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Summary

In this thesis, we derive macroscopic crystal plasticity models from mesoscopic dislocation models
by means of Γ-convergence as the interatomic distance tends to zero. Crystal plasticity is the effect
of a crystal undergoing an irreversible change of shape in response to applied forces. At the atomic
scale, dislocations — which are local defects of the crystalline structure — are considered to play a
main role in this effect. We concentrate on reduced two-dimensional models for straight parallel edge
dislocations.

Firstly, we consider a model with a nonlinear, rotationally invariant elastic energy density with mixed
growth. Under the assumption of well-separateness of dislocations, we identify all scaling regimes
of the stored elastic energy with respect to the number of dislocations and prove Γ-convergence in
all regimes. As the main mathematical tool to control the non-convexity induced by the rotational
invariance of the energy, we prove a generalized rigidity estimate for fields with non-vanishing curl.
For a given function with values in R2×2, the estimate provides a quantitative bound for the distance
to a specific rotation in terms of the distance to the set of rotations and the curl of the function.
The most important ingredient for the proof is a fine estimate which shows that in two dimensions
a vector-valued function f ∈ L1 can be decomposed into two parts belonging to certain negative
Sobolev spaces with critical exponent such that corresponding estimates depend only on div f and the
L1-norm of f . This is a generalization of an estimate due to Bourgain and Brézis.

Secondly, we consider a dislocation model in the setting of linearized elasticity. The main differ-
ence to the first case above and existing literature is that we do not assume well-separateness of
dislocations. In order to prove meaningful lower bounds, we adapt ball construction techniques which
have been used successfully in the context of the Ginzburg-Landau functional. The building block for
this technique are good lower bounds on annuli. In contrast to the vortices in the Ginzburg-Landau
model, in the setting of linear elasticity, a massive loss of rigidity can be observed on thin annuli which
leads to inadequate lower bounds. Hence, our analysis focuses on finding thick annuli which carry
almost all relevant energy.
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1 Introduction

Plasticity is the effect of a solid undergoing an irreversible change of shape in response to applied
forces. However, the underlying mechanisms that lead to this effect depend highly on the considered
material. In this thesis, we concentrate on crystals i.e., materials whose atoms form periodic patterns.
This includes a large class of important materials, for example metals. In fact, most pure metals
have relatively simple crystalline structures, examples include face-centered-cubic structures (copper,
nickel, aluminium, etc.) and body-centered-cubic structures (iron, chromium, etc.), see Figure 1.1.
For a more detailed discussion of crystalline structures, we refer to [47] or [50].
In the engineering literature, there is a wide variety of phenomenologically derived macroscopic plas-
ticity models. It would also be desirable to derive macroscopic models rigorously as a limit of models
at smaller scales. The main cause for plasticity in crystals on an atomic scale is the presence of
so-called dislocations, cf. [66, 73]. Dislocations are topological defects of the crystalline structure and
will be considered in detail in the following section.
In special situations, first rigorous mathematical derivations of macroscopic plasticity models from
mesoscopic and microscopic dislocation models were established, e.g. [21, 23,30,38,59,71].
The aim of this thesis is to complement these results by deriving a similar macroscopic model, starting
from different modeling assumptions at the atomic scale.

(a) Unit-cell of a body-centered-cubic (bcc)
crystal: one atom at each corner of the
cube (blue) plus one atom centered in
the cube (red).

(b) Unit-cell of a face-centered-cubic (fcc)
crystal: one atom at each corner of the
cube (blue) plus one atom centered at
each face of the cube(red).

Figure 1.1: Examples of typical crystalline structures in pure metals.

We start from a reduced two-dimensional model for straight, parallel edge dislocations. This setting
will be explained in detail in Section 1.2. Mathematically, we study a variational model of the form

ˆ
Ω

W (β) dx for β : Ω ⊂ R2 → R2×2 subject to curlβ =
∑
i

εbi δxi
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1 Introduction

under different assumptions on W . Here, the bi ∈ R2 are constrained to belong to a certain discrete
set which depends on the crystalline structure. We identify the different scaling regimes of the energy
and the limit of the suitably rescaled energy in the sense of Γ-convergence. In the most interesting
regime—the so-called critical regime—, we prove that the limit is a strain-gradient model of the form

ˆ
Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
d curlβ

d | curlβ|

)
d curlβ,

where C is a linearized elastic tensor and ϕ is a 1-homogeneous function.
As a main tool for compactness in the case of a rotationally invariant energy density W with mixed
growth and well-separateness of dislocations, we prove a generalized rigidity estimate for fields with
non-vanishing curl. The estimate bounds the distance of a function f to a single rotation in terms
of the distance of f to the set of rotations and the total variation of the measure curl f . As a major
ingredient, we show that a function f ∈ L1 can be decomposed in two parts belonging to certain
negative Sobolev spaces such that corresponding estimates depend only on div f and the L1-norm of
f . This is a generalization of an estimate due to Bourgain and Brézis, [11].
In the setting of a linearized elastic energy but no well-separateness of dislocations, we prove optimal
lower bounds for compactness with the use of ball construction techniques.
A more detailed overview of the main results of this thesis can be found in Section 1.5.

In order to gain an understanding of the mathematical modeling of dislocations, we will first approach
the effect of plasticity and the role of dislocations therein phenomenologically. Later, we discuss the
continuum mechanical description of dislocations and heuristics for the scaling of the energy, Section
1.2 and Section 1.3. An overview of mathematical contributions to the field is presented in Section
1.4.

1.1 A Phenomenological Approach to Crystal Plasticity and

Dislocations

(a) The undisturbed crystal in its
equilibrium configuration.

(b) Under a small load, the crys-
tal deforms elastically.

Figure 1.2: Sketch of the elastic deformation of a crystal under a small load.

Let us first consider the following idealized two-dimensional example which captures the basic
concepts. Suppose that the equilibrium configuration of a given material is a simple cubic lattice.
Applying a small shear load as in Figure 1.2 induces a small distortion of the crystal lattice, Figure
1.2b. After unloading, the crystal regains its equilibrium shape, Figure 1.2a. This is called an elastic

4



1.1 A Phenomenological Approach to Crystal Plasticity and Dislocations

deformation. If we increase the load over a critical value, we observe a slip of the upper atoms in
horizontal direction resulting in a so-called elasto-plastic deformation, see Figure 1.3a. Note that the
bonds between the two rows of atoms which were formerly bonded have broken and rebonded one
atom in the direction of the slip. After unloading, the elastic deformation vanishes, Figure 1.3b. As
a consequence of the slip of the upper atoms, a permanent plastic deformation remains. A higher
load results in a larger slip of atoms in horizontal direction and consequently in a larger permanent
deformation after unloading, see Figures 1.3c and 1.3d. If the load becomes too high, the crystal
fractures.

(a) A crystal responding elasto-plastically
to a load that is larger than the critical
yield value.

(b) After unloading, a permanent plastic de-
formation remains.

(c) A larger load induces a larger deforma-
tion.

(d) Also, the remaining plastic deformation
is larger.

Figure 1.3: Under large loads, the crystal deforms elasto-plastically. After removing the load, a per-
manent plastic deformation remains.

The slipping of rows of atoms is also obtained in practice. See Figure 1.4 for an experimental picture
of a cadmium crystal deforming by slip under a tensile load.
In three dimensions, the above considerations correspond to the slip of atoms above a certain plane,
the slip plane. In our example, this is the plane which includes the horizontal direction and the
direction pointing out of the paper. Clearly, the planes and slip directions in which this is possible

Figure 1.4: A scanning electron micrograph of a single crystal of cadmium deforming by slip
as a response to a tensile load in horizontal direction. Unlike in our sketches,
the direction of the load does not lie in the slip plane. Picture reprinted by per-
mission of http://www.doitpoms.ac.uk/tlplib/miller_indices/uses.php (date of retrieval:
04/10/2016).
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1 Introduction

(a) (b) (c)

(d) (e)

Figure 1.5: Sketch of the motion of a dislocation through a crystal. Once the dislocation has moved
through the crystal, a slip remains.

depend on the crystalline structure. Usually, they are described by slip systems (γ,m) ∈ R3 × R3.
Here, γ is the direction of the slip and m is a unit normal to the slip plane. As the plastic deformation
does not change the shape of the equilibrium lattice locally, the slip systems satisfy the condition
γ ·m = 0. Typically, the feasible slip directions are those with the highest number of atoms per length
whereas slip planes have the highest number of atoms per area. For a list of slip systems in typical
crystallographic lattices, we refer to [47].
In 1926, Frenkel computed, in a first approximation and a situation similar to the one in Figure 1.3, a
theoretical critical shear stress that is needed in order to obtain a permanent plastic deformation via
the slip of rows of atoms, [35]. His result states that

τtheoretical ≈
µ

2π
,

where τtheoretical denotes the theoretically needed shear stress and µ is the shear modulus of the
material. As observed in 1929 in [67], this theoretical result differs from practical observations of
the minimal stress needed to obtain a permanent deformation — the yield stress — by orders of
magnitude (at least 103). In the 1930s, several authors introduced the idea of dislocations as the
mechanism for plastic deformations, cf. [66, 73]. The idea is the following. For moving a complete
plane of atoms simultaneously, a lot of energy is required. In practice, the plastic flow is not uniform.
Instead, one can imagine that first the atoms on the very left slip to the right. Then, this defect —
called dislocation — can be transported through the crystal, see Figure 1.5. In particular, as the slip
mechanism occurs on a plane, the defect is necessarily concentrated on the so-called dislocation line
which lies in the slip plane and separates regions with different slips, see Figure 1.6. In our case, this
is the line pointing into the paper and passing through the two-dimensional defect.
In order to describe the dislocation, the two most important quantities are the tangent vector of the
dislocation line and the Burgers vector which is essentially the difference of the slip of the neighboring
regions, cf. [15]. The procedure to compute the Burgers vector consists in drawing a circuit around
the defect in the deformed crystal and drawing the same circuit in a perfect reference crystal, see
Figure 1.6. Every time we surround a defect in the deformed configuration, the associated circuit in
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1.2 The Continuum Description of Dislocations

the reference crystal is not closed. The difference of the ending point and the starting point of this
path in the reference crystal is the Burgers vector of the dislocation. Note that, by definition, the
Burgers vector can only be an integer combination of the basic lattice vectors. The convention is that
the Burgers circuit is drawn in the positive sense with respect to the tangent of the corresponding
dislocation line, see Figure 1.6a.
There exist two important basic types of dislocations: Edge dislocations (the Burgers vector is

(a) Sketch of a Burgers circuit (red), the dis-
location line (blue, pointing into the pa-
per), and the slip plane (gray) in the dis-
torted crystal.

b

(b) The associated path in the perfect refer-
ence crystal (red) and the Burgers vector
(blue).

Figure 1.6: Sketch of an edge dislocation in a three-dimensional cubic lattice.

perpendicular to the dislocation line; see Figure 1.6 and Figure 1.7 for a picture in the continuous
setting) and screw dislocations (the Burgers vector is parallel to the dislocation line; see Figure 1.7
for a sketch in the continuous setting). Clearly, a lot of dislocations which appear in practice are of
mixed type.
We restrict ourselves to this basic view on dislocations. For a discussion of more complex phenomena
involving dislocations, we refer to [47] or [50].
In the next section, we link these basic crystallographic considerations with a continuum mechanical
description.

1.2 The Continuum Description of Dislocations

For a general introduction to continuum mechanics, we refer to [45]. We limit ourselves to quickly
explaining how dislocations are modeled in this context.
The deformation of a body Ω ⊂ R3 is described by a function ϕ : Ω → R3. In the nonlinear theory
(finite plasticity), the elastic energy of the deformed configuration is given by a nonlinear functional
depending on ϕ. In the linearized theory, it is assumed that the deformation is already very close to the
identity map. By a Taylor expansion of the elastic energy, the quantity of interest is the displacement
field u which is given by u(x) = ϕ(x)− x.
Now, let us consider a deformation or displacement of a crystal Ω given by a function v ∈ SBV (Ω;R3)

(for an introduction to functions of bounded variation, see [5]) such that a constant jump of v is
concentrated on a hyperplane Σ with a jump height [v] that corresponds to a feasible translation of
the crystal lattice. Here, the jump on Σ represents exactly the slip over the slip plane Σ in direction

7



1 Introduction

[v]. The classical decomposition for the derivative of a function in SBV (Ω;R3) in this setting is

Dv = ∇v dL3 + [v]⊗mdH2
|Σ∩Ω,

where m is the normal to Σ.
In the linearized theory of dislocations, one decomposes the strain additively into an elastic and a
plastic part, Dv = βel+βpl. Here, the elastic part is exactly represented by the absolutely continuous
part of the measure Dv i.e., by ∇v dL3 whereas the plastic part is given by [v] ⊗mdH2

|Σ∩Ω. As Dv
is the derivative of v, it holds in the sense of distributions curlDv = 0. Since [v] is assumed to be
constant, this implies

curlβel = − curlβpl = [v]⊗ τ H1
|∂Σ∩Ω, (1.1)

where the curl is assumed to act row-wise. Here, ∂Σ has to be understood as the one-dimensional
boundary of the hyperplane Σ and τ is the unit tangent to ∂Σ in the correct orientation. In partic-
ular, the dislocations are concentrated on the dislocation lines ∂Σ as in the discrete case. The right
hand side of (1.1) is usually referred to as Nye-dislocation-density, [63], and is denoted by µ. An easy
consequence of (1.1) is that a dislocation density µ satisfies divµ = 0.
Moreover, note that the curl-condition in (1.1) is the continuous counterpart to the discrete circula-
tion condition via the Burgers circuit. Hence, the dislocation measure µ captures the most important
quantities of the lattice distortion, precisely the Burgers vector b = [v] and the direction of the dis-
location line τ . In general, we should be more precise and write b = [[v]] as the dislocation might
separate regions with different slips and not only regions with slip from those without slip. As in the
discrete case, edge dislocations are characterized by b ⊥ τ whereas screw dislocations correspond to
b ‖ τ . A sketch of continuum deformations with an edge or a screw dislocation can be found in Figure
1.7, cf. the discrete case in Figure 1.6a and the deformation of cylinders discussed by Volterra in [76].

The nonlinear theory is observer invariant. Hence, also rotated versions of the feasible Burgers vectors
appear in the deformed configuration. The (locally defined) inverse strains correspond to mappings
onto the reference configuration in which only the non-rotated lattice exists. Therefore, the consid-
erations above should be formulated in terms of the inverse strains. However, in the following we
will neglect this modeling issue and use the inverse strains in the nonlinear theory as if they were the
strains. A more detailed discussion of this transference can be found in [60].
In a variational model, one associates to the elastic strain the stored elastic energy, which is of the
form ˆ

Ω

W (βel) dx

for an elastic energy density W : R3×3 → [0,∞]. We will quickly discuss the classical assumptions
on W ; for a general introduction to elasticity theory we refer to [45]. A mathematically rigorous
derivation of the linearized theory of elasticity can be found in [28].
In the linearized theory, which is formulated in terms of the displacement, W would be given by a
linear strain-stress-correspondence i.e., W (βel) = Cβel : βel. Here, the so-called elasticity tensor C
only acts on the symmetric part of a matrix and satisfies c|Fsym|2 ≤ CF : F ≤ C|Fsym|2 for any
matrix F ∈ R3×3.

8



1.2 The Continuum Description of Dislocations

b b

Figure 1.7: Sketch of an edge dislocation (left) and a screw dislocation (right) in a deformed cylinder.
The dislocation line is the dashed, red line oriented downwards. The Burgers vector is
drawn in blue.

In the nonlinear theory, which is formulated in terms of the deformation, W satisfies the usual
assumptions of nonlinear elasticity, precisely

• frame indifference: W (RF ) = W (F ) for all R ∈ SO(3),

• stress-free reference configuration: W (Id) = 0.

Moreover, one would typically complement these assumptions by a coercivity assumption of the form
W (F ) ≥ dist(F, SO(3))2.
In both theories, the singularity of the elastic strain (1.1) leads to some inconsistency with this
energetic description: let us consider a single straight dislocation line in the x3-direction with a given
Burgers vector b ∈ R3 and an associated elastic strain satisfying

curlβel = b⊗ e3H1
|R e3 .

Consider the following cylinder around the dislocation line, see Figure 1.8:

BR,r,h =
{

(x1, x2, x3) ∈ R3 : r2 ≤ x2
1 + x2

2 ≤ R2, 0 ≤ x3 ≤ h
}
.

We show that the energy diverges on these cylinders as r → 0. First, note that by a version of Korn’s
inequality (see for example [23, Lemma 5.9]) there exists a constant skew-symmetric matrix W such
that ˆ

BR,r,h

|(βel)sym|2 dx ≥ k
ˆ
BR,r,h

|βel −W |2 dx.

In general, the constant k depends on R, r, h but it may be chosen uniformly for R, h fixed and r → 0.

9



1 Introduction

h

R
r

Figure 1.8: The elastic energy on cylinders with height h, outer radius R and inner radius r around a
straight dislocation line in vertical direction (red) diverges as the inner radius tends to 0.

This leads to
ˆ
BR,r,h

W (βel) dx ≥ k
ˆ
BR,r,h

|βel −W |2 dx

= k

ˆ h

0

ˆ R

r

ˆ
{x2

1+x2
2=t2,x3=s}

|βel −W |2 dH1 dt ds

≥ k
ˆ h

0

ˆ R

r

1

2πt

∣∣∣∣∣∣∣
ˆ
{x2

1+x2
2=t2,x3=s}

(βel −W ) ·

 x2

−x1

0

 dH1

∣∣∣∣∣∣∣
2

dt ds

= k

ˆ h

0

ˆ R

r

|b|2

2πt
dt ds

= k
|b|2

2π
h log

(
R

r

)
. (1.2)

In particular, one sees that the energy blows up logarithmically for R and h fixed whereas r → 0.
There are different ways of treating this modeling inconsistency. Typically, in these models continuous
quantities such as the elastic strain coexist with length scales coming from the discrete picture, e.g. the
lattice spacing, which determines the set of admissible Burgers vectors.
In equation (1.1), one could use more regular versions of the dislocation density to gain integrability
of βel. Also, a different growth of W could be assumed (at least in the nonlinear case), cf. [71]. In
Chapters 3 and 4, we consider a nonlinear energy density with subquadratic growth for large strains.
In the core-radius approach, one computes the elastic energy on a reduced domain which is obtained by
cutting out a neighborhood of the size of the lattice spacing of the support of the dislocation density
(the so-called core), cf. [7, 47]. This approach is justified by the fact that there can only be finitely
many atoms in the cores which should not induce such a high amount of energy. A mathematically
rigorous result in the context of screw dislocations can be found in [68]. In Chapter 5 we discuss this
approach in the context of a linearized elastic energy.
Another approach would be to consider the slip [v] as the main variable and let it transition between
two admissible values at a scale of order of the lattice spacing. These phase-field models were inspired
by the classical works by Peierls [65] and Nabarro [61]. For a modern version of this model for dislo-
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1.2 The Continuum Description of Dislocations

Ω× {0}

(a) Sketch of the cylindrical set Ω×(−∞;∞)
and the straight, parallel dislocation
lines (red). The core regions of the
lines (red) are only drawn in the plane
{x3 = 0}, the corresponding Burgers
vectors are drawn in blue.

Ω

(b) Sketch of Ω. The dislocation cores
around the intersection with the disloca-
tion lines are drawn in red, the Burgers
vectors (which are all in the same plane
as Ω) are drawn in blue.

Figure 1.9: Sketch of the geometry in the case of straight, parallel dislocation lines of edge type.

cations, we refer to [54] and references therein.

Next, let us explain how the specific situation of straight, parallel dislocation lines of edge type in a
crystal with an infinite cylindrical structure Ω × R can be understood in a reduced two-dimensional
model. This model will be the starting point of our analysis. Let us consider vertical dislocation lines
and fix the points xi ∈ Ω where the lines intersect the x1-x2-plane. We may identify the points xi
with their canonical versions in R3 if needed. For a sketch of the situation, see Figure 1.9b. Then the
dislocation density (recall (1.1)) takes the form

µ =
∑
i

bi ⊗ e3H1
|xi+Re3 .

As we consider dislocations of edge type, the Burgers vectors bi are perpendicular to e3 and are
therefore of the form bi = (bi1, b

i
2, 0)T . This leads to the representation

µ =
∑
i

0 0 bi1

0 0 bi2

0 0 0

 δxi ⊗ L1,

where the measure has to be understood as a product measure on R2×R. By the cylindrical symmetry,
we make the ansatz for the deformation ϕ(x1, x2, x3) = (ϕ1(x1, x2), ϕ2(x1, x2), x3)T , respectively the
displacement has the form u(x1, x2, x3) = (u1(x1, x2), u2(x1, x2), 0)T . For the corresponding elastic
strain, it holds that (βel)ij = δ33 and (βel)ij = 0 for all terms involving at least one index equal to 3.
For the other terms, we deduce from (1.1) that(

curl

(
(βel)11 (βel)12

(βel)21 (βel)22

))
|Ω×{0}

=
∑
i

(
bi1

bi2

)
δxi . (1.3)

11



1 Introduction

Consequently, in this situation there is no real dependence on the x3-coordinate. Hence, it is enough
to understand the elastic energy on the two-dimensional slice Ω. In the theory of linear elasticity,
which is formulated in terms of the displacement, this leads to the energy

ˆ
Ω

W


(βel)11 (βel)12 0

(βel)21 (βel)22 0

0 0 0


 dx

subject to the constraint (1.3). Here, W is given as the quadratic form of an elasticity tensor as
explained before. If the theory is set in the context of nonlinear elasticity, the integral differs only
by a one in the lower right entry of the matrix. Moreover, W would be a rotationally invariant
energy density. One can check easily that the assumptions of elasticity in the nonlinear or linearized
setting for W can be transferred to the corresponding statements in two dimensions for the associated
two-dimensional energy densities given by

W̃

((
F11 F12

F21 F22

))
= W


F11 F12 0

F21 F22 0

0 0 0


 , W̃

((
F11 F12

F21 F22

))
= W


F11 F12 0

F21 F22 0

0 0 1


 .

Summarized, we obtain a stored elastic energy of the form
ˆ

Ω

W (β) dx for β : Ω→ R2×2 subject to curlβ =
∑
i

bi δxi , (1.4)

where the bi ∈ R2 are (projected) admissible Burgers vectors andW satisfies the classical assumptions
of elasticity (linear or nonlinear) in two dimensions as discussed for three dimensions before.
Also, this two-dimensional energetic description features the same inconsistency of a logarithmically
diverging energy close to the singularities induced by the curl-condition; the computation is very
similar to (1.2).
In this thesis, we discuss two models: a rotationally invariant energy with mixed growth and a core-
radius approach in the setting of linearized elasticity, which corresponds in the two-dimensional setting
to eliminating balls of the size of the lattice spacing around the points xi, see Figure 1.9b. In both
settings, we identify the Γ-limit of the suitably rescaled stored energy.

1.3 Heuristics for the Scaling of the Stored Energy

Starting from the two-dimensional model for straight, parallel edge dislocations in (1.4), in this chapter
we discuss the scaling of the stored energy.
A computation similar to the one in (1.2) shows in the case of a linearized elastic energy that for a
dislocation density of the form µ =

∑M
i=1 bi δxi such that the xi are separated by a distance of at least

2εγ for some 0 ≤ γ < 1 and an associated elastic strain β satisfying curlβ = µ we find that

M∑
i=1

ˆ
Bεγ (xi)\Bε(xi)

W (β) dx ≥ c
M∑
i=1

|bi|2 (1− γ)| log ε|. (1.5)

For a lattice spacing ε, the Burgers vectors are typically of size ε. Hence, the estimate (1.5) leads to
the conjecture that the stored energy close to the dislocations scales as #{dislocations} ε2| log ε|.
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Furthermore, notice that the lower bound on the right hand side of (1.5) depends only on the dislo-
cation density. It shows that each dislocation induces a minimal amount of energy depending on its
Burgers vector. The full self-energy of each dislocation is distributed in an area of order 1 around
the dislocation. However, a fraction of (1− γ) of the full self-energy can already be found in a region
of radius εγ around each dislocation. Hence, most of the self-energy is concentrated in a region that
shrinks to the dislocation point as the lattice spacing ε tends to 0. Consequently, depending on the
rescaling of the energy, we should expect to find a relict from the self-energy close to the dislocations
in the limit. On the other hand, the limit should also capture the elastic energy far from the disloca-
tions.
A more detailed discussion of the heuristics for the scaling, which involves also the interaction of
dislocations, can be found in [38] and [60]. It leads to the same result i.e., the expected scaling for
Nε-many dislocations is Nεε2| log ε|.
On the other hand, consider a dislocation density µε and an associated strain βε for the lattice spacing
ε > 0 such that the stored energy is of order Nεε2| log ε|. Estimate (1.5) shows that the dislocation
energy µε should be of order εNε. If we assume that W has quadratic growth, the naive conjecture is
that βε is of order ε

√
Nε| log ε|. One sees that the dislocation density and the associated strain are

of the same order if and only if Nε ∼ | log ε|. This is the so-called critical regime. The sub-critical
and super-critical regime are the regimes corresponding to Nε � | log ε|, respectively Nε � | log ε|, in
which one of the quantities is expected to be much greater than the other.

1.4 Recent Mathematical Contributions to Dislocation Theory

In the past years, there has been extensive research in the mathematical community to understand
crystal plasticity at different scales and from different points of view. In [6], Ariza and Ortiz develop
a model with fully discrete dislocations. The basis of this model are discrete eigenstrains and ideas
from algebraic topology. In [56], Luckhaus and Mugnai present a different fully discrete model for
dislocations which is completely set up in the actual configuration and does not need to refer to a
global reference configuration. In the context of screw dislocations and antiplane plasticity, Ponsiglione
showed in [68] the Γ-convergence of a discrete model to a continuum model (after suitable rescaling).
A relation between discrete screw dislocation models, models for spin system, and the Ginzburg-
Landau model in two dimensions is discussed in [2]. Building upon this result in [3], Alicandro et
al. treat the dynamics of screw dislocations and show the convergence of the time-discrete minimizing
movement with respect to a quadratic isotropic dissipation to a gradient flow of the renormalized
energy. Choosing a crystalline dissipation that accounts for the specific lattice structure and that is
minimal exactly on the preferred slip directions leads to a dynamical model that predicts motion in
preferred slip directions, [4].
Another option is to start from continuum (or semi-discrete) models as discussed in Section 1.2. A
phase-field model for dislocations based on [54] and inspired by the classical works of Peierls and
Nabarro is considered in [39, 40]. In these papers, Müller and Garroni study the Γ-limit of a model
for the slip on a single slip plane, on which one slip system is active, subject to pinning conditions
in certain areas (e.g. inclusion of a material that restrains slip). The elastic energy induced by a
certain slip leads to a nonlocal term involving a singular kernel, which behaves like the H

1
2 -norm of

the slip. Depending on the number of obstacles, there exist three different scaling regimes. The most
interesting regime is the one in which the number of obstacles scales like ε−1| log ε|. Here, the energy
converges to a line tension limit i.e., the limit energy involves an energy defined on the dislocation lines
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possibly depending on the orientation of the line and the Burgers vector. In [16] and [21], the authors
treat the situation with multiple active slip systems on the slip plane without a pinning condition.
The logarithmically rescaled energy (to compensate the usual logarithmic convergence) Γ-converges
again to a line tension limit as the lattice spacing tends to zero. A rescaling by | log ε|2 leads to a
strain-gradient model in the limit, [22]. The case of several slip planes and a logarithmic rescaling
is considered in [42] by Gladbach. If the planes are well-separated, one recovers essentially the same
behavior as for a single plane. On the other hand, if the planes have a distance of order εγ for some
1 > γ > 0, the dislocation lines interact, and microstructures at different scales may result in a lower
limit energy. Moreover, the author considers also the case of anisotropic elasticity. For a discussion
of the results, see also [24].
Recently, a first fully three-dimensional result was established in the setting described at the beginning
of Section 1.2 by Conti, Garroni, and Ortiz in [23]. The authors derive a line tension limit from a
dislocation model in the setting of linearized elasticity as the lattice spacing tends to zero under some
diluteness condition on the dislocation lines. The authors show that a core-radius approach and a
regularization of the dislocation densities lead to the same result. Within this framework, it is useful
to interpret the dislocation lines as tensor-valued 1-currents. Compactness and lower-semicontinuity
of energies defined on 1-currents have been discussed by Conti, Garroni, and Massaccesi in [20].
Many other results are restricted to the situation of plane plasticity as described at the end of Section
1.2, which is also the starting point of the analysis in this thesis. A first result in this setting with
a core-radius approach was established in [17]. For a fixed finite number of dislocation positions,
Cermelli and Leoni derive an asymptotic expansion of the energy as the lattice spacing goes to zero in
the setting of isotropic, linearized elasticity. The term with leading order | log ε| is the self-energy of
the dislocations whereas the lower order term is considered to be the counterpart to the renormalized
energy of vortices in the Ginzburg-Landau model; for a deeper insight to the theory for Ginzburg-
Landau vortices, we refer to [9]. DeLuca, Garroni and Ponsiglione derived a line tension limit as
the Γ-limit in the setting of linearized elasticity in the subcritical regime without assumptions on
the positions of the dislocations, [30]. In order to compute sharp lower bounds, they adapt ball-
construction techniques as known from [51, 70] to identify clusters of dislocations which contribute
jointly to the energy on certain scales. Under the assumption of well-separateness of the dislocations,
this result was generalized by Scardia and Zeppieri in [71] to a nonlinear situation. The authors
consider a core-radius approach for a quadratic energy density and a regularization by an energy
density with subquadratic growth for large strains. Both approaches lead essentially to the same line
tension limit as already found in [30].
In the critical scaling regime (the number of dislocations is of order | log ε|), Garroni, Leoni, and
Ponsiglione derive a strain-gradient plasticity model under the assumption of well-separateness of
dislocations, [38]. The counterpart for a quadratic, rotationally invariant energy density and a core-
radius regularization was established in [59] and [60] by Müller, Scardia, and Zeppieri.
In elasticity theory, the main tool to obtain compactness is Korn’s inequality [36,52,53], respectively
a geometric rigidity estimate [37], see also [19, 58] for variants with mixed growth. These estimates
are valid for gradients. However, the presence of dislocations leads to strains with non-vanishing
curl. In the case of a finite number of dislocations, the classical results can still be used to prove
good estimates. The transition to a growing number of dislocations is non-trivial. For this reason,
in [38,59,60] corresponding estimates for fields with non-vanishing curl are developed. A central role
in the proofs plays a very fine estimate of the H−1-norm for L1-vector-fields whose divergence is in
H−2 in two dimensions, [14] (see also [11,12]). Related results can be found in [57,74,75].
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1.5 Main Results

In the following section we present the main results of this thesis.

1.5 Main Results

As already discussed in Section 1.2—see in particular (1.4)—, in this thesis we will focus on a dislo-
cation model for straight, parallel edge dislocations which is formulated in the orthogonal plane. We
are interested in the behavior of the stored elastic energy as the lattice spacing ε goes to zero.
First, we consider a nonlinear energy density W with mixed growth to regularize the energy as pro-
posed in [71] i.e.,W ∼ min{dist(·, SO(2))2,dist(·, SO(2))p} for p < 2. The renormalized stored energy
is given by

Eε(µ, β) =

 1
ε2Nε| log ε|

´
Ω
W (β) dx if β ∈ Lp(Ω;R2×2), µ = curlβ =

∑
i εξiδxi , ξi ∈ S,

+∞ else inM(Ω;R2)× Lp(Ω;R2×2),
(1.6)

where S is the set of (renormalized) admissible Burgers vectors depending on the crystalline structure.
Under the assumption of well-separateness of dislocations, we identify all scaling regimes of the stored
energy depending on the number of dislocations Nε and show Γ-convergence of the energy Eε. The
three different regimes are the subcritical regime Nε � | log ε|, the critical regime Nε ∼ | log ε|, and
the supercritical regime Nε � | log ε|. The corresponding limits are given by

• The subcritical regime: 0� Nε � | log ε|:

Esub(µ, β,R) =


1
2

´
Ω
Cβ : β dx+

´
Ω
ϕ
(
R, dµd|µ|

)
d|µ| if µ ∈M(Ω;R2),

curlβ = 0, R ∈ SO(2)

+∞ otherwise .

• The critical regime: Nε ∼ | log ε|:

Ecrit(µ, β,R) =


1
2

´
Ω
Cβ : β dx+

´
Ω
ϕ
(
R, dµd|µ|

)
d|µ| if µ ∈ H−1(Ω;R2) ∩M(Ω;R2),

curlβ = RTµ,R ∈ SO(2)

+∞ otherwise .

• The supercritical regime: Nε � | log ε|:

Esup(β) =

 1
2

´
Ω
Cβ : β dx if βsym = 1

2 (βT + β) ∈ L2(Ω,R2×2),

+∞ otherwise .

Here, C = ∂2W
∂2F (Id) and the function ϕ is given by a cell-formula and a relaxation procedure. The

term involving C measures the stored linearized elastic energy whereas the term involving ϕ accounts
for the self-energy of concentrated dislocations. The rotation R reflects the fact that we derive this
linearized model from a nonlinear, rotationally invariant model.
In particular, the critical regime is of interest. Here, the scaling of the strains and the dislocation
densities is of the same order. We derive a strain-gradient plasticity model as the Γ-limit. Unlike
most macroscopic plasticity models, strain-gradient models are not scale independent but they add
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a certain length scale to the problem in order to capture certain size effects. For general insight to
strain-gradient plasticity models we refer, for example, to [8,33,34,46,62] and references therein. Note
that ϕ is 1-homogeneous as also proposed in other strain-gradient models, e.g. in [25] the authors
choose ϕ = | · |. In addition, the limit turns out to be essentially the same as the one derived from
a core-radius approach in a linearized, respectively non-linear, setting in [38, 59]. Hence, this thesis
complements these results and justifies a-posteriori the usage of an ad-hoc cut-off radius in [38,59].
Moreover, we prove compactness in the subcritical and critical regime. In the supercritical regime, we
construct a counterexample to compactness.
The main tool of our compactness statement is a generalized version of a geometric rigidity estimate
with mixed growth for fields with non-vanishing curl. Precisely, we prove that for p < 2 and a simply
connected set Ω ⊂ R2 with Lipschitz boundary, there exists a constant C > 0 such that for all
β ∈ Lp(Ω;R2×2) satisfying that µ = curlβ is a measure there exists a rotation R ∈ SO(2) such that

ˆ
Ω

min{|β −R|2, |β −R|p} dx ≤ C
(ˆ

Ω

min{dist(β, SO(2))2,dist(β, SO(2))p}dx+ |µ|(Ω)2

)
. (1.7)

In the proof, the central point is to derive good estimates for curlβ in the space H−1 + W−1,p.
This can be done by a generalization of a fine regularity estimate due to Bourgain, Brézis and, van
Schaftingen, [12,14]. We prove that for an open, bounded set Ω ⊂ R2 with Lipschitz boundary, p < 2,
and a vector-valued function f ∈ L1(Ω;R2) such that div f = a + b ∈ H−2 + W−2,p, there exist
A ∈ H−1 and B ∈W−1,p such that f = A+B and

(i) ‖A‖H−1 ≤ C(‖f‖L1 + ‖a‖H−2),

(ii) ‖B‖W−1,p ≤ C‖b‖W−2,p .

Second, we consider a core-radius approach which is set in the context of straight, parallel edge
dislocations and linearized elasticity with elasticity tensor C. We focus on the critical rescaling by
| log ε|2. The main difference to existing results (in particular [30]) is that we do not assume well-
separateness of the dislocations. We prove that the Γ-limit is finite for β ∈ L2(Ω;R2×2) and µ =

curlβ ∈M(Ω;R2) ∩H−1(Ω;R2). There, it is given by

ˆ
Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|,

where again ϕ is given by a cell-formula and a relaxation procedure.
In order to obtain adequate lower bounds, we adjust a technique known in the theory of the Ginzburg-
Landau model as ball-construction technique, see e.g. [51, 70]. Versions of the ball construction tech-
nique have also been applied successfully to dislocation problems in the subcritical scaling regime,
[30, 68]. The building block for estimates using the ball construction are good lower bounds on an-
nuli. In elasticity theory, there is a massive loss of rigidity on thin annuli which becomes manifest in
inadequate lower bounds. Hence, the focus of our analysis is to find thick annuli which carry already
most of the energy. Using the established lower bounds, we show compactness and discuss optimality
of these results.

This thesis is ordered as follows. In the next section, we introduce notation. Chapter 2 is de-
voted to prove the generalization of the Bourgain-Brézis type estimate discussed above. In Chapter
3, we use the Bourgain-Brézis type estimate to prove the generalized rigidity estimate for fields with
non-vanishing curl in the context of a nonlinear energy density with mixed growth, see (1.7). Armed
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with the generalized rigidity estimate, we discuss the behavior of the energy Eε as defined in (1.6).
We prove Γ-convergence and compactness in the critical and subcritical regime in Section 4.3 and
Section 4.4. In the supercritical regime (Section 4.5), we prove Γ-convergence for Eε and discuss the
non-existence of a compactness result. Finally, in Chapter 5 we discuss a core-radius approach without
the assumption of well-separateness of dislocations in the critical scaling regime.

1.6 Notation

In this thesis, we use standard notation for the space Rn. The euclidean norm is denoted by | · |. For
two scalar values a, b ∈ R, we write a∨b = max{a, b} and a∧b = min{a, b}. Rm×n is the space ofm×n
matrices. The identity matrix is denoted by Id. For a given matrix M ∈ Rn×n, we write MT for the
transposed matrix. Moreover, we use the classical notation Msym = 1

2 (M + MT ) for the symmetric
part of M and Mskew = 1

2 (M − MT ) for the skew-symmetric part of M . The subsets Sym(n),
Skew(n), SO(n) of Rn×n denote the space of symmetric, respectively skew-symmetric matrices, and
the set of rotations. For two given vectors a, b ∈ Rn, we write a⊗ b ∈ Rn×n for the rank-one matrix
whose (i, j)-th entry is given by aibj . In addition, for a matrix-valued function the operators div and
curl are always understood to act row-wise.
The n-dimensional Lebesgue measure of a measurable set A ⊂ Rn is denoted by Ln(A) or sometimes
just by |A|. For the k-dimensional Hausdorff measure we write Hk. More generally, for an open set
Ω ⊂ Rn we use the standard notation M(Ω;Rm) for the space of (vector-valued) Radon measures.
For a Radon measure µ ∈M(Ω;Rm), the quantity |µ| denotes the associated total variation measure.
For a µ-measurable set A, by µ|A we mean the restriction of the measure µ to the set A, defined by
µ|A(B) = µ(A ∩ B) for any µ-measurable set B. The weak star convergence of a sequence of Radon
measures µk to µ is indicated by µk

∗
⇀ µ. For a general introduction to measure theory, we refer

to [32].
Moreover, we use standard notations for Lebesgue spaces. The weak-Lp spaces are denoted by Lp,∞

and equipped with the quasi-norm ‖f‖Lp,∞ = inf{C > 0 : λLn({|f | > λ})
1
p ≤ C for all λ > 0}. The

notation for Sobolev spaces of order k ∈ N on an open set Ω is W k,p(Ω;Rm) for 1 ≤ p ≤ ∞; in the
special case p = 2, we write also Hk(Ω;Rm). For an open, bounded set Ω with Lipschitz boundary,
the space W k,p

0 (Ω;Rm) denotes all functions in W k,p(Ω;Rm) whose derivatives up to order k − 1

vanish on the boundary in the sense of traces. The homogeneous norm in W k,p
0 (Ω;Rm) is given by

‖f‖Wk,p
0 (Ω;Rm) =

∑
|α|=k ‖Dαf‖Lp . On bounded sets Ω, this norm is equivalent to the classical Sobolev

norm inW k,p
0 (Ω;Rm). The topological dual space ofW k,p

0 (Ω;Rm) is denoted byW−k,p
′
(Ω;Rm) where

p′ is determined by the relation 1
p + 1

p′ = 1; in the special case p = 2 we write H−k(Ω;Rm). For a
general introduction to Sobolev spaces, see [1].
For a general pair of a space X and its dual X ′, we write < ·, · >X′,X for the dual pairing.
Furthermore, we use the usual notation for Γ-convergence, cf. [13, 27].
Finally, we make use of the convention that if not explicitly stated differently, C denotes a positive
constant which may change in a chain of inequalities from line to line.
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2 A Bourgain-Brézis type Estimate

This chapter is devoted to prove the following statement which will be needed in the proof of the
generalized rigidity estimate for an energy density with mixed growth in chapter 3.

Theorem 2.0.1. Let 1 < p < 2 and Ω ⊂ R2 open, bounded with Lipschitz-boundary. Then there
exists a constant C > 0 such that for all f ∈ L1(Ω;R2) satisfying div f = a+ b ∈ H−2(Ω) +W−2,p(Ω)

there exist A ∈ H−1(Ω;R2) and B ∈W−1,p(Ω;R2) such that f = A+B,

‖A‖H−1 ≤ C(‖f‖L1 + ‖a‖H−2), and ‖B‖W−1,p ≤ C‖b‖W−2,p .

This is a generalization of a statement which has been proved by Bourgain, Brézis, and van Schaftin-
gen, see [14, Lemma 3.3 and Remark 3.3] and [11, 12]. Their statement is used in the proofs of the
generalized Korn inequality in [38] and the generalized rigidity estimate in [59]. It states the following:

Let Ω ⊂ R2 open, bounded with Lipschitz-boundary. Then there exists a constant C > 0 such that
for all f ∈ L1(Ω;R2) it holds

‖f‖H−1 ≤ C(‖f‖L1 + ‖ div f‖H−2).

Let us shortly remark the following: the exponents for the Sobolev embedding H1
0 to L∞ are critical

in two dimensions. The embedding does not hold. If it held, by duality, there would be a bounded
embedding L1 → H−1 which is also not true in general. The statement above gives a positive answer
to the question which L1-functions are elements of H−1.
The general statement by Bourgain, Brézis, and van Schaftingen is also valid in higher dimensions
where one has to replace the Sobolev spaces with L2-integrability by those with Ln-integrability. How-
ever, we restrict ourselves to the two-dimensional case.

The proof of Theorem 2.0.1 consists of different steps. The first step is to prove a primal statement
from which the result can be derived via dualization. Precisely, we show first (Theorem 2.4.4) that
for 2 < q <∞ and a function f ∈ H1

0 (Ω;R2) ∩W 1,q(Ω;R2) there exists a decomposition f = g +∇h
such that

‖g‖L∞(Ω;R2) + ‖g‖H1
0 (Ω;R2) + ‖h‖H2

0 (Ω) ≤ C‖f‖H1
0 (Ω;R2),

‖g‖W 1,q
0 (Ω;R2) + ‖h‖W 2,q

0 (Ω) ≤ C‖f‖W 1,q
0 (Ω;R2).

