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I Introduction 

 

1 Diabetes and Cancer 

Diabetes mellitus (DM) and cancer are amongst the most frequent chronic diseases 

worldwide with a rapidly increasing number of people affected (Steward & Wild, 2014; 

Vigneri et al., 2009). 

To date cancer has evolved to be the leading cause of death in the United States (Jemal et 

al., 2010), whereas it follows cardiovascular diseases as second most common cause of 

death in Europe (WHO, 2012). 

Since recent years DM has been suspected to provoke tumorigenesis and notably, 

epidemiological studies underline a positive correlation between both diseases (see 

chapter 1.3).  

However, it is not known to which extent DM possibly contributes to cancer cell 

development and promotion of malignancies (Chen Li & Kong, 2014). Furthermore, there 

is no proof yet that DM is causally correlated to cancer diseases in general. 

Against this background, it becomes evident that insulin-related cancer research is highly 

necessary to further illuminate implications of DM in tumor promotion.  

 

1.1 Diabetes Mellitus 

Next to the minor groups of impaired glucose tolerance and gestational diabetes (WHO, 2015), 

the metabolic disorder DM can be classified into the two most common groups type 1 

diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) (National Diabetes Data 

Group, 1979).  

 

T1DM is marked by an absolute deficiency of insulin resulting in increased glucose levels 

in the blood and urine. In the majority of T1DM patients, autoimmune destruction of 
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insulin-producing beta cells in the pancreas is the underlying cause for the chronic 

disease. 

A lifelong insulin substitution therapy remains compulsory to avoid lethal consequences 

of hyperglycaemia (Bastaki, 2005). 

 

In contrast, development of T2DM is a long-term process. The main risk factor for its 

manifestation is a sedentary lifestyle characterized by hyper-caloric diet and lack of 

physical activity for an extended period (Tuomilehto et al., 2001). As causal consequence, 

this results in a vicious circle of obesity, inflammation, hyperinsulinemia and insulin-resistance 

(McArdle et al., 2013; van Greevenbroek et al., 2013). These developments highly favor 

manifestation of T2DM.  

Without any interventions, the pancreas further increases the insulin production 

attempting to compensate the present relative insulin deficiency. This however empowers 

the vicious circle of hyperinsulinemia and leads to an exacerbation of T2DM. 

If patients are not willing to change their unhealthy lifestyle, a medical treatment with 

oral-antidiabetics will be required in order to prevent long-term effects of elevated blood 

glucose levels by offsetting the relative insulin deficiency (DeFronzo, 1999).  

A depletion of the pancreas can be a consequence of long-term overload accompanied by 

a marked reduced insulin production. At this point, an insulin substitution therapy 

becomes indispensable for T2DM patients. 

 

1.1.1 Worldwide Prevalence of Diabetes Mellitus 

The International Diabetes Federation reported a total number of 371 mio diabetics 

worldwide in 2012 (Abdullah et al., 2014). The majority (90-95 %) suffered from T2DM 

(American Diabetes Association, 2008). According to forecasts, the prevalence of T2DM 

will grow significantly in the future (Wild et al., 2004) indicating that the metabolic 

disorder takes features of a pandemic disease. The increasing sedentary lifestyle within 

our society can be attributed to be the major reason for its expansion. In addition, 

dramatically enhanced numbers of children and young people affected (Fagot-Campagna, 
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2000) as well as steadily ascending life expectances pose further challenges in DM 

management. 

Especially in Southeast Asia, T2DM has become a large public health problem. Fast-

growing population rates, urbanization and rapid economic development along with 

changes in living conditions and nutrition within a short period of time are reasons for 

this observation (Cheema et al., 2014). 

Thus, the classical image of T2DM as a disease that concerns elder people of the western 

population exclusively ("senile DM") is undergoing a radical transformation.  

In consequence, a successful diabetes management based on precise knowledge about 

molecular implications of T2DM becomes more important in current and future times. 

 

1.2 Cancer 

1.2.1 Characteristic Features of Tumor Cells 

Cancer is the general name for a group of diseases marked by presence of malignant tumor 

cells. In contrast to their normal differentiated counterparts, cancer cells are characterized 

by abnormal uncontrolled growth, the ability to invade to adjacent tissues and to spread 

via blood vessels or the lymphatic system through the body establishing new tumors 

(metastases) (Koda-Kimble et al., 2009). Those features can be attributed to an efficient use 

of several growth factors, the capability to stimulate the formation of new blood vessels 

(angiogenese) and avoidance of apoptosis (Fig. 1). However, during their development, 

malignant tumors obtain a differing set of functional capabilities by using varying 

mechanistic strategies (Hanahan et al., 2000). 
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Figure 1: Specific Features of Malignant Tumor Cells. 

During their development from normal to malignant cells, cells acquire various capabilities in 

order to become independent from their cell environment and to empower growth and survival. 

Source: own illustration following (Hanahan et al., 2000). 

 

 

Reasons for the process of carcinogenesis are heterogenous. Endogenous reasons 

comprise genetic dispositions. Physical, chemical and biological carcinogens are counted 

among exogenous reasons. Those include environmental factors, viruses or bacteria, 

medical drugs and an unhealthy lifestyle, e.g. cigarette smoke, long-term stress, poor-diet, 

obesity, lack of physical activity or abuse of alcohol.  

Exposure to carcinogens can cause mutations resulting in activation of oncogenes and/ or 

inactivation of tumor suppressor genes. 

malignant 

cells

evading 

apoptosis

insensitivity 

to anti-

growth 

signals

self 

sufficiency 

in growth 

signals

sustained 

angiogenesis

limitless 

replicative 

potential

tissue 

invasion & 

metastasis



Introduction 

5 

 

1.2.2 Lung Cancer 

Lung cancer remains the leading cause of death within cancerous diseases worldwide 

(1.59 mio deaths per year) (Jemal et al., 2010; Steward & Wild, 2014). Consumption of 

cigarettes, cigars or pipes displays the predominant reason for its development;  in 75-80 

%, smoking is considered to be the accountable chemical carcinogen leading to lung 

cancer (Koda-Kimble et al., 2009). 

There are more than ten different types of primary pleuropulmonary malignancies. 

However, adenocarcinoma, squamous cell, large cell and small cell carcinoma represent 

the four major types accounting for 95 % of all lung cancers (Koda-Kimble et al., 2009).  

Due to their similarities in prognosis and response to therapy, adeno-, squamous and 

large cell carcinoma, each named in conformity with their morphology, can be classified 

as non-small cell lung cancer (NSCLC). However, each type reveals specific characteristics 

in cell growth, spread and aggressiveness (“Non-Small Cell Lung Cancer Treatment 

(PDQ®),” 2014).  

Relapse and mortality rates are high, albeit NSCLC and small cell lung carcinoma (SCLC) 

are responsive to first-line chemotherapy (Schiller, 2001). 

The overall five year survival for lung cancer is approx. 16 % (American Cancer Society, 

2014).  

 

1.3 Association between Diabetes Mellitus and Cancer 

Results of the Cancer Prevention Study conducted by the American Cancer Society clearly 

indicate an association between cancer and excess body weight; 14 % of cancer deaths in 

men and 20 % in woman can be attributed to obesity (Calle et al., 2003). 

Beyond, various epidemiological studies reveal an explicit involvement of T2DM in 

tumorigenesis (Li & Kong, 2014). In the population of diabetic patients an increased 

incidence of several cancer entities, including liver (El-Serag et al., 2006), pancreas 

(Everhart & Wright, 1995), breast (Wolf et al., 2005), colorectal (Larsson et al., 2005), 

endometrial (Friberg et al., 2007), bladder (Larsson et al., 2006), kidney (Bao et al., 2013) 

and Non-Hodgkin’s lymphoma (Frasca et al., 2008; Sciacca et al., 2013) and elevated rates 
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of cancer mortality have been reported (Barone et al., 2014). However, considered from a 

pathophysiological point of view, precise molecular mechanisms providing an 

explanation for this link are still not proved. 

As insulin is a potent anabolic hormone (see chapter 2), long-term hyperinsulinemia, 

caused by raised circulating endogenous insulin levels or substitution therapy, is 

esteemed to be one key factor for the association between T2DM and cancer (Weinstein et 

al., 2014).  
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2 Role of the Insulin and IGF-1 Family in Cancer Progression 

2.1 Insulin and IGF-1 

Insulin and IGF-1 are cognate peptides which show large similarities in their molecular 

structures indicating that both derived from a common ancestor gene (Varewijck & 

Janssen, 2012). Although their physiological roles are specific, certain features are 

overlapping due to binding to closely related receptor tyrosine kinases (RTK) (see chapter 

2.2) (Versteyhe et al., 2013).  

The peptide hormone insulin is secreted in pancreatic β-cells in response to elevated 

blood glucose levels. Its main function is glucose-uptake in skeletal muscles and fatty 

tissue (Löffler et al., 2007).  

Besides, insulin has several additional effects of which stimulation of protein biosynthesis 

takes an outstanding role. As prominent anabolic hormone, insulin has the potential to 

empower the growth of pre-existing neoplasms (Corpet et al., 1997; Heuson et al., 1972).  

However, a number of unsolved questions remain. It is still unclear whether activation of 

insulin receptors (IR) or IGF-1 receptors (IGF-1R) leads to mitogenic effects. Moreover, the 

concentration range and the period of (elevated) insulin levels provoking an enhanced cell 

proliferation are not generally determined.  

Based on the aforementioned context of increasing rates of diabetics going along with an 

enhanced use of exogenous insulin administration, it is of growing importance to analyze 

insulin's impacts on tumor promotion in more detail. 

Since IGF-1, also called somatomedin C, is the major growth promoting factor in vivo, it 

plays a crucial role in malignancies. It upregulates cell growth, survival and 

differentiation (Siddle et al., 2001). Cancer cells can regulate their growth and survival via 

increase of IGF-1 production (Wang & Wong, 1998). 

Attributed to increased insulin levels in the portal circulation, the growth hormone 

receptor signaling is induced resulting in an enhanced hepatic IGF-1 production (Baxter et 

al., 1980). Hyperinsulinemia can consequently influence the IGF-1 production.  

This mechanism represents one approach explaining the correlation between tumor 

development and T2DM. 
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2.2 Insulin and IGF-1 Receptors 

Like their ligands, the IR and the IGF-1R are highly homologous. Their ligand-binding 

and their tyrosine kinase domains reveal approx. 65 % and 80 % homology (Frasca et al., 

2008; Heidegger et al., 2012). Those relevant structural and functional similarities are 

responsible for cross-reaction binding of the ligands insulin and IGF-1 to the respective 

non-cognate receptor (De Meyts & Whittaker, 2002).  

IR and IGF-1R are tetrameric integral membrane proteins which belong to subtype 2 of 

RTK (Yarden & Ullrich, 1988). Both are synthezised via translation as single chain pro-

receptors (precursors), each consisting of a linear α-β-chain sequence. After dimerization 

of two precursors in the endoplasmatic reticulum and subsequent post-translational 

processing in the Golgi apparatus, the receptor becomes functional. In its final 

conformation, the α-subunit is positioned in the extracellular space, whereas the β-

subunit spans the cell membrane. 

The molecular weight of the α-subunits is 135 kDa for both, IR and IGF-1R. The β-

subunits are 95 kDa weigh in IR and 97 kDa in IGF-1R (Löffler et al., 2007; Surmacz, 2000). 

Via covalent disulfide bridges, monomers are held together (Fig. 2) (Olefsky, 1990). 

The first step of insulin/IGF-1 receptor signaling is initiated by ligand-binding to the 

extracellular α-subunits of the respective receptor. A conformational change of the 

receptor follows which in turn leads to activation of the intracellular tyrosin kinase. This 

mediates ATP-dependent autophosphorylation of the β-subunit. Docking proteins, 

particularly insulin receptor substrates (IRS), subsequently bind to phosphorylated 

tyrosin residues and become phosphorylated themselves. Activated effectors constitute a 

binding target for downstream signaling proteins that belong to various different 

intracellular pathways. 
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Figure 2: Structure of the Insulin/IGF-1 Receptor. 

The receptor tyrosine kinases IR and IGF-1R consist of two identical subunits and reveal the 

structure α2 β2. Disulfide bridges link receptor chains to each other. The α-chains form the ligand-

binding site of the receptor. After ligand-binding, the tyrosin kinase domain, located in the β-

chains, becomes autophosphorylated (IR: Tyr1146/1150/1151; IGF-1R: Tyr1131/1135/1136). This 

phosphorylation results in an activation of downstream signaling pathways. Source: own 

illustration. 

 

 

The human IR is encoded by a single gene of which alternative splicing of exon 11 leads to 

two receptor isoforms, IR-A and IR-B. Exon 11 includes 36 additional nucleotides 

encoding 12 amino acids of the IR α-subunit at the carboxyl terminus. Transcript IR-A 

(Ex11-) excludes, whereas IR-B (Ex11+) contains exon 11 (Frasca et al. 1999). 

Presence or absence of exon 11 influences receptor-ligand interaction. Thus, IGF-2 binds 

IR-A but not IR-B with the same affinity as IGF-1R (Kido et al., 2001). In addition, IGF-1 

reveals a 10-fold higher affinity towards IR-A as compared to IR-B (Yamaguchi et al., 

1993). 

IR-B is known to be the predominant isoform expressed in liver, fat and muscle tissues, 

whereas IR-A is found to be overexpressed in placenta, fetal and cancer tissues (Denley et 

al., 2004; Frasca et al., 2008). 
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IR possess a key function in the regulation of glucose homeostasis. Besides, recent studies 

give evidence that IR expression plays a crucial role in malignancies (Frasca et al., 2008) . 

Importantly, Kim et al. (2012) further revealed for the first time the impact of IR in 

survival of NSCLC cells.  

Especially the insulin receptor splicing isoform A is considered to be involved in 

mitogenesis and found to be overexpressed in many malignancies (see above) (Frasca et 

al., 1999).  

However, precise molecular mechanisms of insulin and IR implications in tumor 

promotion in general are poorly understood yet. 

It is well studied that the IGF-1R is linked to prominent mitogenic signaling pathways 

(see chapter 2.2.1). After activation by IGF-1 or insulin in higher concentrations, tumor 

transformation, cell proliferation and survival are mediated (Khandwala et al., 2000). For 

this reason, members of the IGF family, particularly IGF-1 and IGF-1R, represent a 

prominent target for cancerogenous mutations. Upregulated expression levels of IGF-1 

and IGF-1R are frequently found in advanced-stage tumors (Nakagawa et al., 2012), 

however, mechanisms of aberrant overexpression remain evasive (Guo et al., 2013). 

Regarding NSCLC cells, several studies associated IGF-1R expression to poor prognosis 

(Merrick et al., 2007; Nakagawa et al., 2012; Pollak, 2008), whereas others reported no 

significant correlation between survival and IGF-1R expression (Cappuzzo et al., 2010; 

Ludovini et al., 2009). 

Next to expression of mere homodimeric IR and IGF-1R, heterodimeric hybrid receptors 

(HR), formed of each one IR and IGF-1R α-β-dimer (Fig. 3) can be detected in mammalian 

tissues that coexpress IR and IGF-1R (De Meyts & Whittaker, 2002; Johansson & Arnqvist, 

2006). Heterodimerization of pro-receptors occurs with a similar probability like 

homodimerization. In consequence, amounts of HR are proportional to the mole fraction 

of IR and IGF-1R in the respective tissue (Benyoucef et al., 2007). It follows that 

overexpression of IR and IGF-1R in malignant cells also leads to overexpression of HR 

(Frasca et al., 2008).  

It was detected that HR bind IGF-1 with high but insulin with low affinity (Bailyes et al., 

1997). However, it is still unclear which role heterodimeric IR/IGF-1R take in vivo in 

general and in malignant tissues in particular.  
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Figure 3: IR, IGF-1R and Heterodimeric IR/IGF-1R. 

Rough outline of homodimeric IR (left), IGF-1R (right) and heterodimeric IR/IGF-1R (middle). 

Thickness of arrows implies ligand affinity to respective receptors: insulin and IGF-1 bind their 

cognate receptors with the highest affinity, physiological concentrations of IGF-1 but not insulin 

activate HR. Source: own illustration. 

 

 

2.2.1 Mitogenic Signaling Pathways 

The insulin/IGF superfamily is highly complex. It includes different ligands, notably 

insulin, IGF-1 and IGF-2 and a variety of receptors (see chapter 2.2). This large number of 

molecules being involved in IR signaling results in approx. 1,000 combinatorial 

possibilities in the first steps of the insulin/IGF-1 signaling pathway (Taniguchi et al., 

2006). 
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Furthermore, insulin-like growth factor binding proteins (IGFBP) belong to the 

insulin/IGF superfamily.  By modulating IGF distribution and disturbing the access of IGF 

to its receptor, IGFBP further complicate the signaling network  (Baxter, 2014). 

The recently identified IGF-like (IGFL) gene family and insulin like proteins (INSL) 

represent new ligands and receptors of the insulin/IGF superfamily (Lobito et al., 2011; Lu 

et al., 2005); their explicit functions are not clearly understood yet. 

Cancer cells acquire the capabilities of unlimited cell growth accompanied by 

independence of proliferative signals and avoidance of apoptosis. Further properties like 

invasion, angiogenesis and metastatic spread complete their malignant behavior (Fig. 1). 

In order to develop these features, malignant cells exploit Phosphatidylinositol-3 kinase 

(PI3K)/Akt and Extracellular-signal-regulated kinases (ERK)/mitogen activated protein 

kinase (MAPK) pathways by excessive upregulation. Thus, both pathways constitute key 

nodes in IR-induced mitogenic signaling (Taniguchi et al., 2006). 

 

2.2.1.1 Akt Signaling 

The serine/threonin kinase Akt, also referred to as Proteinkinase B (PKB), is a downstream 

effector of PI3K (Burgering & Coffer, 1995) and takes a critical regulatory role in insulin 

metabolism and cancer progression (Manning & Cantley, 2007).  

Akt kinases exist in three isoforms, Akt 1 (PKB α), Akt 2 (PKB β) and Akt 3 (PKB γ), each 

encoded by a particular gene (Murthy et al., 2000). The isoforms slightly vary in their 

explicit functions and are expressed to a specific extent in different tissues. The 

predominant type in mammals in general is Akt 1. It triggers protein synthesis and 

cellular survival. Akt 2 is mainly required to induce the glucose transport; hence, it is a 

mediator of basic insulin functions. High expression rates are found in all "classical" 

insulin-responsive tissues. The role of Akt 3 which is mostly detected in brain and testes is 

less clear (Bhaskar & Hay, 2007). 

After IR/IGF-1R activation upon ligand-binding, IRS docking proteins are recruited to the 

receptor. In consequence of IRS phosphorylation, the regulatory subunit p85 and the 

catalytic subunit p110 of PI3K are activated, leading to generation of 

phosphatidylinositol-3,4,5-triphosphate (PIP3). Proteins with pleckstrin homology (PH), 

including Akt, are subsequently translocated to the plasma membrane and bound to the 
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second messenger PIP3 (Fig. 4). After phosphorylation of Akt at threonin 308 and serine 

473 (Bhaskar & Hay, 2007), various signaling cascades are initiated.  

Next to its metabolic function of glucose uptake, downstream PKB/Akt signaling has 

essential impacts on tumor promotion, including mediation of cell proliferation, survival 

and anti-apoptotic effects (Fig. 4) (Fresno Vara et al., 2004). 

 

 

 

Figure 4: Akt Signaling. 

Activation of the RTK leads to receptor autophosphorylation of the tyrosin residues resulting in 

binding of docking proteins IRS. The catalytic subunit of PI3K is activated by IRS phosphorylation 

and mediates production of the second messenger PIP3. PIP3 in turn recruits signaling proteins 

with PH domains, particularly Akt, to the membrane. Akt activation triggers numerous 

downstream signaling pathways which contribute to different cellular processes (i.e. enhancement 

of survival, proliferation, glucose uptake and suppression of apoptosis). Source: own illustration 

based on Bhaskar and Hay 2007; Fresno Vara et al. 2004. 

 

 

It hence appears obvious that PI3K/Akt signaling is frequently deregulated in many 

cancer tissues (De Luca et al., 2012; Fresno Vara et al., 2004; Skeen et al., 2006). 

In terms of over-activated PKB/Akt, cells are enabled to trigger proliferation more 

effectively. A reinforced response towards growth factors is a general mechanism leading 

to cell growth autonomy (Manning & Cantley, 2007). 
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Besides, anti-proliferative signals mediated by the tumor suppressor gene p53 are 

undermined due to Akt-caused induction of the pro-oncogene Mdm2 (Testa & Bellacosa, 

2001).  

Suppression of apoptosis by PKB/Akt is steered by the general mechanism (Robey & Hay, 

2006) of inhibition of pro-apoptotic proteins, i.e. Ask1, FKHR (Kim et al., 2001) and BAD 

(Lawlor & Alessi, 2001). However, Akt can directly prevent apoptosis by an inhibitory 

phosphorylation of initiator caspase 9 (Lawlor & Alessi, 2001). 

 

2.2.1.2 ERK/MAPK Signaling 

MAPK pathways include a three-tier kinase module, containing a MAP kinase kinase kinase 

(MAPKKK), a MAP kinase kinase (MAPKK) and a MAP kinase (MAPK) (Ferrell, 1996). 

Phosphorylated MAPKKKs activate MAPKKs via phosphorylation of two serine residues. 

By this, seronine/threonine residues of MAPKs are phosphorylated (Fig. 5). 

 

 

Figure 5: Schematic Overview of the Three-tier Kinase MAPK Module.  

Activation of MAPK proceeds as signal-relay cascade: Upon stimulus-induced activation of 

MAPKKKs, MAPKKs are phosphorylated which in turn phosphorylate MAPKs. Source: own 

illustration. 

 

 

On the basis of different activating factors, to date, six different MAPKs are characterized 

in mammals (Dhillon et al., 2007; Roux & Blenis, 2004): 

ERK1/2, ERK3/4 (Marquis et al., 2014), ERK 5 (Davis, 2000; Kyriakis & Avruch, 

2001),ERK7/8 (Cargnello & Roux, 2011), p38-kinases isozymes (p38-α,-β,- Ɣ,-δ) and Jun N-

terminale kinases (JNK1, JNK2, JNK3) (Schaeffer & Weber, 1999). 

ERK1 and ERK2 share 83 % amino acid homology and reveal equal functions in 

intracellular signaling (Chen et al., 2001). The ERK1/2 cascade, also named 

Ras/Raf/MEK/ERK MAPK pathway, is stimulated by growth factors and presents the 
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classical mitogen kinase pathway that plays a crucial role in malignancies. In this Ras-

dependent signaling, serine/threonine Raf kinases (Raf-1, Raf-2, Raf-3) take on the 

function as MAPKKKs (Qi & Elion, 2005). The MAPKKs are represented by MAPK/ERK-

activating kinases 1 and 2 (MEK1/MEK2), whereas ERK1/2 are the final MAPKs. 

After binding of growth factors, i.e. insulin or IGF-1 to their appropriate RTK, receptor 

autophosphorylation follows. The phospho-tyrosine residues serve as docking sites for 

the growth-factor-receptor-bound protein 2 (Grb2). Grb2 acts as adaptor protein between 

the RTK and the guanine-nucleotide exchange factor son of sevenless (SOS) protein 

(Watanabe et al., 2000). Via exchange of GDP into GTP, the proto-oncogene Ras becomes 

active and binds Raf kinases. Activated Raf phosphorylates MEK which in turn 

phosphorylates ERK (Meier et al., 2005). Upon ERK activation numerous cytoplasmic and 

nuclear targets can be phosphorylated resulting in proliferation and survival as well as 

migration and angiogenesis (Dhillon et al., 2007; Yoon & Seger, 2006) (Fig. 6). 
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Figure 6: Schematic Overview of ERK/MAPK Signaling. 

Activation of RTK results in recruitment and phosphorylation of Grb2. Ras proteins are 

transformed into their active GTP-form by the guanine-nucleotide exchange factor SOS. After 

binding of Ras-GTP to Raf, Raf becomes phosphorylated. In a signal-relay-process, following 

kinases are phosphorylated resulting in MAPK-dependent mitogenic effects. Source: own 

illustration following (Roberts & Der, 2007). 

 

 

The Ras-dependent Ras/Raf/MEK/ERK MAPK signaling pathway is abnormally activated 

in the majority of cancers. Mutations occur in upstream RTK or in components of the 

MAPK module (Mccubrey et al., 2007). ERK1/2 activation is associated to an aggressive 

tumor behavior and poor survival (Roberts & Der, 2007). 
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3 Role of TGF-β in Tumor-Promotive Processes  

3.1 Epithelial Mesenchymal Transition and Cancer Progression 

Epithelial and mesenchymal cells are two main cell types in mammals and reveal specific 

differences in their morphology and functions.  

Epithelial tissue is composed of highly sorted cell monolayers that form a barrier in order 

to protect from pathogens and to participate in secretion (Xu et al., 2009).  

Epithelial cells have apical-basal polarity and are characterized by cohesive interactions, 

adherence to each other through tight junctions and a lack of mobility of individual cells 

(Larue & Bellacosa, 2005).  

