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Abstract

The people analysis and the understandings of their motions are the key components in

many applications like sports sciences, biomechanics, medical rehabilitation, animated

movie productions and the game industry. In this context, retrieval and reconstruction

of the articulated 3D human poses are considered as the significant sub-elements. In

this dissertation, we address the problem of retrieval and reconstruction of the 3D poses

from a monocular video or even from a single RGB image. We propose a few data-driven

pipelines to retrieve and reconstruct the 3D poses by exploiting the motion capture data

as a prior. The main focus of our proposed approaches is to bridge the gap between

the separate media of the 3D marker-based recording and the capturing of motions or

photographs using a simple RGB camera. In principal, we leverage both media together

efficiently for 3D pose estimation. We have shown that our proposed methodologies need

not any synchronized 3D-2D pose-image pairs to retrieve and reconstruct the final 3D

poses, and are flexible enough to capture motion in any studio-like indoor environment

or outdoor natural environment.

In first part of the dissertation, we propose model based approaches for full body

human motion reconstruction from the video input by employing just 2D joint positions

of the four end effectors and the head. We resolve the 3D-2D pose-image cross model

correspondence by developing an intermediate container the knowledge base through the

motion capture data which contains information about how people move. It includes the

3D normalized pose space and the corresponding synchronized 2D normalized pose space

created by utilizing a number of virtual cameras. We first detect and track the features

of these five joints from the input motion sequences using SURF, MSER and colorMSER

feature detectors, which vote for the possible 2D locations for these joints in the video.

The extraction of suitable feature sets from both, the input control signals and the

motion capture data, enables us to retrieve the closest instances from the motion capture

dataset through employing the fast searching and retrieval techniques. We develop a

graphical structure online lazy neighbourhood graph in order to make the similarity search

more accurate and robust by deploying the temporal coherence of the input control

signals. The retrieved prior poses are exploited further in order to stabilize the feature

detection and tracking process. Finally, the 3D motion sequences are reconstructed by

a non-linear optimizer that takes into account multiple energy terms. We evaluate our

approaches with a series of experiment scenarios designed in terms of performing actors,

camera viewpoints and the noisy inputs. Only a little preprocessing is needed by our

methods and the reconstruction processes run close to real time.
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Abstract iv

The second part of the dissertation is dedicated to 3D human pose estimation from a

monocular single image. First, we propose an efficient 3D pose retrieval strategy which

leads towards a novel data driven approach to reconstruct a 3D human pose from a

monocular still image. We design and devise multiple feature sets for global similarity

search. At runtime, we search for the similar poses from a motion capture dataset in

a definite feature space made up of specific joints. We introduce two-fold method for

camera estimation, where we exploit the view directions at which we perform sampling of

the MoCap dataset as well as the MoCap priors to minimize the projection error. We also

benefit from the MoCap priors and the joints’ weights in order to learn a low-dimensional

local 3D pose model which is constrained further by multiple energies to infer the final 3D

human pose. We thoroughly evaluate our approach on synthetically generated examples,

the real internet images and the hand-drawn sketches. We achieve state-of-the-arts

results when the test and MoCap data are from the same dataset and obtain competitive

results when the motion capture data is taken from a different dataset.

Second, we propose a dual source approach for 3D pose estimation from a single

RGB image. One major challenge for 3D pose estimation from a single RGB image

is the acquisition of sufficient training data. In particular, collecting large amounts of

training data that contain unconstrained images and are annotated with accurate 3D

poses is infeasible. We therefore propose to use two independent training sources. The

first source consists of images with annotated 2D poses and the second source consists of

accurate 3D motion capture data. To integrate both sources, we propose a dual-source

approach that combines 2D pose estimation with efficient and robust 3D pose retrieval.

In our experiments, we show that our approach achieves state-of-the-art results and is

even competitive when the skeleton structure of the two sources differ substantially.

In the last part of the dissertation, we focus on how the different techniques, de-

veloped for the human motion capturing, retrieval and reconstruction can be adapted

to handle the quadruped motion capture data and which new applications may appear.

We discuss some particularities which must be considered during capturing the large an-

imal motions. For retrieval, we derive the suitable feature sets in order to perform fast

searches into the MoCap dataset for similar motion segments. At the end, we present a

data-driven approach to reconstruct the quadruped motions from the video input data.
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1
Introduction

The true sign of intelligence is not knowledge but imagination. Logic will get you from

A to B. Imagination will take you everywhere.

Albert Einstein

The people analysis and the synthesizing of qualitative 3D human poses from the videos

or images, have been studied and investigated from the last few decades, but still an

intensive interest has been seemed in this area of human motion understanding, analysis

and 3D reconstruction. As a result, the demand for high quality motion capture data is

increasing and new applications for everywhere motion capture, based on various con-

sumer electronic devices, are emerging. In this dissertation, we present a few pipelines,

algorithms and techniques to synthesize the plausible 3D pose from a sparse control

input signal that is whether in the form of a video or even a single monocular image.

1.1 Motivation

Motion is always considered as an important cue for analysing the people in terms of

understanding their activities and gestures. The people analysis, the 3D synthesizing of

human poses and the gesture recognition exploiting some motion capture (MoCap) data

have many potential applications such as,

• Biomechanics and medical rehabilitation. Motion analysis via the MoCap data

is an essential component in producing valuable biomechanical data which is de-

ployed further for clinical gait analysis, injury detection and many orthopedic

applications i.e.: prosthetic designs; the simulation and modeling of mechanical

properties of the bones and soft tissues; spine analysis and the body joint mechan-

ics etc. [Men10]. Figure 1.1(a)–(b) show a few examples of clinical biomechanics

used for the purpose of clinical gait analysis. The acquisition of biomechanical

data and its use in medical rehabilitation is equally important and essential for

the treatment of domestic animals as well.

1
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(a) Clinical biomechanics (b) Clinical gait analysis (c) Sports analysis

Figure 1.1: Human motion capture for medical rehabilitation and sports anal-
ysis1.

• Entertainment. Animation of the human like characters as well as the non-

humanoid characters by employing the motion capture library is extensively used

in animated movies industry. A few examples of the human like animated virtual

characters of some popular movies like Avatar, The Lord of the Rings and The

Polar Express are presented in Figure 1.2(a)-(c) respectively. Such types of pro-

ductions are completely dependent on high quality motion capture data through

which the human like or the non-humanoid virtual characters are generated using

computer graphics techniques.

• Surveillance systems. Automated surveillance systems are of great practical im-

portance especially in security sensitive areas e.g. foreign offices and the airports.

These systems monitor human activities in realtime and necessarily require some

techniques and methods to be capable of detecting anomalous and suspicious hu-

man movements and actions.

• Robotics. In robotics, the anticipating and predicting 3-dimensional dynamic hu-

man activities as well as the close observations of these actions in 3D are the

crucial elements for realtime interactive manipulation to the environment and the

obstacle avoidance.

• Sports analysis. Another important application of the motion capture data is the

sports analysis, where the 3D motion capture data is used in order to enhance the

player’s overall performance through modeling and simulation of motions. Such

techniques are quite popular especially in tennis, baseball, golf and gymnastic

etc. [Men10]. The biomechanics of the swing during playing golf is shown in

Figure 1.1 (c) that is utilized to improve the player’s efficiency.

1Image Sources: (a)-(b) http://www.qualisys.com (c) http://www.moenormangolf.com (visited on
September 2015)
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(a) Avatar (b) The Lord of the Rings

(c) The Polar Express

Figure 1.2: Marker-based motion capture for human-like animated characters
used in different animated movies2.

• Game industry. The motion capture data, either the human motions based or the

quadruped motions based, is also very popular in generating the human and the

non-humanoid motions in games e.g. L.A. Noir.

1.2 Why Vision-based 3D Poses?

On one hand, for generating the 3D human poses, the virtual marker based motion

capture system is very popular and has become a standard technique to record human

motions, like Vicon, MX and Giant etc. There are a growing pool of high-quality motion

capture datasets, which are publically available and are used for research and scientific

studies [MRC+07, CMU14, GFB12]. On the other hand, it requires highly expensive

indoor hardware set up. This studio like environment and the attached markers prevent

the capturing of realistic videos and images. Alternatively, RGB depth Kinect cameras

are utilized which seems to be more convenient comparatively, but unfortunately Kinect

cameras have limited operational range and are capable for recording depth information

within the range of 1.0m to 4.0m. Moreover, Kinect RGB cameras are not feasible in

outdoor environment due to the reason that Kinect infrared radiations get interrupted

by sunlight.

Despite of having aforementioned motion capture technologies, we still have to deal

with a bundle of internet, television and movie’s videos/images, which contain no any

depth information at all. The surveillance systems mostly make use of RGB cameras

which do not record depth information as well. Furthermore, in practice, the 3D human

2Image Sources: (a) http://www.davidbordwell.net (b) http://www.serkis.com (c)
http://www.calvin.edu (visited on September 2015)
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motion capture is hard enough, even more than that it seems to be in case of the virtual

marker based standard motion capture systems or RGB depth Kinect cameras. These

systems require a significant postprocessing in order to handle the missing information

for generating the accurate captured posture [PMFR14]. Hence, as a solution, a bulk of

research has been conducted to estimate the 3D poses from videos/images, but there are

still many open challenges that need to be tackled in order to meet the massive demands

of the motion capture data. Additionally, the vision-based motion capture and accurate

prediction of the 3D poses from video/images empower many vision-dependent appli-

cations such as surveillance systems, robotics, entertainment and health rehabilitation

industries.

1.3 Challenges

The articulated 3D human pose estimation from a monocular single video or an im-

age is an under-constrained and ill-posed problem. The challenges in 3D human pose

estimation can be summarized as follows;

• There may exist several plausible 3D articulated poses for a single 2D image pose.

Multiple 3D poses with different orientations may project on the same single 2D

image pose (see Figure 1.3 (c)). As a result, to infer accurate 3D pose just on the

basis of 2D joint locations become a challenging task.

• During image capturing process, the depth information is lost that may be due to

the lens distortion, camera movements, noise or image resolution. These factors

limits the chances to estimate accurate 3D pose.

• The existence of irreversible perspective projection or the missing camera param-

eters become hindrance in 2D-3D correspondence and make it harder to recover

the plausible 3D pose.

• The occlusion—where a few body parts of a person are occluded by some objects

or by its own body, called self-occlusion (see Figure 1.3(a)); image blurring; view-

points variations; different clothing, shapes and backgrounds; and the illumination

effects may create hindrance in identifying correct 2D joint locations. These ar-

tifacts not only yield ambiguities in 2D pose inference in an image but also lead

towards obscure and uncertain 3D pose estimation.

• In 2D pose estimation, the symmetric parts (like knees, feet, elbows and shoulders

etc.) of a human body can cause the flipping of left and right sides as well as the

double counting error—where the pairs of body parts are detected on the same
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(a) (b) (c)

Figure 1.3: Example images that demonstrate a few challenges for pose es-
timation; (a) Occlusion, (b) Left/right side ambiguities and (c) Multiple 3D
pose interpretations for a single 2D pose, gray dots are the ground truth and
color dots are 3D poses at different views [AB15].

location. A few images for the ambiguous left and right sides of the lower body

parts are shown in Figure 1.3(b). Consequently, the 3D pose estimation become

more tough and difficult.

1.4 Evaluation datasets

There are a very few publically available datasets which have both, the 3D motion

capture data and the synchronized videos or images with full camera parameters. The

evaluation datasets (MoCap datasets as well as the testing datasets consisting of input

videos/images) which we employ in this dissertation to conduct a series of different

experiments are described one by one as below. Some example images for these datasets

are shown in Figure 3.4.

1.4.1 CMU Motion Capture Dataset

CMU motion capture dataset is the huge dataset containing diverse collection of hu-

man motion categories but unfortunately it does not contain the relevant synchronized

recorded videos for each motion type. There are videos of a few motion types but these

videos neither have corresponding synchronized 3D motion capture data nor any detail

about camera parameters. Motion is captured using 12 Vicon infrared MX-40 cameras

which record motions with sampling rate 120 Hz. The performing actors wear a black

suit with 41 markers taped on [CMU14]. We benefit from this dataset in two ways,

• We utilize this MoCap dataset as pre-existing prior knowledge in our proposed

frameworks in order to resolve the missing depth information.

• We generate synthetic 2D image-based testing datasets using MoCap files.
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(a) HDM05 (b) CMU (c) Kinect-based Rec. (d) Human3.6M

(e) Horse MoCap (f) Leeds Sports (g) PARSE (h) HumanEva-I

Figure 1.4: Example images for different datasets used in this dissertation for
the purpose of performance evaluations of the proposed approaches.

1.4.2 HDM05 Motion Capture Dataset

In recording of HDM05 motion capture dataset, 40-50 retro-reflective markers are at-

tached with the performing actor’s suit and these markers are trapped and captured by

using Vicon MX system with 12 high-resolution cameras at a sampling rate of 120 Hz.

It consists of roughly 70 motion classes executed by various performing actors and as a

result, it contains roughly 1500 motion clips [MRC+07]. This dataset is also deficient in

synchronized videos corresponding to the 3D motion capture data as well as the camera

parameters. We utilize this dataset in the same way as in case of CMU motion capture

dataset.

1.4.3 Human3.6M Dataset

Human 3.6M dataset consists of the 3D motion capture data (3.6 million 3D human

poses) synchronized with corresponding videos as well using hardware and software

synchronization with corresponding sensors. For capturing motion data, they use 15

sensors i.e. 4 digital video cameras with frame rate 50 Hz and resolution 1000 × 1000,

1 time-of-flight (TOF) sensor with 25 Hz, 10 Vicon T40 cameras with frame rate 200
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Hz [IPOS14]. They also provide accurate background subtraction, full camera param-

eters and the persons’ bounding boxes. Total 11 professional actors (6 male, 5 female)

perform 15 different activities. We exploit this dataset for quantitative evaluations.

1.4.4 HumanEva-I Dataset

In HumanEva-I dataset, the human motion is captured through reflective markers and 6

1M-pixel cameras. For video data acquisition, 3 color cameras and 4 grayscale cameras

are utilized [SBB10]. Afterward, the 3D articulated poses and the corresponding videos

are synchronized by software synchronization process. They employ 4 subjects that per-

form 6 different motion categories. We deploy this dataset for quantitative evaluations

in Chapter 7.

1.4.5 Leeds Sports Pose Dataset

This dataset consists of 2000 pose-annotated images taken from outdoor environment

in real scenarios. It splits into two parts: 1000 images for training and 1000 images for

testing. Images are annotated with utilizing 14 joints [JE10]. We employ this dataset

for qualitative evaluations of our proposed image-based 3D pose estimation framework.

1.4.6 PARSE Dataset

This dataset contains 305 images with people of roughly 150 pixels in height. The first

100 images of the dataset are used for training, while the remaining 205 images are used

for testing purpose [Ram07]. We use this dataset for qualitative evaluation only.

1.4.7 Kinect-based Recording

We also record video sequences of different activities like: grabbing, walking, jumping

jack, jogging etc. that are performed by four different actors, using Kinect RGB cameras

in indoor environment. We use these videos in our video-based reconstruction approach

for qualitative analysis. An example image of Kinect-based video recording is shown in

Figure 3.4 (c).

1.4.8 Horse MoCap Dataset

The horse MoCap dataset consists of the motion sequences of five horses where each

horse performs two motion activities e.g. walk and trot on a treadmill. Each motion
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action has been performed with at least three trials (each of which is about 10 seconds).

As a results, the horse MoCap dataset contains 30 motion trials with varying numbers

of motion cycles. There are total 36,000 number of frames with a sampling rate of 120

Hz which corresponds to five minutes of motion capture data. The horse dataset also

has the corresponding video sequences which are not synchronized with the 3D horse

MoCap data. The more details about dataset will be discussed in Chapter 8.

1.5 Contributions

This dissertation deals with the vision-based 3D pose retrieval and reconstruction when

the input to the system is whether in the form of a monocular real/synthetic video or a

single real RGB/synthtic image. The contribution of the dissertation can be explained

as follows;

• Video based 3D Reconstruction of Human Motions. The first part of the

dissertation is dedicated to 3D human motion reconstruction from video input

data, where we propose novel data-driven frameworks for 3D motion retrieval and

reconstruction from video sequences. In first proposed model based framework,

we retrieve and reconstruct 3D full body human motion through the MoCap data

on the basis of 2D locations of just five joints (the four end effectors and the

head). We locate and track these five joints by local feature detectors/descrip-

tors like SURF (Speeded Up Robust Features) integrated with MSER (Maximally

Stable Extremal Regions) through developing a dictionary of features (DOFs).

For efficient retrieval of nearest neighbors from the MoCap dataset, we introduce

knowledge base which consists of 3D normalized pose space and the corresponding

synchronized 2D normalized pose space developed through sampling of MoCap

data at several virtual cameras. With the help of pre-existing prior knowledge

available in the MoCap dataset, we construct a 3D pose model in low dimensional

Principal Component Analysis (PCA) subspace. For final 3D pose inference, we

make the model to fit in accordance with the MoCap priors as well as map it onto

image features through projective constraint. We evaluate the proposed system

on synthetic and the real videos as well as testify the influence of performing ac-

tor, virtual cameras, testing camera viewpoints and the impact of noisy input on

overall system’s performance.

In second methodology, we enhance the similarity search and retrieval method by

utilizing the temporal coherence of the input control signal by developing a di-

rected acyclic graphical structure online lazy neighbourhood graph (OLNG) and as

a result we obtain the optimal nearest neighbors and weight them by considering
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costs associated with the paths in OLNG. We exploit these optimal and weighted

3D poses in final 3D motion reconstruction, where we formulate non-linear objec-

tive function with multiple energy terms exploiting symmetric square root kernel

to measure the probability density, which is optimized by gradient decent based

algorithm. We further benefit from these optimal 3D examples to make detection

and tracking more robust and efficient.

• Recovering 3D Pose from an Image. In the second part of the dissertation, we

have considered the most challenging scenario like 3D pose estimation from a single

image either synthetic or real. We design multiple feature sets for efficient pose

similarity search into the MoCap dataset and propose a pipeline for data-driven 3D

pose estimation from a subset of 2D joint positions. At runtime, a nearest neighbor

search is performed to retrieve similar poses through developed knowledge base.

These closest examples are used to estimate camera parameters and are exploited

in proposed reconstruction approach for final 3D human pose prediction. We also

derive benefits from joints’ degree of freedom to make reconstruction efficient. We

thoroughly evaluate our approach on 2D synthetic examples, the real images and

the hand-drawn sketches. Our proposed approach executes state-of-the-art results

when the test data is generated from same MoCap dataset and even produces

competitive results when a different MoCap dataset is employed.

• A Dual Source Approach for 3D Pose Estimation from a Single Image.

We propose a dual source approach in order to estimate 3D human pose from

a single image, where we leverage image-based training source and MoCap data

together to get benefits from both media. During inference, we estimate the 2D

pose from a given RGB image and retrieve the nearest 3D poses from MoCap

dataset using an approach that is robust to 2D pose estimation errors. We then

estimate a mapping from the 3D pose space to the image and weight the retrieved

poses according to the image evidence. From the weighted poses, a 3D pose model

is constructed and fit to the image in order to estimate the 3D pose. During this

process, the 2D pose is also refined through exploiting the retrieved 3D poses and as

a result the approach can be iterated for further refinement in 3D pose estimation.

For evaluation, we employ two popular datasets and on both datasets, our proposed

approach achieves state-of-the-art results. We also analyze the influence of the

skeleton discrepancies between the two training sources as well as the impact of

the accurate 2D inputs on the performance of the proposed approach.

• Quadruped Motions: Retrieval and Reconstruction. In the last part of

the dissertation, we deal with retrieval and reconstruction of quadruped motions

and demonstrate that how the human motion capture, retrieval and reconstruction
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techniques can be adapted efficiently to quadruped motions. We illustrate that how

to handle quadruped motion capture data and elaborate some particularities for

suitable markers’ setup. We design several 3D and 2D feature sets on which basis

we retrieve the similar poses from the horse MoCap data and predict 3D quadruped

motion directly in Euclidean space through these retrieved nearest examples by

developing an energy function.

1.6 Thesis Outlines

• Chapter 1. Introduction. Introduction chapter contains details about moti-

vation, problem statement, challenges, evaluation datasets and the dissertation’s

contributions.

• Chapter 2. Body Models. This chapter focuses on the pose representations as

well as the body structure models. We discuss in details about the different pose

parameterizations and the body models for both 2D/3D data.

• Chapter 3. Related Work. In this chapter, we will provide an overview of the

state-of-the-art approaches relevant to 3D human pose estimation.

Part-I 3D Motion Reconstruction from Video

• Chapter 4. 3D Motion Reconstruction from Video. This chapter intro-

duces the proposed model based framework for 3D retrieval and reconstruction of

full body human motions from video input data. We will illustrate that how can

we retrieve nearest neighbors from the MoCap dataset utilizing a subset of 2D

joints efficiently and how these nearest neighbors can be exploited in ultimate 3D

motion reconstruction.

• Chapter 5. 3D Motion Tracking and Reconstruction. In this chapter, the

video-based motion reconstruction framework is presented where we will describe

the details about how the temporal information can be utilized in retrieval and

reconstruction methodologies. We will also elaborate that how the video-based

feature detection and tracking can be made robust through the MoCap priors.

Moreover, we will discuss the kernel-based approach to estimate probability density

of the MoCap priors for final 3D motion reconstruction.
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Part-II 3D Pose Estimation from a Monocular Single Image

• Chapter 6. Recovering 3D Pose from an Image. The chapter describes a

pipeline to estimate 3D human pose from a single 2D image pose either synthetic

or real. We will illustrate different feature sets that we use for efficient retrieval

of similar poses from the MoCap dataset and we will also explore that how the

retrieved poses can be used to estimate camera parameters and to recover final 3D

pose.

• Chapter 7. A Dual-Source Approach for 3D Pose Estimation from a

Single Image. In this chapter, we will provide details about the proposed dual

source approach to infer 3D human pose from monocular single image. Here, we

will explain that how can we get benefits from the 2D annotated training sources

as well as the 3D motion capture library to predict the final 3D human pose from

a single image.

Part-III Quadruped Motions: Retrieval and Reconstructions

• Chapter 8. Retrieval and Reconstruction of Quadruped Motions. This

chapter deals with the retrieval and reconstruction of quadruped (horse) motions.

We will discuss different retrieval strategies and the feature sets with their efficien-

cies.

• Chapter 9. Conclusion and Future Perspectives. At the end, we will sum-

marize all the proposed approaches presented in this dissertation and will provide

the conclusive remarks. Future directions and perspectives for these proposed

approaches will also be discussed in this chapter.
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Body Models

Since we cannot know all that there is to be known about anything, we ought to know a

little about everything.

Blaise Pascal

In this chapter, we discuss the preliminary concepts, the algorithms and the techniques

that we consider for the 3D/2D pose representations and for developing the body struc-

ture model in order to accomplish the tasks of the 3D pose retrieval and reconstruction.

First, we elaborate the details about the pose representation in Section 2.1. The remain-

ing chapter is structured as: in Section 2.2, we discuss briefly the different body models

found in the literature and the body structures which we have employed, we explores

the 2D pose representations in Section 2.3 and Section 2.4 provides details about the

quadruped body models.

2.1 Pose Representations

There are a number of ways to represent the human pose e.g. through the joint an-

gle configurations like the Euler angles, quaternions and axis-angle representations, or

through the joint coordinates directly in Euclidean space. The full body human pose is

represented by different rigid body segments that are linked together by different types

of body joints. Mostly, the kinematic model is found in the literature to model the

human body in a tree structure. The kinematic model consists of the pose parameters

that are defined by the root joint’s positions as well as the orientations with 6 degrees of

freedom in the world coordinate system. A common parametrization for a human pose

is the kinematic chain where the movement of a segment depends on the movement of

the other body segments. For instance, the foot position is dependent on the position of

the lower leg that is further dependent on the position of the upper leg. The movement

of the segment with respect to its parent segment can be parameterized by rigid body

transformation e.g. rotations and translations.

12
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2.1.1 Joint Angle Configurations

Let R ∈ R3×3 is the rotation matrix and is belong to the special orthogonal group

SO(3) = {R ∈ R3×3|RRT = RTR = I, det(R) = 1}. Let T ∈ R3 is the translation.

The product of both determines the rigid body transformation and it is represented by

the special Euclidean group SE(3) = R3 × SO(3).

Euler Angles. The standard method to represent the orientation of an object with

respect to another object is in the form of Euler angles. A rotation matrix around the

x, y and z axes can be represented as,

R(α) =


1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 , (2.1)

R(β) =


cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)

 , (2.2)

R(γ) =


cos(γ) − sin(γ) 0

sin(γ) cos(γ) 0

0 0 1

 , (2.3)

where the angles α, β and γ are called the Euler angles. As matrix multiplication does

not commute, therefor multiplication order may affect the final results. The rotation

along the x-axis, then y-axis, and finally along z-axis can be represented as,

R(α, β, γ) = R(γ) ·R(β) ·R(α) (2.4)

=


cos(β) cos(γ) sin(α) sin(β) cos(γ)− cos(α) sin(γ) cos(α) sin(β) cos(γ) + sin(α) sin(β)

cos(β) sin(γ) cos(α) cos(γ) + sin(α) sin(β) sin(γ) cos(α) sin(β) sin(γ)− sin(α) cos(γ)

− sin(β) sin(α) cos(β) cos(α) cos(β)


(2.5)

As a result, we can compute any rotation with these Euler angles (α, β, γ). Unfortu-

nately, the Euler angles have an unsolved problem gimbal lock, in which one degree of

freedom is lost. This happen when two rotation axes align to each other e.g. β = 0 or

β = 90 etc., then the solution is the quaternion.

Quaternions. The quaternion Q is spanned in 4 dimensional space Q by one real

axis and three orthogonal axes and can represent rotation. The quaternion Q = (q0,q)

is a vector that consists of one scaler component q0 and three vector components q =
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(q1, q2, q3) and can be expressed as,

Q = q0 + q1i + q2j + q3k, with,

i2 = j2 = k2 = i · j · k = 1,

i · j = −j · i = k,

j · k = −k · j = i,

k · i = −i · k = j.

(2.6)

The conjugate of the quaternion Q = (q0,q) is defined as Q∗ = (q0,−q) and the mag-

nitude and the inverse of the quaternion can be represented respectively as,

‖Q‖ =
√

QQ∗ =
√
q2

0 + q2
1 + q2

2 + q2
3, (2.7)

Q−1 =
Q∗

‖Q‖
. (2.8)

The unit quaternions are the quaternions Q ∈ Q with norm ‖Q‖ = 1. The inverse of the

unit quaternion is just the conjugate quaternion Q−1 = Q∗. The identity element for the

quaternion multiplication is represented as Q = (1, 0) [MSZ94]. Given two quaternions

Qa = (q0,a,qa) and Qb = (q0,b,qb), the multiplication between them can be computed

as,

QaQb = q0,aq0,b − qa · qb , q0,aqb + q0,bqa + qa × qb. (2.9)

The quaternion multiplication is distributive and associative, but not commutative. A

rotation R = exp(n̂θ) about an axis n ∈ R3 with an angle θ ∈ R can be represented by

the quaternion as,

Q =

(
cos

(
θ

2

)
, n sin

(
θ

2

))
. (2.10)

The rotation matrix from a quaternion with magnitude ‖Q‖ = 1 can be computed [Sho85]

as,

Q =


1− 2q2

2 − 2q2
3 2q1q2 + 2q0q3 2q1q3 − 2q0q2

2q1q2 − 2q0q3 1− 2q2
1 − 2q2

3 2q2q3 + 2q0q1

2q1q3 + 2q0q2 2q2q3 − 2q0q1 1− 2q2
1 − 2q2

2

 . (2.11)

Axis-angle. We often deal with a situation when we need to describe the joint’s

movement along a specified axis and an angle. In this context, we need a unit vector

n ∈ R3 that fix the direction of the rotation and the specified angle θ ∈ R to represent

the amount of rotation, then the net rotation can be expressed in exponential form as,

R = exp(n̂θ), (2.12)
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where (∧) is the wedge operator, n∧ = n̂ ∈ so(3) is the skew-symmetric matrix which

verifies so(3) = {S ∈ R3×3|ST = −S}, and has been computed from n as

n =


n1

n2

n3

 , n̂ =


0 −n3 n2

n3 0 −n1

−n2 n1 0

 . (2.13)

Due to the screw symmetric matrix n̂, the exponential of the rotation matrix exp(n̂θ)

can be represented in a closed form as,

exp(n̂θ) = I + n̂ sin θ + n̂2(1− cos θ). (2.14)

This is known as Rodrigues’ formula that is a simple form to compute the rotation

matrix with axis of rotation n and the rotational angle θ.

For rigid body transformations, rotation and translation, the n = (n1, n2, n3) is

extended to ξ = (n1, n2, n3, υ1, υ2, υ3) with difference in points υ = (υ1, υ2, υ3), and as a

result, the twist is represented as,

θξ̂ = θ


0 −n3 n2 υ1

n3 0 −n1 υ2

−n2 n1 0 υ3

0 0 0 0

 , (2.15)

and the rigid body transformation becomes,

exp(ξ̂θ) =

[
exp(n̂θ) (I − exp(n̂θ)(n× υ) + nnTυθ

0 1

]
, (2.16)

which is the element of SE(3) group and exp(n̂θ) can be computed through the Ro-

drigues’ formula (Equation 2.14). For further reading, we refer [Sho85, MSZ94].

2.1.2 Joint Positions

A human pose can be represented by the collection of the joint positions denoted as

X—the x, y, and z axes coordinates of the joints of the human body skeleton. The

benefit to represent the human pose by the joint positions is that we can work directly

in Euclidean space, and the disadvantage is that we may loss the rigid bone lengths

as well as other anthropomorphic properties of the articulated human pose, which does

not happen in case of the pose represented by the joint angle configurations. The pose

represented by the joint positions is used especially in discriminative methods.
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(a) Cylindrical model I (b) Cylindrical model II (c) Polymesh model

(d) Super-quadrics model (e) Ellipsoids model (f) Stick figure model

Figure 2.1: Human body models: (a) Cylindrical based body model I [SB06b]
(b) Cylindrical based human body model II [SBF00] (c) Polymesh based
model [SBB07] (d) Super-quadrics based model [GWK05] (e) Ellipsoids based
human body model [SBB07] (f) Stick figure based model [WWL+14].

2.1.3 Body Parts

In this pose representation, the pose is parameterized by the different body parts. Each

body part is considered as an individual rigid shape that is connected with the other

body parts through a joint in order to structure the kinematic tree. Such types of pose

representations are successfully used in human tracking as well as for the articulated

human pose estimation. For segment representation, mostly the geometric primitives

like cylinders, ellipsoids or truncated cones are employed [SB06b, RSB04, SBF00, ST01,

BM98].

