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4. Definitions 

A Active membrane area [m
2
] 

CF Concentration factor  

Cf,i Concentration of the component i in feed [mg/L] 

Cr,i Concentration of the component i in retentate [mg/L] 

Cr,MOS Concentration of MOS in retentate [mg/L] 

Cr,total sugar Concentration of total sugar in retentate [mg/L] 

DV Number of diavolumes  

F Permeate flux [L m
-2

 h
-1

] 

MMOS/total sugar MOS content in relation to total sugar content [%] 

Ri Retention of a component i [%] 

t Time  [h] 

Vf Initial feed volume [L] 

Vp Permeate volume [L] 

Vr Retentate volume [L] 

p Pressure [bar] 

T Temperature [°C] 
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5. Amino acid code (IUPAC) 

A Ala Alanine 

C Cys Cysteine 

D Asp Aspartic acid 

E Glu Glutamic acid 
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G Gly Glycine 

H His Histidine 

I Ile Isoleucine 

K Lys Lysine 

L Leu Leucine 

M Met Methionine 

N Asn Asparagine 

P Pro Proline 

Q Gln Glutamine 

R Arg Arginine 

S Ser Serine 

T Thr Threonine 

V Val Valine 

W Trp Tryptophan 

Y Tyr Tyrosine 
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6. Summary 

Milk is considered to be a rich and one of the most important sources of bioactive compounds 

containing various milk-borne biologically active constituents or precursor substances for 

bioactive components. The present work was focused on the production of functional food 

ingredients of the carbohydrate and protein fraction of milk. The aim of the thesis was the 

development of procedures for the generation, enrichment and characterization of bioactive 

oligosaccharides and peptides from milk. Enrichment of bioactive milk-derived 

oligosaccharides (MOS) was performed by nanofiltration (NF). For generation and 

identification of anti-inflammatory peptides from bovine β-casein, enzyme preparations with 

different tryptic and chymotryptic activities were applied. Characterization of the biological 

activities of the MOS concentrates and the β-casein hydrolysates was performed by the 

evaluation of the activity of the transcription factor NFκB in human embryonic kidney cells 

(HEK
nfκb-RE

 cells) in vitro. 

Manuscript 1: For the enrichment of MOS (6’-sialyllactose, 3’-sialyllactose, N-

acetylgalactosaminyl lactose) by membrane filtration initially a screening and a comparison 

of the efficiency of different NF membranes was performed on laboratory scale. Successful 

retention of MOS of 49 % to 84 % in retentate was achieved by application of membranes 

with a nominal molecular weight cut-off (NMWCO) of 150-400 Da. The transfer of the NF 

process from laboratory to pilot plant and industrial scale resulted in a comparable retention 

of MOS in retentate. A 100-fold increase of the MOS content in relation to total sugar content 

in retentate (10.6 %) compared to the initial sample (0.1 %) was realized after NF on 

industrial scale using the membrane DOW. This NF retentate was composed of 2.6 % MOS, 

28.3 % mono- and disaccharides, 23.5 % citric acid and 24.7 % ash in dry mass. The MOS 

retentates and the standards (3’-sialyl-lactose, 6’-sialyl-lactose) exhibited increased NFκB 

activity in HEK
nfκb-RE 

cells. A screening for the efficiency of different NF membranes for the 

enrichment of MOS on different scales of production was conducted for the first time. 

Manuscript 2: The NF process for the enrichment of MOS was optimized realizing a better 

permeation of milk salts and residual sugars during NF at pH 5 and pH 7. As initial sample, 

the already concentrated NF retentate with a 100-fold increase of MOS content in relation to 

total sugar content was applied. A high retention of MOS of 68 % to 79 % was realized after 
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NF and diafiltration at acidic and neutral milieu. The high MOS content in relation to total 

sugar content of 87.3 % to 92.7 % in the retentate at pH 5 and 7 (9-fold higher than in the first 

NF retentate, 900-fold higher than in the initial sample) indicated a nearly complete 

permeation of mono- and disaccharides. A higher enrichment of MOS in dry mass (5-fold 

higher than in the first NF retentate, 140-fold higher than in the initial sample) and an 

increased permeation of salts were achieved by NF at pH 5. The MOS concentrate at pH 5 

was composed of 14.1 % MOS, 1.2 % mono- and disaccharides, 13.3 % citric acid and 21.8 

% ash in dry mass. Furthermore, first investigations for the transfer of the procedure to 

caprine milk resulted in an increased MOS content in relation to total sugar content in 

retentate (23- to 31-fold higher than in the initial sample) of NF at neutral milieu. For the first 

time, the influence of the pH on the degree of enrichment of MOS by NF was evaluated. 

Manuscript 3: Potential anti-inflammatory peptides were generated by hydrolysis of β-casein 

with the tryptic enzyme preparations Cod Trypsin, porcine Trypsin (tosyl phenylalanyl 

chloromethyl ketone (TPCK)-treated) and the tryptic and chymotryptic preparation PTN 6.0 

S. The β-casein hydrolysates exhibited a reduced NFκB activity measured as luciferase 

activity in human embryonic kidney cells (HEK
nfκb-RE 

cells). β-casein hydrolysates produced 

by application of enzyme preparations with mainly chymotryptic activity (Cryotin, Cryotin F) 

did not reveal any effect. The higher the chymotryptic activity present, the lower the anti-

inflammatory activity in HEK
nfκb-RE 

cells. Hydrolysis of β-casein with Cod Trypsin and 

porcine Trypsin (TPCK) resulted in comparable peptides. Thus, the enzyme preparation Cod 

Trypsin can replace the non-food grade porcine enzyme preparation Trypsin (TPCK) for the 

generation of potential anti-inflammatory β-casein derived peptides. 
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7. Kurzdarstellung 

Milch zählt zu den wichtigsten Quellen für bioaktive Substanzen und enthält zahlreiche 

milchoriginäre bioaktive Komponenten sowie Precursor für bioaktive Komponenten. Der 

Focus der Arbeit lag auf der Produktion von funktionellen Lebensmittelinhaltsstoffen aus der 

Kohlenhydrat- und Proteinfraktion von Milch. Das Ziel der Arbeit war die Entwicklung von 

Verfahren zur Generierung, Anreicherung und Charakterisierung von bioaktiven 

Oligosacchariden und Peptiden aus Milch. Die Anreicherung von milchoriginären 

Oligosacchariden (MOS) erfolgte mit Hilfe der Nanofiltration (NF). Für die Generierung und 

Identifizierung von anti-inflammatorischen Peptiden aus bovinem β-Casein wurden 

Enzympräparate mit unterschiedlichen tryptischen und chymotryptischen Aktivitäten 

angewendet. Eine Charakterisierung der biologischen Aktivität der MOS Konzentrate und der 

β-Casein Hydrolysate erfolgte durch die Bestimmung der Aktivität des Transkriptionsfaktors 

NFκB in humanen embryonalen Nierenzellen (HEK
nfκb-RE

–Zellen) in vitro. 

Manuskript 1: Für die Anreicherung der MOS (3‘-Sialyllactose, 6‘-Sialyllactose, N-

Acetylgalactosaminyl-Lactose) mit Hilfe der Membranfiltration wurde zu Beginn ein 

Screening und ein Vergleich der Effizienz unterschiedlicher NF-Membranen im 

Labormaßstab durchgeführt. Eine erfolgreiche Wiederfindung der MOS im Retentat von 49 % 

bis 84 % wurde bei Einsatz von Membranen mit einem NMWCO (nominal molecular weight 

cut-off) von 150-400 Da erzielt. Eine Übertragung des NF-Prozesses vom Labor in den 

Technikum- und Industriemaßstab erzielte eine vergleichbar hohe Wiederfindung der MOS 

im Retentat. Die NF im Industriemaßstab bei Einsatz der Membran DOW erzielte einen 100-

fachen Anstieg des MOS Gehaltes bezogen auf den Gesamtzuckergehalt im Retentat (10.6 %) 

im Vergleich zur Ausgangsprobe (0.1 %). Das NF-Retentat setzte sich aus 2,6 % MOS, 28,3 

% Mono- und Disacchariden, 23,5 % Zitronensäure und 24,7 % Asche in der Trockenmasse 

zusammen. Die MOS Konzentrate und die Standards (3‘-Sialyllactose, 6‘-Sialyllactose) 

zeigten eine erhöhte NFκB Aktivität in HEK
nfκb-RE

–Zellen. Ein Screening bezüglich der 

Effizient verschiedener NF-Membranen für die Anreicherung der MOS in unterschiedlichen 

Produktionsmaßstäben erfolgte zum ersten Mal. 

Manuskript 2: Der NF-Prozess für die Anreicherung der MOS wurde optimiert. Eine höhere 

Permeation der Milchsalze und restlichen Zucker während der NF bei pH 5 und 7 wurde 
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erzielt. Als Ausgangsprobe wurde das zuvor konzentrierte NF-Retentat mit einem 100-fach 

erhöhten MOS Gehalt bezogen auf den Gesamtzuckergehalt verwendet. Eine hohe 

Wiederfindung der MOS von 68 % bis 79 % wurde nach NF und Diafiltration bei saurem und 

neutralem Milieu erzielt. Der hohe MOS Gehalt bezogen auf den Gesamtzuckergehalt von 

87,3 % bis 92,7 % im Retentat bei pH 5 und pH 7 (9-fach höher als im ersten NF-Retentat, 

900-fach höher als in der Ausgangsprobe) zeigte eine nahezu komplette Permeation der 

Mono- und Disaccharide. Eine höhere Anreicherung der MOS in der Trockenmasse (5-fach 

höher als im ersten NF-Retentat, 140-fach höher als in der Ausgangsprobe) und eine höhere 

Permeation der Salze wurden mit der NF bei pH 5 erzielt. Das MOS Konzentrat bei pH 5 

setzte sich aus 14,1 % MOS, 1,2 % Mono- und Disacchariden, 13,3 % Zitronensäure und 21,8 

% Asche in Trockenmasse zusammen. Des Weiteren führten erste Studien zur Übertragung 

des Prozesses auf Ziegenmilch zu einem erhöhten MOS Gehalt bezogen auf den 

Gesamtzuckergehalt im Retentat (23- bis 31-fach höher als in der Ausgangsprobe) der NF bei 

neutralem Milieu. Der Einfluss des pH-Wertes auf den Grad der Anreicherung der MOS mit 

Hilfe der NF wurde zum ersten Mal untersucht. 

Manuskript 3: Potentiell anti-inflammatorische Peptide wurden durch die Hydrolyse von β-

Casein mit den tryptischen Enzympräparaten Cod Trypsin, Schweinetrypsin (Tosyl-

Phenylalanyl-Chlormethyl-Keton (TPCK)-behandelt) und dem tryptischen und 

chymotryptischen Präparat PTN 6.0 S generiert. Die β-Casein Hydrolysate zeigten eine 

reduzierte NFκB Aktivität gemessen als Luciferase Aktivität in HEK
nfκb-RE

–Zellen. β-Casein 

Hydrolysate generiert durch den Einsatz von Enzympräparaten mit hauptsächlich 

chymotryptischer Aktivität (Cryotin, Cryotin F) zeigten keinen Effekt. Je höher die 

chymotryptische Aktivität desto geringer war der anti-inflammatorische Effekt in HEK
nfκB-RE

–

Zellen. Die Hydrolyse von β-Casein mit Cod Trypsin und Schweinetrypsin (TPCK) führten 

zu vergleichbaren Peptiden. Folglich kann das Enzympräparat Cod Trypsin das „non-food 

grade“ Präparat Trypsin (TPCK) für die Generierung von potentiell anti-inflammatorischen 

Peptiden aus β-Casein ersetzen.  
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Chapter I General introduction 

I.1 Theoretical background 

I.1.1 Bioactive substances from milk 

Milk and milk-derived products represent an essential and valuable contribution to the 

nutrition of countless people all over the world (Hartmann et al. 2002). Beside their 

nutritional value based on the principal ingredients water, fat, protein, carbohydrates, vitamins 

and minerals, milk contains various milk-borne biologically active constituents or precursor 

substances for bioactive components (Ebringer et al. 2008; Hartmann and Meisel 2002; Park 

2009). The amount, the potentially and the importance of bioactive compounds in milk is 

greater than previously thought (Ebringer et al. 2008). In fact, bovine milk is considered a rich 

and the most important source of bioactive components with significant impact on human 

nutrition and health (Korhonen 2009; Mills et al. 2011; Park 2009; Walstra et al. 1999). 

Extensive studies have been conducted to evaluate the significance of these substances for 

human nutrition and health (Hartmann et al. 2002, Park et al. 2009). Fig. 1.1 gives an 

overview of the bioactive components which are naturally present in milk or can be generated 

of milk components. 

Carbohydrates in milk encode functional health benefits to the consumers far beyond the 

nutritional content (Tamime 2009). The principal carbohydrate in mammalian milk is lactose 

(Gal(β1-4)-Glc). This reducing disaccharide is unique to milk and has been found in milks of 

most mammals (Fox and McSweeney 2009; Walstra et al. 1999; Tamime 2009). Lactose is 

the precursor of various different biologically active compounds synthesized by chemical, 

physical or enzymatic conversion (Fox and McSweeney 2009; Gänzle et al. 2008). Except for 

some trace amounts, these compounds do not occur naturally in milk. 

 

 



 

 

 

2
 

 

 

Fig. 1.1 Bioactive milk-derived components. GMP = glycomacropeptide 
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For instance, the disaccharide lactulose is a well-known lactose derivative (Moreno et al. 

2014), composed of galactose and fructose (Fru(β1-4)Gal). This disaccharide is formed in 

small amounts by heating of milk and is therefore an indicator of milk heat treatment (Walstra 

et al. 1999; Gänzle et al. 2008). Lactulose is industrially produced by isomerization of lactose 

in alkaline solution (Gänzle et al. 2008). This sugar has also been produced enzymatically by 

application of β-galactosidases and providing fructose as galactosyl acceptor on laboratory 

scale (Gänzle et al. 2008). The lactose derivative is used as a pharmaceutical for treatment of 

hepatic encephalopathy and, due to its laxative and prebiotic effects, as a bioactive component 

in food (Fox and McSweeney 2009; Gänzle et al. 2008). Various other lactose derivatives 

with biological activities such as lactitol, glucans, fructans, sialyllactose, lactosucrose or 

lactobionic acid exhibit biological activities. 

Oligosaccharides are defined as “glycosides composed of 2-10 covalently linked monomer 

sugar units” (Fox and McSweeney 2009). Although this definition is dominant, disaccharides 

such as lactose or lactulose are not regarded as oligosaccharides, whereas saccharides with 

more than 10 monomers are also called oligosaccharides (Fox and McSweeney 2009). The 

biologically active galactooligosaccharides (GOS) are synthesized by the transgalactosylation 

activity of β-galactosidases from lactose, while milk oligosaccharides (MOS) represent the 

milk-borne bioactive components of the carbohydrate fraction in milk. The structure, 

biological activity, production or enrichment and availability are discussed in chapter I.1.2.  

Milk provides various bioactive proteins such as glycosylated proteins, κ-casein, 

immunoglobulins as well as casein and whey derived peptides. Biologically active peptides 

derived from β-casein are presented in chapter I.1.3.2. Furthermore, anti-inflammatory 

hydrolysates were produced by tryptic proteolysis of β-casein (Manuscript 3, chapter IV). 

Moreover, milk lipids such as phospholipids, carotenoids, conjugated linoleic acids and 

vitamins exhibit biological activities (Korhonen 2009). 

In contrast to the various studies about bioactive components in milk, a review from Melnik et 

al. (2013) pointed out that milk consumption in adulthood promotes the development of 

chronic diseases that are associated with increased cell growth regulating mechanistic target 

of rapamycin complex 1 (mTOCRC1) signaling such as acne, obesity, type-2 diabetes, arterial 

hypertension, Alzheimer’s disease and cancer. The research group described that milk favors 

increased plasma levels of glucose-dependent insulinotropic polypeptide (GIP), glucagone-
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like peptide-1 (GLP-1), insulin, growth hormone (GH) and insulin-like growth factor-1 (IGF-

1), which enhance mTORIC-driven metabolic processes. They stated that while human milk 

is the ideal food for infants, the continued cow’s milk consumption during adolescence and 

adulthood may promote the mTORC-1-driven diseases of civilization (Melnik et al. 2013). 

This theory was controversially discussed. In consideration of the various bioactive 

compounds in milk, which are beneficial for human health, this basic research needs further 

investigation. The critical aspects about milk consumption in adulthood should be regarded 

carefully but not be forgotten. 

I.1.2 Bioactive oligosaccharides 

I.1.2.1 Structure of milk oligosaccharides (MOS) 

Milk oligosaccharides (MOS) are a family of structurally diverse complex glycans (Bode 

2012, 2009). These oligosaccharides are composed of the core structure lactose, which is 

modified by the addition of the sugars glucose (Glc), galactose (Gal), fucose (Fuc), N-

acetylglucosamine (GlcNAc), N-acetylgalactosamine (GalNAc), N-acetylneuramic acid 

(=sialic acid) (Neu5Ac) and in milk of domestic animals also N-glycolylneuramic acid 

(=sialic acid) (Neu5Gc) (Fig. 1.2 a) (Kunz and Rudloff 2006; Bode 2012). All MOS contain 

lactose at the reducing end. On the one hand, lactose can be sialylated in α2-3 or α2-6 

glycosidic linkage, resulting in the formation of 3’-sialyllactose (3’-SL) and 6’-sialyllactose 

(6’-SL), respectively (Fig. 1.2 b, Fig. 1.2 c (1)). In addition, lactose can be fucosylated in α1-

2 or α1-3 or α1-4 linkages representing, 2’-fucosyllactose (2’-FL) and 3’-fucosyllactose (3’-

FL) (Fig 1.2 c (1)). On the other hand, β1-3- or β1-6-linked lacto-N-biose (Galβ1-3GlcNAc-, 

type 1 chain) or N-acetyllactosamine (Galβ1-4GlcNAc-, type 2 chain) (Fig. 1.2 c (2)) can be 

added to lactose resulting in lacto-N-tetraose (LNT) and lacto-N-neotetratose (LNnT), 

respectively (Fig 1.2 c (3)). The fucosylation of type I and type II chains lead to neutral MOS, 

while several isomeric forms can be synthesized such as lacto-N-fucopentaose (LNFP) I-III 

(Fig. 1.2 c (4)). Sialylation of type I chain and type II chain results in acidic MOS, which can 

show different isomeric forms, too, e.g., sialyllacto-N-tetraose (LST a-c) (Fig. 1.2 c (5)) 

(Bode 2012). Due to various different possible combinations of the monomers, a wide range 

of MOS with different degree of polymerization and glycosidic linkages can be formed (Bode 

2012; Fox and McSweeney 2009; Mehra and Kelly 2006; Bode 2006).  
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Fig. 1.2 a Structure of the main sugar components of MOS.  
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Fig. 1.2 b Structure of the dominant acidic (6’-SL, 3’-SL) and neutral (GalNAc-Gal-Glc) 

MOS present in bovine milk.  
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Fig. 1.2 c MOS structures. Bode et al. (2012) modified. 
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Concentration of MOS in human milk and milk of domestic animals 

MOS represent the third most predominant solid component after lactose and lipids in human 

milk (Tamime 2009; Mehra and Kelly 2006; Fox and McSweeney 2009; ten Bruggencate et 

al. 2014). Over 200 different oligosaccharides have been identified in human milk so far 

(Bode 2012, 2006; Fox and McSweeney 2009; Mehra and Kelly 2006). The concentration of 

MOS in human colostrum is 13-25 g/L (Eiwegger et al. 2004; Fox and McSweeney 2009; 

Bode 2012) and decreases to 5-8 g/L in mature milk (Martinez-Ferez et al. 2006a; Bode 2012; 

Oliveira et al. 2015). 50 % to 80 % of MOS are neutral fucosylated oligosaccharides (Bode 

2012; ten Bruggencate et al. 2014), composed mainly of 2’-fucosyllactose (2’-FL); lacto-N-

fucopentaose I (LNFP I), lacto-N-difucohexaose I (LNDFH I) and lacto-N-tetraose (LNT). 10 

% to 30 % of MOS are acidic sialylated sugars (ten Bruggencate et al. 2014; Bode 2012). The 

acidic fraction is mainly composed of lacto-N-neotetraose (LST c), disialyl lacto-N-tetraose 

(DSLNT), 3’-SL and 6’-SL. The most prominent MOS in colostrum are DSLNT and LST, 

while in mature milk DSLNT is the most abundant oligosaccharide. Human milk is the only 

milk of mammals which contains more lacto-N-biose (Galβ1-3GlcNAc-, type 1 chain) than 

N-acetyllactosamine (Galβ1-4GlcNAc-, type 2 chain) (Fox and McSweeney 2009). 

In bovine milk, 35 to 50 MOS were detected with a concentration of 1 g/L in colostrum and 

0.03-0.06 g/L in mature milk (Fox and McSweeney 2009; Albrecht et al. 2014; ten 

Bruggencate et al. 2014; Martinez-Ferez et al. 2006b). Bovine MOS are composed of 91 % 

acidic and 9 % neutral oligosaccharides. 12 different neutral MOS, thereof 3 fucosylated 

sugars (2’-FL, 3’-FL), and 21 different acidic MOS as well as 2 phosphorylated structures 

were identified (Albrecht et al. 2014; ten Bruggencate et al. 2014). The most dominant acidic 

bovine MOS are 3’-SL followed by 6’-sialyllactosamine, 6’-SL and disialyllactose 

(NeuAc(α2-8)NeuAc(α2-3)Gal(β1-4)Glc) (Gopal and Gill 2000). Among the neutral 

oligosaccharide fraction N-acetylgalactosaminyl-lactose (GalNAc-α(1-3)-Gal-β(1-4)Glc) is 

prominent (Fox and McSweeney 2009). While 3’-SL and 6’-SL as well as 3’-GL and 6’-GL 

are present in bovine and human milk, the structures of the other sialylated oligosaccharides 

are different (Mehra et al. 2006). 3’-SL is the predominant sialyllactose, representing 70 % of 

all MOS in bovine milk, whereas 6’-SL is the dominant sialyllactose in human milk (Fox and 

McSweeney 2009; ten Bruggencate et al. 2014). MOS in bovine colostrum contain the two 

different sialic acids Neu5Ac and Neu5Gc (Mehra and Kelly 2006). Amog the sialylated 
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bovine oligosaccharides, the majority (97 %) contains Neu5Ac and only a low part (3 %) 

incorporates Neu5Gc (Albrecht et al. 2014). In human milk and colostrum only Neu5Ac is 

present (Mehra and Kelly 2006).  

In caprine milk 40, MOS have been identified (Albrecht et al. 2014) with a concentration of 

0.25-0.30 g/L in mature milk (Oliveira et al. 2015; Martinez-Ferez et al. 2006b). Caprine 

oligosaccharides are composed of 95 % acidic and 5 % neutral MOS. Albrecht et al. (2014) 

identified 23 different acidic and 16 neutral oligosaccharides including 3 fucosylated sugars 

and one phosphorylated sugar (Albrecht et al. 2014). The most prevalent acidic MOS in 

caprine milk are 6’-SL followed by 3’-SL, disialyllactose and N-glycolylneuraminyl-lactose 

(Martinez-Ferez et al. 2006b). In contrast to bovine milk, the sialylated sugar fraction of 

caprine milk contains higher amounts of Neu5Glc (64 %) than Neu5Ac (36 %) (Albrecht et 

al. 2014). 3’-GL, lacto-N-hexaose (LNH) and N-acetylglucosamilyl-lactose (GlcNAc-Gal-

Glc) are mainly present in the neutral oligosaccharide fraction (Martinez-Ferez et al. 2006b). 

The profile of MOS distributed in caprine milk is described to be closer to human milk 

oligosaccharides than the pattern in bovine MOS (Oliveira et al. 2015).  

In ovine milk, 39 different oligosaccharides were identified (Albrecht et al. 2014) presenting a 

concentration of 0.02-0.04 g/L in mature milk (Martinez-Ferez et al. 2006b; Oliveira et al. 

2015). Similar to bovine and caprine milk, the MOS in ovine milk are mainly composed of 

acidic sugars (86 %) and only a small fraction of neutral sugars (14 %) (Albrecht et al. 2014). 

In camel milk, 45 different MOS were identified (Albrecht et al. 2014) composed mainly of 

acidic oligosaccharides (84 %) and neutral oligosaccharides (16 %) (Albrecht et al. 2014). 

 

I.1.2.2 Biological activities of MOS 

After ingestion, MOS resist the low pH of the stomach and the pancreatic digestion, reaching 

the small intestine and the colon in intact form (Bode 2012; Mehra and Kelly 2006; ten 

Bruggencate et al. 2014). Most gastrointestinal enzymes are not capable of cleaving fucose, 

N-acetyl-neuramic acid (Neu5Ac, sialic acid), or N-acetyl-glucosamine (GlcNAc) from 

oligosaccharides (ten Bruggencate et al. 2014; Fox and McSweeney 2009; Urashima et al. 

2001). The MOS are excreted with the infant’s feces (Bode 2012). In the first two months of 
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life, the feces contains many acidic and neutral MOS similar to the human MOS followed by 

a phase with various different degradation products of MOS, resulting in complete 

disappearance of MOS and their degradation products in feces when other feedings than 

human milk are induced (Bode 2012). Moreover, about 1 % of human MOS are absorbed via 

the paracellular route (acidic and neutral MOS) and transcellular route (neutral MOS), 

circulate long enough to display their biological effect at the target sides and finally are 

excreted in the infant’s urine (Bode 2012; Kunz and Rudloff 2006; ten Bruggencate et al. 

2014; Gnoth et al. 2001; Fox and McSweeney 2009).  

Because MOS reach the colon in intact form, they are mainly described to exhibit prebiotic 

activity (Bode and Rudloff 2002; ten Bruggencate et al. 2014; Zivkovic and Barile 2011; 

Kunz et al. 2000; Kunz and Rudloff 2008). Prebiotics are defined in 1995 as “non-digestible 

food ingredients that beneficially affect the host by selectively stimulating the growth and/or 

activity of one or a limited number of bacteria in the colon, and thus improve host health” 

(Gibson and Roberfroid 1995). The definition of prebiotics implies that the compounds must 

resist the small intestinal digestion such as gastric acidity, hydrolysis by gastrointestinal 

enzymes as well as gastrointestinal absorption to exert the positive effect in the large intestine 

(Bode 2012; Moreno et al. 2014). MOS meet these requirements when the absorption rate of 1 

% is neglected in this relation and the high amount of intact MOS reaching the colon is 

considered (Bode 2012). The oligosaccharides promote the growth of commensal bacteria. 

Bifidobacterium longum subsp. infantis and Bifidobacterium bifidum exhibited a high 

consumption of MOS (Fox and McSweeney 2009; Bode 2012), while Bifidobacterium 

longum subsp. longum and Bifidobacterium breve hardly grow with this carbohydrate source 

and metabolize only lacto-N-tetraose (LNnT) (Bode 2012). These commensal bacteria 

compete with potential pathogens for the carbohydrate source as nutrient. Moreover, the 

beneficial microbiota produce short chain fatty acids, which are responsible for a decrease in 

pH and a development of an environment favoring the growth of commensals over harmful 

bacteria (Bode 2012; Zivkovic and Barile 2011). 

Aside of prebiotic activity, MOS exert further host-microbial interactions by acting as anti-

adhesive antimicrobials (Bode and Rudloff 2002; Fox and McSweeney 2009). To cause an 

infection, pathogenic bacteria and viruses need to adhere to specific carbohydrate structures of 

glycoconjugates on the surface of the colonic epithelial cells. The adhesion is mediated by 
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bacterial proteins termed lectins, carbohydrate-binding proteins which bind to the 

oligosaccharides on the epithelial cell surface. MOS contain structural units that are 

homologous to the epithelial oligosaccharides and therefore belong to the carbohydrate-

binding determinants of the bacteria. The oligosaccharides in milk, especially sialylated MOS, 

compete with the epithelial ligands for bacterial binding. Thus, MOS act as soluble receptor 

analogues, inhibit the adhesion of pathogens and reduce the risk of infection (Bode 2009; 

Zivkovic and Barile 2011; Kunz et al. 2000; ten Bruggencate et al. 2014; Fox and 

McSweeney 2009). 

In addition, MOS can be modulators of intestinal epithelial cell responses (Bode 2012). An 

incubation of human intestinal epithelial colon adenocarcinoma cell line (Caco-2 cells) with 

3’-SL resulted in decreased α2-3- and α2-6-sialylation of the epithelial cell surface 

oligosaccharides. Adhesion of enteropathogenic Escherichia coli was reduced about 90 %, 

because these bacteria need sialylated glycans to bind at epithelial cell surfaces. It can be 

concluded that MOS are capable of influencing the gene expression by modulating or altering 

the cell surface glycosylation (Bode 2009). 

Furthermore, MOS can modulate the immune response locally at the mucosa of lymphoid 

tissue or systemically as 1 % of the oligosaccharides are absorbed and appear in the systemic 

circulation (Bode 2012). On the one hand, MOS were described to elicit an anti-inflammatory 

effect. Incubation of Caco-2 cells with 3’-SL resulted in reduction of cytokine secretion (IL-

12) and cytokine gene expression (IL-8 and TNF-α). In addition, the translocation of the 

immune modulating transcription factor nuclear factor κ B (NFκB) was decreased by this 

MOS (Zenhom et al. 2011). 

On the other hand, immunostimulatory effects of MOS have been described in a few 

investigations (Table 1.1). For instance, the incubation of cord blood-derived mononuclear 

cells (CBMC) with acidic MOS increased the interferon-γ producing CD3+CD4+ and 

CD3+CD8+ lymphocytes and the interleukin-13 (IL-13) synthesis in CD3+CD8+ 

lymphocytes in vitro (Eiwegger et al. 2004) (Table 1.1). In addition, Ortega-González et al. 

(2014) reported about an increased secretion of chemokines (GROα = growth related 

oncogene-α, MCP1= monocyte chemoattractant protein-1) as inflammatory markers in 

intestinal epithelial cells (IEC 18) by a goat MOS product containing 6’-SL, 3’-SL, 

disialyllactose, N-glycolylneuraminyl-lactose, 3’-GL, lacto-N-hexaose (LNH), N-
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acetylglucosaminyllactose. These oligosaccharides are described to up-regulate the activity of 

the immune regulatory transcription factor nuclear factor κ B (NFκB) as ligand for the TLR4 

receptor in intestinal epithelial cells by triggering the NFκB-signaling pathway (chapter I.1.4) 

(Ortega-González et al. 2014). Moreover, the immunostimulatory activity of MOS by 

increased cytokine secretion (IFN-γ, IL-13, TNF-α, IL-6, IL-10) was determined in colonic 

epithelial cells (HT-29) (Lane et al.2013), primary mouse splenocytes (Capintan-Canadas et 

al. 2014) and human cord blood-derived T-cells (Eiwegger et al 2014). Studies investigating 

the immunostimulatory effect of MOS are listed in Table 1.1. 

 

Table 1.1 Literature overview about the immunostimulatory effect of MOS. (IEC18 = intestinal 

epithelial cells from rat, GRO α = growth related oncogene-α, MCP1 = monocyte chemoattractant 

protein-1, TLR4 = Toll-like receptor 4, NFκB = nuclear factor κ B, CBMC = cord blood mononuclear 

cells) 

Cells Sample Concentration Results Reference 

IEC18 Goat MOS 

 

5 mg/ml o increased secretion of chemokines 

(GROα, MCP1) 

o MOS act as TLR4 ligand by up-

regulation of the transcription factor 

NFκB 

(Ortega-González et 

al. 2014) 

Mouse 

splenocytes 

Goat MOS 5 g/L o Goat MOS showed increased 

secretion of TNF-α, IL-6, and IL-10 

in mouse splenocytes in comparison 

to the control without sample. 

o Goat MOS showed no effect in 

secretion of TNF-α, IL-6, and IL-10 

in LPS induced mouse splenocytes 

in comparison to the control (with 

LPS). 

o Goat MOS reduce secretion of IFN-

γ and IL-17 in concanavalin A 

stimulated mouse splenocytes in 

comparison to the control (with 

concanavalin A) (Fig.2). 

o MOS bind and activate TLR4 

receptors in mice splenocytes. 

(Capitán-Cañadas et 

al. 2014) 

CBMC Acidic 

human 

MOS, 

neutral 

human 

MOS 

10 µg/mL 

neutral human 

MOS, 

1 µg/mL acidic 

human MOS 

o Acidic MOS fraction increased the 

IFN-γ producing CD3+CD4+ and 

CD3+CD8+ lymphocytes and the 

IL-13 production in CD3+CD8+ 

lymphocytes. 

(Eiwegger et al. 

2004) 
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It requires further investigation to explain the influence of MOS on the immune response and 

especially to determine which receptors and signaling pathways HMO employ to trigger gene 

expression. Generally, the evaluation of the influence of MOS on activation of NFκB (nuclear 

factor κ B) in cells is a valuable approach, as this transcription factor is a key mediator in 

regulation and induction of various chronic inflammatory diseases such as cancer, diabetes 

and asthma. Therefore, the immunostimulatory effect of bovine MOS was determined by 

analyzing their effect on the activity of the transcription factor NFκB in human embryonic 

kidney cells (HEK
nfκb-RE 

cells) (chapter II.4.3). The NFκB-signaling pathway is described in 

chapter I.1.4. 

 

I.1.2.3 Availability of MOS as functional food ingredients 

MOS play a key role in supporting and maintaining health in breast-fed infants. It would be 

beneficial to provide MOS to formula-fed infants as well as to humans of all ages (Mehra et 

al. 2014). There exist various studies about the identification, quantification and the biological 

activities of MOS from different milks (Tao et al. 2008; Tao et al. 2010; Wu et al. 2010; 

Albrecht et al. 2014). Research is required to develop an efficient process to provide a MOS 

product for the industrial application as functional ingredient for food. 

On the one hand, investigations were performed on biotechnological synthesis of MOS with 

microbial and enzymatic systems (Han et al. 2012; Luo et al. 2014; Michalak et al. 2014; 

Zeuner et al. 2014; Fierfort and Samain 2008; Priem et al. 2002; Guo et al. 2014; Choi et al. 