In contrast, mesenchymal tissue consists of loosely associated cells without polarity which 

allows cell mobility. As a result, mesenchymal cells display a high capacity for migration 

and invasion (Larue & Bellacosa, 2005). 

Epithelial mesenchymal transition (EMT) is a process of conversion of epithelial cells to 

mesenchymal cells (Xiao & He, 2010) with respective changes of cell capabilities.  

During EMT, epithelial cells lose their polarity and their cell-cell adhesion by 

disintegration of tight junctions (Kalluri & Neilson, 2003). The transitory process is 

accompanied by a switch of epithelial cell marker expression (e.g. E-cadherin) to 

expression of mesenchymal cell markers (e.g. N-cadherin and fibronectin) (Rosanò et al., 

2006; Xiao & He, 2010). In consequence, the phenotype of (former) epithelial cells becomes 

smooth-muscle like and cells obtain mesenchymal functions (Fig. 7). 
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Figure 7: Schematic Overview of the EMT Process in Cancer Cells. 

EMT contributes to tumor promotion through initiation of invasion of malignant cells into the 

blood stream. Epithelial cells form a monolayer surrounded by a basement membrane. During the 

invasive carcinoma stage, epithelial cells lose their polarity and begin to detach from the basement 

membrane. The phenotype of (former) epithelial cells becomes smooth-muscle like. Cell-cell 

interactions are entirely dissolved facilitating cell migration and invasion into other tissues. Source: 

own illustration following (Kalluri & Weinberg, 2009). 

 

 

EMT is highly involved in cancer progression by initiating metastasis and invasion into 

other tissues (Hugo et al., 2007; Lee et al., 2006). Notably, there are important differences 

between physiological and pathophysiological EMT, mostly referring to the complexity of 

the transitory process. While normal EMT comprises multiple comprehensive 

mechanisms, EMT during tumor development appears to be based on activation of single 

cellular or molecular EMT-inducing events.  

Activation of several mitogenic signaling pathways (Boyer et al., 1997), such as Smad 

(Moustakas & Heldin, 2007), Akt (Grille et al., 2003) or ERK (Jechlinger et al., 2002) are 

known to trigger the EMT program. Besides, IGF-2 represents a prominent inducer of 

EMT (Larue & Bellacosa, 2005).  

However, the full spectrum of agents initiating the invasion-metastasis-cascade in 

carcinoma cells still remains unclear (Kalluri & Neilson, 2003). 

 

The cytokine transforming growth factor β (TGF-β) is one major inducer of EMT during 

embryonic development and cancer progression (Lamouille et al., 2014; Miettinen et al., 

1994).  
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Adding TGF-β to epithelial cells in vitro is an appropriate way to induce EMT (Xu et al., 

2009). In response to TGF-β-binding to its cognate receptor, phosphorylation of Smad2 

and Smad3 is initiated. Subsequently, a trimeric Smad complex containing phoshpho-

Smad2/3 and recruited Smad 4 is formed and translocated into the nucleus. Association 

and cooperation with DNA-binding transcriptional factors, such as Snail, ZEB and bHLH 

family members (Jechlinger et al., 2002; Thiery, 2002) follows, resulting in repression of 

epithelial marker gene expression and initiation of mesenchymal gene expression (Fuxe et 

al., 2010; Kalluri & Weinberg, 2009). 

 

3.2 TGF-β Interactions with the IGF-1 Family in Cancer Progression 

TGF-β reveals bidirectional functions in cancer promotion. The growth factor supports 

EMT induction but also acts as tumor suppressor by inhibition of cell proliferation 

(Muraoka-Cook et al., 2005).  

A molecular mechanism yielding antiproliferative effects of TGF-β can be assigned to 

inhibition of Cyclin-dependent kinases (CDKs) which control cell cycle progression. 

Activation of CDKs leads to enhanced gene transcription of various cell cycle regulators, 

particularly oncogenes. However, TGF-β is capable of mediating cell cycle arrest due to 

induction of CDK-inhibitor expression (Lebrun, 2012). 

Furthermore, TGF-β directly represses the expression of several growth promoting 

factors, like the oncogene c-MYC (Chen et al., 2002; Lasorella et al., 2000). 

Insulin and IGF-1 are not known to initiate the EMT program but favor cell proliferation 

(see chapter 2.1). 

Hence, it becomes evident that TGF-β could take an oppositional role compared to IGF-1 

and insulin in malignant cells.  
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4 Inhalable Insulin: a Novel Route of Insulin Substituiton 

Therapy 

Insulin substitution therapy is required to lower blood glucose in patients with T1DM and 

later stage T2DM. Currently, subcutaneous (s.c.) injections via insulin pens or syringes 

constitute the most common method in insulin application (Magwire, 2011). However, 

prevention of daily injections would be a new milestone in the management of DM 

(Cefalu, 2004). 

Since its initial discovery in 1922 by Banting and Best, it was aimed to develop and 

establish an alternative route of insulin administration, e.g. via oral, nasal, buccal or 

inhaled application (Yaturu, 2013).  

Noninvasive insulin delivery systems are associated with an increased clinical acceptance 

and lower psychological barriers to insulin treatment compared to s.c. injections (Cefalu, 

2001). The lung represents a suitable portal for peptide drug delivery. It provides a large 

surface area (≈ 40-150 m2), high vascularization of approx. 500 mio alveoli and low 

thickness of the alveolar-capillary barrier (0.2 µM) resulting in a rapid absorption of the 

hormone (Santos Cavaiola & Edelman, 2014; Scheuch et al., 2006).  

Marked pharmacological advantages of pulmonary drug administration are absence of 

the hepatic first-pass effect, only low expression rates of local proteases and a rapid onset 

of action (Siekmeier & Scheuch, 2008).  

Various studies revealed that patients would prefer an inhalable to an injectable route 

(Cappelleri et al., 2002; Chancellor et al., 2008) which in turn emerges as parameter for an 

enhanced quality of life (Qol) and an improved compliance. 

Next to the aforementioned benefits, however, pulmonary insulin administration poses 

several requirements for deposition of the appropriate amount of insulin for a therapeutic 

effectiveness (Labiris & Dolovich, 2003).  

Technological challenges mainly refer to the particle size, shape, density and aerosol 

homology. At this, the median aerodynamic diameter (MMAD) plays a critical role.  
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Being too small (< 1 µm), particles are exhaled, being too large (> 3 µm), particles are most 

likely deposited in the oropharynx or swallowed without reaching the alveolar area (Agu 

et al., 2001).  

After its investigation in 1971 (Wigley et al., 1971), inhaled insulin remained far away 

from being introduced into clinical therapy (Siekmeier & Scheuch, 2008). The major 

disadvantage of this route of administration has always been the comparably low 

bioavailability of insulin; even after two decades of research and development of 

improved aerosol and application features, only 20-25 % of insulin reach the systemic 

circulation (Cefalu, 2004; Niven, 1995). As a result, the amounts of the inhaled insulin 

concentration have to be increased drastically. 

Varying bioavailability rates, attributed to individual patient-related factors, further 

complicate an appropriate adjustment of insulin. Genetically-determined and 

pathophysiologically-caused variations in the lung architecture influence delivery of 

constant insulin concentrations.  

Additionally, it appears difficult for patients to proceed a steadily correct breathing 

maneuver marked by a precise deep and slow breathing procedure (Siekmeier & Scheuch, 

2008).  

 

4.1 Inhalable Insulin: Exubera® and Afrezza® 

Exubera® (Pfizer Inc/ Nektar Therapeutics) is a dry powder formulation consisting of 

regular short-acting recombinant human insulin. It was approved for adult T1DM and 

T2DM patients by the US Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) and reached market launch in September 2006.  

Clinical trials confirmed similar quality of HbA1C adjustment as compared to s.c. insulin. 

The single-dosage of Exubera® amounted 1 mg (approx. 3 U insulin) or 3 mg per blister. 

After inhalation of the aerosol (MMAD < 5 µm), insulin was absorbed quickly resulting in 

an onset of action that was even faster than after s.c. administered human insulin 

(Siekmeier & Scheuch, 2008). In fact, Exubera® mimicked the natural pattern of 

postprandial insulin secretion like the rapid-acting insulin analogs (Rave et al., 2005) 
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insulin lispro, insulin aspartat and insulin glulisine. The duration of action was 

comparable to s.c. human insulin (Rave et al., 2005).  

However, bioavailability rates of insulin via Exubera® inhaler were 10-16 % (Siekmeier & 

Scheuch, 2008). 

Due to the significant impact of smoking on pulmonary drug absorption (Fountaine et al., 

2008), smokers were excluded from inhaled insulin treatment. 

Exubera® was withdrawn in October 2007. The main reason for its failure was the lack of 

market acceptance. Although the technology of aerosol distribution into the deep lung 

worked fine, patients did not accept the big inhaler with its cumbersome handling, not 

allowing a discret, simple and quick insulin inhalation (Heinemann, 2008).  

Besides, fears for lung safety (see chapter 4.2) have been a further issue for the missing 

clinical success. 

Since June 2014 a new inhaled insulin product, Afrezza® (MannKind Corporation), 

received its approval by the FDA.  

Afrezza® is a dry powder Technosphere® insulin (TI), serving as novel drug delivery 

system. Technosphere® formulations consist of 3,6-bis[N-fumaryl-N-(n-butyl)amino]-2,5-

diketopiperazine molecules that micro-encapsulate and stabilize peptides in small 

particles (MMAD: 2 µm) (Pfützner et al., 2002). This results in a higher percentage of drug 

absorbance compared to former inhaled insulin formulations. The bioavailability of TI 

amounts 21-25 % (Sarala et al., 2012). Afrezza® is an ultra-rapid-acting insulin. The onset 

of action is faster and the duration of action is shorter than rapid-acting insulin analogs 

(Klonoff, 2014). As already determined for Exubera®, Afrezza® is not recommended for 

children and patients who smoke or have recently stopped smoking.  

The TI is applicated in an inhaler called DreamBoat or Gen2, which was designed to 

reduce device cost, decrease local side effects and improve efficiency (Nuffer et al., 2014). 

As compared to the Exubera® inhaler, the Gen2 inhaler may overcome the barrier of 

patients’ acceptance due to its smaller and handier size. 
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4.2 Safety Concerns of Inhaled Insulin Therapy Regarding Lung 

Cancer Promotion 

Different clinical trials with durations of each three or six months have demonstrated 

safety and effectiveness of pulmonary insulin administration (Quattrin et al., 2004; White 

& Campbell, 2001).  

General adverse drug reactions of TI were analyzed in a two-year-study in 635 non-

smoking adults with T2DM. An overall positive outcome was shown (Rosenstock et al., 

2008).  

As long-term safety has not been established yet (Sarala et al., 2012), there still exist 

concerns about the inhaled insulin delivery approach (Mandal, 2005). Exposure to 

unphysiologically high insulin levels in the oropharynx and lungs (Santos Cavaiola & 

Edelman, 2014) which probably lasts over decades, bear a risk to provoke local 

pathophysiological modification (Siekmeier & Scheuch, 2008). Especially tumor-

promotive effects, such as increased cell proliferation, support of cell survival and 

changes in cell phenotype display potentially harmful outcomes of insulin signaling (see 

chapter 2) caused by long-term insulin exposure in the respiratory system (Bloomgarden, 

2014; Mayer et al., 2012).  

Particularly patient groups with an increased prevalence of cancer entities in the 

respiratory system, e.g. ex-smoker, people being exposed to smog or patients with chronic 

inflammatory diseases, could be highly affected by mitogenic features of the anabolic 

peptide.  

There are no further studies addressing these pharmacological concerns. It thus appears 

indispensable to focus on a comprehensive investigation of insulin and IR involvement in 

tumor promotion.  
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II Aim of the Study 

The lung represents a novel non-invasive route for insulin administration. However, 

concerns about long-term safety of this delivery approach remain, because insulin as 

anabolic hormon might be involved in tumor-promotive processes in the respiratory 

system.  

These safety concerns have arisen with the approval of Exubera® and attracted renewed 

attention with recently approved Afrezza® in the United States.  

Clarification of this matter is of interest for approving authorities, the Federal Institute for 

Drugs and Medical Devices, pharmaceutical companies and not least for patients.  

 

The present study focused on the following issues: 

 

I. Does insulin display mitogenic features in different human NSCLC cell lines?  

Inhaled insulin is accompanied by constantly increased drug concentrations as 

compared to s.c. injections. Thus, precise knowledge of insulin action (in 

supraphysiological concentrations) in the lungs is required. 

This general enquiry mainly refers to anabolic effects of insulin, i.e. its impact on 

proliferation and mitogenic signal transduction, namely Akt and ERK. 

Differences and similarities between effects of insulin and IGF-1 were studied and 

correlated to insulin and IGF-1 receptor expression in the respective cell lines.  

Besides, further interest was given to interactions between TGF-β and insulin and 

their impact on phenotypical changes in NSCLC cells due to EMT. 

 

II. Which role does the insulin receptor take in tumor cell promotion in NSCLC cells?   

The insulin receptor is only rarely expressed in the respiratory system and it is not 

known yet which effects might follow when high insulin concentrations are 

present in the lungs over a long period.  

Neither insulin nor the IR have been in the focus of cancer research in the last 

decades, since both were in the background of IGF-1 and the IGF-1R. Thus, 
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knowledge about precise implications of the IR on cancer-supporting development 

is required.  

This study presents IR and IGF-1R knockdown studies in NSCLC cell lines in 

order to illuminate the role of IR as compared to IGF-1R in cancer cell progression. 

 

Taken together, the roles of insulin and the IR in different NSCLC cell lines were analyzed 

in more detail to draw conclusions on pharmacological safety aspects in the therapy with 

inhalable insulin and, more generally, to obtain deeper insight in the role of the insulin 

receptor in tumor progression.  
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III Materials and Methods 

1 Materials 

1.1 Equipment 

Centrifuges Centrifuge 5702, Eppendorf, Hamburg 

Centrifuge 5810, Eppendorf, Hamburg 

Heraeus® PICO 17 Centrifuge, Thermo Scientific, MA, 

USA 

Minispin® plus, Eppendorf, Hamburg 

Cell counter and analyzer Cedex XS, Roche, Mannheim 

Digital camera Canon EOS 500 D, Canon, Japan 

Electrophoresis and blotting  

systems for Western blot 

analysis 

XCell SureLock® electrophoresis system with XCell 

IITMBlot Module, Invitrogen, Karlsruhe 

Electrophoresis system for PCR 

analysis 

 

Electrophoresis power supply unit Macrodrive 5 with 

electrophoresis chamber, LKB Bromma, Sweden 

Gels for Western blotting  

(ready-to-use) 

NuPAGE® 4-12 % bis-tris gels, Invitrogen, Karlsruhe 

Incubator HERAcellTM 150i, Thermo Scientific, MA, USA 

HERAcellTM 240i, Thermo Scientific, MA, USA 

Laminar air flow bench MSC-AdvantageTM, Thermo Scientific, MA, USA 

HERAsafe®, Heraeaus, Frankfurt a. M.  

Microscopes Leica DMIL, Leica, Wetzlar 

Zeiss Axiovert 40C, Carl Zeiss, Jena 

Multimode plate reader Enspire®, Perkin Elmer, MA, USA 
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Photometer SmartSpecTM Plus, Bio-Rad, Munich 

PVDF Membranes for Western 

blotting 

PVDF Blotting Membrane Immobilion® P, Millipore, 

Eschborn 

Power supply PowerPac 300, Bio-Rad, Munich 

Real-Time PCR instrument StepOnePlus®, Applied Biosystems, Darmstadt 

Light Cycler 480®, Roche, Mannheim 

Semi-micro cuvettes Sarstedt, Nümbrecht 

 

Software Adobe 

Standard 8.0 

Creation of PDF-documents 

 Graph Pad 

Prism 5.00 

Graphic representation of results and 

statistical analyzis 

 MS Office  

2003/ 2007: 

Excel, Word 

Calculations, text processing 

 Gimp 2 Photo editing 

 ImageJ Quantification of Western blot analyzis 

 

Szintillation counter 

 

LS 5000 TD, Beckman, CA, USA 

Thermocycler MyCyclerTM, Bio-Rad, Munich 

Thermomixer Thermomixer® compact, Eppendorf, Hamburg 

X-ray films Hyperfilm ECL, Amersham, Braunschweig 

X-ray film developer and fixer CP1000, AGFA, Cologne 
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1.2 Chemicals 

Agarose NEEO Roth, Karlruhe 

Albumine from bovine serum (BSA) Sigma-Aldrich, Munich 

Aqua resist VWR International, Darmstadt 

Boric acid Roth, Karlsruhe 

Bromphenol blue Sigma-Aldrich, Munich 

Dimethyl sulfoxid (DMSO) Merck, Darmstadt 

Ethanol (≥ 99.5 %) Roth, Karlsruhe 

Ethidium bromide solution Roth, Karlsruhe 

Ethylenediaminetetraacetic acid  

disodium salt dihydrate (EDTA) 

Sigma-Aldrich, Munich 

Fetal calf serum (FCS) Biochrom, Berlin 

Ficoll® 400 Sigma-Aldrich, Munich 

Gemcitabine Cayman Chemical Company, WI, 

USA 

Glycine Roth, Karlsruhe 

Hydrogen chloride (HCl), 32 %  Merck, Darmstadt 

Leupeptin Sigma-Aldrich, Munich 

Lipofectamine® RNAiMAX Invitrogen, Karlsruhe 

Lumasafe plus scintillation cocktail Lumac LSC, Netherlands 

Magnesium Chloride Hexahydrate  

(MgCl2 x 6 H2O) 

Merck, Darmstadt 

2-Mercaptoethanol Sigma-Aldrich, Munich 

Methanol Roth, Karlsruhe 

MOPS® SDS Runnung Buffer (20 x) Invitrogen, Karlsruhe 
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Nonfat dried milk powder AppliChem, Darmstadt 

Nonidet P-40 Roche, Mannheim 

Penicillin/streptomycin solution  

(10000 U/ml, 10 mg/ml) 

Sigma-Aldrich, Munich 

Pepstatin A Sigma-Aldrich, Munich 

Phenylmethanesulfonyl fluoride (PMSF) Sigma-Aldrich, Munich 

Ponceau S Sigma-Aldrich, Munich 

Potassium chloride (KCl) Merck, Darmstadt 

Potassium dihydrogen phosphate (KH2PO4) Merck, Darmstadt 

2-Propanol Roth, Karlsruhe 

Puromycin Santa Cruz, CA, USA 

RNase away® Thermo Scientific, MA, USA 

Roti®-Load 1 Roth, Karlsruhe 

Sepharose® CL-4B Sigma-Aldrich, Munich 

Sodium chloride (NaCl) Roth, Karlsruhe 

Sodium deoxycholate Sigma-Aldrich, Munich 

Sodium dodecyl sulfate (SDS) Sigma-Aldrich, Munich 

Sodium fluoride (NaF) Merck, Darmstadt 

Sodium hydroxide pellets (NaOH) Merck, Darmstadt 

Sodium orthovanadate (Na3VO4) Sigma-Aldrich, Munich 

[3H]-Thymidine (1mCi/ml) Perkin Elmer, MA, USA 

Trichloroacetic acid (TCA) Merck, Darmstadt 

Tris-(hydroxymethyl)-aminomethane (tris) Roth, Karlsruhe 

Tris-(hydroxymethyl)-aminomethan-hydrochloride 

(tris-HCl) 

Boehringer, Ingelheim 
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Triton® X-100 Pharmacia Biotech, Sweden 

10 x Trypsin-EDTA solution Sigma-Aldrich, Munich 

Tryptan blue stain (0.4 %) Sigma-Aldrich, Munich 

Tween 20 Sigma-Aldrich, Munich 

X-tremeGENE® siRNA Transfection Reagent Roche, Mannheim 

 

1.3 Cell Culture 

1.3.1 Cell Lines 

All human bronchial epithelial (HBE) cell lines were purchased from American Type 

Culture Collection (ATCC, VA, USA): 

 

Cell line ATCC Catalog 

No. 

Histology Additional information 

NCI-H292 CRL-1848 Mucoepidermoid  

pulmonary carcinoma  

Derived from a 32 year old 

female of black ethnicity 

NCI-H226 

 

CRL-5826 Metastatic squamous 

cell carcinoma 

Derived from a male  

NCI-H460 HTB-177 Large cell lung 

carcinoma 

Derived from a male 

 

1.3.2 Culture Media 

Culture medium Manufacturer Application 

RPMI 1640 medium   

with L-glutamine 

Gibco, CA, USA Basic culture medium for 

epithelial cells 

Opti-MEM® 

reduced serum medium 

Invitrogen, Karlsruhe Medium for cationic 

transfection 
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1.4 Test Compounds 

Test compound Manufacturer Concentration range 

Insulin Sigma-Aldrich, Munich 10 nM- 1 µM 

Insulin-like growth factor-1 (IGF-1) Sigma-Aldrich, Munich 1 nM- 10 nM 

Transforming growth factor-β (TGF-β) Sigma-Aldrich, Munich 2 nM- 5 nM 

Interleukin 6 (IL6) Provitro, Berlin 100 nM 

Interleukin 20 (IL20) Provitro, Berlin 100 nM 

Interleukin 24 (IL24) Provitro, Berlin 100 nM 

Tumor necrosis factor α (TNFα) Provitro, Berlin 100 nM 

 

1.5 Kits 

DCTM Protein Assay Bio-Rad, Munich 

BM Chemiluminescence Blotting Substrate (POD) Roche, Mannheim 

Caspase-Glo® 3/7 Assay Promega, WI, USA 

dNTP-Mix Fermantas, St.Leon-Rot 

Nucleospin® RNA Macherey-Nagel, Düren 

Omniscript® RT Kit Qiagen, Hilden 

Power SYBR® Green PCR Master Mix Applied Biosystems, Darmstadt 

 

1.6 Enzymes 

DNase (RNase free DNase Set) Qiagen, Hilden 

OmniscriptTM Reverse Transcriptase Qiagen, Hilden 

rDNase Macherey-Nagel, Düren 

Taq DNA Polymerase Invitrogen, Karlsruhe 
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1.7 Molecular Size Standards 

DNA Ladder Ready-Load 100 bp  Invitrogen, Karlsruhe 

PageRulerTM Prestained Protein Ladder Bio-Rad, Munich 

 

1.8 Nucleic Acids 

1.8.1 Nucleic Acids for Reverse Transcription 

dNTP-Mix  Fermentas, St.Leon-Roth 

Oligonucleotide (dT) 18 MWG, Ebersberg 

 

1.8.2 siRNAs 

siRNAs were purchased from Applied Biosystems, TX, USA (Silencer® Select siRNA 

s7212, s7478, s7479) and Thermo Scientific, MA, USA (ON-TARGETplus Non-targeting 

siRNA). 

 

Target Gene  siRNA Sequence 

(sense and antisense strands) 

IGF-1 receptor 

 

s7212 CCGAAGAUUUCACAGUCAAtt 

UUGACUGUGAAAUCUUCGGct 

Insulin receptor s7478 GAACGAUGUUGGACUCAUAtt 

UAUGAGUCCAACAUCGUUCga 

Insulin receptor s7479 CUACGUGACAGACUAUUUAtt 

UAAAUAGUCUGUCACGUAGaa 

ON-TARGETplus Non-

targeting siRNA 

1 - 
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1.8.3 shRNAs 

shRNAs were purchased from Sigma-Aldrich, Munich. 

