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Abstract 

O-linked N-acetylglucosamine (O-GlcNAc) is a highly dynamic posttranslational modification 

which has been found on a myriad of nucleocytoplasmic proteins. O-GlcNAc addition and 

removal are catalyzed by two conserved enzymes, O-GlcNAc transferase (OGT) and 

O-GlcNAc hydrolase (OGA). 

Alzheimer disease (AD) is one of the most common forms of dementia. The histopathological 

hallmarks of AD brain include neurofibrillary tangles of hyperphosphorylated tau and senile 

plaques consisting mainly of aggregated amyloid β-peptides which are generated from a 

larger transmembrane protein, the amyloid precursor protein (APP). 

O-GlcNAc has been extensively studied in the context of AD. However, contradicting results 

have demonstrated either increased or decreased O-GlcNAcylation in AD brain. To date the 

underlying cause(s) as well as potential consequences of altered O-GlcNAcylation in AD are 

unknown. Both the microtubule-associated protein tau and APP are O-GlcNAc-modified. 

While some studies show that increased O-GlcNAcylation reduces tau hyperphosphorylation, 

the function of the O-GlcNAc modification of APP is not yet understood. 

In this work, the potential involvement of O-GlcNAc in different aspects of AD pathology was 

investigated. For this purpose, a recently established in vitro OGT assay was used to 

demonstrate the O-GlcNAcylation of cyclin-dependent kinase 5 (cdk5), a kinase that 

phosphorylates both APP and tau and has been implicated in AD pathogenesis. The 

functional role of O-GlcNAcylation of cdk5 remains to be elucidated. Since OGT assays are 

useful tools for the analysis of OGT activity or for the identification of novel OGT targets, the 

established in vitro OGT assay was further refined using the nuclear pore protein Nup62 as a 

model substrate. To investigate the (potential) role of APP´s O-GlcNAcylation, effects of 

O-GlcNAc modulation on the proteolytic processing of APP were analyzed in cell culture 

studies. Increased O-GlcNAc expression by OGA inhibition did, however, not alter levels of 

the APP cleavage products sAPPα and sAPPβ. Furthermore, O-GlcNAc and, for the first 

time, O-GlcNAc cycling enzymes were investigated in brain samples of subjects with AD and 

amnestic mild cognitive impairment (MCI), a prodromal stage of AD. In AD brains, increased 

O-GlcNAcylation correlated with reduced OGA expression and activity while OGT expression 

was unaltered when compared with age-matched controls. In MCI brains, no changes in 

O-GlcNAc, OGA or OGT expression were observed. 

Taken together this work suggests that O-GlcNAc may not play a direct role in APP 

processing and that altered O-GlcNAcylation may be a late event in the progression of AD. 

In combination with recent reports demonstrating positive effects of OGA inhibition in animal 

models of AD, it is obvious that further studies are needed to elucidate the role of O-GlcNAc 

in AD. 
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Introduction 

1 Introduction 

1.1 O-GlcNAc 

O-linked N-acetylglucosamine (O-GlcNAc) is a posttranslational modification consisting of a 

single N-acetylglucosamine (GlcNAc) attached to serine or threonine residues of proteins 

(Torres and Hart, 1984). In contrast to classical N- and O-glycosylation of membrane and 

secretory proteins, O-GlcNAc is not further elongated into more complex structures and it is 

localized to the nucleocytoplasmic compartment and to mitochondria (Holt and Hart, 1986; 

Hu et al., 2009). Furthermore, and in analogy to protein phosphorylation, O-GlcNAcylation is 

reversible, highly dynamic, and changes in response to various stimuli (Kearse and Hart, 

1991; Zachara et al., 2004). O-GlcNAc cycling is facilitated by two highly conserved 

ubiquitously expressed enzymes, O-GlcNAc transferase (OGT) and O-GlcNAc hydrolase 

(O-GlcNAcase or OGA) (Lubas et al., 1997; Gao et al., 2001; see Figure 1A). Utilizing uridine 

5´-diphosphate-N-acetylglucosamine (UDP-GlcNAc) as its donor substrate, OGT catalyzes 

the addition of the GlcNAc moiety onto proteins while OGA catalyzes its removal 

(Haltiwanger et al., 1990; Dong and Hart, 1994). The high-energy sugar nucleotide UDP-

GlcNAc is generated in the hexosamine biosynthetic pathway (HBP), a metabolic sideway 

through which 2-3 % of intracellular glucose are metabolized (Marshall et al., 1991; illustrated 

in Figure 1B). As O-GlcNAc synthesis is dependent on glucose flux through the HBP, 

O-GlcNAcylation is often referred to as a nutrient sensor (Wells et al., 2003). 

To date, a myriad of proteins from almost all functional classes involved in various signaling 

pathways have been described to be O-GlcNAcylated. These proteins play important roles in 

transcription/translation, stress response and cell death, energy metabolism, cytoskeletal 

regulation, and protein stability/proteasomal degradation (reviewed in Hart et al., 2007; 

Butkinaree et al., 2010). However, the exact function(s) of O-GlcNAc on most proteins 

remain to be investigated. Interestingly, all identified O-GlcNAc proteins are also 

phosphoproteins indicating possible functional interplay between the two posttranslational 

modifications (see 1.1.2). 

Despite being such an abundant modification O-GlcNAc was not described until the early 

1980s because the detection and analysis of protein O-GlcNAcylation has been and still is 

quite challenging. The O-GlcNAc modification is substoichiometric, with as little as 

0.1 GlcNAc residue per protein molecule in some cases (Kreppel and Hart, 1999). During cell 

lysis, lysosomal hexosaminidases are released which rapidly cleave O-GlcNAc off proteins if 

no precautionary measures are taken. O-GlcNAc is small and uncharged, thus its addition 

has no effect on the apparent molecular weight of a protein in gel electrophoresis. In 



 

 

2 

Introduction 

addition, analysis by mass spectrometry (MS) is difficult as the O-GlcNAc moiety is labile and 

it is often lost during standard ionization and fragmentation techniques. Site-directed 

mutagenesis, a method which is often used for functional analysis, can also affect 

phosphorylation and in consequence, it cannot be distinguished between effects mediated by 

the loss of phosphorylation or of O-GlcNAcylation of the investigated protein. Fortunately, the 

development of specific O-GlcNAc antibodies and the use of enzymatic and/or chemical 

tagging and enrichment methods in combination with new MS fragmentation techniques have 

greatly improved O-GlcNAc detection (Hart et al., 2007; Hu et al., 2010). 

 

A 

 

 

 

B 

 

Figure 1: O-GlcNAc cycling and the hexosamine biosynthetic pathway 

(A) Dynamic O-GlcNAc cycling is mediated by only two highly conserved enzymes. 
O-GlcNAc transferase (OGT) adds O-GlcNAc to serine or threonine residues of proteins 
while O-GlcNAc hydrolase (OGA) removes it (modif ied from Hart et al. , 2007 and Hu et 
al.,  2010). (B)  UDP-GlcNAc is the f inal product of the hexosamine biosynthetic 
pathway, a metabolic side way through which about 2-3 % of intracellular glucose are 
metabolized. The rate-limit ing enzyme glutamine:fructose-6-phosphate amido-
transferase (GFAT) uti l izes glutamine to convert fructose-6-phosphate (Frc-6-p) into 
glucosamine-6-phosphate (GlcN-6-p) which is then further metabolized to form UDP-
GlcNAc. UDP-GlcNAc serves as the donor substrate for protein O-GlcNAcylation by the 
OGT and for the generation of various glycoconjugates. Glc-6-p: glucose-6-phosphate; 
ER: endoplasmic reticulum (modified from Buse, 2006; Issad and Kuo, 2008; Butkinaree 
et al. , 2010). 
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1.1.1 O-GlcNAc cycling enzymes: OGT and OGA 

As described above, OGT catalyzes the addition of O-GlcNAc onto the hydroxyl groups of 

serine or threonine residues of target proteins (Haltiwanger et al., 1990). The ogt gene is 

highly conserved from Caenorhabditis elegans (C. elegans) to humans and is ubiquitously 

expressed in all mammalian tissues analyzed with highest level in the pancreas (Lubas et al., 

1997; Kreppel et al., 1997). Interestingly, OGT activity does not necessarily correlate with 

OGT protein level as it is highest in brain and thymus (Kreppel et al., 1997). OGT is essential 

for life, as intact ogt gene is required for embryonic stem cell viability and mouse ontology 

(Shafi et al., 2000). Furthermore, tissue-targeted deletion of the ogt gene causes adverse 

effects in several cell types. For example, neuron-specific ogt mutagenesis leads to tau 

hyperphosphorylation and neuronal dysfunction (O´Donnell et al., 2004). 

In humans, the ogt gene resides on the X chromosome and encodes three OGT isoforms of 

various lengths, subcellular localization, and distinct tissue-specific expression (Lubas et al., 

1997; Shafi et al., 2000; Hanover et al., 2003; Lazarus et al., 2006). The nucleocytoplasmic 

and short OGT isoforms (ncOGT and sOGT) have apparent molecular weights of 116 and 

75 kDa, respectively, and are localized to the nucleus and cytosol while mitochondrial OGT 

(mOGT), migrating at 103 kDa, resides in the mitochondria. OGT isoforms differ in the 

number of tetratricopeptide repeats (TPR) in their amino-terminus (N-terminus): ncOGT 

contains 11.5, mOGT contains 9, and sOGT contains only 2 TPRs (Hanover et al., 2003).  

TPRs are degenerate motifs composed of 34 amino acids which are often assembled in 

tandem arrays and mediate protein-protein interactions (Lamb et al., 1995). In accordance, 

deletion studies have demonstrated the importance of TPRs for OGT´s substrate recognition 

and the three isoforms, with their varying numbers of TPRs, exhibit distinct substrate 

specificities (Lubas and Hanover, 2000; Hanover, et al., 2003; Lazarus et al., 2006; Clarke et 

al., 2008). Furthermore, TPRs have been suggested to play a role in OGT multimerization 

and activity (Kreppel and Hart, 1999; Lubas and Hanover, 2000; Jínek et al., 2004).  

The carboxy-terminus (C-terminus) of OGT contains the catalytic domain and is identical in 

all three isoforms (Lubas and Hanover, 2000). The C-terminal region also includes a binding 

site for phosphatidylinositol-3,4,5-trisphosphate, the so called PPO domain, which is 

essential for the recruitment of OGT to the plasma membrane in response to insulin 

stimulation (Yang et al., 2008). Uniquely, ncOGT contains a nuclear localization signal while 

mOGT contains a mitochondrial localization signal (Hanover et al., 2003; Love et al., 2003). 

An overview of OGT isoforms is depicted in Figure 2.  

Although no consensus motif for O-GlcNAcylation has yet been identified, some distinct 

amino acid sequences are common to many OGT substrates. O-GlcNAcylation often takes 
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place at P-V-S/T-S/T motifs as well as at motifs consisting of two hydroxyl-containing amino 

acids adjacent to an alanine (Vosseller et al., 2006). 

 

 

 

Figure 2: O-GlcNAc transferase (Butkinaree et al., 2010) 

The ogt gene resides on chromosome Xq13 and due to alternative splicing gives rise to 
three different OGT isoforms with identical C-terminal catalytic domains but varying 
N-termini: ncOGT contains 11.5 tetratricopeptide repeats (TPRs) and a central nuclear 
localization signal (NSL); mOGT contains 9 TPRs and an N-terminal mitochondrial 
localization signal (MLS); sOGT contains 2 TPRs. Posttranslational modif ications of 
ncOGT include tyrosine phosphorylation and O-GlcNAcylation. 
G: O-GlcNAc; P: O-phosphate; nc: nucleocytoplasmatic; m: mitochondrial; s: short. 

Regulation of OGT is highly complex and O-GlcNAcylation is responsive to various cellular 

signals and stimuli. While OGT is potently inhibited by free UDP and low concentrations of 

salts, GlcNAc and ATP have no effect on OGT activity in vitro (Haltiwanger et al., 1990; 

1992; Marshall et al., 2003). The affinity of OGT towards different substrates as well as its 

activity is highly dependent on UDP-GlcNAc concentrations (Kreppel and Hart, 1999). OGT 

activity towards various substrates may further be influenced by interactions with different 

proteins. It has been demonstrated, for example, that OGT-interacting protein 106 targets 

OGT to RNA polymerase II (Iyer et al., 2003); during glucose deprivation OGT can also be 

targeted to neurofilament H by p38 kinase (Cheung and Hart, 2008). OGT activity may also 

be regulated by posttranslational modifications as the enzyme is O-GlcNAcylated and 

tyrosine phosphorylated (Kreppel et al., 1997; see Figure 2).  

 

The removal of GlcNAc from proteins is catalyzed by OGA formally known as 

hexosaminidase C (Poenaru and Dreyfus, 1974; Dong and Hart, 1994; Gao et al., 2001). 

Unlike lysosomal β-hexosaminidases, OGA activity is highest at neutral pH, shows 

cytoplasmic and nuclear localization, and is specific for β-linked GlcNAc (Dong and Hart, 

1994). OGA is encoded by a highly conserved gene, originally identified as meningioma-

expressed antigen 5 (MGEA5), and it is expressed ubiquitously with highest levels in the 

brain, followed by placenta and pancreas (Heckel et al., 1998; Comtesse et al., 2001; Gao et 

al., 2001). Similar to ogt deletion studies, OGA knockout in mice causes embryonic or 
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neonatal lethality indicating that OGA is essential for development (Yang et al., 2012). 

Interestingly, knockout of OGA or OGT homologues in C. elegans is not lethal and deletion of 

either gene results in similar phenotypes, i.e., altered macronutrient storage and dauer 

formation (Hanover et al., 2005; Forsythe et al., 2006). 

In humans, the gene encoding OGA resides on chromosome 10, at a locus that has been 

implicated in AD and is associated with type 2 diabetes mellitus in Mexican Americans 

(Heckel et al., 1998; Duggirala et al., 1999; Bertram et al., 2000; Lehman et al., 2005). 

Alternative splicing of the MGEA5 gene yields two OGA isoforms, full-length (FL) or long 

OGA and nuclear-variant (NV) or short OGA, with apparent molecular weights of 130 and 

75 kDa, respectively (Comtesse et al., 2001). Consistent with the localization of OGT and 

O-GlcNAcylated proteins, OGA is found in the cytosol, nucleus, and in mitochondria (Dong 

and Hart, 1994; Comtesse et al., 2001; Hu et al., 2009). OGA isoforms demonstrate distinct 

subcellular localization. FL-OGA resides predominantly in the cytoplasm whereas NV-OGA is 

located mainly to the nucleus but was recently also found on the surface of lipid droplets 

(Comtesse et al., 2001; Keembiyehetty et al., 2011). Both isoforms contain the N-terminal 

O-GlcNAcase domain, but NV-OGA lacks the C-terminal third of FL-OGA including a region 

that has been proposed to contain histone acetyl transferase activity in vitro; a finding which 

has later been contested (Comtesse et al., 2001; Toleman et al., 2004; Butkinaree et al., 

2008). Furthermore, OGA contains two caspase-3 consensus sequences predicted to 

generate C-terminal fragments of 83 and 63 kDa, respectively, and caspase-3 has been 

demonstrated to cleave FL-OGA in vitro (Wells et al., 2002a). While both OGA variants show 

O-GlcNAcase activity in vitro, the catalytic efficiency of NV-OGA is approximately 400-fold 

lower than that of the full-length enzyme (Macauley and Vocadlo, 2009). An overview of OGA 

isoforms is depicted in Figure 3. 

 

 

 

Figure 3: O-GlcNAc hydrolase (Butkinaree et al., 2010) 

The O-GlcNAc hydrolase (OGA) gene resides on chromosome X10q24 and gives rise to 
two OGA isoforms with identical N-terminal catalytic domains but different C-termini. 
Full- length OGA contains a caspase-3 cleavage site and a putative histone acetyl 
transferase (HAT) domain. Furthermore, it is posttranslationally modif ied by 
phosphorylation and O-GlcNAcylation. G: O-GlcNAc; P: O-phosphate; s: short. 
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Not much is known about the regulation of OGA activity or its targeting to substrates. Like 

OGT, OGA may also be regulated by posttranslational modifications, as the enzyme is 

phosphorylated and O-GlcNAcylated (Beausoleil et al., 2004; Lazarus et al., 2006; Khidekel 

et al., 2007; see Figure 3). OGA interacts with OGT and it has been proposed that OGA may 

be sequestered to its substrates via its tight binding to OGT (Whisenhunt et al., 2006). 

Furthermore, based on their different subcellular localizations and catalytic efficiencies, it has 

been suggested that OGA isoforms may have distinct cellular targets (Keembiyehetty et al., 

2011). The crystal structure of human OGA has not yet been solved, but the analysis of a 

bacterial OGA homologue indicates that OGA contains a highly conserved substrate-binding 

groove near its active site (Rao et al., 2006). To date, it is not yet clear whether OGA´s 

substrate recognition is mediated via the GlcNAc moiety alone or by interactions with both 

the sugar moiety and the peptide backbone of the substrate (Rao et al., 2006; Schimpl et al., 

2012; Shen et al., 2012; Martin et al., 2014). 

1.1.2 Dynamic interplay between O-GlcNAcylation and phosphorylation 

Since O-GlcNAcylation and phosphorylation both occur on serine and/or threonine residues, 

Hart et al. proposed the so-called “yin-yang” model of mutually exclusive O-GlcNAc and 

O-phosphate modification of proteins (Kelly et al., 1993; Hart et al., 1995). This hypothesis 

was strengthened by studies showing that increasing/decreasing global protein 

phosphorylation concomitantly reduced/elevated global O-GlcNAc expression (Griffith and 

Schmitz, 1999). A reciprocal relationship of both posttranslational modifications has also 

been demonstrated for individual proteins, for example, O-GlcNAcylation of p53 prevents 

phosphorylation of the protein (Yang et al., 2006). However, it soon became apparent that 

the interplay between the two modifications was more complex than originally thought. 

For example, Wang et al. demonstrated that selective inhibition of glycogen synthase 

kinase-3 by lithium resulted in increased O-GlcNAcylation on some proteins but decreased 

O-GlcNAcylation on others (Wang et al., 2007). A follow-up study demonstrated that global 

O-GlcNAc modulation also influenced protein phosphorylation bi-directionally (Wang et al., 

2008). Similarly, Tallent et al. showed that in vivo upregulation of O-GlcNAc expression 

resulted in elevated O-GlcNAcylation of synapsin I and, at the same time, site-specifically 

increased phosphorylation of synapsin I (Tallent et al., 2009). By now, it seems that all 

possible combinations of both O-GlcNAc modification and phosphorylation can be found on 

proteins (Comer and Hart, 2000; Hart et al., 2007) including but not limited to the following:  
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i. competitive occupancy of the same site, e.g. at Ser16 of estrogen receptor β (Cheng 

and Hart, 2001); 

ii. competitive and alternative occupancy on adjacent sites, e.g. at Ser146 and Thr155 

of p53 (Yang et al., 2006); 

iii. complex interplay of phosphorylation and O-GlcNAcylation of the same, adjacent 

and/or distant sites, e.g. on RNA polymerase II (Comer and Hart, 2001). 

The extensive crosstalk of O-GlcNAcylation and phosphorylation is further demonstrated by 

the fact that O-GlcNAc cycling enzymes are phosphorylated and different kinases including 

glycogen synthase kinase-3β and casein kinase 2 (CK2) are O-GlcNAcylated (Kreppel et al., 

1997; Lubas and Hanover, 2000; Beausoleil et al., 2004; Dias et al., 2012). Furthermore, 

OGT associates with protein phosphatase 1 subunits and OGT, OGA, mitotic kinase 

Aurora B and protein phosphatase 1 have been demonstrated to form functional complexes 

during cytokinesis (Wells et al., 2004; Slawson et al., 2008). The recent findings that 

O-GlcNAcylation modulates tyrosine phosphorylation of insulin receptor substrate 1 and the 

discovery of phosphorylated O-GlcNAc add yet another level of complexity to the intricate 

interplay between the two modifications (Whelan et al., 2010; Graham et al., 2011). 

1.1.3 Functions of O-GlcNAc 

As demonstrated by knockout studies, O-GlcNAc and functional O-GlcNAc cycling are 

essential for life (Shafi et al., 2000; Yang et al., 2012). Protein O-GlcNAcylation plays 

important roles in transcription/translation, energy metabolism, cytoskeletal regulation, 

protein stability/proteasomal degradation, and cell death (reviewed in Hart et al., 2007; 

Butkinaree et al., 2010), and O-GlcNAc has been proposed to act as a nutrient and stress 

sensor (Wells et al., 2003; Chatham and Marchase, 2010). In accordance with the 

significance of this modification, perturbations in O-GlcNAcylation are associated with 

different diseases such as cancer and type II diabetes (reviewed in Bond and Hanover, 

2013). Based on the multitude of O-GlcNAc functions, only two exemplary aspects are briefly 

described below. 

 

O-GlcNAc and protein stability 

Many of the identified O-GlcNAcylated peptide sequences are reminiscent of “PEST” 

sequences (peptide regions rich in proline, glutamate, serine, and threonine) which are often 

subjected to phosphorylation and are known to target proteins for degradation by the 

ubiquitin-proteasomal system (Rechsteiner and Rogers, 1996; Vosseller et al., 2006). In 

agreement, phosphorylation of the estrogen receptor β at Ser16 marks it for degradation, 

while O-GlcNAcylation of estrogen receptor β at Ser16 is thought to stabilize the protein 
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(Cheng and Hart, 2001). The same protective mechanism of O-GlcNAc has been 

demonstrated for the tumor suppressor p53 where O-GlcNAcylation at Ser149 prevents 

phosphorylation at Thr155 thus precluding ubiquitin-dependent proteolysis of the protein 

(Yang et al., 2006). 

Furthermore, key regulators of the ubiquitin-proteasomal system are O-GlcNAcylated and 

proteasomal function is directly modulated by O-GlcNAc as O-GlcNAcylation of the 26S 

proteasome inhibits its function (Cole and Hart, 2001; Zhang et al., 2003; Guinez et al., 

2008). In agreement, downregulation of OGA has been demonstrated to compromise the 

proteasome (Keembiyehetty et al., 2011).  

 

O-GlcNAc and cellular stress 

Cellular O-GlcNAc levels increase as a response to various forms of stress (Zachara et al., 

2004; Guinez et al., 2008). For example in COS-7 cells, acute heat treatment induces 

O-GlcNAcylation via increased OGT activity. Importantly, this response is dynamic and 

reversible as O-GlcNAc levels returned to normal 48 hours post heat shock. Moreover, in 

vitro modulation of O-GlcNAc levels by OGT knockdown, OGT overexpression or OGA 

inhibition alters cellular thermotolerance. While the downregulation of O-GlcNAc renders 

cells more susceptible to heat stress, upregulation of O-GlcNAc results in increased cellular 

thermotolerance. Stress tolerance seems to be mediated by the induction the expression of 

heat shock proteins HSP40 and HSP70 (Zachara et al., 2004).  

This study and others indicate that short-term increases of O-GlcNAc levels in response to 

acute stress are protective and may be part of a pro-survival mechanism (Zachara et al., 

2004; Ho et al., 2010). In contrast, chronically increased O-GlcNAcylation is associated with 

adverse effects in diseases like diabetes (Hu et al., 2005; Chatham and Marchase, 2010).  
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1.2 Alzheimer disease 

Dementia is characterized by the progressive deterioration of cognitive function. In 2010, 

35.6 million people worldwide were living with dementia and this number is projected to 

nearly double every 20 years resulting in 115.4 million dementia cases in the year 2050. 

Alzheimer disease (AD) is one of the most common forms of dementia (Prince et al., 2013). 

1.2.1 Pathological hallmarks of AD 

In 1907, the German psychiatrist Alois Alzheimer described the case of a 51-year-old patient 

with rapidly deteriorating memory. Post-mortem analysis of the patient´s brain revealed 

excessive atrophy as well as “changes of the neurofibrils” and “miliary foci (…) of a peculiar 

substance” (Alzheimer, 1907, translated by Jarvik and Greenson, 1987). These original 

observations are now known as the histopathological hallmarks of AD: intracellular 

neurofibrillary tangles of hyperphosphorylated tau protein and extracellular senile plaques 

consisting mainly of aggregated amyloid β (Aβ) peptides (Masters et al., 1985; Grundke-Iqbal 

et al., 1986a, b; Selkoe, 2001). Furthermore, substantial loss of synapses and increased 

neuroinflammation are observed in AD brain (Castellani et al., 2010). Clinically, AD is 

characterized by progressive memory impairment, disordered cognitive function, altered 

behavior, and a progressive decline in language and motor function (Selkoe, 2001). 

Tau pathology, as observed in AD but also in a number of other neurodegenerative 

disorders, is characterized by the accumulation of abnormally hyperphosphorylated tau. 

Physiologically, the microtubule-associated protein tau contains 2-3 moles phosphate per 

mole protein and promotes the assembly and stability of microtubules (Weingarten et al., 

1975; Köpke et al., 1993). However, hyperphosphorylation of tau reduces its ability to bind 

tubulin, consequently leading to its dissociation from microtubules and the aggregation of tau 

protein into tangles of paired helical filaments (Grundke-Iqbal et al., 1986a; Cruz and Tsai, 

2004; Iqbal et al., 2005).  

Amyloid or senile plaques are microscopic lesions composed of extracellular deposits of Aβ 

peptides (Masters et al., 1985). Aβ peptides of various lengths (39-43 amino acids) are 

derived from the so-called amyloid precursor protein (APP) (Kang et al., 1987; Cappai and 

White, 1999). Senile plaques can be divided into two subtypes, diffuse and neuritic plaques, 

with the latter containing a core of highly insoluble Aβ aggregates that is surrounded by and 

associated with dystrophic neurites, microglia, and reactive astrocytes (Selkoe, 2001). The 

predominant Aβ species found in neuritic plaques are the forms ending at amino acid 42 

(Aβ42); however, also Aβ species ending at amino acid 40 (Aβ40) are present in neuritic 

plaques. In contrast, diffuse or “preamyloid” plaques contain only Aβ 42 and are not 

surrounded by degenerating neurites (Iwatsubo et al., 1994; Selkoe, 2001). It has been 
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suggested that these plaques may represent the immature form of neuritic plaques and in 

fact, diffuse plaques are often found in the brains of aged subjects free of AD (Selkoe, 2001). 

1.2.2 AD subtypes, genes, and risk factors 

The majority of AD cases (95 %) are late-onset or sporadic, with idiopathic etiology and 

symptom onset occurring after the age of 65 (Bertram and Tanzi, 2005; Tang, 2009). The 

number one risk factor for sporadic AD is age; however, there may also be a significant, yet 

unidentified, genetic component in late-onset AD since first-degree relatives of AD patients 

have an increased risk for the disease (Wu et al., 1998). Furthermore, a polymorphism in the 

gene encoding apolipoprotein E (ApoE) which results in the presence of the ε4 allele is 

associated with an increased risk for sporadic AD (Strittmatter et al., 1993; Schmechel et al., 

1993). The exact molecular mechanisms by which ApoE, a serum cholesterol transport 

protein, influences AD pathology are unknown but it has been suggested that the ε4 isoform 

of ApoE may decrease clearance and/or enhance the aggregation of Aβ (Bertram and Tanzi, 

2005; Selkoe, 2011). Additional loci have been suggested to be genetically associated with 

late-onset AD but remain to be confirmed (Eisenstein, 2011). 

