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Summary

In this thesis, we derive macroscopic crystal plasticity models from mesoscopic dislocation models
by means of I'-convergence as the interatomic distance tends to zero. Crystal plasticity is the effect
of a crystal undergoing an irreversible change of shape in response to applied forces. At the atomic
scale, dislocations — which are local defects of the crystalline structure — are considered to play a
main role in this effect. We concentrate on reduced two-dimensional models for straight parallel edge

dislocations.

Firstly, we consider a model with a nonlinear, rotationally invariant elastic energy density with mixed
growth. Under the assumption of well-separateness of dislocations, we identify all scaling regimes
of the stored elastic energy with respect to the number of dislocations and prove I'-convergence in
all regimes. As the main mathematical tool to control the non-convexity induced by the rotational
invariance of the energy, we prove a generalized rigidity estimate for fields with non-vanishing curl.
For a given function with values in R?*2, the estimate provides a quantitative bound for the distance
to a specific rotation in terms of the distance to the set of rotations and the curl of the function.
The most important ingredient for the proof is a fine estimate which shows that in two dimensions
a vector-valued function f € L! can be decomposed into two parts belonging to certain negative
Sobolev spaces with critical exponent such that corresponding estimates depend only on div f and the

L'-norm of f. This is a generalization of an estimate due to Bourgain and Brézis.

Secondly, we consider a dislocation model in the setting of linearized elasticity. The main differ-
ence to the first case above and existing literature is that we do not assume well-separateness of
dislocations. In order to prove meaningful lower bounds, we adapt ball construction techniques which
have been used successfully in the context of the Ginzburg-Landau functional. The building block for
this technique are good lower bounds on annuli. In contrast to the vortices in the Ginzburg-Landau
model, in the setting of linear elasticity, a massive loss of rigidity can be observed on thin annuli which
leads to inadequate lower bounds. Hence, our analysis focuses on finding thick annuli which carry

almost all relevant energy.
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1 Introduction

Plasticity is the effect of a solid undergoing an irreversible change of shape in response to applied
forces. However, the underlying mechanisms that lead to this effect depend highly on the considered
material. In this thesis, we concentrate on crystals i.e., materials whose atoms form periodic patterns.
This includes a large class of important materials, for example metals. In fact, most pure metals
have relatively simple crystalline structures, examples include face-centered-cubic structures (copper,
nickel, aluminium, etc.) and body-centered-cubic structures (iron, chromium, etc.), see Figure 1.1.
For a more detailed discussion of crystalline structures, we refer to [47] or [50].

In the engineering literature, there is a wide variety of phenomenologically derived macroscopic plas-
ticity models. It would also be desirable to derive macroscopic models rigorously as a limit of models
at smaller scales. The main cause for plasticity in crystals on an atomic scale is the presence of
so-called dislocations, cf. [66,73]. Dislocations are topological defects of the crystalline structure and
will be considered in detail in the following section.

In special situations, first rigorous mathematical derivations of macroscopic plasticity models from
mesoscopic and microscopic dislocation models were established, e.g. [21,23,30,38,59, 71].

The aim of this thesis is to complement these results by deriving a similar macroscopic model, starting

from different modeling assumptions at the atomic scale.

(a) Unit-cell of a body-centered-cubic (bcc) (b) Unit-cell of a face-centered-cubic (fcc)
crystal: one atom at each corner of the crystal: one atom at each corner of the
cube (blue) plus one atom centered in cube (blue) plus one atom centered at
the cube (red). each face of the cube(red).

Figure 1.1: Examples of typical crystalline structures in pure metals.

We start from a reduced two-dimensional model for straight, parallel edge dislocations. This setting

will be explained in detail in Section 1.2. Mathematically, we study a variational model of the form

/ W(B)dz for B:Q C R* = R?*? subject to curl 8 = Zebi S,
Q i
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under different assumptions on W. Here, the b; € R? are constrained to belong to a certain discrete
set which depends on the crystalline structure. We identify the different scaling regimes of the energy
and the limit of the suitably rescaled energy in the sense of I'-convergence. In the most interesting

regime—the so-called critical regime—, we prove that the limit is a strain-gradient model of the form

) dcurl 8

where C is a linearized elastic tensor and ¢ is a 1-homogeneous function.

As a main tool for compactness in the case of a rotationally invariant energy density W with mixed
growth and well-separateness of dislocations, we prove a generalized rigidity estimate for fields with
non-vanishing curl. The estimate bounds the distance of a function f to a single rotation in terms
of the distance of f to the set of rotations and the total variation of the measure curl f. As a major
ingredient, we show that a function f € L' can be decomposed in two parts belonging to certain
negative Sobolev spaces such that corresponding estimates depend only on div f and the L'-norm of
f. This is a generalization of an estimate due to Bourgain and Brézis, [11].

In the setting of a linearized elastic energy but no well-separateness of dislocations, we prove optimal
lower bounds for compactness with the use of ball construction techniques.

A more detailed overview of the main results of this thesis can be found in Section 1.5.

In order to gain an understanding of the mathematical modeling of dislocations, we will first approach
the effect of plasticity and the role of dislocations therein phenomenologically. Later, we discuss the
continuum mechanical description of dislocations and heuristics for the scaling of the energy, Section
1.2 and Section 1.3. An overview of mathematical contributions to the field is presented in Section
1.4.

1.1 A Phenomenological Approach to Crystal Plasticity and

Dislocations
#
h
(a) The undisturbed crystal in its (b) Under a small load, the crys-
equilibrium configuration. tal deforms elastically.

Figure 1.2: Sketch of the elastic deformation of a crystal under a small load.

Let us first consider the following idealized two-dimensional example which captures the basic
concepts. Suppose that the equilibrium configuration of a given material is a simple cubic lattice.
Applying a small shear load as in Figure 1.2 induces a small distortion of the crystal lattice, Figure

1.2b. After unloading, the crystal regains its equilibrium shape, Figure 1.2a. This is called an elastic
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deformation. If we increase the load over a critical value, we observe a slip of the upper atoms in
horizontal direction resulting in a so-called elasto-plastic deformation, see Figure 1.3a. Note that the
bonds between the two rows of atoms which were formerly bonded have broken and rebonded one
atom in the direction of the slip. After unloading, the elastic deformation vanishes, Figure 1.3b. As
a consequence of the slip of the upper atoms, a permanent plastic deformation remains. A higher
load results in a larger slip of atoms in horizontal direction and consequently in a larger permanent

deformation after unloading, see Figures 1.3c and 1.3d. If the load becomes too high, the crystal

fractures.
q
h

(a) A crystal responding elasto-plastically (b) After unloading, a permanent plastic de-
to a load that is larger than the critical formation remains.
yield value.

ﬁ 1
!

(c¢) A larger load induces a larger deforma- (d) Also, the remaining plastic deformation

tion. is larger.

Figure 1.3: Under large loads, the crystal deforms elasto-plastically. After removing the load, a per-
manent plastic deformation remains.

The slipping of rows of atoms is also obtained in practice. See Figure 1.4 for an experimental picture
of a cadmium crystal deforming by slip under a tensile load.

In three dimensions, the above considerations correspond to the slip of atoms above a certain plane,
the slip plane. In our example, this is the plane which includes the horizontal direction and the

direction pointing out of the paper. Clearly, the planes and slip directions in which this is possible

Figure 1.4: A scanning electron micrograph of a single crystal of cadmium deforming by slip
as a response to a tensile load in horizontal direction. Unlike in our sketches,
the direction of the load does not lie in the slip plane. Picture reprinted by per-
mission of http://www.doitpoms.ac.uk/tlplib/miller _indices/uses.php (date of retrieval:
04,/10/2016).



1 Introduction

(d) ()

Figure 1.5: Sketch of the motion of a dislocation through a crystal. Once the dislocation has moved
through the crystal, a slip remains.

depend on the crystalline structure. Usually, they are described by slip systems (y,m) € R® x R3.
Here, 7 is the direction of the slip and m is a unit normal to the slip plane. As the plastic deformation
does not change the shape of the equilibrium lattice locally, the slip systems satisfy the condition
~v-m = 0. Typically, the feasible slip directions are those with the highest number of atoms per length
whereas slip planes have the highest number of atoms per area. For a list of slip systems in typical
crystallographic lattices, we refer to [47].

In 1926, Frenkel computed, in a first approximation and a situation similar to the one in Figure 1.3, a
theoretical critical shear stress that is needed in order to obtain a permanent plastic deformation via

the slip of rows of atoms, [35]. His result states that

Ttheoretical = P

where Tineoretical denotes the theoretically needed shear stress and p is the shear modulus of the
material. As observed in 1929 in [67], this theoretical result differs from practical observations of
the minimal stress needed to obtain a permanent deformation — the yield stress — by orders of
magnitude (at least 10%). In the 1930s, several authors introduced the idea of dislocations as the
mechanism for plastic deformations, cf. [66,73]. The idea is the following. For moving a complete
plane of atoms simultaneously, a lot of energy is required. In practice, the plastic flow is not uniform.
Instead, one can imagine that first the atoms on the very left slip to the right. Then, this defect —
called dislocation — can be transported through the crystal, see Figure 1.5. In particular, as the slip
mechanism occurs on a plane, the defect is necessarily concentrated on the so-called dislocation line
which lies in the slip plane and separates regions with different slips, see Figure 1.6. In our case, this
is the line pointing into the paper and passing through the two-dimensional defect.

In order to describe the dislocation, the two most important quantities are the tangent vector of the
dislocation line and the Burgers vector which is essentially the difference of the slip of the neighboring
regions, cf. [15]. The procedure to compute the Burgers vector consists in drawing a circuit around
the defect in the deformed crystal and drawing the same circuit in a perfect reference crystal, see

Figure 1.6. Every time we surround a defect in the deformed configuration, the associated circuit in
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the reference crystal is not closed. The difference of the ending point and the starting point of this
path in the reference crystal is the Burgers vector of the dislocation. Note that, by definition, the
Burgers vector can only be an integer combination of the basic lattice vectors. The convention is that
the Burgers circuit is drawn in the positive sense with respect to the tangent of the corresponding
dislocation line, see Figure 1.6a.

There exist two important basic types of dislocations: FEdge dislocations (the Burgers vector is

R SOSLIES
BSOSk
SIS Sk
RS IS S

(a) Sketch of a Burgers circuit (red), the dis- (b) The associated path in the perfect refer-
location line (blue, pointing into the pa- ence crystal (red) and the Burgers vector
per), and the slip plane (gray) in the dis- (blue).

torted crystal.

Figure 1.6: Sketch of an edge dislocation in a three-dimensional cubic lattice.

perpendicular to the dislocation line; see Figure 1.6 and Figure 1.7 for a picture in the continuous
setting) and screw dislocations (the Burgers vector is parallel to the dislocation line; see Figure 1.7
for a sketch in the continuous setting). Clearly, a lot of dislocations which appear in practice are of
mixed type.

We restrict ourselves to this basic view on dislocations. For a discussion of more complex phenomena
involving dislocations, we refer to [47] or [50].

In the next section, we link these basic crystallographic considerations with a continuum mechanical

description.

1.2 The Continuum Description of Dislocations

For a general introduction to continuum mechanics, we refer to [45]. We limit ourselves to quickly
explaining how dislocations are modeled in this context.

The deformation of a body © C R3 is described by a function ¢ : @ — R®. In the nonlinear theory
(finite plasticity), the elastic energy of the deformed configuration is given by a nonlinear functional
depending on ¢. In the linearized theory, it is assumed that the deformation is already very close to the
identity map. By a Taylor expansion of the elastic energy, the quantity of interest is the displacement
field w which is given by u(z) = ¢(x) — x.

Now, let us consider a deformation or displacement of a crystal { given by a function v € SBV (£; R?)
(for an introduction to functions of bounded variation, see [5]) such that a constant jump of v is
concentrated on a hyperplane ¥ with a jump height [v] that corresponds to a feasible translation of

the crystal lattice. Here, the jump on X represents exactly the slip over the slip plane X in direction
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[v]. The classical decomposition for the derivative of a function in SBV (€2;R?) in this setting is
DU = VU dﬁd + [U] X deFZﬂQ’

where m is the normal to X.
In the linearized theory of dislocations, one decomposes the strain additively into an elastic and a
plastic part, Dv = e+ fpi. Here, the elastic part is exactly represented by the absolutely continuous
part of the measure Dv i.e., by Vv dL? whereas the plastic part is given by [v] ® md’H,fEnQ. As Dv
is the derivative of v, it holds in the sense of distributions curl Dv = 0. Since [v] is assumed to be
constant, this implies

curl Be = — curl By = [v] @ T Hjpgq, (1.1)

where the curl is assumed to act row-wise. Here, 0¥ has to be understood as the one-dimensional
boundary of the hyperplane ¥ and 7 is the unit tangent to 0% in the correct orientation. In partic-
ular, the dislocations are concentrated on the dislocation lines 0% as in the discrete case. The right
hand side of (1.1) is usually referred to as Nye-dislocation-density, [63], and is denoted by p. An easy
consequence of (1.1) is that a dislocation density p satisfies div yu = 0.

Moreover, note that the curl-condition in (1.1) is the continuous counterpart to the discrete circula-
tion condition via the Burgers circuit. Hence, the dislocation measure p captures the most important
quantities of the lattice distortion, precisely the Burgers vector b = [v] and the direction of the dis-
location line 7. In general, we should be more precise and write b = [[v]] as the dislocation might
separate regions with different slips and not only regions with slip from those without slip. As in the
discrete case, edge dislocations are characterized by b L 7 whereas screw dislocations correspond to
b || 7. A sketch of continuum deformations with an edge or a screw dislocation can be found in Figure
1.7, cf. the discrete case in Figure 1.6a and the deformation of cylinders discussed by Volterra in [76].

The nonlinear theory is observer invariant. Hence, also rotated versions of the feasible Burgers vectors
appear in the deformed configuration. The (locally defined) inverse strains correspond to mappings
onto the reference configuration in which only the non-rotated lattice exists. Therefore, the consid-
erations above should be formulated in terms of the inverse strains. However, in the following we
will neglect this modeling issue and use the inverse strains in the nonlinear theory as if they were the
strains. A more detailed discussion of this transference can be found in [60].

In a variational model, one associates to the elastic strain the stored elastic energy, which is of the

form

[ Wt da

for an elastic energy density W : R3*3 — [0,00]. We will quickly discuss the classical assumptions
on W, for a general introduction to elasticity theory we refer to [45]. A mathematically rigorous
derivation of the linearized theory of elasticity can be found in [28].

In the linearized theory, which is formulated in terms of the displacement, W would be given by a
linear strain-stress-correspondence i.e., W(Be;) = CBe; : Ber- Here, the so-called elasticity tensor C
only acts on the symmetric part of a matrix and satisfies c|Fyym|? < CF : F < C|Fsyn|* for any

matrix F € R3%3,
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Figure 1.7: Sketch of an edge dislocation (left) and a screw dislocation (right) in a deformed cylinder.
The dislocation line is the dashed, red line oriented downwards. The Burgers vector is
drawn in blue.

In the nonlinear theory, which is formulated in terms of the deformation, W satisfies the usual

assumptions of nonlinear elasticity, precisely
e frame indifference: W(RF) = W (F) for all R € SO(3),
e stress-free reference configuration: W(Id) = 0.

Moreover, one would typically complement these assumptions by a coercivity assumption of the form
W(F) > dist(F, SO(3))%.

In both theories, the singularity of the elastic strain (1.1) leads to some inconsistency with this
energetic description: let us consider a single straight dislocation line in the z3-direction with a given

Burgers vector b € R3 and an associated elastic strain satisfying
curl By = b® e3 ’H‘lR%.
Consider the following cylinder around the dislocation line, see Figure 1.8:
Bryn = {(a:l,xg,xg) ERY: P <zl 4+ a2 <R 0<a3< h}.

We show that the energy diverges on these cylinders as » — 0. First, note that by a version of Korn’s
inequality (see for example [23, Lemma 5.9]) there exists a constant skew-symmetric matrix W such
that

/ |(Bel)sym‘2daj Z k/ |Bel - W|2dl‘
BR,r,h

BRr,r,n

In general, the constant k depends on R, 7, h but it may be chosen uniformly for R, h fixed and r — 0.
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@

Figure 1.8: The elastic energy on cylinders with height h, outer radius R and inner radius r around a
straight dislocation line in vertical direction (red) diverges as the inner radius tends to 0.

This leads to

/ W(Be)dx > k |Ber — W dz:
BR,TJL

BR,r,n

h rR
:k/ / / |Ber — W|*dH" dt ds
0 Jr J{z?+z3=t2,x3=s}

€2

zk// —/ (Bt = W) - | —2q | dHY| dtds
0 Jr 2mt {22 +23=t2,x3=s}

0
h R 2
= k;/ / ﬁdtds
0 r 27t

2
= kgﬂh log (f) . (1.2)

™

In particular, one sees that the energy blows up logarithmically for R and h fixed whereas r — 0.
There are different ways of treating this modeling inconsistency. Typically, in these models continuous
quantities such as the elastic strain coexist with length scales coming from the discrete picture, e.g. the
lattice spacing, which determines the set of admissible Burgers vectors.

In equation (1.1), one could use more regular versions of the dislocation density to gain integrability
of Be;. Also, a different growth of W could be assumed (at least in the nonlinear case), cf. [71]. In
Chapters 3 and 4, we consider a nonlinear energy density with subquadratic growth for large strains.
In the core-radius approach, one computes the elastic energy on a reduced domain which is obtained by
cutting out a neighborhood of the size of the lattice spacing of the support of the dislocation density
(the so-called core), cf. [7,47]. This approach is justified by the fact that there can only be finitely
many atoms in the cores which should not induce such a high amount of energy. A mathematically
rigorous result in the context of screw dislocations can be found in [68]. In Chapter 5 we discuss this
approach in the context of a linearized elastic energy.

Another approach would be to consider the slip [v] as the main variable and let it transition between
two admissible values at a scale of order of the lattice spacing. These phase-field models were inspired

by the classical works by Peierls [65] and Nabarro [61]. For a modern version of this model for dislo-

10



1.2 The Continuum Description of Dislocations

(a) Sketch of the cylindrical set 2 (—o0; 00) (b) Sketch of Q. The dislocation cores

and the straight, parallel dislocation around the intersection with the disloca-
lines (red). The core regions of the tion lines are drawn in red, the Burgers
lines (red) are only drawn in the plane vectors (which are all in the same plane
{zs = 0}, the corresponding Burgers as 2) are drawn in blue.

vectors are drawn in blue.

Figure 1.9: Sketch of the geometry in the case of straight, parallel dislocation lines of edge type.

cations, we refer to [54] and references therein.

Next, let us explain how the specific situation of straight, parallel dislocation lines of edge type in a
crystal with an infinite cylindrical structure 2 x R can be understood in a reduced two-dimensional
model. This model will be the starting point of our analysis. Let us consider vertical dislocation lines
and fix the points z; € 2 where the lines intersect the x1-zo-plane. We may identify the points x;
with their canonical versions in R? if needed. For a sketch of the situation, see Figure 1.9b. Then the

dislocation density (recall (1.1)) takes the form
n= Z b; ® e3 H\lzi-i-Reg'
i

As we consider dislocations of edge type, the Burgers vectors b; are perpendicular to ez and are

therefore of the form b; = (b%,b%,0)7. This leads to the representation

0 0 b
M:Z 0 0 bé 5Zi®£1’
i 0 0 O

where the measure has to be understood as a product measure on R xR. By the cylindrical symmetry,
we make the ansatz for the deformation ¢(z1, 22, x3) = (¢1(21,22), p2(x1,72), 23)T, respectively the
displacement has the form u(z1,z2,23) = (u1(w1,22),us(21,22),0)T. For the corresponding elastic
strain, it holds that (8¢;);; = 033 and (Be)i; = 0 for all terms involving at least one index equal to 3.

For the other terms, we deduce from (1.1) that
€ € bl
curl (Betii - (Betiz = Z 11 O, - (1.3)
(5el)21 (5el)22 |2x {0} i bg

11
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Consequently, in this situation there is no real dependence on the x3-coordinate. Hence, it is enough
to understand the elastic energy on the two-dimensional slice ). In the theory of linear elasticity,

which is formulated in terms of the displacement, this leads to the energy

(Bel)ll (661)12 0

/W (Bet)21 (Bet)22 O dx
* 0 0 0

subject to the constraint (1.3). Here, W is given as the quadratic form of an elasticity tensor as
explained before. If the theory is set in the context of nonlinear elasticity, the integral differs only
by a one in the lower right entry of the matrix. Moreover, W would be a rotationally invariant
energy density. One can check easily that the assumptions of elasticity in the nonlinear or linearized
setting for W can be transferred to the corresponding statements in two dimensions for the associated

two-dimensional energy densities given by

Ja r F11 F12 0 F F Fll F12 0
W RN w [ Ry Fe o |, W YR wl Ry Fe 0
<<F21 F22 21 22 F21 F22 21 22

0 0 O 0o 0 1

Summarized, we obtain a stored elastic energy of the form

/ W(B)dz for §:Q — R?*? subject to curl f = Zbi Szss (1.4)
Q i

where the b; € R? are (projected) admissible Burgers vectors and W satisfies the classical assumptions
of elasticity (linear or nonlinear) in two dimensions as discussed for three dimensions before.

Also, this two-dimensional energetic description features the same inconsistency of a logarithmically
diverging energy close to the singularities induced by the curl-condition; the computation is very
similar to (1.2).

In this thesis, we discuss two models: a rotationally invariant energy with mixed growth and a core-
radius approach in the setting of linearized elasticity, which corresponds in the two-dimensional setting
to eliminating balls of the size of the lattice spacing around the points x;, see Figure 1.9b. In both

settings, we identify the I'-limit of the suitably rescaled stored energy.

1.3 Heuristics for the Scaling of the Stored Energy

Starting from the two-dimensional model for straight, parallel edge dislocations in (1.4), in this chapter
we discuss the scaling of the stored energy.

A computation similar to the one in (1.2) shows in the case of a linearized elastic energy that for a
dislocation density of the form p = Zf\il b; 6., such that the x; are separated by a distance of at least

2e7 for some 0 < v < 1 and an associated elastic strain 3 satisfying curl 8 = yu we find that

M M
Z/ W(B)dz > ¢ |bi]* (1 —7)|loge]. (1.5)
i—1 Y Bev (zi)\Be () i=1

For a lattice spacing €, the Burgers vectors are typically of size €. Hence, the estimate (1.5) leads to

the conjecture that the stored energy close to the dislocations scales as #{dislocations} 2| loge].

12



1.4 Recent Mathematical Contributions to Dislocation Theory

Furthermore, notice that the lower bound on the right hand side of (1.5) depends only on the dislo-
cation density. It shows that each dislocation induces a minimal amount of energy depending on its
Burgers vector. The full self-energy of each dislocation is distributed in an area of order 1 around
the dislocation. However, a fraction of (1 — ) of the full self-energy can already be found in a region
of radius €7 around each dislocation. Hence, most of the self-energy is concentrated in a region that
shrinks to the dislocation point as the lattice spacing e tends to 0. Consequently, depending on the
rescaling of the energy, we should expect to find a relict from the self-energy close to the dislocations
in the limit. On the other hand, the limit should also capture the elastic energy far from the disloca-
tions.

A more detailed discussion of the heuristics for the scaling, which involves also the interaction of
dislocations, can be found in [38] and [60]. It leads to the same result i.e., the expected scaling for
N.-many dislocations is N.?|loge].

On the other hand, consider a dislocation density p. and an associated strain . for the lattice spacing
¢ > 0 such that the stored energy is of order N.e2|loge|. Estimate (1.5) shows that the dislocation
energy e should be of order e N.. If we assume that W has quadratic growth, the naive conjecture is
that . is of order sm . One sees that the dislocation density and the associated strain are
of the same order if and only if N. ~ |loge|. This is the so-called critical regime. The sub-critical
and super-critical regime are the regimes corresponding to N; < |loge|, respectively N, > |loge]|, in

which one of the quantities is expected to be much greater than the other.

1.4 Recent Mathematical Contributions to Dislocation Theory

In the past years, there has been extensive research in the mathematical community to understand
crystal plasticity at different scales and from different points of view. In [6], Ariza and Ortiz develop
a model with fully discrete dislocations. The basis of this model are discrete eigenstrains and ideas
from algebraic topology. In [56], Luckhaus and Mugnai present a different fully discrete model for
dislocations which is completely set up in the actual configuration and does not need to refer to a
global reference configuration. In the context of screw dislocations and antiplane plasticity, Ponsiglione
showed in [68] the T'-convergence of a discrete model to a continuum model (after suitable rescaling).
A relation between discrete screw dislocation models, models for spin system, and the Ginzburg-
Landau model in two dimensions is discussed in [2]. Building upon this result in [3], Alicandro et
al. treat the dynamics of screw dislocations and show the convergence of the time-discrete minimizing
movement with respect to a quadratic isotropic dissipation to a gradient flow of the renormalized
energy. Choosing a crystalline dissipation that accounts for the specific lattice structure and that is
minimal exactly on the preferred slip directions leads to a dynamical model that predicts motion in
preferred slip directions, [4].

Another option is to start from continuum (or semi-discrete) models as discussed in Section 1.2. A
phase-field model for dislocations based on [54] and inspired by the classical works of Peierls and
Nabarro is considered in [39,40]. In these papers, Miiller and Garroni study the I'-limit of a model
for the slip on a single slip plane, on which one slip system is active, subject to pinning conditions
in certain areas (e.g. inclusion of a material that restrains slip). The elastic energy induced by a
certain slip leads to a nonlocal term involving a singular kernel, which behaves like the H z-norm of
the slip. Depending on the number of obstacles, there exist three different scaling regimes. The most
interesting regime is the one in which the number of obstacles scales like e ~!|loge|. Here, the energy

converges to a line tension limit i.e., the limit energy involves an energy defined on the dislocation lines
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possibly depending on the orientation of the line and the Burgers vector. In [16] and [21], the authors
treat the situation with multiple active slip systems on the slip plane without a pinning condition.
The logarithmically rescaled energy (to compensate the usual logarithmic convergence) I'-converges
again to a line tension limit as the lattice spacing tends to zero. A rescaling by |loge|? leads to a
strain-gradient model in the limit, [22]. The case of several slip planes and a logarithmic rescaling
is considered in [42] by Gladbach. If the planes are well-separated, one recovers essentially the same
behavior as for a single plane. On the other hand, if the planes have a distance of order €7 for some
1 >~ > 0, the dislocation lines interact, and microstructures at different scales may result in a lower
limit energy. Moreover, the author considers also the case of anisotropic elasticity. For a discussion
of the results, see also [24].

Recently, a first fully three-dimensional result was established in the setting described at the beginning
of Section 1.2 by Conti, Garroni, and Ortiz in [23]. The authors derive a line tension limit from a
dislocation model in the setting of linearized elasticity as the lattice spacing tends to zero under some
diluteness condition on the dislocation lines. The authors show that a core-radius approach and a
regularization of the dislocation densities lead to the same result. Within this framework, it is useful
to interpret the dislocation lines as tensor-valued 1-currents. Compactness and lower-semicontinuity
of energies defined on 1-currents have been discussed by Conti, Garroni, and Massaccesi in [20].
Many other results are restricted to the situation of plane plasticity as described at the end of Section
1.2, which is also the starting point of the analysis in this thesis. A first result in this setting with
a core-radius approach was established in [17]. For a fixed finite number of dislocation positions,
Cermelli and Leoni derive an asymptotic expansion of the energy as the lattice spacing goes to zero in
the setting of isotropic, linearized elasticity. The term with leading order |loge| is the self-energy of
the dislocations whereas the lower order term is considered to be the counterpart to the renormalized
energy of vortices in the Ginzburg-Landau model; for a deeper insight to the theory for Ginzburg-
Landau vortices, we refer to [9]. DeLuca, Garroni and Ponsiglione derived a line tension limit as
the I'-limit in the setting of linearized elasticity in the subcritical regime without assumptions on
the positions of the dislocations, [30]. In order to compute sharp lower bounds, they adapt ball-
construction techniques as known from [51, 70] to identify clusters of dislocations which contribute
jointly to the energy on certain scales. Under the assumption of well-separateness of the dislocations,
this result was generalized by Scardia and Zeppieri in [71] to a nonlinear situation. The authors
consider a core-radius approach for a quadratic energy density and a regularization by an energy
density with subquadratic growth for large strains. Both approaches lead essentially to the same line
tension limit as already found in [30].

In the critical scaling regime (the number of dislocations is of order |loge|), Garroni, Leoni, and
Ponsiglione derive a strain-gradient plasticity model under the assumption of well-separateness of
dislocations, [38]. The counterpart for a quadratic, rotationally invariant energy density and a core-
radius regularization was established in [59] and [60] by Miiller, Scardia, and Zeppieri.

In elasticity theory, the main tool to obtain compactness is Korn’s inequality [36,52,53], respectively
a geometric rigidity estimate [37], see also [19, 58] for variants with mixed growth. These estimates
are valid for gradients. However, the presence of dislocations leads to strains with non-vanishing
curl. In the case of a finite number of dislocations, the classical results can still be used to prove
good estimates. The transition to a growing number of dislocations is non-trivial. For this reason,
in 38,59, 60] corresponding estimates for fields with non-vanishing curl are developed. A central role
in the proofs plays a very fine estimate of the H~'-norm for L'-vector-fields whose divergence is in
H~? in two dimensions, [14] (see also [11,12]). Related results can be found in [57,74,75].
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1.5 Main Results

In the following section we present the main results of this thesis.

1.5 Main Results

As already discussed in Section 1.2—see in particular (1.4)—, in this thesis we will focus on a dislo-
cation model for straight, parallel edge dislocations which is formulated in the orthogonal plane. We
are interested in the behavior of the stored elastic energy as the lattice spacing ¢ goes to zero.

First, we consider a nonlinear energy density W with mixed growth to regularize the energy as pro-
posed in [71] i.e., W ~ min{dist(-, SO(2))?, dist(-, SO(2))?} for p < 2. The renormalized stored energy

is given by

W JoW(B)dx if B e LP(Q;R**?), p=curl f = Y, €:6,,,& €S,

(1.6)
+o0 else in M(Q;R?) x LP(;R2X2),

Ee(p,B) =

where S is the set of (renormalized) admissible Burgers vectors depending on the crystalline structure.
Under the assumption of well-separateness of dislocations, we identify all scaling regimes of the stored
energy depending on the number of dislocations N, and show I'-convergence of the energy E.. The
three different regimes are the subcritical regime N, < |loge|, the critical regime N, ~ |loge|, and

the supercritical regime N, > |loge|. The corresponding limits are given by
e The subcritical regime: 0 < N, < |logel:
Lo Bde+ [ (Rl ) dlnl if e M(QR?),

E*“*(u, B, R) = curl =0, R € SO(2)

+00 otherwise .

e The critical regime: N, ~ |loge|:

L[ CB:Bdu+ [, (R, %) dly| it pe H(Q;R?) N M(Q2:R?),
E"(u, B, R) = curl B = R, R € SO(2)

+00 otherwise .

e The supercritical regime: N, > |loge|:

3 [oCB:Bdx  if Beym = (BT + B) € L*(Q,R**?),

400 otherwise .

EPP () =

Here, C = %zvg (Id) and the function ¢ is given by a cell-formula and a relaxation procedure. The

term involving C measures the stored linearized elastic energy whereas the term involving ¢ accounts

for the self-energy of concentrated dislocations. The rotation R reflects the fact that we derive this
linearized model from a nonlinear, rotationally invariant model.

In particular, the critical regime is of interest. Here, the scaling of the strains and the dislocation
densities is of the same order. We derive a strain-gradient plasticity model as the I'-limit. Unlike

most macroscopic plasticity models, strain-gradient models are not scale independent but they add
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a certain length scale to the problem in order to capture certain size effects. For general insight to
strain-gradient plasticity models we refer, for example, to [8,33,34,46,62] and references therein. Note
that ¢ is 1-homogeneous as also proposed in other strain-gradient models, e.g. in [25] the authors
choose ¢ = | - |. In addition, the limit turns out to be essentially the same as the one derived from
a core-radius approach in a linearized, respectively non-linear, setting in [38,59]. Hence, this thesis
complements these results and justifies a-posteriori the usage of an ad-hoc cut-off radius in [38,59].
Moreover, we prove compactness in the subcritical and critical regime. In the supercritical regime, we
construct a counterexample to compactness.

The main tool of our compactness statement is a generalized version of a geometric rigidity estimate
with mixed growth for fields with non-vanishing curl. Precisely, we prove that for p < 2 and a simply
connected set  C R? with Lipschitz boundary, there exists a constant C' > 0 such that for all
B € LP(2;R?*2) satisfying that p = curl 8 is a measure there exists a rotation R € SO(2) such that

/Qmin{m —R*|B—R|PYdx < C (/Q min{dist(3, SO(2))?, dist(3, SO(2))? }dx + |u(Q)2) . (1Y)

In the proof, the central point is to derive good estimates for curl 3 in the space H~' 4+ W~1P,
This can be done by a generalization of a fine regularity estimate due to Bourgain, Brézis and, van
Schaftingen, [12,14]. We prove that for an open, bounded set Q2 C R? with Lipschitz boundary, p < 2,
and a vector-valued function f € L'(Q;R?) such that divf = a+b € H=2 + W~2P, there exist
A€ H ' and B € W~1? such that f = A+ B and

(0) Az < CUFLr + llallz-2),
(i) Bllw-1.» < Clibllw -2

Second, we consider a core-radius approach which is set in the context of straight, parallel edge
dislocations and linearized elasticity with elasticity tensor C. We focus on the critical rescaling by
|loge|?. The main difference to existing results (in particular [30]) is that we do not assume well-
separateness of the dislocations. We prove that the I'-limit is finite for 3 € L?(Q;R?*?) and p =
curl B € M(Q;R?) N H~1(£;R?). There, it is given by

. dp
/Qw.ﬁdw/ﬂso(dm) dipl,

where again ¢ is given by a cell-formula and a relaxation procedure.

In order to obtain adequate lower bounds, we adjust a technique known in the theory of the Ginzburg-
Landau model as ball-construction technique, see e.g. [51,70]. Versions of the ball construction tech-
nique have also been applied successfully to dislocation problems in the subcritical scaling regime,
[30,68]. The building block for estimates using the ball construction are good lower bounds on an-
nuli. In elasticity theory, there is a massive loss of rigidity on thin annuli which becomes manifest in
inadequate lower bounds. Hence, the focus of our analysis is to find thick annuli which carry already
most of the energy. Using the established lower bounds, we show compactness and discuss optimality

of these results.

This thesis is ordered as follows. In the next section, we introduce notation. Chapter 2 is de-
voted to prove the generalization of the Bourgain-Brézis type estimate discussed above. In Chapter
3, we use the Bourgain-Brézis type estimate to prove the generalized rigidity estimate for fields with

non-vanishing curl in the context of a nonlinear energy density with mixed growth, see (1.7). Armed
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with the generalized rigidity estimate, we discuss the behavior of the energy E. as defined in (1.6).
We prove I'-convergence and compactness in the critical and subcritical regime in Section 4.3 and
Section 4.4. In the supercritical regime (Section 4.5), we prove I'-convergence for E. and discuss the
non-existence of a compactness result. Finally, in Chapter 5 we discuss a core-radius approach without

the assumption of well-separateness of dislocations in the critical scaling regime.

1.6 Notation

In this thesis, we use standard notation for the space R™. The euclidean norm is denoted by | - |. For
two scalar values a,b € R, we write aVb = max{a, b} and aAb = min{a, b}. R™*" is the space of mxn
matrices. The identity matrix is denoted by Id. For a given matrix M € R"*", we write M7 for the
transposed matrix. Moreover, we use the classical notation Mgy, = %(M + MT) for the symmetric
part of M and Mggew = %(M — M7T) for the skew-symmetric part of M. The subsets Sym(n),
Skew(n), SO(n) of R™*™ denote the space of symmetric, respectively skew-symmetric matrices, and
the set of rotations. For two given vectors a,b € R", we write a ® b € R™"*" for the rank-one matrix
whose (4, j)-th entry is given by a;b;. In addition, for a matrix-valued function the operators div and
curl are always understood to act row-wise.

