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Zusammenfassung

Die vorliegende Arbeit behandelt ein Verfahren zur Diskretisierung und Lösung der hochdi-
mensionalen Kolomogorov Rückwärts-Gleichung, welche beispielsweise bei der Bewertung von
Optionen auf multivariaten Sprung-Diffusionsprozessen auftritt. Um dieses hochdimensiona-
le Problem effizient behandeln zu können, wenden wir zunächst eine ANOVA-Zerlegung und
Trunkation auf die Anfangsbedingung an und erhalten so eine Superposition von nieder- und
moderatdimensionalen Problemen. Diese partiellen Integro-Differentialgleichungen diskretisie-
ren wir mit einem θ-Schema in der Zeit und mit einem verallgemeinerten dünnen Gitter im
Ort. Zur Lösung der entstehenden linearen Gleichungssysteme verwenden wir neue additive
Vorkonditionierungsverfahren sowie eine effiziente Implementierung der Operatoranwendung
für nicht-lokale Operatoren. Die Kombination dieser Methoden versetzt uns in die Lage, die
Kolmogorov Rückwärts-Gleichung für hochdimensionale Sprung-Diffusionsprozesse effizient zu
lösen, was wir mit der numerischen Bewertung einer Europäischen Option demonstrieren, die
auf einem zehndimensionalen Kou-Modell basiert.
Der erste Beitrag dieser Arbeit besteht in der Untersuchung, unter welchen Voraussetzun-

gen wir mit einer ANOVA-Zerlegung der Anfangsbedingung oder der Lösung die Kolmogorov
Rückwärts-Gleichung in eine Superposition von niederdimensionalen Teilproblemen überführen
können. Bisherige Ansätze setzen zumeist eine multivariate Brownsche Bewegung voraus, de-
ren Kovarianzmatrix diagonal ist. Wir fordern schwächere Voraussetzungen und konzentrieren
uns von Beginn an auf Sprung-Diffusionsprozesse. Hierbei behandeln wir auch Alternativen zu
der in der Literatur gängigen Anker-ANOVA. Schließlich rekombinieren wir die numerischen
Teillösungen, um eine Approximation der Gesamtlösung zu erhalten.
Der zweite Beitrag der Arbeit besteht in der additiven Vorkonditionierung des Dünngitter-

Erzeugendensystems. Anders als beim vollen Gitter führt ein Multilevelansatz mit Jacobi-
Skalierung für Ht-elliptische Probleme nicht zu Konditionszahlen, die sich unabhängig von
der Dimension d oder dem Diskretisierungslevel J beschränken lassen. Wir beschreiben ein
Lineares Programm, das die Skalierungsfaktoren der Operatormatrix mit dem Ziel einer mög-
lichst kleinen Konditionszahl optimiert. Wir beweisen, dass sich selbst bei der besten positiven
Skalierung die Konditionszahl im Ht-Fall wie Θ(Jd−2) verhält. Gestatten wir hingegen negati-
ve Skalierungsfaktoren oder alternativ eine block-diagonale Vorkonditionierungsmatrix, erzielen
wir für eine gewisse Klasse von Problemen, zu denen auch das Poisson-Problem gehört, O(1)
Konditionszahlen unabhängig vom Level J und der Dimension d. Für den Laplace-Operator
und das reguläre dünne Gitter beobachten wir sogar fallende Konditionszahlen bei fixiertem
Level J und steigender Dimension d. Unsere Vorkonditionierer können ohne Prewavelets und
mit linearem Aufwand in der Anzahl der Unbekannten implementiert werden. Weiterhin setzen
wir ein nicht-lineares Verfahren ein, das im Kontext der dünnen Gitter auch als OptiCom be-
zeichnet wird und die in jedem Iterationsschritt optimalen Skalierungsfaktoren bestimmt. Wenn
der Operator eine Darstellung als Summe von Produktoperatoren zulässt, ist die Implementie-
rung der OptiCom dank einer speziellen Matrix-Vektor-Multiplikation in log-linearer Laufzeit
bezüglich der Anzahl der Freiheitsgrade möglich, was eine deutliche Verbesserung im Vergleich
zum quadratischen Aufwand darstellt, der typischerweise bei der Umsetzung der OptiCom nötig
ist. Weiterhin geben wir CG-Varianten für alle beschriebenen Verfahren an.
Der dritte Beitrag dieser Arbeit ist die Einführung eines mehrdimensionalen Kou-Modells

und die numerische Umsetzung und Zusammenführung der beschriebenen Verfahren. Hierzu
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gehört die Beschreibung des unidirektionalen Prinzips für nicht-lokale Operatoren sowie die
Entwicklung einer neuen Rekurrenzformel für die Kou-Operatoranwendung im Galerkin-Fall.
Wir können die Trunkationsfehler der Anker- und Gauss-ANOVA-Zerlegung der Anfangsbe-
dingung mit einem Monte Carlo-Verfahren bestimmen, und kombinieren schließlich die Anker-
ANOVA mit unserem Dünngitter-Löser für partielle Integro-Differentialgleichungen. Anhand
einer kurzen Fehlerdiskussion demonstrieren wir, dass sich ANOVA-Approximationsfehler und
Diskretisierungsfehler gegenläufig entwickeln, was sich in unseren Experimenten bestätigt.

Insgesamt können wir nun die hochdimensionale Kolmogorov Rückwärts-Gleichung für be-
stimmte multivariate Sprung-Diffusionsprozesse numerisch effizient behandeln. Mit unseren Er-
gebnissen im Bereich der Operatoranwendung und der Vorkonditionierung bleibt der Gesamt-
aufwand des Verfahrens linear in der Anzahl der Freiheitsgrade, und wir können erstmalig
Probleme, die auf einem zehndimensionalen Kou-Modell basieren, mit einer hinreichenden Ge-
nauigkeit lösen. Dies wäre mit klassischen Tensorproduktansätzen ohnehin unmöglich, aber
auch der Dünngitteransatz profitiert substanziell von der anfänglichen ANOVA-Zerlegung und
Trunkation.
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1 Introduction

The relevance of mathematical models to many areas like finance, business intelligence and
health care is increasing rapidly. The ever-growing means of data collection, storing and analy-
sis lead to more complex and numerically challenging mathematical models. This development
can be observed quite well in option pricing: In 1973, Black, Scholes [BS73] and Merton [Mer73]
published their seminal work, which allowed to determine the fair price of an option under a
set of assumptions, among them that security prices follow a geometric Brownian motion with
constant volatility. Of course, the notion of continuous sample paths does not hold in prac-
tice simply because of limited trading hours or sudden market events. This motivated the
jump-diffusion model [Mer76], where security prices do not only follow the geometric Brownian
motion but can also exhibit log-normally distributed jumps. However, it has become clear that
the general assumption of log-normality is questionable since the normal distribution underes-
timates the probability of extreme events. In general, daily returns of six standard deviations
can practically be observed in most markets [CT04], although a market move of that magnitude
would theoretically occur only about once in a million years. The Kou-model [Kou02] with dou-
ble exponential jump-diffusion tries to account for the leptokurtic feature of returns. Of course,
there is a myriad of other approaches, cf. [CT04], that can also account for heteroscedasticity
like stochastic volatility models [Hes93] or time-changed Brownian motions [MCC98]. Analyt-
ical option pricing formulae do not exist for all cases, and often, instead of the Black-Scholes
partial differential equation (PDE), a partial integro-differential equation (PIDE) has to be
solved. The aspect of multi-dimensionality also comes into play when we deal with stochastic
volatility components and options on multiple underlyings like interest-rate swaps or indices,
ultimately resulting in multi-dimensional PIDEs.
In this thesis, we discuss a numerical solution method for certain instances of the high-

dimensional backward Kolmogorov equation (BKE)

∂

∂t
V (t, s) +

1

2

d∑
j,k=1

qjksjsk
∂2

∂sj∂sk
V (t, s) + r

d∑
j=1

sj
∂

∂sj
V (t, s)− rV (t, s) (1.1)

+

∫
Rd
V (t, sey)− V (t, s)−

d∑
j=1

sj(e
yj − 1)

∂

∂sj
V (t, s)ν(dy) = 0 , (1.2)

on (t, s) ∈ (0, T )× Rd>0 with s = (s1, . . . , sd), sey := (s1e
y1 , . . . , sde

yd) and

V (t, s) ∈ C1,2
(
(0, T )× Rd>0

)
∩ C0

(
[0, T ]× Rd≥0

)
, V (T, s) = h(s), s ∈ Rd≥0 .

Note that (1.1) without the integral term in (1.2) resembles the classical Black-Scholes
PDE, which is a well-known multi-dimensional convection-diffusion equation [Kwo08, Rei04].
Apart from the pricing of financial derivatives, such PDEs result from diffusion approxima-

1



2 1 Introduction

tion techniques or the Fokker-Planck approach. Examples are the description of queueing
networks [Mit97, SCDD02] and reaction mechanisms in molecular biology [Sjö07, SLE09].

The BKE in (1.1) and (1.2) typically arises in option pricing with

V (t, s) = E(e−r(T−t)h(S(T )) | S(t) = s) , (1.3)

where h is the final condition or payoff function, X(t) = (X1(t), . . . , Xd(t)) is a Lévy process
with state space Rd and S(t) = (S1(0)ert+X1(t), . . . , Sd(0)ert+Xd(t)) is an exponential Lévy model
under the risk-neutral measure with starting point S(0) = (S1(0), . . . , Sd(0)).

In this thesis, we present theoretical and computational aspects of several new methods specif-
ically designed to deal with the high-dimensionality of the BKE. We demonstrate the efficiency
of our methods on the pricing of basket options with a multi-dimensional generalization of the
Kou-model [Kou02]. Of course, some of the intermediate results obtained in this course may
very well be applied to other PDE or PIDE problems and not just the BKE or the Kou-model.
In the next paragraphs, we discuss the aspects of this thesis in more detail.
As a first step, we start with an initial drastic dimensionality reduction of the BKE (1.1)

and (1.2) based on the ANOVA decomposition of functions [GH10b, Hoe48]. We now give
a simplified account of the method: Essentially we represent the final condition h(s) by a
superposition of functions

h(s) ≈
∑
m∈S

hm(sm) , (1.4)

where S is a subset of the power set of D := {1, . . . , d}, i.e., m ∈ S⇒ m ⊂ D, and the hm only
depend on the #m-dimensional vectors sm = (si)i∈m. It is easier and more insightful to apply
the ANOVA decomposition to the representation (1.3) of V (t, s) than to combine it directly
with the PIDE (1.1) and (1.2). The representation (1.4) ultimately allows us to approximate
V (t, s) by a superposition of expected values

V (t, s) ≈
∑
m∈S

E(e−r(T−t)hm(Sm(T )) | Sm(t) = sm) (1.5)

based on the marginal Lévy processes Sm = (Si)i∈m. The resulting moderate-dimensional prob-
lems on the right-hand side of (1.5) need to be computed numerically, so we deal with their #m-
dimensional BKE representation. This way of looking at things is depicted in Figure 1.1. In the
end we trade a d-dimensional problem for #S moderate-dimensional problems. This technique
has already been applied to the multi-dimensional geometric Brownian motion [RW07, SGW13].
The generalization to other processes and the relation to the anchor ANOVA decomposition is
discussed in [RW13]. We evaluate possibilities to apply the ANOVA decomposition directly to
the solution and not just the final condition and explore alternatives to the anchor ANOVA.
For the numerical solution of the now moderate-dimensional BKEs, we use a Θ-method for

time stepping and a Galerkin discretization in space1. However, a classical tensor product
approach for the space discretization of V or, to a lesser extent, the moderate-dimensional
problems in (1.5) suffers from the so-called curse of dimensionality [Bel61], which means that
the cost complexity for the approximation to the solution of a problem grows exponentially

1We refer the reader to [CT04, RSW10] for analytical aspects of the BKE and to [SS00, GOV05] for advanced
space-time discretization techniques.
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Expected value (1.3) based
on a d-dimensional

Lévy process

Sum of expected values (1.5)
based on #m-dimensional
Lévy processes for m ∈ S

ANOVA approximation
with index set S
of the expected value
or the final condition

Solution V (t, s) of a
d-dimensional BKE

Feynman-Kac

Sum of solutions
of #m-dimensional
BKEs for m ∈ S

Feynman-Kac

ANOVA approximation
with index set S
of d-dimensional PIDE

Figure 1.1: This diagram shows how the detour via the expected value formulation (1.3) based
on a Lévy process leads to an ANOVA approximation of the d-dimensional BKE

with the dimension d. A d-dimensional mesh with a resolution of h in each direction typically
results in a storage and cost complexity of Θ(h−d). Fortunately, it is possible to increase the
efficiency by exploring specific a priori assumptions on the solution using sparse grids [BG04].
This discretization technique circumvents the curse of dimensionality to some extent as it results
in a complexity of only O(h−1 (log h−1)d−1), which allows for huge savings for higher values of d,
while – depending on the smoothness assumptions on the function – the convergence rate of
the error is unchanged or only affected by a logarithmic term. Sparse grid discretization spaces
can be described by a non-direct sum of anisotropic full grid spaces, and regular sparse grids
have been employed for the efficient solution of PDEs [Zen91, Bun92a, Gri91] for a long time.
Generalized sparse grids offer great flexibility in enriching the discretization by different sets of
full grid spaces, and have been studied in [BG99, GK09, GH13b] and in [Feu10, GG03, BG12]
in connection with a posteriori dimension-adaptivity. In special cases, space-adaptivity [Gri98,
Feu10] is beneficial, but generally speaking this method results in additional challenges in terms
of algorithms and performance and is not part of this thesis.
After time and space discretization, the resulting systems of linear equations must be solved

in a fast way, and usually some iterative method is employed. This results in the need of
preconditioning, which is more challenging for generalized sparse grids than for isotropic full
grid spaces. For Ht-elliptic problems discretized by a regular full grid, the BPX-preconditioner
[BPX90] leads to optimal condition numbers and can be implemented as simple Jacobi scaling
of a multilevel system [Gri94b]. For sparse grids, this is not the case and a simple Jacobi scaling
leads to condition numbers that cannot be bounded from above independently of the discretiza-
tion level J with h = 2−J . Therefore, we follow three different approaches to find optimal or
close-to-optimal scaling parameters for the sparse grid generating system: One is based on a
Linear Program that minimizes the splitting condition number with respect to a subspace split-
ting based on orthogonal complement spaces. We prove that the best possible set of positive
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scaling parameters results in condition numbers that grow by Θ(Jd−2) in J for Ht-elliptic prob-
lems. The second method is based on the observation that partially negative scaling parameters
can also result in a positive definite operator on the sparse grid space, even though this case
is not covered by the classical theory of subspace splittings. With an algebraic transformation
that produces partially negative scaling parameters we obtain an optimal iterative scheme with
error contraction rates that are bounded independently of the level J and are even independent
of the dimension d for some cases. A related result has been observed in [DSS09]. In the case
of the d-dimensional Laplacian, we even observe a decrease in the condition number for rising
dimension, all else being equal. We also introduce a preconditioner based on orthogonal projec-
tions that is closely related to the method that uses partially negative scaling parameters. In
fact, it can be regarded as a convenient form of implementing of prewavelets. The last method
we propose is a non-linear variable preconditioner [JN99] that has been coined OptiCom in the
context of sparse grids applied to data mining problems [Heg03, Gar06, HGC07] and comes up
with the best possible scaling in every iteration step. We show that the cost of an OptiCom
iteration step is log-linear with respect to the degrees of freedom if a fast matrix-vector mul-
tiplication with the operator matrix is available. This is a significant improvement over the
quadratic costs typically associated with the OptiCom. As a fast matrix-vector multiplication
the unidirectional principle [BZ96, Bun92b, Zei11] can be employed, but we come up with a
specifically designed algorithm that also reduces the constant factor of the cost complexity dra-
matically. Conjugate gradient versions of all considered iteration schemes are presented, which
shows that there is even further cost reduction potential.

Another issue when solving the systems of linear equations that arise from the BKE is the
non-locality of the integro-operator (1.2). We obtain linear systems with densely populated
matrices, which, treated naively, would lead to computational costs for the matrix-vector mul-
tiplication that are quadratic with respect to the number of degrees of freedom N . In [AA00],
the convolution integral is evaluated using the fast Fourier transform, which reduces the com-
plexity of the system matrix application to O(N logN). There are also other results, which
make use of the decay of the integral kernel and the accompanying compressibility of the oper-
ator matrix [KK02, Rei10]. For the special case of Kou’s jump-diffusion model, an even faster
operator application with O(N) complexity in the finite difference case is available [Toi08].
In this thesis, we introduce a comparable approach for the Galerkin method and exploit it in
our numerical solver. We use the unidirectional principle – which was originally developed for
partial differential operators – and generalize it to our non-local operator. In combination with
the Galerkin recurrence formula for the Kou model and the optimal preconditioning, we obtain
a solver which altogether scales only linearly with respect to the number of degrees of freedom
of our sparse grid discretization.

Finally, we combine the described methods for the solution of a ten-dimensional BKE based
on Kou’s jump-diffusion model. It is conceivable that this problem stems from an even higher-
dimensional model after the projection onto the principal components of the diffusion covariance
matrix and a subsequent truncation at ten space dimensions. We measure the errors of different
ANOVA approximations at several points via a Monte Carlo approach and identify index sets S
that are promising, i.e., that are small but lead to sufficiently accurate solutions. We then
approximate the solution of the ten-dimensional BKE by the solutions of lower-dimensional
BKEs, which we compute using our sparse grid PIDE solver. By measuring the error at 100
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randomly selected points using a Monte Carlo approach, we see that we can obtain for the
first time a sufficiently accurate approximation of the solution based on a ten-dimensional Kou
model not only at our anchor point but also in its proximity.
To sum this up, the main contributions of this thesis are the following:

• We show that the ANOVA decomposition of the final condition h and in some cases the
solution V allows us to deal with moderate-dimensional marginals of our Lévy process,
which ultimately lead to moderate-dimensional versions of the BKE. This is a novelty
in the sense that in most of the literature only the multivariate Brownian motion is
considered.

• We present a Linear Programming approach and an algebraic transformation to come
up with quasi-optimal fixed a priori scalings for preconditioning. Moreover, we use the
OptiCom for the first time in an iterative fashion with log-linear runtime for generalized
sparse grids. We introduce the new single space matrix-vector multiplication that also
reduces the constant factor in the runtime complexity of the OptiCom dramatically.

• We present a preconditioner for the generalized sparse grid generating system based on
orthogonal projections. We show that for certain elliptic problems, the condition num-
bers can be bounded independently of the discretization level, the coefficients and the
dimension.

• We generalize the unidirectional principle to non-local operators and present a multi-
dimensional Kou model with a recurrence formula for the Galerkin discretization.

• We discuss the balance between ANOVA approximation error and PIDE discretization
error, and we finally demonstrate that the solution of a ten-dimensional model problem
can be efficiently approximated using a combination of the methods developed in this
thesis.

Parts of this thesis have already been published in a journal article [GHO15] and proceedings
contributions [GH13c, GH14b].
The remainder of this thesis is organized as follows: In Chapter 2 we recall the backward

Kolmogorov equation, the underlying multivariate Lévy processes and how the ANOVA decom-
position can be used to obtain an approximation by a sum of moderate-dimensional subprob-
lems. In Chapter 3 we briefly describe their variational formulation that eventually leads to a
discretization in space and time. Chapter 4 contains the definition of generalized sparse grid
spaces and discusses numerical aspects of the implementation and operator application using a
generating system. Chapter 5 deals with the optimal or quasi-optimal scaling of the generating
system operator matrix. We obtain scaling factors by a Linear Program approach, an algebraic
transformation and the non-linear OptiCom. We also present a preconditioner based on orthog-
onal projections closely related to the algebraic transformation. Furthermore, we discuss the
efficient implementation, the dimension-dependence of the constants and CG versions of the
iterative methods. Then, in Chapter 6, we present a ten-dimensional Kou-model and combine
the ANOVA approximation and our PIDE solver to approximate the solution of a challenging
option pricing problem. Final remarks in Chapter 7 conclude this thesis.





2 ANOVA decomposition of the backward
Kolmogorov equation

The ANOVA decomposition of functions [GH10b] goes back to [Hoe48] and yields an efficient
representation of high-dimensional functions by low-dimensional interactions. Apart from spe-
cial cases, high-dimensional interactions do exist, but their contribution to the description of
most functions is often negligible. This results in a robust method for the initial approximation
of high-dimensional problems by a superposition of moderate-dimensional ones.
The ANOVA decomposition has already been used to approximate the payoff function in the

context of basket option pricing with the geometric Brownian motion [RW07, Rei12]. There, the
multi-dimensional Black-Scholes PDE is transformed into the heat equation. Then, the ANOVA
approximation method rests on the argument that marginalizing out some dimensions of the
heat kernel again results in a lower-dimensional heat kernel and thus also a lower-dimensional
Black-Scholes PDE [SGW13]. We give a proof that the same principle holds analogously for
Lévy processes with a kernel that has no product structure. Using the Feynman-Kac formula for
Lévy processes, we see that a low-dimensional final condition or a low-dimensional ANOVA term
of the solution of the high-dimensional BKE leads to a low-dimensional BKE, and we can finally
approximate the solution of the high-dimensional BKE by a superposition of low-dimensional
solutions. Note that a discussion of the anchor ANOVA decomposition for generalizations of
the Black-Scholes model is given in [RW13].
In Section 2.1, we recall Lévy processes, discuss some properties of their marginals and apply

simplifying transformations to (1.3). We also state the corresponding backward Kolmogorov
equation and transform it to a simpler form. In Section 2.2, we give a self-contained view
of the ANOVA decomposition of functions. Then, in Section 2.3, we show how the ANOVA
approximation of the final condition or the solution of the BKE results in expressions that only
include low- and moderate-dimensional marginals of our Lévy process. Finally, in Section 2.4,
we discuss some common ANOVA approximation schemes and express them in our setting.

2.1 Lévy processes and the backward Kolmogorov equation for
option pricing

We now briefly summarize what kind of problem we focus on in this section: For a certain
class of stochastic processes (S(t))t∈[0,T ] with state space Rd, we want to compute the function
V : [0, T ]× Rd≥0 → R with

V (t, s) = e−r(T−t)E [h(S(T )) | S(t) = s] (2.1)

7
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for a given final condition V (T, s) = h(s), which is a problem that arises in option pricing
on multi-dimensional jump-diffusion processes. In Subsection 2.1.1, we go into detail about
Lévy processes, their marginals, state the option pricing problem and give some simplifying
transformations of (2.1). The function V (t, s) from (2.1) is also the solution of a partial integro-
differential equation, which we discuss in Subsection 2.1.2. There is a close relationship between
both formulations, which remains intact after all variable transforms.

2.1.1 Lévy processes and problem setup

We start this subsection with a definition of a Lévy process, cf. [CT04].

Definition 2.1 (Lévy process). A càdlàg stochastic process (X(t))0≤t<∞ on the probability
space (Ω,F ,P) with values in Rd such that X(0) = 0 is called a Lévy process if it has the
following properties:

1. Independent increments: for every sequence t0 < t1 < · · · < tn, the random variables
X(t0),X(t1)−X(t0), . . . ,X(tn)−X(tn−1) are independent

2. Stationary increments: X(t)−X(s) has the same distribution as X(t− s), 0 ≤ s < t <∞

3. Stochastic continuity: ∀ ε > 0 : limh→0 P(|X(t+ h)−X(t)| ≥ ε) = 0

It is noteworthy that the stochastic continuity does not mean the sample paths are continuous.
Jumps may occur, but not at fixed times t. This also means that a white noise process, which
clearly has independent and stationary increments, is not a Lévy process. The multi-dimensional
Brownian motion is the special case of a Lévy process without jumps.

Lévy-Khintchin representation

First, we fix a truncation function T : Rd → Rd≥0 that is bounded and measurable with T (z) =
1 + o(|z|) for |z| → 0 and T (z) = O(1/|z|) for |z| → ∞. Then, it is well-known from the theory
of Lévy processes that the characteristic exponent ψ : Rd → C of X(t), which satisfies

E
(
ei〈ξ,X(t)〉

)
= etψ(ξ) for ξ ∈ Rd, t ≥ 0 ,

allows for the unique Lévy-Khintchin representation

ψ(ξ) = −1

2
〈ξ,Qξ〉+ i 〈θ, ξ〉+

∫
Rd

(
ei〈ξ,z〉 − 1− i 〈ξ, z〉 T (z)

)
ν(dz), (2.2)

where Q = (qjk)
d
j,k=1 ∈ Rd×d is the covariance matrix of the continuous part of X, θ =

(θ1, . . . , θd) ∈ Rd is the drift1 of X, and ν is the Lévy jump measure that satisfies∫
Rd

min(1, |z|2)ν(dz) <∞ . (2.3)

1The term drift has to be used with caution, as θ is not the actual expected value of X(1) but depends implicitly
on the truncation function T .
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Given a truncation function T , we can uniquely describe any Lévy process by the triplet
(Q,θ, ν).
The condition (2.3) means that there is only a finite amount of large jumps and a possibly

infinite amount of small jumps. The purpose of the truncation function T is to make the
distinction between small and large jumps. According to [CT04] P. Lévy used T (z) = 1

1+|z|2 ,
while most recent textbooks use T (z) = 1{|z|<1}. Note that in special cases trivial truncation
functions are possible: For processes with a finite number of jumps T (x) = 0 is acceptable,
while processes with a finite expected value admit T (x) = 1. Later on, we will make such an
assumption and set T (z) = 1, but for the time being we try to be as general as possible.
Not necessarily all components Xj(t), j = 1, . . . , d, of a Lévy processes with

X(t) = (X1(t), . . . , Xd(t))

have a finite expected value or variance. For those Xj(t) that do, we now devise a simple way
to compute these quantities given the characteristic exponent (2.2). Let us shortly assume that
we are given a random variable X with characteristic function φ. It holds that

φ′(ξ) = E[iXeiξX ] ⇒ −iφ′(0) = E[X]

and
φ′′(ξ) = E[i2X2eiξXj(t)] ⇒ −φ′′(0) = E[X2] .

We can now express the variance of X as

var(X) = E[X2]− E[X]2 = −φ′′(0)−
(
iφ′(0)

)2
=
(
φ′(0)

)2 − φ′′(0) .

Thus, in order to compute the expected value and variance of Xj(t), j = 1, . . . , d, we have to
compute the first and second derivatives of the characteristic functions

φXj(t)(ξ) = E[eiξXj(t)] = E[ei〈ξej ,X(t)〉] = etψ(ξej)

= exp

(
t

(
−ξ

2qjj
2

+ iξθj +

∫
Rd
eiξzj − 1− iξzjT (z)ν(dz)

))
.

We get

E[Xj(t)] = −i
d

dξ
etψ(ξej)

∣∣∣∣
ξ=0

= −i

(
t

d

dξ
ψ(ξej)

)
etψ(ξej)︸ ︷︷ ︸

=1

∣∣∣∣
ξ=0

= −it

(
−ξqjj + iθj +

∫
Rd

izje
iξzj − izjT (z)ν(dz)

) ∣∣∣∣
ξ=0

= t

(
θj +

∫
Rd
zj(1− T (z))ν(dz)

)
. (2.4)

The expression (2.4) shows that the expected value of Xj(t) grows linearly in time and consists
of the drift plus the jump part adjusted for the truncation function. This tells us why for
T (z) = 1 the parameter θj can be referred to as the expected value of Xj(1) and for T (z) = 0
as the drift of the continuous part. However, it always depends on the jump measure ν whether
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this kind of representation is possible. It holds that

var(Xj(t)) =

(
d

dξ
etψ(ξej)

∣∣∣∣
ξ=0

)2

−
(

d

dξ

)2

etψ(ξej)

∣∣∣∣
ξ=0

=

((
d

dξ
tψ(ξej)

)
etψ(ξej)︸ ︷︷ ︸

=1

∣∣∣∣
ξ=0

)2

− d

dξ

((
d

dξ
tψ(ξej)

)
etψ(ξej)

) ∣∣∣∣
ξ=0

=

(
d

dξ
tψ(ξej)

∣∣∣∣
ξ=0

)2

−
(

d

dξ
tψ(ξej)

)2 ∣∣∣∣
ξ=0

−
(

d

dξ

)2

tψ(ξej)

∣∣∣∣
ξ=0

, (2.5)

where the first two terms in (2.5) cancel out, and we only need to form the second derivative
of ψ(ξej) with respect to ξ and get

var(Xj(t)) = −t
(
−qjj +

∫
Rd

(−1)z2
j e

iξzjν(dz)

) ∣∣∣∣
ξ=0

= t

(
qjj +

∫
Rd
z2
j ν(dz)

)
. (2.6)

As was said before, it is not clear that (2.6) exists and is finite. For the model for ν that we
pick in Chapter 6, however, this is the case.

Forming marginals of a Lévy process

We now want to study the effects of forming marginals or dropping components of X(t) ∈ Rd
for all t ≥ 0. To this end, we first need to introduce some notation: Let D := {1, 2, . . . , d}
be the set of all available dimensions. Given a subset m ⊂ D that contains the dimensions or
components that we want to consider, we can form an m-marginal Xm(t) with

(Xm(t))i = (X(t))i for i ∈ m .

Obviously, this marginal is an #m-dimensional vector, but we do not refer to it as an element
of R#m but choose

Rm := {#m-dim vectors or mappings v with v : m→ R} ' R#m

instead. Similarly, we sometimes choose to write RD for sequences with #D = d elements as
an alternative to Rd even though they are isomorphic.

The process Xm is again Lévy with state space Rm, but there is more to say about it. First,
we choose the slightly modified truncation function

Tδ(z) = 1{|z|∞≤δ}(z) with δ > 0 , (2.7)

which has the product structure

Tδ(z) = 1{|z|∞≤δ} = 1{|zm|∞≤δ} · 1{|zD\m|∞≤δ} (2.8)

for m ⊂ D. There exist other truncation functions that allow for a product representation
similar to (2.8), but (2.7) is relatively easy to handle and serves our purpose well.
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The following theorem shows how to compute the triplet of the marginal Lévy process Xm

subject to the truncation function Tδ(x) = 1{|x|∞≤δ}(x).

Theorem 2.2. Let X be a Lévy process with triplet (Q,θ, ν) and let Xm be the m-marginal
of X. Then, Xm is also a Lévy process with triplet (Qm, θ̃m, νm), where

Qm ∈ Rm×m with (Qm)ij = qij for i, j ∈ m ,

θ̃m ∈ Rm with (θ̃m)i = θi +

∫
[−δ,δ]m×(RD\m\[−δ,δ]D\m)

ziν(dz) for i ∈ m ,

and
νm(A) = ν(A× RD\m) for A ∈ B(Rm) ,

which means νm is the m-marginal of ν.

Proof. If X is a Lévy process, its marginal Xm is obviously again Lévy, see Definition 2.1, and
we need to find the characteristic triplet of Xm. Computing the characteristic function of the
m-marginal of a random vector amounts to setting the dimensions that are marginalized out,
i.e., D\m, to zero in the characteristic function. This carries over to the characteristic exponent
ψm of the process Xm with respect to the characteristic exponent ψ of X. Independently of
t ≥ 0 and for all ξm ∈ Rm, it holds that

etψm(ξm) = E
(
ei〈ξm,Xm(t)〉

)
= E

(
ei〈ξm�0D\m,X(t)〉) = etψ(ξm�0D\m) ,

where

(ξm � 0D\m)i =

{
(ξm)i for i ∈ m ,

0 else .

We conclude
ψm(ξm) = ψ(ξm � 0D\m)

and set all entries ξD\m to 0 in (2.2), which yields

ψ(ξm � 0D\m) =− 1

2
〈ξm,Qmξm〉+ i 〈θm, ξm〉

+

∫
Rd

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ} · 1{|zD\m|∞≤δ}

)
ν(dz) . (2.9)

The covariance matrix Qm of the triplet of our m-marginal is simply a submatrix of Q. We now
focus on the integral term (2.9) and split the domain of integration∫

Rd

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ} · 1{|zD\m|∞≤δ}

)
ν(dz)

=

∫
Rm×[−δ,δ]D\m

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ} · 1{|zD\m|∞≤δ}︸ ︷︷ ︸

=1

)
ν(dz) p.t.o.
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+

∫
Rm×(RD\m\[−δ,δ]D\m)

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ} · 1{|zD\m|∞≤δ}︸ ︷︷ ︸

=0

)
ν(dz)

=

∫
Rm

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ}

)∫
[−δ,δ]D\m

ν(dz) (2.10)

+

∫
Rm

(
ei〈ξm,zm〉 − 1

)∫
(RD\m\[−δ,δ]D\m)

ν(dz) . (2.11)

Now we want to recombine (2.10) and (2.11). To this end, we consider the term

i

〈
ξm,

∫
Rm×(RD\m\[−δ,δ]D\m)

zm1{|zm|∞≤δ}ν(dz)

〉
(2.12)

=

∫
Rm

i 〈ξm, zm〉1{|zm|∞≤δ}
∫

(RD\m\[−δ,δ]D\m)
ν(dz) (2.13)

Note that (2.12) exists since
∣∣zm1{|zm|∞≤δ}∣∣ ≤ √dδ <∞ and

ν
(
Rm × (RD\m \ [−δ, δ]D\m)

)
≤ ν(RD \ [−δ, δ]D) <∞ .

Now, we consider (2.10) and (2.11) again and subtract (2.13) and subsequently add (2.12).
Then, we can recombine both integrals∫

Rm

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ}

)∫
[−δ,δ]D\m

ν(dz)

+

∫
Rm

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ}

)∫
(RD\m\[−δ,δ]D\m)

ν(dz)

+ i

〈
ξm,

∫
Rm×(RD\m\[−δ,δ]D\m)

zm1{|zm|∞≤δ}ν(dz)

〉

=

∫
Rm

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ}

)∫
[−δ,δ]D\m∪

(RD\m\[−δ,δ]D\m)

ν(dz) (2.14)

+ i

〈
ξm,

∫
Rm×(RD\m\[−δ,δ]D\m)

zmν(dz)

〉
. (2.15)

Substituting (2.14) and (2.15) for (2.9) and adding (2.15) to θm, we finally get

ψm(ξm) =− 1

2
〈ξm,Qmξm〉+ i

〈
θ̃m, ξm

〉
+

∫
Rm

(
ei〈ξm,zm〉 − 1− i 〈ξm, zm〉1{|zm|∞≤δ}

)
νm(dzm) ,

which proves our theorem.

As mentioned earlier, a non-trivial truncation function T is only necessary if there are many
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large jumps such that E[|X(t)|] does not exist and there are infinitely many small jumps such
that ν([−1, 1]D) =∞. From now on, we assume that E[|X(t)|] <∞ is well-defined and choose
T (z) = 1. This choice has the benefit that θ = E[X(1)], so the triplet directly tells us the
expected value of the process per unit time. Note that this is our previous truncation function
Tδ(z) for δ →∞. Then Theorem 2.2 yields that θ̃m → θm. This means that we no longer need
to adjust the drift θm when forming a marginal but can simply choose a subvector of θ. This
is very intuitive and we get

Proposition 2.3. Let T (z) = 1 be the truncation function and let X be a Lévy process with
finite expected value and triplet (Q,θ, ν). Then, the m-marginal Xm of X is again a Lévy process
with triplet (Qm,θm, νm), where

Qm ∈ Rm×m with (Qm)ij = (Q)ij for i, j ∈ m ,

θm ∈ Rm with (θm)i = (θ)i for i ∈ m ,

and
νm(A) = ν(A× RD\m) for A ∈ B(Rm) .

Option pricing formulation and transformations

A European option is the right but not the obligation to buy (call option) or sell (put option) a
specified quantity of an underlying at time T in the future for a fixed priceK. The Black-Scholes
model [BS73] assumes that security prices follow a geometric Brownian motion

S(t) = S0 exp
(
(µ− σ2

2 )t+ σW (t)
)
. (2.16)

Then, arbitrage considerations show that the fair price of a European option V (t, s) is given
by the discounted expected value (2.1) of the payoff function h under the risk-neutral measure.
For the geometric Brownian motion (2.16), the risk-neutral measure simply means that the true
drift µ has to be replaced by the risk-free interest rate r.

In this thesis, we assume an exponentiated Lévy model for S(t) in (2.1), which reads

S(t) = S(0) exp(rt+ X(t)) := (S1(0) exp(rt+X1(t)), . . . , Sd(0) exp(rt+Xd(t)) , (2.17)

where X(t) = (X1(t), . . . , Xd(t)) is a Lévy process with triplet (Q,θ, ν). Note that the sum-
mation of rt and the exp-function are applied component-wise. Compared with the geometric
Brownian motion, (2.17) is able to model jumps and thus can account for the leptokurtic fea-
ture of asset returns, so that theoretical prices match the market prices more accurately [CT04].
Note that under the risk-neutral measure, the processes

e−trSi(t) = eXi(t) for i = 1, . . . , d (2.18)

need to be martingales with respect to the canonical filtration of the multivariate process X(t),
see [RSW10]. A quick glance at the Lévy-Khintchin representation (2.2) for T (z) = 1 reveals
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that this translates into

E[eXj(t)] = etψ(−iej) = exp

(
t

(
qjj
2

+ θj +

∫
R
ezj − 1− zjνj(dzj)

))
!

= 1

⇔ θj = −qjj
2
−
∫
R
ezj − 1− zjνj(dzj) (2.19)

for i = 1, . . . , d, where ej is the j-th unit vector and νj is the {j}-marginal of ν. Jump-diffusion
models lead to incomplete markets and a risk-neutral measure needs to be selected by, e.g., the
rational expectations equilibrium, see [Kou07]. However, this is not the focus of this thesis.
We now want to compute (2.1) for a given payoff function h. In order to simplify matters,

we first do a variable transform. Note that in the following the exp- and log-functions need to
be understood component-wise.

Theorem 2.4. We set

u(τ,x) = e(T−t)rV (t, s) , τ = T − t , x = log s + rτ and g(log s) = h(s) (2.20)

for t ≥ 0 and x ∈ Rd, s ∈ Rd≥0. Then, we can express u in terms of the process X by

u(τ,x) = E[g(X(τ) + x)] . (2.21)

Proof. The proof simply uses the equalities in (2.20), that is

u(τ,x) = e(T−t)rV (t, s) = E[h(S(T )) | S(t) = s]

= E[h(exp(rT + X(T )) | exp(rt+ X(t)) = s)]

= E[g(rT + X(T )) | X(t) = log s + rT − rt− rT ]

= E[g(rT + X(T )−X(t)︸ ︷︷ ︸
∼X(T−t)

+ X(t)︸︷︷︸
=x−rT

) | X(t) = x− rT ]

= E[g(X(τ) + x)] ,

which is exactly our claim.

We consider (2.21) to be more convenient than (2.1). In order to make approximation methods
for u effective, a further reparameterization may be necessary. We now try to express (2.21)
in terms of a process Y(τ) = BTX(τ), τ ≥ 0, where B ∈ Rd×d is an orthonormal matrix.
Orthonormal transforms are frequently used for related problems [Oet11, IT09], as |det B| = 1
makes integral transformations particularly easy.

Theorem 2.5. Let B ∈ Rd×d be orthonormal. We set

v(τ,y) = u(τ,x) , y = BTx and gB(y) = g(x) . (2.22)

Then, we can express (2.21) in terms of Y and v by

v(τ,y) = E[gB(Y(τ) + y)] . (2.23)
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Proof. The proof simply uses the equalities in (2.22), that is

v(τ,y) = u(τ,By) = E[g(X(τ) + By)] = E[g(B(BTX(τ) + y))] = E[gB(Y(τ) + y)] ,

which proves our claim.

The question is what matrix B results in a representation (2.23) that is more convenient
than (2.21). Before we answer this, we need to have a look at the properties of Y.

Theorem 2.6. Let B ∈ Rd×d be an orthogonal matrix. If X is a Lévy process with triplet
(Q,θ, ν), the process Y(τ) = BTX(τ), τ ≥ 0, is also a Lévy process with characteristic triplet
(BTQB,BTθ, νB) and

νB(A) = ν(BA) for A ∈ B(Rd) ,

where BA denotes the set A after a linear transformation by the matrix B.

