template 1 Template 2

Figure 3.6: Generated query graph templates.

benchmark, we compare the rank r; assigned by our disambiguation method to the correct m-tuple of
resources: MRR(A) = IIE > rl Moreover, we measured the accuracy of the query construction in terms
g

of precision and recall beinlg defined as follows:

|correct resources returned by generated query|
Recall =

|resources in gold standard answerl|

|correct resources returned by generated query|

Precision =
lall resources returned by generated query|

The query construction is initiated with the top-2 tuples returned by the disambiguation. For testing
the statistical significance of our results, we used a Wilcoxon signed ranked test with a significance level
of 95%.

3.6.1 Accuracy Benchmark over Interlinked Knowledge Bases

To the best of our knowledge, no benchmark for federated queries over Linked Data has been
created so far. Thus, we created a benchmark consisting of 25 queries on the three interlinked datasets
Drugbank, Sider and Diseasome for the purposes of our evaluatiorﬂ The benchmark was created by
three independent SPARQL experts, which provided us with (1) a natural-language query and (2) the
equivalent conjunctive SPARQL query. We selected these three datasets because they are a fragment of
the well interlinked biomedical fraction of the Linked Open Data Clouﬂ and thus represent an ideal
case for the future structure of Linked Data sources. The detailed results of our evaluation are shown in
We ran our SINA with and without OWL inferencing during the state space construction.

When ran without inferencing, our approach was able to correctly disambiguate 23 out of 25 (i.e. 92%)
of the resources contained in the queries. For Q9 (resp. Q25), the correct disambiguation was only ranked
third (resp. fifth). In the other two cases (i.e. Q10 and Q12), our approach simply failed to retrieve the
correct disambiguation. This was due to the path between Doxil and Bextra not being found for Q10
as well as the mapping from disease to side effect not being used in Q12. Overall, we achieve an
MRR of 86.1% without inferencing.

The MRR was 2% lower (not statistically significant) when including OWL inferencing due to the best
resource disambiguation being ranked at the second position for three queries that were disambiguated
correctly without inferencing (Q5, Q7 and Q20). This was simply due to the state space being larger and
leading to higher transition probabilities for the selected resources. With respect to precision and recall
achieved with and without reasoning, there were also no statistically significant differences between the

9 The benchmark queries are available at Ihttp ://wiki.aksw.org/Proj ects/lodqueryl
10 For example, 859 owl : sameAs links exists between the 924 instances of drugs in Sider and the 4,772 instances of drugs
Drugbank

58

http://wiki.aksw.org/Projects/lodquery

3.6 Evaluation

two approaches. The approach without reasoning achieved a precision of 0.91 and a recall of 0.88 while
using reasoning led to precision (resp. recall) values of 0.95 (resp. 0.90). Overall the pros and cons of
using inferencing are clearly illustrated in the results of our experiments. On Q12, our approach is unable
to construct a query without reasoning due to the missing equivalence between the terms disease and
side effect. This equivalence is made available by the inference engine, thus making the construction
of the SPARQL query possible. On the downside, adding supplementary information through inferencing
alters the ranking of queries and can thus lead to poorer recall values as in the case of Q20.

3.6.2 Accuracy Benchmark over DBpedia

DBpedia [23] the large knowledge base extracted from Wikipedia is an ideal test case with respect to
size. There is no standard evaluation benchmark for keyword search over RDF data yet. However, there
are the QALD-1, QALD-2 and QALD-3 benchmarkﬂ tailored towards comparing question answering
systems for natural language queriesEl . We employed the QALD-3 test dataset (in order to compare
with the recent systems participated in the campaign) and the QALD-1 dataset (in order to test SINA more)
for evaluation (note that QALD-2 dataset was employed for bootstrapping). Basically, training datasets
were used for tuning and debugging SNa. The QALD-3 test dataset (and the QALD-1 benchmark) consist
of 100 (respectively 50) questions in natural language that were also formulated as SPARQL queries.
The questions are of different levels of complexity. Generally, the reasons for failures are as follows:

1. Complex questions. Questions containing quantifiers, comparatives and superlatives.

2. Coverage. Questions requiring information from beyond DBpedia ontology, i.e., from YAGO or
FOAF.

3. Query expansion. Examples are the keywords “wife”, which should be matched to “spouse” and
“daughter” to “child”.

4. Query cleaning. An example is the question “Through which countries does the Yenisei river flow?”
The keyword flow is not a stop word but does not have any matched resource in the corresponding
SPARQL query of the benchmark; and should therefore be ignored.

Since query expansion and cleaning might result in more noisy input for the model, we did not address
these in this workEl With respect to the QALD-3 test dataset, we take all 100 questions in English
natural language without changes in the original question into account. Accordingly, SINa can correctly
answer 32 questions with precision 0.32, recall 0.32, F-measure 0.32 and of these 32 questions, average
MRR is 0.87. Thus, it outperforms the most state-of-the-art question answering systemﬂ Note that our
approach is limited to conjunctive queries. Regarding the failures, 14 questions were beyond DBpedia
coverage; 43 queries had query expansion or query cleaning issues; 7 questions were complex questions.
From the remaining questions, in two cases matching to the appropriate resource failed, e.g. due to using
abbreviation. In the other two cases, the constructed query does not fulfill the information need of the
question. The detailed results of this evaluation are shown in[Figure 3.8]

In the sequel, we elaborate on the result of the evaluation using QALD-1 benchmark. We excluded
7 complex questions and 13 questions requiring information beyond DBpedia, i.e., from YAGO and

1 [http ://greententacle.techfak.uni-bielefeld. de/~cunger/qald/|

12'Siva did not participate in the running campaign due to the late preparation, but we used these benchmarks for own evaluation.
13 A careful extension of our approach and analysis of the results will be required.

14 [http ://greententacle.techfak.uni-bielefeld.de/~cunger/qald/3/qald3_results. pdfl

59

http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/
http://greententacle.techfak.uni-bielefeld.de/~cunger/qald/3/qald3_results.pdf

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

FOAF. From the remaining questions 14 require query expansion or query cleaning to map keywords to
resources correctly. In order to keep these 14 questions while reducing the effect of external parameters
(i.e. expansion and cleaning) in our evaluation analysis, we slightly modified the expression of these 14
questions in such a way that expansion and cleaning is not required anymore. For instance, the query
“Through which countries does the Yenisei river flow?” was slightly rephrased as countries of the
Yenisei river.

shows the results of the accuracy study for each of the 30 questions used in our evaluation.
Only the expression of questions printed with pink background has been modified compared to QALD-1.
Out of the 30 questions, our disambiguation method precisely identifies resources for 27 questions with
an MRR higher than 96%. Also, the query graph construction method correctly constructs the query
graphs retrieving answers for 25 questions exactly as required by the benchmark with precision 0.5, recall
0.5 and F-measure 0.5.

In the following, we discuss the reasons of failures. In the case of Q30, the failure is caused by data

quality (i.e., inconsistent domain and range information in DBpedia). Although suitable resources have
been identified i.e. dbp:creator and dbr:Goofy, generating a suitable SPARQL query failed due
to a conflict between the domain of the property dbp: creator and the type of the entity dbr:Goofy.
According to the DBpedia schema the domain of the property dbp: creator is dbo:Work but the type of
the entity dbr: Goofy has been declared as dbo:Person. In other words, there is no intersection between
CT of dbr:Goofy and OP of dbp:creator. In DBpedia, dbr:Goofy is with the type dbo:Person
wrongly placed as the subject of a triple with property dbp:creator. In the case of the Q37, the
constructed query is not matched to the information need of the question. The constructed query contains
the following triples: 1. dbr:Bill-Clinton dbp:child ?c.
2. dbr:Bill-Clinton dbp:spouse ?s. Our approach fails to identify appropriate resources for
Q1, Q2 and Q48. This failure is mainly due to the difficulty of recognizing the correct data granular-
ity and consequently identifying the right resources. The question ‘When did Germany join the
EU?’ needs query expansion. In fact, the segment ‘ join the EU’ should be mapped to the property
dbp:accessioneudate. It is very unlikely that a user expresses a query close to the label of that
property. In the case of QI, the segment ‘ computer software’ should be mapped to a literal, whereas
currently the only kind of literal included for looking up is rdfs:1abel. Improving this is part of
our extension agenda. Q2 is very complex. For the given segment ‘located’ the corresponding
SPARQL query contains three triple patterns with the properties dbo:location, dbp:location and
dbp:locationCountry. Since we assume that each of the known segments in the benchmark could
be mapped to exactly one resource in the SPARQL query, our approach is not yet able to handle such
questions. Q30 does not aim at retrieving any resources (it uses ask instead of select). Although our
method successfully identifies correct resources and triple patterns, this question was not considered a
correct query.

3.6.3 Runtime Benchmark

Although performance was not (yet) the primary focus of our work, we also wanted to provide evidence
that our approach can be used for real-time querying. In the sequential version of Sina, all the requests to
the knowledge bases are performed sequentially. Our intuition was that the runtime can be optimized by
parallelizing those requests. In other to speedup runtime, we thus implemented parallelization over three
components, i.e., segment validation, resource retrieval and query construction. We evaluated the runtime
of our approach on the life-science as well as on QALD-1 benchmark queries. All experiments were
carried out on a Windows 7 machine with an Intel Core M 620 processor, 6GB of RAM and a 230GB
SSD. shows the average runtime of Siva over DBpedia and the life science datasets (with and

60

3.7 Related Work

4K DBpedia Life Science Life Science with Inf.

Seq Par %Gain Seq Par %Gain Seq Par %Gain
2 573 175 69.3 3.7 34 34 44 3.8 12.0
3 383 9.3 75.4 13.4 8.5 36.0 13.5 8.3 38.8
4 303 125 58.6 | 68.9 54.9 21.3 | 1045 86.4 17.3
5 389 185 523 | 663 59.0 109 | 128.8 112.0 13.0
6 - - - | 493.1 45238 8.1 94.7 61.4 35.1
7 39.6 205 48.0 - - - - - -

Table 3.3: SINA performance in seconds in sequential mode (Seq) and with parallelization (Par) for different
number of keywords (K) and datasets.

without inferencing during state space construction) for three runs. Through employing parallelization,
we achieved a total performance gain of 60% for DBpedia, 16.8% for life science without inferencing
and 23.3% for life science with inferencing.

Although most life science queries without inferencing take less time than with inferencing their
performance gain is larger. This is due to the fact that the time saved in both versions is almost the same.
For instance, the average performance gain for six keyword queries in the life science scenario with and
without inferencing is approximately 40 and 33.3 seconds.

The observed results of runtime show that number of input keywords is not correlated to the achieved
gain or query execution time. There are several explanations: (1) The number of keywords does not
directly affect the number of requests sent to the knowledge base. In fact, the number of initial requests
sent to the knowledge base for resource retrieval is correlated to the number of valid segments (not input
keywords) while the number of valid segments is not depended on the number of input keywords. For
instance, for two keywords A and B, we may have three valid segments as (A, B, AB) while for three
keywords A, B and C we may have only two valid segments as (A, BC). (2) The size of the state space is
not related to the size of input keywords. For instance, a keyword A can retrieve more resources than
a keyword B, which means that a query containing keyword A will demand more time than a query
containing keyword B. (3) There are also external factors that affect the query execution runtime such as
the knowledge base indexing strategy.

3.7 Related Work

We analyze semantic search approaches in five dimensions, i.e., input query format, disambiguation,
expansion, data distribution and query transformation. With respect to the first dimension, there are two
common types of input query, i.e., natural language query and keyword query. There is a contradiction in
usability studies of these two types of input queries. While [[68]] shows that users prefer using natural
language queries to keywords, [[69]] presents that students prefer keyword query. Second dimension is
using a disambiguation approach which selects the best interpretation of the input query. Third dimension
is query expansion like taking into account synonyms in order to improve retrieval performance. Fourth
dimension is related to the number of the underlying knowledge bases, whether the search engine runs on
either a single knowledge base or multiple interlinked knowledge bases. The last dimension refers on
how to transform the input query to a formal query. Several approaches have been developed for this
transformation, i.e., document-centric, entity-centric and question-answering approaches.

Most of these approaches are adaptations of document retrieval approaches. For instance, Swoogle [28]],
Watson [29), Sindice [26] stick to the document-centric paradigm. Entity-centric approaches (e.g.
Sig.Ma [27)], Falcons [A0]), SWSE [39]]) have recently emerged. However, the basis for all these services

61

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

Systems Input query Disam. Expan. Datadis. Transformation
Sina NL & Keyword v - Multiple Question answering
Sindice Keyword - - Multiple ~ Document retrieval
Sigma Keyword - - Multiple ~ Entity retrieval
Swoogle Keyword - - Multiple Document retrieval
PowerAqua | NL v v Multiple Question answering
TBSL NL v v Single Question answering

Table 3.4: Comparison of Semantic Web search engines in five dimensions.

are keyword indexing and retrieval relying on the matching user keywords and indexed terms. Examples
of question answering systems are PowerAqua and OntoNL [31]]. PowerAqua can automatically
combine information from multiple knowledge bases at runtime. The input is a natural language query
and the output is a list of relevant entities. PowerAqua lacks a deep linguistic analysis and can not handle
complex queries. Pythia [42]] is a question answering system that employs deep linguistic analysis. It
can handle linguistically complex questions, but is highly dependent on a manually created lexicon.
Therefore, it fails with datasets for which the lexicon was not designed. Pythia was recently used as kernel
for TBSL [[62]), a more flexible question-answering system that combines Pythia’s linguistic analysis and
the BOA framework for detecting properties to natural language patterns. Exploring schema from
anchor points bound to input keywords is another approach discussed in [48]]. Querying Linked datasets
is addressed with the work mainly treat both the data and queries as bags of words [70]. presents
a hybrid solution for querying linked datasets. It runs the input query against one particular dataset
regarding the structure of data, then for candidate answers, it finds and ranks the linked entities from
other datasets. compares six Semantic Web search engines in five dimensions. Our approach is
a prior work as it queries all the datasets at hand and then according to the structure of the data, it makes
a federated query. Furthermore, our approach is independent of any linguistic analysis and does not fail
when the input query is an incomplete sentence.

Segmentation and disambiguation are inherent challenges of keyword-based search. Keyword
queries are usually short and lead to significant keyword ambiguity [[72]]. Segmentation has been studied
extensively in the natural language processing (NLP) literature (e.g., [73]]). NLP techniques for chunking
such as part-of-speech tagging or name entity recognition cannot achieve high performance when applied
to query segmentation. [[74]] addresses the segmentation problem as well as spelling correction and
employs a dynamic programming algorithm based on a scoring function for segmentation and cleaning.
An unsupervised approach to query segmentation in Web search is described in [[75]]. [[76] is a supervised
method based on Conditional Random Fields (CRF) whose parameters are learned from query logs. For
detecting named entities, uses query log data and Latent Dirichlet Allocation. In addition to query
logs, various external resources such as Web pages, search result snippets, Wikipedia titles and a history
of the user activities have been used [[78H8T]]. Still, the most common approach is using the context for
disambiguation [82H84].. In this work, resource disambiguation is based on the structure of the knowledge
at hand as well as semantic relations between the candidate resources mapped to the keywords of the
input query.

3.8 Discussion and Conclusion

The result of evaluation shows the effectiveness as well as scalability of this approach. In the current
implementation forward chaining is carried out on the fly. Consequently, the runtime can be further
significantly increased by pre-processing the knowledge base, adding all statements that can be generated
via forward chaining and constructing an index for the label information. After implementing further

62

3.8 Discussion and Conclusion

performance optimizations (e.g. caching computed values such as resource distances), we expect our
implementation to require less than 10s for up to 5 keywords. Note that a main assumption of this work
is that some schema information is available for the underlying knowledge base and resources are typed
according to the schema. Regarding the disambiguation, the superiority of our model is related to the
transition probabilities. We achieved a fair balance between the qualification of states for transiting by
reflecting the popularity and distance in the hub and authority values and setting a transition probability
to the unknown entity state (depending on the hub value).

ID Query MRR+ |Pr+ |Re+

Which are possible drugs against rickets?

Which are the drugs whose side effects are associated with the gene TRPM6?

Which diseases are associated with the gene FOXP2?

Which are targets of Hydroxocobalamin?

Which genes are associated with diseases whose possible drug targets Cubilin? 0.5

Which are possible drugs for diseases associated with the gene ALD?

Which are targets for possible drugs for diseases associated with the gene ALD? 0.5
Which are the side effects of Penicillin G?

Which drugs have hypertension and vomiting as side effects?

Olo|N|ojln]d|lwWIN]|F

210.33

[ury
o
o

What are the common side effects of Doxil and Bextra?

[y
[N

Which diseases is Cetuximab used for?

[ury
N

What are the diseases caused by Valdecoxib?
What are the side effects of Valdecoxib?
What is the side effects of drugs used for Tuberculosis?

=y
w

[y
IS

Jury
wv

What are enzymes of drugs used for anemia?

[y
()]

What are diseases treated by tetracycline?

[y
~

What are side effect and enzymes of drugs used for ASTHMA?

[y
(&)

List references of drugs targeting Prothrombin!

[ury
=}

What are drugs interacting with allopurinol?

N
o

What are associate genes of diseases treated with Cetuximab?

N
[y

What is the food interaction of allopurinol?

N
N

Which drug does have fever as side effect?

N
w

What is the associated genes of breast cancer?
What is the target drug of Vidarabine?
Which drugs do target Multidrug resistance protein 1?

N
i

olrlrlrlrl~l~]~]rIrlr]ll~]lo]~]o]o]r]~]l~l~]]R]~]~
MNENEEEEEEEEEEEE I EEIEETEEEEEESEEES
NEEREEREEREEREEREEREEEE D EEEEEE R
Rlrlrlrlrlrlr]r|olr]rlolr]r]~rlolr]rlrlr]r]~rlr|r]~
Rrlrlrlrlrlolr]rlrlr]rl~lr]r]~rlo]lol~rlrlr]r]~rlr~]~

olr]rlrlr]olrlrlrlrl=lrlr]+]=

N
wv

Figure 3.7: MRR, precision and recall for the life science benchmark.

63

3 SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data

2 |Who was the successor of John F. Kennedy? 05 1] 1
15 |What is the longest river? 1l 1| 1
21 |What is the capital of Canada? 05| 11 1
22 |Who is the governor of Wyoming? 1l 1| 1
24 |Who was the father of Queen Elizabeth II? 1l 1] 1
26 |How many official languages are spoken on the Seychelles? 1l 1| 1
30 |What is the birth name of Angela Merkel? 1 1| 1
33 |Give me all Australian nonprofit organizations. 1l 11 1
35 |Who developed Minecraft? 1l 1| 1
39 |Give me all companies in Munich. 1 1| 1
40 |List all games by GMT. 1l 1| 1
41 |Who founded Intel? 033 1] 1
43 |Give me all breeds of the German Shepherd dog. 1l 1| 1
54 |What are the nicknames of San Francisco? 1] 11 1
56 |When were the Hells Angels founded? 1l 1| 1
57 |Give me the Apollo 14 astronauts. 1 1| 1
58 |What is the time zone of Salt Lake City? 1 1| 1
60 |Give me a list of all lakes in Denmark. 1] 11 1
61 |How many space missions have there been? 0.2] 1] 1
62 |Did Socrates influence Aristotle? 1] 1] 1
63 |Give me all Argentine films. 1l 1| 1
64 |Give me all launch pads operated by NASA. 1l 1| 1
65 |Which instruments did John Lennon play? 1] 11 1
73 |How many children did Benjamin Franklin have? 1l 11 1
76 |List the children of Margaret Thatcher. 1 1| 1
78 |Was Margaret Thatcher a chemist? 1l 1] 1
81 |Which books by Kerouac were published by Viking Press? 0.2] 1] 1
86 |What is the largest city in Australia? 1 1] 1
87 |Who composed the music for Harold and Maude? 1l 11 1
88 |Which films starring Clint Eastwood did he direct himself? 0.25) 1] 1
90 |Where is the residence of the prime minister of Spain? 1l 1| 1
100 [Who produces Orangina? 1 11 1

Figure 3.8: MRR, precision and recall for QALD-3 questions on DBpedia.

64

3.8 Discussion and Conclusion

ID Query

29

In which films directed by Garry Marshall was
Julia Roberts starring?

MRR Pr

1

1

Re

[y

46

What is the highest place of Karakoram?

30

Is proinsulin a protein?

33

Who created Goofy?

27

What is the revenue of IBM?

13

In which country is the Limerick Lake?

32

Which television shows were created by Walt Disney?

40

Who is the author of WikiLeaks?

19

What is the currency of the Czech Republic?

11

What is the area code of Berlin?

16

Who is the owner of Universal Studios?

26

Give me all soccer clubs in Spain.

43

Which river does the Brooklyn Bridge cross?

5

What are the official languages of the Philippines?

47

Death cause of Bruce Carver.

7

Death place of Abraham Lincoln.

49

Height of Claudia Schiffer.

8

Date of Battle of Gettysburg.

34

Countries of the Yenisei river.

15

Occupation of Frank Herbert.

12

Classis of the Millepede.

31

Museum of The Scream.

50

Source country of Nile.

10

Spouse of Barak Obama.

rlelrlrlrlr]lolrlrlrl~]~r]~r]~]~]~r]r]rRr]rRr]Rr]Rr]R]-

Rlrlr]rr]r],rlr]lr]r]r]r]~,r]r]r]r]r]r]r]r]olr]r

Rl rRrr],r]o]r~r]-

2

Which telecommunications organizations
are located in Belgium?

o

o

o

6

Name of leader of New York City.

41

Designer of Brooklyn Bridge?

Which companies are in the computer
software industry?

37

Spouse of child of Bill Clinton.

48

When did Germany join the EU?

Figure 3.9: MRR, precision and recall for QALD-1 questions on DBpedia.

65

CHAPTER 4

Keyword Query Expansion on Linked Data
Using Linguistic and Semantic Featuresﬂ

Abstract: Effective search in structured information based on textual user input is of high importance
in thousands of applications. Query expansion methods augment the original query of a user with
alternative query elements with similar meaning to increase the chance of retrieving appropriate resources.
In this work, we introduce a number of new query expansion features based on semantic and linguistic
inferencing over Linked Open Data. We evaluate the effectiveness of each feature individually as well as
their combinations employing several machine learning approaches. The evaluation is carried out on
a training dataset extracted from the QALD question answering benchmark. Furthermore, we propose
an optimized linear combination of linguistic and lightweight semantic features in order to predict the
usefulness of each expansion candidate. Our experimental study shows a considerable improvement in
precision and recall over baseline approaches.

4.1 Introduction

With the growth of the Linked Open Data cloud, a vast amount of structured information was made
publicly available. Querying that huge amount of data in an intuitive way is challenging. SPARQL, the
standard query language of the semantic web, requires exact knowledge of the vocabulary and is not
accessible by laypersons. Several tools and algorithms have been developed that make use of semantic
technologies and background knowledge , such as TBSL , SINA and WolframlAlphﬂ Those
tools suffer from a mismatch between query formulation and the underlying knowledge base structure
that is known as the vocabulary problem [86]. For instance, using DBpedia as knowledge base, the query
“Who is married to Barack Obama?” could fail, because the desired property in DBpedia is labeled
“spouse” and there is no property labeled “married to”.