This reduces to find, for a given function f , a good solution to curl g = curl f . In two dimensions, the
curl-operator differs from the div-operator only by a rotation by 90 degrees. For the sake of a simpler
notation, we formulate and prove the results for the div-operator. We show the existence of good
solutions to div Y = f first on the torus (Theorem 2.0.1) and use localization and covering arguments
to transport the result for the torus to general Lipschitz domains, Theorem 2.4.1. Then, we establish
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2 A Bourgain-Brézis type Estimate

the main result of this chapter by dualization and scaling in section 2.4.

In the next section, we discuss first some preliminaries which are useful in the proof of the state-
ment on the torus. More precisely, we discuss convolution estimates for special kernels, estimates for
very particular Fourier multipliers, and give a brief overview over Littlewood-Paley theory for the
torus.

2.1 Preliminaries

The objective of this section is to establish tools from Harmonic Analysis which will turn out to be
useful in the proof of the primal Bourgain-Brézis type estimate on the torus. For a general introduction
to Harmonic Analysis, we refer to [43,72].
First, let us introduce some notation. By Πn we denote the n-dimensional torus which can be identified
with [−π, π]d together with the measure 1

(2π)d
Ld. For a function f ∈ L1(Πd) and n ∈ Zd, we write

f̂(n) = 1
2π

´ π
−π f(x)ein·x dx for its n-th Fourier coefficient.

For n ∈ N, the n-th Fejér kernel on the one-dimensional torus Π1 ' [−π, π] is defined as

Kn(x) =
∑
|k|<n

n− |k|
n

eikx =
1

n

1− cos(nx)

1− cos(x)
≥ 0,

see Figure 2.1. On Π2 we write Kn ⊗Kn for the kernel given by Kn ⊗Kn(x, y) = Kn(x)Kn(y).
The main property of the Fejér kernel is that Kn is a nonnegative kernel that is localized in Fourier
space. Moreover, it holds for any trigonometric polynomial P =

∑
|k|<n ak e

inx of degree less than
n that P ∗ ((1 + einx + e−inx)Kn) = P where the convolution is meant as a convolution on Π1. In
particular, it follows that |P | ≤ 3(|P | ∗Kn) as Kn is nonnegative.
As a first tool for the proof of the Bourgain-Brézis type estimate we show a convolution estimate for
the Fejér kernels. First, we prove the existence of symmetrically decreasing majorants for the Fejér
kernels with uniformly bounded integrals. This property is useful to bound convolutions with the
Fejér kernels in terms of maximal functions which in turn leads to good Lp-estimates.

Lemma 2.1.1. There exists a constant C > 0 such that for each n ∈ N there exists a symmetrically
decreasing function Gn : [−π, π]→ R such that 0 ≤ Kn(x) ≤ Gn(x) and

´ π
−π Gn(x) dx ≤ C.

Proof. Fix n ∈ N. We construct a majorant function for Kn which is constant on intervals of the type[
kπ
n ,

(k+1)π
n

]
where −n ≤ k ≤ n − 1. By Taylor’s theorem, there exists a constant c > 0 such that

1− cos(x) ≥ cx2 for all |x| ≤ π. This inequality implies for x ≥ kπ
n , where 1 ≤ k ≤ n− 1, that

Kn(x) =
1

n

1− cos(nx)

1− cos(x)
≤ 2

n

ck2π2
.

Moreover, one can check that it holds Kn ≤ n. Let us define the function Gn by

Gn(x) = max

{
n,

2n

cπ2

}
1[−πn ,

π
n ] +

n−1∑
k=1

2
n

cπ2k2
1[ kπn ,

(k+1)π
n ]∪[− (k+1)π

n ,−kπn ].
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2.1 Preliminaries

Figure 2.1: The Féjer kernel for n = 1, . . . , 5. Note that the zeros of the n-th Fejér kernel are at 2kπ
n .

Then one obtains Fn ≤ Gn. Moreover, Gn is symmetrically decreasing. In addition, we see that

ˆ π

−π
Gn(x) dx = 2πmax

{
1,

2

cπ2

}
+

n−1∑
k=1

4

ck2π
≤ 2πmax

{
1,

2

cπ2

}
+

∞∑
k=1

4

ck2π
<∞,

where the right hand side does not depend on n.

Armed with these majorants we are able to state and prove the following estimate involving convo-
lutions with the Fejér kernel.

Proposition 2.1.2. Let 1 < q < ∞. Then there exists a constant C > 0 such that for every family
(Fj)j of Lq(Π2)-functions and K̃j = Kj ⊗Kj it holds∥∥∥∥∥∥∥

∑
j

|Fj ∗ K̃j |2
 1

2

∥∥∥∥∥∥∥
q

Lq

≤ C

∥∥∥∥∥∥∥
∑

j

|Fj |2
 1

2

∥∥∥∥∥∥∥
q

Lq

.

Proof. Let j be arbitrary. Let Gj be the majorant from the Lemma 2.1.1. As the functions Gj are
symmetrically decreasing, it follows for all c ∈ R that the set {x ∈ [−π, π] : Gj(x) ≥ c} is a centered
interval around zero. In the following computations, we identify a function on the torus with its
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periodic extension to R:

4π2|Fj ∗ K̃j(x)| ≤
ˆ

[−π,π]2
|Fj(y)|K̃j(x− y) dy

≤ 4π2

ˆ π

−π
Gj(x1 − y1)

ˆ π

−π
|Fj(y1, y2)|Gj(x2 − y2) dy2 dy1

=

ˆ π

−π
Gj(x1 − y1)

ˆ ∞
0

ˆ
{Gj(x2−·)≥t}

|Fj(y1, s)| ds dt dy1

≤
ˆ π

−π
Gj(x1 − y1)

ˆ ∞
0

L1({Gj(x2 − ·) ≥ t})

(
sup

0<r<π

 
Br(x2)

|Fj(y1, s)| ds

)
dt dy1

= ‖Gj‖L1([−π,π])

ˆ π

−π
Gj(x1 − y1)

(
sup

0<r<π

 
Br(x2)

|Fj(y1, s)| ds

)
dy1

≤ ‖Gj‖2L1([−π,π]) sup
0<r<π

 
Br(x1)

(
sup

0<r<π

 
Br(x2)

|Fj(t, s)| ds

)
dt.

In view of the last line, we define the operator

T (f)(x) = sup
0<r<π

 
Br(x1)

(
sup

0<r<π

 
Br(x2)

|f(y1, y2)| dy2

)
dy1.

This operator T corresponds to first applying the one-dimensional Hardy-Littlewood maximal operator
for the torus on f(x1, ·) for each fixed first variable x1 and then applying the one-dimensional Hardy-
Littlewood maximal operator in the first variable to this new function. In this spirit, we write T (f) =

M1(M2(f)) where M1 and M2 denote the maximal operators in the first, respectively second variable.
The Hardy-Littlewood maximal operator satisfies the following vector-valued inequality on the 1-torus,
see for example [44], ∥∥∥∥∥∥∥

∑
j

|M(fj)|2
 1

2

∥∥∥∥∥∥∥
Lq(Π1)

≤ C

∥∥∥∥∥∥∥
∑

j

|fj |2
 1

2

∥∥∥∥∥∥∥
Lq(Π1)

.

Together with Fubinii’s theorem, this allows us to estimate the quantity of interest:

4qπ2q

∥∥∥∥∥∥∥
∑

j

|Fj ∗ K̃j |2
 1

2

∥∥∥∥∥∥∥
q

Lq([−π,π]2)

≤C

∥∥∥∥∥∥∥
∑

j

|T (Fj)|2
 1

2

∥∥∥∥∥∥∥
q

Lq([−π,π]2)

= C

ˆ π

−π

ˆ π

−π

∑
j

|M1(M2(Fj))(x1, x2)|2


q
2

dx1 dx2

≤ C
ˆ π

−π

ˆ π

−π

∑
j

|M2(Fj)(x1, x2)|2


q
2

dx1 dx2

≤ C
ˆ π

−π

ˆ π

−π

∑
j

|Fj(x1, x2)|2


q
2

dx2 dx1
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= C

∥∥∥∥∥∥∥
∑

j

|Fj |2
 1

2

∥∥∥∥∥∥∥
q

Lq([−π,π]2)

.

Next, we want to prove multiplier estimates for specific multipliers that appear in the prove of the
Bourgain-Brézis type estimate.
Fourier multiplication operators are operators which are given as multiplication operators in Fourier
space. More precisely, on the torus, one defines for a function m : Zd → C the operator Tm by
Tm(f) = F−1(mF(f)) =

∑
k∈Zd m(k)f̂(k)eik·x. For a measurable function m : Rn → C, one can

define the analog for the Fourier transform on Rn. A classical question is whether this operation defines
a bounded operator from Lp to Lp. By Parseval’s identity, a measurable function m defined on Zn or
Rn defines a bounded Fourier multiplication operator on the torus, respectively Rn, from L2 to L2 if
and only if it is measurable and bounded. Sufficient criteria for the general case 1 < p <∞ on Rn are
given by the classical results by Marcinkiewicz and Hörmander-Mikhlin, see for example [43, Chapter
5]. These results also provide estimates on the operator norm of Tm. By transference results, it is
possible to link multipliers on Rn to multipliers on the n-torus, see for example [43, Section 3.6].
We are interested in the operator norm of a very specific Fourier multiplication operator on the 1-
torus. Let us consider the following subdivision of Z \ {0}: define for k ∈ N and ε > 0 the following
sets of length ∼ ε2k−1:

Irk = (2k−1 + rε2k−1, 2k−1 + (r + 1)ε2k−1] ∩ Z, (2.1)

Jrk = [−2k−1 − (r + 1)ε2k,−2k−1 − rε2k−1) ∩ Z for r = 0, . . . , bε−1c − 1,

I
bε−1c
k =

(
2k−1 + bε−1cε2k−1, 2k

]
∩ Z,

and Jbε
−1c

k =
[
−2k,−2k−1 − bε−1cε2k−1

)
∩ Z.

Now, we define the function mε : Z→ R which will appear as a Fourier multiplier in the proof of the
Bourgain-Brézis type estimate by

mε(l) =


l−(2k−1+rε2k−1)

l if l ∈ Irk ,
l−(−2k−1−rε2k−1)

l if l ∈ Jrk ,

0 if l = 0.

(2.2)

For a sketch of mε, see Figure 2.2.
We are interested in the operator norm of the corresponding Fourier multiplication operator Tmε . In
particular, we want to show that it decays faster than ε

1
2 as ε→ 0.

The application of the Marcinkiewicz multiplier theorem to the extension of mε by linear interpolation
and classical transference results show that mε is a Fourier multiplier on the 1-torus. Unfortunately,
this technique does not provide bounds on the operator norm which decrease as ε→ 0. This is mainly
due to the fact that the bounds provided by the Marcinkiewicz multiplier theorem involve essentially
the variation of mε on each interval of the form [±2k,±2k+1]. This quantity is of order 1.
Fortunately, there exists a multiplier theorem by Coifman, de Francia and Semmes, [18], which involves
the so-called q-variation.

Definition 2.1.1. Let 1 ≤ q <∞. Let I be an interval and m : I → C. We say that m has bounded
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2j 2j+1 2j+2

ε

ε2j ε2j+1

Figure 2.2: Sketch of the function mε drawn as a function on R by extending the definition on the
integers to R.

q-variation on I if

‖m‖Vq(I) = sup
(xj)j⊂I,xj≤xj+1

∑
k≥0

|m(xk+1)−m(xk)|q
 1

q

<∞.

The theorem by Coifman, de Francia and Semmes is the following, [18], see also [55].

Theorem 2.1.3. Let 1 < p, q < ∞ such that
∣∣∣ 12 − 1

p

∣∣∣ < 1
q . For k ∈ Z let Ik = [2k, 2k+1] and

Jk = [−2k+1,−2k]. Then there is a constant C such that for all functions m : R→ C it holds that

‖Tmf‖Lp(R) ≤ C
(

sup
k∈Z
‖m‖L∞(Ik∪Jk) + ‖m‖Vq(Ik) + ‖m‖Vq(Jk)

)
‖f‖Lp(R)

where Tmf = F−1(mF(f)).

Transference results allow us to use the theorem above for the function mε on the torus.

Proposition 2.1.4. Let 1 < p, q <∞ such that
∣∣∣ 12 − 1

p

∣∣∣ < 1
q . Let m : Z→ C and define for 1 ≤ k ∈ N

the quantity

αqm(k) :=

 sup
x=2k,...,2k+1

x=−2k+1,...,−2k

|m(x)|

+

 2k+1∑
l=2k+1

|m(l − 1)−m(l)|q
 1

q

(2.3)

+

 2k+1∑
l=2k+1

|m(−l + 1)−m(−l)|q
 1

q

and aqm(0) = |m(0)|. If supk∈N α
q
m(k) <∞, then it holds∥∥∥∥∥∥

∑
n∈Zd

m(n1)f̂(n)ein·x

∥∥∥∥∥∥
Lp(Πd)

≤ C
(

sup
k∈N

αqm(k)

)∥∥∥∥∥∥
∑
n∈Zd

f̂(n)ein·x

∥∥∥∥∥∥
Lp(Πd)

,

where C depends only on p and q.

Proof. Extend m piecewise affine to R. We also call the extension m. Then, by the monotonicity
of m between integers it holds for each k ∈ N the inequality ‖m‖Vq(Ik) + ‖m‖Vq(Jk) ≤ αqm(k) for the
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intervals Ik = [2k, 2k+1] and Jk = [−2k+1,−2k]. Moreover, for k < 0 we estimate

‖m‖Vq(Ik) + ‖m‖Vq(Jk) ≤ |m(2k)−m(2k+1)|+ |m(−2k)−m(−2k+1)| ≤ 4 ‖m‖L∞ ≤ 4 sup
k∈N

αqm(k).

By the Coifman-de Francia-Semmes multiplier theorem, Theorem 2.1.3, the extended function m is a
valid multiplier on Lp(R). The operator norm of the corresponding Fourier multiplication operator is
less than C supk∈N αm(k). Hence, by classical transference results, see for example [43, Theorem 3.6.7],
the function m is a valid multiplier on the 1-torus and the operator norm of the Fourier multiplication
operator on the torus can be estimated in terms of supk∈N αm(k) i.e., for every function g ∈ Lp(Π1)

it holds that ∥∥∥∥∥∑
n∈Z

m(n)ĝ(n)einx

∥∥∥∥∥
Lp(Π1)

≤ C(sup
k∈N

αm(k)) ‖g‖Lp(Π1) .

Now, we can establish the claim of this proposition using Fubinii’s Theorem: Let f ∈ Lp(Πd). Then

ˆ
[−π,π]d

∣∣∣∣∣∣
∑
n∈Zd

m(n1)f̂(n)ein·x

∣∣∣∣∣∣
p

dx

=

ˆ
[−π,π]d−1

ˆ π

−π

∣∣∣∣∣∣
∑
n1∈Z

m(n1)

 ∑
n′∈Zd−1

f̂(n1, n
′)ein

′·x′

 ein1x1

∣∣∣∣∣∣
p

dx1 dx
′

≤Cp
(

sup
k∈N

αqm(k)

)p ˆ
[−π,π]d−1

ˆ π

−π

∣∣∣∣∣∣
∑
n∈Zd

f̂(n)ein·x

∣∣∣∣∣∣
p

dx

=Cp
(

sup
k∈N

αm(k)

)p
‖f‖pLp([−π,π]d) .

Here, we used the notation x′ for the vector in Rd−1 which consists of all but the first entry of
x ∈ Rd.

In view of this proposition, it is enough to prove bounds on αqmε as defined in (2.3) in order to gain
good estimates for the operator norm of the Fourier multiplication operator associated to mε. We
prove this bound in the following lemma together with a bound for a second multiplier which appears
during the proof of the Bourgain-Brézis type estimate.

Lemma 2.1.5. Let 1 ≤ q <∞.

(i) Let mε : Z→ C be defined as in (2.2). Then supk α
q
mε(k) ≤ Cε

q−1
q .

(ii) Let m(l) =
∑∞
k=0

2k

l 1[2k,2k+1)∪(−2k+1,−2k](l). Then supk α
q
m(k) <∞.

Proof. It can be seen directly that 0 ≤ mε ≤ ε. Fix k ∈ N and let us write

2k+1∑
l=2k+1

|mε(l − 1)−mε(l)|q =

bε−1c∑
r=0

∑
l∈Irk+1

|mε(l − 1)−mε(l)|q. (2.4)

Notice that mε is monotone in each Irk . Hence, we may estimate

(2.4) ≤ 2(bε−1c+ 1)εq ≤ 4εq−1,
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2 A Bourgain-Brézis type Estimate

where the last inequality is valid for ε < 1. A similar computation can be done for the q-variation in
[−2k+1,−2k]. Combining these estimates leads to (i).
For the second estimate, notice that m is monotone on [2k, 2k+1) and (−2k+1,−2k] and 0 ≤ m ≤ 1.
Using these two facts and a similar argument as for mε leads to (ii).

We finish this section by collecting a few classical results about Littlewood-Paley theory, see for
example [43].
Let ϕ ∈ C∞0 (B 4

3
(0)) such that ϕ = 1 on B 3

4
(0). Define the function ψj(x) = ϕ(2−jx) − ϕ(2−j+1x).

Then ϕ +
∑∞
j=1 ψj = 1. One defines associated smooth Fourier projections on the torus by mul-

tiplication in Fourier space, namely Pj(f) = F−1(ψjF(f)) =
∑
n∈Z ψj(n) f̂(n) ein·x for j ≥ 1 and

P0(f) = F−1(ϕF(f)). Essentially, the operator Pj projects in Fourier space to all frequencies |k| ∼ 2j .
Clearly, by this definition it holds that Id =

∑
j Pj . To finish this section, we state the Littlewood-

Paley estimates which we need in the next section.
Let fj , f ∈ Lq(Πd). Then the following inequalities hold for all 1 < p <∞:

1. cp ‖f‖Lp(Πd) ≤
∥∥∥(∑k |Pkf |2

) 1
2

∥∥∥
Lp(Πd)

≤ Cp ‖f‖Lp(Πd),

2.
∥∥∥(∑k |Pk∇fk|2

) 1
2

∥∥∥
Lp(Πd)

≤ Cp
∥∥∥(∑k |2kPkfk|2

) 1
2

∥∥∥
Lp(Πd)

,

3.
∥∥∥(∑k |Pkfk|2

) 1
2

∥∥∥
Lp(Πd)

≤ Cp
∥∥∥(∑k |fk|2

) 1
2

∥∥∥
Lp(Πd)

.

2.2 The Case of a Torus

In this section, we prove a primal version of the Bourgain-Brézis type estimate on the 2-torus Π2,
which we simply denote by Π in the following. To be precise, we show the following statement.

Theorem 2.2.1. Let Π be the 2-torus and 2 < q < ∞. Then there exists a constant C > 0 such
that for all functions f ∈ L2(Π) ∩ Lq(Π) satisfying

´
Π
f = 0 there exists a function F ∈ L∞(Π;R2) ∩

H1(Π;R2) ∩W 1,q(Π;R2) such that

(i) divF = f ,

(ii) ‖F‖L∞ ≤ C‖f‖L2 ,

(iii) ‖F‖H1 ≤ C‖f‖L2 ,

(iv) ‖F‖W 1,q ≤ C‖f‖Lq .

Remark 2.2.1. The result by Bourgain and Brézis in [11, Theorem 1] is the same without the
assumption f ∈ Lq and the resulting estimate for F in Lq. In two dimensions, the same result holds
true for the curl-operator as the operators div and curl are linked by a rotation of the vector fields.
Hence, the result can be understood as a characterization of the failure of the embedding H1 to L∞ in
two dimensions. A function inH1-function can be decomposed such that the part of the decomposition
which is not controlled in L∞ is a gradient.

Remark 2.2.2. Statements of this type in the pure L2-case hold for a more general class of operators.
In [12, Theorem 10] it is shown that it is sufficient that for an operator S : W 1,n(Πn,Rr) → X with
closed range, where X is a Banach space, there exists for each 1 ≤ s ≤ r an index 1 ≤ is ≤ d such
that for all functions f ∈W 1,n(Πn,Rr) it holds that

‖Sf‖ ≤ C max
1≤s≤r

max
i6=is
‖∂ifs‖Ln
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n1

n2

2j−12j 2j+1 2j+2

2j

2j+1

2j+2

Λ1
jΛ1

j Λ1
j+1Λ1

j+1 Λ1
j+2Λ1

j+2

Figure 2.3: Sketch of Λ1.

to guarantee that for any f ∈ W 1,n(Πn,Rr) there exists g ∈ W 1,n(Πn,Rr) ∩ L∞(Πn,Rr) satisfying
S(f) = S(g) and corresponding bounds. Clearly, this condition holds true for the div-operator. The
fact that the operator is blind for the derivatives ∂isfs allows to insert oscillations in this particular
direction.

Remark 2.2.3. Moreover, Bourgain and Brézis show that the correspondance of f to a solution
F ∈ H1 ∩ L∞ of divF = f which satisfies the bounds of the theorem cannot be linear, see [11,
Proposition 2].

We prove this result following the ideas presented in the proof of Theorem 1 in [11].
The main ingredient to prove Theorem 2.2.1 is the following lemma which gives a first approximation
to Theorem 2.2.1. It shows that the equation divF = f can be almost solved by a function F which
satisfies estimates with a good linear term and a bad nonlinear term.

Lemma 2.2.2 (Nonlinear approximation). Let Π be the 2-torus and 2 < q < ∞. There exists c > 0

such that for all f ∈ L2(Π) ∩ Lq(Π) satisfying ‖f‖L2 ≤ c and
´

Π
f = 0 the following holds:

For every δ > 0 there exist Cδ > 0 and F ∈ L∞(Π;R2) ∩H1(Π;R2) ∩W 1,q(Π;R2) such that

(i) ‖F‖L∞ ≤ Cδ,

(ii) ‖F‖H1 ≤ Cδ‖f‖L2 ,

(iii) ‖ divF − f‖L2 ≤ δ‖f‖L2 + Cδ‖f‖2L2 ,

(iv) ‖F‖W 1,q ≤ Cδ‖f‖Lq ,

(v) ‖ divF − f‖Lq ≤ δ‖f‖L2 + Cδ‖f‖L2‖f‖Lq .

Proof. Let f ∈ L2(Π) ∩ Lq(Π) such that
´

Π
f = 0 and ‖f‖L2 ≤ c where c > 0 will be fixed later.

Consider the following decomposition of Z2 \ {0}, see Figure 2.3,

Λ1
j =

{
2j−1 < |n1| ≤ 2j ; |n2| ≤ 2j

}
and Λ2

j =
{

2j−1 < |n2| ≤ 2j ; |n1| ≤ 2j−1
}

for j ∈ N. (2.5)
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n1

n2

Λ1
j−2

Λ1
j−1

Λ1
j

I2j

aj,2

2j−3 2j−2 2j−1 2j

2j−2

2j−1

2j

Λ1
j,1 Λ1

j,2 Λ1
j,3 Λ1

j,4

Figure 2.4: Sketch of the subdivision of Λ1 into the stripes Λ1
j,r for positive n1.

For α = 1, 2 set Λα =
⋃
j Λαj . Correspondingly, let fα = PΛαf =

∑
n∈Λα f̂(n)ein·x and decompose

f = f1 + f2. In the following, we construct functions Yα : Π→ R which satisfy

1. ‖Yα‖L∞ ≤ Cδ,

2. ‖Yα‖H1 ≤ Cδ‖f‖L2 ,

3. ‖∂αYα − fα‖L2 ≤ δ‖f‖L2 + Cδ‖f‖2L2 ,

4. ‖Yα‖W 1,q ≤ Cδ‖f‖Lq ,

5. ‖∂αYα − fα‖Lq ≤ δ‖f‖L2 + Cδ‖f‖L2‖f‖Lq .

Without loss of generality we may assume that f = f1 and construct only Y1.
Let us define

fj = PΛ1
j
f =

∑
n∈Λ1

j

f̂(n) ein·x and Fj =
∑
n

1

n1
f̂j(n)ein·x =

∑
n∈Λ1

j

1

n1
f̂(n)ein·x.

Moreover, fix a small ε > 0 and subdivide Λ1
j in stripes of length ∼ ε2j−1 by setting

Λ1
j =

⋃
0≤r≤2bε−1c+1

Λ1
j,r,

where for 0 ≤ r ≤ bε−1c we set Λ1
j,r = Irj × [−2j , 2j ] whereas for bε−1c + 1 ≤ r ≤ 2bε−1c + 1 we set

Λ1
j,r = I

r−bε−1c−1
j × [−2j , 2j ] where Irk and Jrk are defined as in (2.1) in the previous section. For a

sketch of the situation, see Figure 2.4.
Next, define

F̃j(x) =
∑
r

∣∣∣∣∣∣
∑
n∈Λ1

j,r

1

n1
f̂j(n)ein·x

∣∣∣∣∣∣ .
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The main property of F̃j is the smallness of its partial derivative in x1-direction.
In fact, we can rewrite F̃j(x) =

∑
r

∣∣∣∑n∈Λ1
j,r

1
n1
f̂j(n)ein·xe−iaj,rx1

∣∣∣ where aj,r is the left endpoint of

Irj , respectively the right endpoint of Jr−bε
−1c−1

j . Differentiation leads to

|∂1F̃j | =
∑
r

∣∣∣∣∣∣
∑
n∈Λ1

j,r

n1 − aj,r
n1

f̂j(n)ein·x

∣∣∣∣∣∣ =
∑
r

∣∣∣∣∣∣
∑
n∈Λ1

j,r

mε(n1)f̂j(n)ein·x

∣∣∣∣∣∣ , (2.6)

where mε is the the special function defined in (2.2) in the previous section. As 0 ≤ mε ≤ ε and using
Plancharel’s identity and Hölder’s inequality for the sum over r, we derive that

‖∂1F̃j‖L2 ≤ Cε− 1
2

∑
r

∥∥∥∥∥∥
∑
n∈Λ1

j,r

mε(n1)f̂(n)ein·x

∥∥∥∥∥∥
L2

≤ Cε 1
2 ‖fj‖L2 .

For an Lq-version of this estimate, we will later use Proposition 2.1.4 and Lemma 2.1.5.
As we also need an appropiate localization in Fourier space of F̃j , let us recall that the n-th one-
dimensional Féjer-kernel is given by

Kn(t) =
∑
|k|<n

n− |k|
n

eikt =
1

n

1− cos(nt)

1− cos(t)
≥ 0.

If we define
Gj = 9F̃j ∗ (K2j+1 ⊗K2j+1) ,

we obtain by the properties of the Fejéjer kernel discussed in the beginning of the previous section
that

supp Ĝj ⊂ [−2j+1, 2j+1]× [−2j+1, 2j+1] ⊂ {|n| ≤ C2j} and |Fj | ≤ |F̃j | ≤ Gj . (2.7)

Moreover, in the proof of [11, Theorem 1] it is shown that

‖Gj‖L∞ ≤ 9‖F̃j‖∞ ≤ C‖fj‖L2 , (2.8)

‖Gj‖L2 ≤ Cε− 1
2 2−j‖fj‖L2 , (2.9)

‖∂1Gj‖L2 ≤ Cε 1
2 ‖fj‖L2 , (2.10)

‖∇Gj‖L2 ≤ Cε− 1
2 ‖fj‖L2 . (2.11)

Let us only prove (2.8), the rest can be proved similarly:

|F̃j(x)| ≤
∑
r

∑
n∈Λ1

j,r

| 1

n1
f̂(n)| ≤ 2−j+1

∑
n∈Λ1

j

|f̂(n)| ≤ C

∑
n∈Λ1

j

|f̂(n)|2
 1

2

= C ‖fj‖L2 .

As in [11], we define
Y1 =

∑
j

Fj
∏
k>j

(1−Gk).

By (2.7) and (2.8), it holds |Fj | ≤ C‖fj‖L2 ≤ C ‖f‖L2 . We assume that ‖f‖L2 , respectively c in the
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2 A Bourgain-Brézis type Estimate

formulation of the theorem, is so small that C ‖f‖L2 < 1. Then, one can show that

|Y1| ≤
∑
j

|Fj |
∏
k>j

(1− |Fk|) ≤ 1. (2.12)

Another calculation, see [11, equation (5.19)], shows that

Y1 =
∑
j

Fj −
∑
j

GjHj ,

where
Hj =

∑
k<j

Fk
∏
k<l<j

(1−Gl).

Thus,
∂1Y1 =

∑
j

fj −
∑
j

∂1(GjHj) = f −
∑
j

∂1(GjHj). (2.13)

Moreover, by definition of Hj and Fj and (2.7) it can be seen that

|Hj | ≤ 1, supp Ĥj ⊂ {|n| ≤ C2j}, Pk(GjHj) = 0 for all k > j +m,

respectively GjHj =
∑

k≤j+m

Pk(GjHj), (2.14)

where the Pk are smooth Littlewood-Paley-projections on {|n| ∼ 2k} as discussed at the end of the
previous section and m is independent of j. In [11, proof of Theorem 1], Bourgain and Brézis show,
using (2.7) - (2.14), that

‖∂1Y1 − f‖L2 ≤ C log(ε−1)
(
ε

1
2 ‖f‖L2 + ε−

1
2 ‖f‖2L2

)
and ‖Y1‖H1 ≤ Cε ‖f‖L2 . (2.15)

Hence, properties 1.–3. for Y1 are already shown. In what follows, we adopt the ideas of their proof
to show the corresponding estimates in Lq i.e., properties 4. and 5., for Y1.
First, we estimate

‖∇Y1‖Lq ≤ ‖∇
∑
j

Fj‖Lq + ‖∇
∑
j

GjHj‖Lq . (2.16)

For the first term on the right hand side, we observe that∥∥∥∥∥∥
∑
j

∇Fj

∥∥∥∥∥∥
Lq

=

∥∥∥∥∥∥
∑
j

∑
n∈Λ1

j

n

n1
f̂(n)ein·x

∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥
∑
j

∑
n∈Λ1

j

f̂(n)ein·x

∥∥∥∥∥∥
Lq

= C ‖f‖Lq . (2.17)

Note that we used for the first inequality that n
n1

1⋃
j Λ1

j
is an Lp-multiplier. This can be shown by

multiplier transference and the Marcinkiewicz multiplier theorem (note that in Λj the second variable
n2 is controlled by 2n1). Next, we estimate the second term of the right hand side of (2.16). Using
(2.14) and classical Littlewood-Paley estimates as discussed at the end of the previous section, we
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2.2 The Case of a Torus

obtain

∥∥∥∥∥∥
∑
j

∇(GjHj)

∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥∥∥
∑

k

∣∣∣∣∣∣Pk
∑
j

∇(GjHj)

∣∣∣∣∣∣
2


1
2

∥∥∥∥∥∥∥∥
Lq

. (2.18)

Note that the operator ∇ can also be seen as a Fourier multiplication operator. Hence, it commutes
with the Littlewood-Paley-projections Pk. In particular, the localization in Fourier space for GjHj

in (2.14) also holds for ∇GjHj . The triangle inequality and rewriting with the change of variables
j → k + s yield

≤ C
∑
s≥−m

∥∥∥∥∥∥
(∑

k

|Pk∇(Gk+sHk+s)|2
) 1

2

∥∥∥∥∥∥
Lq

. (2.19)

The change k → k − s leads to

= C
∑
s≥−m

∥∥∥∥∥∥∥
∑
k≥s

|Pk−s∇(GkHk)|2
 1

2

∥∥∥∥∥∥∥
Lq

. (2.20)

The Littlewood-Paley inequality for gradients yields

≤ C
∑
s≥−m

2−s

∥∥∥∥∥∥∥∥
∑

k

|2kGk Hk︸︷︷︸
|·|≤1

|2


1
2

∥∥∥∥∥∥∥∥
Lq

(2.21)

≤ C
∑
s≥−m

2−s

∥∥∥∥∥∥∥
∑

j

|2kGk|2
 1

2

∥∥∥∥∥∥∥
Lq

. (2.22)

By definition, Gk is the convolution of F̃k with a Fejér kernel. Applying Proposition 2.1.2 leads to

≤ C
∑
s≥−m

2−s

∥∥∥∥∥∥
(∑

k

|2kF̃k|2
) 1

2

∥∥∥∥∥∥
Lq

. (2.23)

= C
∑
s≥−m

2−s

∥∥∥∥∥∥∥∥
∑

k

 ∑
r≤2bε−1c−1

∣∣∣∣∣∣
∑

n∈Λ1
k,r

2k

n1
f̂(n)ein·x

∣∣∣∣∣∣
2


1
2

∥∥∥∥∥∥∥∥
Lq

. (2.24)
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2 A Bourgain-Brézis type Estimate

Using Hölder’s inequality for the sum over r yields

≤ Cε− 1
2

∑
s≥−m

2−s

∥∥∥∥∥∥∥∥
∑

k

∑
r≤2bε−1c−1

∣∣∣∣∣∣
∑

n∈Λ1
k,r

2k

n1
f̂(n)ein·x

∣∣∣∣∣∣
2


1
2

∥∥∥∥∥∥∥∥
Lq

. (2.25)

Now, we use a one-sided Littlewood-Paley-type inequality for non-dyadic decompositions which goes
back to Rubio de Francia, [69, Theorem 8.1]. For the case of a torus, see [41, Theorem 2.5] or [10] for
the dual statement. The statement is the following: For q > 2 there exists a constant C > 0 such that
for all partitions of Z into intervals (Ik)k it holds that

∥∥∥∥∥(
∑
k

|Skf |2)
1
2

∥∥∥∥∥
Lq(Π1)

≤ C ‖f‖Lq(Π1) ,

where Skf =
∑
l∈Ik f̂(l)eil·x. We use this inequality in the first variable for the decomposition of the

n1-axis given by Λ1
k,r, respectively I

r
k and Jrk :

(2.25) ≤ Cε− 1
2

∑
s≥−m

2−s

∥∥∥∥∥∥
∑

k,r≤2bε−1c−1

∑
n∈Λ1

k,r

2k

n1
f̂(n)ein·x

∥∥∥∥∥∥
Lq

. (2.26)

Finally, we use that we know from Proposition 2.1.4 and Lemma 2.1.5 that
∑
k

2k

n1
1Λ1

k
is an Lp-

multiplier to obtain

≤ Cε− 1
2

∑
s≥−m

2−s
∥∥∥∥ ∑
k,r≤2bε−1c−1

∑
n∈Λ1

k,r︸ ︷︷ ︸∑
n∈Λ1

f̂(n)ein·x
∥∥∥∥
Lq

(2.27)

= Cε−
1
2

∑
s≥−m

2−s ‖f‖Lq (2.28)

≤ Cε− 1
2 ‖f‖Lq . (2.29)

Collecting (2.16), (2.17), and (2.18) - (2.29) leads to

‖∇Y1‖Lq ≤ Cε
− 1

2 ‖f‖Lq .

As we may assume without loss of generality that
´

Π
Y1 = 0, this implies

‖Y ‖W 1,q ≤ Cε−
1
2 ‖f‖Lq . (2.30)

Hence, it is left to prove property 5. for Y1. By (2.13), it remains to control
∥∥∥∂1

∑
j(GjHj)

∥∥∥
Lq
. As in
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2.2 The Case of a Torus

(2.18)–(2.20), we can estimate

∥∥∥∥∥∥∂1

∑
j

GjHj

∥∥∥∥∥∥
Lq

≤
∑
s≥−m

∥∥∥∥∥∥∥
∑

j

|Pj−s∂1(GjHj)|2
 1

2

∥∥∥∥∥∥∥
Lq

.

Now, fix s∗ ∈ N and estimate for s > s∗ as in (2.20)–(2.28)∥∥∥∥∥∥∥
∑

j

|Pj−s∂1(GjHj)|2
 1

2

∥∥∥∥∥∥∥
Lq

≤ Cε− 1
2 2−s ‖f‖Lq . (2.31)

For s ≤ s∗ we estimate, using that |Hj | ≤ 1,∥∥∥∥∥∥∥
∑

j

|Pj−s∂1(GjHj)|2
 1

2

∥∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥∥
∑

j

|∂1Gj |2
 1

2

∥∥∥∥∥∥∥
Lq

+ C

∥∥∥∥∥∥∥
∑

j

|Gj∂1Hj |2
 1

2

∥∥∥∥∥∥∥
Lq

. (2.32)

As Gj is the convolution of F̃j with a Fejér kernel, we may apply Proposition 2.1.2 to the first term
on the right hand side to derive∥∥∥∥∥∥∥

∑
j

|∂1Gj |2
 1

2

∥∥∥∥∥∥∥
Lq

≤ C

∥∥∥∥∥∥∥
∑

j

|∂1F̃j |2
 1

2

∥∥∥∥∥∥∥
Lq

.

Equation (2.6) and Hölder’s inequality for the sum over r lead to

≤ Cε− 1
2

∥∥∥∥∥∥∥∥
∑

j

∑
r≤2bε−1c−1

∣∣∣∣∣∣
∑
n∈Λ1

j,r

mε(n1)f̂(n)ein·x

∣∣∣∣∣∣
2


1
2

∥∥∥∥∥∥∥∥
Lq

.

Using the Rubio-de-Francia-inequality for arbitrary intervals in the first variable as in (2.25)–(2.26)
yields

≤ Cε− 1
2

∥∥∥∥∥∥
∑
j

∑
r≤2bε−1c−1

∑
n∈Λ1

j,r

mε(n1)f̂(n)ein·x

∥∥∥∥∥∥
Lq

.

By the improvement of the Marcinkiewicz multiplier theorem due to Coifman, de Francia, and Semmes,
Proposition 2.1.4 and Lemma 2.1.5, the function mε defines a multiplier whose associated operator-
norm from Lq to Lq can be estimated by Crε

r−1
r for any r such that | 12 −

1
q | <

1
r . In particular, there

exists r > 2 such that

≤ Cε
r−1
r −

1
2

∥∥∥∥∥∑
n∈Λ1

f̂(n)ein·x

∥∥∥∥∥
Lq

= Cε
r−1
r −

1
2 ‖f‖Lq . (2.33)
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2 A Bourgain-Brézis type Estimate

For the second term of the right hand side of (2.32), note that in [11] Bourgain and Brézis show that

‖∇Hj‖L∞ ≤ 2j ‖f‖L2 .

Hence, we can estimate∥∥∥∥∥∥∥
∑

j

|Gj∂1Hj |2
 1

2

∥∥∥∥∥∥∥
Lq

≤

∥∥∥∥∥∥∥
∑

j

|2jGj |2
 1

2

∥∥∥∥∥∥∥
Lq

‖f‖L2 .

The right hand side can now be treated as in (2.22)–(2.28) to obtain∥∥∥∥∥∥∥
∑

j

|Gj∂1Hj |2
 1

2

∥∥∥∥∥∥∥
Lq

≤ Cε− 1
2 ‖f‖Lq ‖f‖L2 . (2.34)

Collecting (2.31), (2.33) and (2.34) yields∥∥∥∥∥∥∂1

∑
j

GjHj

∥∥∥∥∥∥
Lq

≤ C2−s∗ε−
1
2 ‖f‖Lq +

∑
−m≤s≤s∗

(
ε−

1
2 ‖f‖Lq ‖f‖L2 + ε

r−1
r −

1
2 ‖f‖Lq

)
. (2.35)

Eventually, choose s∗ such that 2−s∗ ∼ ε. Then (2.35) provides∥∥∥∥∥∥∂1

∑
j

GjHj

∥∥∥∥∥∥
Lq

≤ C log(ε−1)
(
ε
r−1
r −

1
2 ‖f‖Lq + ε−

1
2 ‖f‖Lq ‖f‖L2

)
. (2.36)

Here, we used that ε
1
2 ≤ ε

r−1
r −

1
2 for ε < 1. Notice that r > 2 and therefore log(ε−1)ε

r−1
r −

1
2 → 0 as

ε→ 0. Comparing with (2.15) and (2.30) shows that for given δ > 0 the properties 1.–5. of Y can be
achieved for ε > 0 small enough. This finishes the proof.

Remark 2.2.4. Note that the explicit construction given in the proof is nonlinear which is in accor-
dance with Remark 2.2.3.

From the nonlinear estimate we can now derive a linear estimate.

Lemma 2.2.3 (Linear estimate). Let Π be the 2-torus and 2 < q < ∞. Then for every δ > 0 there
exists a constant Cδ > 0 such that for every function f ∈ L2(Π) ∩ Lq(Π) satisfying

´
Π
f = 0 there

exists F ∈ L∞(Π;R2) ∩H1(Π;R2) ∩W 1,q(Π;R2) such that

(i) ‖F‖L∞ ≤ Cδ‖f‖L2 ,

(ii) ‖F‖H1 ≤ Cδ‖f‖L2 ,

(iii) ‖ divF − f‖L2 ≤ δ‖f‖L2 ,

(iv) ‖F‖W 1,q ≤ Cδ‖f‖Lq ,

(v) ‖ divF − f‖Lq ≤ δ‖f‖Lq .

Proof. As we want to prove a linear estimate, we may assume without loss of generality that it holds
‖f‖L2 = δC−1

δ < c where c > 0 is the constant from Lemma 2.2.2. The application of Lemma 2.2.2
provides the existence of F ∈ L∞(Π;R2) ∩H1(Π;R2) ∩W 1,q(Π;R2) such that
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(i) ‖F‖L∞ ≤ Cδ = δ−1C2
δ ‖f‖L2 ,

(ii) ‖F‖H1 ≤ Cδ‖f‖L2 ,

(iii) ‖ divF − f‖L2 ≤ δ‖f‖L2 + Cδ‖f‖2L2 = 2δ‖f‖L2 ,

(iv) ‖F‖W 1,q ≤ Cδ‖f‖Lq ,

(v) ‖ divF − f‖Lq ≤ δ‖f‖Lq + Cδ‖f‖L2‖f‖Lq = 2δ‖f‖Lq .

Now, take δ̃ = 2δ and Cδ̃ = δ−1C2
δ .

Armed with this approximation we are now able to prove Theorem 2.2.1 by iterating this approxi-
mation.

Proof of Theorem 2.2.1. Let f ∈ L2(Π)∩Lq(Π) such that
´

Π
f = 0. We apply Lemma 2.2.3 for δ = 1

2 .
Hence, there exists F1 such that

• ‖F1‖L∞ ≤ C 1
2
‖f‖L2 ,

• ‖F1‖H1 ≤ C 1
2
‖f‖L2 ,

• ‖ divF1 − f‖L2 ≤ 1
2‖f‖L2 ,

• ‖F1‖W 1,q ≤ C 1
2
‖f‖Lq ,

• ‖ divF1 − f‖Lq ≤ 1
2‖f‖Lq .

We define Fi for i ≥ 2 inductively: let f̃i = f − div
∑i−1
j=1 Fj . Note that by the periodicity of the Fj it

holds
´

Π
f̃i = 0. Reapplication of Lemma 2.2.3 for δ = 1

2 and f̃i provides the existence of Fi such that

(i) ‖Fi‖L∞ ≤ C 1
2
‖f − div

∑i−1
j=1 Fj‖L2 ≤ C 1

2
( 1

2 )i−1‖f‖L2 ,

(ii) ‖Fi‖H1 ≤ C 1
2
‖f − div

∑i−1
j=1 Fj‖L2 ≤ C 1

2
( 1

2 )i−1‖f‖L2 ,

(iii) ‖divFi + div
∑i−1
j=1 Fj − f‖L2 ≤ 1

2‖ div
∑i−1
j=1 Fj − f‖L2 ≤ ( 1

2 )i‖f‖L2 ,

(iv) ‖Fi‖W 1,q ≤ C 1
2
‖f − div

∑i−1
j=1 Fj‖Lq ≤ C 1

2
( 1

2 )i−1‖f‖Lq ,

(v) ‖ divFi + div
∑i−1
j=1 Fj − f‖Lq ≤

1
2‖div

∑i−1
j=1 Fj − f‖Lq ≤ ( 1

2 )i‖f‖Lq .