Proof. Clearly, the properties of Lévy processes from Definition 2.1 are satisfied for Y as well.
We now obtain the characteristic exponent ψY of Y from the characteristic exponent ψX of X:

etψY(ξ) = E
(
ei〈ξ,Y(t)〉

)
= E

(
ei〈ξ,BTX(t)〉) = E

(
ei〈Bξ,X(t)〉

)
= etψX(Bξ)

= exp

(
t

(
−1

2

〈
ξ,BTQBξ

〉
+ i
〈
BTθ, ξ

〉
+

∫
Rd

(
ei〈ξ,BT z〉 − 1− i

〈
ξ,BT z

〉)
ν(dz)

))
.

(2.24)

Now, we change the integration measure from ν to νB in (2.24) and thus substitute BT z by z
in the integral. This transformation is simple, since B is orthonormal and hence |det B| = 1.
Obviously, the result is again a Lévy-Khintchin representation with triplet (BTQB,BTθ, νB).

Remark 2.7. If X is a martingale, this also applies to Y = BTX. However, if eX is a martingale,
this does not necessarily hold for eBTX. We give a simple counterexample with

Q =

(
2 0
0 1

)
, θ =

(
−1
−1

2

)
, B =

(
0 −1
1 0

)
, Σ =

(
1 0
0 2

)
.

For Lévy process X(τ) with triplet (Q,θ, 0), we know that

E[eX(τ)] =

(
eτψ(−ie1)

eτψ(−ie2)

)
=

(
eτ( 1

2
2−1)

eτ( 1
2

1− 1
2

)

)
=

(
1
1

)
.

However, the process Y = BTX has the triplet (BTQB,BTθ, 0) with

BTQB = Σ and BTθ =

(
−1

2
1

)
and thus

E[eY(τ)] =

(
eτψY(−ie1)

eτψY(−ie2)

)
=

(
eτ( 1

2
1− 1

2
)

eτ( 1
2

2+1)

)
=

(
1
e2τ

)
.
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Obviously, the process eBTX is no martingale.

The question is now what B ∈ Rd×d results in a favorable process Y. One obvious choice is
the matrix which diagonalizes Q by

Q = BΣBT ⇔ BTQB = Σ , (2.25)

where Σ = diag(σ2
1, . . . , σ

2
d) and σ2

1 ≥ σ2
2 ≥ · · · ≥ σ2

d > 0. In this case, the columns of B are
the associated eigenvectors to the eigenvalues (σ2

i )
d
i=1. Now, any decay in the spectrum of Q

is directly visible in the diffusion part of Y, which has triplet (Σ,BTθ, νB). As we will see
in Chapter 6, the rate of decay in the covariance spectrum directly relates to the accuracy of
ANOVA approximations.

2.1.2 The corresponding backward Kolmogorov equation

Having recalled Lévy processes and the option pricing problem, we now come to the backward
Kolmogorov equation. We reproduce the transformations we made to get from V (t, s) to v(τ,y)
in the context of PIDEs.

The backward Kolmogorov equation for pricing options

The function V is known to satisfy the PIDE (2.27) and (2.28) in the following theorem,
see [CT04, RSW10] for proofs and further information.

Theorem 2.8 (BKE for European options). Let S be an exponential Lévy model (2.17) with
Lévy triplet (Q,θ, ν), which has a non-vanishing diffusion matrix Q, and let ν satisfy∫

|z|≥1
eziν(dz) <∞ (2.26)

for i = 1, . . . , d. Then, the function

V ∈ C1,2
(

(0, T )× Rd>0

)
∩ C0

(
[0, T ]× Rd≥0

)
given by (2.1) is a solution of the backward PIDE for European options

∂V

∂t
(t, s) +

1

2

d∑
i,j=1

sisjqij
∂2V

∂si∂sj
(t, s) + r

d∑
i=1

si
∂V

∂si
(t, s)− rV (t, s) (2.27)

+

∫
Rd

(
V (t, sez)− V (t, s)−

d∑
i=1

si (ezi − 1)
∂V

∂si
(t, s)

)
ν(dz) = 0 (2.28)

on (0, T )×Rd>0, where V (t, sez) := V (t, s1e
z1 , . . . , sde

zd), s = (s1, . . . , sd) and z = (z1, . . . , zd),
and where the final condition is given by

V (T, s) = h(s) for s ∈ Rd≥0 . (2.29)
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Transformation to the infinitesimal generator

Let us define the transition operator

[Ptf ](x) = E[f(x + X(t))] .

The infinitesimal generator LX of the process X is then defined as

LXf = lim
t↓0

Ptf − f
t

.

Obviously, (2.21) means that
u(τ,x) = [Pτg](x)

and thus
∂u

∂τ
(τ,x) = [LXu](τ,x) .

In the next theorem, we recover the infinitesimal generator of X by expressing our BKE in terms
of u(τ,x). This is a useful transformation as we also eliminate all non-constant coefficients.

Theorem 2.9. Using the transformations u(τ,x) = er(T−t)V (t, s) with τ = T − t and x =
log s + rτ , we can rewrite the BKE (2.27) and (2.28) as

∂u

∂τ
(τ,x) = [LXu](τ,x) , (2.30)

where

[LXu](τ,x) =
1

2

d∑
i,j=1

qij
∂2u

∂xi∂xj
(τ,x) +

d∑
i=1

θi
∂u

∂xi
(τ,x) (2.31)

+

∫
Rd

(
u(τ,x + z)− u(τ,x)−

d∑
i=1

zi
∂u

∂xi
(τ,x)

)
ν(dz) (2.32)

is the infinitesimal generator of X. The final condition V (T, s) = h(s) becomes an initial
condition u(0,x) = g(x) with g(log s) = h(s).

Proof. We do a step by step transformation of the PIDE. Because of u(τ,x) = er(T−t)V (t, s),

d

dt
u(τ,x) = −∂u

∂τ
(τ,x)− r

d∑
i=1

∂u

∂xi
(τ,x) ,

and
d

dt
er(T−t)V (t, s) = −rer(T−t)V (t, s) + er(T−t)

∂V

∂t
(t, s)

we get

∂V

∂t
(t, s) = −e−r(T−t)∂u

∂τ
(τ,x)− re−r(T−t)

d∑
i=1

∂u

∂xi
(τ,x) + re−r(T−t)u(τ,x) . (2.33)
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By replacing ∂V
∂t (t, s) with the right-hand side of (2.33), the reactive term

−rV (t, s) = −re−r(T−t)u(τ,x)

of (2.27) cancels out. Now, we come to the convection and diffusion part. Because of

d

dsi
e−r(T−t)u(τ,x) = e−r(T−t)

1

si

∂u

∂xi
(τ,x) (2.34)

we get

si
∂V

∂si
(t, s) = e−r(T−t)

∂u

∂xi
(τ,x) . (2.35)

This means that the terms

r

d∑
i=1

si
∂V

∂si
(t, s) = re−r(T−t)

d∑
i=1

∂u

∂xi
(τ,x)

in (2.27) also cancel out with the respective terms on the right hand side of (2.33). Differenti-
ating (2.34) with respect to d

dsi
again yields

d

dsi

d

dsi
e−r(T−t)u(τ,x) = e−r(T−t)

1

s2
i

∂2u

∂x2
i

(τ,x)− e−r(T−t) 1

s2
i

∂u

∂xi
(τ,x) ,

which results in

s2
i

∂2V

∂s2
i

(t, s) = e−r(T−t)
∂2u

∂x2
i

(τ,x)− e−r(T−t) ∂u
∂xi

(τ,x) , (2.36)

and differentiating with respect to d
dsj

for j 6= i results in

sisj
∂2V

∂si∂sj
(t, s) = e−r(T−t)

∂2u

∂xi∂xj
(τ,x) . (2.37)

Using (2.33), (2.35), (2.36) and (2.37), the line (2.27) transforms to

e−r(T−t)

−∂u
∂τ

(τ,x) +
1

2

d∑
i,j=1

qij
∂2u

∂xi∂xj
(τ,x)−

d∑
i=1

qii
2

∂u

∂xi
(τ,x)

 , (2.38)

and we are left to deal with the integral term in (2.28). It is easy to see that

V (t, sez) = e−r(T−t)u(τ, log s + z + rτ) = e−r(T−t)u(τ,x + z)

and in combination with (2.35) we can express (2.28) as

e−r(T−t)
∫
Rd

(
u(τ,x + z)− u(τ,x)−

d∑
i=1

(ezi − 1)
∂u

∂xi
(τ,x)

)
ν(dz) p.t.o.
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=e−r(T−t)
∫
Rd

(
u(τ,x + z)− u(τ,x)−

d∑
i=1

zi
∂u

∂xi
(τ,x)

)
ν(dz) (2.39)

− e−r(T−t)
d∑
i=1

∫
R

(ezi − 1− zi) νi(dzi)
∂u

∂xi
(τ,x) . (2.40)

Now, we combine (2.38), (2.39) and (2.40) and multiply the equation by er(T−t). After a bit
of reordering this yields

− ∂u

∂τ
(τ,x) +

1

2

d∑
i,j=1

qij
∂u

∂xi∂xj
(τ,x)

+

d∑
i=1

(
−qii

2
−
∫
R

(ezi − 1− zi) νi(dzi)
)
∂u

∂xi
(τ,x) (2.41)

+

∫
Rd

(
u(τ,x + z)− u(τ,x)−

d∑
i=1

zi
∂u

∂xi
(τ,x)

)
ν(dz) = 0

We then add +∂u
∂τ (τ,x) to both sides of the equation and in (2.41) we substitute (2.19) by θj

for j = 1, . . . , d. What is left is to deal with the final condition at t = T or the initial condition
at τ = 0, respectively. Obviously,

u(0,x) = er·0V (T, exp(x− r · 0)) = h(exp(x)) = g(x) ,

which proves the theorem.

Diagonalization of the data covariance matrix

We now diagonalize the covariance matrix Q by a further coordinate transform x = By
of (2.30), where B is an orthonormal matrix and

Q = BΣBT ⇔ BTQB = Σ .

This transformation and the subsequent truncation of small eigenvalues have already been
discussed in [NHW10].

Theorem 2.10. The PIDE (2.30) can be rewritten as

∂v

∂τ
v(τ,y) = [LYv](τ,y) , (2.42)

where LY is the infinitesimal generator (2.31) and (2.32) of the process Y(τ) = BTX(τ) with
triplet (Σ,BTθ, νB). Here, νB is the measure with

νB(A) = ν(BA) for A ∈ B(Rd) ,

where BA is the set A under the linear transformation B. The initial condition is given by
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v(0,y) = gB(y) := g(By).

Proof. The variable transform does not affect the time derivative. The first-order derivatives
change to

∂u

∂xi
(τ,x) =

d∑
k=1

bik
∂v

∂yk
(τ,y)

for i = 1, . . . , d and thus

d∑
i=1

θi
∂u

∂xi
(τ,x) =

d∑
i=1

θi

d∑
k=1

bik
∂v

∂yk
(τ,y) =

d∑
k=1

(
d∑
i=1

θibik

)
∂v

∂yk
(τ,y) .

Obviously, the drift vector θ of X(t) results in a drift BTθ of Y(t). The second-order derivatives
become

∂2u

∂xi∂xj
(τ,x) =

d∑
k,l=1

bikbjl
∂2v

∂yk∂yl
(τ,y) .

for i, j = 1, . . . , d. Now we add up all second order terms that appear in (2.31)

q∑
i,j=1

qij
∂2u

∂xi∂xj
(τ,x) =

d∑
i,j,k,l=1

qijbikbjl
∂2v

∂yk∂yl
(τ,y)

=

d∑
i,k,l=1

bik(QB)il
∂2v

∂yk∂yl
(τ,y)

=

d∑
k,l=1

(BTQB)lk
∂2v

∂yk∂yl
(τ,y)

=

d∑
k=1

σ2
k

∂2v

∂y2
k

(τ,y) .

We see that the covariance matrix of the diffusion part of Y(t) is BTQB = Σ. Now, we turn
to the jump part (2.32)∫

Rd

(
u(τ,x + z)− u(τ,x)−

d∑
i=1

zi
∂u

∂xi
(τ,x)

)
ν(dz)

=

∫
Rd

(
v(τ,BTx + BT z)− v(τ,y)−

d∑
i=1

zi

d∑
k=1

bik
∂v

∂yk
(τ,y)

)
ν(dz)

=

∫
Rd

(
v(τ,y + BT z)− v(τ,y)−

d∑
k=1

(BT z)k
∂v

∂yk
(τ,y)

)
ν(dz) (2.43)

Now, we change the integration measure from ν to νB in (2.43) and thus substitute BT z → z
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in the integral. Finally, the initial condition changes to

v(0,y) = u(0,By) = g(By) = gB(y) .

This proves the theorem.

Remark 2.11. For non-jump processes, choosing an orthonormal matrix B that diagonalizes Q
reveals the decay in the spectrum of Q, but depending on the jump measure ν there might
be better choices available. However, they would most likely not eliminate all mixed partial
derivatives in (2.31), so we do not follow this route. See [Oet11] for a related optimization
problem.

2.2 The ANOVA decomposition

The d-dimensional ANOVA decomposition for functions has successfully been employed in a
variety of fields, e.g., finance [GH10b] and molecular dynamics [Ham10]. In the following
subsection, we give a self-contained rigorous description of the method that accounts for the
generalizations used in both references. In Subsection 2.2.2, we give a short outlook on a
non-linear extension of the ANOVA decomposition.

2.2.1 Definition

Let µi, i = 1, . . . , d, be measures on R. We define the product measure

µm :=
⊗
i∈m

µi (2.44)

for all subsets
m ⊂ D = {1, . . . , d} .

We focus on d-variate functions in the Hilbert space L2(µD) with inner product

(u, v)D :=

∫
RD

u(x)v(x)µD(dx) .

Analogously, the inner products on the spaces L2(µm) are then

(u, v)m :=

∫
Rm

u(xm)v(xm)µm(dxm)

for µm-measurable functions u, v and xm = (xi)i∈m. Functions in L2(µm) are only #m-variate,
and we would like to embed them in L2(µD). To this end, we need to introduce some notation.
We can split x = (x1, . . . , xd) into xm = (xi)i∈m and xD\m = (xi)i∈D\m, and later on we also
need the concatenation xm � xD\m = x ∈ RD.

Now, we choose unit functions γi ∈ L2(µi) for all i = 1, . . . , d and define

Vm := {v ∈ L2(µD) : ∃vm ∈ L2(µm), v(x) = vm(xm) · γD\m(xD\m)} , (2.45)
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where γn : Rn → R is given by the product

γn(xn) :=
∏
i∈n

γi(xi) . (2.46)

Obviously, VD = L2(µD). Note, that the Vm ⊂ VD,m ⊂ D, are linear subspaces, since for the
functions v = vm · γD\m ∈ Vm, u = um · γD\m ∈ Vm, we directly see that

αu(x) + v(x) = αum(xm) · γD\m(xD\m) + vm(xm) · γD\m(xD\m)

= (αum(xm) + vm(xm)) · γD\m(xD\m) ∈ Vm .

We are now interested in the projections QVm : VD → Vm, which, for u ∈ VD, satisfy

(QVmu, v) = (u, v) ∀ v ∈ Vm . (2.47)

Theorem 2.12. Given the Hilbert space VD, and the constants

cn :=

∫
Rn

γ2
n(xn)µn(dxn) =

∏
i∈n

∫
R
γ2
i (xi)µi(dxi) , (2.48)

the functional

[QVmu](x) := c−1
D\m · γD\m(xD\m)

∫
RD\m

u(xm � zD\m) · γD\m(zD\m)µD\m(dzD\m) (2.49)

is the projection QVm : VD → Vm,m ⊂ D, that satisfies (2.47).

Proof. First, we have to show that QVmu ∈ Vm, which basically means that we have to check
that the integral in (2.49) is in L2(µm). With Cauchy-Schwarz we see that∫

RD\m
u(xm � zD\m) · γD\m(zD\m)µD\m(dzD\m)

≤ c
1/2
D\m

(∫
RD\m

u2(xm � zD\m)µD\m(dzD\m)
)1/2

and due to the monotonicity of integration, we get∫
Rm

(∫
RD\m

u(xm � zD\m) · γD\m(zD\m)µD\m(dzD\m)
)2
µm(dxm)

≤ cD\m

∫
Rm

∫
RD\m

u2(xm � zD\m)µD\m(dzD\m)µm(dxm) (2.50)

= cD\m · ‖u‖2D <∞ ,

and we can conclude that QVmu ∈ Vm.
Now we have to show that QVmu also satisfies (2.47). For v(x) = vm(xm) · γD\m(xD\m) ∈ Vm,
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we have

(QVmu, v) =

∫
RD

c−1
D\m ·

∫
RD\m

u(xm � zD\m) · γD\m(zD\m)µD\m(dzD\m)

· γD\m(xD\m) · vm(xm) · γD\m(xD\m)µD(dx)

= c−1
D\m ·

∫
RD\m

γ2
D\m(xD\m)µD\m(dxD\m)

·
∫
Rm

∫
RD\m

u(xm � zD\m) · γD\m(zD\m)µD\m(dzD\m) · vm(xm)µm(dxm) .

Further simplification gives

(QVmu, vm) =

∫
Rm

∫
RD\m

u(xm � zD\m) · γD\m(zD\m) · vm(xm)µD\m(dzD\m)µm(dxm)

=

∫
RD

u(xm � zD\m) · vm(xm) · γD\m(zD\m)µD(d(xm � zD\m))

= (u, vm) ,

which proves the Theorem.

We want to approximate #D-variate functions u ∈ VD by functions from Vm with #m� #D
only. Since we are in a Hilbert-space setting, the projection QVm from Theorem 2.12 is also
the best-approximation in the space Vm. The representation of high-dimensional functions by a
superposition of functions from Vm and Vn, the best-approximation in, e.g., Vm ∪Vn with m * n
and n * m, requires a little extra effort and leads to so-called orthogonal complement spaces.
Note that in the following passage, we implicitly make use of the isomorphism

L2(µD) '
⊗
i∈D

L2(µi) (2.51)

to switch to tensor product notation when more convenient.
We define the orthogonal complements

Wm :=
⊗
i∈m

(L2(µi)	 span{γi})⊗
⊗
i∈D\m

span{γi} ,

where L2(µi) 	 span{γi} is simply the (·, ·){i}-orthogonal complement of span{γi} in L2(µi).
Thus,

Wm ⊥Wn for m 6= n (2.52)

and furthermore

Vm =
⊗
i∈m

(L2(µi)	 span{γi} ⊕ span{γi})⊗
⊗
i∈D\m

span{γi}

=
⊕
n⊂m

⊗
i∈n

(L2(µi)	 span{γi})⊗
⊗
i∈D\n

span{γi} =
⊕
n⊂m

Wn .
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For m = D, we see that we can uniquely decompose any function

u ∈ VD =
⊕
m⊂D

Wm into u =
∑
m⊂D

um with um ∈Wm,m ⊂ D . (2.53)

Moreover, we can conclude that

Wp ⊥ Vm =
∑
n⊂m

Wn for p 6⊂ m . (2.54)

The next Lemma shows how we obtain the best-approximation in the Wm spaces.

Lemma 2.13. The orthogonal projection QWm : V →Wm is given by the functional

QWm :=
∑
n⊂m

(−1)#m−#nQVn . (2.55)

Proof. It is easy to see that QWm u ∈ Vm. By establishing the orthogonality to all Wp, p ( m, we
know that QWm u ∈ Wm. So, for any p ( m, we pick an index i ∈ m with i 6∈ p. Then, for all
wp ∈Wp it holds that(∑

n⊂m
(−1)#m−#nQVn u,wp

)
=
( ∑

n with
p⊂n⊂m

(−1)#m−#nQVn u,wp

)
(2.56)

=
( ∑

n with
p⊂n⊂m\{i}

(−1)#m−#nQVn u+
∑

n with
p∪{i}⊂n⊂m

(−1)#m−#nQVn u,wp

)
(2.57)

=
( ∑

n with
p⊂n⊂m\{i}

(−1)#m−#nQVn u−
∑

n′ with
p⊂n′⊂m\{i}

(−1)#m−|n′|QVn′∪{i}u,wp

)
= 0 , (2.58)

where we used the orthogonality relation (2.54) in (2.56), split the summation in two parts
in (2.57), set n′ := n \ {i} and used the projection property

(QVn∪{i}u,wp) = (u,wp) = (QVn u,wp)

in (2.58). So we know that QWm u ∈ Wm. We still need to show that this is a projection onto
Wm by

(QWm u,wm) =
(∑

n⊂m
(−1)#m−#nQVn u,wp

)
= (QVn u,wm) = (u,wm)

for all wm ∈ Wm, where we exploited the orthogonality of wm to any function from a space
Vn, n ( m.

For a given product measure µD and functions (γi)
D
i=1, we are now able to restate the decom-

position (2.53) of function u ∈ L2(µD) as

u =
∑
m⊂D

QWm u .
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Let us now assume we have a subset S ⊂ P(D) that satisfies the admissibility condition

m ∈ S, n ⊂ m⇒ n ∈ S . (2.59)

Then
uS :=

∑
m∈S

QWm u (2.60)

is the L2(µD) best approximation of u in the space ⊕m∈SWm. Due to the orthogonality of the
decomposition of u, the squared error of this kind of approximation can easily be stated in the
‖ · ‖D-norm by

‖u− uS‖2D =
∑

m∈P(D)\S
‖um‖2D .

In Section 2.4 we discuss common choices for the set S. Note that

uS =
∑
m∈S

QWm u =
∑
m∈S

∑
n⊂m

(−1)#m−#nQVn u (2.61)

=
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
QVn u , (2.62)

which means that in order to compute uS, we have to compute every projection QVn u, n ∈ S, at
most once. For further results related to the ANOVA decomposition we recommend [KSWW10].

Example 2.14 (Classical ANOVA on the unit hypercube). The ANOVA decomposition on
[0, 1]d is a special case with unit functions γi = 1, i = 1, . . . , d, and the measures

µi(A) = λ(A ∩ [0, 1]) ∀ A ∈ B(R) ,

where λ is the Lebesgue-measure and B(R) the Borel-set of R. Obviously, the constants
from (2.48) are given by cm = 1 for all m ⊂ D.

Example 2.15 (Anchor ANOVA on Rd). Typically, it is very expensive to compute the integrals
in the projection (2.49). The so-called anchor ANOVA [GH10b] is much cheaper, as it needs
only one point evaluation. Formally, this corresponds to µi = δai , where δai is Dirac’s delta at
point ai ∈ R. Obviously, µD = δa with a = (a1, . . . , ad) ∈ Rd. The constants cn from (2.48) are
given by

cn :=

∫
Rn

γ2
n(xn)µn(dxn) = γ2

n(an).

Then, the projections QVm ,m ⊂ D, from (2.49) are given by

[QVmu](x) = γ−2
D\m(aD\m)γD\m(xD\m)u(xm � aD\m)γD\m(aD\m)

=
γD\m(xD\m)

γD\m(aD\m)
u(xm � aD\m) . (2.63)

If the unit functions are chosen as γi = 1, i = 1, . . . , d, the projection (2.63) simplifies to

[QVmu](x) = u(xm � aD\m)
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and in the case of standard normal densities

γi(xi) =
1√
2π
e−

x2i
2 for i = 1, . . . , d

the expression (2.63) results in

[QVmu](x) =
e−
‖xD\m‖

2

2

e−
‖aD\m‖

2

2

u(xm � aD\m) = e−
‖xD\m‖

2−‖aD\m‖
2

2 u(xm � aD\m) .

Even though the anchor ANOVA works well in practice, it needs to be said that formally the
function space L2(µD) is only one-dimensional, since µD(Rd \ {a}) = 0 and thus all functions
with the same value at point a are considered to be identical as they can only differ on a null
set.

Example 2.16 (Weighted ANOVA on Rd). Alternatively, µD can realize a density on Rd, and
typically a Gaussian density is used. A remark on this can be found in [GH10b]. In that case,
the choice of γi = 1 for i = 1, . . . , d results in cm = 1,m ⊂ D.

Example 2.17 (CI in molecular dynamics). In [GH10a] an approach complementary to Ex-
ample 2.16 is proposed: The one-dimensional measures µi are Lebesgue measures, and the
one-dimensional unit functions γi (or particle functions gi in the molecular dynamics context)
satisfy ‖γi‖i = 1, i = 1, . . . , d. Note that we only treated the real valued case, but the extension
to complex numbers is straightforward.

Remark 2.18 (Limitations). We note that there is no sensible ANOVA decomposition on Rd
with µD = λd, where λd is the d-dimensional Lebesgue measure and γi = 1, i = 1, . . . , d.
Obviously, cm =

∫
Rm 1λ#m(dxm) = ∞ for all m ⊂ D, so we are no longer dealing with an

orthogonal subspace projection when applying QVm as defined in (2.49).
It is also tempting to go to a higher level of abstraction and to describe everything with general

scalar products instead of integrations. It turns out that this is not straightforwardly possible,
as we use Fubini’s theorem extensively and also the monotonicity of integration in (2.50) does
not hold for arbitrary norms.

2.2.2 Extension: Iterated ANOVA

One obvious approach to improve the accuracy of an ANOVA approximation is to enlarge the
index set S in (2.60). Alternatively, we can repeat the procedure on the residual r = u − uS
with a different set of functions γi, i = 1, . . . , d, in an iterative fashion. To that end, we
need to determine functions γi, i = 1, . . . , d, such that ⊗di=1γi is a good approximation to u.
From the proper generalized decomposition method, we know that we can choose the first term
of a Schmidt decomposition for d = 2, and for d ≥ 3 an alternating directions approach is
possible [FHMM13].
Then the iterated ANOVA decomposition works like this: We fix a product measure µD,

the initial function u(1) := u, the index set ∅ 6= S ⊂ D and then run the following algorithm
iteratively for m = 1, 2, . . .
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1. Determine a set of one-dimensional functions γ(m)
i ∈ L2(µi), i = 1, . . . , d, and fix the

corresponding projections (QVn )(m)

2. Compute u(m)
S :=

∑
n⊂S

(∑
m∈S,m⊃n(−1)#m−#n

)
(QVn )(m)u(m) as an approximation to

u(m)

3. Compute the residual u(m+1) := u(m) − u(m)
S

4. If
∥∥u(m+1)

∥∥2

D
≥ ε, set m← m+ 1 and start from 1.

Then, after M iteration steps, the approximation of u by the iterated ANOVA is given by∑M
m=1 u

(m)
S and has the error

∥∥∥u− M∑
m=1

u
(m)
S

∥∥∥2

D
=
∥∥u(M+1)

∥∥2

D
< ε .

It is noteworthy that for S = {∅}, this method results in a typical low-rank approxima-
tion [ACF10, GKT13], since in that case all u(m)

S ,m = 1, . . . ,M are products of one-dimensional
functions γ(m)

i , i = 1, . . . , d.
The iterated ANOVA presented here is a non-linear method and the convergence properties

are not clear. We consider the relation to low-rank models interesting but we now turn back to
linear ANOVA decompositions.

2.3 Decomposition of functions based on expected values

In Section 2.2, we gave a self-contained view on the ANOVA decomposition of functions. Even
though the low-dimensional interaction terms are cheap to handle, their computation can be
expensive, which is why we often resort to the anchor ANOVA from Example 2.15. However,
it is also advisable to exploit the structure of the functions we want to decompose.
This section deals with the ANOVA decomposition of functions that can be expressed by (2.21)

or (2.23), respectively. To be more specific, we would like to compute u : [0, T ]×Rd → R with

u(τ,x) = E[g(X(τ) + x)] , (2.64)

where X is a Lévy process. Assuming that X(τ) is distributed as ητD, we can rewrite (2.64) as

u(τ,x) =

∫
Rd
g(x + y)ητD(dy) . (2.65)

When d is relatively high, the discretization of u as well as the integration task (2.65) become
challenging, and this motivates the ANOVA approximation of u by a superposition of low-
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dimensional projections into the subspaces Vm,m ∈ S. Recall from (2.61) and (2.62) that

uS(τ,x) =
∑
m∈S

[QWm u](τ,x) =
∑
m∈S

∑
n⊂m

(−1)#m−#n[QVn u](τ,x)

=
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)

[QVn u](τ,x) , (2.66)

where the projections QW and QV are only applied to the space variable x. Depending onS, uS
is a good representation of u, but the main question is whether we can compute the projections
QVn u in (2.66) cheaply, i.e., without having to compute u from (2.64) first. There are two
approaches:

• Computing the exact low-dimensional terms QVn u.

– In Subsection 2.3.1, we choose unit functions γi, i = 1, . . . , d that are reciprocal to
the measures µi, i.e., µi(dx) = γi(x)−1dx. That way we obtain the exact [QVn u](τ,x)
for all τ ≥ 0 at the same time, but the approach is somewhat impractical from a
numerical perspective.

– In Subsection 2.3.2, we consider processes X(τ) with components that are indepen-
dent Brownian motions and space weights µi that are also Gaussians. We show how
we can compute [QVn u](τ,x) for an a priori chosen τ = T . This is helpful but does
not allow to deal with general Lévy processes.

• In Subsection 2.3.3 we do not decompose and approximate the solution u but instead the
initial condition g. To this end, we replace g in (2.64) by gS and regard the terms

[Q̃Vmu](τ,x) :=

∫
Rm

[QVmg](x + ym)ητm(dym)

as approximations to QVmu. This turns out to be the practically most relevant approach,
and we will use it in our numerical experiments in Chapter 6.

2.3.1 A direct decomposition of the solution for Lévy processes

In the ideal case, the computation of (2.64) and the projections QVn commute. This is in fact
the case for a special choice of measures µi and unit functions γi for i = 1, . . . , d. Then, we can
express (2.66) as

uS(τ,x) =
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
QVn E[g(X(τ) + x)]

=
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
E
[[
QVn g

]
(Xn(τ) + x)

]
. (2.67)

Note that the terms in (2.67) only depend on the marginal processes Xn, so that the underlying
PIDEs (2.30) are only #n-dimensional.
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Setting

We assume functions γi ∈ L1(R), i = 1, . . . , d, that are strictly positive and satisfy

µi(dx) = γi(x)−1dx . (2.68)

This implies that the measures µi, i = 1, . . . , d, are absolutely continuous with respect to the
Lebesgue measure and the constants (2.48) are given by

c{i} =

∫
R{i}

γi(xi)
2µi(dxi) =

∫
R{i}

γi(xi)dxi <∞ .

The following Theorem shows that under these special circumstances, the m-marginal Xm of
the Lévy process X is sufficient for computing QVmu.

Theorem 2.19. Given an initial condition g ∈ L2(µD), the ANOVA projections of the func-
tion u from (2.65) are given by

[QVmu](τ,x) = E[[QVmg](Xm(τ) + x)] .

Proof. We apply the projection as defined in (2.49) to u from (2.65) and obtain

[Qmu](τ,x) = c−1
D\mγD\m(xD\m)

∫
RD\m

∫
RD

g(xm � zD\m + y)ητD(dy) · γD\m(zD\m)µD\m(dzD\m)

= c−1
D\mγD\m(xD\m)

∫
RD

∫
RD\m

g((xm + ym) � (zD\m + yD\m))dzD\mη
τ
D(dy) , (2.69)

where we used γD\m(zD\m)µD\m(dzD\m) = dzD\m, see (2.68), and changed the order of integra-
tion in (2.69). Now, we use the simple integral translation zD\m + yD\m → zD\m to eliminate
the dependence on yD\m. This leads to

[Qmu](τ,x) = c−1
D\mγD\m(xD\m)

∫
RD

∫
RD\m

g((xm + ym) � zD\m)dzD\mη
τ
D(dy)

=

∫
RD

c−1
D\mγD\m(xD\m)

∫
RD\m

g((xm + ym) � zD\m) · γD\m(zD\m)µD\m(dzD\m)ητD(dy)

=

∫
RD

[QVmg](x + ym)ητm(dym) = E[[QVmg](Xm(τ) + x)] . (2.70)

Note that (2.70) no longer depends on yD\m, and we can safely replace the integration measure
ητD(dy) by ητm(dym), which happens to be the distribution of the marginal Lévy process Xm(τ)
at time τ .

The result of Theorem 2.19 shows that the expected value and the ANOVA projections
commute for all τ ∈ [0, T ]. This, however, is only the case if the measures µi and the unit
functions γi are related like in (2.68).
Let us briefly assume that the QVm ,m ⊂ D, are given by

[QVmg](x) =

∫
RD\m

g(xm � zD\m)dzD\m , (2.71)
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even though these QVm do not not constitute well-defined ANOVA projections, see Remark 2.18.
In this case, the QVm directly commute with the computation of the expected value, since

[QVmu](τ,x) =

∫
RD\m

∫
RD

g(xm � zD\m + y)ητD(dy)dzD\m

=

∫
RD

∫
RD\m

g((xm + ym) � zD\m)dzD\mη
τ
D(dy) (2.72)

=

∫
RD

[QVmg](xm + ym)ητm(dym) .

Note that the equality (2.72) is possible due to a variable substitution zD\m + yD\m → zD\m,
which has no further effects when integrating with the Lebesgue measure over RD, just as
in (2.69). However, as we said already, (2.71) is not a valid projection, and this was just for
discussion.
Let us conclude this subsection with a short error discussion. Note that for bounded func-

tions f with f . γD asymptotically for ‖x‖ → ∞, we have

‖f‖2D =

∫
Rd
f(x)2µD(dx) =

∫
Rd
f(x)2γD(x)−1dx .

∫
Rd
γD(x)dx <∞ ,

and thus f ∈ L2(µD). Now, we consider the error we make by using the ANOVA approximation:
As we compute the exact and (·, ·)D-orthogonal ANOVA components of the function f , we obtain

‖f − fS‖2L2(µD) =
∑

m∈D\S
‖QWm f‖2L2(µD) ,

so µD is directly relevant for measuring our error. For Gaussian densities

γi(x) =
1√
2π
e−

x2

2 for i = 1, . . . , d ,

the corresponding µi would no longer be finite measures but put an exponentially increasing
weight on the tails. So, measuring our error with respect to µD is somewhat of a relative
error criterion: In the tails of γD, where the function f with f . γD is small, the error of our
approximative method needs to be small as well since it is magnified by γ−1

D . However, as our
ultimate goal is to compute numerical solutions which need some domain truncation sooner or
later, this consideration is only philosophical in nature.
In summary, the balancing requirement (2.68) allows us to directly compute the ANOVA

components of the function u(τ, ·) by solving only lower-dimensional subproblems (2.67). In
the next subsection, we present another special case for which this is possible.

2.3.2 A special decomposition of the solution for Gaussian processes

In this subsection, we assume

γi = 1 and µi(dx) = ρλi(x)dx for i = 1, . . . , d ,
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where λi > 0, and where

ρλi(x) =
1√

2πλi
e
− x2

2λi

denotes the density of a N (0, λi)-distributed Gaussian variable. The multivariate case is then
given by

µD(dx) = ρλ(x)dx

with λ = (λ1, . . . , λd) and

ρλ(x) =

d∏
i=1

ρλi(xi) . (2.73)

The marginal densities of (2.73) are given by

ρλm(xm) =
∏
i∈m

ρλi(xi) for m ⊂ D

and because of the product structure it holds that

ρλ(x) = ρλm(xm) · ρλD\m(xD\m) .

Furthermore, we assume that the Lévy process in (2.64) has triplet (Σ,0, 0) with Σ =
diag(σ2

1, . . . , σ
2
d) and σ2

1 ≥ · · · ≥ σ2
d ≥ 0. This means X has no drift, no jump term and only

a diagonal covariance matrix. At first sight, this case looks artificial, but any problem based
on a geometric Brownian motion for S(t), i.e., an exponentiated Lévy process without jumps
in (2.17), can be expressed in this setting using the transformations in Subsection 2.1.1, see
also [Rei04, RW07]. Here, the σ2

1, . . . , σ
2
d can be thought of as the eigenvalues of the original

covariance matrix, see Theorem 2.6 for the necessary orthogonal transformation. This results
in a process X that starts in 0, and X(T ) for T > 0 is distributed with density

ηTD(dx) = ρTσ2(x)dx ,

where Tσ2 = (Tσ2
1, . . . , Tσ

2
d).

In Theorem 2.19 we showed that under special circumstances the ANOVA projections QVm
commute with the computation of the expected value in (2.21). A similar result holds for
Gaussian space weights and the multi-dimensional Brownian motion as well, as the following
theorem shows.

Theorem 2.20. Let X be a Lévy process with triplet (diagσ2,0, 0), where σ2 = (σ2
1, . . . , σ

2
d).

Furthermore, let QVm ,m ⊂ D, be the ANOVA projections based on the space measure µD(dx) =
ρλ(x)dx, where λ = (λ1, . . . , λd) is the vector of variances used in (2.73). We denote the
ANOVA projections based on the space measure µ̃TD(dx) = ρλ+Tσ2(x)dx by Q̃V,Tm . Then, for a
function u given by (2.64), it holds that

[QVmu](T,x) =

∫
Rm

(∫
RD\m

g((xm + ym) � zD\m)ρ(λ+Tσ2)D\m
(zD\m)dzD\m

)
ηTm(dym)

=E[[Q̃V,Tm g](Xm(T ) + xm)] .
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Proof. Let us briefly recall (2.65) for τ = T

u(T,x) =

∫
Rd
g(x + y)ηTD(dy)

and that g(xm�zD\m+y) = g((xm+ym)�(zD\m+yD\m)). Then, the projection QVmu from (2.49)
yields

[QVmu](T,x) =

∫
RD\m

∫
RD

g((xm + ym) � (zD\m + yD\m))ηTD(dy)µD\m(dzD\m)

=

∫
Rm

(∫
RD\m

∫
RD\m

g((xm + ym) � (zD\m + yD\m)) (2.74)

· ρ(Tσ2)D\m
(yD\m)ρλD\m(zD\m)dzD\mdyD\m

)
ρ(Tσ2)m(ym)dym .

A simple variable substitution zD\m + yD\m → zD\m in (2.74) yields

[QVmu](T,x) =

∫
Rm

(∫
RD\m

g((xm + ym) � zD\m)

·
∫
RD\m

ρ(Tσ2)D\m
(yD\m)ρλD\m(zD\m − yD\m)dyD\mdzD\m

)
(2.75)

· ρTσ2
m

(ym)dym .

In (2.75), we convolute a D\m-dimensional Gaussian density ρ(Tσ2)D\m
with a Gaussian density

ρλD\m , which results in a Gaussian with density ρ(λ+Tσ2)D\m
, so that we can deduce

[QVmu](T,x) =

∫
Rm

(∫
RD\m

g((xm + ym) � zD\m)ρ(Tσ2+λ)D\m
(zD\m)dzD\m

)
ρ(Tσ2)m(ym)dym .

Obviously,
ρ(Tσ2)m(ym)dym = ηTm(dy) ,

which concludes the proof.

Theorem 2.20 says that we can compute the ANOVA component QVmu of the solution by
solving an #m-dimensional problem with the projection Q̃V,Tm of the initial condition g and the
marginal Lévy processes Xm(T ). This is different from the result of Theorem 2.19, since there
we got the correct decomposition for all τ ≥ 0 and here Q̃V,Tm is T -dependent, which means that
we get the correct ANOVA decomposition of u for one point in time only, namely τ = T .