 

Target Gene  shRNA Sequence 

(sense and antisense strands) 

IGF-1 receptor sh-NM875a GCTGATGTGTACGTTCCTGAT 

ATCAGGAACGTACACATCAGC 

IGF-1 receptor sh-NM875b GCCTTTCACATTGTACCGCAT 

ATGCGGTACAATGTGAAAGGC 

Insulin receptor sh-NM208a GCTCTGTTACTTGGCCACTAT 

ATAGTGGCCAAGTAACAGAGC 

Insulin receptor sh-NM208b CCACCATTCGAGTCTGAAGA 

ATCTTCAGACTCGAATGGTGG 

Non-mammalian shRNA control - 

 

 



Materials and Methods 

34 

 

1.9 Primers 

Primer Accession number Sequence  

(upstream and downstream primer) 

Endothelin NM_001955 GTTAAAAGGGCACTTGGGCTGAAGG 

TGGGTCACATAACGCTCTCTGGAGG 

Fibronectin NM_212482 CGATCACTGGCTTCCAAGTTGATGC 

CATGAAGATTGGGGTGTGGAAGGGT 

GAPDH NM_002046 TCCTGTTCGACAGTCAGCCGCAT 

TGAAGACGCCAGTGGACTCCACG 

IL6 NM_000600 CCCCCAGGAGAAGATTCCAAAGATGTAG 

GTGGTTGGGTCAGGGGTGGTTATTG 

IL20 NM_018724 GCCTCTAGTCTTGCCTTCAGCCTTCTCTC 

GCAGCAGCATCACTTTCCTCCTATTCTGT 

IL24 NM_001185156 GTTGTGCTCCCTTGCCTGGGTTTT 

CTCATTTTCTTGACTGGGTTGCAGTTGTG 

IR  
(splice variant 

sensitive) 

NM_001079817  GGAGAGGCAGGCGGAAGACAGTG 

CTGGTCGAGGAAGTGTTGGGGAAAG 

IR NM_000208 CAAGAGATGATTCAGATGGCGGCA 

GAGCAGGTTGACAATCTCCAGGAAGGT 

IGF-1R NM_000875 CCTCAACGCCAATAAGTTCGTCCAC 

GATGCTGCTGATGATCTCCAGGAAGG 

N-cadherin NM_001792 CATTCACTGCTCAGGACCCAGATCG 

GGAGTCACACTGGCAAACCTTCACG 

TNF NM_000594 GGCTCCAGGCGGTGCTTGTTC 

GGGCTCTTGATGGCAGAGAGGAGGT 
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1.10 Antibodies 

1.10.1 Primary Antibodies for Western Blotting 

Antibody  Manufacturer Molecular 

Weight 

Species Dilution Exposure  

Time 

α-Tubulin Cedarlane, Canada 55 kDa mouse 1:1000 1 sec 

phospho Akt (Ser473) Cell Signaling, UK 60 kDa rabbit 1:1000 1 sec 

Akt Cell Signaling, UK 60 kDa rabbit 1:1000 1 sec 

phospho p44/42 

MAPK (ERK1/2) 

(Thr202/Tyr204) 

Cell Signaling, UK 44/42 kDa rabbit 1:1000 1 min 

ERK 2 MAPK Santa Cruz, CA, USA 42 kDa rabbit 1:1000 1 sec 

pIGF-1Rβ 

(Tyr1135/1136) /  

pIRβ (Tyr1150/1151) 

Cell Signaling, UK 95 kDa rabbit 1:1000 1 min 

IGF-1Rβ Santa Cruz, CA, USA 97 kDa rabbit 1:500 1 sec 

IRβ Calbiochem, CA, USA 95 kDa mouse 1:400 1 min 

 

1.10.2 Secondary Antibodies for Western Blotting 

Antibody  Manufacturer Species Dilution 

anti-mouse Santa Cruz, CA, USA goat 1:8000 

anti-rabbit Santa Cruz, CA, USA goat 1:2500 
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1.10.3 Primary Antibodies for Immunoprecipitation 

Antibody  Manufacturer Molecular 

Weight 

Species Dilution 

IGF-1Rβ Santa Cruz, CA, USA 97 kDa rabbit 1:20 

IRβ Santa Cruz, CA, USA 95 kDa rabbit 1:20 

 

  



Materials and Methods 

37 

 

2 Methods 

2.1 Cell Culture of Human Non-Small Cell Lung Cancer Cell Lines 

2.1.1 Cell Culture and Trypsinization 

The adherent cell lines NCI-H292, NCI-H226 and NCI-H460 were cultured in RPMI 1640 

growth medium and incubated in a humidified incubator at 37˚ C in 5 % carbon dioxide.  

After reaching confluence, cells were split by trypsinization:  

Cells were washed twice with 15 ml sterile PBS (37° C), exposed to 5 ml sterile 

trypsin/EDTA solution (37° C) for 90 sec and placed for 5 min in the incubator.  

Last residues of the peptidases-mixture were removed by dissolving cells in 10 ml growth 

medium. The cell solution was transferred to a sterile tube and centrifuged at 1000 U/min 

for 5 min. The supernatant was discarded and the received pellet was resuspended in 2 ml 

culture medium. 80 µl of this suspension were mixed with 20 µl of a 0.15 % tryptan-blue 

solution. Subsequently, cells were counted. Blue-stained cells (non-vital cells) were 

excluded from counting. 

In order to seed the appropriate amount of cells, the calculated volume of cell suspension 

was pipetted into new culture flasks. 

Culture medium was changed twice per week for H292 and H226 and three times per 

week for H460 cells. 

Experiments were conducted with cells in low passages (below P10). 
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growth medium/ culture medium 

 

RPMI 1640 medium 

penicillin [100 units/ml] 

streptomycin [100 µg/ml] 

FCS [10 %] 

  

PBS [pH 7.4] KCl [2.7 mM] 

KH2PO4 [1.5 mM] 

NaCl [0.14 M] 

Na2HPO4 [8.1 mM] 

 

trypsin/EDTA solution 0.5 ml 10 x trypsin-EDTA solution  

4.5 ml 1 x PBS buffer 

 

tryptan-blue solution [0.15 %] tryptan blue stain [0.4 %] 

1 x PBS buffer 

 

2.1.2 Cryo-Preservation of Cells 

Cells were trypsinized and centrifuged as described above. The received cell pellet was 

dissolved in 2-4 ml growth medium. Each 450 µl of this solution were pipetted into a 

cryogenic vial. Freezing medium was added to a final volume of 900 µl (10 % DMSO). The 

vials had been stored at -80° C for 24 h, before they were transferred to liquid nitrogen       

(-196° C). 

 

freezing medium 

 

growth medium 

DMSO [20 %] 

 

2.1.3 Thawing of Cryo-Preserved Cells 

The frozen cryogenic vial with the required cells was taken out of the liquid nitrogen and 

quickly placed into the water bath (37° C) for approx. 2 min. The cell suspension was 
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transferred into a culture flask which previously was equilibrated with growth medium in 

a humidified incubator at 37° C for at least 30 min. 

24 h after this thawing process, last residues of DMSO were removed by changing the 

growth medium. 

 

2.2 Proliferation Assay: [3H]-Thymidine Incorporation 

In the field of proliferation assays, [3H]-thymidine incorporation is one of the most 

sensitive methods at present. In order to draw conclusions on the cell proliferation rate, 

incorporation of the radioactively labelled building block thymidine into newly 

synthesized DNA is measured and quantified (Naito et al., 1987). 

 

HBE cells were seeded in 12-well plates with a density of 1 x 105 cells per well and 

incubated for 24 h in growth medium. Afterwards, cells were cultured for another 24 h in 

starving medium to eliminate growth influences caused by FCS on cell proliferation. After 

the wash-out period, test compounds insulin, IGF-1 and/ or TGF-β in various 

concentrations or water (vehicle) as control were added for 29 h. During the last 24 h of 

incubation, cells were provided with [3H]-thymidine (37 MBq/ml). The incubation period 

was followed by cell preparation and detection of radioactivity incorporated into DNA 

(Freitag et al., 1996; Matthiesen et al., 2006). Therefore, cells were washed twice with PBS 

(4° C), denaturated with TCA for 10 min, washed again with PBS (4° C) and treated with 

NaOH at 37° C for 1 h to extract DNA from cell lysates. After neutralization of the alkaline 

cell solution with tris-HCl, the scintillation cocktail was added to each sample and 

disintegrations per minute (dpm) were recorded by liquid scintillation spectrometry.  
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NaOH [0.1 N] NaOH pellets [0.1 N] 

aqua bidest 

 

starving medium 

 

RPMI 1640 

penicillin [100 units/ml] 

streptomycin [100 µg/ml] 

  

TCA [5 %] 

 

5 g TCA crystals 

ad 100 ml aqua bidest 

  

tris-HCl [pH 7.4] 

 

tris-HCl [1 M] 

HCl  

aqua bidest 

 

2.3 Analysis of mRNA Expression Levels 

According to different approaches of mRNA expression level analysis (basal mRNA 

expression, mRNA expression levels after treatment with test compounds or after 

knockdown), protocols differed with regard to cell culture procedure before RNA 

extraction was conducted.  

Particular variations of the standard protocol (see chapter 2.3.1), mainly including 

substance incubation, transfection or viral transduction, can be found in the respective 

method part. 

 

2.3.1 RNA Extraction 

3 x 105 H292, H226 or 2 x 105 H460 cells were seeded in 6-well plates in a volume of 2 ml 

growth medium per well. After 48 h, the medium was aspirated and 350 µl lysis buffer 

(containing 1 % of 2-mercaptoethanol) were added to each well. 



Materials and Methods 

41 

 

The following total RNA extraction, including DNase digestion to completely remove 

genomic DNA, has been carried out with NucleoSpin® RNA silica gel-based membrane 

technology like described in manufacturer’s protocol.   

A pre-treatment of the required labware with the ready-to-use RNase away® solution 

served as quick and safe removal of RNases. In order to further protect RNA from 

degradation, RNase-free reaction tubes and RNase-free water were used.  

 

2.3.2 Determination of RNA Concentration 

Each sample was diluted with RNase-free water (1:20) and transferred into a cuvette. 

Before the concentration of the eluated RNA was measured photometrically at the 

wavelength of maximum absorption of nucleic acids (RNA, DNA): λ= 260 nm (OD260), the 

photometer SmartSpecTM Plus had been calibrated with RNase-free water. 

 

2.3.3 Reverse Transcription 

Reverse transcription (RT) was carried out by using the Qiagen’s Onmiscript® RT kit. 

Thus, complementary DNA (cDNA) was obtained from the isolated RNA. 

After addition of the RT-mastermix, each sample was incubated at 37° C for 60 min and at 

93° C for 10 min thereafter. The reaction tubes were shortly centrifuged, put on ice and 

diluted with sterile water to a volume of 100 µl. The cDNA samples were stored at -20° C. 

 

RT-mastermix (for 1 µg RNA) 

 

Omniscript® Reverse Transcriptase [4 U] 

dNTP-Mix [0.5 mM] 

Oligo(dT) [1 µM] 

RNase inhibitor [0.25 U] 

ad 20 µl RNase-free H2O 

 

  



Materials and Methods 

42 

 

2.3.4 Polymerase Chain Reaction 

2.3.4.1 Conventional PCR 

5 µl of the cDNA-dilution (see chapter 2.3.3) were mixed with 45 µl PCR-mastermix.  

The DNA amplification run was conducted in a thermal cycler with the following 

program: 

 

Reaction steps Temperature [° C] Time [sec] 

Denaturation 94 45 

Annealing 53 30 

Elongation 72 60 

 

After 40 runs, an extended elongation at 72° C for 10 min finished the PCR procedure. 

In the following, DNA amplificates were separated and analyzed by gelelectrophoresis. 

 

PCR-mastermix (for 5 µl cDNA) 5 µl 10 x reaction buffer   

1.5 µl MgCl2 [50 mM] 

1 µl desoxynucleotide (dNTP)-Mix [10 mM] 

2.5 µl primer (sense) [10 µM] 

2.5 µl primer (antisense) [10 µM] 

0.5 µl Taq® polymerase [5 U] 

ad 45 µl H2O 
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2.3.4.2 Real-Time PCR (or Quantitative PCR) 

Although the procedure of real-time PCR follows the principle of conventional PCR, this 

method is used to amplify and simultaneously quantify the DNA sequence of interest. Its 

key feature is detection of the DNA amplificates after each cycle (in “real time”). For this 

purpose, a fluorescent reporter (SYBR Green) serves as detection tool. SYBR Green 

specifically binds double-stranded DNA and fluoresces when bound to DNA.  

Fluorescence becomes detectable at the threshold cycle (Ct), also named crossing point 

(CP). After reaching this point, the exponential replication of DNA is visualized by the 

fluorescent signal measured in each cell cycle when the greatest amount of amplificate 

products is present. 

 

For the conduction of real-time PCR, 5 µl of each cDNA sample, previously diluted 1: 3 

with water, was supplemented with 10 µl SYBR Green PCR-mastermix. 

PCR was performed with the following program: 

 

Reaction steps Temperature [° C] Time [sec] 

Denaturation 95 30 

Annealing 55 30 

Elongation 72 60 

 

Activation of the used Hot Star-Taq® DNA polymerase was achieved by an initial 

denaturation step at 95° C for 10 min. 

 

SYBR Green PCR-mastermix  

(for 5 µl cDNA) 

7.5 µl SYBR Green® 

0.45 µl primer (sense)  

0.45 µl primer (antisense)  

ad 10 µl H2O 

 

Finally, relative mRNA expression rates were calculated to avoid interpretation of non-

comparable absolute values caused by general concentration variations among the 

different cDNA samples.  
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Amounts of mRNA expression are presented as relative quantification by normalizing CP 

values of the target genes to the respective CP values of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which was measured in parallel: 

∆ CP = CP (gene of interest) – CP (GAPDH). 

For selected experiments, a second normalization was followed by setting the ∆ CP value 

of each sample in relation to the ∆ CP value of the control. Thereby, percent values could 

be calculated which revealed changes of the mRNA level of each sample to the mRNA 

level of the control (100 %). 

 

2.3.5 Agarose Gelelectrophoresis 

The DNA base pair length of the amplified fragments can be analyzed by agarose gel 

electrophoresis. During this process, the negatively charged phosphate backbone of the 

DNA moves towards the positively charged anode after application of an electric field. 

The fragments are separated in accordance to their migration velocity. Next to size and 

conformation of the DNA molecules, further factors can affect this migration, i.e. the 

dimension of the gel pores (agarose concentration), the used voltage, temperature and 

ionic strength of the buffer. 

 

Ethidium bromide, a fluorescent dye which intercalates into the major grooves of the 

DNA, was added to the agarose gel. After the gel had been cast into a horizontal gel 

carrier, it was placed into the electrophoresis chamber and covered with 0.5 x TBE buffer. 

Before pipetted into the wells of the gel (= loading of samples), each DNA sample had 

been supplemented with 5 µl loading buffer. This buffer contained Ficoll which raises the 

density and enables the DNA sample to sink to the bottom of the well and bromphenol 

blue which serves as a colored dye to monitor the progress of the electrophoresis.  

A DNA size standard was pipetted into the first gel lane. Each further lane was loaded 

with 20-25 µl of the sample-buffer-mixture. The electrophoresis process was started by 

applying a constant electric field strength of 1500 V/m. After the run had been finished 

(60-70 min), the gel was exposed to UV-light making DNA strands visible. 
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agarose gel agarose in 0.5 x TBE buffer [1.2 %] 

ethidium bromide [0.33 µg/ml] 

  

loading buffer Ficoll 400® [15 %] 

bromphenol blue [0.25 %] 

0.5 x TBE buffer 

 

 

 

5 x TBE buffer tris [0.45 M] 

boric acid [0.45 M] 

EDTA [0.012 M] 

 

2.4 Protein Analysis 

Methods evaluating protein expression levels included Western blot analysis (detection of 

protein expression levels and quantification of receptor knockdown), phospho Western 

blot analysis (analysis of signaling pathways) and co-immunoprecipitation (analysis of 

heterodimeric insulin-, IGF-1 receptors).  

 

2.4.1 Preparation of Total Protein Lysates from Cells 

2.4.1.1 Western Blot Analysis and Immunoprecipitation 

After dissemination of 3 x 105 cells in 2 ml culture medium per well (6-well plates) and 

incubation for 24 h, medium was removed gently and cells were washed twice with ice-

cold 1 x PBS. Cellular proteins were extracted in 200-300 µl lysis buffer. 
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lysis buffer RIPA buffer 

PMSF [1 mM] 

pepstatin A [0.7 µg/ml] 

leupeptin [0.5 µg/ml] 

  

radioimmunoprecipitation assay buffer 

 (RIPA buffer) 

 

tris-HCl [pH 7.4] [50 mM] 

NaCl [150 mM] 

sodium deoxychlorate [0.5 %] 

Nonidet P-40 [1 %] 

SDS [0.1 %] 

EDTA [2 mM] 

 

2.4.1.2 (phospho) Western Blot Analysis 

2 x 105 cells were seeded in a volume of 1.5 ml culture medium per well (6-well dish). 

After 24 h cultivation, a starving period of 24 h followed. Hence, stimulating effects of 

FCS-compounds on receptor tyrosin kinases (RTK) activity were eliminated. 

Subsequently, test compounds (insulin, IGF-1, TGF-β) or water (control) were pipetted 

carefully onto the wells and plates were gently moved in a circular pattern for a 

homogenous distribution of the added solutions. After incubation at 37° C for 15 min, the 

supernatant was removed and cells were washed twice with ice-cold 1 x PBS. Cell lysis 

was carried out with 200-300 µl phosphatase inhibitor-containig lysis buffer to prevent 

dephosphorylation during the process of protein preparation. 

lysis buffer for phospho proteins lysis buffer 

NaF [35 mM] 

Na3VO4 [1 mM ] 
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2.4.2 Determination of Protein Concentration by Lowry Method 

The Lowry method (Lowry et al., 1951) is a copper-based protein assay. It represents a 

technique by which the total level of proteins in a solution can be determined. The 

colorimetric assay combines the Biuret- with the Folin-Ciocalteau-reaction: 

In the first step (Biuret reaction), peptides containing three or more amino acid residues 

form an instable colored chelate complex with cupric ions (Cu2+) under alkaline 

conditions.  

The second step is a reduction of the Folin-Ciocalteu reagent (a mixture of 

phosphotungstic acid and phosphomolybdic acid) by the copper-peptide complex. The 

color of the product molybdenum blue continues to intensify during 15 min of incubation 

at room temperature. Samples are measured at λ= 750 nm. 

10 µl of the cell lysate samples (see chapter 2.4.1) were pipetted into 1.5 ml eppendorf 

tubes and supplemented with 40 µl 0.1 % Triton® X-100 solution. The Lowry working 

reagents (DC Protein Assay Kit) were added to the lysates in accordance with the 

manufacturer’s protocol and incubated for 15 min at room temperature. 

The calibration curve was prepared by measurement of BSA standards of 50, 100, 300, 700, 

1100 and 1500 µg/ml (in 0.1 % Triton® X-100). 

 

2.4.3 Sodium Dodecyl Sulfate Polyacrylamid-Gelelectrophoresis and Ponceau Red 

Staining of Gels 

Sodium Dodecyl Sulfate Polyacrylamid-Gelelectrophoresis (SDS-PAGE) is commonly 

used to separate proteins based on their length in an electric field.  

The charge of the proteins is covered by the anionic detergent SDS. Corresponding to the 

molecular weight, amounts of SDS are bound to the polypeptide chains. The negatively 

charged samples are strongly attracted towards the anode in the electric field. In order to 

avoid effects on mobility by different protein conformations, the samples are heated with 

a surplus of SDS leading to a destruction of the secondary and tertiary structures of the 

proteins. Moreover, 2-mercaptoethanol which serves as reducing agent is added to the 

protein samples. 
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In the first step, 25 µg of each sample were mixed with Roti®-Load 1 (1/4 of the total 

volume), a 2-mercaptoethanol-containing reducing sample buffer, and denaturated at 70° 

C for 10 min. Meanwhile, a precast polyacrylamide gel was placed into the electrophoresis 

chamber which was filled with 1 x MOPS SDS running buffer. 

As reference for the protein sizes, 5 µl of a prestained protein ladder (PageRulerTM) were 

added to the samples. Attached to a power supply, the electrophoresis run was conducted 

with a constant voltage of 200 V at a current of 60 mA for 90 min. 

 

2.4.4 (phospho) Western Blotting and Immunodetection 

Western blot analysis includes the transfer of electrophoretically separated proteins onto 

polyvinylidene fluoride (PVDF) membranes. By immunodetection, viz. detection with 

monoclonal or polyclonal antibodies, the proteins can be identified and quantified. 

In the preparation, the blotting sponge pads were equilibrated in transfer buffer. The 

PVDF membrane was moistened with methanol for 1-3 sec (activation), washed with 

water for 1 min and preincubated with transfer buffer for 20 min. After the electrophoretic 

run had been finished, the protein gel was removed from the gel cassette and washed for 

5 min in transfer buffer.  

Thereafter, the Western blot was assembled. Avoiding trapped bubbles, the PVDF 

membrane was put on the protein gel and encosed by filter paper. Two sponges formed 

the frames of the transfer sandwich.  

The Western blot was fixed in a chamber filled with 4° C cold transfer buffer. Attached to 

the power supply, proteins were electrically transferred onto the membrane during the 

blotting process at a constant current of 250 mA and a voltage of 100 V for 90 min. 

Afterwards, the membrane was positioned in a flat vessel and stained with the azo dye 

Ponceau S. Due to reversible binding of Ponceau S to positively charged amino groups, all 

proteins are stained to an equal extent on the membrane allowing an evaluation of the 

quality of the previous blotting process. By a washing step with TBS, Ponceau Red was 

removed and the stained protein bands were decolored. 

Incubation at 4° C for at least 1 h in 5 % nonfat milk powder blotting solution followed to 

block non-specific protein-binding sites. 
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The first step of the immunodetection was exposure of the membrane to a specific 

primary antibody (see chapter 1.10) for 1.5 h at room temperature in 5 % nonfat milk 

powder solution or over night at 4° C in 5 % BSA blotting solution (for the respective 

antibodies in accordance to the manufacturer’s protocol). After two washing steps with 

0.1 % TBST and two blocking steps for 20 min each, the membrane was exposed to a 

horseradish peroxidase (HRP)-conjugated secondary antibody which was diluted in 5 % 

nonfat milk powder blotting solution (see chapter 1.10). During 1 h of incubation at room 

temperature, the secondary antibody which is directed against the host species was used 

to bind the antigen/antibody complex. 

Then, the membrane was washed four times with TBST 0.1 % for overall 1 h. The target 

protein became visible by HRP-caused chemiluminescence. Therefore, the membrane was 

wetted for 1 min with BM Chemiluminescence Blotting Substrate (POD) detection 

solution, foil-wrapped and fixed in a film cassette. An x-ray film visualized the 

luminescent products on the membrane. Exposure times differed depending on the 

primary antibody (see chapter 1.10). 
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BSA blotting solution [5 %] 5 g BSA 

ad 100 ml TBST 0.1 % 

  

nonfat milk powder blotting solution [5 %] 

 

5 g nonfat dried milk powder 

ad 100 ml TBST 0.05 % 

  

Ponceau red stain Ponceau S [0.2 %] 

trichloroacetic acid [3 %] 

 

TBS [pH 7.4] tris [50 mM] 

Natriumchlorid [150 mM] 

HCl  

aqua bidest 

 

TBST [ 0.1 %]/ TBST [0.05 %] 1 ml Tween 20/ 0.5 ml Tween 20 

ad 1 l TBS 

 

transfer buffer   

  

tris [25 mM] 

glycine [192 mM]  

methanol [20 %] 

 

2.4.5 Stripping of Detected Membranes 

For detection with a further antibody, e.g. the housekeeping reference, a membrane 

preparation had been conducted before a next immunodetection was carried out: 

After drying, the PDVF membrane was moistened with methanol for 1 sec and watered 

afterwards. It was treated with NaOH solution for 5 min to detach the antigen/antibody-

binding of the previous immunodetection. A washing step with water for 5 min removed 

last NaOH residues. A protein blocking step over night at 4° C in 5 % blotting solution 

concluded the stripping process. 
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NaOH solution NaOH pellets [0.2 M] 

aqua bidest 

 

2.4.6 Densitometric Analysis 

Amounts of proteins were quantified via densitometric analysis with ImageJ program. 

Intensities of the ECL-developed bands were measured as arbitrary units.  

Loading varieties within different gel pockets (see chapter 2.4.3) were eliminated by 

normalizing each target protein to its respective housekeeping protein (see chapter 2.4.5). 

By this, absolute protein amounts were obtained.  

A further standardization was done to obtain relative protein amounts which allowed a 

comparison of a particular treatment to the control level on protein expression. 

Therefore, protein amounts were set into relation to the absolute protein amount of the 

control. Hence, each sample is expressed as percentage of the control level (100 %). 

 

2.4.7 Co-Immunoprecipitation 

By the use of immunoprecipitation (IP), a target protein is precipitated with a specific 

antibody that is immobilized onto insoluble sepharose beads. This leads to isolation and 

concentration of the particular protein out of the cell lysate. 

The expression of heterodimeric IGF-1/insulin receptors was studied with co-

immunoprecipitation (Co-IP) analysis, an extended technique of IP which is to detect 

protein-protein-interactions with two specific antibodies. Therefore, a special protocol for 

NSCLC cells was established.  

In order to capture one component of the HR, the cell lysate (corresponding to 100 µg 

protein) was incubated with an IGF-1 or insulin receptor antibody (dilution see chapter 

1.10). While shaking gently at 4° C over night, the antibody bound its specific target. The 

next day, 50 µl sepharose were added to the mixture and placed for 4 h on a smooth 

shaker (4° C). After centrifugation for 10 min at 10,000 rpm at 4° C, the supernatant was 

discarded and the pellet was washed three times with 100 µl tris-HCl [pH 7.4] to dissolve 

the antigen-antibody complex from the sepharose beads. 



Materials and Methods 

52 

 

Subsequently, gelelectrophoresis and Western blot were carried out as described above 

(see chapter 2.4.4). Immunodetection was conducted with the relevant other antibody as 

used in the precipitation process (insulin or IGF-1 antibody). It follows that both receptor 

proteins, incorporated into HR, were captured and detected.  

Antibody-untreated samples were used as negative controls. For the positive controls, 

protein samples were treated with the IR or the IGF-1R antibody, exclusively. 