2014). Cell methods have been developed using recombinant Escherichia coli strains, in 

which sialyllactose or complex sialylated oligosaccharides can be produced either with 

synthesis of N-acetylneuramic acid (Neu5Ac) by internalizing and sialylation of lactose with 

glycosyltransferase (CMP-Neu5Ac) (novo synthetic pathway) or with uptake of sialic acid 

from medium (salvage method) (Han et al. 2012). Moreover, some researchers were able to 

produce fucosylated oligosaccharides as well as some complex fucosylated and sialylated 

oligosaccharides by enzymatic or microbial methods. So far, sialyllactoses (3’-SL, 6’-SL), 

fucosyllactoses (2’-FL, 3’-FL), lacto-N-biose and lacto-N-tetraose (LNT) are commercially 

available but rather as a standard (Han et al. 2012). Due to the high diversity of human MOS, 

a lot of research has to be done to create a MOS composition similar to human milk by these 
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biotechnological processes. The development of cost effective biotechnological processes on 

industrial scale and the requirement to meet the criteria of novel food are further barriers. 

On the other hand, only few studies were conducted to enrich the naturally presented MOS 

from domestic animal milk by membrane filtration procedures. So far, there exist only three 

studies about the enrichment of MOS by membrane separation on laboratory and pilot plant 

scale and only one study realized the concentration of MOS on industrial scale (Table 1.2). In 

all studies, a two-stage cross-flow membrane filtration was applied. For the first filtration 

either ultrafiltration (UF, NMWCO 10-50 kDa) or microfiltration (MF, NMWCO 1 mm) was 

applied to separate the protein fraction of skimmed milk or whey from the carbohydrate 

moiety. The permeate (UF permeate, MF permeate) was composed of lactose or the 

hydrolyzed lactose products glucose and galactose and MOS as well as milk salts. The 

permeate of the first filtration step was used as the initial sample for the enrichment of MOS. 

In the second filtration step, the NF membrane module as well as the conditions and the 

process parameters have to be chosen carefully. During this step, the MOS should remain in 

the retentate and the other sugars should pass the membrane. Moreover, diafiltration (DF) 

supports the permeation of the residual sugars (lactose, glucose, galactose) and salts. 

However, DF might lead to a higher permeation or loss of MOS. It depends on the target 

whether a high recovery of MOS and/or a high purity of the retentate wants to be achieved. 

The NF on laboratory scale resulted in a 84 % to 90 % retention of MOS in the retentate 

(Martinez-Ferez et al. 2006a; Sarney et al. 2000). On pilot plant scale UF, a 10 % retention of 

total carbohydrates (lactose, oligosaccharides) was achieved, composed of about 90 % 

oligosaccharides (Oliveira et al. 2014). Due to different methods of quantification (Table 1.2 

a-c), the results are difficult to compare. Within these studies, the content of the 

oligosaccharide fraction after subtraction of the residual sugar (lactose, glucose, galactose) 

concentration was determined. A more precise quantification and identification of individual 

sialyllactoses (3’-Sl and 6’-SL) by HPAEC were conducted in the UF retentate on industrial 

scale NF by Mehra et al. (2014). As a result, a 40-fold enrichment of the sialyllactose-to-

lactose ratio of 14 % with 2.8 % MOS in dry mass was achieved (Mehra et al. 2014). 

However, no process has been efficiently implemented at industrial scale so far due to high 

capital costs, operational complexity and low productivity. 



 

 

 

1
5
 

Table 1.2 Literature overview of membrane separation processes for the enrichment of MOS (p = pressure, T = temperature, Ref. = reference, DV = 

diavolumes (chapter II, III), NMWCO = nominal molecular weight cut-off, UF = ultrafiltration, NF = nanofiltration, DF = diafiltration, MF = 

microfiltration).  

 

Method 

NF 

Origin of  

MOS 
Results Ref. 

Membrane type 

/manufacturer 

p 

[bar] 

T 

[°C] 
pH 

Laboratory scale 

two-stage cross-flow UF-NF process 

1. UF of skimmed caprine milk, 4 DV 

2. NF of UF-permeate for enrichment 

of MOS in retentate, 3 DV 

Tubular ceramic 

membranes  

1.  NMWCO 50 kDa 

module 

2. NMWCO 1 kDa 

module 

2,5 30 - Pasteurized 

skimmed 

caprine milk 

84 %
a
 retention of MOS in NF 

retentate, 94 % permeation of 

lactose and proteins 

(Martinez-

Ferez et al. 

2006a) 

Laboratory scale 

two-stage cross-flow UF-NF process 

1. Skimmed milk was lactose 

hydrolyzed and UF 

2. NF of UF permeate; 36-54 DV 

UF membrane: 

PM 10, NMWCO 10 

kDa 

NF membranes: 

RO-CA-96, cellulose 

acetate; 

NF-CA-50, cellulose 

acetate; 

NF-TEC-50 trilaminate 

polyethersulphone 

 

 

30  - 5.2 Human milk, 

Caprine milk, 

Bovine milk, 

Ovine milk 

About 90 %
b
 retention of MOS in 

human and caprine milk after NF 

and DF with 36-54 DV; 

NF-CA-50 most suitable, 

retention of MOS in bovine and 

ovine milk was too low 

(Sarney et al. 

2000) 

 

 

 

 

 

 

 

 

Continued. 

        

 

C
h
ap

ter I G
en

eral in
tro

d
u
ctio

n
 

 



 

 

 

1
6
 

Method 

NF 

Origin of  

MOS 
Results Ref. 

Membrane type 

/manufacturer 

p 

[bar] 

T 

[°C] 
pH 

Laboratory and pilot plant scale 

two-stage cross-flow UF- tight UF 

process 

1. UF of caprine whey 

2. tight UF of UF permeate without DF 

UF membrane: 

ES625 NMWCO 25 kDa 

(ITT PCi Membranes) 

tight UF membrane: 

CéRAM
TM

 NMWCO 1 

kDa 

14 25-30 4-5 Caprine whey 10 % retention of total 

carbohydrates in UF retentate 

which contain about 90 %
c
 

oligosaccharides 

(Oliveira et al. 

2014) 

Mother liquor
d
 was centrifuged, 

industrial scale two-stage cross-flow 

MF-NF process 

1. MF of clarified mother liquor 

2. UF of MF permeate and DF 

MF membrane: 

0.1 mm NMWCO, 

UF membrane: 

1 kDa NMWCO  

5 10 - Bovine milk Sialyllactose to lactose ratio of 14 

% in UF retentate= 40-fold 

enrichment, 2.8 % sialyllactose
e
 

(3’-SL, 6’-SL) in dry mass of UF 

retentate 

(Mehra et al. 

2014) 

 

(a = relation of total area under the HPAEC chromatogram of initial sample to NF retentate, the samples were purified and contain the oligosaccharide 

fraction due to removal of fat, proteins salts and lactose; b = the percentage of oligosaccharides in the retentate as determined by integration of peaks on 

HPLC chromatograms relative to lactose; c = determined with capillary electrophoresis by the difference of total sugar and galactose, glucose and 

lactose, d = the solution remaining after lactose crystallization and separation of a whey permeate, e = sialyllactoses were quantified by HPEC) 
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I.1.2.4 Membrane filtration procedures 

Every membrane separation process is characterized by the use of a semi-permeable 

membrane capable of a selective separation of molecules of different sizes and characteristics 

(Ramaswamy and Marcotte 2005; Nielsen 2000; Mulder 1992; Tamime 2009). The two basic 

membrane processing categories are the dead-end filtration and the cross-flow filtration. In 

dead-end filtration the separation of molecules in the liquid occurs perpendicular to the 

membrane surface using gravity or vacuum as driving force. In cross-flow filtration the feed 

stream flows parallel or tangentially to the membrane surface using hydrostatic pressure as 

driving force (Fig. 1.3). In this pressure-driven filtration process, the feed overflows the 

membrane. Compounds smaller than the nominal molecular weight cut-off (NMWCO) of the 

membrane pass predominantly the membrane into the permeate. Constituents which are 

bigger than the NMWCO are mainly retained in the retentate. For industrial processes, cross-

flow filtration is preferred because of the lower membrane fouling tendency in comparison to 

dead-end filtration (Ramaswamy and Marcotte 2005; Mulder 1992; Nielsen 2000). In this 

work, cross-flow filtration technique was applied. 

 

Fig. 1.3: Schematic drawing of a cross-flow filtration process. 

Membrane filtration procedures mainly applied in the food industry can be classified by the 

NMWCO of the membranes into microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) 

and reverse osmosis (RO) (Mulder 1992; Nielsen 2000; Ramaswamy and Marcotte 2005). 

Table 1.3 shows the classification of the membrane separation processes according to the 
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NMWCO. There is no sharp division between the membrane filtration procedures (Tamime 

2009). 

Table 1.3 Classification of membrane filtration technology (Tamime 2009). MF = microfiltration, UF 

= ultrafiltration, NF = nanofiltration, RO= reverse osmosis 

Membrane separation process NMWCO [Da] 

MF > 100,000 

UF 1,000 -500,000 

NF 100 – 1,000 

RO < 100 

 

Figure 1.4 shows the different applications of membrane filtration processes in the dairy 

industry. During MF of milk whey proteins, lactose, mono- and divalent ions and non-protein 

nitrogen (NPN) permeate with water while the caseins, milk fat and bacteria are retained. By 

performance of UF, additionally the whey proteins are retained from the UF permeate 

containing lactose, mono- and divalent ions and non-protein nitrogen (NPN). In NF process, 

only monovalent ions permeate with water, while lactose, divalent ions and NPN are 

concentrated in the retentate. RO retains all compounds except water. 

According to the configuration, membranes can be classified in tubular and flat-sheet 

modules. Tubular modules include hollow-fiber, tubular and capillary systems. Flat-sheet 

configurations are used in plate-and-frame modules also called flat-sheet modules and spiral-

wound modules (Mulder 1992). In plate-and-frame configurations, also called flat-sheet 

membranes, two flat membranes build a “sandwich” around a support plate, which contain 

permeate channels allowing the separation of permeate and retentate. The spiral-wound 

module is an extension of the flat sheet module, whereas the membrane and spacer system is 

rolled into a spiral wound around a central porous tube. The feed solution is distributed at one 

end of the cylindrical module. The retentate flows axial through the module parallel to the 

central tube, while the permeate flows spirally to the central porous pipe, where it can run out 

of the system (Ramaswamy and Marcotte 2005; Mulder 1992). In our investigations, flat-

sheet and spiral-wound modules were used. 
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Figure 1.4 Separation behavior of the different membrane separation processes by application of milk 

as feed solution (Tamime 2009). MF= microfiltration, UF= ultrafiltration, NF= nanofiltration, RO = 

reverse osmosis 

 

I.1.2.5 Whey as a raw material for the enrichment of MOS 

Whey streams are regarded as the key source of MOS (Mehra et al. 2014). For the enrichment 

of oligosaccharides from bovine and caprine milk, skimmed and ultrafiltered milk permeate 

(SM-UF-permeate) was applied as a raw material in our investigations (Manuscript 1, chapter 

II, Manuscript 2, chapter III). The production of SM-UF-permeate is shown in Fig. 1.5. Raw 

milk was heated at 45 °C and skimmed in a centrifuge for separation of the milk fat. The skim 

milk (SM) was ultrafiltered by application of a 5 kDa membrane module (Manuscript 1, 

chapter II, Manuscript 2, chapter III) to remove the protein fraction. During the UF process, 

compounds with a molecular mass < 5 kDa passed through the membrane into permeate. 

Because MOS are soluble in the milk serum and exhibit a molecular size of 600 to 1600 Da 

depending on the degree of polymerization of 3 to 8 (Albrecht et al. 2014), the sugars passed 

the membrane. Beside the MOS, the resulting SM-UF permeate contained lactose as main 

component, milk salts and trace amounts of non-protein nitrogen (Manuscript 1, chapter II, 

Manuscript 2, chapter III). This SM-UF permeate is also called “ideal whey”, as it is 
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produced from skim milk without any by-products of protein coagulation, e.g. during cheese 

processing such as rennet or fermentation products (Morison and She 2003). The protein 

fraction, which contains the caseins and whey proteins, remained in the retentate > 5 kDa. 

Also other studies (Martinez-Ferez et al. 2006a; Sarney et al. 2000; Oliveira et al. 2014) 

dealing with the enrichment of MOS by membrane separation procedure used a SM-UF 

permeate as a raw material (Table 1.2). In the dairy industry, SM-UF permeate or “ideal 

whey” is a co-product of the manufacturing of phosphocasein, or whey protein concentrate 

(WPC) (Mehra et al. 2014; Anand et al. 2013; Morison and She 2003) (Fig. 1.6). 

 

Fig. 1.5: Production of skimmed and ultrafiltered milk permeate as a raw material for the enrichment 

of MOS. NMWCO = nominal molecular weight cut-off 

Moreover, cheese whey might be a valuable source for the enrichment of MOS (Barile et al. 

2009). This aqueous fraction of milk is generated as a by-product of protein coagulation e.g. 

for cheesemaking (Fig. 1.6). It is obtained by separation of the coagulum from milk, skim 

milk or cream in cheese manufacturing. The two basic types of whey are rennet or sweet 

whey and acid whey. While rennet whey is produced by application of rennet during 

cheesemaking (e.g. hard cheese, semi hard cheese), acid whey is generated as a co-product of 

milk coagulation by acid (e.g. quark or acid casein). Main solid components of both whey 

types are lactose (4.4 % to 5.0 %), minerals (0.52 % – 0.6 %) and whey proteins (Anand et al. 

2013; Sienkiewicz and Riedel 1990). Moreover, it has been described that MOS are present in 

whey streams (Mehra et al. 2014). Whey is mainly processed by membrane filtration 
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procedures and spray drying, resulting in a variety of different products such as whey powder, 

whey protein concentrates or whey protein isolates. For instance, whey protein concentrates 

(WPC) containing different protein contents (e.g. WPC 34 = 34 % - 36 % protein content, 

WPC 80 = 80 % - 82 % protein content) are produced by ultrafiltration of whey (Anand et al. 

2013) (Fig. 1.6). A by-product of this UF process is whey-UF permeate containing all small 

molecules which can pass the membrane such as lactose, MOS and salts (Barile et al. 2009). 

While WPC is applied in various food products, whey-UF permeate is of low value (Barile et 

al. 2009). Whey-UF permeate is mainly used for the production of lactose by crystallization 

resulting in mother liquor (Fig. 1.6) (Mehra et al. 2014). Whey UF-permeate can be spray-

dried and used as food ingredient in similar way as lactose, e.g. in confectionary, dairy and 

bakery products (Li et al. 2008). Due to the high lactose content, whey-UF permeate is used 

as fermentation medium, supplemented with 1-2 % WPC, for the propagation of lactic acid 

bacteria (Bury et al. 1998) or for the production of lactic acid by lactic acid bacteria such as 

Lactobacillus helveticus (Fitzpatrick and O'Keeffe 2001). Moreover, whey-UF permeate is 

fed to animals (Marwaha and Kennedy 1988). Another possibility to increase the economic 

value of whey-UF permeate might be the industrial enrichment of MOS by membrane 

filtration process. Whey-UF permeate is a suitable source for providing a MOS concentrate as 

functional food ingredient because it is a readily available dairy stream produced in high 

amounts. Because of the low concentration of MOS in bovine milk or in milk of other 

domestic animals, large quantities of raw material for the concentration of the sugars are 

mandatory. Mother liquor is the liquid separated from lactose after lactose crystallization 

(Fig. 1.6), which contains low lactose amounts, MOS and milk salts. Mehra et al. (2014) 

demonstrated in their study (Table 1.2) that a concentration of the MOS from mother liquor 

by UF was possible. However, an additional MF step had to be performed for the clarification 

due to residual insoluble material and bacteria present in the liquor (Mehra et al. 2014).  
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Fig. 1.6 Whey streams for enrichment of MOS. 

 

The dairy streams SM-UF and whey-UF permeate are far comparable regarding the lactose, 

sugar and protein content, however, SM-UF permeate contains no by-products of cheese 

processing. The composition of whey-permeate may be subject to daily variations associated 

with cheese manufacturing and contains compounds which might disturb the analytical 

identification and quantification of MOS by HPAEC. In our investigations, SM-UF permeate 

was applied as a raw material for the enrichment of MOS because its production is highly 

reproducible and no by-products of other manufacturing procedures are present. 

 

I.1.2.6 Nanofiltration (NF) process for the enrichment of MOS 

For NF-enrichment of MOS, lactose hydrolyzed SM-UF permeate was applied as a raw 

material. As shown in our studies on laboratory scale (Manuscript 1, chapter II) and in other 

studies (Oliveira et al. 2014), the enrichment of MOS and the permeation of the residual 

sugars were higher when lactose in SM-UF permeate was hydrolyzed. The process of the NF 

performed on laboratory, pilot plant and industrial scale is described in chapters II and III. In 

brief, lactose hydrolyzed SM-UF permeate was circulated in the filtration device for 30 min to 

build a deposit layer for ensuring reproducible filtration procedures. In the first step of NF, 
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the initial sample was concentrated followed by diafiltration with demineralized water for a 

better permeation of the residual sugars (glucose, galactose) and milk salts. The MOS should 

be retained in the NF retentate. 

As an example for a NF device, a flow chart of the membrane filtration device (MMS 

Membrane Systems, Urdorf, Switzerland), which was used for the enrichment of MOS on 

industrial scale, is shown in Fig. 1.7. The lactose hydrolyzed SM-UF permeate was 

transported by the feed and pressure pump to the membrane unit, which contains two 

membrane modules (DOW, NF-3840-30-FF®, the DOW chemical company, active 

membrane area = 7.5 m
2
) with an active membrane area of 15 m

2
. The double-walled 

membrane unit was cooled with ice water at a process temperature of 10°C. The retentate, 

which should contain the MOS, circulated back into the retentate vessel. The permeate was 

collected in a separate tank. Feed flow, permeate flow, pressure and conductivity were 

measured online during the NF process. 

 

Fig. 1.7: Flow chart of the industrial scale NF applying the membrane module DOW NF-3840-30-FF 

at 10°C and 10-15 bar. 
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I.1.2.7 Structure, production and biological activity of galactooligosaccharides (GOS) 

β-Galactooligosaccharides (GOS) are β-glycosidically linked non-digestible oligosaccharides 

composed of galactose with lactose at the reducing end and a degree of polymerization of 3 to 

10 (mostly 3, 4 and 5) (Gänzle 2012; Bode 2012; Fox and McSweeney 2009). These 

oligosaccharides are synthesized from lactose by transgalactosylation activity of the enzyme 

β-galactosidase (EC 3.2.1.23) (Fox and McSweeney 2009). This glycosidase transfers the 

galactose moiety of a β-galactoside to an acceptor which contains a hydroxyl group. When the 

acceptor is water, galactose is synthesized. When the acceptor is lactose or galactose, 

galactooligosaccharides are formed (Nakamura et al. 1995; Fox and McSweeney 2009). 

Human and bovine milk contain only trace amounts of β-GOS (Gänzle 2012). 

Structure and size of the GOS depend on the origin of the enzyme employed for the 

production of these sugars. For the production of GOS, β-galactosidases from yeast, fungi and 

bacteria are suitable. Thus, the choice of the enzyme is crucial for the GOS outcome and 

composition. By application of the β-galactosidases from Kluyveromyces lactis, Aspergillus 

oryzae, Aspergillus acetulans and Streptococcus thermophilus, primarily β(1-6) 

oligosaccharides (6’-galactosyllactose, 6’-GL) are produced (Gänzle et al. 2008; Fox and 

McSweeney 2009; Frenzel et al. 2015). The β-galactosidase from Sterigmatomyces elviae 

synthesizes mainly 4’-galactosyllactose (4’-GL). A wide range of different GOS with the 

glycosidic linkages β(1-2), β(1-3), β(1-6) and mainly β(1-4) are produced by the β-

galactosidase from Bacillus circulans (Frenzel et al. 2015; Gänzle et al. 2008). Frenzel et al. 

(2015) determined a high affinity of the β-galactosidase from Bacillus circulans for 

transgalactosylation and a high GOS yield of 41 %, followed by Aspergillus oryzae, 

Aspergillus acetulans and Kluyveromyces lactis in a skimmed milk UF permeate with 40 % 

lactose concentration. Moreover, Lorenzen et al. (2013) developed a bi-enzymatic system for 

lactose conversion. A concentrated skim milk permeate with 40 % lactose content was 

incubated with a β-galactosidase and a glucose isomerase. 21 % galactooligosaccharides, such 

as 6-galactobiose, allolactose and 6’-GL, were produced after 4 h incubation time by almost 

complete hydrolysis of lactose (degree of hydrolysis of 95.3 %) as main reaction products of 

the β-galactosidase from Kluyvmeromyces lactis. Due to glucose isomerization (degree of 

isomerization up to 47.0 %), the fructose content increased, resulting in a lactulose 

concentration of 1.1 % after 4 h incubation (Lorenzen et al. 2013). Furthermore, an endless 
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variety of different GOS can be formed by β-galactosidases when different galactosyl 

acceptors are employed such as mannose, fructose, maltodextrins and N-acetylneuramic acid 

(Gänzle et al. 2008). For example, Black et al. (2014) produced heterooligosaccharides by 

conversion of lactose with a β-galactosidase from Lactobacillus plantarum and chitin-

oligosaccharides or chitosan-oligosaccharides as galactosyl acceptors (Black et al. 2014).  

Aside from the β-GOS also other lactose derivatives with a high degree of polymerization can 

be formed. Transglucosylation or transfructosylation of lactose as sugar acceptor and sucrose 

as glucosyl or fructosyl donor by application of glucansucrases or fructansucrases results in 

the formation of polymeric fructans and glucans, respectively. While glucansucrases produce 

linear or branched polymeric glucans with α-(1-2), α-(1-3), α-(1-4) or α-(1-6) linkages, 

fructansucrases produce linear or branched polymeric β-(1-2) fructans (inulin), or β-(1-6) 

fructans (levan) (Gänzle 2012). 

GOS are widely known to exhibit prebiotic activity (Moreno et al. 2014; Fox and McSweeney 

2009; Frenzel et al. 2015; Gosling et al. 2010; Gänzle 2012). The definition of prebiotics (see 

chapter I.1.2.2) implies that these compounds must resist the small intestinal digestion to 

reveal the positive effect in the large intestine (Bode 2012; Moreno et al. 2014). Various 

assays described that 90 % of GOS are stable to digestive enzymes and reach the colon to 

display their biological effects (Moreno et al. 2014). Moreover, GOS are able to modulate the 

immune system. During fermentation of GOS by intestinal microorganisms, butyrate and 

propionate are released, which are described to modulate the immune response e.g. by 

suppression of cytokines. The consumption of the commercially available GOS product 

Bimuno® resulted in a decrease in the secretion of inflammatory cytokines (IL-6, IL-1β, 

THF-α) and an increased synthesis of the anti-inflammatory cytokine IL-10 (Moreno et al. 

2014). Furthermore, GOS are reported to inhibit the adhesion of pathogens at the 

gastrointestinal epithelial surface. These oligosaccharides are structurally similar to epithelial 

glycan receptors and prevent intestinal infections due to their capacity to act as “molecular 

decoys” by blocking the glycan receptors (Gänzle 2012; Moreno et al. 2014). This anti-

adhesive or anti-infective effect was often reported for GOS, which inhibited the attachment 

of enterohepatic E. coli, Salmonella enterica or Chronobacter sakazakii (Goulas et al. 2007; 

Melnik et al. 2013; Karin and Lin 2002) in Caco-2 cells and HT29 cells. Some studies 

reported an improvement of Ca absorption due to GOS fermentation in the gut. One reason 
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might be that the short chain fatty acids, which are released during GOS fermentation in the 

large intestine, decrease the pH resulting in an increased salt solubility and therefore a better 

absorption across the epithelial cells of colon (Moreno et al. 2014).  

Since the mid-1980s, GOS have been manufactured industrially. Food-grade oligosaccharide 

products are mixtures of mono-, di- and oligosaccharides rather than pure substances. The 

company Yakult Honsha Co. Ltd. produces three different GOS products (Oligomate 55, a 

syrup; Oligomate 55P, a powder; TOS-100, a purified powder). Furthermore, Nissin Sugar 

Manufacturing Co. Ltd. produces a syrup (Cup-Oligo H-70) and a powder (Cup-Oligo P) 

containing 70 % GOS in total solids. Friesland Foods Domo produces a syrup (Vivinal-GOS) 

composed of 60 % GOS in total solids. Due to their biologically activity, GOS are applied 

predominantly as functional ingredient to beverages, infant milk formula or infant foods (Fox 

and McSweeney 2009). 
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I.1.3 Bioactive peptides from milk 

I.1.3.1 Anti-inflammatory peptides from milk and other sources 

It is widely known that milk provides a rich source of bioactive components (Mills et al. 

2011; Nongonierma and FitzGerald 2015; Meisel et al. 1989). The milk protein fraction 

reveals a wide range of nutritional, technofunctional and biological activities (Korhonen and 

Pihlanto 2006; Meisel and Bockelmann 1999; Mills et al. 2011; Weimann et al. 2009). 

Increasing attention is paid to biologically active peptides from milk as most important source 

(Dziuba and Dziuba 2014; García-Tejedor et al. 2013; Korhonen and Pihlanto 2006; 

Picariello et al. 2013; Plaisancié et al. 2013). Within the sequence of a native protein 

precursor, milk protein-derived peptides are inactive. They can be released by enzymatic 

hydrolysis during food processing or gastrointestinal digestion (Hajirostamloo 2010; 

Korhonen and Pihlanto 2006; Meisel 1997b; Plaisancié et al. 2013; Weimann et al. 2009). 

Bioactive peptides were defined by Kitts and Weiler in 2003 as specific protein fragments that 

have a positive impact on body functions or conditions and may ultimately influence health 

(Kitts and Weiler 2003). By oral consumption of active peptides or liberation of these 

peptides during gastrointestinal digestion, they may demonstrate various biological activities 

such as antioxidative, ACE inhibitory, antimicrobial, antihypertensive and opioid activities 

(Chakrabarti et al. 2014; Espeche Turbay et al. 2012; García-Tejedor et al. 2013; Hartmann 

and Meisel 2007; Korhonen and Pihlanto 2006; Mills et al. 2011; Plaisancié et al. 2013; 

Norris et al. 2015; Fitzgerald et al. 2004). Furthermore, some peptides are multifunctional by 

displaying more than one beneficial effect described (García-Tejedor et al. 2013; Hartmann 

and Meisel 2007; Korhonen and Pihlanto 2006; Mills et al. 2011). The field of bioactive 

peptides has been extensively reviewed (Dziuba and Dziuba 2014; Hartmann and Meisel 

2007; Korhonen and Pihlanto 2006; Meisel 1998; Mills et al. 2011; Plaisancié et al. 2013; Wu 

2013). Much less prevalent are studies dealing with anti-inflammatory food-derived peptides. 

Recent studies exhibited that dietary peptides can modulate inflammatory response (Millán-

Linares et al. 2014). Food proteins and peptides with anti-inflammatory activity are 

summarized in Table 1.4. Some investigations deal with the effect of plant-derived peptides 

on inflammatory markers (Millán-Linares et al. 2014; Vernaza et al. 2012; Young and Mine 

2010) and anti-inflammatory peptides from fish proteins. Salmon protein hydrolysates 
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exhibited anti-inflammatory activity by concentration-dependent reduction of nitric oxide 

(NO) production and the pro-inflammatory cytokines TNF-α, IL-6, IL-β1 in 

lipopolysaccharide (LPS) stimulated macrophage cells (Ahn et al. 2012). Lysozyme and 

ovotransferrin from egg revealed anti-inflammatory activity by diminishing the expression of 

pro-inflammatory cytokines and inhibiting the proliferation of mouse spleen lymphocytes 

(Young and Mine 2010). The peptides IRW and IQW derived from ovotransferrin showed a 

reduction of the production of the inflammatory marker MCP-1, VACM-1 and ICAM-1 in 

TNF-α stimulated human umbilical vein endothelial cells (HUVEC) (Huang et al. 2010; 

Majumder et al. 2013). 

Moreover, there exist some investigations about anti-inflammatory proteins and peptides from 

milk. Lactoferrin is reported to inhibit the production of pro-inflammatory cytokines in vitro 

and in vivo. This glycoprotein was described to inhibit the secretion of LPS induced synthesis 

of pro-inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8 in human monocytic cells 

(Håversen et al. 2002). In addition, lactoferrin induced the production of anti-inflammatory 

cytokines IL-4 and IL-10 (Young and Mine 2010). κ-Casein is reported to inhibit the 

production of TNF-α, IL-10, IL-12, IL-6, and IL-1β in murine dendritic cells (Young and 

Mine 2010). 

Only a few studies investigated the anti-inflammatory activity of milk-derived peptides 

(Table 1.4). Glycomacropeptide (GMP), the C-terminal peptide fragment of κ-casein 

containing 64 amino acids, showed a reduction in pro-inflammatory cytokine production and 

a decrease in physiological colitis parameters of trinitrobenzene sulfonic acid (TBNS) 

stimulated colitis in rats (Young and Mine 2010). In vitro enzymatically digested whey 

protein hydrolysates exhibited anti-inflammatory activity in human colonic epithelial Caco-2 

cells exposed to H2O2 by reducing the secretion of the pro-inflammatory cytokine IL-8. Whey 

proteins treated with hyperbaric pressure for unfolding of the proteins before enzymatic 

digestion resulted in an even higher reduction of IL-8 production (Piccolomini et al. 2012). 

Peptides generated from whey proteins by hydrolysis with proteases called cardosins from the 

plant Cynara cardunculus showed anti-inflammatory activity in mice by inhibition of 

prostaglandin synthesis (Tavares et al. 2013). Administration of β-casein hydrolyzed with a 

protease from Lactobacillus delbrueckii subspecies lactis exhibited anti-inflammatory effect 

in mice treated with the inflammatory agent TBNS by down-regulation of the production of 
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the inflammatory marker IFN-ɣ and increased secretion of the anti-inflammatory cytokine IL-

10 (Espeche Turbay et al. 2012). The regular intake of nonsteroidal anti-inflammatory drugs 

(NSAID) such as ibuprofen, aspirin and indomethacin are known to cause gastrointestinal 

inflammation as adverse reaction. NSAID can disrupt the intercellular integrity of intestinal 

epithelial cells by increasing the gut permeability and inflammation. The bioactivity of casein 

hydrolysates (caseins were hydrolyzed with pepsin followed by corolase) on NSAID treated 

intestinal epithelial cells was evaluated. The casein hydrolysate showed anti-inflammatory 

activity by down-regulation of transcription of the inflammatory markers NFκB and COX-2 

(Nielsen et al. 2012). 

Even though a few studies investigated the anti-inflammatory activity of milk-derived 

peptides in vitro and in vivo, there exists almost no information about the primary structure of 

anti-inflammatory peptides from milk. Recently, anti-inflammatory activity of β-casein 

hydrolyzed with a porcine trypsin preparation TPCK (tosyl phenylalanyl chloromethyl 

ketone)-treated was tested. A group of large, hydrophobic peptides showed anti-inflammatory 

effects by TNF-α mediated activation of NFκB in HEK
nfκb-RE 

cells. Furthermore, a casein-

derived peptide that exhibited anti-inflammatory activity has been identified for the first time 

in vitro (Malinowski et al. 2014). Further research has to be performed for the generation and 

identification of anti-inflammatory peptides. 
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Table 1.4 Food-derived anti-inflammatory proteins and peptides. (↓ = reduction of expression, secretion or activity, NO = nitric oxid, TNF-α = tumor 

necrosis factor-α, IL-6 = interleukin-6, IL-1β = interleukin-1β, iNOS = inducible nitric oxide synthase, COX-2 = cyclooxygenase, adlay = Chinese crop, 

TG = transglutaminase, PLA2 = phospholipase A2, LPS = lipopolysaccharide, DDS = dextran sodium sulphate, PHA = phytohemagglutinin, HUVEC = 

human umbilical vein endothelial cells, ICAM-1 = intercellular adhesion molecule-1, MCP1 = monocyte chemoattractant protein-1, TBNS = 

trinitrobenzene sulfonic acid, ROS = reactive oxygen species, TGF-β1 = transforming growth factor-β1; NSAID = nonsteroidal anti-inflammatory drug, 

PG E2 = prostaglandin E2  

Sources 
Proteins/ 

peptides 
Test Conditions Anti-inflammatory properties References 

Chemical 

company 
VPP 

               Inhibition of THP-1 cell adhesion to HUVECs 

              ACE-inhibitory 
(Aihara et al. 2009) 

Fish Salmon by-product protein hydrolysates LPS stimulated macrophage cells ↓NO 

↓TNF-α 

↓IL-6 

↓IL-1β 

(Ahn et al. 2012) 

Plant Lupine protein hydrolysates Enzyme activity assays in vitro ↓thrombin 

↓TG 

↓PLA2 

↓COX-2 

(Millán-Linares et al. 

2014) 

 Hydrolyzed soybean flours LPS stimulated macrophage cells ↓NO 

↓iNOS 

↓PG E2 

↓COX-2 

↓TNF-α 

(Vernaza et al. 2012) 

 Soy-derived Kunitz trypsin inhibitor  LPS stimulated fibroplasts, 

LPS stimulated lethality in mice 

↓TNF-α 

↓IL-6 

↓IL-1β 

(Young and Mine 

2010) 

Continued. 
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Sources 
Proteins/ 

peptides 
Test Conditions Anti-inflammatory properties References 

Plant  Soy-derived Bowmann-Birk trypsin 

inhibitor 

LPS stimulated macrophage cells, 

DDS stimulated colitis in mice 

↓NO 

↓prostaglandin E2 

(Young and Mine 

2010) 

Egg Lysozyme DSS stimulated colitis in pigs ↓TNF-α 

↓IL-6 

↓IFN-ɣ 

↓IL-8 

↓IL-17 

↑TGF-β 

↑Foxp3 

(Young and Mine 

2010) 

 Ovotransferrin LPS and PHA stimulated mouse 

spleen lymphocytes 

Inhibits lymphocyte proliferation (Young and Mine 

2010) 

 Peptide: IRW TNF-α stimulated HUVECs in vitro ↓ICAM-1,  

↓VACM-1,  

↓MCP-1; 

anti-oxidative and 

ACE-inhibitory 

(Huang et al. 2010) 

 Peptide: IQW TNF-α stimulated HUVECs in vitro ↓ICAM-1; 

anti-oxidative 

(Majumder et al. 