2.3.3 Decomposition of the final condition

So far, we computed the correct ANOVA approximation of the solution u given by (2.64) and
learned that this problem reduces to computing ANOVA projections of the initial condition
and computing expected values based on marginals of the Lévy process X. However, we needed
special assumptions like (2.68) or Gaussian space weights and Brownian motions as in Subsec-
tion 2.3.2.
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Now, we assume
µi(R) = 1, γi = 1 for i = 1, . . . , d (2.76)

and compute an ANOVA approximation of the initial condition

gS =
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
QVn g

based on the sets in m ∈ S. Note that the assumptions (2.76) allow for most of the common
choices for µi: Lebesgue measure on the unit interval, the Dirac measure in an anchor point
and the Gaussian measure on R. Assuming that gS ≈ g, we get an approximation

ũS(τ,x) := E[gS(X(τ) + x)] ≈ E[g(X(τ) + x)] = u(τ,x) ,

to u from (2.64). Luckily, we can compute ũS quite efficiently, since

ũS(τ,x) = E
[∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)

[QVn g](X(τ) + x)

]
=
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
E[[QVn g](Xn(τ) + xn)] . (2.77)

As γi = 1 for i = 1, . . . , d, the projection QVn g only depends on variables indexed by n. That
means we only need to consider the n-marginal of X(τ) and x in (2.77). According to Proposi-
tion 2.3, we know that Xn is an #n-dimensional process with Lévy triplet (Qn,θn, νn). We can
now use any simulation-based method or PIDE solver on the problems (2.77) we would have
used on (2.64), but with a significantly reduced computational complexity as we are only deal-
ing with at most #S problems with dimensionalities #n, n ∈ S, instead of one d-dimensional
one.

Error estimates

The question is how much our solution u(τ, ·) is perturbed by the approximation gS of our
initial condition g. Let us assume that the measure ητD is absolutely continuous with respect to
the Lebesgue measure and that we can express the distribution of X(τ) as

ητD(dy) = kτD(y)dy ,

where kτD(y) is a density function. Then we have

‖u(τ, ·)− ũS(τ, ·)‖2L2(µD) =

∫
Rd

(∫
Rd

(g(x + y)− gS(x + y))kτD(y)dy

)2

µD(dx)

=

∫
Rd

(∫
Rd

(g(y)− gS(y))kτD(y − x)dy

)2

µD(dx)

≤
∫
Rd
‖g − gS‖2∞ ‖kτD(· − x)‖21︸ ︷︷ ︸

=1

µD(dx) = ‖g − gS‖2∞ , (2.78)
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where we have used Hölder’s inequality in (2.78). So we can bound the L2(µD) error of the
solution by the L∞ error of the ANOVA approximation of the initial condition g. Instead
of (2.78), it is also possible to obtain an estimate

‖u(τ, ·)− ũS(τ, ·)‖2L2(µD) ≤
∫
Rd
‖g − gS‖2L2

‖kτD(· − x)‖2L2
µD(dx) = ‖g − gS‖2L2

‖kτD‖2L2
,

but two obvious problems arise here: g − gS is only in L2(µD) but not necessarily in the
unweighted L2-space, and kτD is integrable but not necessarily square integrable over Rd. Let
us take a look at the L1(µD) error of u by

‖u(τ, ·)− ũS(τ, ·)‖L1(µD) =

∫
Rd

∣∣∣∣ ∫
Rd

(g(x + y)− gS(x + y))kτD(y)dy

∣∣∣∣µD(dx)

=

∫
Rd

∣∣∣∣ ∫
Rd

(g(y)− gS(y))kτD(y − x)dy

∣∣∣∣µD(dx)

≤
∫
Rd
|g(y)− gS(y)|

∫
Rd
kτD(x− y)µD(dx)dy = ‖g − gS‖L1(ϑτD)

with
ϑτD(dy) =

∫
Rd
kτD(x− y)µD(dx) . (2.79)

In summary, we find that the L1(µD) error of u at time τ is bounded by the L1(ϑτD) error of the
initial condition, where ϑτD is the convolution of the space weight with the density function kτD
of X(τ), see (2.79).
All these approaches are not completely satisfactory, but—not surprisingly—have in common

that a low error in the approximation of the initial condition leads to a low error of uS at time τ .

Interpretation as altered operator

Now we briefly argue that the ANOVA projections QVm ,m ⊂ D, applied to the initial condition g
result in problems similar to (2.64), but with processes that are no longer Lévy. In [Rei12] it
was already mentioned that the anchor ANOVA means replacing the stochastic process with
zeros in the respective component.
Let us consider one term in (2.77), which for m ∈ S is

E[[QVmg](xm + Xm(τ))] =

∫
Rm

[QVmg](xm + ym)ητm(dym)

=

∫
Rm

∫
RD\m

g((xm + ym) � zD\m)µD\m(dzD\m)ητm(dym)

=

∫
RD

g(xm + ym � zD\m)(ητm ⊗ µD\m)(d(ym � zD\m)) , (2.80)

so in fact we convolute our initial condition g with the measure ητm ⊗ µD\m, which is the
distribution of our process X with the dimensions D \m replaced by Gaussian white noise (in
case of Gaussian measures µi, i ∈ D \m) or by constants (in case of Dirac measures).
In (2.77), we wrote ũS as a linear combination of low-dimensional projections, but in fact we
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could also view it as a linear combination of high-dimensional problems in the fashion of (2.64)
with a modified stochastic process as in (2.80). We will use this perspective to produce Monte
Carlo simulation results in Section 6.4.

2.4 Common approximation schemes

The description of an approximation scheme consists of three simple steps:

1. The selection of a set H ⊂ P(D) of subspaces Vm,m ∈ H, that need to be included in our
approximation.

2. The computation of the closure

S = clos(H) := {m ⊂ D : ∃n ∈ H with m ⊂ n}

as the smallest set S that satisfies both H ⊂ S and the admissibility condition (2.59).

3. The computation of

cn =
( ∑

m∈S,m⊃n
(−1)#m−#n

)
for n ∈ S (2.81)

and
uS =

∑
n∈S

cnQ
V
n u ,

where QVn is one of the projection methods discussed in Section 2.3.

2.4.1 Truncation dimension

The truncation dimension is a concept from [CMO97]. Given a d-dimensional problem, we
choose a truncation dimension dt with dt � d assuming that the dimensions dt + 1, . . . , d do
not contribute much to the result. In fact this means that H contains only one set

H = { {1, . . . , dt} }

and S is given by
S = {n : n ⊂ {1, . . . , dt}} .

It is not hard to see that the coefficients computed by (2.81) in fact look like this

cn =

{
1 for n = {1, . . . , dt} ,
0 else ,

and thus we get uS = QV{1,...,dt}u, which means we have to compute only one projection and
the respective dt-dimensional problem in (2.77). See Table 2.1 for a list of the involved sets n
for dt = 2 and d = 4. All problems corresponding to the sets below the horizontal line do not
need to be computed.
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Table 2.1: Sets n ∈ S for truncation dimension dt = 2 in d = 4 dimensions

set n active dimensions coefficient cn

{1, 2} � � � � 1

{1} � � � � 0

{2} � � � � 0

{} � � � � 0

2.4.2 Superposition dimension

The concept of the superposition dimension [CMO97] is a bit more intricate. It means that we
aim to include all interactions of at most ds dimensions. Then, the set H is given by

H = { {m1,m2, . . . ,mds} : 1 ≤ m1 < m2 < · · · < mds ≤ d } .

Computing clos(H) results in
S = {n ⊂ D : #n ≤ ds} .

The coefficients are not trivial in this case. We reorder the sum in (2.81) with respect to
k := #(m \ n) and use a common identity for series of binomial coefficients

cn =

ds−#n∑
k=0

(−1)k
(
d−#n

k

)
= (−1)ds−#n

(
d−#n− 1

ds −#n

)
. (2.82)

Lets have a look at an example with d = 4 and ds = 2. Then it holds that

cn =


(+1)

(
1
0

)
= 1 for #n = 2 ,

(−1)
(

2
1

)
= −2 for #n = 1 ,

(+1)
(

3
2

)
= 3 for #n = 0⇔ n = {} .

See Table 2.2 for a list of the involved sets.

2.4.3 Combination of truncation and superposition dimension

We now present a mixture of the two approaches, where for fixed dt and ds with dt + ds ≤ d all
subspaces

H = { {1, . . . , dt} ∪ {m1, . . . ,mds} : dt < m1 < · · · < mds ≤ d}
are included. The closure S = clos(H) is given by

S = { u ∪m : u ⊂ {1, . . . , dt},m ⊂ {dt + 1, . . . , d},#m ≤ ds} .
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Table 2.2: Sets n ∈ S for superposition dimension ds = 2 in d = 4 dimensions

set n active dimensions coefficient cn

{1, 2} � � � � 1

{1, 3} � � � � 1

{1, 4} � � � � 1

{2, 3} � � � � 1

{2, 4} � � � � 1

{3, 4} � � � � 1

{1} � � � � -2

{2} � � � � -2

{3} � � � � -2

{4} � � � � -2

{} � � � � 3

On the coefficients cu∪m ∈ S with u ⊂ {1, . . . dt} and m ⊂ {dt + 1, . . . , d},#m ≤ ds, this has
the following effect

cu∪m =

{∑s−#m
k=0 (−1)k

(
d−#m
k

)
for u = {1, . . . , dt} ,

0 for u ( {1, . . . , dt} .
(2.83)

To see that cu∪m = 0 for u ( {1, . . . , dt}, we have to pick an i ∈ {1, . . . , dt} with i 6∈ u and
evaluate (2.81)

cu∪m =
∑

p∪n∈S
p⊃u,n⊃m

(−1)|p|+#n−|u|−#m (2.84)

=
∑

p∪n∈S
i 6∈p,p⊃u,n⊃m

(−1)|p|+#n−|u|−#m +
∑

p∪n∈S
i∈p,p⊃u,n⊃m

(−1)|p|+#n−|u|−#m

=
∑

p∪n∈S
i 6∈p,p⊃u,n⊃m

(−1)|p|+#n−|u|−#m −
∑

p∪n∈S
i 6∈p,p⊃u,n⊃m

(−1)|p|+#n−|u|−#m = 0 .

For the sake of readability, we tacitly assumed that p ⊂ {1, . . . , dt} and n ⊂ {dt + 1, . . . , d}
in (2.84). Note that the same idea was already used in the proof of Lemma 2.13. Essen-
tially (2.83) means that the first dt dimensions are always included and we get coefficients (2.82)
applied to the dimensions {dt + 1, . . . , d} with superposition dimension ds. This explains why
this is the combination of the truncation and the superposition dimension. Table 2.3 shows the
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simple case of dt = 1 and ds = 1 in d = 4. Three two-dimensional and one one-dimensional sub-
problems have to be computed there. In Table 2.4, we see the same setting with superposition
dimension ds = 2 and in Table 2.5 with truncation dimension dt = 2.

Table 2.3: Sets n ∈ S for truncation dimension dt = 1 and superposition dimension ds = 1 in
d = 4 dimensions

set n active dimensions coefficient cn

{1, 2} � � � � 1

{1, 3} � � � � 1

{1, 4} � � � � 1

{1} � � � � -2

{2} � � � � 0

{3} � � � � 0

{4} � � � � 0

{} � � � � 0

Relation to other examples in the literature

The idea of approximating a solution u by a fixed truncation dimension and improving the
accuracy of the result by “corrective terms” dates back to [Rei04, RW07]. There, a Brownian
motion and a diagonal covariance structure is assumed, and the derivative of u with respect to
the eigenvalues λi of the covariance matrix leads to

u(x, t) = u(1)(x, t) +

d∑
j=2

(
u(1,j)(x, t)− u(1)(x, t)

)
+O(‖λ− λ(1)‖2) . (2.85)

In [Rei12] we find that the general idea is related to “parameter bumping” known in financial
industry practice, and that corrective terms up to second order look like

u(λ) = u(0) +

d∑
i=2

(u(λi)− u(0)) +
∑
i 6=j

(u(λi, λj)− u(λi)− u(λj) + u(0)) +O(‖λ‖32) . (2.86)

Without introducing the used notation, the similarity of (2.85) and (2.86) to the combination
formula (2.55) is obvious. In [SGW13] a proof is given that explains the dimensionality reduction
of the associated PDEs by showing that the marginal of a heat kernel is the heat kernel of a
lower-dimensional problem. In [RW13] we find a discussion of more complicated stochastic
processes than the Brownian motion and numerical results for exotic options like Bermudian
swaptions and Ratchet floors.
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Table 2.4: Sets n ∈ S for truncation dimension dt = 1 and superposition dimension ds = 2 in
d = 4 dimensions

set n active dimensions coefficient cn

{1, 2, 3} � � � � 1

{1, 2, 4} � � � � 1

{1, 3, 4} � � � � 1

{1, 2} � � � � -1

{1, 3} � � � � -1

{1, 4} � � � � -1

{1} � � � � 1

{2, 3} � � � � 0

{2, 4} � � � � 0

{3, 4} � � � � 0

{2} � � � � 0

{3} � � � � 0

{4} � � � � 0

{} � � � � 0
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Table 2.5: Sets n ∈ S for truncation dimension dt = 2 and superposition dimension ds = 1 in
d = 4 dimensions

set n active dimensions coefficient cn

{1, 2, 3} � � � � 1

{1, 2, 4} � � � � 1

{1, 2} � � � � -1

{1, 3} � � � � 0

{1, 4} � � � � 0

{1} � � � � 0

{2, 3} � � � � 0

{2, 4} � � � � 0

{2} � � � � 0

{3} � � � � 0

{4} � � � � 0

{} � � � � 0

We see that there is already a substantial basis in the literature tackling the problem of
high-dimensional problems. Our contribution is the rigorous description of the ANOVA de-
composition for general measures µi and unit functions γi, i = 1, . . . , d, in Section 2.2, which
we apply in different ways to the problem (2.64) as described in Section 2.3. We observe that
the resulting problems only depend on lower- and moderate-dimensional marginals of Lévy
processes, which can be computed easily using Proposition 2.3.



3 Discretization of the
moderate-dimensional subproblems

In this chapter, we want to discuss the discretization of (2.30), where the infinitesimal genera-
tor (2.31)-(2.32) is based on the process X with triplet (Q,θ, ν). Sections 3.1 to 3.5 strongly
rely on [Win09]. In Section 3.6, we discuss the special case (2.42) based on Y and its lower-
dimensional m-marginals Ym, and we state what problems we finally want to solve numerically.

3.1 Function spaces

Let D be an open subset of Rd with a piecewise smooth boundary, and let L2(D) be the usual
class of square-integrable functions on D with norm ‖f‖2L2(D) :=

∫
D(f(x))2dx. Then, we can

define the scalar product
(u, v)Hm(D) :=

∑
|α|1≤m

(∂αu, ∂αv) (3.1)

for all functions in L2(D) that have square-integrable weak derivatives ∂αf = ∂α1 · · · ∂αdf ,
where α = (α1, . . . , αd), up to order m ∈ N, see [Bra07a]. This gives rise to the definition of
the Hilbert space

Hm(D) := {f ∈ L2(D) : ‖f‖Hm(D) <∞}

with inner product (3.1) and norm ‖f‖Hm(D) := (f, f)
1/2
Hm(D). The functions in Hm(D) are of

isotropic smoothness, and we can define Sobolev spaces with mixed smoothness by the scalar
product

(u, v)Hm
mix(D) :=

∑
|α|∞≤m

(∂αu, ∂αv) (3.2)

and the corresponding Hilbert space

Hm
mix(D) := {f ∈ L2(D) : ‖f‖Hm

mix(D) <∞}

with inner product (3.2) and norm ‖f‖Hm
mix(D) := (f, f)

1/2
Hm

mix(D). This smoothness class is rele-
vant when we deal with sparse grid discretizations in Chapter 4. For further information and
combinations of isotropic and mixed smoothness, cf. [GK09].
We now define function classes with zero boundary conditions by

Hm
0 (D) := {f |D : f ∈ Hm(Rd), f |Rd\D = 0}

and
Hm

0,mix(D) := {f |D : f ∈ Hm
mix(Rd), f |Rd\D = 0} .

41
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We conclude this short section with a few remarks. Let us denote the space of infinitely
differentiable functions by C∞(D). We define the space of smooth functions with zero boundary
conditions by

C∞0 (D) := {f ∈ C∞(D) : supp f ( D}
Then, Hm(D) ∩ C∞(D) is dense in Hm(D), and C∞0 (D) is dense in Hm

0 (D), i.e., Hm
0 (D) is

the closure of C∞0 (D) with respect to the norm ‖ · ‖Hm(D). This holds for m ∈ N. Fourier
representations of functions are needed to compute function norms as in (3.1) and (3.2) for
non-integer orders m, but as we do not deal with pure jump processes as, e.g., in [Win09], we
do not need these spaces.

3.2 Variational formulation

We introduce the bilinear form

E(u, v) =
1

2

d∑
i,j=1

qij

∫
Rd

∂u

∂xi
(x)

∂v

∂xj
(x)dx (3.3)

−
∫
Rd

∫
Rd

(
u(x + z)− u(x)−

d∑
i=1

zi
∂u

∂xi
(x)

)
v(x)dxν(dz) (3.4)

for functions u, v ∈ C∞0 (Rd). We assume that the covariance matrix Q is symmetric positive
definite and that the drift of our process X is zero, i.e., θ = 0. Then, [Win09, Theorem 3.2.2]
tells us that we can express (2.30) as the uniquely solvable variational problem:
Find u ∈ L2((0, T );H1(Rd)) ∩H1((0, T );H1(Rd)∗) such that〈

∂u

∂τ
, v

〉
H1(Rd)∗,H1(Rd)

+ E(u, v) = 0 for τ ∈ (0, T ) ∀ v ∈ H1(Rd) (3.5)

with u(0, ·) = g ∈ L2(Rd). In (3.5), 〈·, ·〉H1(Rd)∗,H1(Rd) denotes the duality pairing. The require-
ment g ∈ L2(Rd) can be softened after we have localized our domain.

3.3 Localization

Prior to an effective discretization of (3.5) in space we restrict ourselves to a finite domain

D = [−ζ, ζ]d ⊂ Rd . (3.6)

Essentially, this means that instead of computing the quantity

u(τ,x) = E[g(X(τ) + x)]

as in (2.21), we compute
uD(τ,x) = E[g(X(τ) + x)1{ιD>τ}] ,
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where ιD is the stopping time of X(τ) reaching Rd \ D. This truncation can be understood as
an approximation of the price of the option by that of a barrier option, i.e., as an option that
has no payoff if the underlying process X leaves D at least once before maturity.
Given that the payoff function (2.20) grows only polynomially

g(log s) = h(s) .

(
d∑
i=1

si + 1

)q
∀ s ∈ Rd≥0

and that the marginal Lévy measures νi have densities ki : R→ R≥0 that satisfy

ki(z) .

{
e−β

−
i |z| for z < −1 ,

e−β
+
i z for z > 1 ,

(3.7)

where β+
i , β

−
i > q holds, [Win09, Theorem 3.3.2] states that the solution of the localized problem

converges pointwise exponentially to the solution of the original problem, i.e.

|u(τ,x)− uD(τ,x)| . e−γ1ζ+γ2‖x‖∞ . (3.8)

In (3.8), the constants γ1 and γ2 satisfy 0 < γ1 < min(mindi=1 β
+
i ,mindi=1 β

−
i )−q and γ2 = γ1+q.

The exponential decrease in the pointwise error is also discussed in [CV05]. We see that a fast
decay (3.7) of all marginal Lévy measures implies a fast decay of the pointwise error.
It is possible to balance the domain size and the decay of the Lévy measure instead of using

a hypercube domain (3.6). In some of our numerical experiments it turned out useful to use an
adapted domain

D = (α−1 , α
+
1 )× · · · × (α−d , α

+
d ) (3.9)

with

α−i =ci − ζ · σ(Xi(T )) , (3.10)
α+
i =ci + ζ · σ(Xi(T )) , (3.11)

where c = (c1, . . . , cd) is our point of interest, i.e., we evaluate u(τ,x) mostly where x is in the
proximity of c, and σ(Xi(T )), i = 1, . . . , d, denote the standard deviations of the components
of our stochastic process until maturity T . The particular choice in (3.9) should result in the
same error convergence rates as (3.8) but with an improved constant factor.
As many quadrature rules and discretization choices are typically given for (0, 1)d, we need

an affine linear scaling S : D → (0, 1)d with

S : x 7→
(
x1 − α−1
α+

1 − α−1
, . . . ,

xd − α−d
α+
d − α−d

)
(3.12)

and
S−1 : x 7→

(
α−1 + x1(α+

1 − α−1 ), . . . , α−d + xd(α
+
d − α−d )

)
.

So, let us assume that u, v ∈ H1
0 (Ωd) with Ω = (0, 1). Then, u(S · ) and v(S · ) are functions on

the domain D. If we denote their zero extension on Rd \D by S̃u and S̃v, we see the continuity
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and coercivity of the bilinear form

EΩd(u, v) := E(S̃u, S̃v) ,

which is defined on H1
0 (Ωd). Now the problem we want to solve reads:

Find u ∈ L2((0, T );H1
0 (Ωd)) ∩H1((0, T );H1

0 (Ωd)∗) such that〈
∂u

∂τ
, v

〉
H1(Ωd)∗,H1(Ωd)

+ EΩd(u, v) = 0 for τ ∈ (0, T ) ∀ v ∈ H1
0 (Ωd) (3.13)

with u(0, ·) = gΩd ∈ L2(Ωd), where S̃gΩd ≡ g on D.

3.4 Space and time discretization

We need a discretization of (3.13) in space and time. Typically space is discretized first, which
results in the method of lines. Let us assume a discretization space

VN = span{φi : i = 1, . . . , N}

with N degrees of freedom. Then, the Galerkin projection of (3.13) on VN results in the
problem:
Find uN ∈ C1([0, T ];VN ) such that〈

∂uN
∂τ

, vN

〉
L2(Ωd)

+ EΩd(uN , vN ) = 0 for τ ∈ (0, T ) ∀ vN ∈ VN (3.14)

with uN (0, ·) = gΩd,N , where gΩd,N is an approximation to gΩd in VN .
For the time discretization, we subdivide the interval [0, T ] into M + 1 equidistant time-steps

tk = k∆t , k = 0, . . . ,M ,

with ∆t = T
M and apply the well-known θ-scheme with θ = 1 (implicit Euler) or θ = 1

2
(Crank-Nicolson).1 So we finally have to solve in every time step k = 1, . . . ,M the sequence of
H1(Ωd)-elliptic variational problems:

Given u(k−1)
N , find u(k)

N ∈ VN , such that for all vN ∈ VN

∆t−1(u
(k)
N , vN )L2(Ωd) +θEΩd(u

(k)
N , vN ) = ∆t−1(u

(k−1)
N , vN )L2(Ωd)−(1−θ)EΩd(u

(k−1)
N , vN ) (3.15)

with u
(0)
N = gΩd,N . We can easily cast the problem (3.15) in the typical form of variational

problems
a(u

(k)
N , vN ) = F (k−1)(vN ) ∀ vN ∈ VN (3.16)

1More sophisticated space-time discretizations are available [SS00, GOV05], but they are beyond the scope of
this work.
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by setting the bilinear form to

a(u
(k)
N , vN ) = ∆t−1(u

(k)
N , vN )L2(Ωd) + θEΩd(u

(k)
N , vN ) (3.17)

and the right-hand side to

F (k−1)(vN ) = ∆t−1(u
(k−1)
N , vN )L2(Ωd) − (1− θ)EΩd(u

(k−1)
N , vN ) , (3.18)

which, in the k-th time step, results in a system of linear equations

Ax(k) = b(k−1) (3.19)

with the stiffness matrix A ∈ RN×N

(A)ij = a(φj , φi) for i, j = 1, . . . , N ,

the vector representation x(k) = (x
(k)
1 , . . . , x

(k)
N ) of

u(k) =

N∑
j=1

x
(k)
j φj

and right-hand side
b

(k−1)
i = F (k−1)(φi) .

Sophisticated discretization spaces and the preconditioning of (3.19) will be discussed in Chap-
ter 4 and Chapter 5, respectively.

3.5 Convergence rates

In this section we describe some standard convergence results that can be found in [Tho06,
EG04]. Let Th be a regular conforming partition of Ωd, where h denotes the uniform mesh-
width. Then, for VN that contain polynomials of maximum degree p− 1 on Th, we obtain the
order of accuracy p, and the best approximation rate we can expect for a function u ∈ Hr(Ωd)
with r ≤ p in terms of h is

inf
uh∈VN

‖u− uh‖Hs(Ωd) . h
r−s‖u‖Hr(Ωd) ,

where 0 ≤ s < r. The same rate can be expected for the discrete solution of Poisson’s equation
when s = 0, 1 and 1 ≤ r ≤ p. Note that the convergence rate is expressed in terms of h,
but h ∼ N−1/d implies N ∼ h−d, so the number of degrees of freedom N grows exponentially
with the dimension. Sparse grids, which will be discussed in Chapter 4, offer a remedy if the
necessary regularity assumptions on u are met.

We now turn to convergence results for time-dependent problems. A simple parabolic problem
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with solution u and the space discrete solution uN like in (3.14) results in the estimate

‖uN (τ)− u(τ)‖L2(Ωd) ≤ ‖gΩd,N − gΩd‖L2(Ωd) + Chr
(
‖gΩd‖Hr(Ωd) +

∫ τ

0

∥∥∥∂u(s,·)
∂τ

∥∥∥
Hr(Ωd)

ds

)
for τ ≥ 0, which means that we get the approximation error of the initial condition and a term
that depends on the initial condition and the solution, both converging with rate r.
Now, we state a result with discretized time as in (3.15) with θ = 1

‖u(tk)− u(k)
N ‖L2(Ωd) ≤Chr

(
‖gΩd‖Hr(Ωd) +

∫ tk

0

∥∥∥∂u(s,·)
∂τ

∥∥∥
Hr(Ωd)

ds

)
+ ∆t

∫ tk

0

∥∥∥∂2u(s,·)
∂τ2

∥∥∥
L2(Ωd)

ds ,

so we have first-order convergence in time. The Crank-Nicolson scheme with θ = 1
2 typically

results in second-order convergence with respect to ∆t and we get

‖u(tk)− u(k)
N ‖L2(Ωd) ≤Chr

(
‖gΩd‖Hr(Ωd) +

∫ tk

0

∥∥∥∂u(s,·)
∂τ

∥∥∥
Hr(Ωd)

ds

)
+ C∆t2

∫ tk

0

(∥∥∥∂3u(s,·)
∂τ3

∥∥∥
L2(Ωd)

+
∥∥∥∆∂2u(s,·)

∂τ2

∥∥∥
L2(Ωd)

)
ds .

To summarize the results: The L2(Ωd) error of our discrete result u(M)
N after M time steps

compared to the true solution u(T, ·) decreases with rate r with respect to the mesh width h
and with first-order in time for θ = 1 and with second-order in time for θ = 1

2 .

3.6 Further simplifications and summary

In this chapter, we stated some well-known results regarding the discretization of the BKE.
Now we become more specific what problem we will finally solve in our numerical experiments
in Chapter 6. For a given process X with triplet (Q,θ, ν), we can always diagonalize the
covariance matrix and end up with a process Y(τ) = BTX(τ). Then we need to consider (2.42)
with the infinitesimal generator (2.31) and (2.32) of the process Y(τ). This amounts to solving
the equation

∂v(τ,y)

∂τ
=

d∑
i=1

σ2
i

∂2v

∂y2
i

(τ,y) +

d∑
i=1

(BTθ)i
∂v

∂yi
(τ,y) (3.20)

+

∫
Rd

(
v(τ,y + z)− v(τ,y)−

d∑
i=1

zi
∂v

∂yk
(τ,y)

)
νB(dz) (3.21)

on y ∈ Rd, τ ∈ (0, T ) with a given initial condition v(0,y) = gB(y).
Remark 3.1. The weak form of the right-hand side of (3.20) and (3.21) does not yet result in the
Dirichlet form (3.3) and (3.4). There, zero drift was assumed. We can realize this by a simple
change of variables. Instead of the process Y(τ) = BTX(τ) and the variable transform y = BTx
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we deal with the process Y(τ) = BTX(τ)−τBTθ and the variable transform y = BTx+τBTθ,
respectively.
So far, we have assumed E[|X(τ)|] < ∞ and (2.26), which allowed us to use the truncation

function T (z) = 1. That setup still covers infinite activity models. However, in our numerical
experiments in Chapter 6, we only work with finite activity models. This means that instead
of the condition (2.3), we have finite activity

λ := νB(Rd) = ν(Rd) <∞ . (3.22)

This allows us to come up with a simple form of (3.20) and (3.21):

∂v(τ,y)

∂τ
=

d∑
i=1

σ2
i

∂2v

∂y2
i

(τ,y)− λv(τ,y) +

∫
Rd
v(τ,y + z)νB(dz) (3.23)

+
d∑
i=1

(
(BTθ)i −

∫
R
ziνB(dz)

)
∂v

∂yi
(τ,y) on y ∈ Rd, τ ∈ (0, T ) . (3.24)

Considering ∫
Rd

zνB(dz) =

∫
Rd

BT zν(dz) = BT

∫
Rd

zν(dz) ,

we can remove the convection term in (3.24) by using the transformation

y = BTx + τBT

(
θ −

∫
Rd

zν(dz)

)
instead of the original transformation y = BTx.
We now summarize all the transformations we have used so far. Under the assumption of

finite activity (3.22), the BKE (2.27) and (2.28) can be transformed to the PIDE

∂v

∂τ
(τ,y) =

1

2

d∑
i=1

σ2
i

∂2v

∂y2
i

(τ,y)−λv(τ,y)+

∫
Rd
v(τ,y+z)νB(dz) on y ∈ Rd, τ ∈ (0, T ) (3.25)

by setting v(τ,y) = e(T−t)rV (t, s) with τ = T − t and

y = BT

(
x + τ

(
θ −

∫
Rd

zν(dz)

))
= BT

(
log s + τ(r + θ −

∫
Rd

zν(dz))

)
.

The final condition (2.29) becomes an initial condition with

v(0,y) = u(0,By) = V (T, exp(By)) = h(exp(By)) = g(By) = gB(y) ,

see Theorem 2.10. From now on, we refer to equation (3.25) only. The corresponding bilinear
form is

E(u, v) =
1

2

∫
Rd

d∑
i=1

σ2
i

∂u(x)

∂xi

∂v(x)

∂xj
dx+λ(u, v)L2(Rd)−

∫
Rd

∫
Rd
u(τ,x+z)ν(dz)v(x)dx , (3.26)
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which is to be used in (3.5).
The final steps are the localization, transformation to Ωd and the discretization of space

and time. In the end, we compute gΩd,N as the L2(Ωd) approximation of the initial condition
gΩd(y) = g(S−1y) in our space VN , and then solve (3.16) on the basis of (3.26) M times. At
this point we explicitly state the resulting bilinear form a(·, ·) from (3.17)

a(u, v) =θ

d∑
i=1

σ2
i

2(α+
i − α−i )2

∫
Ωd

∂u(x)

∂xi

∂v(x)

∂xi
dx + (θλ+ ∆t−1)

∫
Ωd
u(x)v(x)dx (3.27)

− θ
d∏
i=1

(α+
i − α−i )

∫
Ωd

∫
Ωd
u(x + z)νB(S−1(dz)) v(x)dx

with right hand-side (3.18)

F (k−1)(v) =(1− θ)
d∑
i=1

σ2
i

2(α+
i − α−i )2

∫
Ωd

∂u(k−1)(x)

∂xi

∂v(x)

∂xi
dx (3.28)

+ ((1− θ)λ+ ∆t−1)

∫
Ωd
u(k−1)(x)v(x)dx

− (1− θ)
d∏
i=1

(α+
i − α−i )

∫
Ωd

∫
Ωd
u(k−1)(x + z)νB(S−1(dz)) v(x)dx .

Having clarified how we discretize the BKE, we now briefly summarize the methods presented
so far:

• We are interested in the function V (t, s) from (2.1) based on the process S. We know
V (t, s) satisfies the BKE (2.27) and (2.28).

• Due to some straightforward transformations described in Section 2.1, we can express our
problem in terms of v(τ,y) based on the process Y, see (2.23).

• Now, for low- and moderate-dimensional d, we can discretize the corresponding BKE (2.42)
directly using the methods described in this chapter.

• If the dimension d is too high to solve the BKE directly:

– We use the ANOVA approximation technique and obtain a superposition of moderate-
dimensional subproblems (2.77) based on the marginals of Y. From Proposition 2.3
we know that the marginals Ym,m ∈ S, have triplets (Σm, (B

Tθ)m, (νB)m).

– Now, for every m ∈ S, we can solve the #m-dimensional PIDE (2.42) using the tech-
niques described in this chapter. Then, we combine the results using the summation
in (2.77).

In the next chapter, we present the sparse grid discretizations to be used for VN , and in
Chapter 5 we deal with the preconditioning of an abstract variational problem (3.16) discretized
by generalized sparse grids.



4 Sparse grid spaces and fast operator
application

In this chapter, we recall generalized sparse grid spaces. First we start with a little motivation
based on the multiplication method by John Napier (1550–1617), see Figure 4.1. Obviously,
both input values are given with an accuracy of only three decimal places and there is no point
in computing a result which has a higher accuracy than that. Thus, the intermediate results in
the gray shaded area do not contribute to the final result apart from a small carry of +1 · 10−3

and therefore essentially do not need to be computed.

2 3 7 4 × 1 5 4 4

2 3 7 4

+ 1 1 8 7 0

+ 9 4 9 6

+ 9 4 9 6

= 3 6 6 5 4 5 6

. .

.

Figure 4.1: Multiplication of two decimal numbers

Let us assume that two numbers a =
∑p

i=0 ai ·10−i and b =
∑p

j=0 bj ·10−j with precision p are
given and that we can only perform the multiplication of single digits. Then, we can rearrange
the multiplication

a · b =

( p∑
i=0

ai · 10−i
)
·
( p∑
j=0

bj · 10−j
)

(4.1)

=

p∑
i,j=0

ai · bj · 10−i−j

=

2p∑
k=0

( ∑
i+j=k
i,j≥0

ai · bj
)
· 10−k . (4.2)

As we are only interested in a precision of up to the p-th digit, we can essentially discard any
summands with k > p in (4.2), and instead of performing (p+ 1)2 multiplications in (4.1), we

49
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only need

1 + · · ·+ (p+ 1) =
(p+ 1)(p+ 2)

2

digit multiplication operations. The same idea can be applied to products with more than two
factors with an even greater reduction in the number of digit multiplications.

In this somewhat artificial example, numbers are represented in a multiscale system of dif-
ferent powers of 10, and combinations of less significant digits can be discarded. The same
idea applied to the tensorization of a multiscale basis for multi-dimensional function approxi-
mation is the principle of the sparse grid approach. There, the computational costs typically
increase by a factor of 2 between two levels in the multiscale basis, so the gain in efficiency
by discarding finer scales is even larger than in our simple multiplication example, where the
computational costs do not increase for the less significant digits. The sparse grid approach
has been used in a myriad of relevant applications, among them radiative transfer equations
[WHS08], high-dimensional numerical integration in finance [GG03, GH10b], the Hamilton–
Jacobi–Bellmann equation [BGGK12], data mining [GGT01, GH09] and time-series prediction
[BG12], the Schrödinger-equation in quantum chemistry [Yse05, Ham10], the pricing of basket
options [BHPS11] and PDEs with stochastic input data [BNT10, JR08, NTW08].

In Section 4.1, we give the definition of a generalized sparse grid space and state some
approximation rates. In Section 4.2, we present a redundant but natural discretization of
generalized sparse grid spaces via a generating system. Finally, in Section 4.3, we describe two
matrix-vector multiplication algorithms for operator matrices that stem from generalized sparse
grid discretizations of variational problems.

4.1 Definition

The building blocks of a d-dimensional sparse grid discretization are sequences of dense finite-
dimensional subspaces

V
(p)

0 ⊂ V (p)
1 ⊂ V (p)

2 ⊂ . . . ⊂ V (p), p = 1, . . . , d , (4.3)

on the unit interval Ω = (0, 1), equipped with a scalar product (·, ·)V (p) . Typically, the spaces
V

(p)
l , l ∈ N, in (4.3) are discretizations with dyadically refined linear or higher-order splines

with nl = Θ(2l) basis functions on level l. Note that often l = 1 is the first non-trivial level,
but for our purposes it is useful to start from l = 0. In the following, we consider linear spline
spaces spanned by nl = 2l+1 − 1 hat functions

φl,i(x) = max(1− 2l+1 |x− xl,i| , 0) , i = 1, . . . , nl , (4.4)

which are centered at the points of an equidistant mesh xl,i := 2−l−1i. See Figure 4.2 for an
illustration of the basis functions on the levels l = 0, . . . , 3. If desired, we can define boundary
functions φ̃l,0 := φl,0|[0,1] and φ̃l,1 := φl,nl+1|[0,1].
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V
(p)
l

le
ve

ll

index i

Figure 4.2: Multiscale basis of linear splines

By tensorization, we obtain the spaces

Vl =
d⊗
p=1

V
(p)
li
,

where l = (l1, . . . , ld) ∈ Nd denotes a level multi-index, and Vl is a function space on the d-
dimensional unit cube Ωd := (0, 1)d equipped with the tensor scalar product (·, ·)V . Then, Vl is
the space of piecewise d-linear functions on an (in general) anisotropic full grid with

nl := #Vl =

d∏
p=1

(2lp+1 − 1) = Θ(2|l|1)

degrees of freedom. It is spanned by the functions

φl,i(x) = φl1,i1(x1) · · ·φld,id(xd) (4.5)

with x = (x1, . . . , xd) ∈ Ωd and

i ∈ χl := {j = (j1, . . . , jd) ∈ Nd : 1 ≤ jp ≤ nlp , p = 1, . . . , d} . (4.6)

The space
V =

∑
l∈Nd

Vl
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is equal to the underlying Sobolev spaceH1
0 (Ωd) up to completion with theH1-norm, see [BG04].

Note that domains different to Ωd can be treated by a possibly non-linear transform to Ωd and
dealing with the emerging variable coefficient functions, cf. [Ach03].

Remark 4.1. Note that the multilevel spaces Vl, l ∈ Nd, are not the same as the ANOVA
subspaces Vm,m ⊂ D, used in Chapter 2 even though the basic idea is similar: The spaces Vm
can be understood as two-level spaces where a dimension i ∈ D is either active (i ∈ m) or
inactive (i ∈ D \m).

For our numerical computation, we have to resort to a finite-dimensional subset of V . To
this end, we use an index set I ⊂ Nd with #I < ∞ whose elements l ∈ I determine which
anisotropic full grid spaces Vl need to be included in the discretization space

VI :=
∑
l∈I

Vl . (4.7)

Since Vk ⊂ Vl whenever k ≤ l componentwise, we always silently assume that I satisfies the
monotonicity condition

l ∈ I,k ≤ l⇒ k ∈ I . (4.8)

This setup allows for dimension-adaptivity, whereas space-adaptivity is not possible since the
subspaces Vl are either fully included or excluded by l ∈ I or l 6∈ I, respectively.
Which kind of I we choose now depends on the target accuracy and on the smoothness of

the function class we want to approximate. For example, the full grid space with index set

I = FdJ := {l ∈ Nd : |l|∞ ≤ J} (4.9)

has the approximation property

inf
v∈VFd

J

‖u− v‖2Hs(Ωd) . 2−2(r−s)J‖u‖2Hr(Ωd)

with rate1 r− s and u ∈ Hr
0(Ωd). Its number of degrees of freedom grows by O(2dJ). Thus, the

accuracy as function of the degrees of freedom deteriorates exponentially with rising d, which
resembles the well-known ‘curse of dimensionality’, cf. [Bel61].
Assuming additional mixed smoothness u ∈ Hr

0,mix(Ωd), the sparse grid index set

I = SdJ := {l ∈ Nd : |l|1 ≤ J} (4.10)

circumvents this problem to some extent, see Figure 4.3 for an illustration. The rate of the best
approximation

inf
v∈VSd

J

‖u− v‖2Hs(Ωd) ≤ c2−2(r−s)J‖u‖2Hr
mix(Ωd)

in dependence of J is the same2 as for the full grid space, i.e. r − s, but the number of degrees
of freedom now only grows by O(2JJd−1). This is a substantial improvement in comparison to

1This holds for a range of parameters 0 ≤ s < r ≤ p with p being the order of the spline of the space
construction. In our case of linear splines p = 2 holds.

