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Abstract

In this thesis we study the numerical simulation of ion migration and its coupled
thermal e�ects. Many of the existing mathematical models in this area of research
implicitly rely on thermal equilibrium conditions, despite the fact that the physical
processes are almost exclusively driven by external in�uences, which move the ensem-
ble away from equilibrium.
For the simulation to be self-su�cient and independent from experimental data for

novel materials or structures, we adopt a multiscale approach. On the microscale we
regard the dynamics of individual atoms and molecules using meshless particle dynam-
ics methods in the form of non-equilibrium Molecular Dynamics. On the macroscale
the ions are no longer considered individually, but as concentration functions, which
are driven by an electro-chemical �eld. The resulting system of partial di�erential
equations is known as the Poisson-Nernst-Planck equation system.

The basis of a Molecular Dynamics simulation is formed by the Hamiltonian func-
tion, from which conservation properties and the equations of motion for the particles
are derived. For the �rst time we make use of the duality of work performed on a
particle and its energy state to derive a formulation of the external energy, which al-
lows for the inclusion of explicit external forces in the Hamiltonian function. The new
approach is explicitly designed to also handle periodic boundary conditions and we
further demonstrate that it can be combined with other variants of the Hamiltonian,
such as those modeling thermostats and barostats. This approach allows for the exact
computation of energy exchanged between the ensemble and its exterior, enabling us
to compute the heat generated by the external forces on the atomistic scale, permit-
ting the upscaling of a temperature source term to the macroscopic equations. For the
measurement of the transferred heat we provide an a priori error estimate based on the
transport properties. Measuring the transferred energy also allows for the detection
of steady states in conjunction with other external e�ects such as thermostats.

On the macroscale we extend the Poisson-Nernst-Planck equation system by the
heat equation, a constellation not present in the literature so far. We analyze the
nature of the coupling between the di�erent types of partial di�erential equations and
consequently present a taylored discretization scheme based on the Finite Element
method. For the �rst time we present a numerical solver for the extended Heat-
Poisson-Nernst-Planck system with an arbitrary number of concentration functions
and dynamic transport coe�cients. Our implementation of this system allows for a
variety of boundary conditions for all solution functions and the use a separate domain
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(and �nite element space) for the evolution of the temperature.

We demonstrate the capabilities of the methods on both scales on a series of numer-
ical experiments. On the microscale we con�rm the energy transfer and conservation
as well as the consistency with thermostat applications. On the macroscale we deter-
mine the convergence rates for uniform, graded and adaptively re�ned grids. Final
experiments include a well matching comparison with experimental results from an
industrial application, sensitivity analysis of simulation parameters based on uncer-
tainty quanti�cation methods and a showcase for the solver capabilities on complex
geometries.
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1 Introduction

The process of ion migration has signi�cant in�uence on our every day life, even if
most people are not aware of it. Ion migration is not a visible phenomenon but its
in�uence is exerted not only in diverse �elds of science and technology but also in
nature itself.
In biology and medicine, the transition of ions through protein channels or cell

membranes is a process enabling the function of organs and signals in the nervous
system and thus vital for life as we know it. The importance of this application is
underlined by being the subject of the 2003 nobel prize in chemistry.
In material science, the removal or addition of ions from the material matrix may

cause substantial changes to the properties of the respective material. Among others,
it is known that the leaching of Calcium ions from cementitious materials degrades
their stability, introducing a source of danger depending on the speci�c structure.
Another application relying on ion �uxes is the process of electroplating or electrogal-
vanization, during which objects are coated by using them as an electrode in an ionic
solution in order to protect them against oxidization e�ects.
Possibly most prominently in the public eye are batteries and capacitors which

rely fundamentally on the regulated transfer of ions in electrolytes placed between
di�erent opposing electrodes. With the currently growing market of mobile electronic
devices and the advent of personal electric vehicles, the performance and reliability
of batteries becomes a factor in the day to day experience of many people.
Apart from personal comfort, batteries also play important roles as mobile and

grid-independent power sources in control units of complex machinery. An example
for the importance of understanding the phenomena surrounding ion migration in
such systems are the incidents aboard the Boeing 787 Dreamliner in its �rst year of
service through 2012/2013, leading to emergency landings, �res on the aircraft and
other failures of electronic equipment1. The incidents, which led to the temporary
grounding of all aircraft of this type, were caused by thermal runaway in the lithium
ion batteries installed in the machines.
These incidents illustrate that ion migration processes are still not fully understood

and they underline the exceptional value, which the qualitative description and the
quanti�able prediciton of derived properties can have for many applications.
An important tool to access the relevant properties is the numerical simulation of

the processes, which is able to reduce costs by replacing or aiding expensive laboratory

1 For the o�cial report on a single incident see [Nat14], for an overview [WHHP13].
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1 Introduction

experiments and in some cases may even allow for the investigation of processes on
scales not accessible by experiments.
Besides providing additional understanding of process mechanics already observed

in practice, the scope of numerical simulation is to aid in the improvement of technol-
ogy by making predictions on the performance of novel con�gurations of parameters.
The relevant parameters which characterize the performance of batteries can be mea-
sured on a continuous scale, where the ions are no longer regarded individually, but
via a function of their spatial concentration. Consequently, the evolution of these
functions is modeled by partial di�erential equations on what we will refer to as the
continuous or macroscale, which require coe�cients corresponding to the ion behav-
ior. However, for new materials or innovative con�gurations, material or performance
parameters are often not readily available and must be derived from underlying prin-
ciples. This turns the path towards the independent simulation of ion migration into
a multiscale problem, as the characteristics of the transport properties are determined
by the particle kinetics on what we will call the atomistic or microscale.
While certainly providing more detail than the macroscopic equations, it is infeasible

to perform the full simulation on the atomistic scale. Even small applications � such
as consumer batteries � have a size of around 1 cm3, containing a number of particles
on the order of Avogadro's number, 6.022 ·1023. Computation of the particle behavior
for 1 second of real time would require at least on the order of 1038 �oating point
operations. With 2.5·1015 �op

s available on currently leading superclusters, the required
time is around 1015 years. This presents us with a slight problem, since the estimated
remaining lifetime of our sun is only on the order of 109 years [SS08], leaving us unable
to ever �nish such simulations.
To cope with this dilemma, we need to take advantage of both, the atomistic micro-

and the continuous macroscale, so that numerical simulations can sensibly contribute
to further research on this topic.

Atomistic Scale

The basis of the atomistic simulations is formed by a Hamiltonian function, which
determines the equations of motion and allows for access to conservation properties.
As the migration of ions is driven by forces outside of the simulation domain, the en-
semble can not be generally considered in equilibrium, thus non-equilibrium Molecular
Dynamics must be employed. While external forces are present in several implemen-
tations of Molecular Dynamics, e.g. [SE00], they have not been incorporated into a
Hamiltonian function so far. In order to address this issue, we will present a novel
approach, which will make use of the work done on an individual particle to com-
pute the change of external energy for each particle individually. This ansatz shows
its merits as opposed to a coordinate based energy function when used in combina-
tion with periodic boundary conditions, as the resulting external energy is free of
discontinuities which would violate the energy conservation. This allows for a consis-
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tent quanti�cation of the energy exchanged between the ensemble and external forces
which we can combine with the energy exchanged with thermostats. Indeed we show
that our extension to the Hamiltonian can be consistently combined with a selection
of other existing non-equilibrium Hamiltonian functions which provide thermostats
and a barostat.
In contrast to the continuous scale, Molecular Dynamics are based on a meshless

approach. Thus we require special methods for the extraction of the relevant param-
eters for the macroscale from the particle trajectories. Fortunately, previous research
already provides upscaling mechanisms for transport coe�cients from the atomistic
simulations [FS02]. Most of these upscaling equations make implicit equilibrium as-
sumptions though, which are no longer valid for the dynamics just created. However,
our new ability to quantify the energy exchange between the ensemble and its exterior
will allow us to observe energy steady states. Under these steady state conditions, we
will be able to utilize improved upscaling functions of transport coe�cients which we
previously presented in [Neu10] and also enable the computation of heat generated in
the ensemble by convective ion migration on the microscale.

Continuous Scale

On the macroscale, the physical phenomenon of ion migration is mathematically de-
cribed by the Poisson-Nernst-Planck equation system, a partial di�erential equation
system, which takes the charge distribution of the ions as the sources and sinks of
the electric �eld into account, while the electric �eld acts as a driving term of the ion
convection. Apart from examples with only a single ion species which are arti�cially
constructed for this exact purpose, this system of equations does not have any known
analytical solutions.
Since the system of the Poisson-Nernst-Planck equations is at the heart of electro-

chemical energy storage simulations, the current interest in this and adjacent �elds
� such as electrical mobility � leads to perpetual advances in the art of solving the
Poisson-Nernst-Planck equation system and its various extensions. These advances
cover all approaches, such as extensions in modeling, model reduction, discretization
and solution of the resulting linear equation system. While modeling of the temper-
ature has been included in the literature for some time [LZ11], actual simulations of
such models were only implemented for reduced phenomenological models [SDB+13].
In physical systems the dynamic coupling of temperature and ion migration has been
largely ignored up until recently, with the simulation generally expecting equilibrium
conditions and constant temperatures. At the time of writing, only a single imple-
mentation of a physical model of such a coupling restricted to the two species case is
known [LZ15]. In this thesis, we will address this issue by considering the system of
the Poisson-Nernst-Planck equations, which model the di�usion and convection of an
arbitrary number of ion species driven by both an electrical and a chemical potential
in permeable material, coupled with the heat equation, which models the evolution
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1 Introduction

of temperature, together forming the Heat-Poisson-Nernst-Planck system. We will
analyze the nature of the coupling between the di�erent types of equations present
and consequently present a taylored discretization scheme based on the Finite Ele-
ment method. The resulting implementation will for the �rst time be able to solve
the extended Heat-Poisson-Nernst-Planck system with an arbitrary number of con-
centration functions, where the domain of the heat equation may be extended beyond
the domain of the ion migration system. Further capabilities of the solver include the
simultaneous application of di�erent boundary conditions, adaptive grid re�nement
and the use of dynamic transport coe�cients. Based on the characteristic behavior of
the solution functions we will also discuss the use of grids based on grading functions
for suitable problems.

Contributions of this Thesis

At this point, we summarize the novel contributions of this thesis.

� We provide a new Hamiltonian formulation for arbitrary external forces in par-
ticle dynamics based on the individual particle trajectories and demonstrate the
conformity of this new approach with several existing Hamiltonian thermostats
and a barostat.

� We present formulae for the computation of the energy exchange between the
ensemble and external contributions, which allow for the detection of energy
steady states in non-equilibrium Molecular Dynamics simulations and the com-
putation of heat transferred into the ensemble. Furthermore we provide an error
estimate for the computation of convection velocity and external energy transfer.

� By modifying the software Tremolo-X [GKZC04, N+16], we implement the com-
putation of external work done on the particles and provide access to the relevant
thermostat, external and total energy values. Tremolo-X is a Molecular Dynam-
ics simulation software developed at the Fraunhofer Institute for Algorithms and
Scienti�c Comuting SCAI (originally conceived at the Institute for Numerical
Simulation, University of Bonn).

� We couple the extended Poisson-Nernst-Planck equation system for an arbi-
trary number of concentration functions with the heat equation and provide a
discretization for the Heat-Poisson-Nernst-Planck system taylored to the nature
of the coupling between the di�erent types of equations.

� We implement a numerical solver for the coupled Heat-Poisson-Nernst-Planck
system by writing a modular C++ program based on the Finite Element li-
brary deal.II [BHK07]. The solver is able to combine several di�erent types of
boundary conditions (Dirichlet, Neumann and Robin), perform adaptive grid
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re�nement, handle dynamic transport coe�cients and operate on separate grids
and Finite Element spaces for the di�erent operators.

� We verify the performance of the above methods by a series of numerical sim-
ulations, in which we analyze the behavior against theoretical predictions, de-
termine the convergence behavior on uniform, graded and adaptivily re�ned
grids and successfully compare the numerical with experimental results. We
also provide a sensitivity analysis of input parameters based on an industrial
application.

Outline

The remainder of this thesis is organized as follows. We begin in chapter 2 by pre-
senting the foundations and the current state of non-equilibrium Molecular Dynamics
before we introduce our new modi�cations of the underlying Hamiltonian function.
These modi�cations include possibly non-constant external forces via the work done
on the individual particles and allow for the computation of external energy contri-
butions. The chapter continues to demonstrate the conformity of the new approach
with traditional thermostats and the Parinello barostat.
Chapter 3 is dedicated to the extraction of macroscopic parameters from the scale of

Molecular Dynamics. We match the microscale behavior to the macroscale equations
and discuss upscaling functions for transport coe�cients with special emphasis on non-
equilibrium corrections. The heart of this section is the discussion of the behavior
of external energy contributions and the estimate on the error in measuring this
variable. Furthermore we discuss the upscaling of heat/temperature generation and
the possibility of steady state detection by observing the energy from external forces
and thermostats at the same time.
The following chapter 4 considers the macroscopic Heat-Poisson-Nernst-Planck equa-

tion system. We introduce the modeling of the separate equations and discuss the dif-
ferences in coupling between the three di�erent types of equations before constructing
a discrete representation using Finite Elements. On the basis of the di�erent coupling
properties, we construct a solver method treating the Poisson-Nernst-Planck system
fully implicitly, while separating the heat equation for explicit treatment.
The theoretical results of the previous chapters are put into practice in chapter 5.

We begin the chapter by observing the transfer of external energy into test ensembles
with increasing complexity before �nally applying external forces to physical exam-
ples. We then switch to the macroscopic system, where we analyze the coupling of
the equations in dependence on the input variables. After a short comparison with an
analytical approximation, we continue to an extensive study of convergence proper-
ties, where we also investigate the merit of graded grids and adaptive treatment of the
solution. We present an industrial application for which we compare the numerical
with experimental results and perform a sensitivity analysis on the relevant input pa-
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1 Introduction

rameters based on uncertainty quanti�cation methods. The chapter is concluded with
a demonstrator for problems in higher dimensions with multiple species on complex,
non-matching grids and varying boundary conditions.
The last chapter 6 is reserved for a summary of this thesis and an outlook into

possible extensions based on this work.
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2 Molecular Dynamics

Within the domain of material simulation, many material properties are inherently
dependent on nanostructures and nanoprocesses on a spatial scale which is no longer
su�ciently described by continuum models. When the scale shrinks to the size of
several nanometers (or nowadays beginning at the size of micrometers) Molecular Dy-
namics (MD) methods can be employed to simulate these structures and consequently
predict the macroscopic properties.

The correct computation of the ensemble and the derived properties often relies on
the assumption that the ensemble is in equilibrium, facilitating proper averaging over
the particles and the time. However, for many processes this is a signi�cant restric-
tion, as researchers are often interested in the dynamic behavior of systems. Indeed,
even before the term Molecular Dynamics was actually introduced into the litera-
ture, the original idea of the method was to get away from equilibrium requirements,
but practical applications have long been restricted to such equilibrium ensembles
[AW57, AW59].
Since then, signi�cant results have been achieved with respect to the control of the

kinetic energy and pressure of the system, however results for other external in�uences
remain sparse. We will address this issue by introducing a scheme to treat arbitrary
external forces on the particles, providing a Hamiltonian function for such systems
and computing the external energy contributions.
We will begin this chapter by giving a brief introduction into Molecular Dynamics

and elaborate on several aspects which will be relevant for the extension of non-
equilibrium dynamics, such as statistical analysis of properties, ensembles and inte-
grators. We continue with a short reference to previous work on non-equilibrium MD
before presenting our treatment of external forces in Hamiltonian dynamics. We will
derive a new formulation based on energy observations for individual particles for
both Lagrangian and Hamiltonian mechanics and show the consistence of the new
formulation with several existing thermo- and barostats.

2.1 Overview of Molecular Dynamics

This section is dedicated to the introduction of key concepts in Molecular Dynamics,
which are relevant both in equilibrium and in non-equilibrium dynamics. We will give
a short overview of concepts in Molecular Dynamics and considerations for limits in
their application. Many di�erent settings have been developed to tailor the simulation

7



2 Molecular Dynamics

to diverse target applications, and the large number of possible combinations of indi-
vidual methods � as well as variations of the base methods � prevent us from giving
an exhaustive account without going beyond the scope of this work. Nevertheless we
endeavour to grant the reader an overview of the state of the art for the methods
which will be used and expanded in this thesis.
To begin with, we place Molecular Dynamics in context with the scales below and

above and sketch the derivation of Hamiltonian Molecular Dynamics from quantum
mechanics. We continue with the relation of the microscopic states with the macro-
scopic variables and provide a list of statistical ensembles together with their constant
macrostates. We will also mention variants of these statistical ensembles, which of-
ten lead to forms of non-equilibrium simulations. We continue the description with
considerations of boundary conditions and their impact on the simulation behavior,
before we turn to the choice of time integration algorithms. Prudent selections can
guarantee that � despite numerical inaccuracies � the theoretical virtual entirety in-
troduced in this section is conserved, while they may also allow the mathematical
time reversibility of the simulation.

2.1.1 Derivation of Hamiltonian Dynamics

The goal of Molecular Dynamics is the simulation and ultimately the prediction of
material properties on the atomistic scale of the material. Molecular Dynamics have
their place in the simulation of material properties between the lower scaled quantum
mechanical (QM) simulations and the larger scaled coarse grained particle methods
or even continuum methods, see �gure 2.1.
While the trajectories of atomic particles will generally only be subject to quantum

e�ects under extreme conditions (consider Bose-Einstein condensates [Fal01]), their
interaction is dependent on the behavior of their respective electrons, which are gen-
erally described by the Schrödinger equation. The complexity of this equation makes
it impossible to obtain analytical solutions for any but the most simple and arti�cial
systems. The degree of restriction becomes immediately apparent by considering that
there are closed solutions for the description of a single Hydrogen atom, but already
two electron atoms (or ions), such as the Helium atom, have no known analytical
solution.
In extension to the di�culty with analytical solutions, numerical solutions are sub-

ject to several challenges and demand a large amount of computational ressources.
This is due to the fact that, even under the Born-Oppenheimer assumption, the wave
function of each electron requires a three dimensional solution space. If for a system
of N electrons for each space dimension m degrees of freedom are used the resulting
system would have O(m3N) degrees of freedom1. Given that a sensible computation

1 To give an exact example [Lub08]: The molecule CO2 has 3 nuclei and 22 electrons, so that the
wave function has the domain R75.
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2.1 Overview of Molecular Dynamics
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Figure 2.1: System equations on multiple states.

of material properties rather requires tens of thousands of atoms (which each have
multiple electrons), it is obvious that this places us in the domain of the so-called curse
of dimensionality. To cope with this curse, sparsity-based approaches exist [Ham09],
which reduce the requirements on degrees of freedom, but they are still far from
bringing real-world problems into the reach of quantum mechanical solutions.
These complications with the complete description of atomic materials give rise to

the classical Molecular Dynamics. While the derivation can be rooted in the time de-
pendent Schrödinger equation with the electronic Hamilton operator for atom nuclei
and their associated electrons, the equations actually integrated for the time progres-
sion of the system are Newton's equations of motion.
This transition between QM and MD can be generally justi�ed by the Ehrenfest

theorem [Ehr27], which relates the acceleration of (the expectation value of the po-
sition of) a wave package with wave function Ψ by a �eld U to Newton's laws of
motion

m
d2

dt2

∫
ΨxΨ̄dτ =

∫
Ψ

(
−∂U
∂x

)
Ψ̄dτ. (2.1)

for masses m of the order of 1g. Although this result is exact, these expectation
values are accompanied by an uncertainty, the �width� of the wave package. This
uncertainty will evolve in time and Ehrenfest himself gave the examples for the un-
certainty evolution of an unaccelerated particle with initial mass m and original wave

9



2 Molecular Dynamics

function

Ψ(x, t = 0) = c · e− x2

2ω2 +ıµx,

where x is the space variable, ω determines the original width of the wave package,
µ is an arbitrary real constant and c is chosen s.t. the square integral is normalized.
Then the evolution of the uncertainty of the particle position is determined by its mass
and original uncertainty; for m = 1g, ω = 10−3cm the original width doubles after
T = 1021s, while for m = 1.661e−24g (the mass of a hydrogen atom) and ω = 10−8cm
we have T = 10−13s.
While the latter result, indicating fast increasing uncertainty, might seem discour-

aging at �rst, it must be looked at for what it really is. We learn that no matter how
accurate we compute the trajectories of the particles, we are confronted with an un-
derlying uncertainty, which increases with the progression of time. As a result we can
accept the accumulating numerical errors in the individual trajectories � which we dis-
cuss in section 2.1.5 � with more ease, knowing that the time at which this uncertainty
doubles is clearly in the range of numerical Molecular Dynamics simulations.
We do not intend to give a full derivation here, as this would be beyond the scope

of this thesis. More elaborate derivations are available in [Lub08, GKZC04]. Never-
theless, we will outline the key assumptions and their respective consequences for the
method of MD.
We begin by writing the Hamilton operator Hmol for molecular systems for LN

nuclei (whose associated variables we will denote with the index N) of masses ml and
electric charges zle at positions xl ∈ R3 and Le electrons (whose associated variables
we will denote with the index e) of mass me and charge −e at positions yl ∈ R3. Let

Hmol = TN + Te + VNN + VNe + Vee,

where Ti is the operator for the kinetic energy of nuclei and electrons, respectively,

TN = −
LN∑

l=1

~2

2ml

∆xl Te = −
Le∑

l=1

~2

2me

∆yl (2.2)

and the potential summands are given by

VNN(x) =
∑

1≤k<l≤LN

zkzle
2

‖xk − xl‖
Vee(y) =

∑

1≤k<l≤Le

e2

‖yk − yl‖
(2.3)

VNe(x, y) =−
Le∑

1=k

LN∑

1=l

zle
2

‖yk − xl‖
. (2.4)

The fundamental step towards Molecular Dynamics is the so-called Born-Oppen-
heimer approximation, which separates the treatment of the nuclei and the electrons.
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2.1 Overview of Molecular Dynamics

This separation is motivated by the di�erence in mass between the nuclei and elec-
trons (a single proton/neutron is more than 1800 times heavier than an electron),
which gives rise to two distinct di�erences in behavior. First, in light of the discussion
following the Ehrenfest theorem (2.1), we note that the uncertainty of the wave func-
tion associated with an electron decays faster than that of a nucleus, the �half-life� of
the uncertainty scaling linearly with the mass of a particle. Second, we note that for
equal acting forces the acceleration and � via integration � the velocities and positions
of the electrons change much more rapidly than those of the nuclei.2

As a consequence, the computations of the trajectories can be decoupled and it can
be assumed that the state of the electrons follows those of the nuclei instantly, while
those serve as background parameters to the electronic structure problem. This leads
to the electronic Hamiltonian

He(x) = Te + U(x, ·)

which is then used to write the time dependent Schrödinger equation

ı~
∂Ψe

∂t
= He(x)Ψe

with the imaginary unit ı, the reduced Planck constant ~ = h
2π

and the electronic
wave function Ψe. Note that the right hand side is not explicitly dependent on time3,
leading to the general separation ansatz

Ψe(x, y, t) = f(t) · ψ(x, y).

Via the time independent Schrödinger eigenvalue problem

He(x)ψ(x, y) = Ei(x)ψi(x, y),

we can compute eigenvalues Ei and corresponding eigenfunctions ψi of the electronic
Hamiltonian. Consequently, we obtain for the time evolution

f(t) = e
−ıEi(x)t

~ ,

which allows us to write the �nal solution as a superposition of eigenfunctions

Ψe(x, y, t) =
∑

i

ci · e
−ıEi(x)t

~ · ψ(x, y).

2 Note that analogies to kinetic theory of gases, which are given by some authors [GKZC04], are
not applicable here, speci�cally because of their large di�erence of mass and even more so because
they interact via the electric potential, which is not only repulsive but also attractive between
electrons and nuclei.

3 There is an implicit time dependence of the operator via the coordinates of the nuclei. However,
in this form there is no explicit time dependence as might be caused by external forces, a topic
which we will discuss in 2.3.
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We will not delve into solving this equation, but from now on assume that we have
a solution to this equation available, for example by the means described in [Ham02,
Ham09]. For the practical implementation, the results of the electronic Schrödinger
equation are used to �t particle potentials to the respective position of the nuclei.
There are several compilations of tables of such potentials, some of which have been
developed for a very speci�c task [LWW06, MEA07], while others are applicable to a
variety of applications with common setting [CCB+95].
With this solution we can now write the Schrödinger equation for the nuclei as

HN = TN + U(x), (2.5)

where TN is the kinetic operator of the nuclei as in (2.2) and U(x) is the evalua-
tion of the potential energy of the nuclei positions in the state given by the electron
wave function Ψe. Application of the Ehrenfest theorem (2.1) then yields Newton's
equations of motion for the expected values of the location observables

mnẍ = −∇xU(x),

allowing the computation of the trajectories of the nuclei in the classical sense. With
the Born-Oppenheimer approximation we expect the electrons to follow the motion of
the nuclei instantly and can regard the trajectories of the nuclei as trajectories of the
combined atom. By applying the correspondence principle established by the Ehren-
fest theorem, we can replace the operators in equation (2.5) with their expectation
values and obtain the classical Hamiltonian

H =
∑

i

~p2
i

2mi

+ U(~x), (2.6)

where ~pi is the impulse of particle i. The dynamics of the system are then described
by the so-called Hamilton's equations of motion

ẋi =
∂

∂pi
H ṗi = − ∂

∂xi
H.

With this last step we have derived the fundamental equations of Molecular Dy-
namics from a lower scale, obtaining the particle potentials by solving the electronic
Schrödinger equation. The individual trajectories of the particles, which may be com-
puted from these equations, can then be taken as the basis for the computation of
further results, which we will elaborate in the next section.

2.1.2 Statistical Analysis of Properties

While Molecular Dynamics compute the trajectories of many individual particles
(atoms), generally the number of degrees of freedom involved means that a change in
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2.1 Overview of Molecular Dynamics

a single or a few degrees of freedom does not have a signi�cant impact on the macro-
scopic properties of the system. As a consequence, we are generally not interested in
the detailed coordinates4, which we will call the microstates of the system. Rather
it is our objective to compute parameters which provide the respective macroscopic
description and which represent the status of the ensemble in bulk by deriving them
from the respective individual degrees of freedom. Hence, we will call such a property
a macrostate5.
Nevertheless, such individual �snapshot� properties are of questionable use, as the

macroscopic properties may �uctuate around their actual value and individual mea-
surements may be arbitrarily placed within the �uctuation corridor. Even worse, some
macroscopic properties may not be in equilibrium or steady state with respect to the
starting point of the ensemble and as a consequence the value will change qualitatively
during the simulation time. For these reasons, it is necessary to take multiple values
into account and analyze the overall behavior of the measurements. For the purpose of
sensible statistics on the results of the ensembles, we will now discuss several aspects
which in�uence the averaging operations, starting with the space in which we observe
the ensemble.

Given a system of N particles, we can observe 3 degrees of freedom for the gener-
alized position and 3 degrees of freedom for the generalized velocity of the particle,
resulting in 6 ·N degrees of freedom. These degrees of freedom completely de�ne the
current state of the ensemble and thus we may interpret the vector of these degrees
as a point in a 6 · N dimensional space, which we call the phase space. Each point
corresponds to a snapshot of the microscopic properties of the ensemble, often also
referred to as a microstate. As the ensemble evolves in time, its microstate changes
and traces a path through the phase space which we call a trajectory.

If we have points, which di�er in their microstates but share one or more com-
mon macroscopic properties (e.g. a �xed volume), they are said to be in the same
macrostate. We will be interested in areas of the phase space in which a particular
macrostate is constant, thus coupling several of the original degrees of freedom6. The
corresponding manifold is the virtual entirety7 Γ. For certain sets of macroscopic
properties, the Hamilton function describing the ensemble is independent of time.
In these cases, the trajectories of the ensemble can never leave the virtual entirety,
the respective macrostate is constant. Such ensembles are also known as statistical

4 Furthermore, the prediction of individual particle behavior is prone to errors, which accumulate
over large runtimes of a simulation, see section 2.1.5.

5 An intuitive example for such a property is the temperature of the ensemble, as it is de�ned via
the mass-weighted average of the squared velocities of all particles T = 2

3kB

∑
imi~v

2
i ; however,

there are also more elaborate relations.
6 As a result, some speci�c microstates may no longer be accessible.
7 Virtual entirety is the author's translation of the German phrase virtuelle Gesamtheit, which does
not seem to have an equivalent expression in the English language.
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2 Molecular Dynamics

ensembles. This allows us to use the virtual entirety as the sample space for further
investigation of macroscopic values, which are not �xed by the respective macrostate.
(Consider as an example the NVE macrostate with the temperature as a measurable
macroscopic value.)
Additionally, we de�ne a probability density

fN,Γ : R3N × R3N → R

for an N particle ensemble within the virtual entirety Γ, where

P (I) =

∫

I

fN(~q, ~p) d~p d~q

denotes the probability that a physical ensemble is in the subset I ⊂ Γ. Under the
assumption that this function is available, the prediction of a macroscopic value A
under the macrostate Γ would be computed by

AΓ
..=

∫
Γ
A(~p, ~q) · fN,Γ(~p, ~q) d~q d~p∫

Γ
fN,Γ(~p, ~q) d~q d~p

, (2.7)

which corresponds to the weighted average of the respective variable.
Unfortunately, the probability densities of the macrostates are for all practical pur-

poses impossible to obtain for complex systems [FS02]. Nevertheless, predictions are
possible via the time average

〈A〉T ..=
1

T

∫ t0+T

t0

A(~qq0(t), ~pp0(t))dt,

where the indices q0 and p0 indicate the dependence of the trajectories on the starting
condition. The validity of the time average is derived from the ergodic hypothesis
[GKZC04, HFPH95], which states that the time average on the one hand and the
average computed via the probability density (2.7) on the other hand are equal as
T →∞.
This equality implies two signi�cant facts, �rst that the initial state of the system

is irrelevant with respect to the average macroscopic values and second that the prob-
ability of a system trajectory passing a speci�c point of the phase space correlates
with the probability density of the respective point.
However, the application of the ergodic hypothesis has obvious limitations. Since in

computational reality the time T can never be in�nite, we must use some �nite time
not knowing, whether the sample obtained by the trajectory is su�cient. Indeed, for
�nite trajectories the initial state of the system may have a signi�cant impact on the
average computation.
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2.1 Overview of Molecular Dynamics

2.1.3 Statistical Ensembles

Statistical ensembles are generally de�ned by the control of three macroscopic vari-
ables, which determine the constant macrostate of the virtual entirety. At times,
statistical ensembles are abandoned in favor of controlled interventions into the pro-
gression of the macrostates. In these cases, the ensembles are no longer in equilibrium,
but purposefully moved to a new state. While the use of such methods is relatively
common, they are seldomly backed up by corresponding conclusions for the validity
of their results. We will mention some examples of such control, and the purpose to
which they are applied.
The most basic ensemble is the microcanonical ensemble (NVE), for which the

variables particle Number, Volume and total Energy are �xed. In its basic setting,
the system is completely isolated from outside in�uences and has its own contained
equilibrium. However, it is also possible that the volume or shape of the simulation
domain is directly controlled, introducing strain into the ensemble [Gal97]. This
arti�cial introduction of strain allows us to perform targeted computations of elasticity
properties of materials.
A popular enforced macrostate is the canonical ensemble (NVT). Again number of

particles and volume are constant, but instead of the total physical energy the kinetic
energy is controlled in NVT ensembles. For the control of the temperature many
di�erent schemes have been established, ranging from simple scaling of the velocities,
via Hamiltonian-based Nosé-Hoover thermostat to stochastic thermostats. Despite
their di�erence in practice, they all share the same general idea, that the ensemble
is placed in contact with an external thermal bath and that the combined system
equilibrates. The properties of di�erent thermostats have been extensively researched
[GH06], some of which we present in section 2.2.2. At times the external heat bath
is not kept constant, but controlled. In this case, the equilibration between the two
ensembles is broken and needs to be reaquired, another example of a non-equilibrium
setting.
In the isobaric ensemble (NPE) the control of the volume is released and replaced

with the control of the pressure of the ensemble. As a result the simulation domain
may be deformed by the internal stress. These deformations may be free but are gen-
erally subject to constraints, which allow only limited degrees of freedom of the simu-
lation domain to change. In addition to the common pressure, the stress tensor of the
ensemble may also be speci�ed. An often used combination is the isobaric-isothermal
ensemble (NPT), combining the pressure and temperature control. Despite its com-
plicated mechanics, this ensemble may also be described by Hamiltonian dynamics
[GH06].
Finally, we mention the grand canonical ensemble (µVT), which does not keep the

number of particles but the chemical potential constant. This ensemble cannot be
used with classical Molecular Dynamics methods, but is generally used with Monte
Carlo-based methods. Moreover, certain hybrid methods make use of this ensemble
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as well.
Since the canonical and isobaric ensemble have variants which lead to Hamiltonian

dynamics, we will discuss these in more detail in section 2.2.2.