Define F =
∑∞
j=1 Fj . Then, divF = f and the claimed estimates follow by the triangle inequality

with C = 2C 1
2
.

2.3 Localization

This section is devoted to localize our previous result in the sense that we show that on cubes there
exist solutions to div Y = f satisfying Y = 0 on the boundary and bounds in L∞, H1, and W 1,q.
The proofs in this chapter follow the lines of the corresponding proofs for solutions in the space
L∞(Ω;R2) ∩H1

0 (Ω;R2) presented in [11, Section 7].

Proposition 2.3.1. Let Q = (0, 1)2 and 2 < q < ∞. Then there exists C > 0 such that for all
functions f ∈ L2(Q)∩Lq(Q) satisfying

´
Q
f = 0 there exists Y ∈ L∞(Q;R2)∩H1

0 (Q;R2)∩W 1,q
0 (Q;R2)

such that div Y = f ,

‖Y ‖L∞(Q;R2) + ‖Y ‖H1(Q;R2) ≤ C‖f‖L2(Q), and ‖Y ‖W 1,q(Q;R2) ≤ C‖f‖Lq(Q).
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2 A Bourgain-Brézis type Estimate

Proof. Step 1. Existence of a solution satisfying Y = 0 on (0, 1)× {0}.
Let Q̃ = (0, 1)× (−2, 1) and

f̃ =

f in Q,

0 in Q̃ \Q.

We may interpret Q̃ as a torus. Applying Theorem 2.2.1 provides a periodic solution Z to divZ = f̃

in Q̃ satisfying

‖Z‖L∞(Q̃;R2) + ‖Z‖H1(Q̃;R2) ≤ C‖f̃‖L2(Q̃) and ‖Z‖W 1,q(Q̃;R2) ≤ C‖f̃‖Lq(Q̃).

Next, define the funtion Y : Q→ R2 by setting for (x, y) ∈ Q

Y1(x, y) = Z1(x, y) + 3Z1(x,−y)− 4Z1(x,−2y) and Y2(x, y) = Z2(x, y)− 3Z2(x,−y) + 2Z2(x,−2y).

A straightforward calculation shows that for (x, y) ∈ Q it holds div Y (x, y) = f(x, y). Moreover, the
function Y inherits the estimates from Z. Precisely,

‖Y ‖L∞(Q;R2) + ‖Y ‖H1(Q;R2) ≤ C(‖Z‖L∞(Q̃;R2) + ‖Z‖H1(Q̃;R2)) ≤ C‖f̃‖L2(Q̃) = C‖f‖L2(Q)

and ‖Y ‖W 1,q(Q;R2) ≤ C‖f‖Lq(Q). (2.37)

Finally, one checks that for x ∈ (0, 1) it holds that

Y1(x, 0) = Z1(x, 0) + 3Z1(x, 0)− 4Z1(x, 0) = 0 and Y2(x, 0) = Z2 − 3Z2(x, 0) + 2Z2(x, 0) = 0.

Step 2. Existence of a solution satisfying Y = 0 on (0, 1)× {0} ∪ {0} × (0, 1).
Let Q̂ = (−2, 1)× (0, 1) and

f̂ =

f on Q,

0 on Q̂ \Q.

With slight changes we can use step 1 to find a function Z satisfying divZ = f̂ on Q̂, Z = 0 on
(−2, 1)× {0}, and the bounds in (2.37). Then, define similarly to step 1 the function Y : Q→ R2 by

Y1(x, y) = Z1(x, y)− 3Z1(−x, y) + 2Z1(−2x, y) and Y2(x, y) = Z2(x, y) + 3Z2(−2x, y)− 4Z2(−x, y).

Similar to step 1, one can check that Y = 0 on (0, 1)×{0} ∪ {0}× (0, 1) and div Y = f . Moreover, Y
satisfies the bounds in (2.37).
Step 3. Conclusion.
Let xi, i = 1, . . . , 4, be the vertices of (0, 1)2 and Qi = Q ∩ B1(xi). For i = 1, . . . , 4 let ψi ∈ C∞(Q)

such that ψi = 0 on Q \ Qi and
∑4
i=1 ψi = 1 on Q. By step 2, there exist solutions Z1, . . . , Z4 such

that divZi = f and Zi = 0 on the two edges ending at xi, see figure 2.5. In addition, the solutions
Zi satisfy the bounds in (2.37).
Now, define

Z =

4∑
i=1

ψiZ
i.
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x1

Q1

Z1 = 0

Z1 = 0

Figure 2.5: Sketch of Q1 and the boundary values for Z1 as defined in step 3 of the proof of Proposition
2.3.1.

Then Z = 0 on ∂Q and Z satisfies the bounds in (2.37). Moreover,

divZ = f +

4∑
i=1

Zi · ∇ψi.

Let us write g =
∑4
i=1 Z

i · ∇ψi. It is easily seen that g = 0 on ∂Q and

•
´
Q
g dx = 0,

• ‖g‖L∞(Q) ≤ C
∑4
i=1 ‖Zi‖L∞(Q;R2) ≤ C‖f‖L2(Q),

• ‖g‖H1(Q) ≤ C
∑4
i=1 ‖Zi‖H1(Q;R2) ≤ C‖f‖L2(Q),

• ‖g‖W 1,q(Q) ≤ C
∑4
i=1 ‖Zi‖W 1,q(Q;R2) ≤ C‖f‖Lq(Q).

The next lemma shows that there exists a function R ∈ L∞(Q;R2) ∩H1
0 (Q;R2) ∩W 1,q

0 (Q;R2) such
that divR = −g,

‖R‖L∞(Q;R2) ≤ C‖g‖L∞(Q), ‖R‖H1(Q;R2) ≤ C‖g‖H1(Q), and ‖R‖W 1,q(Q;R2) ≤ C‖g‖W 1,q(Q).

Finally, set Y = Z +R.

Next, we prove the lemma which we used in the proof of Proposition 2.3.1.

Lemma 2.3.2. Let Q = (0, 1)2 and 2 < q < ∞. There exists a constant C > 0 such that for every
function f ∈ L∞(Q)∩H1

0 (Q)∩W 1,q
0 (Q) satisfying

´
Q
f = 0 there exists Y ∈ L∞(Q;R2)∩H1

0 (Q;R2)∩
W 1,q

0 (Q;R2) such that div Y = f ,

‖Y ‖L∞(Q;R2) ≤ C‖f‖L∞ , ‖Y ‖H1(Q;R2) ≤ C‖f‖H1(Q), and ‖Y ‖W 1,q(Q;R2) ≤ C‖f‖W 1,q(Q).

Proof. The proof follows a standard construction, which could be applied inductively to establish
results in higher dimensions. However, we consider only the two-dimensional case.
Let f ∈ L∞(Q) ∩H1

0 (Q) ∩W 1,q
0 (Q) such that

´
Q
f = 0. For y ∈ (0, 1) define

g(y) =

ˆ 1

0

f(x, y) dx.
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2 A Bourgain-Brézis type Estimate

As f = 0 on ∂Q, we obtain that g(0) = g(1) = 0. Moreover, it holds
´ 1

0
g(y) dy = 0. Furthermore,

one can check, using Jensen’s inequality, that

‖g‖L∞(0,1) ≤ ‖f‖L∞(Q), ‖g‖H1(0,1) ≤ ‖f‖H1(Q) and ‖g‖W 1,q(0,1) ≤ ‖f‖W 1,q(Q).

In addition, let us define

Z(y) =

ˆ y

0

g(t) dt.

Clearly, Z(0) = Z(1) = 0 and Z satisfies the estimates

‖Z‖L∞(0,1) ≤ ‖g‖L∞(0,1) ≤ ‖f‖L∞(Q), ‖Z‖H1(0,1) ≤ C‖f‖H1(Q), and ‖Z‖W 1,q(0,1) ≤ ‖f‖W 1,q(Q).

Furthermore, let ψ ∈ C∞c ((0, 1)) such that
´ 1

0
ψ dx = 1. This function can be chosen independently

from f . We set

h(x, y) =

ˆ x

0

f(t, y)− ψ(t)g(y) dt.

Then f(x, y) = ∂xh(x, y) + ψ(x)g(y) and h = 0 on ∂Q. In addition, one varifies that

‖h‖L∞(Q) ≤ C‖f‖L∞(Q), ‖h‖H1
0 (Q) ≤ C‖f‖H1

0 (Q), and ‖h‖W 1,q
0 (Q) ≤ C‖f‖W 1,q

0 (Q).

Finally, set
Y (x, y) = (h(x, y), ψ(x)Z(y)).

Then div Y = f . The desired estimates follow from those for h and Z.

2.4 Lipschitz Domains

So far we have shown that on cubes there exist good solutions for the equation div Y = f subject to
Y = 0 on the boundary. Later, we are interested in a decomposition result for functions in H1 ∩W 1,q

which gives rise to estimates of the H−1 +W−1,q-norm of an L1- function. One could first derive the
decomposition result for cubes from the previous section and later use covering arguments to obtain
this decomposition result for more general domains. However, the decomposition statement involves
second derivatives (see Theorem 2.4.4). Hence, the straightforward transformation of this result
including a partition of unity needs higher regularity of the boundary i.e., ∂Ω ∈ C1,1. Therefore, we
first extend the result of Proposition 2.3.1 to Lipschitz domains.

Theorem 2.4.1. Let 2 < q < ∞ and Ω ⊂ R2 open, bounded with Lipschitz boundary. Then there
exists a constant C > 0 such that for every f ∈ L2(Ω) ∩ Lq(Ω) satisfying

´
Ω
f dx = 0 there exists

Y ∈ L∞(Ω;R2) ∩H1
0 (Ω;R2) ∩W 1,q

0 (Ω;R2) such that div Y = f ,

‖Y ‖L∞(Ω;R2) + ‖Y ‖H1
0 (Ω;R2) ≤ C‖f‖L2(Ω), and ‖Y ‖W 1,q

0 (Ω;R2) ≤ C‖f‖Lq(Ω).

For the proof we need two lemmas treating the local situation. The theorem can then be proved by a
covering argument. The prove follows the ideas presented in [11, Section 7].

Lemma 2.4.2. Let 2 < q <∞. There exists ε0 > 0 and a constant C > 0 such that for all intervals
I and ψ ∈ Lip(I) with Lip(ψ) ≤ ε0 the following holds: Let

U = {(x, y) ∈ I × R : ψ(x) < y < ψ(x) + δ},
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U
ΓU

δ

Figure 2.6: Sketch of the situation in Lemma 2.4.2 and Lemma 2.4.3.

where δ is the length of I. Then for every f ∈ L2(U) ∩ Lq(U) there exists Y such that div Y = f .
Moreover, Y satisfies

‖Y ‖L∞(U ;R2) + ‖Y ‖H1(U ;R2) ≤ C‖f‖L2(U ;R2), ‖Y ‖W 1,q(U ;R2) ≤ C‖f‖Lq(U ;R2),

and Y = 0 on ΓU where

ΓU = {(x, y) ∈ R2 : x ∈ I, y = ψ(x)} ∪ {(x, y) ∈ R2 : x ∈ ∂I, ψ(x) ≤ y ≤ ψ(x) + δ}.

For a sketch of U and ΓU , see Figure 2.6.

Proof. Let I be an interval and ψ ∈ Lip(I) such that Lip(ψ) ≤ ε0, where ε0 will be fixed later.
Moreover, let f ∈ L2(U) ∩ Lq(U) where U is defined as in the statement of the lemma.
For (x, y) ∈ I × (0, δ) =: Q we define

f̂(x, y) = f(x, y + ψ(x)).

Clearly, ‖f̂‖L2(Q) = ‖f‖L2(U) and ‖f̂‖Lq(Q) = ‖f‖Lq(U). Next, consider Q̃ = I × (0, 2δ) and

f̃(x, y) =

f̂(x, y) in I × (0, δ),

−f̂(x, y − δ) in I × (δ, 2δ).

By Proposition 2.3.1 (scale the second variable of I× (0, 2δ) by a factor 1
2 to receive a function defined

on a cube) there is a solution Ỹ ∈ L∞(Q̃;R2) ∩ H1
0 (Q̃;R2) ∩W 1,q

0 (Q̃;R2) to div Ỹ = f̃ in Q̃ which
satisfies

‖Ỹ ‖L∞(Q̃;R2) + ‖Ỹ ‖H1(Q̃;R2) ≤ C‖f̃‖L2(Q̃) ≤ C‖f‖L2(U) and ‖Ỹ ‖W 1,q(Q̃;R2) ≤ C‖f‖Lq(U).

Set for (x, y) ∈ U
Z(x, y) = Ỹ (x, y − ψ(x)).
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2 A Bourgain-Brézis type Estimate

Notice that Z = 0 on ΓU . Moreover, one computes for (x, y) ∈ U

divZ(x, y) = ∂1Ỹ1(x, y − ψ(x))− ∂2Ỹ1(x, y − ψ(x))ψ′(x) + ∂2Ỹ2(x, y − ψ(x))

= f̃(x, y − ψ(x))− ∂2Ỹ1(x, y − ψ(x))ψ′(x)

= f(x, y)− ∂2Ỹ1(x, y − ψ(x))ψ′(x).

Consequently, it holds

‖ divZ − f‖L2(U) ≤ ε0‖Ỹ ‖H1(Q̃;R2) ≤ Cε0‖f‖L2(U) and ‖ divZ − f‖Lq(U) ≤ Cε0‖f‖Lq(U).

Note that by scaling one can see that the constant does not depend on δ.
In a similar way one verifies that

• ‖Z‖L∞(U ;R2) ≤ C‖f‖L2(U),

• ‖Z‖H1(U ;R2) ≤ C(1 + ε0)‖f‖L2(U),

• ‖Z‖W 1,q(U ;R2) ≤ C(1 + ε0)‖f‖Lq(U).

We can use this construction inductively to approach the desired solution to div Y = f .
Set f1 = f and Z1 = Z. Inductively, one finds for k ≥ 2 and fk = divZk−1 − fk−1 a function
Zk ∈ L∞(U ;R2) ∩H1(U ;R2) ∩W 1,q(U ;R2) such that

• ‖ divZk − fk‖L2(U) ≤ Cε0‖fk‖L2(U) = Cε0‖divZk−1 − fk−1‖L2(U) ≤ (ε0C)k‖f‖L2(U),

• ‖ divZk − fk‖Lq(U) ≤ (ε0C)k‖f‖Lq(U),

• ‖Zk‖L∞(U ;R2) ≤ C‖divZk−1 − fk−1‖L2(U) ≤ C(ε0C)k−1‖f‖L2(U),

• ‖Zk‖H1(U ;R2) ≤ (1 + ε0)C‖ divZk−1 − fk−1‖L2(U) ≤ C(1 + ε0)(ε0C)k−1‖f‖L2(U),

• ‖Z‖W 1,q(U ;R2) ≤ (1 + ε0)C‖ divZk−1 − fk−1‖Lq(U) ≤ C(1 + ε0)(ε0C)k−1‖f‖Lq(U).

Eventually, choose ε0 > 0 so small such that ε0C < 1
2 . Then Y =

∑∞
k=1 Z

k fulfills the claim of the
lemma.

In the following lemma we show how one can get rid of the smallness condition Lip(ψ) ≤ ε0 by a
scaling argument.

Lemma 2.4.3. Let 2 < q < ∞, I an interval, ψ ∈ Lip(I), and U defined as in Lemma 2.4.2. Then
there exists a constant C > 0 such that for every f ∈ L2(U)∩Lq(U) there exists a function Y satisfying
Y = 0 on ΓU (ΓU defined as in Lemma 2.4.2), div Y = f ,

‖Y ‖L∞(U ;R2) + ‖Y ‖H1(U ;R2) ≤ C‖f‖L2(U), and ‖Y ‖W 1,q(U ;R2) ≤ C‖f‖Lq(U).

The constant C may depend on Lip(ψ) but not on I.

Proof. Let I be an interval, δ the length of I, ψ ∈ Lip(I), and f ∈ L2(U) ∩ Lq(U).
Define N = dLip(ψ)

ε0
e where ε0 is the constant from Lemma 2.4.2. Moreover, set Ĩ = N · I. Next,

define for x ∈ Ĩ the function ψ̃(x) = ψ( xN ). Then Lip(ψ̃) ≤ Lip(ψ)
N ≤ ε0. Define the function

f̃ : Ũ := {(x, y) ∈ Ĩ × R : ψ̃ < y < ψ̃(x) + δ} → R by

f̃(x, y) = f
( x
N
, y
)
.
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Subdivide Ĩ into N subintervals Ĩk of length δ. Now, the application of Lemma 2.4.2 to each function
f̃|Ũk on the set Ũk = {(x, y) ∈ Ĩk × R : ψ̃(x) < y < ψ̃(x) + δ} provides a function Zk such that
divZk = f̃k on Ũk,

‖Zk‖L∞(Ũk;R2) + ‖Y ‖H1(Ũk;R2) ≤ C‖f̃‖L2(Ũk), and ‖Z
k‖W 1,q(Ũk;R2) ≤ C‖f̃‖Lq(Ũk).

Moreover, it holds that Zk = 0 on ΓŨk . We define Z : Ũ → R2 by Z(x, y) = Zk(x, y) for (x, y) ∈ Ũk.
By the boundary values of Zk on ΓUk , it holds that divZ = f̃ . Moreover, we obtain that Z is a
Sobolev function satisfying the estimates

‖Z‖L∞(Ũ ;R2) + ‖Z‖H1(Ũ ;R2) ≤ C‖f̃‖L2(Ũ ;R2) ≤ C(N)‖f‖L2(U ;R2)

and ‖Z‖W 1,q(Ũ ;R2) ≤ C(N)‖f‖Lq(U ;R2).

Finally, for (x, y) ∈ U we set Y (x, y) = ( 1
NZ1(Nx, y), Z2(Nx, y)). From this definition one can check

the desired properties for Y directly.

Using the two previous lemmas discussing the local situation at the boundary, we are now able to
prove Theorem 2.4.1.

Proof of Theorem 2.4.1. Let f ∈ L2(Ω) ∩ Lq(Ω).
By the definition of a Lipschitz boundary, we can find a finite cover of ∂Ω by sets (Ui)i=1,...,k which have
up to rotation the form as in Lemma 2.4.3 such that up to rotation ∂Ui ∩ ∂Ω = {(x, ψi(x)) : x ∈ Ii}.
Let (θi)i=0,...,k be a partition of unity in the following sense. For i = 1, . . . , k let θi ∈ C∞(Ω) such
that θi = 0 on Ω \Ui and let θ0 ∈ C∞c (Ω) such that

∑k
i=0 θi = 1 on Ω. By applying Lemma 2.4.3, we

find for i = 1, . . . , k solutions Zi ∈ L∞(Ui;R2) ∩H1(Ui;R2) ∩W 1,q(Ui;R2) to divZi = f in Ui such
that Zi = 0 on ∂Ui ∩ ∂Ω satisfying the bounds from Lemma 2.4.3. Note that the constant for the
bounds depends only on ψi and hence on Ω.
Furthermore, let Q be a cube containing Ω. Extend f by 0 to Q and call this extension g. By
Proposition 2.3.1, there exists Z0 ∈ L∞(Q;R2) ∩H1

0 (Q;R2) ∩W 1,q
0 (Q;R2) such that divZ0 = g,

‖Z0‖L∞(Q;R2) + ‖Z0‖H1(Q;R2) ≤ C‖f‖L2(Ω;R2), and ‖Z0‖W 1,q(Q;R2) ≤ C‖f‖Lq(Ω;R2).

Define Z =
∑k
i=0 Z

iθi. Then Z = 0 on ∂Ω. By construction, it holds also that Z ∈ L∞(Ω;R2) ∩
H1

0 (Ω;R2) ∩W 1,q
0 (Ω;R2) satisfies the estimates

‖Z‖L∞(Ω;R2) + ‖Z‖H1(Ω;R2) ≤ C‖f‖L2(Ω;R2), and ‖Z‖W 1,q(Ω;R2) ≤ C‖f‖Lq(Ω;R2).

Moreover,

divZ = f +

k∑
i=0

Zi · ∇θi︸ ︷︷ ︸
=:h

.

Note that h = 0 on ∂Ω. In addition, straightforward estimates show that

‖h‖H1(Ω) ≤ C‖Z‖H1(Ω;R2) ≤ C‖f‖L2(Ω;) and ‖h‖W 1,q(Ω) ≤ C‖f‖Lq(Ω). (2.38)
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Now, fix q < r <∞. By the Sobolev embedding theorem, we derive from (2.38) that

‖h‖Lr(Ω) ≤ C ‖h‖H1(Ω) ≤ C‖f‖L2(Ω) and ‖h‖Lr(Ω) ≤ C‖f‖Lq(Ω). (2.39)

By [11, Theorem 2’], there exists a function R ∈W 1,r
0 (Ω,R2) such that

divR = h and ‖R‖W 1,r(Ω;R2) ≤ C‖h‖Lr(Ω).

As r > q > 2 it follows from the Sobolev embedding theorem and (2.39) that

‖R‖H1(Ω;R2) + ‖R‖L∞(Ω;R2) ≤ C ‖R‖W 1,r(Ω;R2) ≤ C‖h‖Lr(Ω) ≤ ‖f‖L2(Ω)

and ‖R‖W 1,q(Ω;R2) ≤ ‖f‖Lq(Ω).

Eventually, Y = Z −R has the demanded properties.

As discussed at the beginning of the chapter we use Theorem 2.4.1 to prove a decomposition
statement for functions in H1

0 ∩ W
1,q
0 . This statement is the content of the next theorem. This

theorem can be understood as the primal version to the Bourgain-Brézis type estimate (Theorem
2.0.1) as the the Bourgain-Brézis type estimate can be derived from Theorem 2.4.4 by dualization.

Theorem 2.4.4 (The primal result). Let 2 < q < ∞ and Ω ⊂ R2 open, simply connected, bounded
with Lipschitz boundary. Then there exists a constant C > 0 such that for every ϕ ∈ H1

0 (Ω;R2) ∩
W 1,q

0 (Ω;R2) there exist h ∈ H2
0 (Ω)∩W 2,q

0 (Ω) and g ∈ L∞(Ω;R2)∩H1
0 (Ω;R2)∩W 1,q

0 (Ω;R2) satisfying

(i) ϕ = g +∇h,

(ii) ‖g‖L∞(Ω;R2) + ‖g‖H1
0 (Ω;R2) + ‖h‖H2

0 (Ω) ≤ C‖ϕ‖H1
0 (Ω;R2),

(iii) ‖g‖W 1,q
0 (Ω;R2) + ‖h‖W 2,q

0 (Ω) ≤ C‖ϕ‖W 1,q
0 (Ω;R2).

Proof. Let ϕ ∈ H1
0 (Ω;R2) ∩W 1,q

0 (Ω).
By the boundary values of ϕ it holds that

´
Ω

curlϕdx = 0. The application of Theorem 2.4.1 to
curlϕ ∈ L2(Ω) ∩ Lq(Ω) provides a function Y ∈ L∞(Ω;R2) ∩ H1

0 (Ω;R2) ∩ W 1,q
0 (Ω;R2) such that

div Y = curlϕ and

‖Y ‖L∞(Ω;R2) + ‖Y ‖H1
0 (Ω;R2) ≤ C‖ curlϕ‖L2(Ω) ≤ C‖ϕ‖H1(Ω;R2) and ‖Y ‖W 1,q

0 (Ω;R2) ≤ C‖ϕ‖W 1,q(Ω;R2).

Set g = Y ⊥ = (−Y2, Y1). Then g satisfies the same bounds as Y and curl g = div Y = curlϕ. As Ω is
simply-connected, by the Hodge decomposition there exists a vector field h ∈ H2(Ω) ∩W 2,q(Ω) such
that ϕ− g = ∇h,

‖h‖H2(Ω) ≤ C‖g − ϕ‖H1
0 (Ω;R2) ≤ C‖ϕ‖H1(Ω;R2), and ‖h‖W 2,q(Ω) ≤ C‖ϕ‖W 1,q

0 (Ω;R2).

Moreover, ∇h = ϕ− g = 0 on ∂Ω. Therefore, h is constant on the boundary of Ω and we may assume
it is zero. Hence, h ∈ H2

0 (Ω) ∩W 2,q
0 (Ω).

Remark 2.4.1. From Theorem 2.4.4 we can derive the corresponding dual statement i.e., a function
f ∈ L1(Ω;R2) satisfying div f = a + b ∈ H−2(Ω) + W−2,p(Ω), p < 2, is an element of the space
H−1(Ω;R2) +W−1,p(Ω;R2) and

‖f‖H−1(Ω;R2)+W−1,p(Ω;R2) ≤ C
(
‖f‖L1(Ω;R2) + ‖a‖H−2(Ω) + ‖b‖W−2,p(Ω)

)
.
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In fact, let ϕ ∈ H1
0 (Ω;R2)∩W 1,p′

0 (Ω;R2). We use the decomposition ϕ = g+∇h from Theorem 2.4.4
and estimate

ˆ
Ω

fϕ dx =

ˆ
Ω

f(g +∇h) dx

≤ C
(
‖f‖L1(Ω;R2) ‖g‖L∞(Ω;R2) + ‖a‖H−2(Ω) ‖h‖H2

0 (Ω) + ‖b‖W−2,p(Ω) ‖h‖W 2,p′
0 (Ω)

)
≤ C

(
‖f‖L1(Ω;R2) + ‖a‖H−2(Ω) + ‖b‖W−2,p′ (Ω)

)
max

(
‖ϕ‖H1

0 (Ω;R2) , ‖ϕ‖W 1,p
0 (Ω;R2)

)
.

In particular, f ∈ (H1
0 (Ω;R2)∩W 1,p′

0 (Ω;R2))′ = H−1(Ω;R2)+W−1,p(Ω;R2). Hence, it can be written
as f = A + B ∈ H−1(Ω;R2) + W−1,p(Ω;R2). The difference to the Bourgain-Brézis type estimate,
which is our final goal in this chapter, is that A and B only satisfy a combined estimate, precisely

‖A‖H−1(Ω;R2) + ‖B‖W−1,p(Ω;R2) ≤ C(‖f‖L1(Ω;R2) + ‖a‖H−2(Ω) + ‖b‖W−2,p(Ω)).

The point is to use a scaling argument to obtain separate estimates for A and B.

The classical W k,p-norm and the homogeneous W k,p
0 -norm are equivalent norms on the space W k,p

0 .
So far, it has not been important which of these norms we use on W k,p

0 . Next, we are interested in the
scaling of the optimal constant in Theorem 2.4.4. We show the scaling invariance of the optimal con-
stant in Theorem 2.4.4 for the homogeneousW k,p

0 -norms i.e., ‖f‖Wk,p
0 (Ω,Rm) =

∑
|α|=k ‖Dαf‖Lp(Ω;Rm).

Proposition 2.4.5. Let 2 < q < ∞ and Ω ⊂ R2 open, simply connected, bounded with Lipschitz
boundary. Let R > 0 and ΩR = R ·Ω. If we denote by C(Ω), respectively C(ΩR), the optimal constant
of Theorem 2.4.4 for the domain Ω, respectively ΩR, then C(Ω) = C(ΩR).

Proof. Let ϕ ∈ W 1,q
0

(
ΩR;R2

)
∩ H1

0

(
ΩR;R2

)
. Define the function ϕR−1 : Ω → R2 for x ∈ Ω by

ϕR−1(x) = ϕ(Rx). Then ϕR−1 ∈W 1,q
0 (Ω;R2) ∩H1

0 (Ω;R2) and ϕR−1 fulfills

‖ϕR−1‖W 1,q
0 (Ω;R2) =

2∑
i=1

‖∂iϕR−1‖Lq(Ω;R2) = R1− 2
q ‖ϕ‖W 1,q

0 (ΩR;R2)

and ‖ϕR−1‖H1
0 (Ω;R2) = ‖ϕ‖H1

0 (ΩR;R2) .

By Theorem 2.4.4, there exist hR−1 ∈ H2
0 (Ω) ∩ W 2,q

0 (Ω) and gR−1 ∈ L∞(Ω;R2) ∩ H1
0 (Ω;R2) ∩

W 1,q
0 (Ω;R2) such that ϕR−1 = gR−1 +∇hR−1 and

‖gR−1‖L∞(Ω;R2) + ‖gR−1‖H1
0 (Ω;R2) + ‖hR−1‖H2

0 (Ω) ≤ C(Ω)‖ϕR−1‖H1
0 (Ω;R2)

= C(Ω) ‖ϕ‖H1
0 (ΩR;R2) , (2.40)

‖gR−1‖W 1,q
0 (Ω;R2) + ‖hR−1‖W 2,q

0 (Ω) ≤ C(Ω)‖ϕR−1‖W 1,q
0 (Ω;R2) = C(Ω)R1− 2

q ‖ϕ‖W 1,q
0 (ΩR;R2) . (2.41)

Next, define the functions g : ΩR → R2 and h : ΩR → R for x ∈ ΩR by g(x) = gR−1

(
x
R

)
and

h(x) = RhR−1

(
x
R

)
. Then it holds ϕ = g +∇h. Moreover, by (2.40) and (2.41), it follows that

‖g‖L∞(ΩR;R2) + ‖g‖H1
0 (ΩR;R2) + ‖h‖H2

0 (ΩR) = ‖gR−1‖L∞(Ω;R2) + ‖gR−1‖H1
0 (Ω;R2) + ‖hR−1‖H2

0 (Ω)

≤ C(Ω) ‖ϕ‖H1
0 (ΩR)

and ‖g‖W 1,q
0 (ΩR;R2) + ‖h‖W 2,q

0 (ΩR) = R−1+ 2
q (‖gR−1‖W 1,q

0 (Ω;R2) + ‖hR−1‖W 2,q(Ω))

≤ C(Ω) ‖ϕ‖W 1,q
0 (ΩR) .
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This proves C(Ω) ≤ C (ΩR). The reverse inequality follows by Ω = (ΩR)R−1 .

Using Proposition 2.4.5, we can finally prove the main result of this chapter by a scaling argument.

Theorem (Bourgain-Brézis type estimate). Let 1 < p < 2 and Ω ⊂ R2 open, simply connected, and
bounded with Lipschitz boundary. Then there exists a constant C > 0 such that for every f ∈ L1(Ω;R2)

satisfying div f = a + b ∈ H−2(Ω) + W−2,p(Ω) there exist A ∈ H−1(Ω;R2) and B ∈ W−1,p(Ω;R2)

such that the following holds:

(i) f = A+B,

(ii) ‖A‖H−1(Ω;R2) ≤ C(‖f‖L1(Ω;R2) + ‖a‖H−2(Ω)),

(iii) ‖B‖W−1,p(Ω;R2) ≤ C‖b‖W−2,p(Ω).

Proof. Let f ∈ L1(Ω;R2), R > 0, and ΩR = R · Ω.
Define the function fR : ΩR → R2 by fR(x) = f

(
x
R

)
for x ∈ ΩR . Now, consider a test function

ϕ ∈ H1
0

(
ΩR;R2

)
∩W 1,p′

0

(
ΩR;R2

)
. By Theorem 2.4.4, there exist functions h ∈ H2

0 (ΩR)∩W 2,p′

0 (ΩR)

and g ∈ L∞
(
ΩR;R2

)
∩H1

0

(
ΩR;R2

)
∩W 1,p′

0

(
ΩR;R2

)
such that ϕ = g +∇h,

‖g‖L∞(ΩR;R2) + ‖g‖H1
0 (ΩR;R2) + ‖h‖H2

0 (ΩR) ≤C‖ϕ‖H1
0 (ΩR;R2),

and ‖g‖
W 1,p′

0 (ΩR;R2)
+ ‖h‖

W 2,p′
0 (ΩR)

≤C‖ϕ‖
W 1,p′

0 (ΩR;R2)
.

Note that by Proposition 2.4.5 the constant C does not depend on R. Next, notice that
ˆ

ΩR

fR · ϕdx =

ˆ
ΩR

fR · (g +∇h) dx

= < fR, g >L1(ΩR;R2),L∞(ΩR;R2) − < aR, h >H−2(ΩR),H2
0 (ΩR) − < bR, h >W−2,p(ΩR),W 2,p′

0 (ΩR)
, (2.42)

where aR is defined by < aR, h >H−2(ΩR),H2
0 (ΩR)= R < a, hR−1 >H−2(Ω),H2

0 (Ω) and bR is defined by
< bR, h >W−2,p(ΩR),W 2,p′

0 (ΩR)
= R < b, hR−1 >

W−2,p(Ω),W 2,p′
0 (Ω)

for hR−1(x) = h(Rx). By scaling one
sees that

‖aR‖H−2(ΩR) = R2 ‖a‖H−2(Ω) and ‖bR‖W−2,p(ΩR) = R1+ 2
p ‖b‖W−2,p(Ω) . (2.43)

Moreover, from (2.42) we derive that∣∣∣∣ˆ
ΩR

fR · ϕdx
∣∣∣∣

≤C
(
‖fR‖L1(ΩR;R2) + ‖aR‖H−2(ΩR) + ‖bR‖W−2,p(ΩR)

)
max

(
‖ϕ‖H1(ΩR;R2) , ‖ϕ‖W 1,p′ (ΩR;R2)

)
.

The dual space of H1
0 (ΩR;R2) ∩W 1,p′

0 (ΩR;R2) equipped with the norm

‖ϕ‖
H1

0 (ΩR;R2)∩W 1,p′
0 (ΩR;R2)

= max
(
‖ϕ‖H1

0 (ΩR;R2) , ‖ϕ‖W 1,p′
0 (ΩR;R2)

)
is isomorphic to the space H−1(ΩR;R2) +W−1,p(ΩR;R2) endowed with the norm

‖F‖H−1(ΩR;R2)+W−1,p(ΩR;R2) = inf{‖F1‖H−1(ΩR;R2) + ‖F2‖W−1,p(ΩR;R2) : F1 + F2 = F}.

Hence, fR ∈ H−1
(
ΩR;R2

)
+W−1,p

(
ΩR;R2

)
and

‖fR‖H−1(ΩR;R2)+W−1,p(ΩR;R2) ≤ C
(
‖fR‖L1(ΩR;R2) + ‖aR‖H−2(ΩR) + ‖bR‖W−2,p(ΩR)

)
.
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2.4 Lipschitz Domains

In particular, there exist AR ∈ H−1
(
ΩR;R2

)
, BR ∈W−1,p

(
ΩR;R2

)
such that fR = AR +BR and

‖AR‖H−1(ΩR) + ‖BR‖W−1,p(ΩR) ≤ C
(
‖fR‖L1(ΩR) + ‖aR‖H−2(ΩR) + ‖bR‖W−2,p(ΩR)

)
. (2.44)

We define A ∈ H−1(Ω;R2) and B ∈W−1,p(Ω;R2) by

< A,ϕ >H−1(Ω;R2),H1
0 (Ω;R2)= R−2 < AR, ϕR >H−1(ΩR;R2),H1

0 (ΩR;R2)

and < B,ϕ >
W−1,p(Ω;R2),W 1,p′

0 (Ω;R2)
= R−2 < BR, ϕR >W−1,p(ΩR;R2),W 1,p′

0 (ΩR;R2)

for every ϕ ∈ C∞c (Ω) and ϕR ∈ C∞c (ΩR) given by ϕR(x) = ϕ
(
x
R

)
. Then it holds for every ϕ ∈ C∞c (Ω)

ˆ
Ω

f · ϕdx = R−2

ˆ
ΩR

fR · ϕR dx =< A,ϕ >H−1(Ω;R2),H1
0 (Ω;R2) + < B,ϕ >

W−1,p(Ω;R2),W 1,p′
0 (Ω;R2)

.

Consequently, f = A+B. Moreover, by (2.43) and (2.44) we see that

‖A‖H−1(Ω;R2) = R−2 ‖AR‖H−1(ΩR;R2) ≤ C
(
‖f‖L1(Ω;R2) + ‖a‖H−2(Ω) +R

2
p−1 ‖b‖W−2,p(Ω)

)
‖B‖W−1,p(Ω;R2) = R−1− 2

p ‖BR‖W−1,p(ΩR;R2)

≤ C
(
R1− 2

p

(
‖f‖L1(Ω;R2) + ‖a‖H−2(Ω)

)
+ ‖b‖W−2,p(Ω)

)
.

Choosing R such that R1− 2
p =

‖b‖W−2,p(Ω)

‖f‖L1(Ω;R2)+‖a‖H−2(Ω)
finishes the proof.

Remark 2.4.2. Let us remark here that by a similar argumentation this result also holds for Radon
measures.
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3 A Generalized Rigidity Estimate with
Mixed Growth

The goal of this section is to prove a rigidity estimate for fields with non-vanishing curl in the case of
a nonlinear energy density with mixed growth. Precisely, we show the following theorem.

Theorem 3.0.1. Let 1 < p < 2 and Ω ⊂ R2 open, simply connected, bounded with Lipschitz boundary.
There exists a constant C > 0 such that for every β ∈ Lp(Ω;R2×2) such that curlβ ∈M(Ω;R2) there
exists a rotation R ∈ SO(2) such that

ˆ
Ω

|β −R|2 ∧ |β −R|p dx ≤ C
(ˆ

Ω

dist(β, SO(2))2 ∧ dist(β, SO(2))pdx+ | curlβ|(Ω)2

)
.

One of the simplest versions of a rigidity statement is the following. For a given a connected set
Ω ⊂ R2 and a function u ∈ C2(Ω;R2) such that ∇u(x) ∈ SO(2) for all x ∈ Ω, there exists a rotation
R ∈ SO(2) and vectors a, b ∈ R2 such that u(x) = R(x− a) + b, see [45].
Intuitively, this means that a deformation that is locally a rotation, is already a global rotation. The
same statement is also true for infinitesimal rotations i.e., for the set of skew-symmetric matrices.
First qualitative versions of this statement are the different versions of Korn’s inequality, see [36,52,53].
An estimate in the nonlinear case was developed by Friesecke, James and Müller in [37]. Extensions
to the case of energy densities with mixed growth include [19,58].
First results for fields with non-vanishing curl are an L2-version of our result in [59, Theorem 3.3] and
the generalized Korn’s inequality in [38, Theorem 11].
The proofs of the statements in [38, 59] make use of the Bourgain-Brézis inequality as stated at the
beginning of the previous chapter, see also [14, Lemma 3.3 and Remark 3.3]. The proof in our case is
based on its counterpart in the case of mixed growth i.e., Theorem 2.0.1.

Before we are able to prove Theorem 3.0.1, we need to show two simple lemmas and a version of
the classical rigidity estimates for gradients in the case of mixed growth which involves the weak
L2-norm, Proposition 3.0.5.
We start proving an easy triangle-inequality for a quantity with mixed growth.

Lemma 3.0.2. Let m ∈ N and 1 < p < 2. There exists a constant C > 0 such that for all a, b ∈ Rm

it holds
|a+ b|2 ∧ |a+ b|p ≤ C

(
|a|2 ∧ |a|p + |b|2 ∧ |b|p

)
.

Proof. We can restrict ourselves to the following cases:

1. |a+ b| ≤ 1

a) |a|, |b| ≤ 1. Here, the statement follows by the usual triangle inequality.

b) |b| > 1. Then |a+ b|2 ≤ |b|p ≤ |a|2 ∧ |a|p + |b|p = |a|2 ∧ |a|p + |b|2 ∧ |b|p.

47
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2. |a+ b| > 1.

a) |a|, |b| ≤ 1. Then |a + b| ≤ 2 and |a| ≥ 1
2 or |b| ≥ 1

2 . Wlog |b| ≥ 1
2 . Then |a + b|p ≤ 2p ≤

2p+2|b|2 ≤ C
(
|a|2 + |b|2

)
= C

(
|a|2 ∧ |a|p + |b|2 ∧ |b|p

)
.

b) |a| < 1, |b| ≥ 1. Then |a+ b|p ≤ 2p|b|p ≤ 2p
(
|a|2 + |b|p

)
= 2p

(
|a|2 ∧ |a|p + |b|2 ∧ |b|p

)
.

c) |a|, |b| ≥ 1. This follows again from the usual triangle-inequality.

Next, we prove a simple decomposition result for the sum of two functions f ∈ L2,∞, g ∈ Lp, where
1 < p < 2, which we need later in the proof of the rigidity statement involving weak L2-norms.

Lemma 3.0.3. Let U ⊂ Rn and 1 < p < 2. Then for every k > 0 there exists a constant C(k) > 0 such
that for every two nonnegative functions f ∈ L2,∞(U), g ∈ Lp(U) there exist functions f̃ ∈ L2,∞(U)

and g̃ ∈ Lp(U) such that

(i) f + g = f̃ + g̃,

(ii)
∥∥∥f̃∥∥∥2

L2,∞(U)
+ ‖g̃‖pLp(U) ≤ C(k)

(
‖f‖2L2,∞(U) + ‖g‖pLp(U)

)
,

(iii) g̃ ∈ {0} ∪ (k,∞] and f̃ ≤ k.

Proof. Let k > 0. Define f̃ = (f + g)1{f+g≤k} and g̃ = (f + g)1{f+g>k}. Then (i) and (iii) are clearly
satisfied. Moreover, we can estimate∥∥∥f̃∥∥∥2

L2,∞(U)
≤ 4 ‖f‖2L2,∞(U) + 4

∥∥g1{g≤k}∥∥2

L2(U)

≤ 4 ‖f‖2L2,∞(U) + 4k2−p ∥∥g1{g≤k}∥∥pLp(U)

≤ C(k)
(
‖f‖2L2,∞(U) + ‖g‖pLp(U)

)
.

For g̃, notice that f1{f+g>k} = f1{f+g>k}1{f≤ k2 }
+ f1{f+g>k}1{f> k

2 }
≤ g + f1{f> k

2 }
. Thus, we can

conclude that ‖g̃‖pLp(U) ≤ C
(∥∥∥f1{f> k

2 }

∥∥∥p
Lp(U)

+ ‖g‖pLp(U)

)
. We estimate

∥∥∥1{f> k
2 }
f
∥∥∥p
Lp(U)

=

ˆ ∞
0

ptp−1Ln({1{f> k
2 }
f > t}) dt (3.1)

=

ˆ k
2

0

ptp−1Ln
({

1{f> k
2 }
f > t

})
dt+

ˆ ∞
k
2

ptp−1L2
({

1{f> k
2 }
f > t

})
dt

≤ C(k)Ln
({

1{f> k
2 }
f >

k

2

})
+

ˆ ∞
k
2

ptp−3 ‖f‖2L2,∞(U) dt

≤ C(k)Ln
({

f >
k

2

})
+ C(k) ‖f‖2L2,∞(U)

≤ C(k) ‖f‖2L2,∞(U) .