2For s < 0 the order of approximation deteriorates slightly.
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Figure 4.3: Two-dimensional tensor product of the ladder of dyadically refined linear spline
spaces up to level J = 3. The subspaces of the regular sparse grid discretization are
depicted in solid black

the full grid case. Note that without the stronger assumption of mix-regularity, our sparse grid
approximation rate in terms of J would deteriorate to r−s

d . For further details, see [GK09].
Anisotropic sparse grids can be defined by a vector α = (α1, . . . , αd) and the corresponding

index set

Iα := {l ∈ Nd :
d∑
p=1

αplp ≤ J} . (4.11)

Note that the regular sparse grid (4.10) is a special case of (4.11) with α1 = · · · = αd = 1.
Anisotropic sparse grids are useful to compensate for varying smoothness classes and costs in
different dimensions, see [GH13a, GH13b].
Depending on the error norm and the regularity of the function to approximate, the con-

struction of I and VI can be optimized even further, cf. [BG99, GK09]. Moreover, it is possible
to adapt the index set I a-posteriori to a given function by means of a proper error estimation
and successive refinement procedure. This approach results in adaptively refined sparse grids,
see e.g. [Feu10, GG03]. The results in this thesis are applicable to all constructions of I as long
as (4.8) is satisfied.

4.2 Generating system discretization of variational problems

In what follows we assume H is a Hilbert space and a(u, v) an H-elliptic symmetric positive
definite bilinear form that is well-defined on every Vl with l ∈ Nd. Furthermore, it holds that H
is the a(·, ·)-closure of span{Vl : l ∈ Nd}. We now discuss the discretization of the variational
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problems as in (3.16): Find u ∈ H with

a(u, v) = F (v) ∀ v ∈ H , (4.12)

where F is a bounded linear functional on H.
For discretization level J , we set J := (J, . . . , J) and then the weak problem (4.12) discretized

on the isotropic full grid space VJ leads to the system

AJxJ = bJ (4.13)

of nJ = (nJ)d linear equations with

AJ ∈ RnJ×nJ , (AJ)i,j = a(φJ,j, φJ,i)

and
xJ,bJ ∈ RnJ , (bJ)i = F (φJ,i)

for i, j ∈ χJ, see (4.6).
Usually, the system (4.13) is solved using an iterative method. If the bilinear form a(·, ·) is

the weak form of a local operator, i.e.,

suppφJ,i ∩ suppφJ,j = ∅ ⇒ a(φJ,i, φJ,j) = 0 , (4.14)

the system matrix of (4.13) is inherently sparse. To be more specific, for our tensor product
discretization of (4.12) on VJ, there are typically no more than 3d non-zero entries in the rows
of AJ. This means that we can compute the matrix-vector product AJxJ in O(nJ) floating
point operations, however, for bilinear forms as in (3.27) this is not easily possible and we need
complicated algorithms to exploit the structure of AJ.
Furthermore, the condition number of the system matrix AJ is an issue. For the Laplacian

in weak form a(u, v) = (∇u,∇v)L2(Ωd), the matrix possesses a condition number that is of the
order O(22J). Thus, classical iterative solution methods for (4.13) like the Jacobi method, the
steepest descent approach or the conjugate gradient technique converge slower for rising values
of J . The same is true for the Gauss-Seidel and the SOR methods.
One remedy is to resort to multigrid methods or to include coarser scales in the discretiza-

tion, as we do in the next subsection. The inclusion of multiple coarser scales is also the key
to discretize (4.12) on the generalized sparse grid space VI from (4.7), which we discuss in
Subsection 4.2.2.

4.2.1 Generating system approach

For certain problems, we can deal with the deteriorating condition number of AJ with J =
(J, . . . , J) by a multigrid method or a multilevel preconditioner. Then, the number of iterations
necessary to obtain a prescribed accuracy is bounded independently of J , cf. [Hac85, Xu92,
Bra07b, BL11]. To this end, besides the grid and the basis functions on the finest scale J , also
the grids and basis functions on all coarser isotropic scales are included in the iterative process,
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i.e. the multiscale generating system

J⋃
l=0

{φl,i : l = (l, . . . , l) and i ∈ χl}

is employed. Note that there is work that relates classical multigrid theory to multiplicative
iterative algorithms operating on such a generating system [Gri94b, Gri94a]. Furthermore, the
BPX-preconditioner [BPX90] can be identified with one step of the additive Jacobi iteration.
For the discretized Laplacian, both methods guarantee asymptotically optimal convergence
rates that are independent of J .

We follow a different route here that allows us to achieve robustness with respect to the
coefficients of a certain class of PDEs and even a favorable d-dependence of the condition
number, see Chapter 5. To this end, we include all coarser isotropic and anisotropic scales
l ∈ FdJ from (4.9), i.e., the functions

J⋃
l∈FdJ

{φl,i : i ∈ χl} . (4.15)

Then, the weak problem (4.12) discretized with (4.15) leads to the enlarged system

AFdJxFdJ = bFdJ (4.16)

of linear equations, with matrix AFdJ of size NFdJ ×NFdJ and vectors xFdJ ,bFdJ of size NFdJ , where

NFdJ :=
∑
l∈FdJ

nl .

Due to the dyadic refinement and a geometric series argument, we get that

∑
l∈FdJ

nl =
∑
l∈FdJ

d∏
p=1

nlp =
d∏
p=1

J∑
lp=0

nlp =
d∏
p=1

J∑
lp=0

(2lp+1 − 1) =
d∏
p=1

(
2J+2 − 2− J − 1

)
(4.17)

<

d∏
p=1

2nJ = 2dnJ .

That means we have, apart from a dimension-dependent constant, essentially the same amount
of degrees of freedom as a non-redundant representation of VJ. The matrix AFdJ is block-
structured with blocks (AFdJ )l,k ∈ Rnl×nk for l,k ∈ FdJ ,where

((AFdJ )l,k)i,j = a(φk,j, φl,i) for i ∈ χl, j ∈ χk

and the right-hand side vector bFdJ consists of blocks (bFdJ )l ∈ Rnl , l ∈ FdJ , with

((bFdJ )l)i = F (φl,i) for i ∈ χl .
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Since Vk ⊂ Vl whenever k ≤ l, the union (4.15) is a generating system and not a basis. Note
that the non-unique representation of functions results in a non-trivial kernel of the system
matrix AFdJ , which is thus not invertible. But the system (4.16) is nevertheless solvable since
the right-hand side bFdJ lies in the range of the system matrix. A solution can be generated by
any semi-convergent iterative method [Kaa88, BP94]. Many convergence results, e.g., for the
steepest descent or conjugate gradient method, also apply to the semi-definite case, cf. [Gri94b].
There, the usual condition number κ is no longer defined, but the generalized condition number
κ̃, i.e. the ratio of the largest and the smallest non-zero eigenvalue, is now decisive for the speed
of convergence.
Of course, at some point, we need to be able to transform the non-unique solution xFdJ

of (4.16) to the unique solution xJ of (4.13). To this end, we assume to have matrices
Il,k ∈ Rnl×nk , which represent one-dimensional restrictions from level k to level l for k > l,
prolongations from level k to level l for k < l and the identity matrix for l = k. Note here that
for k 6= l ± 1 the Ik,l can be expressed as just a product of successive 2-level restrictions and
prolongations, respectively, i.e. we have

Il,k = Il,l+1 · · · Ik−1,k for k > l and Il,k = Il,l−1 · · · Ik+1,k for k < l . (4.18)

Naturally, the multi-variate case is obtained by the product construction

Il,k =

d⊗
p=1

Ilp,kp . (4.19)

Then, for l,k ∈ FdJ , we can express any block (AFdJ )l,k ∈ Rnl×nk and any part (bFdJ )l as

(AFdJ )l,k = Il,JAJIJ,k and (bFdJ )l = Il,JbJ , (4.20)

respectively, where J again describes the isotropic level on the finest scale.
Furthermore, let us define the rectangular block-structured matrix SF1

J
∈ RnJ×(

∑J
l=0 nl) by

SF1
J

:= ( IJ,1 | . . . | IJ,J ) .

Then, we can express the block-structured matrix SFdJ as

SFdJ =

d⊗
p=1

SF1
J
,

and with (4.20) we obtain

AFdJ = STFdJ
AJSFdJ and bFdJ = STFdJ

bJ .

As a result, we see that xJ = SFdJxFdJ solves (4.13), if xFdJ is any solution to (4.16). Note
that we will never set up the matrices SFdJ and STFdJ

in our implementation, but compute their
application to vectors by a straightforward algorithm in O(d ·NFdJ ) floating point operations
using (4.18) and (4.19).
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4.2.2 Generalized sparse grid

So far, we have described how to include all coarser scales of an isotropic discretization, which
is useful for preconditioning, as we will see in Chapter 5. Furthermore, the multilevel structure
is also a natural way to represent generalized sparse grids with index sets I. Discretizing the
weak problem (4.12) on the generalized sparse grid VI with the generating system

ΦI =
⋃
l∈I
{φl,i : i ∈ χl} (4.21)

now leads to the equation
AIxI = bI . (4.22)

Here, the matrix AI is block-structured with blocks (AI)l,k ∈ Rnl×nk for l,k ∈ I, where

((AI)l,k)i,j = a(φk,j, φl,i) for i ∈ χl, j ∈ χk

and the right-hand side vector bI consists of blocks (bI)l ∈ Rnl , l ∈ I, with

((bI)l)i = F (φl,i) for i ∈ χl .

Similar to the full grid generating system case (4.16), the non-unique representation in the
generalized sparse grid generating system (4.21) results in a non-trivial kernel of AI . Thus, AI
is not invertible. But, again, the system (4.22) is solvable since the right-hand side bI lies in the
range of the system matrix and a solution can be generated by any semi-convergent iterative
method.
We now describe the enlarged sparse grid system (4.22) as a submatrix and a subvector of

the enlarged full grid system (4.16). To this end, let use choose the minimal J , such that

I ⊂ FdJ .

Like in (4.20), we can express the blocks of AI and bI with respect to (4.13) by

(AI)l,k = Il,JAJIJ,k and (bI)l = Il,JbJ

for l,k ∈ I. Now, we can express our sparse grid operator matrix by

AI = RI,FdJAFdJRT
I,FdJ

= RI,FdJSTFdJ
AJSFdJRT

I,FdJ
, (4.23)

and our right-hand side by

bI = RI,FdJbFdJ = RI,FdJSTFdJ
bJ , (4.24)

where RI,FdJ ∈ R
NI×NFd

J is a rectangular block-structured matrix with NI :=
∑

l∈I nl and

(RI,FdJ )l,k =

{
Il,l for k = l ,

0 else ,
(4.25)
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for l ∈ I,k ∈ FdJ . Note that RT
I,FdJ

RI,FdJ ∈ R
NFd

J
×NFd

J is a diagonal scaling matrix in the

enlarged full grid system which simply sets all vector blocks to zero that belong to l ∈ FdJ \ I,
and RI,FdJRT

I,FdJ
∈ RNI×NI is simply the identity matrix on RNI .

Equations (4.23) and (4.24) have been stated for theoretical purposes only, and we of course
avoid the full grid systems AFdJ and AJ in our implementation. A proof that the number of
degrees of freedom of our generating system has always the same asymptotics in J as the size
of a non-redundant system is given in Section 5.1. In the regular sparse grid case I = SdJ ,
see (4.10), and we thus get NSdJ = O(2JJd−1) in J , see [BG04].

4.3 Operator application

If the bilinear form a(·, ·) is local in the sense of (4.14), the isotropic full grid operator matrix AJ

from (4.13) is inherently sparse and can be applied to vectors with a computational complexity
that is linear in the number of degrees of freedom nJ = ndJ . Due to considerable overlap between
the different subspaces of the generating system discretization, the matrix AI is far less sparse
and exhibits the so called finger structure. An additional challenge is that the index set I in
general does not have a tensor product structure like

FdJ = {0, . . . , J} × · · · × {0, . . . , J} ⊂ Nd

but can take any complicated shape. However, assuming that the block matrices

Al,k := (AI)l,k ∈ Rnl×nk for l,k ∈ I

admit a representation as a sum of tensor products, we can still efficiently execute the matrix-
vector multiplication with the help of sophisticated algorithms. In this section, we present two
different algorithms that also work for non-local operators.

We assume a PIDE operator of second order with constant coefficients

(Au)(x) = −
d∑

i,j=1

aij
∂2u

∂xi∂xj
(x) +

d∑
i=1

bi
∂u

∂xi
(x) + cu(x) +

∫
Rd
u(x + y)ν(dy) , (4.26)

where the density of the absolutely continuous measure ν admits a representation as sum of
products of univariate densities K(r,p) : R→ R≥0, r = 1, . . . , Rν , p = 1, . . . , d with

ν(dy) =

Rν∑
r=1

d∏
p=1

K(r,p)(yp) dy . (4.27)

Note that we might have to extent the function u to the whole space Rd, e.g., by u|Rd\Ωd = 0,
in order to evaluate the integral in (4.26). The weak form a(u, v) = (Au, v)L2(Ωd) of (4.26) is
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given by

a(u, v) =
d∑

i,j=1

aij

( ∂u
∂xi

,
∂v

∂xj

)
L2(Ωd)

+
d∑
i=1

bi

( ∂u
∂xi

, v
)
L2(Ωd)

+ c(u, v)L2(Ωd) (4.28)

+

Rν∑
r=1

∫
Ωd

∫
Rd
u(x + y)

( d∏
p=1

K(r,p)(yp)
)

dy · v(x)dx .

Let AI be the system matrix of (4.28) discretized on VI with a generating system. Then, we
can express its blocks for l,k ∈ I in the form

Al,k =
d∑

i,j=1
i 6=j

aijH
(.,i)
li,ki
⊗H

(/,j)
lj ,kj
⊗

d⊗
p=1
p 6=i,j

M
(p)
lp,kp

+
d∑
i=1

aiiH
(./,i)
li,ki
⊗

d⊗
p=1
p6=i

M
(p)
lp,kp

(4.29)

+

d∑
i=1

biH
(.,i)
li,ki
⊗

d⊗
p=1
p 6=i

M
(p)
lp,kp

+ c

d⊗
p=1

M
(p)
lp,kp

+

Rν∑
r=1

d⊗
p=1

K
(r,p)
lp,kp

(4.30)

with the matrices

(H
(./,p)
l,k )ij =

(∂φk,j
∂x

,
∂φl,i
∂x

)
L2(Ω)

, (H
(.,p)
l,k )ij =

(∂φk,j
∂x

, φl,i

)
L2(Ω)

,

(H
(/,p)
l,k )ij =

(
φk,j ,

∂φl,i
∂x

)
L2(Ω)

, (M
(p)
l,k )ij = (φk,j , φl,i)L2(Ω) and

(K
(r,p)
l,k )ij =

(∫
R
φk,j( ·+ y)K(r,p)(y)dy, φl,i

)
L2(Ω)

, r = 1, . . . , Rν , (4.31)

for 1 ≤ i ≤ nl, 1 ≤ j ≤ nk, where the index p in the superscripts denotes the dimension p =
1, . . . , d the respective matrix is applied to. This example demonstrates that a PIDE operator
as in (4.26) produces blocks Al,k, l,k ∈ I, that can be written as a sum of tensor product
matrices. Sometimes not all requirements are met: In the case of non-constant coefficient
functions, it is possible to approximate the coefficient functions by another sparse grid [Ach03].
If the integration measure ν does not admit the sum of tensor products structure (4.27), it is
still possible to exploit compressibility of the operator matrix, cf. [KK02, Rei10], but this is a
topic outside the scope of this thesis.

In the following, we present two efficient matrix-vector multiplication methods for the system
matrix AI whose blocks can be written as a sum of tensor products. For notational simplicity,
we move from our example (4.29)–(4.30) to an abstract setting, in which we write

Al,k =

RA∑
r=1

A
(r,1)
l1,k1
⊗ · · · ⊗A

(r,d)
ld,kd

, (4.32)
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where the matrices A
(r,p)
l,k ∈ Rnl×nk satisfy

A
(r,p)
l,k =

{
A

(r,p)
l,l Il,k for l ≥ k ,

Ik,lA
(r,p)
k,k for l < k

(4.33)

for all r = 1, . . . , RA and p = 1, . . . , d.
The first method we present is asymptotically slower but easy to implement and parallelize,

the second one is linear in the degrees of freedom but involves a large constant in the costs
and is quite sophisticated. In both cases, we need to apply the non-hierarchical matrices A

(r,p)
l,l ,

which can be done in O(nl) for local operators. The application of non-local operators needs
O(n2

l ) operations if treated naively, O(nl log nl) using the circular convolution theorem or only
O(nl) in special cases, e.g., if some recurrence formula is employed, see Section 6.2. For the
following algorithms, we assume that an application in linear runtime is possible.

4.3.1 Single space matrix-vector multiplication algorithm

We start with a simple algorithm that has its advantages with respect to parallelization, but
is asymptotically slower than the one we present in the next subsection. We assume that
r = RA = 1 in (4.32) and drop the index r. Operators with RA > 1 can be treated by
repeatedly applying the following algorithm and summing over the results.
Given the block-structured vector xI = (xl)l∈I ∈ RNI , we want to compute yI = AIxI ∈

RNI . This translates into

yl =
∑
k∈I

wl,k with wl,k := Al,kxk,k ∈ I, (4.34)

for all l ∈ I. We compute (4.34) by summing over k ∈ I in an outer loop and computing
the respective wl,k = Al,kxk for all l ∈ I by the single space matrix-vector multiplication.
The tensor product structure of the blocks Al,k is relevant, as it helps to avoid computations
in the much larger space Vmax(l,k) with nmax(l,k) degrees of freedom, where (max(l,k))i =
max(li, ki), i = 1, . . . , d. To see this, we have to realize that (4.32) in combination with (4.33)
results in

Al,k =A
(1)
l1,k1
⊗ · · · ⊗A

(d)
ld,kd

=
⊗

p:lp<kp

I
(p)
kp,lp

A
(p)
kp,kp

⊗
⊗

q:lq≥kq
A

(q)
lq ,lq

I
(q)
lq ,kq

=
( ⊗
p:lp<kp

I
(p)
lp,lp
⊗
⊗

q:lq≥kq
A

(q)
lq ,lq

I
(q)
lq ,kq

)
·
( ⊗
p:lp<kp

I
(p)
lp,kp

A
(p)
kp,kp

⊗
⊗

q:lq≥kq
I

(q)
kq ,kq

)
. (4.35)

So, when computing wl,k = Al,kxk, l ∈ I, we can apply (4.35) in two steps. Note that( ⊗
p:lp<kp

I
(p)
lp,kp

A
(p)
kp,kp

⊗
⊗

q:lq≥kq
I

(q)
kq ,kq

)
xk ∈ Rnmin(l,k) ,

thus the product structure helps to take the “shortcut” via the space indexed Vmin(l,k), where
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min(l,k) is defined analogously to max(l,k). This idea has been introduced in a matrix-
vector multiplication algorithm in the context of PDEs with stochastic input data [ST03], see
also [Zei11], but the following modified algorithm produces a smaller log-factor in the runtime
complexity.
Now, we carry this principle further and compute all wl,k = Al,kxk, l ∈ I, simultaneously in

an efficient way. To this end, we use the slightly modified representation

Al,k =
( ⊗
p:lp<kp

I
(p)
lp,lp
⊗
⊗

q:lq≥kq
A

(q)
lq ,lq

)
·
( ⊗
p:lp<kp

I
(p)
lp,kp

A
(p)
kp,kp

⊗
⊗

q:lq≥kq
I

(q)
lq ,kq

)
. (4.36)

The single space matrix-vector multiplication is done in two steps based on the representa-
tion (4.36). Algorithm 1 describes the propagation phase, which is similar to a depth-first
search, and computes

zl,k =
( ⊗
p:lp<kp

I
(p)
lp,kp

A
(p)
kp,kp

⊗
⊗

q:lq≥kq
I

(q)
lq ,kq

)
xk

for all l ∈ I. Algorithm 2 describes the application phase, where the matrix-vector multiplica-
tion is carried out for all dimensions which have so far only been prolongated. In fact

wl,k =
( ⊗
p:lp<kp

I
(p)
lp,lp
⊗
⊗

q:lq≥kq
A

(q)
lq ,lq

)
zl,k

for all l ∈ I. Then the summation yl =
∑

k∈I wl,k, l ∈ I yields our result vector yI .
As both Algorithms 1 and 2 have a runtime complexity of O(NI), we can compute all wl,k =

Al,kxk, l ∈ I, in linear time with respect to the number of degrees of freedom. Summing
over all k ∈ I computes (4.34) for all l ∈ I in O(#I · NI) floating point operations, which
is typically log-linear in NI . There is no exponential dependence on the dimension and the
algorithm is easily parallelizable with respect to k with up to #I processes. This algorithm is
especially useful for setting up the auxiliary system of linear equations needed for the OptiCom,
see Chapter 5.
In the following subsection, we present an algorithm with a computational complexity that is

strictly linear in the number of degrees of freedom, but it cannot be easily parallelized and its
computational complexity exhibits an exponential dependence on the dimension in most cases.

4.3.2 Unidirectional principle for non-local operators

The unidirectional principle for differential operators [BZ96, Bun92b, Zei11] is a sophisticated
algorithm that realizes the matrix-vector multiplication for generalized sparse grid problems in
a computational complexity that is strictly linear in the number of degrees of freedom. Now, we
present a generalization from [GH13c], where it is no longer necessary to specifically tailor the
TopDown/BottomUp algorithms to the operator in use. Moreover, it can be employed with non-
local operators like integro-differential operators. A related abstraction of the unidirectional
principle for multilevel discretizations has been presented in [Zei11].
With the same assumptions as in the previous subsection, we want to compute yI = AIxI ,
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Algorithm 1 Propagation phase of single space matrix-vector multiplication
Input: multi index k, index set I and subspace vector xk

Output: zl,k =
(⊗

p:lp<kp
I

(p)
lp,kp

A
(p)
kp,kp

⊗⊗q:lq≥kq I
(q)
lq ,kq

)
xk, l ∈ I

1: Mark each l in I as “not visited”
2: zk,k ← xk . Start with subspace vector k
3: Mark k as “visited”
4: for all l ∈ I do
5: if l is marked as “not visited” then
6: computeSubspaceVec(l)
7: end if
8: end for
9: return zl,k, l ∈ I

10: function computeSubspaceVec(l)
11: if l is marked as “visited” then
12: return
13: end if
14: for p = 1, . . . , d do . Since l 6= k, there is at least one p with lp 6= kp
15: if lp > kp then
16: l′ ← l− ep . Decrease p-th entry by 1
17: computeSubspaceVec(l’) . zl′,k is now set
18: zl,k ←

(
I

(p)
lp,lp−1 ⊗

⊗
q 6=p I

(q)
lq ,lq

)
zl′,k . Prolongate from lower subspace

19: Mark l as “visited”
20: return
21: else if lp = kp − 1 then
22: l′ ← l + ep . Increase p-th entry by 1
23: computeSubspaceVec(l’) . zl′,k is now set
24: zl,k ←

(
(I

(p)
lp,kp

A
(p)
kp,kp

)⊗⊗q 6=p I
(q)
lq ,lq

)
zl′,k . Apply matrix A

(p)
kp,kp

and restrict result
25: Mark l as “visited”
26: return
27: else if lp < kp − 1 then
28: l′ ← l + ep . Increase p-th entry by 1
29: computeSubspaceVec(l’) . zl′,k is now set
30: zl,k ←

(
I
(p)
lp,lp+1 ⊗

⊗
q 6=p I

(q)
lq,lq

)
zl′,k . Restrict result from higher subspace

31: Mark l as “visited”
32: return
33: end if
34: end for
35: end function
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Algorithm 2 Application phase of single space matrix-vector multiplication

Input: multi index k, index set I and zl,k =
(⊗

p:lp<kp
I

(p)
lp,kp

A
(p)
kp,kp

⊗⊗q:lq≥kq I
(q)
lq ,kq

)
xk, l ∈ I

Output: wl,k =
(⊗d

p=1 A
(p)
lp,kp

)
xk, l ∈ I

1: for all l in I do
2: wl,k ←

(⊗
p:lp<kp

I
(p)
lp,lp
⊗⊗q:lq≥kq A

(q)
lq ,lq

)
zl,k

3: end for

i.e.,
yl =

∑
k∈I

(
A

(1)
l1,k1
⊗ · · · ⊗A

(d)
ld,kp

)
xk (4.37)

for all l ∈ I.
First, we start with the one-dimensional case of I = F1

J and split the sum (4.37) in two parts

yl =
J∑
k=0

Al,kxk

=
l∑

k=0

Al,kxk +
k∑

k=l+1

Al,kxk . (4.38)

Both sums in (4.38) need to be treated separately. As already indicated, the representa-
tion (4.18) of prolongations and restrictions is a very efficient tool to transport intermediate
results. The computation of the first sum in (4.38) can be done using the TopDown algorithm.

TopDown algorithm

The TopDown algorithm uses a simple recursive relation to compute

ȳl :=

l∑
k=0

Al,kxk (4.39)

for all 0 ≤ l ≤ J . First, we define vectors

zl :=

l∑
k=0

Il,kxk ,

for l = 0, . . . , J that satisfy the recursive relationship

zl =
l∑

k=0

Il,kxk =
l−1∑
k=0

Il,l−1Il−1,kxk + xl = Il,l−1zl−1 + xl
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for l ≥ 1. Now, (4.39) can be expressed by

ȳl =
l∑

k=0

Al,lIl,kxk = Al,l

l∑
k=0

Il,kxk = Al,lzl . (4.40)

As long as the prolongations Il,l−1 and the application of the matrices Al,l work in linear time,
the TopDown algorithm is of optimal order. The whole procedure is described in pseudocode
in Algorithm 3.

Algorithm 3 TopDown algorithm
Input: Matrices Al,l and xl for l = 0, . . . , J

Output: ȳl =
∑l

k=0 Al,kxk, l = 0, . . . , J
1: z0 ← x0

2: ȳ0 ← A0,0z0

3: for all l = 1, . . . , J do
4: zl ← Il,l−1zl−1 + xl
5: ȳl ← Al,lzl
6: end for

BottomUp algorithm

The BottomUp algorithm computes

y
l

:=
J∑

k=l+1

Al,kxk (4.41)

for all l = 0, . . . , J − 1, and we define y
J

:= 0. The recursive relationship

y
l

=
J∑

k=l+2

Al,kxk + Al,l+1xl+1

= Il,l+1

( J∑
k=(l+1)+1

Al+1,kxk + Al+1,l+1xl+1

)
= Il,l+1

(
y
l+1

+ Al+1,l+1xl+1

)
. (4.42)

holds for l = J − 1, . . . , 0. Clearly, all y
l
can be precalculated in linear time provided that the

restrictions Il,l+1 and the application of the matrices Al,l work in linear time. The pseudocode
is given in Algorithm 4.
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Algorithm 4 BottomUp algorithm
Input: Matrices Al,l and xl for l = 0, . . . , J

Output: y
l

=
∑J

k=l+1 Al,kxk, l = 0, . . . , J
1: y

J
← 0

2: for all l = J − 1, . . . , 0 do
3: y

l
← Il,l+1

(
y
l+1

+Al+1,l+1xl+1

)
4: end for

Multi-dimensional case

The multi-dimensional case can be reduced to the recursive application of the one-dimensional
algorithms TopDown and BottomUp. To this end, we split and rearrange the sum

yl =
∑
k∈I

(
A

(1)
l1,k1
⊗A

(2)
l2,k2
⊗ · · · ⊗A

(d)
ld,kd

)
xk ∀ l ∈ I .

So, for all l ∈ I, we need to compute

yl =
∑

k1≤l1with
(k1,l2,...,ld)∈I

(A
(1)
l1,k1
⊗ I

(2)
l2,l2
⊗ · · · ⊗ I

(d)
ld,ld

) · (4.43)

∑
(k2,...,kd) with
(k1,k2,...,kd)∈I

(
I

(1)
k1,k1

⊗A
(2)
l2,k2
⊗ · · · ⊗A

(d)
ld,kd

)
x(k1,k2,...,kd) (4.44)

+
∑

(k2,...,kd) with
(l1,k2,...,kd)∈I

(
I

(1)
l1,l1
⊗A

(2)
l2,k2
⊗ · · · ⊗A

(d)
ld,kd

)
· (4.45)

∑
k1>l1 with

(k1,k2,...,kd)∈I

(A
(1)
l1,k1
⊗ I

(2)
k2,k2

⊗ · · · ⊗ I
(d)
kd,kd

)x(k1,k2,...,kd) . (4.46)

Now, (4.43) resembles the application of the one-dimensional TopDown algorithm, and (4.46) re-
sembles the application of the one-dimensional BottomUp algorithm. The sums (4.44) and (4.45)
are the result of a recursive application of the multi-dimensional algorithm with the first dimen-
sion left unchanged. The monotonicity condition (4.8) ensures that intermediate results can be
stored with the same complexity as xI and the final result yI . Specifically, we know that

(l1, . . . , ld) ∈ I, k1 ≤ l1 ⇒ (k1, l2, . . . , ld) ∈ I

in (4.43) and
(k1, . . . , kd) ∈ I, k1 > l1 ⇒ (l1, k2, . . . , kd) ∈ I

in (4.45), which means that intermediate results can be represented as generalized sparse grid
functions with the same index set I. See Algorithm 5 for a description in pseudocode, where
we use the shorthand notation

k′ ∪ {kp} = (k1, . . . , kd)
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for k′ = (k1, . . . , kp−1, kp+1, . . . , kd) ∈ Nd−1.

Algorithm 5 Unidirectional principle

Input: Index set I, Matrices A
(p)
l,k , l,k ∈ I and p = 1, . . . , d, vector xI

Output: yI = (yl)l∈I with yl =
∑

k∈I
(
A

(1)
l1,k1
⊗ · · · ⊗A

(d)
ld,kp

)
xk for all l ∈ I

1: yI ← UniDir(0,xI)
2: function UniDir(p, xI) . p is active dimension, xI the input vector
3: if p = d then
4: return . Nothing to do
5: end if
6: zI ← xI . Copy input vector
7: if p 6= 0 then
8: for all k′ ∈ Nd−1 for which ∃kp : k′ ∪ {kp} ∈ I do
9: BottomUp((xk)k:=k′∪{kp}∈I , (A

(p)
kp,kp

)kp:k′∪{kp}∈I) . Apply (4.46) to xI in place
10: end for
11: end if
12: UniDir(p+ 1, xI) . Recursive call (4.45)
13: UniDir(p+ 1, zI) . Recursive call (4.44)
14: if p 6= 0 then
15: for all k′ ∈ Nd−1 for which ∃kp : k′ ∪ {kp} ∈ I do
16: TopDown((zk)k:=k′∪{kp}∈I , (A

(p)
kp,kp

)kp:k′∪{kp}∈I) . Apply (4.43) to zI in place
17: end for
18: end if
19: xI ← xI + zI
20: end function

Note here that the cost complexity of the algorithm is only linear with respect to the degrees
of freedom if the cost complexity of the univariate operator applications is linear. However, two
recursive calls per dimension lead to 2d calls of the function. This exponential dependence of
the computational complexity on the dimension is undesirable, but can be avoided in special
cases, see [Feu05]. Note that the parallelization of the unidirectional principle is far from trivial
due to the involved recursive nature of the algorithm, see [HSB12].



5 Preconditioning of high-dimensional
elliptic equations

In this chapter, we develop additive (sometimes coined “parallel”) Schwarz preconditioners for
generalized sparse grid discretizations of symmetric H-elliptic variational problems

a(u, v) = F (v) ∀ v ∈ H , (5.1)

where H is the ‖·‖a := a(·, ·) 1
2 -closure of span{Vl : l ∈ Nd} and F is a bounded linear functional

on H. The main focus of this chapter is on generic Ht- or Ht,l
mix-elliptic problems. Ultimately,

we will apply our preconditioner to variational problems (3.16) that arise in the course of solving
the BKE, even though they can be asymmetric. Our preconditioners still work well in these
cases. Note that by our choice of subspaces in the additive Schwarz setting, we obtain methods
that are in fact preconditioners for the system of linear equations (4.22), which is the generalized
sparse grid version of (3.19).
For isotropic full grid discretizations, an optimal iteration count which is independent of the

number of degrees of freedom is typically achieved by multiplicative multigrid methods [Yse93,
BL11, Hac85, Gri94b], the additive BPX preconditioner [BPX90, Osw92, Osw94] or wavelet-
based methods. In the sparse grid case, the condition number is more difficult to reduce
than in the regular full grid case. For example, already for a straightforward regular sparse
grid discretization, cf. [GO94], a simple diagonal scaling similar to the case of the BPX-
preconditioner does not result in asymptotically bounded condition numbers in dimensions
d ≥ 3. Here, more complicated basis functions like prewavelets offer a solution [GO95b].
The main idea is to apply a subspace correction method to (5.1), where the subspaces solvers

are based on auxiliary bilinear forms on the anisotropic full grid spaces that compose the
sparse grid. Their relative scaling is at our disposal and amounts to a diagonal scaling of
the operator matrix of the discretized system (4.22). We heavily rely on a norm equivalence
based on orthogonal complement spaces. First we show that, for a certain class of second-order
PDEs, the norm equivalence constants are independent of the space dimension and the diffusion
coefficients. Then, based on the norm equivalence, we infer quasi-optimal scaling factors for our
full grid spaces by a Linear Program (LP). This approach closely follows the lines of [GHO15].
We prove that O(Jd−2) is a lower bound for the condition number for any positive diagonal
scaling.
This motivates the use of partially negative scaling factors, and we present an algebraic

transformation that results in optimal condition numbers. In fact, we even observe falling
condition numbers with rising dimension for the Laplace operator discretized by a regular
sparse grid. We also present a method closely related to a prewavelet approach which results
in exactly the same condition numbers as the algebraic transformation, but only needs positive
scalings and produces symmetrizable matrices, see also [GH14b].

67
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If a norm equivalence is not available, we can still employ a non-linear variable precondi-
tioner [JN99] that has been referred to as OptiCom in the case of sparse grids in data min-
ing [Heg03, Gar06, HGC07]. We describe an efficient implementation based on the single space
matrix-vector multiplication presented in Chapter 4. This reduces the typically quadratic costs
of the OptiCom to log-linear with respect to the degrees of freedom if the associated bilinear
form a(·, ·) is given as a sum of tensor products. All preconditioners allow a CG version, and
with the exception of the variable preconditioner, possess a cost complexity that is only linear
with respect to the degrees of freedom.

This chapter is organized as follows: In Section 5.1, we describe a well-known equivalence of
norms for Ht-elliptic problems and prove that its norm equivalence constants are independent
of the diffusion coefficients and the space dimension. In Section 5.2, we build the connection
between the norm equivalence and our generalized sparse grid space via the theory of subspace
splittings. In Section 5.3, we derive a Linear Program to find close-to-optimal positive scalings
but prove the limits of this approach for Ht-elliptic problems. In Section 5.4, we admit negative
values for the scaling of our generating system and thus obtain optimal condition numbers.
The same condition numbers are realized by a block-diagonal preconditioner in Section 5.5. In
Section 5.6, the non-linear variable preconditioner OptiCom is described. Section 5.7 contains
experiments up to dimension d = 10 that support our theoretical findings.

5.1 Norm equivalences based on orthogonal subspaces

Introducing the orthogonal complement spaces W (p)
l = V

(p)
l 	V (p) V

(p)
l−1 for l ≥ 1, and setting

W
(p)
0 := V

(p)
0 , we can write V as the (·, ·)V -orthogonal (from now on V -orthogonal) sum V =⊕

l∈NdWl of the subspaces

Wl = W
(1)
l1
⊗ . . .⊗W (d)

ld
, l = (l1, . . . , ld) ∈ Nd .

Similarly, any finite-dimensional space Vl = V
(1)
l1
⊗ . . .⊗ V (d)

ld
⊂ V , l ∈ Nd, is the V -orthogonal

sum Vl =
⊕

k≤lWk, where the inequality k ≤ l is meant componentwise. Furthermore, it is
easy to verify that

VI =
⊕
k∈I

Wk (5.2)

can be written as V -orthogonal sum of the subspaces Wk with k ∈ I.
Based on (5.2), we can estimate the redundancy we create by using a generating system

instead of a basis. Let us assume that for our spaces V (p)
l , l ∈ N, p = 1, . . . , d,

c · nl−1 ≤ nl ⇔ nl−1 ≤ 1
c · nl

holds for l ≥ 1, e.g., c = 2 for dyadically refined linear splines. Then,

dimWl = nl − nl−1 ≥ (1− 1
c )nl
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and
dimVI =

∑
k∈I

dimWk ≥ (1− 1
c )
d
∑
k∈I

nk ⇒ NI ≤ (1− 1
c )
−d dimVI , (5.3)

which means we can limit the number of degrees of freedom in our generating system NI by the
dimension of VI times a factor (1− 1

c )
−d. It is not hard to see that this factor is relatively sharp,

and thus, for c = 2, we have a factor of about 2d more degrees of freedom in our generating
system than needed in the sparse grid space. This result coincides with the somewhat simpler
calculation (4.17).
The basis for many further considerations in this thesis is the assumption of a set of fixed

positive weights βk,k ∈ Nd, and a norm equivalence

λmin
∑
k∈Nd

βk‖wk‖2V ≤ ‖u‖2a ≤ λmax
∑
k∈Nd

βk‖wk‖2V , (5.4)

where 0 < λmin ≤ λmax < ∞ and the wk ∈ Wk,k ∈ Nd, denote the components of the unique
V -orthogonal decomposition of u ∈ H, i.e., u =

∑
k∈Nd wk. The estimate (5.4) is assumed to

be sharp, which means that the norm equivalence constants λmin and λmax are given by

λmin := inf
06=u∈H

‖u‖2a∑
k∈Nd βk‖wk‖2V

and λmax := sup
06=u∈H

‖u‖2a∑
k∈Nd βk‖wk‖2V

.

From now on, we use the symbol ' to indicate such an equivalence, and call κ = λmax/λmin
condition number of the splitting.
The described setup is motivated by the discretization of Ht-elliptic problems by generalized

sparse grid spaces VI over the d-dimensional unit cube. The restriction on t is |t| < r + 3/2 if
we use Cr spline spaces of fixed degree m ≥ r + 1 over dyadic partitions of step size 2−l as the
building blocks V (p)

l . Then, the equivalence of norms (5.4) has the form

‖u‖2Ht '
∑
k∈Nd

22t|k|∞‖wk‖2L2(Ωd), |k|∞ = max
i=1,...,d

ki , (5.5)

where the wk ∈ Wk,k ∈ Nd, denote the L2-orthogonal components of the function u ∈ Ht,
see [Osw94] for this kind of results. A more general result for Ht,l

mix-elliptic problems is stated
in [GK09].
We now single out the case of linear spline spaces for H1-elliptic problems and take a look

at the norm equivalence constants for a special set of weights (βk)k∈Nd . Due to Jackson- and
Bernstein-inequalities [Dah96, Osw94] for dyadically refined linear spline spaces (V

(p)
l )∞l=1, p =

1, . . . , d, we have a norm equivalence(
∂u

∂x
,
∂u

∂x

)
L2(Ω)

'
∑
l∈N

βl‖wl‖2L2(Ω) (5.6)

for u ∈ H1
0 (Ω) with βl = 22l, u =

∑
l∈Nwl, where wl ∈Wl, l ∈ N, and 0 < λ

(1)
min ≤ λ

(1)
max <∞. Of

course, (5.6) holds also for u ∈ V (p)
J , p = 1, . . . , d, with norm equivalence constants λ(1),J

min ≥ λ
(1)
min

and λ(1),J
max ≤ λ

(1)
max for all J ∈ N. The next theorem shows that this norm equivalence carries
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over to the d-dimensional case with exactly the same norm equivalence constants. This is a
generalization of the proof given in [GH14b].

