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ZUSAMMENFASSUNG

Die hochgenaue Erfassung von Geometrie- und Reflektanzeigenschaften von Ob-
jekten stellt seit Jahrzehnten eines der Hauptziele in den Bereichen der Computer
Vision und der Computergrafik dar und kommt in zahlreichen Anwendungen in
der Industrie sowie im Bereich des Kulturerbes zum Einsatz. Die Reproduktion
feiner Strukturen in der Oberflächengeometrie sowie im Reflektanzverhalten ist
insbesondere in den Bereichen des Visual Prototypings, der Werbeindustrie sowie
der digitalen Erhaltung von Objekten eine allgegenwärtige Bedingung geworden.
Allerdings sind die heutigen Digitalisierungsmethoden üblicherweise nur für einen
sehr eingeschränkten Bereich bezüglich der Objektmaterialien anwendbar. Zudem
mangelt es an hochpräzisen Verfahren zur Erfassung von Objekten mit komple-
xem Reflektionsverhalten jenseits von diffuser Reflektanz. Weiterhin drängt die
Nachfrage bezüglich einer massenhaften Digitalisierung von Objekten immer mehr
auf vollautomatische, hocheffiziente Digitalisierungsmethoden, die eine genaue
Erfassung von Objekten in einer möglichst kurzen Zeit erlauben.

Diese Dissertation ist der Erforschung grundlegender Komponenten gewidmet,
welche für einen effizienten, automatischen Digitalisierungsprozess von großer
Bedeutung sind. Eine solche effiziente, vollautomatische Digitalisierung kann er-
folgen, wenn die beiden bisher üblicherweise getrennt betrachteten Bereiche der
Materialerkennung und der 3D-Rekonstruktion zusammengeführt werden. Dies-
bezüglich verdeutlicht diese Arbeit, dass eine zuverlässige Materialerkennung
für die betrachteten Objekte eine effizientere Geometrieerfassung erlaubt. Daher
liegen die Hauptziele dieser Dissertation in der Entwicklung neuer, robuster Geo-
metrieerfassungstechniken für Oberflächen mit komplexem Reflektanzverhalten
jenseits von diffuser Reflektanz sowie der Entwicklung robuster Techniken für die
Materialerkennung.

Im Bereich der Geometrieerfassung zeigt diese Arbeit auf, dass Verfahren basie-
rend auf der Beleuchtung von Objekten mit strukturiertem Licht, welche für die
Erfassung von Objekten aus Materialien mit diffuser Reflektanz bis zu spekula-
rer Reflektanz mit einer gewissen diffusen Reflektanzkomponente geeignet sind,
in einem Aufnahmesetup mit mehreren Projektoren und Kameras bezüglich der
Auflösung durch die Überlagerung von aus verschiedenen Ansichten projizierten
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ZUSAMMENFASSUNG

Mustern deutlich verbessert werden können. Da die Ergebnisse solcher trian-
gulationsbasierter Geometrieerfassungsmethoden üblicherweise hochfrequentes
Rauschen aufgrund von ungenau lokalisierten Korrespondenzen in aus verschiede-
nen Ansichten aufgenommenen Bildern sowie ungenauer Kalibration enthalten,
wird zudem ein neues Verfahren vorgestellt, bei welchem die Geometrieerfassung
basierend auf der Beleuchtung mit strukturiertem Licht mit komplementären Infor-
mationen bezüglich photometrischer Normalen ergänzt wird und somit deutlich
genauere Rekonstruktionen ermöglicht werden. Zusätzlich stellt diese Dissertation
eine neue, robuste Methode zur Erfassung der Geometrie von spiegelnden Objekten
mit komplexer Oberflächengeometrie vor.

Diese Untersuchungen im Bereich der 3D-Rekonstruktion werden durch die Ent-
wicklung neuer Methoden für eine zuverlässige Materialerkennung ergänzt, welche
in einem initialen Schritt verwendet werden können, um die gegebenen Ober-
flächenmaterialien zu erkennen und somit eine effiziente Auswahl geeigneter,
anschließend durchgeführter Erfassungsmethoden ermöglichen. Im Rahmen dieser
Dissertation erfolgt die Betrachtung einer robusten Materialerkennung für Szenari-
en mit kontrollierter Umgebungsbeleuchtung, wie sie in speziellen Laborumgebun-
gen erzeugt werden kann, sowie für Szenarien mit natürlicher Beleuchtung, die im
Alltag gegeben ist.

Abschließend werden neue Konzepte hinsichtlich einer effizienten, vollautoma-
tischen Erfassung von Objekten auf Basis der Techniken, die im Rahmen dieser
Dissertation entwickelt wurden, diskutiert.
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ABSTRACT

For decades, the accurate acquisition of geometry and reflectance properties has
represented one of the major objectives in computer vision and computer graphics
with many applications in industry, entertainment and cultural heritage. Reproduc-
ing even the finest details of surface geometry and surface reflectance has become a
ubiquitous prerequisite in visual prototyping, advertisement or digital preservation
of objects. However, today’s acquisition methods are typically designed for only
a rather small range of material types. Furthermore, there is still a lack of accu-
rate reconstruction methods for objects with a more complex surface reflectance
behavior beyond diffuse reflectance. In addition to accurate acquisition techniques,
the demand for creating large quantities of digital contents also pushes the focus
towards fully automatic and highly efficient solutions that allow for masses of
objects to be acquired as fast as possible.

This thesis is dedicated to the investigation of basic components that allow an
efficient, automatic acquisition process. We argue that such an efficient, automatic
acquisition can be realized when material recognition “meets” 3D reconstruction
and we will demonstrate that reliably recognizing the materials of the considered
object allows a more efficient geometry acquisition. Therefore, the main objectives
of this thesis are given by the development of novel, robust geometry acquisi-
tion techniques for surface materials beyond diffuse surface reflectance, and the
development of novel, robust techniques for material recognition.

In the context of 3D geometry acquisition, we introduce an improvement of struc-
tured light systems, which are capable of robustly acquiring objects ranging from
diffuse surface reflectance to even specular surface reflectance with a sufficient
diffuse component. We demonstrate that the resolution of the reconstruction can
be increased significantly for multi-camera, multi-projector structured light sys-
tems by using overlappings of patterns that have been projected under different
projector poses. As the reconstructions obtained by applying such triangulation-
based techniques still contain high-frequency noise due to inaccurately localized
correspondences established for images acquired under different viewpoints, we
furthermore introduce a novel geometry acquisition technique that complements the
structured light system with additional photometric normals and results in signifi-
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ABSTRACT

cantly more accurate reconstructions. In addition, we also present a novel method
to acquire the 3D shape of mirroring objects with complex surface geometry.

The aforementioned investigations on 3D reconstruction are accompanied by the
development of novel tools for reliable material recognition which can be used in
an initial step to recognize the present surface materials and, hence, to efficiently
select the subsequently applied appropriate acquisition techniques based on these
classified materials. In the scope of this thesis, we therefore focus on material
recognition for scenarios with controlled illumination as given in lab environments
as well as scenarios with natural illumination that are given in photographs of
typical daily life scenes.

Finally, based on the techniques developed in this thesis, we provide novel concepts
towards efficient, automatic acquisition systems.
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CHAPTER 1

INTRODUCTION

The rich information perceived via the senses of the human perceptual system such
as sight, hearing, taste, smell, touch and balance greatly supports us in exploring
our environment and, combined with our gained experience, allows us to infer
insights regarding daily life tasks such as how we have to interact with the content
of the surrounding environment. Among these senses, sight is probably the most
important one for these interactions as it allows a touchless close-range and far-
range perception of our environment, whereas the other senses allow a more limited
interaction. The content we visually perceive in a scene is characterized by the
presence and arrangement of objects, their shapes as well as their attached colors
and textures. However, observed colors and textures are a result of the complexity
of visual appearance due to the interplay of surface geometry, material properties
and illumination conditions and, in turn, also affect the way we perceive 3D
shapes. From the impression of the observed objects and materials, further insights
regarding physical and functional properties such as their deformability, fragility,
density, weight, value, thermal conductivity or toxicity can be derived. Based
on examples of such phenomena that are not directly visible, the argumentation
in [Fle14] concludes that there is evidence that impressions regarding materials
might be learned associations. Indeed, based on visual perception, we not only
get impressions about a characteristic look but also an accompanying “feel” for
materials.

Consequently, as stated in one of the fragments attributed to the Greek philosopher
Anaxagoras of Clazomenae (c. 500 B.C. – 428 B.C.),

appearances are a sight of the unseen (Anaxagoras, fragment B 21),

i.e. sense perception allows to infer an understanding of an underlying more general
concept which cannot be perceived based on appearances alone [Cur10].

Clearly, detecting, localizing and classifying the objects present in a local environ-
ment as well as reasoning about their 3D shapes and material properties are among
the key tasks to be solved in daily life. However, it is also evident that exactly the
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CHAPTER 1. INTRODUCTION

same objectives merit an increasing attraction in industrial applications and that
there is an urgent need for transferring the capabilities of the human visual system
to fully automated systems.

1.1 Interrelating 3D Shape Acquisition and Mate-
rial Recognition

Being one of the fundamental goals in the fields of computer vision and computer
graphics for decades, the faithful reconstruction of 3D shape has many applications
in quality assurance, reverse engineering, digital preservation in cultural heritage
and entertainment. In particular, there is a demand for obtaining highly detailed
and hole-free 3D surface geometries of objects, which is especially challenging for
objects made of materials with complex non-Lambertian reflectance behavior. For
the photo-realistic visual reproduction of real-world objects, reflectance charac-
teristics have to be acquired as well, ideally directly on the true surface geometry.
Automatic reflectance acquisition devices such as gonioreflectometers or camera
arrays are capable of taking images of an object under a huge multitude of varying
viewing and illumination conditions. In order to allow the reconstruction of the un-
derlying surface geometry, these setups are typically equipped with laser scanners
or structured light systems as well. A highly accurate acquisition of the object shape
allows a subsequent, high-quality rendering of digitized objects. Consequently,
there is a high demand for highly accurate geometry and reflectance acquisition
techniques. However, accurately capturing optical properties of materials makes
the acquisition process complicated for many materials, and there is still a need for
acquisition techniques which are appropriate for handling surfaces with complex
reflectance behavior such as mirroring surfaces, translucency, transparency, etc..
Unfortunately, current state-of-the-art automatic acquisition and reconstruction
techniques are designed for only a limited range of surface reflectance and the
user typically selects appropriate ones based on his experience (see Figure 1.1).
This represents the typical acquisition scenario with respect to cultural heritage
artifacts. In a similar way, the user has to select the respective industrial work flow
depending on the material of the object in the scope of many industrial applications.
In both cases, the ultimate prerequisite is formed by the existence of acquisition
techniques appropriate for the different surface materials that might occur. For
objects with heterogeneous surface reflectance behavior due to different surface
materials, such as diffuse and mirroring parts of the surface, the acquisition expert
has to select appropriate techniques for the different material types and to merge
the resulting reconstructions (see Figure 1.2).

However, the demands for an automatic, robust and efficient acquisition process as

4



1.1. INTERRELATING 3D SHAPE ACQUISITION AND MATERIAL RECOGNITION

Method 1 

Method 2 

Method 3 

Acquisition Expert 

Figure 1.1: User-guided acquisition process: An acquisition expert judges about
the reflectance behavior of an object and selects appropriate acquisition techniques
based on his experience.

Method 1 

Method 2 

Method 3 

Acquisition Expert Acquisition Expert 

Merge 
Reconstructions 

Figure 1.2: User-guided acquisition process with manual merging step: An
acquisition expert judges about the reflectance behavior of an object, selects
appropriate acquisition techniques based on his experience and manually merges
the results obtained from the individual techniques to a final reconstruction result.
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CHAPTER 1. INTRODUCTION

specified in industry require a shift in paradigms. Instead of the above-mentioned
traditional user-guided acquisition schemes, the presence of the individual occur-
ring surface materials should guide the acquisition process if there is no prior
knowledge about the object surface available. Hence, automatically recognizing
the occurring surface materials represents a key component for automatic acqui-
sition pipelines. Indeed, this enables making decisions such as reasoning about
fragility, deformability, weight, etc., which, in turn, naturally guide the interaction
of humans with objects in daily life. For handling the individual objects appro-
priately in a supply chain using robotized control systems, work processes need
to be adapted to their respective surface materials. Obviously, knowledge about
materials and their locations on the object surface opens up the possibility for
significantly increasing the efficiency of processes regarding acquisition time and
resources. Instead of naïvely conducting acquisitions for different types of surface
materials and merging the individual reconstructions as illustrated in Figure 1.3,
knowledge regarding whether a surface region exhibits e.g. a rather Lambertian
or a specular reflectance behavior allows to select appropriate 3D reconstruction
techniques for each region on the object surface (see Figure 1.4). Furthermore,
based on the material properties, there is also the possibility to automatically detect
cases where none of the available reconstruction techniques is appropriate.

This thesis is dedicated to the development of techniques that serve as fundamental
prerequisites for an efficient, automatic acquisition process. We demonstrate that
such an efficient, automatic acquisition can be realized when material recognition
“meets” 3D reconstruction, i.e. the task of acquiring 3D geometry can be approached
more efficiently by reliably recognizing the respective surface materials of the
involved object. In this regard, this thesis focuses on obtaining novel insights and
developing novel tools for both improving state-of-the-art acquisition techniques for
easy-to-handle surface materials and handling more complex surface materials. In
particular, we present an extension of structured light systems, which, together with
laser scanners, represent the standard regarding the acquisition of the 3D geometry
of objects and are well-suited for objects ranging from diffuse surface reflectance
to even specular surface reflectance with a sufficient diffuse component. While this
extension is focused on increasing the resolution of multi-camera, multi-projector
structured light systems, we additionally propose a novel geometry acquisition
technique that complements the structured light system with additional photometric
normals and results in significantly more accurate reconstructions. Furthermore, we
introduce a novel method that allows the acquisition of the 3D shape of mirroring
objects. These investigations are accompanied by the development of novel tools
for reliable material recognition which can be used in an initial step to recognize
the occurring surface materials and, hence, to efficiently select the subsequently
applied, appropriate acquisition techniques based on these classified materials. In
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1.2. CHALLENGES AND MAIN CONTRIBUTIONS

Method 1 

Method 2 

Method 3 
Merge 

Reconstructions 

Figure 1.3: Naïve automatic acquisition process: The object of interest is mea-
sured using all the available acquisition techniques. Subsequently, the individual
reconstructions have to be merged in order to get an appropriate reconstruction.

the scope of this thesis, we therefore consider material recognition under controlled
illumination conditions as given in lab environments as well as material recognition
under complex, real-world illumination conditions.

1.2 Challenges and Main Contributions

In the last decades, numerous investigations have focused on 3D reconstruction of
objects. In general, active scanning techniques such as structured light systems or
laser scanners have been proven to allow for a higher accuracy in the reconstruction
result in comparison to passive techniques such as multi-view stereo approaches.
However, facing the demand for an extremely high visual quality of digitized
models with respect to geometric accuracy and photo-realism as e.g. required in
cultural heritage, entertainment, etc., there is a need to even improve the accuracy
of active scanning solutions to also capture fine surface details such as scratches
or engravings which significantly contribute to the characteristic appearance of
an object. In addition, there is evidence that materials with complex optical
surface reflectance such as mirroring surfaces or translucent surfaces impose real
challenges regarding their acquisition. Therefore, today’s challenges definitively
include the development of geometry acquisition techniques appropriate for this
kind of surface materials as well.

Facing these challenges, this thesis advances the state-of-the-art regarding 3D
reconstruction by introducing solutions for improving the accuracy of current
scanning techniques and handling a wider range of different surface materials
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Method 1 

Method 2 

Method 3 

Database 

Material Recognition 

Materials + Acquisition Parameters 

Figure 1.4: Efficient, automatic acquisition process: Based on a prior material
recognition step, the respective annotations of the most similar material in a
database can be used to guide the acquisition process. Consequently, only the
required techniques are involved, which leads to a significant increase in efficiency.

beyond Lambertian surface reflectance. In particular, the key contributions in this
regard are:

A novel super-resolution scheme to improve the accuracy of multi-camera,
multi-projector systems based on structured light:
We have developed a structured light based multi-camera, multi-projector device
which allows the reconstruction of the full 3D shape of objects without moving
either the object or the acquisition setup. As a result, we circumvent the
critical registration of independent measurements. So far, cameras still have
considerably better resolutions in comparison to projectors. Therefore, the
limiting factor in a multi-camera, multi-projector system can be identified in
the resolution of the used projectors. To overcome this limitation, we have
developed a novel super-resolution scheme which takes advantage of the fact
that a sufficient number of projectors, or a projector sequentially mounted at
several different positions, needs to be involved for covering the whole object
surface with structured light patterns. By exploiting the fact that for almost all
points on the surface the patterns of projectors at different positions overlap,
much smaller regions on the surface can be uniquely identified. This allows to
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reconstruct a much denser and more accurate point cloud. In addition, by using
high dynamic range imaging, our technique is able to even handle complicated
objects which exhibit strong specularities.

A novel approach to increase the accuracy of 3D reconstructions for opaque
objects by fusing structured light consistency and Helmholtz normals:
By combining a structured light based consistency measure with dense normal
information obtained by exploiting the Helmholtz reciprocity principle, our
method overcomes the limitations of the individual techniques such as the low-
frequency drift of techniques based on normal information or the high-frequency
noise of triangulation-based techniques induced by inaccurately localized point
correspondences or inaccuracies in calibration. The reconstruction is performed
by solving one global variational problem which integrates all available mea-
surements simultaneously, over all cameras, light source positions and rotation
angles of the involved turntable. By employing an octree-based continuous min-
cut framework, our technique alleviates metrification errors while still being
memory-efficient.

A novel, robust multi-view normal field integration technique for 3D re-
construction of mirroring objects:
For mirroring objects, most traditional techniques such as laser scanners, struc-
tured light systems or multi-view stereo systems fail in providing reliable
reconstructions. Therefore, several methods have been developed that make
use of the observed information of specular highlights or reflections of the
surrounding environment. However, none of the previous approaches has shown
high-quality reconstructions for complex geometries in the presence of occlu-
sions and interreflections. In this thesis, we have advanced the state-of-the-art
in this regard by introducing a novel, robust multi-view normal field integration
technique. In a turntable-based setup, displays are used to actively illuminate
the mirroring object surface with patterns that are observed by cameras. This
allows to calculate individual volumetric normal fields for each combination
of camera, display and turntable angle. In order to be capable of also handling
blurred pattern observations induced by surface curvature or imperfect mirroring
surface characteristics, our technique takes care to locally adapt the decoding to
the finest still resolvable pattern resolution. From the individual, overlapping
normal fields, we infer for each point in the scene both the most likely local
surface normal and a local surface consistency estimate via a non-parametric
clustering of normal hypotheses. Subsequently, the estimates for the local sur-
face normals and the local surface consistencies are taken as input to an iterative
min-cut based variational 3D reconstruction approach.

9
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Furthermore, the demand for as-efficient-as-possible solutions has become a crucial
prerequisite in many industrial applications. Speeding up e.g. acquisition processes
or quality inspection processes and reducing the required hardware capacities
are key components for reducing the incurring total costs and, hence, have to be
considered by companies when evaluating their competitiveness. In this regard, it
is important to only spend the effort that is really needed for the respective task.
Therefore, using highly efficient approaches is inevitable.

Focusing on the context of geometry and reflectance acquisition, this means that
from a pool of material-specific acquisition techniques only those methods should
be selected for which a certain part of the object surface exhibits the corresponding
reflectance behavior assumed by these methods. For instance, to acquire the surface
geometry of a heterogeneous object with both diffuse and mirroring surface parts,
only a reliable shape acquisition technique for diffuse objects and a respective
method for mirroring objects should be involved. In an initial stage before the
actual acquisition, it is therefore desirable to reliably recognize the present surface
materials. Subsequently, these recognized surface materials can be used to guide the
acquisition process. As research in this context is still in an infant stage, this thesis
aims at improving the state-of-the-art by providing tools for a reliable material
recognition and their use within an efficient acquisition pipeline. In particular, the
respective key contributions of this thesis towards image-based inference of surface
materials are:

A novel technique for robust material recognition under controlled light-
ing conditions:
Most of the investigations in the related literature on appearance-based material
recognition in images either focus on recognizing materials in single query im-
ages or on recognizing materials in a set of images depicting the same material
sample under several registered view-light configurations which are also present
in the training data. Using such a set of several images acquired under different
view-light configurations provides significantly richer query information with a
more detailed representation of characteristic material traits such as interreflec-
tions which might not necessarily appear under a single view-light configuration.
As expected, this fact makes set-based material recognition typically more
robust than single-image-based material recognition. However, different acqui-
sition devices typically consider different view-light configurations, e.g. due to
constraints with respect to placing the involved components, and, hence, make
methods relying on training data and test data acquired under exactly the same
registered view-light configurations impractical. Our technique overcomes these
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limitations arising from the need for having material information from exactly
the same view-light configurations in the same order available per material by
establishing material spaces. These material spaces are computed per material
from material characteristics observed in the images acquired under different
view-light configurations via standard feature descriptors for color and texture,
and a comparison of materials can be carried out directly on the respective
material spaces via set-to-set distances. The robustness of our technique can
be recognized in the fact that considering only a few view-light configurations
already leads to high recognition rates.

A novel framework for recognizing materials under complex real-world
illumination based on training data synthesized using a BTF database:
Most of the approaches in literature focus on material recognition under con-
trolled illumination conditions as given in lab environments and, typically, the
material databases used in these investigations only consider a rather small
subset of all the possible illumination conditions. As a consequence, these
databases do not incorporate the complex variations in material appearance
under natural illumination to be expected in most of our daily life situations and,
hence, cannot serve as training data for material recognition under the respective
illumination conditions. An alternative consists in manually acquiring different
material samples in a multitude of locations with different illumination con-
ditions under several viewing conditions. Unfortunately, the involved manual
acquisition and the subsequently required manual annotation of the acquired
images make this approach rather impractical. In order to bridge the gap and
allow for material recognition under natural illumination, we propose utilizing
the potential of computer graphics to generate synthetic training data from
separately acquired material and illumination characteristics. For such data,
segmentations regarding the involved surface materials can easily be derived
which makes this approach particularly attractive for huge datasets. It will turn
out that one key prerequisite for the success of this approach can be identified in
an appropriate representation of material appearance which accurately captures
the details of surface reflectance behavior. While BRDFs are only appropri-
ate for smooth, homogeneous materials, many of the materials encountered in
everyday life exhibit a more complex reflectance behavior. Focusing on such
materials, we propose to use BTFs for generating synthetic data which depicts
the digitized materials under a huge multitude of different view-light conditions.
Our investigations will demonstrate that this synthesized training data allows
for material recognition under complex natural illumination.
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A novel framework for efficient, automatic acquisition of geometry and
reflectance based on a guidance by an initial material recognition:
So far, acquisition processes are typically based on selecting appropriate tech-
niques based on a-priori knowledge regarding the expected surface reflectance
behavior, which is typically obtained from user experience. For a fully automatic
acquisition under missing a-priori knowledge about the occurring surface mate-
rials, the combination of individual, material-specific acquisition techniques is
inevitable. While naïvely applying techniques available for e.g. diffuse objects,
opaque objects, mirroring objects, translucent objects or transparent objects
respectively and merging the individual results in a subsequent stage would be
possible, such a strategy might be too inefficient for many industrial applications
where efficiency regarding time and hardware usage is required. Instead, we
propose an efficient acquisition pipeline where only those acquisition techniques
are involved that are really required for a considered material. For this purpose,
our acquisition pipeline is based on a prior automatic material recognition step
that allows to recognize the respective material itself or a very similar mate-
rial in a material database with annotations regarding appropriate acquisition
techniques for the incorporated materials. The evaluation of the accompanying
annotations of the recognized material allows for an intelligent selection of the
subset of techniques required during the acquisition process and, hence, allows
for an efficient acquisition.

With our investigations, we were thus able to achieve substantial improvements
in both fields of geometry reconstruction and material recognition and to even
establish a connection between these two domains to increase the efficiency of the
acquisition process which has, to the best of our knowledge, not been addressed in
a similar way before.

1.3 Publications

Most of the material presented in this thesis has successfully passed a peer review.
In particular, the respective publications are:

• M. Weinmann, C. Schwartz, R. Ruiters, and R. Klein:
A Multi-Camera, Multi-Projector Super-Resolution Framework for Struc-
tured Light.
In Proceedings of the International Conference on 3D Imaging, Modeling,
Processing, Visualization and Transmission (3DIMPVT), pp. 397-404, 2011.

• M. Weinmann, R. Ruiters, A. Osep, C. Schwartz, and R. Klein:
Fusing Structured Light Consistency and Helmholtz Normals for 3D Recon-

12



1.3. PUBLICATIONS

struction.
In Proceedings of the British Machine Vision Conference, pp. 108.1-108.12,
2012.

• M. Weinmann, A. Osep, R. Ruiters, and R. Klein:
Multi-View Normal Field Integration for 3D Reconstruction of Mirroring
Objects.
In Proceedings of the International Conference on Computer Vision (ICCV),
pp. 2504-2511, 2013.

• M. Weinmann, J. Gall, and R. Klein:
Material Classification Based on Training Data Synthesized Using a BTF
Database.
In Proceedings of the European Conference On Computer Vision (ECCV) -
Part III, pp. 156-171, 2014.

• M. Weinmann and R. Klein:
Material Recognition for Efficient Acquisition of Geometry and Reflectance.
In Computer Vision - ECCV 2014 Workshops, 8927, pp. 321-333, 2015.

• M. Weinmann and R. Klein:
Advances in Geometry and Reflectance Acquisition.
In Proceedings of SIGGRAPH Asia 2015 Courses, pp. 1:1-1:71, 2015.

• M. Weinmann, D. den Brok, S. Krumpen, and R. Klein:
Appearance Capture and Modeling.
In Proceedings of SIGGRAPH Asia 2015 Courses, pp. 4:1-4:1, 2015.

• M. Weinmann, F. Langguth, M. Goesele, and R. Klein:
Advances in Geometry and Reflectance Acquisition.
In Eurographics 2016 Tutorials (accepted at), 2016.

• M. Weinmann, M. Weinmann, F. Rottensteiner, and B. Jutzi:
Acquisition and Automatic Characterization of Scenes - From Point Clouds
to Features and Objects.
In ISPRS Congress 2016 Tutorials (accepted at), 2016.

Furthermore, we included some of the discussions presented in this thesis in a
positioning paper to provide a survey on the achievements and remaining challenges
in the scope of material recognition:

• M. Weinmann and R. Klein:
A Short Survey on Optical Material Recognition.
In Eurographics Workshop on Material Appearance Modeling, pp. 35-42,
2015.

The structured light based geometry reconstruction and the automatic geometric
calibration procedures presented in the scope of the papers included in this thesis
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have been proven to be a fundamental component with respect to improvements in
the state-of-the-art in reflectance acquisition techniques which heavily rely on an
accurate acquisition of surface geometry. Therefore, these components have also
been used in several publications focusing on appearance acquisition which are not
part of this thesis:

• C. Schwartz, M. Weinmann, R. Ruiters, and R. Klein:
Integrated High-Quality Acquisition of Geometry and Appearance for Cul-
tural Heritage.
In Proceedings of the International Symposium on Virtual Reality, Archeol-
ogy and Cultural Heritage (VAST), pp. 25-32, 2011.

• C. Schwartz, R. Ruiters, M. Weinmann, and R. Klein:
WebGL-Based Streaming and Presentation Framework for Bidirectional
Texture Functions.
In Proceedings of the International Symposium on Virtual Reality, Archeol-
ogy and Cultural Heritage (VAST), pp. 113-120, 2011.

• C. Schwartz, M. Weinmann, R. Ruiters, A. Zinke, R. Sarlette, and R. Klein:
Capturing Shape and Reflectance of Food.
In Proceedings of SIGGRAPH Asia 2011 Sketches, pp. 28:1-28:2, 2011.

• C. Schwartz, R. Sarlette, M. Weinmann, and R. Klein:
DOME II: A Parallelized BTF Acquisition System.
In Proceedings of the Eurographics Workshop on Material Appearance
Modeling: Issues and Acquisition, pp. 25-31, 2013.

• C. Schwartz, R. Ruiters, M. Weinmann, and R. Klein:
WebGL-Based Streaming and Presentation of Objects With Bidirectional
Texture Functions.
In Journal on Computing and Cultural Heritage (JOCCH), 6(3), pp. 11:1-
11:21, 2013.

• C. Schwartz, R. Sarlette, M. Weinmann, M. Rump, and R. Klein:
Design and Implementation of Practical Bidirectional Texture Function
Measurement Devices Focusing on the Developments at the University of
Bonn.
In Sensors, 14(5), pp. 7753-7819, 2014.

Further closely related work with contributions from the author of this thesis has
been published in:

• M. Weinmann, M. Weinmann, S. Hinz, and B. Jutzi:
Fast and automatic image-based registration of TLS data.
In Proceedings of the ISPRS Journal of Photogrammetry and Remote Sensing,
66 (6), pp. 62-70, 2011.
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• D. den Brok, M. Weinmann, and R. Klein:
Linear Models for Material BTFs.
In Eurographics Workshop on Material Appearance Modeling, pp. 15-19,
2015.

• R. Martin, J. Iseringhausen, M. Weinmann, and M. B. Hullin:
Multimodal Perception of Material Properties.
In Proceedings of the ACM SIGGRAPH Symposium on Applied Perception,
pp. 33-40, 2015.

These contents, however, are not part of this thesis.

1.4 Thesis Outline

The thesis is organized in four parts. This introduction given in Part I provides a
motivation for our work by introducing the related research domain and clarifying
the relevance of the investigations performed in the scope of this thesis. Subse-
quently, an overview of the key contributions achieved in this thesis is given, which
is followed by a list of peer-reviewed publications where most of the content of
this thesis has been presented to the community. Additionally, this part contains a
list of our publications that are not part of this thesis.

In Part II, we first provide an overview of material-specific acquisition of both
geometry and reflectance in Chapter 2. This chapter reviews a grouping of surface
materials with respect to the acquisition methods that can be applied to obtain ap-
propriately reconstructed digital models as proposed in literature, and also provides
an overview on techniques proposed in literature to handle the individual groups of
surface materials. This is followed by a discussion of the contributions achieved in
the context of 3D reconstruction which are represented by an improvement of con-
ventional multi-camera, multi-projector structured light systems by using a novel
super-resolution scheme (see Chapter 3), a further increase of the reconstruction
quality by combining structured light information with normal information in the
scope of a variational framework (see Chapter 4) and the development of a robust
3D reconstruction technique for mirroring objects in the presence of occlusions
and interreflections due to complex surface geometry (see Chapter 5).

Part III then focuses on image-based inference of material characteristics (see
Chapter 6) for which we briefly describe characteristic material attributes. Further-
more, we provide an overview of commonly used descriptors for capturing such
material attributes from images as well as an overview of the main approaches
followed with respect to material recognition. Subsequently, we discuss our contri-
butions achieved in the scope of material recognition under controlled illumination
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Figure 1.5: Overview with respect to the structure of the technical parts of this
thesis: In Part II, novel methods for the acquisition of objects with different surface
materials are described. Part III focuses on the recognition of materials under both
controlled and uncontrolled illumination conditions. Finally, Part IV is dedicated
to the establishment of a connection between the contributions from the previous
parts resulting in an efficient, automatic acquisition framework.

conditions (see Chapter 7) and under more complex natural illumination conditions
(see Chapter 8).

The final Part IV is dedicated to the establishment of the connection between
material recognition and 3D reconstruction and introduces an efficient, automatic
acquisition pipeline which allows an efficient acquisition process for both 3D
geometry and reflectance (see Chapter 9). Subsequently, we summarize the contri-
butions achieved in the scope of this thesis and provide a discussion of possibilities
regarding future work (see Chapter 10).

The structure of the technical parts discussed in this thesis is illustrated in Fig-
ure 1.5.

16



Part II

A Survey on Advances in
Acquisition and Our Novel

Geometry Acquisition Methods for
Different Complexities of Surface

Materials

17





CHAPTER 2

A SURVEY ON MATERIAL-SPECIFIC ACQUISITION

The faithful digital reproduction of objects is an important topic with applications
in areas such as industry, entertainment, marketing and cultural heritage. Important
tasks can be identified in quality assurance, reverse engineering or digital preserva-
tion. In order to obtain a visually appealing impression of a digitized version of the
object, highly accurate solutions for both 3D shape acquisition and the acquisition
of the optical surface reflectance behavior represent crucial prerequisites. However,
the complexity of material appearance that is characterized by the complex inter-
play of surface material, surface geometry and illumination conditions has to be
taken into account. While a huge amount of techniques has been developed, the
acquisition of surfaces which exhibit a complex surface reflectance behavior is still
challenging.

So far, none of the image-based techniques presented in the literature is power-
ful enough to handle objects made of arbitrary materials. Instead, today’s 3D
acquisition techniques and reflectance acquisition techniques strongly rely on basic
assumptions regarding the surface reflectance behavior. This means that acquisition
techniques are rather designed according to the surface materials of the considered
objects and, hence, material-specific. After a review of preliminaries of material
appearance that include the effects of light exchange at surfaces as well as the
dependency of material appearance on material properties, surface geometry and
illumination conditions as well as scale, we discuss a taxonomy of surface classes
with respect to the characteristics of light transport induced by surface reflectance
properties which is relevant for 3D geometry acquisition (see Section 2.2). This is
followed by an overview of methods dedicated to 3D acquisition for diverse surface
materials (see Section 2.3) that are categorized according to the aforementioned
taxonomy as well as an overview on different principles for reflectance acquisition
(see Section 2.4). Most of these surveys have already been published in the scope
of peer-reviewed tutorials [WK15a, WdBKK15, WLGK16, WWRJ16].
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Figure 2.1: Illustration of several exemplary objects and material samples with
different appearance characteristics.

2.1 Material Appearance

When looking at the materials of objects present in our daily life, we may easily get
a first impression of the complexity of visual material appearance. Some exemplary
objects are depicted in Figure 2.1. While some of the respective materials are flat,
others have a characteristic relief structure. While some of them have only one
single color, others are colorful. On some objects, we observe specular highlights
or even see reflections of the environment, whereas other objects appear matte. Of
course, there are many more such examples in daily life. In order to understand the
key effects influencing material appearance, we first might have a closer look at
the underlying physical effects that characterize material appearance.

In particular, material appearance is determined by the complex interplay of light,
surface geometry and material properties of the object surface. Considering the
general case where the incoming radiant flux arrives at the surface at position xi at
the time ti with the wavelength λi, the flux might enter the material, travel through
the material and exit the material at position xr at the time tr with the possibly
changed wavelength λr. The direction of the incoming flux and the direction of the
exiting flux are usually represented based on local coordinate frames that depend
on the individual surface points xi and xr and the local surface normals. Figure
2.2 illustrates this process. Depending on the material type, this rather general 12-
dimensional model might be significantly simplified. Typical assumptions made in
the great majority of publications are that the light transport at the surface happens
in an infinitesimal period (i.e. ti = tr), that there is no time dependency of the
reflectance behavior (i.e. t0 = ti = tr), that the wavelength remains unchanged
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(i.e. λi = λr) and that the incoming flux is completely reflected at the surface (i.e.
xi = xr).

Figure 2.2: Light exchange at the material surface: The incoming radiant flux
hits the material surface at position xi at the time ti with the wavelength λi, travels
through the material and exits the material at position xr at the time tr with the
wavelength λr. The incoming direction (θi, φi) and the outgoing direction (θr, φr)
of the flux can be formulated using local coordinate frames. Image taken from
[MMS+04].