Hence, ‖g̃‖pLp(U) ≤ C(k)
(
‖f‖2L2,∞(U) + ‖g‖pLp(U)

)
. This finishes the proof.

As a second ingredient for the proof of the preliminary mixed-growth rigidity result we need the
following truncation argument from [37, Proposition A.1].
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Proposition 3.0.4. Let U ⊂ Rn be a bounded Lipschitz domain and m ≥ 1. Then there is a constant
c1 = c1(U) such that for all u ∈W 1,1 (U,Rm) and all λ > 0 there exists a measurable set E ⊂ U such
that

(i) u is c1λ-Lipschitz on E,

(ii) Ln(U \ E) ≤ c1
λ

´
{|∇u|>λ} |∇u| dx .

With the use of this result, we are now able to prove the mixed-growth rigidity estimate involving
weak norms. This result will be the last ingredient to prove the main result of this chapter, Theorem
3.0.1. In [19], the authors prove rigidity estimates for fields whose distance to SO(n) is either the sum
of an Lp- and an Lq-function, or in a weak space Lp,∞. Our result is a combination of these results.

Proposition 3.0.5. Let 1 < p < 2, n ≥ 2, and U ⊂ Rn open, simply connected and bounded with
Lipschitz boundary. Let u ∈ W 1,1(U ;Rn×n) such that there exist f ∈ L2,∞(U) and g ∈ Lp(U) such
that

dist(∇u, SO(n)) = f + g.

Then there exist matrix fields F ∈ L2,∞(U ;Rn×n) and G ∈ Lp(U ;Rn×n) and a proper rotation
R ∈ SO(n) such that

∇u = R+G+ F

and
‖F‖2L2,∞(U ;Rn×n) + ‖G‖pLp(U ;Rn×n) ≤ C(‖f‖2L2,∞(U) + ‖g‖pLp(U)).

The constant C does not depend on u, f, g.

Proof. Without loss of generality we may assume that f and g are nonnegative. According to Lemma
3.0.3, we may also assume that f ≤ k and g ∈ {0} ∪ (k,∞) where k will be fixed later.
First, we apply Proposition 3.0.4 for λ = 2n to obtain a measurable set E ⊂ U such that u is Lipschitz
continuous on E with Lipschitz constant M = 2c1n. Let uM be a Lipschitz continuous extension of
u|E to U with the same Lipschitz constant. In particular, uM = u on E. Set k = 2M . Then we obtain

dist(∇uM , SO(2)) ≤ f + 2M1U\E . (3.2)

Indeed, notice that
dist(∇uM , SO(2)) ≤ 2c1n+

√
n ≤ 2M. (3.3)

Hence, we derive dist(∇uM , SO(2)) ≤ 2M on U \ E. On E, we obtain that

dist(∇uM , SO(2)) = dist(∇u, SO(2)) = f + g.

As we may assume that g ∈ {0} ∪ (2M,∞], in view of equation (3.3), it holds dist(∇uM , SO(2)) = f

on E. This shows (3.2).
By applying the weak-type rigidity estimate for L2,∞ from [19, Corollary 4.1], we find a proper rotation
R ∈ SO(2) such that

‖∇uM −R‖2L2,∞(U ;Rn×n) ≤ C ‖dist(∇uM , SO(2))‖2L2,∞(U)

≤ 4C ‖f‖2L2,∞(U) + 16CM2
∥∥1U\E∥∥2

L2,∞(U)
. (3.4)
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Next, note that if |∇u| > 2n, then

|∇u| ≤
√
n+ dist(∇u, SO(n)) ≤ 2 dist(∇u, SO(n)) = 2(f + g) ≤ 4 max{f, g}. (3.5)

Using Proposition 3.0.4 (ii) and (3.5), we can estimate

Ln(U \ E) ≤ c1
2n

ˆ
{|∇u|>2n}

|∇u| dx

≤ c1
2n

ˆ
{4f≥n}

4f dx+
c1
2n

ˆ
{4g≥n}

4g dx

≤ c1
2np

ˆ
{4f≥n}

4pfp dx+
c1

2np

ˆ
{4g≥n}

4pgp dx

≤ C
(∥∥f1{4f≥n}

∥∥p
Lp(U)

+ ‖g‖pLp(U)

)
≤ C

(
‖f‖2L2,∞(U) + ‖g‖pLp(U)

)
,

where we used a similar estimate as in (3.1) for the last inequality. In particular, it follows from (3.4)
that

‖∇uM −R‖2L2,∞(U ;Rn×n) ≤ C(‖f‖2L2,∞(U) + ‖g‖pLp(U)).

Hence, we can write ∇u−R = ∇u−∇uM +∇uM −R and it remains to control ∇u−∇uM . Clearly,
we only have to consider ∇u−∇uM on U \ E. On U \ E, it holds the pointwise estimate

|∇u−∇uM | ≤ |∇u|+ 2c1n ≤ dist(∇u, SO(2)) + 2M1U\E = f + g + 2M1U\E .

As before, we know that
∥∥1U\E∥∥2

L2,∞(U)
≤ C(‖f‖2L2,∞(U) + ‖g‖pLp(U)). Therefore, we are able to write

∇u − ∇uM = h1 + h2 where ‖h1‖2L2,∞(U ;Rn×n) , ‖h2‖pLp(U ;Rn×n) ≤ C(‖f‖2L2,∞(U) + ‖g‖pLp(U)). This
finishes the proof.

Armed with this weak-type rigidity estimate for mixed growth we are now able to prove the gener-
alized rigidity estimate for fields with non-vanishing curl in our setting, Theorem 3.0.1. The proof is
similar to the one of the corresponding statement in [59, Theorem 3.3] but uses quantities with mixed
growth instead of quantities in L2, in particular the Bourgain-Brézis type estimate for mixed growth,
Theorem 2.0.1.

Proof of Theorem 3.0.1. Define δ =
(´

Ω
dist(β, SO(2))2 ∧ dist(β, SO(2))pdx+ | curlβ|(Ω)2

)
.

As 1 < p < 2, the embedding M(Ω;R2) ↪→ W−1,p(Ω;R2) is bounded. Hence, there exists a unique
solution v to the problem ∆v = curlβ,

v ∈W 1,p
0 (Ω;R2).

(3.6)

Define β̃ = ∇vJ where

J =

(
0 −1

1 0

)
.

Optimal regularity for elliptic equations with measure valued right hand side yields (see e.g. [31])∥∥∥β̃∥∥∥
L2,∞(U ;R2×2)

≤ C |curlβ| (Ω). (3.7)
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In addition, we have that curl β̃ = curlβ. Hence, there exists a function u ∈ W 1,p(Ω;R2) such that
∇u = β − β̃. Clearly,

|dist(∇u, SO(2))| ≤ |β̃|+ |dist(β, SO(2))| . (3.8)

Notice that

dist(β, SO(2)) = dist(β, SO(2))1{| dist(β,SO(2))|≤1}︸ ︷︷ ︸
=:f1

+ dist(β, SO(2))1{| dist(β,SO(2))|>1}︸ ︷︷ ︸
=:f2

,

where ‖f1‖2L2(Ω) ≤ δ and ‖f2‖pLp(Ω) ≤ δ. Together with (3.7) and (3.8), this proves the existence of
functions g1 ∈ L2,∞(Ω) and g2 ∈ Lp(Ω) such that

dist(∇u, SO(2)) = g1 + g2 where

‖g1‖2L2,∞(Ω) ≤ 4
∥∥∥β̃∥∥∥2

L2,∞(Ω)
+ 4 ‖f1‖2L2,∞(Ω) ≤ Cδ and ‖g2‖pLp(Ω) ≤ ‖f2‖pLp(Ω) ≤ Cδ.

By Proposition 3.0.5, we derive the existence of a rotation Q ∈ SO(2) and G1 ∈ L2,∞(Ω;R2×2),
G2 ∈ Lp(Ω;R2×2) such that

∇u−Q = G1 +G2, ‖G1‖2L2,∞ ≤ Cδ, and ‖G2‖pLp ≤ Cδ.

Without loss of generality we may assume that Q = Id (otherwise replace β by QTβ).
Next, let ϑ : Ω→ [−π, π) be a measurable function such that the corresponding rotation

R(ϑ) =

(
cos(ϑ) − sin(ϑ)

sin(ϑ) cos(ϑ)

)

satisfies
|β(x)−R(ϑ(x))| = dist(β, SO(2)) for almost every x ∈ Ω. (3.9)

Now, let us decompose

R(ϑ(x))− Id = R(ϑ(x))− β + β −∇u+∇u− Id

= R(ϑ(x))− β + β̃ +G1 +G2. (3.10)

As SO(2) is a bounded set, it is true that |Id − R(ϑ(x))|2 ≤ C|Id − R(ϑ(x))|p ∧ |Id − R(ϑ(x))|2.
In addition, one can check that |R(ϑ(x)) − Id| ≥ |ϑ(x)|

2 . Hence, by (3.9), (3.10), and the triangle
inequality in Lemma 3.0.2, we can estimate

|ϑ(x)|2

4
≤ |R(ϑ(x))− Id|2 ≤ C

(
dist(β, SO(2))2 ∧ dist(β, SO(2))p + |β̃|2 + |G1|2 + |G2|p

)
.

Taking the L1,∞-quasinorm on both sides of the inequality we obtain

‖ϑ‖2L2,∞(Ω) ≤ Cδ. (3.11)

Following [59, Theorem 3.3], we define the linearized rotation by

Rlin(ϑ) =

(
1 −ϑ
ϑ 1

)
.
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Using [59, Lemma 3.2], we derive from (3.11) that

‖R(ϑ)−Rlin(ϑ)‖2L2 ≤ Cδ.

Thus, we can find functions h1 ∈ L2(Ω;R2×2) and h2 ∈ Lp(Ω;R2×2) such that

β −Rlin(ϑ) = β −R(ϑ)︸ ︷︷ ︸
∈Lp(Ω;R2×2)+L2(Ω;R2×2)

+R(ϑ)−Rlin(ϑ)︸ ︷︷ ︸
∈L2(Ω;R2×2)

= h1 + h2 (3.12)

and ‖h1‖pLp(Ω;R2×2) , ‖h2‖2L2(Ω;R2×2) ≤ Cδ. By definition, we see that curlRlin(ϑ) = −∇ϑ. Hence,

curlβ = −∇ϑ+ curlh1 + curlh2,

which implies
div
(
(curlβ)⊥

)
= div

(
(curlh1)⊥

)︸ ︷︷ ︸
∈W−2,p(Ω)

+ div
(
(curlh2)⊥

)︸ ︷︷ ︸
∈H−2(Ω)

.

Therefore, we can apply Theorem 2.0.1 to obtain A ∈ H−1(Ω;R2) and B ∈W−1,p(Ω;R2) such that

(curlβ)⊥ = A+B, ‖A‖2H−1(Ω;R2) ≤ C(| curlβ|(Ω)2 +
∥∥div(curlh1)⊥

∥∥2

H−2(Ω)
),

and ‖B‖pW−1,p(Ω;R2) ≤ C
∥∥div(curlh2)⊥

∥∥p
W−2,p(Ω)

. (3.13)

In particular, one derives from (3.12) and (3.13) that

‖A‖2H−1(Ω;R2) ≤ C(| curlβ|(Ω)2 +
∥∥div(curlh1)⊥

∥∥2

H−2(Ω)
) ≤ C(δ + ‖h1‖2L2(Ω;R2×2)) ≤ Cδ (3.14)

and similarly
‖B‖pW−1,p(Ω;R2) ≤ Cδ. (3.15)

Clearly, the same holds for curlβ, −A⊥ and −B⊥. According to this decomposition of curlβ we can
also decompose the solution v to (3.6).
In fact, as v is the unique solution to the linear problem (3.6), in view of (3.13), (3.14) and (3.15)
there exists a decomposition v = v1 +v2 where ‖v1‖2H1(Ω;R2) ≤ Cδ and ‖v2‖pW 1,p(Ω;R2) ≤ Cδ. Following
the notation from the beginning of the proof, we define

β̃1 = ∇v1J and β̃2 = ∇v2J.

Then ∇u = β − β̃ = β − β̃1 − β̃2. Now, using the classical mixed growth rigidity estimate from [58,
Proposition 2.3], there exists a proper rotation R ∈ SO(2) such that

ˆ
Ω

|∇u−R|2 ∧ |∇u−R|p dx ≤ C
ˆ

Ω

dist(∇u, SO(2))2 ∧ dist(∇u, SO(2))p dx.

Eventually, we obtain with the use of Lemma 3.0.2 the following chain of inequalities
ˆ

Ω

|β −R|2 ∧ |β −R|p dx

≤ C
(ˆ

Ω

|∇u−R|2 ∧ |∇u−R|p dx+
∥∥∥β̃1

∥∥∥2

L2
+
∥∥∥β̃2

∥∥∥p
Lp

)
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≤ C
(ˆ

Ω

dist(∇u, SO(2))2 ∧ dist(∇u, SO(2))p dx+ δ

)
≤ C

(ˆ
Ω

dist(β, SO(2))2 ∧ dist(β, SO(2))p dx+
∥∥∥β̃1

∥∥∥2

L2
+
∥∥∥β̃2

∥∥∥p
Lp

+ δ

)
≤ Cδ,

which finishes the proof.
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4 Plasticity as the Γ-Limit of a Nonlinear
Dislocation Energy with Mixed Growth
and the Assumption of Diluteness

In section 1.2, we discussed how to model the behavior of an infinite cylindrical body in which only
straight, parallel edge dislocations appear. In this chapter, we investigate the behavior of the stored
energy as the interatomic distance goes to zero under the assumption of well-separateness of dislo-
cations. We focus on the situation of a nonlinear energy with subquadratic growth for large strains.
This allows us to compute the stored energy without introducing an ad-hoc cut-off radius, see Section
1.3.
We characterize the Γ-limit of the suitably rescaled energy in all existing scaling regimes, Theorem
4.3.2, Theorem 4.4.2 and Theorem 4.5.1. In particular, in the so-called critical scaling regime we
derive the same strain-gradient plasticity model as the authors in [38, 59] who started from models
involving an ad-hoc cut-off radius around the dislocations. Hence, our result justifies a-posteriori their
cut-off approach in this regime. Moreover, we discuss compactness properties in the different regimes,
Theorem 4.3.1 and Theorem 4.4.1.

4.1 Setting of the Problem

In this section, we introduce the mathematical setting of the problem. For a discussion of the physical
situation, see Section 1.2 and in particular Figure 1.9b.
We consider Ω ⊂ R2 to be a simply-connected, bounded domain with Lipschitz boundary representing
the cross section of an infinite cylindrical crystal. The set of (normalized) minimal Burgers vectors for
the given crystal is denoted by S = {b1, b2} for two linearly independent vectors b1, b2 ∈ R2. Moreover,
we write

S = spanZ S = {λ1b1 + λ2b2 : λ1, λ2 ∈ Z}

for the set of (renormalized) admissible Burgers vectors.
Let ε > 0 the interatomic distance for the given crystal. The set of admissible dislocation densities is
defined as

Xε =

{
µ ∈M(Ω;R2) : µ =

M∑
i=1

εξiδxi , M ∈ N, Bρε(xi) ⊂ Ω, |xj − xk| ≥ 2ρε for j 6= k, 0 6= ξi ∈ S

}
,

where we assume that ρε satisfies

1) limε→0 ρε/ε
s =∞ for all fixed s ∈ (0, 1) and

2) limε→0 | log ε|ρ2
ε = 0.
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

This means that we assume the dislocations to be separated on an intermediate scale ε� ρε → 0.
Furthermore, we define the set of admissible strains generating µ ∈ Xε by

ASε(µ) =
{
β ∈ Lp(Ω,R2×2) : curlβ = µ in the sense of distributions

}
. (4.1)

The energy density W : R2×2 → [0,∞) satisfies the usual assumptions of nonlinear elasticity:

(i) W ∈ C0(R2×2) and W ∈ C2 in a neighbourhood of SO(2);

(ii) stress-free reference configuration: W (Id) = 0;

(iii) frame indifference: W (RF ) = W (F ) for all F ∈ R2×2 and R ∈ SO(2).

In addition, we assume that W satisfies the following growth condition:

(iv) there exists 1 < p < 2 and 0 < c ≤ C such that for every F ∈ R2×2 it holds

c
(
dist(F, SO(2))2 ∧ dist(F, SO(2))p

)
≤W (F ) ≤ C

(
dist(F, SO(2))2 ∧ dist(F, SO(2))p

)
. (4.2)

According to the scaling heuristics discussed in Section 1.3, we define the rescaled energy for ε > 0 by

Eε(µ, β) =

 1
ε2Nε| log ε|

´
Ω
W (β) dx if (µ, β) ∈ Xε ×ASε(µ),

+∞ else inM(Ω;R2)× Lp(Ω;R2×2),
(4.3)

where we used the usual trick of extending the energy by +∞ to non-admissible strains and dislocation
densities.
Our goal is to determine the Γ-limit of Eε as ε→ 0.
The behavior of the energy depends highly on the scaling of Nε with respect to ε. As discussed in
Section 1.3, the different scaling regimes are: the subcritical regime Nε � | log ε|, the critical regime
Nε ∼ | log ε|, and the supercritical regime Nε � | log ε|.

Before we can state the different Γ-convergence results, we introduce the self-energy of a disloca-
tion, which corresponds to the minimal energy that a single dislocation induces. As discussed in
Section 1.3, the self-energy of the dislocations is expected to contribute to the limit in the subcritical
and the critical regime.

4.2 The Self-Energy

For proofs of the statements in this section, we refer to [38].
Let 0 < r1 < r2 and ξ ∈ R2. We define

ASr1,r2(ξ) =

{
η ∈ L2

(
Br2(0) \Br1(0);R2×2

)
: curl η = 0 and

ˆ
∂Br1 (0)

η · t = ξ

}
.

Here, τ denotes the unit tangent to ∂Br1(0). The circulation condition has to be understood in
the sense of traces. For a function η ∈ L2

(
Br2(0) \Br1(0);R2×2

)
which is curl-free the tangential

boundary values are well-defined in H−
1
2

(
Br2(0) \Br1(0);R2

)
, cf. [29, Theorem 2]. The integral is
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4.2 The Self-Energy

then understood as testing with the constant 1-function.
Note that this definition of admissible strains ASr1,r2(ξ) is defined by a circulation condition and not
by a curl-condition as in the previous section. Clearly, the two formulations are linked via Stoke’s
theorem.
Next, we set

ψr1,r2(ξ) = min

{
1

2

ˆ
Br2 (0)\Br1 (0)

Cη : η dx : η ∈ ASr1,r2(ξ)

}
, (4.4)

where C = ∂2W
∂2F (Id). Note that by scaling it holds that ψr1,r2(ξ) = ψ r1

r2
,1(ξ). The special case r2 = 1

will be denoted by

ψ(ξ, δ) = min

{
1

2

ˆ
B1(0)\Bδ(0)

Cη : η dx : η ∈ AS1,δ(ξ)

}
. (4.5)

Observe that for fixed δ > 0 the function ψ(·, δ) is convex and 2-homogeneous.

We state here the following result from [38, Corollary 6 and Remark 7].

Proposition 4.2.1. Let ξ ∈ R2, δ ∈ (0, 1) and let ψ(ξ, δ) be defined as in (4.5). Then for every
ξ ∈ R2 it holds

lim
δ→0

ψ(ξ, δ)

| log δ|
= ψ(ξ),

where ψ : R2 → [0,∞) is defined by

ψ(ξ) = lim
δ→0

1

| log δ|
1

2

ˆ
B1(0)\Bδ(0)

Cη0 : η0 dx (4.6)

and η0 : R2 → R2×2 is a fixed distributional solution tocurl η0 = ξδ0 in R2,

div η0 = 0 in R2.

In particular, both limits exist. Moreover, there exists a constant K > 0 such that for all δ > 0 small
enough and ξ ∈ R2 it holds ∣∣∣∣ψ(ξ, δ)

| log δ|
− ψ(ξ)

∣∣∣∣ ≤ K |ξ|2

| log δ|
.

Remark 4.2.1. Note that the function ψ is 2-homogeneous and convex.

Remark 4.2.2. In [38, Proposition 8], the authors show the following extension of the result above.
Let 0 < rδ → 0 such that log(rδ)

log(δ) → 0. Define for ξ ∈ R2 the function ψ̃(·, δ) by

ψ̃(ξ, δ) = min

{ˆ
Brδ (0)\Bδ(0)

1

2
Cη : η dx : η ∈ ASrδ,δ(ξ)

}
.

Then ψ̃(ξ,δ)
| log δ| = ψ(ξ,δ)

| log δ| (1 + o(1)) where o(1)→ 0 as δ → 0.

The function ψ is the (renormalized) limit self-energy of a single dislocation with Burgers vector ξ.
The well-separateness condition on the dislocations does not prevent dislocations from merging to a
single dislocation in the limit. This could lead to a smaller limit energy per dislocation than ψ. The
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

classical way to capture this energetic behavior is to define the limit self-energy density ϕ through a
relaxation procedure.

Definition 4.2.1. We define the function ϕ : SO(2)× R2 → [0,∞) by

ϕ(R, ξ) = min

{
M∑
k=1

λkψ(RT ξk) :

M∑
k=1

λkξk, M ∈ N, λk ≥ 0, ξk ∈ S

}
. (4.7)

Remark 4.2.3. Indeed, it can be seen by the 2-homogeneity of ψ that the min in the definition of ϕ
exists.

Remark 4.2.4. Note that ϕ(R,−) is convex and 1-homogenous.

Remark 4.2.5. The dependence of the function ϕ on R reflects the fact that we start from a rotational
invariant model and will end up with a linearized model.

4.3 The Critical Regime

In this section, we treat the case Nε ∼ | log ε|; for the sake of a simpler notation we assume that
Nε = | log ε|. We show that the energy Eε as defined in (4.3) converges in the sense of Γ-convergence
to a strain-gradient plasticity model of the form (see Theorem 4.3.2)

ˆ
Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ|,

where µ = R curlβ and R is the limit of a sequence of constant rotations provided by the generalized
rigidity estimate (Theorem 3.0.1). Moreover, we show that for sequences of uniformly bounded energy
Eε(µε, βε) there exists a subsequence such that suitably rescaled versions of µε and βε converge in an
appropriate sense.

Compactness

In this paragraph, we prove the compactness statement in the critical regime. The main ingredient in
the proof will be the generalized rigidity estimate from Theorem 3.0.1. The result is the following.

Theorem 4.3.1 (Compactness). Let εj → 0 and Nεj = | log εj | . Let (βj , µj)j ⊂ Lp(Ω,R2×2) ×
M(Ω;R2) be a sequence such that supj Eεj (µj , βj) < ∞. Then there exist a subsequence (not rela-
beled), a sequence (Rj) ⊂ SO(2), a rotation R ∈ SO(2), a measure µ ∈M(Ω;R2) ∩H−1(Ω;R2), and
a function β ∈ L2(Ω;R2×2) such that

(i) µj
εj | log εj |

∗
⇀ µ inM(Ω;R2),

(ii) RTj βj−Id
εj | log εj | ⇀ β in Lp(Ω;R2×2),

(iii) Rj → R,

(iv) curlβ = RTµ.

Proof. Step 1. Weak convergence of the scaled dislocation measures.
In this step, it is our objective to show that there exists a constant C > 0 such that

|µj |(Ω)

εj | log εj |
≤ C.
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4.3 The Critical Regime

Let us fix α ∈ (0, 1). By the finiteness of the energy for (µj , βj), it follows µj ∈ Xεj ; we write
µj =

∑Mj

i=1 εjξi,j δxi,j for appropriate ξi,j ∈ S and xi,j ∈ R2. The uniform boundedness of the energy
of (µj , βj) and the well-separateness assumption on the dislocations guarantee that for j large enough
it holds

C ≥ 1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)\Bεj (xi,j)

W (βj) dx. (4.8)

Furthermore, let Li,j = xi,j + (εj , ε
α
j ) × {0} and write Ai,j =

(
Bεαj (xi,j) \Bεj (xi,j)

)
\ Li,j . As Ai,j

is simply connected, we can find functions vi,j ∈ W 1,p(Ai,j ;R2×2) such that βj = ∇vi,j in Ai,j . A
simple covering argument shows that all rigidity estimates hold also on the domain Ai,j although
it has no Lipschitz boundary. By applying the mixed-growth rigidity estimate for curl-free fields
from [58, Proposition 2.3], we find rotations Ri,j ∈ SO(2) such that for all 1 ≤ i ≤ Mj and j ∈ N it
holds
ˆ
Ai,j

|∇vi,j −Ri,j |2 ∧ |∇vi,j −Ri,j |p dx ≤ C
ˆ
Ai,j

dist(∇vi,j , SO(2))2 ∧ dist(∇vi,j , SO(2))p dx. (4.9)

Note that as the ratio of the Ai,j is uniformly bounded from below, we can choose the constant C in
the estimate above uniformly in i and j. Furthermore, using Jensen’s inequality for third inequality,
we find

ˆ
Ai,j

|∇vi,j −Ri,j |2 ∧ |∇vi,j −Ri,j |p dx

≥
ˆ εαj

εj

ˆ
∂Bt(xi,j)

|βj −Ri,j |2

2
∧ |βj −Ri,j |

p

p
dH1 dt

≥
ˆ εαj

εj

2πt

 
∂Bt(xi,j)

|(βj −Ri,j) · τ |2

2
∧ |(βj −Ri,j) · τ |

p

p
dH1 dt

≥
ˆ εαj

εj

2πt

1

2

∣∣∣∣∣
 
∂Bt(xi,j)

(βj −Ri,j) · τdH1

∣∣∣∣∣
2

∧ 1

p

∣∣∣∣∣
 
∂Bt(xi,j)

(βj −Ri,j) · τdH1

∣∣∣∣∣
p
 dt

≥
ˆ εαj

εj

πt

(∣∣∣∣εj ξi,j2πt

∣∣∣∣2 ∧ ∣∣∣∣εj ξi,j2πt

∣∣∣∣p
)
dt. (4.10)

Here, τ denotes the tangent to ∂Bt(xi,j).

Claim: Let α < γ < 1. Then it holds εj |ξi,j | ≤ εγj for all 1 ≤ i ≤Mj and j ∈ N large enough.
Assume this is not the case i.e., there exists a subsequence (not relabeled) and indices 1 ≤ ij ≤ Mj

such that εj |ξij ,j | ≥ ε
γ
j . Combining (4.8), (4.9), and (4.10), we derive for j large enough that

C ≥ 1

ε2
j | log εj |2

ˆ εαj

εj

πt

(∣∣∣∣εj ξij ,j2πt

∣∣∣∣2 ∧ ∣∣∣∣εj ξij ,j2πt

∣∣∣∣p
)
dt

≥ 1

ε2
j | log εj |2

ˆ ε
γ
j

2π

εj

πt

∣∣∣∣εj ξij ,j2πt

∣∣∣∣p dt
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=
1

ε2
j | log εj |2

εpj |ξij ,j |
p2−pπ1−p(2− p)−1

(
ε

(2−p)γ
j

(2π)2−p − ε
(2−p)
j

)

As we assume that εj |ξij ,j | ≥ ε
γ
j , we derive from the estimate above

C ≥ 2−pπ1−p(2− p)−1 1

| log εj |2

(
ε

2(γ−1)
j

(2π)2−p − ε
p(γ−1)
j

)
→∞

since 2(γ − 1) < p(γ − 1) < 0. Contradiction!

Fix α < γ < 1. Using the claim, (4.8), (4.9), and (4.10), we can estimate

C ≥
Mj∑
i=1

1

ε2
j | log εj |2

ˆ εαj

εj

πt

(∣∣∣∣εj ξi,j2πt

∣∣∣∣2 ∧ ∣∣∣∣εj ξij ,j2πt

∣∣∣∣p
)
dt

≥ 1

ε2
j | log εj |2

Mj∑
i=1

ˆ εαj

εγj

πt

∣∣∣∣εj ξi,j2πt

∣∣∣∣2 dt
=

1

4π| log εj |2

Mj∑
i=1

|ξi,j |2(γ − α)| log εj |. (4.11)

As the non-zero elements of S are bounded away from zero, we may derive from (4.11) that

C ≥ 1

| log εj |

Mj∑
i=1

|ξi,j | =
|µj |(Ω)

εj | log εj |
.

Hence, there exists a subsequence (not relabeled) and µ ∈M(Ω;R2) such that µj
∗
⇀ µ inM(Ω;R2).

Step 2. Weak convergence of the scailed strains.
By the finiteness of Eεj (µj , βj), it follows that βj ∈ ASεj (µj); in particular, curlβj = µj . By the
generalized rigidity estimate in Theorem 3.0.1, there exist rotations Rj ∈ SO(2) such that

ˆ
Ω

|βj −Rj |2 ∧ |βj −Rj |p dx ≤ C
(ˆ

Ω

dist(βj , R)2 ∧ dist(βj , R)p dx+ |µj |(Ω)2

)
.

From the lower bound on W (see (iv) in Section 4.1) and step 1 it follows

ˆ
Ω

|βj −Rj |2 ∧ |βj −Rj |p dx ≤ Cε2
j | log εj |2. (4.12)

We set Gj =
RTj βj−Id
εj | log εj | . Then εj | log εj ||Gj | = |βj −R|. In particular, it holds

ˆ
Ω

|Gj |2 ∧
|Gj |p

ε2−p
j | log εj |2−p

dx ≤ C. (4.13)

This implies that (Gj)j is a bounded sequence in Lp(Ω;R2×2). Hence, there exists a subsequence
(again denoted by Gj) which converges weakly in Lp(Ω;R2×2) to some function β ∈ Lp(Ω;R2×2).
Next, we show that β ∈ L2(Ω;R2×2).
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Consider the decomposition of Ω into the two sets

A2
j =

{
x ∈ Ω : |Gj(x)|2 ≤ |Gj(x)|p

ε2−p
j | log εj |2−p

}
and Apj =

{
x ∈ Ω : |Gj(x)|2 > |Gj(x)|p

ε2−p
j | log εj |2−p

}
.

By (4.13), the sequence |Gj |1A2
j
is bounded in L2(Ω;R2×2). Consequently, up to taking a further

subsequence, the sequence converges weakly in L2(Ω;R2×2) to a function β̃ ∈ L2(Ω;R2×2). It remains
to show that β = β̃.
By the definition of Gj , one can verify that

Apj =
{
x ∈ Ω : |βj −Rj |2 > |βj −Rj |p

}
= {x ∈ Ω : |βj −Rj | > 1}.

But, (4.12) implies ∣∣Apj ∣∣ ≤ ˆ
Apj

|βj −Rj |p dx ≤ Cε2
j | log εj |2 → 0.

Thus, 1A2
j
→ 1 boundedly in measure. Together with Gj ⇀ β in Lp(Ω;R2×2), this ensures that

Gj1A2
j
⇀ β in Lp(Ω;R2×2).

Hence, β = β̃ ∈ L2(Ω;R2×2).

Step 3. µ ∈ H−1(Ω;R2) and curlβ = RTµ.
As β ∈ L2(Ω;R2×2), it is clear that curlβ ∈ H−1(Ω;R2). Moreover, one computes for ϕ ∈ C∞c (Ω;R2)

and J =

(
0 −1

1 0

)
that

< µ,ϕ >D′,D= lim
j

1

εj | log εj |
< µj , ϕ >D′,D= lim

j

1

εj | log εj |
< curl(βj −Rj), ϕ >D′,D

= − lim
j

1

εj | log εj |
< βj −Rj , J∇ϕ >D′,D= − < Rβ, J∇ϕ >D′,D=< curl(Rβ), ϕ >D′,D .

As curl(Rβ) = R curlβ, it follows that RTµ = curlβ.

The Γ-convergence Result

This paragraph is devoted to state and prove the Γ-convergence result for the energy Eε as defined
in (4.3) in the critical regime Nε ∼ | log ε|. First, we need to specify which topology we use in
M(Ω;R2)× Lp(Ω;R2×2) for the Γ-convergence result. In view of the compactness result in Theorem
4.3.1, we define the following notion of convergence.

Definition 4.3.1. Let ε→ 0. We say that a sequence (µε, βε) ⊂M(Ω;R2)× Lp(Ω;R2×2) converges
to a triplet (µ, β,R) ∈ M(Ω;R2) × Lp(Ω;R2×2) × SO(2) if there exists a sequence (Rε)ε ⊂ SO(2)

such that
µε

ε| log ε|
∗
⇀ µ inM(Ω;R2), (4.14)

RTε βε − I
ε| log ε|

⇀ β in Lp(Ω;R2×2), and Rε → R. (4.15)

With respect to this convergence we can now state the Γ-convergence result.
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Theorem 4.3.2. Let Nε = | log ε|. The energy functional Eε defined as in (4.3) Γ-converges with
respect to the notion of convergence given in Definition 4.3.1 to the functional Ecrit defined on
M(Ω;R2)× Lp(Ω;R2×2)× SO(2) as

Ecrit(µ, β,R) =


1
2

´
Ω
Cβ : β dx+

´
Ω
ϕ
(
R, dµd|µ|

)
d|µ| if µ ∈ H−1(Ω;R2) ∩M(Ω;R2),

β ∈ L2(Ω;R2×2), and curlβ = RTµ,

+∞ otherwise ,

where C = ∂2W
∂2F (Id) and ϕ is the relaxed self-energy density as defined in (4.7).

The proof will be given in the next two propositions.

Proposition 4.3.3 (The lim inf-inequality). Let εj → 0 and Nεj = | log εj |. Let (µj , βj) ⊂M(Ω;R2)×
Lp(Ω;R2×2) be a sequence that converges to a triplet (µ, β,R) ∈M(Ω;R2)× Lp(Ω;R2×2)× SO(2) in
the sense of Definition 4.3.1. Then

lim inf
j→∞

Eεj (µj , βj) ≥ Ecrit(µ, β,R).

Proof. We may assume that lim infj→∞Eεj (µj , βj) = limj→∞Eεj (µj , βj). Moreover, we may assume
that supj Eεj (µj , βj) < ∞. This implies that µj ∈ Xεj and βj ∈ ASεj (µj) for all j. In particular,
the dislocation density µj is of the form µj =

∑Mj

i=1 εjξi,j δxi,j for some 0 6= ξi,j ∈ S and xi,j ∈ Ω.
A straightforward argument shows that the rotations provided by the application of the generalized
rigidity estimate in the proof of the compactness result also converge to R. In the following, we
assume that the Rj are those from the compactness result. Then it follows that β ∈ L2(Ω;R2×2),
µ ∈ H−1(Ω;R2) ∩M(Ω;R2), and curlβ = RTµ.

In order to prove the lower bound, we subdivide the energy Eεj (µj , βj) into a part far from the
dislocations and a contribution close to the dislocations (see also Figure 4.1) i.e.,

Eεj (µj , βj) =
1

ε2
j | log εj |2

ˆ
Ωρεj

(µj)

W (βj) dx+
1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bρεj

(xi,j)

W (βj) dx,

where we define for r > 0 the set Ωr(µj) = Ω \
⋃Mj

i=1Br(xi,j). The two contributions will be treated
separately.
Recalling the heuristics from Section 1.3, the second term on the right hand side should include the
self-energies of the dislocations. The first term on the right hand side is the elastic interaction energy
of the dislocations. By the rescaling, this term should just linearize in the limit.

Lower bound far from the dislocations. We will perform a second order Taylor expansion
at scale εj | log εj | of the function W . As the energy density has a minimum at the identity matrix,
there exists a function σ : R2×2 → R such that for all F ∈ R2×2 it holds

W (Id+ F ) =
1

2
CF : F + σ(F )

and σ(F )/|F |2 → 0 as |F | → 0. Set ω(t) = sup|F |≤t |σ(F )|. Notice that also ω(t)/t2 → 0 as t → 0.
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4.3 The Critical Regime

Ωρεj (µj)

Figure 4.1: Sketch of the situation in the proof of the lim inf-inequality. The reduced domain Ωρεj (µj)

is drawn in gray, the balls around the dislocations with radius δεαj are drawn in red. The
annuli Bρεj (xi,j) \Bδεαj (xi,j) are drawn in blue and subdivided into annuli with constant
ratio δ−1.

Moreover, we obtain for all F ∈ R2×2 that

W (Id+ εj | log εj |F ) ≥ 1

2
ε2
j | log εj |2CF : F − ω(εj | log εj ||F |). (4.16)

Next, define

Gj =
RTj βj − Id
εj | log εj |

.

and

A2
εj =

{
x ∈ Ω : |Gj(x)|2 ≤ |Gj |p

ε2−p
j | log εj |2−p

}
.

As in the proof of the compactness (Theorem 4.3.1), it can be shown that Gj1A2
εj
⇀ β in L2(Ω;R2×2)

and 1A2
εj
→ 1 boundedly in measure. Furthermore, define the set

Bεj =
{
x ∈ Ω : |Gj | ≤ ε

− 1
2

j

}
.

The boundedness of the sequence (Gj)j in Lp(Ω;R2×2) yields that 1Bεj → 1 boundedly in measure.

In the proof of the compactness result, it was shown that |µj |(Ω)
εj | log εj | ≤ C. As the non-zero elements of

S are bounded away from zero, it follows for the number of dislocations Mj that

Mj ≤ C
Mj∑
i=1

|ξi,j | = C
|µj |(Ω)

εj
≤ C| log εj |.

Hence, by the assumptions on ρεj it holds

|Ω \ Ωρεj (µj)| ≤ C| log εj |ρ2
εj → 0.

Consequently, 1Ωρεj
(µj) → 1 boundedly in measure.
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Eventually, we define the function

χεj (x) =

1 if x ∈ Ωρεj (µj) ∩A2
εj ∩Bεj ,

0 else.

By the considerations above, we conclude that χεj → 1 boundedly in measure. As Gj1A2
εj
⇀ β in

L2(Ω;R2×2), we derive that also

Gjχεj = Gj1A2
εj
χεj ⇀ β in L2(Ω;R2×2). (4.17)

Using the frame indifference and (4.16), we can estimate

1

ε2
j | log εj |2

ˆ
Ωρεj

(µj)

W (βj) dx =
1

ε2
j | log εj |2

ˆ
Ωρεj

(µj)

W (RTj βj) dx

≥ 1

ε2
j | log εj |2

ˆ
Ω

χεjW (RTj βj) dx

=
1

ε2
j | log εj |2

ˆ
Ω

χεjW (Id+ εj | log εj |Gj) dx

≥
ˆ

Ω

1

2
C
(
χεjGj

)
:
(
χεjGj

)
− χεj

ω(εj | log εj ||Gj |)
ε2
j | log εj |2

dx

=

ˆ
Ω

1

2
C
(
χεjGj

)
:
(
χεjGj

)
− |χεjGj |2

ω(εj | log εj ||Gj |)
|Gj |2ε2

j | log εj |2
dx. (4.18)

Now, recall (4.17) and notice that the first term in (4.18) is lower semi-continuous with respect to
weak convergence in L2(Ω;R2×2). For the second term in (4.18), recall that (χεjGj)εj is a bounded
sequence in L2(Ω;R2×2). On the other hand, notice that whenever χεj (x) = 1 it also holds that

εj | log εj ||Gj(x)| ≤ ε
1
2
j | log εj | → 0. Hence, by the properties of ω we find that

χεj
ω(εj | log εj ||Gj |)
|Gj |2ε2

j | log εj |2
→ 0 in L∞(Ω).

Thus, ˆ
Ω

|χεjGj |2
ω(εj | log εj ||Gj |)
|Gj |2ε2

j | log εj |2
dx→ 0 as εj → 0.

Eventually, we derive

lim inf
j→∞

1

ε2
j | log εj |2

ˆ
Ωρεj

(µj)

W (βj) dx ≥
ˆ

Ω

1

2
Cβ : β dx.

Lower bound close the dislocations. Fix α, δ ∈ (0, 1). We subdivide for each i ∈ {1, . . . ,Mj}
the annulus Bρεj (xi,j) \ Bδεαj (xi,j) around the dislocation point xi,j into annuli with constant ratio
δ−1, see Figure 4.1. Precisely, we define

Ck,ij = Bδk−1ρεj
(xi,j) \Bδkρεj (xi,j) (4.19)

for k ∈ {1, . . . , k̃j} where

k̃j =

⌊
α
| log εj |
| log δ|

−
| log ρεj |
| log δ|

⌋
+ 1. (4.20)
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4.3 The Critical Regime

Notice that for k ≤ k̃j it holds δkρεj ≥ δk̃jρεj ≥ δεαj . Hence, for every j ∈ N and i ∈ {1, . . . ,Mj} we
have the estimate ˆ

Bρεj
(xi,j)\Bδεα

j
(xi,j)

W (βj)

ε2
j

≥
k̃j∑
k=1

ˆ
Ck,ij

W (βj)

ε2
j

dx. (4.21)

Similar to the proof of [71, Proposition 3.11], the key estimate for the lower bound close to the
dislocations is the following result.

Lemma 4.3.4. In the situation above, the following holds true. There exists a sequence σj
j→∞→ 0

such that for all j ∈ N, i ∈ {1, . . . ,Mj}, and k ∈ {1, . . . , k̃j} it holds
ˆ
Ck,ij

W (βj)

ε2
j

dx ≥ ψ(RT ξi,j , δ)− σj |ξi,j |2, (4.22)

where ψ(·, δ) is defined as in (4.5).

Proof. The claim of the lemma is equivalent to

lim inf
j→∞

(
sup

k=1,...,k̃j , i=1,...,Mj

ˆ
Ck,ij

W (βj)

|ξi,j |2ε2
j

dx− ψ
(
RT

ξi,j
|ξi,j |

, δ

))
≥ 0,

where we used the 2-homogeneity of ψ(·, δ).
Assume this is not the case i.e.,

lim inf
j→∞

sup
k=1,...,k̃j , i=1,...,Mj

(ˆ
Ck,ij

W (βj)

|ξi,j |2ε2
j

dx− ψ
(
RT

ξi,j
|ξi,j |

, δ

))
< 0. (4.23)

Up to extracting a subsequence, we may assume that the lim inf above is a limit.
For every j ∈ N we denote by kj ∈ {1, . . . , k̃j} and ij ∈ {1, . . . ,Mj} the indices that maximize´
Ck,ij

W (βj)

|ξi,j |2ε2j
dx− ψ

(
RT

ξi,j
|ξi,j | , δ

)
among all k ∈ {1, . . . , k̃j} and i ∈ {1, . . . ,Mj}.

