
Split Analysis Methods and
Parametric Bootstrapping in

Molecular Phylogenetics:

Taking a closer look at
model adequacy

Dissertation

Sandra A. Meid





Split Analysis Methods and
Parametric Bootstrapping in

Molecular Phylogenetics:

Taking a closer look at
model adequacy

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch–Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Sandra A. Meid
aus

Andernach

Bonn, 2014





Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen
Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

Die Dissertation wurde am Zoologischen Forschungsmuseum
Alexander Koenig (ZFMK), Bonn durchgeführt.

1. Gutachter: Prof. Dr. Bernhard Misof
2. Gutachter: PD Dr. Lars Podsiadlowski

Tag der mündlichen Prüfung: 28.04.2015
Erscheinungsjahr: 2015
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Summary

Even though the size of datasets in molecular analyses increased rapidly dur-
ing the last years, undetected systematic errors as well as unsolved problems
concerning the evaluation of data quality and adequate substitution model
selection still persist. This not only hampers the correct analysis of these
datasets but leads to undetectable effects in phylogenetic tree reconstruc-
tion.

Model-based tree reconstruction methods like maximum likelihood estimation
and Bayesian inference have become the methods of choice for reconstruction
of phylogenetic trees. Although maximum likelihood methods are known to be
consistent if all necessary conditions are met, it depends strongly on the quality
of the multiple sequence alignment and the ability of the chosen evolutionary
model to reflect the underlying historical processes. This thesis addresses the
assessment of model adequacy of estimated evolutionary models to multiple
sequence alignments in the light of parametric bootstrapping and aims to find
new methods for detection of model misspecifications with the help of split
analyses.

The second chapter focuses on the influence of the number of gamma rate cate-
gories used in modelling among-site rate variation when trying to assess model
adequacy using an absolute goodness-of-fit test. The analyses of simulated
alignments show that the Goldmann-Cox test rejects models which were only
approximated by four discrete gamma rate categories for various tree shapes
and branch length setups, if they were simulated with a continuous gamma
distribution. Increasing the number of discrete rate categories leads to an ac-
ceptance of model adequacy for stationary datasets and a correct detection of
non-stationarity and inhomogenetity in simulated data. The results illustrate
that the application of the proposed Goldmann-Cox test to evaluate model ad-
equacy might be too strict and rigorous with empirical data, in particular for
large phylogenomic datasets.

Approaches such as the Goldman-Cox test evaluate the absolute fit of data and
model but, do not deliver a deeper insight into the structure of the misfit. The
third chapter presents the visualisation of overrepresented splits within splits
graphs, which provides a good tool for gaining an overview of possible patterns
and contradictory signal or noise within datasets. The analysis of these split



residuals, observed by comparison to parametric bootstrap datasets based on
the estimated models can help to gain a deeper insight into model adequacy.
Highly overrepresented splits can give hints whether heterotachy applies or non
symmetric substitution processes.

The fourth chapter aims to define a new split weighting scheme by formalis-
ing aspects like ’contrast of character states’ or ’character state homogeneity’
within split subsets. Splits which are detected by the proposed SAMS (Splits
Analysis MethodS) algorithm are re-evaluated for a more objective and formal
split weighting. A comparison of the published and the new approach showed
that the developed weighting scheme delivers reasonable results but needs fur-
ther improvement. The development of a new GUI offers a much more capable
tool to perform a split analysis and visualise the results. The shape of a visu-
alised split spectra can indicate, whether a dataset delivers a clear split signal
or if there is a lot of noise present.





Essentially, all models are wrong, but some are useful.
George E. P. Box



1 Introduction

1. Introduction

The theory of evolution is still subject of intense discussions, debated by numer-
ous parties: scientists, religious persons and as well as by everyday people from
all over the world. The fact that evolutionary processes like natural selection
can explain the diversity of life on earth is often overshadowed by questioning
how likely this development was and is, and how subtle complex structures, e.g.
eyes or chloroplasts (which conduct the process of photosynthesis in plants)
evolved.

Someone once told me that he struggles with accepting that evolution worked
out like it can be observed today, because he thinks this is as unlikely as being
inside of a room, opening the window and a wind gust comes in and builds
a house of cards out of a pile, right off the bat. But this allegory is flawed.
It misses the important part of the concept of evolution: the evolution of
creatures, diversifications one by one, the ones which lead to higher fitness of
individuals within populations and are therefore established and the majority,
which vanishes. It is not the case that organisms adapt to a changing environ-
ment, which implies that evolution is progressive, directional or even deliberate.
Evolutionary theory operates exactly the other way round. Mutations happen
by chance, which can coincidentally lead to a better adaptation or to an in-
crease of attractiveness for other members of their species, the organisms which
inherit this change will reproduce, the others might cease. Evolution has no
goal, it is an ongoing process driven by chance and necessity and we are only
able to catch a glimpse of a short fragment of it.

’Nothing in biology makes sense except in the light of evolution.’
(Theodosius Dobzhansky, 1973)

If we want to use the pile of cards allegory, we are standing in this room right
now and the house of cards is already existing. The question is not, whether
it can happen, since it already has happened. The crucial question is therefore
how all of this has happened. Merely all the intermediate stages are indis-
cernible. Because of this, because evolution ’cleans up after itself’, it is tough
to grasp and to figure out the true historical singular processes. In fact, it is
a major challenge to unravel the history of this process, considering that the
majority of steps is inaccessible. There is less information left compared to the
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1 Introduction

information which has vanished. This makes it clearly impossible to prove what
has happened. Scientists simply search for a reliable and comprehensive theory
to explain the recent situation in the best possible way. Theories are of course
themselves always subject to update and improvement. Evolutionary theory
has been adapted over the years, but at its core it remains unchanged. Within
the field of phylogenetic research, scientists try to reconstruct the evolutionary
process and reveal phylogenetic relationships of e.g. species based on the infor-
mation which is accessible nowadays. Therefore, morphological or molecular
models of evolution are used to master this balancing act and to compensate the
missing information in various ways. Principles for scientific methods were pre-
sented (Tillyard, 1921; Hennig, 1950; Cain & Harrison, 1960; Sokal & Sneath,
1963; Edwards & Cavalli-Sforza, 1963; Edwards & Cavalli-Sforza, 1964; Hennig,
1966; Sokal, 1966) in order to determine ancestry out of phylogenetic relation-
ships based on characters. Steps involved in phylogenetic analysis include data
acquisition of morphological characters or molecular sequences and their eval-
uation, whether characters of different organisms are comparable (homology,
orthology). These sets of characters can then be arranged to morphological
character matrices or in case of molecular data, multiple sequence alignments
(MSA).

Table 1.1: Example of a multiple sequence alignment based on nucleotides. Four sequences
(rows) are arranged within a matrix. Every site (column) acts as character that
can be checked for matches (same state) or mismatches (different states), in order
to infer evolutionary relationships between the sequences.

taxon 1 A C G T ...
taxon 2 A T G T ...
taxon 3 A T C T ...
taxon 4 A T C A ...

Morphologists study, for example, the anatomy of organisms, detect certain
structures with associated functions and compare these with other species
or groups. This is a complex task due to missing ancestral or intermediate
stages. Moreover, decisions shall be made in an objective way leading to
reproducible results (Aichele & Schwegleb, 2008). A corresponding position,
structure or functionality of characters or of their development can indicate
homology, a common origin and possibly a common ancestry. Then, if homol-
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1 Introduction

ogous, these characters can be used for inferences on the relationship of e.g.
species.

Molecular phylogenetic analyses, on the other hand, use the simplicity of the
molecular state space (A, C, G, T for nucleotide sequences, the classical 20
amino acids for amino acid sequences) that allows a clear formal description
of evolutionary substitution processes used in molecular phylogenetics. This
formal description has been extensively studied and forms the basis of model-
based tree reconstruction methods. A formalisation of evolutionary processes is
as well important in understanding the power of tree reconstruction methods.
Moreover, it can help to compensate missing information caused by extinction
while reconstructing ancestral states. All together, this is certainly a strength
of the molecular approach. However, the finite character state space is also
a practical weakness as the probability of overlooking homoplasy, sequences
sharing the same character states by chance which were not present in the last
common ancestor, is high. This is due to the stochasticity of the substitution
process. Multiple substitutions and finally the saturation of the evolutionary
substitution processes lead to a high similarity by chance of non-homologous
characters. Lots of efforts have been put into the investigation of these problems
resulting in heaps of algorithms and software packages to properly account for
unobserved patterns of homoplasy.

Many phylogenetic tree reconstruction methods analyse datasets site by site
(’columns’ of the MSA as shown in table 1.1) as independent character. Al-
ternatively, distance based methods reduce site differences to a scalar value of
difference between sequences. A distance is therefore a measure of change from
an ancestral status to the present one. Maximum parsimony (MP) counts the
number of character changes and tries to find the tree with the least number
of implied changes. It is often claimed, that MP is a ’model free’ method,
but in fact, this method makes implicit assumptions concerning the charac-
ter state space and character transformations (Steel & Penny, 2000; Tuffley &
Steel, 1997; Steel, 2002). Moreover, MP is known for its consistency prob-
lems (Felsenstein, 1978; Hendy & Penny, 1989).

Maximum likelihood (ML) (Fisher, 1958; Edwards & Cavalli-Sforza, 1964;
Neyman, 1971; Felsenstein, 1981) and Bayesian tree reconstruction meth-
ods (Rannala & Yang, 1996) are known to be the most efficient and accurate
methods to analyse phylogenetic datasets (Ogden & Rosenberg, 2006a). Both
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1 Introduction

are based on statistical models of character substitutions (nucleotides or amino
acids) trying to capture the underlying sequence evolution by assigning rates at
which bases of one type change into bases of another type. While the simplest
model of DNA sequence evolution assumes equal substitution rates and base
frequencies (JC69 model) (Jukes & Cantor, 1969), other models distinguish
between transitions and transversions (K80 model) (Kimura, 1980) or allow
unequal base frequencies at equilibrium (F81 model) (Felsenstein, 1981). The
HKY85 model (Hasegawa et al., 1985) allows both, variation of base frequencies
and differentiation between transitions and transversions. Extended models like
the T92 model (Tamura, 1992) try to handle GC-content biases or distinguish
between two different types of transition, such as the TN93 model, (Tamura
& Nei, 1993). The most general but also most complex model allows six dif-
ferent substitution rate parameters and variation of base frequencies (General
Time-Reversible, GTR) (Tavaré, 1986).

In all these approaches, various sets of parameters are tested to find the one
model, which explains the outcome best. Therefore, different parameters such
as the substitution rates, branch length and of course the topology are esti-
mated, calculated and optimised. It is like having two dice, one with values
from 1 to 6 (D6), and another one with values from 1 to 12 (D12). If you know,
that one die was rolled two times and the summed result is for example ’12’,
then it is much more likely, that the D12 was used, because for the D6 only one
combination, two times rolling a ’6’ ( 1

36
, « 0.028), can lead to this result. The

likelihood of the D12 ( 11
144

, « 0.076) is thus much higher for the present result
and therefore the maximum likelihood.

Maximum likelihood methods are known to be consistent if certain conditions
are met (Fisher, 1922; Chang, 1996). That means, that the reconstruction of
the true tree is guaranteed if the sequences are infinitely long and evolved un-
der the assumed evolutionary model that is used for the tree reconstruction.
Empirical data are of finite length. But also for limited data, ML can recon-
struct the correct tree (Felsenstein, 1978) and it has been shown that the ML
method on average requires less data than other consistent methods such as
minimum evolution (Steel & Penny, 2000; Tuffley & Steel, 1997; Steel, 2002).
This is referred to as the efficiency of ML.

Model choice itself remains a critical step (Kelchner & Thomas, 2007). A model
is by its nature a limited representation for a certain purpose and can never
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Figure 1.1: Analogy of model fitness: A dataset (black octagon) is compared to eligible
models (blue square, circle and triangle). If the dataset can be explained exactly
by an adequate model, it would have the same shape and there would not occur
any over- or under-parametrisation. If the best fitting model out of the eligible
models, in this case the circle, can explain the underlying dataset well, then it
covers it without causing to much over- or under-parametrisation, it is adequate
for a certain propose.

Figure 1.2: Analogy of model fitness: If unlike for the dataset in Fig. 1.1 there is no
model which can explain the dataset (black trapeze) without over- or under-
parametrisation, it might be the case, that there is no adequate model available.

cover every detail of the data. As for example, a topological map is a good
model of a landscape for orientation but, it can never give for instance the
impression of how it really looks like and how many people are living there.
As visualised in Fig. 1.1, if a model out of all possible models captures the
historical background with neither being too simple nor complex relative to
the underlying truth, it is adequate for a dataset. In comparison, if there is
no model which adequately fits (Fig. 1.2), a chosen model can become over-
or under-parametrised. Over-parametrisation, on the one hand, can lead to
an unnecessary sampling variance (stochastic error) which may affect phyloge-
netic accuracy (Cunningham et al., 1998). Under-parametrisation, on the other
hand, can cause more severe bias (Huelsenbeck & Rannala, 2004; Lemmon &

5



1 Introduction

Moriarty, 2004; Brown & Lemmon, 2007) and leads to systematic error, which
cannot be revised by just adding more data. Even worse, the more data is
included, the higher the confidence for incorrect results (e.g., long-branch at-
traction (Felsenstein, 1978; Hendy & Penny, 1989)) can be achieved (Swofford
et al., 2001).

To take among-site rate variation, ASRV, (Sullivan & Swofford, 2001) into
account, evolutionary models use gamma-distributed site rates (Γ) (Yang,
1994). Due to computational limitations, the continuous gamma distribu-
tion is approximated by a discrete distribution using a fixed number of rate
categories (ncat). This partitioning results in ncat categories of uniform
weight (1/ncat) to which the sites are equally allocated. The rate for each
site of a category is then represented by the mean or median rate of all sites of
this category. The approximation improves the more categories are used. How-
ever, usually four categories are applied since it has been proposed that this
is sufficient (Yang, 1994). Furthermore, reducing the number of gamma rate
categories drastically accelerates the computation of an ML analysis, which is
proportional to the number of used categories (Jia et al., 2014). Additionally, a
proportion of invariable sites (I) can be estimated which leaves the remaining
variable sites with gamma-distributed rates (Γ+I) (Steel et al., 1993; Waddell
& Penny, 1996).

Although the best fitting of all possible models is estimated (relative goodness-
of-fit) (Kelchner & Thomas, 2007), this does not imply that the model fits
well (absolute goodness-of-fit) (Gatesy, 2007). All substitution models men-
tioned above assume that the aligned nucleotides evolved under stationary,
time-reversible and homogeneous (SRH) conditions (Jayaswal et al., 2005; Ho
et al., 2006). This includes that the sites are independent of one another and
that the codon structure of protein-coding sequences does not have an impact
on substitution processes. Moreover, it is assumed that the processes are ho-
mogeneous along and as well across sequences, having a constant evolutionary
"speed". For example, datasets that include different genes, these are assumed
to share the same history. Violations of these conditions can lead to biased re-
sults (Felsenstein, 1978; Huelsenbeck & Hillis, 1993; Yang et al., 1994; Swofford
et al., 2001; Ho & Jermiin, 2004; Jermiin et al., 2004).

Nevertheless, it had been claimed that ML based methods are robust with re-
spect to most model violations (Sullivan & Swofford, 2001). In fact, a model
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does not have to fit perfectly, but it has to be sufficient for the purpose
of an unbiased phylogenetic reconstruction. Anyhow, it became clear that
in empirical data substitution processes by themselves evolve which makes
the proper formal description additionally harder and error prone (Wu &
Susko, 2009; Kolaczkowski & Thornton, 2008; Whelan, 2008; Zhou et al.,
2007).

’We do not like to ask, ’Is our model true or false?’, since probability models
in most data analyses will not be perfectly true. [...] The more relevant
question is, ’Do the model’s deficiencies have a noticeable effect on the

substantive inferences?’.’
(Gelman et al., 2013)

In phylogenetic analyses, bootstrapping (Felsenstein, 1985; Hillis & Bull, 1993;
Efron et al., 1996), i.e., resampling the data, is often interpreted as measure
of accuracy. Though, if the underlying model does not fit well, the results will
become unreliable. ’Bootstrap support of 100% is not enough; the tree must
also be correct’ (Phillips et al., 2004). In fact, bootstrapping is a measure of
repeatability (Felsenstein, 2004), nothing more. This easily explains the fact
that different phylogenomic studies infer maximal bootstrap support, but for
incongruent trees (compare, e.g., Pick et al. (2010), Schierwater et al. (2009),
and Dunn et al. (2008)).

Bootstrapping is not just a method of testing tree inference, it can also be used
as a method of testing model parameters which were estimated to describe
how observed MSAs may have evolved in a statistical way. For ML analyses,
the Goldman-Cox test was proposed (Goldman, 1993b; Whelan et al., 2001) to
evaluate the absolute goodness-of-fit of data and model using so-called ’para-
metric bootstrapping’. Parametric bootstrap datasets are artificial datasets,
generated using sequence simulation based on the estimated relative goodness-
of-fit model parameters of the analysed (empirical) dataset. Thus, they rep-
resent a perfect fit of model and data. These bootstrap replicates can then
be compared to the original dataset, for which the model was estimated. The
Goldman-Cox test calculates and compares the entropy of site patterns (i.e.,
the set of character states of a site) of all datasets, the original one and the
parametric bootstrap datasets. For example, the alignment in table 1.1 con-
tains four patterns, ’AAAA’, ’CTTT’, ’GGCC’ and ’TTTA’. If the degree of
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entropy of the dataset fits within 95% of the distribution of entropy-degrees of
the bootstrap datasets, the model is statistically accepted as adequate for the
dataset.

Table 1.2: Example of two different splits within an MSA based on nucleotide sequences.
Five taxa are splitted twice into subsets. The split within the table on the
left (indicated by a blue line) separates the first two sequences from the rest
(1 2 | 3 4 5), the second split (1 2 3 | 4 5) in the table on the right (green line)
groups the sequences of taxon 1,2 and 3 into a distinct subset, separated from
taxon 4 and 5, the other subset.

split 1 2 | 3 4 5
taxon 1 A C G T ...
taxon 2 A C G T ...
taxon 3 A T G T ...
taxon 4 A T C T ...
taxon 5 A T C A ...

split 1 2 3 | 4 5
taxon 1 A C G T ...
taxon 2 A C G T ...
taxon 3 A T G T ...
taxon 4 A T C T ...
taxon 5 A T C A ...

Another possibility to evaluate MSAs is to analyse their possible splits. A split
is a partitioning (bipartition) of sequences of an MSA into a pair of distinct
subsets (A|B) of the complete sequence set (AXB). In a phylogenetic context,
splits are distinguished by the occurrence of e.g. nucleotides (character states)
within sites (characters). In table 1.2, two splits are visualised with lines sep-
arating the subsets. The first site of the MSA shows the pattern ’AAAAA’,
which is an invariable site and ’counts’ (delivers information of phylogenetic
interest) for neither of the two splits. The second site ’CCTTT’ supports a
first split (12 | 345). This holds also for the third site ’GGGCC’ supporting
a second split (123 | 45). The last site indicates a third split (1234 | 5), which
defines a terminal branch of a phylogenetic tree leading to taxon 5. Such a
split is called a ’trivial’ split. It does not provide any information relating to
a possible topology, because it is always present and has only impact on the
branch length within a possible phylogenetic tree including this taxon. For
a set of n sequences, there are 2n´1 possible bipartitions. Per definition, for
one split of all possible splits, one of the subgroups is empty and the other
one contains all sequences (invariable sites). Furthermore, there are n trivial
splits. The remaining 2n´1´ n´ 1 splits correspond to bifurcations of possible
topologies. These are the most interesting ones, since they may represent phy-

8



1 Introduction 1.1 Aim of the thesis

logenetic information. If two splits A|B and C|D are compatible, i.e., if AXC,
AXD, BXC and BXD are empty, this set of splits (A|B and C|D) fits on a
topology.

First approaches based on splits were developed based on the distance method
of split decomposition (Bandelt & Dress, 1992), and spectral analysis (Hendy
& Penny, 1993; Hendy et al., 1994), closely related to the Hadamard conju-
gation. The Hadamard conjugation is a transformation of the split spectrum
which allows to correct state changes by including evolutionary models. Lento
et al. (1995) used this approach to filter out conflicting signal. However, the
processing effort grows exponentially with the number of taxa and is too com-
putationally intensive for more than 30 sequences.

1.1. Aim of the thesis

Since substitution models can only be rough estimates of the underlying evolu-
tionary processes, selecting the models with relative best fit does not guarantee
that the selected model fits the empirical data sufficiently well (Gatesy, 2007).
Covarion evolution (Fitch & Markowitz, 1970; Penny et al., 2001) or hetero-
tachy (differential evolutionary rates among organisms) (Lopez et al., 2002;
Sims et al., 2009; Zhong et al., 2011), which result in non-symmetric substi-
tution processes and processes that have a high variation throughout the tree,
are among possible sources leading to model misspecification. As consequence,
if the model does not sufficiently describe the underlying history, tree recon-
struction can become unreliable. Therefore, it is vitally important to develop
reliable methods of testing model fit and model adequacy.

Chapter 2 addresses the assessment of adequacy of estimated evolutionary
models using parametric bootstrapping. In particular, it focuses on the in-
fluence of the number of gamma rate categories used in modelling among-site
rate variation (ASRV). Conventionally, a discrete gamma model with mostly
four rate categories to approximate a gamma distribution is considered to be
sufficiently complex (Yang, 1994). The proposed Goldman-Cox test of model
adequacy is applied to various simulated datasets. The datasets are based on
different tree shapes and branch length setups, either based on a stationary or
non-stationary composition. Further, all of these datasets are simulated using
a continuous gamma distribution or a discrete gamma distribution with four
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rate categories. All datasets are analysed by ML using different numbers of
rate categories to approximate the gamma distribution. The aim is to analyse,
whether the Goldman-Cox test provides reliable results for model adequacy of
stationary datasets and whether the reliability increases with the number of
used rate categories.

Visualising results of model adequacy tests comparing patterns for phylogenetic
data is a complex task because of the high dimensionality of the character state
space. For instance, for nucleotide MSAs and a dataset with n taxa there are 4n

possible site patterns. The Goldman-Cox test, which is applied in chapter 2,
boils the variance of patterns down to a single number, which is then compared
to those within parametric bootstrap datasets. Besides discarding a lot of
information, the method delivers only an answer whether or not the estimated
model is rated adequate. If the model is rejected (i.e., not adequate), there is
no possibility to analyse putative causes and what would improve the MSA in
order to find an adequate model.

Therefore, chapter 3 aims the identification of possible causes why a model
does not fit adequately. It is common practice in regression analysis to pro-
pose a model with some kind of residual diagnostics. This could be applied
as well in phylogenetics. It corresponds to the comparison of observed pattern
frequencies to those expected under the model (the model in this sense includes
the tree, branch lengths and the model of nucleotide substitution). However,
a comparison of site patterns is difficult to visualise with a growing number of
sequences. Methods using split spectra and the Hadamard conjugation (Hendy
& Penny, 1993; Hendy et al., 1994) are only applicable for a small number
of taxa as well, because split analysis also requires an exponentially growing
processing effort. This can be solved by using purine–pyrimidine (RY) splits,
for which the nucleotide character states are recoded to a two-letter character
space, purines (A or G) and pyrimidines (C or T). This decreases heavily the
computational effort of split analysis. Furthermore, splits can also be used to
visualise incongruent signal present within a dataset via split networks, which
provide a good compromise between looking at only one topology or all possible
patterns. If a chosen model for an empirical dataset is correct, the split spectra
should be similar to the ones obtained from data simulated with the same model
specifications including tree topology, substitution rates and modelling of rate
heterogeneity (parametric bootstrapping). Therefore, simulated and empirical
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datasets are analysed with an ML implementation and thereby estimated mod-
els are used for generating parametric bootstrap replicates. The split spectra
of the original datasets and their corresponding bootstraps are analysed and
compared. Splits, which occur more often in the original dataset than in every
bootstrap dataset are declared as overrepresented. If splits occur less often in
the original dataset than in every bootstrap dataset, this split is marked as un-
derrepresented. Over- and underrepresented splits are then each transferred to
a new MSA according to the number of their deviating occurrences. The new
alignments are visualised within Neighbor-Net networks for further analyses in
order to find out how chosen models may misfit the underlying evolutionary
processes.

Reducing the character state space from patterns within a dataset by recoding
to a RY code space for split analysis, as applied in chapter 3 allows a much
easier handling and a clear arrangement within split spectra or split networks.
Although this is a useful approach, the recoding balances base composition
bias (systematic error) and bias caused by heterotachy (Sims et al., 2009) and
is therefore more likely to be consistent with evolution under globally SRH con-
ditions (Jayaswal et al., 2005; Ho et al., 2006). Even though this method de-
creases the computational effort, it ignores important ’challenges’ which should
be included while studying how to assess model adequacy.

In chapter 4, a new approach is described to re-evaluate the splits found by the
SAMS algorithm for a more objective split weighting. SAMS (Splits Analysis
MethodS) (Mayer &Wägele, 2005) considers all nucleotide character states, but
unlike the Hadamard transformation, the software analyses an MSA only for
’observed’ splits. This decreases the computationally effort significantly. Unfor-
tunately, the weighting of splits in SAMS lacks a formal foundation. Limiting
parameters have default values, but they can be freely adjusted. This study
aims to define a new split weighting scheme by formalising aspects like ’con-
trast of character states’ or ’character state homogeneity’ within split subsets.
With three different simulation setups the published and the new approaches
are tested and compared.
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2. Are Four Categories Enough?

Rethinking the Discrete Gamma Distribution

Model in Assessing Model Adequacy

2.1. Introduction

The use of statistical models of nucleotide substitution which take biochemi-
cal processes into account strongly increased the efficiency and adaptability of
methods for phylogenetic tree estimation. While working with data in limited
supply, sampling error was a major concern. Nowadays, large scale datasets are
often composed of numerous genes which then helps to gain control of statis-
tical errors. Consequently, systematic biases come to the fore. Since different
subsets of datasets, i.e. genes or domains, may have evolved under different
conditions, the challenge is to find evolutionary models, which are able to han-
dle highly heterogeneous data across alignments or taxa.

When analysing a dataset, different issues have to be addressed. Maximum
likelihood (ML) methods are known to be principally consistent. Neverthe-
less, these methods strongly depend on the quality of the given multiple se-
quence alignment and the properties of the chosen evolutionary model to re-
flect the underlying historical evolutionary processes which led to the observed
data.

The first proposed models trying to interpret the phylogenetic information
existing within a sequential alignment addressed the rates of substitution
and distribution of base frequencies. Jukes and Cantor introduced the JC69
model (Jukes & Cantor, 1969) which assumes equal substitution rates and base
frequencies. The most general but also most complex model allows six different
substitution rates and equal base frequencies (General Time-Reversible, GTR;
Tavaré (1986)). The more degrees of freedom a model permits, the better it is
able to describe the data, but the more data is necessary to achieve accurate
results. Moreover, if a model is chosen which ignores important biological pro-
cesses the results can become biased (systematic errors) (Swofford et al., 2001)
and lead to effects like long-branch attraction (Felsenstein, 1978; Hendy &
Penny, 1989). Otherwise, over-parametrized and therefore too complex models
can cause stochastic error (Cunningham et al., 1998).
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Besides substitution rates and base frequencies, among-site rate varia-
tion (ASRV) can be taken into account. To allow a correction for unequal
rates across sites for ML analyses, the discrete gamma distribution (Γ) has
been introduced by Yang (1994). Additionally, a proportion of sites can be
estimated as invariable (I, pinv= proportion of invariable sites) which leaves
the variable sites with Γ-distributed rates (Γ+I; (Steel et al., 1993; Waddell &
Penny, 1996)). Using a discrete gamma model with a fixed number of rate
categories to approximate the gamma distribution has been proposed and is
usually applied with four categories (Yang, 1994).

Tools like ModelTest (Posada & Crandall, 1998), MrModelTest (Nylander,
2004) or ModelGenerator (Keane et al., 2006) select the best fitting
model from a predefined set with the help of relative model selection
methods (Kelchner & Thomas, 2007), using different criteria (Akaike in-
formation criterion; AIC; (Akaike, 1974)), Bayesian information criterion
(BIC; (Schwarz, 1978)), decision theory (DT) and hierarchical likelihood-ratio
test (hLRT)).

Evolutionary models are only averaged approximations trying to capture evo-
lutionary processes. It is frequently the case, that there is no fitting (absolute
goodness-of-fit) model for a wide range of datasets. ’Given the simplicity of
most models, it is possible that model selection in modern systematics is anal-
ogous to an overweight man shopping in the petites department of a women’s
clothing store. A particular garment might fit the portly man best, but this
does not imply a good overall fit.’ (Gatesy, 2007). Nevertheless, the methods
which are currently in use will propose the relatively best fitting model (rel-
ative goodness-of-fit). Thus, even the best chosen model may not adequatly
represent the dataset and in this case, the results of the applied methods can
become untrustworthy.

Most of the common substitution models are based on similar assumptions, such
as site independence, process-homogeneity across sequences and subtrees, par-
tition homogeneity and an insignificance of certain functional structures such
as codon-based substitution rates and codon usage bias. In case one or more
of these assumptions are violated for an analysed dataset, the relative model
selection criteria are not able to point this out (Felsenstein, 1978; Huelsenbeck
& Hillis, 1993; Yang et al., 1994; Swofford et al., 2001).
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Literature dealing with model fit is sparse. Only a small number of publica-
tions (Goldman, 1993b; Whelan et al., 2001; Bollback, 2002; Huelsenbeck &
Ronquist, 2001; Shavit Grievink et al., 2010; Nguyen et al., 2010) adresses
model choice and model fit for either empirical (Ripplinger & Sullivan, 2008)
or simulated data (Abdo et al., 2005). Currently, two approaches have been
designed to evaluate the absolute fit of data and model: the Goldman-Cox
test (Goldman, 1993b; Whelan et al., 2001) in an ML setting, and posterior
predictive simulations (Huelsenbeck & Ronquist, 2001; Bollback, 2002) in a
Bayesian setting. The Goldman-Cox test uses parametric bootstrapping, a
method of testing model parameters which were estimated to describe how se-
quence alignments may have evolved in a statistical way. The bootstraps are
artificial datasets which are generated using the estimated model parameters
of the analysed dataset. Therefore, they represent a perfect fit of model and
data. The entropy of patterns of all datasets, the original one and the para-
metric bootstraps, is calculated and compared. If the degree of entropy of the
dataset fits within 95% of the distribution of entropy-degrees of the bootstraps,
the model is accepted as adequate for the dataset.

Within the present study a range of MSA datasets on nucleotide level was
simulated and analysed with respect to increasing non-stationarity caused by
mixtures of evolutionary models (GTR model (substitution rates, base fre-
quencies), shape of the gamma distribution (α) and proportion of invariable
sites (pinv)) for different branches or subtrees nested in a topology. GTR was
chosen because it is the most general and also the most commonly used time-
reversible model for phylogenetic inference (Sumner et al., 2012). The simu-
lations were generated (i) with continuous gamma distribution and (2) using
discrete gamma distribution with four rate categories. The trees were chosen
to have unequal branch lengths, because it is known, that combination of long
and short branches can cause biased attraction (Felsenstein, 1978; Hendy &
Penny, 1989). For datasets simulated with a continuously gamma distribution
analysed by ML methods given the correct substitution rates, base frequencies,
Γ-shape parameter (α) and proportion of invariable sites, but only using four
categories of rates to approximate the gamma distribution, the reconstruction
may not always lead to the true tree (Kück et al., 2012). Therefore the use of
a higher number of rate categories should be considered: four categories might
not be accurate enough to sufficiently cover different evolutionary rates as they
might be present in large scale datasets. Therefore, tree inference was per-
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formed via ML estimation with different numbers of categories for estimating
the discrete gamma distribution: 4, 12 or 25 categories. The model parameters,
which were estimated within the scope of the ML analysis, were used for para-
metric bootstrapping to perform the Goldman-Cox test. First it was checked,
whether the estimated models for the stationary datasets are accepted more
often than the models of the non-stationary datasets and if the Goldman-Cox
test is able to capture the model misspecification regarding stationarity. Fur-
thermore, it was analysed, whether an increased number of categories for ML
analysis with discrete gamma distribution has an impact on model-acceptance
by the Goldman-Cox test for datasets simulated using either (i) discrete or (ii)
continuous gamma distribution.

2.2. Materials and Methods

2.2.1. Sequence Data

Multiple Sequence alignments (MSA) on nucleotide level were simulated us-
ing INDELible V1.03 (Fletcher & Yang, 2009), Seq-gen v1.3.2 (Rambaut &
Grassly, 1997) and MultimoSeqSim (Mayer, 2010). The GTRmodel of sequence
evolution and either a continuous gamma distribution or discrete gamma dis-
tribution with four rate classes for ASRV was chosen. Insertion or dele-
tion (indel) events were not simulated. The modelled datasets using contin-
uous gamma distribution were either simulated with a specified proportion of
invariant sites (see table 2.1) or pinv was set to 0. Different combinations of
topologies, branch lengths and model parameters were used to simulate these
data (table 2.1). The combinations of model misspecifications differed in their
extend of non-stationary base composition and substitution processes, shape
of gamma distribution and pinv (see table 2.1 and figures 2.1, 2.2, 2.3 and
2.4).

The first simulation setup (setup 1, Fig. 2.1) includes 14 taxa, with one se-
quence representing the outgroup. The first model arrangement (Fig. 2.1a)
is stationary, with all branches evolving under the same evolutionary model
(see table 2.1), whereas the second one (Fig. 2.1b) differs in model param-
eters from the outgroup taxon to the rest. The third setting (Fig. 2.1c) is
highly non-stationary and evolves according to four different model parameter
settings.
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Figure 2.1: Setup 1: Topology, branch lengths and models used in analyses, covering a
spectrum of stationary (a) and non-stationary (b and c) datasets. The topology
includes 14 taxa with one taxon acting as outgroup. Three sets of parameters
differ in the local application of evolutionary models for different clades (GTR1-
4, for details see table 2.1).

Figure 2.2: Setup 2: Topology, branch lengths and models used in analyses, covering a
spectrum of stationary (a) and non-stationary (b-c) datasets. The unrooted
topology includes 15 taxa. These three parameter sets differ in the local ap-
plication of evolutionary models for different branches (GTR1-4, for details see
table 2.1).
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Table 2.1: Model specifications and parameters used for the simulation of different datasets.
All parameter sets consist of an α value for gamma distributed rate heterogeneity
(Γ), the proportion of invariant sites (I), GTR (general time-reversible) substi-
tution rates and base frequencies.

Substitution rates Base frequencies

Model Γ I AC AG AT CG CT GT fA fC fG fT
GTR1 0.75 0.3 0.2 1.0 0.7 0.3 0.5 1.0 0.25 0.20 0.25 0.30
GTR2 1.0 0.2 0.6 1.0 0.4 0.1 0.5 1.0 0.40 0.10 0.25 0.25
GTR3 0.8 0.1 0.8 1.0 0.6 0.1 0.3 1.0 0.25 0.30 0.25 0.20
GTR4 0.5 0.5 0.4 1.0 0.3 0.5 0.2 1.0 0.40 0.25 0.10 0.25
GTR5 1.0 0.4 0.4 1.0 0.9 0.2 1.0 1.0 0.30 0.10 0.20 0.40

The second simulation setup (setup 2, Fig. 2.2) is an unrooted tree with 15
taxa and an increasing number of evolutionary model specifications for dif-
ferent branches from a stationary composition (Fig. 2.2a) to non-stationary
compositions with two (Fig. 2.2b) and four (Fig. 2.2c) different parameter ar-
rangements.

The third simulation setup (setup 3, Fig. 2.3) is based upon a tree including
15 taxa that varies in combination of evolutionary models on different clades
(b-d). The first arrangement (Fig. 2.3a) is a stationary dataset for which the
same model was applied to all branches, whereas the second dataset (Fig. 2.3b)
includes a paraphylum (highlighted in red color) which evolves according to a
second model. It is nested within clades of the same model parameters. Four
model-heterogeneous datasets (Fig. 2.3c-f) include branches evolving under dif-
ferent model parameters at several positions within the tree. For two datasets
(Fig. 2.3g and h) these clades are combined ( g« cXe and h«dXf ) resulting
in two different clades within one tree evolving according to the same model
parameters (see table 2.1).

All simulations were carried out three times in which the start seed for the
generation of a random number was set to 1568746, 444444 and 555555, respec-
tively. This was done to avoid a model rejection by chance conducting 100 boot-
strap samples. The start seed was set constant for every simulation of a dataset
and its corresponding parametric bootstrap datasets to avoid structural differ-
ences which may potentially be caused by different seeds.
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Figure 2.3: Setup 3: Topology, branch lengths and models used in analyses, covering a
spectrum of stationary (a) and non-stationary (b-h) datasets. These eight sets
of trees differ in the local application of evolutionary models (GTR1 and GTR5,
for details see table 2.1).

Additionally, a number of datasets was designed (setup 4), all being station-
ary but having different numbers of taxa, sites or shorter branch lengths (see
Fig. 2.4a-d) to check the impact on the results of the Goldman-Cox test with
increasing amount of data up to provision of a pattern equilibrium. These sim-
ulations were carried out only with seed 1568746 for random number generation
but with different numbers of bootstrap datasets.
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Figure 2.4: Setup 4: Topologies, branch lengths and models used in analyses in order to
cover a spectrum of stationary datasets with 8 (a) or 4 (b-d) taxa and different
branch lengths.