Automatic query expansion (AQE) is a tried and tested method in web search for tackling the vo-
cabulary problem by adding related words to the search query and thus increase the likelihood that
appropriate documents are contained in the result. The query is expanded with features such as synonyms,
e.g. “spouse” and “married to” in the example above, or hyponym-hypernym relations, e.g. “red” and

! Corresponding publication is: Saeedeh Shekarpour, Konrad Hoffner, Jens Lehmann, and Soren Auer, “Keyword Query
Expansion on Linked Data Using Linguistic and Semantic Features”, 2013 IEEE Seventh International Conference on
Semantic Computing, Irvine, CA, USA, September 16-18, 2013, 2013 pp. 191-197

2 lhttp ://vww.wolframalpha. com

67

http://www.wolframalpha.com

4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

“color”. We investigate, which methods semantic search engines can use to overcome the vocabulary
problem and how effective AQE with the traditional linguistic features is in this regard. Semantic search
engines can use the graph structure of RDF and follow interlinks between datasets. We employ this to
generate additional expansion features such as the labels of sub- and superclasses of resources. The
underlying research question is whether interlinked data and vocabularies provide features which can be
taken into account for query expansion and how effective those new semantic query expansion features
are in comparison to traditional linguistic ones.

We do this by using machine learning methods to generate a linear combination of linguistic and
semantic query expansion features with the aim of maximizing the F;-score and efficiency on different
benchmark datasets. Our results allow developers of new search engines to integrate AQE with good
results without spending much time on its design. This is important, since query expansion is usually not
considered in isolation, but rather as one step in a pipeline for question answering or keyword search
systems.

Our core contributions are as follows:

e Definition of several semantic features for query expansion.
e Creation of benchmark test sets for query expansion.
e Combining semantic and linguistic features in a linear classifier.

e An analysis of the effect of each feature on the classifier as well as other benefits and drawbacks of
employing semantic features for query expansion.

The paper is structured as follows: In[section 4.2} the overall approach is described, in particular the
definition of features and the construction of the linear classifier. Section [4.3]provides the experiment on
the QALD-1, QALD-2 and QALD-3 test sets and presents the results we obtained. In the related work
infsection 5.5] we discuss in which settings AQE is used. Finally, we conclude and give pointers to future
work.

4.2 Approach

In document retrieval, many query expansion techniques are based on information contained in the
top-ranked retrieved documents in response to the original user query, e.g. [87]]. Similarly, our approach is
based on performing an initial retrieval of resources according to the original keyword query. Thereafter,
further resources are derived by leveraging the initially retrieved ones. Overall, the proposed process
depicted in [Figure 4.1]is divided into three main steps. In the first step, all words closely related to the
original keyword are extracted based on two types of features — linguistic and semantic. In the second
step, various introduced linguistic and semantic features are weighted using learning approaches. In the
third step, we assign a relevance score to the set of the related words. Using this score we prune the
related word set to achieve a balance between precision and recall.

4.2.1 Extracting and Preprocessing of Data using Semantic and Linguistic Features

For the given input keyword k, we define the set of all words related to the keyword k as Xy =
{x1, x2, ..., x,}. The set X is defined as the union of the two sets LE; and S Ex. LEy (resp. SEy) is
constructed as the collection of all words obtained through linguistic features (resp. semantic). Linguistic
features extracted from WordNet are:

68

4.2 Approach

LOD cloud
keyword data extract19n fea.ture. query reformulated
and preparation / weighting / reformulation / qUery

Figure 4.1: AQE Pipeline.

e synonyms: words having a similar meanings to the input keyword k.
e hyponyms: words representing a specialization of the input keyword k.
e hypernyms: words representing a generalization of the input keyword k.

The set S E comprises all words semantically derived from the input keyword k using Linked Data. To
form this set, we match the input keyword k against the rdfs:label property of all resources available as
Linked Open Danﬂ It returns the set APy, = {r1,72,...,1,} as AP, C (C U I U P) where C, I and P are
the sets of classes, instances and properties contained in the knowledge base respectively, whose labels
contain k as a sub-string or are equivalent to k. For each r; € APy, we derive the resources semantically
related to r; by employing a number of semantic features. These semantic features are defined as the
following semantic relations:

e sameAs: deriving resources having the same identity as the input resource using owl:sameAs.
e seeAlso: deriving resources that provide more information about the input resource using rdfs:seeAlso.

o class/property equivalence: deriving classes or properties providing related descriptions for the
input resource using owl:equivalentClass and owl:equivalentProperty.

o superclass/-property: deriving all super classes/properties of the input resource by following the
rdfs:subClassOf or
rdfs:subPropertyOf property paths originating from the input resource.

o subclass/-property: deriving all sub resources of the input resource r; by following the rdfs:subClassOf
or
rdfs:subPropertyOf property paths ending with the input resource.

e broader concepts: deriving broader concepts related to the input resource r; using the SKOS
vocabulary properties skos:broader and skos:broadMatch.

e narrower concepts: deriving narrower concepts related to the input resource r; using skos:narrower
and skos:narrowMatch.

o related concepts: deriving related concepts to the input resource r; using skos:closeMatch,
skos:mappingRelation and skos:exactMatch.

3 via [http ://lod.openlinksw. com/sparqll

69

http://lod.openlinksw.com/sparql

4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

Note that on a given r; only those semantic features are applicable which are consistent with its associated
type. For instance, super/sub class/property relations are solely applicable to resources of type class or
property.

For each r; € APy, we derive all the related resources employing the above semantic features. Then,
for each derived resource r’, we add all the English labels of that resource to the the set S E;. Therefore,
S Ey contains the labels of all semantically derived resources. As mentioned before, the set of all related
words of the input keyword k is defined as X, = LE; U S E;. After extracting the set X}, of related words,
we run the following preprocessing methods for each x; € Xi:

1. Tokenization: extraction of individual words, ignoring punctuation and case.
2. Stop word removal: removal of common words such as articles and prepositions.

3. Word lemmatisation: determining the lemma of the word.

Vector space of a word

A single word x; € X; may be derived via different features. For example, as can be observed in
the word “motion picture” and “film” is derived by synonym, sameAs and equivalent relations.
Thus, for each derived word x;, we define a vector space representing the derived features resulting in
including that word. Suppose that totally we have n linguistic and semantic features. Each x; € Xj is
associated with a vector of size n as Vy, = [@1, a2, ..., a,]. Each «; represents the presence or absence
of the word x; in the list of the words derived via the feature f;. For instance, if we assume that f; is
dedicated to the synonym feature, the value 1 for @ in the V,, means that x; is included in the list of the
words derived by the synonym feature. There are features and those features generate a set of expansion
words.

4.2.2 Feature Selection and Feature Weighting

In order to distinguish how effective each feature is and to remove ineffective features, we employ a
weighting schema ws for computing the weights of the features as ws : f; € F — w;. Note that F is the
set of all features taken into account. There are numerous feature weighting methods to assign weight
to features like information gain [@], weights from a linear classifier I@]] odds ratio, etc. Herein, we
consider two well-known weighting schemas.

Information Gain (IG)

Information gain is often used (see[section 5.3) to decide which of the features are the most relevant.
We define the information gain (IG) of a feature as:

. o Pre.f)
IG(f) = CE{Z_} Pr(c, f,)ln—Pr(PO

fi€lpresent,absent}

In our approach, we used the ID3 decision tree algorithm with information gain.

Feature weights from linear classifiers

Linear classifiers, such as for example SVMs, calculate predictions by associating the weight w; to the
feature f;. Features whose wj is close to 0 have a small influence on the predictions. Therefore, we can
assume that they are not very important for query expansion.

70

4.2 Approach

prod-
uction

Figure 4.2: Exemplary expansion graph of the word movie using semantic features.

4.2.3 Setting the Classifier Threshold

As a last step, we set the threshold for the classifiers above. To do this, we compute the relevance
score value score(x;) for each word x; € X;. Naturally, this is done by combining the feature vector
Vi, = la1, a2, ..., a,] and the feature weight vector W = [wy, wa, . .., w,] as follows:

score(x;) = Z ;W;

i=1:n
We can then compute a subset Y of X; by selecting all words, which are above a threshold 6:

Y ={yly € Xi A score(y) > 6}

This reduces the set of query expansion candidates Xj to a set Y containing only the words in X
above threshold 6. Since we use a linear weighted combination of features, words which exhibit one or
more highly relevant features are more likely to be included in the query expansion set Y. Thus, the
threshold can be used to control the trade-off between precision and recall. A high threshold means
higher precision, but lower recall whereas a low threshold improves recall at the cost of precision.

To sum up, Y is the output of the AQE system and provides words semantically related to the
input keyword k. Retrieval of resources from the underlying knowledge base is based on the match
of a given keyword with the rdfs:label of resources. Thus, this expansion increases the likelihood of

71

4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

recognizing more relevant resources. Because in addition to resources matching their rdfs:label to the
input keyword k, we take into account resources having match of their rdfs:label with the words contained
in Y. Subsequently, this causes an increase in recall. On the contrary, it may result in loss of precision
by including resources which may be irrelevant. A severe loss in precision significantly hurts retrieval
performance. Therefore, we investigate a moderate tradeoff between speed and accuracy, although the
final result highly depends on requirements of the search service(precision is more important or recall).
Herein, the set Y includes all x; € X with a high relevance likelihood and excludes those with a low
likelihood.

4.3 Experiment and Result

4.3.1 Experimental Setup

The goal of our evaluation is to determine (1) How effective linguistic as well as semantic query
expansion features perform and (2) How well a linear weighted combination of features performs. To
the best of our knowledge, no benchmark has been created so far for query expansion tasks over Linked
Data. Thus, we created one benchmark dataset. This dataset called QALD benchmark contains 37
keyword queries obtained from the QALD-1 and QALD-2 benchmarksﬂ The QALD-1 and QALD-2
benchmarks are essentially tailored towards comparing question answering systems based on natural
language queries. We extracted all those keywords contained in the natural language queries requiring
expansion for matching to the target knowledge base resource.

An example are the keywords “wife” and “husband” which should be matched to dbpedia-owl:spouse.
Note that in the following all experiments are done on this dataset except the last experiment.

Features derived words matches
synonym 503 23
hyponym 2703 10
hypernym 657 14
sameAs 2332 12
seeAlso 49 2
equivalent 2 0
super class/property 267 4
sub class/property 2166 4
broader concepts 0 0
narrower concepts 0 0
related concepts 0 0

Table 4.1: Number of the words derived by each feature and their associated matches.

4.3.2 Results

Generally, when applying expansion methods, there is a risk of yielding a large set of irrelevant words,
which can have a negative impact on further processing steps. For this reason, we were interested in

4[http://www. sc.cit-ec .uni—bielefeld.de/qald—h forn=1,2.

72

http://www.sc.cit-ec.uni-bielefeld.de/qald-

4.3 Experiment and Result

measuring the effectiveness of all linguistic as well as semantic features individually in order to decide
which of those are effective in query expansion. shows the statistics over the number of derived
words and the number of matches per feature. Interestingly, sameAs has even more matches than synonym,
but also leads to a higher number of derived words. The hyponym and sub class/property return a huge
number of derived words while the number of matches are very low. The features hypernym and super
class/property in comparison to the rest of the features result in a considerable number of matches. The
features broader concepts, narrower concepts and related concepts provide a very small amount of
derived words and zero number of matches. Thus, we exclude the skos features in the later experiments.

In continuation, we investigate the accuracy of each individual feature. Thus, we employ a SVM
classifier and individually make an evaluation over the accuracy of each feature. This experiment was
done on the dataset with 10 fold cross validation. [Table 4.4] presents the results of this study. In this table,
the precision, recall and F-Measure for the positive (+), negative (-) and all (total) examples are shown.
In addition, six separate evaluations are carried out over a subset of features which are semantically close
to each other e.g. hyponym-+sub class/property.

In the following, we only mention the most prominent observations of this study. The features hyponym,
super class/property and sub class/property have the highest value for F-Measure. The precision of
sameAs is the same as for synonym. The feature equivalent has a high precision although the recall is
very low. The precision of the sub class/property and hyponym is high for negative examples. At last, the
combined features always behave better than the individual features.

Feature GR SVM IG
synonym 092 04 0.3
hyponym 0.4 0.81 0.49
hypernym 1 0.4 0.67
sameAs 0.4 0.8 0.49
seeAlso 0.4 1.36 0.3
equivalent 0.3 049 0.3

super class/property 045 145 0.7
sub class/property 1.5 0.67 1.12

Table 4.2: Computed weights of the features using the schemas Gain Ratio (GR), Support Vector Machines (SVM)
and Information Gain (IG).

The second goal of our experimental study is how well a linear weighted combination of features
can predict the relevant words? To do that, firstly we employed two weighting schemas as described in
the approach, i.e. information gain (IG) and the weighting of the linear classifier SVM. Secondly, these
computed weights are used for reformulating the input keyword.

shows the weights computed by SVM schemas. The feature super class/property is ranked as
the highest distinguishing feature. The computed value of Hyponym is relatively high but this feature
has a negative influence on all examples. Interestingly, in SVM schema sameAs and seeAlso as well as
synonym are acquired the equal values. This may result in that sameAs and seeAlso can be a comparable
alternative for synonym. Furthermore, subproperty and subclass are excluded in this schema.

Thereafter, we scored all the derived words according to the beforehand computed weights. We set up
two different settings. In each setting, respectively, only linguistic features and only semantic features are
taken into account. A separate evaluation is carried out for each setting with respect to the computed
weights SVM.

73

4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

shows the results of this study. Interestingly, the setting with only semantic features result in
an accuracy at least as high as the setting with only linguistic features. This observation is an important
finding of this paper that semantic features appear to be competitive with linguistic features.

Features Weighting P Recall F-Score
Linguistic SVM 0.73 0.65 0.62
Semantic SVM 0.68 0.63 0.6

Linguistic Decision Tree / IG 0.588 0.579 0.568
Semantic Decision Tree /IG 0.755 0.684 0.661

Table 4.3: Accuracy results of predicting the relevant derived words.

4.4 Related Work

Automatic Query Expansion (AQE) is a vibrant research field and there are many approaches that
differ in the choice and combination of techniques.

4.4.1 Design Choices for Query Expansion

In the following, we describe the most important choices of data sources, candidate feature extraction
methods and representations, feature selection methods and expanded query representations (cf. [90] for
a detailed survey).

Data sources are organized collections of words or documents. The choice of the data source is
crucial because it influences the size of the vocabulary as well as the available relations; and thus possible
expansion features. Furthermore, a data source is often restricted to a certain domain and thus constitutes
a certain context for the search terms. For example, corpora extracted from newspapers yield good results
when expanding search queries related to news but are generally less suited for scientific topics. Thus a
search query with the keyword “fields” intended for electromagnetic fields could be expanded to “football
fields” and yield even worse results then the original query.

Popular choices for data sources are text corpora, synsets, hyponyms and hypernyms, anchor texts,
search engine query logs or top ranked documents. Our approach uses both WordNet as a source for
synonyms, hyponyms and hypernyms as well as the LOD cloud to obtain labels of related classes or
properties, such as equivalent, sub- and super-resources (cf. [section 4.2). WordNet is used frequently but
it suffers from two main problems [90]:

1. There is a lack of proper nouns which we tackle by using the LOD cloud including DBpedia which
contains mainly instances.

2. The large amount of ambiguous terms leads to a disambiguation problem. However, this does
not manifest itself in the relatively small models of the benchmarks we used (cf. [section 4.3).
Disambiguation is not the focus of this work but may need to be addressed separately when our
approach is used in larger domains.

74

4.4 Related Work

Features P Recall F-Score
synonym 0.44 0.68 054 -
0.33 0.15 021 +
0.39 0.42 0.37 total
hyponym 0.875 0368 0.519 -
0.6 0947 0.735 +
0.737 0.658 0.627 total
hypernym 0.545 0947 0.692 -
0.8 0.211 0.333 +
0.673 0.579 0.513 total
sameAs 0524 0579 055 -
0.529 0474 0.5 +
0.527 0.526 0.525 total
seeAlso 0471 0.842 0.604 -
0.25 0.053 0.087 +
0.36 0.447 0.345 total
equivalent 0.48 0.89 0.63 -
0.33 0.053 0.091 +
0.41 0.47 0.36 total
super class/property 0594 1 0.745 -
1 0316 048 +
0.797 0.658 0.613 total
sub class/property 0.48 0.89 0.63 -
0.33 0.05 009 +
0.52 0.41 0.47 total
. 0.5 0.579 0.53 -
sameAs, seeAlso, equivalent 0.5 0.42 045 4+
0.5 0.5 0.49 total
synonym, sameAs, seeAlso, equivalent 0.47 0579052 -
ynorym, ’ - ¢d 046 036 041 +
0.47 0.47 0.46 total
hvoonvm. subresource 0.875 0368 0.519 -
yponym, subresou 06 0947 0735 +
0.737 0.658 0.627 total
hypernym, superresource 0.594 1 0.745 -
ypernym, sup 1 0316 048 +
0.797 0.658 0.613 total

75

Table 4.4: Separate evaluations of the precision, recall and f-score of each individual feature.

4 Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features

Feature selection consists of two parts: (1) feature weighting assigns a scoring to each feature
and (2) the feature selection criterion determines which of the features to retain based on the weights.
Some common feature selection methods are mutual information, information gain, divergence from
randomness and relevance models. A framework for feature weighting and selection methods is presented
in [91]]. The authors compare different feature ranking schemes and (although not the primary focus of
the article) show that SVMs achieve the highest F'j-score of the examined methods. We use information
gain and SVMs separately and compare the results. To learn the feature rankings we use the data mining
software Weka [92]].

Expanded query representation can take the form of a Boolean or structured query, vectors of
concept types or unweighted terms and many others. Because our query is a set of keywords, our extended
query is an extended set of keywords and thus consists of unweighted terms.

4.4.2 Semantic Search and Question Answering Engines

While AQE is prevalent in traditional web search engines, the semantic search engines we examine in
the following either do not address the vocabulary problem or tackle it in a different way.

shows how the participants of the QALD/ILD 2012 workshop and selected other approaches
tackle the vocabulary problem. Interestingly, two of the three considered approaches did not use any kind
of query expansion, relying instead only on exact string matching between the query keyword and the
label of the associated resource. Alexandria [93]] uses Freebase to include synonyms and different surface
forms.

MHEEl combines query expansion and entity recognition by using textual references to a concept and
extracting Wikipedia anchor texts of links. For example, when looking at the following link:

<a href="http://en.wikipedia.org/
wiki/United_Nations'>UN

Here the word “UN” is mapped to the concept United_Nations. This approach takes advantage of a large
amount of hand-made mappings that emerge as a byproduct. However, this approach is only viable for
Wikipedia-DBpedia or other text corpora whose links are mapped to resources.

Engine Method

TBSL [[62] WordNet synonyms and BOA pattern library [94]

PowerAqua WordNet synonyms and hypernyms, owl : sameAs

Eager [@] resources of the same type using Wikipedia categories

Alexandria @] alternative names (synonyms and different surface forms) from Freebase [@]
SemSeK [@] no AQE

QAKiS [@] no AQE

MHE Wikipedia anchor texts from links pointing to the concept

Table 4.5: Prevalence of AQE in RDF based search or question answering engines.

Eager [95]] expands a set of resources with resources of the same type using DBpedia and Wikipedia
categories (instead of linguistic and semantic features in our case). Eager extracts implicit category and
synonym information from abstracts and redirect information, determines additional categories from the

>Ihttp://ups.savba.sk/~marek|

76

http://ups.savba.sk/~marek

4.5 Conclusions

DBpedia category hierarchy and then extracts additional resources which have the same categories in
common.

PowerAqua is an ontology-based system that answers natural language queries and uses WordNet
synonyms and hypernyms as well as resources related with the owl : sameAs property.

A prerequisite of feature-based Query Expansion is, that the data about the features used, i.e. the
pairs contained in the relations, is available. Relation equivalency (owl:equivalentProperty) links in
particular are often not, or not completely, defined for a knowledge base. There is however an approach
for mining equivalent relations from Linked Data, that relies on three measures of equivalency: triple
overlap, subject agreement and cardinality ratio. [99)]

An approach similar to ours is [[T00]], however it relies on supervised learning and uses only semantic
expansion features instead of a combination of both semantic and linguistic ones.

4.5 Conclusions

Semantic search is one of the most important applications for demonstrating the value of the semantic
web to real users. In the last years, a number of approaches for semantic search have been introduced.
However, other than in traditional search, the effect of query expansion has not yet been studied. With
semantically structured knowledge, we can also employ additional semantic query expansion features.
In this work, we performed a comprehensive study of semantic query expansion. We compared the
effectiveness of linguistic and semantic query expansion as well as their combination. Based on a query
expansion benchmark we created, our results suggest that semantic features are at least as effective as
linguistic ones and the intelligent combination of both brings a boost in precision and recall.

77

CHAPTER 5

Query Reformulation on RDF Knowledge Bases
using Hidden Markov Models|

Abstract: Textual querying is the most popular and simple way to retrieve information. Query
expansion is a way to reformulate the input query in order to increase the chance of retrieving appropriate
information. A common way is to derive words from linguistic resources (e.g. WordNet). However,
taking all words derived from the input keywords into account significantly increases retrieval cost. We
introduce a novel method for automatic query expansion with respect to background knowledge. Our
method uses a Hidden Markov Model to determine the most suitable derived words from linguistic
resources. We employ the co-occurrence of words in the background knowledge for connecting derived
words. The evaluation is carried out on a test query set extracted from the QALD question answering
benchmark. Our experimental study shows the feasibility and high accuracy of the method.

5.1 Introduction

There is increasingly much structured data being published on the Web. So far, more than 31 billion
triplesﬂ) are publicly available. Yet, retrieving information is a challenge mainly due to the need of having
accurate knowledge of the used vocabularies. Most of the schema-aware search systems, for example,
question answering systems such as 7BSL [62]] and SINA [[61]], suffer from a vocabulary mismatch
between the input query keywords and the underlying knowledge base schema [[86]]. For instance, using
DBpedia as knowledge base, the query “Who is wife of Barack Obama?” could fail, because the desired
property in DBpedia is labeled “spouse”.

Automatic query expansion is a long-standing research topic in information retrieval. It is a way
of reformulating the input query in order to overcome the vocabulary mismatch problem. In case of
a vocabulary mismatch, schema-aware search systems are unable to retrieve data. Therefore, query
expansion can be a crucial step in question answering or keyword search pipeline. A naive way for
automatic query expansion is adding words derived from linguistic resources. In this regard, expansions
are synonyms, hyponyms and hypernyms of the input keywords. In practice, this naive approach fails due
to high retrieval cost and substantially decreasing precision.

! Corresponding publication is: Saeedeh Shekarpour and Séren Auer, “Query Reformulation on RDF Knowledge Bases using
Hidden Markov Models”, Submitted to the Eighth International Conference on Web Search and Web Data Mining, WSDM
2015, 2015

2 lhttp ://wwwd .wiwiss. fu-berlin. de/lodcloud/state/l (March 1th, 2014)

79

http://www4.wiwiss.fu-berlin.de/lodcloud/state/

5 Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

Traditional information retrieval approaches cannot exploit the internal structure of data due to their
use of bag-of-words semantics. For searching information on the Data Web we need similar informational
retrieval concepts like words co-occurence which takes the internal structure of the data into account.
An RDF knowledge base can be viewed as a directed, labeled graph G; = (V;, E;) where V; is a set of
nodes comprising all entities and literal property values, and E; is a set of directed edges, i.e. the set of
all properties.