2013) 

Milk Lactoferrin LPS stimulated THP-1 cells in vitro ↓IL-6, ↓TNF-α, ↓IL-1β, ↓IL-8, ↓IL-

10, ↓NFκB; 

anti-microbial 

(Håversen et al. 

2002) 

 α-Lactalbumin Carrageenan induced paw exudates ↓IL-6,  

↓PG E2,  

↓COX, ↓phosphollpase A2 

(Yamaguchi et al. 

2009) 

Continued. 
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Sources 
Proteins/ 

peptides 
Test Conditions Anti-inflammatory properties References 

Milk κ-Casein LPS stimulated murine dendritic cells ↓TNF-α 

↓IL-6 

↓IL-10 

↓IL-12 

↓IL-1ß 

(Young and Mine 

2010) 

 Glycomacropeptide (GMP) TBNS stimulated colitis in rats ↓IL-1,  

↓iNOS 

↓IL-17 

↓IL-1β 

(Young and Mine 

2010) 

 Whey protein hydrolyzed with cardosins 

from Cynara cardunculus 

Subcutaneous injection of 

carrageenan in the paw of mice 

resulted in odema 

Inhibition of paw odema in mice by 

oral administration of whey protein 

hydrolysate 

(Tavares et al. 2013) 

 β-Casein hydrolysate generated by 

proteinase of Lactobacillus delbrueckii ssp 

lactis CRL 581. 

TBNS induced colitis in mice Decreased mortality rates, less 

microbial translocation to the liver, 

decreased β-glucuronidase and 

myeloperoxidase activites in the gut, 

decreased colonic damage; 

↑IL-10, ↓IFN-ɣ 

(Espeche Turbay et 

al. 2012) 

 Pressurized and not pressurized whey 

protein isolate hydrolysates generated by 

enzymatic digestion in vitro 

Caco-2 cells exposed to H2O2 Inhibition of oxidative stress (ROS), 

↓IL-8 

(Piccolomini et al. 

2012) 

 Casein hydrolysates generated by proteolysis 

with pepsin followed by hydrolysis with 

corolase 

Rat intestinal epithelial cells tested 

with NSAID indomethacin; 

LPS induced macropahges 

↓TGF-β1, ↓NFκB, ↓COX-2 (Nielsen et al. 2012) 

 Pressurized and not pressurized whey 

protein was hydrolyzed by enzymatic 

digestion in vitro 

Cystic fibrosis cell lines and non-

cystic fibrosis respiratory cell lines 

were stimulated with LPS in vitro 

↓IL-8 (IL-8 production was higher 

diminished by pressurized whey 

protein hydrolysate) 

(Iskandar et al. 2013) 
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I.1.3.2 β-Casein as a precursor of bioactive peptides 

Bovine milk contains 3.2 % proteins (Mills et al. 2011), which can be divided in caseins and 

whey proteins. Total milk protein consists of 80 % caseins (αS1-casein 34 %, αS2-casein 8 %, 

β-casein 25 %, κ-casein 9 %, γ-casein 4 %) and 20 % whey proteins (α-lactalbumin 4 %, β-

lactoblunilin 9 %, serumalbumin 1 %, immunoglobulin 2 %, proteose-pepton 4 %) (Belitz 

2009). β-Casein is the most hydrophobic of all caseins and contains a large amount of proline 

residues. 7 genetic variants of β-casein are known (A 
1
, A 

2
, A 

3
, B, C, D, E). The primary 

structure of β-casein A
2
-5P is composed of 209 amino acids (Fig. 1.8) and has a molecular 

weight of 23 983 g/mol. 5 phosphoserine residues (5P) are located in the N-terminal domain 

within the position 1-35 forming the anionic section of β-casein. The other part (36-209) of 

the protein is composed mainly of hydrophobic amino acids residues building a hydrophobic 

C-terminal domain (Swaisgood 2003; Walstra et al. 1999; Belitz 2009). In this work, the one-

letter notation for amino acid sequences according to IUPAC was used (see 5. Amino acid 

code) (IUPAC Commission, 1969). 

β-Casein is described to be a precursor for the release of various biologically active peptides 

(Boutrou et al. 2013). Table 1.5 summarizes the bioactive peptides released from β-casein by 

microorganisms and microbial enzymes. The location of the biologically active peptides in 

the primary structure of β-casein is shown in Fig. 1.8. One of the major risk factors for the 

cardiovascular system is hypertension (Hajirostamloo 2010). The angiotensin I-converting 

enzyme (ACE) is involved in the regulation of blood pressure by synthesizing the 

vasoconstrictor angiotensin-II. Antihypertensive peptides inhibit ACE as competitive 

inhibitors resulting in an antihypertensive effect (Mullally et al. 1997; Meisel 1997a) 

(Hajirostamloo 2010; Mills et al. 2011; Korhonen and Pihlanto 2006). β-Casein encodes 

various ACE inhibitory peptides (Table 1.5). Masuda, Nakamura and Takano detected in 

1996 the best known ACE inhibitory tripeptides VPP and IPP derived from β-casein in a 

Japanese sour milk fermented with Lactobacillus helveticus and Saccharomyces cerevisiae. 

This product is marketed in Japan as a functional food named Calpis® (Korhonen and 

Pihlanto 2006; Hajirostamloo 2010; Mills et al. 2011) (Table 1.5). Moreover, peptides with 

opioid activity were identified at position 60 to 70 in the primary structure of β-casein (Fig. 

1.8). Opioid peptides exhibit properties similar to opium or morphine by acting as receptor 

ligands interacting with opioid receptors, which are located in the nervous and in the immune 
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system and in the gastrointestinal tract. The major exogenous opioid peptides are fragments of 

β-casein called β-casomorphins such as β-Casomorphin-5 and β-Casomorphin-7 (Table 1.5) 

(Meisel 1998; Mills et al. 2011; Korhonen and Pihlanto 2006; Hajirostamloo 2010). The 

tryptic caseinophosphopeptide β-CN (f 1-25), which forms the anionic domain containing 5 

phosphoseryl residues, can form soluble organophosphate salts and may function as a carrier 

for different minerals, especially calcium. Moreover, antioxidative peptides are encrypted in 

β-casein displaying free radical scavenging activity (Korhonen and Pihlanto 2006). 

β-Casein was chosen as a substrate for the generation of anti-inflammatory peptides because 

this protein was described to be a precursor for the release of various biologically active 

peptides. 
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Table 1.5 Bioactive peptides derived from β-casein. 

Peptide Fragment 

of β-CN 

Biological activity Enzyme/ 

microorganism 

Reference 

VPP β-CN(f 84-86) ACE inhibitory Lactobacillus 

helveticus 

Saccharomyces 

cerevisiae 

(Korhonen and Pihlanto 

2006; Hajirostamloo 

2010; Nakamura et al. 

1995) 

IPP β-CN(f 74-76) ACE inhibitory Lactobacillus 

helveticus 

Saccharomyces 

cerevisiae 

(Hajirostamloo 2010; 

Korhonen and Pihlanto 

2006; Nakamura et al. 

1995) 

SLVLPVPE β-CN(f 57-64) ACE inhibitory Lactobacillus 

helveticus 

(Fitzgerald and Meisel 

2003) 

YPFPGPI β-CN(f 60-66) ACE inhibitory Pepsin (Meisel 1998) 

EMPFPK β-CN(f 108-113) ACE inhibitory Tryptic activity of 

lactic acid 

bacteria 

(Pihlanto-Leppälä et al. 

1998) 

KVLPVP β-CN(f 169-174) ACE inhibitory Lactobacillus 

helveticus 

proteinase 

(Maeno et al. 1996) 

KVLPVPQ β-CN(f 169-175) ACE inhibitory Lactobacillus 

helveticus 

proteinase 

(Maeno et al. 1996) 

AVP β-CN(f 177-179) ACE inhibitory Synthesis (Maruyama et al. 1987) 

AVPYP β-CN(f 177-181) ACE inhibitory Synthesis (Maruyama et al. 1987) 

AVPYPQR β-CN(f 177-183) 

β-Casokinin-7 

ACE inhibitory 

antioxidative 

Trypsin (Maruyama et al. 1987; 

Rival et al. 2000) 

PYP β-CN(f 179-181) ACE inhibitory Synthesis (Maruyama et al. 1987) 

PQR β-CN(f 181-183) ACE inhibitory Synthesis (Maruyama et al. 1987) 

YQQPVL β-CN(f 193-198) ACE inhibitory Tryptic activity of 

lactic acid 

bacteria 

(Pihlanto-Leppälä et al. 

1998) 

YQQPVLGPV

R 

β-CN(f 193-202) 

β-Casokinin-10 

ACE inhibitory Proteinase (Meisel 1997a; Chiba et 

al. 1989) 

 

Continued. 
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Peptide Fragment 

of β-CN 

Biological activity Enzyme/ 

microorganism 

Reference 

FP β-CN(f 62-63), 

β-CN(f 111-112) 

β-CN(f 157-158) 

β-CN(f 205-206) 

ACE inhibitory Proteinase K (Saito 2008) 

VYP β-CN(f 59-61) ACE inhibitory Proteinase K (Saito 2008) 

VYPFPG β-CN(f 59-64) ACE inhibitory Proteinase K (Saito 2008) 

RDMPIQAF β-CN(f 183-190) ACE inhibitory Proteinase of  

L. helveticus 

(Saito 2008) 

TPVVVPPFLQ

P 

β-CN(f 80-90) ACE inhibitory Proteinase K (Saito 2008) 

GPFPIIV β-CN(f 203-209) ACE inhibitory  (Hayes et al. 2007) 

YPFPGPIPNSL β-CN(f 60-70) 

β-Casomorphin-

11 

Opioid - (Fitzgerald and Meisel 

2003) 

YPFPGPI β-CN(f 60-66) 

β-Casomorphin-7 

Opioid Proteinase (Fitzgerald and Meisel 

2003) 

YPFPGP β-CN(f 60-65) 

β-Casomorphin-6 

Opioid - (Fitzgerald and Meisel 

2003) 

YPFPG β-CN(f 60-64) 

β-Casomorphin-5 

Opioid - (Fitzgerald and Meisel 

2003) 

YPFP β-CN(f 60-63) 

β-Casomorphin-4 

Opioid Lactobacillus GG  (Fitzgerald and Meisel 

2003; Chang et al. 1985) 

RELEELNVPG

EIVES
P
LS

P
S

P
S

P
EESITR 

β-CN(f 1-25) 

Caseinophospho-

peptide 

Mineral-binding Trypsin (Meisel 1997b) 

VKEAMAPK β-CN(f 98-105) Antioxidative Lactobacillus 

rhamnosus+ 

digestion with 

pepsin and 

Colorase PP 

(Hernández et al. 2009; 

Korhonen and Pihlanto 

2007) 

VLPVPQK β-CN(f 170-176) Antioxidative Trypsin (Rival et al. 2000) 

KVLPVPQK β-CN(f 169-176) Antioxidative Trypsin (Rival et al. 2000) 
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Fig. 1.8 Primary structure of bovine β-casein A
2
-5P (Bos taurus) with bioactive peptides encrypted within the sequence. Light blue = ACE inhibitory 

peptides, dark blue = opioid peptides, purple = mineral binding peptides, yellow = antioxidative peptides, grey = peptides generated by tryptic/ 

chymotryptic enzyme preparations (chapter III, Table 3.2), black line = tryptic cleavage site (lysine K, arginine R), brown line = chymotryptic cleavage 

site (tyrosine Y, tryptophan W, phenylalanine F, leucine L, glutamine Q, arginine R), italic numbers = degree of hydrophobicity according to Black and 

Mould et al. (1991). 

 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

R E L E E L N V P G E I V E S
*

L S
*

S
*

S
*

E E S I T R I N K K I E K F Q S
*

E E Q Q Q T E D E L Q D K I H P F A Q T Q S L V Y
1 3 5 3 3 5 2 5 4 3 3 5 5 3 2 5 2 2 2 3 3 2 5 3 1 5 2 2 2 5 3 2 5 2 2 3 3 2 2 2 3 3 2 3 5 2 2 2 5 1 4 5 4 2 3 2 2 5 5 5

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

P F P G P I P N S L P Q N I P P L T Q T P V V V P P F L Q P E V M G V S K V K E A M A P K H K E M P F P K Y P V Q P F T
4 5 4 3 4 5 4 2 2 5 4 2 2 5 4 4 5 3 2 3 4 5 5 5 4 4 5 5 2 4 3 5 4 3 5 2 2 5 2 3 4 4 4 4 2 1 2 3 4 4 5 4 2 5 4 5 2 4 5 3

121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180

E S Q S L T L T D V E N L H L P P L L L Q S W M H Q P H Q P L P P T V M F P P Q S V L S L S Q S K V L P V P Q K A V P Y
3 2 2 2 5 3 5 3 2 5 3 2 5 1 5 4 4 4 5 5 2 2 5 4 1 2 4 1 2 4 5 4 4 3 5 4 5 4 4 2 2 5 5 2 5 2 2 2 2 5 5 4 5 4 2 2 4 5 4 5

181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209

P Q R D M P I Q A F L L Y Q E P V L G P V R G P F P I I V
4 2 1 2 4 4 5 2 4 5 5 5 5 2 3 4 5 5 3 4 5 1 3 4 5 4 5 5 5

ACE inhibitory Opioid Mineral-binding Antioxidative Tryptic/ chymotryptic peptides identified (Table 3.2) S*  = Phosphoserine
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I.1.3.3 Isolation of β-casein and generation of bioactive peptides 

For the generation of anti-inflammatory peptides, bovine β-casein was applied as a substrate. 

Initially, β-casein was isolated from rennet casein according to a method by Le Magnen and 

Maugas with minor modifications (Manuscript 3, chapter IV.3.1). Rennet casein is a product 

obtained after hydrolysis of the caseins with rennet containing α S1-, α S2- , β-casein and para-

κ-casein, which is released from κ-casein during proteolysis (Le Magnen and Maugas 1995). 

The method for the isolation of β-casein from rennet casein is based on selective separation of 

β-casein from the other caseins by precipitation depending on pH and temperature. The 

procedure is composed of the main steps dissolving of rennet casein, precipitation and 

separation of αS- and para-κ-caseins and the precipitation and separation of β-casein (Fig. 

1.9).  

 

Fig. 1.9: Isolation of β-casein from rennet casein. 
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During cooling of the 5 % rennet casein solution and adjusting to pH 4.6, αS- and para-κ-

caseins precipitated, while β-casein remained dissolved. After separation of the αS- and para-

κ-caseins, the β-casein precipitated by warming the aqueous phase to 40°C. The precipitated 

β-casein fraction was separated from the aqueous solution, dissolved in demineralized water 

at pH 7 and lyophilized. 

For the generation of anti-inflammatory peptides, proteolysis of a 5 % β-casein solution was 

performed at pH-stat conditions of 7.8 for 3 to 4 h at 37 °C (Manuscript 3, chapter IV) by 

application of different tryptic/chymotryptic enzyme preparations from cod and hog (Table 

4.1) (Fig. 1.10). The enzymatic reaction was stopped by heating the hydrolysate at 90°C for 

10 min. The hydrolysates were fractionated by UF with a 5 kDa membrane according to the 

molecular size. The retentate 5 kDa was mainly composed of peptides > 5 kDa and the 

permeate contained peptides < 5 kDa. 

 

 

Fig. 1.10: Hydrolysis of β-casein with tryptic/ chymotryptic enzyme preparations. 

Proteases derived from animals, plants and microorganisms have extensive industrial 

applications in food processing (Klomklao et al. 2010; Ktari et al. 2012). As part of the 

viscera, the pyloric caeca is a by-product of the fish manufacturing industry and rich in 
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digestive enzymes. Proteolytic enzymes isolated from viscera of fish are adapted to cold 

environment like the serine protease trypsin and chymotrypsin. These fish enzymes display 

high stability and activity under harsh conditions, such as high pH and low temperature 

(Arvizu-Flores et al. 2012; Freitas-Júnior et al. 2012; Ktari et al. 2012). The serine 

endoprotease trypsin (EC 3.4.21.4) from Atlantic cod and hog hydrolyzes peptide bonds at the 

carboxylic end of the amino acid residue arginine (R) and lysine (K) (Raae et al. 1995; 

Bunkenborg et al. 2013; Gudmundsdottir et al. 2013). Cod trypsin has shown higher extent of 

degradation of the proteins lactoferrin, lysozyme and bovine serum albumin at temperatures 

of 4, 25 and 37°C compared to bovine trypsin (Gudmundsdottir et al., 2013). Chymotrypsin 

(EC 3.4.21.1) from Atlantic cod and hog cleaves peptide chains at the carboxyl side of the 

amino acids phenylalanine (F), leucine (L) and tyrosine (Y) (Raae et al. 1995; Belitz 2009). In 

addition, chymotrypsin derived from hog cleaves peptides at the carboxylic end of glutamine 

(Q) and chymotrypsin derived from cod liberates peptides at the carboxylic end of arginine 

(R) (Belitz 2009; Raae et al. 1995). The theoretical cleavage sites of the tryptic and 

chymotryptic enzyme preparations form cod and hog in the primary structure of β-casein A
2
-

5P are shown in Fig. 1.8. Even though fish proteases have already been applied in food 

processing such as in dairy industry for substitution of rennet in cheese manufacturing, for the 

removal of oxidized flavour from milk or for shortening of cheese ripening time (Rossano et 

al. 2011), their use is still limited. The non-food grade TPCK-treated porcine trypsin 

preparation may be replaced by food-grade enzyme preparations, e.g. from cod, for the 

generation of anti-inflammatory peptides, which may add value to by-products from fish 

processing industry. 

Enzymatic hydrolysates of β-casein are often described to have a bitter taste. Even very 

limited hydrolysis produces bitter peptides. The bitter off-flavor is a known problem in cheese 

ripening. Ney et al. (1971) postulated a correlation between the hydrophobicity of the 

peptides and their bitter taste. The tendency of a protein to form bitter peptides can be 

predicted from its primary structure. The hydrophobic amino acid side chains are responsible 

for the bitter taste. In the intact globular protein, the majority of the hydrophobic amino acid 

side chains are concealed in the interior. By degradation of the protein, the hydrophobic side 

chains are exposed to the solvent and can interact with the taste buds. The higher the degree 

of hydrolysis, the stronger the bitter taste. A very high degree of hydrolysis up to free amino 

acids results in a decrease in bitterness (Walstra et al. 1999). The tryptic and chymotryptic β-
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casein hydrolysates produced in our investigation (Manuscript 3, chapter IV) exhibited strong 

bitter taste. The peptides identified in the total β-casein hydrolysate, in the retentate > 5 kDa 

and the permeate < 5 kDa via LC-MS are listed in Table 4.2 and their location in the primary 

structure of the parent protein are shown as grey bars in Fig. 1.8. Black and Mould (1991) 

determined hydrophobicity parameters for the side chains of amino acids. According to these 

parameters the degree of hydrophobicity was classified from 1 (lowest hydrophobicity) to 5 

(highest hydrophobicity) (Table 1.6). In Fig. 1.8, the degree of hydrophobicity of the amino 

acid residues is shown as italic number below the primary structure of β-casein. 

Table 1.6 Classification of amino acids according to their degree of hydrophobicity (Black and Mould 

1991). 1= lowest hydrophobicity, 5= highest hydrophobicity 

Amino acid 

Hydrophobicity parameter 

according to Black and Mould 

(1991) 

Degree of  

hydrophobicity 

His (H), Arg (R) 0.0-0.2 1 

Asp (D), Asn (N), Gln (Q), Ser (S), Lys (K) 0.2-0.4 2 

Glu (E), Gly (G), Thr (T) 0.4-0.6 3 

Ala (A), Cys (C), Met (M), Pro (P) 0.6-0.8 4 

Phe (F), Ile (I), Leu (L), Val (V), Trp (W), Tyr (Y) 0.8-1.0 5 

 

I.1.4 Determination of NFκB activation in HEK
nfκb-RE 

cells 

Inflammation is generated by the body as a response to infection, irritation and injury. 

Generally, it is involved in the development of various chronic diseases such as diabetes, 

cancer, asthma and obesity (Huang et al. 2014; Millán-Linares et al. 2014). Inflammatory 

process is triggered by the synthesis of pro-inflammatory cytokines such as TNF-α mainly in 

macrophages but also in mast cells, lymphoid cells, endothelial cells and fibroplasts (Li 2007; 

Li et al. 2010; Malinowski et al. 2014; Rahman and McFadden 2006; Xu and Chen 2011). 

Moreover, inflammation resulting in a limited extent of cytokine expression can result in 

immunostimulation by activating the innate immune responses (Pasparakis 2009; Kurakevich 

et al. 2013).  

Nuclear factor κ B (NFB) is a homo- and heterodimeric transcription factor, which plays a 

key role in inflammatory process and is responsible for expression and regulation of genes 
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involved in inflammation as well as immunity and apoptosis (Xu and Chen 2011). This 

transcription factor is a central regulator of cellular responses and exhibits a dual function. On 

the one hand, NFκB promotes the expression of pro-inflammatory genes that are important for 

the activation of immune responses such as cytokines and chemokines. On the other hand, 

NFκB protects cells from apoptosis by inducing the expression of anti-apoptotic proteins 

(BCL-XL= B-cell lymphoma-extra large) and from necrosis by inhibiting the accumulation of 

reactive oxygen species (ROS) through transcriptional up-regulation of proteins with 

antioxidant functions (e.g MnSOD = manganese superoxide dismutase) (Pasparakis 2009; 

Karin and Lin 2002). NFκB has a dual function by helping cells to survive and at the same 

time inducing an immunostimulatory response triggered by pro-inflammatory cytokines to 

protect the organism from infection and injury (Pasparakis 2009). 

Fig. 1.11 shows the predominant canonical signaling pathway of NFκB. The pro-

inflammatory cytokine tumor necrosis factor-α (TNF-α) plays an important role in the 

regulation of cell proliferation, differentiation and apoptosis (Li 2007; Zelová and Hošek 

2013). Binding of TNF-α to cell surface receptors such as tumor necrosis factor receptor 

(TNFR) initiate the NFκB signaling pathway (Kamada et al. 2002; Zelová and Hošek 2013). 

TNF-α stimulation most often triggers the canonical signaling pathway (Zelová and Hošek 

2013) by activation of IKK complex (IκB-kinase complex). The transcription factor NFκB is 

kept inactive, because the RHD (rel-homology domain), which contain sequences responsible 

for DNA binding and nuclear translocation, is blocked by binding of IkB (inhibitor of κ B). 

The activated IKK complex phosphorylates N-terminal serine residues on IκB. IκB gets 

degraded by proteasomes and releases NFκB. The liberated transcription factor NFκB 

translocates into the nucleus to induce expression of genes responsible for immune regulation, 

which could trigger inflammatory as well as immunostimulatory processes (Li 2007; Rahman 

and McFadden 2006; Xu and Chen 2011; Zelová and Hošek 2013). 

The reduction of the NFκB activity leads to a reduced expression of pro-inflammatory genes. 

Therefore, a decreased NFκB activity is often related with anti-inflammatory activity 

(Pasparakis 2009). Substances which down-regulate the activity of NFκB can be described as 

anti-inflammatory. In our investigation, the anti-inflammatory effect of the tryptic and 

chymotryptic β-casein hydrolysates was evaluated by the reduction of the NFκB activity in 

HEK
nfκb-RE 

cells in vitro. 
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A high NFκB activity is often related with inflammatory processes. Activation of NFκB in a 

limited extent could also result in immunostimulation (Pasparakis 2009). Components such as 

MOS could act as a signal to prime innate immune system. By stimulation of pro-

inflammatory cytokine production, the oligosaccharides might educate the immune system 

and prepare the organism for an encounter with pathogenic microorganisms (Kurakevich et al. 

2013). In our study, the immunostimulatory activity of the MOS concentrates produced by NF 

was determined by the activation of NFκB activity in HEK
nfκb-RE

 cells in vitro. 

HEK cells were transfected with an NFκB response element. The reporter gene was luciferase 

(Malinowski et al. 2014). After cultivation, the HEK
nfκb-RE

 cells were incubated with the pro-

inflammatory cytokine TNF-α and the sample (β-casein hydrolysates or MOS enriched NF-

retentates) for 24 h. In a subsequent luciferase assay, the NFκB activity was measured as 

luciferase activity. The extent of NFκB activation correlated with the luciferase activity. The 

method is described in chapter II (Manuscript I) and chapter III (Manuscript 2).  

 

 

Fig. 1.11: Canonical NFκB signaling pathway. (NFκB = Nuclear factor κ B, IKK = IκB-kinase, IκB = 

inhibitor of κ B, TNF R1 = tumor necrosis factor receptor 1) 
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I.2 Motivation 

I.2.1 Development of procedures for the enrichment of milk oligosaccharides (MOS) by 

nanofiltration (NF) 

The application of concentrates enriched in MOS as functional food ingredient is of high 

value due to the various biological activities of these natural abundant oligosaccharides in 

milk (chapter I.1.2.2). A few investigations for the enrichment of MOS by membrane 

filtration technology were performed on laboratory and pilot plant scale (Sarney et al. 2000; 

Martinez-Ferez et al. 2006a; Oliveira et al. 2014) and only one study was conducted on 

industrial scale (Mehra et al. 2014) for the enrichment of MOS by membrane separation 

technology (chapter I.1.2.3). Due to the low concentration of MOS in milk of domestic 

animals (e.g. bovine and caprine milk), low productivity and operational complexity, no 

efficient process for the enrichment of MOS has been implemented at industrial scale so far. 

For the development of an efficient method for MOS enrichment, a readily available raw 

material, which can be provided in high amounts should be applied. Especially for the 

performance on industrial scale, the developed NF process should be feasible with short 

processing times and low fouling of the membranes. Until now, there exist no study about a 

screening of different nanofiltration membranes for an enrichment of MOS and a subsequent 

feasibility study for transferring this membrane process into large scale. It depends on the 

priorities whether a high recovery of MOS and/ or a high purity of the concentrate wants to be 

achieved. For obtaining a higher purity of the MOS in NF retentate, the number of 

diafiltration steps can be increased and conditions for facilitating the permeation of milk salts 

have to be chosen. The pH has a strong impact on the dissociation degree of salts. By 

acidification to pH 5 the dissociation of milk salts is increased improving the permeation of 

the salts due to its lower molecular size (Töpel 2004; Fox and McSweeney 2009). The 

influence of the pH on the degree of enrichment of MOS during NF has not been evaluated 

yet. 

For a successful establishment of a membrane filtration method for the enrichment of MOS, 

the first step should be a screening of different membrane modules on laboratory scale using a 

developed NF procedure (Manuscript 1, chapter II, V.1). In consideration of the results, the 

NF process should be transferred into pilot plant and industrial scale by applying the same or 
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similar suitable membranes (NMWCO, membrane material and properties) from laboratory 

scale trials (Manuscript 1, chapter II, V.1). For further optimization of the NF process, e.g. by 

achieving a better permeation of salts and residual sugars, the influence of the pH during NF 

at acidic (pH 5) or neutral (pH 7) milieu should be determined (Manuscript 2, chapter III, 

V.1). Moreover, the application of the developed and optimized process on caprine milk could 

be valuable to benefit of the different MOS profile which is described to be closer to human 

milk (chapter Manuscript 2, III, V.1). 

 

I.2.2 Development of procedures for the generation of anti-inflammatory peptides 

Inflammation is a contributing factor for the development of various chronic diseases e.g. 

diabetes, cancer, asthma and obesity (Millán-Linares et al. 2014). Some studies exhibited that 

food-derived peptides from fish plant and egg can modulate inflammatory response by 

exhibiting anti-inflammatory activity (chapter I.1.3.1). Only a few studies investigated the 

anti-inflammatory activity of milk-derived peptides. In a recent study from Malinowski et al. 

(2014) a β-casein-derived peptide (β-CN A (f 184-202)), produced by application of a non-

food grade porcine TPCK (tosyl phenylalanyl chloromethyl ketone)-treated tryptic enzyme 

preparation, was identified as anti-inflammatory by reducing the NFκB activity in HEK
nfκb-RE

 

cells in vitro. With exception of this investigation, there exists no further information about 

the primary structure of anti-inflammatory peptides from milk proteins. Extensive research 

has to be performed for the development of a procedure for generation of anti-inflammatory 

peptides and the identification of their primary structure. The non-food grade TPCK-treated 

porcine trypsin preparation may be replaced by food-grade tryptic enzyme preparations from 

cod, as by-product of the fish processing industry, for the generation of anti-inflammatory 

peptides. 

Since β-casein encodes various bioactivities (chapter I.1.3.2) (Table 1.5), this protein could 

be a valuable substrate for the production of anti-inflammatory peptides (Boutrou et al. 2013). 

The first step should be the isolation of bovine β-casein from rennet casein in sufficient 

amounts and purity. The generation and identification of anti-inflammatory peptides from β-

casein with different tryptic and chymotryptic enzyme preparations from cod and hog should 

be performed (Manuscript 3, chapter IV, V.2). A fractionation of the β-casein hydrolysate by 
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molecular size could support the identification of the bioactive peptides. Moreover, the non-

food grade TPCK-treated porcine trypsin preparation should be replaced by food-grade 

enzyme preparations, e.g. from cod as by-products of the fish processing industry.  

 

I.2.3 Characterization of the biological activity of enriched MOS concentrates and 

generated β-casein hydrolysates 

The transcription factor NFκB is a regulator of cell response with dual function. On the one 

hand, NFκB induces the expression of pro-inflammatory genes which activate the immune 

response. On the other hand, NFκB protects cells from apoptosis and necrosis (chapter I.1.4) 

(Pasparakis 2009; Karin and Lin 2002). 

The reduction of the NFκB activity results in diminished expression of pro-inflammatory 

genes. Thus, substances which reduce the NFκB activity are described to exhibit anti-

inflammatory activity (Pasparakis 2009). The anti-inflammatory activity of the whole β-

casein hydrolysates and peptide fractions should be evaluated in human embryonic kidney 

cells (HEK
nfκb-RE

 cells) in vitro by measuring the activity of the immune regulating 

transcription factor NFκB (chapter I.1.4, Manuscript 3, chapter IV, V.3). 

High NFκB activity is often associated with inflammatory processes. However, the activation 

of NFκB in a limited extent can result in immunostimulation by activating the immune 

response (Pasparakis 2009). By stimulation of the pro-inflammatory cytokine production, 

MOS could prime and educate the immune system for an encounter with pathogens 

(Kurakevich et al. 2013). The immunostimulatory activity of the NF retentates enriched in 

MOS content should be evaluated by the activation of NFκB in HEK
nfκb-RE

 cells in vitro 

(chapter I.1.4, Manuscript 1, chapter II, V.3). 
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1.4 Objectives 

The aim of the thesis was the development of procedures for the generation, enrichment and 

characterization of bioactive oligosaccharides and peptides from milk. This work focused on 

the production of functional food ingredients of the carbohydrate and protein fraction of milk. 

The developed processes should be suitable and feasible for the implementation on industrial 

scale. 

Therefore, the objectives of the present study were: 

o Carbohydrates: To develop a procedure for the enrichment of milk oligosaccharides 

(MOS) by nanofiltration (NF) (chapter II, III, V.1) 

o The comparison of the efficiency of different NF membranes for the enrichment of 

MOS from bovine milk and the transfer of the process from laboratory to pilot plant 

and industrial scale (Manuscript 1, chapter II, V.1). 

o The influence of the pH on the NF process for a better separation of milk salts during 

NF for the enrichment of MOS from bovine milk (Manuscript 2, chapter III, V.1). 

o The establishment of the process for the enrichment of MOS to caprine milk 

(Manuscript 2, chapter III, V.1). 

o The characterization of the immunostimulatory activity of the MOS concentrates 

(Manuscript 1, chapter II, V.3). 

 

o Proteins: To develop a procedure for the generation of anti-inflammatory peptides 

(chapter IV, V.2) 

o The synthesis and identification of anti-inflammatory peptides from bovine β-casein 

using enzyme preparations from cod and hog (Manuscript 3, chapter IV, V.2). 

o The potential of a cod tryptic enzyme preparation to generate anti-inflammatory 

peptides for the replacement of non-food grade TPCK treated porcine tryptic enzyme 

preparation (Manuscript 3, chapter IV, V.2). 

o The fractionation of the β-casein hydrolysates by molecular size (Manuscript 3, 

chapter IV, V.2). 

o The characterization of the anti-inflammatory activity of the β-casein hydrolysates 

and fractions (Manuscript 3, chapter IV, 5.3). 
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II.1 Abstract 

Oligosaccharides in milk (MOS) have been reported in literature to exert various bioactivities 

and to modulate the immune system. However, processes to obtain milk oligosaccharides on 

industrial scale as food ingredients are currently not available. Therefore, the aim of the study 

on hand was the evaluation of different nanofiltration (NF) membranes for the enrichment of 

MOS from bovine milk. Moreover, a transfer of the NF process from laboratory to pilot plant 

and industrial scale was performed. The immunostimulatory effect of the MOS concentrates 

was studied by the activity of NFκB in human embryonic kidney cells (HEK
nfκb-RE 

cells). 

NF was carried out with lactose hydrolyzed skimmed and ultrafiltered milk permeate by 

application of different membranes. The quantification of MOS was determined by high pH-

anion exchange chromatography (HPAEC) with pulsed amperometric detection (PAD) and 

parallel online electrospray ion-trap mass spectrometry (IT-MS). 