2.1.4 Boundary Conditions

At this point we would like to present further considerations for challenges of Molecular
Dynamics computations, namely the di�erence between surface and bulk properties.
General choices for boundary conditions in Molecular Dynamics are free, periodic

and hard wall boundaries. Hard or heated wall boundaries would again impact the
ensemble, as they provide outside interaction with an imaginary potential, which
cannot be penetrated by the particles. In the case of free boundary conditions all
particles on the rim of the simulated ensemble would behave as being on the surface
of the material towards vacuum, while conversely periodic boundary conditions would
present bulk material without any surface.
The importance of the choice of boundary conditions becomes apparent when we

imagine the ratio of bulk to surface particles. If the ensemble consists of 103 particles
which are distributed roughly uniformly throughout a cube, 48.8% of these particles
would be on the direct surface of the material � not even counting those particles
which are in the �second layer�, which may also experience particular surface e�ects.
When we consider an ensemble with 106 particles, the ratio of surface particles goes
down to 6%. In real materials however, where the number of particles is of the
order of Avogadro's number 6.023 · 1023, the ratio of particles on the surface is of the
order of 10−16. Thus, in most practical applications periodic boundary conditions are
best suited to produce relevant results, while the other boundary conditions are only
considered in special applications. In this thesis we will consider periodic boundary
conditions exclusively and in our implementation of external forces we will speci�cally
deal with problems only encountered with periodic boundary conditions.

2.1.5 Time Integrators

One of the most important choices when performing MD simulations is the technique
for time propagation, usually referred to as the time integrator. Considering the
particle system as a system of coupled ordinary di�erential equations, a multitude of
numerical solver methods is available to choose from. The choice of the solver has
several far reaching consequences, among which are the order of the numerical and
systematic error, the regard of conservation properties, reversibility, and adherence to
the expected solution space.
Since this numerical system is a representation of a physical system, we have ad-

vanced knowledge of some of the structure of the solution space and furthermore can
formulate expectations towards conservation properties and tolerance for error.
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Error Propagation

In this section we will establish the error of the individual particle trajectories for arbi-
trary integration schemes. Error estimates for macroscopic variables will behave very
di�erently and need to be established for each constructed variable individually. The
di�erence is of paramount importance, as the resulting errors for macroscopic vari-
ables will actually show convergence over the time of the numerical simulation, while
we will show that the errors in the trajectories of the individual particles accumulate
over time, as already mentioned in 2.1.2.
We consider an arbitrary numerical updating scheme for the positions and velocities

of the particles

(
xn+1

vn+1

)
=

(
Θx(x

n, vn, δt)
Θv(x

n, vn, δt)

)
,

where xn+1 shall be an approximation of the true progression of the position x(tn + δt)
and vn+1 an approximation of the true progression of the velocity v(tn + δt).
If Θ is a numerical scheme of order m, we can reduce the error for a single time

step arbitrarily

‖xn+1 − x(t+ δt)‖ = O(δtm+1)

‖vn+1 − v(t+ δt)‖ = O(δtm+1).

While the constants involved may vary, they can be easily dealt with. This is a
di�erent matter for the global error over multiple time steps. Let T = n · δt. Then
we obtain the usual error estimate for explicit integrators, compare [LM15],

‖xn − x(T )‖ ≤ C(T ) · δtm,

where the constant C(T ) is independent of the number of steps n or the step size δt.
However, it is not independent on the time domain covered by these steps, and we
can obtain an estimate

C(T ) ≤ C ′ · eC′′·T

which is exponentially dependent on the time domain T [GKZC04, BL07]. Small
deviations of the starting conditions thus have to be expected to have a considerable
impact on the �nal state of the simulations for long runtimes. In practical Molecular
Dynamics applications the simulation times have indeed to be long, and the reasonable
question raised by this fact is whether macroscopic variables are in�uenced as well.
Fortunately, this question can be answered negatively, which we will outline in the
following section.
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Symplecticity and Reversibility

In section 2.1.3, we introduced the notion of macrostates and the virtual entirety which
constrain the system of simulation. Given the numerical inaccuracies described in the
previous section, it is a non-trivial question, whether the restraining macrostates are
conserved by the numerical algorithms. The trajectories of the phase space satisfy
the conservation property that the volume between a collection of trajectories remains
invariant. Numerical integrators whose solutions satisfy the same property are called
symplectic, and via backward error analysis they can be interpreted as exact solutions
to distorted variants H̃ of the original Hamiltonian H. This interpretation results in
a guarantee for the existence of the respective ensemble averages and for the non-
accumulation of the inaccuracies of the trajectories in the macrostate measurements
[GKZC04].
However, for the original macroscopic value A the corresponding value Ã may also

be distorted, introducing a di�erent kind of error, which varies with the ensemble and
the integrator used. Indeed more recent results determine that even for non-symplectic
integrators, error estimates for trajectory averages can be constructed [BL07] which
may have advantages depending on the exact setting in question. Speci�cally, the
class of time reversible integrators has proven to be a viable alternative to symplectic
numerical schemes. In special cases, time reversible integrators are still able to yield
sensible results, even when the backwards analysis is no longer possible due to the
large time step [GKZC04].

The above descriptions have generally been provided with equilibrium systems in
mind. Nevertheless, both of these properties may also be transfered to non-equilibrium
dynamics as long as certain conditions are ful�lled. While reversibility is a property
of the integrator and only dependent on the symmetric processing of the integration
variables, for the case of symplecticity the form of the Hamiltonian has to be consid-
ered. As long as it is not explicitly dependent on time, the volume preservation of the
phase space may be proven as before by Liouville's theorem.8 Finding proper integra-
tion schemes is another matter and must be established from ensemble to ensemble.
Examples for such constructions for popular externally coupled systems can be found
in [BLL99, GH06].

2.2 Current State of Non-Equilibrium Hamiltonian

Dynamics

In the application of MD to material science, it is common to control other macro-
scopic variables than the particle number, volume and total energy, and to have more

8 In fact, the Liouville equation, which is the basis of this theorem, is also an integral part in proving
the �uctuation theorem, which allows our discussion of validity of non-equilibrium Molecular
Dynamics in section 2.2.3.
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in�uence than to keep these properties constant. Examples of this may be either a
manual control of the volume and shape of the simulation domain (corresponding to
the physical variable strain), the temperature or the pressure.
As a result of this control of macroscopic properties, work is done on the ensemble,

which violates the equilibrium property of the simulation. This violation puts the
ergodic hypothesis into question, which is the foundation of the determination of
macroscopic physical properties via time averages.
In this section we will present di�erent non-equilibrium settings and examine whether

they have certain steady state properties. We will pay speci�c attention to Hamiltonian-
type systems and the analysis they allow, speci�cally with respect to external forces.
Furthermore, we will review the �uctuation theorem and its consequences for the in-
terpretation of data generated by numerical simulation in light of the second law of
thermodynamics.

2.2.1 Equilibrium vs. Steady State

Measurements carried out in equilibrium conditions in Molecular Dynamics are gener-
ally well researched and established [GKZC04, Tuc10]. With external restrictions and
contraints, ensembles deviate from models which are solely based on internal physical
equations. Nevertheless, those play an important role in the application of Molecular
Dynamics, as they enable measurements and observations of phenomena which would
otherwise be beyond the scope of such simulation.
Moreover, such ensembles can be described in terms of modi�ed equations, which

enable the analysis of the behavior in contrast to the pure physical description. One
such example is the Parrinello barostat, which is often used in NPT ensembles. For
this barostat, it is possible to derive a modi�ed Hamiltonian, which allows for the
computation of di�erent but similar conservation laws [GH06].
However, when the ensemble is not in equilibrium, results for the accuracy and

validity of measurements are sparse [Tuc10]. Statistical analysis for systems in �ux
is quite di�erent and some results simply do not carry over from the analysis of
equilibrium conditions, such as the application of auto-correlation functions [NGH12],
which we also discuss in section 3.3.
With this in mind, we will investigate the in�uence of external forces on Molecular

Dynamics ensembles.

Steady State with Tempered Color Field

Non-equilibrium steady states can be established in di�erent ways and must not
necessarily be derived from a Hamiltonian. In a non-physical example placed in a
Lorentz gas9, particles are subjected to a constant �color �eld�, where the color charge

9 The terminology �Lorentz gas� does not describe the particle system but the domain in which
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given to the particles determines their direction of acceleration. To enable a steady
state, the particles are tempered by a force proportional to their deviation from a
given constant �ux. This work shows the in�uence of the established convection
on the di�usion of the parameters. The measurements of the di�usion coe�cients
are indeed properly modi�ed to address convection and the velocity auto-correlation
functions are not used in the presence of the �eld. However any theoretical discussion
of the employed methods is absent [BEC93].
While this work lays good foundations for the implementation of several measure-

ment functions, it does not properly discuss how the achievement of a steady state
is controlled. The general goal of achieving a steady state, however, sets it apart
from the following section, where the steady state is ignored while the focus is on
modi�cations of the Hamiltonian function.

2.2.2 Previous Examples of Modi�ed Hamiltonians

In section 2.1.3 we discussed the existence of various di�erent ensembles, which each
refer to the control of di�erent macroscopic variables (generally meaning that these
properties are kept constant). There are several realizations of Molecular Dynamics
which already rely on successfully modi�ed Hamiltonians. The common aspect of
all instances is that the system is not closed in itself, but interacts with some form
of outside �system�. Generally, this interaction is enforced to gain control over a
new macroscopic parameter of the original system and consequently to establish the
previously in section 2.1.3 mentioned ensembles.
In the following, we will give a short review of established modi�cations and the

macroscopic properties to which they relate.
Note that not all external interactions (and speci�cally not all implementations of

ensembles) can be described by a Hamiltonian. In particular, the implementation of
the canonical NVT ensemble via the Berendsen thermostat in its general case cannot
be derived from a Hamiltonian formulation.

Nosé-Hoover Variant of Hamiltonian

As noted above, not all choices of thermostat implementations for the canonical NVT
ensemble can be related to a Hamiltonian function. At the same time, the so-called
Nosé-Hoover variant of the Hamiltonian [Nos84] is possibly the best-known variant to
the standard Hamiltonian encountered in Molecular Dynamics. The standard Hamil-
tonian (2.6) is modi�ed by a time scaling function, which in turn yields a coordinate
transformation for the canonical impulses, which then no longer equal the physical

it is placed. The exact layout varies, in the described source it consists of three �xed hard-disk
�scatterers� placed in a triangular pattern. While not stated in the paper itself, the referenced
source therein indicates periodic boundary conditions [MZ83].
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impulses of the particles. The modi�ed Hamiltonian

HNosé-Hoover =
∑

i

~p2
i

2mis2
+ U(~q) +

π2

2Q
+ gkBT ln(s) (2.8)

requires the introduction of the timescaling function s, the �ctitious �mass� Q of the
external heat reservoir and the kinetic energy of the reservoir π. Further, g denotes a
constant equalling the number of degrees of freedom of the original system plus one
(g = 3 · N + 1). The variables s and π form a new conjugate pair of variables, with
s taking the role of a coordinate and π taking the role of a momentum variable. As
such, we consider the vectors

(
~q
s

)
,

(
~p
π

)

for Hamilton's equations of motion. While the modi�cations yields a new conserved
quantity often referred to as the extended energy, the equations of motion

∂qi
∂τ

=
∂H
∂p̃i

=
p̃i
mis2

,
∂s

∂τ
=

∂H
∂π

=
π

Q
,

∂p̃i
∂τ

= −∂H
∂qi

= −∂U(q)

∂qi
,

∂π

∂τ
= −∂H

∂s
=
∑

i

p̃2
i

mis3
− gkBT

1

s

(2.9)

however are with respect to a scaled time variable which in practical applications leads
to non-equally spaced points on the timeline. By introducing a scaling of the impulse
variables and a so-called Sundman time-transformation, real-variable equations of
motion can be established, but they are non-Hamiltonian in nature due to the non-
canonical time scaling [BLL99].

Nosé-Poincaré Variant of Hamiltonian

A remedy to this problem is presented in the same paper, by extending the Hamilto-
nian to the so-called Nosé-Poincaré Hamiltonian

HNosé-Poincaré =

(∑

i

~p2
i

2mis2
+ U(~q) +

π2

2Q
+ g̃kBT ln(s)−H0

)
s. (2.10)

Apart from the obvious changes, the degrees of freedom are reduced by one (g = 3 ·N)
and the time variable is the correct physical time t. Consequently, we obtain equations
of motion in the true time system

q̇ =
p̃i
mis

, ṡ = s
π

Q
,

˙̃pi = −s∂U(q)

∂qi
, π̇ =

∑

i

p̃2
i

mis2
− gkBT −∆H

(2.11)
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with

∆H ..=
∑

i

~p2
i

2mis2
+ U(~q) +

π2

2Q
+ g̃kBT ln(s)−H0.

For both of the above variants reversible integrators are available, but only for the
latter symplecticity may be achieved. In section 2.3.4 we will demonstrate that our
handling of external forces can be integrated in these thermostat formulations, making
previous implementations of integrators easily convertible.

Parrinello-Rahman Variant of Hamiltonian

The control of the pressure of the system can be achieved via the so called Parrinello-
Rahman barostat, which requires further changes to the Hamiltonian. Similar to the
fact that the temperature is controlled via the scaling of time, the control of the
pressure is achieved via the scaling of the coordinates. The coordinate scaling is per-
formed in terms of the simulation domain, so that for vectors ~a1, ~a2 and ~a3 which
de�ne the parallelepiped, we de�ne the transformation matrix by h ..= [~a1,~a2,~a3]. Us-
ing this matrix, we obtain the scaled coordinates ~ui ..= h−1~qi, and the scaled impulses
pu,i ..= h−1pi. Further, we set G ..= hTh and introduce the variables external pres-
sure Pext, the barostat mass W , and the momentum of the scaling matrix ph. The
Parrinello-Rahman Hamiltonian is then written as

HParrinello =
∑

i

pTu,iGpu,i

2mi

+ U(h~u) +
tr(pTh ph)

2W
+ Pext · det(h). (2.12)

Consequently, we obtain the equations of motion

∂qi
∂t

=
∂H
∂p̃i

=
Gp̃i
mis2

,
∂h

∂t
=
∂H
∂ph

=
ph
W
,

∂p̃i
∂t

= −∂H
∂qi

= −∂U(q)

∂qi
,

∂ph
∂t

= −∂H
∂h

= −∇h

(∑

i

pTu,iGpu,i

2mi

)
− ∂U

∂h
,

where we have omitted further di�erentiation in the last equation. While we will
provide some more details in section 2.3.4, where we show the conformity with our
formulation of external forces, for further and more general information we point the
reader to the original paper of Parrinello and Rahman [PR81].

Combined Parrinello-Rahman and Nosé-Hoover Variant of the Hamiltonian

Possibly more often than the above form, a variant is used, which additionally incor-
porates a temperature control via the previously introduced Nosé-Hoover thermostat
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2.2 Current State of Non-Equilibrium Hamiltonian Dynamics

in order to control the NPT ensemble. When both transformations are combined, the
�nal Hamiltonian is

HNPT =
∑

i

~̃pTu,iG̃~̃pu,i

2mis2
+U(h̃u, h̃)+

tr(~̃pTh,i~̃ph,i)

2Ws2
+Pext ·det(h̃)+

π2

2Q
+gkBT ln(s), (2.13)

where the tilde on the variables denotes the transformed variables in terms of the
non-physical time τ [GH06]. Note that due to this non-physical time scale, this
Hamiltonian su�ers from the same shortcomings as the pure Nosé-Hoover Hamilto-
nian in (2.8), since the necessary transformation leads to non-Hamiltonian equations
of motion. However, as before there is a true Hamiltonian variant, which makes use of
very similar techniques as those presented for the Nosé-Poincaré Hamiltonian, com-
pare [Her01]. Additionally, this work has replaced the dependency on the scaling
matrix h by the metric tensor G, removing the issue of handling the orientation of
the domain, which otherwise requires additional matrix constrains in the algorithms
of Molecular Dynamics software [N+16].
In order to demonstrate that the external forces which we introduce in the following

sections will match with the equations of motions already used, we will revisit these
formulations in section 2.3.4.

2.2.3 The Fluctuation Theorem and its Consequences

In the context of Non-Equilibrium Molecular Dynamics (NEMD), research was con-
ducted into statistical distribution of entropy. While the second law of thermody-
namics generally prohibits the decrease of entropy in natural processes10, microscopic
equations of motion are generally reversible. As a consequence, processes of micro-
scopic scale and � in the current context more importantly � simulations of �nite size
and �nite time may exhibit behavior where the entropy of a closed system is reduced,
that is, they are reversions of classically irreversible processes.
This contradiction was known for some time [Bol70], but while it was accepted that

the above law holds �on average� in the meaning that it holds only for macroscopic
systems, the question on how the reversibility of the microscopic equations of motion
corresponds to irreversible macroscopic behavior was not acceptably resolved.
In the last decade of the 20th century, researchers proposed a quantitative estimate

for �Probability of Second Law Violations in Shearing Steady States� [ECM93], an
article which despite its seemingly narrow application layed the groundwork for more
general results for ensembles which are in a non-equilibrium con�guration [ES94] and
possibly far from equilibrium.

10There are several, generally equivalent formulations of this law. The one used here follows Planck
[Pla22]: �Jeder in der Natur statt�ndende physikalische und chemische Prozeÿ verläuft in der Art,
daÿ die Summe der Entropien sämtlicher an dem Prozeÿ irgendwie beteiligten Körper vergröÿert
wird.�
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2 Molecular Dynamics

This came to be known later as the Fluctuation Theorem: With S as the entropy
produced over the observation time t, the probability of the inverse process (which
will have corresponding negative entropy production) is computed to be

P ( S
kBt

= A)

P ( S
kBt

= −A)
= eAt,

meaning that the probability for �violating� processes decreases exponentially as the
average rate of entropy production or the observation time increase.
This approach proved to be successful, �rst being supported by computer simula-

tions and later with experimental results, where trajectories of individual particles
could be monitored in an optical trap [Ger02, WSM+02].
These results are signi�cant in supporting the validity of Molecular Dynamics sim-

ulation results which were not computed from an equilibrium setting. While exten-
sive descriptions of speci�c aspects of non-equilibrium dynamics existed before, e.g.
[EM07], other aspects are still lacking. In particular, none of the current works yields
a way to detect the presence of a steady state, apart from an analysis of the phase
space density distribution [SPWS08].
Further disccusions on the e�ects of the Fluctuation Theorem consider the validity

of Green-Kubo and Einstein expressions for linear transport coe�cients in the case
of non-equilibrium �uids with repulsive pair potentials. The results obtained suggest
that in the linear regime corrected variants of the calculation can be used, while failure
is observed far from equilibrium. The basis of this result are independence assumptions
on the sample behavior, which can no longer be postulated for ensembles under the
e�ect of external forces, an assumption that is also formulated in [SE00, SPWS08].
It is postulated that for averaging times larger than a so-called Maxwell time τ = η

µ
,

given by the fraction of dynamics' viscosity η and shear modulus µ, which characterizes
correlations in the dissipative �ux, the required independence will be achieved.
However, this time estimate is not applicable to all settings, in particular, when

external forces act on a subset of the ensemble particles or the external forces change
the alignment of the particles over time, violating a steady state setting. We will
revisit these considerations in chapter 3, when we consider upscaling formulas and
their requirements for validity in non-equilibrium settings.

2.3 New Approach to Incorporating Arbitrary

External Forces

In this section we come to the heart of our contribution to Molecular Dynamics. We
intend to formalize the interaction of the simulation ensemble with an outside energy
reservoir via force interactions acting on individual particles and at the same time
wish to measure the energy transferred between the outside and inside system.

24



2.3 New Approach to Incorporating Arbitrary External Forces

Our approach will be to express the energy exchanged with the external reservoir
via the work done on the particle by the force, leading to interchangable formulations
of the energy via a path integral over the force and a time integral over the scalar
product of velocity and force. The prior formulation will allow for the expression of the
energy exchange in Hamiltonian form, while the latter formulation will allow for an
implementation of computation of the accumulated energy exchange while considering
periodic boundary conditions and still maintaining unique reprensentation of image
coordinates.
In the context of energy conserving NVE simulations, we will then be able to observe

conservation of energy with respect to the global system. At the same time, when
considering other external interactions such as NVT simulations, we will be able to
compute the energy transference of either type of interaction and by comparing both
energy �uxes, decide whether the ensemble reaches a steady state. Furthermore, the
computation of the energy added by outer interaction will enable the computation
of the strength of heat sources, which can be bridged to higher scaled simulations or
considered as a newly measured macroscopic value in its own right which we discuss
in chapter 3.
Finally, we will connect the application of external forces with existing thermostat

types.

2.3.1 External Forces on Particles

In this section we will assume that an external force Fi,ext exists for all particles i,
which is added to the forces resulting from internal interaction in the ensemble, so
that

~Fi,tot = ~Fi,inter + ~Fi,ext.

Such an external force might be the result of interaction between charged particles
and an electrical potential applied across the domain. When the potential is linear
across the simulation domain, the result will be a constant force per particle. However,
the usual assumption of periodicity causes problems with this interpretation. The
position of a particle is not necessarily well-de�ned and leads to discontinuities in the
potential measured and thus in the total energy of the particle, see �gure 2.2. After
summation over all particles, energy is no longer conserved.
However, when we de�ne the �eld via its derivatives

~Fi,ext = ∇xiUext

there is no requirement that Uext is the same function for all particles i. In particular,
for i 6= j

Uext(~xi(t)) 6= Uext(~xj(t
′)) for ~xi(t) = ~xj(t

′)
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Figure 2.2: Periodic cells with a classical external potential showing discontinuities.

would not violate the conservativeness of the �eld.
For the special and limited case of constant external forces, we could express the

external potential by

Uext =
∑

i

~Fi,ext · (~x(t)− ~x0).

By this interpretation, the energy in the external potential is identically 0 for all
particles at time t = 0, but nevertheless the change in energy due to repositioning is
properly taken into account.
However, this method is limited in several ways. In addition to not being able to

handle changing external forces, it encounters implementation problems for periodic
boundary conditions, as upon passing a boundary the coordinates of the image of the
particle no longer coincide with its position in the �eld. While this might be remedied
by treating both positions seperately, outside interactions with the �eld and internal
interactions with other particles would now depend on di�erent coordinate sets. Both
of these problems will be addressed in the next section.

Duality of Energy and Work

It is known from physics [Dem04a], that the work Wi(t) performed on a particle in
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2.3 New Approach to Incorporating Arbitrary External Forces

the time interval [0, t] is

Wi(t) =

∫ t

0

~Fi(τ)~vi(τ)dτ.

To restrict this expression to the work done by the external �eld, we replace the
total force ~Fi on the particle by the external force ~Fi,ext on the particle. By the �rst
law of thermodynamics, we know that the work done on the particle must correspond
to a change of energy with respect to the external �eld

Wi,ext(t) = ∆Ui,ext ..= Ui,ext(t)− Ui,ext(0)

⇔
∫ t

0

~Fi,ext(τ)~vi(τ) dτ =

∫ ~xi(t)

~xi(0)

~Fi,ext dy. (2.14)

This duality now allows us to perform proper analysis in a Molecular Dynamics
environment with periodic boundary conditions. For the computation of the force
acting on a particle the right hand side of equation (2.14) is used, whereas for the
evaluation of the current energy of the particle the left hand side is taken into account,
which is independent of the current periodic image of the particle.

2.3.2 Changes in Total Energy from External Forces

The total energy of classical systems is evaluated as the sum of the internal kinetic
and potential energy

E = Ekin + Epot =
∑

i

1

2
m~v 2

i + U0(~q).

When the system is subject to external forces, we observe the following change in
energy

dE

dt
=
dEkin
dt

+
dEpot
dt

=
∑

i

[
mi~vi~̇vi +

∑

k

∂U

∂xi,k

∂xi,k
∂t

]

=
∑

i

[
mi~vi~̇vi +∇xiU0 · ~vi

]

=
∑

i

(
mi~̇vi +∇xiU0

)
~vi

=
∑

i

(
mi
−∇xiU0 + ~Fi,ext

mi

+∇xiU0

)
~vi

=
∑

i

~Fi,ext~vi.
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The energy contribution Ũ of this force to the system is then given by

Ũ(~x, ~̇x, t) =
∑

i

∫ xi(t)

xi(0)

~Fext,i(~y ) d~y.

If we take into account that work performed on the system corresponds to a reduced
energy of the surrounding system (which yields the work), we are able to observe the
conservation of energy. By setting

U ..= U0 − Ũ

we obtain

dE

dt
=
∑

i

(
mi~vi~̇vi +∇xiU0 · ~vi − ~Fi(~xi(t))~vi

)

=
∑

i

(
mi~̇vi +∇xiU0 − ~Fi(~xi(t))

)
~vi

= 0.

2.3.3 From Lagrangian to Hamiltonian Dynamics

In the following section we will show that the addition of external forces can be set
into a Hamiltonian formulation of the ensemble, while still taking periodic domains
into account. To this end, we must place requirements on both the trajectories of the
particles and the structure of the external forces.

� We require that the simulation time can be partitioned into intervals, such that
the coordinate functions of the particle trajectories are injective in the simulation
domain Ω.

For [t0, tend], ∀i ∃ {tk}mk=0 with tm = tend, tk < tk+1, Ik = [tk, tk+1],

s.t. ~xi : Ik → Ω is injective.
(2.15)

Note that we only require a partition of the time interval for each trajectory by itself.
A suitable partition for the whole ensemble is simply obtained by collecting the inter-
sections of intervals for all particles, since these will always be a �nite number. This
requirement ensures that we can make the transformation from the energy integral
in time to the corresponding line integral along the trajectory of the particle. On
the individual trajectory the function is now even bijective and we obtain an inverse
function

τi,k : Ω→ Ik; τi,k(~xi(t)) ..= t
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2.3 New Approach to Incorporating Arbitrary External Forces

and as a consequence we will use the time and space arguments of ~Fi interchangeably
by de�ning

~Fi,k(~xi) ..= ~Fi(~xi, τi,k(~xi))

~Fi(t) ..= ~Fi(~xi(t), t).

We use these de�nitions to formulate our requirement on the external forces.

� We require that the vector �eld ~Fi,k(~xi) ..= ~Fi(~xi, τi,k(~xi)) must be conservative
on Ω so that the following holds

∃Φi,k(~y), s.t. ~Fi,k(~y) = ∇Φi,k(~y). (2.16)

From now on without loss of generality, let xi : [t0, t] → Ω be injective for all i on
the complete time domain, which allows us to drop the index k of the time intervals.
Should this not be the case we will create a set of intervals, which exist by requirement
(2.15), and treat each of the intervals in turn. Now we may rewrite the energy integral

∫ t

t0

~Fi(τ)
~pi
mi

dτ =

∫ t

t0

~Fi(τ)~̇xi dτ =

∫ ~xi(t)

~xi(0)

~Fi(~y) d~y,

where we do not specify a path in the last integral. This is permissible due to
requirement (2.16), as the fact that the forces are de�ned by a gradient �eld make the
line integral independent of the actual path taken. With this version of the energy
contribution of the external forces we write the Lagrange function

L ..=
∑

i

1

2
mi~̇x

2
i − U(~x) +

∑

i

∫ xi(t)

xi(0)

~Fi(~y) d~y.

From this function we are able to obtain the equations of motion of the particles via
the general ansatz of the Euler-Lagrange di�erential equations

d

dt

∂L
∂~̇xi

=
∂L
∂xi

⇒ m~̈xi = −∂U(~x)

∂xi
+

∂

∂xi

∫ xi(t)

xi(0)

~Fi(~y) d~y

(2.16)
= −∂U(~x)

∂xi
+

∂

∂xi

∫ xi(t)

xi(0)

∇Φi(~y) d~y

= −∂U(~x)

∂xi
+

∂

∂xi
(Φi(~xi(t))− Φi(~xi(0)))

(2.16)
= −∂U(~x)

∂xi
+ ~Fi,ext(~xi(t)), (2.17)
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where we can apply the fundamental theorem of calculus [BSMM01] to the line integral
due to its path independence as a gradient �eld. Indeed we obtain the usual equations
of motions with added external forces.
Following the successful formulation in Lagrangian dynamics, we turn to the trans-

formation into a Hamiltonian function. To this end, we perform a Legendre transfor-
mation [ZRM09] of the Lagrange function

∂L
∂~̇xi

= m~̇xi =.. ~pi,

which, since the line integral is not directly dependent on the velocity of the particles,
results in the transformed variable ~p. We will refer to this parameter as the canonical
impulse. This leads to the Hamiltonian function

H =
∑

i

~pi
mi

∂L
∂~̇xi
− L

=
∑

i

mi~̇xi~̇xi −
1

2
mi~̇x

2
i + U(~x)−

∫ ~xi(t)

~xi(0)

~Fi(~y) d~y

=
∑

i

~p 2
i

2mi

+ U(~x)−
∫ ~xi(t)

~xi(0)

~Fi(~y) d~y.

To conform to the notation in standard literature, we substitute ~qi(t) ..= ~xi(t), leaving
us with

H =
∑

i

~p 2
i

2mi

+ U(~q)−
∫ ~qi(t)

~qi(0)

~Fi(~y) d~y.

Now we check whether we obtain identical equations of motion

~̇pi = −∂H
∂~qi

~̇qi =
∂H
∂~pi

= −∂U(~q)

∂~qi
+

∂

∂~q

∫ ~qi(t)

~qi(0)

~Fi(~y) d~y =
~pi
mi

,

= −∂U(~q)

∂~qi
+ ~Fi(~qi(t)),

and �nd that both the Lagrangian and Hamiltonian approach produce the same re-
sults, which also coincied with our initial conjecture.

Gains from this Method

We are now able to accurately compute the energy contribution to the ensemble
instead of just estimating it via mean velocities. As a �rst result, this allows us
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2.3 New Approach to Incorporating Arbitrary External Forces

to observe non-equilibrium NVE ensembles, since we can take the reduction of the
external potential energy in the computation of the total energy into account.
Of even larger interest is the combination with thermostats and barostats. It is now

possible to check whether a steady state has been reached, e.g in the thermostat case
by observing and comparing the rate of energy exchange between the external �eld
and the heat bath. This is a criterion for the evaluation of macroscopic variables, since
for ensembles in a transient state they may change by de�nition. These macroscopic
variables can be evaluated from our provided Hamiltonian function; in particular,
we can combine our method with ensembles which interact with the temperature
and/or pressure. Additionally, this method conforms with mathematical reversibility,
as long as suitable integration schemes are used. While the modeled macroscopic
physical processes are generally not reversible, the implementation of external forces as
described here satis�es the requirements on the equations of motion of the Fluctuation
Theorem as presented in [SPWS08], justifying that we obtain microscopic reversibility
of the trajectories.
As the external forces result in a change of energy in the ensemble, heat is transfered

between the internal system and its outside. Heat generation terms may be evaluated,
as the energy �ux from the �eld has in�uence on internal potential energy and kinetic
energy. This may be measured in isolation or even in concert with thermostats and
allows for the computation of the amount of heat extracted from the ensemble volume
over a set time frame. Further discussion of this upscaling will take place in chapter
3.

2.3.4 Conformity of External Forces with Thermo- and

Barostats

In section 2.2.2 we presented already existing modi�cations of Hamiltonians which
established temperature and pressure control of the ensemble. We will now revisit
these Hamiltonians and add our external forces, demonstrating that the respective
methods can be combined with our new approach.
Although we have established that the classical Nosé-Hoover Hamiltonian ulti-

mately does not lead to a Hamiltonian formulation, we will nevertheless prove the
conformity with our new approach as this thermostat still plays a signi�cant role in
many implementations of Molecular Dynamics software [P+16, N+16].

Conformity with Nosé-Hoover

We begin with the Hamiltonian (2.8), adding the path integrals of external forces

HNosé =
∑

i

~p2
i

2mis2
+ U(~q)−

∑

i

∫ ~qi

~qi,0

~Fext,i dx+
π2

2Q
+ gkBT ln(s). (2.18)
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As before we derive Hamilton's equations for the non-physical time scale

∂qi
∂τ

=
p̃i
mis2

,
∂s

∂τ
=
π

Q
,

∂p̃i
∂τ

= −∂U(q)

∂qi
+ ~Fext,i,

∂π

∂τ
=
∑

i

p̃2
i

mis3
− gkBT

1

s
,

before we introduce the transformations

p =
p̃

s
, π̂ =

π

s
,

dτ

dt
= s,

resulting in the non-Hamiltonian equations

q̇i =
pi
mi

, ṡ = s2 π̂

Q
,

ṗi = −∂U(q)

∂qi
+ ~Fext,i, ˙̂π =

1

s

(∑

i

p2
i

mi

− gkBT
)
− sπ̂

2

Q
.

As we can see, these equations conform to the standard equations of motion for the
Nosé-Hoover formulation with the inner potential extended by the external forces.