 

tris-HCl pH 7.4 10 mM tris-HCl  

HCl  

aqua bidest 

 

2.5 Knockdown Assays 

2.5.1 Transfection 

Transfection describes a process of introducing nucleic acids into eukaryotic cells. To 

knockdown (KD) the gene of interest, small interfering RNA (siRNA) are channelled into 

the target cells. Due to interference with the complementary RNA of the target gene, 

siRNA leads to its degradation resulting in no translation of the protein.  

The insertion of siRNA can be achieved by various techniques. In the following, the 

chemical-based lipofection method is described in more detail. 

 

2.5.1.1 Lipofection 

By use of lipofection reagents like Lipofectamine® (cationic liposome formulations) siRNA 

can be transfected into cells.  

In this process, the negatively charged nucleic acid molecules are enclosed by the 

positively charged transfection reagent. Like the cell membrane, liposome vesicles are 

enveloped by a phospholipid bilayer. Thus, cell fusion of the siRNA-containing vesicles is 

reached.  
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NSCLC cells were seeded in FCS-containing, penicillin/streptomycin-free medium with a 

density of 3 x 105 cells per 6-well dish. After 24 h of incubation (confluence of cells: 30-50 

%), growth medium had been aspirated and wells were washed with serum-free medium 

to remove last residues of FCS. The following transient transfection was conducted with 

Silencer® Select siRNAs directed against the IR (see chapter 1.8.2). Lipofectamine® was 

used to transfer siRNAs into the cells. In first experiments, concentrations of transfection 

components and incubation times were chosen in accordance with the manufacturer’s 

protocol. However, to accommodate the transfection protocol to the cell lines tested, 

various modifications were carried out to establish a valide knockdown protocol. 

For each well, 1.5 µl Lipofectamine® were gently mixed with 98.5 µl Opti-MEM® and 

incubated for 5 min at room temperature. In parallel, 1.25 µl siRNA (= 40 µmol) or 2.5 µl 

(= 20 µmol) non-coding siRNA control were diluted with Opti-MEM to a total volume of 

50 µl and incubated at room temperature for 5 min. Thereafter, both solutions had been 

mixed and incubated for another 20 min before they were added to the cells. A 12 h 

exposure time with the transfection solution was followed by 12 h of incubation in 

starving medium. Thereafter, RNA-preparation, Westen blot analysis or [3H]-thymidine 

incorporation was conducted. 

 

2.5.2 Lentiviral Transduction 

Stable KD of specific genes can be achieved by viral carriers. They contain short hairpin 

RNA (shRNA) which is complementary to the target RNA and thus able to silence gene 

expression via RNA interference (RNAi). 

Establishment of IR KD and IGF-1R KD in NSCLC cells was performed by transduction 

with lentiviral vectors (LVs) expressing U6 promoter-driven shRNA against IR or IGF-1R.  

By the use of two plasmids with a different property in IR KD efficiency, effects of a 

strong KD were compared to effects of a weak KD. pLKO.1-U6-CMV-GFP-PGK-Puro (LV-

GFP) and pLKO.1-U6-sh-ctr-PGK-Puro (LV-sh control) were used as controls. LV-GFP 

contains an U6 promoter without transgene and a CMV promoter-driven GFP expression 

cassette. LV-sh control contains U6 promoter-driven non-coding shRNA. The LVs for KD 

of IR and IGF-1R carry shRNA under control of the U6 promoter that targets  different 
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regions of human IR and IGF-1R. All LV constructs were purchased from Sigma-Aldrich 

(Munich, Germany).  

Generation and packing of viral vectors were carried out by the collaborating partner 

workgroup Pfeifer (Institute of Pharmacology and Toxicology, University of Bonn). 

For LV transduction, 1.5 x 105 cells per 6-well dish for protein analysis or 2 x 104 cells per 

24-well dish for mRNA analysis were seeded and incubated for 4 h until cells adhered. 

Medium was removed and replaced by 1 ml (for 6-well plate) or 0.4 ml (for 24-well plate) 

transduction medium, containing 150 ng (per 6-well) or 20 ng (per 24-well) RT LVs. 72 h 

after transduction (day (d) 3), cells were used for analysis or virus-mixture was replaced 

by starving medium and cells were incubated for 24 h (d 4) or 48 h (d 5). The KD was 

studied on mRNA and protein level (see chapter 2.3 and 2.4)  

 

transduction medium growth medium 

polybrene [ 3 µg/ml] 

 

 

2.6 Analysis of Cell Survival 

2.6.1 Cell Count 

Measurement with CedEx XS revealed cell survival after viral transduction. For 

determination of cell count, cells were washed twice with PBS and trypsinized 72 h (d 3) 

after virus treatment (see chapter 2.5.2). The cell pellet which was received after 

centrifugation was resuspended in 1 ml growth medium. 10 µl of this solution were 

pipetted into a CedEx XS counting chamber. Cells were counted afterwards. Each sample 

was measured in triplicates. In order to perform cell count at d 4 and d 5, virus-containing 

medium was replaced by serum-free medium at d 3 and an incubation time of 24 h and 48 

h, respectively followed before cell number was measured.  

Results are presented as absolute cell number per ml. 
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2.6.2 Caspase Assay 

Detection of Caspase 3/7 activity was conducted with Caspase-Glo® 3/7 Assay. As 

caspases activities were studied in both, IR or IGF-1R knockdown and cytokine-treated 

samples, different protocols were established . 

An amount of 1 x 104 cells per 96-well plate was seeded into microplates in a volume of 

200 µl growth medium. 

For an analysis of effects of cytokines on apoptosis, cells had been set on starving medium 

for 24 h before incubated for 48 h with 100 nM of the test compounds.  

Samples treated with water served as negative controls. Tumor necrosis factor α (TNFα)-

treated cells were used as positive controls.  

Implications of IR KD in programmed cell death were studied by Caspase-Glo® 3/7 assay 

at d 3 after LV transduction. Both, LV-sh control and untreated cells were used as 

negative controls. The chemotherapeutic drug gemcitabine, used in the therapy of 

NSCLC, was selected as positive control.  

Background luminescence was detected by a blank reaction which contained the Caspase-

Glo® 3/7 Reagent and cell culture medium without cells. Before the assay was conducted, 

Caspase-Glo® 3/7 Reagent had been freshly prepared. 100 µl of this reagent were pipetted 

into each well to a total volume of 200 µl. The microplates were mixed gently on a plate 

shaker for 1 min. After 1 h incubation at room temperature, luminescence signals 

representing caspases activities were measured.  

All samples were measured in quadruplicates. Activation levels of caspases in cytokine-

stimulated samples are shown as percentage of untreated control levels. Caspases 

activities of IR KD samples are represented as percentage of LV-sh control cell levels.  

 

Caspase-Glo® 3/7 Reagent  

(homogenous solution) 

10 ml Caspase-Glo® 3/7 Buffer 

1 bottle Caspase-Glo® 3/7 Substrate 

(lyophilized) 
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2.7 Analysis of Gene Expression Profiles 

1 µg of H292, H226 and H460 total RNA (see chapter 2.3.1) was used as starting material 

for linear T7-based amplification of sample RNA.  

Following operations were carried out by Miltenyi Biotec (Gladbach, Germany). The 

analysis based on quadruplicate measurement (four biological replicates on four 

independent arrays).  Microarray raw data (light intensity) were translated by logarithmic 

transformation. 

For statistical analysis, ratios of IR KD vs. LV-sh control expression levels were calculated. 

No change in gene expression is signified by zero, induction by a positive and 

suppression by a negative sign.  

 

2.8 Statistical Analysis 

Data were analyzed using Prism 5.0 software (GraphPad Software Inc.). Arithmetic means 

and standard error of the mean (SEM) were calculated and are presented in the "Result" 

section (see chapter IV) . 

One-way ANOVA (analysis of variance) was used to determine how a certain response is 

affected by one factor; e.g. response to three different concentrations of insulin in a cell 

line. Thereby, insulin treatment is the only factor. Due to three different concentrations of 

insulin, the factor is said to have three levels. 

Analysis with two-way ANOVA was conducted to examine how a response is affected by 

two factors; e.g. response to three different concentrations of insulin in LV-sh-IRa-treated 

and LV-sh control samples. Insulin treatment is one factor and virus treatment (yes/no) the 

other. 

If the F-test reports a P value of < 0.05, the null hypothesis (Ho), indicating that samples 

show no significant differences in their means, can be rejected. 

In order to analyze in more detail which group differed to which statistical extent from 

another group, post-hoc tests were performed. Among multiple comparison tests, 

Bonferroni method allows a comparison of multiple independent groups, whereas 

Dunnett method compares independent groups to a common control group. 
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An error probability of p < 0.05 represents a significant (*), p < 0.01 highly significant (**) 

and p < 0.001 most highly significant (***) difference of the means. 
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IV Results 

1 Basic Configuration of NSCLC Cells 

In order to evaluate implications of insulin and the insulin receptor in lung carcinoma 

promotion, three NSCLC cell lines, each representing a different cancer subtype (see 

Materials 1.3.1 for details), were included in this study. 

Various cell screening experiments were performed previously to reveal relevant basic 

characteristics of the different cell lines. 

 

1.1 Basal Proliferation Rates 

The individual extent of cell proliferation - independent from external stimuli - was 

analyzed by measurement of [3H]-thymidine incorporation under basal conditions (i.e. 

starving conditions). 

H460 cell line showed the highest [3H]-thymidine incorporation rate (25700  dpm) which 

was 5-fold higher than that of H226 cells (5800 dpm) (Fig. 8). H292 cells revealed the 

lowest [3H]-thymidine incorporation rate (2400 dpm) which was significantly below that 

of H226 and H460 cells.  
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Figure 8: Basal [3H]-Thymidine Incorporation Rate in H292, H226 and H460 Cells. 

Cells were cultured in growth medium and provided with starving medium for 24 h afterwards. 

Thereafter, [3H]-thymidine (37 MBq/ml) was pipetted onto each well. During 24 h of incubation, 

radioactive-labelled thymidine was incorporated into newly synthesized DNA strands. 

Radioactivity was recorded as dpm per well by liquid scintillation spectometry. The bar graphs 

show means + SEM of N= 6 (H460 cells) or N= 11 (H292, H226 cells) experiments. Significance of 

differences: +++ p < 0.001 
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1.2 Expression of Insulin and IGF-1 Receptors 

Knowledge of the presence and the expression levels of insulin and IGF-1 receptors in 

H292, H226 and H460 cells is essential to comprehend implications of both receptors in 

cancer cell progression and effects caused by receptor knockdown. 

Quantitative real-time PCR and Western blot analysis revealed in parallel that IR and IGF-

1R were present in all cell lines tested. In H292 cells, expression levels of both receptors 

were most pronounced (Fig. 9). The IR expression in H226 cells was at a slightly lower 

level as compared to H292 cells, i.e. 80 % of H292 mRNA (Fig. 9A) and 76 % of H292 

protein level (Fig. 2C, left bar chart). H460 cells revealed the lowest IR expression level 

within the cell lines tested, i.e. 30 % and 44 % of H292 mRNA (Fig. 9A) and protein level, 

respectively (Fig. 9C, left bar chart).  

IGF-1R expression in H226 cells was 10 % of mRNA (Fig. 9A) and 43 % of protein level 

(Fig. 9C, right bar chart) compared to H292 cells. H460 cells were positioned in between; 

their IGF-1R expression was 20 % of H292 mRNA (Fig. 9A) and 58 % of H292 protein level 

(Fig. 9C, right bar chart). 

Besides, the IR/IGF-1R ratio was calculated. qPCR data revealed that the IGF-1R/IR ratio 

was highest in H292 (10:1) and H460 (5:1) cells. Expression of both receptors hardly 

differed in H226 cells (Fig. 9A). 
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(A) mRNA Expression Levels of Insulin and IGF-1 Receptors 

            

 

 

(B) Protein Expression of Insulin and IGF-1 Receptors 
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(C) Protein Expression of Insulin and IGF-1 Receptors 

(Densitometric Analysis) 

   

 

 

 

 

Figure 9: Basal Expression of Insulin and IGF-1 Receptors in H292, H226 and H460 Cells.  

IR and IGF-1R mRNA expression levels are presented in (A). Cells were cultured in growth 

medium for 48 h before total RNA extraction was conducted. qPCR was carried out with IR and 

IGF-1R primers listed in Materials 1.9. The bar charts show N= 2-4 experiments (measured in 

triplicates). Amounts of mRNA expression levels are shown as ∆ CP (relative quantification) by 

normalizing CP values of target genes (IR or IGF-1R) to CP values of GAPDH levels (see Methods 

2.3.4.2). A representative Western blot result shows IR and IGF-1R protein expression levels in the 

NSCLC cells tested (B, upper panels). Cellular protein extraction was conducted after cells had 

been incubated for 24 h in growth medium. Anti-insulin or anti-IGF-1 receptor antibodies (see 

Materials 1.10) were used for immunodetection. After film processing, membranes were stripped, 

blotted over night and incubated with anti-α-tubulin antibody the next day. The housekeeping α-

tubulin protein was used as internal control (B, lower panels). The exposure time was 1 min for IR 

antibody detection and 1 sec for IGF-1R and α-tubulin antibody detection. Densitometric analysis 

of Western blot analysis is presented in (C). The bar graphs show means + SEM of N= 4 

experiments. Significance of differences: * p < 0.05, ** p < 0.01, *** p < 0.001 
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1.3 Analysis of Insulin Receptor Splicing Isoforms 

By performance of PCR with primer pairs spanning Exon 11, presence of IR splicing 

variants IR-A and IR-B were studied in the three NSCLC cell lines. Amplificates of IR-A 

and IR-B were separated by agarose gel electrophoresis and assigned to each isoform 

based on their molecular weight.  

Both splicing variants were present to a roughly equal extent in H292 cells (Fig. 10). In 

H226 cells, the PCR product corresponding to IR-B was markedly higher expressed as 

those corresponding to IR-A. Vice versa, in H460, IR-A appeared to be the predominant 

isoform.  

 

                         

 

 

 

 

 

 

 

 

Figure 10: Expression of Insulin Receptor Splicing Isoforms IR-A and IR-B in H292, H226 and 

H460 Cells. 

An incubation period of 48 h in growth medium was preceded before RNA extraction was 

performed. To distinguish between IR-A (-Ex11) and IR-B (+Ex11) sequences, conventional PCR 

was carried out with a splicing variants sensitive primer pair (see Materials 1.8, NM_001079817) 

(panel above). Total IR served as internal reference. Therefore, a primer pair (see Materials 1.8, 

NM_000208) spanning IR without differentiating between both isoforms (also used in experiments 

presented in Fig.9A) was used. Shown is one representative result of N= 3 analysis. 
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1.4 Presence of Heterodimeric IR/IGF-1 Receptors 

Next to IR homodimers, heterodimeric receptors (see Introduction 2.2) form a special 

receptor phenotype that is frequently present in cancer cells. 

In order to detect whether NSCLC cells build these hybrid receptors, co-

immunoprecipitation was carried out in H292, H226 and H460 cells. As described in the 

"Materials and Methods" section (see chapter 2.4.6), the precipitation step was performed 

with an anti-IGF-1R (Fig. 11A) or an anti-IR antibody (Fig. 11B). Correspondingly, the 

immunoprecipitated proteins were detected with the respective other antibody, i.e. anti-

IR (Fig. 11A) or anti-IGF-1R (Fig. 11B). Precipitation and detection with the same 

antibody, i.e. anti-IGF-1R (Fig. 11A) or anti-IR (Fig. 11B), was performed in parallel and 

served as positive control. Samples treated with sepharose but without antibody were 

chosen as negative control. 

Both approaches of IR and IGF-1R antibody-mediated immunoprecipitation resulted in 

positive findings (Fig. 11A, B); taken together, ten independent experiments clearly 

evidenced presence of HR in all cell lines tested. 
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(A) Immunodetection with Anti-Insulin Receptor Antibody 

                                     

 

 

 

(B) Immunodetection with Anti-IGF-1 Receptor Antibody 

 

 

 

Figure 11: Heterodimeric Insulin/IGF-1 Receptors in NSCLC cells. 

Whole protein isolation was performed after cells were cultured for 24 h in growth medium. 

Procedure of co-immunoprecipitation followed. (A): 100 µg of proteins were incubated with anti-

IGF-1R antibody (see Materials 1.9.3) over night in order to collect IGF-1R proteins out of the cell 

lysate (immunoprecipitated protein). For the positive control, samples were treated with anti-IR 

antibody over night. Antibody-untreated samples were used as negative control. Detection was 

carried out with anti-IR antibody (see Materials 1.9.1). (B): Application of anti-IR and anti-IGF-1R 

antibodies was used inversely compared to (A); immunoprecipitated proteins were incubated with 

anti-IR antibody (see Materials 1.9.3) and positive control was exposed to anti-IGF-1R antibody. 

The membrane was immunodetected with anti-IGF-1R antibody. The exposure time was 1 min and 

1 sec for IR antibody and IGF-1R antibody detection, respectively. All NSCLC cells tested showed 

presence of heterodimeric insulin/IGF-1 receptors. Shown are 2 representative Western blot images 

of N= 10 experiments.  
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2 Influences of Insulin and IGF-1 on Mitogenic Processes  

2.1 Effects on Cell Proliferation  

[3H]-thymidine incorporation studies were performed to examine effects of insulin in 

comparison to IGF-1 on the proliferation rate in NSCLC cells.  

After exposure of H292 cells to 1 nM insulin, [3H]-thymidine incorporation was slightly 

elevated to 117 %. Significantly enhanced incorporation rates were caused by 100 nM and 

1 µM insulin to 178 % and 280 %, respectively (Fig. 12A). An insulin-mediated increased 

cell proliferation was also observed in H226 cells, albeit the concentration-response curve 

appeared to be right-shifted compared to H292 findings. This indicates a reduced potency 

of insulin in H226 cells. An insulin concentration of 1 µM caused an overall stimulation to 

200 % (Fig. 12A). In contrast, in H460 cells, insulin failed to enhance [3H]-thymidine 

incorporation (Fig. 12A).  

In order to illuminate IGF-1 effects on cell proliferation and to compare effects of insulin 

to those of IGF-1, cells were incubated with IGF-1 in a concentration range from 1 nM to 

10 nM (Fig. 12B). H292 cells responded with a significantly increased [3H]-thymidine 

incorporation rate after treatment with 1 nM (143 %) and 10 nM (202 %) IGF-1. Although 

in H460 cells 1 nM IGF-1 did not lead to an enhanced cell proliferation rate, significant 

effects were observed by 3 nM (147 %) and 10 nM (179 %) IGF-1. Notably, IGF-1 failed to 

increase the [3H]-thymidine incorporation rate in H226 cells (Fig. 12B).  
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(A)                                             

 

 

(B)                       

 

             

 

Figure 12: Effects of Insulin and IGF-1 on [3H]-Thymidine Incorporation in NSCLC Cell Lines.   

Cells were seeded and cultured in growth medium for 24 h. An incubation time in starving 

medium for 24 h followed. After this wash-out period, test compounds in concentrations of 1 nM- 1 

µM insulin (A) or 1 nM- 10 nM IGF-1 (B) were added to the wells. Treatment of cells with vehicle-

only (water) was paralleled in each experiment serving as control (ctr). Results of mostly N > 6 

experiments are expressed as percentage of ctr of the individual cell proliferation as means ± SEM. 

Significance of differences: + p < 0.05, ++ p < 0.01, +++ p < 0.001 of the respective cell preparation 

control. 
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2.2 Activation of Mitogenic Signaling Pathways 

2.2.1 Insulin/IGF-1 Receptor Phosphorylation 

The extent of receptor autophosphorylation upon insulin stimulation was tested by 

phospho (p) Western blot analysis. Due to the large structural homology of IR and IGF-1R 

at the relevant site, only a combined pIGF-1R/pIR antibody was available.  

Regarding basal levels of pIGF-1R/pIR, differences within the cell lines became obvious 

(Fig. 13A). Only in H292, clearly activated receptors, identified by a visible pIGF-1R/pIR 

signal in absence of insulin, were observed (Fig. 13A, left). However, concentration-

dependent phosphorylation of the tyrosine residues Y1135/1136 (IGF-1R) and Y1150/1151 

(IR) after exposure to insulin in the nanomolar range was detected in all cell lines tested. 

Picomolar insulin concentrations did not increase receptor phosphorylation (data not 

shown).  

Densitometric analysis allowed a more precise analysis of pIGF-1R/pIR levels (Fig. 13B). 

By detecting also slightest variations in the density distribution within the Western blot 

membrane, basal levels of pIR/IGF-1R could be measured and taken as internal reference. 

Compared to respective controls, 10 nM of insulin caused significant receptor 

autophosphorylation in H292 and H226 cells to 264 % and 225 %, respectively but only 

slight autophosphorylation in H460 cells to 131 %. Exposed to 100 nM insulin, IGF-1R/IR 

autophosphorylation was induced significantly in the three cell lines (H292 cells: 355 %, 

H226 cells: 388 %, H460 cells: 277 % compared to vehicle-treated control). 
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(A)  

     H292      H226      H460 
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 (B)                      

   H292       H226      H460 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Effect of Insulin on IGF-1R/IR phosphorylation in NSCLC cells. 

Western blot analysis revealed concentration-dependent autophosphorylation of IGF-1R/IR caused by insulin (A). Serum-starved cells were treated with 10 nM 

or 100 nM insulin for 15 min. Signals of phosphorylated tyrosine residues were detected (upper panels). Use of α-tubulin antibody was chosen as housekeeping 

reference control (lower panels). The exposure time was 1 min and 1 sec for pIGF-1R/pIR antibody and α-tubulin antibody detection, respectively.  Densitometric 

analysis is presented in (B). The bar graphs show mean + SEM of N= 4 experiments, expressed as percentage of the control level. Significance of differences: *** p 

< 0.001; ## p < 0.01, ### p < 0.001  
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2.2.2 Akt Phosphorylation 

Akt phosphorylation under basal conditions (i.e. in absence of insulin) was identified in 

H226 and H460, but not detectable in H292 cells (Fig. 14A). Beyond, 100 pM- 100 nM insulin 

induced Akt-signaling in a concentration-dependent manner in the three NSCLC lines.  

Beyond, it was aimed to compare insulin-mediated effects to IGF-1-mediated effects on Akt 

phosphorylation. Therefore, cells were also exposed to 10 nM of IGF-1. Results of Akt protein 

analysis indicated that IGF-1 and insulin stimulation did not differ from each other (Fig. 

14B).
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(B) 

     H292  H226  H460 

 

 

 

Figure 14: Effects of Insulin and IGF-1 on PKB/Akt Phosphorylation in H292, H226 and H460 cells. 

Western blot analysis (N= 4) revealed protein expression levels of phospho Akt (A, B upper panels) 

and total Akt (A, B lower panels) in NSCLC cells. After a starving period of 24 h, cells were exposed to 

100 pM- 100 nM insulin (A) or 100 nM insulin and 10 nM IGF-1 (B) for 15 min before cellular protein 

extraction was conducted. Concentration-dependent increase in phosphorylation levels of Akt after 

insulin treatment is presented in (A). Insulin-caused Akt phosphorylation is compared to IGF-1-

caused phosphorylation in (B). The exposure time was 1 sec for pAkt and Akt antibody detection. 
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2.2.3 ERK/MAPK Phosphorylation 

In contrast to basal Akt phosphorylation, constitutively phosphorylated ERK1/2 proteins 

were present in all cell lines tested. However, only in H292 cells, ERK/MAPK was clearly 

activated by insulin (Fig. 15A). 100 nM insulin and 10 nM IGF-1 induced p44/42 

phosphorylation to an equal extent in these cells. In H226 cells, p44/42 phosphorylation was 

not influenced by insulin but however by IGF-1 (Fig. 15B). Insulin and IGF-1 failed to 

increase ERK1/2 phosphorylation in H460 cells (Fig. 15B).  

Densitometric data quantified Western Blot observations. Both, 100 nM insulin and 10 nM 

IGF-1 led to a significant p44/42 phosphorylation to 197 % and 204 %, respectively in H292 

cells (Fig. 15C, left). In H226 cells, 10 nM IGF-1 (126 %) but not 100 nM insulin (109 %) 

enhanced ERK1/2 phosphorylation significantly (Fig. 15C, middle). However, neither insulin 

nor IGF-1 markedly influenced ERK/MAPK in H460 cells (Fig. 15C, right).  
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(C) 

   H292       H226       H460 

  

                 
  

Figure 15: Effects of Insulin and IGF-1 on ERK/MAPK Signaling in H292, H226 and H460 cells. 

Cells were cultured in growth medium and placed in starving medium for 24 h afterwards. Test compounds were added and cells were incubated for 15 min 

before protein preparation was conducted. Western blot analysis reveal ERK1/2 MAPK proteins in NSCLC cells after exposure to insulin in a concentration range 

from 1 nM- 100 nM (A) and 100 nM insulin compared to 10 nM IGF-1 (B). Phosphorylation levels of p44/42 proteins are shown in the upper panels. Expression of 

the housekeeping protein total ERK (internal loading control) is presented in the lower panels. The exposure time was 1 min and 1 sec for phospho p44/42 and 

total ERK antibody detection, respectively. Densitometric analysis (C) shows quantification of p44/42 phosphorylation in each cell line. The bar graphs show 

means + SEM of N > 3 experiments, measured in duplicates. Results are expressed as percentage of the control. Significance of differences: * p < 0.05, *** p < 0.001 
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3 Influences of TGF-β on Mitogenic Processes  

3.1 Effects of TGF-β Compared to Insulin on [3H]-Thymidine 

Incorporation   

In H292 and H226 cells, insulin increased cell proliferation to a marked extent in 

concentrations from 100 nM onwards (see chapter 2.1).  