The enrichment of MOS (3-sialyl-lactose, 6-sialyl-lactose, N-acetylgalactosaminyl-lactose) 

on laboratory, pilot plant and industrial scale was achieved by a retention of these 

oligosaccharides of at least 50 % in NF retentate. The content of MOS in relation to total 

sugar content in the retentate from NF on industrial scale was 100 fold higher than in the 

initial sample. The MOS retentates and the standards (3-sialyl-lactose, 6-sialyl-lactose) 

exhibited increased NFκB activity in HEK
nfκb-RE 

cells. Although there exist a few studies 

about the enrichment of MOS by NF, this is the first report about a screening of the efficiency 

of different NF membranes for the enrichment of MOS on different technological scales of 

production. 

 

 

 

Keywords 

enrichment of bovine milk oligosaccharides (MOS) by nanofiltration (NF), retention of MOS, 

content of MOS in relation to total sugar content, transfer of NF process from laboratory to 

industrial scale, NFκB activity, immunostimulatory effect  
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II.2 Introduction 

Oligosaccharides in milk (MOS) exert biologically active effects locally in the gut and 

systemically after absorption [1]. In the gut, MOS can show prebiotic activity by contribution 

to the growth of beneficial intestinal flora in the colon. As competitive inhibitors for binding 

sites on the epithelial surface, they show anti-infective and anti-adhesive properties by 

reducing or preventing the adhesion of pathogens [1-7]. It was described that human MOS 

resist digestion, partly get absorbed and remain in the circulation in concentrations high 

enough to exert systemic effects [3]. As shown in Caco-2 intestinal epithelial cells in vitro, 

MOS can be absorbed via the paracellular or transcellular route [1,8]. After absorption, MOS 

may exhibit systemically bioactive effects [9], by interacting with immune cells [10-14]. An 

expamle for the immune regulatory effect is that sialic acid containing oligosaccharides 

reduce the adhesion of leukocytes to endothelial cells [3]. Moreover, MOS show 

immunostimulatory activity by up-regulation of cytokine production (IFN-γ, IL-13, TNF-α, 

IL-6 and IL-10) in human cord blood- derived T cells [9], in primary mouse splenocytes [15] 

and in colonic epithelial cells (HT-29) [10] in vitro. In a study from Ortega-González et al. an 

activation of NFκB by MOS from goat milk in intestinal epithelial cells from rat (IEC18 cells) 

was described. Incubation of this cell line with 0.05 to 5 mg/ml MOS resulted in a 

concentration dependent increase of cytokine production (GROα, MCP1, MIP2, IL6, IP10). 

Research has demonstrated that bovine milk contains MOS, which are identical with 

oligosaccharides to human milk such as the acidic oliogosaccharides 3-sialyl-lactose (3’-SL) 

and 6-sialyl-lactose (6’-SL) [16,17]. Therefore, it can be suggested that the biological effects, 

which MOS provide for infants could also be available to humans of all ages [17,7]. The 

MOS content in human milk is between with 5 to 8 g/L and presents the third largest solid 

component after lactose and lipids [2,18,5,7]. Compared with human milk, the levels of 

oligosaccharides in milk of domestic mammalian animals are much lower. The concentration 

of MOS in bovine milk is between 0.03 to 0.06 g/L. Because of the low concentration of 

MOS in bovine milk, large amounts of MOS for the application as functional ingredient in 

food are not yet available [2]. The structural and health promoting aspects of MOS are 

intensively reported. However, there exist only few studies about the enrichment of MOS by 

membrane filtration on laboratory and pilot plant scale [19,18,20] and only one study deals 

with the concentration of MOS from bovine milk permeate on industrial scale [7]. Until now, 
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there exist no study about a screening of different nanofiltration (NF) membranes for an 

enrichment of MOS followed by a feasibility study for transferring this membrane process 

into large scale. For the concentration, an important parameter is on the one hand the retention 

of MOS in NF retentate. On the other hand, the content of MOS in relation to total sugar 

content gives information about the purity of the product. It depends on the priorities, whether 

a high recovery of MOS and/ or a high purity of the concentrate wants to be achieved. An 

evaluation of the bioactive properties of MOS concentrates gained by application of NF has 

not been performed yet. 

Therefore, the aim of the present study is the evaluation of the efficiency of different NF 

membranes for the enrichment of MOS. The efficiency of the membranes for this application 

was characterized by the recovery of MOS and the content of MOS in relation to total sugar 

content. Subsequently, the process of the enrichment of MOS should be transferred from 

laboratory scale into pilot plant and industrial scale. Furthermore, the immunostimulatory 

effect of bovine MOS should be determined analyzing their effect on the activity of the 

transcription factor NFκB in human embryonic kidney cells (HEK
nfκb-RE 

cells). 
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II.3 Materials and methods 

II.3.1 Nanofiltration assays 

Bovine milk (from the experimental farm of the MRI in Schädtbek) was skimmed using a disc 

centrifuge (LWA 205-1, Westfalia Separator AG, 4740 Oelde, Germany) and ultrafiltered on 

a 5 kDa hollow fiber membrane (CTG.1” HF 1.0-43-PM5-P3, Koch Membrane Systems, 

Wilmington, USA) in order to get a permeate of skimmed milk. For a better separation of the 

MOS from the residual sugar, the lactose was hydrolyzed (150 NL U/g lactose) by the action 

of β-galactosidase (HA-Lactase 2100, Chr. Hansen, DK-2970 Horsholm, Denmark, 150 NL 

U/g lactose) at 40°C for 3 h in a stirred tank reactor. For the enrichment of MOS, cross-flow 

NF of the lactose hydrolyzed skimmed and ultrafiltered milk permeates (lactose hydrolyzed 

SM-UF-permeates) were performed by application of flat-sheet and spiral-wound membranes 

with different nominal molecular weight cut-off (NMWCO) and different material at varying 

parameters (Table 2.1). 

For characterization of the NF process, the following factors were applied: 

In the first part of NF, ultrafiltered skimmed milk permeate was concentrated to enrich the 

content of MOS in NF retentate. The concentration factor CF is the ratio of the initial feed 

volume Vf [L] to the retentate volume Vr [L]. 

(1) 

   
  

  
 

In the second part the retentate was diafiltered with demineralized water to decrease the 

contents of glucose, galactose, residues of lactose, and milk salts in the MOS retentate. The 

number of diavolumes DV is defined as the ratio of the total volume of liquid permeated Vp 

[L] and the initial volume, which is in our experiments the retentate volume Vr [L] from the 

first step of the NF. 

(2) 
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The volumetric flux of permeate F [L m 
-2

 h 
-1

] is the ratio of liquid Vp [L] permeated in one 

hour t [h] and the active membrane area A [m
2
] of the corresponding module. 

(3) 

  
  

   
 

Another important parameter is the percental retention Ri of a component i (e.g. 3’-SL, 6’-SL, 

GalNAc-Gal-Gluc) in NF retentate. Cr,i is the concentration of the component i in retentate 

and Cf,i is the concentration of the component i in the initial feed sample. 

(4) 

   
        

        
     

Furthermore, the percental content of MOS (3’-SL, 6’-SL, GalNAc-Gal-Glc) in relation to 

total sugar content (MOS, glucose, galactose, lactose) MMOS/total sugar was calculated as ratio of 

the concentration of MOS in retentate Cr,MOS [mg/L] to the concentration of total sugar in 

retentate Cr,total sugar [mg/L]. 

(5) 

                 
       

               
     

 

A transfer of the NF process from laboratory scale to pilot plant scale and to industrial scale 

was performed (Table 2.1). 



 

 

 

6
8
 

Table 2.1 Properties of NF membranes applied for the enrichment of MOS on laboratory, pilot plant and industrial scale and corresponding experimental set-

ups (a= flux at 5 bar; b= flux at 10 bar; c= module SR 50 on technical scale; d= module DL on technical scale; NMWCO = nominal molecular weight cut-off; 

concentration factor CF= the ratio of the initial feed volume Vf [L] to the retentate volume Vr [L]; diavolume DV = the ratio of the total volume of liquid 

permeated Vp [L] and the initial volume). 

Dimensions of 

experiments 
Membranes Manufacturer Material 

NMWCO 

[Da] 

Flux 

(F)  

 Flat-sheet    [L/m
2
h

1
] 

laboratory scale DL ® Desalogics composite 150-300 6.7 

 CK ® Desalogics cellulose acetate 200 2.9 

 SR 100 ® Koch Membrane Systems thin film composite 200-300 3.5 

 GE ® Desalogics composite 500-1000 7.8 

 MPF 36 ® Koch Membrane Systems composite 700-1000 10.9 

 Spiral-wound     

pilot plant scale SR 50 (2540 SR2-N1)® Koch Membrane Systems thin film composite 300-400 
300.0  

a
 

531.6  
b
 

 DL (2540C1077)® Desalogics thin film 150-300 
34.94  

a
 

71.18  
b
 

 Spiral-wound     

industrial scale DOW (NF-3840-30-FF)® The DOW chemical company not specified 300 9.36 

Experimental set-up 

Dimensions of 

experiments 

Temperature 

[°C] 

Pressure 

[bar] 

Initial feed volume  

(Vf) [L] 

Concentration factor  

(CF) 

Diavolume  

(DV) 

Active membrane area 

 

laboratory scale 40 4 0.2 2 10 160 cm
2
 

pilot plant scale 40 
5 

10 
6 2 10 

2.5 m
2  c 

1.7 m
2  d

 

industrial scale 10 10-15 1000 10 4.6 15 m
2
 

 

 

C
h
ap

ter II 
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NFs on laboratory scale were performed with the ÄKTAcrossflow
TM

 system (Ge Healthcare 

Bio-Sciences AB, 75184 Uppsala, Sweden) by application of different flat-sheet membranes 

with a membrane area of 160 cm
2
 at 4 bar and 40°C (Table 2.1). To get a deposition layer, 

retentate and permeate were circulated into the retentate tank for 30 min. 200 ml ultrafiltered 

skimmed milk permeate were concentrated to 100 mL (concentration factor = 2). After that a 

continuous diafiltration step of 100 mL NF retentate was conducted with 10 diavolumes. 

Therefore, 1 L demineralized water was added to 100 mL NF-retentate at the same rate as the 

permeate flux, thus keeping retentate volume constant during operation. 

NFs on pilot plant scale were performed with the modules SR 50 (active membrane area of 

2.5 m
2
) and DL (active membrane area of 1.7 m

2
) at 40°C and the pressures 5 bar and 10 bar 

(Table 2.1). The membrane filtration was performed with the Alfa Laval Lab M20 device 

(Alfa Lava Corporate AB, SE-22655, Lund, Sweden). Retentate and permeate were circulated 

into the retentate tank for 30 min to get a deposition layer. 6 L ultrafiltered skimmed milk 

permeate were concentrated in the first step to 3 L (concentration factor = 2). The NF 

retentate was diafiltered with 10 diavolumes by stepwise addition of 6 L demineralized water 

to 3 L retentate for 5 times. Water was added when retentate was concentrated to 3 L. After 

discontinuous diafiltration with 30 L demineralized water, the NF retentate was further 

concentrated up to the residual volume of the membrane filtration device of 2.2 to 2.4 L. 

The industrial scale NF process was conducted with the MMS nanofiltration device (MMS 

Membrane Systems, 8902 Urdorf, Switzerland) in cooperation with the Theo Müller Group at 

Sachsenmilch in Leppersdorf. For the membrane separation process two modules of the spiral 

wound membrane DOW with an active membrane area of 7.5 m
2
 were used at 10-15 bar and 

10 °C (Table 2.1). At the beginning, retentate and permeate were circulated into the retentate 

tank for 30 min for forming a deposition layer. 1000 L of ultrafiltered skimmed milk permeate 

were concentrated to 100 L (concentration factor = 10). The NF retentate was diafiltered with 

4.6 diavolumes by adding stepwise 100, 200 and 160 L of demineralized water when the 

retentate was concentrated to 100 L. After discontinuous diafiltration with 460 L water, the 

NF retentate was concentrated to 58 - 60 L in the first experiment and to 45 L in the second 

experiment. 
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II.3.2 Analytical methods 

II.3.2.1 Quantification of MOS, mono- and disaccharides 

II.3.2.1.1 Sample pretreatment 

Milk oligosaccharides were purified by graphitized carbon solid-phase extraction according to 

Packer et. al. 1998 [21]. The cartridges (Extract-clean SPE Carbo 150mg, Alltech Grom 

GmbH, Worms) were washed with 80 % acetonitrile/0.1 % trifluoroacetic acid (v/v) in water, 

followed by conditioning with pure water. 100 µl of skim milk permeate or enriched NF-

retentate were loaded onto the cartridge and washed with 4ml water and 4 ml 4 % acetonitril 

to remove the high amounts of mono- and disaccharides. Milk oligosaccharides were eluted 

by consecutive washing with 4 ml 20 % acetonitril and 4 ml of a solution of 40 % acetonitrile 

and 0.1 % trifluoroacetic acid (v/v). Samples were dried in a vacuum centrifuge and 

reconstituted in water and diluted with solvent A (10mmol/L NaOH) prior to HPAEC-

PAD/MS analysis. 

For the determination of galactose, glucose and lactose-content the skim milk permeate or 

enriched NF-retentate samples were clarified using Carrez solutions I and II (Carrez I = 

3.60g/100ml potassium hexacyanoferrate (II), Carrez II = 7.20g/100ml zinc sulphate) and 

were diluted to required concentration with 10 mmol/L NaOH. 

 

II.3.2.1.2 Determination of milk oligosaccharides by HPAEC-PAD/MS 

The analyses of carbohydrates were performed by a high performance anion exchange 

chromatography with pulsed amperometric detection and parallel online mass spectrometry 

[22-24]. The analytical system consisted of a Dionex ICS-3000 chromatographic system 

(Idstein, Germany) with an SP gradient pump, an SP autosampler and an ED 40 

electrochemical detector with a gold working electrode and Ag/AgCl as a reference electrode. 

Separations were performed on a CarboPac PA-100 analytical column (2mm x 250mm, 

8.6µm), with a CarboPac PA-100 guard column (2mm x 50mm, 8.6µm, Dionex, Idstein, 

Germany) with a flow rate of 0.2 ml/min at 25°C. Elution was carried out with a linear 
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gradient with increasing sodium hydroxide and sodium acetate concentrations. For 

identification of the oligosaccharides the flow was split in a 1:1 ratio for ED and MS detection 

after elution from the analytical column. MS data were acquired on an ion trap mass 

spectrometer LTQ XL (Thermo Fischer Scientific, Dreieich, Germany) with an electrospray 

interface (ESI). For coupling to the mass spectrometer, an online desalinisation with 

Suppressor ASRS 300, 2 mm (Dionex, Idstein, Germany) and post-column addition of 30 

µl/min 5 mM LiCl were used. Mass spectra were generated in the positive ionisation mode in 

the full scan range 150 up to 2000 m/z and a data-dependent scan with fragmentation of the 

three most intense ions (activation type = CID, normalised collision energy = 35.0 eV, 

isolation width 2 m/z). The ESI spray voltage was set to 4.0 kV, the heated capillary 

temperature was 300°C. 

Sample pretreatment and analysis of the samples was performed in duplicate. Glucose, 

galactose, lactose, GalNAc-Gal-Glc, 6-sialyl-lactose and 3-sialyl-lactose were used as 

external standards. Glucose, galactose and lactose were purchased from VWR (Darmstadt, 

Germany). The milk oligosaccharides 6-sialyllactose and 3-sialyllactose were obtained from 

Carbosynth (Berkshire, U.K.) and N-acetyl-galactosaminyl-lactose (GalNAc-Gal-Glc) was 

obtained from McBiTec (Strasbourg, France). For evaluation of the sample pretreatment the 

recovery of the individual oligosaccharides spiked into ultrafiltered SM-UF-permeate and NF 

retentate samples were determined. The recovery of the oligosaccharides was 73.9 ± 7.7 % for 

3’-SL, 87.4 ± 4.1 % for 6’-SL and 95.6 ±7.1 % for GalNAc-Gal-Glc. 

 

II.3.2.1.3 Quantification of other components 

Dry mass was measured by the VDLUFA method C 35.5. An aluminium foil and filter paper 

was weighted before and after addition of 2 g sample. After drying for 2 h at 102 ± 2°C the 

foil and filter paper with sample were weighted again. The dry mass was calculated as 

percentage by weight of the dried sample to the initial sample before drying. 

Total protein and non-protein nitrogen (NPN) contents in MOS concentrates from industrial 

scale NF were measured by the Kjeldahl method (VDLUFA VI C 30.2). For determination of 

the NPN content (VDLUFA VI C 30.3) the samples were first acidified to a concentration of 
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12 % with trichloroacetic acid. The nitrogen in the NPN fraction was determined by the 

Kjeldahl method (VDLUFA VI C 30.2). The ash content was measured according to the 

method VDLUFA IV C 10.2. Determination of the salts Na, K, Mg, Ca and P were performed 

with slight modifications according to the Method VDLUFA III 10.8.1.2 and 10.8.2. Chloride 

content was measured with HPLC and ion-exchange chromatography according to a modified 

DIN method (DIN EN 12014 Part 2). The Citric acid content was measured with a citric acid 

test kit (r-biopharm AG, Darmstadt, Germany). 

 

II.3.3 Effect of NF MOS concentrates on NFκB activation in HEK
nfκb-RE 

cells and followed 

Luciferase assay 

HEK
nfkb-RE 

cells [25] were cultivated at 5 % CO2 in DMEM medium (PAA, Cölbe, Germany) 

supplemented with 10 % fetal calf serum (FCS) (PAA, Cölbe, Germany). Lyophilized MOS 

concentrates from NF (50 mg/ml) were dissolved in culture medium and sterile filtered. 

HEK
nfkb-RE

 cells were seeded in white (clear bottom) 96-well plates at a density of 10 000 

cells/well. After overnight incubation, cells were incubated with MOS concentrates (final 

concentration 25 mg/ml). For control cells were treated only with DMEM medium without 

sample. After 24 hours, medium was removed, cells were washed twice with PBS and lysed 

by freezing and defrosting two times. Luciferase assay was started by incubation of cells with 

45 µl of Beetle Lysis-Juice (PJK, Kleinblittersdorf, Germany) for 10 min. The light product 

developed by luciferin degradation was measured over a period of 1 s in the Chameleon plate 

reader (Hidex, Turku, Finland). Quadruplicated incubation and measurements were 

considered to be one experiment. The data are expressed as arbitrary units of luciferase 

activity of HEK
nfkb-RE 

cells compared with the control (cells with TNF-α without sample are 

stated as 1). 

 

Statistical analysis 

Statistical significance values of relative luciferase activity between NF MOS concentrates 

and control without sample were determined by using Kruskal-Wallis one-way analysis 

followed by the Dunns multiple comparison test with the software SigmaPlot 11.0 (SigmaPlot 
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Software, Systat Software Inc., USA). The data are expressed as the arithmetic means ± 

standard deviation (SD) of at least three independent experiments. Values are reported in 

relation to the luciferase activity of the control.  
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II.4 Results and discussion 

II.4.1 Efficiency of different NF membranes for the enrichment of MOS 

II.4.1.1 Laboratory scale NF 

For the enrichment of MOS, NF of lactose hydrolyzed SM-UF-permeate was performed on 

laboratory scale by application of different flat-sheet membranes (Table 2.1). The MOS 

content was quantified by determination of the main components of the MOS fraction (6’-SL, 

3’-SL, GalNAc-Gal-Glc). The concentration of the MOS, monosaccharides (glucose, 

galactose), and residual lactose in the initial sample and the NF-retentates determined as 

average of two different NFs are listed in Table 2.2. The total content of MOS ( 6’-SL, 3’-SL, 

GalNAc-Gal-Glc) in the lactose hydrolyzed SM-UF-permeate was about 67.1 mg/L. Fong et 

al. (2011) [26] quantified six different MOS in bovine mature milk, colostrum and infant 

formula using a hydrophilic interaction chromatography – mass spectroscopy method. The 

total content of the main oligosaccharides 3’-SL, 6’-SL and GalNAc-Gal-Glc in mature milk 

vary from 50.6 to 67.4 mg/L and is consistent with our results. Due to lactose hydrolysis the 

glucose and galactose content was about 20 g/L and the residual lactose concentration was 

0.30 g/L. Because of the concentration factor of 2 on laboratory scale NF, the highest possible 

MOS content, which could be achieved after NF, is the double of the concentration in the 

initial sample. As a result of NF, MOS content in the NF retentates after filtration with the 

membranes DL, CK, SR 100 and GE are slightly higher than in the initial sample. Only by 

application of the composite membrane MPF 36 the retention of MOS was markedly lower 

than in the original sample. Moreover, the concentration of mono- and disaccharides and the 

dry mass content in all retentates decreased distinctly in comparison to the lactose hydrolyzed 

SM-UF-permeate. 
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Table 2.2 Concentration of MOS (3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-galactosaminyl-lactose), mono- and 

disaccharides (glucose, galactose, lactose) and dry mass in lactose hydrolyzed SM-UF-permeate and retentates of laboratory scale NF (average of two trials, 

n=2). The recovery of the standards was 73.9 ± 7.7 % for 3’-SL, 87.35 ± 4.05 % for 6’-SL and 95.6 ±7.1 % for GalNAc-Gal-Glc. (n=2) 

sample lactose hydrolyzed  

SM-UF-permeate 

NF retentate 

DL 

NF retentate 

CK 

NF retentate 

SR 100 

NF retentate 

GE 

NF retentate 

MPF 36 

6‘-SL [mg/L] 6.8 +/- 0.3 7.9 +/- 0.4 8.5 +/- 1.7 11.5 +/- 1.6 9.0 +/- 0.1 3.6 +/- 0.2 

3‘-SL[mg/L] 35.7 +/- 1.7 36.6 +/- 1.8 37.1 +/- 4.1 35.5 +/- 4.3 36.1 +/- 4.7 16.3 +/- 1.3 

GalNAc-Gal-Glc [mg/L] 24.7 +/- 2.3 33.2 +/- 2.4 26.9 +/- 2.0 29.0 +/- 3.9 8.5 +/- 5.3 3.0 +/- 0.2 

∑ MOS [mg/L] 67.1 77.7 72.3 76.0 53.6 22.8 

lactose [g/L] 0.3 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 0.0 +/- 0.0 0.2 +/- 0.0 

glucose [g/L] 22.6 +/- 0.2 0.0 +/- 0.0 0.1 +/- 0.1 0.0 +/- 0.0 0.0 +/- 0.0 0.2 +/- 0.0 

galactose [g/L] 20.3 +/- 0.2 0.1 +/- 0.0 0.3 +/- 0.1 1.0 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 

dry mass [g/L] 61.0 +/- 0.1 6.6 +/- 0.5 5.9 +/- 0.3 7.6 +/- 0.1 3.8 +/- 0.0 1.0 +/- 0.2 
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Figure 2.1 indicates the retention of MOS (6‘-SL, 3‘-SL, GalNAc-Gal-Glc) in NF retentates 

after filtrations with the membranes DL, CK, SR 100, GE, and MPF 36 (white, grey, and 

black bars; left ordinate). Furthermore, the MOS content in relation to the total sugar content 

is shown for the original sample and the NF retentates (striped bars, right ordinate). 

 

Fig. 2.1 Retention of MOS by NF on laboratory scale [%] (white, grey, and black bars; left ordinate) 

and MOS content in relation to the total sugar content [%] (striped bars, right ordinate), (average of 

two trials, n=2, 3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-

galactosaminyl-lactose). MOS content in relation to total sugar content in the initial SM-UF-permeate 

is 0.1 - 0.2 %. 

 

The content of MOS in relation to the total sugar content in the lactose hydrolyzed SM-UF-

permeate was 0.2 ± 0.0 %. The final retention of the three MOS was highest in the NF 

retentate of the thin film composite membrane SR 100 (MWCO of 200-300 Da). From the 

initial sample 84.8 ± 11.4 % of 6‘-SL, 49.8 ± 6.0 % of 3‘-SL and 58.7 ± 7.9 % of GalNAc-

Gal-Glc were retained in the NF retentate. However, the MOS content in relation to total 



Chapter II 
 

 

77 

 

sugar content (6.0 ± 0.7 %) was low, when this membrane was used. This is mainly due to the 

higher retention of mono- and disaccharides (Table 2.2). Application of the cellulose acetate 

membrane CK (NMWCO 200 Da), resulted in a retention of MOS in the same order of 

magnitude. In addition, the MOS content in relation to total sugar content (14.9 ± 4.2 %) was 

much higher with the CK than with the membrane SR 100. The retention of MOS by 

application of the composite membrane DL (NMWCO 150-300 Da) was at the same level as 

by using the CK membrane. Due to the high permeation of mono- and disaccharides, an 

increased content of MOS in relation to total sugar content (26.2 ± 1.0 %) was obtained. By 

application of the composite membrane GE (NMWCO 500-1000 Da) the retention of MOS in 

the retentate was in the same order as with the DL and CK. Furthermore, the highest MOS 

content in relation to total sugar content (35.8 ± 7.9 %) was detected. However, the 

application of the GE membrane resulted in high fouling so that the permeate flux decreased 

rapidly during diafiltration. As a result, the processing time at constant pressure (4 bar) 

increased up to 13 h. NF with the composite membrane MPF 36 did not exhibit a high 

retention of MOS resulting in a low MOS content in relation to total sugar content. It can be 

assumed that a NMWCO of 700-1000 Da was too large for an effective retention of MOS. As 

a result of the studies on laboratory scale, the membranes DL and SR 100 were chosen for a 

transfer of the NF to pilot plant scale. The application of this membranes resulted in a high 

retention of MOS in the retentate. Using these membranes led to low fouling and increasing 

permeate fluxes during diafiltration. It can be concluded that both the membrane NMWCO of 

the membrane and the composition have to be considered for the enrichment of MOS. A 

direct effect of the permeate flux on the retention of MOS during NF could not be observed. 

The flux could not be directly correlated with pore size probably due to the differences in 

membrane materials, which was also reported by Luo et al. 2014 [27]. However, this process 

parameter gives important information about the fouling of the membrane. In laboratory scale 

the permeate flux is between 2.93 to 10.90 L m
-2 

h
-1

 during the concentration of the initial 

sample in the first step of NF (Table 2.1). 

In addition to the studies described above, the same range of flat-sheet membranes were 

applied in the NF on laboratory scale of SM-UF-permeate without lactose hydrolysis. The 

retention of the three MOS in NF retentate using the modules DL, CK, SR 100 and GE was 

between 25.4 ± 0.7 to 65.2 ± 10.3 % and was therefore distinctly lower than applying lactose 

hydrolyzed SM-UF-permeate as substrate. Especially, the MOS content in relation to total 
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sugar content was substantially lower (0.2 ± 0.0 % to 1.6 ± 0.1 %) and almost on the same 

level as in the original sample (0.1 ± 0.0%). This results reveal that the enrichment of MOS 

and the permeation of residual sugars is more effective, when lactose hydrolyzed SM-UF-

permeate is used. This result is comparable with the work of Oliveira et al. (2014), who 

reported that NF by the DL membrane did not result in a sufficient separation of MOS from 

lactose in lactose unhydrolyzed ultrafiltered caprine whey [20]. 

 

II.4.1.2 Pilot plant scale NF 

The enrichment of MOS on pilot plant scale was performed by NF using the spiral-wound 

membranes DL and SR 50 at 5 and 10 bar. The DL is similar to the membrane used on 

laboratory scale. The SR 50 membrane is comparable to the flat-sheet membrane SR 100 

(Table 2.1), but conducted as a spiral-wound membrane. Table 2.3 reveals the contents of 

MOS, as well as mono- and disaccharides in the lactose hydrolyzed SM-UF-permeate and 

retentates after NF at different pressures. The sum of the three MOS determined in the initial 

lactose hydrolyzed SM-UF-permeate was slightly higher (83.31 mg/L) than in the initial 

sample for NF on laboratory scale. This is maybe due to the biological variation of bovine 

milk composition and to a possible small variability in the UF processes performed. The 

highest MOS content, which could be achieved after NF in the retentate was twice of the 

concentration in the initial sample (concentration factor = 2). The amounts of 

monosaccharides in the MOS retentates after NF on pilot plant scale were higher than in 

retentates on laboratory scale. The retentates produced by the application of the membranes 

DL and SR 50 at 5 and 10 bar exhibited MOS contents of 14.9 ± 3.3 mg/L to 18.8 ± 4.6 mg/L 

6’-SL, 96.8 ± 10.1 mg/L to 112.2 ± 16.8 mg/L 3’-SL and 36.0 ± 16.0 mg/L to 46.9 ± 12.6 

mg/L GalNAc-Gal-Glc. No significant differences in the concentration of single MOS by 

using the different membranes and pressures were observed. The dry mass contents in the 

retentates of pilot plant scale NF were slightly higher than in the concentrates of NF 

performed on laboratory scale. This is might be due to the higher content of monosaccharides 

(Table 2.3). 
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Table 2.3 Concentration of MOS (3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-galactosaminyl-lactose), mono- and 

disaccharides (glucose, galactose, lactose) and dry mass in lactose hydrolyzed SM-UF-permeate and retentates of pilot plant scale NF (average of two trials, 

n=2), (n.d.= below limit of determination). The recovery of the standards was 73.9 ± 7.7 % for 3’-SL, 87.35 ± 4.05 % for 6’-SL and 95.6 ±7.1 % for GalNAc-

Gal-Glc. (n=2) 

sample lactose hydrolyzed  

SM-UF-permeate 

NF retentate 

SR 50 

NF retentate 

DL 

  5 bar 10 bar 5 bar 10 bar 

6‘-SL [mg/L] 8.6 +/- 0.5 18.8 +/- 4.6 15.7 +/- 0.2 15.5 +/- 3.6 14.9 +/- 3.3 

3‘-SL[mg/L] 47.5 +/- 1.8 112.2 +/- 16.8 96.8 +/- 10.1 97.2 +/- 19.5 97.3 +/- 22.3 

GalNAc-Gal-Glc [mg/L] 27.2 +/- 2.9 45.8 +/- 5.8 36.0 +/- 16.0 46.9 +/- 12.6 44.7 +/- 10.1 

∑ MOS [mg/L] 83.3 176.8 148.5 159.6 156.9 

lactose [g/L] n.d. n.d. n.d. n.d. n.d. 

glucose [g/L] 21.7 +/- 0.9 1.4 +/- 0.7 1.2 +/- 0.3 2.0 +/- 0.2 2.2 +/- 0.3 

galactose [g/L] 19.3 +/- 0.6 1.4 +/- 0.6 1.1 +/- 0.4 1.8 +/- 0.2 2.1 +/- 0.2 

dry mass [g/L] 61.8 +/- 0.8 11.0 +/- 2.2 8.8 +/- 2.3 13.4 +/- 0.4 14.0 +/- 0.4 
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Figure 2.2 reveals the retention of MOS in NF retentate applying the DL and SR 50 

membranes at 5 bar and 10 bar (white, grey, and black bars; left ordinate). In addition, the 

MOS contents in relation to total sugar content are shown (striped bars, right ordinate). The 

retention of MOS in the retentates of pilot plant scale NF was at the same order of magnitude 

than on laboratory scale NF. During NF on pilot plant scale applying the membranes DL and 

SR 50 at 5 and 10 bar a sufficient enrichment of the MOS was achieved with a retention 

between 51.6 ± 18.7 % and 77.5 ± 9.3 % for all experiments. No significant differences in the 

retention of MOS in the NF retentates between the different membranes and pressures applied 

could be observed. The content of MOS in relation to total sugar content was between 5.0 ± 

2.0 % and 7.2 ± 3.7 % in the retentates using the membrane SR 50 and 3.6 ± 1.1 % to 4.0 ± 

0.5 % in the retentate applying the module DL. The contents are lower, than those achieved 

on laboratory scale. The reason therefore seems to be the lower permeation of the mono- and 

disaccharides (Table 2.3). The total yield of MOS could be increased by the transfer from 

laboratory to pilot plant scale NF due to higher input volumes of lactose hydrolyzed SM-UF-

permeate and higher amounts of retentates achieved after NF on pilot plant scale. 

The permeate flux of the filtration processes on pilot plant scale NF are with 300.0 L m
-2 

h
-1

 to 

531.6 L m
-2 

h
-1

 for the module SR 50 and with 34.9 L m
-2 

h
-1

 to 71.2 L m
-2 

h
-1

 for the 

membrane DL at 5 and 10 bar much higher than by filtration on laboratory scale. Although, 

the same types of membranes on laboratory and pilot plant scale NF were applied, large 

differences in flux were detected. The main reason could be that with flat sheet membranes 

and spiral wound membranes different constructional types of membranes were employed. In 

addition, the pressure varied between 4 bar on laboratory scale and 5 to 10 bar on pilot plant 

scale NF. Furthermore, different devices for NF on the scales of production were used, which 

could also influence the permeate flux. Nevertheless, comparable retention of MOS in 

retentate was achieved with NF on laboratory and pilot plant scale. 
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Fig. 2.2 Retention of MOS by NF on pilot plant scale [%] (white, grey, and black bars; left ordinate) 

and MOS content in relation to the total sugar content [%] (striped bars, right ordinate), (average of 

two trials, n=2, 3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-

galactosaminyl-lactose). MOS content in relation to total sugar content in the initial SM-UF-permeate 

is 0.1 - 0.2 %. 

 

II.4.1.3 Industrial scale NF 

NFs on industrial scale were performed in cooperation with the Theo Müller Group at 

Sachsenmilch, Leppersdorf, Germany. 1000 L lactose hydrolyzed SM-UF-permeate were 

concentrated by NF and diafiltered with the 300 Da spiral-wound membrane DOW (Table 

2.1). NFs were performed in duplicate. The average concentration of the MOS, mono- and 

disaccharides in the lactose hydrolyzed SM-UF-permeate, the retentate after concentration 

and the retentate after diafiltration are listed in Table 2.4 (a).  

Table 2.4 (a) Concentration of MOS (3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-

Glc = N-acetyl-galactosaminyl-lactose), mono- and disaccharides (glucose, galactose, lactose) and dry 
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mass in lactose hydrolyzed SM-UF-permeate and retentates of industrial scale NF (average of two 

trials, n=2). Variation of concentration in NF retentate after diafiltration relates to differing trial 

volumes (trial 1: 60 L, trial 2: 45 L), (n.d.= below limit of determination). The recovery of the 

standards was 73.9 ± 7.7 % for 3’-SL, 87.35 ± 4.05 % for 6’-SL and 95.6 ±7.1 % for GalNAc-Gal-Glc. 