Conformity with Nosé-Poincaré

We continue to the Nosé-Poincaré extension, where we will be able to construct a full
Hamiltonian setting. As before we start with the Nosé-Poincaré Hamiltonian (2.10)
with the addition of external energy

HNP =

(∑

i

~p2
i

2mis2
+ U(~q)−

∑

i

∫ ~qi

~qi,0

~Fext,i(x) dx+
π2

2Q
+ g̃kBT ln(s)−H0

)
s.

(2.19)

The derivation of Hamilton's equations of motion is straightforward, resulting in

q̇ =
p̃i
mis

, ṡ = s
π

Q
,

˙̃pi = −s
(
∂U(q)

∂qi
− ~Fext,i

)
, π̇ =

∑

i

p̃2
i

mis2
− gkBT −∆H

with

∆H ..=
∑

i

~p2
i

2mis2
+ U(~q)−

∑

i

∫ ~qi

~qi,0

~Fext,i dx+
π2

2Q
+ g̃kBT ln(s)−H0.
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We see that two equations are a�ected, the update of the reduced impulse variable and
the update of the Nosé-Poincaré impulse. It is trivial to see that the scaling of both,
the forces from the inner potential and the external forces, is identical in the update
of the particle impulses. Furthermore, inner and outer forces appear in the update of
the thermostat impuls π̇ in the same form as they did in the Hamiltonian, this time
both without scaling. We conclude that the addition of external forces conforms to
the Nosé-Poincaré variant of the thermostat as well.

Conformity with Parrinello-Rahman

After having established the conformity of our external forces formulation with popu-
lar thermostat Hamiltonians, we turn to the realm of barostats. We will demonstrate
conformity for the original Parrinello-Rahman barostat as well as its combination with
the Nosé-Hoover thermostat. In the literature multiple di�erent transformations of
coordinates are present [GH06, Her01, SM97, PR81], a matter which is more elabo-
rate than we wish to address here. Instead we will focus on the conformity of the
external forces with the internal ones, leaving the treatment of known terms to the
previously stated literature. With this approach in mind, we consider the external
energy formulation in terms of scaled coordinates and their derivatives in terms of the
coordinates and the scaling respectively

∑

i

∫ ~qi

~qi,0

~Fext,i(x) dx = Uext(~q) | Substitute ~qi = h · ~ui

⇔
∑

i

∫ h~ui

h0~ui,0

~Fext,i(x) dx = Uext(h~u)

⇒ ∂

∂ui

∑

i

∫ h~ui

h0~ui,0

~Fext,i(x) dx =
∂Uext
∂qi

· ∂qi
∂ui

= ~Fext,i(h~ui)
T · h

⇒ ∂

∂h

∑

i

∫ h~ui

h0~ui,0

~Fext,i(x) dx =
∂Uext
∂qi

· ∂qi
∂h

= ~Fext,i(h~ui) · ~uTi .

Note that the substitution may not be performed in the integration variable, as the
scaling matrix h changes over time. However, the starting point of the integral is
constant, thus it is always transformed by the initial scaling matrix h0

..= h(0). We
recall the Hamiltonian from (2.12) and add external energy contributed by forces

HParrinello =
∑

i

pTu,iGpu,i

2mi

+U(h~u)−
∑

i

∫ h~ui

h0~ui,0

~Fext,i(x) dx+
tr(pTh ph)

2W
+Pext ·det(h).

33



2 Molecular Dynamics

Consequently, we obtain the equations of motion

∂qi
∂t

=
∂H
∂p̃i

=
Gp̃i
mi

, (2.20)

∂p̃i
∂τ

= −∂H
∂ui

= −∂U(h~u)

∂ui
+ ~Fext,i(h~u) · h, (2.21)

∂h

∂t
=

∂H
∂ph

=
ph
W
, (2.22)

∂ph
∂t

= −∂H
∂h

=
∂

∂h

(∑

i

pTu,iGpu,i

2mi

− U(h~u) +
∑

i

∫ h~ui

h0~ui,0

~Fext,i(x) dx

+ Pext · det(h)

)
. (2.23)

Obviously, equations (2.20) and (2.22) have not changed compared to the original
equations of motion, so we only need to concern ourselves with the conformity of
equations (2.21) and (2.23). In order to compare the potential contributions we con-
sider the partial derivatives of the inner potential U(h~u)

∂

∂ui
U(h~u) =

∂U

∂qi
· ∂qi
∂ui

=

(
∂U

∂qi

)T
· h,

∂

∂h
U(h~u) =

∂U

∂qi
· ∂qi
∂h

=
∂U

∂qi
· uTi .

Inserting the results into equations (2.21) and (2.23)

∂p̃i
∂τ

= −
(
∂U

∂qi

)T
· h+ ~Fext,i(hu) · h =

(
−
(
∂U

∂qi

)T
+ ~Fext,i(hu)

)
· h,

∂ph
∂t

=
∂

∂h

(∑

i

pTu,iGpu,i

2mi

+ Pext · det(h)

)
− ∂U

∂qi
· uTi + ~Fext,i(h~ui) · uTi

=
∂

∂h

(∑

i

pTu,iGpu,i

2mi

+ Pext · det(h)

)
+

(
−∂U
∂qi

+ ~Fext,i(h~ui)

)
· uTi ,

we �nd that both external and internal forces are subject to the same scaling in their
respective equations and thus can conclude that our formulation of external forces is
valid in this ensemble as well.

Having established the conformity in the NPE ensemble, we consider the Hamilto-
nian presented in (2.13) combining the Nosé-Hoover thermostat and the Parrinello-
Rahman barostat to an instance of an NPT ensemble with the addition of external
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forces

HNPT =
∑

i

~̃pTu,iG̃~̃pu,i

2mis2
+ U(h̃u)−

∑

i

∫ h̃~ui

h̃0~ui,0

~Fext,i(x) dx

+
tr(p̃Th,ip̃h,i)

2Ws2
+ Pext · det(h̃) +

π2

2Q
+ gkBT ln(s),

which result in the equations of motion

∂qi
∂τ

=
Gp̃i
mis2

,

∂p̃i
∂τ

= −∂U(h̃u)

∂ui
+ ~Fext,i(h̃u) · h̃

=

(
−∂U
∂qi

T

+ ~Fext,i(h̃u)

)
· h̃, (2.24)

∂h̃

∂τ
=

ph
Ws2

,

∂ph
∂τ

=
∂

∂h̃

(∑

i

pTu,iGpu,i

2mis2
+ Pext · det(h̃)

)
− ∂U(h̃u)

∂h̃

+
∂

∂h̃

(∑

i

∫ h̃~ui

h̃0~ui,0

~Fext,i(x) dx

)

=
∂

∂h̃

(∑

i

pTu,iGpu,i

2mis2
+ Pext · det(h̃)

)
+

(
−∂U
∂qi

+ ~Fext,i(h̃~ui)

)
· uTi , (2.25)

∂s

∂τ
=
π

Q
,

∂π

∂τ
=
∑

i

p̃2
i

mis3
+

tr(p̃Th,ip̃h,i)

2Ws3
− gkBT

1

s
.

In this way, we have shown analogously to the pure Parrinello-Rahman equations,
that the scaling of internal and external forces coincide, compare equations (2.24) and
(2.25). The other equations are una�ected by the addition of external forces.

In summary, we have shown in the above three sections that our new formulation
of external forces can be combined with three traditional methods of thermo- and
barostating originally based on Hamiltonian formulations. As a consequence, the
integration schemes of these methods can be used with only minor modi�cations in
the update functions where the external energy and forces are concerned, and without
any e�ect on the other variables.
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3 Upscaling from Particle to
Continuum Dynamics

This chapter is dedicated to the connection of the molecular dynamics simulations to
the coe�cients of the continuum dynamics equations.
After a brief review of upscaling techniques for particle dynamics, we will begin a

discussion of upscaling techniques for migration phenomena in non-equilibrium molec-
ular dynamics, such as di�usion and convection. We will also discuss the possibility
of measuring heat generation in the ensemble and estimate the error associated with
this measurement.
For all measurements we will keep in mind that the computation of macroscopic

phenomena from a microscopic ensemble is often accompanied by assumptions on
the ensemble, which need to be satis�ed for the computation to be valid. Generally,
these requirements rely on equilibrium conditions in the ensemble, rendering them
void in the context of non-equilibrium molecular dynamics. Nevertheless, there are
exceptions in either direction, meaning that there are measurements for which the
requirement of equilibrium conditions alone is not su�cient to guarantee validity, as
well as measurements which continue to function in non-equilibrium conditions. In
these cases other requirements need to be satis�ed, with steady state conditions of
the energy �ux being an important criterium.
Thus we will conclude this chapter with a discussion of steady state detection for

the application of external forces and thermostats.

3.1 Overview of Upscaling Techniques

The terminology multiscale methods refers to a multitude of diverse methods and tech-
niques, some of which are very similar, while others have almost nothing in common.
The methods depend on the problems involved and as such � for molecular problems
� upscaling may take place from wave functions on the quantum-mechanical scale to
particles on the atomistic scale, each with their own passing of time, while for ap-
plications in plate tectonics upscaling methods may link di�erent partial di�erential
equations from the centimeter to the kilometer regime.
Many popular multiscale methods such as Coarse Graining [NCA+08] or Homoge-

nization [NRLJ10] stay within their respective method framework of particle dynamics
and partial di�erential equations. Consequently, since a general discussion of avail-
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able multiscale methods would be beyond the scope of this thesis, we restrict ourselves
to the discussion of methods linking particle dynamics to continuum mechanics and
point to [GLW08] for a general overview of methods and their building blocks.
In our application we intend to bridge from microscale particle methods using

ångström and femtoseconds to continuum equations on the centimeter and minute
scale. Even between those particular scales di�erent methods may be used. In the
application of stress and strain modeling, including crack simulation, which is clearly
a non-equilibrium process, di�erent areas of the same domain are treated with dif-
ferent methods and interface via a so-called �handshake� region, where an interface
between both methods is established [TM11]. This method, known under the name
of bridging scale method, is suitable for applications involving solids, where only a
limited region requires the �ne scale attention.
The scaling process we are interested in is quite di�erent. We intend to derive

macroscopic properties from the �ner scale which are applicable over large parts
of the simulation domain, both in time and in space. As such they correspond to
the ideas laid out in [WEL+07] under the name heterogenous multiscale methods,
which emphazise that the physical models do not necessarily need to be identical and
which understand the upscaling process as an estimation of missing components of
the macroscopic model. While the physical models are not identical, we need to en-
sure that data supplied to the macroscopic equation and the boundary conditions set
to the microscopic system model the same problem. We make use of the method of
averaging in order to match the phenomena of particle dynamics to the continuum
scale, which we will describe in the following section.

3.2 Matching the Scales

In order to relate to the heterogenous multiscale methods, we need to link our particle
dynamics to the continuum equation which we investigate. We display the derivation
already presented in [Neu10] expanding on the method of averaging in [Sal98].
We de�ne the averaging operator for arbitrary variables X

〈X〉K ..=
1

n

n∑

i=0,k∈K
X(ki)

with n = |K|.
On the particle scale we de�ne a discrete concentration of particles belonging to a

common group K via the delta distribution1

c̃K(x) =
∑

i∈K,xi∈Ω

δ(x− xi)

1 The delta distribution is de�ned to be the unique distribution with the property∫
δ(x− x0)f(x) dx = f(x0).
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where Ω denotes the whole domain of the particles and xp is the location of particle
p. By averaging over an environment2 Br(x) with radius r around x, we obtain a
concentration function

cK(x) =
1

|Br(x)|

∫

Br(x)

c̃K(x̃) dx̃. (3.1)

Note that |Br(x)| = |Br(y)| =.. Vr for all x and y, i.e. the volume of the ball is
constant, only its position changes. Without chemical reactions, we can then derive
the continuity equation by applying the time derivative to (3.1), substituting x̃ = x′+x

∂cK
∂t

=
∂

∂t

1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x̃− xi) dx̃

=
∂

∂t

1

Vr

∫

Br(0)

∑

i∈K,xi∈Ω

δ(x+ x′ − xi) dx′

=
1

Vr

∫

Br(0)

∑

i∈K,xi∈Ω

∂

∂t
δ(x+ x′ − xi) dx′

=
1

Vr

∫

Br(0)

∑

i∈K,xi∈Ω

3∑

j=1

∂δ(x+ x′ − xi)
∂xji

∂xji
∂t

dx′ (3.2)

=
1

Vr

∫

Br(0)

∑

i∈K,xi∈Ω

3∑

j=1

(−1)
∂δ(x+ x′ − xi)

∂xj
∂xji
∂t

dx′

= −
3∑

j=1

∂

∂xj
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x+ x′ − xi)
∂xji
∂t

dx′

= −∇ 1

Vr

∫

Br(0)

∑

i∈K,xi∈Ω

δ(x+ x′ − xi)
∂~xi
∂t

dx′

= −∇ 1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x̃− xi)
∂~xi
∂t

dx̃

=.. −∇ ~JK ,

where ~JK is called the �ux of the particles, which contains the velocities of the particles
∂~xi
∂t

= ~vi. Note that the coordinates x and x′ are independent of the time variable,
which results in vanishing time derivatives ∂x

∂t
= ∂x′

∂t
= 0 in equation (3.2), shortening

the expression considerably.
By considering the particle average and the respective individual deviation we ob-

2 While our notation implies a spherical environment, this is not necessary. In practice the domains
in Molecular Dynamics are formed by a parallelepiped.
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tain

~JK =
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x− xi)
∂~xi
∂t

dx

=
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x− xi)~vi dx

=
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x− xi) (~vi − 〈v〉K + 〈v〉K) dx

=
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x− xi) (~vi − 〈v〉K) dx

︸ ︷︷ ︸
di�usion

(3.3)

+
1

Vr

∫

Br(x)

∑

i∈K,xi∈Ω

δ(x− xi) 〈v〉K dx

︸ ︷︷ ︸
convection

. (3.4)

The averaging integral acts now on the average velocity � the convection � and the
deviation from this convection � the di�usion. This equation also demonstrates that
it is not only the macroscopic convection which is relevant for the �ux; we observe
a seperation of scales, where macroscopic e�ects are not immediately visible on a
restricted ensemble on the lower scale.
When we consider environments of points x1 and x2, which are su�ciently far apart

with |x1 − x2| � r and for which we have cK(x1) 6= cK(x2), we see that the sum over
the number of particles may lead to di�usive �ux between the two points caused by
the unbalanced concentration, which is not described by the average of the velocities.
The above expressions allow for some insights into the relation of di�usion and con-

vection. Experimental evidence leads to the Einstein-Smoluchowski equation, tying
the convection velocity to the di�usion properties of the material. While the above
equations do not allow us to derive this relation directly, we see that both terms in-
volve the averaging integral over the localized particle velocities. In particular, we
note that the di�usion expression results from the deviation from the average con-
vection, a fact which we will revisit in the following section formulating an improved
expression for the di�usion measurement and later in 3.4.2, where we estimate the
error in our convection measurements, which will also determine the error estimate
for the energy transference.

3.3 Modi�ed Di�usion

The extraction of di�usion values via the computation of Mean-Sqare Displacement
(MSD) and Velocity-Auto-Correlation (VAC) functions is a well established practice
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[FS02, MLK01]. However, the established methods fail when equilibrium conditions
are violated, even worse, they already fail in equilibrium settings where constant con-
vection is present. In the previous section we matched the micro- and the macroscale
via an averaging method and established the di�usion as the deviation from the av-
erage convection. In this section we will make use of this relation towards improved
methods of di�usion measurement.
Speci�c violations of equilibrium conditions can be circumvented by adaptions of

the used methods as already described in [Neu10]. Nevertheless, we must take care
that these modi�cations do not implicitly rely on original requirements which are no
longer valid.

3.3.1 Velocity-Auto-Correlation

We begin the discussion of di�usion measurements with the measurement via the
Velocity-Auto-Correlation function. The foundations of this method was laid in
[Kub57], with further elaboration added in [Kub66]. The standard relation

D =
1

3
lim
t→∞

∫ t

0

〈v(t− τ)v(0)〉 dτ

has been originally derived for equilibrium conditions, but can also be generalized to
the case where limt→∞ 〈v(t)v(0)〉 = 0. While we can write an explicit correction to
this measurement, see [Neu10],

D =
1

3
lim
t→∞

∫ t

0

〈v(t− τ)v(0)〉 − 〈v(t− τ)〉 〈v(0)〉 dτ,

this method unfortunately produces false results when applied to ensembles which are
subject to external forces.
The reason for this failure lies in the original derivation of the VAC method, which

assumes that the ensemble satis�es equilibrium conditions throughout the duration
of the simulation to justify the time shift of the integral. The equivalence proposed
in [FS02]

〈~v(t)~v(τ)〉 = 〈~v(t− τ)~v(0)〉

relies on the fact that the velocities of the particles become independent of their start-
ing or intermediate conditions. For non-steady state conditions, this independence is
clearly void, as the time evolution of the velocities is biased.
For steady state conditions, the case is less certain. While conditions can be pos-

tulated, under which Green-Kubo relations3 are approximately valid under steady

3 Green-Kubo relations are a general type of relations, of which the velocity auto correlation is a
special case [FS02].
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state conditions [SE00], there are restrictions on the magnitude of external forces,
which depend on other transport coee�cients and their relation. Indeed, the original
Green-Kubo relations have been derived for the small �eld limit and linear relations.
However, the in�uence of general external forces does not necessarily couple linearly
to the macroscopic transport and energy parameters. As a matter of fact, in most
settings a quadratic phase of energy transfer can be expected, which corresponds to
accelerated transport. We will discuss this phenomenon in section 3.4.1.
While of limited use, we can formulate a requirement for convergence of the VAC

method for di�usion coe�cients with

〈v(t− τ)v(0)〉 − 〈v(t− τ)〉 〈v(0)〉 = o

(
1

t

)
,

but this requirement is tautological in nature, as it is the base requirement for the
convergence of the VAC integral and cannot be predicted from the ensemble setup.
However, the correction we presented in [Neu10] is su�cient, if a constant convection

of particles is present, as the internal trajectories of a molecular dynamics system with
non zero total impulse are equivalent to the trajectories of the same system where the
average velocity is subtracted from all individual velocities.4

3.3.2 Mean Square Displacement

A di�erent method for the computation of the di�usion is based on the displacement
of the particles. While the original method relies on the particles to perform random
movements around their point of origin, the modi�ed method speci�cally takes the
convective motion into account. Nevertheless, we will demonstate that for the method
to work properly, the convection must have reached a steady state, or the measure-
ments are bound to provide con�icting results over the course of the simulation.
We revisit results derived in [Neu10] by introducing

~ri(t) = ~xi(t)− ~xi(0),

which is the distance traveled by a particle p during time t. Let g be a group of
individual particles and ng the number of particles in this group. Using the general
mean displacement

〈~r(t)〉 =
1

ng

∑

i∈g
~ri(t)

for further computations would yield the original MSD equation for di�usion [FS02].
We present the formula correcting for directed movements, which makes use of the
fact that we look for deviations from the average behavior.

4 Needless to say, that the kinetic energy needs to be adjusted by an appropriate constant as well.
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With the corrected displacement

〈
L2(t)

〉
=

1

n

∑

i∈g
(~ri(t)− 〈~r(t)〉)2 ,

we measure the variance of the distance traveled ~r(t), which we use to compute the
di�usion over the time interval t

D =
1

6

〈L2(t)〉
t

. (3.5)

We see the following analytic equivalences for T = N · δt

1

6

〈L2(T )〉
T

=
1

6

〈L2(T )〉 − 0

T

=
1

6

〈L2(T )〉 − 〈L2(0)〉
T

=
1

6

〈L2(T )〉 − 〈L2(0)〉
N · δt

=
1

6N

N∑

j=1

〈L2(j · δt)〉 − 〈L2((j − 1) · δt)〉
δt

(3.6)

δt↘0−−−→ 1

6

〈
∂ 〈L2(t)〉

∂t

〉

t

,

where in (3.6) we expand the telescopic sum. In the context of a continuous average,
the above reads

1

6

〈
∂ 〈L2(t)〉

∂t

〉

t

=
1

6T

∫ T

0

∂ 〈L2(t)〉
∂t

dt

=
1

6T

∫ T

0

d
〈
L2(t)

〉

=
1

6T

〈
L2(T )

〉
.

In the above equations we have shown the equivalence of the long time measurements
of the di�usion equation with the time average over point measurements. This equiv-
alence will be of use later, when we will be able to improve the error estimation of the
convection measurements in section 3.4.2. Apart from the implications for the error
estimates, this also implies that the method may be able to produce consistent results
under non-steady state conditions. Indeed, in previous work we established [NGH12]
that the method reproduced the equilibrium di�usion coe�cients of an ensemble even
when the ensemble was subject to external forces without thermal tempering, e�ec-
tively constantly adding energy to the ensemble.
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As a result, careful attention needs to be paid to a proper setup of the system, as
unintentional use of non-steady state systems will lead to insensible results in most
cases. This is demonstrated best when considering that using thermostats in con-
junction with external forces and otherwise unobstructed or only slightly obstructed
particle paths will lead to alignment of the particle trajectories. With aligned trajec-
tories, the deviation from the average velocity declines, leading to a phenomenon often
referred to as ��ying ice cube�, which was originally observed for thermostat scaling
[HTC98]. When this phenomenon occurs, the energy originally stored in the internal
degrees of freedom contributing to the di�usion is transfered to the convection, reduc-
ing the measured di�usion. Conversely, for obstructed particles with no temperature
control present, the interparticle impact may heat up the whole ensemble, leading to
unpredictable behavior, e.g. when phase changes are triggered, completely changing
the basis of computation.
Nevertheless, the fact that unsteady states are accessible at all underlines the

method's robustness in the context of non-equilibrium settings and recommends this
method over the previous VAC.

3.4 Convection and External Energy

The measurement of convection per type of particle can easily be computed by the
average over their velocities as noted in the correction term in 3.3. However, this
average is subject to constant �uctuations and we will demonstrate, that the error
of this ad hoc average may become arbitrarily large. Thus convection measurements
need to take long term behavior into account, computing the particle convection over
time t by

~wi(t) =
ri(t)

t
.

The resulting values can then be averaged with the standard method. In this section
we will present error estimates for both, the ad hoc and the long term method.
Furthermore, it should be noted that in the presence of external forces the convec-

tion may generally be unbounded, which we will demonstrate with arti�cial test cases
in section 5.1.2. In realistic applications this behavior is prevented by interparticle
forces and collisions, which add a decelerating e�ect which balances with the acceler-
ating force. However, these interactions transfer the energy from the a�ected particle
species to the surrounding material, heating the total ensemble. In the presence of
external forces it is a necessary criterion for the overall energy steady state that the
convection reaches a steady state, since the total energy transfered to the ensemble
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can be expressed in terms of the average convection of all particle types

Eext,F,k(t) =
∑

k

∫ t

t0

~Fext,k(τ) 〈~v(τ)〉k dτ,

∂Eext,F,k(t)

∂t
=
∑

k

~Fext,k(t) 〈~v(t)〉k ,

as otherwise the external energy �ux continues to �uctuate. Consequently we will
investigate the behavior of the convection more closely in the following sections, be-
ginning with the acceleration behavior of particle velocities from external forces and
later with estimations of the error of the convection measurements, which we will
convert to estimate the error in the energy transfer from external forces.

3.4.1 Di�erent Regimes of Acceleration

The average rate of energy transfer from external forces applied to an ensemble in
equilibrium is expected to change over time. Initial acceleration of unobstructed
particles leads to a linear increase in their average velocity, which again is part of the
integrand in the external energy integral. The resulting energy transfer for particles
subject to a constant force

Eext,i(t) =

∫ t

t0

~Fi ·
(
~vi,0 +

∫ τ

t0

~Fi
mi

dτ ′
)
dτ

= (t− t0) · ~vi,0 · ~Fi +
1

2mi

(t− t0)2 ~F 2
i (3.7)

is quadratic in nature. However, the assumption of unobstructed particles cannot
be expected to hold in most physical matter (with the exception of very thin gases).
Instead, particles interact with their surroundings, transfering impulse and � as a
result � changing magnitude and direction of their velocities. Assuming a homogenous
medium, where the same (external) forces act on all particles, these interactions would
not in�uence the overall energy transfer, as the formulae could be reduced to the
center of momentum system, which would experience the cumulative forces on the
particles. All of this changes however, when we investigate more complex ensembles
which consist of particles of di�erent masses and di�erent outside interactions.
As the particles exchange impulses, they scatter and the new obtained impulse

of an individual particle may be aligned in a di�erent direction, possibly even the
inverse of its previous impulse. In this case of impulse inversion, the energy transfer
of this particle reverses as well, as the sign from the scalar product of force and
velocity changes. Further interaction of the particles lead to additional changes in
direction, all yielding di�erent rates of energy transfer. After a su�cient number of
interactions, the velocity state of the particles has been completely changed, it can be
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considered reset. The time for this to happen is determined by the time a particle is
on average free of interactions, the mean free time. During this time, external forces
act unobstructed, accelerating � or decelerating � the particle. If the forces were to
act unidirectional in the ensemble, that is the direction of force is the same for all
particles which experience them, we would observe an acceleration of the full ensemble
in the direction of the force. However, in most physical settings, the forces acting in
a particular direction on one group of particles are paired with forces acting in the
opposing direction for other groups of partices � consider for example an electric �eld,
which exerts opposing forces on particles with opposite signs of charge.
After some initial acceleration, the internal impulse transfer from the opposing

forces counteracts the external force, leading to a mean balance of the forces acting
on the group of particles. As such, the convection velocity of the a�ected groups
becomes constant. Nevertheless, as long as the convection is not zero, energy will still
be added to the ensemble at a linear rate.
As soon as this stage is reached actual measurements become possible. The con-

tinued �ux of energy can be balanced by the use of thermostats, creating a steady
state for the energy and the convection. Additionally, the energy transfer at the �nal
convection state can be used as a basis for computing the heating of the material by
the external forces, which we will treat in section 3.5.

3.4.2 Error Estimation

Since we may expect that the mean kinetic energy changes proportionally to the
external energy, we recall the expression for external energy transferred and its rate

Eext =
∑

i

∫ t

0

~Fi(τ)~vi(τ) dτ

∂Eext
∂t

=
∑

i

~Fi(t)~vi(t).

With correctly given and implemented external forces, those are exact and do not
contribute to the error of the measurement. Consequently, the remaining source of
an error of the measurement is the distribution of the particle velocities. Assigning
individual particles to groups g, such that the forces are identical (~Fp = ~Fg, if p ∈ g),
we can rewrite the external energy rate as

∂Eext
∂t

=
∑

i

~Fi(t)~vi(t)

=
∑

g

ng · ~Fg(t)〈~v(t)〉g

where 〈~v(t)〉g = 1
ng
·∑i∈g ~vi(t). While it is intuitive to measure the convection by av-

eraging over the ad hoc velocities of the particles, this average proves to be unreliable.
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3.4 Convection and External Energy

For a single time step δt and t0 = t− δt we can write

~vi(t) =
ri(t)

δt
,

which can be used to estimate an upper bound on the standard deviation of the average
velocity measurements. We consider the variance of the velocity measurement and
insert (3.5)

σ2(~vg) =
1

ng
·
∑

i∈g
(~vi − 〈~v〉)2

=
1

ng
·
∑

i∈g

(~ri − 〈~r〉)2

δt2

≈ 1

δt

〈
∂〈L2〉
∂t

〉

=
6

δt
·Dg,

with Dg being the di�usion coe�cient of group g. Since the di�usion coe�cient is
expected to assume a constant value for a given ensemble and with the time steps
usually used in Molecular Dynamics, this variance may become very large, even several
magnitudes larger than the actual measured value.
Fortunately, considering long term behavior over longer time intervals allows for

better estimates. Considering the single particle convection

~wi(t) =
ri(t)

t
, (3.8)

we can write the external energy for constant ~Fg as

Eext =
∑

g

ng ·
∫ t

0

~Fg(τ)〈~v(τ)〉g dτ

=
∑

g

ng ~Fg · 〈~r(t)〉

=
∑

g

ng ~Fg ·
∫ t

0

〈~r(t)〉
t

dτ

=
∑

g

ng ~Fg ·
∫ t

0

〈~w(t)〉 dτ.
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3 Upscaling from Particle to Continuum Dynamics

This time we consider the variance of w(t), resulting in the expression

σ2(~wg) =
1

ng
·
∑

i∈g
(~wi − 〈~w〉)2

=
1

ng
·
∑

i∈g

(~ri − 〈~r〉)2

t2

=
6

t
·Dg.

As before, the di�usion coe�cient is expected to assume a �nite value so that increas-
ing the ensemble size is only of limited value, since the number of particles does not
appear in the estimate. Consequently, the runtime needs to be increased to reliably
reduce the standard deviation of the velocity measurement. Moreover, since the stan-
dard deviation σ is the square root of the variance, a decrease of error can only be
expected with 1√

t
, since

σ(~vg) =

√
6 ·Dg

t
.

In summary we obtain an estimate of the maximal error [BSMM01] of the external
energy

∆max

(
∂Eext
∂t

)
=
∑

g

∣∣∣ng ~Fg
∣∣∣
√

6 ·Dg

t
. (3.9)

Using the error estimate for the convection velocities in the Gaussian law error
propagation [BSMM01] we also obtain an expression for the variance of the rate

σ2

(
∂Eext
∂t

)
=
∑

g

(ng ~Fg)
2 · 6 ·Dg

t
. (3.10)

These results stands in remarkable contrast to the estimate on the error for the
di�usion measurement. As elaborated in [Neu10], using results from [Sac88], the
error of the di�usion measurement can be estimated in the number of particles, while
an increase in simulation time only seems to average over the errors of the snapshots
in time.
In both cases, it is nevertheless reasonable to expect a decrease of the uncertainty

of the measurement by both larger ensembles and longer simulation times, however
standard methods fail in quantifying this decrease.

Accelerating Convergence

In light of the above error estimate and the slow guaranteed convergence, we want to
discuss possible remedies by convergence accelerating methods. [CCC+03] introduces
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3.5 Upscaling of Temperature Generation

a convolution technique, which makes use of functions used in signal �ltering. The
technique requires that the area of convergence is reached and the original rate of
convergence in time is O( 1

T
) and allows to reach O( 1

Tk ) for arbitrary k ∈ N+. However,
it is not applicable to measurements whose original convergence rate is slower, as it
is with our case which only guarantees O( 1√

T
). Furthermore the authors themselves

point out for their method, that while errors are reduced on the sampled trajectory,
the sampled phase space remains unchanged, which is the primary obstruction in
complex examples.
Approaches which aim to increase the sampling area are umbrella sampling and

replica exchange methods. Both methods have been advanced from their early begin-
nings in the 1980s [ED05] and recently have been combined [NMRP13]. This approach
promises to reduce both the statistical and systematic error in MD simulations and
� for the example demonstrated in the paper � gives reasonable predictions for auto-
correlation times larger than the individual simulation times. However, the combined
simulation times still exceed the estimated correlation times by up to two orders of
magnitude, which would be of limited use in our settings.

3.5 Upscaling of Temperature Generation

The control of temperature within MD systems is a topic which has been investigated
intensely [EH85, Nos91]. A signi�cant portion (if not the majority) of this research is
targeted at controlling the temperature of MD systems via some explicit (e.g. Nosé-
Hoover type) or implicit (e.g. Berendsen type) coupling of the ensemble with a virtual
outer �heat bath� or reservoir. However, these couplings generally do not model a
speci�c physical interaction but strive to model the e�ect of such an interaction.
Speci�c external interactions with individual particles with the purpose of observing

the heat �ow have previously been treated as abstracted cases of color �elds [BEC93].
While not modeling an actual physical coupling process, attempts were made to estab-
lish controlled heat addition in [Had99], which were inspired by the Berendsen type
thermostat. However, the scaling factor for the impulses does not properly match the
energy addition, missing the quadratic relation between velocities and energy. We
will present the correct energy computation from impulse scaling in section 3.6.1.
In this context it is important to distinguish the terms heat and temperature more

thoroughly. While in the past temperature was only a macroscopic concept, the
equivalence to the kinetic energy of the material

T =
2

3NkB

∑

i

mp

2
~v 2
p =

2

3N
Ekin (3.11)

has now long been established and is called the absolute temperature [Dem04a]. This
equation leads to the relation of temperature and energy.
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3 Upscaling from Particle to Continuum Dynamics

Heat is an expression for energy which does not correspond to a measurable variable
of the system, but is de�ned over the change of other variables, with the most straight
forward being the �rst law of thermodynamics, expressing heat Q as the di�erence
between the change of internal energy δU of a system and the work W it produced

Q = δU −W.
However, the amount of heat transfered to or from a system does not convert directly

to a change in temperature via (3.11). This becomes apparent, when no macroscopic
work is performed. Then the amount of heat equals the change in the internal energy
of an ensemble, which is de�ned by the sum of change in kinetic and potential energy
[TME12]. Thus only a fraction of the energy supplied changes the temperature of
the ensemble, with the ratio determining another material property, the heat capac-
ity. While this heat capacity is a universal constant for ideal monoatomic gases, it
is subject to change for other materials, depending on the exact con�guration and
equilibrium conditions of the ensemble. As such there is no analytical formula to
derive the heat capacity from the microscopic states, instead it has to be extracted
from the behavior of the macroscopic variables.
In light of the above � particularly in the context of energy transfer via external

forces � the heat generation can be accessed via two di�erent approaches. First, for
all settings, the rate of change in the kinetic energy itself can be computed for a direct
conversion to the rate of change in the temperature of the ensemble

δT

δt
=

2

3NkB

Ekin
δt

=.. β(Fext).