2.2.2. Phylogenetic Analyses and Parametric Bootstrapping

ML analyses were conducted with PhyML 3.0 (Guindon et al., 2010; Guin-
don & Gascuel, 2003), RAxML standard version 7.3.5 (Stamatakis, 2006) and
PAUP 4.0b10-console (Swofford, 2002), estimating the GTR+Γ+I or only
GTR+Γ parameters, base frequencies and the best ML tree (for further details
see Appendix, table A.1 and table A.2). For simulation setups 1, 2 and 3 all
ML analyses were performed six times, using i) 4, ii) 12 or iii) 25 rate categories
using either the mean or median for approximating gamma distribution. For
simulation setup 4 all analyses were performed using four rate categories using
either the mean or median for modelling gamma distribution. For each dataset
100, 1,000, 10,000 or 100,000 parametric bootstrap replicates were generated
with INDELible V1.03, Seq-gen v1.3.2 and MultimoSeqSim. Different tools
and options were used to compare the results and to check, if these depend on
the used implementations or chosen parameters.
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2.2.3. Goldman-Cox test and Pattern Analysis

The Goldman-Cox test (Goldman, 1993b) was applied using a Perl
script (Mayer, available from the author upon request) to check if the esti-
mated models are adequate for the datasets. This test evaluates the entropy of
pattern distribution within a dataset and ranks the analysed dataset within the
values of its corresponding bootstrap replicates. If the original dataset ranks
outside the 95% confidence interval of the bootstrap distribution, the model is
rejected as ’not adequate’ for the dataset.

Figure 2.5: Flowchart of testing the Goldman-Cox test. On base of every tree and evo-
lutionary model parameters, a nucleotide alignment is simulated. Then these
parameters are used again to build 100 parametric bootstrap alignments. These
datasets are then used as a reference rest set for the Goldman-Cox test.

Every tree and model composition was used to simulate (i) one and (ii) 100
datasets (see Fig. 2.5), all based on the designed model parameters rather
than estimated values. This was done to check, whether the Goldman-Cox test
accepts the true model in case the parametric bootstrap datasets were generated
with identical parameters and therefore an adequate model. This arrangement
constitutes a reference test for the Goldman-Cox test.

design and creation of test datasets generation of parametric bootstrapsestimation of model parameters

alignmentsimulation

tree

model
100 alignmentssimulation

tree*

model*

ML analysis

Goldman-Cox

design and creation of test datasets and parametric bootstraps

Goldman-Cox
tree

model

parametric 
bootstraps

alignment

100 alignments

test  
dataset

simulation

Figure 2.6: Flowchart of the analysis. On the basis of a tree and evolutionary model pa-
rameters alignments are simulated. Then parametric bootstraps are generated
by analysing these test datasets, estimating the best fitting tree (tree*) and
the evolutionary model (model*) with a ML analysis. These estimated param-
eters (tree* and model*) form the basis for a second simulation step, in which
parametric bootstraps are generated for every dataset.
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All simulated stationary and non-stationary datasets and their correspond-
ing bootstraps were analysed with the Goldman-Cox test. Additionally,
the distribution of site patterns and the frequencies of ACGT and RY
splits within datasets and corresponding parametric bootstrap replicates were
checked. Therefore, the number of occurrences of a single pattern or split
within a simulated dataset was compared to all the numbers of occurrences
of the same pattern or split in each of its corresponding parametric boot-
straps.
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2.3. Results

While all dataset-model combinations of the reference sets passed the Goldman-
Cox test, the detailed results of the Goldman-Cox test for the actual analyses
varied across tree shapes and degree of stationarity (for all results see Appendix,
table A.3 and table A.4).

Table 2.2: Results of the Goldman-Cox test for stationary datasets. All datasets were simu-
lated with continuous GTR+Γ and analysed with GTR+Γ+I. cat = rate categories
for the Γ-distribution used in the ML analysis. s15, s44, s55 = runs with different
seeds for random number generation (1568746, 444444, or 555555). The values
within the table show, which rank the test result of the original dataset achieved
within the distribution of the results of the corresponding bootstrap replicates.
If the result of the original dataset ranks within a confidence interval (95%) the
model is accepted as adequate (ranks 3 - 99, highlighted green), otherwise it is
rejected (ranks 1,2,100 and 101, highlighted yellow).

Goldman-Cox
Dataset ML analysis options s15 s44 s55

reference set 51 76 78
mean 2 1 1GTR+Γ+I, 4 cat median 1 1 1
mean 48 28 42GTR+Γ+I, 12 cat median 3 4 6
mean 56 38 59

setup 1a

GTR+Γ+I, 25 cat median 37 11 26

reference set 62 97 43
mean 1 1 1GTR+Γ+I, 4 cat median 1 1 1
mean 36 48 33GTR+Γ+I, 12 cat median 3 6 5
mean 35 45 55

setup 2a

GTR+Γ+I, 25 cat median 30 27 20

reference set 26 83 41
mean 1 1 1GTR+Γ+I, 4 cat median 1 1 1
mean 34 32 29GTR+Γ+I, 12 cat median 4 8 5
mean 36 60 36

setup 3a

GTR+Γ+I, 25 cat median 23 29 18
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Stationary datasets simulated with a continuous gamma distribution were
mostly rejected, if analysed with four rate categories for a discrete gamma
distribution (see table 2.2). Likewise, the estimated model parameters for the
datasets of setup 4 were mainly rejected by the Goldman-Cox test for various
combinations (see Appendix, table A.2) of simulation software and ML im-
plementations using four rate categories for gamma distribution (results not
shown).

Table 2.3: Results of the Goldman-Cox test for model-heterogeneous datasets. All datasets
were simulated with continuous GTR+Γ+I and analysed with GTR+Γ+I. cat =
rate categories for the Γ-distribution used in the ML analysis. s15, s44, s55
= runs with different seeds for random number generation (1568746, 444444,
or 555555). For explanation of values and color-code within the table see the
heading of table 2.2.

Goldman-Cox
Dataset ML analysis options s15 s44 s55

reference set 54 76 54
mean 101 98 99GTR+Γ+I, 4 cat median 36 40 49
mean 101 101 101GTR+Γ+I, 12 cat median 101 101 101
mean 101 101 101

setup 1b

GTR+Γ+I, 25 cat median 101 101 101

reference set 68 25 19
mean 99 98 95GTR+Γ+I, 4 cat median 23 21 10
mean 101 101 101GTR+Γ+I, 12 cat median 101 101 100
mean 101 101 101

setup 2c

GTR+Γ+I, 25 cat median 101 101 101

reference set 32 92 38
mean 98 99 91GTR+Γ+I, 4 cat median 6 15 8
mean 101 101 101GTR+Γ+I, 12 cat median 100 101 101
mean 101 101 101

setup 3e

GTR+Γ+I, 25 cat median 101 101 101

The estimated models of those datasets simulated with branches that evolve
according to two or more evolutionary models were accepted if analysed with
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four rate categories for the gamma distribution, but rejected if analysed with
12 or 25 rate categories (see table 2.3).

Table 2.4: Results of the Goldman-Cox test for model-heterogeneous datasets. All datasets
were simulated with continuous GTR+Γ and analysed with GTR+Γ. cat = rate
categories for Γ-distribution used in the ML analysis. s15, s44, s55 = runs with
different seeds for random number generation (1568746, 444444, or 555555). For
explanation of values and color-code within the table see the heading of table 2.2.
Below the table, three topologies are shown, one for every seed. Although the
models were accepted by the Goldman-Cox test, the topologies calculated by a
ML analysis were all incorrect (incompatible branches highlighted orange).

Goldman-Cox
Dataset ML analysis options s15 s44 s55

reference set 55 72 17
mean 29 57 46GTR+Γ, 4 cat median 1 3 2
mean 92 96 95GTR+Γ, 12 cat median 56 81 74
mean 93 95 98

setup 3h

GTR+Γ, 25 cat median 86 93 86
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One dataset, which is based on a non-stationary process (heterogeneous
model composition; see table 2.4), generated with GTR+Γ and pinv=0, showed
peculiar results. For all analyses, all models were accepted except for two. A
detailed analysis of the trees on which the analysed dataset and the correspond-
ing bootstraps were based on, showed, that all ML tree reconstruction yielded
a wrong topology.

Table 2.5: Results of the Goldman-Cox test for model-homo- and heterogeneous datasets.
All datasets were simulated with 4 categories for GTR+Γand analysed with
GTR+Γ. cat = rate categories for Γ-distribution used in the ML analysis. s15,
s44, s55 = runs with different seeds for random number generation (1568746,
444444, or 555555). For explanation of values and color-code within the table
see the heading of table 2.2.

Goldman-Cox
Dataset ML analysis options s15 s44 s55

reference set 73 32 13
mean 51 38 30GTR+Γ, 4 cat median 3 1 1
mean 101 101 101GTR+Γ, 12 cat median 95 96 95
mean 101 101 101

setup 1a

GTR+Γ, 25 cat median 100 101 101

reference set 77 27 20
mean 88 95 85GTR+Γ, 4 cat median 10 10 3
mean 101 101 101GTR+Γ, 12 cat median 101 101 101
mean 101 101 101

setup 2c

GTR+Γ, 25 cat median 101 101 101

reference set 52 22 12
mean 72 78 66GTR+Γ, 4 cat median 4 5 3
mean 101 101 101GTR+Γ, 12 cat median 101 101 100
mean 101 101 101

setup 3g

GTR+Γ, 25 cat median 101 101 101

The results for the datasets simulated with four rate categories for a discrete
gamma distribution were similar for stationary and non-stationary setups.
Estimated models of the ML analysis performed with four rate categories

26



2 Are Four Categories Enough? 2.3 Results

were widely accepted, whereas models estimated with more rate categories are
rejected (see table 2.5).

Figure 2.7: Comparison of pattern frequencies of the parametric bootstraps. X-axis: pat-
terns from AAAA to GGGG. Y-axis: bootstrap datasets. The pattern frequen-
cies within the parametric bootstraps are homogeneously distributed.

The distribution of pattern frequencies for datasets of setup 4a and 4b (Fig. 2.4)
including corresponding bootstrap replicates which were based on estimated
model parameters using four rate categories were analysed and for setup 4b
visualised in Fig. 2.7: The 100% stacked area chart shows the pattern spec-
trum of 100 bootstrap replicates of the analysed dataset of setup 4b, simulated
with one million sites. On the x-axis the patterns are listed, from ’AAAA’ to
’TTTT’. The proportionate amount of occurrence of every pattern is shown
on the y-axis. The diagram sums up to 100% and therefore displays the per-
centage of the total number of occurrences that each bootstrap contributes per
pattern. The homogeneous distribution shows that the pattern frequencies are
evenly distributed across all bootstrap datasets.

By adding the original dataset to the area chart (yellow coloured data at
the bottom of chart of Fig. 2.8), the balanced distribution gets completely
inhomogeneous. This shows, that the proportion of patterns differ extremely
between analysed dataset and the parametric bootstrap replicates. If the
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Figure 2.8: Pattern comparison of original dataset of setup 4b and its parametric boot-
straps. X-axis: patterns from AAAA to GGGG. Y-axis: original (yellow
coloured dataset at the bottom) and bootstrapped datasets. The patterns are
distributed homogeneous within the bootstraps, but they deviate strongly from
the original dataset.

1 2 3 4 1 / 2 3 4 2 / 1 3 4 3 / 1 2 4 4 / 1 2 3 1 2 / 3 4 1 3 / 2 4 1 4 / 2 3 1 / 2 / 3 / 4 1 2 3 4 1 / 2 3 4 2 / 1 3 4 3 / 1 2 4 4 / 1 2 3 1 2 / 3 4 1 3 / 2 4 1 4 / 2 3 

Figure 2.9: Split comparison of original dataset of setup 4b and its parametric bootstraps.
On the left hand side the patterns are combined to ACGT splits, whereas RY-
coding can be found on the right hand side. X-axis: splits. Y-axis: analysed
(yellow coloured row at the bottom) and bootstrapped datasets. The more the
patterns are generalized to splits, the lower the difference between data and
bootstraps.

patterns would be distributed equally, all rows would be homogeneous as shown
in Fig. 2.7, including bootstraps only.

28



2 Are Four Categories Enough? 2.3 Results

Grouping the patterns to ACGT and RY splits balances the proportional
distribution, but does not lead to an equilibrium (see Fig. 2.9).
A comparison of the total number of occurrences of splits (by grouping
pattern to ACTG or RY splits) to the mean number of occurrences within
the bootstraps shows, that there is a distinct incongruence for trivial splits
(splits which separate one taxon from all other taxa). The step from ACGT
splits to RY splits balances the differences only slightly.

Table 2.6: Patterns found in the original dataset of setup 4b and its parametric
bootstrap replicates condensed to ACGT splits.
Dataset = number of split occurrences, Mean btsps = mean value of
number of split occurrences of the parametric bootstraps,
Difference = absolute value of (dataset -mean), SD = standard deviation.

Split Dataset Mean btsps Difference SD

1 2 3 4 280976.00 294645.29 13669.29 475.20
1 / 2 3 4 39071.00 72341.58 33270.58 236.13
2 / 1 3 4 43687.00 139495.94 95808.94 297.32
3 / 1 2 4 73164.00 42699.19 30464.81 215.16
4 / 1 2 3 140549.00 37880.00 102669.00 176.32
1 2 / 3 4 171355.00 168616.27 2738.73 405.08
1 3 / 2 4 112022.00 105782.57 6239.43 331.94
1 4 / 2 3 109038.00 109261.57 223.57 324.40
1/2/3/4 30138.00 29277.59 860.41 177.73

Table 2.7: Patterns found in the original dataset of setup 4b and its parametric
bootstrap replicates condensed to RY splits.
Dataset = number of split occurrences, Mean btsps = mean value of
number of split occurrences of the parametric bootstraps,
Difference = absolute value of (dataset -mean), SD = standard deviation.

Split Dataset Mean btsps Difference SD

1 2 3 4 427379.00 438943.71 11564.71 523.38
1 / 2 3 4 62724.00 96714.87 33990.87 286.26
2 / 1 3 4 67600.00 149252.44 81652.44 326.43
3 / 1 2 4 98730.00 65722.18 33007.82 258.94
4 / 1 2 3 150732.00 61125.96 89606.04 243.77
1 2 / 3 4 83824.00 82585.80 1238.20 304.31
1 3 / 2 4 55258.00 52037.47 3220.53 223.86
1 4 / 2 3 53753.00 53617.57 135.43 223.18
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2.4. Discussion

We simulated different nucleotide sequence alignments with heterogeneous com-
position and non-stationary processes to examine compositions based on a
mixture of models and its impact on the results of estimated model ade-
quacy.

Out of all models which were estimated for the datasets which were simu-
lated using continuous gamma and analysed using ML with a four rate discrete
gamma distribution 81.25% (see Appendix, table A.4) were rejected by the
Goldman-Cox test. Neither the use of different simulation or ML software nor
a higher amount of bootstrap replicates did have a remarkable effect. A closer
look at the distribution of patterns within the datasets and their corresponding
bootstrap replicates showed, that the Goldman-Cox test is performing properly
in this case. While one of the test datasets (see Appendix table A.2, simulated
with INDELible, pinv=0, analysed with PhyML estimating GTR+Γ) contained
7196 different patterns, the pattern variety within the corresponding boot-
strap replicates fluctuated between 6915 and 7118, and the medium quantity
amounted to 7007.91 patterns (results not shown). With a standard deviation
of 48.06 there is an enormous deviation between the number of patterns of
the original dataset and its bootstrap replicates. Thus, the Goldman-Cox test
results are correct. Further, the deviation for the number of occurrences of the
patterns one by one shows, that the original dataset and its parametric boot-
straps show largely different pattern frequencies. Of course, even though the
alignment was simulated with GTR+Γ, the datasets contain invariant positions.
Remarkable is the fact, that all bootstrap replicates contain more invariant po-
sitions than the original dataset. For each dataset the number of each invariable
pattern deviates significantly (always less than the median minus the standard
deviation) from the numbers found in the corresponding bootstrapped data.
Summarised, there are fewer different patterns and more invariant patterns
within the bootstrap replicates.

Since the original test dataset did not allow a pattern equilibrium, the number
of taxa was reduced and the number of sites was increased. Although a dataset
with 4 taxa and 1 million sites provided a pattern frequency equilibrium, the
pattern distribution of the original dataset and the bootstrap replicates var-
ied highly. Likewise the estimated model was rejected by the Goldman-Cox
test.
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The results (rejected model adequacy although providing pattern equilibrium)
were tested by performing analyses with 1,000, 10,000 and 100,000 bootstraps
and it was checked, whether the random-seed function of INDELible has any
influence on the comparability of our datasets. Both tests, varying the number
of bootstrap replicates and the random-seed number, produced the identical
results. The estimated parameters and trees were very similar to the models
and trees of the simulations. Nevertheless, the difference was sufficient to be
detected by the Goldman-Cox test.

A look at the distribution of the patterns of the dataset with four taxa, 1 million
sites without invariant sites showed, even given the possibility of a pattern equi-
librium, that the pattern distribution differs significantly between the original
alignment and its parametric bootstraps. The visualisation in a 100% stacked
area chart showed that the pattern distribution of the bootstrap replicates are
very balanced and distributed homogeneously (Fig. 2.7). Adding the anal-
ysed original dataset to the area chart (yellow coloured data at the bottom in
Fig. 2.8) showed that the pattern frequencies dramatically differs between the
original dataset and its parametric bootstrap replicates. Grouping the patterns
in ACTG splits, the differences for different patterns are compensated (distri-
bution bias). Recoding them to RY splits balances the differences even more.
The highest deviation takes place within splits where one subgroup contains
only one taxon and the other subgroup the remaining ones (see tables 2.6 and
2.7). Since these so called ’trivial’ splits and thus the corresponding patterns
are not of phylogenetic interest and affect only the branch lengths, it might be
a good idea to perform the Goldman-Cox test only for the sites which repre-
sent internal nodes (branching points). The fact that recoding the nucleotide
alignments to an RY code balances the differences within the distribution in-
dicates, that the ’challenges’ which were counterbalanced might be linked to
time-reversible and non-stationary processes, since RY-coded alignments are
more likely to be consistent with evolution under globally stationary, reversible
and homogeneous (SRH) conditions (Ho et al., 2006).

However, apparently multiple substitutions within terminal taxa with longer
branches are challenging for testing model adequacy. Datasets generated with
much shorter branches (Fig. 2.4c and d) to be expected having less multiple
substitutions also balanced the pattern distribution; differences decreased, but
were still present.
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Analyses of datasets simulated with a continuous gamma distribution and for
which all branches are based on the same substitution rates, base frequencies,
invariant sites and rate heterogeneity (SRH conditions) showed that model
adequacy can be assessed much better by using more than four rate categories
when performing ML analysis with gamma distribution. While only 18.75% of
the models estimated with four gamma rate categories passed the Goldman-Cox
test (see Appendix, table A.4), increasing the number of categories representing
the gamma distribution cured this behaviour (see table 2.2).

On the other hand, the use of four gamma rate categories for ML analysis of
datasets with heterogeneous composition and non-stationary processes led to
an increased number of accepted estimated models. This result is alarming,
since the results for the estimation with 12 or 25 rate categories were mostly
rejected. This implies, that this might be due to a type II error which leads to
false positive model acceptance.

The results for the datasets simulated with four gamma rate categories rather
than using continuous gamma distribution, indicate that it is not necessarily
better to use more categories. The challenge is rather to figure out how many
categories truly represent the dataset. Here, the models estimated with the
same number of categories as used for the simulation passed the Goldman-
Cox test (see table 2.5). The models for the stationary datasets sometimes
passed the test, even if analysed quite ’over-rated’ with 12 gamma categories,
whereas all models estimated with 25 gamma categories were rejected. Rejec-
tions of some estimated models for datasets simulated with four gamma rate
categories which were analysed by taking the median of the categories instead
of the commonly used mean can simply be explained by the fact that for the
simulation the mean option was used for modelling the discrete gamma rates.
In such cases the use of the ’median option’ has to be considered as a mis-
specification.

In contrast to the other datasets with heterogeneous composition and non-
stationary processes generated with GTR+Γ and pinv=0, all estimated models
except for two of all analyses of datasets based on setup 3h were accepted
by the Goldman-Cox test (see table 2.4). A further evaluation of the topolo-
gies (Puigbò et al., 2007) on which the original dataset and the corresponding
bootstraps are based on showed, that all topologies calculated by ML were
wrong. Matsen and Steel (2007) described for 4-taxon trees, and later Mat-
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sen et al. (2008) for trees with more taxa, that mixture models applied on one
tree can ’mimic’ standard models for certain parameter choices on a different
tree. This is not only true for highly heterogeneous datasets, but also for data
with low heterogeneity, for which processes can potentially get indistinguish-
able from stationary and homogeneous ones on a different tree. Both trees, the
standard model and the mixed model tree can differ by at most one nearest
neighbour interchange (Matsen et al., 2008). This is apparently the case for
datasets of this study (setup 3h) as well, and is highly alarming, since the use
of the Goldman-Cox test assures to have an adequate model. It might be an ad-
equate model, but for another dataset and a different tree.

Consequently, present analyses lead to the conclusion that testing for model
adequacy of nucleotide datasets on base of parametric bootstraps based on
evolutionary models which require stationary, reversible or homogeneous con-
ditions (Jayaswal et al., 2005) is not a good choice, if it can be assumed, that
these conditions are violated by the data. In general, it is well known, that those
violations increase the risk of phylogenetic errors (Ho & Jermiin, 2004; Jermiin
et al., 2004). Since empirical datasets are highly likely to be heterogeneous and
non-stationary, there is always the possibility, that the estimated model, even
if accepted by the test, may actually fit another tree. Furthermore, the pro-
posed Goldman-Cox test it is very strict, rigorous and much more sensitive to
violations of model assumptions than model-based tree reconstructions. In our
simulations, the models had been often rejected, even though the calculated
topology was correct.

In summary, the results indicate that the number of rate categories for mod-
elling gamma distribution in ML analysis has to be considered very carefully
and should be adequate for the dataset. The simulations of this study have
shown that modelling gamma distribution with four rate categories when test-
ing for model adequacy can be sufficient, but only for datasets, which were
simulated with the same number of rate categories. The datasets, which
were simulated with four gamma categories could also be approximated by
4 gamma rate categories in phylogenetic reconstruction. For the simulations
which are based on a continuous gamma distribution, increasing the number
of rate categories and therefore better approximating a continuous distribution
for analysing stationary datasets, leads to better model estimates regarding
the pattern distribution. For non-stationary datasets, which is to be expected
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from empirical datasets, the analysis with four gamma rate categories led to
an acceptance of the estimated model, while the models which were estimated
with 12 or more categories were rejected. Since some of the reconstructed trees
were wrong, this implies, that an analysis based on a gamma distribution ap-
proximated by four rate categories under these conditions can lead to type 2
errors and gives therefore false positive results. Thus, it is advisable to inspect
the dataset carefully before analysing and adjust the number of rate categories
to the dataset, rather than to rely on a fixed number.
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3 Split Residual Diagnostics for Phylogenetics

3. Split Residual Diagnostics for Phylogenetics -

Taking a More Detailed Look at Model

Adequacy

3.1. Introduction

Results of phylogenomic analyses illustrate that systematic errors remain a ma-
jor challenge for phylogenetic inference, with model choice as a critical step. For
example, Philip et al. (2005) and Philippe et al. (2005) published their studies
in the same issue of the journal ’Molecular Biology and Evolution’, showing
trees with 100% support for incongruent relationships. Phillips, Delsuc and
Penny (2004) looked at yeast data taken from Rokas et al. (2003) and found that
a slightly different model gave 100% support for different trees containing con-
tradictory relationships. Goremykin et al. (2005) found that very minor changes
of model parameters switched 100% bootstrap support for Amborella to 100%
support for grasses basal in the phylogeny of angiosperms.

Poorly fitting substitution models cause numerous problems, from incorrect
posterior probabilities (in Bayesian analyses), to biased estimates of branch
lengths and in the worst case incorrect topologies. Simulation studies have
shown that in case of well-fitted models popular measures of support, such
as bootstrapping (Efron, 1979; Efron & Tibshirani, 1986; Felsenstein, 1985;
Efron et al., 1996) and the posterior probabilities, can be interpreted as mea-
sures of accuracy (Alfaro et al., 2003; Erixon et al., 2003). Unfortunately,
in case of poorly-fitted models such an interpretation is potentially mislead-
ing.

It is therefore inevitable to analyse substitution model adequacy in order to
address potential biases in tree reconstruction. In this chapter, an approach to
assess model adequacy in empirical sequence data and an analysis of potential
measures to reduce the source of biases in these data is presented. Due to its
central part in the tree reconstruction procedure, model selection has received
much attention. By far the most popular way of addressing goodness-of-fit
of substitution models to observed empirical sequence data is a test for the
relative best model fit, as exemplified by programs such as ModelTest (Posada
& Crandall, 1998), MrModelTest (Nylander, 2004) and ModelGenerator (Keane
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et al., 2006). The question is: which model, out of a predefined set of models,
is most appropriate for my data?

Ripplinger and Sullivan (2008) compared the performance of relative model-
selection methods and analysed how the choice of alternative well fitting models
affects tree reconstruction (Posada & Buckley, 2004; Sullivan & Joyce, 2005).
They found that different model selection criteria, the hierarchical likelihood-
ratio test (hLRT), the Akaike information (AIC), the Bayesian information
(BIC), and the decision theory (DT) criterion, preferred different models for
the same datasets in almost every instance. The use of these ’alternative best-
fit’ models changed the optimum tree topology in about half of the cases. They
advised to use the simplest supported substitution model selected by BIC or
DT for ML tree reconstructions.

Besides evaluating the relative best-fitting model, approaches to assess abso-
lute goodness-of-fit, i.e. the Goldman-Cox test (Goldman, 1993b; Whelan et al.,
2001) in a maximum likelihood (ML) setting and posterior predictive simula-
tions in a Bayesian frame work (Bollback, 2002; Huelsenbeck & Ronquist, 2001)
show how good a model describes the data. These absolute tests of model fit
are used less commonly, perhaps because it is not clear what should be done if
the answer to the question ’Is this model adequate?’ is no. It would be useful
to have a method that rather than just saying – the model fits poorly – delivers
information on the quality of the misfits.

Using so called ’model free’ methods, such as parsimony, is certainly not
a good solution. These methods have implicit assumptions (Steel & Penny,
2000; Tuffley & Steel, 1997; Steel, 2002) and are known to have consis-
tency problems (Felsenstein, 1978; Hendy & Penny, 1989). Several possible
sources for model misspecification are known such as covarion evolution (Fitch
& Markowitz, 1970; Penny et al., 2001) or heterotachy (Lopez et al., 2002;
Zhong et al., 2011), i.e. a change of patterns of rates across sites through time.
Another cause is reticulate evolution, which includes hybridisation, horizontal
gene transfer and recombination and leads to the fact, that relationships can
not be seen as clades, but as a network of evolutionary lineages. Non-stationary
substitution processes and processes that have a high variation throughout the
tree can lead to model misspecification as well (Ho & Jermiin, 2004; Jermiin
et al., 2004; Squartini & Arndt, 2008). Exploring the ways in which data de-
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viates from a particular model of substitution can tell an important story (e.g.
homoplasy as pattern; Faith, 1989).

In the recent years it became obvious that substitution processes by them-
selves evolve (along trees), which makes a proper formal description difficult
and error-prone (Wu & Susko, 2009; Kolaczkowski & Thornton, 2008; Whelan,
2008; Zhou et al., 2007). Most likely the application of globally fitted substi-
tution models not accounting for taxon or clade specific patterns may lead to
biased reconstructions and artefacts. The identification of these artefacts in
empirical data is almost impossible. The consequence must be to study the
evolution of substitution parameters before the application of globally fitted
models and to understand what the difference between local taxon or clade
specific variation of the substitution parameters and a globally fitted model is.
We have to conceptionally shift from just fitting a single substitution model
to analysing the adequacy and the misfitting of the model or even submodels.
The idea is to reduce the source of potential biases prior to tree reconstruc-
tions.

In theory, given a tree and substitution model, the expected frequency values
of all site patterns can be calculated and compared to the observed pattern fre-
quencies. In regression analysis, it is common practice to propose a model with
some kind of residual diagnostics. In phylogenetics, this corresponds to compar-
ing the observed pattern frequencies to those expected under the model (here,
the model includes the tree, branch lengths and the model of nucleotide substi-
tution). Absolute tests of model fit use variants of this approach. They simulate
nucleotide MSAs under the best fitting tree and best fitting model and compare
this simulated data with the observed empirical MSAs.

In a similar sense, MISFITS (Nguyen et al., 2010) has been developed to eval-
uate the goodness-of-fit of substitution models. Based on a multiple nucleic
acid alignment, the proposed evolutionary model and the inferred tree, the
pattern frequencies of the empirical data and the expected ones by the model
and tree are determined. Derived sets of over- and underrepresented patterns
are examined and the alignment is checked if it can be adjusted by additional
substitutions to fit the ML tree. Thus, the method is able to detect site pat-
terns, which are not captured well, neither by the evolutionary model nor the
inferred tree. By mapping the additional substitutions on the tree, this method
gives a biological interpretation, why the model may not cover the alignment
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adequately. However, this is just a first step towards an appropriate treatment
of model misspecification. At this time, there is no feasible solution how to
handle datasets which are not represented by a single evolutionary model but
only a combination of, either known or predicted, models.

Phylogenetic data is high dimensional, e.g. for nucleotide alignments with n

sequences there are 4n possible site patterns. Compared to this, the absolute
goodness-of-fit tests use fairly brutal summary measures. They look at the
pattern distribution of all datasets and boil the real data and each simulated
dataset down to a single number which forms the basis for a decision. This
way a lot of information is lost. Split graphs have been shown to be a partic-
ular useful tool in this context. They allow conflicting phylogenetic signals to
be displayed in a network and therefore provide a good compromise between
looking at all possible patterns and summarising datasets by one value. This
idea has been explored to some extent in Wägele et al. (2003) and Goremykin
et al. (2005).

However, it is not enough to simply consider conflict or compatibility among
splits observed in empirical data, because for many combinations of tree shape
(e.g. ones with combinations of short and long branches) and substitution
models we can predict the presence of highly supported incompatible splits.
Incompatibility does not necessarily have to be alarming. Nevertheless, incom-
patibility that is not predicted by the model is a cause for concern. Therefore,
the methods of split analysis and parametric bootstrapping are combined for
this study to perform split residual analyses of simulated and empirical nu-
cleotide MSAs. After analysing all datsets with an ML implementation, the
estimated evolutionary models including the tree, the substitution parameters
and the rate heterogeneity parameters were used as base for simulating 100
parametric bootstrap datasets. The split spectra of the original datasets were
compared the spectra of their corresponding bootstraps and all splits classified
as over- or underrepresented were recorded and visualised in split networks.
Simulated datasets were used to compare the estimated model parameters to
the known statistical background, while the empirical datasets were analysed
to get an idea, how the findings can be applied to assess model adequacy in
phylogenetic analysis.
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3.2. Materials and Methods

To test model adequacy based on split residuals for datasets with known sta-
tistical background, ten artificial datasets (see section 3.2.1) based upon tree
shapes of different length and combinations of short and long branches were
generated. This was done to involve complexity caused by conflict among the
observed splits. Five published datasets (see section 3.2.1) were chosen for test-
ing the method on empirical data. First, the datasets were analysed using an
ML approach (section 3.2.2). The estimated model parameters were then used
to generate parametric bootstrap datasets (described in section 3.2.2). Split
spectra of all analysed datasets and their corresponding bootstraps were then
compared and over- or underrepresented splits (described in section 3.2.3) were
counted and visualized as split networks (see Fig. 3.1).

Figure 3.1: Overview of used methods and data. This flowchart shows how empirical and
simulated nucleotide MSAs are processed throughout different analyses and
processes. After a ML analysis the estimated model (model*) and tree (tree*)
of every dataset is used to generate 100 parametric bootstrap datasets. The split
spectra of the datasets and their corresponding bootstraps are then compared
to check, if they can lead to statistical inference for model adequacy.
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3.2.1. Sequence Data

Simulated Data Three different setups of topologies, branch lengths and
number of taxa (Fig. 3.2, 3.3 and 3.4) were used to simulate ten nucleotide
MSAs with 10.000 sites using INDELible V1.03 (Fletcher & Yang, 2009) with
(i) four rate categories for approximating the gamma distribution or (ii) con-
tinuous gamma distribution modelling. The tree shapes combine short and
long branches to involve complexity caused by conflict among the observed
splits.

Figure 3.2: Topology 1 (datasets 1a, 1b and 1c, 14 taxa), branch lengths and models used
in analyses, covering a spectrum of stationary (a) and non-stationary (b-c)
datasets. Three sets of parameters differ in the local application of evolutionary
models (see table 3.2 and 3.1).

All datasets of each setup were based on the same topology and differed
only concerning evolutionary models for different branches or clades. One
dataset of every setup (a) is simulated as evolving stationary and based upon
only one model (GTR1, see table 3.1), the other datasets (b-c or d) include
one or more clades which evolved under different model parameters (see ta-
ble 3.1).

The nucleotide MSAs were simulated either with four rate categories approx-
imating a gamma distribution and with a proportion of invariable sites (pinv)
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Figure 3.3: Topology 2 (datasets 2a, 2b and 2c, 15 taxa), branch lengths and models used
in analyses, covering a spectrum of stationary (a) and non-stationary (b-c)
datasets. These three sets of parameters differ in the local application of evo-
lutionary models (see table 3.2 and 3.1).
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Figure 3.4: Topology 3 (datasets 3a, 3b, 3c and 3d, 15 taxa), branch lengths and models
used in analyses, covering a spectrum of stationary (a) and non-stationary (b-
d) datasets. These four sets of parameters differ in the local application of
evolutionary models (see table 3.2 and 3.1).

set to 0 or with a continuous gamma distribution with a specified proportion
of invariable sites (see table 3.1).
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Table 3.1: Model specifications and parameters used for the simulations. All parameter sets
consist of GTR (general time-reversible) substitution rates, base frequencies, an
α value for Γ-distributed rate heterogeneity (α) and the proportion of invariant
sites (pinv).

Substitution rates Base frequencies

Model α pinv AC AG AT CG CT GT fA fC fG fT
GTR1 0.75 0.3 0.2 1.0 0.7 0.3 0.5 1.0 0.25 0.20 0.25 0.30
GTR2 1.0 0.2 0.6 1.0 0.4 0.1 0.5 1.0 0.40 0.10 0.25 0.25
GTR3 0.8 0.1 0.8 1.0 0.6 0.1 0.3 1.0 0.25 0.30 0.25 0.20
GTR4 0.5 0.5 0.4 1.0 0.3 0.5 0.2 1.0 0.40 0.25 0.10 0.25
GTR5 1.0 0.4 0.4 1.0 0.9 0.2 1.0 1.0 0.30 0.10 0.20 0.40

Table 3.2: Combinations of setups and simulation options. Several combinations of topolo-
gies, branch lengths and evolutionary models were simulated. All simulations
using continuous gamma-distribution were generated with a proportion of in-
variant sites (pinv). The simulation runs using discrete gamma-distribution with
four rate categories were all performed using pinv=0 for all different models (see
table 3.1).

Topology Dataset Models (see table 3.1) Parameters

1a GTR1
1b GTR1/21
1c GTR1/2/3/4

2a GTR1 GTR+Γ+I (continuous Γ)
2b GTR1/2 or2
2c GTR1/2/3/4 GTR+Γ (discrete Γ)

3a GTR1
3b GTR1/5
3c GTR1/53

3d GTR1/5

44



3 Split Residual Diagnostics for Phylogenetics 3.2 Materials and Methods

Empirical Data Several published datasets were chosen for parametric boot-
strapping and split analyses. Nucleotide MSAs presenting a diverse combina-
tion and mixture of organisms were selected to cover a spectrum of different
species and branches within the tree of life (table 3.3).

Table 3.3: Empirical datasets used in the analyses. They were chosen accordingly to cover
a spectrum of different species and clades within the tree of life.

original masked
Dataset #Taxa #Sites #Taxa #Sites Reference

Monocots/Dicots 14 26,976 14 26,976 Goremykin et al. (2005)
Cormorants/Shags 33 1,141 28 1,000 Holland et al. (2010)
Vertebrata 25 13,856 25 13,855 Phillips et al. (2004)
Fungi/Metazoa 32 36,180 19 19,707 Rokas et al. (2005)
Malacostraca 28 2,365 28 1,413 Wägele et al. (2003)

The published MSAs had to be preprocessed for the analysis. The impact of
gapped or missing positions and ambiguous data can neither be proven nor
accurately be reflected by the parametric bootstrap datasets to be comparable.
Therefore, the empirical MSAs were screened for missing and ambiguous data,
and gaps. To keep as much data as possible, all sequences of the MSAs were
checked if they contain over-proportional amount of missing or ambiguous data
or gaps and either taxa or sites were masked. Table 3.3 shows the size of the
datasets before and after masking.

3.2.2. Phylogenetic Analyses and Parametric Bootstrapping

ML Simulated datasets were analysed with PhyML 3.0 (Guindon et al., 2010)
using different options. The gamma-shape parameter (α) was estimated by ap-
proximating with (i) 4, (ii) 12 or (iii) 25 rate categories, either using mean
or median to analyse whether this makes a difference for the adequacy of
the estimated model. Since the number of rate categories for approximat-
ing the gamma distribution turned out to produce no significant difference for
the occurrence of over- or underrepresented splits, all empirical datasets were
analysed with PhyML with only four rate categories for approximating the
gamma distribution. The α was estimated by using the mean option. All de-
scribed analyses of the simulated datasets were carried out estimating either
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pinv or fixing pinv=0 (all sites are assumed variable and allocated to gamma-
rates).

Parametric Bootstrapping To constitute as a reference set to test if over-
or underrepresented splits occur using the true parameters, for all simulated
datasets parametric bootstrap datasets were generated based on the model
conditions of the original dataset (see Fig. 3.5). For these datasets and cor-
responding bootstrap MSAs it is expected that no over- or underrepresented
splits occur for the split residual diagnostics.