The n-dimensional Lebesgue measure of a measurable set A C R™ is denoted by £™(A) or sometimes
just by |A|. For the k-dimensional Hausdorff measure we write H*. More generally, for an open set
Q C R™ we use the standard notation M(€Q;R™) for the space of (vector-valued) Radon measures.
For a Radon measure 1 € M(€; R™), the quantity |u| denotes the associated total variation measure.
For a p-measurable set A, by 4 we mean the restriction of the measure p to the set A, defined by
pma(B) = u(AnN B) for any y-measurable set B. The weak star convergence of a sequence of Radon
measures juy, to p is indicated by pp — p. For a general introduction to measure theory, we refer
to [32].

Moreover, we use standard notations for Lebesgue spaces. The weak-LP spaces are denoted by LP>>°
and equipped with the quasi-norm || f||;,. = inf{C > 0 : XL"({|f| > /\})% < C for all A > 0}. The
notation for Sobolev spaces of order k € N on an open set Q is W*P(Q;R™) for 1 < p < oo; in the
special case p = 2, we write also H*(£2;R™). For an open, bounded set Q with Lipschitz boundary,
the space Wéc’p(Q;IRm) denotes all functions in W*P(Q;R™) whose derivatives up to order k — 1
vanish on the boundary in the sense of traces. The homogeneous norm in Wé“ P(Q;R™) is given by
||f||W0k,p(Q;R,m) =2 jaj=k 1D fll1»- On bounded sets €2, this norm is equivalent to the classical Sobolev
norm in W} (Q; R™). The topological dual space of WP (Q; R™) is denoted by W' (Q; R™) where
p’ is determined by the relation % + 1% = 1; in the special case p = 2 we write H~*(;R™). For a
general introduction to Sobolev spaces, see [1].

For a general pair of a space X and its dual X', we write < -,- >x/ x for the dual pairing.
Furthermore, we use the usual notation for I'-convergence, cf. [13,27].

Finally, we make use of the convention that if not explicitly stated differently, C' denotes a positive

constant which may change in a chain of inequalities from line to line.

17






2 A Bourgain-Brézis type Estimate

This chapter is devoted to prove the following statement which will be needed in the proof of the

generalized rigidity estimate for an energy density with mixed growth in chapter 3.

Theorem 2.0.1. Let 1 < p < 2 and Q C R? open, bounded with Lipschitz-boundary. Then there
exists a constant C' > 0 such that for all f € L*(;R?) satisfying div f = a+b e H2(Q)+W=2P(Q)
there exist A € H1(;R?) and B € W~1P(Q; R?) such that f = A+ B,

[Alz-1 < CUIfller + llallz-2), and |Bllw-1» < Cllbllw -2

This is a generalization of a statement which has been proved by Bourgain, Brézis, and van Schaftin-
gen, see [14, Lemma 3.3 and Remark 3.3] and [11,12]. Their statement is used in the proofs of the
generalized Korn inequality in [38] and the generalized rigidity estimate in [59]. It states the following;:

Let 2 C R? open, bounded with Lipschitz-boundary. Then there exists a constant C' > 0 such that
for all f € L*(2;R?) it holds

[l < CULf NIy + I div fl[g-2).

Let us shortly remark the following: the exponents for the Sobolev embedding Hg to L are critical
in two dimensions. The embedding does not hold. If it held, by duality, there would be a bounded
embedding L' — H~! which is also not true in general. The statement above gives a positive answer
to the question which L'-functions are elements of H!.

The general statement by Bourgain, Brézis, and van Schaftingen is also valid in higher dimensions
where one has to replace the Sobolev spaces with L2-integrability by those with L™-integrability. How-

ever, we restrict ourselves to the two-dimensional case.

The proof of Theorem 2.0.1 consists of different steps. The first step is to prove a primal statement
from which the result can be derived via dualization. Precisely, we show first (Theorem 2.4.4) that
for 2 < ¢ < oo and a function f € Hg(2;R?) N W14(Q;R?) there exists a decomposition f = g+ Vh
such that

191l Lo= (@m2) + 9]l a3 ir2) + Rl m2(0) < CllfllHg@R2)

||g||W01’q(Q;R2) + Hh||W§~Q(Q) < CHwa(}ﬂ(Q;W)'

This reduces to find, for a given function f, a good solution to curl g = curl f. In two dimensions, the
curl-operator differs from the div-operator only by a rotation by 90 degrees. For the sake of a simpler
notation, we formulate and prove the results for the div-operator. We show the existence of good
solutions to divY = f first on the torus (Theorem 2.0.1) and use localization and covering arguments

to transport the result for the torus to general Lipschitz domains, Theorem 2.4.1. Then, we establish
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the main result of this chapter by dualization and scaling in section 2.4.

In the next section, we discuss first some preliminaries which are useful in the proof of the state-
ment on the torus. More precisely, we discuss convolution estimates for special kernels, estimates for
very particular Fourier multipliers, and give a brief overview over Littlewood-Paley theory for the

torus.

2.1 Preliminaries

The objective of this section is to establish tools from Harmonic Analysis which will turn out to be
useful in the proof of the primal Bourgain-Brézis type estimate on the torus. For a general introduction
to Harmonic Analysis, we refer to [43,72].

First, let us introduce some notation. By II" we denote the n-dimensional torus which can be identified
with [—7, 7]? together with the measure ﬁﬁd. For a function f € LY(I1%) and n € Z%, we write
f(n) = [T f(z)ei™* dx for its n-th Fourier coefficient.

For n € N, the n-th Fejér kernel on the one-dimensional torus II* ~ [—7, 7] is defined as

n— |kl . 11— cos(nx)
Ko(w)= Y Bethe = S8R0 5
(z) Z ¢ n 1—cos(x) —
|k|<n
see Figure 2.1. On II? we write K, ® K,, for the kernel given by K,, ® K, (z,y) = K, (1)K, (y).
The main property of the Fejér kernel is that K, is a nonnegative kernel that is localized in Fourier

iNT

space. Moreover, it holds for any trigonometric polynomial P = ZI k| <n Ok € of degree less than
n that P* ((1 4+ e™™* 4+ e~*)K, ) = P where the convolution is meant as a convolution on IT*. In
particular, it follows that |P| < 3(|P| x K,,) as K,, is nonnegative.

As a first tool for the proof of the Bourgain-Brézis type estimate we show a convolution estimate for
the Fejér kernels. First, we prove the existence of symmetrically decreasing majorants for the Fejér
kernels with uniformly bounded integrals. This property is useful to bound convolutions with the

Fejér kernels in terms of maximal functions which in turn leads to good LP-estimates.

Lemma 2.1.1. There exists a constant C' > 0 such that for each n € N there exists a symmetrically
decreasing function Gy, : [—m, 7] — R such that 0 < Ky, (z) < Gy (z) and [ Gp(z)dz < C.

Proof. Fix n € N. We construct a majorant function for K,, which is constant on intervals of the type

{k—“ M} where —n < k < n — 1. By Taylor’s theorem, there exists a constant ¢ > 0 such that

n’ n

1 — cos(x) > cz? for all |x| < 7. This inequality implies for z > %”, where 1 < k < n — 1, that

Ko(z) = 11— cos(nx) n

n 1—cos(z) — ck?n?
Moreover, one can check that it holds K, < n. Let us define the function G,, by
n—1

n
%] +Z2m1[kw (k+1)w]u[_w ;kw]

no n [
k=1

2n
G, () = max {n, c772} 1[_%

)
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|
B

(1)

Figure 2.1: The Féjer kernel for n = 1,...,5. Note that the zeros of the n-th Fejér kernel are at %Tﬂ

Then one obtains F,, < G,,. Moreover, G,, is symmetrically decreasing. In addition, we see that

" Gy de =2 2 +§4<2 L2l 4
n(®)dr =27rmax {1, — <27maxq1l, — —— < 00,

o cm? e ck*m cm? = ck*m

where the right hand side does not depend on n. O

Armed with these majorants we are able to state and prove the following estimate involving convo-

lutions with the Fejér kernel.

Proposition 2.1.2. Let 1 < g < co. Then there exists a constant C' > 0 such that for every family
(F}); of LY(I1?)-functions and K; = K; ® K it holds

q q

2 2

D OIF KPP <c|(DoIFP
i

J
La La

Proof. Let j be arbitrary. Let G; be the majorant from the Lemma 2.1.1. As the functions G; are
symmetrically decreasing, it follows for all ¢ € R that the set {& € [—m, 7] : G;(x) > ¢} is a centered

interval around zero. In the following computations, we identify a function on the torus with its
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2 A Bourgain-Brézis type Estimate

periodic extension to R:

wIERw) < [ B ) dy

[—m.7]?

§47T2/ Gj(r *yl)/ | (y1, y2) |G (r2 — y2) dy2 dy

—T —T
™

oo
= [ G —y1>/ / |F(y1,5)| ds dt dy
- 0 {Gj(z2—")>t}

™

< Gj(x1y1)/0°°£1({Gj(x2.) > t}) ( sup ]i( )|Fj(y1,s)ds> dt dy;

- o<r<m

= HGJ'HLI([fmﬂ—])/ Gj(z1 —y1) ( sup ][ |Fj(y1,s)|ds> dy:
-7 0<r<m J B,.(z2)

S [l ][ sup ][ \Fy(t,5)|ds | dt.
T 0<r<m J B (z1) \0<r<m JB,(z2)

In view of the last line, we define the operator

T(f)(z) = sup ][ (sup ][ f(yl7y2)d92> dys .
0<r<m J By (xz1) \0<r<wJB,(x2)

This operator T' corresponds to first applying the one-dimensional Hardy-Littlewood maximal operator
for the torus on f(z1,-) for each fixed first variable 21 and then applying the one-dimensional Hardy-
Littlewood maximal operator in the first variable to this new function. In this spirit, we write T'(f) =
M (My(f)) where M7 and M, denote the maximal operators in the first, respectively second variable.
The Hardy-Littlewood maximal operator satisfies the following vector-valued inequality on the 1-torus,

see for example [44],

2 2

Z|M(fj)\2 <cl > 142

La(11Y) ! La(11t)

Together with Fubinii’s theorem, this allows us to estimate the quantity of interest:

1119 119

2 2
49720 ||| N | Fy + K| <C || IT(F)P
5 5

La([—m,x]?) La([—m,7]?)
%

B C/_: /_7; ;‘Ml(M2(Fj))(xlax2>|2 dzy dzy

q

SC// > IMy(Fy)(zy,22)]* | day da
e\ 5

g
2

S C/ / Z ‘Fj(xl,x2)|2 d(EQ d.’El
—mJ -7 i
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q

[N

=C|| Y IEF
! Lo([—m.7?)
O

Next, we want to prove multiplier estimates for specific multipliers that appear in the prove of the
Bourgain-Brézis type estimate.
Fourier multiplication operators are operators which are given as multiplication operators in Fourier
space. More precisely, on the torus, one defines for a function m : Z% — C the operator T}, by
To(f) = FHmF(f)) = Y pepa m(k)f(k)e’**. For a measurable function m : R — C, one can
define the analog for the Fourier transform on R™. A classical question is whether this operation defines
a bounded operator from LP to LP. By Parseval’s identity, a measurable function m defined on Z™ or
R™ defines a bounded Fourier multiplication operator on the torus, respectively R”, from L? to L? if
and only if it is measurable and bounded. Sufficient criteria for the general case 1 < p < oo on R"™ are
given by the classical results by Marcinkiewicz and Hérmander-Mikhlin, see for example [43, Chapter
5]. These results also provide estimates on the operator norm of T,,. By transference results, it is
possible to link multipliers on R™ to multipliers on the n-torus, see for example [43, Section 3.6].
We are interested in the operator norm of a very specific Fourier multiplication operator on the 1-
torus. Let us consider the following subdivision of Z \ {0}: define for £ € N and ¢ > 0 the following
sets of length ~ £2F~1:

IT = (281 g re2b=t 2R 4 (r 4 121 N Z, (2.1)
Jp =28 — (4 1)e2k, 2R 2PN Zforr =0, e — 1,
IL& _ (2k 1y —1J52k 1 2k]mZ
and JL‘S = [-2F, =2k — |72 ) Nz

Now, we define the function m. : Z — R which will appear as a Fourier multiplier in the proof of the

Bourgain-Brézis type estimate by

Lt ) pg ey,
me(l) = ¢ =D e g (2.2)
0 if1=0.

For a sketch of m., see Figure 2.2.

We are interested in the operator norm of the corresponding Fourier multiplication operator T, . In
particular, we want to show that it decays faster than £z ase — 0.
The application of the Marcinkiewicz multiplier theorem to the extension of m. by linear interpolation
and classical transference results show that m,. is a Fourier multiplier on the 1-torus. Unfortunately,
this technique does not provide bounds on the operator norm which decrease as ¢ — 0. This is mainly
due to the fact that the bounds provided by the Marcinkiewicz multiplier theorem involve essentially
the variation of m. on each interval of the form [+2% 42*+1]. This quantity is of order 1.
Fortunately, there exists a multiplier theorem by Coifman, de Francia and Semmes, [18], which involves

the so-called g-variation.

Definition 2.1.1. Let 1 < g < co. Let [ be an interval and m : I — C. We say that m has bounded
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f

" ] >
€2 9j+1

g2i+! i +2

J//h/ ,

Figure 2.2: Sketch of the function m. drawn as a function on R by extending the definition on the
integers to R.

g-variation on [ if
Imllv, o) = sup D Im(ars) = m(z)|? | < oo
(zj);ClLxj<zj41 k>0

The theorem by Coifman, de Francia and Semmes is the following, [18], see also [55].
Theorem 2.1.3. Let 1 < p,q < oo such that %—%‘ < %, Fork € Z let I, = [Qk)2k+1} and

Jp = [-2FF1 —2F]. Then there is a constant C such that for all functions m : R — C it holds that

o ey < € (300 1 sy + Il + Wl ) W

where Ty, f = F1(mF(f)).
Transference results allow us to use the theorem above for the function m,. on the torus.

Proposition 2.1.4. Let 1 < p,q < oo such that % — %‘ < %. Letm : Z — C and define for1 <k € N
the quantity

2k+1 %
g, (k) == sup im(z)| | + Im(l —1) = m()[* (2.3)
z=2% ., ok+1 =2kl
I_72k+1"” ok
1
ok+1 q
+{ D Im(=1+1) —m(=1))
1=2F+1

and aZ,(0) = |m(0)|. If sup,ey ad,(k) < oo, then it holds

> mlny)f(n)e™* <C (sup agn(k)> 3 f(n)en

keN
d d
newr Lp(I1d) neEZ Lp(114)

where C depends only on p and q.

Proof. Extend m piecewise affine to R. We also call the extension m. Then, by the monotonicity

of m between integers it holds for each k € N the inequality [[mlly, ;) + [Imlly, 5., < of, (k) for the
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intervals I, = [2%, 281 and J;, = [-2FF1 —2*]. Moreover, for k < 0 we estimate
Imlly, 7y + Imlly, g,y < 17(2°) = m(25H)] + [m(=2%) = m(=2"1)] < 4 o < 4?250%(@-

By the Coifman-de Francia-Semmes multiplier theorem, Theorem 2.1.3, the extended function m is a
valid multiplier on L?(R). The operator norm of the corresponding Fourier multiplication operator is
less than C'sup;,cy oo (k). Hence, by classical transference results, see for example [43, Theorem 3.6.7],
the function m is a valid multiplier on the 1-torus and the operator norm of the Fourier multiplication
operator on the torus can be estimated in terms of sup,cy aum (k) ie., for every function g € LP(II')
it holds that

> mn)g(n)e™

< C(sup am (k) ||gHLP(H1) :
=~ kEN

Lr(II)

Now, we can establish the claim of this proposition using Fubinii’s Theorem: Let f € LP(IT1%). Then

P
/ Z:771(711)]5(71)61””c dx
[=m.m] nez?
P
:/ / Z m(ny) Z flny,n))e™ = | e™e] day da’
[-mm]d=t S —m ni€Z n!€Zd—1

keN nezd

<C? (supa%(k))p/[_ - /_7T Z fn)e™| dx
p

=CP (sup am(k)> ”f”;zp([—w,w]d) .
keN

Here, we used the notation z’ for the vector in R?~! which consists of all but the first entry of
r € Re O

In view of this proposition, it is enough to prove bounds on af,_ as defined in (2.3) in order to gain
good estimates for the operator norm of the Fourier multiplication operator associated to m.. We
prove this bound in the following lemma together with a bound for a second multiplier which appears

during the proof of the Bourgain-Brézis type estimate.

Lemma 2.1.5. Let 1 < g < oo.
(i) Let m. : Z — C be defined as in (2.2). Then supy, o, (k) < ce'r.
(i) Let m(l) =Y oo %1[2&2“1)%_2“17_%](l). Then supy, ol (k) < oo.

Proof. Tt can be seen directly that 0 < m. <e. Fix kK € N and let us write

2kt e
Z Ime(l = 1) —me(D)|* = Z Z Ime(l = 1) — me(1)[". (2.4)
=2k 41 r=0 ZEI;+1

Notice that m. is monotone in each I;. Hence, we may estimate

(2.4) <2(|e™t] +1)e? < 4971,
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2 A Bourgain-Brézis type Estimate

where the last inequality is valid for € < 1. A similar computation can be done for the g-variation in
[—2F+1 —2F]. Combining these estimates leads to (i).
For the second estimate, notice that m is monotone on [2F,2¥+1) and (—2F*! —2%] and 0 < m < 1.

Using these two facts and a similar argument as for m. leads to (ii). O

We finish this section by collecting a few classical results about Littlewood-Paley theory, see for
example [43].
Let ¢ € C5°(B4(0)) such that ¢ =1 on Bz (0). Define the function ¢;(z) = 0(279x) — (277 1),
Then ¢ + Zjil 1; = 1. One defines associated smooth Fourier projections on the torus by mul-
tiplication in Fourier space, namely P;(f) = F '(¢;F(f)) = Y ,cz ¥i(n) f(n)e™= for j > 1 and
Py(f) = F~1(@F(f)). Essentially, the operator P; projects in Fourier space to all frequencies |k| ~ 27.
Clearly, by this definition it holds that Id = ) ;P To finish this section, we state the Littlewood-
Paley estimates which we need in the next section.
Let f;, f € L4(T1%). Then the following inequalities hold for all 1 < p < oo:

1
L Il gy < || (S 1PS12)?

ooy < oI saney

2 ||(SelBev i), < G [ (S 2 PA)?

Lr (114 Lp(11d)’

A ONEYADR (S i)

<C
Lr(d) — P

Le(114)’

2.2 The Case of a Torus

In this section, we prove a primal version of the Bourgain-Brézis type estimate on the 2-torus IIZ,

which we simply denote by II in the following. To be precise, we show the following statement.

Theorem 2.2.1. Let II be the 2-torus and 2 < q < co. Then there exists a constant C > 0 such
that for all functions f € L*(I1) N LI(I1) satisfying [;; f = O there exists a function F € L>(II;R?) N
H(IT; R?) N Wh4(IT; R?) such that

(i) divF = f, (i) [|Fl[gr < Cllfl2,

(i) [|Fllze < Cllfllz2, () [[Fllwia < C[f]|za-

Remark 2.2.1. The result by Bourgain and Brézis in [11, Theorem 1] is the same without the
assumption f € L? and the resulting estimate for F' in L?. In two dimensions, the same result holds
true for the curl-operator as the operators div and curl are linked by a rotation of the vector fields.
Hence, the result can be understood as a characterization of the failure of the embedding H! to L in
two dimensions. A function in H'-function can be decomposed such that the part of the decomposition

which is not controlled in L is a gradient.

Remark 2.2.2. Statements of this type in the pure L?-case hold for a more general class of operators.
In [12, Theorem 10] it is shown that it is sufficient that for an operator S : Whn(II",R") — X with
closed range, where X is a Banach space, there exists for each 1 < s < r an index 1 < iy < d such
that for all functions f € W™ (II",R") it holds that

< i )
ISl < € max max |8 fl| ..
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Figure 2.3: Sketch of Al.

to guarantee that for any f € W1 (II",R") there exists g € WHm(II", R") N L (11", R") satisfying
S(f) = S(g) and corresponding bounds. Clearly, this condition holds true for the div-operator. The
fact that the operator is blind for the derivatives 0, fs allows to insert oscillations in this particular

direction.

Remark 2.2.3. Moreover, Bourgain and Brézis show that the correspondance of f to a solution
F € H' N L*® of divF = f which satisfies the bounds of the theorem cannot be linear, see |11,

Proposition 2].

We prove this result following the ideas presented in the proof of Theorem 1 in [11].
The main ingredient to prove Theorem 2.2.1 is the following lemma which gives a first approximation
to Theorem 2.2.1. It shows that the equation div F' = f can be almost solved by a function F' which

satisfies estimates with a good linear term and a bad nonlinear term.

Lemma 2.2.2 (Nonlinear approximation). Let II be the 2-torus and 2 < q¢ < oo. There exists ¢ > 0
such that for all f € L*(IT) N L9(IT) satisfying || f||2 < ¢ and [ f =0 the following holds:
For every § > 0 there exist C5 > 0 and F € L>(I[; R?) N H'(II; R?) N WH4(I1; R?) such that

(i) [|[F|lL= < Cs,

(i) |Fllmz < Csllflle,
(ii) || div F = fllz2 <l flle> + Csll f117-
() | Fllwia < Csl|fllLa,

(v) [[div F' = fllza <6l fllz> + Csll f[ 2| fllza-

Proof. Let f € L*(II) N L9(II) such that [ f =0 and ||f| .2 < ¢ where ¢ > 0 will be fixed later.
Consider the following decomposition of Z? \ {0}, see Figure 2.3,

A= {271 <|ny| < V5fne| <27} and AS = {277 <|ny| < 25|ny[ <2771} forj N (2.5)
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2 A Bourgain-Brézis type Estimate
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Figure 2.4: Sketch of the subdivision of A! into the stripes A;yr for positive n;.

For a = 1,2 set A® = Uj A%. Correspondingly, let f* = Praf = > 1« f(n)e””" and decompose
f = f'+ 2. In the following, we construct functions Y, : I — R which satisfy

L |[Yallz= < Cs,

2. [Yallar < Csll £l

3. [10aYa — f¥llz2 < 8|l fllrz + Csll f117e,

4. Yallwra < Csllfllza,

5 10aYe = f* e <[l + Csll fllz [ flla-

Without loss of generality we may assume that f = f! and construct only Y7.
Let us define

fi=Puf=) fn)e™ and Fj = nilfj(n)ei"@ = if‘(n)ein-z.

n
neA; neA; 1

Moreover, fix a small ¢ > 0 and subdivide A} in stripes of length ~ £27~" by setting

A= U AL
0<r<2[e—1]+1
where for 0 < r < [e7!] we set A;)T =1 x [—27,27] whereas for [e7!] +1 <r <2[e7!] + 1 we set
A, = I;ﬂs_l]*l x [—27,27] where I and Ji are defined as in (2.1) in the previous section. For a
sketch of the situation, see Figure 2.4.
Next, define
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2.2 The Case of a Torus

The main property of F } is the smallness of its partial derivative in x;-direction.
Sent i fy(n)einreionn

-1
I7, respectively the right endpoint of J;7L8 J=1 Differentiation leads to

In fact, we can rewrite Fj(z) = 3

, where a;,, is the left endpoint of

ENESSDY % Fimem =371 ST ma(m) fi(n)en® (2.6)

T |n€Aj T |n€Aj

where m. is the the special function defined in (2.2) in the previous section. As 0 < m. < ¢ and using

Plancharel’s identity and Holder’s inequality for the sum over r, we derive that

101 Fyllre < Cem 23S e () f(m)et™

T ||neAj

1
< Cez| fllze-

L2

For an L?-version of this estimate, we will later use Proposition 2.1.4 and Lemma 2.1.5.
As we also need an appropiate localization in Fourier space of Fj, let us recall that the n-th one-

dimensional Féjer-kernel is given by

n—|k| ;5 11— cos(nt)
K,(t) = — e =" >0
n(t) Z ‘ n 1—-cos(t) —

If we define
Gj = 9FJ * (K2j+1 ® K21+1),

we obtain by the properties of the Fejéjer kernel discussed in the beginning of the previous section
that
supp G C [—27F1 271 5 [—29FL 23]  {|n| < €27} and |Fj| < |Fj| < G- (2.7)

Moreover, in the proof of [11, Theorem 1] it is shown that

1G5l < 9N Flloo < ClIf5]22, (2.8)
1G> < Ce™227| £l .2, (2.9)
101Gyl > < Ce?|| ]2, (2.10)
VG2 < Cem 2| £ e (2.11)

Let us only prove (2.8), the rest can be proved similarly:

=

RIGIEDISY Inilf(n)lﬁf"+1 Yo ml<c| Y 1fmPP | =il

1 1 1
r nEAjyr neA]. neA].

As in [11], we define

vi=> F[[a-Gp.

J k>3

By (2.7) and (2.8), it holds |F;| < C||fjllL2 < C||f| 2. We assume that ||f| -, respectively c in the
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2 A Bourgain-Brézis type Estimate

formulation of the theorem, is so small that C' || f||;> < 1. Then, one can show that

V1| < Z IR <1 (2.12)

k>j

Another calculation, see [11, equation (5.19)], shows that
Yi=> F;—)Y G;H,,
J J

where

Hy =Y F [[ 0-¢.

k<j  k<l<j
Thus,
V1= fi— > 0u(GiH;) = f—> (G Hj). (2.13)
J J J

Moreover, by definition of H; and F} and (2.7) it can be seen that

|Hj| <1, supp H; C {|n| < 027}, Py(G;H;) =0 for all k > j +m,

respectively G, H; = Z P.(G,Hj), (2.14)
k<j+m

where the P, are smooth Littlewood-Paley-projections on {|n| ~ 2¥} as discussed at the end of the
previous section and m is independent of j. In [11, proof of Theorem 1], Bourgain and Brézis show,
using (2.7) - (2.14), that

101Y1 = fllz2 < Clog(e™) (2 Iflls2 + 2 /13 ) and [Villm < Cellfllpe.  (215)

Hence, properties 1.-3. for Y7 are already shown. In what follows, we adopt the ideas of their proof
to show the corresponding estimates in L9 i.e., properties 4. and 5., for Yj.
First, we estimate

IVYillze < IV Ejllze + 1V ) GiHjllzo. (2.16)

J J

For the first term on the right hand side, we observe that

SVE| =3 X o fme

La J neA} L
<ol X e
J meA] La
=C||fllpa- (2.17)

Note that we used for the first inequality that nﬂlluj Al is an LP-multiplier. This can be shown by
multiplier transference and the Marcinkiewicz multiplier theorem (note that in A; the second variable
ngy is controlled by 2n;). Next, we estimate the second term of the right hand side of (2.16). Using

(2.14) and classical Littlewood-Paley estimates as discussed at the end of the previous section, we
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2.2 The Case of a Torus

obtain

2\ 2
S VGH)| <Cl| Y|P V(GH)) : (2.18)
j La k j
La
Note that the operator V can also be seen as a Fourier multiplication operator. Hence, it commutes
with the Littlewood-Paley-projections P,. In particular, the localization in Fourier space for G;H;
in (2.14) also holds for VG H;. The triangle inequality and rewriting with the change of variables

j— k+syield

<Cc > <Z|PkV(Gk+SHk+S)|2> . (2.19)

k La

The change k — k — s leads to

N

=C Y Do IPeV(GrH)P . (2.20)

s>—m k>s

La
The Littlewood-Paley inequality for gradients yields
1
2
<C 27" 28Gy, Hy |? 2.21
<C ). >_12"Gi Hy | (2.21)
s>—m k
= l-I<1
La
1
2
<C Y2 Yo 12FGyP . (2.22)
s>—m 7
La

By definition, G, is the convolution of Fy, with a Fejér kernel. Applying Proposition 2.1.2 leads to

<C 27° <Z 2’“Fk|2> : (2.23)
k

La

ok
Y |2 L

k r<2le-1]-1 nEAiyr

La

(2.24)
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2 A Bourgain-Brézis type Estimate

Using Holder’s inequality for the sum over r yields

SIS

2

k A .
<cer Y 2|l Y > i—lf(n)e””” . (2.25)

s>—m k r<2le-1]-1 ”EAi,r
La
Now, we use a one-sided Littlewood-Paley-type inequality for non-dyadic decompositions which goes
back to Rubio de Francia, [69, Theorem 8.1]. For the case of a torus, see [41, Theorem 2.5] or [10] for
the dual statement. The statement is the following: For g > 2 there exists a constant C' > 0 such that
for all partitions of Z into intervals (I )y it holds that

< Clfllpeqmy >
La(IIt)

H(Z|Skf|2)%
k

where Sp.f =), f()e™*. We use this inequality in the first variable for the decomposition of the

ni-axis given by A,lw,7 respectively I} and J:

(225) <Ce™2 ) 27 > > i—kf(n)ei"'m . (2.26)

s>—m kor<2let—1neA} Lo

Finally, we use that we know from Proposition 2.1.4 and Lemma 2.1.5 that ), 727]: AL is an LP-

multiplier to obtain

<Cer Y 2 > ST fm)ene (2.27)
s>—m kr<2[e=]—1neAl Le
2neat
1 _
=t Y 2 (228)
s>—m
<Ce2 £l - (2.29)
Collecting (2.16), (2.17), and (2.18) - (2.29) leads to
_1
VY1l e < Ce™2 [ £l 1o -
As we may assume without loss of generality that fn Y7 = 0, this implies
1
Yo < Ce™2 [ fll 0 - (2.30)

Hence, it is left to prove property 5. for ;. By (2.13), it remains to control H81 Zj(GjHj)H . Asin
La
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(2.18)—(2.20), we can estimate

Nl

812GjHj < Z Z|ijsal(GjHj)|2
; -

s>—m 7
La - La

Now, fix s, € N and estimate for s > s, as in (2.20)—(2.28)

2

I S IP_a(GH)P | | < cebe i (231)
J

For s < s, we estimate, using that |H;| <1,

I > IP;_.01(G Hy)|? <c|| > 106Gy +C || D 1G00H; . (2.32)
J J J

La La La

ol
[N

As Gj is the convolution of F'j with a Fejér kernel, we may apply Proposition 2.1.2 to the first term
on the right hand side to derive

2 2

‘ > oGl <c|| > 1ouF?
j

J
La La

Equation (2.6) and Holder’s inequality for the sum over r lead to

<Ce 3 Z Z Z me(ny) f(n)e™®

i r<2let]-1|neAl,
La
Using the Rubio-de-Francia-inequality for arbitrary intervals in the first variable as in (2.25)—(2.26)
yields

ch,% Z Z Z me(nl)f(n)em'm

J r<2le=t]-1neAl La
By the improvement of the Marcinkiewicz multiplier theorem due to Coifman, de Francia, and Semmes,
Proposition 2.1.4 and Lemma 2.1.5, the function m. defines a multiplier whose associated operator-
norm from L? to L? can be estimated by CTE% for any r such that |% — %| < % In particular, there

exists r > 2 such that

-1

r=1_1
=Ce 77 |fllp.- (2.33)
La

S fmer

neAl
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2 A Bourgain-Brézis type Estimate

For the second term of the right hand side of (2.32), note that in [11] Bourgain and Brézis show that
IVH || oo <27 [/ g2 -

Hence, we can estimate

> G0, <[{X1ZeP 1Al 2= -
i i

La La

N
|

The right hand side can now be treated as in (2.22)-(2.28) to obtain

‘ > G0 H; < Ce™2 || fllpa If 1l - (2.34)
i

La

Collecting (2.31), (2.33) and (2.34) yields

aY G| <Cr e I+ Y (I Il e T TR ) (2:35)
J

La —m<s<s,

Eventually, choose s, such that 27+ ~ . Then (2.35) provides

o G| < Cloge™) (£ H ISl + e 1Al 1) e) (2.36)
J

L4

Here, we used that €3 < £ 3% for ¢ < 1. Notice that > 2 and therefore log(e_l)e%_% — 0 as
¢ — 0. Comparing with (2.15) and (2.30) shows that for given § > 0 the properties 1.-5. of ¥ can be
achieved for £ > 0 small enough. This finishes the proof. O

Remark 2.2.4. Note that the explicit construction given in the proof is nonlinear which is in accor-
dance with Remark 2.2.3.

From the nonlinear estimate we can now derive a linear estimate.

Lemma 2.2.3 (Linear estimate). Let IT be the 2-torus and 2 < q < oco. Then for every § > 0 there
exists a constant Cs > 0 such that for every function f € L*(I1) N LY(I) satisfying fH f =0 there
exists F € L*(II;R?) N HY(I1; R?) N WH4(I1; R?) such that

(i) |1F|lze < Cs|| fllzz,

(i) | F|lg < Cs 2,
(iti) || div F — fllzz < 6| fllzz,
() [|Fllwa < Csllfllza,

(v) [[div E = fllLe < 6| f] e

Proof. As we want to prove a linear estimate, we may assume without loss of generality that it holds
|fllzz = 6C5 ' < ¢ where ¢ > 0 is the constant from Lemma 2.2.2. The application of Lemma 2.2.2
provides the existence of F' € L>(II; R?) N H(II; R?) N W4(I1; R?) such that
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(i) 1Fllz= < Cs =67"C3[1 12,
(i) [1Fllz < Csllflrz,
(iil) || divE — fllz2 <0l fllz= + Cs fII72 = 26| f 22,
(iv) IFllwra < Csllfllza,
(V) [[div F = fllze < 6l[fllLa + Csll fllz2[l.fllze = 261 f] e
Now, take § = 2§ and C5 = 6~ 'C3. O

Armed with this approximation we are now able to prove Theorem 2.2.1 by iterating this approxi-

mation.

Proof of Theorem 2.2.1. Let f € L?>(IT)N L4(II) such that fn f =0. We apply Lemma, 2.2.3 for § = 1

5
Hence, there exists F such that

o [|Fiflz < Oyl fllze,

o [Fillgr < Cyllfllee,

o |divF — fllze < 5lIfllze,
o [Fillwra < CullfllLe,

o ||divF; — fllze < %”fHLq-

We deﬁne~Fi for ¢ > 2 inductively: let fi = f—div 23;11 F;. 1\~Tote that by the periodicity of the F} it
holds fn fi = 0. Reapplication of Lemma 2.2.3 for § = L and f; provides the existence of F; such that

2
@) [Fill= < Cyllf —diviz] Fyllre < Cy(3) | fllze,
(i) [Fillm < Cyllf —div 322y Fillze < C3 (3 HIf e,
(iii) | div F; +div Y202) Fy — fllze < 3 div i) By = fllze < (31 1ze,
(i) |Fllwra < Cyllf = div 5] Fylloe < C1 () flze,
(v) [ div Fy +div Y\ 23 Fy — fllze < & div 2] By — fllze < (371 £llze-

Define F = Z;‘;l F;. Then, divF = f and the claimed estimates follow by the triangle inequality
with C' = QC%. O]

2.3 Localization

This section is devoted to localize our previous result in the sense that we show that on cubes there
exist solutions to divY = f satisfying Y = 0 on the boundary and bounds in L>°, H', and W4,
The proofs in this chapter follow the lines of the corresponding proofs for solutions in the space
L (;R?) N HY(Q; R?) presented in [11, Section 7).

Proposition 2.3.1. Let Q = (0,1)? and 2 < q¢ < oo. Then there exists C > 0 such that for all
functions f € L?>(Q)NLY(Q) satisfying fQ f =0 there ezists Y € L™(Q; R*)NHE (Q; R?)NW, 4(Q; R?)
such that divY = f,

1Yo @ir2) + 1Y |1 (@ir2) < Cllfllzz(q), and [|Y lwraqirzy < CllfllLa(q)-
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2 A Bourgain-Brézis type Estimate

Proof. Step 1. Euxistence of a solution satisfying Y =0 on (0,1) x {0}.
Let Q = (0,1) x (=2,1) and
- f inQ@,
0 inQ \ Q.

We may interpret Q as a torus. Applying Theorem 2.2.1 provides a periodic solution Z to div Z = f
in Q satisfying

HZHLw(Q;R2) + ||Z||H1(Q;]R2) < C||fHL2(Q) and ||Z||W1,<1(Q;R2) < C||f||Lq(Q)~
Next, define the funtion Y : Q — R? by setting for (z,y) € Q
Y1<xay) = Zl(xay) + 3Zl(x7 7y) - 4Zl($7 72?/) and Yz(l',y) = Z2(xay) - 3ZQ(x7 7y) + 222(557 72?/)

A straightforward calculation shows that for (z,y) € Q it holds divY (x,y) = f(x,y). Moreover, the

function Y inherits the estimates from Z. Precisely,

1Y 2~ @) + 1Y @2y < CUZN e (ome) + 12151 im2)) < Clf 2y = Cllfllz2 (@)
and [|Y [lw.a(gre) < Cllfl|Laq)- (2.37)

Finally, one checks that for z € (0,1) it holds that
Yl(.’E, O) = Zl(ZL',O) + 3Zl($,0) — 4Zl($, 0) =0 and Y2($70) = ZQ — 3ZQ(£E,0) + 2ZQ(.’E, 0) =0.