(n=2) 

sample 
lactose hydrolyzed  

SM-UF-permeate 

NF retentate  

after concentration 

NF retentate  

after diafiltration 

DOW 

6‘-SL [mg/L] 9.5 +/- 1.4 90.9 +/- 1.7 105.1 +/- 32.0 

3‘-SL[mg/L] 46.6 +/- 6.3 456.3 +/- 6.9 515.0 +/- 132.2 

GalNAc-Gal-Glc [mg/L] 41.4 +/- 4.3 287.4 +/- 49.5 253.2 +/- 32.6 

∑ MOS [mg/L] 97.5 834.5 873.3 

lactose [g/L] n.d. n.d. n.d. 

glucose [g/L] 22.3 +/- 0.9 33.8 +/- 5.2 4.6 +/- 0.1 

galactose [g/L] 19.0 +/- 0.7 27.8 +/- 4.6 3.6 +/- 0.1 

dry mass [g/L] 58.8 +/- 2.0 105.1 +/- 18.9 29.4 +/- 0.0 

 

 

The total MOS content in the lactose hydrolyzed SM-UF permeate (97.5 mg/L) differ again 

slightly to the initial samples for laboratory and pilot plant scale NF, probably due to the 

natural variation of the composition of bovine milk and a possible small variability in the UF 

process. The dry mass content in the original sample was at the same level as on laboratory 

and pilot plant scale. The dry mass is composed mainly of sugars, milk salts and organic 

acids. Because of the high concentration factor of 10, the MOS content in the retentates of 

industrial scale NF was much higher than in retentates from laboratory and pilot plant scale 

experiments. In the NF retentate after concentration, but before diafiltration, the total MOS 

content in 100 L was about 834.5 mg/L. The concentration of the acidic MOS 6’-SL (90.9 ± 

1.7 mg/L) and 3’-SL (456.3 ± 6.9 mg/L) were almost 10 fold higher and the content of the 

neutral MOS GalNAc-Gal-Glc (287.4 ± 49.5 mg/L) was about 7 fold higher than in the initial 

lactose hydrolyzed SM-UF-permeate. Furthermore, high amounts of the monosaccharides 

permeated during filtration so that only 14 to 15 % of these sugars were retained in the 

retentate. As expected, the dry mass content in the NF retentate after concentration (105.1 ± 

18.9 g/L) was about 2 fold higher than in the initial sample. This is probably due to the 

concentration of salts, monosaccharides, organic acids and other minor components. The 

contents of the monosaccharides in NF retentate after concentration were higher than in the 
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initial sample. In NF retentate after diafiltration (trial 1: 60 L, trial 2: 45 L) the total MOS 

content was 873.23 mg/L. Moreover, a higher permeation of monosaccharides, salts and other 

components could be achieved by the diafiltration steps. The concentration of 

monosaccharides and the dry mass content in the retentate after diafiltration could be reduced 

markedly.  

 

Table 2.4 (b) Protein, non-protein nitrogen, ash and salt content of NF retentate after diafiltration 

generated on industrial scale NF by using the membrane DOW (average of two trials, n=2). 

sample NF retentate  

after diafiltration 

DOW 

protein [g/L] 0.6 ± 0.5 

non-protein nitrogen [g/L] 0.2 ± 0.1 

ash [g/L] 7.3 ± 0.1 

sodium [g/L] 0.3 ± 0.1 

potassium [g/L] 1.6 ± 0.2 

magnesium [g/L] 0.3 ± 0.1 

calcium [g/L] 1.4 ± 0.1 

phosphor [g/L] 0.6 ± 0.1 

chloride [g/L] 0.1 ± 0.0 

citric acid [g/L] 6.9 ± 0.6 

 

 

Protein content (0.6 ± 0.5 g/L) and non-protein nitrogen content (0.2 ± 0.1 g/L) were low in 

the NF retentate after diafiltration from industrial scale experiments (Table 2.4 (b)). The 

citric acid content was surprisingly high (6.9 ± 0.6 g/L) and contributes to 23.5 % of the dry 

mass of the NF retentate. The concentration of ash was 7.3 ± 0.1 g/L and therefore at the same 

order of magnitude as in bovine milk (7 g/L) [28]. Main components of ash were salts. The 

concentrations of potassium (1.6 ± 0.2 g/L) and calcium (1.4 ± 0.1) were as high as in bovine 

milk (potassium 1.5 g/L, calcium 1.2 g/L) [28]. The concentrations of sodium (0.3 ± 0.1) and 

chloride (0.1 ± 0.0) in the MOS retentate after diafiltration were lower than in bovine milk 

(sodium 0.5 g/L, chloride 1.0 g/L) [28]. Only magnesium was concentrated (0.3 ± 0.1 g/L) to 

the 3 fold in comparison the concentration in to bovine milk (magnesium 0.1 g/L) [28]. Other 

components of ash could be sulfate and micronutrients. 
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Figure 2.3 shows the retention of MOS in the retentate after concentration and in the retentate 

after diafiltration (white, grey, and black bars; left ordinate) on industrial scale NF. In 

addition, the MOS content in relation to total sugar content for the lactose hydrolyzed SM-

UF-permeate, the retentate after concentration and the retentate after diafiltration is shown 

(striped bars, right ordinate). 

 

 

Fig. 2.3 Retention of MOS by NF on industrial scale [%] (white, grey, and black bars; left ordinate) 

and MOS content in relation to the total sugar content [%] (striped bars, right ordinate), (average of 

two trials, n=2, 3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-

galactosaminyl-lactose). MOS content in relation to total sugar content in the initial SM-UF-permeate 

is 0.1 - 0.2 %. 

 

A substantially high retention of MOS was achieved in NF retentate after concentration (97.4 

± 14.2 % 6’-SL, 99.3 ± 13.7 % 3’-SL, 70.4 ± 17.7 % GalNAc-Gal-Glc). The MOS content in 

relation to total sugar content (1.4 ± 0.1 % ) was only slightly higher than in the initial sample, 
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which can be explained by a high retention of monosaccharides (Table 2.4 (a)). In the NF 

retentate after diafiltration the retention of MOS was about 45 to 57 % lower than in the 

retentate after the concentration. 56.0 ± 0.6 % 6’-SL, 56.4 ± 2.3 % 3’-SL and 31.9 ± 4.6 % 

GalNAc-Gal-Glc were retained in the retentate after diafiltration. The MOS content in relation 

to total sugar content was 10.6 ± 2.5 % and thereby 10 fold higher than in the retentate after 

concentration and 100 fold higher than in the initial sample of the lactose hydrolyzed SM-UF-

permeate. The diafiltration resulted in a lower retention of MOS in retentate but also in a 

much higher content of MOS in relation to total sugar content because of the higher 

permeation of monosaccharides. However, the content of MOS in relation to total sugar 

content in the retentate from laboratory scale NF is 3 fold higher than in retentate after 

diafiltration from industrial scale NF. A reason for the lower separation of the residual sugars 

from the MOS on industrial scale could be the diafiltration with 4.6 diavolumes. Diafiltration 

on laboratory scale was performed with 10 diavolumes. For a better separation of the residual 

sugar from the MOS in retentate produced on industrial scale, a further NF and diafiltration 

with the spiral-wound membranes SR 50 and DL might be useful.  

The dry mass of the NF retentate after diafiltration is composed of 2.3 % protein, 0.6 % non-

protein nitrogen, 2.6 % MOS (3’-SL, 6’-SL, GalNAC-Gal-Glc), 28.3 % mono- and 

disaccharides (glucose, galactose, lactose), 23.5 % citric acid and 24.7 % ash. These results 

are comparable to the findings of Mehra et al. (2014) [7]. In this study MOS were enriched by 

ultrafiltration in previously clarified mother liquor. The concentration of sialyl-lactoses (3’-

SL, 6’-SL), ash and disaccharides (lactose) in the concentrate are at the same level as in our 

experiments on industrial scale. However, the protein content (7.4 %) was 5-fold higher and 

the non-protein nitrogen content (2.0 %) was about 3-fold higher than in the NF-retentate 

produced on industrial scale in our study. It can be concluded that our experiment on 

industrial scale resulted in a MOS concentrate with comparable composition than the 

concentrate of Mehra et al. (2014) [7] but lower protein and non-protein nitrogen content. It 

has to be considered that apart from diafiltration also other parameters could influence the 

permeation of mono-and disaccharides. Even though the NF on pilot plant scale was also 

performed in the same manner as on laboratory scale with 10 diavolumes, the content of MOS 

in relation to total sugar content on pilot plant scale was lower than on laboratory and 

industrial scale. The permeate flux of the NF on industrial scale was with 9.4 L m
-2

 h
-1

 at the 
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same level as by application of the membranes MPF 36 (10.9 L m
-2

 h
-1

) and GE (7.8 L m
-2

 h
-

1
) on laboratory scale. 

II.4.2 Composition of sugars in MOS concentrates 

Figure 2.4 shows the HPAEC chromatograms of the initial SM-UF-permeate (I), the lactose 

hydrolyzed SM-UF-permeate (II), and the NF retentate after diafiltration by the DOW 

membrane at 10-15 bar (III, industrial scale). Due to the separation of interfering high 

amounts of mono- and disaccharides by sample pretreatment with graphitized carbon solid-

phase extraction, only low residual amounts of galactose (peak 1), glucose (peak 2) and 

lactose (peak 3) were detected in the samples. In bovine colostrum more than fifty different 

milk oligosaccharides have been detected and 37 oligosaccharides have been structural 

characterized [29-31]. Thirteen of the complex oligosaccharides in bovine milk have been 

identified previously in human milk. In mature bovine milk the concentration of the 

oligosaccharides is low compared to colostrum [10]. In the SM-UF-permeate (I) the most 

abundant oligosaccharides GalNAc(α1-3)-Gal(β1-4)-Glc (peak 5, retention time 23.9 min), 

6’-SL (peak 6, retention time 39.3 min), 3’-SL (peak 7, retention time 39.8 min) and a 

hexosetrisaccharide (Peak *, retention time 34.3 min) could be identified by their molecular 

masses and fragmentation patterns in the ms
2
 mass spectra. Four different galactotrioses have 

been so far characterized in bovine milk [31] : Gal(α1-3)-Gal(β1-4)-Glc, Gal(β1-3)-Gal(β1-

4)-Glc, Gal(β1-4)-Gal(β1-4)-Glc (4-GL), and Gal(β1-6)-Gal(β1-4)-Glc (6-GL). According to 

the retention time this galactotriose could be related to Gal(α1-3)-Gal(β1-4)-Glc or Gal(β1-3)-

Gal(β1-4)-Glc, but Gal(α1-3)-Gal(β1-4)-Glc has been described as most abundant 

galactotriose in bovine milk [30]. 
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Fig. 2.4 HPAEC chromatograms of the SM-UF-permeate before lactose hydrolysis (I) lactose 

hydrolyzed SM-UF-permeate (II), and NF retentate after diafiltration of the membrane DOW at 10-15 

bar (III, industrial scale). For separation of mono- and disaccharides samples were purified by 

graphitized carbon solid-phase extraction. (1= galactose, 2= glucose, 3= lactose, 4= 6’-glalctosyl-

lactose, 5= GalNAc-Gal-Glc, 6= 6’-SL, 7= 3’-SL, * = GOS). 

 

 

The comparison of the SM-UF-permeate before lactose hydrolysis (I) and after lactose 

hydrolysis (II) reveals comparable peak areas of the MOS (Peaks 5-7). Obviously, the process 

of enzymatic lactose hydrolysis did not led to a degradation of the MOS. However, as a result 

of the lactose hydrolysis by the β-galactosidase from Kluyveromyces lactis considerably 

amounts of galacto-oligosaccharides (GOS, indicated with an asterisk) were synthesized. The 

GOS 6’-galactosyllactose is depicted in peak 4 at a retention time of 22.6 min in the lactose 

hydrolyzed SM-UF-permeate (II) and in the NF retentate after diafiltration applying the DOW 

membrane. As described in a study by Frenzel et al. 2015, 6’-glalctosyllactose belongs to the 

main GOS produced by the transgalactosylation activity of this β-galactosidase [23]. 

Moreover, other GOS were detected in the lactose hydrolyzed SM-UF-permeate (II) (peaks 
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indicated with asterisk). In comparison to the chromatogram of the SM-UF-permeate (I) a 

significant increase of the galactotriose (Peak *, retention time 34.3 min) could also be 

detected in the lactose hydrolyzed SM-UF-permeate (II) indicating also the synthesis of 

Gal(β-13)-Gal(β1-4)-Glc by the transgalactosylation activity of this β-galactosidase. In the 

retentate produced on industrial scale NF using the membrane DOW (III), a markedly 

increase of the peak areas of the MOS (peaks 5-7) and GOS (peak 4 and peaks with asterisks) 

in comparison to the SM-UF-permeate before lactose hydrolysis (I) and after lactose 

hydrolysis (II) can be seen. 

 

II.4.3 The effect of MOS concentrates on the NFκB activity in TNF-α induced HEK
nfkb-RE 

cells 

Applying the NF on pilot plant and industrial scale provided a sufficient amount of MOS 

concentrates for the evaluation of the immune stimulatory effects. Therefore, the effect of the 

NF retentates on NFκB activity in HEK
nfkb-RE 

cells in vitro was evaluated. Luciferase activity 

of cells treated with DMEM medium without sample was standardized to 1 (Figure 2.5). The 

lactose hydrolyzed SM-UF-permeate and the retentates produced by NF on pilot plant and 

industrial scale revealed increased luciferase activity, and therefore, increased NFκB activity 

in HEK
nfκb-RE

 cells. Addition of the lactose hydrolyzed SM-UF-permeate to the cells resulted 

in an over 1.5 fold increase of luciferase activity from 1 to 1.8 ± 0.6. The highest luciferase 

activity (2.8 ± 0.3) was measured by incubation of the cells with the NF retentate produced by 

the membrane DL on pilot plant scale filtration. The retentate generated on pilot plant scale 

NF with the membrane SR50 showed also an increased luciferase activity (1.7  ± 0.2) in 

comparison to the control. An effect in the same order of magnitude was achieved by 

incubation of the cells with the retentate generated on industrial scale NF with the membrane 

DOW. Moreover, treatment of cells with the standard 6’-SL resulted in a significant increase 

in luciferase activity (1.5 ± 0.1). Also the standard 3’-SL showed an increased luciferase 

activity at the same level (1.6 ± 0.3).  
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Fig. 2.5 Potentially immunostimulatory activity of NF retentates in HEK
nfκB-RE 

cells measured as 

luciferase activity. Lactose hydrolyzed SM-UF permeate, NF retentates produced by the membranes 

DL and SR 50 on pilot plant scale, NF retentates generated by the module DOW on industrial scale, 

and the standards 6’-SL, 3’-SL, and lactose were tested. Luminescence of treated cells is shown as 

fold increase compared with the control (=1). Values are means ± standard deviations (SD) of two NF 

retentates with at least two independent replicates of cell incubation and luciferase activity 

determination. Significance values were calculated using Kruskal Wallis one-way analysis followed 

by the Dunn’s multiple comparison test. Significance values were determined in comparison to the 

control without sample, ***: p< 0.001 versus control, **: p< 0.01 versus control, *: p< 0.05 versus 

control. 

 

 

The incubation of the TNF-α stimulated cells with lactose exhibited no significant effect on 

luciferase activity in comparison to the control. The increase of the NFκB-activity in TNF-α 

stimulated HEK
nfkb-RE 

cells by incubation with NF-retentates and the standards 6’-SL and 3’-

SL can be an incident for an immunostimulatory activity of MOS. As reported in the 

introduction, the immunostimulatory activity of MOS by the increase of cytokine production 
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was measured in different cells. Moreover, a regulating effect of MOS on the cytokine 

production was observed. While the incubation of IEC18 cells with MOS from goat milk 

exhibited an increased cytokine production in comparison to control without MOS, the 

treatment of these cells with MOS and the endotoxin LPS resulted in a reduction of cytokine 

production compared with cells which were incubated only with LPS. There is no significant 

difference in the concentration of cytokines produced by incubation of cells with MOS or 

MOS and LPS [32]. 

It has to be considered that the MOS concentrates can also contain further substances such as 

peptides, nucleotides or GOS, which could influence the effect of NFκB activity the 

stimulated cells. As shown in Figure 4 some GOS are present in the NF-retentates. Ortega-

González et al. reported also about an increase of cytokine production (GROα, MIP2, MCP1, 

GRO) in intestinal epithelial cells from rat (IEC18 cells) by activation of NFκB during 

incubation with GOS. However, the cytokine production was not as high as by treatment with 

MOS from goat milk and this effect could not be observed in human HT29 cells [32].  
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II.5 Conclusion 

The paper presents studies about the enrichment of MOS in lactose hydrolyzed skimmed and 

ultrafiltered milk permeate (SM-UF-permeate) by nanofiltration (NF) on laboratory, pilot 

plant and industrial scale. Most efficient results were achieved by application of membranes 

with a NMWCO of 150-400 Da. On laboratory scale, NF with the flat-sheet membranes DL 

and SR 100 resulted in a retention of MOS of 49.0 % to 84.8 %. The same level of retention 

could be achieved by application of the spiral-wound modules DL and SR 50 on pilot plant 

scale and by the membrane DOW on industrial scale NF. As a result of the feasibility study to 

transfer the NF process to large scale, markedly higher yields of MOS could be achieved. 

After NF on industrial scale using the module DOW a content of MOS in relation to total 

sugar content of 10.6 ± 2.5 % were reached (initial sample 0.1 – 0.2 %). This is equivalent to 

an enrichment of MOS by the factor 100. Therefore, the process developed, enables the 

successful enrichment of MOS and permeation of mono- and disaccharides during NF on 

industrial scale. The process parameters permeate flux and pressure could not be correlated to 

the retention of MOS in retentate or on the MOS content in relation to total sugar content. In 

consideration of the immune regulating role of NFκB, the evaluation of the influence of the 

NF retentate on this transcription factor in HEK
nfκB-RE

 cells is an incidence for 

immunostimulatory properties of the MOS concentrates. 

The immunostimulatory effect of the MOS concentrates has to be further investigated in vitro 

e.g. by the measurement of the secretion and expression of cytokines in immune cells. In 

addition, it is important to investigate the immunostimulatory activity of the NF retentates in 

humans by a clinical trial in vivo. Moreover, a study about the filtration characteristics during 

the NF for the enrichment of MOS would help to understand the building and composition of 

the deposition of the layer and give additional information about the retention properties. 

Depending on the further application and preferences, it could be advantageous to conduct a 

further NF of the MOS concentrate for the reduction of the salt content. 

Skimmed and ultrafiltered milk permeate is a product stream in the dairy industry and a high 

valuable source of MOS. This study shows process parameters for a method for an 

enrichment of MOS by NF on industrial scale. The feasibility of the concentration of MOS on 

large scale devices can result in the development of a bioactive food ingredient for the 

beverage, food and infant formula industry. Although there exist a few studies about the 
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enrichment of MOS by NF, this is the first report about a screening of the efficiency of 

different NF membranes for the enrichment of MOS on different technological scales of 

production. Furthermore, the immunostimulatory effect of the MOS concentrates produced by 

membrane separation process has not been evaluated before. 

Acknowledgement 

This research project is funded by the Federal Ministry for Education and Research (BMBF) 

as part of the competence network “FoCus- Food Chain Plus”. NF on industrial scale was 

performed at the Theo Müller Group, Sachsenmilch, Leppersdorf, Germany.  



Chapter II 
 

93 

 

II.6 References 

1. ten Bruggencate SJM, Bovee-Oudenhoven IMJ, Feitsma AL, van Hoffen E, Schoterman 

MHC (2014) Functional role and mechanisms of sialyllactose and other sialylated milk 

oligosaccharides. Nutr Rev 72: 377-389 

2. Mehra R, Kelly P (2006) Milk oligosaccharides: structural and technological aspects. Int 

Dairy J 16: 1334-1340 

3. Kunz C, Rudloff S (2006) Health promoting aspects of milk oligosaccharides. Int Dairy J 

16: 1341-1346 

4. Oliveira DL, Wilbey RA, Grandison AS, Duarte LC, Roseiro LB (2012) Separation of 

oligosaccharides from caprine milk whey, prior to prebiotic evaluation. Int Dairy J 24: 

102-106 

5. Ninonuevo MR, Park Y, Yin H, Zhang J, Ward RE, Clowers BH, German JB, Freeman SL, 

Killeen K, Grimm R, Lebrilla CB (2006) A strategy for annotating the human milk 

glycome. J Agric Food Chem 54: 7471-7480 

6. Boehm G, Stahl B (2007) Oligosaccharides from milk. J of Nutr 137: 847S-849 

7. Mehra R, Barile D, Marotta M, Lebrilla CB, Chu C, German JB (2014) Novel high-

molecular weight fucosylated milk oligosaccharides identified in dairy streams. Plos One. 

doi:10.1371/journal.pone.0096040 

8. Gnoth MJ, Rudloff S, Kunz C, Kinne RKH (2001) Investigations of the in vitro transport of 

human milk oligosaccharides by a Caco-2 monolayer using a novel high performance 

liquid chromatography-mass spectrometry technique. J Biol Chem 276: 34363-34370 

9. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M, Pichler J, Dehlink E, Loibichler 

C, Urbanek R, Szepfalusi Z (2004) Human milk-derived oligosaccharides and plant-

derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. 

Pediatr Res 56: 536-540 

10. Lane JA, O'Callaghan J, Carrington SD, Hickey RM (2013) Transcriptional response of 

HT-29 intestinal epithelial cells to human and bovine milk oligosaccharides. Br J Nutr 110: 

2127-2137 



Chapter II 
 

94 

 

11. Kurakevich E, Hennet T, Hausmann M, Rogler G, Borsig L (2013) Milk oligosaccharide 

sialyl(alpha2,3)lactose activates intestinal CD11c+ cells through TLR4. Proc Natl Acad 

Sci USA 110: 17444-17449 

12. Rijnierse A, Jeurink PV, van Esch BCAM, Garssen J, Knippels LMJ (2011) Food-derived 

oligosaccharides exhibit pharmaceutical properties. European Journal of Pharmacology 

668, (Supplement 1): 117-S123 

13. Comstock SS, Wang M, Hester SN, Li M, Donovan SM (2014) Select human milk 

oligosaccharides directly modulate peripheral blood mononuclear cells isolated from 10-d-

old pigs. Br J Nutr 111: 819-828 

14. Mills S, Ross RP, Hill C, Fitzgerald GF, Stanton C (2011) Milk intelligence: mining milk 

for bioactive substances associated with human health. Int Dairy J 21: 377-401 

15. Capitán-Cañadas F, Ortega-González M, Guadix E, Zarzuelo A, Suárez MD, de Medina 

FS, Martínez-Augustin O (2014) Prebiotic oligosaccharides directly modulate 

proinflammatory cytokine production in monocytes via activation of TLR4. Mol Nutr Food 

Res 58: 1098-1110 

16. Gopal PK, Gill HS (2000) Oligosaccharides and glycoconjugates in bovine milk and 

colostrum. Br J Nutr 84: 69-74 

17. Zivkovic AM, Barile D (2011) Bovine milk as a source of functional oligosaccharides for 

improving human health. Adv Nutr 2: 284-289 

18. Martinez-Ferez A, Guadix A, Guadix EM (2006) Recovery of caprine milk 

oligosaccharides with ceramic membranes. J Membr Sci 276: 23-30 

19. Sarney DB, Hale C, Frankel G, Vulfson EN (2000) A novel approach to the recovery of 

biologically active oligosaccharides from milk using a combination of enzymatic treatment 

and nanofiltration. Biotechnol Bioeng 69: 461-467 

20. Oliveira D, Wilbey RA, Grandison A, Roseiro L (2014) Natural caprine whey 

oligosaccharides separated by membrane technology and profile evaluation by capillary 

electrophoresis. Food Bioprocess Technol 7: 915-920 

21. Packer N, Lawson M, Jardine D, Redmond J (1998) A general approach to desalting 

oligosaccharides released from glycoproteins. Glycoconj J 15: 737-747 



Chapter II 
 

95 

 

22. Bruggink C, Maurer R, Herrmann H, Cavalli S, Hoefler F (2005) Analysis of 

carbohydrates by anion exchange chromatography and mass spectrometry. J of 

Chromatogr A 1085: 104-109 

23. Frenzel M, Zerge K, Clawin-Rädecker I, Lorenzen PC (2015) Comparison of the galacto-

oligosaccharide forming activity of different β-galactosidases. LWT - Food Sci Technol 

60: 1068-1071 

24. Zerge K (2014) Charakterisierung und Gewinnung von Oligosacchariden als potenielle 

funktionelle Lebensmittelinhaltsstoffe. Doctoral Thesis,Technical University Dresden, 

Dresden, Germany 

25. Malinowski J, Klempt M, Clawin-Rädecker I, Lorenzen PC, Meisel H (2014) 

Identification of a NFκB inhibitory peptide from tryptic β-casein hydrolysate. Food Chem 

165: 129-133 

26. Fong B, Ma K, McJarrow P (2011) Quantification of bovine milk oligosaccharides using 

liquid chromatography–selected reaction monitoring–mass spectrometry. J Agric Food 

Chem 59: 9788-9795 

27. Luo J, Nordvang RT, Morthensen ST, Zeuner B, Meyer AS, Mikkelsen JD, Pinelo M 

(2014) An integrated membrane system for the biocatalytic production of 3′-sialyllactose 

from dairy by-products. Bioresour Technol 166: 9-16 

28. Schlimme E, Buchheim W (1999) Milch und ihre Inhaltstoffe. Chemische und 

Physikalische Eigenschaften. Th. Mann, Gelsenkirchen, Germany 

29. Mariño K, Lane JA, Abrahams JL, Struwe WB, Harvey DJ, Marotta M, Hickey RM, 

Rudd PM (2011) Method for milk oligosaccharide profiling by 2-aminobenzamide labeling 

and hydrophilic interaction chromatography. Glycobiology 21: 1317-1330 

30. Albrecht S, Lane AL, Mariño K, Al Busadah KA, Carrington SD, Hickey RM, Rudd PM 

(2014) A comparative study of free oligosaccharides in the milk of domestic animals. Br J 

Nutr 111: 1313-1328 

31. Urashima T, Fujita S, Fukuda K, Nakamura T, Saito T, Cowan P, Messer M (2014) 

Chemical characterization of milk oligosaccharides of the common brushtail possum 

(Trichosurus vulpecula). Glycoconj J 31: 387-399 



Chapter II 
 

96 

 

32. Ortega-González M, Ocón B, Romero-Calvo I, Anzola A, Guadix E, Zarzuelo A, Suárez 

MD, Sánchez de Medina F, Martínez-Augustin O (2014) Nondigestible oligosaccharides 

exert nonprebiotic effects on intestinal epithelial cells enhancing the immune response via 

activation of TLR4-NFκB. Mol Nutr Food Res 58: 384-393 

 



Chapter III 
 

 

97 

 

Chapter III 

NF enrichment of milk oligosaccharides (MOS) 

in relation to process parameters 

 

 

Karina Altmann*, Ingrid Clawin-Rädecker, Wolfgang Hoffmann, Peter Chr. Lorenzen 

 

 

 

Submitted in Food and Bioprocess Technology 

12 October 2015 

Currently under review. 

 

 

 

 

 

 

Max Rubner-Institut Kiel, Department of Safety and Quality of Milk and Fish Products, 

Hermann-Weigmann-Straße 1, 24103 Kiel, Germany 

*corresponding author  



Chapter III 
 

 

98 

 

III.1 Abstract 

Concentrates containing bioactive milk oligosaccharides (MOS) are not yet available as 

functional ingredients for food, because of the lack of suitable procedures for their 

enrichment. 

The aim of the present study was to develop an optimized nanofiltration (NF) process for the 

enrichment of MOS on pilot plant scale by achieving a better permeation of milk salts and 

residual sugars during NF at acidic (pH 5) and neutral (pH 7) milieu. A bovine retentate 

produced by NF with a 100-fold increase of MOS content in relation to total sugar content 

was applied. In addition, the process should be suitable for the enrichment of MOS in caprine 

milk. 

MOS were identified by high performance anion exchange chromatography with pulsed 

amperometric detection. Generally, a higher enrichment of MOS in the final NF retentate (14 

% MOS in dry mass, 5-fold higher than in first NF retentate, 140-fold higher than in initial 

sample) and a better separation of salts and residual sugars were achieved in bovine milk by 

NF at pH 5. The high MOS content in relation to total sugar content in the final NF retentate 

(92 %, 9-fold than in first NF retentate, 900-fold higher than in initial sample) indicated a 

nearly complete permeation of mono- and disaccharides. NF of caprine milk resulted in a 23-

fold to 31-fold higher MOS content in relation to total sugar content than in the initial sample. 

With the present work the influence of the pH on the degree of enrichment of MOS by NF 

was evaluated for the first time. 

 

 

 

 

Keywords 

Enrichment of milk oligosaccharides (MOS), nanofiltration (NF), bovine milk, caprine milk, 

retention of MOS, MOS content in relation to total sugar content  
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III.2 Introduction 

Milk oligosaccharides (MOS) stimulate the immune system, inhibit the adhesion of pathogens 

on the epithelial surface and exhibit prebiotic activity (ten Bruggencate et al. 2014; Kunz and 

Rudloff 2006; Bode 2009; Gopal and Gill 2000; A Martinez-Ferez et al. 2006; R. Mehra and 

Kelly 2006). Especially in human milk, the concentration of MOS (5-8 g/L) is very high 

consisting of 200 different molecular structures, which are composed to 50-80 % neutral 

mainly fucosylated sugars and to 10-30 % acidic sialylated sugars (D. L. Oliveira et al. 2015; 

Bode 2012). Milk from domestic animals has a various oligosaccharide in common with 

human milk, even though their structure is less complex (Albrecht et al. 2014; Thum et al. 

2015; Urashima et al. 2001; Boehm and Stahl 2007). Therefore, the scientists make efforts to 

develop procedures for the preparation of MOS concentrates as an alternative of MOS from 

human milk (D. L. Oliveira et al. 2015). Unfortunately, the MOS content in animal milk is 

markedly lower than in human milk. Bovine milk contains only 0.03-0.06 g/L MOS 

consisting of 91 % acidic acidic sugars (mainly 3-sialyl-lactose and 6-sialyl-lactose) (Albrecht 

et al. 2014). Oliveira et al. 2015 and Kiskini et al. 2013 reported that the amount of MOS in 

caprine milk is about 0.25-0.30 g/L and thereby 5-fold higher than in bovine milk, but still 

significantly lower than in human milk (Kiskini and Difilippo 2013; D. L. Oliveira et al. 

2015). Caprine milk has a high level of sialylated (95 %) oligosaccharides and a neutral 

oligosaccharide fraction (5 %)  with a profile closer to that of human milk than bovine or 

ovine milk profiles (Albrecht et al. 2014) (D. L. Oliveira et al. 2015). 

MOS retentates are not yet available as functional ingredients for the food industry, because 

of the lack of established processes for their enrichment. Because of the low MOS 

concentration in domestic animal milk, and high capital cost and operational complexity no 

processes for the enrichment of MOS have been efficiently implemented on industrial scale so 

far. Only a few studies reported about the enrichment of MOS by membrane separation on 

laboratory scale (A. Martinez-Ferez et al. 2006; Sarney et al. 2000; D. Oliveira et al. 2014; 

Martinez-Ferez et al. 2008; A Martinez-Ferez et al. 2006; D. L. Oliveira et al. 2012). In a 

study from Mehra et al. (Raj Mehra et al. 2014) the concentration of bovine MOS by 

ultrafiltration (UF) on industrial scale was performed. Moreover, in our previous work 

(Altmann et al. 2015), a screening of the efficiency of different nanofiltration (NF) 

membranes for the enrichment of MOS on laboratory, pilot plant and industrial scale has been 
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performed for the first time. The NF retentate produced on industrial scale contained 10.6 % 

MOS (N-acetylgalactosaminyl-lactose, 3-sialyl-lactose, 6-sialyl-lactose) in total sugar, and 

28.3 % monosaccharides (glucose, galactose), 24.7 % ash and 23.5 % citric acid in dry mass. 

These results are comparable to the achievement of Mehra et al. (2014), even though the 

filtration processes were conducted differently. 

Depending on the envisage targets, a high recovery of MOS and/or a high purity of the 

retentate can be reached. For getting a higher purity of the MOS retentate, lactose has to be 

hydrolyzed to achieve a higher permeation of the saccharides and conditions for facilitating 

the permeation of milk salts have to be chosen. The pH has a strong impact on the 

dissociation degree of salts. For example, acidification to pH 5 increases dissociation of milk 

salts, especially calcium, and improves the permeation of the minerals due to its lower 

molecular masses. An improved separation of MOS from residual monosaccharides can be 

achieved by increasing the number of diafiltration steps with water. 

Therefore, the aim of the present study was a further optimization of the process on pilot plant 

scale by achieving a better permeation of milk salts and residual sugars by nanofiltration (NF) 

at acidic (pH 5) and neutral milieu (pH 7). In addition, the process should be suitable for the 

enrichment of MOS in caprine milk. 
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III.3 Materials and Methods 

III.3.1 Nanofiltration assays 

In this work a pre-manufactured NF retentate of SM-UF permeate from bovine milk was used 

as a basic raw material for further NF. The method of the enrichment of MOS for production 

of the raw material is described in a study before (Altmann et al. 2015). In brief, bovine milk 

(from the Theo Müller Group, Sachsenmilch, Leppersdorf, Germany) was skimmed and 

ultrafiltered in order to get a skimmed milk permeate (bovine SM-UF permeate). For a better 

separation of the MOS from the residual sugar, the lactose in bovine SM-UF permeate was 

hydrolyzed (150 NL U/g lactose) by β-galactosidase (HA-Lactase 2100, Chr. Hansen, DK-

2970 Horsholm, Denmark, 150 NL U/g lactose) at 40°C for 3 h in a tank reactor while stirring 

(Fig. 3.1 a).  