In this context, it is also necessary to take into account that material appearance is
a scale-dependent phenomenon. On a microscopic scale, i.e. the scale of atoms
and molecules, the interactions of photons with the atoms or molecules of a
particular material have been analyzed in the domain of quantum optics. Clearly,
these structures cannot directly be observed by the human visual system and yet
they significantly contribute to material appearance. While they determine the
appearance of all materials, these structures particularly dominate the reflectance
behavior of rather smooth and homogeneous materials such as metals, paper,
plastics, etc.. On a slightly coarser scale, studies in the field of wave optics
have considered the interactions of light with small structures with a size of
approximately the wavelength of light to describe effects such as polarization
or diffraction. Furthermore, material appearance is also characterized by effects
of light exchange happening on a mesoscopic scale at fine details in surface
geometry such as scratches, engravings, weave-patterns of textiles or embossing
of leathers. Such surface structures cause effects like interreflections or self-
shadowing. While the effects on these aforementioned scales obviously represent
the material characteristics and determine the material appearance, the 3D geometry
of the object with the respective, considered material also influences the material
appearance significantly. Considering this macroscopic scale, regular structures
such as present in e.g. woven cloth, brushed metal or surface textures of certain
objects might appear distorted in the image because of the dependency on the
object geometry.
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Unfortunately, the consideration of these scales suffices only for a close distance
between the surface material and the human observer. For an increasing distance,
the effects of light exchange at fine surface details such as scratches, engravings,
weave-patterns or embossing will become less visible and finally, they will not be
perceivable as mesostructures anymore. Hence, they might be treated as irregulari-
ties in a different kind of microscopic scale. In a similar way, some of the details
in the surface geometry might not be perceived as macroscopic features anymore
but rather as features on a novel mesoscopic scale.

To give another example, shininess of specular objects or translucency might also
depend on the distance between object and observer. When considering a highly
specular surface with a rough surface profile from a close range, the resolution
of the human visual system is sufficient to perceive the many surface patches
with different surface normals, and the material will appear specular. With an
increasing distance to the surface, the resolution of the visual system will become
insufficient to perceive the appearance of all the individual surface patches with
different orientations separately and, instead, a superposition of the appearances of
several of these patches is perceived. This will lead to a transition from specular
to diffuse appearance perception. In contrast, for flat, highly specular surfaces,
the surface will still appear highly specular with an increasing distance due to
the rather small deviations of the local surface normals. In a similar way, the
appearance of translucent objects with a rough surface profile is characterized
by subsurface scattering effects when viewed from a close range and might be
perceived as an opaque surface for an increasing distance. For larger distances, only
the superposition of the appearances of the individual patches with the subsurface
scattering effects is perceived by the visual system.

This clearly indicates that the definition of scale is of dynamic nature. Therefore,
material appearance involves a multitude of scales . . . ⊂ Di−1 ⊂ Di ⊂ Di+1 ⊂ . . .
ranging from an atomic scale to the intergalactic scale [Kaj85, MMS+04].

2.2 A Taxonomy of Surface Classes Based on Light
Transport Characteristics

While contact-based 3D geometry acquisition techniques are capable of recon-
structing the 3D geometry of almost all solid objects by e.g. using feelers attached
to manipulable arms, such approaches are typically considered as impractical.
The pointwise surface acquisition results in long acquisition times as dense mea-
surements of the object surface are desirable to accurately reconstruct the surface
details. Furthermore, several objects made of e.g. fabrics or clay cannot be ac-
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quired contact-based as the pressure of contact might deform or even break them.
In particular, the invaluable and typically sensitive cultural heritage artifacts have
to be handled as careful as possible which is contradictory to a contact-based
acquisition.

As, to the best of our knowledge, none of the available non-contact based acqui-
sition techniques is capable of handling arbitrary materials, the idea of grouping
the individual materials according to the acquisition principles applicable to the
individual material groups becomes immediately evident. It is easy to imagine
that these groups strongly rely on a clustering of the materials with respect to
the complexity of their visual appearance. In this spirit, the authors of [IKL+10]
consider a taxonomy of object classes based on increasing complexity in light
transport as illustrated in Figure 2.3. In particular, nine classes have been identified
for categorizing the properties of surface reflectance behavior:

• rough surfaces with diffuse or near diffuse reflectance (see Figure 2.4a)

• glossy surfaces with mixed diffuse and specular reflectance (see Figure 2.4b)

• smooth surfaces with ideal or near ideal specular reflectance (see Figure
2.4c)

• surfaces where light is scattered multiple times underneath the surface (see
Figure 2.4d)

• smooth surfaces with ideal or near ideal specular refraction (see Figure 2.4e)

• volumes with light emission or absorption

• volumes where a light ray is scattered only a single time

• volumes where a light ray is scattered multiple times

• mixed scenes containing several of the other types

2.3 The Diversity of 3D Shape Acquisition Methods

The complexity of surface reflectance behavior makes the acquisition of 3D shapes
a challenging task and has led to the development of a huge range of diverse
material-specific acquisition techniques, each tailored to only a very limited range
of materials. Most of the developed methods follow the categorization according to
the classes considered in [IKL+10] which have already been discussed in Section
2.2. As we focus on analyzing solid objects in the scope of this thesis, we do not
further discuss acquisition techniques designed to handle volumetric phenomena
such as fog or fire and only discuss related work in the remaining classes in the
following subsections. Furthermore, a complete overview on the large multitude
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Figure 2.3: A taxonomy of object classes according to [IKL+10] (image taken
from [IKL+10]).

of all the developed methods would exceed the scope of this thesis by far. For
this reason, we rather give a brief survey on the main trends in shape acquisition
according to the survey in [IKL+10] with extensions to more recently published
techniques that improved the state-of-the-art.

In general, geometry acquisition methods can be categorized into passive methods
and active methods. Whereas passive methods do not actively manipulate the
observed scene, active methods rely on directly manipulating the lighting within
an observed scene, e.g. by laser scanning or projecting light patterns.

Some techniques cannot directly be categorized according to this taxonomy as
the required information might be obtained in different ways for objects made of
different materials. Among these techniques are techniques that use silhouette in-
formation to reconstruct the surface geometry. In particular, shape-from-silhouette
approaches as used in e.g. [Lau94, GGSC96, FKIS02, MBK05] rely on obtaining
accurate silhouette information by a prior segmentation of the respective images
into foreground regions that contain the object and background regions that include
the remaining scene content. Subsequently, the observed silhouette information is
projected into the volume of interest. This can be achieved by using a volumetric,
voxel-based representation where the voxels that are projected into the foreground
regions within the images of all individual views are considered as occupied and
the remaining voxels are set to empty. As a result, the respective 3D surface is
represented by the isosurface between the occupied voxels and the empty voxels.
However, reliably extracting silhouettes often represents a rather challenging task
due to effects such as shadows and occlusions, and, additionally, the properties of
the surface materials have to be considered. Moreover, only the shape of objects
with a rather simple surface geometry can be accurately acquired. Therefore, this
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Figure 2.4: Illustration of different types of surface reflectance behavior for
incoming light.
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kind of technique is rather limited and typically has to be combined with additional
normal information as in e.g. [CLL07, Dai09] or multi-view stereo consistency as
in e.g. [ES04, CK11] to allow the acquisition of concavities in the surface geometry
of the considered objects.

2.3.1 Techniques for Rough Surfaces With Diffuse or Near Dif-
fuse Reflectance

For diffuse surfaces (see Figure 2.4a), the incoming light is uniformly reflected into
the full hemisphere with respect to the local surface normal of the object geometry.
This means that the surface can be perceived in a view-independent way. Therefore,
the geometry of such diffuse objects can typically be acquired in a rather easy way
and a multitude of acquisition techniques for such surfaces have been developed so
far.

Most of the developed geometry acquisition approaches inherently focus on the
acquisition of diffuse or near diffuse surfaces by a-priori assuming Lambertian
surface reflectance. Amongst others, stereo and multi-view stereo techniques,
for which comparisons and performance evaluations can be found in [SS02] and
[SCD+06], belong to this group. Multi-view stereo approaches, for which a survey
is given in e.g. [SCD+06], allow for the reconstruction of absolute depth. However,
these methods rely on the availability of certain characteristic image features which
can be reliably detected and used for the establishment of point correspondences
across images acquired under different viewing conditions. Based on these point
correspondences, the respective point on the object surface can be estimated
by triangulating the respective rays passing through the image locations of the
individual correspondences and the locations of the projective centers associated
with the individual cameras. For this purpose, interest operators such as Harris
features [HS88], SIFT features [Low04] and SURF features [BETvG08] represent
standard methods for detecting and matching common image contents. However,
since these algorithms analyze the local statistics of intensity gradients for the
extraction of distinctive feature points and the computation of local descriptors,
they can only be applied on textured surfaces and problems arise in the case of
an acquisition of objects with homogeneous surfaces, where no particular point
“sticks out” of its neighborhood. As a consequence, a robust matching of features
often is very difficult. Additionally, these methods are not suitable to capture
objects with highly complex reflectance behavior including effects such as specular
highlights, transparency, translucency and interreflections as they are – by design
– tailored to surfaces exhibiting Lambertian reflectance behavior. To be more
specific, multi-view stereo methods are typically based on the assumption that
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the appearance of a certain point on the object surface does not change under
variations of viewing conditions, i.e. the emitted radiance is independent from the
view direction. However, this assumption is only valid for diffuse surfaces.

In contrast, active methods are based on generating correspondences by an active
illumination of the object surface, which typically leads to a more reliable detection
of distinctive features with respect to the matching process. Overviews of current
state-of-the-art active geometry acquisition methods, including time-of-flight sys-
tems, laser scanners and structured light techniques, are provided in e.g. [Bla04]
and [STD09]. While laser scanners rely on successively scanning points on the
object surface, structured light systems are based on the idea of projecting known
2D light patterns onto an object surface by projectors. Then, the corresponding
patterns that are reflected at the object surface can be observed in the images
acquired by cameras. The patterns are used for an encoding of points on the object
surface in a way that allows a robust detection of correspondences between points
in the image planes of the projectors and points in the image planes of the cameras
or between points in image planes of several different cameras respectively. Finally,
the object surface can be reconstructed via triangulation. There is a large variety
of such approaches regarding the utilized coding strategies that are suitable for
different scenarios. A respective survey can be found in [SPB04]. While such
active triangulation-based laser scanner systems or structured light systems reach
a remarkable scanning accuracy for diffuse surfaces, they can also be used for
surfaces with an additional specular component as long as the material still shows
a sufficient surface albedo. However, most of these techniques are not robust with
respect to effects such as interreflections, subsurface scattering or highly specular
surface reflectance. Multi-view observations might provide a certain robustness
with respect to these effects. However, if the surface is almost ideally mirroring
and does not show a sufficient albedo, the observed pattern information becomes
completely view-dependent and cannot be used to establish correspondences across
images taken from different views. In a similar way, the correspondences cannot
be established in case of transparent or translucent surfaces.

Furthermore, in order to handle objects with non-uniform surface albedos, two
different exposure times are used in [SS03] and the one which leads to the largest
absolute difference between the two illuminations is selected. For the same rea-
son, the idea of projecting multiple Gray code patterns at different illumination
intensities and forming high dynamic scale radiance maps in order to decrease
the susceptibility to misclassification caused by the reflectance properties of the
considered surfaces has been introduced in [SL00]. Though these approaches
address the problem of over- and underexposure, they do not compensate for the
non-linearity of the response curve of the camera. In contrast, in our approach de-
scribed in Chapter 3, we propose to overcome this problem by using HDR images.
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An alternative approach has been proposed in [KPDVG05] where the projector
intensities are adapted locally so that the dynamic range of the illuminated scene is
reduced in order to avoid over- or underexposure. However, this method suffers
from a decreased contrast in the adapted projector pixels. This problem does
not occur when, instead of adapting the dynamic range of the scene, the scene is
completely captured by taking a sequence of images with different exposure times.
In addition, it is desirable to further increase the resolution of structured light based
techniques to further improve their accuracy. In e.g. [RSGS10], lens-shifting has
been exploited to enhance the resolution. Similar to [ALY08], we consider increas-
ing the resolution in the context of a multi-projector, multi-camera setup. While
projectors have been used to actively illuminate the object of interest or as virtual
cameras in [ALY08], our super-resolution technique presented in Chapter 3 and
published in [WSRK11] exploits overlaps of the pattern projections for projectors
placed at different locations.

Amongst the early investigations regarding the use of normal information for
3D reconstruction of diffuse objects are shape-from-shading techniques which
can be dated back to the investigations in [Hor70]. These passive approaches
are based on an analysis of the shading gradient in an image that can be used to
derive surface normals. Based on the surface normals, the surface geometry is
derived via normal field integration techniques. Most of the shape-from-shading
techniques focus on geometry reconstruction from a single-image, and, hence, only
a 2.5D height map can be derived. Further early investigations include photometric
stereo techniques [Woo80] which focus on reconstructing Lambertian objects
from a single view under known positions of the light source involved in order
to illuminate the object. Several techniques such as the ones proposed in e.g.
[BJK07, WGS+11, WLDW11] consider extending photometric stereo towards
general unknown illumination. Furthermore, photometric stereo has been explored
in multi-view setups (e.g. [EVC08, BAG12]). The approach presented in [BAG12]
is based on using normal consistency by determining a maximal set of inliers per
voxel on which regular photometric stereo is applied in a multi-view approach.
While producing good reconstructions on synthetic data, the estimated surface
consistency tends to being localized inaccurately for real-world data due to the lack
of a per-voxel normalization. Furthermore, multi-view normal field integration
approaches as proposed in [CLL07, Dai09] have been considered in the context
of photometric stereo. These techniques overcome the problem of obtaining only
2.5D reconstructions of partial surfaces in the single-view case. In [CLL07], an
initial visual hull reconstruction is followed by an iterative surface evolution based
on level sets in a variational formulation. As no global optimization is performed,
the surface evolution is sensitive to the initial visual hull. In contrast, the technique
proposed in [Dai09] is based on a Markov Random Field (MRF) energy function
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where the surface is computed via min-cut to find a global minimum. This is
followed by a smoothing step similar to the one applied in [CLL07]. A surface
orientation constraint has been included in the energy functional which enforces
the reconstructed geometry to agree with the observed surface normals. Both
techniques employ additional silhouette information which are rather difficult to
determine.

In Chapter 4, we will demonstrate that combining a structured light technique
with additional normal information even allows the reconstruction of very fine
surface details such as scratches or engravings on both synthetic and real-world
objects.

2.3.2 Techniques for Glossy Surfaces With Mixed Diffuse and
Specular Reflectance

Considering materials with both diffuse and specular components (see Figure
2.4b) makes the 3D shape acquisition more complex as the perception of glossy
highlights is a view-dependent phenomenon. With the objective of also acquiring
such objects with more complex surface reflectance behavior, several methods
considered extending classical photometric stereo. Therefore, violations of the
underlying assumption of Lambertian reflectance due to specularities have to be
considered as well as shadows. In e.g. [HS05, GCHS05], spatially-varying BRDFs
have been considered to broaden the range of materials that can be handled, but
several effects such as e.g. interreflections and shadows are not taken into account.
The extension of photometric stereo proposed in [CJ08] is based on a normal
estimation using shadow boundaries and the estimation of a BRDF where the
Ward model [War92] is used. The obtained BRDF parameters are then clustered
to find the material types and discard noise and outlier values. Once the specular
parameters are known, their method proceeds with estimating normals and surface
albedo. Limitations of this method can be seen in the use of a Ward BRDF model,
which is only valid for a rather small range of materials. Therefore, this technique is
only capable of handling isotropic materials with a single lobe. Materials for which
more than a single lobe has to be fitted as well as the huge range of materials which
exhibit mesoscopic effects cannot be handled appropriately. Furthermore, only
a 2.5D reconstruction from a single view is performed based on an orthographic
projection model and normal field integration techniques are susceptible to errors
in the estimated normals that are accumulated during the surface reconstruction.
In [ZMLC10], photometric stereo has been extended by representing specular
reflection with a set of specular basis functions with different roughness values.
Therefore, specular objects can be handled as well by their photometric stereo
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technique and the final reconstruction consists of information regarding surface
shape and also reflectance properties. However, the range of materials that can be
handled is limited to isotropic materials that can be represented by the Ward model
with the specular basis functions. Furthermore, only a 2.5D reconstruction from a
single view is considered and an orthographic camera projection is assumed. In
[RK09], a combination of multi-view stereo and photometric stereo has been used
to directly reconstruct heightfields without the need to apply normal integration,
and a SVBRDF is recovered as well. While this approach also takes interreflections
into account, it is limited to planar samples and not applicable to objects with a
complex surface geometry.

In order to handle the even larger range of opaque materials, the approaches
presented in [ZBK02, ZHK+03] exploit the Helmholtz reciprocity for surface
normal estimation in a BRDF-invariant manner. This principle is based on the
observation that for certain materials the ratio of the radiance emitted from a
surface point towards the camera to the irradiance that arrives at the surface point
from the direction of the light source is identical if the positions of camera and
light source are exchanged [ZBK02]. In [DPB10], Helmholtz normals have been
used in a multi-view setting.

Several other approaches focus on improving photometric stereo by considering
normal hypotheses in a volumetric representation and the surface is assumed to
pass through voxels with a high consistency of the hypothesized normals. In e.g.
[CJ82, MC09], classical single-view photometric stereo has been improved by
selecting only hypotheses which agree with the underlying model assumptions.
Generating per-pixel normal hypotheses for varying lighting directions has also
been used in [HMI10] where consistency is obtained by considering monotonicity,
visibility, and isotropy properties. Therefore, the approach can handle both diffuse
and specular surfaces.

Furthermore, structured light techniques, as already mentioned in Section 2.3.1,
are also applicable for materials with both a diffuse and a specular reflectance
component as long as the surface material shows a sufficient albedo under different
viewing conditions. In these cases, the projected patterns can still be reliably
decoded in the acquired images. Some techniques focus on further increasing the
robustness with respect to the range of materials that can be coped with by using
pattern projections at different intensity levels [SL00] or by capturing images for
different exposure times [SS03]. In particular, in Chapter 3, we will demonstrate
that even the shape of moderately specular objects can be accurately acquired
with our structured light system described in Chapter 3 and [WSRK11] – which is
also based on high dynamic range imaging – as long as the material still shows a
sufficient surface albedo. Limitations of structured light approaches as mentioned
in the previous section are the lacking robustness with respect to effects such as
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interreflections, subsurface scattering, or highly specular surface reflectance. To
some degree, using multi-view observations might improve the robustness with
respect to these effects. However, for almost perfectly specular surfaces with a low
albedo, the pattern information observed by the cameras is view-dependent. This
makes the establishment of correspondences across images obtained under different
view conditions based on the observed pattern information impossible.

In addition, we present a technique for even more accurate geometry acquisition
for the full range of opaque objects from diffuse to glossy objects in Chapter 4
and [WRO+12]. Our method is based on positional information obtained with a
structured light technique and normal information derived based on Helmholtz
reciprocity. This overcomes the noise introduced in purely triangulation-based
approaches such as structured light systems due to inaccurately localized corre-
spondences and inaccuracies in calibration, which would smooth away fine surface
details such as scratches or engravings.

2.3.3 Techniques for Smooth Surfaces With Ideal or Near Ideal
Specular Reflectance

The challenge in reconstructing highly specular surfaces arises from the fact that
such surfaces typically do not have an own characteristic appearance but rather
reflect the surrounding environment in a view-dependent manner (see Figure 2.4c).
Recent surveys on techniques for surface reconstruction of specular objects have
been presented in [IKL+10, BW10]. Furthermore, a more theoretical discussion is
given in [KS08].

Some of the methods, such as specular flow techniques [RB06, AVBSZ07], are
based on considering the movement of environment features which are mirrored
on the surface of specular objects. Typically, a known motion of the mirroring
object, its environment or the cameras is assumed respectively. Unfortunately,
interreflections might cause a single environment feature to be observed on the
mirroring surface several times which makes the estimation of dense optical flow
highly non-trivial. In addition, such methods usually rely on the assumption of a
distant environment and do not consider a more complex scene geometry. Instead
of considering dense correspondences, the approach in [SVTA10] is based on using
sparse reflectance correspondences to locally approximate specular surfaces using
quadrics.

Furthermore, shape acquisition of mirroring objects has been approached by uti-
lizing the information revealed by specular highlights which are observed on the
mirroring object surface due to specular reflection in controlled environments.
However, densely sampled observations of specular highlights on the mirroring
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surface are required to obtain an accurate reconstruction of the surface geome-
try. This can be achieved by using a moving camera [ZGB89], moving the light
source [CGS06], using extended light sources [Ike81] or sequentially switching on
individual elements of a grid of light sources [SWN88].

As the number of required images increases linearly with the number of utilized
light source positions, taking one photo for each of the utilized light source po-
sitions would be impractical for the dense sampling of the light source positions
required to obtain an accurate reconstruction. For this reason, several techniques fo-
cus on the reduction of the number of required images by performing measurements
in parallel. For this purpose, rotating the object and using a circular light source
has been proposed in [ZM00]. Furthermore, printed, static or moving calibrated
patterns have been used in [BS03, SCP05, LWDC10]. Further methods make use
of the simultaneous encoding of multiple light sources. Such encoding schemes
have already been investigated in [NWSS90] for light source arrays, and several
more recently published approaches build upon this idea by simulating dense illu-
mination arrays using LCD screens and encoding the illumination emitted from
the pixels using structured light patterns [FCM+08, NWR08, YIX07, BHB11]. So
far, most of the approaches still rely on assuming far-field illumination or a distant
environment. However, these assumptions are typically not fulfilled as the printed
patterns or the LCD displays used to project patterns have to be located rather close
to the object surface in order to obtain dense observations of light directions or
feature directions on the mirroring surface.

Knowing the view direction that is determined by the camera parameters and the
pixel-based observation of a specular highlight, and the 3D position of the light
source or feature on the utilized patterns is still not sufficient to infer the surface
geometry due to a remaining normal-depth ambiguity. This ambiguity can be
overcome in a multi-view setting as e.g. presented in [BS03], where a calibrated
pattern is used to produce reflections on the specular surface. Based on a volumetric
representation, the law of reflection is used to hypothesize a normal at each voxel.
As a result, generally several normal hypotheses are obtained for the different view
directions and light source positions or feature positions. This allows to approach
surface reconstruction by assuming that the surface passes through the voxels
with the most consistent normal hypotheses. The respective normal consistency
is computed per voxel according to a normal disparity measure. As voxels with a
low consistency are discarded, such principles are often named as voxel carving
techniques. The technique proposed in [Pak12] is also based on voxel carving
but considers the consistency of normal vector maps per voxel that are used to
parameterize the normal hypotheses per voxel. Several other works such as e.g.
[CJ82, MC09, HMI10, BAG12] also consider techniques based on hypothesizing
surface normals in the context of extending photometric stereo techniques (see
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Section 2.3.2). For specular surfaces, investigations on surface reconstruction based
on the idea of matching hypothesized normals include the approaches proposed
in [WI93, BHB11]. While considering overlapping deflectometric measurements
obtained from multiple views can be used to reconstruct large mirroring surfaces
as shown in [BHB11], self-occlusions are problematic for this approach and a lot
of manual work is involved in configuring the individual views.

The technique presented in [YWT+11] considers normal consistency in a single-
view setting by clustering per-pixel normal observations using the k-means al-
gorithm [Ste57, Llo57, Llo82, Mac67]. In [NWR08], a specularity consistency
similar to the one in [BS03] is derived between a set of views in a triangulation-
based scheme using a display with Gray codes for illumination. After triangulation,
normals are refined for the estimated depth values in a way similar to the iterative
scheme proposed in [TLGS05]. In [Pak13], a probabilistic voxel carving technique
has been presented that uses an optimization based on loopy belief propagation.
However, only synthetic data has been considered and, even in this rather ideal
scenario, the reconstruction results are rather inaccurate.

Furthermore, the technique recently published in [TFG+13] focuses on the acqui-
sition of objects with diffuse to specular surface reflectance behavior by using
continuous spherical harmonic illumination. The response of the object to the
harmonics can be used to separate the diffuse reflectance component from the
specular reflectance component. Unfortunately, this technique is less suitable for
the reconstruction of concave objects.

Our method presented in Chapter 5 and also published in [WORK13], to the best
of our knowledge, represents the state-of-the-art technique as it allows an accurate
acquisition of the full 3D shape of mirroring objects with complex surface geometry
as present in many figurines or artifacts. In particular, the involved multi-view
normal field integration scheme is probably the first of its kind which enables
an accurate 3D reconstruction not only on synthetic data but also on real-world
data.

2.3.4 Techniques for Surfaces With Subsurface Scattering Ef-
fects

The challenge in acquiring the 3D shape of translucent objects arises from the
light transport within the object (see Figure 2.4d). In particular, the incoming light
enters the material and travels through the material where it is scattered. When
we actively illuminate such translucent objects with a pattern, these non-local
subsurface scattering effects induce a blurring of the observed pattern and, hence,
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make e.g. a triangulation-based reconstruction from the decoded correspondences
rather unreliable [LPC+00].

In [GLL+04], the authors circumvent these problems arising from the subsurface
scattering characteristics by covering the object of interest with a thin, diffuse dust
before the actual 3D geometry acquisition via laser scanning is started. Later, this
dust can easily be removed again.

Apart from using such tricks, surface geometry of translucent objects can also
be acquired by utilizing certain material-specific characteristics of light transport.
As many translucent objects also have a strong specular component, shape-from-
specularity approaches can be applied where a moving light source is involved
and the observed highlights can be used to estimate surface normals which is
followed by a normal field integration [CGS06]. In [MHP+07], linearly polarized
and circularly polarized spherical gradient illumination patterns are used and both
the diffuse and the specular reflectance is considered for the estimation of surface
normals. The advantage of the circularly spherical patterns can be identified in the
fact that they allow the simultaneous estimation of surface normals from different
viewpoints. The proposed polarized illumination schemes allow an independent
estimation for both diffuse and specular normal maps. The latter have been proven
to be appropriate for subsurface scattering materials in contrast to the diffuse
normal estimates which are affected by the subsurface scattering. More recently,
this method has also been used in [GCP+10] with circularly polarized spherical
illumination for normal estimation from several viewpoints.

Furthermore, the investigations in [NKGR06] have demonstrated that specular and
diffuse components of surface reflection can be separated by phase shifting of
high-frequency structured light patterns. This observation has e.g. been explored
in [CLFS07], where a phase shifting based structured light approach has been
combined with a polarization-based removal of specular highlights at the surface.
Based on the fact that global light transport characteristics remove the polarization
of light, polarization filters are used in front of both the light source and the camera
and multiple scattering effects can be separated from the structured light obser-
vations. In subsequent work [CSL08], the same authors remove the dependency
on polarization and instead modulate the low-frequency phase shifting patterns to
separate direct and global components of light transport. By this modification, the
obtained reconstruction quality is further improved in comparison to the technique
in [CLFS07].

In [GAVN11], certain structured light patterns tailored to translucent surfaces have
been proposed. While the analysis shows that high-frequency patterns are not
applicable for translucent objects due to the blurring of the observed pattern, using
Gray codes with a certain minimum stripe width following [GG03] shows more
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robustness on translucent surfaces and allows reliable reconstructions.

The recent technique presented in [DMZP14] represents an extension to conven-
tional photometric stereo which enables the simultaneous estimation of both scat-
tering properties and accurate surface normals for planar, homogeneous translucent
objects based on observations from at least three different directional illumination
configurations based on blind deconvolution. This avoids the problem of blurry nor-
mal estimates that would result from an acquisition via conventional photometric
stereo.

2.3.5 Techniques for Smooth Surfaces With Ideal or Near Ideal
Specular Refraction

Reconstructing the 3D shape of refractive objects (see Figure 2.4e) is even more
challenging in comparison to the cases mentioned in the previous sections. In
general, such objects might exhibit inhomogeneous reflectance characteristics in-
duced e.g. by a spatially varying refractive index or by inclusions of Lambertian
or opaque material components. As pointed out in the recent survey given in
[IKL+10], research has mainly been spent on solutions relying on certain simpli-
fying assumptions such as homogeneous material characteristics or considering
only the reconstruction of a single surface separating the two enclosing media. The
authors categorize the main approaches for the acquisition of refractive surfaces
according to shape-from-distortion techniques, direct ray measurement techniques,
reflectance-based techniques, techniques based on inverse ray tracing, tomography-
based approaches and direct sampling techniques. In the scope of this section, we
therefore group the related approaches according to these principles.

For the simpler case of acquiring a single refractive surface, shape-from-distortion
techniques have been successfully applied. While this kind of methods can also
be applied for specular surface reconstruction in a simpler form, refractive surface
reconstruction requires considering the refractive index in addition to the surface
normal in order to analyze the light path. Early work [Mur90, Mur92] has focused
on reconstructing water surfaces from a single view. The movement of the water
induces the a-priori unknown background pattern placed at the bottom of the liquid
to be observed in a distorted way. Assuming an orthographic camera, optical
flow [HS81, LK81] and a subsequent integration of the surface gradient are used
to reconstruct the surface up to a certain scale. This seminal work has been
extended in [MK05] by using a stereo camera system and a known pattern to
estimate the refractive index, per-pixel depth and surface normals. As a further
improvement, no average surface model is used in comparison to the approaches
in [Mur90, Mur92]. In particular, the considered consistency measure is similar
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to the normal consistency used in [NWR08] for specular surface reconstruction.
Further work has been dedicated to the reconstruction of glass objects. Projecting
structured light patterns into the refractive object with a projector and observing the
respective distorted patterns in the camera image has been analyzed in [HSKK96].
In [BEN03], an unknown distant background pattern is used in combination with
a known parametric model including shape and refractive index. The object of
interest is moved in front of a single, static camera and features are tracked over
time similar to [Mur90, Mur92]. In [AMKB04], an extension of optical flow has
been proposed to track refracted scene features for which the intensity might
vary due to the presence of non-ideally transparent surfaces with e.g. additional
absorption.

Furthermore, refractive surfaces have also been reconstructed by directly measuring
the light path. For this purpose, calibrated planar patterns in several positions with
respect to the object have been used in [KS05, KS08] to measure the light rays. In
their theoretical analysis [KS05, KS08], the authors consider the categorization of
reconstruction techniques based on ray measurements independently performed for
each pixel. The introduced notation 〈N,M,K〉 contains the relevant information
with respect to the number of views N that are required for the reconstruction as
well as the number M of points on specular or refractive surfaces that are located
on a piecewise linear light path and the number K of calibrated reference points
on a ray exitant from the object. The authors discuss that such a reconstruction
cannot be performed for more than two intersections of the light ray with specular
or refractive surfaces. The number of views N and the number K of calibrated
reference points on a ray do not influence this observation. Following this concept,
the authors consider a 〈3, 2, 2〉 reconstruction for refractive surfaces. As a result,
four surface points with attached normals can be estimated per pixel. While one
such pair of point and normal is located at the front surface of the object, the
remaining pairs depend on the three differently refracted viewing rays and are
located at the back surface.

A reflectance-based approach has been followed in [MK07]. Dense per-pixel
reflectance measurements in a static camera are observed as a result of sequentially
illuminating the static object of interest with a light source at varying positions on
a regular grid. As a result, a 2D slice of the BRDF is recorded. However, indirect
lighting effects influence these measurements. By separating the direct and indirect
components of light transport, the authors achieve high-quality reconstructions for
depth and normal, even for inhomogeneous refractive objects.

Other methods rely on the principle of inverse ray tracing. The underlying idea
is based on the optimization of the residual of the acquired data and synthetically
generated data. In order to reconstruct the surface of time-varying water surfaces,
the water has been mixed with a fluorescent dye in [IM05] and a chemilumines-
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cent chemical in [GILM07]. While using UV illumination makes the mixture of
water and fluorescent dye self-emissive [IM05], in the case of chemiluminescence
[GILM07] a chemical process has to be used for this purpose. Assuming homo-
geneous emission, both methods use synthetic images for surface fitting via level
set optimization. In [WLZ+09], the liquid to be reconstructed is dyed with an
opaque white paint. As a result, patterns can be projected onto the liquid and the
correspondences observed in the cameras allow the reconstruction of the surface.
In addition, a physically-based fluid simulation is used in this approach.

As discussed in [IKL+10], refractive object reconstruction can be performed by
making use of certain acquisition strategies. One possibility is to consider suffi-
ciently high wavelengths for the incident illumination as given for x-rays. In this
spirit, computer tomography has been used for scanning objects in [KTM+02],
and the proposed approach is in principle capable of scanning glass objects. Fur-
thermore, as mentioned in [IKL+10], a reconstruction of refractive objects is also
possible when the refractive indices of the object and the surrounding medium
are identical. In [TBH06], glass objects are immersed into a liquid with care-
fully controlled refractive index. Controlling the refractive index to a value of
approximately 1.55 has been achieved by adding chemicals to water. As an ideal
transparent object would disappear inside a medium with identical refractive index,
the surrounding medium has to be dyed, which can be omitted if the object itself is
absorptive [IKL+10].

Furthermore, several methods have been proposed based on direct sampling. In
[HFI+08], fluorescent immersion range scanning has been proposed to reconstruct
refractive objects. The objects are placed in a different immersing medium with
known refractive index. This liquid has additionally been dyed with a fluorescent
chemical. During measurement, this fluorescent liquid causes the utilized laser
sheet to be rendered visible while the refractive object to be scanned remains dark.
A similar strategy has been explored by observing objects in a different spectrum.
Several investigations e.g. focus on scanning-from-heating. In [EAM+09], the
glass surface is first heated by the incident infrared radiation which is then measured
by an infrared camera. This allows to reconstruct the glass surface. Extending this
approach, the shape of the hot spots observed by the infrared camera is analyzed in
[AEB+12] to derive information regarding local surface orientations. Other works
consider structured patterns of infrared radiation [MSSE+10] or the polarization in
the infrared domain [MRA+12] for 3D reconstruction. Furthermore, several publi-
cations focus on exploiting ultra-violet radiation. In e.g. [RSFM10b, RSFM10a],
structured light in the ultra-violet domain has been explored for reconstructing
glass surfaces.
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2.4 Reflectance Acquisition Techniques

While reflectance acquisition is not in the focus of this work, we nevertheless give
a short overview on different reflectance acquisition approaches, as the selection
of appropriate acquisition techniques presented in Part IV of this thesis also has a
significant influence in this regard.

For an adequate acquisition of surface reflectance, the complexity of visual surface
reflectance has to be considered in a similar way as in the context of geometry
acquisition. The categorization of materials as discussed in Section 2.2 indicates
that visual material appearance is characterized by different phenomena of light
exchange with a particular object surface of interest, which might also be ex-
plored when focusing on reflectance acquisition. In particular, diffuse and specular
components as well as potentially occurring subsurface scattering or refraction
characteristics have to be considered in the reflectance models, and the respective
reflectance acquisition is typically designed according to the assumed underlying
model. So far, many different models have been proposed in the literature to model
surface reflectance behavior, each focusing on accurately representing a certain
subset of the possible materials. However, efficiently modeling surface reflectance
behavior is also coupled with the use of an adequate model, which should have
as few parameters as possible to still enable a faithful depiction of the material
in a synthetic image within an acceptable acquisition time. Therefore, model-
ing e.g. the surface reflectance behavior of a diffuse object, where the incoming
light is reflected uniformly into a hemisphere on the local surface patch, requires
considering different material characteristics than modeling surface reflectance of
mirrors, which is determined by an almost ideal direct reflection of the incoming
light. Similarly, modeling reflectance behavior for materials with both diffuse
and specular components or translucent and transparent materials requires con-
sidering the respectively relevant characteristics of the individual materials. In
this regard, reflectance acquisition strongly depends on the representation used to
model the reflectance of a particular material, as some parameters might not have
to be measured. For e.g. a diffuse material, there is no need to capture the specular
characteristics, which allows to reduce the hardware usage and, hence, to speed up
the measurement process.

A rather general way to model surface reflectance can be seen in using a func-
tion

ρ(xi, θi, ϕi, ti, λi,xr, θr, ϕr, tr, λr), (2.1)

which captures reflectance depending on the twelve parameters of the incoming
light direction (θi, ϕi), the position xi where the light hits the surface at the time
ti with the wavelength λi, the position xr where the light exits the surface with
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the outgoing light direction (θr, ϕr) at the time tr with the wavelength λr (see
Section 2.1). Typically, the time and the wavelength characteristics are omitted for
simplicity, i.e. it is assumed that ti = tr and λi = λr.