Step 2. Existence of a solution satisfying Y =0 on (0,1) x {0} U {0} x (0, 1).
Let Q = (—2,1) x (0,1) and
R f on@,
f= .
0 onQ\Q.

With slight changes we can use step 1 to find a function Z satisfying divZ = f on Q, Z =0 on
(—2,1) x {0}, and the bounds in (2.37). Then, define similarly to step 1 the function Y : Q@ — R? by

Yl(xvy) = Zl(xvy) - 321(—$7y) + 221(—2$,y) and }/Z(xvy) = ZQ($7y) + 322(—233,y) - 4Z2(—(E,y).

Similar to step 1, one can check that Y =0 on (0,1) x {0} U{0} x (0,1) and divY = f. Moreover, Y
satisfies the bounds in (2.37).

Step 3. Conclusion.

Let x;, i = 1,...,4, be the vertices of (0,1)? and Q; = QN By(x;). Fori =1,...,4 let ¢; € C>(Q)
such that ¢; = 0 on @ \ Q; and Z?ﬂ 1; = 1 on Q. By step 2, there exist solutions Z', ..., Z* such
that div Z? = f and Z* = 0 on the two edges ending at x;, see figure 2.5. In addition, the solutions
Z; satisfy the bounds in (2.37).

Now, define

4
Z =Y 7"
=1
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2.3 Localization

Zt=0

o

I Zl =0
Figure 2.5: Sketch of ; and the boundary values for Z! as defined in step 3 of the proof of Proposition
2.3.1.

Then Z = 0 on 9Q and Z satisfies the bounds in (2.37). Moreover,
4
divZ=f+Y 2" Vi
i=1
Let us write g = Z?Zl Z% - Vp;. Tt is easily seen that ¢ = 0 on 9Q and
° fQ gdx =0,
¢ llgli=@ < C Xy 12~ < Clif 2@,
o lgllzr@) < C Xy 12 @2y < Cllfll2@)
o llgllwra@) < C ity 128 lwragrzy < CllfllLaq)-

The next lemma shows that there exists a function R € L®(Q;R2) N H} (Q; R2) N W%(Q; R?) such
that divR = —g,

IRl L (qir2) < Cllgllze (@), IRl a1 @r2) < Cllglla (@), and [|R|lwiaqrz) < Cllgllwaq)-

Finally, set Y = Z + R. O
Next, we prove the lemma which we used in the proof of Proposition 2.3.1.

Lemma 2.3.2. Let Q = (0,1)? and 2 < q < co. There exists a constant C > 0 such that for every
function f € L™(Q)NHL(Q)NWy Q) satisfying fQ f =0 there exists Y € L>°(Q; R*)N H} (Q; R*)N
Wy (Q;R?) such that divY = f,

1Y llo@ir2) < Cllfllzees 1Y 51 (0ir2) < Cllflla1(0), and Y lwiaqirzy < Cllfllwra(q)-

Proof. The proof follows a standard construction, which could be applied inductively to establish
results in higher dimensions. However, we consider only the two-dimensional case.
Let f e L®(Q) N HA(Q) N WyY(Q) such that Jo f=0. Fory € (0,1) define

1

g(y) = ; f(z,y)dx.
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2 A Bourgain-Brézis type Estimate

As f = 0 on 9Q, we obtain that ¢g(0) = g(1) = 0. Moreover, it holds fol g(y) dy = 0. Furthermore,

one can check, using Jensen’s inequality, that

llgllze 0,1y < I flle@)s N9l 0,1y < 1l (@) and |lgllwraco,n) < I fllwraq)-

In addition, let us define
y
2t) = [ gttt
0

Clearly, Z(0) = Z(1) = 0 and Z satisfies the estimates

121> 0,1) < 9l (0,1) < N fllze (@) 12111 0,1y < CllfllE1(@)> and [ Z]lwr.ago,1y) < [ flwaq)-

Furthermore, let ¢ € C°((0,1)) such that fol ¢ dx = 1. This function can be chosen independently
from f. We set

) = [ 1)~ vg)ar

Then f(z,y) = d.h(x,y) + ¥(x)g(y) and h = 0 on JQ. In addition, one varifies that

1kl < Cllf @) IRl < Clfliz@ and IRl < Cllfllwrag:

Finally, set
Y(z,y) = (h(=,y),v(z)Z(y)).

Then divY = f. The desired estimates follow from those for h and Z. O

2.4 Lipschitz Domains

So far we have shown that on cubes there exist good solutions for the equation divY = f subject to
Y = 0 on the boundary. Later, we are interested in a decomposition result for functions in H' NW14
which gives rise to estimates of the H ! + W ~1%-norm of an L!- function. One could first derive the
decomposition result for cubes from the previous section and later use covering arguments to obtain
this decomposition result for more general domains. However, the decomposition statement involves
second derivatives (see Theorem 2.4.4). Hence, the straightforward transformation of this result
including a partition of unity needs higher regularity of the boundary i.e., Q € C1'!. Therefore, we
first extend the result of Proposition 2.3.1 to Lipschitz domains.

Theorem 2.4.1. Let 2 < q < oo and Q C R? open, bounded with Lipschitz boundary. Then there
exists a constant C' > 0 such that for every f € L?(Q) N LY(Q) satisfying Jo fdx =0 there exists
Y e L®(Q;R?) N HE (4R N Wy 4 (QR?) such that divY = f,

Yz @z + 1Y [[my ey < Cllfllz2@), and [Ylyraqpe) < ClfllLag)-

For the proof we need two lemmas treating the local situation. The theorem can then be proved by a

covering argument. The prove follows the ideas presented in [11, Section 7].

Lemma 2.4.2. Let 2 < g < co. There exists eg > 0 and a constant C > 0 such that for all intervals
I and ¢ € Lip(I) with Lip(1p) < gq the following holds: Let

U={(z,y) e I xR:y(x) <y <(x)+d},

38
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N

Figure 2.6: Sketch of the situation in Lemma 2.4.2 and Lemma 2.4.3.

where § is the length of I. Then for every f € L?>(U) N LY(U) there exists Y such that divY = f.

Moreover, Y satisfies
1Y |l Lo wirey + 1Y |51 (wir2y < Cllfllz2wirey, 1Y lwrawrzy < CllfllLawirey,
andY =0 on I'y where
Ty ={(z,y) eR*:w € Ly =9(x)} U{(z,y) € R?: w € D, ¢ (x) <y <4(x) + 0}

For a sketch of U and I'y, see Figure 2.6.

Proof. Let I be an interval and ¢ € Lip(I) such that Lip(v)) < g9, where gy will be fixed later.
Moreover, let f € L2(U) N LY(U) where U is defined as in the statement of the lemma.
For (z,y) € I x (0,9) =: @ we define

f(@,y) = fle,y + ().

Clearly, || fllz2(0) = Ilflz2@wy and [|f]|ze@) = | fllLaq)- Next, consider Q = I x (0,26) and

Fla.y) = f(af:,y) ?n Ix(0,9),
—flz,y—438) in I x (6,20).

By Proposition 2.3.1 (scale the second variable of I x (0,26) by a factor % to receive a function defined

on a cube) there is a solution ¥ € L=(Q;R?) N H(Q; R?) N Wy*(Q;R?) to divY = f in Q which

satisfies
V(| oo (gip2y + 1Y i o2y < CllFllL2ay < Cllflee @y and [V llyragezy < Cllfllzew)-

Set for (z,y) € U
Z(:E,y) = Y/(‘T’y - ql)(x))
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2 A Bourgain-Brézis type Estimate

Notice that Z =0 on I'y. Moreover, one computes for (x,y) € U

div Z(z,y) = 0 Yi(z,y — () — Y1 (2, y — (2)) (z) + 02V (w,y — ¢(x))
= fz,y — (@) — BYi(z,y — () (2)
= f(xay) - 82}71(5(5, Yy— w(x))l//(x)

Consequently, it holds

Idiv Z = fllz2w) < €ollY [l g1 (gpey < Ceoll Fll2wy and [|div Z = flLaw) < Ceoll fll Lo

Note that by scaling one can see that the constant does not depend on 4.

In a similar way one verifies that
o [|Z]|Lwrz) < CllfllL2w),
o [|Z|l g wirey < C(1+e0)llfllL2 ),
o [[Z]lwrawirz) < C(L+ o)l fllLaq)-

We can use this construction inductively to approach the desired solution to divY = f.
Set f! = f and Z' = Z. Inductively, one finds for £k > 2 and f¥ = divZ*=1 — f*=! a function
ZF € L>=(U;R?) N HY(U;R?) N WH4(U; R?) such that

o [[div Z* — f¥|| 2y < Ceoll f¥llL2wy = Ceoll div ZF 1 — f M| 2y < (€0C) 1 fll 2 ()
o [ divZ* — f*|lLaw) < (€0C)¥[| Loy,

o [ Z¥| L=z < Ol divZF" — fF 2wy < Ce0C)* | Fllze

o | Z¥|mrwipey < (1+20)ClldivZFt — f* L2y < C(1+20)(€0C) M| fll 2w,

o [Zllwrawrey < (1 +20)C|ldiv Z¥1 — 57| ooy < C(1+20)(20C) | fll Loy

Eventually, choose g9 > 0 so small such that C' < 3. Then Y = Y7, Z* fulfills the claim of the

lemma. O

In the following lemma we show how one can get rid of the smallness condition Lip(1)) < &g by a

scaling argument.

Lemma 2.4.3. Let 2 < q < oo, I an interval, ¢ € Lip(I), and U defined as in Lemma 2.4.2. Then
there exists a constant C' > 0 such that for every f € L>(U)NL4(U) there exists a function'Y satisfying
Y =0 onTy Ty defined as in Lemma 2.4.2), divY = f,

1Y (| Lo vy + 1Y |52 (oir2y < Cllfllz2wy, and |Y lwrawrzy < Cllfllzaw)-

The constant C' may depend on Lip(y)) but not on I.

Proof. Let I be an interval, 6 the length of I, 1) € Lip(I), and f € L2(U) N L4(U).
Define N = [L%éw)] where ¢ is the constant from Lemma 2.4.2. Moreover, set ] = N - I. Next,

define for z € I the function ¢(z) = 1(&). Then Lip(¢)) < MPTW) < go. Define the function

f:U={(z,y) e IxR:9 <y<t(zr)+} = Rby

F@y) =1 (%)
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Subdivide I into N subintervals I}, of length 6. Now, the application of Lemma 2.4.2 to each function
f\ﬁk on the set Uy = {(z,y) € I x R : ¢(x) < y < () + 6} provides a function Z* such that
div ZF = fk on ﬁk,

||Zk||Loo(0k.;1R2) + HY”Hl(f]k;]Rz) < CHJ;”L%(},C)» and HZk”V[/l,q([}k;up) < C”J;HLq(ﬁk)-

Moreover, it holds that Z* = 0 on I'p,. We define Z : U — R2 by Z(x,y) = ZF(x,y) for (x,y) € Up.
By the boundary values of Z* on I'y;,, it holds that divZ = f Moreover, we obtain that Z is a

Sobolev function satisfying the estimates

HZHLoc(U;R2) + HZHHl(U;R?) < C||f||L2(U;R2) < C(N)||f“L2(U;R2)
and [[Zlly 1.0 (gz2) < CN|f ]l Lawig2)-

Finally, for (z,y) € U we set Y (z,y) = (% Z1(Nz,y), Zo(Nz,y)). From this definition one can check
the desired properties for Y directly. O

Using the two previous lemmas discussing the local situation at the boundary, we are now able to

prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let f € L*(2) N L().

By the definition of a Lipschitz boundary, we can find a finite cover of 9§ by sets (U;)i=1,... » which have
up to rotation the form as in Lemma 2.4.3 such that up to rotation OU; N 9Q = {(z,¢;(z)) : x € I;}.
Let (8;)i=0,... .k be a partition of unity in the following sense. For ¢ = 1,...,k let 6; € C*°(Q) such
that 6; = 0 on Q\ U; and let fy € C°(52) such that 35 6; = 1 on Q. By applying Lemma 2.4.3, we
find for i = 1,...,k solutions Z* € L*(U;; R?) N HY(U;; R?) N Wh4(U;; R?) to div Z = f in U; such
that Z° = 0 on OU; N 9N satisfying the bounds from Lemma 2.4.3. Note that the constant for the
bounds depends only on ?; and hence on {2.

Furthermore, let (Q be a cube containing 2. Extend f by 0 to @ and call this extension g. By
Proposition 2.3.1, there exists Z° € L>(Q;R?) N HL(Q; R?) N Wy ?(Q; R?) such that div Z° = g,

1Z°)| < (@ir2) + 1 2°]| 11 (@ir2) < Cllf|IL2(ur2), and || Z°||lwra(@re) < C|lfllpaaire)-

Define Z = Zf:o Z%;. Then Z = 0 on 9. By construction, it holds also that Z € L>(Q;R?) N
HE(Q;R?) N W, 9(Q; R?) satisfies the estimates

1Z|| Lo (osr2) + 1 Z || 2y < Cllfll2ir2), and [|Z]|wiaorey < CllfllLaoir2)-

Moreover,
k

divZ=f+Y 7"V,
=0
=:h

Note that h = 0 on 9. In addition, straightforward estimates show that

a1 ) < CllZ| a2y < Cllfll2; and ||B]lwia) < CllfllLe@)- (2.38)
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2 A Bourgain-Brézis type Estimate

Now, fix ¢ < r < co. By the Sobolev embedding theorem, we derive from (2.38) that
[hllzr ) < Clhll g ) < Clifllzz) and [[hllzr@) < Cllfllze@)- (2.39)
By [11, Theorem 2], there exists a function R € Wol’r(Q, R?) such that
div R = h and || R||yw1.»qir2) < Clh||Lr @)
As r > g > 2 it follows from the Sobolev embedding theorem and (2.39) that

Bl ore) + 1Rl 2 @r2) < C Ry qpe) < CllR|

rr@) < Ifllz2

and || R||w1.aore) < [|fllLe)-

Eventually, Y = Z — R has the demanded properties. O

As discussed at the beginning of the chapter we use Theorem 2.4.1 to prove a decomposition
statement for functions in Hj N I/VO1 . This statement is the content of the next theorem. This
theorem can be understood as the primal version to the Bourgain-Breézis type estimate (Theorem

2.0.1) as the the Bourgain-Brézis type estimate can be derived from Theorem 2.4.4 by dualization.

Theorem 2.4.4 (The primal result). Let 2 < ¢ < oo and Q C R? open, simply connected, bounded
with Lipschitz boundary. Then there exists a constant C > 0 such that for every p € H}(Q;R?) N
Wl R2) there exist h € H2(Q)NWZY(Q) and g € L>°(Q;R2) N HL (Q; R2)NW, 1 (Q; R?) satisfying

(i) ¢ =g+ Vh,
(it) |gllz=@r2) + 9]l a2 @r2) + [Plla2(0) < Cllelm @re),

(iti) ||9||W(}=‘1(Q;R2) + Hh”WOz"‘(Q) = CH()DHWOI"I(Q;]}W)'

Proof. Let ¢ € HL(Q;R2) N W,9(Q).

By the boundary values of ¢ it holds that fQ curlodxr = 0. The application of Theorem 2.4.1 to
curlp € L2(2) N L(N) provides a function Y € L>®(4R?) N H(Q;R?) N W, %(Q;R?) such that
divY = curly and

YL @m2) + 1Y |y @irz) < Cllewlgllr2) < Cllella@pey and [[Yl[yiogme) < Clliellwrooire)-

Set g = Y+ = (—Y3,Y;). Then g satisfies the same bounds as Y and curlg = divY = curlp. As Q is
simply-connected, by the Hodge decomposition there exists a vector field h € H?(Q2) N W24(Q) such
that ¢ — g = Vh,

1Pl z2@) < Cllg = ¢l @re) < Cllella@re), and [|hllw2a@) < Cllellyraqre)-

Moreover, Vh = ¢ — g = 0 on 0f). Therefore, h is constant on the boundary of €2 and we may assume
it is zero. Hence, h € HZ(2) N W(Q). O

Remark 2.4.1. From Theorem 2.4.4 we can derive the corresponding dual statement i.e., a function
f € LY(Q;R?) satisfying divf = a +b € H2(Q) + W=2P(Q), p < 2, is an element of the space
H7Y(Q;R?) + W—LP(Q;R?) and

£l ey +w-10(r2) < C (||f||L1(Q;R2) + llall g-2q) + ||b\|wfz,p(9)) -
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In fact, let ¢ € H(Q;R?)N Wol’p/ (€2;R?). We use the decomposition ¢ = g+ Vh from Theorem 2.4.4
and estimate

/ fodx = / flg+ Vh)dzx
Q Q
<c <||f||L1(Q;R2) ||g||Loc(Q;R2) + Ha||H—2(Q) ||hHH[’;‘(Q) + ||b||w—2,p(g) HhHWg,p'(Q))
< C (Ifllsgme) + lall sy + Dbl 0y ) ma% (12l @iy - 19w o iz ) -
In particular, f € (Hg (Q;R2)QW01’I’/(Q;R2))’ = H 1 R?)+W~1P(Q; R?). Hence, it can be written

as f = A+ B € H (O R?) + W1P(Q; R?). The difference to the Bourgain-Brézis type estimate,

which is our final goal in this chapter, is that A and B only satisfy a combined estimate, precisely

[All -1 (ir2) T I1Bllw 1002y < CUF L1 re) + lallg—2) + 11l -2.0q))-
The point is to use a scaling argument to obtain separate estimates for A and B.

The classical W*P-norm and the homogeneous Wéc "P_norm are equivalent norms on the space W(f P,
So far, it has not been important which of these norms we use on VV(;€ P Next, we are interested in the
scaling of the optimal constant in Theorem 2.4.4. We show the scaling invariance of the optimal con-

stant in Theorem 2.4.4 for the homogeneous Wg’p—norms ie., ||f||Wk,p(Q Ry = Z|a\:k HDO‘fHL,,(Q.Rm).
0 ) ’

Proposition 2.4.5. Let 2 < ¢ < oo and Q C R? open, simply connected, bounded with Lipschitz
boundary. Let R > 0 and Qr = R-Q. If we denote by C(2), respectively C(Q2r), the optimal constant
of Theorem 2.4.4 for the domain ), respectively Qg, then C(2) = C(QRr).

Proof. Let ¢ € Wol’q (QR;Rz) N H} (QR;RQ). Define the function pp-1 : Q — R? for z € Q by
¢r-1(x) = p(Rz). Then pr1 € Wy 9 (Q;R?) N HA(Q;R?) and ¢p-1 fulfills

2

1—2
lpr-1 HWOI"I(Q;R2) = Z Hai(pR*1||Lq(Q;R2) =R« H‘PHWOL‘?(QR;W)
i=1

and HQOR’lHHg(Q;RZ) = H‘PHH&(QR;W)'

By Theorem 2.4.4, there exist hp-1 € HZ(Q) N WJY(Q) and gr1 € L®(QR?) N HL(Q;R?) N
Wy %(;R?) such that pp-1 = gr-1 + Vhp-1 and

l9r-1llL@r2) + l9r-1 [l H1(r2) + hR-1|H2(Q) < C(D]lPR-1]H (AR2)
=C(Q) ||<P||H3(QR;R2) ) (2.40)
_2
l9r-1 ||W01>’1(Q;]R2) + |hr-1 HWO2*’1(9) < C(Q)|ep-1 ||W01'q(Q;]R2) = C(Q)Rl ? H‘PHW(}*Q(QR;RQ) - (241)

Next, define the functions g : Qg — R? and h : Qg — R for € Qg by g(z) = gr-1 (%) and
h(z) = Rhg-1 (%). Then it holds ¢ = g + Vh. Moreover, by (2.40) and (2.41), it follows that

19/l oo (r:r2) + 19l 22 (@nir2) + 1Rl H2(0R) = [19R-11lL=(@r2) + [[9R-1 | H1(Q:iR2) + IPR-1|H2(0)
< CO) 1€l gz )
and Hg”ng‘l(QR;W) + ||h’HWO2*‘1(QR) = RilJrE(”gR*lHWOW(Q;W) + [[hp-1llw2.a(e))

< OO llellwraap -
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2 A Bourgain-Brézis type Estimate

This proves C'(2) < C (2g). The reverse inequality follows by Q = (Qr) 1. O
Using Proposition 2.4.5, we can finally prove the main result of this chapter by a scaling argument.

Theorem (Bourgain-Brézis type estimate). Let 1 < p < 2 and Q C R? open, simply connected, and
bounded with Lipschitz boundary. Then there exists a constant C' > 0 such that for every f € L*(Q;R?)
satisfying div f = a +b € H=2(Q) + W=2P(Q) there exist A € H~1(Q;R?) and B € W~1P(Q;R?)
such that the following holds:

(i) f=A+B,
(1i) 1Al g-1 o2y < C(IflLr@r2) + llallm—2()),
(iti) || Bllw-1r@r2) < Cllbllw-2.(0)-
Proof. Let f € LY(Q;R?), R >0, and Qg = R - Q.
Define the function fr : Qr — R? by fr(z) = f (%) for x € Qr . Now, consider a test function

¢ € HE (Qp; R2) WP (Qg; R2). By Theorem 2.4.4, there exist functions h € H2 (Qz) NW2P ()
and g € L™ (Qp; R?) N H§ (Qr;R?*) N Wol’p/ (Q2r;R?) such that ¢ = g+ Vh,

191l 2o (@rw2) + 9]l 3 @pim2) + 10l H2(2R) SCNPlHY @R

and ||g||W01’pl(QR;R2) =+ ||hHW02«P/(QR) SC”(‘O”WOLPI(QR;]R2)'

Note that by Proposition 2.4.5 the constant C' does not depend on R. Next, notice that

fr-pdr = fr-(g+Vh)dx
QR QR

= < fR,9 >L1(QniR?),L(QniR?) — < AR, P >p-2(0,) H2(05) — < bR: N ZW2p (), W ()’ (2.42)

where ap is defined by < ag,h >H-2(0p),H2(08)= B < a, hr-1 >H-2(Q),H2() and bg is defined by
< br,h >

sees that

W20 () W2 (@) R < b, hp- > -2 () W2 () for hp-1(x) = h(Rx). By scaling one

2
||aR||H—2(QR) =R’ ||aHH—2(Q) and HbRHW—z,p(QR) = R'"% ||bHW—2=P(Q)' (2.43)
Moreover, from (2.42) we derive that

Ir-pdz
Qr

<C (Ifrlzs nmey + Narl i) + BRI -2 ) 2% (10 @iz s 1Pl iz ) -

The dual space of H}(Qr;R?) N Wol’p/ (2g; R?) equipped with the norm

H(’OHH(}(QR;]RZ)QWOI"’/(QR;]RZ) = max (”‘lO”Hé(QR;]Rz) ) ||(p||W01’p/(SZR;R2))

is isomorphic to the space H(Qr;R?) + W~1P(Qr; R?) endowed with the norm

||F||H*1(QR;R2)+W*1,P(QR;R2) = inf{”Fl”H*l(QR;]RZ) + ||F2||W—1,p(QR;R2) 1Py + By =F}

Hence, fr € H™' (Qp; R?) + W17 (Qp; R?) and

1Rl -1 (pr2) w10 (0pR2) < C (||fR||L1(QR;1R2) + llarl gr-20n) + ||bR||W*2vP(QR)> :
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In particular, there exist Ap € H™! (QR;RQ) ,Bre W—Lr (QR;RQ) such that fr = Ar + Br and

HARHH—l(QR) + ||BR||W—LP(QR) <cC (HfR”Ll(QR) + ||aRHH—2(QR) + HbRnw—z,p(QR)) : (2.44)

We define A € H1(Q;R?) and B € W~1P(Q; R?) by

—2
< A, ©® >H—1(Q;R2),Hé(Q;R2): R < Ag, YR >H—1(QR;R2),H3(QR;R2)

and < B,p > R™2 < Br,pr >

W—1p(QR2),Wh P (R2) W1p(Qp;R2),WE? (Qp;R?)

for every ¢ € C2°(Q2) and o € C°(QR) given by pr(z) = ¢ (%). Then it holds for every ¢ € C2°(€)
/Qf “pdr = R™? 0 Jr-prdr =< A, >H—1(Q;R2),Hé(Q;R2) +< B,y >W71,p(Q;]R2)’W01,P/(Q;]R2) :
R
Consequently, f = A+ B. Moreover, by (2.43) and (2.44) we see that

_ 2_
”A”H*l(Q;R?) =R? ||AR||H*1(QR;R2) <C (HfHLl(Q;R?) + ”aHH*Z(Q) + Ry ”b“W*?,p(Q))

1—2
P

||BR||W—1,p(QR;]R2)
_2
< C (B3 (Ifllps ) + lall -2y + I0llw-2n(ey ) -

||B||W—1,p(Q;R2) =R

bl —
Choosing R such that R'™7 = 1ol —2.2(0) finishes the proof. O
)

B HfHLI(Q;RQ)J"H&HH—?(Q

Remark 2.4.2. Let us remark here that by a similar argumentation this result also holds for Radon

measures.
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3 A Generalized Rigidity Estimate with
Mixed Growth

The goal of this section is to prove a rigidity estimate for fields with non-vanishing curl in the case of

a nonlinear energy density with mixed growth. Precisely, we show the following theorem.

Theorem 3.0.1. Let1 < p < 2 and Q C R? open, simply connected, bounded with Lipschitz boundary.
There exists a constant C > 0 such that for every B € LP(Q;R%X2) such that curl B € M(Q;R?) there
exists a rotation R € SO(2) such that

/ﬁﬁ—RFAm—waxgc</}mum50@»%umum50@»wx+hmﬂm«nﬁ.
Q Q

One of the simplest versions of a rigidity statement is the following. For a given a connected set
Q C R? and a function u € C?(Q;R?) such that Vu(z) € SO(2) for all x € (, there exists a rotation
R € SO(2) and vectors a,b € R? such that u(z) = R(z — a) + b, see [45].

Intuitively, this means that a deformation that is locally a rotation, is already a global rotation. The
same statement is also true for infinitesimal rotations i.e., for the set of skew-symmetric matrices.
First qualitative versions of this statement are the different versions of Korn’s inequality, see [36,52,53].
An estimate in the nonlinear case was developed by Friesecke, James and Miiller in [37]. Extensions
to the case of energy densities with mixed growth include [19, 58].

First results for fields with non-vanishing curl are an L2-version of our result in [59, Theorem 3.3] and
the generalized Korn’s inequality in [38, Theorem 11].

The proofs of the statements in [38,59] make use of the Bourgain-Brézis inequality as stated at the
beginning of the previous chapter, see also [14, Lemma 3.3 and Remark 3.3]. The proof in our case is

based on its counterpart in the case of mixed growth i.e., Theorem 2.0.1.

Before we are able to prove Theorem 3.0.1, we need to show two simple lemmas and a version of
the classical rigidity estimates for gradients in the case of mixed growth which involves the weak
L?-norm, Proposition 3.0.5.

We start proving an easy triangle-inequality for a quantity with mixed growth.

Lemma 3.0.2. Let m € N and 1 < p < 2. There exists a constant C > 0 such that for all a,b € R™
1t holds
la+b> Ala+b” < C (Jaf* AlalP + b2 A [b]P) .

Proof. We can restrict ourselves to the following cases:

L. Ja+b <1
a) |a|, |b| < 1. Here, the statement follows by the usual triangle inequality.

b) |b| > 1. Then |a + bj2 < [b” < |af2 Alal? + [b]” = |af? A |a|? + [b2 A b
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3 A Generalized Rigidity Estimate with Mixed Growth

2. la+b > 1.

a) |al,|b] < 1. Then |a+b| < 2 and |a| > 1 or [b] > 1. Wlog [b] >
222 < C (laf* + [b?) = C (laf* Alal? + B A [b]?).

b) |a| < 1,|b| > 1. Then |a+ b|P < 27[b|P < 27 (|a> + [b[P) = 27 (|a* A |al? + [b]* A |b]P).

%. Then |a + bP < 2P <

¢) l|al,|b] > 1. This follows again from the usual triangle-inequality.
O

Next, we prove a simple decomposition result for the sum of two functions f € L%, g € LP, where

1 < p < 2, which we need later in the proof of the rigidity statement involving weak L?-norms.

Lemma 3.0.3. LetU C R" and 1 < p < 2. Then for every k > 0 there exists a constant C(k) > 0 such
that for every two nonnegative functions f € L*>>*(U), g € LP(U) there exist functions fe L?>(U)
and g € LP(U) such that

(i) f+9=1F+3
.. rs 2 ~
(1) [ ]| .y 18050y < OO (17w + W)

(iii) § € {0} U (k,00] and f < k.

Proof. Let k > 0. Define f = (f+9) 1 p1g<ky and § = (f +9)1{f4g>k}- Then (i) and (iii) are clearly
satisfied. Moreover, we can estimate

41,

2
vy S Iz 0y + 4|92 o5t 10
<4 ||fH2L21c>o ot Ak*7P H91{9<k}Hip(U)

< O) (I z2. ) + 150 o) -

For g, notice that fli;y,~p) = fl{f+g>k}1{f§§} + fl{f+g>k}1{f>§} <g+ fl{f>§}. Thus, we can

conclude that [|§][7, ) < C (

b . We estimat
o + |g|Lp(U)) e estimate

p [e'S)
— p—1 pn )
o /0 Pt L (Lo ny f > 1)) dt (3.1)
k 0o
— 2 p—1 pn . p—1 p2 .
k <
= Cke” <{1{f>’;}f ~ 2}) +/ﬁ P e )

< C(k)L" ({f > g}) + C() [ £l 7200 1)

< CR) 11172 0r) -

Hence, HgHiP(U) (k) (||f||L2 ooy T lall’s U)) This finishes the proof. O

As a second ingredient for the proof of the preliminary mixed-growth rigidity result we need the

following truncation argument from [37, Proposition A.1].
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Proposition 3.0.4. Let U C R™ be a bounded Lipschitz domain and m > 1. Then there is a constant
c1 = c1(U) such that for all u € W11 (U,R™) and all X > 0 there exists a measurable set E C U such
that

(i) w is cyA-Lipschitz on E,

(ii) LY UNE) < % [yigupon [Vulde .

With the use of this result, we are now able to prove the mixed-growth rigidity estimate involving
weak norms. This result will be the last ingredient to prove the main result of this chapter, Theorem
3.0.1. In [19], the authors prove rigidity estimates for fields whose distance to SO(n) is either the sum

of an LP- and an L?-function, or in a weak space LP**°. Our result is a combination of these results.

Proposition 3.0.5. Let 1 < p <2, n>2, and U C R™ open, simply connected and bounded with
Lipschitz boundary. Let u € WHL(U; R ™) such that there exist f € L>*°(U) and g € LP(U) such
that

dist(Vu, SO(n)) = f + g.

Then there exist matrixz fields F € L*»*(U;R™ ") and G € LP(U;R™ ™) and a proper rotation
R € 50(n) such that
Vu=R+G+ F

and
2
VP I oy + 1G T sy < CUL Iy + 191 1)

The constant C does not depend on u, f,g.

Proof. Without loss of generality we may assume that f and g are nonnegative. According to Lemma
3.0.3, we may also assume that f < k and g € {0} U (k, c0) where k will be fixed later.

First, we apply Proposition 3.0.4 for A = 2n to obtain a measurable set £ C U such that u is Lipschitz
continuous on E with Lipschitz constant M = 2¢in. Let uy; be a Lipschitz continuous extension of

ujg to U with the same Lipschitz constant. In particular, ups = u on E. Set k = 2M. Then we obtain
dist(Vuar, SO(2)) < f +2M 1. (3.2)

Indeed, notice that
dist(Vupr, SO(2)) < 2e1n + v/n < 2M. (3.3)

Hence, we derive dist(Vups, SO(2)) <2M on U \ E. On E, we obtain that
dist(Vuar, SO(2)) = dist(Vu, SO(2)) = f + g.

As we may assume that g € {0} U (2M, oo], in view of equation (3.3), it holds dist(Vuyps, SO(2)) = f
on E. This shows (3.2).

By applying the weak-type rigidity estimate for L?°° from [19, Corollary 4.1], we find a proper rotation
R € S0(2) such that

2 . 2
[9urs = Rl2ae sy < C [dist(Vuns, SO@))| 3 o
2
< AC | f e ) + 16CM? [ 1078 e - (3.4
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3 A Generalized Rigidity Estimate with Mixed Growth

Next, note that if |Vu| > 2n, then
|Vu| < v/n + dist(Vu, SO(n)) < 2dist(Vu, SO(n)) = 2(f + g) < 4max{f, g}. (3.5)

Using Proposition 3.0.4 (ii) and (3.5), we can estimate

LMUN\E) < L (V| da
2n J{vu/>2n)
<L um+ﬂ/ 4g dx
2n J{ag>ny 2n J{ag>ny
< & 47 P gy 4+ S 4P gP dy
207 Jiagzny 207 J{ag>n}

<C <||f1{4f2n}”ip(U) + HgHip(U))

<C (I3 sm ) + 191 wr)

where we used a similar estimate as in (3.1) for the last inequality. In particular, it follows from (3.4)
that

IVusr = Rl[7z.ce g nrny < CULF T2y + 19170 0r)):

Hence, we can write Vu — R = Vu — Vuys + Vuys — R and it remains to control Vu — Vuy,. Clearly,

we only have to consider Vu — Vuy, on U\ E. On U \ E, it holds the pointwise estimate
|Vu — Vupr| < |[Vu| 4 2¢1n < dist(Vu, SO(2)) + 2M1p\g = f+ g+ 2M1p g.

As before, we know that ||1U\EHZLQ oy < C(If112.. oy HgHLP(U ). Therefore, we are able to write

Tu— Vs = by + iy where [l mqrgneny « PalBgzony € CUTZacm oy + ol This
finishes the proof. O

Armed with this weak-type rigidity estimate for mixed growth we are now able to prove the gener-
alized rigidity estimate for fields with non-vanishing curl in our setting, Theorem 3.0.1. The proof is
similar to the one of the corresponding statement in [59, Theorem 3.3] but uses quantities with mixed
growth instead of quantities in L2, in particular the Bourgain-Brézis type estimate for mixed growth,
Theorem 2.0.1.

Proof of Theorem 3.0.1. Define 6 = ( [, dist(8, SO(2))? A dist(3, SO(2))Pdx + | curl B|(2)?).
As 1 < p < 2, the embedding M(£;R?) — W~1P(Q;R?) is bounded. Hence, there exists a unique
solution v to the problem

Av = curl 3,

v e Wy P (4 R?).

J:<2;>.

Optimal regularity for elliptic equations with measure valued right hand side yields (see e.g. [31])

|4

(3.6)

Define 3 = Vu.J where

< C'leurl ] (). (3.7)

L2 oc(U R2><2)
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In addition, we have that curl 3 = curl 8. Hence, there exists a function u € WhP(€; R?) such that
Vu=8-5. Clearly,
|dist(Vu, SO(2))| < |B] + |dist(3, SO(2))|. (3.8)

Notice that

dist(3, SO(2)) = dist(8, SO(2)) 14| aist(8,50(2)) <1} + dist(3, SO(2))1{} aist(8,50(2))|>1}»
=:f =:f2

where Hf1||2LQ(Q) < § and ||f2\|’£p(m < §. Together with (3.7) and (3.8), this proves the existence of
functions g; € L**°(Q) and g € LP(2) such that

dist(Vu, SO(2)) = g1 + g2 where
~112
loale oy <4 (3] L ) T4 1Az @) < OB and ool < 1oy < C6

By Proposition 3.0.5, we derive the existence of a rotation @ € SO(2) and Gy € L*°°(Q;R?*2),
G € LP(Q; R?*?) such that

Vu—Q =G+ Ga, |G| <C6, and ||Go|?, < C6.

Without loss of generality we may assume that QQ = Id (otherwise replace 8 by QT 3).