 

 

Fig. 3.1 a) Process for the enrichment of MOS by NF from bovine milk. 
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For the enrichment of MOS a first NF was conducted by using the spiral wound membrane 

module DOW
®
 (NF-380-30-FF, the DOW chemical company, Midland, USA) on industrial 

scale in cooperation with the Theo Müller Group. 1000 L of lactose hydrolyzed SM-UF 

permeate were concentrated to 100 L (concentration factor = 10). The NF retentate was 

diafiltered with 460 L demineralized water (4.6 diavolumes). This bovine NF retentate (Fig. 

3.1a) was the source for the experiments in this study. 

Initially, one half of the bovine NF retentate was adjusted to pH 5 and the other half of the 

concentrate was adjusted to pH 7 and heated for 1 h at 75°C. The precipitates in the NF 

retentates were separated by centrifugation. For a further enrichment of MOS in the NF 

retentates and a better separation of residual sugars and salts a second NF was conducted. 

These cross-flow NFs were performed with the bovine NF retentate at pH 5 and 7 using the 

spiral wound membrane module DL (150-300 Da nominal molecular weight cut-off 

(NMWCO), 1.7 m
2 

active membrane area) (Table 3.1). The membrane filtration was 

performed with the Alfa Laval Lab M20 device (Alfa Laval Corporate AB, SE-22655, Lund, 

Sweden) at 5 bar and 40 °C. 
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Table 3.1 Properties of NF membranes applied for the enrichment of MOS on pilot plant scale and corresponding experimental set-ups (a= 

module DL; b= module SR 50; NMWCO = nominal molecular weight cut-off; concentration factor CF= the ratio of the initial feed volume Vf 

[L] to the retentate volume Vr [L]; diavolume DV = the ratio of the total volume of liquid permeated Vp [L] and the initial volume). 

Dimensions of 

experiments 
Spiral-wound membranes Manufacturer Material 

NMWCO 

[Da] 

Active 

membrane area 

Pilot plant scale SR 50 (2540 SR2-N1)® Koch Membrane Systems thin film composite 300-400 2.5 m
2 

 DL (2540C1077)® Desalogics thin film 150-300 1.7 m
2 

Experimental set-up 

Origin of milk 
Temperature 

[°C] 

Pressure 

[bar] 

Initial feed volume  

(Vf) [L] 

Concentration factor 

(CF) 

Diavolume 

(DV) 

Flux (F)  

[L/m
2
h] 

Caprine milk 40 5 6 2 10 
37.6 ± 1.0  

a
 

28.7 ± 1.6  
b
 

Bovine milk 40 5 10 4 20 
31.6 ± 2.6  

a,c
 

27.8 ± 0.2 
a,d
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For characterization of the NF process, the following parameters were considered: 

In the first part of NF, the initial sample was concentrated to enrich the content of MOS in NF 

retentate. The concentration factor CF is the ratio of the initial feed volume Vf [L] to the 

retentate volume Vr [L]. 

(1) 

   
  

  
 

In the second part the retentate was diafiltered with demineralized water to decrease the 

contents of glucose, galactose, residues of lactose, and milk salts in the MOS retentate. The 

number of diavolumes DV is defined as the ratio of the total volume of liquid permeated Vp 

[L] and the initial volume, which corresponds to the retentate volume Vr [L] from the first step 

of the NF in our ecperiments. 

(2) 

   
  

  
 

The volumetric flux of permeate F [L/m
2
h

1
] is the ratio of liquid Vp [L] permeated in one hour 

t [h] and the active membrane area A [m
2
] of the corresponding module. 

(3) 

  
  

   
 

Another important parameter is the percental retention Ri of a component i (e.g. 3’-SL, 6’-SL, 

GalNAc-Gal-Gluc) in NF retentate. Cr,i is the concentration of the component i in retentate 

and Cf,i is the concentration of the component i in the initial feed sample. 

(4) 
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Furthermore, the percental content of MOS (3’-SL, 6’-SL, GalNAc-Gal-Glc) in relation to 

total sugar content (quantified major MOS, glucose components, galactose, lactose) MMOS/total 

sugar was calculated as ratio of the concentration of MOS in retentate Cr,MOS [mg/L] to the 

concentration of total sugar in retentate Cr,total sugar [mg/L]. 

(5) 

                 
       

               
     

 

At the beginning of nanofiltering the bovine concentrate, retentate and permeate were 

circulating in the filtration device for 30 min to firm a deposit layer. 10 L of the NF retentate 

at pH 5 and 7 were concentrated to 2.5 L (concentration factor= 4). The NF retentate was 

diafiltered with 20 diavolumes by stepwise addition of 10 L demineralized water to 2.5 L 

retentate for five times. Water was added when retentate was concentrated to 2.5 L. After 

discontinuous diafiltration with 50 L demineralized water, the NF retentate was further 

concentrated up to the residual volume of the filtration device of 2.2-2.4 L. 

Caprine milk (from the caprine farm Rehder, Boksee, Germany) was skimmed using a disc 

centrifuge (LWA 205-1, Westfalia Separator AG, 4740 Oelde, Germany) and ultrafiltered on 

a 5 kDa hollow fiber membrane (CTG.1” HF 1.0-43-PM5-P3, Koch Membrane Systems, 

Wilmington, USA). The lactose in the caprine skimmed and ultrafiltered milk permeate 

(caprine SM-UF permeate) was hydrolyzed (150 NL U/g lactose) (HA-Lactase 2100, Chr. 

Hansen, DK-2970 Horsholm, Denmark, 150 NL U/g lactose) at 40°C for 3 h in a tank reactor 

while stirring (Fig. 3.1 b). For the enrichment of MOS, cross-flow NFs of the lactose 

hydrolyzed SM-UF-permeate were performed at 5 bar and 40°C (Table 3.1) by using the 

spiral wound membrane modules DL (150-300 Da NMWCO, 1.7 m
2 

active membrane area) 

and SR 50 (300-400 Da NMWCO, 2.5 m
2
 active membrane area). The membrane filtration 

was performed with the Alfa Laval Lab M20 device (Alfa Laval Corporate AB, SE-22655, 

Lund, Sweden). To get a deposit layer, retentate and permeate were circulating in the unit for 

30 min. Then 6 L of lactose hydrolyzed caprine SM-UF permeate were concentrated to 3 L 

(concentration factor= 2). The NF retentate was diafiltered with 10 diavolumes by adding 

stepwise 6 L of demineralized water for 5 times when the retentate was concentrated to 3 L. 
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After discontinuous diafiltration with 30 L water, the NF retentate was concentrated to the 

residual volume of the membrane device of 2.2-2.4 L. 

 

 

Fig. 3.1 b) Process for the enrichment of MOS by NF from caprine milk. 
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III.3.2 Analytical methods 

III.3.2.1 Quantification of MOS, mono- and disaccharides 

III.3.2.1.1 Sample pretreatment 

Milk oligosaccharides were purified by graphitized carbon solid-phase extraction according to 

Altmann et al. 2015 (Altmann et al. 2015). For the determination of galactose, glucose and 

lactose content the samples were clarified using Carrez solutions I and II. 

III.3.2.1.2 Determination of milk oligosaccharides by HPAEC-PAD/MS 

The analyses of carbohydrates were performed by a high performance anion exchange 

chromatography with pulsed amperometric detection and parallel online mass spectrometry 

(Bruggink et al. 2005; Frenzel et al. 2015; Zerge 2014; Altmann et al. 2015).  

Pretreatment and analysis of the samples were performed in duplicate. Glucose, galactose, 

lactose (from VWR, Darmstadt, Germany), N-acetyl-galactosaminyl-lactose (GalNAc-Gal-

Glc) (from McBiTec, Strasbourg, France), 6-sialyl-lactose (6’-SL) and 3-sialyl-lactose (3’-

SL) (from Carbosynth, Berkshire, U.K.) were used as external standards. For characterization 

of the sample pretreatment the recovery of the individual oligosaccharides in the samples was 

determined (bovine milk: 79.9 +/- 5.7 % for 3’-SL, 85.5 +/- 0.5 % for 6’-SL and 96.2 +/- 2.9 

% for GalNAc-Gal-Glc; caprine SM-UF permeate: 58.3 +/- 4.0 % for 3’-SL and 66.5 ± 2.5 % 

for 6’-SL; caprine NF retentates: 89.2 +/- 5.5 % for 3’-SL and 91.6 +/- 2.6 % for 6’-SL). 

III.3.2.2 Quantification of other components 

Dry mass was measured by the VDLUFA method C 35.5 (VDLUFA 1995c). Total nitrogen 

content in the samples were measured by the Kjeldahl method (VDLUFA VI C 30.2) 

(VDLUFA 1995b). The ash content was measured according to the method VDLUFA VI C 

10.2 (VDLUFA 1995a). Determination of the salts Na, K, Mg, Ca and P were performed with 

slight modifications according to the method VDLUFA III 10.8.1.2 and 10.8.2 (VDLUFA 

1976a, 1976b). The citric acid content was measured with a test kit (r-biopharm AG, 

Darmstadt, Germany).  
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III.4 Results and Discussion 

III.4.1 Enrichment of MOS from bovine milk 

For the further enrichment of MOS and a better permeation of milk salts and residual sugars 

from bovine milk permeate, an additional NF using a MOS concentrate produced on industrial 

scale as a basic raw material was performed at pH 5 and pH 7. The production of the MOS 

retentate on industrial scale was described in our previous study (Altmann et al. 2015) and 

briefly in materials and methods (Fig. 3.1a). For the second NF on pilot plant scale the spiral 

wound module DL with a NMWCO of 150-300 Da was applied (Table 3.1). The MOS 

content was quantified by determination of the main components of the MOS fraction (6’-SL, 

3’-SL, GalNAc-Gal-Glc) in bovine milk. The contents of the MOS and of the other solids in 

the samples determined as average of two different NFs are listed in Table 3.2 a) and b). The 

composition of the initial samples (pre-manufactured bovine NF retentate DOW) at pH 5 and 

7 were comparable. No significant differences in the compositions of the initial samples (pre-

manufactured bovine NF retentate DOW) and the pH adjusted initial NF retentates at pH 5 

and 7 were determined. The concentrates exhibited a dry mass content of 27.3 g/L to 27.9 g/L, 

which is composed of 3.4 % to 3.7 % MOS, of 34.4 % to 37.0 % mono- and disaccharides, of 

14.4 % to 15.1 % citric acid, of 1.0 % to 1.3 % total nitrogen and of 21.23 % to 25.6 % ash. 

The composition of the initial samples is comparable before and after pH adjustment. 

Depending on the envisage targets, a high recovery of MOS and/or a high purity of the 

retentate can be reached. Application of a further NF process at different pH environments, let 

to reduced concentrations of mono- and disaccharides as well as of citric acid and ash 

contents. Because of the concentration factor of 4 during NF, the highest possible MOS 

content, which could be attained, was the 5-fold of the concentration in the initial sample. In 

the bovine NF retentate after concentration at pH 5 the dry mass content of 33.1 g/L was 

slightly higher than in the initial sample. When considering the concentration of the sample 

during this NF step, it becomes evident that a high amount of solids was separated. The MOS 

content of 6.9 % in dry mass (2281.8 mg/mL) was doubled compared to the initial sample. 

The concentration of mono- and disaccharides (17.7 % in dry mass) was lower than in the 

initial sample, indicating a permeation of the residual sugars from the NF retentate. 
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Table 3.2 a) Concentration of MOS (3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-galactosaminyl-lactose), 

mono- and disaccharides (glucose, galactose, lactose), dry mass, citric acid, total nitrogen and ash in bovine NF retentates DOW, NF retentates 

DL after concentration and NF retentates DL after diafiltration at pH 5 and pH 7 (average of two trials, n=2). The recovery of the standards was: 

bovine milk: 79.9 +/- 5.7 % for 3’-SL, 85.5 +/- 0.5 % for 6’-SL and 96.2 +/- 2.9 % for GalNAc-Gal-Glc. 

Sample 
Bovine NF retentate DOW  

initial sample 

Bovine NF retentate DL 

after concentration 

Bovine NF retentate DL 

after diafiltration 

 pH 5 pH 7 pH 5 pH 7 pH 5 pH 7 

6‘-SL [mg/L] 110.7 +/- 38.6 122.8 +/- 29.6 269.2 +/- 91.2 221.9 +/- 46.1 352.9 +/- 102.9 311.7 +/- 78.9 

3‘-SL[mg/L] 591.0 +/- 185.8 662.2 +/- 134.2 1436.8 +/- 451.4 1446.6 +/- 390.9 1930.4 +/- 544.1 1857.0 +/- 552.3 

GalNAc-Gal-Glc 

[mg/L] 
228.3 +/- 23.7 255.5 +/- 14.2 575.7 +/- 59.9 572.3 +/- 46.1 730.4 +/- 20.6 639.9 +/- 30.2 

∑ MOS [mg/L] 930.0 1040.5 2281.8 2240.8 3013.7 2808.5 

Lactose [g/L] 0.1 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 0.0 +/- 0.0 0.1 +/- 0.0 

Glucose [g/L] 4.5 +/- 0.5 5.3 +/- 0.2 2.6 +/- 1.8 4.7 +/- 0.3 0.1 +/- 0.1 0.2 +/- 0.0 

Galactose [g/L] 4.9 +/- 0.2 5.0 +/- 0.1 3.1 +/- 1.4 4.6 +/- 0.2 0.1 +/- 0.0 0.2 +/- 0.0 

Dry mass [g/L] 27.3 +/- 0.5 27.9 +/- 0.6 33.1 +/- 9.6 42.7 +/- 0.6 21.3 +/- 0.5 33.7 +/- 0.7 

Citric acid [g/L] 4.1 +/- 1.6 4.0 +/- 0.3 6.1 +/- 2.5 8.4 +/- 0.8 2.8 +/- 0.2 9.9 +/- 0.4 

Total nitrogen 

[g/L] 
0.3 +/- 0.0 0.3 +/- 0.0 0.6 +/- 0.0 3.6 +/- 0.3 0.5 +/- 0.0 0.5 +/- 0.0 

Ash [g/L] 7.0 +/- 0.3 5.9 +/- 0.0 7.4 +/- 2.5 11.5 +/- 0.5 4.7 +/- 0.3 10.6 +/- 0.3 
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Even though the citric acid content (18.3 % in dry mass) was slightly higher than at the 

beginning, about 70 % were separated during the concentration process. In the bovine NF 

retentate after concentration at pH 7, the dry mass content of 42.7 g/L was higher than in the 

equivalent sample at pH 5. The MOS content of 5.3 % in dry mass was higher than in the 

initial sample but about 23 % lower than in the NF retentate after concentration at pH 5. With 

19.7 % in dry mass in the NF retentate at pH 7, the amount of citric acid was at the same level 

than in the corresponding sample at pH 5. The concentration of mono- and disaccharides in 

NF retentate after concentration at pH 7 was at the same level as at pH 5. 

 

Table 3.2 b) Composition of mineral compounds (sodium, potassium, magnesium, calcium, 

phosphor) in bovine NF retentates DOW and bovine NF retentates DL after diafiltration at pH 

5 and pH 7 (average of two trials, n=2). 

Sample 
Bovine NF retentate DOW  

initial sample 

Bovine NF retentate DL 

after diafiltration 

 pH 5 pH 7 pH 5 pH 7 

Sodium [g/L] 0.3 +/- 0.0 0.4 +/- 0.0 0.1 +/- 0.1 0.6 +/- 0.0 

Potassium [g/L] 1.4 +/- 0.0 1.4 +/- 0.0 0.2 +/- 0.1 2.2 +/- 0.0 

Magnesium [g/L] 0.3 +/- 0.0 0.2 +/- 0.0 0.4 +/- 0.1 0.6 +/- 0.0 

Calcium [g/L] 1.2 +/- 0.8 1.4 +/- 0.0 0.6 +/- 0.4 1.5 +/- 0.5 

Phosphor [g/L] 0.5 +/- 0.0 0.5 +/- 0.0 0.6 +/- 0.2 0.7 +/- 0.2 

 

The diafiltration was performed with 20 diavolumes. In bovine NF retentate after diafiltration 

at pH 5 the dry mass was 21.3 g/L and lower than in the initial sample before NF, indicating a 

high permeation of solids during this wash step. With 3013.7 mg/L, the MOS content 

contributed 14.1 % to the dry mass and was about 4.1-fold higher than in the initial sample. 

This is due to a combination of high permeation of solids and the concentration of MOS 

during NF. The content of mono- and disaccharides was 1.2 % in dry mass, indicating a 99 % 

permeation of the residual sugars in comparison to the initial sample. The content of citric 

acid was 13.3 % in dry mass and lower than in the initial sample at pH 5. With 21.8 % in dry 

mass the concentration of ash was slightly lower than in the initial sample. However, 

considering the 5-fold concentration, it becomes clear that the majority of ash was separated 

in the retentate at pH 5. In bovine NF retentate after diafiltration at pH 7 the dry mass was 

33.7 g/L. Even though the dry mass decreased during diafiltration indicating a permeation of 

solids, the content is markedly higher than in the equivalent sample at pH 5. Because of the 
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lower concentration of MOS (2808.5 g/L) and the higher content of solids, the MOS fraction 

in the NF retentate at pH 7 was with 8.3 % in dry mass about 40 % lower than in the retentate 

at pH 5. Reasons for the higher dry mass in the retentate after diafiltration at pH 7 are the 

distinctly higher contents of citric acid (29.3 % in dry mass) and ash (31.4 % in dry mass). 

The results show a higher enrichment of MOS and a better permeation of other solid 

compounds after NF and diafiltration at pH 5 in comparison to the same process at pH 7. 

While the permeation of mono- and disaccharides was the same at acidic and neutral pH, the 

separation of salts was markedly higher in the NF retentate after diafiltration at pH 5. In the 

SM-UF permeate the fat fraction, the caseins and whey proteins were separated by 

centrifugation followed by UF. Therefore, the salt content is assumed to be comparable to the 

concentrations in milk serum. The dissolved salts are presented as ions or molecules (ion pairs 

e.g. cations with anions) in the milk serum and the SM-UF permeate. At the original pH 6.7 in 

milk, many salts are only partly ionized (Lucey and Horne 2009; Walstra et al. 1999). While 

the monovalent cations Na
+
 and K

+
 are completely dissociated in the milk serum, the divalent 

ions Mg
2+ 

(64 % MgCit
-
, 26 % Mg 

2+
, 10 % MgPO4

-
), Ca

2+
 (55 % Ca-citrate

-
, 10 % CaHPO4, 

35 % Ca
2+

) as well as the counterions citrate (85 % Mg- or Ca-citrate, 14 % citrate
3-

) and 

phosphate (51 % H2PO4
-
, 39 % HPO4

2-
, 10 % CaPO4

-
 and MgPO4

-
) are presented partly 

ionized at the original pH of milk. Especially the molecules Ca-citrate- and Ca-phosphate are 

presented at appreciable amounts. In acidic milieu the dissociation of salts is higher (Töpel 

2004; Fox and McSweeney 2009), resulting in lower molecular masses. After NF at pH 5 a 79 

% higher permeation of citric acid and a 34 % higher permeation of calcium was measured in 

comparison to the process at pH 7. Moreover, at acidic pH the permeation of sodium was 70 

% higher and the permeation of potassium was 88 % higher than at neutral milieu. The higher 

dissociation of the salts at the acidic pH, especially of citrate and calcium possibly improved 

the permeation during NF due to its lower molecular masses. According to information of the 

membrane manufacturer, the pores of the membrane are slightly bigger at acidic milieu than 

in neutral environment (Alfa Laval Corporate AB). This might be another reason for the 

better separation of salts at the acidic pH. Rice et al. (2006) evaluated the fouling behavior of 

a thin film composite flat-sheet membrane (TFC-SR3), which is similar to the thin film 

composite membrane (SR 50) applied in this study, depending on the pH of the bovine SM-

UF permeate (feed solution). During acidic NF at pH 5 the flux decrease was about 20 % 

lower than at pH 8, indicating lower fouling of the membrane. This was due to the complete 
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dissociation of calcium at pH 5 (Rice et al. 2006) In our work, the permeate flux during the 

NF processes was 31.6 L/m
2
h at pH 5 and slightly higher than at pH 7 with 27.8 L/m

2
h

 
(Table 

3.1). Beside the better separation of the salts at acidic pH environment, the performance of the 

NF at pH 5 might be beneficial to decrease or even prevent the fouling of the membranes. 

When the membrane separation process should be performed over a long period of time a low 

fouling is particularly important. 

Fig. 3.2 indicates the retention of MOS (6’-SL, 3’-SL, GalNAc-Gal-Glc) in NF retentates 

after concentration and diafiltration at pH 5 and pH 7 using the spiral wound membrane 

module DL (white, grey and black bars, left ordinate). Furthermore the MOS content in 

relation to the total sugar content (MOS, lactose, glucose, galactose) is shown for these NF 

retentates (striped bars, right ordinate). The content of MOS in relation to the total sugar 

content in the initial sample before NF with the DL (bovine NF retentate DOW) at pH 5 was 

8.9 % and at the same level as at pH 7 with 9.2 %. After NF with the DL, the recovery of the 

three MOS in the NF retentate after concentration at pH 5 and pH 7 was between 47.7 % and 

66.0 %. Due to a low dilution of the samples with demineralized water in the amount of the 

residual volume of the filtration device, the recovery of the MOS within these samples is 

slightly higher than shown in the figure. The MOS content in relation to the total sugar 

content in the NF retentate after concentration at pH 5 was with 30.5 % more than 3-fold 

higher than in the initial sample. This is due to the permeation of mono- and disaccharides 

and the concentration of MOS during the concentration step. In the NF retentate after 

concentration at pH 7 a lower MOS content in relation to total sugar content was measured 

(19.2 %) due to a lower enrichment of MOS. Nevertheless, at pH 7 a good permeation of the 

mono- and disaccharides was achieved indicating a 2-fold higher MOS content in relation to 

total sugar content than in the initial sample. The retention of the MOS in the NF retentate 

after diafiltration at pH 5 was with 79.8 % very high. During diafiltration almost the all mono- 

and disaccharides permeated resulting in a very high MOS content in relation to the total 

sugar content of 92.1 % in the NF retentate at pH 5. The diafiltration at pH 7 led to 

comparable results. The retention of MOS was between 68.9 % and 75.6 % and the MOS 

content in relation to total sugar content was 87.3 % in the NF retentate after diafiltration at 

pH 7. 



Chapter III 
 

 

113 

 

 

Fig. 3.2 Retention of MOS by NF of bovine milk at pH 5 and pH 7 [%] (white, grey, and 

black bars; left ordinate) and MOS content in relation to the total sugar content [%] (striped 

bars, right ordinate), (average of two trials, n=2, 3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-

lactose, GalNAc-Gal-Glc = N-acetyl-galactosaminyl-lactose). MOS content in relation to total 

sugar content in the initial sample was 8.9 +/- 1.9 % at pH 5 and 9.2 +/- 1.6 % at pH 7. 

 

It can be summarized that the MOS content in relation to total sugar content in the NF 

retentate after diafiltration at pH 5 and pH 7 was about 9-fold higher than in the 

corresponding initial samples. During the concentration step the MOS were enriched and 
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mono- and disaccharides passed the NF membrane. The subsequent diafiltration with high 

amounts of water resulted in a nearly complete separation of mono- and disaccharides. 

Therefore, a multiple diafiltration is a key element for the permeation of residual sugars and 

salts. Because the degree of permeation of mono- and disaccharides was similar after 

concentration and diafiltration processes at pH 5 and 7, it can be concluded that the pH 

environment has nearly no influence on the permeation of the residual sugars. The acidic and 

the neutral MOS were retained at the same level indicating that the pH did not influence the 

separation behavior of the single MOS, too. However, the pH environment during NF has a 

high impact on the separation of salts from the MOS. Up to now, only a few studies dealt with 

the enrichment of MOS by NF of bovine milk. Because of the low concentrations of MOS in 

bovine milk Sarney et al. (2000) reported about a very small recovery of these 

oligosaccharides (Sarney et al. 2000). Therefore, a high concentration factor during the NF 

and the application of high amounts of a readily available source (e.g. a by-product of dairy 

industry) play a pivotal role for the efficient and economic enrichment of MOS from bovine 

milk. Mehra et al. (2014) used the available by-product mother liquor (the solution remaining 

after lactose crystallization and separation of a whey UF permeate) for the enrichment of 

MOS from bovine milk by NF on industrial scale (Raj Mehra et al. 2014). As described in the 

introduction, the MOS retentate, produced by this research group, revealed comparable 

concentrations of MOS, residual sugars and salts as it were achieved in our previous work 

(Altmann et al. 2015). By using a concentrate as in our study as source for a further NF, a 

higher enrichment of MOS, a nearly complete separation of mono- and disaccharides and a 

sufficient permeation of salts was realized. 

III.4.2 Enrichment of MOS from caprine milk 

The aim of the further studies was, to transfer the process for the enrichment of MOS by NF 

to other milk sources, e.g. caprine milk. The composition of MOS in goat milk is closer to the 

profile in human milk, containing more complex oligosaccharides. Oliveria et al. (2015) 

described a 5- to 9-fold higher concentration of MOS in caprine milk in comparison to bovine 

milk (D. L. Oliveira et al. 2015). The application of the membrane separation process for the 

enrichment of MOS in caprine milk was performed on pilot plant scale using the membrane 

modules DL and SR 50 (Table 3.1). The amounts of the main solids in the samples, 

determined as average of two different NF trials, are listed in Table 3.3 a) and 3.3 b).  
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Table 3.3 a) Concentration of MOS (3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, 

GalNAc-Gal-Glc = N-acetyl-galactosaminyl-lactose), mono- and disaccharides (glucose, 

galactose, lactose), dry mass, citric acid, total nitrogen and ash in caprine lactose hydrolyzed 

SM-UF-permeate and caprine retentates produced by application of the membrane modules 

SR 50 and DL (average of two trials, n=2), (n.d.= below limit of determination). The NFs 

were performed at the original pH of the original sample at pH 6.5. The recovery of the 

standards was: caprine SM-UF permeate: 58.3 +/- 4.0 % for 3’-SL and 66.5 ± 2.5 % for 6’-

SL; caprine NF retentates: 89.2 +/- 5.5 % for 3’-SL and 91.6 +/- 2.6 % for 6’-SL. 

Sample Caprine 

lactose hydrolyzed  

SM-UF-permeate 

Caprine  

NF retentate 

SR 50 

Caprine  

NF retentate 

DL  

6‘-SL [mg/L] 6.4 +/- 1.0 5.3 +/- 1.0 6.4 +/- 1.4 

3‘-SL[mg/L] 12.4 +/- 1.5 19.3 +/- 3.3 24.0 +/- 2.7 

∑ MOS [mg/L] 18.8 24.7 30.4 

Lactose [g/L] n.d. n.d. n.d. 

Glucose [g/L] 18.8 +/- 0.3 1.1 +/- 0.1 1.0 +/- 0.0 

Galactose [g/L] 16.5 +/- 0.3 1.0 +/- 0.1 0.9 +/- 0.0 

Dry mass [g/L] 50.0 +/- 1.3 7.1 +/- 1.0 6.9 +/- 0.3 

Citric acid [g/L] 1.7 +/- 1.0 2.3 +/- 0.5 2.4 +/- 1.0 

Total nitrogen [g/L] 0.5 +/- 0.0 0.2 +/- 0.0  +/-  

Ash [g/L] 5.5 +/- 0.1 1.6 +/- 0.0 1.7 +/- 0.1 

 

The acidic MOS 3’-SL and 6’-SL present a lower proportion of whole oligosaccharide 

content in caprine milk than in bovine milk. However, only a few MOS are available as 

standards required for quantification by HPAEC (Barile et al. 2009), and due to a better 

comparability between the experiments using milk of different origin, the MOS in caprine 

milk were also quantified by the standards 3’-SL and 6’-SL. The neutral oligosaccharide 

GalNAc-Gal-Glc was not detected in caprine milk.  

The lactose hydrolyzed skimmed and ultrafiltered milk permeate (SM-UF permeate) exhibited 

a dry mass content of 50.0 g/L, which is composed of 0.04 % MOS, 70.6 % monosaccharides 

(glucose and galactose), 3.3 % citric acid and 11.2 % ash. The NF cycles were performed at 

pH 6.5. The highest possible MOS content, which could be achieved after NF, was the double 

of the concentration in the initial sample due to the concentration factor of 2. The degree of 

enrichment of the oligosaccharides and the permeation of the monosaccharides and the salts 

during NF by using the two membranes were comparable. The caprine NF retentates 

generated by application of the membranes SR 50 and DL exhibited a dry mass of 6.9 g/L to 

7.1 g/L indicating a permeation of solids of 85 to 90 % after concentration and diafiltration. 



Chapter III 
 

 

116 

 

The MOS contents in the concentrates generated with the membranes SR 50 (24.7 mg/L) and 

DL (30.4 mg/L) were slightly higher than in the SM-UF permeate. In comparison to the initial 

sample, the concentrations of monosaccharides and of ash  in the NF retentates were 

markedly lower. During the NF cycles with the SR 50 and DL, only 30 % of the citric acid 

permeated. The MOS concentration in dry mass was 0.4 % in both NF retentates and 9-fold 

higher than in the initial sample. Moreover, the dry mass was composed of 28.1 % to 29.8 % 

monosaccharides, of 31.9 % to 35.1 % citrate and of 24.0 % to 22.4 % ash. The results 

showed an enrichment of MOS and a permeation of the solids especially of the 

monosaccharides during the NF process. No significant differences were determined between 

the both membrane modules SR 50 and DL. 

 

Table 3.3 b) Composition of mineral compounds (sodium, potassium, magnesium, calcium, 

phosphor) in caprine lactose hydrolyzed SM-UF-permeate and caprine retentates produced by 

application of the membrane modules SR 50 and DL (average of two trials, n=2 (average of 

two trials, n=2). 

Sample Caprine 

lactose hydrolyzed  

SM-UF-permeate 

Caprine  

NF retentate 

SR 50 

Caprine  

NF retentate 

DL  

Sodium [g/L] 0.4 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 

Potassium [g/L] 1.8 +/- 0.1 0.4 +/- 0.0 0.4 +/- 0.0 

Magnesium [g/L] 0.1 +/- 0.0 0.1 +/- 0.0 0.1 +/- 0.0 

Calcium [g/L] 0.1 +/- 0.0 0.4 +/- 0.0 0.2 +/- 0.0 

Phosphor [g/L] 0.4 +/- 0.1 0.3 +/- 0.0 0.3 +/- 0.0 

 

Fig. 3.3 reveals the retention of MOS in NF retentate produced by using the membrane 

modules SR 50 and DL (white, grey, and black bars; left ordinate). In addition, the MOS 

content in relation to the quantified sugar compounds (residual sugar: lactose, glucose, 

glactose; quantified MOS: 6’-SL, 3’-SL, GalNAc-Gal-Glc) is shown (striped bars, right 

ordinate). The MOS content in relation to the total sugar content in the lactose hydrolyzed 

SM-UF permeate was 0.1 %. The retention of MOS in the caprine NF retentates generated by 

application of the two membranes was between 34.9 % and 37.0 % for 6’-SL and 66.1 % to 

69.7 % for 3’-SL. The MOS content in relation to total sugar content in the concentrates was 

between 1.2 % and 1.6 % and 23-fold to 31-fold higher than in the initial sample. This is due 

to good separation of the oligosaccharides from the residual sugars. 
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Fig. 3.3 Retention of MOS by NF of caprine milk [%] (white, grey, and black bars; left 

ordinate) produced by application of the membrane modules SR 50 and DL and MOS content 

in relation to the total sugar content [%] (striped bars, right ordinate), (average of two trials, 

n=2, 3’-SL = 3-sialyl-lactose, 6’-SL = 6-sialyl-lactose, GalNAc-Gal-Glc = N-acetyl-

galactosaminyl-lactose). MOS content in relation to total sugar content in the initial sample 

was 0.05 +/- 0.0 %. 

 

It can be concluded that the membranes SR 50 and DL are suitable for the enrichment of 

MOS and the separation of the monosaccharides using caprine milk as base product. Even 

though, the concentrations of oligosaccharides in the NF retentates are low, a markedly 

increase of the MOS content in relation to total sugar content was achieved. To increase the 

MOS concentration in the retentate, NF with a higher concentration factor should be 

conducted. Moreover, the performance of the NF at acidic pH for a better separation of the 
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salts is recommendable, when a higher purity of the MOS concentrate wants to be achieved. 

A few more studies were conducted for the enrichment of MOS from caprine milk. Martinez-

Ferez et al. (2006)  performed a NF of caprine SM-UF permeate with 3 diavolumes for the 

enrichment of MOS (A. Martinez-Ferez et al. 2006). They achieved a NF retentate with a 

retention of total oligosaccharides of about 80 %. The MOS content in relation to the residual 

lactose content in the concentrate was 7.6 % in the caprine NF retentate and higher as 

achieved in the present study. Other studies reported about a retention of MOS at the same 

level (Sarney et al. 2000; D. Oliveira et al. 2014). Due to the different analytical methods of 

MOS quantification, it is hardly possible to compare the results. So far, quantification of total 

oligosaccharide content was performed by determining the difference of total sugar content to 

lactose content. In the present study the MOS were quantified by HPAEC using the 

commercially available standards 3’-SL and 6’-SL. It can be assumed that the total MOS 

content in the NF retentates is higher due to more different complex oligosaccharides 

presented in caprine milk. Moreover, the sugars 3’-SL and 6’-SL count with a molecular mass 

of 655 Da to the smallest oligosaccharides distributed in caprine milk assuming that the 

retention of the larger MOS is at least as high as of the small MOS. However, for the first 

time single MOS were quantified in retentates of NF for the enrichment of oligosaccharides 

from caprine milk. 

III.4.3 Composition of sugars in MOS concentrates 

Fig. 3.4 indicates the HPAEC chromatograms of the initial samples and the concentrates 

produced by NF of bovine and caprine milk for the enrichment of MOS. Due to the separation 

of interfering high amounts of mono- and disaccharides by sample pretreatment with 

graphitized carbon solid phase extraction, only low residual amounts of galactose (peak 1), 

glucose (peak 2) and lactose (peak 3) were detected in the bovine and caprine samples. In Fig. 