Theorem 5.1. For u ∈ H1
0 (Ωd), αp > 0, p = 1, . . . , d and

a(u, v) =
d∑
p=1

αp

(
∂u

∂xp
,
∂v

∂xp

)
L2(Ωd)

, (5.7)

it holds that

a(u, u) '
∑
l∈Nd

( d∑
p=1

αp2
2lp
)
‖wl‖2L2(Ωd) for u =

∑
l∈Nd

wl with wl ∈Wl, l ∈ Nd , (5.8)

where the constants λ(d)
min and λ(d)

max associated with (5.8) are the same as in (5.6) i.e. λ(d)
min = λ

(1)
min

and λ
(d)
max = λ

(1)
max. For functions u ∈ VFdJ = VJ ⊂ H1

0 (Ωd), the corresponding equivalence

constants λ(d),J
max and λ(d),J

min of (5.8) are equal to λ(1),J
max and λ(1),J

min , respectively, for J ∈ N.

Proof. We start with the case u ∈ VFdJ , J ∈ N. In Chapter 4, the functions (φJ,i)
nJ
i=1 formed

a basis for the spaces V (p)
J , p = 1, . . . , d. Of course, there also exists an L2-orthonormal basis

(ψJ,i)
nJ
i=1 of VJ . Furthermore, we need the orthogonal decomposition (ωl,i)

J
l=1 of ψJ,i ∈ VJ for

all i = 1, . . . , nJ with ωl,i ∈Wl, l = 1, . . . , J and

ψJ,i =

J∑
l=1

ωl,i .

Next, analogously to (4.5), we define

ψJ,i(x) = ψJ,i1(x1) · · ·ψJ,id(xd) and ωl,i(x) = ωl1,i1(x1) · · ·ωld,id(xd)

for x = (x1, . . . , xd), i ∈ χJ and l ∈ FdJ . This opens a direct way to find orthogonal decompo-
sitions of functions u =

∑
i∈χJ

ziψJ,i ∈ VFdJ by

u =
∑
i∈χJ

zi
∑
l∈FdJ

ωl,i =
∑
l∈FdJ

∑
i∈χJ

ziωl,i =
∑
l∈FdJ

wl

with
wl =

∑
i∈χJ

ziωl,i ∈Wl (5.9)

for all l ∈ FdJ .
Now, we show that the norm equivalence (5.8) holds for any u ∈ VFdJ with the constants
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λ
(1),J
max and λ(1),J

min from (5.6). It holds that

a(u, u) =
d∑
p=1

αp

( ∂

∂xp

∑
i∈χJ

ziψJ,i,
∂

∂xp

∑
j∈χJ

zjψJ,j

)
L2(Ωd)

(5.10)

=

d∑
p=1

αp
∑
i∈χJ

∑
j∈χJ

( ∂

∂xp
ziψJ,ip ,

∂

∂xp
zjψJ,jp

)
L2(Ω)

d∏
q=1
q 6=p

(ψJ,iq , ψJ,jq)L2(Ω) (5.11)

=
d∑
p=1

∑
i′=i\{ip}

i∈χJ

( ∂

∂xp

nJ∑
ip=1

zi′∪{ip}ψJ,ip ,
∂

∂xp

nJ∑
jp=1

zi′∪{jp}ψJ,jp
)
L2(Ω)

. (5.12)

We obtain (5.11) by repeated applications of the distributive law and by using the product
structure of the L2-scalar product. Then, the orthonormal basis property of the (ψJ,i)

nJ
i=1

cancels all terms for iq 6= jq, q 6= p and we get (5.12). Here we use the notation

i \ {ip} = (i1, . . . , ip−1, ip+1, . . . , id) and
i′ ∪ {ip} = (i1, . . . , ip−1, ipip+1, . . . , id) .

We can apply the one-dimensional norm equivalence (5.6) to (5.12) and obtain the upper bound

· · · ≤
d∑
p=1

αpλ
(1),J
max

∑
i′=i\{ip}

i∈χJ

J∑
lp=1

22lp
( nJ∑
ip=1

zi′∪{ip}ωlp,ip ,
nJ∑
jp=1

zi′∪{jp}ωlp,jp
)
L2(Ω)

(5.13)

=λ(1),J
max

d∑
p=1

αp
∑
i∈χJ

∑
j∈χJ

J∑
lp=1

22lp(ziωlp,ip , zjωlp,jp)L2(Ω) ·
d∏
q=1
q 6=p

(ψJ,iq , ψJ,jq)L2(Ω) (5.14)

=λ(1),J
max

d∑
p=1

αp
∑
i∈χJ

∑
j∈χJ

∑
l∈FdJ

22lp(ziωlp,ip , zjωlp,jp)L2(Ω) ·
d∏
q=1
q 6=p

(ωlq ,iq , ωlq ,jq)L2(Ω) (5.15)

=λ(1),J
max

∑
l∈FdJ

( d∑
p=1

αp2
2lp
)(∑

i∈χJ

ziωl,i,
∑
j∈χJ

zjωl,j

)
L2(Ωd)

. (5.16)

In (5.13) and (5.14), we used the distributive law again and reintroduced the terms we dropped
previously. In (5.15), we replaced the ψJ,iq and ψJ,jq by the decompositions

∑J
lq=1 ωlq ,iq and∑J

lq=1 ωlq ,jq , respectively. Then, in (5.16), we recombined the product of d one-dimensional
L2-scalar products to one d-dimensional L2-scalar product. Note that the lower bound with
λmin can be proven in the same way. Now, in combination with (5.9), we know that (5.8) is a
norm equivalence with constants λ(d),J

max ≤ λ(1),J
max and λ(d),J

min ≥ λ
(1),J
min .

It is almost trivial to prove the sharpness of the estimates, i.e. to show that indeed λ(d),J
max =

λ
(1),J
max and λ

(d),J
min = λ

(1),J
min . Choose the functions u(1),J

max ∈ V
(p)
J , p = 1, . . . , d, for which the
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maximum in (5.6) is attained and plug the multivariate function

u(x) =
d∏
p=1

u(1),J
max (xp)

into (5.10). This results in an equality instead of an upper bound in (5.13). The λ(d),J
min -case can

be shown analogously.
We can now easily extend this result to any function u ∈ H1

0 (Ωd) by a density argument and

λ(d)
max = lim

J→∞
λ(d),J

max = lim
J→∞

λ(1),J
max = λ(1)

max .

Again, the λ(d)
min-case works analogously.

Theorem 5.1 is important to understand why the condition numbers of sparse grid discretiza-
tions of the Laplacian decrease with rising dimension. We will discuss this effect in Subsec-
tion 5.7.1. The following Theorem also includes a reaction term.

Theorem 5.2. Let λ(1)
min and λ(1)

max be the norm equivalence constants from (5.6) for functions
u ∈ H1

0 (Ω). For u ∈ H1
0 (Ωd), αp > 0, p = 1, . . . , d, γ ≥ 0 and

a(u, v) =
d∑
p=1

αp

(
∂u

∂xp
,
∂v

∂xp

)
L2(Ωd)

+ γ(u, v)L2(Ωd) , (5.17)

it holds that

a(u, u) '
∑
l∈Nd

( d∑
p=1

αp2
2lp +

2γ

λ
(1)
max + λ

(1)
min

)
‖wl‖2L2(Ωd) for u =

∑
l∈Nd

wl (5.18)

with wl ∈ Wl, l ∈ Nd. The norm equivalence constants λ(d)
min and λ(d)

max of (5.18) satisfy λ(d)
min ≥

λ
(1)
min and λ(d)

max ≤ λ(1)
max.

Proof. The proof consists of an application of Theorem 5.1 and a simple inequality

a(u, u) ≤ λ(1)
max

∑
l∈Nd

( d∑
p=1

αp2
2lp
)
‖wl‖2L2(Ωd) + γ(u, v)L2(Ωd)

= λ(1)
max

∑
l∈Nd

( d∑
p=1

αp2
2lp
)
‖wl‖2L2(Ωd) + λ(1)

max
γ

λ
(1)
max

∑
l∈Nd
‖wl‖2L2(Ωd)

≤ λ(1)
max

∑
l∈Nd

( d∑
p=1

αp2
2lp +

2γ

λ
(1)
max + λ

(1)
min

)
‖wl‖2L2(Ωd) .

The lower bound is proven analogously using γ

λ
(1)
min
≥ 2γ

λ
(1)
min+λ

(1)
max

.
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What we have shown is that the norm equivalence constants of (5.4) for any bilinear operator
in the form (5.7) and the weights βl =

∑d
p=1 αp2

2lp , l ∈ Nd, are equal to λ(1)
min and λ(1)

max from (5.6)
and thus independent of the diffusion coefficients and even the dimension. This results also
covers bilinear forms with a reaction term (5.17). In [DSS09], a similar result regarding the
robustness and dimension-independence of condition numbers was proven in the context of the
best N -term approximation using L2(0, 1)-orthonormal wavelets. The norm equivalence (5.8)
can also be found in, e.g., [GK09] or in [GO95b] for the two-dimensional case, but there no
special attention was paid to the dimension-independence of the equivalence constants. In the
next sections we assume a norm equivalence in the general form (5.4) and use it as the basis to
derive an optimal diagonal scaling for our generating system.

5.2 The theory of subspace splittings applied to sparse grids

If a basis of V -orthonormal wavelets is available, we can use the norm equivalence (5.4) to
precondition the sparse grid operator matrix based on the bilinear form a(·, ·) and obtain an
upper bound κ := λmax/λmin for the resulting condition numbers. However, we shun the effort
of finding and implementing such a basis and stick with our generating system. The question is
now what diagonal scaling preconditioners are available to realize a condition number as close
as possible to κ.
In Subsection 5.2.1, we recall some facts about subspace correction methods [Xu92, Osw94] for

solving a variational problem (5.1) in a Hilbert space H. We slightly depart from this standard
theory and introduce scaling parameters for the subspace solvers in Subsection 5.2.2. We apply
the theory of subspace correction methods to our generalized sparse grids in Subsection 5.2.3
and discuss the implementation in a generating system in Subsection 5.2.4. This section and
the following ones closely follow the lines of [GHO15].

5.2.1 Subspace splitting theory

Let Hi, i ∈ I, be auxiliary Hilbert spaces with an at most countable index set I (if we discuss
algorithmic issues, we silently assume that I is finite). Each Hi carries a symmetric Hi-elliptic
bilinear form bi(ui, vi), and writing {Hi; bi} indicates that we use this bilinear form as scalar
product on Hi. In general, the Hi, i ∈ I, are not assumed to be subspaces of H, and in order
to relate them with H, we define bounded linear embedding operators Ri : Hi → H. We call
the formal decomposition

{H; a} =
∑
i∈I

Ri{Hi, bi} (5.19)

a stable space splitting if for any u ∈ H there is at least one H-converging representation of
the form

u =
∑
i∈I

Rivi, vi ∈ Hi, i ∈ I , (5.20)

and
0 < λmin := inf

u∈H
a(u, u)

|||u|||2
≤ λmax := sup

u∈H

a(u, u)

|||u|||2
<∞ , (5.21)
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where
|||u|||2 := inf

vi∈Hi: u=
∑
i∈I Rivi

∑
i∈I

bi(vi, vi) . (5.22)

The constants λmin and λmax are called lower and upper stability constants, and κ = λmax/λmin

is called the condition number of the space splitting (5.19), respectively. It is easy to see that
frames and fusion frames [CK04, Osw09] are special cases of this definition, where a(·, ·) =
(·, ·)H , the Hi are closed subspaces of H, the scalar products bi(·, ·) = wi · (·, ·)V are modified
by weights wi > 0, and the Ri denote the natural embeddings Hi ⊂ H for i ∈ I. In the frame
case, the Hi are one-dimensional spaces and are spanned by individual frame elements, see
also [KOPT13]. Specific examples of stable space splittings related to sparse grid discretizations
will be given in the Subsection 5.2.3.

To formally define the core subspace correction methods associated with a stable space split-
ting (5.19), we define the adjoint operators R∗i : H → Hi by

bi(R
∗
i u, vi) = a(u,Rivi) ∀ vi ∈ Hi , (5.23)

and set Ti := RiR
∗
i : H → H, i ∈ I, and P =

∑
i∈I Ti.

The additive Schwarz method for (5.19) (also called parallel or asynchronous subspace cor-
rection method) is then given by the iteration

u(m+1) = u(m) + ω
∑
i∈I

Tie
(m) = u(m) + ωPe(m), m = 0, 1, . . . , (5.24)

where the single relaxation parameter ω > 0 is to be chosen appropriately and e(m) := u−u(m)

denotes the current error. The essential work to be done is to compute all u(m)
i := R∗i e

(m) ∈ Hi

by solving the subproblems

bi(u
(m)
i , vi) = a(u− u(m), Rivi) (5.25)

= F (Rivi)− a(u(m), Rivi) ∀ vi ∈ Hi, i ∈ I .

The theoretically best value of ω is given by ω∗ = 2/(λmin + λmax), since the operator P =∑
i∈I Ti satisfies the identity

a(Pu, u) =
∑
i∈I

bi(R
∗
i u,R

∗
i u) = |||Pu|||2 .

Together with (5.21), this implies that λmin(P ) = λmin, λmax(P ) = λmax, and κ(P ) = κ. Thus,
the best possible error reduction factor in the energy norm for the linear iteration (5.24) is given
by

ρ := inf
ω>0
‖Id− ωP‖a = ‖Id− ω∗P‖a = 1− 2

1 + κ
. (5.26)

This simple result has appeared in many papers, see [Xu92, Osw94, GO95a].

Since in practice the value ω∗ is hardly accessible, one often determines in each iteration the
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value

ω(m) =
a(Pe(m), e(m))

a(Pe(m), P e(m))
, (5.27)

which corresponds to finding u(m+1) by solving the minimization problem

φ(u(m) + ω(m)Pe(m))→ min
ω(m)

with φ(u) :=
1

2
a(u, u)− F (u) ,

or, equivalently, by minimizing the energy error

‖u− u(m) − ω(m)Pe(m)‖2a → min
ω(m)

(5.28)

with respect to the parameter ω(m) > 0. The iterative method with the parameter choice ω(m)

from (5.27) can also be interpreted as steepest descent method for the quadratic minimization
problem associated with the linear variational problem

a(Pu, v) = f(Pv) ∀ v ∈ H , (5.29)

which is a preconditioned version of (5.1). Consequently, since

‖e(m+1)‖a = ‖u− (u(m) + ω(m)Pe(m))‖a ≤ inf
ω>0
‖Id− ωP‖a‖e(m)‖a = ρ‖e(m)‖a ,

this method is as good as any linear method (5.24). Note furthermore that the conjugate
gradient method can be realized by minimizing the energy error

‖u− u(m) − ω(m)Pe(m) − η(m)(u(m) − u(m−1))‖2a → min
ω(m),η(m)

(5.30)

in every iteration step [GL96].

An alternative to the above additive Schwarz method is the multiplicative Schwarz method
(or synchronous subspace correction method), where in the n-th step only one index i = i(n) ∈ I
is picked, the corresponding subproblem is solved and used to immediately update the iterate
according to

u(n+1) = u(n) + ωTi(n)e
(n), n = 0, 1, . . . . (5.31)

Here, various rules for choosing the next subproblem index i(n) (cyclic deterministic rules,
random choices, greedy pick, and their combinations), and block updates (intermediate between
the additive and multiplicative versions) have been proposed, see for example [GO12].

The convergence theory of multiplicative Schwarz methods is a bit more intricate. Generally
speaking, they often are slightly faster than additive Schwarz methods (to achieve a fair com-
parison, usually #I steps of the multiplicative method are combined into one step). A potential
drawback is that the multiplicative method is less straightforward for parallelization. Since our
focus is on the choice of scaling parameters in additive Schwarz methods, we do not want to go
into detail but refer to the literature, see [Xu92, Gri94a, Gri94b, Osw94, GO95a, XZ02, Osw09,
GO12].
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5.2.2 Introducing multiple scaling factors

From now on we slightly depart from the above theory and ask the question if the introduction
of individual scaling parameters ωi offers additional improvements. To this end, we keep the
basic setup of given auxiliary problems in {Hi, bi}, and consider the family of iterations

u(m+1) = u(m) +
∑
i∈I

ωiTie
(m) = u(m) + Pωe

(m), m = 0, 1, . . . , (5.32)

where Pω =
∑

i∈I ωiTi and ω stands from now on for a set of scaling parameters (ωi)i∈I . Con-
vergence of this linear iterative method is guaranteed if and only if Pω is strictly positive definite
(λmin(Pω) > 0) and λmax(Pω) < 2. We note that enforcing the upper bound λmax(Pω) < 2 is
not a major concern. For this, we can, at little extra work, determine an additional relaxation
parameter using the steepest descent approach, and guarantee an error reduction of at least
1 − 2/(1 + κ(Pω)). Thus, the question about guaranteeing best convergence rates for (5.32)
is essentially equivalent to determining positive definite Pω with (close to) minimal condition
numbers. To this end, let Ω denote the family of all parameter sets ω such that Pω is bounded
and strictly positive definite. Then, the optimal error reduction rate ρ∗ can be expressed as

ρ∗ = inf
ω∈Ω
‖Id− Pω‖a = 1− 2

1 + κ∗
, κ∗ := inf

ω∈Ω
κ(Pω) . (5.33)

Note that Ω may contain parameter sets with some negative or zero ωi. To cover such situations,
the theory of subspace correction methods based on stable space splittings (5.19) is not of
immediate help, as it can only deal with the case ωi > 0. Indeed, the operator P associated
with the space splitting (5.19) becomes Pω if the auxiliary bilinear forms bi(ui, vi) are replaced
by their weighted versions ω−1

i ·bi(ui, vi), i ∈ I. Thus, whenever the space splitting is stable, and
0 < ωmin ≤ ωi ≤ ωmax < ∞, the space splitting with these modified auxiliary scalar products
is also stable according to (5.21), and satisfies

ωmin

ωmax
κ(P ) ≤ κ(Pω) ≤ ωmax

ωmin
κ(P ) .

For ωi > 0 and finite I, this rough estimate guarantees ω ∈ Ω, but does not help in minimizing
κ(Pω), nor in dealing with sets ω ∈ Ω that contain some negative ωi.

A priori choice of scaling parameters

We want to find a set ω∗ ∈ Ω that realizes or at least comes close to the optimal error reduction
rate (5.33), i.e. ρ∗ = ρ(Pω∗) and κ∗ = κ(Pω∗), respectively.
Even though we do not believe that this leads to a practically useful approach in this gen-

erality, we mention that the problem of finding ω∗ can be formulated as semi-definite program
(if H is finite dimensional, and I is finite). To this end, we set

A =

(
0 0
0 −Id

)
, Ai =

(
−Ti 0

0 Ti

)
, A′ =

(
Id 0
0 0

)
.

Then minimizing the value of λ with respect to the vector of variables (ω, λ) subject to the
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constraint that
A +

∑
i∈I

ωiAi + λA′ ≥ 0 (5.34)

is a semi-definite program [VB96]. It computes the set of weights ω∗ that realizes the optimal
error reduction rate (5.33) under the constraint that the 2 × 2-system on the left-hand side
of (5.34) is positive semi-definite. If (ω̃, λ̃) is a minimizer of (5.34), we have

κ∗ = λ̃, ω∗i =
2ω̃i

1 + λ̃
, i ∈ I .

For related problems, we refer the reader to [KOPT13] and the references therein. In this
chapter, we tackle this problem for sparse grid discretizations in a less general but more efficient
way by incorporating knowledge on the tensor product structure of sparse grid spaces and a
norm equivalence (5.4).

5.2.3 Subspace splittings for generalized sparse grids

In Subsection 5.2.1, we recalled the general theory of additive subspace correction methods
and introduced multiple scaling parameters in Subsection 5.2.2. We now become more specific
and put the theory in the context of generalized sparse grid spaces. First, note that the norm
equivalence (5.4) is in fact a stable subspace splitting

{H, a(·, ·)} =
∑
k∈Nd
{Wk, βk(·, ·)V } (5.35)

with a finite condition number denoted by κW . Note that in (5.35) we have a decomposition of
H into a direct sum of V -orthogonal subspaces, which allows us to omit the trivial embedding
operators RWk : Wk → H that correspond to the Ri in (5.19) and (5.20).
Of course, for any generalized sparse grid space VI ⊂ H, (5.4) implies an associated stable

subspace splitting
{VI , a(·, ·)} =

∑
k∈I
{Wk, βk(·, ·)V } (5.36)

with condition numbers κWI uniformly bounded by κW . Thus, if #I <∞, we arrive at subspace
correction methods for solving (5.1) on generalized sparse grid spaces H = VI with convergence
rates that are uniform with respect to I. The computational cost per step of these optimally
converging methods essentially depend on the involved subproblem solvers TWk : VI → Wk.
Since Wk ⊂ H, we can write (5.23) for bi(·, ·) = (·, ·)V directly in the form

(TWk u,wk)V = a(u,wk) ∀ wk ∈Wk .

We still have to account for the βk-weights in (5.36), which is done in the update step of the
resulting subspace correction method

u(m+1) = u(m) + τ
∑
k∈I

ωWk TWk e(m), m = 0, 1, . . . (5.37)
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by setting ωWk = β−1
k ,k ∈ I. Here, an appropriately selected relaxation parameter τ > 0 guar-

antees convergence rates uniformly in I. Note that methods like steepest descent or conjugate
gradients determine τ (m) automatically in every iteration step m.
However, computing with the spaces Wk is often not as convenient as computing with the

original anisotropic full grid spaces Vl. This is why we now turn to the splitting

{VI , a(·, ·)} =
∑
l∈I
{Vl, γl(·, ·)V } (5.38)

with positive weights γl, l ∈ I, which only needs subspace solvers T Vl : VI → Vl ⊂ VI ,

(T Vl u, vl)V = a(u, vl) ∀ vl ∈ Vl ,

that operate on full grid subspaces. The subspace correction method, which is based on the
V -splitting corresponding to (5.38), is then of the form

u(m+1) = u(m) + τ
∑
l∈I

ωVl T
V
l e

(m), m = 0, 1, . . . , (5.39)

with ωVl = γ−1
l . The next subsection deals with the implementation of (5.39) in a generating

system for given scaling factors ωVl . In the sections after that, we explore possibilities to
determine optimal or close-to-optimal weighs γ−1

l and the corresponding scaling factors ωVl ,
such that the resulting convergence rates are competitive with the rates of the W -splitting
based method (5.37) for given βk,k ∈ I.

5.2.4 Implementation

In this section, we describe the implementation of the sparse grid subspace correction meth-
ods (5.39) and discuss the computational complexity of one iteration step. For representing
elements in our generalized sparse grid space VI , we use the generating system ΦI from (4.21)
with NI degrees of freedom. We assume that the unidirectional principle from Subsection 4.3.2
is available, which allows us to compute the matrix-vector product

yI = AIxI ⇐⇒ yl,i =
∑
k∈I

∑
j∈χk

a(φk,j, φl,i)xk,j ∀ i ∈ χl, l ∈ I

with a computational complexity that is linear in the number of degrees of freedom NI .
In the last subsection, we did not need the embedding operators Ri : Hi → H from (5.19)

and (5.20), since the corresponding RVl : Vl → VI are simply the identity in the subspace case
Vl ⊂ VI and could be dropped from the notation. In the matrix-vector setting, we need however
the associated rectangular matrices RI,l ∈ RNI×nl that act as the identity on coefficients that
belong to Vl, and pad all other entries with zeros. Note that RT

I,l ∈ Rnl×NI crops a generating
system vector by extracting only the coefficients that belong to subspace Vl.
Now, let x

(m)
I ∈ RNI be the vector representing the current iterate u(m) in the generating

system ΦI . The corresponding residual is then given by

r
(m)
I = b−AIx

(m)
I = AIe

(m)
I ,
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where e
(m)
I := xI − x

(m)
I is the current error vector. The auxiliary variational problem (5.25)

for the space Vl translates into

Ml(x
(m)
I )l = RT

I,l(bI −AIx
(m)
I ) = RT

I,lr
(m)
I , (5.40)

where Ml ∈ Rnl×nl is the mass matrix on the subspace Vl with

(Ml)i,j = (φl,i, φl,j)V ∀ i, j ∈ χl ,

which in the linear spline case and (·, ·)V = (·, ·)L2(Ωd) is simply a d-fold Kronecker-product
of tridiagonal matrices (or band-limited matrices in the higher-order case), and can therefore
be inverted with computational costs of O(nl) operations. Having solved for x

(m)
l , the vector

representation of u(m)
l = T Vl e

(m) is simply RI,lx
(m)
l . Obviously, these tasks can be performed

for all l ∈ I with total costs of O(NI) operations. The topic of the following Sections 5.3
and 5.4 is how to choose scaling factors ωVl , l ∈ I. For now, we assume the ωVl are given, and
so we can set

x
(m+1)
I = τ (m)

∑
l∈I

ωVl RI,lx
(m)
l + η(m)(x

(m)
I − x

(m−1)
I ) (5.41)

with optimal τ (m) and η(m) = 0 for the steepest descent case, and optimal τ (m) and η(m) for
the conjugate gradient (CG) case. The computation of the optimal values τ (m) or (τ (m), η(m))
associated with the minimization problems (5.28) and (5.30) leads to a 1× 1 and 2× 2 system
of linear equations in the steepest descent and CG case, respectively. Setting up the system
requires only a fixed number of matrix-vector multiplications, which can be computed with
O(NI) operations. The solution for τ (m) or (τ (m), η(m)) can be done with costs of O(1), and
the update step (5.41) is linear in the number of degrees of freedom NI . Altogether, we arrive
at a complexity of the order O(NI). This holds for any generalized sparse grid space.

5.3 Positive scalings for sparse grid subspace correction methods

In the following subsection, we present a method that explores the theory of stable subspace
splittings and shows how to determine (positive) γl-weights by solving a linear optimization
problem such that the condition number of the splitting is in some sense minimal. Then, in
Subsection 5.3.2, we show that Ht-elliptic problems and the best possible positive scaling lead
to condition numbers of Θ(Jd−2) for J →∞ for dimensions d ≥ 2, which we can substantially
improve by admitting negative scaling factors in the subsequent Section 5.4.

5.3.1 Formulation as Linear Program

Now, we want to determine weights γl > 0, l ∈ I, such that the splitting number κVI of (5.38)
is small. To this end, we take a detour: Instead of estimating κVI by comparing a(u, u) = ‖u‖2a
and the squared splitting norm

|||u|||2{γl}I ,V = inf
u=

∑
l∈I ul

∑
l∈I

γl‖ul‖2V (5.42)
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associated with (5.38) directly, we concentrate on comparing |||u|||2{γl}I and the squared splitting
norm

|||u|||2{βk}I ,W =
∑
k∈I

βk‖wk‖2V , u =
∑
k∈I

wk, wk ∈Wk (5.43)

associated with (5.36). We define

0 < λWV
min := inf

u∈VI

|||u|||2{βk}I ,W
|||u|||2{γl}I ,V

≤ λWV
max := sup

u∈VI

|||u|||2{βk}I ,W
|||u|||2{γl}I ,V

<∞ ,

and try to minimize κWV
I := λWV

max/λ
WV
min which is the relative condition number between the

two splittings ∑
k∈I
{Wk, βk(·, ·)V } and

∑
l∈I
{Vl, γl(·, ·)V } (5.44)

based on the same underlying generalized sparse grid space VI . Since

a(u, u)

|||u|||2{γl}I ,V
=

a(u, u)

|||u|||2{βk}I ,W
·
|||u|||2{βk}I ,W
|||u|||2{γl}I ,V

,

we get an upper and lower estimate of the condition number κVI of (5.38) as

max(κWI /κ
WV
I , 1) ≤ κVI ≤ κWI κWV

I . (5.45)

Thus, under the assumption that an orthogonal splitting (5.36) (with a preferably low κWI ) is
available, the minimization of κWV

I results in tight upper and lower bounds for κVI .
In the remainder of this subsection, we express κWV

I in explicit form as a function of the
parameters ωVl = γ−1

l ≥ 0, l ∈ I, which can then be minimized using an LP. Note that we do
not exclude the case ωVl = 0 (formally, this corresponds to γl =∞) for which the corresponding
subspaces Vl in (5.42) and thus the corresponding operators T Vl in (5.39) are “switched off”. As
a first step, we express the norm |||u|||{γl}I ,V in terms of V -orthogonal decompositions into the
subspaces Wl.

Lemma 5.3. For weights γl, l ∈ I, and αk,k ∈ I, with

αk := (
∑
l≥k

γ−1
l )−1 for k ∈ I , (5.46)

the norm (5.42) is given by
|||u|||{γl}I ,V = |||u|||{αk}I ,W . (5.47)

Proof. We obtain the result by the following rearrangements

|||u|||2{γl}I ,V = inf
ul∈Vl,l∈I
u=

∑
l∈Iul

∑
l∈I
γl‖ul‖2V

= inf
wl,k∈Wk,l∈I,k≤l
u=

∑
l∈I,k≤lwl,k

∑
l∈I
γl
∑
k≤l
‖wl,k‖2V
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= inf
wl,k∈Wk,k∈I,l≥k
u=

∑
k∈I,l≥kwl,k

∑
k∈I

∑
l≥k

γl‖wl,k‖2V ,

where we first replaced each ul by its unique V-orthogonal decomposition ul =
∑

k≤lwl,k with
wl,k ∈ Wk, and then changed the order of summation. Note that wk =

∑
l≥kwl,k must hold

for all k ∈ I. Thus the infimum and the summation over k commute, and we get

|||u|||2{γl}I ,V =
∑
k∈I

inf
wl,k∈Wl,l≥k
wk=

∑
l≥kwl,k

∑
l≥k

γl‖wl,k‖2V

=
∑
k∈I

(∑
l≥k

γ−1
l

)−1
‖wk‖2V . (5.48)

The equality (5.48) follows from solving a quadratic minimization problem, see also [GO95b].
Note that we can conclude that αl > 0 for all l ∈ I if γl is finite for at least all maximal
subspaces Vl in VI (i.e., those Vl for which Vl ⊂ Vk ⊂ VI implies k = l). But this must be true
for any splitting (5.38), which concludes the proof.

Lemma 5.3 says that the norm ||| · |||{γl}I ,V is also the norm of a weighted space splitting of VI
into V -orthogonal subspaces Wk with the αk-weights from (5.46). Since W -splittings are direct
sum splittings this means we can easily compute the splitting condition number κWV

I between
the V -splitting and the W -splitting in (5.44) by directly comparing βk and αk for k ∈ I. The
following theorem is therefore an immediate consequence of Lemma 5.3.

Theorem 5.4. Let I be an index set, and consider the splittings in (5.44) with weights (βk >
0)k∈I and (γl > 0)l∈I , where γl <∞ or ωVl = γ−1

l > 0 for at least all maximal subspaces Vl in
VI . Then, the best constants in the norm equivalence

λmin|||u|||2{γl}I ,V ≤ |||u|||
2
{βk}I ,W ≤ λmax|||u|||2{γl}I ,V ,

valid for any u =
∑

k∈I wk ∈ VI , where wk ∈Wk, k ∈ I, are given by

λmax = max
k∈I

βk
∑

l≥k
γ−1
l and λmin = min

k∈I
βk
∑

l≥k
γ−1
l .

In particular, it holds that

κWV
I =

maxk∈I βk
∑

l≥kγ
−1
l

mink∈I βk
∑

l≥kγ
−1
l

. (5.49)

Now, we want to minimize κWV
I with respect to (γl)l∈I . To this end, we write κWV

{γl}I instead of
κWV
I to indicate the dependence of the condition number on the set of γl-weights and formulate

the problem of finding the optimal weights and scaling parameters

(γ∗l )l∈I := argmin(γl>0)l∈Iκ
WV
{γl}I with ωVl = (γl)

−1, l ∈ I, (5.50)
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as the LP

Minimize λ

subject to
∑
l≥k

ωVl ≥ β−1
k ∀ k ∈ I (5.51)

and β−1
k λ−

∑
l≥k

ωVl ≥ 0 ∀ k ∈ I (5.52)

and λ ≥ 0, ωVk ≥ 0 ∀ k ∈ I , (5.53)

which can then be solved by one of the common LP algorithms. The vector of unknowns(
λ, (ωVl )l∈I

)
of this LP is of size #I + 1. As we will see, the parameter λ represents an upper

bound for κWV
{γl}I .

Let us check that the above LP is indeed minimizing κWV
{γl}I . The inequality constraints (5.51)

are equivalent to
βk
∑

l≥k
γ−1
l ≥ 1, k ∈ I ,

which ensures that for any feasible vector the denominator of (5.49) is at least 1. Moreover, the
inequalities (5.51) imply that for any k ∈ I there is at least one l ≥ k in I such that γl <∞,
i.e., feasible

(
λ, (ωVl )l∈I

)
create admissible weight sets such that VI =

∑
l∈I
γl<∞

Vl. The other set

of constraints (5.52) can be rewritten as

βk
∑

l≥k
γ−1
l ≤ λ , k ∈ I ,

which implies that for any feasible vector we guarantee that λ ≥ κWV
{γl}I according to (5.49).

Altogether, this specifies a LP with non-empty feasibility set, and any optimal solution provides
a set of weights (γ∗l )l∈I minimizing κWV

{γl}I .
Now, we return to the Ht-elliptic model problems given in Section 5.1 and prove upper and

lower bounds for the condition number.

5.3.2 Bounds for H t-elliptic problems

In [GO94], a set of γl-weights for a regular sparse grid space splitting (i.e., (5.38) with I = SdJ
from (4.10)) was constructed which resulted in a condition number κVSdJ

= O(Jd−2) for the

special case of H1-elliptic problems discretized by linear splines. Theorem 5.5 gives a similar
result for general Ht-elliptic problems. Note that it is asymptotically sharp, i.e., κVSdJ

possesses
a matching lower bound.

Theorem 5.5. Let d ≥ 2, and consider the discretization of a Ht-elliptic problem with regular
sparse grid spaces VSdJ based on Cr splines of degree m ≥ r + 1, where 0 < t < r + 3/2. We
denote the condition number of the splitting (5.38) with I = SdJ and the set of weights (γl)l∈I
by κV{γl}Sd

J

. For optimal γl-weights, the condition number κV{γl}Sd
J

grows as Θ(Jd−2) in J , i.e.,

it holds
max(cJd−2, 1) ≤ inf

(γl>0)
l∈Sd

J

κV{γl}Sd
J

≤ CJd−2
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with constants 0 < c < C <∞ independently of J ≥ 1.

Proof. According to (5.45), it is sufficient to prove this result for the optimal value of κWV
{γl}Sd

J

of (5.44), where the underlying weights βk = 22t|k|∞ ,k ∈ SdJ , originate from the well-known
norm equivalence (5.4) for Ht. To obtain upper and lower bounds, we use the characterization
of the optimal κWV

{γl}Sd
J

via the LP. The value of λ associated with any feasible solution of the LP

gives an upper bound for κWV
{γl}Sd

J

. We choose the set of weights (γl)l∈SdJ from [GO94] to define

the ωVl as follows:

ωVl =


2−2t|l|∞ , |l|1 = J ,
2−2tl, l = (l, . . . , l), l = 0, . . . , bJ/dc ,
0, otherwise .

(5.54)

It is easy to check that, with this choice for the ωVl , the inequalities (5.51) are automatically
satisfied since, for any k ∈ SdJ , there is a l ∈ SdJ with l ≥ k such that ωVl = β−1

k . Indeed, if
k := |k|∞ ≤ J/d, then l = (k, . . . , k) ∈ SdJ will do, if k > J/d then we can find a l ≥ k with
|l|∞ = k, and |l|1 = J since k ≤ |k|1 ≤ J and dk > J .
The inequalities in (5.52) are satisfied by determining a suitable λ. To this end, we have to

bound the maximum of the quantities

λk := βk
∑

l∈SdJ : l≥k
ωVl , k ∈ SdJ .

Since βk = 22t|k|∞ depends on k = |k|∞ only, the maximum of the λk with the same value k is
obtained for k = (k, 0, . . . , 0). Thus, for each k = 0, . . . , J , we must ensure that

λ ≥ λ(k,0,...,0) =

bJ/dc∑
l=k

22t(k−l) +
J∑
l=k

22t(k−l) ∑
l≥(k,0,...,0)
|l|1=J, |l|∞=l

1 .

The first sum stems from the ωVl > 0 with l = (l, . . . , l) ≥ (k, 0, . . . , 0) (if such indices exists
in SdJ), and is uniformly bounded with respect to k and J since t > 0. The second sum stems
from the remaining non-zero ωVl with l ≥ (k, 0, . . . , 0) and |l|1 = J , ordered by their value
l := |l|∞ ≥ k. For a rough estimate of the counting sum, observe that

{l ≥ (k, 0, . . . , 0) : |l|1 = J, |l|∞ = l} ⊂
d⋃
i=1

{l : li = l,
∑
j 6=i

lj = J − l} .

Thus, ∑
l≥(k,0,...,0)
|l|1=J, |l|∞=l

1 ≤ d ·#{n ∈ Nd−1 : |n|1 = J − l} ≤ C ′dJd−2

with C ′ independent of l, k, and J . This shows that the first and second sum together, and
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thus the maximum of the λk, are bounded by CJd−2, with a constant C independent of k
and J . As a consequence, we can always choose some λ ≤ CJ (d−2) to arrive at a feasible vector(
λ, (ωVl )l∈I

)
. This gives the desired upper bound.

A matching lower bound can be found from considering the corresponding dual LP. To for-
mulate it we use two vectors y = (yk)k∈SdJ and z = (zk)k∈SdJ associated to (5.51) and (5.52),
respectively. The dual problem then reads

Maximize
∑
k∈SdJ

β−1
k yk (5.55)

subject to
∑
k∈SdJ

β−1
k zk ≤ 1 (5.56)

and
∑
k≤l

yk ≤
∑
k≤l

zk ∀ l ∈ SdJ (5.57)

and y, z ≥ 0 . (5.58)

All we have to do is to find a feasible pair of vectors for this dual LP and to evaluate the target
function on it. To this end, fix the smallest integer k ≥ J/2 and set

zk =

{
22tk, k = (k, 0, . . .) ,
0, otherwise , yk =

{
22tk, k = (k, k2, . . . , kd), |k|1 = J ,
0, otherwise .

These vectors trivially fulfil (5.56) and (5.58). For (5.57) observe that
∑

k≤l yk contains exactly
one non-zero term (namely yk = 22tk if k = (k, k2, . . . , kd) satisfies |k|1 = J and equals l). Since
(k, 0, . . . , 0) ≤ l for such l, we have

22tk =
∑
k≤l

yk = z(k,0,...,0) =
∑
l≤k

zl .

For all other l, the inequality (5.57) is automatically valid since
∑

k≤l yk = 0.

Now, the value of the target functional for this feasible pair of vectors is∑
k∈SdJ

β−1
k yk =

∑
k2+...+kd=J−k

1 ≥ c′(J − k)d−2 ≥ cJd−2 ,

where we have used the fact that, due to k ≥ J/2 for all k with yk = 22tk > 0, we have |k|∞ = k,
and thus β−1

k yk = 1. This proves the lower bound.

For standard Ht-elliptic problems (t > 0) in dimensions d ≥ 3, Theorem 5.5 shows that we
cannot expect an optimal preconditioner derived from (5.38) using positive weights only. We
investigate the possibility of negative scaling factors ωVl in the following Section.
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5.4 Unconstrained scalings for sparse grid subspace correction
methods

In the last section, we have seen that for sparse grid discretizations of standard Ht-elliptic
problems (t > 0) in dimensions d ≥ 3, we cannot expect optimal convergence of the subspace
correction method (5.39) using positive scaling factors ωVl , l ∈ I, only. In this section, we
see that there is an algebraic transformation that allows us to obtain optimal convergence
rates, i.e., the same rates we would expect from a W -splitting based method (5.37) given the
norm equivalence (5.4). To this end, we have to circumvent the subspace splitting theory
since partially negative scaling factors occur. We explicitly state for which sets of positive and
negative scaling factors the resulting subspace splitting operator remains positive definite. First,
we need the V -orthogonal projectors QVl : VI → Vl and QWk : VI →Wk with

(QVl u, vl)V = (u, vl)V ∀ vl ∈ Vl and
(QWk u,wk)V = (u,wk)V ∀ wk ∈Wk ,

respectively. The following simple lemma proves helpful for future considerations.

Lemma 5.6. For k ≤ l, we have QVk T
V
l = T Vk and QWk T

V
l = TWk .