2.2 Human Body Model

The creation of a realistic representation of the human body model that elaborates

the main characteristics of the human body is considered as a crucial step in 3D pose

estimation. There are a variety of human body models found in literature, but the

stick figure human body model [PMFR14, WWL+14, LC14, SSQTMN13, SSRA+12]

is frequently used because it reflects the main characteristics of the human shape that

should be considered during reconstruction of the 3D human pose. There are other

approaches as well that utilize different human body models like some approaches utilize

the geometry primitives—[SB06b, RSB04, SBF00] use cylinders and [ST01, BM98]

deploy ellipsoids to develop the human body model. The geometric primitives need to

be parameterized with the body segments’ lengths, the scaling factors and their volumes
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etc., manually or have to be estimated during calibration prior to tracking or pose

estimation. More complex parametric shapes like super-quadrics have been presented

in [GWK05, ST03b]. [SBB07] exploits a low-dimensional mesh based human body shape

model with 25,000 polygons. A few examples of the human body models are illusterated

in Figure 2.1.

In general, the human body model consists of a variety of joints with different degree

of freedom like: the ball-and-socket joints with three degrees of freedom e.g. the upper leg

is connected to the hip; the hinge joints with one degree of freedom e.g. the knee joints;

the saddle joints with two degrees of freedom e.g. like the ankle joints; the ellipsoidal

joints with two degrees of freedom e.g. the wrist joints; and the plane joints with two

degrees of freedom e.g. the clavicular joint in the shoulder.

The human body models also vary in number of joints/connectors that has been

utilized to connect different body parts in order to represent the full body human pose.

[WWL+14, LC14, SSQTMN13, SSRA+12] exploit 14 joints to represent the human full

body pose, [AT06a] deploys the joint coordinates to represent human upper body with 24

dimensional pose vector. [FZZW14, RKS12, AB15] use 18 joints while [YKC13] utilize

15 joints for the full body human pose. [UFHF05] model the articulated human body

structure with 84 degrees of freedom for walking action and 72 for golf action. [SB06b]

uses 10 cylindrical objects to represent the body segments while [SBF00] employ 9 body

segments in their tracking framework.

In our case, we use the stick figure body model throughout this dissertation and the

body (skeleton) model varies in numbers of joints for different experimental and input

scenarios. For example, for video-based 3D reconstruction in Chapters 4–5, we employ

skeleton model with 31 joints. For image-based reconstruction, we utilize the body

model containing 18 joints (Chapter 6) and the body model with 14 joints (Chapters 7),

following the protocols of the state-of-the-art methods for the fair comparisons. All

these skeleton models have been shown in Figure 2.2.

2.3 2D Human Pose

The image-based cues that are deployed in order to extract the 2D human pose from a

video or a single image, can be categorised into two classes, the features-based models

and the part-based models. We discuss both models one by one as below,
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(a) HDM05 (b) CMU (c) HumanEva-I (d) Human3.6M (e) CMU

Figure 2.2: Human body models with joint specifications which are exploited
in this dissertation: (a) HDM05 MoCap dataset with 31 joints used for the
video-based analysis (b) CMU MoCap dataset with 18 joints used in Chapter 6
(c) HumanEva-I MoCap dataset with 14 joints (d) Human3.6M MoCap dataset
with 14 joints (e) CMU MoCap dataset with 14 joints. (c)–(e) are utilized in
image-based pose estimation in Chapter 7.

2.3.1 Features-based Models

There are a number of features that have been used to detect and extract the relevant

interest points from the images like silhouettes (contours), edges, and the low-level

features i.e. Scale-Invariant Feature Transform (SIFT), Saliency Scale (SS), Histograms

of Oriented Gradients (HOG), Speeded-Up Robust Features (SURF) and Maximally

Stable Extremal Regions (MSER) etc.

The most common image cues used for tracking and the pose estimation include

silhouettes (contours), edges or combination of both [DR05, ST03a, SMH06]. Silhouettes

and edges require a low computational cost and are invariant to illumination, clothing

and considered well for the localization of a person. For the edge detection in an image,

first the image is blurred and then convolved through Sobel filters which is specialized

to detect lines. Silhouettes that are extracted from the multiple views are also utilized

to reconstruct the 3D pose [RSH+05]. The silhouettes-based features are inherently

considered as ambiguous because multiple 3D human poses may have same 2D image

based silhouette.

As our tracking approach is based on the low-level features, so we elaborate the low-

level features in more details. An exemplary illustration of these low-level features has

been shown in Figure 2.3. Among the low level features, the most popular is the Scale-

Invariant Feature Transform (SIFT) features [Low04]. SIFT find extrema (local max-

ima/minima) in the scale-space through computing the Difference-of-Gaussian (DoG)

image pyramid. The Difference-of-Gaussian is the approximation of the Laplacian-of-

Gaussian (LoG) and invariant to scale and rotation. In second step of key points lo-

calization, the certain candidates for the interest points are chosen—which have low
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contrast and are poorly localized along the edges. This is done through Taylor series

expansion of DoG, the principal curvatures and the Hessian matrix at the keypoint lo-

cation. The weighted direction histogram is generated in a neighborhood of a keypoint

with 36 bins. The third step of the orientation assignment has been performed by com-

puting the gradient magnitude and the orientation in a region all around the keypoint.

In the final step of the key point descriptor, these samples has been collected in 4 × 4

subregions with 8 bins. SIFT is invariant to translation, scaling and orientation as well

as robust to illumination changes and affine distortions.

In Saliency Scale (SS) features [KB01], the authors do not take into consideration

the image derivatives but in contrast rely on the salient regions. The saliency of the

region is measured by computing the entropy of the probability distribution function

of the intensity in a circular neighbourhood of that region. The authors look for the

salient features with maximum entropy. In scale space, those scales are selected where

the entropy is at its peak and is weighted according to the feature’s self-dissimilarity.

The Saliency Scale features are invariant to scale and view point changes.

[DT05] introduces Histograms of Oriented Gradients (HOG) features for human

detection. They convolve a template of HOG descriptors at different image scales and

then uses a Support Vector Machine (SVM) to discriminate the persons from other image

structures. They compute the centered horizontal and vertical gradients with simple 1-

dimensional mask [−1 0 1] at σ = 0 and then compute the gradient orientations and

magnitudes. They divide the image into 16× 16 blocks with 50% overlap and quantize

the gradient orientation into 9 bins with spacing between 0–180 degrees. The gradient

with highest magnitude has been selected. At the end, these gradient histograms are

collected in order to develop the feature vectors.

The Speeded-Up Robust Features (SURF) [BETVG08] are based on the same tech-

niques and principles as in SIFT. For interest point detection, the authors compute fast

Hessian matrix and detect blobs with maximum determinant. The scale space is devel-

oped by up-scaling the filter size in contrast to SIFT principles where the images are

down scaled to build a pyramid. The scale space starts with the filter of size 9 × 9,

later on the size of the filter increases with 15 × 15, 21 × 21 and 27 × 27. For a new

octave, the gap between filter sizes has been doubled. The convolution is approximated

with the integral images which make the whole process fast. The interest points are

localized through the interpolation of maxima of the Hessian matrix determinant in the

scale space as well as in the image space. The Haar wavelet is used in order to assign

orientation to the interest point. For that purpose, the Haar wavelet responses in x and

y-directions have been calculated in a circular region and to speed up the process again

the integral images are used. Both responses are summed up to create the orientation

vector and the longest vector assign the orientation to the interest point. The keypoint
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(a) SS (b) SIFT (c) MSER (d) colorMSER (e) SURF

Figure 2.3: The low-level image-based features: (a) Scale Saliency features
(b) Scale-Invariant Feature Transform (c) Maximally Stable Extremal Regions
(d) color Maximally Stable Extremal Regions (e) Speeded-Up Robust Features.

descriptor is based on Haar wavelet responses. The region splits up into 4×4 subregions

and each subregion has a four dimensional vector for its intensity structure. As a result,

the descriptor vector becomes 4 × 4 × 4 = 64 dimensional vector whereas the SIFT

descriptor vector is of 4× 4× 8 = 128 length. For further reading, we refer [BETVG08].

The Maximally Stable Extremal Regions (MSER) [MCUP02] is a blob detector that

finds interest points with maximum intensity region or minimum intensity region on the

basis of binary intensity thresholds. It is a stable connected component of a set of binary

images created through different levels of thresholds. A region is considered stable that

remains consistent against intensity and does not vary in size. The maximal stable region

with corresponding threshold is recorded for MSER descriptor and is approximated with

an ellipse shape. MSER is invariant to affine transformations such as if the image is

warped or skewed.

The color-based extension of Maximally Stable Extremal Regions (colorMSER) is

proposed by [CG11], where he authors shift the MSER algorithm in HSV (Hue, Satu-

ration, Value) color space. For an example, with the given hue h, saturation s and the

value v, the red channel is characterized as red(h, s, v) = |180–h| ∗ s ∗ v. The similar

functions are applied for the green and blue channels. As a result, the good inten-

sity discriminations has been found. The extended interest regions are more robust to

illumination, the backgrounds and the image noise.

2.3.2 Part-based Models

The first part-based model “Pictorial Structures” was presented by [FE73] in order to

detect the face, which exploits the appearance of the objects as a set of connected parts.

For full body human pose estimation, the classic part-based approach is to develop
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(a) [HHL13] (b) [FRDC04] (c) The presented model

Figure 2.4: Figures (a)–(b) show ellipsoid based horse body models while (c)
demonstrates the stick figure horse body model which we deploy in order to
reconstruct 3D horse motions in Chapter 8.

human model based on a set of body parts such as, a head, a torso, the arms and the

legs. Such part-based models are often demonstrated through a graph G = (J ,L), where

the vertices J corresponds to the 2D locations of Nj number of parts (joints) and the

edges L correspond to the kinematic constraints between them [FH05, FMR08, YR11,

DLGVG14]. To infer the 2D pose, commonly there are two important components: (i)

how accurately each part matches the image feature vector extracted at its location,

and (ii) how accurately the relative locations of the parts can be computed through

deformable model. More precisely, the first, the unary potential, scores a local match

for placing a part template through local features vector extracted at that location, and

the second, the binary potentials, compute the deformation cost through evaluating the

relative locations of the pairs of the parts. In this dissertation, we benefit from the part-

based models described in [YR11] and [DLGVG14]. In [YR11] the mixture of HOG

features are utilized to detect different human body parts and utilize tree structure with

Nj = 14 and Nj = 26 number of nodes (parts) for co-occurrence and spatial relationships

between parts. The authors use Support Vector Machine (SVM) for discriminative

learning. We employ [YR11] off-the-shelf algorithm to detect 2D pose from an image

in Chapter 6. In [DLGVG14] the authors utilize HOG features with 9 orientation bins

with a cell of size 5 × 5. They further apply max-filtration by a 5 × 5 kernel in order

to maximize the HOG-filter responses to the neighboring pixels. They introduce body

parts dependent random forests as a discriminative model. We follow [DLGVG14] and

choose random forest based joint regressors with 14 joints (Chapters 7).

2.4 Quadruped Models

For quadruped motions, [HHL13, FRDC04] use ellipsoid based horse body model to

recover 3D pose from horse images. In [HHL13] the horse body model consists of 35

joints with 61 degrees of freedom. They set spine of the horse as a root of the body with

6 degrees of freedom (3 for global orientation and 3 for position). Their proposed body
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model has been shown in Figure 2.4 (a). In [FRDC04] the 3D motions are estimated

from the extracted regions of interest as well as the silhouettes from video input by

the standard morphological analysis after background subtraction. They do not depend

on joints’ labelling, instead rely on the raw labeling of joints extracted from the main

features of the spine, the legs, and the head. They apply PCA on the binary images and

interpolate the optimal examples of the 3D poses. In case of failure in segmentation,

they use sketching tool to label the pose in the video.

The quadrupedal body structure that we employ in this dissertation (Chapter 8)

consists of 15 joints (all available 14 joints with one virtual marker) in order to recon-

struct the 3D poses for the quadruped motions (Figure 2.4 (c)). Unfortunately, we do

not have joint angles parameterizations in the MoCap dataset, that’s why we exploit

the joint positions in Euclidean space directly to estimate the 3D quadruped motions.
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Related Work

Student: Dr. Einstein, Aren’t these the same questions as last year’s final exam?

Dr. Einstein: Yes; But this year the answers are different.

Albert Einstein

In this chapter, we discuss briefly the existing approaches for video or images-based 3D

retrieval and reconstruction of human poses.

3.1 Generative and Discriminative Approaches

A variety of approaches has been investigated in order to estimate 3D human poses.

These approaches can be classified into three types of categories such as discriminative

approaches, generative approaches and the hybrid approaches.

• Discriminative Approaches. Earlier approaches for monocular 3D human pose

estimation [BS10, AT04, SKLM05, AT06b, BSKM08, MM06, YKC13] utilize dis-

criminative methods to learn a mapping from local image features (e.g. HOG,

SIFT, etc.) to 3D human pose or use a deep convolutional neural network [LC14,

LZC15]. Since the local features are sensitive to noise, these methods often assume

that the location and scale of the human is given, e.g., in the form of an accu-

rate bounding box or silhouette. Such types of discriminative approaches need a

large amount of training dataset to deal with a variety of viewpoints. While the

recent approach [ICS14] still relies on the known silhouette of the human body,

it partially overcomes the limitations of local image features by segmenting the

body parts and using a second order hierarchical pooling process to obtain robust

descriptors. These approaches are fast but sensitive to noise and do not generalize

well for poor image-based evidences [SB06a].

• Generative Approaches. The generative approaches [DBR00, UFHF05, UFF06,

CC09, PMBG+11, AB15] are model-based approaches and commonly model on

23
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randomly generating observable data and then rely on the best alignment. The

generative approaches formulate some energy function that optimizes the model to

fit according to the observations. The difficulties with generative approaches are:

(i) they usually need some realistic good initialization, and (ii) there may exist

multiple local models. The multiple models’ ambiguities are addressed through

activity specific models [SU10a, WFH08]. Despite of these difficulties, the gener-

ative approaches typically do not sensitive to noise and can deal adequately even

with poor image evidences [SB06a].

• Hybrid Approaches. There are some hybrid approaches which combine genera-

tive and discriminative methods together such as [SSQTMN13, KG14, PMFR14].

In [SSQTMN13], the authors first predict the 3D human pose hypotheses by com-

bining probabilistic generative kinematic models and then utilize HOG features

based discriminative 2D part detectors which weight these hypotheses. The whole

process is repeated until the method converges. The 3D Pictorial Structure Model

(PSM) proposed in [KG14] combines generative and discriminative methods. Re-

gression forests are trained to estimate the probabilities of 3D joint locations and

the final 3D pose is inferred by the PSM. Since inference is performed in 3D,

the bounding volume of the 3D pose space needs to be known and the inference

requires a few minutes per frame.

Besides of a-priori knowledge about bounding volumes, bounding boxes or silhouettes,

these approaches require sufficient training images with annotated 3D poses. Since such

training data is very difficult to acquire, we propose approaches where we do not need

corresponding 3D-2D pairs, which is not only costly but also need studio-like hardware

setup and calibration. Our proposed frameworks do not require training images with 3D

annotations, but exploits existing motion capture datasets to estimate the 3D human

pose. In short, we integrate both capturing approaches, the 3D marker-based motion

capturing and a simple RGB camera based capturing of poses, together in order to

estimate the final 3D poses.

3.2 Input-based Classifications

Some general methods to reconstruct the human poses found in prior literature can be

categorized on the basis of 2D inputs such as images, videos, sketches and kinect-based

inputs. With any type of input query and in any case, generative or discriminative,

these approaches work with 2D image-based cues and features that may be detected

or tracked in the form of joint positions, silhouettes, contours or edges. We classify
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(a) Chen and Chai [CC09]. (b) Park et al. [PCS02].

(c) Chai and Hodgins [CH05]. (d) Ren et al. [RSH+05].

Figure 3.1: A few examples for video-based 3D motion reconstruction that
exploit the motion capture library as a prior existing knowledge.

these approaches on the basis of 2D inputs as well as on the local image-based extracted

cues/features that are given to the system for final 3D pose estimation.

3.2.1 Video-based 3D Motion Reconstruction

A number of solutions has been purposed for the 3D human motion reconstruction from

the video input, either a monocular video or the video from multi-camera system. We

describe an overview of few approaches as under.

Some approaches construct statistical human pose models like transforming 2D sil-

houettes and contours into 3D human poses and motions [RSH+05, SKLM05, AT04,

EsL04, ST02, LCR+02]. Sminchisescu and Telea [ST02] extract the 2D human silhou-

ettes, predict articulation as well as the structural key parameters of the human model

and fit it onto the image-based observations through an energy minimization procedure.

In [AT04] the 3D human poses are recovered directly from the image sequences through

a sparse Bayesian nonlinear regression without exploiting any parametric structural hu-

man model. Ren et al. [RSH+05] propose a method for animating the 3D human motion,
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which exploits silhouettes extracted from three video cameras and a MoCap library in

order to select those features which are close enough to estimate the orientation of the

human character as well as to recover the 3D human body configuration. Roodsarabi

and Behrad [RB08] describe an approach for the 3D human motion reconstruction from

the video by employing Taylor method and utilize Discrete Cosine Transform (DCT) as

descriptors in the process of matching and tracking.

A few approaches propose the action specific priors in order to track the human

and estimate the 3D pose jointly [UFF06, ARS10, YGVG12, YKC13]. In [ARS10] the

pedestrian are first detected and then coupled it with deformable body parts in order

to recover the final 3D human poses in an outdoor environment. Yao et al. [YGVG12]

utilize the 2D appearance-based action specific priors for the 3D human pose recon-

struction. Yu et al. [YKC13] model the spatiotemporal action priors integrated with

part-based 2D pose prediction for estimation of the 3D human poses. Despite of these

approaches, action specific priors are still insufficient for 3D human pose prediction due

to the reason that there may exist multiple poses recognized for the same one action

category which leads to create ambiguities in pose estimation process.

A number of approaches for 3D reconstruction of human motions found in the litera-

ture that exploit geometric constraints [PS11, RSB+08] and the physics-based modeling

coupled with image-based features [WC10, VSJ08]. Wei and Chai in [WC10] reconstruct

the 3D human motion from a monocular input video through the physics-based model-

ing and the rigid body constraints. They combine physical constraints with image based

observations to estimate the human skeleton, the camera parameters and the final 3D

human poses for a few key frames from the video. Their system require a minimal user

interaction to annotate the key intermediate frames for tracking. In fact, they model 3D

human poses for the interactive intermediate key frames and then predict in-between 3D

poses by interpolation of these key frames. They impose rigid body parameterizations

with bone projection and bone symmetry constraints to compute the human skeleton.

There are many methods which exploit some prior knowledge from motion capture

dataset for the 3D reconstruction [PCS02, RSB+08, CC09, CH05, RSH+05]. Chen and

Chai [CC09] propose a model-based pipeline to reconstruct the 3D human motion se-

quences from an uncalibrated monocular video. They employ just a small set of 2D joint

trajectories tracked from a monocular input video and learn a 3D pose model by apply-

ing Principal Component Analysis with weighted combination of eigenvectors and map

it with 2D image features by nonlinear gradient based optimization framework. They

also estimate the human skeleton and the camera parameters. They enforce the absolute

length of the segments of the skeleton with 24 bones, and thus keep the segment pro-

portion constant in the 3D reconstruction. Park et al. [PCS02] describe a novel method

for the human motion reconstruction from the inter-frame feature correspondence in the
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video streaming by employing the MoCap library. They first make the reference motion

to fit onto the video through time warping and then find out the orientations of the joints

& root trajectories in order to predict the 3D human motion. The prior knowledge from

MoCap library is sometime embedded into implementation of some constraints only like

Rosenhahn et al. [RSB+08] utilize geometric prior information about the movement pat-

tern in the process of markerless pose tracking. Chai and Hodgins [CH05] reconstruct

3D human motions in constrained environment by employing a MoCap library, two syn-

chronized cameras and a small set (6-9) of retro-reflective markers. For the accurate 2D

pose extraction from the video, they apply background subtraction, color similarity con-

straints, impose specific illumination environment and utilize epipolar geometry. They

introduce neighbor graph to search into MoCap library for the relevant nearest neighbor

which are further used in motion reconstruction process.

Many of the aforementioned approaches necessitate an accurate extraction of 2D

human pose features or dependent on the special setups i.e. two/three synchronized

camera system, retro-reflective markers or the controlled environments to estimate 3D

human poses. In contrast, our video-based generative pipeline needs no any costly hard-

ware setup and work with the monocular video sequences without any pre-assumption.

Furthermore, our methodology utilize just five 2D joint locations (the four end effectors

and the head) to search into MoCap database for similar poses which are exploited in

order to reconstruct the final 3D human poses.

3.2.2 Image-based 3D Pose Estimation

Several approaches utilize 2D joint locations of the human body extracted from a single

monocular image to predict the 3D human pose. In some methodlogies [VL10, WC09,

HDK07, ZLCK05], the 2D joint locations in a image have been manually labelled, a

few approaches [FZZW14, RKS12, AB15] work on synthetic 2D input images, some

methods [SSRA+12, WWL+14, RDG13] make use of off-the-shelf 2D detector to estimate

the 2D pose from an image, and just a few approaches [SSQTMN13, LC14] estimate the

2D human pose and the 3D human poses together.

• Multiple Images. A common approach for 3D human pose estimation is to utilize

multiple images captured by synchronized cameras [BAA+14, SIHB12, YGVG12]

or multiple synthetic images [WC09, VL10]. Wei and Chai [WC09] estimate the

3D human poses, the weak perspective camera parameters and the human skeleton

from the 2D point correspondences. They also predict 3D poses from manually la-

belled 2D monocular images. They impose bone projection constraints using weak

perspective camera model and symmetric properties of the bone segments. They

introduce a new set of rigid body constraints by computing distances i.e.: between
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(a) Yu et al. [YKC13].

(b) Wei and Chai [WC10].

Figure 3.2: Examples for video-based 3D motion reconstruction; (a) repre-
sents action priors integrated with part-based 2D features in order to predict
3D pose, whereas (b) shows physics-based modeling coupled with image-based
features to reconstruct the final 3D motion.

hip joints; between left and right shoulder joints; root and left shoulder joints; root

and right shoulder joint etc. They conclude in their work that their system needs

a few single view images i.e. ≥ 5 to predict symmetric human skeletal. The au-

thors [VL10] recover the 3D pose from an uncalibrated 2D point correspondences

through least-square method combined with the assumption about rigid human

body constraints. They argue on Wei and Chai’s method [WC09] and claim that

rigid body constraints exist for only few body sub-structures, not for the entire hu-

man body. The requirement of a multi-camera system in a controlled environment,

however, limits the applicability of these methods.

• Depth Images. Since 3D human pose estimation from an image is very chal-

lenging due to missing depth information, as a solution the depth images have

been utilized for human pose estimation [BMB+11, SFC+11, GWK05]. However,

current depth sensors are limited to indoor environments and cannot be used in

unconstrained scenarios.

• Single Image. Estimating 3D human pose from a 2D pose extracted from

a single image by exploiting motion capture data has been addressed in a few
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works [SSRA+12, RKS12, SSQTMN13, WWL+14, FZZW14, AB15]. These data-

driven approaches for 3D pose estimation require some sophisticated dimensional-

ity reduction method in order to represent a solution space. A common method

is the formation of low-dimensional local model learned from some prior existing

knowledge [SHP04, CH05, BSB+07, JSMH12].

Manually Labelled Inputs. Hornung et al. [HDK07] animate 2D pictures with the

help of user interaction in the form of selection of joints and the prior information

available in 3D motion capture dataset. They present a shape deformation method

in order to animate the still image projectively. [ZLCK05] reconstruct the 3D hu-

man pose from manually labelled 2D feature points of a monocular image through

imposing biomechanical constraints and the Genetic Algorithm for optimization

process.

Instead of predicting poses with a low 3D joint localization error, an approach for

retrieving semantic meaningful poses is proposed in [PMFR14].

Synthetic Inputs. Ramakrishna et al. [RKS12] propose an activity-independent

approach where they develop an over-complete dictionary of basis vectors by con-

catenating bases from different action categories for 3D pose modeling using the

MoCap dataset and fit the model to manually annotated 2D joint locations. Their

model also has a sparse set of basis vectors which they estimate using Orthogonal

Matching Pursuit (OMP). They emphasize weak anthropometric constraints in

the form of summation of limbs lengths. Fan et al. [FZZW14] enhances Ramakr-

ishna approach [RKS12] and propose Pose Locality Constrained Representation

(PLCR) based on a large amount of 3D pose training data for 3D human pose

estimation. They first develop a hierarchical pose tree on the basis of clustering

and sub-clustering of pose data. They construct a block-structural pose dictionary

which is based on all the subspaces in the pose tree.

Off-the-shelf Estimator based Inputs. Wang et al. [WWL+14] estimate 3D pose

by using a set of basis vectors with addition of sparsity and anthropometric con-

straints. They handle 2D poses estimation using an off-the-shelf 2D pose estima-

tor [YR11]. They minimize their objective function using L1 norm error. The same

2D pose estimator is also used in [SSRA+12, SSQTMN13] to constrain the search

space of 3D poses. In [SSRA+12] an evolutionary algorithm is used to sample poses

from the pose space that correspond to the estimated 2D joint positions. This set is

then exhaustively evaluated according to some anthropometric constraints. They

model a 3D pose with linear combinations of a number of deformation modes ob-

tained through Principal Component Analysis. They represent each joint position

with Gaussian distribution which is forwarded to a set of ambiguous 3D shapes
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(a) Fan et al. [FZZW14]. (b) Simo-Serra et al. [SSQTMN13].

(c) Ramakrishna et al. [RKS12]. (d) Pons-Moll et al. [PMFR14].

Figure 3.3: A few examples for image-based 3D pose reconstruction where a
single image is given as an input.

and then one-class Support Vector Machine (OCSVM) is utilized to find out the

deviation of the 3D pose from the training set.

The approach [SSRA+12] is extended in [SSQTMN13] such that the 2D pose es-

timation and 3D pose estimation are iterated. The authors in [LC14] use a deep

Convolution Neural Network (CNN) for 3D human pose estimation. The authors

train the pose regression as well as the body part detection together by develop-

ing a shared network where the gradients can back-propagated and get benefits

from shared features of both tasks. In contrast to [RKS12, WWL+14, SSRA+12],

[SSQTMN13] deals with 2D pose estimation errors. Our approach also estimates

2D and 3D pose iteratively but it is faster and more accurate than the sampling

based approach [SSQTMN13]. We design multiple feature set to retrieve robust

nearest neighbors from the MoCap dataset, which are exploited further in recon-

struction process with multiple energy terms in order to recover the final 3D pose.

3.2.3 Sketches based 3D Pose Reconstruction

Another class of research which predict the 3D human pose from the 2D hand-drawn

stick figures [DAC+03, MQW07, JSMH12, CYI+12, YVN+14]. A sketching interface has

been presented in [DAC+03], where the drawing skill of the artist has been coupled with

the pose reconstruction algorithm iteratively in order to reconstruct the robust 3D pose

from the hand-drawn sketch. Jain et al. [JSMH12] reconstruct the 3D animation from

the 2D hand-drawn characters and create an interaction between the 3D reconstructed

character and a virtual world. The user-defined orthographic camera model is used which

is optimized through geometric projection error. The authors minimize the skeleton
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ambiguities through enforcing the hand-drawn animation limbs’ length to match with

the actual limbs’ length of the skeleton computed from pre-existing knowledge in the

MoCap dataset. In [CYI+12] the authors first conduct a survey and user study about

how people draw sketches and then propose a method in order to convert the motion

capture data into the stick figures. With an input sketch, the search and retrieval is

performed where the 2D stick figures act as a medium for visualizing and searching into

MoCap data. Yoo et al. [YVN+14] introduce a pipeline for fast animations of the 3D

human characters from the 2D sketches using the MoCap library. The authors use the

rotation curve cues to improve the 2D sketches and as a result the searching procedure

and the final 3D human character animation become more accurate and robust.

3.2.4 Kinect based 3D Pose Reconstruction

A few approaches recover the 3D pose from an incomplete Kinect based captured human

pose [SH12, ZLLS14]. In [SH12], authors propose a framework in order to synthesize a

full human posture from an incomplete pose captured through Microsoft Kinect camera.

They search for the best similar poses into the motion capture dataset and refine the

pose estimation with the positional and rotational controlling constraints. Additionally,

they also use the environmental constraints like external forces and torques computed by

a PD controller. Zhou et al. [ZLLS14] adopt a non-parametric Gaussian process model

as a prior in order to leverage the joints’ position obtained from Microsoft Kinect and

the motion capture dataset. With the learned Gaussian model, they predict the offsets

between the MoCap pose and the Kinect pose as a conditional probability distribution

and thus yield the spatial prediction energy term. They also use temporal information

to avoids velocity variations and to enforce smoothness between successive frames. The

authors further impose joint’s reliability in three aspects such as behavior reliability,

kinematics reliability, and tracking state reliability.

3.3 2D Image Features for 3D Reconstruction

A lot of existing approaches for 2D pose detection and tracking found in the literature

mainly focus on 2D image cues based on some appearance evidences like color, shape,

edges, distribution and/or knowledge of background, silhouette and contour [DR05,

ST03a] as well as the low-level local features like: SIFT [Low04], Saliency Scale [KB01],

HOG features [DT05], SURF [BETVG08], MSER [MCUP02] and colorMSER [CG11]

etc. A few approaches exploit the body parts kinematics combined with the image

cues/features in order to detect the human pose in an image [FH05, FMR08, YR11,

DLGVG14]. The details about these approaches have been discussed in Section 2.3.
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Therefore, we focus here only those 2D pose estimation techniques which are employed

to recover the final 3D human pose. The common image cues and features for automatic

2D pose estimation that are exploited further for 3D pose prediction include: shape con-

texts [SKLM05, AT06b]; silhouette and edges [DR05, ST03a, SMH06]; texture-based fea-

tures [BMP04]; Histogram of Oriented Gradients (HOG) features [BS10, OS08, SVD03];

optical or motion flow [FB02, ST03a, VBK05]; Scale-Invariant Feature Transform (SIFT)

descriptors [BSKM08, AT06a, KSM07, SLK11] and pictorial structure model [KG14,

WWL+14, RDG13, SSRA+12] etc. The method [SU10b] utilize the image features like

histograms of SIFT features and PHOG features to work on the rectified images.

The silhouettes-based features create ambiguity because more than two 3D human

poses may have very similar 2D image based silhouette. Scale-Invariant Feature Trans-

form (SIFT) descriptors are efficient but it is computationally very expensive. In our

case, we employ SURF (Speeded Up Robust Features) which is an approximation of

SIFT with significantly low computation—almost 6 time faster and more robust to

image noise as compared to SIFT. We combine SURF with MSER (Maximally Stable

Extremal Regions) and colorMSER features to detect and track 2D joints in video-based

motion reconstruction. In image-based pose estimation, we employ pictorial structure

model [YR11, DLGVG14] to detect 2D joint positions.

3.4 3D Pose Retrieval

The increasing amount of available motion capture data and the data-driven methods

require to make use of efficient motion retrieval strategies. Kovar and Gleicher [KG04]

propose Match Webs to index motion capture databases. This method has quadratic

complexity with the size of the motion capture database, since a local distance matrix

has to be computed in comparison with each pair of frames. The same complexity

holds for the computation of a neighbor graph, the data structure presented by Chai

and Hodgins [CH05]. Müller et al. [MRC05] introduce boolean features to segment hu-

man motion capture data. On combination with an efficient lookup based on inverted

lists, they retrieve logical similar motion with a complexity of N logN. The work of

Krüger et al. [KTWZ10] presents a fast method to search for numerically similar poses

and extends pose matching to motion matching by employing a so called lazy neighbor-

hood graph. The authors compare feature sets of different dimensions and found that

a 15-dimensional feature set based on the positions of hands, feet and head can de-

scribe human poses accurately and the best choice for fast similarity search. Later on,

Tautges et al. [TZK+11] enhance the lazy neighborhood graph into incremental online

version online lazy neighbourhood graph (OLNG) and reconstruct human motions using

sparse accelerometer data. Wu et al. [WTR11] create adaptive clusters using k-mean
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(a) Müller et al. [MRC05]. (b) Krüger et al. [KTWZ10].