In addition, [3H]-thymidine incorporation was measured after cell exposure to 100 nM 

insulin and 1 ng/ml (0.08 nM) TGF-β. Thereby, effects of TGF-β on proliferation and possible 

interactions with insulin could be analyzed. H460 cells were not included in this study since 

proliferation of this line was not influenced by insulin (see chapter 2.1). 

Figure 16 shows a significant increased [3H]-thymidine incorporation rate after incubation 

with 100 nM insulin in H292 to 173 % (Fig. 16A) and in H226 cells to 126 % (Fig. 16B) which 

is in line with previous data (Fig. 12). In contrast, TGF-β led to a decreased [3H]-thymidine 

incorporation rate to 64 % and 60 % in H292 and H226 cells, respectively. Simultaneous 

treatment with both substances revealed a proliferation rate approximately at control levels.  
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(A)  [3H]-Thymidine Incorporation Rate in H292 Cells 

   

 

 

 

(B)  [3H]-Thymidine Incorporation Rate in H226 Cells 

 

 

 

Figure 16: Effects of Insulin and TGFβ on [3H]-Thymidine Incorporation in H292 and H226 Cells. 

Cells were treated and prepared as described in Figure 12. Insulin [100 nM] and/ or TGF-β [1 ng/ml] 

were used as test compounds. Treatment of cells with vehicle-only (water) was paralleled in each 

experiment (controls). Bar graphs show mean + SEM of N= 5 experiments presented as percentage of 

controls. Significance of differences: * p < 0.05, *** p < 0.001 vs. control; ## p < 0.01, ### p < 0.001 vs. 

insulin; Δ p < 0.05, ΔΔ p < 0.01 vs. TGF-β 
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3.2 Expression of EMT Markers after TGF-β Treatment 

In order to obtain a detailed overview of the expression profile of the EMT markers N-

Cadherin (CDH2) and Endothelin (ET-1) in NSCLC cells, basic mRNA expression levels (Fig. 

17) and mRNA expression levels after treatment with test compounds TGF-β, insulin and 

IGF-1 (Fig. 18) were measured.  

Highly significant differences in ET-1 and CDH2 basic expression were detected within the 

cell lines tested (Fig. 17). H460 cells expressed ET-1 most pronounced, i.e. 4-fold and 128-fold 

higher than in H292 and H226 cells, respectively. The CDH2 mRNA level in H226 cells was 

3-fold and 256-fold higher than in H292 and H460 cells, respectively. 

 

 

 

 

 

Figure 17: Basic mRNA Expression Rate of Endothelin and N-Cadherin in NSCLC Cell Lines. 

Preparation and conduction of qPCR was proceeded as described in Figure 9A. Endothelin and N-

cadherin primers are listed in Materials 1.8. Amounts of mRNA expression are shown as ∆ CP 

(relative quantification) by normalizing CP values of target genes to CP values of GAPDH levels (see 

Methods 2.3.4.2). The bar charts show means + SEM of N= 5 experiments (measured in triplicates). 

Significance of differences: ** p < 0.01, *** p < 0.001 
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In H292 cells, ET-1 mRNA expression was markedly increased by TGF-β to 603 % (Fig. 18). 

In contrast, insulin and IGF-1 decreased the mRNA expression rate to 35 % and 36 %, 

respectively. Notably, TGF-β effects were significantly attenuated by insulin (to 261 %) and 

by IGF-1 (to 138 %) in samples which were exposed to the respective substance combination.  

ET-1 mRNA expression was increased to 303 % after TGF-β treatment in H226 cells. 

However, neither insulin nor IGF-1 had significant impacts on mRNA expression in these 

cells. In accordance to findings in H292 cells, in H226 cells, insulin and IGF-1 diminished 

TGF-β effects (303 %) to 201 % and 256 %, respectively. H460 cells presented a differing ET-1 

expression profile after exposure to the test compounds. Contrary to H292 and H226 cells, 

TGF-β enhanced the ET-1 mRNA expression only slightly to 140 %, whereas insulin and IGF-

1 strongly induced ET-1 mRNA to 217 % and 205 %, respectively. With combinations of TGF-

β and insulin (237 %) and TGF-β and IGF-1 (280 %), the ET-1 mRNA expression level was 

most strongly upregulated.  
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Figure 18: Effects of TGF-β, Insulin and IGF-1 on Endothelin mRNA Expression Levels in NSCLC Cells. 

Cells were cultured in growth medium and placed in starving medium for 24 h subsequently. Test compounds were added and cells were incubated for 24 h 

before RNA preparation and qPCR was conducted as described in Figure 17. Amounts of endothelin mRNA expression levels after substance treatment are 

shown as percentage of controls (100 %). Therefore, a second normalization was followed by setting the ∆ CP value of each sample in relation to the ∆ CP value of 

the control (see Methods 2.3.4.2). The bar graphs show means + SEM of N= 6 experiments. Significance of differences: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 

control; ### p < 0.001 vs. insulin; Δ p < 0.05, ΔΔΔ p < 0.001 vs. TGF-β 
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The CDH2 mRNA expression profile revealed similar tendencies like the ET-1 expression 

profile after incubation with the test substances in H292 cells (Fig. 19). TGF-β caused an 

increase in CDH2 mRNA expression to 660 %. Insulin and IGF-1 led to a decrease to 76 % 

and 58 %, respectively. Again, both combined with TGF-β reduced the effect of the latter 

(TGF-β + insulin: 232 %, TGF-β + IGF-1: 360 %). Remarkably, in H226 cells, TGF-β and IGF-1 

exposure had equal effects on the CDH2 mRNA expression; i.e. mRNA levels were 

upregulated to 230 % by TGF-β and IGF-1. However, the substance combination of TGF-β 

and IGF-1 induced CDH2 mRNA expression only to 168 %. Insulin had no impact on CDH2 

expression, whereas combined with TGF-β the mRNA level was significantly reduced (189 

%) compared to the TGF-β effect (230 %). The same findings were obtained in H460 cells 

after exposure to TGF-β (209 %), insulin (97 %) and their combination (163 %). However, 

IGF-1 alone and both together (IGF-1 and TGF-β) had no significant effects on CDH2 

expression. 
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    H292      H226       H460               

 

 

 

Figure 19: Effects of TGF-β, Insulin and IGF-1 on N-Cadherin mRNA Expression Levels in NSCLC Cells. 

Experiments were conducted as described in Figure 18. The bar graphs show means + SEM of N= 6 experiments, expressed as percentage of controls (see Fig. 18). 

Significance of differences: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. control; Δ p < 0.05, ΔΔ p < 0.01, ΔΔΔ p < 0.001 vs. TGF-β; + p < 0.05 vs. IGF-1 



Results 

85 

 

4 Effects of Insulin and IGF-1 Receptor Knockdown 

4.1 Receptor Knockdown Methods 

4.1.1 Non-viral Transfection  

It was aimed to establish an insulin and IGF-1 receptor knockdown protocol for NSCLC cell 

lines with lipofection as transfection method. siRNAs directed against the targets IR (siRNA 

s7479, siRNA s7478) and IGF-1R (siRNA s7212) (see Materials 1.8.2.) were used for 

lipofection. Initially, H292 cells were used exclusively in order to proof whether a KD of IR 

can be achieved in NSCLC cells. 

qPCR data revealed that siRNAs s7479 and s7478 significantly knocked down IR mRNA 

expression (data not shown). To verify the KD on protein level, Western blot analysis was 

performed (Fig. 20A, left). Densitometric quantification of Western blotting indicated that 

siRNAs s7479 and s7478 led to a downregulation of IR proteins to 41 % and 32 %, 

respectively compared to non-coding (nc) siRNA-treated samples (Fig. 20A, right). 

However, IGF-1R KD with siRNA s7212 was less pronounced. Densitometric analysis of 

Western blot analysis revealed a protein downregulation to 56 % compared to nc controls 

(Fig. 20B, right). 
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(A)  Knockdown of Insulin Receptor in H292 Cells 

 

 

 

(B)  Knockdown of IGF-1 Receptor in H292 Cells 

      

 

 

Figure 20: Insulin and IGF-1 Receptor Knockdown via Lipofection in H292 Cells. 

Cells were cultured for 24 h in FCS-containing, penicillin/streptomycin-free medium. The transient 

transfection was conducted with Silencer® Select siRNAs directed against IR or IGF-1R (for details see 

Materials 2.5.1.1). Western blot analysis reveals KD of IR (A, left) and IGF-1R (B, left) after 

transfection. The exposure time was 1 min for IR antibody and 1 sec for IGF-1R antibody detection. 

The bar graphs of the densitometric analysis show means + SEM of N= 6 IR KD experiments (A, right) 
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and means + SEM of N= 3 IGF-1R KD experiments (B, right). Data are expressed as percentage of the 

non-coding siRNA controls. Significance of differences: *** p < 0.001 vs. control 

 

In pre-tests, aiming to verify the compatibility of the experimental setting, the vehicle 

Lipofectamine® appeared to impair insulin- and IGF-1-mediated influences on cell 

proliferation. Both, vehicle-only (Lipofectamine®)- and water-treated controls showed a 

comparable [3H]-thymidine incorporation rate (Fig. 21). Thus, Lipofectamine® did not 

influence the basal proliferation rate in H292 cells. Beyond, however, no changes were 

measured by insulin or IGF-1 in the Lipofectamine®-containing setting (Fig. 21). 

Without any transfection agents, insulin and IGF-1 led to a significantly increased [3H]-

thymidine incorporation rate in H292 cells (Fig. 12), whereas in presence of Lipofectamine®, 

insulin failed to elevate the cell proliferation distinctly. Compared to the control level, an 

increase to 107 % (10 nM) and 109 % (100 nM) was found.  

In IGF-1-treated cells, a slightly diminished [3H]-thymidine incorporation rate (1 nM: 91 %, 3 

nM: 86 %) was detected.  

As a consequence of the unsuitability of Lipofectamine® as transfection reagent for these 

experiments, lipofection was not used as KD method for further studies. 
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Figure 21: Influence of Lipofectamine® on [3H]-Thymidine Incorporation in H292 cells.  

Cells were cultured and prepared as described in Methods 2.5.1.1, albeit no siRNA was given to the 

transfection solution. The following protocol included exposure to 10 nM/ 100 nM insulin or 1 nM/ 3 

nM IGF-1, [3H]-thymidine incubation and measurement of radioactivity (see Fig. 12). Treatment of 

cells with vehicle-only (water or Lipofectamine®) was paralleled in each experiment as control. The 

bar graphs show means + SEM of N= 6 (insulin) or N= 3 (IGF-1) experiments. Data are expressed as 

percentage of the arithmetic average of controls. 
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4.1.2 Lentiviral Transduction of shRNAs 

Lentiviral transduction was established with shRNAs complementary to the target genes IR 

and IGF-1R (see Materials 1.8.3). In order to check the effectiveness of the lentiviral 

transduction protocol for NSCLC cells, transduction with GFP-containing plasmids was 

performed in parallel to each KD experiment. Hence, GFP-treated cells served as positive 

transduction control and fluorescence of GFP indicated virus infestation of the cells (Fig. 

22A). 

Vector LV-sh-IRa (LV-sh-NM208a) knocked down the IR mRNA highly significant in H292, 

H226 and H460 cells; on d 4, IR was diminished to 10 %, 7 % and 19 % in H292, H226 and 

H460 cells, respectively (Fig. 22B). However, in accordance to the manufacturer's 

information, LV-sh-IRb (LV-sh-NM208b) led to a less marked IR KD. In H292 and H460 cells, 

IR mRNA expression was reduced to 37 % and 26 %, respectively. In H226 cells, IR mRNA 

expression was decreased to 60 % after LV-sh-IRb treatment (Fig. 22B).  

KD effects of LV-sh-IRa were also studied on protein level by Western blot and 

densitometric analysis (Fig. 22C, D). Treatment with LV-sh-IRa led to a marked reduction of 

IR proteins in all cell lines tested. Western blotting displayed a knockdown to 8 % in H292, 1 

% in H226 and 1 % in H460 cells (Fig. 22D). 



 

(A)  Lentiviral Transfection Control with GFP

 

 

 

(B)   Insulin Receptor mRNA 

  Transduction
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Lentiviral Transfection Control with GFP 

Insulin Receptor mRNA Knockdown after Lentiviral

Transduction 

 

 

 

 

 

 

 

Knockdown after Lentiviral 
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(C)  Insulin Receptor Protein Knockdown after Lentiviral 

 Transduction 

 

 

 

(D)  Insulin Receptor Protein Knockdown after Lentiviral 

 Transduction (Densitometric Analysis) 
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Figure 22: IR KD in NSCLC Cells after Lentiviral Transduction. 

Establishment of IR KD in NSCLC cells was performed by transduction with LVs expressing U6 

promoter-driven shRNAs against IR (see Methods 2.5.2 for details). LV-sh control was used as control. 

72 h after transduction, virus-mixture was replaced by starving medium and cells were incubated for 

24 h (d 4) before qPCR or Western blotting followed. A representative image of GFP controls on d 4 is 

shown in (A). IR mRNA expression levels in LV-sh-IRa- and LV-sh-IRb-treated cells compared to LV-

sh control are presented in (B). qPCR was carried out with IR primer listed in Materials 1.9. Amounts 

of mRNA expression are shown as ∆ CP (relative quantification) by normalizing CP values of IR to CP 

values of GAPDH levels (see Methods 2.3.4.2). A Western blot image shows IR protein expression 

levels in IR KD cells compared to controls (C). Anti-insulin receptor antibody (see Materials 1.10) was 

used for immunodetection. Anti-α-tubulin antibody detection served as internal control. The exposure 

time was 1 min and 1 sec for IR antibody and α-tubulin antibody detection, respectively. 

Densitometric analysis of Western blot analysis is presented in (D). The bar graphs show means + SEM 

of N= 4 experiments. Significance of differences: *** p < 0.001 

 

 

The IGF-1R was knocked down by two independent shRNAs (see Materials 1.8.3: LV-sh-

NM875a, LV-sh-NM875b). During the testing stage it became visible that both shRNAs did 

not differ in their KD capacity (data not shown). Therefore, LV-sh-NM875b, declared as LV-

sh-IGF-1R in following figures, was used for further experiments. At d 4 the IGF-1R mRNA 

expression was decreased to 56 %, 53 % and 16 % in H292, H226 and H460 cells, respectively 

(Fig. 23A).  

Verification of the IGF-1R KD on protein level was proved by Western blotting (Fig. 23B). 

 Quantification yielded an IGF-1R protein KD to 14 % (H292 cells), 33 % (H226 cells) and 52 

% (H460 cells) (Fig. 23C). 
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(A)  IGF-1 Receptor mRNA Knockdown after Lentiviral 

 Transduction 

 

 

 

 

(B)  IGF-1 Receptor Protein Knockdown after Lentiviral 

 Transduction
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(C)  IGF-1 Receptor Protein Knockdown after Lentiviral 

 Transduction (Densitometric Analysis) 

 

 

 

 

Figure 23: IGF-1R KD in NSCLC Cells after Lentiviral Transduction. 

Establishment of IGF-1R KD in NSCLC cells was performed by transduction with LV expressing U6 

promoter-driven shRNA against IGF-1R (LV-sh-IGF-1R) (see Methods 2.5.2).  
IGF-1R mRNA expression level in LV-sh-IGF-1R cells compared to LV-sh control is presented in (A). 

qPCR was carried out with the IGF-1R primer pair listed in Materials 1.9. Amounts of mRNA 

expression are shown as ∆ CP (relative quantification) by normalizing CP values of IGF-1R to CP 

values of GAPDH levels (see Methods 2.3.4.2). 

A representative Western blot image presents IGF-1R protein expression levels in IGF-1R KD cells 

compared to controls (B). Anti-IGF-1R antibody (see Materials 1.10) was used for immunodetection. 

The exposure time for IGF-1R antibody and α-tubulin antibody detection was 1 sec. Densitometric 

analysis of Western blot analysis is presented in (C). The bar graphs show means + SEM of N= 4 

experiments. Significance of differences: * p < 0.05, ***p < 0.001 
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4.2 Cell Death after Insulin Receptor Knockdown 

It became visible that NSCLC cells die upon IR KD; 72 h (d 3) after viral transduction, IR KD 

cells appeared less confluent via microscopic examination compared to untreated or LV-sh 

control cells. This phenomenon, found in all lines tested, became even more pronounced at  

d 4 and led to a most prominent cell death at d 5.  

Conduction of cell count confirmed and quantified these observations of a time-dependent 

increased cell death. At d 5, the number of LV-sh-IRa-treated cells was 2 % in H292, 29 % in 

H226 and 7 % in H460 compared to respective LV-sh controls (Fig. 24). 

In the following, it was aimed to study whether the reduced cell number is a consequence of 

a strong IR KD. Therefore, cells with a moderate IR KD (LV-sh-IRb) and an IGF-1R KD (LV-

sh-IGF-1R) were analyzed for comparison. In four independent experiments cell count 

remained stable after IGF-1R KD in H292, H226 and H460 cells (data not shown). Partial IR 

KD also caused a time-dependent decrease in H292 and H226 cell survival, albeit to a lesser 

extent (d 5: 31 % and 46 %, respectively). In H460 cells, no major difference in cell number 

after transduction with LV-sh-IRa and LV-sh-IRb was measured (Fig. 24).  

 

4.2.1 Apoptosis Induction After Insulin Receptor Knockdown 

Performance of a luminescence-based caspase 3/7 assay was carried out to analyze whether 

the decline in cell number could be a consequence of apoptosis (Fig. 25). Both, untreated and 

LV-sh control cells served as negative controls. Gemcitabine-treated cells were chosen as 

positive (i.e. caspase-activating) control.  

IR KD activated caspases 3/7 significantly in comparison to the negative controls in the three 

cell lines. However, the strongest upregulation was found in H292 cells; LV-sh-IRa enhanced 

caspase activity to 550 % which was even above the caspase activity level of the positive 

control (453 %). In H226 cells, IR KD provoked an increase to 430 %, whereas gemcitabine 

enhanced caspase activity to 845 %. The comparably lowest but still significant impact of IR 

KD on caspase activity was found in H460 cells (increase to 140 %). As observed in H226 

cells, effects of gemcitabine were significantly stronger than effects of the receptor KD 

(increase to 417 %). 
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  H292       H226       H460        

 

 

 

 

Figure 24: Decrease in NSCLC Cell Survival Caused by Stable Transduction with LV-sh-IRa and LV-sh-IRb. 

Cells were seeded and incubated for 4 h before LV transduction was performed (for details see Methods 2.5.2). At d 3 after virus treatment cells were trypsinized 

and prepared for cell count (see Methods 2.6.1). Cell count at d 4  (d 5) was performed by replacing virus-containing medium by serum-free medium at d 3. An 

incubation time of 24 h (48 h) under starving conditions followed. Each sample was measured in triplicates.  Results (absolute cell number per ml) are presented 

as means ± SEM of N= 4 experiments. Significance of differences: *** p < 0.001 LV-sh-IRa vs. LV-sh control; ### p < 0.001 LV-sh-IRb vs. LV-sh control 
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   H292       H226       H460           

 

 

 

Figure 25: Effects of IR KD on Caspase 3/7 Activation in NSCLC Cells. 

Detection of Caspase 3/7 activity was conducted by the use of Caspase-Glo® 3/7 Assay. Effects of IR KD on caspases activity were measured at d 3 after LV 

transduction. Both, LV-sh control and untreated cells served as negative controls. The chemotherapeutic drug gemcitabine was selected as positive control. A 

blank reaction, including Caspase-Glo® 3/7 Reagent and cell culture medium without cells was required in order to detect background luminescence.  

The results, presented as percentage of LV-sh controls, are means + SEM of N= 3 experiments. Significance of differences: * p < 0.05, ** p < 0.01, *** p < 0.001 vs. 

control; # p < 0.05, ## p < 0.01, ### p < 0.001 vs. LV-sh-control; ++ p < 0.01, +++ p < 0.001 vs. gemcitabine 
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4.3 Effects of IGF-1 Receptor Knockdown on EMT and Cell Proliferation  

4.3.1 IGF-1 Receptor Knockdown Induced EMT  

Cells transduced with the LV-GFP and the LV-sh control virus showed an inconspicuous and 

intact epithelial morphology (Fig. 26A). In contrast, LV-sh-IRa-treated cells were marked by 

a damaged and injured phenotype. Beyond, as described in chapter 4.2, the cell confluence 

was markedly reduced. Notably, in H292 IGF-1R KD cells a visible cell transformation 

became obvious. The typical epithelial cell appearance was no longer clearly pronounced. 

Instead, cells became more smooth muscle-like, i.e. their phenotype displayed a 

mesenchymal morphology (Fig. 26A). EMT could be the underlying mechanism of this 

observed cell transformation. Thus, mRNA expression levels of ET-1, CDH2 and fibronectin 

were measured (Fig. 26B). The mRNA expression levels of the target genes in LV-sh control 

cells were used as reference. 

ET-1 expression was significantly upregulated in both, IR-KD and IGF-1R KD cells to 492 % 

and 408 %, respectively. However, CDH2 and fibronectin mRNA levels were significantly 

elevated in IGF-1R KD cells to 390 %. Fibronectin expression was equally pronounced in IR 

KD and control cells, whereas CDH2 expression was elevated to 200 % in IGF-1 KD cells. 



 

(A)  Microscopic 

 

 

 

 

(B)  mRNA Expression of EMT Marker

Figure 26: Effects of IGF-1R KD on EMT in H292 Cells.

Lentiviral transduction was performed as described previously.

representative microscopic image out of N= 4 is shown in (A). qPCR was conducted to quantify 

mRNA expression levels of EMT markers (ET

Amounts of mRNA expression are shown as 

of target genes to CP values of GAPDH levels (see 

SEM of N= 3 experiments. Significance of differences: **
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Microscopic Observation of H292 Cell Morphology

mRNA Expression of EMT Marker 

 

 

1R KD on EMT in H292 Cells. 

performed as described previously. Cells were analyzed at d 4.

representative microscopic image out of N= 4 is shown in (A). qPCR was conducted to quantify 

mRNA expression levels of EMT markers (ET-1, CDH2, fibronectin) (B). Primers are listed in 1.9

f mRNA expression are shown as ∆ CP (relative quantification) by normalizing CP values 

of target genes to CP values of GAPDH levels (see Methods 2.3.4.2). The bar graphs show of means + 

SEM of N= 3 experiments. Significance of differences: ** p < 0.01 

Observation of H292 Cell Morphology 

 

 

Cells were analyzed at d 4. One 

representative microscopic image out of N= 4 is shown in (A). qPCR was conducted to quantify 

) (B). Primers are listed in 1.9. 

on) by normalizing CP values 

. The bar graphs show of means + 
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4.3.2 Increased Proliferative Effects of Insulin in IGF-1R KD Cells 

Insulin markedly empowered cell proliferation in H292 cells (Fig. 12). However, it remained 

unclear to which extent mitogenic insulin effects are mediated via IGF-1R activation. 

Therefore, [3H]-thymidine incorporation was analyzed in H292 IGF-1R KD cells after 

incubation with insulin in concentrations of 100 nM and 1 µM (Fig. 27).  

The basal cell proliferation (i.e. without insulin stimulation) of IGF-1R KD cells did not differ 

decisively from that of LV-sh control cells. However, the [3H]-thymidine incorporation rate 

in insulin-treated IGF-1R KD cells was significantly higher than in insulin-treated LV-sh 

control cells. Exposed to 100 nM insulin, the incorporation rate was increased to 226 % in 

IGF-1R KD cells but only to 140 % in LV-sh control cells. A concentration of 1 µM insulin 

increased the [3H]-thymidine incorporation to 185 % and 262 % in LV-sh control and IGF-1R 

KD cells, respectively. 

 

 

 

 

Figure 27: Increased Insulin-Induced [3H]-Thymidine Incorporation Rate in H292 IGF-1R KD Cells. 

Lentiviral transduction was followed by [3H]-thymidine incorporation assay as described in Figure 12. 

Radioactivity was recorded as dpm per well by liquid scintillation spectometry. Water-treated 

samples served as controls in LV-sh control and IGF-1R KD cells. Results of N= 3 experiments are 

expressed as means + SEM. Significance of differences: ** p < 0.01, *** p < 0.001 
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4.4 Impaired Mitogenic Signaling Pathways in Knockdown Cells 

4.4.1 Phosphorylation of Insulin Receptors 

Changes in basal and insulin-induced IR/IGF-1R phosphorylation levels after IR KD were 

examined with phospho Western blotting (Fig. 28) in H292, H226 and H460 cells. Next to 

detection of the phosphorylated receptor proteins, detections with IR and IGF-1R antibodies 

(see Materials 1.10.1) were performed in parallel. Thereby, the IR KD could be proved 

(middle panels) and beyond, possible changes in IGF-1R protein expression could be 

captured (lower panels). 