A di�erent approach depends on the fact that with our new computations of all
external energy contributions the externally transfered energy can be summed up to
determine the exchanged heat, and the resulting temperature can be calculated via
the heat capacity C ..= Q

∆T
of the ensemble material

∂T

∂t
=

1

C

∂Eext
∂t

.

While the latter is trivially known from the setup of the ensemble, the prior needs
to be supplied externally or additionally computed from the simulation, with the
computation method depending on the ensemble of the simulation [AT89]. The heat
capacity as de�ned above is of limited functional value, as it does not take the amount
of substance into account. Several normalizations are in use, which take a proportion-
ality with the material amount into consideration, such as volumetric heat capacity
[CV ] = J

K·m3 , molar heat capacity [Cm] = J
K·mol and speci�c heat capacity [Cs] = J

K·kg .
Particularly the latter is widely found in literature and textbooks. In order to set
this into relation with the Molecular Dynamics calculation of energy, we consider the
density ρ of the material and the volume V of the ensemble

Cs · ρ ·
∂T

∂t
=

1

V

∂Eext
∂t

.
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3.5 Upscaling of Temperature Generation

3.5.1 Einstein-Smoluchowski Equation

For complex materials the above equations converge only slowly. The reason lies in
the estimate of the energy transfer we presented in section 3.4.2. As the convergence
of the energy transfer is bound by the di�usion coe�cients and only converges with
1√
t
, we either require large amounts of computational ressources, or we need to employ

indirect means of scaling, requiring additional information. As such, upscaling of the
generated heat may also be obtained by making use of the macroscopic Einstein-
Smoluchowski equation. This equation relates the ion mobility µg with the di�usion
coe�cient of the respective ion type g

µg =
Dg

kBT
.

The mobility allows us to compute the convection velocity of the respective species

〈v〉g = µg · ~Fg,

which in turn permits the computation of the transfered energy

Eext =
∑

g

∫ t

t0

〈v〉g ~Fg dτ.

Thus the temperature upscaling with the heat capacity takes the form

C · ∂T
∂t

=
∂Eext
∂t

=
∑

g

|g| · 〈v〉g ~Fg.

As noted in the previous section, it is prudent to account for the amount of material,
so we make use of the speci�c heat capacity

Cs · ρ ·
∂T

∂t
=

1

V

∂Eext
∂t

=
1

V

∑

g

|g| · 〈v〉g ~Fg. (3.12)

Having a speci�c application in mind, we examine the above relations in the case
where the external forces are generated by a homogenous electric �eld. We obtain
the force on a particle in group g by taking the spatial derivative of the �eld and
multiplying with the particle charge zg, resulting in

~Fg(Φ) = zg · ∇Φ.

Consequently the expression for the convection velocity now reads

〈v〉g = µg · ~Fg(Φ) = µg · ∇Φzg. (3.13)
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3 Upscaling from Particle to Continuum Dynamics

Inserting the above into the general equation (3.12) we obtain

Cs · ρ ·
∂T

∂t
=

1

V

∑

g

|g| · 〈v〉g · zg · ∇Φ.

By combining groups of particles, we convert the sum over individual particles divided
by volume into a particle density cg =

∑
i∈g

1
V

= |g|
V
. This gives us the current density

of the ionic charges

~j =
∑

g

zgcg〈v〉g,

which by equation (3.13) is aligned with the electric �eld E = ∇Φ. Thus our thermal
source becomes

Cs · ρ ·
∂T

∂t
= ~j · ∇Φ =

1

V
|~I| · |∇Φ|

⇔ Cs ·M ·
∂T

∂t
= |~I| · |∇Φ|,

which corresponds to classical Joule heating [Dem04b].
Of course there are other e�ects which connect heat generation and currents, such

as the Seebeck and the Peltier e�ect. However, these e�ects are the result of interface
dynamics of di�erent materials and thus not trivially accessible in our setting. For-
tunately, it has been found that these contributions are minor compared to the Joule
heating [LZ15], making the macroscopic scaling here particularly useful in electric
applications.

3.6 Steady State Detection

The results in the previous sections allow us to compute the energy exchanged be-
tween the open system under investigation and its surroundings. While the use of
an open system abandons the stage of equilibrium Molecular Dynamics, our goal is
to perform steady state simulations instead. Up to now we have not yet discussed
how we determine the presence of a steady state, while the system under observation
exchanges energy with the external system.
Due to their complex nature, we are not able to provide a recipe that enables the

creation of steady states in arbitrary physical systems in �ux. However, in this section
we will present criteria to determine whether a given system has reached steady state
with respect to the energy exchanged between the system itself and some connected
outer system(s). In particular, we will investigate coupling with external heat baths
(thermostats) and external driving forces on the particles.
In essence, the detection of a steady state requires the detection of a balance of

the energy brought into the system vs. the energy extracted from the system. We
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3.6 Steady State Detection

will generally expect that the energy is dissipated via the thermostat and added via
external forces on the particles. From a mathematical point of view, this behavior
can also be inverted, but generally this is not re�ected in physical reality, see the
discussion in section 2.2.3.
We compute the dissipated energy Edis from the change in the kinetic energy in-

duced by the thermostat

δEdis = δEkin,therm.

First we note that this does not necessarily correspond to the total change in the
kinetic energy or temperature

δEdis 6= δEkin =
3

2
NkBδT,

since there may be natural �uctuations within the ensemble as well as a loss of energy
due to the modeled outside interaction.
Furthermore, it is not necessary that all energy added to the system over time needs

to be dissipated, since the steady state may be assumed with a higher energy than
the system initially held. Additional energy may be stored in the potential energy
by rearrangement of the atomic con�gurations, which would not be accessible in the
equilibrium state. Relevant is the rate of energy added/extracted from the system,
which corresponds to the time derivative

∂Edis
∂t

=
∂Ekin,therm

∂t

of the energy change.
In the application of computer simulations, the derivative is replaced by the di�er-

ence quotient with a small time step δt, suitable to the time scale of the simulation.
The primary key to the analysis is the separation of the change of kinetic energy in
inner and outer contributions. The inner contributions are the result of the positions
and interactions of the atoms in the system itself and are balanced by a change in the
potential energy of the system. Thus, while they may change the kinetic energy, they
do not contribute to the exchange of energy with the external system.
The outer contributions can again be separated into two contributions, one by

the thermostat and one by the external forces. It is those that we wish to balance
and thus it is important that the measurements of either contribution is separated.
The contributions by external forces can be computed as detailed in section 2.3.2.
The computation of the thermostat energy depends on the particular choice of the
thermostat.
The ad hoc values of these rates need to be averaged, as energy �uctuations in the

ensemble are natural. In order to determine whether an energy steady state has been
reached, the rate of the thermostat energy transfer and the rate of other external
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3 Upscaling from Particle to Continuum Dynamics

energy transfers need to satisfy two criteria. Naturally, we require that both values
have equal magnitude. Furthermore, we require that the averages of both values
themselves remain constant over time. The latter requirement needs to be checked in
light of the di�erent regimes of acceleration outlined in 3.4.1, as long as the forces are
not balanced, the con�guration of the system may still be in a transient state.

3.6.1 Energy of Berendsen Thermostat

The Berendsen thermostat functions by scaling all particle velocities equally by a
factor β. This factor is computed such that a prede�ned kinetic energy is reached
exactly after scaling. In the general use of the thermostat, this scaling is not applied
every time step, but generally allows for some time for equilibration before the next
scaling. However, the scaling with factor β = 1 is indistinguishable from no scaling
taking place and thus, without loss of generality, we may assume in the following
discussion that some β(t) is applied in every time step t. In order to scale to a desired
temperature TD, we compute

β(t) =

{√
Ekin,D

Ekin
=
√

TD
T

if t is a scaling time step

1 if t is a non-scaling time step.

Let now ~vi(t) be the velocity of the particle i prior to scaling, then we de�ne

~vi,β(t) = β · ~vi(t),

the velocity after scaling. Consequently, the di�erence of the kinetic energies, which
is absorbed in the thermostat at a single time step, computes to

∆Etherm(t) = Ekin(t)− Ekin,β(t) =
1

2

∑

i

mi~v
2
i (t)−

1

2

∑

i

mi~v
2
i,β(t)

=
1

2

∑

i

mi

(
~vi(t)

2 − ~vi,β(t)2
)

=
1

2

∑

i

mi

(
~vi(t)

2 − β(t)2~vi(t)
2
)

=
1

2

∑

i

mi

(
1− β(t)2

)
~vi(t)

2

=
(
1− β(t)2

)
Ekin(t).

The total energy stored in the thermostat can then be written as

Etherm(t) =
Nt∑

n=0

(
1− β(tn)2

)
Ekin(tn),
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3.6 Steady State Detection

with Nt · δt = t.
For the actual detection of a steady state, we are interested in the rate of energy

transfer, which corresponds to the power exchanged between both systems. It may
appear trivial to write the power exchanged as

Ptherm(t) =
∆Etherm(t)

δt
=

(1− β(t)2)Ekin(t)

δt
,

however, in cases where the thermostat is not applied in every time step, this formula
neglects the time interval between the subsequent scaling applications. As a conse-
quence, if the time interval between scaling applications is denoted by ∆t = δt · n∆t,
we modify the formula to

Ptherm(t) =
∆Etherm(t)

∆t
=

1

n∆t

n∆t∑

n=0

(1− β(tn)2)Ekin(tn)

δt
.

With ∆t chosen as the interval of the rescaling algorithm, this is the ad hoc rate at
which energy is stored in the thermostat. As an ad hoc factor it is still bound to
�uctuate over the time of the simulation. Choosing longer times for ∆t allows us
to compute an average over multiple thermostat operations, and these values must
approach a constant value equal to the energy �ux via other external interactions in
order to �nally enable us to establish whether a steady state has been reached.

3.6.2 Energy of Nosé-Hoover Thermostat

In contrast to the above described Berendsen thermostat, the energy of the Nosé-
Hoover thermostat is already subject of the original derivation and implementation
of the thermostat.
By performing the substitutions πs to ξ = sπs

Q
and η = ln(s), we are able to eliminate

the time scaling from the extended Nosé-Hoover Hamiltonian from equation (2.8) to

H =
∑

i

~p2
i

2mi

+ U(~q) +
Qξ2

2
+ gkBT η.

In addition to the physical energies, we will call the Hoover kinetic energy

Ekin,Hoover =
Qξ2

2
.

Furthermore, we have the Hoover potential energy by

Epot,Hoover = gkBTDη

with η̇ = ξ and η(t0) = 0. The total extended energy

Eextended = Ekin + Epot + Ekin,Hoover + Epot,Hoover

= Ephys + Etherm
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3 Upscaling from Particle to Continuum Dynamics

is a constant of the Nosé-Hoover Molecular Dynamics, despite the fact that the system
itself is no longer Hamiltonian in nature [BLL99]5.
Thus the thermostat energy is given by

Etherm =
Qξ2

2
+ gkBTDη,

where both ξ and η are already computed in the simulation.
From this expression, it is easily possible to compute the ad hoc energy transfer

rate from the variables already computed for the equations motion

∂Etherm
∂t

= gkBTDη̇ +
Q

2
2ξ · ξ̇

= gkBTDξ +Qξ · ξ̇.

However, even in the equilibrium setting the kinetic energy is bound to oscillate,
with the main frequency depending on the thermostat mass Q. Thus it is advisable to
use time averages for the rate of the thermostat energy. While the relations between
the mass and the frequency are estimated for the ensemble without external forces,
it is reasonable to assume the wavelength derived from these estimates as a lower
bound for the averaging operators. For a given target kinetiv energy ED

kin the main
oscillation wavelength is

λ =

√
Q

2ED
kin

,

see also [MKT92]6.

5 Here we presented the equations without external forces. In the case of external forces,
we begin with the Hamiltonian from equation 2.18 and the extended energy becomes
Eextended = Ekin + Epot + Eext + Ekin,Hoover + Epot,Hoover.

6 Note that the cited paper gives a di�erent leading factor to the kinetic energy and the selection
of thermostat mass is described as a rough estimate. Furthermore there is room for interpretation
of what constitutes the main oscillation wavelength (or frequency), since in practical applications
harmonic oscillations are present.
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4 The System of the Extended
Heat-Poisson-Nernst-Planck
Equations

After having discussed the atomistic simulation of ion migration and the upscaling
from the respective results to macroscopic variables, we now turn towards the contin-
uous equations on the macroscale, the Heat-Poisson-Nernst-Planck system.

These equations are at the center of various applications, among those are biological
ion channels, semiconductors and battery cells. The coupling of all three equations
yields a system which we no longer can characterize in the traditional forms, as we
join the parabolic operator of the heat equation, the elliptic operator of the Poisson
equation with the Nernst-Planck equation, which by itself may be of parabolic or hy-
perbolic type, depending on the coe�cients [MB06]. The nonlinearity of the equations
and their reciprocal coupling pose further challenges to solving the equation system.

Up until recently, the dynamics of temperature have been largely ignored, only
considering the Poisson-Nernst-Planck (PNP) system with constant temperature T .
Previous works which computed thermal dynamics did so with respect to the macro-
scopic variables of total current and state of charge [SDB+13]. While several publi-
cations exist which describe the modeling of the coupling of thermodynamics and ion
migration e.g. [LZ11], at the time of writing only a single implementation of such a
coupling is known, which restricts the application to charge neutral binary systems
[LZ15].

Our approach consists of a more general system, which has not been studied in
the literature so far, allowing for an arbitrary number of species as well as charge
separation. As a consequence, our approach will be suitable not only for a small set
of narrowly de�ned applications, but for di�erent problems on multiple scales, as we
will demonstrate in chapter 5.

We begin this chapter by introducing the system of the Heat-Poisson-Nernst-Planck
equations, as we intend to solve it, and continue with an overview over the current
state of research of analysis and numerical solutions of related systems, in particular
the Poisson-Nernst-Planck subsystem. Subsequently we present our discretization
scheme and the numerical methods which we employ to solve the combined system of
equations.
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4 The System of the Extended Heat-Poisson-Nernst-Planck Equations

4.1 Modeling

We begin by discussing the individual equations and the physical processes they de-
scribe. For the �rst part, leading to the Nernst-Planck and Poisson equation, we will
follow our previous derivation in [Neu10].
The Nernst-Planck equation describes the time evolution of ion concentrations

based on their di�usive and convective migration. For multiple species of ions with
concentrations c0, ..., cn−1 within one setting, separate equations need to be assembled
with matching coe�cient functions, which we will index by i. In the course of this
thesis, we will assume that all particles have access to the same spatial domain Ω ⊂ Rd

during the time interval [0, tend] ⊂ R. The di�usive �ux ~JD,i is described by

~JD,i = −Di∇ci(x, t), (4.1)

with ci(x, t) being the concentration function and Di the function of the di�usion
coe�cient.
The convective �ux has separate contributing terms. These share the common

structure

~Jconv,i = ~vi · ci = νi ~Fi · ci, (4.2)

where ~vi denotes the convection velocity, which is driven by the force ~Fi scaled by the
mobility of the species νi. The mobility of an ion species is given by the Einstein-
Smoluchowski relation already discussed in section 3.5.1,

νi =
Di

kBT
, (4.3)

where kB is the Boltzmann constant and T the temperature of the system.
In the classical setting, the convection of the charged particles is only driven by the

electric �eld Φ, with the force acting on a single ion determined by its charge number
zi

~Fe,i = −zi · e · ∇Φ, (4.4)

where e denotes the electron charge. Combining equations (4.2), (4.3) and (4.4)
and considering forces on a per mole instead of a per particle basis, we obtain the
convective term driven by the electric interaction

~Je,i = −DiziF

RT
∇Φci(x, t) (4.5)

with the Faraday constant F taking the place of e and the gas constant R taking the
place of kB.
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4.1 Modeling

However, the electric �eld is not the only driving factor for the concentrations.
Another directed in�uence can be derived from the chemical potential1, the gradient
of which can be interpreted as a force term. Thus we obtain an additional convection
term

Jµ,i = − Di

RT
∇µci(x, t), (4.6)

where the mobility is considered in terms of moles as well.
In order to connect the �ux with the time evolution of ion concentrations, we

consider the continuity equation

∂ci
∂t

= −∇ ~Jtot. (4.7)

By summing the �ux components from equations (4.1), (4.5) and (4.6) and inserting
them into equation (4.7), we obtain the extended Nernst-Planck equation

∂ci
∂t

= ∇


Di


∇ci
︸︷︷︸
di�

+
ziF

RT
ci∇Φ +

1

RT
ci∇µi

︸ ︷︷ ︸
conv





 . (4.8)

As the ions are charged themselves, the sum over the charge concentrations
∑

i zici
may lead to local non-zero charges. Depending on the net sign, these act as sources
or sinks of an electric potential on the same domain, leading to the Poisson equation

−∆Φ =
F

ε

(∑

i

zici +Q

)
. (4.9)

Here ε = ε0 · εr denotes the dielectricity, with ε0 being the permittivity of free space
and εr being the material modi�er. Q may denote an additional background charge
distribution, which is not subject to migration.
The last equation we need to complete the system is the heat equation. Since there

are plenty of sources for its derivation in standard text books, e.g. [Dem04a, TME12],
we will not give a general derivation here, but point to our upscaling methods for the
temperature creation through external forces from section 3.5. The heat generation
term is added as a source term to the heat equation and couples the temperature
evolution to the ion convection, resulting in

∂T

∂t
= α∆T + β(c,Φ). (4.10)

1 In some publications, the extra convection is derived from the chemical activity. The chemical
activity a and chemical potential µ are related via RT ln a = µ− µ0 [Coh07].
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In contrast to the previous equations, we allow the solution to exist on an extended
domain ΩT ⊇ Ω.
The above equations are not a complete description of the modeled system, they

require initial and boundary conditions to be closed. Since these vary with the exact
application, we will not include them in this overview, but discuss those which we
actually use in context of the relevant example in chpater 5. We will however dis-
cuss the di�erent classes of mathematical boundary conditions in section 4.3.4 of this
chapter.

Summary

We will now summarize our above derivations to present the system which we intend
to solve. In the following, we will use the notation

ci: concentration α: thermal di�usivity
Φ: electrical �eld R: ideal gas constant
T : temperature ε: dielectric constant
Di: di�usion coe�cient F : Faraday constant
µi: chemical potential zi: ion charge number
β: heat source Q: background charge.

The Nernst-Planck equation (4.11) is present once for each of the n ion species and
models the time evolution of each species concentration ci.
So in collection we present the system of the Heat-Poisson-Nernst-Planck equations

as we intend to solve it

∂ci
∂t

= ∇
[
Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)]
(4.11)

−∆Φ =
F

ε

(∑

i

zici +Q

)
(4.12)

∂T

∂t
= α∆T + β(c,Φ). (4.13)

4.1.1 Nondimensionalization

In order to better analyze the numerics of the system, it is sensible to study the
equations independent of scale and units. This process is called nondimensionalization
and its results assist in identifying problematic coupling constants towards improving
the condition of the numerical problem. While the in�uence of selections of units
of the parameters can be removed by nondimensionalization, we will see that the
coupling can be a�ected by the magnitude of the respective values. For reasons which
will become apparent to the reader in section 4.3.3, we will consider the Poisson and
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Nernst-Planck equations separately from the heat equation and treat the temperature
in the Nernst-Planck equation as a constant parameter instead of a variable.
Starting from the Poisson-Nernst-Planck equation system we substitute all variables

with a dedimensionalized variable (denoted with a tilde) and a factor carrying the
reference magnitude and units

c = c̃ · c̄
Φ = Φ̃ · Φ̄
x = x̃ · L
t = t̃ · τ.

Rescaled functions are expected to be dependent on rescaled arguments only, so

c(x, t) = c̃(x̃, t̃) · c̄. (4.14)

Generally we need to ensure that the di�erential operators are also suitably replaced
in order to still solve the same problem. Thus when we make substitutions for any
space dependent function u(x) = ūũ(x̃), we have the following dedimensionalized
di�erential operator

∇xu(x) = ū∇x ũ
(x
L

)

= ū
1

L
ũ′
(x
L

)

= ū
1

L
ũ′(x̃)

= ū
1

L
∇x̃ ũ(x̃).

Thus we have ∇x = 1
L
∇x̃ and similarly d

dt
= 1

τ
d
dt̃
. We will denote ∇x̃ as ∇̃ and ∆x̃ as

∆̃.
We get the rescaled system

c̄i
1

L
∇̃
(
Di

1

L
∇̃c̃i +Diκzic̃i∇̃Φ̃ +Diπc̃i

)
= c̄i

1

τ

dc̃i

dt̃
F

ε

∑

i

zic̄ic̃i =
1

L2
Φ̄∆̃Φ̃

with κ = Φ̄F
RT

and π = ∇̃µi
RT

.
In the Nernst-Planck equations it is possible to completely eliminate the factors c̄i,

as they can be factored out of all summands of the respective equations, leaving only
the rescaled values. In the Poisson equation however the factors remain as they are
only part of one of the summands each.
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Thus we obtain the following system by shifting all unit constants to the left hand
side

τ

L2
∇̃Di(∇̃c̃i + κzic̃i∇Φ̃ + πc̃i) =

dc̃i

dt̃

L2 · F

ε · Φ̄
∑

i

zic̄ic̃i = ∆̃Φ̃.

After the substitution, we collect the factors to the following products

λi =
Diτ

L2
(4.15)

σ′ =
L2F

εΦ̄
.

Obviously, σ′ is still associated with units of volume per ion amount, which require
the scaling factor from the concentration functions to be nondimensionalized. How-
ever, the scaling factors of the individual concentration function are not necessarily
identical, thus we split them into a common and an individual scaling parameter

c̄ · ĉi = c̄i

which we use to truly nondimensionalize the coupling constant

σ =
L2F

εΦ̄
c̄. (4.16)

The new set of equations thus takes the form

∇̃λ(∇̃c̃i + κzic̃i∇Φ̃ + πc̃i) =
dc̃i

dt̃
(4.17)

σ
∑

i

ziĉic̃i = ∆̃Φ̃.

For the convection term, we can now easily compare the two factors κ and π in
order to determine the dominant convective in�uence. Furthermore, these values can
be used to detect convection dominance in the equation, which is known to cause
instabilities. Assuming that after rescaling all tilded variables are of the order of
1, we need to observe the factors from (4.15) and (4.16) to analyze performance
of the numerical integration and ensure that our numerical scheme does not run
into problems due to loss of signi�cance in summation or substraction operations.
In addition, by comparison of the factors λ and σ we can observe the respective
dominance of either equation in the coupled system. In particular, σ determines the
sti�ness of the non-linear coupling and we will see the strong impact it has on the
condition of the linear system in section 5.3.2, where we will present the scale analysis.
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We continue our considerations with the heat equation. Using the same scaling for
spatial and temporal arguments, we only need to rescale

T = T̃ · T̄ , β(c,Φ) = β̄ · β̃(c,Φ)).

The scaled equation thus becomes

T̄
1

τ

dT̃

dt̃
= αT̄

1

L2
∆̃T̃ + β̄β̃(c,Φ)

which can be rearranged to

dT̃

dt̃
=
ατ

L2
∆̃T̃ +

β̄

T̄
β̃(ci,Φ).

Thus we obtain similar parameters to the Nernst-Planck equation,

λT =
ατ

L2
, κT =

β̄

T̄
.

However, due to the di�erence in coupling behavior � see section 4.3.3 � and the
absence of a convection term, their in�uence on the performance of the numerical
system is far less pronounced than that of the parameters of the PNP system.
We note that the scaling factor of the concentration functions has been completely

removed from the dedimensionalized Nernst-Planck equation. Since it does not even
appear in the coe�cients any more, this may lead to the assumption that the actual
scale of concentrations is arbitrary. However this is not the case, as the scaling factors
appear in the Poisson and Heat equations and in�uence the Nernst-Planck equation
via the coupling.

4.1.2 Stochastic Modeling as an Alternative Approach

While we focus on the solution of the coupled partial di�erential equations, we would
like to point the reader to the fact that alternative approaches are also viable. Stochas-
tic methods for atomistic and ion-based behavior have been developed for decades,
beginning with reaction modeling for particle solutions by characterizing the interac-
tion of particles of certain types as an event and assigning probabilities to the di�erent
possible events based on the rate or timescale with which these events occure in reality
[Gil76, Gil77]. While the �rst of these approaches were limited to reactions in homoge-
neous solutions, the algorithms were later extended to incorporate di�usion in spatial
concentration by introducing compartments. Consequently, events were extended to
include the motion of particles between adjacent cells [Two07]. By modifying the
rates of these events depending on additional � possibly coupled � functions, non-
constant di�usion coe�cients can be simulated [LDP08]. In essence the latter work
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presented the necessary formulas for convection-like driving forces in its treatment
of non-constant di�usion coe�cients, but explicit treatment of convection modeling
within this class of algorithms was presented in [MK02, PJD+13]. While these publi-
cations deal with di�erent underlying models of climate and cloud simulations, they
are based on the same original algorithmic ideas.
The combination of the above results allows for a complete stochastic treatment of

the ion �ux, however it is the coupling with the other quantities of the system which
hides the challenges of this approach. Both the heat and the electric potential are
inherently continuous in nature, making the modeling via rates of events problematic.
While the simulation of reaction di�usion systems was transferred to solving the one-
dimensional heat equation in [Ber05], several issues remained, among which were
mutually exclusive restrictions on cell sizes, which may be caused by separations of
timescales. While the existence of such a separation between the Nernst-Planck and
the heat equation depends on the exact coe�cients in the equation, a separation is
always present between the Poisson and the other equations, evidenced by the missing
time dependence in the Poisson equation.
Another stochastic approach encountered in the applications of ion migration, par-

ticularly biological ion channels, is the modeling involving Markov chains [TL16].
These often describe a general system state and are coupled with additional di�er-
ential equations equations in order to give a full physical model of the physical or
biological process.

4.2 State of the Art

The extended Heat-Poisson-Nernst-Planck system given in equations (4.11) - (4.13)
has not been studied so far in previous literature. The closest resemblence is found in
[LZ15], where a reduced two species model is coupled with an extended heat equation.
Nevertheless, we will give a review of several results with respect to related systems,
their modeling requirements and numerical approaches, as these remain relevant to
our problem within limits.
Most of the literature in the following section will not use our extended Nernst-

Planck equation (4.11), but a variant replacing the physical with an arbitrary coe�-
cient in the coupling term and additionally dropping the chemical potential

∂ci
∂t

= ∇ [Di (∇ci + αΦci∇Φ)] . (4.18)

4.2.1 Existence and Uniqueness

One of the predominant questions when dealing with the solution of partial di�eren-
tial equations is the existence of solutions and their uniqueness. The general di�culty
of this question is illustrated by the state of research with respect to the well-known
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Navier-Stokes equations. These fundamental equations of �uid dynamics are of sig-
ni�cant importance for various applications in science and engineering (and even in
remote areas such as entertainment industry), nevertheless the existence of solutions
to these equations in three dimensions remains unproven and has been added to
the seven Millennium Prize Problems published by the Clay Mathematics Institute
[Fef00]2.
For the system of Poisson-Nernst-Planck equations several approaches have been

made and for a variety of related systems results have been achieved under some
speci�c assumptions. In the following sections we will outline these results and their
requirements, as well as their applicability to the system which we investigate.
While general existence of a solution for the time dependent two species problem

of the Poisson-Nernst-Planck system was shown in [Jer85] and a powerful uniqueness
result was established in [Gaj85], later investigations have shown that the question
of uniqueness has not yet been satisfactorily solved for all problems of interest. In
particular, it can be shown that under certain conditions multiple solutions exist,
even for the steady state two species case and more so for multiple species systems
[Liu09]. There is some speculation in the literature, whether all but one of such
multiple solutions are unphysical � e.g. by producing negative concentration values.
For the case of Dirichlet problems, asymptotic solutions can be constructed and it has
indeed been shown that the physical solutions are unique for up to three ion species
[WHWH14]. For cases of more than three ion species or di�ering boundary conditions
and exact solutions, the question of uniqueness remains open.

One-Dimensional Steady State

Several investigations have been performed for the one-dimensional case, with partic-
ular emphasis on the steady state system.
While the existence of steady state solutions is generally a�rmed [Liu05], the ques-

tion of uniqueness is the center of ongoing research. With additional requirements,
such as constant coe�cients, positive Dirichlet boundary conditions and vanishing
background charges, uniqueness of the solution for the steady state equations was
shown in [PJ97]. In fact, the authors were even able to show that the resulting
solutions must be positive almost everywhere.
Later publications indicate that such strict requirements are indeed necessary. In-

spired by biological channel systems, non-zero background charges were investigated
in [Liu09]. Analyzing the equations as a singular perturbed system, the author con-
cludes that multiple solutions may exist for a variety of conditions placed on the
system, and that negative values may be assumed by the solution functions. Speci�-
cally, even for a set of only two species, solutions must not be unique and in the case of

2 Some partial results have been achieved during the runtime of the twentieth century. Among those
are existence and smoothness in two dimensions, existence for a limited (and starting condition
dependent) time [Fef00].
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more than three species results become even more varied. These variations may also
include solutions with negative concentration functions, and while the author states
that he expects (unique) solutions with positive concentrations to exist, he does not
give reasons to support this expectation.

Three-Dimensional Non-Steady Systems

As noted in the introduction, for the dynamic system in physical space � Ω × [0, T ]
with Ω ⊂ R3 � the existence of a unique solution was shown in [Gaj85]. In light of the
results for the one-dimensional steady state, the result is quite powerful, as it permits
non-vanishing background charges and additional reaction rates. Nevertheless, these
two results do not stand in contradiction, as several additional requirements are placed
on the initial conditions, the coe�cient functions, the reaction rate and the boundary
conditions. The results are limited to two species systems, making no indication of
their validity for equation systems of multiple species.

Related Equation Systems

Due to the fact that we are investigating an extension of the Poisson-Nernst-Planck
system, we would like to have a result for the existence and uniqueness of this par-
ticular system. However, to the best of our knowledge such a result has not yet been
presented. Nevertheless, other extended systems have been investigated and the re-
sults shall be shortly summarized, speci�cally as we will encounter the �rst proof of
uniqueness for a system of multiple species. The Stokes-Nernst-Planck-Poisson system
is created from the classical PNP setting by considering hydrodynamic convection of
the solvent and consequently adding the Stokes equation. By homogenization, the
related Darcy equation is derived, yielding the Darcy-Nernst-Planck-Poisson system.
A proof is presented for the existence of unique weak solutions of the Darcy-Nernst-

Planck-Poisson system, where the authors speci�cally deal with the case of non-
electroneutrality. However, the conditions under which these results hold demand
that the spatial dimension of the problem is either two or three and that the spatial
boundary conditions must be Dirichlet values [HRK12]. While the initial results were
limited to the two species case, a later work extended this result to multicomponent
solutions, being indeed the �rst work to prove the existence of unique solutions to
such systems [Her14].

4.2.2 Reduced Models

Several attempts at the modeling of batteries turn to a simpli�cation of the model
from a two species system to a one species equation, of which at least two di�erent
approaches exist.
The �rst approach relies on the argument that the strong coupling between the

electric �eld and the individual species reduces the dispersion of charge, arguing that
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the reduction is so strong that in fact it does not exist and the total charge function
in the electrolyte may be considered neutral (electroneutrality assumption) [DN08].
This electroneutrality allows for an immediate relation of the species functions of
the form c1 = |z2|

|z1|c2. After some modi�cation of the equations and combination of
the constants to combined values, the transport equations for the individual species
can be reduced to a single equation. However, this treatment makes it impossible to
simulate charge separation e�ects near the boundary, such as double layer formation
on the electrode-electrolyte-interface.
The second approach does allow for such separation behavior, the reduction is

achieved by expressing the equations in terms of the charge concentration, which is a
function of the concentration di�erences. However, despite allowing for the separation
of the concentrations, this method is severly limited by additional requirements, de-
manding symmetry of the concentration behavior and only small scale changes from
the original (identical) concentration function, the so-called linear regime [GT09].
This requirement of symmetric small scale changes to the mean concentration limits
the ability to handle changes of the concentration pro�le over time or non-symmetric
boundary conditions.
By design neither of the above methods is able to treat multi species problems with

more than two species, but as noted above the limitations reach even further. Often
the transport coe�cients involved are changed, the relative behavior of the di�erent
species becomes the relevant characteristic and as such, at times the transference
number of the respective ion species is used instead of the di�usion coe�cients [LZ11].
In contrast, our non-reduced equations cannot be solved with knowledge of the

transference number alone, but instead they are able to derive it from their simulation
results, as we will demonstrate in section 5.5.