Figure 3.4: A few examples which demonstrate the features that are used for
retrieval of similar poses from the MoCap dataset.

clustering algorithm and then build kd-tree on the basis of these clustering centers in

order to extract the character pose from a large motion capture database. Choensawat

et al. [CCH12] propose a retrieval strategy from the MoCap dataset based on the joint

speed as well as the variations in speed patterns for a short interval. In fact, they

compute derivative of the joint speed and utilize it for similarity search.

3.5 3D Reconstruction of Quadruped Motion

An overview on the previous works in computer animation specific to the quadruped

motions is given in the STAReport [SRH+08]. Most of the work regarding 3D recon-

struction from a video or an image has been done on the human motions as mentioned in

Section 3.2 and there also exists a few standard motion capture datasets for the human

motions [CMU14, GFB12, MRC+07, IPOS14, SBB10] which are publically accessible

too.

A very few work has been found in the literature with respect to reconstruction

of quadruped species motion. Huang et al. [HHL13] synthesize horse motion sequences

driven by the photographs of the horses. They manually annotate the horse motions

in the Eadweard Muybridge’s photographs through MAYA during preprocessing step.

They also present asynchronous time warping strategy in order to adjust the horse’s gait

speed, direction and the transition between different motions. In [WV03], the authors

propose 3D reconstruction method for the human and the animal. They make use of

contour detection techniques and fit a 3D model onto the extracted 2D contours. For

slow motions and simple backgrounds, this technique produces acceptable results but

a considerable user interaction is needed for the sequences that contain more complex

motions. The authors in [FRDC04] extract image parameters through applying Principal
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Component Analysis on binary input key frames of the video, and employ them to recover

3D wild life motion sequences. Later on, they interpolate these key frames using Radial

Basis Function (RBF). They also introduce the criterion on which basis the key frames

from the video can be selected and utilized to generate the final 3D motion sequences.

We are not aware of any data-driven method in this context, therefore, there is a vital

need to record systematic quadruped motion capture databases.



Part I

Motion Reconstruction from
Video
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4
Motion Reconstruction from Video

Truth is ever to be found in simplicity, and not in the multiplicity and confusion of

things.

Isaac Newton

4.1 Introduction

A lot of techniques have been proposed for human motion analysis and the 3D recon-

struction of motions but one of the most widespread and successful approaches is a

model-based generative approach. This chapter introduces a novel framework for the

model-based full body human motion reconstruction from the 2D video data, using a

motion capture dataset as a prior existing domain knowledge which contains a large

amount of the 3D poses having complete knowledge about how people perform a variety

of activities. Our proposed approach is based on the efficient search and retrieval of

nearest neighbors from the motion capture (MoCap) dataset, which is the major and

key component in almost all data-driven applications. One strength of our approach is

that we need just only five joint locations (the 2D feature sets of the four end effectors

and the head) in order to search into the MoCap dataset for the similar poses. We

exploit these retrieved similar poses further in the process of 3D motion reconstruction.

We start by extracting the 2D feature sets from a video input which may be in

the form of synthetic 2D video generated from some motion capture file through ran-

dom camera parameters or some real monocular video. In case of real input video

sequences, we deploy the local feature detectors and descriptors like SURF (Speeded

Up Robust Features) [BETVG08] coupled with MSER (Maximally Stable Extremal Re-

gions) [MCUP02, DB06] in order to detect and track five joint locations (the four end

effectors and the head). After extracting the 2D feature sets from the given 2D input

video, we search and retrieve the similar poses from the motion capture dataset. We

address the correspondence between 3D-2D pose-image data by developing a knowledge

base—an intermediate container that contains the normalized 3D pose space as well as

36
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the corresponding normalized 2D pose space. We derive the 2D normalized poses from

the 3D normalized poses through orthographic projection at different view directions in

the form of azimuth and elevation angles. For 3D pose reconstruction, we learn a local

3D pose model in low dimensional Principal Component Analysis (PCA) subspace on

the basis of the similar poses retrieved from the MoCap dataset. Accurate modeling

of priors in some low dimensional space is the fundamental technique in almost all 3D

reconstruction methods. We further constrain the local 3D pose model with some prior

energy terms as well as the projection alignment. A series of local pose models has been

learnt and utilized in creating the final global model of pose-by-pose full body human

motion reconstruction.

Our proposed reconstruction framework is inspired by the work of Chai and Hod-

gins [CH05] but there are few very distinctive differences such as: (i) Chai and Hod-

gins [CH05] use two video cameras and synchronize them through epipolar geometry but

in our case we work with a monocular video which is a more sparse input. (ii) [CH05]

also deploy a small set of retro-reflective markers with calibrated cameras which limits

the method to indoor controlled environment with various constraints i.e. illumination,

synchronization between multiple cameras, synchronization with retro-reflective markers

and the view directions. Moreover, such systems are not only costly but also problematic

and troublesome in terms of creating the setup and calibration. In contrast, we do not

rely on any other special setups (like retro-reflective markers or Inertial Measurement

Units (IMUs)). As a result, our proposed system is more flexible and can capture motion

in any indoor/outdoor environment. (iii) [CH05] endorse assumption that most of the

retro-reflective markers must be seen by at least one camera which do not allow user to

move freely but our proposed pipeline need not such a assumption about the movements

of the performing actor. (iv) Chai and Hodgins [CH05] employ all 18 joints of their

skeleton model for searching the similar poses into the MoCap dataset. In contrast, we

utilize 2D locations of the just five specific joints (the four end effectors and the head)

for search and retrieval of nearest neighbors from the MoCap dataset which makes our

system faster.

4.2 Overview

We propose a data-driven motion retrieval and reconstruction pipeline, where we search

into MoCap dataset for 3D motion sequences that are very similar to the input control

signals. We develop the feature sets based on the positions of the four end effectors

and the head [KTWZ10] on which basis we create nearest neighbor search. This will be

discussed in Section 4.3.1. For the input query motions, we consider two scenarios: the

synthetic examples which we create from the motion capture sequences through some
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Figure 4.1: System overview: In a pre-processing step, we develop a knowledge
base consisting of the 3D and 2D normalized pose spaces, denoted as (Ψ) and
(ψ) respectively, using the MoCap library. The data structure kd-tree is built
on the 2D normalized poses. The 2D feature sets extracted from the 2D input
video sequences are given as input to the system for K nearest neighbor search.
These retrieved closest poses are then exploited in learning the 3D local pose
model as well as in the final frame-by-frame motion reconstruction process.

random camera parameters and the real video motion clips. In case of real video input,

the relevant 2D features are detected and tracked using SURF and MSER feature de-

tector/descriptors and are used as query for the similarity search. This part is described

in Section 4.3.2. As we are dealing with the 2D inputs, therefore for the correspon-

dence between 2D-3D data, the 3D feature sets extracted from the MoCap data are

projected onto the 2D image-plane at different azimuth and elevation angles through

an orthographic transformation and as a result we get the 10-dimensional feature sets

which are used further to build a spatial data structure—in our case we use a kd-tree.

With the feature sets in hand extracted from the query motion sequences, a K nearest

neighbor (Knn) search is performed. This will be discussed in Section 4.3.3. We built a

3D local pose model that is constrained by the MoCap priors and is mapped onto input
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Figure 4.2: Orthographic projection camera model which we exploit for the
sampling of the MoCap dataset at different view directions in order to create
the 2D normalized pose space ψ.

control signal through utilizing multiple energy terms. We finally optimize the objec-

tive function by deploying the gradient decent-based optimization algorithm in order to

synthesize the 3D poses frame-by-frame. We will discuss all this stuff in Section 4.4. In

Section 4.5, we present quantitative and qualitative evaluation results of our proposed

framework and at the end we conclude this work in Section 4.6. The overall system flow

has been illustrated in Figure 4.1.

4.3 Motion Retrieval

The first step towards motion retrieval and reconstruction is the selection of those feature

sets which should not only be of lower-dimensional, but can also represent the high

dimensional human pose without losing significant information. We select positions of

the five joints (the four end effectors and the head) for the feature sets in order to

search and retrieve nearest examples from the MoCap dataset. The authors [KTWZ10]

conclude in their work that the feature set based on the four end effectors and the head

is the best choice especially for the real-time applications. In contrast to [KTWZ10],

we are dealing with more sparse input signals that is the 2D video data rather than the

3D poses. We devise the 2D feature sets which are derived either from the synthetic

examples directly or from the real video through employing SURF and MSER feature

detectors and descriptors. We denote the skeleton model with S, the total number of all

joints included in S with notation Nj, a set of joints as J while a set of joints involved

in the feature sets are represented with notation JF . In this chapter, JF consists of a

set of five joints e.g. the four end effectors and the head. Thus, using the joint set JF ,
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(a) az = 0 deg. (b) az = 30 deg. (c) az = 60 deg. (d) az = 90 deg.

(e) az = 0 deg. (f) az = 30 deg. (g) az = 60 deg. (h) az = 90 deg.

Figure 4.3: The representation of the 3D poses (first row) and the corre-
sponding 2D poses (second row) obtained through orthographic projection,
when the elevation angle is fixed to 45 degree and the azimuth angles are: 0
degree, 30 degree, 60 degree and 90 degree. The bigger stars with red color
represent those body joints JF which are selected to develop the feature sets.

we develop the feature sets F syn
5 which are extracted from the MoCap dataset and the

feature sets Fvid
5 which are detected and tracked from the video input control signals.

4.3.1 Feature Set from MoCap-Data

We extract the feature sets F syn
5 from the MoCap dataset in three important steps

described in detail as under,

• In first step, we extract 3D positions of the four end effectors and the head from

the 3D normalized poses. For a normalized pose, we consider all joint positions

in the root node coordinate system. In this representation, we discard orienta-

tion and positional information in the global system—the poses might be similar

independent from the actual view and place, they are captured at.

• The second step involves the projection of the 3D normalized poses onto a virtual

image-plane, that is parameterized by the elevation and azimuth angles. We make

use of an orthographic projection and ignore all intrinsic camera parameters. The

orthographic camera model is illustrated in Figure 4.2. As a result, we obtain the

2D feature sets depending on the different view directions that are specified by the

elevation and azimuth angles, the plane is parameterized with.

• Finally, in a third step, the feature set F syn
5 is computed by an additional normal-

ization step. We translate the 2D feature points to have their center of mass at the
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Figure 4.4: The dictionary of features (DOFs) which we have developed for the
process of extracting feature sets from the video input control signals. These
feature sets are then used to retrieve the nearest neighbors from the MoCap
dataset, which are further exploited in the final 3D reconstruction.

origin of the coordinate system. This step is necessary to get the feature set com-

parable to the later described video-based feature set Fvid
5 , where no articulated

skeleton exists that could be used for normalization.

A few examples of the 3D poses with the corresponding 2D poses obtained through

orthographic projection at various view directions as well as the derived feature sets are

shown in Figure 4.3.

4.3.2 Feature Set from Video Data

We develop the feature sets Fvid
5 from the input video data, that are comparable to the

feature sets F syn
5 extracted from the motion capture data.

Camera Parameters. We have recorded the video sequences for input query using

a Kinect RGB camera and use Kinect 3D skeleton information of the first few frames

for camera calibration only. The transformation between 3D position of ith joint, Xi =

[Xx,i,Xy,i,Xz,i, 1]T ∈ R4, and the ith joint of 2D image-based pose, xi = [xx,i, xy,i, 1]T ∈
R3, in homogeneous coordinate system is,

xi =MXi, (4.1)
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where M is the camera matrix. The detailed version of projective Equation 4.1 can be

expressed as, 
xx,i

xy,i

1

 = W
[
R(α,β,γ) | T(x,y,z)

]

Xx,i

Xy,i

Xz,i

1

 , (4.2)

where
[
R(α,β,γ) | T(x,y,z)

]
are the extrinsic camera parameters which involve 3 rota-

tional parameters (α, β and γ) and the 3 translational parameters (Tx, Ty and Tz).

Under scaled orthographic projection [PMFR14, AB15], γ = 0 and Tz = 1. The term

W represents the intrinsic or internal camera parameters and is illustrated as,

W =


sx κ εx

0 sy εy

0 0 1



f 0 0

0 f 0

0 0 1

 . (4.3)

The notations f is the focal length in pixel size units, κ is the skew coefficient between

x-axis and y-axis and its value is set to be zero, sx and sy are the scaling factors in

x and y-directions, εx and εy are the principal points which are ideally considered as

image centers. For square-pixels, sx is equal to sy. Using these values, the Equation 4.3

becomes,

W =


s 0 εx

0 s εy

0 0 1



f 0 0

0 f 0

0 0 1

 =


ρ 0 εx

0 ρ εy

0 0 1

 , ρ = sf. (4.4)

As we are dealing with static camera and consider the translation zero under the as-

sumption that the center of the mass of the 3D pose coincides the 2D pose centroid, we

only have to find out ρ as unknown parameter for the intrinsic camera parameters which

can be computed by the already known 2D-3D information of the first few frames.

Feature Detection and Tracking. In case of real video input, we detect and track

the features of the hands, feet and the head for all video sequences1. For that pur-

pose, we utilize the local feature detectors/descriptors such as SURF (Speeded Up

Robust Features) [BETVG08] combined with MSER (Maximally Stable Extremal Re-

gions) [MCUP02, DB06] and colorMSER. The detail for these local feature detectors/de-

scriptors has been discussed in Section 2.3. We first manually annotate the positions of

the hands, feet and the head in the first frame of the video and draw boxes around their

boundaries. Using SURF, MSER and colorMSER feature detection techniques, the 2D

1We employ the four end effectors (left/right wrists, left/right ankles) and the head for the feature
joints JF when we deal with the MoCap dataset while for the video sequences, the feature joints
JF includes left/right hands, left/right feet and the head.
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(a) Skeleton model. (b) Joints’ details.

Figure 4.5: (a) The skeleton model S with all Nj = 31 joints. The joint set
JF is represented with red color circles. (b) illustrates all joints’ details.

image features are extracted. These extracted features are tracked in next frames by

matching them with the already extracted features of the previous frames. If the features

are not matched with previously detected features, the box moves around (left, right, up

and down) until the features are matched. When the features are matched, the box will

update its position and move to the new position and so on. Like bags-of-words model,

we develop a dictionary of features (DOFs) which maintains all the extracted features

of the previous frames. The extracted features of the new frame are also added into

this dictionary of features. In this way, DOFs has complete record of the features of the

hands, feet and head at different positions and orientations and we can deal properly the

process of matching as well as the issues that may arise due to the different orientations

and positions of the hands, feet and head in different frames. An exemplary illustration

of DOFs has been demonstrated in Figure 4.4.

Normalization Step. The normalization step is necessary here too for the feature

sets extracted from the video data Fvid
5 in order to match the coordinate systems of

both kinds of feature sets i.e. Fvid
5 and F syn

5 . We consider the center of the mass as the

origin of the coordinate system by computing the mean value and translate the feature

set to the origin.
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4.3.3 Nearest Neighbors Search

The efficient search and retrieval of the 3D pose examples which are closest to the

input control signals is the keystone in our proposed data-driven methodology. We

develop an intermediate container, the knowledge base, through which we make search

and retrieval more feasible and convenient. We define knowledge base as a store keeping

all corresponding information needed for the efficient pose retrieval from the MoCap

dataset. It is a preprocessing step that has been performed for only once.

We build up the 3D normalized pose space Ψ which includes the 3D feature sets

extracted from the 3D normalized poses. We normalize the 3D poses by discarding

orientation and translation information from the poses available in our motion capture

dataset as mentioned in Section 4.3.1, so that the process of search and retrieval become

free from the ambiguities that may arise due to these parameters. The 3D normalized

pose space becomes the first element to be added into our intermediate container the

knowledge base.

The input query to our reconstruction approach is either the 2D synthetic video

examples or some real video sequences. For 2D input video, there exists neither any

articulated skeleton for the 2D pose nor any well defined camera parameters with 11

degrees of freedom are available. Furthermore, we assume no any subject’s relevant

characteristics like height, weight or face directions etc. Having lack of these parameters,

we have to search for 3D similar poses into the MoCap dataset just on the basis of a

few joint locations JF of the 2D pose. To cope this, we create the 2D normalized pose

space ψ by projecting the 3D normalized feature sets onto the 2D image plane using

orthographic projection (see Section 4.3.1) through a number of virtual cameras, which

are basically the view directions with different combinations of azimuth and elevation

angles. Due to the limited memory capacity and computational resources, we create

18 × 7 virtual cameras by spanning the azimuth angles (0–20–340) degrees with step

size 20 degree and the elevation angles (0–15–90) degrees with step size 15 degree. To

this end, we have 2D normalized pose space consisting of the 2D feature sets obtained

through multiple specified view directions. We also include this 2D normalized pose

space into the intermediate knowledge base. Based on these 2D normalized pose features,

we construct a kd-tree that is used for K nearest neighbor search.

Depending on the considered scenario, we extract the feature sets F syn
5 or Fvid

5 from

the input sequences and search into the MoCap dataset for K nearest neighbors for

every single frame. We make no any assumption about the direction at which our input

motion sequence was recorded during the reconstruction process. Due to the sampling

of the MoCap data from different view directions, the same frame of the database might

be included to the neighborhood of a query frame multiple times. This doesn’t mean
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a disadvantage—these frames contribute stronger in the later reconstruction process. If

one wants to avoid such a stronger influence on the result, the duplicates could be easily

removed from the neighborhood. In our experiments, we have not found this additional

step necessary. We will elaborate the influence of the size of Knn as well as the impact

of sampling of the MoCap data in Section 4.5. We use ANN (Approximate Nearest

Neighbor searching) C++ library [MA06] in order to search for K nearest neighbors.

The time complexity for K nearest neighbor search using kd-tree is represented as,

O(KM log(P×N)) where K is the fixed value for K nearest neighbors, M is the size (total

number of frames) of the query, P is the number of 2D projections (number of virtual

cameras) and N is the size (total number of frames) of the MoCap data.

4.4 Online Motion Reconstruction

The ultimate goal of our proposed reconstruction pipeline is to recover the 3D motion

sequences as close to as the original motion sequences. In order to synthesize the final

3D motion sequences, we make use of the domain knowledge embedded in the motion

capture dataset through knowledge base, which is coupled with projective constraint and

the temporal coherence of the input control signals. The presented approach exploits the

lazy learning where the algorithm waits for the query before the process of generalization.

More precisely, all the computations in lazy learning based methods are delayed until an

explicit request or a query is made. Having in hand K nearest neighbors, first a 3D local

pose model is developed. Chai and Hodgins [CH05] argue in their paper that the local

models are sufficient and adequate in order to develop a global model. We reconstruct

the 3D motion sequences by the linear combination of the local models [CH05, BSB+07,

JSMH12, WWL+14]. We formulate the process of reconstruction as energy minimization

problem where the different energy terms involved in optimization ensure that the model

fits even in case of some contradictory scenario like non-existence of anthropometry

constraint in input 2D pose. The optimization itself is implemented using the gradient

decent based non-linear method. The process of optimization for the reconstruction is

the bottleneck in the performance of the system.

4.4.1 Local Model for Pose Synthesis

Safonova et al. [SHP04] describe in their work that the human motions can be rep-

resented efficiently in low-dimensional space. We develop the 3D local pose model in

low-dimensional PCA subspace on the basis of joint angle parameterizations of K near-

est neighbors which are retrieved from the MoCap data by the given 2D input feature

sets at current frame t. We denote the set of joint angle parameterizations of K closest
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examples at current frame t as Qt = {Qt,k|k = 1, . . . ,K} ∈ Q in quaternion pose space

and set of corresponding joint positions with Xt = {Xt,k|k = 1, . . . ,K} ∈ R. The 3D

synthesized pose, represented as Q̃, is the linear combination of a set of V basis vec-

tors Bt = {bt,v|v = 1, . . . , V } at frame t, which are basically the principal components

computed from K nearest neighbors. The principal component coefficients are the eigen-

vectors with the largest eigenvalues of the covariance matrix of K nearest neighbors.

The µt is the mean of the K nearest neighbors, Ct is the low-dimensional representation

of the current pose in coordinates of PCA space and V is the number of basis poses.

Mathematically,

Q̃t =
V∑
v=1

ct,vbt,v + µt, (4.5)

Q̃t = CtBt + µt. (4.6)

In our experiments, we have found that 32 eigenposes are enough to produce very plau-

sible results.

4.4.2 The Objective Function

We formulate the objective function with a set of four energy units to fit the 3D local

linear model according to the MoCap prior in low dimensional space through optimiza-

tion. These four energies are: prior energy, pose energy, control energy, and smoothness

energy, which are combined together to generate the energy minimization function for

motion synthesis. Mathematically,

Q̂ = arg min
Q̃

(wprEpr + wpsEps + wcEc + wsEs), (4.7)

where, the notations wpr, wps, wc and ws are the weights for prior energy, pose energy,

control energy and smoothness energy respectively. These weights are user defined

constants and in our experiments, we found their values as: wpr = 0.5, wps = 1, wc = 0.5

and ws = 0.03. Moreover, each energy is normalized with a normalization factor Zt,

which represents the number of elements involved in the specific energy unit at current

frame t.

Prior Energy. It measures a-priori likelihood of the current synthesized pose and

restricts the synthesized pose to produce acceptable results in accordance with pre-

existing knowledge which is available in the MoCap dataset and is retrieved in the form

of joint angle configurations {Qt,k|k = 1, . . . ,K} of K closest examples at current frame
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t. Mathematically, it is computed through Mahalanobis distance as,

Epr =
1√
Zt
· ‖(Q̃t − µt)TΩ−1

t (Q̃t − µt)‖2, (4.8)

where Q̃t is the synthesized pose, µt is the mean vector of K examples at frame t

and (Q̃t − µt)T is the transpose of the difference between them. The term Ω−1
t is the

inverse of the covariance matrix of K examples which is calculated with Singular Value

Decomposition (SVD).

Pose Energy. This energy unit is entertained only when the real video sequences are

given as input query. We assume that in case of 2D image feature sets Fvid
5 given as

input, we may synthesize poses which are affected by some back and forth unnecessary

movements. To avoid these artifacts, we introduce the pose energy which optimize the

joint positions of the synthesize pose according to the joint positions {Xt,k|k = 1, . . . ,K}
of the retrieved K nearest neighbors. Mathematically,

Eps =
1√
Zt
· ‖(X̃t − ut)TΛ−1

t (X̃t − ut)‖2, (4.9)

where X̃t is the positional representation of the synthesized pose at frame t, which we

get by applying forward kinematics function on the synthesized pose Q̃t. The term ut

is the mean vector and Λ−1
t represents the inverse of the covariance matrix, both are

computed on positional data of the K examples at frame t.

Control Energy. Control energy minimizes the distance or deviation between 2D

projection of the synthesized pose X̃t and the 2D estimated feature sets of the image-

based 2D pose xt at current frame t. Here, we consider only those joints JF that involve

for generating the feature sets e.g. the four end effectors and the head,

Ec =
1√
Zt
·
√∑
i∈JF

‖x̃t,i − xt,i‖2, (4.10)

where xt,i is the ith joint’s 2D estimated position at current frame t and x̃t,i represents

the ith joint’s position of the projected 2D pose x̃t which we compute as,

x̃t = (INj×Nj
⊗Mt)X̃t, (4.11)

where Mt is the projection matrix, I represents the identity matrix and ⊗ denotes the

Kronecker product.
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Databases Details

DBcomp It contains all motion sequences included in HDM05 MoCap
dataset except the testing motions that are to be reconstructed,
and is sampled with the elevation angles (0–30–90) degrees and
the azimuth angles (0–30–330) degrees.

DBcomp It includes all motion sequences of HDM05 MoCap dataset except
the testing motions, while the elevation angles are set as (0–15–90)
degrees and the azimuth angles are (0–20–340) degrees.

D̂Bcomp It includes all motion sequences of HDM05 MoCap dataset exclud-
ing the testing motions, and the sampling is done with the eleva-
tion angles (0–15–90) degrees and the azimuth angles (0–10–350)
degrees.

D̃Bcomp It contains all motion sequences of HDM05 MoCap dataset except
the testing motions, with the elevation angles (0–10–90) degrees
and the azimuth angles (0–10–350) degrees.

Table 4.1: The view-based databases: The details of different databases which
we develop in terms of view directions (the virtual cameras) for quantitative
evaluation.

Smoothness Energy. The smoothness energy term imposes smoothness on the syn-

thesized pose through the temporal coherence and avoids high frequency jittering and

jerkiness artifacts. We exploit previously reconstructed poses to restrict the current syn-

thesized pose to have an impact from the already reconstructed poses. Mathematically,

Es =
1√
Zt
·
√
‖(Q̃t − 2Q̂t−1 + Q̂t−2)‖2, (4.12)

where Q̃t is the current synthesized pose at frames t while Q̂t−1 and Q̂t−2 are the

reconstructed poses at frames t− 1 and t− 2 respectively.

4.5 Performance Evaluation

We evaluate the performance of our proposed approach in both ways, quantitatively as

well as qualitatively. We deploy HDM05 [MRC+07] motion capture dataset in order

to carry out all these experiments. This is a heterogeneous dataset which consists

of 70 different motion classes performed by five different actors. It includes roughly

1500 motion clips recorded at 120Hz. We first down-sample the MoCap dataset from

120Hz to 30Hz, which results into roughly 380K 3D poses. For quantitative analysis, we

design and conduct a number of experiments utilizing a variety of databases e.g. view-

based databases and actor-specific databases, which are developed with respect to view

directions and the performing actors respectively as described in Tables 4.1 and 4.2.
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Databases Details

DBcomp It includes all motion sequences of HDM05 MoCap dataset except
the testing motions that are to be reconstructed, while the eleva-
tion angles are set as (0–15–90) degrees and the azimuth angles
are (0–20–340) degrees as mentioned earlier in Table 4.1.

DBactorMin It contains all motions of HDM05 excluding the motions of one
specific actor performing in test motion sequences, e.g. DBmmMin

includes all motion sequences excluding the input motions per-
formed by the actor mm.

DBactor This database contains all motions of just one performing actor ex-
cluding the test motion sequences, e.g. DBmm includes all motion
sequences performed by the actor mm.

DBactorMirr It contains only one specific actor’s motions with mirroring copies
as well except the test motion sequences, e.g. DBmmMirr includes
all motion sequences performed by the actor mm plus the mirror
poses are also included in the database.

Table 4.2: The actor-specific databases: The details of different databases
which are developed in terms of performing actor for quantitative evaluation.

We build up the testing dataset which includes 2D synthetic videos of different motion

classes from easy to hard motions such as: walking motions (walking 2 steps straight with

left/right start, walking 4 steps straight with left/right start, walking in left/right circle

etc.), jumping jack motions and the cartwheel motions. We generate these synthetic

videos from the MoCap files using some random camera parameters. We also specified

a wide range of testing view directions i.e. the azimuth angles = 0–5–180 degrees with

5 degree step size and the elevation angles = 0–10–90 degrees with 10 degree step size.

For qualitative analysis, we record the video sequences using RGB Kinect camera. We

use the skeleton model which consists of Nj = 31 joints as described in Figure 4.5.

As performance metric for quantitative evaluation, we compute average Euclidean

distance in centimeters between joint positions of the reconstructed pose and the ground

truth pose relative to the root joint position,

E =
1

M

1

Nj

M∑
t=1

Nj∑
i=1

·
√
‖(X̂t,i − X̂t,root)− (Xgt

t,i −X
gt
t,root))‖2, (4.13)

where X̂t,root is the root joint of the reconstructed pose X̂t and the Xgt
t,root represents

the root joint of ground truth pose Xgt
t at current frame t.
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(a) K = 64 (b) K = 128 (c) K = 256 (d) K = 512

Figure 4.6: Knn Comparisons: The average reconstruction error (cm) for
different numbers of nearest neighbors (K) at randomly picked four different
view directions, when the walking motion sequences are given as input query.

4.5.1 Quantitative Evaluation

We evaluate our proposed framework quantitatively on synthetically generated 2D video

examples. We decompose our experiments into different experimental scenarios and

setups such as:

• First, we carry out a few pre-experiments to fix some parameters that contribute

significantly in proposed methodology.

• Second, we evaluate our presented method for view-based databases which are

developed through sampling of the MoCap library at various view directions (the

virtual cameras). Under this setup, we not only testify the system’s efficiency on

different motion classes like walking, jumping jack and cartwheel motions etc. but

also investigate that how the developed system performs at variety of test view-

points.

• Third, we check the performance of our approach for different experimental setups

and actor-specific databases created with respect to the performing actors.

• Fourth, at the end, we test effectiveness of our approach for noisy input queries

with various levels of noise.

4.5.1.1 Nearest Neighbors (K)

We perform a few pre-experiments in order to set some suitable value for the parameter

K. For that purpose, we check the presented reconstruction approach’s efficiency for four

different values of K like 64, 128, 256 and 512 at randomly picked four view directions

i.e. {el=30, az=50}, {el=30, az=55}, {el=30, az=70} and {el=30, az=80}. We observe
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from the results as shown in Figure 4.6 that when the value of K is kept 256, the

reconstruction error drops significantly. The value of K may vary depending on the

size of the database, but in our case, the best value for K is 256 which we fix for all

other experiments. We also conduct experiments with fixed radius bound and found

that it is computationally more costly and does not produce very promising results as

well. Moreover, to fix the size of the radius for all types of motion categories also create

ambiguities in retrieval of the closest examples because for different motion classes the

optimal radius size varies. For example, the radius size for walking motion should be

smaller as compared to the radius size for jumping jack or cartwheel motions because the

MoCap dataset has more 3D poses relevant to walking motion sequences. As a result,

in our case, we rely on the fixed K nearest neighbor search method with the value for

K equal to 256.

4.5.1.2 Database Sampling

We sample the MoCap dataset utilizing numerous virtual cameras with a variety of

combinations of azimuth and elevation angles as illustrated earlier in Section 4.3.1. To

check the performance of the developed algorithm with respect to the virtual cameras,

we construct different view-based databases by exploiting a number of virtual cameras

with view directions i.e. the azimuth angles (0–360) degrees and the elevation angles

(0–90) degrees with step sizes 30, 20, 15 and 10 degrees as described in Table 4.1. We

test the effectiveness of the presented system in two ways as,

• In first case, we analyse our approach with view-based databases for all motion

classes. The results in the form of average reconstruction error for all testing

viewpoints (the azimuth angles = 0–5–180, the elevation angles = 0–10–90) are

reported in Table 4.3, where we discover that when we deploy more numbers of

virtual cameras like in database D̃Bcomp, the system performs more efficiently for

all types of motion classes.