In contrast, early-onset or familial AD is caused by autosomal dominant mutations in the 

genes encoding APP, presenilin 1 (PS1) or presenilin 2 (PS2). Although these mutations are 

found on three different chromosomes, they all lead to common biological consequences, 

i.e., altered processing of APP resulting in increased production and deposition of Aβ 

peptides (Selkoe, 2001). This phenotype can also be observed in Trisomy 21, where the 

triplication of chromosome 21 containing the APP gene results in a life-long increase of APP 

expression and Aβ generation; consequently, amyloid pathology is also found in the brains of 

subjects with Down syndrome (Masters et al., 1985; Rumble et al., 1989).  

 

Table 1: Confirmed genetic risk factors for AD  

Gene Protein Chromosome Phenotype 

APOE ApoE 19 Unknown; possible impact on Aβ aggregation 
and/or lipid metabolism 

APP APP 21 Increased production of all Aβ species or 
specifically of Aβ42 peptides 

PSEN1 PS1 14 Increased Aβ42/Aβ40 ratio 

PSEN2 PS2 1 Increased Aβ42/Aβ40 ratio 

ApoE: apolipoprotein E; APP: amyloid precursor protein; PS1: presenil in 1; 
PS2: presenil in 2 (modif ied from Selkoe, 2001; Bertram and Tanzi, 2005). 

Regardless of the genetic differences between AD subtypes, histopathology in the brains of 

subjects with familial and sporadic AD is virtually the same; the subtypes mainly differ in the 
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age of onset (Bertram and Tanzi, 2005). An overview of confirmed genetic risk factors of AD 

is provided in Table 1. Interestingly, despite the presence of neurofibrillary tangles in AD 

brain, no tau mutations are associated with the disease. 

1.2.3 The amyloid precursor protein 

The mammalian protein APP, its two homologues APP-like protein 1 and 2 (APLP1 and 

APLP2), together with APPL (Drosophila melanogaster) and APL-1 (C. elegans), comprise 

the members of the highly conserved APP family (Rosen et al., 1989; Wasco et al., 1992; 

1993; Daigle and Li, 1993). Triple knockout of APP, APLP1 and APLP2 in mice leads to a 

severe phenotype with cranial abnormalities leading to early neonatal death (Herms et al., 

2004). In contrast, single knockout of APP, APLP1 or APLP2 results in viable mice showing 

only minor abnormalities (Zheng et al., 1995; Heber et al., 2000). These studies indicate an 

essential role of the APP family members in brain development but also point towards a 

certain degree of redundancy within the APP gene family (Zheng et al., 1995; Heber et al., 

2000; Herms et al., 2004). 

APP is a type I transmembrane protein with a large N-terminal extracellular domain, a single 

membrane-spanning domain and a short cytoplasmic C-terminal region (Dyrks et al., 1988; 

see Figure 4A). Importantly, only APP but not its family members contains the Aβ sequence 

(Wasco et al., 1993). Alternative splicing of the APP gene gives rise to various APP isoforms 

with APP770, APP751, and APP695 comprised of 770, 751, and 695 amino acids, respectively, 

representing the major isoforms in mammals (Kang et al., 1987; Kang and Müller-Hill, 1990). 

APP is ubiquitously expressed, the different isoforms, however, show differential tissue 

distribution. For example, APP695 is highly enriched in the brain and constitutes the major 

APP isoform in neurons (Kang and Müller-Hill, 1990; Ohyagi et al., 1990). The exact 

function(s) of APP remain to be elucidated but it has been suggested to play a role in cell 

adhesion, neuronal migration, neurite outgrowth, synaptogenesis, modulation of synaptic 

plasticity, and in neuronal survival (reviewed in Jacobsen and Iverfeldt, 2009). 

1.2.3.1 Trafficking of APP 

Nascent APP is constitutively transported via the secretory pathway from the endoplasmic 

reticulum (ER) to the plasma membrane. During this transit, APP is posttranslationally 

modified, i.e., it undergoes phosphorylation, tyrosine sulfation as well as N- and 

O-glycosylation in the ER and Golgi (Weidemann et al., 1989; Suzuki et al., 1992; Haass et 

al., 2012). Immature APP is only N-glycosylated while mature APP is both N- and 

O-glycosylated; these glycoforms, in addition to the various isoforms of APP, result in the 

apparent heterogeneity of the protein in gel electrophoresis (Weidemann et al., 1989). 
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Complete glycosylation of APP is important for further processing as only mature APP is 

sorted via the trans-Golgi network and delivered to the plasma membrane (Weidemann et 

al., 1989). Steady-state levels of full-length APP at the plasma membrane are low since cell 

surface APP undergoes ectodomain shedding or is quickly endocytosed (Nordstedt et al., 

1993; Thinakaran and Koo, 2008; Vetrivel and Thinakaran, 2010). From endosomes, APP 

can be recycled to the plasma membrane or targeted to lysosomes for degradation (Haass et 

al., 1992a; Koo et al., 1996; Thinakaran and Koo, 2008).  

1.2.3.2 Processing of APP  

As illustrated in Figure 4A, APP processing can be divided into the amyloidogenic and the 

non-amyloidogenic pathway (reviewed in Tang, 2009; Chow et al., 2010; Haass et al., 2012). 

A   

 

 

   
B 

 

 

Figure 4: Proteolytic processing of APP 

(A)  The transmembrane protein APP can be processed via two separate pathways. In 
the amyloidogenic pathway ( left side), APP is f irst cleaved by β-secretase releasing a 
large soluble ectodomain (sAPPβ). The membrane-bound C-terminal fragment of 99 
amino acids (CTFβ or C99) is further processed by γ-secretase to generate Aβ and the 
APP intracellular domain (AICD). In contrast, in the non-amyloidogenic pathway (r ight 
side), APP is sequentially cleaved by α- and γ-secretases releasing sAPPα , the non-
amyloidogenic p3 fragment, and AICD (modified from Tang, 2009). (B) Amino acid 
sequence of Aβ42 including the major secretase cleavage sites as indicated by the 
arrows (modified from Chow et al., 2010). APP: amyloid precursor protein; sAPP: 
secreted APP fragment; CTF: C-terminal fragment (picture is not drawn to scale). 
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The amyloidogenic pathway 

In the amyloidogenic pathway, Aβ is generated through the sequential cleavage of APP by β- 

and γ-secretases (Figure 4A). Processing of APP by β-secretase releases a soluble 

N-terminal ectodomain, sAPPβ, while the remaining membrane-bound C-terminal fragment 

of 99 amino acids, termed CTFβ or C99, is then further cleaved by γ-secretase to generate 

Aβ (4 kDa) as well as the APP intracellular domain (AICD).  

β-secretase activity is mediated by an aspartic protease termed β-site APP-cleaving enzyme 

(BACE) (Vassar et al., 1999). Two BACE homologues, BACE1 and BACE2, with distinct 

expression patterns exist. BACE1 is expressed predominantly in the brain with highest 

abundance in neurons while BACE2 shows very little expression in the brain and therefore 

appears to be irrelevant for AD pathology (Vassar et al., 1999; Bennett et al., 2000; Chow et 

al., 2010). As demonstrated by knockout studies, BACE1 activity is essential for the 

generation and deposition of Aβ (Luo et al., 2001). In addition to the main β-cleavage site at 

position 1 of the Aβ sequence (see Figure 4B), β-cleavage can also occur at the so-called 

β´ site resulting in the generation of Aβ peptides beginning at residue 11 (glutamate) (Vassar 

et al., 1999). 

Like APP, BACE1 is a ubiquitously expressed type I transmembrane protein, it is core-

glycosylated in the ER, further processed in the Golgi and finally targeted to endosomal 

compartments (Vassar et al., 1999). BACE1 has also been demonstrated to cycle between 

endosomes and the cell surface and therefore small amounts of the enzyme can be found at 

the plasma membrane (Huse et al., 2000; Riddell et al., 2001). Consistent with the acidic 

pH optimum of the enzyme, cleavage by BACE1 preferentially occurs after internalization of 

APP in endocytic and/or recycling compartments (Koo and Squazzo, 1994; Vassar et al., 

1999). Furthermore, amyloidogenic processing of APP seems to be dependent on the 

integrity of cholesterol-rich lipid rafts (Ehehalt et al., 2003). 

Membrane-bound CTFs are further processed by γ-secretase, a protease complex 

comprised of PS1 or PS2, nicastrin, anterior pharynx defective 1, and presenilin enhancer-2 

(Wolfe et al., 1999; Yu et al., 2000; Francis et al., 2002; Haas et al., 2012). Consistent with 

the different localizations of APP, γ-secretase activity is localized to the plasma membrane 

and to the endosomal/lysosomal system (Kaether et al., 2002; Haass et al., 2012). 

Intramembrane cleavage of CTFβ by γ-secretase results in the generation of AICD and Aβ. 

However, this final cleavage is not precise and probably takes place by stepwise proteolysis 

of the CTFβ, thus explaining the existence of Aβ peptides with various C-termini. It has been 

postulated that CTFβ is successively cleaved by γ-secretase at the ε-, ζ-, and finally at the 

γ-site resulting in the sequential generation of Aβ48 and Aβ49 as well as the AICD, followed by 

Aβ45 and Aβ46, and finally Aβ39-Aβ43 peptides (Qi-Takahara et al., 2005; Haass et al., 2012). 
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In contrast to the original idea that Aβ peptides are only generated under pathological 

conditions, Aβ is constitutively produced and secreted during normal cellular metabolism yet 

its physiological function is not fully understood (Haass et al., 1992b; Brunholz et al., 2012). 

Aβ forms containing 40 and 42 amino acids (Aβ(1-40) and Aβ(1-42)) are predominantly produced 

but in addition various N- and C-terminally truncated Aβ species can be detected in brain, 

cerebrospinal fluid and plasma of both subjects with or without AD (Näslund et al., 1994; Ida 

et al., 1996). Aβ peptides can be found intra- and extracellularly as well as in soluble and 

insoluble forms as Aβ monomers readily accumulate into multimeric complexes ranging from 

dimers and trimers to high-molecular weight protofibrils and amyloid fibrils (Skovronsky et al., 

1998; LaFerla et al., 2007). Toxicity and aggregation properties of Aβ peptides depend on 

their respective amino acid composition. For example, Aβ42 species are more hydrophobic 

and fibrillogenic and exert greater neurotoxicity than Aβ40 species (Burdick et al., 1992; 

Jarrett et al., 1993; Zhang et al., 2002; Zou et al., 2003; LaFerla et al., 2007). 

The AICD has been proposed to be involved in transcription (Cao and Südhof, 2001); 

however, only few putative AICD gene targets, e.g. APP and glycogen synthase kinase-3β, 

have been identified and data have been highly controversial (von Rotz et al., 2004; Hébert 

et al., 2006). Noteworthy, AICD can be further cleaved by caspases (reviewed in Bredesen et 

al., 2010) or be metabolized by insulin degrading enzyme presumably precluding its 

translocation to the nucleus (Edbauer et al., 2002). 

Furthermore, intracellular phosphorylation of APP may influence APP processing and 

function. For example, phosphorylation of Thr668 (APP695 numbering) has been suggested to 

alter APP processing in favor of the amyloidogenic pathway (Lee et al., 2003). This finding 

has been contested by Sano et al. who demonstrated that the substitution of Thr668 by 

alanine, which cannot be phosphorylated, has no effect of APP processing in transgenic 

mice (Sano et al., 2006). Phosphorylation of Thr668 has also been suggested to be 

important for the binding of AICD to its interaction partner Fe65 and its subsequent 

translocation into the nucleus (Chang et al., 2006); conversely, Ando et al. reported that 

phosphorylation of the same residue prevents AICD and Fe65 interaction (Ando et al., 2001). 

 

The non-amyloidogenic pathway 

In the non-amyloidogenic pathway, APP is sequentially cleaved by α- and γ-secretases. 

Analogous to β-cleavage, α-cleavage results in the release of an N-terminal fragment termed 

sAPPα. The membrane-bound C-terminal stub, CTFα or C83, is further processed by 

γ-secretase releasing the small, non-amyloidogenic p3 fragment (3 kDa) and the AICD. The 

biological role of p3 is not yet known, but sAPPα has been suggested to be neuroprotective 

and to display trophic properties (Thornton et al., 2006; Brunholz et al., 2012). 
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α-secretase activity is displayed by various type I integral membrane proteins of the ADAM 

(a disintegrin and metalloprotease) family, including ADAM9, ADAM10, and ADAM17 

(Buxbaum et al., 1998; Koike et al., 1999; Lammich et al., 1999). To date it is still unclear 

which ADAM is most likely involved in AD and, in fact, ADAMs may be redundant as targeted 

disruption of different ADAMs has no effect on APP processing (Chow et al., 2010; Haass et 

al., 2012). Moreover, cells display constitutive as well as inducible α-secretase activity and 

different ADAMs have been suggested to be responsible for the two activities (Buxbaum et 

al., 1998; Lammich et al., 1999; Kuhn et al., 2010). In neurons, ADAM10 appears to be the 

major constitutively active α-secretase (Kuhn et al., 2010). ADAM10 proenzyme is enriched 

in the Golgi while the mature enzyme is localized mainly to the cell surface and in agreement 

with with this observation, the plasma membrane is the main site of α-cleavage (Sisodia et 

al., 1992; Lammich et al., 1999). 

Since the α-cleavage site resides within the Aβ sequence (between Lys16 and Leu17), 

cleavage of APP by the α-secretase precludes Aβ generation (Esch et al., 1990). It has been 

proposed that α- and β-secretase compete for APP substrate as modulation of one pathway 

reciprocally influences the other pathway. For example, Vassar et al. demonstrated that 

inhibition/overexpression of BACE1 results in increased/decreased α-cleavage of APP and 

Postina et al. showed that overexpression of ADAM10 reduces Aβ generation (Vassar et al., 

1999; Postina et al., 2004). However, contradicting reports also exist showing no interrelation 

between these processing pathways (Dyrks et al., 1994; Kuhn et al., 2010). 

1.3 O-GlcNAc and Alzheimer disease 

Different lines of evidence suggest a potential role of protein O-GlcNAcylation in the 

pathogenesis of AD. O-GlcNAc and O-GlcNAc cycling enzymes OGT and OGA are highly 

expressed in the brain (Kreppel et al., 1997; Heckel et al., 1998; Cole and Hart, 2001; Gao et 

al., 2001). O-GlcNAcylation is dependent on glucose flux through the HBP but glucose 

uptake is impaired in AD brain (Kalaria and Harik, 1989; Fukuyama et al., 1994; Simpson et 

al., 1994). Furthermore, key proteins implicated in AD pathogenesis, such as APP and tau 

are O-GlcNAcylated (Griffith et al., 1995; Arnold et al., 1996; Liu et al., 2004).  

Extensive studies have been performed to understand the role of tau O-GlcNAcylation and 

its implications in AD pathogenesis. While tau can be simultaneously modified by O-GlcNAc 

and O-phosphate, tau-enriched fractions from AD brains contain less O-GlcNAc when 

compared to control brains. Furthermore, abnormally phosphorylated tau isolated from AD 

brains is less O-GlcNAcylated than non-hyperphosphorylated tau (Robertson et al., 2004; Liu 

et al., 2004; 2009a). In vitro and in vivo studies demonstrated that modulation of global 

O-GlcNAcylation results in site-specific changes in tau phosphorylation and that increasing 
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O-GlcNAc levels reduces tau phosphorylation at some sites that are implicated in AD 

pathology (Liu et al., 2004; 2009a; Yuzwa et al., 2008). Furthermore, in vivo administration of 

a specific OGA inhibitor increased global and tau-specific O-GlcNAc modification and 

reduced the number of neurofibrillary tangles in the brains of tau transgenic mice (Yuzwa et 

al., 2012). In agreement, site-specific O-GlcNAcylation of tau has been demonstrated to slow 

tau aggregation in vitro (Yuzwa et al., 2012; 2014). In contrast, in a C. elegans model of 

neurodegeneration, increased O-GlcNAcylation had no effect on a severe tauopathy 

phenotype while decreased O-GlcNAcylation had positive effects (Wang et al., 2012).  

During the course of this work, other groups have also investigated the potential functions of 

APP´s O-GlcNAcylation and their results suggest that O-GlcNAcylation increases non-

amyloidogenic processing of APP and/or reduces Aβ generation (Jacobsen and Iverfeldt, 

2011; Kim et al., 2013). However, in C. elegans expressing Aβ(1-42) in muscle, increased 

O-GlcNAcylation exacerbated Aβ toxicity and worsened the Aβ(1-42)-induced paralysis 

phenotype (Wang et al., 2012).  

Taken together, these studies suggest an important role of O-GlcNAc in AD, yet the exact 

mechanisms by which (dysregulated) protein O-GlcNAcylation may contribute to the 

pathogenesis of AD remain to be elucidated. 

1.4 Aim of this work 

Since the discovery that APP and tau, which constitute the main components of AD´s most 

prominent pathological hallmarks, senile plaques and neurofibrillary tangles, are 

O-GlcNAcylated, many studies have suggested a role of O-GlcNAc in the pathogenesis of 

AD. However, the exact molecular mechanism(s) remain unclear. Contradicting data have 

been published on protein O-GlcNAcylation in AD, some studies demonstrating decreased 

O-GlcNAcylation in AD brain while others show unaltered or increased O-GlcNAc expression 

in AD. Furthermore, while the role of O-GlcNAcylation of tau has been investigated by 

different groups, the function of the O-GlcNAc modification of APP is not yet understood.  

To gain a better understanding of the role of O-GlcNAcylation in the pathogenesis of AD, 

different aspects of AD pathology should be investigated in this work. In particular, potential 

effects of altered O-GlcNAc expression on the proteolytic processing of APP should be 

examined using APP overexpressing neuroblastoma cells. In addition, it was planned to 

improve a recently established in vitro OGT assay and to apply this assay to different 

proteins involved in AD pathology. A further aim was to analyze changes in O-GlcNAc and 

O-GlcNAc cycling enzymes in the brains of subjects with AD and age-matched controls. 
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2 Material 

Experiments were performed in the laboratories of Prof. emer. Dr. B. Schmitz, Institute of 

Animal Sciences, Department Biochemistry, University of Bonn, Bonn (DE) and Prof. Dr. 

D. A. Butterfield, Department of Chemistry, University of Kentucky, Lexington, KY (US), 

therefore, sources of chemicals, buffer compositions, and methods may differ slightly. 

2.1 Chemicals 

Table 2: Chemicals 

Chemical Source 

1,2-Dideoxy-2´-propyl-α-D-glucopyranoso-[2,1-
D]-∆2´-thiazoline (NButGT) 

Kindly provided by D. J. Vocadlo, Simon Fraser 
University, Burnaby, BC (CA) (Macauley et al., 
2005) 

10x Tris/Glycine/SDS (TGS) running buffer Bio-Rad, Hercules, CA (US) 

2,2´-Azino-bis-(3-ethylbenzothiazoline-6-
sulfonic acid) (ABTS) 

Sigma, Taufkirchen (DE) 

2-Mercaptoethanol Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

3-[(3-Cholamidopropyl)dimethylammonio]-1-
propanesulfonate (CHAPS) 

Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Lious, MO (US) 

5-Bromo-4-chloro-3-indolyl phosphate, p-
toluidine salt (BCIP)  

Thermo Fisher Scientific, Rockford, IL (US) 

Acetic acid, 96% Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Loius, MO (US) 

Acetonitrile (ACN) Riedel-de Haen, Seelze (DE) 

Acrylamide Merck, Darmstadt (DE) 

Adenosine 5´-monophosphate (5´-AMP) Sigma-Aldrich, Steinheim (DE) 

Agar Difco, Detroit, MI (US) 

Agarose Roche, Grenzach-Whylen (DE) 

Agarose for IEF GE Healthcare, Uppsala (SE) 

Alloxan Sigma-Aldrich, Steinheim (DE) 

Ammonium bicarbonat (NH4HCO3) Merck, Darmstadt (DE) 

Ammonium persulfate (APS) Merck, Darmstadt (DE) 

Ampicillin Sigma, Taufkirchen (DE) 

Aprotinin, from bovine lung Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Benzonase nuclease (25 U/ml) Novagen, Darmstadt (DE) 

Boric acid Merck, Darmstadt (DE) 

Bovine serum albumin (BSA) Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Bromophenol Blue Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 
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Chemical Source 

Calcium chloride (CaCl2) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Chloroform Merck, Darmstadt (DE) 

Concanavalin A from Canavalia ensiformis, 
agaorose conjugate, Type VI, (ConA) 

Sigma-Aldrich, St. Louis, MO (US) 

Coomassie Brilliant Blue R-250 Serva, Heidelberg (DE) 

D-Glucose Sigma-Aldrich, Steinheim (DE) 

Dimethyl sulfoxide (DMSO) AppliChem, Darmstadt (DE) 

Direct Blue 71 Sigma-Aldrich, Steinheim (DE) 

Dithiothreitol (DTT) Roth, Karlsruhe (DE) 

Dulbecco´s Modified Eagle Medium high 
glucose (4.5 g/L) (DMEM-HG) 

Invitrogen, Karlsruhe (DE) 

Dulbecco´s Modified Eagle Medium low 
glucose (1 g/L) (DMEM-LG) 

Invitrogen, Karlsruhe (DE) 

Ethanol Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Ethidium bromide Sigma-Aldrich, Steinheim (DE) 

Ethylene glycol-bis(2-aminoethylether)-
N,N,N´,N´-tetraacetic acid (EGTA) 

Sigma-Aldrich, St. Louis, MO (US) 

Ethylenediaminetetraacetic acid (EDTA) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Fetal calf serum (FCS) PAN Biotech, Aidenbach (DE) 

GBX Developer  Kodak, Rochester (US) 

GBX Fixer Kodak, Rochester (US) 

Glycerol Roth, Karlsruhe (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Glycine Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Hydrochloric acid (HCl) KMF OptiChem, Lohmar (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Hydrogen peroxide, 35% (H2O2) Merck, Darmstadt (DE) 

Imidazole Sigma-Aldrich, Steinheim (DE) 

Iodoacetamide Merck, Hamburg (DE)) 

Isopropanol KMF OptiChem, Lohmar (DE) 

Isopropyl-β-D-thiogalactopyranoside (IPTG) Biomol, Hamburg (DE) 

Kanamycin Sigma-Aldrich, Steinheim (DE) 

Leupeptin Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

L-Glutamine, 100x (200 mM) Sigma, Taufkirchen (DE) 

Lysozyme Novagen, Darmstadt (DE) 

Magnesium chloride (MgCl2) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Manganese (II) chloride (MnCl2) Sigma-Aldrich, St. Louis, MO (US) 
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Chemical Source 

Methanol Merck, Darmstadt (DE) 

Mineral oil Sigma-Aldrich, Steinheim (DE)  

N-(2-Hydroxyethyl)piperazine-N´-(2-ethane-
sulfonic acid) (HEPES) solution, 1M, pH 7-7.6 

Sigma-Aldrich, St. Louis, MO (US) 

N,N,N´,N´-Tetramethylethylenediamine 
(TEMED) 

Merck, Darmstadt (DE) 

N-Acetyl-β-D-galactosamine Sigma-Aldrich, St. Louis, MO (US) 

N-Acetyl-β-D-glucosamine (GlcNAc) Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Neurobasal medium Life Technologies, Darmstadt (DE) 

Nickel-nitrolotriacetid acid (Ni-NTA) agarose Qiagen, Hilden (DE) 

Nitro blue tetrazolium (NBT) Thermo Fisher Scientific, Rockford, IL (US) 

N-N-Dimethylformamide (DMF) Sigma-Aldrich, St. Louis, MO (US) 

Octyl-β-D-glucopyranoside Sigma-Aldrich, Steinheim (DE) 

Penicillin-Streptomycin (P/S), 100x (10,000 
I.U. Pen; 10,000 µg/ml Strep) 

PAA, Cölbe (DE) 

Pepstatin A Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Pharmalyte 3-10 GE Healthcare, Uppsala (SE) 

Phenol Red Merck, Darmstadt (DE) 

Phenylmethanesulfonyl fluoride (PMSF) Roth, Karlsruhe (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Phorbol 12-myristate 13-acetate (PMA)  Calbiochem, Darmstadt (DE) 

p-Nitrophenyl N-acetyl-β-D-glucosaminide 
(pNP-GlcNAc) 

Sigma-Aldrich, St. Louis, MO (US) 

Polyvinylpyrrolidone (PVP) Sigma-Aldrich, Steinheim (DE) 

Ponceau S Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Potassium chloride (KCl) Merck, Darmstadt (DE) 

Potassium phosphate monobasic (KH2PO4) Merck, Darmstadt (DE) 

Protease Inhibitor Cocktail Sigma-Aldrich, Steinheim (DE) 

Protein G Sepharose 4 Fast Flow GE Healthcare, Uppsala (SE) 

ReBlot Plus Strong Antibody Stripping 
Solution, 10x 

EMD Millipore, Temecula, CA (US) 

RIPA buffer c-c-pro, Oberdorla (DE) 

Rotiphorese Gel 40 Roth, Karlsruhe (DE) 

Sodium acetate Sigma, Taufkirchen (DE) 

Sodium cacodylate trihydrate Sigma-Aldrich, St. Louis, MO (US) 

Sodium carbonate (Na2CO3)  Sigma-Aldrich, St. Louis, MO (US) 

Sodium chloride (NaCl) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Sodium dodecyl sulfate (SDS) Roth, Karlsruhe (DE) 

Sigma-Aldrich, St. Louis, MO (US) 
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Sodium fluoride (NaF) Sigma, Taufkirchen (DE) 

Sodium hydroxide (NaOH) T.J. Baker, Deventer (NL) 

Sodium phosphate dibasic (Na2HPO4) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Sodium phosphate monobasic (NaH2PO4) Merck, Darmstadt (DE) 

Sigma-Aldrich, St. Louis, MO (US) 

Sucrose Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Thiourea Amersham Biosciences, Buckinghamshire (GB) 

Trifluoroacetic acid (TFA)  Merck, Darmstadt (DE) 

Tris(hydroxymethyl)aminomethane (Tris) Merck, Darmstadt (DE) 

Bio-Rad, Hercules, CA (US) 

Triton X-100 Serva, Heidelberg (DE) 

Tryptone Difco, Detroit, MI (US) 

Tween 20 Sigma-Aldrich, Steinheim (DE)/St. Louis, MO (US) 

Urea Merck, Darmstadt (DE) 

Uridine 5´diphosphate-N-acetylglucosamine 
(UDP-GlcNAc) 

Sigma-Aldrich, Steinheim (DE) 

Yeast Extract Difco, Detroit, MI (US) 

α-Cyano-4-hydroxy cinnamic acid (α-CHCA) Sigma-Aldrich, Steinheim (DE) 

2.2 Equipment 

Table 3: Equipment 

Equipment Source 

550 Sonic Dismembrator Fisher Scientific, Rockford, IL (US) 

ChemiDoc MP Imaging System Bio-Rad, Hercules, CA (US) 

Column XK 16 Pharmacia Biotech, Uppsala (SE) 

Criterion Cell Bio-Rad, Hercules, CA (US) 

Dounce Tissue Grinder, 1 ml Wheaton, Millville, NJ (US) 

ELISA Reader Titertek PLUS MS2 ICN Biomedicals, Meckenheim (DE) 

EPSON PERFECTION 4990 PHOTO Scanner Epson, Suwa (JP) 

Ettan IPGphor3 GE Healthcare, Freiburg (DE) 

Glass homogenizer 863 Braun, Melsungen (DE) 

Mini-PROTEAN 3 Cell Bio-Rad, Hercules, CA (US) 

Mini-Sub Cell GT Cell Bio-Rad, Hercules, CA (US) 

Multigel-Long System Biometra, Göttingen (DE) 

Peristaltic pump P-1 Pharmacia Biotech, Uppsala (SE) 

Sonifier 250 Branson Ultrasonics, Danbury, CT (US) 

Spectrophotometer Smart Spec Plus Bio-Rad, Hercules, CA (US) 
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Equipment Source 