In order to address the vocabulary mismatch problem, we employ a Hidden Markov Model (HMM)
to obtain the optimal tuple of words. We test different bootstrapping methods for the HMM parameters
using various distributions as well as an algorithm based on Hyperlink-Induced Topic Search (HITS).
Our proposed functions for HMM parameters produce the best results for expansion.

Our main contributions are as follows:

e We define the concept of triple-based co-occurrence of words in RDF knowledge bases.
o We extend the Hidden Markov Model approach for choosing the most likely derived words.
e We create a benchmark test set for query expansion.

e We analyze the effect of this approach for both — queries requiring expansion and those which do
not.

The paper is structured as follows: In the following section, we present the problem at hand in more
detail and some of the notations and concepts used in this work. Section [5.3] presents the proposed
reformulation method in detail. Our evaluation results are presented in Section [5.4] while related work is
reviewed in Section[5.3] Finally, we conclude and give pointers to future work.

5.2 Problem and Preliminaries

In this work we focus on user-supplied queries in natural language, which we transform into an ordered
sets of keywords through tokenizing and stop-word removal. Our input query thus is an n-tuple of
keywords, i.e. Q = (ki, k2, ..., ky).

Definition 12 (Segment). For a given query Q = (ki,k2,...,k,), the segment S) is the sequence of
keywords from start position i to end position j, i.e., S jy = (ki, kis1, ..., kj).

The segment set is the list of all segments S ; ;) (1 < i, j < n) derived for the input query Q with respect
to the order of keywords. Since the number of keywords is in most queries less than six E|, retrieving the
list of all segments is not computationally expensive.

The desired output of our approach is a ranked list of reformulated queries. A reformulated query
formally is defined as follows:

Definition 13 (Reformulated query). For an n-tuple query Q = (ki, ko, ..., k), a reformulated query is
an m-tuple of keywords R(Q) = (k|,k}, ..., k;,) where each k; either matches a keyword k; in Q or was
linguistically derived from a segment S (j).

For each segment s;, we derive related words via linguistic features. Linguistic features extracted from
WordNet [[101]] are:

e Synonyms: words having the same or a very similar meaning to the input segment s;.

3 http://www.keyworddiscovery.com/keyword-stats.html?date=2012-08-01

80

5.3 Reformulating Query Using Hidden Markov Model

e Hyponyms: words representing a specialization of the input segment s;.

e Hypernyms: words representing a generalization of the input segment s;.

Definition 14 (Expansion set). For the given query Q, we define the expansion set as the union of all the
following items:

1. Original words: segments extracted from the input query with respect to the order.
2. Lemmatized words: words determined as the lemma of the extracted segments.

3. Linguistic words: words derived via applying linguistic features over the extracted segments.

5.3 Reformulating Query Using Hidden Markov Model

In this section, we describe how we use a Hidden Markov Model (HMM) for reformulating the input
query. First, we introduce the notation of HMM parameters and then we detail how we bootstrap the
parameters of our HMM for reformulating.

Hidden Markov Models: Formally, a Hidden Markov Model (HMM) is a quintuple A = (X, Y, A, B, 7)
where:

e X is a finite set of states. In our case, X equals to the expansion set associated with the input n-tuple
of keywords.

e Y denotes the set of observations. Herein, Y equals to the set of all segments derived from the input
n-tuple of keywords.

e A: X xX — [0,1]is the transition matrix. Each entry a;; is the transition probability Pr(S ;|S;)
from state i to state j.

e B: X XY — [0,1] represents the emission matrix. Each entry b;;, = Pr(h|S;) is the probability of
emitting the symbol / from state i.

e 1 : X — [0, 1] denotes the initial probability of states.

Commonly, supervised learning is employed for estimating the Hidden Markov Model parameters.
We rely on bootstrapping, a technique used to estimate an unknown probability distribution function.
Specifically, we bootstrap the parameters of our HMM by using statistical information as well as
parameter sensitivity evaluation for the emission probability and more importantly the topology of
the RDF graph for the transition probability. The results of the evaluation show that by using these
bootstrapped parameters, we achieve a high Mean Reciprocal Rank (MRR) above 69% (as discussed in
Section[5.4).

Constructing the State Space: A-priori, the state space is populated with as many states as the total
number of words in the the expansion set. Note that the expansion set is formed based on the input
n-tuple of keywords. In each state, the observable item is a segment that the associated word originated
from. For instance, the word spouse is derived from the segment wife, so wife is emitted from the
state spouse. Based on this construction of the state space, we are able to detect more likely derived
words through the sequence of observable input keywords. The reformulated query is then determined
through the most likely sequence of states.

Relations between States: There is a transition between two states, if the associated words are
co-occurring. For RDF knowledge bases, we define co-occurrence of words in terms of triple-based
co-occurrence.

81

5 Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

Definition 15 (Triple-based Co-occurrence). In a given triple t = (s, p, 0), two words w; and w; are
co-occurring, if they appear in the labels (rdfs:1abel) of at least two resources (i.e., (s, p), (s,0) or
(0,p)). The following SPARQL query checks the co-occurrence of wy and wy in the subject-predicate
position.

ASK WHERE { {
?s 7p 70 .
?s rdfs:label 7?sl .
?p rdfs:label 7?pl .
FILTER(regex(?sl, "wordl") AND
regex(?pl, "word2"))
} UNION {
?s 7p 70 .
?s rdfs:label 7sl .
?p rdfs:label 7pl .
FILTER(regex(?sl, "word2") AND
regex(?pl, "wordl"))
}
FILTER(langMatches(lang(?sl),"en") AND
langMatches(lang(?pl),"en")) }

5.3.1 Bootstrapping the Model Parameters

Our bootstrapping approach for the model parameters A and 7 is based on the HITS algorithm and
relations between words in the knowledge base. The rationale is that the relatedness of two resources can
be defined in terms of two parameters: the co-occurrence between the two words and the popularity of
each of the words. The co-occurrence between two words is based on triple-based co-occurrence. The
popularity of a word is simply the co-occurrence degree of the words available in the state space. We use
the HITS algorithm for transforming these two values to hub and authority values (as detailed below).
An analysis of the bootstrapping shows significant improvement of accuracy. In the following, we first
introduce the HITS algorithm, since it is employed within the functions for computing the two HMM
parameters A and 7. Then, we discuss the distribution functions proposed for each parameter. Finally, we
compare our bootstrapping method with other well-known distribution functions.

Hub and Authority of States. Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm
that was developed originally for ranking Web pages [[63]). It assigns a hub and an authority value to each
Web page. The hub value estimates the value of links to other pages and the authority value estimates the
value of the content on a page. Hub and authority values are mutually interdependent and computed in a
series of iterations. In each iteration the authority value is updated to the sum of the hub scores of each
referring page; and the hub value is updated to the sum of the authority scores of each referring page.
After each iteration, hub and authority values are normalized. This normalization process causes these
values to converge eventually.

For each two states §; and §; in the state space, we add an edge if he two corresponding words
co-occurs in one triple. The authority of a state can now be computed by: auth(S ;) = 3, hub(S ;). The

S;

hub value of a state is given by hub(S ;) = Z auth(S ;). These definitions of hub and authority for states

are the foundation for computing the transmon and initial probabilities in the HMM.
Transition Probability. To compute the transition probability between two states, we take the
connectivity of the whole space state into account. The transition probability of state S ; following

82

5.3 Reformulating Query Using Hidden Markov Model

state S; is denoted as a;; = Pr(S;|S;). Note that the condition)} Pr(S;|S;) = 1 holds. The transition
Si
probability from the state S; to the state S ; is computed by:

auth(s ;)

>, auth(Sy)
Vaik>0

ajj = PI’(SJ'|S,') = X hub(S,)

Here, the probabilities from state S; to the neighbouring states are uniformly distributed based on the
authority values. Consequently, states with higher authority values are more probable to be met.
Initial Probability. The initial probability 7(S;) is the probability that the model assigns to the initial

state S; at the beginning. The initial probabilities fulfill the condition)} n(S;) = 1. We denote states for
VS,
which the first keyword is observable by InitialS tates. The initial states are defined as follows:

auth(S ;) + hub(S;)
S (auth(S ;) + hub(S ;)

VS j€lnitialS tates

n(Si) =

In fact, 7(S;) of an initial state is uniformly distributed on both hub and authority values.

Emission Probability. For computing the emission probability of the state S; and the emitted segment
h, we consider the origin type of the word associated to the state S;. Words associated with the states
originated from one of following:

1. Original words: segments extracted from the input query with respect to the original order.
2. Lemmatized words: words representing lemmas of the extracted segments.

3. Linguistic words: words obtained by through linguistic relations from the extracted segments.

We assign the probability 6 if the word has as origin either original words or lemmatized words.
by, = Pr(h|S;) =6

We assign the probability 7 if the word is a linguistic word.
by = Pr(hlS;) =n

Intuitively, 6 should be larger than n. A statistical analysis with our query corpus confirms this
assumption. Accordingly, around 82% of the words do not have a vocabulary mismatch problem. Hence,
taking either the original words or lemmatised words into account suffices to a large extent. Only around
12% of the words have a vocabulary mismatch problem. However, we can not solely rely on this statistics.
We consider the difference y between 6 and 77 and perform a parameter sensitivity evaluation on y.

Viterbi Algorithm for the K-best Set of Hidden States. The optimal path through the HMM for a
given sequence (i.e. input query keywords) generates a reformulated query. The Viterbi algorithm or
Viterbi path [[64]] is a dynamic programming approach for finding the optimal path through a HMM for
a given input sequence. It discovers the most likely sequence of underlying hidden states that might
have generated a given sequence of observations. This discovered path has the maximum joint emission
and transition probability of the involved states. The sub-paths of this most likely path also have the
maximum probability for the respective sub-sequence of observations. The naive version of this algorithm
just keeps track of the most likely path. We extended this algorithm using a tree data structure to store all
possible paths generating the observed query keywords. Thus, our implementation can provide a ranked
list of all paths generating the observation sequence with the corresponding probability.

83

5 Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

Example 5.16 Let us consider the input query: altitude of Everest. The observa-
tion list is shown in the first column of After constructing and pruning state space,
it contains the words listed in the second column of (only a subset of state space is
presented). By running the Viterbi algorithm, we have a ranked list of the chosen words that
the sequence altitude of Everest is observable through. In the following, we show the
top-4 most likely paths along with their associated probability.

0.02451: altitude, Everest.
0.01681: elevation, Everest.
0.01145: length, Everest.
0.01145: height, Everest.
Observation States Origin Type
Everest Everest original keyword
altitude original keyword
elevation synonym
altitude he%g}}t synonym
ceiling hyponym
level hyponym
distance hypernym

altitude Everest altitude Everest original keyword

Table 5.1: A subset of state space along with the origin type, list of all observations for the given query altitude
Everest.

5.4 Evaluation

In general, when applying expansion methods, there is a high risk of yielding a large set of irrelevant
words, which will have a negative impact on the runtime and the accuracy of the question answering
system. For this reason, the goal of our evaluation is to determine: (1) How effective is our method
with regard to a correct reformulation of queries which have vocabulary mismatch problem? (2) How
robust is the method for queries which do not have vocabulary mismatch problem? To the best of our
knowledge, no benchmark has been created so far for query expansion tasks over Linked Data. Thus,
we created a benchmark dataset, which contains 20 keyword queries obtained from the QALD-1 and
QALD-2 benchmarksﬂ The QALD-1 and QALD-2 benchmarks are essentially tailored for comparing
question answering systems based on natural language queries. Out of the overall 20 queries 10 have a
vocabulary mismatch problem and require to be reformulated. [Table 5.2]lists the entire set of queries. In
addition, the last column of this table shows the statistics over the number of derived words per query. As
it can be seen, for a low number of input keywords, relatively high number of derived words can be taken
into account.

Our experimental study is divided into two parts. First, we perform an evaluation of the bootstrapping
parameters of the Hidden Markov Model. We dedicate 10 initial queries from the benchmark for this
purpose. Second, we evaluate the overall accuracy using the remaining queries. In this step, we employ
the optimal parameter setting learned during the first step.

Since the output of our approach is a ranked list, the metric employed for evaluation is rank R and
cumulative rank CR. If the desired output is placed in the position i, the dedicated rank is i. Moreover, it

4[http://www. sc.cit-ec .uni—bielefeld.de/qald—h forn=1,2.

84

http://www.sc.cit-ec.uni-bielefeld.de/qald-

5.4 Evaluation

ID Query Mismatch word Match word # Derived words
Q1 profession bandleader profession occupation 47
Q2 Barak Obama wife wife spouse 48
Q3 Is Natalie Portman an actress? actress actor 139
Q4 Lawrence of Arabia conflict conflict battle 114
Q5 children of Benjamin Franklin children child 41
Q6 capital of Canada - - 52
Q7 companies in Munich - - 11
Q8 governor of Texas - - 25
Q9 official languages of the Philippines - - 108
Q10 Who founded Intel? - - 6
Q11 movies with Tom Cruise movie film 77
Q12 husband of Amanda Palmer wife husband spouse 32
Q13 altitude of Everest altitude elevation 16
Q14 companies in California company organisation 117
Q15 writer of Wikipedia writer author 966
Q16 soccer clubs in Spain - - 19
Q17 employees of Google - - 10
Q18 successor of John F. Kennedy - - 77
Q19 nicknames of San Francisco - - 15
Q20 Statue of Liberty built - - 43

Table 5.2: List of the queries in our benchmark along with the number of the derived words.

is probable that several items have the same rank, thus, we define cumulative rank in the position p as:

P
CR =) n;. The goal is to reach a minimum for R and CR.
i=1

As mentioned in the previous section, vy is the difference between the emission probabilities 6 and
n. v = 0 means that we do not differentiate between original words and derived words. We measured
the accuracy of the approach by assigning different values to y. [Figure 5.2] and |Figure 5.3|shows the
results of evaluation. shows rank and cumulative rank for queries required to be reformulated
and [Figure 5.3 shows the results for queries which do not. Obviously, assigning a positive value to y
prioritizes original words. The optimum value is y = 0.3.

We bootstrapped transition probability on uniform distribution once with applying HITS algorithm
and once without. compares the results of this bootstrapping. On average, the cumulative rank
(CR) without applying HITS is higher. It can be observed, that by applying HITS, a model can produce
more distinguishable probability values. Applying HITS is slightly more effective.

[Figure 5.4]represents rank (R) and cumulative rank (CR) for test queries from the benchmark. The
first five queries require to be reformulated and the rest do not. Although the size of state space is
relatively high, the desired reformulated query appears in top-4 items. An important observation is that
this approach is quite robust in case of queries that do not have vocabulary mismatch problem. In fact,
including a high number of derived words does not affect the priority of original words.

85

5 Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

70
60 ‘
\ —&0—R based on uniform
50 \ dis. and HITS
40 ={—R based on uniform
\ dis.
30 %

CR based on uniform
dis. and HITS

R\ '
\ Mmsﬂﬂ +g§'based o
0 e

Ql Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

Figure 5.1: Rank (R) and Cumulative Rank (CR) with uniform distribution with and without applying HITS
algorithm.

20
15 &
10 \
\ —o—R
5
0 - T ¥ T a T i T E T i—\ ={—CR

0 01 02 03 04 05

Gamma

Figure 5.2: Rank (R) and Cumulative Rank (CR) for different values of y for queries that require expansion.

30
20
+R
10 —— o —<—=
——CR
0 T T T T T 1

0 0.1 0.2 0.3 0.4 0.5
Gamma

Figure 5.3: Rank (R) and Cumulative Rank (CR) for different values of y for queries that do not require expansion.

86

5.5 Related Work

4

3

) ER
ECR

[Eny

, LA

Qll1 Q12 Q13 Q14 Q15 Ql6 Q17 Q18 Q19 Q20

Figure 5.4: Rank (R) and Cumulative rank (CR) for the test queries.

5.5 Related Work

Automatic Query Expansion (age) has been focus of researchers for a long time. It aims at improving
retrieval efficiency. Here we divide available works into two parts. The first part discusses a load of
approaches employed for query expansion on Web of Documents. The second part presents state of art of
query expansion on Semantic Web.

5.5.1 Query Expansion on Web of Documents

Various approaches differ in the choice of data sources and features. Data source is a collections of
words or documents. The choice of the data source influences the size of the vocabulary (expansion
terms) as well as the available features. Furthermore, a data source is often restricted to a certain domain
and thus constitutes a certain context for the search terms. Common choices for data sources are text
corpora, WordNet synsets, hyponyms and hypernyms, anchor texts, search engine query logs or top
ranked documents. A popular way of choosing data source is Pseudo Relevance Feedback (PRF) based
query expansion. In this method, top-n retrieved documents are assumed to be relevant and employed
as data source. [I02]] as one of the early works expands queries based on word similarity using cosine
coefficient. [[I03] [T04]] give the theoretical basis for detecting similarity based on co-occurence.

Feature selection [9T]] consists of two parts: (1) feature weighting assigns a scoring to each feature
and (2) the feature selection criterion determines which of the features to retain based on the weights.
Some common feature selection methods are mutual information, information gain, divergence from
randomness and relevance models. A framework for feature weighting and selection methods is presented
in [91]]. The authors compare different feature ranking schemes and show that SVM achieves the highest
F-score of the examined methods.

[90] presents a comprehensive survey of aqe in information retrieval and detail a large amount of
candidate feature extraction methods.

5.5.2 Query Expansion on Semantic Web

Since Semantic Web is publishing structured data, expansion methods can be enhanced by taking
the structure of data into account. A very important choice is defining and employing new features.

87

5 Query Reformulation on RDF Knowledge Bases using Hidden Markov Models

For instance, our previous work introduces a number of new query expansion features based on
semantic and linguistic inferencing over Linked Open Data. It evaluates the effectiveness of each feature
individually as well as their combinations employing several machine learning approaches. An approach
similar to ours is [[I00], however it relies on supervised learning and uses only semantic expansion
features instead of a combination of both semantic and linguistic ones. A prerequisite of feature-based
Query Expansion is, that the data about the features used, i.e. the pairs contained in the relations,
is available. Relation equivalency (owl:-equivalentProperty) links in particular are often not, or not
completely, defined for a knowledge base. There is however an approach for mining equivalent relations
from Linked Data, that relies on three measures of equivalency: triple overlap, subject agreement and
cardinality ratio.

However, While aqe is prevalent in traditional web search engines, the current semantic search engines
either do not address the vocabulary problem or tackle it in a different way. SemSeK [97]], SINA [[61],
QAKIS [98]] are semantic search engines which still do not use any kind of query expansion and rely
instead only on exact string matching between the query keyword and the label of the associated resource.
Alexandria uses Freebase to include synonyms and different surface forms. MHEH combines query
expansion and entity recognition by using textual references to a concept and extracting Wikipedia anchor
texts of links. This approach takes advantage of a large amount of hand-made mappings that emerge as a
byproduct. However, this approach is only viable for Wikipedia-DBpedia or other text corpora whose
links are mapped to resources. Eager [95]] expands a set of resources with resources of the same type
using DBpedia and Wikipedia categories (instead of linguistic and semantic features in our case). Eager
extracts implicit category and synonym information from abstracts and redirect information, determines
additional categories from the DBpedia category hierarchy and then extracts additional resources which
have the same categories in common. PowerAqua is an ontology-based system that answers natural
language queries and uses WordNet synonyms and hypernyms as well as resources related with the
owl: sameAs property.

The presented approach here benefits structure of data for expanding query. With respect to the
available methods fiting to Semantic Web, it is a pioneer.

5.6 Conclusion

In this paper, we presented a method for automatic query expansion. It employs a Hidden Markov
Model for generating a suitable reformulated query. The relations between states in this model are formed
using triple-based co-occurrence of words in the RDF knowledge base. With this approach we are able to
exclude less likely derived words. The result of the evaluation confirms the feasibility and high accuracy
of this model. We plan to extend this work in different directions. Up to now, all computations are
carried out on the fly. We plan to create an index especially for co-occurrence of words in order to reduce
the computational load during runtime. Another possible extension is applying a supervised learning
approach for learning Hidden Markov Model parameters. As a next step, we plan to extend the size of
our benchmark and perform further evaluations. We are also interested in applying more features (e.g.
obtained from Wikipedia) for constructing the expansion set.

>Ihttp://ups.savba.sk/~marek|

88

http://ups.savba.sk/~marek

Appendix

89

APPENDIX A

Keyword-Driven Resource Disambiguation over
RDF Knowledge Bases]'

In this appendix, we attach our publication Keyword-Driven Resource Disambiguation over RDF
Knowledge Bases [9] which provides more experimental study on query segmentation and resource
disambiguation.

! Published as: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer, “Keyword-Driven Resource Disambigua-
tion over RDF Knowledge Bases”, Semantic Technology, Second Joint International Conference, JIST 2012, Nara, Japan,
December 2-4, 2012. Proceedings, Springer, 2012 pp. 159-174

91

Keyword-Driven Resource Disambiguation
over RDF Knowledge Bases

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Soren Auer

Department of Computer Science, University of Leipzig, Johannisgasse 26,
04103 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de

Abstract. Keyword search is the most popular way to access informa-
tion. In this paper we introduce a novel approach for determining the
correct resources for user-supplied queries based on a hidden Markov
model. In our approach the user-supplied query is modeled as the ob-
served data and the background knowledge is used for parameter es-
timation. We leverage the semantic relationships between resources for
computing the parameter estimations. In this approach, query segmenta-
tion and resource disambiguation are mutually tightly interwoven. First,
an initial set of potential segments is obtained leveraging the underlying
knowledge base; then, the final correct set of segments is determined after
the most likely resource mapping was computed. While linguistic anal-
ysis (e.g. named entity, multi-word unit recognition and POS-tagging)
fail in the case of keyword-based queries, we will show that our statis-
tical approach is robust with regard to query expression variance. Our
experimental results reveal very promising results.

1 Introduction

The Data Web currently amounts to more than 31 billion triples’ and contains
a wealth of information on a large number of different domains. Yet, accessing
this wealth of structured data remains a key challenge for lay users. The same
problem emerged in the last decade when users faced the huge amount of infor-
mation available of the Web. Keyword search has been employed by popular Web
search engines to provide access to this information in a user-friendly, low-barrier
manner. However, keyword search in structured data raises two main difficulties:
First, the right segments of data items that occur in the keyword queries have
to be identified. For example, the query ‘Who produced films starring Natalie
Portman’ can be segmented to (‘produce’, ‘film’, ‘star’, ‘Natalie Portman’) or
(‘produce’; ‘film star’, ‘Natalie’, ‘Portman’). Note that the first segmentation
is more likely to lead to a query that contain the results intended for by the
user. Second, these segments have to be disambiguated and mapped to the right
resources. Note that the resource ambiguity problem is of increasing importance

! See http://wuwé.wiwiss.fu-berlin.de/lodcloud/state/ (May 23th, 2012).