Next, let 9 : Q — [—7,7) be a measurable function such that the corresponding rotation

R(0) - (c?s(ﬁ) - sin(ﬂ))
sin(d¥)  cos(¥)

satisfies
|B(x) — R(Y(x))| = dist(5, SO(2)) for almost every x € . (3.9)

Now, let us decompose
R(¥(z)) —Id= R(¥(x)) =B+ —Vu+Vu—1Id
= R(¥(z)) — B+ B+ G1 + Ga. (3.10)
As SO(2) is a bounded set, it is true that [Id — R(9(z))|*> < C|Id — R(J(x))|P A |Id — R(I(x))|?.

In addition, one can check that |R(J(x)) — Id| > L;)‘. Hence, by (3.9), (3.10), and the triangle

inequality in Lemma 3.0.2, we can estimate

[9(z)?
4

< [R@(@)) — 1d[* < C (dist(8, 50(2))* A dist(8, SO@))* + |32 +|Gi[* + |Ga]*)
Taking the L!'*-quasinorm on both sides of the inequality we obtain
19117 2.0 ) < €. (3.11)

Following [59, Theorem 3.3|, we define the linearized rotation by

Rusn (9) = (39 _119> .
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3 A Generalized Rigidity Estimate with Mixed Growth

Using [59, Lemma 3.2], we derive from (3.11) that
”R(ﬂ) - Rlin(ﬁ)nig < Co.

Thus, we can find functions hy € L?(2; R?*2) and hy € LP(£2; R?*2) such that

B — Ryin(¥) = B8 — R(¥) + R(Y) — Riin(¥) = hy + ho (3.12)
—— ~—_———
ELP(Q;]R2X2)+L2(Q;R2X2) ELQ(Q;R2X2)

and ||h1HIL’p(Q_R2X2) , ||h2||2LQ(Q;R2X2) < (4. By definition, we see that curl Ry, (¥) = —V9. Hence,
curl § = =V 4 curl hy + curl hg,

which implies
div ((Curlﬁ)L) = div ((curl hl)L) + div ((curl h2)L) .

ew-22(Q) €H-2(Q)

Therefore, we can apply Theorem 2.0.1 to obtain A € H~(;R?) and B € W~27(Q; R?) such that

. 2
(curl 8" = A+ B, AL+ ey < Clleunl Bl + [div(eurt ) [ o),

and || B[y -1.p g2y < C || div(curl h (3.13)

LyP
V20
In particular, one derives from (3.12) and (3.13) that
: 2
A s ey < O curl B2 + [div(curl ) |y ) < € + [ Pagmansy) < C3 (3:14)

and similarly
”BHgv—l,p(Q;Rz) < . (3.15)

Clearly, the same holds for curl 3, —A+ and —B~'. According to this decomposition of curl 5 we can
also decompose the solution v to (3.6).

In fact, as v is the unique solution to the linear problem (3.6), in view of (3.13), (3.14) and (3.15)
there exists a decomposition v = vy + vy where HU1||§{1(Q;R2) < C6 and va||€V1,p(Q;R2) < 4. Following

the notation from the beginning of the proof, we define
B1 = VuyJ and By = Vg J.

Then Vu = 8 — B =p- 51 - 32. Now, using the classical mixed growth rigidity estimate from [58,
Proposition 2.3|, there exists a proper rotation R € SO(2) such that

/ Vu— RPA[Vu— R]P de < C [ dist(Va, SO(2))% A dist(Va, SO(2))? da.
Q Q

Eventually, we obtain with the use of Lemma 3.0.2 the following chain of inequalities
[ 18- RE A1~ RP da
Q

-~ 112 ~ ||P
<C </ [Vu— B AVu—RP dot 3]+ HBQHL,,>
Q
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<C

o
(

S~ 55—

< 09,

which finishes the proof.

dist(Vu, SO(2))? A dist(Vu, SO(2))P dx + 5)

dist(8, SO(2))? A dist(8, SO(2))P dz + H&Hi + Hﬁz”i v 5)
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4 Plasticity as the I'-Limit of a Nonlinear
Dislocation Energy with Mixed Growth

and the Assumption of Diluteness

In section 1.2, we discussed how to model the behavior of an infinite cylindrical body in which only
straight, parallel edge dislocations appear. In this chapter, we investigate the behavior of the stored
energy as the interatomic distance goes to zero under the assumption of well-separateness of dislo-
cations. We focus on the situation of a nonlinear energy with subquadratic growth for large strains.
This allows us to compute the stored energy without introducing an ad-hoc cut-off radius, see Section
1.3.

We characterize the I'-limit of the suitably rescaled energy in all existing scaling regimes, Theorem
4.3.2, Theorem 4.4.2 and Theorem 4.5.1. In particular, in the so-called critical scaling regime we
derive the same strain-gradient plasticity model as the authors in [38,59] who started from models
involving an ad-hoc cut-off radius around the dislocations. Hence, our result justifies a-posteriori their
cut-off approach in this regime. Moreover, we discuss compactness properties in the different regimes,
Theorem 4.3.1 and Theorem 4.4.1.

4.1 Setting of the Problem

In this section, we introduce the mathematical setting of the problem. For a discussion of the physical
situation, see Section 1.2 and in particular Figure 1.9b.

We consider 2 C R? to be a simply-connected, bounded domain with Lipschitz boundary representing
the cross section of an infinite cylindrical crystal. The set of (normalized) minimal Burgers vectors for
the given crystal is denoted by S = {by, by} for two linearly independent vectors by, b, € R%. Moreover,

we write

S = spanZS = {)\1b1 + Agbg : )\1, Ay € Z}

for the set of (renormalized) admissible Burgers vectors.
Let € > 0 the interatomic distance for the given crystal. The set of admissible dislocation densities is
defined as

M

X. = {,u EM(QR?) :p= Zeflﬁxi, M eN,B, (x;) CQ, |z; —ak| >2pc for j #k,0#E € S}7
i=1

where we assume that p. satisfies

1) lim._,0 pe/e® = oo for all fixed s € (0,1) and

2) lim._|loge|p? = 0.
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

This means that we assume the dislocations to be separated on an intermediate scale ¢ < p. — 0.

Furthermore, we define the set of admissible strains generating u € X, by
AS (1) = {ﬁ € LP (9, R**?) : curl B = p in the sense of distributions} ) (4.1)

The energy density W : R?2*2 — [0, c0) satisfies the usual assumptions of nonlinear elasticity:
(i) W € C°(R?*2) and W € C? in a neighbourhood of SO(2);
(ii) stress-free reference configuration: W(Id) = 0;

(iii) frame indifference: W(RF) = W (F) for all F € R?*% and R € SO(2).

In addition, we assume that W satisfies the following growth condition:

iv) there exists 1 < p < 2 and 0 < ¢ < C such that for every F € R?*? it holds
(iv) P y

¢ (dist(F, SO(2))? A dist(F, SO(2))P) < W(F) < C (dist(F, SO(2))* A dist(F, SO(2))?) . (4.2)

According to the scaling heuristics discussed in Section 1.3, we define the rescaled energy for € > 0 by

i JaW(B) o if (1, 8) € Xe x AS.(n),

Ee(p, B) =
+oo else in M(£;R?) x LP(Q;R2%2),

(4.3)

where we used the usual trick of extending the energy by +oo to non-admissible strains and dislocation
densities.

Our goal is to determine the I'-limit of E. as ¢ — 0.

The behavior of the energy depends highly on the scaling of N, with respect to . As discussed in
Section 1.3, the different scaling regimes are: the subcritical regime N, < |loge|, the critical regime

N ~ |loge|, and the supercritical regime N, > |loge]|.

Before we can state the different I'-convergence results, we introduce the self-energy of a disloca-
tion, which corresponds to the minimal energy that a single dislocation induces. As discussed in
Section 1.3, the self-energy of the dislocations is expected to contribute to the limit in the subcritical

and the critical regime.

4.2 The Self-Energy

For proofs of the statements in this section, we refer to [38].
Let 0 < r; < rp and & € R2. We define

ASy, (&) = {77 e L? (BTQ(O) \ By, (O);R2X2) :curlnp = 0 and / n-t= 5} .
0B, (0)

Here, 7 denotes the unit tangent to 0B,,(0). The circulation condition has to be understood in
the sense of traces. For a function € L? (B,,(0) \ B, (0); R**?) which is curl-free the tangential
boundary values are well-defined in H~2 (Br,(0) \ By, (0); R?), cf. [29, Theorem 2|. The integral is
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4.2 The Self-Energy

then understood as testing with the constant 1-function.

Note that this definition of admissible strains AS,, ,,(£) is defined by a circulation condition and not
by a curl-condition as in the previous section. Clearly, the two formulations are linked via Stoke’s
theorem.

Next, we set

1
Yry o (€) = min { / Cn:ndx:neAS, (5)} , (4.4)
2 /8., (0)\B,, (0)

92F
will be denoted by

where C = 82W(Ial). Note that by scaling it holds that 1, »,(§) = ¥ 1(§). The special case ro =1
ro 7

¥(€,§) = min 1/ Cn:ndx:neAS15() . (4.5)
2 /B (0)\B5(0)

Observe that for fixed § > 0 the function ¥(+, ) is convex and 2-homogeneous.

We state here the following result from [38, Corollary 6 and Remark 7].

Proposition 4.2.1. Let £ € R?, § € (0,1) and let ¥(£,5) be defined as in (4.5). Then for every
¢ € R? it holds

Y(E9)
where 1) : R? — [0, 00) is defined by
1 1
wgzlimif/ Cno : nodx 4.6
( ) 6—0 |10g(5| 2 B1(0)\B;(0) 0 0 ( )

and 1y : R? = R?2*2 s q fized distributional solution to

curlny = &5y in R?,
divny =0 in R2.

In particular, both limits exist. Moreover, there exists a constant K > 0 such that for all § > 0 small

enough and & € R? it holds
¥(&,9)
| log 4|

€1?

Remark 4.2.1. Note that the function v is 2-homogeneous and convex.

Remark 4.2.2. In [38, Proposition 8], the authors show the following extension of the result above.

Let 0 < 75 — 0 such that lfog{g((rg)) — 0. Define for £ € R? the function (-, ) by

. 1
$(¢,6) = min { / SCninde e A37-5,5(§)} .
B;5(0)\B5(0)

Then ﬁffg’?‘ = 1\/)122?\ (14 0(1)) where o(1) — 0 as § — 0.

The function 1 is the (renormalized) limit self-energy of a single dislocation with Burgers vector &.
The well-separateness condition on the dislocations does not prevent dislocations from merging to a

single dislocation in the limit. This could lead to a smaller limit energy per dislocation than ¢. The
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

classical way to capture this energetic behavior is to define the limit self-energy density ¢ through a

relaxation procedure.

Definition 4.2.1. We define the function ¢ : SO(2) x R? — [0, 00) by

M M

¢(R,€§) = min {Z M (RTE) - ZAkfk-, MeN, A\ >0, € S} : (4.7)
k=1 k=1

Remark 4.2.3. Indeed, it can be seen by the 2-homogeneity of ¢/ that the min in the definition of ¢

exists.
Remark 4.2.4. Note that ¢(R,—) is convex and 1-homogenous.

Remark 4.2.5. The dependence of the function ¢ on R reflects the fact that we start from a rotational

invariant model and will end up with a linearized model.

4.3 The Critical Regime

In this section, we treat the case N. ~ |logel|; for the sake of a simpler notation we assume that
N, = |loge|. We show that the energy E. as defined in (4.3) converges in the sense of I'-convergence

to a strain-gradient plasticity model of the form (see Theorem 4.3.2)

. A
/QCB-ﬂdvar/Q@(R dml) dlul,

where y = Rcurl 8 and R is the limit of a sequence of constant rotations provided by the generalized
rigidity estimate (Theorem 3.0.1). Moreover, we show that for sequences of uniformly bounded energy
E.(pe, Be) there exists a subsequence such that suitably rescaled versions of u. and 5. converge in an

appropriate sense.

Compactness

In this paragraph, we prove the compactness statement in the critical regime. The main ingredient in

the proof will be the generalized rigidity estimate from Theorem 3.0.1. The result is the following.

Theorem 4.3.1 (Compactness). Let e; — 0 and N., = |loge;| . Let (8;,p;); C LP(Q,R**?) x
M(;R?) be a sequence such that sup; E. (uj, 8;) < oo. Then there exist a subsequence (not rela-
beled), a sequence (R;) C SO(2), a rotation R € SO(2), a measure p € M(Q;R?) N H~1(Q;R?), and
a function B € L?(Q;R?*2) such that

(i) =t S in M(QR?),

ej[loge;]
.., RTB;—Id .
(it) THioge,r — B in LP(R**?),
(iii) R; — R,
(iv) curl 8 = RTp.
Proof. Step 1. Weak convergence of the scaled dislocation measures.

In this step, it is our objective to show that there exists a constant C' > 0 such that

@
e;]loge;|
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4.3 The Critical Regime

Let us fix a € (0,1). By the finiteness of the energy for (u;,5;), it follows u; € X.; we write
i = Ei]\ijl €;&ij 0z, , for appropriate & ; € S and x; ; € R%. The uniform boundedness of the energy
of (115, ;) and the well-separateness assumption on the dislocations guarantee that for j large enough
it holds

M.
1 J
C>—5—— / W(B;) dx. (4.8)
53| loge;|? ; Bea(zi)\Be (#i.5) ’

Furthermore, let L; ; = ;; + (;,€%) x {0} and write A; ; = (BE? (wi5) \ B, (x”)) \Li;. As A;;
is simply connected, we can find functions v; ; € Wl*p(Aiyj;sz) such that 3; = Vv, ; in A; ;. A
simple covering argument shows that all rigidity estimates hold also on the domain A;; although
it has no Lipschitz boundary. By applying the mixed-growth rigidity estimate for curl-free fields
from [58, Proposition 2.3|, we find rotations R; ; € SO(2) such that for all 1 <¢ < M; and j € N it
holds

/

Note that as the ratio of the A; ; is uniformly bounded from below, we can choose the constant C' in

|V’Uz’7j — Ri,j‘z A |V’Ui7j — R@j‘p dr < C/ dist(va, 50(2))2 A dist(va, SO(2))p dx. (49)
Ay

(2%

the estimate above uniformly in ¢ and j. Furthermore, using Jensen’s inequality for third inequality,
we find

/A [Vvij — RijI> NV j — Ri |V da

(¥
5 R |2 _R..|p

Z/ / |B] R’L,j A |ﬁ] Rz,jl dHl dt
Ej BBt(mw-) 2 p

e R .2 C_R. ). S|P

Z/ 27715][ |(8; — Rijj) - 7| /\‘(ﬂj Rij) -l dHL dt
£ aBt(ZL’i,]‘)
o

j 2 p

i 1
> / 2nt | =
2

J

€
> / it
€j

P

1
A= ][ (Bj — Rij)-TdH'| | dt
6Bt(aii,j)

p

2
f (ﬂj —Ri,j) -TdHl
BBt(xi,j)

2

€5 &ij
27t

€5 &y
27t

,,) dt. (4.10)

Here, 7 denotes the tangent to 0By(z; ;).

Claim: Let a <y < 1. Then it holds &;|&; ;] < 5} forall1 <i < M; and j € N large enough.
Assume this is not the case i.e., there exists a subsequence (not relabeled) and indices 1 < i; < M;
such that €;|¢;; ;| > €. Combining (4.8), (4.9), and (4.10), we derive for j large enough that

o 2
o / R | LT N LT )
= e?[logeyl? ., 27t 27t
E’Y
P £ P
> : 2/2 S LY
efloge;|* Je, 27t
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

1 2Py 2—n)
e e e

2loge, 27

As we assume that ¢;[¢;; ;| > €], we derive from the estimate above

1 11 e (-1
—p 1= - J p(v—
C>27Pr'7P(2 —p) log =, 2 \ (2m)7 7 —&; — 00

since 2(y — 1) < p(y — 1) < 0. Contradiction!

Fix a < v < 1. Using the claim, (4.8), (4.9), and (4.10), we can estimate

& &5 e 2 &P
>3 Ao | M(Zizf 2o}
) M
2|10g<€j|2 Z/ dt
. M;
— W;\&ﬂ (v — a)|loge;|. (4.11)

As the non-zero elements of S are bounded away from zero, we may derive from (4.11) that

g ()
&,
|10g€J|Z:| il = gjlloge;|

Hence, there exists a subsequence (not relabeled) and p € M(Q;R?) such that p; = p in M(Q;R?).
Step 2. Weak convergence of the scailed strains.

By the finiteness of . (15, 5;), it follows that 3; € AS., (u;); in particular, curl 3; = uj;. By the
generalized rigidity estimate in Theorem 3.0.1, there exist rotations R; € SO(2) such that

/ 18; — R;|> A |B; — Ry|P dz < C (/ dist(8;, R)* A dist(B;, R)? dx + |#j|(9)2) :
Q Q

From the lower bound on W (see (iv) in Section 4.1) and step 1 it follows

/ 1 — Rj[> A|B; — Ry[P dz < C2|log e, 2. (4.12)
Q

R B;—1d . .
We set G; = o] Then ¢,|loge;||G;| = |8; — R|. In particular, it holds

/ 1G12 A IG5 1” dx < C. (4.13)

] loge, 27

This implies that (G;); is a bounded sequence in LP(€2;R?*?). Hence, there exists a subsequence
(again denoted by G;) which converges weakly in LP(2; R?*?) to some function 8 € LP(Q; R?**?).
Next, we show that 8 € L?(Q;R?*2).
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4.3 The Critical Regime

Consider the decomposition of ) into the two sets

A? = {m cQ: \Gj(x)|2 < W} and A? = {x cN: |Gj(:r)\2 > W}

’ 6§7p| loge;|?—P 5?7p| loge,;|2—P

By (4.13), the sequence |Gj|1A? is bounded in L?(£;R?*2). Consequently, up to taking a further
subsequence, the sequence converges weakly in L?(; R?*?) to a function Bel? (€2; R?*2). It remains
to show that g = B

By the definition of G, one can verify that

AP ={eeQ:|8; - Ri]” > |8; — Rj|P} = {w € Q: [8; — Rj| > 1}.

But, (4.12) implies
’A?’ < /A” |8, — Rj|P da < CE?\ logzsj|2 — 0.

J

Thus, 142 — 1 boundedly in measure. Together with G; — 5 in LP(; R2*%2) this ensures that
J
Gjly2 — B in LP(Q;R**?).
J
Hence, 8 = € L2(Q;R2%2).

Step 3. € H 1(Q;R?) and curl B = RT pu.
As B € L?(Q;R?*?), it is clear that curl 3 € H~!(Q;R?). Moreover, one computes for p € C2°(;R?)

-1
and J = 0 that
1 0

. 1 .
<y >pp=lim ———— < p;, ¢ >p p= lim <cwl(B; — R;), >pp

i gjlloge] i gjlloge|

= —lim

m ———— < B; — R;,JVyp >p p=— < RB3,JVy >p p=< curtl(RB), ¢ >p' p .
i €jllogej]

As curl(RB) = Rcurl 3, it follows that RT y = curl 5. O

The I'-convergence Result

This paragraph is devoted to state and prove the I'-convergence result for the energy F. as defined
in (4.3) in the critical regime N. ~ |loge|. First, we need to specify which topology we use in
M(Q;R?) x LP(Q; R?*2) for the I-convergence result. In view of the compactness result in Theorem

4.3.1, we define the following notion of convergence.

Definition 4.3.1. Let ¢ — 0. We say that a sequence (pe, 8:) C M(€;R?) x LP(Q; R?*2) converges
to a triplet (u, 3, R) € M(Q;R?) x LP(;R?*2) x SO(2) if there exists a sequence (R.). C SO(2)
such that

e * . 2
— QR 4.14
ellog e pin MG RY), (4.14)
Rgﬁs -1 : 2x2
————— — fin LP(;R**%), and R. — R. (4.15)
e|loge|

With respect to this convergence we can now state the I'-convergence result.
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Theorem 4.3.2. Let N, = |loge|. The energy functional E. defined as in (4.3) T'-converges with
respect to the motion of convergence given in Definition 4.3.1 to the functional E°"® defined on
M(Q;R?) x LP(Q;R?**2) x SO(2) as

Lo C:Bdu+ [y (Bl ) dinl i pe HTH (%R N M(%R?),
ET"(u, B, R) = B e L?(Q;R?*2), and curl 3 = R,

400 otherwise ,

where C = %i—vg(fd) and @ is the relazed self-energy density as defined in (4.7).
The proof will be given in the next two propositions.

Proposition 4.3.3 (The lim inf-inequality). Lete; — 0 and N., = |loge;|. Let (ij, 8;) C M(Q;R?)x
LP(Q;R?*2) be a sequence that converges to a triplet (u, 3, R) € M(Q;R?) x LP(Q; R?*2) x SO(2) in
the sense of Definition 4.3.1. Then

liminf E., (u;, 8;) > E" (1, B, R).
j—o0

Proof. We may assume that liminf; .o Ec;(p5, 8;) = lim; oo E; (145, 8j). Moreover, we may assume
that sup; E., (15, 8;) < oo. This implies that u; € X., and 3; € AS.,(u;) for all j. In particular,
the dislocation density p; is of the form u; = Zi\iﬁ €;&i,j 0z, ; for some 0 # &; ; € S and z;; € Q.
A straightforward argument shows that the rotations provided by the application of the generalized
rigidity estimate in the proof of the compactness result also converge to R. In the following, we
assume that the R; are those from the compactness result. Then it follows that § € L2(Q; R?2%2),
p € HHQ;R?) N M(Q;R?), and curl 8 = RT pu.

In order to prove the lower bound, we subdivide the energy E. (u;,(;) into a part far from the

dislocations and a contribution close to the dislocations (see also Figure 4.1) i.e.,

M;
1 1 .

E., -,5-:7/ W(B;)ds + ——— / W(B;) dz,
€; (/J‘J J) 5§|10g5j|2 Qpaj(pj) ( J) €?|log€j|2; B ) ( J)

pe; (Tig

where we define for 7 > 0 the set €, (p;) = Q\ UZJ\iJl B, (z; ;). The two contributions will be treated
separately.

Recalling the heuristics from Section 1.3, the second term on the right hand side should include the
self-energies of the dislocations. The first term on the right hand side is the elastic interaction energy

of the dislocations. By the rescaling, this term should just linearize in the limit.

Lower bound far from the dislocations. We will perform a second order Taylor expansion
at scale ¢;|loge;| of the function W. As the energy density has a minimum at the identity matrix,
there exists a function o : R2*2 — R such that for all F' € R?*2 it holds

W(Id+ F) = %CF . F +o(F)

and o(F)/|F|* = 0 as |F| = 0. Set w(t) = sup|p|<, |o(F)|. Notice that also w(t)/t* — 0 as t — 0.
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4.3 The Critical Regime

Figure 4.1: Sketch of the situation in the proof of the lim inf-inequality. The reduced domain 2, (15)

is drawn in gray, the balls around the dislocations with radius ¢} are drawn in red. The
annuli B,__ (#ij) \ Bsee (2i,;) are drawn in blue and subdivided into annuli with constant

ratio 6 1.

Moreover, we obtain for all F' € R?2*2 that

1
W(Id+¢e;|loge;|F) > §E?| loge;|>)CF : F — w(ej|loge;||F|). (4.16)
Next, define
s —1d
J gj|log el
and

.| P
L P .

5?_p| loge;|2—P

As in the proof of the compactness (Theorem 4.3.1), it can be shown that G;142 — 3 in L?(Q;R?*?)
%

and 142 — 1 boundedly in measure. Furthermore, define the set
g

B., = {:cEQ:|Gj\ gej_%}.

The boundedness of the sequence (G;); in LP(Q;R?*?) yields that 15, — 1 boundedly in measure.

|15 1(€2)
ejlloge; ]

In the proof of the compactness result, it was shown that < C. As the non-zero elements of

S are bounded away from zero, it follows for the number of dislocations M; that

= I1,1()
M;<CY Jeyl = 0P < Cllogey.
=1

€j
Hence, by the assumptions on p.; it holds
2\ Q. (1) < Cllogej|pZ, — 0.

Consequently, 1o, (,,) — 1 boundedly in measure.
<)
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Eventually, we define the function

1 ifzeQ, (u)NAZ NB,,,
Xt‘j ('1:) = ’ !
0 else.

By the considerations above, we conclude that x., — 1 boundedly in measure. As G;14: — f in
J
L?(Q; R?*2), we derive that also

Gixe, = Gilaz xe, = B in L*(Q;R*>*?). (4.17)

Using the frame indifference and (4.16), we can estimate

1 / 1 ,
B W(ﬂ-)dmzi/ W(RY 8;) da
ihoge;l® Jo, w7 gl Ja, w7

1 / T
> [ . W(RTB,) dx
PToge P Jo o)

1
:7/XEjW(Id+£j|log5j|Gj)d:E
Q

eflloge;|?
1 w(ej|loge;||Gyl)
=C (x,Gj) : G) = X, — LI
/Q 5C (xe; Gi) + (X, Gy) = X 2Tlog <,

1 w(ejlloge;||G;])
= [ -C(xe, Gy Xe; G Xe; G;|? L2 gy (4.18
36 0e6) (06 65) — e Gl St B e, (119

\%

dx

Now, recall (4.17) and notice that the first term in (4.18) is lower semi-continuous with respect to
weak convergence in L?(€2; R?*?). For the second term in (4.18), recall that (x.,G;)., is a bounded

sequence in L*(€;R**?). On the other hand, notice that whenever ., (z) = 1 it also holds that
1
ej|loge;||Gj(x)| < e7|loge;| — 0. Hence, by the properties of w we find that

w(e;]loge;l|Gyl)

2 s (0in L°(0).
1G22 Tog 2 )

Thus,

1 G,
/|XsJ |2W5J\Og8j‘| l)dx—>0asaj—>0.

|G e} log e

Eventually, we derive

hmmf¥/ W (B;)dx > / 1Cﬂ s fdzx.
(1) Q2

j—ooo € |10g5]‘

Lower bound close the dislocations. Fix a,d € (0,1). We subdivide for each i € {1,...,M;}
the annulus B, (i) \ Bsea (x;,;) around the dislocation point z;; into annuli with constant ratio

0~ !, see Figure 4.1. Precisely, we define

O} = By, (i) \ Bory., (i) (4.19)
for k € {1,...,k;} where
- |loge;|  [logp,|
k; = - ! 1. 4.20
= o Toes ~ T | + (420
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4.3 The Critical Regime

Notice that for k < l;j it holds 5kp5j > ok pe; > 0. Hence, for every j € N and i € {1,..., M;} we

have the estimate
‘/Bpa (x4, J)\B55 (z4,5)

Similar to the proof of [71, Proposition 3.11|, the key estimate for the lower bound close to the

k;

Z > da. (4.21)

Ck}l

dislocations is the following result.

Lemma 4.3.4. In the situation above, the following holds true. There exists a sequence o; T2
such that for all j € N, i € {1,...,M;}, and k € {1,.. .,I%j} it holds

W(ﬁ )

k, -
ckt 6]

dx > ¢(RT52 g5 ) 0j|£i,j‘2a (422)

where ¥(+,6) is defined as in (4.5).

Proof. The claim of the lemma is equivalent to

lim inf sup / W<€j)2d w(RT i 5) >0,
I700 N\ k=1,....k;,i=1,....M; J C}* &ijl%e; 1§51

where we used the 2-homogeneity of ¥ (-, ).

Assume this is not the case i.e.,

lim inf sup / W(ff)Qd ¢(RT Sij 5) <0. (4.23)
IO =1, Ky, =1, M5 \J O §ijl%€; (¥

Up to extracting a subsequence, we may assume that the liminf above is a limit.

For every j € N we denote by k; € {1,...,I~cj} and ¢; € {1,...,M;} the indices that maximize
S s da — ¢ (R74&4,0) among all k € {1,..., k;} and i € {1,..., M},

The assumption (4.23) 1mphes for j € N large enough the bound

W (8;) < 7 S )
I de <y (R 5) <C,
fo o ur €, P

where we used that supj¢—y ¥(€,0) < oo for the second inequality. This follows from convexity

and pointwise finiteness of 1 (-,d). Next, we apply the classical mixed-growth rigidity estimate [58,
Proposition 2.3| on C’;”’” to obtain rotations R; € SO(2) such that

~ |2 ~ |P
/ \ﬁj —Rj] A \ﬂj —Rj\ o< O dist(8;, S0(2)) A dist(5;, SO@2))* -
crivii |€:;.,51%€3 U |€:,.51%€3
cof WG, o
oyt 1€i;,51%€3
Here, we used the lower bound on the energy density W, (iv) in Section 4.1, for the second inequality.
As the ratio of all C;j "7 is the same for all j, the constant on the right hand side can be chosen

uniformly for all j.

As the sequence of rotations R; comes from the application of the generalized rigidity estimate in the
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

proof of the compactness result, it follows that

2
/Ck'jvij |B; — R;|” N |Bj — R;|P da < Cs?|log5j\2.

J

Together with (4.24), this implies for the difference of the rotations R; and R; that

~ C , - o
ol W </c"'a"'ij 185 = BiI” A1B; — Byl dx+/ckj.,i,- Bj — Rj‘ A ‘51' - RJ‘ dw)
J J ;
C oo
(165,41 + <3 Nog e, *) < 55z log el =30,
J

< =
- 52k}J p2

€

where we used that ;& ;| < |p;|(Q2) < Cej|loge;|. It follows lim; o R; =lim; ,o, Rj = R.
Next, define on B1(0) \ Bs(0) the function

- R} Bj (pe, 8% 'a + iy 5) — Id

516, 51

n;(z) pgjékf_l.

Then curln; = 0 in B1(0) \ Bs(0) and faBé(o) nj - TdH! = RjTé;j‘

understood in the sense of traces (see the comment about the trace of curl-free LP-functions in Section

where the integral has to be

4.2). Furthermore, by (4.24) a change of variables yields

- 2 ~ p
/ o P (e 1 / ‘Rjrﬁj(x) —Id’ A ‘ijﬁj(x) —Id‘ e
_ > — v x < C.

B1(0)\B5(0) e3P, 517 oyt e31€i;.412
(4.25)
}. As it holds that

o Inj@)P(pe; 8% 7127

- 2— —
TP, P

Let us define the set U; = {x € B1(0)\ Bs(0) : [n; ()]

k;—1
pe; 073 €5

e ] > T Tregs;] — 00 one derives from (4.25) that £2(U;) — 0.

Moreover, from (4.25) one sees that 7; is a bounded sequence in LP(By(0) \ Bs(0); R**?) and 7,1y,
is a bounded sequence in L?(B1(0) \ Bs(0); R?*?). Hence, up to taking a subsequence, there exists
n € LP(B1(0) \ Bs(0); R?*?) such that n; — n in LP(B1(0) \ Bs(0); R?*?). By standard arguments
it also holds that n;1y, has the same week limit in L?(B1(0) \ Bs(0); R**?). In particular, it follows
that n € L?(B1(0) \ Bs(0); R?*2). In addition,

curln; =0 in B1(0) \ Bs(0) and £ := lim n; - TdH' € S* exists. (4.26)
1= JoBs(0)

For the second statement, one uses that taking the tangential boundary values is continuous from
{B € LP(B1(0)\ Bs(0); R?*?) : curl 8 € LPB1(0)\ Bs(0)} to W~1P(9(B1(0)\ Bs(0))) , cf. [29, Theorem
2]. The statement then follows by testing with the constant function with value 1.

Now, define A; = {x € B1(0) \ Bs(0) : |n;| < eJI_TQ} By the boundedness of ; in L?, it follows that
|A;| — 0. In addition, define x; = 14,1y, and observe that x;n; — n in L?(B1(0) \ Bs(0); R**?).

We estimate, with the use of the frame-indifference of W and a Taylor expansion for W, similarly to
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4.3 The Critical Regime

(4.18)
W (Id+ Lt J'lnj)
WE) | i o

kiis . 222 Tz Xj 2 2 pej €

S [€i;.51°€5 B1(0)\B5(0) 5j|§w|
Z1IE]
Tei8 T )y ko

> C77ij5anj*Xijsj5 i dx, (4.27)
B1(0)\Bs(0) §1S35,5

where w(t) € o(t?). Notice that

_l-o l—a l-a
<e; 7 giléi;iles = 1&,.5le;7 < Cllogejle; — 0. (4.28)

521@ -2

b

which is by the computation in (4.28) the product of a function bounded in L'(B;(0) \ Bs(0)) and a
function converging uniformly to 0. Hence, the second term in (4.27) vanishes in the limit.

By lower-semicontinuity of the first term in (4.27) with respect to weak convergence in the space
L?(B;(0) \ Bs(0); R?*2), we observe that

li_minf/ _ M dzx > / Cn:ndx > P(&,9), (4.29)
c B1(0)\B5(0)

j—o0 ;?j"‘j |£ij7j|2€j

where we used (4.26) and the definition of ¢(-,d) for the second inequality.
Moreover, from the convexity and finiteness of ¢ (-, §) we derive the continuity of the function (-, d).

Thus, (4.26) yields lim;_, o ¢ (1‘2 $ig 5) Y(&,§). Together with (4.29), this implies

liminf/ | %dag—w (RT&”Q,a) >0,
Jj—oo C:j'lj |§Z]]| €5 |£21J‘

which contradicts (4.23). This proves the lemma. O

Using the previous lemma together with (4.20) and (4.21), we can estimate

B Ly

Ps (@i,5)

oz |2ZZ/MW ,

i=1 k=1

M,
1 A
Zm > ki (B(R764,6) = 0jléis1)
1 et

_ Hogpe [\ (Y(RTE;,0) 04l (4.30)
|loge;] |log d| [logd| /- .

KM_

|log gjl

1=1
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

From Proposition 4.2.1 we know that there exists K > 0 (which does not depend on ¢) such that for

every £ € R? it holds
K¢

|log d]°

'w(&ﬁ)

e ) <

Together with (4.30), this yields

M;

Z/ W(5;)
‘1Og€j|2 i=1" Bore; (%4,5) E?
| log pe; |> < T K& 1*  ojléiyl
J w R &,' _ ) ) 0] .
\1og63| Z( |log ] (R &) [logd|  [logd|

Arguing as in the proof of the compactness, we can find similarly to (4.11) that

1 &
2
@Z\fi,ﬂ <C
Ihi=1

and hence
M, M
i / W) . 1 ( |logpsv>
_ > a— —— ) p(RTE ) (4.31)
[ log e,]2 ; B,. (vi;) €5 |log e ; |log & !
J
_C a_|10gp€j| l+o; (432)
[loge;| / \ |logd| )~ '
Now, write fi; = m Using ¢ > ¢ and the 1-homogeneity of ¢, cf. the definition of ¢ in (4.7)

and the remark below, we can estimate

|log pe, | T | log pe. | dji; ~
Tooel 1.7 > - ) ~ |- 4
|10g€g|z< |loge;| VIRTE5) = | @ |log &/ /S;QO R d| i d| i) (4.33)

By the definition of the convergence of (uj,(;) to the triple (5, u, R), it holds in particular that

fle A win M(;R?). As ¢ is a continuous, convex, and 1-homogeneous function, we can apply
Reshetnyak’s theorem to derive from (4.33) that

. | log pe, I) T ( du )
lim inf RV ) > a/ R, d|pl. 4.34
At |loge]|z< Togs,) ) VU S 2 oo\ g ) v (434

Combining (4.32) and (4.34) yields

M;
1 . i 1 ; 1 i
liminfﬁZ/ W(QBJ) 204/ (R M) d|plimsupC<a| ng6”|) < Jrgj)
imee |logej|? < /b, @y € Q d|pl oo |loge;| ) \[logd]

du) Ca
= R, —
X ( “dlal) M Tioga

Letting  — 1 and & — 0 finishes the proof of the lower bound close to the dislocations.
Combining the estimates close and far from the dislocations shows the claimed lim inf-inequality. [

In the following, we prove the existence of a recovery sequence for the energy E"*. We will use
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4.3 The Critical Regime

that the limit energy E" is the same as in [38] and [59]. In particular, we make use of the density
result in [38] that allows us to restrict ourselves to the case that p is locally constant and absolutely
continuous with respect to the Lebesgue measure.

The construction is then closely related to the one for the nonlinear energy with quadratic growth
in [59].