3. 4 a) the chromatograms of the initial sample (bovine NF retentate produced by application 

of the membrane DOW on industrial scale) (I) and of the bovine NF retentate after 

diafiltration (II) at pH 5 using the membrane module DL are shown.  
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Fig. 3.4 HPAEC chromatograms of the initial samples and the retentates of the NFs for the 

enrichment of MOS from bovine and caprine milk. For separation of mono- and disaccharides 

samples were purified by graphitized carbon solid-phase extraction. (1= galactose, 2= 

glucose, 3= lactose, 4= 6’-glalctosyl-lactose, 5= GalNAc-Gal-Glc, 6= 6’-SL, 7= 3’-SL, * = 

GOS). 
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a) Chromatograms of the initial sample (bovine NF retentate DOW) (I) and the bovine NF 

retentate (DL) after diafiltration at pH 5 (II). 
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b) Chromatograms of the caprine SM-UF permeate before lactose hydrolysis (I), the caprine 

lactose hydrolyzed SM-UF permeate (II) and the caprine NF retentate generated by the 

membrane DL. 

 

In the initial sample at pH 5 (I) ,the most abundant MOS GalNAc(α1-3)-Gal(β1-4)-Glc (peak 

5, retention time 24.2 min), 6’-SL (peak 6, retention time 39.3 min) and 3’-SL (peak 7, 

retention time 39.9 min) were detected. Moreover, some galactooligosaccharides (GOS) were 

detected in this sample indicated as asterisks (Fig. 3.1 a). As described in our previous study 

these high amounts of GOS (peak 4* = 6’-galaytosyllactose, retention time 22.9 min; peak *, 

retention time 26.1 min) were synthesized during the lactose hydrolysis with a β-galactosidase 

from Kluyveromyces lactis, due to its transgalactosylation activity (Altmann et al. 2015). The 

main reaction product of the enzymatic synthesis of GOS during lactose hydrolysis with the 

applied β-galactosidase (Frenzel et al. 2015) 6’-galactosyllactose could be identified in the 

NF-retentates (peak 4* in Fig. 3.4 a). One GOS (peak *, retention time 34.2 min) was 

detected in the initial sample before lactose hydrolysis. This galactotriose could be related to 
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Gal(α1-3)-Gal(β1-4)-Glc or Gal(β1-3)-Gal(β1-4)-Glc (Altmann et al. 2015). In the NF 

retentate after diafiltration with the membrane DL at pH 5 a markedly increase of the peak 

areas of the MOS (peak 5-7) and GOS (peak 4* and peaks with asterisks) were detected in 

comparison to the initial sample without changes in the composition. 

Fig. 3.4 b) reveals the HPAEC chromatograms of caprine SM-UF permeate before lactose 

hydrolysis (I), the caprine lactose hydrolyzed SM-UF permeate (II) and the NF retentate 

produced by using the membrane DL (III). In the SM-UF permeate before lactose hydrolysis 

the acidic MOS 6’-SL (peak 6, retention time 39.4 min) and 3’-SL (peak 7, retention time 

39.9 min) were identified. The neutral MOS GalNAc-Gal-Glc, which was quantified in 

bovine milk, was not present in caprine milk. Moreover, a galactotriose with the retention 

time of 6’-galactosyllactose (peak 4*, retention time 22.8 min) and a hexosetrisaccharide 

(peak *, retention time 34.3 min) were detected in significant amounts in the unhydrolyzed 

SM-UF permeate. The caprine SM-UF permeate before lactose hydrolysis (I) and after lactose 

hydrolysis (II) exhibited comparable peak areas of the MOS (peak 6, 7). It can be concluded 

that the process of enzymatic lactose hydrolysis did not degrade the MOS. Also Sarney at 

al.(2000) reported that a β-galactosidase from Aspergillus oryzae is suitable for lactose 

hydrolysis without changing the MOS profile in human milk (Sarney et al. 2000). However, a 

significant increase of the peak area of 6’-galactosyllactose in the caprine SM-UF permeate 

after lactose hydrolysis indicated a further synthesis of this GOS by the β-galactosidase of 

Kluyveromyces lactis. 6’-galactosyllactose was described to be the main GOS produced by 

the transgalactosidase 

 activity of this enzyme (Frenzel et al. 2015). In the caprine retentate produced by NF with the 

membrane DL (III) an increase of the peak areas of the MOS (peak 6, 7) and GOS (peak 4 

and peaks with asterisk) in comparison to the initial samples was detected. 

A few studies were performed for the microbial or enzymatic production of MOS presented in 

human milk. Some of these MOS such as 3‘-sialyllactose, 6‘-sialyllactose, 2’-fucosayllactose, 

3’-fucosyllactose or lacto-N-biose are commercially available (Han et al. 2012). Due to the 

high complexity of MOS in human milk a lot of research has to be done to create a MOS 

profile resembling to that of human milk by biotechnological synthesis and for reasonable 

costs. The synthesized MOS has to meet all the requirements of novel food (D. L. Oliveira et 

al. 2015). 
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By the enrichment of MOS during NF of milk from domestic animals, various different 

complex oligosaccharides could be concentrated. As described before, bovine milk contains 

mainly the acidic MOS 3’-SL and 6’-SL and only traces of fucosylated MOS. The MOS 

profile of caprine milk is closer to that of human milk than bovine or ovine milk (A Martinez-

Ferez et al. 2006; D. L. Oliveira et al. 2015). With this study, a feasible process for the 

enrichment of MOS by NF was developed, which could be implemented on industrial scale. 

The combined addition of MOS concentrates from bovine and caprine milk as functional 

ingredient is an opportunity for the development of bioactive food products containing 

different complex oligosaccharides, which are also present in human milk.  
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III.5 Conclusion 

With this work the influence of the pH value on the degree of enrichment of MOS from 

bovine milk by NF was studied for the first time. The highest MOS retention and milk salt 

permeation were achieved with NF at pH 5. The MOS content in dry mass (14.1 %) after 

diafiltration with the DL membrane was about 5-fold higher than in the initial NF retentate 

produced with the DOW membrane (3 % in dry mass), which was used as a raw material for 

this study, and about 140-fold higher than in the bovine lactose hydrolyzed SM-UF permeate 

(0.1 % in dry mass) described in our previous work. Although the NF at pH 7 resulted in a 

lower MOS content in dry mass (8.3 %), a markedly enrichment of MOS in the retentate was 

also achieved. The high MOS content in relation to total sugar content of 87 % to 92 % in the 

final concentrate produced at pH 5 and pH 7 indicated a nearly complete permeation of mono- 

and disaccharides, which was about 9-fold higher than in the first NF retentate and about 900-

fold higher than in the bovine lactose hydrolyzed SM-UF permeate described in our prior 

study. Considering the results achieved by the present investigations, an optimized process for 

production of a MOS concentrate with high purity from bovine milk was developed. 

Moreover, first studies for the transferability of the optimized process to milk of other breeds 

were performed. NF for the enrichment of MOS in caprine milk permeate were conducted. In 

the caprine NF retentates, the MOS concentration in dry mass was 9-fold higher than in the 

lactose hydrolyzed caprine SM-UF permeate and the MOS content in relation to the total 

sugar content was 23-fold to 31-fold higher than in the initial sample. Even though a 

sufficient enrichment of MOS and a separation of the other solids were achieved, a further 

optimization of the procedure by varying milieu and process conditions should be performed 

in future. 

The enrichment of MOS from whey permeate as by-product of cheese processing could 

increase the economic value of cheese whey as most of the oligosaccharides and lactose are 

transferred into the whey. Even though the concentrations of MOS in bovine milk are very 

low, an enrichment from whey permeate is highly promising due to the high amount of whey 

available in the dairy industry. Because caprine milk contains an oligosaccharide profile very 

similar to human milk and due to its higher concentration of these beneficial sugars, caprine 

whey represents also a valuable source for the enrichment of MOS. The developed two-stage 

NF process with lactose hydrolyzed SM-UF permeate at acidic conditions could be 
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implemented as continuous process on industrial scale applying to bovine or caprine cheese 

whey permeate for the enrichment of MOS. It was shown that the enzymatic hydrolysis of 

lactose in the initial sample supported a better separation of MOS from the residual sugars. 

Moreover, the β-galactosidase from Kluyveromyces lactis used, synthesized bioactive GOS by 

transgalactosylation, which were also concentrated during NF. Based on this procedure, the 

production of a MOS concentrate as a functional ingredient for the food industry should be 

feasible. Due to the different compositions of the MOS fractions in milk of domestic animals, 

the combined addition of MOS concentrates attained from bovine and caprine milk to food 

such as a beverage or infant formula might be beneficial to reproduce the oligosaccharide 

profile of human milk. 
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IV. 1 Abstract 

BACKGROUND: Inflammation is a contributing factor for the development of various 

chronic diseases. However, there is only little information about anti-inflammatory peptides 

from food products. The aim of the present study was the generation and identification of 

potentially anti-inflammatory peptides from bovine β-casein with enzyme preparations from 

cod and hog. Furthermore, the potential of Cod Trypsin, derived from fishery by-products, to 

produce this bioactive peptides for replacement of non-food grade TPCK treated porcine 

Trypsin enzyme preparation was evaluated. 

RESULTS: Potentially anti-inflammatory peptides were obtained by hydrolysis of β-casein 

with the tryptic enzyme preparations cod trypsin, porcine trypsin (tosyl phenylalanyl 

chloromethyl ketone (TPCK)-treated) and a porcine trypsin and chymotrypsin preparation 

(PTN 6.0 S). Proteolysates generated with enzyme preparations containing mainly 

chymotryptic activity (Cryotin, Cryotin F) did not exhibit any effect. 

CONCLUSION: The more chymotryptic enzyme activity is present, the lower is the 

potentially anti-inflammatory activity of the hydrolysates in HEK
nfκb-RE

 cells. Comparable 

peptides were produced by application of porcine Trypsin (TPCK) and Cod Trypsin. 

Therefore, the enzyme preparation Cod Trypsin can replace the non-food grade porcine 

enzyme preparation Trypsin (TPCK) for the generation of potentially anti-inflammatory 

peptides from β-casein. 

 

 

 

 

Keywords 

Enzymatic hydrolysis, β-casein hydrolysates, tryptic/chymotryptic enzymes, anti-

inflammatory peptides, identification of peptides 
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IV.2 Introduction 

Milk proteins, and especially β-casein, are precursors of many biologically active peptides 
1, 2

. 

Milk-derived bioactive peptides are inactive within the sequence of the parent protein and can 

be released by enzymatic hydrolysis during food processing or gastrointestinal digestion 
1
. 

These peptides may demonstrate various biological activities, such as antioxidative, ACE 

inhibitory, antimicrobial, antihypertensive, and opioid activities 
3
. The field of bioactive 

peptides has been extensively reported 
4
, but studies dealing with anti-inflammatory food-

derived peptides are much less prevalent 
5-8

. 

Inflammation is a response to infection, irritation, and injury. It is involved in the 

development of various chronic diseases, including diabetes, cancer, asthma, and obesity 
9
. 

NFB is a homo- and heterodimeric transcription factor that plays a key role in inflammatory 

process, and is responsible for expression and regulation of genes involved in inflammation, 

immunity, and apoptosis 
10

. Stimulation with the pro-inflammatory cytokine TNF-α triggers 

most often the canonical NF-κ-B signaling pathway 
11

 by activation of IκB-kinase complex 

(IKK complex). IKK complex phosphorylates N-terminal serine residues on IκB, which gets 

degraded by proteasomes and releases NFκB. The liberated transcription factor translocates 

into the nucleus to induce expression of inflammatory genes 
10-13

.  

Processing of fish and fishery products requires the removal of skin, head, bones and viscera, 

which are termed by-products. While most of this organic material is still wasted, there is 

increased awareness of utilizing marine by-products as sources of industrial enzymes. The 

pyloric caeca, which is part of the viscera, is rich in digestive enzymes, such as the serine 

proteases trypsin and chymotrypsin 
14

. Proteolytic fish enzymes have already been applied in 

food processing, for example, as a substitute for rennet in cheese manufacturing, for the 

removal of oxidized flavor from milk, and for accelerating cheese ripening 
14-17

. Nevertheless, 

the application of fish enzymes in food processing is so far still limited and their use as a 

food-processing tool has to be further studied. 

Therefore, the aim of the present work was to generate and identify anti-inflammatory 

peptides from bovine β-casein with enzyme preparations from cod fish, and for comparison 

from hog, containing different activities of trypsin and chymotrypsin. Recently, a group of 

large, hydrophobic peptides generated by hydrolysis of β-casein with porcine trypsin (TPCK) 
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showed anti-inflammatory effects by TNF-α mediated activation of NFκB in HEK
nfκb-RE 

cells 

18
. This enzyme preparation is not suitable for human consumption and therefore, an 

alternative source is needed. cod trypsin derived from fishery by-products may replace 

porcine trypsin (TPCK). 
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IV.3 Materials and methods 

IV.3.1 Isolation of β-casein from rennet casein 

Isolation of β-casein from rennet casein was performed according to Le Magnen and Maugas 

(1995) with minor modifications 
19

. Briefly, a 5 % rennet casein solution (w/w) (Fonterra, 

Auckland, New Zeeland) in demineralized water (pH 9) was chilled to 0.2- 0.4°C. For 

precipitation of αS- and para-κ-casein, the pH of the solution was adjusted to 4.6 by dropwise 

addition of 0.1 mmol/L HCl. Precipitated αS- and para-κ-caseins were separated from solution 

by filtration (curd draining bag, pore size 0.3 mm). β-casein was precipitated by slowly 

warming the solution to 40°C. The precipitate was separated, dissolved in demineralized 

water, solubilized by adjusting the pH to 7.0 (25°C), and lyophilized. The freeze-dried β-

casein isolate consisted of 83- 85 % β-casein (determined by polyacrylamide gel 

electrophoresis densitometry) and exhibited a protein content of 87- 89 % (Kjeldahl method, 

N= 6.38). 

 

IV.3.2 Enzymes and hydrolysates 

For hydrolysis of β-casein, the enzyme activities of the enzyme preparations applied (Table 

4.1) were determined with the azocasein assay, according to Reichad et al. 1990 
20

 with minor 

modifications. In brief, azocasein (Sigma Chemical Co., St. Louis, USA) was dissolved at a 

final substrate concentration of 0.5 % (w/v) in 0.1 M phosphate buffer (pH 7.0). Substrate 

(400 µL) was mixed with 100 µL enzyme preparation of different dilutions. After incubation 

at 37°C for 1 h, the reaction was stopped by addition of 150 µL of 20 % trichloroacetic acid. 

The tubes were allowed to stand in an ice-bath for 30 min, and were then centrifuged at 

13,000 g for 2 min. Supernatant (500 µL) was removed from each tube and mixed with 500 

µL of 1 M NaOH. The absorbance was determined at 435 nm. Control samples were treated 

in the same manner, except that, instead of enzyme preparation, 100 µL phosphate of buffer 

was added to the substrate. The color- concentration relationship of azocasein and its 

digestion products obeys Beer’s law, and for the calculation of enzyme activity, an extinction 

coefficient of 34 L mol
-1

 cm
-1

 was used. One Azo unit is defined as the amount of the enzyme 
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that catalyzes the conversion of 1 micro mole of substrate per minute at 37°C. Enzyme 

activities for the enzyme preparations applied are listed in Table 4.1. 

 

Table 4.1 Sources of enzyme preparations and enzyme activities applied for hydrolysis of a 5 

% β-casein solution at pH 7.8 and 37 °C for 3- 4 h. Tryptic/ chymotryptic ratio was calculated 

from the activities of enzyme preparations according to the manufacturers. For the β-casein 

hydrolyses, nearly same enzyme activity in Azo units/g β-casein was chosen. 
a
U= unit, 

b
BAEE = Nα-Benzoyl-L-arginine ethylster, 

c
USP = United States Pharmacopeia unit, 

d
 GPR = 

N-Succinyl-Gly-Pro-Arg-p-nitroanilide, 
e
 AAPF = N-Succinyl-Ala-Ala-Pro-Phe-p-

nitroanilide, 
f
 Trypsin EC = 3.4.21.4, 

g
 Chymotrypsin EC = 3.4.21.1 

Enzyme preparation 

Trade name 
Origin 

Activity  

(according to the manufacturer)  

[U a/g enzyme peparation] 

Tryptic f/ 

chymotryptic g 

ratio 

Azo U/  

g or ml enzyme 

preparation 

  trypsin chymotrypsin     

Trypsin (TPCK) Hog 40 • 103 BAEE b U/g - 1  / 0 190 • 103 Azo U/ g 

PTN 6.0 S Hog 1450 • 103 USP c U/g 78 • 103 USP U 1  / 0.05 62.54 • 103 Azo U/g 

Cod trypsin Cod fish 165 GPR d U/g - 1  / 0 159.74 Azo U/ml 

Cryotin  Cod fish 137.4 GPR U/g 27.4 AAPF e U/g 1  / 0.2 344.12 Azo U/ml 

Cryotin F Cod fish 160 GPR U/g 331 AAPF U/g 1  / 2.06 2082.76 Azo U/ml 

 

For preparation of the hydrolysates, proteolysis of a 5 % β-casein solutions (w/w) with 

different tryptic (EC 3.4.21.4) and chymotryptic (EC 3.4.21.1) enzyme preparations from hog 

(trypsin TPCK-treated, Merck KGaA, Darmstadt, Germany, enzyme substrate-ratio of 40 

BAEE U/g β-casein for trypsin activity; PTN 6.0 S ®, Novozymes A/S, Bagsvaerd, Denmark, 

enzyme-substrate-ratio of 1450 USP U/g β-casein for trypsin activity and 78 USP U/g β-

casein for chymotrypsin activity) and Cod fish (Gadus morhua) (cod trypsin ®, enzyme 

substrate-ratio of 165 GPR U/g β-casein for trypsin activity; Cryotin ®, enzyme substrate-

ratio of 6,87 GPR U/g β-casein for trypsin activity and 1,37 AAPF U/g β-casein for 

chymotrypsin activity; Cryotin F ®, enzyme substrate-ratio of 16 GPR U/g β-casein for 

trypsin activity and 33 AAPF U/g β-casein for chymotrypsin activity; all enzymes from North 

Ltd., Reykjavík, Iceland) were performed. For further information about enzyme activities 

from the manufacturer see Table 4.1. Incubation was carried out at 37°C and pH-stat 

conditions of 7.8 (0.1 M NaOH) for 4 hours with porcine enzymes PTN 6.0S and porcine 

trypsin (TPCK), and for 3 hours with fish enzymes cod trypsin, Cryotin, Cryotin F, 

respectively 
21, 22

. To stop the enzymatic reaction, the hydrolysates were heated batchwise for 
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10 min at 90°C. The whole hydrolysates were fractionated by ultrafiltration applying a 

membrane with a Nominal Molecular Weight Cut-Off (NMWCO) of 5 kDa (Koch Membrane 

Systems, Wilmington, MA, USA). The peptide fractions (fraction I = whole proteolysate, 

fraction II = peptide fraction > 5 kDa, fraction III = peptide fraction < 5 kDa) were 

lyophilized and stored at 20°C until further analysis. 

 

IV.3.3 Separation and identification of peptides by HPLC-ESI-MS
n
 (LC-MS) 

Identification and separation of the β-casein-derived peptides was performed using online 

high performance liquid chromatography electrospray ionization mass spectrometry (HPLC-

ESI-MS
n
) using an ion-trap mass spectrometer LTQ XL (Thermo Scientific Inc., San Jose, 

CA). Lyophilized peptide fractions were dissolved in 20 % (v/v) acetonitrile (ACN) and 

0.1 % (v/v) formic acid (FA). The solution was filtered by applying centrifugal devices (Pall 

Nanosep 10 kDa Omega) for 10 min at 13000 rpm in a centrifuge (Biofuge Fresco; Heraeus 

Instruments), and analyzed on a polymeric reversed phase column (PLRP-S-300Å, 5 µm, 150 

x 2.1 mm, Agilent Technologies, Waldbronn, Germany). For chromatographic separation of 

peptides, 0.1 % (v/v) FA in ultrapure water (solvent A) and 0.1 % (v/v) FA in ACN (solvent 

B) were used. A linear gradient from 3 % to 60 % solvent B over 40 min at a flow rate of 0.2 

mL/min was applied followed by a column wash step with 90 % solvent B for 5 min and re-

equilibration at the initial conditions for at least 10 min. 

Mass spectra were generated in the positive ionization mode in the full scan range (150 up to 

2000 m/z) and a data-dependent scan with fragmentation of the five most intense ions 

(activation type = CID, normalized collision energy = 35.0 eV, isolation width of 2 and an 

activation Q of 0.250). ESI spray voltage was set to 3.5 kV; capillary temperature was 275 °C. 

Data acquisition and processing was performed with Xcalibur version 2.0.7 SP1 (Thermo 

Scientific Inc., San Jose, CA). Molecular masses were determined from the measured m/z 

ions by ProMass
TM

Deconvolution 2.5 (Thermo Scientific Inc., San Jose, CA). The processed 

files were subsequently searched against an in-house Bos taurus database (originally 

downloaded from: http://uniprot.org release October 2012) extended to include all natural 

variants of ß-casein, using the search algorithm SEQUEST and MASCOT on Proteome 

Discoverer 1.4 (Thermo Scientific Inc., San Jose, CA). The search was performed choosing 
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Trypsin (semi) as the enzyme with two missed cleavages allowed. As variable modifications, 

oxidation (M) and phosphorylation (S, T, Y) were applied. Peptide precursor mass tolerance 

was set at 0.5 Da. The false discovery rate was set at 0.05. The evaluation of the identified 

peptides was performed manually. Briefly, all peptides with at least two precursor masses in a 

fully MS, must have at least five (for small peptides up to 6 aminoacids three) isotopically 

resolved y-,b-, or a-ions match to theoretical peptide fragments to be considered positive. 

Furthermore, the major peaks of these peptides with intensities of higher than 10- 20 % of the 

maximum intensity in the MS/MS must match theoretical peptide fragments. All peptides 

modified by phosphorylation were considered positive if the modification had been 

previously described in the literature and no peptide with the same precursor mass has been 

found by Proteome Discoverer. The peptides identified in this study are listed in Table 4.2. 

 

IV.3.4 Evaluation of anti-inflammatory effect via NFκB activation in HEK
nfκb-RE 

cells 

HEK
nfκb-RE 

cells 
18

 were cultivated at 5 % CO2 in DMEM medium (PAA, Cölbe, Germany) 

supplemented with 10 % fetal calf serum (FCS) (PAA, Cölbe, Germany). Lyophilised peptide 

fractions I- III (10 mg/mL) were dissolved in culture medium and sterile filtered. HEK
nfκb-RE

 

cells were seeded in white (clear bottom) 96-well plates at a density of 10,000 cells/ well. 

After overnight incubation, cells were infected with 0.2 ng/mL TNF-α and incubated with 

peptide fractions (final concentration 5 mg/mL). For control cells were treated with 0.2 ng/mL 

TNF-α without peptide sample, with peptide sample without TNF-α, and only with DMEM 

medium without peptides and TNF-α. After 24 hours, medium was removed, cells were 

washed twice with PBS and lysed by freezing and defrosting twice. Luciferase assay was 

started by incubation of cells with 45 µL of Beetle Lysis-Juice (PJK, Kleinblittersdorf, 

Germany) for 10 min. The light product developed by luciferin degradation was measured 

over a period of 1 second inae Chameleon plate reader (Hidex, Turku, Finland). 

Quadruplicate incubations and measurements were considered to be one experiment. The data 

are expressed as arbitrary units of luciferase activity of HEK
nfκb-RE 

cells compared with the 

control (value of cells with peptide sample without TNF-α stated as 1). 
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IV.3.5 Statistical analysis 

Statistical significance values of relative luciferase activity between different proteolysates 

and TNF-α stimulation alone were determined using Kruskal- Wallis one-way analysis 

followed by the Dunns multiple comparison test with the software SigmaPlot 11.0 (SigmaPlot 

Software, Systat Software Inc., USA). The data are expressed as the arithmetic means ± 

standard deviation (SD) of at least three independent experiments. Values are reported in 

relation to the luciferase activity of untreated cells. 
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IV.4 Results and discussion 

IV.4.1 Identification of peptides in tryptic/chymotryptic hydrolysates 

For enzymatic hydrolysis, five enzyme preparations from hog and cod containing different 

tryptic and chymotryptic activities were applied (Table 4.1). The enzyme preparations 

porcine trypsin (TPCK) and cod trypsin exhibit only tryptic activity, while PTN 6.0 S 

(tryptic/chymotryptic ratio 1/0.05), Cryotin (tryptic/chymotryptic ratio 1/0.2) and Cryotin F 

(tryptic/chymotryptic ratio 1/2.06) exhibit increasing chymotryptic activity. β-Casein 

hydrolyses were performed by applying comparable enzyme activities, as determined by the 

azocasein assay. 

Total hydrolysate (I), peptides > 5 kDa (II), and peptides < 5 kDa (III) were characterized by 

LC-MS (Fig. 4.1 a-c). Fig. 4.1 a) shows LC-MS chromatograms of the total hydrolysates 

(fraction I). The peptide profiles of the total hydrolysates generated with cod trypsin and 

porcine trypsin (TPCK) are very similar because both enzyme preparations exhibit only 

tryptic activity. The total hydrolysate produced with PTN 6.0 S exhibits a slightly different 

peptide spectrum with additional small peaks due to a low chymotryptic activity in this 

enzyme preparation. Proteolysates (fraction I) generated with Cryotin and Cryotin F exhibit 

completely different peptide profiles because of high chymotryptic activity. In contrast, to the 

results described above, the proteolysates generated with Cryotin and Cryotin F showed only 

a few peptides with high retention times (>25 min). 

Ultrafiltration with a 5 kDa membrane resulted in nearly the same peptide patterns and 

retention times in the retentate and permeate, but the patterns exhibited quite different peak 

areas. Peptide profiles of the 5 kDa retentates (fraction II) (Fig. 4.1 b) showed an enrichment 

of some fragments. Peptides with molecular masses of 4823.8 Da to 7402.2 Da (peptides 17- 

20) in the 5 kDa retentates produced by application of cod trypsin, porcine trypsin, and PTN 

6.0 S displayed higher peak areas in comparison with their corresponding total hydrolysates. 

The peak areas of small peptides in the retentates of cod trypsin, porcine trypsin (TPCK), and 

PTN 6.0 S, numbered with 1 to 16, are reduced compared to their total hydrolysates. 
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Fig. 4.1 a). LC-MS profiles of total β-casein hydrolysates (fraction I) generated with the 

enzyme preparations cod trypsin (CT), trypsin TPCK-treated (T), PTN 6.0S (P), and Cryotin 

F (CF). Visible peaks of the main 26 β-casein fragments focused (Table 4.2) are numbered 

with 1- 22 in the chromatogram.  
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Fig. 4.1 b) LC-MS profiles of retentates 5 kDa (fraction II) generated with the enzyme 

preparations cod trypsin (CT), porcine trypsin (TPCK) (T), PTN 6.0S (P), and Cryotin F (CF). 

Visible peaks of the main 26 β-casein fragments focused (Table 4.2) are numbered with 1- 22 

in the chromatogram. 
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Fig. 4.1 c) LC-MS profiles of permeates 5 kDa (fraction III) generated with the enzyme 

preparations cod trypsin (CT), porcine trypsin (TPCK) (T), PTN 6.0S (P), and Cryotin F (CF). 

Visible peaks of the main 26 β-casein fragments focused (Table 4.2) are numbered with 1- 22 

in the chromatogram.  
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The chromatograms (Fig. 4.1 c) of the 5 kDa permeates (fraction III) produced by application 

of the enzymes cod trypsin, porcine trypsin (TPCK), and PTN 6.0 S are far comparable. Small 

peptides, numbered with 1 to 16, are concentrated and peak areas of fragments with high 

molecular mass, numbered with 17 to 22, are reduced in comparison to their total 

hydrolysates. 

The peptides in hydrolysates were identified by applying Proteome Discoverer 1.4 and the 

database Uniprot. Table 4.2 displays the peptides characterized in fractions I- III of 

hydrolysates incubated with cod trypsin (CT), porcine trypsin (TPCK) (T), PTN 6.0S (P), 

Cryotin (C), and Cryotin F (CF). We concentrated on 26 main peptides presented in 

hydrolysates generated with cod trypsin, porcine trypsin, and PTN 6.0 S. The main 26 

peptides are numbered in Table 4.2 with 1- 22. In peak 17 and 19, three different peptides 

were co-eluting with same retention time in each case, and were therefore marked with only 

one number. Figure 4.1A- C show LC-MS chromatograms of the β-casein hydrolysates, in 

which peaks are numbered with the corresponding peptides from Table 4.2. The β-casein 

fragments exhibit masses ranging from about 640 Da to 7500 Da (MH+) and retention times 

from 2.5 min to 33 min. Because commercially available rennet casein was used for isolation 

of β-casein, peptide sequences of the genetic variants of β-casein A
1 

(peptides 17(1- 3)), A
2
 

(peptides 13, 19(1- 3)), and B (peptide 9) 
23, 24

 were found. The identified peptides of 

hydrolysates generated with the enzyme preparations cod trypsin and porcine trypsin (TPCK), 

which contain only tryptic activity, are very similar. Therefore, it can be assumed that trypsin 

from cod and from hog have comparable substrate specificities. Furthermore, Bunkenborg et 

al. 2013 described that trypsin derived from cod and hog hydrolyze peptide bonds at the 

carboxylic end of the amino acid residue arginine (R) and lysine (K) 
25

. Peptides 14, 21, and 

22 occurred only in fractions generated with PTN 6.0 S because of the chymotryptic side 

activity in this enzyme preparation. Although all β-casein fragments shown in Table 4.2 (with 

the exception of peptide 3) exert more cleavage sites for chymotrypsin, hydrolysis with PTN 

6.0 S resulted mainly in tryptic β-casein fragments. Even though, PTN 6.0 S exhibits low 

chymotryptic activity (Table 4.1), this enzyme preparation reveals mainly tryptic activity. 

Hydrolysates from chymotryptic proteolysis with Cryotin and Cryotin F displayed completely 

different peptide profiles containing more small peptides. The corresponding proteolysates 

contained only peptides 1, 4, 8, and 12, which were also presented in hydrolysates generated 

with cod trypsin, porcine trypsin (TPCK), and PTN 6.0S. In addition, with Cryotin F, only 
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peptides 3 and 14 were produced. Because of the high chymotryptic activity of the 

preparations Cryotin and Cryotin F, β-casein is degraded into other smaller peptides.



 

 

 

1
4
4
 

Table 4.2 Identification of the main peptides of total β-casein hydrolysate (I), peptides > 5 kDa (II) and peptides < 5 kDa (III) generated 

with different proteolytic enzymes by HPLC-ESI-MS
n
. The focus is on main tryptic β-casein fragments generated by cod trypsin, porcine 

trypsin, and PTN 6.0 S. 
a
 cod trypsin, 

b
 porcine trypsin (TPCK), 

c
 PTN 6.0 S, 

d
 Cryotin, 

e
 Cryotin F, ∑ = phosphoserine 

Peak 

 
β-CN fragment Primary structure (m/z) 

(M+H
+
) 

CT 
a
 

I 

CT 

II 

CT 

III 

T 
b
 

I 

T 

II 

T 

III 

P 
c
 

I 

P 

II 

P 

III 

C 
d
 

I 

C 

II 

C 

III 

CF 

I 

CF 

II 

CF 

III 

1 β-CN A (f 100-105) EAMAPK 646.3 + + + +  + + + + + + + +  + 

2 β-CN A (f 98-105) VKEAMAPK 873.6    +  + + + +       

3 β-CN A (f 177-183) AVPYPQR 830.4 + + + + + + + + +    +  + 

4 β-CN A (f 106-113) HKEMPFPK 1013.6 +  + + + + + + + + + + + + + 

5 β-CN A (f 170-176) VLPVPQK 780.5 + + + + + + + + +       

6 β-CN A (f 33-48) FQ∑EEQQQTEDELQDK 2062.0 + + + + + + + + +       

7 β-CN A (f 194-202) QEPVLGPVR 994.6 +  +    + + +       

8 β-CN A (f 108-113) EMPFPK 748.3 + + + + + + + + + + + + + + + 

9 β-CN B (f 114-122) YPVEPFTER 1137.2 +  + +  + + + +       

10 β-CN A (f 191-202) LLYQEPVLGPVR 1383.9 +  + +  + + + +       

11 β-CN A (f 184-190) DMPIQAF 820.9 +  + +   +  +       

12 β-CN A (f 203-209) GPFPIIV 742.5 + + + + + + + + + + + + + + + 

13 β-CN A2 (f 49-68) IHPFAQTQSLVYPFPGPIPN 2223.3 + + + +  + + + +       

14 β-CN A (f 194-209) QEPVLGPVRGPFPIIV 1717.5       + + +    +  + 

15 β-CN A (f 69-97) SLPQNIPPLTQTPVVVPPFLQPEVMGVSK 3114.3 + + + + + + + + +       

16 β-CN A (f 184-202) DMPIQAFLLYQEPVLGPVR 2186.4 + + + + + + + + +       

17(1) β-CN A1 (f 33-97) FQ∑EEQQQTEDELQDKIHPFAQTQSLVYPF

PGPIHNSLPQNIPPLTQTPVVVPPFLQPEVM
GVSK 

4863.8 +  +    + + +       

17(2) β-CN A1 (f 53-97) AQTQSLVYPFPGPIHNSLPQNIPPLTQTPVV

VPPFLQPEVMGVSK 

5359.8   + + + + + + +       

17(3) β-CN A1 (f 49-97 ) IHPFAQTQSLVYPFPGPIHNSLPQNIPPLTQT

PVVVPPFLQPEVMGVSK 

7402.2 + + + + + + + +        

18 β-CN A (f 123-169) QSLTLTDVENLHLPLPLLQSWMHQPHQPLP
PTVMFPPQSVLSLSQSK 

5310.4 + + + + + + + + +       

19(1) β-CN A2 (f 33-97) FQ∑EEQQQTEDELQDKIHPFAQTQSLVYPF
PGPIPNSLPQNIPPLTQTPVVVPPFLQPEVMG

VSK 

7362.5 + + + + + + + +        

19(2) β-CN A2 (f 53-97) AQTQSLVYPFPGPIPNSLPQNIPPLTQTPVVV

PPFLQPEVMGVSK 

4823.8 +  +    + + +       

19(3) β-CN A2 (f 49-97) IHPFAQTQSLVYPFPGPIPNSLPQNIPPLTQTP

VVVPPFLQPEVMGVSK 

5319.5   + + + + + + +       

20 β-CN A (f 114-169) YPVEPFTESQSLTLTDVENLHLPLPLLQSW

MHQPHQPLPPTVMFPPQSVLSLSQSK 

6361.7 + + + + + + + + +       

21 β-CN A (f 114-165) YPVEPFTESQSLTLTDVENLHLPLPLLQSW
MHQPHQPLPPTVMFPPQSVL 

5729.1       + + +       

22 β-CN A (f 184-209) DMPIQAFLLYQEPVLGPVRGPFPIIV 2910.1       + + +       

 

C
h
ap

ter IV
 

 



Chapter IV 
 

 

145 

 

IV.4.2 Potentially anti-inflammatory effect of peptide fractions in HEK
nfκb-RE

 cells 

The evaluation of the potentially anti-inflammatory effect of β-casein hydrolysates generated 

with the enzyme preparations cod trypsin, porcine trypsin, PTN 6.0 S, Cryotin, and Cryotin F 

was performed with TNF-α stimulated HEK
nfκb-RE

 cells (Fig. 4.2A- C). These cells exhibited 

a TNF-α concentration-dependent expression of luciferase, which was linear between 0.2 and 

12.8 ng/mL TNF-α. Treatment of cells with 0.4 ng/mL TNF-α resulted in increased luciferase 

activity by a factor of 9.0 ± 2.3 (mean ± SD) compared with unstimulated controls without 

TNF-α addition. 