H. Takeda et al. (Eds.): JIST 2012, LNCS 7774, pp. 159-174, 2013.
(© Springer-Verlag Berlin Heidelberg 2013

160 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

as the size of knowledge bases on the Linked Data Web grows steadily. Consid-
ering the previous example?, the segment ‘film’ is ambiguous because it may
refer to the class dbo:Film (the class of all movies in DBpedia) or to the prop-
erties dbo:film or dbp:film (which relates festivals and the films shown during
these festivals). In this paper, we present an automatic query segmentation and
resource disambiguation approach leveraging background knowledge. Note that
we do not rely on training data for the parameter estimation. Instead, we leverage
the semantic relationships between data items for this purpose. While linguistic
methods like named entity, multi-word unit recognition and POS-tagging fail
in the case of an incomplete sentences (e.g. for keyword-based queries), we will
show that our statistical approach is robust with regard to query expression vari-
ance. This article is organized as follows: We review related work in Section 2.
In Section 3 we present formal definitions laying the foundation for our work. In
the section 4 our approach is discussed in detail. For a comparison with natural
language processing (NLP) approaches section 5 introduces an NLP approach
for segmenting query. Section 6 presents experimental results. In the last section,
we close with a discussion and an outlook on potential future work.

2 Related Work

Our approach is mainly related to two areas of research: text and query segmen-
tation and entity disambiguation. Text segmentation has been studied exten-
sively in the natural language processing (NLP) literature, and includes tasks
such as noun phrase chunking where the task is to recognize the chunks that
consist of noun phrases (see e.g., [16]). Yet, such approaches cannot be applied
to query segmentation since queries are short and composed of keywords. Conse-
quently, NLP techniques for chunking such as part-of-speech tagging [4] or name
entity recognition [7,5] cannot achieve high performance when applied to query
segmentation. Segmentation methods for document-based Information Retrieval
can be categorized into statistical and non-statistical algorithms. As an example
of none statistical methods, [15] addresses the segmentation problem as well as
spelling correction. Each keyword in a given query is first expanded to a set
of similar tokens in the database. Then, a dynamic programming algorithm is
used to search for the segmentation based on a scoring function. The statisti-
cal methods fall into two groups, namely supervised and unsupervised methods.
For example, the work presented in [19] proposes an unsupervised approach to
query segmentation in Web search. Yet this technique can not be easily applied
to structured data. Supervised statistical approaches are used more commonly.
For example, [25] presents a principled statistical model based on Conditional
Random Fields (CRF) whose parameters are learned from query logs. For de-
tecting named entities, [9] uses query log data and Latent Dirichlet Allocation.
In addition to query logs, various external resources such as Webpages, search

2 The underlying knowledge base and schema used throughout the paper for examples
and evaluation is DBpedia 3.7 dataset and ontology.

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 161

Data: g: n-tuple of keywords, knowledge base
Result: SegmentSet: Set of segments

1 SegmentSet=new list of segments;

2 start=1;

3 while start <= n do

4 1 = start;

5 while S ¢qrt,q) s valid do

6 SegmentSet.add(S(start,i));
7 i+

8 end

9 start+-+;
10 end

Algorithm 1. Naive algorithm for determining all valid segments taking the order
of keywords into account

result snippets and Wikipedia titles have been used [17,20,3]. Current segmen-
tation algorithms are not applicable to our segmentation problem for several
reasons. First, because they mostly are not intended for search on structured
data, it is not guaranteed that the segments they retrieve are actually part of
the underlying knowledge base. Another problem with these segmentation al-
gorithms is that they ignore the semantic relationships between segments of a
segmentation. Thus, they are likely to return sub-optimal segmentations.

An important challenge in Web search as well as in Linked Data Search is
entity disambiguation. Keyword queries are usually short and inherently lead to
significant keyword ambiguity as one query word may represent different infor-
mation needs for different users [21]. There are different ways for tackling this
challenge; firstly, query clustering [6,23,2] applies unsupervised machine learning
to cluster similar queries. The basic insight here is that it has been observed that
users with similar information needs click on a similar set of pages, even though
the queries they pose may vary. Other approaches apply query disambiguation,
which tries to find the most appropriate sense of each keyword. To achieve this
goal, one way is involving the user in selecting the correct sense [11,10,24]. An-
other technique for disambiguation is personalized search by using a history of
the user activities to tailor the best choice for disambiguation [1,18,26]. Still,
the most common approach is using context for disambiguation [14,8,13]. Albeit
context has been defined vaguely (with various definitions), herein we define
context as information surrounding the given query which can be employed for
augmenting search results. In this work, resource disambiguation is based on
a different type of context: we employ the structure of the knowledge at hand
as well as semantic relations between the candidate resources mapped to the
possible segmentations of the input query.

3 Formal Specification

RDF data is modeled as a directed, labeled graph G = (V, FE) where V is a
set of nodes i.e. the union of entities and property values, and FE is a set of
directed edges i.e. the union of object properties and data value properties.

162 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

The user-supplied query can be either a complete or incomplete sentence. How-
ever, after removing the stop words, typically set of keywords remains. The
order in which keywords appear in the original query is partially significant.
Our approach can map adjacent keywords to a joint resource. However, once a
mapping from keywords to resources is established the order of the resources
does not affect the SPARQL query construction anymore. This is a reasonable
assumption, since users will write strongly related keywords together, while the
order of only loosely related keywords or keyword segments may vary. The input
query is formally defined as an n-tuple of keyword, i.e. @ = (k1, k2, ..., kn). We
aim to transform the input keywords into a suitable set of entity identifiers, i.e.
resources R = {r1,72...r» }. In order to accomplish this task the input keywords
have to be grouped together as segments and for each segment a suitable resource
should be determined.

Definition 1 (Segment and Segmentation). For a given query Q, a segment
S, 18 a sequence of keywords from start position i to end position j which
is denoted as S(; ;) = (Kki,kit1,...,k;). A query segmentation is an m-tuple of
segments SGq = (S(0,i), S(i+1,j)s -+ Sm,n)) where the segments do not overlap
with each other and arranged in a continuous order, i.e. for two continuous
segments Sy, Sp41 : Start(Sy+1) = End(S;)+ 1. The concatenation of segments
belonging to a segmentation forms the corresponding input query Q.

Definition 2 (Resource Disambiguation). Let the segmentation

SG' = (5(10,7;)7 S(2i+1,j)7 e g”m’n)) be a suitable segmentation for the given query
Q. Fach segment is mapped to multiple candidate resources from the underlying
knowledge base, i.e. S — R' = {ri,ra..rp}. The aim of disambiguation is to
choose an x-tuple of resources from the Cartesian product of sets of candidate
resources (r1,72,...,7z) € { R x R? x ...R*} for which each r; has two important
properties. First, it is among the highest ranked candidates for the corresponding
segment with respect to the similarity as well as popularity and second it shares

a semantic relationship with other resources in the z-tuple.

When considering the order of keywords, the number of segmentations for a
query @ consisting of n keywords is 2("~1) . However, not all these segmenta-
tions contain valid segments. A valid segment is a segment for which at least
one matching resource can be found in the underlying knowledge base. Thus,
the number of segmentations is reduced by excluding those containing invalid
segments. Algorithm 1 is an extension of the greedy approach presented in [25].
This naive approach finds all valid segments when considering the order of key-
words. It starts with the first keyword in the given query as first segment, then it
includes the next keyword into the current segment as a new segment and checks
whether adding the new keyword would make the new segment no longer valid.
We repeat this process until we reach the end of the query. As a running exam-
ple, lets assume the input query is ‘Give me all video games published by Mean
Hamster Software’. Table 1 shows the set of valid segments based on naive algo-
rithm along with some samples of the candidate resources. Note that the suitable
segmentation is (wideo games’, ‘published’, "Mean Hamster Software’).

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 163

Table 1. Generated segments and samples of candidate resources for a given query

Segments Samples of Candidate Resources
video 1. dbp:video
video game 1. dbo:VideoGame
1. dbo:Game 2. dbo:games 3. dbp:game
game
4. dbr:Game 5. dbr:Game_0On
publish 1. dbo:publisher 2. dbp:publish 3. dbr:Publishing
mean 1. dbo:meaning 2. dbp:meaning 3. dbr:Mean 4. dbo:dean
mean hamster 1. dbr:Mean_Hamster_Software
mean hamster software 1. dbr:Mean_Hamster_Software
hamster 1. dbr:Hamster
software 1. dbo:Software 2. dbp:software

Resource Disambiguation Using a Ranked List of Cartesian Product
Tuples: A naive approach for finding the correct x — tuple of resources is using
a ranked list of tuples from the Cartesian product of sets of candidate resources
{R! x R? x ...R"™}. The n-tuples from the Cartesian product are simply sorted
based on the aggregated relevance score (e.g. similarity and popularity) of all
contained resources.

4 Query Segmentation and Resource Disambiguation
Using Hidden Markov Models

In this section we describe how hidden Markov models are used for query seg-
mentation and resource disambiguation. First we introduce the concept of hidden
Markov models and then we detail how we define the parameters of a hidden
Markov model for solving the query segmentation and entity disambiguation
problem.

4.1 Hidden Markov Models

The Markov model is a stochastic model containing a set of states. The pro-
cess of moving from one state to another state generates a sequence of states.
The probability of entering each state only depends on the previous state. This
memoryless property of the model is called Markov property. Many real-world
processes can be modeled by Markov models. A hidden Markov model is an
extension of the Markov model, which allows the observation symbols to be
emitted from each state with a finite probability. The main difference is that by
looking at the observation sequence we cannot say exactly what state sequence
has produced these observations; thus, the state sequence is hidden. However,
the probability of producing the sequence by the model can be calculated as well
as which state sequence was most likely to have produced the observations.

A hidden Markov model (HMM) is a quintuple A\ = (X,Y, A, B, w) where:

— X is a finite set of states, Y denotes the set of observed symbols;
— A: X x X — R is the transition matrix that each entry a;; = Pr(S;|5;)
shows the transition probability from state ¢ to state j;

164 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

— B : X XY — R represents the emission matrix, in which each entry b;;, =
Pr(hl|S;) is associated with the probability of emitting the symbol h from
state 1;

— 7 denoting the initial probability of states m; = Pr(S5;).

4.2 State Space and Observation Space

State Space. A state represents a knowledge base entity. Each entity has an
associated rdfs:label which we use to label the states. The actual number of
states X is potentially high because it contains theoretically all RDF resources,
i,e. X = V U E. However, in practice we limit the state space by excluding
irrelevant states. A relevant state is defined as a state for which a valid segment
can be observed. In other words, a valid segment is observed in an state if the
probability of emitting that segment is higher than a certain threshold 6. The
probability of emitting a segment from a state is computed based on a similarity
scoring which we describe in the section 4.3. Therefore, the state space of the
model is pruned and contains just a subset of resources of the knowledge base, i.e.
X C VUE. In addition to these candidate states, we add an unknown entity
state to the set of states. The unknown entity (UE) state comprises all entities,
which are not available (anymore) in the pruned state space. The observation
space is the set of all valid segments found in the input user query (using e.g.
the Algorithm 1). It is formally is defined as O = {o|o is a valid segment}.

4.3 Emission Probability

Both the labels of states and the segments contain sets of words. For computing
the emission probability of the state ¢ and the emitted segment h, we compare the
similarity of the label of state ¢ with the segment A in two levels, namely string-
similarity level and set-similarity level: (1) The set-similarity level measures
the difference between the label and the segment in terms of the number of
words using the Jaccard similarity. (2) The string-similarity level measures the
string similarity of each word in the segment with the most similar word in the
label using the Levenshtein distance. Our similarity scoring method is now a
combination of these two metrics. Consider the segment h = (k;, kiy1, ..., kj)
and the words from the label [divided into a set of keywords M and stopwords
N,ie. Il = M U N. The total similarity score between keywords of a segment
and a label is then computed as follows:

J
Zﬂ argmazym,em (o (mi, ki)

in = Pr(n|s;) ="'
bin = Pr(hS:) M Uh|+0.1%|N]|

This formula is essentially an extension of the Jaccard similarity coefficient. The
difference is that in the numerator, instead of using the cardinality of intersec-
tions the sum of the string-similarity score of the intersections is computed. As
in the Jaccard similarity, the denominator comprises the cardinality of the union

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 165

of two sets (keywords and stopwords). The difference is that the number of stop-
words have been down-weighted by the factor 0.1 to reduce their influence (since
they do not convey much meaningful information).

4.4 Hub and Authority of States

Hyperlink-Induced Topic Search (HITS) is a link analysis algorithm for ranking
Web pages [12]. Authority and hub values are defined in terms of one another
and computed in a series of iterations. In each iteration, hub and authority values
are normalized. This normalization process causes these values to converge even-
tually. Since RDF data is graph-structured data and entities are linked together,
we employed a weighted version of the HITS algorithm in order to assign differ-
ent popularity values to the states in the state space. For each state we assign a
hub value and an authority value. A good hub state is one that points to many
good authority states and a good authority state is one that is pointed to from
many good hub states. Before discussing the HITS computations, we define the
edges between the states in the HMM. For each two states ¢ and j in the state
space, we add an edge if there is a path in the knowledge base between the two
corresponding resources of maximum length k. Note, that we also take property
resources into account when computing the path length.The path length between
resources in the knowledge base is assigned as weight to the edge between cor-
responding states. We use a weighted version of the HITS algorithm to take the
distance between states into account. The authority of a state is computed as:
For all S; € S which point to S; : auths;, =), w;,; * hubs, And the hub value
of a state is computed as: For all S; € S which are pointed to by S; : hubs, =
> i Wi j*authg, The weight w; ; is defined as w; ; = k—pathLength(i, j), where
pathLength(i, j) is the length of the path between ¢ and j. These definitions of
hub and authority for states are the foundation for computing the transition
probability in the underlying hidden Markov model.

4.5 Transition Probability

As mentioned in the previous section, each edge between two states shows the
shortest path between them with the length less or equal to k-hop. The edges are
weighted by the length of the path. Transition probability shows the probability
of going from state ¢ to state j. For computing the transition probability, we take
into account the connectivity of the whole of space state as well as the weight of
the edge between two states. The transition probability values decrease with the
distance of the states, e.g. transitions between entities in the same triple have
higher probability than transitions between entities in triples connected through
extra intermediate entities. In addition to the edges recognized as the shortest
path between entities, there is an edge between each state and the Unknown
Entities state. The transition probability of state j following state i denoted
as a;; = Pr(S;]S;). For each state i the condition > Pr(S;|S;) = 1 should
VS,

be held. The transition probability from the state i to Unknown Entity (UE)

166 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

o N,
v N

v Ty VoW
Segment 1 Segment 2 ‘ Segment 4 ‘ ‘ Segment 5 ‘ Segment 6

Fig. 1. Trellis representation of Hidden Markov Model

state is defined as: a;yp = Pr(UE|S;) = 1 — hubs, And means a good hub has
less probability to go to UFE state. Thereafter, the transition probability from

authsj

the state i to state j is computed as: a;; = Pr(S5;|5;) = >
Va‘ik: >0

Here, the edges with the low distance value and higher authority values are more

probable to be met.

auths, * hUbS’)

4.6 Initial Probability

The initial probability mg, is the probability that the model assigns to the initial

state i in the beginning. The initial probabilities fulfill the condition) mg, = 1.
VvS;
We denote states for which the first keyword is observable by Initial States. The

initial states are defined as follows:

authg, + hubg,
TS, =

' > (auths; + hubs;)
VSjelnitialStates

In fact, g, of an initial state depends on both hub and authority values. Figure 1
illustrates an instantiated hidden markov model. The set of hidden states are
represented by circles. The state U E refers to the absent resources in the model
and other hidden states are relevant resources. Each segment box represents a
possible observation. The arrows show a transition from one state to another
state and the dashed arrows shows an emitted observation associated with a
specific state.

4.7 Viterbi Algorithm for the K-Best Set of Hidden States

The optimal path through the Markov model for a given sequence (i.e. input
query keywords) reveals disambiguated resources forming a correct segmenta-
tion. The Viterbi algorithm or Viterbi path is a dynamic programming approach

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 167

for finding the optimal path through the markov model for a given sequence.
It discovers the most likely sequence of underlying hidden states that might
have generated a given sequence of observations. This discovered path has the
maximum joint emission and transition probability of involved states. The sub
paths of this most likely path also have the maximum probability for the re-
spective sub sequence of observations. The naive version of this algorithm just
keeps track of the most likely path. We extended this algorithm using a tree
data structure to store all possible paths generating the observed query key-
words. Therefore, in our implementation we provide a ranked list of all paths
generating the observation sequence with the corresponding probability. After
running the Viterbi algorithm for our running example, the disambiguated re-
sources are: {dbo:VideoGame, dbo:publisher, dbr:Mean-Hamster-Software} and
consequently the reduced set of valid segments is: { VideoGam, publisher, Mean-
Hamster-Software} .

5 Query Segmentation Using Natural Language
Processing

Natural language processing (NLP) techniques are commonly used for text seg-
mentation. Here, we use a combination of named entity and multi-word unit
recognition services as well as POS-tagging for segmenting the input-query. In
the following, we discuss this approach in more detail.

Detection of Segments: Formally, the detection of segments aims to transform
the set of keywords K = {ki,..,k,} into a set of segments T = {t1,...,t;}
where each k; is a substring of exactly one t; € 7. Several approaches have
already been developed for this purpose, each with its own drawbacks: Semantic
lookup services (e.g., OpenCalais® and Yahoo! SeoBook* as used in the current
implementation) allow to extract named entities (NEs) and multi-word units
(MWUs) from query strings. While these approaches work well for long queries
such as “Films directed by Garry Marshall starring Julia Roberts”, they fail
to discover noun phrases such as “highest place” in the query “Highest place
of Karakoram”. We remedy this drawback by combining lookup services and a
simple noun phrase detector based on POS tags. This detector first applies a
POS tagger to the query. Then, it returns all sequences of keywords whose POS

tags abide by the following right-linear grammar:
1.S—adj A 2.5 —>nn B 3.A— B

4. B —- nn 5. B —nn B
where S is the start symbol, A and B are non-terminal symbols and nn (noun)
as well as adj (adj) are terminal symbols. The compilation of segments is carried
as follows: We send the input K to the NE and MWU detection services as well
as to the noun phrase detector. Let N be the set of NEs, M the set of MWUs

3 http://viewer.opencalais.com/
* http://tools.seobook.com/yahoo-keywords/

168 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

and P the set of noun phrases returned by the system. These three sets are
merged to a set of labels £ = (N @ M) @ P, where @ is defined as follows:

A® B=AUB\{be B|3a € A overlap(a,b)} (1)

where overlap(a,b) is true if the strings a and b overlap. The operation @ adds
the longest elements of B to A that do not overlap with A. Note that this
operation is not symmetrical and prefers elements of the set A over those of
the set B. For example, “river which Brooklyn Bridge crosses” leads to N
= {“Brooklyn Bridge”}, M = {“Brooklyn” , “Brooklyn Bridge”} and P =
{“Brooklyn Bridge”}. Thus, L = (N & M)®P = {“Brooklyn Bridge”}. The
final set of segments 7T is computed by retrieving the set of all single keywords
that were not covered by the approaches above and that do not occur in a
list of stopwords. Thus, for the query above, T = {“Brooklyn Bridge”, “river”,
“cross” }.

6 Evaluation

The goal of our experiments was to measure the accuracy of resource disam-
biguation approaches for generating adequate SPARQL queries. Thus, the main
question behind our evaluation was as follows: Given a keyword-based query(KQ)
or a natural-language query (NL) and the equivalent SPARQL query, how well
do the resources computed by our approaches resemble the gold standard. It is
important to point out that a single erroneous segment or resource can lead to
the generation of a wrong SPARQL query. Thus, our criterion for measuring the
correctness of segmentations and disambiguations was that all of the recognized
segments as well as all of the detected resources had to match the gold standard.

Ezperimental Setup. So far, no benchmark for query segmentation and resource
disambiguation has been proposed in literature. Thus, we created such a bench-
mark from the DBpedia fragment of the question answering benchmark QALD-
2°. The QALD-2 benchmark data consists of 100 training and 100 test questions
in natural-language that are transformed into SPARQL queries. In addition, it
contains a manually created keyword-based representation of each of the natural-
language questions. The benchmark assumed the generic query generation steps
for question answering: First, the correct segments have to be computed and
mapped to the correct resources. Then a correct SPARQL query has to be in-
ferred by joining the different resources with supplementary resources or liter-
als. As we are solely concerned with the first step in this paper, we selected 50
queries from the QALD-2 benchmark (25 from the test and 25 from the training
data sets) that were such that each of the known segments in the benchmark
could be mapped to exactly one resource in the SPARQL query and vice-versa.
Therewith, we could derive the correct segment to resource mapping directly
from the benchmark®. Queries that we discarded include “Give me all soccer

> http://www.sc.cit-ec.uni-bielefeld.de/qald-2
6 The queries and result of the evaluation and source code is available for download
at http://aksw.org/Projects/lodquery

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 169

clubs in Spain”, which corresponds to a SPARQL query containing the resources
{dbo:ground, dbo:SoccerClub, dbr:Spain }. The reason for discarding this
particular query was that the resource dbo:ground did not have any match in
the list of keywords. Note that we also discarded queries requiring schema infor-
mation beyond DBpedia schema. Furthermore, 6 queries out of the 25 queries
from the training data set ” and 10 queries out of 25 queries from the test data
set ® required a query expansion to map the keywords to resources. For in-
stance, the keyword “wife” should be matched with “spouse” or “daughter” to
“child”. Given that the approaches at hand generate and score several possible
segmentations (resp. resource disambiguation), we opted for measuring the mean
reciprocal rank M RR [22] for both the query segmentation and the resource dis-
ambiguation tasks. For each query ¢; € @ in the benchmark, we compare the
rank r; assigned by different algorithms to the correct segmentation and to the
resource disambiguation: M RR(A) = |c,12| > rlz Note that if the correct seg-
qi

mentation (resp. resource disambiguation) was not found, the reciprocal rank is
assigned the value 0.

Results. We evaluated our hidden Markov model for resource disambiguation
by combining it with the naive (Naive & HMM) and the greedy segmentation
(Greedy & HMM) approaches for segmentation. We use the natural language
processing (NLP) approach as a baseline in the segmentation stage. For the re-
source disambiguation stage, we combine ranked Cartesian product (RCP) with
the natural language processing (NLP & RCP) and manually injected the correct
segmentation (RCP) as the baseline. Note that we refrained from using any query
expansion method. The segmentation results are shown in Figure 2. The M RR
are computed once with the queries that required expansion and once without.
Figure 2(a), including queries requiring expansion, are slightly in favor of NLP,
which achieves on overage a 4.25% higher MRR than Naive+HMM and a 24.25%
higher MRR than Greedy+HMM. In particular, NLP achieves optimal scores
when presented with the natural-language representation of the queries from the
“train” data set. Naive+HMM clearly outperforms Greedy+HMM in all settings.
The main reason for NLP outperforming Naive+HMM with respect to the seg-
mentation lies in the fact that Naive+ HMM and Greedy+HMM are dependent
on matching segments from the query to resources in the knowledge base (i.e. seg-
mentation and resource disambiguation are interwoven). Thus, when no resource
is found for a segment (esp. for queries requiring expansion) the HMM prefers an
erroneous segmentation, while NLP works independent from the disambiguation
phase. However, as it can be observed NLP depends on the query expression.
Figure 2(b) more clearly highlights the accuracy of different approaches. Here,
the M RR without queries requiring expansion is shown. Naive+HMM perfectly
segments both natural language and keyword-based queries. The superiority of
intertwining segmentation and disambiguation in Naive+HMM is clearly shown
by our disambiguation results in the second stage in Figure 3. In this stage,

" Query IDs: 3, 6, 14, 43, 50, 93.
8 Query IDs: 3, 20, 28, 32, 38, 42, 46, 53, 57, 67.