Proposition 4.3.5 (The limsup-inequality). Let €; — 0 and N., = |loge;|. Let R € SO(2),
B € L*(Q;R**?) such that curl B = RTp € M(Q;R?). Then there exists a sequence of dislocation
measures and associated strains (u;,B;); C M(Q;R?) x LP(Q,R?**?) converging to (u, B3, R) in the
sense of Definition 4.3.1 such that

limsup E, (15, 85) < E"(u, B, R).

j—o0

Proof. Step 1. u = ¢dx for some & € R2.
Let Ai,...,dar > 0 and &,..., &y € S such that € = ST0r, Aeéy and (R, €) = S0l M (RTE).

Moreover, set

M 1
A=S"Nandr = —— .
; L an Tsj 2 ANEj

Pe;

Taj

Then, by the assumptions on p,, it holds that =2VA p?,|loge;| — 0. According to [38, Lemma

| _— MF
11], there exists a sequence of measures p; = Ziw:l Ejfku;? with M? of the type ),/ o for some
f’j € 2 such that for all z,y € supp(y;) it holds B, (r) € Qand |z — y| > 2r.,. Moreover, the
construction of y; in [38, Lemma 11| implies that

X

uh1(52)
|log &

— \|Q| and ﬁ X in M(Q;R?). (4.35)
The basic concept behind the construction of 4; is the following. First, consider a Burgers vector
¢ such that Y (RT¢) = p(R,€). Cover Q with cubes of side length \/N—qu. In all balls which lie
completely in © put a Dirac measure with weight £. For a sketch of the construction, see Figure
4.2. In the general case, first approximate %dm by measures that are locally constant with values
&, ...,&y on volume fractions of size )}\—1, ceey ’\—/\” On the sets where an approximating measure is
constant use the construction described above for squares with side length \/m ~'. Then take a

diagonal sequence.

Note that by construction it holds u; € X...

It is useful to combine the two summations in the definition of ; into

M;
i =D €5
i=1

for appropriate & ; € S and x;; € Q. In particular, by the well-separateness of dislocations of j; on
the scale r.; it follows M; < Cr;]?.

In [7], it is shown that for every ¢ = 1,..., M; there exists a strain field nf : R?2 — R%*2 of the form
n = rzileRT&j (;%iﬁ) where the function Tgre, ;@ R? — R**? depends on the linearized

69



4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

L T
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Cj; ;\C W,
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L

Figure 4.2: Sketch of the construction of the measures p;, ﬂ;aj , and ﬂ;aj for a Burgers vector ¢ such

that (R, &) = Y(RT€): cover  with squares of side length , /Ngjfl. In every square
that is included in € put a Dirac mass with weight ¢ (black dot) for p;, a continuously

distributed mass of § on the circle of diameter /N, - (blue circle) for ,&;Ej , and a measure
of mass ¢ distributed on the boundary of that circle (dark blue) for ﬂ;g" .

elasticity tensor C such that I'gre, ( i ) < C and 7] solves

[w—z; ;]

curly! = RT¢ j6,,, inR?

divCry! =0 in R2.
We define
M;
= e 1, (z:)- (4.36)
1=1

Then curl7’ equals RT,uj up to an error term arising from 1p __ (4, ), precisely
Ej il

j S iy @ —wig)t o
Curln = ZSJR gi,j(sziyj _5]'7]7; (1’) 7“1‘_33 )l dH‘aBrs.(Ii,j)
i=1 4. !

J J 1
T 1; () (& — i j)
=R ;- Zej r - d,H\laBTE. (zi,5)
i1 = J
= Ry — RTji,” . (4.37)
Note that ﬂ;sj e H L
Moreover, we define the auxiliary measure
M; j 1
=Te m; () (x — i j)
;7 =R 2 1B (x.,) Ao (4.38)
i=1 €

For a sketch of the measures [L;Ej and [L;Ej , see Figure 4.2.
A straightforward computation shows that for all ¢ € {1,..., M,} it holds

~/r.5‘

py’ (Braj (i) = ﬂjsj (aBraj (@i)) = €5&ij-
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4.3 The Critical Regime

In [38, Lemma 11], it is also shown that

N ~Te;
L BN RT i in M(S;R?), i A RTpin L (S R?),
| loge;| ;| loge; ]
fih A
——  RTpin H1(Q;R?), and 2 I~ 0in H1(Q;R?). (4.39)
gjlloge;| gj]loge;]

In order to define the recovery sequence, we introduce the auxiliary strain

M;
~ Te .. Ei ;
Kujj = TTJ E ’I]f \:c — I‘i7j|2 1B7‘5j (i) (440)

€5 4=1

Te; Te.

A straightforward calculation shows that curl f{;j] = RT(/]J =’ ).

Now, we define the approximating strains as

Bj ZR(1d+€j\10g€j\5+nj - K, +/3’j>, (4.41)
- 0 -1 . .
where 8, = Vw,J for J = and w; is the solution to
j j 1 0 j

—Aw; =¢;|loge;|RTp — RTi,7  in Q,
i = 5l log & [Bp Hi (4.42)
wj € H&(Q, Rz)
Then 3; € AS.;(i;). Indeed, one can show by a direct computation that n? and K;;j are in
LP(Q;R%%2); the function Bj belongs to the space L2(2;R?*2) by definition. Hence, each summand
in the definition of j3; is in the space LP(£2; R?*?). Furthermore,

~Te; ~Te; ~Tej ~Te;
curl B; = ejlloge;lp +py — ;7 — fi; 7 + ;7 —ejllogejlp+ fi; 7 = py.

As in [59, I-limsup inequality|, it can be shown for €. (u;) = Q\ U%supp(ﬂj) B, (x) that

7o (u))
3) ZThoge,l

— 0 in L?(Q;R?*2),

~Te;

b) — A 50 in L2(Q; R2X?),

ej|log el

c) _ B — 0in L2(;R%x?).

ej|log ;|

The boundedness in L?(2; R?*2) of the function in a) is a straightforward computation. The identi-
fication of the weak limit can be done in LP(€; R2*2). For b) notice that |K, | < Ce;/[loge,|. In
view of (4.42) and (4.39), the last statement follows by classical elliptic estimates.

Furthermore, it can be shown that

d) m — 0in LP(Q;R2X2).
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

In fact,

nj
gj]loge;l

J

J|p
n: |P dx
|10g63|1’z/ (@) I
C j/rsj N
< 0/ rPdr
g5 2

Mj 2—p
’I“Ej

-1
= OO gy

< C@—p)Mloges |1z < (2~ p) " loges|7F = 0.

Hence, (115, 8;) converges to (u, 3, R) in the sense of Definition 4.3.1 with R., = R.

Next, we will show the limsup-inequality for the energies. For this purpose, fix o € (0,1). We

split the energy as follows

1
o) = e [ W G
€ AR} 5?|10g5j|2 QE?(H]) 2|10g5]|2z

"X(xz ])

=:J1 =12
5‘7 5‘7

First, we show that

1 1
hmsmp]1 / fCﬂ:Bdac—&—a/go(R@)dx:/ fC/J’:Bdm—i—a/ (R ) dlp|.  (4.44)
e;—0 Q2 Q Q2 d|pl
Using a second order Taylor expansion and the frame indifference of the energy density W, we obtain
similarly to the lim inf-inequality, (4.18), that
1 1

€j

1 v s v, s
52‘|10g5j|2/ ( )§C<5J‘|10g5j|5+77] — Ky + Bj) : (g5]loges| B+ — Ky + B5) dx
J a (Mg

1 . e ~
+7/ ole;|loge; |8+ — K7 + ;) d
5?|10g5j|2 Qe (1 ( J ]| M J

where%%OasF%O.

By a) — ¢), in the first integral all mixed terms and the quadratic terms involving f(;j] or Bj vanish

in the limit. In addition, one derives from the non-negativity of C = %ZVIK (Id) that

1
5§|10gsj\2

/ ( )2 C(ej|loge;|B) : (g5]1loge;|B) dm</ —CfB: Bdx.
a (g

Hence, we still have to consider the term involving n’/. Using the special form of the nf for the second

equality and Proposition 4.2.1 (in particular (4.6)) for the inequality, we find that

cr ),
_— Cn sl dx = / C’h
gj]loge;|? 9.e (1) 2 |10g53| Z Br. (@6.4)\Bea (21,5) 2
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4.3 The Critical Regime

| 1o

1 .
= > — / anf n! dx
[loge;j|? & |10g | JBi@i\B o (@) 2
J

’a

J

< oge B2 Z (R7¢i) +o(1)).

M.y‘
_atol) S (R ,) + ol)

[loge;|

where o(1) — 0 as €; — 0 (notice that we deal only with finitely many values of &; ;). By definition
of u?, this equals

M k‘ QO
=> (a+ o(l))'ﬁi_f(wm%) +o(1)).
k=1 J

Using (4.35), this yields in the limit

M
1 1. )
hmsupi/ =Crp =1 dax < | E Mo (RTE, :a/goR,f dx
e—0 &5 logeg|? Qay(w)z | |k:1 ( ) @ 1

To establish (4.44) we still have to show that

1

—_— o(e;|loge;|B+n' — K, + B;)dz — 0. 4.45
6?10g€j|2~/ﬂa(u3 (<] i H ) (4.45)

First, we observe that for x € (.o (i) it holds

|77j(x)| < ) lsup €j|1B7‘5j (901])77“ < ngl'ia
i=

sy M
~ Te . ; 13
and |K,,;’ ()] < sup ‘1Br5j @) |z — 2] < CT—J

i=1,...,M; €j

Hence, 1 Qo (1) (n? +K ,Zj’ ) converges uniformly to zero. To compensate the lack of uniform convergence

of B; and ¢;|loge;|3, fix L > 0 and define the set
UL = {& € Qo) 1 1B5(@)| < I (@) + Ky (@) and |B(a)| < L}

Then 1UL (gj]loge;|B+n7 + f(;jj + BE ) converges to zero uniformly. Set w(t) = sup|p <, [o(F)] and

(t) — 0 as t — 0. By definition of w it holds

1
e3lloge,|?

| otesltogsy 4 n — Ky + By da
U,
<j

P
</ w(ej|loge B+ — K + Bj) \Ejllogsj\mnf—mj +5;

dz — 0 (4.46)
: ~ e ~ 12 2 1P
ejlloge;|B+m — Ky} ng‘ 2[log e,

L
UEj

as the first term converges to zero uniformly and the second is bounded in L' by a) — c).
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

For the integral on Qo (4;) \ UEL],7 we need the following bound on w:

w(t) = sup |o(F)| = sup
|F|<t |F|<t

W(Id+ F) — fCF F‘ < C sup |F|*> < Ct%.
|F|<t

Notice that on Qe (1) \ Use it holds | 3] > |’ (z) + K';j] (x)|. Hence,

- o(ejlloge;|B+1n' — K/ + ;) dx
eflloge;? |Ja,aqunuz A
L2
le3lloge 15+ — Ku? + |
<C 5 5 dx
Qe (1 \UE, &5l log ;|
2 2
o 5.

S RS [ e,
(81>1} €51loge;] (18]>L}

where we used c¢) for the convergence in j. Together with (4.46), this establishes (4.45) which finishes
the proof of (4.44).

Next, we control I’ from (4.43). Notice that

)d
2|10quZ/ v

"’(xf ])

2 o . P
2|10g8]|2 Z/ ) dist(83;,S0(2))? A dist(8;, SO(2))P da

1 2 21 512 j12 ip T2 1A 12
€?|1Og€j|QZ/BM eHltome FIAP A PP LR
=1 > ¥

Due to b) and ¢), the terms involving K Z? and §; vanish in the limit. Moreover, as
U Bea(zij) | = Mjwsg(’ < log5j|€?" — 0,

also the term involving 3 vanishes in the limit. Lastly, we estimate

i2 A il d
2|10g€j|22/ [’ 17 A | [P de

IIJ

|77j|2da:+/ [’ [P dfﬂ)
2| logesjl2 Z </BE;;L(;EM-)\BE]. (@:5) B. (i)

J

M. 5 M. €
< OM; / " ldr + 7270 ! / P dr
€j

~|loge,|? e; "lloge;|?

<C(1—a)+Clloge;| ™t
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4.3 The Critical Regime

Hence, limsup, _, 7, < C(1 — a). Together with (4.44), this implies

1 d
limsup E., (Bj, pr) < / —Cp: ﬁdm—i—a/ ® (R, M) +C(1-a).
€;—0 Q 2 Q d|.u“‘

Letting a — 1 finishes step 1.

For step 2, it is useful to notice here that 77 = K ;jj = 0 on 00 and therefore we find by (4.39) and
c) that (cf. [29, Theorem 2])

T8, —Id i~ K, + B, 3
(R 5 — 5) P e 5 T = _ b -7 — 0 strongly in H*%@Q;R%, (4.47)
gj|log ;]| gj|loge;| gj|log ]

where 7 denotes the unit tangent to 9.

Step 2. pu = Zlel & dlj‘?ﬂl where £ € R? and Q' C Q are pairwise disjoint Lipschitz-domains
such that L> (Q \ Ulel Ql) =0.

We make use of the recovery sequence of step 1 on each Q'. For this, we define 8! = B1g and
pt = . Foreach I =1,..., L let (1}, B5); be the recovery sequence from step 1 for (4!, 5!, R) on
Q. Now, we define

L
Bi=> Bilg.
1=1
Then, curl Bj ¢ X, precisely
curl §; = Zu] Tsz) dH|BleQ in D'(Q),

where T is the unit tangent to 9. Note that for two neighboring regions Q' the corresponding

tangents have opposite signs. By (4.47), we find

~ L
curl B — Y72
£5]log el

RpB | - dH}
<€J|10g63| ﬂ) Tosine Hisar

R ey
€; | log &jl " Toa

For the last inequality we used that for a Lipschitz domain U the trace space for H'(U;R?) is
H?z(dU;R?). By this estimate in H~!, we can find a sequence of functions f; € L?(Q; R2*?) such
that curl f; = curl §; — Elel ph and m”ﬁ”m — 0. Now, define the recovery sequence as

H~=1(Q;R?) ~1(Q;R2)
— 0 as j — o0.
H™% (001;R?)

g2
<%l

L
Bj = B; — fj and p; = Zﬂé
=1

Then p; € X, and B; € AS.;(u;). From the construction of the u} in step 1 it can be seen that
X pin M(£2;R?). Moreover, in the proof of step 1 it can be seen that although we subtract

Hj
&, Tlog e, |

(0]



4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

the vanishing sequence fe; it still holds for all [ =1,..., L

limsup ——
2
e;—0 &5 |loge;l? Jou

!
W(B;)dx < /QL Cﬂ:ﬁdm—k/ﬂlw <R, jﬁ”) d|pt. (4.48)

Summing over (4.48) finishes step 2.

Step 3. € H '(Q;R?) N M(Q;R?).

As our limit energy is the same, we can argue as in [38, Theorem 12, step 3] to reduce the general case
to step 2. Let us shortly sketch the argument for the sake of completeness. By reflection arguments
and mollification, the authors show that there exists a sequence of smooth functions 3; such that
B; — B in L2(Q;R?*?), curl 3; = curl B in M(Q;R?), and |curl 3;|(Q) — |curl (). The energy
E°ri is continuous with respect to this convergence. Then, the authors carefully approximate curl 3

by piecewise constant functions and correct the corresponding error in the curl by a vanishing sequence
in L2(Q; R?*?). O

Remark 4.3.1. In [60], the authors construct a recovery sequence §; which fulfills det 5; > 0. This
construction could also be used in our case. Most computations in the proof would remain the same.

Using this construction, we could weaken our assumptions on W in the sense that we would need the
upper bound W (F) < Cdist(F, SO(2))? A dist(F, SO(2))P only for F such that det(F) > 0.

4.4 The Subcritical Regime

In this section, we consider the scaling regime 1 < N, < |log ¢|, which corresponds heuristically to few
dislocations. In [71], the authors consider N, < C'. In the critical regime, the coupling between p. and
Be survives the limiting procedure as both quantities live on the same scale. In the subcritical regime,
we expect the distance of the strain 8. to SO(2) to be of scale € (] log E|NE)% whereas the dislocation
density curl ;. = . is of scale e N, (see Section 1.3). Hence, the limit variables are decoupled. This

is made rigorous in the compactness result. The limit of E. will be given by

1 du
208 - hatudl
/92 g ﬁdx—i_/ﬂ(p(d'l”) Al

where curl3 = 0 and g € M(Q;R?). The same line-tension limit has also been derived in the

subcritical regime from a core-radius approach in the setting of linearized elasticity in [38] and [30].

Compactness

The compactness result in the subcritical regime is the following.

Theorem 4.4.1 (Compactness). Lete; — 0 and 1 < N.; < |loge;|. Let (pj, B;); C Xe; x AS, (pe;)
such that sup; E. (u;, ;) < oo where the energy E, is defined as in (4.3). Then there exist a
subsequence (not relabeled), a sequence of rotations (R;); C SO(2), R € SO(2), p € M(Q;R?), and
B e L? (Q;R2X2) such that

(i) aj%Ej X in M(Q;R?),
T PR
(i1) Ry Bi—1d r — Bin LP(Q;RQXQ),

€5 (Ne;|loge;])2
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4.4 The Subcritical Regime

(iii) R; — R,
(iv) curl B = 0.

Proof. Arguing as in step 1 of the proof of the compactness result in the critical regime (Proposition
4.3.1), one finds

[151(82)

———= < CE. (u;,55)-

&N, = €5 (15, B5)
For a subsequence follows (i).
An application of the generalized rigidity estimate, Theorem 3.0.1, together with the lower bound on
the energy density W, (iv) in Section 4.1, provides R; € SO(2) such that

1 C
—_— i — RN |B; — Rj|P dz < CE. (u, B; 1 (Q)?
E?N5j|10g5j|/§;|ﬁj J| |5J j| T = eJ(,UjaﬂJ)‘FE? |[L]|( )

N¢,|loge|

<C+ 752-]\[2' ‘,uj
J7 &

(Q)? < C.
RTB;—1d

€/ st [loge;|
beled) and a function 3 € LP(Q; R**?) such that

It follows that is bounded in LP(£2;R?*?). Hence, there exist a subsequence (not rela-

RYB; —Id

€51/ Ne, | log e

Thus, (ii). Up to taking a further subsequence, (iii) can also be satisfied. Arguing as in step 2 of

— B in LP(Q;R?*?).

the proof of the compactness statement in the critical regime, it can be shown that g € L?(Q;R2%2).
Finally, we show (iv). Let ¢ € C2°(Q;R?). We compute

RTB; — Id Ry,
J ﬂ] , Q >'D’,D: hm < J o

R~ — P >D',D
€5/ Ne,|loge,| j=oe g4/ N, |loge]

| N, RT yu;
= hm % < j‘Z\I;J , @ >D/,D: 0.
j—oo \[ [loge;| €N,

——
—0 LRTM

<curl B, >prp= lim < curl
J—00

Hence, curl 5 = 0. O

The I'-convergence Result

In the spirit of the compactness result, we define for the subcritical regime the following notion of

convergence.

Definition 4.4.1. Let ¢ — 0. We say that a sequence (u.,3:) C M(Q;R?) x LP(2;R?*?) converges
to a triplet (u, 8, R) € M(;R?) x LP(Q;R?*?) x SO(2) if there exists a sequence (R.). C SO(2)
such that
He  x . 2
He O;R
N win M(Q;R%),
R?/BE —1Id

ey/Ne|loge]

With this notion of convergence we can state the I'-convergence result in the subcritical regime.

— Bin LP(;R?**?), and R, — R.
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Theorem 4.4.2. Let 1 < N, < |loge|. The energy functional E. as defined in (4.3) I'-converges

with respect to the notion of convergence given in Definition 4.4.1 to the functional E5* defined on
M(Q;R?) x LP(Q;R?**2) x SO(2) as

Lo CB:Bde+ fop (Rl )diul  if we MOUR), B € LA R2),
ESUb(lhﬁyR) = and curl 3 =0,

400 otherwise ,

where C = %ZV}[,/ (Id) and ¢ is the relazed self-energy density defined as in (4.7).

Remark 4.4.1. This regime is sometimes also called self-energy regime. Note that by the decoupling
of the limit variables one can essentially minimize out the dependence from the strains in the definition

of E., and obtain only the self-energy of p in the limit, cf. [30].

The proof of the I'-convergence result is given in the following two propositions treating the lim inf-

inequality and the construction of a recovery sequence, respectively.

Proposition 4.4.3 (The liminf-inequality). Let 5 — 0 and 1 < N, < |loge;|. Let (uj,0;) C
M(Q;R?) x LP(Q;R?*2) be a sequence which converges in the sense of Definition 4.4.1 to a triplet
(, B, R) € M(Q;R?) x L2(;R?*2) x SO(2). Then

hmlnfE (g, B5) > E*"*(u, B, R).

Proof. Essentially, the proof works as the proof in the critical regime.

Without loss of generality we may assume that liminf., o E., (15, 5;) = lim; .o Ec, (15, 8;) < oc.
For j large enough we derive that p; € X, and write p; = z,iwzjl €j&k.j0z, ; for appropriate zy ; €
and & ; € S. As in the proof in the critical regime, we divide the energy into a contribution far from

the dislocations and a part close to the dislocations:

M;

E,(Mwﬁ‘)zif W(B;) de + 5———— / W (B;) da
R 5?|10g€j|N51‘ Qpe; (1) ! E?“OggﬂNEj kz::l Boe; (r.5) ’

M;
where Q,_ (ky) = @\ U By., (Tk,5)-
The first term on the right hand side can be treated essentially as in the critical case. The only
difference is that we use Taylor’s theorem on the scale £;/N,,|loge;| instead of €;|loge;|. We obtain

liminf ——— / W(B;) dz > = / CB: Bda.

i—oo €7 log €;|Ne,

For the contribution close to the dislocations, we argue as in the critical regime (cf. (4.30) and (4.33))
to obtain for a,d € (0,1) the estimate

1 M;

| log -, | dji; .
S TE P v W(,@')dﬂcZ(a—" /s@ R, = | d|f,|
e3|log ;| N, ,;/Bpej @) |loge;| ) Ja d|fi;] !
_ (a_ |10gp6j> ( C + CJEj )

|loge;| ) \|logd|  |logd]

By the assumptions on the convergence of y;, it follows fi; X pin M(Q;R?).

S Wy
where [i; = SN
J
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4.4 The Subcritical Regime

Convexity and 1-homogeneity of ¢ and Reshetnyak’s theorem allow to conclude

M;

1 du Ca
liminf —— / W (B, dxzoz/ap(R,)du— .
;=0 &7]loge;| N, kz::l By, (@1.;) (5i) ) d|p I |log |
Sending v — 1 and § — 0 finishes the proof. O

Lastly, we prove the existence of a recovery sequence for the energy E*"?.

Proposition 4.4.4 (The lim sup-inequality). Let ¢; — 0 and 1 < N, < |loge;|. Let R € SO(2),
B e L2(;R?*2), and p € M(Q;R?). Then there exists a sequence (uj, B;); C M(Q;R?)x LP(Q, R?*2)
converging to (u, 8, R) in the sense of Definition 4.4.1 such that

lim sup EEJ' (/1/]7 5]) < Esub(,u7 Ba R)
£j —0
Proof. We may assume that E*“®(u, 3, R) < oo and hence curl 3 = 0.
As in the critical case, we can restrict ourselves to u = & dL? for some fixed £ € R2. Note that the
corresponding energy density result is even easier since § and p are now decoupled. Moreover, we
assume that R = Id.
Let & = Z,i”:l A€k such that & € S and p(Id,§) = iwzl Ae(€). According to [38, Lemma 11],
k
there exists p1; = 224:1 53‘51#1? with u? = Z;‘iﬁ 595’?, such that p; € X, and
1L

k(2
|M;V|E(j ) — A\ |Q| and ﬁ 5o in M(Q;R?).

For a sketch of the construction, see Figure 4.2 in Section 4.3. Combining the summations in the

definition of p; we write p; = Z,fgl &k,j Ox;, ;- As in the critical regime, we define the function

0 = Zij\iji g1 By (wi) where the 7/ are special solutions of

J in R2
curln; =& jo,,; in R,

diven] =0 in R2.

Following the proof in the critical case we introduce the auxiliary measures [L;Ej , ﬂ;aj and the auxiliary

strain f(;j’ as defined in (4.37), (4.38), and (4.40) for r., = 1, /ANEJ,_1 and A = Z,iu:l Ak Moreover,

B <cl|las . Then, define

<Clh
L2(Q;R2%2) 7l H-1(R?)

let 3; be a solution to curl §; = ﬂ;sj such that ‘

Bj = Id+ &5y Ne|loge; |8 + 17 — Kpii' + ;.

It follows curl 8; = p; (recall that curl 8 = 0).

Te .

According to [38, Lemma 11], it holds that #évev — £dL? in H71(;R?). Consequently, we derive

Ej j

’I”Ej

Bi Hj

€5/ Ne,|loge;| €5/ Ne,|log g

Moreover, similar to the critical case one can prove that

— 0.
H=1(R?)

L2 (Q;R2X2)

g () .
S () in L2(;R2X2),

g) 0y
) SN el
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

~Te;

By ; 2((0). R2x2
b) Ejm->01nL(Q,R ),
o

) — 1
) €jy/Ne;loge]

B,—Id Ny . TR2%2 .
Therefore, W B in LP(2;R**?). Hence, the sequence (u;, 3;); converges in the sense of

Definition 4.4.1 to (u, 5, Id).

The desired lim sup-inequality for the energies can be shown analogously to the the lim sup-inequality

— 0 in LP(Q R2X2).

in the critical regime by replacing |loge;| by N, at the correct places. O

4.5 The Supercritical Regime

The supercritical regime corresponds to the scaling |loge| << N.. In this regime, the distance of the
strain to SO(2) is expected to be of order e1/|log | N. whereas the energy bound in Section 1.3 show

that the dislocation density curl 8. = pu. is expected to be of scale e N.. Hence, we cannot control

el (22)
e4/|loge| N,
will show that there cannot be a compactness result as in the other regimes.

On the other hand, p. depends on S, which scales like £4/]loge|N.. At least in a negative Sobolev
norm this gives an upper bound for the scaling of u. by 1/|loge|N. which is much smaller than the

natural scaling that comes from the energy. Hence, the elastic energy should be dominant and the

and thus the generalized rigidity cannot be used to obtain compactness. Even more, we

self-energy vanishes in the limit. A I'-convergence result which does only include 5 can still be shown.

The limit will simply be a linearized elastic energy, precisely

/Q%Cﬁ’ : fdx.

The notion of convergence we use is the following.

Definition 4.5.1. We say that a sequence (8;); C LP(Q; R?*?) converges to 8 € LP(Q; R?*?) if there
exists a sequence (R;); C SO(2) such that

RTB; —1d
€5/ |loge; N,

As discussed above, the dislocation density does not appear in the limit. For this reason, we eliminate

— Bin LP(Q;R?*?),

it from the definition of the energies. The I'-convergence result is the following.

Theorem 4.5.1. Let N. > |loge| such that N.|loge| < p-*. Then energy functional E5“P defined
as
m JoW(B)dx if (curl 8, 8) € X x AS.(curl ),

B2 (5) =
) +00 else in LP(Q; R?%2),

(4.49)

I'-converges with respect to the notion of convergence given in Definition 4.5.1 to the functional ES"P
defined on LP(£;R?**?) as

2 [oCB:Bdx  if Beym € L*(Q,R?*2),

B (s) =
+o0o otherwise in LP(£2;R?*?),

where C = %2;}/ (I).
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4.5 The Supercritical Regime

The proof will be given in the following two propositions. First, we show the lim inf-inequality.

Proposition 4.5.2 (The liminf-inequality). Let ¢; — 0 and N, > |[loge;| such that it holds
Ng,|loge;| < p;j4. Let (B;); C LP(Q;R?**%) be a sequence which converges to B € LP(Q;R?*?)
in the sense of Definition 4.5.1. Then

lim inf B27(8;) > E*'7(5).

Proof. Without loss of generality we may assume that liminf; EZ'P(8;) = lim; EZ*P(8;) < oo and
sup E;J“Z’(BJ) < 00. As we obtain the lower bound by linearizing at Id, we may assume without loss of
generality that the sequence (R;); C SO(2) from the definition of convergence of 3; converges to Id.
Let S; : € — SO(2) be a measurable function such that dist(8;,S0(2)) = |5; — S;|. By the
boundedness of the energy EZP (Bj) and the lower bound of the energy density W, one sees that

525 is bounded in LP(€;R2*2). Moreover, 14, — =1 is bounded in L*({2; R2*2)

€j/Ne,|log ;] i €j4/Ne, [loge;]
where A, = {z € Q: dist(8;,50(2)) < 1}. In addition,

2\ A, | < / dist(5;, SO(2))? dx < C’a?| loge;|Ne, EZP(B;) < CE?\ loge;| N, — 0.
Q

€J

For the convergence, notice that €f| loge;|N,, < 5?,05_]_4 — 0. In particular, it follows that 1 A, 1

boundedly in measure. Hence, there exists 3 € L2 (£2; R2%2) such that (up to taking a subsequence) it
holds

Bi—5; 3 22 Bi—5; 2 2Xx2
— = ~ fBin LP(Q;R**?) and 14, —2—L— — B in L*(Q;R**?)
€51/ Ne, | log ;] I ej/Ne,|loge]
Consequently,
Id— RTS,; Id— RTp; g -
it _ J 5] RT ﬁ] S] N —ﬁ‘i‘ﬂ in LP(Q;RQXQ). (4.50)

= +
ej\/Ne,|loge;|  e54/Ne,[loge] 7 ej\/ N, log e

This implies that Id — RjTSj converges to 0 boundedly in measure.
Moreover, by the structure of SO(2) as a manifold and the fact that T74SO(2) = Skew(2), there is a
map T} : @ — Skew(2) such that

I1d - RTS; T O(|1d - RTS;|?)

= + .
ej\/Ne,[loge;|  ej/Nc,[loge;|  e;y/Ne,[loge;]

 pTa . . o(|1d=RTs;[*) |
By (4.50) and the convergence of Id R; Sj to 0 boundedly in measure it holds that W

in LP(Q;R?*?). Notice that the space of functions in LP(2; R?*?) with values in Skew(2) almost ev-
Id—RT S,
erywhere is strongly closed in LP(Q;R?*?). Hence, by Mazur’s lemma the v~veak limit of T\/EIJT;EJI
takes values in Skew(2) almost everywhere. By (4.50), it follows that 5 — 38 € Skew(2) almost every-
where.
. . . . . . . 2
As the energy density W is rotationally invariant, the quadratic fo~rm induced by C = %Z—VI&/(I d) acts
only on the symmetric part of a matrix and thus C8 : 8 = C8 : 8. Hence, it suffices to show that
hmlnf] Ea‘j (6]) > %fﬂ Cﬁ : ﬁdl‘
Bj—Se

—1
Let us define the function G; = W and U, = Ac; N {x € Q:|Gj| <1/ejy/N:,|loge] }
J € J
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Notice that 1U5j — 1 boundedly in measure and that ¢;,/N_,|loge;| 1U5j G; converges to zero uni-
formly. Moreover, 1y, G; = 1y, 14, Gj — B in L*(Q;R**?). As S; — Id boundedly in measure it
holds furthermore that 1y, ST G; — B in L2(Q;R?%2).

We estimate using Taylor’s theorem

1 1
| W(Bj)dz =———— [ W(STB;)d
5?N€_7,logsj|/Q (B;) dx €?N€.710g5j|/5; (S5 B;) da
1
DT YT — I +/N..|loge;|STG;
_afNEj\logaﬂ /Us,- W( d+€]\/m‘9] GJ) dx
T . T
Z/QC (1UE]-Sj Gj) : (]'Usj Sj Gj) dz

- / w (‘%JWS?GJ'D
UL

2
€3N, |loge;| |Gyl

|Gj|2 dz,

where 22— 0 for t \, 0, cf. (4.18).

t2
The error term in the last line of the above estimate goes to zero as |Gj\2 1y, is bounded in L' and
€5/ Ne,|log €j|S€Tj G goes to zero uniformly on U, .
For the first term in the last line of the estimate, we use that the quadratic form induced by C is lower

semi-continuous with respect to weak convergence in L?(2; R?*2). Hence, we obtain

1 R
liminfi/Wﬁ- de/Cﬁ:ﬁd:v.
J €?Naj|10g5j| Q (53) Q

This finishes the proof. O

Next, we shortly sketch the proof of the upper bound. It is much easier than the one in the critical
regime since we do not have to perform the careful analysis in order to recover the self-energy. Instead,
we simply have to recover the linearized elastic energy using Taylor’s theorem. The statement is the

following.

Proposition 4.5.3 (The limsup-inequality). Let ¢; — 0 and N, > |loge;| such that it still holds
Ne,lloge| < p;j4. Let B € LP(S;R?*2). Then there exists a sequence (3;); C LP(S;R?*?) such that
B; converges to 3 in the sense of Definition 4.5.1 and limsup; Egj“”(ﬁj) < E5vP().

Proof. Asin [38], by a convolution argument we may assume without loss of generality 8 € L?(Q; R?*2)
and p = curl 3 € C°(Q,R?) ¢ H(;R?). Using a similar construction as in the critical regime for

1 . M,

e, ~ (Ng,;|loge;|)3, there exists a sequence of measure pu; = » 7 €6k 0z, , € Xc, (the assumed
pE]
Te ..

growth restriction on N, guarantees that — 0 and hence well-separateness of the dislocations,

cf. the sketched construction of yu; in the lim]sup—inequality in the critical regime) such that it holds

Hj * . .2 . ~Te; . .
——Lt___ = 4 in M(Q;R?) and the corresponding measures ;7 as defined in (4.38) satisfy
qu/N5j|log5j| J

Te .

J
Clleurl Bl oo (;p2) -
Notice that the measures p; approximate curl 5 on the scale Ej\/m whereas the scale of
approximation in the critical and subcritical regime is €; N, > ¢; \/m . Hence, the measure
tt; is smaller than usually which leads to the fact that it does not contribute to the limit.

Using the notation 77, ﬂ;sj, and K;? as defined in (4.36), (4.37), and (4.40) we define the recovery

— p in H7}(Q;R?). Furthermore, this construction can be done such that [ ;| <
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4.5 The Supercritical Regime

sequence by

Bj =1Id+ej\/Ne,|loge;|B+n' — K./ + 5,
where 3 satisfies the equation curl ﬁj = —¢gj/Ne,|loge;|curl § + ﬂ;sj and the corresponding bound
‘55,- L) < C’H/]jaj —ejy/Ne,|logej|curl B ‘H—l(Q;W)' It follows that curlf; = p; € X,.

Moreover, one can check that (note that the main difference to the critical regimes is the strong

convergence in (a))

W la. (u)) :
i 0 in L2(Q;R?¥?),

a) ——4 97
) €jy/Ne, [loge;]

b) n’

W — 0 in LP(Q;R2X2),
J €5 J

L Te .

i
c) T
€54/ Nej [ loge;|

/BE]'
ij/NEJ [loge;]|

Let us briefly prove a). It holds

— 0 in L2(Q; R2%2),

d) — 0 in L2(Q; R?%2).

M;
/ e <O el loge|
Qe (15) i=1

< C llewrl B[] e g2y €54/ Ne, [og g3 < €3N, | log .

Following the arguments in the lim sup-inequality in the critical regime, this leads to the fact that the
functions 7’ do not induce self-energy in the limit.

The desired estimate follows from a) — d) by copying the arguments from the critical regime. O

As already discussed in the beginning of this section, there is no compactness result in this regime.
To conclude the discussion of the supercritical regime, we provide a counterexample to compactness

in the supercritical regime.

Example (A counterexample to compactness). Let e; — 0 and N., > |loge;| such that N, < p;j2.
For simplicity, let Q = (—1,1)% C R2.

(03

We define ., = sj\/m, ae; = €j (ij\logsjo and 0., = a§] As N, > [loggy], it holds
o, < ae,; and hence 0., — 0 as g; — 0. ’

Let T € Skew(2). We may assume that T - e2 € S (otherwise scale T and rotate  such that T-b € S
for b one of the basic vectors of the rotated cube). As T7450(2) = Skew(2) there exist rotations
R; € SO(2) such that R; — Id = a.,T + O(aZ)).