Figure 3.5: Flowchart of testing the analysis. For every simulated dataset the used model
parameters are used again to build 100 parametric bootstrap alignments. These
datasets are then used as a reference rest set for the split residual diagnostics.

Subsequently, for all ML analysed datasets, i.e. the simulated and the empirical
datasets, the best fitting trees including branch lengths, base frequencies, sub-
stitution parameters, α and pinv were used to generate parametric bootstrap
datasets (see Fig. 3.1).

3.2.3. Split Analysis: Over- and Underrepresented Splits

Both, the empirical datasets and the corresponding parametric bootstrap
datasets, were analysed for RY splits. Only splits which occurred more
than five times were taken into account, since an occurrence of less than
five times is expected as not significant for datasets with mostly more than
10,000 sites.

All occurring splits were recorded and the sites supporting these were summed
up and listed as observed positions. Based on this, the bootstrap datasets were
screened for the recorded splits and all supporting sites were summed up. Splits,
which occurred in the original dataset more often than in every corresponding
parametric bootstrap dataset were classified as overrepresented. Splits which
occurred less often were classified as underrepresented.
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The extent of deviation of split spectra between both, the analysed dataset
and its bootstraps, can be estimated by calculating the difference between the
observed and expected (mean) number of split occurrences. The mean value
of occurrence for a split (OSmean) present in the parametric bootstrap datasets
was calculated by dividing the total number of occurrence by the number of
bootstrap datasets (see equation (1)).

OSmean “

n
ÿ

i“1

OSi

n
(1)

where

OSi
= amount of occurrence for a split S in bootstrap replicate i

S = each recorded split S in the original dataset
n = number of bootstrap replicates

If the estimated evolutionary model fits the dataset adequately, we would
expect that the mean amount of occurrence for a split S over all n bootstrap
replicates (OSmean) is similar to the observed amount of occurrence for a split
S in the original dataset (OSorg , see equation (2)).

OSorg « OSmean (2)

Two new MSAs are created, which represented the over- or underrepresented
splits equal to the difference in amount of occurrence (OSdiff

) of a split S.
This difference is determined between the observed amount of occurrence (orig-
inal dataset) and the expected (mean) amount of occurrence over all bootstrap
replicates (see equation (3)).

OSdiff
“ OSorg ´OSmean (3)

The new MSAs are visualized as Neighbor-Net networks (Bryant & Moulton,
2004) (OrdinaryLeastSquares variance) in SplitsTree 4 (Huson & Bryant, 2006),
version 4.12.3.
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3.3. Results

3.3.1. Simulated Datasets

All tests with the reference sets for the simulated MSAs showed no over- or un-
derrepresented splits. The results for the discrete gamma-distributed datasets
(table 3.4) showed a homogeneous distribution of over- and underrepresented
splits for both, stationary and non-stationary datasets. In contrast to this,
there is a certain increase of over- and underrepresented splits for the continu-
ously simulated datasets (table 3.5) from stationary to non-stationary datasets.
Though, the number of over- or underrepresented splits does not vary signif-
icantly between datasets which were analysed using different numbers of rate
categories to approximate the gamma distribution.

Figure 3.6: Stationary simulation 3a: all branches were simulated with the same evolution-
ary model. Left: underlying tree/model combination of analysed dataset, esti-
mated: GTR+Γ+I, with four rate categories and using the mean to approximate
the gamma distribution. Right: Neighbor-Net visualization of overrepresented
splits resulting from parametric bootstraps and RY split analysis.

The overrepresented splits are always more frequent, while the underrepre-
sented splits are in most cases rare (see tables 3.4 and 3.5).

The generated MSAs which reflect the over- and underrepresented splits pro-
portionally to their deviation to the mean occurrence of the bootstrap datasets
could be visualized and analysed within Neighbor-Net networks. Simulation
3a (see Fig. 3.6, left panel) is based on a tree whose branches are all evolving
under the same evolutionary model. In this case only a few overrepresented
splits are present (see Fig. 3.6, right panel).

The red coloured branches of the topology of the other datasets (Figs. 3.7,
3.8 and 3.9) were simulated with different evolutionary parameters. Taxa,
which are not captured by the estimated model can be detected within the
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Figure 3.7: Non-stationary simulation 3b: the red coloured branches were simulated with
different evolutionary model parameters than the black coloured branches. Left:
underlying tree/model combination of analysed dataset, estimated: GTR+Γ+I,
with four rate categories and using the mean to approximate the gamma dis-
tribution. Right: Neighbor-Net visualization of overrepresented splits resulting
from parametric bootstraps and RY split analysis.

overrepresented splits showing long branches. For simulation setup 3d (Fig. 3.9)
there are splits present, which group branches that evolve according to same
parameters, although they had no monophyletic origin.

Figure 3.8: Non-stationary simulation 3c: the red coloured branches were simulated with
another evolutionary model than the grey coloured branches. Left: underly-
ing tree/model combination of analysed dataset, estimated: GTR+Γ+I, with
four rate categories and using the mean to approximate the gamma distribu-
tion. Right: Neighbor-Net visualization of overrepresented splits resulting from
parametric bootstraps and RY split analysis.
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Table 3.4: Results of the analysis for over- and underrepresented splits of model-homo-
and heterogeneous datasets. All datasets were simulated with discrete
GTR+Γ (four rate categories) and analysed with GTR+Γ+I.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or underrepresented splits;
split = amount of splits detected as over- or underrepresented;
sites = number of sites which represent all over- or underrepresented splits;
green cells = no over- or underrepresentation.

Over Under
Dataset ML analysis options splits sites splits sites

reference set 0 0 0 0
mean 3 22 0 0GTR+Γ+I, 4 cat median 3 22 0 0
mean 3 147 0 0GTR+Γ+I, 12 cat median 3 24 0 0
mean 4 160 0 0

setup 1a

GTR+Γ+I, 25 cat median 2 120 0 0

reference set 0 0 0 0
mean 3 16 0 0GTR+Γ+I, 4 cat median 6 36 1 116
mean 4 154 0 0GTR+Γ+I, 12 cat median 4 107 0 0
mean 3 154 0 0

setup 1b

GTR+Γ+I, 25 cat median 4 139 0 0

reference set 0 0 0 0
mean 6 65 1 21GTR+Γ+I, 4 cat median 7 66 1 29
mean 6 171 2 48GTR+Γ+I, 12 cat median 5 59 2 48
mean 6 175 2 47

setup 1c

GTR+Γ+I, 25 cat median 7 174 2 47

reference set 0 0 0 0
mean 8 89 3 62GTR+Γ+I, 4 cat median 6 91 3 156
mean 3 39 1 20GTR+Γ+I, 12 cat median 3 66 1 20
mean 3 40 1 20

setup 2c

GTR+Γ+I, 25 cat median 4 78 1 20

reference set 0 0 0 0
mean 7 195 0 0GTR+Γ+I, 4 cat median 6 190 2 143
mean 8 257 1 17GTR+Γ+I, 12 cat median 5 210 1 18
mean 8 262 1 17

setup 3d

GTR+Γ+I, 25 cat median 8 256 2 39
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Table 3.5: Results of the analysis for over- and underrepresented splits of model-homo-
and heterogeneous datasets. All datasets were simulated with continuous
GTR+Γ+I and analysed with GTR+Γ+I.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or underrepresented splits;
split = amount of splits detected as over- or underrepresented;
sites = number of sites which represent all over- or underrepresented splits;
green cells = no over- or underrepresentation.
The darker the orange cells, the more over- or underrepresented splits were
observed. The darker the blue cells, the higher the deviation observed and
expected amount of split occurrence.

Over Under
Dataset ML analysis options splits sites splits sites

reference set 0 0 0 0
mean 5 49 1 151GTR+Γ+I, 4 cat median 7 61 1 181
mean 6 53 0 0GTR+Γ+I, 12 cat median 5 39 0 0
mean 4 34 0 0

setup 1a

GTR+Γ+I, 25 cat median 8 63 0 0

reference set 0 0 0 0
mean 5 565 13 402GTR+Γ+I, 4 cat median 6 545 12 450
mean 3 543 10 187GTR+Γ+I, 12 cat median 4 537 10 306
mean 6 565 12 213

setup 1b

GTR+Γ+I, 25 cat median 7 567 7 129

reference set 0 0 0 0
mean 40 885 6 231GTR+Γ+I, 4 cat median 42 896 5 288
mean 38 844 5 162GTR+Γ+I, 12 cat median 45 918 5 163
mean 37 831 7 185

setup 1c

GTR+Γ+I, 25 cat median 38 851 4 128

reference set 0 0 0 0
mean 43 930 7 182GTR+Γ+I, 4 cat median 45 963 7 311
mean 43 917 8 186GTR+Γ+I, 12 cat median 41 914 9 185
mean 40 916 6 199

setup 2c

GTR+Γ+I, 25 cat median 39 872 10 229

reference set 0 0 0 0
mean 51 1706 21 931GTR+Γ+I, 4 cat median 53 1771 24 1070
mean 52 1725 25 867GTR+Γ+I, 12 cat median 53 1713 20 824
mean 53 1714 22 851

setup 3c

GTR+Γ+I, 25 cat median 53 1713 23 861
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Figure 3.9: Non-stationary simulation 3d: the red coloured branches were simulated with
another evolutionary model than the grey coloured branches. Left: underly-
ing tree/model combination of analysed dataset, estimated: GTR+Γ+I, with
four rate categories and using the mean to approximate the gamma distribu-
tion. Right: Neighbor-Net visualization of overrepresented splits resulting from
parametric bootstraps and RY split analysis.

3.3.2. Empirical Datasets

For the datasets of Holland et al. (2010) and Wägele et al. (2003) neither over-
nor underrepresented splits were found.

The Neighbor-Net network of the overrepresented splits of the dataset of Gore-
mykin et al. (2005), containing monocots and dicots, shows very long branches
for the outgroup species. Further, the grasses (Zea, Triticum and Oryza) are
grouped together, but they share strong split support with Oenothera, which
belongs to the eudicots. Calycanthus shows more splits in common with Am-
borella, than the estimated model shows.
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Figure 3.10: Monocots/Dicots, (Goremykin et al., 2005) - ML tree and split network. On
the left hand side, the split networks for the overrepresented splits are shown.

Rokas et al. (2005) published a dataset spanning a wide range of Fungi and
Metazoa. A long branch within the ML tree clearly separates Metazoa from
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Fungi. Fig. 3.11 shows that this separation is also present within the overrep-
resented splits.

Figure 3.11: Fungi/Metazoa, (Rokas & Carroll, 2005) - ML tree and split network. On the
left hand side, the split networks for the overrepresented splits are shown.

The dataset published by Phillips et al. (2004) includes a wide range of Eu-
karyota. The overrepresented splits (see Fig. 3.12, right hand side) show that
the chosen evolutionary model does not seem to fit adequately for several taxa.
There are long branches for Mammalia as well as for aves, which separate them
from the amphibians.

Figure 3.12: Vertebrata, (Phillips et al., 2004) - ML tree and split network. On the left
hand side, the split networks for the overrepresented splits are shown.
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3.4. Discussion

For this study a number of different nucleotide MSAs, based on different topolo-
gies, branch lengths and evolutionary models were simulated to test the effect
of model heterogeneity caused by different extends of non-stationarity on model
adequacy. While the arrangements of evolutionary models varied for different
branches or clades, the ML analysis estimates only one set of model parameters
to cover the evolutionary processes of the whole tree. These estimated mod-
els were used as basis for parametric bootstrap datasets, which then represent
a distribution of MSAs that reflect the estimated model parameters. Thus,
those datasets represent what can be expected, if the model fits adequately to
the analysed original dataset. If the model covers the data well, the original
and the bootstrap datasets should show the same characteristics, such as the
split spectrum. The split spectra of the original and the bootstrap datasets
were screened for splits, which occur over- or underrepresented within the orig-
inal dataset compared to their occurrence within the parametric bootstrap
datasets.

The analyses of the simulated datasets showed in most cases more over- than
underrepresented splits. This implies that the irregularities of model fit have a
much higher impact on an increase of occurrence of certain splits. This could
be a hint, that the chosen models are not to complex or over-parametrised. A
significant variance in amount of overrepresentation depending on the number
of used categories for modelling the gamma distribution in the ML analysis was
not observable. This can be due to the balancing effect of using an RY recoding
and splits instead of analysing the pattern distribution, for which analysing with
only four rate categories for approximating the gamma distribution can be a
cause for model-misspecification (see chapter 2).

For the datasets which were simulated using four rate categories for approxi-
mating the gamma distribution only a few overrepresented or underrepresented
splits were observed (see table 3.4). Also there were only marginal differences
between stationary and non-stationary datasets. Contrary to this, the analyses
of the simulated datasets with a continuous gamma distribution (see table 3.5)
showed a similar distribution of over- or underrepresented splits for stationary
datasets, but a tremendous increase of overrepresented splits for non-stationary
datasets. This indicates, that the estimated model can not entirely handle the
differences of the used model parameters and consequently causes a deviation
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of occurrence for certain splits. Moreover, since the results for the datasets
which were simulated with a discrete gamma distribution show split residuals
to a lesser extent than the simulations based on a continuously gamma dis-
tribution, it seems as if the heterogeneity of model parameters combined with
a continuous gamma distribution and therefore non-stationarity leads to an
inadequacy of the estimated models.

For a simulation setup with short branch lengths, there was no noticeable
divergence of over- or underrepresentation and only few splits identifiable (see
Appendix, Fig. A.2 and tables A.7, A.8, A.9 and A.10). This indicates, that
model adequacy is harder to assess the longer the branches are. However,
there is no clear pattern which can be derived to decide, if a dataset evolved
too heterogeneous (in the aspect of stationarity) to be assessed correctly by
only one chosen statistical model. But a certain amount of overrepresented
splits may indicate an inadequacy.

To get a closer look at the splits which are overrepresented, the MSAs repre-
senting the residual splits were visualized in SplitsTree using Neighbor-Net. For
the stationary dataset the Neighbor-Net network showed only overrepresented
splits for the outgroup and the clade containing the longest branch (Fig. 3.6).
This shows, that the estimated model does not lead to a concerning amount
of split residuals and therefore explains the data quite well. Only the com-
plexity of taxa which cause long branch distances based on outgroup choice
are clearly observable and cannot be be explained in every detail by the
model.

With a clade evolving according to different model parameters within the se-
quence set (Fig. 3.7), the estimated model has to balance these differences with
only a single parameter set for the whole tree. This leads to an increase of over-
represented splits and divides the Neighbor-Net network into three groups, sep-
arating the sequences which evolve according to a different set of evolutionary
parameters from its sister group and the outgroup sequence. This implies, that
the model is not able to adequately cover a wide range of splits, in most cases
trivial splits, if a certain amount of sequences evolves differently. A dataset for
which the sequences are evolving according to two different sets of evolutionary
parameters in a ratio of one to two leads to an estimated model which is not
able to fit adequately neither the first nor the second clade. Instead it leads
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to balanced occurrences of split residuals (over- or underrepresented splits) for
the whole sequence set.

Clades with nested branches which evolve according to a different set of model
parameters, lead to an increased number of trivial splits for the involved se-
quences and the ’following’ sequences with the longest branches. For the clade
with the highest amount of sequences which evolved according to the same
evolutionary parameters (see Fig. 3.8) this leads in contrast only to small split
deviations. This indicates, that the chosen model fits better for the largest
stationary sequence set, whereas the model seems to be inadequate for the
nested sequences which evolved under different parameters, as well as for the
’following’ sequences, since a lot of split occurrence can not be explained by
the model parameters.

For a dataset with two nested clades evolving under the same model conditions,
some overrepresented splits are supporting a clustering of both clades, even
though they are clearly separated in the underlying tree (Fig. 3.9). This indi-
cates that the chosen model is not able to describe this condition of the original
dataset, which can lead to bias during tree reconstruction.

All Neighbor-Net networks of non-stationary datasets show an increase of over-
represented trivial splits, which divide one sequence and the rest, mostly for the
sequences evolving according to different parameters than the largest station-
ary clade. It seems as if this behaviour is caused by the amount of sequences
evolving stationary or the ratio of amount of sequences, which evolve under
different conditions. Datasets 3c and 3d include different clades, even para-
phyletic ones, which do not induce an increase of overrepresented trivial splits.
Here, it should be analysed further, if the occurrences of trivial splits are due
to an increase of invariant sites for the sequences which evolved according to a
second model (red coloured branches for setup 3).

The datasets by Holland et al. (2010) and Wägele et al. (2003) showed nei-
ther over- nor underrepresented splits. This could be caused by the high
amount of sequences in relation to the number of sites. Further, the chosen
sequences are more closely related than the sequences of the other datasets
allowing for a single model to better fit the underlying evolutionary pro-
cesses.
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The dataset of Goremykin et al. (2005) contains only 14 sequences with 26,976
sites, which is more likely to offer a big variety of splits in comparison to
the smaller datasets of Holland et al. (2010) and Wägele et al. (2003). The
Neighbor-Net networks of overrepresented splits (Fig. 3.10) show long branches
for the outgroup species. The grouping of grasses (Zea, Triticum and Oryza)
and Oenothera, which belongs to the eudicots, and Calycanthus sharing splits
with Amborella imply, that there is signal within the dataset, which cannot be
described well by the estimated model.

The Neighbor-Net networks of overrepresented splits for the datasets of Rokas
et al. (Fig. 3.11) and Phillips et al. (Fig. 3.12), both including a wide
range of organisms in their datasets, reflect well the separation of Metazoa
from Fungi (Rokas & Carroll, 2005), and Mammalia from aves and amphib-
ians (Phillips et al., 2004). It is striking that the Fungi/Metazoa split appears
dominantly within the set of overrepresented splits. This indicates, that the use
of a single model for such a wide range of taxa may balance differences, which
covers phylogenetic information insufficiently and in consequence can lead to
aftereffects. A further study should analyse Metazoa and Fungi seperately and
how this has an effect on the estimated model parameters as well as on the
overrepresented splits.

For the vertebrate dataset (Phillips et al., 2004) the overrepresented splits show
a comparable pattern to the ones of setup 3c and 3d. The largest subgroup
(Mammalia) which can be supposed to be closely related and therefore is most
likely to share similar evolutionary parameters, are clustered together within
the overrepresented splits. Similar to this, a strong overrepresented split clus-
ters the sequences of aves together and divides them from Mammalia and am-
phibians. In contrast to this, the sequences of the amphibians show a huge
amount of trivial splits which are present within the split residuals. This can
be observed as well within datasets of setup 3c and 3d for the smaller group
of sequences which evolved stationary. In fact, in comparison to Mammalia
the amphibians constitute a smaller subgroup of the complete sequence set.
Similar to the dataset of Rokas et al. (2005), the strong splits which separate
Mammalia from aves and amphibians and aves from Mammalia and amphib-
ians should be covered by the model instead of appearing within the split
residuals. Thus, the overrepresentation of these splits can indicate model-
misspecification.
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In summary, the application of residual diagnostics in combination with split
analysis seems to be a reasonable method for analysing model adequacy. The
comparison of observed split frequencies to those expected under the model
(tree, branch lengths and model of nucleotide substitution) can indicate, if the
underlying datasets are covered well by the chosen model. If this is not the
case, it can give impressions whether the sequence set is too unbalanced (i.e.
occurrence of overrepresented trivial splits) or if there is a shift of evolutionary
processes, which might be a reason to apply different submodels (strong split
separating clades, Rokas et al., 2005, Phillips et al., 2004). Conveniently, the
results can be interpreted by visualizing them within Neighbor-Net networks,
but they do not approve a formalisation. Nevertheless, since RY recoding does
not take SRH conditions fully into account, the method can potentially be
improved by analysing splits without recoding.
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Nicht alles, was gezählt werden kann, zählt, und nicht alles, was
zählt, kann gezählt werden.
Albert Einstein



4 Split Analysis Methods and Split Weighting

4. Split Analysis Methods and Split Weighting -

Split Analysis of Aligned Nucleotide

Sequences

4.1. Introduction

Nucleotide MSAs can easily be suboptimal and lead to erroneous conclusions
of phylogenetic relationships if based on wrong assumptions or if they contain
uninformative regions due to strong substitutional saturation or strongly con-
served sections without phylogenetic signal (Dress et al., 2008). Additionally,
empirical data rarely support just one unique tree because of the presence of
diverse and incongruent signal (Goremykin et al., 2005). All of these phenom-
ena can influence the accuracy of the tree inference (Flook & Rowell, 1997;
Felsenstein, 2004; Susko et al., 2005; Löytynoja & Goldman, 2005; Ogden &
Rosenberg, 2006b; Misof & Misof, 2009).

Since tree inference by itself cannot help to identify confounding factors,
Bandelt and Dress proposed to combine phylogenetic analyses with a non-
approximative distance method of split decomposition (Bandelt & Dress, 1992),
and Hendy, Penny and Steel (1993; 1994) proposed the application of spec-
tral analysis, related to the Hadamard conjugation, to accompany tree infer-
ences.

Both approaches investigate an MSA based on splits without direct tree infer-
ence. A split is a bipartition with two subsets of sequences of the complete
sequence set characterized by distinct features. Within a phylogenetic con-
text based on nuclear sequence data these features are differences in nucleotide
or amino acid character states of an MSA. Theoretically, for a set of n taxa,
there are 2n´1 possible bipartitions (splits). In empirical datasets, however, the
number of realized splits is generally smaller. Splits are directly related to tree
topologies in a simple form. If there is exactly the same number of splits in a
dataset as there are edges in a possible binary topology, and if all the splits are
compatible to each other, only one tree topology is supported by the dataset.
Two splits A|B and C|D are compatible, if one of AXC, AXD, BXC and BXD
is empty.
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The Hadamard conjugation transforms a split spectrum (an enumeration of
observed splits, given n taxa) into a split vector describing the transformation
between split spectrum and MSA using evolutionary models. Lento et al. (1995)
used this approach to filter conflicting signals. But since this method estimates
support for all possible splits of a dataset (2n´1), the processing effort grows
exponentially with the number of taxa, this is clearly too computationally
intensive when handling more than 25-30 sequences.

Besides this, the complexity of nucleotide character states can be reduced to
binary character states by considering just purines and pyrimidines (RY splits).
This approach is much more computationally efficient, but lacks signal disclaim-
ing the information within the subsets. Software packages offering split meth-
ods are for example Spectrum (Charleston, 1998), Spectronet (Huber et al.,
2002), SplitsTree 4 (Huson & Bryant, 2006), PHYSID (Wägele & Rödding,
1998), and SAMS (Mayer & Wägele, 2005). They calculate and display for ex-
ample Lento-plots (Lento et al., 1995), median networks (Bandelt et al., 1995)
and Neighbor-Net networks (Bryant & Moulton, 2004).

SAMS (Splits Analysis M ethods) is a tool using a version of the so-called
’PHYSID’ method developed first by Wägele and Röding (1998), which was
later refined and extended by Mayer and Wägele (2005). Both tools try to dis-
sect phylogenetic signal in a dataset (Wägele & Mayer, 2007). SAMS considers
all four nucleotide character states but unlike the Hadamard transformation,
analyses an MSA only for observed splits.

In a first step, all splits present in the data are listed. Then, all sites of the MSA
are evaluated if they support each or some of those splits. If a site supports a
split, SAMS categorises this site support according to three different degrees of
quality. It differentiates between ’binary’ and ’noisy’ splits. The latter can be
refined to ’noisy only for one subset’ or ’noisy for both subset’. Sites account
for ’binary’ support, if a certain character occurs only within one subset, e.g.
AAA/CCC or AAA/GGT, and not within the other. They account for ’noisy
outgroup’, if a certain character occurs to 100% within one subset, and up to
25% (by default) within the other subset, e.g. AAAA/ACCC or CCCC/CGTT.
Sites account for ’noisy in- and outgroup’ support as well, if both subsets con-
tain character states up to a certain amount, which are predominant for one of
the subset, e.g. AAAC/ACC or GGGT/GTTC. By default, one subset must
have at least 75% character identity and the nucleotide which is predominant
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within this subset is allowed to occur in the other subset up to 25%. After de-
termination of supporting positions, the sequences are re-evaluated to exclude
split support caused by chance similarities. Therefore, supporting positions of
every sequence are checked pairwise against the corresponding positions of all
other sequences or a consensus sequence of the other split subset. A consensus
sequence is established by counting the occurring characters for each site. If
the most frequent character of a site occurs with a proportion larger than or
equal to a chosen consensus threshold (default=50%), and if no other charac-
ter occurs with this same proportion, this character is chosen as the consensus
character. Otherwise the consensus character is set as missing state. If the sim-
ilarity of this comparison is higher than a certain threshold (default=25%), the
detected positions will not longer be counted as supporting positions. This is
done to avoid biased positions with accumulated ’outgroup states’ which could
be plesiomorphies. In a final step, all supporting positions for every observed
split are counted.

The software delivers an output file, which lists all identified splits and their
total support, as well as values for different support qualities of which the to-
tal support is composed. The proportions which limit how many dominant
characters are allowed to occur within the other subset and of all other param-
eters, have default values, but can be adjusted without restrictions. SAMS is
written in C++ and is command line based, therefore it is flexible and platform
independent.

To enhance user-friendliness of the software package, a platform indepen-
dent general user interface (GUI) was developed, SAMS GUI (Meid et al.,
2012), which allows to adjust easily the parameters offered by SAMS (Mayer
& Wägele, 2005) and visualises the results within a split support spectrum.
This plot can be exported as image or scalable vector graphic file. More-
over, it offers the possibility to evaluate the identified splits for compatibil-
ity.

The weighting of splits in SAMS lacks a formal foundation. All limiting pa-
rameters have default values, but can be freely adjusted by the user. There-
fore, a new approach was developed which re-evaluates the splits found by
the SAMS algorithm (Mayer & Wägele, 2005) to assess a more objective split
weighting. The support of a split is rated based on the contrast between the
subsets of a split and on base of the nucleotide variance within a split subset.
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To evaluate the new approach, four topology setups were designed and used to
simulate nucleotide MSAs. All setups were analysed with SAMS and the new
weighting scheme.

4.2. Materials and Methods

4.2.1. Software Development

For split search SAMS version 1.4.3 (Mayer & Wägele, 2005) was used and
implemented within SAMS GUI (Meid et al., 2012). As programming language
C++ was used including the library Qt UI framework version 4.7.3 (Nokia et al.,
2011) for the development of the new GUI.

4.2.2. Weighting of Splits

A new approach was developed to rate the support of a certain split S within a
multiple nucleotide MSAs. In this approach, the support of the split patterns
is estimated via two criteria, the contrast weighting and the quality weighting.
The contrast weighting (C value) of a split S is calculated for every site s of
a given nucleotide MSA. The quality weighting (Q value) refers to each subset
(g1 and g2) of a split S for every site s within the MSA. To assess the ’weight’
(CQ value) for a certain split S, the C and Q values are multiplied for every
subset of every site s of the MSA and then summed up for each subset of the
split (g1 and g2).

C value weighting of the characters, contrast between two subsets
Given a nucleotide MSA which is divided into two subsets of the complete
sequence set, g1 and g2. The contrast Cs of this split with subsets g1 and g2
for a site s, is defined by the difference of the ’contribution’ of an event i of one
nucleotide in proportion to the total number of nucleotides, i.e. the relative
frequency (or empirical probability) of an event i for a site s. In this context,
an event i is an occurrence of a certain nucleotide for a site.

Cs “
|fsAg1

´ fsAg2
| ` |fsCg1

´ fsCg2
| ` |fsGg1

´ fsGg2
| ` |fsTg1

´ fsTg2
|

2
(4)
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where

Cs = contrast of subsets g1 and g2 for a certain site s
fsi = relative frequency (or empirical probability) of an event i for a site s

The C value can then be calculated by summing over all sites:

C “
sn
ÿ

s“1

Cs (5)

C = the contrast of the two subsets of a split S
sn = total number of sites s

Q value quality of a pattern within a subset, rating of homogeneity
Given a nucleotide MSA which is divided into two sequence subsets, g1
and g2. The quality of pattern Q is calculated from the pattern homo-
geneity h of each subset of a split S for every site s within the nucleotide
MSA:

hsg “

´

fsAg
¨ nA

¯

`

´

fsCg
¨ nC

¯

`

´

fsGg
¨ nG

¯

`

´

fsTg ¨ nT

¯

Ng

(6)

where

hsg = rating of homogeneity of a pattern of a subset for a certain site s
ni = number of occurrence of event i
i = an event, occurrence of a nucleotide
Ng = total number of events, e.g. size of the subset

The relative frequency (fsig ) of an event i for a site s within a subset g is
calculated by the total number of occurrences of an event (ni) in proportion to
the total number of events:

fsig “
ni
Ng

(7)
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Therefore, equation (6) can be reduced to:

hsg “ f 2
sAg
` f 2

sCg
` f 2

sGg
` f 2

sTg
(8)

For example, a subset for which all sequences are having the same nucleotide
for a certain site, i.e. AAAA, would be classified as homogeneous, and hsg

would therefore be 1 (max) according to equation (8). A site with different
events for all sequences within a subset, i.e. ACGT, has the highest level of
disorder and is therefore the lower boundary (min). According to equation (8),
hsg = p1

4
q2 ` p1

4
q2 ` p1

4
q2 ` p1

4
q2 = 0.25 .

To normalise these boundaries for a range between 0 and 1 (see equation (9)),
the quality within a subset pattern Qsg for a certain site is calculated by sub-
tracting the min from hsg . The result is divided by max ´min (see equation
(10)).

rmin..maxs ÝÑ r0..1s : fpxq “
x´min

max´min
(9)

Qsg “

`

hsg ´ 0.25
˘

0.75
(10)

The quality of patterns for a certain site s is then calculated by summing up
Qsg of both subsets:

Qs “ Qsg1 `Qsg2 (11)

The quality of patterns for all sites, i.e. a split S is then assessed by summing
up over all sites:

Q “
sn
ÿ

s“1

Qs (12)

where

Qsg = quality of a pattern of a subset g for a certain site s for a split S
Qs = quality of patterns for a certain site s for a split S
Q = quality of patterns for a split S
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CQ value weighting for a certain split
Given the C values for every site s for every analysed split S and the Q values
for every subset g for every site for every analysed split S, the CQ support
values can be inferred. To calculate the CQ ’weight’ of a certain split S the
C and Q values are multiplied for every subset of every site s of the MSA
(equation (13)) and then summed up for each subset (g1 and g2, equation
(14)).

CQsg “ Cs ¨Qgs (13)

CQ “
sn
ÿ

s“1

CQsg1 ` CQsg2 (14)

where

CQsg = weighting for a certain split for site s for the subset g
CQ = weighting for a certain split S

By calculating the support of certain splits for a nucleotide MSA using these
equations, the CQ values can be calculated and compared.

4.2.3. Sequence Data

To compare the old and new weighting scheme, four MSAs with a length
of 10,000 nucleotide sites were simulated using INDELible V1.03 (Fletcher
& Yang, 2009) with the JC model of sequence evolution (Jukes & Cantor,
1969), a specified proportion of invariant sites (pinv= 0.3) and a continuous
Γ-distribution for among-site rate variation (ASRV) among non-invariant sites
with shape parameter α=1.0.

The tree for setup 1 (Fig. 4.1a) contains balanced branch lengths. The aim
is to create a dataset with clear phylogenetic signal. Setup 2 is based on
a tree (Fig. 4.1b) which includes long terminal branches. This was selected
to simulate a dataset incorporating an increased phylogenetic signal-to-noise
ratio.
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Figure 4.1: Simulation setups used for testing split search and weighting. The first tree
(a) for setup 1 is based on balanced branches while setup 2 is based on the
second tree (b) which includes long terminal branches. The third topology (c)
is used for setups 3 and 4, once with a moderate (setup 3, BL1 =0.1) and with
a strong intermediate short branch (setup 4, BL1 =0.01) between two long
internal branches.

The third topology (Fig. 4.1c) was taken from a study by Kück et al. (2012).
It was designed to test tree inference for datasets which are likely to cause
long-branch artefacts of class I effects (symplesiomorphy effect) (Wägele &
Mayer, 2007). The tree includes two long branches with a nested short branch
connecting them. Kück et al. (2012) showed that in case of two internal long
branches (Fig. 4.1c, BL2, in blue) with a length of „ 1.5 and an extremely
short internal branch (BL1 ) of length „ 0.01 (Fig. 4.1c, in green) the majority
of the maximum likelihood analyses of tested datasets failed to infer the correct
topologies. The topology was used for (i) setup 3 with a moderate (BL1 =0.1)
and for (ii) setup 4 with an extremely intermediate short branch (BL1 =0.01)
between the two long internal branches.

68



4 Split Analysis Methods and Split Weighting 4.3 Results

Figure 4.2: SAMS GUI - a nucleotide MSA file is chosen. In the Parameter interface dif-
ferent options can be chosen or adjusted. On the right hand side the current
SAMS NEXUS block corresponding to the parameter values is shown.

4.3. Results

4.3.1. SAMS GUI

Implementing an intuitive handling for various options remarkably improves
the user-friendliness of the software and can be summarized into three major
points:

1. It offers an automatic generation of a SAMS NEXUS block (Maddison
et al., 1997) by adjusting the parameters by text boxes, value sliders
or radio buttons within the parameter interface (see Fig. 4.2 on the left
hand side). By starting the SAMS analysis, the generated NEXUS block
is directly passed as parameter file to the SAMS analysis. The process
output can be tracked within the Process output tab. When the analysis
is finished, the GUI changes automatically to the tab Splits, which shows
the output file of SAMS .
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Figure 4.3: Top: SAMS split spectrum of an analysis of an MSA file from Remerie et
al. (2004) within the SAMS GUI. Bottom: The Compatibility mode is activated:
non-compatible splits are coloured in grey.

2. The output file is directly visualised as split spectrum (see fourth tab Split
spectra, Fig. 4.3, top). On the left hand side of the tab, different options
can be chosen. The interface allows to adjust the number of printed splits
and to switch between displaying the total split support or a representa-
tion which differentiates between the different support qualities. These
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spectra can be scaled and stored in several graphic file formats, raster
formats like JPEG, BMP and PNG as well as in scalable vector format
(SVG).

3. By activating the Compatibility mode, splits that are not compatible turn
into a grey colour (see Fig. 4.3, bottom). Either (i) all splits can be tested
whether they match to the best split or (ii) every split is tested separately
whether it is compatible to all earlier compatible splits, starting with the
first one and resulting in a set of splits, from which a topology can be
derived.

4.3.2. SAMS Analyses

Comparing both split spectra of datasets of setup 1 and setup 2, analysed with
SAMS default values, shows that setup 1 delivers a clear signal whereas dataset
of setup 2 contains much more noise. The dataset of setup 1 shows a few splits
with high support (see Fig. 4.4a spectra scheme at the top of the split spectra,
left hand side) and a high number of splits with lower supportive sites. The
best splits (1-6) match the bifurcations within the topology of the underlying
tree. When activating the Compatibility mode (Fig. 4.3, bottom), all following
splits are marked as not compatible with the ones which reflect the topology.
The shape of the second spectrum (see Fig. 4.4b) shows that the signal-to-
noise ratio is increased, which is clearly visible since the majority of splits have
similar support values. The splits which correspond to the underlying topology
of dataset of setup 2 are widely spread among the split spectra. Two of the
best supported splits are ranking first and second, the following ones received
ranks 50, 70, 99 and 103. Nevertheless, when checking for tree compatibility,
only the splits reflecting the true topology remain coloured.

4.3.3. Comparison of SAMS Support and CQ Weighting

The results for dataset of setup 1 show that the split which obtains the high-
est support is identical for the current SAMS and the new CQ method. The
remaining splits which match the bifurcations of the true topology (= the topol-
ogy on which the dataset is based), are ranked directly following the best split
for the SAMS support scheme. If arranged according to the CQ values, these
splits are placed on rank 11, 12, 14 and 17.
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Figure 4.4: Split spectra for the datasets of setup 1 (a) and 2 (b). The coloured splits are
compatible to a tree, while non-compatible splits are marked in grey colour.
Within the box (c) on the top right hand side the shapes of both spectra are
shown side by side.

The support values for the splits of setup 1 are listed in table 4.1 and 4.2.
Both tables contain the same information but are arranged differently, they are
sorted in descending order once according to SAMS (table 4.1) and according
to CQ values (table 4.2). All splits which are compatible to the underlying
topology are highlighted. The best supported splits (highlighted in green) are
ranked first and second for both methods. The yellow highlighted rows mark
remaining splits which fit the true topology.
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Table 4.1: Split support of dataset based on setup 1. Splits are ranked according to
SAMS split values. The green coloured rows mark the splits with highest
support for both methods, SAMS and CQ weighting. The yellow coloured
rows show the remaining splits which reflect the true topology.

SAMS CQ

Rank Support Rank Support g1 g2

1 1137 1 11281.56 (E,F,G,H) (A,B,C,D,O)
2 804 2 11135.98 (A,B,C,D) (E,F,G,H,O)
3 687 11 10236.18 (G,H) (A,B,C,D,E,F,O)
4 671 12 10082.90 (E,F) (A,B,C,D,G,H,O)
5 640 14 10028.63 (A,B) (C,D,E,F,G,H,O)
6 623 17 10006.84 (C,D) (A,B,E,F,G,H,O)
7 522 44 8063.75 (A,B,E,F) (C,D,G,H,O)

¨ ¨ ¨

Table 4.2: Split support of dataset based on setup 1. Splits are ranked according to
CQ split values. For the colour code see table 4.1.