170 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

B NL-train KQ-train M NL-test mKQ-test

0.840.84 0.83
1 .720.72 nea

0.8
0.6
0.4
0.2

Naive & HMM Greedy & HMM NLP

(a) Queries that require query expansion are included.

H NL-train KQ-train ® NL-test mKQ-test

1 1 1
L L AL XL

Naive & HMM Greedy & HMM NLP

(b) Queries that require query expansion are not included.

Fig. 2. Mean reciprocal rank of query segmentation (first stage)

Naive+HMM outperforms Greedy+HMM, NLP+RCP and RCP in all four ex-
perimental settings. Figure 3(a) shows on average 24% higher M RR, although
queries requiring expansion are included. In the absence of the queries that re-
quired an expansion (Figure 3(b)), Naive+HMM on average by 38% superior
to all other approaches and 25% superior to RCP. Note that RCP relies on
correct segmentation which in reality is not always a valid assumption. Gener-
ally, Naive+HMM being superior to Greedy+HMM can be expected, since the
naive approach for segmentation generates more segments from which the HMM
can choose. Naive+HMM outperforming RCP (resp. NLP+RCP) is mostly re-
lated to RCP (resp. NLP+RCP) often failing to assign the highest rank to the
correct disambiguation. One important feature of our approach is, as the evalu-
ation confirms, the robustness with regard to the query expression variance. As
shown in Figure 3, Naive+HMM achieves the same M RR on natural-language
and the keyword-based representation of queries on both — the train and the
test — datasets. Overall, Naive+HMM significantly outperforms our baseline
Greedy+HNM as well as state-of-the-art techniques based on NLP. Figure 4
shows the mean of M RR for different values of the threshold 6 applied for

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 171

B NL-train KQ-train M NL-test mKQ-test

0.740.74

0.560.56

Naive & HMM Greedy & HMM NLP & RCP RCP

(a) Queries that require query expansion are included.

m NL-train KQ-train ® NL-test mKQ-test
279570 .930.93

0.84

Naive & HMM Greedy & HMM NLP & RCP RCP

(b) Queries that require query expansion are not included.

Fig. 3. Mean reciprocal rank of resource disambiguation (second stage)

punning the state space. As it can be observed the optimal value of 0 is in the
range [0.6,0.7]. A high value of 6 prevents including some relevant resources and
a low value causes a load of irrelevant resources. We set 6 to 0.7.

The success of our model relies on transition probabilities which are based on
the connectivity of both the source and target node (hub score of source and
sink authority) as well as taking into account the connectivity (authority) of all
sink states. Especially, employing the HITS algorithm leads to distributing a
normalized connectivity degree across the state space. To compare the proposed
method for bootstrapping transition probability, we tested two other methods
(i.e., normal and Zipfian distribution). Assume the random variable X is defined
as the weighted sum of the normalized length of the path (distance) between two
states and normalized connectivity degree: X = a * distance + (1 — «) * (1 —
connectivityDegree). We bootstrapped the transition probability based on the
normal and Zipfian distribution for the variable X. Table 2 shows the M RR
of the HMM based on different methods (i.e., normal distribution, Zipfian and
the proposed method) employed for bootstrapping the transition probability.
The results achieved with the first two methods only led to a low accuracy. The
proposed method is superior to the other two methods in all settings.

172 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

1 —
% 0.8
2 o6 [oo
§°4<>—<>--o—o—o/
=02
0 ————

0.1 02 03 04 05 06 07 08 09 1 112
Theta

Fig. 4. Mean MRR for different values of 6

Table 2. MRR based on different methods employed in transition probability for 10
queries from train dataset

Query ID 12 15 19 22 23 25 31 33 34 35
Zipf a =1 0.30.50.250.2 0.05 0.05 0.2 0.2 0.20.5
Zipf o = 0.75 0.30.50.250.2 0.05 0.05 0.16 0.2 0.20.5
Zipf o = 0.5 0.3 0.50.250.2 0.05 0.05 0.16 0.2 0.20.5
Zipf o = 0.25 0.3 0.5 0.25 0.2 0.045 0.05 0.16 0.2 0.20.5
Zipf o =0 0.3 0.50.25 0.2 0.0450.05 0.16 0.2 0.20.5
The proposed method 1 1 1 1 1 1 1 1 1 1

0.5 0.07 0.25 0.034 0.041 0.3 0.1 1 0.16
0.5 0.07 0.3 0.034 0.041 0.125 0.1 1 0.25
0.5 0.07 0.3 0.041 0.052 0.14 0.1 1 0.25
0.5 0.07 0.3 0.058 0.58 0.2 0.1251 0.2
0.50.1 0.5 0.0830.0450.5 0.5 0.50.5

Normal a =1
Normal o = 0.75
Normal o = 0.5
Normal o = 0.25
Normal aa =0

=

7 Discussion and Future Work

We explored different methods for bootstrapping the parameters (i.e. different
distributions tested e.g., normal, Zipf) of the HMM. The results achieved with
these methods only led to a very low accuracy. The success of our model relies on
transition probabilities which are based on the connectivity of both the source
and target node (hub score of source and sink authority) as well as taking into
account the connectivity (authority) of all sink states. Employing the HITS
algorithm leads to distributing a normalized connectivity degree across the state
space. More importantly, note that considering a transition probability to the
unknown entity state is crucial, since it arranges states with the same emitted
segments in a descending order based on their hub scores. Most previous work
has been based on finding a path between two candidate entities. For future,
we aim to realize a search engine for the Data Web, which is as easy to use as
search engines for the Document Web, but allows to create complex queries and
returns comprehensive structured query results’. A first area of improvements
is related to using dictionary knowledge such as hypernyms, hyponyms or co-
hyponyms. Query expansion might also, however, result in a more noisy input for

9 A prototype of our progress in this regard is available at http://sina.aksw.org

Keyword-Driven Resource Disambiguation over RDF Knowledge Bases 173

our model. Thus, a careful extension of our approach and analysis of the results
will be required. In addition, we will extend our approach with a query cleaning
algorithm. The input query might contain some keywords which semantically are
not related to the rest of keywords. Since user usually is looking for information
semantically closely related to each other, these unrelated keywords (i.e. noise)
should be cleaned.

References

1.

2.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Topic-sensitive pagerank: A context-sensitive ranking algorithm for web search.
Technical Report 2003-29 (2003)

Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log.
ACM Press (2000)

Brenes, D.J., Gayo-Avello, D., Garcia, R.: On the fly query entity decomposition
using snippets. CoRR, abs/1005.5516 (2010)

. Brill, E., Ngai, G.: Man* vs. machine: A case study in base noun phrase learning.

ACL (1999)

Chieu, H.L., Ng, H.T.: Named entity recognition: A maximum entropy approach
using global information. In: Proceedings COLING 2002 (2002)

Chuang, S.-L., Chien, L.-F.: Towards automatic generation of query taxonomy: A
hierarchical query clustering approach. IEEE Computer Society (2002)

Collins, M., Singer, Y.: Unsupervised models for named entity classification. In:
SIGDAT Empirical Methods in NLP and Very Large Corpora (1999)

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E., Solan, Z., Wolfman, G.,
Ruppin, E.: Placing Search in Context: the Concept Revisited. In: WWW (2001)
Guo, J., Xu, G., Cheng, X., Li, H.: Named entity recognition in query. ACM (2009)

. Joachims, T., Granka, L.A., Pan, B., Hembrooke, H., Gay, G.: Accurately inter-

preting clickthrough data as implicit feedback. In: SIGIR. ACM (2005)

Kelly, D., Teevan, J.: Implicit feedback for inferring user preference: a bibliography.
SIGIR Forum 37(2), 18-28 (2003)

Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM 46(5)
(1999)

Kraft, R., Chang, C.C., Maghoul, F., Kumar, R.: Searching with context. In:
WWW 2006: 15th Int. Conf. on World Wide Web. ACM (2006)

Lawrence, S.: Context in web search. IEEE Data Eng. Bull. 23(3), 25-32 (2000)
Pu, K.Q., Yu, X.: Keyword query cleaning. PVLDB 1(1), 909-920 (2008)
Ramshaw, L.A., Marcus, M.P.: Text chunking using transformation-based learning.
CoRR (1995)

Risvik, K.M., Mikolajewski, T., Boros, P.: Query segmentation for web search
(2003)

Shepitsen, A., Gemmell, J., Mobasher, B., Burke, R.: Personalized recommendation
in social tagging systems using hierarchical clustering. ACM (2008)

Tan, B., Peng, F.: Unsupervised query segmentation using generative language
models and wikipedia. In: WWW. ACM (2008)

Tan, B., Peng, F.: Unsupervised query segmentation using generative language
models and wikipedia. ACM (2008)

Uzuner, A., Katz, B., Yuret, D.: Word sense disambiguation for information re-
trieval. AAAT Press/The MIT Press (1999)

174 S. Shekarpour, A.-C. Ngonga Ngomo, and S. Auer

22. Vorhees, E.: The trec-8 question answering track report. In: Proceedings of TREC-8
(1999)

23. Wen, J.-R., Nie, J.-Y., Zhang, H.-J.: Query Clustering Using User Logs. ACM
Transactions on Information Systems 20(1) (2002)

24. White, R.W., Jose, J.M., van Rijsbergen, C.J., Ruthven, I.: A simulated study of
implicit feedback models. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS,
vol. 2997, pp. 311-326. Springer, Heidelberg (2004)

25. Yu, X., Shi, H.: Query segmentation using conditional random fields. ACM (2009)

26. Zhu, Y., Callan, J., Carbonell, J.G.: The impact of history length on personalized
search. ACM (2008)

APPENDIX B

Towards an Efficient RDF Dataset Slicing]

In this appendix, we attach our publication Towards an Efficient RDF Dataset Slicing [3]] in which we
have contributed.

! Published as: Edgard Marx, Tommaso Soru, Sacedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga Ngomo, and Karin
Breitman, “Towards an Efficient RDF Dataset Slicing”, Int. J. Semantic Computing 7.4 (2013) p. 455

109

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

International Journal of Semantic Computing
© World Scientific Publishing Company

TOWARDS AN EFFICIENT RDF DATASET SLICING

EDGARD MARX, TOMMASO SORU, SAEEDEH SHEKARPOUR, SOREN AUER,
AXEL-CYRILLE NGONGA NGOMO

AKSW, Department of Computer Science, University of Leipzig
Augustusplatz 10, 04109 Leipzig, Germany
{marz,tsoru,shekarpour, auer,ngonga} @Qinformatik.uni-leipzig.de
hitp://aksw.org

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

In the last years an increasing number of structured data was published on the Web
as Linked Open Data (LOD). Despite recent advances, consuming and using Linked
Open Data within an organization is still a substantial challenge. Many of the LOD
datasets are quite large and despite progress in RDF data management their loading
and querying within a triple store is extremely time-consuming and resource-demanding.
To overcome this consumption obstacle, we propose a process inspired by the classical
Extract-Transform-Load (ETL) paradigm. In this article, we focus particularly on the
selection and extraction steps of this process. We devise a fragment of SPARQL dubbed
SliceSPARQL, which enables the selection of well-defined slices of datasets fulfilling typ-
ical information needs. SliceSPARQL supports graph patterns for which each connected
subgraph pattern involves a maximum of one variable or IRI in its join conditions. This
restriction guarantees the efficient processing of the query against a sequential dataset
dump stream. Furthermore, we evaluate our slicing approach on three different optimiza-
tion strategies. Results show that dataset slices can be generated an order of magnitude
faster than by using the conventional approach of loading the whole dataset into a triple
store.

Keywords: RDF Dataset Slicing; SPARQL; Graph processing.

1. Introduction

In the last years an increasing number of structured data was published on the
Web as Linked Open Data (LOD). Despite recent advances, consuming and using
Linked Open Data within an organization is still a substantial challenge. Many of
the LOD datasets are quite large and despite progress in RDF data management
their loading and querying within a triple store is extremely time consuming and
resource demanding. Examples of such datasets are DBpedia (version 3.8)* and
LinkedGeoData®, which encompass more than 1 billion triples each. Loading these

2http://dbpedia.org
bhttp://linkedgeodata.org, version of May 3rd, 2013

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

2 E. Marz et al.

1.
‘ Publication ‘
i 2. Selection
Revisioning .
RDF Slice
6. Loading 3. Extraction

5. Reconci- 4. Trans-
liation formation

Fig. 1. Linked Open Data consumption process.

datasets into a triple store requires substantial amounts of resources and time (e.g. 8
hours for DBpedia and 100 hours for LinkedGeoData on standard server hardware).
Rapid prototyping, experimentation and agile development of semantic applications
is currently effectively prevented this way. However, many users are not interested
in the whole dataset, but in a very specific part of it. A search engine specialized
on entertainment topics, for example, might aim to enrich its search results with
facts on actors and movies from DBpedia. A location-based service might want
to provide information on points-of-interest in the neighborhood of the users loca-
tion from LinkedGeoData. In both scenarios, only a tiny fraction of the respective
knowledge bases is required: From DBpedia, we need in the first case essentially all
instances from the classes Actor (2,431 instances) and Film (71,715 instances). For
the location-based service scenario, we can omit all nodes, ways and relations from
LinkedGeoData, which do not belong to the class point-of-interest or any of
its sub-classes. In that case, 98% of LinkedGeoData can be purged, thus lowering
resource requirements and increasing query performance by several orders of mag-
nitude. If we enable users to efficiently extract slices from knowledge bases, which
comprise exactly the information they require, building special-purpose Semantic
Web applications will become significantly more efficient.

Figure 1 depicts a conceptual LOD consumption process. The process is inspired
by the classical Extract-Transform-Load (ETL) process known from data warehous-
ing. However, other than ETL the LOD consumption considers both new dataset
versions being published and revisions being applied to internally used (parts of)
these datasets. The steps are:

(1) Publication is a prerequisite for the remaining consumption steps and comprises
the publication of an RDF dataset by a data publisher, mostly as a dataset
dump or SPARQL endpoint.

(2) Selection comprises the definition and specification of a relevant fragment of a

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 3

dataset, which is envisioned to be used internally by a consuming organization.

(3) Eaxtraction processes the dataset dump and extracts the relevant fragment.

(4) Transformation comprises the mapping and mapping execution of the extracted
data structure to match organization internal data structures.

(5) Reconciliation applies revisions made by the organization to earlier versions of
the dataset to the actual version.

(6) Loading makes the dataset available for internal services and applications, for
example, by means of a SPARQL endpoint.

(7) Revisioning allows the organization to apply (manual) changes to the dataset,
such as deleting instances changing properties etc. Revisions applied to a certain
version of the dataset should be persistent and be automatically reapplied (after
an update of the dataset in the respective reconciliation step.

In this article, we focus particularly on the selection and extraction steps. We
devise a fragment of SPARQL dubbed SliceSPARQL, which enables the selection
of well-defined slices of datasets fulfilling typical information needs. SliceSPARQL
supports graph patterns for which each connected subgraph pattern involves a max-
imum of one variable or IRI in its join conditions. This restriction guarantees the
efficient processing of the query against a sequential dataset dump stream. As a
result our evaluation shows that dataset slices can be generated an order of magni-
tude faster than by using the conventional approach of loading the whole dataset
into a triple store and retrieving the slice by executing the query against the triple
store’s SPARQL endpoint.

The remainder of the paper is organized as follows. section 2 briefly introduces
some important formalisms such as the RDF data model and SPARQL algebra.
section 3 discusses our approach for Linked Data graph selection and extraction.
section 6 presents a comprehensive field study comparing conventional and SliceS-
PARQL Linked Data selection and extraction using a testbed involving a variety of
different selections and datasets. section 7 discusses related works. Finally, section 8
concludes with an outlook on future work.

2. Background

According to the current state of the LOD cloud®, 295 datasets containing more
than 31 billion triples have been published [?].

Commonly the selection of subsets of RDF is performed using the SPARQL
query language?d. The SPARQL RDF query language can be used to express queries
across diverse data sources. It is composed by three main parts: 1. Query Forms, 2.
WHERE clause as well as 3. Solution Sequence and Modifiers (SSM).

The Query Forms contains variables that will appear in a solution result. It
can be used to select all or a subset of the variables bound in a pattern match.

°Retrieved 10t" November 2013.
dhttp: //www.w3.org/TR/sparqlil-query

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

4 E. Marzx et al.

Query Forms are designed to form result sets or RDF graphs. There are the four
different select query forms SELECT, CONSTRUCT, ASK and DESCRIBE. The
SELECT query form is the most common one and is used to return rows of variable
bindings. CONSTRUCT allows to create a new RDF graph or modify the existing
one through substituting variables in a graph templates for each solution. ASK
returns a Boolean value indicating whether the graph contains a match or not.
Finally, DESCRIBE is used to return all triples about the resources matching the
query.

The WHERFE clause is composed by a Graph Pattern and some constraints
helpers such as FILTER. OPTIONAL was designed for situations where there is a
necessity to select also some RDF term that is not bound in some BGP. Filters are
used to restrict a set of matched RDF terms to a subset where the filter expression
evaluates to TRUE. The triple patterns in a BGP could be or not connected by a
join condition. BGPs are a composition of one or more triple patterns that contains
only variables or both, variables and constants. By rule, a triple pattern cannot be
composed only by constants. BGPs are used to select RDF terms from a certain
data subgraph and are composed by one or more triple patterns which contains
only variables or both, variables and constants. The selected RDF terms are those
of the matching subgraphs that was mapped to variables. Please refer to Definition
2 for better understanding.

The use of query Forms and WHERE clauses generates an unordered set of
solutions. Solution Sequence and Modifiers (SSM) can be applied to this set to gen-
erate another sequence or select a portion of the result set. The SSM is composed
by six modifiers: ORDER, PROJECTION, DISTINCT, REDUCED, OFFSET and
LIMIT. The subsequent formalization of RDF and core SPARQL is closely follow-

ing [7].

Definition 1. (RDF definition) Assume there are pairwise disjoint infinite sets
I, B, and L (IRIs, blank nodes, and RDF literals, respectively). A triple (vs, vp, vo) €
(IUB)xIx(IUBUL) is called an RDF triple. In this tuple, v is the subject, v,
the predicate and v, the object. We set T' = I U B U L and call T’s elements RDF
terms.

In the following, the same notion is applied to triple patterns and triple maps. An
RDF graph is a set of RDF triples (also called RDF dataset, or simply a dataset).
Additionally, we assume the existence of an infinite set V' of variables with VNT = §).
The W3C recommendation SPARQL is a query language for RDF. By using graph
patterns, information can be retrieved from SPARQL-enabled RDF stores. This
retrieved information can be further modified by a query’s solution modifiers, such
as sorting or ordering of the query result. Finally the presentation of the query
result is determined by the query type, return either a set of triples, a table or a
Boolean value. The graph pattern of a query is the base concept of SPARQL and as
it defines the part of the RDF graph used for generating the query result, therefore
graph patterns are the focus of this discussion. We use the same graph pattern

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 5
syntax definition as [?].

Definition 2. (SPARQL Basic Graph Pattern syntax) The syntax of a
SPARQL Basic Graph Pattern expression is defined recursively as follows:

(1) A tuple from (JULUV)x (IUV)x (IULUYV) is a graph pattern (a triple
pattern).

(2) The expressions (P; AND P,), (Pr OPT P,) and (P; UNION P,) are graph
patterns, if P; and P, are graph patterns.

(3) The expression (P FILTER R) is a graph pattern, if P is a graph pattern and
R is a SPARQL constraint.

SPARQL constraints are composed of functions and logical expressions, and are
supposed to evaluate to Boolean values. Additionally, we assume that the query
pattern is well-defined according to [?]. Table 1 categorizes the types of joins in
graph patterns consisting of two triple patterns. For example, the join type SS
means that the two triple patterns have the same subject, while SO means that
the subject of the first triple pattern is the same as the object of the second triple
pattern.

Although SPARQL allows a variety of types of selections, an empirical study
over real queries [?] shows that the most frequent Query Forms executed against
DBpedia and SWDF*® is SELECT, comprising 96.9% and 99.7% respectively while
ASK, CONSTRUCT and DESCRIBE are scarcely used. This study also states that
the most common triple patterns found only have a variable at the object position
(DBpedia 66.35%; SWDF 47.79%). The authors also conclude that most queries are
simple, i.e., 66.41% of DBpedia queries and 97.25% of SWDF just contain a single
triple pattern. Another important finding is that joins are typically of the types SS
(~60%), SO (~35%) and OO (~4.5%). The study also shows that most of queries
(99.97%) have a star-shaped graph pattern, and the chains in 98% of the queries
have length one, with the longest path having a length of five.

Regarding published datasets in LOD cloud, in our study we find out the exis-
tence of tree types of sorting files. According to the sort type, files could be classified
as (1) instance segmented, (1) sorted or (3) unsorted. In (1) instance segmented sort
the triples concerning one subject are grouped together, in sequence. Sorted (2) files
are those where the subject of the triples fallow the lexical order. For instance, in
the lexical order between 10 and 9, 10 preceed 9. Thereafter the set of files that are
sorted belongs to the set of files that are instance segmented but the iverse is not
true. Finnaly, unsorted (3) files are those that do not belongs to any of the previous
sets.

®http://data.semanticweb.org

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

6 FE. Marzx et al.

Acronym Join Type Graph Patterns

SS subject-subject (s1,p1,01)(81,D2,02)
PP predicate-predicate (s1,p1,01)(s2,p1,02)
00 object-object (s1,p1,01)(82,p2,01)
SO subject-object (s1,p1,01)(s2,p2, 51)
SP subject-predicate (s1,p1,01)(s2, 51, 02)
oP object-predicate (s1,p1,01)(s2,01,09)

Table 1. Categorization of join types in graph patterns consisting of two triple patterns.

3. RDF Dataset Slicing

The goal of our slicing approach is to compute portions of a given set of RDF
streams that abide by a description provided in a restricted SPARQL vocabulary
which we call SliceSPARQL. An overview of the approach is given in Figure 2.
We base our slicing approach on matching triple patterns of SliceSPARQL queries
sequentially against the data read from the dataset dump file.

Definition 3. (SliceSPARQL) SliceSPARQL is the fragment of SPARQL for
which each connected subgraph pattern of the SPARQL graph pattern involves a
maximum of one variable or IRI in its join conditions.

The process of dataset slicing as depicted in Figure 2 comprises three stages.
In the first stage, the SliceSPARQL query is analyzed in order to recognize the
maximally connected subgraph patterns and an associated most restrictive triple
pattern. Then, the most restrictive pattern is used to extract the matching join
candidate triples from the dataset dump file. In the second stage, the datasets are
processed again in order to verify which of the join candidates match the remain-
ing triple patterns of the respective SliceSPARQL’s maximally connected subgraph
pattern.