Speed Vac, Type SC110-240 Savant Instruments, Framingdale, NY (US) 

Trans-Blot Semi Dry Transfer Cell Bio-Rad, Hercules, CA (US) 

Trans-Blot Turbo Blotting System Bio-Rad, Hercules, CA (US) 

Transilluminator UVsolo Biometra, Göttingen (DE) 

2.3 Software and databases 

Table 4: Software and databases 

Software and Databases Source 

ExPASy Swiss Institute of Bioinformatics; www.expasy.org 
(Artimo et al., 2012)  

GraphPad Prism 5 GraphPad Software, San Diego, CA (US) 

Image J 1.45s National Institute of Health, Bethesda, MD (US) 

Image Lab Bio-Rad, Hercules, CA (US) 

UniProt The UniProt Consortium; www.uniprot.org 
(The UniProt Consortium, 2014) 

YinOYang 1.2 Server Center for Biological Sequence Analysis, 
Technical University of Denmark, Lyngby (DK); 
www.cbs.dtu.dk/services/YinOYang/ 
(Gupta and Brunak, 2002)  

2.4 Working material 

Table 5: Working material 

Working material Source 

Amicon Ultra-15 Centrifigal Filter Devices Merck Millipore, Cork (IE) 

Cell and tissue culture flasks (75 cm2) Sarstedt, Nümbrecht (DE) 

Cell scraper Orange scientific, Braine-l´Alleud (BE) 

Criterion TGX Precast gels Bio-Rad, Hercules, CA (US) 

Cryotubes Nalge Nunc International, Rochester, NY (US) 

Spectra/Por Dialysis Membrane, MWCO 3000 Roth, Karlsruhe (DE) 

Express Capture Nickel Ccoated Plates Express Biotech, Thurmont, MD (US) 

Extra Thick Blot paper Bio-Rad, Hercules, CA (US) 

Filter paper 3 mm Whatman, Dassel (DE) 

IPG reswelling trays GE Healthcare, Uppsala (SE) 

Microtiter plates Greiner, Nürtingen (DE) 

Nitrocellulose membrane (0.2 µm) Bio-Rad, Hercules, CA (US) 

Nitrocellulose membrane Hybond ECL 
(0.3 µm) 

GE Healthcare, Uppsala (SE) 

Nunc CovaLink microtiter plates Thermo Scientific, Karlsruhe (DE) 
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Petri dishes Corning, New York, NY (US) 

Pipet Tips (various volumes) Sarstedt, Nümbrecht (DE) 

Rainin, Oakland, CA (US) 

Serological pipettes (various volumes) Sarstedt, Nümbrecht (DE) 

Tubes (various volumes) Sarstedt, Nümbrecht (DE) 

Fisher Scientific, Rockford, IL (US) 

Ultrafree-0.5 Centrifugal Filter Device Millipore, Temecula, CA (US) 

Vivaspin 6 (PES membrane: 30,000 MWCO) Sartorius, Göttingen (DE) 

X-Ray film CL-XPosure Thermo Fisher Scientific, Rockford, IL (US) 

Zeba Desalt Spin Columns Pierce Biotechnology, Rockford, IL (US) 

2.5 Kits and standards 

Table 6: Kits and standards 

Kit / Standard Source 

Clarity Western ECL Substrate Bio-Rad, Hercules, CA (US) 

DNA Clean and Concentrator 5 Zymo Research, Freiburg (DE) 

GeneJET Plasmid Miniprep Kit Fermentas, St. Leon-Rot (DE) 

GeneRuler DNA Ladder Mix Fermentas, St. Leon-Rot (DE) 

Loading Dye Solution, 6x Fermentas, St. Leon-Rot (DE) 

Page Ruler Unstained Protein Ladder Fermentas, St. Leon-Rot (DE) 

PCR clean up kit Seqlab, Göttingen (DE) 

Pierce 660 nm Protein Assay Reagent Thermo Fisher Scientific, Rockford, IL (US) 

Pierce Bicinchoninic Acid Protein Assay Kit Thermo Fisher Scientific, Rockford, IL (US) 

Plasmid Midi Kit Qiagen, Hilden (DE) 

Precision plus protein all blue standards  Bio-Rad, Hercules, CA (US) 

QIAquick Gel Extraction Kit Qiagen, Hilden (DE) 

SeeBlue Plus2 Prestained Standard Invitrogen, Karlsruhe (DE) 

SuperSignal West Dura Chemiluminescent 
Substrate 

Thermo Fisher Scientific, Rockford, IL (US) 

SuperSignal West Pico Chemiluminescent 
Substrate 

Thermo Fisher Scientific, Rockford, IL (US) 

2.6 Peptides 

Table 7: Peptides 

Peptide  Sequence / Molecular weight Source 

Aβ(12-28) VHHQKLVFFAEDVGSNK / 1955.2 Da Bachem, Weil am Rhein (DE) 

Aβ(1-40) DAEFRHDSGY EVHHQKLVFF 
AEDVGSNKGA IIGLMVGGVV / 4329.8 Da 

Bachem, Weil am Rhein (DE) 
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Peptide  Sequence / Molecular weight Source 

cAPP1 KQYTSIHK / 1004.16 Da Biomatik, Cambridge, ON (CA) 

cAPP2 KVTPEERK / 986.14 Da Biomatik, Cambridge, ON (CA) 

cAPP3 RHLSKMQ / 899.09 Da Biomatik, Cambridge, ON (CA) 

cAPP4 ENPTYKFK / 1026.17 Da Biomatik, Cambridge, ON (CA) 

Cdk5 1 (J-1) VFKAKNRETHEIG / 1528.74 Da Biomatik, Cambridge, ON (CA) 

Cdk5 2 (J-2) EGVPSSALREICL / 1373.59 Da Biomatik, Cambridge, ON (CA) 

Cdk5 3 (J-3) PYPMYPATTSLVN / 1453.69 Da Biomatik, Cambridge, ON (CA) 

2.7 Antibodies 

Table 8: Primary antibodies 

Primary 
antibodies 

Characteristics Source / Reference 

4G8 Monoclonal mouse antibody, IgG 

Antigen: human Aβ, amino acids 17-24 

Concentration: 1mg/ml 

Covance, Emeryville, CA (US) 

8E5 Monoclonal mouse antibody, IgG 

Antigen: human APP, amino acids 444-592 

Concentration: 5.2 mg/ml 

Elan Corporation plc, Dublin (IE) 

AL28 Polyclonal rabbit antibody, IgG (serum) 

Antigen: C-terminus of OGT 

kindly provided by S. Arnold, 
Johns Hopkins University, 
Baltimore, MD (US); Kreppel et 
al., 1997 

anti-actin Polyclonal rabbit antibody, IgG 

Antigen: C-terminal actin fragment 

Sigma-Aldrich, St. Louis, MO 
(US) 

anti-GAPDH Monoclonal mouse antibody, IgG 

Antigen: glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH) 

Concentration: 1 mg/ml 

Sigma-Aldrich, St. Louis, MO 
(US) 

anti-GST Monoclonal mouse antibody, IgG 

Antigen: Glutathione S-transferease (GST) 
from Schistosoma japonicum 

Concentration: 1 mg/ml 

Novagen, Darmstadt (DE) 

anti-His  Monoclonal mouse antibody, IgG 

Antigen: tetra histidine (His) 

Concentration: 0.2 µg/ml: 

Qiagen, Hilden (DE) 

anti-OGA  Polyclonal rabbit antibody, IgG 

Antigen: full length recombinant OGA 

kindly provided by G. Crawford, 
Mercer University, Macon, GA 
(US) (Crawford et al., 2008) 

anti-OGT Polyclonal rabbit antibody, IgG (serum) 

Antigen: full length recombinant OGT 

kindly provided by G. Crawford, 
Mercer University, Macon, GA 
(US) (Crawford et al., 2008) 
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Primary 
antibodies 

Characteristics Source / Reference 

anti-sAPPβ Polyclonal rabbit antibody, IgG 

Antigen: human sAPPβ-Wild Type 

Concentration: 0.2 mg/ml 

Antibodies-online, Aachen (DE) 

anti-β-actin Monoclonal mouse antibody, IgG 

Antigen: N-terminal fragment of β-actin 

Concentration: 2 mg/ml 

Sigma-Aldrich, St. Louis, MO 
(US) 

C-8 Polyclonal rabbit antibody, IgG 

Antigen: C-terminus of human cyclin-
dependent kinase 5 (cdk5)  

Concentration: 0.2 mg/ml 

Santa Cruz Biotechnology, 
Heidelberg (DE) 

CTD110.6 Monoclonal mouse antibody, IgM 

Antigen: O-GlcNAc-modified C-terminal 
domain of RNA-Polymerase II 

Concentration: 2 mg/ml 

Sigma-Aldrich, Steinheim 
(DE)/St. Louis, MO (US) and 
kindly provided by G. W. Hart, 
Johns Hopkins University, 
Baltimore, MD (US) 

D-20 Polyclonal goat antibody, IgG 

Antigen: C-terminus of nucleoporin 62 
(Nup62) from Rattus norwegicus 

Concentration: 0.2 mg/ml 

Santa Cruz Biotechnology, 
Heidelberg (DE) 

JLA-20 Monoclonal mouse antibody, IgM 

Antigen: Actin 

DSHB, Iowa City, IA (US) 

RL2 Monoclonal mouse antibody, IgG 

Antigen: nuclear envelope proteins; detects 
O-GlcNAc 

Concentration: 2 mg/ml 

Affinity Bioreagents, Golden, CO 
(US) 

W0-2 Monoclonal mouse antibody, IgG 

Antigen: human Aβ, amino acids 5-8 

Merck Millipore, Darmstadt (DE) 

 

Table 9: Secondary antibodies 

Secondary 
antibodies 

Characteristics Source / Reference 

anti-goat-POD Peroxidase (POD)-conjugated polyclonal 
donkey antibody against goat IgG 

Dianova, Hamburg (DE) 

anti-mouse-Cy5 Enhanced Chemiluminescence (ECL) Plex 
CyDye (Cy)5-conjugated goat antibody 
against mouse IgG 

GE Healthcare, Pittsburgh, PA 
(US) 

anti-mouse-POD POD-conjugated polyclonal goat antibody 
against mouse IgG and IgM 

Dianova, Hamburg (DE) 

Millipore, Temecula, CA (US) 

anti-rabbit-AP Alkaline Phosphatase (AP)-conjugated 
polyclonal goat antibody against rabbit IgG 

Bio-Rad, Herkules, CA (US) 

anti-rabbit-Cy5 ECL PLex Cy5-conjugated goat antibody 
against rabbit IgG 

GE Healthcare, Pittsburgh, PA 
(US) 

anti-rabbit-POD POD-conjugated polyclonal goat antibody 
against rabbit IgG  

Dianova, Hamburg (DE) 
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antibodies 

Characteristics Source / Reference 

ECL anti-rabbit-
POD 

ECL POD-conjugated polyclonal goat 
antibody against rabbit IgG 

GE Healthcare, Pittsburgh, PA 
(US) 

2.8 Enzymes for molecular biology 

For restriction analysis, restriction enzymes BamHI and XhoI and their respective 10x buffers 

were used. Ligation was performed with T4 DNA ligase and 10x ligase buffer. All enzymes 

and buffers for molecular biology were from Fermentas, St. Leon-Rot (DE). 

2.9 Plasmids 

pBJG1-ncOGT 

pBJG1 is a modified pET24b vector, its generation as well as generation of pBJG1-ncOGT 

containing the cDNA of human ncOGT has been described (Gross et al., 2005). Plasmid was 

kindly provided by S. Walker, Harvard Medical School, Boston, MT (US). pBJG1 plasmid 

allows for the expression of recombinant proteins with a C-terminal His8-tag. 

 

pBJG1-hNCAM180cyt 

The generation of pBJG1-hNCAM180cyt in our lab has been described (Wobst et al., 2012). 

 

pBJG1-Nup62 

The generation of pBJG1-Nup62 plasmid is described in this work. Briefly, cDNA of Nup62 

from Rattus norwegicus lacking its stop codon was cloned into pBJG1 vector using BamHI 

and XhoI restriction enzymes. Plasmid map is provided in Appendix A. 

 

pGex-2TK-Cdk5 

The generation of pGex-2TK-Cdk5 has been described (Sharma et al., 1999a). Plasmid was 

kindly provided by H. C. Pant, National Institute of Health, Bethesda, MD (US). pGex plasmid 

contains a gene encoding for GST from Schistosoma japonicum allowing for the expression 

of N-terminal GST fusion proteins. 

 

pGex-4T-1-CK2α 

The generation of pGex-4T-1-CK2α has been described (Kim et al., 2006). Plasmid was 

kindly provided by Y. G. Yu, Kookmin University, Seoul (KR). 
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2.10 Biological material  

Bacterial strains 

Two different strains of Escherichia coli (E. coli) were used. Molecular biology methods were 

performed in E. coli XL1-Blue (Bullock et al., 1987); strain was kindly provided by 

K. H. Scheidtmann, University of Bonn. Protein expression was performed in E. coli BL21 

(DE3) (Studier and Moffatt, 1986). 

 

Cell line 

Human neuroblastoma SH-SY5Y cells were stably transfected with the cDNA of human 

APP695 to obtain SH-SY5Y-APP695 cells (Parkin et al., 2007). Cell line was kindly provided by 

E. T. Parkin, School of Health and Medicine, Lancaster University, Lancaster (UK). 

 

Human brain samples 

Frozen inferior parietal lobule (IPL) and cerebellar samples were obtained from the Sanders-

Brown Center on Aging, University of Kentucky, Lexington, KY (US). Biodata was kindly 

provided by T. P. Shannon and E. Abner, University of Kentucky. Clinical and pathological 

information on samples used in this work are listed in Appendix B. 

2.11 Solutions 

All buffers and solutions are prepared with deionized (DI) water unless indicated otherwise. 

2.11.1 Commonly used solutions 

Phosphate bufferes saline (PBS) 10x 

1.5 M   NaCl 

80 mM  Na2HPO4 

17 mM   NaH2PO4 

 

PBST 

0.1 % (v/v)  Tween 20  

in PBS 1x 

 

 

Aprotinin 

10 mg/ml  Aprotinin 

in PBS 1x  

 

Pepstatin A 

1 mg/ml  Pepstatin A 

in acetic acid:methanol (1:10) 

 

Leupeptin 

10 mg/ml Leupeptin 

 

PMSF 

100 mM PMSF 

in ethanol 
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2.11.2 Cell culture media and other solutions for cell culture  

Cell culture medium 

10 % (v/v) FCS  

0.5 % (v/v) P/S 

in DMEM-HG 

 

Media for cell treatments 

1 % (v/v) L-Glutamine  

in neurobasal medium 

Hank´s Balanced Salt Solution (HBSS-) 10x 

54 mM  KCl 

4.4 mM  KH2PO4 

1.37 M   NaCl 

4.23 mM Na2HPO4 

55.5 mM D-Glucose 

0.3 mM  Phenol Red 

pH 7.2-7.4, sterile filtered 

 

NButGT stock solution 

0.88 mM  NBuGT 

in DMEM-LG; sterile filtered 

 

Alloxan stock solution 

500 mM  Alloxan 

in neurobasal medium; sterile filtered 

 

EDTA/HBSS-  

5 mM   EDTA 

in 1x HBSS-; sterile filtered 

PMA stock solution 

10 µM   PMA 

in DMSO; sterile filtered 

2.11.3 Solutions for bacterial culture 

LB medium 

10 g/l   NaCl 

10 g/l   Tryptone 

5 g/l   Yeast extract 

pH 7.0; autoclaved 

 

Ampicillin stock solution 

50 mg/ml  Ampicillin 

sterile-filtered 

LB agar 

15 g/l   Agar 

in LB medium; autoclaved 

Kanamycin stock solution 

30 mg/ml  Kanamycin 

sterile filtered 

2.11.4 Solutions for molecular biology 

TBE buffer 10x 

1 M  Tris 

0.83 M   Boric acid 

10 mM   EDTA 

TE buffer  

10 mM   Tris 

1 mM   EDTA 

pH 8.0; sterile filtered 
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2.11.5 Solutions for protein biochemistry 

2.11.5.1 Solutions for the expression and analysis of recombinant proteins 

PBS-L 

1 mM   DTT 

1 mM   EDTA 

1 mg/ml  Lysozyme 

25 U/ml  Benzonase nuclease 

in PBS 1x 

 

Urea lysis buffer 

8 M   Urea 

100 mM  NaH2PO4 

10 mM   Tris HCl, pH 8.0  

1:1000   Aprotinin 

1:1000   Leupeptin 

1:100   Pepstatin A 

1:100  PMSF 

protease inhibitors added freshly 
PBS-Triton 

1 % (v/v) Triton X-100  

in PBS 1x 

 

PBS equilibration buffer 

1 mM   EDTA 

1 mM  DTT 

in PBS 1x 

Urea equilibration buffer  

8 M   Urea 

100 mM  NaH2PO4 

10 mM   Tris HCl, pH 8.0 

 

2.11.5.2 Solutions for the preparation of cell culture lysates and human brain samples 

RIPA lysis buffer 

0.1 M   GlcNAc 

1:100  PMSF 

in RIPA buffer 

protease inhibitor is added freshly 

 

Isolation buffer 

0.32 M   Sucrose 

20 mM   HEPES 

2 mM  EDTA 

2 mM   EGTA 

0.1 M   GlcNAc 

pH 7.4 

4 µg/ml  Leupeptin 

4 µg/ml   Pepstatin A 

5 µg/ml  Aprotinin 

0.2 mM  PMSF 

protease inhibitors added freshly 

2D lysis buffer 

6 M   Urea 

2 M   Thiourea 

4 % (w/v) CHAPS 

1 % (w/v) DTT 

1 % (v/v) Pharmalyte 3-10 

1 % (v/v) Protease Inhibitor Cocktail 

in 0.1 M GlcNAc 

 

2.11.5.3 Solutions for determination of protein concentrations 

BSA for Pierce 660 nm Protein assay 

50 mg/ml  BSA 

BSA for Bicinchoninic Acid Protein assay 

2 mg/ml  BSA 
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2.11.5.4 Solutions for immunoprecipitation (IP) 

Sodium phosphate buffer 

10 mM NaH2PO4 is added to 10 mM Na2HPO4 

until buffer reaches pH 7.2  

 

Aβ12-28 stock solution 

50 µM   Aβ12-28 

in IP wash buffer  

 

RIPA wash buffer 

1 M   NaCl 

10 mM  EDTA 

40 mM   NaF 

0.2 % (v/v) Triton X-100 

in sodium phosphate buffer, pH 7.0-7.2 

 

 

IP wash buffer 

10 mM   Tris HCl, pH 8.0 

150 mM  NaCl 

0.1 % (v/v) Triton X-100 

 

2.11.5.5 Solutions for electrophoretic separation of proteins using polyacrylamide gels 

Solutions for SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

4x sample buffer 

0.25 M   Tris HCl, pH 6.8 

40 % (v/v) Glycerol 

20 % (v/v) 2-Mercaptoethanol 

12 % (w/v) SDS 

0.25 % (w/v) Bromophenol Blue 

 

4x sample buffer for human brain samples 

0.2 M   Tris HCl, pH 6.8 

40 % (v/v) Glycerol 

20 %(v/v) 2-Mercaptoethanol 

8 % (w/v) SDS 

0.01 % (w/v) Bromophenol Blue 

 

Acrylamide solution 

75 %   Rotiphorese Gel 40 

 

Running buffer 10x 

0.25 M   Tris 

1.918 M  Glycine 

35 mM   SDS 

 

Separation gel buffer 

1 M   Tris HCl, pH 8.8 

 Stacking gel buffer 

1 M   Tris HCl, pH 6.8 

 

Buffers and solutions for two-dimensional SDS-PAGE (2D SDS-PAGE) 

Rehydration solution 

7 M   Urea 

2 M   Thiourea 

2 % (w/v) CHAPS 

0.5 % (v/v) Pharmalyte 3-10 

20 mM   DTT 

0.01 % (w/v) Bromophenol Blue  

in 0.1 M GlcNAc 

 

Sample preparation solution for cup loading 

7 M   Urea 

2 M   Thiourea 

4 % (w/v) CHAPS 

2 %   Pharmalyte 3-10 (v/v) 

40 mM   DTT 

in 0.1 M GlcNAc 

4x Separation gel buffer 

1.5 M   Tris HCl, pH 8.8 

0.04 % (w/v) SDS 

4x Stacking gel buffer 

0.5 M   Tris HCl, pH 6.8 

0.04 % (w/v) SDS 
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Equilibration solution 

6 M   Urea 

0.1 mM  EDTA 

50 mM   Tris HCl, pH 6.8 

30 % (v/v) Glycerol 

6 % (w/v) SDS 

0.01 % (w/v) Bromophenol Blue 

 

Overlay agarose 

0.5 % (w/v) Agarose for IEF 

in 1x running buffer 

2.11.5.6 Solutions for staining of proteins in gels 

Destaining/fixing solution 

10 % (v/v) Acetic acid  

30 % (v/v) Ethanol  

Coomassie staining solution 

2 g   Coomassie Brilliant Blue R-250 

in 1 L destaining/fixing solution 

 

2.11.5.7 Solutions for Western blot and immunodetection of proteins 

Transfer buffer 

39 mM   Glycine 

48 mM   Tris 

0.0375 % (w/v) SDS  

20 % (v/v) Ethanol  

 

Transfer buffer for human brain samples 

192 mM  Glycine 

30 mM   Tris 

20 % (v/v) Methanol  

 

AP buffer 

0.1 M   Tris 

0.1 M   NaCl 

5 mM   MgCl2 

pH 9.5 

 

AP developer solution 

66 µl   NBT solution 

33 µl   BCIP solution 

in 10 ml AP buffer  

NBT solution 

30 mg   NBT  

70 %(v/v) DMF  

in 1 ml  

 

Stripping solution 

0.2 M   Glycine 

0.5 M   NaCl 

pH 2.8 

BCIP solution 

50 mg   BCIP  

in 1 mL  DMF 

 

Chemiluminescence solution 

Luminol/Enhancer reagent  

and Peroxide reagent (1:1) 

Wash buffer  

150 mM  NaCl 

3 mM   NaH2PO4 

17 mM   Na2HPO4 

0.04 % (v/v) Tween 20  

 

 



 

 

31 

Material 

2.11.5.8 Solutions for staining of proteins on membranes 

Direct Blue stock solution 

0.1 % (w/v) Direct Blue 71 

 

Direct Blue staining solution 

8 % (v/v) Direct Blue stock solution  

40 % (v/v) Ethanol  

10 % (v/v) Acetic acid  

Ponceau S staining solution 

0.3 % (w/v) Ponceau S  

10 % (v/v) Acetic acid  

 

 

2.11.5.9 Solutions for OGT assays 

OGT buffer (2x) 

50 mM   Tris 

2 mM   DTT 

25 mM   MgCl2 

pH 7.4 

 

BSA solution 

1 mg/mL  BSA 

 

UDP-GlcNAc solution 

100 mM  UDP-GlcNAc 

in 25 mM  5´-AMP 

 

Developer 

0.05 M   NaH2PO4 

0.1 M   Sodium acetate 

pH 4.2 (with glacial acetic acid) 

 

ABTS solution 

9.5 ml   Developer 

0.5 ml   2 % (w/v) ABTS  

10 µl   H2O2 (added freshly) 

 

2.11.5.10 Solutions for OGA activity assay 

ConA wash solution  

1 M   NaCl 

5 mM   MgCl2 

5 mM   MnCl2 

5 mM   CaCl2 

 

ConA equilibration solution  

5 mM   MnCl2 

5 mM   CaCl2 

in isolation buffer without EDTA, EGTA, and 
GlcNAc  

 

OGA buffer (10x) 

500 mM  Sodium cacodylate, pH 6.4 

500 mM  N-acetylgalactosamine 

3 %    BSA (w/v) 
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3 Methods 

3.1 Cell culture 

All cell culture experiments are performed in SY5Y-APP cells. 

3.1.1 Cultivation of cells 

Cell cultures are maintained at 37°C in a humidified atmosphere of 5 % CO2 and 95 % air. 

Cells are grown in culture flasks and medium is changed every two to three days. Upon 

reaching 80 % to 90 % confluence, cells are split into subcultures. Therefore, cell culture 

medium is removed and cells are rinsed with 10 ml HBSS-. Cells are detached from the 

bottom of the flask by the addition of 1 ml 5 mM EDTA/HBSS- and gentle tapping on the side 

of the flask. Detached cells are suspended in 10 ml cell culture medium, transferred into a 

15 ml tube and centrifuged for 7 minutes at 170 x g at room temperature. Supernatant is 

discarded; cells are resuspended in 1 ml fresh cell culture medium and diluted into flasks 

containing fresh cell culture medium. 

3.1.2 Freezing and thawing of cells 

Cells are removed from flasks as described above. After centrifugation, cell pellet is 

resuspended in 900 µl cell culture medium and transferred into a cryotube. 100 µl DMSO are 

added and intermixed gently. Cells are stored at -80°C or in liquid nitrogen. 

Cells are thawed by adding cell culture medium directly into the cryotube and transferring the 

resulting suspension into a 15 ml tube containing 9 ml cell culture medium. After 

centrifugation at 170 x g for 7 minutes at room temperature, supernatant is discarded. Cells 

are resuspended in 1 ml cell culture medium and transferred into flasks containing fresh cell 

culture medium. Medium is changed after 24 hours. 

3.1.3 Treatment of cells 

For different treatments, cells are grown to 80 % confluence. Cell culture medium is removed 

and cells are rinsed with HBSS-. All treatments are performed for 24 hours in fresh 

neurobasal medium supplemented with 1 % L-glutamine. Treatments of cells include 30 µM 

NButGT, 5 mM Alloxan, and 80 nM PMA as well as controls treated with equal volumes of 

the appropriate vehicle. 
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3.2 Bacterial culture 

3.2.1 Cultivation of E. coli 

Using a sterilized inoculating loop, E. coli bacteria are streaked onto an agar plate containing 

the respective antibiotic. Plates are incubated for 16 hours at 37°C and then stored at 4°C. 

For overnight cultures, a single clone is picked from the agar plate and incubated in 5 ml 

bacterial medium containing the proper antibiotic at 220 rpm for 16 hours at 37°C. Larger 

cultures are prepared by 1:50 dilution of overnight cultures into fresh culture medium and 

incubation at 220 rpm at 37°C until the appropriate cell density is reached. Untransformed 

bacteria are cultivated without antibiotics; for bacteria containing pGex plasmids, 

50 µg/ml ampicillin is added to LB medium; for bacteria containing pBJG1 plasmids, 

30 µg/ml kanamycin is added. 

3.2.2 Heat shock transformation 

50 µl competent bacteria are mixed with 50-100 ng plasmid DNA or the entire ligation 

preparation (see 3.3.5) and incubated on ice for 15-30 minutes. Heat shock is performed by 

placing the tubes into a water bath (42°C) for 1 minute prior to cooling of the tubes on ice for 

2 minutes. 450 µl LB medium are added and bacteria are grown for 30-60 minutes at 

220 rpm and 37°C. Afterwards, 50-100 µl of transformation culture is spread on agar plates 

containing the appropriate antibiotic and plates are incubated for 16 hours at 37°C. 

3.3 Molecular biology 

3.3.1 Plasmid preparation 

Analytical plasmid preparation is performed using GeneJET Plasmid Miniprep Kit according 

to the manufacturer´s instructions. Isolated DNA is stored at -20°C. 

Preparative plasmid preparation is performed using Plasmid Midi Kit according to the 

manufacturer´s instructions for very low copy plasmids with the following change. pBJG1 is a 

low copy plasmid, therefore, instead of the instructed 500 ml only 250 ml culture medium are 

used. Isolated DNA is stored at -20°C. 