The plenoptic function P (X, θ, ϕ) has been introduced in [AB91] as a function
that describes the radiance sent from a certain scene point X ∈ R3 into the
direction (θ, ϕ). Assuming that an arbitrarily complex shaped surface S with the
bounding volume V is embedded in the considered scene volume, the radiance
values observed at points x ∈ ∂V ⊂ R2 on the surface from a viewpoint outside
V with viewing directions (θr, ϕr) can be used to represent the appearance of
the object surface S for a given, static illumination [GGSC96, LH96]. As the
surface points can be parameterized over the surface S, it is possible to use a four-
dimensional function ρSLF,r(x, θr, ϕr), the radiant surface light field, instead of the
five-dimensional plenoptic function P (X, θr, ϕr). If the viewpoint is inside of the
volume V , the incident surface light field ρSLF,i(x, θi, ϕi) can be observed [LH96].
Consequently, a radiant light field ρLF,r(xr, θr, ϕr) observed at particular scene
points xr from the viewing angles (θr and ϕr) can be interpreted as a general
response of the arbitrary complex scene to an incoming light field ρLF,i(xi, θi, ϕi)
[LH96]. From the definition of surface light fields it becomes obvious that they
can only be used to describe static scenes without variations in illumination, scene
geometry and surface materials. The term reflectance field [DHT+00] describes
the dependency of the radiant light field ρLF,r(xr, θr, ϕr) on the incident light field
ρLF,i(xi, θi, ϕi) and can be formulated as an eight-dimensional function

ρRF(ρLF,i, ρLF,r) = ρRF(xi, θi, ϕi,xr, θr, ϕr), (2.2)

i.e. a reflectance field describes the exitant radiance depending on the possibly
occurring incident illuminations. Typically, reflectance fields are defined on convex
surfaces that surround the respective object and it is assumed that the viewpoint is
outside this bounding volume and that the light is also coming from outside. This
allows to use the reflectance field to represent material appearance under arbitrary
new viewpoints and illumination conditions by sampling the outgoing light fields
under a set of basis incident light fields. The linearity of light transport allows
the definition of new illumination conditions in terms of a linear combination of
the illumination basis. The definition (2.2) is closely related to the definition of
the bidirectional scattering-surface reflectance distribution function (BSSRDF)
[NRH+77] given by

ρBSSRDF(xi, θi, ϕi,xr, θr, ϕr) (2.3)

and even would be identical if the true surface is used.

Assuming that the surface reflectance is defined on the object surface similar
as for BSSRDFs but assuming xi = xr = x, i.e. that light is not scattered
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inside the material, the inhomogeneous reflectance behavior can be explained by
six-dimensional spatially-varying bidirectional reflectance distribution functions
(SVBRDFs)

ρSVBRDF(x, θi, ϕi, θr, ϕr). (2.4)

In contrast, another six-dimensional representation is given by bidirectional texture
functions (BTFs) which can be obtained by assuming far-field illumination where
the light sources are infinitely far away. This means that the incident radiance is
the same for all surface points, i.e. ρLF,i(xi, θi, ϕi) = ρLF,i(θi, ϕi). As a result, the
definition of the BTF is given by

ρBTF(θi, ϕi,xr, θr, ϕr). (2.5)

In comparison to SVBRDFs, BTFs allow to capture local subsurface scattering
characteristics as well as mesoscopic effects such as interreflections, self-masking
or self-occlusions.

In contrast, when assuming homogeneous reflectance behavior, the BSSRDF
can be relaxed to the bidirectional subsurface scattering distribution function
(BSSDF)

ρBSSDF(θi, ϕi,xr − xi, θr, ϕr), (2.6)

which still is capable of modeling subsurface-scattering effects. Additionally
assuming non-subsurface scattering reflectance, the bidirectional reflectance distri-
bution function (BRDF)

ρBRDF(θi, ϕi, θr, ϕr) (2.7)

models the reflectance behavior under the remaining four parameters. Considering
BTFs or SVBRDFs and additionally assuming homogeneous surface reflectance
also leads to the BRDF model. Assuming non-anisotropic reflectance, isotropic
BRDF models represent a further simplified reflectance model. In addition, the
diffuse surface reflectance function represents a further four-dimensional repre-
sentation depending on the parameters θi, ϕi, θr and ϕr to model diffuse surfaces.
Further non-material dependent simplifications of BTFs, as illustrated in Figure 2.5,
are the restriction to a fixed lighting or a fixed view resulting in four-dimensional
surface light fields (SLFs)

ρSLF(x, θr, ϕr) (2.8)

or surface reflectance fields (SRFs)

ρSRF(x, θi, ϕi) (2.9)

respectively. In the case of diffuse reflectance, this can be further simplified to
two-dimensional texture maps or bump maps

ρTexture Map/Bump Map(x). (2.10)
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Figure 2.5: A hierarchy of reflectance functions according to [MMS+04]
and [DLG13].

This hierarchy of commonly used reflectance functions according to [MMS+04,
DLG13] is shown in Figure 2.5. Depending on the parameters of the respective
material model, the acquisition device has to be designed in a way that material
appearance can be captured under the involved parameter configurations. Fur-
ther details regarding the individual reflectance models and their acquisition are
discussed in [WK15a, WLGK16].

In the following, we will consider a few examples for appropriately representing
some materials. When considering a flat piece of specular metal, parametric BRDF
models might be a good choice which means that acquisition has to consider
material appearance depending on the incoming light direction and the outgoing
light direction. When considering a brushed metal, spatial variations in material
appearance have to be additionally taken into account which leads to the use
of SVBRDFs. In contrast, when considering materials such as leather samples
that exhibit spatially varying mesoscopic effects such as interreflections and self-
shadowing, parametric models are not sufficient to capture these effects. Instead, it
is a better choice to consider data-driven BTF models which are well-suited for the
representation of such effects.
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CHAPTER 3

A SUPER-RESOLUTION FRAMEWORK FOR

STRUCTURED LIGHT

In the scope of this chapter, we focus on 3D reconstruction of objects where the
surface reflectance behavior might vary from diffuse reflectance to a reflectance
behavior with both a diffuse and an additional specular component. For this sce-
nario, we present a novel multi-camera, multi-projector super-resolution framework
for structured light based 3D reconstruction which has successfully undergone
peer review (see [WSRK11]). This system has been developed in the context of
cultural heritage, where the focus is placed on completely automatic acquisition
procedures and an as-accurate-as-possible, photo-realistic depiction of the object
regarding both geometry and reflectance. This requires acquiring photos of the
objects from a huge number of different viewpoints and under several different
illumination conditions. For this reason, typical acquisition setups involve a rather
expensive equipment. In our acquisition device, we use a multitude of cameras
and projectors mounted on a hemispherical gantry above the object to be scanned.
This approach allows the reconstruction of an object without moving either the
object or the acquisition setup. Consequently, any registration of independent
measurements is avoided. However, this kind of setup imposes severe restrictions
on the type and placement of the projectors used to reconstruct the 3D geometry.
Our contribution is dedicated to overcoming the limited resolution of the individual
projectors which currently represent the limiting factor regarding the achievable
resolution in multi-camera, multi-projector systems. The geometry acquisition
pipeline described in the following sections has later been used as the prerequisite
for accurate reflectance acquisition in [SWRK11].

After providing the motivation for our technique and discussing the contributions
(see Section 3.1), we discuss the individual technical aspects required for an
accurate reconstruction. These aspects include the used structured light encoding
(see Section 3.2) as well as our approach to multi-projector super-resolution (see
Section 3.3), our iterative robust bundle adjustment technique used for a self-
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calibration of the acquisition device and the reconstruction of a point cloud (see
Section 3.4), and the technique applied to reconstruct a closed surface mesh (see
Section 3.5). This is followed by a description of the used acquisition device
(see Section 3.6) and a discussion of the results achieved with our technique (see
Section 3.7). Finally, Section 3.8 concludes this chapter with a short summary and
a discussion of limitations to be considered by further research.

3.1 Motivation

As discussed in literature and reviewed in Chapter 2, structured light based tech-
niques have been proven to be among the most accurate scanning techniques for dif-
fuse surfaces and surfaces with both a diffuse and a specular reflectance component
as long as the diffuse component is still sufficient to allow for a viewpoint-invariant
decoding of the patterns. The underlying principle relies on the projection of
illumination patterns with a unique decoding of the individual projector pixels onto
the object. The resulting pattern on the object surface is observed by one or several
cameras. Using such active illumination helps to establish active correspondences
which can be used to triangulate the respective 3D surface point. Such actively
generated correspondences allow a significantly more accurate reconstruction than
correspondences obtained using passive acquisition techniques such as multi-view
stereo techniques.

When using projector-camera systems for 3D reconstruction, one key observation
can be identified in the fact that the resolution of currently available projectors
is significantly lower than the one available in standard cameras. As a result, the
footprint obtained by projecting a unique projector pixel extent onto the object
surface usually covers several pixels in the camera which observes the scene. As
active illumination relies on the unique encoding and decoding of the per-pixel
projector illumination, this means that the resolution of the surface points obtained
during the reconstruction process is limited by the projector resolution. In order
to obtain a denser and more accurate reconstruction of the surface with its fine
surface details, it is therefore mandatory to overcome this limitation.

To cope with the lower resolution of the projectors in comparison to the cameras,
an additional mechanical system is used in [RSGS10] for lens-shifting, and highly
accurate reconstructions of object surfaces have been reached. However, since we
want to avoid the use of mechanical systems, we instead exploit the fact that we
have multiple projectors within our multi-camera setup to increase the projector
resolution. In particular, our approach to overcome the resolution limitations of the
individual projectors is based on a novel super-resolution scheme introduced in this
chapter. Sequentially illuminating the object using projectors at a sufficient number
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of different locations to cover the whole object surface with several structured
light patterns allows to exploit the overlap of the patterns of projectors at different
positions, which we observed for almost all of the surface points in our setup. We
will demonstrate that, combined with an iterated bundle adjustment, these improve-
ments increase the accuracy of the obtained point cloud significantly. In addition
to this super-resolution technique for multi-camera, multi-projector systems, we
also exploit using high dynamic range imaging to relax the assumptions regarding
the reflectance behavior of the objects to be scanned, and even complicated objects
exhibiting strong specularities can be scanned.

Employing structured light techniques within setups consisting of several projectors
and cameras has been proposed in some previous methods. In recent years, a self-
calibrating, multi-viewpoint approach to object acquisition, which is based on
structured light and photometric methods, has been proposed in [AX08, AX10].
The 3D acquisition is performed by using a single projector placed at several
positions or multiple projectors respectively as well as multiple cameras and by
exploiting the fact that digital projectors can be simultaneously used as either
active light sources or as virtual cameras. This is especially advantageous if only
a few cameras are available. However, in contrast to our approach, Aliaga et al.
[AX08, AX10] do not utilize the overlapping of different projected patterns on
the object surface. For the purpose of refining both the projector pose and the 3D
points, an iterative bundle-adjustment is applied in [AX08, AX10] in combination
with an outlier rejection. Similarly, we also use an iterative bundle adjustment
for the refinement of the calibration of our cameras but neglect the calibration
of the projectors, since there is a sufficient number of cameras for establishing
correspondences within the captured images.

In summary, the main contributions of this chapter are:

• a technique for the reconstruction of the full shape of an object in a single
measurement via a multi-view, multi-projector structured light approach,
eliminating the need for registering multiple measurements,

• a novel super-resolution scheme to overcome the limited projector resolution
by combining overlapping structured light patterns,

• an optimized simultaneous automatic calibration of all cameras and the
acquisition of the complete point cloud, using all available projector patterns,
by a robust bundle adjustment on the whole dataset, and

• the use of high dynamic range imaging to increase the robustness of the
reconstruction for objects with a more complex surface reflectance behavior.
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3.2 Structured Light Encoding

Focusing on static scenes, we use a temporal encoding where multiple patterns are
projected onto the object and the sequence of illumination values for a specific
point across all of the patterns is used as the corresponding codeword. Furthermore,
we only use binary patterns instead of gray-level or color patterns, which has the
advantage of being more robust to noise. This is a crucial issue with respect to
the acquisition of objects with complex reflectance behavior, and, as we are also
interested in unique codewords, we use an encoding based on Gray code patterns
[ISM84]. Gray code patterns enable a more robust decoding in comparison to
simple binary code patterns. For adjacent codewords, Gray codes differ in only
one bit. Since the decoding errors are most likely in the transition regions of
the projected patterns, the fact that there is only one transition between adjacent
codewords reduces the probability of errors. Furthermore, flips of these bits result
in only small deviations as the decoded value differs only by one from the correct
one. To further improve the robustness of Gray code decoding we employ an
approach proposed in [Tro95], i.e. to use the completely white and the completely
black pattern as well as the inverses of the previous patterns in order to avoid the
determination of surface albedos. This technique was also used in [SS03] and
[AX08]. Hence, the classification of whether a pixel is illuminated or not is carried
out via comparing whether the pixel appears brighter when using the normal pattern
or the inverse pattern.

3.3 Multi-Projector Super-Resolution

In order to increase the resolution of multi-camera, multi-projector structured light
systems, we directly exploit the information contained in the overlaps of different
pattern projections on the surface. Therefore, we have to consider a novel, modified
encoding to generate super-resolution codewords (see Section 3.3.1) and also the
respective decoding of these observed super-resolution codewords (see Section
3.3.2).

3.3.1 Super-Resolution Labeling

For the sets of projectors P , cameras C and Gray code patterns G, let I =
{Ic,p,g|(c, p, g) ∈ C × P × G} be the captured images. Thus, Ic,p,g ∈ I is an
image (with domain Ωc ⊂ R2) captured by camera c, illuminated by projector p
projecting pattern g.
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By combining the |G| different pattern images for each pair of camera c and
projector p, the Gray code can be decoded to labels l ∈ [0, . . . , 2|G|]. This defines
a function χc,p : Ωc → Lc,p, assigning a projector-dependent label l ∈ Lc,p to
every image point (x, y) ∈ Ωc. Here, Lc,p ⊂ [0, . . . , 2|G|] is the set of labels that
were actually decoded for camera c under illumination p. By inverting the labeling
function χc,p, we can identify the image regions Rc,p,l ⊂ Ωc, which have been
labeled with l.

The super-resolution labeling function is defined as

ξc : Ωc → Lc

(x, y) 7→ (χc,p1(x, y), . . . , χc,p|P|(x, y)) (3.1)

assigning to every image point (x, y) a projector-independent label

L = (L1, . . . , L|P|) ∈ Lc ⊂ Lc,1 × Lc,2 × . . .× Lc,|P| (3.2)

with Li = χc,pi(x, y). L can be understood as the tuple concatenating the labels of
the individual projectors. Analogical to the projector-dependent label, we can invert
ξ and get the image regions Rc,L ⊂ Ωc which have been labeled with L.

As shown in Figure 3.1, the region Rc,L is the intersection
⋂|P|
i=1Rc,pi,Li

, resulting
in a usually more precise localization in the image for the super-resolution labels
when compared to the original labels.

Figure 3.1: Super-resolution scheme for structured light: By combining the two
setsL1 (red) andL2 (green) of labels obtained from two independent projectors into
super-resolution labels L, much smaller regions on the surface can be identified
uniquely. For example, the highlighted blue region R(4,4) = R1,4 ∩R2,4 is much
smaller than both of the intersected regions.

To increase clarity and shorten the notation, we will dismiss the camera and
projector indices in the remainder of this chapter, unless they are needed. Please
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keep in mind that the super-resolution labels are always defined per camera and
the projector dependent labels per pair of camera and projector.

3.3.2 Robust Matching of Codewords

For a robust matching, we extend the codomain of the projector-dependent labeling
function χ to L′ = L ∪ {⊥}, including ⊥ to express undefined. The symbol ⊥ is
used for all image points (x, y) for which the label could not be decoded, either
because they were not lit by the projector due to occlusions by the geometry or
because they could not be classified reliably as shown in Figure 3.2.

 1 

 0 

 ? 

> 

< 

≈ 

1 

0 

ᴛ 

Figure 3.2: Illustration of the derivation of structured light encodings: If a pixel
value is significantly brighter under illumination with a certain stripe pattern than
the respective value under illumination by the corresponding inverse structured
light pattern (marked in green), the respective bit in the encoding is set to 1. In
contrast, when the pixel value is darker than its corresponding value observed
under illumination by the inverse pattern (marked in red), the bit in the encoding is
set to 0. If the values under the structured light pattern and its inverse are close to
each other, no reliable decision can be made for the respective bit in the decoding
(marked in blue) which we mark by using ⊥ in the encoding.

As a consequence, the super-resolution labels are extended as well to L′, with
the tuple L ∈ L′ containing ⊥ at entries where the label for the corresponding
projector could not be decoded. Please note that this will introduce a new inverse
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labeling function

ξ′−1 : L′ → Ω

L 7→ {(x, y) ∈ Ω|∀i ∈ [1, . . . , |P|] : Li = ⊥ ∨ Li = χpi(x, y)} (3.3)

for a super-resolution label L = (L1, L2, . . . , L|P|). This means that R′L is in fact
the intersection of the regions of all projections i for which a sub-label Li could
reliably be identified, ignoring the indeterminable region of ⊥ in projections with
undefined entries.

It might occur that a normal label l projected by projector pk, which was correctly
decoded in camera ci, was not reliably classified in camera cj . Therefore, all super-
resolution labels {(L1, L2, . . . , L|P|)|Lk = l} ⊂ L′ci of camera ci that contain l at
the kth index cannot be found in L′cj . However, if the labels in all other projections
were classified correctly in both cameras, we would still like to use this partial
match, providing us with a reasonably precise region

⋂
i 6=kRpi (see Figure 3.3 for

an example). Thus, we introduce a partial matching function PM
c , that will robustly

match any super-resolution label in any camera with all super-resolution labels
detected in camera c.

PM
c :

⋃
c′∈C

L′c′ → 2L′c

(L1, . . . , L|P|) 7→ {(M1, . . . ,M|P|) ∈ L′c| ∀i : Li = Mi ∨ Li = ⊥} (3.4)

Consider a super-resolution label L ∈ L′ that was incompletely identified in
camera cj and the matched set of super-resolution labels PM

ci
(L) in camera ci.

The region in ci corresponding to the region of L in cj is then determined by⋃
M∈PM

ci
(L) ξ

′−1(M). For a sketch we refer to Figure 3.3. Please note that even
though the position of a region belonging to a label is the actual information needed
in the multi-view-triangulation, its size also yields important information about the
accuracy, which will be used in the bundle adjustment (see Section 3.4) as well as
the surface reconstruction (Section 3.5). This fact is especially important in our
case, since we perform a triangulation with super-resolution labels of very different
sizes and therefore different accuracies.

3.4 Iterated Robust Bundle Adjustment

For the reconstruction of an accurate point cloud, the correct calibration of the
cameras is of utmost importance. Furthermore, in our setting this calibration
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Figure 3.3: Toy example for robust matching: The label 4 for projector 2 (green)
could not be reliably classified in camera c2 (right) and was substituted by⊥. Yet, a
partial matching for the query-super-resolution-label (4,⊥) (orange) in camera c1

will find PM
c1

((4,⊥)) = {(4, 1), (4, 2), (4, 3), (4, 4)} (blue) and a correspondence
between c1 and c2 on a coarser super-resolution level can still be established.
Please note that, even though only a small patch in the right image is labeled as
(4,⊥), the inverse of this label with uncertainty ξ−1((4,⊥)) is in fact the complete
orange region.

can afterwards also be used for the reflectance acquisition, as a good camera
calibration is also necessary there. Determining the calibration of a camera c,
i.e. the projection Πc which maps a point onto its image in the image plane Ωc,
from correspondences between 3D points X ∈ R3 and their known projected
positions xc ∈ Ωc is a well-studied problem. For the case of multiple cameras,
the method of Bundle Adjustment (BA) [TMHF00] is a widely established solu-
tion based on statistical optimization. The key idea is that the reprojection error
E =

∑
X̂∈X

∑
c∈CX̂

d(Π̂c(X̂), xc) of the 3D points in all cameras c ∈ C is mini-
mized with regard to a metric d by estimating an optimal projection (i.e. camera cal-
ibration) Π̂c for all cameras c ∈ C and a point cloud X = {X̂1, X̂2, . . . , X̂n}. Here,
CX denotes the set of cameras in which X was visible, i.e. the super-resolution
label LX ∈ L′ corresponding to this point on the object’s surface was identified.
This means that the projection of X has to lie within the region R′c,LX = ξ′−1

c (LX)
for each camera c ∈ CX . To quantify this knowledge, we define the center of mass
x̄ of R′c,LX as xc and utilize the Mahalanobis distance between xc and the pro-
jected point Π̂c(X̂) as the reprojection error metric d. We weight the Mahalanobis
distance with the covariance matrix

σij =

∫
x∈R′

c,LX

(xi − x̄i)(xj − x̄j) dx (3.5)

of the region.
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The original approach is only feasible for a relatively small set of very confident
correspondences, though. With Sparse Bundle Adjustment (SBA) [HZ04, LA09] a
faster solution is available, making the processing of larger sets of correspondences
possible.

However, the problem remains that (S)BA is not very tolerant with respect to
outliers, since existing algorithmic implementations are at risk of finding only local
minima. Similar to [AX08, AX10, SSS08], we employ a RANSAC strategy [FB81]
to sort out outliers beforehand and provide a good initial estimation of 3D points
and camera calibration matrices. For this, we use two separate RANSAC passes,
one to determine the initial 3D point cloud and one to provide an initialization for
the camera calibrations. First, each point X is computed by repeatedly drawing a
small subset C ⊆ CX of cameras randomly and checking its reprojection error E1

in all cameras CX . Cameras with errors below a certain threshold are considered
to be inliers. In a second pass, a robust initialization for the camera projections
Πc for all cameras c ∈ C is computed the same way by using a small number
of reconstructed points X ′ ⊆ Xc = {X|c ∈ CX} that were seen by camera c.
Once again, the inliers are determined by thresholding a reprojection error E2,
but this time for all the points in Xc. In both cases, the solution with most inliers
is regarded as a good initialization for SBA and recomputed using all inliers in
a final refinement step. Furthermore, for a robust computation, it is important
to remove outliers also during the computation of the SBA. We thus discard bad
correspondences with regard to E2.

After the SBA, improved camera calibration matrices are available. Thus, by
repeating the RANSAC process, a better outlier removal and with it a better
initialization for the SBA is possible. This will in turn result in a more precise
calibration. Thus, like in [AX08, AX10], we iterate this procedure until the
reprojection errors E converge.

Please note that our iterative approach requires a first (coarse) calibration of the
cameras. We will address this issue in Section 3.6.

3.5 Surface Reconstruction

Since for many applications a polygon mesh is a better suited representation
than a point cloud, we apply the Poisson Reconstruction introduced in [KBH06],
which generates closed surfaces. Furthermore, this method is able to robustly
handle remaining outliers, noise and holes which occur in regions not lit by any
projector. For the surface generation process, the Poisson Reconstruction requires
oriented point clouds, i.e. knowledge about the normals for every point. Thus,
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an approximation of these normals is typically computed, where the k-nearest
neighbors in space are considered and a quadric or plane surface is fitted. When
using this strategy in the presence of thin parts of the object, points from both
sides of the surface will be considered as neighbors, which results in an erroneous
estimation of the normals. Instead, we exploit the fact that points lit by the same
projector are usually not on different sides of thin object parts except for very
degenerated theoretical configurations, which allows for a robust estimation of the
normals.

Since our proposed super-resolution labeling approach leads to reconstructed points
with a considerable difference in accuracy, this should be taken into account during
the surface reconstruction. A confidence ellipsoid in R3 for every reconstructed
point can be computed by back-projecting the known covariances σij (see Equation
(3.5)) in the image domain for every region that was involved in the triangulation
[HZ04]. As the implementation proposed in [KBH06] only supports a single
confidence value per point, we suggest to project the ellipsoid onto the normal
direction to get a good estimate of the confidence of the points, although we did
not investigate this option in the scope of this work.

Alternatively, the more recent Floating Scale Surface Reconstruction technique
published in [FG14] might be applied instead of the Poisson Reconstruction. In
this method, the scale is considered for each 3D point that has been reconstructed
via triangulation. It might be possible to derive a scale parameter from the afore-
mentioned confidence parameter, which might be followed in the scope of further
investigations.

While we expect the reconstruction results to become more accurate based on such
modifications, the high-frequency noise inherited in triangulation-based methods
is likely to remain and, hence, fine surface details might still not be accurately
reconstructed but rather smoothed by the surface reconstruction technique. Instead,
we will focus on complementing the triangulation-based information obtained by
using our structured light system with information about the locally measured
surface normals in the following chapter. Such normal-based geometry acquisition
techniques typically succeed in accurately reproducing fine surface details but
suffer from a low-frequency drift which can be compensated by a combination of a
normal-based technique and a triangulation-based technique.

3.6 Acquisition Setup

For our experiments, we extended the multi-view setup described in [MBK05] by
placing projectors at several positions and using cameras with a higher resolution.
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(a) Camera hemisphere and sampleholder. (b) One projector on a tripod.

Figure 3.4: Our experimental setup.

This setup has originally been designed for the purpose of reflectance acquisition of
flat material samples and extended for the acquisition of photo-realistic 3D models
of objects by accurately capturing surface geometry in addition to reflectance
behavior. Within the proposed setup, 151 Canon PowerShot G9 cameras with a
resolution of 12 Megapixels are mounted uniformly distributed on a hemispherical
gantry with a diameter of approximately 1.3m (see Figure 3.4a). We simulated
the use of multiple projectors by placing one projector, which was mounted on a
tripod, at different positions (see Figure 3.4b) in the scope of the publication of
this approach in [WSRK11].

The number of projector placements |P| and used cameras |C| varies for the
different results presented. Please see Table 3.1. To acquire the objects from
all sides at once, the projector placement has to be chosen in such a way that
every point on the surface is lit at least once. A good configuration is to place
the projector at several azimuthal steps with a declination of 15◦, and use two
or three additional positions from about 70◦ declination if necessary. There are
certain constraints for placing the projectors. On the one hand, every point on
the surface should be illuminated by at least one projection (for the utilization of
the super-resolution technique at least two projections) and the patterns should be
as fine as possible. On the other hand, the object should not be occluded by the
projector in any camera. We therefore choose positions between the cameras from
where the object is illuminated. This requires a rather small projector to fit into the
spaces and a minimum distance of about 60cm. We employed an Acer C20 Pico
LED-Projector with a resolution of 848 × 480 pixels which results in |G| = 19
patterns, i.e. 2 · |G| = 38 patterns including the inverse patterns, being sufficient
to utilize the projector resolution completely. Meanwhile, the setup is equipped
with nine LG HS200G projectors (800× 600 pixels, LED-DLP, 200 lm) to avoid
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any manual effort during the acquisition. In more detail, six of these projectors are
placed at an inclination angle of θ ≈ 82.5◦ with an even spacing of ∆ϕ = 60◦ and
three projectors are located at θ ≈ 17◦ with ∆ϕ = 120◦.

As we are also interested in acquiring the geometry of objects with more complex
reflectance properties, we take HDR sequences and, hence, have to acquire several
exposure steps for every captured HDR image. The number of exposure steps N is
chosen according to the dynamic range of the material of the object surface which
is typically based on the judgement of the acquisition expert. However, this might
also be performed automatically as discussed in Chapter 9.

Altogether, we acquire a total number of |C|× |P|× 2 · |G|×N images. Due to the
massive parallelization, the system is able to capture 151 images simultaneously.
The complete acquisition time for the Cueball dataset (see Table 3.1) consisting of
151× 10× 38× 3 = 172,140 images was approximately 2 hours, including the
time for repositioning the projector.

During the reconstruction of the object, we find a precise camera calibration using
SBA (see Section 3.4). However, we do need a decent initial camera calibration.
For this, we use a coarse camera calibration computed for the multi-camera setup,
that is performed beforehand using a calibration target. Note that this step does
not need to be carried out for every measurement, but only when the setup is
changed.

3.7 Experimental Results

In order to evaluate our approach, we acquired scans of two objects. We demon-
strate the feasibility of our method with a challenging glossy metallic donkey statue.
To handle the specular highlights, several differently exposed images had to be
taken and combined to an HDR image. As illustrated in Figure 3.5, the structured
light pattern can be correctly observed in highlight regions for a rather short ex-
posure time, whereas the pattern cannot be reliably observed on the remaining
surface parts due to underexposure. In contrast, for longer exposure times the stripe
pattern can be clearly decoded in the previously underexposed regions, but not
reliably be observed in the highlight regions anymore due to overexposure. Please
see Figure 3.6 for the obtained reconstruction of the complete model. We also
acquired the donkey statue with a NextEngine laser scanner, which is a commercial
low cost acquisition system and widely used for acquiring 3D objects, particularly
in the field of cultural heritage. A comparison with the reconstruction obtained
with our technique is shown in Figure 3.7. Clearly, our method is also capable
of reconstructing the fine engravings on the forehead of the donkey which are

54



3.7. EXPERIMENTAL RESULTS

smaller than the finest projected patterns, where the laser scanner has insufficient
resolution. Since no sufficiently precise ground truth dataset is available for the
donkey figurine, it is not possible to determine the accuracy of the resulting re-
construction by measuring the distance to the ground truth. Nonetheless, to get a
rough estimate of the noise level, we compute the Hausdorff distance to the result
obtained after applying Poisson Reconstruction, which is a smooth approximation
of the real surface and obtain an accuracy of 144µm. More details are given in
Table 3.1.

(a) 125ms (b) 500ms (c) 2000ms (d) 4000ms

Figure 3.5: An HDR sequence of the same structured light pattern on the donkey
example. Obviously, there is a need to consider several exposure times: The lines
through the highlight, for example, are clearly visible in image (a). However, they
cannot be distinguished in image (d) due to overexposure. The same holds true
for underexposed parts. Note that there is no single exposure step that shows all
patterns on all parts of the surface.

Furthermore, we determine the precision of the reconstruction using a white billiard
cueball, which we consider to be a good reference object, almost resembling a
perfect sphere. For this purpose, we performed a least squares fit of a sphere to all
points that we manually identified as part of the cueball (in contrast to the ground
plane, on which the object was placed) and measured the distance of every point
in the reconstructed point cloud to the surface of this sphere. The accuracy of the
reconstructed point cloud consisting of 4,753,069 3D points can be seen in a RMS
of 23.3µm as mentioned in Table 3.1. In Table 3.2, we evaluate the improvement
over the iterations of the robust iterated SBA approach and compare the achievable
precision with super-resolution labels against projector-dependent labels.

To get an impression of the underlying principle, we refer to Figure 3.8. Here,
two sets of projector-dependent labels and the resulting set of super-resolution
labels obtained by combining them are shown. Obviously, the super-resolution
labels are much smaller and, thus, provide a better localization. To quantify this, in
Figure 3.9 the histogram of the label sizes is depicted. As expected, the number of
super-resolution labels is much higher and they are distributed in smaller regions.
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Figure 3.6: Comparison of the reconstruction results obtained with the con-
ventional Gray-code based structured light approach and the proposed super-
resolution approach: From left to right, there are visualizations of the point cloud
obtained using the conventional Gray-code based structured light approach, the
result after applying Poisson Reconstruction [KBH06] to this point cloud as well
as the point cloud created with the proposed super-resolution approach and the
respective result after applying Poisson Reconstruction [KBH06]. The point cloud
obtained with the proposed super-resolution approach is significantly denser and
allows a more accurate reconstruction of fine surface details. In the region of
the engraving on the forehead of the figurine, the resolution achieved with the
conventional structured light approach is about 204µm, while a resolution of about
60µm is achieved with the proposed super-resolution approach.

The minor difference in the distribution of the projector-dependent labels is due to
the placement of the projectors.

Furthermore, Figure 3.10 shows a direct comparison of a photo taken from a frontal
view with respect to the respective object and the corresponding reconstruction for
the donkey figurine and two further figurines.

3.8 Conclusions

In this chapter, we have presented a super-resolution approach based on structured
light to significantly improve the resolution of multi-projector structured light sys-
tems. By exploiting the placement of several projectors within the setup in order to
cover the whole object surface with light patterns, we utilized overlapping pattern
projections for uniquely encoding much smaller regions on the surface. Within our
experiments, we tested the performance of the proposed technique using several
objects with challenging reflectance behavior and demonstrated that the proposed
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(a) Laser scan. (b) Super-resolution. (c) Light pattern.

Figure 3.7: Comparison of the results obtained when applying the Poisson Re-
construction [KBH06] to two point clouds: (a) A laser scan performed with the
commercially available NextEngine Scanner and (b) a point cloud obtained by
our proposed super-resolution approach. Using five different projector positions,
we are able to reconstruct even fine surface details, which are smaller than the
finest projected patterns. For a comparison, see (c), which shows the finest vertical
pattern of the second projector.

technique is capable of a dense and accurate reconstruction. Our technique has
become one of the indispensable components in the subsequently published re-
flectance acquisition devices presented in [SWRK11, SSWK13, SSW+14] which
certainly belong to the most accurate devices that are currently available.

So far, we used a simple threshold for classifying the pixels into “illuminated” and
“not illuminated”. In future work, our structured light decoding might be extended
towards an even more robust classification for reflections such as the one proposed
in [XA09], which is based on separating the direct and global components as
proposed in [NKGR06]. Furthermore, our approach is still limited to the resolution
of the employed cameras as we currently only detect the stripe transitions on a
per-pixel level within the image. Hence, the overall quality of the reconstruction is
expected to be improved by also considering a subpixel accurate localization of the
transitions between neighboring stripe projections on the object surface, e.g. as it
has been applied in [Tro95]. As a consequence, the combination of both a subpixel
accurate detection of the stripe transitions and our proposed multi-projector super-
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resolution could be a promising avenue of future research.

However, one of the key observations obtained during the development of our
technique was the insight that triangulation-based reconstruction methods strongly
rely on accurately localized correspondences and an exact calibration of the setup
and suffer from noise if there are inaccuracies regarding these aspects. Therefore,
we instead focused on complementing the 3D acquisition technique presented in the
scope of this chapter with a reconstruction technique based on normal information
to further improve the reconstruction quality as described in Chapter 4.
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Table 3.1: Details for our test cases. The size of the donkey was measured in
the point cloud. For the size of the cueball, we used the manufacturer description.
The projector resolution was determined in images which were taken close to the
projector on a surface facing the camera. The image resolution was determined in
the topmost camera.

Donkey Cueball
|C| 150 51
|P| 5 10
|L′| 5,039,375 37,800,626
size 10× 4× 17cm3 �6.02cm
projector resolution ≈ 500µm ≈ 500µm
camera resolution ≈ 100µm ≈ 47µm
accuracy (RMS) ≈ 144µm 23.3µm
points 562,798 4,753,069

Table 3.2: Accuracy evaluated on the cueball dataset: Super-resolution labels
from 10 projectors and 51 cameras (RMS 51,. . . ), 10 projectors and 11 cam-
eras (RMS 11,. . . ) and the concatenation of individual point clouds of projector-
dependent labels with 51 cameras (RMS PDL,. . . ). 3 intermediate iterations of
the robust bundle adjustment have been performed in all cases. All numbers are
specified in µm and normalized to the manufacturer specification of the size of
the cueball (�6.02cm). RMS is the root-mean-square error measure, mean is the
average error and max denotes the maximum error. We need to stress that we did
not manually remove any outliers but only the ground plane. Please note that for
the iterations only a subset of points was used in the SBA.