• Second, we modify the above experiment and investigate the system’s behaviour at

some specific testing view directions i.e. {el=30, az=25}, {el=30, az=35}, {el=30,

az=45} and {el=30, az=55} when only jumping jack motion sequences are given as

input. The results in average reconstruction error described in Figure 4.7 endorse

our findings in first case, that is, with more virtual cameras (D̃Bcomp), we are able

to get better reconstructions with lower reconstruction error.

The database with higher numbers of virtual cameras, no doubt, produces better results

but allocate more computational resources and memory space as well. So, considering

both, the performance and the computational resources with memory space, we select the



4. Motion Reconstruction from Video 52

Evaluation with respect to Database Sampling

Methods Walk Straight Walk in Circle Jumping Jack Cartwheel Average

DBcomp 3.142 3.038 12.803 11.735 7.679

DBcomp 2.774 2.752 9.706 8.767 6.084

D̂Bcomp 2.573 2.466 7.992 7.605 5.159

D̃Bcomp 2.458 2.276 7.283 7.666 4.920

Table 4.3: Comparison on view-based databases (see Table 4.1) for different
motion classes: The average reconstruction errors in (cm) are computed at wide
range of testing viewpoints (the azimuth angles = 0–5–180, the elevation angles
= 0–10–90).
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(a) DBcomp (b) DBcomp (c) D̂Bcomp (d) D̃Bcomp

Figure 4.7: Comparison on view-based databases at four specified test view
directions: The average reconstruction errors (cm) are computed utilizing these
databases that are developed on the basis of virtual cameras as illustrated in
Table 4.1, (a) DBcomp, (b) DBcomp, (c) D̂Bcomp and (d) D̃Bcomp. For this
experiment, the jumping jack motion sequences are given as input query.

database DBcomp with the elevation angles (0–15–90) and the azimuth angles (0–20–360)

to carry out further experiments.

4.5.1.3 Motion Categories

We check the presented system’s performance on different types of motion categories

at all test viewpoints individually utilizing diverse databases and experimental setups.

The average results are reported in Table 4.3 and Table 4.4, which explore that we get

very low reconstruction errors for all types of walking motion sequences while for other

motion classes like jumping jack and cartwheel motions, we get comparatively higher

reconstruction errors as expected. The increase in errors for these motion categories is

due to the performance dissimilarities between the actors. For an example, for cartwheel

motions, every actor performs it in his own way and even more, someone may not

execute it accurately. That’s why, it is considered as one of the toughest motions to be
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reconstructed. Despite of all, our approach still produces acceptable results for these

motion sequences. The more reconstruction results for every test viewpoint specific to

performing actors bd and mm are reported in Figure 4.8(a)–(d) and Figure 4.9(a)–(d)

respectively, where an average reconstruction error graph for each motion class has been

presented. In this graph, we represent the azimuth angles from 0 to 180 degrees with

step size 5 degree along x-axis and the elevation angles from 0 to 90 degrees with step

size 10 degree along y-axis. The error in the corresponding reconstruction is color coded.

4.5.1.4 View Directions

In this experimental scenario, we evaluate our approach quantitatively at a large number

of test view directions (the azimuth angles = 0–5–180, the elevation angles = 0–10–90)

and demonstrate that how the different view directions exert influence on overall system’s

performance for different kinds of motion classes like walking motions, jumping jack

motions, and cartwheel motions.

• Walking Motions. From experiments for walking motions, it is observed that at

top view, almost the best results are obtained in terms of reconstruction error due

to the reason that in case of top view for walking motion, the movements of the

feature joints JF are more elaborate as compared to any other view directions and

as a result, the system performs well. Similarly, the side view also shows optimum

results for walking motion sequences. In contrast, when there is a front view, the

reconstruction error seems to be high due to the fact that at front view directions,

it is difficult to capture the detailed and accurate movements of the feature joints

JF , especially the movements of the end effectors. In conclusion, the best suitable

view for all types of walking motions is the combination of the top views and side

views, when just a set of feature joints JF (the four end effectors and the head)

are employed to recover the final 3D motion from the video input, otherwise the

head-mounted top view motion capture is considered as the most difficult and

ambiguous scenario. The worst view for the walking motions is a front view at

lower elevation angles. All these significant conclusions are quite obvious in average

reconstruction error graph shown in Figure 4.8(a)–(b) and Figure 4.9(a)–(b) for

actors bd and mm respectively.

• Jumping Jack Motions. We observe just opposite behavior in jumping jack

motions because the movements of the end effectors are in opposite directions to the

walking motions. From the top view and side view, the high reconstruction error is

executed while when there is a front view, the lower reconstruction error is obtained

as evident from Figure 4.8(c) corresponding to the actor bd and Figure 4.9(c)

corresponding to the actor mm.
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Evaluation in terms of Performing Actors

Methods Walk Straight Walk in Circle Jumping Jack Cartwheel Average

DBcomp 2.774 2.752 9.706 8.767 6.084

DBactorMin 4.033 3.722 12.989 13.811 8.638

DBactor 2.101 2.115 5.690 7.923 4.457

DBactorMirr 2.043 2.110 5.299 7.004 4.114

Table 4.4: Influence of the performing actor with actor-specific databases (Ta-
ble 4.2). The average reconstruction error in (cm) are reported for different
types of motion classes at wide range of test viewpoints (the azimuth angles =
0–5–180, the elevation angles = 0–10–90).

• Cartwheel Motions. For cartwheel motions, no such type of behavior like in

walking motion or jumping jack motion has been observed. For all testing combi-

nations of azimuth and elevation angles, approximately similar results in terms of

average reconstruction error have been executed due to the continuously changing

positions of the feature joints JF . The results for cartwheel motions for the actors

bd and mm can be seen in Figure 4.8(d) and Figure 4.9(d) respectively.

4.5.1.5 Performing Actors

We also analyse our proposed methodology against a variety of databases developed in

terms of performing actor as explained in Table 4.2, referred as actor-specific databases.

We deploy these databases to carry out experiments in order to investigate the impact of

the concerned performing actor on the proposed system’s efficiency. We conduct these

experiments on synthetically generated videos and discuss one by one as under;

• DBcomp. The databaseDBcomp consists of complete motion capture dataset HDM05

at sampling rate 30Hz. In this case, we only remove the testing motion sequences

from the MoCap dataset, which are going to be reconstructed. We report the aver-

age reconstruction errors for all testing viewpoints (the azimuth angles = 0–5–180,

the elevation angles = 0–10–90) in Table 4.4. From the results, we observe that

our proposed approach performs well and produces very good results with low

reconstruction errors for all types of motion categories.

We extend the experiment to see the impact of all testing viewpoints individually

under same setup. For that purpose, we input the walking sequences of the per-

forming actor mm as well as the walking sequences of the performing actor bd.

The results are presented in Figure 4.10(b) and Figure 4.11(b) respectively which

explore that our proposed system executes very good results at almost all testing

view angles. Similar behavior has been observed for all types of motion classes

and other performing actors as well.
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• DBactorMin. We develop this database where we drop out all motion sequences of

that specific performing actor whose motion sequences are given as input to the

system,

DBactorMin = DBcomp −DBactor. (4.14)

The results by taking average of all test viewpoints (the azimuth angles = 0–5–180,

the elevation angles = 0–10–90) are reported in Table 4.4. From the results, we

discover that the error raises a little bit up due to the skeleton discrepancies as

all the motions of the input-relevant performing actor are no more the part of the

database.

We again extend the experiment to evaluate the system at every test viewpoint

under this setup. We develop the database DBmmMin that includes all motion

sequences of HDM05 excluding motion sequences of performing actor mm,

DBmmMin = DBcomp −DBmm. (4.15)

When we query the walking sequences of the actor mm, the performance of the

proposed approach drops due to the skeleton dissimilarity but the results are still

acceptable as obvious in Figure 4.10(a). Similar results have been obtained for the

actor bd on the database DBbdMin (Figure 4.11(a)),

DBbdMin = DBcomp −DBbd. (4.16)

• DBactor. We further investigate the influence of the performing actor on system’s

performance by conducting a few more experiments. We develop the database

DBactor which consists of the 3D poses of that specific performing actor who per-

forms in the test motion. We just remove the testing input motion sequences. The

reconstruction error drops a bit more in this setup as the database only includes

all the motion sequences of the same actor who is present in testing motion, as

evident from Table 4.4.

To see the further impact, we testify this experimental setup at all testing elevation

and azimuth angles for the actors mm and bd. We develop the databases DBmm
and DBbd which consists of only the motion sequences of the actor mm and bd

respectively. We just remove the testing input motion sequences only. The walking

motion sequences of the actors mm and bd are given as input to the system and

the results are reported in Figure 4.10(c) and Figure 4.11(c) respectively, where

we have found that the reconstruction results have been improved comparatively

at almost all viewpoints for both actors.
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Evaluation on Noisy Inputs

Methods Walk Straight Walk in Circle Jumping Jack Cartwheel Average

std = 0.0 2.774 2.752 9.706 8.767 6.084

std = 0.2 2.888 2.820 9.927 8.755 6.097

std = 0.5 3.028 2.930 10.237 8.915 6.277

Table 4.5: The influence of noise on the proposed system. The average recon-
struction error in (cm) with different noise levels for all types of motion classes
at testing viewpoints (azimuth angles = 0–5–180, elevation angles = 0–10–90).

• DBactorMirr. For completeness, we also carry out experiments with the database

DBactorMirr which is basically the database DBactor combined with the mirrored

3D poses. The error drops a little bit more as the database contains more 3D poses

with mirrored copies.

To see the influence at all testing viewpoints, we build up the database DBmmMirr

where the database includes the motions of the actor mm and the mirrored 3D

poses. In this scenario, the error decreases a bit more and we acquire the best

reconstruction result with the same input of walking motions of the actor mm

as obvious from Figure 4.10(d). Similar results are found for the actor bd on the

database DBbdMirr (see Figure 4.11(d)).

4.5.1.6 Noisy Inputs

The predictions of the joint positions of the 2D pose in a real video are often noisy. In

this regard, we also test our proposed approach on noisy input queries. We add different

levels of white Gaussian noise with standard deviation (std = 0.0, std = 0.2, std = 0.5)

and check the system’s performance. The noise with standard deviation (std = 0.0)

means no any noise added to the input data. The results are reported in Table 4.5,

where it is quite obvious that our proposed methodology produces very good results

even in case of noisy inputs.

4.5.2 Qualitative Evaluation

For qualitative evaluation, we testify the performance of our proposed algorithm on

a number of monocular video sequences. For that purpose, we have recorded our own

video sequences for different motion classes like jumping jack motions, grabbing motions

and jogging motions etc. using Kinect RGB camera, which records videos at frame rate

30 fps with resolution 587× 440.
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We deploy the database DBcomp, when the real video sequences are given as input.

There is no any synchronization between the 3D MoCap dataset with the recorded video

sequences. Furthermore, the performing actors in the videos are different from the actors

performed in the MoCap dataset. The video input sequences are first pre-processed in

order to get the relevant feature sets required for the input query (Section 4.3.2). A few

exemplary qualitative results of the reconstructions are presented in Figure 4.12. Overall

we get very good results for almost all video sequences, even in case of outliers detected

due to some noisy data. The noisy data is because of the uncertainty and ambiguities

that may arise during detection or tracking of the 2D video-based feature sets Fvid
5 .

For example in a few frames, the features cannot be detected at all as a result of self-

occlusion, double counting, illumination, blurring effects or the continuous variations

in positions and orientations of the hands or feet. Moreover, sometime movements of

the hands and feet are inconsistent e.g. the hands or feet move very fast in a frame as

compared to the movement in previous frames which leads towards mistracking. All

these factors may create inaccurate and erroneous feature sets which causes higher 3D

reconstruction errors. As a solution, we annotate a few specific key frames manually in

order to acquire somehow more accurate 2D video-based feature sets from the real input

videos.

4.6 Conclusion

In this chapter, we have presented an efficient model-based approach to retrieve and

reconstruct human motions from different types of 2D input control signals. For search

and retrieval of similar examples from the MoCap dataset, we introduce knowledge base

which consists of the 3D normalized pose space and the corresponding 2D normalized

pose space. The presented approach exploits multiple energy terms to reconstruct full

body human motions efficiently in a real time even when a low-dimensional 2D feature

sets are given as input query which is either extracted from the 2D synthetic data or the

real monocular video sequences. We have testified the robustness of our methodology on

several databases and experimental setups designed with respect to performing actors,

viewpoints and the noisy input using various types of human motion classes i.e. walking,

cartwheel, jumping jack, jogging and grabbing motions. Our proposed system is fast

enough and performs reconstruction approximately 5–8 frames per second.
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Figure 4.8: Comparison on different motion classes for the actor bd. The
average reconstruction errors (cm) at test view directions (the azimuth angles
= 0–5–180, the elevation angles = 0–10–90), when different types of motions
are given as input query to the proposed system e.g.: (a) walking in straight
motion; (b) walking in circle motion; (c) jumping jack motion; (d) cartwheel
motion.
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Figure 4.9: Comparison on different motion classes for the actor mm. The
average reconstruction errors (cm) at test view directions (the azimuth angles
= 0–5–180, the elevation angles = 0–10–90), when different types of motions
are given as input query to the proposed system e.g.: (a) walking in straight
motion; (b) walking in circle motion; (c) jumping jack motion; (d) cartwheel
motion.
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Figure 4.10: Influence of the performing actor mm with actor-specific
databases (Table 4.2). The average reconstruction errors (cm) at different view
directions, when the walking motion sequences performed by actor mm are given
as input query and the employed databases are: (a) DBmmMin; (b) DBcomp;
(c) DBmm; (d) DBmmMirr.
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Figure 4.11: Influence of the performing actor bd with actor-specific databases
(Table 4.2). The average reconstruction errors (cm) at different view directions,
when the walking motion sequences performed by actor bd are given as input
query and the employed databases are: (a) DBbdMin; (b) DBcomp; (c) DBbd;
(d) DBbdMirr.
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(a) Jumping Jack motion (b) Jogging on Spot motion (c) Grabbing Top motion

Figure 4.12: Qualitative reconstruction results of different types of motion
classes with the extracted K nearest neighbors from the motion capture dataset
in case of real video input query. (first column) shows video frames with the
extracted 2D feature sets and the projected K nearest neighbors; (second col-
umn) represents the relevant 3D reconstructed motion frames with the retrieved
K nearest neighbors; (third column) corresponds to the 3D reconstructed mo-
tion frames at other viewpoints.



5
Motion Tracking and 3D Reconstruction

An experiment is a question which science poses to Nature, and a measurement is the

recording of Nature’s answer.

Max Planck

The chapter at hands presents a novel data-driven framework for 3D full body human

motion reconstruction from a static monocular video data, which is basically the en-

hancement of the previously proposed approach presented in Chapter 4.

5.1 Introduction

Recall that in previous chapter, we have proposed a novel data-driven framework for

3D full body human motion reconstruction from the video data, which we improve

in this chapter in many significant ways: (i) We make search and retrieval strategy

more robust and efficient using the temporal coherence of the input control signals

through a graphical structure online lazy neighbourhood graph (OLNG) [TZK+11]. We

adapt this graphical structure to work with the domain of video-based control input

signals, which is a more sparse, complex and challenging possible scenario. (ii) We

utilize the low-level image based feature detectors and descriptors e.g. SURF, MSER

and colorMSER for the process of 2D feature detection and tracking, which is further

stabilized through the high-level 3D prior knowledge obtained from the MoCap dataset

in the form of K examples closest to the control input video signals. In this way, we can

handle occlusion, illumination and blurring artifacts in a more efficient way. (iii) We

update the camera parameters frame-by-frame using the synthesized poses, the sampling

of MoCap dataset and the temporal information. (iv) We learn a low-dimensional local

3D pose model from the optimal and weighted nearest neighbors K̂w. We pick up the best

closest examples from K nearest neighbors and weight these optimal nearest neighbors

according to the costs associated with the edges in OLNG. (v) At the end, we improve

our reconstruction methodology by applying the kernel based approach [TZK+11] in

order to estimate the probability density of the MoCap priors.

63
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Figure 5.1: An overview of the proposed system’s pipeline with the main
components involved in the system: We develop the 3D normalized pose space
Ψ and then sample this Ψ at different view directions by orthographic projection
to generate the 2D normalized pose space ψ. From ψ, the kd-tree data structure
is built. The 2D input video is given to the system, where the features are
detected and tracked using SURF and MSER feature detectors by developing a
dictionary of features (DOFs) to retrieve Knn from the MoCap data. We here
develop online lazy neighbourhood graph (OLNG) to pick up the most optimal
K̂nn. These K̂nn are projected onto image plane to make detection and tracking
more efficient and robust. We weight K̂nn according to the costs associated
with the edges in OLNG and referred as K̂wnn. At the end, the reconstruction
is performed by exploiting these optimal and weighted K̂wnn.

Similar to previously presented approach in Chapter 4, we develop a knowledge base

which includes the 3D normalized pose space Ψ and the synchronized 2D normalized

pose space ψ which is generated by sampling of the 3D normalized poses at different

view directions (for detail see Section 4.3). After extracting the suitable feature sets

from both, the input control signals and the motion capture dataset, we perform efficient

similarity search and retrieve nearest neighbors from the MoCap data. For that purpose,

we construct data structures like kd-tree and online lazy neighbourhood graph. Finally,

the 3D motion sequences are reconstructed by non-linear energy minimization that takes

into account multiple prior terms. We evaluate our developed algorithm on the real video

input data as well as on synthetically generated 2D input video signals. The overall

system overview is illustrated in Figure 5.1.

We organize the chapter as: in Section 5.2, we focus on how we detect and track the

features from the video sequences. Section 5.3 explores the details about the estimation

of camera parameters. The complete details about the motion retrieval and OLNG

are elaborated in Section 5.4, while Section 5.5 illustrates the proposed reconstruction

methodology. The evaluation of the presented approach and the conclusion are discussed

in Section 5.6 and Section 5.7 respectively.
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(d) Probability density of Head
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Figure 5.2: The probability densities for the hands, feet and the head used in
the process of feature detection and tracking. The current input video frame
with the projected K̂nn is shown in (a), while the probability density measure-
ments for the hands, feet and the head are presented in: (b) right hand. (c)
left hand. (d) head. (e) right foot. (f) left foot.

5.2 Feature Design and Tracking

In this section, we elaborate that how we design and extract the feature sets and exploit

them to search into the motion capture library for the motion segments that are very

closest to the input video sequences. From MoCap dataset, we extract the 2D feature

set F syn
5 using the four end effectors and the head (see Section 4.3.1). Similarly, in case

of real video query, we detect and track the positions of the hands, feet and the head

in order to develop the feature sets Fvid
5 . In order to accomplish this, we employ the

low-level image based feature detectors/descriptors e.g. SURF, MSER and colorMSER,

leveraged with the high-level 3D prior knowledge exists in the MoCap dataset. With

3D MoCap priors, we refine the 2D estimated joint positions in order to develop more

stable and accurate 2D feature sets Fvid
5 . First, we extract features by utilizing these

low-level detectors/descriptors and develop a dictionary of features (DOFs) as illustrated

in Section 4.3.2, which are further refined and stabilized by K̂ nearest examples. We

retrieve Knn from the MoCap data through the knowledge base and pick up the most

optimal K̂nn utilizing OLNG which we will discuss in Section 5.4. To this end, we have

the retrieved optimal K̂ nearest neighbors which are projected onto the current image

frame by estimated camera parameters (Section 5.3). We formulate Bayes decision

function Dt to obtain similar 2D feature patterns x̃ from the current image frame t of

the input video,

Dt(x̃t) = P (x̃t|xt1, . . . ,xtK̂)P (xt1, . . . ,xtK̂), (5.1)
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(a) Image with occlusion of left hand. (b) Occlusion handling with K̂nn.

Figure 5.3: The process of occlusion handling by using the 3D prior knowledge
embedded in MoCap dataset. (a) The image frame with occlusion of left hand
which is totally disappeared. (b) The image frame illustrates the tackling of
the occlusion by projection of the 3D K̂nn, retrieved from the MoCap dataset.

where P (xt1, . . . ,xtK̂) is the prior probability of the projected K̂ closest examples which

we consider equally likely and P (x̃t|xt1, . . . ,xtK̂) is the h-dimensional Gaussian proba-

bility density function of the pattern vector and is calculated with Mahalanobis distance

as,

P (x̃t|xt1, . . . ,xtK̂) =
1

(2π)
h
2

√
|Ωt|
· e−

1
2

(x̃t−µt)T Ω−1
t (x̃t−µt), (5.2)

where |Ωt| is the determinant of the covariance matrix Ωt, µt is the mean vector at

current frame t, (x̃−µt)T is the transpose of the difference between the features’ pattern

vector x̃ and the mean vector µ, and h is the dimensions of the feature vector x̃. A few

examples of the Gaussian probability density for each end effector (the right/left hands

and the right/left feet) and the head have been shown in Figure 5.2, where the probability

density in log has been color coded with darker region corresponds to higher probability

density. On the basis of Bayes decision function, we select those pixels of the image

frame for the features that execute the largest Bayes decision value. In the end, we

combine the features detected through low-level feature detection techniques and the

features estimated through projection of high-level MoCap priors, and weight them as,

Fvid
5 = w1Θ + w2Υ, (5.3)

where Θ represents the features extracted through SURF, MSER and colorMSER, Υ

represents the features which we get from projection of K̂ closest examples while w1 and

w2 are the user defined weights and their values are fixed 0.6 and 0.4 respectively in our

experiments. The continuous process of detection and tracking is performed by detecting

the feature sets of the current image frame, by matching them with the already extracted

feature sets of the previous frames collected in DOFs, by projecting the 3D K̂ closest

examples and by estimating the highest probability of the 2D joint positions derived

from K̂nn projection. We combine all these significant steps together to extract more
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(a) Image with blurring effects. (b) Blur handling with K̂nn.

Figure 5.4: The process of handling blurring effect by using the 3D MoCap
priors. (a) The image frame showing blurring effect for the both hands. (b) The
image frame elaborates the handling of blurring effect through the projection
of the 3D K̂ closest examples.

stable and accurate feature sets Fvid
5 . A few examples related to the benefits obtained

through MoCap priors in the process of detection and tracking have been elaborated in

Figure 5.3 and Figure 5.4. The details will be discussed in Section 5.6.2.

5.3 Camera Model

We estimate camera parameters through the estimated 2D feature sets and the knowledge

base which contains the 3D as well as 2D normalized pose spaces, represented as(Ψ)

and (ψ) respectively. The camera projection matrix M consists of intrinsic parameters

W and the extrinsic parameters with rotation R(α,β,γ) and the translation T(x,y,z),

M = W
[
R(α,β,γ) | T(x,y,z)

]
. (5.4)

For intrinsic camera parameters, we have computed the focal length by employing

the 3D (Kinect 3D skeleton) and 2D information of first few frames. The skew co-

efficient is fixed to be zero. The scaling factor s is updated across the M number

of video query frames. We consider the mean of feature sets Fvid
5 as the principal

points (εx, εy) and assume that the center of the mass of 3D pose corresponds to

2D pose centroid, which are updated regularly across the M number of video query

frames. In case of extrinsic camera parameters, we estimate translation information

T(x,y,z) = {Tx,1, . . . , Tx,M, Ty,1, . . . , Ty,M, Tz,1, . . . , Tz,M} through regularly updated prin-

ciple points, scaling factors and the focal length. Under scaled orthographic projec-

tion [PMFR14, AB15], sx = sy, Tz becomes equal to 1 and γ = 0.
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Figure 5.5: An exemplary illustration of online lazy neighbourhood graph
developed on the basis of K = 7 nearest neighbor indices H retrieved using
2D feature sets (Fvid

5 or F syn
5 ) query inputs. The window with size Z = 4 is

represented with red box which moves on all query frames.

We estimate orientation through sampling of MoCap dataset by a simple voting

strategy. For that purpose, we exploit knowledge base which contains information about

different view directions (the azimuth and the elevation angles) in the 2D normalized pose

space (ψ). Having in hands the selected optimal K̂nn (Section 5.3), we build a histogram

on the basis of the indices H of K̂nn. The top three peaks of the histogram are selected

to be the candidates of the current azimuth and elevation angles of the performing

actor. We have found from the experiments that mostly the simple majority vote yields

acceptable results. We further constrain the selection by the temporal coherence of the

already selected angles. For an instance, the azimuth angle which is very close to the

already selected azimuth angles for previously two frames, has higher probability to be

picked up among the other candidates. Finally, we apply Gaussian low-pass filter in

order to smoothen these selected angles.

5.4 Motion Retrieval

We develop an intermediate container, the knowledge base as described in Section 4.3.3,

which contains the 3D normalized pose space Ψ as well as the corresponding 2D nor-

malized pose space ψ developed through 36 × 7 numbers of virtual cameras with the

azimuth angles (0–10–350) degrees and the elevation angles (0–15–90) degrees. In order

to retrieve similar poses from the MoCap database, the 2D feature sets extracted either

from the real video data or from the synthetically generated video sequences, are given

as input to the developed system. For similarity search into the MoCap database, we de-

velop a kd-tree data structure which is built upon the 2D normalized pose space ψ, and

a graph structure, online lazy neighbourhood graph [TZK+11]. In contrast to [TZK+11],

we are working on a sparse continuous streaming of 2D input video data rather than

using an accelerometer data. In our case, the graph is built up on the indices H of
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Knn retrieved through the input 2D feature sets and we do not allow the skipping of

frame in our specified step sizes. The OLNG graph is the acyclic directed graph which

utilizes the temporal coherence of the input video control signals. The online version

of lazy neighbourhood graph imposes the fact that there is no any need to construct

whole graph structure for every frame cycle, rather it is more efficient to build the graph

incrementally considering previously constructed paths of the minimum cost [TZK+11].

In this context, the OLNG is developed incrementally with window size Z = 8. To this

end, we have the retrieved K closest examples with indices H on which basis we develop

the OLNG with an array of size (Z ×K), where each retrieved example is considered as

a node. We generate the weighted directed edges between these nodes, which ensure the

monotonicity and create the valid continuations remaining within the size of the array.

We allow the step size by exploiting the concept of dynamic time warping (DTW), where

a step may be a horizontal (0,1), a diagonal (1,1), or a vertical step (1,0). Each edge is

associated with a cost by computing the distance between nodes in terms of similarities

between the feature sets. In construction of OLNG, we consider only those paths which

have minimum costs. An exemplary illustration of OLNG is presented in Figure 5.5.

From the retrieved K nearest neighbors, we select the best and optimal closest exam-

ples, represented as K̂, by considering the step sizes and the minimum costs associated

with the paths in OLNG. Furthermore, we weight each pose in the selected best K̂ closest

examples, which we compute on the basis of the associated costs and normalize them

as,

wt,k = 1−
Gt,k −min(Gt)

max(Gt,k −min(Gt))
k = 1, 2, . . . , K̂. (5.5)

where wt,k represents the weights and the term Gt,k denotes the associated costs for the

selected paths at current frame t. In our experiments, the K nearest neighbors is fixed

to be 212 and from which we select just only 256 K̂ best examples.

5.5 Online Motion Reconstruction

We leverage the motion capture data as a source of prior knowledge to resolve the

depth ambiguities and finally infer the high-dimensional human motions. To this end,

we retrieve similar poses from the MoCap database which is in the form of joint angle

configurations Qt = {Qt,k|k = 1, . . . ,K} with corresponding positions Xt = {Xt,k|k =

1, . . . ,K} at current frame t. A local 3D pose model is built from the optimal weighted

nearest neighbors, K̂w. The 3D pose Q̃ is synthesized by a linear combination of set

of V basis vectors Bw,t = {bw,t,v|v = 1, . . . , V } at frame t, which are the principal

components computed from the K̂w nearest neighbors. The µw is the mean of the

weighted K̂w nearest neighbors, C is the low-dimensional current pose in the coordinates



5. Motion Tracking and 3D Reconstruction 70

of PCA space. Mathematically,

Q̃t =

K̂w∑
k=1

wk ·
V∑
v=1

cv,tbk,v,t + µw,t (5.6)

Q̃t = CtBw,t + µw,t (5.7)

We take into account the square root kernel [TZK+11] in order to estimate probability

density for the local modeling in contrast to multivariate normal distribution as in our

previous proposed approach in Chapter 4.

5.5.1 The Objective Function

We formulate the proposed reconstruction methodology as energy minimization problem

which is solved with the gradient descent based non-linear optimizer. The objective

function includes prior energy, pose energy, control energy, and smoothness energy,

Q̂ = arg min
Q̃

(wprEpr + wpsEps + wsEs + wcEc), (5.8)

where Q̂ is the final reconstructed pose and wpr, wps, ws and wc are the user defined

weights associated with the energy terms and are computed accordingly. In our experi-

ments, we fix their values as: wpr = 0.3, wps = 0.2, ws = 0.07 and wc = 0.1.

5.5.2 Prior Energy Term

This energy term elaborates that how likely the synthesized pose is according to the

MoCap priors—the joint angle parameterizations of the K̂wnn already exists in the

MoCap database. We formulate symmetric square root kernel function K to estimate

probability density as,

P ∝
K̂w∑
k=1

wk,t · K
√
|Q̃t −Qk,t|2, (5.9)

where wk,t are the normalized weights associated with K̂w nearest neighbors, Q̃t is the

joint angel parameterizations of the synthesized pose in a PCA space at current frame t

and Qk,t represents the joint angle parameterizations of the retrieved optimal weighted

kth K̂w pose. For the energy term, the Equation 5.9 is reformulated as,

Epr =

K̂w∑
k=1

wk,t ·
√
|Q̃t −Qk,t|. (5.10)
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5.5.3 Pose Energy Term

To impose consistency and acceptability in the reconstructed motion, we introduce the

pose energy which minimizes the unwanted artifacts arises due to the 2D-3D transforma-

tion and compels the joint positions of the synthesized pose, resulted from the forward

kinematics function, according to the prior joint positions of the optimal weighted K̂wnn.

Mathematically,

Eps =

K̂w∑
k=1

wk,t ·
√
|X̃t −Xk,t|, (5.11)

where X̃t is the position vector of the current synthesized pose and the notation Xk,t is

the joint positions of the kth K̂wnn at frame t.

5.5.4 Smooth Energy Term

In order to avoid the velocity variations as well as the jittering and jerkiness effects,

the smoothness energy term is introduced. It imposes the smoothness in a way that the

newly reconstructed pose is bound to be according to the previously reconstructed poses

at frames t− 1 and t− 2, as well as the prior knowledge of the neighboring candidates

exists in the MoCap database. Mathematically,

Es =

K̂w∑
k=1

wk,t ·
√
|Ũt −Uk,t|, (5.12)

where,

Ũt = Q̃t − 2Q̂t−1 + Q̂t−2, (5.13)

Ut = Qt − 2Qt−1 + Qt−2. (5.14)

5.5.5 Control Energy Term

We assume that the MoCap database has the similar samples of the input query motion

sequences. Under this assumption, we formulate control energy in two cases like,

Case 1. In first case, we extract the 3D feature sets of the end effectors and the

head from the current synthesized pose X̃t and minimize it with the feature sets of the

previous reconstructed pose X̂t−1 as,

Ec1 =

√∑
i∈JF

|X̃i,t − X̂i,t−1|. (5.15)
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Case 2. In second case, we project the 3D feature sets of the end effectors and the head

extracted from the current synthesized pose X̃t onto the 2D image plane using estimated

camera projection matrixMt and normalize them. We then minimize distance between

the 2D feature sets estimated from the input 2D pose xt and the normalized 2D feature

sets inferred from the synthesized pose at current frame t as,

Ec2 =

√∑
i∈JF

|MtX̃i,t − xi,t|, (5.16)

where X̃i,t represents the ith joint’s position of the 3D synthesized pose, and xi,t is the

ith joint’s 2D estimated position at current frame t.