3.3.2 Estimation of DNA concentration and purity 

Sample is diluted 1:100 in DI water and absorption is measured at 260 and 280 nm. OD260 of 

1 equals a DNA concentration of 50 µg/ml. The ratio of the absorbance measured at 260 nm 
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and at 280 nm provides information on the purity of the sample and should be 1.8-1.9 for 

sequencing. 

3.3.3 Restriction analysis 

Plasmid pBJG1-hNCAM180cyt is digested successively with restriction enzymes BamHI and 

XhoI according to the manufacturer´s instructions. After each digest, DNA is purified with 

DNA Clean and Concentrator 5 Kit according to the manufacturer´s instructions. Double-

digested and purified DNA is subjected to agarose gel electrophoresis. 

3.3.4 Agarose gel electrophoresis 

0.8 % agarose gels are prepared by melting 0.4 g agarose in 50 ml TBE buffer. After cooling 

to approximately 60°C, 2 µl ethidium bromide are added to the solution and the gel is cast. 

Upon hardening, gel is immersed in TBE buffer and samples along with DNA ladder mix are 

combined with 6x loading dye and loaded onto the gel. Agarose gel is run at 80 V for 

1-1.5 hours and gel image is acquired with a UV transilluminator. For ligation, DNA is 

quantified by comparing the band thickness to the DNA ladder bands. If necessary, bands of 

interest are excised from the gel and gel extraction is performed using QIAquick Gel 

Extraction Kit according to the manufacturer’s instructions. For ligation, DNA is eluted with 

DI water instead of TE buffer. 

3.3.5 Ligation 

Generation of Nup62 insert is described elsewhere (Balzen, 2010). Briefly, using vector 

pExpress-1 containing the cDNA of Nup62 from Rattus norwegicus, Nup62 insert was 

prepared by deleting the stop codon and adding BamHI and XhoI restriction sites by 

polymerase chain reaction. Digested Nup62 insert was kindly provided by S. Balzen (Institute 

of Animal Sciences, University of Bonn). pBJG1 vector and Nup62 insert, both digested with 

BamHI and XhoI, are mixed 1:3 and 1:6 and ligation is performed with T4 DNA ligase for 16-

40 hours at 16°C. Preparations are transformed into E. coli XL1 Blue and tested for 

successful ligation by restriction analysis and agarose gel electrophoresis.  

3.3.6 Sequencing 

Using the standard primers T7 and T7term, sequencing is performed by Eurofins MWG 

Operon (Ebersberg, DE). 
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3.4 Protein biochemistry 

3.4.1 Expression of recombinant proteins and bacterial cell lysis 

Expression of recombinant proteins is performed in E. coli BL21 (DE3). An overnight culture 

is diluted 1:50 in fresh LB medium containing the appropriate antibiotics and cells are grown 

at 220 rpm and 37°C until an OD600 of 0.6-0.8 is reached. In E. coli transformed with pBJG1 

or pGex plasmids protein expression is induced by the addition of IPTG.  

For Nup62 expression, IPTG is added to a final concentration of 0.5 mM and expression is 

performed for 6 hours at 37°C and 220 rpm. Bacterial culture is centrifuged for 30 minutes at 

3,000 x g and 4°C and pellet is stored at -20°C or processed directly. Pellets are suspended 

in 1/20 of the original culture volume in urea lysis buffer and 1 ml aliquots are sonicated on 

ice (4 pulses of 2 seconds), centrifuged 20 minutes at 15,000 x g and 4°C, and resulting 

supernatant is stored at -20°C. For negative controls, untransformed bacteria are grown and 

lysed in parallel. 

For CK2α expression, IPTG is added to a final concentration of 0.5 mM and expression is 

performed for 3 hours at 37°C and 220 rpm. Bacterial culture is centrifuged for 30 minutes at 

3,000 x g at 4°C and pellet is stored at -20°C or processed directly. Lysis is performed as 

described above for Nup62.  

For OGT expression, bacterial culture is cooled to room temperature and protein expression 

is induced with 0.2 mM IPTG. OGT is expressed for 4 hours at 20°C and 220 rpm. Bacterial 

culture is centrifuged for 30 minutes at 3,000 x g at 4°C and pellet is stored at -20°C or 

processed directly. Pellets are suspended in 1/20 of the original culture volume in PBS-L and 

incubated for 30 minutes at room temperature on a shaker. Cells are subjected to 10 freeze-

thaw cycles using liquid nitrogen for freezing and lukewarm water for thawing. Samples are 

transferred into a chilled glass homogenizer and subjected to 20 strokes and 1 ml aliquots 

are sonicated on ice (4 pulses of 2 seconds), centrifuged at 20,000 x g for 30 minutes at 4°C, 

and resulting supernatant is stored at -80°C. For negative controls, untransformed bacteria 

are grown and lysed in parallel. 

Cdk5 expression, lysis and purification were performed as described elsewhere (Strempel, 

2010). Isolated cdk5 was kindly provided by N. Strempel (Institute of Animal Sciences, 

University of Bonn). 

GST expression, lysis and purification were performed as described elsewhere (Sabrowski, 

2012). Isolated GST was kindly provided by J. Sabrowski (Institute of Animal Sciences, 

University of Bonn). 
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3.4.2 Purification of recombinant proteins 

His8-tagged proteins can be purified by Ni-NTA affinity chromatography. Therefore, column is 

packed with Ni-NTA agarose, final bed volume is 15 ml. Equilibration and washing is 

performed at a constant flow rate of 75 ml/h; for sample application and elution flow rate is 

reduced to 50 ml/h. All flow-through is collected in various fractions for further analysis. Prior 

to storage in PBS at 4°C, column is washed with 90 ml DI water. 

For Nup62 purification, affinity chromatography is performed at room temperature to prevent 

urea crystallization. Column is equilibrated with 60 ml urea equilibration buffer. Nup62 lysate 

is centrifuged for 10 minutes at 20,000 x g at 4°C and imidazole is added to a final 

concentration of 2 mM before sample is applied to the column. Column is washed with 60 ml 

urea equilibration buffer containing 20 mM imidazole and Nup62 is eluted with 60 ml urea 

equilibration buffer containing 250 mM imidazole. Elution fractions containing Nup62 as 

determined by SDS-PAGE and Coomassie staining are pooled and subjected to dialysis 

and/or concentrated using Amicon Ultra-15 Centrifigal Filter Devices or Vivaspin 6 

concentrators according to the manufacturer´s instructions. 

OGT purification is performed as described above with minor changes. In general, PBS 

equilibration buffer is used instead of urea equilibration buffer. After sample application, 

column is washed with PBS equilibration buffer containing 250 mM NaCl and 40 mM 

imidazole and OGT is eluted with PBS equilibration buffer containing 250 mM NaCl and 

250 mM imidazole. Elution fractions containing OGT as determined by SDS-PAGE and 

Coomassie staining are pooled, concentrated and elution buffer is exchanged to 2x OGT 

buffer using an Ultrafree-0.5 Centrifugal Filter Device according to the manufacturer´s 

instructions.  

3.4.3 Dialysis of affinity-purified Nup62 

Prior to use, dialysis membranes are washed in DI water to remove storage solution. Sample 

is filled into the membrane and both ends are sealed off. For small volumes, sample is filled 

into an Eppendorf tube which is sealed with dialysis membrane. Dialysis takes place under 

constant stirring by placing the membrane into 100-fold sample volume of buffer. Affinity-

purified Nup62 is successively dialyzed for 2 hours each against 6 M, 4 M, and 2 M urea 

buffer. Triton X-100 is added to the sample in a final concentration of 1 % and sample is 

dialyzed against PBS overnight at 4°C. Sample aliquots are stored at -20°C. 
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3.4.4 Harvest of conditioned medium and cell lysis 

Conditioned medium for immunoblot analyses is harvested and centrifuged at 500 x g for 

7 minutes to remove cell debris. Supernatant is transferred into 1.5 ml tubes containing 

protease inhibitors and samples are stored immediately at -80°C. 

For RIPA lysis, culture flasks are placed on ice, cells are washed with ice-cold PBS and 

chilled RIPA lysis buffer is added to the cells. The cells are scraped off the bottom of the 

culture flask and transferred into a 1.5 ml tube. Samples are incubated on ice for 30 minutes 

with occasional mixing. Lysates are centrifuged at 12,300 x g for 30 minutes, resulting 

supernatant is transferred into a new tube and stored at -80°C. Alternatively, cells can be 

detached from flasks as described in 3.1.1. Sample is then transferred into a 1.5 ml tube, 

centrifuged for 7 minutes at 200 x g. RIPA lysis buffer is added to the cell pellet and lysis is 

continued as described above. 

For 2D analyses, cells are lysed in chilled 2D lysis buffer. Cells are detached from flasks as 

described in 3.1.1. Cells are transferred into a 1.5 ml tube, centrifuged for 7 minutes at 200 x 

g and supernatant discarded. 500 µl 2D lysis buffer are added and sample is mixed briefly. 

Sample is then sonicated three times for 1 second each, centrifuged for 1 hour at 20,000 x g 

and 4°C; the resulting supernatant is aliquoted and immediately stored at -80°C. 

3.4.5 Preparation of human brain samples 

All steps are performed on ice. Frozen IPL and cerebellar samples are thawed and 

homogenized in ice-cold isolation buffer using a glass homogenizer. For homogenates, 

samples are diluted 1:4 with isolation buffer and sonicated twice for 10 seconds each at 20 % 

power using a 550 Sonic Dismembrator. After centrifugation for 10 minutes at 1,000 x g and 

4°C, supernatant is stored at -80°C. For subcellular fractionation, samples are homogenized 

and centrifuged for 10 minutes at 1,000 x g and 4°C. Supernatant (crude cytosolic fraction) is 

transferred into a new tube and centrifuged again for 10 minutes at 16,090 x g and 4°C. The 

resulting supernatant represents the cytosolic fraction. All samples are stored at -80°C. 

3.4.6 Determination of protein concentration 

In samples from cell or bacterial culture, determination of protein concentration is performed 

with Pierce 660 nm Protein Assay while Pierce Bicinchoninic acid Protein Assay Kit is used 

for the analysis of human brain samples. Both assays are performed according to the 

manufacturer´s instructions using BSA for the standard curve. 
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3.4.7 Immunoprecipitation (IP) 

For APP-IP, per sample 25 µl Protein G-Sepharose are incubated with 2.5 µl 8E5 antibody 

for 30 minutes on ice. Sample (250 µg RIPA cell lysate) is added and incubated on an end 

over end rotator for 16 hours at 4°C. The following day, IP preparation is centrifuged for 

1 minute at 3,000 x g and 4°C, supernatant is discarded and beads are washed three times 

with 500 µl RIPA wash buffer and one time with 300 µl DI water. 4x sample buffer is diluted 

1:1 with DI water and 40 µl 2x sample buffer are added to the beads. Sample is heated for 

5 minutes at 94°C, centrifuged for 2 minutes at 6,000 x g, and supernatant is subjected to 

SDS-PAGE (see 3.4.8). 

OGT-IP is performed as described above with minor changes. Briefly, Protein G-Sepharose 

is incubated with 5 µl AL28 antibody and 1 ml OGT lysate is added and incubated for 

16 hours at 4°C. The following day, beads are washed three times with 1 ml PBS containing 

1 mM DTT and 1 mM EDTA and one time with 1 ml DI water. After centrifugation and 

removal of the supernatant, beads (with bound OGT) can be used for OGT assay. 

Aβ-IP procedure is based on previously published protocols (Uljon et al., 2000; Öckl, 2007) 

with minor changes. Per sample, 20 µl Protein G-Sepharose are incubated with 2.5 µl 4G8 

antibody for 30 minutes on ice. Triton X-100 is added to conditioned media to a final volume 

of 0.1 %. 1 ml sample is added to the beads and incubated for 16 hours at 4°C. Fresh 

neurobasal medium is used as a negative control and a positive control is included where 

1 µl 1 µM Aβ(12-28) is added to the sample. The following day, IP preparations are centrifuged 

for 1 minute at 10,000 x g and 4°C, supernatant is discarded and beads are washed twice 

with 1 ml IP wash buffer, three times with 1 ml 25 mM NH4HCO3 and one time with 1 ml 

DI water. After the last wash, beads are centrifuged again to remove residual liquid. To elute 

bound material, 50 µl 0.1 % TFA are added to the beads, mixed briefly and centrifuged. 

Supernatant is transferred into a new tube and elution step is repeated. Further analysis was 

carried out by B. Gehrig (Institute of Biochemistry and Molecular Biology, University of Bonn). 

Briefly, eluate is lyophilized and resolved in 10 µl 0.1 % TFA. Sample is co-crystallized with 

equal volumes of matrix (saturated α-CHCA in 50 % ACN/0.1 % TFA) onto the sample probe. 

Sample is air-dried and analyzed by matrix-assisted desorption/ionization time-of-flight 

(MALDI-TOF) MS. Instrument (Autoflex III Smartbeam) and software (FlexControl Version 

3.3 (Build 108) and FlexAnalysis Version 3.3 (Build 89)) are from Bruker Daltonik, Bremen 

(DE). 
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3.4.8 Electrophoretic separation of proteins using polyacrylamide gels 

3.4.8.1 SDS-PAGE 

Composition of gels is listed in Table 10, volumes are sufficient for two gels. APS and 

TEMED are added shortly before casting the gels and solution in mixed gently. Separation 

gel is cast between the glass plates of a casting cassette and overlaid with isopropanol. 

Upon polymerization, isopropanol is discarded, stacking gel is cast on top of the separation 

gel, and sample well comb is applied. After polymerization, gel apparatus is assembled, 

running chamber is filled with 1x running buffer, and the sample well comb is removed. 

Samples are mixed with 4x sample buffer, heated for 5 minutes at 95°C and centrifuged 

briefly before being loaded onto the gel next to a protein standard. 0.75 mm thick gels are 

run at 15 mA per gel; 1 and 1.5 mm thick gels are run at 15 mA per gel for 15 to 30 minutes, 

then current is increased to 20 mA per gel. Gels are run until the blue dye front reaches the 

end of the separation gel. After the run is completed, gel apparatus is disassembled and gels 

are immersed in fixing solution for Coomassie staining (3.4.9) or in transfer buffer for 

Western blot transfer (3.4.10). 

 

Table 10: Composition of separation and stacking gels for SDS-PAGE 

Gel component Separation gel (8 %) Separation gel (10 %) Stacking gel 

Acrylamide solution 4 ml 5 ml 1.5 ml 

1 M Tris HCl pH 8.8 5.6 ml 5.6 ml - 

1 M Tris HCl pH 6.8 - - 1.3 ml 

DI water 5.25 ml 4.25 ml 7.15 ml 

10 % (w/v) SDS  150 µl 150 µl 150 µl 

20 % (w/v) APS  30 µl 30 µl 30 µl 

TEMED 15 µl 15 µl 15 µl 

 

3.4.8.2 2D SDS-PAGE 

For 2D SDS-PAGE, proteins are first separated on immobilized pH gradients (IPGs) by 

isoelectric focusing (IEF) and then separated by SDS-PAGE. IEF is performed on self-made 

IPGs (11cm, pH 4-7 or pH4-9; Westermeier, 2005). 

Chloroform-methanol precipitation 

Cell lysates are thawed on ice and adjusted to 100 µg protein per 100 µl with 2D lysis buffer. 

Successively, 300 µl methanol, 75 µl chloroform, and 200 µl DI water are added, the sample 

is mixed briefly after each step. Sample is centrifuged for 5 minutes at 15,000 x g at 4°C and 

supernatant is removed without disturbing the interphase. 225 µl methanol are added, the 

sample mixed briefly and/or incubated for 5 minutes in an ultrasonic water bath to dissolve 
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the interphase. Sample is centrifuged for 5 minutes at 15,000 x g at 4°C and supernatant is 

removed. The pellet is air dried and then resolubilized in 100 µl sample preparation solution. 

IPG rehydration  

Per IPG, 200 µl rehydration solution are pipetted into an IPG tray and IPG is placed gel side 

facing down into the solution. Strips are overlaid with 2 ml mineral oil and IPGs are 

rehydrated overnight at room temperature.  

IEF 

108 ml mineral oil is added to the tray in the IPGphor3 and rehydrated IPGs are placed into 

the slots with the gel side facing up and the acidic end on the anode. Filter paper wicks, pre-

wetted with 50 µl DI water, are placed on both ends of the IPG and the electrodes are 

applied. Sample cups are positioned on top of the IPGs, 1 cm from the basic end of the strip 

at the cathode. 100 µl of sample are added into the sample cup. IEF is performed at 20°C 

with current limited to maximal 50 µA per IPG. IEF protocol used for sample cup loading is 

listed in Table 11. After IEF run, excess mineral oil is removed and IPGs are stored at -80°C. 

 

Table 11: IEF program 

Step and voltage mode Voltage (V) Step duration (h:min) Volt hours (Vh) 

1 Step and Hold 500 1:00 500 

2 Gradient 1000 1:00 750 

3 Gradient 6000 2:00 7000 

4 Step and Hold 6000 0:30 3000 

Total  4:30 11250 

 

Equilibration of IPGs 

IPGs are thawed for 5 minutes in 2 ml equilibration solution. Solution is discarded and IPGs 

are incubated for 15 minutes in 2 ml equilibration solution containing 1 % DTT followed by 

15 minutes in 2 ml equilibration solution with 4.8 % iodoacetamide.  

SDS-PAGE 

Composition of gels is listed in Table 12, volumes are sufficient for two gels. APS and 

TEMED are added shortly before casting the gels and solution is mixed gently. Separation 

gel and stacking gel (1 ml) are cast as described above. Upon polymerization of the stacking 

gel, isopropanol is replaced by 1x running buffer and equilibrated IPG is placed on top of the 

gel. Running buffer is discarded and IPG is fixed with overlay agarose. Gel apparatus is 

assembled, running chamber is filled with 1x running buffer and gels are run at 15 mA per gel 

for 20 minutes, then current is increased to 30 mA per gel. Gel run is stopped when the blue 
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dye front reaches the bottom of the gel, gel apparatus is disassembled and gels are 

immersed in transfer buffer for subsequent Western blot transfer (3.4.10). 

 

Table 12: Composition of separation and stacking gels for 2D SDS-PAGE 

Gel component Separation gel (7.5 %) Stacking gel 

Acrylamide solution 7.5 ml 1 ml 

4x separation gel buffer 7.5 ml - 

4x stacking gel buffer - 2.5 ml 

DI water 15 ml 6.5 ml 

20 % (w/v) APS  75 µl 30 µl 

TEMED 15 µl 20 µl 

 

3.4.8.3 SDS-PAGE using precast gels  

Proteins from human brain samples are separated using 4-15 % or 8-16 % Criterion TGX 

Precast gels. Excess storage solution is rinsed off with DI water, gels are placed in Criterion 

Cell and 1x TGS running buffer is added. Samples (50 µg homogenates or 25 µg cytosolic 

fractions) are mixed with 4x sample buffer, heated for 5 minutes at 95°C, and centrifuged 

briefly before application onto the gel next to protein standard. Gels are run at 80 V for 

10 minutes, voltage is then increased to 120 V and gels are run until the blue dye front 

reaches the end of the gel. After completion of the run, gel apparatus is disassembled and 

gels are immersed in transfer buffer for subsequent Western blot transfer (3.4.10). 

 

3.4.8.4 Bicine/Tris/urea SDS-PAGE 

Bicine/Tris/urea SDS-PAGE is performed as described elsewhere (Klafki et al., 1996). 

3.4.9 Coomassie staining of proteins in gels 

Gels are incubated in destaining/fixing solution for 15 minutes. Destaining/fixing solution is 

removed and staining solution is added for 1 hour. Staining solution is removed and 

destaining/fixing solution is added and exchanged repeatedly until the background is clear 

and protein bands or spots are clearly visible. 

3.4.10 Western blot 

For semi-dry Western blot, polyacrylamide gels are incubated for 15 minutes in transfer 

buffer; filter papers and nitrocellulose membrane are only shortly incubated in transfer buffer. 

Blot sandwich is built as follows: three filter papers, nitrocellulose membrane, gel, three filter 

papers. Excess transfer buffer and air bubbles are removed by gentle rolling on each layer of 



 

 

42 

Methods 

filter paper with a flexible roll. Western blots are run at 1 mA/cm2 for 90 minutes. For transfer 

of proteins from bicine/Tris/urea gels, Western blot is run at 1 mA/cm2 for 60 minutes. For 

transfer of proteins from precast gels, one extra-thick blot paper is used instead of three filter 

papers and Western blot is performed at 25 V for 30 minutes using the Trans-Blot Turbo 

Transfer System. 

3.4.11 Immunodetection of proteins on membranes 

Cell and bacterial culture experiments and experiments involving human brain samples were 

performed in different labs using slightly different protocols for immunological detection of 

proteins, therefore both procedures are described below. Dilutions of primary and secondary 

antibodies are listed in Table 13. 

 

3.4.11.1 Immunodetection of proteins from cell or bacterial culture experiments 

Membranes are incubated in blocking solution (1 % PVP/PBST) for 1 h at room temperature. 

Primary antibody is diluted in 0.1 % PVP/PBST, added to the membranes, and incubated 

overnight at 4°C. Membranes are washed three times for 5 minutes each in PBST prior to 

1 hour incubation with POD-conjugated secondary antibodies diluted in 0.1 % PVP/PBST at 

room temperature. Membranes are washed four times with PBST and two times with PBS 

(5 minutes per wash). Membranes are placed inside an autoradiography cassette and 

chemiluminescence solution (Thermo Fisher Scientific) is added to the membrane 

(100 µl/lane). For signal detection X-ray film is placed on top of the membrane (exposure 

time depends on signal intensity). X-ray films are then incubated for 1 minute in GBX 

developer, rinsed shortly in water and incubated for 2 minutes in GBX fixer. Dry X-ray films 

are scanned and image analysis is performed using ImageJ software. 

 

3.4.11.2 Immunodetection of proteins from human brain samples 

Membranes are incubated in blocking solution (3 % BSA in wash buffer) for 1.5 hours at 

room temperature. Primary antibody is diluted in blocking solution and membranes are 

incubated overnight at 4°C. Membranes are washed three times for 5 minutes each in wash 

buffer prior to 1 hour incubation with secondary antibodies diluted in wash buffer at room 

temperature. Membranes are washed one time for 5 and two times for 10 minutes with wash 

buffer. If Cy5-conjugated secondary antibodies are used, antibody incubation and the 

following wash steps are performed protected from light. Signal detection method depends 

on the secondary antibody used. When using Cy5-conjugated antibodies, signals are 

detected with the appropriate fluorescent laser. When using POD-conjugated antibodies, 

signals are detected chemiluminescently with chemiluminescence solution (Bio-Rad) 
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according to the manufacturer´s instructions. Exposure time depends on signal intensity. 

When using AP-conjugated antibodies, signals are detected colorimetrically by incubation of 

the membrane with AP developer solution. Developing time depends on signal intensity; 

upon reaching the desired signal intensity, membranes are rinsed with DI water and dried 

overnight at room temperature before scanning. All images are acquired with the ChemiDoc 

MP imaging system and image analysis is performed using Image Lab Software. 

 

Table 13: Primary and secondary antibody dilutions 

Primary antibody Dilution 

8E5 1:5,000 

AL28 1:10,000 

anti-actin 1:4,000 

anti-GAPDH 1:30,000  

anti-GST 1:10,000 

anti-His  1:8,000 

anti-OGA  1:1,000 

anti-OGT 1:500 

anti-sAPPβ 1:100 

anti-β-actin 1:4,000 

C-8 1:30,000 

CTD110.6 1:2,000-1:4,000 

D-20 1:12,000 

JLA-20 1:4,000 

W0-2 1:4,000 
 

Secondary antibody Dilution 

anti-goat-POD 1:25,000 

anti-mouse-Cy5 1:2,500 

anti-mouse-POD 
(Dianova) 

1:40,000 

anti-mouse-POD 
(Millipore) 

1:100,000  

anti-rabbit-AP 1:10,000 

anti-rabbit-Cy5 1:2,500 

anti-rabbit-POD 1:15,000 

ECL anti-rabbit-POD 1:20,000 
 

3.4.12 Removal of antibodies from membranes 

Membranes are stripped of bound antibodies by incubation with stripping solution for 

5 minutes or by using ReBlot Plus Strong Antibody Stripping Solution according to the 

manufacturer´s instructions. After rinsing twice with PBS or wash buffer membranes can be 

reprobed as described in 3.4.11 or membranes can be stained as described in 3.4.13. 

3.4.13 Staining of proteins on membranes 

For reversible Ponceau S staining after Western blot transfer, membranes are briefly rinsed 

with DI water before incubation with Ponceau S staining solution for 1 minute. Staining 

solution is removed and membranes are rinsed repeatedly with DI water until the background 

is destained and proteins are visible. For complete destaining, membranes are incubated for 

5 minutes in 60°C warm PBS or rinsed with wash buffer. 
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For Direct Blue staining, membranes are incubated in Direct Blue staining solution for 

5 minutes, rinsed with DI water and air-dried.  

3.5 OGT activity assays 

3.5.1 OGT assay on the membrane 

For OGT assay on the membrane, sample containing the protein of interest is subjected to 

SDS-PAGE and Western blot transfer as described in 3.4.8 and 3.4.10. Nup62 lysate is 

included as a positive control, negative controls include untransformed E. coli BL21 (DE3) 

lysate and GST lysate. Membrane is blocked in 1 % PVP/PBST for 1 hour at room 

temperature, rinsed with PBS and then incubated with OGT in OGT assay buffer (1 ml/lane; 

Table 14)  for 2 hours at 37°C under gentle agitation (100 rpm). As another negative control, 

assay is also performed with buffer containing untransformed E. coli BL21 (DE3) lysate 

instead of OGT lysate. After incubation, membrane is rinsed with PBS and O-GlcNAc signals 

are detected as described in 3.4.11. 

 

Table 14: OGT assay buffer 

Buffer components Volume  

2x OGT buffer 500 µl 

BSA (1 mg/ml) 10 µl  

UDP-GlcNAc solution 10 µl 

OGT lysate or lysate from untransformed E. coli BL21 (DE3)  100 µg 

0.1M GlcNAc Ad 1 ml 

3.5.2 ELISA-based OGT assay 

All incubations take place under gentle agitation (100 rpm) and all wash steps consist of 

three washes with 300 µl PBS each; all measurements are carried out in duplicates. Express 

capture Ni-coated plates are washed and wells are incubated with 100 µl sample for 1 hour 

at room temperature. After washing, wells are blocked with 100 µl 1 % BSA/PBS for 1 hour at 

room temperature. Wells are washed, OGT in 100 µl OGT assay buffer (Table 14) is added 

and OGT assay is performed for 2 hours at 37°C. After washing, wells are incubated with 

primary antibody diluted in 100 µl 1 % BSA/PBS overnight at 4°C. CTD110.6 or RL2 

antibodies are diluted 1:150 and 1:125, respectively. After washing, wells are incubated with 

secondary antibodies (anti-mouse-POD) diluted 1:200 in 100 µl 1 % BSA/PBS for 1 hour at 

room temperature. After a final wash step, 100 µl ABTS developer solution is added. The 

developing process is stopped by the addition of 100 µl 0.6 % SDS solution and absorbance 

is measured at 405 nm. Negative controls include assays without sample, without OGT and 
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without primary antibody. As a positive control, OGT assay on the membrane is run in 

parallel using the same preparation of OGT in OGT assay buffer. 