Iteration RMS 51 mean 51 max 51 RMS 11 mean 11 max 11 RMS PDL mean PDL max PDL
init.: 127.7 88.1 11,573.1 167.2 117.7 11,880.6 119.7 55.4 12,135.4

iter. 1: 45.7 29.7 968.4 121.4 85.7 3,317.2 6,743.0 5,315.1 26,683.8
iter. 2: 25.6 18.5 778.0 101.7 77.9 472.4 5,724.2 4,472.5 23,337.8
iter. 3: 24.2 17.9 449.7 99.3 75.4 688.9 5,203.0 3,975.0 25,334.9

final: 23.3 17.5 2,856.6 96.7 74.2 463.1 126.0 92.9 5,240.6

59



CHAPTER 3. A SUPER-RESOLUTION FRAMEWORK FOR STRUCTURED LIGHT

(a) Projector 1. (b) Projector 2. (c) Overview.

(d) Labels 1. (e) Labels 2. (f) Super-resolution labels.

Figure 3.8: A super-resolution label example using two projectors on the topmost
camera of the cueball dataset. In the images (a) and (b), a 150× 150 pixels cutout
of the input configuration is shown which is also depicted in image (c) with the
finest horizontal pattern (one stripe is approximately 500µm wide) projected by
projector 1 and 2 respectively. The area of the cutout corresponds to a square of
about 7mm × 7mm. In the images (d) and (e), the decoded patterns for the single
projectors are shown. To facilitate the distinguishing of the labels, the color-palette
was limited to 34 colors and is repeated. The visualized labels are unique and do
not repeat themselves. In image (f), the super-resolution labels are shown that are
obtained by combining the two projectors.
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Figure 3.9: Example distribution of label sizes obtained on the full cueball
images from the example in Figure 3.8. The X-axis denotes the size of a region in
pixels (10-pixel bins) and the Y -axis denotes the number of labels whose regions
lie within that size. Our proposed super-resolution technique (red bars) creates
a considerably larger number of much smaller labels. In this case, the super-
resolution labels were constructed using only the two shown projectors. However,
using additional projectors will further decrease the size of the regions.

Figure 3.10: Reconstruction results for several objects.
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CHAPTER 4

FUSING STRUCTURED LIGHT CONSISTENCY AND

HELMHOLTZ NORMALS

Our acquisition technique based on a super-resolution scheme for multi-camera,
multi-projector structured light systems as introduced in the previous chapter is
capable of densely reconstructing the full 3D shape of objects in the range from
diffuse surface reflectance to specular surfaces with a sufficient diffuse component.
Similar to other techniques that are also based on the triangulation of point cor-
respondences, there might still be some visible noise in the reconstructed model
as a result of inaccurately localized correspondences and a non-ideal calibration.
Accordingly, there might still be a lack of accuracy in the reconstruction of even
finest surface details such as fine scratches or engravings which represents the
major limitation of the structured light based approaches.

In the scope of this chapter, we present a novel 3D reconstruction approach which
combines a structured light based consistency measure with dense normal informa-
tion obtained by exploiting the Helmholtz reciprocity principle and has successfully
undergone peer review (see [WRO+12]). This combination compensates for the in-
dividual limitations of techniques providing normal information, which are mainly
affected by low-frequency drift, and of those techniques providing positional in-
formation, which are often not well-suited for recovering fine details. In order to
obtain Helmholtz reciprocal samples, we employ a turntable-based setup. Due
to the reciprocity, the structured light directly provides the occlusion information
needed during the normal estimation for both the cameras and light sources. This
allows performing the reconstruction by solving one global variational problem
which integrates all available measurements simultaneously, over all cameras, light
source positions and turntable rotations. For this purpose, we employ an octree-
based continuous min-cut framework in order to alleviate metrification errors while
maintaining memory efficiency. The performance of our approach is evaluated
both on synthetic and real-world data where highly accurate reconstructions have
been achieved.
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After discussing the main contributions of our technique presented in the scope of
this chapter (see Section 4.1), we provide an overview of different approaches to
combine different cues for 3D reconstruction that have been presented in literature
(see Section 4.2). This is followed by a description of our variational framework
for combining a novel structured light based consistency measure with estimated
Helmholtz normals (see Section 4.4). After providing implementation details (see
Section 4.5) and details about the used acquisition setup (see Section 4.3) we show
results achieved with our proposed technique on different datasets (see Section 4.6)
and provide concluding comments (see Section 4.7).

4.1 Motivation

Due to their impressive reconstruction accuracies, laser scanners or structured light
systems still represent widespread standard solutions to acquire the 3D shape of
objects. As discussed in the previous chapter, the accuracy of structured light
systems is mainly limited by the resolution of the projectors. Investigations that
focus on overcoming this limitation include the techniques presented in [RSGS10]
and the previous chapter. While using lens-shifted structured light has been in-
vestigated in [RSGS10], our technique described in the previous chapter exploits
combining codeword information within a multi-camera and multi-projector set-
ting to overcome these limitations. However, a still remaining major drawback
of all methods relying on the triangulation of feature correspondences is that this
triangulation entails high-frequency noise in the final reconstruction. This noise
is mainly due to inaccurate feature localization or due to calibration inaccuracies.
Therefore, such 3D reconstructions based on triangulation either suffer from noise
or over-smoothing. As a result, fine details might not be captured. In contrast,
a reconstruction based on normal integration would be capable of preserving
high-frequency surface details but is prone to low-frequency drift due to the accu-
mulation of errors. Combinations of these two reconstruction principles have been
proposed to overcome the respective problems. In the following sections, we will
investigate the combination of information derived using a structured light system
with normal information estimated by utilizing the Helmholtz reciprocity principle.
Both techniques make only modest assumptions about surface reflectance. As
a result, they can be used to capture nearly all opaque objects; the only notable
exception being highly specular objects, such as mirrors. Therefore, our geometry
acquisition method described in the scope of this chapter competes with the meth-
ods designed for rough surfaces with diffuse or near diffuse surface reflectance and
glossy surfaces with both a diffuse component and a specular component. Addi-
tionally, the combination of structured light information with Helmholtz normal
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information is especially useful in the setting of photo-realistic reproduction, since
the images needed for reflectance reconstruction can also be used for the Helmholtz
normal estimation. The use of structured light directly provides information about
occlusion and shadowing that can be utilized in the Helmholtz stereopsis.

Most existing reciprocal setups, i.e. devices for which the view- and light-direction
can exactly be exchanged, rely on moveable cameras and light sources. Instead,
we employ a device with fixed light sources, cameras and projectors, using a
turntable as the only moving part. This simplifies calibration considerably and
reduces hardware complexity. By using a symmetric layout of the light sources,
such a setup can be utilized to obtain pairs of Helmholtz reciprocal samples (see
Figure 4.1).

Since the turntable rotates during the acquisition, the projected patterns move over
the surface of the object. Therefore, a direct triangulation of codewords can only
be performed per rotation. Instead of using all cameras that have seen one location
on the surface to compute a single consistent point, an independent triangulation is
performed for each rotation, resulting in multiple potentially contradicting solutions.
Regaining the fine surface details from the resulting noisy point cloud, however, is
a non-trivial task.

To overcome this limitation and obtain one globally consistent reconstruction in-
tegrating the information over all rotations, we use a variational approach which
combines a consistency term derived from our structured light technique with
Helmholtz normals. We solve the respective optimization problem via an octree-
based continuous min-cut framework, which is memory-efficient and alleviates
metrification errors. To compensate for the discretization artifacts from the min-cut,
a smooth signed distance function is then computed from the resulting binary label-
ing, again taking the reconstructed normals into account. Finally, the reconstruction
result is derived from this smooth signed distance.

In summary, the key contributions presented in this chapter are:

• a turntable-based symmetrical setup that allows to acquire reciprocal image
pairs.

• a structured light based consistency measure which allows to combine several
structured light measurements although the object was moved with respect
to the projector,

• a variational reconstruction technique combining positional information
obtained from a structured light technique and normals obtained from
Helmholtz reciprocity,

• a memory-efficient octree-based continuous min-cut solver, and
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• a final refinement step based on a smoothed signed distance function derived
from the min-cut and the Helmholtz normals.

4.2 Combinations of Complementary Cues for 3D
Reconstruction

In order to overcome the limitations of triangulation-based techniques, several in-
vestigations focus on fusing consistency or triangulated positional information with
complementary visual cues such as normal orientation. Many approaches employ
deformable models to guide an iterative surface evolution by optimizing a cost
function to enforce consistency. For this purpose, the surface is often represented
in a volumetric way [ES04, JCYS04] or by polygonal meshes [NRDR05, BCJS06,
EVC08, LTBEB10, AX10, DPB10, DP11, WLDW11]. These methods rely on a
good initialization and evolve the surface via a variational problem using gradient
flows. However, such surface evolution techniques can get stuck in local minima.
In addition, mesh-based techniques are not capable of handling topological changes
of the surface geometry such as self-intersecting regions in the mesh. This can be
overcome by hybrid approaches [YY11].

In contrast, global optimization strategies such as graph cuts [SP05, HK06, YAC06,
VHTC07, LBN08, HMJI09] or convex optimization [KPC10] overcome the local
minima problem by considering a cost function defined on the whole volume for
surface extraction. Due to their discrete nature, graph cut approaches necessitate
the use of high-resolution volumetric grids to obtain high-quality reconstructions.
In addition, a high grid-connectivity is desirable to reduce metrification errors.
Incorporating these aspects comes at the expense of a drastically increasing memory
consumption. This problem can be alleviated to some extent by employing adaptive
grid structures such as octrees. Convex optimization, in contrast, does not suffer
from metrification errors. Thus, shifting variational problems from the discrete
to the continuous domain has only recently gained attention in literature [CK11,
KKH+11, YBT10] although e.g. the continuous min-cut and max-flow formulation
has already been introduced in the 1980s [Str83, Str10]. Although these techniques
are more memory efficient, storing the data on a regular grid still imposes severe
resolution restrictions. In this chapter, we adapt the continuous min-cut technique
proposed in [YBT10] to an octree structure.

For a reliable reconstruction of fine surface details, the accuracy of the normals is
a crucial factor. However, obtaining accurate normals for the wider range of non-
Lambertian opaque objects is a challenging task. Therefore, several techniques
rely on simplifying assumptions such as either Lambertian or purely specular
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surface reflectance, which severely limits the range of objects that can be acquired.
In contrast, obtaining accurate normals for opaque objects has been investigated
by exploiting the duality between cameras and light sources via the Helmholtz
reciprocity [ZBK02], which requires an accurate co-location of the cameras and
the light sources. The only assumption is that the surface materials in the scene
have a reciprocal bi-directional reflectance distribution function (BRDF). Recently,
this principle has also been used in a multi-view setting in [DPB10].

In our technique, we use the combination of structured light consistency informa-
tion and Helmholtz normal information. As will be shown later in Section 4.4,
these complementary cues can efficiently be combined in a variational framework
based on a continuous min-cut formulation to significantly improve the recon-
struction accuracy in comparison to purely triangulation-based techniques (see
Section 4.6).

4.3 Acquisition Setup

Our measurement device is designed to allow the acquisition of images from
varying view-light-conditions where either structured light patterns are projected
or LED light sources are used to illuminate the object. Furthermore, the setup
explicitly allows the acquisition of reciprocal image pairs. Setups with similar
functionality have been addressed in several publications (e.g. [HLZ10, SWRK11])
for the acquisition of 3D surfaces with reflectance information. In these works,
however, the Helmholtz principle was not utilized.

In our setup, depicted in Figure 4.1, 11 cameras (SVS Vistek SVCam CF 4022COGE
industrial video cameras with a resolution of 2048 × 2048 pixels) are mounted
on a vertical arc and oriented towards a turntable. In order to acquire positional
information of the object shape, 4 LG HS200G projectors (LED-DLP, 200lm) with
a resolution of 800× 600 pixels are installed in the vicinity of the cameras. During
the measurement process, these are used to project Gray code patterns onto the
object surface. 198 LED lights are additionally distributed over a hemispherical
gantry. Care has been taken to place these LEDs in a symmetrical manner with
respect to the turntable axis and the cameras, so that we can obtain reciprocal
image pairs by rotating the turntable (as illustrated in Figure 4.1).

The geometric calibration of cameras and projectors (pinhole camera model in-
cluding distortion) is obtained via a structured light based bundle adjustment (see
Chapter 3). In order to estimate the turntable axis, a reference calibration target
with easy-to-detect features is placed onto the turntable and the features are tracked.
In addition, light source positions are estimated using four mirroring spheres which
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can be rotated by the turntable. Highlights on the spheres are detected under illu-
mination by the individual LEDs and the rays which are reflected from the spheres
are triangulated. The setup is also fully radiometrically calibrated via standard
reflectors for the cameras and LED light sources in order to be able to exploit
the Helmholtz reciprocity. This requires that the image pair measurements are
conducted in high dynamic range (HDR). In addition, we also use HDR imaging
for the structured light to facilitate robust pattern decoding (see Chapter 3).

With this setup, we acquire a number of images of an object. For each view-
and rotation-configuration, the data consists of radiometrically corrected color
values under several illuminations and the per-pixel codewords decoded from the
structured light projections.

4.4 Variational Formulation

We formulate the reconstruction of the object surface δV as a variational problem.
The formulation depends on a vector field of Helmholtz normals H and three
scalar fields defined on the continuous volume R3: the consistency measure c, the
outside count o and the visibility count v. We use c(x) to denote the number of
camera-projector consistent codewords detected at x ∈ R3, o(x) for the number
of cases in which structured light triangulation has determined x to be outside of
the object and v(x) for the total number of configurations in which x was visible
from the camera. From these scalar fields, we derive visibility-normalized versions
ĉ = c

v
and ô = o

v
. The resulting consistency-weighted vector field cH has a large

magnitude in the vicinity of the surface, is aligned perpendicularly to the surface,
and diminishes in a greater distance. To find the object interior V ⊂ R3, we seek
to optimize the following problem

min
V
E(V ) = −λ1

∫
δV

〈cH,n〉 dA︸ ︷︷ ︸
E1

+λ2

∫
V

ô dV︸ ︷︷ ︸
E2

+λ3

∫
δV

(α− ĉ) dA︸ ︷︷ ︸
E3

, (4.1)

where λ1, λ2 and λ3 are relative weights of the individual terms and α > 1 denotes
a constant determining the minimum regularization strength within a completely
consistent region. The first termE1 considers the flux of the vector field cH through
the object surface. This term is minimized by a surface that is perpendicular to
the reconstructed Helmholtz normals H, i.e. for the same orientation of the local
surface normals n and the Helmholtz normals H, and in regions with a high
consistency c. The second term E2 is used as an outside constraint to penalize
regions of large values ô. This prevents the algorithm from short-cutting through
concavities. The last term E3 represents a regularization term and enforces a
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Rotation 0 Rotation 1 

global 
coordinate 
system 

Figure 4.1: The reciprocal measurement setup. Top: one quarter of the light-
dome is slid open to provide a better view on the inside. Bottom: Illustration of
symmetrical light setup. The images at the bottom illustrate the actual rotation
of the object on the turntable in the measurement setup. The upper images are
shown in the object coordinate system and demonstrate how this rotation leads to
reciprocal image pairs.
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minimal surface. This penalty is weighted with the consistency ĉ obtained from
the structured light.

Both the structured light consistency and the technique used to estimate Helmholtz
normals will be described in the following subsections.

4.4.1 Structured Light Consistency

For each point x ∈ R3 and all combinations (i, j, k) of rotations, cameras and
projectors, we perform an independent classification. Each time, we determine
whether the point is consistent, lies before or behind the surface seen in the
respective pixel in the camera or cannot be reliably classified at all (see Figure 4.2).
We consider a point as consistent if the codeword decoded in the camera image
j agrees with the codeword cast by the projector k. This can easily be checked
by projecting the point into both the camera and the projector and comparing the
codewords. All points meeting this criterion form the consistency volume depicted
in green hatching in Figure 4.2. When the point does not lie within this region,
we classify it according to its position along the ray rc from the camera. It can
either lie in front of the intersection of rc with the surface xs, and thus outside of
the object, or behind the intersection, in which case this sample does not provide
any information at all. In practice, we distinguish these cases by triangulating the
position xs. This is possible since we can determine the projector ray rp from
the codeword which lies at the projection of x into the camera image. In order
to incorporate the inaccuracy of triangulation, we consider points that are not
consistent but still lie closer to xs than a user-selected threshold δ as unreliable.
In case the triangulation fails completely, since rc and rp do not intersect or no
codeword was found in the camera image, the sample combination is discarded for
x.

After performing this classification for every combination (i, j, k), we count the
number of consistent combinations c(x), combinations in which the point was
determined to lie in front of the surface o(x), and the number of unreliable com-
binations u(x). We then set the visibility to the number of samples that were not
discarded (v = c + o + u) and derive the normalized consistency and outside
probabilities ĉ and ô.

4.4.2 Helmholtz Normal Estimation

At each point, the corresponding normal information is estimated via the Helmholtz
principle [ZBK02]. This principle is based on the reciprocity of the BRDF, i.e.
ρ(v, l) = ρ(l,v), and can be utilized wherever several image pairs are available in
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outside  

unreliable 

consistent 

unreliable 

occluded 

Figure 4.2: Structured light consistency terminology illustration: The cones
through the decoded codeword in the camera image and the known source-pixel
in the projector plane intersect to form a consistency volume. The object surface
intersects this volume. All positions x along the viewing ray rc are classified as
consistent, unreliable, being in front of or behind the surface.

which the position of the light source and the camera have been exactly exchanged.
Instead of actually moving the light source and camera, these image pairs can also
be acquired by rotating the object and using two light sources, mounted symmetri-
cally around the camera (see Figure 4.1). Unfortunately, accurately achieving this
symmetry in a setup is difficult for practical reasons. For example, the emitter of
the light source and the projective center of the camera are difficult to align. In a
larger setup, there are also physical restrictions for the available mounting positions
due to the size of the components and the used gantry configuration. Together,
these restrictions might result in errors of a few degrees.

For this reason, we relax the assumption of perfect Helmholtz stereopsis and
instead assume that the BRDF is locally smooth enough to allow for barycentric
interpolation between three light samples. Therefore, highly specular materials
cannot be handled with this approach and would require the development of
alternative schemes. We first compute a spherical Delaunay triangulation of the
set of available light source directions. Given an (idealized) pair of reciprocal
camera/light-positions y and y′, we obtain the two corresponding directions for
each point x as d and d′ and find the respective spherical triangles. These provide
us with barycentric interpolation weights αi, α′i and light directions li, l

′
i with

i ∈ {1, 2, 3} in such a way that

ρ(d,d′) ≈
3∑
i=1

α′iρ(d, l′i) (4.2)
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and

ρ(d′,d) ≈
3∑
i=1

αiρ(d′, li). (4.3)

For each of these BRDF samples, we now have actual radiance measurements Ii
and I ′i available. We assume, that these measurements have already been radio-
metrically corrected to compensate for the light fall-off at the point x by using the
calibration of the measurement setup. Hence, we have

ρ(d, l′i) =
Ii
〈n, l′i〉

(4.4)

and
ρ(d′, li) =

I ′i
〈n, li〉

. (4.5)

Since we assume from the Helmholtz reciprocity that ρ(d,d′) = ρ(d′,d), we can
estimate the normal by solving the following optimization problem:

min
n
En(n) =

1∑N
j=1 w

(j)(n)

·
N∑
j=1

w(j)(n)

∥∥∥∥∥
3∑
i=1

α
′(j)
i

I
(j)
i

〈n, l′(j)i 〉
−

3∑
i=1

α
(j)
i

I
′(j)
i

〈n, l(j)i 〉

∥∥∥∥∥
2

(4.6)

The weight terms
w(j)(n) = (〈n,d(j)〉〈n,d′(j)〉)2 (4.7)

are included to reduce the relative importance of samples at grazing angles as these
measurements are less accurate and the division through the small cosine term
would further increase these errors. If either of the two scalar products becomes
smaller than a threshold, we set w(j)(n) = 0. Only samples which were classified
as consistent by the structured light computation are included in the estimation to
avoid the influence of occlusion and shadowing. We solve the resulting non-linear
optimization problem with a Levenberg-Marquardt optimizer [Lev44] using the
SVD approach proposed in [ZBK02] as initialization.

4.5 Implementation Details

Storing all values needed for the reconstruction in a regular grid would be pro-
hibitively expensive with regard to memory consumption and computational de-
mands, preventing reconstructions at high levels of detail. Therefore, we employ
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an octree-based data structure that adapts the resolution to the shape of the object.
For this, we use an iterative algorithm which successively refines the octree based
on the previous reconstruction.

Structured Light Based Octree Initialization: Starting with a tree at an initial
coarse resolution, we successively refine cells as long as a common structured
light codeword appears in a sufficiently large number of the re-projected footprints
of the cell. When the surface runs through the cell, the same codeword should
lie within the footprints in a large number of the images. In contrast, the number
of coincidentally identical codewords decreases with the size of the cell. The
refinement continues up to a maximum initial octree depth.

Octree Update: The consistency values ô and ĉ and the Helmholtz normals H
are all evaluated and stored at the corners of each octree cell. Consequently, the
computation of these values is only necessary for the corners newly added by the
subdivision process. All previously existing corners in the tree remain unchanged
and hence do not require being updated.

Continuous Min-Cut: Having the consistency values and the normals in the
volume of interest, we seek to find a globally optimal min-cut that partitions the
volume into inside and outside. Using the Gauss-Ostrogradsky theorem∫

δV

〈cH,n〉 dA =

∫
V

div(cH) dV, (4.8)

we can represent the term E1 in Functional (4.1) as an integral over the volume.
The total energy can then be directly mapped onto the continuous min-cut func-
tional

min
λ
D(λ) =

∫
Ω

(1− λ)Cs + λCt + C|∇λ| dx (4.9)

given in [YBT10]. For this, we set

C = ĉ (4.10)
Cs = max(0, div(cH)− ô) (4.11)
Ct = max(0,− div(cH) + ô). (4.12)

To obtain the desired labeling λ of the volume, we are able to apply the continuous
max-flow algorithm proposed in [YBT10] due to the duality between max-flow
and min-cut.

In contrast to [YBT10], in which a dense 3D grid was employed, we perform
the max-flow computation directly on the proposed octree structure. For this, we
compute C, Cs and Ct for each of the cells. To obtain the divergence within the
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cell, we compute samples of cH for each of the cell’s facets by averaging the
corresponding values stored at the surrounding corners. Weights based on the
Helmholtz normal error En (see Equation (4.6)) are employed to decrease the
influence of unreliably estimated normals. These samples of the vector field are
then used to approximate the flow through each of the facets and, consequently,
the average divergence within the cell via the divergence theorem. We also weight
these divergences with the average reliability of the Helmholtz normal estimation
to avoid large divergences in regions with unreliable normals.

Once the surface has been computed, all octree cells with a distance to the recon-
structed surface smaller than twice the cell’s edge length are refined to adaptively
increase the octree resolution near the surface. Furthermore, the maximum allowed
octree level is increased in each iteration to successively refine the reconstruc-
tion.

Smooth Surface Reconstruction: Especially in regions where the divergence
term dominates the min-cut reconstruction, the isosurfaces of the resulting continu-
ous labeling are not smooth. To infer a smooth final surface, we compute a signed
distance function f . We constrain this function to lie within a band of one octree
cell around the reconstructed isosurface. To incorporate the normal information
obtained via Helmholtz stereopsis, we search for a surface corresponding to the
vector field H that is as smooth as possible. This can be achieved by using an
energy function similar to the one proposed in [CT11]. We utilize the same normal
consistency and smoothness terms. However, since we do not have a point cloud as
input, we remove the data term which penalizes deviations from the points. Instead,
we use hard constraints which enforce the implicit function f to be negative inside
the object and positive on the outside and perform the optimization only within the
narrow band. This results in the following optimization problem:

min
f

µ0

N∑
i=1

wi‖∇f(xi)− ni‖2 + µ1
1

|V |

∫
V

‖Hf(x)‖2dx,

s.t.
f(x) < −ε for all x at the inner border of the band
f(x) > ε for all x at the outer border of the band

(4.13)

where the weights wi are used to consider the normal estimation error, H represents
the Hessian matrix, and V denotes the volume of the involved band. This is a
positive definite quadratic optimization problem with linear inequality constraints.
We employ an active set block pivoting method [Adl00] using a conjugate gradient
solver with a limited memory incomplete Cholesky factorization [LM99b] as pre-
conditioner to take advantage of the sparsity of the problem. The regularization
term utilized in the SSD penalizes curvature. In contrast, the min-cut optimization
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employs a minimum surface regularization. It is not trivial to use the same regu-
larization in both cases due to the fact that two different optimization techniques
are used. However, as the signed distance function is restricted to a narrow band
around the min-cut solution, a strong deviation of the smooth signed distance
result from the min-cut solution is prevented. The final step in our reconstruction
consists of converting the refined implicit function into a mesh. This is achieved by
applying the isosurface extraction on octree grids presented in [KKDH07].

4.6 Experimental Results

We evaluate our technique both on a synthetic reference dataset as well as real
world examples. All test cases shown, including the synthetic ones, were created for
15◦ steps of the turntable rotation and contain for each rotation a full measurement
from our setup with 11 cameras, 4 projectors, and 198 LED light sources.

In Figure 4.3, we show our results on the synthetic test dataset. For this experi-
ment, we rendered images under a glossy reciprocal Phong BRDF and simulated
projector-codeword images of the Lucy mesh [TSDSR]. A comparison with a
purely structured light based reconstruction exploiting projector super-resolution
[WSRK11] is shown. This technique first reconstructs a point cloud and then uti-
lizes Poisson surface reconstruction [KBH06] to obtain a mesh. The reconstruction
obtained with the technique introduced in the scope of this chapter remains below
a deviation of one octree cell from the true surface for almost the complete surface.
In comparison, the reconstruction based on the technique presented in Chapter 3
shows larger errors in the concave regions of the figurine that are only visible in a
few cameras and not accurately reconstructed via the Poisson reconstruction.

In Figure 4.4, we show a reconstruction of a real-world brass figurine. This
demonstrates that our approach presented in this chapter can cope with glossy ma-
terials and reconstruct even fine surface details, which are lost in the reconstruction
obtained with a high-precision line laser scanner and the structured light reconstruc-
tion following our technique presented in Chapter 3 due to noise in the triangulated
points. Figure 4.5 illustrates that even very small details far below the resolution of
the projector patterns such as the engraved text can be reconstructed.

All reconstructions were performed on a level 10 octree (10243 nodes on the finest
level). Using a parallelized C++ implementation, the computation of the Lucy
dataset took about 8 hours on a computer with two Intel Xeon E5620 processors
and 24GB of RAM. However, depending on the octree occupancy and the selected
smoothing strength, timings might vary from case to case.
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Figure 4.3: Comparison on synthetically generated input data: The technique
presented in this chapter preserves fine details, e.g. on the wings or the garment,
and also reconstructs the concave regions, which are otherwise lost during the
Poisson reconstruction step in the technique presented in Chapter 3. The plots
show the Hausdorff distance to the reference mesh, normalized to the size of an
octree cell. Note that our reconstruction remains within an error of about one
octree cell in almost all places.

photograph Weinmann et al. 2011 laser scan Weinmann et al. 2012 
(Chapter 3) (Chapter 4) 

Figure 4.4: Comparison of results on a glossy brass figurine: The laser scan
was created with a high-precision line laser scanner mounted on a measuring
arm with a total accuracy of about 60µm. The reconstruction using the technique
presented in the scope of this chapter shows considerably more fine surface details
in comparison to both the reconstruction via laser scanning and the reconstruction
using our triangulation-based technique presented in Chapter 3.
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Figure 4.5: A detail view of a toy horse. The first image is taken from the
input data of the Helmholtz normal estimation and illustrates the resolution of
the cameras. The second image shows one of the structured light images overlaid
with the decoded codewords and demonstrates the resolution of the projector. The
last two pictures compare the reconstruction results obtained using the method
proposed in Chapter 3 (published in [WSRK11]) (left) and the method described in
this chapter (published in [WRO+12]) (right). The reconstructed writing exhibits
a depth of approximately 150µm.

4.7 Conclusions

The method presented in the scope of this chapter is based on the combination of
structured light scanning with Helmholtz normal estimation and has been demon-
strated to allow for the reconstruction of high-quality 3D models, faithfully repre-
senting even fine surface details. By applying a variational approach, we formulate
the 3D reconstruction as one combined optimization problem over all available
input data. In particular, the additionally used normal information represents a
crucial prerequisite to overcome the problem of triangulation-based approaches
which suffer from noise induced by e.g. inaccurately localized correspondences
and inaccuracies in calibration and are therefore limited with respect to the recon-
struction of fine surface structures. However, the use of Helmholtz normals limits
the range of materials that can reliably be reconstructed to the class of opaque
materials in comparison to our triangulation-based multi-camera, multi-projector
super-resolution framework for structured light proposed in Chapter 3. The latter
method allows an accurate reconstruction for the wider range of diffuse to even
highly specular materials as long as a sufficient diffuse component is present in the
reflectance behavior.

Particularly for very specular materials, the results obtained with the method de-
scribed in this chapter could be further improved by adding outlier robust statistics
to the Helmholtz normal estimation. For very challenging cases, these could also be
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complemented with alternative normal estimation techniques such as shape-from-
specularity techniques, as e.g. investigated in the following chapter, to handle an
even wider range of materials. All the normals obtained by applying the different
methods could e.g. be combined per octree corner and, depending on a certain
consistency measure, the most appropriate normals with respect to the respective
surface material might be selected. We will further discuss this aspect in Part IV.
Further improvements might be achieved when integrating additional consistency
terms into the optimization, such as color consistency.

Finally, the possibility of performing reconstructions for large objects at high
resolutions is currently limited by the time needed for the graph-cut and normal
computations. Faster computations could probably be achieved using GPU imple-
mentations. However, this will require techniques to split the problem into smaller
meaningful subproblems, due to the limited memory of GPUs.
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CHAPTER 5

3D RECONSTRUCTION OF MIRRORING OBJECTS

In the scope of this chapter, we complement our investigations in Chapter 3 and
Chapter 4 by focusing on 3D shape acquisition for mirroring objects. In particular,
we present a novel, robust multi-view normal field integration technique that
allows the reconstruction of the full 3D shape of mirroring objects. We employ a
turntable-based setup with several cameras and displays. The latter ones are used to
display illumination patterns which are reflected by the object surface. The pattern
information observed in the cameras allows the calculation of individual volumetric
normal fields for each combination of camera, display and turntable angle. As the
pattern information might be blurred depending on the surface curvature or due
to non-perfect mirroring surface characteristics, we locally adapt the decoding to
the finest still resolvable pattern resolution. In complex real-world scenarios, the
normal fields contain regions without observations due to occlusions and outliers
due to interreflections and noise. Therefore, a robust reconstruction using only
normal information is challenging. Via a non-parametric clustering of normal
hypotheses derived for each point in the scene, we obtain both the most likely
local surface normal and a local surface consistency estimate. This information is
utilized in an iterative min-cut based variational approach to reconstruct the surface
geometry. The developed technique allows highly accurate 3D reconstructions
of mirroring objects both for synthetic data and real-world data. The method
presented in this chapter has successfully undergone peer review (see [WORK13])
and, to the best of our knowledge, currently still represents the state-of-the-art
technique regarding the reconstruction of the full 3D shape of mirroring objects
with a more complex surface geometry.

After a discussion of the limitations of previously published techniques and an
overview of the contributions presented in this chapter (see Section 5.1), we
formulate the task of reconstructing mirroring objects in terms of a variational
framework (see Section 5.2). This is followed by a description of our acquisition
setup (see Section 5.3) and our acquisition approach (see Section 5.4). Finally, we
evaluate our method based on several experiments (see Section 5.5) and provide
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respective conclusions (see Section 5.6).

5.1 Motivation

While a huge number of 3D acquisition techniques has been developed so far,
today’s challenges can be found when considering surfaces which exhibit a com-
plex surface reflectance behavior such as mirroring objects as considered in this
chapter. For such objects, most traditional techniques, such as laser scanners,
structured light or multi-view stereo, are not applicable. Instead, the problem of
reconstructing mirroring surfaces has been approached in various different ways as
already discussed in detail in Section 2.3.3.

Under the assumption of a perfectly mirroring surface, the appearance of a surface
point only depends on the surrounding environment, the viewing angle and the
local surface normal. By controlling the environment, it is directly possible to
estimate normal information (see e.g. [SWN88, TLGS05, CGS06, FCM+08]).
An alternative is to rotate the object and to track the optical flow (e.g. [RB06,
AVBSZ07, SVTA10]).

Several approaches such as the ones in [CGS06, FCM+08] use these normals to
perform a single-view normal field integration and are thus limited to partial 2.5D
reconstructions. Other approaches rely on deriving a normal consistency measure
and performing a multi-view reconstruction (e.g. [BS03, NWR08]). However, nor-
mal consistency alone is not suitable to reconstruct fine surface details. Therefore, a
final refinement step is performed in [NWR08] to combine the geometry estimated
from the normal consistency with the observed surface normals. However, none
of the mentioned approaches has shown high-quality reconstructions for complex
geometries in the presence of occlusions and interreflections.

To address this problem, we exploit the fact that outliers due to occlusions or
interreflections are not consistent for different measurements taken under varying
configurations of viewpoint and light source position. Inspired by the multi-view
normal field integration approach presented in [CLL07] but utilizing a numeri-
cal scheme to obtain a globally consistent surface reconstruction similar to our
approach described in Chapter 4, we formulate the problem in terms of an optimiza-
tion which combines both a local surface consistency measure and the observed
normal information. We determine these quantities in an outlier-robust way via
mean-shift clustering [Che95] of the individual local normal hypotheses which
result from different configurations of viewpoint and illumination. This makes our
approach capable of handling occlusions. To acquire the full shape of the consid-
ered object, the utilized setup comprises a turntable in combination with eleven
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cameras and three screens that display structured light patterns which are reflected
by the object surface. Our technique produces high-quality reconstructions of
the full 3D shape of an object not only on synthetic but also on real-world data
(see Figure 5.1). In contrast to the previously presented multi-view normal field
integration approaches [CLL07, Dai09], which only allow reliable reconstructions
for synthetic data, our method only requires normal information and does not
rely on using additional silhouette information, which is difficult to determine for
specular objects.

Figure 5.1: Bunny figurine and reconstructed model.

In summary, the key contributions of our technique presented in the scope of this
chapter include:

• a system that allows the acquisition of the full 3D shape of mirroring objects
based on multi-view normal field integration, and

• a novel clustering-based scheme to integrate different volumetric normal
fields which is robust in the presence of outliers and noise and makes accurate
3D reconstructions possible on real-world data.

5.2 Problem Statement

Given a set of κc calibrated cameras which are positioned to observe a mirroring
object from different viewpoints and a set of κs screens, our goal is to reconstruct
the object surface δV of an object with the volume V by utilizing only normal
information recovered for the individual views. Apart from a smoothness prior,
we do not incorporate any prior knowledge about the object geometry such as
the assumption of rather flat surfaces [CGS06, FCM+08] or an initial visual hull
reconstruction [CLL07]. Furthermore, our approach should consider the possibility
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of self-occlusions of the object geometry. Due to the complexity of real-world
scenarios, we also have to design our reconstruction technique to be robust to noise.
In addition, violations of the assumed reflectance model need to be handled to
some degree as well as incomplete normal fields, which occur when no normal
information can be derived for certain parts of the object surface. For this reason,
we formulate the surface reconstruction as a variational energy minimization
problem similar to [CLL07] according to

min
V

{
−λ1

∫
δV

〈cN,n〉 dA+ λ2

∫
δV

α dA

}
, (5.1)

where λ1 and λ2 denote weighting coefficients, c represents a scalar field of surface
consistency and the consistency-scaled vector field cN contains information about
both the local probability of surface presence and the local normal information
for the points in the volume and α represents a regularization parameter. The first
term in Functional (5.1) is minimized for high consistency values and a surface
which is perpendicular to the observed normals N. The local normals of the
estimated surface are denoted with n. The second part of the functional represents
a regularization term which enforces a minimal surface area to avoid overfitting
by increasing the cost for oscillating surfaces. Similar to our technique presented
in Chapter 4, the global optimization of this functional can be mapped to the
optimization of the continuous min-cut functional [YBT10]

min
λ

{∫
Ω

(1− λ)Cs + λCt + C |∇λ| dV
}

(5.2)

via specifying

C = λ2 α (5.3)
Cs = λ1 max {0, div(cN)} (5.4)
Ct = λ1 max {0,− div(cN)} . (5.5)

We choose this formulation as it provides efficiency concerning memory consump-
tion and alleviates metrification errors.