4.2.3 Analytical Solutions

Due to the nature of the coupling between the equations, analytical solutions for the
general case of the Poisson-Nernst-Planck system have not been found. However, for
some special cases, exact solutions to the Poisson-Nernst-Planck system or approxi-
mate solutions under limiting requirements can be provided.

Exact Analytical Solution to the Single Species Problem

We note that for the decoupled equations an analytical solution to the Poisson equa-
tion can be derived from the combined charge concentration function. This property
forms the basis of one of the cases where an exact analytical solution is available,
the single species case with Neumann boundary conditions, as in this case the charge
concentration function is a multiple of the concentration function of this particular
species. Introducing the electric �eld E = −∇Φ, for a single species we have the rela-
tion ∇ · E = z2 c0. With additional spatial integration to remove the divergence, the
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formerly coupled equations (4.18) and (4.12) can be reduced to the single non-linear
vector valued equation

∂E

∂t
= ∆E + E(∇ · E) +∇×G,

where G(x, t) is a gauge �eld resulting from the integration. In order to obtain a
solution for this equation in one dimension, additional transformations are necessary
to �rst reach the Burgers equation and subsequently the heat equation. Boundary
conditions need to be transformed likewise and the solution of the heat equation can
then be transformed back to the original functions. While this method works well for
one dimension, for two and three dimensions additional requirements are necessary,
assuming that the dimensions need to behave identical and that the functions in each
dimension can be combined by addition [Sch12].

Approximative Solutions

Other analytical approaches do not give exact closed functions, but are based on ap-
proximations, often connected with asymptotic expansion. Care must be taken in
two regards, �rst that the requirements which justify the relevant approximations are
properly satis�ed and second that there is a remaining error, which these approxima-
tions still carry. In fact, a priori it is not clear whether the error made by an analytical
approximation is an improvement over the error made by a numerical solution, which
stems from an approximation by discretization.

The result presented in [GT09] is an example, where the approximation matches
the qualitative behavior of the solution very well, but the quantitative results deviate
from numerical solutions. The approximation begins by requiring only small voltages
for a reduction to a single charge concentration, as described in section 4.2.2, and suf-
fers from the same limitations. Furthermore, the approximation is time dependent,
however intermediate steps rely on approximation properties of a stationary solution.
As noted before, the resulting approximation models the qualitative behavior of the
solution relatively well, while the solution deviates quantitatively. Indeed, when con-
trolling how well the solutions satisfy the original equations, it can be shown, that
the analytical estimate produces larger residual values than the numerical results, see
section 5.3.3.

Another approximation ansatz [SS15] is targeted towards the steady state only.
One of the assumptions made is electroneutrality, which again leads to the limita-
tions considered in section 4.2.2. For a speci�c one-dimensional problem a closed
expression is given, while for a two-dimensional problem the method of asymptotic
expansion is used. Comparison with numerical results show a deviation in the single
digit percentage regime, which is concentrated on the boundary of the system.
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4.2.4 Extension to Thermal Modeling

Up to recently, approaches to thermal modeling ignored the internal coupling to the
ion �ux modelled by the Poisson-Nernst-Planck system. In [SDB+13] heat generation
is computed from the state of charge, current and overpotential, neglecting internal
temperature gradients and their resulting in�uence on the ion �ux (and thus again
coupling to the heat generation). In other cases, the modeling of heat generation is re-
stricted to cylindric geometries and to chemical reactions in the electrodes [MZRS16].
Even in cases where the models of ion migration were successfully derived from

thermodynamics, the actual temperature was assumend as a constant in �rst imple-
mentation works [LZ11]. Following reports on thermal coupling were con�ned to two
dimensions initially [TTP+12] and only recently the same group turned to 3D dynamic
temperature simulations, however they point out themselves that some of their ap-
proaches may not be valid, since the scale of the electrode particles and the electrode
thickness is too similar to separate [LZ15]. While the modeling is very thorough and
multiple forms of coupling between temperature, concentrations and electric �eld are
observed, we point out that the transport equations are reduced to binary systems in
an electroneutral setting, whereas we permitt arbitrary number of species and charge
separation.

4.2.5 Numerical Techniques

In the modeled physical setting the ions behave as sources and sinks of the poten-
tial �eld which drives their convection. In the equation system, this leads to strong
non-linear coupling between the Nernst-Planck and the Poisson equations. Explicit
approaches to solving this system have been found to immediately fall prey to unsta-
ble exchange e�ects [Neu10], namely oscillating signs in the net-charge of the ions and
correspondingly in the gradient of the potential which drives the ions. While such be-
havior is not explicitly mentioned in other literature, almost all other publications on
this topic make use of full implicit methods, e.g. [SM99, LZH+07, CCAO14]. While
we found a single mentioning of a pure explicit handling, this was restricted to the
context of solving the steady state equations only [ZCW11].
Recent advances [MG14] demonstrate that implicit-explicit methods used in the

treatment of the Nernst-Planck equation may be combined with a separated implicit
solution of the Poisson equation. However, the discretization requires mixing of Fi-
nite Element and Finite Volume methods and parts of the cell interpolation scheme
cannot be extended to three dimensions. Several other assumptions are placed on the
modeled systems, among which are a limitation of the applied voltage to the so-called
thermal voltage3 and very thin electric double layers, where the Debye layer thickness

3 The paper gives the formula as ∆V � ez
kBT

, but the units are inverted on both sides. The

restriction becomes sensible by inverting the fraction ∆V � kBT
ez = 0.0258V .
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(estimated for εr = 80, T = 300K, z = e and c = 1mol
l
)

λ =

√
ε0εrkBT

2ce2z2
≈ 1 · 10−8m

must be far smaller than the characteristic length of the simulated region or the width
of possibly present pores.

Scharfetter-Gummel Method

Since the PNP equations pose several numerical challenges, the �rst being the possi-
ble dominance of convection over the di�usion in the Nernst-Planck equation, several
attempts have been made to overcome them. Transforming the dependent and inde-
pendent variables is a common approach in this regard and known as a Scharfetter-
Gummel discretization [FGJ91, GG92] or also as the introduction of Slotboom vari-
ables. Here we will summarize results for the transformation with Slotboom variables
as published in [LHMZ10].
The aim of the variable transformation is to change the NP equation, such that the

operator becomes uniformly elliptic and self adjoint. To that end Slotboom variables
are introduced as follows

D̄i
..= Die

−βqiΦ, c̄i ..= cie
βqiΦ. (4.19)

The resulting transformed NP equation is indeed self adjoint

∂
(
c̄ie
−βqiΦ

)

∂t
= ∇ ·

(
D̄i∇c̄

)
,

however the expectation that the operator's condition would be reduced in the process
turned out to be false in several instances, speci�cally in the context of biomolecular
applications. Furthermore, after applying the transformation, the Poisson equation
will no longer be self adjoint

−∇ · (ε∇Φ)− λ
∑

i

qic̄ie
βqiΦ = 0.

As the Poisson-Nernst-Planck equation is extended even further, other problems
surface as well, as convection terms introduced by other sources than the Poisson
equation (e.g. the chemical potential) cannot be treated with this approach. Possible
solutions might come from changing the modeling of the problem by including the
additional terms in the solution of the Poisson equation, but this would not solve the
mathematical issue for the extended equation system.
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4.3 Discretization of the

Heat-Poisson-Nernst-Planck System

Before solving our general Heat-Poisson-Nernst-Planck system numerically, we need
to establish a discretization of the problem. We will begin this section by a comparison
of available discretization methods and their previous applications in related systems.
After this review we will present the weak form of the Heat-Poisson-Nernst-Planck
equation and transform these equations into the form which we will eventually use
in our simulation routine. The non-linear coupling between these equations makes
the selection of the time discretization non-trivial. Thus we �nish this section by
discussing the couplings inside the domain and those which may arise from boundary
conditions before presenting the �nal linear system to be solved and the matrices to
be assembled.

4.3.1 Overview of Discretization Methods

Before describing our actual handling of the discretization of the coupled system, we
will give an overview over generally available discretization methods and their previous
application to this or related systems.

Finite Volumes

The Finite Volume method seems a natural choice to discretize the PNP and related
systems, due to its ease of handling unstructured grids and sustentation of conser-
vation properties by construction. Furthermore, Finite Volume methods are easily
able to handle discontinuities in the solution function, as they might occur along
interfaces of di�erent regions. However, their convergence theory is generally much
less developed compared to the long-studied Finite Di�erence and Finite Element
methods. Indeed, this method is only being used quite recently in the PNP setting
[MG14, Fuh15] and was found to have limited convergence rates [SSZL16]. In addi-
tion, as already mentioned in 4.2.5, an extension of Finite Volume and Finite Element
methology in [MG14] is able to handle two-dimensional problems, but does not fully
extend to three-dimensional ones. Nevertheless it might be interesting to investigate
a full Finite Volume approach in future work in order to check whether their favorable
characteristics improve the behavior of Heat-Poisson-Nernst-Planck simulations.

Finite Di�erences

Finite Di�erences are a very intuitive method for solving PDE problems and have for
some time been the most prominent method in numerical solvers for PDEs [GRS07].
Traditionally, they have been con�ned to regular grids and domains, signi�cantly
limiting their potential. Approaches dealing with irregular domain shapes, such as the
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Shortley-Weller method, retain convergence properties, while the order of consistency
of the method is reduced [Hac05, GR94].
Irregular grids may be treated with so-called box schemes, which are closely related

to Finite Volume techniques and in most cases require dual latices [GR94]. Other
approaches, which can be applied to irregular grids � and more generally even to
collections of points without grid structure, are known as General Finite Di�erences
(GFD) [LO80] (also as Finite Di�erences for Arbitrary Grids (FIDAG), Meshless
Finite Di�erence Method (MFDM) and others [Vas15]). However, prior to the solution
of the PDE, obtaining a proper discretization require additional problems (such as
least squares problems) to be solved and may encounter problems of singular or almost
singular subsystems.
Apart from these practical limitations, Finite Di�erence methods have substantial

requirements on the solution function in order to guarantee their convergence results.
Classical methods require for the solution function u ∈ C4(Ω) in order to guarantee
second order convergence, while we will see in the next section that requirements from
the Finite Element method are much more relaxed.
Despite the listed di�culties, there have been previous uses of FD methods for PNP

problems [ZCW11], however, even on regular grids, they required the use of adapted
stencils and were limited to the steady state.

Finite Element Method

The Finite Element method has replaced the previously discussed Finite Di�erence
method as the most prevalent numerical discretization method for PDE problems
[GRS07]. While this popularity may be based on the possibility of easy implementa-
tion of the method, extensive convergence and stability results are available and the
reduced requirements on the space of solution functions makes them also appealing
from a mathematical point of view, if knowledge about the actual solutions is scarce,
as in our case.
Additionally, they are �exible with respect to irregular domains and are able to

achieve high orders of convergence [SSZL16]. The general setting of Finite Elements
allows for a reaction to a variety of numerical challenges by adaptions of the method.
Among those are discontinuous Galerkin methods to handle discontinuities along do-
main interfaces or Petrov-Galerkin upwind methods for the stabilization of convection
dominated problems. However, the advantages of using such specialized methods must
be weighted against their downsides. In the case of discontinuous Galerkin methods,
the continuity may be lost in domains where it is required, and while streamline up-
wind methods increase the stability of the computation, the order of convergence is
reduced at the same time. As a consequence, the standard approach is still viable
[LHMZ10] and in combination with prudent grid selection able to solve problems on
complex geometries with multiple species and varying boundary conditions.
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4.3.2 Weak Form of the Heat-Poisson-Nernst-Planck System

For actually solving the equation system numerically, we intend to discretize the
equations by the Finite Element Method in space. As the proper introduction of
this method, its derivation and the description of its nuances can easily �ll a book
on its own and have already been studied extensively, we direct the reader to other
works [Sch91, BR03, Bra07]. Instead we will restrict ourselves to applying the weak
formulation to equations (4.11) to (4.13).
Since we intend to discretize the Heat-Poisson-Nernst-Planck system in the frame-

work of the Finite Element method, we need to convert the strong form of the di�er-
ential equations (4.11)-(4.13) to the corresponding variational problem, also referred
to as the weak form. Generally, the solutions to the original problem are required to
be continuously di�erentiable, meaning we need to demand that for Ω,ΩT ⊂ Rn

ci ∈ C2(Ω) ∀i = 0, . . . , n− 1, Φ ∈ C2(Ω) and T ∈ C2(ΩT ).

However, these requirements can be relaxed, when we consider the transformed
variational equations. From now on let Γ = ∂Ω and V ′c ⊂ H1(Ω), V ′Φ ⊂ H1(Ω) and
V ′T ⊂ H1(ΩT ) be chosen test function spaces. By multiplication with test functions
and integration over the spatial domain, we gain the weak formulation

∫

Ω

∂ci
∂t
ψd~x =

∫

Ω

∇ ·
[
Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)]
ψd~x ∀ψ ∈ V ′c

0 =

∫

Ω

[
∆Φ +

F

ε

(∑

i

zici +Q

)]
φd~x ∀φ ∈ V ′Φ

∫

Ω

∂T

∂t
ξd~x =

∫

Ω

[α∆T + β] ξ d~x ∀ξ ∈ V ′T

of our original strong PDE problem (4.11)-(4.13). For ease of readability we will drop
writing �∀ψ, φ, ξ ∈ V ′· � from now on, however this requirement for the general validity
of the equations is still implied.
As is commonly done in such settings we use partial integration to shift part of the

spatial derivatives to the test functions and obtain boundary terms
∫

Ω

∂ci
∂t
ψ d~x =

∫

Γ

[
Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)]
· ~nψ d~x

−
∫

Ω

[
Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)]
∇ψ d~x

0 =

∫

Γ

∇Φ · ~nφ d~x−
∫

Ω

∇Φ∇φ d~x+

∫

Ω

F

ε

(∑

i

zici +Q

)
φd~x

∫

Ω

∂T

∂t
ξ d~x =

∫

Γ

α∇T · ~n ξ d~x−
∫

Ω

α∇T∇ξ d~x+

∫

Ω

βξ d~x.

(4.20)
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From these equations the spatial discretization can be established by choosing basis
functions of the test function spaces V ′· and corresponding basis functions for the so-
lution functions. In standard Galerkin methods, the solution functions are developed
in the same spaces, with the solutions expressed as

ci(t, x) =
∑

j

ci,j(t) ·ψj(x), Φ(x) =
∑

j

Φj(t) ·φj(x), T (x) =
∑

j

Tj(t) ·ξj(x).

Other choices of basis functions are possible, and methods making use of di�erent
basis functions for the test and the solution spaces are referred to as Petrov-Galerkin
methods [GR94]. Depending on the choice of the function spaces, di�erent numerical
schemes for the integration of the weak forms (4.20) are suitable.
This leaves the discretization of the time dependent coe�cients. We establish this

via a backwards Euler method, which can also be described as a discontinuous Galerkin
discretization with constant test functions [BR03]. It is also known as the method of
lines [GR94], leading to

∫

Ω

cn+1
i − cni

∆t
ψ d~x =

∫

Γ

[
Di

(
∇cn+1

i +
ziF

RT
cn+1
i ∇Φn+1 +

1

RT
cn+1
i ∇µi )

]
· ~nψ d~x

−
∫

Ω

[
Di

(
∇cn+1

i +
ziF

RT
cn+1
i ∇Φn+1 +

1

RT
cn+1
i ∇µi )

]
∇ψ d~x

0 =

∫

Γ

∇Φn+1 · ~nφ d~x−
∫

Ω

∇Φn+1∇φ d~x+

∫

Ω

F

ε

(∑

i

zic
n+1
i +Q

)
φ d~x

∫

Ω

T n+1 − T n
∆t

ξ d~x =

∫

Γ

α∇T n+1 · ~n ξ d~x−
∫

Ω

α∇T n+1∇ξ d~x+

∫

Ω

βξ d~x

(4.21)

4.3.3 Coupling between the Equations

The nature of coupling between the equations in the full system is quite diverse.
While all three types of equations are coupled non-linearly over the full domain, the
coupling between the Poisson equation and the Nernst-Planck equations behaves very
di�erently from the coupling of both of these types of equations to the heat equation.
Inside the domain the species concentration and � as a derived property � the charge

distribution de�ned by the Nernst-Planck equation act as the sources and sinks of the
electric potential computed by the Poisson equation. In turn the gradient �eld derived
from this potential dominates the convection term of the Nernst-Planck equation.
This coupling is extremely sti�, a fact that will be con�rmed by our operator

analysis in section 5.3.2. Adding to the challenge is the fact, that the coupling is
self-opposing, with the charge concentration inducing a convection term which aims
to reduce it.
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4.3 Discretization of the Heat-Poisson-Nernst-Planck System

As noted in section 4.2.5, choosing explicit coupling methods between the Nernst-
Planck equation and the Poisson equation leads to numerical instability. The speci�c
nature of the equations allows for alternating signs in the �ux and consequently to
increasingly oscillating behavior of the solution functions.
In contrast to the above experience, the coupling constants between the PNP equa-

tion system and the heat equation are much smaller. Yet even more important is
the fact, that the coupling does not permit the reversal of the sign of the �ux. Since
the temperature is always positive by de�nition only its magnitude changes while its
sign remains positive. Thus the �ux of particles in the NP equation never changes its
direction based on the coupling with the heat equation.
The reverse coupling is also constant in its sign, but the argument is more complex

and relates to the discussion of the consequences of the �uctuation theorem, see our
remarks in section 2.2.3. We have described the microscopic process of energy transfer
controlled by the electric �eld in section 3.5 with the conclusion that in the steady
state Joule heating will take place. As the ion migration described by the system of
equations is a macroscopic process, deviations on the microscale cannot be expected
and as a result we can be con�dent that for physical systems no heat sinks will be
present. As such we place our consideration under the requirement

β(c,Φ) > 0,

�xing the sign of the coupling function as positive.

4.3.4 Boundary Conditions

In this section we discuss the selection and the implementation of the boundary con-
ditions to the three types of di�erential equations we are handling. We denote the
boundary by Γ = ∂Ω and ΓT = ∂ΩT and allow the separation of the boundary into dis-
joint subsets Γg and ΓD, such that Γg∪ΓD = Γ, and respectively ΓT,g∪ΓT,D = ΓT . ΓD
denotes a boundary part where Dirichlet boundary conditions are applied, whereas Γg
denotes a boundary part, where Neumann or Robin4 boundary conditions are applied.
For all three equation types of the system, Dirichlet boundary conditions can princi-

pally be applied. Dirichlet boundary conditions are appropriate where the respective
parameter is instantly controlled by the conditions outside of the domain and the in-
ternal behavior is not expected to have an in�uence on this value. Such an assumption
can be the result of a very large reservoir of the respective quantity which is able to
compensate changes instantly with respect to the timescale of the simulation. In terms
of implementation, Dirichelet boundary conditions are treated by the standard Finite
Element approach by setting the coe�cients for the respective functions to the value

4 This type of boundary conditions is not consistently named in the literature. While the name Robin
boundary conditions seems to be the most widely used, the names mixed boundary conditions or
general Neumann boundary conditions appear as well.
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4 The System of the Extended Heat-Poisson-Nernst-Planck Equations

required to satisfy the boundary condition and solve the remaining system restricted
to the interior of the domain. However, some special care must we taken in the case
of the Newton-Raphson iteration � which we will introduce in section 4.3.5. As we are
updating the solution iteratively, we need to ensure that the boundary conditions are
not erroneously summed over several iterations. Thus the Dirichlet function needs to
be updated in every iteration step by setting

uΓD,i+1 = uΓD
− uΓD,i.

Other boundary conditions � leaving Neumann and Robin type conditions � are
generally backed by more elaborate modeling and they shall be discussed in the fol-
lowing. Both types of boundary conditions rely on the fact that during the integration
by parts a boundary integral is formed. The expression integrated over can be used
to de�ne the boundary behavior of the system. While the boundary integral is al-
ways computed over the full boundary Γ, we restrict our discussion to the evaluation
of Γg, as the degrees of freedom associated with ΓD are �xed in the course of the
discretization.

Boundary Conditions for the Nernst-Planck Equation

For the Nernst-Planck equation, the expression of the integral on the boundary is
taken from equation (4.20)

∫

Γg

[
Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)]
· ~nψ d~x.

The expression ~Ii ..= Di

(
∇ci + ziF

RT
ci∇Φ + 1

RT
ci∇µi

)
is the �ux of the ion concentra-

tion of species i and allows for the speci�cation of �ow conditions on the boundary. As
such they are often called natural boundary conditions. In addition to the concentra-
tion gradient, it contains the concentration function itself, giving these speci�cations
Robin shape, meaning the function value and gradient value are related in the bound-
ary equation. Thus natural boundary conditions take the form

Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)
· ~n = g for x ∈ Γg

with g a corresponding boundary function and ~n the normal vector on the boundary.
Due to the inclusion of the ∇Φ term in the �ux, this boundary condition contains
an implicit coupling with the Poisson equation. However, after the substitution, this
term disappears from the equation, leaving us with the discrete expression

∫

Ω

cn+1
i − cni

∆t
ψ d~x =

∫

Γg

gψ d~x (4.22)

−
∫

Ω

[
Di

(
∇cn+1

i +
ziF

RT
cn+1
i ∇Φn+1 +

1

RT
cn+1
i ∇µi

)]
∇ψ d~x.
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Boundary Conditions for the Poisson Equation

For the Poisson equation the boundary integral is
∫

Γg

∇Φ · ~nφ d~x. (4.23)

This expression describes the gradient of the potential on the boundary or respectively
the electrical �eld on the boundary. Thus standard Neumann conditions can be set
with ease, which specify

∇Φ · ~n = g for x ∈ Γg,

�xing the �eld on the boundary. Robin conditions can be set as well, allowing for
an interaction between the value of the �eld and its gradient, which is important for
several physical models of the boundary layer. In their most general form they read

a · Φ +∇Φ · ~n = g for x ∈ Γg.

The substitution in (4.23) is then achieved by a simple subtraction on both sides

∇Φ · ~n = g − a · Φ

and we note that by setting a = 0 any description for Robin type boundary conditions
can be transferred to Neumann boundary conditions. Thus we obtain the discrete
equation

0 =

∫

Γg

gφ d~x−
∫

Γg

a ·Φn+1 φ d~x−
∫

Ω

∇Φn+1∇φ d~x+

∫

Ω

F

ε

(∑

i

zic
n+1
i +Q

)
φ d~x.

(4.24)

Boundary Conditions for the Heat Equation

The boundary integral term of the heat equation is
∫

ΓT,g

α∇T · ~nξ d~x.

As for the Poisson and the Nernst-Planck equations, the description of the heat equa-
tion is not complete, before boundary conditions are de�ned. Most of what we have
written for the above equations remains true for the heat equation. In fact, due to
the nature of its coupling with the PNP equation system and our subsequent explicit
handling of the heat equation, the boundary treatment will be easier, as the sys-
tem remains linear and does not require an iterative treatment. As noted above, the
substitution of Robin boundary conditions

∇T · ~n = g − a · T for x ∈ ΓT,g (4.25)
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can be transferred to Neumann boundary conditions by setting a = 0. The discrete
equation to be solved is thus

∫

ΩT

T n+1 − T n
∆t

ξ d~x =

∫

ΓT,g

αg ξ d~x−
∫

ΓT,g

αa · T n+1 ξ d~x (4.26)

−
∫

ΩT

α∇T n+1∇ξ d~x+

∫

ΩT

βξ d~x.

4.3.5 Matrix Structure

With the previous considerations, particularly with our discussion about the coupling
in section 4.3.3, we are now able to assemble the matrices and vectors, which will be
used in the methods to solve the equation system. Due to the fact that the equations
do not stand alone but are part of a system, see equations (4.21), it will be insu�cient
to only assemble the mass and sti�ness matrices of the individual equations. Since
we established that the coupling between the heat equation and the Poisson-Nernst-
Planck system is straightforward in nature, speci�cally without sign oscillations to be
expected, we will treat this coupling explicitly. For each time step, the heat equation
will be solved �rst, on the basis of the parameters from the previous time step and
afterwards the other equations will be treated. The Nernst-Planck and the Poisson
equations are treated full implicitly due to the non-linear coupling between them and
so we are required to combine the terms to a single operator. In the following, when
writing the matrix blocks we will use the shorthand ψ′ ..= ∇ψ, φ′ ..= ∇φ and ξ′ ..= ∇ξ
for the test functions. Furthermore, we will combine the individual solutions of the
Nernst-Planck equations and the Poisson equation to a vector, using the notation

~u =




c0
...

cn−1

Φ


 .

We begin with the linear system for the heat equation, which we rearrange from
equation (4.26)

∫

Ω

T n+1ξ d~x+ ∆t

[∫

Ω

α∇T n+1∇ξ d~x+

∫

Γg

αa · T n+1 ξ d~x

]

=

∫

Ω

T nξ d~x+ ∆t

[∫

Γg

αg ξ d~x+

∫

Ω

βξ d~x

]
.
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Being a scalar equation, the block components for the matrices have scalar form

MT,ij
..=

∫

ΩT

ξiξj dx

KT,ij ..=

∫

ΩT

ξ′iαξ
′
j dx

GT,ij ..=

∫

ΓT

αξiaξj dx,

and together with the vectors

bj ..=

∫

ΩT

βξj dx

kj ..= α

∫

ΓT

gξj dx

we write the linear system

(MT + δtKT + δtGT )T n+1 =MTT
n + δt · b+ δt · k,

the solution of which is the time update to the temperature equation.

We continue to give the linear system for the iteration method of the Poisson-
Nernst-Planck system. In order to make it easier to �nd the corresponding terms in
the equations, we present the following color coded system

∇
[
(Di∇ci +Di

ziF

RT
ci∇Φ +Di

1

RT
ci∇µi )

]
=
∂ci
∂t

∇2Φ +
F

ε

∑

i

(zici) +
F

ε
Q = 0,

the discrete version of which can be rearranged from equations (4.22) and (4.24)

∫

Ω

cn+1
i ψ d~x+ ∆t

∫

Ω

[
Di∇cn+1

i +Di
ziF

RT
cn+1
i ∇Φn+1 +Di

1

RT
cn+1
i ∇µi

]
∇ψ d~x

=

∫

Ω

cni ψ d~x+ ∆t

∫

Γg

gψ d~x

∫

Ω

∇Φn+1∇φ d~x−
∫

Ω

F

ε

(∑

i

zic
n+1
i

)
φ d~x+

∫

Γg

a · Φn+1 φ d~x

=

∫

Ω

F

ε
Qφd~x+

∫

Γg

gφ d~x.
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We de�ne the matrices

Mij
..=




∫
Ω
ψiψj dx 0 0

. . .
...

0
∫

Ω
ψiψj dx 0

0 · · · 0 0




K1,ij
..=




∫
Ω
ψ′iD0ψ

′
j dx 0

∫
Ω
ψ′i

D0z0F
RT

c0φ
′
j dx

. . .
...

0
∫

Ω
ψ′iDn−1ψ

′
j dx

∫
Ω
ψ′i

Dn−1zn−1F
RT

cn−1φ
′
j dx∫

Ω
φi(−Fz0

ε
)ψj dx · · ·

∫
Ω
φi(−Fzn−1

ε
)ψj dx

∫
Ω
φ′i · φ′j dx




K2,ij
..=




∫
Ω
ψ′i

D0

RT
∇µ0ψj dx 0 0

. . .
...

0
∫

Ω
ψ′i

Dn−1

RT
∇µn−1ψj dx 0

0 · · · 0 0




(
∂K1

∂u
· u
)

ij

..=




∫
Ω
ψ′i

D0z0F
RT

c0φ
′
j dx 0 0

. . .
...

0
∫

Ω
ψ′i

Dn−1zn−1F
RT

cn−1φ
′
j dx 0

0 · · · 0 0




Gij ..=




0 · · · 0 0
...

. . .
...

...
0 · · · 0 0
0 · · · 0

∫
Γg
φiaΦφj dx


 ,

where M is the mass matrix, K1 and K2 are parts of the sti�ness matrix and G
takes care of the Robin boundary term for the Poisson equation. ∂K1

∂u
· u is an addi-

tional matrix, which we will need to complete the non-linear handling of the coupling.
Furthermore we set the vector

kj ..=




∫
Γg
g0ψj dx
...∫

Γg
gn−1ψj dx∫

Γg
gΦφj dx +

∫
Ω
F
ε
Qφj dx


 ,

which de�nes the boundary values and possible background charge.
With performance optimization in mind, we note that not all of these matrices are

dependent on iterated values. While the matrix M and the green colored terms in
K1 are clearly independent of the iterated values, the terms in the matrix K1 marked
in blue are directly dependent. For all other terms the dependency is decided by
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the possible dependence of the respective coe�cients Di and µi. If these values are
constant, an update of the matrix is not necessary within the iteration loop. If these
coe�cients are concentration dependent, a full implicit method requires them to be
updated within each iteration cycle, while ignoring to update them (leaving them at
their respective value from the previous time step) would introduce a semi-implicit
part into the procedure.

4.4 Numerical Solution

After having assembled the Heat-Poisson-Nernst-Planck system in its discretized form
we will handle it numerically. The coupled system poses several challenges, of which
we have already discussed the non-linear coupling. Di�erent units and dimensions
of the solution functions pose another challenge, as they may distort the balance of
approximations introduced by numerical methods. Additionally, depending on input
variables and discretization, the absolute values of many parameters will change, most
importantly the vector norms when computing the residual in the linear solution.
This can be dealt with via nondimensionalization and prudent scaling. Linear solver
methods can also be aided by reorganization of the matrices involved. Furthermore,
the strong coupling of the equations, as well as previous results, let us expect that the
behavior of the solution is not uniform across the domain of the solution functions.
As a consequence we will consider adaptive strategies as well as the possibility of
previous selections of suitable grid layouts.

4.4.1 Newton Method and Linear Solver

Newton-Raphson Iteration

In order to treat the nonlinearity of the Poisson-Nernst-Planck operator we make use
of an iteration method of Newton type. For readers not familiar with this method,
we suggest [Sto05] for further descriptions and convergence results.
We de�ne the residual function on which we use the Newton-Raphson method

R(un+1) ..= (M+ δt · [K1 +K2 + G])un+1 −Mun − k,
which evaluates to zero if un+1 is a solution to the discretized version of our Poisson-
Nernst-Planck operator.
Considering some approximation un+1

i , where i denotes the index of an iteration,
we wish to �nd an update δu, such that

un+1
i+1

..= un+1
i + δu ≈ un+1.

Since our residual function R(u) can be Taylor expanded, we expect

0 = R(un+1) ≈ R(un+1
i ) +

∂R
∂u

∣∣∣∣
un+1
i

δu
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and inserting this into the Newton-Raphson method gives

−R(un+1
i ) =Mun + k − (M+ δt · [K1 +K2 + G])un+1

i

=

(
M+ δt ·

[
K1 +K2 +

∂K1

∂u

∣∣∣∣
un+1
i

+ G
])

δui+1

=
∂R
∂u

∣∣∣∣
un+1
i

δu

which de�nes the linear system to be solved iteratively. In practice it has proven to
be bene�cial to dampen the iteration update

un+1
i+1 = un+1

i + γ · δu
with a dampening factor γ from the interval [0.75, 0.9]. Unfortunately, attempts to
choose γ via a line-search procedure have decreased performance, as the evaluation of
the function R(·) requires an update of several matrix entries at least in K1, making
multiple evaluations of R(·) relatively expensive.

Linear Solver

With the system from the Newton method and the linear system from the heat equa-
tion, we now need to solve two linear systems. Due to the large size and sparsity of the
matrices, direct solvers are impractical and iterative solvers are obvious candidates
for this task. Many iteration methods only guarantee convergence for a small class of
matrices, e.g. by requiring that the matrix must be symmetric and positive de�nite,
properties which our system matrix does not ful�ll.
In these cases, certain Krylow space methods can be used, of which we have chosen

to adopt the generalized minimal residual (GMRES) method [SS86]5. As the name
suggests, this algorithm is a variant of the minimal residual algorithm and is specif-
ically geared towards nonsymmetric linear systems. It uses the Arnoldi method for
the creation of the basis of the Krylow subspaces it operates on. In order to increase
the rate of convergence, we use a preconditioner algorithm computing an incomplete
LU decomposition of the sparse matrix before starting the GMRES method. Further-
more, for some simulations large increases in performance were gained by employing
a renumbering scheme based on the Cuthill-McKee method [CM69].