5.6 Results and Analysis

We employ HDM05 [MRC+07] MoCap library which is a heterogeneous dataset with a

sampling rate of 120Hz. For our experiments, we first down-sample the MoCap dataset

to a sampling rate of 30Hz in order to have the same frame rate with which we have

captured the input video control signals. As a result, we get roughly 380K number of

3D human poses. For video input query, we have recorded the motion sequences using

Kinect RGB camera with resolution 587×440 pixels and with frame rate 30 frames per

second. We deploy the database D̂Bcomp as described in Table 4.1 which includes all

motion sequences of the MoCap database HDM05 at sampling rate 30Hz, except those

motions which are the part of the test dataset and are given as input query to the

developed system. We sample the MoCap dataset with the elevation angles (0–15–90)

degrees and the azimuth angles (0–10–350) degrees. We conduct all quantitative and

qualitative experiments using this database D̂Bcomp. For quantitative comparisons, we

measure average Euclidean distance in centimeters, between joint positions of the recon-

structed pose and the ground truth pose relative to the root joint, Equation (4.13). We

evaluate the presented methodology on synthetic examples generated by random camera

parameters as well as on the real videos with a variety of motions like straight walking,

side walking, walking in a circle, jumping jack and cartwheel motions etc. We exploit

the same skeleton model with Nj = 31 joints as described in Figure 4.5.

5.6.1 Quantitative Evaluation

We evaluate our proposed methodology quantitatively on synthetic videos which we

generate from the MoCap files using some random camera parameters. We develop

the testing dataset which consists of the synthetic videos of different motion categories

like walking motions (walking 2 steps straight with left/right start, walking 4 steps
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Comparisons between different motion classes

Methods Walk Straight Walk in Circle Jumping Jack Cartwheel Average

[YKW13] 2.573 2.466 7.992 7.605 5.159

Our App. (1) 2.048 2.533 4.314 7.514 4.056

Our App. (2) 1.873 2.341 3.508 6.614 3.631

Table 5.1: Comparison on different types of motion classes in terms of average
reconstruction error (cm), when the test view directions are specified with the
azimuth angles 0–5–180 degrees with 5 degree step size and the elevation angles
0–10–90 degrees with 10 degree step size.

Comparisons between different motions at specific views

Methods Walk Straight Walk in Circle Jumping Jack Cartwheel Average

(i) When view direction is fixed with az = 30 and el = 45.

[YKW13] 2.059 1.982 6.562 5.859 4.115

Our App. (1) 1.829 2.245 4.245 7.332 3.912

Our App. (2) 1.760 2.129 4.626 6.948 3.865

(ii) When view direction is fixed with az = 60 and el = 45.

[YKW13] 2.225 1.888 7.480 6.750 4.585

Our App. (1) 1.840 2.175 4.333 8.698 4.261

Our App. (2) 1.710 2.073 4.403 6.475 3.665

Table 5.2: Comparison on different types of motion classes in terms of average
reconstruction error (cm), when the elevation angle is fixed to 45 degree and
(a) the azimuth angle is 30 degree, (b) the azimuth angle is 60 degree.

straight with left/right start, walking in left/right circle etc.), jumping jack motions

and the hardest one, the cartwheel motions. We check the performance of our proposed

approach with different combinations of experiment scenarios which we discuss in detail

one by one as under,

• We first evaluate our approach on the test dataset at every possible test view di-

rections (the azimuth angles (0–5–180) degrees with 5 degree step size and the

elevation angles (0–10–90) degrees with 10 degree step size) and the average re-

sults are compared with [YKW13] as reported in Table 5.1. From the results, we

conclude that our proposed methodology (both cases) especially the case 2 out-

performs for all motion categories. Moreover, our approach executes very good

numbers in case of cartwheel motions which are considered as one of the most

challenging motions to be reconstructed.

• We further investigate the efficiency of our approach for all motion categories at

some specific view directions such as: (i) the view direction with the azimuth angle

30 degree and the elevation angle 45 degree and (ii) the view direction when the

azimuth angle is fixed to be 60 degree and the elevation angle 45 degree. The
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Figure 5.6: Average reconstruction error graph for all kinds of walking mo-
tions, with a wide range of test view directions—the azimuth angles (0–5–180)
and the elevation angles (0–10–90). (a) Yasin et al. method [YKW13]. (b) Our
reconstruction method with control energy term case 1. (c) Our reconstruction
method with control energy term case 2.

results for both scenarios are reported in Table 5.2. Our approach with case 1

executes good results but the case 2 executes the best reconstruction results on

an average as compared to [YKW13].

• We also testify the performance of our approach for every view direction (the

azimuth angles = 0–5–180 degrees with 5 degree step size and the elevation angles

= 0–10–90 degrees with 10 degree step size) on all types of walking sequences to

see the impact of viewpoints on overall reconstruction approach. We report the

average reconstruction error for all combinations of azimuth and elevation angles

in Figure 5.6, where we construct the average reconstruction error graphs with the

azimuth view directions along x-axis and the elevation angles along y-axis while

the reconstruction error is color-coded. From the results, it is quite obvious that

the proposed reconstruction methodology for both cases (whether it is case 1 or

case 2 ) significantly improve the reconstruction results. The developed system
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Figure 5.7: The average reconstruction error which is computed by taking
average of the reconstructions for all types of walking motion sequences only, at
all test view directions—the azimuth angles (0–5–180) and the elevation angles
(0–10–90). (a) Yasin et al. method [YKW13]. (b) Our approach with control
energy term case 1. (c) Our approach with control energy term case 2.

with case 2 outperforms and produces the lowest reconstruction error for almost

every view direction, as evident from Figure 5.6. At the end, we report the average

results on all kinds of walking motions only as shown in Figure 5.7, where again

the best results have been executed by our approach case 2.

5.6.2 Qualitative Evaluation

We analyse our proposed framework qualitatively on the real monocular video sequences

which we have captured through RGB Kinect camera. For real video input query, we

first detect and track the video-based feature sets Fvid
5 . The ultimate reconstructed

sequences depend upon not only the reconstruction methodology but also the fact that

how accurately the feature sets are detected and tracked in the given input to prepare

the query. For extraction of the feature set from the input video, we rely not only the

local feature detectors/descriptors SURF, MSER and colorMSER but also exploits the

3D MoCap priors in the form of K̂nn as mentioned earlier in Section 5.2. With the use

of prior domain knowledge from the MoCap dataset, we are able to tackle the outliers in

2D feature sets, arises due to the occlusions, blurring effects and illuminations etc. A few

examples for tackling these issues are presented in Figures 5.3–5.4. Figure 5.3 explores

that the left hand of the performing actor is completely occluded but with the use of the

3D closest examples (K̂nn), we are able to find out the position of the occluded hand

and track it accurately. Similarly, in Figures 5.4, the hands have lost their structure

due to the speed and the blurring effects, and as a result the local feature detectors

fail to detect them but with the projection of the 3D MoCap priors we capture their

locations precisely. Although we address with occlusion and blurring effects successfully
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Figure 5.8: A few qualitative results for tracking and reconstruction. The first
columns explore the extracted 2D feature set with projected K̂ nearest neigh-
bors retrieved from the MoCap library while the second columns correspond to
the relevant 3D reconstructions, when the presented approach with case 2 is
employed.

but still sometime mistracking of the feature sets may occur which affects the final 3D

reconstruction too. The mistracked feature sets are then corrected manually. We have

observed from the experiments that the mistracking is roughly 20–25 percent on an

average when we do not exploit the 3D MoCap priors, and which is reduced to roughly

7–10 percent on an average by the use of the 3D MoCap priors.

After detection and tracking of the 2D video feature sets, we reconstruct input like

3D motions using the K̂w nearest neighbors. A few qualitative reconstruction results for

different types of motion classes are shown in Figure 5.8. Though the improvement in

the process of detection and tracking enhances the accuracy in the reconstruction results,

but our proposed reconstruction approach is robust enough and produces plausible 3D

poses even having some non-anthropometric characteristics in the estimated input 2D

pose. This significant property of our approach enables us to handle occlusion and other

ambiguities in detection, tracking and the final 3D reconstruction. Some more qualitative

tracking and reconstruction results can be seen in Figure 5.9 and Figure 5.10. All these

results are executed using the proposed approach with case 2.

5.7 Conclusion

We have proposed an efficient data-driven 3D motion reconstruction approach from the

video data by constructing kd-tree data structure and the online lazy neighbourhood

graph, taking into account just the positions of the end effectors and the head. The pro-

posed methodology queries for the 2D input control signal and performs the K nearest

neighbors search frame-by-frame for 3D prior knowledge available in the MoCap dataset.

We then competently utilize the best K closest 3D poses to make the low level feature
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detection and tracking efficient and more robust. Furthermore, we exploit the weighted

optimal closest 3D poses to learn a local 3D pose model as well as to formulate the objec-

tive function with multiple energy terms in order to predict the final 3D human motion

sequences. We evaluate our methodology quantitative and qualitative on synthetic data

as well as on the real monocular video sequences. Our system performs reconstruction

with frame rate approximately 5–6 frames per second.
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(a) Side-walking-left motion

(b) Walking-left motion

(c) Jumping jack motion

Figure 5.9: Tracking and reconstruction results of our approach case 2 for
different types of motions with projected K̂nn retrieved from the MoCap library.
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Figure 5.10: Tracking and reconstruction results of our approach case 2 for
side-walking-right motion sequences with projected K̂nn retrieved from the Mo-
Cap library.
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6
Recovering 3D Pose from an Image

Our greatest weakness lies in giving up. The most certain way to succeed is always to

try just one more time.

Thomas A. Edison

6.1 Introduction

In this chapter, we deal with the most challenging task of recovering the 3D human pose

from just a single monocular image, that may be a synthetic image or a real internet

image. The articulated 3D human pose estimation from a monocular single image is a

severely under constrained and an ill-posed problem. Given the 2D joint positions in

an image, we propose an efficient search & retrieval method for the 3D poses from the

motion capture dataset, which leads towards a novel data-driven approach to estimate

the final 3D human pose from a monocular still image. For 3D pose retrieval: (i) we

design and devise multiple feature sets based on the subsets of 2D joint locations in

order to create global similarity search into the MoCap dataset. As we do not rely on

any temporal coherence in retrieval and reconstruction processes, therefore we revisit

the choice of feature sets consisting of the four end effectors and the head as in previous

chapters. Instead, we develop multiple suitable feature sets and the selection is made on

their performance evaluations in terms of accuracy, time and memory. (ii) We resolve

the 2D-3D cross model retrieval issue efficiently by projecting both, the 3D feature sets

derived from the motion capture data, and the 2D feature sets from the image pose, to

a normalized 2D pose space. As a result, we retrieve 3D similar poses conveniently from

the MoCap dataset just utilizing the subsets of 2D joint locations.

In order to infer the final 3D pose, we apply PCA to reduce dimensionality and

compute a 3D pose model from the retrieved K nearest neighbors. We constrain it

through pose priors in quaternion pose space Q as well as in cartesian pose space R and

fit it to the 2D observation by minimizing the projection error. We derive benefits from

the joints’ weights that are allotted to all joints included in the skeleton model according

80
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Figure 6.1: System flow diagram. After developing knowledge base, we input
a single 2D pose extracted either from a synthetic image, a real image or a
hand-drawn sketch and create Knn search through kd-tree using 2D feature sets
FJ ∈ {F im

5 ,F im
7 ,F im

9 ,F im
11 ,F im

14 }. We optimize and update camera parameters
by exploiting these Knn. From the retrieved poses, a 3D pose model is built
and fit to the 2D pose in order to reconstruct the final 3D pose through a novel
energy function.

to their degree of freedom and as a results we make the 3D pose reconstruction more

efficient and robust. Furthermore, we introduce a two-fold system in order to estimate

the unknown camera parameters by exploiting the retrieved closest examples as well as

the input 2D observations. We first select the suitable viewpoints through sampling of

the MoCap data using a simple voting strategy, which are further refined by the retrieved

closest examples and by minimizing the deviations from the 2D observations.

We thoroughly evaluate the presented approach quantitatively on a wide range of

synthetic 2D images of different activities, which are generated from the MoCap files

using some random camera parameters and compare the results with the state-of-the-

art approaches. Particularly, we analyze the influence of the skeleton structure dis-

crepancies between the MoCap datasets; the impact of the different feature sets, the

camera viewpoints and the noise; and the influence of the skeleton joints in retrieval

and reconstruction processes. In our experiments, we show that our approach achieves

state-of-the-art results when the test pose is from the same MoCap dataset, but it also

achieves competitive results when a completely different MoCap dataset is exploited. We

report qualitative analysis of our proposed framework on the real images using PARSE

dataset [Ram07], where we utilize off-the-shelf algorithm [YR11] to extract the 2D joint

positions from the given monocular image. We also analyze our approach qualitatively

on the hand-drawn sketches, where we manually annotate the 2D joint positions in the

sketches. We work on the benchmark motion capture datasets like CMU motion capture

dataset [CMU14] and HDM05 motion capture dataset [MRC+07], both MoCap datasets

are publically available.
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Joint IDs Joint weights Joint IDs Joint weights Joint IDs Joint weights Joint IDs Joint weights

1 0.83 6 0.0 11 0.55 16 0.55

2 0.0 7 0.83 12 0.70 17 0.83

3 0.83 8 0.27 13 0.55 18 0.27

4 0.27 9 0.55 14 0.83

5 0.55 10 0.83 15 0.27

(c) Joints’ weights w.

Figure 6.2: (a) The skeleton model with all 18 joints. (b) The skeleton
model shows the joint types with different degree of freedom (DoF), while (c)
represents the details about the normalized joint weights.

6.2 Overview

We propose an efficient 3D pose retrieval framework as well as an online data-driven 3D

pose estimation from a single 2D synthetic/real image. For pose retrieval, we develop a

knowledge base from the motion capture dataset (Section 4.3.3), which is a preprocessing

step and has been performed for once. Given 2D joint locations, we extract the 2D

feature sets and perform similarity search from the motion capture database through

the knowledge base. We design multiple feature sets for the efficient search and retrieval.

Section 6.3 provides the details about the search and retrieval of nearest neighbors. In

Section 6.4, we explain the two-fold procedure to estimate camera parameters. Having

in hand the retrieved nearest neighbors, we construct a 3D pose model on-the-fly and

formulate an energy function to fit the model according to the 2D observations in order

to reconstruct the 3D pose. We introduce the joint weights that contribute in the energy

function which is finally optimized through non-linear gradient descent optimizer. This

will be discussed in Section 6.5. In the end, Section 6.6 illustrates the experiments with

results and discussions while Section 6.7 consists of the conclusions.
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Feature Sets FJ Joints Involved in Feature sets JF
F im

5 [4 8 12 15 18]

F im
7 [4 8 12 13 15 16 18]

F im
9 [3 4 7 8 12 14 15 17 18]

F im
11 [3 4 7 8 12 13 14 15 16 17 18]

F im
14 [2 3 4 6 7 8 11 12 13 14 15 16 17 18]

Table 6.1: Different types of feature sets which we develop on the basis of the
subsets of joints involved in the skeleton model.

6.3 Pose Similarity Search and Retrieval

The major component towards a data-driven reconstruction approach is an efficient

similarity search and retrieval from the motion capture dataset. We develop an interme-

diate container the knowledge base as described in Section 4.3.3, through which we make

search and retrieval more convenient and robust. We normalize the 3D poses in MoCap

dataset by discarding orientation and translation and build up the 3D normalized pose

space Ψ which includes the 3D feature sets extracted from the 3D normalized poses and

add it into the knowledge base.

The input to our reconstruction approach is either a 2D synthetic image generated

from the MoCap file by random camera projection like in [FZZW14, RKS12] or some

internet real image or a hand-drawn sketch. For 2D query pose, we do not have any

cue regarding the joints’ orientation, the temporal coherence and the depth knowledge

etc. Moreover, we have no any camera parameter as well. We perform Knn search into the

MoCap dataset just on the basis of the 2D feature sets extracted from the 2D pose with

missing degree of freedom. As a solution, we construct the 2D normalized pose space ψ by

projecting the 3D normalized feature sets onto the 2D image plane using orthographic

projection through a several virtual cameras with a number of view directions in the

form of the azimuth angles and the elevation angles. We create 24 × 7 virtual cameras

by spanning the azimuth angles (0–15–345) degrees and the elevation angles (0–15–90)

degrees, both with step size 15 degree. We will discuss the influence of virtual cameras

in Section 6.6.3. For an appropriate 2D-3D matching and correspondence, we rescale

both the 3D normalized poses as well as the 2D normalized poses with an arbitrary

scaling factor. To this end, we have 2D normalized pose space ψ which we also include

into the knowledge base.

We devise multiple feature sets that consist of different joint combinations and hold

the proper skeleton characteristics. These feature sets with the relevant subsets of joints

are reported in Table 6.1 and the details about these joints in the skeleton model are
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Figure 6.3: The weak perspective camera model where the depth informa-
tion has been recovered through the prior information embedded in the MoCap
dataset. This exemplary illustration is for the feature sets F im

5 .

illustrated in Figure 6.2. We develop these feature sets on the basis of joints’ creditabil-

ities in terms of robust similarity search and retrieval. Our main objective is to retrieve

the robust closest 3D poses from the MoCap dataset efficiently without consuming enor-

mous memory and time. In [YKW13, KTWZ10], the authors argue that most worthy

joints are the four end effectors (the left/right hands and the left/right feet) and the

head. As we do not consider any temporal information, we combine a few more joints in

addition to these end effectors and develop a set of feature sets as described in Table 6.1

and evaluate their performance in several ways (see Section 6.6.3).

From the given 2D query pose, we derive the 2D feature sets based on the different

2D joint positions. Earlier than the query composed of these 2D feature sets is given

as input to the system for similarity search and retrieval, we normalize the 2D feature

sets by transforming all joints to its root node, the center of the mass, and rescale

them according to the fixed arbitrary scale level. To this end, we have 2D feature sets,

either existing in the 2D normalized pose space in knowledge base or extracting from

the 2D query pose, both has become comparable in order to search and retrieve the

closest examples from the MoCap dataset efficiently. We use a kd-tree for fast search

and retrieval of nearest neighbors [YKW13, TZK+11, KTWZ10].
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Figure 6.4: (a) An estimation of the camera view directions. The yellow
cross (×) symbols represent the clusters of the view directions that we observe
by the nearest neighbors retrieved through the sampling of the MoCap data
at various azimuth and elevation angles. Bigger cross (×) symbol indicates a
bigger cluster (the more nearest neighbors are retrieved through this specific
viewpoint) as compared to the smaller cross (×) symbol. We compare the
camera viewpoint results obtained through the symmetric square root kernel
approach against the results when we compute the simple arithmetic mean
of all view directions observed through the retrieved nearest neighbors. The
dark black circle represents the results of square root kernel function; blue
circle shows the mean value, and cyan square shows the ground truth view
directions. Figures (b) and (c) represent the histograms of the azimuth angles
and the elevation angles respectively. For this experiment, we employ 1024
nearest neighbors.

6.4 Camera Parameters

In this paper, we consider the weak perspective camera model. For this camera model,

the projection matrix M is defined as,

M =


sx

sy

1



rT1 T1

rT2 T2

0T 1

 (6.1)

The notations sx and sy are the scaling factors along x-axis and y-axis, r1 and r2

denote the rotation parameters while T1 and T2 represent the translation vector. An
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exemplary illustration of camera model has been shown in Figure 6.3. We consider the

translation zero under the assumption that the 3D center of the mass coincides the 2D

centroid. The projection matrix M is the weak perspective projection matrix and is

characterized by the first two rows orthogonal to each other. This formulation is similar

to [WWL+14, FZZW14, RKS12].

For estimation of the camera parameters, we adopt the two-fold nonlinear optimiza-

tion method. To this end, we minimize the energy for the camera estimation as,

ec = arg min
U ,M

(aeg + bep), (6.2)

where U is a vector that represents camera view directions with azimuth and elevation

angles. The notations eg and ep are the energy terms with the associated weights a

and b having values 0.45 and 0.55 respectively. In first phase, we predict the camera

view directions in the form of azimuth and elevation angles through the sampling of the

MoCap data at different view directions. We formulate view direction estimation as the

multi-label classification task with 24× 7 number of classes corresponding to the virtual

cameras which are basically the viewpoints with different combinations of azimuth and

elevation angles (see Section 6.3). We exploit the retrieved nearest neighbors voting

observations in order to predict the camera view directions. Each nearest neighbor is

labeled positive for that class to which it belongs. For K nearest neighbors, we obtain

a number of voting clusters for virtual cameras with azimuth and elevation angles, as

shown with yellow cross (×) symbols in Figure 6.4 (a). The higher votes for a specific

class of virtual camera result into a bigger cluster that is represented by the bigger

yellow cross (×) symbol. We elaborate the clustering results more precisely with

histograms which we develop separately for azimuth and elevation angles as shown in

Figure 6.4 (b)-(c). To this end, we have primary camera viewpoints which are the initial

points for the final camera parameter estimation. We optimize these clusters with the

square root kernel function to obtain the optimal camera viewpoints as,

eg(U) =
K∑
k=1

·
√
‖U − Vk‖, (6.3)

where Vk represents the kth viewpoint observed during nearest neighbors retrieval pro-

cess.

In second phase, we not only refine the camera viewpoints but also estimate the

remaining camera parameters. Given the joint positions of the 2D pose, the K-similar

3D poses and the initial camera view directions, we refine and upgrade the camera
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parameters through energy as,

ep(M) =

K∑
k=1

·
√∑
i∈JF

‖M ·Xi,k − xi‖, (6.4)

where xi is the ith 2D joint position and Xi,k represents the ith 3D joint position of the

kth nearest neighbor.

We use the square root as a symmetric kernel function during optimization. Such a

kernel based representation is well suited to approximate the arbitrary shaped probabil-

ity density including multiple peaks [TZK+11]. Multiple peaks can especially occur when

multiple clusters of nearest neighbors are found as evident from Figure 6.4, where it is

quite obvious that even having multiple clusters, we are able to get more robust camera

viewpoints with the square root kernel function as compared to the simple arithmetic

mean. The two-fold nonlinear optimization method allows to get very good initializa-

tions of camera viewpoints from the first phase, which are further refined in the second

phase. Good initializations of camera viewpoints are essential to estimate more accurate

camera parameters, to speed up the optimization and to infer the plausible 3D pose.

The camera viewpoints U and the final camera projection matrixM, both are found by

Levenberg-Marquardt optimization algorithm using nonlinear optimizer.

6.5 Pose Reconstruction

In order to reconstruct the final 3D pose, we compute a linear pose model using principal

components analysis from the retrieved poses Q = {Q1, . . . ,QK},

Q̃ = CB + µ, (6.5)

and fit it to the image. Recall that the term B represents a set of basis vectors, µ is the

mean of the Knn and C is the current pose in coordinates of PCA space. To this end,

we minimize the energy,

Q̂ = arg min
Q̃

(ωpEp + ωcEc), (6.6)

using gradient based optimizer. The notations ωp and ωc are the corresponding energy

weights. The first term Ep measures the deviation from the retrieved poses while the

second term Ec measures the projection error with respect to the input 2D query pose.

We introduce weight for each joint included in the skeleton model according to the degree

of freedom. We assume that the joints with higher degree of freedom have the greater

influence upon the movements of the body parts as compared to the joints with lower

degree of freedom. In this context, we allocate higher weights to the joints with higher
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degree of freedom e.g., the ball-and-socket joints with 3 degrees of freedom have higher

weights as compared to the hinge joints with 1 degree of freedom. We then normalize

these allocated weights and denote them with a vector, w = {w1, . . . , wJ }. The details

about skeleton model and the different joint types with their degree of freedom have

been shown in Figure 6.2(a) and Figure 6.2(b) respectively, while the joint weights w

are reported in Figure 6.2(c).

6.5.1 Retrieved Pose Error

For a large heterogeneous dataset, the human pose synthesize in low dimensional space

just on the basis of joint angle configurations, when the query is composed of only

a subset of 2D joint positions, does not produce plausible results. It may produce

some jittering or unwanted artifacts in final 3D pose. For that reason, we penalize

the deviation not only from the joint angle parameterizations of the retrieved poses in

the quaternion pose space Q but also the joint positions of the retrieved poses in the

cartesian pose space R,

Ep = ωpaEpa + ωppEpp, (6.7)

with corresponding weights ωpa and ωpp. For Ep, we consider all joints included in the

skeleton model whether these joints take part in the retrieval process or not.

Epa enforces the synthesized pose Q̃ according to the prior knowledge in the form

of joint angle parameterizations already exists in the MoCap dataset,

Epa(Q̃) =

K∑
k=1

·
√∑
i∈J
‖wi · (Qi,k − Q̃i)‖, (6.8)

where w is the weight for each joint.

Epp directly constrains the 3D joint positions of the synthesize pose from the retrieved

similar poses in the cartesian pose space R,

Epp(Q̃) =

K∑
k=1

·
√∑
i∈J
‖wi · (Xi,k − f(Q̃i,Si))‖, (6.9)

where f is the forward kinematics function that computes joint positions X̃ from the

joint angle configurations of the synthesized pose Q̃ while S is the skeleton model which

we have developed by taking average of all subjects’ skeletons that are included in the

MoCap dataset. The term Xi,k is the ith joint position of the retrieved kth nearest

neighbor.
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Databases MoCap Datasets Details

DBcmu CMU It contains the 3D poses of CMU MoCap
dataset except all those poses from which we
generate the 2D synthetic input test dataset.
Furthermore, we also remove all those motion
sequences completely from which even a single
2D synthetic input image is generated so that
the database become totaly free from overlap-
ping with any testing image.

DBcmu CMU It contains the 3D poses of CMU MoCap
dataset and we remove all motion sequences
completely, to which even a single 2D synthetic
input pose belongs, as well as all those motion
sequences which are performed by the same per-
forming actor present in the 2D synthetic input
image.

DBhdm HDM05 This database is developed using HDM05 mo-
tion capture sequences.

Table 6.2: The details of different databases which are developed for the
evaluation of the proposed system.

6.5.2 Projection Error

For measuring the deviation from the 2D input pose, we use the inferred projection

matrixM (Section 6.4) to project the model onto the given query image. The projection

error is then given by,

Ec(Q̃) =

√∑
i∈JF

‖wi · (M · f(Q̃i,Si)− xi))‖. (6.10)

In computing projection error, we regard only those joints which involve in developing

the specific feature sets and are exploited for the search and retrieval of Knn, JF .

6.6 Experiments

We evaluate the developed system’s performance on two types of test input data, the

synthetic 2D images as well as the internet real images. We develop the synthetic 2D im-

age dataset from the 3D MoCap files by random camera parameters [FZZW14, RKS12].

The skeleton model consists of 18 joints including head, neck, chest, root, left/right

shoulders, left/right elbows, left/right wrists, left/right hips, left/right knees, left/right

ankles and left/right feet (see Figure 6.2). We follow the same protocol [FZZW14] for
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Input Dataset

Items Walking Running Jumping Boxing Climbing Total

No. of Poses 13509 2970 5913 9128 12289 43809

No. of Subjects 8 8 4 4 1 25

Table 6.3: The details of the synthetic 2D image test dataset T S1 generated
from the CMU MoCap files by some random camera parameters. This test
dataset is used for quantitative evaluation.

the performance evaluation in terms of error measurement such as, the normalized re-

construction error and the reconstruction rate. For normalized reconstruction error, we

first compute the Euclidian distance between each joint of the estimated 3D pose and the

ground truth 3D pose and select the joint with maximum error. The error is measured

then by the fraction of the backbone length in order to fix the arbitrary scale for the

different skeletons. For multiple images, we take average of the reconstruction error and

refer it as average reconstruction error. The reconstruction rate is computed by taking

the percentage of those test images which contain very low normalized reconstruction

error subject to some threshold level. We select the same threshold level 0.3 in the line

of [FZZW14]. We refer the average reconstruction error shortly as rec err and the recon-

struction rate as rec rate. Like previous state-of-the-art approaches [FZZW14, RKS12],

we Procrustes align the reconstructed pose with the ground truth before calculating the

error.

6.6.1 Datasets

MoCap Datasets. We employ two different motion capture datasets in order to eval-

uate our approach, CMU motion capture dataset [CMU14] and HDM05 motion capture

dataset [MRC+07]. Both datasets are publicly available. For CMU MoCap dataset, due

to limited memory capacity, we pick up roughly 1/3 of CMU MoCap dataset for develop-

ing the knowledge base, which consists of a variety of motion classes like walking, running,

jogging, step walking, kicking, punching, lifting up, jumping, and other locomotion and

sports activities in order to justify the generalizability of our proposed approach. For

HDM05 dataset, we employ all motion capture files available in the dataset. We first

down-sample our MoCap datasets from 120Hz to 30Hz. As a result, we get roughly

360K frames for CMU dataset and 380K frames for HDM05 dataset. For quantitative

evaluation, we develop the databases according to three different experiment scenarios

such as, DBcmu, DBcmu and DBhdm as reported in Table 6.2.
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Figure 6.5: Comparison between different numbers of nearest neighbors with
respect to average reconstruction error rec err at various threshold levels. We
carry out this experiment on the test dataset T S2.

Input Datasets. Similar to [FZZW14, RKS12], we generate the synthetic 2D input

image test datasets from the motion capture files of CMU MoCap dataset by some

random camera parameters for quantitative analysis. We select those action categories

as in [FZZW14] like, walking, running, jumping, boxing and climbing. Our synthetic

input test dataset, referred as T S1, consists of 43809 numbers of 2D synthetic test

images from 25 subjects (for detail see Table 6.3) that is large enough as compared

to [FZZW14] which uses 29, 336 synthetic images from 23 subjects. We also develop a

mini test dataset T S2 which is the subset of the test dataset T S1 and consists of 3500

2D synthetic images. We randomly select these 3500 synthetic images from all action

classes such as, walking, running, jumping, boxing and climbing that are included in our

test dataset T S1. On this test dataset T S2, we perform some pre-experiments in order

to tune the parameters. We also carry out a few sub-experiments utilizing this mini test

dataset. For qualitative analysis, we employ PARSE dataset [Ram07] which contains

internet real images. We also evaluate the robustness of the proposed approach on the

hand-drawn sketches which we draw for a few action classes like walking, jumping jack

and grabbing.

6.6.2 Parameters

Nearest Neighbors. We first conduct an experiment to find out that how many

nearest neighbors should be enough to our proposed system in order to reconstruct

robust and plausible 3D pose. We also illustrate that how the different numbers of

nearest neighbors exert influence on the overall reconstruction approach at different

threshold levels. We fix the values for K such as 32, 64, 128, 256 and 512 and evaluate
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Figure 6.6: Impacts of weighted energy terms, Epa, Epp and Ec are shown in
(a), (b) and (c) respectively in terms of average reconstruction error rec err .
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Figure 6.7: The impact of the joint weights w. We conduct this experiment
on T S2 and compute reconstruction error rate rec rate at threshold levels 0.3
and 0.26 respectively.

the performance of our approach in terms of accuracy rate at different threshold levels.