Proof. This immediately follows from

(QVk T
V
l u, vk)V = (T Vl u, vk)V = a(u, vk) = (T Vk u, vk)V ∀ vk ∈ Vk ,

and
(QWk T

V
l u,wk)V = (T Vl u,wk)V = a(u,wk) = (TWk u,wk)V ∀ wk ∈Wk .

The following theorem gives a formula for rewriting the subspace correction scheme based on
a W -splitting (5.37) as a subspace correction method based on a V -splitting (5.39).

Theorem 5.7. We have ∑
k∈I

ωWk TWk =
∑
l∈I

ωVl T
V
l

if
ωVl =

∑
e∈{0,1}d
l+e∈I

(−1)|e|1ωWl+e . (5.59)

Proof. From the classical combination technique [GSZ92, BGRZ94, BGR94, HGC07] for pro-
jections based on tensor scalar products, we know that

QWk =
∑

e∈{0,1}d
k−e∈I

(−1)|e|1Qk−e . (5.60)
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This carries over to the subspaces solvers by using Lemma 5.6 twice, i.e., we have

TWk = QWk T
V
k =

∑
e∈{0,1}d
k−e∈I

(−1)|e|1QVk−eT
V
k =

∑
e∈{0,1}d
k−e∈I

(−1)|e|1T Vk−e .

Then we can easily write∑
k∈I

ωWk TWk =
∑
k∈I

ωWk
∑

e∈{0,1}d
k−e∈I

(−1)|e|1T Vk−e

=
∑
l∈I

( ∑
e∈{0,1}d
l+e∈I

(−1)|e|1ωWl+e

)
T Vl .

Theorem 5.7 shows that our W -splitting based Schwarz operator can be expressed using the
operators T Vl only. A similar idea was already used in [BPX90] for the full grid case, i.e.,
when the underlying space splitting is based on spaces Vl := V(l,...,l). Often, this case is benign
because for scaling parameters ωWl = 2−2tl, typical for Ht-elliptic problems with t > 0, we have

ωVl = ωWl − ωWl+1 = 2−2lt − 2−2t(l+1) = 2−2l(1− 2−2t) ' ωWl ,

which means that we do not need to form orthogonal complements at all, neither implicitly nor
explicitly. In our sparse grid case, the differences involve however 2d terms, and we generally
cannot expect ωWl ' ωVl to hold uniformly in l. Moreover, negative ωVl are possible.
If we set ωWk = 1 for k ∈ I, Theorem 5.7 yields the standard combination technique [GSZ92,

BGRZ94, BGR94], a popular method for approximating sparse grid solutions of, e.g. partial
differential equations. Our case differs in the respect that our subspace solvers are based on
the auxiliary bilinear forms (·, ·)V instead of a(·, ·). Furthermore, we have ωWk = β−1

k with βk
that stem from the norm equivalence (5.4). Finally, we do not stop after one iteration step but
converge into the true sparse grid solution.
As already mentioned in Subsection 5.2.2, it is crucial that the operator Pω is positive definite.

This is guaranteed for positive weights, but Theorem 5.7 suggests that even partially negative
weights may result in a positive definite operator. We characterize these ω = (ωVl )l∈I by the
following theorem.

Theorem 5.8. The operator Pω =
∑

k∈I ω
V
k T

V
k is positive definite if and only if∑

k≥j
ωVk > 0 ∀ j ∈ I . (5.61)

Proof. With Lemma 5.6, we get

Pω =
∑
k∈I

ωVk T
V
k =

∑
k∈I

ωVk
∑
l≤k

QWl T
V
k =

∑
k∈I

ωVk
∑
l≤k

TWl =
∑
l∈I

(∑
k≥l

ωVk

)
TWl
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and thus

a(Pωu, u) =
∑
l∈I

(∑
k≥l

ωVk

)
a(TWl u, u) =

∑
l∈I

(∑
k≥l

ωVk

)
(TWl u, TWl u)V .

Now, if the scaling factors wVl satisfy (5.61) and if u 6= 0, it follows directly that a(Pωu, u) > 0.
Otherwise, if the condition (5.61) is violated for a j ∈ I, pick a zj ∈ Wj, zj 6= 0 and compute
u ∈Wj ⊂ VI by

a(u,wj) = (zj, wj)V ∀ wj ∈Wj .

Then TWk u = δkjwj and a(Pωu, u) =
(∑

k≥j ω
V
k

)
(zj, zj)V ≤ 0, which concludes the proof.

With Theorem 5.8 we see that the positivity constraints (5.53) of our Linear Program from
Subsection 5.3 are too restrictive and can be dropped. This is because the requirement (5.61)
is already covered by (5.51). However, positive weights are an integral part of the derivation
using the subspace splitting theory. Nonetheless, note that the set of scaling factors (ωVl )l∈I
proposed in (5.59) for ωWk := β−1

k ,k ∈ I, would be a solution to the Linear Program from
Section 5.3 with λ = 1 without the positivity constraints (5.53).

5.5 An orthogonal projection based preconditioner

In the previous section, we have learned that negative scaling factors can be used to effectively
implement W -splitting based subspace correction methods using V -spaces only, and still lead
to positive definite operators Pω. However, the corresponding scaling matrix in the generating
system representation is not positive definite and and cannot be symmetrized. In this section,
we present a preconditioner from [GH14b] that follows a similar idea as in Section 5.4 but is
positive definite in the generating system representation as well. We do not rely on the theory
of subspace splittings anymore but give a self-contained linear algebra view on the topic.
We assume a norm equivalence (5.4) with norm equivalence constants λmin and λmax. Note

that for u =
∑

k∈I wk ∈ VI ⊂ H with wk ∈Wk,k ∈ I, it immediately follows that

‖u‖2a '
∑
k∈I

βk‖wk‖2V , (5.62)

with norm equivalence constants

λImin := inf
06=u∈VI

‖u‖2a∑
k∈Nd βk‖wk‖2V

≥ λmin and λImax := sup
06=u∈VI

‖u‖2a∑
k∈Nd βk‖wk‖2V

≤ λmax

and the inequality κI := λImax/λ
I
min ≤ κ = λmax/λmin holds independently of I. In the next

subsection, we propose a matrix CI that can be applied cheaply to a vector and acts as a
preconditioner on the system

AIxI = bI (5.63)

from (4.22). Of course, CIAI still has a non-trivial null space due to the redundancy of the



88 5 Preconditioning of high-dimensional elliptic equations

generalized sparse grid generating system (4.21), but the generalized condition number satisfies

κ̃(CIAI) = λImax/λ
I
min = κI , (5.64)

where λImax/λ
I
min are the norm equivalence constants from (5.62). Note that if I = FdJ , this

also results in a full grid preconditioner CJ on AJ by

κ̃(CFdJAFdJ ) = κ̃(CFdJSTFdJ
AJSFdJ ) = κ(SFdJCFdJSTFdJ

AJ) ,

and we can deduce that CJ := SFdJCFdJSTFdJ
. For general index sets I, we do not achieve such

a non-redundant representation, but semi-convergent iterative methods [Kaa88, BP94, Gri94b]
are still applicable to the preconditioned system (5.63).

5.5.1 Construction

The norm equivalence (5.62) holds for orthogonal subspaces Wl, l ∈ I. In order to make this
result available to our discretization, which is based on the subspaces Vl, l ∈ I, we can use an
explicit orthogonalization operator.

Orthogonalization Operator

We now consider the whole multivariate sequence of subspaces Vl, l ∈ I, which we denote as

V̂I = (Vl)l∈I .

For û = (ul)l∈I , v̂ = (vl)l∈I ∈ V̂I , we define the scalar product

(û, v̂)
V̂I

=
∑
l∈I

(ul, vl)V .

Then, we define the operator FI : V̂I → V̂I by

FI û = (QWl ul)l∈I ,

where QWl is again the V -orthogonal projection into Wl. Note that we can rewrite (5.60) as

QWl = (Q
(1)
Vl1
−Q(1)

Vl1−1
)⊗ · · · ⊗ (Q

(d)
Vld
−Q(d)

Vld−1
) , (5.65)

where the Q(p)
Vl
, p = 1, . . . , d, denote the one-dimensional V (p)-projections into the spaces V (p)

l ,

see (4.3), for l ∈ N and Q(p)
Vl

= 0 for l = −1.
The operator FI can be given in block-diagonal matrix form as FI : RNI×NI with blocks

(FI)l,k ∈ Rnl×nk and

(FI)l,k =

{
QW

l for l = k ,

0 else
(5.66)

for all l,k ∈ I, where QW
l ∈ Rnl×nl is the matrix representation of the operator QWl restricted
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to the subspace Vl. Considering (5.65), the matrices QW
l can be expressed by

QWl
=(I

(1)
l1,l1
− I

(1)
l1,l1−1(M

(1)
l1−1)−1I(1)

l1−1,l1M
(1)
l1

)⊗ . . . (5.67)

· · · ⊗ (I
(d)
ld,ld
− I

(d)
ld,ld−1(M

(d)
ld−1)−1I

(d)
ld−1,ld

M
(d)
ld

)

where M
(p)
l , p = 1, . . . , d, l ∈ N, are the non-hierarchical isotropic mass matrices

(M
(p)
l )ij = (φl,i, φl,j)V (p) .

In (5.67), besides the simple two-level restrictions and prolongations, d applications of one-
dimensional mass matrices and d applications of the inverse of one-dimensional mass matrices
are employed. In the practically relevant cases of V (p) = L2(Ω) and polynomial splines, both
operations can be executed cheaply since only band matrices are involved here.
Note that the matrix FI is block-diagonal but not symmetric since its blocks on the diagonal

are not symmetric. This is remarkable as the corresponding operator FI : V̂I → V̂I is self-
adjoint. In fact, the non-symmetry is a property of the matrix representation only.
For our preconditioner, we also need to apply FT

I efficiently. To obtain a favorable represen-
tation of FT

I , we first consider the mapping

ZI : RNI → V̂I

that maps a block-structured vector xI = (xl,i)i∈χl,l∈I of the enlarged generating system to the
sequence of subspaces by

ZI : xI 7→
(∑

i∈χl

xl,iφl,i

)
l∈I

. (5.68)

Note that FI and FI are linked by FI = Z−1
I FIZI .

Lemma 5.9. The adjoint Z∗I : V̂I → RNI of (5.68) is given by

Z∗I : û 7→ xI with xI = ((ul, φl,i)V )i∈χl,l∈I for û = (ul)l∈I .

Proof. For any v̂ = (vl)l∈I ∈ V̂I and xI ∈ RNI , we have

(ZIxI , v̂)VI =
∑
l∈I

(∑
i∈χl

xl,iφl,i, vl

)
V

=
∑
l∈I

∑
i∈χl

xl,i(vl, φl,i)V = (xI , Z∗I v̂)`2 .

Now, having ZI and Z∗I , we are able to give a computationally efficient representation of FT
I .

Lemma 5.10. It holds that
FT
I = GIFIG

−1
I ,
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where GI : RNI×NI is a block-diagonal matrix with blocks (GI)l,k ∈ Rnl×nk and

(GI)l,k =

{
Ml for l = k ,

0 else

for all l,k ∈ I with the mass matrices Ml =
⊗d

p=1 M
(p)
lp

.

Proof. It holds that

(Z∗IZIxI , ŷd,J)`2 = (ZIxI , ZIyI)VI =
∑
l∈I

∑
i,j∈χl

xl,i(φl,i, φl,j)V yl,j = xITGIyI ,

and thus Z∗IZI = GI . Then, we can infer

(FI)T = (Z−1
I FIZI)∗ = Z∗IFI(Z

−1
I )∗ = GI(ZI)−1FIZIG

−1
I = GIFIG

−1
I .

Note furthermore that the operator FI is a projection, i.e. FIFI = FI . The same is true for
FI since

FIFI = (ZI)−1FIZI(ZI)−1FIZI = (ZI)−1FIFIZI = (ZI)−1FIZI = FI .

Finally, we need the following Lemma.

Lemma 5.11. For a block-diagonal scaling matrix DI ∈ RNI×NI with blocks (DI)l,k ∈ Rnl×nk

for l,k ∈ I and

(DI)l,k =

{
clIl,l for l = k ,

0 else ,

the matrix DI commutes with any other block-diagonal matrix BI ∈ RNI×NI , i.e. a block-
structured matrix with blocks (BI)l,k ∈ Rnl×nk for l,k ∈ I, where

(BI)l,k =

{
Bk for l = k ,

0 else ,

and Bk ∈ Rnk×nk are general matrices.

Proof. For ease of notation, we use Kronecker’s δ in this short proof. It holds that

(DIBI)l,k =
∑
m∈I

(DI)l,m(BI)m,k =
∑
m∈I

δl,mclδm,kBk = δl,kclBk

= δl,kBlck =
∑
m∈I

δl,mBmδm,kcm =
∑
m∈I

(BI)l,m(DI)m,k = (BIDI)l,k ,

and thus DIBI = BIDI .

Obviously, Lemma 5.11 can be applied to, e.g., BI = FI or BI = GI .
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Preconditioner

Now we present the projection based preconditioner for the operator matrix AI . To this end,
the most important ingredient is the norm equivalence (5.4) with weights (βl)l∈I .

Theorem 5.12. Let DI ∈ RNI×NI be a diagonal block-structured scaling matrix with blocks
(DI)l,k ∈ Rnl×nk and

(DI)l,k =

{
βlIl,l for l = k ,

0 else

for all l,k ∈ I. Then, the generalized condition number of the symmetric matrix

L−1
I FT

ID
−1/2
I AID

−1/2
I FIL

−T
I (5.69)

is κI = λImax/λ
I
min, where λ

I
min and λImin are the norm equivalence constants of (5.62) and LI

denotes the Cholesky factor of GI , i.e. GI = LILTI .

Proof. For any vector xI ∈ im(FI) ⊂ RNI , we have

xITFT
IAIFIxI = xITAIxI (5.70)

= a
(∑

l∈I

∑
i∈χl

xl,iφl,i,
∑
l∈I

∑
i∈χl

xl,iφl,i

)
'

∑
l∈I

βl

∥∥∥∑
i∈χl

xl,iφl,i

∥∥∥2

L2(Ωd)
(5.71)

=
∑
l∈I

βl(xI)
T
l Ml(xI)l

= xITDIGIxI . (5.72)

In (5.70), we have used FIxI = xI and in (5.71), we have applied the norm equivalence (5.62).
The levelwise summation of the mass matrix products was then expressed using the matrix GI
in (5.72). In the following, we need the block-diagonal factor LI of the Cholesky decomposition

GI = LILTI .

We set yI = LTID
1/2
I xI and obtain with DIGI = D

1/2
I GID

1/2
I , see Lemma 5.11, the equation

xITDIGIxI = xITD
1/2
I LILTID1/2xI = yITyI .

Then, using the equivalence of (5.70) and (5.72), and xI = D
−1/2
I L−TI yI , we obtain the relation

yITL−1
I D

−1/2
I FT

IAIFID
−1/2
I L−TI yI ' yITyI (5.73)

for all yI ∈ im(LTID
1/2
I FI) with the same constants for the upper and lower bounds as in (5.62).

With the commuting of the matrices FI and D
−1/2
I , see Lemma 5.11, the left-hand side of (5.73)

leads to (5.69).
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Finally, we have to show that no vI ∈ RNI with vI ⊥ yI affects the spectrum. From the
Fundamental Theorem of Linear Algebra, from FT

I = GIFIG
−1
I , see Lemma 5.10, and from

FT
ID

1/2
I = D

1/2
I FT

I we know that

vI ∈ ker(FT
ID

1/2
I LI) = ker(D

1/2
I GIFIG

−1
I LI)

= ker(D
1/2
I GIFIL

−T
I L−1

I LI) = ker(FIL
−T
I ) . (5.74)

We dropped the matrix D
1/2
I GI from the kernel in (5.74), as it is a full-rank matrix and thus

has no effect on the kernel. Obviously, if vI ∈ ker(FIL
−T
I ), then vI belongs to the kernel of

the preconditioned system (5.69). This finally proves the theorem.

As a result of Theorem 5.12, we can express our left preconditioner for AI as

CI := D
−1/2
I FIL

−T
I L−1

I FT
ID
−1/2
I = FID

−1
I G−1

I FT
I = D−1

I FIG
−1
I . (5.75)

The representation (5.75) shows the close relation to the preconditioner with negative weights
from Section 5.4. The subspace-wise inversion of the mass matrices by G−1

I is done in (5.40).
Furthermore, in (5.41), the results are scaled with the factors ωVl , l ∈ I, that stem from the
combination formula (5.59). For the orthogonal projection based preconditioner (5.75), the
scaling is done by the simpler DI , but the combination formula is implicitly contained in the
projection operator (5.67). In spite of the similarities, having explicit orthogonal projections
is useful since it leads to a symmetric preconditioned matrix (5.69), which cannot easily be
achieved using the subspace correction method (5.39) with partially negative ωVl , l ∈ I. A
second advantage is related to the fact that the unidirectional principle allows in certain cases
to exploit orthogonality between subspaces, which reduces the dimension-dependence of the
constant factor in the costs of the operator application [Feu05]. The same principle also works
for vectors xI ∈ im(FI) and the unidirectional principle presented in Subsection 4.3.2, but we
do not pursue this route further.

5.5.2 Relation to prewavelets

The enlarged generating system introduced some additional difficulties like a non-trivial kernel
of the operator matrix and the need for an orthogonalization operator FI . This can be avoided
in the first place if a direct discretization of the orthogonal subspaces Wl is available, which is
just the case for so-called prewavelets and for wavelets. For the sake of completeness, we describe
this case in order to show the close relation to the method presented in Subsection 5.5.1.
Let us first assume that we have basis functions (ψl,i)i∈ξl,l∈I with

Wl = span{ψl,i : i ∈ ξl} for l ∈ I , (5.76)

and n̄l := #ξl. Note that we have V -orthogonality between different levels by definition, but
we have not necessarily V -orthogonality within one level. The sparse grid system (4.22) with
index set I and N̄I :=

∑
l∈I n̄l degrees of freedom reads

ĀI x̄I = b̄I ,
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where ĀI ∈ RN̄I×N̄I with

(ĀI)(l,i),(k,j) = a(ψl,i, ψk,j) for i ∈ ξl, j ∈ ξk, l,k ∈ I , (5.77)

and b̄I ∈ RN̄I with
(b̄I)l,i = (f, ψl,i)V for i ∈ ξl, l ∈ I .

Note that the system matrix ĀI is invertible, since the functions in (5.76) form a basis of VI
in contrast to the generating system (4.21).
Given a norm equivalence (5.62), it is quite easy to precondition the operator matrix ĀI . To

this end, we need a diagonal scaling matrix D̄I ∈ RN̄I×N̄I with blocks (D̄I)l,k ∈ Rn̄l×n̄k and

(D̄I)l,k =

{
βlĪl,l for l = k ,

0 else ,
(5.78)

where the Īl,l ∈ Rn̄l×n̄l denote identity matrices on the subspaces. Furthermore, we need the
subspace-wise mass matrix ḠI ∈ RN̄I×N̄I with blocks (ḠI)l,k ∈ Rn̄l×n̄k , where

(ḠI)l,k =

{
M̄l for l = k ,

0 else .

Here, M̄l ∈ Rn̄l×n̄l denotes the mass matrix

(M̄l)i,j = (ψl,i, ψl,j) for i, j ∈ ξl .

Then, we have the following theorem.

Theorem 5.13. The condition number of the matrix

D̄−1
I Ḡ−1

I ĀI (5.79)

is κI = λImax/λ
I
min, where λ

I
min and λImin are the norm equivalence constants of (5.62).

Proof. We translate the norm equivalence (5.62) into the matrix-vector setting for block-
structured vectors x̄I = ((x̄l,i)i∈ξl)l∈I ∈ RN̄I and obtain

x̄TI ĀI x̄I = a(
∑
l∈I

∑
i∈ξl

x̄l,iψl,i,
∑
l∈I

∑
i∈ξl

x̄l,iψl,i)

'
∑
l∈I

( d∑
p=1

22lp
)∥∥∥∑

i∈ξl
x̄l,iψl,i

∥∥∥2

L2(Ωd)
(5.80)

=
∑
l∈I

( d∑
p=1

22lp
)
x̄Tl M̄lx̄l

= x̄TI D̄IḠI x̄I .

This equivalence holds for all x̄I ∈ RN̄I . As both ĀI and D̄IḠI are symmetric positive
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definite matrices, it can be easily shown that the upper and lower bounds of (5.80) are also the
maximum and minimum eigenvalues of Ḡ−1

I D̄−1
I ĀI = D̄−1

I Ḡ−1
I ĀI .

Note that prewavelets have been used frequently in the past as the basis functions of regular
sparse grid discretizations [GO95b, Feu10], but mostly no special attention was paid to the
dependence of the condition number on the dimension. Let us consider the weak form of the
Laplacian a(·, ·) = (∇·,∇·)L2(Ωd) and (·, ·)V = (·, ·)L2(Ωd). A simple Jacobi-diagonal scaling of
ĀI is equivalent to replacing the subspace-wise inversion of the mass matrices Ḡ−1

I in (5.79) by
the identity and the D̄I from (5.78) by diag(ĀI). This seems reasonable since the resulting con-
dition numbers are still bounded independently of I for L2(Ωd)-stable basis functions. However,
they seem to grow exponentially with the dimension, see [Feu05] for numerical results. This is
clearly not the case for the system (5.79). Theorem 5.13 has shown that the condition number
is the same as of the norm equivalence (5.62), which is level- and dimension-independent for
the Laplacian according to Theorem 5.1.

5.5.3 Implementation

So far, we obtained a preconditioner that realizes a generalized condition number that matches
the condition number κI of (5.62). The question is now how high its computational costs
are. Remember that a perfect preconditioner would be the inverse of the operator matrix,
but that involves way too many computations and in our case AI is not even invertible. In
this subsection, we discuss the costs of the orthogonal projection based preconditioner from
Subsection 5.5.1 and the wavelet-based approach from Subsection 5.5.2.

Orthogonal projection based approach

With (5.69) we now have a preconditioner that involves only a number of floating point opera-
tions linear in the number of degrees of freedom NI of the enlarged system and that results in a
condition number κI bounded from above by κ from the norm equivalence (5.4) independently
of I.
We now give a short discussion of the required matrix-vector multiplications and their costs,

also with respect to the dimension d. As stated earlier, the orthogonal projection preconditioner
is closely related to the subspace correction approach, and in fact the runtime complexity is
the same. The application of the scaling matrix D−1

I is obviously possible with O(NI) floating
point operations. The matrix G−1

I is block-diagonal and can be implemented with an algorithm
that works subspace by subspace. On every Vl, l ∈ FdJ , the mass matrix Ml =

⊗d
p=1 M

(p)
lp

must
be inverted. As these matrices have Kronecker product structure, the inversion can be realized
by the application of (M

(p)
lp

)−1 to the dimension p for p = 1, . . . , d, which was already noted in
Subsection 5.2.4. We assume the functions (φl,i)i∈χl

to be of finite element type (h-version with
fixed polynomial degree) having local support. Consequently, the associated one-dimensional
matrices M

(p)
lp

have band matrix structure with constant band size and are thus invertible with
linear costs1. As a result, we have a cost of O(d · nl) on each subspace and obtain a cost

1Non-local basis functions (p-version) are likely to result in a Toeplitz-type matrix, which can be inverted in
log-linear time.
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complexity of O(d ·NI) in total. The same argumentation holds for FI , which has a somewhat
more complicated form, see (5.66) and (5.67), but also works subspace by subspace, where we
can again exploit a Kronecker product structure.
In total, we arrive at costs of O(d · NI) for our preconditioner. As before, we assume that

the application of AI is possible using the unidirectional principle from Subsection 4.3.2 with a
computational complexity that is linear in the number of degrees of freedom. However, typically
the associated dimension-dependent constant in the costs is proportional to 2d. This factor can
however be reduced to d2 in special cases like the Laplacian by exploiting the L2-orthogonality
between subspaces, see [Feu05] for a demonstration using prewavelets.
So far, we have expressed the computational effort with respect to the enlarged sparse grid

system with NI degrees of freedom. In case of dyadically refined spline spaces, we get a factor of
about 2d more degrees of freedom than actually needed, see (5.3). We consider this acceptable,
because the number of degrees of freedom of regular sparse grids NSdJ is of the order O(2JJd−1),
which is exponential in d anyway. Moreover, the number of degrees of freedom of energy sparse
grids is of the order O(2J) in J , but which involves a constant that is also exponential in d,
cf. [Gri06]. Note that it is possible to remove the redundancy of our multilevel discretization
via the generating system (4.21) by using prewavelets. This seems to eliminate the 2d-factor
by construction, but this step introduces additional difficulties, among them the setup of the
discrete right-hand side F (v) = (f, v)V for general functions f .

Prewavelet-approach

The system (5.79) gives us the preconditioner C̄I := D̄−1
I Ḡ−1

I for the prewavelet operator ma-
trix ĀI . At first sight, this approach looks simpler and more efficient than the more complicated
discretizations AI using the enlarged generating system (4.21) and the associated precondi-
tioner CI from (5.75) that needs an additional projection step. This can be explained by the
prewavelet system {ψl,i : i ∈ ξl}l∈I forming a basis and therefore exhibiting no redundancies.
Thus, by a factor of about 2d less degrees of freedom are involved than for the corresponding
generating system.
However, there are additional difficulties to be faced in the prewavelet approach, which should

not be underestimated and may give the generating system method a practical advantage. First,
prewavelets are less local than, e.g. the corresponding multilevel spline basis. Thus, the mass
matrix inversions in Ḡ−1

I become more involved. From a programming perspective, the more
complicated basis functions and different types of prewavelet functions near the boundary make
the application of the matrix ĀI to a vector more difficult. The efficient application of ĀI
onto a vector is even more involved, since the unidirectional principle strongly relies on the
nestedness of the subspaces. If this is no longer the case, the one-dimensional operators have to
be tailored to the specific discretization [Feu05] or the algorithm must switch to a generating
system anyway [Zei11].
Finally, the cost complexity of the setup of the right-hand side b̄I is increased, as this is

typically an integration task and the support of the prewavelets is larger by a factor exponen-
tially depending on the dimension than those of the corresponding splines. Alternatively, the
corresponding integrations are realized by the interpolation of the function f from (5.1) in our
prewavelet sparse grid space and a subsequent multiplication by the mass matrix to account for
the necessary numerical quadrature. As stated in [Feu05], for general functions f , this approach
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requires the inclusion of boundary functions in the interpolation step (even if the solution u
of our Poisson problem has homogeneous boundary conditions). Since the d-dimensional hy-
percube Ωd has 2d faces, an additional factor of the order 2d enters the cost complexity for
the setup of the right-hand side. The dependence of the cost complexity on the dimension d
of other techniques for the assembly of the right-hand side for wavelets and prewavelets with
sufficient accuracy, e.g. by the solution of an eigenvector-moment problem associated with the
coefficients of the refinement equation [DM93], is unknown to us. We however believe that also
these methods involve a factor of at least 2d in the d-dimensional case due to the tensor product
construction, so it is not possible to avoid it altogether.
In summary, the generating system approach from (5.69) can be seen as a simple form of

implementation of the prewavelet approach and, indeed, both methods give exactly the same
(generalized) condition numbers.

5.6 OptiCom-approach

The OptiCom delivers the best possible scaling (including negative values) in each step of the
iteration and results in a convergence that is at least as good as any fixed choice of scaling
parameters, unfortunately at the extra cost of setting up and solving an auxiliary system of
linear equations in every iteration step. It is therefore not competitive if an explicit norm
equivalence (5.4) is known. Nevertheless, the OptiCom does not take the detour via the W -
splitting (5.36) and poses a lower bound on the convergence rate that we can achieve by opti-
mizing fixed a priori weights. So the OptiCom can be used to check whether the fixed scalings
obtained by other methods are close-to-optimal. In this section, we describe the general case, a
CG version, the OptiCom in the special setting of sparse grid discretizations, and the efficient
implementation, cf. [GHO15].

5.6.1 Definition

The OptiCom is a nonlinear iterative method which generalizes the steepest decent algorithm
mentioned before, and provides a safe lower bound for the best possible error reduction factor
ρ∗ from (5.33). The method was introduced in [JN99] and used in the context of subspace
correction methods for L2-data approximation with sparse grids in [Heg03]. It was later called
OptiCom [Gar06, HGC07]. In the following, we essentially recall some general results and
observations from [JN99].
The update formula of OptiCom is the same as in (5.32), i.e.,

u(m+1) = u(m) +
∑
i∈I

ω
(m)
i Tie

(m) = u(m) + Pω(m)e(m), m = 0, 1, . . . , (5.81)

however, the parameter set ω(m) = (ω
(m)
i )i∈I now depends on u(m): We obtain ω(m) by solving

the quadratic minimization problem

‖u− u(m) −
∑
i∈I

ω
(m)
i Tie

(m)‖2a → min
ω(m)

(5.82)
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in each iteration step. The OptiCom iteration converges at least as fast as any stationary
additive Schwarz iteration, and thus provides a lower bound for the convergence rate of the
latter. The following theorem can also be found in [JN99].

Theorem 5.14. The error e(m) = u−u(m) of the OptiCom iteration (5.81) with ω(m) from (5.82)
for the space splitting (5.19) decays in energy norm according to

‖e(m+1)‖a ≤ ρ∗‖e(m)‖a, m ≥ 0 ,

where ρ∗ is the optimal error reduction factor (5.33) for additive Schwarz methods based on the
same space splitting.

Proof. As above, denote by ω̃(m) the solution of the minimization problem (5.82). Then
e(m+1) = e(m) −∑i∈I ω̃

(m)
i Tie

(m), and, for any fixed parameter set ω, we have

‖e(m+1)‖a = ‖u− u(m) −
∑
i∈I

ω̃
(m)
i Tie

(m)‖a ≤ ‖e(m) −
∑
i∈I

ωiTie
(m)‖a

= ‖(I − Pω)e(m)‖a ≤ ‖I − Pω‖a‖e(m)‖a .

It remains to take the infimum over all ω ∈ Ω to get the claimed bound for the error reduction
factor of the OptiCom iteration.

5.6.2 CG version

We now point to the CG version of OptiCom. It could further reduce the dependence of
the convergence estimates on the condition of the additive Schwarz splitting from an average
reduction factor per step of (1−O((κ∗)−1)) to (1−O((κ∗)−1/2)). Suppose that we have, starting
from u(0) = u(−1) = 0, already computed u(1), . . . , u(m), and that ω(m) = (ω

(m)
i )i∈I and η(m)

are to be determined as solutions of the slightly modified minimization problem

‖u− u(m) −
∑
i∈I

ω
(m)
i Tie

(m) − η(m)(u(m) − u(m−1))‖2a → min
ω(m),η(m)

. (5.83)

Then,
u(m+1) = u(m) +

∑
i∈I

ω
(m)
i Tie

(m) + η(m)(u(m) − u(m−1)) (5.84)

realizes a CG-OptiCom iteration step. As already mentioned in the context of (5.41) for fixed ω,
solving the two-parameter (τ (m) and η(m)) minimization problem

‖u− u(m) − τ (m)
∑
i∈I

Tie
(m) − η(m)(u(m) − u(m−1))‖2a → min

τ (m),η(m)
(5.85)

is equivalent to the usual PCG-iteration for solving (5.1) with a preconditioner derived from the
additive Schwarz operator Pω, thus the name CG-OptiCom. By including the parameter set
ω(m) into the minimization (5.83) we incorporate the scaling of the subproblems. This makes
the convergence analysis more difficult, since the preconditioner is no longer fixed but changes
from iteration to iteration.
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We now discuss the classical proof of conjugate gradients and why it does not work in the
stated case. Normally, the convergence speed of the CG method applied to a generic symmetric
positive definite matrix A is based on the fact, that the error e(m) after m iteration steps is the
‖ · ‖A-minimal element from the space e(0) +K(m) with

K(m) = span{r(0),Ar(0), . . . ,Am−1r(0)}
= span{A1e(0),A2e(0), . . . ,Ame(0)} , (5.86)

where e(0) denotes the initial error and r(0) denotes the initial residual. Because of (5.86), we
can express our error em by

em = (I +
∑m

i=1 αiA
i)e0 ,

where the αi, i = 1, . . . ,m, are chosen such that the resulting ‖e(m)‖A is minimal. In fact,
e(m) = Pmα (A)e0, where Pmα is a polynomial of degree m with coefficients 1, α1, . . . , αm. With
the help of Chebyshev polynomials and the appropriate rescaling to (λmin(A), λmax(A)), we
get an estimate

‖e(m)‖A ≤
(√

κ(A)− 1√
κ(A) + 1

)m
‖e(0)‖A .

This is a worst case estimate, and we can expect faster convergence when the eigenvalues
of A are not evenly distributed within the spectrum of A. Unfortunately, the whole argument
breaks down when A is scaled differently in every iteration step, e.g., by diagonal matrices
D(i), i = 1, . . . ,m, and we can no longer express the error e(m) in terms of a polynomial Pmα
of A applied to the initial error e(0). This difficulty was discussed in a slightly different setting
in [KL07], and there it was shown that in the worst case, no faster convergence than steepest
descent is reached. This is consistent with the proof of Theorem 5.14 (just set η(m) = 0) that
the CG-OptiCom has at least the same error reduction factor per step as the OptiCom. In
[JN99] this and other CG versions of a variable preconditioner were presented, but no stronger
convergence estimates could be proven. We tried to prove the CG convergence speed by showing
that the error e(m) for the CG-OptiCom would eventually come close to a CG method with
a fixed diagonal scaling, but all attempts were in vain. Another approach worth mentioning
is to take a different perspective at the CG method [KV13]. This view could be helpful if
it was possible to show that the necessary assumptions are met by the OptiCom-scaled search
directions. As this did not work out either, this problem can be clearly marked as open research.
However, the numerical experiments in Subsection 5.7.3 suggest a still significant speed-up by
using the CG-OptiCom (5.84) over the plain OptiCom, i.e. the update (5.81) with the parameter
set from (5.82).

5.6.3 Application to sparse grids

We gave a general description of how to find an optimal set of scaling parameters in every itera-
tion step by solving an auxiliary minimization problem. This description largely followed [JN99]
and was not confined to sparse grids. We now discuss aspects that are specific to the sparse
grid case. They are similar to those that arise in the context of subspace correction methods
for L2-data approximation with sparse grids in the so-called OptiCom [Heg03, Gar06, HGC07].
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The minimization problem (5.82) reads in the context of sparse grid discretizations as

‖u− u(m) −
∑
l∈I

ω
(m)
l T Vl e

(m)‖2a → min
ω(m)

(5.87)

with ω(m) = (ω
(m)
l )l∈I , and leads in every iteration step m to a new system

Ã(m)ω(m) = b̃(m) , (5.88)

of linear equations. Here, the system matrix Ã(m) ∈ R#I×#I is positive semi-definite with

(Ã(m))lk = a(T Vk e
(m), T Vl e

(m))

for l,k ∈ I, and the right-hand side b̃(m) ∈ R#I is given by

(b̃(m))l = a(e(m), T Vl e
(m)) = F (T Vl e

(m))− a(u(m), T Vl e
(m))

for l ∈ I. Recall that the T Vl e
(m) ∈ Vl, l ∈ I, are available from the subproblem solves. In

contrast to that, the CG version of OptiCom associated with the minimization problem (5.83)
would enlarge the system (5.88) by the unknown η(m). This leads to one additional entry on
the right-hand side and one additional row and column of the system matrix, which we indicate
by the letter η. We have

(Ã(m))η,η = a(u(m) − u(m−1), u(m) − u(m−1)) ,

(b̃(m))η = a(u− u(m), u(m) − u(m−1)) ,

(Ã(m))η,l = a(T Vl e
(m), u(m) − u(m−1)) ,

(Ã(m))l,η = a(u(m) − u(m−1), T Vl e
(m))

for l ∈ I. In practice, we use a direct method to solve Ã(m)(ω(m), η(m)) = b̃(m). In order to
avoid problems with possibly singular system matrices, we use a Tikhonov regularization with
a very small regularization parameter.

After the solution of (5.88), we can perform our update step (5.41) with ωVl = ω
(m)
l and

τ (m) = 1, η(m) = 0 in the steepest descent case, or with τ (m) = 1 and η(m) obtained from the
solution of Ã(m)(ω(m), η(m)) = b̃(m) in the CG-OptiCom case.

Note that the setup and solution of the auxiliary problem (5.87) or (5.88), respectively,
involves additional costs in every iteration step. If the number of scaling parameters in ω(m) is
moderate compared to the total number of degrees of freedom, then the extra work of solving
these linear problems can be tolerated. Of course, the extreme case would be the space splitting
into one-dimensional spaces (this is the case of frame decompositions), which results in an
“auxiliary” system (5.88) which is as large as the original problem. In the sparse grid case,
though, the number of subspaces #I and the total number of degrees of freedom is well-
balanced, as we see in the cost discussion of the next subsection.
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5.6.4 Implementation

Compared to approaches with a priori fixed weights, the OptiCom is more intricate and addi-
tionally requires the setup and solution of (5.88). We now discuss the additional computational
cost associated with the use of OptiCom. It might be helpful to check Subsection 5.2.4 for the
used notation. First note that

(Ã(m))lk = a(u
(m)
k , u

(m)
l ) =

〈
RI,lx

(m)
l ,AIRI,kx

(m)
k

〉
(5.89)

for all k, l ∈ I and

(b̃(m))l = F (u
(m)
l )− a(u(m), u

(m)
l ) =

〈
RI,lx

(m)
l ,b

〉
−
〈
RI,lx

(m)
l ,AIu(m)

〉
=

〈
RI,lx

(m)
l , r(m)

〉
(5.90)

for all l ∈ I. Thus, for setting up the matrix Ã(m), we have to compute the matrix-vector
products AIRI,kx

(m)
k for every k ∈ I. Note that RI,kx

(m)
k is zero in any subspace l 6= k, and

in that case the computational complexity of the single space matrix-vector multiplication, see
Subsection 4.3.1, is linear in the number of degrees of freedom. We can also use the unidi-
rectional principle from Subsection 4.3.2 to compute AIRI,kx

(m)
k , but due to its complicated

recursive structure this choice turns out to be computationally more costly. As the next step,
the entries (Ã(m))lk are computed by the scalar product with Rlx

(m)
l for all l ∈ I. As these

scalar products need only to be evaluated for coefficients that belong to the subspace Vl, the
costs for all l ∈ I together is O(NI) operations. The same argument applies to the entries (5.90)
of the right hand side. Thus, we arrive at costs of O(NI) operations for every k ∈ I, and con-
sequently O(#I ·NI) operations in total for setting up the system (5.88). The same holds true
for the CG version. Note that parallelization is straightforwardly possible.
Solving the system (5.88) by a direct method needs O(#I3) operations. The subsequent

update step (5.41) is again linear in NI . So, the total costs of one OptiCom iteration are
O(#I ·NI + #I3 +NI) operations. Since for generalized sparse grid spaces #I � NI holds,
we can conclude that the total cost complexity of one iteration step is dominated by O(#I ·NI).
This is by a factor of #I more expensive than the costs for the fixed a priori scalings.
We now become a little more specific and choose the regular sparse grid setting I = SdJ (4.10)

for level J and dimension d. It is well-known that the dimension of a regular sparse grid space
grows as NSdJ = Θ(Jd−12J) and #SdJ = Θ(Jd). This means that the cost for one OptiCom
iteration is O(Jd ·Jd−12J) = O(J2d−12J), which is log-linear in NSdJ , whereas the methods with
fixed a priori scalings are only linear in NSdJ .
Nevertheless, the availability of the single space matrix-vector multiplication and unidirec-

tional principle is a great advantage in our situation, and allows a significant reduction of the
computational complexity of one iteration step compared to previous applications of OptiCom
for sparse grids. This is due to the fact that we can represent AI as a sum of Kronecker-
product matrices. Otherwise, the a(·, ·) products of ul and uk with l 6= k have to be computed
after the embedding of ul and uk into the much larger subspace Vmax(l,k) that contains both
functions. This is the case for elliptic problems with non-product coefficient functions or in
data mining [Gar06], where the data-based energy norm normally does not permit to exploit
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tensor product structures. The resulting costs are rather quadratic instead of log-linear in the
number of degrees of freedom. Note that the single space matrix-vector multiplication reduces
the constant factor even further as it works without the complicated recursive structure of the
unidirectional principle, see the experiments in Subsection 5.7.4.