The assumption (4.23) implies for j ∈ N large enough the bound

ˆ
C
kj,ij
j

W (βj)

|ξij ,j |2ε2
j

dx ≤ ψ
(
RT

ξij ,j

|ξij ,j |2
, δ

)
≤ C,

where we used that sup|ξ|=1 ψ(ξ, δ) < ∞ for the second inequality. This follows from convexity
and pointwise finiteness of ψ(·, δ). Next, we apply the classical mixed-growth rigidity estimate [58,
Proposition 2.3] on Ckj ,ijj to obtain rotations R̃j ∈ SO(2) such that

ˆ
C
kj,ij
j

∣∣∣βj − R̃j∣∣∣2 ∧ ∣∣∣βj − R̃j∣∣∣p
|ξij ,j |2ε2

j

dx ≤ C
ˆ
C
kj,ij
j

dist(βj , SO(2))2 ∧ dist(βj , SO(2))p

|ξij ,j |2ε2
j

dx

≤ C
ˆ
C
kj,ij
j

W (βj)

|ξij ,j |2ε2
j

dx. (4.24)

Here, we used the lower bound on the energy density W , (iv) in Section 4.1, for the second inequality.
As the ratio of all Ckj ,ijj is the same for all j, the constant on the right hand side can be chosen
uniformly for all j.
As the sequence of rotations Rj comes from the application of the generalized rigidity estimate in the

65



4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

proof of the compactness result, it follows that
ˆ
C
kj,ij
j

|βj −Rj |2 ∧ |βj −Rj |p dx ≤ Cε2
j | log εj |2.

Together with (4.24), this implies for the difference of the rotations Rj and R̃j that

|Rj − R̃j |2 ≤
C

L2(C
kj ,ij
j )

(ˆ
C
kj,ij
j

|βj −Rj |2 ∧ |βj −Rj |p dx+

ˆ
C
kj,ij
j

∣∣∣βj − R̃j∣∣∣2 ∧ ∣∣∣βj − R̃j∣∣∣p dx)

≤ C

δ2k̃jρ2
εj

(ε2
j |ξij ,j |2 + ε2

j | log εj |2) ≤ C

δ2ε2α
j

ε2
j | log ε|2 j→∞−→ 0,

where we used that εj |ξij ,j | ≤ |µj |(Ω) ≤ Cεj | log εj |. It follows limj→∞ R̃j = limj→∞Rj = R.
Next, define on B1(0) \Bδ(0) the function

ηj(x) =
R̃Tj βj

(
ρεjδ

kj−1x+ xij ,j
)
− Id

εj |ξij ,j |
ρεjδ

kj−1.

Then curl ηj = 0 in B1(0) \ Bδ(0) and
´
∂Bδ(0)

ηj · τ dH1 = R̃Tj
ξij ,j

|ξij ,j |
where the integral has to be

understood in the sense of traces (see the comment about the trace of curl-free Lp-functions in Section
4.2). Furthermore, by (4.24) a change of variables yields

ˆ
B1(0)\Bδ(0)

|ηj |2 ∧
|ηj |p (ρεjδ

kj−1)2−p

ε2−p
j |ξij ,j |2−p

dx =

ˆ
C
kj,ij
j

∣∣∣R̃Tj βj(x)− Id
∣∣∣2 ∧ ∣∣∣R̃Tj βj(x)− Id

∣∣∣p
ε2
j |ξij ,j |2

dx ≤ C.

(4.25)

Let us define the set Uj =

{
x ∈ B1(0) \Bδ(0) : |ηj(x)|2 ≥ |ηj(x)|p(ρεj δ

kj−1)2−p

ε2−pj |ξij ,j |2−p

}
. As it holds that

ρεj δ
kj−1

εj |ξij ,j |
≥ εαj

εj | log εj | →∞, one derives from (4.25) that L2(Uj)→ 0.

Moreover, from (4.25) one sees that ηj is a bounded sequence in Lp(B1(0) \ Bδ(0);R2×2) and ηj1Uj
is a bounded sequence in L2(B1(0) \ Bδ(0);R2×2). Hence, up to taking a subsequence, there exists
η ∈ Lp(B1(0) \ Bδ(0);R2×2) such that ηj ⇀ η in Lp(B1(0) \ Bδ(0);R2×2). By standard arguments
it also holds that ηj1Uj has the same week limit in L2(B1(0) \ Bδ(0);R2×2). In particular, it follows
that η ∈ L2(B1(0) \Bδ(0);R2×2). In addition,

curl ηj = 0 in B1(0) \Bδ(0) and ξ := lim
j→∞

ˆ
∂Bδ(0)

ηj · τ dH1 ∈ S1 exists. (4.26)

For the second statement, one uses that taking the tangential boundary values is continuous from
{β ∈ Lp(B1(0)\Bδ(0);R2×2) : curlβ ∈ LpB1(0)\Bδ(0)} toW−1,p(∂(B1(0)\Bδ(0))) , cf. [29, Theorem
2]. The statement then follows by testing with the constant function with value 1.
Now, define Aj = {x ∈ B1(0) \Bδ(0) : |ηj | ≤ ε

− 1−α
2

j }. By the boundedness of ηj in Lp, it follows that
|Aj | → 0. In addition, define χj = 1Aj1Uj and observe that χjηj ⇀ η in L2(B1(0) \ Bδ(0);R2×2).
We estimate, with the use of the frame-indifference of W and a Taylor expansion for W , similarly to
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(4.18)

ˆ
C
kj,ij
j

W (βj)

|ξij ,j |2ε2
j

dx ≥
ˆ
B1(0)\Bδ(0)

χj

W

(
Id+

εj |ξij ,j |
ρεj δ

kj−1 ηj

)
ε2
j |ξij ,j |2

ρ2
εjδ

2kj−2 dx

≥
ˆ
B1(0)\Bδ(0)

Cηjχj : ηjχj − χj
ω

(
ηj

εj |ξij ,j |
ρεj δ

kj−1

)
ε2
j |ξij ,j |2

ρ2
εjδ

2kj−2 dx, (4.27)

where ω(t) ∈ o(t2). Notice that

χj |ηj |
εj |ξij ,j |
ρεjδ

kj−1
≤ ε−

1−α
2

j εj |ξij ,j |ε−αj = |ξij ,j |ε
1−α

2
j ≤ C| log εj |ε

1−α
2

j → 0. (4.28)

The second integrand in (4.27) can be written as

χj |ηj |2
ω

(
ηj

εj |ξij ,j |
ρεj δ

kj−1

)
|ηj |2ε2

j |ξij ,j |2
ρ2
εjδ

2kj−2,

which is by the computation in (4.28) the product of a function bounded in L1(B1(0) \Bδ(0)) and a
function converging uniformly to 0. Hence, the second term in (4.27) vanishes in the limit.
By lower-semicontinuity of the first term in (4.27) with respect to weak convergence in the space
L2(B1(0) \Bδ(0);R2×2), we observe that

lim inf
j→∞

ˆ
C
kj,ij
j

W (βj)

|ξij ,j |2ε2
j

dx ≥
ˆ
B1(0)\Bδ(0)

Cη : η dx ≥ ψ(ξ, δ), (4.29)

where we used (4.26) and the definition of ψ(·, δ) for the second inequality.
Moreover, from the convexity and finiteness of ψ(·, δ) we derive the continuity of the function ψ(·, δ).
Thus, (4.26) yields limj→∞ ψ

(
RT ξi,j
|ξij ,j |

, δ
)

= ψ(ξ, δ). Together with (4.29), this implies

lim inf
j→∞

ˆ
C
kj,ij
j

W (βj)

|ξij ,j |2ε2
j

dx− ψ
(
RT

ξij ,j

|ξij ,j |2
, δ

)
≥ 0,

which contradicts (4.23). This proves the lemma.

Using the previous lemma together with (4.20) and (4.21), we can estimate

1

| log εj |2

Mj∑
i=1

ˆ
Bρεj

(xi,j)

W (βj)

ε2
j

≥ 1

| log εj |2

Mj∑
i=1

k̃j∑
k=1

ˆ
Ck,ij

W (βj)

ε2
j

dx

≥ 1

| log εj |2

Mj∑
i=1

k̃j
(
ψ(RT ξi,j , δ)− σj |ξi,j |2

)
≥ 1

| log εj |

Mj∑
i=1

(
α−
| log ρεj |
| log εj |

)(
ψ(RT ξi,j , δ)

| log δ|
− σj |ξi,j |2

| log δ|

)
. (4.30)
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From Proposition 4.2.1 we know that there exists K > 0 (which does not depend on δ) such that for
every ξ ∈ R2 it holds ∣∣∣∣ψ(ξ, δ)

| log δ|
− ψ(ξ)

∣∣∣∣ ≤ K|ξ|2

| log δ|
.

Together with (4.30), this yields

1

| log εj |2

Mj∑
i=1

ˆ
Bρεj

(xi,j)

W (βj)

ε2
j

≥ 1

| log εj |

Mj∑
i=1

(
α−
| log ρεj |
| log εj |

)(
ψ(RT ξi,j)−

K|ξi,j |2

| log δ|
− σj |ξi,j |2

| log δ|

)
.

Arguing as in the proof of the compactness, we can find similarly to (4.11) that

1

| log εj |

Mj∑
i=1

|ξi,j |2 ≤ C

and hence

1

| log εj |2

Mj∑
i=1

ˆ
Bρεj

(xi,j)

W (βj)

ε2
j

≥ 1

| log εj |

Mj∑
i=1

(
α−
| log ρεj |
| log εj |

)
ψ(RT ξi,j)

 (4.31)

− C
(
α−
| log ρεj |
| log εj |

)(
1 + σj
| log δ|

)
. (4.32)

Now, write µ̃j =
µj

εj | log εj | . Using ψ ≥ ϕ and the 1-homogeneity of ϕ, cf. the definition of ϕ in (4.7)
and the remark below, we can estimate

1

| log εj |

Mj∑
i=1

(
α−
| log ρεj |
| log εj |

)
ψ(RT ξi,j) ≥

(
α−
| log ρεj |
| log εj |

)ˆ
Ω

ϕ

(
R,

dµ̃j
d|µ̃j |

)
d|µ̃j |. (4.33)

By the definition of the convergence of (µj , βj) to the triple (β, µ,R), it holds in particular that
µ̃εj

∗
⇀ µ in M(Ω;R2). As ϕ is a continuous, convex, and 1-homogeneous function, we can apply

Reshetnyak’s theorem to derive from (4.33) that

lim inf
j→∞

1

| log εj |

Mj∑
i=1

(
α−
| log ρεj |
| log εj |

)
ψ(RT ξi.j) ≥ α

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ|. (4.34)

Combining (4.32) and (4.34) yields

lim inf
j→∞

1

| log εj |2

Mj∑
i=1

ˆ
Bρεj

(xi,j)

W (βj)

ε2
j

≥ α
ˆ

Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ| − lim sup

j→∞
C

(
α−
| log ρεj |
| log εj |

)(
1 + σj
| log δ|

)
= α

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ| − Cα

| log δ|
.

Letting α→ 1 and δ → 0 finishes the proof of the lower bound close to the dislocations.
Combining the estimates close and far from the dislocations shows the claimed lim inf-inequality.

In the following, we prove the existence of a recovery sequence for the energy Ecrit. We will use
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that the limit energy Ecrit is the same as in [38] and [59]. In particular, we make use of the density
result in [38] that allows us to restrict ourselves to the case that µ is locally constant and absolutely
continuous with respect to the Lebesgue measure.
The construction is then closely related to the one for the nonlinear energy with quadratic growth
in [59].

Proposition 4.3.5 (The lim sup-inequality). Let εj → 0 and Nεj = | log εj |. Let R ∈ SO(2),
β ∈ L2(Ω;R2×2) such that curlβ = RTµ ∈ M(Ω;R2). Then there exists a sequence of dislocation
measures and associated strains (µj , βj)j ⊂ M(Ω;R2) × Lp(Ω,R2×2) converging to (µ, β,R) in the
sense of Definition 4.3.1 such that

lim sup
j→∞

Eεj (µj , βj) ≤ Ecrit(µ, β,R).

Proof. Step 1. µ = ξ dx for some ξ ∈ R2.
Let λ1, . . . , λM > 0 and ξ1, . . . , ξM ∈ S such that ξ =

∑M
k=1 λkξk and ϕ(R, ξ) =

∑M
k=1 λkψ(RT ξk).

Moreover, set

Λ =

M∑
k=1

λk and rεj =
1

2
√

ΛNεj
.

Then, by the assumptions on ρεj , it holds that
ρεj
rεj

= 2
√

Λ
√
ρ2
εj | log εj | → 0. According to [38, Lemma

11], there exists a sequence of measures µj =
∑M
k=1 εjξkµ

k
j with µkj of the type

∑Mk
j

l=1 δxkl,j for some
xkl,j ∈ Ω such that for all x, y ∈ supp(µj) it holds Brεj (x) ⊂ Ω and |x − y| ≥ 2rεj . Moreover, the
construction of µj in [38, Lemma 11] implies that

|µkj |(Ω)

| log εj |
→ λk|Ω| and

µj
εj | log εj |

∗
⇀ µ inM(Ω;R2). (4.35)

The basic concept behind the construction of µj is the following. First, consider a Burgers vector
ξ such that ψ(RT ξ) = ϕ(R, ξ). Cover Ω with cubes of side length

√
Nεj

−1. In all balls which lie
completely in Ω put a Dirac measure with weight ξ. For a sketch of the construction, see Figure
4.2. In the general case, first approximate ξ

Λ dx by measures that are locally constant with values
ξ1, . . . , ξM on volume fractions of size λ1

Λ , . . . ,
λM
Λ . On the sets where an approximating measure is

constant use the construction described above for squares with side length
√

ΛNεj
−1. Then take a

diagonal sequence.

Note that by construction it holds µj ∈ Xεj .
It is useful to combine the two summations in the definition of µj into

µj =

Mj∑
i=1

εjξi,jδxi,j

for appropriate ξi,j ∈ S and xi,j ∈ Ω. In particular, by the well-separateness of dislocations of µj on
the scale rεj it follows Mj ≤ Cr−2

εj .
In [7], it is shown that for every i = 1, . . . ,Mj there exists a strain field ηji : R2 → R2×2 of the form
ηji = 1

|x−xi,j |ΓRT ξi,j

(
x−xi,j
|x−xi,j |

)
where the function ΓRT ξi,j : R2 → R2×2 depends on the linearized
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Figure 4.2: Sketch of the construction of the measures µj , µ̃
rεj
j , and µ̂

rεj
j for a Burgers vector ξ such

that ϕ(R, ξ) = ψ(RT ξ): cover Ω with squares of side length
√
Nεj

−1. In every square
that is included in Ω put a Dirac mass with weight ξ (black dot) for µj , a continuously
distributed mass of ξ on the circle of diameter

√
Nεj

−1 (blue circle) for µ̃
rεj
j , and a measure

of mass ξ distributed on the boundary of that circle (dark blue) for µ̂
rεj
j .

elasticity tensor C such that ΓRT ξi,j

(
x−xi,j
|x−xi,j |

)
≤ C and ηji solves

curl ηji = RT ξi,jδxi,j in R2,

div Cηji = 0 in R2.

We define

ηj =

Mj∑
i=1

εjη
j
i 1Brεj (xi,j). (4.36)

Then curl ηj equals RTµj up to an error term arising from 1Brεj (xi,j), precisely

curl ηj =

Mj∑
i=1

εjR
T ξi,jδxi,j − εjη

j
i (x)

(x− xi,j)⊥

|(x− xi,j)|
dH1
|∂Brεj (xi,j)

= RTµj −
Mj∑
i=1

εj
ηji (x) (x− xi,j)⊥

rεj
dH1
|∂Brεj (xi,j)

=: RTµj −RT µ̂
rεj
j . (4.37)

Note that µ̂
rεj
j ∈ H−1.

Moreover, we define the auxiliary measure

µ̃
rεj
j = R

Mj∑
i=1

2εj
ηji (x) (x− xi,j)⊥

r2
εj

1Brεj (xi,j) dx. (4.38)

For a sketch of the measures µ̃
rεj
j and µ̂

rεj
j , see Figure 4.2.

A straightforward computation shows that for all i ∈ {1, . . . ,Mj} it holds

µ̃
rεj
j (Brεj (xi,j)) = µ̂

rεj
j (∂Brεj (xi,j)) = εjξi,j .
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4.3 The Critical Regime

In [38, Lemma 11], it is also shown that

µ̂
rεj
j

εj | log εj |
∗
⇀ RTµ inM(Ω;R2),

µ̃
rεj
j

εj | log εj |
∗
⇀ RTµ in L∞(Ω;R2),

µ̃
rεj
j

εj | log εj |
→ RTµ in H−1(Ω;R2), and

µ̃
rεj
j − µ̂

rεj
j

εj | log εj |
→ 0 in H−1(Ω;R2). (4.39)

In order to define the recovery sequence, we introduce the auxiliary strain

K̃
rεj
µj =

εj
r2
εj

Mj∑
i=1

ηji |x− xi,j |
2 1Brεj (xi,j). (4.40)

A straightforward calculation shows that curl K̃
rεj
µj = RT (µ̃

rεj
j − µ̂

rεj
j ).

Now, we define the approximating strains as

βj = R
(
Id+ εj | log εj |β + ηj − K̃

rεj
µj + β̃j

)
, (4.41)

where β̃j = ∇wjJ for J =

(
0 −1

1 0

)
and wj is the solution to

−∆wj = εj | log εj |RTµ−RT µ̃
rεj
j in Ω,

wj ∈ H1
0 (Ω;R2).

(4.42)

Then βj ∈ ASεj (µj). Indeed, one can show by a direct computation that ηj and K
rεj
µj are in

Lp(Ω;R2×2); the function β̃j belongs to the space L2(Ω;R2×2) by definition. Hence, each summand
in the definition of βj is in the space Lp(Ω;R2×2). Furthermore,

curlβj = εj | log εj |µ+ µj − µ̂
rεj
j − µ̃

rεj
j + µ̂

rεj
j − εj | log εj |µ+ µ̃

rεj
j = µj .

As in [59, Γ-limsup inequality], it can be shown for Ωεj (µj) = Ω \
⋃
x∈supp(µj)

Bεj (x) that

a)
ηj1Ωεj

(µj)

εj | log εj | ⇀ 0 in L2(Ω;R2×2),

b)
K̃
rεj
µj

εj | log εj | → 0 in L2(Ω;R2×2),

c) β̃j
εj | log εj | → 0 in L2(Ω;R2×2).

The boundedness in L2(Ω;R2×2) of the function in a) is a straightforward computation. The identi-
fication of the weak limit can be done in Lp(Ω;R2×2). For b) notice that |K̃

rεj
µj | ≤ Cεj

√
| log εj |. In

view of (4.42) and (4.39), the last statement follows by classical elliptic estimates.
Furthermore, it can be shown that

d) ηj

εj | log εj | → 0 in Lp(Ω;R2×2).
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In fact,

ˆ
Ω

∣∣∣∣ ηj

εj | log εj |

∣∣∣∣p dx =
1

| log εj |p

Mj∑
i=1

ˆ
Brεj

(xi,j)

|ηji |
p dx

≤ C

| log εj |p

Mj∑
i=1

ˆ rεj

0

r1−p dr

≤ C(2− p)−1 Mj

| log εj |p
r2−p
εj

≤ C(2− p)−1| log εj |−pr−pεj ≤ C(2− p)−1| log εj |−
p
2 → 0.

Hence, (µj , βj) converges to (µ, β,R) in the sense of Definition 4.3.1 with Rεj = R.

Next, we will show the lim sup-inequality for the energies. For this purpose, fix α ∈ (0, 1). We
split the energy as follows

Eεj (µj , βj) =
1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

W (βj) dx︸ ︷︷ ︸
=:I1

εj

+
1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)

W (βj) dx︸ ︷︷ ︸
=:I2

εj

. (4.43)

First, we show that

lim sup
εj→0

I1
εj ≤

ˆ
Ω

1

2
Cβ : β dx+ α

ˆ
Ω

ϕ(R, ξ) dx =

ˆ
Ω

1

2
Cβ : β dx+ α

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ|. (4.44)

Using a second order Taylor expansion and the frame indifference of the energy density W , we obtain
similarly to the lim inf-inequality, (4.18), that

I1
εj =

1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

1

2
C(εj | log εj |β + ηj − K̃

rεj
µj + β̃j) : (εj | log εj |β + ηj − K̃

rεj
µj + β̃j) dx

+
1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

σ(εj | log εj |β + ηj − K̃
rεj
µj + β̃j) dx,

where σ(F )
|F |2 → 0 as F → 0.

By a) – c), in the first integral all mixed terms and the quadratic terms involving K̃
rεj
µj or β̃j vanish

in the limit. In addition, one derives from the non-negativity of C = ∂2W
∂2F (Id) that

1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

1

2
C(εj | log εj |β) : (εj | log εj |β) dx ≤

ˆ
Ω

1

2
Cβ : β dx.

Hence, we still have to consider the term involving ηj . Using the special form of the ηji for the second
equality and Proposition 4.2.1 (in particular (4.6)) for the inequality, we find that

1

εj | log εj |2

ˆ
Ωεα
j

(µj)

1

2
Cηj : ηj dx =

1

| log εj |2

Mj∑
i=1

ˆ
Brεj

(xi,j)\Bεα
j

(xi,j)

1

2
Cηji : ηji dx
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=
| log

εαj
rεj
|

| log εj |2

Mj∑
i=1

1

| log
εαj
rεj
|

ˆ
B1(xi,j)\B εα

j
rεj

(xi,j)

1

2
Cηji : ηji dx

≤
| log

εαj
rεj
|

| log εj |2

Mj∑
i=1

(ψ(RT ξi,j) + o(1)).

=
α+ o(1)

| log εj |

Mj∑
i=1

(ψ(RT ξi,j) + o(1)),

where o(1) → 0 as εj → 0 (notice that we deal only with finitely many values of ξi,j). By definition
of µkj , this equals

=

M∑
k=1

(α+ o(1))
|µkεj |(Ω)

| log εj |
(ψ(RT ξk) + o(1)).

Using (4.35), this yields in the limit

lim sup
εj→0

1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

1

2
Cηj : ηj dx ≤ α|Ω|

M∑
k=1

λkψ(RT ξk) = α

ˆ
Ω

ϕ(R, ξ) dx.

To establish (4.44) we still have to show that

1

ε2
j | log εj |2

ˆ
Ωεα
j

(µj)

σ(εj | log εj |β + ηj − K̃
rεj
µj + β̃j) dx→ 0. (4.45)

First, we observe that for x ∈ Ωεαj (µj) it holds

|ηj(x)| ≤ sup
i=1,...,Mj

εj |1Brεj (xi,j)η
j
i | ≤ Cε

1−α
j

and |K̃
rεj
µj (x)| ≤ sup

i=1,...,Mj

|1Brεj (xi,j)η
j
i |x− xi,j |

2| ≤ C εj
rεj

.

Hence, 1Ωεα
j

(µj)(η
j+K̃

rεj
µj ) converges uniformly to zero. To compensate the lack of uniform convergence

of β̃j and εj | log εj |β, fix L > 0 and define the set

ULεj =
{
x ∈ Ωεαj (µj) : |β̃j(x)| ≤ |ηj(x) + K̃

rεj
µj (x)| and |β(x)| ≤ L

}
.

Then 1ULεj
(εj | log εj |β + ηj + K̃

rεj
µj + β̃εj ) converges to zero uniformly. Set ω(t) = sup|F |≤t |σ(F )| and

notice that ω(t)
t2 → 0 as t→ 0. By definition of ω it holds

1

ε2
j | log εj |2

∣∣∣∣∣
ˆ
ULεj

σ(εj | log εj |β + ηj − K̃
rεj
µj + β̃j) dx

∣∣∣∣∣
≤
ˆ
ULεj

ω(εj | log εj |β + ηj − K̃
rεj
µj + β̃j)∣∣∣εj | log εj |β + ηj − K̃
rεj
µj + β̃j

∣∣∣2
∣∣∣εj | log εj |β + ηj − K̃

rεj
µj + β̃j

∣∣∣2
ε2
j | log εj |2

dx→ 0 (4.46)

as the first term converges to zero uniformly and the second is bounded in L1 by a) – c).
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For the integral on Ωεαj (µj) \ ULεj , we need the following bound on ω:

ω(t) = sup
|F |≤t

|σ(F )| = sup
|F |≤t

∣∣∣∣W (Id+ F )− 1

2
CF : F

∣∣∣∣ ≤ C sup
|F |≤t

|F |2 ≤ Ct2.

Notice that on Ωεαj (µj) \ ULεj it holds |β̃| ≥ |ηj(x) + K̃
rεj
µj (x)|. Hence,

1

ε2
j | log εj |2

∣∣∣∣∣
ˆ

Ωεα
j

(µj)\ULεj

σ(εj | log εj |β + ηj − K̃
rεj
µj + β̃j) dx

∣∣∣∣∣
≤C

ˆ
Ωεα
j

(µj)\ULεj

∣∣∣εj | log εj |β + ηj − K̃
rεj
µj + β̃j

∣∣∣2
ε2
j | log εj |2

dx

≤C
ˆ
{|β|>L}

|β̃εj |2

ε2
j | log εj |2

+ |β|2 dx j→∞−→
ˆ
{|β|>L}

|β|2 dx L→∞−→ 0,

where we used c) for the convergence in j. Together with (4.46), this establishes (4.45) which finishes
the proof of (4.44).

Next, we control Iεj2 from (4.43). Notice that

1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)

W (βj) dx

≤C 1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)

dist(βj , SO(2))2 ∧ dist(βj , SO(2))p dx

≤C 1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)

ε2
j | log εj |2|β|2 + |ηj |2 ∧ |ηj |p + |K̃

rεj
µj |2 + |β̃j |2 dx.

Due to b) and c), the terms involving K̃
rεj
µj and β̃j vanish in the limit. Moreover, as

L2

Mj⋃
i=1

Bεαj (xi,j)

 = Mjπε
2α
j ≤ C| log εj |ε2α

j → 0,

also the term involving β vanishes in the limit. Lastly, we estimate

1

ε2
j | log εj |2

Mj∑
i=1

ˆ
Bεα

j
(xi,j)

|ηj |2 ∧ |ηj |p dx

≤ C

ε2
j | log εj |2

Mj∑
i=1

(ˆ
Bεα

j
(xi,j)\Bεj (xi,j)

|ηj |2 dx+

ˆ
Bεj (xi,j)

|ηj |p dx

)

≤ CMj

| log εj |2

ˆ εαj

εj

r−1 dr +
CMj

ε2−p
j | log εj |2

ˆ εj

0

r1−p dr

≤C(1− α) + C| log εj |−1.
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Hence, lim supεj→0 I
2
εj ≤ C(1− α). Together with (4.44), this implies

lim sup
εj→0

Eεj (βj , µj) ≤
ˆ

Ω

1

2
Cβ : β dx+ α

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
+ C(1− α).

Letting α→ 1 finishes step 1.
For step 2, it is useful to notice here that ηj = K̃

rεj
µj = 0 on ∂Ω and therefore we find by (4.39) and

c) that (cf. [29, Theorem 2])

(
RTβj − Id
εj | log εj |

− β
)
· τ =

(
ηj − K̃

rεj
µj + β̃j

εj | log εj |

)
· τ =

β̃j
εj | log εj |

· τ → 0 strongly in H−
1
2 (∂Ω;R2), (4.47)

where τ denotes the unit tangent to ∂Ω.

Step 2. µ =
∑L
l=1 ξ

l dL2
|Ωl where ξl ∈ R2 and Ωl ⊂ Ω are pairwise disjoint Lipschitz-domains

such that L2
(

Ω \
⋃L
l=1 Ωl

)
= 0.

We make use of the recovery sequence of step 1 on each Ωl. For this, we define βl = β1Ωl and
µl = µ|Ωl . For each l = 1, . . . , L let (µlj , β

l
j)j be the recovery sequence from step 1 for (µl, βl, R) on

Ωl. Now, we define

β̃j =

L∑
l=1

βlj1Ωl .

Then, curl β̃j /∈ Xεj , precisely

curl β̃j =

L∑
l=1

µlj − (βlj · τ∂Ωl) dH1
|∂Ωl∩Ω in D′(Ω),

where τ∂Ωl is the unit tangent to ∂Ωl. Note that for two neighboring regions Ωl the corresponding
tangents have opposite signs. By (4.47), we find∥∥∥∥∥curl β̃j −

∑L
l=1 µ

l
j

εj | log εj |

∥∥∥∥∥
H−1(Ω;R2)

=

∥∥∥∥∥
L∑
l=1

(
βlj −R
εj | log εj |

−Rβ

)
· τ∂Ωl∩Ω dH1

|∂Ωl

∥∥∥∥∥
H−1(Ω;R2)

≤ C
L∑
l=1

∥∥∥∥∥
(

βlj −R
εj | log εj |

−Rβ

)
· τ∂Ωl

∥∥∥∥∥
H−

1
2 (∂Ωl;R2)

→ 0 as j →∞.

For the last inequality we used that for a Lipschitz domain U the trace space for H1(U ;R2) is
H

1
2 (∂U ;R2). By this estimate in H−1, we can find a sequence of functions fj ∈ L2(Ω;R2×2) such

that curl fj = curl β̃j −
∑L
l=1 µ

l
j and

1
εj | log εj |‖fj‖L2 → 0. Now, define the recovery sequence as

βj = β̃j − fj and µj =

L∑
l=1

µlj .

Then µj ∈ Xεj and βj ∈ ASεj (µj). From the construction of the µlj in step 1 it can be seen that
µj

εj | log εj |
∗
⇀ µ inM(Ω;R2). Moreover, in the proof of step 1 it can be seen that although we subtract
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

the vanishing sequence fεj it still holds for all l = 1, . . . , L

lim sup
εj→0

1

ε2
j | log εj |2

ˆ
Ωl
W (βj) dx ≤

ˆ
Ωl
Cβ : β dx+

ˆ
Ωl
ϕ

(
R,

dµl

d|µl|

)
d|µl|. (4.48)

Summing over (4.48) finishes step 2.

Step 3. µ ∈ H−1(Ω;R2) ∩M(Ω;R2).
As our limit energy is the same, we can argue as in [38, Theorem 12, step 3] to reduce the general case
to step 2. Let us shortly sketch the argument for the sake of completeness. By reflection arguments
and mollification, the authors show that there exists a sequence of smooth functions βj such that
βj → β in L2(Ω;R2×2), curlβj

∗
⇀ curlβ in M(Ω;R2), and | curlβj |(Ω) → | curlβ|(Ω). The energy

Ecrit is continuous with respect to this convergence. Then, the authors carefully approximate curlβ

by piecewise constant functions and correct the corresponding error in the curl by a vanishing sequence
in L2(Ω;R2×2).

Remark 4.3.1. In [60], the authors construct a recovery sequence βj which fulfills detβj > 0. This
construction could also be used in our case. Most computations in the proof would remain the same.
Using this construction, we could weaken our assumptions on W in the sense that we would need the
upper bound W (F ) ≤ C dist(F, SO(2))2 ∧ dist(F, SO(2))p only for F such that det(F ) > 0.

4.4 The Subcritical Regime

In this section, we consider the scaling regime 1� Nε � | log ε|, which corresponds heuristically to few
dislocations. In [71], the authors consider Nε ≤ C. In the critical regime, the coupling between µε and
βε survives the limiting procedure as both quantities live on the same scale. In the subcritical regime,
we expect the distance of the strain βε to SO(2) to be of scale ε (| log ε|Nε)

1
2 whereas the dislocation

density curlβε = µε is of scale εNε (see Section 1.3). Hence, the limit variables are decoupled. This
is made rigorous in the compactness result. The limit of Eε will be given by

ˆ
Ω

1

2
Cβ : β dx+

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|,

where curlβ = 0 and µ ∈ M(Ω;R2). The same line-tension limit has also been derived in the
subcritical regime from a core-radius approach in the setting of linearized elasticity in [38] and [30].

Compactness

The compactness result in the subcritical regime is the following.

Theorem 4.4.1 (Compactness). Let εj → 0 and 1� Nεj � | log εj |. Let (µj , βj)j ⊂ Xεj×ASεj (µεj )
such that supj Eεj (µj , βj) < ∞ where the energy Eεj is defined as in (4.3). Then there exist a
subsequence (not relabeled), a sequence of rotations (Rj)j ⊂ SO(2), R ∈ SO(2), µ ∈ M(Ω;R2), and
β ∈ L2

(
Ω;R2×2

)
such that

(i) µj
εjNεj

∗
⇀ µ inM(Ω;R2),

(ii) RTj βj−Id

εj(Nεj | log εj |)
1
2
⇀ β in Lp(Ω;R2×2),
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4.4 The Subcritical Regime

(iii) Rj → R,

(iv) curlβ = 0.

Proof. Arguing as in step 1 of the proof of the compactness result in the critical regime (Proposition
4.3.1), one finds

|µj |(Ω)

εjNεj
≤ CEεj (µj , βj).

For a subsequence follows (i).
An application of the generalized rigidity estimate, Theorem 3.0.1, together with the lower bound on
the energy density W , (iv) in Section 4.1, provides Rj ∈ SO(2) such that

1

ε2
jNεj | log εj |

ˆ
Ω

|βj −Rj |2 ∧ |βj −Rj |p dx ≤ CEεj (µj , βj) +
C

ε2
jNεj | log εj |

|µj |(Ω)2

≤ C +
C

ε2
jN

2
εj

|µj |(Ω)2 ≤ C.

It follows that RTj βj−Id
εj
√
Nεj | log εj |

is bounded in Lp(Ω;R2×2). Hence, there exist a subsequence (not rela-

beled) and a function β ∈ Lp(Ω;R2×2) such that

RTj βj − Id
εj
√
Nεj | log εj |

⇀ β in Lp(Ω;R2×2).

Thus, (ii). Up to taking a further subsequence, (iii) can also be satisfied. Arguing as in step 2 of
the proof of the compactness statement in the critical regime, it can be shown that β ∈ L2(Ω;R2×2).
Finally, we show (iv). Let ϕ ∈ C∞c (Ω;R2). We compute

< curlβ, ϕ >D′,D= lim
j→∞

< curl
RTj βj − Id

εj
√
Nεj | log εj |

, ϕ >D′,D= lim
j→∞

<
RTj µj

εj
√
Nεj | log εj |

, ϕ >D′,D

= lim
j→∞

√
Nεj
| log εj |︸ ︷︷ ︸
→0

<
RTj µj

εjNεj︸ ︷︷ ︸
∗
⇀RTµ

, ϕ >D′,D= 0.

Hence, curlβ = 0.

The Γ-convergence Result

In the spirit of the compactness result, we define for the subcritical regime the following notion of
convergence.

Definition 4.4.1. Let ε→ 0. We say that a sequence (µε, βε) ⊂M(Ω;R2)× Lp(Ω;R2×2) converges
to a triplet (µ, β,R) ∈ M(Ω;R2) × Lp(Ω;R2×2) × SO(2) if there exists a sequence (Rε)ε ⊂ SO(2)

such that
µε
εNε

∗
⇀ µ inM(Ω;R2),

RTε βε − Id
ε
√
Nε| log ε|

⇀ β in Lp(Ω;R2×2), and Rε → R.

With this notion of convergence we can state the Γ-convergence result in the subcritical regime.
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Theorem 4.4.2. Let 1 � Nεj � | log ε|. The energy functional Eε as defined in (4.3) Γ-converges
with respect to the notion of convergence given in Definition 4.4.1 to the functional Esub defined on
M(Ω;R2)× Lp(Ω;R2×2)× SO(2) as

Esub(µ, β,R) =


1
2

´
Ω
Cβ : β dx+

´
Ω
ϕ
(
R, dµd|µ|

)
d|µ| if µ ∈M(Ω;R2), β ∈ L2(Ω;R2×2),

and curlβ = 0,

+∞ otherwise ,

where C = ∂2W
∂2F (Id) and ϕ is the relaxed self-energy density defined as in (4.7).

Remark 4.4.1. This regime is sometimes also called self-energy regime. Note that by the decoupling
of the limit variables one can essentially minimize out the dependence from the strains in the definition
of Eεj and obtain only the self-energy of µ in the limit, cf. [30].

The proof of the Γ-convergence result is given in the following two propositions treating the lim inf-
inequality and the construction of a recovery sequence, respectively.

Proposition 4.4.3 (The lim inf-inequality). Let εj → 0 and 1 � Nεj � | log εj |. Let (µj , βj) ⊂
M(Ω;R2) × Lp(Ω;R2×2) be a sequence which converges in the sense of Definition 4.4.1 to a triplet
(µ, β,R) ∈M(Ω;R2)× L2(Ω;R2×2)× SO(2). Then

lim inf
j→∞

Eεj (µj , βj) ≥ Esub(µ, β,R).

Proof. Essentially, the proof works as the proof in the critical regime.
Without loss of generality we may assume that lim infεj→0Eεj (µj , βj) = limj→∞Eεj (µj , βj) < ∞.
For j large enough we derive that µj ∈ Xεj and write µj =

∑Mj

k=1 εjξk,jδxk,j for appropriate xk,j ∈ Ω

and ξk,j ∈ S. As in the proof in the critical regime, we divide the energy into a contribution far from
the dislocations and a part close to the dislocations:

Eεj (µj , βj) =
1

ε2
j | log εj |Nεj

ˆ
Ωρεj

(µj)

W (βj) dx+
1

ε2
j | log εj |Nεj

Mj∑
k=1

ˆ
Bρεj

(xk,j)

W (βj) dx,

where Ωρεj (µj) = Ω \
⋃Mj

k=1Bρεj (xk,j).
The first term on the right hand side can be treated essentially as in the critical case. The only
difference is that we use Taylor’s theorem on the scale εj

√
Nεj | log εj | instead of εj | log εj |. We obtain

lim inf
j→∞

1

ε2
j | log εj |Nεj

ˆ
Ωρεj

(µj)

W (βj) dx ≥ 1

2

ˆ
Ω

Cβ : β dx.

For the contribution close to the dislocations, we argue as in the critical regime (cf. (4.30) and (4.33))
to obtain for α, δ ∈ (0, 1) the estimate

1

ε2
j | log εj |Nεj

Mj∑
k=1

ˆ
Bρεj

(xk,j)

W (βj) dx ≥
(
α−
| log ρεj |
| log εj |

)ˆ
Ω

ϕ

(
R,

dµ̃j
d|µ̃j |

)
d|µ̃j |

−
(
α−
| log ρεj |
| log εj |

)(
C

| log δ|
+

Cσεj
| log δ|

)
,

where µ̃j =
µj

εjNεj
. By the assumptions on the convergence of µj , it follows µ̃j

∗
⇀ µ inM(Ω;R2).
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4.4 The Subcritical Regime

Convexity and 1-homogeneity of ϕ and Reshetnyak’s theorem allow to conclude

lim inf
εj→0

1

ε2
j | log εj |Nεj

Mj∑
k=1

ˆ
Bρεj

(xk,j)

W (βj) dx ≥ α
ˆ

Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ| − Cα

| log δ|
.

Sending α→ 1 and δ → 0 finishes the proof.

Lastly, we prove the existence of a recovery sequence for the energy Esub.

Proposition 4.4.4 (The lim sup-inequality). Let εj → 0 and 1 � Nεj � | log εj |. Let R ∈ SO(2),
β ∈ L2(Ω;R2×2), and µ ∈M(Ω;R2). Then there exists a sequence (µj , βj)j ⊂M(Ω;R2)×Lp(Ω,R2×2)

converging to (µ, β,R) in the sense of Definition 4.4.1 such that

lim sup
εj→0

Eεj (µj , βj) ≤ Esub(µ, β,R).

Proof. We may assume that Esub(µ, β,R) <∞ and hence curlβ = 0.
As in the critical case, we can restrict ourselves to µ = ξ dL2 for some fixed ξ ∈ R2. Note that the
corresponding energy density result is even easier since β and µ are now decoupled. Moreover, we
assume that R = Id.
Let ξ =

∑M
k=1 λkξk such that ξk ∈ S and ϕ(Id, ξ) =

∑M
k=1 λkψ(ξ). According to [38, Lemma 11],

there exists µj =
∑M
k=1 εjξkµ

k
j with µkj =

∑Mk
j

l=1 δxkj,l such that µj ∈ Xεj and

|µkj |(Ω)

Nεj
→ λk|Ω| and

µj
εjNεj

∗
⇀ µ inM(Ω;R2).

For a sketch of the construction, see Figure 4.2 in Section 4.3. Combining the summations in the
definition of µj we write µj =

∑Mj

k=1 ξk,j δxk,j . As in the critical regime, we define the function
ηj =

∑Mj

i=1 εjη
j
i 1Brεj (xi,j) where the ηji are special solutions of

curl ηji = ξi,jδxi,j in R2,

div Cηji = 0 in R2.

Following the proof in the critical case we introduce the auxiliary measures µ̃
rεj
j , µ̂

rεj
j and the auxiliary

strain K̃
rεj
µj as defined in (4.37), (4.38), and (4.40) for rεj = 1

2

√
ΛNεj

−1 and Λ =
∑M
k=1 λk. Moreover,

let β̃j be a solution to curl β̃j = µ̃
rεj
j such that

∥∥∥β̃j∥∥∥
L2(Ω;R2×2)

≤ C
∥∥∥µ̃rεjj ∥∥∥

H−1(Ω;R2)
. Then, define

βj = Id+ εj

√
Nεj | log εj |β + ηj − K̃

rεj
µj + β̃j .

It follows curlβj = µj (recall that curlβ = 0).

According to [38, Lemma 11], it holds that
µ̃
rεj
j

εjNεj
⇀ ξ dL2 in H−1(Ω;R2). Consequently, we derive

∥∥∥∥∥ β̃j

εj
√
Nεj | log εj |

∥∥∥∥∥
L2(Ω;R2×2)

≤

∥∥∥∥∥ µ̃
rεj
j

εj
√
Nεj | log εj |

∥∥∥∥∥
H−1(Ω;R2)

→ 0.

Moreover, similar to the critical case one can prove that

a)
ηj1Ωεj

(µj)

εj
√
Nεj | log εj |

⇀ 0 in L2(Ω;R2×2),
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

b)
K̃
rεj
µj

εj
√
Nεj | log εj |

→ 0 in L2(Ω;R2×2),

c) ηj

εj
√
Nεj | log εj |

⇀ 0 in Lp(Ω;R2×2).

Therefore, βj−Id
εj
√
Nεj | log εj |

⇀ β in Lp(Ω;R2×2). Hence, the sequence (µj , βj)j converges in the sense of

Definition 4.4.1 to (µ, β, Id).
The desired lim sup-inequality for the energies can be shown analogously to the the lim sup-inequality
in the critical regime by replacing | log εj | by Nεj at the correct places.

4.5 The Supercritical Regime

The supercritical regime corresponds to the scaling | log ε| � Nε. In this regime, the distance of the
strain to SO(2) is expected to be of order ε

√
| log ε|Nε whereas the energy bound in Section 1.3 show

that the dislocation density curlβε = µε is expected to be of scale εNε. Hence, we cannot control
|µε|(Ω)

ε
√
| log ε|Nε

and thus the generalized rigidity cannot be used to obtain compactness. Even more, we

will show that there cannot be a compactness result as in the other regimes.
On the other hand, µε depends on βε which scales like ε

√
| log ε|Nε. At least in a negative Sobolev

norm this gives an upper bound for the scaling of µε by ε
√
| log ε|Nε which is much smaller than the

natural scaling that comes from the energy. Hence, the elastic energy should be dominant and the
self-energy vanishes in the limit. A Γ-convergence result which does only include β can still be shown.
The limit will simply be a linearized elastic energy, precisely

ˆ
Ω

1

2
Cβ : β dx.

The notion of convergence we use is the following.