After stimulation with 10 nM and 100 nM insulin, pIR/pIGF-1R levels remained largely 

unchanged in H292 IR KD cells compared to LV-sh control cells (upper panels). Thus, even 

low insulin concentrations (10 nM) caused a clear IR/IGF-1R phosphorylation in H292 IR KD 

cells. Notably, there were no signs of a compensatory IGF-1R upregulation.  

In H226 and H460 IR KD cells, potency and maximal effect of insulin with regard to receptor 

autophosphorylation were slightly diminished (upper panels). However, clear 

phosphorylation signals after treatment with 100 nM insulin were still observed. 
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H292 H226 H460 

 

 

 

Figure 28: Phosphorylation of IR/IGF-1R in H292, H226 and H460 IR KD Cells. 

Receptor protein activation was analyzed at d 4 after lentiviral transduction. Western blot experiments 

represent pIGF-1R/pIR protein expression after insulin stimulation in LV-sh control cells and LV-sh-

IRa-treated cells (upper panels). IR (middle panels) and IGF-1R (lower panels) protein detection 

served as controls. Antibodies are listed in Materials 1.10. The exposure time was 1 sec for IGF-1R 

antibody and 1 min for pIGF-1R/pIR and IR antibody detection. N= 3 (H292 cells) or N= 2 (H226 and 

H460 cells) experiments were performed. 
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4.4.2 Akt Phosphorylation 

As described in chapter 2.2.2, insulin induced Akt phosphorylation in a concentration-

dependent manner.  

In order to examine if or to which extent IR KD and IGF-1R KD change activation of Akt-

signaling after insulin exposure, phospho Western blotting was performed in H292, H226 

and H460 cells (Fig. 29A, B, C).  

Compared to LV-sh control cells, IR KD resulted in a reduction of insulin-induced Akt 

phosphorylation in all cell lines. Although LV-sh-IRa downregulated the IR significantly 

(Fig. 22), pAkt signals were still detectable.  

Since H292 cells revealed the highest expression rate of IR among the NSCLC cells tested 

(Fig. 9), it was to analyze whether in this cell line partial KD shows any changes in insulin-

induced Akt-signaling like compared to LV-sh controls. Indeed, transduction with LV-sh-IRb 

also resulted in (slightly) decreased Akt phosphorylation levels.  

Further studies with LV-sh-IGF-1R-transduced cells indicated that the activity of Akt 

signaling does not depend on IGF-1R in H292 and H226 cells; there were no changes in 

insulin-induced pAkt signals in IGF-1R KD compared to LV-sh control cells (data not 

shown).  

In H460 cells, IGF-1R KD diminished insulin-caused Akt phosphorylation to the same extent 

as IR KD (Fig. 29C).  
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(A)  Akt Signaling in LV-sh-IRa and LV-sh-IRb-Transduced 

 H292 Cells 

 

 

 

 

(B)  Akt Signaling in LV-sh-IRa-Transduced H226 Cells        
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(C)  Akt Signaling in LV-sh-IRa and LV-sh-IGF-1R-Transduced  

 H460 Cells 

 

 

 

 

Figure 29: Akt Signaling in H292, H226 and H460 KD Cells. 

Cell preparation for protein analysis was carried out at d 4 after lentiviral transduction. Western blot 

analysis revealed expression of pAkt (upper panels) and total Akt (lower panels) in IR KD cells 

compared to the controls in the three NSCLC cell lines. In H460 cells an additional Western blot 

experiment of IGF-1R KD cells is shown (C). Lentiviral transduction was carried out as described 

previously. Western blotting was performed with antibodies used before (see Fig. 14). The exposure 

time was 1 sec for pAkt antibody and Akt antibody detection. N= 4 (H292 cells) or N= 2 (H226 and 

H460 cells) experiments were performed. 

  



Results 

106 

 

4.4.3 ERK/MAPK Phosphorylation 

MAPK analysis was only studied in cell line H292, because in H226 and H460 cells, insulin 

failed to affect this mitogenic pathway (Fig. 15).  

In H292 LV-sh-IRa-transduced cells, both, basal ERK/MAPK phosphorylation and its insulin-

dependent activation were markedly less pronounced than in controls (Fig. 30A). Especially 

stimulatory effects of insulin were significantly reduced by 67 % in 10 nM and 64 % in 100 

nM treated samples (Fig. 30A, densitometric analysis). Notably, the basal phospho p44/42 

level was diminished by partial IR KD. Beyond, only slightly decreased insulin-induced 

phospho p44/42 protein levels could be identified compared to LV-sh controls.   

As previously observed in Akt signaling studies (see chapter 4.4.2), IGF-1R KD did not affect 

any changes in basal or insulin-induced ERK/MAPK signaling (data not shown). 

In H226 cells, IGF-1R KD markedly reduced basal and insulin-stimulated ERK/MAPK 

signaling. Effects of IR KD were less pronounced but still visible (Fig. 30B). 

IR KD revealed a specific feature in H460 cells; opposed to H292 and H226 cells, 

phosphorylation of ERK1/2 was upregulated in LV-sh-IRa cells. The same phenomenon was 

found after KD of IGF-1R (Fig. 30C). 
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(A)  ERK/MAPK Signaling in LV-sh-IRa- and LV-sh-IRb-  

 Transduced H292 Cells 
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(B)  ERK/MAPK Signaling in LV-sh-IRa and LV-sh-IGF-1R 

 Transduced H226 Cells 

 

     

 

(C)  ERK/MAPK Signaling in LV-sh-IRa- and LV-sh-IGF-1R-  

 Transduced H460 Cells 
 

 

Figure 30: ERK/MAPK Signaling in H292, H226 and H460 KD Cells. 

Protein extraction was conducted at d 4 after transduction. Representative Western blot experiments 

show expression of phospho p44/42 (upper panels) and total ERK (lower panels) in IR KD cells 

compared to LV-sh controls in the three NSCLC cell lines. Densitometric analysis of ERK/MAPK 

phosphorylation levels in H292 cells is presented in (A). An additional Western blot experiment of 

IGF-1R KD cells is shown in H226 (B) and H460 cells (C). Lentiviral transduction was performed as 

described before. Western blotting was carried out with antibodies used previously (see Fig. 15). The 

exposure time was 1 min and 1 sec for phospho p44/42 and total ERK antibody detection, respectively. 

The bar graphs show means + SEM of N= 4 (H292 cells) or N= 2 (H226 and H460 cells) experiments. 

Significance of differences: ***p < 0.001 



Results 

109 

 

4.5 Microarray-Based Gene Expression Profiling of Insulin Receptor 

Knockdown Cells 

4.5.1 Altered Gene Expression in IR KD Cells 

It became evident, that downregulation of the IR has several effects of its own which differed 

between the investigated NSCLC cell lines. In order to obtain an overview of gene expression 

alterations evoked by the almost complete loss of IR, genome-wide gene profiling was 

performed. Hereby, marked changes in the group of cytokines became evident. Figure 31B 

contrasts all cytokines which were strongly induced by the IR KD. Changes of gene 

expression in IR KD cells compared to LV-sh control samples are presented as fold-change 

values (see Methods 2.7). With respect to apoptosis-involved cytokines, IL24 was 

upregulated most strongly, particularly by 78-, 5- and 160-fold in H292, H226 and H460 cells, 

respectively. TNF expression levels were elevated by 9-, 5-, 3-fold in H292, H226 and H460 

cells, respectively. Additionally, in H292 cells, IR KD caused a 10-fold upregulated IL20 gene 

expression. In the field of chemokines, members of the CXCL family, known to be involved 

in angiogenesis, were markedly upregulated in the three NSCLC cells (for details see Fig. 

31B). Beyond, elevated levels of several insulin- and IGF-family members, like insulin-

induced genes (INSIG-1-2), insulin-like factors (INSL-3-5) or IGF-like factors (IGFL-1-3) were 

also found in the three cell lines (Fig. 31B). The expression of IGFL-1 was upregulated 14-fold 

in H292 IR KD cells. However, the IGFL-1 receptor (IGFL-1R) was downregulated in the 

NSCLC cell lines tested, by 0.4-fold in H292 and H226 cells and by 0.2-fold in H460 cells. An 

appreciable 2-fold increase in IGF-2 and IGF-2R gene expression was detected in H460 cells.  
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(A)  Upregulated Expression of Apoptosis-Involved Cytokines  

 in Insulin Receptor Knockdown Cells  

 

 

   H292   H226   H460 
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(B)  Overview of Most Strongly Altered Genes in Insulin 

Receptor Knockdown Cells 

 

Genes 

Mean Fold 

Change 

± SEM 

Genes 

Mean Fold 

Change  

± SEM 

Genes 

Mean Fold 

Change  

± SEM 

Cell line H292 Cell line H226 Cell line H460 

1. Cytokines             

A: Interleukins             

Interleukin 10  

family 

IL20 10 ± 0,76 

    IL24 78,03 ± 4,53 IL24 5,10 ± 2,48 IL24 160,32 ± 10,6 

Interleukin 1  

family 

IL37  8,27 ± 0,5 IL1α 13,64 ± 6,42 IL18 6,60 ± 0,25 

IL36γ 6,99 ± 0,79 IL1β 4,21 ± 4,19 IL36β 3,16 ± 0,65 

IL1R2 12,87 ± 2,25 IL1RAP 13,03 ± 0,73 IL1RAP 6,42 ± 0,42 

B: Chemokines             

CXCL Family 

CXCL2 10,11 ± 0,55 CXCL2 7,19 ± 0,49 CXCL2 3,33 ± 0,49 

CXCL3 5,12 ± 0,32 CXCL3 42,16 ± 6,15 CXCL3 13,68 ± 3,2 

    CXCL5 5,71 ± 0,36 CXCL5 7,01 ± 0,21 

C: TNF TNF 9,4 ± 0,26 TNF 5,08 ± 0,86 TNF 3,19 ± 0,78 

2. Insulin Family 

IR 0,1 ± 0,004 IR 0,21 ± 0,01 IR 0,34 ± 0,02 

INSL-3 2,6 ± 0,08 INSL-3 2,26 ± 0,12 INSL-3 4,04 ± 0,35 

INSIG-1 3,2 ± 0,08 INSIG-1 2,35 ± 0,3 INSL5 8,49 ± 2,13 

INSIG-2 2,3 ± 0,04 INSIG-2 1,59 ± 0,09 INSIG-1 3,58 ± 0,34 

        INSIG-2 2,80 ± 0,17 

3. IGF-1 Family 

IGFL-1 14,1 ± 0,15 IGFLR1 0,43 ± 0,01 IGFLR1 0,21 ± 0,02 

IGFLR1 0,4 ± 0,006 IGFL3 6,22 ± 1,05 IGFL3 4,13 ± 0,9 

IGFL3 4,1 ± 0,29     IGFBP1 13,15 ± 0,99 

  

    IGFBP3 3,27 ± 0,17 

 

 

    IGF2 2,09 ± 0,13 

  

 

  

 

 

IGF2R 2,20 ± 0,03 
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Figure 31: Altered Gene Expression in H292, H226 and H460 IR KD Cells.  

Microarray-based gene expression analysis revealed genes which were most strongly up-, or 

downregulated in IR KD cells. The bar graph (A) presents changed expression levels of cytokines 

known to be involved in programmed cell death. Overview of most strongly altered genes in IR KD 

cells are presented in table (B) as functional clusters. For details, see Methods 2.7. Mean fold changes ± 

SEM are given compared to sh control levels (four samples of each cell line). 
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5 Induction of Apoptosis  

5.1 Effects of IL6, IL20, IL24 and TNF on Caspases Activity 

 

In order to further verify a possible correlation between IR KD and programmed cell death, 

NSCLC cells were treated with cytokines that were most strongly induced in the microarray 

chip and known to be associated to apoptosis: IL6, IL20, IL24 and TNFα (Fig. 31). 

After cytokine-exposure, caspase 3/7 assays were performed to examine activation levels of 

caspases indicating induction of apoptosis (Fig. 32). A significant activation of caspases was 

caused by TNF in all three cell lines (H292: 237 %, H226: 130 % and H460: 231 %). IL6 

activated caspases 3/7 significantly in H292 and H226 cells to 123 % and 114 %, respectively. 

The same tendency was found after IL24 exposure (H292: 127 %, H226: 116 %). Besides, in 

H292 cells, IL20 caused an increase in caspase activity to 140 %. 
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   H292       H226       H460 

 

 

     

 

Figure 32: Effects of Apoptosis-Inducing Cytokines on Caspase 3/7 Activity in H292, H226 and H460 Cells. 

Cells were exposed to 100 nM of the test compounds (IL6, IL20, IL24 or TNFα) for 48 h. Subsequently, Caspase-Glo® assay was measured. The bar graphs show 

means + SEM of N= 4 experiments. Significance of differences: ** p < 0.01, *** p < 0.001 vs. control 
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V Discussion 

As described in the introduction, there is a lack of clarity about insulin action and its 

signaling in tumor-promoting processes at present. Therefore, it is of clinical relevance to 

illuminate the role of insulin and the IR in malignant cells in more detail.  

Steadily increasing rates of T2DM patients and detected correlations between 

hyperinsulinemia and neoplasms underline the necessity of these concerns.  

 

In light of the recently approved inhaled insulin formulation Afrezza® in the United States of 

America, effects of insulin, particularly in comparison to IGF-1, have to be analyzed in cells 

derived from the respiratory system. Although there are warnings & precautions about the 

use of Afrezza® for patients with active lung cancer, there is no contraindication that clearly 

prohibits an inhaled insulin therapy for patients with malignancies and people with an 

increased risk for tumor development (MannKind Corporation, 2014).  

Presence of a few mutated cells (precancerous conditions) may occur in any organism. 

However, those cells are combated by the immune system under normal conditions. It 

remains unclear whether steadily increased insulin levels – as present in the lungs during a 

therapy with inhaled insulin – might favor the progression of mutated cells. This could lead 

to the manifestation of a carcinoma. 

In order to evaluate insulin action and involvement of the IR in mutated cells, the present 

study was conducted with malignant human lung cancer cells.  

NSCLC includes different epithelial cancer types that account for the vast majority of lung 

cancers (see Introduction 1.2.2) (American Cancer Society, 2015). To get a differentiated and 

more precise overview of the impacts of insulin and its receptor, three NSCLC cell lines, each 

representing a different subtype, were analyzed.     
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1 Effects of Insulin and IGF-1 in NSCLC Tumor Cell Promotion 

As typical for cancer cells, each NSCLC subtype revealed a cell-specific basic configuration 

including differences in their basal proliferation levels, activity of mitogenic signaling 

pathways and IR, IR splicing variants and IGF-1R expression levels.  

Notably, different IR-A/IR-B and IR/IGF-1R ratios were also found in H292, H226 and H460 

cells. Likewise, in literature it has been described that amounts of IR and IGF-1R do not 

correlate with each other in NSCLC cells (Kim et al., 2012).  

Based on these findings it could be expected that insulin and IGF-1 might have independent 

roles in malignancies and are implicated to a different extent in H292, H226 and H460 cell 

tumor promotion. 

 

1.1 Concentrations of Insulin in the Lungs after Inhaled Administration 

The observed effects in the presented experiments were achieved by insulin concentrations 

in the nanomolar range. These concentrations are also locally present in the lungs after 

inhaling insulin. For the currently approved Afrezza® the single-dose of insulin ranges from 

4 units (~ 0.35 mg/ 60 nM insulin) to 24 units (~ 2.10 mg/ 360 nM insulin) (FDA, 2014). 39 % of 

inhaled insulin reach the epithelial lining fluid of the lower respiratory tract (product 

information Afrezza: http://www.accessdata.fda.gov/drugsatfda_docs/label/2014/022472lbl. 

pdf) which displays a volume between 20-40 ml (Rennard et al., 1986). Consequently, local 

insulin peak concentrations are in a range between 585 nM and 7 µM.  

Insulin is inhaled several times per day and its degradation proceeds slowly due to low 

amounts of insulin-degradating enzymes (IDE) in the lungs (Kuo et al., 1993). Therefore, 

constantly increased insulin concentrations remain in the lower respiratory system. It follows 

that an experimental setting with nanomolar insulin concentrations imitates a therapeutic 

situation in human bronchial epithelial cells. 
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1.2 Tumor Cell Proliferation 

1.2.1 Insulin Supports Proliferation Particularly in Slow-Proliferating Cell Lines 

Famous hallmarks of tumorigenesis are accumulation of various mutations in genes that 

control cell proliferation and autocrine secretion of growth hormones. As a result, cancer 

cells divide more rapidly and become less dependent on external growth stimuli (see 

Introduction 1.2.1). 

 

Cell line H292 belongs to the NSCLC subtype mucoepidermoid carcinoma (MEC). MEC is a 

heterogeneous group of malignant tumors that can be divided into low, high and 

intermediate grade neoplasms in correspondence to the respective biological potential 

(Goode et al., 1998) ranging from slow-proliferating to highly aggressive and metastatic 

(Nance et al., 2008). [3H]-thymidine incorporation assays indicated that H292 cells reveal the 

slowest basal proliferation rate within the three cell lines tested. However, in line with 

previous studies (Mayer et al., 2012), insulin markedly induced the cell proliferation rate. 

Exposed to even low nanomolar concentrations of either insulin or IGF-1 (1 nM onwards), 

H292 cells responded with enhanced [3H]-thymidine incorporation rates. Thus, regarding 

their proliferative features, H292 cells appear to exhibit a low malignant tumor behavior 

marked by dependence on external growth stimuli.  

The NSCLC subtype squamous cell carcinoma (SCC) is mostly associated with smoking and it 

displays a high malignant behavior (Hirano et al., 1994) due to its potential to spread even in 

an early stage (Steward & Kleihues, 2003). However, manifestation of an apparent tumor 

takes about three to four years. This indicates that SCC tend to grow more slowly compared 

to other tumor types (Steward & Kleihues, 2003). In the SCC cell line H226, the [3H]-

thymidine incorporation rate under basal conditions was 2.5-fold higher than in H292 cells. 

Accordingly, in H226 cells, ERK1/2 and Akt were active even under starving conditions 

which was not the case in H292 cells. External supplied IGF-1 did not further stimulate cell 

proliferation. This reveals an IGF-1-independent cell proliferation behavior in H226 cells. 

However, insulin in higher nanomolar concentrations (100 nM onwards) led to significantly 

increased rates of [3H]-thymidine incorporation.  
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H460 cells belong to large cell lung carcinoma (LCLC). It is well studied that LCLC tend to 

grow rapidly and reveal an aggressive malignant tumor cell behavior (Eldridge, 2015). 

Results from [3H]-thymidine incorporation analysis showed that H460 cells had the highest 

basal proliferation level within the cell lines studied, i.e. ~ 10-fold and ~ 5-fold higher than 

H292 and H226 cells, respectively. In accordance, ERK1/2 and Akt were basal 

phosphorylated in H460 cells. The external growth stimulus insulin did not influence [3H]-

thymidine incorporation rates. Despite its fast autonomous cell growth, IGF-1 in 

concentrations from 3 nM onwards continued to increased the [3H]-thymidine incorporation 

rate. 

 

In summary, each cell line revealed biological behavior patterns that fit to commonly 

described characteristics of tumor cells (Hanahan et al., 2000). It became evident that H292, 

H226 and H460 cells exhibit a characteristic basal proliferation rate whose intensity 

corresponds to presence or absence of basal Akt activity. Moreover, a coherency between 

autonomous cell growth and magnitude of dependence on external applied IGF-1 and 

insulin could be observed.  

Although human insulin has not been in the focus of cancer research yet, it should not be 

underestimated regarding its mitogenic potential in NSCLC cells. [3H]-thymidine 

incorporation assays clearly evidenced that the anabolic hormone empowers the 

proliferation rate in two of the three NSCLC cell lines, namely the comparably slow- 

proliferating H292 and H226 cells. Albeit IGF-1 is commonly described to possess a greater 

mitogenic activity than insulin (Siddle et al., 2001), particularly in H226 cells, insulin but not 

IGF-1 had strong effects on the cell proliferation rate. 

Now that inhaled insulin is available, it appears to be relevant to further study impacts of 

insulin on proliferation in normal HBE cells, pre-malignant HBE cells and other lung cancer 

cells. Previous studies already reported that micromolar insulin concentrations enhanced 

proliferation of normal HBE cells (Mayer et al., 2012), smooth muscle cells and fibroblasts 

(Warnken et al., 2010). 

Against the background of steadily increasing rates of T2DM patients, it also becomes 

necessary to analyze insulin action in cells of other tissues. For instance, it has already been 
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shown that insulin increases cell proliferation significantly in MCF-7 breast cancer cells 

(Chappell et al., 2001).  

Further studies have to be conducted in order to expand knowledge about insulin and to 

draw general conclusions on insulin as mitogenic hormone.  

1.2.2 Insulin- and IGF-1-Induced Cell Proliferation Correlates to Receptor Expression 

It was to clarify whether insulin and IGF-1 receptor expression levels influence insulin- and 

IGF-1-mediated proliferative effects and thus serve as markers in cancer cell characterization. 

Within the cell lines tested, H292 expressed both receptors most strongly and in accordance, 

cell proliferation was enhanced most significantly by insulin and IGF-1.  

In H226 cells, IR was expressed to a slightly smaller extent than in H292 cells although its 

expression was still clearly detectable. [3H]-thymidine incorporation was also induced 

significantly by insulin whereas the effect size was reduced compared to H292 cells. 

Concomitant with low IGF-1R expression levels, even higher concentrations (10 nM) of IGF-1 

failed to increase [3H]-thymidine incorporation in H226 cells.  

IR were expressed to a very low amount in H460 cells, markedly below H292 and H226 

expression levels. Probably as a consequence thereof, even supraphysiological insulin 

concentrations (1 µM) did not lead to any influences on [3H]-thymidine incorporation. In 

accordance, strong IGF-1R expression was paralleled by IGF-1-induced cell proliferation in 

H460 cells.  

These findings clearly reveal dependence of effective insulin-/IGF-1-induced cell 

proliferation on IR/IGF-1R expression levels in NSCLC cells. Similar correlations were 

observed in other tissues, such as in MCF-7 breast cancer cells (Milazzo et al., 1992). In this 

cell line, insulin markedly increased cell proliferation (see chapter 1.2.1) and the IR 

expression level was 6-fold higher than in its non-malignant counterparts. 

 

In order to specify the above-mentioned hypothesis, analysis of possible correlations 

between expression of IR splicing isoforms and the magnitude of insulin-/IGF-1-triggered 

proliferation was analyzed. 

Being predominantly expressed in tumor tissues, IR-A is widely known to mediate mitogenic 

insulin effects. This has concretely been proved for breast and prostate cancer cells (Singh et 
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al., 2014). In contrast, IR-B is described to trigger metabolic insulin effects. Its expression is 

predominant in (non-malignant) insulin-responsive tissues, mostly liver, adipose tissue and 

skeletal muscles (Singh et al., 2014). Consequently, it was to be expected that cell 

proliferation of IR-A-expressing NSCLC cell lines is more sensitive towards insulin 

stimulation. Interestingly, proliferation of the two IR-A-expressing cell lines H292 and H460 

appeared to be strongly influenced by IGF-1. As the IR binds IGF-1 with a 50- to 100-fold 

lower affinity than insulin (0.1 nM) (Varewijck & Janssen, 2012), it has to be investigated 

whether IGF-1 could even influence cell proliferation via IR-A-binding.  In H226 cells, IR-B 

was the predominant IR splicing isoform, whereas IR-A was hardly detectable. Notably, 

insulin clearly increased the [3H]-thymidine incorporation rate in H226 cells.  

From these findings two hypothesis can be proposed. First, it could be assumed that insulin 

might also trigger mitogenic effects via IR-B signaling in absence of IR-A. This would 

contradict the general characterization of mitogenic IR-A and metabolic IR-B action. 

Second, there is evidence that cancer cells probably also trigger mitogenic IGF-1 effects via IR-

A activation. Since the binding affinity of IGF-1 to homodimeric IR is comparably low (see 

above), binding to heterodimeric IR/IGF-1R could be the underlying mechanism. This 

hypothesis is supported by Belfiore et al. (2009). It is stated that IR-A overexpression is 

accompanied by an increased formation of IR-A/IGF-1R HR (HR-A) which leads to increased 

IGF-1-binding sites. In addition, HR-A were shown to bind IGF-1 with an equal affinity like 

IGF-1R (0.1 nM) (Pandini et al., 2002).  

Indeed, cell lines H292 and H460 expressed IR-A and HR to a proper amount. It can 

therefore be hypothized that in both cell lines, increased [3H]-thymidine incorporation rates 

after IGF-1 exposure might be caused by HR-A activation.  

 

1.3 The Role of Insulin in Mitogenic Signaling 

The first step of insulin-triggered signaling constitutes autophosphorylation of the IR upon 

ligand-binding leading to an activation of downstream effector pathways.  