We have found from the results that when the size of nearest neighbors equals to 256,

the system executes more accurate reconstructions comparatively at almost all threshold

levels. By increasing the number of nearest neighbour like K = 512, the presented system

does not improve the results significantly as evident from Figure 6.5 where the results

impose that K = 256 is sufficient to our system to produce the best reconstruction

results. We set this value K = 256 for all our experiments independent of that whatever

the dataset we deploy in our experiments. We conduct this experiment on the test

dataset T S2.

Energy Weights. We use different energies, Epa, Epp and Ec in our reconstruction

approach (Section 6.5). We examine the impact of these energies on the reconstruction

results by adjusting different weights for these energies. We allot different weights for

an energy starting from 0 while the weights for other energies are kept fixed to their
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specific values. The results are reported in Figure 6.6 (a)-(c), which show that these

energy terms contribute significantly in dropping the error for 3D pose estimation. We

adjust the weights as: ωpa = 0.8, ωpp = 1.4 and ωc = 1.8 for all further experiments.

Joint Weights. In order to testify the impact of the joint weights on the presented

system, we carry out an experiment on test dataset T S2 and compute the reconstruction

error rate rec rate, when the threshold levels are fixed to 0.3 and 0.26 respectively. We

have found from the results reported in Figure 6.7 that the accuracy rate rec rate drops

significantly for all action categories on both threshold levels when we do not make use

of the joint weights w in the proposed reconstruction methodology. The details about

the joint weights can be seen in Figure 6.2(c).

6.6.3 Search and Retrieval

We evaluate the proposed search and retrieval framework by conducting different ex-

periments. We first analyse the designed feature sets thoroughly in terms of similarity

measure, accuracy, memory consumption and time. We then investigate that how the

virtual cameras exert influence on the overall retrieval and reconstruction framework.

We perform these experiments on the test dataset T S2.

Feature Sets. We develop a variety of feature sets on the basis of the subsets of the

joints as illustrated in Table 6.1 to perform similarity search into the MoCap dataset

(Section 6.3). We examine these feature sets in different ways as,

• In first experiment, we check the efficiency of the developed feature sets with

respect to similarity measure (the retrieval of the similar poses from the MoCap

dataset), with fixed value of K = 256. For this experiment, we select 1500 random

images which results into 256×1500 number of retrieved poses for each feature set.

We then compute the similarity measure for the retrieved nearest neighbors—the

total number of retrieved similar poses that are more close to the ground truth and

yield the error in the form of average reconstruction error rec err less than some

specific threshold level. We observe from the results reported in Figure 6.8 that

the feature set F im
11 retrieves a good number of very similar poses comparatively

for almost all threshold levels.

• In second experiment, we testify the performance of the feature sets with respect

to the final reconstruction for different action classes. We compute the average

reconstruction error rec err for the evaluation. The experimental results shown in

Figure 6.9 execute that the feature sets F im
11 and F im

14 , both produce lower average
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Figure 6.8: The comparison between all developed feature sets on the basis
of similarity measure—the total number of the retrieved similar poses from the
MoCap dataset that are more close to the ground truth, computed through av-
erage reconstruction error rec err under constraints of different threshold levels,
when the number of nearest neighbors are fixed to be 256. We perform this ex-
periment on 1500 synthetic images which are selected randomly and as a result
it becomes 256× 1500 target poses.

reconstruction errors for all action classes as well as on an average over all these

action classes, as compared to the other feature sets.

• In third experiment, we evaluate the feature sets on the basis of time consump-

tion and memory allocation. The results as reported in Table 6.4 elaborate that

although the feature set F im
5 consume less time comparatively in retrieval and re-

construction process but this time difference is not so much critical. Moreover, the

time difference for developing the knowledge base and the kd-tree can be ignored

and does not matter a lot due to the reason that both are the preprocessing steps

and need to be performed just only for once.

In case of memory allocation, the feature sets with more joints allocate more

memory comparatively e.g., the feature set F im
14 requires more memory than the

feature set F im
11 .

From these experiments, we conclude that in the context of accuracy, time consumption

and memory allocation, the feature set F im
11 is the best choice in contrast to [YKW13,

KTWZ10] where the authors recommend the feature sets F im
5 but they employ the tem-

poral coherence in the retrieval and reconstruction processes. No doubt, F im
5 consumes

less time and memory but the accuracy drops significantly in our case when we do not

consider the temporal information at all. Generally, the selection of the suitable feature

sets is a trade-off between the accuracy and the time & memory consumption. We select
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Figure 6.9: Comparison between the feature sets in terms of average recon-
struction error rec err on different action categories.

Execution Time (sec.) for Feature Sets

Components F im
5 F im

7 F im
9 F im

11 F im
14

(a) Knowledge base 30.56 42.14 54.80 67.89 77.67

(b) kd-tree 97.61 118.12 130.27 144.49 197.74

(c) Retrieval & Reconstruction 0.55 0.57 0.63 0.68 0.97

Table 6.4: The execution time in seconds for different feature sets. (a) The
time that is consumed to develop the knowledge base including the creation of
the virtual cameras through database sampling. (b) The time which is required
to develop kd-tree, while (c) explores the time for the retrieval and reconstruc-
tion process including the time for camera parameters estimation in seconds per
image. This execution time is calculated on CMU dataset with 360K number
of frames and using 24× 7 number of virtual cameras. Note that both (a) and
(b) are the execution times for the pre-processing steps.

the feature set F im
11 and continue our experiments utilizing this feature set F im

11 which is

more accurate and consumes very acceptable time and memory comparatively.

Virtual Cameras. We create a number of virtual cameras by sampling of the MoCap

database at different azimuth and elevation angles to resolve the 2D-3D correspondence

issue (see Section 6.3). To investigate the overall impact of these virtual cameras, we

evaluate our approach by designing a variety of database sampling compositions in order

to create virtual cameras. The results in Figure 6.10 show the benefits of the use of the

virtual cameras. We found that when we increase step size for azimuth angles to 15, 25,

35, 45, and 60 degrees, the error increases correspondingly as well. Similar behaviour is

observed for the elevation angles. In short, when we employ more virtual cameras with
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Figure 6.10: Influence of the virtual cameras, created through database sam-
pling at different viewpoints (azimuth and elevation angles), with respect to
average reconstruction error rec err . We first fix the step size for the elevation
angle to 15 degree and vary the step size for the azimuth angles to 15, 25, 35, 45,
and 60 degrees to evaluate the influence of sampling on the basis of the azimuth
angles. For elevation angles, we fix the step size for the azimuth angle to 15
degree and step size for the elevation angles changes to 15, 30 and 45 degrees.
The filled colored boxes correspond to the sampling on the basis of the azimuth
angles while the unfilled colored boxes correspond to the sampling on the basis
of the elevation angles.

azimuth or elevation angles, the average reconstruction error decreases correspondingly.

6.6.4 Quantitative Evaluation on Synthetic Images

We perform quantitative analysis of our proposed methodology on the test dataset

T S1 which consists of 43809 synthetic 2D images (Table 6.3) and compare the results

with the state-of-the-art approaches [FZZW14, RKS12]. For evaluation, we design dif-

ferent experimental setups on the basis of the MoCap datasets as reported in Table 6.2.

• In first case (DBcmu), when we employ CMU MoCap dataset as a prior and remove

all the sequences of that motion capture clip from the dataset, from which we gen-

erate even a single synthetic 2D input image so that we can avoid any overfitting.

We report the results in Table 6.5(a) which elaborate that our approach outper-

forms the other state-of-the-art methods [FZZW14, RKS12] for all five activities

in terms of normalized average reconstruction error as well as reconstruction rate

with 0.3 threshold level.

• For second case (DBcmu), when we use CMU MoCap dataset and remove not only

the all motion sequences containing synthetic 2D input image but also remove the

all motion sequences performed by the same actor present in 2D input image. The

results as presented in Table 6.5(b) show that our methodology again performs



97 6.6. Experiments

Comparison with state-of-the-arts

Methods Err. Metrics Walking Running Jumping Boxing Climbing Average

[FZZW14]
rec err 0.260 0.385 0.316 0.530 0.526 0.403

rec rate 73.9% 38.2% 41.6% 17.0% 28.1% 39.8%

[RKS12]
rec err 0.446 0.453 0.374 0.584 0.533 0.478

rec rate 29.6% 23.0% 31.6% 10.7% 20.1% 23.0%

(a) Results with DBcmu (MoCap from CMU dataset)

Our App.
rec err 0.195 0.286 0.196 0.396 0.409 0.296

rec rate 84.7% 62.1% 84.5% 45.1% 40.6% 63.4%

(b) Results with DBcmu (MoCap from CMU dataset)

Our App.
rec err 0.222 0.337 0.243 0.429 0.561 0.358

rec rate 81.6% 50.6% 76.0% 37.6% 21.5% 53.5%

(c) Results with DBhdm (MoCap from HDM05 dataset)

Our App.
rec err 0.317 0.406 0.237 0.554 0.595 0.422

rec rate 54.9% 29.3% 85.4% 6.4% 17.6% 38.7%

Table 6.5: Comparison with the state-of-the-art approaches on synthetically
generated 2D image test dataset T S1 . Both performance metrics the average
reconstruction error rec err and the reconstruction rate rec rate are reported for
all five action classes. (a) and (b) report results of the proposed approach on
the databases DBcmu and DBcmu respectively which are developed using CMU
motion capture dataset, while (c) shows results when the database DBhdm is
used as the MoCap priors, which is based on HDM05 motion capture dataset.

better comparatively for all actions except for climbing action where the error

increases a little bit due to the reason that after removing the actor’s sequences,

the MoCap dataset contains a very few examples of the climbing action, which

ultimately results into increase in the reconstruction error. In contrast, if we

consider the average results over all five actions, our approach executes a very

good results as compared to the state-of-the-arts.

• For third case (DBhdm), when we use other MoCap dataset like HDM05 MoCap

dataset. We observe that the reconstruction error increases and that is due to the

skeleton discrepancies between CMU MoCap dataset and HDM05 MoCap dataset.

For boxing action category, the reconstruction error is high because HDM05 Mo-

Cap dataset does not contain boxing poses at all. It just includes a few poses

of punching and as a result the efficiency drops and the system executes high re-

construction error for that specific action. Even having different virtual marker

placements and the skeleton discrepancies in HDM05 MoCap dataset, our approach

still executes competitive results (see Table 6.5(c)).

• Our approach is more efficient with respect to run time as well and takes just

0.68 seconds per image for retrieval and reconstruction with feature set F im
11 as

reported in Table 6.4, while the state-of-the-art approach [RKS12] takes 5 seconds

per image to converge.
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Comparison with State-of-the-arts on Noisy Data

Methods Err. Metrics std(0.0) std(0.1) std(0.2) std(0.3) std(0.4)

[FZZW14]
rec err 0.414 0.449 0.485 0.561 0.630

rec rate 32.6% 28.7% 24.4% 18.1% 13.1%

[RKS12]
rec err 0.466 0.497 0.558 0.634 0.704

rec rate 23.9% 20.5% 13.8% 9.3% 4.8%

Our App.
rec err 0.282 0.333 0.435 0.529 0.623

rec rate 66.2% 52.1% 37.7% 34.7% 33.1%

Table 6.6: Influence of the noise on overall reconstruction results. Both er-
ror categories, the average reconstruction error rec err and the reconstruction
rate rec rate, are reported when Gaussian white noise with different standard
deviations (std) is added into the 2D input query.

Noisy Input Data. In real world scenario, the 2D pose estimation from the real

images are often ambiguous and noisy. To check the developed system’s resistance

against the noisy inputs, we test our 3D reconstruction approach on different levels of

Gaussian white noise with standard deviation std, starting from 0.0 (indicates no noise)

to 0.1, 0.2, 0.3 and 0.4. Similar to [FZZW14], we also normalize the Gaussian white

noise before adding it to the 2D synthetic test images. From the results reported in

Table 6.6, we have found that our approach is more resistant to noise as compared to

the state-of-the-arts. This is also evident from Figure 6.12, where our approach produces

very good results even with the erroneous 2D joint positions. Moreover, the proposed

system’s resistance against noise can be evaluated when we give input the hand-drawn

2D sketches where the joint positions are very ambiguous and the 2D poses do not hold

anthropometric regularity at all (see Figure 6.15).

6.6.5 Controlled Experiments

We analyze the influence of different parameters on our proposed approach by performing

a few controlled experiments, which we discuss as follows.

Joints’ Sensitivity. To see the joints’ sensitivity with respect to the final reconstruc-

tion, we evaluate our approach joint-wise for all types of activity classes. We compute

the average reconstruction error by computing the Euclidian distance between the es-

timated 3D poses and the ground truth poses for each individual joint. The results as

illustrated in Figure 6.11 reveal that the joints like wrists, ankles and feet joints prove

to be more erroneous and sensitive for all activities as compared to the other joints due

to the reason that these joints have more capacity to move all around. On the other
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Figure 6.11: The sensitivity of each individual joint in all five action categories
with reference to the average reconstruction error (Euclidean distance) which is
color-coded.

Figure 6.12: A few examples of outliers that are detected in the 2D input
images when we employ off-the-shelf part-detector algorithm [YR11] to esti-
mate the 2D pose, even then our reconstruction approach executes acceptable
results. First row represents the input images while the second and third
rows correspond to the estimated 3D poses at two arbitrary views.

hand, the joints like neck, shoulder and hip joints are considered to be less sensitive as

expected due to limited movements.
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Figure 6.13: Influence of the test camera viewpoints in terms of average re-
construction error rec err for all five actions when: (a) the elevation angle is
fixed to 30 degree and the azimuth angles span from 0 to 360 degrees; (b) the
azimuth angle is fixed to 30 degree and the elevation angles range from 0 to
180 degrees. We perform this experiment on 100 2D synthetic images for each
action, which are selected randomly from the input test dataset T S1.

Camera Viewpoints. We also report on the influence of the test camera viewpoints

on the reconstruction process with respect to azimuth and elevation angles. For that

purpose, we perform evaluation on all possible camera viewpoints to check the robustness

of the presented system. We perform this experiment on randomly selected 100 2D

synthetic images for each action from the input test dataset T S1.

• In case of azimuth angles, we create the synthetic images for all five actions by

weak perspective camera at the azimuth angles spanning from 0 to 360 degrees and

fix the elevation angle to 30 degree. The results are presented in Figure 6.13(a),

where we observe that our approach executes more error for the profile views than

the frontal views for almost all action classes, but still produces acceptable results.

• In case of elevation angles, similar to first experiment, we generate the synthetic

images for all five actions at the elevation angles ranges from 0 to 180 degrees when

the azimuth angle is set to 30 degree. The results in Figure 6.13(b) reveal that
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Figure 6.14: Qualitative evaluation on real images: A few examples of the
reconstruction results on PARSE dataset [Ram07], when the automatic off-
the-shelf part-detector algorithm [YR11] is utilized to estimate the 2D joint
locations. First rows represent the real images with 2D estimated joint po-
sitions which are given as input, while the second and third rows are the
corresponding 3D reconstructions at two different arbitrary viewpoints.

the presented system produces more reconstruction errors for the head-mounted

camera views comparatively. At that view, the 2D input joint locations are over-

lapping with each other and become indistinctive which leads to the retrieval of

inappropriate nearest neighbors and ultimately results into higher reconstruction

error.
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Figure 6.15: Qualitative evaluation on the hand-drawn sketches: A few exam-
ples of reconstruction on the hand-drawn sketches, when the 2D joint locations
are manually labelled. First row represents the hand-drawn sketches that are
given as input, while the second and third rows are the corresponding 3D
reconstructions at two different arbitrary viewpoints.

6.6.6 Qualitative Evaluation

6.6.6.1 Real Images

We employ PARSE dataset [Ram07] for qualitative evaluation of our approach on the real

images. We use the automatic off-the-shelf part-detector algorithm [YR11] in order to

estimate the 2D joint locations in contrast to the state-of-the-art approaches [FZZW14,

RKS12], where the authors manually annotate the 2D joint positions. The off-the-shelf

part-detector algorithm produces more noisy 2D joint locations comparatively. Some

qualitative reconstruction results based on the 2D poses estimated from the real images

are reported in Figure 6.14. Although the 2D estimated joint positions are noisy and

ambiguous, our approach executes plausible and robust 3D reconstruction results. A

few more examples are shown in Figure 6.12, where 2D input poses are invalid and

ambiguous, even having such a erroneous input our approach produces good results.

6.6.6.2 Hand-drawn Sketches

We also evaluate our proposed methodology qualitatively on the hand-drawn sketches,

which we draw for different action categories like walking, jumping jack and grabbing

action. The inference of the 3D poses from the hand-drawn 2D sketches is the most

challenging scenario due to the reason that: the non-existence anthropometric property
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of the hand-drawn poses; the varying lengths and sizes of different body segments; the

unnatural body part movements etc. We first manually label the 2D joint positions of

the given 2D hand-drawn sketch. Although giving such a noisy and ambiguous input,

our system still produces plausible 3D poses. A few qualitative reconstruction results

on the basis of hand-drawn sketches are reported in Figure 6.15.

6.7 Conclusion

We have presented in this chapter an efficient and robust framework for the 3D pose

retrieval leading towards the 3D pose reconstruction from a single 2D image either

synthetic, real or hand-drawn. For 3D pose retrieval from the MoCap dataset, we

develop a set of feature sets based on different combinations of joints. We evaluate

the developed feature sets in terms of similarity measure, reconstruction error, time

and memory consumption. We introduce the two-fold method to estimate the camera

parameters through sampling of the MoCap data, the retrieved Knn and the projective

constraints. We also exploit the retrieved 3D similar poses as pose priors and derive

benefits form the joint weights in proposed reconstruction approach in order to infer

the final 3D pose. We perform quantitative analysis on 43809 synthetic images and

qualitative analysis on the internet real images as well as on the hand-drawn sketches.

On this large input testing dataset and with a variety of experimental setups based on

different MoCap datasets and inputs, we have evaluated our proposed framework and

found that our approach outperforms all existing state-of-the-art approaches even in

case of noisy input images. Our retrieval and reconstruction approach takes roughly 2

poses per second.



7
A Dual-Source Approach for 3D Pose

Estimation from a Single Image

True wisdom comes to each of us when we realize how little we understand about life,

ourselves, and the world around us.

Socrates

7.1 Introduction

Human 3D pose estimation from a single RGB image is a very challenging task. One

approach to solve this task is to collect training data, where each image is annotated

with the 3D pose. A regression model, for instance, can then be learned to predict the

3D pose from the image [BS10, KG14, ICS14, AT06b, BSKM08]. In contrast to 2D pose

estimation, however, acquiring accurate 3D poses for an image is very elaborate. Popular

datasets like HumanEva [SBB10] or Human3.6M [IPOS14] synchronized cameras with

a commercial marker-based system to obtain 3D poses for images. This requires a

very expensive hardware setup and the requirements for the marker-based system like

controlled indoor environment and the markers attached with performing actor prevent

the capturing of realistic natural images.

Instead of training a model on pairs consisting of an image and a 3D pose, we

propose an approach that is able to incorporate 2D and 3D information from two different

training sources. The first source consists of images with annotated 2D pose. Since

2D poses in images can be manually annotated, they do not impose any constraints

regarding the environment from where the images are taken. Indeed any image from

the Internet can be taken and annotated. The second source is accurate 3D motion

capture data captured in a lab, e.g., as in the CMU motion capture dataset [CMU14]

or the Human3.6M dataset [IPOS14]. We consider both sources as independent, i.e.,

we do not know the 3D pose for any image. To integrate both sources, we propose

a dual-source approach as illustrated in Figure 7.1. To this end, we first convert the

104
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Figure 7.1: Overview. Our approach relies on two training sources. The
first source is a motion capture database that contains only 3D poses. The
second source is an image database with annotated 2D poses. The motion
capture data is processed by pose normalization and projecting the poses to
2D using several virtual cameras. This gives many 3D-2D pairs where the 2D
poses serve as features. The image data is used to learn a pictorial structure
model (PSM) for 2D pose estimation where the unaries are learned by a random
forest. Given a test image, the PSM predicts the 2D pose which is then used to
retrieve the normalized nearest 3D poses. The final 3D pose is then estimated
by minimizing the projection error under the constraint that the solution is
close to the retrieved poses, which are weighted by the unaries of the PSM. The
steps (red arrows) in the dashed box can be iterated by updating the binaries
of the PSM using the retrieved poses and updating the 2D pose.

motion capture data into a normalized 2D pose space and learn a regressor for 2D pose

estimation from the image data. During inference, we first estimate 2D pose and create

Knn search to retrieve the nearest 3D poses using an approach that is robust to 2D

pose estimation errors. We then jointly estimate a mapping from the 3D pose space to

the image, weight the retrieved nearest poses according to the image evidence, identify

wrongly estimated 2D joints, and estimate the 3D pose. During this process, the 2D

pose can also be refined and the approach can be iterated to update the estimated 3D

and 2D pose.

We evaluate our approach on two popular datasets for 3D pose estimation. On both

datasets, our approach achieves state-of-the-art results when using both sources from

the same dataset, but it even achieves competitive results when the motion capture

data is taken from a very different dataset. We provide a thorough evaluation of the

proposed approach. In particular, we analyze the impact of differences of the skeleton

structure between the two training sources, the impact of the accuracy of the used 2D

pose estimator, and the impact of the similarity of the training and test poses.
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7.2 Overview

In this work, we aim to predict the 3D pose from an RGB image. Since acquiring 3D

pose data in natural environments is impractical and annotating 2D images with 3D pose

data is infeasible, we do not assume that our training data consists of images annotated

with 3D pose. Instead, we propose an approach that utilizes two independent sources

of training data. The first source consists of motion capture data, which is publically

available in large quantities and that can be recorded in controlled environments. The

second source consists of images with annotated 2D poses, which is also available and

can be easily provided by humans. Since we do not assume that we know any relations

between the sources except that the motion capture data includes the poses we are

interested in, we preprocess the sources first independently as illustrated in Figure 7.1.

From the image data, we learn a pictorial structure model (PSM) to predict 2D poses

from images. This will be discussed in Section 7.3. The motion capture data is prepared

to efficiently retrieve 3D poses that could correspond to a 2D pose. This part is described

in Section 7.4.1. We will show that the retrieved poses are insufficient for estimating the

3D pose. Instead, we estimate the pose by minimizing the projection error under the

constraint that the solution is close to the retrieved poses (Section 7.4.2). In addition,

the retrieved poses can be used to update the PSM and the process can be iterated

(Section 7.4.3). In our experiments, we show that we achieve very good results for 3D

pose estimation with only one or two iterations.

7.3 2D Pose Estimation

In this work, we adopt a PSM that represents the 2D body pose x with a graph G =

(J ,L), where each vertex corresponds to 2D coordinates of a particular body joint i, and

edges correspond to the kinematic constraints between two joints i and j. We assume

that the graph is a tree structure which allows efficient inference. Given an image I, the

2D body pose is inferred by maximizing the following posterior distribution,

P (x|I) ∝
∏
i∈J

φi(xi|I)
∏

(i,j)∈L

φi,j(xi, xj), (7.1)

where the unary potentials φi(xi|I) correspond to joint templates and define the probabil-

ity of the ith joint at location xi. The binary potentials φi,j(xi, xj) define the deformation

cost of joint i from its parent joint j in the tree structure.

The unary potentials in (7.1) can be modeled by any discriminative model, e.g.,

SVM in [YR11] or random forests in [DLGVG14]. In this work, we choose random
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𝒥𝑢𝑝 𝒥𝑙𝑤 𝒥𝑙𝑡  𝒥𝑟𝑡 𝒥𝑎𝑙𝑙  

Figure 7.2: Different joint sets. Jup is based on upper body joints, Jlw lower
body joints, Jlt left body joints, Jrt right body joints and Jall is composed of
all body joints. The selected joints are indicated by the large green circles.

forest based joint regressors. We train a separate joint regressor for each body joint.

Following [DLGVG14], we model binary potentials for each joint i as a Gaussian mixture

model with respect to its parent j. We obtain the relative joint offsets between two

adjacent joints in the tree structure and cluster them into c = 1, . . . , C clusters using k-

means clustering. The offsets in each cluster are then modeled with a weighted Gaussian

distribution as,

φij(xi, xj) = wcij exp

(
−1

2

(
dij − µcij

)T (
Σc
ij

)−1 (
dij − µcij

))
(7.2)

with mean µcij , covariance Σc
ij and dij = (xi−xj). The weights wcij are set according to

the cluster frequency P (c|i, j)α with a normalization constant α = 0.1 [DLGVG14].

7.4 3D Pose Estimation

While the PSM for 2D pose estimation is trained on the images with 2D pose annotations

as shown in Figure 7.1, we now describe an approach that makes use of a second dataset

with 3D poses in order to predict the 3D pose from an image. Since the two sources

are independent, we first have to establish relations between 2D poses and 3D poses.

This is achieved by using an estimated 2D pose as query for 3D pose retrieval (Section

7.4.1). The retrieved poses, however, contain many wrong poses due to errors in 2D

pose estimation, 2D-3D ambiguities and differences of the skeletons in the two training

sources. It is therefore necessary to fit the 3D poses to the 2D observations. This will

be described in Section 7.4.2.

7.4.1 3D Pose Retrieval

In order to efficiently retrieve 3D poses for a 2D pose query, we preprocess the motion

capture data. We first normalize the poses by discarding orientation and translation
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information from the poses in our motion capture database. We denote a 3D normalized

pose with X and the 3D normalized pose space with Ψ. As in [YKW13], we project

the normalized poses X ∈ Ψ to 2D using orthographic projection. We use 144 virtual

camera views with azimuth angles spanning 360 degrees and elevation angles in the range

of 0 and 90 degree. Both angles are uniformly sampled with step size of 15 degree. We

further normalize the projected 2D poses by scaling them such that the y-coordinates

of the joints are within the range of [−1, 1]. The normalized 2D pose space is denoted

by ψ and does not depend on a specific camera model or coordinate system. This step

is illustrated in Figure 7.1. After a 2D pose is estimated by the approach described in

Section 7.3, we first normalize it according to ψ, i.e., we translate and scale the pose

such that the y-coordinates of the joints are within the range of [−1, 1], then use it

to retrieve 3D poses. The distance between two normalized 2D poses is given by the

average Euclidean distance of the joint positions. The K-nearest neighbors in ψ are

efficiently retrieved by a kd-tree [KTWZ10]. The retrieved normalized 3D poses are

the corresponding poses in Ψ. An incorrect 2D pose estimation or even an imprecise

estimation of a single joint position, however, can effect the accuracy of the 3D pose

retrieval and consequently the 3D pose estimation. We therefore propose to use several

2D joint sets for pose retrieval where each joint set contains a different subset of all

joints. The joint sets are shown in Figure 7.2. While Jall contains all joints, the other

sets Jup, Jlw, Jlt and Jrt contain only the joints of the upper body, lower body, left hand

side and right hand side of the body, respectively. In this way we are able to compensate

for 2D pose estimation errors, if at least one of our joint sets does not depend on the

wrongly estimated 2D joints.

7.4.2 3D Pose Estimation

In order to obtain the 3D pose X, we have to estimate the unknown projectionM from

the normalized pose space Ψ to the image and infer which joint set Js explains the

image data best. To this end, we minimize the energy

E(X,M, s) = ωpEp(X,M, s) + ωrEr(X, s) + ωaEa(X, s) (7.3)

consisting of the three weighted terms Ep, Er and Ea.

The first term Ep(X,M, s) measures the projection error of the 3D pose X and the

projection M:

Ep(X,M, s) =

(∑
i∈Js

‖M (Xi)− xi‖2
) 1

4

, (7.4)
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where xi is the joint position of the predicted 2D pose and Xi is the 3D joint position of

the unknown 3D pose. The parameter s defines the set of valid 2D joint estimates and

the error is only computed for the joints of the corresponding joint set Js, e.g., only the

joints of the upper body are used for Jup.

The second term enforces that the pose X is close to the retrieved 3D poses Xk
s for

a joint set Js:

Er(X, s) =
∑
k

wk,s

 ∑
i∈Jall

‖Xk
s,i −Xi‖2

 1
4

. (7.5)

In contrast to (7.4), the error is computed over all joints but the set of nearest neighbors

depends on s. In our experiments, we will show that an additional weighting of the

nearest neighbors by wk,s improves the 3D pose estimation accuracy.

Although the term Er(X, s) penalizes already deviations from the retrieved poses

and therefore enforces implicitly anthropometric constraints, we found it useful to add

an additional term that enforces anthropometric constraints on the limbs:

Ea(X, s) =
∑
k

wk,s

 ∑
(i,j)∈L

(
Lk
s,i,j − Li,j

)2

 1
4

, (7.6)

where Li,j denotes the limb length between two joints.

Minimizing the energy E(X,M, s) (7.3) over the discrete variable s and the con-

tinuous parameters X and M would be expensive. We therefore propose to obtain an

approximate solution where we estimate the projection M first. For the projection,

we assume that the extrinsic parameters are given and only estimate the global ori-

entation and translation. The projection M̂s is estimated for each joint set Js with

s ∈ {up, lw, lt, rt, all} by minimizing

M̂s = arg min
M

{
K∑

k=1

Ep(X
k
s,M, s)

}
(7.7)

using non-linear gradient optimization. Given the estimated projections M̂s for each

joint set, we then optimize over the discrete variable s:

ŝ = arg min
s∈{up,lw,lt,rt,all}

{
K∑

k=1

E(Xk
s,M̂s, s)

}
. (7.8)

As a result, we obtain ŝ and M̂ = M̂ŝ and finally minimize

X̂ = arg min
X

{
E(X,M̂, ŝ)

}
(7.9)
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to obtain the 3D pose.

Implementation details. Instead of obtaining ŝ by minimizing (7.8), ŝ can also be

estimated by maximizing the posterior distribution for the 2D pose (7.1). To this end,

we project all retrieved 3D poses to the image by

xks,i = M̂s

(
Xk
s,i

)
. (7.10)

Note that the retrieved poses contain all joints although only a subset of joints was used

for retrieval. The binary potentials φi,j(xi, xj |Xs), which are mixture of Gaussians, are

then computed from the projected full body poses for each set,

P (x|Xs, I) ∝
∏
i∈J

φi(xi|I)
∏
i,j∈L

φi,j(xi, xj |Xs), (7.11)

and ŝ is inferred by the maximum posterior probability:

(x̂, ŝ) = arg max
x,s

{P (x|Xs, I)} , (7.12)

which can be efficiently computed since the terms φi(xi|I) have been already computed

for 2D pose estimation. Besides of the joint set, we also obtain a refined 2D pose x̂,

which is used finally to compute the projection error Ep(X,M̂, ŝ) in (7.9).

For 3D pose estimation, we only keep the retrieved poses from the inferred joint set

ŝ and weight each pose by the unaries (7.1)

wk,s =
∑
i∈J

φi(x
k
s,i|I), (7.13)

and normalized by

wk,s =
wk,s −mink′(wk′,s)

maxk′(wk′,s)−mink′(wk′,s)
. (7.14)

For the retrieved poses, we only keep the Kw poses with the highest weights. In our

experiments, we show that good results are achieved with K = 256 and Kw = 64.