CQ SAMS

Rank Support Rank Support g1 g2

1 11281.56 1 1137 (E,F,G,H) (A,B,C,D,O)
2 11135.98 2 804 (A,B,C,D) (E,F,G,H,O)
3 10540.35 17 253 (B,O) (A,C,D,E,F,G,H)
4 10513.03 16 272 (C,O) (A,B,D,E,F,G,H)
5 10456.00 18 249 (D,O) (A,B,C,E,F,G,H)
6 10395.48 20 237 (G,O) (A,B,C,D,E,F,H)
7 10373.94 21 233 (A,O) (B,C,D,E,F,G,H)
8 10372.44 24 224 (F,O) (A,B,C,D,E,G,H)
9 10354.39 22 231 (H,O) (A,B,C,D,E,F,G)
10 10325.69 19 244 (E,O) (A,B,C,D,F,G,H)
11 10236.18 3 687 (G,H) (A,B,C,D,E,F,O)
12 10082.90 4 671 (E,F) (A,B,C,D,G,H,O)
13 10055.01 11 317 (C,D,E,F,G,H) (A,B,O)
14 10028.63 5 640 (A,B) (C,D,E,F,G,H,O)
15 10009.46 13 298 (A,B,E,F,G,H) (C,D,O)
16 10008.25 14 289 (A,B,C,D,E,F) (G,H,O)
17 10006.84 6 623 (C,D) (A,B,E,F,G,H,O)

¨ ¨ ¨

73



4.3 Results 4 Split Analysis Methods and Split Weighting

Table 4.3: Split support of dataset based on setup 2. Splits are ranked according to
SAMS split values. For the colour code see table 4.1.

SAMS CQ

Rank Support Rank Support g1 g2

1 825 33 8567.51 (E,F,G,H) (A,B,C,D,O)
2 783 35 8392.43 (A,B,C,D) (E,F,G,H,O)
3 689 61 7897.53 (C,G,H,O) (A,B,D,E,F)

¨ ¨ ¨

49 525 2 10238.38 (D,O) (A,B,C,E,F,G,H)
50 524 10 9358.53 (C,D) (A,B,E,F,G,H,O)
51 524 115 7680.40 (B,F,G,O) (A,C,D,E,H)

¨ ¨ ¨

69 480 125 7633.70 (C,E,H,O) (A,B,D,F,G)
70 478 9 9413.77 (E,F) (A,B,C,D,G,H,O)
71 478 4 10055.79 (H,O) (A,B,C,D,E,F,G)

¨ ¨ ¨

98 443 119 7668.54 (A,C,F,O) (B,D,E,G,H)
99 439 12 9150.65 (G,H) (A,B,C,D,E,F,O)
100 439 118 7669.01 (B,C,G,H) (A,D,E,F,O)

¨ ¨ ¨

102 436 69 7862.65 (C,D,F,O) (A,B,E,G,H)
103 435 11 9220.41 (A,B) (C,D,E,F,G,H,O)
104 435 80 7790.70 (A,D,E,O) (B,C,F,G,H)

¨ ¨ ¨

Table 4.4: Split support of dataset based on setup 2. Splits are ranked according to
CQ split values. For the colour code see table 4.1.

CQ SAMS

Rank Support Rank Support g1 g2

1 10248.22 42 529 (B,O) (A,C,D,E,F,G,H)
2 10238.38 49 525 (D,O) (A,B,C,E,F,G,H)
3 10222.26 57 509 (A,O) (B,C,D,E,F,G,H)
4 10055.79 71 478 (H,O) (A,B,C,D,E,F,G)
5 10040.54 75 474 (E,O) (A,B,C,D,F,G,H)
6 9988.16 73 475 (C,O) (A,B,D,E,F,G,H)
7 9947.36 89 457 (F,O) (A,B,C,D,E,G,H)
8 9902.80 72 477 (G,O) (A,B,C,D,E,F,H)
9 9413.77 70 478 (E,F) (A,B,C,D,G,H,O)
10 9358.53 50 524 (C,D) (A,B,E,F,G,H,O)
11 9220.41 103 435 (A,B) (C,D,E,F,G,H,O)
12 9150.65 99 439 (G,H) (A,B,C,D,E,F,O)
13 8977.20 113 412 (A,D) (B,C,E,F,G,H,O)
14 8958.03 133 369 (B,D) (A,C,E,F,G,H,O)
15 8949.7 119 396 (F,G) (A,B,C,D,E,H,O)

¨ ¨ ¨

30 8678.56 136 368 (C,H) (A,B,D,E,F,G,O)
31 8637.37 146 351 (C,F) (A,B,D,E,G,H,O)
32 8592.65 127 375 (C,G) (A,B,D,E,F,H,O)
33 8567.51 1 825 (E,F,G,H) (A,B,C,D,O)
34 8537.60 149 348 (C,E) (A,B,D,F,G,H,O)
35 8392.43 2 783 (A,B,C,D) (E,F,G,H,O)
36 8360.79 140 361 (A,C,D,O) (B,E,F,G,H)

¨ ¨ ¨
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The split support values of dataset of setup 2 are listed in table 4.3 and table 4.4.
The tables contain the same values, but differ in sorting by SAMS (table 4.3)
or CQ split support values (table 4.4) in descending order. Splits which match
the bifurcations of the true topology are highlighted. The splits which are
highlighted in green are ranked first and second for the SAMS support values,
while these splits are downgraded by the CQ weighting to ranks 33 and 35. The
remaining splits which fit the true topology (yellow highlighted rows) are spread
across the split spectra range (50,70,99 and 103) if sorted by SAMS support.
While the best supported splits of the SAMS method are downgraded by the
CQ method, the yellow highlighted splits rise in rank to positions 9 to 12. The
upper ranks (1-8) are splits, each grouping the outgroup (O) with only one of
the other sequences.

The split support for datasets of setup 3 and 4 are sorted by current
SAMS (table 4.5 and 4.7) or the new CQ (table 4.6 and 4.8) weighting. Here,
the crucial splits leading to long branch attraction are marked. The split high-
lighted in green (L6,T10,T9 |rest) reflects the true topology, whereas orange
highlighted rows show the support for the split which defines L5 and L6 as sister
groups (Fig. 4.1c). The yellow highlighted split represents as well a wrong topol-
ogy, L5 is grouped together with T9 and T10. For both setups and analyses,
the splits which separate the taxa evolving along long branches (T10,T9 |rest
and L5,L6,T10,T9 |rest) receive the highest ranks.

For the dataset of setup 3 with the medium short internal branch (BL1 =0.1)
the current SAMS scoring scheme ranks the split reflecting a bipartition of a
wrong topology on the third position, whereas the split which is compatible
with the true topology follows on rank 8 (table 4.5). Sorted by CQ value, the
split matching the true topology is ranked much higher than the incompatible
splits (table 4.6).

The SAMS support results for the dataset of setup 4 with the extremely short
internal branch (BL1 =0.01) are similar to those of setup 3, whereas the split
which is compatible with the true topology is ranked worse among the other
splits (table 4.7). Arranged in descending order by CQ value, the split which
matches the true topology (L6,T10,T9 |rest), highlighted in green) is ranked
much higher than the incompatible split (L5,L6 |rest), highlighted in orange),
which is valued highly by the SAMS algorithm. However, another incompatible
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Table 4.5: Split support of dataset based on setup 3. Splits are ranked according to SAMS
split values. The green coloured row marks a split which reflects the true topol-
ogy. The orange coloured split conflicts the green coloured one and leads to a
false topology. The row which is coloured yellow shows the remaining alternative
split of the two competing splits, also incompatible with the true topology. All
rows highlighted in grey mark other splits which reflect the true topology as well.

SAMS CQ

Rank Support Rank Support g1 g2

1 2143 1 23082.29 (T10,T9) (Out,T1,T2,T3,T4,T7,T8,L5,L6)
2 2117 2 22295.45 (Out,T1,T2,T3,T4,T7,T8) (L5,L6,T10,T9)
3 1520 5 18300.75 (L5,L6) (Out,T1,T2,T3,T4,T7,T8,T10,T9)
4 533 45 11925.15 (Out,T1) (T2,T3,T4,T7,T8,L5,L6,T10,T9)
5 506 17 14644.15 (T1,T2,T3,T4,T7,T8,L5,L6) (Out,T10,T9)
6 482 33 13532.83 (Out,T1,T2,T3) (T4,T7,T8,L5,L6,T10,T9)
7 465 59 11236.57 (T7,T8) (Out,T1,T2,T3,T4,L5,L6,T10,T9)
8 432 3 19527.83 (Out,T1,T2,T3,T4,T7,T8,L5) (L6,T10,T9)
9 422 16 14777.71 (T8,T10,T9) (Out,T1,T2,T3,T4,T7,L5,L6)
10 401 39 12580.40 (Out,T1,T2) (T3,T4,T7,T8,L5,L6,T10,T9)
11 399 4 19325.89 (Out,T1,T2,T3,T4,T7,T8,L6) (L5,T10,T9)
12 392 36 12842.50 (T8,L5,L6) (Out,T1,T2,T3,T4,T7,T10,T9)

¨ ¨ ¨

Table 4.6: Split support of dataset based on setup 3. Splits are ranked according to
CQ split values. For the colour code see table 4.5.

CQ SAMS

Rank Support Rank Support g1 g2

1 23082.29 1 2143 (T10,T9) (Out,T1,T2,T3,T4,T7,T8,L5,L6)
2 22295.45 2 2117 (Out,T1,T2,T3,T4,T7,T8) (L5,L6,T10,T9)
3 19527,83 8 432 (Out,T1,T2,T3,T4,T7,T8,L5) (L6,T10,T9)
4 19325.89 11 399 (Out,T1,T2,T3,T4,T7,T8,L6) (L5,T10,T9)
5 18300.75 3 1520 (L5,L6) (Out,T1,T2,T3,T4,T7,T8,T10,T9)
6 17488.81 15 376 (Out,T1,T2,T3,T4,T7) (T8,L5,L6,T10,T9)

¨ ¨ ¨
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Table 4.7: Split support of dataset based on setup 4. Splits are ranked according to
SAMS split values. For the colour code see table 4.5.

SAMS CQ

Rank Support Rank Support g1 g2

1 2172 1 23030.98 (T10,T9) (Out,T1,T2,T3,T4,T7,T8,L5,L6)
2 2086 2 22457.18 (Out,T1,T2,T3,T4,T7,T8) (L5,L6,T10,T9)
3 1662 5 18808.03 (L5,L6) (Out,T1,T2,T3,T4,T7,T8,T10,T9)
4 539 48 12005.58 (Out,T1) (T2,T3,T4,T7,T8,L5,L6,T10,T9)

¨ ¨ ¨

17 328 9 16951.22 (T1,T2,T3,T4,T7,T8) (Out,L5,L6,T10,T9)
18 320 3 19206.37 (Out,T1,T2,T3,T4,T7,T8,L6) (L5,T10,T9)
19 314 4 19159.13 (Out,T1,T2,T3,T4,T7,T8,L5) (L6,T10,T9)
20 307 61 11332.11 (T7,T8,L5,L6) (Out,T1,T2,T3,T4,T10,T9)

¨ ¨ ¨

Table 4.8: Split support of dataset based on setup 4. Splits are ranked according to
CQ split values. For the colour code see table 4.5.

CQ SAMS

Rank Support Rank Support g1 g2

1 23030.98 1 2172 (T10,T9) (Out,T1,T2,T3,T4,T7,T8,L5,L6)
2 22457.18 2 2086 (Out,T1,T2,T3,T4,T7,T8) (L5,L6,T10,T9)
3 19206.37 18 320 (Out,T1,T2,T3,T4,T7,T8,L6) (L5,T10,T9)
4 19159.13 19 314 (Out,T1,T2,T3,T4,T7,T8,L5) (L6,T10,T9)
5 18808.03 3 1662 (L5,L6) (Out,T1,T2,T3,T4,T7,T8,T10,T9)
6 17621.47 13 377 (Out,T1,T2,T3,T4,T7) (T8,L5,L6,T10,T9)
7 17116.48 24 285 (Out,T1,T2,T3,T4,T7,T8,T10) (L5,L6,T9)

¨ ¨ ¨

split (yellow highlighted) is ranked higher than the split which is compatible
with the true topology (table 4.8).
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4.4. Discussion

With this work the split search tool SAMS is now available with a platform
independent and user friendly interface. All improvements offer a much more
convenient tool to perform and visualise a split analysis. By displaying the
split spectra within the GUI, the user can easily discriminate between datasets
containing clear or conflicting signal. The shapes of the split spectra visualise,
if strong splits are dominating the dataset. The presence of noise becomes
apparent by many splits with similar support values as shown in Fig. 4.4c).
While the first setup (Fig. 4.4a) delivers a clear signal, the split support val-
ues of the second setup (Fig. 4.4b), however, shows an ambiguous split spec-
trum.

For the tested setups the algorithm works well. The compatible split set of setup
1 (clear signal, Fig. 4.4a) contains only splits, which match the bifurcations of
the true tree. While these splits are all ranked best, the compatible split set for
the second setup (Fig. 4.4b), which was designed to contain more noise than
the first one, is widely spread within the split distribution. Nonetheless, the
compatible split set matches as well the true topology.

The comparison of the current SAMS and the new CQ split weighting for the
first setup (Fig. 4.1a) shows that the SAMS split weighting clearly outper-
forms the new CQ values. Splits matching the true topology are all placed
on ranks 1 to 6, whereas sorted according to CQ values, splits matching the
true topology are spread within ranks 1 up to 17. Though, since the two best
supported splits (T9,T10 |rest and L5,L6,T9,T10 |rest), are identical for both
methods, the splits which do not fit the true topology are rejected as incom-
patible.

The test for compatible splits delivers a set of splits which match the topology of
the dataset of the second setup (Fig. 4.1b) ordered by SAMS support. However,
this does not work for a CQ ranking order. Even though, the splits which are
compatible with the true topology are spread within range 1 up to 103 according
to the SAMS ranking and 1 up to 35 for the CQ weighting. The ranks 1 to 32
indicate that grouping of one sequence with the outgroup and splits with subsets
containing only two sequences in general are ranked higher. This might be
caused by similarities that occur for only two sequences, which match by chance
and in case all other sequences have different nucleotides. This is very likely the
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case, since the outgroup as well as the terminal sequences have long branches.
Subsequently, the C values are falsely scored very high.

For dataset of setup 3 (Fig. 4.1c) the new weighting scheme clearly outperforms
the current SAMS support scheme. Both splits which separate the taxa evolv-
ing along long branches received the highest ranks for both weighting methods.
The split containing the subset (L5,L6) falsely groups the two sequences to-
gether, which are separated only by a short intermediate branch between two
long branches and is ranked third by the SAMS support. In contrast, the new
CQ support calculation weights the true split (L6,T9,T10 |rest) much higher
and therefore leads to a split set containing the true rather than the false splits
(L5,L6 |rest and L5,T9,T10 |rest). In case the intermediate branch between
the two long branches is extremely short (BL1 =0.01, Fig. 4.1c), both meth-
ods fail to recover the true split. While the standard SAMS algorithm again
overrates the split L5,L6 |rest, by grouping the terminal taxa with long branches
together, the CQ scoring can handle this artefact. However, the new weighting
method is not able to distinguish between the grouping of L6,T9,T10 |rest and
L5,T9,T10 |rest. This is probably due to the lack of signal within the sequence
showing the intermediate short branch.

The results illustrate, that the new weighting scheme performs very well in most
cases. But the results are not always satisfying. The CQ values, especially the
C value, is sensitive to the size of the bipartitions, as it is much more likely, that
a smaller subset can have similarities by chance and therefore falsely induce a
strong contrast. Therefore, the weighting criteria should be adjusted to take
the size of the subsets into account.

Without using evolutionary models it is not possible to account for multiple
substitutions. A comparison of pairs of sequences, not only for one but for a few
sites, could partly counterbalance these effects. This could be realised with a
sliding window approach, which would allow to compare not only one site, but
several positions of two or more sequences. Similar to the row testing algorithm
of SAMS, sequence similarities could be taken into account to detect outliers,
supporting ’wrong’ splits. Additionally, identifying and removing columns of
random similarity within MSAs with tools like ALISCORE (Misof & Misof,
2009) could remove sites without usable phylogenetic information and therefore
considerably improve the split analysis.
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Moreover grouping the compatible splits to sets and comparing their total sup-
port could possibly allow for a statement useful for a phylogenetic reconstruc-
tion.

In conclusion, the development of a heuristic and easy-to-use split analysis that
is not only based on RY splits, but takes all nucleotides into account, would
offer a reasonable and hopefully enlightening tool to analyse datasets from a
different perspective.
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Überhaupt ist es für den Forscher ein guter Morgensport, täglich
vor dem Frühstück eine Lieblingshypothese einzustampfen - das
erhält jung.
Konrad Lorenz
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5. General Discussion and Future Prospects

In most analyses, model adequacy is only addressed if phylogenetic trees do
not meet the expectations. In the best case, a relative model goodness-of-
fit test is performed to identify the best model of a set of available (pres-
elected) models for the chosen reconstruction method. However, it has been
shown, that models which have been identified as best fitting are not necessarily
adequate for the dataset (Gatesy, 2007), especially, if the parameter assump-
tions of the model are violated (Felsenstein, 1978; Huelsenbeck & Hillis, 1993;
Yang et al., 1994; Swofford et al., 2001; Ho & Jermiin, 2004; Jermiin et al.,
2004).

The Goldman-Cox test has been suggested to identify model model adequacy.
In chapter 2 simulated data was used to investigate the performance of this
test. Different nucleotide MSAs with heterogeneous base composition and non-
stationary substitution processes were simulated to examine a mixture of mod-
els and its impact on the results of model adequacy estimation. For all sets of
topologies and branch lengths the GTR model has been used, combined with a
gamma distribution model to assess rate heterogeneity across sites and either
a proportion of invariable sites (pinvą 0) or pinv“ 0.

For the composition with a proportion of sites fixed to be invariable (pinvą 0),
the gamma distribution determines the rates for the remaining variable sites.
Either the continuous or the four rate category discrete gamma distribution
model was used to investigate whether the use of an adequate number of cate-
gories has a significant influence on model estimation and the results of model
adequacy tests.

Each topology was once simulated to evolve (i) stationary (according to one
model composition), (ii) with an increasing number of clades and (iii) with some
clades evolving according to different conditions of substitution rates, base fre-
quencies, invariant sites and rate heterogeneity. All datasets were analysed with
ML using different implementations, different number of rate categories (4, 12
or 25) for the discrete gamma distribution and a number of different parame-
ters (each run using mean or median as type of average for modelling gamma
distribution; GTR+Γ or GTR+Γ+I).

Parametric bootstraps for each simulated dataset were generated, based on the
respective ML estimates. The obtained pattern distributions were reviewed
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using the Goldman-Cox test. To ensure that the Goldman-Cox test accepts the
true model parameters, every simulated dataset and 100 reference bootstraps
based on identical model settings were evaluated. To exclude possible sources of
error and to ensure that the obtained results are reliable, a number of different
software implementations for sequence simulation and ML analysis were tested
and various parameter settings were selected. All variations had no influence
on the outcome.

The Goldman-Cox test can deliver false positive results. The predictions of
the test do not stringently correlate with the correctness of tree inference in
case of non-stationary datasets which were analysed with a model assuming
stationarity. ’Mimicking’ behaviour, a pattern distribution from a mixture
model which is identical to one generated from a different tree or trees (e.g., in
case of different gene trees) can be a possible cause. This implies that without
knowing that a dataset is stationary beforehand, the Goldman-Cox test does
not deliver fully reliable results.

The Goldman-Cox test itself is very conservative and sensitive to small model
deviations such as approximating the gamma distribution by using only four
categories, if it can be assumed, that rate heterogeneity is likely to follow a
continuous distribution. For datasets which did not violate the assumptions of
the model, the results show that the closer the number of chosen gamma rate
categories for a discrete distribution is to the true number, the more accurate
the results of the Goldman-Cox test. For datasets which violated the required
conditions of the chosen models, the model which is estimated during ML
analysis is often accepted by the Goldman-Cox test, although the resulting
topology of the ML tree is inaccurate.

While this shows that already assessing reliably model adequacy is not trivial,
it can just as little address the complexity of the causes for misspecification.
Even worse, using the Goldman-Cox test can lead to type II errors when return-
ing false positive results. Furthermore, present absolute model goodness-of-fit
tests, such as the Goldman-Cox test, deliver only a binary answer - either the
model is accepted as adequate or it is rejected as not adequate - but they
do not provide implications on what to do, if the model is rejected. There-
fore, it is of outstanding importance to develop new methods which are able
to provide insight into the misspecification and hints how to proceed with the
data.
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Numerous molecular phylogenies published during the past decade are con-
tradictory, even when large datasets where used and after applying elaborate
analyses. Undetected systematic errors and unsolved problems of data quality
evaluation and adequate substitution model selecting still persist. Therefore,
the second study (chapter 3) focuses on a new method to gain insight into pos-
sible reasons or avoidance of model misspecification. Split decomposition, the
study of split support and its visualization within splits graphs provide a valu-
able tool for gaining an overview of possible patterns and contradictory signal
or noise within datasets. Instead of analysing all site patterns of the datasets,
the amount of possible splits (2n´1 possible splits instead of 4n possible site
patterns for n taxa) is a reasonable recoding of phylogenetic information in
order to increase clarity and reduce computational effort. The method of split
analysis was therefore chosen and combined with the method of parametric
bootstrapping to perform split residual analyses for further analyses on how
models may be misspecified.

Simulated and empirical nucleotide MSAs were analysed with an ML implemen-
tation. The estimated evolutionary models including the tree, the substitution
parameters and the rate heterogeneity parameters were used for simulating
parametric bootstrap datasets. Both, the original datasets and the bootstraps
were recoded to RY code and the split spectra of the original datasets and
the spectra of their corresponding bootstraps were compared. Splits occurring
more or less often in the analysed dataset as in every corresponding bootstrap
dataset were classified as over- and underrepresented, respectively, and visu-
alised in phylogenetic split networks. Simulated datasets were used to compare
the estimated model parameters to the known statistical background. While
the empirical datasets were analysed to understand, how the findings can be
applied to assess model adequacy in phylogenetic analysis.

The analysis of model adequacy is influenced by a number of things. First,
the chosen models seem to fit best to the largest subset of sequences which
evolve according to the same evolutionary parameters. Datasets which evolved
under globally SRH conditions (Jayaswal et al., 2005) mostly produced only
a few splits which deviated in their amount from the parametric bootstrap
datasets, representing the statistical model. For datasets which are based on
compositions including one or more clades of sequences evolving according to
different model parameters as the rest of the tree, the amount of over- and
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underrepresented splits (split residuals) is increasing. It is noticeable, that
mostly trivial splits are overrepresented for those sequences, which belong to
the smaller subgroup sharing the same model conditions.

Using incorrect a priori assumptions about the dataset, i.e. discrete gamma
distribution for analysis of datasets which can be expected to follow a continu-
ous gamma distribution, can also have an influence on model adequacy. For the
datasets which were simulated with a discrete gamma distribution with four
rates only a small number of split residuals were occurring, for stationary as
well as for non-stationary compositions.

Moreover, taxon sampling can have a strong influence on the assessment of
model adequacy. The use of only one model for datasets containing sequences
of a wide range of organisms may balance differences and therefore leaves out
potential phylogenetic signal. The split networks of the empirical datasets
show, that overrepresented trivial splits are present here as well. Moreover, it
seems as if splits which divide Fungi from Metazoa in the dataset of Rokas et
al. (2005) are not covered well by the estimated model, even though it can be
expected that these evolved unequally.

Although split residual diagnostics as applied in this study seems to have the
power to make headway in better understanding model adequacy, using RY
splits does not completely exploit all possible sources of misspecification. This
recoding may balance effects, such as base composition bias (systematic error)
and bias caused by heterotachy (Sims et al., 2009; Ho et al., 2006), which should
also be taken into account. The third study focuses on establishing a new
formal split weighting scheme to re-evaluate splits, which were detected by the
split search tool SAMS. In order to test this new weighting scheme, SAMS was
extended and is now available with a platform independent and user friendly
interface to provide an overview of all parameters which are easily adjustable
by text boxes, value sliders or radio buttons. The results can be visualised
within a split spectrum and stored in several graphic file formats. By using
the Compatibility mode the splits are evaluated if they are compatible with the
best split or all splits fitting together as tree. A new split weighting scheme,
which formalises aspects like ’contrast of character states’ and ’character state
homogeneity’ within split subsets was introduced and tested with simulated
MSAs.
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All of these improvements offer a much more capable tool to perform a split
analysis and visualise the results. Moreover, the split analysis itself offers a
valuable tool to analyse datasets from a different perspective. The shape of
the visualised split spectra can demonstrate, if the dataset delivers a clear split
signal or if there is a lot of noise present. In the latter case, the spectrum
consists of splits with almost similar support. Whereas a clear signal shows
a few splits with strong support, while the other split support values follow
a strongly declining trend. Overall, the new split weighting scheme performs
quite well, but should be adjusted to take the size of the subsets into account.
For the datasets which combined a long branch with a medium short inter-
mediate branch, the new scheme outperformed the old split weighting. For
the dataset with an extreme short intermediate branch, both schemes failed to
detect the split which corresponds to the true topology.

Both presented split weighting methods and as well a Hadamard approach
should be the starting point for a new study in which datasets and correspond-
ing bootstraps are screened for split residuals. This should yield deeper insights
on model misspecification. Additionally, trivial splits could be excluded to gain
a better view on splits of phylogenetic interest. Furthermore, one could apply
alignment masking methods on the simulated datasets before the analysis and
to design simulation setups with different partitions.

In summary, phylogenetic tree reconstruction should not be considered as a
’black box’. There are already methods available which can be applied at vari-
ous steps during the analysis. Especially recent advances in the field of genomics
produce empirical datasets which are by no means simplified homogeneous data
sets of perfect quality without any misleading evidence of relationships or sat-
uration. The analysis of MSAs with the Goldman-Cox test delivers plausible
results for datasets, which match all conditions assumed by the chosen evo-
lutionary model. The model, however, must not be limited to undervalued
fixed values, because this can lead to misspecifications. Unfortunately, there
is no method available to test how many categories should be modelled for
approximating the gamma distribution. Ignoring this factor or relying on a
traditionally used value can lead to wrong results. For simulated data with
rates following a continuous gamma distribution, however, the results seem to
be reliable if at least 12 discrete gamma categories are used. This behaviour
should be studied in more detail in future analyses. Most likely, the catego-
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rization of the gamma distribution should by itself be subject to a maximum
likelihood approach. This is currently not implemented in any of the available
software packages.

Furthermore, if the SRH assumptions are known to be incompatible with
the data, models should be considered which do not require these assump-
tions (Jayaswal et al., 2014). If these can be used as well for sequence simula-
tion, the Goldman-Cox test could perform much better for data which do not
meet the SRH condition.

The analyses of non-stationary datasets show that the application of globally
fitted substitution models which do not account for taxon or clade specific
patterns increases the risk of biased tree reconstructions and misleading arte-
facts. The identification of these artefacts in empirical data is almost impossi-
ble.

As a consequence, the difference between local taxon or clade specific variation
of the substitution parameters and a globally fitted model should be studied.
A possible follow up action could be a conceptional shift from simply fitting
a single substitution model to the analyses of model adequacy and the subse-
quent application of submodels to reduce potential biases in phylogenetic tree
inference.
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A Appendix

A. Appendix

A.1. Simulated Datasets

A.1.1. Topologies and Simulations

For testing the analyses several simulation setups were generated and analysed.
Within the chapters, the simulation setups were renamed. Different coloured
branches are highlighting sequences which evolved according to varied evolu-
tionary parameters.

Figure A.1: Simulation setups S_50, 51 and 52
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Figure A.2: Simulation setups S_60, 61 and 62
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Figure A.3: Simulation setups S_70, 71 and 72
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Figure A.4: Simulation setups S_80, 81 and 82
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Figure A.5: Simulation setups S_83, 85 and 86
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Figure A.6: Simulation setups S_94, 97 and 88
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Figure A.7: Simulation setups S_84, 87 and 89
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A Appendix A.1 Simulated Datasets

Table A.1: Combinations of datasets and analysis options used. Several combinations of topologies, branch
length and evolutionary models were simulated and analysed. All simulations using continuous
gamma-distribution were generated i) using a proportion of invariant sites (pinv) or ii) with
pinv=0 for all different models (see table 2.1). The simulation runs using discrete gamma-
distribution with 4 rate categories were all performed using pinv=0 for all different models. The
maximum likelihood analyses were performed six times, using i) 4, ii) 12 or iii) 25 rate categories
and using either the mean or median.

Simulation ML Estimated # of bootstrap
Dataset Model software software parameters replica

S_50 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_51 GTR1/2 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_52 GTR1/2/3/4 INDELible PhyML GTR+Γ or GTR+Γ+I 100

S_60 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_61 GTR1/2/3 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_62 GTR1/2/3/4/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100

S_70 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_71 GTR1/2 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_72 GTR1/2/3/4 INDELible PhyML GTR+Γ or GTR+Γ+I 100

S_80 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_81 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_82 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_83 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_84 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_85 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_86 GTR1 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_87 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_88 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_89 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_94 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100
S_97 GTR1/5 INDELible PhyML GTR+Γ or GTR+Γ+I 100

Table A.2: Combinations of datasets and software used in the analysis. Several combinations of topologies,
branch length and evolutionary models were processed using different sequence simulation and
maximum likelihood implementations in order to test their impact on the results.

Simulation ML Estimated # of bootstrap
Dataset Model software software parameters replica

S_80 GTR1 INDELible PhyML GTR+Γ+I 100
S_80 GTR1 INDELible PhyML GTR+Γ+I 1,000
S_80 GTR1 Seq-gen PhyML GTR+Γ+I 100
S_80 GTR1 Seq-gen PhyML GTR+Γ+I 1,000
S_80 GTR1 MultimoSeqSim PhyML GTR+Γ+I 100
S_80 GTR1 MultimoSeqSim PhyML GTR+Γ+I 1,000
S_80 GTR1 INDELible PhyML GTR+Γ+0.3 100

continued on next page...
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Table A.2 – continued from previous page

Simulation ML Estimated # of bootstrap
Dataset Model software software parameters replica

S_80 GTR1 INDELible PhyML GTR+0.75+I 100
S_80 GTR1 INDELible PAUP GTR+Γ+I 100
S_80 GTR1 INDELible RAxML GTR+Γ+I 100
S_80 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80 GTR1, pinv=0 INDELible RAxML GTR+Γ 100
S_80 GTR1, pinv=0 INDELible PAUP GTR+Γ 100
S_80 GTR1, pinv=0 Seq-gen PhyML GTR+Γ 100
S_80 GTR1, pinv=0 Seq-gen RAxML GTR+Γ 100
S_80 GTR1, pinv=0 Seq-gen PAUP GTR+Γ 100
S_80 GTR1, pinv=0 MultimoSeqSim PhyML GTR+Γ 100
S_80 GTR1, pinv=0 MultimoSeqSim RAxML GTR+Γ 100
S_80 GTR1, pinv=0 MultimoSeqSim PAUP GTR+Γ 100
S_80-4 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80-4 GTR1 INDELible PhyML GTR+Γ+I 100
S_80-4 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80-4 GTR1 INDELible PhyML GTR+Γ+I 100
S_80-8 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80-8 GTR1 INDELible PhyML GTR+Γ+I 100
S_80-8 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80-8 GTR1 INDELible PhyML GTR+Γ+I 100
S_80-4 GTR1, pinv=0 INDELible PhyML GTR+Γ 1,000
S_80-4 GTR1, pinv=0 INDELible PhyML GTR+Γ 10,000
S_80-4 GTR1, pinv=0 INDELible PhyML GTR+Γ 100,000
S_80-4 GTR1 INDELible PhyML GTR+Γ+I 1,000
S_80-4 GTR1 INDELible PhyML GTR+Γ+I 10,000
S_80-4 GTR1 INDELible PhyML GTR+Γ+I 100,000
S_80 GTR1, pinv=0 INDELible PhyML GTR+Γ 1,000
S_80 GTR1, pinv=0 INDELible PhyML GTR+Γ 10,000
S_80 GTR1, pinv=0 INDELible PhyML GTR+Γ 100,000
S_80 GTR1 INDELible PhyML GTR+Γ+I 1,000
S_80 GTR1 INDELible PhyML GTR+Γ+I 10,000
S_80 GTR1 INDELible PhyML GTR+Γ+I 100,000
S_80-4-02 GTR1, pinv=0 INDELible PhyML GTR+Γ 100
S_80-4-005 GTR1, pinv=0 INDELible PhyML GTR+Γ 100

A.2. Test Results

The simulation setups were analysed with different Maximum likelihood (ML)
analysis options and the estimated models were evaluated with the Goldman-
Cox test. Additionally, the datasets were checked for over- or under-represented
splits.
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A.2.1. Results of the Goldman-Cox Tests

Table A.3: Results of the Goldman-Cox test for simulated datasets (Sim, S50´S89). The data was generated
with INDELible (_i) or Seq-gen (_s) using GTR and 4 rate categories for discrete Γ modelling,
analysed using PhyML with 4, 12 or 25 categories (cat) for Γ-distribution, estimating the shape
parameter (α) with or without pinv and using the median or mean. The whole process was
performed using three different seeds 1568746 (15), 444444 (44) and 555555 (55) for monte-carlo
simulation of data and parametric bootstraps. The results are listed for every seed, listing the
rank which the original dataset achieved within the bootstrapped datasets (1-101). For ranks 1,
2, 100 and 101 the model was rejected, otherwise the model passed the test.

Simulated with 4 categories for Γ-distribution

ML options Estimated Γ Estimated Γ`I

Sim cat GTR+Γ/+I 15 44 55 15 44 55

50_i

reference set 73 32 13 73 32 13
mean 51 38 30 51 51 29

4
median 3 1 1 3 1 1
mean 101 101 101 101 101 101

12
median 95 96 95 95 96 95
mean 101 101 101 101 101 101

25
median 100 101 101 100 101 101

50_s

reference set 82 14 36 7 16 60
mean 56 40 38 62 47 69

4
median 3 1 2 3 1 5
mean 101 101 101 101 101 101

12
median 93 98 96 100 100 100
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 101

51_i

reference set 81 50 27 81 50 27
mean 36 45 26 49 50 26

4
median 1 1 1 1 1 1
mean 101 101 101 101 101 101

12
median 99 101 93 99 101 92
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

52_i

reference set 95 44 12 95 44 12
mean 84 86 63 83 86 63

4
median 5 1 1 5 1 1
mean 101 101 101 101 101 101

12
median 100 101 101 100 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

60_i

reference set 61 1 41 61 1 41
mean 40 37 41 50 45 48

4
median 3 7 6 4 3 7
mean 96 98 93 88 86 88

12
median 80 85 73 80 78 66
mean 99 99 97 93 86 86

25
median 93 98 89 81 82 84

60_s

reference set 61 26 46 19 46 88
mean 39 50 45 47 49 60

4
median 4 12 7 7 12 7
mean 97 99 91 89 95 92

12
median 81 88 70 71 81 79
mean 99 101 95 93 95 93

25
median 95 97 91 85 89 86

continued on next page...

114



A.2 Test Results A Appendix

Table A.3 – continued from previous page

Simulated with 4 categories for Γ-distribution

ML options Estimated Γ Estimated Γ`I

Sim cat GTR+Γ/+I 15 44 55 15 44 55

61_i

reference set 79 1 35 79 1 35
mean 52 55 43 61 74 49

4
median 7 10 6 9 22 9
mean 94 100 92 94 93 90

12
median 83 87 74 80 82 70
mean 97 101 95 95 93 83

25
median 92 99 89 92 87 89

62_i

reference set 66 2 38 66 2 38
mean 68 77 58 76 81 70

4
median 9 15 13 15 18 13
mean 101 101 96 99 98 93

12
median 93 99 87 93 91 91
mean 101 101 100 98 99 98

25
median 100 101 95 96 96 96

70_i

reference set 84 13 23 84 13 23
mean 56 59 31 56 56 35

4
median 2 2 1 2 2 1
mean 101 101 101 101 101 101

12
median 99 98 89 99 98 89
mean 101 101 101 101 101 101

25
median 101 101 98 101 101 98

70_s

reference set 76 95 94 79 77 67
mean 54 51 44 37 47 66

4
median 2 3 2 2 2 2
mean 101 101 101 101 101 101

12
median 100 95 92 93 94 96
mean 101 101 101 101 101 101

25
median 101 101 99 101 100 100

71_i

reference set 85 34 19 85 34 19
mean 88 89 57 88 80 64

4
median 6 3 1 6 4 1
mean 101 101 101 101 101 101

12
median 100 101 95 100 101 95
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

72_i

reference set 77 27 20 77 27 20
mean 88 95 85 88 94 92

4
median 10 10 3 10 10 3
mean 101 101 101 101 101 101

12
median 101 101 101 101 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

80_i

reference set 47 12 28 47 12 28
mean 41 50 45 40 51 46

4
median 2 3 2 2 3 2
mean 101 101 101 101 101 101

12
median 96 99 98 96 99 98
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 100

80_s

reference set 100 28 90 49 42 100
mean 51 34 53 74 51 41

4
median 3 3 4 7 5 4
mean 101 101 101 101 101 100

12
median 99 97 98 100 100 97
mean 101 101 101 101 101 100

25
median 101 101 100 101 101 99
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Table A.3 – continued from previous page

Simulated with 4 categories for Γ-distribution

ML options Estimated Γ Estimated Γ`I

Sim cat GTR+Γ/+I 15 44 55 15 44 55

81_i

reference set 51 20 29 51 20 29
mean 44 56 60 46 47 62

4
median 1 1 2 1 1 2
mean 101 101 101 101 101 101

12
median 100 101 100 100 101 100
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

82_i

reference set 45 19 23 45 19 23
mean 48 57 40 48 57 53

4
median 2 1 1 2 1 1
mean 101 101 101 101 101 101

12
median 99 101 98 99 101 98
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 100

83_i

reference set 52 22 16 52 22 16
mean 73 78 73 74 81 72

4
median 7 5 3 7 5 3
mean 101 101 101 101 101 101

12
median 101 101 101 101 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

85_i

reference set 41 24 33 41 24 33
mean 64 94 76 64 93 70

4
median 8 14 5 8 16 6
mean 101 101 100 101 101 100

12
median 98 101 99 99 101 99
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 100

86_i

reference set 49 34 22 49 34 22
mean 62 90 72 61 83 64

4
median 4 6 2 4 6 2
mean 101 101 101 101 101 101

12
median 100 101 99 100 101 100
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 100

94_i

reference set 45 18 22 45 18 22
mean 45 56 47 46 67 49

4
median 2 1 2 2 1 2
mean 101 101 101 101 101 101

12
median 98 101 98 100 101 98
mean 101 101 101 101 101 101

25
median 101 101 100 101 101 100

97_i

reference set 52 18 13 52 18 13
mean 71 80 76 73 81 77

4
median 10 5 4 10 6 4
mean 101 101 101 101 101 101

12
median 101 101 101 101 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

88_i

reference set 52 22 12 52 22 12
mean 72 78 66 72 75 70

4
median 4 5 3 5 5 3
mean 101 101 101 101 101 101

12
median 101 101 100 101 101 100
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101
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Table A.3 – continued from previous page

Simulated with 4 categories for Γ-distribution

ML options Estimated Γ Estimated Γ`I

Sim cat GTR+Γ/+I 15 44 55 15 44 55

84_i

reference set 35 17 25 35 17 25
mean 46 56 52 46 56 71

4
median 1 1 2 1 1 2
mean 101 101 101 101 101 101

12
median 100 101 99 100 101 99
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

87_i

reference set 54 23 14 54 23 14
mean 74 75 72 76 82 75

4
median 9 5 3 7 5 3
mean 101 101 101 101 101 101

12
median 101 101 101 101 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101

89_i

reference set 47 28 15 47 28 15
mean 68 77 69 68 70 70

4
median 2 2 3 2 3 3
mean 101 101 101 101 101 101

12
median 101 101 101 101 101 101
mean 101 101 101 101 101 101

25
median 101 101 101 101 101 101
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Table A.4: Results of the Goldman-Cox test for several simulated datasets (Sim, S50´S89). The data
was generated with INDELible (_i) or Seq-gen (_s) using GTR and continuous Γ modelling,
analysed using PhyML with 4, 12 or 25 categories (cat) for Γ-distribution, estimating the shape
parameter (α) with or without pinv and using the median or mean. The whole process was
performed using three different seeds 1568746 (15), 444444 (44) and 555555 (55) for monte-carlo
simulation of data and bootstraps. The results are listed for every seed, listing the rank which
the original dataset achieved within the bootstrapped datasets (1-101). For ranks 1, 2, 100 and
101 the model was rejected, otherwise the model passed the test.