5.7 Numerical experiments

In this section, we demonstrate aspects of the described methods by a model problem. We
provide numerical experiments for the Laplace problem

−∆u = f (5.91)

on the open unit cube Ωd = (0, 1)d with f ∈ L2(Ωd), and zero boundary conditions on ∂Ωd.
The weak formulation of (5.91) is a H1

0 (Ωd)-elliptic variational problem of the form (5.1), where

a(u, v) =
d∑
i=1

( ∂u
∂xi

,
∂v

∂xi

)
L2(Ωd)

, F (v) = (f, v)L2(Ωd) . (5.92)

For (5.92), a discretization with linear C0-splines (r = 0, m = 1 in Theorem 5.5) is sufficient.
More precisely, for the V (p)

l in (4.3) we use linear spline spaces defined over dyadic partitions of
step-size 2−(l+1) on [0, 1], with homogeneous boundary conditions at the boundary. Note here
that, in order to avoid trivial subspaces for l = 0, the step-size associated with V (p)

l is chosen
as 2−(l+1) and not as 2−l. See Section 4.1 for further details.

5.7.1 Relation full grid and sparse grid condition numbers

Theorem 5.1 states that for our model problem (5.92), the following norm equivalence

a(u, u) = ‖u‖2H1
0 (Ωd) '

∑
k∈Nd

( d∑
i=1

22ki
)
‖wk‖2L2

, wk = QWk u, k ∈ Nd (5.93)

holds for all function u ∈ H1
0 (Ωd) with a condition number κ that is independent of the dimen-

sion d. Thus, we employ the weights

βk =
d∑
i=1

22ki (5.94)

in the following experiments. Theorem 5.1 states furthermore that (5.93) holds for u ∈ VFdJ
with a condition number κFdJ independent of d. As VSdJ ⊂ VFdJ , we can deduce that

κSdJ ≤ κFdJ = κF1
J
. (5.95)

Equation (5.95) tells us two things: Using our orthogonal projection based preconditioner (5.69)
for a full grid multilevel discretization results in dimension-independent condition numbers and
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that the corresponding sparse grid system with the same dimension and level results in a
condition number κSdJ that is smaller or equal than κFdJ .

Both propositions become obvious in Table 5.1. It shows the generalized condition numbers
of the preconditioned systems (5.69) for I = FdJ and I = SdJ in the full and sparse grid
case, respectively, for different dimensions d and levels J . We clearly observe that the full
grid condition numbers are bounded from above by a constant independently of the level J .
Moreover, they are perfectly independent of the dimension as our theory suggests. The sparse
grid condition numbers are even smaller than the corresponding full grid ones for d > 1, which
is in accordance with our subset argument (5.95). In fact, we even observe decreasing condition
numbers κSdJ with rising dimension d for a fixed level J . This effect is more obvious when
considering the splitting condition numbers κWSdJ

in the lower part of Table 5.2. Note that they
coincide with the condition numbers κSdJ of (5.93), and that the prewavelet approach from
Subsection 5.5.2 also results in exactly the same condition numbers.

Table 5.1: Degrees of freedom (DOF) NFdJ and NSdJ and generalized condition numbers κFdJ and
κSdJ of the preconditioned system (5.69) with a full and sparse grid discretization
approach, respectively, of the Laplacian on the unit hypercube with linear splines

DOF NFdJ and NSdJ condition numbers κFdJ and κSdJ
level J full grid sparse grid full grid sparse grid

dim = 1 1 4 4 3.40 3.40
2 11 11 4.67 4.67
3 26 26 5.17 5.17
4 57 57 5.84 5.84
5 120 120 6.37 6.37
6 247 247 6.80 6.80
7 502 502 7.16 7.16
8 1013 1013 7.47 7.47
9 2036 2036 7.74 7.74
10 4083 4083 7.96 7.96
11 8178 8178 8.16 8.16
12 16369 16369 8.33 8.33

dim = 2 1 16 7 3.40 2.99
2 121 30 4.67 4.46
3 676 102 5.17 5.06
4 3249 303 5.84 5.65
5 14400 825 6.37 6.20

dim = 3 1 64 10 3.40 2.71
2 1331 58 4.67 4.28
3 17576 256 5.17 5.00

dim = 4 1 256 13 3.40 2.51
2 14641 95 4.67 4.12

dim = 5 1 1024 16 3.40 2.36
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5.7.2 Splitting condition numbers

Now we compare the condition numbers of the operators Pω associated with the linear iterative
methods for the regular sparse grid case I = SdJ (4.10) with different choices of parameter sets
ω discussed above (OptiCom and CG are nonlinear methods, and left out in this comparison).
The results are shown in Table 5.2. We see that the LP-optimized scalings (5.50) lead to con-
dition numbers that are improved by a factor of up to 3 compared to the AdHoc scalings (5.54)
proposed in [GO94], which shows that weight optimization has a positive impact. However, for
both scalings, the condition numbers are of the order Θ(Jd−2), and we can clearly observe their
growth for increasing J in dimensions d ≥ 3. Furthermore, we see that the W -splitting (5.36)
with the weights (5.94) leads to condition numbers that are bounded independently of J and d.
Moreover, they even decrease with rising dimension for sparse grids. This condition number is
realized by the partially negative scaling factors ωVl that stem from the algebraic transforma-
tion (5.59) with ωWk = β−1

k ,k ∈ SdJ , and also by the orthogonal projection preconditioner (5.69).

5.7.3 Iteration counts

Now, we solve the test problem (5.91) with a random right-hand side f and a randomly ini-
tialized starting vector. We choose J = 10 and d = 4, and plot the reduction of the initial
residual in the Euclidean norm against the iteration count. Figure 5.1 shows the convergence
of the V -splitting based methods with AdHoc (5.54), LP-optimized (5.50) and algebraic (5.59)
scaling factors as well as for the OptiCom. Both the steepest descent approach and the CG
versions are considered. We observe that OptiCom is indeed always at least as good as any
linear method, but the graphs also show that the potential gain from further optimizing the
algebraic scaling factors is quite limited. Furthermore, the conjugate gradient approach works
for all four methods, and roughly halves the number of necessary iterations (as it should). Fur-
thermore, we see that the LP-optimized scalings are better than the AdHoc scalings, however,
both methods converge slowly. We investigate this effect further in the following experiment,
where we vary also J .
In Figure 5.2 we observe that the residual reduction needs more steps for higher values of

J . However, we observe that the residual reduction rate ρ of the algebraic scalings appears to
be bounded from above independently of J , whereas the convergence rate of the LP-optimized
scalings deteriorates quickly. This is in full agreement with our theory, recall that, according
to Theorem 5.5, the growth of the condition number of the underlying Pω is Θ(J2) for LP-
optimized scalings in dimension d = 4.
One final experiment concerns the dimension-dependence of the proposed scalings. Figure 5.3

shows the residual reduction for J = 10 in the dimensions d = 1, . . . , 4. The convergence rates
of the LP-optimized scalings deteriorate with dimension d ≥ 3, whereas, as remarked earlier, the
condition numbers of the W -splitting and thus the convergence rates of the algebraic scaling
factors are bounded independently of the dimension. This is true for the specific, problem-
dependent weights (5.94) for our model problem (5.91), and generalizes to problems with a
similar sum of tensor products structure as the Laplacian. For other weights (such as the
standard weights βk = 22|k|∞ for H1-problems), the d-independence is lost.
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Table 5.2: Splitting condition numbers of the V -splittings with AdHoc- and LP-optimized scal-
ings and of the W -splitting for different dimensions d and levels J
V -splitting (5.38) condition number κVSdJ

with AdHoc scalings (5.54)
d \ J 1 2 3 4 5 6 7 8 9 10

1 2.86 3.87 4.74 5.47 6.06 6.55 6.95 7.29 7.58 7.83
2 3.13 5.08 8.12 8.07 10.81 10.37 11.69 11.14
3 3.91 7.92 9.30 14.45 16.60 20.43
4 4.86 12.33 18.84 26.53 38.05
5 5.85 18.30 34.68 47.97
6 6.85 26.38 59.33 94.59
7 7.86 36.92 97.03 175.93
8 8.87 50.16 153.26
9 9.88 66.23 234.01
10 10.88 85.28 345.58

V -splitting (5.38) condition number κVSdJ
with LP-optimized scalings (5.50)

d \ J 1 2 3 4 5 6 7 8 9 10
1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96
2 2.99 4.46 4.97 5.75 6.47 7.04 7.77 7.76
3 2.42 4.05 6.69 8.72 12.31 14.62
4 2.78 5.68 9.47 16.18 23.17
5 3.43 7.85 14.58 26.09
6 4.23 10.92 22.61 41.28
7 5.08 15.02 34.36 67.90
8 5.97 20.15 51.11
9 6.89 26.27 73.92
10 7.81 33.38 103.76

W -splitting (5.36) condition number κWSdJ
with weights (5.94)

d \ J 1 2 3 4 5 6 7 8 9 10
1 3.40 4.67 5.17 5.84 6.37 6.80 7.16 7.47 7.74 7.96
2 2.99 4.46 5.06 5.65 6.20 6.65 7.04 7.36
3 2.71 4.28 5.00 5.49 6.06 6.53
4 2.51 4.12 4.94 5.35 5.95
5 2.36 3.97 4.88 5.23
6 2.24 3.83 4.82 5.17
7 2.15 3.71 4.77 5.15
8 2.07 3.60 4.71
9 2.00 3.50 4.66
10 1.94 3.41 4.61
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Figure 5.1: Residual reduction with AdHoc scalings, LP-optimized scalings, algebraic scalings,
and for OptiCom with the steepest descent method (left) and the conjugate gradient
version (right) on J = 10 in dimension d = 4
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Figure 5.2: Residual reduction with LP-optimized scalings (left) and algebraic scalings (right)
in dimension d = 4 for different values of J
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Figure 5.3: Residual reduction with LP-optimized scalings (left) and algebraic scalings (right)
for J = 10 in dimensions d = 1, . . . , 4

5.7.4 Impact of the single space matrix-vector multiplication

In this subsection, we carry out experiments to estimate the benefit from the single space
matrix-vector multiplication presented in Subsection 4.3.1. To this end, we start with the
Poisson problem, a random starting vector and a random right hand side, and consider the
time necessary to set up the OptiCom auxiliary system (5.88). The time necessary for the
direct solution of the system turned out to be negligible compared to the setup costs and is
therefore left out. Figure 5.4 shows the setup times for d = 3 and various levels J , and Figure 5.5
shows the same for d = 5. The number of degrees of freedom is included for reference in both
figures. Note that the time consumed and the number of degrees of freedom do not move in
perfect lockstep as the runtime curves initially exhibit a higher slope than the number of degrees
of freedom. This can be explained by the runtime estimate that contains the number of regular
sparse grid subspaces #SdJ as an additional factor, which makes the setup times log-linear with
respect to the number of degrees of freedom, see Subsection 5.6.4. We clearly observe that the
use of the single space matrix-vector multiplication results in a downwards vertical shift of the
runtime compared to the unidirectional principle for d = 3 and even more so for d = 5. This
is due to the fact that we avoid the 2d constant factor associated with the recursive structure
of the unidirectional principle. Table 5.3 shows that the speedup factor roughly doubles if
the dimension increases by 1, finally resulting in a very substantial saving in computational
complexity for high dimensions.
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Figure 5.4: Time needed for the setup of the OptiCom auxiliary system (5.88) using the unidi-
rectional principle (UniDir) and the single space matrix-vector multiplication (SMV)
in dimension d = 3. The number of degrees of freedom (DOF) is given for reference
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rectional principle (UniDir) and the single space matrix-vector multiplication (SMV)
in dimension d = 5. The number of degrees of freedom (DOF) is given for reference
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Table 5.3: Time needed for the setup of the OptiCom auxiliary system (5.88) using the unidi-
rectional principle (UniDir) and the single space matrix-vector multiplication (SMV)
for various dimensions and levels. The speedup factor is the ratio of both values

setup times (s) speedup
level J UniDir SMV factor

dim = 3 2 0.01 0.00 -
3 0.01 0.01 1.0
4 0.03 0.01 3.0
5 0.16 0.03 5.3
6 0.66 0.11 6.0
7 2.61 0.40 6.5
8 9.29 1.35 6.9
9 31.51 4.50 7.0
10 109.61 14.87 7.4
11 345.52 45.46 7.6
12 1092.40 140.11 7.8

dim = 4 2 0.01 0.00 -
3 0.08 0.01 8.0
4 0.58 0.06 9.7
5 3.49 0.38 9.2
6 19.10 1.89 10.1
7 94.30 8.32 11.3
8 419.95 35.20 11.9
9 1634.70 154.14 10.6

dim = 5 2 0.05 0.00 -
3 0.60 0.04 15.0
4 6.03 0.41 14.7
5 49.00 3.03 16.2
6 339.31 19.86 17.1
7 1917.10 104.76 18.3

dim = 6 2 0.23 0.01 23.0
3 3.71 0.18 20.6
4 49.57 2.00 24.8
5 493.12 18.05 27.3

dim = 7 2 0.98 0.03 32.7
3 20.32 0.48 42.3
4 305.11 7.35 41.5

dim = 8 2 3.58 0.06 59.7
3 89.73 1.38 65.0

dim = 9 2 12.40 0.10 124.0
3 376.79 3.03 124.4

dim = 10 2 41.60 0.17 244.7
3 1420.88 6.58 215.9



6 Numerical experiments with the
Kou-model

In this chapter, we merge the methods we discussed so far and approximate the solution of a
ten-dimensional BKE. A problem like this is way beyond the means of classical tensor prod-
uct discretizations, and also a pure sparse grid approach may struggle due to 2d constants
in the runtime complexity of the operator application, see Subsection 4.3.2. However, the
ANOVA approximation technique is able to bridge the gap between ten dimensional problems
and moderate-dimensional problems sparse grids excel at.
We now give a more detailed account of the contents of this chapter: In Section 6.1, we

introduce a multivariate generalization of Kou’s jump-diffusion model [Kou02] with non-zero
diffusion, finite activity and a Lévy measure that can be written as a sum of tensor prod-
ucts. Then, the BKE (2.27) and (2.28) can be transformed into the partial integro-differential
equation (3.25). The constant coefficients1 and the Lévy measure that can be written as a
sum of tensor products2 are necessary for the efficient matrix-vector multiplication algorithms
described in Section 4.3, but also the preconditioning and the straightforward computation of
marginal Lévy processes benefit from these assumptions. In Section 6.2, we introduce a recur-
rence formula for the Galerkin operator matrix based on the Kou model so that the application
remains linear in the number of degrees of freedom altogether, even though the matrix itself is
densely populated.
In the remaining sections we put our theoretical findings into practice. We explore the

capabilities of our sparse grid PIDE solver and try various combinations of domain truncation
parameters, preconditioners and model problems in Section 6.3. As our initial condition lacks
the smoothness typically required by sparse grids, we are limited in the number of dimensions
we can compute efficiently. That is where the ANOVA approximation technique comes into
play. In Section 6.4, we state our example model in ten dimensions and try various ANOVA
truncation schemes. We measure the approximation errors at different points of the solution
using a Monte Carlo approach, which is a slow but robust method in high dimensions. In
this way, we can identify promising parameter sets for our combined ANOVA-PIDE approach.
In Section 6.5, we investigate the balance of the ANOVA approximation error and the PIDE
discretization error with respect to the truncation dimension dt and the number of degrees
of freedom of the discretization. Then, we finally combine the ANOVA approximation and
our PIDE solver and obtain a full ANOVA-PIDE approach. In doing so, we can tackle our
ten-dimensional European option pricing problem based on the Kou model. We measure the
ANOVA approximation errors and PIDE discretization errors at 100 randomly selected points

1The matrix-vector multiplication algorithms can be generalized quite easily so that they work with coefficient
functions with product structure, but general coefficient functions require much more work [Ach03].

2For pure jump processes with infinite activity and more complex dependence structures like Lévy copulas,
see [Win09, RSW10].

109
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in order to assess the quality of our numerical solution. For the right choice of the truncation
dimension dt and the number of degrees of freedom of the discretization, we get a high level of
accuracy in the region of ± one standard deviation around our anchor point.

6.1 The model and problem setup

In this section, we describe the univariate Kou model and a multivariate generalization. We
also depict the payoff functions we use as initial condition.

6.1.1 One-dimensional Kou model

Kou’s jump-diffusion model [Kou02] assumes that the price of a security S fulfills the stochastic
differential equation (SDE)

dS(t)

S(t−)
= µdt+ σdW (t) + d

N(t)∑
j=1

(Zj − 1)

 , (6.1)

where t denotes the time, S(t−) is the left-sided limit of S(t), W (t) is a standard Brownian
motion, µ and σ are the usual constants for drift and volatility, N(t) is a Poisson process with
rate λ and {Zj}j∈N denotes a sequence of jumps. These jumps are assumed to be independent
and identically distributed with density

κρ,α,β(v) =

{
(1− ρ)αvα−1 for v < 1 ,

ρβv−β−1 for v ≥ 1 ,
(6.2)

where ρ and 1 − ρ denote the probabilities of jumping upwards and downwards, respectively,
while α > 0 and β > 1 are parameters that control the jump sizes. Note that

E(Zj) = (1− ρ)
α

α+ 1
+ ρ

β

β − 1
.

The density of Yj := log(Zj), j ∈ N, is then given by

κρ,α,β(z) =

{
(1− ρ)αeαz for z < 0 ,

ρβe−βz for z ≥ 0 ,
(6.3)

which belongs to the asymmetric double exponential distribution. We define κρ,∞,∞(z) = δ(z),
which is the Dirac-delta in 0 and means no jumps occur at all. This is the natural limit for α, β →
∞ and will be useful in the multi-dimensional generalization of the model in Subsection 6.1.2.
The expected value and variance are given by

E(Yj) =
ρ

β
− 1− ρ

α
, var(Yj) = ρ(1− ρ)

(
1

β
+

1

α

)2

+

(
ρ

β2
+

1− ρ
α2

)
.
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In this model all random variables W (t), N(t),Zj , j ∈ N, are assumed to be independent. The
dynamics of S in the SDE (6.1) can then be given by

S(t) = S(0) exp

((
µ− 1

2
σ2

)
t+ σW (t)

)
·
N(t)∏
j=1

Zj .

See Figure 6.1 for 10 simulated sample paths with the parameter set T = 0.5, S(0) = 100,
σ = 0.16, r = 5.0% and jump-term λ = 1, ρ = 0.4, α = 5, β = 10 from [Kou02].
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Figure 6.1: Ten sample paths of the univariate Kou-model with T = 0.5, S(0) = 100, σ = 0.16,
r = 5% and jump-term λ = 1, ρ = 0.4, α = 5, β = 10

6.1.2 Multi-dimensional case and dependence modelling

We now consider a d-dimensional price process S = (S1, . . . , Sd) with state space Rd, where the
components Si, i = 1, . . . , d, of S follow the dynamics

Si(t) = Si(0) exp

((
µi −

1

2
σ2
i

)
t+ σiWi(t)

)
·
R∏
k=1

Nk(t)∏
j=1

Z(k,i)
j , (6.4)
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where µi and σi denote drift and volatility constants, and for each of the R jump terms with
k = 1, . . . , R, we have the Poisson process Nk with rate λk and jumps Z(k,i)

j , j ∈ N, for all
components i = 1, . . . , d. This is a slight generalization of the model proposed in [GH13c]. For
a relatively recent publication on multivariate generalizations of univariate models, see [BB14].
Obviously, the diffusion part of the process log S is decorrelated across the dimensions. In

general, this assumption does not hold, but it can be achieved by the transformation discussed in
Chapter 2, where B is chosen such that the covariance matrix Q is diagonalized to Σ = BTQB.

The jumps Z(k,i)
j , k = 1, . . . , R, i = 1, . . . , d, j ∈ N, in (6.4) are all independent and identically

distributed with density (6.2) with parameters ρk,i, αk,i, βk,i. This, however, does not imply that
the processes Si(t), i = 1, . . . , d, are independent. Since the jumps Z(k,i)

j for i = 1, . . . , d share
one Poisson process Nk(t), jumps occur at the same time in all components, even though the
jumps themselves are independent random variables. With these assumptions we can model
market moving events that affect all processes, but also events that affect only single processes
are possible. In the next subsection, we see that our R jump terms can be viewed as a low-rank
approximation to more complex Lévy measures.
In Figure 6.2, we depict two sample processes with parameters

T = 0.5, r = 5.0%,S(0) =

(
100
100

)
, σ1 = σ2 = 0.16

and three (R = 3) jump termsk = 1 : λ1 = 4 ρ1,1 = 0.4 α1,1 = 15 β1,1 = 15 ρ1,2 = 0.4 α1,2 = 15 β1,2 = 15
k = 2 : λ2 = 4 ρ2,1 = 0.5 α2,1 =∞ β2,1 =∞ ρ2,2 = 0.4 α2,2 = 15 β2,2 = 15
k = 3 : λ3 = 4 ρ3,1 = 0.4 α3,1 = 15 β3,1 = 15 ρ3,2 = 0.5 α3,2 =∞ β3,2 =∞

 ,

where α2,1 = β2,1 =∞ and α3,2 = β3,2 =∞ indicate that no jumps occur in component i = 1
for k = 2 and component i = 2 for k = 3, respectively. Figure 6.2 shows two sample paths and
their projections onto the time-independent (S1, S2)-plane. We note that there are jumps that
affect both S1 and S2 (jump term k = 1) as well as axis-aligned jumps (jump terms k ∈ {2, 3}).

6.1.3 Representation of the multi-dimensional process as Lévy process

We now describe our d-dimensional generalization (6.4) in terms of the exponential Lévy
model (2.17)

S(t) = (S1(0) exp(rt+X1(t)), . . . , Sd(0) exp(rt+Xd(t)) ,

where (X(t))0≤t<∞ is a Rd-valued Lévy process with characteristic triplet (Q,θ, ν). Then, the
elements of covariance matrix Q ∈ Rd×d satisfy

qij = δijσ
2
i

for all i, j = 1, . . . , d, and the Lévy measure ν has finite activity and can be expressed by

ν(dz) =

R∑
k=1

λk

d⊗
i=1

κρk,i,αk,i,βk,i(zi)dzi . (6.5)
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Figure 6.2: The upper plot shows two two-dimensional sample paths of a jump-diffusion process.
The two lower plots show the projections of the processes on the (S1, S2)-plane, i.e.,
without time dependence
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In (6.5), the k-th summand represents the jumps counted by the Poisson process Nk(t) with
rate λk, and the associated jump sizes Z(k,i)

j , j ∈ N, in the components i = 1, . . . , d are dis-
tributed with densities κρk,i,αk,i,βk,i , see (6.3).

Note here that the sum of products in (6.5) can also be viewed as a low rank approxima-
tion [BM02] to a general finite Lévy measure. To pursue this idea further it might be necessary
to enrich the discretization with other one-dimensional jump densities than the double expo-
nential density κρ,α,β and to investigate the approximation error for R → ∞. Still, the jump
model (6.5) we use is quite flexible3, while being computationally advantageous as we will see
in Section 6.2.
We adjust the drift θ such that the martingale condition (2.18) is fulfilled, which means

θj = −
σ2
j

2
−
∫
Rd
ezj − 1− zjν(dz)

= −
σ2
j

2
−

R∑
k=1

λk

∫
Rd

(ezj − 1− zj)κρk,j ,αk,j ,βk,j (zj)dzj

= −
σ2
j

2
−

R∑
k=1

λk

(
ρk,j

βk,j
βk,j − 1

+ (1− ρk,j)
αk,j

αk,j + 1
− 1− ρk,j

βk,j
+

1− ρk,j
αk,j

)
for j = 1, . . . , d.

Now, we would like to compute the expected value and variance of Xj(t), j = 1, . . . , d. Due
to (2.4) with T (z) = 1 we know that

E[Xj(t)] = tθj ,

and using (2.6) we get

var(Xj(t)) = t

(
qjj +

∫
Rd
z2
j ν(dz)

)
= t

(
σ2
j +

R∑
k=1

λk

(
2ρk,j
β2
k,j

+
2(1− ρk,j)

α2
k,j

))
. (6.6)

In the previous subsection, we remarked that even though the jump sizes are all independent,
the stochastic processes Xi (and thus the Si) are not, because jumps occur simultaneously
across all components. This is reflected very well in the characteristic function

E
(
ei〈ξ,X(t)〉

)
= e−tψ(ξ) ,

which cannot be written as a product in ξ1, . . . , ξd, since ψ from (2.2) with the jump measure ν
from (6.5) does in general not decompose into a sum of one-dimensional functions over the
parameters ξ1, . . . , ξd.

3In general it is not true that a more complex model is better than a simpler one, since in practice we still
need to reliably estimate the parameters from real-world data, which gets more difficult the more parameters
there are.
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6.1.4 Payoff function

In this subsection, we discuss what kind of final condition h we focus on. A put option on a
basket or an index would typically result in a payoff function

h(S(T )) = max

(
K −

d∑
i=0

Si(T ), 0

)
, (6.7)

where K is referred to as the strike price. Now, we have used various transformations to arrive
at a benign PIDE with constant coefficients (3.25) and our final condition h results in an initial
condition

gB(x) = h (exp(Bx)) = max

K − d∑
i=1

exp

 d∑
j=1

bijxj

 , 0

 , (6.8)

where the exp-function in exp(Bx) is applied component-wise and B = (bij)
d
ij=1 is an orthonor-

mal matrix used in (2.25). In our numerical experiments we start with a diagonal covariance
matrix Q straightaway, i.e., B = I, since the resulting payoff functions are sufficiently challeng-
ing to be representative for other payoffs. See Figure 6.3 for an illustration of payoff functions
of a standard put option and of a two-dimensional basket put option. Another reasoning for the
choice B = I is that our ten-dimensional model to be presented in Section 6.4 could be the result
of an even higher-dimensional model, whose covariance matrix has already been diagonalized
and truncated after ten dimensions.

At some point the practical relevance of our models has to be questioned using empirical
data. For that, we recommend Kou’s original paper [Kou02] and a recent publication [BB14]
on multivariate generalizations. In this thesis, we restrict ourselves to the pricing of European
options, which have no early-exercise features like American options. It is important to note that
our payoff function lacks the H2

mix-regularity necessary for achieving the optimal approximation
rate of 2 with sparse grids based on linear splines as discussed in Section 4.1. However, it is
well-known [Tho06] that the finite element solutions to parabolic problems can converge to full
order due to the smoothing effect of the solution/propagation operator even when the initial
data are nonsmooth, and thus sparse grids are a viable tool for option pricing, see also [Sch12].
Furthermore, in certain cases, the lower-dimensional terms of an ANOVA decomposition have
a higher level of smoothness than the original function [GKS13], which works in our favor.

Depending on where we evaluate our solution V (T, s) the terms “in the money”, “at the money”
and “out of the money” are used. These terms refer to the “inner value” of an option, i.e., the
payoff we would get if the option would expire at the current state of the underlyings S(t) =
(S1(t), . . . , Sd(t)). In the money put options (6.7) have a positive inner value (

∑d
j=1 Sj(t) < K),

at the money options have a inner value which is close to zero or just zero (
∑d

j=1 Sj(t) ≈ K),
and out of the money options have no inner value and are less likely to result in a non-zero
payoff than at the money options (

∑d
j=1 Sj(t)� K). As the prices of out of the money options

tend to be small, it is harder to achieve a high relative accuracy than for in the money options.
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Figure 6.3: Payoff functions of one- (left) and two-dimensional (right) put options in log-
coordinates rescaled to [0, 1] and [0, 1]2, respectively

6.2 Galerkin recurrence formula

In this section, we describe a Galerkin recurrence formula for the Kou model that can ultimately
be combined with the fast matrix-vector multiplication algorithms from Section 4.3. This yields
a sparse grid operator application with computational costs that are linear in the number of
degrees of freedom in a generalized sparse grid. We introduced this method in [GH13c]. At the
end of the section, we give a quick overview over alternative methods.
In Section 4.3, we have assumed that the matrices A

(1)
l1,k1

, . . . ,A
(d)
ld,kd

from

Al,k = A
(1)
l1,k1
⊗ · · · ⊗A

(d)
ld,kd

can be applied in linear time. This is possible for matrices that stem from differential operators,
as they are inherently sparse for nodal basis functions. However, integral operators do not have
this property and lead to densely populated matrices like (4.31).
There are multiple ways to deal with these matrices. In [GK09, Rei10] wavelet compression is

used, which basically means that entries close to zero are discarded. In case of the Kou model,
there also exists a recurrence formula that allows us to apply the integral operator for the
finite difference case in linear time, cf. [Toi08]. We now derive a similar result for the Galerkin
method.
Given the Lévy measure (6.5) we have to deal with operator matrices

(A
(p)
l,k )ij =

∫
[0,1]

∫
R
φkp,j(x+ z)κρ,α,β(z)dz φlp,i(x)dx (6.9)

for p = 1, . . . , d, where κρ,α,β is an arbitrary Kou density function from (6.3) and (φlp,i)
nlp
i=1

and (φkp,i)
nkp
i=1 are sets of linear spline basis functions on levels lp and kp with mesh-widths

hlp = 2−lp−1 and hkp = 2−kp−1 , respectively. Due to the prolongations and restrictions (4.33)
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we only need to consider square matrices (6.9) with l = k. For the sake of brevity, we drop the p-
index in the following. Essentially, the necessary ingredient for our matrix-vector multiplication
algorithms presented in Section 4.3 is to compute

v = Alu ,

where v = (v1, . . . , vnl) with

vi =

∫
[0,1]

∫
R
u(x+ z)κρ,α,β(z)dz φl,i(x)dx for i = 1, . . . , nl ,

and the coefficient vector u = (u1, . . . , unl) describes the function

u(x) =

nl∑
j=1

ujφl,j(x) .

For future considerations it is important to note that

φl,i(x) = φl,i+1(x+ hl) for i = 1, . . . , nl − 1 . (6.10)

Note furthermore that

(Al)ij =

∫
[0,1]

∫
R
φl,j(x+ z)κρ,α,β(z)dz φl,i(x)dx

=

∫
[0,1]

∫
R
φl,j(z)κρ,α,β(z − x)φl,i(x)dzdx . (6.11)

Obviously, the matrix Al is dense but has Toeplitz structure: Applying (6.10) to both, φl,i and
φl,j in (6.11) gives (A)ij = (A)i+1,j+1. This property of the matrix would allow us to execute
the matrix-vector multiplication in O(nl log nl) instead of O(n2

l ) using the circular convolution
theorem.

A different approach that takes also the structure of κρ,α,β into account achieves even a linear
runtime complexity. To this end, let us assume that i, j ∈ N with nl ≥ j ≥ i + 2. Then we
know that the interior of the supports of φl,i and φl,j is disjoint and that φj,i(z) 6= 0, φl,i(x) 6= 0
implies z > x. This allows us to obtain

(A)ij =

∫
[0,1]

∫
R
φl,j(z)κρ,α,β(z − x)φl,i(x)dzdx

=

∫
[0,1]

∫
R
φl,j(z)ρβe

−β(z−x)φl,i+1(x+ hl)dzdx

=

∫
[hl,hl+1]

∫
R
φl,j(z)ρβe

−β(z−x+hl)φl,i+1(x)dzdx

= e−hlβ(Al)i+1,j .

A similar argument gives (Al)i,j = e−hlα(Al)i−1,j for 1 ≤ j ≤ i− 2. Now we can introduce the
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splitting
vi = v←i + v◦i + v→i

with

v←i =

i−2∑
j=1

(Al)i,juj , v◦i =

i+1∑
j=i−1

(Al)i,juj , v→i =

nl∑
j=i+2

(Al)i,juj .

With the recursive relationships

v←i =
i−3∑
j=1

(Al)ijuj + (Al)i,i−2ui−2

= e−hlα
(i−1)−2∑
j=1

(Al)i−1,juj + (Al)i,i−2ui−2

= e−hlαv←i−1 + (Al)i,i−2ui−2

for i = 4, . . . , nl and

v→i =

nl∑
j=i+3

(Al)ijuj + (Al)i,i+2ui+2

= e−hlβ
nl∑

j=(i+1)+2

(Al)i+1,juj + (Al)i,i+2ui+2

= e−hlβv→i+1 + (Al)i,i+2ui+2

for i = 1, . . . , nl − 3, all v←i , v◦i and v→i can be precalculated in linear time. Altogether, we can
compute the matrix-vector product v = Alu in O(nl) complexity even though the matrix Al is
dense. This approach also works with other basis functions than linear splines as long as they
are positioned on an equidistant grid and have finite support.

So far, we have described the application of the integro-operator of the Kou model to a
one-dimensional discretization on level l only. This approach now easily carries over to the
multi-dimensional generating system case by the unidirectional principle with the dimension-
recursive form of the algorithm (4.43)–(4.46), which exploits a given tensor product structure
and requires only one-dimensional non-hierarchical applications of the Kou integral-operator
in (4.40) and (4.42). This altogether allows for the application of the operator matrices in the
discretized equation (3.19) in just linear time with respect to the number of degrees of freedom.
This recurrence formula can also be employed in the context of the single space matrix-vector
multiplication algorithm in (4.36), which is helpful for the OptiCom preconditioner.

Up to here, we have made lots of assumptions until we arrived at the Galerkin recurrence
formula for the Kou model. At this point, we want to refer the reader to alternative matrix-
vector multiplication methods if these requirements are not met. See Table 6.1 for a rough
guidance, where we assume a discretization based on a regular sparse grid on level J in d
dimensions with O(2JJd−1) degrees of freedom.
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Table 6.1: Overview over matrix–vector multiplication approaches

Assumption Method Complexity

Multivariate Kou
model and sum of ten-
sor product operators

Use the unidirectional principle from Subsec-
tion 4.3.2 and the recurrence formula from Sub-
section 6.2. The resulting computational com-
plexity is linear in the number of degrees of free-
dom but the recursive structure of the unidirec-
tional principle leads to a dimension-dependent
constant of at least 2d, which limits its use in
high-dimensions. In certain instances, there are
remedies [Feu05]

O(2JJd−1)

Sum of tensor prod-
uct operators with a
non-Kou integral ker-
nel (4.27)

Use the unidirectional principle from Subsec-
tion 4.3.2 and employ the circular convolution
theorem for the one-dimensional integral con-
volutions. This is straightforward and easy to
implement, and the extra work only leads to
an additional factor J in the runtime complex-
ity. It may be worthwhile to check whether
the constraint of having sums of tensor products
can be dropped using a generalized sparse grid
FFT [GH14a]

O(2JJd)

No tensor product op-
erators

Wavelet compression [GK09, Rei10]. Mathemat-
ically and computationally challenging and leads
to a log-linear amount of non-zero entries of the
system matrix with respect to the number of de-
grees of freedom

O(2JJ2(d−1))

Any operator, small J
and high d

Naive approach using the full matrix. This
results in a computational complexity that is
quadratic in the number of degrees of freedom,
but there is no additional factor of 2d involved

O(22JJ2(d−1))
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6.3 Experiments with the PIDE solver

In this section, we perform several experiments with our PIDE solver. That means we combine
the time and space discretization from Chapter 3, the sparse grid technique from Chapter 4,
the preconditioning from Chapter 5, and the Galerkin recurrence formula from Section 6.2. We
assume a low number of space dimensions, e.g., d = 1, 2, 3. Experiments with our PIDE solver
for d = 4 will be presented in Section 6.5.

6.3.1 Toivanen option

In this subsection, we price an option with the parameters given in [Toi08]. Namely, we price a
European put option with σ = 0.2, r = 0.0%, T = 0.2, S(0) = 1, K = 1 and jump term λ = 1,
ρ = 0.5, α = 2, β = 3. We compute the reference value 0.04264848 by a Monte Carlo simulation
with 2.0 × 1010 samples, which coincides with the price given in [Toi08] up to a relative error
of ∼ 10−5. We do not expect any convergence of the discretization error below this accuracy,
but we also need to consider other sources of error: The time discretization and the localization
of the domain.
Our first set of experiments studies the effect of the domain truncation. In Section 3.3, we

advocate to use a domain (3.9) that is adapted to the standard deviations of the components
of X. For several choices of the parameter ζ in (3.10) and (3.11) we measure the pointwise error
at the money with respect to the discretization level. We use an implicit time discretization
with M = 2048 steps and the orthogonal projection based preconditioner from Section 5.5.
See Figure 6.4 for the resulting relative errors. It turns out that the localization error appears
later and later the larger the domain is, but choosing a larger domain results in the need for
a higher amount of degrees of freedom to achieve the same error. This shows that the domain
should be large enough to reach a certain target accuracy but not larger than necessary. Note
that here and in the following we refer to the domain immediately after localization but before
transformation with (3.12) to the d-dimensional unit cube Ωd.

6.3.2 Two-dimensional put option

In this subsection, we price a two-dimensional European put option based on our multivariate
Kou model, and we examine the convergence rates for different kinds of errors.

Square domain at the money

The parameters we use in the first experiment are

T = 0.2,K = 2.0, r = 0.0%, σ1 = σ2 = 0.2

with one (R = 1) jump term[
k = 1 : λ1 = 0.3 ρ1,1 = 0.5 α1,1 = 8 β1,1 = 8 ρ1,2 = 0.5 α1,2 = 8 β1,2 = 8

]
.

We use a regular sparse grid in space and an implicit time discretization with M = 128 steps.
Next to the pointwise error at the money for S(0) = (1.0, 1.0), we measure the L2 error of the
initial condition and the L2 error of the solution at τ = T . To this end, we use a tensorized
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Figure 6.4: The relative pricing error versus the degrees of freedom for different domain sizes
for our one-dimensional option

rectangle rule and 100 000 function evaluations. In order to exclude the influence of the domain
size in log-space, we here compute the L2 errors after transformation onto the unit square Ω2

and also on the subset (0.2, 0.8)2 ⊂ Ω2. The reference function for the initial condition is
available analytically, and we use a finely resolved numerical solution on a full grid as reference
solution. We obtain a reference value of 0.0540281 for the option price at the money using
2.0× 1010 Monte Carlo samples.
In Figure 6.5 we see the L2(Ω2) approximation error of the initial condition, the L2(Ω2) error

of the solution u(T,x) and the relative error of the option price V (0, s) with s = (1.0, 1.0),
which is directly at the money. As our discretization spaces do not include boundary functions
but our payoff function is non-zero on the boundary, we get only a meager rate of convergence
for the initial condition. When we look at the L2 error not on (0, 1)2 but on (0.2, 0.8)2, it
improves a bit, but due to the non-differentiability at the kink of the payoff function, we do
not achieve the full sparse grid convergence rate. Luckily, this is not necessary to obtain an
accurate solution, since the error gets damped away by our implicit method. Evaluating the
L2 error at τ = T shows a convergence that comes close to the rate of 2, which is optimal and
better than the rate of 1 we would expect for full grids in two dimensions. The relative error
of the evaluation at the money decays fast and a bit erratically, but as we do not have much
theory for single point evaluations this comes as no surprise.