4.4.2 Iteration Control and Residual Scaling

As described in section 4.4.1, we make use of an iterative Newton-Raphson method
around a linear solver in order to advance our solution in time, with the linear solver
5 We note that we have also experimented with other solvers and preconditioners, e.g. BICGSTAB
or Moore-Penrose Inverse. However, these attempts proved to be either unstable or too computa-
tionally expensive.
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again being an iterative solver. Thus in both cases we need to de�ne criteria when
the iteration has reached su�cient accuracy.
For the �nal result we are often satis�ed with a solution which has a prede�ned

accuracy with respect to the actual solution. For the outer iteration system, the
Newton-Raphson solver computes a change δu, which is added to the previous iterated
value ui+1 = ui + γ · δu. By its design, the iterative update γ · δu can be regarded as
an approximation to the error ui − u, and thus we can use the respective change to
estimate the current accuracy.
However, the absolute value of this norm is only of limited value, as the norm of

the residual is dependent on varying factors such as the discretization, the dimension
or the scaling of the vector.
The latter should be taken care of by the nondimensionalization procedure from

section 4.1.1, leading to solution vectors u, whose values remain of the same order
regardless of the speci�c triangulation. However, the standard vector norms

‖u‖1 =
N∑

j=1

|uj|, ‖u‖2 =
N∑

j=1

|uj|2

scale with the number of vector entries N , which depend on the re�nement. For one-
dimensional problems they scale with N = 1

h
, but for d-dimensional problems they

scale with N = 1
hd
.

Thus we turn to the estimation of the relative accuracy and terminate the outer
iteration when the ratio of the norm of the iteration update and the norm of the
current solution vector falls under a preset tolerance,

|γ · δu|
|ui+1|

< εtol,nonlin,

which corresponds to the relative error which we are willing to accept.
This approach requires that the respective updates are computed accurately. Thus,

for the linear system, we use standard methods of error estimation via checking the
residual against a prede�ned absolute tolerance

‖Ax− b‖ < εtol,lin.

In an attempt to ensure that the choice of εtol,lin is universally suitable, we may select
to solve the scaled system Ax̂ = b

‖b‖ , where we can obtain the true solution by rescaling
x = ‖b‖ · x̂. However, the vector b is not the dominant factor in the residual, moreover
the error of the solution x is ampli�ed with the condition of the matrix A, which is
constant under scalar scaling.

4.4.3 Adaptivity and Graded Grids

The combination of the numerical treatment presented in the previous sections form
a convergent method for solving the full coupled Heat-Poisson-Nernst-Planck system.
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We can expect � and will show in the numerical results in section 5.3.4 � standard
convergence rates in the respective norms for uniform re�nement. However, knowledge
from previous research indicates, that the solution to these equations may behave very
di�erently on varying parts of the domain, e.g. exhibiting singularities close to the
boundaries or at discontinuities of the coe�cient functions. As a consequence, we do
not expect the error to be distributed uniformly on the domain, but to be larger in
speci�c subdomains. When these regional errors are dominant, additional re�nement
in the region with minor errors may have very little e�ect and the additional ressources
spent on the corresponding degrees of freedom are wasted.
The obvious solution to the above problem is to restrict re�nement to the sub-

domains which carry the largest error contribution. However, this obvious solution
presents us with the problem to determine on which elements the error is largest. It
is apparent that we are not able to derive the exact error for a given discrete solution,
as otherwise we would be able to derive the exact solution by combination.
There are several methods of a posteriori error estimation available, which generally

follow a heuristic approach transferred from a particular model problem, such as the
so-called Kelly error estimator [KGZB83]. While this particular method is �tted to the
general Poisson equation, it has been formulated for convection-di�usion equations as
well. However, it has the inherent requirement that the derivatives of the numerical
solution must be permitted to be discontinuous on the cell boundaries, as the estimator
is based on the value of this discontinuity of the derivatives across cells. Even when
this condition is satis�ed, additional questions remain, such as at which time the
estimation provides proper results, as time dependent problems have not been covered.
In our previous work [Neu10] we have used such methods with considerable success.
However, this success came at signi�cant cost, as we had to solve the problem several
times on the coarser grids, in order to achieve the re�nement which we used for the
actual solution.
Here we want to consider an alternative approach of graded grids. While this

approach requires some previous knowledge about the solution behavior, it has the
possibility to achieve exponential convergence of the error. Taking inspiration from
the Kelly error estimator, which considers the derivatives of solution functions, the
Scharfetter-Gummel method, which introduces exponential scaling of the solution
function and knowledge about underlying physical systems, we make the assumptions
that the strong coupling causes solutions in the interior of the domain to be close to
electroneutrality � resulting in reduced strength of the electric �eld. Boundary con-
ditions may disturb this property, driving the charge distribution apart and creating
signi�cant sources or sinks for the Poisson equation, which couple strongly with the
Nernst-Planck equation. Correspondingly we want to expend the majority of numer-
ical e�ort in this part of the domain, which can be achieved by introducing a grading
function for the choice of grid points. While approaches, which distribute additional
degrees of freedom only towards the boundary while leaving the interior degrees of
freedom static, show exponential convergence, they do not converge to the full grid
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solution. Thus an improved grading scheme is required, where additional degrees of
freedom improve the coverage of the whole domain � with preference twoards the
boundary area. We will present the successful application of such a grading in sec-
tion 5.4.1, where we demonstrate improved convergence rates compared to uniformly
re�ned grids.
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In this chapter we will �nally bring the theory of the previous chapters into practice.
Starting on the atomistic scale, we will be observing examples of energy transfer

from external forces both with and without thermostats and measure their energy
transfer. We will �nd that our derivation of error estimates is represented in the
computed values and furthermore determine that for physical applications a previously
unexpected challenge rises in the ratio of the inner and external interactions.
On the macroscale, we will consider the pure Poisson-Nernst-Planck (PNP) system

and its coupled operator before turning to the extended system with the heat equation.
While we will �nd that the coupling and correspondingly the condition of the system
are extremely sti�, we will con�rm that the full implicit treatment of the equations
provides accurate solutions.
For uniform grid re�nements, we will observe standard convergence rates despite

the non-linearity of the operator. For suitable problems, these can be improved by
graded and adaptive grids.
We present an example derived from industrial application in battery design which

allows for a comparison with experimental results and for which we perform a sensi-
tivity analysis of the parameters.
The last example presented is a showcase using three-dimensional non-uniform ge-

ometry with varying boundary conditions, non-matching grids and multiple ion species
to demonstrate the capabilities of our solver.

5.1 External Energy in Lennard-Jones Fluids

In order to demonstrate the feasibility of the application of external forces in molec-
ular dynamics and the computation of the respective energy, we begin by observing
the e�ects on ensembles with a well-known interaction potential, the Lennard-Jones
potential de�ned by

V (rij) = 4ε ·
[(

σ

rij

)12

−
(
σ

rij

)6
]
,

where rij is the distance between particles i and j, while ε scales the depth and σ
the width of the resulting potential well. Ensembles for which the particle interacion
is completely described by the above potential are known as Lennard-Jones (LJ) �u-
ids. The widespread use of LJ �uids as benchmark problems in molecular dynamics
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simulations stems from the relatively simple interaction of the particles, all of which
can be treated individually. Furthermore, despite some situational speci�c short-
comings, Lennard-Jones potentials with additional charge interaction are applied to
complex challenges in material design, among which are electrolytes [RH11, MNS13],
but also other applications such as cementitious materials [QKB+14]. In contrast to
the Lennard-Jones setting, complex force�elds, which are required for the formation of
molecules, lead to additional e�ects in the ensemble, such as manifestation of dipoles,
solution shells, etc. These additional e�ects however carry the potential to increase
distortions in an ensemble or the potential barriers between di�erent states, as we will
see in 5.2.2.
The �rst examples presented will treat pure LJ �uids, which we will combine with

the Coulomb potential later. While the potential is generally the same as presented
in (4.12), now it does not include charge concentrations but point charges. In all our
atomistic simulation experiments we used the inhouse-developed Tremolo-X software
[GKZC04], which we modi�ed according to chapter 2 to integrate the external energy
contributions and thermostat energies.

5.1.1 Basic Results

The �rst Lennard-Jones �uid being subjected to external forces will be completely
normalized with

σ = 1, ε = 1.

The particles are separated into two groups of 256 particles each, where the �rst
group carries the color charge1 q1 = 1.0, while the second carries the color charge
q2 = −1.0. In order to assemble the ensemble, the particles are placed randomly
inside the domain and afterwards we apply a minimization to the potential energy to
avoid accidental placement of particles within the singularity of the potential function.
Prior to the actual simulation we also perform an equilibration phase with a Berendsen
thermostat at T = 2.7. We apply constant external forces of magnitude 1.0 during
the time interval [0, 20] and set external in�uences to zero afterwards.
We �nd that the energy transfer is almost exactly as predicted, with the initial

curve matching the energy transfer of free particles as derived in equation (3.7), see
�gure 5.1. With increasing velocities and more frequent interactions drag becomes
apparent and beginning around time unit 10 we see the initial stages of the shift to
the linear phase appear in �gure 5.1. As the external forces are removed, the external
energy becomes constant.
When plotting the total energy � in this case the sum of the physical energy and

the transferred energy � we notice a consistent drift of the energy, see �gure 5.2.

1 We recall the concept of color charges from section 2.2.1 and [BEC93], as they do not interact

within the ensemble, but a�ect the direction of outside forces with ~Fext,i = qi · ~Fext.
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Figure 5.1: Energy transfer from external forces on a Lennard-Jones �uid.
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Figure 5.2: Leapfrog shift in total energy conservation in a Lennard-Jones �uid with
external forces with varying timestep.
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Figure 5.3: Conservation of total energy in a Lennard-Jones �uid in an external �eld
for various iterators with timestep δt = 4 · 10−4.
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This is due to the fact that even though the continuous trajectories of the particles
conserve the energy consumed and expended, the discrete trajectories need to satisfy
certain conditions to obtain the same property, as we already discussed in section
2.1.5. The energy drift is a consequence of a behavior often associated with leapfrog
type algorithms, the physical energy value corresponds to a time removed by half a
timestep from the time of the external energy. While the magnitude of this e�ect can
be controlled by re�ning the size of the timestep, compare �gure 5.2, a better approach
is to modify the energy measurements or trajectory updates in a way that the time
of evaluation coincides. It is indeed possible to construct such a measurement, by
splitting the update of the external energy, compare the pseudocode in appendix A.
The success of this simple change in procedure is demonstrated in �gure 5.3, where
we show that the modi�cation removes the energy drift not only for the use of the
velocity Störmer-Verlet algorithm, but also for iteration type algorithms, shown at
the example of the iterated Beeman integrator.

5.1.2 Demonstration of Unbounded Acceleration

In the previous example, we ended the addition of energy after some time, allowing
the ensemble to relax afterwards. In the following example, we will not remove the
external forces, in essence providing unlimited energy to the ensemble.
While the energy transferred from external forces displays the same qualitative

behavior as before, the plot of the physical energy terminates in a singularity, compare
�gure 5.4. As the particles achieve higher and higher velocities, the distances they
traverse become larger than the interaction radii of the potential. As a result, particles
may pass through each other without prior interaction and be placed in e�ectively
random positions in their respective potential �elds. Consequently acceleration and
repulsion by the particle potentials become random and the energy balance is lost.
When this process takes particles close to the singularity of their potential energy
function, the extreme forces they are subjected to increase the velocity and the total
energy by several orders of magnitude and lead to failure of the numerical scheme as
the particles traverse distances surpassing the domain decomposition.
The failure of the simulation may be postponed by enlarging the potential interac-

tion radii and the linked cells or reducing the timestep. However, even if the numerical
method would be continually adapted to the growing needs of the ensemble, neither
of these measures eliminates the fact that unlimited acceleration of the particles has
a physical boundary, as the particle velocities approach the order of lightspeed, in-
troducing relativistic e�ects. These e�ects would violate the assumptions formulated
in the introduction to chapter 2, thus requiring the transition to di�erent modeling
approaches.
When the ensembles and external forces are selected from physical examples how-

ever, such extreme cases generally do not need to concern us. Nevertheless, we will
investigate a way to keep the energy from external forces in check in simulations with
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Figure 5.4: Energy transferred externally (left) and physical energy (right) over longer
time.

limited domain and particle numbers.

5.1.3 Results with Temperature Control

With the control of external energy additions in mind, we now activate di�erent
thermostats with the ensemble to observe their respective behavior in connection
with external forces. We will employ two di�erent thermostats, the �rst being the
Berendsen thermostat � introduced in section 3.6.1 � scaling all particle velocities in
periodic intervals of 0.2 time units to match a preset temperature of 2.7.
The second thermostat used is the Nosé-Hoover thermostat � introduced in section

2.2.2 � which is assigned a virtual mass of Q = 0.1.
While the ongoing energy exchange under the e�ect of external forces is the main

goal of this test case, we nevertheless control how the thermostats react to a removal
of the external forces, switching these o� after the time interval [0, 20], as we did in
section 5.1.1.
Figure 5.5 shows the physical energy of the system, once under the e�ects of the

Berendsen thermostat and once under the e�ect of the Nosé-Hoover thermostat. As
we see, the behavior is quite di�erent for the two thermostats, with the Berendsen
thermostat showing oscillations during the time the external forces are applied. The
amplitudes of the spikes increase initially, until they appear to be at roughly constant
height, as the energy exchange steadies out. As the external forces are switched
of, the physical energy appears as a close to constant line. This is in line with the
expectations for this type of thermostat, as the corrections of the kinetic energy are
applied at discrete intervals only, and between the thermostat steps the transfer of
external energy may build up the kinetic energy of the ensemble.
In contrast, the Nosé-Hoover thermostat displays only very small oscillations dur-
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Figure 5.5: Physical energy of a LJ �uid under the e�ect of external forces and di�erent
thermostats.
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Figure 5.6: Comparison of energy values added by external forces and extracted by
thermostats.
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ing the heating phase, absorbing the energy more continuously than the Berendsen
thermostat. In fact, once the external forces are switched o�, the oscillations increase
compared to the heating interval. While we have some considerations for the behav-
ior of the frequency of the Nosé-Hoover energy � see [MKT92] � there is no previous
experience with oscillation behavior in combination with external forces and thus we
controlled the long term behavior to check for delayed changes in the energy. How-
ever, despite extending the simulation to 2000 units of time, we found the amplitudes
to remain in the same order as those directly after stopping the external forces.
In �gure 5.6 we compare the energy transferred to the ensemble from external forces

with the energy extracted from the ensemble by thermostats. Since in the previous
�gure we already learned that the physical energy oscillates around a constant value,
the results come as no surprise, in both cases the energy curves lie almost exactly on
top of each other, indicating that the energy added and subtracted cancel out.
These results demonstrate that both, the Berendsen and the Nosé-Hoover thermo-

stat can be combined with our new approach to external forces without loosing their
original characteristics. In fact the Nosé-Hoover thermostat surpasses expectations
with the almost constant energy during the time of heating.

5.1.4 Lennard-Jones Fluids with Neutral Species

In the following numerical experiment the goal is to demonstrate the in�uence of a
denser medium, with which the externally excited particles interact. We start with
the ensemble from section 5.1.1, which we modify by the addition of a third species,
which is not assigned a charge in the applied color �eld, but shares the same Lennard-
Jones properties as the other two species. Thus we amend the ensemble by adding
another 512 particles of a third type. Since the particles may appear anywhere within
the current energy landscape, we perform another optimization and equilibration of
particle positions as described in section 5.1.1 before starting the simulation.
As laid out in chapter 3, the additional interaction interferes with the acceleration

and decreases the �nal achievable velocity of the particles. As a result the energy
transferred from the external forces is signi�cantly decreased compared to the en-
semble in free space, as con�rmed from the energy transfer presented in �gure 5.7.
Nevertheless the inital acceleration is still noticeable.

5.1.5 Lennard-Jones Fluids with Coulomb Interaction

When adding Coulomb interaction, the behavior changes again. In the previous exam-
ples, the interaction between the particles was only local, requiring the trajectories of
the particles to cross. In many physical applications and in particular in electrolytes,
electrodynamic interaction is present, which is a long-range interaction, causing par-
ticles to exert in�uence on each others behavior even for non-intersecting trajectories.
We start with the ensemble used in the prior experiment and expand the particle
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Figure 5.7: Comparison of energy transfer with only color charged particles vs. color
charged particles with additional neutral species.

interaction of the charged particles with the Coulomb potential. Since the long-range
interaction changes the energy landscape noticeably, another optimization and equili-
bration of particle positions as described in section 5.1.1 is necessary before we start
the simulation.
The Coulomb potential in this scenario is computed by a full N2 method with a

cuto� of 40 units of length, such that the sphere of interaction �ts inside the simulation
domain.
Following the expected trend, the additional Coulomb interaction causes the rate

of energy addition to be reduced, see �gure 5.8. However, in addition to changing the
quantitative rate, the long-range interaction also causes a delay in achieving a steady
state, the quadratic acceleration phase is extended in time.

5.2 External Forces in Electrolytes

In the previous section we observed ensembles with uniform Lennard-Jones param-
eters and later a simple Coulomb potential, leaving out more complex interactions
between the involved species. In this section we will investigate more elaborate set-
tings, modifying the interaction between the particles depending on their species. As
our ultimate goal is the simulation of ions in electrolytes, we will �rst consider an
idealized electrolyte in the form of a Lennard-Jones example with varying potential
parameters and Coulomb interaction, before turning to physical examples with com-
plex internal force �elds. In these sections we will also take a look at the kinetic
energy of the simulations, and determine that the more complex settings introduce
considerable challenges in forms of distortions of the values to be measured. We will
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Figure 5.8: Comparison of energy transfer with and without Coulomb potential.

�nd that these are in line with the predictions of the error estimates from section 3.4.2.

5.2.1 Idealized Electrolyte

Up to now, all particles in the ensemble had identical properties apart from the
charge. As a �nal test of the method, we investigate a composition of particles, where
the particle parameters of the group di�er from each other. With di�erent masses
and potential parameters, the ensemble con�guration can indeed be interpreted as a
reduced representation of an electrolyte.
We list the chosen parameters by identifying the particle groups via their charge in

table 5.1. The resulting energy transfer can be found in �gure 5.9. While the trans-
ferred energy is further reduced due to the increased mass and stronger interaction of
the particles, the qualitative behavior remains unchanged.
In addition to the transferred energy, our interest lies in the behavior of the kinetic

energy and temperature of the sample. When comparing the kinetic energy of the
ensembles in �gure 5.10 we notice that the general behavior of the kinetic energy
follows that of the energy transferred from the outside, as can be expected. The scale
of the respective energy values matches as well, with a rate of 943.5 energy units per
time for the external energy and a rate of 704.2 energy units per time for the kinetic
energy. This means, that roughly 75% of the external energy are converted to heat,
whereas 25% of the external energy are stored in the potential energy interactions
of the particles. However, the characteristic which will have signi�cant in�uence
on the measurability of the heat source is the distortion of the curve. While the
curve of the kinetic energy of the ensemble with uniform LJ parameters without
Coulomb interaction appears very smooth, the curve of the kinetic energy of the
ensemble with varying LJ parameters and with Coulomb interaction shows oscillations
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Charge ε σ m

1 2 1 1
-1 1.5 1.5 5
0 1 2 10

Table 5.1: Particle parameters for the idealized electrolyte.
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Figure 5.9: Energy transfer with varying LJ parameters and Coulomb potential.
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Figure 5.10: Comparison between kinetic energy behavior for pure uniform LJ �uid
and idealized electrolyte.
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and distortions. These are a consequence of the extended and now in parts unequal
interactions of the particles. As the interactions become more complex and the number
of di�erent particles increases, we expect such distortions in the kinetic energy to
increase, a fact which we will investigate in the following section by considering a real
world example.

5.2.2 Complex Physical Electrolyte

In contrast to the above setting, real world electrolytes consist of molecules which have
internal physical degrees of freedom and may exhibit di�erent intermolecular interac-
tion depending on their orientation in space. In particular, for many electrolytes the
dipole characteristic of the molecules has a strong in�uence on the dielectric properties
of the material.
As an example we present the simulation of an ethylene carbonate (EC) solution.

The setup consists of 2177 molecules of ethylene carbonate, see �gure 5.11, in a sim-
ulation domain of (61.46744Å)3. In this solvent, we embed 10 pairs of Li+ and BF−4
ions, resulting in a total of 21830 particles. For the modeling of the intramolecu-
lar interactions of the organic EC molecule we turn to the AMBER �eld parameters
[CCB+95], while for the inorganic �uoroborate we use a united atom force �eld from
[LWW06]. Intermolecular forces are modeled by the Lennard-Jones and Coulomb
potentials taken from [SMM98, LWW06], the parameters of which we present in ta-
ble 5.2.
Prior to the simulation we equilibrate the ensemble for 0.061ns � corresponding to

250000 integration steps under application of a Nosé-Hoover thermostat with a target
temperature of 323K. The simulation time is 0.12ns with a timestep of 0.244 fs.
All simulations are based on the same equilibrated ensemble and di�er only in the
applied external forces. We apply external forces2 of

z · 2.304 · 10−k
kcal

Å ·mol = z · 2 · 104−k eV

20µm
= z · 1.6 · 10−10−kN,

with k ∈ {0, 1, 2, 3, 4} and z the particle charge. For the sake of brevity, in the
following discussion we will refer to the forces by their base magnitude 2.304·10−k kcal

Å·mol
dropping the charge variable.
Our goal is to obtain a rate of growth of thermal energy, and thus we observe

the behavior of the kinetic energy over time in �gure 5.12. For the lower external
forces the kinetic energy does not display a discernible trend but is dominated by
oscillations, while we observe a trend dominating clearly over the oscillations for the
strongest external force.
Compared to the previous examples the observed behavior is quite di�erent, which

can be attributed to two � partially correlated � reasons. While previously the internal

2 Values of external forces in a battery cell can be expected to be around 2 eV
20µm = 2.304 ·10−4 kcal

Å·mol .
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Figure 5.11: Structure of ethylene carbonate; schematics with atom type labels as used
by the AMBER force �eld tables in [CCB+95] (left), simulation snapshot
in ground state (right).

Atom type ε
[
kcal
mol

]
σ
[
Å
]

Mass [u] Charge [e]

O 0.210 2.96 15.9994 −0.6452

OS 0.170 3.00 15.9994 −0.4684

C 0.105 3.75 12.0107 1.0996

CT 0.066 3.50 12.0107 0.0330

H 0.030 2.50 1.0079 0.1041

Li 0.191 1.46 6.9410 1.0000

B 0.095 3.58 10.8110 0.9756

F 0.068 3.00 18.9984 −0.4939

Table 5.2: Potential parameters of Lennard-Jones and Coulomb interaction for LiBF4

in EC.
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Figure 5.12: Heat generation in ethylene carbonate. Forces are given in kcal
mol·Å .

and external forces were of the same order, this is not the case for either example but
the one with the highest external forces. The order of magnitude of internal forces
can be expected to be on the order of ∼ 1 · 10−9N for covalent bonds [GBR+99] and
on the order of ∼ 1 · 10−10N for non-covalent bonds [MFG94]. The covalent bonds
determine the behavior of its internal degrees of freedom, while the non-covalent
bonds determine the interaction of the molecules among each other and as a result
their motion. The force of the non-covalent bond interferes with the external forces
of magnitude 1.6 · 10−10−kN with k ∈ {0, 1, 2, 3, 4}, meaning that for the strongest
external forces they are on the same order as the non-covalent ones, while for the
other settings they are one to four orders of magnitude lower, respectively. For the
largest force the dynamics of the particles are changed signi�cantly, as evidenced by
the energy transfer on the one hand and increased di�usion coe�cients for all particle
types on the other3.
As a consequence, the internal energy �uctuations are several orders of magnitude

higher than the energy transferred from the outside, compare �gure 5.13. Thus any

3 Note that the total di�usion coe�cient is signi�cantly increased despite the fact that the convection
corrected function was used, indicating that the external forces lead to a disturbance in the regular
electrolyte dynamics.
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5.2 External Forces in Electrolytes

LiBF4 in EC

Force Rate of heat generation Expected error in Eext rate[
kcal
mol·Å

] [
J
s

] [
K
s

] [
J
s

] [
K
s

]

2.304 · 100 5.029 · 10−7 1.112 · 1012 2.9 · 10−6 6.4 · 1012

2.304 · 10−1 1.165 · 10−9 2.577 · 109 1.1 · 10−6 2.4 · 1012

2.304 · 10−2 2.015 · 10−9 4.456 · 109 1.1 · 10−7 2.4 · 1011

2.304 · 10−3 2.321 · 10−9 5.128 · 109 1.1 · 10−8 2.4 · 1010

2.304 · 10−4 4.018 · 10−9 8.878 · 109 1.1 · 10−9 2.4 · 109

Table 5.3: Rates of heat generation in realistic application of LiBF4 in EC electrolyte
with estimation of error.

e�ect of the external forces on the kinetic energy is superimposed and masked by
the natural energy �uctuations between the potential and kinetic energy. Apart from
masking the energy exchange, the oscillations have the additional e�ect of in�uencing
the energy contributions from external forces, as the particle velocities are subjected
to a random distortion. The e�ect is evidenced in the lower images of �gure 5.13,
where the external energies assume negative values and also show oscillations which
can not be regarded as converged. The fact that � with exception of the example
with the largest forces � the estimated rate of the kinetic energy actually increases as
the forces decrease shows that the total kinetic energy and the external forces are in
a detached energy state. Nevertheless, we present the results for the ensembles with
di�erent forces in table 5.3.
While we can compute the expected error for the external energy with formula

(3.10), the detachment of the kinetic and external energies makes the formulas mute
for estimating the accuracy of the heat generation. They can however still be used to
judge the accuracy of the external energy contribution rates. Estimating the rate of
external energy addition for the lowest force, we obtain an energy rate of 6.85 ·10−13 J

s
,

which on the one hand is much larger than we would anticipate but on the other still
several orders of magnitude below the estimated error rates. From general practical
and also experimental experience we expect the rate of temperature generation to
be on the order of 1 K

min
[MAHS+99], however heat may also be dissipated to the

surroundings. Computing the theoretical upscaling via the Einstein-Smoluchowski
equation yields an expected rate on the order of 1K

s
. Energy and heat dissipation into

the surrounding material and by radiation is however not considered in this factor.
A factor not quanti�ed in this thesis is the internal shift between potential and

kinetic energy, which disturbes the measurement as well. Methods for quanti�cation
and smoothing of this e�ect would at the very least allow for a better understanding
of the restrictions of this method, if not improving the measurement itself. It is known
that the convergence of the kinetic energy is hard to achieve, even using thermostats,
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Figure 5.14: Energy conservation for external forces in ethylene carbonate. In the
rightmost plot for external forces F = 2.304 kcal

mol·Å , we show the total
energy computed with δt = 0.244 fs and δt = 0.049 fs.

see [BL07]. As we have seen from the previous simulations, the results for simpli�ed
interactions were not subject to such distortions. This suggests reduced models e.g.
based on mean �eld and �uid density approximations may be a possible solution to
this challenge. Previous work on upscaling results via mean �eld approaches produced
excellent agreement with static properties such as the radial distribution functions,
but unfortunately made no prediction about dynamic properties [Jag07].

However, the application of the method as it is to ions in solid materials promises
to be an ideal utilization. Since the solid state material would only exhibit small,
oscillating movement, the interference with the energy transfer would be restricted.
The oscillatory movement also correlates to small di�usion coe�cients, reducing the
error estimates. Additionally, the energy transfer itself would be concentrated on the
embedded ions and consequently be much easier to compute.

As a �nal remark we note that the external energy is conserved within the numerical
accuracy by the four computations with the lower external forces, even using the
leapfrog implementation of the external energy evaluation, see �gure 5.14. For the
simulation with the largest external force we do notice an energy drift, the magnitude
of which is below 1� of the kinetic energy �uctuations. By re�ning the timestep,
the energy drift is reduced to an order where the trend disappears compared to the
oscillations of the total energy value.
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5.3 Simulation of the Pure Poisson-Nernst-Planck System

5.3 Simulation of the Pure Poisson-Nernst-Planck

System

While the theoretical results of this thesis give us some insight into the structure of the
numerical system, they nevertheless fail to describe the structure of the solution space.
The existence and uniqueness of the solution is only established under restrictive
conditions on parts of the equation system and, as we presented in 4.2.1, even without
the coupling of all equations there are conditions known, under which the results may
follow multiple paths.
With these facts in mind, it is necessary to test the numerical scheme thoroughly in

order to guarantee its suitability for the purpose of solving our system of equations.
Furthermore, these tests carry further importance beyond the veri�cation of the the-
oretical method, as they are a veri�cation for the accuracy of its implementation.
In this section we will deal exclusively with the Poisson-Nernst-Planck system � that

is with equations 4.11 and 4.12 � while we turn to the full system coupled with the heat
equation in the next section. Before presenting numerical experiments, we will deal
with analytical questions originally raised in chapter 4, selecting the break criteria for
the iteration methods and analyzing the condition of the linear system depending on
the coupling constants. We begin the numerical experiments with the comparison of
our numerical solutions with analytical approximations, before presenting convergence
results for the restricted system and demonstrate the suitability of our solver for
multiple ionic species and boundary conditions.
The solver used in the remainder of this chapter is self-implemented based on the

description of the numerical system in chapter 4. The software makes use of the
Finite Element library deal.II [BR03, BHK07], which provides functions to ease several
challenges of the implementation of the numerical system, such as the management
of grid elements, degrees of freedom and integration methods.

5.3.1 Selecting the Break Criteria

As noted in section 4.4.2, we control the solver routines by observing the residuals of
the respective equation systems. However, in order to choose and validate the values
of the break criteria, we apply the iteration procedures to constructed solutions. These
solutions are constructed as follows. After running a single simulation, we isolate an
arbitrary solution fragment un+1, which is the approximate solution to the system

0 = R(un+1)

⇔ 0 = (M+ δt · [K1 +K2 + G])un+1 −Mun − k
⇔ Mun = (M+ δt · [K1 +K2 + G])un+1 − k

and the exact solution to some

Mũn = (M+ δt · [K1 +K2 + G])un+1 − k
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5 Numerical Results

Error norm ‖c−c̃‖
‖c‖

‖Φ−Φ̃‖
‖Φ‖

L1 1.77253 · 10−14 5.79862 · 10−13

L2 2.69152 · 10−14 5.45608 · 10−13

L∞ 1.73692 · 10−13 3.90831 · 10−13

H1 1.79493 · 10−12 1.27629 · 10−13

Table 5.4: Relative accuracy of iterated solutions c̃ and Φ̃ compared to the preset
solutions c and Φ.

for the correct ũn. Thus we solve the above equation for ũn and treat this vector as
the initial condition/previous timestep of our iteration procedure in order to obtain a
new ũn+1, which we compare against un+1 as the known solution.
A selection of

εtol,lin = 1 · 10−16 and εtol,nonlin = 1 · 10−10

has proven suitable, bringing the relative error of the iterative solutions to the con-
structed solutions to those presented in table 5.4, which we deem suitable even for
the possible iteration over multiple timesteps.

5.3.2 Condition of the Linear System

A signi�cant portion of the work of solving our PDE system lies in solving the linear
system. The numerical di�culties of this operation can be assessed by the so-called
condition number of the corresponding matrix. The condition of the linear system may
vary greatly with the parameters used. In particular, the coupling between equations
(4.11) and (4.12) plays a signi�cant role.
It is generally not feasible to compute the condition number for every such problem,

as the process itself is operation-intensive and thus time-consuming. However, we will
investigate several of the PNP systems as they can be classi�ed from the coe�cients
presented in equations (4.15) and (4.16).
Condition numbers can be de�ned for any function f : Rn → Rm, compare [DH93].

However, we will restrict ourselves to the problem of solving the linear system Ax = b.
The condition number of a matrix can naively be understood as an indication of how
�close� the matrix is to being singular, with singular matrices having in�nite condition.
The condition number of a linear system is always given with respect to a particular

norm

κ(A) ..= ‖A‖ · ‖A−1‖.
This de�nition has the problem, that it requires the knowledge of the inverse of A,
which, if we had access to it, would render it moot to compute the condition as we
could solve our linear system exactly.
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5.3 Simulation of the Pure Poisson-Nernst-Planck System

Luckily, there are equivalent possibilities to compute the condition number, which
depend on the norm and may depend on some matrix properties. The ratio of the
largest and smallest eigenvalue

κ =

∣∣∣∣
λmax
λmin

∣∣∣∣

can be used to compute the condition with respect to the Frobenius norm in the case
of normal matrices. Unfortunately, the matrix for the coupled PNP system is not
generally normal, requiring us to follow a di�erent approach.
For general matrices the condition can be computed with respect to the l2 norm by

the quotient of its largest and smallest singular value

κ =
σmax
σmin

,

which is the de�nition we will apply4.
We recall the dedimensionalized equations of the PNP system from (4.17)

∇̃λ(∇̃c̃i + κzic̃i∇Φ̃ + πc̃i) =
dc̃i

dt̃

σ
∑

i

ziĉic̃i = ∆̃Φ̃.