Definition 4.5.1. We say that a sequence (βj)j ⊂ Lp(Ω;R2×2) converges to β ∈ Lp(Ω;R2×2) if there
exists a sequence (Rj)j ⊂ SO(2) such that

RTj βj − Id
εj
√
| log εjNεj

⇀ β in Lp(Ω;R2×2).

As discussed above, the dislocation density does not appear in the limit. For this reason, we eliminate
it from the definition of the energies. The Γ-convergence result is the following.

Theorem 4.5.1. Let Nε � | log ε| such that Nε| log ε| � ρ−4
ε . Then energy functional Esupε defined

as

Esupε (β) =

 1
ε2| log ε|Nε

´
Ω
W (β) dx if (curlβ, β) ∈ Xε ×ASε(curlβ),

+∞ else in Lp(Ω;R2×2),
(4.49)

Γ-converges with respect to the notion of convergence given in Definition 4.5.1 to the functional Esup

defined on Lp(Ω;R2×2) as

Esup(β) =

 1
2

´
Ω
Cβ : β dx if βsym ∈ L2(Ω,R2×2),

+∞ otherwise in Lp(Ω;R2×2),

where C = ∂2W
∂2F (I).
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4.5 The Supercritical Regime

The proof will be given in the following two propositions. First, we show the lim inf-inequality.

Proposition 4.5.2 (The lim inf-inequality). Let εj → 0 and Nεj � | log εj | such that it holds
Nεj | log εj | � ρ−4

εj . Let (βj)j ⊂ Lp(Ω;R2×2) be a sequence which converges to β ∈ Lp(Ω;R2×2)

in the sense of Definition 4.5.1. Then

lim inf
j

Esupεj (βj) ≥ Esup(β).

Proof. Without loss of generality we may assume that lim infj E
sup
εj (βj) = limj E

sup
εj (βj) < ∞ and

supEsupεj (βj) <∞. As we obtain the lower bound by linearizing at Id, we may assume without loss of
generality that the sequence (Rj)j ⊂ SO(2) from the definition of convergence of βj converges to Id.
Let Sj : Ω → SO(2) be a measurable function such that dist(βj , SO(2)) = |βj − Sj |. By the
boundedness of the energy Esupεj (βj) and the lower bound of the energy density W , one sees that

βj−Sj
εj
√
Nεj | log εj |

is bounded in Lp(Ω;R2×2). Moreover, 1Aεj
βj−Sj

εj
√
Nεj | log εj |

is bounded in L2(Ω;R2×2)

where Aεj = {x ∈ Ω : dist(βj , SO(2)) ≤ 1}. In addition,

|Ω \Aεj | ≤
ˆ

Ω\Aεj
dist(βj , SO(2))p dx ≤ Cε2

j | log εj |Nεj Esupεj (βj) ≤ Cε2
j | log εj |Nεj → 0.

For the convergence, notice that ε2
j | log εj |Nεj � ε2

jρ
−4
εj → 0. In particular, it follows that 1Aεj → 1

boundedly in measure. Hence, there exists β̃ ∈ L2(Ω;R2×2) such that (up to taking a subsequence) it
holds

βj − Sj
εj
√
Nεj | log εj |

⇀ β̃ in Lp(Ω;R2×2) and 1Aεj
βj − Sj

εj
√
Nεj | log εj |

⇀ β̃ in L2(Ω;R2×2).

Consequently,

Id−RTj Sj
εj
√
Nεj | log εj |

=
Id−RTj βj

εj
√
Nεj | log εj |

+RTj
βj − Sj

εj
√
Nεj | log εj |

⇀ −β + β̃ in Lp(Ω;R2×2). (4.50)

This implies that Id−RTj Sj converges to 0 boundedly in measure.
Moreover, by the structure of SO(2) as a manifold and the fact that TIdSO(2) = Skew(2), there is a
map Tj : Ω→ Skew(2) such that

Id−RTj Sj
εj
√
Nεj | log εj |

=
Tj

εj
√
Nεj | log εj |

+
O(|Id−RTj Sj |2)

εj
√
Nεj | log εj |

.

By (4.50) and the convergence of Id−RTj Sj to 0 boundedly in measure it holds that
O(|Id−RTj Sj|2)

εj
√
Nεj | log εj |

⇀ 0

in Lp(Ω;R2×2). Notice that the space of functions in Lp(Ω;R2×2) with values in Skew(2) almost ev-

erywhere is strongly closed in Lp(Ω;R2×2). Hence, by Mazur’s lemma the weak limit of
Id−RTεjSεj

εj
√
Nεj | log εj |

takes values in Skew(2) almost everywhere. By (4.50), it follows that β − β̃ ∈ Skew(2) almost every-
where.
As the energy density W is rotationally invariant, the quadratic form induced by C = ∂2W

∂2F (Id) acts
only on the symmetric part of a matrix and thus Cβ : β = Cβ̃ : β̃. Hence, it suffices to show that
lim infj Eεj (βj) ≥ 1

2

´
Ω
Cβ̃ : β̃ dx.

Let us define the function Gj =
βj−Sεj

εj
√
Nεj | log εj |

and Uεj = Aεj ∩
{
x ∈ Ω : |Gj | ≤

√
εj
√
Nεj | log εj |

−1
}
.
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

Notice that 1Uεj → 1 boundedly in measure and that εj
√
Nεj | log εj |1UεjGj converges to zero uni-

formly. Moreover, 1UεjGj = 1Uεj 1AεjGj ⇀ β̃ in L2(Ω;R2×2). As Sj → Id boundedly in measure it
holds furthermore that 1UεjS

T
j Gj ⇀ β̃ in L2(Ω;R2×2).

We estimate using Taylor’s theorem

1

ε2
jNεj | log εj |

ˆ
Ω

W (βj) dx =
1

ε2
jNεj | log εj |

ˆ
Ω

W (STj βj) dx

≥ 1

ε2
jNεj | log εj |

ˆ
Uεj

W
(
Id+ εj

√
Nεj | log εj |STj Gj

)
dx

≥
ˆ

Ω

C
(
1UεjS

T
j Gj

)
:
(
1UεjS

T
j Gj

)
dx

−
ˆ
Uεj

ω
(∣∣∣εj√Nεj | log εj |STj Gj

∣∣∣)
ε2
jNεj | log εj | |Gj |2

|Gj |2 dx,

where ω(t)
t2 → 0 for t↘ 0, cf. (4.18).

The error term in the last line of the above estimate goes to zero as |Gj |2 1Uεj is bounded in L1 and
εj
√
Nεj | log εj |STεjGj goes to zero uniformly on Uεj .

For the first term in the last line of the estimate, we use that the quadratic form induced by C is lower
semi-continuous with respect to weak convergence in L2(Ω;R2×2). Hence, we obtain

lim inf
j

1

ε2
jNεj | log εj |

ˆ
Ω

W (βj) dx ≥
ˆ

Ω

Cβ̃ : β̃ dx.

This finishes the proof.

Next, we shortly sketch the proof of the upper bound. It is much easier than the one in the critical
regime since we do not have to perform the careful analysis in order to recover the self-energy. Instead,
we simply have to recover the linearized elastic energy using Taylor’s theorem. The statement is the
following.

Proposition 4.5.3 (The lim sup-inequality). Let εj → 0 and Nεj � | log εj | such that it still holds
Nεj | log εj | � ρ−4

εj . Let β ∈ Lp(Ω;R2×2). Then there exists a sequence (βj)j ⊂ Lp(Ω;R2×2) such that
βj converges to β in the sense of Definition 4.5.1 and lim supj E

sup
εj (βj) ≤ Esup(β).

Proof. As in [38], by a convolution argument we may assume without loss of generality β ∈ L2(Ω;R2×2)

and µ = curlβ ∈ C0(Ω,R2) ⊂ H−1(Ω;R2). Using a similar construction as in the critical regime for
rεj ∼ (Nεj | log εj |)

1
4 , there exists a sequence of measure µj =

∑Mj

k=1 εjξk,jδxk,j ∈ Xεj (the assumed
growth restriction on Nεj guarantees that

ρεj
rεj
→ 0 and hence well-separateness of the dislocations,

cf. the sketched construction of µj in the lim sup-inequality in the critical regime) such that it holds
µj

εj
√
Nεj | log εj |

∗
⇀ µ in M(Ω;R2) and the corresponding measures µ̃

rεj
j as defined in (4.38) satisfy

µ̃
rεj
j

εj
√
Nεj | log εj |

→ µ in H−1(Ω;R2). Furthermore, this construction can be done such that |ξk,j | ≤
C ‖curlβ‖L∞(Ω;R2).
Notice that the measures µj approximate curlβ on the scale εj

√
Nεj | log εj | whereas the scale of

approximation in the critical and subcritical regime is εjNεj � εj
√
Nεj | log εj |. Hence, the measure

µj is smaller than usually which leads to the fact that it does not contribute to the limit.
Using the notation ηj , µ̂

rεj
j , and K̃

rεj
µj as defined in (4.36), (4.37), and (4.40) we define the recovery
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sequence by
βj = Id+ εj

√
Nεj | log εj |β + ηj − K̃

rεj
µj + β̃j ,

where β̃ satisfies the equation curl β̃j = −εj
√
Nεj | log εj | curlβ + µ̃

rεj
j and the corresponding bound∥∥∥β̃εj∥∥∥

L2(Ω;R2×2)
≤ C

∥∥∥µ̃rεjj − εj
√
Nεj | log εj | curlβ

∥∥∥
H−1(Ω;R2)

. It follows that curlβj = µj ∈ Xεj .

Moreover, one can check that (note that the main difference to the critical regimes is the strong
convergence in (a))

a)
ηj1Ωεj

(µj)

εj
√
Nεj | log εj |

→ 0 in L2(Ω;R2×2),

b) ηj

εj
√
Nεj | log εj |

→ 0 in Lp(Ω;R2×2),

c)
K̃
rεj
µj

εj
√
Nεj | log εj |

→ 0 in L2(Ω;R2×2),

d)
β̃εj

εj
√
Nεj | log εj |

→ 0 in L2(Ω;R2×2).

Let us briefly prove a). It holds

ˆ
Ωεj (µj)

|ηj |2 dx ≤ C
Mj∑
i=1

ε2
j |ξi,j |2| log εj |

≤ C ‖curlβ‖2L∞(Ω;R2) ε
2
j

√
Nεj | log εj |3 � ε2

jNεj | log εj |.

Following the arguments in the lim sup-inequality in the critical regime, this leads to the fact that the
functions ηj do not induce self-energy in the limit.
The desired estimate follows from a) – d) by copying the arguments from the critical regime.

As already discussed in the beginning of this section, there is no compactness result in this regime.
To conclude the discussion of the supercritical regime, we provide a counterexample to compactness
in the supercritical regime.

Example (A counterexample to compactness). Let εj → 0 and Nεj � | log εj | such that Nεj � ρ−2
εj .

For simplicity, let Ω = (−1, 1)2 ⊂ R2.

We define αεj = εj
√
Nεj | log εj |, aεj = εj

(
N2
εj | log εj |

) 1
3

and δεj =
α2
εj

a2
εj

. As Nεj � | log εj |, it holds
αεj � aεj and hence δεj → 0 as εj → 0.
Let T ∈ Skew(2). We may assume that T · e2 ∈ S (otherwise scale T and rotate Ω such that T · b ∈ S
for b one of the basic vectors of the rotated cube). As TIdSO(2) = Skew(2) there exist rotations
Rj ∈ SO(2) such that Rj − Id = aεjT +O(a2

εj ).
We define the function ϕj : Ω→ R2×2 by ϕj = Id+ (Rj − Id)ψj where

ψj(x, y) =


0 if x ≤ − δεj2 ,

x
δεj

+ 1
2 if − δεj

2 ≤ x ≤
δεj
2 ,

1 if
δεj
2 ≤ x.
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−δεj δεj

ϕεj = Id ϕεj = Rj

−δεj δεj

√
Nεj
−1

Figure 4.3: Left: the construction of ϕj . Right: illustration of µj and µ̃
rεj
εj : the black dots corre-

spond to Dirac masses of mass εjT · e2, each blue circle corresponds to the mass εjT · e2

continuously distributed on the circle of radius
√
Nεj

−1.

Then

curlϕj = (Rj − Id) · e2
1

δεj
L2

|(−
δεj
2 ,

δεj
2 )×(−1,1)

=
aεj
δεj

T · e2 L2

|(−
δεj
2 ,

δεj
2 )×(−1,1)

+O

(
a2
εj

δεj

)
L2

|(
δεj
2 ,

δεj
2 )×(−1,1)

= εjNεjT · e2 L2

|(−
δεj
2 ,

δεj
2 )×(−1,1)

+O

(
a2
εj

δεj

)
L2

|(−
δεj
2 ,

δεj
2 )×(−1,1)

.

Now, construct µj ∈ Xεj as in the construction of the recovery sequences in the different regimes i.e.,

cover (− δεj2 ,
δεj
2 )×(−1, 1) with squares with side length 1√

Nεj
and put a Dirac mass with mass εjT ·e2

in the center xk,j of each of these squares, see Figure 4.3. Note that the growth assumptions on Nε
guarantee well-separateness of dislocations. Denote by µ̃

rεj
εj the corresponding regularized measure on

the ball of radius 1
2

√
Nεj

−1 as defined in (4.38) for rεj = 1
2

√
Nεj

−1.
The application of Lemma 4.5.4 for r = 1

2
√
Nεj

, U = (−δεj , δεj )× (−1, 1) and fr = µ̃
rεj
j − εjNεjT · e2

(here, we identify the measure µ̃
rεj
j and its density with respect to the Lebesgue measure) provides

the following estimate∥∥∥∥µ̃rεjj − εjNεjT · e2 L2

|(−
δεj
2 ,

δεj
2 )×(−1,1)

∥∥∥∥
H−1

≤ C 1√
Nεj

εjNεj |T · e2|
√
δεj ≤ Cεj

√
Nεj .

As
∥∥∥∥O( a2

εj

2δεj

)
L2
|(−δεj ,δεj )×(−1,1)

∥∥∥∥
H−1

≤ C
a2
εj

2δεj

√
δεj = C

2

a3
εj

αεj
, we find that

∥∥∥µ̃rεjj − curlϕj

∥∥∥
H−1

αεj
≤ C

(
εj
√
Nεj

αεj
+
a3
εj

α2
εj

)
= C

(
1√
| log εj |

+ εjNεj

)
→ 0.

Now, we can construct the counterexample similarly to the construction of the recovery sequence. Let
βj = ϕj + ηj + K̃

rεj
µj + β̃j where K̃

rεj
µj is defined as in (4.40) and curl β̃j = µ̃

rεj
j − curlϕj such that∥∥∥β̃j∥∥∥

L2
≤ C

∥∥∥µ̃rεjj − curlϕj

∥∥∥
H−1

. In particular, it follows
∥∥∥ β̃j
αεj

∥∥∥
L2
→ 0. As in the construction of the
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4.5 The Supercritical Regime

recovery sequence in the supercritical regime, one can derive from |µj |(Ω)
εjNεj

→ 0 that (cf. a) – d) in the
proof of the lim sup-inequality in the supercritical regime)

1

ε2
jNεj | log εj |

ˆ
Ω

|ηj |2 ∧ |ηj |p + |K̃
rεj
µj |2 dx→ 0.

As curlβj = µj ∈ Xεj , we obtain that

Esupεj (βj) ≤C
1

ε2
jNεj | log εj |

ˆ
Ω

dist(βj , SO(2))2 ∧ dist(βj , SO(2))p dx

≤ 1

ε2
jNεj | log εj |

ˆ
Ω

|ηj |2 ∧ |ηj |p + |K̃
rεj
µj |2 + |β̃j |2 dx

+ C
1

ε2
jNεj | log εj |

ˆ
(−

δεj
2 ,

δεj
2 )×(−1,1)

|Id−Rj |2

≤ 1

ε2
jNεj | log εj |

ˆ
Ω

|ηj |2 ∧ |ηj |p + |K̃
rεj
µj |2 + |β̃j |2 dx+ C2

δεja
2
εj

α2
εj︸ ︷︷ ︸

=1

≤C.

On the other hand, it is clear that there cannot be a sequence (Sj)j ⊂ SO(2) such that up to a

subsequence STj βj−Id
αεj

converges weakly in Lp(Ω;R2×2) because the only relevant part of βj on scale

αεj = εj
√
Nεj | log εj | is ϕj which is essentially either Id or Rj . These rotations are separated on scale

aεj � αεj and live both on sets of order 1.

Note that |µj |(Ω)
αεj

∼ εjNεj δεj
αεj

= N
1
6
εj | log εj |−

1
6 →∞. This illustrates why we cannot use the generalized

rigidity estimate to obtain compactness in the supercritical regime.

Remark 4.5.1. A similar construction could be done on any Lipschitz domain using cubes to separate
the domain in a left and a right part. Then, use the construction above on the cubes and extend βj
constantly as Id, respectively Rj , to the left and the right of the cubes.

Finally, we prove the scaling estimate inH−1 that we used in the construction of the counterexample.

Lemma 4.5.4. Let Q be the unit cube and f ∈ L2(Q;R2) with
´
Q
f = 0. Let r > 0, U ⊂ R2 bounded

and (Qk)k a family of scaled copies of Q with side length r and center xk such that
⋃̇
kQk ⊂ U and

U ⊂
⋃
kQk. Define fr(x) = f

(
x−xk
r

)
on Qk. Then it holds

‖fr‖H−1(U) ≤ Cr ‖f‖L2(Q) L
2(U)

1
2 ,

where C does not depend on f , r and U .

Proof. Let ϕ ∈ H1(U ;R2) and write < ϕ >Qk=
ffl
Qk
ϕdx. We estimate, using Hölder’s and Poincaré’s
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4 Plasticity as the Γ-Limit of a Nonlinear Dislocation Energy with Mixed Growth

inequality (recall that Poincaré’s constant scales like r on domains rescaled by r),

ˆ
U

fr · ϕdx =
∑
k

ˆ
Qk

fr · (ϕ− < ϕ >Qk) dx

≤
∑
k

‖fr‖L2(Qk;R2) ‖ϕ− < ϕ >Qk‖L2(Qk;R2)

≤ Cr2
∑
k

‖f‖L2(Q) ‖∇ϕ‖L2(Qk;R2×2)

≤ Cr2 ‖f‖L2(Q;R2) ‖∇ϕ‖L2(U ;R2×2)

√
# number of cubes Qk

≤ Cr ‖f‖L2(Q;R2) L
2(U)

1
2 ‖ϕ‖H1(U ;R2) .
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5 Plasticity as the Γ-limit of a Dislocation
Energy without the Assumption of
Diluteness

In this chapter, we consider a core-radius approach for straight, parallel edge dislocations in the
context of the linearized theory as described in Section 1.3. In particular, we compute the stored
elastic energy on a reduced domain which does not include the dislocation cores. The second main
difference to the model discussed in Chapter 4 and other models of this type (cf. [38, 59, 71]) is that
in this chapter we drop the assumption of well-separateness of dislocations (cf. the definition of the
set of admissible dislocation densities in Section 4.1). In the proofs of the Γ-convergence results in
the previous chapter, it has been of enormous importance that we could compute the self-energy of
each dislocation separately and relax this energy in a second step on a larger scale. Without the
assumption of well-separateness this is not possible anymore. On a technical level, this leads also to
the fact that one cannot expect to obtain upper bounds on the total variation of the dislocation density.
For example, two dislocations of different sign, which are very close, should essentially be seen as no
dislocation and therefore not contribute significant self-energy. The existence of many of those dipoles
could then prevent a compactness statement in the sense of weak∗-convergence in measures to hold.
Therefore, we need to weaken the notion of convergence of dislocation densities in a way that allows
those dipoles to vanish in the limit. The solution will be to consider strong convergence in the dual
space of Lipschitz functions which vanish on the boundary. This convergence is sometimes also called
flat convergence and was used successfully in the treatment of the subcritical regime, cf. [30]. A main
tool to prove bounds on the dislocation densities which imply compactness in the flat topology will
be ball construction techniques, which are also known in the context of vortices in Ginzburg-Landau
energies, cf. [51, 70]. The building block of energy estimates using the ball construction techniques
are energy bounds on annuli. In the context of elasticity, one obtains a massive loss of rigidity on
thin annuli which leads to inadequate lower bounds on thin annuli. Mathematically, this phenomenon
becomes manifest in the explosion of Korn’s constant for thin annuli, see Section 5.A. This will be
one of the major problems we will face in order to prove meaningful lower bounds.
In this chapter, we focus only on the critical regime; the subcritical regime has already been discussed
by de Luca, Garroni, and Ponsiglione in [30]. The supercritical regime can essentially be treated as
in Section 4.5. We identify the Γ-limit of the rescaled stored energy to be essentially the same as in
Section 4.3 i.e., a strain-gradient plasticity model of the form (see Theorem 5.2.1)

ˆ
Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
R,

dµ

d|µ|

)
d|µ|,

where C is the elasticity tensor and ϕ is the relaxed self-energy density for dislocations as defined
in (4.7) without the dependence of a global rotation (as we already start from a linearized model).
Moreover, we prove a compactness result, see Theorem 5.2.2 and Section 5.5 for the proof, and discuss

87



5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

its optimality.
The chapter is ordered as follows. First, we state the precise mathematical setting of the problem

and the main results in Section 5.1 and Section 5.2. In section 5.3, we revisit the ball construction
technique as it is known, for example, from [51] and discuss the particular difficulties in the context of
elasticity theory. Next, we prove the key lower bounds for compactness and the Γ-convergence result
in Section 5.4. In Section 5.5, we prove compactness. Then, we discuss the proof of the Γ-convergence
result in the Sections 5.6 and 5.7. Finally, we discuss briefly the scaling of Korn’s constant on thin
annuli in 5.A.

5.1 Setting of the Problem

Throughout this chapter we consider Ω ⊂ R2 to be a bounded, simply connected Lipschitz domain
which represents the horizontal cross section of a cylindrical crystal, see Section 1.2. We denote by
ε > 0 the lattice spacing.
As in the mixed growth case, we consider the set of normalized minimal Burgers vectors in the
horizontal plane to be S = {b1, b2} for two linearly independent vectors b1, b2 ∈ R2. The set of
(normalized) admissible Burgers vectors is then given by S = spanZ S. We consider the following
space of admissible dislocation distributions.

X(Ω) =

{
µ ∈M(Ω;R2) : µ =

N∑
i=1

ξiδxi for some N ∈ N, 0 6= ξi ∈ S, and xi ∈ Ω

}
.

Note that dealing with a linearized energy density allows us to scale out the dependence of the
admissible Burgers vectors from the lattice spacing. Associated to µ ∈ X(Ω), we consider the strains
generating µ. In contrast to the mixed growth case, in the geometrically linearized setting strains
typically create an infinite energy in a core-radius around each dislocation. In particular, strains
satisfying curlβ = µ for some µ ∈ X(Ω) cannot be in L2(Ω;R2×2). Hence, we cut out a core-radius
of order ε around each dislocation and work on a reduced domain, precisely

Ωε(µ) = Ω \
⋃

x∈supp(µ)

Bε(x).

In general, we write Ωr(µ) = Ω \
⋃
x∈supp(µ)Br(x) for some r > 0.

The curl-condition in (4.1) is then replaced by a circulation condition around the cores. We define
the admissible strains as

ASlinε (µ) =

{
β ∈ L2(Ω;R2×2) : β = 0 in Ω \ Ωε(µ), curlβ = 0 in Ωε(µ), and for every smoothly

bounded open set A ⊂ Ω such that ∂A ⊂ Ωε(µ) it holds that
ˆ
∂A

β · τ dH1 = µ(A)

}
.

Here, β · τ has to be understood in the sense of traces, see [29, Theorem 2] and the discussion in
Section 4.2. Note that if the core Bε(xi) of a dislocation with Burgers vector ξ does not intersect any
other core, the definition of ASlinε implies that

ˆ
∂Bε(xi)

β · τ dH1 = ξ.
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5.2 The Main Results

Instead of this circulation condition, one could also consider the set X(Ω) to consist of more regular
measures such as

ξ

πε2
L2
|Bε(x),

ξ

2πε
H1
|∂Bε(x) or ξδx ∗ ρε where ρε is a standard mollifier

and a strict curl-condition for the admissible strains. These other possibilities are not equivalent but
turn out to produce the same limit energy.

As we focus on the critical regime, we define the rescaled energy Fε :M(Ω;R2)×L2(Ω;R2×2)→ [0,∞]

as

Fε(µ, β) =


1

| log ε|2

(´
Ωε(µ)

1
2Cβ : β dx+ |µ|(Ω)

)
if µ ∈ X(Ω) and β ∈ ASlinε (µ),

+∞ else,

for an elasticity tensor C ∈ R2×2×2×2 which acts only on the symmetric part of a matrix and satisfies

l|Fsym|2 ≤ CF : F ≤ L|Fsym|2 for all F ∈ R2×2 (5.1)

for some constants l, L > 0.
Hence, the energy consists of a linearized elastic part and an energy associated to the core of each
dislocation. The core penalization is expected not to contribute in the limit as the dislocation densities
are expected to be of order | log ε|. In [68] it is shown that in a discrete setting the energy of screw
dislocations inside the core is indeed of order 1. The same penalization was also used in [30] in the
subcritical regime. On a technical level, the main reason for this penalization is to avoid that the
whole domain is covered with cores of dislocations i.e., Ωε(µε) = ∅.
Finally, we introduce notation for local versions of X(Ω),ASlinε , and the energy Fε. Let U ⊂ Ω be
measurable. In the following, we write X(U) for the admissible dislocation densities on U (simply
replace Ω in the definition by U). For µ ∈ X(U), we denote by ASlinε (µ,U) the strains generating µ
in U (again replace Ω by U in the definition of ASlinε ). Finally, we write Fε(·, ·, U) for the functional
defined analogously to Fε where Ω is replaced by U .

5.2 The Main Results

We define the limit energy F :M(Ω;R2)× L2(Ω;R2×2)→ [0,∞] as

F (µ, β) =


´

Ω
1
2Cβ : β dx+

´
Ω
ϕ
(
dµ
d|µ|

)
d|µ| if µ ∈M(Ω;R2) ∩H−1(Ω;R2),

β ∈ L2(Ω;R2×2), and curlβ = µ,

+∞ else .

Here, ϕ is the relaxed self-energy density as defined in (4.7) for the constant rotation R = Id. This is
the same limit as also obtained in [38] for a linearized model with the assumption of well-separateness
of dislocations. The only difference to the limit of the nonlinear case (see Section 4.3) is that we do
not have to keep track of constant rotations.
Before we define the topology which we use to prove the Γ-convergence of Fε to F , we introduce the
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flat norm. Given a measure µ ∈M(Ω;R2), we define the flat norm by

‖µ‖flat = sup
ϕ∈W 1,∞

0 (Ω;R2);Lip(ϕ)≤1

ˆ
Ω

ϕdµ.

Note that by the Arzelà-Ascoli theorem the embedding W 1,∞
0 (Ω;R2) ↪→ C0

0 (Ω;R2) is compact. This
implies in particular that for a sequence of measures µk ∈ M(Ω;R2) converging to µ ∈ M(Ω;R2) in
the sense of weak∗-convergence of measures, it follows the convergence with respect to the flat norm.
Now, we define the convergence of dislocation densities and strains that we use in the Γ-convergence
result.

Definition 5.2.1. Let εk → 0. We say that a sequence (µk, βk)k ⊂M(Ω;R2)×L2(Ω;R2×2) converges
to (µ, β) ∈M(Ω;R2)× L2(Ω;R2×2) if

µk
| log εk|

→ µ in the flat topology and
βk

| log εk|
⇀ β in L2(Ω;R2×2).

Remark 5.2.1. In view of the convergence, in the critical regime in the mixed growth situation
(Definition 4.3.1) one could expect to define the convergence in this context such that βk−Wk

| log εk| converges
weakly to β for a sequence of skew-symmetric matrices Wk. The compactness result will involve a
statement of this type, see Theorem 5.2.2. However, it is not possible to derive exactly the weak
convergence on all of Ω but only local versions of it. As a lim inf-inequality is still valid for the
convergence of the compactness result, this convergence could be seen as the most natural one for
the problem. For the sake of a simpler notation, we stick to the convergence defined as above, in
particular because the additive appearance of the skew-symmetric matrices leaves no footprint in the
limit (this is different for the multiplication of rotations in the nonlinear case).

The Γ-convergence result with respect to the convergence defined above is the following.

Theorem 5.2.1. Let εk → 0. With respect to the convergence in Definition 5.2.1 it holds

Fεk
Γ→ F.

The proof will be given in the Sections 5.6 and 5.7.
Moreover, we prove the following compactness statement in Section 5.5.

Theorem 5.2.2. Let Ω ⊂ R2 a bounded, simply connected Lipschitz domain. Let εk → 0 and consider
a sequence (µk, βk) ∈ X(Ω)×ASlinε (µk) such that supk Fεk(µk, βk) <∞. Then there exist a function
β ∈ L2(Ω;R2×2), a vector-valued Radon measure µ ∈ M(Ω;R2) ∩ H−1(Ω;R2), and a sequence of
skew-symmetric matrices Wk ∈ Skew(2) such that for a (not relabeled) subsequence it holds

(i) µk
| log εk| → µ in the flat topology,

(ii) for all 1 > γ > 0 and U ⊂⊂ Ω we have βk−Wk

| log εk| 1Ωεγ (µk) ⇀ β in L2(U ;R2×2),

(iii) (βk)sym
| log εk| ⇀ (β)sym in L2(Ω;R2×2),

(iv) curlβ = µ.

Finally, the obtained convergence is enough to prove the lim inf-inequality

lim inf
k→∞

Fεk(µk, βk,Ω) ≥
ˆ

Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|.
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5.3 Ball Construction Technique Revisited

Remark 5.2.2. Notice that we need the localized weak convergence only if we want to control the
full strains βk. The symmetric parts (βk)sym converge weakly on the full domain.

5.3 Ball Construction Technique Revisited

In order to prove compactness or a lim inf-inequality, we need to prove bounds for (modified versions
of) the dislocation densities µε in terms of the energy Fε. The only information one can use is the
circulation condition of a corresponding strain βε ∈ ASlinε (µε). On a technical level, this circulation
condition shares structural properties with the approximation of vortices in the Ginzburg-Landau
model. A prominent role in proving lower bounds for the Ginzburg-Landau energy play ball con-
structions, see for example [51, 70]. The main ingredient for proving lower bounds, by the use of a
ball construction, is a bound of the energy on annuli. These estimates are based on the fact that a
non-zero circulation around an annulus induces a certain minimal amount of energy. As we deal with
linearized elasticity, we control only the symmetric part of the strains. The use of Korn’s inequality
allows us to get a lower bound of the energy in terms of the circulation of the strain, see Proposition
5.3.2. As Korn’s constant blows up for thin annuli, we need to avoid carefully annuli whose radii go
below a certain ratio, see the proofs of Proposition 5.4.1 and Proposition 5.4.2. In the dilute regime
this can be done by a combinatorial argument, see Section 5.3.1 for heuristics and [30] for the full
treatment of the dilute regime.

Now, let us define what we mean by a ball construction. For a visualization of the construction,
see Figure 5.1.
Ball construction:

Fix c > 1. Given a finite family of closed balls (Bi)i∈I with radii Ri, let us perform the follow-
ing construction.

Preparation: Find a family of disjoint closed balls (Bi(0))i∈I(0) such that for each i ∈ I there ex-
ists j ∈ I(0) with the following properties: Bi ⊂ Bj(0) and diam(Bj(0)) ≤

∑
i:Bi⊂Bj(0) diam(Bi).

It is not difficult to see that this is always possible.

Expansion: Define for t > 0 and i ∈ I(0) the radii Ri(t) = ctRi(0) and consider the family of
closed balls (Bi(t))i∈I(0) where Bi(t) is the ball with the same center as Bi(0) and radius Ri(t). More-
over, let I(t) = I(0). We perform this expansion as long as the balls (Bi(t))i∈I(t) are pairwise disjoint.
For the first t > 0 such that the family (Bi(t))i∈I(t) is not disjoint anymore, perform the merging below.

Merging: If the family (Bi(t))i∈I(t) is not disjoint, find similarly to the preparation step a disjoint
family of balls (Bj(t))j∈J such that for each i ∈ I(t) there exists an index j ∈ J which fulfills
Bi(t) ⊂ Bj and diam(Bj) ≤ 2

∑
i:Bi(t)⊂Bj Ri(t). For notational simplicity, let us assume that the

index i ∈ I(t) of a ball Bi(t) that is not affected during the described procedure remains the same
i.e., it holds i ∈ J and Bi is the same ball as Bi(t).
Then, replace I(t) by J , (Bi(t))i∈I(t) by (Bj)j∈J and the radii Ri(t) by the corresponding 1

2 diam(Bj).
The time t is called a merging time. After the merging, we continue with the expansion below.

Expansion II: Let τ > 0 be a merging time. For t > τ , we define the new radii Ri(t) = ct−τRi(τ) and
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B2(0)
B3(0)

B1(0)

B4(0)

(a) t = 0

B1(1)

B2(1)
B3(1)

B4(1)

(b) t = 1 before merging

B4(1)
B1(1)

(c) t = 1 after merging

B4( 3
2 )

B1( 3
2 )

(d) t = 3
2
before merging

B1( 3
2 )

(e) t = 3
2
after merging

B1

(
7
4

)

(f) t = 7
4

Figure 5.1: Sketch of ball construction for four balls with c = 2.

I(t) = I(τ). Moreover, for i ∈ I(t) set Bi(t) to be the ball with the same center as Bi(τ) and radius
Ri(t). Perform this expansion as long as the family (Bi(t))i∈I(t) is disjoint. At the first t > τ such
that this is not the case anymore, perform a merging as described above.

We refer to the family (I(t), (Bi(t))i∈I(t), (Ri(t))i∈I(t))t constructed as above as as the ball construc-
tion starting with (Bi)i∈I and associated to c.
By the discrete ball construction starting with (Bi)i∈I and associated to c we mean the family
(I(n), (Bi(n))i∈I(n), (Ri(n))i∈I(n))n∈N.

Moreover, we introduce the following notation to link a ball in the construction at time t with its
past and future in the construction: For s2 > t > s1 > 0 and i ∈ I(t) let us define

P ti (s1) = {Bj(s1) : j ∈ I(s1) and Bj(s1) ⊂ Bi(t)} and (5.2)

F ti (s2) = Bj(ts) the unique ball at time s2 such that Bi(t) ⊂ Bj(s2). (5.3)
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5.3 Ball Construction Technique Revisited

Next, let us make the following observations.

Lemma 5.3.1. Let (Bi)i∈I be a finite family of balls with radii Ri and c > 1. For the corresponding
(discrete) ball construction it holds that:

i) Ri(t) ≤ ct
∑
j:Bj⊂Bi(t)Rj for all i ∈ I(t),

ii) The construction is monotone in the following sense. Let t > s ≥ 0. Then for every i ∈ I(s)

there exists j ∈ I(t) such that Bi(s) ⊂ Bj(t). In particular, it holds that Ri(s) ≤ Rj(t) and⋃
i∈I Bi ⊂

⋃
i∈I(s)Bi(s) ⊂

⋃
i∈I(t)Bi(t).

Proof. Property i) is true for t = 0. It is easily seen that the the expansion and merging steps preserve
this property for growing t.
Property ii) is also immediate from the construction.

The main idea of the ball construction is to obtain lower bounds during the expansion phase on the
growing annuli. Hence, estimates on annuli play the role of building blocks for the bounds obtained
through the ball construction. The main difference to the classical ball construction estimates in
Ginzburg-Landau theory is that in the theory of linearized elastic energy there is a significant loss
of rigidity on thin annuli which is expressed mathematically by the appearance of Korn’s constant
in the estimate. The following estimate was already proven in [30]. We state and prove it here for
convenience of the reader.

Lemma 5.3.2. Let R > r > 0 and β ∈ L2(BR(0)\Br(0);R2×2) such that curlβ = 0 in BR(0)\Br(0).
Then it holds that

(i)
´
BR(0)\Br(0)

Cβ : β dx ≥ 1
K(Rr ) 2π

|ξ|2 log
(
R
r

)
,

(ii)
´
BR(0)\Br(0)

|β|2 dx ≥ 1
2π |ξ|

2 log
(
R
r

)
.

Here, ξ =
´
∂Br(0)

β · τ dH1 where τ denotes the unit tangent to ∂Br(0) and K(Rr ) is Korn’s constant
for the annulus BR(0) \Br(0).

Proof. Let β ∈ L2(BR(0) \ Br(0);R2×2). By a density argument, we may assume that it holds
β ∈ C0(BR(0) \Br(0);R2×2). Korn’s inequality provides a skew-symmetric matrix W ∈ R2×2 such
that ˆ

BR(0)\Br(0)

|β −W |2 dx ≤ K
(
R

r

)ˆ
BR(0)\Br(0)

Cβ : β dx.

Using a change of variables one can further estimate

ˆ
BR(0)\Br(0)

|β −W |2 dx =

ˆ R

r

ˆ
∂Bt(0)

|β −W |2 dH1 dt ≥
ˆ R

r

ˆ
∂Bt(0)

|(β −W ) · τ |2 dH1 dt.

Here, τ denotes the tangent to the corresponding ∂Bt(0).
Jensen’s inequality yields

ˆ R

r

ˆ
∂Bt(0)

|(β −W ) · τ |2 dH1 dt ≥
ˆ R

r

1

2πt

∣∣∣∣∣
ˆ
∂Bt(0)

(β −W ) · τ dH1

∣∣∣∣∣
2

dt =
1

2π
log

(
R

r

)
|ξ|2.

Combining the estimates, we find (i). The last two estimates for W = 0 show (ii).

93



5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

5.3.1 Heuristics and Difficulties of Using Ball Constructions in Dislocation
Models

In this section, we explain which difficulties appear in the application of the ball construction technique
in the critical regime. In particular, we compare the situation to the subcritical regime in [30]. To
show compactness for the dislocations densities, one typically wants to derive a bound of the form

|µ̃ε|(Ω)

| log ε|
≤ CFε(µε, βε), (5.4)

where µ̃ε is a modified version of the dislocation density µε which converges to µε in the flat norm. The
combination leads to precompactness with respect to the flat norm. The modified version µ̃ε is typically
constructed by finding the correct clusters of dislocations and weighting the cluster by the accumulated
Burgers vector of the dislocations. This fits very well to the structure of ball constructions. Starting
with the cores of the dislocations, the merging steps provide a natural way to subdivide the dislocations
into groups.
Finding lower bounds with the use of a ball construction could work as follows, cf. [51]. Let us fix c > 1

and consider the ball construction associated to c starting with the cores of a system of dislocations.
Between two consecutive merging times τ1 < τ2, one can estimate the energy on all expanding balls
through a statement that estimates the minimal energy on an annulus, in our case Lemma 5.3.2. Let
B̃i(τ2) be the version of Bi(τ1) which expanded by the factor cτ2−τ1 . Then it holds

ˆ
B̃i(τ2)\Bi(τ1))

1

2
Cβε : βε dx ≥ K(cτ2−τ1)(τ2 − τ1) log(c)|µε(Bi(τ1))|2.

Here, K(cτ2−τ1) is Korn’s constant for the annulus with ratio cτ2−τ1 .
These energy estimates can then be combined using subadditivity. Let (Bi(τ1))i balls whose expanded
versions (B̃i(τ2))i at time τ2 merge to the ball Bj(τ2). Then, we can relate the energy which we found
in the expansion phase to the newly emerged ball at time τ2 by

| log ε|2Fε

(
µε, βε,

⋃
i

(
B̃i(τ2) \Bi(τ1)

))
≥ K(cτ2−τ1)

∑
i

|µε(Bi(τ1))|2 (τ2 − τ1) log c

≥ K(cτ2−τ1)
∑
i

k |µε(Bi(τ1))| (τ2 − τ1) log c

≥ kK(cτ2−τ1)

∣∣∣∣∣µε
(⋃

i

Bi(τ1)

)∣∣∣∣∣ (τ2 − τ1) log c

= kK(cτ2−τ1) |µε(Bj(τ2))| (τ2 − τ1) log c.

Here, we used that µε is a measure with values in S whose non-zero elements are bounded away from
zero. If we ignore for a moment Korn’s constant, we can sum over all merging times up to a time t
(which is chosen such that all constructed balls up to time t lie in Ω) and obtain a bound of the form∑

i∈I(t)

|µε(Bi(t))| t log c ≤ CFε(µε, βε)| log ε|2.

The modified dislocation density would then be defined as µ̃ε =
∑
i∈I(t) µε(Bi(t)) δxi where the xi are

the centers of the balls Bi(t). If we could choose a time t ∼ | log ε|
2 log c , this would provide the right bound

for µ̃ε. As we start our ball construction with at most C| log ε|2- many balls of radius ε, by Lemma 5.3.1
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this choice of t would correspond to balls with a maximal radius . | log ε|2ε 1
2 in the construction at

time t. In particular, this maximal radius tends to zero as ε→ 0. Moreover, this bound corresponds to
the idea that the energy in a ball of radius εγ around a dislocation is of order (1−γ)| log ε|. Therefore,
up to some technicalities close to the boundary of Ω (a | log ε|2ε 1

2 -neighborhood of ∂Ω in this case),
we could find a nice lower bound for a modified version of the dislocation density µε. The part of the
dislocation density which is supported in a shrinking neighborhood of the boundary can be shown to
vanish in the flat norm in the limit.
As Korn’s constant blows up for thin annuli, see section 5.A, Lemma 5.3.2 does not provide a uniform
lower bound if there is no lower bound on the distance of two consecutive merging times. The idea
presented in [30] to overcome this difficulty is to consider the discrete ball construction. A discrete
time step is called expansion step if no ball in the construction merges within this step. Therefore, in
an expansion step, it is guaranteed that all balls grow exactly by the factor c. If one uses again the
lower bound from Lemma 5.3.2, one obtains at time n ∈ N the lower bound

K(c)
∑
i∈I(n)

|µε(Bi(n))|#{expansion steps up to time n} log c ≤ Fε(µε, βε)| log ε|2.

In order to make this estimate meaningful, it is crucial to find a lower bound for the number of
expansion steps. Let us make the following observations. As we want to estimate the energy in
balls around the dislocations of a radius of say ε

1
2 , there will be approximately | log ε|

2 log c steps until a
construction starting with balls of radius ε and expansion factor c leaves this neighborhood. In the
subcritical regime (the stored energy is rescaled by the factor | log ε|), the number of dislocations for
a sequence of bounded energy is uniformly bounded by C| log ε|. Hence, by choosing c small but
uniformly in ε one can guarantee that along this sequence of dislocation densities one can find at
least | log ε|

4 log c expansion steps in the ball construction. The appearing factor K(c) in the corresponding
estimate may be small but it is uniform in ε. This provides the desired lower bound.
In the critical regime, we are confronted with up to | log ε|2 dislocations. This changes the situation
drastically. In particular, the considerations for the dilute regime above do not longer apply. As the
following example shows, in general it is not longer possible to find a fixed expansion factor c which
provides uniformly in ε enough expansion steps during an associated discrete ball construction starting
with the dislocation cores.