After describing the utilized setup in the following section, we describe the tech-
nique to acquire and integrate the normal information (see Section 5.4).

5.3 Acquisition System and Calibration

For the acquisition, we use a turntable-based setup as illustrated in Figure 5.2,
where eleven cameras with a resolution of 2,048× 2,048 pixels are positioned on
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Figure 5.2: Sketch of the utilized setup: The screens successively display the series
of patterns for each rotation of the turntable. The reflected pattern on the object
surface is observed by the cameras. For illustration purposes, only three of the
eleven employed cameras are drawn.

a vertical arc. The calibration of the cameras and the turntable axis is performed
by using a rotating three-dimensional calibration target with robustly detectable
markers as already used for the calibration of the setup used in Chapter 4 and
explained in detail in [SSW+14]. Similar to e.g. [FCM+08, NWR08], we use a
monitor-based shape-from-specularity approach to simulate a dense illumination
area. Two static displays with resolutions of 2,048×1,152 pixels and 2,560×1,600
pixels are placed close to the objects to display patterns. Gray code patterns and
their inverses are used for the unique identification of the reflection of each screen
pixel on the mirroring surface with a small number of acquired images. In order to
illuminate the object surface as completely as possible, we place the object onto
the display of an Asus TF300T-1E031A tablet with a resolution of 1,280 × 800
pixels, which is on top of the turntable and also used to display patterns. Both
the monitor displays and the tablet display need to be chosen to provide a good
coverage of the sphere of possible reflection directions. Additionally, we identified
that it is important that the tablet is stable enough to support the object weight
when placing the object on it, i.e. tablets with hard glass surfaces are more suitable.
In turn, this results in interreflections which have to be taken into account during
the reconstruction.
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To calibrate the screen position and the position of the tablet display, we use the
decoded pattern information observed in the images of the involved cameras and
perform an estimation of the display pixel positions xl via triangulation so that
the resulting point cloud represents (a part of) the display. From the decoded bits
for each of the m points in the point cloud, it is possible to uniquely determine its
offset ul = [ul, vl]

T from the origin o of the display frame which we consider to
be at the upper-left. Using this information, we can derive the coordinate frame
of the screen consisting of the origin o and the spanning vectors a (parallel to the
display width) and b (parallel to the display height) via optimizing

Q =
m∑
l=1

(xl − (o + ul a + vl b))2. (5.6)

The resulting linear system is solved using least squares minimization. Thus, given
the screen calibration, we can directly determine the 3D location of a pixel on the
screen by considering its bit sequence.

For the calibration of the screens, it is not necessarily required to see the complete
screens in the camera images as several parts of the displays seen in different
cameras are sufficient. While our calibration method requires the monitor to be
close to the object, this is eventually desirable for the measurement to cover a larger
part of the mirroring surface with the projected patterns and reduce the influence
of light fall-off.

5.4 Multi-View Shape-from-Coded-Illumination

In order to bring classical shape-from-specularity techniques to the multi-view
scenario, we first discuss the utilized encoding of the illumination patterns as well
as the problems occurring due to surface curvatures which we solve via a fuzzy
decoding of the patterns. Subsequently, we describe how the decoded information
is used to generate normal hypotheses from which the normal field required in the
optimization, i.e. Functional (5.1), and the surface consistency are derived. An
overview of our method can be found in Algorithm 1 and the respective block
diagram is shown in Figure 5.3.

5.4.1 Coded Illumination

In order to encode the illuminations coming from the displays, we use Gray
code patterns which make a robust decoding possible. Additionally, similar to
the approach presented in [Tro95], we take the inverse patterns to increase the
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Figure 5.3: Block diagram of the proposed method.

Algorithm 1 Proposed Multi-View Normal Field Integration Approach for 3D
Reconstruction of Mirroring Objects.

1: projection of structured light patterns onto the mirroring surface (for each
camera/screen/rotation configuration)

2: computation of light maps by decoding the structured light sequences (for each
camera/screen/rotation configuration)

3: for all voxel corners do
4: get structured light decodings from each of the light maps
5: calculate one normal hypothesis for each of the light maps
6: obtain surface consistency and common normal field entry using mean-shift

clustering of all normals
7: end for
8: perform surface reconstruction similar to our technique described in Chapter 4
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robustness. To decode the displayed bit sequences, we compare the intensity
values observed at each pixel u in the pair consisting of image Ii,j,k,q seen while
displaying pattern Pq and image Īi,j,k,q seen while displaying its inverse pattern P̄q.
The parameter i = 1, . . . , κc denotes the camera index, the parameter j = 1, . . . , κs
denotes the screen index, the parameter k = 1, . . . , κr denotes the rotation index,
and q denotes the index of the pattern. If the difference is below a certain threshold,
we mark the decoded bit as unreliable. We use∣∣Ii,j,k,q − Īi,j,k,q∣∣ < 0.1 Ii,j,k,0, (5.7)

where Ii,j,k,0 represents the photo taken under illumination by the fully lit pat-
tern.

As each pixel on the displays can be uniquely encoded and its 3D position on the
screen is known from the screen calibration, observed codewords can directly be
related to the corresponding 3D positions on the screen. Hence, we generate a light
map [BW10, CGS06] for each individual camera under each rotation angle k of
the turntable and under illumination from each display j. These light maps Li,j,k
assign the respective light source position to each pixel in the camera image. In
general, there will not be observations for all the pixels. The reason for this is that,
depending on the shape of the object and the position of the illuminant, only a part
of the surface will reflect patterns towards the camera.

Interreflections introduce outliers in the light maps. In addition, depending on
the curvature of the mirroring surface and the different relative distances to the
display pixels or other effects, such as non-ideal or spatially varying reflectance
properties, it is usually not possible to decode the complete bit sequence correctly.
High-frequency patterns might appear blurred on the object surface which has
already been observed in e.g. [FCM+08, FCMB09, BW10], and it is not possible
to decide if pattern Pq or its inverse P̄q has been displayed. As a consequence,
we introduce a fuzzy decoding. The basic idea is to only use the reliably decoded
bits per pixel to identify the corresponding display area which illuminated this
pixel. If less bits can be reliably decoded, the ambiguity in the region of the display
which illuminated the pixel increases. The corresponding light source position is
determined as the center of this reliably decoded region.

To address noisy decodings in the light maps, which could represent problems
for the calculation of normals and, hence, also for the normal field integration
algorithm, we additionally perform a subsequent filtering step. In this step, all
decoded labels with less than tbits reliably decoded bits for both horizontal and
vertical stripe patterns are discarded. In order to calibrate the screens, we use
tbits = 9 as a very accurate decoding is possible. During the reconstruction, we
use tbits = 5. Furthermore, we also consider the average of the individual contrasts
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observed for the individual patterns and their inverses for each image pixel per
series of patterns to filter out unreliable decodings. In principle, the quality of the
decodings can be used as weights for the quality of the normals derived from them
which might be included in future work.

5.4.2 Generation of Normal Hypotheses

The light maps described in the previous subsection are used to derive information
about surface normals. As our setup violates the assumption of distant illumination
and the object surface is unknown a-priori, the ambiguity concerning the depth
of the surface along the view directions for the individual cameras cannot be
neglected as in the case of far-field illumination. In our variational formulation, we
therefore consider a volumetric representation to resolve this problem. In particular,
the normal hypotheses are calculated separately for all the points along the view
direction per pixel in each camera similar to [BS03] by utilizing the information
stored in the light maps. For each point x in the volume and each combination
of camera index i = 1, . . . , κc, screen index j = 1, . . . , κs and rotation index
k = 1, . . . , κr, we compute a normal estimate ni,j,k(x). Assuming that the object
remains fixed and cameras and displays are rotated, we consider the coordinate
x relative to the turntable. Therefore, we obtain light directions lj,k(x) and view
directions vi,k(x) which depend on the position in the volume x and both on the
rotation index k and the screen index j or camera index i, respectively. Following
the law of reflection, we obtain the normal estimate ni,j,k(x) as the bisector between
lj,k(x) and vi,k(x). At points close to the surface, normal hypotheses derived for
different camera/screen/rotation configurations, for which the corresponding points
are visible, only have a small variance and almost coincide with the true surface
normal. In contrast, hypotheses contradict each other at points distant to the true
surface.

However, as the cameras might directly observe certain parts of the displays as well,
the light maps do not only contain information about the object to be reconstructed.
For the reconstruction of the object geometry, these regions in the light maps should
not be propagated into the volume in the process of generating normal hypotheses.
For this reason, our method also analyzes the 3D distance between the intersection
of the backprojected rays with the estimated plane of the active display and the
light source position stored in the light map (see Figure 5.4). If this distance is
small (we use a threshold of 3mm), it is a hint that the information stored in the
light map belongs to the screen geometry and can be masked out.
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Figure 5.4: Detection of decodings that are directly observed on the display:
The image location of an observed decoding is backprojected into the volume and
the intersection point x̂l with the plane of the active display is computed. If a
structured light decoding is directly observed on the display, the distance between
x̂l and the true light source position xl is rather small (orange). In contrast, this
distance is typically larger if the decodings are directly observed on a point x on
the surface of the mirroring object between the display and the camera (yellow).
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5.4.3 Multi-View Normal Field Integration and Surface Con-
sistency Estimation

The result of the aforementioned normal calculation step is a set of normal fields
assigned to the involved camera/screen/rotation configurations (i, j, k). These
individual fields need to be combined to one common normal field which contains
information about the best local normal and the surface consistency.

After combining the information in the volume of interest, we have several normal
votes for the different points in the considered volume. In order to find the true
surface, we assume that, at a certain location x on the object surface, the normal
hypotheses from the different cameras agree with each other and with the true
surface normal. In contrast, normal estimates from the different configurations
(i, j, k) will contradict each other farther away from the surface. However, due
to effects such as outliers, noise, non-ideal calibration or the discretization of the
volume, perfectly matching normals will hardly occur in real-world scenarios.
Therefore, we can consider the observed normals as samples from an underlying
probability distribution. Since the non-occluded normals should agree up to a small
variance in the vicinity of the true surface, the underlying distribution should have
a global maximum centered on the surface normal. Furthermore, its variance can
be regarded as a measure for surface consistency. Similar measures have been
used in [BS03, NWR08] for the reconstruction of highly specular and mirroring
objects. As the information about the visibility of points with respect to the involved
cameras is unknown, we also have to take into account that several of the normals
actually come from an occluded view in addition to the noise and outliers.

Modeling the probability density of normals under occlusions is challenging as
it depends on the geometry of the considered object as well as on the placement
of the involved cameras and screens. Therefore, we do not model the probability
density function (pdf) via a parametric model but instead only make the simpli-
fying assumption that the density is highest for the actual surface normal. This
assumption is warranted as the actual surface normal is consistent over all views
where the respective surface point has been observed, whereas the outliers should
not be consistent over several views. Under this assumption, finding the normal
direction corresponds to finding the largest mode of the pdf. For this reason, we
decided to use mean-shift clustering [Che95] as a non-parametric technique as this
neither requires assuming a model nor creates discretization artifacts. We therefore
define the pdf as

px(n) =
1

κcκsκrh3

∑
i,j,k

K

(
‖n− ni,j,k(x)‖

h

)
, (5.8)

and set the local normal estimate N(x) = arg maxn px(n) to the centroid of the
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highest mode of the pdf. Furthermore, we use the density at the centroid as a
surface consistency measure which we denote with c(x) = px(N(x)).

In Equation (5.8), K represents the kernel function with bandwidth h which is
chosen heuristically in the scope of our experiments. We experimented with both
the Epanechnikov kernel and the Gaussian kernel and found the latter to result in
a more accurate reconstruction. As an alternative, it is also possible to consider
normal histograms. Then, the highest mode of the pdf corresponds to the bin with
the maximum count. While this would be faster, we did not reach the quality of
the reconstructions as obtained when using mean-shift clustering in the scope of
our experiments.

5.4.4 Surface Reconstruction

Subsequent to calculating the estimates for the common volumetric normal field
and the surface consistency as described before, we adapt the iterative optimization
procedure presented in Chapter 4 to our setting. After an initialization of the
utilized octree at a coarse level, the grid is successively refined according to
the local surface consistency estimates in the volume. In a subsequent iterative
process, the memory efficient continuous min-cut [YBT10] is applied for a global
optimization per iteration. In a final step, the resulting binary indicator function is
smoothed inspired by the technique presented in [CT11].

5.5 Experimental Results

We evaluate our technique in two steps. To demonstrate the robustness of our
reconstruction framework, we first consider the classical multi-view normal field
integration case. Here, we use per-camera normal images as input. In the next step,
we show results on mirroring objects.

In a first synthetic test case, we use normal fields directly generated from the object
geometry using a normal shader in OpenGL. The reconstructed model obtained
using 75 viewpoints evenly distributed in the upper hemisphere is shown in Figure
5.5. Fine surface details are well preserved in the reconstruction. For all other
experiments, we use 264 views (κc = 11 cameras are mounted on an arc and the
turntable is rotated in steps of 15◦, i.e. κr = 360◦

15◦
= 24).

In order to evaluate the same scenario on real-world data, we have acquired a
painted mask made of clay and estimate an independent normal map for each
view using classical single-view photometric stereo [Woo80]. Subsequently, the
integration is performed using our variational formulation. We use the assumption
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Figure 5.5: Results on a synthetic dataset: Original Happy Buddha model
[TSDSR] as seen in one viewpoint (left), observed normal field with respect to
the world coordinate system (center) for this viewpoint and reconstructed model
(right).

of far-field illumination, but with our technique it would also be possible to relax
this assumption by computing an individual normal at each point in the volume.
As the assumption of Lambertian surface reflectance is violated due to the presence
of effects such as specular reflection, shadows and interreflections on the mask
surface, normal estimation based on linear least squares fitting is prone to errors.
Therefore, we use a simple outlier rejection to remove the influence of too bright
or too dark regions in the least squares fitting. The reconstructed model is shown
in Figure 5.6. Applying a more sophisticated photometric stereo technique would
probably improve the reconstruction quality.

For mirroring objects, we first consider synthetic input data for our algorithm by
simulating the acquisition process. For this purpose, we represent each display
via a plane which is textured according to the patterns of the Gray code sequence.
The object is rotated in steps of 15◦ and observed by eleven cameras placed in the
upper hemisphere. Images are then rendered for the different configurations of
the involved cameras, activated screens, patterns and rotation angles separately
using conventional ray tracing, i.e. Whitted ray tracing, using 64 samples per
pixel to accurately simulate the blurring in curved regions due to limited camera
resolution. Example input images are shown in Figure 5.7. We use a camera
resolution of 2,048 × 2,048 pixels and simulate κs = 2 screens which results in
κs · κc · κr = 2 · 11 · 24 = 528 light maps. Figure 5.8a shows the ground truth
Stanford bunny model [TSDSR] from different viewpoints and Figure 5.8b shows
the corresponding views on the reconstructed model. Furthermore, the visualization
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(a) Camera image. (b) Reconstruction.

Figure 5.6: Results on a photometric stereo dataset: In particular, the painted
regions of the clay mask exhibit specularities which leads to a violation of the
assumption regarding Lambertian reflectance behavior. Nevertheless, the recon-
struction preserves the shape in these regions. The robustness of our reconstruction
technique originates from the outlier-robust normal estimation achieved by the
mean-shift algorithm and a subsequent robust refinement step.

of the Hausdorff distance between the original mesh and the reconstructed model
is shown in Figure 5.9. The reconstruction fits to the original model except for
the bottom region. The reason for the deviation at the bottom is that almost no
information has been captured there. This is due to an inaccurately placed plane
for the screen which illuminates the object from the bottom (see Figure 5.7). As a
result, a small part of the feet of the bunny is not visible in the synthesized images.

In order to evaluate the robustness of our approach with respect to interreflections,
we also consider a synthetic mirroring block with pits of increasing depth, where the
proportion of multiple-bounce observations gradually increases. The reconstruction
results are shown in Figure 5.10. In the deepest pit, the reconstruction deviates
more from the ground truth than for the remaining parts. The reconstruction in such
deeper concavities might be improved to some degree by using smaller turntable
rotations than the used increments of 15◦, using more illuminants at different
positions and by considering multiple reflections of the light rays.

Finally, we evaluate our technique on two mirroring real-world objects, again
using turntable rotations of 15◦. To obtain information about the accuracy of our
reconstruction approach, we have measured a precisely manufactured sphere with
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Figure 5.7: Examples of the input images acquired by the cameras in the synthetic
environment: The object is illuminated by one screen from the side (left, middle)
and by one screen from the bottom (right). The images demonstrate the fact that
the pattern appears blurred at some parts of the object surface due to local surface
curvature and differing relative distances to the display pixels.

a radius of 25mm (using κs = 2 screens) and compare the reconstructed model to
an ideal sphere of fixed radius whose center is determined via a least squares fit.
The error is measured via the Hausdorff distance and shown in Figure 5.11. The
root mean square error of the reconstructed model is 20µm. Furthermore, we also
compute the accuracy according to [SCD+06]. This measure denotes the distance
for which 90% of the vertices are within a certain distance d to the ideal model.
For the sphere, we obtain a distance of approximately d = 30µm. Both accuracy
measures are considerably lower than the edge length of a voxel (approx. 200µm)
on the utilized maximum octree level nine and the approximately 150µm to which
a single image pixel corresponds at the distance of the object. This sub-voxel
accurate reconstruction results from the final refinement step applied after the
continuous min-cut technique where local normal information is used to adjust the
reconstructed surface in a narrow band with a width of one voxel.

In another test, we consider an object with a more complex geometry to test our
technique in the presence of self-occlusions and concavities. For this purpose, we
have acquired a mirroring bunny figurine. The acquisition process is similar to
the one used for the previous experiment with the sphere. In more detail, eleven
cameras, three screens, rotation angles of 15◦ and a maximum octree level nine are
used. Figure 5.12 shows example images obtained during the acquisition process.
In Figure 5.13, we illustrate the calculated consistency values and the obtained
divergence values in a slice through the center of the volume. The reconstruction
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result shown in Figure 5.14 clearly indicates the possible reconstruction accuracy.
Using additional octree levels could further improve the reconstruction but comes
at the costs of a higher computational effort and higher memory requirements.
More details about the individual experiments can be found in Table 5.1.

Table 5.1: Details of the different experiments: The reconstruction of the Happy
Buddha model [TSDSR] has been computed from input data consisting of per-view
normal maps generated via an OpenGL normal shader. For the photometric stereo
experiment on the clay mask, we used 198 point light sources evenly distributed
in the upper hemisphere. The parameter κc denotes the number of cameras, κs
denotes the number of screens, κr denotes the number of rotations, κv denotes the
total number of the different views and κl denotes the number of the light maps
utilized for the individual scenarios.

Properties Happy Buddha Mask Stanford Bunny Block Bunny figurine Sphere
κc: 75 11 11 11 11 11
κs: − − 2 4 3 2
κr: − 24 24 24 24 24
κv: 75 264 264 264 264 264
κl: 75 264 528 1,056 792 528

During our experiments, we usually start with an initial subdivision on level seven
and each time perform three surface adaptions before going to the next higher octree
level. On an Intel Xeon E5654 CPU with 2.4GHz, our level nine reconstruction
for κr = 24, κc = 11 and κs = 3, as used for the real-world bunny figurine, which
leads to 792 observed individual normal fields, requires approximately 12 hours,
while the acquisition took approximately 2 hours.

The results shown in this section indicate the potential of normal-based surface
reconstruction. In contrast to the previously presented multi-view normal field
integration approaches in [CLL07, Dai09], our method is robust enough to deal
with real-world data in the presence of noise and outliers. However, regions such as
concavities with a certain orientation to the displays, under which no information
can be observed, cannot be accurately reconstructed.

5.6 Conclusions

In this chapter, we have presented a novel, robust multi-view normal field inte-
gration technique for the reconstruction of the full 3D shape of mirroring objects.
Based on coded illumination, our technique derives several normal hypotheses
for each point of the considered volume. From these hypotheses, both the most
likely local surface normal and a local surface consistency estimate are computed.
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In our experiments, we have demonstrated that our method yields accurate 3D
reconstructions of highly-specular objects even in the presence of occlusions.
Therefore, our technique complements the investigations carried out in the previ-
ous chapters for objects with a surface reflectance behavior ranging from diffuse
reflectance to opaque reflectance to specular reflectance with a sufficient diffuse
component.

Currently, limitations of our technique can be found when considering deep con-
cavities or other parts of the surface, where no information has been observed.
Resolving these problems is challenging as it would require considering multiple
scattering, i.e. multiple reflections of the respective light rays on their path from
their origin on the light emitter to the camera.

Since the underlying optimization technique is independent from the source of the
estimated normals, it would be possible to extend our method to objects which are
only partially mirroring and also exhibit other surface reflectance behavior. This
will be discussed in Part IV.
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(a) Ground truth Stanford bunny model from different viewpoints.

(b) Reconstruction of the Stanford bunny model from different viewpoints.

Figure 5.8: Ground truth Stanford bunny model and its reconstruction from differ-
ent viewpoints.
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Figure 5.9: Stanford bunny model, reconstructed model and visualization of the
reconstruction error.

Figure 5.10: Block model with pits of increasing depth, reconstructed model and
visualization of the reconstruction error (level eight reconstruction, i.e. the voxel
edge length is approximately 500µm).
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Figure 5.11: Visualization of the Hausdorff distance for the reconstruction of an
accurately manufactured mirroring sphere. The illustration shows the Hausdorff
distance of the reconstructed mesh with respect to the ground truth for several
views around the sphere as well as from the top view. As the sphere was placed on
a non-mirroring sampleholder there is no data recorded for the bottom part of the
sphere. The maximum deviation is reached at the top where there are almost no
observations (level nine reconstruction, i.e. the voxel edge length is approximately
200µm).
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Figure 5.12: Examples of the input images acquired by the cameras: The object
is illuminated by one of the screens from the side (left) and by the tablet from the
bottom (right).

Figure 5.13: Example slices for surface consistency and divergence for the mirror-
ing bunny figurine: The slices are taken at an axis-aligned, vertical plane through
the center of the volume of interest that is used to define the grid-based volumetric
representation. The color values encode the consistency and divergence values
respectively. At parts where information is observed during the acquisition, the
surface is clearly localized. Smaller holes can be handled by the reconstruction
approach.
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Figure 5.14: Photo of a mirroring bunny figurine and respective reconstruction
results.

100



Part III

Image-Based Inference of Material
Characteristics
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CHAPTER 6

PRELIMINARIES

In order to analyze material appearance, it is essential to have a closer look at
material properties such as color, texture, glossiness, translucency or transparency
and how these can be visually derived from the image content. As mentioned in
Chapter 2, the visual complexity of surface appearance is characterized by the
complex interplay of surface material, surface geometry and illumination. For this
reason, human perception can only observe material appearance depending on all
of the involved modalities of material properties, surface geometry and illumination
conditions determined by the environment. Similarly, standard acquisition devices
are only capable of capturing the coupling of the respective modalities, which
consequently influences the results of image analysis such as extracted feature
descriptors. Directly separating these modalities would require a-priori information
regarding a subset of these modalities and, hence, turn out to be a chicken-and-egg
problem.

In the scope of this chapter, we will first provide a brief overview on material
attributes (see Section 6.1) where we consider attributes in terms of linguistics
and also review some of the key studies obtained in the field of psychophysics.
Finally, we provide a short overview on descriptors that might be used to capture
the aforementioned material characteristics from image data in Section 6.2 and an
overview regarding techniques for material recognition that have been presented in
literature (see Section 6.3).

6.1 Characteristic Material Attributes

Despite the complexity of visual material appearance, the human visual system
is highly reliable in perceiving the characteristics of individual materials. As a
result, we are able to rapidly recognize almost all of the materials around us on
different surface geometries and under varying illumination conditions [SRA09].
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While we can easily distinguish the individual surface materials, we usually can
also directly group them into semantic categories such as textiles, leather, plastics,
stone or wood. But what makes material appearance so characteristic to the human
visual system and what are the traits that could be used in an automatic material
recognition system? In the following sections, we first provide a short review
regarding the characterization of material attributes in terms of linguistics, which
represents the key ingredient for the communication of material attributes between
humans (see Section 6.1.1). This is followed by a review of results obtained in
studies on material perception (see Section 6.1.2).

6.1.1 A Linguistical View on Characteristic Material Attributes

When approaching the characterization of visual material appearance and the
classification of materials, a first evidence might be obtained from linguistics. Lin-
guistics represents a codification of human existence onto a level that is commonly
comprehensible without the need for detailed knowledge regarding the underly-
ing physical processes which, in some cases, even might be unfathomable. In
fact, we are offered a rich vocabulary for putting characteristics of visual material
appearance into words. Materials can be flat, rough, soft, hard, single-colored,
multi-colored, matte, specular to even mirroring, translucent, transparent, homoge-
neous, inhomogeneous, etc.. Some investigations such as [BK69], [BRL97] and
[CMK+14] focus on describing attributes by words. While the studies in [BK69]
focus on describing colors, [BRL97] and [CMK+14] consider such a concept to
describe texture information. In order to derive a texture lexicon, the investiga-
tions in [BRL97] consider cognitive aspects of perceiving texture information
and, finally, 98 words have been used to describe texture attributes: asymmetri-
cal, banded, blemished, blotchy, braided, bubbly, bumpy, chequered, cobwebbed,
coiled, complex, corkscrewed, corrugated, cracked, crinkled, crosshatched, crows-
feet, crystalline, cyclical, discontinuous, disordered, dotted, entwined, faceted,
fibrous, fine, flecked, flowing, fractured, freckled, frilly, furrowed, gauzy, gouged,
grid, grooved, harmonious, holey, honeycombed, indefinite, interlaced, intertwined,
irregular, jumbled, knitted, lace-like, latticed, lined, marbled, matted, meshed,
messy, mottled, net-like, non-uniform, perforated, periodic, pitted, pleated, polka-
dotted, porous, potholed, random, regular, repetitive, rhythmic, ribbed, ridged,
rumpled, scaly, scattered, scrambled, simple, smeared, smooth, smudged, spat-
tered, speckled, spiraled, spotted, sprinkled, stained, stratified, striated, studded,
swirly, twisted, uniform, veined, waffled, webbed, well-ordered, whirly, winding,
wizened, woven, wrinkled, zigzagged. The investigations in [CMK+14] focus on
visual aspects of texture and therefore ignore several of these words that are e.g.
related to the shape properties of the respective object or do not correspond to
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visual features and merged similar words into a single category. The resulting
47 attribute words are: banded, blotchy, braided, bubbly, bumpy, checkered, cob-
webbed, cracked, crosshatched, crystalline, dotted, fibrous, flecked, freckled, frilly,
gauzy, grid, grooved, honeycombed, interlaced, knitted, lace-like, lined, marbled,
matted, meshed, paisley, perforated, pitted, pleated, polka-dotted, porous, potholed,
scaly, smeared, spiraled, sprinkled, stained, stratified, striped, studded, swirly,
veined, waffled, woven, wrinkled, zigzagged. In another investigation [SN13], the
attributes fuzzy, shiny, smooth, soft, striped, metallic, organic, translucent, trans-
parent, rough, liquid, woven and man-made are used. Indeed, the consideration of
attribute-based representations has led to promising results in the context of mate-
rial recognition [SN13, CMK+14]. In other domains such as face verification (see
e.g. [KBBN09, KBBN11]), attributes have also been successfully applied, where
65 considered attributes such as black hair, blond hair, eye width, mouth closed,
smiling, etc. are focused on describing face properties. However, attribute-based
techniques for detection or recognition purposes require the availability of huge
amounts of annotated data, which implies enormous manual work.

6.1.2 A Psychophysical View on Visual Material Perception

While the adjectives mentioned in Section 6.1.1 have been well-established in
human communication of material appearance, the human visual system itself
rather perceives statistics of optical phenomena of light exchange happening on
the material surfaces. Based on such statistics of e.g. perceived color or texture, an
object can be perceived as shiny or matte, flat or rough, homogeneous or inhomoge-
neous. Even in the case of not finding an appropriate verbal description for a certain
material sample, the human visual system is still capable of relating given material
samples to psychological concepts and establishing links to similar objects that we
have seen before [FWG13]. Following an example given in [FWG13],

metal objects come in an enormous variety of shapes and sizes, from
needles to manhole covers to helicopters, and yet we are able to group
metal materials together and make inferences about new exemplars
based on our experience with other members of the class,

which supports the quote of Anaxagoras mentioned in Chapter 1. The capabilities
of human visual perception and our knowledge allow us to usually even assign
the correct material class when materials might rather have the characteristic look
of materials belonging to other material classes and therefore appear different in
comparison to typical instances belonging to the same class due to large intra-class
variances. As mentioned in [FWG13],

the reflectance properties, shape, and mesoscale texture of a piece of
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limestone may be more similar to bread or sponge than to quartz or
crystal, and yet we most probably group both limestone and quartz
into the class of stones while sponge and bread are quite different
categories.

Focusing on the distinctiveness of different material classes in terms of their
perceptual qualities, the distinctiveness of different perceptual qualities and the
relationship between visual estimates of material qualities and knowledge about
material categories, the studies in [FWG13] consider human ratings of materials
for nine perceptual qualities: glossiness, transparency, colorfulness, roughness,
hardness, coldness, fragility, naturalness and prettiness. The respective results
show that the ratings of the subjects involved in the study agreed with the category
definitions fabric, foliage, glass, leather, metal, paper, plastic, stone, water and
wood. This indicates that material properties play an important role in material
classification by the human brain.

Representing one of the most essential capabilities of the human visual system,
the visual perception of materials has been extensively discussed in literature.
Among the most studied characteristic material attributes are surface roughness,
glossiness and translucency. In the following, we only provide a rather brief
overview on respective studies and refer to the more detailed surveys given in e.g.
[And11, TFCRS11, Zai11, Fle14].

Regarding surface roughness, studies such as e.g. [PDG+08, PK02] have been
dedicated to an analysis of the perception of characteristics of surface reliefs.
Furthermore, the investigations in [HLM06] indicate that roughness perception is
biased by illumination conditions. For a directional illumination perpendicular to
the material surface, the roughness does not seem to be as strong as for directional
illumination from flat angles with respect to the material surface.

When analyzing glossiness, several studies focused on validating the ability of
humans to judge surface glossiness [NS98, FDA03]. The results in [FDA03] show
that reliable judgments can still be delivered under different illumination conditions
which follow the statistics of natural illumination. Further investigations consider
how the perception of glossiness, or specular reflection respectively, is affected by
binocular disparity and motion [BB90, HCP91, WFM08, DFY+11]. In addition,
the properties of specular highlights also influence the perception of glossiness
[BP81, BSBM05, FTA04, KMA11, MKA12, TNM04].

For translucent materials, the light enters the respective object, travels inside and
leaves the object at another surface location. Such effects appear e.g. for wax,
plastics and several types of minerals. Obviously, the perception of translucency by
the human visual system depends on the absorption characteristics of the respective
materials and the thickness of the objects as well as on the homogeneity or inho-
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mogeneity regarding their refractive index. According to [Fle14], it still remains
unclear how humans can differentiate shading gradients resulting from opaque re-
flectance from gradients resulting from subsurface scattering effects. Furthermore,
the relation between specular highlights and the non-specular reflections has been
identified to provide important information regarding the translucency of objects
in the investigations in [Mot10]. In particular, translucency seems to influence
specular highlights less than the non-specular regions. Analyzing the capability of
the human visual system to directly match refractive indices of solid materials has
been investigated in [FJT11]. While the human visual system is capable of coping
with this task in the respective experiments, the perception of translucency has
been significantly influenced by the thickness of the materials and their distance to
the background.

Regarding the perception of materials, the argumentation in [Fle14] claims that
different levels of fidelity might be required for different tasks as some tasks only
involve a categorical judgment about some material attributes such as hard or soft
whereas other tasks as e.g. encountered in design processes for marketing require
considering the full range of possible variations of the respective attribute. Ac-
cording to [Fle14], the visual processing might therefore be grouped into material
categorization or material estimation. While material categorization is focused on
associating material samples with specific class labels by exploring information of
other class members, the key objective of material estimation can be identified in
deriving specific material characteristics such as the degree of specularity or the
degree of elasticity while taking into account subtle discriminations in the space of
variations of a certain material attribute.

In addition, Fleming [Fle14] suggests that the human visual system does not rely
on estimating physical material parameters but instead uses a statistical appearance
model

which captures the natural degree of variations between samples in
terms of easily measured appearance properties.

This means that statistics of low-level and mid-level image features might guide
our perception of materials and, hence, also influence recognition processes. In
the scope of this thesis, we follow the theoretical concept described in [Fle14]
for our implementations of automatic material recognition systems. In particular,
the material representations used for material recognition as described in Part III
are based on statistics of low-level and mid-level image features. Based on the
characteristics of these statistics, a characteristic material “footprint” is generated
for the respective material. Such statistics might be based on observations of high-
lights, interreflections, subsurface scattering effects, etc.. While these statistical
descriptions might be fundamental for the derivation of the above-mentioned verbal
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attribute dictionaries used in human communication, the internal processes of the
human brain regarding material perception and material recognition probably are
rather directly based on the statistical descriptions [Fle14]. Consequently, key
problems that have to be dealt with concerning material perception and material
recognition can be identified in the development of suitable descriptors that cap-
ture the individual visual appearance characteristics of materials as well as in
the development of a suitable statistical representation based on these observed
descriptors.

6.2 Material Attribute Descriptors

In order to transfer the aforementioned rather theoretical concepts towards their
practical application in automatic systems, it is essential to find suitable descriptions
to represent the visual material appearance in the image domain. In particular,
the characteristic material traits such as shininess, roughness or homogeneity are
manifested in characteristic local visual features with certain statistics of colors or
textural patterns which represent the characteristics that determine the appearance
of real or abstract elements or objects in an image and, hence, make these abstract
elements or objects distinguishable [Wei13]. Such local features might not only
represent localized patterns that vary from their local neighborhood [TM08] such
as corner-like, blob-like or edge-like regions, but also the location-invariant local
characteristics of colors or textures. The key challenge can be found in designing
respective descriptors to capture these characteristic visual features. Clearly, finding
appropriate features represents a task-specific challenge and, indeed, this has been
a topic of research for decades.

By definition, local features provide a representation of local characteristics of the
elements or objects and their appearance in the respective scene. This includes
distinctive physical entities such as characteristic points or physical edges. Char-
acteristic points in the scene might occur e.g. at corners of windows, corners of
objects, corners in the surface texture of objects, etc.. Physical edges might be
present in e.g. the surface structure of many objects such as the transitions from
black to white in a checkerboard, the grain of wooden objects or object bound-
aries which determine the silhouettes of the objects in photographs. Furthermore,
blob-like regions that appear on many surface textures, surface structures such as
e.g. bricks and the surface structure of leather or wallpaper might also represent
characteristic features in a scene. Such features have the advantage that they repre-
sent certain distinctive aspects of the scene which can be localized accurately. If
such corners, edges or blobs occur in several images and can be reliably matched
across the involved images based on their local neighborhood description, they
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might e.g. serve to establish relations between the different images such as the
estimation of the respective parameters of the involved cameras which includes
their relative pose to each other. For instance, corners of a checkerboard or specific
quick response (QR) codes represent local features commonly used for camera cal-
ibration [Zha00, MS13]. So far, different feature detectors have been introduced in
literature in order to find corners (e.g. Moravec detector [Mor80], Förstner detector
[FG87], Harris detector [HS88]), blob-like regions (e.g. Laplacian-of-Gaussians
detector [Lin98, MS04], Difference-of-Gaussians detector [Low04]) or other char-
acteristic structures (e.g. Maximally Stable Extremal Regions (MSER) detector
[MCUP02]). For detailed discussions regarding feature detectors, we refer to the
survey in e.g. [TM08].