The dimensionality of X can be reduced by applying PCA to the weighted poses. We

thoroughly evaluate the impact of the implementation details in Section 7.5.1.1.

7.4.3 Iterative Approach

The approach can be iterated by using the refined 2D pose x̂ (7.12) as query for 3D pose

retrieval (Section 7.4.1) as illustrated in Figure 7.1. Having more than one iteration is

not very expensive since many terms like the unaries need to be computed only once



111 7.5. Experiments

and the optimization of (7.7) can be initialized by the results of the previous iteration.

The final pose estimation described in Section 7.4.2 also needs to be computed only once

after the last iteration. In our experiments, we show that two iterations are sufficient.

7.5 Experiments

We evaluate the proposed approach on two publicly available datasets, namely HumanEva-

I [SBB10] and Human3.6M [IPOS14]. Both datasets provide accurate 3D poses for each

image and camera parameters. For both datasets, we use a skeleton consisting of 14

joints, namely head, neck, ankles, knees, hips, wrists, elbows and shoulders. For eval-

uation, we use the 3D pose error as defined in [SSRA+12]. The error measures the

accuracy of the relative pose up to a rigid transformation. To this end, the estimated

skeleton is aligned to the ground-truth skeleton by a rigid transformation and the aver-

age 3D Euclidean joint error after alignment is measured. In addition, we use the CMU

motion capture dataset [CMU14] as training source.

7.5.1 Evaluation on HumanEva-I Dataset

We follow the same protocol as described in [SSQTMN13, KG14] and use the provided

training data to train our approach while using the validation data as test set. As

in [SSQTMN13, KG14], we report our results on every 5th frame of the sequences walking

(A1) and jogging (A2) for all three subjects (S1, S2, S3) and camera C1. For 2D

pose estimation, we train regression forests and PSMs for each activity as described

in [DLGVG14]. The regression forests for each joint consists of 8 trees, each trained

on 700 randomly selected training images from a particular activity. While we use

c = 15 mixtures per part (7.2) for the initial pose estimation, we found that 5 mixtures

are enough for pose refinement (Section 7.4.2) since the retrieved 2D nearest neighbors

strongly reduce the variation compared to the entire training data. In our experiments,

we consider two sources for the motion capture data, namely HumanEva-I and the

CMU motion capture dataset. We first evaluate the parameters of our approach using

the entire 49K 3D poses of the HumanEva training set as motion capture data. Although

the training data for 2D pose estimation and the 3D pose data are from the same dataset,

the sources are separated and it is unknown which 3D pose corresponds to which image.

7.5.1.1 Parameters

Joint Sets J . For 3D pose retrieval (Section 7.4.1), we use several joint sets Js with

s ∈ {up, lw, lt, rt, all}. For the evaluation, we use only one iteration and K = 256
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(a) Joint set: Jall

(b) Joint set: Js with Eq. (7.8)

(c) Joint set: Js with Eq. (7.12)

Figure 7.3: (a) Using only joint set Jall. (b) Using all joint sets Js and
estimating ŝ using (7.8). (c) All joint sets Js and estimating ŝ using (7.12).
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Figure 7.4: Impact of number of nearest neighbors K and weighting of nearest
neighbors Kw. The results are reported for subject S3 with walking action (A1,
C1) using the CMU dataset (a-b) and HumanEva (c-d) for 3D pose retrieval.

without weighting. The results in Figure 7.3 show the benefit of using several joint sets.

Estimating ŝ using (7.12) instead of (7.8) also reduces the pose estimation error.

Nearest Neighbors Kw. Our 3D pose estimation (Section 7.4.2) depends on the

retrieved K 3D poses, which are then weighted and reduced to Kw. The impact of the

weighting and the number of nearest neighbors is evaluated in Figure 7.4. The results

show that the weighting reduces the pose estimation error independently of the used

motion capture dataset. Without weighting more nearest neighbors are required. If not

otherwise specified, we use K = 256 and Kw = 64 for the rest of the paper. We also

evaluated our approach without a 3D pose model. In this case, we take the average pose

of the retrieved K or Kw poses. If the average of the retrieved K or Kw poses is used

instead of optimizing (7.9), the errors are 55.7mm and 48.9mm, respectively, whereas

53.2mm and 47.5mm by optimizing (7.9). PCA can be used to reduce the dimension
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Figure 7.5: (a) Impact of number of eigenposes. The error is reported for
subject S3 with action jogging (A2, C1) using the CMU dataset for 3D pose
retrieval. (b-d) Impact of weights ωr, ωp and ωa in (7.3).
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Figure 7.6: Impact of number of iterations and weighting of nearest neighbors.

of X. Figure 7.5(a) evaluates the impact of the number of principal components. Good

results are achieved for 10-26 components, but the exact number is not critical. In our

experiments, we use 18.

Energy Terms. In order to recover 3D pose (Section 7.4.2), we use an energy (7.3)

consisting of three weighted terms, namely Er, Ep and Ea. The impact of the weights is

reported in Figure 7.5(b-d). Without the term Er, the error is very high. This is expected

since the projection error Ep is evaluated on the joint set Jŝ. If Jŝ does not contain all

joints, the optimization is not sufficiently constrained without Er. Since Er is already

weighted by the image consistency of the retrieved poses, Ep does not result in a large

drop of the error, but refines the 3D pose. The additional anthropometric constraints Ea

slightly reduce the error in addition. In our experiments, we use ωp = 0.55, ωr = 0.35,

and ωa = 0.065.
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(a) Walking Sequences (A1, C1) of HumanEva-I dataset

Methods
Walking (A1, C1)

Average
S1 S2 S3

Kostrikov et al. [KG14] 44.0 ± 15.9 30.9 ± 12.0 41.7 ± 14.9 38.9 ± 14.3

Wang et al. [WWL+14] 71.9 ± 19.0 75.7 ± 15.9 85.3 ± 10.3 77.6 ± 15.1

Simo-Serra et al. [SSQTMN13] 65.1 ± 17.4 48.6 ± 29.0 73.5 ± 21.4 62.4 ± 22.6

Radwan et al. [RDG13] 75.1 ± 35.6 99.8 ± 32.6 93.8 ± 19.3 89.6 ± 29.2

Simo-Serra et al. [SSRA+12] 99.6 ± 42.6 108.3 ± 42.3 127.4 ± 24.0 111.8 ± 36.3

Bo et al. [BS10] (GT-BB) 46.4 ± 20.3 30.3 ± 10.5 64.9 ± 35.8 47.2 ± 22.2

Bo et al. [BS10] (Est-BB) 54.8 ± 40.7 36.7 ± 20.5 71.3 ± 39.8 54.3 ± 33.7

Bo et al. [BS10]* 38.2 ± 21.4 32.8 ± 23.1 40.2 ± 23.2 37.1 ± 22.6

(i) Our Approach (MoCap from HumanEva-I dataset)

Iteration-I 40.1 ± 34.5 33.1 ± 27.7 47.5 ± 35.2 40.2 ± 32.5

Iteration-II 35.8 ± 34.0 32.4 ± 26.9 41.6 ± 35.4 36.6 ± 32.1

(ii) Our Approach (MoCap from CMU dataset)

Iteration-I 54.5 ± 23.7 54.2 ± 21.4 64.2 ± 26.7 57.6 ± 23.9

Iteration-II 52.2 ± 20.5 51.0 ± 15.1 62.8 ± 27.4 55.3 ± 21.0

(b) Jogging Sequences (A2, C1) of HumanEva-I dataset

Methods
Jogging (A2, C1)

Average
S1 S2 S3

Kostrikov et al. [KG14] 57.2 ± 18.5 35.0 ± 9.9 33.3 ± 13.0 41.8 ± 13.8

Wang et al. [WWL+14] 62.6 ± 10.2 77.7 ± 12.1 54.4 ± 9.0 64.9 ± 10.4

Simo-Serra et al. [SSQTMN13] 74.2 ± 22.3 46.6 ± 24.7 32.2 ± 17.5 51.0 ± 21.5

Radwan et al. [RDG13] 79.2 ± 26.4 89.8 ± 34.2 99.4 ± 35.1 89.5 ± 31.9

Simo-Serra et al. [SSRA+12] 109.2 ± 41.5 93.1 ± 41.1 115.8 ± 40.6 106.0 ± 41.1

Bo et al. [BS10] (GT-BB) 64.5 ± 27.5 48.0 ± 17.0 38.2 ± 17.7 50.2 ± 20.7

Bo et al. [BS10] (Est-BB) 74.2 ± 47.1 51.3 ± 18.1 48.9 ± 34.2 58.1 ± 33.1

Bo et al. [BS10]* 42.0 ± 12.9 34.7 ± 16.6 46.4 ± 28.9 41.0 ± 19.5

(i) Our Approach (MoCap from HumanEva-I dataset)

Iteration-I 48.6 ± 33.3 43.6 ± 31.5 40.0 ± 27.9 44.1 ± 30.9

Iteration-II 46.6 ± 30.4 41.4 ± 31.4 35.4 ± 25.2 41.1 ± 29.0

(ii) Our Approach (MoCap from CMU dataset)

Iteration-I 76.2 ± 23.8 74.5 ± 19.6 58.3 ± 23.7 69.7 ± 22.4

Iteration-II 74.5 ± 23.2 72.4 ± 20.6 56.8 ± 21.4 67.9 ± 21.7

Table 7.1: Comparison with other state-of-the-art approaches on the
HumanEva-I dataset for actions walking (A1, C1) represented in (a) and jogging
(A2, C2) shown in (b). The average 3D pose error (mm) and standard devia-
tion are reported for all three subjects (S1, S2, S3) and camera C1. * denotes
a different evaluation protocol. (i) Results of the proposed approach with one
or two iterations and motion capture data from the HumanEva-I dataset. (ii)
Results with motion capture data from the CMU dataset.
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Results Summary with Average Results on HumanEva-I dataset

Methods
Average Results

Total Average
Walking (A1, C1) Jogging (A2, C1)

Kostrikov et al. [KG14] 38.9 ± 14.3 41.8 ± 13.8 40.4 ± 14.1

Wang et al. [WWL+14] 77.6 ± 15.1 64.9 ± 10.4 71.3 ± 12.8

Simo-Serra et al. [SSQTMN13] 62.4 ± 22.6 51.0 ± 21.5 56.7 ± 22.1

Radwan et al. [RDG13] 89.6 ± 29.2 89.5 ± 31.9 89.5 ± 30.5

Simo-Serra et al. [SSRA+12] 111.8 ± 36.3 106.0 ± 41.1 108.9 ± 38.7

Bo et al. [BS10] (GT-BB) 47.2 ± 22.2 50.2 ± 20.7 48.7 ± 21.5

Bo et al. [BS10] (Est-BB) 54.3 ± 33.7 58.1 ± 33.1 56.2 ± 33.4

Bo et al. [BS10]* 37.1 ± 22.6 41.0 ± 19.5 39.1 ± 21.1

(i) Our Approach (MoCap from HumanEva-I dataset)

Iteration-I 40.2 ± 32.5 44.1 ± 30.9 42.2 ± 31.7

Iteration-II 36.6 ± 32.1 41.1 ± 29.0 38.9 ± 30.6

(ii) Our Approach (MoCap from CMU dataset)

Iteration-I 57.6 ± 23.9 69.7 ± 22.4 63.7 ± 23.2

Iteration-II 55.3 ± 21.0 67.9 ± 21.7 61.6 ± 21.4

Table 7.2: Comparison with other state-of-the-art approaches on average re-
sults for all three subjects (S1, S2, S3) with actions walking (A1, C1) and
jogging (A2, C2). * denotes a different evaluation protocol. (i) Results of the
proposed approach with one or two iterations and motion capture data from
the HumanEva-I dataset. (ii) Results with motion capture data from the CMU
dataset.

Iterations. We finally evaluate the benefit of having more than one iteration (Sec-

tion 7.4.3). Figure 7.6 compares the pose estimation error for one and two iterations.

For completeness, the results for nearest neighbors without weighting are included. In

both cases, a second iteration decreases the error on nearly all sequences. A third iter-

ation does not reduce the error further.

7.5.1.2 Comparison with State-of-the-art

In our experiments, we consider two sources for the motion capture data, namely

HumanEva-I and the CMU motion capture dataset.

HumanEva-I Dataset. We first use the entire 49K 3D poses of the training data

as motion capture data and compare our approach with the state-of-the-art meth-

ods [KG14, WWL+14, RDG13, SSQTMN13, SSRA+12, BS10]. Although the training

data for 2D pose estimation and 3D pose data are from the same dataset, our approach

considers them as two different sources and does not know the 3D pose for a training

image. We report the 3D pose error for each sequence in Table 7.1 and the average
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2D Pose Estimation Error on HumanEva-I dataset

Methods
Walking (A1, C1) Jogging (A2, C1)

Average
S1 S2 S3 S1 S2 S3

Dantone et al. [DLGVG14]† 9.94 8.53 12.04 12.54 9.99 12.37 10.90

Wang et al. [WL13] 17.47 17.84 21.24 16.93 15.37 15.74 17.43

Desai et al. [DR12] 10.44 9.98 14.47 14.40 10.38 10.21 11.65

Yang et al. [YR11] 11.83 10.79 14.28 14.43 10.49 11.04 12.14

(a) 2D Pose Refinement (MoCap from HumanEva-I dataset)

(i) Refinement with MoCap Priors

Iteration-I 6.96 6.08 9.20 9.80 7.23 8.71 8.00

Iteration-II 6.47 5.50 8.54 9.40 6.79 7.99 7.45

(ii) Refinement with Projection of 3D Estimated Pose

Iteration-I 7.43 6.14 10.25 9.91 7.97 10.44 8.69

Iteration-II 6.78 6.16 9.10 9.64 6.99 7.83 7.75

(iii) Refinement with Projection of 3D Estimated Pose (Rigid Alignment)

Iteration-I 5.15 4.58 6.88 6.41 5.91 6.24 5.86

Iteration-II 4.79 4.47 6.10 6.14 5.53 5.61 5.44

(b) 2D Pose Refinement (MoCap from CMU dataset)

(i) Refinement with MoCap Priors

Iteration-I 7.62 6.26 10.99 11.14 8.58 9.93 9.08

Iteration-II 7.12 5.99 10.64 10.79 8.24 9.42 8.70

(ii) Refinement with Projection of 3D Estimated Pose

Iteration-I 8.42 7.11 11.48 12.11 9.64 11.24 10.0

Iteration-II 7.98 6.51 11.02 11.67 9.40 10.17 9.45

(iii) Refinement with Projection of 3D Estimated Pose (Rigid Alignment)

Iteration-I 6.59 7.26 9.01 9.02 9.91 8.92 8.45

Iteration-II 6.28 6.83 8.98 8.98 9.61 8.44 8.18

Table 7.3: Comparison with state-of-the-art approaches for 2D pose estima-
tion error (pixels) after refinement. (a) and (b) explore the 2D pose estimation
error after performing pose refinement using MoCap from HumanEva-I dataset
and CMU dataset respectively. (i) represents refinement using MoCap priors
(Section 7.4.2), (ii) show results of 2D pose after projecting final 3D estimated
pose while (iii) corresponds to 2D pose resulted through projection of 3D esti-
mated pose after rigid alignment. † denotes the method which corresponds to
our initial 2D pose estimation.

error in Table 7.2. While there is no method that performs best for all sequences, our

approach outperforms all other methods in terms of average 3D pose error. The ap-

proaches [KG14, BS10] achieve a similar error, but they rely on stronger assumptions.

In [KG14] the ground-truth is used to compute a 3D bounding volume and the infer-

ence requires around three minutes per image since the approach uses a 3D PSM. The
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Component wise Execution Run Time in Seconds

Components Run Time Details

Feature sets extraction 27.0 sec. 144 virtual cameras are used to develop 2D fea-
ture sets. It is a pre-processing step.

kd-tree development 14.0 sec. For HumanEva-I dataset with 49K number of
frames. It is also a pre-processing step.

Total Time 41.0 sec.

2D pose estimation 10.0 sec. Pyramid of 6 scales is used and scale factor is
kept 0.85.

3D pose retrieval † 0.12 sec. 0.024 × 5 = 0.12 sec., a cumulative execution
time for 256 nearest neighbors retrieval on the
basis of all 5 joint sets Js.

Projection Ms
† 4.75 sec. 0.95 × 5 = 4.75 sec., a cumulative execution

time for all 5 joint sets Js on projection of 256
nearest neighbors onto image.

2D pose refinement † 3.10 sec. Only binary potentials are involved for pose re-
finement (7.12).

3D pose estimation † 0.15 sec. Time for 3D pose estimation (7.9).

Total Time 18.12 sec.

Table 7.4: Execution run time in seconds for each component involved in
proposed method for HumanEva-I dataset. The image size is 640 × 480 pixels.
The execution time is measured on a 12-core 3.2GHz Intel processor. † denotes
the components which also participate in second iteration.

first iteration of our approach takes only 18.12 seconds per image (see Table 7.4) and

additional 8.12 seconds for a second iteration. In [BS10] background subtraction is per-

formed to obtain the human silhouette, which is used to obtain a tight bounding box.

The approach also uses 20 joints instead of 14, which therefore results in a different 3D

pose error. We therefore use the publicly available source code [BS10] and evaluate the

method for 14 joints and provide the human bounding box either from ground-truth

data (GT-BB) or from our 2D pose estimation (Est-BB). The results in Table 7.1 and

Table 7.2 show that the error significantly increases for [BS10] when the same skeleton

is used and the human bounding box is not given but estimated.

CMU Motion Capture Dataset. In contrast to the other methods, we do not

assume that the images are annotated by 3D poses but use motion capture data as

a second training source. We therefore evaluate our approach using the CMU motion

capture dataset [CMU14] for our 3D pose retrieval. We use one third of the CMU dataset

and downsample the CMU dataset from 120Hz to 30Hz, resulting in 360K 3D poses.

Since the CMU skeleton differs from the HumanEva skeleton, the skeletons are mapped

to the HumanEva dataset by linear regression. The results are shown in Table 7.1(b)
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The Impact of MoCap Data on 3D Pose Estimation

MoCap data
Walking (A1, C1) Jogging (A2, C1)

Average
S1 S2 S3 S1 S2 S3

(a) HumanEva 40.1 33.1 47.5 48.6 43.6 40.0 42.1

(b) HumanEva\Walking 70.5 60.4 86.9 46.5 40.4 38.8 57.3

(c) HumanEva-Retarget 59.5 43.9 63.4 61.0 51.2 55.7 55.8

(d) CMU 54.5 54.2 64.2 76.2 74.5 58.3 63.6

Table 7.5: Impact of MoCap data. (a) MoCap from HumanEva dataset.
(b) MoCap from HumanEva dataset without walking sequences. (c) MoCap
from HumanEva dataset but skeleton is retargeted to CMU skeleton. (d) Mo-
Cap from CMU dataset. The average 3D pose error (mm) is reported for the
HumanEva-I dataset with one iteration.

and Table 7.2(b). As expected the error is higher due to the differences of the datasets,

but the error is still low in comparison to the other methods.

To analyze the impact of the motion capture data more in detail, we have evaluated

the pose error for various modifications of the data in Table 7.5. We first remove the

walking sequences from the motion capture data. The error increases for the walking

sequences since the dataset does not contain poses related to walking sequences any

more, but the error is still comparable with other state-of-the-art methods (Table 7.1

and Table 7.2). The error for the jogging sequences actually decreases since the dataset

contains less poses that are not related to jogging. In order to analyze how much

of the difference between the HumanEva and the CMU motion capture data can be

attributed to the skeleton, we mapped the HumanEva poses to the CMU skeletons. As

shown in Table 7.5(c), the error increases significantly. Indeed, over 60% of the error

increase can be attributed to the difference of skeletons. In Table 7.3 we also compare

the error of our refined 2D poses with other approaches. We report the 2D pose error

for [DLGVG14], which corresponds to our initial 2D pose estimation as described in

Section 7.3. In addition, we also compare our method with [YR11, WL13, DR12] using

publicly available source codes. The 2D error is reduced by pose refinement using either

of the two motion capture datasets and is lower than for the other methods. In addition,

the error is further decreased by a second iteration. We also report the error for 2D pose

resulted through projection of 3D estimated pose with and without rigid alignment.

Some qualitative results are shown in Figure 7.7.

7.5.2 Evaluation on Human3.6M Dataset

The protocol originally proposed for the Human3.6M dataset [IPOS14] uses the anno-

tated bounding boxes and the training data only from the action class of the test data.
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Comparison on the Human3.6M dataset

Methods Directions Discussion Eat Greet TalkOnPhone Posing Purchase Sit

H3.6M 88.4 72.5 108.5 110.2 97.1 81.6 107.2 119.0

H3.6M + 2D GT 60.0 54.7 71.6 67.5 63.8 61.9 55.7 73.9

H3.6M + 3D GT 66.2 57.8 98.8 84.5 79.6 58.2 100.7 115.8

CMU 102.8 80.4 133.8 120.5 120.7 98.9 117.3 150.0

Methods SitDown Smoking TakingPhoto Wait Walk WalkwithDog WalkTogether

H3.6M 170.8 108.2 142.5 86.9 92.1 165.7 102.0

H3.6M + 2D GT 110.8 78.9 96.9 67.9 47.5 89.3 53.4

H3.6M + 3D GT 162.1 97.2 119.2 73.4 88.5 159.1 99.8

CMU 182.6 135.6 140.1 104.7 111.3 167.0 116.8

Table 7.6: The average 3D pose error (mm) on the Human3.6M dataset for
all actions of subject S11.

Comparison on the Human3.6M dataset

Methods 3D Pose Error (mm)

Kostrikov et al. [KG14] 115.7

Bo et al. [BS10] 117.9

(i) Our Approach (MoCap from Human3.6M dataset)

(a) H3.6M (Iteration I) 108.3

(b) H3.6M + 2D GT (Iteration I) 70.5

(c) H3.6M + 3D GT (Iteration I) 95.2

(ii) Our Approach (MoCap from CMU dataset)

CMU (Iteration I) 124.8

Table 7.7: Comparison on the Human3.6M dataset. (a) 2D pose estimated as
in Section 7.3 (b) 2D pose from ground-truth. (c) MoCap dataset includes 3D
pose of subject S11.

Since this protocol simplifies the task due to the small pose variations for a single action

class and the known scale, a more realistic protocol has been proposed in [KG14] where

the scale is unknown and the training data comprises all action classes. We follow the

protocol [KG14] and use every 64th frame of the subject S11 for testing. Since the Hu-

man3.6M dataset comprises a very large number of training samples, we increased the

number of regression trees to 30 and the number of mixtures of parts to c = 40, where

each tree is trained on 10K randomly selected training images. We use the same 3D pose

error for evaluation and perform the experiments with 3D pose data from Human3.6M

and the CMU motion capture dataset.

In the first case, we use six subjects (S1, S5, S6, S7, S8 and S9) from Human3.6M

and eliminate very similar 3D poses. We consider two poses as similar when the average

Euclidean distance of the joints is less than 1.5mm. This resulted in 380K 3D poses. In

the second case, we use the CMU pose data as described Section 7.5.1.2. The results
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Figure 7.7: Five examples from HumanEva-I. From left to right: estimated
2D pose x (Section 7.3); retrieved 3D poses from all joint sets (Section 7.4.1);
retrieved 3D poses from inferred joint set Jŝ (Section 7.4.2); retrieved 3D poses
weighted by wk,ŝ (7.14); refined 2D pose x̂ (7.12); estimated 3D pose X̂ (7.9)
shown from two different views.
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Figure 7.8: Comparison on the Human3.6M dataset.

are reported in Tables 7.7 and 7.6. Table 7.7 shows that our approach outperforms

[KG14, BS10].

Although a second iteration does not reduce the error on this dataset, our approach
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7.9: A few qualitative results from Human3.6M dataset [IPOS14]:
(a) represents input images, (b) shows refined 2D poses while (c) and (d)
correspond to estimated 3D poses from two different views.

outperforms the other approaches. Figure 7.8 provides a more detailed analysis and

shows that more joints are estimated with an error below 100mm in comparison to the

other methods. When using the CMU motion capture dataset, the error is again higher

due to differences of the datasets but still competitive.

We also investigated the impact of the accuracy of the initially estimated 2D poses.
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(a) (b) (c) (d) (a) (b) (c) (d)

Figure 7.10: A few qualitative results from Leeds Sports pose dataset [JE10]:
(a) represents input images, (b) shows refined 2D poses while (c) and (d)
correspond to estimated 3D poses from two different views.

If we initialize the approach with the 2D ground-truth poses, the 3D pose error is

drastically reduced as shown in Table 7.7(b) and Figure 7.8. This indicates that the 3D

pose error can be further reduced by improving the used 2D pose estimation method.

In Table 7.7(c), we also report the error when the 3D poses of the test sequences are

added to the motion capture dataset. While the error is reduced, the impact is lower
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compared to accurate 2D poses or differences of the skeletons (CMU). The error for each

action class is given in Table 7.6.

We have found that our approach performs poorly on tightly cropped images since

the used 2D pose estimation approach (Section 7.3) requires a minimum distance from

a joint to the image border. Furthermore, differences of the skeleton structure between

datasets have a significant impact on the accuracy and the error also increases when the

dataset does not contain poses related to the test sequences.

7.5.3 Qualitative Results

We present some qualitative results for the Human3.6M dataset [IPOS14] as well as Leeds

Sports pose dataset [JE10]. Human3.6M dataset contains images captured in an indoor

environment while Leeds Sports pose dataset consists of realistic images taken from the

internet. For experiments on Leeds Sports pose dataset we train our regression forests

and pictorial structure model using 1000 training images provided with the dataset,

and use CMU motion capture dataset to develop our motion capture database. A few

examples of resulting 3D pose estimates for both datasets are shown in Figure 7.9 and

Figure 7.10, respectively. As evident in Figure 7.9 and Figure 7.10, our approach shows

very good performance even for highly articulated poses, and also for images captured

in unconstrained environments.

7.6 Conclusion

In this paper, we have presented a novel dual-source approach for 3D pose estimation

from a single RGB image. One source is a motion capture dataset with 3D poses and the

other source are images with annotated 2D poses. In our experiments, we have shown

that our approach achieves state-of-the-art results when the training data are from the

same dataset, although our approach makes less assumptions on the training and test

data. Our dual-source approach also allows to use two independent sources and still

executes competitive results.
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Quadruped Motions: Retrieval
and Reconstruction
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8
Retrieval and Reconstruction of

Quadruped Motions

Measure what is measurable, and make measurable what is not so.

Galileo Galilei

8.1 Introduction

This chapter focus on retrieval and reconstruction of the quadruped motions. The 3D

capturing of motions especially for human has become a standard technique in multi-

tude data-driven applications. There are many ways to capture motion data such as,

mechanical, magnetic, optical and inertial sensor based systems etc. These systems are

nowadays available in all prices, starting from the consumer electronics (e.g. Kinect, Wi-

iMote) up to the professional optical systems like Vicon or Giant. All these technologies

have their strengths and weaknesses—an overview is given in [MHK06]. The increasing

amount of motion capture data allows for many new applications in the field of computer

animation, human computer interaction, sport sciences, medicine and biomechanics as

described in Chapter 1. Due to high profile usability, the motion capture data gets im-

portance not only for the human motions but also for the quadruped motions i.e.: the

3D motion capture data of horses are used in research and the understanding of clinical

treatment [HLR+10]; the clinical biomechanics are used for the treatment of the domes-

tic animals, clinical gait analysis and the medical rehabilitation etc. On one hand, the

motion analysis for the quadrupeds has become a powerful tool to record the movement

patterns during gait and other exercises in clinical environments. On the other hand, the

quadruped MoCap data can be interesting for games, if one considers animation of the

non-humanoid characters [YAH10, VHKK12]. As most of the techniques in computer

animation are developed to handle the human motion data, we adjust several well-known

techniques from computer animation to leverage with the quadrupedal motion capture

data in order to cover this gap, and the results are reported by conducting a series of

experiments in this work.
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Figure 8.1: System overview: The retrieval and reconstruction of the motion
sequences are performed on the basis of different types of 3D and 2D feature
sets. The red color corresponds to those components and the feature sets that
are involved in the reconstruction process.

First, we discuss some aspects that have to be considered during recording animal

motions (Section 8.2). Second, we adapt the retrieval techniques to integrate with the

quadruped data. Here, the crucial step is to define suitable and meaningful feature sets

for the quadruped motions. This will be discussed in Section 8.3. Finally, we introduce

a framework for motion reconstruction of the quadruped animals from the video data

by utilizing some prior knowledge obtained from the motion capture database. We have

reshaped the methodology for reconstruction of the human motion from the video data

as mentioned in Chapter 4 and map that technique on reconstruction of the quadruped

motions with some significant modifications. Section 8.4 will elaborate this in detail. At

the end, results and analysis are presented in Section 8.5 and conclusion in Section 8.6.

8.2 Quadruped MoCap Dataset

In this section, we present some details on the recording environment of the motion cap-

ture data. We use three-dimensional kinematic data captured from five mature horses.

The MoCap data is represented in a standard right-handed Cartesian coordinate system

and is recorded using 10 digital infrared cameras (Eagle Digital Realtime System) at

120 Hz on the treadmill. Motion capturing in the standardized environment has several

benefits such as, the recording on the treadmill is possible which establishes the more

accurate measurement setups and provides more opportunities to capture various gait

by just controlling the speed of the treadmill which plays an essential role in recording

the different gait measurements.
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Marker No. Marker name Placement of the markers

1 ChistaFacialisL Left side of the facial crest.

2 ChistaFacialisR Right side of the head.

3 C1L Left side of the first cervical vertebra.

4 C1R Right side of the first cervical vertebra.

5 C3L Left side of the third cervical vertebra.

6 C3R Right side of the third cervical vertebra.

7 C6L Left side of the sixth cervical vertebra.

8 C6R Right side of the sixth cervical vertebra.

9 Withers Highest point of the withers.

10 Sacrum Highest point of the sacral region.

11 Rightfore Lateral side of the right front hoof.

12 Leftfore Lateral side of the left front hoof.

13 Righthind Lateral side of the right hind hoof.

14 Lefthind Lateral side of the left hind hoof.

15 Forehead (Virtual) By taking mean of markers no. 1 and 2.

Table 8.1: List of the motion capture markers as well as the details about their
placement on the body of the performing horse.

8.2.1 Marker Setup

For the MoCap recording, the retro reflective skin markers are attached to each horse

using adhesive tape. The marker setups can be varied according to the recording and

measurements objectives. In a basic MoCap setup for horses, generally seven markers

are required to capture the whole body motion. The first marker is normally placed on

the head, then two on the trunk and the four on the hooves. However, the number of

markers can be increased, when the recording and measurement purpose is more complex

and requires more detailed motion capturing. In addition, the marker setups may vary

between different subjects due to the size variations. In our case, the markers are placed

on the head (left and right crista facialis), on the highest point of the withers, sacrum

and the lateral side of each hoof in order to identify the motion cycles. Since the MoCap

data used in this work are originally recorded in a clinical setup where the research

is focused on the neck movement in different types of gait, that’s why the additional

markers are attached along the vertebrae of the horses’ neck. A list of all these markers is

given in Table 8.1. The marker placement on the animal’s skin can be challenging since

the anatomical landmarks are not always easily detectable on different animals as well as

due to the skin artifacts. This may lead towards the marker displacement which always

needs to be considered during the motion capturing and the clinical investigations.
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(a) MoCap environment (b) Marker setup (c) 3D markers’ visualization
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Figure 8.2: The motion capturing environment and the setup for the horse
motions: (a) An example of motion recording environment; (b) The marker
setup on the horse performing different gait sequences on the treadmill; (c)
The 3D representation of the quadruped markers that generate final quadruped
motion capture dataset; (d) Marker setup with marker IDs. The colored circles
show those markers which are selected to develop different feature sets.