Example. For simplicity, let Ω = (−1, 1)2. Let ε > 0 and c > 1.
Consider the points xi = (2iε ci, 0) for i = −Lcε, . . . , Lcε where Lcε is the largest natural number such
that for n = Lcε − 1 it still holds n log c+ log(2n+ 1) < | log ε|.
In the following, we will see that there is no expansion step in the discrete ball construction associated
to c starting with the closed balls ( ¯Bε(xi))i=−Lcε,...,Lcε until one of the balls in the construction meets
∂Ω. For a visualization, see Figure 5.2. This behavior is not linked to effects coming from dislocations
located very close to the boundary. In fact, we see that essentially the ball located at 0 causes the
problem.
At time n = 1, the balls with centers in x−1, x0 and x1 and radii cε merge to a ball with radius 3c ε

and center (0, 0), see Figure 5.2b. Hence, the first discrete step is not an expansion step. At time
n = 2, the expanded version of the new ball with center in (0, 0) and radius 3c2 ε merges with the
balls with radii c2ε and centers x−2, x2 to a ball with center (0, 0) and radius 5c2ε. Hence, also the
second discrete step is not an expansion step, see Figure 5.2c. By induction one can show that at
time n ≤ Lcε the ball with center (0, 0) and radius (2n − 1)cnε merges with the balls with centers
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Ω

Bε(x0)

Bε(x−1)

Bε(x2)

Bε(x3)

(a) n = 0 (b) n = 1 (c) n = 2

(d) n = 3 (e) The ball meets ∂Ω before the
next discrete step could be
executed.

Figure 5.2: A sketch describing the specific ball construction in the example.

x−n, xn and radii cnε to a ball with center (0, 0) and radius (2n + 1)cn ε which shows that none of
these steps can be an expansion step. Moreover, by the defining property of Lcε none of the balls in
the construction up to time Lcε − 1 intersects the boundary of Ω. On the other hand, in the discrete
step from Lcε− 1 to Lcε the ball centered in (0, 0) merges with the two balls centered in x−Lcε and xLcε .
The new ball is centered in (0, 0) and has the radius (2Lcε + 1)cL

c
εε ≥ 1. In particular, the intersection

with ∂Ω is not empty. Therefore, no step before a ball in the construction intersects the boundary of
Ω is an expansion step.
This construction starts with 2Lcε+ 1-many balls. Notice that by definition Lcε−1 ≤ | log ε|

log c . If we con-
sider a dislocation density µε which has a uniformly bounded Burgers vector in every xi, we observe
that |µε|(Ω) ≤ C | log ε|

log c .
In order to obtain a uniformly bounded energy Fε, it is in principal allowed that |µε|(Ω) ≤ C| log ε|2.
Hence, we are free to choose c = c(ε) such that log c = | log ε|−1 in order to obtain dislocation densities
which satisfy this necessary bound. Note that the definition of c(ε) implies that c(ε)↘ 1.
Considering this sequence of dislocation measures µε it is clear that one cannot find a universal c̃ > 1

such that the corresponding discrete ball constructions starting with the cores of µε has any expansion
step for ε small enough (precisely for log c̃ ≥ | log ε|−1).
This example discusses only a possible structure of the dislocation densities. The existence of corre-
sponding strains such that the couples satisfy uniform energy estimates is not discussed here. However,
the construction illustrates that controlling the number of dislocations by | log ε|2 is not enough to
proceed as in the subcritical regime.

On the other hand, in this construction it can be seen that the outer balls (centered at xi for
|i| ≥ Lcε

2 ) expand over a significant time span. Hence, they could be used to estimate at least a
part of the energy. These combinatorics are essential for the treatment of the critical regime and are
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elaborated in the proofs of Proposition 5.4.1 and 5.4.2 in the next section.

5.4 The Main Ingredients for Lower Bounds

As discussed in the section above, the main difficulty in a regime with more than | log ε| dislocations is
that in a ball construction argument one cannot avoid the combinatorics of distinguishing balls which
expand for a certain minimal time and therefore induce a relevant energy to the system from those
that merge so frequently that they do not allow to estimate their corresponding energy uniformly due
to the blow-up of Korn’s constants on thin annuli, see Section 5.A.
In the following proposition, we show how to reduce the general situation in the critical regime to a
situation that is easier to analyze. Essentially, we prove that in a neighborhood of the dislocations of
order εγ we can change the strain βε slightly. The total variation of the curl of the new strain β̄ε is
controlled in terms of | log ε| and the curl is concentrated in at most C| log ε| balls with a radius that
is much smaller than εγ for some fixed 0 < γ < 1.

Proposition 5.4.1. Let 1 > α > γ > 0, δ ≥ 0, and K > 0. There exists ε0 = ε0(α, γ,K) such that
for all 0 < ε < ε0 it holds the following:
Let Aε ⊂ R2. Let µε ∈ X(Aε) and βε ∈ ASlinε (µε, Aε) such that dist(supp(µε), ∂Aε) ≥ εγ and
Fε(µε, βε, Aε) ≤ K| log ε|−δ. Then there exist a family of disjoint closed balls (Dε

i )i∈Iε and a function
β̄ε : Aε → R2×2 such that

(i) diamDε
i ≤ εα and Dε

i ∩ supp(µε) 6= ∅ for all i ∈ Iε,

(ii) |Iε| ≤ C(α,K)| log ε|1−δ,

(iii) β̄ε = βε on Aε \
⋃
x∈supp(µε)

Bεα(x),

(iv) curl β̄ε ∈M(Aε;R2),

(v) supp(curl β̄ε) ⊂
⋃
i∈Iε D

ε
i and (curl β̄ε)(U) = µε(U) for each connected component U of Aε,

(vi) | curl β̄ε|(Aε)| ≤ C(α,K)| log ε|1−δ,

(vii) 1
| log ε|2

´
Aε

1
2Cβ̄ε : β̄ε dx ≤ Fε(µε, βε, Aε) + C(α,K)Fε(µε,βε,Aε)| log ε| .

Proof. Let σ = 1−α
3 and fix c > 1. Let ε > 0.

The prove is subdivided in three steps. It is based on a ball construction starting with the balls of
radius ε around the dislocation points. First, we estimate the number of balls, whose µε-measure is
non-zero, at some time in the ball construction that corresponds to balls of the intermediate radius
εα+2σ. Secondly, at a later point in the construction we bound the number of balls whose accumulated
Burgers vector is zero by deleting dipoles without creating too much energy nor changing the strains
on a large set, see (vii) and (iii). Combining the estimates leads to (ii). In a third step, we modify
the strains slightly in order to obtain a strain with a curl that is still related to µε but whose total
variation is bounded in terms of | log ε|, see (v) and (vi).

Step 1. Estimation of number of balls such that µε(B) 6= 0.
Let Bεi = Bε(xi) where suppµε = {x1, . . . , xNε}. As the elements in S are bounded away from zero,
we may deduce from the assumed energy bound that Nε ≤ k|µε| ≤ kK| log ε|2−δ.
Now, perform a continuous ball construction starting with the balls (Bεi )i=1,...,Nε and denote its
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output by (Iε(t), (B
ε
i (t))t, (R

ε
i (t))t)t. In this first step, we consider only times t > 0 such that∑

i∈Iε(t)R
ε
i (t) ≤ εα+2σ. Using Lemma 5.3.1, we can compute a lower bound on tε1 > 0 which we

define to be the first time t such that
∑
i∈Iε(t)R

ε
i (t) = εα+2σ:

εα+2σ =
∑

i∈Iε(tε1)

Rεi (t) ≤ ct
ε
1

∑
i∈Iε(tε1)

ε#{Bεj : Bεj ⊂ Bi(tε1)} ≤ kK ct
ε
1ε| log ε|2.

From this estimate one derives directly

tε1 ≥ σ
| log ε|
log c

− log(kK)− 2 log | log ε|
log c

.

In particular, for ε > 0 small enough (depending on K and σ) we obtain that tε1 ≥ σ
2
| log ε|
log c + 1. Let

us consider the balls (Bεi (s
ε
1))i∈I(sε1) of the the ball construction at time sε1 = dσ2

| log ε|
log c e. Note that all

balls in (Bεi (s
ε
1))i∈I(sε1) have a radius which is smaller than εα+2σ.

We subdivide the family of balls (Bεi (s
ε
1))i∈Iε(sε1) into the subset of balls that evolve from few mergings

and those that originate from many mergings:

Fε(sε1) =

{
Bεi (s

ε
1) : #P

sε1
i (0) ≤ sε1

2

}
andMε(s

ε
1) =

{
Bεi (s

ε
1) : #P

sε1
i (0) >

sε1
2

}
.

Recall that by definition the set P s
ε
1
i (0) contains the balls at time zero which are included in the ball

Bεi (s
ε
1), see (5.2).

Let us first estimate the number of balls in Mε(s
ε
1). By definition, every ball Bεi (sε1) ∈ Mε(s

ε
1)

originates from at least sε1
2 starting balls. Consequently,

#Mε(s
ε
1) ≤ 2

Nε
sε1
≤ 2kK

| log ε|2−δ
σ
2
| log ε|
log c

=
4kK

σ
log(c) | log ε|1−δ. (5.5)

The next objective is to estimate the number of balls in Fε(sε1) which have an accumulated Burgers
vector which is not zero.
Fix Bεi (s

ε
1) ∈ Fε(sε1). By definition of Fε(sε1), the ball Bεi (sε1) includes at most sε1

2 starting balls.
Hence, it evolves from at most sε1

2 mergings. By the pigeonhole principle, there exist natural numbers
0 ≤ n1 < · · · < nLi ≤ sε1− 1 such that for all k = 1, . . . , Li ≥ b s

ε
1

2 c every ball Bεj (nk) ∈ P s
ε
1
i (nk) purely

expands in the time interval (nk, nk + 1]. Recall that by the definition of the ball construction this
means that Bεj (nk+1) has the same center as Bεj (nk) and the radius Rεj(nk+1) = cRεj(nk). Moreover,
we know that curlβε = 0 in Bj(nk + 1) \Bj(nk) (remember that suppµε ⊂

⋃
i∈Iε B

ε
i ⊂

⋃
i∈Iε(t)B

ε
i (t)

for all t > 0). Hence, we can apply Lemma 5.3.2 to Bεj (nk + 1) \Bεj (nk) to obtain, by summing over
all these disjoint annuli,

ˆ
Bεi (sε1)

Cβε : βε dx ≥
Li∑
k=1

∑
Bεj (nk)∈P

sε1
i (nk)

ˆ
Bεj (nk+1)\Bεj (nk)

Cβε : βε dx (5.6)

≥ 1

2πK(c)
log(c)

Li∑
k=1

∑
Bεj (nk)∈P

sε1
i (nk)

|µε(Bεj (nk))|2. (5.7)
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As µε(Bεj (nk)) ∈ S and the non-zero elements in S are bounded away from zero, we can further
estimate

(5.7) ≥ k

2πK(c)
log(c)

Li∑
k=1

∑
Bεj (nk)∈P

sε1
i (nk)

|µε(Bεj (nk))|

≥ k

2πK(c)
log(c)

Li∑
k=1

|µε(Bεi (sε1))|

≥ k

2πK(c)
log(c)Li |µε(Bεi (sε1))|

≥ k

2πK(c)
log(c)

⌊
sε1
2

⌋
|µε(Bεi (sε1))|

≥ σ k

16πK(c)
| log ε| |µε(Bεi (sε1))|. (5.8)

For the second inequality, we used that µε(Bεi (sε1)) =
∑
Bεj (nk)∈P

sε1
i (nk)

µε(B
ε
j (nk)); for the last in-

equality we used that for ε small enough it holds that
⌊
sε1
2

⌋
≥ σ| log ε|

8 log c .
By summing over all Bεi (sε1) ∈ Fε(sε1), we deduce from the energy bound on Fε(µε, βε, Aε) that

∑
Bεi (sε1)∈Fε(sε1)

|µε(Bεi (sε1))| ≤ σ k

16πK(c)
K| log ε|1−δ.

In particular, we obtain the bound (recall that the non-zero elements of S are bounded away from
zero)

#{Bεi (sε1) ∈ Fε(sε1) : µε(B
ε
i (s

ε
1)) 6= 0} ≤ C(α,K, c)| log ε|1−δ. (5.9)

Combining the bounds (5.5) and (5.9) provides the estimate

#{Bεi (sε1) : i ∈ Iε(sε1) and µε(Bεi (s
ε
1)) 6= 0} ≤ C̃(α,K, c)| log ε|1−δ.

Step 2. Reduction of number of balls such that µε(B) = 0.
In this step, we reduce the number of balls such that µε(B) = 0 by further growing the balls from
step 1 and replacing βε by local gradients on balls with µε-mass 0.
Let Ĩε = Iε(s

ε
1) and B̃εi = Bεi (s

ε
1) for all i ∈ Ĩε where Iε(sε1) and Bεi (sε1) are from step 1. Consider a

new ball construction associated to c starting with the balls (B̃εi )i∈Ĩε . With a little abuse of notation
we call the output of this ball construction again (Iε(t), (B

ε
i (t))i∈Iε(t), (R

ε
i )i∈Iε(t))t.

As the starting balls have — by construction in step 1 — a radius less than εα+2σ, we can argue as
in step 1 to obtain that for ε > 0 small enough the inequality

∑
i∈Iε(t)R

ε
i (t) ≤ εα+σ holds true for all

t ≤ dσ2
| log ε|
log c e =: sε2.

We define the following partition of the set {Bεi (sε2) : i ∈ Iε(sε2)} (see Figure 5.3):

Aε1(sε2) =

{
Bεi (s

ε
2) : there exists a ball Bεj (0) ∈ P s

ε
2
i (0) such that µε(Bεj (0)) 6= 0

}
,

Aε2(sε2) =

{
Bεi (s

ε
2) : for all Bεj (0) ∈ P s

ε
2
i (0) it holds µε(Bεj (0)) = 0 and #P

sε2
i (0) >

sε2
2

}
,
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0

0

0
0

0

0

0

0

0

0
0

0

0

0

Figure 5.3: Prototypical examples of balls in the sets Aε1(sε2) (left), Aε2(sε2) (middle) and Aε3(sε2) (right).
The balls Bεi (sε2) are drawn in gray, the corresponding balls in P s

ε
2
i (0) are drawn in red,

and their (accumulated) Burgers vectors are drawn in blue, a blue 0 indicates that the
µε-mass of this ball is 0 .

Aε3(sε2) =

{
Bεi (s

ε
2) : for all Bεj (0) ∈ P s

ε
2
i (0) it holds µε(Bεj (0)) = 0 and #P

sε2
i (0) ≤ sε2

2

}
.

Let us make clear that the sets P s
ε
2
i (0) are meant with respect to the ball construction introduced in

the beginning of step 2.
Note that a ball can only be in Aε1(sε2) if it includes one of the balls from step 1 with non-zero µε-mass.
The number of these balls was controlled in step 1. As the balls in Aε1(sε2) are by definition of the ball
construction disjoint, it follows #Aε1(sε2) ≤ C(α,K, c)| log ε|1−δ. In addition, we can argue as in step
1 for the setMε(s

ε
1) to obtain that #Aε2(sε2) ≤ C(α,K, c)| log ε|1−δ.

We cannot control the number of balls in Aε3(sε2). Instead, we will construct a new strain with only
slightly more elastic energy and no singularities in elements of Aε3(sε2) by replacing βε by local gra-
dients inside these balls. A similar construction has already been used in [30](also to delete dipoles)
and [59](to extend strains into the cores).
Let us pick a ball Bεi (sε2) ∈ Aε3(sε2), i ∈ Iε(s

ε
2). By definition of the set Aε3(sε2), there exist natu-

ral numbers 0 ≤ n1 < · · · < nLi ≤ sε2 − 1, where Li ≥ b s
ε
2

2 c, such that for every k = 1, . . . , Li

every Bεj (nk) ∈ P
sε2
i (nk) does not merge in the time interval (nk, nk + 1]. Note that the annuli

Bεj (nk + 1) \ Bεj (nk), where Bεj (nk) ∈ P
sε2
i (nk), are pairwise disjoint and contained in Bεi (s

ε
2) \⋃

B∈P
sε2
i (0)

B. Consequently, it holds

Li∑
k=1

∑
Bεj (nk)∈P

sε2
i (nk)

ˆ
Bεj (nk+1)\Bεj (nk)

Cβε : βε dx ≤
ˆ
Bi(sε2)\

⋃
B∈P

sε2
i

(0)
B

Cβε : βε dx

By the mean value theorem, we may choose ki ∈ N such that

∑
Bεj (nki )∈P

sε2
i (nki )

ˆ
Bεj (nki+1)\Bεj (nki )

Cβε : βε dx ≤
1

Li
| log ε|2 Fε(µε, βε, Bεi (sε2)) dx

≤ 4

sε2
| log ε|2 Fε(µε, βε, Bεi (sε2)),

where the last inequality holds for ε > 0 small enough.
Now, fix Bεj (nki) ∈ P

sε2
i (nki). By construction ,we have curlβε = 0 in Bεj (nki + 1) \ Bεj (nki) =: Cεi,j .

Moreover, notice that by definition of Aε3(s2) it holds that µε(Bεj (nki)) = 0 (as the ball Bεj (nki) evolves
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from balls with this property) and therefore

ˆ
∂Bεj (nki )

βε · τ dH1 = 0,

where τ denotes the unit tangent to ∂Bεj (nki). By standard theory there exists uεi,j ∈ H1(Cεi,j ;R2)

such that βε = ∇uεi,j on Cεi,j . Korn’s inequality for the annulus applied to Cεi,j guarantees the existence
of a skew-symmetric matrix W ε

i,j ∈ Skew(2) such that

ˆ
Cεi,j

|∇uεi,j −W ε
i,j |2 ≤ K(c)

ˆ
Cεi,j

|(∇uεi,j)sym|2 dx.

Note that Korn’s constant on the right hand side depends only on the ratio of the radii of the annuli
Cεi,j which equals c by construction. In particular, this constant is independent from ε.
By standard extension results for Sobolev functions there exists a function vεi,j ∈ H1(Bεj (nki + 1);R2)

such that ∇vεi,j = ∇uεi,j −W ε
i,j on Cεi,j and

ˆ
Bεj (nki+1)

|∇vεi,j |2 dx ≤ C(c)

ˆ
Cεi,j

|∇uεi,j −W ε
i,j |2 dx.

Note that by scaling the constant for the extension depends again only on the ratio of the annulus
Cεi,j .
Now, we can estimate the elastic energy of ∇vεi,j on Bεi (sε2) by combining the previous two estimates
and summing over all balls in P s

ε
2
i (nki):∑

Bεj (nki )∈P
sε2
i (nki )

ˆ
Bεj (nki )

C∇vεi,j : ∇vεi,j dx ≤ C
∑

Bεj (nki )∈P
sε2
i (nki )

ˆ
Bεj (nki )

|∇vεi,ji|2 dx (5.10)

≤ C(c)
∑

Bεj (nki )∈P
sε2
i (nki )

ˆ
Cεi,j

|∇uεi,j −W ε
i,j |2 dx

≤ C(c)
∑

Bεj (nki )∈P
sε2
i (nki )

ˆ
Cεi,j

|(∇uεi,j)sym|2 dx

≤ C(c)
∑

Bεj (nki )∈P
sε2
i (nki )

ˆ
Cεi,j

Cβε : βε dx

≤ C(c)
4

sε2
| log ε|2Fε(µε, βε, Bεi (sε2))

≤ C(c)
8

σ

log(c)Fε(µε, βε, B
ε
i (s

ε
2))

| log ε|
| log ε|2, (5.11)

where the constant C(c) may change from line to line but depends only on c and global parameters
(such as the coercivity constant for C on symmetric matrices).
Let us define the function β̃ε : Aε → R2×2 by

β̃ε(x) =

∇vεi,j(x) +W ε
i,j if x ∈ Bεj (nki) ∈ P

sε2
i (nki) for Bεi (sε2) ∈ Aε3(sε2),

βε(x) else.

Note that on the annuli Cεi,j it holds ∇vεi,j + W ε
i,j = βε. Hence, β̃ does not create any extra curl on
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

∂Bεj (nki). Therefore, curl β̃ε = 0 on Aε \
⋃
B∈Aε1(sε2)∪Aε2(sε2)B where Aε1(sε2)∪Aε2(sε2) consists of disjoint

balls with a radius less than εα+σ and #(Aε1(sε2) ∪ Aε2(sε2)) ≤ C(α,K, c)| log ε|1−δ. In particular, the
strain β̃ε satisfies for every open A ⊂ Aε \

⋃
B∈Aε1(sε2)∪Aε2(sε2)B with smooth boundary the circulation

condition ˆ
∂A

β̃ε · τ dH1 = µ̃ε(A),

where τ denotes the unit tangent to ∂A and µ̃ε = (µε)|
⋃
B∈Aε1(sε2)∪Aε2(sε2) B

. Note that µ̃ε(U) = µε(U)

for any connected component U of Aε as we only deleted connected dipoles.
Moreover, in view of (5.10) - (5.11) it holds

1

| log ε|2

ˆ
Aε\

(⋃
B∈Aε1(sε2)∪Aε2(sε2) B

) Cβ̃ε : β̃ε dx ≤ Fε(µε, βε, Aε) + C(c, α)
Fε(µε, βε, Aε)

| log ε|
. (5.12)

Eventually, note that β̃ε = βε outside the balls in Aε3(sε2). On the other hand, these balls are all
included in

⋃
x∈supp(µε)

Bεα(x).

Step 3. Replacing the circulation condition by a measure-valued curl.
We know from Step 2 that #(Aε1(sε2)∪Aε2(sε2)) ≤ C(α,K, c)| log ε|1−δ. Now, choose c1 = c1(α,K, c) > 1

such that log c1 = 1
8

σ
C(α,K,c) where c > 1 is the universal expanding factor of the ball constructions in

step 1 and 2.
Consider a ball construction associated to c1 starting with the balls in Aε1(sε2)∪Aε2(sε3). Again, denote
its output by (Iε(t), (B

ε
i (t))i∈Iε(t), (R

ε
i )i∈Iε(t))t.

From step 2 we know that for every ball B ∈ Aε1(sε2) ∪ Aε2(sε2) it holds diamB ≤ 2εα+σ. Arguing
as in step 1 and 2, we obtain that for ε > 0 small enough it holds that for all t ≤ dσ2

| log ε|
log c1

e =: sε3

we have
∑
i∈Iε(t)Ri(t) ≤ εα. During the construction, the number of merging times is definitely

bounded by the number of starting balls i.e., less than C(α,K, c)| log ε|1−δ. Hence, there are at least
sε3−C(α,K, c)| log ε|1−δ natural numbers n ≤ sε3−1 such that there is no merging time in the interval
(n, n+ 1]. A direct computation shows that for ε > 0 small enough it holds

sε3 − C(α,K, k, c)| log ε|1−δ ≥ 2

3
sε3. (5.13)

In particular, there exist natural numbers sε3
2 ≤ n1 < · · · < nL ≤ sε3 − 1, L ≥ sε3

7 , such that none of
the balls (Bεi (nk))i∈Iε(nk) merges in the time interval (nk, nk + 1]. As in step 2, by the mean value
theorem, we can find a natural number sε3

2 ≤ nk, 1 ≤ k ≤ L, which satisfies in addition

∑
i∈Iε(nk)

ˆ
Bεi (nk+1)\Bεi (nk)

Cβ̃ε : β̃ε dx ≤
7

sε3

ˆ
Aε\

(⋃
B∈Aε1(s2)∪Aε2(s2) B

) Cβ̃ε : β̃ε dx.

For i ∈ Iε(nk) we perform the following construction. Let ξi = µ̃ε(B
ε
i (nk)), where µ̃ε is defined as in

step 2, and define the function

Ki(x) =
1

2π

ξi ⊗ J(x− xεi )
|x− xεi |2

.

Here, xεi is the center of the ball Bεi (nk) and J is the clockwise rotation by π
2 . A straightforward

computation shows that curlKi = 0 on Bεi (nk + 1) \Bεi (nk) =: Cεi (nk) and

ˆ
Cεi (nk)

|Ki|2 dx = |ξi|2
log(c1)

2π
≤ C(c1)

ˆ
Cεi (nk)

Cβ̃ε : β̃ε dx.
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For the inequality, we used Lemma 5.3.2.
Moreover, we notice that

curl(β̃ε −Ki) = 0 in Cεi (nk) and
ˆ
∂Bεi (nk)

(β̃ε −Ki) · τ dx = 0.

Consequently, there exists a function uεi ∈ H1(Cεi (nk);R2) such that∇uεi = β̃ε−Ki on Cεi (nk). Similar
to step 2, we can apply Korn’s inequality for the annulus on Cεi (nk) to obtain a skew-symmetric matrix
W ε
i ∈ Skew(2) such that

ˆ
Cεi (nk)

|∇uεi −W ε
i |2 dx ≤ C(c1)

ˆ
Cεi (nk)

|(∇uεi )sym|2 dx.

Note again that the constant depends only on the ratio of the annulus Cεi (nk) which is by construction
c1.
In addition, by classical extension results, there exists a function vεi ∈ H1(Bεi (nk + 1);R2) such that
∇vεi = ∇ui −W ε

i and

ˆ
Bεi (nk+1)

|∇vεi |2 ≤ C(c1)

ˆ
Cεi (nk)

|∇uεi −W ε
i |2 dx.

By scaling, also the constant on the right hand side of this inequality depends only on c1.
Combining the last four estimates and summing over i ∈ Iε(nk) yields the following chain of inequalities

∑
i∈Iε(nk)

ˆ
Bεi (nk+1)

C∇vεi : ∇vεi dx ≤ C
∑

i∈Iε(nk)

ˆ
Bεi (nk+1)

|∇vεi |2 dx (5.14)

≤ C(c1)
∑

i∈Iε(nk)

ˆ
Cεi (nk)

|∇uεi −Wi|2 dx

≤ C(c1)
∑

i∈Iε(nk)

ˆ
Cεi (nk)

|(∇uεi )sym|2 dx

= C(c1)
∑

i∈Iε(nk)

ˆ
Cεi (nk)

|(β̃ε −Ki)sym|2 dx

≤ C(c1)
∑

i∈Iε(nk)

ˆ
Cεi (nk)

Cβ̃ε : β̃ε dx+

ˆ
Cεi (nk)

|Ki|2 dx

≤ C(c1)
∑

i∈Iε(nk)

ˆ
Cεi (nk)

Cβ̃ε : β̃ε dx

≤ C(c1)
7

sε3

ˆ
Aε\

(⋃
B∈Aε1(sε2)∪Aε2(sε2) B

) Cβ̃ε : β̃ε dx

≤ C(α, c1)

| log ε|

ˆ
Aε\

(⋃
B∈Aε1(sε2)∪Aε2(sε2) B

) Cβ̃ε : β̃ε dx. (5.15)

Here, the constant C(c1) changed from line to line but it depends only on c1 and global parameters.
Now, define the strain β̄ε : Aε → R2×2 by

β̄ε(x) =

∇vεi (x) +Wi if x ∈ Bεi (nk + 1) for some i ∈ Iε(nk),

β̃ε(x) else.
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

Note that as the balls (Bεi (nk + 1))i∈Iε(nk+1) are disjoint, β̄ε is well-defined. Moreover, from (5.14) –
(5.15) and (5.12) in step 2 we derive that

1

| log ε|2

ˆ
Aε

1

2
Cβ̄ε : β̄ε dx ≤

1

| log ε|2

(
1 +

C(α, c1)

| log ε|

)ˆ
Aε\

⋃
B∈Aε1(sε2)∪Aε2(sε2) B

1

2
Cβ̃ε : β̃ε dx

≤
(

1 +
C(α, c)

| log ε|

)(
1 +

C(α, c1)

| log ε|

)
Fε(µε, βε, Aε).

In addition, it holds curl β̄ε =
∑
i∈Iε(nk)(Ki ·τ)H1

|∂Bεi (nk+1) where τ is the unit tangent to ∂Bεi (nk+1),

| curl β̄ε| =
∑

i∈Iε(nk)

|Ki|H1
|∂Bεi (nk+1), and

ˆ
∂Bεi (nk+1)

|Ki| dH1 = |ξi| = |µ̃ε(Bεi (nk + 1))|.

Finally, set Iε = Iε(nk + 1) and (Dε
i )i∈Iε = (Bεi (nk + 1))i∈Iε(nk+1). Then (i), (ii), (iv), (v), and (vii)

are fulfilled. As also in the third step we changed the function from step 2 only in
⋃
x∈supp(µε)

Bεα(x),
it follows (iii).
Hence, it is left to show (vi). Recall that nk ≥ sε3

2 . By (5.13), there exist at least sε3
7 natural numbers

n below nk − 1 such that there is no merging time between n and n + 1. A similar computation to
(5.6) - (5.8) in step 1 shows that

| curl β̄ε|(Aε) =
∑
i∈Iε

|µ̃ε(Dε
i )| ≤ C(α,K, c1)| log ε|1−δ,

which is (vi).
Eventually, note that c1 depends only on α,K, and c where c is a fixed universal parameter.

The Proposition above allows us to reduce the complicated situation with at most | log ε|2 dislo-
cations to a simpler one. After applying the previous proposition, there are only ∼ | log ε| balls in
which the curl of the modified strain is concentrated. This will be enough to obtain compactness. For
the lim inf-inequality, one needs to compute self-energies of dislocations. The self-energy density ψ as
defined in (4.6) is the renormalized limit of energies computed for curl-free functions on annuli with
larger and larger ratios. As we want to derive the same quantities also in this situation, it is necessary
that we are able to find annuli around the dislocation cores with growing ratios in which the strain
(respectively the modified strain in the sense of the previous proposition) is curl-free. The previous
proposition for δ = 0 guarantees essentially only the existence of annuli with a fixed ratio uniformly
in ε.
The next proposition shows that either most of the dislocations allow growing ratios in a ball con-
struction or the accumulated Burgers vector is small and the previous proposition allows to reduce the
situation to less than | log ε|1−δ dislocation balls for δ > 0. The latter case leads in average to growing
differences between consecutive merging times in a ball construction. This is enough to obtain annuli
with growing ratio in this ball construction.

Proposition 5.4.2. Let 1 > α > γ > 0, K > 0, l > 0, and 1
5 > δ > 0. Then there exist c > 1 and

ε0 = ε0(α, γ, δ,K, l, c) such that for all 0 < ε < ε0 the following holds:

Let Aε ⊂ R2. Let (Bεi )i∈Iε be a family of disjoint balls in Aε such that

• diamBεi ≤ εα for all i ∈ Iε,
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• |Iε| ≤ K| log ε|,

• dist(Bεi , ∂Aε) ≥ lεγ .

Let βε : Aε → R2×2 such that µ̃ε = curl(βε) ∈ M(Aε;R2) and supp(curlβε) ⊂
⋃
i∈Iε B

ε
i . Moreover,

assume that
´
Aε
Cβε : βε dx + | curlβε|(Aε)2 ≤ K| log ε|2. Then at least one of the following options

holds true:

(i) |(curlβε)(Aε)| ≤ | log ε|1−δ,

(ii) Consider a ball construction associated to c starting with the balls (Bεi )i∈Iε and the time tεs which
is defined to be the first time such that a ball in the ball construction intersects ∂Aε. Then there
exists a subset Ĩε ⊂ Iε(tεs) such that for any i ∈ Ĩε there exist at most | log ε|δ-many times n ∈ N,
n ≤ tεs− 1, such that at least one ball in P t

ε
s
i (n) merges in the time interval (n, n+ 1]. Moreover,

it holds ∣∣∣∣∣∣
∑
i∈Ĩε

µ̃ε(B
ε
i )− µ̃ε(Aε)

∣∣∣∣∣∣ ≤ δ|µ̃ε(Aε)|. (5.16)

Proof. Let 1
5 > δ > 0. Fix c > 1. Let us perform a ball construction associated to c starting

with the balls (Bεi )i∈Iε . As in the previous proof, we denote the output of the construction by
(Iε(t), (B

ε
i (t))i∈Iε(t), (R

ε
i (t))i∈Iε(t))t.

Let tεs be the first time at which one of the balls in (Bεi (t
ε
s))i∈Iε(tεs) intersects ∂Aε. If tεs is a merg-

ing time, still denote by (Bεi (t
ε
s))i∈Iε(tεs) the unmerged balls whose pairwise intersection is a set of

L2-measure zero. As the balls (Bεi )i∈Iε have radii not larger than εα and a distance of at least
lεγ to ∂Aε, we can argue as in the previous proof to obtain that for ε small enough it holds that
tεs ≥ d

α−γ
2
| log ε|
log c e � | log ε|1−δ. Let us define the set of balls which are affected by at most | log ε|1−δ

discrete merging steps by

Gε = {Bεi (tεs) : i ∈ Iε(tεs) and there exist more than tεs − | log ε|1−δ natural numbers

0 ≤ n1 < · · · < nLi ≤ tεs − 1 such that for all 1 ≤ k ≤ Li none of the balls Bεj (nk) ∈ P t
ε
s
i (nk)

merges in the interval (nk, nk + 1]}

and its parents at time 0 < t < tεs by

Gε(t) = {Bεj (t) : j ∈ Iε(t) and there is i ∈ Iε(tεs) such that Bεj (t) ⊂ Bεi (tεs) ∈ Gε}.

Analogously we denote the set of balls that are involved in mergings in many discrete steps by
Bε = {Bεi (tεs) : i ∈ Iε(tεs)} \ Gε and its parents Bε(t) at time t > 0.
In the following, we will show that if the balls in Gε do not carry most of the mass of µ̃ε, then µ̃ε(Aε)
has to be small itself.

Claim: If
∣∣∑

B∈Gε µ̃ε(B)− µ̃ε(Aε)
∣∣ ≥ δ|µ̃ε|(Aε), then |µ̃ε(Aε)| ≤ | log ε|1−δ for ε small enough de-

pending on c, δ, γ and α.

Let
∣∣∑

B∈Gε µ̃ε(B)− µ̃ε(Aε)
∣∣ ≥ δ|µ̃ε|(Aε) but let us assume that |µ̃(Aε)| > | log ε|1−δ.

First, we apply the generalized Korn inequality (see [38, Theorem 11]) for any Bεi (tεs) ∈ Bε i.e., for
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any ball Bεi (tεs) ∈ Bε there exists a skew-symmetric W ε
i ∈ Skew(2) such that

ˆ
Bεi (tεs)

|βε −W ε
i |2 dx ≤ C

(ˆ
Bεi (tεs)

|(βε)sym|2 dx+ (|µ̃ε|(Bεi (tεs)))2

)
.

Note that by scaling the constant does not depend on the size of the ball.
Summing over all i ∈ Iε(t

ε
s) such that Bεi (tεs) ∈ Bε yields (recall that by construction the pairwise

intersections of balls in (Bεi (t
ε
s))i∈Iε(tεs) are of negligible Lebesgue measure)

∑
Bεi (tεs)∈Bε

ˆ
Bεi (tεs)

|βε −W ε
i |2 dx ≤ C

ˆ
Aε

Cβε : βε dx+
∑

Bεi (tεs)∈Bε

(|µ̃ε|(Bεi (tεs)))2

 ≤ CK| log ε|2.

(5.17)
For the last inequality, we used the simple estimate (recall that µ̃ε = curlβε is concentrated in the
family (Bεi )i∈Iε which consists of much smaller balls than the ones in (Bεi (t

ε
s))i∈Iε(tεs))

∑
Bi(tεs)∈Bε

(|µ̃ε|(Bεi (tεs)))2 ≤

 ∑
Bεi (tεs)∈Bε

|µ̃ε|(Bεi (tεs))

2

≤ (|µ̃ε|(Aε))2
.

In the following, we find a lower bound for the energy concentrated on the balls of Bε.
First, notice that the balls in Bε emerge from mergings which are distributed over at least | log ε|1−δ

time steps of the form (n, n+ 1] for some n ≤ tεs − 1. Arguing as for the setsMε(s
ε
1) in step 1 of the

proof of the previous proposition, we can obtain that for tεs ≥ t ≥ tεs −
| log ε|1−δ

2 it holds that

#Bε(t) ≤ C
#Iε

| log ε|1−δ
≤ CK| log ε|δ. (5.18)

Let us denote by τε1 < · · · < τ εLε the merging times between tεs −
| log ε|1−δ

2 and tεs. Moreover, write

τε0 = tεs −
| log ε|1−δ

2 and τεLε+1 = tεs. From estimate (5.18), we derive that that for any 0 ≤ k ≤ Lε

there exists ik ∈ Iε(τεk) such that

Bεik(τεk) ∈ Bε(τεk) and |µ̃ε(Bεik(τεk))| ≥ δ

2K
| log ε|1−2δ. (5.19)

Here, we used that
∣∣∣∑Bεi (τεk)∈Bε(τεk) µ̃ε(B

ε
i (τ

ε
k))
∣∣∣ =

∣∣∑
B∈Gε µ̃ε(B)− µ̃ε(Aε)

∣∣ > δ| log ε|1−δ. By Lemma
5.3.2 and (5.19), we estimate for j ∈ Iε(tεs) such that Bεik(τεk) ⊂ Bεj (tεs) ∈ Bε the following:

ˆ
Bεik

(τεk+1)\Bεik (τεk)

|βε −W ε
j |2 dx ≥

1

2π
(τεk+1 − τεk)(log c) (|µε(Bεik(τεk))|)2

≥ (τεk+1 − τεk)(log c)
δ2

8πK2
| log ε|2−4δ.

Summing over all merging times between tεs −
| log ε|1−δ

2 and tεs provides the estimate

Lε∑
k=0

ˆ
Bεik

(τεk+1)\Bεik (τεk)

|βε −W ε
j |2 dx ≥

δ2

16πK2
(log c) | log ε|3−5δ.
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Together with (5.17), this implies

δ2

16πK2
log(c) | log ε|3−5δ ≤ 2CK| log ε|2,

which is a contradiction for δ < 1
5 and ε > 0 small enough depending on δ and the occurring constants.

Hence, the claim is proven.
As the balls in Gε have the claimed property (ii), this finishes the proof.

Remark 5.4.1. Note that both propositions in this section hold also if one replaces the elastic tensor
by a nonlinear energy density with quadratic growth. In the proof one only needs to replace Korn’s
inequality by its non-linear counterpart.

5.5 Compactness

In this section, we prove Theorem 5.2.2. A uniform bound on the energy is enough to achieve com-
pactness for the dislocation measures in the flat topology. On the other hand, compactness for the
strains can only be shown in a weaker topology than weak convergence in L2, more precisely in a weak
L2
loc-topology excluding neighborhoods around the dislocations. We can show that the appearance of

the weak convergence in L2
loc is due to a loss of rigidity close to the dislocations and the boundary. In

fact, we can prove weak convergence in L2 on the whole domain for the symmetric part of the strains.
Later in this section, we construct an example which shows that the compactness statement for the
strains cannot be improved to weak convergence on the whole domain. However, the weak conver-
gence in L2

loc is enough to show a lim inf-inequality. As this topology allows compactness and the
lim inf-inequality, it is in this sense more natural than the weak convergence in L2 on the whole
domain.

Theorem (Compactness). Let Ω ⊂ R2 open, simply connected and with Lipschitz boundary. Let
εk → 0 and consider a sequence (µk, βk) ∈ X(Ω)×ASlinεk (µk) such that supk Fεk(µk, βk) <∞. Then
there exist a function β ∈ L2(Ω;R2×2), a vector-valued Radon measure µ ∈ M(Ω;R2) ∩H−1(Ω;R2),
and a sequence of skew-symmetric matrices Wk ∈ Skew(2) such that for a (not relabeled) subsequence
it holds

(i) µk
| log εk| → µ in the flat topology,

(ii) for all 0 < γ < 1 and all U ⊂⊂ Ω we have βk−Wk

| log εk| 1Ωεγ
k

(µk) ⇀ β in L2(U ;R2×2),

(iii) (βk)sym
| log εk| ⇀ (β)sym in L2(Ω;R2×2),

(iv) curlβ = µ.

Finally, the obtained convergence is enough to prove the lim inf-inequality

lim inf
k→∞

Fεk(µk, βk) ≥
ˆ

Ω

Cβ : β dx+

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|,

where ϕ is the relaxed self-energy density defined as in (4.7) for R = Id.

Proof. Step 1. Compactness of the dislocation measures.
Fix 1 > γ > 0 and define α = γ + 1−γ

2 . Then γ < α < 1.
Denote by (Ajεk)j∈Jεk the connected components of

⋃
x∈suppµk

Bεγk (x) that do not intersect ∂Ω. Define
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Uεk =
⋃
j∈Jεk

Ajεk .
We apply Proposition 5.4.1 on Uεk to µk, βk, and δ = 0. The proposition provides a strain
β̃k : Uεk → R2×2 which satisfies

| curl β̃k|(Uεk) ≤ C(γ)| log εk|.

Moreover, by (iii) of Proposition 5.4.1 we can extend β̃k by βk to Ω \Uεk without creating additional
curl on ∂Uεk . In the following, we call this extended function also β̃k.
Let us write µ̃k = (curl β̃k)|Uεk ∈M(Ω;R2) which fulfills |µ̃k|

| log εk| ≤ C(γ). Hence, there exist a measure

µ ∈ M(Ω;R2) and a (not relabeled) subsequence such that µ̃k
| log εk|

∗
⇀ µ in M(Ω;R2). In particular,

it holds true that µ̃k
| log εk| → µ in the flat topology. It remains to show that µk−µ̃k

| log εk| → 0 in the flat
topology. A similar computation to what follows can also be found in [30].
By the definition of flat convergence we need to show that

lim
k→∞

1

| log εk|
sup

ϕ∈W 1,∞
0 (Ω;R2):Lip(ϕ)≤1

ˆ
Ω

ϕd(µk − µ̃k) = 0.