Simulated continuous Γ Simulated continuous Γ ` I

ML options Estimated Γ Estimated Γ ` I Estimated Γ Estimated Γ ` I

Sim cat 15 44 55 15 44 55 15 44 55 15 44 55

50_i

reference set 46 90 29 46 90 29 84 90 14 84 90 14
mean 1 2 1 1 2 1 95 67 35 3 2 3

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 35 53 39 35 48 39 50 56 41 34 42 34

12
median 2 5 1 4 9 4 2 2 3 25 23 17
mean 48 67 48 46 59 51 52 53 49 48 49 42

25
median 19 33 22 25 34 23 19 26 15 45 39 36

50_s

reference set 76 78 95 51 76 78 30 71 78 78 2 41
mean 1 1 1 2 1 1 22 61 20 3 1 2

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 56 41 41 48 28 42 54 52 50 47 42 43

12
median 9 3 10 3 4 6 2 3 4 23 21 19
mean 69 45 49 56 38 59 51 59 55 55 47 53

25
median 38 19 23 37 11 26 18 23 13 38 34 37

51_i

reference set 39 18 56 39 18 56 54 76 54 54 76 54
mean 40 16 9 40 17 15 99 98 99 101 98 99

4
median 1 1 1 1 1 1 35 39 49 36 40 49
mean 100 99 92 99 100 92 101 101 101 101 101 101

12
median 84 83 67 86 84 62 101 101 101 101 101 101
mean 101 100 97 101 101 97 101 101 101 101 101 101

25
median 99 99 87 99 97 89 101 101 101 101 101 101

52_i

reference set 7 33 99 7 33 99 1 80 47 1 80 47
mean 83 96 99 84 97 97 94 99 96 90 94 99

4
median 2 12 10 2 13 15 2 4 4 5 4 8
mean 101 101 101 100 101 101 101 101 101 101 101 101

12
median 98 100 101 98 100 101 101 100 100 100 99 101
mean 101 101 101 101 101 101 101 101 101 101 101 101

25
median 100 101 101 101 101 101 101 101 101 101 101 101

60_i

reference set 53 51 47 53 51 47 68 28 35 68 28 35
mean 3 4 3 6 5 6 1 1 1 13 14 8

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 31 41 35 31 41 35 13 27 14 36 40 34

12
median 9 6 12 9 9 12 1 2 1 10 7 8
mean 35 55 41 38 47 43 26 34 21 46 52 43

25
median 20 30 21 20 31 22 3 11 6 25 29 27

60_s

reference set 36 30 98 83 88 98 45 23 40 10 4 15
mean 1 6 3 21 7 4 1 1 1 16 5 11

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 10 43 44 44 35 35 14 22 22 44 35 37

12
median 3 13 7 13 2 4 1 2 1 8 4 11
mean 18 45 39 52 51 42 19 31 38 55 42 44

25
median 10 28 24 23 23 22 7 9 10 16 24 23
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Table A.4 – continued from previous page

Simulated continuous Γ Simulated continuous Γ ` I

ML options Estimated Γ Estimated Γ ` I Estimated Γ Estimated Γ ` I

Sim cat 15 44 55 15 44 55 15 44 55 15 44 55

61_i

reference set 53 9 14 53 9 14 4 30 11 4 30 11
mean 29 46 19 28 48 31 22 29 40 62 30 37

4
median 6 15 5 6 12 2 2 3 2 27 1 6
mean 53 79 47 53 74 51 49 65 65 79 59 69

12
median 29 62 26 41 61 36 48 34 42 68 44 42
mean 52 78 50 52 76 67 73 70 78 80 74 78

25
median 49 74 42 52 66 50 52 55 64 79 64 63

62_i

reference set 88 65 41 88 65 41 84 2 16 84 2 16
mean 73 80 82 86 84 79 78 74 71 78 71 61

4
median 51 51 63 80 55 65 33 38 34 60 40 57
mean 80 89 91 87 89 91 95 90 90 87 84 91

12
median 78 87 90 83 82 88 79 83 77 89 81 81
mean 88 91 92 89 92 96 91 95 91 92 91 94

25
median 84 90 87 78 84 87 87 89 89 88 73 83

70_i

reference set 62 97 43 62 97 43 90 85 21 90 85 21
mean 1 1 1 1 1 1 96 100 66 3 1 1

4
median 1 1 1 1 1 1 1 2 1 1 1 1
mean 32 43 31 36 48 33 68 69 66 51 41 42

12
median 7 5 5 3 6 5 5 7 3 23 24 17
mean 46 52 46 35 45 55 78 74 73 47 54 41

25
median 14 27 20 30 27 20 33 33 33 32 35 25

70_s

reference set 91 31 31 78 11 52 13 92 99 79 98 39
mean 1 1 2 1 1 2 95 97 65 1 1 1

4
median 1 1 1 1 1 1 1 2 1 1 1 1
mean 32 36 36 50 45 43 70 63 65 33 50 36

12
median 2 6 3 8 5 7 5 5 2 22 34 18
mean 35 40 44 50 56 48 77 70 67 56 51 43

25
median 12 20 21 26 32 26 38 36 26 39 43 32

71_i

reference set 24 22 17 24 22 17 95 78 33 95 78 33
mean 11 25 5 5 14 1 27 47 27 26 26 31

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 89 94 78 67 88 53 100 100 99 90 88 90

12
median 41 47 27 26 37 14 80 93 68 64 48 46
mean 93 94 89 80 87 70 101 101 101 91 91 93

25
median 74 82 70 65 75 46 100 100 99 84 87 79

72_i

reference set 72 90 39 72 90 39 68 25 19 68 25 19
mean 87 100 94 78 93 87 101 101 100 99 98 95

4
median 3 12 11 2 6 5 16 16 6 23 21 10
mean 101 101 101 101 101 101 101 101 101 101 101 101

12
median 94 101 99 95 100 94 101 101 101 101 101 100
mean 101 101 101 101 101 101 101 101 101 101 101 101

25
median 99 101 100 100 101 99 101 101 101 101 101 101

80_i

reference set 26 83 41 26 83 41 94 96 36 94 96 36
mean 1 1 1 1 1 1 95 99 76 1 2 1

4
median 1 1 1 1 1 1 1 1 1 1 2 1
mean 30 44 28 34 32 29 51 68 63 48 38 31

12
median 4 8 5 4 8 5 2 3 4 36 29 19
mean 36 44 34 36 60 36 59 77 71 54 46 40

25
median 16 31 18 23 29 18 22 45 26 48 46 32

80_s

reference set 31 21 67 21 78 81 58 66 11 98 31 85
mean 1 1 1 1 1 1 93 89 99 1 1 1

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 40 49 44 15 32 35 65 54 62 56 29 27

12
median 5 14 11 3 9 8 5 5 8 40 13 11
mean 50 56 51 25 39 50 77 68 75 63 34 35

25
median 19 33 24 8 22 24 30 32 34 54 31 35
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Table A.4 – continued from previous page

Simulated continuous Γ Simulated continuous Γ ` I

ML options Estimated Γ Estimated Γ ` I Estimated Γ Estimated Γ ` I

Sim cat 15 44 55 15 44 55 15 44 55 15 44 55

81_i

reference set 51 23 23 51 23 23 93 63 53 93 63 53
mean 50 47 37 18 13 27 99 100 101 100 93 97

4
median 1 1 1 1 1 1 4 4 2 23 10 8
mean 100 94 99 91 84 97 101 101 101 101 101 101

12
median 75 63 68 54 42 61 101 101 101 100 101 101
mean 99 100 98 94 89 99 101 101 101 101 101 101

25
median 101 94 93 88 66 96 101 101 101 101 101 100

82_i

reference set 13 34 11 13 34 11 100 81 44 100 81 44
mean 43 63 30 28 59 42 101 101 101 101 101 101

4
median 1 1 1 1 1 1 14 45 51 29 60 58
mean 100 101 97 99 101 99 101 101 101 101 101 101

12
median 72 90 71 82 90 69 101 101 101 101 101 101
mean 100 100 97 101 101 99 101 101 101 101 101 101

25
median 100 100 96 100 100 93 101 101 101 101 101 101

83_i

reference set 11 50 24 11 50 24 48 14 11 48 14 11
mean 35 36 36 18 19 21 98 96 86 96 94 77

4
median 1 1 1 1 1 1 2 1 1 11 8 7
mean 100 98 95 95 98 98 101 101 101 101 101 101

12
median 73 76 71 65 76 74 101 101 99 101 101 100
mean 100 101 100 101 99 100 101 101 101 101 101 101

25
median 94 99 96 97 96 93 101 101 101 101 101 100

85_i

reference set 31 47 61 31 47 61 84 91 31 84 91 31
mean 92 99 85 82 95 84 101 101 101 101 101 101

4
median 1 3 2 1 2 1 55 56 55 83 83 73
mean 101 101 101 101 101 101 101 101 101 101 101 101

12
median 99 101 97 100 100 100 101 101 101 101 101 101
mean 101 101 101 101 101 101 101 101 101 101 101 101

25
median 101 101 101 101 101 101 101 101 101 101 101 101

86_i

reference set 4 40 59 4 40 59 84 52 13 84 52 13
mean 20 70 42 20 37 17 101 100 96 101 98 97

4
median 1 1 1 1 1 1 3 8 2 14 14 11
mean 96 101 100 95 101 100 101 101 101 101 101 101

12
median 61 93 75 64 88 72 101 101 101 101 101 101
mean 98 101 101 98 101 99 101 101 101 101 101 101

25
median 93 101 98 92 100 92 101 101 101 101 101 101

94_i

reference set 39 24 31 39 24 31 39 24 31 39 24 31
mean 38 46 53 30 42 45 38 46 53 30 42 45

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 100 100 100 99 101 100 100 100 100 99 101 100

12
median 76 81 85 71 86 84 76 81 85 71 86 84
mean 101 101 100 101 101 100 101 101 100 101 101 100

25
median 97 97 97 96 98 97 97 97 97 96 98 97

97_i

reference set 32 92 38 32 92 38 32 92 38 32 92 38
mean 97 98 91 98 99 91 97 98 91 98 99 91

4
median 6 13 2 6 15 8 6 13 2 6 15 8
mean 101 101 101 101 101 101 101 101 101 101 101 101

12
median 100 101 101 100 101 101 100 101 101 100 101 101
mean 101 101 101 101 101 101 101 101 101 101 101 101

25
median 101 101 101 101 101 101 101 101 101 101 101 101

88_i

reference set 18 40 4 18 40 4 35 85 19 35 85 19
mean 74 70 58 77 71 69 101 101 101 101 101 101

4
median 1 1 1 2 1 1 33 56 27 38 60 28
mean 100 100 100 100 101 101 101 101 101 101 101 101

12
median 93 94 85 93 93 85 101 101 101 101 101 101
mean 100 101 100 101 101 100 101 101 101 101 101 101

25
median 101 99 98 100 99 96 101 101 101 101 101 101
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Table A.4 – continued from previous page

Simulated continuous Γ Simulated continuous Γ ` I

ML options Estimated Γ Estimated Γ ` I Estimated Γ Estimated Γ ` I

Sim cat 15 44 55 15 44 55 15 44 55 15 44 55

84_i

reference set 42 12 17 42 12 17 42 12 17 42 12 17
mean 40 10 36 42 9 43 40 10 36 42 9 43

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 100 94 101 100 93 98 100 94 101 100 93 98

12
median 81 48 84 78 44 84 81 48 84 78 44 84
mean 101 94 99 101 99 100 101 94 99 101 99 100

25
median 95 83 95 95 87 95 95 83 95 95 87 95

87_i

reference set 16 81 51 16 81 51 16 81 51 16 81 51
mean 39 66 65 43 46 48 39 66 65 43 46 48

4
median 1 1 1 1 1 1 1 1 1 1 1 1
mean 100 101 101 101 101 101 100 101 101 101 101 101

12
median 84 95 92 86 94 92 84 95 92 86 94 92
mean 101 101 101 101 101 101 101 101 101 101 101 101

25
median 100 100 101 98 100 100 100 100 101 98 100 100

89_i

reference set 55 72 17 55 72 17 84 50 5 84 50 5
mean 29 57 46 20 45 45 101 101 101 101 99 99

4
median 1 3 2 1 2 1 26 24 15 39 18 18
mean 92 96 95 79 95 96 101 101 101 101 101 101

12
median 56 81 74 46 75 73 101 101 101 101 100 101
mean 93 95 98 89 93 97 101 101 101 101 101 101

25
median 86 93 86 73 95 91 101 101 101 101 101 101
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A.2.2. Results of the Residual Diagnostics Tests

Table A.5: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated
with INDELible (_i) or Seq-gen (_s) using GTR and four categories for modelling gamma
distribution. The data was analysed by a maximum likelihood approach using PhyML with 4,
12 or 25 categories for gamma-distribution, estimating the shape parameter (α) and using the
median or mean. 100 parametric bootstraps were generated with INDELible using the estimated
GTR model. The whole process was performed using three different seeds 1568746 (15), 444444
(44) and 555555 (55) for monte-carlo simulation of data and bootstraps. The results are listed
for every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The darker
the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: four rate categories for Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 29 1 13 3 16 0 0 4 27 0 0

4
median 4 27 1 12 6 42 0 0 3 22 0 0
mean 4 119 1 14 6 168 0 0 3 146 0 0

12
median 4 26 1 13 5 113 0 0 3 24 0 0
mean 4 125 1 13 5 170 0 0 4 162 0 0

25
median 4 25 1 14 7 161 0 0 2 120 0 0

50_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 24 0 0 2 15 0 0 2 11 1 16

4
median 1 4 0 0 2 15 1 100 2 14 1 15
mean 2 123 0 0 4 132 0 0 5 152 1 16

12
median 3 23 0 0 3 21 0 0 3 19 1 16
mean 3 136 0 0 3 135 0 0 4 150 1 15

25
median 2 105 0 0 4 115 0 0 5 133 1 16

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 0 0 0 0 8 49 1 6 2 11 0 0

4
median 1 7 1 115 9 51 1 6 4 25 1 97
mean 2 116 0 0 7 183 0 0 4 153 0 0

12
median 0 0 0 0 7 141 0 0 4 108 0 0
mean 2 122 0 0 7 191 0 0 3 152 0 0

25
median 1 7 0 0 7 169 0 0 4 140 0 0

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 14 2 41 4 33 4 126 4 53 3 70

4
median 2 15 2 113 6 45 3 108 7 66 1 29
mean 3 124 1 16 6 188 4 121 6 168 2 47

12
median 2 14 2 40 5 132 4 123 5 59 2 48
mean 3 129 1 15 6 191 4 120 6 174 2 47

25
median 2 14 2 41 6 167 4 121 7 174 2 47

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 6 1 16 1 11 0 0 0 0 0 0

4
median 1 6 1 111 1 11 0 0 0 0 0 0
mean 2 144 1 19 2 140 0 0 0 0 0 0

12
median 2 12 1 18 1 11 0 0 0 0 0 0
mean 2 168 1 19 2 160 0 0 0 0 0 0

25
median 2 130 1 19 2 124 0 0 0 0 0 0
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Simulated: four rate categories for Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 0 0 0 0 1 7 0 0 1 9 0 0

4
median 1 6 1 113 0 0 0 0 2 14 0 0
mean 1 139 0 0 2 137 0 0 1 9 0 0

12
median 0 0 1 10 1 7 0 0 1 9 0 0
mean 1 164 0 0 2 157 0 0 1 9 0 0

25
median 1 126 0 0 2 122 0 0 1 9 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 13 0 0 1 6 0 0 0 0 1 19

4
median 1 8 1 16 1 6 0 0 0 0 1 16
mean 3 21 0 0 1 6 1 23 0 0 1 22

12
median 2 13 0 0 1 6 0 0 0 0 1 20
mean 3 150 0 0 2 151 1 23 0 0 1 22

25
median 2 13 0 0 1 6 1 22 0 0 1 21

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 16 0 0 1 5 1 27 1 6 0 0

4
median 3 24 1 111 1 5 0 0 1 6 0 0
mean 5 165 0 0 1 5 2 65 2 12 1 28

12
median 2 17 0 0 1 5 1 30 2 12 1 25
mean 5 189 0 0 2 161 2 67 3 154 1 29

25
median 4 143 0 0 1 5 2 63 2 12 1 27

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 26 0 0 3 21 0 0 4 25 0 0

4
median 7 64 0 0 5 33 0 0 5 33 1 113
mean 9 169 0 0 3 158 0 0 7 136 0 0

12
median 7 62 0 0 3 21 0 0 4 25 0 0
mean 7 164 0 0 3 164 0 0 5 134 0 0

25
median 8 69 0 0 3 140 0 0 4 25 0 0

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 17 0 0 4 26 0 0 9 86 0 0

4
median 3 17 0 0 4 26 0 0 6 41 1 118
mean 3 135 1 7 5 146 0 0 7 74 0 0

12
median 1 6 1 6 3 21 0 0 7 74 0 0
mean 3 140 1 6 5 152 0 0 7 74 0 0

25
median 3 116 1 7 4 122 0 0 7 73 0 0

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 48 0 0 4 36 1 17 7 51 0 0

4
median 7 58 1 117 5 50 2 32 8 60 2 141
mean 7 54 0 0 4 151 0 0 9 153 0 0

12
median 8 62 0 0 4 33 0 0 8 58 0 0
mean 6 48 0 0 6 181 0 0 9 160 0 0

25
median 6 48 0 0 5 147 1 16 8 58 0 0

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 36 2 51 5 67 4 89 6 109 2 44

4
median 2 10 2 51 7 82 3 82 6 91 3 156
mean 4 126 3 63 7 232 4 87 3 39 1 20

12
median 3 35 2 50 6 100 4 88 3 66 1 20
mean 3 128 3 63 7 239 4 86 3 40 1 19

25
median 3 36 3 64 7 215 4 88 4 78 1 20

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 26 0 0 4 23 0 0 2 16 1 9

4
median 5 28 1 93 4 27 0 0 2 17 1 9
mean 8 133 0 0 5 158 0 0 2 17 1 9

12
median 7 35 0 0 4 29 0 0 3 22 1 9
mean 7 132 0 0 5 164 0 0 2 17 1 9

25
median 6 31 0 0 5 144 0 0 2 17 1 9
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Simulated: four rate categories for Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 12 0 0 0 0 0 0 3 21 0 0

4
median 1 6 0 0 0 0 0 0 5 40 0 0
mean 3 140 1 16 1 112 0 0 3 28 0 0

12
median 3 99 0 0 0 0 0 0 2 14 0 0
mean 3 145 1 19 1 116 0 0 3 28 0 0

25
median 4 129 0 0 1 96 0 0 3 28 0 0

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 81 0 0 7 59 1 24 6 69 2 50

4
median 8 104 1 95 5 26 1 26 6 70 3 149
mean 8 201 0 0 8 203 0 0 7 94 1 27

12
median 8 97 0 0 7 160 1 23 6 70 1 28
mean 8 208 0 0 8 209 0 0 7 183 1 27

25
median 8 188 0 0 8 190 1 23 6 71 1 28

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 47 0 0 4 71 1 31 3 27 1 17

4
median 3 16 1 93 3 39 3 112 6 45 1 17
mean 9 156 0 0 6 221 1 30 7 180 2 25

12
median 10 102 0 0 4 166 2 50 5 39 1 17
mean 7 152 0 0 6 226 1 29 7 185 2 25

25
median 11 176 0 0 6 207 2 49 5 39 0 0

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 175 0 0 4 82 3 61 7 241 0 0

4
median 7 186 1 125 3 57 5 170 8 249 1 127
mean 5 192 0 0 3 159 1 22 7 242 0 0

12
median 7 197 1 20 2 52 3 69 8 243 0 0
mean 5 194 0 0 3 163 1 21 7 246 0 0

25
median 6 197 0 0 3 144 1 19 8 262 0 0

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 28 0 0 2 16 0 0 3 22 1 30

4
median 3 17 1 19 1 5 0 0 3 22 1 31
mean 2 11 0 0 2 117 0 0 4 27 1 29

12
median 2 12 0 0 1 5 0 0 4 27 1 30
mean 2 11 0 0 3 147 0 0 7 100 1 28

25
median 2 11 0 0 3 112 0 0 5 32 1 29

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 43 0 0 5 29 1 12 5 38 1 17

4
median 1 35 1 96 6 36 1 12 3 20 0 0
mean 3 140 0 0 7 171 1 12 4 28 0 0

12
median 2 44 0 0 7 47 1 12 5 37 1 9
mean 3 144 0 0 6 170 1 12 4 29 0 0

25
median 2 45 0 0 8 166 1 13 5 35 1 9

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 8 156 1 64 6 78 1 21 7 195 0 0

4
median 10 184 1 132 4 60 3 130 6 190 2 143
mean 9 169 0 0 6 191 0 0 8 257 1 17

12
median 9 165 0 0 5 89 1 21 5 210 1 18
mean 9 171 0 0 6 196 1 21 8 262 1 17

25
median 9 168 0 0 5 91 0 0 8 256 1 18

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 97 0 0 6 70 2 56 7 180 2 42

4
median 9 149 1 128 5 61 4 159 8 170 4 192
mean 8 172 0 0 7 180 2 55 10 208 1 22

12
median 7 114 0 0 6 70 2 56 7 175 0 0
mean 8 176 0 0 7 185 2 54 8 197 0 0

25
median 7 115 0 0 7 168 2 55 10 196 1 23
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Table A.6: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated
with INDELible (_i) or Seq-gen (_s) using GTR and four categories for modelling gamma
distribution. The data was analysed by a maximum likelihood approach using PhyML with 4, 12
or 25 categories for gamma-distribution, estimating the shape parameter (α) with a proportion of
invariant sites (pinv) and using the median or mean. 100 parametric bootstraps were generated
with INDELible using the estimated GTR model. The whole process was performed using three
different seeds 1568746 (15), 444444 (44) and 555555 (55) for monte-carlo simulation of data
and bootstraps. The results are listed for every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The darker
the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: four rate categories for Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 29 1 13 2 11 0 0 3 22 0 0

4
median 5 31 1 12 6 42 0 0 3 22 0 0
mean 4 120 1 14 6 171 0 0 3 147 0 0

12
median 4 26 1 13 5 114 0 0 3 24 0 0
mean 4 126 1 14 5 170 0 0 4 160 0 0

25
median 4 25 1 14 7 161 0 0 2 120 0 0

50_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 23 0 0 6 71 0 0 4 22 0 0

4
median 5 30 0 0 8 52 1 11 6 32 0 0
mean 6 158 0 0 10 216 1 19 4 124 0 0

12
median 5 31 0 0 8 152 0 0 4 22 0 0
mean 6 166 0 0 10 244 1 7 8 167 0 0

25
median 6 142 0 0 8 185 0 0 4 22 0 0

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 7 0 0 6 36 0 0 3 16 0 0

4
median 1 7 1 115 7 45 1 85 6 36 1 116
mean 2 116 0 0 7 184 0 0 4 154 0 0

12
median 0 0 0 0 7 141 0 0 4 107 0 0
mean 2 123 0 0 7 191 0 0 3 154 0 0

25
median 1 7 0 0 7 169 0 0 4 139 0 0

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 15 2 38 5 29 3 105 6 65 1 21

4
median 2 15 2 112 6 45 3 108 7 66 1 29
mean 3 126 1 15 6 188 4 121 6 171 2 48

12
median 2 14 2 40 5 133 4 123 5 59 2 48
mean 3 130 1 15 7 197 4 120 6 175 2 47

25
median 2 14 2 40 6 168 4 121 7 174 2 47

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 22 0 0 2 18 0 0 0 0 0 0

4
median 1 6 0 0 3 23 0 0 0 0 1 103
mean 1 6 1 18 3 25 0 0 0 0 0 0

12
median 2 12 0 0 2 18 0 0 0 0 0 0
mean 1 6 1 18 1 11 0 0 0 0 0 0

25
median 2 14 0 0 3 25 0 0 0 0 0 0
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Simulated: four rate categories for Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 1 6 1 29
mean 1 4 0 0 1 5 0 0 1 6 0 0

4
median 0 0 0 0 2 16 0 0 3 16 0 0
mean 1 6 0 0 2 16 0 0 2 9 0 0

12
median 0 0 0 0 1 6 0 0 1 6 0 0
mean 0 0 0 0 1 9 0 0 0 0 0 0

25
median 2 12 0 0 2 14 0 0 1 6 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 7 0 0 2 11 0 0 0 0 1 21

4
median 4 43 0 0 0 0 0 0 0 0 1 19
mean 1 5 0 0 1 6 0 0 0 0 0 0

12
median 0 0 1 19 0 0 0 0 0 0 0 0
mean 2 16 1 19 0 0 0 0 0 0 0 0

25
median 2 16 1 19 0 0 0 0 0 0 1 22

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 20 0 0 0 0 0 0 1 6 0 0

4
median 3 19 0 0 1 7 0 0 4 60 0 0
mean 2 18 0 0 1 5 1 25 2 29 1 23

12
median 3 23 0 0 1 5 1 28 0 0 0 0
mean 3 22 0 0 1 5 2 55 0 0 0 0

25
median 3 22 0 0 1 5 1 26 2 31 0 0

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 26 0 0 3 30 0 0 8 53 0 0

4
median 7 64 0 0 4 27 0 0 5 33 1 113
mean 9 170 0 0 3 158 0 0 7 137 0 0

12
median 7 62 0 0 3 21 0 0 4 25 0 0
mean 7 165 0 0 3 164 0 0 5 133 0 0

25
median 8 69 0 0 3 141 0 0 5 32 0 0

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 16 0 0 3 23 1 23 6 44 0 0

4
median 2 18 0 0 2 15 2 126 5 40 0 0
mean 3 135 0 0 3 120 0 0 6 143 0 0

12
median 2 18 0 0 2 15 0 0 5 37 0 0
mean 3 143 0 0 3 125 0 0 7 158 0 0

25
median 3 115 0 0 2 15 0 0 6 46 0 0

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 7 57 0 0 7 51 1 17 7 50 2 39

4
median 7 58 1 115 5 49 2 32 8 60 1 118
mean 7 54 0 0 4 152 0 0 9 153 0 0

12
median 9 68 0 0 4 33 0 0 8 58 0 0
mean 6 48 0 0 6 183 0 0 9 162 0 0

25
median 6 48 0 0 5 148 1 16 8 58 0 0

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 36 2 50 5 68 4 87 8 89 3 62

4
median 2 10 2 51 6 74 3 82 6 91 3 156
mean 4 127 3 63 7 233 4 86 3 39 1 20

12
median 3 35 2 49 6 100 4 88 3 66 1 20
mean 3 128 3 63 7 239 4 86 3 40 1 20

25
median 3 37 3 64 7 216 4 88 4 78 1 20

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 26 0 0 4 23 0 0 4 50 0 0

4
median 5 28 1 93 4 27 0 0 2 17 1 9
mean 7 129 0 0 5 160 0 0 2 17 1 9

12
median 6 30 0 0 4 29 0 0 3 22 1 9
mean 7 135 0 0 5 163 0 0 3 140 1 9

25
median 7 36 0 0 5 142 0 0 2 17 1 9
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Simulated: four rate categories for Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 51 1 11 3 39 0 0 5 30 0 0

4
median 2 21 1 11 2 33 1 86 5 30 0 0
mean 3 117 1 11 3 133 0 0 4 24 0 0

12
median 3 28 1 11 2 33 0 0 4 25 0 0
mean 3 121 1 11 3 136 0 0 4 25 0 0

25
median 3 42 1 11 3 41 0 0 4 24 0 0

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 82 0 0 8 68 1 22 5 33 2 45

4
median 8 104 1 95 5 26 1 26 6 70 3 146
mean 8 202 0 0 8 203 0 0 7 94 1 27

12
median 8 97 0 0 7 162 1 23 6 70 1 28
mean 9 215 0 0 8 209 0 0 7 183 1 27

25
median 8 186 0 0 8 189 1 22 6 71 1 28

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 47 0 0 5 84 3 69 7 65 0 0

4
median 3 16 1 92 3 39 3 112 6 45 1 17
mean 9 158 0 0 6 222 1 30 7 181 2 25

12
median 10 102 0 0 4 169 2 50 5 39 1 16
mean 7 152 0 0 6 228 1 29 7 186 2 25

25
median 11 175 0 0 6 208 2 49 6 59 0 0

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 175 0 0 3 55 3 62 7 242 0 0

4
median 7 186 1 126 3 57 5 168 7 215 1 126
mean 5 192 0 0 3 159 1 22 7 242 0 0

12
median 7 197 1 20 2 52 3 69 8 243 0 0
mean 5 194 0 0 3 166 1 21 7 246 0 0

25
median 6 196 0 0 3 146 0 0 8 262 0 0

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 28 0 0 1 5 0 0 3 21 0 0

4
median 3 17 1 19 1 5 0 0 3 22 1 31
mean 2 11 0 0 2 118 0 0 4 27 1 28

12
median 2 12 0 0 1 5 0 0 4 27 1 30
mean 2 11 0 0 3 147 0 0 7 100 1 28

25
median 2 11 0 0 3 113 0 0 5 32 1 29

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 43 0 0 6 33 1 13 6 44 0 0

4
median 1 35 1 96 6 36 1 12 3 20 1 17
mean 3 141 0 0 7 172 1 12 4 29 0 0

12
median 2 44 0 0 7 47 1 12 5 37 1 9
mean 3 145 0 0 6 170 1 12 4 29 0 0

25
median 2 44 0 0 8 167 1 13 5 35 1 9

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 8 156 1 63 6 78 1 21 7 195 0 0

4
median 10 184 1 132 4 60 3 127 6 190 2 143
mean 9 169 0 0 6 190 0 0 8 257 1 17

12
median 9 165 0 0 5 89 1 21 5 210 1 18
mean 9 171 0 0 6 196 1 21 8 262 1 17

25
median 9 168 0 0 5 91 1 19 8 256 2 39

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 97 0 0 5 82 2 55 7 180 2 42

4
median 9 149 1 128 5 61 4 158 8 170 4 191
mean 7 115 0 0 7 181 2 55 10 208 1 22

12
median 7 114 0 0 6 70 2 56 7 175 0 0
mean 8 176 0 0 7 186 2 54 9 203 0 0

25
median 7 115 0 0 7 169 2 55 11 216 1 23
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Table A.7: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated with
INDELible (_i) or Seq-gen (_s) using GTR and continuous modelling gamma distribution.
The data was analysed by a maximum likelihood approach using PhyML with 4, 12 or 25 rate
categories for gamma-distribution, estimating the shape parameter (α) and using the median
or mean. 100 parametric bootstraps were generated with INDELible using the estimated GTR
model. The whole process was performed using three different seeds 1568746 (15), 444444 (44)
and 555555 (55) for monte-carlo simulation of data and bootstraps. The results are listed for
every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The darker
the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: continuous Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 17 1 33 2 13 0 0 1 5 1 123

4
median 4 46 2 255 1 6 1 209 3 17 1 236
mean 1 7 1 34 0 0 0 0 1 5 0 0

12
median 2 14 0 0 0 0 0 0 2 11 0 0
mean 5 51 0 0 0 0 0 0 2 12 0 0

25
median 4 44 1 33 1 7 0 0 1 7 0 0

50_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 25 1 92 6 39 2 101 3 24 1 107

4
median 7 53 1 209 6 39 1 208 6 41 1 227
mean 4 34 1 11 4 26 1 14 4 31 0 0

12
median 6 45 0 0 6 37 1 13 7 47 0 0
mean 1 11 1 11 3 19 1 13 5 33 0 0

25
median 8 59 1 10 5 35 1 14 4 29 0 0

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 397 2 245 7 360 3 262 7 395 2 237

4
median 4 394 1 335 10 384 3 382 5 384 2 342
mean 4 410 1 139 5 354 4 185 6 397 2 160

12
median 5 411 4 220 6 357 2 187 6 376 2 188
mean 5 417 1 138 7 368 1 123 5 389 1 137

25
median 4 403 1 148 5 355 2 165 9 417 1 156

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 40 589 2 65 29 508 1 9 34 538 3 77

4
median 39 577 4 175 34 555 1 82 37 563 4 154
mean 39 590 2 63 32 532 1 10 30 508 2 43

12
median 38 543 2 63 28 453 1 9 28 491 3 54
mean 34 515 3 70 28 455 1 9 29 507 2 45

25
median 41 589 3 87 25 420 1 9 33 525 3 72

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 10 1 136 1 6 0 0 3 62 1 128

4
median 1 5 1 258 1 36 1 251 5 101 1 262
mean 1 5 0 0 2 11 0 0 2 15 0 0

12
median 0 0 0 0 2 11 0 0 3 21 0 0
mean 1 6 0 0 0 0 0 0 2 15 0 0

25
median 1 5 0 0 2 11 0 0 1 6 0 0
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Simulated: continuous Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 5 1 135 1 31 1 129 1 8 1 124

4
median 0 0 1 251 1 22 1 245 4 73 1 256
mean 3 19 0 0 0 0 0 0 1 5 0 0

12
median 1 5 0 0 2 49 0 0 1 7 0 0
mean 0 0 0 0 0 0 0 0 2 12 0 0

25
median 2 13 0 0 1 25 0 0 1 4 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 7 92 0 0 7 69 0 0 4 47 0 0

4
median 6 87 1 154 6 62 1 147 3 43 0 0
mean 8 107 0 0 8 82 0 0 3 44 0 0

12
median 4 45 0 0 6 51 0 0 3 18 0 0
mean 5 52 0 0 5 57 0 0 1 8 0 0

25
median 6 58 0 0 7 71 0 0 3 27 0 0

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 64 0 0 2 33 0 0 2 48 0 0

4
median 5 59 0 0 3 53 1 23 2 47 0 0
mean 5 59 0 0 1 11 0 0 2 47 0 0

12
median 5 57 0 0 3 41 0 0 2 47 0 0
mean 6 67 1 30 3 40 0 0 2 46 0 0

25
median 5 57 0 0 3 41 0 0 2 47 0 0

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 24 1 113 4 26 1 110 5 39 1 116

4
median 3 23 1 222 7 41 1 216 6 42 1 229
mean 4 28 0 0 6 31 0 0 5 38 0 0

12
median 2 11 1 23 3 20 0 0 4 24 0 0
mean 2 18 0 0 4 27 0 0 6 48 0 0

25
median 3 23 0 0 3 16 0 0 8 60 0 0

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 36 1 113 4 23 1 103 3 17 0 0

4
median 6 58 1 225 3 17 1 216 3 16 1 216
mean 3 34 0 0 2 11 0 0 5 30 0 0

12
median 8 69 0 0 4 25 0 0 3 17 0 0
mean 6 46 0 0 2 11 0 0 3 15 0 0

25
median 5 48 0 0 5 30 0 0 3 16 0 0

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 51 441 3 46 48 493 1 70 51 483 2 84

4
median 53 502 4 194 55 556 4 259 57 545 3 227
mean 60 551 4 53 46 483 2 97 54 516 3 90

12
median 50 485 4 60 45 466 3 106 55 516 1 60
mean 55 502 1 28 44 463 3 104 47 466 1 57

25
median 62 567 1 28 49 505 3 120 55 528 2 84

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 28 391 5 97 31 422 7 184 28 511 3 97

4
median 31 437 5 160 36 453 6 162 29 520 7 203
mean 29 410 4 74 32 427 5 127 25 486 6 122