We propose, that the di�culty of solving this system is largely determined by the
parameters λ and σ. Since the solution of the system requires multiple iterations, each
with a separate matrix, we take the average of the condition number over all iterations
in the �rst timestep. Since the theory for the Poisson-Nernst-Planck equation system
suggests di�erent behavior for one and higher dimensional problems, we executed
the same test, once for a one-dimensional problem and once for a two-dimensional.
To close the equations we apply uniform Dirichlet boundary conditions of 1.0 for
the Nernst-Planck equations and 0.0 for the Poisson equation. The results of these
computations are displayed in �gure 5.15.
The results are very similar, with slight variations in the quantitative values of the

condition numbers, but qualitative identical dependence on the coupling constants.
For the one-dimensional case a plateau of condition numbers on the order of 103 is
roughly encased in the rectangle 10−2 > λ > 10−15 and 10 > σ > 10−15, a reasonable
condition for handling the solution of linear systems. However, around this area, the
condition numbers quickly increase, until they reach the order of 1017 for larger values
of λ and σ. For the two-dimensional case the area of the rectangle changes only slighly
to 10−2 > λ > 10−15 and 102 > σ > 10−15, however the condition in this area is on
the order of 104. Similarly the condition numbers outside the area increase up to the

4 Note that absolute values are not required here, since singular values are positive by de�nition
[BSMM01].
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Figure 5.15: Average condition numbers in dependence on coupling parameters.
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5.3 Simulation of the Pure Poisson-Nernst-Planck System

order of 1022. For these large condition numbers, the matrices can said to be very
close to singularity, making numerical operations with these matrices � like solving
linear systems and also the computation of singular values themselves � extremely
unstable.
It is possibly that this property leads to some failures in the computation of the

condition numbers. While for the one-dimensional case all computations were suc-
cessfull, in the two-dimensional case 43 out of the 961 computations failed, as can be
seen from missing values in �gure 5.15.
Note that the magnitude of these values roughly coincides with the results presented

in [LHMZ10], where the condition numbers for the Poisson-Nernst-Planck problem
applied to a biomolecular di�usion-reaction process were investigated.
In the context of the generally high condition numbers it is of interest, in which

region typical physical problems are located. Considering ion migration in a battery
as a typical physical example, we can use the following parameters

D ≈ 2 · 10−10 m2

s

L ≈ 0.5 mm

τ ≈ 1 s

F ≈ 96485.341 As
mol

ε ≈ 7.0833503 · 10−10 A2s4

kgm3

Φ̄ ≈ 1 V

c̄ ≈ 1 mol
l

to estimate λ and σ

λ =
D τ

L2
≈ 0.0008, σ =

L2F

εΦ̄
c̄ ≈ 3.4053569 · 1010.

These values place the condition at approximately 1011 in the one-dimensional case
and 1015 in the two-dimensional case, which are both very large conditions. This
con�rms our previous assumptions on the sti� coupling between the two equations
and justi�es the full implicit treatment of the Poisson-Nernst-Planck system. At the
same time the large condition numbers serve as a warning that small residuals in the
numerical solver may be connected to large errors in the solution vector [SK91].

5.3.3 Comparison with Analytic Approximations

As noted in section 4.2.3, analytical approximations to the solutions rely on restrictive
assumptions to the equation parameters. However, even within these restrictions the
analytical expression does not solve the equations exactly, but produces a residual. In
this section we will compare the numerical solutions from our solver with the analytical
approximation to a problem presented in [GT09].
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5 Numerical Results

The model problem has the properties

c0
..= ci(x, 0) = 6.022142e19 1

mol
,

D = 1 · 10−16m2

s
,

z = ±1e,
T = 438K,
εr = 4.0,
V = 0.1V,
L = 30µm.

The expression presented in this paper provides a good qualitative approximation
to the test problem, however the quantitative accuracy can be improved upon. This
may be noticed in the value of the normalized local residual5

R(x, t) ..=

∣∣∣∣∇
(
−D∇ c

c0

− De

kT
∇Φ

c

c0

)
+

1

c0

dc

dt

∣∣∣∣ ,

which appears su�ciently small with values as low as 1.22 · 10−48 in the center of the
domain and up to 3.49 ·10−5 close to the boundary, but is large compared to residuals
obtained from numerical solutions.
In order to compare the numerical and analytical approximations, we study the

L1 and L∞ norms of the residual function. The evaluation of the analytical residual
was obtained using mapleX [Map16]. For the analytical approximation we could not
compute the L∞ norm directly, but were forced to estimate it by checking for the
maximum value of the residual function in table 5.5. We have collected the respective
norm values in table 5.6, where we see that the numerical residual is several orders
of magnitude lower than that of the analytical approximation. Consequently the
analytical approximation has very little value, as the numerical solution of the system
provides much better accuracy. These residuals ultimately translate to errors in the
solution function, which may distort the relevant features of the system, such as the
deviation from the initial concentration functions or the �ux value.

5.3.4 Convergence Results

One of the most important properties for numerical schemes solving discretized dif-
ferential equations is the respective convergence behavior. For sensible numerical
schemes we generally expect that with increasing discretization e�ort the accuracy of
the solution increases. So in addition to qualitative observations of solution behav-
ior we also investigate the rates of convergence, which relate the e�ort spent on the
solution with the reduction of the error.

5 Recall that c = c(x, t) and Φ = Φ(x, t).
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5.3 Simulation of the Pure Poisson-Nernst-Planck System

Point of evaluation t = 10 t = 100 t = 1000

R(0, t) 2.12 · 10−46 3.91 · 10−47 1.22 · 10−48

R(0.9 · L, t) 1.51 · 10−9 1.51 · 10−9 1.51 · 10−9

R(0.99 · L, t) 7.78 · 10−6 5.98 · 10−6 1.37 · 10−5

R(0.999 · L, t) 1.45 · 10−5 1.77 · 10−5 3.49 · 10−5

R(L, t) 1.44 · 10−5 2.18 · 10−5 3.87 · 10−5

Table 5.5: Value of the local residual R(x, t) for the analytical approximative solution
to the model problem.

Analytical approximation

Norm t = 10 t = 100 t = 1000

L1 9.01 · 10−12 8.87 · 10−12 1.82 · 10−11

L∞ (approx.) 1.44 · 10−5 2.18 · 10−5 3.87 · 10−5

Numerical approximation

Norm t = 10 t = 100 t = 1000

L1 1.12 · 10−16 1.17 · 10−16 7.46 · 10−16

L∞ 6.59 · 10−14 6.61 · 10−14 2.55 · 10−13

Table 5.6: Norms of the residual function R(x, t).

We compute the estimated error for the full solution vector, that is both species
concentrations and the electric potential in their physical scaling units. The �nest
resolution in both space and time is considered the true solution u0, and we compute

εg,t,k =
‖utg − u0‖k
‖u0‖k

,

where the subscript g indicates the grid discretization, the superscript t the time
discretization and the subscript k the norm type. We evaluate the norms L1, L2, L∞,
and the H1 norm and H1 seminorm.
As a benchmark system, we solve a one-dimensional test problem of the PNP

system, in this case without the coupled heat equation. The system represents a
crude one-dimensional approximation to a battery sytem with �xed current across
the boundaries. The simulation domain is [0 : L] × [0 : tend] with L = 5 · 10−5m and
tend = 10s. The discretization consists of �nite elements of order one, the temperature
is held constant at T = 438K.
For the Poisson equation we set εr = 4.0 and the Dirichlet boundary conditions of

Φ(0) = 0 and Φ(1) = 0.1.
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5 Numerical Results

Property Symbol Unit Species 0 Species 1

Charge z e +1 −1

Di�usion coe�cient D m2

s
1.0 · 10−16 1.0 · 10−16

Initial concentration c0
1
m3 6.022142 · 1019 6.022142 · 1019

BC at x = 0 J0
1

m2·s 6.022142 · 1012 6.022142 · 1012

BC at x = 1 J1
1

m2·s −6.022142 · 1012 −6.022142 · 1012

Table 5.7: Species properties used in the convergence tests.

We simulate two ionic species with the properties listed in table 5.7.

Separate Time and Space Convergence

We present separate convergence results for re�nement in the time discretization and
the space discretization in �gure 5.16. In �gure 5.16a we see that the initial grids
do not su�ciently resolve the solution behavior, as the preasymptotic behavior of the
error is near constant for the initial re�nement steps. However, after passing a certain
threshold of degrees of freedom, the convergence rate of the L� norms is of second
order while the convergence order of the H1 based norms is of �rst order, as we would
expect from general �nite elements. Furthermore we notice that the graphs for the
relative error of the H1 norm and the H1 seminorm lie exactly on top of each other.
This is due to the fact, that the absolute error values of the H1 seminorm are several
orders of magnitude larger than the L2 error, leading to the domination of the H1

error by the H1 seminorm.
From �gure 5.16b we can deduce that there is no preasymptotic plateau for the time

re�nement. Throughout the re�nement process, the error show �rst order convergence
with respect to all grid norms, as we expect from a time discretization with an implicit
Euler method.

Combined Time and Space Convergence

Following general practice, we will test whether the separate convergence rates can
be combined. To account for the preasymptotic plateau in the error during the grid
re�nement, we begin the joint re�nement on a �ner grid, which is su�ciently �ne to
resolve the solution characteristics. The measurement is started on level zero with
δx0 = 1

320
and δt0 = 1.0. For subsequent levels we set δxn = δxn−1

2
and δtn = δtn−1

4
.

The levels show the relative error value

εn,k =
‖un(tend)− uN(tend)‖k

‖uN(tend)‖k
, (5.1)

where ε denotes the error, n the current re�nement level, N the maximum computed
re�nement level and k the norm type being used. The maximum level with which
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Figure 5.16: Separate convergence results for the one-dimensional test case with in-
homogeneous �ux boundary conditions.
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Figure 5.17: Convergence of coupled PNP system with constant temperature.

Relative error of concentration and potential functions

#cells δt L1 L2 L∞ H1 semi H1

320 1 4.01 · 10−2 3.48 · 10−1 4.65 · 10−1 8.14 · 10−1 8.14 · 10−1

640 2.50 · 10−1 1.30 · 10−2 1.51 · 10−1 1.66 · 10−1 5.40 · 10−1 5.40 · 10−1

1280 6.25 · 10−2 3.00 · 10−3 4.14 · 10−2 5.17 · 10−2 2.76 · 10−1 2.76 · 10−1

2560 1.56 · 10−2 7.53 · 10−4 1.05 · 10−2 1.54 · 10−2 1.37 · 10−1 1.37 · 10−1

5120 3.91 · 10−3 1.83 · 10−4 2.57 · 10−3 4.02 · 10−3 6.71 · 10−2 6.71 · 10−2

10240 9.77 · 10−4 3.90 · 10−5 5.79 · 10−4 1.05 · 10−3 3.00 · 10−2 3.00 · 10−2

Table 5.8: Relative error of the coupled Poisson-Nernst-Planck system with constant
temperature.
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Property Symbol Unit Species 0 Species 1

Charge z F +1 −1

Di�usion coe�cient D m2

s
1.0 · 10−4 1.0 · 10−4

Initial concentration c0
mol
m3 1.0 1.0

BC at x = 0 J0
mol
m2s

0.0 0.0

BC at x = 1 J1
mol
m2s

0.0 0.0

Table 5.9: Properties of the species used in the convergence test with the heat equa-
tion.

we compare in this benchmark is level 6 with δx6 = 1
20480

and δt6 = 1
4096

= 2.44 ·
10−4, which does not appear as a measurement as the error result would, by its very
de�nition in (5.1), be zero.
The results are presented in �gure 5.17 and table 5.8. We see that the error in

the L� norms still decrease with second order, while the H1 norm and seminorm
error decrease with �rst order in terms of re�nement steps. Since each re�nement
step represents two steps of the previous time re�nement, the results from the joint
re�nement process are consistent with those from the separate re�nement.

5.4 Simulation of the Coupled

Heat-Poisson-Nernst-Planck System

In the previous benchmark, the temperature was kept constant. In the following setup
we will investigate the fully coupled Heat-Poisson-Nernst-Planck system, observing
the convergence behavior for both, the vector of species and potential functions and
the temperatur solution. For the second benchmark, we utilize the general setup of the
previous one with some modi�cations. With the homogeneous boundary conditions,
this setup may be regarded as a crude model for a capacitor instead of a battery.
The problem is one-dimensional with the simulation domain [0 : L] × [0 : tend]

with L = 1.0m and tend = 10s. The discretization consists of �nite elements of order
one, the temperature begins at T = 438K. As before we set εr = 4.0 and Dirichlet
boundary conditions of Φ(0) = 0 and Φ(1) = 0.1 for the Poisson equation. For
the heat equation we set the thermal di�usivity k = 1.0 and boundary conditions
T (0) = 300K and T (1) = 300K. The coupling is set to β = 1.0 · 102 · ‖∇Φ‖. The
properties of the two ionic species are listed in table 5.9.
Again, the measurement is started on level zero with δx0 = 1

320
and δt0 = 1.0. For

subsequent levels we set δxn = δxn−1

2
and δtn = δtn−1

4
.

For the PNP solution we measure the error exactly as before (5.1), and use the
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Figure 5.18: Solution functions for the coupled Heat-Poisson-Nernst-Planck system.

equivalent formula for the solution of the heat equation

εn,k =
‖Tn(tend)− TN(tend)‖k

‖TN(tend)‖k
,

where all entries are as before, but we exchanged the vector valued function ~u(x, t)
with the scalar function T (x, t). As before, the maximum level N with which we
compare in this benchmark is level 6.
We show the structure of the four di�erent solution functions in �gure 5.18, where

we clearly see the dominance of the boundary behavior for the concentration functions
and the electric potential, which can be interpreted as the formation of an electric
double layer.

Convergence on uniform grids

Given the previous results, the results on uniform grids displayed in �gure 5.19 do not
hold any surprises. The convergence behavior for the Poisson-Nernst-Planck solution
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(b) Convergence of the temperature function.

Figure 5.19: Convergence of the coupled Heat-Poisson-Nernst-Planck system on uni-
form grids.
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Relative error of concentration and potential functions

#cells δt L1 L2 L∞ H1 semi H1

320 1 1.99 · 10−3 1.17 · 10−2 9.82 · 10−2 5.58 · 10−1 5.58 · 10−1

640 2.50 · 10−1 5.90 · 10−4 4.39 · 10−3 5.27 · 10−2 3.51 · 10−1 3.50 · 10−1

1280 6.25 · 10−2 1.54 · 10−4 1.28 · 10−3 2.10 · 10−2 1.93 · 10−1 1.93 · 10−1

2560 1.56 · 10−2 3.84 · 10−5 3.35 · 10−4 6.90 · 10−3 9.94 · 10−2 9.94 · 10−2

5120 3.91 · 10−3 9.22 · 10−6 8.22 · 10−5 1.99 · 10−3 4.89 · 10−2 4.89 · 10−2

10240 9.77 · 10−4 1.87 · 10−6 1.79 · 10−5 5.30 · 10−4 2.19 · 10−2 2.19 · 10−2

Relative error of temperature function

#cells δt L1 L2 L∞ H1 semi H1

320 1 2.64 · 10−4 2.90 · 10−4 3.98 · 10−4 2.24 · 10−1 9.77 · 10−4

640 2.50 · 10−1 7.76 · 10−5 8.51 · 10−5 1.17 · 10−4 6.84 · 10−2 2.97 · 10−4

1280 6.25 · 10−2 2.03 · 10−5 2.23 · 10−5 3.06 · 10−5 2.04 · 10−2 8.77 · 10−5

2560 1.56 · 10−2 5.10 · 10−6 5.59 · 10−6 7.66 · 10−6 7.07 · 10−3 2.99 · 10−5

5120 3.91 · 10−3 1.22 · 10−6 1.33 · 10−6 1.83 · 10−6 2.94 · 10−3 1.23 · 10−5

10240 9.77 · 10−4 2.42 · 10−7 2.65 · 10−7 3.64 · 10−7 1.25 · 10−3 5.21 · 10−6

Table 5.10: Relative error of the coupled Heat-Poisson-Nernst-Planck system.

shows the same behavior as in the test cases with constant temperature. The solution
to the heat equation shows similar behavior, as the L� norms converge with second
order. The H1 norm and seminorm initially show an error reduction which is closer
to second than to �rst order, however after some re�nement steps the slope is reduced
and shows standard behavior. Compared to the concentration and potential functions
we notice that theH1 norm and seminorm curves are clearly separated, indicating that
the absolute values of the error in the derivative are clearly not as dominant.

5.4.1 Convergence on Graded Grids

As we can see in �gure 5.18, the dominant changes in the solution functions occur on
the boundary of the domain. As discussed in section 4.4.3 of the previous chapter,
this was to be expected and leads to the assumption of non-uniform error distribution
on the domain, which we counter by grading the distribution of degrees of freedom.
As an initial approach we investigate a grading function, which distributes all addi-

tional degrees of freedom towards the boundary and leaving the interior points static.
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Figure 5.20: Comparison of �rst �ve instances of graded grids, `naive' grading left,
improved grading right. It can be clearly seen that the naive grading
exclusively re�nes towards the interval boundary, while the improved
grading re�nes all elements of the grid.

For an interval [a, b] we let N be an even number and set the grid points

xj =





a if j = 0

a+ b−a
2
· 2−(N

2
−j) if 0 < j ≤ N

2

b− b−a
2
· 2−(j−N

2 ) if N
2
< j < N

b if j = N

which are exponentially �ner towards the boundary of the domain, compare �gure
5.20.

Comparing these grids among themselves by the scheme used in the previous section,
�gure 5.21a initially seems to indicate that exponential convergence could be achieved.
Even the error in the L� norms of the temperature function appears to decrease, despite
the fact the error in the solution of the heat equation is expected to be uniform on the
domain. However, this measurement is incomplete. A comparison of the solution on
the re�ned graded grids to the full grid solution results in stagnation after a certain
point, indicating that the series of solutions on the graded grids converges to a di�erent
solution than those on the full grids, compare �gure 5.21b.

Since additional degrees of freedom are spent exclusively towards the boundary, the
error on the interior is not reduced and consequently the solution does not converge
to the full grid solution. Thus we present the following improved distribution of �nite
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Figure 5.21: (Failing) convergence on naively graded grids.
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Figure 5.22: Convergence on grids with improved grading.
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element points

xj =





a if j = 0

a+ (b−a)
2
·
(

2
N
2
−1 · aj

aN
2
·2N

2 −1

)
if 0 < j ≤ N

2

b− (b−a)
2
·
(

2
N
2
−1 · a(N−j)

aN
2
·2N

2 −1

)
if N

2
< j < N

b if j = N

ai =

(
3
2

)i − 1
3
2
− 1

= 2 ·
(

3

2

)i
− 2.

This grading still re�nes the grid exponentially towards the boundary, but with a
factor of 2

3
instead of 1

2
. As a direct result, subsequent grids do not have identical grid

points, but all intervals/�nite elements are re�ned, see �gure 5.20.
When comparing this new grading against the �nest graded grid, we notice that

we are not achieving the same � seemingly ideal � rates as the naively graded grids,
compare 5.22a. However, we need to remind ourselves that the exponential conver-
gence of the naive grids was only achieved compared to grids of the same type, while
comparison with the full grid showed stagnation of the error. In contrast, the solution
functions on the better graded grids converge not only towards the solution of the �nes
graded grid, but also towards the solution of the �nest full grid, as demonstrated in
�gure 5.22b. The convergence rates are an improvement compared to the convergence
rates on the uniformly re�ned grids, see table 5.11. There we see, that the conver-
gence rates initially increase with additional degrees of freedom. However hopes for
exponential convergence are not ful�lled, as the convergence rates drop infrequently.
Nevertheless, the reduction in error compared to the e�ort in degrees of freedom is
substantial. The low amounts of ressources spent on the re�ned graded grids allows
us to reach far higher levels of re�nement compared to the uniform grid re�nement.

5.4.2 Adaptive Re�nement

Finally, we compare the performance of the graded grids with an adaptive re�nement
based on the Kelly error estimator [KGZB83], which we already introduced in section
4.4.3. Several di�erent approaches to adaptivity and the underlying error estimation
can be taken. In this case, we let the solver take ten timesteps on the current coarse
grid before estimating the error on this grid and re�ning a preset fraction of the cells
for which the estimated error is largest. Selecting a �xed fraction of the cells allows
to retain control of the degrees of freedom accumulated over several iterations of the
re�nement procedure. Furthermore, the absolute value of the error estimated by the
Kelly procedure does not necessarily coincide with the actual error, since it is based
on the generalized poisson problem. In our particular test case we set this fraction to
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Figure 5.23: Convergence on adaptively re�ned grids.
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Convergence rates

#cells δt L1 L2 L∞ H1 semi H1

16 1 3.38 2.20 3.92 1.10 1.10

18 2.50 · 10−1 4.82 3.29 3.57 1.78 1.78

20 6.25 · 10−2 6.63 4.89 2.58 2.60 2.60

22 1.56 · 10−2 7.64 6.60 4.26 3.43 3.43

24 3.91 · 10−3 6.96 7.75 6.83 3.61 3.61

26 9.77 · 10−4 5.04 6.42 7.14 4.99 4.99

28 2.44 · 10−4 4.18 2.62 1.09 9.75 9.75

30 6.10 · 10−5 6.06 3.25 2.40 7.51 7.51

32 1.53 · 10−5 11.38 8.63 7.18 14.60 14.60

Table 5.11: Table of convergence order p = ln
(
εi−1

εi

)/
ln
(

ni

ni−1

)
on grids with im-

proved grading. Note the low increase in cell numbers.

20%, while at the same time setting δtk+1 = δtk

2
. For the next step the re�ned grid

becomes the current coarse grid and the procedure is iterated.
In �gure 5.23a we have plotted the convergence of the re�ned error. Compared to

the previous results from the graded grids, we are able to produce much lower relative
error values. However, this result is only achieved at some cost, when we compare
the number of cells used for each result. Just by counting the degrees of freedom,
the improved graded grids and the adaptive re�nement achieve results where the
error is of the same order. In order to construct the adaptive re�nement however,
we needed to solve the problem several times on the coarser grids, adding additional
computational expenses. Thus we conclude that for suitable problems, where the
location of the error can be estimated to be on or close to the boundaries, the grids
relying on improved grading are the premium choice, while the adaptive grids have
their merits for problems with unknown characteristics.

5.5 Computation of Derived Properties and

Sensitivity Analysis

Similarly to the fact that in the molecular dynamics simulation the individual trajec-
tories are not the �nal objective of the simulation, scientists involved in physical or
material research are ultimately interested in values derived from the solutions to the
macroscopic Di�erential Equations, which characterize a speci�c performance prop-
erty which they intend to improve. Actual application of simulation to engineering
problems also carries additional challenges. Often input data is not a single set of
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exact values, either due to missing information, inaccurate measurements or varying
production results. In order to quantify the uncertainty of the resulting values in de-
pendence of the input uncertainty, it is important to identify critical parameters which
have a strong in�uence on the output, as opposed to parameters whose in�uence on
the measured values are insigni�cant.
In the following section we will compute solutions to the PNP with physical pa-

rameters and boundary conditions geared towards a speci�c objective in the �eld of
battery research. In particular, we will use the potential and concentration pro�les
to compute the conductivity of the simulated ion solution, as well as the relative
contributions of the individual ions to the current, which is generally known as the
transference number.
Furthermore, we will use some tools from the �eld of uncertainty quanti�cation

to study the in�uence of input parameters on the resulting variables. The results
of the sensitivity analysis are not only relevant for this particular application, but
allow general considerations which parameters have the strongest in�uence on the
simulation results.
Most of the work described in this chapter was carried out within contract for

BASF6.
The scope of the project was

� to investigate transport parameters with methods based on �nite elements,

� speci�cally to obtain the conductivity and transference number in dependence
of the salt concentration

� and to perform sensitivity analysis on the results.

Speci�cations for the design of the experiment and the material parameters used
were provided by BASF. The permission of BASF to publish the results of this work
in the scope of this thesis is gratefully acknowledged.

5.5.1 Parameters and Design of Experiment

The simulation is intended to reproduce experiments of lithium hexa�uorophosphate
(LiPF6) salt in 1:1 ethylene carbonate (EC) and dimethyl carbonate (DMC) elec-
trolyte, a mixture which is commonly found in current battery systems.
The di�usion and chemical potential parameters for di�erent concentrations were

provided by BASF, see table 5.12.

6 BASF SE is an internationally operating company with its headquarters in Ludwigshafen, Ger-
many. The company was founded 1865 as �Badische Anilin und Soda Fabrik� producing dyes.
Since then it has signi�cantly expanded its portfolio, providing chemical solutions to a wide
range of industrial areas. As of 2015, approximately 112,000 employees produced a revenue of
70,449 million e [BAS].
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Salt concentration
[
mol
l

]
Di�usion

[
10−10m2

s

]
Chemical potential

[
kJ
mol

]

Li PF6 Li PF6

0.1 4.67 7.03 −5.45468 2.38352

0.3 3.87 6.12 −5.16606 2.25229

0.5 3.43 5.03 −4.93180 2.14444

0.7 3.02 4.30 −4.73788 2.05417

0.9 2.58 3.53 −4.57703 1.98041

1.0 2.24 3.29 −4.50650 1.94811

1.1 2.00 2.94 −4.44203 1.91882

1.3 1.67 2.51 −4.32887 1.86804

1.5 1.39 1.84 −4.23319 1.82647

1.7 1.12 1.63 −4.15168 1.79188

Table 5.12: Di�usion and chemical potential of LiPF6 in 1:1 EC:DMC at 25◦C as
measured by BASF.

Further parameters are

� the length of a cell L = 0.5mm,

� the voltage U0 = 0.01V ,

� the dielectricity constant εr = 25,

� the double layer capacitance Ĉ = 10 µf
cm2 .

The �rst two of these parameters are exact, as they are external parameters of the
setup. The parameters ε and Ĉ however are potentially inaccurate, as they were only
estimated. The dielectricity is known for pure EC:DMC mixture (measured to be 36),
but the value of the dielectricity will decrease as soon as salt is added to the mixture.
Therefore, we use an estimated value of 25 and will need to pay special attention
to the sensitivity of the results to the dielectricity. Similarly, the capacitance of the
double layer at the electrode is an estimate established with the experts at BASF
during the course of the project [Gol14].
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5.5.2 Results

Conductivity

The simulations are carried out with isolating boundary conditions for the ion �ux,
setting

Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)
= 0

at the electrode positions. For the electric �eld Robin boundary conditions as in-
troduced in section 4.3.4 are used with the coe�cients derived from the capacitor
equations on the electrode surface [LFJ11]

∇Φ · ~n =
Ĉ

ε
Φ− Ĉ

ε
Φ0,

where Φ0(0) = 0 and Φ(L) = U0.
For the computation of the conductivity, the current I is measured in the bulk over

the simulation time of 0.1s and its decreasing curve is �tted to I(t) = I0 · exp(− t
τ
),

the charging current of a capacitor. The conductivity follows from the quotient I0·L
U0·A

[Moo10]. For the projected cross section on the 1D simulation we use an area of 1m2.
In the simulation results presented in �gure 5.24a we observe a monotonous increase

of the conductivity between the concentration values 0.1mol
l

and 0.95mol
l
. At 0.95mol

l

a maximum of 1.97 · 10−2 S
cm

is reached. For higher concentrations the conductivity
shows a decreasing tendency, however it is not monotonous, displaying another local
maximum at 1.25mol

l
.

Comparison of simulation results of conductivity with experimental values is only
possible to a limited extend. While the input parameters for the PNP were measured
at 25◦C, the conductivity measurements were carried out at 35◦C. In order to address
this mismatch, the simulation was carried out with the input values as reported,
however the simulation temperature was set to 35◦C. Nevertheless, we expect some
deviation in the quantitative results, as critical values such as di�usion coe�cients and
chemical potential are expected to vary with such a signi�cant increase in temperature.
In order to address this issue, extended analysis of simulation uncertainty is performed.
Furthermore, the density of experimentally obtained samples is considerably lower

than the one of the simulation results (11 vs. 65 data points, compare tables 5.18
and 5.17). In the experiment no individual error estimates for the data points were
obtained, but the general accuracy of the method was estimated to be around 1.5%
[Eid16].
Nevertheless, the two plots of the respective data show considerable similarity in

their qualitative behavior, see �gure 5.24. The graph presenting the experimental
results also shows two local maxima, 1.52 · 10−2 S

cm
at 0.9mol

l
and 1.55 · 10−2 S

cm
at

1.1mol
l
, the locations of which are in very good agreement with the locations of the
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Figure 5.24: Conductivity in dependence on concentration.

maxima in the simulated results. Further similarity can be seen in the subsequent
decrease of the conductivity for higher concentrations, as both curves show a �nal
increase in the slope.

Despite the mismatch in the experimental temperature, we observe a high agreement
in the qualitative behavior of the conductivity data for simulation and experiment.
The quantitative results are measurably lower in the experiment, however still within
the region of uncertainty, which is more than was to be expected for the mismatching
coe�cients.

Transference Number

In the following, we precede the computation of the transference number t+ with
a computation of the conductivity at the corresponding concentration at isolating
boundary conditions as described in the previous chapter in order to obtain the con-
ducted current. However, in contrast to the simulations in the previous section, here
we used a simulation temperature of 25◦C, which coincides with the temperature at
which the input coe�cients were obtained.

In a follow up simulation, we use the obtained current I0 to set the appropriate
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Figure 5.25: Transference number in dependence of concentration. Numeric results
can be found in table 5.19.

boundary conditions for the Li-current

Di

(
∇ci +

ziF

RT
ci∇Φ +

1

RT
ci∇µi

)
= I0

in order to have a proper representation of non-isolating electrodes on the boundary
for the computation of the transference number [Zug11]. As before, we assume a cross
section of 1m2 for the 1D projection.
In order to compute the transference number, the ion �ux of the individual species

is measured in the bulk. The transference number is the quotient ILi

Itotal
[Zug11].

The transference number of the lithium ion derived from the simulation does not
show clear dependence on the concentration. The expectation on this behavior is
disputed in the literature. While some experiments observe no signi�cant variation
[VR05], others report a clear trend in concentration dependence [ZFA+11]. However,
the latter survey does not give error indicators and the quantitative trend is lower
than the errors indicated in other works.
In comparison with the quotient of the di�usion coe�cients DLi/(DLi + DPF6), a

very high qualitative and quantitative similarity of the curves can be noticed, compare
�gure 5.25. This relation can be expected for dissociated electrolytes and furthermore
corresponds with the experimental method for measurement of the transference num-
ber via NMR spectroscopy [Zug11].
Other experimental data from [NGL+11] �ts exceptionally well with our results,

although we need to point out, that values given in the literature vary signi�cantly,
with e.g. [LJK+02], [BPT+15] and [MB03] giving values for the transference number
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both higher and lower than our results. However we would like to draw attention to
the fact that the more recent experimental results are closer to our simulation output.
Together with the results of the sensitivity analysis, which we present in the fol-

lowing section, we obtain the impression of close � and in its tendency distinct �
dependency of the transference number values on the relation of di�usion coe�cients.

5.5.3 Sensitivity Analysis

In this section we will analyze the e�ect that possible deviations of the input data
would have on the simulation results. We will achieve this by various repetitions of
the simulations with varying input parameters within the range of the estimate of
inaccuracy established with the experts from BASF during the course of the project
[Gol14].

The following parameters will be varied:

� Dielectricity constant ε in the interval [20; 30]

� Double layer capacity C in the interval [0.05; 0.15]

� Constant deviation of the di�usion coe�cient αDi
in the interval

[−0.5 · 10−10; 0.5 · 10−10]

� Linear deviation of the di�usion coe�cient βDi
in the interval [−0.05; 0.05]

� Linear deviation of the chemical potentials βµi in the interval [−0.05; 0.05]

For the concentration dependent coe�cient functions f(c), the modi�cation will be
of the type α + β · f(c) with f ∈ {Di, µi} and i ∈ {Li, PF6}. We do not vary the
chemical potential function by a constant, as only its gradient is present in the PNP
system, and as such any constant deviation is irrelevant in the scope of this equation
system.

To investigate the sensitivity we compute the simple Pearson correlation matrix
and the partial correlation matrix. We chose 1.0 mol

l
as basis concentration, as this

is on the maximum plateau and a common reference value in the literature. For
general interpretation of coe�cient matrix results, we would like to point the reader
to [HJSS06], and also to [Ans73], where several intriguing examples for misleading
correlation values were constructed. With these examples in mind, we will expand our
analysis to include partial correlation results which will at least remove the in�uence
from the other varied parameters.
In the following section we turn to variance analysis of the results, in order to

quantify the relative strength of the contribution of the di�erent variables, identi-
fying relevant design parameters compared to negligible in�uences on the measured
properties.
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Pearson correlation matrix

ε C βµLi
βµPF

αDLi
βDLi

αDPF
βDPF

t+ Λ

ε 1.0

C 0.0 1.0

βµLi
0.0 0.0 1.0

βµPF
0.0 0.0 0.0 1.0

αDLi
0.0 0.0 0.0 0.0 1.0

βDLi
0.0 0.0 0.0 0.0 0.0 1.0

αDPF
0.0 0.0 0.0 0.0 0.0 0.0 1.0

βDPF
0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

t+ 1.1−6 4.1−18 0.0 0.0 5.4−1 1.8−1 −8.0−1 −1.8−1 1.0

Λ 1.4−2 5.1−19 0.0 0.0 6.8−1 2.2−1 6.8−1 1.5−1 −1.7−1 1.0

Table 5.13: Pearson correlation matrix of input and output parameters. The subscript
denotes the exponent of scienti�c notation to the base 10.