We define the function ¢; : Q — R**2 by ¢, = Id + (R; — Id)1; where

Wl

[
0 if v < ——%,
. Oc; Oc
’l/)](xvy): 52; +% if — QJ SxS Qja
oo Ocy
1 if 5 <.
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/NEJ.*1

i i ? )

| | I 1

| | | I

| | L |

| | | I

l l : .

| | r 1
pe; = 1d, Pey = Ly ; l
| | [ |

| | I I

| | I 1
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l l : 1

| | [ 1

I I o, |
_58.7‘ 58.7‘ _551‘ 55]‘

Figure 4.3: Left: the construction of ¢;. Right: illustration of ;; and ;12_?‘: the black dots corre-
spond to Dirac masses of mass €;71 - ez, each blue circle corresponds to the mass ;7 - ez

continuously distributed on the circle of radius /N, -1

Then

1
curlp; = (R; — Id) - ea— L? 5.

o =5 S x (-
a2
= &T'GQ L2 s s +O ) L% s,
6&‘]' |(7 2J ’ 2J )X(fl’l) 55;‘]' ‘( 2J ’ 2J )X(fl’l)

— N T ey L2 Lo%) 2
TSI e B e 5., | Tt k(-1

Now, construct u; € X, as in the construction of the recovery sequences in the different regimes i.e.,

1
N..

J
in the center x ; of each of these squares, see Figure 4.3. Note that the growth assumptions on N,

oo, b, . I
cover (——=L, =L) x (—1,1) with squares with side length

555 5 and put a Dirac mass with mass ;7" - e

guarantee well-separateness of dislocations. Denote by ﬂgjj the corresponding regularized measure on
the ball of radius 3, /st_l as defined in (4.38) for 7., = 3 /st_l.

. . ~Te.
The application of Lemma 4.5.4 for r = 2\/%?, U= (=0,0:) x (=1,1) and f, = fi;7 — ;N T - e2
(here, we identify the measure ﬂ;aj and its density with respect to the Lebesgue measure) provides

the following estimate

i —eiN.T - ey L2 <ot N T J6.. < Cei\/N.
"u] cifes re2 (=222 (1 || o \/Nigj% T ealyf0, < Cegy/Ne,.
2\ . a2 o ad
As )0 (26) Li(=s.,.8.,)%(~1.1) < U5 /0e; = 55, we find that
H71 J J

i - curlsﬁjHHfl <c <€j\/NEJ a?

o + 5 +€jN5j> — 0.

. O, g Vg gj|
Now, we can construct the counterexample similarly to the construction of the recovery sequence. Let
Bi=wj+1 + f(;jj + B; where f(;jj is defined as in (4.40) and curl §; = [L;Ej — curly; such that
|2

— 0. As in the construction of the
L2

~Te; . ) . . 373
L <C H,uj curl ¢; HH_l. In particular, it follows H oo
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4.5 The Supercritical Regime

recovery sequence in the supercritical regime, one can derive from fﬂ% — 0 that (cf. a) — d) in the
<

proof of the lim sup-inequality in the supercritical regime)
ot [ W Al R P o0
2N, [log 5] Jo
As curl B = p; € X.,, we obtain that
1
ES"(B;) <C———— [ dist(B;,50(2))* A dist(B;, SO(2))? d
57(35) SO g L A8, SOQ)? (3, S0 e

1 / . . e .
QN — IRAP + K72+ |8, da
< Trgey Jo 7 A I 15

1
+07/ Id — R;|?
eF N, [oges| J(- 25 21 ’
2
1 / . . v x o e, az.
<s———— [ [PI" AP+ KL )2+ 15 de+ C2 ——+
N, [logs;| Q| P A [P+ 1K 1+ 18] o
——

=1
<C.

On the other hand, it is clear that there cannot be a sequence (S;); C SO(2) such that up to a
STB;—1Id
Qe .

subsequence converges weakly in LP(; R?*?) because the only relevant part of 8; on scale

J
ae, = €j+/Ne,|loge;| is ; which is essentially either Id or R;. These rotations are separated on scale
ae; > ae, and live both on sets of order 1.
. N5,
Note that ‘“&l(@ ~ 2 —

rigidity estimate to obtain compactness in the supercritical regime.

. 1
L = NZ&|log aj|*é — 00. This illustrates why we cannot use the generalized

Remark 4.5.1. A similar construction could be done on any Lipschitz domain using cubes to separate
the domain in a left and a right part. Then, use the construction above on the cubes and extend j;

constantly as Id, respectively R;, to the left and the right of the cubes.
Finally, we prove the scaling estimate in H ! that we used in the construction of the counterexample.

Lemma 4.5.4. Let Q be the unit cube and f € L*(Q;R?) with fQ f=0. Letr >0, U C R? bounded
and (Qr)r a family of scaled copies of Q with side length r and center xj such that Uka Cc U and
U C Uy, Qk- Define f,(z) = f (£=2£) on Q. Then it holds

1l ) < CrlifliLeg LU)z,
where C' does not depend on f, r and U.

Proof. Let ¢ € HY(U;R?) and write < ¢ >q, = ka pdx. We estimate, using Holder’s and Poincaré’s
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4 Plasticity as the I'-Limit of a Nonlinear Dislocation Energy with Mixed Growth

inequality (recall that Poincaré’s constant scales like r on domains rescaled by r),
/fr'@dw:Z/ fr’(@_<90>Qk)dx
U k Qk
< Z 1frll 22y 0= <@ >Qull L2 (0 o)
k

S C’r2 Z ||fHL2(Q) |‘v¢||L2(Qk;R2X2)
k

<Cr® £l L2y IVOll L2 a2y V/# number of cubes Qy,
1
S Crfllpzore LA(U)? [l 1 (r:ge) -
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5 Plasticity as the I'-limit of a Dislocation
Energy without the Assumption of

Diluteness

In this chapter, we consider a core-radius approach for straight, parallel edge dislocations in the
context of the linearized theory as described in Section 1.3. In particular, we compute the stored
elastic energy on a reduced domain which does not include the dislocation cores. The second main
difference to the model discussed in Chapter 4 and other models of this type (cf. [38,59,71]) is that
in this chapter we drop the assumption of well-separateness of dislocations (cf. the definition of the
set of admissible dislocation densities in Section 4.1). In the proofs of the I'-convergence results in
the previous chapter, it has been of enormous importance that we could compute the self-energy of
each dislocation separately and relax this energy in a second step on a larger scale. Without the
assumption of well-separateness this is not possible anymore. On a technical level, this leads also to
the fact that one cannot expect to obtain upper bounds on the total variation of the dislocation density.
For example, two dislocations of different sign, which are very close, should essentially be seen as no
dislocation and therefore not contribute significant self-energy. The existence of many of those dipoles
could then prevent a compactness statement in the sense of weak+-convergence in measures to hold.
Therefore, we need to weaken the notion of convergence of dislocation densities in a way that allows
those dipoles to vanish in the limit. The solution will be to consider strong convergence in the dual
space of Lipschitz functions which vanish on the boundary. This convergence is sometimes also called
flat convergence and was used successfully in the treatment of the subcritical regime, cf. [30]. A main
tool to prove bounds on the dislocation densities which imply compactness in the flat topology will
be ball construction techniques, which are also known in the context of vortices in Ginzburg-Landau
energies, cf. [51,70]. The building block of energy estimates using the ball construction techniques
are energy bounds on annuli. In the context of elasticity, one obtains a massive loss of rigidity on
thin annuli which leads to inadequate lower bounds on thin annuli. Mathematically, this phenomenon
becomes manifest in the explosion of Korn’s constant for thin annuli, see Section 5.A. This will be
one of the major problems we will face in order to prove meaningful lower bounds.

In this chapter, we focus only on the critical regime; the subcritical regime has already been discussed
by de Luca, Garroni, and Ponsiglione in [30]. The supercritical regime can essentially be treated as
in Section 4.5. We identify the I'-limit of the rescaled stored energy to be essentially the same as in

Section 4.3 i.e., a strain-gradient plasticity model of the form (see Theorem 5.2.1)

. A
/Qcﬂ-ﬂdchr/Q<P<R dml) dlu,

where C is the elasticity tensor and ¢ is the relaxed self-energy density for dislocations as defined
in (4.7) without the dependence of a global rotation (as we already start from a linearized model).

Moreover, we prove a compactness result, see Theorem 5.2.2 and Section 5.5 for the proof, and discuss
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

its optimality.

The chapter is ordered as follows. First, we state the precise mathematical setting of the problem
and the main results in Section 5.1 and Section 5.2. In section 5.3, we revisit the ball construction
technique as it is known, for example, from [51] and discuss the particular difficulties in the context of
elasticity theory. Next, we prove the key lower bounds for compactness and the I'-convergence result
in Section 5.4. In Section 5.5, we prove compactness. Then, we discuss the proof of the I'-convergence
result in the Sections 5.6 and 5.7. Finally, we discuss briefly the scaling of Korn’s constant on thin

annuli in 5.A.

5.1 Setting of the Problem

Throughout this chapter we consider @ C R? to be a bounded, simply connected Lipschitz domain
which represents the horizontal cross section of a cylindrical crystal, see Section 1.2. We denote by
€ > 0 the lattice spacing.

As in the mixed growth case, we consider the set of normalized minimal Burgers vectors in the
horizontal plane to be S = {by,by} for two linearly independent vectors by,by € R% The set of
(normalized) admissible Burgers vectors is then given by S = span; S. We consider the following

space of admissible dislocation distributions.

N
X(Q) = {u € M(LR?) = Z§i5mi for some N e N,0# ¢ €8S, and x; € Q} .
i=1
Note that dealing with a linearized energy density allows us to scale out the dependence of the
admissible Burgers vectors from the lattice spacing. Associated to p € X (), we consider the strains
generating p. In contrast to the mixed growth case, in the geometrically linearized setting strains
typically create an infinite energy in a core-radius around each dislocation. In particular, strains
satisfying curl 8 = p for some pu € X () cannot be in L?(£2; R?*2). Hence, we cut out a core-radius

of order ¢ around each dislocation and work on a reduced domain, precisely
Qmw=0\ | Bl
z€supp(p)

In general, we write (1) = 2\ U, csupp() Br(@) for some r > 0.
The curl-condition in (4.1) is then replaced by a circulation condition around the cores. We define

the admissible strains as
ASE™ (1) = {6 € L2 (R*2): =01in Q\ Q(p), curl 8 = 0 in Q. (1), and for every smoothly

bounded open set A C Q such that 94 C Q.(p) it holds that B-rdH' = ,u(A)}.
DA

Here, 3 - 7 has to be understood in the sense of traces, see [29, Theorem 2| and the discussion in
Section 4.2. Note that if the core B.(z;) of a dislocation with Burgers vector £ does not intersect any
other core, the definition of AS!™ implies that

/ B-TdH! =¢.
BBE(:zl)
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5.2 The Main Results

Instead of this circulation condition, one could also consider the set X (Q2) to consist of more regular
measures such as

§ o €

—2 LiB.@) 5.2 HﬂﬁB (z) OF §0z * p. Where p. is a standard mollifier
TE N TE c

and a strict curl-condition for the admissible strains. These other possibilities are not equivalent but

turn out to produce the same limit energy.

As we focus on the critical regime, we define the rescaled energy F. : M(Q;R?) x L2(£2; R?*2) — [0, o]

as
s (fﬂg(u) 1CB: Bdx + |u|(Q)) if 4 € X(Q) and 8 € AS(y),

400 else,

Fe(,uvﬁ) =

for an elasticity tensor C € R?*2%2x2 which acts only on the symmetric part of a matrix and satisfies
I|Faym|? < CF : F < L|Fyy,|* for all F € R2*? (5.1)

for some constants [, L > 0.

Hence, the energy consists of a linearized elastic part and an energy associated to the core of each
dislocation. The core penalization is expected not to contribute in the limit as the dislocation densities
are expected to be of order |loge|. In [68] it is shown that in a discrete setting the energy of screw
dislocations inside the core is indeed of order 1. The same penalization was also used in [30] in the
subcritical regime. On a technical level, the main reason for this penalization is to avoid that the
whole domain is covered with cores of dislocations i.e., Q. (u:) = 0.

Finally, we introduce notation for local versions of X (), AS!", and the energy F.. Let U C {2 be
measurable. In the following, we write X (U) for the admissible dislocation densities on U (simply
replace © in the definition by U). For u € X (U), we denote by ASY" (1, U) the strains generating
in U (again replace 2 by U in the definition of ASY™). Finally, we write F.(-,-,U) for the functional
defined analogously to F. where 2 is replaced by U.

5.2 The Main Results

We define the limit energy F : M(Q;R?) x L2(£;R?*2) — [0, 00| as

Jo 3C8: B+ fop () dinl it p € MOBR) N H- (@ R?),
F(u,B) = B € L*(;R?*2), and curl B = p,

+00 else .

Here, ¢ is the relaxed self-energy density as defined in (4.7) for the constant rotation R = Id. This is
the same limit as also obtained in [38] for a linearized model with the assumption of well-separateness
of dislocations. The only difference to the limit of the nonlinear case (see Section 4.3) is that we do
not have to keep track of constant rotations.

Before we define the topology which we use to prove the I'-convergence of F. to F, we introduce the
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

flat norm. Given a measure p € M(Q;R?), we define the flat norm by

11l a0 = sup [ win.
PEW, ™ (4R?); Lip(p) <17/ Q
Note that by the Arzela-Ascoli theorem the embedding W, ™ (€; R?) < C9(Q; R?) is compact. This
implies in particular that for a sequence of measures u; € M(Q;R?) converging to u € M(Q;R?) in
the sense of weaks*-convergence of measures, it follows the convergence with respect to the flat norm.
Now, we define the convergence of dislocation densities and strains that we use in the I'-convergence

result.
Definition 5.2.1. Let e, — 0. We say that a sequence (g, B )r € M(Q;R?) x L?(£; R?*2) converges
to (i, 8) € M(;R?) x L?(Q; R?*2) if

Br
|log ey

Kk
| log e

— w in the flat topology and — B in L?(;R?*?).

Remark 5.2.1. In view of the convergence, in the critical regime in the mixed growth situation
Br=Wi
[log e
weakly to 8 for a sequence of skew-symmetric matrices Wj. The compactness result will involve a

(Definition 4.3.1) one could expect to define the convergence in this context such that converges
statement of this type, see Theorem 5.2.2. However, it is not possible to derive exactly the weak
convergence on all of € but only local versions of it. As a liminf-inequality is still valid for the
convergence of the compactness result, this convergence could be seen as the most natural one for
the problem. For the sake of a simpler notation, we stick to the convergence defined as above, in
particular because the additive appearance of the skew-symmetric matrices leaves no footprint in the

limit (this is different for the multiplication of rotations in the nonlinear case).
The I'-convergence result with respect to the convergence defined above is the following.

Theorem 5.2.1. Let e, — 0. With respect to the convergence in Definition 5.2.1 it holds

The proof will be given in the Sections 5.6 and 5.7.

Moreover, we prove the following compactness statement in Section 5.5.

Theorem 5.2.2. Let Q) C R? a bounded, simply connected Lipschitz domain. Let ¢, — 0 and consider
a sequence (g, Br) € X(Q) x ASE™ (uy,) such that supy, F., (pr, Br) < oo. Then there exist a function
B € L?(;R?**%), a vector-valued Radon measure u € M(;R?) N H=1(Q;R?), and a sequence of

skew-symmetric matrices Wy, € Skew(2) such that for a (not relabeled) subsequence it holds
(i) miksg — win the flat topology,

(1) for all1 >~ >0 and U CC Q we have %1957(,%) — B in L2(U;R?*2),

(iii) 2 — (B)gym in L2(Q3RP2),

(iv) curl § = p.

Finally, the obtained convergence is enough to prove the lim inf-inequality

d
limianEk(uk,Bk,Q)Z/Cﬂzﬂder/go S .
k—o0 Q Q d|p
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5.3 Ball Construction Technique Revisited

Remark 5.2.2. Notice that we need the localized weak convergence only if we want to control the

full strains f5. The symmetric parts (8g)sym converge weakly on the full domain.

5.3 Ball Construction Technique Revisited

In order to prove compactness or a lim inf-inequality, we need to prove bounds for (modified versions
of) the dislocation densities p. in terms of the energy F.. The only information one can use is the
circulation condition of a corresponding strain 8. € ASY" (). On a technical level, this circulation
condition shares structural properties with the approximation of vortices in the Ginzburg-Landau
model. A prominent role in proving lower bounds for the Ginzburg-Landau energy play ball con-
structions, see for example [51,70]. The main ingredient for proving lower bounds, by the use of a
ball construction, is a bound of the energy on annuli. These estimates are based on the fact that a
non-zero circulation around an annulus induces a certain minimal amount of energy. As we deal with
linearized elasticity, we control only the symmetric part of the strains. The use of Korn’s inequality
allows us to get a lower bound of the energy in terms of the circulation of the strain, see Proposition
5.3.2. As Korn’s constant blows up for thin annuli, we need to avoid carefully annuli whose radii go
below a certain ratio, see the proofs of Proposition 5.4.1 and Proposition 5.4.2. In the dilute regime
this can be done by a combinatorial argument, see Section 5.3.1 for heuristics and [30] for the full

treatment of the dilute regime.

Now, let us define what we mean by a ball construction. For a visualization of the construction,
see Figure 5.1.

Ball construction:

Fix ¢ > 1. Given a finite family of closed balls (B;);c; with radii R;, let us perform the follow-

ing construction.

Preparation: Find a family of disjoint closed balls (B;(0));cr(o) such that for each i € I there ex-
ists j € 1(0) with the following properties: B; C B;(0) and diam(B;(0)) < 3,5, p, (o) diam(B;).
It is not difficult to see that this is always possible.

Ezxpansion: Define for ¢ > 0 and i € I(0) the radii R;(t) = ¢'R;(0) and consider the family of
closed balls (B;(t));cr(o) where B;(t) is the ball with the same center as B;(0) and radius R;(t). More-
over, let I(t) = 1(0). We perform this expansion as long as the balls (B;(t));cz(:) are pairwise disjoint.
For the first ¢ > 0 such that the family (B;(t));cz(:) is not disjoint anymore, perform the merging below.

Merging: If the family (B;(t));cr() is not disjoint, find similarly to the preparation step a disjoint
family of balls (Bj(t))jes such that for each i € I(t) there exists an index j € J which fulfills
B;(t) C B; and diam(B;) < in:Bi(t)CBj R;(t). For notational simplicity, let us assume that the
index i € I(t) of a ball B;(t) that is not affected during the described procedure remains the same
i.e., it holds i € J and B; is the same ball as B;(t).

Then, replace I(t) by J, (B;(t))iert) by (Bj)jes and the radii R;(t) by the corresponding § diam(B;).

The time ¢ is called a merging time. After the merging, we continue with the expansion below.

FExpansion II: Let T > 0 be a merging time. For ¢ > 7, we define the new radii R;(t) = ¢!~ "R;(7) and
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

(a)t=0 (b) t = 1 before merging

(¢) t =1 after merging

(e) t = 2 after merging ) t=

N

Figure 5.1: Sketch of ball construction for four balls with ¢ = 2.

I(t) = I(7). Moreover, for i € I(t) set B;(t) to be the ball with the same center as B;(7) and radius
R;(t). Perform this expansion as long as the family (B;(t));es() is disjoint. At the first ¢ > 7 such

that this is not the case anymore, perform a merging as described above.

We refer to the family (1(t), (Bi(t))ier(t), (Ri(t))icr())¢ constructed as above as as the ball construc-
tion starting with (B;);cr and associated to c.

By the discrete ball construction starting with (B;);e; and associated to ¢ we mean the family
(I(n), (Bi(n))iEI(n)7 (R; (n))ieI(n))neN-

Moreover, we introduce the following notation to link a ball in the construction at time ¢ with its

past and future in the construction: For so > ¢ > s1 > 0 and 7 € I(t) let us define

Pl(s1) = {Bj(s1) : j € I(s1) and B;(s1) C B;(t)} and (5.2)
F}(s3) = Bj(ts) the unique ball at time sy such that B;(t) C B;(s2). (5.3)
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5.3 Ball Construction Technique Revisited

Next, let us make the following observations.

Lemma 5.3.1. Let (B;)icr be a finite family of balls with radii R; and ¢ > 1. For the corresponding
(discrete) ball construction it holds that:

i) Ri(t) <c > BB By for alli € I(t),
it) The construction is monotone in the following sense. Let t > s > 0. Then for every i € I(s)
there exists j € I(t) such that B;(s) C Bj(t). In particular, it holds that R;(s) < R;(t) and
Uier Bi € Uiers) Bi(s) € User Bi(t)-
Proof. Property i) is true for t = 0. It is easily seen that the the expansion and merging steps preserve
this property for growing ¢.
Property ii) is also immediate from the construction. O

The main idea of the ball construction is to obtain lower bounds during the expansion phase on the
growing annuli. Hence, estimates on annuli play the role of building blocks for the bounds obtained
through the ball construction. The main difference to the classical ball construction estimates in
Ginzburg-Landau theory is that in the theory of linearized elastic energy there is a significant loss
of rigidity on thin annuli which is expressed mathematically by the appearance of Korn’s constant
in the estimate. The following estimate was already proven in [30]. We state and prove it here for

convenience of the reader.

Lemma 5.3.2. Let R > r > 0 and 3 € L?(Bg(0)\ B,-(0); R**2) such that curl 3 = 0 in Br(0)\ B,(0).
Then it holds that

(i) fBR(O)\BT(()) Ch:fdx > K(é)27r|£‘210g ().

(i) fBR(O)\BT(O) |ﬁ‘2d$ > i|€|2 log (%)

Here, £ = faBr(o) B-7dH" where T denotes the unit tangent to 0B,(0) and K(£) is Korn’s constant
for the annulus Br(0) \ B(0).

Proof. Let B € L*(Bgr(0) \ B.(0);R?*2). By a density argument, we may assume that it holds
B € C°(Bgr(0)\ B-(0); R?*?). Korn’s inequality provides a skew-symmetric matrix W € R?*? such

that R
/ |/3—W2d;v<K(>/ CpB: Bdx.
Br(0)\B,(0) T/ JBr(0)\B(0)

Using a change of variables one can further estimate

R R
/ \5—W\2dx:/ / |6—W|2d7{1dt2/ / (8= W) - |2 an! dt.
Br(0)\B,(0) r JoaB.(0) r JoaB.(0)

Here, 7 denotes the tangent to the corresponding 0B (0).

Jensen’s inequality yields

" 2 9.1 ! 1 ’ 1 R )
B—W)-r|2dH dtz/ 7/ WM di= 1o () .
/7' /aBt(O) ( ) v 27t o, (0) (8 ) o S\ 7 €l

Combining the estimates, we find (i). The last two estimates for W = 0 show (ii). O
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

5.3.1 Heuristics and Difficulties of Using Ball Constructions in Dislocation
Models
In this section, we explain which difficulties appear in the application of the ball construction technique

in the critical regime. In particular, we compare the situation to the subcritical regime in [30]. To

show compactness for the dislocations densities, one typically wants to derive a bound of the form

|fi=| ()
|10g€‘ < CFE(MEaﬂ€)7 (5-4)

where [i. is a modified version of the dislocation density . which converges to p. in the flat norm. The
combination leads to precompactness with respect to the flat norm. The modified version fi. is typically
constructed by finding the correct clusters of dislocations and weighting the cluster by the accumulated
Burgers vector of the dislocations. This fits very well to the structure of ball constructions. Starting
with the cores of the dislocations, the merging steps provide a natural way to subdivide the dislocations
into groups.

Finding lower bounds with the use of a ball construction could work as follows, cf. [51]. Let us fix ¢ > 1
and consider the ball construction associated to ¢ starting with the cores of a system of dislocations.
Between two consecutive merging times 73 < 7o, one can estimate the energy on all expanding balls
through a statement that estimates the minimal energy on an annulus, in our case Lemma 5.3.2. Let

B;(12) be the version of B;(71) which expanded by the factor ¢~ ™. Then it holds

1
/ 5CBe: Bedr > K(c™™)(rz = ) log(e) e (Bi ()
Bi(m2)\Bi(11))

Here, K(c¢™~™) is Korn’s constant for the annulus with ratio ¢™2~7.
These energy estimates can then be combined using subadditivity. Let (B;(71)); balls whose expanded

versions (B;(12)); at time 7 merge to the ball B;j(72). Then, we can relate the energy which we found

in the expansion phase to the newly emerged ball at time 7 by

K3

logef*F. <ME,/3€,U (Bi(m) \me)) > K(e™ ™) 3 lpe(Bi(r))? (2 = ) loge

> K(e™) Y klpe(Bi(r))| (r2 = ) oge

He (U Bi(ﬁ)>

= kE(c™™™) [ue(Bj(72))] (12 — 1) log c.

> kK(c™™™)

(7o —11)logc

Here, we used that . is a measure with values in S whose non-zero elements are bounded away from
zero. If we ignore for a moment Korn’s constant, we can sum over all merging times up to a time ¢

(which is chosen such that all constructed balls up to time ¢ lie in Q) and obtain a bound of the form

Z |HE(Bi(t))| tloge < CFE(,UJEaﬂEN IOgS‘Q'
iel(t)

The modified dislocation density would then be defined as fi. =}, 1() Me (B;(t)) 05, where the z; are
[loge|
2logc?

the centers of the balls B;(t). If we could choose a time ¢ ~ this would provide the right bound

for ji.. As we start our ball construction with at most C|log €|?>- many balls of radius ¢, by Lemma 5.3.1
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5.3 Ball Construction Technique Revisited

this choice of ¢ would correspond to balls with a maximal radius < |log €|25% in the construction at
time ¢t. In particular, this maximal radius tends to zero as € — 0. Moreover, this bound corresponds to
the idea that the energy in a ball of radius € around a dislocation is of order (1 —+)|loge|. Therefore,
up to some technicalities close to the boundary of  (a |loge|2e2-neighborhood of d€ in this case),
we could find a nice lower bound for a modified version of the dislocation density p.. The part of the
dislocation density which is supported in a shrinking neighborhood of the boundary can be shown to
vanish in the flat norm in the limit.

As Korn’s constant blows up for thin annuli, see section 5.A, Lemma 5.3.2 does not provide a uniform
lower bound if there is no lower bound on the distance of two consecutive merging times. The idea
presented in [30] to overcome this difficulty is to consider the discrete ball construction. A discrete
time step is called expansion step if no ball in the construction merges within this step. Therefore, in
an expansion step, it is guaranteed that all balls grow exactly by the factor c. If one uses again the

lower bound from Lemma 5.3.2, one obtains at time n € N the lower bound

K(c) Z |11 (B;(n))| #{expansion steps up to time n}logc < F.(u., 8:)|loge|*.
i1€I(n)

In order to make this estimate meaningful, it is crucial to find a lower bound for the number of

expansion steps. Let us make the following observations. As we want to estimate the energy in
[loge]
2logec

balls around the dislocations of a radius of say E%, there will be approximately steps until a
construction starting with balls of radius € and expansion factor ¢ leaves this neighborhood. In the
subcritical regime (the stored energy is rescaled by the factor |loge|), the number of dislocations for
a sequence of bounded energy is uniformly bounded by C|loge|. Hence, by choosing ¢ small but
uniformly in £ one can guarantee that along this sequence of dislocation densities one can find at

least Llfoggscl expansion steps in the ball construction. The appearing factor K (c) in the corresponding

estimate may be small but it is uniform in €. This provides the desired lower bound.

In the critical regime, we are confronted with up to |loge|? dislocations. This changes the situation
drastically. In particular, the considerations for the dilute regime above do not longer apply. As the
following example shows, in general it is not longer possible to find a fixed expansion factor ¢ which
provides uniformly in € enough expansion steps during an associated discrete ball construction starting

with the dislocation cores.

Example. For simplicity, let Q = (—1,1)2. Let ¢ > 0 and ¢ > 1.

Consider the points x; = (2iec?,0) for i = —L¢, ..., L¢ where L¢ is the largest natural number such
that for n = L¢ — 1 it still holds nlogc +log(2n + 1) < |loge|.

In the following, we will see that there is no expansion step in the discrete ball construction associated
to ¢ starting with the closed balls (B, (xi))i;_Lg,,_”Lg until one of the balls in the construction meets
09). For a visualization, see Figure 5.2. This behavior is not linked to effects coming from dislocations
located very close to the boundary. In fact, we see that essentially the ball located at 0 causes the
problem.

At time n = 1, the balls with centers in x_1,z¢ and x; and radii ce merge to a ball with radius 3ce
and center (0,0), see Figure 5.2b. Hence, the first discrete step is not an expansion step. At time
n = 2, the expanded version of the new ball with center in (0,0) and radius 3c? ¢ merges with the
balls with radii c?c and centers z_s, 25 to a ball with center (0,0) and radius 5c?e. Hence, also the
second discrete step is not an expansion step, see Figure 5.2c. By induction one can show that at
time n < L¢ the ball with center (0,0) and radius (2n — 1)c"e merges with the balls with centers
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()

Be(m2)

© e pe0® © O OOOOO © @)

- Bu(wo)  Be(xs)
Be(x-1)
(byn=1

(d)n=3 ) The ball meets 992 before the
next discrete step could be
executed.

Figure 5.2: A sketch describing the specific ball construction in the example.

Z_p, T, and radii ¢"e to a ball with center (0,0) and radius (2n + 1)c™ e which shows that none of
these steps can be an expansion step. Moreover, by the defining property of L¢ none of the balls in
the construction up to time L¢ — 1 intersects the boundary of 2. On the other hand, in the discrete
step from L¢ —1 to L¢ the ball centered in (0,0) merges with the two balls centered in z_rc and zp..
The new ball is centered in (0,0) and has the radius (2L¢ + 1) > 1. In particular, the intersection
with 0 is not empty. Therefore, no step before a ball in the construction intersects the boundary of
) is an expansion step.

This construction starts with 2L¢ 4 1-many balls. Notice that by definition L —1 < %. If we con-
sider a dislocation density p. which has a uniformly bounded Burgers vector in every x;, we observe

1
that |p.|(©2) < CLesel,

In order to obtain a uniformly bounded energy F, it is in principal allowed that |u.|(2) < C|logel?.
Hence, we are free to choose ¢ = ¢(¢) such that log c = |loge|~! in order to obtain dislocation densities
which satisfy this necessary bound. Note that the definition of ¢(e) implies that () N\, 1.
Considering this sequence of dislocation measures . it is clear that one cannot find a universal ¢ > 1
such that the corresponding discrete ball constructions starting with the cores of p. has any expansion
step for ¢ small enough (precisely for logé > |loge|™1).

This example discusses only a possible structure of the dislocation densities. The existence of corre-
sponding strains such that the couples satisfy uniform energy estimates is not discussed here. However,
the construction illustrates that controlling the number of dislocations by |loge|? is not enough to

proceed as in the subcritical regime.

On the other hand, in this construction it can be seen that the outer balls (centered at z; for
li] > %g) expand over a significant time span. Hence, they could be used to estimate at least a

part of the energy. These combinatorics are essential for the treatment of the critical regime and are
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elaborated in the proofs of Proposition 5.4.1 and 5.4.2 in the next section.

5.4 The Main Ingredients for Lower Bounds

As discussed in the section above, the main difficulty in a regime with more than | loge| dislocations is
that in a ball construction argument one cannot avoid the combinatorics of distinguishing balls which
expand for a certain minimal time and therefore induce a relevant energy to the system from those
that merge so frequently that they do not allow to estimate their corresponding energy uniformly due
to the blow-up of Korn’s constants on thin annuli, see Section 5.A.

In the following proposition, we show how to reduce the general situation in the critical regime to a
situation that is easier to analyze. Essentially, we prove that in a neighborhood of the dislocations of
order £” we can change the strain 3. slightly. The total variation of the curl of the new strain j3. is
controlled in terms of |loge| and the curl is concentrated in at most C|loge| balls with a radius that

is much smaller than €7 for some fixed 0 < v < 1.

Proposition 5.4.1. Let 1 > a >~v >0, >0, and K > 0. There exists g = eo(e, 7, K) such that
for all 0 < e < gq it holds the following:

Let A. C R%. Let pu. € X(A.) and B. € ASY“™(ue, A.) such that dist(supp(pe),0A.) > €7 and
Fo(pe, Be, A) < K|loge|=%. Then there exist a family of disjoint closed balls (DS );er. and a function
Be : A. — R?*2 such that

(i) diam D < e® and D5 Nsupp(ue) # O for all i € I,
(i) |I.] < C(a, K)|loge['~,
(iii) Be = B on A\ Uzesupp(ﬂs) B.o(z),
(i) curl B € M(A;R?),
(v) supp(curl 3.) C Uier. D5 and (curl B)(U) = pe(U) for each connected component U of A,
(vi) | eurl B|(A2)] < Cla, K| loge]'=7,

(vii) 1rogz S, 3CBe ¢ Beda < Felpe, Be, Ac) + C(a, K)Felpe:beAe)

Mog <]

Proof. Let o = 1_7“ and fix ¢ > 1. Let € > 0.

The prove is subdivided in three steps. It is based on a ball construction starting with the balls of
radius € around the dislocation points. First, we estimate the number of balls, whose u.-measure is
non-zero, at some time in the ball construction that corresponds to balls of the intermediate radius
€129 Secondly, at a later point in the construction we bound the number of balls whose accumulated
Burgers vector is zero by deleting dipoles without creating too much energy nor changing the strains
on a large set, see (vii) and (iii). Combining the estimates leads to (ii). In a third step, we modify
the strains slightly in order to obtain a strain with a curl that is still related to pu. but whose total

variation is bounded in terms of |loge|, see (v) and (vi).

Step 1. Estimation of number of balls such that p.(B) # 0.
Let Bf = B.(x;) where supp pte = {z1,...,2n.}. As the elements in S are bounded away from zero,
we may deduce from the assumed energy bound that N, < k|u.| < kK |loge|>~°.

Now, perform a continuous ball construction starting with the balls (Bf);=1,. n. and denote its
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

output by (I:(t), (BS(t)), (R5(t))¢):- In this first step, we consider only times ¢ > 0 such that
Dier.(n B (t) < e**??. Using Lemma 5.3.1, we can compute a lower bound on ¢{ > 0 which we

define to be the first time ¢ such that 3, ; ) R;(t) = goat2o;

cat20 _ Z Rf(t) < A Z E#{BJE . BJE - Bz(ti)} < cht§€|10g€|2~
i€l (t5) i€l (t5)

From this estimate one derives directly

\log€| _ log(kK) —2log |loge]

1_

logc logc
In particular, for € > 0 small enough (depending on K and o) we obtain that ¢ > § |11f;§§| + 1. Let
us consider the balls (B;(s7))icz(s¢) of the the ball construction at time s§ = [ \llsgilw Note that all

balls in (B;(s5))ier(ss) have a radius which is smaller than £*+2°.

We subdivide the family of balls (B; (s7))icr. (ss) into the subset of balls that evolve from few mergings

and those that originate from many mergings:

. € €
£(60) = { B #70) < 5 and o) = { i) s w20 > S,
Recall that by definition the set P;i (0) contains the balls at time zero which are included in the ball
B:(s5), see (5.2).
Let us first estimate the number of balls in M.(s5). By definition, every ball B$(s$) € M.(s§)

originates from at least % starting balls. Consequently,

|loge|>~°  4kK

o |loge]
2 logce

log(c) |loge]' 9. (5.5)

N
#M.(s5) < 25 < 2K

1

The next objective is to estimate the number of balls in F.(s§) which have an accumulated Burgers
vector which is not zero.

Fix B{(s7) € F.(si). By deﬁnition of F.(s7), the ball Bf(s7) includes at most Si starting balls.
Hence, it evolves from at most 2 mergings. By the pigeonhole principle, there exist natural numbers
0<m<---<mnp, <s5—1 such that forall k =1,...,L; > lej every ball Bf(ny) € P (nk) purely
expands in the time interval (ng,nj + 1]. Recall that by the definition of the ball construction this
means that Bf(n; +1) has the same center as B (n) and the radius R5(ny, +1) = cR5(ny). Moreover,
we know that curl 8. = 0 in Bj(nk + 1) \ Bj(ng) (remember that supp pe C U;cr. Bf C U,er o) Bi (1)
for all t > 0). Hence, we can apply Lemma 5.3.2 to B (ng + 1) \ Bj(ny) to obtain, by summing over

all these disjoint annuli,

L;
C e+ Pe el C e+ Pe .
/Bf(si) Be: B dg;>k§:: > / Be : B-dx (5.6)

& c(n D\Bs(n
1 B?(nk)eP,\sl(nk) 3 (N5 ()

Z?WK Z Yo (B )P (5.7)

Bs(nk)EP (nk)
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As pe(B5(ny)) € S and the non-zero elements in S are bounded away from zero, we can further

estimate

(5.7) =

fzK S log(0) Z S (B ()]

Bf(n YEP; 1 (nk)

—2 K Z“’(’E BE 81

zw’j(c)log@ Li (B 5)|

> sy 080 | et

ok
>— S(s)))]. .
For the second inequality, we used that u.(Bg(s§)) = ZBE( oy )ug(Bj(nk)); for the last in-

o|loge|

equality we used that for € small enough it holds that {%J 2 ZTosc -

By summing over all B$(s5) € F.(s5), we deduce from the energy bound on F.(u., 5., Ac) that

E( € ok 1— 6
Z e (B (s1))] < TK()KUOgd
B (s1)eFe(s1)

In particular, we obtain the bound (recall that the non-zero elements of S are bounded away from
zero)
#{B; (s7) € Fo(s9) : pe(B5 (59)) # 0} < Clav, K, ¢)|loge|' . (5.9)

Combining the bounds (5.5) and (5.9) provides the estimate

#{B; (s1) i € L(s7) and pe(B; (s9)) # 0} < C(a, K, ¢)|loge|' ™.