 

 

 

Fig. 4.2 (a) 
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Fig. 4.2. Potentially anti-inflammatory activity of (a) total β-casein hydrolysate (fraction I), 

(b) 5 kDa retentates (fraction II), and (c) 5 kDa permeates (fraction III), generated with 

porcine trypsin, cod trypsin, PTN 6.0 S, Cryotin, and Cryotin F in TNF-α-induced HEK
nfκB-RE

 

cells measured as luciferase activity. Luminescence of treated cells is shown as fold increase 

compared with the untreated control. Values are means ± standard deviations (SD) of two 

hydrolysate productions with at least three independent replicates of cell incubation and 

luciferase activity determination. Significance values were calculated using Kruskal-Wallis 

one-way analysis followed by the Dunn’s multiple comparison test. Significance values were 

determined in comparison with TNF-α treatment: *P < 0.05, **P < 0.01.  

Fig. 4.2 (b) 

Fig. 4.2 (c) 
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The total hydrolysates produced by application of the enzyme preparations cod trypsin, 

porcine trypsin, and PTN 6.0 S revealed reduced luciferase activity, and therefore, decreased 

NFκB activation in stimulated HEK
nfκb-RE

 cells (Fig. 4.2A). Addition of the total hydrolysate 

generated with cod trypsin to stimulated cells resulted in a reduction of the luciferase activity 

of about 50 % from 9.0 ± 2.3 to 4.5 ± 0.2. Applying the total hydrolysate generated with 

porcine trypsin (TPCK) led to a comparable reduction of the luciferase activity of about 50 % 

(3.9 ± 0.2). Treatment of cells with the total proteolysate prepared by PTN 6.0 S showed a 

reduction of the luciferase activity of about 40 % (5.2 ± 0.3). Total hydrolysates generated 

with the enzyme preparations Cryotin and Cryotin F did not reveal any effect on luciferase 

activity. 

Incubation of cells with the 5 kDa retentates of proteolysates generated by cod trypsin and 

porcine trypsin (TPCK) (Fig. 4.2B) exhibited a decrease in luciferase activity within the same 

range compared to the total hydrolysates, resulting in a reduction of TNF-α stimulation over 

50 % from 9.0 ± 2.3 (control) to 3.6 ± 0.4 and 3.8 ± 0.3, respectively. As with the whole 

hydrolysate, a reduction of the luciferase activity of about 40 % was determined by treatment 

of cells with the 5 kDa retentate of the hydrolysates prepared by PTN 6.0 S (5.4 ± 0.6). As 

shown in Fig. 4.2 A, the 5 kDa retentates produced with Cryotin and Cryotin F also did not 

reveal any anti-inflammatory activity in cells. 

The luciferase activity was also decreased by about 40 % after addition of the 5 kDa 

permeates of the hydrolysate generated by porcine trypsin (TPCK) (5.1 ± 2.3) and PTN 6.0S 

(5.6 ± 0.6) (Fig. 4.2C). However, there was no significant decrease in the luciferase activity, 

when the permeate of the proteolysate generated by cod trypsin was applied. The reason for 

the high luciferase activity in HEK
nfκb-RE

 cells after treatment with the 5 kDa permeate 

produced by cod trypsin, with or without addition of TNF-α, is not yet known. Applying the 5 

kDa permeates prepared by Cryotin and Cryotin F did not exhibit any effect on luciferase 

activity (Fig. 4.2C). This may be due to the fact that most peptides from hydrolysates 

liberated by the enzyme preparations cod trypsin, porcine trypsin-TPCK treated and PTN 6.0 

S are not present in proteolysates generated by the preparations Cryotin and Cryotin F. The 

most tryptic peptides were degraded when β-casein was hydrolyzed with the enzyme 

preparations Cryotin and Cryotin F. Recently, a study evaluated the potentially anti-

inflammatory activity of peptides smaller than 1 kDa (permeate 1 kDa) from a β-casein 
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hydrolysate generated with porcine trypsin (TPCK) 
18

. In this study, the proteolysate was 

ultrafiltrated with a 5 kDa membrane and the 5 kDa permeate was ultrafiltrated with a 1 kDa 

membrane. The tryptic β-casein fraction, which contained peptides smaller than 1 kDa, did 

not show any anti-inflammatory effect in TNF-α stimulated HEK
nfκb-RE

 cells. Therefore, in the 

present study, a further fractionation of the 5 kDa permeates using a 1 kDa membrane 

filtration was not performed. 

The egg-derived peptide IRW showed anti-inflammatory activity in TNF-α stimulated 

endothelial cells by reducing the production of the inflammatory marker MCP-1. The extent 

of TNF-α stimulation was reduced by about 40 % when cells were treated with 50 µmol/L of 

IRW 
26

. Moreover, the peptides IRW and IQW derived from ovotransferrin showed a 

reduction in oxidative stress by a decrease of superoxide production in TNF-α stimulated 

human umbilical vein endothelial cells 
27

. The reduction of luciferase activity by a decrease of 

NFκB activity in HEK
nfκb-RE

 cells, found in the present study with tryptic casein hydrolysate, 

was in the same order of magnitude as data reported in the literature. It can be concluded that 

the β-casein hydrolysates generated with the enzyme preparations cod trypsin, porcine trypsin 

(TPCK), and PTN 6.0S exhibit the same potential of anti-inflammatory activity. 
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IV.5 Conclusion 

Potentially anti-inflammatory peptides were produced from β-casein by hydrolysis with the 

tryptic enzyme preparations cod trypsin, porcine trypsin (TPCK), and PTN 6.0 S. The whole 

hydrolysates (fraction I) and the UF-retentates > 5 kDa (fraction II) from the preparations cod 

trypsin and porcine trypsin (TPCK) exhibited a 50 % reduction of luciferase activity, which 

was the highest potentially anti-inflammatory effect in TNF-α induced HEK
nfκb-RE

 cells. In 

conclusion, the generation of anti-inflammatory peptides by hydrolysis of β-casein with cod 

trypsin, as a by-product of the fishery industry, could be a new scope of application in food 

processing. Cod trypsin can replace the non-food grade porcine enzyme preparation trypsin 

(TPCK) in this process as anti-inflammatory activity was highest in hydrolysates generated 

with enzyme preparations cod trypsin and trypsin (TPCK) containing tryptic but no 

chymotryptic activity. By application of PTN 6.0 S with a tryptic/chymotryptic ratio of 

1/0.05, the anti-inflammatory activity was slightly lower. Proteolysates prepared by 

incubation with the preparations Cryotin (tryptic/chymotryptic ratio 1/0.2) and Cryotin F 

(tryptic/chymotryptic ratio 1/2.06) did not show any reduction in luciferase activity. The more 

chymotryptic enzyme activity is present, the lower the potentially anti-inflammatory activity 

of the hydrolysates in TNF-α induced HEK
nfκb-RE

 cells. 

Biologically active short peptides, which are not degraded during gastrointestinal digestion, 

can be absorbed intact and elicit their biological activity at target areas. It is assumed that 

bioactive peptides may be absorbed mainly via paracellular diffusion or via carrier mediated 

transport across the cell monolayer 
1
. As shown in a previous study, peptides < 1 kDa 

generated with porcine trypsin (TPCK) did not exhibit potentially anti-inflammatory activity 

in HEK
nfκb-RE 

cells 
18

. Therefore, it can be assumed that potentially anti-inflammatory activity 

is based upon longer peptides > 1 kDa. It is not to be expected that long oligopeptides would 

show potentially anti-inflammatory activity, because of degradation during gastrointestinal 

digestion. However, the oligopeptides identified in tryptic β-casein hydrolysate (Table 4.2) 

may be precursor for the liberation of smaller bioactive peptides, which are released by 

enzymatic hydrolysis in the body. The bioactivity of long-chain peptides as precursors has 

been described before 
1
. It is possible that oligopeptides containing a bioactive sequence 

display their biological effect by passing through the cell monolayer and reaching potential 

sites of action in the body, where the protected active sequence is released from the precursor 
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molecule. For example, a precursor of casomorphin-7 has been found in the plasma of 

newborn calves after their first milk intake. This pre-casomorphins could reach opioid 

receptors located in the nervous, endocrine, and immune systems of the organism 
1
. 

 

ABBREVIATIONS USED 

TPCK, tosyl phenylalanyl chloromethyl ketone; NFκB, nuclear factor kappa-light-chain 

enhancer of activated B cells; TNF-α, tumor necrosis factor alpha; HEK
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embryotic kidney cells; IKK complex, IκB-kinase complex; NMWCO, Nominal Molecular 

Weight Cut-Off 

 

 

 

 

 

 

 

 

 

 

 

 

ACKNOWLEDGMENT 

This research project is funded by the Federal Ministry for Education and Research (BMBF) 

as part of the competence network “FoCus- Food Chain Plus”. 



Chapter IV 
 

 

151 

 

IV. 6 References 

1. Meisel H, Biochemical properties of peptides encrypted in bovine milk proteins. Curr. 

Med Chem 12: 1905-1919 (2005). 

2. Boutrou R, Gaudichon C, Dupont D, Jardin J, Airinei G, Marsset-Baglieri A, 

Benamouzig R, Tome D, Leonil J, Sequential release of milk protein-derived bioactive 

peptides in the jejunum in healthy humans. Am J Clin Nutr 97: 1314-1323 (2013). 

3. Meisel H, Biochemical properties of regulatory peptides derived from milk proteins. Pept 

Sci 43: 119-128 (1997). 

4. Dziuba B and Dziuba M, Milk proteins-derived bioactive peptides in dairy products: 

molecular, biological and methodological aspects. Acta Sci Pol Technol Aliment 13: 5-25 

(2014). 

5. Espeche Turbay MB, de Moreno de LeBlanc A, Perdigón G, Savoy de Giori G, Hebert 

EM, β-Casein hydrolysate generated by the cell envelope-associated proteinase of 

Lactobacillus delbrueckii ssp. lactis CRL 581 protects against trinitrobenzene sulfonic 

acid-induced colitis in mice. J. Dairy Sci 95: 1108-1118 (2012). 

6. Nielsen DS, Theil PK, Larsen LB, Purup S, Effect of milk hydrolysates on inflammation 

markers and drug-induced transcriptional alterations in cell-based models. J Anim Sci 90 

(Suppl 4): 403-5 (2012). 

7. Piccolomini A F, Iskandar MM, Lands L C, Kubow S, High hydrostatic pressure pre-

treatment of whey proteins enhances whey protein hydrolysate inhibition of oxidative 

stress and IL-8 secretion in intestinal epithelial cells. Food Nutr Res 56: 1-10 (2012). 

8. Tavares TG, Spindola H, Longato G, Pintado ME, Carvalho JE, Malcata FX, 

Antinociceptive and anti-inflammatory effects of novel dietary protein hydrolysate 

produced from whey by proteases of Cynara cardunculus. Int Dairy J 32: 156-162 

(2013). 

9. Millán-Linares Model C, Yust Mdel M.; Alcaide-Hidalgo JM, Millán F, Pedroche J, 

Lupine protein hydrolysates inhibit enzymes involved in the inflammatory pathway. Food 

Chem 151: 141-147 (2014). 



Chapter IV 
 

 

152 

 

10. Xu M, Chen ZJ, Ubiquitin mediated regulation of protein kinases in NFkB signaling. In 

Regulation of organelle and cell compartment signaling, ed. by Bradshaw RA, Dennis 

EA. Academic Press, London, pp. 71-82 (2011) 

11. Zelová H, Hošek J, TNF-α signalling and inflammation: interactions between old 

acquaintances. Inflammation Res. 62: 641-651 (2013). 

12. Li H, The role of RIP ubiquitination in the TNF-α signaling pathway. Doctoral thesis, 

University at Buffalo, Proquest, Ann Arbor MI (2007). 

13. Rahman MM, McFadden G, Modulation of tumor necrosis factor by microbial pathogens. 

PLoS Pathog. 2: 66-77 (2006). 

14. Gudmundsdottir A, Palsdottir HM, Atlantic cod trypsins: From basic research to practical 

applications. Mar Biotechnol 7: 77-88 (2005). 

15. Rossano R, Larocca M, Riccio P, Digestive enzymes of the crustaceans Munida and their 

application in cheese manufacturing: a review. Mar Drugs 9: 1220-1231 (2011). 

16. Stefansson B, Helgadóttir L, Olafsdottir S, Gudmundsdottir Á, Bjarnason JB, 

Characterization of cold-adapted Atlantic cod (Gadus morhua) trypsin I — Kinetic 

parameters, autolysis and thermal stability. Comp Biochem and Physiol, Part B. 155: 

186-194 (2010). 

17. Shahidi F, Janak Kamil YVA, Enzymes from fish and aquatic invertebrates and their 

application in the food industry. Trends in Food Sci Technol 12: 435-464 (2001). 

18. Malinowski J, Klempt M, Clawin-Rädecker I, Lorenzen PC, Meisel H, Identification of a 

NFκB inhibitory peptide from tryptic β-casein hydrolysate. Food Chem 165: 129-133 

(2014). 

19. Le Magnen C, Maugas J-J, Method for obtaining beta casein. United States Patent 

5397577 (1995). 

20. Reichard U, Buttner S, Eiffert H, Staib F, Ruchel R, Purification and characterisation of 

an extracellular serine proteinase from Aspergillus fumigatus and its detection in tissue. J 

Med Microbiol 33: 243-51 (1990). 

21. Lorenzen PChr, Kiesner C, Goepfert A, Schlimme E, Properties of strong-heated foods: 

in vitro proteolysability of sterilised milk. Milchwiss-Milk Sci Int 54: 442-446 (1999). 



Chapter IV 
 

 

153 

 

22. Lorenzen PChr, Schlimme E, The plastein reaction: properties in comparison with simple 

proteolysis. Milchwiss-Milk Sci Int 47: 499-504 (1992). 

23. Gallinat JL, Qanbari S. Drögemüller C, Pimentel ECG, Thaller G, Tetens J, DNA-based 

identification of novel bovine casein gene variants. J Dairy Sci 96: 699-709 (2013). 

24. Farrell HM Jr, Jimenez-Flores R, Bleck GT, Brown EM, Butler JE, Creamer LK, Hicks 

CL, Hollar CM, Ng-Kwai-Hang, K. F.; Swaisgood, H. E., Nomenclature of the proteins 

of cows’ milk—sixth revision. J Dairy Sci 87: 1641-1674 (2004). 

25. Bunkenborg J, Espadas G, Molina H, Cutting edge proteomics: benchmarking of six 

commercial trypsins. J Proteome Res 12: 3631-3641 (2013). 

26. Huang W, Chakrabarti S, Majumder K, Jiang Y, Davidge ST, Wu J, Egg-derived peptide 

IRW inhibits TNF-α-induced inflammatory response and oxidative stress in endothelial 

cells. J Agric Food Chem 58: 10840-10846 (2010). 

27. Majumder K, Chakrabarti S, Davidge ST, Wu J, Structure and activity study of egg 

protein ovotransferrin derived peptides (IRW and IQW) on endothelial inflammatory 

response and oxidative stress. J Agric Food Chem 61: 2120-2129 (2013). 

 

 

 

 

 



Chapter V Conclusions 
 

 

154 

 

Chapter V Conclusions 

This work is focused on the production of functional food ingredients of the carbohydrate and 

protein fractions of milk. With the present investigations an enrichment of bioactive 

oligosaccharides and a generation of bioactive peptides from milk were realized. A 

characterization of the beneficial health effects of the oligosaccharides and peptides was 

performed by evaluation of the NFκB activity in HEK
nfκb-RE 

cells in vitro. 

V.1 Development of procedures for the enrichment of MOS by NF 

For the enrichment of MOS by membrane filtration, an initial screening and a comparison of 

the efficiency of different NF membranes were performed on laboratory scale (Manuscript 1, 

chapter II). The best results were achieved by application of NF membranes with a NMWCO 

of 150-400 Da. A retention of MOS (6’-SL, 3’-SL, GalNAc-Gal-Glc) of 49 % to 84 % was 

accomplished. In consideration of the results from laboratory scale NF, the process was 

transferred to pilot plant and industrial scales. The same level of retention was achieved by 

application of the spiral wound modules SR 50 and DL on pilot plant scale and by the 

membrane DOW on industrial scale NF. A 100-fold increase in the MOS content in relation 

to the total sugar content (10.6 %) compared to the initial sample (0.1 %) was achieved after 

NF on industrial scale by application of the membrane DOW. The NF retentate produced on 

industrial scale was composed of 2.6 % MOS, 28.3 % mono- and disaccharides (glucose, 

galactose, lactose), 23.5 % citric acid and 24.7 % ash. A screening of the efficiency of 

different NF membranes for the enrichment of MOS on different scales of production was 

performed for the first time. 

Furthermore, the NF process for the enrichment of MOS was optimized, achieving a better 

permeation of milk salts and residual sugars during NF at pH 5 and pH 7 by using the 

previously concentrated NF retentate from the preceding experiment as a raw material 

(Manuscript II, chapter III). After NF and diafiltration with the membrane module DL on 

pilot plant scale, a high retention of MOS of 68 % to 79 % was achieved at acidic and neutral 

milieu. The high MOS content in relation to total sugar content of 87.3 % to 92.7 % in the 

final NF retentate at pH 5 and 7 (9-fold higher than in the first NF retentate, 900-fold higher 

than in the initial sample) indicated a nearly complete permeation of mono- and disaccharides. 
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Generally, a higher enrichment of MOS in dry mass (5-fold higher than in the first NF 

retentate, 140-fold higher than in the initial sample) and a higher permeation of salts were 

achieved by NF at pH 5. The dry mass of the NF retentate at pH 5 was composed of 14.1 % 

MOS, 1.2 % mono- and disaccharides, 13.3 % citric acid and 21.8 % ash. Moreover, the first 

study on the transferability of the optimized process to caprine milk resulted in a markedly 

increase in the MOS content in relation to total sugar content in retentate (23- to 31-fold 

higher than in the initial sample) of NF at neutral milieu. The influence of the pH on the 

degree of enrichment of MOS by NF was evaluated for the first time. 

The results obtained demonstrate that a two-stage NF process is highly suitable for the 

enrichment of MOS. Even though the concentration of oligosaccharides in milk of domestic 

animals is very low (chapter I.1.2.1) (Martinez-Ferez et al. 2006; Albrecht et al. 2014), high 

degrees of MOS enrichment were achieved by the developed NF process. The membrane 

filtration technology is widely applied in the dairy industry for the fractionation of milk 

components, e.g. caseinmicelles, WPC, WPI or lactose (chapter I.1.2.5) (Mehra et al. 2014) 

as well as for concentration and desalination of products e.g. by NF (Carić et al. 2009). 

Moreover, membrane filtration and evaporation techniques can be combined whereby the first 

concentration and desalination is often done by membrane filtration followed by evaporation 

(Carić et al. 2009). Because the technological devices are available, the implementation of the 

NF procedure for the enrichment of MOS is feasible without high acquisition costs and effort. 

Furthermore, the NF process can be performed continuously for 24 h a day using a readily 

available dairy stream. Whey-UF permeate or SM-UF permeate are produced in high amounts 

and are valuable sources for the enrichment of MOS (chapter I.1.2.5) (Barile et al. 2009). NF 

at acidic milieu resulted in a higher permeation of milk salts, especially of calcium, sodium 

and potassium, but also of citric acid (Manuscript II, chapter III). While at pH 7 the divalent 

salts are only partly ionized, the dissociation of the minerals is higher at acidic milieu, 

resulting in lower molecular masses (Lucey and Horne 2009; Walstra et al. 1999; Fox and 

McSweeney 2009). Therefore, the NF at pH 5 might promote a higher permeation of milk 

salts. Moreover, Rice et al. (2006) detected a markedly lower decrease in permeate flux 

during NF of bovine SM-UF permeate at pH 5 compared to the process at pH 8, indicating a 

lower fouling of the membrane (Rice et al. 2006). In our investigations, the permeate flux was 

also slightly higher during NF at pH 5 compared to pH 7. The high permeate flux of 31.6 

L/m
2
h at pH 5 resulted in very short process time of the NF. Therefore, the permeate flux and 
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the membrane fouling behavior cannot be evaluated. The NF at acidic milieu promotes a 

higher permeation of the milk salts and might be beneficial to lower the fouling of the 

membrane. Especially when NF is performed continuously over a long period of time, a 

decreased fouling of the membrane is mandatory for a successful and effective performance. 

Our investigations on laboratory scale showed a better separation of MOS from the residual 

sugars (lactose, glucose, galactose) when lactose was hydrolyzed in the SM-UF permeate 

before NF (Manuscript 1,chapter II). Because the MOS fraction in milk of domestic animals 

is mainly composed of trisaccharides (e.g. 3’-SL, 6’-SL = 655 Da, GalNAc-Gal-Glc = 546 

Da), the selective permeation of the residual sugars was higher when lactose was hydrolyzed. 

Moreover, during the lactose hydrolysis with a β-galactosidase from Kluyveromyces lactis, 

GOS were synthesized. During NF, the valuable GOS were enriched in appreciable amounts 

(chapter II, III), representing a second bioactive sugar component in the retentate. Therefore, 

lactose hydrolysis of SM-UF permeate is a beneficial step to gain a NF retentate of high 

purity containing MOS and synthesized GOS. The NF permeate as a by-product of the MOS 

enrichment contained high amounts of glucose and galactose. These sugars may be used as 

fermentation products, e.g. for ethanol production. A concentration of the NF permeate e.g. 

by reverse osmosis (RO) before fermentation might be necessary, due to high dilution during 

diafiltration (DF). In a recent study, NF of mother liquor without lactose hydrolysis was 

performed for the concentration of MOS (Mehra et al. 2014). By the application of mother 

liquor as a raw material, crystalline lactose was obtained as a valuable dairy product before 

MOS enrichment. However, without lactose hydrolysis no GOS were synthesized.  

In consideration of the achieved results for the enrichment of MOS from bovine lactose 

hydrolyzed SM-UF permeate at acidic milieu and the first investigations for the transferability 

of this NF process to lactose hydrolyzed caprine SM-UF permeate at neutral milieu, the 

enrichment of MOS from caprine milk should be performed at acidic milieu to increase the 

milk salt permeation. Furthermore, NF of caprine milk permeate should be performed with a 

higher concentration factor (CF) and diafiltration (DF) might be conducted with a higher 

amount of diavolumes (DV) to achieve a higher degree of MOS enrichment and a higher 

purity of the concentrate. 

Whey permeates or SM-UF permeates derived from bovine and caprine milk present highly 

valuable sources for the enrichment of MOS by NF. Even though the concentrations of MOS 
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in bovine milk are very low, a concentration of MOS is highly promising due to the high 

amounts of whey available in the dairy industry. Caprine milk contains a MOS profile closer 

to that of human milk than bovine milk. Therefore, the combined addition of MOS 

concentrates produced from bovine and caprine milk as a functional ingredient to food might 

be beneficial to reproduce the oligosaccharide profile of milk. 

In conclusion, an efficient and optimized procedure for the enrichment of MOS by NF on 

industrial scale was developed resulting in a high retention of MOS and a high purity of the 

NF retentate due to high permeation of residual sugars and milk salts. Implementation of this 

developed process in food industry could enable the production of NF retentates with high 

MOS concentrations for the application as functional food ingredients. 

V.2 Development of procedures for the generation of anti-inflammatory peptides 

By hydrolysis of β-casein with the enzyme preparations cod trypsin, porcine trypsin (TPCK) 

and PTN 6.0 S, potentially anti-inflammatory peptides were generated and identified. The 

highest potentially anti-inflammatory effect was detected in total β-casein hydrolysates 

(fraction I) and in the UF retentates > 5 kDa (fraction II) produced by the enzyme 

preparations cod trypsin and porcine trypsin (TPCK), exhibiting a reduction in luciferase 

activity of 50 % in TNF-α induced HEK
nfκb-RE

 cells. Due to the comparable extent of 

reduction of luciferase activity and the almost identical peptide profile, cod trypsin, as a by-

product of the fish manufacturing industry, can replace the non-food grade porcine enzyme 

preparation trypsin (TPCK). A new field of application for cod trypsin may be the generation 

of anti-inflammatory peptides from bovine β-casein. Hydrolysis of β-casein with the porcine 

enzyme preparation PTN 6.0 S (tryptic/chymotryptic ratio 1/0.05) resulted in a slightly lower 

anti-inflammatory activity, whereas the application of the fish enzyme preparations Cryotin 

(tryptic/chymotryptic ratio 1/0.2) and Cryotin F (tryptic/chymotryptic ratio 2.06) did not show 

any reduction of luciferase activity. It can be concluded that the higher the chymotryptic 

activity the lower the potentially anti-inflammatory activity of the hydrolysates in TNF-α 

induced HEK
nfκb-RE 

cells. 

The identified peptides in the potentially anti-inflammatory hydrolysates exhibited masses 

from 640 to 7500 Da (Table 4.2). Recently, a study showed that a peptide fraction < 1 kDa 

hydrolyzed by porcine trypsin (TPCK) did not exhibit potentially anti-inflammatory effect in 
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HEK
nfκb-RE

 cells (Malinowski et al. 2014). It can be supposed that the anti-inflammatory 

activity of the tryptic β-casein hydrolysates is based on peptides > 1 kDa. Because of 

degradation during gastrointestinal digestion, peptides with high molecular mass are not to be 

expected to exhibit potentially anti-inflammatory activity. 

The identification of peptides derived from dietary proteins in humans in vivo is very difficult. 

Boutrou et al. (2013) identified peptides in the jejunum of humans who ingested caseins and 

whey proteins within a period of 0 h to 6 h after intake. Most casein-derived peptides in the 

jejunal effluents had a molecular size of 450-1800 Da. Fragments with a molecular size of 

750-1050 Da were predominant during 6 h after ingestion, whereas the number of peptides 

exhibiting a mass of 1050-1800 Da started to decrease after 3 h of digestion. A few peptides 

ranging in size between 1800-3000 Da were present up to 2.5 h after consumption, indicating 

a degradation by longer digestion times. Moreover, the absorption of β-casein-derived 

fragments up to a size of 4400 Da has been shown by identification of the peptide β-CN (f 

170-209) in the jejunal effluents (Boutrou et al. 2013). 

In our investigation (Manuscript 3, chapter IV), various potentially anti-inflammatory 

peptides derived from β-casein exhibited molecular masses in the range of 640-3200 Da 

(peptides 1-16, 22) (Table IV.2). The fragment β-CN (f 184-202) with the primary structure 

DMPIQAFLLYQEPVLGPVR is described to exhibit potentially anti-inflammatory activity 

by the reduction of NFκB activity measured by the luciferase activity in HEK
nfκb-RE 

cells in 

vitro (Malinowski et al. 2014). This anti-inflammatory peptide was also generated in our 

study by tryptic hydrolysis with the enzyme preparations cod trypsin, porcine trypsin (TPCK) 

and the porcine PTN 6.0 S (Manuscript 3, chapter IV). Considering the results of Boutrou et 

al. (2013), it is possible that these peptides of the potentially anti-inflammatory β-casein 

hydrolysate are absorbed completely. Moreover, β-casein fragments were liberated which 

reveal other bioactivities. During the hydrolysis of β-casein with the tryptic enzyme 

preparation cod trypsin, porcine trypsin (TPCK) and the porcine tryptic and chymotryptic 

PTN 6.0 S, two anti-oxidative peptides (β-CN (f 98-105) peptide 2, β-CN (f 170-176) peptide 

5), one ACE inhibitory peptide (β-CN (f 108-113) peptide 8) and one peptide exhibiting anti-

oxidative and opioid activity (β-CN (f 177-183) peptide 3) were released (Table IV.2, Fig. 

1.8). Furthermore, in the potentially anti-inflammatory β-casein hydrolysates, fragments with 

a molecular size of 4800-7500 Da were identified (peptides 17-21) (Table IV.2). A 
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degradation of these peptides during the gastrointestinal digestion is expected. However, all β-

casein-derived tryptic peptides and especially high molecular weight fragments might 

function as a precursor of smaller bioactive peptides during the gastrointestinal digestion. 

Indeed, various ACE inhibitory, opioid and anti-oxidative peptides are encrypted in the 

primary structure of the tryptic peptides generated in our investigation (Fig. 1.8, Table IV.2). 

Also Meisel et al. (2005) described that bioactivity of long-chain peptides may rely on smaller 

fragments liberated by enzymatic fragmentation. It is probable that inactive peptides 

containing the latent bioactive sequence enter the blood stream and elicit their effects after 

enzymatic release of the protected active sequence. For instance, a precursor of β-

casomorphin-7 (β-CN (f 60-66)) has been found in the plasma of calves after their first milk 

intake. This pre-casomorphin could reach target areas where the active sequence gets liberated 

(Meisel 2005). The identified peptides in the potentially anti-inflammatory β-casein 

hydrolysates generated by tryptic proteolysis by applying cod trypsin, porcine trypsin (TPCK) 

and PTN 6.0 S might also serve as a precursor for the liberation of smaller anti-inflammatory 

β-casein fragments. 

As a result, the development of a procedure for the generation of potentially anti-

inflammatory peptides from β-casein by application of tryptic enzyme preparations from cod 

and hog was successful. An establishment of this process on high scale production should be 

feasible enabling the provision of a functional ingredient for food industry. 

 

V.3 Characterization of the biological activity of enriched MOS concentrates and 

generated β-casein hydrolysates 

The evaluation of the bioactivity of the MOS concentrates produced by NF and the tryptic and 

chymotryptic β-casein hydrolysates (Manuscript 3, chapter IV) was performed in TNF-α 

stimulated HEK
nfκb-RE 

cells in vitro (chapter I.1.4). 

SM-UF permeate and the MOS enriched retentates generated by NF on pilot plant and 

industrial scales exhibited immunostimulatory activity by the increase in luciferase activity in 

comparison to the control (Manuscript 1, chapter II). Moreover treatment of cells with the 

MOS standards 3’-SL and 6’-SL resulted in a significant up-regulation of luciferase activity. 
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Incubation of the cells with lactose showed no significant effect on luciferase activity in 

comparison to the control. It has to be considered that the NF retentates may contain further 

substances such as peptides, milk salts and GOS, which may influence the NFκB activity in 

the cells.  

The evaluation of the anti-inflammatory effect of β-casein hydrolysates generated with the 

enzyme preparations cod trypsin, porcine trypsin and PTN 6.0 S exhibited a decrease in 

luciferase activity of about 50 % in comparison to the control. The tryptic and chymotryptic 

enzyme preparations Cryotin and Cryotin F showed no significant reduction in luciferase 

activity. 

The cell assay for the determination of the activity of the immune regulating transcription 

factor NFκB in HEK
nfkb-RE 

cells may provide a first indication for the immunostimulatory 

activity of MOS and the anti-inflammatory activity of tryptic β-casein hydrolysates. It has to 

be considered that in vitro cell assays do not ensure that the same effect is revealed in the 

human body in vivo. However, for a first evaluation of the biological activity, the 

determination of the NFκB activity in HEK
nfkb-RE

 cells is highly suitable. 

 

V.4 Outlook 

In the present work, procedures were developed for the enrichment of MOS and the 

generation of anti-inflammatory β-casein hydrolysates. The characterization of the biological 

activity of the products was performed by the evaluation of the NFκB activity in HEK
nfkb-RE

 

cells in vitro. An important next step should be the determination of the biological effect of 

these products in human clinical trials in vivo. Recently, an intervention study for the 

evaluation of the anti-inflammatory effect of the total β-casein hydrolysate generated with the 

porcine enzyme preparation PTN 6.0 S in vivo has been performed in cooperation with 

Universitätsklinikum Schleswig-Holstein (UKSH) in Kiel. The outcome of the trial is not 

known yet, as the evaluation of the results is still being performed. Moreover, an intervention 

study for the determination of the immunostimulatory activity of the MOS concentrates 

should be performed. 
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To provide sufficient amounts of the bioactive products for clinical trials and to realize the 

application of these products as functional ingredients in food, the developed procedures 

should be suitable for the transfer into industrial scale production. The enrichment of MOS by 

NF was established on industrial scale. However, the innovative procedures developed for 

desalting have to be transferred to industrial scale. Also the generation of anti-inflammatory 

peptides from β-casein should be transferred to large scale production.  
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