Adapted domain at the money

In Section 3.3 we proposed to use a domain (3.9) that is adapted to the standard deviations
of the components of X(T ) = (X1(T ), . . . , Xd(T )) by (3.10) and (3.11). In order to have some
empirical evidence that this choice is a good idea, we change the parameters from the previous
subsection to

T = 0.2,K = 2.0, r = 0.0%, σ1 = 0.2, σ2 = 0.05
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Figure 6.5: Two-dimensional option error convergence. The left plot shows the poor approxi-
mation of the initial condition. The right plot shows that we reach a reasonable
error convergence at τ = T both in terms of the L2 error approximation and the
relative pricing error evaluated at the money.

with one (R = 1) jump term[
k = 1 : λ1 = 0.3 ρ1,1 = 0.5 α1,1 = 8 β1,1 = 8 ρ1,2 = 0.5 α1,2 = 32 β1,2 = 32

]
,

so that σ(X2(T )) is a fourth of σ(X1(T )). We now run two sets of experiments: In one of them
the difference of the standard deviations of the first and second component of X is reflected
in the domain size according to (3.10) and (3.11), in the other one we simply choose a square
domain. In both cases we use ζ = 14. Figure 6.6 shows the convergence of the approximation
error of the initial condition. We observe that the adapted domain has a smaller L2 error but
exhibits the same convergence rate as the square domain. Note again that the L2 errors are
computed after transformation to the unit square, so the domain size does not directly affect
the error. Figure 6.7 shows the pointwise error at s = (1.0, 1.0). Overall, we can conclude
that the payoff function is easier to approximate on the adapted domain, while providing more
accurate prices.

Adapted domain in the money

Now we want to evaluate our solution not on the kink but in a smooth region of the payoff
function (6.8). To that end, we repeat the last experiment, but price an in the money option
with s = (0.5, 0.5). As our localization is centered around our point of evaluation according
to (3.10) and (3.11), the kink does no longer go straight through our domain of computation.
See Figure 6.8 for the error convergence in that case. Even for the initial condition, we can
observe approximation rates around 2 in the inner part of the domain (0.2, 0.8)2. Also the error
of the single point evaluation at s = (0.5, 0.5) converges fast. However, the convergence stops
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Figure 6.6: The left plot shows the L2((0, 1)2) (“full”) and L2((0.2, 0.8)2) (“inner”) approximation
errors of the initial condition for a domain adapted to the standard deviations of
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same for the solution at τ = T
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Figure 6.7: This plot shows the relative pointwise error at s = (1.0, 1.0) for a square domain
and one which is adapted to the standard deviations of the components X1 and X2
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at around ∼ 10−4, which is either due to the time discretization or the localization error. If
we require a higher accuracy, we would have to choose a larger domain and to fully resolve the
kink, which would again reduce the rate of convergence due to the non-differentiability. We can
conclude that payoff functions like (6.8) are not optimal for sparse grid methods, but they are
practically relevant so we stick to this example.
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Figure 6.8: The left plot shows the L2((0, 1)2) and L2((0.2, 0.8)2) approximation errors of the
initial condition. The right plot shows the same errors for the solution at τ = T ,
and also the pointwise error at s = (0.5, 0.5)

6.3.3 Preconditioning experiments

In this subsection we present experiments with the preconditioners discussed in Chapter 5.

Two-dimensional example

We consider the two-dimensional option from the previous subsection and choose a sparse grid
with index set I = S2

8 for discretization, i.e., a sparse grid with level J = 8 and dimension
d = 2. For the purpose of this experiment we use only one time step, i.e., M = 1. Figure 6.9
shows the convergence of the residual for a preconditioner based on the algebraic scaling pa-
rameters discussed in Section 5.4 and the non-linear preconditioner based on the OptiCom from
Section 5.6. We can see quite clearly that the OptiCom performs slightly better than the al-
gebraic scaling parameters, but we have to keep in mind that the OptiCom is computationally
more expensive. The CG versions of both methods seem to converge equally fast, which means
the OptiCom method benefits less from the CG approach than the algebraic weights. This is
consistent with the fact that the orthogonality of search directions breaks down in a CG method
if the preconditioner changes from iteration step to iteration step. This problem has already
been discussed in Subsection 5.6.2.
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Figure 6.9: These plots show the convergence of the residual for the steepest descent (left)
and conjugate gradient (right) method with algebraic scaling parameters and the
non-linear OptiCom in our two-dimensional example problem

In Figure 6.10 we can see that there is a maximum of 8 subspaces in each dimension. This
figure depicts the scaling parameters ωVl , l ∈ S2

8 . As implied by the formula (5.59) all maximal
subspaces that are not contained in other spaces have positive scaling weights. Figure 6.11
shows the OptiCom scaling parameters in the first eight iteration steps. They appear a bit
erratic, but the rule of positive scaling parameters on the outer diagonal still holds.
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Figure 6.10: Visualization of the sparse grid index set S8
2 , where the algebraic scaling parameters

ωVl , l ∈ S2
8 , are color-coded. The parameters that exceed the range of the colorbar

are clipped to the nearest value
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Three-dimensional example

Now we present a three-dimensional example. The parameters are

T = 0.5,K = 3.0, r = 0.0%, σ1 = 0.354372, σ2 = 0.194484, σ3 = 0.106735

and we have two (R = 2) jump-terms with

k = 1 : λ1 = 0.750798 ρ1,1 = 0.290905 α1,1 = 5.662934 β1,1 = 3.842384
ρ1,2 = 0.510828 α1,2 = 12.910091 β1,2 = 7.272062
ρ1,3 = 0.892947 α1,3 = 19.776693 β1,3 = 15.927953

k = 2 : λ1 = 0.908148 ρ1,1 = 0.902834 α1,1 = 3.158346 β1,1 = 6.030037
ρ1,2 = 0.845751 α1,2 = 30.392669 β1,2 = 9.085672
ρ1,3 = 0.377994 α1,3 = 17.501376 β1,3 = 18.491728

 .

The parameters have been randomly generated and belong to an ANOVA subspace of the ten-
dimensional example we deal with in Section 6.4. As opposed to the two-dimensional example
the resulting bilinear form a(·, ·) is no longer symmetric, but the OptiCom still works. Instead
of the energy based formulation (5.87) we can regard Pω(m)e(m) =

∑
l∈I ω

(m)
l T Vl e

(m) as the
Galerkin projection of the error e(m) in iteration step m onto the space span{T Vl e(m) : l ∈ I},
i.e.,

a(Pω(m)e(m), T Vl e
(m)) = a(u− u(m), T Vl e

(m)) = F (T Vl e
(m))− a(u(m), T Vl e

(m)) ∀ l ∈ I .

We now choose the sparse grid index set S3
6 for the discretization of our three-dimensional

space. In Figure 6.12, we see that the convergence of the residual starts off faster for the
OptiCom than for the fixed weights, but both methods achieve roughly the same error reduction
rate. This holds both for the steepest descent as well as for CG method. In Figure 6.13 we
see, similarly to the two-dimensional case, that the scaling parameters are positive on the
outer surface but partly negative beneath. In Figure 6.14, the scaling parameters found by the
OptiCom method are depicted. They change from iteration step to iteration step, but appear
slightly less erratic than the OptiCom scaling parameters in two-dimensions, see Figure 6.11.

In its current form, the sparse grid PIDE solver can tackle even four or five dimensional
problems, but it has characteristics that inhibit its use in high dimensions. First, there is a
2d constant in the runtime complexity of the operator application, see Subsection 4.3.2. Sec-
ondly, there is a another 2d constant that stems from the redundancy of the generating system
with respect to a basis, see (5.3). Thirdly, the payoff function (6.7) lacks the H2

mix regular-
ity typically required by sparse grids, which makes the approximation of the initial condition
difficult. However, we can bridge the gap to ten-dimensional problems by the ANOVA approx-
imation method discussed in Chapter 2. In the next section, we introduce a ten-dimensional
model and compute ANOVA approximation errors using a simple Monte Carlo technique. A
full ANOVA-PIDE approach will follow in Section 6.5
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Figure 6.12: These plots show the convergence of the residual for the steepest descent (left)
and conjugate gradient (right) method with algebraic scaling parameters and the
non-linear OptiCom in our three-dimensional example problem
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6.4 The ANOVA approximation for a ten-dimensional Kou model

In this section, we investigate the ANOVA approximation errors for a ten-dimensional jump-
diffusion model and a Brownian motion model. We mainly consider models with the standard
deviations

(σ(X1(t)), . . . , σ(X10(t))) =
√
t(0.501158, 0.275041, 0.150946, 0.082841, 0.045464, (6.12)

0.024951, 0.013694, 0.007515, 0.004124, 0.002264) ,

which decay exponentially with the dimension. In the following, we assume a multivariate jump-
diffusion process X, where, according to (6.6), half of the variance implied by (6.12) stems from
a diffusion process and the other half from two randomly chosen Kou jump-terms. In the end,
we use the parameters

T = 0.5,K = 10.0, r = 0.0% ,

the diffusion coefficients

(σ1, . . . , σ10) = (0.354372, 0.194484, 0.106735, 0.058577, 0.032148,

0.017643, 0.009683, 0.005314, 0.002916, 0.001601)

and two (R = 2) jump terms with

k = 1 : λ1 = 0.750798 ρ1,1 = 0.290905 α1,1 = 5.662934 β1,1 = 3.842384
ρ1,2 = 0.510828 α1,2 = 12.910091 β1,2 = 7.272062
ρ1,3 = 0.892947 α1,3 = 19.776693 β1,3 = 15.927953
ρ1,4 = 0.896293 α1,4 = 23.249837 β1,4 = 30.704574
ρ1,5 = 0.125585 α1,5 = 50.429905 β1,5 = 644.231495
ρ1,6 = 0.207243 α1,6 = 142.561945 β1,6 = 56.620768
ρ1,7 = 0.051467 α1,7 = 176.407227 β1,7 = 263.993395
ρ1,8 = 0.440810 α1,8 = 262.073528 β1,8 = 591.184436
ρ1,9 = 0.029876 α1,9 = 586.033377 β1,9 = 2017.337902
ρ1,10 = 0.456833 α1,10 = 1098.127950 β1,10 = 1065.247317

k = 2 : λ2 = 0.908148 ρ2,1 = 0.902834 α2,1 = 3.158346 β2,1 = 6.030037
ρ2,2 = 0.845751 α2,2 = 30.392669 β2,2 = 9.085672
ρ2,3 = 0.377994 α2,3 = 17.501376 β2,3 = 18.491728
ρ2,4 = 0.092217 α2,4 = 38.886723 β2,4 = 16.366405
ρ2,5 = 0.653411 α2,5 = 52.861348 β2,5 = 63.810803
ρ2,6 = 0.557841 α2,6 = 78.090436 β2,6 = 205.701005
ρ2,7 = 0.361565 α2,7 = 164.325048 β2,7 = 408.536213
ρ2,8 = 0.225055 α2,8 = 335.090239 β2,8 = 507.977158
ρ2,9 = 0.406520 α2,9 = 553.133908 β2,9 = 1006.039385
ρ2,10 = 0.468940 α2,10 = 901.915910 β2,10 = 2992.378924



.

Note that the three-dimensional example discussed in Subsection 6.3.3 is the {1, 2, 3}-marginal
of this ten-dimensional model.
We focus on the ANOVA approximation method described in Subsection 2.3.3. That means
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we approximate
u(τ,x) = E[g(X(τ) + x)]

by
uS(τ,x) =

∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
E[[QVn g](Xn(τ) + xn)] , (6.13)

where QVn g either denotes

• the anchor ANOVA (see Example 2.15)

[QVn g](Xn(τ) + xn) = g(log aD\n + Xn(τ) + xn) (6.14)

at anchor point a = (1.0, . . . , 1.0), i.e., µi = δai and γi = 1 for i = 1, . . . , d,

• or the weighted ANOVA (see Example 2.16)

[QVn g](Xn(τ) + xn) =

∫
RD\m

g(zD\n + Xn(τ) + xn)µD\n(dzD\n) (6.15)

with γi = 1 for i = 1, . . . , d and Gaussian measures µi. In our experiments, we choose the
Gaussian measures such that their first two moments match those of the respective Xi(T ).
The idea behind that is that ητm⊗µD\m in (2.80) is supposed to be a close approximation
to ηTD.

In the following, we perform several experiments in order to gain some insight into the anchor
ANOVA (6.14). To this end, we need to evaluate how large the resulting approximation error
is at τ = T . For the sake of brevity we drop the index τ from now on and define

eAS(x) := |u(x)− uS(x)| . (6.16)

As u and uS in (6.16) are not known exactly, we have to resort to a numerical method to compute
eAS(x). In this section, we use the robust albeit slow Monte Carlo simulation technique. We
will employ a full ANOVA-PIDE approach in Section 6.5. Let us denote the Monte Carlo
approximations of u(x) and uS(x) with N sample runs by uN (x) and uNS (x), respectively.
In order to compute uNS (x), we rely on the description of the ANOVA decomposition as an
alteration of our integration measure as in (2.80), i.e.

E[(QVmg)(xm + Xm(T ))] =

∫
RD

g(xm + ym � zD\m)(ηTm ⊗ µD\m)(d(ym � zD\m)) . (6.17)

So instead of computing first the projection QVmg and then the convolution with the marginal
measure ηTm, we interpret the expression E[[QVmg](xm + Xm(T ))] from (6.17) as the convolution
of g with the measure ηm⊗ µD\m evaluated at xm. This seems to be a small change, but makes
simulation a lot easier. See Algorithm 6 for the pseudocode of this method. Now, the triangle
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Algorithm 6 ANOVA Monte Carlo-algorithm
Input: initial condition g, position x,

measures µD and ηD,
number of simulations N ,
ANOVA index set S

Output: approximations rm = E[[QVmg](xm + Xm(T ))] for all m ∈ S
(rm)m∈S ← 0 . Initialize return vector
for all n = 1, . . . , N do

draw y ∼ ηTD . Sample from the Lévy process measure
draw z ∼ µD . Sample from the ANOVA measure
for all m ∈ S do

rm ← rm + g(xm + ym � zD\m) . Evaluate initial condition
end for

end for
for all m ∈ S do

rm ← rm/N . Divide by the number of simulations
end for

inequality tells us that

E[|uN (x)− uNS (x)|] ≤ E
[
|uN (x)− u(x)|+ |u(x)− uS(x)|+ |uS(x)− uNS (x)|

]
(6.18)

≤ |u(x)− uS(x)|+ σ(uN (x)) + σ(uNS (x))√
N

N→∞−→ eAS(x) ,

where σ(uN (x)) and σ(uNS (x)) denote the standard deviations of the Monte Carlo samples. So
plotting the quantity

eAS,N (x) := |uN (x)− uNS (x)|
for growing N will eventually reveal the ANOVA approximation error at point x with a con-
vergence rate of, on average, 1

2 .

Since Monte Carlo simulations are able to evaluate eAS,N only at predetermined points, we
content ourselves with measuring the error at the money

sat = (1.0, . . . , 1.0) ,

out of the money

sout = sat + (σ(X1(T )), . . . , σ(Xd(T )))

= (1.354372, 1.194484, 1.106735, 1.058577, 1.032148,

1.017643, 1.009683, 1.005314, 1.002916, 1.001601)
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and in the money

sin = sat − (σ(X1(T )), . . . , σ(Xd(T )))

= (0.645628, 0.805516, 0.893265, 0.941423, 0.967852,

0.982357, 0.990317, 0.994686, 0.997084, 0.998399) .

Note that the transformation to the corresponding log-space coordinates xat, xout and xin is
performed according to Subsection 3.6. Here and in the following, we only consider absolute
errors. This makes error analysis much easier but we have to bear in mind that the same
absolute accuracy is better in relative terms for in the money options with a high inner value
than for relatively cheap out of the money options. In fact, we estimate the prices of our at,
out, and in the money options using 1.0×109 Monte Carlo simulations at 0.1697311, 0.0187102
and 0.5817215, respectively.
In Figure 6.15, the quantity eAS,N (x) is depicted for our ten-dimensional jump-diffusion model

evaluated at the money, i.e., x = xat, and different numbers of samples N . The error bars
indicate one empirical standard deviation of this stochastic quantity. We see that the error bars
decline for higher values of N , and we end up with a rather accurate estimate of eAS(xat) =
|u(xat)− uS(xat)|.

6.4.1 Comparison for models with different decay rates

Figure 6.15 shows the estimation of the ANOVA error eAS(xat) = |u(xat) − uS(xat)| for our
jump-diffusion model. We repeat this procedure for superposition dimensions ds = 0, 1, 2 and
truncation dimensions dt = 1, 2, . . . , 9− ds with N = 1.0× 109 samples and plot the estimated
error eAS(xat). See Figure 6.16 for a comparison of the jump-diffusion model presented at the
beginning of this section with a Brownian motion model with standard deviations (6.12). What
we see is a smooth error convergence for the Brownian motion: The error appears to decrease
exponentially with the truncation dimension dt, and the slope of the curve, i.e., the exponential
rate, is higher the higher the superposition dimension is. The jump-diffusion model, however,
leads to more erratic results, but in principle increasing ds and dt improves the approximation.

Our choice of standard deviations (6.12) is somewhat arbitrary. It mainly depends on what
kind of decay we can expect after diagonalizing our initial covariance matrix Q. In Figure 6.17
we did the same computation for a process that has no decay at all with

σi = 0.189581 ∀ i = 1, . . . , 10 (6.19)

and a stronger decay than in (6.12) with

(σ1, . . . , σ10) = (0.557467, 0.205081, 0.075445, 0.027755, 0.010210, (6.20)
0.003756, 0.001382, 0.000508, 0.000187, 0.000069) .

Note that both sets of standard deviations (6.19) and (6.20) result in processes whose sum of
variances

∑d
i=1 var(Xi(1)) match those of our jump-diffusion example (6.12). This ensures a

basic level of comparability. We see that the ANOVA approximation error declines faster when
higher dimensions are less important. This is an important observation, as we typically observe
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Figure 6.15: Estimated ANOVA error at the money for different parameters dt and ds and an
increasing numbers of samples N . The error bars indicate one standard deviation
of the estimator
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Figure 6.16: The jump-diffusion model and its estimated ANOVA approximation errors for dif-
ferent superposition dimensions ds and truncation dimensions dt compared to a
similar model only based on the Brownian motion. Note that some of the error
bars are small or too close to zero to be displayed

a decay in the importance of the dimensions after the covariance matrix has been diagonalized,
see (2.25). As has been been noted in [RW13], a payoff function g which counteracts the decay
of the spectrum of the covariance matrix is conceivable but unlikely.

6.4.2 Evaluation at, in and out of the money

So far, we have used the anchor ANOVA with an anchor point a = (1.0, . . . , 1.0) and we evalu-
ated our error at the same position, i.e., sat = (1.0, . . . , 1.0), or to be precise, at the respective
log-space coordinate xat. When looking at an m-marginal, this amounts to replacing the pro-
cesses Xi, i ∈ D \m, by “processes” that remain constant, namely the respective components of
the anchor point a. This choice produces an error that gets worse when the point of evaluation s
does not coincide with the anchor point a. This is exactly what we want to examine in this set
of experiments by evaluating the error also at xout and xin.
Furthermore, we compare the anchor ANOVA (6.14) with the weighted ANOVA (6.15), see

Figure 6.18. In Figure 6.16, we learned that error estimates of our jump-diffusion model are
more erratic than those of the pure Brownian motion ones. So we repeat all experiments with a
diffusion-only model in Figure 6.19. Note there that the weighted ANOVA at the money results
in an error which is analytically zero as µi coincides with the distribution of the respective
component of Xi. However, due to the Monte Carlo simulation, we still see a non-zero error.
The observation is that the weighted ANOVA, i.e., approximating Xi by a similar ANOVA

measure, leads to an improvement when we evaluate at the same position as the anchor point.
When we consider in the money or out of the money options, the difference between the left
and right columns of Figures 6.18 and 6.19 is small. So we come up with the recommendation
to use the anchor ANOVA when evaluating anywhere else than the anchor point, but to use, if



136 6 Numerical experiments with the Kou-model

0 2 4 6 8
10−11

10−7

10−3

101

truncation dimension dt

A
N

O
V
A

er
ro

r
eA S

(x
at
)

Model with no decay

ds = 0
ds = 1
ds = 2

0 2 4 6 8
10−11

10−7

10−3

101

truncation dimension dt

Model with fast decay

Figure 6.17: These plots show the estimated ANOVA approximation errors when a Brownian
motion process has no decay (6.19) in the importance of its dimensions (left) and
a fast decay (6.20) (right)

available, the weighted ANOVA when evaluating at the anchor point.

6.5 The ANOVA-PIDE approach for our ten-dimensional
problem

In this section, we single out five promising anchor ANOVA approximations and apply them
to the initial condition of the problem given in Section 6.4. Then, we use our PIDE solver to
compute all emerging subproblems and recombine the results as in (6.13), i.e.,

ũS(x) =
∑
n∈S

( ∑
m∈S,m⊃n

(−1)#m−#n
)
ũn(x) ,

where ũn(x) is the numerical solution of our PIDE (3.25) at point in time τ = T with initial
condition QVn g. In doing so, we obtain the numerical solution of a ten-dimensional PIDE.
Our solutions ũn(x), n ∈ S, are subject to space discretization, time discretization and local-

ization errors, and we quantify these by

ePS(x) := |ũS(x)− uS(x)| . (6.21)

Note that (6.21) can only be evaluated in the localized domain (3.9). In the end we are interested
in the total error

eA◦PS (x) := |ũS(x)− u(x)|
of our ANOVA-PIDE approach. A simple triangle equality

eA◦PS (x) = |ũS(x)− uS(x) + uS(x)− u(x)| ≤ ePS(x) + eAS(x) (6.22)
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Figure 6.18: Estimated ANOVA approximation errors of our jump-diffusion example for options
at, in and out of the money with the anchor and the weighted ANOVA
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Figure 6.19: Estimated ANOVA approximation errors of our Brownian motion example for op-
tions at, in and out of the money with the anchor and the weighted ANOVA
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reveals that we need to balance the ANOVA error eAS and discretization error ePS in order to
achieve a low total error eA◦PS .
We now give a back-of-the-envelope calculation and discussion of the ANOVA and PIDE

errors for superposition dimension ds = 0. Given Figure 6.18, we assume the relationship

‖eAS‖ . c−dtA (6.23)

with cA > 1, an L∞ or L2 norm ‖ · ‖ and S = {m ⊂ D : m ⊂ {1, . . . , dt}}. For the PIDE error
we assume

‖ePS‖ . cdtP N−rP (dt) , (6.24)

where N is the number of degrees of freedom, rP is the rate of convergence, which is constant or
decreases with rising dt, and cdtP is a constant factor (with respect toN) that grows exponentially
with the dimension. See [Gri06] for the case cP < 1, but we typically assume cP ≥ 1.

Remark 6.1. Our computational effort stays linear in the number of degrees of freedom N .
Therefore, we use it as a proxy for our computational costs. Note that the error estimate (6.24)
does not account for time discretization and localization errors, which become relevant for
N →∞. However, to prove our main point, this error estimate is sufficient.

We now want to balance the errors on the right-hand side of (6.22). We assume (6.23)
and (6.24) to be sharp and thus we get

‖ePS‖ ' ‖eAS‖ ⇔ cdtP N
−rP (dt) ' c−dtA ⇔ N ' (cP cA)

dt
rP (dt) .

For a rate rP (dt) = 2
dt
, which is common for function approximation with linear splines and

full grids, or sparse grids when the required mix-regularity is lacking, this results in

N ' (cP cA)
d2t
2 .

For a dimension-independent rate of 2 as we expect it for sparse grids and sufficient regularity
of our solution, we get

N ' (cP cA)
dt
2 .

So in the ideal case the required number of degrees of freedom only grows by (cP cA)
dt
2 instead

of (cP cA)
d2t
2 . Nonetheless, in both cases the required number of degrees of freedom grows

exponentially with the dimension assuming cP cA > 1. Thus, independently of our rate being
rP (dt) = 2 or rP (dt) = 2

dt
, a sensible choice for dt is generally quite small. The interpretation is

the following: An ANOVA approximation that includes high-dimensional terms has a high-level
of exactness, and thus the subproblems need to be solved with the same or greater accuracy
to reach the desired target accuracy. So with growing dt the error norm ‖ePS‖ needs to decay
exponentially. If this is not possible, say the required N becomes too large, it is preferable in
terms of the error eA◦PS to use a coarser ANOVA approximation with a smaller dt instead.
A calculation for superposition ds = 1 and the set

S = { u ∪ {k} : u ⊂ {1, . . . , dt}, k ∈ {dt + 1, . . . , d}}
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reveals a similar result. With the coefficients from (2.82) it holds that

ePS(x) = |ũS(x)− uS| =

∣∣∣∣∣∣
d∑

k=dt+1

ũ{1,...,dt,k}(x)− (d− dt − 1)ũ{1,...,dt}(x)− uS(x)

∣∣∣∣∣∣
≤

d∑
k=dt+1

∣∣ũ{1,...,dt,k}(x)− u{1,...,dt,k}(x)
∣∣+ (d− dt − 1)

∣∣ũ{1,...,dt}(x)− u{1,...,dt}(x)
∣∣

and thus

‖ePS‖ ≤ (d− dt)cdt+1
P N−rP (dt+1) + (d− dt − 1)cdtP N

−rP (dt) ≤ 2(d− dt)cdt+1
P N−rP (dt+1) ,

so apart from the factor 2(d− dt) the result we get in terms of our PIDE error is close to (6.24)
with dimension dt + 1. Figure 6.18 suggests that (6.23) also holds for ds > 0, but with a higher
constant cA. Thus, the situation for ds = 1 is similar to ds = 0, and the number of degrees of
freedom needed for balancing eAS and ePS grows exponentially with dt as in the last paragraph.

Note that an elaborate error discussion for the ANOVA approximation in the context inte-
gration tasks can be found in [GH10b].

In the following, we conduct several experiments with different truncation and superposition
dimensions (and the corresponding index setsS) in order to back our considerations empirically.
As preparation, we sample 100 points (si)

100
i=1 uniformly from the cube

(sin1 , s
out
1 )× · · · × (sind , s

out
d ) (6.25)

=(1.0− σ(X1(T )), 1.0 + σ(X1(T )))× · · · × (1.0− σ(Xd(T )), 1.0 + σ(Xd(T ))) .

We regard the 100 randomly chosen points as representative for the domain (sin1 , s
out
1 ) × · · · ×

(sind , s
out
d ), and we compute their corresponding log-space coordinates (xi)

100
i=1 according to Sec-

tion 3.6. We estimate reference values u(xi) and uS(xi) by a Monte Carlo simulation with
1.0× 109 samples. Then, we start with the actual experiments: We apply the ANOVA approx-
imation to our ten-dimensional jump-diffusion example and solve the emerging subproblems
numerically with our sparse grid PIDE method. Now, we can compute the PIDE error ePS(xi),
the ANOVA approximation error eAS(xi) and the total error eA◦PS (xi) for all i = 1, . . . , 100, and
depict them graphically. As we cannot visualize a ten-dimensional space, we simply plot the
errors against the distance |si − a|1 to the anchor point a = (1.0, . . . , 1.0).

Note that in the previous experiments, we centered our domain around our point of inter-
est and made the domain size dependent on the standard deviations of the stochastic process,
see (3.10) and (3.11) in Section 3.3. As setting up the discrete initial condition is getting in-
creasingly difficult for higher dimensions, we precompute it and reuse it for several experiments.
This means we no longer use problem-dependent domains, but restrict ourselves to domains in
the form (−ζ, ζ)d.

In the following, we try various combinations of truncation and superposition dimensions
to approximate our ten-dimensional model problem as discussed. In the subsection titles we
mention only the computationally most expensive subproblems.
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6.5.1 Approximation by one one-dimensional subproblem (dt = 1, ds = 0)

The case dt = 1, ds = 0 is the most simple approximation possible: Instead of solving a ten-
dimensional PIDE we only compute the first dimension and regard the remaining dimensions as
constant. Obviously, this choice results in a high ANOVA approximation error, but the resulting
PIDE problem is quite simple. For this computation we choose the Crank-Nicholson method
with θ = 1

2 , 32 time-steps and a computational domain of (−ζ, ζ) with ζ = 8. The absolute
error of the PIDE solver measured at point s = 1.0 is decreasing rapidly, see Figure 6.20.
In Figure 6.21 we see the quantities ePS, e

A
S and eA◦PS evaluated at our reference points (xi)

100
i=1

plotted against the distance to the anchor point. The marks of the total error eA◦PS are mostly
within the marks of the ANOVA errors eAS, which shows that the PIDE error is negligible and
the ANOVA approximation error is dominating the total error.

6.5.2 Approximation by nine two-dimensional subproblems (dt = 1, ds = 1)

In order to improve the accuracy of our result, we now choose ds = 1. Then, next to the one-
dimensional problem, we also have to solve nine two-dimensional problems. The PIDE error
convergence plots are given in Figure 6.22. Note that here and in the following all computations
of the same dimension are given in the same plot. The two-dimensional subspace solutions are
computed with the same time discretization parameters as the one-dimensional ones and on
the domain (−ζ, ζ)2 with ζ = 8. Again, we increase the number of degrees of freedom until the
localization and time discretization errors appear.
In Figure 6.23 we see that the ANOVA approximation error eAS is significantly reduced, but

it is still larger than the PIDE error ePS. As a result, the total error of our ANOVA-PIDE
approach eA◦PS is mostly influenced by the ANOVA approximation error. This means we have
to improve the ANOVA approximation to achieve a higher accuracy.

6.5.3 Approximation by eight three-dimensional subproblems (dt = 2, ds = 1)

We increase our truncation dimension and set dt = 2. Now, we have to solve one two-dimensional
problem and eight three-dimensional problems. The error convergence plots are given in Fig-
ure 6.24. For the three-dimensional computations, we choose a log-space domain of (−ζ, ζ)3

with ζ = 4.5. Choosing ζ = 4.5 instead of ζ = 8 as in the one- and two-dimensional subproblems
leads to an earlier onset of convergence as discussed in Subsection 6.3.1, but also results in a
higher final error: ∼ 10−4 instead of ∼ 10−5 as in the two-dimensional computations. Since we
would not reach the accuracy of 10−5 on a larger domain anyway simply because the required
number of degrees of freedom would be too large, it makes sense to settle with a reduced domain
size.
In Figure 6.25, we see that the PIDE and ANOVA errors are well balanced. For the first time

we are able to compute the solution of a ten-dimensional parabolic jump-diffusion equation
with a considerable level of accuracy. We now try to improve the accuracy further by choosing
an even better ANOVA approximation.
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Figure 6.20: Absolute error of the PIDE solver for the one-dimensional subproblem that stems
from the ANOVA approximation with dt = 1, ds = 0
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for the ANOVA approximation with dt = 1, ds = 0
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Figure 6.22: Absolute error of the PIDE solver for the one- and two-dimensional subproblems
that stem from the ANOVA approximation with dt = 1, ds = 1
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Figure 6.24: Absolute error of the PIDE solver for the two- and three-dimensional subproblems
that stem from the ANOVA approximation with dt = 2, ds = 1
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6.5.4 Approximation by 28 four-dimensional subproblems (dt = 2, ds = 2)

We now use superposition dimension ds = 2. In addition to the two-dimensional problem and
eight three-dimensional problems, we now have to solve 28 four-dimensional problems. This is
especially challenging, since we have to achieve the same or even a higher level of accuracy for
more complex problems. Even worse, we loose some accuracy by adding up a larger number of
subspace solutions.
We compute the four-dimensional subproblems on the domain (−ζ, ζ)4 with ζ = 4. In

the error convergence plots given in Figure 6.26 we see that the convergence rate for the four-
dimensional subproblems is less than for the lower-dimensional ones, which comes as no surprise
as our payoff function from Subsection 6.1.4 lacks the mix-regularity required by sparse grids.
In Figure 6.27, we see that the ANOVA errors are very low and the total error is dominated

by the discretization error of our PIDE solver. Obviously, this choice of ANOVA approximation
parameters dt and ds is not optimal, and we try to fix this in the next subsection.

6.5.5 Approximation by seven four-dimensional problems (dt = 3, ds = 1)

In the previous subsection we had an example of numerically challenging subproblems whose
errors get amplified by adding up no less than 37 subspace solutions. It is preferable to lower
the superposition dimension to ds = 1 and to increase the truncation dimension to dt = 3.
This leads to one three-dimensional problem and seven four-dimensional problems only. The
parameters for computation are all chosen as in the previous subsections. Figure 6.28 shows
the convergence of the absolute PIDE error for the subproblems evaluated at the money. The
two types of error at our randomly sampled points in Figure 6.29 are now more balanced, but
still the PIDE error is dominating the total error.

6.5.6 Discussion

At the beginning of this section we conducted a rough error analysis and came to the conclusion
that the number of degrees of freedom used in our PIDE solver needs to grow exponentially with
the truncation dimension used in the ANOVA approximation. Then, we tried different choices
of ANOVA approximation parameters and solved the resulting subproblems with our sparse
grid PIDE solver. Our experiments support the theoretical finding: The case dt = 1, ds = 0,
see Figure 6.21, had an extremely low PIDE error ePS and a high ANOVA approximation error,
but the situation quickly reversed for the case dt = 2, ds = 2, see Figure 6.27, where the
PIDE solver accuracy posed the bottleneck. In order to evaluate which choice is optimal, we
summarize all total errors eA◦PS by a mean regression in Figure 6.30. Obviously, the best choice
is dt = 2, ds = 1, and leads to absolute errors in the region of 10−3 in the domain (6.25).
Depending on whether we look at our in the money, out of the money and at the money prices
this amounts to a relative accuracy of 0.6%, 5.3% and 0.17%, which is impressive considering
that we are dealing with a ten-dimensional non-trivial solution.
Note that all subspaces and their discretizations involved in this computation can in theory be

represented using a ten-dimensional generalized sparse grid. However, due to the 2d constants
in the computational complexity of the operator application, see Subsection 4.3.2, and the
redundancy of the generating system, see Section 4.2, this is not advisable. With the ANOVA-
PIDE approach, however, the same constants are limited to 2dt+ds .
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Figure 6.26: Absolute error of the PIDE solver for the two-, three- and four-dimensional sub-
problems that stem from the ANOVA approximation with dt = 2, ds = 2
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that stem from the ANOVA approximation with dt = 3, ds = 1

0 0.2 0.4 0.6

10−5

10−4

10−3

10−2

distance to anchor point

ab
so

lu
te

er
ro

r

ANOVA error eAS
PIDE error ePS

ANOVA+PIDE error eA◦P
S

Figure 6.29: This plot shows the errors eAS, e
P
S and eA◦PS at 100 randomly sampled points (xi)

100
i=1

for the ANOVA approximation with dt = 3, ds = 1



148 6 Numerical experiments with the Kou-model

0 0.2 0.4 0.6

10−3

10−2

10−1

distance to anchor point

ab
so

lu
te

er
ro

r
dt = 1, ds = 0

dt = 1, ds = 1

dt = 2, ds = 1

dt = 2, ds = 2

dt = 3, ds = 1

Figure 6.30: This plot shows the linear regression of the absolute errors eA◦PS for different
ANOVA-PIDE approximation schemes

Is this necessarily the best method to solve the stated problem? It depends. The achieved
accuracy is well within the means of Monte Carlo methods, but we have to bear in mind that
we get the solution for different prices and times, whereas the Monte Carlo simulation can be
evaluated only for one maturity and one price. So our solution remains valid and can be relied on
after moderate changes of the underlyings or after some time passes. Monte Carlo simulations
typically need to rerun in these cases. Moreover, Monte Carlo simulations are harder to adapt
to American options and less useful to compute Greeks, i.e., derivatives of the solution with
respect to its parameters, than PDE/PIDE approaches.
There is another possibility to circumvent the curse of dimensionality: For index options a

straightforward approach could be to model the index price as a stochastic process and not
every single one of its constituents, so that we essentially get a one-dimensional problem. This
will work in many cases, but it is conceivable that this approach is not desired. If there is
a number of options to be priced based on different subsets of underlyings, the option prices
need to be consistent with each other, which is not guaranteed when all subindices are modeled
separately.
We believe that the ANOVA-PIDE approach offers a great tradeoff between computational

complexity and accuracy for this inherently challenging problem, and the case dt = 2, ds = 1
shows the potential of this approach.



7 Conclusion

In this final chapter we summarize the results of this thesis, we point to questions that have
been left unanswered and discuss how this work can be extended.

7.1 Summary

This thesis dealt with the numerical solution of the high-dimensional backward Kolmogorov
equation (1.1) and (1.2), i.e., the approximation of the expected value (1.3). Our approach
was to first use the ANOVA approximation as a robust, simple and yet effective method for
breaking the problem down to moderate-dimensional subproblems, and then to solve these using
a sophisticated generalized sparse grid approach.1

We started with an introduction in Chapter 1. In Chapter 2, we gave a comprehensive
description of the ANOVA decomposition and explored the interplay between different choices
of one-dimensional measures (2.44), unit functions (2.46) and our problem at hand: In certain
instances described in Subsections 2.3.1 and 2.3.2 we directly decomposed the solution of our
problem, but these approaches either only worked in Rd without localization or were limited
to the multivariate Brownian motion, respectively. Only the decomposition applied to the
initial condition in Subsection 2.3.3 appeared feasible to us from a numerical perspective. By
applying the ANOVA approximation to the initial condition, we introduced an error that is
not subject to numerical convergence, i.e., the ANOVA approximation produces a modeling
error. Therefore, a wise choice of the initial approximation is important. Then, in Chapter 3
we described the discretization of the moderate-dimensional subproblems in space and time. In
Chapter 4 we discussed sparse grids as an alternative to discretizations based on regular tensor
grids. We focused on generating systems, described the single space matrix-vector multiplication
algorithm and gave a description of a variant of the unidirectional principle that works with
non-local operators. In Chapter 5 we focused on several ways to precondition the resulting
systems of linear equations. Most of the approaches were based on norm equivalences with
L2-orthogonal subspaces, and they were computed either explicitly or implicitly. They were
similar to prewavelet approaches, but in our opinion easier to implement. Our presentation of
the OptiCom as a preconditioner for PDEs and PIDEs was a novelty in the sparse grid context.
We saw that this preconditioner is better than any a priori diagonal scaling but at additional
costs. However, these costs were reduced drastically using the matrix-vector multiplication
algorithm introduced in Subsection 4.3.1. In Chapter 6 we became specific about the problem
we want to solve and introduced a multi-dimensional Kou model that resulted in a sum of tensor
product operators. There, a recurrence formula previously only known for finite differences

1This concept is similar to data analysis, where the Principal Component Analysis is used as an initial and
drastic dimensionality reduction, and the moderate-dimensional output is used to feed more sophisticated
yet expensive methods, see [LV07].
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could be used to apply this operator in linear runtime. We came up with a model problem
and observed that the ANOVA approximation error decays exponentially with the truncation
dimension. Typically the rate of decay is higher for a higher superposition dimension. A short
error analysis lead to the conclusion that balancing the ANOVA and PIDE discretization errors
requires an exponential growth of the number of degrees of freedom in our PIDE solver with
respect to the truncation dimension. This was confirmed in our numerical experiments, in which
the optimal balance was already achieved for dt = 2, ds = 1.

In summary, we can say we tackled a number of interesting problems. We made a consid-
erable amount of assumptions about our jump-diffusion model, but in the end we were able
for the first time to efficiently approximate the solution of a ten-dimensional BKE based on
a generalization of the Kou model. This is well outside the means of classical tensor product
methods, but also the sparse grid method benefits greatly from the initial application of the
ANOVA approximation technique.

7.2 Outlook

There are numerous ways to complement or expand this thesis:

• The ANOVA approximation of functions by a sum of moderate-dimensional functions
produces an additional modeling error that will not converge to zero.2 However, new
techniques like the iterated ANOVA from Subsection 2.2.2 offer the possibility of numerical
convergence with low-dimensional functions only and should be looked into.

• Furthermore, a thorough error analysis for ANOVA approximations given different types
of stochastic processes and initial conditions would be interesting.

• We could not give a proof that the CG version of the OptiCom-method in Subsection 5.6.2
exhibits the improved convergence properties we are used from CG approaches, even
though the improvement was empirically present in all cases and only slightly smaller
than for the a priori scaling parameters.

• We assumed a jump-diffusion model with several terms of independent jumps in all com-
ponents. This proved helpful from an algorithmical perspective and can be regarded as
a low rank-approximation to a general Lévy measure, see Subsection 6.1.3. This route
could be pursued further to efficiently deal with general non-local operators.

• In future, we try to identify other suitable model problems for our method. This entails
options with early exercise features and path dependent options, but also applications
outside of financial mathematics.

2At least as long as we do not use all terms of the ANOVA decomposition (2.53), which would render the whole
method pointless.
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