Since insulin in higher nanomolar concentrations also binds IGF-1R (KD ~ 200 nM) (Kurtzhals 

et al., 2000), it appeared necessary to analyze to which extent total IR and IGF-1R activation is 

triggered by insulin.  
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Insulin led to a concentration-dependent phosphorylation of IR/IGF-1R in H292, H226 and 

H460 cells although with differences in the activation potency. Even 10 nM caused a 

significant receptor autophosphorylation in H292 and H226 cells. In this concentration 

insulin mainly binds IR indicating that the observed protein signal derived from IR 

activation. IR activation by low insulin concentrations is supported by presence of high IR 

levels in H292 and H226 cells. 

Clear visible receptor autophosphorylation by 100 nM insulin was observed in the three cell 

lines tested and can be attributed to IR and IGF-1R activation (see above) (Kurtzhals et al., 

2000). Analysis of pIR/pIGF-1R levels in IR KD cells underline an activation of IGF-1R by 

insulin. Besides, as H460 cells only weakly express IR, it appears plausible that the phospho-

signal caused by 100 nM insulin mainly derived from IGF-1R activation.   

In contrast to H226 and H460 cells, H292 exhibited basal phosphorylated IR/IGF-1R. While 

there was no correlation between basic receptor expression and receptor phosphorylation 

levels as described in literature (Kim et al., 2012), negative correlations between pIR/pIGF-1R 

and the downstream effector Akt could be observed. This phenomenon has also been 

described previously (Chandarlapaty et al., 2011). Consistent with this reported coordinated 

feedback, in H292 cells, basal presence of pIR/pIGF-1R was accompanied by absence of basal 

Akt phosphorylation. In H226 and H460 cells, the opposite basal phosphorylation levels 

could be detected. These findings fit to the phenomenon of constitutive feedback inhibition 

of upstream signaling pathways by Akt and display a possible mechanistic feature of NSCLC 

cells in order to steer mitogenic signaling.   

 

Western blot analysis indicated that Akt was phosphorylated in a precise concentration-

dependent manner in the cell lines tested by 1 nM- 100 nM insulin. Notably, 100 nM insulin 

led to a comparable Akt phosphorylation like 10 nM IGF-1. This indicates that a 

concentration of insulin which could be achieved in the lungs after inhalation induces 

mitogenic Akt signaling with the same potency as supraphysiological levels of IGF-1. 

Interestingly, in H292 and H460 cells, even 100 pM insulin caused Akt phosphorylation, 

whereas 100 pM insulin did not lead to IR phosphorylation. It is known that cancer cells 

exploit mitogenic signaling transduction more efficiently than non-malignant cells; for 

instance, enhanced expression levels of downstream docking proteins can trigger an 
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amplification of following signaling pathways. In this context, increased levels of IRS could 

play a crucial role in Akt signaling amplification - as already observed in MCF-7 breast 

cancer cells (Surmacz, 1995).  

 

Taken these findings together, the Akt signaling pathway turned out to be highly sensitive 

towards insulin stimulation in H292, H226 and H460 cells. As Akt triggers numerous cancer-

supporting processes, these results further underline that insulin represents a potential 

harmful mediator in cancer cells. 

 

All cells exhibited presence of basal phosphorylated ERK1/2 proteins which demonstrates a 

certain independence of MAPK activation from external stimuli (Hanahan et al., 2000). In 

fact, in the NSCLC cell lines studied, physiological concentrations of insulin and IGF-1 - that 

certainly activate the cognate RTK - failed to increase MAPK phosphorylation. 

In cell line H460, even higher nanomolar concentrations of insulin and IGF-1 did not 

(further) phosphorylate ERK1/2 proteins. In H226 cells, 100 nM insulin had no influence on 

MAPK activation, whereas 10 nM IGF-1 increased phospho p44/42 proteins.  

Consequently, insulin and IGF-1 appear to play a minor role in mitogenic MAPK signaling in 

H226 and H460 cells. These findings are in good agreement with previous studies in MCF-7 

cells (Dufourny et al., 1997). Vice versa, Dufourny et al. reported that activation of MAPK 

signaling is not required for insulin and IGF-1 action on growth promotion. This also fits to 

observations in H226 and H460 cells. No coherencies between insulin and IGF-1 effects on 

MAPK phosphorylation and on [3H]-thymidine incorporation could be detected. Contrary to 

IGF-1, insulin increased [3H]-thymidine incorporation but failed to enhance MAPK 

phosphorylation in H226 cells. Vice versa, in H460 cells, only IGF-1 increased the [3H]-

thymidine incorporation rate. However, IGF-1 failed to enhance MAPK phosphorylation. 

In accordance to the common scientific consensus, MAPK is considered to be one main 

downstream effector of the IR and the IGF-1R. Therefore, insulin and IGF-1 are widely 

known to induce phosphorylation of mitogenic ERK1/2 signaling (Siddle et al., 2001). 

However, this contradicts the results from MCF-7, H226 and H460 cells. An insulin- and IGF-

1-induced MAPK activation was only detected in cell line H292. Accordingly, in H292 cells, 

insulin and IGF-1 induced the [3H]-thymidine incorporation rate clearly.  
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Those conflicting data of the roles of insulin and IGF-1 in MAPK signaling are most likely 

caused by the complexity of insulin and IGF-1 signaling in malignant cells (Taniguchi et al., 

2006) and by an uncoupling of mitogenic downstream effectors from upstream regulation. It 

follows that MAPK activation in cancer cells is a cell-specific matter which can hardly be 

generalized.  

1.4 Insulin and IGF-1 Action Placed in a Broader Context of Tumor 

Promotion in NSCLC Cells 

IGF-1 and insulin only represent two out of numerous growth stimuli. Currently, epidermal 

growth factors (EGF) (Hendler & O., 2001), fibroblast growth factors (FGF) (Marek et al., 

2009), cyclooxygenases (COX) (Krysan et al., 2005; Sharma et al., 2010) and lysine specific 

demethylase 1 (LSD-1) (Lv et al., 2012) are counted among the most prominent peptides that 

empower tumor progression next to IGF-1 in NSCLC cells. However, entire knowledge 

about their signal transduction including feedback mechanisms is still largely uncovered. 

Hence, cancer cells make use of a complex molecular machinery which has to be further 

investigated. 

From this point of view, it is obvious that measurement of proliferation and detection of Akt 

and ERK signaling do not reflect the whole complex interaction of cancer-promotive 

processes in tumor cells. However, important insights into insulin action could be obtained 

in this study which contributes to a better understanding of its role in different NSCLC cell 

lines. Contrary as assumed in literature, findings have shown that insulin - even in 

physiological concentrations - revealed precise mitogenic features in two cell lines tested 

(H292 and H226 cells). Besides, due to its large impact on Akt phosphorylation in the three 

cell lines, insulin might also trigger cancer-supporting features in (apparently) high 

autonomous malignant cells. 
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2 Effects of TGF-β in NSCLC Tumor Cell Promotion 

The transforming growth factor facilitates angiogenesis and metastasis due to initiation of 

cell remodelling processes (see Introduction 3.1.1.). 

However, effects on tumor promotion in general, including cancer cell proliferation and its 

interaction with other growth factors are controversially discussed in literature and have 

therefore been researched in more detail in NSCLC cells in this study. 

 

2.1 TGF- β and Insulin Reveal Opposite Impacts on Proliferation 

[3H]-thymidine incorporation assays revealed that TGF-β appears as opponent of insulin in 

cell proliferation in H292 and H226 cells.  

As described above (see chapter 1.2.1), 100 nM insulin significantly increased [3H]-thymidine 

incorporation rates in H292 and H226 cells. Exposed to 1 ng/ml TGF-β, a concentration in the 

physiological range (Wakefield et al., 1995), cell proliferation was decreased significantly 

below control levels in these cells. 

This effect was also described in a previous study with H292 cells that was conducted with 

10-fold higher concentrations of TGF-β (10 ng/ml) and insulin (1 µM) (Mayer et al., 2012). 

Notably, the present study indicates that proliferation-inhibiting effects of 1 ng/ml TGF-β did 

not markedly differ from effects of 10 ng/ml as shown by Mayer et al.  

Being exposed to TGF-β and insulin simultaneously, insulin weakened TGF-β impacts on 

[3H]-thymidine incorporation rates; an elevation to approx. control levels was found in H292 

and H226 cells. Thus, anti-proliferative TGF-β action was cancelled by insulin. This apparent 

functional antagonism could indicate that insulin and TGF-β share a downstream target 

which is not described in literature yet.  
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2.2 Basal CDH2 and ET-1 Expression Levels Do Not Correlate in the 

NSCLC Cells Tested 

ET-1 and CDH2 are two prominent EMT-supporting peptides (Rosanò et al., 2005). 

Particularly, ET-1 is known to promote the growth of epithelial cancer cells by facilitating 

angiogenesis and cell proliferation (Grant et al., 2003). CDH2 displays comparable features; 

CDH2-expressing NSCLC are associated with an aggressive tumor behavior accompanied by 

poor prognosis for patients (Hui et al., 2013).  

Initially, analysis of basic CDH2 and ET-1 profiles was required to study effects of TGF-β on 

their expression rates (see chapter 2.3). H292, H226 and H460 cells turned out to be ET-1- and 

CDH2-expressing cells. These characteristics are not specific for the average of epithelial 

cancer cells (Nakashima et al., 2003; Nieman et al., 1999). In consequence, all cell lines 

studied rather display aggressive tumor behaviors, viz. likely to spread into other tissues.  

Constitutive mRNA expression levels of both peptides varied significantly within H292, 

H226 and H460 cells. H226 cells expressed CDH2 most strongly within the cell lines. In 

contrast, ET-1 was only rarely expressed. Since previous studies demonstrated a correlation 

between CDH2 expression and invasion and motility (Nieman et al., 1999), cell line H226 fits 

well in the group of SCC cells, commonly described to be highly invasive (Steward & 

Kleihues, 2003).  

The cancer type LCLC is associated with an intensely malignant behavior including a rapid 

onset of metastasis (see chapter 1.2.1). Although H460 cells showed the lowest CDH2 mRNA 

levels, ET-1 mRNA was most strongly expressed. Thus, CDH2 appears to play a minor role, 

whereas other EMT-facilitators, i.e. ET-1, could steer morphological remodelling processes.   

H292 cells revealed marked presence of both, CDH2 and ET-1 mRNA, albeit their expression 

rates were below the respective highest CDH2-, or ET-1-expressing cell line. A rather 

metastatic behavior due to basal expression of EMT markers can thus be assumed for the 

MEC cell line H292.  

 

In ovarian cancers, it has been observed that ET-1 upregulates CDH2 expression (Rosanò et 

al., 2006). This demonstrates a correlation between both EMT markers. Such correlations 
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could not be detected in the NSCLC cell lines; ET-1 and CDH2 levels appeared to be 

independent from each other.  

Those conflicting observations between ovarian and lung cancer cells in general and NSCLC 

cell lines in particular underline that each tumor displays an individual cell architecture. 

Since EMT is triggered by numerous peptides, it seems difficult to draw comprehensive 

conclusions on EMT based on CDH2 and ET-1 expression exclusively.  

However, the presented results give evidence of the general ability of NSCLC cells to undergo 

invasion and metastasis. This underlines their malignant characteristics. 

 

2.3 TGF-β Induces CDH2 and ET-1 Expression to a Varying Extent in 

H292, H226 and H460 cells 

In H292 and H226 cells, TGF-β significantly increased ET-1 and CDH2 expression levels. In 

H460 cells, TGF-β only induced CDH2 expression, whereas ET-1 expression remained 

uneffected. This might indicate that the canonical EMT pathway via TGF-β-triggered smad 

signaling transduction plays a minor role in H460 cells, while H292 and H226 cells are 

strongly influenced by TGF-β.  

Next to TGF-β, IGF-2 has turned out to be crucial for EMT induction (Kalluri & Neilson, 

2003; Larue & Bellacosa, 2005). Since H460 cells were more sensitive towards IGF-1R than IR 

activation (see chapter 1.2), an EMT induction via IGF-2-mediated IGF-1R pathway could be 

plausible. Accordingly, microarray data revealed a 40 % increased basal IGF-2R mRNA level 

of H460 cells compared to H292 and H226 cells. Although direct implications of IGF-2R in 

EMT have not been analyzed yet, this detail might further explain involvement of the IGF-2 

network in EMT. 

 

2.4 Controversial Roles of IGF-1 and Insulin in CDH2 and ET-1 

Expression 

Remarkably, as observed in [3H]-thymidine incorporation studies, insulin had the opposite 

effect of TGF-β on ET-1 and CDH2 expression in H292 cells. Although insulin failed to 
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influence ET-1 and CDH2 mRNA levels in a significant way, it markedly reduced TGF-β 

effects. IGF-1 exhibited the same behavior pattern. This underlines that insulin and IGF-1 act 

in a similar manner in H292 cells as already observed in [3H]-thymidine incorporation 

analysis. 

A diminishing effect of insulin (1- 5 µM) on TGF-β (10 ng/ml)-induced CDH2 mRNA 

expression was also described in H292 cells before. Moreover, similar findings of a further 

EMT marker, namely fibronectin 1 (FN1), were found (Mayer et al., 2012).  

A functional antagonism between TGF-β and insulin has thus been shown in proliferation 

and in effects on EMT marker expression in cell line H292. Apart from these findings, it has 

to be studied which clinical relevance arises from this finding. It further remains unclear 

whether the functional antagonism can be detected in other MEC cells. Performance of an 

extended research, e.g. by analyzing other EMT markers and cell lines, could illuminate 

whether insulin is commonly capable of antagonizing TGF-β effects in MEC cells. In contrast 

to H292 findings, synergistic effects between insulin/IGF-1 and TGF-β on ET-1 mRNA 

expression were detected in H460 cells. Exclusively in the combinations, the expression rate 

was significantly increased. TGF-β failed to increase and insulin/IGF-1 only slightly 

increased ET-1 mRNA levels. Synergistic interactions between IGF-1 and TGF-β regarding 

EMT induction were also described in MCF-7 breast cancer cells (Walsh & Damjanovski, 

2011). 

However, common principles of ET-1 and CDH2 mRNA regulation by insulin, IGF-1 and 

TGF-β in H226 and H460 cells could not be detected. In accordance, no consistent data can be 

found in literature; previous studies confirm that different cell lines reveal various 

mechanisms in steering EMT. These include action of TGF-β, IGF-1, ERK and Akt signaling 

transduction (Xie et al., 2004).  
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3 Lipofection Does not Serve as Appropriate Method for Insulin 

Receptor Knockdown Experiments 

Transduction of siRNAs was performed as lipofection with the cationic liposome 

formulation Lipofectamine®. This method allowed a successful KD of IR and IGF-1R. 

However, an impaired action of insulin and IGF-1 on [3H]-thymidine incorporation became 

evident subsequent to treatment with Lipofectamine®; no increase in proliferation followed 

after insulin and IGF-1 exposure. 

An apparent non-responsiveness towards insulin stimulation in Lipofectamine®-treated cells 

was also described in another study (Pramfalk et al., 2004) which furthermore provided 

reasons for this observed phenomenon. Pramfalk et al. reported an interaction between the 

cationic lipid reagent and the IR; after activating the kinase activity, Lipofectamine® led to a 

downregulation of the receptor. In consequence, insulin had significantly reduced effects on 

glucose-uptake in Lipofectamine®-treated adipocytes and no effects at all in Lipofectamine®-

treated rat myotubes and neuroblastoma cells compared to controls. These findings are in 

good agreement with [3H]-thymidine incorporation assays in H292 cells presented in this 

study (see above). It therefore can be suggested that the interaction established by Pramfalk 

et al. also led to a failed insulin stimulation in Lipofectamine®-treated H292 cells. 

Also IGF-1 had no influence on the [3H]-thymidine incorporation rate in Lipofectamine®-

treated H292 cells. Since the IGF-1R reveals a large homology to the IR, the same mechanism 

of Lipofectamine®-triggered activation and subsequent receptor downregulation can be 

assumed. 

In consequence, lipofection did not represent a suitable method for IR and IGF-1R KD 

experiments. Alternatively, receptor KD with lentiviral shRNA was established in NSCLC 

H292, H226 and H460 cells. By this stable transfection, IR and IGF-1R were downregulated 

successfully. As opposed to lipofection, no conspicuities and disturbing factors could be 

observed in following KD experiments.  
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4 The Role of the Insulin Receptor and the IGF-1 Receptor in 

NSCLC Tumor Cell Promotion 

4.1 Loss of Insulin Receptors Causes Apoptosis in NSCLC Cell Lines 

4.1.1 NSCLC Cells Die upon Insulin Receptor Knockdown 

Reduced IR expression levels strongly affected survival of the three cell lines. The observed 

time-dependent cell death was found after IR KD exclusively, while IGF-1R KD only caused 

stagnation of proliferation. These findings could indicate that reduced IR expression levels 

impair the cellular metabolism leading to necrosis or to initiation of programmed cell death. 

Importantly, the latter would represent a new finding for NSCLC cells and could have an 

important impact on illumination of the role of IR in cancer cell survival.  

 

4.1.2 Increased Caspase Activity after Insulin Receptor Knockdown  

Luminescence-based caspase 3/7 assay was performed to proof whether there is a coherency 

between IR signaling and apoptosis. Notably, IR KD significantly upregulated caspases 

activity resulting in apoptosis in all cell lines tested. 

Numerous studies report an involvement of the IGF-1R in apoptosis prevention, e.g. in 

melanoma, glioblastoma, multiple myeloma and colon cancer cell lines (Jernberg-Wiklund & 

Nilsson, 2007; Resnicoff et al., 1995). Hence, it has generally been suggested that the IGF-1R 

respresents a central protector of programmed cell death after activation by IGF-1 or IGF-2 

(Yu & Rohan, 2000). This was also observed in NSCLC cell lines (Hurbin et al., 2002). In 

contrast, the IR is not commonly described to be capable of mediating anti-apoptotic effects. 

Only in mouse fibroblasts lacking functional IGF-1R, it has been detected that reduced IR 

expression levels led to apoptosis (Prisco et al., 1999). However, clear anti-apoptotic 

mechanisms of IR signaling or vice versa, apoptosis-inducing mechanisms caused by absence 

of IR remain unclear. 

In search of general mechanisms that lead to evasion of apoptosis in cancer cells, different 

signaling downstream targets have been analyzed in numerous studies. Notably, the 
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docking protein IRS-1 turned out to be a key mediator in anti-apoptotic signal transduction 

(Peruzzi et al., 1999). Frequently increased expression levels of IRS-1 are found in many 

cancer cells. IRS-1 is considered to amplificate IGF-1R signaling resulting in an enhanced 

apoptosis prevention (Prisco et al., 1999; Reuveni et al., 2013). Remarkably, it is not reported 

that IRS-1 also triggers apoptosis prevention upon upstream IR phosphorylation. This 

however would be a concern of interest due to the findings of this study.  

Besides, a functional antagonism between IRS-1 and TGF-β on programmed cell death has 

been reported for human hepatocellular carcinoma cells (HCC) (Tanaka & Wands, 1996). 

Tanaka and Wands observed that TGF-β-induced apoptosis was annulled by either insulin 

or IGF-1. These HCC findings point out that interactions of TGF-β and insulin occur on 

various levels (see chapter 2.1) and give evidence of an involvement of IR signaling in cell 

survival. 

Next to IRS-1 phosphorylation, the Akt signaling cascade has been proved to be a main 

pathway for IGF-1R-triggered apoptosis prevention (Fernandez, 2004). In contrast, MAPK 

failed to mediate anti-apoptotic effects (Kulik et al., 1997). Since IR signaling had no apparent 

impact on the p44/42 phosphorylation in H226 and H460 cells, the MAPK pathway can also 

be excluded as mechanistic link between IR KD and caspase activation in NSCLC cells. As 

shown before (see chapter 1.3), Akt signaling highly depended on insulin exposure and 

consequently could also play a role in programmed cell death in the NSCLC cell lines. KD 

data of H460 cells revealed similar (reduced) phosphorylation levels of Akt in IR KD cells and 

IGF-1R KD cells (see chapter 4.5.2). Consequently, a decreased Akt signaling most likely leads 

to a decreased cell proliferation which results in a reduced cell number compared to controls. 

But however, general impacts on caspase activation which was only found in IR KD cells 

cannot be confirmed. 

 

Taken together, there were no apparent hints in literature and Akt/ MAPK pathway analysis 

of this study explaining the essential role of the IR in cell survival.  
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4.1.3 Enhanced Expression of Apoptosis-Inducing Cytokines as possible Mechanistic 

Link between Insulin Receptor Knockdown and Apoptosis 

In order to find a possible link between IR KD and caspase activation in NSCLC cells, 

genome-wide gene profiling was performed in IR KD cells and LV-sh control cells. 

Remarkably, in all cell lines tested, the most strongly upregulated gene cluster comprised the 

group of cytokines. Further analysis revealed that those elevated cytokines have apoptosis-

inducing features. 

TNFα was one of the most strongly induced cytokines in all NSCLC cells tested. The latter is 

commonly known to be among the most potent cell death-inducing cytokines (Chen & 

Goeddel, 2002; Rath & Aggarwal, 1999) and its pro-apoptotic pathways are interesting 

targets for cancer therapy (Ghobrial et al., 2005).  

Indeed, luminescence-based caspase 3/7 assay performed in TNFα-treated cells underlined 

that this cytokine significantly induced caspase activity in H292, H226 and H460 cells.  

In literature, TNFα is described to interfere with the IR; acting as functional antagonist, it 

blocks insulin action (Hotamisligil et al., 1994). Others report that TNFα promotes inhibitory 

serine/threonin phosphorylation of IRS-1 and IRS-2 which impedes association between the 

docking proteins to IR and IGF-1R. This results in IR and IGF-1R signaling disruption (Rui et 

al., 2001). Thus, IRS-1-mediated anti-apoptotic signal transduction can be suppressed by 

TNFα. As IR and TNFα appear to have counteracting functions, it becomes possible that the 

IR suppresses TNFα expression which can be concluded from microarray data. In 

accordance to this hypothesis, basic IR expression levels (see chapter 1.2.2) were proportional 

to the extent of increased TNFα expression levels after IR KD within the cell lines. Since there 

are no hints in literature, it should be of interest to detect the underlying mechansims to 

proof this phenomenon. 

Notably, IL24 was the most strongly induced gene in H292 and H460 IR KD cells and it was 

also markedly induced in H226 IR KD cells. The complex functions of IL24 are not well 

known yet, albeit precise anti-tumoral features, e.g. induction of apoptosis, have been 

identified as its key characteristics (Dash et al., 2014).  

In H292 and H226 cells, IL24 significantly activated caspase activity which confirms its pro-

apoptotic features. Thus, induced gene expression of caspases-activating cytokines after IR 



Discussion 

132 

 

KD - as proved for TNFα and IL24 in this study - is most probably the underlying 

mechanism for programmed cell death.  

Only in H292 cells, IL20, a further apoptosis-inducing interleukin (Donnelly et al., 2004), 

significantly increased caspase activity. In accordance, IL20 was strongly upregulated in 

H292 IR KD cells.   

The role of IL6 in apoptosis is controversially discussed in literature. Although pro-apoptotic 

features are reported in lung fibroblasts (Moodley et al., 2003), the general characteristics of 

IL6 are considered to be anti-apoptotic and thus pro-tumorigenetic (Grivennikov & Karin, 

2008; Hirano et al., 2000). Since IL6 gene expression was enhanced in H292 IR KD cells, it was 

aimed to illuminate its role in H292 cells compared to H226 and H460 cells. Notably, in all 

cell lines it was observed that IL6 increased caspase activity.  

Next to cytokine expression, IGFL-1 was upregulated significantly in H292 cells. According 

to the current state of knowledge, particularly in cancer cells, IGFL-1 functions are poorly 

understood yet. However, the protein generally has been observed to be involved in the 

pathogenesis of psoriasis which rather characterizes inflammatory features (Guo et al., 2014). 

Interestingly, IGFL-1 expression is known to be enhanced by TNFα (Lobito et al., 2011). This 

control by TNFα might indicate that IGFL-1 could also have pro-apoptotic features. 

Especially in H292 IR KD cells, distinctly elevated TNFα levels possibly caused induction of 

IGFL-1 expression. This in turn might represent a further mechanism leading to apoptosis. 

 

Summarized, it appears plausible that upregulation of various caspase-inducing mediators 

serve as mechanistic link between IR KD and initiation of apoptosis. Vice versa, it is 

assumable that the IR actively prevents NSCLC cells from apoptosis by suppressing the 

expression of cytokines that steer programmed cell death.  

Many genes with largely unknown or controversial functions, like IGFL-1, IL24 or IL6, have 

been found to be upregulated in IR KD cells. It remains indispensable to analyze their roles 

in cancer cells and their coherencies with the IR in more detail to define novel mediators in 

cancer involvement. 