12
median 21 323 3 65 33 404 6 153 26 489 3 76
mean 24 373 5 77 33 474 7 143 26 471 4 101

25
median 26 395 3 63 32 484 4 74 28 485 6 137

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 5 2 145 3 18 1 121 3 17 1 131

4
median 2 12 2 249 3 30 1 212 3 16 2 235
mean 0 0 1 17 4 22 0 0 2 10 0 0

12
median 2 12 2 31 4 24 0 0 2 11 0 0
mean 0 0 1 17 5 27 0 0 2 10 0 0

25
median 1 5 1 16 1 7 0 0 2 11 0 0
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Simulated: continuous Γ – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 0 0 1 113 8 51 1 112 1 10 1 123

4
median 1 6 2 237 7 43 1 209 3 21 1 213
mean 3 25 0 0 3 19 0 0 5 52 0 0

12
median 1 6 0 0 7 45 0 0 1 10 0 0
mean 4 32 0 0 3 19 0 0 5 52 0 0

25
median 3 17 0 0 5 31 0 0 1 9 0 0

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 45 594 5 100 50 609 8 151 39 537 7 124

4
median 51 649 4 158 46 588 10 234 42 577 6 192
mean 48 649 4 77 46 589 5 85 36 520 5 101

12
median 45 610 4 80 47 602 7 129 39 549 5 95
mean 44 614 4 77 46 567 5 94 39 541 4 91

25
median 51 652 4 79 52 611 5 104 41 564 5 106

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 39 1023 13 412 45 1082 14 494 32 939 17 558

4
median 38 998 12 516 49 1112 12 582 36 926 16 641
mean 37 1017 17 416 43 1080 13 429 35 993 15 455

12
median 33 978 15 415 43 1081 12 418 32 936 17 514
mean 39 1027 13 298 43 1083 13 416 31 928 17 492

25
median 34 993 13 360 44 1085 13 433 32 975 17 510

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 41 1005 10 334 45 1015 13 455 45 1019 9 302

4
median 45 1052 13 482 45 1059 13 580 38 965 9 424
mean 43 1019 10 288 42 1030 9 307 45 1024 10 279

12
median 43 1042 9 289 47 1101 10 390 43 1014 9 291
mean 40 1029 12 300 41 1054 11 326 43 1005 10 239

25
median 42 1042 11 308 43 1073 10 316 41 991 9 252

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 31 794 15 352 39 1067 15 477 40 927 11 424

4
median 35 881 16 561 40 1051 13 563 40 921 12 535
mean 33 893 16 347 37 1045 9 314 40 946 10 276

12
median 34 891 18 407 41 1071 9 339 35 893 9 342
mean 35 906 16 358 38 1077 12 329 41 939 9 285

25
median 36 901 12 323 41 1077 11 376 38 907 11 347

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 41 855 9 256 46 974 14 351 38 842 8 175

4
median 39 849 13 437 44 958 14 463 40 824 9 334
mean 37 835 9 162 47 993 12 280 36 811 6 132

12
median 42 865 10 249 44 968 9 226 39 849 6 128
mean 43 877 9 169 43 954 10 228 37 804 7 131

25
median 42 870 8 153 47 1005 10 236 40 847 5 98

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 26 402 4 175 29 468 5 139 33 514 7 191

4
median 27 437 3 192 29 426 5 188 31 488 6 217
mean 26 505 3 119 28 447 4 85 34 529 6 149

12
median 25 467 3 133 29 487 7 149 29 461 7 171
mean 27 492 6 170 25 432 4 83 33 501 5 129

25
median 28 474 3 126 25 429 4 82 30 460 5 128

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 25 376 2 54 34 412 3 72 25 305 2 50

4
median 23 351 4 143 31 392 4 131 26 259 3 120
mean 20 306 2 43 26 342 4 74 27 315 3 73

12
median 19 315 2 56 29 388 4 78 26 312 3 77
mean 25 379 2 52 29 402 3 69 22 267 3 61

25
median 20 322 2 43 37 459 3 69 29 351 3 74
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Table A.8: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated with
INDELible (_i) or Seq-gen (_s) using GTR and continuous modelling gamma distribution.
The data was analysed by a maximum likelihood approach using PhyML with 4, 12 or 25 rate
categories for gamma-distribution, estimating the shape parameter (α) with a proportion of
invariant sites (pinv) and using the median or mean. 100 parametric bootstraps were generated
with INDELible using the estimated GTR model. The whole process was performed using three
different seeds 1568746 (15), 444444 (44) and 555555 (55) for monte-carlo simulation of data
and bootstraps. The results are listed for every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The darker
the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: continuous Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 65 1 169 3 19 1 163 3 16 1 163

4
median 3 40 1 228 0 0 1 218 3 17 1 235
mean 1 6 0 0 1 22 0 0 1 5 0 0

12
median 2 33 0 0 2 24 0 0 1 7 0 0
mean 2 35 1 29 0 0 0 0 2 12 0 0

25
median 2 14 1 16 1 7 0 0 1 7 0 0

50_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 70 1 164 2 15 1 171 4 39 1 166

4
median 5 34 1 236 4 28 1 231 6 37 1 224
mean 6 51 0 0 2 16 0 0 6 37 0 0

12
median 6 52 1 82 1 6 0 0 3 15 0 0
mean 5 47 0 0 5 34 0 0 6 37 0 0

25
median 5 45 0 0 5 32 0 0 5 32 0 0

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 397 2 245 7 360 3 261 5 371 2 237

4
median 5 403 1 336 5 347 2 362 5 384 2 341
mean 4 410 1 141 5 357 4 183 6 397 2 160

12
median 2 396 2 190 6 357 2 187 6 375 1 180
mean 4 411 3 173 4 351 3 161 5 389 1 136

25
median 4 403 1 148 4 347 3 175 5 388 2 168

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 39 594 2 64 31 504 0 0 35 557 3 73

4
median 38 582 3 171 28 491 1 98 34 542 3 142
mean 35 538 2 64 30 498 1 9 32 537 2 46

12
median 38 543 2 63 26 473 0 0 29 488 2 47
mean 33 511 3 88 28 494 0 0 33 564 2 45

25
median 38 570 2 63 34 531 1 9 30 513 1 28

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 33 1 122 1 5 0 0 2 48 1 7

4
median 1 40 1 228 0 0 1 220 3 87 1 223
mean 1 5 0 0 2 11 0 0 2 15 0 0

12
median 0 0 0 0 2 11 0 0 3 21 0 0
mean 2 29 0 0 0 0 0 0 1 6 0 0

25
median 1 5 0 0 2 11 0 0 1 6 0 0
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Simulated: continuous Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 0 0 0 0 2 18 0 0 1 8 0 0

4
median 0 0 1 221 7 43 1 228 0 0 1 222
mean 0 0 0 0 3 23 0 0 3 21 0 0

12
median 0 0 0 0 2 14 0 0 2 13 0 0
mean 0 0 0 0 4 27 0 0 1 8 0 0

25
median 0 0 0 0 3 24 0 0 2 12 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 6 97 0 0 6 63 0 0 5 47 0 0

4
median 6 87 1 154 6 69 1 145 5 68 1 155
mean 4 45 0 0 6 68 0 0 4 33 0 0

12
median 9 115 0 0 3 30 0 0 3 47 0 0
mean 5 52 0 0 6 64 0 0 3 28 0 0

25
median 6 60 0 0 4 49 0 0 4 59 0 0

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 52 0 0 2 33 0 0 2 47 0 0

4
median 5 60 0 0 4 75 0 0 2 47 0 0
mean 4 52 0 0 4 74 1 24 3 54 0 0

12
median 4 50 0 0 3 42 0 0 2 46 0 0
mean 5 60 0 0 3 40 1 26 3 53 0 0

25
median 3 44 1 29 4 72 1 26 4 59 0 0

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 48 1 169 3 35 1 168 6 48 1 168

4
median 5 40 1 228 5 30 1 218 7 51 1 231
mean 2 11 0 0 2 11 0 0 5 36 0 0

12
median 3 23 0 0 3 20 0 0 4 24 0 0
mean 4 28 0 0 5 31 0 0 6 43 0 0

25
median 3 29 0 0 3 16 0 0 8 60 0 0

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 43 1 162 8 54 1 165 2 15 1 173

4
median 2 28 1 225 7 54 1 206 6 37 1 224
mean 1 14 0 0 8 59 0 0 3 19 0 0

12
median 4 37 0 0 5 44 1 23 1 6 1 8
mean 5 48 0 0 10 88 0 0 2 15 1 8

25
median 2 27 0 0 7 45 0 0 1 5 0 0

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 53 535 3 139 53 524 3 188 53 514 5 200

4
median 52 500 1 195 54 563 2 250 54 525 3 271
mean 47 471 1 8 46 485 1 61 51 498 1 50

12
median 57 558 0 0 45 477 1 63 53 503 2 58
mean 54 481 1 7 50 489 2 87 45 430 1 52

25
median 53 515 3 25 46 475 1 64 48 462 2 57

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 31 436 2 32 33 432 8 140 29 508 3 29

4
median 28 414 4 147 37 482 7 165 25 458 3 153
mean 24 396 3 65 32 433 5 97 25 461 4 60

12
median 25 379 3 66 33 417 8 152 24 460 5 98
mean 28 413 4 59 32 480 5 96 26 518 2 63

25
median 28 407 4 73 27 390 5 106 27 537 4 99

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 46 1 201 4 53 2 205 3 15 1 191

4
median 1 7 1 261 3 17 1 253 3 16 2 234
mean 0 0 0 0 2 13 0 0 2 10 0 0

12
median 2 11 1 16 3 17 0 0 2 11 0 0
mean 1 5 1 16 3 18 0 0 2 10 0 0

25
median 0 0 1 17 4 21 0 0 2 11 0 0
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Simulated: continuous Γ – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 31 1 199 6 40 1 202 6 39 2 213

4
median 2 13 1 243 3 18 2 248 4 25 1 244
mean 2 15 0 0 6 39 0 0 5 31 0 0

12
median 1 7 0 0 3 25 1 20 3 18 1 8
mean 2 15 0 0 6 39 0 0 2 13 0 0

25
median 2 17 0 0 3 18 1 21 5 34 0 0

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 48 636 5 94 52 640 8 169 38 570 8 170

4
median 51 676 6 217 52 648 5 204 43 590 5 204
mean 42 582 5 90 49 626 4 74 42 586 7 112

12
median 43 626 4 80 51 614 4 94 39 556 5 108
mean 54 689 7 114 49 626 4 59 39 561 4 79

25
median 49 643 5 93 46 611 8 136 44 598 6 109

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 36 1012 13 452 48 1111 13 490 34 961 17 553

4
median 36 1003 15 585 42 1056 12 576 36 958 16 650
mean 33 993 15 377 43 1078 14 435 36 963 14 436

12
median 37 1008 14 407 43 1081 12 418 35 959 17 519
mean 33 983 14 384 42 1072 13 408 39 1018 15 413

25
median 34 992 13 360 45 1091 12 356 34 978 14 449

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 42 1055 11 366 41 1087 9 405 44 1029 8 286

4
median 44 1056 11 451 44 1054 14 582 42 1006 9 414
mean 40 1039 10 231 44 1084 10 297 42 1005 9 269

12
median 40 1002 12 338 47 1103 10 390 42 1004 11 322
mean 44 1057 8 210 40 1029 11 326 44 1024 9 213

25
median 43 1052 10 275 43 1068 15 430 41 994 10 288

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 33 893 15 419 36 1036 11 425 37 903 10 399

4
median 33 878 15 508 37 1025 10 512 39 914 10 487
mean 34 902 11 260 38 1069 14 408 38 926 11 325

12
median 36 898 15 363 38 1058 11 406 38 911 12 414
mean 33 890 15 352 36 1050 9 265 33 861 11 325

25
median 33 887 16 371 36 1058 11 367 41 940 10 315

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 39 821 8 245 45 1008 9 294 36 818 6 210

4
median 41 869 10 364 47 993 9 371 37 845 6 290
mean 39 838 7 151 44 971 11 256 38 823 6 120

12
median 41 827 11 251 48 1012 12 250 36 803 5 103
mean 41 847 9 176 48 1012 8 184 38 841 7 140

25
median 40 810 6 114 50 1026 10 237 38 833 4 87

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 28 456 5 189 31 477 4 142 35 530 7 180

4
median 25 432 4 224 28 461 3 173 33 508 8 260
mean 25 425 4 143 26 462 5 84 32 525 6 149

12
median 28 454 4 158 31 486 4 121 33 498 5 146
mean 27 465 4 143 31 510 3 63 32 527 4 105

25
median 31 524 4 150 28 503 3 63 34 507 8 177

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 25 339 3 100 30 407 2 32 25 265 4 87

4
median 23 314 4 146 38 460 4 142 30 334 5 164
mean 27 398 3 64 32 391 4 74 27 314 1 25

12
median 22 324 1 30 33 431 3 71 23 290 3 76
mean 23 307 2 53 31 399 3 69 26 321 3 61

25
median 19 290 3 64 33 424 3 69 26 315 2 36
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Table A.9: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated
with INDELible (_i) or Seq-gen (_s) using GTR and continuous Γ+I modelling. The data
was analysed by a maximum likelihood approach using PhyML with 4, 12 or 25 rate categories
for gamma-distribution, estimating the shape parameter (α) with a proportion of invariant sites
(pinv) and using the median or mean. 100 parametric bootstraps were generated with INDELible
using the estimated GTR model. The whole process was performed using three different seeds
1568746 (15), 444444 (44) and 555555 (55) for monte-carlo simulation of data and bootstraps.
The results are listed for every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The darker
the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: continuous Γ+I – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 241 9 318 8 231 10 366 4 167 6 279

4
median 2 10 7 245 8 58 12 370 4 25 5 228
mean 0 0 3 118 10 186 5 196 5 35 4 177

12
median 1 7 6 188 8 58 7 246 7 48 2 134
mean 6 156 5 159 9 202 5 196 3 134 3 147

25
median 2 10 5 165 8 57 5 201 3 22 1 102

50_s

reference set 5 34 1 13 0 0 0 0 0 0 0 0
mean 7 162 11 342 6 198 11 334 4 155 12 405

4
median 6 37 7 234 7 44 9 281 7 45 7 266
mean 7 167 6 194 3 22 7 196 7 45 6 199

12
median 6 36 4 154 5 33 8 224 6 38 4 165
mean 7 45 3 140 5 155 9 229 7 160 3 137

25
median 6 36 3 139 4 27 10 254 4 27 4 162

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 8 511 8 303 5 537 10 334 2 474 12 340

4
median 9 531 7 376 5 542 11 416 4 490 12 425
mean 10 545 6 134 6 563 7 130 2 491 12 199

12
median 9 530 8 272 4 537 9 294 4 503 11 283
mean 10 551 9 185 6 565 12 212 4 513 7 133

25
median 11 553 7 156 7 566 8 141 4 509 8 144

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 44 788 8 234 44 880 7 237 46 867 14 307

4
median 44 802 7 290 48 916 6 280 54 957 9 359
mean 43 779 9 235 38 818 6 203 44 839 13 288

12
median 46 805 6 180 38 840 6 199 49 893 9 247
mean 44 780 7 156 43 875 6 183 45 831 8 241

25
median 44 786 8 233 41 791 6 189 48 892 10 261

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 4 1 147 5 40 1 141 2 11 1 159

4
median 4 23 1 300 7 51 1 294 6 71 1 313
mean 1 6 0 0 3 18 0 0 2 12 0 0

12
median 0 0 1 107 5 41 0 0 2 12 0 0
mean 0 0 0 0 3 29 0 0 2 10 0 0

25
median 1 6 0 0 4 27 0 0 1 5 0 0

continued on next page...
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Simulated: continuous Γ+I – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 26 1 142 2 9 1 147 2 15 1 136

4
median 3 26 1 303 4 65 1 304 6 59 1 294
mean 2 21 1 22 2 14 0 0 1 5 0 0

12
median 3 26 1 101 4 40 0 0 1 6 1 115
mean 2 21 0 0 1 6 0 0 2 13 0 0

25
median 5 37 0 0 1 6 0 0 2 14 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 12 150 0 0 14 158 0 0 14 127 0 0

4
median 13 181 1 161 17 213 1 170 12 124 1 174
mean 11 144 0 0 15 154 0 0 13 120 0 0

12
median 10 112 0 0 13 180 0 0 12 110 0 0
mean 11 124 0 0 15 167 0 0 12 113 0 0

25
median 10 122 0 0 11 135 0 0 15 147 0 0

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 7 75 0 0 8 115 0 0 9 148 0 0

4
median 6 62 0 0 8 114 0 0 10 129 0 0
mean 6 69 0 0 10 129 0 0 8 130 0 0

12
median 6 67 0 0 9 121 0 0 9 120 0 0
mean 6 67 0 0 10 127 0 0 7 108 0 0

25
median 7 74 0 0 8 114 0 0 7 109 0 0

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 5 246 13 371 4 296 9 271 3 179 10 267

4
median 4 33 8 217 3 17 10 262 3 17 8 212
mean 7 187 8 200 5 160 8 202 6 160 6 133

12
median 4 31 7 184 3 16 9 220 3 18 8 175
mean 6 178 5 134 5 171 7 180 4 155 6 139

25
median 3 23 5 137 2 16 9 214 3 17 7 161

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 208 12 331 5 267 12 350 5 185 8 237

4
median 1 5 9 254 3 20 8 228 6 42 5 147
mean 3 152 5 147 8 180 8 185 7 160 6 157

12
median 1 5 9 227 7 43 7 180 7 47 4 117
mean 3 15 6 159 6 38 6 147 7 48 4 115

25
median 2 9 6 168 7 41 6 152 4 28 4 106

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 108 1148 6 274 117 1327 9 368 97 1096 7 282

4
median 113 1223 5 236 114 1195 8 335 112 1244 9 397
mean 109 1335 6 255 110 1369 8 326 115 1374 8 275

12
median 108 1290 5 231 108 1292 8 328 106 1269 9 300
mean 101 1296 7 264 109 1364 7 305 106 1312 7 269

25
median 101 1257 6 262 107 1325 7 304 109 1317 6 245

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 44 845 10 314 44 884 9 277 45 901 8 245

4
median 50 909 12 429 45 908 9 329 50 956 8 259
mean 48 895 11 321 42 942 6 219 50 974 8 246

12
median 50 918 10 303 39 849 7 237 48 928 8 240
mean 49 988 9 297 44 937 8 239 44 948 7 233

25
median 48 902 11 342 44 932 11 298 50 932 6 204

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 2 224 9 266 3 262 15 427 5 222 13 422

4
median 1 7 9 273 2 13 12 353 4 27 10 332
mean 4 28 4 126 3 152 6 166 3 161 8 229

12
median 4 25 5 152 2 11 10 250 3 22 11 302
mean 2 13 4 124 4 176 11 255 3 164 8 228

25
median 3 20 5 150 4 25 10 251 2 12 9 266

continued on next page...
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Simulated: continuous Γ+I – Estimated: Γ

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 225 9 277 3 225 10 363 1 250 12 395

4
median 1 9 8 256 2 11 10 352 0 0 11 361
mean 4 145 2 97 4 24 7 245 1 143 7 233

12
median 2 15 3 122 3 16 5 213 0 0 9 271
mean 4 154 1 73 3 18 6 224 2 169 6 186

25
median 2 15 3 117 2 12 5 205 2 10 6 192

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 94 1788 19 644 90 1810 18 604 93 1718 18 606

4
median 86 1612 19 627 95 1751 17 578 91 1651 16 525
mean 86 1798 18 611 90 1864 20 599 92 1776 17 565

12
median 91 1778 20 641 93 1842 16 545 93 1744 17 553
mean 82 1754 21 632 93 1892 17 522 92 1778 17 553

25
median 92 1842 19 617 91 1873 15 534 93 1751 21 623

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 61 1666 20 930 51 1642 21 921 62 1743 20 933

4
median 56 1651 18 1054 54 1681 23 1105 66 1791 21 1092
mean 53 1604 20 903 52 1632 24 925 58 1715 22 933

12
median 61 1662 20 915 51 1677 23 912 61 1748 20 919
mean 53 1604 19 891 54 1690 21 888 56 1698 22 929

25
median 56 1631 18 890 53 1677 23 917 55 1695 22 927

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 64 1568 18 789 62 1552 17 742 66 1452 16 714

4
median 71 1622 18 755 68 1583 17 852 75 1546 16 815
mean 69 1747 16 724 69 1592 16 700 71 1635 16 706

12
median 64 1656 18 772 63 1533 15 703 71 1495 17 745
mean 66 1747 18 752 65 1699 15 646 75 1669 16 706

25
median 70 1757 17 744 67 1664 16 698 69 1625 16 685

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 52 1540 22 894 67 1695 20 929 58 1591 19 906

4
median 57 1643 24 1050 67 1726 17 1006 60 1642 19 1023
mean 56 1568 21 866 66 1776 19 894 51 1513 21 898

12
median 55 1601 23 889 62 1660 18 893 57 1582 18 878
mean 54 1558 21 860 64 1675 20 880 58 1572 23 916

25
median 57 1607 23 890 65 1691 19 891 57 1602 18 873

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 49 1562 21 672 53 1601 25 743 52 1573 26 804

4
median 51 1594 20 825 54 1633 24 900 51 1585 26 936
mean 48 1546 20 641 52 1582 24 703 51 1556 23 669

12
median 52 1580 19 636 56 1636 25 744 52 1566 25 705
mean 50 1573 21 651 50 1582 22 699 52 1559 23 671

25
median 50 1561 21 647 51 1566 24 735 49 1509 24 675

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 64 1236 12 360 58 1153 13 440 62 1170 12 406

4
median 65 1228 12 482 61 1161 11 449 67 1195 13 525
mean 57 1175 12 360 64 1272 14 415 57 1122 9 339

12
median 59 1207 13 383 64 1212 14 448 69 1230 11 358
mean 60 1217 12 386 65 1270 11 393 64 1216 11 393

25
median 54 1164 11 353 65 1280 12 405 63 1199 11 368

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 55 1015 8 364 61 1295 10 462 54 1142 9 353

4
median 59 1101 7 329 73 1299 9 455 54 1099 9 426
mean 56 1157 8 362 62 1327 9 449 55 1150 8 339

12
median 55 1109 10 371 61 1262 9 453 52 1070 8 337
mean 58 1175 6 296 68 1380 9 454 59 1181 7 315

25
median 56 1108 7 321 58 1303 8 442 48 1072 9 335
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Table A.10: Results of the test for several simulated datasets (Sim, S50´S89). The data was generated
with INDELible (_i) or Seq-gen (_s) using GTR and continuous Γ+I modelling. The data
was analysed by a maximum likelihood approach using PhyML with 4, 12 or 25 rate categories
for gamma-distribution, estimating the shape parameter (α) with a proportion of invariant
sites (pinv) and using the median or mean. 100 parametric bootstraps were generated with
INDELible using the estimated GTR model. The whole process was performed using three
different seeds 1568746 (15), 444444 (44) and 555555 (55) for monte-carlo simulation of data
and bootstraps. The results are listed for every seed.
cat = rate categories for gamma-distribution used in the ML-analysis;
over, under = results for over- or under-represented splits;
sp = amount of splits detected as over- or under-represented;
dif = number of sites which represent all over- or under-represented splits;
green cells = no over- or underrepresentation;
The darker the orange cells, the more over- or underrepresented splits were observed. The
darker the blue cells, the higher the deviation observed and expected amount of split occurrence.

Simulated: continuous Γ+I – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

50_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 5 0 0 5 49 1 151 2 30 1 144

4
median 0 0 1 173 7 61 1 181 5 49 1 190
mean 1 5 0 0 6 53 0 0 3 34 0 0

12
median 2 11 0 0 5 39 0 0 2 14 0 0
mean 1 5 0 0 4 34 0 0 3 36 0 0

25
median 0 0 0 0 8 63 0 0 4 26 0 0

50_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 35 1 131 4 38 1 157 3 26 0 0

4
median 3 23 1 182 1 9 1 185 4 23 1 155
mean 2 16 0 0 2 17 0 0 5 27 0 0

12
median 2 16 0 0 4 27 0 0 3 19 0 0
mean 3 21 0 0 3 19 0 0 5 29 0 0

25
median 4 27 0 0 4 29 0 0 5 33 0 0

51_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 10 563 9 340 5 565 13 402 6 522 12 366

4
median 9 531 7 376 6 545 12 450 4 490 11 405
mean 10 545 6 136 3 543 10 187 6 519 9 168

12
median 9 530 8 272 4 537 10 306 4 503 11 282
mean 10 551 9 185 6 565 12 213 4 513 7 134

25
median 11 553 7 156 7 567 7 129 4 509 8 145

52_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 44 837 9 190 40 885 6 231 43 899 12 252

4
median 48 882 5 280 42 896 5 288 50 944 11 375
mean 42 797 7 189 38 844 5 162 45 896 11 254

12
median 49 877 7 194 45 918 5 163 46 880 9 203
mean 43 789 5 145 37 831 7 185 44 878 8 223

25
median 43 815 6 172 38 851 4 128 43 835 11 223

60_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 0 0 0 0 5 38 0 0 3 44 0 0

4
median 3 19 1 167 2 20 1 176 1 5 1 171
mean 0 0 0 0 4 33 0 0 0 0 0 0

12
median 0 0 0 0 5 40 0 0 3 17 1 8
mean 0 0 0 0 3 27 0 0 3 16 0 0

25
median 1 7 0 0 2 16 0 0 4 20 0 0

continued on next page...
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Simulated: continuous Γ+I – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

60_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 45 0 0 1 5 0 0 1 8 0 0

4
median 1 34 1 160 2 40 1 190 3 44 1 184
mean 2 31 0 0 1 5 0 0 1 7 0 0

12
median 1 8 0 0 3 22 0 0 1 7 0 0
mean 3 24 0 0 0 0 0 0 0 0 0 0

25
median 2 16 0 0 1 6 0 0 0 0 0 0

61_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 9 95 0 0 15 165 0 0 11 104 0 0

4
median 10 152 0 0 13 177 1 175 14 128 1 172
mean 8 103 0 0 12 145 0 0 12 127 0 0

12
median 7 82 0 0 13 167 0 0 12 110 0 0
mean 8 116 0 0 15 163 0 0 12 113 0 0

25
median 8 87 0 0 16 199 0 0 13 119 0 0

62_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 7 65 0 0 7 107 0 0 10 144 0 0

4
median 7 76 0 0 8 117 0 0 9 138 0 0
mean 5 60 0 0 9 121 0 0 9 119 0 0

12
median 6 60 0 0 9 120 0 0 8 115 0 0
mean 6 62 0 0 9 119 0 0 9 138 0 0

25
median 7 75 0 0 9 120 0 0 11 148 0 0

70_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 1 11 0 0 3 21 1 152 3 28 2 174

4
median 2 22 2 180 3 22 1 186 3 27 2 213
mean 2 19 0 0 2 14 0 0 1 15 1 21

12
median 4 34 1 7 1 5 0 0 1 5 1 20
mean 3 24 0 0 1 5 0 0 3 25 1 20

25
median 4 34 1 7 3 21 0 0 2 20 0 0

70_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 22 1 151 3 75 1 149 2 11 1 153

4
median 6 32 2 195 1 6 1 181 2 13 1 184
mean 4 22 0 0 2 32 0 0 3 17 0 0

12
median 5 28 0 0 1 6 0 0 3 18 0 0
mean 4 22 0 0 1 6 0 0 1 7 0 0

25
median 4 22 0 0 1 4 0 0 2 12 0 0

71_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 105 1186 3 96 108 1214 5 203 101 1138 4 209

4
median 103 1142 3 266 108 1211 4 276 104 1211 5 331
mean 97 1067 1 65 108 1196 3 113 99 1168 3 108

12
median 101 1078 3 103 101 1117 4 122 106 1209 5 136
mean 99 1114 2 86 105 1139 4 120 109 1223 5 149

25
median 99 1036 1 66 104 1162 3 111 97 1120 3 116

72_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 51 1004 10 282 43 930 7 182 44 946 8 199

4
median 50 1002 10 418 45 963 7 311 45 953 8 324
mean 47 941 11 294 43 917 8 186 45 919 7 192

12
median 50 975 10 281 41 914 9 185 39 904 5 152
mean 47 905 9 265 40 916 6 199 43 912 5 155

25
median 48 993 10 292 39 872 10 229 45 951 5 163

80_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 4 43 1 168 5 86 0 0 4 26 1 171

4
median 1 20 1 196 2 51 1 199 3 18 1 208
mean 3 29 0 0 3 50 0 0 2 14 0 0

12
median 2 16 0 0 3 19 1 17 3 18 1 10
mean 2 12 0 0 2 11 0 0 2 12 0 0

25
median 2 13 0 0 2 13 1 17 3 20 0 0
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Simulated: continuous Γ+I – Estimated: Γ+I

Analysis 1568746 444444 555555
options over under over under over under

Sim cat sp dif sp dif sp dif sp dif sp dif sp dif

80_s

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 3 19 1 169 5 52 1 176 3 37 1 177

4
median 2 11 1 187 3 18 1 215 3 37 1 217
mean 3 18 1 9 3 29 0 0 3 29 0 0

12
median 2 10 0 0 1 6 0 0 4 39 0 0
mean 5 28 0 0 1 15 0 0 3 33 0 0

25
median 0 0 1 10 1 6 0 0 1 9 0 0

81_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 87 1720 15 367 89 1731 14 388 92 1731 15 364

4
median 85 1661 16 516 91 1743 13 460 90 1714 15 544
mean 85 1658 16 364 88 1718 14 323 88 1651 17 394

12
median 83 1629 15 359 91 1735 13 327 90 1674 15 377
mean 84 1621 14 347 90 1744 14 332 91 1681 17 389

25
median 86 1699 16 346 88 1719 12 321 90 1658 17 395

82_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 55 1720 21 910 51 1706 21 931 57 1782 24 967

4
median 54 1717 21 1039 53 1771 24 1070 61 1836 21 1055
mean 52 1663 20 824 52 1725 25 867 57 1739 20 843

12
median 55 1670 21 854 53 1713 20 824 60 1769 22 870
mean 53 1670 19 794 53 1714 22 851 61 1781 20 844

25
median 55 1674 21 843 53 1713 23 861 56 1730 21 868

83_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 66 1680 14 535 62 1691 13 554 68 1604 13 520

4
median 71 1750 13 630 67 1720 11 631 76 1680 12 601
mean 64 1658 14 473 63 1680 12 457 63 1557 14 440

12
median 66 1674 13 470 65 1681 13 492 67 1571 14 473
mean 66 1673 14 478 69 1694 11 412 64 1559 15 479

25
median 67 1682 13 442 64 1661 14 501 70 1587 13 471

85_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 50 1669 25 884 64 1783 20 846 51 1650 17 811

4
median 57 1705 20 914 64 1796 19 963 54 1680 20 948
mean 56 1672 23 782 60 1716 18 757 55 1652 21 795

12
median 57 1660 23 789 61 1735 20 783 53 1640 20 801
mean 51 1629 26 814 64 1759 23 817 57 1667 20 786

25
median 54 1639 23 805 68 1775 19 789 54 1643 23 807

86_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 47 1630 21 709 53 1710 25 795 55 1658 24 772

4
median 52 1685 21 816 59 1764 23 886 49 1610 26 909
mean 46 1561 19 589 53 1621 22 662 49 1558 25 693

12
median 47 1564 20 617 53 1645 23 687 50 1560 23 683
mean 49 1595 22 635 54 1628 24 690 51 1566 24 680

25
median 50 1591 21 621 53 1627 24 708 54 1567 25 711

88_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 63 1304 9 349 60 1227 10 306 66 1298 9 352

4
median 58 1253 13 499 59 1227 10 411 70 1362 11 498
mean 58 1220 9 266 61 1214 9 285 60 1272 10 308

12
median 62 1254 12 315 62 1225 8 262 62 1289 10 313
mean 57 1244 12 312 59 1194 9 282 68 1316 11 319

25
median 61 1255 11 312 59 1202 11 320 62 1226 12 347

89_i

reference set 0 0 0 0 0 0 0 0 0 0 0 0
mean 55 1181 7 329 58 1338 10 371 62 1288 7 297

4
median 56 1166 7 402 60 1323 9 507 60 1231 7 425
mean 57 1161 8 275 65 1348 8 331 54 1207 10 309

12
median 55 1158 6 250 65 1365 9 377 58 1183 9 317
mean 58 1186 7 276 61 1329 8 356 50 1165 8 291

25
median 52 1158 6 251 68 1370 7 316 58 1194 11 338
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1 Introduction

1 Introduction

SAMS is an interactive analysis program for molecular sequence data. It im-
plements several routines which, for a given set of aligned DNA sequences,
estimate the phylogenetic signal present in the data that supports or contra-
dicts putative splits, i.e. internal branches in putative phylogenetic trees. With
this information it is possible to visualize the information content of the data
set and the signal to noise relationship.

SAMS is based on ideas of Johann Wolfgang Wägele which have been published
earlier (see references [1-6] below). These ideas have been refined and exten-
ded by Christoph Mayer in the development of the SAMS analysis program.
Sandra Meid developed the SAMS GUI and the compatibility test methods
implemented within the GUI.

1. Wägele JW, Rödding F: A priori estimation of phylogenetic information
conserved in aligned sequences. Mol Phyl Evol 1998, 9: 358-365.

2. Wägele JW, Erikson T, Lockhart P, Misof B: The Ecdysozoa: artifact or
monophylum? J Zool Syst Evol Res 1999, 37: 211-223.

3. Wägele JW: Foundations of phylogenetic systematics. Munich: Verlag Dr.
F. Pfeil; 2005.

4. Wägele JW, Rödding F: Origin and phylogeny of metazoans as recon-
structed with rDNA sequences. Progr Mol Subcell Biol 1998, 21:45-70.
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1 Introduction

Please report any crashes, bugs, or problems you have with this program to
Christoph Mayer or Sandra Meid.

The software SAMS is Copyright protected (C) 2012 Christoph Mayer and
Sandra Meid.

When publishing results obtained via SAMS please cite: Christoph Mayer, San-
dra Meid and Johann Wolfgang Wägele, 2012, Zoologisches Forschungsmuseum
Alexander Koenig, Bonn, Germany.
https://www.zfmk.de/en/research/research-centres-and-groups/sams

2



2 Tutorial

2 Tutorial

2.1 Start SAMS GUI

Start the application. For Windows and Mac OS click on the SAMS executable,
for Linux start the sh-script.

2.2 Choose alignment

By clicking on the <Choose alignment> button a window appears in which
you can choose the file you want to process. SAMS is capable of reading
data files in the NEXUS format. It can read all relevant NEXUS-blocks in-
cluding Taxa-blocks, Data-blocks, Character-blocks, Assumptions-blocks and
Tree-blocks. Blocks that are unknown to SAMS are ignored. SAMS defines its
own block, the so called SAMS-block, in which the user can write any set of
SAMS-commands in order to run the program.
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2.3 Choose parameters 2 Tutorial

2.3 Choose parameters

Adjust the parameters to your needs. The usage and effect of these parameters
are described in detail in Chapter 2.

2.4 Run SAMS

Wait until SAMS has processed the data. It will open the tab <Splits> when
finished.
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2 Tutorial 2.5 Split spectrum

2.5 Split spectrum

After the analysis is finished the results are plotted as split spectrum within
the tab <Split spectra>.
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3 SAMS Parameters

3 SAMS Parameters

3.1 gapMode

default new state

The gapMode parameter controls how gaps are treated in molecular sequence
data.

newState Gaps are treated as an additional state.

missing Gaps are treated as missing character.

3.2 consensusThreshold

default 0.50, real value in range [0..1]

The value of the consensusThreshold parameter is relevant whenever a con-
sensus sequence has to be computed for a set of taxa during an analysis. This is
done as follows: For each site, the occurring characters are counted. The most
frequent character of a site is chosen as the consensus character, if the character
occurs with a proportion larger than or equal to consensusThreshold and if
no other character occurs with this same proportion. Otherwise the consensus
character is set as missing character.

3.3 MaxIngroupNoise

default 0.25, real value in range [0..1]

This parameter influences whether alignment positions are counted as noisy
in- and outgroup supporting positions for a certain split. The value indicates
the percentage of the ingroup bases which do not have to be identical with the
predominant base. In other words, the ingroup is allowed to contain 25% noise
by default.
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3 SAMS Parameters 3.4 MaxOutgroupNoise

3.4 MaxOutgroupNoise

default 0.25, real value in range [0..1]

This parameter influences whether alignment positions are counted as noisy
outgroup and noisy in- and outgroup supporting positions for a certain split.
The value indicates the percentage of the predominant ingroup base, which is
allowed to occur in the other group, 25% noise by default.

3.5 MaxSimIgToOg

default 0.25, real value in range [0..1]

The supporting positions of every taxon are compared to corresponding positi-
ons or the consensus sequence of the other group. The value indicates the per-
centage of sequence positions within the ingroup, which are allowed to be similar
to sequence positions of the outgroup, 25% noise by default.

3.6 MaxSimOgToIg

default 0.25, real value in range [0..1]

The supporting positions of every taxon are compared to corresponding positi-
ons or the consensus sequence of the other group. The value indicates the per-
centage of sequence positions within the outgroup, which are allowed to be simi-
lar to sequence positions of the ingroup, 25% noise by default.

3.7 SequenceComparison

default pairwise

The sequences are compared to exclude split support caused by similarity by
chance. If the similarity of the sequences is higher than the chosen threshold
(MaxSimIgToOg and MaxSimOgToIg), the support of this positions is not
counted as support.

pairwise Supporting positions of every taxon are compared to corresponding
positions of the other group.
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3.8 Exclude taxa from analysis 3 SAMS Parameters

consensus Supporting positions of every taxon are compared to the consensus
sequence of the other group.