Furthermore, it might be possible to consider such localized features for the detec-
tion of objects or materials in images, i.e. the local neighborhood around such local
features might be evaluated. However, such a strategy only considers a small subset
of the possibly occurring patch structures. Therefore, many investigations such
as [LM99a, LM01, LSP06, VZ09, CG08, CG10, XHE+10, LSAR10, SLRA13]
and our techniques presented in Chapter 7 and Chapter 8 skip such sophisticated
strategies for localizing distinctive features in the scene and, instead, rather use
densely sampled patches to describe scenes, objects or materials.

In order to describe the relevant image contents, appropriate descriptors have to
be calculated in local regions surrounding the locations extracted in the feature
detection stage. Detailed surveys on local descriptors are given in [MS05, TM08,
MT09, vdSGS10, Wei13]. Capturing the variations in both local color distribu-
tions and local gradient distributions allows to capture characteristics of material
appearance. Obviously, for materials with rough surfaces, more local gradients
can be observed than for smooth surfaces as there are more interreflections or self-
shadowing effects. Also, the color distributions will exhibit a larger variance than
for a homogeneous flat material surface, and possibly occurring local highlights
are captured in both color and texture descriptors. It is therefore not surprising
that local color descriptors and texture descriptors are amongst the most popular
descriptors regarding individual characteristics of material appearance. In order to
consider local color distributions, local color patches similar to the illustration in
Figure 6.1a have widely been used in literature (e.g. [VZ09, LSAR10, SLRA13])
and are also used in the scope of our investigations in Chapter 7 and Chapter 8.
Local texture descriptors such as the Scale-Invariant Feature Transform (SIFT)
descriptors [Low04] (see Figure 6.1b), Histogram-of-Oriented Gradient (HOG)
descriptors [DT05], Local Binary Patterns (LBPs) [OPM02], basic image features
[CG08, CG10], sorted-random-projection descriptors [LFCK12] and filterbanks
[LM99a, LM01, Sch01, FA91, Gab46] (see e.g. Figure 6.2 for an illustration of
the Leung-Malik filters, Schmid filters and Root Filters) focus on considering the
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local gradient information of the image intensities. Such descriptors or respective
variants have widely been used to represent materials. In our techniques in Chapter
7 and Chapter 8, we also use such standard texture descriptors. Some of these
descriptors such as SIFT and HOG have also been used in object classification,
scene classification and registration or reconstruction respectively.

Independent from the respective task, an alternative to the standard descriptors
discussed so far can be identified in descriptor learning strategies as e.g. proposed in
[FZ07, BBS10, BHW11, SVZ12, OBUvdS13, SN13, SVZ14, DJV+14, JSD+14,
LF14, BUSB14]. Such approaches focus on learning features that are capable of
capturing the characteristics of the individual categories. This requires having
adequate datasets which capture the appearance variations of materials, objects,
scenes, etc., and, hence, might easily consist of hundreds of thousands of images.
Therefore, these approaches are valuable if such datasets are available but rather
impractical when the data does not represent the characteristics that are expected
to be present in the query images used after the descriptor learning.

(a) (b)

Figure 6.1: Illustration of (a) the local color descriptor, where local color patches
are considered and the intensity values in the 3 channels red, green and blue are
concatenated to a 27-dimensional descriptor, and (b) the SIFT descriptor, where the
local gradient information is used to generate histograms based on 8 orientations
in a local 4× 4 structure around the considered image point. Concatenating these
values results in a 128-dimensional descriptor.

While the aforementioned descriptor types do not directly correspond to semantic
attributes of the image content as mentioned in Section 6.1, they can be used to
derive more semantic material descriptors. In e.g. [CMK+14], the Describable
Textures Dataset (DTD) has been introduced as a new material attribute database
for texture attribute recognition. Each of the 47 classes contains 120 images
depicting the individual attributes in various forms and under varying viewing and
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(a) Leung-Malik filters

(b) Schmid filters (c) Root Filter Set

Figure 6.2: Some of the commonly used filterbanks: (a) The Leung-Malik fil-
terbank consists of edge, bar and spot filters at multiple scales and orientations.
Its standard version includes two Gaussian derivative filters at six different ori-
entations and three different scales, eight Laplacian-of-Gaussian filters and four
Gaussian filters. (b) The Schmid filterbank includes 13 isotropic, “Gabor-like”
filters and, therefore, provides a rotation invariant representation. (c) The MR fil-
terbank corresponds to a common Root Filter Set of 38 filters. These filters include
an edge and a bar filter at six orientations and three scales as well as a Gaussian
filter and a Laplacian-of-Gaussian filter. However, only the maximum response
across the orientations is used and, thus, only 8 filter responses are considered to
establish the respective descriptor. Images taken from [Vis].

illumination conditions. In particular, after computing per-image representations
for each of the 47 involved texture attribute categories of the DTD, the responses
of the respective attribute classifiers are trained. This results in a 47-dimensional
vector which describes how well an image matches to each of the 47 attributes.
Based on these trained models, images from other datasets are analyzed via the
learned attribute classifiers resulting in a stronger representation. The approach
presented in [SN13] is also based on considering attributes.

Similar to the aforementioned descriptor learning approaches, such techniques
require capturing a huge multitude of different exemplars under a large variety of
different viewing conditions, lighting conditions and surface geometries in order to
appropriately represent the respective intra-class variation in appearance. Defining
a single category appropriately might easily require several thousands of images.
The required manual processes to capture exemplars as well as to segment and
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annotate materials in images severely limit the number of images per attribute
category. This manual work is even more complex as many materials exhibit
several of the above-mentioned attributes, which has to be taken into account in
the annotations.

6.3 Material Recognition in Literature

Material recognition is a challenging problem due to the significant variations
in material appearance under different configurations of viewpoint, illumination
and surface geometry. In the following sections, we briefly discuss model-based
approaches (see Section 6.3.1) and appearance-based approaches (see Section
6.3.2).

6.3.1 Model-Based Approaches

The inference of knowledge about the considered material surface can be ap-
proached by using certain models which describe the variations of material ap-
pearance under different view-light configurations. Histogram models have been
used in e.g. [DN98] and [vGKD99] to represent the changes in appearance for
materials under varying view-light conditions. In [OJR03], material recognition
is approached based on a partly Lambertian and partly specular model. Further-
more, BRDF slices have been used for material classification in [WGSD09]. The
studies in [CMPP02] and [DC05] analyzed the model-based dependency of texture
features on illumination. However, such dependencies rely on certain surface char-
acteristics, which also applies for the assumed reflectance models. While analytical
models might be sufficient to represent the reflectance behavior of locally smooth
surfaces with homogeneous reflectance behavior, they do not reflect characteristic
material traits that determine the appearance of many materials with mesoscopic
surface reflectance effects. Such effects take place at surface structures imaged
to an area of approximately one pixel within an image. More complex material
models such as bidirectional texture functions [DNvGK97] can deal with such
mesoscopic effects but have their limitation with respect to extremely specular ma-
terials. In that case, their data-driven nature requires an ideally continuous angular
sampling which would significantly increase the amount of data and is therefore
rather impractical. Consequently, the selection of such model-based approaches is
material-specific, i.e. the fitting procedures are guided by the appropriate model. In
addition, the fitting involves the explicit consideration of a multitude of parameters
such as the parameters of the reflectance model, the lighting, etc..

112



6.3. MATERIAL RECOGNITION IN LITERATURE

6.3.2 Appearance-Based Approaches

The key components of appearance-based material recognition systems are the
extraction of discriminative descriptors that reflect characteristic material traits,
an efficient and appropriate modeling of the material categories and an appro-
priate classifier. The prominent, often applied descriptors include color patches
(e.g. [VZ03, VZ09, LSAR10, SLRA13, WGK14]), densely sampled SIFT de-
scriptors (e.g. [LSAR10, SLRA13, WGK14]), Local Binary Patterns (LBPs) (e.g.
[CHM05, LF12]), kernel descriptors [HBR11], filterbanks (e.g. [LM99a, LM01,
VZ02, VZ04, CD04, CHM05, CHFE10]) and combinations of several of these
descriptors (e.g. [BG06, LSAR10, HBR11, LF12, SLRA13, WGK14]) as using
complementary descriptors for material recognition has been demonstrated to lead
to superior results. In our material recognition techniques introduced in Chapter
7 and Chapter 8, we also use combinations of such color and texture descriptors.
Furthermore, learning descriptors for material classification has been investigated
in [SN13, LF14, CMK+14, BUSB14]. After extracting such descriptors for the im-
ages contained in the training set and the test set, the descriptors from the training
set are typically used to calculate a dictionary of representative descriptors denoted
as textons. This allows assigning all of the extracted descriptors in an image to the
respective visual words in the dictionary to get a texton-based image representation
as introduced in e.g. [LM99a] and [LM01] and also followed in e.g. [VZ02, VZ04,
VZ09, LSAR10, LF12, SLRA13, WGK14]. The resulting texton-based image
representations can then be classified using nearest neighbor classifiers, Bayesian
frameworks [VZ04, LSAR10], Markov random field (MRF) classifiers [VZ03],
support vector machines (SVMs) [HCFE04, CHM05, LF12, LYG13, WGK14],
random forest classifiers [Bre01], etc..

While most investigations focused on single-image-based material classification,
some acquisition devices also offer the possibility to easily acquire several images
under several view-light configurations, which might significantly facilitate mate-
rial classification. Obtaining a highly reliable classification is of great importance
if further steps of the acquisition procedure depend on the reflectance behavior
of the material classified before. In [LM99a] and [LM01], histograms have been
concatenated to form a single vector for each particular material, which imposes
that materials are represented by a fixed ordering of the configurations within the
combined vector where all the individual image representations have to be carefully
registered. Comparing materials based on these vector-based representations hence
requires that exactly the same view-light configurations are considered in each
vector with the same fixed ordering. In [CD04], bidirectional feature histogram
manifolds have been introduced as an alternative that does not require the same
view-light configurations for both reference and query data. However, having a

113



CHAPTER 6. PRELIMINARIES

sparse set of view-light configurations represents a problem to this approach, as
the reference manifolds become coarsely sampled. In addition, linear interpolation
between neighboring view-light configurations will result in additional sources of
inaccuracies which increase with an increasing distance of the neighboring view-
light configurations. In our method described in Chapter 7, we aim at classifying
material instances using only a few images and make use of results from the face
recognition domain. For efficiency, we focus on training-free, linear approaches
as presented in [CT10]. In particular, our material recognition approach yields
significantly better recognition rates than previous methods while using smaller
numbers of view-light configurations.

Other recent approaches include learning optimal illumination for material clas-
sification [JSJ10], material classification based on learning coded illumination to
directly measure discriminative features such as projections of spectral BRDFs
[GL12, LG14] or learning discriminative illumination patterns and texture filters
to directly measure optimal projections of BTFs [LYG13].

So far, most of the literature focuses on material recognition in controlled lighting
conditions. The few techniques that focus on material recognition under natu-
ral illumination include the bag-of-words frameworks based on state-of-the-art
descriptors [LSAR10, LYG13] as well as descriptor learning approaches based
on convolutional kernels [SN13] or multi-scale sparse coding [LF14], descrip-
tors based on describable attributes in combination with Improved Fisher Vectors
(IFVs) and Deep Convolutional network Activation Features (DeCAF) [CMK+14]
or deep convolutional neural networks [BUSB14]. While these approaches are
based on collections of annotated and segmented images given by the Flickr Ma-
terial Database [SRA09], OpenSurfaces [BUSB13] or the Materials in Context
Database (MINC) [BUSB14], such annotations and segmentations represent a lot
of manual work and are typically obtained by costly crowdsourcing services such
as Amazon Mechanical Turk (AMT) [BUSB13, CMK+14]. Instead, our approach
described in Chapter 8 avoids the need for manual annotation and segmentation
by using synthetic training data for the classification of materials under natural
illumination.
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MATERIAL RECOGNITION UNDER CONTROLLED

ILLUMINATION

In the scope of this chapter, we consider multi-view material recognition under
controlled illumination conditions as present in e.g. lab environments. While
most of the respective investigations have targeted material recognition based
on single images, it seems evident that using richer query information including
several images of a particular material under different view-light configurations
might increase the robustness of the recognition. From the few methods that focus
on material recognition based on several images, some rely on the presence of
exactly the same registered view-light configurations in both training data and
query data. As different acquisition devices typically have different constraints
regarding the mounting of the involved components, the measurable view-light
configurations differ for the devices. Consequently, relying on the availability of
exactly the same registered view-light configurations in both training data and
query data is impractical. The approach presented in this chapter overcomes these
aforementioned problems by forming characteristic material spaces that consider
the characteristics of the individual materials captured in the set of view-light
configurations available per material. Material recognition can thus be formulated
as a comparison of the individual material spaces based on set-to-set distances. We
will demonstrate that our approach already allows a reliable material recognition
based on only a few view-light configurations. Besides being part of this thesis,
the method presented in this chapter has also successfully undergone peer review
(see [WK15b]).

After a brief survey on material recognition from multiple views and a discussion
of the contributions presented in this chapter (see Section 7.1), we provide the
technical details of our material recognition approach (see Section 7.2) and the
results achieved (see Section 7.3) before concluding the chapter (see Section
7.4).
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7.1 Motivation

The automatic classification of materials represents one of the key enablers for
the automation of industrial supply chains as many tasks have to be carried out
depending on the material properties. To give an example, the task of grasping
objects might have to be adapted according to the fragility of the respective objects,
i.e. a fragile object has to be handled very carefully while less attention can be paid
for non-fragile objects. Industrial environments typically allow the use of expensive,
rather task-specific hardware equipment and the conditions of the environment can
be controlled in order to maximize the capabilities of the resulting system with
respect to the respective task.

While most of the studies that have been conducted in this research field focus on
material recognition from just a single image, several of the available acquisition
devices are equipped with multiple cameras, and, hence, offer the possibility to
easily acquire several images showing the material under different view-light
configurations. Obviously, information from several view-light configurations
includes a richer representation of characteristics regarding the surface reflectance
behavior and, hence, when used as query data, should result in clear benefits
regarding a highly reliable material recognition in comparison to using only a
single image. For instance, effects such as interreflections or self-shadowing might
be less visible in a certain image. Using images taken under different view-light
conditions captures these effects in a better way.

Material recognition based on multiple query images and multiple training images
for the involved materials can be formulated as a set-based recognition task (see
Figure 7.1). The per-image representations of the material appearance captured
by certain material descriptors under the different viewing and lighting conditions
form a kind of material space that is characteristic for the respective materials.
Recognizing the closest material in the database to a certain query material can
be achieved by comparing the individual material spaces. Evidently, information
about material appearance under the different view-light configurations has to be
represented in an adequate way for robust recognition systems. Seminal work,
such as the investigations in [LM99a, LM01], is based on the availability of exactly
the same registered view-light configurations in both training data and query data.
The information regarding the appearance of a certain material under the different
view-light configurations is represented by a single vector resulting from the
concatenation of the per-image representations of material appearance. However,
materials with representations obtained by using different view-light configurations
cannot be compared which renders such a strategy impractical. Typically, the
view-light configurations of different acquisition devices differ due to varying
constraints regarding the mounting of the involved components. To overcome
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this limitation and allow for unregistered per-material query data consisting of
images taken under different, unknown view-light conditions, our investigations
focus on modeling material spaces using convex hulls and affine hulls as already
successfully applied in the face recognition literature [CT10]. We demonstrate
that material recognition can be achieved with a high reliability by looking at
the characteristic material appearance under a few viewpoints. At first sight, this
problem might seem to be not that interesting anymore due to the successful studies
on databases such as the CUReT database [DvGNK96]. However, those databases
offer only a small intra-class variance in the appearance of the involved material
samples. Recent, more challenging databases with larger intra-class variances
of the respective material samples such as the ALOT database [BG09] and our
UBO2014 database used in the scope of this chapter and Chapter 8 have shown that
there is a need to obtain further insights into recognizing materials using multiple
view-light directions for the reference/query sets.

In summary, the key contributions of this chapter are:

• a novel, robust framework that allows the recognition of materials under
controlled illumination conditions based on sets of images which are acquired
under different view-light configurations, and

• a study for using set-based classifiers to find the closest material in the
database from a set of view-light configurations which might not necessarily
be contained in the database.

7.2 Methodology

The basic principle of our approach is illustrated in Figure 7.2. For a query material,
we search its best representative within a material database which contains images
of a multitude of material samples taken under different viewing and lighting
conditions that are expected to be met during the acquisition with standard devices
such as the ones discussed in [SSW+14].

For a reliable material recognition, we need to consider the spatial variations
of a material as well as its change in appearance induced by different viewing
and lighting conditions. Therefore, our approach is based on first computing
state-of-the-art descriptors to capture the characteristic material traits and the
subsequent derivation of a vector-based representation for each of the given images
under individual viewing and lighting conditions (see Subsection 7.2.1). The set
of vectors resulting for an individual material sample is then used to obtain its
material space. This allows us to perform the comparison of different material
spaces via set-to-set distances (see Subsection 7.2.2).
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Database 

Query Material 

Figure 7.1: Formulation of material recognition using multi-view information
as a set-based recognition task: Characteristic material traits observed in the
images of a particular material instance form a characteristic material space. The
objective is to identify the most similar material instance within the database for
an input query material by comparing the material spaces.

7.2.1 Material Representation

In order to obtain a representative model per material, material-specific properties
have to be included in the set-based representation. Characteristic material traits can
be identified in a huge number of different aspects such as color, surface roughness,
self-occlusions, interreflections, or specularities, and it has been shown to be
beneficial to use several feature descriptors considering different types of attributes
(e.g. [LSAR10]). We consider the following descriptor types which are densely
sampled on a regular grid with a spacing of 5 pixels in our experiments:

• Color: We extract 3× 3 color patches and concatenate the respective entries
to a vector as in [LSAR10] which results in a 27-dimensional representation.

• SIFT: In order to consider the local spatial and directional distribution of
image gradients, we extract dense, 128-dimensional SIFT descriptors as
in e.g. [LSAR10]. SIFT descriptors provide robustness to variations in
illumination and viewpoint.
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Figure 7.2: Set-based material recognition scheme: After extracting descriptors,
we compute a dictionary from the descriptors obtained for the reference data. This
dictionary is used to quantize the representation of the content of a particular
image into a vector representation. Finally, a set-to-set classification is carried out
to find the closest material within the database.

• HOG2x2: After computing histograms of oriented gradients, neighboring
descriptors are concatenated to a 124-dimensional descriptor as in [XHE+10].
As the normalization differs from the scheme used in SIFT, it captures
material characteristics in a different way.

• Leung-Malik filters: LM filters [LM99a, LM01] represent a filterbank which
consists of edge, bar and spot filters at multiple scales and orientations. In
our experiments, we use two Gaussian derivative filters at six orientations
and three scales, eight Laplacian-of-Gaussian filters and four Gaussian filters.
The filter responses obtained per pixel when applying these 48 filters onto an
image form the corresponding 48-dimensional descriptors.

The extracted descriptors are then used to compute a vector-based representation
for each of the image regions that show the respective material. In the scope of this
chapter, we analyze the suitability of the popular bag-of-words representation and
the more sophisticated VLAD representation [JDSP10]. Based on the descriptors
extracted from the images contained in the database, we compute a dictionary of
visual words for each descriptor type via k-means clustering [Ste57, Llo57, Llo82,
Mac67] due to its efficiency. Please note that other clustering schemes might also
be applied. In case of the bag-of-words model, we quantize each descriptor to
its closest visual word in the dictionary and form histogram representations. In
contrast, the VLAD representation is based on first assigning all local descriptors
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xi within an image region to their nearest neighbor cj with j = 1, . . . , k in the
corresponding dictionary with k visual words for each feature type. Then, the
VLAD entries are computed by accumulating the differences of the local descriptors
and their assigned visual words following

vj =
∑

{xi|NN(xi)=cj}

xi − cj. (7.1)

These entries are concatenated to the final VLAD vector, which we normalize to
unit length for each of the descriptor types. As a result, the VLAD representation
incorporates information about the direction and the offset of the descriptors
assigned per cluster. In Figure 7.3, we illustrate the calculation of both histogram
representations and VLAD representations. These vector-based representations
for the image regions of a particular material instance acquired under different
view-light configurations form its corresponding material space. When combining
several descriptor representations, we simply concatenate the normalized vectors
corresponding to the involved descriptor types.

7.2.2 Set-Based Recognition

In contrast to e.g. [CD04], where a-priori knowledge about the considered viewing
and lighting conditions is incorporated for setting up aligned training manifolds,
our approach does not rely on the availability of such information. A randomly
taken subset of images without knowledge about the imaging parameters should
be enough to reliably recognize materials. We use the linear methods presented
in [FY03, YFM98] and [CT10], where there is no need for parameter learning.
Non-linear techniques (e.g. [CT10]) could be employed as well at the cost of
learning hyper-parameters such as the kernel width.

Linear convex hull based classifier: Representing the material instances via
vector representations for the respective images acquired under different view-light
conditions allows us to make use of the convex hull classifier presented in [CT10].
Here, we assume that the vector representations under the available view-light
configurations chosen to represent one of the individual material samples can be
represented via convex hulls. The distance between convex hulls can be calculated
by using quadratic programming and is abbreviated via CHISD (Convex Hull based
Image Set Distance) as in [CT10].

Linear affine hull based classifier: Similar to the studies in [CT10], we con-
sider affine hulls to represent the material spaces. Here, the material representations
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Figure 7.3: Illustration of the computation of histogram representations and VLAD
representations: The extracted descriptors are first clustered. For this purpose, we
use k-means clustering [Ste57, Llo57, Llo82, Mac67]. However, other clustering
schemes would also be possible. Subsequently, the histogram representation
can simply be calculated from the assignment of the extracted descriptors to
their closest cluster center. While we use hard assignments, i.e. a descriptor is
completely assigned to only its closest neighbor, a soft quantization to several
centers would also be possible. In contrast to the histogram representation, the
VLAD representation [JDSP10] also incorporates both direction and magnitude of
the offset of the individual descriptors to their closest centers.

are obtained by affine combinations of the vector-based representations of the statis-
tics of the material under the measured view-light configurations. We calculate
the linear affine hull parameters by computing an orthonormal basis for the affine
subspace spanned by vectors representing a particular material. The distance be-
tween two linear affine hulls abbreviated via AHISD (Affine Hull based Image Set
Distance) can be computed by using the hyperplane which optimally separates the
affine hulls.

Mutual subspace method (MSM): This type of method used in [YFM98, FY03]
represents each class with a subspace formed by the respective vectors, and the
similarity between subspaces is determined by comparing the angles between the
subspaces.
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7.3 Experimental Results

In order to compute the histogram and VLAD representations respectively, we
used dictionaries with 150 visual words for color, 250 visual words for SIFT and
200 visual words for the LM filters similar to [LSAR10, SLRA13] throughout all
of our experiments. For the HOG2x2 descriptors, we use 250 visual words.

In the scope of our experiments, we aim at analyzing the capabilities of the different
set-based recognition techniques. We therefore perform experiments on different
datasets for varying numbers of view-light configurations in the reference and
query sets. We always take disjoint sets of view-light configurations for the
reference/query sets of the material samples, i.e. images acquired under different
view-light configurations are used for the reference set and the query set per
material. In the following sections, we discuss the performance of our material
recognition framework on several datasets.

7.3.1 CUReT Database

In order to obtain an intuition of the recognition performance, we use the well-
established LM filters and denseSIFT to recognize the 61 material samples provided
in the CUReT database (see Figure 7.4). Using 5 randomly chosen view-light
configurations to represent both reference and query materials, we already obtain
high accuracies of around 95.5% for both LM filters and denseSIFT when using
AHISD and CHISD with VLAD representations. MSM methods perform worse
by about 5%. The benefit of the high-dimensional VLAD representation becomes
obvious in the fact that histograms perform significantly worse by 4%−11%. Using
more view-light configurations to span the space for the different material samples,
we observe that the accuracy obtained when using the individual descriptors closely
approaches the 100% already for about 10 view-light configurations in reference
and query sets. In general, there is a tendency that the high-dimensional VLAD
description gives better accuracies than using histograms. We also combined the
descriptors which further increases the performance.

In [CD04], a selection of 20 material instances of the CUReT database has been
analyzed. Using 56 images per material instance for their reference manifolds, a
performance of about 98% has been reached for the classification of individual
textures and a bit more than 70% when using 10 view-light configurations per
material. For a fair comparison, we only use LM filters as descriptors. When
representing the reference sets with 10 randomly drawn view-light configurations
and having a single configuration for the query material, we obtain performances
of around 95% for the combination of CHISD and VLAD representations. This
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is only slightly worse than the 98% reported in [CD04] for reference manifolds
based on 56 images per material instance. In a direct comparison with using 10
configurations for the reference sets, this combination of CHISD and VLAD leads
to an improvement of about 20%. When using more configurations in the query
sets, we already reach more than 99% starting from three view-light configurations
per query set. A similar performance can be achieved with densely extracted SIFT
descriptors.

The high performances reached on this database indicate that the individual material
samples appear rather distinctive and that the database is not highly challenging.
Additionally, as a consequence of the high performances, a real analysis of the
different set-based methods with respect to each other is hardly possible and the
need for set-based recognition is not yet clearly visible. For this reason, more
insights can be obtained by using more challenging datasets with higher intra-class
variances in material appearance under different view-light configurations.

Figure 7.4: Material samples in the CUReT database [DNvGK97] (taken from
[Vis]).

7.3.2 ALOT Database

The Amsterdam Library of Textures (ALOT) [BG09] (see Figure 7.5) offers sig-
nificantly more and also a wider range of different material types, which have
additionally been observed under different illumination colors. In our experiments,
we consider color patches, denseSIFT, HOG2x2, LM filters and their combination.

123



CHAPTER 7. MATERIAL RECOGNITION UNDER CONTROLLED ILLUMINATION

Taking 5 view-light configurations for each of the reference and the query sets re-
sults in an accuracy of about 60% for color, 89% for denseSIFT, 83% for LM filters
and 83% for HOG2x2 when using VLADs with CHISD or AHISD and 4% less
when using VLADs with MSM methods. Furthermore, using histograms instead of
VLADs generally leads to lower performances. The combination of the descriptors,
however, leads to about 94% for AHISD and CHISD with VLAD and little lower
accuracies for the MSM methods. Taking 10 configurations per reference/query
set, the accuracies of the individual descriptors increase, and for the combination
of descriptors we reach slightly above 99% using all the methods. This indicates a
trend that the reliability of material recognition increases with increasing numbers
of view-light configurations for reference and query sets.

Figure 7.5: Material samples in the ALOT database [BG09]. For illustration
purposes, only a subset of the 250 material samples of the ALOT database is shown.

7.3.3 Measurement Data of the UBO2014 Database

While the ALOT database [BG09] gives a more visible impression of the power
of set-based recognition, the samples in this database still do not seem to show
very extreme intra-class variations under different view-light configurations in
comparison to the inter-class variances. In contrast, the material samples of

124



7.3. EXPERIMENTAL RESULTS

the UBO2014 database that will be described in detail in the scope of Chapter
8 are used to model the variance in different semantic categories. We use the
measurements of the 84 material samples as used in Chapter 8 and further 76
material samples in the database extension (see Figure 7.6). For each of these
material samples, photos have been taken under 151 different viewing directions
and 151 lighting directions, which leads to 22,801 images per material sample. For
some of the categories, several of the samples only exhibit rather subtle differences
(e.g. tiles or metals). This makes the dataset challenging. Instead of grouping these
samples into semantic categories as in Chapter 8, we consider the measurements
per material sample individually and focus on recognizing the material samples.
As illustrated in Figure 7.7 and Figure 7.8, the accuracy again increases if the
number of configurations considered in the reference/query sets is increased. As
before, we observe the trend of VLADs to be more discriminative than histograms.
Furthermore, the descriptors have been evaluated separately, where denseSIFTs
tend to perform best. The difference with respect to the performance of other
descriptors is more visible for the histogram representations. AHISD and CHISD
almost consistently outperform the MSM methods. Using the combination of
different descriptors results in improvements over the accuracies obtained for the
individual descriptors. These improvements are larger, if only a few configurations
are available for the reference/query sets.

In Figure 7.9, we illustrate the dependency of the obtained accuracy on the number
of view-light configurations in the query sets. We only depict this information
for CHISD, which outperformed the other classifiers in the previous experiments.
However, we additionally show the performances of using individual descriptors
and some combinations of the descriptors. In general, the obtained accuracies
increase when taking more images in the query sets, and using the VLAD repre-
sentation leads to accuracies superior to the ones obtained when using histograms.
Furthermore, we analyze the accuracies obtained by using different combinations
of the descriptor types. The difference in the obtained accuracies indicates that
the descriptor types carry different amounts of complementary information. In
particular, the combination of color and denseSIFT clearly outperforms the re-
maining combinations of two descriptor types and even slightly outperforms the
combination of all four descriptors types. Additionally, it becomes apparent that
considering multiple view-light configurations leads to significant performance
gains of almost 20% when using 10 configurations for the query sets in com-
parison to using a single configuration for the query sets when considering the
combinations of descriptors. For more view-light configurations in the query set,
we observe rather marginal improvements in the accuracies which indicates that
the appearance variations that span the material spaces of the individual material
samples are adequately captured. When analyzing the few misclassified material
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samples (e.g. two of the tiles as shown in Figure 7.10 and two of the metals have
not been properly distinguished) and the respective estimated material labels, we
observed that the estimated material and the ground truth material indeed look
rather similar and it is even hard for the human eye to distinguish them.

7.4 Conclusions

In this chapter, we have presented a study on using set-based recognition schemes
in combination with standard descriptors and encodings for material recognition.
Our study demonstrates the benefit of making use of several images of a material
sample for different view-light conditions regarding material recognition. There
are only little performance gains for databases with smaller intra-class variance
before reaching the saturation close to 100%, which might have led to less interest
in investigations on material recognition based on several view-light configurations
in recent years. However, when considering more challenging databases with larger
intra-class variances under different view-light configurations, it is significantly
more difficult to provide a reliable material recognition. We have shown that such
a material recognition can be achieved with a high reliability by looking at the
characteristic material appearance under a few view-light configurations which
emphasizes the significant benefit of set-based material recognition in the presence
of larger variations in appearance of the individual samples. Such a highly reliable
material recognition technique represents one of the fundamental prerequisites of
an efficient acquisition of geometry and reflectance as will be shown in detail in
Chapter 9.

The approach presented in this chapter focuses on reliable material recognition
under controlled illumination conditions. In addition, our method allows consider-
ing material information from several view-light configurations in the query data.
These conditions might be given in typical industrial applications such as material
inspection and are naturally given in standard material acquisition devices as e.g.
mentioned in [SSW+14] in a lab environment.

Furthermore, our approach might also be interesting for multi-view material recog-
nition in more complex, natural illumination. However, when considering such
natural illumination scenarios, there are typically two fundamental changes. Firstly,
the huge variation of illumination conditions needs to be taken into account when
defining the individual material spaces. But the even more crucial difference is that
the typical application scenario is based on completely different priors. Whereas
a systematic acquisition of material information with special and expensive hard-
ware equipment involving several view-light configurations is easily possible in
controlled lab environments and makes sense regarding e.g. material inspection
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in industrial environments, the same task becomes highly challenging when con-
sidering the huge variations of different illumination conditions encountered in
real-world scenarios which severely influence material appearance. Furthermore,
this scenario is less determined by industrial hardware devices but more by light-
weight, low-budget consumer acquisition devices such as simple cameras, cameras
of a mobile phone or cameras of tablets. Therefore, in such a scenario, material
recognition from single images seems to be the more natural scenario. Unfortu-
nately, research is still in an infant stage regarding material recognition in such
scenarios. We therefore leave the application and maybe required adaption of our
set-based material recognition approach to uncontrolled illumination conditions
for the future, and focus on the probably more typical and even more challenging
single-image based material recognition task in the scope of the next chapter.
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Figure 7.6: Some of the materials measured for the UBO2014
database and its extension. 128
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Figure 7.7: Accuracies obtained for the data measured for the UBO2014 database
and its extension when using histograms, disjoint reference and query sets of 5
(upper left), 10 (upper right), 15 (lower left) and 20 (lower right) randomly drawn
images taken under different view-light configurations.
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Figure 7.8: Accuracies obtained for the data measured for the UBO2014 database
and its extension when using VLADs, disjoint reference and query sets of 5 (upper
left), 10 (upper right), 15 (lower left) and 20 (lower right) randomly drawn images
taken under different view-light configurations.
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Figure 7.9: Accuracies obtained for using sets of 20 view-light combinations
for the reference sets and an increasing number of view-light combinations for
the query materials (for the data measured for the UBO2014 database and its
extension). As expected, the accuracy increases when using larger query sets.
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Figure 7.10: Example showing misclassified materials. The estimated material
and the ground truth material indeed look rather similar, and it is even hard for
the human eye to distinguish them from most view-light configurations.
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CHAPTER 8

MATERIAL RECOGNITION UNDER NATURAL

ILLUMINATION

The approach introduced in Chapter 7 focuses on material recognition in a lab envi-
ronment with controlled illumination and possibly measurements of several view-
light configurations, which is particularly interesting in scenarios with complex
acquisition devices that allow measuring a multitude of view-light configurations.
While such scenarios might be encountered in industrial environments e.g. where
materials have to be sorted within supply chains, material recognition becomes
significantly more challenging when leaving the lab conditions as it is required
when analyzing materials in our natural environments. The main reasons for this
can be identified in the complex interplay of material properties, the wide range of
possible illuminations and varying surface geometries of the considered objects. In
addition, there are usually only single images depicting materials under a single
viewpoint and a single illumination configuration. This complicates the task even
more. But how can we approach the task of recognizing materials in single images
acquired under natural illumination?

To cope with the richness in appearance variation found in real-world data under
natural illumination, we propose to synthesize training data that capture these
variations for material classification. This work has successfully undergone peer
review (see [WGK14]). Using synthetic training data created from separately
acquired material and illumination characteristics allows to overcome the problems
of existing material databases which only include a tiny fraction of the possible
real-world conditions under controlled lab environments. However, it is essential
to utilize a representation for material appearance which preserves fine details in
the reflectance behavior of the digitized materials. As BRDFs are not sufficient
for many materials due to the lack of modeling mesoscopic effects, we present a
high-quality BTF database with 22,801 densely measured view-light configurations
including surface geometry measurements for each of the 84 measured material
samples. This representation is used to generate a database of synthesized images
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depicting the materials under different view-light configurations with their charac-
teristic surface geometry using image-based lighting to simulate the complexity of
real-world scenarios. We demonstrate that our synthesized data allows classifying
materials under complex real-world scenarios.

After introducing the contributions of our technique for material recognition under
natural illumination (see Section 8.1), we discuss standard databases used for
material recognition (see Section 8.2) and discuss the generation of synthetic data
used in the scope of this chapter (see Section 8.3). This is followed by a description
of the recognition scheme (see Section 8.4) and a detailed evaluation (see Section
8.5). A short summary and a discussion of the limitations to be investigated in
future work conclude the chapter (see Section 8.6).

8.1 Motivation

Image-based scene understanding depends on different aspects such as the detec-
tion, localization and classification of objects. For these tasks, it is essential to
consider characteristic object properties such as shape or appearance. While its
shape tells us how to grasp a particular object, its material tells us how fragile,
deformable, heavy, etc. it might be and hence, how we have to handle it. The
understanding of the recognized surface material thus guides the interaction of
humans with the corresponding object in daily life, and it also represents a key
component regarding industrial applications. However, image-based recognition
of materials in real-world environments is a challenging problem due to the huge
impact of viewing and illumination conditions on material appearance. Therefore,
training an appropriate classifier requires training data that representatively covers
all these conditions as well as the intra-class variance of the materials.