Especially in light of discovering new approaches in cancer therapy, the IR as potential 

inhibitor of the prominent cell death-inducer TNFα could be an interesting target for further 

research. 
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4.2 Insulin Receptor Knockdown Leads to Upregulated Gene Expression 

of Various Insulin and IGF Family Members 

The IR KD did not lead to a compensatory upregulation of insulin, IGF-1 or IGF-1R gene 

expression. However, elevated levels of several insulin family members, i.e. INSL and INSIG 

became evident in H292, H226 and H460 cells. These peptide hormones have been recently 

discovered and only little is known about their functions. It is reported that INSL-3 is 

expressed almost exclusively in Leydig cells (Rossato et al., 2011). This contradicts results of 

microarray-based gene profiling indicating presence of INSL-3 in NSCLC cells. Moreover, 

INSL-3 was upregulated in IR KD cells. Since INSL-3 has been mainly associated with 

prostate carcinoma, the focus has been on illumination of its role in benign and malign 

prostate cancer cells (Klonisch et al., 2005). However, an involvement in tumor biology in 

general is suggested (Hombach-Klonisch et al., 2003). Hereby, it was observed that INSL-3 

showed anti-proliferative features by downregulating growth-supporting Erb receptors and 

EGF (Klonisch et al., 2005). However, INSL-3 was found to increase cell motility (Klonisch et 

al., 2005) and to facilitate formation of anchorage-independent colonies (Hombach-Klonisch 

et al., 2010).      

INSIG-1 and INSIG-2 were increased in the three NSCLC cell lines. Both are known to trigger 

metabolic homeostasis (Dong & Tang, 2010) but their role in cancer cells still remain unclear. 

Interestingly, an increased gene expression of IGF-2 and IGF-2R was detected in H460 IR KD 

cells. These findings promote the hypothesis of a dominant role of the IGF-2/IGF-2R 

signaling transduction in H460 cells as discussed previously. Consequences of elevated IGF-

2 and IGF-2R levels are most likely induction of EMT resulting in phenotypical changes of 

H460 cells after loss of IR (see chapter 2.3). As discussed above (see chapters 1.2.2 & 2.3), IR 

were only weakly expressed and IGF-2R were most strongly expressed in H460 cells 

compared to H292 and H226 cells. Remarkably, only in H460 cells, IR KD increased IGF-2R 

gene expression. It could be assumable that IR and IGF-2R expression levels influence each 

other. Such a compensatory controlling mechanism would be a novel finding.  
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4.3 IGF-1 Receptor Downregulation Induces Remodelling Processes in 

H292 cells 

KD experiments revealed that IR KD strongly caused apoptosis (see chapter 4.1), whereas 

IGF-1R KD induced morphological changes in the epithelial cells; microscopic observations 

showed an altered smooth muscle-like cell phenotype of H292, H226 and H460 cells. As 

representative NSCLC cell line, H292 was analyzed in more detail regarding mRNA 

expression levels of the EMT markers ET-1, CDH2 and FN1.  

ET-1 was enhanced to a comparable extent in IR and IGF-1R KD cells. This indicates that loss 

of either IR or IGF-1R has the same impact on ET-1 mRNA regulation.  

Elevated expression rates of ET-1 were measured in patients suffering from T2DM or insulin 

resistance (Takahashi et al., 1990). Those patients have a decreased amount of functional IR. 

Reduced amounts of IR are also achieved by a KD. Therefore, ET-1 expression levels in IR 

KD cells are in good agreement with findings of Takahashi et al. indicating that reduced IR 

levels might cause increased ET-1 mRNA expression. A possible explanation for ET-1 

upregulation under these circumstances is presented by Wu-Wong et al.; ET-1 has been 

shown to stimulate glucose-uptake via ETA receptors in rat cardiomyocytes (Wu-Wong et al., 

2000). It follows that cancer cells most likely initiate upregulation of alternative pathways in 

absence of IR in order to sustain their metabolic activity. This could also be an explanation 

for increased ET-1 expression rates in H292 IR KD cells. 

This hypothesis appears plausible for IR KD but it does not apply for IGF-1R KD. Since KD 

of IGF-1R but not IR provoked significantly elevated levels of the two further EMT markers 

CDH and FN1, it is likely that ET-1 mainly contributes to EMT in IGF-1R KD cells. This 

assumption is underlined by microscopic observations (see above) and common descriptions 

of ET-1 as EMT inducer in cancer cells (Rosanò et al., 2005).  

As IGF-1R KD seemed to initiate the EMT process, vice versa, the IGF-1R signaling might 

suppress epithelial cell transformation in H292 cells. This in parts contradicts principles of 

IGF-1-associated aggressive tumor behavior pattern. Because the IGF-1R is known to trigger 

metastasis and angiogenesis, it is commonly suggested that these processes are steered by 

EMT which is a well-accepted basic condition for tumor invasiveness (see Introduction 3.1.1). 

However, studies in H292 cells clearly evidenced that EMT cannot generally be assumed to be 
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the underlying mechanism. It is more appropriate to consider EMT processes differentiated. 

While some EMT mediators, e.g. matrix metalloproteinases (MMPs), are proved to promote 

invasive behavior patterns of tumor cells (Radisky & Radisky, 2010; Walsh & Damjanovski, 

2011), others should not be strictly associated with metastasis induction. This apparently 

concerns the functions of ET-1. Thus, clarification of its precise involvement in EMT and 

implications in angiogenesis and metastasis represents an interesting issue for further 

studies. 

 

In search of mechanistic links explaining IGF-1R KD-provoked EMT, two approaches appear 

plausible and could provide an explanation of above-mentioned observations.  

IGF-2 has clearly been observed to induce EMT (Larue & Bellacosa, 2005). Since IGF-1R 

signaling seems (at least in parts) to counteract EMT in H292 cells, it is assumable that IGF-2 

steers EMT via IGF-2R activation; a hypothesis which was already discussed before (see 

chapter 2.3). After downregulation of IGF-1R, IGF-2R are still available and functional. IGF-1 

and IGF-2 will consequently bind IGF-2R due to their high affinity to the receptor. Thus, it 

becomes increasingly evident that the IGF-2R could play a key role in EMT. 

A further interesting aspect becomes evident by comparing effects of IGF-1R KD and TGF-β-

treatment in H292 cells. Notably, IGF-1 KD and TGF-β-treatment exhibited similar impacts 

on EMT marker expression. As discussed before (see chapter 2.4), IGF-1 acts as functional 

antagonist of TGF-β by diminishing effects of the latter on ET-1 and CDH2 mRNA 

expression. Downregulation of IGF-1R results in reduced IGF-1 effects; in parallel, elevated 

ET-1, CDH2 and FN1 mRNA expression rates were detected in IGF-1R KD cells.  

It therefore can be assumed that IGF-1R signaling counteracts TGF-β action by actively 

suppressing initiation of EMT.  

 

4.4 Insulin Receptor Takes Mitogenic Features in Absence of IGF-1R in 

H292 cells 

Regarding the cell proliferation rate in H292 cells, IR did not compensate IGF-1R loss under 

starving conditions. This has also been observed in microscopic (see chapter 4.3) and cell 

count analysis in all cell lines studied (see chapter 4.1). Thus, autocrine and paracrine 
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secreted IGF-1 does apparently not activate IR, even when only reduced amounts of IGF-1R 

are available. This can be explained by the comparable low affinity of IGF-1 for IR-binding 

(Kurtzhals et al., 2000). 

Notably, in H292 IGF-1R KD cells, insulin-mediated impacts on [3H]-thymidine incorporation 

were significantly elevated compared to LV-sh controls. This indicates that IGF-1R-binding is 

not necessary for mitogenic action of insulin. In contrast to common suggestions, 

supraphysiological insulin concentrations did obviously not increase cell proliferation 

exclusively via IGF-1R but also via IR (Soos et al., 1990).  

Next to apoptosis prevention by IR, these findings further underline the crucial role of IR in 

cancer progression, particularly in tumor cell proliferation and survival.  

This phenomenon of increased proliferation after insulin exposure can most probably be 

explained by an amplificated IR downstream signaling. While IGF-1R mRNA is 

downregulated, it is conceivable that signaling proteins, i.e. IRS docking proteins are 

liberated and can be used upon IR stimulation. This results in an enhanced IR signaling. 

It follows that an IGF-1R antibody therapy in the treatment of cancer might lead to an 

empowerment of mitogenic features of the IR which impairs the therapeutical success. 

Indeed, IGF-1R antibody therapies did not reveal the expected success (Vincent et al., 2013). 

This supports the above-mentioned hypothesis and points out that an exclusive IGF-1R 

destruction might not be sufficient to eliminate malignancies. 

 

4.5 Mitogenic Signal Transduction Is Interrupted in Insulin Receptor 

Knockdown Cells  

4.5.1 Insulin Induces IGF-1 Receptor Autophosphorylation in the NSCLC Cells 

Before analyzing effects of IR downregulation on insulin-mediated IR/IGF-1R 

phosphorylation, it was necessary to verify basal amounts of IR and IGF-1R after IR KD. As 

expected, IR proteins were hardly detectable on the Western blot membranes in LV-sh-IRa-

treated samples compared to LV-sh controls in H292, H226 and H460 cells. This indicates a 

well-functioning receptor KD. Notably, amounts of IGF-1R proteins were unchanged which 
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is in line with results of the genome-wide profiling of IR KD cells (see chapter 4.2). A 

compensatory upregulation of IGF-1R caused by IR KD can therefore be excluded.  

Consistent in all cell lines tested, clear pIR/pIGF-1R signals were found in 100 nM insulin-

treated IR KD samples. These signals obviously derived from IGF-1R phosphorylation. In 

comparison to LV-sh controls, no marked differences in their signal intensity were found. It 

follows that higher nanomolar concentrations of insulin can bind IGF-1R almost as effective 

as the IR.  

Remarkably, H292 cells play an outstanding role. In H226 and H460 LV-sh control cells, 10 

nM insulin only caused a slight IR/IGF-1R phosphorylation. However, in H292 LV-sh control 

cells, 10 nM insulin strongly induced IR/IGF-1R phosphorylation. This reveals different 50% 

effective concentrations (EC50) of insulin on receptor autophosphorylation within the cell 

lines tested. Variations in EC50 values are widely described in literature (Frasca et al., 1999) 

and caused by differences in receptor expression levels and in the receptor reserve. Cancer 

cells are marked by mutations resulting in highly individual expression rates of different 

growth factor receptors (Hanahan et al., 2000). Indeed, different IR and IGF-1R expression 

levels have been proved in the NSCLC cells tested (see chapter 1.2.2). Cell line H292 

exhibited the most pronounced IR and IGF-1R expression rates which is in accordance to 

results of basal and insulin-induced IR/IGF-1R autophosphorylation. 

In H226 and H460 IR KD cells, no phospho signals could be detected in 10 nM insulin-

treated samples. In contrast, in H292 IR KD cells, 10 nM insulin clearly activated IGF-1R 

phosphorylation. This observation is in good agreement with previous findings. Different 

perspectives - i.e. [3H]-thymidine incorporation rate analysis (see chapter 1.2.1), MAPK 

signaling (see chapter 1.3) and insulin's counteracting features on anti-proliferative TGF-β 

action (see chapter 2.1) - reveal clear mitogenic behavior pattern of the anabolic hormone 

even in low concentrations, especially in cell line H292. A significantly reduced EC50 value of 

insulin for IGF-1R autophosphorylation serves as possible explanation for these results. 

 

Data of pIR/pIGF-1R Western blotting demonstrate that even 100 nM insulin clearly 

activated IGF-1R signaling. An IGF-1R activation by insulin in concentrations which are 

achieved after an inhaled therapy (see chapter 1.1) can therefore be assumed.  

 



Discussion 

138 

 

4.5.2 AKT Signaling Strongly Depends on Insulin Receptor Expression 

Akt signaling was highly activated by insulin in the three NSCLC cell lines; LV-sh control 

cells revealed a comparable response towards insulin on Akt protein phosphorylation as 

observed in non-transduced cells (see chapter 1.3). Because Western blot analysis showed 

that even low pico- and nanomolar concentrations of insulin induced Akt phosphorylation, 

an involvement of IR and not of IGF-1R appears plausible.  

In order to analyze the possible potential of insulin to trigger activation of Akt also via IGF-

1R, IR KD cells were exposed to 10 nM and 100 nM insulin. A markedly impaired Akt 

signaling was observed in all IR KD cells tested.  

As discussed before (see chapter 4.5.1), in IR KD cells, IGF-1R autophosphorylation was clearly 

induced by 100 nM insulin in H226 and H460 cells and by 10 nM insulin in H292 cells. 

However, insulin only led to a slight phosphorylation of downstream Akt proteins in IR KD cells. 

Therefore, it is assumable that IGF-1R signal transduction affects Akt activation with a 

reduced potency compared to IR signal transduction. Akt phospho signals were detected 

with lower concentrations of insulin (10 nM) which did not cause IGF-1R 

autophosphorylation, at least in H226 and H460 cells. This finding is in good agreement with 

previously discussed Western blot results in non-transduced cells (see chapter 1.3).  

Analysis of a weak IR KD was performed in parallel in H292 and H226 cells, because both 

cell lines exhibited prominent pronounced IR levels. In order to examine whether Akt 

phosphorylation runs in parallel to the extent of IR KD in both cell lines, signaling was 

analyzed after LV-sh-IRb treatment leading to an approx. 50 % receptor downregulation (see 

Results 4.1.2). Although a dose-dependent effect was observed, reduced Akt 

phosphorylation levels were only slightly diminished after LV-sh-IRb treatment. This allows 

the assumption that high IR expression levels are accompanied by a high receptor reserve. Vice 

versa, only a strong receptor downregulation appears to impair Akt signaling significantly. 

H460 cells exhibited marked IGF-1R expression levels. In contrast, the IR was expressed to a 

very low amount. However, downregulation of the latter receptor strongly disturbed 

mitogenic Akt signaling (see above). Against this background, it was of interest to study IGF-

1R involvement and the role of IR in H460 IGF-1R KD cells. Interestingly, IGF-1R KD 

markedly disturbed insulin-mediated Akt phosphorylation. 10 nM insulin did not at all induce 
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the phosphorylation rate via IR-binding in IGF-1R KD cells. Thus, the question arises why 

insulin clearly induced phosphorylation of Akt proteins in the LV-sh controls that express IR 

and IGF-1R. Since the KD of insulin towards IR-binding is 10 pM (Kurtzhals et al., 2000), it can 

generally be suggested that due to low receptor expression levels the EC50 is significantly 

below the KD in H460 cells. Besides, dependence of insulin-binding to heterodimeric IR/IGF-

1R could lead to Akt phosphorylation. IR-A is the predominantly expressed receptor splicing 

isoform in H460 cells. It appears quite likely that presence of IR-A and IGF-1R is 

accompanied by presence of HR-A. This general hypothesis of HR involvement in mitogenic 

processes is also supported by others (Belfiore et al., 2009).   

 

In order to examine whether IGF-1R downregulation also has impacts on Akt signaling in 

H292 and H226 cells, IGF-1R KD effects were studied in the two latter cell lines. As expected, 

there were no marked changes in insulin-induced pAkt levels in IGF-1R KD cells compared 

to controls (data not shown).  Consequently, the IGF-1R appears to play a subordinated role 

in the Akt signaling pathway in H292 and H226 cells which is in accordance to previous 

findings of this study. This highlights the crucial role of IR in mitogenic signaling, 

particularly in H292 and H226 cells. 

 

Although a strong IR KD clearly diminished Akt protein phosphorylation, insulin in 

nanomolar concentrations could in parts activate Akt signaling via IGF-1R activation in all 

cell lines tested. Nonetheless, especially in H292 and H226 cells, functional IR expression 

appeared necessary for mitogenic signal transduction. In H460 cells, expression of both, IR 

and IGF-1R, turned out to be crucial for Akt signaling; by downregulation of either IR or 

IGF-1R this pathway was markedly impaired.  

 

4.5.3 Mitogenic ERK/MAPK Signaling Is Mediated by Different Mechanisms in the 

NSCLC Cells Studied 

ERK/MAPK phosphorylation revealed large differences of IR involvement within the cell 

lines tested. 
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In H292 cells, IR but not IGF-1R appeared to be essential for mitogenic ERK signaling. While 

IGF-1R KD did not visibly reduce basal and insulin-induced MAPK phosphorylation (data 

not shown), IR KD had strong impacts on the phosphorylation levels. Basal phospho p44/42 

levels were significantly below those of LV-sh controls. In addition, insulin-induced p44/42 

protein phosphorylation was significantly less pronounced in cells lacking IR.  

It therefore becomes increasingly clear that IGF-1R play a minor role in mitogenic signaling 

in the MEC cell line H292. In contrast, strong dependence on IR expression could be 

observed. A weak IR KD also diminished ERK1/2 phosphorylation, albeit to a lesser extent 

than found in cells with strong IR KD. This finding of a dose-dependent MAPK stimulation 

after IR downregulation is in line with results of Akt phosphorylation. 

In H226 cells, the IGF-1R turned out to be more important for MAPK signal transduction 

than the IR. Beyond, insulin only had slight impacts on p44/42 protein phosphorylation, as 

also described and discussed previously (see chapter 1.3). Both findings serve as explanation 

for a failed (further) induction by insulin in ERK1/2 phosphorylation in IR KD cells. In 

contrast, in IGF-1R KD cells, basal and insulin-induced phosphorylation levels of p44/42 

were markedly reduced.   

It hence can be concluded that in H226 cells, presence of IGF-1R is highly necessary for 

ERK/MAPK signaling. 

A further different behavior pattern of IR and IGF-1R involvement in ERK signaling became 

apparent in H460 cells. Overall, both, IR KD and IGF-1R KD empowered MAPK signaling. 

Since RTK rely on the same downstream mediators in order to transduce signals, e.g. via 

ERK/MAPK signaling, it possibly could be that other growth factor receptors use the 

signaling machinery more efficiently in absence of IR or IGF-1R. Particularly EGFR are 

known to be strongly linked to ERK/MAPK signaling pathways in epithelial cancer cells 

(Buck et al., 2008). Besides, Buck et al. underline a receptor reciprocity between IGF-1R and 

EGFR, indicating that MAPK signaling can only be sufficiently downregulated by dual 

blockade of IGF-1R and EGFR. A further explanatory approach for MAPK findings in H460 

cells might be involvement of ETS1-associated protein II (EAPII) in mitogenic signaling 

pathways. EAPII is largely overexpressed in H460 cells and it has been found to activate 

ERK/MAPK signaling strongly (Li et al., 2011).  
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Although ERK/MAPK data strongly differed within the three NSCLC cell lines tested, 

Western blot analysis could have large impacts on the understanding of IGF-1R and IR 

involvement in cancer progression. It becomes evident that a generalization of the impact of 

individual growth factors and receptors in mitogenic signaling in NSCLC can be negated. 

But however, based on a specific tumor cell analysis, an effective and individual cancer 

therapy could be established. 



Summary 

142 

 

VI Summary 

1 Background 

Since recent years it has been assumed that the anabolic hormone insulin might contribute to 

tumor cell proliferation as the cognate hormone IGF-1. This hypothesis was supported by 

epidemiological studies revealing a positive correlation between type 2 diabetes mellitus and 

cancer. Moreover, several studies report that long-term hyperinsulinemia constitute a 

potential cause for tumor promotion. It is thus of great importance to detect possible 

implications of insulin and the insulin receptor (IR) in the development of malignancies.  

In the context of steadily increasing rates of type 2 diabetics, it becomes obvious that much 

research is carried out in the field of diabetes mellitus therapy. One main objective has been 

the development of a non-invasive route of insulin administration in order to avoid daily 

subcutaneous hormone injections. Ultimately, in June 2014, a novel inhaled insulin delivery 

system has been approved in the USA. However, there are safety concerns as 

supraphysiological concentrations of insulin over a longer period might support mitogenic 

processes in the lungs. It consequently has to be clarified whether insulin concentrations 

which can be achieved in the respiratory system after inhalation, trigger tumor cell 

promotion in human bronchial epithelial cells. 

 

2 Methods 

The focus of the present study was on illumination of the roles of insulin and the IR in 

different non-small cell lung cancer (NSCLC) cell lines (H292, H226 and H460 cells). Effects 

of insulin - especially in comparison to IGF-1 and TGF-β - were studied by analyzing [3H]-

thymidine incorporation, mitogenic signaling and expression of epithelial-mesenchymal 

transition (EMT)-supporting mediators. Involvement of IR and IGF-1R in tumor cell 

promoting processes was studied by receptor knockdown (KD) models. Those studies 

included caspase assays, microarray-based gene expression profiling, [3H]-thymidine 

incorporation and mitogenic signaling in KD cells. 
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3 Results 

In the three NSCLC cell lines, IR and IGF-1R were present, although with differences in their 

expression levels. Both receptors were most pronounced in cell line H292. In H226 cells, IR 

proteins were only slightly (76 %) and IGF-1R proteins were significantly (43 %) less 

expressed compared to cell line H292. H460 cells revealed the lowest IR protein expression 

level within the cell lines tested (44 % compared to H292 cells). The IGF-1R protein 

expression rate was 58 % compared to H292 cells. PCR analysis of IR splicing isoforms 

exhibited that in H292 cells, IR-A and IR-B were present to a similar amount, whereas in the 

other two cell lines, one isoform was predominant (H226: IR-B, H460: IR-A). Cell-specific 

differences were also observed in basal proliferation levels. H460 cells had the highest (25700 

dpm) [3H]-thymidine incorporation rate, followed by H226 (5800 dpm) and H292 cells (2400 

dpm).  

Despite those marked variations, insulin clearly triggered tumor cell proliferation in H292 

and H226 cells. 1 µM insulin enhanced the [3H]-thymidine incorporation rate to 280 % and 

200 % in H292 and H226 cells, respectively. Notably, those effects were even stronger than 

effects of physiological concentrations of IGF-1 on [3H]-thymidine incorporation. Anti-

proliferative effects of TGF-β (H292: 64 %, H226: 60 %) were cancelled by insulin to control 

level. Additionally, TGF-β effects on endothelin and N-cadherin expression were also 

diminished by insulin in H292 and in H226 cells.  

Western blot analysis revealed that insulin markedly phosphorylated IR/IGF-1R and 

downstream Akt proteins in a concentration-dependent manner in the three NSCLC cell 

lines. However, ERK/MAPK was clearly activated by insulin in cell line H292, exclusively. 

Receptor studies allowed important insights into the roles of IR and IGF-1R in NSCLC cells. 

In all three cell lines, even a moderate downregulation of IR but not IGF-1R led to cancer cell 

death. Accordingly, IR KD enhanced caspase-activity (H292: 550 %, H226: 430 %, H460: 140 

%). In search of mechanistic links between IR KD and induction of apoptosis, genome-wide 

gene profiling was performed. Indeed, several cytokines which are known to activate 

caspases were among the most prominent upregulated genes. Gene expression of IL24 was 

increased most strongly in H292 (78-fold), H226 (5-fold) and H460 (160-fold) IR KD cells 

compared to LV-sh controls. Moreover, IR KD caused elevated gene expression levels of 

TNFα by 9-, 5- and 3-fold in H292, H226 and H460 cells, respectively. In order to verify the 
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apoptosis-activating ability of the latter cytokines, caspase 3/7 assays were performed in non-

transduced NSCLC cells. TNFα significantly activated caspases (H292: 237 %, H226: 130 %, 

H460: 231 %). Besides, IL24 led to an increased caspases activity in H292 (127 %) and H226 

(116 %). 

The important role of the IR for cancer cell promotion became also evident by analyzing 

mitogenic Akt signaling in IR KD cells. In H292, H226 and H460 IR KD cells, insulin did not 

lead to an Akt protein phosphorylation via IGF-1R activation. Furthermore, in H292 cells, 1 

µM insulin significantly increased the [3H]-thymidine incorporation rate in IGF-1R KD cells 

to 226 % compared to control cells (without receptor KD).  

 

4 Discussion 

Safety concerns about long-term treatment with inhaled insulin remain as insulin was found 

to be involved in mitogenic processes in the NSCLC cell lines tested. Thus, an inhalable 

insulin therapy should be strictly prohibited for patients suffering from lung cancer. 

Moreover, patient groups with an increased prevalence of cancer entities in the respiratory 

system, e.g. smokers, ex-smokers, people being exposed to air pollution or patients with 

chronic inflammatory diseases, should be excluded precautionary from an inhaled insulin 

administration.  

Beside insulin’s mitogenic effects, it was detected that the anabolic hormone appeared as 

functional antagonist of TGF-β in H292 and H226 cells. Therefore, it could be interesting to 

analyze possible links between the insulin and the TGF-β signaling pathways in further 

studies.  

Surprisingly, it turned out that the IR is essential for cancer cell survival in all cell lines 

tested. IR KD induced apoptosis. Vice versa, the IR could possibly prevent cancer cells from 

apoptosis. Beyond, KD data revealed that insulin triggers proliferative effects not only via 

IGF-1R-binding but also via IR-binding which is contrary to common assumptions. 

Observations of this dimension have not been described in literature yet and provide an 

interesting approach for cancer therapy. 

In addition, receptor KD data might explain why cancer treatment with antibodies directed 

against the IGF-1R only has not revealed the expected success in NSCLC types. Dual 

inhibition of IGF-1R and IR most likely represents a more successful approach.  
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