Definition 4. (Most Restrictive Triple Patterns) For a given triple pattern
t, the number of constants contained in ¢ is denoted by t.. The set of the most
restrictive triple patterns of a SliceSPARQL query is the set of triple patterns
having maximum t..

The type of joins in graph patterns consisting of two triple patterns can be
categorized in six categories. Table 1 shows the list of all possible join types.

Definition 5. (Set of join candidates) A graph pattern p matching the triple
t is denoted by p(t). Consider all maximally connected subgraph patterns P of a
SliceSPARQL query with respect to the join position. For a given graph pattern
p € P, the set of the join candidates is the set of all RDF terms in the join position
of triples matching p. This set is denoted by C), and formally is defined as:

Cp, ={RDFTerm(t)|t € D Ap(t) Ap € P}

1‘ November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 7

1.Data 2.5Slicing 3. Relevant Fragment ‘

L.
D) @

5 I e
v =

v G

http://downloads.dbpedia.orgiv)/(lan)/file... Select... Where{ civicz \\‘ S1p102

http://downl cads. dbpedia.orgiv)/(an)filez...

hitp:#/downlcads_dbpedia org/v)/(lan)filel.._ VzQiVa S1pz20s
VB Cy Ve) sppy 08

Fig. 2. Overview of the RDF data slicing approach: (1) dataset dumps are accessed on the Web, (2)
the SliceSPARQL patterns are evaluated against the sequential dataset dump stream, (3) relevant
fragments from different datasets can be combined into an application specific knowledge base.

Considering the set of all patterns P, the set of join candidate C' is the intersection
of all C.

c= ()G
VpeP

Finally, in the third stage, we process the dataset once more and select all triples
containing an RDF term which matches all patterns in SliceSPARQL.

The two final stages are omitted in any of the following situations: 1. All triple
patterns are disjoint; 2. The dataset is segmented by subject and the graph pattern
contains only SS-joins; 3. The dataset is sorted and the graph pattern contains
only SS, SO or SP join conditions. The first stage can be also omitted if the triple
patterns do not contain any variables. In this (rather rare) case the constants used
for joining are the join candidates.

We decided to perform the extraction in the three stages for efficiency reasons.
Note that the data could be extracted in just a single stage, but doing that could
take as long as loading the data into a triple store. The last stage could also be
omitted if we select all possible triples already in the second stage. This would save
a little bit space once possible join candidates were selected in the first stage, but
most of the candidates would not fulfill the triple patterns. For example, in case that
we aim to create a slice with data about cities from New York state all world cities
would be candidates, but just a small portion are actually relevant. A three-stage
process is better suited, since it allows to determine the desired slice more precisely
in the first two stages and to extract the required information in a targeted way in
the third stage.

Example 1.
Let us look at the selection of drugs from the following example dataset com-
posed out of triples extracted from DBpedia:

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc
8 E. Marz et al.
3|/dbr: Aspirin a dbo :Drug
4|/dbr: Aspirin rdfs:label "Aspirin"@en
5/dbr:California rdf:type dbo:Place
6/dbr:California dbo:largestCity dbpedia:Los_Angeles

N O Ot W N =

NN

The following query can be used to select all instances of the DBpedia class
Drug and all resources referring to them:

SELECT * WHERE { {
?s a dbo:Drug
?s 7p 70.
} UNION {
7s1 a dbo:Drug
701l 7pl ?7sl. }
I

In the first stage the SPARQL query is split into two BGPs (lines 2-3 and 5-6)
each containing two triple patterns. The first one has an SS join condition using the
variable ?s (SSv). The second one has an SO join condition using the variable ?sl
(SOv). The more restrictive triple pattern is then chosen for each of them. In both
cases, the first triple pattern (i.e. line 2 and 5) is the more restrictive one. In the
first stage, all triples in the dataset matching one of these restrictive patterns are
then selected as join candidates. Note that the triple in line 1 of the given dataset
matches both more restrictive patterns:

In the second stage the RDF terms of the join candidates used in a join condition
(variables or constants) are then used to evaluate which of the join candidates
matches all other triple patterns in each of the BGPs. In our example, the RDF term
of our candidate fully matches only one BGP. The RDF term dbpedia:Aspirin
matches both triples ?s a dbo:Drug and ?s 7p 7o.

In the last and final stage all triples in which the RDF term in the join condition
fulfills all triple patterns of some BGP are extracted, i.e.:

dbr:Aspirin
dbr:Aspirin

a
rdfs:label

dbo:Drug
"Aspirin"Qen.

4. Complexity analysis

In order to better understand the time complexity of the approach we look at all
types of join in Table 1. An extraction can be performed in one, two or three
stages depending on the SliceSSPARQL pattern and the representation of the source
dataset. The complexity of each of this methods is shown in Table 2 and described

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 9

in the sequel. Please note that the join candidates are stored in a B-tree structure.
Case 1. Selection in unsorted datasets with any type of joins.

Case 1.1. The time complexity of the process where the join RDF term is a
variable (e.g. Q1, Q3, Q4, Q5 in Table 4) is O(nlogn). We call this the generic
method because it can be used for unsorted datasets with any type of join. The
complexity of the generic process is as follows:

The first stage comprises the (1) selection of a most restrictive pattern and
the (2) selection of join candidates. The selection of a most restrictive pattern is
carried out by retrieving the triple patterns in the graph pattern with the least
variables. With t we refer to the number of triple patterns in the graph pattern
and as we discussed in section 2 ¢t is small (i.e., ¢ << n). After selecting the most
restrictive triple pattern, the selection of the join candidates is performed by reading
the dataset sequentially. Let n be the number of triples in the dataset. Each triple
that matches the most restrictive triple pattern requires an insertion in a B-tree
structure, which can be performed in O(logm)where m is the number of elements
in the B-tree, i.e. the size of the join candidate dataset. Consequently, the first
stage can be described with the follow formula and complexity ¢ 4+ Y _, logm ~
O(nlogn).

The second stage consists of reading the target dataset and checking each triple
for whether it matches some of the triple patterns. This can be done in O(t). If the
triple matches some triple pattern, then an update is necessary. Such an update
can be carried out in O(logm). Taking the size n of the dataset into account, the
second stage can be carried out in > _ t x logm = ¢ x O(nlogn).

The third stage performs the actual extraction. For each triple in the dataset
it is checked if the triple contains an RDF term from the join candidates matches
all triple patterns from some of the graph patterns. Searching in the stored join
candidates can be performed in log m. Hence, the time complexity of this stage is
o _ylogm = O(nlogn).

The final complexity of the generic method is the sum of the complexity of each
stage, i.e. t x O(nlogn) =~ O(nlogn).

Case 1.2. The time complexity in case of a constant join RDF term (e.g. Q2 in
Table 4) is O(n).

Since the join constant in the graph pattern is already defined, there is no
necessity to perform stage one. The slicing takes two stages. (1) First checking if
all triple patterns appear in the dataset and a second one selecting the matching
triples. As the both stages require O(n) the final complexity is O(n).

Case 2. The extraction from sorted datasets using SO and SP triple patterns
where the most restrictive triple pattern has is joined via the object or predicate

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

10 E. Marx et al.

respectively can be performed in one stage.

Case 2.1. The RDF join term is a constant and the most restrictive triple pattern
contains a constant as subject (e.g. Q7 in Table 4).

In the case of the RDF join term being a constant, the extraction can be per-
formed using two binary searches, one to find the target subject and another one
to find the target object (Zf logn = O(logn)).

Case 2.2. The join RDF term is a variable (SOv) (Q8 in Table 4).

One stage through the dataset leads to all triples matching the triple pattern
having the join RDF term as object or predicate. However, after finding these
triples a binary search then finds the corresponding triple pair. Consequently, the
time complexity is Y __, logn = O(nlogn). Nevertheless, despite Case I and Case
2 have the same complexity they require a different number of stages (three for
Case 1 and one for Case 2).

Some other triple patterns can also be profiled in one stage e.g. SO where the
most restrictive pattern has the join RDF term as subject. In that case, choosing
the less restrictive triple pattern can also lead to extracting the desired data in one
stage. As the process with tree stages selects the more restrictive triple pattern,
we can say that the first approach requires 3 * mlogn where m < n. For typical
RDF term distributions 3 * m < n. For instance, 99% of properties instances in
DBpedia belongs to only 10% of the properties. A similar distribution can be found
in the generic-infobox, mapping-base infobox and pagelinks datasets in terms of
node indegree [7].

Case 3. Extraction from sorted or subject segmented dataset dumps.

Case 3.1. The complexity with a variable as join RDF term (SSv) and the dataset
segmented by subject (Q2 in Table 4) is O(n).

Since the number of triples for a particular subject segment is small enough to
fit into memory, there is no need for more than one stage. Loading each segment of
the instance in memory and checking the patterns contained in SS can be performed
in one stage. The time complexity in this case is > _; 5 = O(n).

Case 3.2. The complexity with a constant join RDF term (S5S¢) and the dataset
being sorted by subject (Q6 in Table 4) is O(logn).
The extraction can be performed with one binary search to find the target
. . 2
subject, i.e. Y 7 logn = O(logn).

5. Implementation

To profile the implementation of the approach we use a set of applications devel-
oped in Java. To ease the file management we create three applications for the (1)
download, (2) sorting and (3) decompression of files respectively. All the tests were

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 11

Placeholder Join type Unsorted Instance Segmented Sorted
SS O(nlogn) O(n) O(n)
PP O(nlogn) O(nlogn) O(nlogn)
. (e]6} O(nlogn) O(nlogn) O(nlogn)
variable SO O(nlogn) O(nlogn) O(nlogn)
SP O(nlogn) O(nlogn) O(nlogn)
OoP O(nlogn) O(nlogn) O(nlogn)
SS O(n) O(n) O(logn)
PP O(n) O(n) O(n)
e]e} O(n) O(n) O(n)
constant SO O(n) O(n) O(logn)
SP O(n) O(n) O(logn)
OoP O(n) O(n) O(n)

Table 2. Time complexity from different join types.

profiled using Virtuoso Serverf, for this propose we implemented a (4) Virtuoso
utility application. The Virtuoso application was built using the Virtuoso JDBC
Driver®. The rationale of using the Virtuoso JDBC Driver was to communicate di-
rectly with the Virtuoso instance without the overhead generated by other methods
as HTTP clients. The Virtuoso utility allows dropping graphs, loading dump files
and profiling queries natively as ISQL client. To load the dump files into Virtuoso
the function 1d_dir" was used in order to speed up the loading.

To profile the slicing approach we created another application (5). The slicing
approach was developed and main tested with N-Triple files and is due to the SliceS-
PARQL fragment not compatible with SPARQL 1.1'. Thereafter two other versions
of the slicing application with different optimization strategies subsection 5.1 were
created.

The storage of join candidates was achieved by using a custom file storage which
relies on B-trees. The structure of the each stored join candidate is composed by:
Join Term, GP position, Join Condition and Match Vector. The GP position is the
position where the GP appears in query e.g. the first GP is zero, second GP is one
and the n-th position is n minus one. The join term is the term used to join triple
patterns in a GP. The join condition is one of the join conditions listed in Table 1.
The match vector is a string with length n where n is the number of triple patterns
in BGP. Each position of the match vector represents a triple pattern, containing
one if the triple pattern matches or zero if not.

5.1. Performance improvement

So far we have presented the approach and its basic time complexity. In this section
we describe how the time performance can be further improved. Firstly, we explain

fhttp://virtuoso.openlinksw.com/
ghttp://docs.openlinksw.com/virtuoso/VirtuosoDriverJDBC.html
bhttp://docs.openlinksw.com/virtuoso/fn_1d_dir.html
ihttp://www.w3.org/TR/sparqlil-query/

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

12 E. Marx et al.

why the entire process can be carried out with parallel hardware. Later, we show
another way to reduce runtime by using a cache in the slicing stage.

5.2. Parallelization
In general, two main reasons subsist behind parallelization:

e Computation can be better distributed in multi-core machines;
e Idle time can be exploited to execute other operations.

In stages two and three for unsorted files (Q1), described in section 4, our ap-
proach performs database queries in order to know whether the URI in a placeholder
is one of the candidates selected in stage one. Since the read /write operation in hard
drives is not immediate, the processor stays on idle for a certain amount of time
waiting for the database to respond [?]. By using parallel computing, the processor
can use this time interval to profile another read/write operation on the hard drive.
The rule above applies for local streams as well as for remote files.

In our case, as depicted in Figure 3, we will focus on two types of parallel work:

e Parallelization by file, wherein each file — or dataset partition — can be assigned
to a different thread;

e Parallelization by blocks, wherein each block — or file partition — can be assigned
to a different thread.

The basic assumption is that all the entries stored in one or more N-Triple files
are independent from each other and can be processed separately. However, the
first type of parallelization might not lead to good results, especially when files
have different sizes. Thus, splitting files into blocks of the same size is required to
optimize the synchronous job.

4
block A1
\ queue
D block A2 A1
file A B1
block A3 A2
\ A3
D { block B1
file B

Fig. 3. Each file is divided into blocks which are queued randomly before being processed.

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 13

A1
B1

A2 | | A2

A3 | [A3 [A3)

queue ¢ ¢ ¢

A1 A2
G R CAVAV AV AN S VAVAVAVAY
B1 A3

thread 2 LNNNNNVVU - VUV

Fig. 4. In this example, four blocks are popped from the queue and processed by two threads.

5.3. Cache

The basic idea behind using cache is that we can avoid many database requests
by caching the URIs of the triples which have been already fetched. As mentioned
before in Definition 2, a query is generated for each triple that matches at least one
Basic Graph Pattern. The aim of such query is to know whether the URI in the
placeholder is one of the selected candidates. Intuitively, if among the Basic Graph
Patterns there exists a triple pattern with no constants, i.e. ?s ?p 7o, then any
triple is a candidate.

5.4. Domain

In order to further optimize the execution runtime, a reduction on the working do-
main can be applied. This is possible because triples involving placeholders require
to have object properties. Thus, many database accesses can be avoided by discard-
ing triples that show a literal in the placeholder position. Such situation may occur
in three cases, i.e. when the join type is 00, SO or OP (see Table 1).

6. Evaluation

The goal of our evaluation was to determine: (1) How efficient is the slicing approach
for various queries? (2) How does the slicing scale for datasets of different size? (3)
How does our approach compare to the traditional approach (i.e. loading complete
dumps into the triplestore and extracting by querying)? All files generated during
the evaluation as well as logs and tables are available onlinel.

Ihttp://aksw.org/projects/RDFSlice

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

14 E. Marx et al.

Dataset Size Triples Entities
DBpedia 102 GB 283,928,812 22,857,222
DBpedia-slice 29 GB 125,554,842 13,410,215
DrugBank 98 MB 517,150 19,696
Sider 16 MB 91,569 2,674
Diseasome 12 MB 72,463 8,152

Table 3. Evaluation datasets statistics.

6.1. Ezxperimental Setup

We used four interlinked datasets, i.e. Drugbank, Sider, Diseasome and DBpedia
Version 3.8 for the evaluation. Table 3 shows the sizes of these datasets. DBpedia-
slice refers to a version of DBpedia comprising all DBpedia datasets excluding
the page links undirected dataset. We selected Drugbank, Sider, Diseasome and
DBpedia because they are a fragment of the well interlinked part of Linked Open
Data. Especially, DBpedia is an ideal case with respect to size as it is very large.
Two students expert to SPARQL and schema of the underlying datasets created
eight SPARQL queries shown in Table 3. The provided queries take into account the
two most frequent type of join (i.e. S and S0) as well as different time complexities.
The type of the joins of the associated BGPs and the related dataset are shown. For
instance, the query Q1 running on DBpedia contains eight triple patterns which can
be divided to four disjoint BGPs having as join type either subject-subject (SS)
or subject-object (SO). We do not take queries into account containing patterns
with join types SP, OP and OO, since they seem to be very rare in real SPARQL
queries (5%) [?] and have the same complexity as in the SO case. We measured the
performance of our slicing approach in terms of runtime and memory consumption.
All experiments were carried out on a Windows 7 machine with an Intel Core M
620 processor and 6GB of RAM and a 230GB SSD.

6.2. Results

Figure 5 and Figure 6 shows the runtime versus memory (being either explored or
used) for four parameters of the entire slicing process. These four parameters are:

(1) Ezplored graph: The size of the associated graph of the underlying file which is
being explored.

(2) RAM: The size of RAM memory which is occupied.

(3) Slice: The size of the generated slice from data.

(4) Disk space: The size of the disk used to run the application (excluding the slice
size).

These parameters are recorded after reading and processing 1 MB and 1 GB for
small and large files respectively. Accordingly, the diagrams a-f in Figure 5 represent
the above parameters for the Diseasome, Drugbank, Sider, DBpedia and DBpedia-

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 15

slice datasets, respectively. A general behavior which can be observed in all diagrams
is: During the slicing process, the associated dataset dump is analyzed maximum
three times. Therefore, the diagram of the explored graph shows three hops except
of the 5(f). That is due to DBpedia files being segmented by subject and the the
query Q2 containing only subject-subject joins. Thus, one exploration suffices for
slicing. With respect to the slice graph, since only in the last pass matches are being
found and stored, the size is increasing. Monitoring the last two graphs reveal that
a maximum 50 MB of RAM and a very low amount of disk space are occupied.
More interestingly, a short while after starting the process, RAM and disk usage
are remaining fixed, since in the entire process only join candidates are required to
be stored.

With regarding to the optimizations discussed in subsection 5.1, we introduce
two evaluations over DBpedia dataset in Figure 6. Both evaluations are using costum
domain optimization, but with different strategies. In 6(a) the tool utilize cache to
avoid many database queries. In 6(b) both strategies cache and parallelization are
used. The results shows that the use of cache achieve 25% of gain while the use
of parallelization and cache 13.5%. Further investigations are needed in order to
indentify the reasons behind the performace decrease using parallelization.

Table 5 compares total runtime requiring for slicing DBpedia on data being
available in triple store and files. Since an advantage of our approach is the extrac-
tion directly from files, the load time (i.e. loading data into the triple store) was
taken into account. From the five queries (i.e Q1, Q2, Q6, Q7, Q8) used in this ex-
periment, four queries (i.e. Q2, @6, Q7, Q8) perform an order of magnitude faster
in comparison to the total time computed over triple store (800% faster). Unlike
the other queries, the total runtime of Q1 is very high (still 18% faster than the
triple store approach). That is due to the fact that the query is applied on unsorted
files and contains triple patterns of the join type SO. Furthermore, Table 6 presents
the extraction time in the unsorted version of underlying datasets using the queries
i.e. Q1, Q3, Q4 and Q5. Although the queries Q1, Q3 and Q4 have both the SS
and SO join type, the selection time is considerable low because due to the small
size of the underlying datasets. In case of DBpedia and DBpedia-slice, the effect of
file size is more tangible (70% decrease in the file size leads to a 70% decrease in
the extraction time). Table 7 compares total runtime requiring for slicing DBpedia
using different optimization strategies.

6.3. Slicing Interlinked Data

Linked Data enables data to be connected from different sources. Considering the
employed datasets, as it can be seen in Figure 7 the classes representing drugs

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

16 FE. Marx et al.

Query

Triple Patterns Join

Dataset

Q1

{7s

a
7p
a
7pl
a
7p2

a
7p3

dbo:Drug.

70.}

dbo:Drug. SS+SO

7s1.}

dbo:Disease.

702.}

dbo:Disease.

?7s3.}

DBpedia

Q2

a
7p

a
7pl

dbo:Drug.

70.}

SS+SS

dbo:Disease.

701.}

DBpedia

Q3

a
7p
a
7pl

diseasome:diseases.

70.}

SS+SO

diseasome:diseases.

701.}

Diseasome

Q4

a
7p

a
7pl

DrugBank:Drugs.

?0.

SS+SO

DrugBank:Drugs.

701.}

DrugBank

Q5

a
7p
a

?pl 7ol.}

Sider:Drugs.

?0.}

SS+SO

Sider:Drugs.

Sider

Q6

:Cladribine dbo:iupacName 7o. SS
:Cladribine 7pil 701.}

DBpedia

Q7

:Delirium dbo:wikiPageWikiLink 7o.
7p 7q.} SO

DBpedia

Qs

7p

dbo:lastWin 7o. SO

?01.}

DBpedia

Q9

a
7P
a
7pl
a
7p2
a
7p3
a
owl
7p5
a

owl
7p6

dbo:Drug.

70.}

dbo:Drug.

7s1.}

dbo:Disease. SS+SO
702.}

dbo:Disease.

?s3.}

dbo:Drug.

:sameAs 7o4.

705. }
dbg :Disease.

:sameAs 7o

707.}

DBpedia

in Drugbank , DBpedia and Sider are linked using owl:sameAs and diseases from
Diseasome are linked to drugs in Drugbank using possible Drug and possible
Disease target. Furthermore, diseases from Diseasome are linked to diseases in
DBpedia using owl:sameAs. Diseases and side effects between Sider and Diseasome
are linked using the owl:sameAs property. An interesting and novel aspect of our

Table 4. Evaluation queries.

slicing approach is that it is applicable to interlinked datasets.

With this respect, Q9 contains patterns requiring traversal of owl:sameAs over

the employed interlinked datasets.

November 15, 2013 17:51 WSPC/INSTRUCTION FILE

Towards an Efficient RDF Dataset Slicing 17

ws-ijsc

60 100
2 2 /A /~
= 50 S =0 I
S o] AN 3 / / /
Fao | Fer/ / /
2 l 2 ap v

20
2 e oL/ / /
§ 1o § .
2 0 - 2 0 T T ¥ g T 7

a 5 10 15 20 25 30 0 31 60 o1 121 152 182
Runtime (s) Runtime (s)

——Explored Graph ——Slice ——RAM —— Disk Space ——Explored Graph —— Slice —— RAM —— Disk Space

(a) Slicing unsorted dataset Diseasome using

(b) Slicing unsorted dataset Drugbank using

query Q3. query Q4.
z © = gs535 ey — —
2 5o = f/
R © 4096
& i Ed
5 30 2 1256
£ o2 Fal Z
_.‘l 4 o
£ 10 ~ £
§ | /-—"" | / T 1 —_———
0 " ' ' ' 2 o A% Y of a? WP e & o o oY
2 17 32 47 62 L S S e
Runtime (s) Runtime (h)
——Explored Graph =—Slice =——=RAM ——Disk Space ——Explored Graph ===$lice =——=RAM = Disk Space

(c) Slicing unsorted dataset Sider using query

(d) Slicing unsorted dataset DBpedia using

Q5. query Q1.
=20 = 20
=)
215 £ 15
¥ g
T 10 T 1
g g
8 2
25 — 3 5 ———————
N I
0 . : : T
§ 0.0 109 107.5 g a 365 730 1085
Runtime (m) Runtime (s
—Explored Graph ——Slice ———RAM -~ Disk Space ——Explored Graph = Slice ~——RAM ——Disk Space

(e) Slicing unsorted dataset DBpedia-slice us-
ing the Q1.

(f) Slicing sorted dastaset DBpedia using
query Q2.