Step 2. Reduction of number of balls such that u.(B) = 0.
In this step, we reduce the number of balls such that u.(B) = 0 by further growing the balls from
step 1 and replacing 5. by local gradients on balls with p.-mass 0.

Let I. = I.(s5) and Bf = B2(s5) for all i € I. where I.(s5) and BS(s5) are from step 1. Consider a
new ball construction associated to ¢ starting with the balls (Bf )ici.- With a little abuse of notation
we call the output of this ball construction again (I.(t), (B; (t))ier.(t), (Bf)ier. )t

As the starting balls have — by construction in step 1 — a radius less than *+27

oI5 () < €%7 holds true for all

, We can argue as

in step 1 to obtain that for ¢ > 0 small enough the inequality >

1
t< [g '1355"1 =: 55.

We define the following partition of the set {BZ(s§) : i € I.(s5)} (see Figure 5.3):

i€l (

A5 (s5) = {Ba(sz) : there exists a ball B5(0) € Plsi’( 0) such that p.(B5(0)) # O}

A5(s5) = {35(52) for all B5(0) € Pis; (0) it holds p.(B5(0)) = 0 and #Pis;( 0) > 822},
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© © O
@@@@ ®

Figure 5.3: Prototypical examples of balls in the sets A(s§) (left), A5(s5) (mlddle) and A5(s5) (right).

The balls Bf(s§) are drawn in gray, the corresponding balls in P; 2(O) are drawn in red,

and their (accumulated) Burgers vectors are drawn in blue, a blue 0 indicates that the
pe-mass of this ball is 0 .

A5(s5) = {Bs(sz) for all B5(0) € Pfg(O) it holds p.(B5(0)) = 0 and #Pfg(O) < 322}

Let us make clear that the sets P;g (0) are meant with respect to the ball construction introduced in
the beginning of step 2.

Note that a ball can only be in A§(s5) if it includes one of the balls from step 1 with non-zero p.-mass.
The number of these balls was controlled in step 1. As the balls in A5 (s§) are by definition of the ball
construction disjoint, it follows #A45(s5) < C(a, K, c)|loge[* 9. In addition, we can argue as in step
1 for the set M_(s5) to obtain that #A45(s5) < C(a, K, c)|loge|* 0.

We cannot control the number of balls in A§(s§). Instead, we will construct a new strain with only
slightly more elastic energy and no singularities in elements of A§(s5) by replacing G. by local gra-
dients inside these balls. A similar construction has already been used in [30](also to delete dipoles)
and [59](to extend strains into the cores).

Let us pick a ball Bf(s§) € A5(s§),i € I.(s5). By definition of the set A§(s5), there exist natu-
ral numbers 0 < ny < .-+ < np, < s5 — 1, where L; > L%J, such that for every k = 1,...,L;
every B5(ny) € P;g (nk) does not merge in the time interval (ng,n; + 1]. Note that the annuli
BS(ny + 1) \ B5(ng), where B5(ny) € P;g (ny), are pairwise disjoint and contained in BZ(s5) \
UB P50) B. Consequently, it holds

L;

> o / cs.:poda< [ CB. : . da
5 (e +1)\B5 (nk) B

Bi(ss\U o5
k= 1Bg(nk)ep 2( i\°2 BePiQ(O)

By the mean value theorem, we may choose k; € N such that

1
> / CBe : Bedw < |logel* Fe(pe, e, Bf (53)) da
E(Hk +1)\Bs(nk ) [3
BS (ny, )EP, 2(m
4
< Sf€| 10g5‘2 F.(pe, Be, B; (53)),
2
where the last inequality holds for € > 0 small enough.

Now, fix BS(n,) € PZ-SZ (n;). By construction ,we have curl f. = 0 in B5(ng, + 1) \ B (ny,) =: C§ ;.
Moreover, notice that by definition of A5(s2) it holds that jic(B5(nx,)) = 0 (as the ball Bf (ng,) evolves
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from balls with this property) and therefore

/ Be-TdH' =

where 7 denotes the unit tangent to dB(ny,). By standard theory there exists uf; € H'(C ;;R?)
such that 8. = Vu; ; on C5 ;. Korn’s inequality for the annulus applied to C5 ; guarantees the existence

of a skew-symmetric matrix W7, € Skew(2) such that

[ 190, = WP <K [ 1(F0 )

Note that Korn’s constant on the right hand side depends only on the ratio of the radii of the annuli
C; ; which equals ¢ by construction. In particular, this constant is independent from e.

By standard extension results for Sobolev functions there exists a function vf ; € H'(B5 (ng, +1); R?)
such that Vo7 ; = Vus ; — W7, on Cf ; and

/B ) |V 2dr < C(c)/c Vs ; — szj|2 dzx.
5 (ng, + e

57

Note that by scaling the constant for the extension depends again only on the ratio of the annulus
Cs ;-
Now, we can estimate the elastic energy of Voy ; on B (s5) by combining the previous two estimates

and summing over all balls in Pis; (nk,):

> /E( ;i Vi de < C > / \v%dzdx (5.10)
Nk, a nk

BS (n, )EP, 2(n ) BS (ny,; )EP, Q(Wk

<c / [V W[

s§ [3
BS (ny, ) EP, ? (ni;) N

SCCHEED DU B TR W

e
]

SE
BS (ny; ) EP; ? (ni;)

<c@ Y [ csipds

2]

B.?(nki)episg(nki)
4

S O(C)st| 10g €|2FE(,UJ67567B1L€(8§))
2

§ IOg(C) Fe(,uaa ﬁEv Bf(Sg))
o | log g

< C(c) |log e|?, (5.11)

where the constant C(c) may change from line to line but depends only on ¢ and global parameters
(such as the coercivity constant for C on symmetric matrices).
Let us define the function f. : A. — R2X2 by

5@) Vs (x) + Wi, itz € Bi(ny,) € P2 (ny,) for BE(s5) € A5(s5),
€Tr) =
) Be(x) else.

Note that on the annuli CF ; it holds Vuf ; + W7, = B.. Hence, /3 does not create any extra curl on
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

0B5(ny, ). Therefore, curl Be=0o0n A\ UBeAf(sg)uAg(sg) B where A5 (s§)UA5(s§) consists of disjoint
balls with a radius less than €277 and #(A5(s5) U A5(s5)) < C(a, K, ¢)|loge|*~?. In particular, the
strain f. satisfies for every open A C A, \ UBeAi(sg)uA;(sg) B with smooth boundary the circulation
condition

Be - TdH' = fi(A),
A
where 7 denotes the unit tangent to A and fic = (ue) , B~ Note that fi.(U) = p(U)
for any connected component U of A. as we only deleted connected dipoles.

Moreover, in view of (5.10) - (5.11) it holds

| UBeAf(s;)uAg(sg

FE(ME)ﬁEa Ae)

5.12
loge| (5.12)

1 ~ ~
/ CBe: Pedx < Fs(ﬂaaﬁa7A£)+C(Cva)
A \(UBeAE

2
|loge] c(s5uas(ss) B

Eventually, note that 3. = f. outside the balls in A5(s5). On the other hand, these balls are all
included in U, equpp(u) Bee (2).

Step 3. Replacing the circulation condition by a measure-valued curl.
We know from Step 2 that #(A5(s5)UA5(s5)) < C(a, K, ¢)|loge|*=%. Now, choose ¢; = ¢;(a, K, c) > 1

such that logc; = ) where ¢ > 1 is the universal expanding factor of the ball constructions in

1___ o
8 Cla,Kyc
step 1 and 2.

Consider a ball construction associated to ¢; starting with the balls in A5 (s5) U A5(s5). Again, denote
its output by (I:(t), (B (t))icr. (1), (B )icr.t))e-

From step 2 we know that for every ball B € A5(s§) U A5(s5) it holds diam B < 2e*t9. Arguing
as in step 1 and 2, we obtain that for e > 0 small enough it holds that for all t < [§ h:ﬁggf'] ;8§
we have > ;) Ri(t) < €% During the construction, the number of merging times is definitely
bounded by the number of starting balls i.e., less than C(a, K, c¢)|loge|'~°. Hence, there are at least
55— C(a, K, c)|loge|'~ natural numbers n < s§ — 1 such that there is no merging time in the interval

(n,n +1]. A direct computation shows that for € > 0 small enough it holds

2
55 — C(a, K, k, c)|loge| =0 > gsg (5.13)
In particular, there exist natural numbers é <ng <---<np<s§—1, L > 32 such that none of
the balls (B§(ny))icr. (n,) merges in the time interval (nk,nk + 1]. As in step 27 by the mean value

theorem, we can find a natural number % < ng,1 <k < L, which satisfies in addition

~ 7 .
/ Ch.: fodo <~ CB. : . da.
i€l (ny) Y BE (et DABE () 58 A\ (Ubeageavagien B)
For i € I.(n)) we perform the following construction. Let & = fic(B$(ny)), where i is defined as in
step 2, and define the function
i & @ J(x —xf)

Ki(z) = 2 |z — x5)?

Here, x§ is the center of the ball Bf(ny) and J is the clockwise rotation by 7. A straightforward
computation shows that curl K; = 0 on B (ng + 1) \ B (ng) =: C$(ny,) and

/ K| do = |£z\21°g( ) §C(c1)/ Ch. : B. dx.
Cs (ng) C¢(ny)
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For the inequality, we used Lemma 5.3.2.

Moreover, we notice that

curl(B. — K;) = 0 in C%(ny,) and / (B — K;) - Tdx = 0.
9Bs (k)
Consequently, there exists a function uS € H'(C¢(ng); R?) such that Vu$ = f.—K; on C¢(ny). Similar

to step 2, we can apply Korn’s inequality for the annulus on C$ (ny) to obtain a skew-symmetric matrix
We € Skew(2) such that

/ |Vus — Wi |? dx < C(cl)/ |(Vuf)sym|2dx.
Cs(nk) Cs (nk)

Note again that the constant depends only on the ratio of the annulus C§ (ny,) which is by construction
1.

In addition, by classical extension results, there exists a function v§ € H!(Bf(ny + 1); R?) such that
Vvi = Vu; — W7 and

/ Vel < C’(cl)/ Vs — WE? da.
Bf (n+1) Cs (ny)

By scaling, also the constant on the right hand side of this inequality depends only on ¢;.

Combining the last four estimates and summing over i € I.(ny) yields the following chain of inequalities

Z / Vi de < C Z / | Vi |2 da (5.14)
B (nk+1

i€l (ng) i€l (ng) £ (nk+1)
C(cr) Z / |Vus — W;|? da
i€l (ng) Ci(n)
<c@) Y [ Uil
ie]s(nk) c (nk)
=Clar) Y, |(Be = Ki)sym|” dz

i€l (ny) ¥ CF ()

<Cle) ¥ /m )Cﬁazﬁadx+/ K2 da

i€l (n) CF ()

<o) 3 [ kb

icl. (ng)
- .
< Cler) = / CB- : B-dx
53 Ae\(UBeA§<s§>uAS<S§> b
< M/ CBE : BE dz. (5.15)
|loge| Ja \(UBeA§<s§)uA§<S§> B)

Here, the constant C'(¢1) changed from line to line but it depends only on ¢; and global parameters.
Now, define the strain f. : A. — R?*? by

Ba(@) Vos(z) + W, if x € Bf(ng + 1) for some i € I.(ng),
x)=4 .
) Be(x) else.
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Note that as the balls (Bf(ng + 1))ier. (n,+1) are disjoint, 3. is well-defined. Moreover, from (5.14) —
(5.15) and (5.12) in step 2 we derive that

. Lo . B L C(a,cﬂ/ [P
T2 = : < L :
[loge? /A 3 e+ 0 S log e (” |10g€) . 5CPe : Pedx

A\Upeas(s5)uases B

< (1 + O(a’c)) <1 + M) Fe (e, Bey Ac).

|log &| [log g|

In addition, it holds curl 8. = Dier. (ny) i T) HﬂaBF(nk-i-l) where 7 is the unit tangent to 0BS (n,+1),

owl Bl = 3 |Kil Hjope (n,4+1)» and K| dHY = |&] = e (BE (ng, + 1))].
i€l (m) 0B (ni+1)

Finally, set I. = I.(ny + 1) and (D5 )icr, = (B§(nx + 1))ier. (np+1)- Then (i), (ii), (iv), (v), and (vii)
are fulfilled. As also in the third step we changed the function from step 2 only in Uﬁsupp(ua) B.o(z),
it follows (iii).

Hence, it is left to show (vi). Recall that nj > % By (5.13), there exist at least ? natural numbers
n below ni — 1 such that there is no merging time between n and n + 1. A similar computation to
(5.6) - (5.8) in step 1 shows that

|eurl Be|(A2) = Y | (D5)| < Ola, K, 1) log e[,
i€l.
which is (vi).

Eventually, note that ¢; depends only on «, K, and ¢ where ¢ is a fixed universal parameter. O

The Proposition above allows us to reduce the complicated situation with at most |loge|? dislo-
cations to a simpler one. After applying the previous proposition, there are only ~ |loge| balls in
which the curl of the modified strain is concentrated. This will be enough to obtain compactness. For
the lim inf-inequality, one needs to compute self-energies of dislocations. The self-energy density v as
defined in (4.6) is the renormalized limit of energies computed for curl-free functions on annuli with
larger and larger ratios. As we want to derive the same quantities also in this situation, it is necessary
that we are able to find annuli around the dislocation cores with growing ratios in which the strain
(respectively the modified strain in the sense of the previous proposition) is curl-free. The previous
proposition for § = 0 guarantees essentially only the existence of annuli with a fixed ratio uniformly
in €.

The next proposition shows that either most of the dislocations allow growing ratios in a ball con-
struction or the accumulated Burgers vector is small and the previous proposition allows to reduce the
situation to less than |loge|'~? dislocation balls for § > 0. The latter case leads in average to growing
differences between consecutive merging times in a ball construction. This is enough to obtain annuli

with growing ratio in this ball construction.

Proposition 5.4.2. Let1 >a >~y >0, K > 0,1l >0, and % > 0 > 0. Then there exist ¢ > 1 and
eo = eola, 7,9, K, 1, ¢) such that for all 0 < & < gg the following holds:

Let A. C R?. Let (B)cr, be a family of disjoint balls in A such that

o diam B <¢e® foralli € I,
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o |I.| < Klloge|,
e dist(Bf,0A;) > 17

Let . : Ac — R**? such that fi. = curl(f.) € M(A;R?) and supp(curl B.) C U, ¢, Bf. Moreover,
assume that [, CBe : fBedx + |curl B[(Ac)? < K|logel?. Then at least one of the following options
holds true:

(i) |(curl B.)(A:)| < [loge['~,

(ii) Consider a ball construction associated to ¢ starting with the balls (BS);cr. and the time t5 which
1s defined to be the first time such that a ball in the ball construction intersects 0A.. Then there
exists a subset I, C I.(t%) such that for anyi € I. there exist at most |loge|®-many times n € N,
n <t —1, such that at least one ball in Pz-ti (n) merges in the time interval (n,n+1]. Moreover,
it holds

Z [LE(BzE) - [LE(AE) < 5|ﬂ€(A€)|' (5'16)

iel.

Proof. Let é > § > 0. Fix ¢ > 1. Let us perform a ball construction associated to ¢ starting
with the balls (Bf);cr.. As in the previous proof, we denote the output of the construction by
(L (8), (BE (1)) ier, s (RE@®))ier. e

Let t5 be the first time at which one of the balls in (Bf(t5))icr. 1) intersects 9A.. If £5 is a merg-
ing time, still denote by (B;(t5))icr. (=) the unmerged balls whose pairwise intersection is a set of
L2-measure zero. As the balls (Bf);e;. have radii not larger than £ and a distance of at least
le7 to 0A., we can argue as in the previous proof to obtain that for € small enough it holds that
s> [452 %1 > |loge|'~?. Let us define the set of balls which are affected by at most |loge|'~°
discrete merging steps by

G. = {B:(t5) : i € I.(t5) and there exist more than ¢ — |loge|'~° natural numbers
0<ny <---<ng, <t5—1such that for all 1 <k < L; none of the balls B5(n) € Pit: (ng)

merges in the interval (ng, n; + 1]}
and its parents at time 0 < ¢t < t5 by
Ge(t) = {B5(t) : j € I.(t) and there is i € I.(t5) such that B5(t) C B;(t5) € G}
Analogously we denote the set of balls that are involved in mergings in many discrete steps by
B. ={B:(t5) : i € I.(t2)} \ Ge and its parents B, (t) at time ¢ > 0.

In the following, we will show that if the balls in G. do not carry most of the mass of fi., then . (A.)

has to be small itself.

Claim: If ’ZBEQE fie(B) — ic(A2)| > 6lic|(Ac), then |fie(Ac)| < |loge|'=? for & small enough de-

pending on ¢, d,y and .

Let ’ZBEQE fe(B) — ﬂg(A5)| > d|fic|(A:) but let us assume that [i(A:)| > |loge|*~°.
First, we apply the generalized Korn inequality (see [38, Theorem 11]) for any B (t5) € B i.e., for
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

any ball Bf(t%) € B, there exists a skew-symmetric W7 € Skew(2) such that

/ wa—w,»”dxsc(/ I(ﬁs)symlzdwr(lﬂa(Bf(ti)))2>-
B§(t5) Bg(tg)

Note that by scaling the constant does not depend on the size of the ball.
Summing over all ¢ € I.(¢%) such that Bf(tS) € B, yields (recall that by construction the pairwise

intersections of balls in (B (£5))ier. (1) are of negligible Lebesgue measure)

/ 8. — WEda < C /C,Bazﬁadx—i— S (el (1)) | < K] logel.
B (tg) Ae

B (t5)eB. B (t5)eB.

(5.17)
For the last inequality, we used the simple estimate (recall that fi. = curl 8¢ is concentrated in the

family (Bf);es. which consists of much smaller balls than the ones in (B (5))icr. (i=))

2

Yo (adBreN* < | Y IalBi) | < (al(4:)*.

Bi(t)eBe B (t5)eB-:

In the following, we find a lower bound for the energy concentrated on the balls of B..
First, notice that the balls in B, emerge from mergings which are distributed over at least |loge|'~?
time steps of the form (n,n 4+ 1] for some n < t¢ — 1. Arguing as for the sets M (s5) in step 1 of the

1—-6
proof of the previous proposition, we can obtain that for ¢t > ¢ > ¢ — % it holds that

#1, 5
s
Let us denote by 77 < --- < 77 _ the merging times between t; — % and t5. Moreover, write

Y,
TS =15 — % and 77 _,; = t. From estimate (5.18), we derive that that for any 0 < k < L.

there exists i, € I.(7) such that
_ d -
B, (+f) € Bo(rf) and [ (B3, ()] > 5| log ]!~ (5.19)

Here, we used that ’ZB,E(T;)GBE(T;) ﬂE(Bf(Tg))‘ = |ZB€Q€ fe(B) — /IE(AE)| > §|loge|'~°. By Lemma
5.3.2 and (5.19), we estimate for j € I.(t5) such that Bf () C Bj(t;) € B: the following:

€ 1 € € € €
[Be = Wi I? dz > o—(miys — i) (log o) (|p=(B, (7i))?
2

)
STK?

/Bfk (75 O\BE, (75)

2 (41 — 1) (log ) |log >~

[loge|t~?
2

Summing over all merging times between t§ — and t¢ provides the estimate

L

€ 62
- WiPde > ——=(1 log 2|35
,;)/Bs (e D\BS, (75) |8 y| T 2 167TK2(OgC) |log g|
i) N e

106



5.5 Compactness

Together with (5.17), this implies

52

T2 log(c) |loge|®~® < 2CK|loge|?,

which is a contradiction for § < % and £ > 0 small enough depending on ¢ and the occurring constants.
Hence, the claim is proven.

As the balls in G. have the claimed property (ii), this finishes the proof. O

Remark 5.4.1. Note that both propositions in this section hold also if one replaces the elastic tensor
by a nonlinear energy density with quadratic growth. In the proof one only needs to replace Korn’s

inequality by its non-linear counterpart.

5.5 Compactness

In this section, we prove Theorem 5.2.2. A uniform bound on the energy is enough to achieve com-
pactness for the dislocation measures in the flat topology. On the other hand, compactness for the
strains can only be shown in a weaker topology than weak convergence in L2, more precisely in a weak
Lfoc—topology excluding neighborhoods around the dislocations. We can show that the appearance of
the weak convergence in leoc is due to a loss of rigidity close to the dislocations and the boundary. In
fact, we can prove weak convergence in L? on the whole domain for the symmetric part of the strains.
Later in this section, we construct an example which shows that the compactness statement for the
strains cannot be improved to weak convergence on the whole domain. However, the weak conver-
gence in LloC is enough to show a liminf-inequality. As this topology allows compactness and the
lim inf-inequality, it is in this sense more natural than the weak convergence in L? on the whole

domain.

Theorem (Compactness). Let Q C R? open, simply connected and with Lipschitz boundary. Let
ex — 0 and consider a sequence (ug, Bx) € X(Q) x ASi’Z”(uk) such that supy, Fe, (uk, Br) < 0o. Then
there exist a function B € L?(;R?*2), a vector-valued Radon measure p € M(;R?) N H~1(Q;R?),
and a sequence of skew-symmetric matrices Wy, € Skew(2) such that for a (not relabeled) subsequence
it holds

(i) \IOg sk\ — p in the flat topology,

(1) for all0 < v <1 and all U CC Q we have — B in L*(U;R?*?),

Pz e Ly ()

(ZZZ) (Br)sym N (6>sym n LQ(Q;R2X2),

[Togex]
(iv) curl B = p.

Finally, the obtained convergence is enough to prove the lim inf-inequality

where @ is the relaxed self-energy density defined as in (4.7) for R = Id.

Proof. Step 1. Compactness of the dislocation measures.
Fix 1 >~ > 0 and define @ = v+ 2. Then vy < a < 1.

Denote by (A2 );e J., the connected components of U that do not intersect 0€2. Define

er wesupp i Bep (%)
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Usk = Uje‘]fk Agk
We apply Proposition 5.4.1 on U, to p, Bk, and 6 = 0. The proposition provides a strain
B : U, — R?*2 which satisfies

| curl | (Us,,) < C(7)| log .

Moreover, by (iii) of Proposition 5.4.1 we can extend By by Bk to Q \ Ue,, without creating additional
curl on 9Ug, . In the following, we call this extended function also Bk-

Let us write fip = (curl Bk)IUak € M(Q;R?) which fulfills HL‘_;’“!M < C(y). Hence, there exist a measure
€ M(;R?) and a (not relabeled) subsequence such that “O’éi_kgkl 5 in M(Q;R?). In particular,
it holds true that “()27‘"’%'

— 1 in the flat topology. It remains to show that “:=£t — () in the flat
topology. A similar computation to what follows can also be found in [30].

[log ek |

By the definition of flat convergence we need to show that

sup [ o~ ) =0,
Q

k—oo | log e | PEW ™ (4R2): Lip(p) <1

Let ¢ € W, (% R?) with Lip(e) < 1. Obviously, supp(ux — jix) C U esupp i Bey (z) and by

k
definition fiy = 0 outside Uy, . Hence, we can write

/Q<Pd(uk ) Z/ pdus+ Y /Aék o d(pr — fir). (5.20)

supp(pr)\Ue, i,

Let us shortly notice the following. As the energy F;, (¢, Ok) is uniformly bounded and the non-zero
elements in S are bounded away from zero, the number of dislocations is bounded in terms of | loge|?.
Hence, each connected component of (J,cqupp i, Be7 () has a diameter less than C|log ex|?2e] where
C is a universal constant.

First, we consider the first integral of the right hand side of (5.20). Note that if z € supp ux \ U,
the corresponding connected component of |, cqypp ., Bey (%) intersects €.

As Lip(¢) <1 and ¢ vanishes on 9, we obtain that |p| < C|loge|*2¢] in B, (z) and therefore

< 2C|log ek e} |1 () < Cllogeg|ie]. (5.21)

/ @ dpk
supp(pi)\Ue,

This shows that the first integral on the right hand side of (5.20) vanishes as ¢ tends to 0 uniformly
for all p € W, () with Lip(p) < 1.
Next, let us consider j € J.,. By (v) of Proposition 5.4.1 it holds k(AL ) = fix(AZ, ) which allows us

/, pd(pr — k) = / (sof <>y ) d(pk — 4,
Az, Al k

where < ¢ >,; = f,; @dx. As Lip(p) < 1, it holds the estimate [p(z)— < ¢ >,; | < diam(AL )
Aeg 7% e
for all z € AL . Thus,

to write

[ it = i)| < CllogeuPey (ml(4L,) + [l (42,). (522)

€k

Summing over all j in the estimate (5.22) and combining the resulting estimate with (5.21) yields the
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existence of a constant C(+) such that

/wd(uk—/ik) = / Qg+ Y / @ d(pu — 4ik)
Q supp(pr)\Ue,, AL,

jeTey
< Cllogexl*e] + Y 20| logexl e (luxl (AL) + 7| (4Z,)
jel.,
< C(v)|logeg|*e].
Hence,
1 ~ 3.7
TToaeil sup ed(pr — i) < C(y)|logeg|’el — 0 as k — oo.
| log e PEW," > (R2): Lip() <17/ Q

Thus, we established that \10272,6\ — p in the flat topology which is (i).
Note that for all 0 < v < 1 the corresponding measure fij, satisfies |fix|(2) < C(v)|logek| for some
constant C'(y) depending on 7. A similar argument to the one above shows that the difference of the
measures jix for two different values of v converges to zero weakly* in M(Q;R?). Hence, the chosen

subsequence satisfies that for all 0 < v < 1 it holds 22— 2 1 in M(;R?).

[log e

Step 2. Finding an L% -limit for the strains.

Let 0 <vy<land a =7+ 1777 As ) is simply connected, one can find, with the use of Sard’s
theorem, a monotone sequence of compactly contained subsets (£2;);en of € such that each €; is sim-
ply connected with Lipschitz boundary and €; Q. In step 1, we applied Proposition 5.4.1 to Uy, ,
Bk, and g andNObtained a modified strain Sy whic~h agrees with (i outside UmeSuppM BEZ (z). In
particular, curl B = 0 in Q. (uy). Moreover, |curl Bi|(Ue,) < C(v)|logek|. As ) CC Q, it is clear

that dist(£2;,9Q) > 0. Hence, for €5 small enough we find that

U BEZ(I)OQZ c Ug,.

TESUPD Lk

The application of the generalized Korn’s inequality (see [38, Theorem 11]) provides a sequence of

skew-symmetric matrices W,i such that

= Wi o < O ([ 1)y o+ cunt (022 (5.23)
QL Ul
From (vii) of Proposition 5.4.1 and the bound on curl ) we derive that IB fO;ZZ’% is a bounded sequence

in the space L?(£2;; R?>*2) where the bound depends on . In the following, we use a standard argument
to show that the skew-symmetric matrices W} can be chosen independently from 1.
Let us fix [ > 1. In addition, let W,i and W/ be the skew-symmetric matrices from above. We may

estimate

cagwd-wip <o ([ W Alaes [ WA <06.0e

~ 2 1
Thus, W} — W}| < C(v,1)|loger| which implies that also f fO;Z"I is a bounded sequence in the space
L2(Q; R?*2). Let us write Wy, = WL
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

As () agrees with Bk on ;N ng (1), we obtain that also 2
L2(;; R?X2),

A similar argument to the one above shows that the matrices Wy can also be chosen independently

Mog ek‘ E1q oy () is a bounded sequence in

from ~.
— Bin L?(Q; R**2) for some

Next, let us consider 1 > 7 > v > 0. Assume that 2 “Ogek‘ 510 4, ()

fixed I. As 1q_,,(,,) — 1 boundedly in measure and 1q ., (4,)1lo
o B — B in L2(9; R2%2),

On the other hand, it is clear that if for [y > I we have ?lkoge,:\ 1951(%’) —~ Bin LQ(Ull;RQXQ); the
same holds in L?(Up,; R?*?).

As weak convergence in L? is metrizable on bounded sets in L?, we can find by a diagonal argu-

we deduce that

cv2 () 22 (Br)?

also 1g

ment (in v and [) a subsequence and a function 8 € L? (£;R**2) such that % Oy (ux) — B 1n

Sk
L2(Q;R?*2) for all 1 > v > 0 and [ € N. Since Q;  Q, this proves the convergence in (ii). It still
needs to be shown that 3 € L?(Q; R?*?).

Step 3. curlg = p.

(curl Br)ju.,

Fix some 1 >~ > 0. In step 1 we saw that Moger] = — M in M(£;R?). A similar argument as the

one in (5.21) shows that

curl 3
B — u in the flat topology on €.
| log e |
This implies convergence in D’(2). On the other hand, we can deduce from step 2 that |logz[;’“| —f
in L? (Q;R?*?) (notice that all arguments were based on considerations for Bi and By equals 85 on

a set which converges in measure to 2). Combining these two facts shows that for ¢ € C°(Q;R?) it
holds

1
< curl B8, >p p=lim —— < curl(Bx, — Wg), ¢ >p/ p
Tk [loge ’

=lim ——— < B — Wi, JVp >p p=< 3,JVp >p/ p,
k |logeg] ’ ’
where J is the clockwise rotation by 7. Consequently, curl 8 = p which is (iv).
Step 4. The limit B is in L?(Q; R?*2).
We show a simplified version of a lim inf-inequality for 8 which includes Bsym and |p|(€2) from which

we can conclude the square-integrability of 5 by the generalized Korn’s inequality.
Let U cC 2 and 1 > v > 0 fixed. From step 1 we know that

/U |(Bk)sym|? dz + | (curl By, [(©)* < C(y)|log ex|*. (5.24)

Moreover, from step 1 and step 2 we know that

(curl Bk)\Usk N
| log e

Br —

n M(Q;R?) and
( ) |1 Ek‘

— Bin L*(U;R**?).

Hence, we can derive by the usual lim inf-inequalities for weak, respectively weaks*, convergence from
(5.24) that

/U Beym|? d + |1l(Q)? < C().
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5.5 Compactness

Taking the supremum over all U CC € gives

/Q Baym[? dz + [1]()? < C().

By the generalized Korn’s inequality (see [38, Theorem 11]), there exists a matrix W € Skew(2) such
that 8 — W € L?(Q;R?*2). As  has finite measure, this implies that 3 € L?({; R?*2).

Step 5. Weak convergence of the symmetric part of the strains.

Fix 1 > v > 0. As the matrices W}, are skew-symmetric, it is clear that the symmetric part of

(Br = Wi)1a ., (uy) 18 (Br)symla - (uy)- Since taking the symmetric part of a matrix is a linear opera-
ek =

tion, we may derive from step 2 that
(Br)sym1a - (ug) — Bsym in L*(U;R**?) for all U CC Q.
€k

From the bound on the energy we may deduce directly that (Iligggiel:l is a bounded sequence in

L2(;R?*2). As (1 — 1, (,,)) — 0 boundedly in measure, this implies that
‘K

(ﬂk)sum

MTog 1] — Bsym in L*(U;R**?) for all U CC Q.
k

From the uniform bound of (B)sym in L?(£2; R?*?) we conclude (iii).
Step 6. The lim inf-inequality.

In step 4, we have already shown a poor man’s version of the lim inf-inequality. For the real lim inf-
inequality we refer to the proof of the lim inf-inequality of the I'-convergence result (Proposition 5.6.1)
in which it can be seen that the convergences established in step 1 and 2 are enough to show that for
all 1 >~ > 0 it holds that

d
it £ (o, 50) > [ €53 9+ (=) [ o (514 alul

In fact, the estimate for the self-energy works exactly as in the lim inf-inequality of the I'-convergence
result. It is computed on the set U.,. For the energy on Q \ U, notice that, by step 5, it holds
1u., (Bk)sym — Bsym in L?(Q; R?%2). Then the estimate follows by classical lower semi-continuity and
the fact that C only acts on the symmetric part of matrices.

Sending 7 — 0 yields the desired lim inf-inequality. O

Remark 5.5.1. It can be seen that it is not possible to neglect the reduction to the set Q.y(uy) in

the result above. Consider the following example.

Let ¢, — 0 and z € int Q) fixed. We define the following set, for a sketch see Figure 5.4,

2m 2m
Se,. = 1 2 S | jo=—57 i | ——— cj=1,...,8]|1 0.
vzt {aiomant (o (s ) n (Vg ) ) 9 =1 Slsea
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Figure 5.4: A sketch of the situation in Remark 5.5.1.

Let us write for j = 1,...,8[|logex|?]

x’?:x+gk|log5k|2 cos ]277( ,sin ]2771- .
g 8[| logex|?] 8[| logex|?]

Moreover, we define for some fixed £ € S the measures

81| logex|? 8| log e |?
=1 =1
J even 7 odd

Note that pi(U) = 0 for all sets U that include S.,. It can be seen that for ¢, small enough
Qc, (ur) has exactly two connected components Q1 , Q2 C Q where Q2 C Be,|10g,2(2) and Q! C
Q\ Be, | 1oge, |2 (2), see Figure 5.4.

We define the strain 8 : Q — R?*2 by

We, ifyeQZ, 1 0 -1
Br(y) = e BYETee s Ghere W, = P TEp— .
0 else in Q, exllogex|? \1 0

Clearly, p, € X(Q).

Let A C Q an open set with smooth boundary in ., (ux). As €, (1) has exactly two connected
components, it holds either 94 C Q! or 94 C Q2 ,
Se, C Aor S;, N A=0. In particular, ug(A4) =0.

As By is constant on Q! and QL , we derive that 8, € ASE"™ ().

In addition, the energy of the pair (g, Bk) is Fe, (i, Br) = @) o,

T Jlogeg|?
We claim that there cannot be sequence of skew-symmetric matrices W such that

see Figure 5.4. Consequently, it holds either

Br =Wk
[logek|

weakly converging subsequence in L2(; R?*2). In order to derive a contradiction, let us assume that

has a

there exists a subsequence (not relabeled) of 8y and skew-symmetric matrices Wy, such that |6 {“O;ZZ’T
is bounded in L?(Q;R?*?). Tt follows that |Wy| < Cllogeg| and |[W., — Wy| < m (note that

L2902 ) ~ eZ|logek|*). This implies that |W,, | < C|logey| + ; a contradiction.

¢
er|logek|

In the construction, it is not crucial that one is allowed to use |logeg|?>-many dislocations. Any
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5.6 The lim inf-inequality

allowed maximal number of dislocations that grows to infinity for e, — 0 leads to an example of the
above type. The main point is that one can disconnect small parts from the rest of 2 by the use of
dislocation cores. On each of the resulting connected components of ., (ux) one can put any constant

skew-symmetric matrix without inducing any elastic energy nor violating the definition of ASZ".

5.6 The lim inf-inequality

In this section, we prove the liminf-inequality of the I'-convergence result in Theorem 5.2.1. The
key ingredients for the lower bound for the part of the energy close to the dislocations will be the
Propositions 5.4.1 and 5.4.2.

Proposition 5.6.1 (The lim inf-inequality). Let Q C R? an open, bounded set with Lipschitz bound-
ary. Let e, — 0. Let (i, 3), (1ux, Br) € M(;R?) x L?(Q; R?*2) such that

Br
| log e |

Kk

— B in L*(; R?%?).

— p in the flat topology and

Then it holds

Proof. Clearly, we only have to consider (ux, Sx) such that liminfy F;, (ug, Br) < co. Moreover, up
to subsequences we may assume that the liminf is a lim and supy, Fe, (uk, Sr) < M < co. Then the
compactness result, Theorem 5.2.2, yields that curl 5 = pu.