So far, there have been two main approaches to generate suitable training data.
One approach is to capture a single representative per material category under a
multitude of different conditions, such as scale, illumination and viewpoint, in a
controlled setting [DvGNK96, HCFE04, CHM05, LYG13] (see Table 8.1). How-
ever, the measured viewing and illumination configurations are rather coarse and
hence not descriptive enough to capture the mesoscopic effects in material appear-
ance, which consider the light interaction with material surface regions mapped to
approximately one pixel, in an accurate way. In addition, the material samples are
only measured under controlled illumination or lab environments which does not
generalize to material appearance under complex real-world scenarios. As an alter-
native, the second category of methods uses images acquired under uncontrolled
conditions. In [SRA09], images from an internet image database (Flickr) have been
used. The advantage of this is that both the intra-class variance of materials and
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the environment conditions are sampled in a representative way. Unfortunately, the
images have to be collected manually, and the materials appearing in the images
have to be segmented and annotated. The necessary effort again severely limits
the number of configurations that can be generated this way (see Table 8.1). More
recent databases such as the OpenSurfaces dataset [BUSB13] and the Materials in
Context Database [BUSB14] contain even more annotated surfaces from real-world
consumer photographs. However, annotating and segmenting several thousands of
images contained in these databases has to be performed by crowd sourcing which,
in contrast, is rather expensive.

In this chapter, we instead make use of synthesized data which has already been ex-
plored for different applications (e.g. [EG08, PJW+11, TGZ08, SGS10, SFC+11,
ON12, BM12, BM13]). In particular, separately acquired material characteristics
and illumination conditions offer the possibility to create synthetic training data for
material recognition that capture the variations of real-world data. This decoupling
of the sampling of material from environment conditions allows us to overcome
the limitations of existing material databases that contain only a few hundred
configurations of viewing and lighting conditions per material category. For these
synthetic images, perfect segmentations are directly available without the need for
manual segmentation and annotation, and a huge number of them can be obtained
easily and fully automatically. This approach requires the creation of realistic
renderings, which accurately simulate the appearance of a material in a real-world
scenario. In particular, the appearance of many daily life materials such as cloth,
skin, etc. is determined by effects taking place on surface structures mapped to
a size of approximately one pixel (e.g. scratches or fibers) such as subsurface
scattering, interreflections, self-shadowing and self-occlusion. These effects cannot
be modeled by standard Bidirectional Reflectance Distribution Function (BRDF)
models, which are suitable especially for locally smooth surfaces such as plastic or
metal as these fulfill the assumption of a homogeneous surface reflectance behav-
ior. This was pointed out in [WHON97], where the concept of Apparent BRDFs
(ABRDFs) has been introduced to take the above-mentioned effects into account.
Bidirectional Texture Functions (BTFs) [DNvGK97] are a data-driven approach
to efficiently capture and store ABRDFs and represent these mesoscopic effects.
The results in [LF12], where training data has been synthesized based on BRDFs,
support exactly this claim by showing that using BRDF materials for synthetic
training data alone is not sufficient for materials exhibiting mesoscopic effects of
surface reflectance and leads to classification results significantly worse than using
real-world images. In contrast, our experiments indicate that using an appropriate
representation of the reflectance behavior such as the BTF opens up the possibility
of solely using synthesized training data for classification tasks. We demonstrate
that the classification of real-world test data can be boosted significantly by using
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image-based lighting via environment maps [Deb98] instead of simple directional
light sources. To achieve this, we generate synthesized training samples under a
vast amount of different lighting conditions simulated by arbitrary HDR environ-
ment maps, which adequately represent the complexity of real-world materials and
lighting.

For this purpose, we have acquired a database containing dense BTF measurements
of 84 material samples. The samples can be grouped into 7 categories (i.e. 12
samples per class). Per BTF, all combinations of 151 view directions and 151 light
directions have been measured which results in 22,801 images per sample or a total
of 7 · 12 · 22,801 > 1.9M images respectively. The data of our measured database
with directional illumination is used as input to generate the synthesized data. By
acquiring a height map of each material sample via the structured light technique
described in Chapter 3, we also include the complexity of the geometric structure
of the different materials in the process of generating synthetic training images.
While in fact an arbitrary number of configurations could easily be included in
the synthesized database, we so far used 42 different viewpoints and 30 different
illumination conditions per material sample.

In summary, the key contributions presented in this chapter are:

• a technique that allows the decoupling of the acquisition of material samples
from the environment conditions by generating synthetic training samples,

• a publicly available novel BTF database of 7 material categories, each con-
sisting of measurements of 12 different material samples, measured in a
darkened lab environment with controlled illumination,

• a second, novel database containing data synthesized under natural illumi-
nation which represents a clear difference to other datasets that only use
directional illumination or an additional single ambient illumination, and

• an evaluation which shows that these synthetic training samples can be used
to classify materials in photographs under natural illumination conditions.

8.2 Databases for Material Recognition

In this section, we briefly review commonly used databases for material recogni-
tion and discuss their limitations (see Section 8.2.1). Subsequently, we discuss
approaches that follow the recent trend of using synthetic training data in various
applications (see Section 8.2.2).
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8.2.1 Conventional Material Databases

Table 8.1 gives an overview of several different material databases. The CUReT
database [DvGNK96] contains measurements of 61 material samples under 205
configurations with different viewing angles and different directional illumination
conditions. This database has been extended in the scope of the KTH-TIPS
database [HCFE04] in terms of varying the distance of the acquired sample to
the camera, i.e. the scale of the considered textures, in addition to changing
viewpoint and illumination angle. In both databases, however, only a single
material instance is provided per class, and thus the intra-class variation of semantic
material categories is not represented. Aiming for a generalization to classifying
semantic material categories, the KTH-TIPS database has been extended by adding
measurements of different samples of the same semantic material category and
also considering ambient lighting in the KTH-TIPS2 database [CHM05]. However,
taking only four samples per category still limits the representation of the intra-class
variance of material categories observed in real-world scenarios. More recently,
a spectral material database has been presented in [LYG13] for multi-spectral
material recognition. However, the samples are imaged from only one single
viewpoint. A common limitation of all these databases is the rather limited number
of measurements, which are furthermore acquired in a lab environment. Hence,
the influence of the complexity of real-world environment conditions is not taken
into account, and, therefore, material recognition under natural illumination cannot
be performed based on such training data.

Other databases are designed to capture the large intra-class variation in the appear-
ance of materials in complex real-world scenarios. The Flickr Material Database
(FMD) [SRA09] contains images that have been downloaded from Flickr.com
and show different associated material samples under uncontrolled viewing and
illumination conditions and compositions. Even larger collections are given
by the OpenSurfaces dataset [BUSB13] or the Materials in Context Database
(MINC) [BUSB14]. However, annotations and segmentations of the images of
these collections require plenty of work in a time-consuming process and are typi-
cally obtained by costly crowdsourcing services such as Amazon Mechanical Turk
(AMT) [BUSB13, BUSB14, CMK+14]. In addition, while manual segmentations
are available, these masks are not always accurate, leading to the inclusion of back-
ground appearance and problematic artifacts for material recognition. Obviously,
the significantly more complex variations of material appearance encountered
under natural illumination make material recognition much more challenging and
only recognition rates far below the ones obtained for databases acquired under
controlled lab conditions have been reached so far [LSAR10, SLRA13]. The main
reason for this is that it is more complex to include the possibly encountered
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Table 8.1: Overview of different databases. Please note that the FMD considers
different configurations of viewing and lighting conditions as well as different
material samples for each individual image. Our databases are highlighted in red
(∗: in principle, an arbitrary number of configurations could be considered in the
synthesis).
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variations on material appearance in the training data than for material recognition
under controlled illumination data, where a smaller subset of training data might
already be sufficient. Furthermore, a different approach has been presented with
the Describable Textures Dataset (DTD) [CMK+14]. While the aforementioned
databases establish classes for different material instances or more general semantic
material categories, this database considers semantic material attributes as classes.
This allows to represent materials in terms of how well they match the individual
attributes.

8.2.2 Previous Approaches Based on Synthetic Training Data

The manual processes typically required to capture exemplars as well as to segment
and annotate materials in images severely limit the number of images per material
category in all of the above-mentioned databases. As an alternative, the potential
of computer graphics has been investigated to introduce a new promising trend of
using synthesized training data for several applications.

Recombination methods focus on some specific aspects present in real-world exam-
ples and recompose them to new examples as done in [EG08, PJW+11] to enlarge
the available training data by recombining shape, appearance and background
information for pedestrian detection. In [TGZ08], new virtual training images
are synthesized via photometric stereo for texture classification. This way, fewer
training images need to be acquired. In contrast, rendering techniques can be used
to produce new examples based on an underlying model. For instance, pose estima-
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tion was facilitated using synthesized depth maps in [SFC+11]. In [SGS10], object
detection based on 3D CAD models is investigated using viewpoint-dependent,
non-photo-realistic renderings of the object contours to learn shape models in
3D, which then can be matched to 2D images showing the corresponding object.
Furthermore, an evaluation of the commonly used image descriptors based on a
photo-realistic virtual world has been carried out in [KTF11]. This virtual scenario
represents a well-suited setting to analyze the effect of illumination and viewpoint
changes. The methods in [BM12] and [BM13] use a renderer to synthesize shading
images based on given depth maps and a spherical harmonic model for illumina-
tion for the estimation of shape, illumination and reflectance from input images.
This way, a decoupling of albedo and illumination is reached. The decoupling
of measured surface material and environmental lighting has also been addressed
in [ON12], where shape and BRDF of objects have been jointly estimated under
known illumination from synthetic data generated from different combinations of
shapes, environment illuminations and BRDFs. In [WD04], geometric textons are
rendered under different view-light configurations in order to estimate geometric
texton labels used in a hybrid model for geometry and reflectance.

Recently, this trend has resulted in the development of the virtual MPI-VIPS
database introduced in [LF12] (see Table 8.1). This database is based on using
BRDFs to represent the light exchange on the surface of an object and does not rely
on physical measurements but uses a texture map and material shaders of available
rendering packages. Bump maps are used to simulate the local mesostructure
of the material surface to improve the shading effects. The selection of shaders,
viewpoints and illuminations used to render the materials is closely oriented on the
KTH-TIPS2 database. The texture map does not capture intra-class variance and
the approximate rendering models result in a less realistic depiction of some materi-
als such as aluminum foil, which appear rather artificial, especially in complex light
situations. The reason for this less realistic impression of the synthesized materials
is that the complexity of the reflectance characteristics of the involved materials
has not been adequately considered as e.g. mesoscopic effects contributing to the
appearance of many materials such as textiles, bread or cork are not modeled. In
addition, the shaders are not suitable to accurately reproduce the reflectance behav-
ior of crumpled aluminium foil. The investigations in [LF12] therefore indicate
that a training set based on the utilized virtual samples alone performs poorly for
material classification and a mixture of real and rendered samples is necessary
to get acceptable results. In contrast to these studies, we show that the synthe-
sis approach to generate virtual samples matters. Our measured database covers
intra-class variances better and includes significantly more viewing and lighting
configurations than any of the other databases. These dense measurements are
required for the realistic depiction of many materials with their characteristic traits
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in a virtual scene via BTFs to preserve the mesoscopic effects in the synthesized
data.

8.3 Generation of Synthetic Training Data

In this section, we discuss the details of our database of measured BTF material
samples and how this database is used to produce synthetic training images of these
samples under a range of different viewing and illumination conditions.

8.3.1 BTF Material Database

Since we intend to create synthetic training images, it is necessary to digitize the
material samples in such a way that it becomes possible to reproduce the material
appearance under nearly arbitrary viewing and lighting conditions. Though a
wide range of material descriptions exists, image-based BTFs have proven to
be a representation which is suitable for a wide range of materials, as already
discussed in Section 8.1. Since their introduction in [DvGNK96], the technology
has advanced considerably, and today devices for the practical acquisition of BTFs
at high angular and spatial resolutions are available. A detailed survey on devices
for reflectance acquisition is given in e.g. [HF13, SSW+14, WK15a, WdBKK15,
WLGK16]. In contrast to the small number of representative images acquired
for the other databases listed in Table 8.1, these setups allow to acquire tens of
thousands of images. Those images are taken in a lab environment and, hence,
are not directly applicable for typical real-world scenarios. However, this much
larger number of viewing and lighting conditions offers the possibility to render
high-quality images of the materials under nearly arbitrary viewing and lighting
conditions, where material traits are still accurately preserved. For a recent survey
on BTFs, we refer to [FH09].

Our measured database is formed by 7 semantic classes which are relevant for
analyzing indoor scenarios (see Figure 8.1). To sample the intra-class variances,
each of these 7 material categories of our database contains measurements of 12
different material instances. These instances share some common characteristics
of the corresponding category but also cover a large variability. With a total of
84 measured material instances, we provide more than the CUReT database, the
KTH-TIPS database and the KTH-TIPS2 database (see Table 8.1). For each of the
materials, we have measured a full BTF with 22,801 HDR images (bidirectional
sampling of 151 viewing and 151 lighting directions) of a 5cm× 5cm patch with a
spatial resolution of 512× 512 texels. Thus, our database contains more than 1.9
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million images. Additionally, for each sample, a height map has been acquired
via structured light. This helps to reduce compression artifacts and allows to
render realistic silhouettes. We employed a reference geometry to evaluate the
RMS error between the reconstruction and the ground truth geometry which was
approximately 25µm as already mentioned in Chapter 3. The acquisition of both
geometry and BTF of a material sample was achieved on a fully automatic basis
in approximately 3 hours, and up to 4 samples can be acquired simultaneously. In
particular, there is no need for manual annotation and segmentation which is not
feasible for large image collections. Our database is available at http://cg.cs.
uni-bonn.de/en/projects/btfdbb/download/ubo2014/.

Figure 8.1: Representative images for the material samples in the 7 categories.

8.3.2 Synthesis of Novel Training Images

Once the materials have been measured, it is in principle possible to render images
showing the materials under nearly arbitrary viewing and lighting conditions. In
order to train a material classifier, we have to decide for which conditions we
synthesize the training images, and we need a technique to synthesize a sufficiently
large number of images efficiently. Additionally, the material representation used
to produce the renderings needs to be capable of accurately depicting the traits
in material appearance. In the synthesis process (see Figure 8.2), the measured
geometry and BTF of a considered material sample are rendered under different illu-
mination conditions simulated by environment maps, which is a standard technique
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in computer graphics (see e.g. [Deb98]). Furthermore, utilizing the measured
geometry allows compensating parallax effects. The latter would otherwise be in-
duced by surface regions which significantly protrude from the modeled reference
surface and result in a blurring of the surface details. We followed the technique in
[RSK13] which is based on the reprojection of the BTF onto the geometry. The
result remains a BTF parameterized over the respective non-planar reference ge-
ometry and not a Spatially Varying BRDF, as the reflectance functions still remain
data-driven ABRDFs. Hence, effects like interreflections, self-shadowing, etc. can
still be reproduced. For geometric details not contained in the reference geometry,
the major parallaxes are removed by the reprojection and the remaining disparities
do not significantly affect the appearance of the synthesized material.

Synthesized Image 

Camera Parameters 

Measured Material Data 

Reflectance 

Geometry 

+ 

Measured Illumination Data 

Figure 8.2: Synthesis of representative training data: The full Cartesian product of
material data (corresponding geometry and reflectance) and environment lighting
(environments taken from [Deb13]) can easily be rendered by using a virtual
camera with specified extrinsic and intrinsic parameters. The illustrated output
image is generated using the material and illumination configuration highlighted
in red.

In the rendering process, the exitant radiance Lr(x, ωo) is calculated for each
surface point x via the image-based relighting equation

Lr(x, ωo) =

∫
Ω

BTF(x, ωi, ωo) Li(ωi) V (x, ωi) dωi, (8.1)

where ωi and ωo represent the incoming and outgoing light direction. Li(ωi)
denotes the radiance distribution in the environment map over the spherical domain
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Ω. The visibility function V (x, ωi) represents a binary indicator function describing
if the environment map is visible from surface point x in the direction ωi. Due
to the enormous number of images that we want to synthesize, the use of an
efficient rendering technique is mandatory. Therefore, we decided to additionally
use an OpenGL-based renderer to generate our database. To simulate the HDR
environment in this renderer, we approximate it in a way similar to the work in
[BARA06] with 128 directional light sources, distributed representatively over the
environment via a relaxation algorithm. In this case, the equation for the evaluation
of the exitant radiance Lr(x, ωo) reduces to

Lr(x, ωo) =
∑
ωi∈L

BTF(x, ωi, ωo) Li(x, ωi) V (x, ωi), (8.2)

where V (x, ωi) represents a shadowing term computed via shadow mapping
[RSC87] and L denotes the set of light source directions, i.e. the ωi represent
the directions towards the utilized directional light sources. That way, it becomes
possible to render the images with a double resolution full-scene anti-aliasing at a
resolution of 1,280× 960 pixels in about 2s on a GPU, including the computation
of the 128 shadow-maps necessary to compute V (x, ωi). Figure 8.3 illustrates the
considerable variations in material appearance captured in the synthesized data due
to changes in the illumination and viewing conditions.

For every combination of material sample and environment map, we then generated
training images, depicting a planar material sample under a range of 21 different
rotations of the material sample

(θ, ϕ) ∈ {0◦, 22.5◦, 45◦} × {−67.5◦,−45◦,−22.5◦, 0◦, 22.5◦, 45◦, 67.5◦}

and in two different distances to also consider the scale-induced variations in
appearance of the materials. To increase the variance captured by our dataset
further, we also use 6 rotated versions of each of the used environment maps.
As a consequence, we obtain 1,260 images per material sample (see Table 8.1).
Though we only used planar samples in the scope of this chapter, the BTFs could,
in principle, also be rendered on arbitrary geometry to further increase the space of
sampled conditions.

8.4 Recognition Scheme

Figure 8.4 illustrates our recognition scheme which shows similarities to our
technique presented in the scope of Chapter 7. To make the current chapter self-
containing, we briefly discuss the relevant components also in the scope of this
chapter.
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Figure 8.3: Examples for synthesized images of the same material sample that
demonstrate the large variation in material appearance under different viewing
and illumination conditions.

In order to capture different aspects of material appearance, we use densely sampled
3× 3 color patches and densely sampled SIFT descriptors. Both of these descriptor
types represent standard descriptors (e.g. [LSAR10, SLRA13]). Although the
color of a material varies depending on the conditions of the environment and the
viewpoint, it still contains valuable information as the variance of the color of a
certain material sample under natural illumination is typically limited. Using dense
SIFT features has become a popular choice in scene, object and material recognition
[BZM06, ZMLS07, LSAR10, LF12, SLRA13] as well as these features capture the
local spatial and directional distribution of image gradients and provide robustness
to variations in illumination and viewpoint. In our system, these features are
extracted on multiple scales (s ∈ {1, 2, 4, 6, 8}). Both descriptor types are extracted
on a regular grid with a spacing of 5 pixels as in [LSAR10].

Once features have been extracted, an appropriate representation of the content of
the image regions with the respective materials has to be computed for each type
of descriptor. For this purpose, we first generate a dictionary of visual words for
the individual feature types by k-means clustering [Ste57, Llo57, Llo82, Mac67]
of the respective descriptors extracted from the images in the training set. As
already mentioned in Chapter 7, this allows us to represent the single images either
by histograms as used in standard bag-of-words (BOW) approaches or by more
sophisticated representations such as Fisher vectors [PD07] or vectors of locally
aggregated descriptors (VLADs) [JDSP10] which have shown to yield superior
performance when compared to standard BOW approaches. Hence, we choose
VLADs to describe the content of the masked regions. This means that all the
local descriptors xi in an image are first assigned to their nearest neighbor cj with
j = 1, . . . , k in the corresponding dictionary with k visual words for each feature
type. Subsequently, the entries in the VLAD descriptor are formed by accumulating
the differences xi − cj of the local descriptors and their assigned visual words
according to

vj =
∑

{xi|NN(xi)=cj}

xi − cj. (8.3)
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The final descriptor is built via the concatenation v =
[
vT1 , . . . ,v

T
k

]T . However,
the dimensionality of this representation is rather high-dimensional (d · k). Here, d
represents the dimensionality of the local descriptors (e.g. d = 128 for SIFT) and
k the number of words in the dictionary. We utilize PCA and take the 250 most
relevant components of the PCA space per descriptor type for the training data.
The VLAD representations of the test set are projected into this space.

The final classification task can be performed by using standard classifiers, such as
the nearest neighbor classifier, random forests [Bre01] or support vector machines
[Vap95]. The latter have already been successfully applied in the domain of
material recognition [VZ09, CHM05, SLRA13]. Since an SVM with RBF kernel
outperformed the nearest neighbor classifier or random forests in our experiments,
we only report the numbers for the SVM, where the regularization parameter and the
kernel parameter are estimated based on the training data using grid search.
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Figure 8.4: Recognition scheme: Based on the descriptors extracted from
the synthetic training data (where the masks for the presence of materials
are automatically given) we calculate a dictionary via k-means clustering
[Ste57, Llo57, Llo82, Mac67]. This dictionary is used to encode the descriptors
per masked region via VLADs [JDSP10]. Then, a dimensionality reduction of these
VLADs is performed via PCA which is followed by an SVM-based classification.
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8.5 Experimental Results

In the scope of our experiments, we focus on the question whether real-world
materials can be classified using synthesized training data. For this purpose, we first
validate our recognition scheme on standard material databases (see Section 8.5.1).
In the next step, we perform a detailed evaluation of the use of our synthesized
training data for material recognition (see Section 8.5.2) which is followed by a
comparison to the use of other synthesized datasets (see Section 8.5.3). After this,
we analyze the potential of our synthesized training data to recognize materials in
internet photos (see Section 8.5.4). In order to obtain the VLAD representation
of the individual feature types, we use dictionaries with 150 visual words for the
color descriptor and 250 visual words for the SIFT descriptor in our experiments
similar to [LSAR10, SLRA13].

8.5.1 Validation of Recognition Scheme on Commonly Used
Material Databases

With accuracies of 99.11% and 99.25% on the CUReT database and the KTH-TIPS
database respectively, our system is on par with recent state-of-the-art approaches
as listed in [TVG12] which achieve accuracies of around 99%.

8.5.2 Analysis of Using Synthetic Training Data

Our main experiments target material recognition under everyday illumination
conditions. For this reason, we acquired photographs of the samples of the 7
classes considering arbitrarily chosen poses of the camera with respect to the
material samples for the test set Tte,1. Different illumination conditions are taken
into account by placing the material samples into different environments: a room
with natural illumination, a room with a mix of natural illumination and neon
lamps, a room with neon lamps and two darkened room scenarios with a rather
directional illumination. In each of the 5 scenarios, each material sample is
photographed twice using different viewpoints, which results in a test set of 840
images. Based on this test set, we evaluate whether our synthesized training
data (both pathtraced and OpenGL-based) can be used to train a robust classifier.
Additionally, we perform an evaluation of considering natural illumination vs.
considering directional illumination as present in the measurement data. This
will indicate what can be gained from the training data synthesized under natural
illumination. The results are summarized in Table 8.2.
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Comparison of Measured vs. Pathtraced Training Data (Directional Illumi-
nation): In a first step, we considered training the classifier using training data
with illumination via point light sources. We randomly selected 50 images per
material sample from the measured data resulting in a training set Ttr,m of 4,200
images. Using this training set, we obtain a classification accuracy of 58.92%
on Tte,1. To support our assumption that virtual images are of a similar quality
as their real-world counterparts, we generated a virtual duplicate of the utilized
measurement device using the pathtracer implementation in [Jak10]. Using this
virtual setup, we produce synthetic training data following Figure 8.2 for exactly
the same viewing and illumination configurations as given in Ttr,m. In this case,
we illuminate the respective material samples using point light sources as given
in the real device instead of using environment maps. The resulting classifica-
tion accuracy of 60.48% closely matches the accuracy obtained for the real-world
measurement data.

Comparison of Measured vs. Pathtraced Training Data (Natural Illumina-
tion): Here, we analyzed the effect of considering more complex illumination as
encountered in typical real-world scenarios for the training. We captured all the
84 material samples under two representative room environments and an outside
environment in a courtyard, and from two different viewpoints which results in a
training set of 504 images. Based on this training set, where we expect the camera
settings (viewpoints with respect to material samples, white-balancing, etc.) to be
close to the ones used for the test set, we obtain a recognition accuracy of 75.83%.
In order to synthetically simulate this scenario, we captured light probes of the
three environments and used them to generate training data under more typical
real-world lighting but under the same viewpoints as present in Ttr,m. This leads to
a training set of 12,600 images for which we obtain an accuracy of 68.21%.

Obviously, there is a clear benefit of using representative environments in the
generation of the easy-to-produce synthetic training data in comparison to the illu-
mination via point light sources as present in Ttr,m. In addition, the characteristic
material traits seem to be preserved sufficiently within our synthesized data to
allow the classification of real materials. However, we recognize a difference in
performance between using the training set of 12,600 images synthesized under
environment lighting and the use of the 504 photos taken in the respective environ-
ments. This might be due to the noise introduced by the pathtracer with only 32spp
(samples per pixel) which influences the descriptors as well as due to not perfectly
matching the assumptions of far field illumination and the neglection of emitting
surfaces. The reason for only taking 32spp is that data generation using a pathtracer
takes a lot of time, especially if different environment lighting and different scales
are desired. Rendering the 4,200 images for the virtual measurement device (under
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one single environment map) for instance already takes about two days using
32spp with our implementation based on Mitsuba on a Intel Xeon CPU E5-2690v2
workstation (32 cores, 3GHz). We also did not perform a white-balancing of the
data under the environment lighting which might influence both descriptor types.
Furthermore, the acquisition conditions (view conditions, camera characteristics)
of both Tte,1 and the 504 real-world training images were similar.

Comparison of Measured vs. Rasterized Training Data (Natural Illumina-
tion): As a consequence of the slow rendering via a pathtracer, we used our
OpenGL-based synthesis procedure to generate the huge amount of images in
our synthesized database. As a training set, we consider a random subset of 600
different viewing and illumination conditions from this synthesized data for each
of the classes resulting in 4,200 images. In this scenario, our classifier yields a clas-
sification accuracy of 72.74% which again significantly outperforms the accuracy
of 58.92% obtained when using 4,200 photos acquired during the measurement of
the samples in a lab with controlled illumination for the training. It even almost
reaches the accuracy of 75.83% achieved in the experiment mentioned before. This
might be due to the fact that we do not encounter the problem of noise induced
by the pathtracing approach when using the OpenGL-based synthesis as well as
due to better matching the viewpoint conditions in Tte,1 by accounting for multiple
scales.

Furthermore, we analyzed the impact of using different numbers of the OpenGL-
synthesized images for the training. The accuracy increases with an increasing size
of the training data, which is to be expected, as larger training sets cover a larger
variance of the utilized viewing and illumination conditions (Table 8.2).

Comparison of Per-Class Accuracies: There seems to be a trend that in partic-
ular the samples of the categories fabric, felt, leather and stone can be categorized
more reliably when using the synthesized training data (OpenGL-based) with natu-
ral illumination in comparison to measurement data with directional illumination
(improvements of around 22% (fabric), 10% (felt), 30% (leather), 35% (stone) and
less overfitting for the remaining categories). This agrees with our motivation for
this study as we expect the samples of these classes to have more variance in appear-
ance under the different illumination conditions due to their deeper mesostructure
and their surface reflectance behavior.

Classifier Generalization to Unseen Material Samples in Different Environ-
ments Based on Synthesized Data: For each of the classes, we draw a random
subset of 600 images with different viewing and illumination conditions from the
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Table 8.2: Classification of the manually acquired photos in Tte,1 using different
training sets. (∗: pathtraced using Mitsuba renderer [Jak10]; ∗∗: OpenGL-based
synthesis using 4 environment maps available from [Deb13] and 1 environment
map available at our department).

training set illumination type of performance
type training data on Tte,1

4,200 images from measurement directional real-world 58.92%
4,200 synthesized images (pathtraced∗) us-
ing the same viewing and lighting condi-
tions as present in measurement

directional synthetic 60.48%

12,600 synthesized images (pathtraced∗)
using the same viewing conditions as
present in the measurement data but under
3 measured environments

natural synthetic 68.21%

504 photos acquired in 3 measured environ-
ments

natural real-world 75.83%

525 synthesized images (OpenGL-based∗∗) natural synthetic 62.74%
1,050 synthesized images (OpenGL-
based∗∗)

natural synthetic 65.71%

2,100 synthesized images (OpenGL-
based∗∗)

natural synthetic 68.69%

4,200 synthesized images (OpenGL-
based∗∗)

natural synthetic 72.74%

complete synthetic training data. We split the material samples of the 7 classes
into disjoint training and test sets by using 8 material samples observed under 4
different environments for the training set and the remaining 4 samples rendered
under the fifth environment map as the test set. The resulting accuracy of 62.29%
indicates the ability of our classifier to generalize to unseen material samples and
illumination conditions. Using more material samples per category and more
environment maps would probably lead to an increase in accuracy.

8.5.3 Using Our Synthesized Database vs. Using Previous Syn-
thesized Training Data for Classifier Training

A comparison to other approaches using synthesized data, such as [LF12], is not di-
rectly possible. While the material shaders and the selected illumination conditions
utilized for the generation of synthetic data in [LF12] are chosen to correspond up
to some degree to the conditions during the acquisition of the KTH-TIPS2 database,
our synthesized data considers different material categories which we expect to
be more relevant for scene analysis because of their presence in offices, buildings
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and streets. Our data does not focus on the controlled illumination conditions in a
lab environment and, instead, approaches the more complex real-world conditions
in arbitrary environments. The only class we directly share with the MPI-VIPS
and the KTH-TIPS2 databases is wood. In order to analyze the difference of using
shaders with the reproduction of the illumination conditions present in the test
dataset and our data synthesized from several real-world wood samples under more
complex illumination conditions, we first train a wood-vs-rest classifier on the
synthesized MPI-VIPS database and perform a classification on the KTH-TIPS2
database. Here, 61.57% of the images in the wood category of the KTH-TIPS2
database are recognized correctly. In contrast, we also perform an experiment
where we have replaced the wood images of the MPI-VIPS database in the training
set with images taken from our OpenGL-synthesized data with environment illu-
mination for the class wood. Even though the illumination conditions in our data
are rather different in comparison to the ones present during the acquisition of the
KTH-TIPS2 database, we obtain a correct recognition of 76.16% for the images
with the label wood of the KTH-TIPS2 database, which represents a significant
improvement. This clearly demonstrates the benefit of using accurately digitized
materials for material recognition from synthesized data and taking the intra-class
variances into account.

8.5.4 Material Recognition in Internet Photos

For each of our 7 material categories, we downloaded 20 images and performed a
manual segmentation on each image. Then, the masked material regions form the
set Tte,20. Taking a subset of 15 images per class from Tte,20 gives another test set
Tte,15. Using our aforementioned training data of 4,200 images synthesized using
OpenGL and considering environment illumination gives accuracies of 65.71%
(Tte,15) and 62.86% (Tte,20). In comparison, using Ttr,m for the training results in
an accuracy of only 56.19% for Tte,15 and 56.43% for Tte,20.

In addition, training the classifier on 5 of the images per class not included in Tte,15

gives an accuracy of 41.90% on Tte,15. The influence of adding synthesized data
to this training set on the accuracy obtained for Tte,15 as well as a summary of
the other results in this paragraph are shown in Table 8.3. Taking more training
data with a larger variance of the utilized illumination conditions and the utilized
viewpoints leads to an increasing performance. This clearly demonstrates the
power of using synthesized materials for practical applications.

Except for the category leather, we also used the samples present in the CUReT
database to represent the categories. For each category, we selected 92 images
equally distributed over the material samples contributing to the classes (carpet:
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samples 18,19; fabric: samples 2,3,7,22,29,42,44,46; felt: sample 1; stone: samples
10,11,17,30,33,34,36,37,41,49,50; wallpaper: samples 12,31,38; wood: samples
54,56). In this experiment, we obtained accuracies of 41.11% (Tte,15) and 36.67%
(Tte,20) which indicates a bad generalization of the CUReT database to natural
illumination, varying viewing conditions and intra-class variances. Furthermore,
the image quality is rather low for the CUReT database.

Table 8.3: Classification of internet images (Tte,15 and Tte,20) using different
training sets. (∗: OpenGL based synthesis using 5 environment maps available
from [Deb13]; †: category leather is not covered in the CUReT database).

training set illumination type of Tte,15 Tte,20
type training data 15 internet 20 internet

images images
CUReT images † directional real-world 41.11% 36.67%

4,200 images from measurement directional real-world 56.19% 56.43%
4,200 synthesized images∗ natural synthetic 65.71% 62.86%

internet images natural real-world 41.90% −
internet images+ natural mixed 66.67% −

4,200 synthesized images∗

internet images+ natural mixed 72.38% −
16,800 synthesized images∗

8.6 Conclusions

In this chapter, we have presented an approach to create synthetic training samples
for material recognition. This way, it is possible to decouple the acquisition of
the material samples from the acquisition of the illumination conditions under
which the material is observed. In addition, using synthesized data overcomes the
necessity for time-consuming manual acquisition, annotation and segmentation of
images. To evaluate our approach, we acquired a database of BTFs, containing
7 classes with 12 samples each, from which the training data is generated. Our
evaluation demonstrates that synthetic training data offers new potentials regarding
material recognition in complex real-world scenarios with natural illumination and
clearly outperforms the alternative of taking images from the measurement of the
material samples under controlled illumination conditions as training data. There-
fore, our approach represents a significant step towards classifying materials in
everyday environments which makes our approach valuable for many applications.
Further work might be spent on extending the database by additional material
classes in the future. In addition, increasing the number of viewing and lighting
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conditions considered in the synthesized database could be a future objective as
well.
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CHAPTER 9

EFFICIENT, AUTOMATIC SELECTION OF REQUIRED

ACQUISITION TECHNIQUES

As mentioned in Chapter 2, there is a huge multitude of acquisition techniques
where each of the individual methods is typically tailored to only a certain type of
surface reflectance behavior. However, objects might consist of several different
surface parts with different types of surface reflectance and appropriate acquisition
methods might not be known a-priori. After a brief recapitulation of the motivation
behind the techniques developed in the scope of this thesis (see Section 9.1), we
discuss possibilities to combine the 3D shape acquisition techniques presented in
Chapter 3, Chapter 4 and Chapter 5 in order to handle objects with diffuse, glossy
and mirroring surface parts (see Section 9.2).

Furthermore, based on the availability of appropriate, material-specific acquisition
techniques as discussed in Part II and the availability of reliable tools for mate-
rial recognition as discussed in Part III, an efficient pipeline for both geometry
and reflectance acquisition can be realized. This is required if there is no prior
knowledge available regarding the surface materials of the object to be measured
(see Section 9.3). The latter concept has successfully undergone peer review (see
[WK15b]).

9.1 Motivation

The goal of accurately capturing details in surface geometry and reflectance behav-
ior has led to a huge number of different acquisition methods and respective setups.
However, current state-of-the-art acquisition procedures are designed regarding the
expected reflectance behavior of an object to be digitized as already discussed in
Part II.

In the domain of reflectance acquisition, it is well-known that smooth, homoge-
neous materials can be represented well with analytical BRDF models. These
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typically solely depend on the direction of the incoming light and the view direc-
tion. Spatially varying BRDFs additionally allow the modeling of spatial variations
in surface reflectance behavior. However, materials exhibiting mesoscopic effects
of light exchange on surface structures imaged to a size of approximately one pixel
cannot be modeled by using simple BRDF models or spatially varying BRDFs.
For such materials, current state-of-the-art techniques acquire data-driven BTFs
which consider the spatial material variations in addition to the view direction and
the direction of the incoming light.

In a similar way, 3D reconstruction techniques typically also depend on some
basic assumptions about material reflectance. Many of the methods such as most
multi-view stereo techniques and photometric stereo techniques are based on
assuming Lambertian reflectance behavior (see Section 2.3.1). Some more so-
phisticated extensions also allow to consider the wider range of opaque surfaces
(see Section 2.3.2). Furthermore, structured light systems are well-suited for the
geometry acquisition of objects with a reflectance behavior ranging from diffuse
to even specular as long as a sufficient diffuse reflectance component is present.
In contrast, other reconstruction techniques are tailored to mirroring surfaces (see
Section 2.3.3), translucent surfaces (see Section 2.3.4) or refractive surfaces (see
Section 2.3.5). All the aforementioned geometry reconstruction techniques con-
sider only a fraction of the possible surface materials and are – by design – not
capable of handling arbitrary surface reflectance.