Correlation Matrices

Following [HD00], the entries of the Pearson correlation matrix will be computed by

Corr(x, y) =

∑
i(xi − 〈x〉)(yi − 〈y〉)√∑

i(xi − 〈x〉)2
∑

i(yi − 〈y〉)2
.

The partial correlation indizes can be computed from these values by regression as
decribed in [HJSS06]. Both provide a measure for the strenght of the linear relation
between the respective variables. The partial correlation accounts for correlations
between the other involved variables and removes these in�uences in order to have
the pure relation between the variables for which the partial relation is computed.
The results in table 5.13 give clear indication of independence of both � conductivity

Λ and transference number t+ � of the chemical potential parameters βµi . While the
correlation with the capacitance C is non-zero, the low magnitude of the coe�cients
allows the same conclusion for this variable. The coe�cients for the dielectricity ε and
di�usion scaling parameters βDi

similarly suggest a non-relation, however given the
variation of multiple variables at the same time, this is inconclusive from the Pearson
correlation alone. Similarly, the constant additions to the di�usion parameters αDi

indicate a relation to conductivity and transference number, but here the values are
small enough to warrant suspicion.

When checking the results from the partial correlation in table 5.14, the previous
suspicion is proved justi�ed in all three instances. The results indicate a close to linear
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5 Numerical Results

Partial correlation matrix

t+ Λ

ε 1.26124 · 10−5 9.87690 · 10−1

C 4.87601 · 10−17 2.29721 · 10−16

βµLi
0.0 0.0

βµPF
0.0 0.0

αDLi
9.88396 · 10−1 9.99995 · 10−1

βDLi
9.05353 · 10−1 9.99950 · 10−1

αDPF
−9.94589 · 10−1 9.99995 · 10−1

βDPF
−9.05586 · 10−1 9.99893 · 10−1

Table 5.14: Partial correlation matrix between input and output.

correlation from the respective changes in the di�usion coe�cients αDi
and βDi

with
both the values of the conductivity Λ and the transference number t+. The change of
sign for the correlation of the PF6 compared to the Li di�usion coe�cient is expected,
as a higher mobility of the PF6 ions increases their relative contribution to the current
and equivalently reduces the Li contribution. While we notice that the dielectricity ε
does have an almost linear correlation with the conductivity Λ, this does not hold for
the transference number t+. Furthermore, the values of the double layer capacitance
C and the chemical potential βµi do not show evidence of a linear correlation, also
con�rming the results of the simple correlation matrix.

Analysis of Variance

In addition to analyzing the correlations between the input and output values, which
only catch linear dependencies, we perform variance-based decomposition in order to
determine the sensitivity of the output to changes in the various input values and
check for indications of non-linear correlations.

We compute two parameters, the so-called Sobol indizes, the �main e�ect sensitiv-
ity� Si and �total e�ect index� Ti, compare [ABB+13a, ABB+13b] and for additional
information and interactions of higher order [TIE10]. Both indices measure the pro-
portion of the variance in the simulated result which stems from the variation of the
corresponding parameter with index i. The value Si determines the in�uence of the
variable i by itself, while Ti determines the in�uence of i in connection with other
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5.5 Computation of Derived Properties and Sensitivity Analysis

Conductivity

Si (main e�ect sensitivity) Ti (total e�ect index)

1.880 · 10−3 1.902 · 10−3 ε

3.891 · 10−34 4.358 · 10−32 C

3.891 · 10−34 1.283 · 10−31 βµLi

9.727 · 10−33 2.361 · 10−31 βµPF

4.676 · 10−1 4.676 · 10−1 αDLi

2.276 · 10−2 2.276 · 10−2 βDLi

4.592 · 10−1 4.592 · 10−1 αDPF

4.857 · 10−2 4.857 · 10−2 βDPF

Table 5.15: Sobol indizes of �rst order for conductivity measurements. Shades of green
highlight the parameters with the highest sensitivity values.

variables. The two values are de�ned by

Si ..=
V arxi

[E(f(x)|xi)]
V ar(f(x))

,

Ti ..=
E(V ar(f(x)|x−i))

V ar(f(x))
=
V ar(f(x))− V ar(E[f(x)|x−i])

V ar(f(x))
.

For the sensitivity of the conductivity presented in table 5.15, the two types of Sobol
coe�cients show very little discrepancy, indicating that higher order interactions will
be negligible for the simulation. Indeed, when we compute the Sobol indizes of higher
order Sij, their values are several orders of magnitudes smaller than those of the
relevant singular indices.7

From the values of the indices we learn that constant additions to the di�usion
coe�cients αDi

result in the strongest in�uence on the conductivity results, and the
impact of the coe�cients of both species is approximately the same. The second
largest in�uence from linear scaling of the di�usion coe�cients βDi

is roughly an order
of magnitude lower, however, here we observe a stronger in�uence of the variance of
the di�usion coe�cient of hexa�uorophosphate. These two facts indicate that absolute
changes of either mobility and not their relation are of importance, as the constant
changes of the di�usion coe�cients are of the same amount, while the linear scaling
is dependent on the original values of the di�usion coe�cients, providing a scaling to
the actual value of change of the input parameters. Since the main e�ect sensitivity

7 The highest value for the interaction of dielectricity ε and αDPF
was 1.131 · 10−5, two orders of

magnitude below the singular Sobol indices for the dielectricity and four orders of magnitude lower
than the indizes for αDPF

.
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5 Numerical Results

Transference number

Si (main e�ect sensitivity) Ti (total e�ect index)

2.582 · 10−12 2.685 · 10−10 ε

5.827 · 10−34 1.253 · 10−32 C

5.827 · 10−34 1.188 · 10−31 βµLi

1.960 · 10−32 2.991 · 10−31 βµPF

6.401 · 10−1 6.407 · 10−1 αDLi

3.246 · 10−2 3.283 · 10−2 βDLi

2.943 · 10−1 2.948 · 10−1 αDPF

3.217 · 10−2 3.254 · 10−2 βDPF

Table 5.16: Sobol indizes of �rst order for the transference number. Shades of green
highlight the parameters with the highest sensitivity values.

is based on variance, we compare the ratios of the square roots and �nd
√
SβDLi√
SβDPF6

= 0.685 ≈ 0.681 =
DLi

DPF6

,

a relation which which supports the previous conclusion, the variance induced by the
scaled contributions relate almost exactly as the original base values of the respective
input parameters.
Compared to the di�usion coe�cients, the other input variables do not have such

a strong in�uence on the outcome of the simulation. The impact of the dielectricity
ε of the solvent is reduced by one or respectively two orders of magnitude compared
to the di�usion values, but still discernible. The Sobol indizes of the capacitance C
and chemical potential parameters βµi however indicated that their variations have
negligible impact on the simulation results. As a result we conclude that no indications
of additional non-linear correlations are present.

Analyzing the variance of the transference number, presented in table 5.16, the
values of Sobol indices of higher order Sij are again several magnitudes smaller than
those of the singular indices8, while the main e�ect sensitivity and total e�ect index
are again numerically similar.
The highest contributions to variance in the transference number are as before the

constant additions to the di�usion coe�cients αDi
, followed by their respective linear

scaling βDi
, again with approximately an order of magnitude lower in�uence. Opposed

8 The highest value of impact with 3.549 ·10−4 is now achieved by the interaction of αDLi
and βDLi

,
respectively two and three orders of magnitude below the relevant singular indices.
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5.5 Computation of Derived Properties and Sensitivity Analysis

to the conductivity results, the variance analysis indicates that the transference num-
ber is dependent on relative changes of the di�usion coe�cients: this time the indices
for the linear scaling distortion are of the same magnitude, while the indizes of the
�xed amount distortions are distinct. As before we compare the ratios of the square
roots to �nd that this time

√
SαDPF√
SαDLi

= 1.474 ≈ 1.469 =
DLi

DPF6

, (5.2)

which supports the above conclusion of the dependence on relative changes. As we
are comparing the ratio of the constant distortions, their impact is larger in the value
which is originally smaller and vice versa, leading to the fact, that in equation (5.2)
the ratios of the di�usion coe�cients and their main e�ect sensitivities are inverted.
All other observed input parameters � dielectricity ε, capacitance C and chemical

potential βµi � are several orders of magnitude lower in their impact on the output
variance and can thus be neglected in comparison to the in�uence of changes in the
di�usion values. As before we conclude that no indications of additional non-linear
behavior is present.

Conclusion

The correlation matrices and variance analysis support the assumption that the di�u-
sion coe�cients of the species have signi�cant in�uence on both measured values and
that distortions of these parameters lead to signi�cant deviations in the simulation
results. In particular, we can derive that the conductivity increases roughly propor-
tional to any increase in ion mobility of either charged particle type. This can be
based on the correlation indices being close to one and on the relative magnitude of
the sensitivity indizes. For the transference number on the other hand it is not the
absolute value but the relation between the di�usion coe�cients which is important, a
result which can not only be deduced from the plot of the transference numbers vs. the
ratio of di�usion coe�cients itself, but also from the changing sign of the correlation
coe�cients and the relative magnitude of the sensitivity indices.
For both types of in�uence, the absolute and the relative one, we have found that

the ratios of the sensitivity almost exactly match the ratio of the di�usion coe�cients.
In both instances, the ratio supports our previous conclusions about the respective
in�uence of the di�usion coe�cients � with either their magnitude or their ratio being
important.
From the other observed parameters, only the dielectricity of the solution gives

indication to have a limited impact on the conductivity value, while changes in either,
the capacitance or the chemical potential values, fail to show evidence of correlation
in either investigation method.
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5 Numerical Results

Higher order in�uences which result from interactions between di�erent parameters
do not seem to be relevant, which is supported by two observations, �rst the low
magnitude of the higher order indices compared to the singular indices, second the
conformity of the respective values of Si and Ti. Additionally we conclude that apart
from the linear correlations identi�ed from the correlation matrizes no other signi�cant
non-linear correlations can be determined.
We need to point out that the choice of the parameter intervals was based on

estimates and raport with the experimental partners, as the actual magnitude and
type of error of the input information was unknown. While it may be possible that
deviations in orders of magnitude of the input accuracy estimates may lead to shifts in
the relative sensitivity with respect to such parameters, the general sensitivity results
obtained here will hold. In particular, as long as the parameters are changed in a way
that they scale to the same denormalized equations, the sensitivity derived here will
stay identical.

5.5.4 Full Result Tables

Concentration
[
mol
l

]
Conductivity

[
S
cm

]

0 1.39 · 10−6

0.1 3.63 · 10−3

0.3 7.49 · 10−3

0.5 1.29 · 10−2

0.7 1.35 · 10−2

0.9 1.52 · 10−2

1 1.47 · 10−2

1.1 1.55 · 10−2

1.3 1.46 · 10−2

1.5 1.37 · 10−2

1.7 1.34 · 10−2

Table 5.17: Results of experimental conductivity measurements.
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5.5 Computation of Derived Properties and Sensitivity Analysis

Concentration Conductivity Concentration Conductivity[
mol
l

] [
S
cm

] [
mol
l

] [
S
cm

]

0.1 4.36693 · 10−3 0.925 1.96616 · 10−2

0.125 5.34670 · 10−3 0.95 1.96887 · 10−2

0.15 6.28220 · 10−3 0.975 1.96870 · 10−2

0.175 7.17380 · 10−3 1 1.96477 · 10−2

0.2 8.02220 · 10−3 1.025 1.95657 · 10−2

0.225 8.82830 · 10−3 1.05 1.94571 · 10−2

0.25 9.59290 · 10−3 1.075 1.93437 · 10−2

0.275 1.03171 · 10−2 1.1 1.92491 · 10−2

0.3 1.10017 · 10−2 1.125 1.91930 · 10−2

0.325 1.16484 · 10−2 1.15 1.91725 · 10−2

0.35 1.22592 · 10−2 1.175 1.91786 · 10−2

0.375 1.28365 · 10−2 1.2 1.92000 · 10−2

0.4 1.33832 · 10−2 1.225 1.92244 · 10−2

0.425 1.39023 · 10−2 1.25 1.92383 · 10−2

0.45 1.43977 · 10−2 1.275 1.92273 · 10−2

0.475 1.48730 · 10−2 1.3 1.91763 · 10−2

0.5 1.53325 · 10−2 1.325 1.90726 · 10−2

0.525 1.57796 · 10−2 1.35 1.89153 · 10−2

0.55 1.62140 · 10−2 1.375 1.87077 · 10−2

0.575 1.66342 · 10−2 1.4 1.84535 · 10−2

0.6 1.70377 · 10−2 1.425 1.81485 · 10−2

0.625 1.74211 · 10−2 1.45 1.78131 · 10−2

0.65 1.77810 · 10−2 1.475 1.74518 · 10−2

0.675 1.81126 · 10−2 1.5 1.70640 · 10−2

0.7 1.84111 · 10−2 1.525 1.70128 · 10−2

0.725 1.86717 · 10−2 1.55 1.69536 · 10−2

0.75 1.88954 · 10−2 1.575 1.68906 · 10−2

0.775 1.90842 · 10−2 1.6 1.68202 · 10−2

0.8 1.92407 · 10−2 1.625 1.67355 · 10−2

0.825 1.93683 · 10−2 1.65 1.66403 · 10−2

0.85 1.94702 · 10−2 1.675 1.65347 · 10−2

0.875 1.95506 · 10−2 1.7 1.64188 · 10−2

0.9 1.96136 · 10−2

Table 5.18: Results of conductivity simulations.
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Concentration Transference number Concentration Transference number[
mol
l

] [
mol
l

]

0.1 0.39915 0.925 0.41858

0.125 0.39692 0.95 0.41376

0.15 0.39470 0.975 0.40888

0.175 0.39258 1 0.40506

0.2 0.39067 1.025 0.40327

0.225 0.38907 1.05 0.40314

0.25 0.38790 1.075 0.40395

0.275 0.38729 1.1 0.40486

0.3 0.38739 1.125 0.40512

0.325 0.38829 1.15 0.40470

0.35 0.38991 1.175 0.40380

0.375 0.39210 1.2 0.40260

0.4 0.39471 1.225 0.40133

0.425 0.39755 1.25 0.40022

0.45 0.40043 1.275 0.39953

0.475 0.40314 1.3 0.39952

0.5 0.40544 1.325 0.40043

0.525 0.40715 1.35 0.40226

0.55 0.40832 1.375 0.40499

0.575 0.40909 1.4 0.40856

0.6 0.40962 1.425 0.41293

0.625 0.41005 1.45 0.41805

0.65 0.41056 1.475 0.42388

0.675 0.41133 1.5 0.43034

0.7 0.41257 1.525 0.42784

0.725 0.41441 1.55 0.42524

0.75 0.41668 1.575 0.42254

0.775 0.41911 1.6 0.41973

0.8 0.42140 1.625 0.41681

0.825 0.42324 1.65 0.41376

0.85 0.42426 1.675 0.41059

0.875 0.42408 1.7 0.40727

0.9 0.42226

Table 5.19: Results of transference number simulations.
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5.6 Complex Geometries with Mixed Boundary Conditions

5.6 Complex Geometries with Mixed Boundary

Conditions

In this section we will provide a numerical example demonstrating several capabilities
of the solver in terms of boundary conditions, di�erent grids for the PNP and the
heat equation operator and complex geometries. The geometry of the domain of
the ion migration is chosen to be a meandering three-dimensional band, coarsely
representing a battery cell which is wrought about its electrodes, compare �gure 5.26.
The domain of the heat equation is a cuboid set to engulf the domain of the ion species
[−0.1, 1.6]× [−0.1, 0.4]× [−0.1, 0.2].
For the potential function Φ, the dielectricity is chosen as εr = 4.0, the boundary

condition on Γ1 is set to homogeneous Neumann conditions and we set Dirichlet
boundary conditions on Γ2 with a value of ΦΓ2 = 0.0 and on Γ3 with ΦΓ3 = 0.1. The
division of the boundary in Γ1 ∪ Γ2 ∪ Γ3 is depicted in �gure 5.26. The parameter
settings for the concentration functions are summarized in table 5.20.
For the heat equation we set the thermal di�usivity to α = 5.8 · 10−6. The coupling

between the Poisson-Nernst-Planck system and the heat equation is de�ned by

β =
∑

i

ci|∇Φ|2,

corresponding to the upscaled energy contributions of the convective ion current as
introduced in section 3.5.1. The initial temperature was set to 300.
The boundary conditions for the thermal system are assigned for each planar sur-

face, which we indicate by the respective direction in table 5.21. Robin boundary
conditions are set according to the combination of Fourier's law of conduction with
Newton's law of cooling [Gre14]

−α · ∇T = −a · (T − Tenv),

which can easily be matched to our equation (4.25), where we uniformly set a = 1.
Prior to the actual simulation, we adaptively re�ned the grid of the PNP operator

twice, in each step re�ning 15% of the cells. E�ectively this results in a doubling of the
degrees of freedom in each re�nement step, with the �nal number of degrees of free-
dom amounting to 61705 for the Poisson-Nernst-Planck system interpolated by Finite
Element functions of degree one and to 19929 for the thermal system, interpolated
by Finite Element functions of degree two. Neither the timestep nor the temperature
grid were changed in that procedure. The simulation time was 100 units of time with
δt = 0.25.
The results show that the concentration functions and the electric potential almost

immediately reach a steady state. From the snapshots collected in �gure 5.27 we see
that the combination of boundary conditions plays a role on the concentration behav-
ior, as all species show a reduction of concentrations towards boundary Γ2, but only
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0.0 0.5 1.0 1.5

0.0

0.1

0.2

0.3

Figure 5.26: 2d projection of basic grid and boundary conditions prior to adaptive
re�nement: Γ1 in black, Γ2 in blue and Γ3 in red. In x3-direction the
structure extends by 0.1 and is equivalently re�ned.

Property Species 0 Species 1 Species 2 Species 3

Charge +1 −1 −2 +1

Di�usion coe�cient 1.0 · 10−10 1.0 · 10−10 2.0 · 10−10 5 · 10−10

Initial concentration 1.0 1.0 0.75 1.5

BC on Γ1 0.0 0.0 0.0 0.0

BC on Γ2 0.98D 0.0 0.7D 1.0 · 10−7

BC on Γ3 1.02D 0.0 −1.0 · 10−7 1.5D

Table 5.20: Properties of the species used in the complex geometry. Boundary condi-
tions marked with the subscript �D� are of Dirichlet type, all other bound-
ary conditions are of natural type as described in section 4.3.4.

Boundary Direction Type Value

BC on Γ1 Left Dirichlet 305

BC on Γ2 Right Robin 295

BC on Γ3 Bottom Robin 300

BC on Γ4 Top Neumann 0

BC on Γ5 Front Robin 295

BC on Γ6 Back Neumann 0

Table 5.21: Boundary conditions for the heat equation.
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(a) Species 0

(b) Species 1

(c) Species 2

(d) Species 3

(e) Electric potential

Figure 5.27: Concentration functions and potential function at timestep 20.
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5 Numerical Results

Figure 5.28: Simulated ion �ux of species 0. The magnitude of the glyphs is color-
coded on the surface of the geometry. The ion �ux of the remaining three
species follows the same characteristic behavior.

the species with index 0 an equivalent increase towards boundary Γ3. The remaining
three species display the same values as on the interior. While the concentrations
appear uniform throughout the interior of the domain, this is not the case for the
�ux. In �gure 5.28 we see that the ion �ux is driven by the boundaries Γ2 and Γ3

and assumes its highest bulk magnitude between the directly opposing faces of these
boundaries, which is expected behavior.
Similarly expected is the behavior of the temperature, the dynamics of which are

closely tied to the magnitude of the total �ux, see �gure 5.29. Initially the temperature
is evenly distributed, with the small variations of the temperature introduced by the
di�erent boundary conditions, as can be seen by the heating on the right side and the
cooling of the front ledge. As the simulation time goes on however, the temperature
generated by the ion current in the interior of the domain becomes more dominant.
We can easily see in the �gures, that the temperature increase is sourced in the
domain of the ion migration simulation. Indeed, the heat is not generated uniformly
in this domain, but instead there are hotspots and areas with lesser heating. In
accordance with our expectations from the source term set for the heat equation, the
areas which show the largest increase in temperature correspond to those areas, where
the ion �ux assumes its highest magnitude, compare �gure 5.28 and 5.29. Nevertheless
the nature of the boundary conditions continues to play an important role for the
characteristics of the temperature solution, as can be seen in �gure 5.30. The Robin
boundary conditions introduce a cooling e�ect proportional to the di�erence to their
base magnitude towards their respective direction, whereas the Neumann boundary
conditions act as an insulator on their side.
This simulation impressively demonstrates many capabilities of our numerical solver
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t = 0 t = 10

t = 20 t = 30

t = 40 t = 50

t = 60 t = 70

t = 80 t = 90

Figure 5.29: Isometric half section of the temperature distribution.
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t = 0 t = 10 t = 20 t = 30 t = 40

t = 50 t = 60 t = 70 t = 80 t = 90

Figure 5.30: Side half section of the temperature distribution.

which have not been included in the previous ensembles. First and foremost it shows
the independent treatment of more than two species and the simulation of the com-
bined system on a domain with three-dimensional structure. Furthermore, we demon-
strate the handling of several di�erent types of boundary conditions in varying com-
binations, both for the Nernst-Planck equation, where they may vary for each species
and each boundary independently, but also for the heat equation.
The solution of the heat equation clearly shows that the non-linear coupling is

transferred among the two di�erent domains and that our approach resolves the local
interdependencies very well. The generated heat from the ion migration domain is
then transported beyond the con�nement of this domain by the heat di�usion. It is
exactly this characteristic which we aim for, the ability to identify locally con�ned
buildups of heat which may not only in�uence the process of ion migration, but have
an impact on other surrounding systems.
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6 Conclusion

The goal of this thesis was to extend the available tools of numerical simulation to
deepen the understanding of ion migration with speci�c focus on non-equilibrium
properties and dynamic temperature development. Towards this end, we treated the
simulation of ion migration as a multiscale problem, with particle dynamics on the
atomistic scale and with the Heat-Poisson-Nernst-Planck system on the continuous
scale. A particular focus of our discussions was placed on the non-equilibrium nature
of the thermodynamics involved and on our new approach to simulating the correlation
of external forces with the ion �ux and the ion �ux with the heat generation, which
had not been investigated in the literature so far.
We began with the introduction of Molecular Dynamics simulations and their rela-

tion to physical systems via macroscopic variables. In particular, we discussed existing
non-equilibrium settings and the missing inclusion of external forces in Hamiltonian
functions for settings with periodic boundary conditions. In order to address this
challenge, we used the duality between a change in potential energy and the work
performed on a particle to modify the Hamiltonian function which determines the
equations of motion of the particle ensemble. Our approach allowed for the deriva-
tion of Hamiltonian equations of motions with external forces and furthermore for
the quanti�cation of the external energy transferred into the ensemble. Additionally,
external forces modeled with these modi�cations can be included in various state-
of-the-art non-equilibrium ensembles. In particular, we demonstrated the conformity
with traditional thermostats and the Parinello barostat.
Following our introduction of the microscale computations we turned to the up-

scaling of macroscopic variables from the Molecular Dynamics simulations. Besides
matching the microstate equations of motion with the macroscale equations and pre-
senting upscaling functions for transport coe�cients, which account for non-equilibrium
e�ects, we built on the external energy formulation of the microscale and provided
error estimates for the measurement of convection velocities and the transferred ex-
ternal energy. Since this energy is equivalent to a heat transfer we discussed the
upscaling of heat and temperature generation within the ensemble and the possibility
of steady state detection by comparing the energy transferred from external forces
with the energy exchanged with thermostats.
With formulas to compute macroscopic variables from the microscale at our dis-

posal, we turned to the macroscale, where the physical processes are described by
partial di�erential equations. We discussed the modeling of ion migration and tem-
perature dynamics via the Heat-Poisson-Nernst-Planck equation system and intro-
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duced a discretized numerical solver based on the Finite Element method which for
the �rst time can treat the coupling of an arbitrary number of ionic species driven by
an electrochemical �eld together with dynamic temperature. We varied the numerical
treatment of the equations of the system with the nature of the coupling between the
equations, as such the Nernst-Planck equations and Poisson equation were combined
into a single operator and treated fully implicitly, while the treatment of the heat
equation was achieved by adding a separate operator explicitly coupled to the system.
After these theoretical considerations, we presented several numerical test cases.

On the microscopic scale we performed a series of increasingly complex experiments,
demonstrating the almost exact quantitative �t of the theoretical predictions in the
simple cases and the predicted increasing friction and disturbance of the macroscopic
variables with stronger and more complex particle interactions. We demonstrated the
di�erent behavior in energy conservation of two variants of implementation. We found
that the simulation of physical ensembles encounters several challenges, with typical
external forces being several orders of magnitude below the magnitude of internal
forces and the high self-di�usion of the electrolyte matrix leading to large a priori
error bounds on the estimate of external energy. Nevertheless, the total energy was
conserved in all instances and we demonstrated the functionality of the procedure
with idealized electrolytes, where the disturbances of the macroscopic values are still
small compared to the global trend.
The numerical experiments on the macroscale were begun with an investigation of

the conditions of the linear systems created by the discretized operator. We found that
the condition numbers vary extremely depending on the input parameters and that
input parameters from a typical physical system generate badly conditioned linear
systems. We then demonstrated that our numerical solution is able to achieve lower
residual values than certain analytical approximations, before producing extensive
studies of the convergence behaviors of the solution functions. We found standard
convergence rates for uniform re�nement of the Finite Element grids and equivalent
re�nement of the time discretization for both the Poisson-Nernst-Planck and the heat
operator. We further improved these results by discussing graded grids, dismissing a
misleading naive grading approach which only provided re�nement on the boundary.
Using an improved grading function, which also expends re�nement on the interior,
actual convergence can be achieved, which � while not giving exponential rates �
still achieves higher rates than those of uniform re�nement with far lower numbers of
degrees of freedom required. These results were also compared to adaptive re�nement,
�nding the rate of error reduction to be similar, albeit with the adaptive treatment
requiring higher computational costs to create the re�nement.
While up to this point the studies were arti�cially constructed for numerical inves-

tigations, we continued with an industrial application aiming at ion conductivity in
battery settings. There we successfully compared our numerical with experimental
results and found them to be in very good agreement. Additionally, we used this
setting for a parameter study in the physical relevant regime, identifying the input
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parameters which hold the largest quantitative in�uence on the derived results of
conductivity and transference numbers.
We �nished the section with a demonstration of additional capabilities of our solver,

simulating a complex three-dimensional geometry with non-matching grids for the
Poisson-Nernst-Planck operator and the heat equation. The example serves as a
showcase for a variety of mixed boundary conditions with several species where we
observe that the combination of boundary conditions has a signi�cant impact on the
characteristics of the solution functions. Furthermore, we are able to demonstrate
successful non-linear coupling from the solutions of the Poisson-Nernst-Planck system
to the heat equation across the di�erent grids, full�lling the �nal step of our origi-
nal objective to simulate the dispersion of locally generated heat to regions outside
medium of ion transport.
In summary, the methods developed in this thesis close a gap in the connection of the

physical modeling of ion migration and temperature dynamics, both on the atomistic
and the continuous scale. The methods on the atomistic scale are not restricted to
this particular application but open up the analysis and quanti�cation of external
energy exchanges for any instance of non-equilibrium Molecular Dynamics. On the
macroscale we have provided a tool for the simulation of physical ion migration and
temperature systems, which allow for the joint analysis of these connected processes
and may ultimately lead to the establishment of increased performance and safety
parameters for batteries and other technical systems involving these mechanisms.

6.1 Outlook

The novel approaches presented in this thesis open many opportunities for additional
research.
While we have considered our new Hamiltonian formulation for external forces

mainly with respect to ion migration, it may certainly be employed in other appli-
cations as well. In continuation of our work in this thesis, further groundwork may
include to check for the compatibility of the method with additional non-equilibrium
Hamiltonian approaches, e.g. with additional types of thermo- and barostats.
The error estimate we presented for the macroscopic value of external energy does

not explicitly depend on the number of particles. Nevertheless, it is reasonable to
expect from the ergodic theory that the measurements improve by increasing the
sampling size. Thus we suggest additional studies to quantify this dependence and
we point out that similar studies could be performed for the di�usion coe�cient and
the dependency of its error estimate on the sampling over time.
During our microscale simulations, we found the computed evolution of the exter-

nal and kinetic energy in excellent agreement with the prior predictions during the
idealized ensembles. Nevertheless, with increasingly complex interactions we noticed
growing energy �uctuations, which culminated in the ensemble �lled with realisticly
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6 Conclusion

modelled ethylene carbonate. For the method to be suitable for a wide variety of
applications instead of a narrow niche, smoothing of the internal energy �uctuations
is desirable. The smooth behavior of the variables in the idealized cases suggest that
a remedy could be found with reduced models. Mean �eld approaches, which have
been found to allow for successful computations of static macroscopic variables, may
permit an ansatz to remove the random disturbances of complex electrolytes and as
an additional bene�t increase the speed of the computation, see e.g. [Jag07].
On the macroscopic scale, the system of the Heat-Poisson-Nernst-Planck equation

as it was derived in this thesis could be extended over its spatial boundaries. Thinking
from the perspective of the application, the electrodes encompassing the electrolyte
are substantial for the performance of a battery and the intercalation of the ions in the
electrodes may have a feedback on the properties in our current simulation domain by
providing heat sources and � depending on the material � in�uencing the simulation
domain itself. Furthermore, the material around the cell is modeled with its thermal
di�usivity in the heat equation only. By incorporating the intercalation reactions in
the electrodes, the sources or sinks of heat could be extended as well, making the
model of the thermal dynamics even more accurate.
A seemingly more ambitious endeavour would be the goal to remove the need for the

full implicit coupling of the Poisson-Nernst-Planck operator, as the iterative treatment
is responsible for much of the computation time. While explicitly restricted to two
dimensional systems, the work done by [MG14] might serve as a starting position for
a semi-implicit approach to general systems.
Both of the methods here open up new possibilities in material sciences, on the one

hand by quantifying heat generation from the ionic �uxes, which enable the creation
of a thermal database, and on the other hand by investigating the thermal di�usion
and feedback in ion conducting materials in complex setups, identifying critical heat
levels which may lead to thermal runaway. Extensive studies of the behavior and the
sensitivity of parameters � as demonstrated for an industrial application in section
5.5 � may allow for novel insights for engineers, which may lead to an improvement
of the properties and reliability of current applications.
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A Implementation Notes on
Energy Computation with
External Forces

In section 2.3 we have remarked that our approach for the handling of external forces
will allow us to observe the conservation of total energy in the context of energy trans-
ferred from the exterior of the system. This conservation is based on the assumption
that the change of energy of the particles in the external system and internal system
are balanced. While this is the case for the continuous trajectories, we need to pay
attention in the case of the discretized trajectories.
In the following we will present pseudocode for two di�erent schemes to compute

the external energy from the discretized system. The �rst is subject to a leapfrog
shift in the computed energy values which are a half step ahead of the physical energy
values. The second approach removes the leapfrog shift, keeping the total of internal
and external energy constant at all times.

First Scheme: Energy Leapfrog

The general sequence of events for the �rst scheme is

� Update xi and vi with F n
i , F

n−1
i , ...

� Update all forces F n → F n+1.

� Update xi and vi with F n+1
i , F n

i , ...

� Update external energy En+1
ext,i = En

ext,i + δt · vn+1
i F n+1

ext,i .

We also present the speci�c updates for the Velocity-Störmer-Verlet algorithm

xn+1
i = xni + δtvni +

δt2

2mi

F n
i

F n+1
i = ∇iU(x1, . . . , xn) + F n+1

ext,i

vn+1
i = vni +

δt

2mi

(
F n+1
i + F n

i

)

En+1
ext,i = En

ext,i + δt · vn+1
i F n+1

ext,i .
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A Implementation Notes on Energy Computation with External Forces

Second Scheme: Energy Balanced

The general sequence for the balanced external energy update is

� E
n+ 1

2
ext,i = En+1

ext,i + δt
2
· vni F n

ext,i.

� Update xi and vi with F n
i , F

n−1
i , ...

� Update all forces F n → F n+1.

� Update xi and vi with F n+1
i , F n

i , ...

� En+1
ext,i = E

n+ 1
2

ext,i + δt
2
· vn+1

i F n+1
ext,i

We also present the speci�c updates for the Velocity-Störmer-Verlet algorithm

E
n+ 1

2
ext,i = En+1

ext,i +
δt

2
vni F

n
ext,i

xn+1
i = xni + δtvni +

δt2

2mi

F n
i

F n+1
i = ∇iU(x1, . . . , xn) + F n+1

ext,i

vn+1
i = vni +

δt

2mi

(
F n+1
i + F n

i

)

En+1
ext,i = E

n+ 1
2

ext,i +
δt

2
· vn+1

i F n+1
ext,i .

A comparison of the results achieved with these two methods can be seen in section
5.1.1. Apart from the Velocity-Störmer-Verlet algorithm we have successfully tested
the method for Beeman type integrators up to �fth order and iterative velocity Beeman
algorithms.
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