Let ϕ ∈ W 1,∞
0 (Ω;R2) with Lip(ϕ) ≤ 1. Obviously, supp(µk − µ̃k) ⊂

⋃
x∈suppµk

Bεγk (x) and by
definition µ̃k = 0 outside Uεk . Hence, we can write

ˆ
Ω

ϕd(µk − µ̃k) =

ˆ
supp(µk)\Uεk

ϕdµk +
∑
j∈Jεk

ˆ
Ajεk

ϕd(µk − µ̃k). (5.20)

Let us shortly notice the following. As the energy Fεk(µk, βk) is uniformly bounded and the non-zero
elements in S are bounded away from zero, the number of dislocations is bounded in terms of | log ε|2.
Hence, each connected component of

⋃
x∈suppµk

Bεγk (x) has a diameter less than C| log εk|22εγk where
C is a universal constant.
First, we consider the first integral of the right hand side of (5.20). Note that if x ∈ suppµk \ Uεk ,
the corresponding connected component of

⋃
x∈suppµk

Bεγk (x) intersects ∂Ω.
As Lip(ϕ) ≤ 1 and ϕ vanishes on ∂Ω, we obtain that |ϕ| ≤ C| log ε|22εγk in Bεγk (x) and therefore∣∣∣∣∣

ˆ
supp(µk)\Uεk

ϕdµk

∣∣∣∣∣ ≤ 2C| log εk|2εγk |µk|(Ω) ≤ C̃| log εk|4εγk . (5.21)

This shows that the first integral on the right hand side of (5.20) vanishes as εk tends to 0 uniformly
for all ϕ ∈W 1,∞

0 (Ω) with Lip(ϕ) ≤ 1.
Next, let us consider j ∈ Jεk . By (v) of Proposition 5.4.1 it holds µk(Ajεk) = µ̃k(Ajεk) which allows us
to write ˆ

Ajεk

ϕd(µk − µ̃k) =

ˆ
Ajεk

(
ϕ− < ϕ >Ajεk

)
d(µk − µ̃k),

where < ϕ >Ajεk
=
ffl
Ajεk

ϕdx. As Lip(ϕ) ≤ 1, it holds the estimate |ϕ(x)− < ϕ >Ajεk
| ≤ diam(Ajεk)

for all x ∈ Ajεk . Thus,∣∣∣∣∣
ˆ
Ajεk

ϕd(µk − µ̃k)

∣∣∣∣∣ ≤ C| log εk|2εγk (|µk|(Ajεk) + |µ̃k|(Ajεk)). (5.22)

Summing over all j in the estimate (5.22) and combining the resulting estimate with (5.21) yields the
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existence of a constant C(γ) such that

∣∣∣∣ˆ
Ω

ϕd(µk − µ̃k)

∣∣∣∣ =

∣∣∣∣∣∣
ˆ

supp(µk)\Uεk
ϕdµk +

∑
j∈Jεk

ˆ
Ajεk

ϕd(µk − µ̃k)

∣∣∣∣∣∣
≤ C̃| log εk|4εγk +

∑
j∈Jεk

2C| log εk|2εγk(|µk|(Ajεk) + |µ̃k|(Ajεk))

≤ C(γ)| log εk|4εγk .

Hence,

1

| log εk|
sup

ϕ∈W 1,∞
0 (Ω;R2):Lip(ϕ)≤1

ˆ
Ω

ϕd(µk − µ̃k) ≤ C(γ)| log εk|3εγk → 0 as k →∞.

Thus, we established that µk
| log εk| → µ in the flat topology which is (i).

Note that for all 0 < γ < 1 the corresponding measure µ̃k satisfies |µ̃k|(Ω) ≤ C(γ)| log εk| for some
constant C(γ) depending on γ. A similar argument to the one above shows that the difference of the
measures µ̃k for two different values of γ converges to zero weakly∗ inM(Ω;R2). Hence, the chosen
subsequence satisfies that for all 0 < γ < 1 it holds µ̃k

| log εk|
∗
⇀ µ inM(Ω;R2).

Step 2. Finding an L2
loc-limit for the strains.

Let 0 < γ < 1 and α = γ + 1−γ
2 . As Ω is simply connected, one can find, with the use of Sard’s

theorem, a monotone sequence of compactly contained subsets (Ωl)l∈N of Ω such that each Ωl is sim-
ply connected with Lipschitz boundary and Ωl ↗ Ω. In step 1, we applied Proposition 5.4.1 to Uεk ,
βk, and µk and obtained a modified strain β̃k which agrees with βk outside

⋃
x∈suppµk

Bεγk (x). In
particular, curl β̃k = 0 in Ωεγk (µk). Moreover, | curl β̃k|(Uεk) ≤ C(γ)| log εk|. As Ωl ⊂⊂ Ω, it is clear
that dist(Ωl, ∂Ω) > 0. Hence, for εk small enough we find that⋃

x∈suppµk

Bεγk (x) ∩ Ωl ⊂ Uεk .

The application of the generalized Korn’s inequality (see [38, Theorem 11]) provides a sequence of
skew-symmetric matrices W l

k such that

ˆ
Ωl

|β̃k −W l
k|2 dx ≤ C(Ωl)

(ˆ
Ul

|(β̃k)sym|2 dx+ | curl β̃k|(Ωl)2

)
. (5.23)

From (vii) of Proposition 5.4.1 and the bound on curl β̃k we derive that β̃k−W l
k

| log εk| is a bounded sequence
in the space L2(Ωl;R2×2) where the bound depends on γ. In the following, we use a standard argument
to show that the skew-symmetric matrices W l

k can be chosen independently from l.
Let us fix l > 1. In addition, let W l

k and W l
1 be the skew-symmetric matrices from above. We may

estimate

L2(Ω1)|W 1
k −W l

k|2 ≤ 2

(ˆ
Ω1

|W 1
k − β̃k|2 dx+

ˆ
Ωl

|W l
k − β̃k|2 dx

)
≤ C(γ, l)| log ε|2.

Thus, |W 1
k −W l

k| ≤ C̃(γ, l)| log εk| which implies that also β̃k−W 1
k

| log εk| is a bounded sequence in the space
L2(Ωl;R2×2). Let us write Wk = W 1

k .
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As βk agrees with β̃k on Ωl ∩ Ωεγk (µk), we obtain that also βk−Wk

| log εk| 1Ωεγ
k

(µk) is a bounded sequence in

L2(Ωl;R2×2).
A similar argument to the one above shows that the matrices Wk can also be chosen independently
from γ.
Next, let us consider 1 > γ1 > γ2 > 0. Assume that βk−Wk

| log εk| 1Ωεγ1 (µk) ⇀ β in L2(Ωl;R2×2) for some
fixed l. As 1Ωεγ2 (µk) → 1 boundedly in measure and 1Ωεγ1 (µk)1Ωεγ2 (µk) = 1Ωεγ2 (µk), we deduce that
also 1Ωεγ2 (µk)

βk−Wk

| log εk| ⇀ β in L2(Ωl;R2×2).
On the other hand, it is clear that if for l1 > l2 we have βk−Wk

| log εk| 1Ωεγ
k

(µk) ⇀ β in L2(Ul1 ;R2×2); the

same holds in L2(Ul2 ;R2×2).
As weak convergence in L2 is metrizable on bounded sets in L2, we can find by a diagonal argu-
ment (in γ and l) a subsequence and a function β ∈ L2

loc(Ω;R2×2) such that βk−Wk

| log εk| 1Ωεγ
k

(µk) ⇀ β in

L2(Ωl;R2×2) for all 1 > γ > 0 and l ∈ N. Since Ωl ↗ Ω, this proves the convergence in (ii). It still
needs to be shown that β ∈ L2(Ω;R2×2).

Step 3. curlβ = µ.

Fix some 1 > γ > 0. In step 1 we saw that
(curl β̃k)|Uεk
| log εk|

∗
⇀ µ inM(Ω;R2). A similar argument as the

one in (5.21) shows that
curl β̃k
| log εk|

→ µ in the flat topology on Ω.

This implies convergence in D′(Ω). On the other hand, we can deduce from step 2 that β̃k−Wk

| log εk| ⇀ β

in L2
loc(Ω;R2×2) (notice that all arguments were based on considerations for β̃k and β̃k equals βk on

a set which converges in measure to Ω). Combining these two facts shows that for ϕ ∈ C∞c (Ω;R2) it
holds

< curlβ, ϕ >D′,D= lim
k

1

| log εk|
< curl(βk −Wk), ϕ >D′,D

= lim
k

1

| log εk|
< βk −Wk, J∇ϕ >D′,D=< β, J∇ϕ >D′,D,

where J is the clockwise rotation by π
2 . Consequently, curlβ = µ which is (iv).

Step 4. The limit β is in L2(Ω;R2×2).
We show a simplified version of a lim inf-inequality for β which includes βsym and |µ|(Ω) from which
we can conclude the square-integrability of β by the generalized Korn’s inequality.
Let U ⊂⊂ Ω and 1 > γ > 0 fixed. From step 1 we know that

ˆ
U

|(β̃k)sym|2 dx+ |(curl β̃k)|Uεk |(Ω)2 ≤ C(γ)| log εk|2. (5.24)

Moreover, from step 1 and step 2 we know that

(curl β̃k)|Uεk
| log εk|

∗
⇀ µ inM(Ω;R2) and

β̃k −Wk

| log εk|
⇀ β in L2(U ;R2×2).

Hence, we can derive by the usual lim inf-inequalities for weak, respectively weak∗, convergence from
(5.24) that ˆ

U

|βsym|2 dx+ |µ|(Ω)2 ≤ C(γ).
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Taking the supremum over all U ⊂⊂ Ω gives
ˆ

Ω

|βsym|2 dx+ |µ|(Ω)2 ≤ C(γ).

By the generalized Korn’s inequality (see [38, Theorem 11]), there exists a matrix W ∈ Skew(2) such
that β −W ∈ L2(Ω;R2×2). As Ω has finite measure, this implies that β ∈ L2(Ω;R2×2).

Step 5. Weak convergence of the symmetric part of the strains.
Fix 1 > γ > 0. As the matrices Wk are skew-symmetric, it is clear that the symmetric part of
(βk −Wk)1Ωεγ

k
(µk) is (βk)sym1Ωεγ

k
(µk). Since taking the symmetric part of a matrix is a linear opera-

tion, we may derive from step 2 that

(βk)sym1Ωεγ
k

(µk) ⇀ βsym in L2(U ;R2×2) for all U ⊂⊂ Ω.

From the bound on the energy we may deduce directly that (βk)sym
| log εk| is a bounded sequence in

L2(Ω;R2×2). As (1− 1Ωεγ
k

(µk))→ 0 boundedly in measure, this implies that

(βk)sym
| log εk|

⇀ βsym in L2(U ;R2×2) for all U ⊂⊂ Ω.

From the uniform bound of (βk)sym in L2(Ω;R2×2) we conclude (iii).

Step 6. The lim inf-inequality.

In step 4, we have already shown a poor man’s version of the lim inf-inequality. For the real lim inf-
inequality we refer to the proof of the lim inf-inequality of the Γ-convergence result (Proposition 5.6.1)
in which it can be seen that the convergences established in step 1 and 2 are enough to show that for
all 1 > γ > 0 it holds that

lim inf
k→∞

Fεk(µk, βk) ≥
ˆ

Ω

Cβ : β dx+ (1− γ)

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|.

In fact, the estimate for the self-energy works exactly as in the lim inf-inequality of the Γ-convergence
result. It is computed on the set Uεk . For the energy on Ω \ Uεk notice that, by step 5, it holds
1Uεk (βk)sym ⇀ βsym in L2(Ω;R2×2). Then the estimate follows by classical lower semi-continuity and
the fact that C only acts on the symmetric part of matrices.
Sending γ → 0 yields the desired lim inf-inequality.

Remark 5.5.1. It can be seen that it is not possible to neglect the reduction to the set Ωεγk (µk) in
the result above. Consider the following example.

Let εk → 0 and x ∈ intΩ fixed. We define the following set, for a sketch see Figure 5.4,

Sεk = x+

{
εk| log εk|2

(
cos

(
j

2π

8d| log εk|2e

)
, sin

(
j

2π

8d| log εk|2e

))
: j = 1, . . . , 8d| log εk|2e

}
.
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

Ω1
εk

Ω2
εk

xkjΩ1
εk

Figure 5.4: A sketch of the situation in Remark 5.5.1.

Let us write for j = 1, . . . , 8d| log εk|2e

xkj = x+ εk| log εk|2
(

cos

(
j

2π

8d| log εk|2e

)
, sin

(
j

2π

8d| log εk|2e

))
.

Moreover, we define for some fixed ξ ∈ S the measures

µk =

8d| log εk|2∑
j=1
j even

ξ δxkj −
8d| log εk|2∑

j=1
j odd

ξ δxkj .

Note that µk(U) = 0 for all sets U that include Sεk . It can be seen that for εk small enough
Ωεk(µk) has exactly two connected components Ω1

εk
,Ω2

εk
⊂ Ω where Ω2

εk
⊂ Bεk| log εk|2(x) and Ω1

εk
⊂

Ω \Bεk| log εk|2(x), see Figure 5.4.
We define the strain βk : Ω→ R2×2 by

βk(y) =

Wεk if y ∈ Ω2
εk
,

0 else in Ω,
where Wεk =

1

ε2
k| log εk|2

(
0 −1

1 0

)
.

Clearly, µk ∈ X(Ω).
Let A ⊂ Ω an open set with smooth boundary in Ωεk(µk). As Ωεk(µk) has exactly two connected
components, it holds either ∂A ⊂ Ω1

εk
or ∂A ⊂ Ω2

εk
, see Figure 5.4. Consequently, it holds either

Sεk ⊂ A or Sεk ∩A = ∅. In particular, µk(A) = 0.
As βk is constant on Ω1

εk
and Ω1

εk
, we derive that βk ∈ ASlinεk (µk).

In addition, the energy of the pair (µk, βk) is Fεk(µk, βk) = |µk|(Ω)
| log εk|2 ≤ C.

We claim that there cannot be sequence of skew-symmetric matrices Wk such that βk−Wk

| log εk| has a
weakly converging subsequence in L2(Ω;R2×2). In order to derive a contradiction, let us assume that
there exists a subsequence (not relabeled) of βk and skew-symmetric matrices Wk such that βk−Wk

| log εk|
is bounded in L2(Ω;R2×2). It follows that |Wk| ≤ C| log εk| and |Wεk −Wk| ≤ C

εk| log εk| (note that
L2(Ω2

εk
) ∼ ε2

k| log εk|4). This implies that |Wεk | ≤ C| log εk|+ C
εk| log εk| ; a contradiction.

In the construction, it is not crucial that one is allowed to use | log εk|2-many dislocations. Any
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allowed maximal number of dislocations that grows to infinity for εk → 0 leads to an example of the
above type. The main point is that one can disconnect small parts from the rest of Ω by the use of
dislocation cores. On each of the resulting connected components of Ωεk(µk) one can put any constant
skew-symmetric matrix without inducing any elastic energy nor violating the definition of ASlinεk .

5.6 The lim inf-inequality

In this section, we prove the lim inf-inequality of the Γ-convergence result in Theorem 5.2.1. The
key ingredients for the lower bound for the part of the energy close to the dislocations will be the
Propositions 5.4.1 and 5.4.2.

Proposition 5.6.1 (The lim inf-inequality). Let Ω ⊂ R2 an open, bounded set with Lipschitz bound-
ary. Let εk → 0. Let (µ, β), (µk, βk) ∈M(Ω;R2)× L2(Ω;R2×2) such that

µk
| log εk|

→ µ in the flat topology and
βk

| log εk|
⇀ β in L2(Ω;R2×2).

Then it holds
lim inf
k→∞

Fεk(µk, βk) ≥ F (µ, β).

Proof. Clearly, we only have to consider (µk, βk) such that lim infk Fεk(µk, βk) < ∞. Moreover, up
to subsequences we may assume that the lim inf is a lim and supk Fεk(µk, βk) ≤ M < ∞. Then the
compactness result, Theorem 5.2.2, yields that curlβ = µ.
Fix 1 > α > γ > 0.
Let us consider the set Uεk =

⋃
x∈supp(µk)Bεγk (x). As in the case of well-separated dislocations, we

split the elastic energy into a part close to the dislocations and a part far away from the dislocations,
precisely

Fεk(µk, βk) =

ˆ
Ωεγ
k

(µk)

1

2
Cβ : β dx+ Fεk(µk, βk, Uεk),

where we recall that Ωεγk (µk) = Ω \
⋃
x∈supp(µk)Bεγk (x).

Lower bound far from the dislocations. First, notice that 1Ωεγ
k

(µk) → 1 boundedly in measure.

As βk
| log εk| ⇀ β in L2(Ω;R2×2), this implies βk

| log εk|1Ωεγ
k

(µk) ⇀ β in L2(Ω;R2×2). By the classical lower
semi-continuity property of functionals with convex integrands we obtain

lim inf
k→∞

ˆ
Ωεγ
k

(µk)

Cβk : βk dx = lim inf
k→∞

ˆ
Ω

Cβk1Ωεγ
k

(µk) : βk1Ωεγ
k

(µk) dx ≥
ˆ

Ω

Cβ : β dx.

This establishes the lower bound of the part of the energy that is not induced by the occurrence of
dislocations.

Lower bound close to the dislocations. In this step, we estimate the energy close to the
dislocations in terms of the relaxed self-energy density ϕ and the dislocation density µk.
Denote by (Ajεk)j∈Jεk the connected components of Uεk =

⋃
x∈suppµk

Bεγk (x) that do not intersect
∂Ω. We apply Proposition 5.4.1 on each of the Ajεk to βk, α, and δ = 0. For each j ∈ Jεk , we obtain
a family of balls (B̃j,εki )i∈Ĩjεk

and a function β̃k : Ajεk → R2×2 with the properties (i) - (vii) from
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Proposition 5.4.1. In particular, the modified strains satisfy

1

| log εk|2

ˆ
Ajεk

1

2
Cβ̃k : β̃k dx ≤

(
1 +

C(α,M)

| log ε|

)
Fεk(µk, βk, A

j
εk

). (5.25)

Fix 1
5 > δ > 0 small enough. One can check that for εk > 0 small enough, for each j ∈ Jεk the sets

Ajεk , the modified strains β̃k, and the balls (B̃j,εki )i∈Ĩjεk
satisfy the assumptions of Proposition 5.4.2

for l = 1
2 and K = 2M . Let us write νk = curl β̃k and recall that by (vi) of Proposition 5.4.1 it holds

νk(Ajεk) = µk(Ajεk).
The application of Proposition 5.4.2 yields that for all εk small enough for every j ∈ Jεk we have that
at least one of the options in the conclusion of Proposition 5.4.2 holds.

Claim: There exists a constant C(α,M) such that for all η > 0 there exists L ∈ N satisfying that for
all k ≥ L it holds for all j ∈ Jεk that(

1 +
C(α,M)

| log εk|

)
Fεk(µk, βk, A

j
εk

) ≥ α− γ − η − δ̃
| log εk|

ϕ(µk(Ajεk)), (5.26)

where δ̃ = δ
maxξ∈S1 ϕ(ξ)

minξ∈S1 ϕ(ξ) .

The strategy to prove this claim will slightly differ depending whether the first or second conclu-
sion in Lemma 5.4.2 holds on Ajεk .
Clearly, we may assume that (α− γ − η − δ̃) > 0.

Case 1: Conclusion (ii) of Proposition 5.4.2 holds for Ajεk .
Recall (ii) of Proposition 5.4.2: there exists a universal c > 1 with the following property. Consider a
ball construction associated to c starting with the balls (B̃j,εki )i∈Ĩjεk

, which are the output of Propo-
sition 5.4.1 on Ajεk , and the time sεkj which is defined to be the first time such that a ball in the ball
construction intersects ∂Ajεk . We call its output (Ĩjεk(t), (Bj,εki (t))i∈Ĩjεk (t), (R

j,εk
i (t))i∈Ĩjεk (t))t. Then

there exists a subset Ijεk ⊂ Ĩjεk(sεkj ) such that for each ball Bj,εki (sεkj ), i ∈ Ijεk , there exist a least
(sεkj − | log εk|1−δ − 1) natural numbers 0 ≤ n1 < · · · < nL ≤ sεkj − 1 such that for all k = 1, . . . , L no

ball in P
s
εk
j

i (nk) merges between nk and nk + 1. Moreover, it holds∣∣∣∣∣∣∣
∑
i∈Ĩjεk

νk(Bj,εki )− νk(Ajεk)

∣∣∣∣∣∣∣ ≤ δ|νk(Ajεk)|. (5.27)

Notice here that β̃k is curl-free outside the balls (B̃j,εki )i∈Ĩjεk
.

Let N ∈ N and define the times tεkl = l
s
εk
j

N | log εk|1−δ for l = 0, . . . , bN | log εk|1−δc. As the starting
balls (B̃j,εki )i∈Ĩjεk

of the ball construction have radii less than εαk but distance of at least 1
2ε
γ
k to the

boundary of Ajεk , we can argue as in the proof of Proposition 5.4.1 to obtain that for εk small enough
it holds that sεkj ≥ (α− γ − η

4 ) | log εk|
log c and consequently

sεkj
N | log εk|1−δ

≥
α− γ − η

4

N

| log εk|δ

log c
. (5.28)

Next, notice that by Proposition 4.2.1 it holds for ψR,r(ξ) as defined in (4.4) that for all ξ ∈ R2 and
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R > r > 0 we have that

ψR,r(ξ) ≥ log

(
R

r

)
ψ(ξ)− C|ξ|2

log
(
R
r

) ,
where C > 0 is a universal constant. Using the 2-homogeneity and continuity (by convexity) of ψ,
this implies together with (5.28) that for εk small enough we may derive for all ξ ∈ R2 that

ψ
c
t
εk
l+1 ,ct

εk
l

(ξ) ≥
(

1− η

4

)
(tεkl+1 − t

εk
l )(log c)ψ(ξ). (5.29)

By the properties of Ijεk , it is moreover true that if εk is small enough, for every i ∈ Ijεk there exists
a subset Jj,εki ⊂ {1, . . . , bN | log ε|1−δc} such that #Jj,εki ≥ (N − 2)| log ε|1−δ and for each l ∈ Jj,εki

none of the balls in P
s
εk
j

i (tεkl ) merges between tεkl and tεkl+1. For a visualization, see Figure 5.5. Hence,
we may estimate for i ∈ Ijεk (note that the occurring annuli are pairwise disjoint by construction)

ˆ
B
j,εk
i (s

εk
j )

1

2
Cβ̃k : β̃k dx ≥

∑
l∈Jj,εki

∑
B
j,εk
m (t

εk
l )∈P

s
εk
j
i (t

εk
l )

ˆ
B
j,εk
m (t

εk
l+1)\Bj,εkm (t

εk
l )

1

2
Cβ̃k : β̃k dx (5.30)

≥
∑

l∈Jj,εki

∑
B
j,εk
m (t

εk
l )∈P

s
εk
j
i (t

εk
l )

ψRεkm (t
εk
l+1),R

εk
m (t

εk
l )(νk(Bj,εkm (tεkl )))

≥
∑

l∈Jj,εki

∑
B
j,εk
m (t

εk
l )∈P

s
εk
j
i (t

εk
l )

(
1− η

4

)
(tεkl+1 − t

εk
l )(log c)ψ(νk(Bj,εkm (tεkl ))).

For the last inequality, we used (5.29) and that by construction it holds
R
εk
m (t

εk
l+1)

R
εk
m (t

εk
l )

= ct
εk
l+1−t

εk
l . Next,

note that
∑
B
j,εk
m (t

εk
l )∈P

s
εk
j
i (t

εk
l )

νk(Bj,εkm (tεkl )) = νk(Bj,εki (sεkj )). Hence, by the definition of ϕ and the

fact that νk(Bj,εkm (tεkl )) ∈ S we can further estimate

≥
(

1− η

4

) ∑
l∈Jj,εki

sεkj
N | log εk|1−δ

(log c)ϕ(νk(Bj,εki (sεkj )))

≥
(

1− η

4

)
(N − 2)| log εk|1−δ

sεkj
N | log εk|1−δ

ϕ(νk(Bj,εki (sεkj )))

≥
(

1− η

4

) N − 2

N

(
α− γ − η

4

)
| log εk|ϕ(νk(Bj,εki (sεkj ))).

The simple estimate
(
1− η

4

)
x ≥ x− η

4 for 0 < x < 1 yields

≥ N − 2

N

(
α− γ − η

2

)
| log εk|ϕ(νk(Bj,εki (sεkj ))). (5.31)

Finally, we choose N so large that N−2
N (α− γ − η

2 ) ≥ (α− γ − η).
As the family (Bj,εki (sεkj ))i∈Ijεk

consists of pairwise disjoint balls, we can sum over the estimate in
(5.30) - (5.31) to find that

ˆ
Ajεk

1

2
Cβ̃k : β̃k dx (5.32)

≥(α− γ − η)| log εk|
∑
i∈Ijεk

ϕ(νk(Bj,εki (sεkj )))
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

Bj,εki (sεkj )

Figure 5.5: Sketch of the situation in case 1 in the proof of Proposition 5.6.1 for a ball Bj,εki (sεkj ) such
that i ∈ Ijεk . The starting balls included in Bj,εki (sεkj ) are drawn in gray. Every dark line
marks the state of the ball construction for a certain time tεkl . If there is no merging for
a ball included in Bj,εki (sεkj ) between tεkl and tεkl+1 the corresponding annuli are drawn in
green, otherwise in red. The dashed line indicates a merging.

≥(α− γ − η)| log εk|ϕ

∑
i∈Ijεk

νk(Bj,εki (sεkj ))


≥(α− γ − η)| log εk|

ϕ(νk(Ajεk))− ϕ

∑
i∈Ijεk

νk(Bj,εki (sεkj ))− νk(Ajεk)


 . (5.33)

Here, we used the subadditivity of ϕ for the last and last but second inequality. Now, note that by
the 1-homogeneity of ϕ and the properties of Ijεk we may derive that

ϕ

∑
i∈Ijεk

νk(Bj,εki (sεkj ))− νk(Ajεk)

 ≤ (max
ξ∈S1

ϕ(ξ)

) ∣∣∣∣ ∑
i∈Ijεk

νk(Bj,εki (sεkj ))− νk(Ajεk)

∣∣∣∣ (5.34)

≤
(

max
ξ∈S1

ϕ(ξ)

)
δ |νk(Ajεk)|

≤ δ
maxξ∈S1 ϕ(ξ)

minξ∈S1 ϕ(ξ)
ϕ(νk(Ajεk)). (5.35)

Combining (5.32) - (5.33), (5.34) - (5.35), and(5.25), using the inequality (α−γ−η)(1−δ̃) ≥ α−γ−η−δ̃,
and recalling that νk(Ajεk) = µk(Ajεk) proves the claim in the first case.

Case 2 : |µk(Ajεk)| = |νk(Ajεk)| ≤ | log ε|1−δ.
We only need to consider those Ajεk such that Fεk(µk, βk, Aεkj) <

α−γ−η−δ̃
| log εk| ϕ(µk(Ajεk)) (otherwise the

desired lower bound is immediate). The 1-homogeneity and continuity of ϕ yields that

Fεk(µk, βk, A
j
εk

) ≤ C α− γ − η − δ̃
| log εk|

|µk(Ajεk)| ≤ C(α− γ − η − δ̃) | log εk|−δ

Hence, we can apply Proposition 5.4.1 to µk, βk, Ajεk , α, γ, δ as fixed before and K = C where C is
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5.6 The lim inf-inequality

the universal constant from the estimate above. We obtain a function β̄k : Ajεk → R2×2 and a family
of balls (Dj,εk

i )i∈Ijεk
satisfying the conclusions of Proposition 5.4.1. In particular, the radius of the

balls in (Dj,εk
i )i∈Ijεk

is less than εα,

#Ijεk ≤ K(α)| log εk|1−δ, and curl β̄k = 0 on Ajεk \
⋃
i∈Ijεk

Dj,εk
i .

Moreover, the strains β̄k satisfy

1

| log ε|2

ˆ
Ajεk

1

2
Cβ̄k : β̄k dx ≤

(
1 +

C(α)

| log εk|

)
Fεk(µk, βk, A

j
εk

).

Let us consider a ball construction associated to some c > 1 not depending on εk or j starting with
the balls (Dj,εk

i )i∈Ijεk
as long as for the constructed balls it holds that Bj,εki (t) ∩ ∂Ajεk = ∅. As the

number of starting balls is bounded by K(α)| log εk|1−δ, obviously the number of occurring merging
times during the ball construction is also bounded by K(α)| log εk|1−δ. Hence, we can argue as in case
1 until (5.30) - (5.31) to prove the claim also in this case (in this case we do not need the additional
δ̃ on the right hand side of the desired estimate).

Armed with the statement of the claim we can now prove the lower bound close to the disloca-
tions.
Let xjεk ∈ A

j
εk

and define the measure µ̃k = 1
| log εk|

∑
j∈Jεk

µk(Ajεk)δxjεk
. By the statement of the claim

and the 1-homogeneity of ϕ, it is clear that µ̃k is a bounded sequence of measures. Analogously to
the proof of the compactness theorem in Section 5.5 one can show that µ̃k

∗
⇀ µ inM(Ω;R2). Writing

the estimate (5.26) of the claim in terms of µ̃k leads to(
1 +

C(α,M)

| log ε|

) ∑
j∈Jεk

Fεk(µk, βk, A
j
εk

) ≥ (α− γ − η − δ̃)
ˆ

Ω

ϕ

(
dµ̃k
d|µ̃k|

)
d|µ̃k|,

which implies that

(
1 +

C(α,M)

| log ε|

)
Fεk(µk, βk, Uεk) ≥ (α− γ − η − δ̃)

ˆ
Ω

ϕ

(
dµ̃k
d|µ̃k|

)
d|µ̃k|.

It follows from Reshetnyak’s theorem that

lim inf
k→∞

Fεk(µk, βk, Uεk) ≥ (α− γ − η − δ̃)
ˆ

Ω

ϕ

(
dµ

d|µ|

)
d|µ|.

Letting α→ 1, η → 0, and δ → 0 yields

lim inf
k→∞

Fεk(µk, βk, Uεk) ≥ (1− γ)

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|.

Combining the bounds far and close to the dislocations we find

lim inf
k→∞

Fεk(µk, βk) ≥
ˆ

Ω

1

2
Cβ : β dx+ (1− γ)

ˆ
Ω

ϕ

(
dµ

d|µ|

)
d|µ|.
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

Finally, γ → 0 finishes the proof of the lower bound.

5.7 The lim sup-inequality

In this section, we prove the lim sup-inequality of the Γ-convergence result in Theorem 5.2.1. In the
case of well-separated dislocations and linearized elasticity, the existence of a recovery sequence for
the energy F is known, see [38, Theorem 12]. The difference to our setting is that the approximating
energies in our case Fεk carry the extra term |µ|(Ω)

| log ε|2 . Hence, the strategy in the proof of the lim sup-
inequality is to show that for the recovery sequences from the case of well-separated dislocations the
term associated to the total variation penalization vanishes in the limit.

Proposition 5.7.1 (The lim sup-inequality). Let εk → 0 and (µ, β) ∈M(Ω;R2)×L2(Ω;R2×2). There
exists (µk, βk)k ⊂M(Ω;R2)× L2(Ω;R2×2) such that

(i) µk
| log εk| → µ in the flat topology and βk

| log εk| ⇀ β in L2(Ω;R2×2),

(ii) lim supk→∞ Fεk(µk, βk) ≤ F (µ, β).

Proof. Let (µk, βk)k be the recovery sequence from the well-separated case, see [38, Proof of Theorem
12]. To get an idea for the construction one can also imagine our construction for R = Id in the
well-separated, nonlinear case in section 4.3, Proposition 4.3.5, and divide the constructed sequences
by ε.
Note that for the measures µk it holds by construction that µk

| log εk| converges weakly∗ in the sense of
measures to µ. This implies flat convergence. Moreover, the sequence (µk, βk) satisfies that µk ∈ X(Ω),
βk ∈ ASlinεk (Ω), and

lim sup
k→∞

1

| log εk|2

ˆ
Ωεk (µk)

1

2
Cβk : βk dx ≤ F (µ, β).

Hence, we only need to show that limk→∞
1

| log εk|2 |µk|(Ω) = 0.
Of course, we only have to consider (µ, β) such that F (µ, β) < ∞. In this situation, the well-
separateness of dislocations along the recovery sequence allows to prove with the help of Lemma 5.3.2
that for µk =

∑Lk
i=1 ξ

k
i δxki for ξki ∈ S and xki ∈ Ω it holds that the quantity 1

| log ε|
∑Lk
i=1 |ξki |2 is

uniformly bounded in k. As the non-zero elements in S are bounded away from zero, this implies
immediately that

1

| log ε|2
|µ|(Ω)→ 0.

This finishes the proof.

5.A Scaling of Korn’s Constant for Singular Fields on Thin

Annuli

In this section, we prove what was already discussed in section 5.3, namely the blow-up of Korn’s
constant on thin annuli in two dimensions. The optimal constant for the classical Korn’s inequality
for an annulus BR \ Br of ratio R

r was computed in [26] by analyzing the solvability of the corre-
sponding Euler-Lagrange equations. It is given by a rather complicated expression that converges to
the optimal constant for the disc (4, see [64]) as R

r → 0 and behaves like
(
1− R

r

)−2 as R
r → 1. In

this section, we show that the optimal constant for the inequality for curl-free fields with a circulation
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5.A Scaling of Korn’s Constant for Singular Fields on Thin Annuli

condition has the same scaling as R
r → 1.

As the constant for Korn’s inequality is invariant under dilations of the domain, we will only consider
the case R = 1, r < 1.

The technique to prove an upper bound for the constant is a covering argument which is classical
for proving Korn’s inequality for thin domains. We show first a uniform bound on the constant for
special subsets of the annulus.

Lemma 5.A.1. For r < 1 define the set Ur = {t(sin θ,− cos θ) : r < 1 < 1, |θ| < 1−r
2 }. There exist

r0 < 1 and a constant C > 0 such that for every r0 < r < 1 and every u ∈ H1(Ur;R2) there exists a
skew-symmetric matrix W such that

ˆ
Ur

|∇u−W |2 dx ≤ C
ˆ
Ur

|(∇u)sym|2 dx.

Proof. Let us define the square Ũr =
(
r−1

2 , 1−r
2

)
× (0, 1 − r) and the function fr : Ũr → Ur by

fr(θ, t) = (1− t)(sin θ,− cos θ), see figure 5.6. Clearly, fr is a diffeomorphism and its derivative is

∇fr(t, θ) =

(
(1− t) cos θ (1− t) sin θ

− sin θ cos θ

)
.

It holds |∇fr(t, θ)− Id| ≤ O(r) where O(r)→ 0 as r → 1.
Now, let u ∈ H1(Ur;R2) such that

´
Ur

(∇u)skew dx = 0. Define ũ : Ũr → R2 by ũ(θ, t) = u(fr(θ, t)).
As ∇fr is almost the identity matrix, the symmetric part of ∇ũ is approximately (∇u)sym◦fr. Indeed,
by the chain rule we find

|(∇ũ)sym − (∇u)sym ◦ fr| ≤ O(r)|((∇u) ◦ fr)sym| ≤ O(r)|(∇u) ◦ fr|. (5.36)

By Korn’s inequality applied to ũ, there exists a skew-symmetric matrix W and a constant K ≥ 1

such that ˆ
Ũr

|∇ũ−W |2 dx ≤ K
ˆ
Ũr

|(∇ũ)sym|2 dx.

Note that by scaling the constant does not depend on r. By (5.36), we find further

ˆ
Ũr

|(∇ũ)sym|2 dx ≤ 2

ˆ
Ũr

|(∇u)sym ◦ fr|2 +O(r)2|(∇u) ◦ fr|2 dx

= 2

ˆ
Ur

(|(∇u)sym|2 +O(r)2|∇u|2)|det∇f−1
r |.

On the other hand, one proves similarly that
ˆ
Ũr

|∇ũ−W |2 dx ≥ 1

2

ˆ
Ur

(|∇u|2 −O(r)2|∇u|2)|det∇f−1
r | dx,

where one uses that from
´
Ur

(∇u)skew dx = 0 it follows
´
Ur
|∇u−W |2 dx ≥

´
Ur
|∇u|2 dx.

Notice that for r close to 1 the gradient ∇fr is uniformly close to the identity. The same holds
for ∇f−1

r . Choose r0 so close to 1 such that for all smaller r it holds that |det∇f−1
r − 1| ≤ 1

2 and
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

1− r
fr

Ũr Ur1− r

Figure 5.6: Sketch of the situation in Lemma 5.A.1.

O(r) ≤ 1
4
√
K
. Then, one obtains, by combining the previous inequalities,

ˆ
Ur

|∇u|2 dx ≤ 12K

ˆ
Ur

|(∇u)sym|2 dx+
13

16

ˆ
Ω

|∇u|2 dx.

Absorbing the very right term to the left hand side ends the proof.

Remark 5.A.1. The same holds true for any rotated version of Ur with the same constant since
Korn’s constant does not depend on the choice of coordinates.

Remark 5.A.2. For an explicit bound on the constructed constant in the previous lemma, note that
an upper bound for the optimal constant for the square was computed in [49], namely 8+4

√
2. In [48],

it is conjectured that the optimal constant for a square is 7.

In the following lemma, we state an upper bound on Korn’s constant for the annulus B1(0) \Br(0)

for curl-free fields.

Lemma 5.A.2. There exists r0 < 1 such that for all r0 < r < 1 Korn’s constant K(r) for B1(0)\Br(0)

is less or equal than C (1− r)−2 where C > 0 is a universal constant. Precisely, for every function
β ∈ L2(B1(0) \ Br(0);R2×2) satisfying curlβ = 0 there exists a skew-symmetric matrix W ∈ R2×2

such that ˆ
B1(0)\Br(0)

|β −W |2 dx ≤ C (1− r)−2
ˆ
B1(0)\Br(0)

|βsym|2 dx.

Proof. Let r0 as in Lemma 5.A.1 and 0 < r < r0.
In analogy to the previous lemma, we define the sets

Ukr =

{
t(cos θ, sin θ) : r < t < 1 and

k − 1

2
(1− r) < θ <

k + 1

2
(1− r)

}
where k = 1, . . . ,

⌊
4π

1− r

⌋
= Lr.

As
b 4π

1−r c+1

2 (1 − r) > 2π, it follows B1(0) \ Br(0) ⊂
⋃Lr
k=1 U

k
r . Moreover, notice that for all

k = 1, . . . , Lr − 1 it holds |Ukr |
|Ukr ∩U

k+1
r |

= 2 and
∑Lr
k=1 1Urk ≤ 2.

Now, let β ∈ L2(B1(0) \ Br(0);R2×2) such that curlβ = 0. In particular, β can be written as a
gradient on each Urk . For each k = 1, . . . , Lr, we apply Lemma 5.A.1 and Remark 5.A.1 on Ukr to
obtain a skew-symmetric matrix Wk such that

ˆ
Ukr

|β −Wk|2 dx ≤ C
ˆ
Ukr

|βsym|2 dx. (5.37)

Note that C > 0 does not depend on k, r nor β.
For every k = 1, . . . , Lr − 1, the distance between Wk and Wk+1 can be estimated as follows

|Wk −Wk+1|2 ≤ 2

 
Ukr ∩U

k+1
r

|Wk − β|2 + |Wk+1 − β|2 dx ≤
4C

|Ukr ∩ Uk+1
r |

ˆ
Ukr ∪U

k+1
r

|βsym|2 dx.
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x+ εu(x) b = εe1

Figure 5.7: Sketch of the almost optimal displacement constructed in the proof of Lemma 5.A.3 for
ξ = e1, ε = 1

4 and r = 4
5 .

Consequently, we obtain for 1 ≤ k < l ≤ Lr

|Wk −Wl|2 =

∣∣∣∣∣
l−1∑
i=k

Wi −Wi+1

∣∣∣∣∣
2

≤ (l − k)

l−1∑
i=k

|Wi −Wi+1|2

≤ Lr
Lr−1∑
i=1

4C

|U ir ∩ U i+1
r |

ˆ
Uir∪U

i+1
r

|βsym|2 dx. (5.38)

We define W = W1. Then, we derive from (5.37) and (5.38) the following chain of inequalities

ˆ
B1(0)\Br(0)

|β −W |2 ≤ 2

Lr∑
k=1

ˆ
Ukr

|β −Wk|2 + |W −Wk|2 dx

≤ 2

Lr∑
k=1

(
C

ˆ
Ukr

|βsym|2 dx+ Lr

Lr−1∑
i=1

4C
|U ir|

|U ir ∩ U i+1
r |

ˆ
Uir∪U

i+1
r

|βsym|2 dx

)

≤ 4C

ˆ
B1(0)\Br(0)

|βsym|2 dx+ 16C L2
r

Lr−1∑
i=1

ˆ
Uir∪U

i+1
r

|βsym|2 dx

≤ C(4 + 64L2
r)

ˆ
B1(0)\Br(0)

|βsym|2 dx.

Note that by definition L2
r ≤ 16π2

(1−r)2 and C is a universal constant.

Finally, we construct for each ξ ∈ R2 a function which is curl-free, whose circulation is exactly ξ,
and whose elastic energy is optimal in scaling, see Figure 5.7.

Lemma 5.A.3. Let ξ ∈ R2. There exists 0 < r0 < 1 such that for all r0 < r < 1 and ξ ∈ R2 there
exists a function β : B1(0) \Br(0)→ R2×2 such that curlβ = 0 and

´
∂B1

β · τ dH1 = ξ and

min
W∈Skew(2)

ˆ
B1(0)\Br(0)

|β −W |2 dx ≥ c (1− r)−2
ˆ
B1(0)\Br(0)

|βsym|2 dx. (5.39)

The constant c does not depend on r, ξ or β.

Proof. Let ξ = (ξ1, ξ2) ∈ R2. Moreover, we write eρ(θ) = (cos θ, sin θ) and eθ(θ) = (− sin θ, cos θ).
We define the function u : B1(0) \Br(0)→ R2 in polar coordinates by

u(ρeρ(θ)) =
1

π

(ˆ θ

0

(ξ1 cosϕ+ ξ2 sinϕ)eρ(ϕ) dϕ+ (1− ρ)(ξ1 cos θ + ξ2 sin θ)eθ(θ)

)
.

For a visualization, see Figure 5.7.
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5 Plasticity as the Γ-limit of a Dislocation Energy without the Assumption of Diluteness

The function u has a jump on the line {θ = 0} of height ξ. Hence, the absolutely continuous part
of the derivative of u, β = ∇u, satisfies the circulation condition

´
B1
β · τ dH1 = ξ and curlβ = 0 in

B1(0) \Br(0). In addition, we can compute explicitly

β =
1

π

(
1

ρ
(ξ1 cos θ + ξ2 sin θ) eθ(θ)⊗ eρ(θ)− (ξ1 cos θ + ξ2 sin θ) eρ(θ)⊗ eθ(θ)

−1− ρ
ρ

(ξ1 cos θ + ξ2 sin θ) eθ(θ)⊗ eρ(θ) +
1− ρ
ρ

(−ξ1 sin θ + ξ2 cos θ) eθ(θ)⊗ eθ(θ)
)

=
1

π

(
− (ξ1 cos θ + ξ2 sin θ) eρ(θ)⊗ eθ(θ) + (ξ1 cos θ + ξ2 sin θ) eθ(θ)⊗ eρ(θ)

)
+

1

π

1− ρ
ρ

(−ξ1 sin θ + ξ2 cos θ) eθ(θ)⊗ eθ(θ)

=βskew + βsym.

One sees directly that
´
B1(0)\Br(0)

βskew dx = 0. Hence, minW∈Skew(2)

´
B1(0)\Br(0)

|β − W |2 dx =´
B1(0)\Br(0)

|β|2 dx. In addition, a straightforward computation show that as r → 1 we obtain

ˆ
B1(0)\Br(0)

|βskew|2 dx = (1− r2)
1

π
|ξ|2 ∼ 2(1− r) 1

π
|ξ|2

and
ˆ
B1(0)\Br(0)

|βsym|2 dx =

(
− log(r)− 2(1− r) +

1

2
(1− r2)

)
1

π
|ξ|2 ∼ 1

3
(1− r)3 1

π
|ξ|2,

which proves the claim for r close enough to 1 independently of ξ.
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