3.5.3 OGT assay with peptides 

OGT is immunoprecipitated as described in 3.4.7. Peptides are diluted in OGT assay buffer 

for peptides (Table 15; final peptide concentration is 2-2.5 mM) and solution is added to 

Protein G-Sepharose beads containing immobilized OGT. OGT assay is performed for 

2 hours at 37°C under gentle agitation. Afterwards, beads are pelleted by centrifugation at 

5,000 x g for 1 minute and supernatant is immediately stored at -20°C. Further analysis is 

carried out with B. Gehrig (Institute of Biochemistry and Molecular Biology, University of 

Bonn). Briefly, O-GlcNAc-modified peptides are labeled with the Click-iT O-GlcNAc Enzyme 

Labeling and Click-iT Protein Analysis Detection Kits (Invitrogen, Eugene, OR (US)) 

according to the manufacturer´s instructions and biotin-labeled peptides are purified on 

Monomeric Avidin Ultralink Resin (Thermo Fisher Scientific, Rockford, IL (US)) before 

samples are subjected to MALDI-TOF MS analysis. 

 

Table 15: OGT assay buffer for peptides 

Buffer components Volume 

2x OGT buffer 50 µl 

BSA (1 mg/ml) 1 µl  

UDP-GlcNAc solution 10 µl 

0.1M GlcNAc Ad 100 µl 

3.6 OGA activity assay 

OGA activity assay is performed as described elsewhere (Zachara et al., 2011). Briefly, brain 

samples are homogenized in 300 µl ice-cold isolation buffer without EGTA, EDTA and 

GlcNAc. Samples are centrifuged at 4°C for 10 minutes at 1,000 x g and supernatant 

representing the crude cytosolic fraction is used for further analysis. Per sample, 100 µl 

ConA agarose is centrifuged for 5 minutes at 679 x g at 4°C to remove storage buffer. ConA 

agarose is washed with 500 µl ConA wash solution and equilibrated with 500 µl equilibration 

solution. Prior to sample application, equilibration solution is removed by centrifugation. To 

bind interfering acidic hexosaminidases, samples are incubated with ConA agarose under 

constant shaking for 30 minutes at 4°C. After centrifugation for 5 minutes at 679 x g, 

supernatants are desalted using Zeba Desalt Spin Columns according to the manufacturer´s 

instructions and protein concentration is determined as described in 3.4.6. Microtiter plates 

are placed on ice and assay components are added as listed in Table 16. A negative control 

without sample (blank) is included. Reactions are incubated in duplicates for 2-2.5 hours at 
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37°C and stopped by the addition of 100 µl 500 mM Na2CO3. Absorbance is read at 405 nm, 

blank is subtracted from all sample values and OGA activity is calculated using the following 

equation: 

mM of GlcNAc released = A400 / (17.4 × 10 mM–1 · cm–1 × pathlength) 

The molar extinction coefficient for pNP is 17.4 × 10 mM–1·cm–1 at pH 10; path length for 

200 µl in a 96-well plate is 0.71 cm; one enzyme unit represents the amount of enzyme 

catalyzing the release of 1 µmol/min of pNP from pNP-GlcNAc (Zachara et al., 2011). 

 

Table 16: OGA assay buffer 

Buffer components Volume 

Sample 25 µg 

10x OGA buffer 10 µl 

pNP-GlcNAc (100 mM) 2 µl 

DI water Ad 100 µl 

3.7 Statistical Analysis 

All statistical analyses are performed using GraphPad Prism 5. Comparison of two groups is 

performed by unpaired t-test. Comparison of more than two groups is performed by one-way 

ANOVA followed by Tukey´s Multiple Comparison Test. Possible relationships of two factors 

are assessed by Pearson correlation followed by computation of two-tailed p-value. Data are 

presented as mean ± standard deviation (SD) or mean ± standard error of the mean (SEM); 

statistical significance is considered at p < 0.05.  
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4 Results 

The experiments performed in this work can be divided into three distinct parts: 

O-GlcNAc modulation in SY5Y-APP cells, implementation of different in vitro OGT assays, 

and the analysis of O-GlcNAc and O-GlcNAc cycling enzymes in the progression of AD. 

Therefore results will be presented and discussed individually. 

4.1 O-GlcNAc modulation in SY5Y-APP cells 

The effects of O-GlcNAc modulation on APP were investigated in human neurobloastoma 

SH-SY5Y cells that had been stably transfected with cDNA of human wild-type APP695 

(termed SY5Y-APP from here on; Parkin et al., 2007). To modulate O-GlcNAcylation, 

SY5Y-APP cells were treated with the specific OGA inhibitor NButGT or OGT inhibitor 

Alloxan (Konrad et al., 2002; Macauley et al., 2005). In addition, indirect O-GlcNAc 

modulation was achieved by treatment of the cells with PMA, a protein kinase C activator 

(Gonzales et al., 1987). In accordance with the proposed “yin-yang” relationship of O-GlcNAc 

and phosphorylation (see 1.1.2), PMA has previously been shown to decrease O-GlcNAc in 

the detergent-insoluble cytoskeleton-associated fraction of cerebellar neurons (Griffith and 

Schmitz, 1999). Treatments of SY5Y-APP cells for 24 hours with 30 µM NButGT, 5 mM 

Alloxan, and 80 nM PMA were selected based on pretests (data not shown); the applied 

dosages are in agreement with previous reports using N2a (murine neuroblastoma cells) or 

SH-SY5Y cells (Gollner, 2001; Tritz, 2010; Jacobsen and Iverfeldt, 2011). To investigate 

potential effects of O-GlcNAc modulation on expression and proteolytic processing of APP, 

after treatments, conditioned media and RIPA cell lysates were analyzed by SDS-PAGE and 

Western blot. To further characterize APP´s O-GlcNAcylation, APP was immunoprecipitated 

in a subset of experiments or samples were subjected to 2D SDS-PAGE. 

4.1.1 Treatment effects on global and APP-specific O-GlcNAcylation 

For analysis of global O-GlcNAcylation, cell lysates (15-25 µg) were subjected to 

10 % SDS-PAGE and Western blot analysis. After O-GlcNAc detection with CTD110.6 

antibody, membranes were stained with Direct Blue (data not shown) and O-GlcNAc signals 

were normalized to total protein levels. Results of the control treatments (Dulbecco´s 

Modified Eagle Medium low glucose (DMEM-LG) for Alloxan and NButGT or dimethyl 

sulfoxide (DMSO) for PMA treatments) were set to 100 % and results were converted to % 

control. Values of three (for Alloxan and PMA) or six (for NButGT) individual experiments 

were combined for densitometric analysis. 
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As depicted in Figure 5, NButGT treatment significantly increased global O-GlcNAcylation 

(321 ± 62 %; p = 0.005) while Alloxan had no effect on O-GlcNAcylation (109 ± 32 %). 

However, it was noted that in contrast to the pretests, Alloxan treatment markedly increased 

O-GlcNAcylation in one trial while it decreased O-GlcNAcylation in the others when 

compared to the control (169, 61, and 96 %). 
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Figure 5: Effects of NButGT, Alloxan or PMA on global O-GlcNAcylation 

SY5Y-APP cells were treated for 24 hours with 30 µM NButGT, 5 mM Alloxan or 80 nM 
PMA. (A) Representative Western blot and (B) densitometric quantif ication of O-GlcNAc 
signals from cell lysates after treatment with NButGT or Alloxan. (C) Representative 
Western blot and (D) densitometric quantif ication of O-GlcNAc signals from cell lysates 
after treatment with PMA. Global O-GlcNAcylation was normalized to total protein 
loading determined by Direct Blue staining. Control treatments (DMEM-LG medium or 
DMSO) were set to 100 % and results were converted to % control. Results of three to 
six individual experiments were combined and are presented as mean ± SEM. 
**p < 0.01. 
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PMA treatment slightly decreased O-GlcNAcylation but changes were not significant 

(84 ± 21 %; p = 0.5). In addition, as described for Alloxan treatment, PMA effects on global 

O-GlcNAcylation were contradictory. While PMA treatment decreased O-GlcNAcylation in 

two experiments, it increased it in the third (65, 62, and 125 %). 

 

To analyze potential effects of NButGT and Alloxan treatments on APP-specific 

O-GlcNAcylation, APP was immunoprecipitated using 8E5 antibody prior to SDS-PAGE and 

Western blot analysis. Membranes were probed for O-GlcNAc, stripped and then reprobed 

for APP with 8E5 antibody and O-GlcNAc signals were normalized to APP signals. IP was 

performed three times and one representative result is shown in Figure 6. Both NButGT and 

Alloxan increased O-GlcNAcylation of APP (164 ± 15 % and 148 ± 39 %, respectively) but 

only after NButGT treatment did this increase show statistical significance (p = 0.01). 

Noteworthy, the lower APP band at approximately 110 kDa, was O-GlcNAc-modified. An 

additional O-GlcNAc signal was detected just below 100 kDa which corresponded to an 

additional lower-molecular weight APP band that was only visible after prolonged exposure 

times (data not shown). The nature of this band is unclear but it is conceivable that it may 

arise due to proteolysis of APP during cell lysis despite the addition of protease inhibitors. 

 

A  

 

B  

 

Figure 6: Effects of NButGT or Alloxan treatment on APP-specific O-GlcNAcylation 

SY5Y-APP cells were treated for 24 hours with 30 µM NButGT or 5 mM Alloxan.  
(A) Representative Western blot and (B) densitometric analysis of O-GlcNAcylation of 
immunoprecipitated APP. Membranes were probed for O-GlcNAc and APP and 
O-GlcNAc signals were normalized to APP signals. Results of control treatment 
(DMEM-LG medium) were set to 100 % and results were converted to % control. 
Results of three individual experiments were combined and are presented as 
mean ± SEM. *p < 0.05. Arrows indicate mature (top) and immature (bottom) APP. 
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To further characterize O-GlcNAcylation of APP, untreated cell lysates were subjected to 

2D SDS-PAGE prior to immunoblot analysis. In contrast to passive rehydration loading 

where no APP could be detected (data not shown), cathodic sample cup loading allowed for 

APP detection although sample separation was not satisfactory. Still, membranes were 

probed for O-GlcNAc, stripped and then reprobed with 8E5 antibody for APP (Figure 7). 

Results indicate that only a small subpopulation of APP is O-GlcNAc-modified and, in 

contrast to the results of APP-IP experiments, O-GlcNAcylation seems to occur mainly on the 

mature form of APP. The experiment was repeated three times with similar results (data not 

shown). 

 

 

Figure 7: 2D analysis of O-GlcNAcylation of APP 

Representative Western blot of O-GlcNAc and APP expression after 2D SDS-PAGE. 
Untreated SY5Y-APP cells were lysed in 2D lysis buffer, 100 µg of sample were loaded 
onto IPGs by cathodic sample cup loading and subjected to f irst dimension separation 
by IEF on self-made IPGs (pH 4-7). After second dimension SDS-PAGE and Western 
blot transfer, membrane was first probed for O-GlcNAc, str ipped and then reprobed for 
APP. The black boxes point out overlapping APP and O-GlcNAc signals; arrows 
indicate the posit ion of mature (top) and immature (bottom) APP forms. 

4.1.2 Treatment effects on expression and processing of APP 

For analysis of APP expression, cell lysates (15-25 µg) were subjected to SDS-PAGE and 

Western blot. APP and actin were probed for with 8E5 and JLA-20 antibodies, respectively, 

and APP signals were normalized to actin signals. As illustrated in Figure 8, NButGT slightly 

decreased APP expression but this effect was not significant (82 ± 14 %; p = 0.2). 

Furthermore, while Alloxan had no effect on APP expression (92 ± 6 %), PMA markedly 

increased APP expression but due to high variation and/or small sample number, this 

increase was not statistically significant (181 ± 43 %; p = 0.13). 
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Figure 8: Effects of NButGT, Alloxan or PMA on APP expression 

SY5Y-APP cells were treated for 24 hours with 30 µM NButGT, 5 mM Alloxan or 80 nM 
PMA. (A) Representative Western blot and (B) densitometric quantif ication of APP 
signals from cell lysates after treatment with NButGT or Alloxan. C) Densitometric 
quantif ication and D) representative Western blot of APP signals from cell lysates after  
treatment with PMA. APP levels were normalized to actin signals, control treatments 
(DMEM-LG medium or DMSO) were set to 100 % and results were converted to % 
control. Results of three to six individual experiments were combined and are presented 
as mean ± SEM. 

APP processing by secretases produces various APP fragments (see 1.2.3.2). To 

investigate whether O-GlcNAc modulation affected the amount and/or composition of Aβ 

peptides, Aβ was analyzed by different methods (bicine/Tris/urea SDS-PAGE, Aβ-IP and 

MALDI-TOF MS). However, in contrast to the included positive control (synthetic Aβ(1-40) or 

Aβ(12-28)) no endogenous Aβ could be detected (Western blot data not shown; exemplary MS 

results are included in Appendix C).  

To analyze sAPP fragments, 50 µl of conditioned media were subjected to SDS-PAGE and 

Western blot transfer. sAPPα was detected with W0-2 antibody and ,in a subset of 

experiments, sAPPβ was analyzed with anti-sAPPβ antibodies. As identical volumes of 

conditioned medium were loaded onto SDS-PAGE independent of protein concentration in 

lysates, sAPPα and sAPPβ signals were normalized to total sAPP signals as detected with 

8E5 antibody raised against the N-terminus of APP. Results are illustrated in Figure 9 and 
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show that NButGT treatment had no effect on sAPPα secretion (96 ± 15 %). In contrast, both 

Alloxan and PMA treatments induced a strong increase of sAPPα signals in conditioned 

medium. While the change in sAPPα level was not quite significant after Alloxan treatment 

(178 ± 51 %; p = 0.05) it was so after PMA treatment (197 ± 19 %; p = 0.008). 
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Figure 9: Effects of NButGT, Alloxan or PMA on APP secretion 

SY5Y-APP cells were treated for 24 hours with 30 µM NButGT, 5 mM Alloxan or 80 nM 
PMA. (A) Representative Western blot and (B) densitometric quantif ication of sAPPα  
signals from condit ioned medium after treatment with NButGT or Alloxan. 
(C) Representative Western blot and (D) densitometric quantif ication of sAPPα signals 
from condit ioned medium after treatment with PMA. (E) Representative Western blot 
and (F) densitometric quantif ication of sAPPβ signals from condit ioned medium after 
treatment with NButGT or Alloxan. sAPPα and sAPPβ signals were normalized to sAPP 
signals, control treatments (DMEM-LG medium or DMSO) were set to 100 % and results 
were converted to % control. Results of three to six individual experiments were 
combined and are presented as mean ± SEM. **p < 0.01. 



 

 

53 

Results 

Only in a subset of experiments (n = 3) sAPPβ was analyzed. NButGT treatment slightly 

decreased sAPPβ levels in conditioned medium, but results were inconsistent and not 

significant (85 ± 22 %; p = 0.5). In contrast, Alloxan treatment markedly increased sAPPβ 

secretion, however, individual results within the group varied extremely (70 to 640 %) and 

changes were not significant (293 ± 176 %; p = 0.3).  

4.1.3 Summary 

In summary, NButGT significantly increased global and APP-specific O-GlcNAcylation 

(p < 0.01 and p < 0.05, respectively) but had no significant effects on APP expression and 

secretion. Alloxan treatment had inconsistent effects on global O-GlcNAcylation and 

unexpectedly, elevated APP-specific O-GlcNAcylation, albeit not significantly. While Alloxan 

did not influence APP expression, it increased both sAPPα and sAPPβ levels in conditioned 

media although these changes were also not significant. PMA treatment had no significant 

effects on global O-GlcNAcylation or APP expression. However, PMA resulted in significantly 

augmented sAPPα secretion (p < 0.01); APP-specific O-GlcNAcylation and sAPPβ levels 

were not analyzed. Unfortunately, treatment effects on Aβ quantity and/or peptide 

composition could not be analyzed. Lastly, 2D SDS-PAGE and Western blot analysis 

revealed that only a subpopulation of APP is O-GlcNAc-modified. 

 

4.2 Implementation of in vitro OGT assays 

For the design and development of different OGT assays, nuclear pore protein Nup62 was 

chosen as a substrate because it has been described to be extensively O-GlcNAc-modified 

and our group and others have repeatedly demonstrated in vitro O-GlcNAcylation of Nup62 

(Lubas et al., 1995; Strempel, 2010). 

4.2.1 ELISA-based OGT assay 

Recombinant Nup62 used in earlier OGT assays was expressed mainly in inclusion bodies 

and strong denaturing agents were necessary for its solubilization (Balzen, 2010; Strempel, 

2010), therefore, optimizing of Nup62 expression and lysis conditions was attempted prior to 

the refinement of in vitro OGT assays.  

 

Cloning, expression, and purification of Nup62  

Plasmid pBJG1-Nup62 was generated by subcloning the cDNA encoding Nup62 from Rattus 

norwegicus into pBJG1 as described in 3.3.3 and 3.3.5. Successful ligation was confirmed by 

restriction analysis and agarose gel electrophoresis and additional sequencing revealed no 
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mutations in the Nup62 sequence (data not shown). In order to express soluble Nup62, 

various expression conditions (20-37°C; 0.1-1.0 mM IPTG; 1-24 hours) were tested, 

however, recombinant Nup62 proved to be insoluble in PBS and PBS-Triton (data not 

shown). For further analyses, expression conditions producing high yields of Nup62 (37°C, 

0.5 mM IPTG, 6 hours) were chosen and a different approach for recovery of native Nup62 

was applied. Bacterial pellet was lysed in urea lysis buffer and His8-tagged Nup62 was 

isolated by affinity chromatography using Ni-NTA agarose. Purification process was 

monitored by SDS-PAGE and Western blot and probing for Nup62 with specific antibodies 

confirmed successful purification (data not shown). To allow for refolding of denatured 

protein, fractions containing isolated Nup62 were pooled and subjected to gradual dialysis 

against three buffers containing decreasing concentrations of urea and finally, after addition 

of Triton X-100 to the sample, against PBS. Monitoring of the dialysis process by SDS-PAGE 

and Western blot analysis revealed decreasing Nup62 solubility with each dialysis step (data 

not shown). Final concentration of renatured Nup62 in PBS-Triton was 1 µg/ml.  

 

Establishment of ELISA-based OGT assays 

One aim of this work was to establish an ELISA-based non-radioactive OGT assay using 

Nup62 as a substrate. Pretests with denatured as well as renatured samples were performed 

to confirm binding of His8-tagged Nup62 to Ni-coated microtiter plates (data not shown). 

 

Results of OGT assay using renatured Nup62 

The procedure of ELISA-based OGT assay is described in 3.5. Briefly, affinity-purified and 

dialyzed (renatured) Nup62, along with equal volumes of PBS-Triton as a negative control, 

were incubated in Ni-coated microtiter plates. After blocking, wells were incubated with OGT 

for 2 hours at 37°C. Negative controls containing untransformed E. coli BL21 (DE3) lysate 

instead of OGT were included. After incubation with primary and POD-conjugated secondary 

antibodies, O-GlcNAc signals were detected with ABTS solution and absorbance was 

measured at 405 nm. As a positive control, OGT assay on the membrane was run in parallel 

using the same preparation of OGT and detection of Nup62-specific O-GlcNAcylation proved 

that the assay was functioning (data not shown). Colorimetric development of ELISA-based 

OGT assay revealed O-GlcNAc-positive signals in the wells incubated with Nup62, OGT and 

CTD110.6 antibody; however, even after prolonged developing times, signal intensities were 

very weak (OD405 < 0.3). Furthermore, secondary antibody controls without CTD110.6 

antibody as well as the negative controls without Nup62 or OGT showed weak signals, too. 

To determine if signals in the negative controls were due to unspecific binding of CTD110.6 

antibody, OGT assay was repeated with RL2 antibody but signal detection lead to similar 

results. Mean OD405 values of preparations containing all components (Nup62, OGT and 



 

 

55 

Results 

primary antibody) were set to 100 % and all values were converted to % control. Results of 

three individual experiments were combined and are shown in Figure 10A. 

 

A  

 

 B  

 

Figure 10: ELISA-based OGT assays with Nup62 

OGT assay was performed with aff inity-purif ied and dialyzed (renatured) Nup62 (A) or 
with denatured Nup62 (B). His8-tagged Nup62 or negative controls (PBS-Triton or 
lysate of untransformed E. coli BL21 (DE3)) were coated into the wells of Ni-coated 
microtiter plates, incubated with or without OGT, and O-GlcNAc modification was 
detected with CTD110.6 and anti-mouse-POD antibodies. Secondary antibody controls 
without CTD110.6 antibody were included. After colorimetric development with ABTS 
solution, absorbance was measured at 405 nm. Mean values of the preparation 
including Nup62, OGT and CTD110.6 were set to 100 % and values were converted to 
% control. Results of three individual assays were combined and data are shown as 
mean ± SEM. *** p < 0.0001. 

 

Results of OGT assay using denatured Nup62 

The same assay as described above was also performed with denatured Nup62. According 

to the manufacturer´s instructions, wells of Ni-coated microtiter plates were incubated with 

100 µg of Nup62 lysate; lysate of untransformed E. coli BL21 (DE3) was included as a 

negative control. Detection at 405 nm revealed stronger signals after shorter incubation times 

(OD405 = 0.5 - 2.0, up to 30 minutes) when compared to the OGT activity assays using 

renatured Nup62 (OD405 = 0.2 - 0.3, up to 90 minutes) but negative controls were still not 

blank. Mean OD405 values of the preparations including Nup62, OGT and CTD110.6 antibody 

were set to 100 % and all values were converted to % control. The results of three individual 

experiments were combined and are shown in Figure 10B.  

In both OGT assays, using native or denatured Nup62 as a substrate, signals of the negative 

controls were significantly lower than the signals in the actual assay preparation (p < 0.0001) 

indicating successful O-GlcNAcylation of Nup62. 
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4.2.2 OGT assay on the membrane 

Cdk5 has been shown to be O-GlcNAcylated in N2a and SY5Y-APP cells (Kellersmann, 

2003; Nowak, 2011). To confirm and further characterize the O-GlcNAcylation of cdk5, OGT 

assay on the membrane was performed as described in 3.5.1. Briefly, affinity-purified GST-

tagged cdk5 was subjected to SDS-PAGE and Western blot transfer. Untransformed E. coli 

BL21 (DE3) and Nup62 lysates were included as controls to monitor assay performance. 

After blocking, membranes were incubated with OGT for 2 hours at 37°C and O-GlcNAc 

signals were detected with CTD110.6 antibody. Membranes were stripped and reprobed with 

antibodies against Nup62, GST or cdk5. OGT assay with cdk5 was performed four times and 

O-GlcNAc-positive signals at the apparent molecular weight of GST-tagged cdk5 (57 kDa) 

could be detected in two of the four trials. In one assay, no cdk5 O-GlcNAc signals could be 

detected at all and in one assay O-GlcNAc detection lead to negative signals at the cdk5 

band (data not shown). Figure 11 illustrates one exemplary result showing successful 

O-GlcNAcylation of cdk5.  

 

A  

 

B  

 

 

Figure 11: OGT assay with cdk5 

Affinity-purif ied GST-tagged cdk5 along with untransformed E. coli BL21 (DE3) and 
Nup62 lysates were subjected to SDS-PAGE and Western blot transfer. After blocking, 
membrane was incubated for 2 hours at 37°C with (+) or without (-) OGT. (A) Membrane 
was probed for O-GlcNAc with CTD110.6 and anti-mouse-POD antibodies and signals 
were detected after 1 hour exposure to X-ray f ilm. (B) After signal detection, proteins 
were stained with Direct Blue. BL21: untransformed E. coli BL21 (DE3) lysate; Nup62: 
Nup62 lysate; cdk5: aff inity-purif ied GST-tagged cdk5. 

Affinity-purified GST showed no O-GlcNAc-positive signals, demonstrating that GST is not 

O-GlcNAc-modified in this assay (data not shown) and thus indicating that O-GlcNAc signals 

detected at the apparent molecular weight of GST-cdk5 arise from the transfer of O-GlcNAc 

moieties to cdk5 and not to the GST-tag. O-GlcNAcylation of Nup62 could be detected and 
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secondary antibody controls (data not shown) as well as negative controls without OGT 

remained blank indicating functioning assay. However, after incubation with the more 

sensitive SuperSignal West Dura Chemiluminescent Substrate and longer exposure times 

weak signals could be detected in untransformed E. coli BL21 (DE3) negative controls and in 

the preparations without OGT (Figure 11A). After Direct Blue staining of the proteins, it was 

noted that a weaker band was present just above the cdk5 band (Figure 11B). The identity of 

this band is not clear as it did not react with antibodies against GST or cdk5 (data not shown) 

and it did not react with CTD110.6 antibody when probed for O-GlcNAc. 

O-GlcNAc signals of cdk5 were much weaker than those of Nup62 and could only be 

detected after long exposure times (1-10 minutes for Nup62 compared to 1-2 hours for cdk5). 

To determine if this difference was cdk5-specific, OGT assay was repeated with GST-tagged 

CK2α (apparent molecular weight: 71 kDa; Figure 12B) as OGT activity assays using CK2α 

peptides as substrate have been described (McClain et al., 2002). OGT assay on the 

membrane was performed as described above and probing with CTD110.6 antibody 

confirmed O-GlcNAcylation of CK2α (Figure 12A). While comparison of Direct Blue stained 

membranes showed high expression levels of recombinant GST-tagged CK2α (Figure 12C), 

CK2α´s O-GlcNAc signals were considerably weaker than Nup62´s O-GlcNAc signals. In 

contrast to cdk5 samples, Nup62 and CK2α samples were prepared identically, suggesting 

that differences in the strength of O-GlcNAc modification may be inherent to the protein 

analyzed. OGT assay with CK2α was repeated and yielded the same results.  
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Figure 12: OGT assay with CK2α 

GST-tagged CK2α  along with untransformed E. coli BL21 (DE3) and Nup62 lysates 
were subjected to SDS-PAGE and Western blot transfer. After blocking, membrane was 
incubated for 2 hours at 37°C with OGT. (A) Membrane was probed for O-GlcNAc with 
CTD110.6 and anti-mouse-POD antibodies. (B) Membrane was str ipped and reprobed 
with antibodies against Nup62 or GST. (C) After signal detection, membrane was 
stained with Direct Blue. BL21: untransformed E. coli BL21 (DE3) lysate; Nup62: Nup62 
lysate; CK2α : GST-CK2α lysate; GST: glutathione S-transferase. 
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4.2.3 OGT activity assay with affinity-purified OGT 

Additionally, to test if active OGT could be isolated, recombinantly expressed, His8-tagged 

OGT was affinity-purified with Ni-NTA agarose as described in 3.4.2. Purified OGT was 

dialyzed against 2x OGT buffer prior to OGT assay and, using Nup62 as a substrate, OGT 

assay on the membrane was performed as described above. Probing for O-GlcNAc 

demonstrated that affinity-purification of OGT did not eliminate the enzyme´s activity as 

O-GlcNAc modification of Nup62 could be detected (data not shown). 

4.2.4 OGT assay with APP and cdk5 peptides 

To further characterize O-GlcNAcylation of APP and cdk5, the identification of the O-GlcNAc-

bearing residue(s) on these proteins was attempted. As O-GlcNAc is found intracellularly, 

only the cytoplasmic domain of APP was of interest for in vitro O-GlcNAcylation studies. 

To simplify matters, only small synthetic peptides were supposed to be used for the in vitro 

OGT assay. Various peptides containing all five serine/threonine residues of AICD as well as 

different cdk5 peptides were purchased; peptide sequences are listed in Table 7. Selection 

criteria for cdk5 peptides have been described elsewhere (Novak, 2011). Briefly, two 

peptides included potential O-GlcNAcylation sites as determined by in silico O-GlcNAc 

analysis (Ser46, Thr245, Thr246, Ser247). A third cdk5 peptide included Ser26 which has 

been suggested to be potentially O-GlcNAc-modified (Godenschweger, 2007). OGT assay 

with peptides is described in 3.5. Briefly, OGT was immunoprecipitated and peptides were 

incubated with immobilized OGT for 2 hours at 37°C to allow in vitro O-GlcNAcylation. 