Fig. 5. Slicing different datasets without optimization with different types of queries in log scale.

7. Related Work

Our approach and the SliceSPARQL fragment are meant to be part of a broader
project dubbed RDFSlice . To the best of our knowledge, [?] is the first work
specifically targeting RDF data slicing. However, it is related to approaches in the
three areas of RDF data a) crawling, b) streaming and c) replication, which we
briefly discuss in the following subsections.

Khttp://aksw.org/projects/RDFSlice

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

18 FE. Marx et al.

= sssis =] == o 63535 =] ==

2 ~ |~ £ pa

0 4096 U 4096

an an

] — g I

&2 236 —— = 256 ——

e a5 I rs e s I 17

£ £ |

g 1 +—r——— g 1 +—r———————
O A LK S B 0 D 8 b b 0 O LA Lk S & 6 0 5 B b 9
R S SR AN R v R R S AR i s e

Runtime (h) Runtime (h)
——Explored Graph =——Slice RAM Disk Space ——Explored Graph =——Slice RAM Disk Space

(a) Slicing unsorted dataset DBpedia using (b) Slicing unsorted dataset DBpedia using
cache. cache and parallelization.

Fig. 6. Slicing DBpedia with different optimization strategies using Q1 in log scale.

Approach Query Sort Load Extraction Total % Gain

T
e e e
T
R, T o0 e
B e, T amoemm

Table 5. Total runtime in minutes requiring for slicing DBpedia against five different queries on
data being available in triple store and files without optimization.

7.1. Crawling

RDF data crawlers harvest and index RDF content from the Web of Data and
Documents. MultiCrawler [?] allows to extract information not only from HTML
documents but also from structured data on the Web. It focuses on locating relevant
links to content in order to extract data. MultiCrawler explores the use of not only

Dataset Query Extraction
DBpedia Q1 713.8
DBpedia-slice Q1 202.2
Drugbank Q4 3.2
Sider Q5 1.2
Diseasome Q3 0.5

Table 6. Extraction time in minutes for unsorted datasets of different sizes without optimization.

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 19

DrugBank sider
sameAs
Drugs Drug |-—>| Side Effect
Oy /OOS .
sameAs SR Of/b/@ e
S@ase r(/g
P>
y s,
| Drugs | | Disease p—— Disease
DBpedia Diseasome

Fig. 7. Schema interlinking for four datasets i.e. DBpedia, DrugBank, Sider, Diseasome.

well-known text indexing but also structured data indexing, by converting all non-
structured information found into corresponding structured data. This approach
is useful for indexing and finding documents with relevant content, but not to
extract fragments of larger datasets. LDSpider [?] is a lightweight LOD crawler
for integration into Semantic Web applications. LDSpider can be used to traverse
LOD content and deliver the extracted data via an API to the application through
listeners. The application itself has to select the relevant content. One of LDSpider’s
main features is the capability to process a variety of Web data formats including
Turtle, RDF/XML, Notion 3 and RDFa employing different crawler strategies as
breadth-first and load-balancing. Semantic Web Client library [?] was developed
to crawl the Web of Data in order to facilitate query answering. The rationale
is to discover relevant information in the crawled structured data from different
sources during query execution time. Similar as crawlers RDFSlice can be used to
retrieve and extract relevant RDF data from the Web. However, our RDF data
slicing approach focuses on structured data in large files, it does not traverse links
and uses specific selection criteria (i.e. SliceSPARQL graph patterns) instead of
heuristics.

7.2. Streaming

Linked Streaming Data (LSD) is an extension of the RDF data model to support the
representation of stream data generated from sensors and social network. They are
designed for continuous query data with high rate of change, e. g. once per second.

Strategy Query Extraction % Gain
Cache Q1 532.3 25.4
Cache and Parallelization Q1 421.5 41.0

Table 7. Extraction time in minutes for DBpedia dataset using different optimization strategies.

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

20 E. Marz et al.

There are already many proposed approaches for RDF Streaming as CQELS [7],
Streaming SPARQL [?], C-SPARQL [?], Sparql stream [?] and EP-SPARQL [7].
These approaches work in a similar fashion: In LSD approaches, the user defines a
time window in which the data will be selected. When the window expires, the data
collected is then used to query. The approaches could also use some Linked Data
to enrich the information or easily the selection. Differently from the SPARQL
Streaming approaches, the Slicing is not designed for querying streaming data.
Rather, we aim to extract relevant fragments from large files in the distributed
static RDF LOD. Nevertheless, Slicing could also be used as a prefilter in RDF
streaming data, helping to select a relevant subset of the data during the time
window.

7.3. Replication

Although data replication is a well known study in database field to improve perfor-
mance and availability, there is still a lack in methods and approaches into concerns
Linked Data. We also observed that, most of the existing approaches focus in triple
stores instead of dump files, their work are also simplified by focusing in managing
existing instances rather than create new ones. Some related problems are data selec-
tion and synchronization. RDFSync [?] profile data replication between triple stores
by decomposing the graphs into smaller Minimum Self-Contained Graphs (MSGs)
and comparing their hashes. However, RDFSync does not take into account rele-
vant data replication. Another related work is sparqlPuSH [?]. SparqlPuSH works
as a notification message system, notifying the servers registered as listeners about
changes into the triple store. SparqlPush could also provide relevant data replica-
tion with some restriction by the use of subsection notification of PubSubHubbub
protocoll.

7.4. Future work

The number of links in the Linked Data cloud has been growing dramatically since
its conception [?], as the 4*" Linked Data principle recommends to include links to
other URIs for discovering more data [?]. Several Link Discovery frameworks [, 7]
and approaches [?,?7,7 7] aim at having the network more and more connected.
Hence, we expect the Slicing process to be harder and slower in the future. A solution
to this problem can be to reduce the number of considered links, by assigning weights
to them or filtering them by type.

Moreover, we will investigate what is the relationship between the number of
threads and the execution runtime, according to Goetz’s equation for the recom-
mended number of threads:

w
Ninreads = Nepu - Uepu - (1 + C) (1)

Ihttp://code.google.com/p/pubsubhubbub/

November 15, 2013 17:51 WSPC/INSTRUCTION FILE ws-ijsc

Towards an Efficient RDF Dataset Slicing 21

where U is the CPU usage (%) and W/C' is the ratio of wait time to compute
time [?].

8. Conclusions

In this article we presented an approach facilitating Linked Data consumption by
effectively selecting relevant parts and efficiently extracting these from very large
RDF datasets. We deem this to be a major step towards simplifying the consumption
of large RDF datasets.

We see this work as the first step in a larger research agenda to dramatically
improve Linked Data consumption. The presented approach focuses only on two
out of six stages of the consumption process. In future, we aim to develop and
integrate support for subsequent stages such as transformation, reconciliation, and
revisioning. We envision that organizations will thus be empowered to seamlessly
integrate LOD data into their internal processes and applications. A particular
challenge is the mapping of the LOD data to existing internal information structures
and the establishment of a co-evolution between private and public data involving
continuous update propagation from LOD sources while preserving revisions applied
to prior versions of these datasets.

Acknowledgement

This work was partly supported by CNPq, under the program Ciéncias Sem
Fronteiras, by Instituto de Pesquisa e Desenvolvimento Albert Schirmer (CNPJ
14.120.192/0001-84) and by a grant from the European Union’s 7th Framework
Programme provided for the project LOD2 (GA no. 257943).

Bibliography

(2]

(3]

[4]

(5]

(6]

[7]

[8]

[9]

[10]

Saeedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo, and S6ren Auer,
“SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked Data”,
Journal of Web Semantics Science, Services and Agents on the World Wide Web, 2014.

Saeedeh Shekarpour, Soren Auer, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,
Sebastian Hellmann, and Claus Stadler, “Generating SPARQL queries Using Templates”,
Web Intelligence and Agent Systems Journal 11.3 (2013) pp. 283-295.

Edgard Marx, Tommaso Soru, Saeedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga Ngomo,
and Karin Breitman, “Towards an Efficient RDF Dataset Slicing”,
Int. J. Semantic Computing 7.4 (2013) p. 455.

Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, Saeedeh Shekarpour, and Séren Auer,
“An architecture of a distributed semantic social network™, Semantic Web 5.1 (2014) pp. 77-95.

Saeedeh Shekarpour and Soren Auer,
“Query Reformulation on RDF Knowledge Bases using Hidden Markov Models”, Submitted to
the Eighth International Conference on Web Search and Web Data Mining, WSDM 2015, 2015.

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer,
“Question Answering on Interlinked Data”, 22nd International World Wide Web Conference,
WWW ’13, Rio de Janeiro, Brazil, May 13-17, 2013, 2013 pp. 1145-1156.

Saeedeh Shekarpour, Konrad Hoftner, Jens Lehmann, and Soren Auer,

“Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features”,
2013 IEEE Seventh International Conference on Semantic Computing, Irvine, CA, USA,
September 16-18, 2013, 2013 pp. 191-197.

Edgard Marx, Saeedeh Shekarpour, Soren Auer, and Axel-Cyrille Ngonga Ngomo,
“Large-scale RDF Dataset Slicing”, 2013 IEEE Seventh International Conference on Semantic
Computing, Irvine, CA, USA, September 16-18, 2013, 2013.

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer,
“Keyword-Driven Resource Disambiguation over RDF Knowledge Bases”,

Semantic Technology, Second Joint International Conference, JIST 2012, Nara, Japan,
December 2-4, 2012. Proceedings, Springer, 2012 pp. 159-174.

Saeedeh Shekarpour, Soren Auer, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,

Sebastian Hellmann, and Claus Stadler,

“Keyword-Driven SPARQL Query Generation Leveraging Background Knowledge”,
Proceedings of the 2011 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2011,
Campus Scientifique de la Doua, Lyon, France, August 22-27, 2011, 2011 pp. 203-210.

131

Bibliography

[11]

[12]

[13]

[14]

132

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Soéren Auer,
“Query Segmentation and Resource Disambiguation Leveraging Background Knowledge”,
Proceedings of WoLE Workshop, 2012.

Saeedeh Shekarpour, “DC Proposal: Automatically Transforming Keyword Queries to SPARQL
on Large-Scale Knowledge Bases”, The Semantic Web - ISWC 2011 - 10th International
Semantic Web Conference, Bonn, Germany, October 23-27, 2011, Proceedings, Part I1,
Springer, 2011 pp. 357-364.

Axel-Cyrille Ngonga Ngomo and Soéren Auer,
“LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data”,
Proceedings of IJCAI, 2011.

Axel-Cyrille Ngonga Ngomo and Klaus Lyko,
“EAGLE: Efficient Active Learning of Link Specifications using Genetic Programming”,
Proceedings of ESWC, 2012.

Christian Bizer, Tom Heath, and Tim Berners-Lee, “Linked data-the story so far”,
International Journal on Semantic Web and Information Systems (IJSWIS) 5.3 (2009) pp. 1-22.

Soren Auer, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo,
“Introduction to Linked Data and Its Lifecycle on the Web”, Reasoning Web, 2011 pp. 1-75.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David Gondek,

Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg, John M. Prager,

Nico Schlaefer, and Christopher A. Welty,

“Building Watson: An Overview of the DeepQA Project”, Al Magazine 31.3 (2010) pp. 59-79.

Charles Oppenheim and Karen Selby,
“Access to information on the World Wide Web for blind and visually impaired people”,
Aslib Proceedings 51.10 (1999) pp. 335-345.

Yi-Fan Yang and Sheue-Ling Hwang,

“Specialized Design of Web Search Engine for the Blind People”,

Proceedings of the 4th International Conference on Universal Access in Human-computer
Interaction: Applications and Services, Beijing, China: Springer-Verlag, 2007 pp. 997-1005.

Minsuk Lee, James Cimino, Hai Ran Zhu, Carl Sable, Vijay Shanker, John Ely, and Hong Yu,
“Beyond information retrievalNmedical question answering”,
AMIA annual symposium proceedings 2006 (2006) p. 469.

Yuan Ni, Huijia Zhu, Peng Cai, Lei Zhang, Zhaoming Qiu, and Feng Cao,

“CliniQA : Highly Reliable Clinical Question Answering System”, Quality of Life through
Quality of Information - Proceedings of MIE2012, The XXIVth International Congress of the
European Federation for Medical Informatics, Pisa, Italy, August 26-29, 2012, 10S Press, 2012
pp- 215-219.

Yonggang Cao, Feifan Liu, Pippa Simpson, Lamont D. Antieau, Andrew S. Bennett,
James J. Cimino, John W. Ely, and Hong Yu,

“AskHERMES: An online question answering system for complex clinical questions”,
Journal of Biomedical Informatics 44.2 (2011) pp. 277-288.

Bibliography

Jens Lehmann, Chris Bizer, Georgi Kobilarov, Soren Auer, Christian Becker, Richard Cyganiak,
and Sebastian Hellmann, “DBpedia - A Crystallization Point for the Web of Data”,

Journal of Web Semantics 7.3 (2009) pp. 154-165,
porl:[do1:10.1016/].websem.2009.07.002]

URL: |http://jens-1lehmann.org/files/2009/dbpedia_jws.pdf]

K.I. Goh, M.E. Cusick, D. Valle, B. Childs, M. Vidal, and A.L. Barabasi,
“Human diseasome: A complex network approach of human diseases”,
Abstract Book of the XXIII IUPAP International Conference on Statistical Physics, 2007.

David S. Wishart, Craig Knox, Anchi Guo, Savita Shrivastava, Murtaza Hassanali, Paul Stothard,
Zhan Chang, and Jennifer Woolsey,

“DrugBank: a comprehensive resource for in silico drug discovery and exploration.”,

Nucleic Acids Research 34.Database-Issue (Feb. 2, 2007).

Giovanni Tummarello, Renaud Delbru, and Eyal Oren,
“Sindice.com: weaving the open linked data”, ISWC’07/ASWC’07 (2007).

Giovanni Tummarello, Richard Cyganiak, Michele Catasta, Szymon Danielczyk, Renaud Delbru,
and Stefan Decker, “Sig.ma: Live views on the Web of Data.”,
J. Web Sem. 8.4 (2010) pp. 355-364.

Li Ding, Timothy W. Finin, Anupam Joshi, Rong Pan, R. Scott Cost, Yun Peng, Pavan Reddivari,
Vishal Doshi, and Joel Sachs, “Swoogle: a search and metadata engine for the semantic web”,
CIKM, ACM, 2004.

M. D’aquin, E. Motta, M. Sabou, S. Angeletou, L. Gridinoc, V. Lopez, and D. Guidi,
“Toward a New Generation of Semantic Web Applications”,
Intelligent Systems, IEEE 23.3 (2008) pp. 20-28.

Vanessa Lopez, Victoria S. Uren, Enrico Motta, and Michele Pasin, “Aqual.og: An
ontology-driven question answering system for organizational semantic intranets.”,
J. Web Sem. 5.2 (2007).

Anastasia Karanastasi, Alexandros Zotos, and Stavros Christodoulakis, “The OntoNL
Framework for Natural Language Interface Generation and a Domain-Specific Application”,
First International DELOS Conference, Pisa, Italy, 2007.

Borislav Popov, Atanas Kiryakov, Angel Kirilov, Dimitar Manov, Damyan Ognyanoff, and
Miroslav Goranov, “KIM - Semantic Annotation Platform”,
Journal of Natural Language Engineering (2004).

Gideon Zenz, Xuan Zhou, Enrico Minack, Wolf Siberski, and Wolfgang Nejdl,
“From Keywords to Semantic Queries — Incremental Query Construction on the Semantic Web”,
Web Semantics 7.3 (2009) pp. 166-176.

Xiaomin Ning, Hai Jin, Weijia Jia, and Pingpeng Yuan,
“Practical and effective IR-style keyword search over semantic web.”,
Inf. Process. Manage. 45 (2009).

S.M. Beitzel, “On Understanding and Classifying Web Queries”,
PhD thesis: Illinois Institute of Technology, 2006.

Fabio Crestani, “Application of Spreading Activation Techniques in Information Retrieval”,
Artif. Intell. Rev. 11 (1997).

133

http://dx.doi.org/doi:10.1016/j.websem.2009.07.002
http://jens-lehmann.org/files/2009/dbpedia_jws.pdf

Bibliography

[37]

[38]

[39]

134

Markus Holi and Eero Hyvonen, “Fuzzy View-Based Semantic Search.”, ASWC, vol. 4185,
Springer, 2006.

Cristiano Rocha, Daniel Schwabe, and Marcus Poggi de Aragéo,
“A hybrid approach for searching in the semantic web”, ACM, 2004.

Aidan Hogan, Andreas Harth, JA%rgen Umbrich, Sheila Kinsella, Axel Polleres, and
Stefan Decker,

“Searching and browsing Linked Data with SWSE: The Semantic Web Search Engine.”,
J. Web Sem. 9.4 (2011).

Gong Cheng and Yuzhong Qu,
“Searching Linked Objects with Falcons: Approach, Implementation and Evaluation.”,
Int. J. Semantic Web Inf. Syst. 5.3 (Oct. 30, 2009) pp. 49-70.

V. Lopez, Fernandez M., Motta E., and N. Stieler,
“PowerAqua: Supporting Users in Querying and Exploring the Semantic Web”,
Journal of Semantic Web, In press.

Christina Unger and Philipp Cimiano, “Pythia: compositional meaning construction for
ontology-based question answering on the semantic web”, 16th Int. Conf. on NLP and IS,
NLDB’11, 2011 pp. 153-160.

Christina Unger, Lorenz Bithmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,
and Philipp Cimiano, “SPARQL Template-Based Question Answering”, Proceedings of WWW,
2012.

Daniel Gerber and Axel-Cyrille Ngonga Ngomo, “Bootstrapping the Linked Data Web”,
1st Workshop on Web Scale Knowledge Extraction @ ISWC 2011, 2011.

Daniel Gerber and Axel-Cyrille Ngonga Ngomo,
“Extracting Multilingual Natural-Language Patterns for RDF Predicates”, Proceedings of EKAW,
2012.

Varun Kacholia, Shashank Pandit, Soumen Chakrabarti, S. Sudarshan, Rushi Desai, and
Hrishikesh Karambelkar, “Bidirectional Expansion For Keyword Search on Graph Databases”,
VLDB, 2005.

Gaurav Bhalotia, Arvind Hulgeri, Charuta Nakhe, Soumen Chakrabarti, and S. Sudarshan,
“Keyword Searching and Browsing in Databases using BANKS”, ICDE, 2002.

T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k Exploration of Query Candidates for
Efficient Keyword Search on Graph-Shaped (RDF) Data.”, ICDE, 2009.

Yufei Li, Yuan Wang, and Xiaotao Huang, “A Relation-Based Search Engine in Semantic Web.”,
IEEE Trans. Knowl. Data Eng. (2007).

Guus Schreiber, Alia Amin, Lora Aroyo, Mark van Assem, Victor de Boer, Lynda Hardman,
Michiel Hildebrand, Borys Omelayenko, Jacco van Osenbruggen, Anna Tordai, Jan Wielemaker,
and Bob Wielinga, “Semantic annotation and search of cultural-heritage collections: The
MultimediaN E-Culture demonstrator”, Journal of Web Semantics (2008).

Ramanathan V. Guha, Rob McCool, and Eric Miller, “Semantic search”, WWW, 2003
pp. 700-709.

Bibliography

[52]

Amit Sheth, Boanerges Aleman-Meza, I. Budak Arpinar, Christian Halaschek-Wiener,

Cartic Ramakrishnan, Yashodhan Warke Clemens Bertram, David Avant, F. Sena Arpinar,
Kemafor Anyanwu, and Krys Kochut,

“Semantic association identification and knowledge discovery for national security applications”,
Journal of Database Management (2005).

Thanh Tran, Tobias Mathif, and Peter Haase,
“Usability of Keyword-Driven Schema-Agnostic Search.”, ESWC (2), vol. 6089, LNCS,
Springer, June 8, 2010 pp. 349-364.

Sanjay Agrawal, Surajit Chaudhuri, and Gautam Das,
“DBXplorer: A System for Keyword-Based Search over Relational Databases.”, ICDE, 2002.

Vagelis Hristidis and Yannis Papakonstantinou,
“DISCOVER: Keyword Search in Relational Databases.”, VLDB, 2002.

Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou,
“Efficient IR-Style Keyword Search over Relational Databases.”, VLDB, 2003.

Fang Liu, Clement T. Yu, Weiyi Meng, and Abdur Chowdhury,
“Effective keyword search in relational databases.”, SIGMOD Conference, 2006.

Lin Guo, Feng Shao, Chavdar Botev, and Jayavel Shanmugasundaram,
“XRANK: Ranked Keyword Search over XML Documents.”, SIGMOD Conference, 2003.

Ziyang Liu and Yi Chen,
“Reasoning and identifying relevant matches for XML keyword search.”, PVLDB (2008).

Liang Jeff Chen and Yannis Papakonstantinou,
“Supporting top-K keyword search in XML databases.”, ICDE, 2010.

Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Soéren Auer,

“Question answering on interlinked data”, WWW, ed. by Daniel Schwabe, Virgilio A. F. Almeida,
Hartmut Glaser, Ricardo A. Baeza-Yates, and Sue B. Moon,

International World Wide Web Conferences Steering Committee / ACM, 2013 pp. 1145-1156,
1sBN: 978-1-4503-2035-1.

Christina Unger, Lorenz Bithmann, Jens Lehmann, Axel-Cyrille Ngonga Ngomo, Daniel Gerber,
and Philipp Cimiano, “Template-based question answering over RDF data”, ACM, 2012.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”, J. ACM 46.5 (1999).

Andrew J. Viterbi,
“Error Bounds for Convolutional Codes and an Asymptotically Optimum Decoding Algorithm”,
IEEFE Transactions on Information Theory IT-13.2 (1967).

E. Vorhees, “The TREC-8 question answering track report”, Proceedings of TREC-8, 1999.

David R. Cheriton and Robert Endre Tarjan, “Finding Minimum Spanning Trees.”,
SIAM J. Comput. (1976).

Vanessa Lopez, Christina Unger, Philipp Cimiano, and Enrico Motta,
“Evaluating question answering over linked data”, J. Web Sem. 21 (2013) pp. 3-13.

Esther Kaufmann and Abraham Bernstein,

“How Useful Are Natural Language Interfaces to the Semantic Web for Casual End-Users?”,
The Semantic Web: 6th International Semantic Web Conference, 2nd Asian Semantic Web
Conference, ISWC 2007 + ASWC 2007, Busan, Korea, 2008 pp. 281-294.

135

Bibliography

[69]

[70]

136

Monique Reichert, Serge Linckels, Christoph Meinel, and Thomas Engel,
“Student’s Perception of a Semantic Search Engine”, CELDA, IADIS, 2005 pp. 139-147.

Haofen Wang, Qiaoling Liu, Thomas Penin, Linyun Fu, Lei Zhang 0007, Thanh Tran, Yong Yu,
and Yue Pan, “Semplore: A scalable IR approach to search the Web of Data.”,
J. Web Sem. (2009).

Daniel M. Herzig and Thanh Tran,
“Heterogeneous web data search using relevance-based on the fly data integration.”, ACM, 2012
pp- 141-150.