Fix1>a>~v>0.

Let us consider the set Uz, = U, cqupp(ur)

split the elastic energy into a part close to the dislocations and a part far away from the dislocations,

B.(x). As in the case of well-separated dislocations, we

precisely

1
ng(uk,6k>:/ 308 Bt Fe s Uz
QE’Y M
k

where we recall that Q. (1r) = @\ Uesupp(un) Bey ()

Lower bound far from the dislocations. First, notice that 1q . (,,) — 1 boundedly in measure.
K

As U()Bgikéu — fBin LZ(Q§R2X2), this implies \loﬁgikak\l

semi-continuity property of functionals with convex integrands we obtain

O (ue) — Bin L*(Q; R**2). By the classical lower
e o

k—o0

hmlnf/ Cﬁk : ﬁk dx = hmlnf/ Cﬁklﬂ v (pk) * ﬁklg ~ (k) dx > / Cﬁ : de
2y (i) k—oo Jo “k k Q

This establishes the lower bound of the part of the energy that is not induced by the occurrence of

dislocations.

Lower bound close to the dislocations. In this step, we estimate the energy close to the

dislocations in terms of the relaxed self-energy density ¢ and the dislocation density p.

Denote by (AL, )jes., the connected components of U, = |J B.+(x) that do not intersect

€k TESUPP pr €

0f). We apply Proposition 5.4.1 on each of the Agk to B, a, and 6 = 0. For each j € J.,, we obtain

a family of balls (B?*) and a function fj, : Al — R**? with the properties (i) - (vii) from

i€l
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Proposition 5.4.1. In particular, the modified strains satisfy

1 1,2 2 Cla, M) _

- —CB : de < 1+ —2"2"7\F YRy 595

|10gsk|2 /Aék 2 B B dx < < + |log | ) Ek(ﬂkaﬁlm Ek:) ( )

Fix % > § > 0 small enough. One can check that for ¢ > 0 small enough, for each j € J;, the sets

AZ_, the modified strains By, and the balls (B}**),_;; satisfy the assumptions of Proposition 5.4.2
Sk

for | = % and K =2M. Let us write v, = curl Bj, and recall that by (vi) of Proposition 5.4.1 it holds
The application of Proposition 5.4.2 yields that for all e, small enough for every j € J., we have that

at least one of the options in the conclusion of Proposition 5.4.2 holds.

Claim: There exists a constant C'(«, M) such that for all > 0 there exists L € N satisfying that for
all k > L it holds for all j € J,, that

a—y—n—25

oga, Pl(AZ), (5.26)

|log e |

(1 + CW) Fo (pues Br, AL) >

where § = §2eest £

ming ¢ g1 ¢(£) ©
The strategy to prove this claim will slightly differ depending whether the first or second conclu-
sion in Lemma 5.4.2 holds on A7 .

Clearly, we may assume that (o — v —1n — 8) > 0.

Case 1: Conclusion (ii) of Proposition 5.4.2 holds for A7 .
Recall (ii) of Proposition 5.4.2: there exists a universal ¢ > 1 with the following property. Consider a

ball construction associated to ¢ starting with the balls (éf ) which are the output of Propo-

‘ i€l
sition 5.4.1 on A7 , and the time s}* which is defined to be the first time such that a ball in the ball
construction intersects dAZ . We call its output (IZ, (), (B]"* (t))iefﬁk () (BT (t))iefgk (y)t- Then

there exists a subset I7 C fgk (s5*) such that for each ball Bg’e’“(s;’“), iel!

J €k’

(sjk — |logeg|'™® — 1) natural numbers 0 < n; < --- < ng < sj’“ — 1 such that for all k =1,...,L no

there exist a least

5ok
ball in P, (ng) merges between ny and ng + 1. Moreover, it holds

> v(BI) = vl AL)| < 8lu(AL). (5.27)
i€l
Notice here that fj, is curl-free outside the balls (B’ icii -
k
: W for | = 0,...,[N|logey|'*~%|. As the starting
balls (B'?’Ek)iefj of the ball construction have radii less than e but distance of at least %5;’ to the
€k

€k
Let N € N and define the times t;* ={

3

boundary of Agk, we can argue as in the proof of Proposition 5.4.1 to obtain that for €5 small enough

it holds that sj* > (a —v — g)% and consequently

i . 1 |logex|’

—y -
>
Nllogeg|'=0 — N log ¢

(5.28)

Next, notice that by Proposition 4.2.1 it holds for 1 ,.(£) as defined in (4.4) that for all £ € R? and
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5.6 The lim inf-inequality

R > r > 0 we have that R Clel?
o(€) 2 o8 () 006) - 6

where C' > 0 is a universal constant. Using the 2-homogeneity and continuity (by convexity) of v,
this implies together with (5.28) that for &5 small enough we may derive for all £ € R? that

n .

Ur, o (€2 (1-7) (5t — )08 ) (). (5.29)

By the properties of I. g’k, it is moreover true that if ¢; is small enough, for every i € ng there exists

a subset J7* < {1,...,[N|loge|'~®|} such that #.J7°* > (N — 2)|loge|'~® and for each | € J7*
<k

none of the balls in Pl-sj (t;*) merges between ¢;* and ¢, ,. For a visualization, see Figure 5.5. Hence,

we may estimate for ¢ € ng_ (note that the occurring annuli are pairwise disjoint by construction)

1 - = 1 -~ -
/ny%< Ek)icﬂk55k dv > Y > /B =CBy : Brda (5.30)
i 8 Sk

Ny g BEEEO\BL () 2
ooBRTR(ReR T (1)

=2 > Vrgp k), ek g (e (BT (64))
3.k . sk
leJ; BZy;Ek(tfk)GPilJ (tlfk)
n £k £k 1, €k (1€
> ) S (1= D) - ) 0ge) pm(BIE (54).

Jiek . £k
leJ; Bﬁfk(tfk)epi] (tfk)

Rot (t51)

: Rut (%)

note that > o v (BLEx (t7%)) = vg(B?°*(s5*)). Hence, by the definition of ¢ and the
BRTE(R)eR (%) B

fact that vy, (B}* (t;*)) € S we can further estimate

For the last inequality, we used (5.29) and that by construction it holds = chifait" Next,

o

- 1 # JrEk ( JEk
(1 4) Zk Nlloge,|1—9 (log ¢) p(vi(B; (sj )
leJ) <k

(1 - Z) (N —2)|logeg|'?

Y

sk

%
Nllogeg|t—? i

Y

(v (B (s54)))

(1 - g) % (oz - - g) |log ex| @(vi (B (55+))).

Y

'S
SN—

The simple estimate (1 — 1)z >x— 7] for 0 <z <1 yields

>

N—2(

— (a=7=3) ogerl (B (55))). (5:31)

Finally, we Choosg N so large that %(a —y—=2)>(a—=y—n).
As the family (B}**(s5"))

(5.30) - (5.31) to find that

L.

>(a—v—n)lloger| D w(v(BI(s54)))
ield,

;s consists of pairwise disjoint balls, we can sum over the estimate in
€k
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

qu'yek (55

Figure 5.5: Sketch of the situation in case 1 in the proof of Proposition 5.6.1 for a ball Bg ek (s3*) such

that ¢ € [, gk The starting balls included in Bg ek (sj’“) are drawn in gray. Every dark line
marks the state of the ball construction for a certain time t;*. If there is no merging for

a ball included in Bf ek (s5*) between ¢;* and ¢}, the corresponding annuli are drawn in
green, otherwise in red. The dashed line indicates a merging.

>(a—y—n)llogerle | Y vn(BI(s55)
ierl,

>(a—y—n)loger| [ wr(AL)) =@ [ D we(BI(s5) —we(AL) | |- (5.33)
ierl,

Here, we used the subadditivity of ¢ for the last and last but second inequality. Now, note that by
the 1-homogeneity of ¢ and the properties of ng we may derive that

o | S s - ) | < (mare©) | S @) - nas) 630
iell, iell,
< (mage(©)) a1 (42,)
< o e 8 oy (a1,)) (5.5

minge g1 ¢(§)

Combining (5.32) - (5.33), (5.34) - (5.35), and(5.25), using the inequality (a—y—n)(1—0) > a—y—n—4,

and recalling that v (A7 ) = pp(AL ) proves the claim in the first case.

Case 2 : |up(AL )| = |vi(AL)| < |loge['~°. i
We only need to consider those A7 such that F, (pk, Bi, Az, j) < a-y=n-?8 ©(pi(AL ) (otherwise the

| log e |
desired lower bound is immediate). The 1-homogeneity and continuity of ¢ yields that

. a—~—n—2> . -
Fry (s Br, AL ) < C© ﬁ k(A2 ) < Cla— v —n—6)|logex|

Hence, we can apply Proposition 5.4.1 to p, Bk, AL, @,7,6 as fixed before and K = C where C' is

€
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5.6 The lim inf-inequality

the universal constant from the estimate above. We obtain a function fj : Agk — R?2*2 and a family
of balls (DJ*)
balls in (D}")

;e satisfying the conclusions of Proposition 5.4.1. In particular, the radius of the
€k

ieri, is less than €%,
#1, < K(a)|logeg|' ™%, and curl B =0on A7, \ | J DI

i€,
Moreover, the strains (3 satisfy

: LeBe: B C(0) |
ogel? Ju 2 7F° S vl R Al ).
[Tog 2|2 /Aik QCﬁk Brdr < ( + logsk|) e (1ks By AL)

Let us consider a ball construction associated to some ¢ > 1 not depending on ¢; or j starting with
the balls (Dg’s’“)ielgk as long as for the constructed balls it holds that BJ*(t) N DAL = 0. As the
number of starting balls is bounded by K (a)|logex|' =%, obviously the number of occurring merging
times during the ball construction is also bounded by K («)|loges|!~°. Hence, we can argue as in case
1 until (5.30) - (5.31) to prove the claim also in this case (in this case we do not need the additional

6 on the right hand side of the desired estimate).

Armed with the statement of the claim we can now prove the lower bound close to the disloca-
tions.

Let o1, € Al and define the measure fir, = o7 Yjer, uk(Agk)ézgk. By the statement of the claim
and the 1-homogeneity of ¢, it is clear that fi; is a bounded sequence of measures. Analogously to
the proof of the compactness theorem in Section 5.5 one can show that fi, — u in M(; R?). Writing

the estimate (5.26) of the claim in terms of fi;, leads to

Cla, M ) ~ dji -
<1_|_(a)> Z ng(uk,ﬁk,Aék)Z(a—fy—n—é)/<p< /fk ) d| g,
jer., 0 d| fu|

[loge]

which implies that

C(mM)) / (dﬂk> 3
1+ 222V B (s B Us) > (a—y—n— 8 ZEE N dl g
( Toge] (ks Bre, Uey ) > (v =y = = 9) RAVTA ||

It follows from Reshetnyak’s theorem that

. < d
hmmstk(uk,ﬂk,Usk)Z(a—’y—n—é)/w S dlul.
ko0 o \dlyl

Letting « — 1,7 — 0, and § — 0 yields

.. d
hmlanak(MkvﬁhUak) > (1 _’Y)/ ¥ a d|M|
k—oo Q dlpl

Combining the bounds far and close to the dislocations we find

. 1 dp
> [ =¢cB: - = :
liminf F, (s, Br) = /Q 5C0: Bdw + (1 W)/Qw <d|#|) d|pl
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Finally, v — 0 finishes the proof of the lower bound. O

5.7 The lim sup-inequality

In this section, we prove the lim sup-inequality of the I'-convergence result in Theorem 5.2.1. In the
case of well-separated dislocations and linearized elasticity, the existence of a recovery sequence for

the energy F' is known, see [38, Theorem 12]. The difference to our setting is that the approximating

1)
[loge|? "

inequality is to show that for the recovery sequences from the case of well-separated dislocations the

energies in our case Fy, carry the extra term Hence, the strategy in the proof of the lim sup-

term associated to the total variation penalization vanishes in the limit.

Proposition 5.7.1 (The lim sup-inequality). Leter — 0 and (u, 3) € M(Q;R?)x L?(Q; R?*2). There
exists (pk, Br)x C M(QR?) x L2(Q;R**?) such that
(i) “0’;7’;}9‘ — w in the flat topology and —2-— — B in L2(Q; R?x2),

[logek|
(i) imsupy,_, o, Fz, (pr, Bk) < F(p, ).

Proof. Let (ux, Br)r be the recovery sequence from the well-separated case, see [38, Proof of Theorem
12]. To get an idea for the construction one can also imagine our construction for R = Id in the
well-separated, nonlinear case in section 4.3, Proposition 4.3.5, and divide the constructed sequences
by €.

Note that for the measures py, it holds by construction that converges weaklyx in the sense of

Kk
[log e
measures to p. This implies flat convergence. Moreover, the sequence (u, O ) satisfies that p, € X(Q),
B € AS&”(Q), and

1 1
i _ — : < .
lmsup /Q Chr : B dz < F(u, B)

k—o0 Ek(uk) 2

Hence, we only need to show that limg_, mmﬂ(&)) =0.

Of course, we only have to consider (u,/3) such that F(u,() < oo. In this situation, the well-

separateness of dislocations along the recovery sequence allows to prove with the help of Lemma 5.3.2
L . . L .

that for pj, = Y ;2% &F 535? for ¢&¥ € S and 2% € Q it holds that the quantity mziil |€F|2 s

uniformly bounded in k. As the non-zero elements in S are bounded away from zero, this implies

immediately that
1

|loge[?

This finishes the proof. O

|l (22) — 0.

5.A Scaling of Korn's Constant for Singular Fields on Thin

Annuli

In this section, we prove what was already discussed in section 5.3, namely the blow-up of Korn’s
constant on thin annuli in two dimensions. The optimal constant for the classical Korn’s inequality
for an annulus Bg \ B, of ratio % was computed in [26] by analyzing the solvability of the corre-
sponding Euler-Lagrange equations. It is given by a rather complicated expression that converges to
the optimal constant for the disc (4, see [64]) as £ — 0 and behaves like (1 — g)—z as & — 1. In

this section, we show that the optimal constant for the inequality for curl-free fields with a circulation
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5.A Scaling of Korn’s Constant for Singular Fields on Thin Annuli

condition has the same scaling as % — 1.
As the constant for Korn’s inequality is invariant under dilations of the domain, we will only consider
the case R=1,r < 1.

The technique to prove an upper bound for the constant is a covering argument which is classical
for proving Korn’s inequality for thin domains. We show first a uniform bound on the constant for

special subsets of the annulus.

Lemma 5.A.1. Forr < 1 define the set U, = {t(sin6, —cosf) : r <1 < 1,|0] < 5=}. There exist
ro < 1 and a constant C > 0 such that for every ro < r < 1 and every u € H'(U,;R?) there exists a

skew-symmetric matric W such that

/ ‘VU—W|2dJU < C/ |(vu)syer|2d5U~
U, U

Proof. Let us define the square U, = (Tgl,l—;’") x (0,1 — r) and the function f, : U, — U, by
fr(0,t) = (1 —t)(sin, — cos §), see figure 5.6. Clearly, f, is a diffecomorphism and its derivative is

VF(1,0) = (1—t?cos€ (1—1t)sind .
—sinf cos 6

It holds |V f,.(¢,0) — Id| < O(r) where O(r) — 0 as r — 1.

Now, let u € H'(U,;R?) such that [, (Vu)skew dz = 0. Define @ : U, — R? by @(6,t) = u(f.(6,1)).

As V f,. is almost the identity matrix, the symmetric part of V4 is approximately (Vu)gsymo fr. Indeed,

by the chain rule we find
[(V@)sym — (Vt)sym © fr| < O) (V) © fr)sym| < O(r)[(Vu) o frl. (5.36)

By Korn’s inequality applied to u, there exists a skew-symmetric matrix W and a constant K > 1
such that

/ Vi — W de < K/ (Vi) sy d.
U, U,

Note that by scaling the constant does not depend on r. By (5.36), we find further

| Al de <2 [ (Fu o £+ 0@V o £ da

s

- / (V) sy + O [ Vf?) detV 71,

On the other hand, one proves similarly that

1
[ Vi — W | dx > 5/ (|Vul|?> = O(r)?|Vul?)|detV 71| de,
U,

r T

where one uses that from [;; (Vu)skew dz = 0 it follows [, [Vu—W[*dz > [, |Vul*dz.
Notice that for r close to 1 the gradient V f, is uniformly close to the identity. The same holds
for Vf. Choose 7o so close to 1 such that for all smaller r it holds that |detV f* — 1] < 3 and
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

Figure 5.6: Sketch of the situation in Lemma 5.A.1.

O(r) < e Then, one obtains, by combining the previous inequalities,

J

Absorbing the very right term to the left hand side ends the proof. O

13
|Vul|? dz < 12K/ |(vu)8ym|2dx+1—6/ |Vul|? d.
U, Q

T

Remark 5.A.1. The same holds true for any rotated version of U, with the same constant since

Korn’s constant does not depend on the choice of coordinates.

Remark 5.A.2. For an explicit bound on the constructed constant in the previous lemma, note that
an upper bound for the optimal constant for the square was computed in [49], namely 8+42. In [48],

it is conjectured that the optimal constant for a square is 7.

In the following lemma, we state an upper bound on Korn’s constant for the annulus B;(0) \ B,-(0)

for curl-free fields.

Lemma 5.A.2. There ezists o < 1 such that for allro < r <1 Korn’s constant K (r) for B1(0)\B,(0)
is less or equal than C (1 — r)fz where C' > 0 is a universal constant. Precisely, for every function
B € L*(B1(0) \ B,(0); R?*2) satisfying curl 3 = O there exists a skew-symmetric matriz W € R?*?2
such that

/ |5—W|2dx30(1—r)*2/ |Baym? da.
B1(0)\B-(0)

B1(0)\B,(0)
Proof. Let rg as in Lemma 5.A.1 and 0 < r < rg.
In analogy to the previous lemma, we define the sets

Uk = {t(cose,sine) :r<t<1and kT(l—r) <f< k;(l—r)} where k=1,..., LFTJ =1L,.

An
As L1,5J+1(1 —7r) > 2m, it kfollows B;(0) \ B.(0) C U,f;l Uk.  Moreover, notice that for all
k=1,...,L, —1it holds % =2and Y77, 1yp < 2.

Now, let 8 € L?(B1(0) \ B,(0); R**?) such that curl 3 = 0. In particular, 8 can be written as a

gradient on each U}. For each k = 1,...,L,, we apply Lemma 5.A.1 and Remark 5.A.1 on Uk to

obtain a skew-symmetric matrix Wy, such that
/ 1B — Wi|?dx < c/ |Bsym | dz. (5.37)
Uk Uk

Note that C' > 0 does not depend on k,r nor .
For every k =1,..., L, — 1, the distance between W}, and Wy, can be estimated as follows

4C

2
- ) dx.
|U,'l€ n U7k+1‘ U,’fUUyI?+1 IﬁéyM|

|Wk—Wk+1|2S2][ k+1‘Wk—B|2+|Wk+l_m2d$§

Uuknu,

120



5.A Scaling of Korn’s Constant for Singular Fields on Thin Annuli

x—|—5u(x) b=-ce;

Figure 5.7: Sketch of the almost optimal displacement constructed in the proof of Lemma 5.A.3 for

5:61,5:}1andr:§.

Consequently, we obtain for 1 <k <1< L,

2
Wi — Wi|? =

-1 -1
DW= Win| <(=k)D Wi = Win|?
i=k i=k

= 4
- ; Uin U /u,z;uU;*l ey (539

We define W = Wj. Then, we derive from (5.37) and (5.38) the following chain of inequalities

L,
/ IB—W|2§2Z/ 18— Wif> + [W — Wi da
B1(0)\B(0) =1’ UF

S U]
<2 C/ |Bsym|?dz + Ly ) 4C — T e |Bsym|® dz

k=1 < Uk ! i=1 |U7% N UT_H‘ viuuitt .

Ly—1
< 40/ |Beym|? dz + 16C L2 / 1Beym|? dz
BUONBAO) ; viovitt Y
<ca+ou?) Bogm .
B1(0)\B-(0)
Note that by definition Lf < (%37;;2 and C'is a universal constant. O

Finally, we construct for each ¢ € R? a function which is curl-free, whose circulation is exactly &,

and whose elastic energy is optimal in scaling, see Figure 5.7.

Lemma 5.A.3. Let £ € R2. There exists 0 < rg < 1 such that for all To < r < 1 and £ € R? there
exists a function (3 : B1(0)\ B,(0) — R?X2 such that curl 3 = 0 and Jop, B TdH' = ¢ and

min 1B =W de > (1 - r)_2/ |Boym|? da. (5.39)
WeSkew(2) /Bl(o>\Br<o> BiO\B.(0)

The constant ¢ does not depend on r,& or 3.

Proof. Let & = (&,&2) € R?. Moreover, we write e,(6) = (cos,sinf) and eg(f) = (—sin 6, cos6).
We define the function u : B1(0) \ B,(0) — R? in polar coordinates by

[
ulpe,(0) = = ( / (61 008 + E2 sin p)e (i2) dip + (1 — p) (€1 cos 6 + Ex sin 0>ee<o>> .

For a visualization, see Figure 5.7.
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5 Plasticity as the I'-limit of a Dislocation Energy without the Assumption of Diluteness

The function u has a jump on the line {# = 0} of height £. Hence, the absolutely continuous part
of the derivative of u, 8 = Vu, satisfies the circulation condition | B, B-7dH' =€ and curl 3 = 0 in

B;(0) \ B,(0). In addition, we can compute explicitly

Ié; :% <;(§1 cosf + &osinb) eg(0) @ e,(8) — (€1 cos B + Exsinb) e, (0) ® eq(0)

_1_70(51 cos ) + &asin6) eg(0) @ e,(0) + 1_7'0(_51 sind + &z cos ) e (0) @ 69(9))
-2 ( — (€1 0080+ Ea5in0) ¢(0) @ cq(60) + (€1 cos0 + & 5in 6) e (0) @ ep<9>>
¥ %1_7’)(_51 sin 6 + & cos ) eg(0) ® o (0)

:Bskew + ﬂsym-

One sees directly that fBl(O)\BT(O) Bskew dz = 0. Hence, minwy cgpew(2) fBl(O)\BT(O) 18— W|2da =
x. In addition, a straightforward computation show that as » — 1 we obtain
B1(0)\ Br.(0) B|? dz. In additi ightf d i h h 1 btai

1 1
/ Bakew[?dz = (1— 12) L[¢2 ~2(1 — 1) L1g?
B1(0)\B,-(0) m ™
2 1 2 1 2 1 3 1 2
and Begml? die = (—log(r) — 201 — 1) + =(1—12) ) Z[e? ~ 2 (1 — ) L[eP2,
B1(0)\B-(0) 2 m 3 m

which proves the claim for r close enough to 1 independently of &.

122



Bibliography

[1]

2]

3]

[4]

5]

[6]

171

18]

19]

[10]

[11]

[12]

[13]

[14]

R. A. Adams and J. J. F. Fournier. Sobolev Spaces, volume 140 of Pure and Applied Mathematics.
Academic Press, Amsterdam, 2nd edition, 2003.

R. Alicandro, M. Cicalese, and M. Ponsiglione. Variational equivalence between Ginzburg-
Landau, XY spin systems and screw dislocations energies. Indiana Univ. Math. J., 60(1):171-208,
2011.

R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione. Metastability and dynamics of discrete
topological singularities in two dimensions: a I'-convergence approach. Arch. Ration. Mech. Anal.,
214(1):269-330, 2014.

R. Alicandro, L. De Luca, A. Garroni, and M. Ponsiglione. Dynamics of discrete screw dislocations
on glide directions. J. Mech. Phys. Solids, 92:87-104, 2016.

L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity
problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press,
New York, 2000.

M. Ariza and M. Ortiz. Discrete crystal elasticity and discrete dislocations in crystals. Arch.
Ration. Mech. Anal., 178(2):149-226, 2005.

D. Bacon, D. Barnett, and R. O. Scattergood. Anisotropic continuum theory of lattice defects.
Prog. Mater. Sci., 23:51-262, 1980.

J. Bassani. Incompatibility and a simple gradient theory of plasticity. J. Mech. Phys. Solids,
49(9):1983-1996, 2001.

F. Béthuel, H. Brézis, and F. Hélein. Ginzburg-Landau Vortices. Progress in Nonlinear Differential
Equations and their Applications, 13. Birkh&user Boston, Inc., Boston, MA, 1994.

J. Bourgain. On square functions on the trigonometric system. Bull. Soc. Math. Belg. Sér. B,
37:20-26, 1985.

J. Bourgain and H. Brézis. On the equation div Y = f and application to control of phases. J.
Amer. Math. Soc., 16(2):393-426, 2003.

J. Bourgain and H. Brézis. New estimates for elliptic equations and Hodge type systems. J.
FEuropean Math. Soc., 9(2):277-315, 2007.

A. Braides. I'-convergence for Beginners, volume 22 of Ozford Lecture Series in Mathematics and

its Applications. Oxford University Press, Oxford, 2002.

H. Brézis and J. Van Schaftingen. Boundary estimates for elliptic systems with L!- data. Calc.
Var. Partial Differential Equations, 30:369-388, 2007.

123



BIBLIOGRAPHY

[15] J. M. Burgers. Selected Papers of J. M. Burgers, chapter Physics. — Some considerations on the
fields of stress connected with dislocations in a regular crystal lattice. I, pages 335-389. Springer
Netherlands, Dordrecht, 1995.

[16] S. Cacace and A. Garroni. A multi-phase transition model for dislocations with interfacial mi-
crostructure. Interfaces Free Bound., 11(2):291-316, 2009.

[17] P. Cermelli and G. Leoni. Renormalized energy and forces on dislocations. SIAM J. Math. Anal.,
37(4):1131-1160, 2005.

[18] R. Coifman, J. L. Rubio de Francia, and S. Semmes. Multiplicateurs de Fourier de LP(R) et
estimations quadratiques. C. R. Acad. Sci. Paris Sér. I Math., 306(8):351-354, 1988.

[19] S. Conti, G. Dolzmann, and S. Miiller. Korn’s second inequality and geometric rigidity with
mixed growth conditions. Cale. Var. Partial Differential Equations, 50(1-2):437-454, 2014.

[20] S. Conti, A. Garroni, and A. Massaccesi. Modeling of dislocations and relaxation of functionals on
1-currents with discrete multiplicity. Cale. Var. Partial Differential Equations, 54(2):1847-1874,
2015.

[21] S. Conti, A. Garroni, and S. Miiller. Singular kernels, multiscale decomposition of microstructure,
and dislocation models. Arch. Ration. Mech. Anal., 199(3):779-819, 2011.

[22] S. Conti, A. Garroni, and S. Miiller. Dislocation microstructures and strain-gradient plasticity
with one active slip plane. http://arxiv.org/abs/1512.03076, 2015.

[23] S. Conti, A. Garroni, and M. Ortiz. The line-tension approximation as the dilute limit of linear-
elastic dislocations. Arch. Ration. Mech. Anal., 218(2):699-755, 2015.

[24] S. Conti and P. Gladbach. A line-tension model of dislocation networks on several slip planes.
In P. Ariza, M. Ortiz, and V. Tvergaard, editors, Proceedings of the IUTAM Symposium on
Micromechanics of Defects in Solids, volume 90, pages 140-147, 2015.

[25] S. Conti and M. Ortiz. Dislocation microstructures and the effective behavior of single crystals.
Arch. Ration. Mech. Anal., 176(1):103-147, 2005.

[26] C. M. Dafermos. Some remarks on Korn’s inequality. Z. Angew. Math. Phys., 19(6):913-920,
1968.

[27] G. Dal Maso. An Introduction to I'-Convergence, volume 8 of Progress in Nonlinear Differential

Equations and their Applications. Birkhduser Boston, Inc., Boston, MA, 1993.

[28] G. Dal Maso, M. Negri, and D. Percivale. Linearized elasticity as I-limit of finite elasticity.
Set-Valued Anal., 10(2-3):165-183, 2002.

[29] R. Dautray and J.-L. Lions. Mathematical Analysis and Numerical Methods for Science and
Technology, volume 3. Springer, 1988.

[30] L. de Luca, A. Garroni, and M. Ponsiglione. I'-convergence analysis of systems of edge disloca-
tions: the self energy regime. Arch. Ration. Mech. Anal., 206(3):885-910, 2012.

124



BIBLIOGRAPHY

[31] G. Dolzmann, N. Hungerbiihler, and S. Miiller. Uniqueness and maximal regularity for nonlinear
elliptic systems of n-Laplace type with measure valued right hand side. J. Reine Angew. Math.,
520:1-35, 2000.

[32] L. Evans and R. Gariepy. Measure Theory and Fine Properties of Functions. Studies in Advanced
Mathematics. CRC Press, Boca Raton, FL, 1992.

[33] N. Fleck and J. Hutchinson. A phenomenological theory for strain gradient effects in plasticity.
J. Mech. Phys. Solids, 41(12):1825-1857, 1993.

[34] N. Fleck and J. Hutchinson. A reformulation of strain gradient plasticity. J. Mech. Phys. Solids,
49(10):2245-2271, 2001.

[35] J. Frenkel. Zur Theorie der Elastizititsgrenze und der Festigkeit kristallinischer Kérper. Z. Phys.,
37(7-8):572-609, 1926.

[36] K. Friedrichs. On the boundary-value problems of the theory of elasticity and Korn’s inequality.
Ann. of Math., 48(2):441-471, 1947.

[37] G. Friesecke, R. D. James, and S. Miiller. A theorem on geometric rigidity and the derivation of
nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math., 55(11):1461—
1506, 2002.

[38] A. Garroni, G. Leoni, and M. Poniglione. Gradient theory for plasticity via homogenization of
discrete dislocations. J. Eur. Math. Soc., 12(5):1231-1266, 2010.

[39] A. Garroni and S. Miiller. T-limit of a phase-field model of dislocations. SIAM J. Math. Anal.,
36(6):1943-1964, 2005.

[40] A. Garroni and S. Miiller. A variational model for dislocations in the line tension limit. Arch.
Ration. Mech. Anal., 181(3):535-578, 2006.

[41] T. A. Gillespie and J. L. Torrea. Transference of a Littlewood-Paley-Rubio inequality and di-
mension free estimates. Rev. Un. Mat. Argentina, 45(1):1-6, 2004.

[42] P. Gladbach. PhD thesis, University of Bonn, in preparation.

[43] L. Grafakos. Classical Fourier Analysis, volume 249 of Graduate Texts in Mathematics. Springer,
New York, 2nd edition, 2008.

[44] L. Grafakos, L. Liu, and D. Yang. Vector-valued singular integrals and maximal functions on
spaces of homogeneous type. Math. Scand., 104(2):296-310, 2009.

[45] M. E. Gurtin. An Introduction to Continuum Mechanics, volume 158 of Mathematics in Science

and Engineering. Academic Press, New York-London, 1981.

[46] M. E. Gurtin. A gradient theory of single-crystal viscoplasticity that accounts for geometrically
necessary dislocations. J. Mech. Phys. Solids, 50(1):5-32, 2002.

[47] J. P. Hirth and J. Lothe. Theory of Dislocations. McGraw-Hill, New York, 1968.

[48] C. O. Horgan. Korn’s inequalities and their applications in continuum mechanics. SIAM Rev.,
37(4):491-511, 1995.

125



BIBLIOGRAPHY

[49] C. O. Horgan and L. E. Payne. On inequalities of Korn, Friedrichs and Babuska-Aziz. Arch.
Ration. Mech. Anal., 82(2):165-179, 1983.

[50] D. Hull and D. J. Bacon. Introduction to Dislocations. Butterworth-Heinemann, Oxford, UK,
5th edition, 2011.

[61] R. L. Jerrard. Lower bounds for generalized Ginzburg-Landau functionals. J. Math. Anal.,
30(4):721-746, 1999.

[52] V. Kondrat’ev and O. Oleinik. Boundary value problems for a system in elasticity theory in
unbounded domains. Korn inequalities. Uspekhi Math. Nauk, 43(5(263)):55-98, 1988.

[53] A. Korn. Uber einige Ungleichungen, welche in der Theorie der elastischen und elektrischen
Schwingungen eine Rolle spielen. Bull. Intern. Cracov. Akad. umiejet (Classe Sci. Math. Nat.),
13:706-724, 1909.

[54] M. Koslowski, A. M. Cuitino, and M. Ortiz. A phase-field theory of dislocation dynamics, strain
hardening and hysteresis in ductile single crystals. J. Mech. Phys. Solids, 50(12):2597-2635, 2002.

[65] M. T. Lacey. Issues related to Rubio de Francia’s Littlewood-Paley inequality, volume 2 of NYJM
Monographs. State University of New York, University at Albany, Albany, NY, 2007.

[56] S. Luckhaus and L. Mugnai. On a mesoscopic many-body hamiltonian describing elastic shears
and dislocations. Contin. Mech. Thermodyn., 22(4):251-290, 2010.

[67] V. Maz’ya. Bourgain-Brézis type inequality with explicit constants. Contemp. Math., 445:247—
252, 2007.

[58] S. Miiller and M. Palombaro. Derivation of rod theory for biphase materials with dislocations at
the interface. Calc. Var. Partial Differential Equations, 48(3-4):315-335, 2013.

[59] S. Miiller, L. Scardia, and C. I. Zeppieri. Geometric rigidity for incompatible fields and an
application to strain-gradient plasticity. Indiana Univ. Math. J., 63(5):1365-1396, 2014.

[60] S. Miiller, L. Scardia, and C. I. Zeppieri. Gradient theory for geometrically nonlinear plasticity
via the homogenization of dislocations. In Analysis and Computation of Microstructure in Finite
Plasticity, volume 78 of Lect. Notes Appl. Comput. Mech., pages 175-204. Springer, 2015.

[61] F. R. N. Nabarro. Dislocations in a simple cubic lattice. Proc. Phys. Soc., 59(2):256-272, 1947.

[62] W. D. Nix and H. Gao. Indentation size effects in crystalline materials: a law for strain gradient
plasticity. J. Mech. Phys. Solids, 46(3):411-425, 1998.

[63] J. Nye. Some geometrical relations in dislocated crystals. Acta Metall., 1(2):153-162, 1953.
[64] L. Payne and H. Weinberger. On Korn’s inequality. Arch. Ration. Mech. Anal., 8(1):89-98, 1961.
[65] R. Peierls. The size of a dislocation. Proc. Phys. Soc., 52(1):34-37, 1940.

[66] M. Polanyi. Uber eine Art Gitterstorung, die einen Kristall plastisch machen kénnte. Z. Phys.,
89(9-10):660-664, 1934.

[67] M. Polanyi and E. Schmid. Zur Frage der Plastizitdt. Verformung bei tiefen Temperaturen.
Naturwissenschaften, 17(18-19):301-304, 1929.

126



BIBLIOGRAPHY

[68] M. Ponsiglione. Elastic energy stored in a crystal induced by screw dislocations: from discrete
to continuous. SIAM J. Math. Anal., 39(2):449-469, 2007.

[69] J. L. Rubio de Francia. A Littlewood-Paley inequality for arbitrary intervals. Rev. Mat.
Iberoamericana, 1(2):1-14, 1985.

[70] E. Sandier. Lower bounds for the energy of unit vector fields and applications. J. Funct. Anal.,
152(2):379-403, 1998.

[71] L. Scardia and C. I. Zeppieri. Line-tension model for plasticity as the I-limit of a nonlinear
dislocation energy. SIAM J. Math. Anal., 44(2):2372-2400, 2012.

[72] E. M. Stein. Singular Integrals and Differentiability Properties of Functions. Princeton Mathe-

matical Series, No. 30. Princeton University Press, Princeton, NJ, 1970.

[73] G. 1. Taylor. The mechanism of plastic deformation of crystals. part I. theoretical. Proc. R. Soc.
London, Ser. A, 145(855):362-387, 1934.

[74] J. Van Schaftingen. Estimates for L'-vector fields. C. R. Math. Acad. Sci. Paris, 339(3):181-186,
2004.

[75] J. Van Schaftingen. A simple proof of an inequality of Bourgain, Brézis and Mironescu. C. R.
Math. Acad. Sci. Paris, 338(1):23-26, 2004.

[76] V. Volterra. Sur I'équilibre des corps élastiques multiplement connexes. Ann. Sci. Ecole Norm.
Sup., 24(3):401-517, 1907.

127