8.2.2 Motion Capture Dataset

Under the recording conditions described above, the motion sequences of five horses are

recorded. Each horse performed at least three trials (each of 10 seconds) of two motion

styles walk and trot.

Walk. The walk is a four-beat gait and with a slow pace, the horse always have one foot

raised and the other three feet on the ground, except for a brief moment when the

weight is being transferred from one foot to another. A horse moves its head and

neck in a slight up and down motion that helps to maintain balance. [Wik13].

Trot. The trot is a two-beat gait and the horse moves its legs simultaneously in diagonal

pairs. In contrast to walking motion, it is a very stable gait and the horse need

not to make major balancing motions with its head and neck. [Wik13].

As a result, we have a dataset that consists of 30 motion trials with a varying number

of motion cycles. The total amount of the dataset sums up to 36,000 frames, sampled

at 120 Hz which corresponds to five minutes of the motion capture data. We denote
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this full MoCap dataset as DBquad. For our experiments, we work with various down-

sampled versions of this dataset. If this is the case, the upper index denotes the sampling

frequency e.g. for the video-based reconstruction, we have down-sampled the MoCap

database DBquad at sampling rate 25 Hz and refer it as DB25Hz
quad which contains overall

7, 500 frames.

It is important to note that due to the relatively sparse marker setup, 14 markers

in the quadruped MoCap dataset as compared to 42 markers in the HDM05 [MRC+07]

and CMU [CMU14] MoCap datasets, it is not possible to fit a suitable skeleton to the

recorded marker data. Thus, we represent the skeleton model consisting of 15 marker

positions with one virtual marker position. A few exemplary images for the MoCap

environment, the marker setup with marker IDs and the 3D visualization of the markers

are presented in Figure 8.2.

8.3 Motion Retrieval

For search and retrieval of the similar motion segments, the dataset is a crucial compo-

nent in all data-driven methods. In this chapter, we are dealing with the horse MoCap

dataset which contains sparse marker setup with 14 markers and have no any skeleton

parameterizations. While in skeleton representations of the human motion data, the

root node is located between the hip joints, but for the quadruped motions other dif-

ferent choices to locate the root node can be possible. Huang et al. [HHL13] employ 35

joints with 61 degrees of freedom and set the spine of the horse as the root node. The

authors locate the root node close to the hind legs and this choice is very close to the

skeleton based representation of the human motion data. In contrast, we consider the

marker Withers (No. 9 in our marker set) to be the root marker. This choice of root

location is motivated by the observation that the root node in human representations

is very close to the whole body’s center of mass. For quadrupeds, the center of mass is

more close to the forelegs [BOS00, NKMC09]. Thus, with the marker Withers as a root

node, we obtain a normalized pose representation of the quadrupeds with more detailed

characteristics. For search and retrieval, we construct various 3D and 2D feature sets

extracted either from the motion capture data or from the video data as reported in

Table 8.2. We develop these feature sets on the basis of the four end effectors and the

head, because such a feature set has a simple computation, low dimensions and still

meaningful in describing the poses [KTWZ10] even in case of the quadrupeds. We de-

note the joints involved in the horse skeleton with J while the joints involved in the

feature set are represented by JF .
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8.3.1 3D Feature Sets

We develop three different kinds of 3D feature sets based on the marker positions,

velocities and accelerations. We extract the feature set F3D
5p where the positions of

the four hooves and the head are used to describe a quadrupedal pose in a relative

coordinate system. In the horse MoCap dataset, we have no any skeletal representation

and as a result we perform the process of pose normalization on the marker positional

data directly—the positions of the all markers are normalized relative to the Withers

marker (root node), after rotating all marker positions around the y axis such that

the Sacrum marker (No. 10) is moving in the x-y-plane. We also develop the feature

sets that consist of the velocities and the accelerations of the markers represented by

F3D
5v and F3D

5a respectively. The idea is to have a similarity search that might be based

on the inputs from other sensor types such as acceleration sensors. These sensors have

been used to reconstruct full body human poses [TZK+11]. With such experiments, in

principle, we want to evaluate the possibilities to reconstruct the quadruped motions

based on such sensor configurations.

8.3.2 2D Feature Sets

In order to reconstruct the motion sequences from the 2D input video either synthetic

or the real video, we need to search into the MoCap database for the similar poses

based on the 2D feature sets extracted from the input signals. We introduce the 2D

feature sets which are derived from the horse MoCap data as well as from the video

input data. These feature sets from the different domains have been made comparable

in order to accomplish the cross model retrieval scenario between 2D input signals and

the 3D MoCap database. In this context, we sample the feature sets from the MoCap

dataset at as many as needed view directions to find similar poses from the MoCap

dataset, without having any information about the actual view direction of the camera.

Motion Capture Data. We extract the 2D feature sets F syn
5 through orthographic

projection of the 3D feature set F3D
5p onto 2D image plane at different view directions—

the azimuth angles (0–10–350) degrees with step size 10 degree and the elevation angles

(0–10–90) degrees with step size 10 degree. We translate these 2D feature sets so that

they locate their origin at center of mass (Withers marker) in order to be comparable

with later described video-based 2D feature sets. On the basis of these 2D feature sets,

we search into MoCap dataset for the closest instances through a kd-tree.

Video Data. In case of video data, the 2D feature sets Fvid
5 are detected and tracked

with the help of SURF and MSER feature detection techniques (Section 4.3.2). Under
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Feature sets Type Description of the feature sets

F3D
5p 3D This feature set is developed on the basis of the

normalized positions of the hooves markers and the
head marker.

F3D
5v 3D It is based on the derived velocities of the hooves

and the head markers.

F3D
5a 3D It represents the derived accelerations of the hooves

and the head markers.

F syn
5 2D This feature set represents the normalized 2D posi-

tions of the hooves and the head markers obtained
through projection of the 3D MoCap data onto the
2D image plane.

Fvid
5 2D It is based on the normalized 2D positions of the

hooves and the head markers extracted from the
video input data.

Table 8.2: The details of different types of feature sets (3D and 2D) developed
in order to retrieve K nearest neighbors from the quadrupedal MoCap dataset.

scaled orthographic camera model with projection matrixM, we estimate the unknown

scaling factor from the first few frames of the MoCap dataset and the corresponding

video frames as discussed in Section 4.3.2. To be comparable with synthetic 2D feature

sets F syn
5 , we normalize video-based 2D feature sets Fvid

5 by translating them to their

center of mass.

8.3.3 Knn Search

We perform two types of Knn search: First, the similar poses are found in the motion

capture database. After computing the feature sets for all frames of the motion database,

the K nearest neighbors can efficiently be retrieved by searching through a kd-tree.

Second, we search for the K most similar motion sequences using a technique called lazy

neighborhood graph (LNG). It is a graphical structure, where all K nearest neighbors of

the query frames are considered as nodes. An edge between a pair of nodes is inserted

whenever the indices allow for a connection based on the step size conditions. The

result is a single source shortest path problem on a directed, acyclic graph, where every

shortest path in the graph corresponds to a warping path between the query motion and

a motion segment in the database.
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8.4 Reconstruction from Video

For 3D motion reconstruction, we exploit the pre-existing knowledge embedded in the

MoCap database to lift from 2D to 3D. To this end, we have nearest neighbors as de-

scribed in Section 8.3, on which basis we perform a data-driven energy minimization. We

adapt the problem formulation as in Section 4.4 and modify it according to the situation

when we have neither skeletal information nor joint angle configurations. As we have

lack of this information in our MoCap dataset, we perform the 3D motion reconstruction

pose by pose by just employing the joint positions Xt = {Xt,k|k = 1, . . . ,K} directly in

Euclidean space. Having in hand K nearest neighbors, a 3D pose model is developed in

low-dimensional PCA subspace of the joint positions X of K nearest neighbors.

X̃t =
V∑
v=1

ct,vbt,v + µt (8.1)

where X̃t is the 3D synthesized pose which is the linear combination of a set of V bases

Bt = {bt,1, . . . , bt,V }, µt is the mean pose and ct are the basis coefficients at frame t.

From local modeling towards global modeling, we only deal with the low dimensional

space and as a result we make the process of data-driven optimization roughly realtime

with low computations. The energy function for the 3D reconstruction is,

X̂ = arg min
X̃

(wpEp + wcEc + wsEs), (8.2)

minimized using Levenberg-Marquardt based nonlinear optimizer. The notations wp, wc

and ws are the associated weights with the energy terms having values wp = 1, wc = 0.75

and ws = 0.05. Each energy term is normalized by a normalization factor `t.

The energy, Ep, maps MoCap prior information to synthesized pose as,

Ep(X̃) =
1√
`t
· ‖(X̃t − ut)TΛ−1

t (X̃t − ut)‖2, (8.3)

where ut is the mean vector of Knn and the Λ−1
t is the inverse of the covariance matrix

at frame t.

The second energy, Ec, computes the projection error between the 3D-2D feature

sets as,

Ec(X̃) =
1√
`t
·
√∑
i∈JF

‖MtX̃t,i − xt,i‖2, (8.4)

where X̃t,i is the ith joint’s 3D position of the synthesized pose, and xt,i is the ith joint’s

2D position at current frame t.
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(a) K nearest neighbors retrieved through the Knn-based method.
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(b) K nearest neighbors retrieved through the LNG-based method.
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Figure 8.3: Comparison between the Knn-based method and the LNG-based
method on walking motion cycles: (a) illustrates the visualization of K nearest
neighbors retrieved through the Knn-based retrieval approach. (b) explores the
nearest neighbors retrieved according to the LNG paths per frame. We have
conducted this experiment on all three feature sets developed on the basis of
3D information: (i) F3D

5p , (ii) F3D
5v and (iii) F3D

5a .

The third energy, Es, imposes smoothness upon the current synthesized pose through

exploiting the temporal information as,

Es(X̃) =
1√
`t
·
√
‖(X̃t − 2X̂t−1 + X̂t−2)‖2. (8.5)

The notations X̂t−1 and X̂t−2 are the reconstructed poses at frames t − 1 and t − 2

respectively.
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(a) K nearest neighbors retrieved through the Knn-based method.
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(b) K nearest neighbors retrieved through the LNG-based method.
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Figure 8.4: Comparison between the Knn-based method and the LNG-based
method on trotting motion cycles: (a) elaborates the visualization of K nearest
neighbors retrieved through the Knn-based retrieval approach. (b) explores
the nearest neighbors retrieved according to the LNG paths per frame. We
conduct this experiment on all three feature sets developed on the basis of 3D
information: (i) F3D

5p , (ii) F3D
5v and (iii) F3D

5a .

8.5 Experimental Results

We evaluate the presented methods for retrieval and reconstruction on the MoCap data

as well as on the video data. We design multiple feature sets for search and retrieval the

similar poses from the MoCap dataset as mentioned in Section 8.3 and examine them

in different ways in order to check their efficiencies. For video input based evaluations,

we first capture the horse motions, where the horses perform same types of motions as
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perform for the MoCap data e.g. walking and trotting motions. We adjust the frame

rate (e.g. 25 frames per second) for both, the MoCap dataset and the video input data.

For performance metric with respect to the 3D motion reconstruction, we compute the

average reconstruction error by calculating the average Euclidean distance in centimeters

between the estimated 3D pose and the ground truth pose relative to the root joint (the

marker Withers with the marker ID 9 in our marker set) per frame (Equation 4.13).

We utilize all 15 joints of the skeleton as described in Table 8.1 for evaluation. We first

conduct experiments to testify the search and retrieval methods and in the end we report

on the effectiveness of our video-based motion reconstruction approach.

8.5.1 Similarity Searches

We evaluate the search and retrieval methods by conducting a series of experiments with

different scenarios such as: (i) We first perform experiments in order to compare the

simple Knn-based method with the proposed LNG-based variant on the motion capture

data. (ii) We perform the numerical similarity searches to evaluate all three feature

sets developed on the basis of 3D information like, F3D
5p , F3D

5v and F3D
5a . (iii) We also

conduct experiment to report results for the logical similarity searches. (iv) In the end,

we evaluate the proposed LNG-based variant on the video input data as well.

8.5.1.1 Knn-based and LNG-based Similarity Searches

In order to investigate the proposed LNG-based voting strategy against the simple Knn-

based voting per frame, we perform experiments on the representative motion cycles for

both motion classes, walking motions and trotting motions, and the results are shown in

Figure 8.3 and Figure 8.4 respectively. The horizontal axis in these Figures describes a

time line given in frames, while the vertical axis shows all retrieved similar motion classes

from the MoCap dataset according to the query motion cycle. We search for 256 nearest

neighbors and count motion classes per frame to which these nearest neighbors belong.

This counted number of found nearest neighbors per frame is color coded from white

(no neighbor found for this motion class) to black (256 neighbors found for this class).

Consequently, these graphs show per frame confusion of the neighborhoods obtained

with the respective methods. The similarity search has been performed for all three 3D

feature sets, F3D
5p , F3D

5v and F3D
5a .

Knn-based method. For walking example, the most of the neighbors belong to the

walking class. The only exception is frame 16 for the velocity based feature set. While

for trot motion cycle, the more confusion between the two motion classes occurs but
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still the majority of the voting belongs to the correct motion class in all frames. The

wrong voting results indicate that the Knn-based method is not stable enough even for

this simple scenario where we take into account just only two motion classes. The more

confusion for trotting motion cycle is due to the higher speed in that motion class as

compared to the walking motion class. The results for the Knn-based method on both

motion classes walking and trotting, have been shown in Figure 8.3(a) and Figure 8.4(a)

respectively.

LNG-based method. In case of LNG-based method, Figure 8.3 (b) and Figure 8.4

(b) show results for walking and trotting motions respectively. We fix the window

length (Z = 10) for the graph construction in these examples. In contrast to the Knn-

based method, for the LNG-based method we have found the similar results for both

example motion classes. No mislabeling were found in both cases, in return the number

of retrieved closest neighbors from the LNG paths are decreased after the first couple

of frames. For the first few frames the results are the same as for the direct Knn-based

voting due to the fact that at that point the path for LNG has a shorter length. Later

on, with the full window length (Z = 10), the path length increases and the number of

nearest neighbors connected with the graph structure drops down.

8.5.1.2 Numerical Similarity Searches

We testify the developed 3D feature sets, F3D
5p , F3D

5v and F3D
5a for the numerical similarity

search. For that purpose, we search for the similar motion cycles using the graphical

structure LNG. To come up with precision-recall diagrams, we extend the local pose

neighborhood until all motion cycles of the query class are returned as match. We

perform this experiment with all feature sets based on the 3D information and the

results are reported in Figure 8.5, where the precision-recall diagrams has been drawn

for walking and trotting motion cycles. From the results, we have found that for the

walking query, we obtain a high precision value 97% up to a recall from 97%. For all

feature sets, the precision drops for the last few matches only. In contrast to walking

motion cycle, more mismatches are returned for the trot motion cycle when we use the

position based feature set F3D
5p . With the derived feature sets, F3D

5v and F3D
5a , we obtain

much better results. This behavior can be elaborated by a closer look on the execution

of these motion classes. In both motion classes, walk and trot, the marker positions

are not sufficiently distinctive, while velocities and accelerations are very particular and

distinctive for both types of motion classes due to the speed variations between these

classes.
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Figure 8.5: The precision-recall diagrams which show comparisons between
the 3D feature sets developed on the basis of the 3D positions (F3D

5p ), velocities

(F3D
5v ) and accelerations (F3D

5a ). We show results for one representative query
motion cycle of both motion classes: walking (left) and trotting (right).
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Figure 8.6: The number of motion segments found per iteration for the logical
similarity search. We show results for one representative query motion cycle of
the two motion classes: walking (left) and trotting (right).

8.5.1.3 Logical Similarity Searches

Kovar and Gleicher [KG04] introduced the concept of logical similarity searches, where

the retrieved matches of a query motion segment are used as new queries in new iteration

of the searching process. The process continues and the new segments are retrieved

until no any new segment is found. We perform this experiment with the motion cycles

from both classes. To this end, we restrict the number of nearest neighbors to 256 in

order to ensure that no false positives are returned for a query motion cycle. In both

cases, walk and trot, this retrieval scenario finds roughly all motion cycles without any

mismatch. Figure 8.6 shows the numbers of the new found motion cycles per iteration.

The algorithm converges after four iterations in both cases.
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Figure 8.7: The number of the LNG paths per frame for walking and trotting
motion cycles. The K nearest neighbors are searched into the MoCap dataset
on the basis of the 2D feature sets Fvid

5 detected and tracked in the input video
sequences.

8.5.1.4 Video Input Data

As we also propose a methodology of the 3D reconstruction of the horse motion from

input video data, in this context we test LNG-based method on video input motion

sequences as well. In this case, we track and extract the feature set Fvid
5 for each video

motion class. We perform Knn search for 256 nearest neighbors into the MoCap dataset

DB25Hz
quad and compute the LNG paths accordingly. We present the results as well as a

few example frames of the input video sequence with projected nearest neighbors in

Figure 8.7. We retrieve nearest neighbors with correct motion classes for all considered

frames. There are a few frames, especially in the trot example, where a very low number

of paths are returned. Nevertheless all of these paths belong to the correct motion

class and we get very good nearest neighbors when we employ the LNG-based retrieval

methodology.

Due to the small MoCap dataset, the K nearest neighbors are retrieved relatively

fast. The construction of the kd-tree on the database DB30Hz
quad is done in less than 0.8

milliseconds and the searching for K = 256 similar poses takes 0.6 milliseconds on an

average.
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Figure 8.8: The average reconstruction errors for walking and trotting motions
at different test view directions—the azimuth angles (0–5–180) degrees with step
size 5 degree and the elevation angles (0–10–60) degrees with step size 10 degree.

8.5.2 Video based Reconstructions

We evaluate the performance of the proposed reconstruction methodology quantitatively

as well as qualitatively on two types of input examples e.g. synthetic examples obtained

from the MoCap files by some random camera parameters and the video examples.

8.5.2.1 Synthetic Inputs

In case of synthetic input examples, we test our approach on both types of motion se-

quences e.g., walking and trotting motion sequences at wide range of test view directions—

the azimuth angles (0–5–180) degrees with 5 degree step size, assuming that the same

results would be executed for other half of the circle and the elevation angles (0–10–60)

degrees. In case of the elevation angles, we consider the fact that for the head-mounted

cameras near to 90 degree or top view, the body of the performing horse becomes an

hindrance in capturing the full detailed motions of the hooves, that’s why we fix the

range of the elevation angles from 0 degree to 60 degree with 10 degree step size. The

initial view pose is the right side of the performing horse and it is the starting point for

all view directions with azimuth and elevation angles.
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We report the results in Figure 8.8, where the average reconstruction errors for

different test views are shown in the form of graph with the azimuth angles (0–5–180)

along x-axis and the elevation angles (0–10–60) along y-axis, while the reconstruction

error is color-coded from blue (low error) to red (high error).

Walking Motions. For walking motion sequences, it is observed that at the side

view either it is left side or right side, the lowest reconstruction errors are executed

because of the fact that the movements of the hooves of the performing horse are much

more elaborate and can be viewed and captured in detail. In front view, due to lack

of details in motion information, the reconstruction errors increase comparatively. It is

also observed that for the view directions near to the head-mounted camera view (top

view), the reconstruction error also increases as expected which is quite evident from

Figure 8.8(a).

Trotting Motion. We observe the similar behaviour for trotting motions as reported

in Figure 8.8(b). Like walking motion, for side view, the reconstruction error is the

lowest. The roughly identical results to the walking motion, have been discovered in

case of the front view and the top view. The little bit difference between the results

for both motion classes is due to that for trotting motions, the movement patterns for

the positions of the end effectors (the hooves and the head) are a bit different from the

walking motion sequences (see Section 8.2.2).

8.5.2.2 Video Inputs

We check our reconstruction approach qualitatively on real videos of walking and trotting

motions. The 2D feature sets Fvid
5 extracted from the input video are given as input to

the system. On the basis of Knn retrieved through the 2D feature sets, we reconstruct

the final 3D horse motions. A few qualitative reconstruction results for the video based

motions are shown in Figure 8.9. For real video of the horse motion, sometime, we

cannot detect and track the 2D feature sets correctly due to blurring effects, occlusion

and illuminations etc. especially in case of trotting motions, and consequently it may

impact on the final reconstruction process. To avoid this situation, we have annotated

the key-frames of the video manually. We have found from the experiments that the

proposed system executes acceptable results even with a noisy input data.
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(a) When the walking motion sequences are given as input query.

(b) When the trotting motion sequences are given as input query.

Figure 8.9: A few qualitative results for the 3D reconstructions, when the
monocular video sequences for walking and trotting motions are given as input
query. (a) and (b) represent a few frames of walking and trotting motions
respectively. The (first rows) show video input frames with detected 2D feature
sets and the projected Knn. The (second rows) represent the corresponding
3D reconstructions with Knn, while the (third rows) correspond to the 3D
reconstructions at other viewpoint.

8.6 Conclusion

In this chapter, we have transferred techniques developed for the human motion data

to the motion data from the quadrupeds. For motion retrieval, we identify and develop

suitable feature sets based on the 3D as well as 2D information and utilize them to

retrieve nearest neighbors from the MoCap dataset. We evaluate the proposed variant

of the LNG-based method against the simple Knn-based retrieval method and have
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found that the LNG-based method retrieve very good nearest neighbors comparatively.

For motion reconstruction from video data, even having lack of information like skeleton

data, joint angle configurations and with a few markers, we obtain very satisfying results

in both cases, for the synthetic 2D input query motions as well as for the real video

sequences. The presented online reconstruction framework reconstructs 3D motions

with approximately 6–8 frames per second.
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Conclusion and Future Perspectives

To know, is to know that you know nothing. That is the meaning of true knowledge.

Socrates

In this dissertation, we have addressed the problem of 3D human pose estimation from

a monocular video or from a single RGB image. In order to cope this, we have proposed

a few pipelines and algorithms for retrieval and reconstruction of the 3D poses from

different types of input control signals like 2D synthetic video/image or real video/im-

age that have been captured in indoor studio-like controlled environments or outdoor

uncontrolled natural environments. The main focus of the dissertation is to reconstruct

3D human poses without relying on any special setups i.e. retro-reflective markers, In-

ertial Measurement Units, depth camera or multi-camera system. Moreover, we do not

take into consideration any image cues like depth information, background subtraction

or bounding boxes etc. The proposed systems are flexible enough and can reconstruct

3D poses in any indoor/outdoor environment.

The main advantage of our proposed methodologies is, in order to infer final 3D

human pose we do not need any synchronized 3D-2D pose-image pairs which is not only

costly but also problematic with respect to creating such a studio-like setup and camera

calibrations. We integrate both media, the 3D marker-based motion capturing and a

simple RGB camera based capturing of photographs or motions, together for 3D pose

estimation and as a result we fill the gap between these separate media. In the end,

we also extend the proposed retrieval and reconstruction methods to quadruped pose

estimation.

9.1 Video-based Retrieval and Reconstruction

In first part of the dissertation, we have proposed framework for robust retrieval and

reconstruction of human motions from a video data. We first detect feature sets us-

ing SURF, MSER and colorMSER local feature detectors/descriptors and track them

143
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through matching by developing a dictionary of features (DOFs). We have resolved the

3D-2D cross models retrieval problem by developing the knowledge base, which contains

3D normalized poses as well as the corresponding 2D normalized poses. We develop

2D normalized pose space through sampling of the MoCap dataset at different view

directions. Using these virtual cameras, we create correspondence and synchronization

between 3D-2D poses and as a result we retrieve the closest 3D motion segments from

the MoCap dataset efficiently by employing just a subset of 2D joints. We construct

a local 3D pose model in low dimensional pose space from these retrieved 3D similar

poses, which is optimized through multiple energy terms. One of the main strengths of

our proposed pipeline is, we utilize just only five joints such as the four end effectors and

the head to perform Knn search and to reconstruct final 3D poses. Utilizing these five

joints, we even handle the motions that are recorded particularly through head mounted

cameras with top view which often capture human postures with ambiguities and indis-

tinctive 2D joint positions. We have thoroughly evaluated our approach with a variety

of experimental setups which are designed in terms of performing actors, view directions

and the noisy inputs. Our approach achieves very good results for all these different

experiments.

The robust and optimal nearest neighbors have a great influence in local modeling

and the final 3D reconstruction. In this context, we then make use of temporal coher-

ence of the control input signals in searching and retrieval of the closest examples by

constructing a graphical structure online lazy neighborhood graph. With OLNG we have

improved not only the search and retrieval process but also the ultimate reconstruction

methodology. We formulate the symmetric square root kernel function in order to es-

timate the probability density of the MoCap priors for final 3D motion reconstruction

from video input sequences. We also get benefits from the 3D MoCap priors and make

the image-based feature detection and tracking more accurate and robust. To accom-

plish this, we project the retrieved 3D poses to the image plane by estimated camera

parameters and then weight for the more accurate features. With the use of priors, we

have increased the tracking rate up to 15-20% by handling occlusion and the blurring

effects. Our proposed systems need a bit pre-processing and can reconstruct motions in

a realtime.

9.2 Image-based Retrieval and Reconstruction

In second part of the dissertation, we address the most challenging task to estimate the

3D human pose from a single monocular image which is considered as severely under-

constrained problem. We propose methodology to recover the 3D human pose, when a

single monocular image, either synthetic or real RGB image, is given as input to the
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developed system. With the given 2D joint positions, we search into the MoCap dataset

for similar poses. As we work on the sparse input control signals without considering

any temporal coherence, the searching and retrieval of Knn from MoCap dataset is not

too elaborate. In this context, we design and devise multiple feature sets composed

of on subsets of skeleton joints and then make comparisons between these feature sets

with respect to accuracy, time and memory. We also introduce two-fold method to

estimate the camera parameters where we benefit from the virtual cameras through

which we have performed sampling of the MoCap dataset as well as from the retrieved

K closest examples which we map onto 2D estimated feature sets in order to minimize the

projection error. We compare our approach against state-of-the-art methods and have

found that our approach outperforms all state-of-the-arts. Our approach produces state-

of-the-art results even in case of noisy 2D inputs, which are often resulted in capturing

photographs in outdoor natural environments. Moreover, the presented system achieves

competitive results when the test data and the MoCap data are from different datasets.

We also evaluate our approach qualitatively on the real internet images as well as on

the hand-drawn sketches and we have found from the results that our approach yields

very plausible 3D poses even for erroneous and ambiguous input 2D poses.

We propose a dual source approach where we estimate 3D pose by deploying two

training sources, images with annotated 2D poses and the 3D MoCap data. We integrate

both sources together and introduce a dual-source methodology in order to infer the

final 3D human pose. This makes the approach very practical since annotating images

with accurate 3D poses is often infeasible while 2D pose annotations of images and

motion capture data can be collected separately without much effort. We first learn a

regressor for 2D pose estimation from the image source data and is given as input for

Knn search and retrieval. We introduce efficient searching approach that is robust to 2D

pose estimation errors, where we collectively use multiple feature sets developed on the

basis of different subsets of body joints. Moreover, our proposed system also refines the

initial estimated 2D input pose and can be iterative to attain more accurate 3D pose.

Our proposed approach achieves state-of-the-art results when the training data are from

the same dataset. Even with other training dataset, our approach produces acceptable

results which are comparable to other state-of-the-arts too.

9.3 Quadruped Motions

In the last part of the dissertation, we have presented the retrieval and reconstruction

from quadruped motions. We have adapted the human motion retrieval and reconstruc-

tion techniques to work with quadruped motions. In this way, we bridge the gap between

the computer animation techniques specific to the human motions and the quadruped
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motions. Considering the results from different experiments, we have shown that ex-

tending the Knn search by a temporal component, even for a simple dataset can lead to

good results. For video-based 3D motion reconstruction, the presented system produces

satisfying results in approximately realtime utilizing just a few markers (markers of the

hooves and the head) without having skeleton parametrization as well as the joint angle

configurations.

9.4 Future Perspectives

Finally, the work at hand opens several other interesting directions and perspectives for

future work such as:

At the moment, we are dealing with a static monocular camera which can be replaced

by multiple moving cameras capturing poses in indoor/outdoor environments. Using

multi-camera system, it may provide more cues regarding person’s posture in the scene

using epipolar geometry. In case of video-based feature extraction, other image cues like

edges, silhouette or depth can be combined with SURF and MSER feature detectors to

make detection more robust and extend the proposed methodology to a wider range of

motion classes and actions. In addition, the estimation of the full perspective camera

model with 11 degrees of freedom can be another aspect of the future work.

In this dissertation, we work on estimation of the 3D human poses for a single person

that presents in a video or in an image. This work can be extended to multiple persons

interacting with each other or with different objects e.g. table, chair or working in

office/kitchen etc. simultaneously. In this context, the extension will produce flexibility

and bring the nature more closer. Furthermore, the proposed method for human pose

estimation can be coupled with gait analysis and the person identifications. As a result,

the system’s usability and applicability may increase significantly. One might integrate

action recognition and pose estimation together in 3D-3D, 2D-3D and 3D-2D scenarios.

The cues specific to some approach might be helpful in other approach as well.

Another important dimension would be the use of multiple setups and the hardware

such as depth cameras or Inertial Measurement Units integrated with video sequences.

The proposed video-based reconstruction method for full body pose estimation can be

leveraged with the depth information or acceleration sensors. These sensors have been

used to reconstruct human motions [TZK+11].

The reconstruction methodologies can be improved further by adding physics-based

properties i.e. velocity, acceleration, body weight and mass, force of gravity, angular

momentum, external forces etc. The physics-based constrains may yield the more nat-

ural looking 3D poses which is basically the ultimate target of any application with
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respect to people analysis and the understanding of their motions. The retrieval and

reconstruction on the basis of hand-drawn sketches can be performed on more detailed

input scenarios with a variety of input action classes. Additionally, the anthropometric

property and bone-length constraints can be imposed on the reconstruction approach

which may produce more plausible 3D poses.

For quadruped motions, one of the most important directions for future work is

the creation of an enlarged motion capture database with more types of gait and other

typical exercises. The skeleton representation of the quadruped might be computed and

helpful in the process of full body quadruped motion retrieval and reconstruction. With

such type of data at hand, more sophisticated techniques for retrieval and reconstruction

might be applied and compared in a more reasonable manner. We have presented results

on a static camera with an object that is moving on a treadmill only. The quadruped

motion reconstruction might be extended to more complex scenarios like reconstruction

of the motion sequences from a riding theater captured through a single camera or

multi-camera system which is one of the crucial future directions. In this scenario,

the types of motions are less restricted as compared to the current treadmill scenario.

Another possible strand of research is the reconstruction of full-body movements based

on accelerometer readings combined with the video based cues in outdoor scenarios. One

might record other quadruped species as well in order to derive more general model of

quadruped motions for such kind of data.
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