3.8 Exclude taxa from analysis

Excludes a single taxon or a <set of taxa> from the analysis. The <set of
taxa> can be any set of valid taxon names or numbers separated by co-
lons.

3.9 Exclude sites from analysis

Exclude single or a <set of character positions> from the analysis. The <set
of character positions> can be any set of valid position names or numbers
separated by colons.

3.10 Splits

default occurring

If the number of taxa, here denoted by n, is too large, it becomes impossible to
determine supporting positions for all 2n possible splits. With the splits options
it is possible to specify the set of splits to be analysed.

occurring Only the splits that occur in the data are analysed.

all All possible 2n splits are analysed. Since the number of splits increases
exponentially with the number of taxa, this option is only allowed for less
than 15 taxa.

search In a first step, all splits are analysed which occur in the data. In
a second step, a specified proportion of the highest supported occurring
splits is used as starting points for a search, in which taxa are added and
removed from the ingroups of splits, with the aim of finding splits not
explicitly occurring in the data, but having a high number of supporting
positions.
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4 Splits spectrum preferences 3.11 Max. number of splits

3.11 Max. number of splits

default 150

Number of splits which should be analysed.

3.12 Set to default values

By clicking this button all parameters are restored to default values.

4 Splits spectrum preferences

4.1 Splits

This parameter changes the number of splits, which are plotted. If the number is
higher than the number of analysed splits, all available splits are shown.

4.2 Split qualities

Switch between total support and support for three different split qualities.

binary Each position in in- and outgroup have identical bases, bases
between both groups are different.

noisy outgroup Taxa of the ingroup have homogeneous bases. The base
which is predominant within the ingroup is allowed to occur in other group
up to 25% by default.

noisy in- & outgroup Ingroup taxa must have at least 75% character
identity and the base which is predominant within the ingroup is allowed
to occur in the outgroup up to 25% by default.

4.3 Compatibility mode

Shows which splits are compatible with the best split or all splits fitting together
as tree, starting with the best split.
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Aspects of Quality and  
Project Management in Analyses  
of Large Scale Sequencing Data 

 Björn M. von Reumont, Sandra Meid and Bernhard Misof 
Zoologisches Forschungsmuseum Alexander Koenig,  

Adenauerallee 160, 53113 Bonn,  
Germany 

1. Introduction 
We describe step-by-step the outline of a project, in which the evolutionary history of 
pancrustaceans (crustaceans and hexpods) was revisited using molecular methods. It was 
part of a larger program, the ‘Deep Metazoan Phylogeny’ priority program of the 
Deutsche Forschungsgemeinschaft (DFG), wich aimed to reconstruct the metazoan tree of 
life involving more than 30 subprojects. This chapter should be understood as a backbone, 
that clarifies important points to plan and to conduct projects in molecular biology, also 
using next generation sequencing data. The text is divided in four parts: 1) theoretical 
aspects to projects in molecular biology, 2) the process from the collection of material in 
the field to the final sequencing, 3) the process from the sequence to the reconstructed 
topology with a special emphasis on data quality, and 4) the conclusions to prevent 
pitfalls. 

1.1 Fascination and complexity of molecular evolutionary biology 
Working in molecular evolution to reconstruct the evolutionary history of organisms is a 
very fascinating, but also very complex issue. Per definition evolutionary biology, and 
respectively molecular evolutionary biology, is the division in science, which overlaps and 
intersects mostly with other areas of natural sciences, like chemistry, physics, informatics, 
mathematics, bioinformatics, geography but also philosophy and history. Exactly that 
complexity and intersection creates the fascination and addiction of many scientists to work 
in that area. 
Being on field excursions and collecting specimens in their natural habitats is like travelling 
back in time into the century and time of classic field biology, geography and history. If once 
the laboratory part has started, technicial and laboratory skills are demanded, while in 
parallel the amount of characterized sequences starts to force one to become a sophisticated 
software user, partly applying bioinformatics knowledge or (the often much faster 
alternative) cooperating with bioinformaticians. The analyses, interpretation and discussion 
of the results represent the climax of the project by some (at least) publications in highly 
respected journals. 
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1.2 General management strategies applicable for scientific projects in molecular 
evolution 
In general, scientists are highly educated in their specific disciplines, but are often 
‘freshmen’ in managing projects with all involved aspects. 
These eventually less developed soft skills can cause an underestimation of possible volume 
of work and subsequently lead to a massive lack of time, which finally degrades the results 
and the quality of the scientific project. A rigorous project management as conducted in 
economics featuring a global, yet detailed intersected time schedule with ‘milestones’ as 
anchor points and deadlines (including buffer-time in reserve) as general frame in a project 
roadmap is mandatory for a solid project. The ‘golden triangle’ of project management (e.g. 
Kerzner, 2009; Litke et al., 2010) illustrates interrelations that affect projects and their quality 
management: A) goals and qualitative results, B) planned time schedule and C) calculated 
costs. If one edge of that triangle becomes delicate, all could be at risk, and the quality of the 
project is affected (see figure 1). 
 

 
Fig. 1. The golden triangle of project management adapted to molecular projects. The red 
arrows indicate where the points written outside the second (red) triangle have most 
impact. However, some points have an impact on more than just one edge. Laboratory 
difficulties for example cost primarily time, but also stress the budget. If things go wrong 
(and mostly they unfortunately follow the law of Murphy in the scientific business) goals 
might also be affected by laboratory difficulties. The core triangle pictures the three main 
components, which are interwoven. If one edge is affected, the other ones are affected either. 
A major specification is probably, that A and B generally are more connected with each 
other in most aspects, while the budget is constant or not directly affected (golden arrows). 
If e.g. computational analyses of phylogenetic trees do not work or cause difficulties, a delay 
in the time schedule is created, that primarily affects the results, but not directly the budget 
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If a larger project is conducted, in which more persons are directly involved or third parties 
included (e.g. by outsourcing of sequencing to companies, etc.), additional aspects play a 
veritable role. Who is directly or indirectly involved in and linked to the project? Which 
interests and influence (negative and positive) have the different persons or parties in the 
project? All of these involved persons (with different expectations and interests) are 
stakeholders of the project. In general, a stakeholder analysis in the planning phase is 
extremely crucial and a standard approach in economics (Weaver, 2007; Freeman, 2010; 
Litke et al., 2010). Which risks might rise by involved persons? In science, competion 
between work groups must be considered. Is cooperation possible, which is always to 
prefer. If no cooperation is feasible, which risks exist subsequently for the project? If third 
parties are involved by outsourcing of e.g. sequencing, an exact analysis of possible 
candidate companies and their interests and capability are important (see also additionally 
paragraph 2.3). Last but not least, if you are a PhD student or postdoc do not forget one very 
important or even the key stakeholder (Bourne, 2010), the PI or supervisor. What are his 
interests, which are yours? Is there a risk or conflict you might have to deal with or to solve? 
What are his expectations? Perhaps an agreement on objectives is necessary. One major 
factor is an open discussion, regular (scheduled) communication and time for additional, 
intermediate meetings; also a clearly communicated agreement on objectives avoids 
difficulties or even disappointment of one or both parties in the project. 
The communication strategy is a further key factor (Bourne, 2010), it is important to prevent 
typical pitfalls like ‘just reporting’, ‘flood of detailed information’ and that ‘no feedback’ is 
given. See also general principles of communication to transport information (Chapter 
1.3.5/1.3.6 in: Wägele, 2005; Bourne, 2010). Communication is quite clearly time consuming, 
but it pays off. All points of the golden triangle are linked to communication, including 
budget and quality of results. Communication skills improve the general quality of the 
project, can save costs and time, and eventually most importantly: control and enhance the 
motivation of the involved persons. 
Several software packages to coordinate communication, interaction and project work exist 
to provide an effective platform and frame to conduct and coordinate projects. Examples are 
Teamwork, OpenLab, Italy; Teamlab, Ascensio System (open source); Clarizen (web based); 
Endeavour software project management, Ezequiel Cuellar (open source). If you are a 
bioinformatician, the last package might be respectively interesting. 
A characteristic of scientific projects is that new open questions and potentially new fields of 
methodologies are explored. Respectively, if additionally laboratory work is included, the 
risk to end without any or absolutely unexpected results (latter one might result in the 
desired nature paper) is part of the scientific business and in general hard to evaluate. That 
has to be calculated in advance and should be reflected in the time and risk management. 
However, there is also a clear difference between projects in economics and science: 
scientific projects aim in most cases for fundamental and theoretical insights instead for a 
direct financial benefit of involved parties. Changing and evaluating laboratory methods for 
example, might be unexpected time consuming, but necessary and can at the same time 
establish a new state of the art method. Time and space to walk open minded on paths that 
seem to be ineffective, not suitable or even out of topic at first glance might bring the 
breakthrough and must be possible. Louis Pasteur (1822-1895) quoted on his accidentally 
discovery of penicillin, “chance favours the prepared mind”, but one condition for this 
famous quote is, that the scientist needs the (mentally) freedom to meet chance. A too rigid 
framework and control might hinder that. Contrariwise many scientists focus often too 
much on details (as being trained for) and loose their track on the overall relations of the 
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project, which provokes a rather high inefficiency. Consequently a compromise between 
efficiency and creativity/innovation has to be made. This is easy to write, but hard to 
transfer and to realize, as personally experienced. 

2. Project phases from species collection in the field to sequencing 
2.1 Collection and fixation of samples in the field – RNAlater or sooner? 
Normally, the planned molecular project starts with the extraction of molecules (DNA or 
RNA) from specimens (see figure 2) and every true biologist will do his very best to collect 
and preserve these specimens by himself in the field.  
If the specimens or the tissue is preserved in Ethanol for DNA based work, 94% (or higher), 
ethanol p.a. should be used. This is true for every tissue collected in the field. Despite the 
rumour, that crustaceans are tricky to sequence in the laboratory, because the aggressive 
enzymes of the exocrine glands rapidly degrade the DNA, this specific experience was never 
made working with 94% ethanol p.a.. Working with material collected and sent by 
colleagues, difficulties appeared and could be linked to the quality (not p.a.) or low 
concentration of ethanol. Especially material of larger, vessel based expeditions, is obviously 
often stored in ethanol, which has been diluted due to ethanol shortage during the cruise. If 
you expect to join an expedition, plan enough quantities of 94% ethanol (and you better hide 
some of the ethanol in case colleagues did not properly calculate their ethanol contingents, 
they seem to tend to desperate actions in these situations). Storing the samples in -20 °C 
probably keeps degradation processes at a low level, but fieldtrip cooling is not obligatory 
to preserve high quality DNA. 
However, cooling plays a veritable role, if you have to collect samples in the field for RNA 
based analyses. RNA as a single stranded molecule can be degraded very fast (and 
unfortunately very efficiently) by a group of enzymes, called RNAses. These enzymes are 
nearly omnipresent in our body including e.g. perspiration liquid. They have to be inhibited 
by cold temperatures or chemicals (or both) to stop RNA degradation. The best procedure to 
ensure good quality of RNA samples is consequently to collect the specimen and to extract 
the RNA immediately. Unfortunately this is in most cases not possible in the field. For 
example, many groups of crustaceans live in remote habitats. 
For example, remipedes live in anchialine cave systems (see figure 2, top right picture) and 
require cave diving expeditions. They were collected by BMvR on the Yucatan peninsula in 
Mexico. Even the organization of the cooling chain to freeze the samples directly in the field 
and to ship them to the laboratory for RNA extraction was not possible: logistic companies 
that could have shipped the samples in time did not ship dry ice due to regulations of the 
International Air Transport Association (IATA), In general, the dry ice transportation by 
airplane is not officially authorized and problematic in some countries. Awareness and 
integration of such eventual logistic problems are eminent for a realistic project plan and 
time schedule.  
Using RNAlater for RNA isolation is one solution to collect specimens. It is a non toxic, non 
flammable liquid that can be transported everywhere without any problems (even in 
airplanes) and it preserves RNA at room temperature at least for 5-7 days (Grotzer et al., 
2000; product descriptions of e.g. Qiagen, Applied Biosystems) without loss of quality 
compared to frozen samples (Grotzer et al., 2000; Mutter et al., 2004; Gorokova, 2005). A 
closed cooling chain is not mandatory. For preservation of microcrustaceans of zooplankton 
like copepods, up to a month of storage time is possible without any losses of RNA quality if 
RNAlater is used (Gorokhova, 2005). Own experiences corroborate this study with samples 
 



 
Aspects of Quality and Project Management in Analyses of Large Scale Sequencing Data 

 

75 

 
Fig. 2. Overview of the typical phases within a molecular project that start with material 
collection in the field and end with the final sequences. The two pictures in the left on top [1] 
show a dissected house gecko (Hemidactylus frenatus), which was parasitized by tongue 
worms (Pentastomida, small picture) in his lunge tract. On the right, a remote anchialine 
cave system in Mexico is shown. Within these caves live the enigmatic Remipedia 
(Speleonectes cf. tulumensis) that were collected by cave diving 
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of different sizes like copepods, ostracods, remipedes, and leptostracans, which were stored 
at room temperature for up to 14 days after collection (including transportation and 
shipping time). High temperatures may harm the sample quality despite RNAlater 
preservation, depending on the general temperature conditions of the expedition area. Good 
experiences were made with standard fridges (about 4°C), they are easy to organize and the 
sample is cooled, but not frozen. 
RNAlater should have room temperature for preservation of tissue samples to enable a 
thorough penetration, and the liquid should not be cooled before and directly after 
preservation of material. Before preservation, tissue has to be cut into little fragments, 
additionally use a pestle (even some smaller crustaceans have a carapace that has to be 
cracked) to ensure a fast diffusion of the liquid into the tissue. After a few hours or a day, 
RNAlater can be moderately cooled. If frozen away after one day, a cooling chain must be 
guaranteed. 
For marine organisms a careful sorting or sample preparation is crucial before the 
preservation of tissue to prevent larger amounts of salt water to dilute and affect the 
preservation liquid. In general, RNAlater should be sufficiently added to the sample, about 
1:5-10 between sample and RNAlater (according to manufacturer protocols) turned out to be 
insufficient. Even for smaller specimens 15-25 ml tubes were at least used, depending on the 
collected numbers. 
However, contrary to own good experience with RNAlater, other projects using RNAlater to 
preserve representatives of evolutionary early hexapod lineages report frustrating results, 
gaining degraded RNA or only very few EST sequences. As stated, the best method has to 
be tested for each species group. In that special case the best choice was liquid nitrogen, 
with all subsequent difficulties in the field. An interesting effect is, that RNAlater perfectly 
preserves DNA (Gorokova, 2005; Vink et al., 2005), which makes it an ideal alternative to 
ethanol preservation. 
The main goal of many projects in molecular biology is the reconstruction of the 
evolutionary history of species. In this context so called large-scale next generation 
sequencing approaches have recently been used applying RNA based sequencing (see 
paragraph 2.3). The approach aims to randomly sequence expressed genes of a specimen 
when the tissue or specimen was collected and preserved (‘transcriptome shot’). One quality 
criterion to achieve a good coverage of different genes is, how fast the specimen was 
preserved. If the stress level of the specimen was high, a relatively high level of stress 
response proteins are the consequence, biasing the quantity but also quality of finally 
sequenced genes. Always ensure that stress is kept to a minimum level for organisms before 
preservation to guarantee a maximum number of represented genes. Another important 
method to achieve a maximum intersection of expressed genes is the collection of different 
larval and/or development stages of an organism to cover possibly different gene 
expression patterns. If parasitic forms are sampled, like tongue worms, that parasitize the 
respiratory tract of vertebrates (Pentastomida, see figure 2 top left picture), a careful 
preparation of the tissue is necessary to prevent contamination by the host tissue. 
Collected specimens should carefully be determined before preservation. Additionally, 
collected and stored voucher species might enable a second identification after sequencing, 
if unexpected results or difficulties occur. This specific point is often forgotten. An approach 
to centralize the storage of voucher specimens and DNA including the linked collection and 
laboratory data is the DNA bank network (Gemeinholzer et al., 2011). This platform 
provides an efficient and practical solution to access and exchange data and tissue in an 
extended form, compared to classical accession sheets like in GenBank. This storage allows a  
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general traceability of DNA sequences, and their quality concerning specimen identification 
and the DNA itself, like concentration, signal strength, electropherogram etc. In most cases 
this information is missing in published NCBI data (see figure 4). 

2.2 Extracting DNA, RNA and subsequent amplification of the molecules 
The extraction of DNA or RNA from tissue follows standard protocols and available kits 
(e.g. Mülhardt, 2008; Sambrook & Russel, 2000). Eventually it is reasonable, to test different 
kits and protocols to be time efficient. 
A fast and specifically tested method is needed to isolate RNA from tissue. Only few studies 
mainly from the medical/clinical field are published, which show that quality and quantity 
of RNA yields are dependent on used preservation/isolation method and extraction kits; 
additionally both parameters can improve using RNAlater (Forster et al., 2008; Hemmrich et 
al., 2010, see also Gorokhova, 2005). One serious consideration should be outsourcing of 
RNA extraction and subsequent sequencing. Time is saved if one party or company 
provides service from extraction to the final sequences, also in cases of difficulties with the 
samples. 
The PCR method is an established method and several specific adaptations exist to ensure 
the maximum sensitivity to amplify the desired fragments (e.g. Mülhardt, 2008; Palumbi in: 
Hillis et al., 1996). 
Everyone who works in a molecular lab performing PCR knows that this step is the most 
sensitive and delicate one for possible contamination. Consequently, a rigorous management 
should be conducted to maintain high standards in working procedures (Mülhardt, 2008; 
Sambrook & Russel, 2000). The awareness that contamination can happen despite all efforts 
is important. If that is considered and influences a general risk management, in consequence 
all sequences, which are finally included in analyses are blasted in a standard procedure. 
Exactly this step is the last bastion to guarantee as first step the quality of phylogenetic 
analyses. If a contamination occurred, the contaminated sequences must be identified and 
excluded (see figure 4 and paragraph 3.1). 

2.3 The sequencing process – A typical case for outsourcing 
The term phylogenomics was coined by Eisen (1998) and is recently used for analyses 
including large scale sequencing data and large numbers of genes derived from cDNA 
libraries (see also Philippe et al., 2005). A new strategy is the sequencing of the 
‘transcriptome’, which represents the set of expressed genes in an organism, that are 
encoded by mRNA molecules. Most mRNA molecules are tagged by Poly-A tails and thus 
easily to fish by specific adaptors if total RNA was isolated. These fished mRNA molecules 
are reverse transcribed in cDNA and finally libraries are reconstructed that represent ideally 
all expressed genes in an organism. These mRNA fragments are called expressed sequence 
tags (ESTs) because of their poly-A tail ‘tag’ (excellent reviews on that topic: Jongeneel, 2000; 
Bouck & Vision, 2007). With the new technology of pyrosequencing the possibility arose to 
directly sequence cDNA molecules in a large scale sequencing approach. Pyrosequencing is 
not based on the principles of the Sanger sequencing with chain termination reactions, but 
instead on an enzyme cascade, which generates light if deoxynucleotides are added and 
pyrophosphate is separated. This difference enables a highly miniaturized and parallelized 
procedure and technique (see figure 3). For more details see Ronaghi, 2001; Shendure et al., 
2004; Ellegren, 2008; Hudson, 2008; Petterson et al., 2009; Voelkerding et al., 2009. 
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Fig. 3. Differences between standard sanger-sequencing (on the left) and the new 
pyrosequencing technology (on the right) of next generation sequencing (NGS). Both 
technologies use mRNA specific target sequences to extract mRNA form the total RNA, which 
is isolated from tissue. The main difference is that the time and cost intensive step of fragment 
cloning and sequencing from a subsequently picked library is skipped for pyrosequencing. 
Depending on the precise technology, double stranded cDNA is generated by an emulsion 
PCR, in which fragments are amplified in micro compartiments. The sequence fragments are 
finally transferred on picotiter plates for a massive parallel sequencing 

Sequencing is frequently outsourced, which offers a price level that is hard to beat by do-it-
yourself sequencing at universities or other research institutions. Focused on large scale or 
next generation sequencing, some points should be considered. In most companies 
laboratory procedures and steps are ISO certified ensuring a guaranteed high level of 
quality and reproducability. 
It is a specific quality of molecular biological studies that often unique samples of species 
with rather unknown evolutionary history are analysed. The collection of these specimens is  
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Fig. 4. Working flow of a typical phylogenetic analysis, which starts from scratch with the 
raw data (gained sequences) and ends with the final topology. Finger and eye symbols 
pinpoint crucial points to control not only the quality of the process, but also the data 
quality in the meaning of potential information or conflicts within gene sequences (data 
structure). A major aspect is, that large scale sequencing and phylogenomic data requires 
enormous computational power. Supercomputers (in this case CHEOPS: Cologne High 
Efficiency Operating Platform for Science, RRZK University of Cologne) or large cluster 
systems (ZFMK Bonn) are an essential requisite in the conducted analyses. Bold bars shaded 
in grey with internal brown lines symbolize circuit paths and represent steps that are 
constraint by computational limitations. Own sequence raw data and published data 
(orange) are processed and quality controlled 
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often difficult and dependent on single favourable unpredictable conditions. Thus, if 
anything goes wrong during sequencing, the loss may be irreversible. The second aspect is 
that samples must not be contaminated by other samples before and after sequencing. If 
contamination happens, it might not be detectable at all with desastrous consequences. This 
aspect must be integrated in process flows of sequencing facilities, for example by using 
tagging techniques applied on each library prior to sequencing to identify immediately 
eventual contamination. BLAST procedures against other processed project samples or 
libraries must be a second manadatory strategy. 

3. Quality management during molecular analyses 
For phylogenomic data the presented figure 4 illustrates only a rough scheme or framework 
of analysis. Depending on applied techniques and the choice of different software packages 
an adaptation is needed. Detailed descriptions of the working process to analyse rRNA and 
phylogenomic data with an emphasis on data quality are given in: von Reumont et al., 
(2009), von Reumont, (2010) and Meusemann et al., (2010). 
[1] Sequences from different sources are processed in software pipelines, quality checked 
and controlled. It is problematic, that normally electropherograms are not available for 
published single sequences selected from public databases i). Therefore sequence errors 
cannot be discovered in these data. ii) EST sequences are normally stored in the TRACE 
archive in NCBI including the trace files. These represent the raw data and are in general not 
quality checked. iii) NGS raw data is stored in the Short Read Archive (SRA), which accounts 
for the difference of sequences from next generation sequencing to the ‘conventional’ EST 
sequences. [2] Respectively for the phylogenomic data the prediction of putative ortholog 
genes is eminent important. This step is computationally intensive and different approaches 
can be used, see paragraph 3.2. [3] Processed sequence data is aligned applying multiple 
sequence alignment programs. In case of rRNA genes a secondary structure-based alignment 
optimization is suggested. [4] A first impression of the data structure is gained by phylogenetic 
network reconstructions. That point becomes problematic with phylogenomic datasets 
comprising hundreds of genes and alignment sizes larger than 100 MB! Consequently, a 
method to evaluate the structure for these datasets could be the software MARE that 
reconstructs graphics of the data matrix based on the tree-likeness of single genes for each 
taxon (Misof & Meyer, 2011). Subsequently, a matrix reduction is possible after the 
alignment evaluation. [5] The final alignment evaluation and processing is applied for each 
gene with ALISCORE (Misof & Misof, 2009) to identify randomly similar aligned positions 
and those positions are subsequently excluded (=masking) by ALICUT  
(www.utilities.zfmk.de). Single, masked alignments are concatenated to the final alignment 
or supermatrix. A matrix reduction for phylogenomic datasets is performed applying 
MARE to enlarge the relative informativeness and to exclude genes that are uninformative 
(Misof & Meyer, 2001; www.mare.zfmk.de). For most analyses it could be useful to compare 
data structure before and after the alignment process in a network reconstruction or 
unreduced matrix [4]. Information content in respect of signal that supports different splits 
in the alignment can be visualized by SAMS (Wägele & Mayer, 2007). [6] After this the 
phylogenetic tree reconstruction is performed with several software packages. 

3.1 The processed sequences and their quality 
Most phylogenetic studies use own and published sequences in their analyses. However, in 
both cases a rigorous control of the quality of the sequence is crucial. This is conducted in 
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the steps of sequence processing (see figure 4, [1]). Different software tools guarantee quality 
by threshold value settings. A completely different aspect of quality is that the finally included 
sequence is indeed linked to the supposed species. Either misidentification of the specimen 
or the sequence can evoke serious bias in a subsequent analysis. If reaction in the laboratory 
were contaminated, the sequence is linked to the wrong species depending on the source of 
contamination. Both kinds of misidentification can be identified in general by careful BLAST 
procedures (Altschul et al., 1997, Kuiken & Corber, 1998). Yet, they are time intensive and in 
some cases difficult to interpret. For example, if you work with closely related species. In 
this case, the misidentification or contamination is rather impossible to detect, in particular 
if one species is unknown or only few or no sequences have been published. Other sources 
of data (like morphology) can also help to identify contamination (Wiens, 2004). 
Several studies report that possible contaminations of taxa played a veritable role in studies, 
which proposed new evolutionary scenarios, but were actually based on contaminated 
sequences (von Reumont, 2010; Waegele et al., 2009; Koenemann et al., 2010). A careful 
control of sequence quality or a more critical interpretation of the reconstructed topologies 
could have prevented the (eventually repeated) inclusion of the contaminated sequences 
and subsequent publication of such suspicious phylogenetic trees. If contaminated sequences 
of older studies from rarely sequenced species are tacitly included into new analyses,  
this indeed can obscure phylogenetic implications. That is probably the case with the 
Mystacocarida, a crustacaean group with an still unclear phylogenetic position. They are 
rarely sequenced and the first and only published 18S rRNA sequence by Spears and Abele 
(1998) is very likely a contamination (von Reumont, 2010; Koenemann et al., 2010), which 
was impossible to identify for the authors in that study of 1998, which constituted the first 
larger analysis of crustaceans at all. A new study with completely sequenced 18S rRNA 
genes (von Reumont et al., 2009) including a new 18S rRNA gene sequence of the 
Mystacocarida revealed the contamination of the published sequence (von Reumont, 2010). 
The search for contamination reaches a new dimension in phylogenomic data. A recent 
study (Longo et al., 2011) describes, that some non-primate genome databases, like the NCBI 
trace archive, provide sequences with human DNA contaminations, which can be traced 
back to pre-sequencing errors and/or low quality standards. Consequently, cross checking 
with published data might not help to be 100 percent sure about your own sequences. If you 
read the last sentence think about your own laboratory routines. Are they sufficient? If you 
outsource EST sequencing to an external company, which quality standard do they have 
and which risk management to handle possible contaminations? 
This is respectively worrisome in cases of cross species analyses and genome analyses and 
indicates, that a better screening is generally needed (Phillips, 2011). The response of NCBI 
was, that trace archive data represents the raw data, which is not quality checked 
(http://www.ncbi.nlm.nih.gov/About/news/18feb2011.html). A careful processing of 
these sequences is obligate before analyses, including the control for possible contamination. 
An important conclusion is that every sequence from public databases should be treated 
suspiciously and a careful processing procedure is necessary to prevent errors by 
contamination. Do not trust your own data, but also do not trust public data. 

3.2 Orthology prediction 
Only homologous genes can be used in molecular phylogenetic studies. Homologous genes 
are further distinguished in two different classes: i) ortholog genes which originate in a 
single speciation event, and ii) paralog genes that originated from gene duplications 
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independently of speciation events (Fitch, 1970; Sonnhammer & Koonin, 2002; see review: 
Koonin, 2005). The prediction of ortholog genes in the era of large scale and next generation 
sequencing is a very delicate and computationally intensive process. An overview of 
commonly used methods for prediction of putative ortholog genes and their efficiency 
assessment is given in Roth et al. (2008) and Altenhoff and Dessimoz (2009). 
A difficulty for phylogenetic reconstructions within arthropods is that only few data bases 
include sufficient numbers of complete arthropod genomes (Altenhoof & Dessimoz, 2009). 
INPARANOID and OMA are the two leading projects concerning the number of included 
arthropods. For that reason the orthology prediction for an arthropod dataset (Meusemann 
et al., 2010; von Reumont, 2010) and a further pancrustacean dataset (von Reumont et al., 
2011) were based on INPARANOID 6 and 7 (Ostlund et al., 2010). Identified ortholog gene 
sets were extended using the HaMStR approach (Ebersberger et al., 2009) relying on the 
INPARANOID project. A set of orthologous genes was constructed using the InParanoid 
transitive closure (TC) approach in HaMStR described by Ebersberger et al. (2009). This set 
based on proteome data of so called ‘primer taxa’, which are completely sequenced genome 
species. Sequences of primer taxa were aligned within the set of orthologs and used to infer 
profile hidden Markov models (pHMMs). Subsequently, the pHMMs were used to search 
for putative orthologs among the translated ESTs of all taxa in the data set. 
For the pancrustacean dataset pre-analyses were performed to compare the influence of 
using the OMA or INPARANOID projects with the same settings in HaMStR and the 
previous processing pipeline. For both analyses the same five primer taxa (Aedes aegypti, 
Apis mellifera, Daphnia pulex, Ixodes scapulatis, Capitella sp.) were used in HaMStR to train 
hidden markov models to extent the putative orthologs for all included taxa. Relying on 
OMA, 344 putative ortholog genes were identified in contrast to 1886 genes using 
INPARANOID. The resulting, reduced topologies (RAXML, -f, a, PROTCATWAG, 1000 BS) 
differ clearly in their resolution: the OMA based topology shows less resolution. 
However, these results demonstrate the importance of further, more detailed studies on the 
impact of ortholog gene prediction. The quality of the trees might be severely influenced in 
this step of the analysis. A problem is the enormous computational power needed for 
comparative analysis of phylogenomic datasets. 

3.3 Evaluation of data structure and data quality 
All steps described so far are important to obtain in a standardized, rigorous processing 
high quality of the data and finally gene sequences, which are subsequently aligned and 
used for phylogenetic analyses. 
The term data quality, however, addresses a different level of quality. A given multiple 
sequence alignment (MSA, synonymously often named data matrix) can include processed 
genes that are finally (after the processing procedure) of high quality, but for the 
phylogenetic goal to reconstruct a specific evolutionary history maybe not usable, if not 
informative. Data quality indeed refers to the scale of information or signal within the 
alignment. The term data structure is sometimes used synonymously to the term data quality. 
Multiple substitution processes generally change sequences with time caused by random 
substitution processes, however, the extent of substitutions differs for parts of the DNA. In 
some parts of the DNA this substitution process erodes the former phylogenetic signal by 
multiple exchanges of nucleotides. After a long time nucleotides that represented 
synapomorphic characters to a sister taxon are by chance multiple substituted in the process 
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of signal erosion (Wägele & Mayer, 2007). By this process a different, random signal (noise) 
can arise, that in most cases is in conflict (and obscures) the historical, phylogenetic signal. 
In contrast, other genes are extremely conservative and nucleotides barely change with time. 
In this case a phylogenetic signal is hardly to detect either, caused by too few substitutions 
or synapomorphic characters. The mathematical substitution models, which are applied to 
reconstruct phylogenetic trees from multiple sequence alignments, try to implement several 
aspects of the briefly described processes. However, they are always an approximation and 
respectively are unable to differ between phylogenetic signal and noise. For further details 
see (Felsenstein, 1988; Wägele, 2005; Wägele & Mayer, 2007). 
A first and fast evaluation of the structure in a dataset is feasible with network 
reconstructions, in which conflicts are visualized that are not illustrated by the (forced) 
bifurcations in phylogenetic trees (Holland et al., 2004; Huson & Bryant, 2006). It was the 
first time proposed by Bandelt and Dress (1992) to combine every phylogenetic analysis 
with a non-approximative method, which allows not compatible, alternative groupings 
contrary to bifurcting phylogenetic trees. One approach, the method of split decompositon, 
was developed by Bandelt and Dress (Bandelt & Dress, 1992). Hendy, Penny and Steel 
published a second method, the split analysis (Hendy & Penny, 1993; Hendy et al., 1994). 
Both methods work with so called bifurcations or splits. 
A split is a couple of two groups of taxa, which are distinct subsets of the whole taxaset. 
Within the molecular phylogenetic context splits are distinguished by the occurence of 
nucleotide bases within sites. For a set of n taxa, exist 2n-1 possible bipartitions, in real 
datasets occur normally fewer splits. If there is only split signal for one unique dichotomous 
tree within a dataset, the number of splits is of the same value as the edges of a possible 
phylogeny. Given a taxon quartet (A, B), (C, D) few synapomophies between B and C can 
cause a split for second, alternatively supported topology (A, D) (B, C). This split migth not 
be visualized in a reconstructed tree-topology. Software packages offering non-approximate 
methods are SplitsTree (Huson & Bryant, 2006), Spectrum (Charleston, 1998), Spectronet 
(Huber et al., 2002) and SAMS (Wägele & Mayer, 2007). 
SAMS is a software approach that was developed by Wägele and Mayer (2007) to perform a 
split analysis on the alignment. It accounts for all states of bases but analyses the columns of 
an alignment for occurring splits in a efficient way. Hence you can generate a split spectrum 
showing conflicting signal simultaneously obtaining a good overview on the data quality. 
Real splits are additionally differentiated from the conflicting ones. The method is currently 
under development, at the moment large datasets are difficult to analyze. Additionally, only 
nucleotide data is possible as input format. Further development is necessary and in 
progress to establish a new system, which evaluates all sites of an alignment and weights 
them according to contrast and homogeneity aspects to address these aspects. 
Yet, network reconstruction and split analysis is limited by the size of a dataset and with 
larger or phylogenomic datasets still beyond abilities of available programs. Additionally, 
networks give only a rough overview and illustrate the present data structure, answering 
the question if a conflict or noise exists. More details are often not to analyze, for example 
which single genes or partitions create a conflict within an alignment. This part becomes 
additionally delicate handling ‘supermatrices’ that are composed of phylogenomic data. 
Several strategies exist to handle ‘supermatrices’, which mostly are data sets with a large 
number of taxa and genes, but also missing information or gaps. Often, concatenated 
‘supermatrices’ are filtered and reduced using predefined thresholds of data availability  
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Fig. 5. Work flow of the MARE software. All genes are concatenated to a supermatrix, which 
is transformed into a `supermatrix’ composed of all genes that are represented by tree-
likness value. A tree-likeness is calculated in the step before via geometry weighteed quartet 
mapping. This supermatrix` is reduced by selecting an optimal subset of genes and taxa 
relying on the calculated value of the tree-likeness. The reduction is stepwise performed 
using an optimality function. The matrices composed of the tree-likeness values for each 
gene are colour coded. White symbolizes an absent gene, red a value of 0. From light to dark 
blue the value increases, dark blue represents a value of 0.9 -1.0 
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(Dunn et al., 2008; Philippe et al., 2009) depending on the relational number of present genes 
for a taxon. Taxa are excluded, if they are represented by less genes than accepted with the 
defined threshold value. Software tools like MARE are a first step to evaluate the data more 
detailed and enable an objective reduction of ‘supermatrices’ (large MSA´s of phylogenomic 
data), by selecting subsets of genes. MARE utilizes an alternative approach to data reduction 
selecting a subset of genes and taxa from a supermatrix based on information content and 
data availability (Meyer & Misof, 2010; http://mare.zfmk.de; Meusemann et al., 2010; von 
Reumont et al., 2011). The approach yields a condensed data set of larger information content 
by maximizing the ratio of signal to noise, and reducing uninformative genes or poorly 
sampled taxa. 
MARE evaluates in a first step the 'tree-likeness’ of each single gene. Tree-likeness reflects 
the relative number of resolved quartets for all possible (but not more than 20,000) quartets 
of a given sequence alignment or alignment partitions. The process is based on geometry-
weighted quartet mapping (Nieselt-Struwe & von Haeseler, 2001), extended to amino acid 
data. For each gene a value for the tree-likeness is calculated by summarizing the support 
values for each of the three possible topologies during the quartet mapping procedure. After 
this step the previous present/absent matrix is changed to a matrix that contains values of 
tree-likeness for each gene per taxon. In the second step the matrix reduction is performed. 
The connectivity of the matrix (the gene and taxa overlap) is monitored during this step: two 
genes must have connection with at least three taxa. The matrix is reduced stepwise, with 
each reduction a new matrix is generated. Within each reduction step the column or row 
with the lowest information content (sum of values for tree-likeness) is excluded. The 
procedure is guided by an optimality function, which represents a trade off between matrix 
density and retained taxa and genes. For further details on the procedure and the algorithm, 
see: (Meyer & Misof, 2011; http://mare.zfmk.de). 

4. Conclusions 
When conducting or managing a project in molecular evolution use the available elements 
of project managing to prevent mistakes at this basic level. Important are the time schedule 
and milestones with sufficient backup time. A careful stakeholder analysis provides a 
detailed risk analysis, which is important in general, respectively if many persons or 
working groups are involved. Fieldtrips and appropriate preservation methods of the 
collected species must be carefully planned either, to start the molecular analysis with 
qualitative successful isolated material. 
A process flow with a rigorous concept of quality control contributes to the quality of the 
gained sequences or data. The final sequences should have been checked for contamination. 
If techniques of next generation sequencing or expressed sequence tags are used, pay 
sufficient attention to select the best strategy for the prediction of ortholog genes. The 
aligned sequences should always be processed in the multiple sequence alignment for each 
gene or partition. Software like ALISCORE identifies randomly aligned alignment positions. 
Before the reconstruction of phylogenetic trees the data quality should be evaluated applying 
software to visualize the data structure and potential conflicts. Software for a more specific 
split analysis capable of larger data is e.g. SAMS, which is still under development. 
Assessing the data structure and quality is an essential strategy to identify conflict in 
phylogenetic trees or their eventual inability to reflect the ‘real’ evolutionary history of a 
species group.  
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Large data matrices or MSAs should be reduced to subsets, which were selected by the tree-
likeness of each gene applying the software MARE. The software MARE is a first step to 
utilize objective criteria to select informative subsets of genes from a partially ‘supermatrix’. 
However, several aspects are still to address further in future. Procedures of orthology 
prediction and matrix reduction need for example further investigation.  
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AliGROOVE – visualization of heterogeneous
sequence divergence within multiple
sequence alignments and detection of inflated
branch support
Patrick Kück1*, Sandra A Meid1, Christian Groß2, Johann W Wägele1 and Bernhard Misof1

Abstract

Background: Masking of multiple sequence alignment blocks has become a powerful method to enhance the
tree-likeness of the underlying data. However, existing masking approaches are insensitive to heterogeneous
sequence divergence which can mislead tree reconstructions. We present AliGROOVE, a new method based on a
sliding window and a Monte Carlo resampling approach, that visualizes heterogeneous sequence divergence or
alignment ambiguity related to single taxa or subsets of taxa within a multiple sequence alignment and tags
suspicious branches on a given tree.