In accordance with a recent report analyzing O-GlcNAcylation of tau and peptides thereof, 

UDP-GlcNAc concentration in the OGT assay preparations was increased to 10 mM (Smet-

Nocca et al., 2011). Afterwards, beads were pelleted by centrifugation and the supernatant 

was examined by MS with B. Gehrig (Institute of Biochemistry and Molecular Biology, 

University of Bonn). Briefly, using commercially available kits, O-GlcNAc moieties were first 

labeled with azide-modified galactose and then, via “click reaction”, with a biotin-labeled 

alkyne (Invitrogen, 2007a; b). Biotin-labeled O-GlcNAcylated peptides were purified by 

avidin-biotin affinity chromatography and MALDI-LIFT-TOF/TOF analysis was applied for the 

identification of O-GlcNAc sites (Suckau et al., 2003). However, while peptides could be 

identified, no O-GlcNAc was detected (data acquisition by B. Gehrig; data not shown).  

4.2.5 Summary 

In summary, ELISA-based OGT activity assay was successfully implemented with Nup62 as 

a substrate. In vitro O-GlcNAcylation of cdk5 was demonstrated albeit O-GlcNAc signals 

were weaker than for other proteins tested. Whether in vitro O-GlcNAcylation of APP and 
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cdk5 peptides was unsuccessful or could not be detected with the herein applied techniques 

is unclear at this point but experiments are ongoing in other groups. Lastly, it was shown that 

affinity-purification of His8-tagged OGT does not abolish the enzyme´s activity. 

 

4.3 O-GlcNAc and O-GlcNAc-cycling enzymes in the progression of AD 

In this work, samples from two different brain areas, IPL and cerebellum, of subjects with AD 

and age-matched controls were examined for potential changes in O-GlcNAcylation. While 

the IPL, a subregion of the cortex, has been shown to be severely affected by AD (Greene et 

al., 2010), the cerebellum is often used as a control because it is less affected in AD (Braak 

et al., 1989). Samples from subjects with amnestic mild cognitive impairment (MCI), a 

transitional state between normal aging and early AD (Petersen, 2004), were included in this 

work to study possible changes in O-GlcNAcylation in the progression of AD. Full data on all 

cases are provided in Appendix B, a summarized version of the clinical and pathological 

information can be found in Table 17 and Table 18.  

 

Table 17: Summary of clinical and pathological information of IPL cases 

Group n Gender Age at death PMI (h) Braak stage*** MMSE score*** 

C 12 9 F; 3 M 84.9 ± 5.3 3.1 ± 2.3 0-II 28.8 ± 1.1 

MCI 10 5 F; 5 M 89.1 ±5.3 3.6 ± 2.3 III-V 24.0 ± 3.8 

AD 13 9 F; 4 M 84.1 ± 5.8 3.2 ± 0.8 V-VI 12.7 ± 7.7 

C: control; MCI: mild cognit ive impairment; AD: Alzheimer disease; F: female; M: male; 
Age at death ( in years); PMI: post-mortem interval ( in hours); MMSE: Mini-Mental State 
Examination. All data are provided as mean ± SD. One-way ANOVA was performed and 
parameters which differed signif icantly between the groups are marked with asterisks. 
***p < 0.0001. 

Table 18: Summary of clinical and pathological information of cerebellum cases 

Group n Gender Age at death* PMI (h) Braak stage*** MMSE score*** 

C 8 4 F; 4 M 81.8 ± 5.4 3.7 ± 2.7 I-II 28.8 ± 1.2 

MCI 8 4 F; 4 M 90.0 ±5.6 3.8 ± 2.5 III-V 24.4 ± 4.1 

AD 8 4 F; 4 M 84.8 ± 5.8 3.2 ± 0.8 V-VI 11.7 ± 8.7 

C: control; MCI: mild cognit ive impairment; AD: Alzheimer disease; F: female; M: male; 
Age at death ( in years); PMI: post-mortem interval ( in hours); MMSE: Mini-Mental State 
Examination. All data are provided as mean ± SD. One-way ANOVA was performed and 
parameters which differed signif icantly between the groups are marked with asterisks. 
*p < 0.05; ***p < 0.0001. 

In the progression of AD, neurofibrillary changes occur in a predictable spaciotemporal 

pattern and therefore, upon post-mortem analysis of the brain, six stages can be 

distinguished (I-VI) with stages V and VI corresponding with the clinical presentation of AD 
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(Braak and Braak, 1991; 1997). These stages, now known as Braak stages, were used to 

gather brain samples into the respective groups. Furthermore, patients and healthy 

volunteers underwent testing of coginitive function by Mini-Mental State Examination 

(MMSE), and, if available, MMSE scores were included for AD, MCI and control cases. 

Maximum MMSE score is 30 and the lower the score, the more likely it is that patients suffer 

from cognitive impairment (Folstein et al., 1975). 

Statistical comparison of samples from subjects with amnestic MCI, AD and age-matched 

controls revealed that Braak stages as well as MMSE scores were significantly different 

between the three groups (p < 0.0001). Within the IPL samples, age at death showed no 

differences between the groups. Within the cerebellar samples, age at death was 

significantly different (p = 0.02), however, post-test proved significant differences only when 

comparing MCI and control cases. Post-mortem interval (PMI) did not differ between any of 

the groups and, furthermore, it was noted, that more IPL samples were obtained from female 

subjects with AD and age-matched controls.  

4.3.1 Analysis of IPL samples from subjects with AD 

Brain samples were homogenized and submitted to subcellular fractionation as described in 

3.4.5. Due to the large number of samples, samples were run on multiple precast gels with at 

least three samples per group and gel. Membranes were probed for O-GlcNAc and actin as a 

loading control as described in 3.4.11 and O-GlcNAc signals were normalized to loading 

control signals. Mean values of control samples were set to 100 % and % control values of 

different blots were combined for statistical analysis.  

Pre-incubation of CTD110.6 antibody with 0.1 M GlcNAc almost completely prevented signal 

detection in IPL homogenates and cytosolic fractions confirming the antibody´s specificity 

against O-GlcNAcylated proteins (data not shown). 

In IPL, cytosolic O-GlcNAcylation was significantly augmented in AD samples when 

compared to age-matched controls (119 ± 8 %; p = 0.04; Figure 13A,B). Noteworthy, 

O-GlcNAc signals showed great inter- and intra-group variations. Particularly O-GlcNAc 

signals at approximately 75, 50 and 27 kDa (indicated by the arrows in Figure 13A) differed 

greatly within the AD group and were therefore analyzed separately.  

As shown in Figure 13C-E, the 75 kDa O-GlcNAc band is significantly decreased in AD while 

the O-GlcNAc signals at 50 kDa and 27 kDa are both increased in AD when compared to 

age-matched controls, however, these changes are not quite significant (75 kDa: 44 ± 7 %; 

p < 0.01; 50 kDa: 147 ± 23 %; p = 0.07; 25 kDa: 158 ± 27 %; p = 0.07). Identities and 

functions of these differentially O-GlcNAcylated proteins remain to be elucidated. 
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Figure 13: O-GlcNAc expression in IPL cytosolic fractions from subjects with AD and age-
matched controls 

(A) Representative Western blot of cytosolic fractions of IPL samples from subjects with 
AD and age-matched controls. Membrane was probed for O-GlcNAc with CTD110.6 and 
anti-mouse-POD antibodies before probing for the loading control with anti-actin and 
anti-rabbit-Cy5 antibodies. Arrows indicate O-GlcNAc signals at approximately 75, 50 
and 27 kDa which display great variations and were therefore further analyzed. 
Densitometric quantif ication of total (B) or band-specif ic (C-E) O-GlcNAc signals in the 
cytosolic fraction of IPL samples from subjects with AD and age-matched controls. 
O-GlcNAc signals were normalized to actin signals, mean values of controls were set to 
100 % and results were converted to % control. Data from three Western blot analyses 
were combined, and are shown as mean ± SEM (n = 12-13). C: control; AD: Alzheimer 
disease; *p < 0.05; ***p < 0.001. 

For analysis of OGA and OGT expression, brain sample homogenates were subjected to 

SDS-PAGE and Western blot transfer and membranes were probed for OGA and actin as a 

loading control. Acquired OGA signals were normalized to loading controls, mean values of 

control samples were set to 100 % and % control values of different blots were combined for 

statistical analysis. When compared to age-matched controls, OGA expression was 

significantly decreased in IPL samples from subjects with AD (75 ± 8 %; p = 0.04; Figure 14). 

Probing for OGA also revealed a second albeit weaker signal at approximately 75 kDa which 

is not present in the secondary antibody control (data not shown). While the identity of this 

additional band is not entirely clear, its analysis demonstrated no difference between 

subjects with AD and age-matched controls (data not shown). 
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Figure 14: OGA expression in IPL samples of AD subjects and age-matched controls 

(A)  Representative Western blot and (B) densitometric quantif ication of OGA 
expression in IPL sample homogenates from subjects with AD and age-matched 
controls. Membranes were probed with anti-OGA and ECL anti-rabbit-POD antibodies 
before probing for the loading control with anti-β-actin and anti-mouse-Cy5 antibodies. 
OGA signals were normalized to actin signals, mean values of control samples were set 
to 100 % and results were converted to % control. Data from three Western blot 
analyses were combined and are shown as mean ± SEM (n = 12-13). C: control; 
AD: Alzheimer disease; ECL: enhanced chemiluminescence; *p < 0.05. 

After OGA detection, membranes were stripped and reprobed for OGT with AL28 and anti-

rabbit-AP antibodies. Colorimetric development revealed a band at approximately 105 kDa.  

In general, signal intensity was weak. However, prolonging development time resulted in the 

appearance of multiple additional bands, all of which were not present in the secondary 

antibody control (data not shown). Only the band at approximately 105 kDa was analyzed 

and signals were normalized to loading controls. Mean values of control samples were set to 

100 % and % control values of different blots were combined for statistical analysis. As 

shown in Figure 15, when compared to age-matched controls, OGT expression was 

unchanged in AD (103 ± 5 %; p = 0.74). 
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Figure 15: OGT expression in IPL samples of AD subjects and age-matched control 

(A) Representative Western blot and (B) densitometric quantif ication of OGT 
expression in IPL sample homogenates from subjects with AD and age-matched 
controls. After probing for OGA and the loading control, membranes were str ipped and 
reprobed for OGT with AL28 and anti-rabbit-AP antibodies. OGT signals were 
normalized to loading controls, mean values of control samples were set to 100 % and 
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results were converted to % control. Data from three Western blot analyses were 
combined and are shown as mean ± SEM (n = 12). C: control; AD: Alzheimer disease. 

In a subset of samples, OGA activity was investigated by OGA activity assay as described 

in 3.6. Briefly, crude cytosolic fractions were prepared from IPL samples, interfering 

hexosaminidases were removed by incubation with ConA agarose and samples were 

desalted. Assay was performed in microtiter plates and samples as well as blanks were 

prepared in duplicates. Samples were incubated with the synthetic OGA substrate 

pNP-GlcNAc in OGA assay buffer for 2-2.5 hours at 37°C. OGA cleavage product pNP was 

monitored spectrophotometrically at OD405 and mean values of the duplicates were used for 

further analysis. Mean absorption of blanks was subtracted from the samples and GlcNAc 

release was then calculated as described elsewhere (Zachara et al., 2011). Results (in µM) 

were divided by the assay incubation time (in minutes) to calculate enzyme activity units. 

OGA activity assay was repeated with more samples and, after separate calculations, the 

results from both assays were combined (individual results of the two OGA activity assays 

are included in Appendix D).  

Statistical analysis revealed a significant reduction in OGA activity in IPL samples from 

subjects with AD when compared to age-matched controls (p = 0.01; Figure 16A). However, 

after normalization of OGA activity to OGA expression in the respective sample, no 

difference in OGA activity was found between the two groups (p = 0.96; Figure 16B). 
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Figure 16: OGA activity in IPL samples from AD subjects and age-matched controls 

(A) OGA activity in IPL samples from subjects with AD and age-matched controls was 
measured as cleavage of pNP-GlcNAc. Crude cytosolic fractions were prepared, 
interfering hexosaminidases were removed by incubation with ConA agarose and 
samples were desalted. Samples were incubated with the synthetic OGA substrate 
pNP-GlcNAc in OGA assay buffer and absorbance of free pNP was detected at 405 nm. 
Results of two individual experiments were combined for a total of n = 5; data are 
shown as mean ± SEM enzyme activity units where one unit represents the amount of 
enzyme catalyzing the release of 1 µmol/min of pNP from pNP-GlcNAc. (B) OGA 
enzyme activity units were normalized to OGA expression (as % control) in the 
respective IPL sample homogenates and results are presented in arbitrary units as 
mean ± SEM (n = 5). C: control; AD: Alzheimer disease; *p < 0.05. 
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4.3.2 Analysis of IPL samples from subjects with MCI 

O-GlcNAc levels in cytosolic fractions from IPL samples of subjects with MCI were slightly 

but not significantly increased when compared to controls (112 ± 9 %; p = 0.23; Figure 17).  
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Figure 17: O-GlcNAc expression in IPL cytosolic fractions of control and MCI subjects 

(A) Representative Western blot and (B) densitometric quantif ication of O-GlcNAc 
expression in cytosolic fractions of IPL samples from MCI and control subjects. 
Membrane was probed for O-GlcNAc with CTD110.6 and anti-mouse-POD antibodies 
before probing for the loading control with anti-actin and anti-rabbit-Cy5 antibodies. 
O-GlcNAc signals were normalized to actin signals, mean values of controls were set to 
100 % and results were converted to % control. Data from two Western blot analyses 
were combined and are shown as mean ± SEM (n = 10). C: control; MCI: mild cognit ive 
impairment. 

As illustrated in Figure 18, OGA expression was unaltered when comparing samples from 

amnestic MCI and control subjects (109 ± 11 %; p = 0.62).  
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Figure 18: OGA expression in IPL samples of control and MCI subjects 

(A)  Western blot and (B) densitometric quantif ication of OGA signals in IPL sample 
homogenates from control and MCI subjects. Membranes were probed with anti-OGA 
and ECL anti-rabbit-POD antibodies before probing for the loading control with anti-
β-actin and anti-mouse-Cy5 antibodies. OGA signals were normalized to β-actin 
signals, mean value of controls was set to 100 % and results were converted to % 
control. Data are shown as mean ± SEM (n = 6). C: control; MCI: mild cognitive 
impairment; ECL: enhanced chemiluminescence. 
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After OGA detection, membranes were stripped and reprobed for OGT. OGT expression 

was unaltered in MCI samples when compared to controls (104 ± 7 %; p = 0.85; Figure 19). 
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Figure 19: OGT expression in IPL samples of control and MCI subjects 

(A)  Western blot and (B) densitometric quantif ication of OGT expression in IPL sample 
homogenates from control and MCI subjects. After probing for OGA and loading control, 
membranes were str ipped and reprobed for OGT with AL28 and anti-rabbit-AP 
antibodies. OGT signals were normalized to the loading controls, mean value of 
controls was set to 100 % and results were converted to % control. Data are shown as 
mean ± SEM (n = 6). C: control; MCI: mild cognit ive impairment. 

4.3.3 Analysis of cerebellar samples from subjects with MCI and AD 

Cerebellar samples were subjected to SDS-PAGE and Western blot and membranes were 

probed for O-GlcNAc and actin as a loading control as described above. However, 

densitometric analysis demonstrated a significant decrease of cytosolic actin expression in 

the cerebellum of subjects with AD (data not shown). Cytosolic GAPDH expression, in 

constrast, was unaltered when comparing cerebellar samples from subjects with AD and 

age-matched controls. Therefore, cytosolic O-GlcNAc expression was normalized to GAPDH 

signals in cerebellar samples.  
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Figure 20: O-GlcNAc expression in the cytosolic fraction of cerebellar samples 
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(A) Representative Western blot and (B) densitometric quantif ication of O-GlcNAc 
signals in cytosolic fractions of cerebellum samples from control, MCI, and AD subjects. 
Membrane was probed for O-GlcNAc with CTD110.6 and anti-mouse-POD antibodies 
before probing for the loading control with anti-GAPDH and anti-mouse-Cy5 antibodies. 
O-GlcNAc signals were normalized to GAPDH signals, mean values of controls were set 
to 100 % and results were converted to % control. Data from two Western blot analyses 
were combined and are shown as mean ± SEM (n = 8). C: control; MCI: mild cognitive 
impairment; AD: Alzheimer disease. 

As shown in Figure 20, there were no significant differences in cytosolic O-GlcNAcylation 

between the three groups, however, O-GlcNAc expression was slightly decreased in AD 

(MCI: 105 ± 4 %; AD: 91 ± 6 %; p = 0.10;). Interestingly, O-GlcNAc signal pattern in 

cerebellum seemed to differ from that in IPL (see Figure 13). 

 

Cerebellar OGA expression was also unaltered between the three groups (Figure 21). 

Although OGA expression seemed slightly increased in subjects with MCI and decreased in 

subjects with AD when compared to age-matched controls, these differences were not 

significant (MCI: 108 ± 15 %; AD: 82 ± 12 %; p = 0.36).  

 

A  

 

 

B  

 

Figure 21: OGA expression in the cerebellum 

(A) Representative Western blot and (B) densitometric quantif ication of OGA 
expression in cerebellar sample homogenates from control, MCI and AD subjects. 
Membranes were probed with anti-OGA and ECL anti-rabbit-POD antibodies before 
probing for the loading control with anti-β-actin and anti-mouse-Cy5 antibodies. OGA 
signals were normalized to β-actin signals, mean values of controls were set to 100 % 
and results were converted to % control. Data from two Western blot analyses were 
combined and are shown as mean ± SEM (n = 8). C: control; MCI: mild cognit ive 
impairment; AD: Alzheimer disease; ECL: enhanced chemiluminescence. 

After OGA detection, membranes were stripped and reprobed for OGT. As illustrated in 

Figure 22, OGT expression in the cerebellum seemed to decrease with the progression of 

AD, however this trend was not significant (MCI: 98 ± 4 %; AD: 82 ± 7 %; p = 0.09). 
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Figure 22: OGT expression in the cerebellum 

(A) Representative Western blot and (B) densitometric quantif ication of OGT 
expression in cerebellar sample homogenates from control, MCI and AD subjects. After 
probing for OGA and loading controls, membranes were str ipped and reprobed for OGT 
with AL28 and anti-rabbit-AP antibodies. OGT signals were normalized to the loading 
controls and signals were converted to % control. Data from two Western blot analyses 
were combined and data are shown as mean ± SEM (n = 8). C: control; MCI: mild 
cognit ive impairment; AD: Alzheimer disease. 

 

4.3.4 Correlation studies 

Analysis of potential correlations in IPL samples 

Correlation analyses of IPL samples from subjects with AD and age-matched controls 

(Figure 23) demonstrated an inverse relationship between cytosolic O-GlcNAcylation and 

OGA levels. This relationship could not be detected when comparing IPL samples from 

control and MCI subjects. In AD and MCI samples, cytosolic O-GlcNAc levels correlated 

inversely with MMSE scores but no significant correlation of O-GlcNAc with Braak stage was 

detected. Furthermore, OGA and OGT protein levels were positively correlated in IPL 

samples. 

 

Analysis of potential correlations in the cerebellum 

No relationship was found between cytosolic O-GlcNAcylation expression and OGA levels in 

the cerebellum but interestingly, O-GlcNAc correlated positively with OGT levels (r = 0.55; 

p < 0.01; data not shown). As demonstrated in IPL samples, also in the cerebellum, OGA 

and OGT levels were positively correlated in control, MCI and AD samples (r = 0.46; 

p = 0.02; data not shown). 
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Figure 23: Analysis of potential correlations between various factors in IPL samples 

Correlation analyses were performed between various factors in IPL samples from 
control and MCI or AD subjects. Global cytosolic O-GlcNAc levels as well as OGA and 
OGT protein levels were determined by Western blot analyses. OGA and OGT signals 
as well as MMSE scores and Braak stages were then plotted against the corresponding 
O-GlcNAc or OGA signals. For visualization, a l inear regression line is included in the 
graphs where Pearson correlation reached signif icance (p < 0.05). 
r: Pearson correlation coefficient; MMSE: Mini-Mental State Examination; C: control; 
AD: Alzheimer Disease; MCI: mild cognit ive impairment. 
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4.3.5 Summary 

In summary, increased cytosolic O-GlcNAc and decreased OGA expression and activity was 

observed in IPL samples from subjects with AD when compared to age-matched controls. 

In AD IPL samples, augmented O-GlcNAcylation correlated with reduced OGA expression. 

OGT expression was unaltered in AD when compared to age-matched controls. 

Furthermore, augmented O-GlcNAcylation seemed to correlate with increased disease 

severity as indexed by decreasing MMSE scores and increasing Braak stages. In IPL 

samples from subjects with amnestic MCI, expression of O-GlcNAc, OGA, and OGT were not 

significantly altered when compared to samples from control subjects. Also cerebellar 

samples from subjects with AD or MCI showed no significant differences in O-GlcNAcylation 

or OGA and OGT expression when compared to controls.  
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5 Discussion 

Below, the results of O-GlcNAc modulation in SY5Y-APP cells, implementation of in vitro 

OGT assays and analysis of O-GlcNAcylation and O-GlcNAc cycling enzymes in the 

progression of AD are discussed separately. When relevant, the applied methods are 

reviewed including their strengths and weaknesses and potential future directions are 

proposed. Lastly, the results obtained in this thesis and by others previously are combined in 

a comprehensive overview. 

5.1 Effects of O-GlcNAc modulation on APP processing  

Potential effects of O-GlcNAc modulation on APP processing were tested in SH-SY5Y cells 

stably transfected with APP695 cDNA. APP-overexpressing cells were chosen based on a 

recent report demonstrating that detection of endogenous sAPPβ and Aβ was not possible in 

conditioned media of untransfected SH-SY5Y cells (Harris et al., 2009).  

5.1.1 OGA inhibition by NButGT  

Modulation of O-GlcNAc levels was achieved by treatment of the cells with NButGT, a cell 

permeable, highly selective OGA inhibitor (Macauley et al., 2005). As expected, inhibition of 

OGA significantly increased global O-GlcNAcylation. Consistent with a previous report 

(Jacobson and Iverfeldt, 2011), OGA inhibition also significantly increased APP-specific 

O-GlcNAcylation. Interestingly, NButGT treatment had no significant effects on APP 

expression or its processing by α- or β-secretases (analyzed as sAPPα/β). These results 

stand in contrast to previous reports using a different inhibitor of OGA, O-(2-Acetamido-2-

deoxy-D-glucopyranosylidene)amino-N-phenylcarbamate (PUGNAc). After treatment with 

PUGNAc for 1 hour, sAPPα level in conditioned medium from murine N2a cells expressing 

human APP695 was slightly augmented (Kellersmann, 2003); in SH-SY5Y cells, this increase 

was highly significant after 24 hours of treatment (Jacobson and Iverfeldt, 2011). 

Unfortunately, both studies did not analyze sAPPβ levels, however, Jacobsen and Iverfeldt 

report reduced Aβ40 concentration in conditioned medium after PUGNAc treatment 

(Kellersmann, 2003; Jacobson and Iverfeldt, 2011). Possible reasons for the observed 

discrepancies may include the use of different cell lines and wild-type versus transfected 

cells, different sample preparation and/or ways of presenting the results as well as the use of 

different OGA inhibitors.  

Both overexpression of APP695 and the use of different cell lines have been demonstrated to 

influence APP processing. Comparison of sAPPα and sAPPβ levels from mock and APP695-

cDNA transfected SH-SY5Y cells suggested altered APP processing in APP-overexpressing 
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cells. In SY5Y-APP cells, sAPPα secretion was increased about 1.5-fold while the level of 

sAPPβ in conditioned media increased more than 35-fold when compared to mock 

transfected cells. Furthermore, Belyaev and coworkers compared APP processing in 

different cell lines (human embryonic kidney cells (HEK293), N2a and SH-SY5Y) that had 

been transfected with the cDNA of wild-type APP and found that especially sAPPβ levels 

differed greatly between the cell lines (Belyaev et al., 2010). These results indicate that 

studies analyzing APP processing in different cell lines and especially when working with 

APP overexpressing cells may not be comparable. 

The contradicting results of OGA inhibition on APP processing may also arise from different 

sample preparation and/or ways of presenting the results. Kellersmann seeded the same 

number of cells for various treatments and upon analysis, loaded equal volumes of 

conditioned medium onto polyacrylamide gels. Comparison of the signals of secreted APP 

fragments (total sAPP and sAPPα) was performed without any further normalization 

(Kellersmann, 2003). In agreement with Kellersmann, in this work, equal volumes of 

conditioned medium were subjected to SDS-PAGE and Western blot analysis. However, 

since conditioned medium was harvested several days after seeding of the cells, and to 

account for potential differential effects of the treatments on cell viability and growth rates, 

sAPPα/β signals were normalized to total sAPP secretion. In contrast, in the study by 

Jacobsen and Iverfeldt, conditioned medium was applied to the gels in different volumes but 

corresponding to the same protein amount of the lysates (Jacobsen and Iverfeldt, 2011). 

The aforementioned discrepancies may also be the consequence of the use of different OGA 

inhibitors as PUGNAc and NButGT may have diverse effects. In contrast to NButGT which is 

highly specific for OGA (Macauley et al., 2005), PUGNAc additionally inhibits other glucoside 

hydrolases and shows no selectivity for OGA over lysosomal β-hexosaminidases (Horsch et 

al., 1991; Dong and Hart, 1994; Macauley et al., 2005). Furthermore, PUGNAc leads to 

decreased growth rates and viability of different cell lines and has been shown to cause 

insulin resistance in adipocytes (Slawson et al., 2005; Macauley et al., 2008; 2010). 

Consequently, results obtained using PUGNAc need to be interpreted critically and with 

regards to possible off-target effects.  NButGT, as used in this work, should be preferred to 

PUGNAc for future cell culture studies. 

5.1.2 Effects of Alloxan and PMA 

In contrast to OGA, OGT inhibition is more challenging due to the lack of specific and 

commercially available inhibitors. Alloxan was the first OGT inhibitor described although it is 

mainly used as a diabetogenic compound in diabetes research (Konrad et al., 2002; Lenzen, 

2008). Despite previous results showing decreased O-GlcNAcylation of APP in SH-SY5Y 
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cells after treatment with 1 mM Alloxan (Jacobsen and Iverfeldt, 2011), in this work, a higher 

Alloxan concentration (5 mM) was used based on pretests demonstrating that lower 

concentrations did not reduce global O-GlcNAcylation. Conversely, Alloxan has also been 

shown to inhibit OGA (Lee et al., 2006). In fact, Alloxan may exert differential effects based 

on its concentration since 1 mM Alloxan was sufficient for complete inhibition of OGT, but at 

least 5 mM Alloxan were necessary for significant inhibition of recombinant OGA (Konrad et 

al., 2002; Lee et al., 2006). Furthermore, Alloxan induces the generation of reactive oxygen 

species and may thereby indirectly influence protein O-GlcNAcylation as O-GlcNAc 

expression has been demonstrated to increase in response to oxidative stress (Zachara et 

al., 2004; Lenzen, 2008). Although Alloxan treatment successfully decreased 

O-GlcNAcylation in pre-tests (data not shown) and has been used to inhibit OGT (Dehennaut 

et al., 2007; Jacobsen and Iverfeldt, 2011; Gurel et al., 2014), in this work, Alloxan exerted 

inconsistent effects on global O-GlcNAcylation and, unexpectedly, increased APP´s 

O-GlcNAcylation. In retrospect, since Alloxan dose-dependently inhibits both OGT and OGA 

(Konrad et al., 2002; Lee et al., 2006; Ranuncolo et al., 2012), a different method of OGT 

inhibition should have been preferred. 