A. Uzuner, B. Katz, and D. Yuret, “Word Sense Disambiguation for Information Retrieval.”,
AAAI Press, 1999.

Lance A. Ramshaw and Mitchell P. Marcus,
“Text Chunking using Transformation-Based Learning”, CoRR (1995).

K. Q. Pu and X. Yu, “Keyword query cleaning.”, PVLDB 1.1 (Nov. 6, 2008) pp. 909-920.

B. Tan and F. Peng,
“Unsupervised query segmentation using generative language models and wikipedia.”, WWW,
ACM, May 13, 2008.

X. Yu and H. Shi, “Query segmentation using conditional random fields.”, ACM, Oct. 1, 2009.
J. Guo, G. Xu, X. Cheng, and H. Li, “Named entity recognition in query.”, ACM, 2009.
K. M. Risvik, T. Mikolajewski, and P. Boros, “Query Segmentation for Web Search.”, 2003.

B. Tan and F. Peng,
“Unsupervised query segmentation using generative language models and wikipedia.”,
ACM, 2008.

D.J. Brenes, D. Gayo-Avello, and R. Garcia,
“On the Fly Query Entity Decomposition Using Snippets”, CoRR abs/1005.5516 (2010).

A. Shepitsen, J. Gemmell, B. Mobasher, and R. Burke,
“Personalized recommendation in social tagging systems using hierarchical clustering”,
ACM, 2008.

S. Lawrence, “Context in Web Search.”, IEEE Data Eng. Bull. 23.3 (2000) pp. 25-32.

L. Finkelstein, E. Gabrilovich, Y. Matias, E. Rivlin, Z. Solan, G. Wolfman, and E. Ruppin,
“Placing Search in Context: the Concept Revisited”, WWW, 2001.

R. Kraft, C. C. Chang, F. Maghoul, and R. Kumar, “Searching with context”, WWW ’06,
ACM, 2006.

R. Guha, Rob McCool, and Eric Miller, “Semantic search”,

Proceedings of the 12th international conference on World Wide Web, WWW ’03,
Budapest, Hungary: ACM, 2003 pp. 700-709, 1sBn: 1-58113-680-3,
por:[10.1145/775152.775250} urr: |http://doi.acm.org/10.1145/775152.775250]

G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais,
“The Vocabulary Problem in Human-System Communication”,
COMMUNICATIONS OF THE ACM 30.11 (1987) pp. 964-971.

Kevyn Collins-Thompson,
“Reducing the risk of query expansion via robust constrained optimization.”, CIKM,
ACM, Nov. 17, 2009.

http://dx.doi.org/10.1145/775152.775250
http://doi.acm.org/10.1145/775152.775250

Bibliography

[90]

[97]

Houtao Deng, George C. Runger, and Eugene Tuv,
“Bias of Importance Measures for Multi-valued Attributes and Solutions.”, ICANN (2), vol. 6792,
Springer, 2011 pp. 293-300.

Dunja Mladenic, Janez Brank, Marko Grobelnik, and Natasa Milic-Frayling,

“Feature selection using linear classifier weights: interaction with classification models.”,
In Proceedings of the 27th Annual International ACM SIGIR Conference (SIGIR2004,
ACM, Feb. 10, 2006.

Claudio Carpineto and Giovanni Romano,

“A Survey of Automatic Query Expansion in Information Retrieval”,

ACM Comput. Surv. 44.1 (2012) 1:1-1:50, 1ssnx: 0360-0300, por: [10.1145/2071389.2071390}
URL: http://doi.acm.org/10.1145/2071389.2071390]

Shoushan Li, Rui Xia, Chengqing Zong, and Chu-Ren Huang,

“A framework of feature selection methods for text categorization”, Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2 - Volume 2, ACL 09,

Suntec, Singapore: Association for Computational Linguistics, 2009 pp. 692700,

ISBN: 978-1-932432-46-6,

UrRL: http://dl.acm.org/citation.cifm?1d=1690219.1690243|

Mark Hall, Eibe Frank, Geoftrey Holmes, Bernhard Pfahringer, Peter Reutemann, and
Ian H. Witten, “The WEKA data mining software: an update”,

SIGKDD Explor. Newsl. 11.1 (2009) pp. 10-18, 1ssn: 1931-0145,

por: [10.1145/1656274.1656278]|

URL: |http://doi.acm.org/10.1145/1656274.1656278|

Matthias Wendt, Martin Gerlach, and Holger Duwiger,

“Linguistic Modeling of Linked Open Data for Question Answering”,

Proceedings of Interacting with Linked Data (ILD 2012), workshop co-located with the 9th
Extended Semantic Web Conference, May 28, 2012, Heraklion, Greece, ed. by Christina Unger,
Philipp Cimiano, Vanessa Lopez, Enrico Motta, Paul Buitelaar, and Richard Cyganiak, 2012
pp- 75-87, urr: http://ceur-ws.org/Vol-913]

Daniel Gerber and Axel-Cyrille Ngonga Ngomo, “Bootstrapping the Linked Data Web”,
1st Workshop on Web Scale Knowledge Extraction @ ISWC 2011, 2011.

Omer Gunes, Christian Schallhart, Tim Furche, Jens Lehmann, and Axel-Cyrille Ngonga Ngomo,
“EAGER: extending automatically gazetteers for entity recognition”,

Proceedings of the 3rd Workshop on the People’s Web Meets NLP: Collaboratively Constructed
Semantic Resources and their Applications to NLP, 2012.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor,

“Freebase: a collaboratively created graph database for structuring human knowledge”, SIGMOD
'08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data,
ACM, 2008 pp. 1247-1250.

Nitish Aggarwal and Paul Buitelaar,

“A System Description of Natural Language Query over DBpedia”,

Proceedings of Interacting with Linked Data (ILD 2012), workshop co-located with the 9th
Extended Semantic Web Conference, May 28, 2012, Heraklion, Greece, ed. by Christina Unger,

137

http://dx.doi.org/10.1145/2071389.2071390
http://doi.acm.org/10.1145/2071389.2071390
http://dl.acm.org/citation.cfm?id=1690219.1690243
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278
http://ceur-ws.org/Vol-913

Bibliography

[100]

[101]
[102]

[103]
[104]

[105]

138

Philipp Cimiano, Vanessa Lopez, Enrico Motta, Paul Buitelaar, and Richard Cyganiak, 2012
pp- 97-100, urL: http://ceur-ws.org/Vol-913|

Elena Cabrio, Alessio Palmero Aprosio, Julien Cojan, Bernardo Magnini, Fabien Gandon, and
Alberto Lavelli, “QAKiS @ QALD-2",

Proceedings of Interacting with Linked Data (ILD 2012), workshop co-located with the 9th
Extended Semantic Web Conference, May 28, 2012, Heraklion, Greece, ed. by Christina Unger,
Philipp Cimiano, Vanessa Lopez, Enrico Motta, Paul Buitelaar, and Richard Cyganiak, 2012
pp- 88-96, urL: http://ceur-ws.org/Vol-913]

ziqi zhang, Anna Lisa Gentile, Isabelle Augenstein, Eva Blomqvist, and Fabio Ciravegna,
“Mining Equivalent Relations from Linked Data”,

Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (ACL),
Sofia, Bulgaria, 2013.

Isabelle Augenstein, Anna Lisa Gentile, Barry Norton, Ziqi Zhang, and Fabio Ciravegna,
“Mapping Keywords to Linked Data Resources for Automatic Query Expansion”,

The Semantic Web: Semantics and Big Data, 10th International Conference, ESWC 2013,
Montpellier, France, May 26-30, 2013. Proceedings, Lecture Notes in Computer Science,
Springer, 2013.

Christiane Fellbaum, ed., WordNet: an electronic lexical database, MIT Press, 1998.

Michael E. Lesk, “Word-word associations in document retrieval systems”,
American Documentation 20.1 (1969) pp. 27-38.

C. J. van Rijsbergen, Information Retrieval, Buttersworth, London, 1989.

Cornelis Joost van Rijsbergen, The geometry of information retrieval.
Cambridge University Press, 2004 pp. I-XII, 1-150.

Saeedeh Shekarpour, Konrad Hoftner, Jens Lehmann, and Soren Auer,

“Keyword Query Expansion on Linked Data Using Linguistic and Semantic Features”,

7th IEEE International Conference on Semantic Computing, September 16-18, 2013, Irvine,
California, USA, 2013.

http://ceur-ws.org/Vol-913
http://ceur-ws.org/Vol-913

Sacedeh Shekarpour

2010-2014

2005-2008

2000-2004

1998
2000

2010
2011

WIIA 2011
ISWC 2011

) +49 17684419554 e

Curriculum Vitae

ACADEMIC EDUCATION

PhD Candidate in Computer Science, Institute for Ap-
plied Computer Science at Bonn Universitdt, AKSW research
group, Institute of Computer Science(IfI), Leipzig Universitét,
Germany.

M.Sc. in Computer Science, Department of Computer
Science and Engineering, School of Engineering, Shiraz Uni-
versity, Shiraz, Iran.

B.Sc. in Computer Engineering(Software), Depart-
ment of Electronic and Computer Engineering, Shahid Be-
heshti University, Tehran, Iran.

Honors

Semifinalist of National Computer Olympiad, Iran.

B.Sc. Admission, Ranked within top 0.3 of the nationwide
university entrance examination participants, Iran.

PhD Admission at Tehran University, Tehran, Iran.
PhD Grant from DAAD, (German Academic Exchange

Service).
Presentations and Talks

‘Web Intelligence Conference, Lyon, France, August 2011.

International Semantic Web Conference, Bonn, Ger-
many, October 2011.

=1 shekarpour@uni-bonn.de

“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

JIST 2012

WWW 2013

IBM Talk
2013

ESSIR 2011

ISSLOD
2011

Web Science
2012

Persian
English
German

Arabic

Joint International Semantic Technology Conference,
Nara, Japan, December 2012.

World Wide Web Conference, Rio de Janeiro, Brazil,
May 2013.

Presenting my work in IBM Research Center (Wat-
son project-DeepQA), New York, USA, December 2013.

Summer Schools

Information Retrieval Summer School, Koblenz, Ger-
many, August 2011.

IndianSummer School on Linking Open Data, Leipzig,
Germany, September 2011.

Web Science Summer School, Leiden, Netherland, July
2012.

Language
Native.
Fluent.

Falimiar.

Familiar.

Research Interest

1. Semantic Web.

2. Semantic Search.

3. Linked Data.

4. Information Retrieval.

5. Web Mining.

6. Natural Language Processing.

$ +49 17684419554 e = shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

2010-2014

Community Service (Selection)

Reviewing.

Semantic Web Journal, Journal of Web Engineering, International
Journal on Semantic Web and Information Systems, Journal of
Computational Intelligence, Language Resource and Evaluation
Conference (LREC), The International Conference on Building and
Exploring Web Based Environments,

2014 Program Committee.
Clef Labs

Programming JAVA, C#, C,C++, MATLAB.

Languages

Database Virtuoso, SQL-Server.
Management
Experiences Latex, Linux, Office.
—— References
1. Name Prof. Dr. Séren Auer.

Affiliation , The department Enterprise Information Systems (EIS) at

the Institute for Applied Computer Science at University of

Bonn and Fraunhofer Institute for Intelligent Analysis and
Information Systems (IAIS), Bonn, Germany.

E-mail auer@cs.unibonn.de.

Homepage http://eis.iai.unibonn.de.

Mobile +4915784988949.

2. Name Dr. Axel C. Ngonga Ngomo.

Affiliation , AKSW Research Group, Business Information Systems(BIS)

of the Institute of Computer Science(Ifl) , University of Leip-
zig and Institute for Applied Informatics (InfAl).

E-mail ngonga@informatik.unileipzig.de.

$ +49 17684419554 e X shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

Homepage http://aksw.org/AxelNgonga.html.
Mobile +4917623517631.
Name Dr. Jens Lehmann.

Affiliation , AKSW Research Group, Business Information Systems(BIS)
of the Institute of Computer Science(IfI) , University of Leip-
zig and Institute for Applied Informatics (InfAl).

E-mail Lehmann@informatik.unileipzig.de.
Homepage http://aksw.org/JensLehmann.html.
Mobile +4917670350423.
Name Prof. Dr. S. D. Katebi.

Affiliation , Department of Computer Science and Engineering, School
of Engineering, Shiraz University.

E-mail katebi@shirazu.ac.ir.

Homepage http://www.cse.shirazu.ac.ir/ katebi.

e PhD Thesis

Title Semantic Interpretation of User Queries for Question
Answering on Interlinked Data.

Supervisor Prof. Dr. Séren Auer.

Demo http://sina.aksw.org, runs on DBpedia.

Demo http://sinalinkeddata.aksw.org, runs on three interlin-
ked lifescience datasets, i.e. Drugbank, Diseasome and Sider.

Demo http://lod-query.aksw.org, runs on DBpedia.

$ +49 17684419554 e = shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

Abstract

, Developing a question answering over these interlinked data
sources is still challenging. In this respect, several challenges
such as resource disambiguation, vocabulary mismatch, in-
ference, link traversal are raised. The contributions of this
work are as follows: (1) A novel approach for determining
the most suitable resources for a user-supplied query from
different datasets (disambiguation approach). We employed
a Hidden Markov Model, whose parameters were bootstrap-
ped with different distribution functions. (2) A novel method
for constructing federated formal queries using the disam-
biguated resources and leveraging the linking structure of
the underlying datasets. This approach essentially relies on
a combination of domain and range inference as well as a
link traversal method for constructing a connected graph,
which ultimately renders a corresponding SPARQL query.
(3) Regarding the problem of vocabulary mismatch, our con-
tribution is divided into two parts, First, we introduce a
number of new query expansion features based on seman-
tic and linguistic inferencing over Linked Data. We evaluate
the effectiveness of each feature individually as well as their
combinations, employing Support Vector Machines and Deci-
sion Trees. Second, we propose a novel method for automatic
query expansion, which employs a Hidden Markov Model to
obtain the optimal tuples of derived words. (4) We provide
two benchmarks for two different tasks to the community of
question answering systems. The first one is used for the task
of question answering on interlinked datasets (i.e. federated
queries over Linked Data). The second one is used for the
vocabulary mismatch task. We evaluate the accuracy of our
approach using measures like MRR, precision, recall, and
F-measure on three interlinked life-science datasets as well as
DBpedia. The results of our accuracy evaluation demonstrate
the effectiveness of our approach. Moreover, we study the
runtime of our approach in its sequential as well as parallel
implementations.

$ +49 17684419554 e X shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

Title
Supervisor

Grade

Support

Abstract

Master Thesis

Trust Modeling for Semantic Web.
Prof. Dr. S. D. Katebi.

Thesis was evaluated as Excellent with the grade
19.95 out of 20.

Thesis was supported financially by Iran Telecommu-
nication Research Center (IRTC).

, The aim of this work is two folds. Firstly, some of the well
known methods of trust modeling and trust evaluation that
relates mainly to the semantic web structure are reviewed
and analyzed. A categorization for calculation of trust and an
analytical view of possible models of trust rating through a
chain of acquaintances are presented. Based on experimental
results the well known methods are compared and contrasted.
Secondly a new method for evaluating trust is also proposed.
This new model has the advantages of simplicity in calcula-
tion and enhanced accuracy. The method is associated with
two algorithms, an algorithm for propagation and another
for aggregation. The propagation algorithm utilizes statisti-
cal techniques and the aggregation algorithm is based on a
weighting mechanism. The technique is named Maxweight
method and is also implemented and the results are compared
based on a designed accuracy metric. The proposed method
may be employed as a subsystem for trust management in
semantic web and trust evaluation in human interaction in a
social networks as well as machines (artificial agents). Expe-
rimental results illustrate the efficiency and effectiveness of
the proposed method.

s Journal Publications, peer-reviewed

o In Press: Sacedeh Shekarpour, Edgard Marx, Axel-Cyrille Ngonga Ngomo,
and Soren Auer, “SINA: Semantic Interpretation of User Queries for Question
Answering on Interlinked Data”, Journal of Web Semantics Science, Services
and Agents on the World Wide Web, 2014.

o Published: Saeedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga Ngomo, Da-

niel Gerber,

Sebastian Hellmann, and Claus Stadler, “Generating SPARQL

$ +49 17684419554 e X shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

queries Using Templates”, Web Intelligence and Agent Systems Journal 11.3
(2013) pp. 283-295.

o Published: Sebastian Tramp, Philipp Frischmuth, Timofey Ermilov, Saeedeh
Shekarpour, and Séren Auer, “An architecture of a distributed semantic social
network”, Semantic Web 5.1 (2014) pp. 77-95.

o Published: Edgard Marx, Tommaso Soru, Sacedeh Shekarpour, Séren Auer,
Axel-Cyrille Ngonga Ngomo, and Karin Breitman, “Towards an Efficient RDF
Dataset Slicing”, Int. J. Semantic Computing 7.4 (2013) p. 455.

o Published: Sacedeh Shekarpour and S. D. Katebi, “Modeling and evaluation of
trust with an extension in semantic web”, Journal of Web Semantics Science,
Services and Agents on the World Wide Web 8.1 (2010) pp. 26-36.

o Published: Saeedeh Shekarpour and S. D. Katebi, “A Trust Model For Semantic
Web”, International Journal of Simulation Systems, Science and Technology 10.2
(2010).

— Conference Publications, peer-reviewed

o Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer,
“Question Answering on Interlinked Data”, 22nd International World Wide Web
Conference, WWW 18, Rio de Janeiro, Brazil, May 13-17, 2013, 2013 pp. 1145-
1156.

o Published: Saeedeh Shekarpour, Konrad Hoffner, Jens Lehmann, and Séren
Auer, “Keyword Query Expansion on Linked Data Using Linguistic and Semantic
Features”, 2013 IEEFE Seventh International Conference on Semantic Computing,
Irvine, CA, USA, September 16-18, 2013, 2013 pp. 191-197.

o Published: Edgard Marx, Saeedeh Shekarpour, Séren Auer, and Axel-Cyrille
Ngonga Ngomo, “Large-scale RDF Dataset Slicing”, 2013 IEEE Seventh Interna-
tional Conference on Semantic Computing, Irvine, CA, USA, September 16-18,
2013, 2013.

o Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Auer,
“Keyword-Driven Resource Disambiguation over RDF Knowledge Bases”, Seman-
tic Technology, Second Joint International Conference, JIST 2012, Nara, Japan,
December 2-4, 2012. Proceedings, Springer, 2012 pp. 159-174.

o Published: Saeedeh Shekarpour, Séren Auer, Axel-Cyrille Ngonga Ngomo, Da-
niel Gerber, Sebastian Hellmann, and Claus Stadler, “Keyword-Driven SPARQL
Query Generation Leveraging Background Knowledge”, Proceedings of the 2011
IEEE/WIC/ACM International Conference on Web Intelligence, WI 2011, Cam-
pus Scientifique de la Doua, Lyon, France, August 22-27, 2011, 2011 pp. 203—
210.

o Published: Saeedeh Shekarpour and S. D. Katebi, “A Trust Model Based on
Statistical Propagation and Fuzzy Aggregation for Semantic Web”, EMS 2008,
Second UKSIM FEuropean Symposium on Computer Modeling and Simulation,

$ +49 17684419554 e X shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

Liverpool, England, UK, 8-10 September 2008, 2008 pp. 459-464.

Published: Saecedeh Shekarpour, Hassan Abolhasani, and S. D. Katebi, “Web
Structure Mining Techniques”, IDMC 2007, First Data Mining Conference,
Amirkabir University, Tehran , Iran, 2007.

Submitted: Saeedeh Shekarpour and Séren Auer, “Query Reformulation on
RDF Knowledge Bases using Hidden Markov Models”, Submitted to the Eighth
International Conference on Web Search and Web Data Mining, WSDM 2015,
2015.

Workshop and Doctoral Consutiom Publicati-
ons, peer-reviewed

Published: Saeedeh Shekarpour, “DC Proposal: Automatically Transforming
Keyword Queries to SPARQL on Large-Scale Knowledge Bases”, The Semantic
Web - ISWC' 2011 - 10th International Semantic Web Conference, Bonn, Germany,
October 23-27, 2011, Proceedings, Part II, Springer, 2011 pp. 357-364.
Published: Saeedeh Shekarpour, Axel-Cyrille Ngonga Ngomo, and Séren Au-
er, “Query Segmentation and Resource Disambiguation Leveraging Background
Knowledge”, Proceedings of WoLE Workshop, 2012.

$ +49 17684419554 e X shekarpour@uni-bonn.de
“B http://eis.iai.uni-bonn.de/SaeedehShekarpour.html

	Introduction
	Motivation
	Objective of a Question Answering System on Linked Data
	Influence of a Question Answering System on Society
	Existing Question Answering Systems
	Existing Search Engines on Linked Data

	Problem
	Challenges
	Query Segmentation
	 Resource Disambiguation
	 Query Expansion
	 Query Cleaning
	 Formal Query Construction
	Data Fusion on Linked Data

	Approach and Contribution
	Query Segmentation and Resource Disambiguation
	Query Expansion
	Formal Query Construction
	Data Fusion on Linked Data
	Benchmark Creation
	RDF Data Slicing

	Conclusion and Future Work

	Generating SPARQL Queries Using TemplatesCorresponding publication is: wias2013
	Introduction
	Approach
	Preliminaries
	Terminology and Definitions
	Overview
	Mapping Keywords to IRIs

	Graph Pattern Templates
	SPARQL Query Generation
	Evaluation
	Accuracy Metrics
	Accuracy Evaluation of Possible Graph Pattern Templates
	Application Evaluation
	Comparative Study based on Relevance Feedback

	Related Work
	Conclusion and Future Work

	SINA: Semantic Interpretation of User Queries for Question Answering on Interlinked DataCorresponding publication is: jws2014
	Introduction
	Overview
	Problem and Preliminaries
	Resource Disambiguation
	Construction of Conjunctive Queries

	Resource Disambiguation using Hidden Markov Models
	Bootstrapping the Model Parameters
	Evaluation of Bootstrapping

	Query Graph Construction
	Formal Considerations
	Approach

	Evaluation
	Accuracy Benchmark over Interlinked Knowledge Bases
	Accuracy Benchmark over DBpedia
	Runtime Benchmark

	Related Work
	Discussion and Conclusion

	Keyword Query Expansion on Linked Data Using Linguistic and Semantic FeaturesCorresponding publication is: ICSC2013
	Introduction
	Approach
	Extracting and Preprocessing of Data using Semantic and Linguistic Features
	Feature Selection and Feature Weighting
	Setting the Classifier Threshold

	Experiment and Result
	Experimental Setup
	Results

	Related Work
	Design Choices for Query Expansion
	Semantic Search and Question Answering Engines

	Conclusions

	Query Reformulation on RDF Knowledge Bases using Hidden Markov ModelsCorresponding publication is: WSDM2015
	Introduction
	Problem and Preliminaries
	Reformulating Query Using Hidden Markov Model
	Bootstrapping the Model Parameters

	Evaluation
	Related Work
	Query Expansion on Web of Documents
	Query Expansion on Semantic Web

	Conclusion

	Keyword-Driven Resource Disambiguation over RDF Knowledge BasesPublished as: JIST2012
	Towards an Efficient RDF Dataset SlicingPublished as: RDFSlicejournal
	Bibliography