Results: We used simulated multiple sequence alignments to show that the extent of alignment ambiguity in
pairwise sequence comparison is correlated with the frequency of misplaced taxa in tree reconstructions. The
approach implemented in AliGROOVE allows to detect nodes within a tree that are supported despite the absence of
phylogenetic signal in the underlying multiple sequence alignment. We show that AliGROOVE equally well detects
heterogeneous sequence divergence in a case study based on an empirical data set of mitochondrial DNA sequences
of chelicerates.

Conclusions: The AliGROOVE approach has the potential to identify single taxa or subsets of taxa which show
predominantly randomized sequence similarity in comparison with other taxa in a multiple sequence alignment. It
further allows to evaluate the reliability of node support in a novel way.

Keywords: Software, Alignment quality, Sequence heterogeneity, Topological node support

Background
Alignment masking as a measure of reducing noise in
sequence alignments is regularly applied in phylogenet-
ics. The idea behind the concept of masking blocks of
sequence alignments is the reduction of the unpredictable
influence of substitution saturation and/or ambiguously
aligned blocks of sequence alignments on subsequent tree
reconstructions [1-8] by increasing the tree-likeness of the
data. Simulations and analyses of alignment masking of
empirical data corroborate the correctness of this idea.
Currently, software packages mask complete blocks of

*Correspondence: patrick_kueck@web.de
1Zoologisches Forschungsmuseum A. Koenig, Adenauerallee 160-163, 53113
Bonn, Germany
Full list of author information is available at the end of the article

multiple sequence alignments applying either arbitrarily
chosen thresholds of sequence variability within align-
ment columns (e.g. software Gblocks [1,2] and REAP [9]),
or automatically adjusted thresholds depending on the
input alignment (e.g. trimAl [4] and BMGE [6]), or apply-
ing a sliding window approach to identify blocks of pre-
dominantly high alignment ambiguity (ALISCORE [5,7]).
All methods exclude complete alignment blocks instead
of sequence subsets thus masking also potentially valuable
data for subsets of taxa.

Due to their design all masking methods are relatively
insensitive to heterogeneous sequence divergence of sin-
gle taxa. This is an important deficiency of masking meth-
ods, because heterogeneous sequence divergence can
cause strong biases in tree reconstructions, for example

© 2014 Kück et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.
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long branch effects or the misplacement of rogue taxa.
Therefore, a method which can visualize heterogeneous
sequence divergence or alignment ambiguity related to
single taxa or subsets of taxa would be a useful comple-
ment to currently used masking approaches. It offers the
chance to identify taxa which are potentially misplaced in
trees and reduce the tree-likeness of the data.

For this purpose, we developed AliGROOVE, a new
tool to visualize the extent of sequence similarity and
alignment ambiguity in pairwise sequence comparisons
derived from a multiple sequence alignment. AliGROOVE
can help to detect strongly derived sequences that have
the potential to bias tree reconstructions and node sup-
port. We implemented an adaptation of the recently
published ALISCORE masking algorithm [5,7] which has
been successfully tested in simulations and on empiri-
cal data [5,7,8]. Using a simple match/mismatch scoring
for nucleotide data and a BLOSUM62 scoring matrix
for amino acid data ALISCORE uses a Monte Carlo
resampling within a sliding window to generate pro-
files of pairwise sequence similarity for all pairwise
sequence comparisons. AliGROOVE summarizes site
scores of these profiles normalized over the whole align-
ment length for each pairwise comparison. The obtained
scoring values between sequences are translated into a
similarity matrix and thus deliver information on the
extent of taxonomically heterogeneous alignment ambi-
guity or sequence similarity within a multiple sequence
alignment.

We used simulated data to investigate if our application
of the algorithm is able to detect ambiguously aligned taxa
or groups of taxa and if the obtained sequence similar-
ity scores can be used to tag unreliable nodes. For that
purpose we tested AliGROOVE on data sets with and
without indel events whereby tests on data sets with indel
events are performed on correct and on realigned data
sets that deviate from the true alignment. Additionally, we
applied AliGROOVE on an empirical data set comprising
five mitochondrial genes of 53 chelicerate ingroup taxa
and eight myriapod outgroup taxa. With both the simu-
lated and empirical data sets we also tested the potential
of the approach to illustrate heterogeneous tree-likeness
among data blocks within an alignment.

AliGROOVE Algorithm
Identification of sequence similarity/scoring
The algorithm of AliGROOVE is based on the scor-
ing scheme of ALISCORE [5,7] which compares pairs of
amino acid/DNA sequences for random similarity within
a sliding window. In short, first, the observed mismatch
within the sliding window is scored. This mismatch score
is then compared with mismatch scores of the same win-
dow size generated by permutations of character states
within the sliding window and a predefined sequence

neighborhood. If the observed score is better than 95%
of the score of all generated permutations, it is consid-
ered non-random, otherwise indistinguishable from ran-
dom similarity. Each position within the sliding window
receives a positive sign if the observed score was signif-
icantly better than scores of random sequence similarity,
or if not, a negative sign. The number of single signs for
each alignment position corresponds to the size of the
sliding window. For each position signs are summed up
and normalized by the sliding window size. A profile of
sequence similarity between two sequences will thus show
sections in which these two sequences might show non-
random similarity indicated by a positive sum of signs
and sections of random similarity expressed by a negative
sum of signs for each position. Now, for each profile the
AliGROOVE algorithm calculates an arithmetic mean of
profile signs over all sites excluding globally invariant sites
within the alignment and records these values in a matrix
for a given set of sequences. The entries in this similarity
matrix express the average amount of non-random versus
random similarity in pairwise comparisons and can thus
illustrate heterogeneous signal in the data.

The algorithm is based on either match/mismatch
scores for nucleotide sequences or on amino acid sub-
stitution matrices (BLOSUM62, PAM250, PAM500) to
score amino acid matches/mismatches. This scoring
regime turned out to be efficient in alignment masking
[5,7,8,10-18].

Identification of suspicious branches
AliGROOVE pairwise similarity scores can be used to
tag potentially unreliable relationships in a pre-defined
tree. Potentially unreliable relationships can be caused by
extensive substitution saturation or extensive alignment
ambiguity both causing long branches in a tree which can
occurr in inner and terminal branches.

AliGROOVE tags terminal branches with the mean
pairwise similarity score (SXY ) between the terminal
taxon and all other taxa. For example, the terminal branch
of taxon A in a six taxon topology (taxa A to F), is tagged
with RA defined as:

RA = SAB + SAC + SAD + SAE + SAF
5

(1)

To tag internal nodes, AliGROOVE calculates the mean
similarity score from all pairwise comparisons across
this node. The tagging of the internal nodes follows the
hierarchy given by a topology and ends at the most cen-
tral internal branch. Following a guiding topology effec-
tively reduces the number of splits to be analyzed to
the ones which are of special interest. This reduction of
the complexity of analyses makes the approach computa-
tionally efficient. For example, to tag the internal branch
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separating taxa A and B from the remaining taxa (taxa C
to F), AliGROOVE calculates RAB|CDEF defined as:

RAB|CDEF = SAC + SAD + SAE + SAF + SBC + SBD + SBE + SBF
8

(2)

The calculation of the mean pairwise similarity score
treats all pairwise comparisons as independent replicates.
This assumption is not justified in every case. For exam-
ple, taxa C and E might be closely related and SAC and SAE
do not represent fully independent replicates.

Results
Testing the performance with simulated data (Setup A & B)
We simulated nucleotide and amino acid sequence
alignments under two different topological conditions
(Figure 1). Our first setup represents 4-taxon trees (setup
A) containing long terminal branches BL2 (Figure 1a).
This setup has been selected to reduce the complexity
of phenomena and to demonstrate the ability of Ali-
GROOVE to identify heterogeneous sequences which can
cause long branch attraction of terminal branches. Our
second simulation setup consists of 6-taxon trees (setup
B) containing long internal branches BL2 (Figure 1b). The
frequencies of correct and incorrect Maximum Likelihood
tree reconstructions using nearly correct model assump-
tions (using four rate categories instead of a continuous
� distribution) were recorded (Figures 2, 3). To simulate
large-scale phylogenetic analyses based on concatenated
supermatrices, setup A comprises alignment lengths of
250,000 sites, while setup B has alignment lengths of
50,000 sites. The shorter sequence lengths of setup B have

been chosen to reduce computational time of our 6-taxon
analyses.

In setup A (Figure 1a), we simulated data with increas-
ing terminal branch lengths of two unrelated taxa. For
increasing branch length conditions the similarity scores
between sister taxa correlate with tree reconstruction suc-
cess ((L1,S1) & (L2,S2) in Figure 2). The mean similarity
scores for internal branches are as well correlated with
the tree reconstruction success. Negative mean similar-
ity scores are directly correlated with tree reconstruction
errors. Using AliGROOVE with the tree tagging option to
project the observed pairwise sequence similarity scores
on a provided guiding tree, the internal branch connect-
ing two groups of taxa is tagged as suspicious (red colored)
when the observed similarity score of this branch receives
a negative value. A complete overview of all results is given
in the Additional files 1 and 2.

In setup B, we simulated multiple sequence alignments
with two internal nodes using 6-taxon trees (Figure 1b).
The results lead again to the conclusion, that there is a
correlation between the similarity score of the two long
internal branches and tree reconstructions, which were
predominantly incorrect in case of negative scores (BL2 ≥
1.1) (Figure 3). For example, in setup B taxa L1 and L2
are connected to the remaining taxa via two long inter-
nal branches. With increasing internal branch lengths taxa
L1 and L2 occur more often as sister group instead of
being paraphyletic in relation to remaining taxa. In this
case, taxa L1 and L2 will share character states which
have been lost in other taxa inducing a wrong sistergroup
relationship based on plesiomorphies. By using the ALI-
GROOVE approach with the tree tagging option, correctly
reconstructed short internal branches assigning taxa L1

a)

b)

Figure 1 Simulation setup A and B. Two sets of nucleotide and amino acid data using a) 4-taxon (setup A) and b) 6-taxon topologies (setup B).
Setup A contained two elongated, non directly related terminal branches (BL2 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5) under three different branch length
conditions of remaining short branches (BL3 = 0.1, 0.12, 0.14 and RB = 0.1) and two different lengths of the very short internal branch
(BL1 = 0.01, 0.02). Setup B contained two elongated internal branches (BL2 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5), separated by a short internal branch
(BL1 = 0.01) while terminal branches are kept constant (BL3 = 0.01 and RB = 0.1).
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Figure 2 AliGROOVE example results of 4-taxon simulation tests (simulation setup A). AliGROOVE similarity scores and identified branch
reliability of best Maximum Likelihood (ML) topologies obtained for different branch elongations of two non-directly related terminal branches (L1,
L2) (Figure 1a) considering nucleotide and amino acid data (sequence length: 250,000 bp). The two graphs below show the reconstruction success
in relation to the length of long branches (BL2). Note that amino acid sequences are more reliable. Colour coded similarity score ranges are shown
in the center. Lacking reliability of internal branches (red internal branch) is observed for incorrect ML topologies predominating in 100 data
replicates conducted for each length of BL2. Boxes with coloured squares show scores for pairwise sequence comparisons. In the corresponding
topologies unreliable branches are shown in red. Circles indicate whether the topologies are correct (blue) or wrong (red). All results of 4-taxon
simulations are given as Additional files 1 and 2.
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Figure 3 AliGROOVE example results of 6-taxon simulation tests (simulation setup B). Simulation setup B (Figure 1b) using six taxa (sequence
length: 50,000 bp). The overall ML reconstruction success corresponds to pairwise similarity scores obtained between L1,L2 and remaining taxa
(RB1-RB4) and decreases with a more frequent incorrect grouping of (L1,L2) with increasing lengths of BL2 (from dark blue to red). Colour coded
similarity score ranges are shown in the center. Lacking reliability of internal branches connecting L1 and L2 scores negatively (red internal branch)
in cases where the corresponding ML topologies are incorrect (red circles). All results of 6-taxon simulations are given as Additional file 3.

and L2 as paraphyletic groups have been tagged as non-
suspicious, whereas incorrectly resolved short internal
branches have been identified as suspicious. Whenever
branch lengths are balanced, tree reconstructions have
been continuously successful, which is also reflected by
the similarity scores obtained for the alignments of these
topologies (see Figure 3). All AliGROOVE results of the
6-taxon setup are shown in the Additional file 3.

Testing the performance on simulated data setup C
In setup C, we simulated data sets with and without indel
events under four different branch length conditions of
a 15-taxon topology (Figure 4) and two different models
of sequence evolution (Jukes-Cantor and General Time
Reversible model). Both models of sequence evolution

used for data simulations led to similar AliGROOVE
results (Additional file 4). Pairwise sequence comparisons
of data sets simulated without indel events receive posi-
tive similarity scores in all four 15-taxon topologies and
reconstructed trees are always correct (Additional file 4).
Correctly aligned data sets simulated with indel events
receive positive similarity scores when indel events are
treated as fifth character (Figure 5). Strongly divergent
sequences receive negative similarity scores if indel events
are treated as ambiguous characters. The high overall
reconstruction success obtained from ML analyses corre-
lates with the AliGROOVE results obtained with indels as
fifth character (Figure 5, Additional file 4). These data sets
realigned receive negative similarity scores independently
of the chosen indel scoring (Figure 6), whereas similarity
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a)

b)

c)

d)

Figure 4 Simulation setup C. Nucleotide data simulation with and without indel events based on four different branch length conditions of a
15-taxon topology. Elongated branches of topology C2 (b), C3 (c), and C4 (d) in comparison to topology C1 (a) are highlighted red.

scores decrease under both settings compared to scor-
ings inferred from correct multiple sequence alignments
(Figures 5, 6). For all simulated branch length condi-
tions, the incorrect placement of long internal and termi-
nal branches could be identified successfully in realigned
data sets with both scoring options (Figure 6, Additional
file 4).

Testing the performance on simulated data setup D
In setup D, we simulated nucleotide and amino acid
sequence data sets for a 61-taxon tree with data block
sizes of 500, 1000, 1500, 2000, and 2500 sites under
four different branch length conditions (BL2 = 0.1, 0.5,
0.9, 1.3) (Figure 7). Tree reconstruction analyses were
performed with correct site rate heterogeneity and pro-
portion of invariant sites model parameters. Maximum
Likelihood tree reconstructions were correct for unre-
duced (all sequences) nucleotide and amino acid sequence
data sets with branch lengths of BL2 = 0.1 and align-
ment lengths above 500 sites. For all other setups, Max-
imum Likelihood failed to find the correct tree for the
nucleotide sequence data sets and delivered correct trees
for amino acid sequence data sets only in case of data
blocks larger than 2000 sites and branch length BL2
less or equal 0.9 (Additional file 5, Additional file 6).
At least one of the five long branches was always mis-
placed in incorrect trees (Figure 8, Additional file 5,
Additional file 6). Thus, the seven highly divergent
sequences (T16, T25, T27, T39, T40, T41, and T42) were

problematic in nucleotide and most amino acid sequence
data sets.

With the AliGROOVE algorithm, the highly divergent
seven nucleotide sequences did not consistently cause
negative scores in all pairwise sequence comparisons if
branch lengths of BL2 were set to 0.5, but got almost
always negative scores if BL2 were set to ≥ 0.9 and data
blocks to >1000 sites (Additional file 5). With amino
acid datsets, the seven highly divergent sequences got
only positive scores in all pairwise sequence compar-
isons, independently of the tree reconstruction success
(Additional file 6).

The tree tagging algorithm tagged all highly diver-
gent nucleotide sequences and associated long branches
as unreliable for branch lengths BL2 ≥ 0.9, and tagged
all incorrectly placed nucleotide sequences and associ-
ated long branches as unreliable if sequence length of
nucleotide data blocks was set to 2500 sites and branch
lengths BL2 = 0.5. In case of shorter data blocks and
branch lengths set to BL2 = 0.5, tagging was less consis-
tently correct (Additional file 5). For amino acid datsets,
non of the seven highly divergent sequences and associ-
ated long branches were tagged as unreliable.

These results also apply to the concatenated nucleotide
and amino acid supermatrix data sets which consist of
all data blocks. The AliGROOVE pairwise distance simi-
larity matrix of the concatenated nucleotide supermatrix
shows the seven highly divergent sequences mostly red
colored, however despite being misplaced on the tree,
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Figure 5 AliGROOVE example results of correctly aligned 15-taxon simulation tests (simulation setup C). AliGROOVE similarity scores and
identified branch reliability of best Maximum Likelihood (ML) topologies as well as the obtained overall ML reconstruction success for four different
branch length conditions of a 15-taxon topology (Figure 4) under the GTR model of sequence evolution used for data simulation and tree
reconstruction. Correctly aligned data sets have been simulated with indel events and analysed by AliGROOVE without -N option (indel events are
treated as fifth character state) or with -N option (indel events treated as ambiguous characters).

the branches associated with this seven highly diver-
gent sequences are not consistently tagged as suspicious
(Figure 8). With the amino acid supermatrix, the highly
divergent sequences are not highlighted in the distance
matrix and branches associated with these sequences are
not tagged as suspicious, despite being wrong. For both
nucleotide and amino acid supermatrices the exclusion of
the seven divergent sequences led to correct topologies
(Additional file 7).

In general, the AliGROOVE tagging algorithm is opti-
mistic concerning the reliability of branching patterns and
never tags a branch as unreliable if in fact correct.

Testing the performance with empirical mitochondrial data
We used mitochondrial DNA sequence data downloaded
from the NCBI genome data base for 53 chelicerate

ingroup taxa and eight myriapod outgroup taxa. It is
known that among chelicerates the Acari (mites, ticks)
are problematic [19,20]. AliGROOVE analyses of the
concatenated supermatrix file and of gene partitions
showed that pairwise sequence comparisons involving
mite sequences received negative scores while pairwise
comparisons between other sequences achieved mainly
positive scores (Figure 9). Among all gene partitions, only
the Cytochrome Oxidase I (COI) DNA sequence align-
ment shows positive similarity scores for nearly all taxon
comparisons. While nearly all pairwise sequence com-
parisons of the ATP Synthase Subunit 6 (ATP6) yielded
negative similarity scores, impacts of random sequence
similarity and alignment ambiguity vary for mite sub-
groups in Cytochrome b (Cytb), Cytochrome Oxidase II
(COII), and Cytochrome Oxidase III (COIII). For Cytb,
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Figure 6 AliGROOVE example results of MAFFT realigned 15-taxon simulation tests (simulation setup C). AliGROOVE similarity scores and
identified branch reliability of best Maximum Likelihood (ML) topologies as well as the obtained overall ML reconstruction success for four different
branch length conditions of a 15-taxon topology (Figure 4) under the GTR model of sequence evolution used for data simulation and tree
reconstruction. Realigned (MAFFT) data sets have been simulated with indel events and analysed by AliGROOVE without -N option (indel events are
treated as fifth character state) or with -N option (indel events treated as ambiguous characters).

mite sequences are not highly divergent whereas specific
mite subgroups appear strongly misaligned in COII (Der-
matophagoidae) and COIII (Panonychus & Tetranychus).
These three mite subgroups are also scored constantly
negative in pairwise comparisons of the concatenated
supermatrix. Nevertheless, the phylogenetic position of
Dermatophagoidae, Panonychus and Tetranychus receives
high bootstrap support in the tree reconstruction based
on the concatenated supermatrix. The supermatrix sis-
ter group relationship of Acariformes and Ricinulei with a
bootstrap support of 36 was as expected tagged as unreli-
able (red colored) with AliGROOVE. However, the super-
matrix clade ((Ricinulei, Acariformes), Parasitiformes)
that received a bootstrap support of 99 was tagged as
unreliable as well (Figure 9).

Discussion
It has been shown that traditional masking of entire
sequence alignment blocks can improve the signal-to-
noise ratio or tree-likeness in sequence alignments. Here,
we show that the sliding window approach as it is used
in ALISCORE [5,7] can be modified to identify single
taxa or subsets of taxa which show predominantly ran-
domized sequence similarity in comparison with other
taxa (Figure 9). Masking of these taxa can also improve
the signal-to-noise ratio in sequence alignments. The
approach implemented in AliGROOVE can be used to
test the reliabilities of reconstructed topologies and to
identify unreliable node support in a user specified tree
(Figures 2, 3 5, 6, 8, 9, Additional files 1, 2, 3, 4, 5, 6).
This possibility offers a convenient way of studying node
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Figure 7 Simulation setup D. 61-taxon setup used for simulation of nucleotide and amino acid gene partitions. Alignment lengths of single gene
partitions were set to 500, 1000, 1500, 2000, and 2500 character state positions. To simulate different substitution rates, internal and terminal
branches were stepwise increased for each gene partition length (highlighted red), ranging from 0.1 to 1.3 (BL2 = 0.1, 0.5, 0.9, 1.3). Internal branches
in close vicinity to elongated branches are kept very short (BL1 = 0.01). All remaining branches are kept equally long (RB = 0.1).

support in a given tree and multiple sequence alignment
complementary to conventional bootstrap analyses. The
identification of taxonomic subsets offers the possibility
to mask only taxonomic sub-blocks of multiple sequence
alignments that clearly contain the least signal due to

alignment ambiguity, sequence saturation or excessive
divergence.

Results of the analyses of simulated nucleotide data sets
with indel events and/or missing data (coded as gaps) and
correct sequence alignment showed that the AliGROOVE

Figure 8 AliGROOVE results of concatenated gene analyses on unreduced and reduced 61-taxon simulation setup D. AliGROOVE similarity
score distance matrices and associated ML topologies of the original supermatrix and the taxon reduced supermatrix, including all 20 gene
partitions. The darker blue the colour coded similarity scores in AliGROOVE matrices, the higher the non-randomized accordancy between pairwise
sequence comparisons. Red indicates the opposite. Tagged branch reliability of associated best ML topologies is given next to each matrix. Correct
reconstructed topologies are pointed blue, incorrect trees red. Names of incorrectly resolved sequences are highlighted red.
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Figure 9 AliGROOVE results of concatenated and single gene analyses on mitochondrial data of Chelicerata taxon groups. Except of
Cytochrome Oxidase I (mainly positive pairwise similarity scores) and ATP6 (mainly negative pairwise similarity scores), AliGROOVE identified mainly
negative similarity scores in pairwise comparisons whenever sequences of Acariformes (A) are involved. Although subgroups within Acariformes get
a higher bootstrap support in the best ML tree using the supermatrix data (shown here), they are tagged with AliGROOVE as unreliable. The
misleading information accumulates for these taxa especially in the COII and COIII sequences, while ATP6 is generally to noisy. In the concatenated
data set (“supermatrix”) the misleading patterns are still dominant.
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approach correctly identified excessively divergent
sequences with treating indels as fifth character state
(Figure 5, Additional file 4). After realigning these data,
the difference between treating indels as fifth or ambigu-
ous character state vanished. This may be explained by
misplaced indels during the process of realignment which
should be better treated as ambiguous character states.
For empirical data, in particular indel-rich data in which
we cannot discriminate between misplaced and cor-
rectly placed indels, this result implies that indels should
be treated as ambiguous character state or completely
removed from phylogenetic analyses [2,4,21].

The results concerning simulation setup D merit addi-
tional discussions. In these analyses, branch length differ-
ences between clades have been pushed to the extreme.
With nucleotide sequences, the AliGROOVE algorithm
correctly tagged misplaced branches if BL2 ≥ 0.9. With
amino acid data even these long branches were never
tagged as unreliable despite being incorrectly placed.
Apparently, detectable substitutional saturation accumu-
lated only if branch lengths BL2 were ≥ 0.9, and extremely
short internal BL1=0.01 were insufficient to accumulate
any signal. This phenomenon was pronounced for amino
acid data. The extremely short internal branch lengths
of BL1=0.01 can be interpreted as hard polytomies, for
which tree reconstructions cannot deliver correct results.
However, the frequency of hard polytomies limiting the
application of the AliGROOVE algorithm in empirical
data is currently unknown.

The mitochondrial DNA sequence data set of chelicer-
ates shows strong heterogeneity of sequence divergence
as indicated in the similarity matrix (Figure 9). Speci-
mens of Acariformes display mostly random similarity to
all other sequences. This observation implies that Acar-
iformes cannot be robustly placed in the tree or are
potentially misplaced despite robust bootstrap support.
This is exactly what we see in the tree reconstruction using
the concatenated supermatrix data set, as Acariformes are
sister group to Ricinulei and form together with Para-
sitiformes the sister group to Pycnogonidae. This group-
ing which is considered implausible by many specialists
[19,20,22,23] gets a high bootstrap support. The ques-
tionable sister group relationship between Ricinulei and
Acariformes has been identified with AliGROOVE and
is tagged as suspicious in the topology inferred from the
supermatrix. The AliGROOVE algorithm clearly identi-
fied the most problematic sequences and gene partitions
in the data set and demonstrates its usability with this
data.

Conclusions
The analyses of the simulated and the empirical data
show that the sliding window approach identifies relevant
sources of reconstruction error. Therefore, we suggest

our method as an important complement to all charac-
ter based masking approaches in phylogenetics. It offers
the possibility to exclude taxa or gene partitions based on
a formal argument instead of excluding taxa based exclu-
sively on the evaluation of branch lengths. The exclusion
or exchange of conflicting sequences and/or gene parti-
tions improves the signal-to-noise ratio of the alignment
and, as a consequence of this, can lead to less biased, more
realistic trees. The simple usage of the AliGROOVE pro-
gram via graphical user interface (Figure 10) facilitates the
identification of potentially problematic taxa or gene par-
titions for users which feel uncomfortable with command
line based software while the alternatively available com-
mand line version of AliGROOVE can be easily integrated
into automated analysis pipelines. AliGROOVE has no
maximum limit in taxon number or sequence length.

Material and methods
Simulated data setup A & B
To test the efficiency of AliGROOVE we designed two
sets of nucleotide and amino acid sequence data using
4-taxon and 6-taxon trees (Figure 1). The topology of
the 4-taxon setup (setup A, Figure 1a) contained two
long branches of unrelated taxa (with branch lengths
BL2 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5) under three dif-
ferent branch length conditions for the other two short
terminal branches (BL3 = 0.1, 0.12, 0.14 and RB =
0.1) and two different lengths of the short internal
branch (BL1 = 0.01, 0.02). The 6-taxon setup (setup
B, Figure 1b) contained two long internal branches
(BL2 = 0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5), separated by a
short internal branch (BL1 = 0.01) while the lengths of
terminal branches are kept constant (BL3 = 0.01 and
RB = 0.1). For both test setups, 100 alignments were gen-
erated for each step of BL2 branch elongation. Sequence
length of each alignment of setup A was set to 250,000
character state positions and for setup B to 50,000 char-
acter state positions to reduce the calculation time. All
alignments were generated with INDELible v.1.03 [24]. In
order to simulate nucleotide sequence data we used the
Jukes-Cantor model (JC) of sequence evolution and for
amino acid sequence data the BLOSUM62 substitution
model. All data were simulated with among site rate vari-
ation (ASRV), using a mixed-distribution model with a
shape parameter α = 1.0, and a proportion of invariant
sites ρinv = 0.3. ASRV was modelled using a continuous
�-rate distribution while indel events were not simulated.

Trees of simulated data were inferred with PhyML_
3.0_linux64 [25,26]. We analyzed the data with a mixed-
distribution model (JC+�+I) and correct parameter
values (α = 1.0, ρinv = 0.3), except for the categorization
of the gamma distribution. The number of relative sub-
stitution rate categories was set to four (c = 4) and tree
topologies and branch lengths were optimized. Maximum
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Figure 10 Graphical user interface (GUI) version of AliGROOVE. Overview of the AliGROOVE process window.

Likelihood analyses were performed and evaluated with
a Perl pipeline. For each branch length-combination, we
generated 100 data replicates and recorded the frequen-
cies of correct and incorrect tree reconstructions using
correct alignments and nearly correct substitution models
(Figures 2, 3, Additional files 1, 2, 3).

Simulated data setup C
To test the efficiency of AliGROOVE when sequences
contain gaps and missing data we simulated nucleotide
sequence data sets for four different 15-taxon topologies
(Figure 4). The -N option of AliGROOVE allows to toggle
between scoring gaps as fifth character state or as ambi-
guity. The efficiency of AliGROOVE with and without the
usage of the -N option was tested on correct alignments
(Figure 5) and on realigned data sets using MAFFT [27,28]
under default values (Figure 6). Additionally, alignments
were also simulated without indel events under otherwise
identical parameter settings. Topologies differed only in
branch lengths. While topology C1 (Figure 4a) consisted
of more or less well balanced branch lengths, three ter-
minal branches (Taxon T3, T7, T9) have been strongly
increased in topology C2 (Figure 4b). One internal branch
separating taxa T1 to T10 from remaining taxa has been
strongly increased in topology C3 (Figure 4c), and one
internal branch separating taxa T1 to T10 from remaining
taxa as well as an addtional terminal branch (taxon T10)
has been strongly increased in topology C4 (Figure 4d).
Alignment lengths of simulation setup C were set to

50,000 sites. All data were simulated with ASRV, using a
mixed-distribution model with a shape parameter α =
0.5, and a proportion of invariant sites ρinv = 0.1. ASRV
was modeled using a continuous �-rate distribution while
indel events were simulated using a Lavalette Distribution
where the maximum indel length was set to 20. Insertion
and deletion rate were both set to 0.2. Single state frequen-
cies of GTR simulations were set to T = 0.35, C = 0.15,
A = 0.35, G = 0.15.

Trees of simulated data were inferred with
PhyML_3.0_linux64 [25,26] using either the JC or
GTR model of sequence evolution (depending on the
substitution model used for data simulations) with a
mixed-distribution model by estimating the α shape
parameter and the proportion of invariant sites. The
number of gamma shape rate categories was set to four
(c = 4) and tree topologies and branch lengths were opti-
mized. Maximum Likelihood analyses were performed
and evaluated with a Perl pipeline. For each topology and
AliGROOVE setting, we generated 20 data replicates and
recorded the frequencies of correct and incorrect tree
reconstructions (Figures 5, 6, Additional file 4).

Simulated data setup D
To test the efficiency of AliGROOVE on large data sets
and more realistic data block lengths, we simulated five
different data block lengths of nucleotide and amino
acid sequence data for a 61-taxon topology under four
different internal and terminal branch length conditions
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(Figure 7). Alignment lengths of single data blocks were
set to 500, 1000, 1500, 2000, and 2500 sites. To simu-
late different substitution rates for specific branches we
stepwise increased single internal and terminal branches
for data block length from 0.1 to 1.3 (BL2 = 0.1, 0.5,
0.9, 1.3). To increase rate heterogeneity between long
branches and nearest-neighbour branches we kept inter-
nal branches very short (BL1 = 0.01). All remaining
branches are kept at RB = 0.1. Our simulation setup lead
to a total number of 20 gene partitions with each align-
ment length of data blocks being represented four times,
each time with another substitution rate for specific taxa
due to increased branch lengths of the data underlying
topology.

Like in simulation setup A and B we simulated all
data with ASRV, using a mixed-distribution model with a
shape parameter α = 1.0, and a proportion of invariant
sites ρinv = 0.3. ASRV was modeled using a continuous
�-rate distribution. Indel events were not simulated. In
order to simulate nucleotide sequence data we used the
Jukes-Cantor model (JC) of sequence evolution and the
BLOSUM62 substitution model for amino acid sequence
evolution. For sequence concatenation we used FAScon-
CAT v1.0 [29].

Trees of simulated data were again reconstructed with
PhyML_3.0_linux64 [25,26] using the JC of sequence
evolution (JC+�+I) with correct rate heterogeneity and
invariant site proportion parameters (α = 1.0, ρinv = 0.3).
The number of gamma shape rate categories was set to
four (c = 4). All Maximum Likelihood analyses were
performed and evaluated with a Perl pipeline.

AliGROOVE was tested on complete as well as reduced
data blocks and supermatrices. Reduced sequence blocks
and supermatrices were used to test the overall qual-
ity improvement of given data and associated trees after
removing sequences which have been identifed as poten-
tially unreliable in the majority of the AliGROOVE analy-
ses (Additional files 5, 6, 7, 8).

Empirical data
We used AliGROOVE without the -N option (indels
coded as fifth character state) on a concatenated super
alignment (5082 character state positions) as well as on
corresponding single gene data sets of five mitochondrial
genes (Atp6 ↪→ 696 character state positions, COI ↪→
1575 character state positions, COII ↪→ 783 character
state positions, COIII ↪→ 861 character state positions,
and Cytb ↪→ 1167 character state positions) downloaded
from the NCBI genome data base for 53 chelicerate
ingroup taxa and eight myriapod outgroup taxa. Single
mitochondrial genes were aligned with ClustalW [30] and
concatenated with FASconCAT [29]. The best ML topol-
ogy of the mitochondrial data set was estimated using
RAxML_7.2.2 [31] and the GTR+� model. Single node

support has been evaluated by performing 1000 bootstrap
replicates (Figure 9).

Computation time
Time complexity of AliGROOVE is given by:

O
(
M ∗ N2) (3)

M means the sequence length of a given alignment,
N the total number of aligned taxon sequences. For
example, the AliGROOVE computation time of a single
4-taxon alignment with sequence lengths of 250.000 char-
acter states took 809 seconds using a GenuineIntel(R)
Core(TM) i7, 2.60GHz processor. The computation time
of a 64-taxon data set with an alignment length of 2500
characters, conducting 1830 pairwise sequence analyses,
took 2578 seconds.

Implementation of AliGROOVE
AliGROOVE is implemented in Perl and runs on Linux,
Mac OS, and Windows operating systems. It can be used
via command line or graphical user interface (GUI). The
GUI of AliGROOVE (Figure 10) is based on Qt, a cross-
platform application and GUI framework in C++ .

Availability of supporting data and requirements
• Project name: AliGROOVE – visualization of

heterogeneous sequence divergence within multiple
sequence alignments and detection of inflated branch
support

• Project home page: http://zfmk.de/web/Forschung/
Abteilungen/AG_Wgele/Software/AliGROOVE/
index.en.html

• Operating system(s): Platform independent
• Programming language: Perl
• Other requirements: Perl 5.0 or higher
• License: GNU GPL version 2
• Any restrictions to use by non-academics: No

restrictions

Additional files

Additional file 1: Complete results of 4-taxon simulations based on
nucleotide data. Graphical result plots of all AliGROOVE analyses
performed for nucleotide data based on 4-taxon topologies. The pdf
document can be opened with pdf readers like AdobeAcrobatReader,
Xpdf, or DocumentViewer.

Additional file 2: Complete results of 4-taxon simulations based on
amino acid data. Graphical result plots of all AliGROOVE analyses
performed for amino acid data based on 4-taxon topologies. The pdf
document can be opened with pdf readers like AdobeAcrobatReader,
Xpdf, or DocumentViewer.

Additional file 3: Complete results of 6-taxon simulations. Graphical
result plots of all AliGROOVE analyses performed for nucleotide and amino
acid data based on 6-taxon topologies. The pdf document can be opened
with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.
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Additional file 4: Complete results of 15-taxon simulations. Graphical
result plots of all AliGROOVE analyses performed for complete and indel
events included nucleotide data based on 15-taxon topologies. The pdf
document can be opened with pdf readers like AdobeAcrobatReader,
Xpdf, or DocumentViewer.

Additional file 5: Complete results of unreduced 61-taxon gene
partitions simulations based on nucleotide data. Graphical result plots
of all AliGROOVE analyses performed for unreduced nucleotide gene
partitions based on 61-taxon topologies. The pdf document can be opened
with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.

Additional file 6: Complete results of unreduced 61-taxon gene
partitions simulations based on amino acid data. Graphical result plots
of all AliGROOVE analyses performed for unreduced amino acid gene
partitions based on 61-taxon topologies. The pdf document can be opened
with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.

Additional file 7: Complete results of taxon reduced gene partitions
based on 61-taxon nucleotide data simulations. Graphical result plots
of all AliGROOVE analyses performed for taxon reduced nucleotide gene
partitions based on 61-taxon topologies. The pdf document can be opened
with pdf readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.

Additional file 8: Complete results of taxon reduced gene partitions
based on 61-taxon amino acid simulations. Graphical result plots of all
AliGROOVE analyses performed for taxon reduced amino acid partitions
based on 61-taxon topologies. The pdf document can be opened with pdf
readers like AdobeAcrobatReader, Xpdf, or DocumentViewer.
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«Et tes amis seront bien étonnés de te voir rire en regardant le
ciel. Alors tu leur diras: ›Qui, les étoiles, ça me fait toujours

rire!‹
Et ils te croiront fou.»

"And your friends will be properly astonished to see you laughing
as you look up at the sky! Then you will say to them, ’Yes, the

stars always make me laugh.’
And they will think you are crazy."

„Und Deine Freunde werden sehr erstaunt sein, wenn sie sehen,
dass Du den Himmel anblickst und lachst. Dann wirst Du ihnen
sagen: ’Ja, die Sterne, die bringen mich immer zum lachen.’

Und sie werden Dich für verrückt halten.“

Antoine de Saint-Exupéry
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