Cells were further treated with PMA, an activator of protein kinase C (Gonzales et al., 1987), 

but also the influence of PMA on global O-GlcNAcylation was inconsistent. In agreement with 

the proposed “yin-yang” relation of O-GlcNAcylation and phosphorylation, PMA treatment 

has previously been shown to (indirectly, via the induction of protein kinase C) decrease 

O-GlcNAcylation in primary cerebellar neurons (Griffith and Schmitz, 1999). Interestingly, this 

reduction was significant only in the detergent-insoluble cytoskeletal fraction while PMA had 

no effect on O-GlcNAcylation in the detergent-soluble fraction (Griffith and Schmitz, 1999). 

Results in this work may have been clearer, if the same fractionation had been performed. 

Independent of its (indirect) effects on O-GlcNAcylation, PMA has been demonstrated to 

alter APP processing in favor of α-secretase cleavage (Hung et al., 1993; Qiu et al., 2001). 

In agreement, in this work, the only reproducible effect of PMA treatment was significantly 

increased sAPPα secretion. Furthermore, protein kinase C, amongst other kinases, has been 

shown to phosphorylate both APP and PS1 (Gandy et al., 1988; Seeger et al., 1997) which 

may consequently have biased the observed effects on APP processing.  

Based on the inconsistent results of Alloxan treatment on global O-GlcNAcylation in 

combination with its described side effects as well as the multiple consequences of activation 

of protein kinase C by PMA a discussion of the obtained results seems unreasonable. 

Whether the observed changes in APP processing were in fact the consequences of altered 

O-GlcNAcylation or whether they were attributable to off-target effects is not known. The use 

of a more specific mode of OGT inhibition might have clarified these questions.  
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In parallel to this work, Vocadlo et al. have implemented a “Trojan horse strategy” to 

generate cellular OGT inhibitors: modified metabolic UDP-GlcNAc precursors (GlcNAc 

derivates with the ring oxygen replaced by sulfur (5S)) were processed normally through the 

HBP but the resulting UDP-5SGlcNAc was found to inhibit OGT in vitro and in cell culture 

(Gloster et al., 2011). This method of OGT inhibition appears to be highly suitable for future 

studies investigating the influence of decreased O-GlcNAcylation on the processing of APP. 

Alternatively, OGT expression can be knocked down by RNA interference (Robinson et al., 

2007; Ranunculo et al., 2012). 

5.1.3 O-GlcNAcylation of APP 

To further characterize the O-GlcNAc modification of APP, APP was immunoprecipitated or 

separated by 2D gel electorophoresis prior to analysis by Western blot. APP-IP experiments 

indicated that the lower molecular weight band at approximately 110 kDa corresponding to 

the immature form of APP695 was O-GlcNAc-modified (Figure 6). This is in agreement with a 

previous report investigating the O-GlcNAcylation of APP in AD brain (Werner, 2004). 

Interestingly and in accordance with the “yin-yang” hypothesis, this result is further 

corroborated by the finding that immature APP695 is not phosphorylated in rodent brain (Oishi 

et al., 1997; Iijima et al., 2000). In contrast, Western blot analysis after 2D SDS-PAGE 

pointed towards O-GlcNAcylation of mature APP. So far no explanation for this discrepancy 

has been found. It should be noted that sample preparation for 2D SDS-PAGE differs greatly 

from that for IP and subsequent SDS-PAGE as buffers have to be adjusted for IEF (urea 

instead of RIPA lysis buffer) and proteins are enriched by chloroform-methanol precipitation. 

2D analysis further revealed that only a subpopulation of APP is O-GlcNAc-modified and this 

subpopulation is more basic than the majority of APP. In contrast to negatively charged 

phosphate groups, O-GlcNAc moieties are uncharged, thus their addition does not affect the 

protein´s net charge. The observed shift in charge implies that O-GlcNAcylated APP may be 

less phosphorylated. Whether upregulation of O-GlcNAc results in decreased APP 

phosphorylation remains to be elucidated.  

5.1.4 Analysis of Aβ peptides 

As described in the Introduction (see 1.2.3), Aβ peptides of various lengths and 

characteristics are generated under physiological and pathophysiological conditions. 

According to the “β-amyloid cascade hypothesis”, Aβ deposition was long thought to be the 

causative agent in AD pathogenesis (Hardy and Higgins, 1992; see Figure 24). However, this 

model has been contested by the discovery of pronounced AD pathology, including high 

abundance of senile plaques, in cognitively normal patients (Davis et al., 1999).  
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In fact, not the number of senile plaques but the levels of Aβ40 and Aβ42 peptides were found 

to correlate with cognitive decline (Näslund et al., 2000). Compared to non-demented 

controls, AD brains contain more soluble Aβ peptides and in addition, a substantial degree of 

Aβ peptides is N-terminally truncated (Lue et al., 1999; Sehlin et al., 2012). Increasing 

evidence indicates that soluble oligomers are the toxic form of Aβ and noteworthy, Aβ 

oligomerization begins intracellularly (Walsh et al., 2000; Wirths et al., 2004). Furthermore, 

intracellular Aβ accumulation precedes extracellular amyloid deposition in the brains of 

subjects with AD or Trisomy 21 (Gouras et al., 2000; Mori et al., 2002). Based on these and 

other studies, a modified β-amyloid cascade hypothesis has been suggested in which the 

intraneuronal accumulation of Aβ marks the first pathological alteration in AD brain (Wirths et 

al., 2004; Figure 24).  

 

A B 

 
 

Figure 24: The β-amyloid cascade (Wirths et al., 2004) 

Comparison of (A) the original β-amyloid cascade hypothesis according to Hardy and 
Higgins (1992) and (B) the modified β-amyloid cascade hypothesis by Wirths et al. , 
2004. APP: amyloid precursor protein; PS1: presenil in 1; PS2: presenilin 2. 

Intra- and extracellular (soluble) Aβ was supposed to be analyzed to determine whether 

O-GlcNAc modulation had an effect on the quantity and/or composition of Aβ species. 

Aβ levels should be quantified by Western blot analysis after bicine/Tris/urea SDS-PAGE. 

This electrophoretic system was originally designed for the separation and detection of 

peptides and small proteins with molecular weights ranging from 1 to 100 kDa and has been 

successfully used for the separation and detection of Aβ peptides (Wiltfang et al., 1991; 
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Klafki et al., 1996). In this work, however, no endogenous Aβ could be detected, not even 

after enrichment by IP. This was not due to methodical errors since synthetic Aβ(1-40) could be 

detected with Aβ-specific antibodies (data not shown). For the analysis of Aβ by Western 

blot, some studies describe boiling of the nitrocellulose membrane for 5 minutes in PBS prior 

to blocking and antibody incubation (Ida et al., 1996; Sastre, 2010). In this work, membranes 

were routinely incubated in warm PBS to increase signal sensitivity (based on Swerdlow et 

al., 1986). Whether Aβ detection could have been improved by boiling of the membranes 

was not tested. 

Next, a different technique was applied for the analysis of Aβ peptides. Using MALDI-TOF 

MS, the detection of as little as 1 nM (corresponding to 450 pg/ml) of Aβ(1-42) has been 

described (Wang et al., 1996). Furthermore, MALDI-TOF MS allows for the characterization 

of Aβ signatures in biological matrices such as conditioned media or cerebrospinal fluid 

(Wang et al., 1996; Portelius et al., 2006). To concentrate sample, secreted Aβ was 

immunoprecipitated prior to MS analysis (Uljon et al., 2000; Öckl, 2007), but Aβ signals could 

only be observed for positive controls where synthetic Aβ(12-28) was added to the sample. The 

included detergent further complicated signal detection as it produced a specific pattern of 

peaks that interfere with MS analysis (Keller et al., 2008). Omitting detergent or exchanging 

Triton X-100 for octyl-β-D-glucopyranoside ameliorated the problem of signal interference, 

but endogenous Aβ remained undetectable (data not shown).  

Based on its hydrophobic character, Aβ may adsorb to or aggregate in sample tubes, further 

reducing the concentration of (soluble) Aβ in the samples. To decrease potential adsorption 

to sample vials, specific LoBind Tubes (Eppendorf, Hamburg (DE)) were utilized for sample 

preparation and storage; also 1 % BSA was included in the samples based on a report 

showing that the presence of BSA significantly improved peptide recovery from different 

glass or plastic wares (Goebel-Stengel et al., 2011). Unfortunately, despite different 

variations of the protocol detection of endogenous Aβ remained unsuccessful and therefore, 

the potential effects of O-GlcNAc modulation on Aβ peptides could not be analyzed.  

During the course of this work, elevated O-GlcNAcylation of APP (by PUGNAc treatment) 

was demonstrated to decrease the concentration of Aβ40 in conditioned medium of SH-SY5Y 

cells (Jacobsen and Iverfeldt, 2011). However, potential effects on Aβ42 as well as on 

intracellular Aβ pools were not analyzed. 
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5.2 OGT assays 

5.2.1 Implementation of an ELISA-based OGT assay 

For the development and implementation of in vitro OGT assays, recombinantly expressed 

His8-tagged Nup62 was chosen as a substrate. Nup62 was lysed in urea buffer, affinity-

purified and denatured protein was then allowed to refold by the stepwise removal of urea 

(based on Lubas et al., 1995). Despite the fact that increasing amounts of Nup62 precipitated 

with each dialysis step, a small amount of Nup62 remained soluble and could be used for the 

implementation of an ELISA-based OGT assay. After adsorption of native (refolded) or 

denatured Nup62 to the wells of a microtiter plate, in vitro OGT assay was performed with 

recombinant OGT. O-GlcNAcylation of Nup62 could be detected with O-GlcNAc-specific 

antibodies proving successful implementation of the ELISA-based OGT assay. 

Comparison of the results of OGT assays with native and denatured Nup62 clearly 

demonstrated stronger O-GlcNAc signals when using denatured protein which may have 

been due to the low final concentration of refolded Nup62. Also, denatured proteins may 

expose additional O-GlcNAc sites that, due to tertiary or quaternary structure, may otherwise 

not have been accessible for OGT. It should be noted however, that the final three-

dimensional structure of refolded Nup62 may differ significantly from that of the native 

protein. Moreover, in vitro O-GlcNAcylation of isolated proteins may not represent in vivo 

conditions as both OGT and protein substrates could have interaction partners that may 

facilitate or impede O-GlcNAcylation in vivo. Nevertheless, this assay can provide a first 

indication for potential O-GlcNAcylation of a protein of interest.  

The incubation of negative controls lacking either Nup62 or OGT with O-GlcNAc-specific 

antibodies produced weak background signals indicating a small degree of unspecific binding 

of both the CTD110.6 and the RL2 antibody. To circumvent this problem, a different 

detection method may be applied. Commercially available Click-iT kits take advantage of the 

copper-catalyzed cycloaddition or “click reaction” between an azide and an alkyne 

(Rostovtsev et al., 2002; Invitrogen, 2007a). Similar to the labeling of O-GlcNAc with 

[3H]galactose which is catalyzed by galactosyltransferase, O-GlcNAc moieties can be labeled 

with azide-modified galactose using a mutant β-1,4-galactosyltransferase. Via the click 

reaction, the azide then reacts with a differentially labeled alkyne (e.g. biotin- or dapoxyl-

alkyne) forming a stable triazole conjugate (Ramakrishnan and Qasba, 2002; Khidekel et al., 

2003; Invitrogen, 2007b). Biotin-labeled O-GlcNAc can be detected with Streptavidin-POD; 

alternatively, dapoxyl-labeled O-GlcNAc can be quantified spectrophotometrically. 

Recently, a similar OGT assay has been described where, instead of UDP-GlcNAc, UDP-

N-azidoacetylglucosamine (UDP-GlcNAz) was included as the sugar donor. The resulting 
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GlcNAz-modification of OGT substrate (Nup62 and CK2α) was then demonstrated with RL2 

antibody or, after click reaction using TAMRA-conjugated alkyne, with anti-TAMRA antibody 

(Kim et al., 2014). 

A great advantage of ELISA-based assays is that a multitude of different proteins or peptides 

can be analyzed simultaneously for possible O-GlcNAcylation. Furthermore, characterization 

of OGT has been difficult based on the lack of sensitive, quick and economical assays as 

common OGT activity assays involve the measurement of [3H]GlcNAc incorporation into 

peptides or proteins (e.g. Haltiwanger, 1990; Marshall et al., 2003; Cheung and Hart, 2008; 

Liu et al., 2012). The assay described in this work may circumvent the need for expensive 

isotopes for the analysis of OGT activity. In addition, using affinity-purified recombinant OGT, 

this assay may facilitate rapid screening of potential OGT inhibitors. Whether this ELISA-

based OGT assay can be applied for quantitative purposes remains to be investigated but it 

certainly provides a promising tool for the future.  

5.2.2 In vitro O-GlcNAcylation of cdk5 

Data from our group strongly suggests that cdk5 is O-GlcNAcylated (Kellersmann, 2003; 

Schmitt, 2009; Nowak, 2011). Cdk5, amongst others, phosphorylates APP as well as tau and 

appears to be implicated in AD pathogenesis (Ando et al., 2001; Cruz and Tsai, 2004). For 

further characterization, in vitro O-GlcNAcylation of recombinant cdk5 was performed. OGT 

assay on the membrane demonstrated very weak O-GlcNAc signals on cdk5 when 

compared to Nup62. Weaker O-GlcNAcylation was also detected when the OGT assay was 

performed with CK2α. This phenomenon has also been observed by others and can be 

explained by in silico O-GlcNAc analysis (Gupta and Brunak, 2002; Lazarus et al., 2006). In 

contrast to Nup62 which contains seventy potential O-GlcNAc sites, CK2α and cdk5 contain 

only ten and four potential O-GlcNAc sites, respectively. The number of sites per protein 

which are effectively O-GlcNAc-modified in this in vitro assay is not known. Nonetheless, the 

results obtained using Nup62, cdk5 and CK2α as substrates indicate that, in addition to 

qualitative investigation, the OGT assay on the membrane may potentially provide crude 

quantitative information on the O-GlcNAc content of proteins of interest.  

Whether cdk5 is actually O-GlcNAcylated in vivo as well as potential consequences of this 

modification on cdk5´s physiological function or its dysregulation in AD remain to be 

elucidated. Cdk5 requires the binding of the regulatory protein p35 or its truncated version 

p25 for its catalytic activity and cdk5´s activity is further increased by phosphorylation at 

Ser159 (Lew et al., 1994; Tsai et al., 1994; Sharma et al., 1999b). O-GlcNAcylation of cdk5 is 

predicted on Ser46, Thr245, Thr246, and Ser247 but not on Ser159 (see Appendix E). It 
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could therefore be speculated that O-GlcNAcylation may not play a direct role in the 

regulation of cdk5 activity. 

5.2.3 Analysis of O-GlcNAcylation of APP and cdk5 peptides 

O-GlcNAc site mapping is important for functional analysis as knowledge of the exact 

modification site(s) would allow for point mutations to further explore the role of 

O-GlcNAcylation in different cellular pathways. In this work, the identification of potential 

O-GlcNAc sites on APP and cdk5 peptides was attempted by MS analysis after in vitro 

O-GlcNAcylation. Unfortunately, O-GlcNAc could not be detected on the substrate peptides. 

In vitro OGT assay was successfully performed using different protein substrates (see 4.2.2) 

and our group and others have demonstrated that immunoprecipitated OGT is able to 

O-GlcNAc-modify Nup62 (Marshall et al., 2003; Okuyama and Marshall, 2003; Strempel, 

2010); furthermore, a similar method has been recently applied to modify tau and tau 

peptides (Smet-Nocca et al., 2011). It may therefore be speculated that not OGT assay 

performance but the subsequent sample preparation and/or analysis by MS impeded the 

detection of O-GlcNAc moieties on the peptides. 

O-GlcNAc analysis by MS still poses a great challenge. O-GlcNAc is a dynamic, 

substoichiometric modification and only a small percentage of a protein may be 

O-GlcNAcylated at any point in time. For example, as little as 0.1 GlcNAc residue/protein 

molecule were found on different OGT constructs in vitro and only 2 % of synapsin IIa is 

O-GlcNAcylated in adult rat brain cortex (Kreppel and Hart, 1999; Rexach et al., 2010). 

Furthermore, the glycosidic bond is labile and susceptible to cleavage during MS.  

To circumvent these problems in O-GlcNAc detection, different precautionary measures 

should be applied when anylzing O-GlcNAc. Global O-GlcNAcylation can be increased by 

inhibition of OGA and/or activation of the HBP. Furthermore, enrichment of O-GlcNAcylated 

proteins/peptides prior to MS analysis is highly recommended because ionization of 

O-GlcNAcylated peptides is suppressed in the presence of unmodified peptides (Wang and 

Hart, 2008; Ma and Hart, 2014). This effect is particularly pronounced in MALDI-MS. 

Still, successful O-GlcNAc site mapping has been demonstrated with MALDI-TOF MS/MS 

(Matsuura et al., 2008; Hoffmann et al., 2012). Enrichment or purification of O-GlcNAcylated 

peptides can be performed by lectin weak affinity chromatography or by the binding of biotin-

labeled O-GlcNAc peptides to streptavidin (see click reaction in 5.2.1). 

The combination of electrospray ionization- or MALDI-MS with different fragmentation 

techniques has greatly advanced O-GlcNAc site mapping. Nevertheless, O-GlcNAc detection 

is still difficult as not all fragmentation methods preserve the modification, e.g. high-energy 

collision dissociation (HCD) usually results in the loss of the O-GlcNAc group prior to peptide 
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fragmentation (Chalkley and Burlingame, 2001; Ma and Hart, 2014). Substitution of the labile 

O-glycosidic bond with a stable, MS-compatible bond by mild β-elimination and Michael 

addition of DTT (BEMAD) can circumvent this problem (Wells et al., 2002b). Also, the 

combination of MS with electron capture dissociation (ECD) or electron transfer dissociation 

(ETD) enables O-GlcNAc site mapping. Under these conditions peptide backbone 

fragmentation occurs without concomitant cleavage of the glycosidic bond and thus the 

addition of O-GlcNAc to serine or threonine residues can be detected as a mass increment of 

m/z = 203 (Mikesh et al., 2006; Myers et al., 2013; Ma and Hart, 2014).  

In this work, yet another MS technique, MALDI-LIFT-TOF/TOF was applied for O-GlcNAc site 

mapping (Suckau et al., 2003). This method has been previously used to identify site(s) of 

O-glycosylation on short glycopeptides demonstrating that, similar as under ETD or ECD 

conditions, fragmentation occurs preferably at the peptide bond without affecting the 

glycosidic bond (Kurogochi et al., 2004). Furthermore, our group has successfully used this 

technique for the identification of the position of O-GlcNAc on a synthetic O-GlcNAcylated 

peptide (Förster et al., 2012). Prior to MS analysis, separation of O-GlcNAc-modified and 

unmodified peptides was performed by chemoenzymatic tagging with azide-modified 

galactose and alkyne-biotin and subsequent enrichment of biotin-labeled O-GlcNAc peptides 

by avidin affinity chromatography. Unfortunately, derivatized O-GlcNAc is still not 100 % 

stable under MALDI-LIFT conditions and can still be lost during ionization and, despite the 

aforementioned precautionary measures, O-GlcNAc site mapping in APP and cdk5 peptides 

was not successful in this work.  

This project is still being pursued by B. Gehrig (Institute of Biochemistry and Molecular 

Biology, University of Bonn) and Dr. J. Ma (Department of Biological Chemistry, Johns 

Hopkins University). In vitro OGT assay with APP and cdk5 peptides was repeated and 

samples were subjected to tandem MS analysis (HCD/ETD or BEMAD/HCD). Preliminary 

results indicate O-GlcNAcylation of Ser5 of cAPP1 (corresponding to Ser655 of APP695) as 

well as Ser5 of J-2 and Ser10 of J-3 (corresponding to Ser46 and Ser247 of cdk5; J. Ma, 

personal communication).  
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5.3 Changes in O-GlcNAc, OGT and OGA in MCI and AD 

As described in 1.3, different lines of evidence indicate that O-GlcNAc may play a role in the 

pathogenesis of AD. However, reports on O-GlcNAcylation in AD are contradicting and the 

underlying factors and causalities of O-GlcNAc changes are unknown. In this work, global 

O-GlcNAcylation as well as the involved enzymes OGT and OGA were analyzed in two 

distinct brain regions, the IPL and cerebellum, at different stages during AD progression.  

5.3.1 Increased protein O-GlcNAcylation in IPL samples from AD subjects 

The IPL, a subregion of the cerebral cortex, is strongly affected in AD, as demonstrated by 

findings of neurofibrillary tangles, amyloid plaques, grey matter atrophy, and glucose 

hypometabolism (Braak and Braak, 1991; Jacobs et al., 2011; Ossenkoppele et al., 2012).  

Analysis of IPL samples revealed that cytosolic O-GlcNAcylation was significantly elevated in 

AD when compared to age-matched controls. Upregulation of O-GlcNAc in AD has been 

described previously; however, O-GlcNAcylation was elevated only in the detergent insoluble 

cytoskeletal fraction but not in the detergent soluble fraction (Griffith and Schmitz, 1995). 

These results stand in contrast to findings of other groups demonstrating a decrease in 

protein O-GlcNAcylation in AD brain (Robertson et al., 2004; Liu et al., 2004, 2008, 2009a,b). 

Furthermore, Yao and Coleman reported no difference in global O-GlcNAcylation in AD 

brain, with the exception of a reduced signal at 160 kDa corresponding to clathrin assembly 

protein-3 (Yao and Coleman, 1998). An overview of studies investigating O-GlcNAcylation in 

AD brains including applied methods and findings is provided in Table 19. Noteworthy, most 

studies analyzing frontal cortex samples demonstrated reduced O-GlcNAcylation in AD. Only 

the study by Griffith and Schmitz showed elevated O-GlcNAcylation in the frontal cortex; 

however, the observed increase in O-GlcNAcylation was markedly more pronounced in the 

parietal cortex (Griffith and Schmitz, 1995). In agreement, another study investigating IPL 

samples also demonstrated increased O-GlcNAcylation in AD albeit only on specific proteins 

(Di Domenico et al., 2010). 

To date, the most widely used anti-O-GlcNAc antibodies are CTD110.6 and RL2 (Comer et 

al., 2001; Holt et al., 1987; Snow et al., 1987). However, these antibodies were raised 

against different O-GlcNAc epitopes and O-GlcNAc signal detection is noticeably different 

with both antibodies (Ahrend et al., 2008; Borghgraef et al., 2013; Tashima and Stanley, 

2014). In general, the use of different antibodies and different detection methods as well as 

variances in analyzed brain regions and sample preparation may explain the observed 

discrepancies in O-GlcNAcylation in AD, clearly demonstrating the need for standardized 

analysis methods for O-GlcNAc detection in human brain samples. 
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Table 19: Overview of studies examining O-GlcNAcylation in AD brain 

Brain region O-GlcNAc 
changes 
in AD 

Sample 
specification 

Detection 
method 

Additional 
information 

Reference 

Temporal, 
parietal, and 
frontal cortex 
and basal 
forebrain 

 

cerebellum 

↑ 

 

 

 

 

~ 

Detergent-
insoluble 
cytoskeletal 
fraction 

ELISA with anti-
O-GlcNAc 
antibodies 
(HGAC 39 and 
HGAC 85) and 
[3H]galactose 
labeling**  

No change in 
detergent-soluble 
fraction 

Griffith and 
Schmitz, 
1995 

Frontal cortex 
and middle 
frontal gyrus 

 

cerebellum 

~ 

↓ of band 
at 160 kDa 

 

~ 

Cytosolic 
fraction* 

[3H]galactose 
labeling** 

160 kDa protein 
was identified as 
clathrin assembly 
protein-3 

Yao and 
Coleman, 
1998 

Frontal cortex ↓ Cytosolic 
fraction* 

Radioimmuno dot 
blot with RL2 
antibody 

 Liu et al., 
2004 

not specified ↓ Heat-stable 
cytoskeletal 
preparations 

[3H]galactose 
labeling** 

Tau protein is 
enriched in the 
analyzed fraction 

Robertson 
et al., 2004 

Frontal cortex 

 

↓ 

 

Cytosolic 
fraction* 

Dot blot with RL2 
antibody 

 

O-GlcNAcylation 
correlated 
positively with the 
levels of GLUT1 
and GLUT3 

Liu et al., 
2008 

Frontal cortex 

 

Cerebellar 
cortex 

 

↓ 

 

 

~ 

Cytosolic 
fraction* 

Dot blot with RL2 
antibody 

 

Signals were 
normalized to 
actin expression;  

results were 
confirmed by 
immuno-
fluorescence in 
the superior 
frontal gyrus 

Liu et al., 
2009a 

Frontal cortex ↓ Cytosolic 
fraction* 

Dot blot and 
Western blot with 
RL2 antibody 

Results from dot 
blot and Western 
blot analyses 
were combined  

Liu et al., 
2009b 

Hippocampus 

 

IPL 

↑ / ↓ 

 

↑ 

Homogenates 2D SDS-PAGE of 
wheat germ 
agglutinin-binding 
proteins 

O-GlcNAcylation 
of protein 14-3-3γ 
was confirmed 
with CTD110.6 
antibody 

Di 
Domenico 
et al.; 2010 

↑ = increased; ~ = unchanged; ↓ = decreased; * brain homogenates were centr ifuged 
(> 1000 x g) and only supernatant was analyzed; ** [3H]galactose labeling of terminal 
GlcNAc residues with galactosyltransferase; GLUT: glucose transporter. 
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Noteworthy in this work, O-GlcNAc signals demonstrated great inter- and intragroup pattern 

variations which have not been described previously. In many of the above listed studies 

O-GlcNAc was detected using dot blot or ELISA assays thereby precluding the possibility of 

investigating individual protein signals. In retrospect, it would have been interesting to 

compare O-GlcNAc bands to the Direct Blue staining of proteins, as strong O-GlcNAc signals 

may not correlate with high expression of a protein and vice versa.  

Proteomics studies have demonstrated differential expression and glycosylation of various 

proteins in AD brain (Sultana et al., 2006a; Owen et al., 2009; Di Domenico et al., 2010). 

However, only few ‘O-GlcNAcomics’ studies have been performed on human AD samples 

(e.g. Skorobatko et al., 2011) and quantification of O-GlcNAc changes by MS is still quite 

complicated although great progress has been made in the recent years (Wang et al., 2007; 

Khidekel et al., 2007; Maury et al., 2014). O-GlcNAcomics studies are currently underway (in 

cooperation with J.C. Triplett, Department of Chemistry, University of Kentucky) and may 

reveal the identity of proteins with altered O-GlcNAcylation in AD, i.e. the proteins with the 

apparent molecular weight of 27, 50, and 75 kDa (see Figure 13).  

O-GlcNAc expression did not correlate with age or gender but O-GlcNAc seemed to correlate 

positively with disease severity, indexed by decreasing MMSE scores and increasing Braak 

stages. Reasons for the great variability in O-GlcNAc expression within the analyzed groups 

are unknown but it may be partially explained by natural heterogeneity between individuals. 

When comparing individuals of the same age, differences of similar magnitude have been 

demonstrated for cerebral glucose utilization (Kuhl et al., 1982). The observed variations may 

also be explained by other patient-specific parameters (e.g. nutrition and life style). 

Furthermore, population based studies have repeatedly identified diabetes as a risk factor for 

AD and AD has been proposed to represent a brain-specific “type 3 diabetes” (Kuustisto et 

al., 1997; Peila et al., 2002; de la Monte and Wands, 2008). It would be highly interesting to 

investigate potential correlations of cerebral O-GlcNAc expression with diabetic status or 

cerebral glucose utilization.  

5.3.2 Unaffected OGT expression in IPL samples from AD subjects 

In an attempt to explain augmented O-GlcNAcylation in AD brain, O-GlcNAc cycling 

enzymes were investigated and the analysis of OGT yielded unexpected results. In general, 

OGT signal intensities were very weak and the most prominent signal corresponded to a 

band at approximately 105 kDa; this result could be validated with a second antibody against 

OGT. The molecular weight of this signal corresponds to mOGT (103 kDa) rather than to 

ncOGT (116 kDa) and as sample homogenates were used, mOGT is likely to be present in 

the samples (Hanover et al., 2003). Conversely, in developing and aging rat brain marked 
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and stable expression of ncOGT but no significant expression of mOGT is observed (Liu et 

al., 2012). At present, reasons for the detection of OGT with a molecular weight of 105 kDa 

are unknown.  

Densitometric analysis of this signal revealed that despite increased O-GlcNAcylation, OGT 

expression in IPL samples from AD subjects was unaltered when compared to age-matched 

controls. This lack of a correlation between O-GlcNAc and OGT has previously been shown 

in aging rat brain where increased O-GlcNAcylation was in fact accompanied by decreased 

OGT expression (Fülöp et al., 2008). Furthermore, OGT protein levels do not necessarily 

mirror OGT activity (Kreppel et al., 1997).  

OGT activity in AD has not been analyzed previously and unfortunately it was also not 

investigated in this work as common OGT assays rely on [3H]GlcNAc incorporation into 

peptides/proteins and the aforementioned ELISA-based OGT assay has not yet been tested 

for quantification purposes. Consequently, the relevance of unaltered OGT expression for 

augmented O-GlcNAcylation in AD brain cannot be discussed conclusively. 

5.3.3 Reduced OGA expression in IPL samples from AD subjects 

In contrast to OGT, OGA expression was significantly downregulated in IPL samples from 

subjects with AD and, most importantly, the observed decrease significantly correlated with 

augmented cytosolic O-GlcNAcylation. As for OGT, multiple OGA isoforms have been 

described with FL-OGA residing predominantly in the cytoplasm while NV-OGA is located to 

nuclei and lipid droplets (Comtesse et al., 2001; Keembiyehetty et al., 2011). As OGA was 

analyzed in sample homogenates, theoretically both isoforms could have been detected. 

Indeed, in addition to the prominent signal corresponding to FL-OGA, a second albeit weaker 

signal was detected at the apparent molecular weight of NV-OGA (data not shown). This 

finding was unexpected as the shorter isoform has been shown to be quickly downregulated 

in rat brain during embryonic development and was undetectable after birth let alone in adult 

animals (Liu et al., 2012). Whether the detected band represents NV-OGA or whether NV-

OGA expression is also downregulated in human brain remains to be determined. 

A common protocol using pNP-GlcNAc as a substrate was applied to analyze OGA activity 

(Zachara et al., 2011) and revealed significantly reduced OGA activity in AD brain. After 

normalization of OGA activity assay results to the corresponding OGA signal, no difference in 

OGA activity between AD cases and age-matched controls was observed. This suggests that 

reduced OGA expression is not compensated by increased OGA activity and this may 

therefore be responsible for the disruption of the O-GlcNAc cycling equilibrium in AD. 
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Reason(s) for decreased OGA expression in AD remain to be elucidated. In general, cellular 

protein levels are dependent on their synthesis and degradation rates. A recent whole 

transcriptome sequencing analysis discovered that while the OGA-encoding MGEA5 gene 

was not differentially expressed, it showed alternative promoter usage and alternative 

splicing in AD (Twine et al., 2011). Whether mRNA stability and/or translation of OGA may 

be altered in AD is currently unknown. Increased degradation of OGA by the ubiquitin-

proteasome and/or autophagic-lysosomal system is unlikely as both pathways are perturbed 

in AD (reviewed in Ihara et al., 2012). Furthermore, OGA represents a substrate for 

caspase-3 although cleavage of OGA does not affect the enzyme´s catalytic activity in vitro 

(Wells et al., 2002a; Butkinaree et al., 2008). Elevated levels of activated caspase-3 are 

found in AD brain (Su et al., 2001) but it remains to be investigated whether OGA represents 

a substrate for caspase-3 in vivo and if this could affect OGA activity in AD. 

5.3.4 No changes in O-GlcNAcylation in MCI and in the cerebellum 

In addition to AD, brain samples from subjects with amnestic MCI were also analyzed. 

Amnestic MCI often represents an early stage of AD in which cognitive impairment is present 

but criteria for dementia are not yet met (Albert and Blacker, 2006). No significant changes 

were observed when comparing O-GlcNAcylation in IPL samples from MCI subjects with 

non-demented controls. Also OGT and OGA expression were unaffected. These data 

indicate that changes in O-GlcNAcylation are not an early event in the progression of AD. 

In contrast to the IPL, the cerebellum seems to be less affected in AD (Braak et al., 1989) 

and is often used as a control when analyzing pathological changes in AD. Accordingly, 

previous studies have found no significant changes in O-GlcNAcylation in cerebellar samples 

from AD patients (Griffith and Schmitz, 1995). In this work, cerebellar O-GlcNAc levels were 

unaltered in MCI but seemed slightly albeit not significantly decreased in AD. This is in 

agreement with a previous report analyzing a similarly small sample number (n = 6); in this 

study, mean O-GlcNAcylation was decreased by almost 40 % in AD cerebellum although due 

to great individual signal variation, this reduction was not statistically significant (Liu et al., 

2009a). Analysis of OGT and OGA expression in the cerebellum also revealed no significant 

changes in AD and MCI. Interestingly, O-GlcNAc signal pattern in cerebellum differed greatly 

from that in IPL, namely the highly varying signal bands at 27, 50 and 75 kDa were markedly 

weaker or even undetectable in cerebellar samples. Whether this is due to brain area-

specific disparities in protein expression and/or O-GlcNAcylation or may be explained by the 

fact that the cerebellum is less affected by AD pathology is not known. 
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5.4 Potential causes and consequences of altered O-GlcNAcylation in AD 

It is commonly accepted that impaired protein O-GlcNAcylation may contribute to AD 

pathogenesis although the underlying molecular mechanisms and causalities have yet to be 

elucidated (recently reviewed in Yuzwa and Vocadlo, 2014). Significant downregulation of 

OGA expression may solely be responsible for the herein observed increase in protein 

O-GlcNAcylation but it is more likely that the combination of various factors results in altered 

O-GlcNAcylation in AD. Some of these potential factors are discussed below and are 

summarized in Figure 25. 

 

The role of glucose availability and metabolism 

Impaired glucose transport and metabolism in AD brain has been reported by various groups 

(Kalaria and Harik, 1989; Simpson et al., 1994; Fukuyama et al., 1994). Furthermore, Liu et 

al. demonstrated a positive correlation between reduced expression of glucose transporters 

GLUT1 and GLUT3 and reduced O-GlcNAcylation in AD brain and suggested that lower flux 

of glucose through the HBP was responsible for the observed decrease in protein 

O-GlcNAcylation (Liu et al., 2008). In accordance, starvation of mice has been demonstrated 

to reduce cerebral O-GlcNAcylation (Liu et al., 2004). Lowering the glucose concentration in 

cell culture medium also decreased O-GlcNAc expression in cell culture studies. 

Interestingly, simultaneous OGA inhibition by PUGNAc not only precluded this decline but 

markedly increased O-GlcNAcylation (Liu et al., 2004) strongly indicating that glucose 

availability is not a limiting factor for O-GlcNAcylation. 

In agreement, O-GlcNAc´s role as a nutrient sensor was challenged by in vitro studies 

demonstrating increased O-GlcNAcylation despite glucose deprivation (Cheung and Hart, 

2008; Taylor et al., 2008; 2009; Zou et al., 2012). While this finding was reproduced in 

different cell lines, the molecular mechanisms responsible remain obscure and may be cell 

type-specific. In N2a and in HepG2 (human hepatocellular carcinoma) cells, augmented 

O-GlcNAcylation despite reduced UDP-GlcNAc level was accompanied by decreased OGA 

and/or increased OGT expression (Cheung and Hart, 2008; Taylor et al., 2008; 2009). In 

isolated cardiomyocytes, even a small reduction of the glucose concentration in cell culture 

medium resulted in upregulation of O-GlcNAc and concurrent downregulation of OGA 

expression (Zou et al., 2012). Based on these studies, it may be speculated that the 

reduction of OGA expression could represent a regulatory mechanism by which cells may 

increase protein O-GlcNAcylation in response to acute nutrient deprivation. Importantly, 

complete glucose deprivation poses a non-physiological situation and even acute 

hypoglycemia may not model chronically impaired glucose availability in AD brain. 
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Nonetheless, these studies indicate that despite reduced glucose concentration protein 

O-GlcNAcylation can be significantly upregulated.  

 

The role of oxidative stress 

Augmented O-GlcNAcylation despite reduced glucose availability may also be explained 

based on O-GlcNAc´s role as a stress sensor. Various kinds of stress, including oxidative 

stress, have been shown to increase protein O-GlcNAcylation in vitro (Zachara et al., 2004). 

Moreover, UDP-GlcNAc pools are susceptible to cellular stress, potentially via superoxide-

induced inhibition of GAPDH and subsequent rerouting of glucose from glycolysis towards 

the HBP (Du et al., 2000; see Figure 25). In the context of AD this is highly relevant, as a 

growing body of evidence indicates oxidative stress as an important player in AD (reviewed 

in Sultana et al., 2006b). In agreement, GAPDH, amongst other proteins, is oxidized in AD 

and reduced activity of multiple glycolytic enzymes has been reported in AD brain (Meier-

Ruge et al., 1984; Sultana et al., 2006a). In accordance with the mechanism proposed by Du 

et al., malfunction of glycolytic enzymes in AD may divert glucose and its downstream 

metabolite fructose-6-phosphate to favor UDP-GlcNAc synthesis via the HBP thereby 

precluding a decline in UDP-GlcNAc concentration despite reduced intracellular glucose 

level. UDP-GlcNAc has not been investigated in the context of AD and to date, it is not 

known whether UDP-GlcNAc levels are altered in AD brain. 

 

The role of O-GlcNAc cycling enzymes 

OGT and OGA gene and protein expression as well as activity have been investigated in 

rodent aging and animal models of AD (Fülöp et al., 2008; Chen et al., 2012; Liu et al., 2012; 

Yang et al., 2012) but until this work, expression and activity of O-GlcNAc cycling enzymes 

had not been investigated in human AD samples. In general, OGT activity is regulated 

across a wide range of UDP-GlcNAc concentrations with the affinity of OGT towards different 

substrates being dependent on the level of UDP-GlcNAc (Kreppel and Hart, 1999). In 

contrast to other UDP-GlcNAc-utilizing enzymes, OGT has a very high affinity towards its 

donor substrate (Hirschberg and Snider, 1987; Haltiwanger et al., 1992; Marshall et al., 

2003). Therefore, in conditions of insufficient HBP flux (maybe due to impaired transport of 

glucose into the cell), generated UDP-GlcNAc may preferentially be utilized for 

O-GlcNAcylation instead of being used in other metabolic pathways e.g. protein glycosylation 

in ER and Golgi (Figure 25).  

Furthermore, both OGT and OGA are posttranslationally modified with O-GlcNAc and OGT is 

also tyrosine phosphorylated (Kreppel et al., 1997; Lazarus et al., 2006). Intriguingly, 

phosphorylation of OGT has been demonstrated to elevate OGT´s autoglycosylation and 
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activity in vitro (Whelan et al., 2008) and hyperphosphorylation of different proteins has been 

described in AD (e.g. tau; Grundke-Iqbal et al., 1986b). Whether OGT activity is altered in 

AD, remains to be investigated. Based on the intricate interplay of phosphorylation and 

O-GlcNAcylation it is conceivable that differential OGT posttranslational modifications, 

activity and/or substrate specificity, together with the herein reported decline in OGA 

expression/activity, may exacerbate the dysregulation of O-GlcNAc cycling in AD. 

 

 

 

Figure 25: Dysregulation of O-GlcNAc cycling in AD 

Glucose is transported across the blood brain barrier and into neurons by GLUT1 and 
GLUT3. After phosphorylation and isomerization, fructose-6-phosphate can be further 
metabolized through the glycolytic pathway or it can enter the HBP to generate UDP-
GlcNAc. Using UDP-GlcNAc as substrate, OGT catalyzes the addition of O-GlcNAc to 
proteins while OGA removes this posttranslational modif ication. In AD brain, reduced 
expression of GLUTs, impaired glucose uti lization and decreased activity of glycolytic 
enzymes has been demonstrated but potential effects on UDP-GlcNAc concentrations 
have not yet been analyzed (Meier-Ruge et al. , 1984; Kalaria and Harik, 1989; Simpson 
et al., 1994; Fukuyama et al. , 1994; Liu et al., 2008). In this work, signif icantly 
upregulated protein O-GlcNAcylation was demonstrated in IPL samples from subjects 
with AD. This increase was not accompanied by changes in OGT expression but 
correlated with signif icantly reduced OGA expression and activity. Results of the herein 
performed experiments are depicted in red. GLUT: glucose transporter; Glc-6-p: 
glucose-6-phosphate; Frc-6-p: fructose-6-phosphate; HBP: hexosamine biosynthetic 
pathway; OGT: O-GlcNAc transferase; G: O-GlcNAc; OGA: O-GlcNAc hydrolase; 
↑: increase; ↓: decrease. 
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Possible implication(s) of altered O-GlcNAcylation for APP/Aβ metabolism in AD 

In SY5Y-APP cells, increased O-GlcNAcylation of APP (after treatment with NButGT) did not 

affect sAPPα or sAPPβ levels indicating that APP-specific O-GlcNAcylation may not have a 

direct influence on APP processing. Similarly, it has been suggested that not the 

glycosylation status of APP itself but rather perturbed N-glycosylation of other cellular 

proteins may contribute to altered metabolism of APP (Pahlsson and Spitalnik, 1996). In 

accordance, modulation of global O-GlcNAc levels may affect function and/or activity of 

many different proteins including secretases, phosphatases and/or kinases (e.g. cdk5) and 

may thereby indirectly affect APP processing. Supporting this hypothesis, nicastrin, a 

member of the γ-secretase complex, has recently been shown to be O-GlcNAcylated and its 

modification significantly decreased γ-secretase activity in vitro (Kim et al., 2013). 

In AD, altered O-GlcNAcylation due to reduced OGA expression could have far-reaching 

consequences as a myriad of proteins and molecular pathways may be implicated.  

Understanding the role of O-GlcNAcylation in the pathogenesis of AD is highly significant, 

especially in light of a growing number of groups investigating the therapeutic potential of 

OGA inhibition in different AD mouse models (Yuzwa et al., 2012; Kim et al., 2013; Graham 

et al., 2014). For example, Kim et al. demonstrated that NButGT treatment of transgenic 

mice decreased Aβ plaque load and levels of (insoluble) Aβ and had positive effects on 

memory (Kim et al., 2013). Noteworthy, in this study, long-term OGA inhibition was initiated 

before the onset of AD symptoms. As results of this work indicate that altered 

O-GlcNAcylation is a late event in AD progression, it would be highly interesting to analyze 

potential effects of OGA inhibition initiated at a later time-point. Also, it remains to be 

investigated whether OGA inhibition still exerts positive effects when OGA expression is 

downregulated as shown in this work. 

 



 

 

89 

Summary 

6 Summary 

O-linked N-acetylglucosamine (O-GlcNAc) has been extensively studied in the context of 

Alzheimer disease (AD) but the potential role(s) of this posttranslational modification in the 

pathogenesis of AD as well as the underlying causes and consequences of altered 

O-GlcNAcylation in AD are unknown. 

In this work, the role of O-GlcNAc in different aspects of AD pathology was investigated. 

In addition, a recently developed in vitro O-GlcNAc transferase (OGT) assay was refined and 

implemented. 

The role of O-GlcNAc in the processing of the amyloid precursor protein (APP) was 

investigated in cell culture using human neuroblastoma cells overexpressing wild-type 

APP695. Treatment of cells with Alloxan, a fairly unspecific inhibitor of OGT, was expected to 

reduce global O-GlcNAc expression. Also, based on the “yin-yang” hypothesis, treatment 

with PMA, an activator of protein kinase C, was expected to reduce O-GlcNAcylation. In this 

work however, only inconsistent effects of Alloxan and PMA treatments on O-GlcNAc 

expression were observed. In contrast, treatment of the cells with a highly specific inhibitor of 

O-GlcNAc hydrolase (OGA) resulted in significantly increased global and APP-specific 

O-GlcNAcylation but had no effect on the levels of secreted APP fragmented sAPPα and 

sAPPβ in conditioned medium.  

Further studies aimed to identify (potential) changes in composition and quantity of 

endogenous Aβ peptides as well as to identify the site(s) of O-GlcNAcylation on different 

APP peptides. In this work however, only synthetic Aβ species and unmodified APP peptides 

could be detected by MALDI-TOF mass spectrometry.  

In addition, based on previous preliminary studies, O-GlcNAcylation of cyclin-dependent 

kinase 5 (cdk5) was analyzed as cdk5, amongst other kinases, phosphorylates APP and may 

be implicated in AD pathogenesis. In vitro OGT assay was performed with cdk5 and 

synthetic peptides thereof. While no O-GlcNAc was detected on cdk5 peptides, 

O-GlcNAcylation of recombinant cdk5 could be demonstrated. Whether cdk5 is 

O-GlcNAcylated in vivo as well as the potential functional role of O-GlcNAcylation of cdk5 

remain to be elucidated. 

Furthermore, a recently established OGT assay on nitrocellulose membrane was 

successfully altered into an ELISA-based OGT assay using the nuclear pore protein Nup62 

as a substrate. A great advantage of this assay is that it can be used for the rapid screening 
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of different proteins for possible O-GlcNAcylation or for the testing of potential OGT inhibitors 

without the need for radioactive compounds.  

Finally, the expression of O-GlcNAc and O-GlcNAc cycling enzymes OGT and OGA was 

investigated in post-mortem brain samples of subjects with AD and age-matched controls. To 

analyze the time course of potential changes in the progression of the disease the same 

parameters were also investigated in the brains of subjects with amnestic mild cognitive 

impairment (MCI), an early stage of AD. Analyses were performed in samples from two 

distinct brain areas, the inferior parietal lobule (IPL) which is strongly affected in AD and the 

cerebellum which is largely spared by AD pathology. In IPL samples from subjects with AD, 

significantly increased O-GlcNAcylation was observed when compared to age-matched 

controls. While no difference in OGT expression was detected, augmented O-GlcNAc levels 

correlated with decreased OGA expression and activity. No such changes were observed in 

IPL samples from subjects with amnestic MCI or in cerebellar samples from subjects with AD 

or MCI, implying that O-GlcNAc is enhanced only in brain regions affected by AD pathology 

and that increased O-GlcNAcylation only occurs in late stages of AD.  

Taken together, results of this work indicate that O-GlcNAc may not be directly involved in 

the processing of APP and that changes in O-GlcNAcylation may be a consequence rather 

than a cause of AD pathology. In conclusion, together with previous studies, this work 

demonstrates that the role of O-GlcNAc in the pathogenesis of AD remains elusive and that 

further studies are needed before O-GlcNAcylation may be regarded as a novel target for AD 

therapy. 
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A. Plasmid pBJG1-Nup62 

Plasmid was generated from

insertion of the Nup62 codin

restriction enzymes. 

 

Figure 26: Plasmid map pBJG1
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B. Human Brain samples 

Clinical and pathological information on human brain tissue samples used in this work. 

Table 20: Clinical and pathological information of IPL samples 

Case # Sample ID Gender Age at death PMI (h) Braak stage MMSE score 

C1 1065 M 87 3.5 IV 24 

C2 1070 M 82 2.25 I 29 

C3 1063 F 86 3.75 I 29 

C4 1131 F 80 2.25 I 28 

C5 1161 F 84 2.42 0 30 

C6 1103 F 76 10 I 29 

C7 1146 F 93 2.75 II 29 

C8 1106 M 79 1.75 II 29 

C9 1142 M 92 3.25 0 30 

C10 1127 F 91 1.25 II 29 

C11 1092 F 86 1.75 I 29 

C12 1159 F 86 3.25 0 28 

C13 1163 F 84 2.93 I 26 

MCI1 1164 F 88 3 III 28 

MCI2 1130 F 99 2 V 22 

MCI3 1178 F 96 2.42 IV 27 

MCI4 1083 F 88 9.83 V 17 

MCI5 1122 M 87 2.75 IV 27 

MCI6 1152 M 84 3.5 IV 24 

MCI7 1087 F 82 2.9 III 29 

MCI8 1065 M 87 3.5 IV 24 

MCI9 1077 M 87 2.25 III 21 

MCI10 1059 M 93 4.25 IV 21 

AD1 1199 M 88 2.67 VI 11 

AD2 1128 F 86 2.67 VI 0 

AD3 1085 F 84 5 VI 18 

AD4 1215 F 91 3 V 13 

AD5 1192 F 93 2.75 V 0 

AD6 1073 F 83 4 V 4 

AD7 1072 F 75 2.33 VI 22 

AD8 1058 M 78 3.67 VI 19 

AD9 1028 M 82 4 VI  

AD10 807 M 93 3.08 VI 14 

AD11 960 F 81 2.25 V 13 
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Case # Sample ID Gender Age at death PMI (h) Braak stage MMSE score 

AD12 854 F 79 3.45 VI 16 

AD13 1061 F 80 2.75 VI 22 

C: control; MCI: mild cognit ive impairment; AD: Alzheimer disease; F: female; M: male; 
Age of death ( in years); PMI: post-mortem interval ( in hours); MMSE: Mini-Mental State 
Examination.  

Table 21: Clinical and pathological information of cerebellum samples 

Case # Sample ID Gender Age at Death PMI (h) Braak stage MMSE Score 

C1 1063 F 86 3.75 I 29 

C2 1092 F 86 1.75 I 29 

C3 1095 F 90 4.08 I 29 

C4 1103 F 76 10 I 29 

C5 1106 M 79 1.75 II 29 

C6 1089 M 74 4 I 26 

C7 1070 M 82 2.25 I 29 

C8 1066 M 81 2 II 30 

MCI 1 1130 F 99 2 V 22 

MCI 2 1164 F 88 3 III 28 

MCI 3 1083 F 88 9.38 V 17 

MCI 4 1178 F 96 2.42 IV 27 

MCI 5 1122 M 87 2.75 IV 27 

MCI 6 1065 M 87 3.5 IV 24 

MCI 7 1087 F 82 2.9 III 29 

MCI 8 1059 M 93 4.25 IV 21 

AD1 1058 M 78 3.67 VI 19 

AD2 1074 M 81 2.92 VI 21 

AD3 1060 M 77 3 VI  

AD4 1192 F 93 2.75 V 0 

AD5 1215 F 91 3 V 13 

AD6 1199 M 88 2.67 VI 11 

AD7 1128 F 86 2.67 VI 0 

AD8 1085 F 84 5 VI 18 

C: control; MCI: mild cognit ive impairment; AD: Alzheimer disease; F: female; M: male; 
Age of death ( in years); PMI: post-mortem interval ( in hours); MMSE: Mini-Mental State 
Examination.  
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C. Exemplary MS results of Aβ-IP 

SY5Y-APP cells were subjected to various treatments; conditioned media was harvested and 

stored at -80°C until further analysis. Aβ-IP was performed as described in 3.4.7. Briefly, 

0.1 % Triton X-100 was added to 1 ml conditioned medium and Aβ was immunoprecipitated 

with 4G8 antibody and Protein G-sepharose. As a positive control, 1 µl 1 µM Aβ12-28 solution 

was added to the sample. Beads were washed with IP wash buffer, 25 mM NaHCO3 and 

finally with DI water. Bound peptides were eluted from beads with 0.1 % TFA. 1 µl sample 

was applied to the target spot, immediately mixed with 1 µl matrix (α-CHCA in 30 % ACN / 

0.1 % TFA, saturated solution) and air-dried. Samples were analyzed by MALDI-TOF MS. 

A 

 

B 

 

Figure 27: Exemplary mass spectra after Aβ-IP from conditioned media of SY5Y-APP cells 

SY5Y-APP cells were treated for 24 hours with 30 µM NButGT (A) or DMSO (B) . Aβ 
was immunoprecipitated from conditioned medium and analyzed by MALDI-TOF MS. 
(A) Mass spectrum after Aβ-IP from condit ioned medium supplemented with Aβ12-28. 
(B) Mass spectrum after Aβ-IP from conditioned medium (DMSO). To exclude low mass 
chemical noise, MS data were acquired across the 1300-5000 m/z range Molecular 
mass of Aβ12-28 : 1956 Da; m/z: mass-to-charge ratio; Intens. [a.u]: Intensitiy, measured 
in arbitrary units. 



 

 

XXXV 

Appendix 

D. Individual results of two OGA activity assays 

OGA activity assay was performed twice with n = 3 each. Both times, protein estimation after 

sample preparation revealed that one of the samples was too dilute to continue with. OGA 

activity assay was performed as described in 3.6. Reactions were stopped after 120 or 

150 minutes, respectively. Absorption at 405 nm was measured and released GlcNAc was 

calculated as described in 3.6. Enzyme activity units were calculated by dividing the 

µM GlcNAc released by the incubation time (in minutes). 

Table 22: Results of OGA activity assay 1 

Sample ID OD405 Mean OD405 sample - blank µM GlcNAc 
released 

Enzyme activity 
units * 

Blank 
0.058 

0.055 
0.057    

C13 
0.442 

0.438 
0.440 0.384 3.104 0.026 

C3 
0.545 

0.582 
0.564 0.508 4.108 0.034 

AD1 
0.171 

0.195 
0.183 0.127 1.024 0.009 

AD3 
0.247 

0.243 
0.245 0.189 1.526 0.013 

AD5 
0.355 

0.359 
0.357 0.300 2.432 0.020 

*Enzyme activity units are measured in µM GlcNAc released / 120 minutes 

Table 23: Results of OGA activity assay 2 

Sample ID OD405 Mean OD405 sample - blank 
µM GlcNAc 

released 
Enzyme activity 

units * 

Blank 
0.059 

0.077 
0.068    

C2 
0.474 

0.464 
0.469 0.401 3.246 0.022 

C7 
0.485 

0.499 
0.492 0.424 3.432 0.023 

C11 
0.439 

0.452 
0.446 0.378 3.060 0.020 

AD8 
0.344 

0.357 
0.351 0.283 2.291 0.015 

AD9 
0.381 

0.384 
0.383 0.315 2.550 0.017 

*Enzyme activity units are measured in µM GlcNAc released / 150 minutes 
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E. In silico O-GlcNAcylation of cdk5 

Amino acid sequence of cdk5 was obtained from UniProt (UniProt accession number 

Q00535) and FASTA sequence was analyzed for potential O-GlcNAcylation with YinOYang 

1.2 Prediction Server. 

 

Figure 28: Sites of potential O-GlcNAcylation of cdk5 

Amino acid sequence of human cdk5 was imported into YinOYang 1.2 Prediction 
Server. Analysis settings were as follows: check yin-yang site prediction, Output: show 
only positive sites, NetPhos threshold: 0.5. +: O-GlcNAc predicted; *: yin-yang site 
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