Without a-priori knowledge about the material properties of the considered object
or material sample, a naïve acquisition strategy would be to apply several different
material-specific techniques and merge their results. However, in many cases
this is highly inefficient regarding acquisition time, and hardware components
are stressed unnecessarily as many of the taken images do not have an influence
on the final reconstruction and, hence, have to be neglected. For more efficient
geometry and reflectance acquisition procedures in case of missing information
about the material properties, it is therefore desirable to automatically select only
the appropriate techniques instead of applying several different methods that might
not necessarily be needed.

Consequently, this chapter introduces two novel concepts for efficient acquisition
pipelines:

• A novel theoretical concept that allows to combine our 3D shape acquisition
techniques presented in Part II to an automatic, efficient acquisition system
(see Section 9.2) where the local consistencies obtained with the individually
applied methods are explored in order to select the locally most suitable
acquisition method. The resulting conceptual framework is based on estab-
lishing consistencies using cues that are individual to different acquisition
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techniques that, in turn, are designed for different types of surface reflectance
behavior. Once such different consistencies have been extracted, they can
be integrated into the same efficient optimization framework to get a 3D
reconstruction for the considered object.

• A novel automatic, smart geometry and reflectance acquisition framework
(see Section 9.3), in which a highly accurate material recognition step is
used to select the required techniques for both geometry and reflectance
acquisition.

9.2 3D Shape Acquisition of Objects With Unknown
Surface Reflectance

Today’s geometry acquisition methods still meet their limitations when prior knowl-
edge about the surface reflectance behavior of the considered object is not available,
as they are typically designed to be appropriate for only a rather small range of
possible material types. However, the material type is often not known a-priori and,
consequently, the automatic selection of appropriate acquisition methods repre-
sents an important prerequisite. Therefore, when several 3D geometry acquisition
techniques are available, where each of them is capable of handling different types
of surface reflectance, one important question is whether these different methods
can be combined in a single automatic acquisition pipeline. Such a pipeline would
not only allow the acquisition of objects consisting of a single a-priori unknown
material but also allow the acquisition of objects with heterogeneous surface re-
flectance behavior where different acquisition techniques have to be used for the
individual parts made of different materials. The following discussion will focus
on a conceptual analysis regarding possibilities to combine the shape acquisition
techniques introduced in the scope of Chapter 3, Chapter 4 and Chapter 5. The
methods developed in the scope of these chapters are:

• a technique to acquire the geometry of Lambertian objects via photometric
stereo as discussed in one of the experiments in Section 5.5,

• techniques to acquire the geometry of objects with a reflectance behavior
consisting of both a diffuse and a specular component (see Chapter 3 for a
purely structured light based approach and Chapter 4 for a combination of a
structured light system with a multi-view Helmholtz stereopsis technique),
and

• a technique to acquire the geometry of mirroring objects (see Chapter 5).
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As described in Chapter 4, the geometry information reconstructed via structured
light systems such as the one introduced in the scope of Chapter 3 can be trans-
formed to a corresponding volumetric consistency and, hence, to a volumetric
representation. Furthermore, one key observation can be identified in the fact that
our reconstruction methods in Chapter 4 and Chapter 5 are based on information
in a volumetric representation as well, and the respective optimization frameworks
used for both methods are rather similar. Therefore, the task of combining these
methods can be approached by combining the individual consistency measures
derived per point in the volume using each of the acquisition techniques. In more
detail, the structured light information and the Helmholtz normal consistency in-
formation measured as described in Chapter 4 have to be complemented with the
normal consistency information for mirroring objects discussed in Chapter 5. This
results in a modification of the energy functional with respect to the ones used for
the individual approaches.

Another possibility to combine methods for Lambertian and mirroring objects could
be the fusion of our geometry acquisition techniques based on multi-view normal
field integration introduced in Chapter 5. In fact, combining the normal information
obtained from photometric stereo measurements as briefly discussed in Section 5.5
and the normal information derived for mirroring objects following the technique
presented in Section 5.4 leads to a purely normal-based geometry reconstruction
process. For instance, the object depicted in Figure 9.1 exhibits heterogeneous
surface reflectance characteristics as it has both rather matte and almost ideally
mirroring parts. Based on the acquisition procedures discussed in the scope of this
thesis, the first key observation is the fact that, for diffuse surface parts, normal
hypotheses obtained via photometric stereo or Helmholtz stereopsis exhibit a rather
small variance at points close to the surface whereas normal hypotheses derived
via the technique for mirroring surfaces will typically not be consistent at the true
surface. In contrast, on mirroring parts, the observation will be different as the
normal hypotheses derived via the technique for mirroring surfaces will typically
show a highly consistent, dominant mode whereas the normal hypotheses obtained
via photometric stereo or Helmholtz stereopsis will not form a highly-dominant
cluster but show a large variance at the true surface. While both of these types
of normal information are separately used to acquire the geometry of Lambertian
and mirroring surfaces, their combination to handle inhomogeneous objects can
be approached by simply combining the local normal consistencies obtained for
the individual methods in the volume. In order to make a robust reconstruction
possible, an appropriate combination of the individual consistencies per volumetric
point could be performed by e.g. taking only the normal information with the higher
consistency. Consequently, it is not only possible to identify the local material type
and the appropriate acquisition technique based on the consistencies obtained for
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the individual methods, but also to select the local surface normal computed via
the respective technique.

Subsequently, based on the local normal estimates and their respective consistency
estimate resulting after the combination of the individual methods, the same min-
cut-based optimization framework as discussed in Chapter 5 can directly be applied
for the final reconstruction. Therefore, in addition to providing information regard-
ing material properties inferred from the consistencies, combining our methods
would allow the reconstruction of the full 3D shape for the range from diffuse to
mirroring objects with complex surface geometry.

Other investigations also derive normal information for specular objects (e.g.
[BS03, CGS06, YIX07, NWR08, FCM+08, BHB11]), transparent objects (e.g.
[MK05, KS05, MK07, YIX07, KS08, YWT+11]) or translucent objects (e.g.
[CGS06, DMZP14, IMMY14]), and this normal information could probably also
be integrated into our geometry acquisition framework. Particularly the integration
of volumetric normal information for translucent objects or glass objects and the
fusion of the respective consistencies might even improve the range of material
types for which the shape of the respective objects can be reliably acquired.

Unfortunately, the aforementioned concepts of combining the individual methods
require full measurements of the involved objects with all the different acquisition
techniques that are available for the individual material types as illustrated in the
naïve, automatic acquisition pipeline in Figure 1.3. As a result, the total acquisition
time tΣ can be computed as the sum of the acquisition times ti with i = 1, . . . , N
needed for the N individual measurements according to

tΣ =
N∑
i=1

ti. (9.1)

Furthermore, hardware components might also be stressed unnecessarily as some
of the measurements are not required for the final reconstruction and some of
the computational effort is not required as well. This renders such an acquisition
strategy rather impractical. As we would favor an efficient, automatic acquisition
process only involving the required effort regarding measurement time and hard-
ware usage, our investigations in the scope of the next section will focus on the
information that can be inferred visually from images of a material surface and
show whether this information can be used for a more efficient acquisition.
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Shape-from- 
Specularity Normals 

Photometric Stereo 
 Normals 

Shape-from- 
Specularity Normals 

Photometric Stereo 
 Normals 

Figure 9.1: Normal consistency for different acquisition methods: The shown
object consists of rather matte and mirroring parts. When acquired with the
methods developed in this thesis, normal hypotheses obtained via photometric
stereo or Helmholtz stereopsis (red) show a small variance at surface points on
the rather matte parts, whereas normal hypotheses derived via the technique for
mirroring surfaces (green) will not be consistent. For points on the mirroring parts,
the normal hypotheses derived via the technique for mirroring surfaces (green)
form a dominant mode with a small variance, whereas the normal hypotheses
obtained via photometric stereo or Helmholtz stereopsis (red) are not consistent on
the surface.
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9.3 Efficient Automatic Acquisition Based on an Ini-
tial Material Recognition

As pointed out in [Rui13], cost-efficient measurements of complex objects or
materials will probably necessitate the utilization of some kind of prior information.
However, an open question is whether typical assumptions such as analytical
BRDF models, smoothness, low-rank, etc. provide the best priors or whether
data-driven priors represent a superior approach. In the scope of this section, we
propose a complete pipeline for an efficient, automatic acquisition of geometry
and reflectance. In particular, we demonstrate how the components developed in
this thesis can be composed to an efficient, fully automatic acquisition framework
where the required acquisition techniques are selected based on a prior material
recognition (see Figure 9.2). In order to let the involved material recognition system
act as an automatic assistance system which guides the subsequent acquisition
process in such a way that only the required acquisition methods are involved, our
approach relies on using a-priori information in the form of a database of material
measurements with additional annotations regarding the methods that have to
be chosen for the acquisition of geometry and reflectance. The key idea is the
classification of a measured material based on only a rather small set of photos and,
depending on the annotations of the closest match in the database, corresponding
methods can easily be determined. For an almost mirroring metal, for instance, a
shape-from-specularity approach could be used for geometry reconstruction and a
BRDF measurement could be started to capture surface reflectance properties. If
the considered material sample is classified as a material with strong mesoscopic
effects as e.g. given in leather, a method appropriate for glossy materials such as
our technique described in Chapter 4 could be used in combination with a BTF
acquisition. The crucial prerequisite of such a strategy is the availability of a
reliable material recognition framework, which has led to our investigations in
Part III, and the availability of a database of materials with annotations regarding
their appropriate acquisition processes as well as the availability of acquisition
methods that are suitable for the different surface materials. Hence, one core
component of our framework can be identified in a material database which contains
images of a multitude of material samples taken under different viewing and
lighting conditions, which are expected to be met during the acquisition with
standard devices as analyzed in [SSW+14]. In our experiments, we used the
material measurements performed for the BTF database introduced in Chapter 8
and additional material measurements resulting in data for 160 different material
samples similar to our material recognition experiments described in Chapter 7
with additional annotations regarding the acquisition routines to be selected. In
agreement with our results in Chapter 7, our material recognition has an accuracy
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of more than 97% based on only 20 view-light configurations per material and the
few misclassified query material samples indeed have such a high visual similarity
to the respective ground truth materials that they can hardly be distinguished by
human observers as illustrated in Figure 9.3. In turn, this suggests that we might
still take the stored parameters for a subsequent acquisition or reconstruction
respectively due to the similarity of the materials. This can easily be verified
by taking a closer look at the annotations regarding the acquisition methods to
be chosen. In fact, 100% of the annotations of the query materials have been
correctly estimated based on the recognition technique described in Chapter 7,
i.e. our system allows a highly reliable recommendation regarding appropriate
acquisition and reconstruction methods. Consequently, an appropriate acquisition
process can be performed based on these suggested techniques for geometry and
reflectance acquisition.

So far, our technique makes a significantly more efficient acquisition of geometry
and reflectance behavior of material samples possible. Current limitations can be
identified in the fact that its current version is only capable of reliably acquiring
surfaces made of a single material type and not of several material types simultane-
ously. To handle such cases as well, our technique would have to be extended by an
additional segmentation of the input images according to the respective materials.
Per local material component, our technique might then be applied in a similar
way. Furthermore, our technique for material recognition cannot handle non-planar
objects yet as such objects require a more complex approach which considers
the local variations of material appearance induced by the surface geometry and
illumination conditions. While this still represents a challenge to be solved in the
future, one possible strategy could be to consider local surface patches separately in
the material recognition step and involve a patch-based application of the geometry
acquisition techniques.

In order to get an impression about the amount of time that can be saved with an
efficient automatic acquisition system based on a smart selection of acquisition
techniques for the involved materials, we provide a short discussion with respect
to the acquisition times. Our structured light based geometry acquisition tech-
nique described in Chapter 3 requires images that depict observed stripe patterns
as projected onto the object surface by the involved projectors. The respective
acquisition typically takes approximately 1.5 hours when using our highly parallel
setup presented in [SWRK11] and in the range from approximately 1.5 hours to 3.0
hours in our turntable-based acquisition device introduced in [SSWK13, SSW+14].
In contrast, our geometry acquisition method introduced in Chapter 4 requires a
full structured light measurement as well as a full reflectance measurement as input.
Therefore, the acquisition time is significantly larger as the reflectance acquisition
usually requires approximately 4 hours to 10 hours depending on the complexity
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of the surface materials. Furthermore, the geometry acquisition using our method
presented in Chapter 5 takes approximately 1.5 hours to 2.0 hours when using
illuminations from two to three different positions of the involved screens. When
analyzing the required processing times, the higher complexity of our consistency-
based techniques in Chapter 4 and Chapter 5 becomes apparent in processing times
of approximately 8 hours to 12 hours on a workstation with two Intel Xeon 5645
CPUs with 2.4 GHz or approximately 4 hours to 5 hours on a workstation with
two Intel Xeon E5 − 2650 CPUs with 2.0 GHz. In contrast, the triangulations
required for the structured light approach in Chapter 3 and the subsequent Poisson
reconstruction are carried out in approximately 1.5 hours.

Furthermore, the acquisition time as well as the processing time required for the
reflectance reconstruction also strongly depend on the respective material. For
materials following simple homogeneous BRDF models, only four parameters have
to be measured, which might be done in only a few minutes. In contrast, materials
with e.g. a spatially varying reflectance behavior require the measurement of six
parameters in order to get an SVBRDF or BTF representation. In addition, the sam-
pling density of the involved view-light configurations that need to be measured
also needs to be taken into account. For dense measurements of several thou-
sands of view-light configurations as used in e.g. [SWRK11, SSWK13, SSW+14],
even fine details of mesoscopic reflectance can be appropriately captured. How-
ever, even when acquiring the computationally demanding BTF, the acquisition
and processing times might vary significantly depending on the complexity of
the involved materials, which influences the acquisition parameters such as the
number of exposures used during the measurement. This can be seen e.g. in the
evaluation given in [Sch14], where the acquisition parameters and the processing
parameters for different objects are given as listed in Figure 9.4, Figure 9.5 and in
Figure 9.6.

As a result, the automatic selection of appropriate geometry and reflectance acqui-
sition techniques with the respective postprocessing methods might save several
hours.
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Figure 9.2: Efficient, automatic acquisition pipeline. Based on a few input images of the material that should be acquired,
an initial material recognition is used to find appropriate acquisition parameters in a database of reference materials with
the respective annotations. Subsequently, these attached annotations for the closest material in the database can be used
to guide the subsequent acquisition process by selecting the appropriate acquisition techniques. In the scope of our work,
we focus on the acquisition of 3D geometry. However, the same pipeline also allows to select appropriate reflectance
acquisition techniques.
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-mirroring 
-SVBRDF 

-mirroring 
-SVBRDF 

-diffuse 
-BTF 
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Figure 9.3: Illustration of the incorrectly classified materials and their annota-
tions: Material recognition has been performed based on 20 disjoint view-light
configurations in the reference sets and the query sets and using color patches,
SIFT descriptors, Gabor filters and HOG features. While for these few misclassifi-
cations the query materials (left) and their respective closest matching material
in the database (right) still look rather similar, the annotations regarding the
recommended acquisition systems are identical.
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Donkey1,2 Minotaur1 Terracotta Soldier1
specular brass bronze, green paint, marble black terracotta
3/41 or 2/32 4/4 2/2

2:491 / 1:551 or 3:182 / 4:502 2:45 / 2:56 1:45 / 1:03
12:351 or 14:382 10:23 15:17

Buddha1 Strawberry1 Pudding Pastry1
red paint, gold leaf, wood strawberry skin and leafs pastry, sugar-coating, vanilla pudding

3/3 2/2 3/3
2:41 / 1:30 0:46 / 0:57 1:12 / 1:21

22:55 8:26 31:58

Apple1 Almond Horn1 Crispy Roast Pork1

apple skin and flesh almonds, pastry, chocolate pork, bacon, crust
3/3 3/4 3/3

1:14 / 1:21 1:12 / 2:14 1:00 / 1:22
9:33 15:57 26:38

Billiard Ball2 Santa2 Psoriasis Moulage2
red, black and white phenolic mixed glossy paints wax, paint, fabric, lacquered wood, paper

?3 4/4 3/3
?3 3:59 / 6:10 3:07 / 7:02
?4 ?4 34:51

Figure 9.4: Objects digitized in the scope of [Sch14]: Listed are the respective ap-
parent materials of the individual objects, the number of used exposures (geometry
acquisition / reflectance acquisition), the acquisition times (geometry acquisition
/ reflectance acquisition) as well as the total processing times (1Measured in the
Dome 1 device, 2Measured in the Dome 2 device, 3Original measurement data
damaged, 4No information available due to data loss).
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Chess Piece1,2 Tennis Ball2 Shoe2
resin, matte white finish synthetic fabric (fluorescent) synthetic fabric, rubber, plastic

1/31 or ?2,3 4/3 ?3

0:261 / 1:291 or ?2,3 1:10 / 7:08 ?3

12:521 or ?2,4 8:56 ?2,4

Mug2 Ganesha2 Paintbrush2

ceramics labradorite lacquered wood, metal, bristles
2/3 3/4 3/5

0:50 / 2:52 1:47 / 9:12 1:01 / 8:27
28:57 22:39 10:18

Micrometer2 Fish2 Inkwell2
polished and rough metal, plastic gold and red paint silver

3/5 3/4 2/4
2:04 / 16:21 1:44 / 7:34 0:51 / 5:25

10:31 36:12 10:41

Teal2 Epithelioma Moulage2 Pyramid2

feathers, beak, green paint wax, paint, fabric, lacquered wood, paper clay, patina
2/2 3/4 1/2

1:13 / 4:22 5:21 / 13:20 1:39 / 3:01
74:48 22:12 32:43

Figure 9.5: Objects digitized in the scope of [Sch14]: Listed are the respective ap-
parent materials of the individual objects, the number of used exposures (geometry
acquisition / reflectance acquisition), the acquisition times (geometry acquisition
/ reflectance acquisition) as well as the total processing times (1Measured in the
Dome 1 device, 2Measured in the Dome 2 device, 3Original measurement data
damaged, 4No information available due to data loss).
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Ammonite 12 Ammonite 22 Rhinoceros Teeth2

fossil ammolite fossil
2/3 3/5 2/3

1:04 / 6:24 3:20 / 20:13 2:19 / 4:57
19:36 9:28 18:10

Figure 9.6: Objects digitized in the scope of [Sch14]: Listed are the respective ap-
parent materials of the individual objects, the number of used exposures (geometry
acquisition / reflectance acquisition), the acquisition times (geometry acquisition
/ reflectance acquisition) as well as the total processing times (1Measured in the
Dome 1 device, 2Measured in the Dome 2 device, 3Original measurement data
damaged, 4No information available due to data loss).
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CHAPTER 10

CONCLUSIONS

In this final chapter, we provide a summary of the contributions achieved in the
scope of this thesis in Section 10.1. This includes an overview on the presented
novel, robust 3D shape acquisition techniques for different surface materials in
the full range from diffuse objects to mirroring objects (see Section 10.1.1), our
novel material recognition frameworks for scenarios with controlled and natural
illumination (see Section 10.1.2) and the novel concepts regarding efficient, au-
tomatic acquisition processes (see Section 10.1.3). Subsequently, we discuss the
limitations of each technique and potential future research in Section 10.2.

10.1 Summary

In this section, we summarize the novel techniques that have been developed in the
scope of this thesis in the context of 3D geometry acquisition (see Section 10.1.1),
material recognition (see Section 10.1.2) as well as our novel concepts with respect
to an efficient, automatic acquisition process based on our individual techniques
(see Section 10.1.3).

10.1.1 Contributions Achieved in the Context of 3D Shape Ac-
quisition

The contributions described in the chapters of Part II have been dedicated to the
improvement of the state-of-the-art with respect to geometry acquisition techniques
and handling different types of surface materials.

First, we have introduced a novel multi-camera, multi-projector super-resolution
framework for structured light based geometry acquisition (see Chapter 3). This
framework is capable of significantly increasing the density of the reconstructed
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point cloud in comparison to standard structured light systems. As it is typical
for standard structured light systems, our framework is tailored to objects ranging
from diffuse to even specular surface reflectance as long as a sufficient diffuse
reflectance component is given. In this context, we observed that using high
dynamic range imaging additionally improves the robustness of our structured light
technique.

Secondly, we have designed a novel geometry acquisition framework in order
to compensate the limitation of triangulation-based reconstruction techniques by
using normal information in addition to the information derived with a structured
light system (see Chapter 4). The method is capable of handling the range of
opaque materials as the combination of a structured light system with Helmholtz
normals is used. Both types of information are efficiently combined based on
a novel efficient, volumetric surface reconstruction technique that uses the con-
tinuous min-cut on an adaptive grid structure and a subsequent refinement. In
comparison to triangulation-based 3D reconstructions, our method allows a signifi-
cant improvement in the accuracy of the reconstructed models. However, mirroring,
translucent and transparent surfaces still cannot be handled by this approach.

Finally, we also introduced a novel geometry acquisition framework for the class of
mirroring objects which cannot be reliably reconstructed using the aforementioned
techniques (see Chapter 5). While still taking benefit from the efficient, volumetric
surface reconstruction technique introduced in Chapter 4, the respective energy
functional in the optimization is only based on normal information as the projector-
based structured light system used in Chapter 3 and Chapter 4 cannot be used
for the reconstruction of mirroring surfaces. As demonstrated in Chapter 5, our
normal-based optimization framework has been proven to be highly accurate for the
reconstruction of the full 3D shape of mirroring objects with even complex surface
geometry including concavities and self-occlusions. In addition, our normal-
based optimization framework represents a valuable approach for general normal-
based 3D reconstruction approaches as any normal information that has been
a-priori determined can serve as input. These normals can be inferred via different
techniques that are appropriate for the individual types of surface reflectance
behavior. In this regard, we have demonstrated that e.g. normals inferred via the
standard photometric stereo technique can be used in our optimization framework to
obtain a robust reconstruction for non-mirroring objects. Although in this example
the considered object has a specular component in addition to the diffuse component
and therefore violates the assumptions of the standard photometric stereo technique,
a rather accurate model for the 3D geometry can be reconstructed.

All of our developed methods are designed in a systematic way that allows them
to be combined in a single acquisition pipeline as discussed in Section 9.2. This
would enable the automatic acquisition of the full 3D shape for objects with
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diffuse surface reflectance up to mirroring surface reflectance. Other normal-based
information might, in addition, be easily integrated to even further increase the
range of materials that can be acquired with the pipeline.

10.1.2 Contributions Achieved in the Context of Material Recog-
nition

In this section, we will provide an overview regarding the contributions achieved
in the context of material recognition and shortly hint on the typical scenarios for
applying these techniques.

In the scope of the technical contributions with respect to material recognition
discussed in Part III, we considered two scenarios. The first scenario, material
recognition under controlled illumination, probably represents the typical scenario
in industrial applications, where it is likely that material appearance might also
easily be captured under several view-light configurations. Our approach presented
in Chapter 7 has been demonstrated to be capable of reliably recognizing materials
from only a few images measured under different view-light configurations. In
contrast, the second scenario considers material recognition under natural illumina-
tion conditions. For this case, we presented a novel recognition scheme based on
synthetic training data which circumvents the tedious manual work with respect
to the acquisition of material samples under different view-light configurations,
their respective annotation and their segmentation in the images (see Chapter 8). In
particular, our method is designed to easily combine separately acquired material
data and environment illumination data. Virtual but yet realistic material samples
can be arbitrarily placed in synthetic environments and the viewing conditions can
be specified arbitrarily as well.

To the best of our knowledge, both of our approaches represent a significant
contribution in the respective research domain and might influence future work
in this domain. In the scope of this thesis, we have investigated the impact of a
reliable material recognition with respect to more intelligent and, hence, more
efficient acquisition strategies in Part IV.

10.1.3 Contributions Achieved in the Context of Efficient, Au-
tomatic Acquisition Concepts

In the scope of this thesis, we have also presented two initial concepts towards a
fully automatic 3D shape acquisition process for objects with a-priori unknown
surface reflectance.
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We have discussed a concept on how our geometry acquisition methods might be
combined to handle the full range of diffuse to mirroring objects which can even be
extended towards other types of surface reflectance such as existing for translucent
or transparent objects. The key prerequisite of such methods for being integrated
into the acquisition system can be identified in the normal fields that have to be
estimated via appropriate techniques. Once the normals have been estimated, all
the information can be fused using our highly efficient optimization framework
based on the continuous min-cut formulation on an adaptive grid structure with a
subsequent refinement step.

Furthermore, we have also pointed out the potential of an initial material recognition
stage for a selection of appropriate acquisition techniques which is certainly of
great importance regarding both geometry and reflectance acquisition (see Section
9.3).

10.2 Limitations and Future Work

After having summarized the achievements of this thesis, this section is focused on
the discussion of limitations of our methods as well as future avenues of research
to compensate them. We also provide an outlook to upcoming trends in the related
domains.

10.2.1 Geometry Acquisition

While the techniques presented in Chapter 3, Chapter 4 and Chapter 5 have led to
significant improvements with respect to the reconstruction of diffuse, opaque and
mirroring objects, these methods are still not suitable for high-quality reconstruc-
tions for the full range of possible surface materials. In particular, our methods
face limitations with respect to the acquisition of the geometry of translucent and
transparent objects.

While several investigations explored shape-from-specularity techniques to ac-
quire transparent objects (e.g. [YIX07, YWT+11]) and translucent objects (e.g.
[CGS06, GAVN11]), there are some critical aspects that might prevent reliable
reconstructions for the respective surface materials. Handling translucent objects
might e.g. be complex when using shape-from-specularity techniques such as our
technique for the reconstruction of mirroring objects as the pattern information
might get blurred at the transitions of the stripe patterns observed on the translucent
object. As the resulting decoding of the structured light codewords will be less
reliable, the reconstruction quality will decrease as well. To overcome this problem,

172



10.2. LIMITATIONS AND FUTURE WORK

it might be worth to consider different structured light encodings than Gray codes
as used in the scope of this thesis. In this regard, the combination of conventional
Gray codes and specific Gray codes with a larger minimal stripe width has been
investigated in [GAVN11]. An alternative could be to apply the separation of direct
and global components of the scene as presented in [NKGR06].

Finally, the proposed rather material-specific acquisition techniques rely on an
a-priori known information regarding the surface material of the object to be
acquired. Based on this information, a decision can be made on whether the
acquisition method is appropriate or not. Usually, this information is part of the
experience of e.g. a cultural heritage expert who selects the appropriate acquisition
technique depending on the surface material of the object. However, in many
cases it is desirable to consider fully automatic solutions for 3D reconstruction
as e.g. in a supply chain, and typically there is no a-priori information about the
surface material available as this might vary for each object. Similarly, different
parts of an object could be made of different surface materials. Therefore, the
respective object might have a heterogeneous surface reflectance with e.g. diffuse
and mirroring parts. For this purpose, the appropriate combination of the individual
techniques as discussed in Chapter 9 would be useful for an automatic acquisition.
While we only have presented a theoretical concept for the combination of our
individual methods, the practical implementation still has to be carried out in
the future. In addition, suitable 3D reconstruction methods for objects made of
materials with other types of surface reflectance such as transparent or translucent
objects need to be integrated. While our considerations focused on geometry
acquisition in lab environments where the illumination and viewing conditions
can be controlled, there is an emerging interest in techniques for in the wild
geometry acquisition that can ideally be performed based on sparse input data
acquired via mobile devices such as mobile phones. Such conditions are particularly
challenging for more complex surface reflectance behavior and adequate methods
have to be addressed by future research. In recent years, a few methods have
been proposed which focus on bridging the gap of photometric stereo methods
so that they can also be applied in scenarios with natural illumination (see e.g.
[ALFG12, MKSN12, YYT+13, GYN13]).

10.2.2 Material Recognition

In the scope of our material recognition schemes, we currently use a combination
of off-the-shelf color and texture descriptors. While these descriptors already help
to achieve acceptable recognition rates, even more effort has to be spent on the
development of material descriptors. An emerging trend that has gained particular
attraction simultaneously to the developments of this thesis can be identified in
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learning descriptors for material recognition [SN13, LF14, CMK+14, BUSB14]
instead of relying on pre-defined techniques for extracting color descriptors or
texture descriptors such as filterbanks [LM99a, LM01, Sch01, FA91, Gab46],
Local Binary Patterns (LBPs) [OPM02], HOG descriptors [DT05], SIFT de-
scriptors [Low99, Low04], SURF descriptors [BETvG08], basic image features
[CG08, CG10] or sorted-random-projection descriptors [LFCK12]. This allows
the identification of the material structures that are most important to achieve a
reliable material recognition. In addition, attribute-based descriptions [CMK+14]
that consider attributes such as bumpy, checkered, dotted, fibrous, knitted, porous,
smeared, sprinkled, stained, striped, woven, or zigzagged also represent an impor-
tant direction of future research. Therefore, even more effort has to be spent on the
development of attribute-based datasets such as the Describable Texture Dataset
[CMK+14] which consider variations in the appearance of attributes in a better
way. In this context, it might also be worth to analyze the subjective perception
criteria such as warm/cold, rough/soft, etc. in addition to semantic, visual features
such as glossiness or roughness as these attributes guide the material selection
process of designers as well as the material editing.

Considering the material reflectance in different spectra as e.g. the near-infrared
or the ultra-violet spectral range might additionally contribute to a more robust
material recognition, as the appearance of materials observed under these spectral
ranges might be distinguished more easily than in the RGB channels. In this regard,
material appearance in the near-infrared domain has already been considered in
e.g. [SFS09], and in [LYG13], illumination by six different wavelengths is used to
classify materials.

Furthermore, the widely used material databases presented in [DvGNK96, HCFE04,
CHM05, BG09, SRA09] contain only a rather small number of images with re-
spect to the variations in material appearance encountered in daily life, which
is not sufficient for a generalization to other databases where materials are pho-
tographed under different viewing and illumination conditions and on different
surface geometries. For this purpose, much larger material databases are required.
Recent approaches towards larger databases include OpenSurfaces [BUSB13],
which contains annotated surfaces from real-world consumer photographs, and
our database of synthesized materials as described in Chapter 8. While several
thousands of hours have been spent for the annotation and segmentation of the data
for the OpenSurfaces database, our approach in Chapter 8 does not require manual
annotation and segmentation for the training data. However, to handle the wide
range of appearance variations of individual classes such as fabrics, leather, stone
or wood, a much larger number of materials would have to be measured for each
of the classes in comparison to the 12 material samples per class provided by our
database. Furthermore, more material categories have to be included. For some
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rather specular materials, the generation of synthesized data might be based on
the fitting of analytical BRDFs as the BTFs are not suitable to reproduce strong
specularities. In addition, to allow material classification on complex surface
geometries, it might be favorable to use a multitude of different surface geometries
to generate synthesized data similar to the data mentioned in Chapter 8 and derive
a novel, even better representation for materials. Obtaining such amounts of mea-
sured material data is currently still a time-consuming process as measurements
in standard devices as e.g. the camera arrays in [SWRK11, SSW+14] require
an acquisition time of several hours per measurement. However, the trends for
faster appearance acquisition devices will probably reduce the acquisition time
significantly in the future and will make our approach more practical. Again it is
worth mentioning that many of the respective schemes towards sparse reflectance
acquisition (see e.g. [dBSHK14]) or multiplexed reflectance acquisition (see e.g.
[dBSHK15]) only work for a certain range of materials. Furthermore, we have
performed an investigation of linear models to even further reduce the number of
view-light configurations measured during the acquisition in [dBWK15].

Having huge masses of data, i.e. many images, there is an additional need for
efficient large-scale learning techniques that can train per-class models based on a
high number of images in a reasonable time. Furthermore, when huge masses of
tens of thousands of view-light configurations systematically acquired by devices
such as the ones presented in [SWRK11, SSW+14] are available, it might also be
possible to identify view-light configurations that are most informative regarding
material recognition. These might e.g. be useful for the calculation of better convex
hull models for our technique described in Chapter 7. Additionally, these most
important view-light configurations might provide important insights regarding
the development of small, hand-held devices for material recognition. Obviously,
only a very limited number of view-light configurations can be considered in the
design of such a device, which makes the consideration of the most informative
view-light configurations an important prerequisite. By simulating the acquisition
process in a virtual device via the currently available rendering frameworks similar
to our approach in Chapter 8, fundamental information might be inferred regarding
an optimal configuration of the components involved in the measurement under
which material characteristics can be successfully detected, e.g. by analyzing the
classification/retrieval performance.

So far, we did not consider an automatic segmentation of materials within images.
Certainly, this represents an important objective in the future as well, as it reduces
the involved manual work significantly. In this context, more investigations towards
color segmentation strategies with robustness with respect to shadows, highlights,
and textures such as the one in [VBvdWV11] will have to be carried out.

The insights provided by this thesis in the context of material recognition under
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natural illumination could be especially valuable with respect to a scenario where an
end-user makes a photograph of a material she/he wants a new piece of clothing to
consist of (e.g. with her/his mobile phone), sends it to a cloud system and receives
all the clothing agreeing with the specified material. In addition, the generation of
synthetic training data similar to our approach might facilitate further investigations.
Furthermore, reliable material recognition/retrieval techniques might become more
valuable in industry as they allow to find either a certain material or a similar
material in the databases from suppliers, to provide quality control or even to guide
production processes based on a material description resulting from the material
design process.

Future research in the context of material recognition might also be spent on
the establishment of material recognition frameworks based on different types of
training data including standard materials from commonly used databases such
as texture databases, procedural models, databases with analytical BRDF models,
databases with data-driven models such as the MERL BRDF database [MPBM03],
the CUReT BTF database [DvGNK96], our UBO2014 database, BSSRDF models,
or photo collections such as the Flickr Material Database [SRA09].

Another important objective for future research can be identified in the develop-
ment of suitable material metrics to efficiently assess similarity or dissimilarity of
materials based on distinctive material characteristics. This might allow a more
practical material retrieval and material recognition. While similar efforts have
long reached maturity in color science regarding the comparison of colors, the
massive increase in physical degrees of freedom imposes significant challenges for
the generalization of color metrics to general material appearance. Furthermore,
the complexity of material appearance might impede that a single material metric
is sufficient. Instead, a portfolio of metrics might have to be considered where
the individual metrics are specific for certain material classes. The availability
of a perceptual metric would allow for a perceptually uniform movement in the
material space and thus also for the creation of perceptually uniform interpolation
sequences. Especially designers would benefit from such techniques as they are
offered to select the materials involved in their applications in a more intuitive
way which might provide a connection between the virtual material design and
reality.

Furthermore, material classification might be applied in the editing and fabrication
domain, e.g. in the design of imitations where a designer searches for materials that
are close to a certain query material. In many cases, exactly the same material is
not available and similar materials have to be used instead. Material interpolation
as e.g. approached in [RSK13], where plausible interpolations have been achieved
even for materials with complex feature topology, spatially varying reflectance
behavior and a mesostructure resulting in strong parallaxes, might also benefit from
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knowledge about how similar the materials to be interpolated are. It might even be
possible to automatically specify between which materials an interpolation might
be meaningful.

10.2.3 Efficient Automatic Acquisition

In the scope of this thesis, we have demonstrated that an efficient acquisition
pipeline can be realized by a selection of the required acquisition techniques. With
our investigations, we provide an inspiration towards consolidating more efficient
acquisition pipelines that are required in industry. While we mainly focus on the
efficient acquisition of the 3D shape of objects as well as on the acquisition of the
geometric surface profile of flat material samples, we only rather briefly discussed
that an automatic selection of appropriate reflectance acquisition techniques can be
carried out in a similar way by an initial material recognition. In this thesis, we
focused on rather flat material samples in this context. Certainly, further effort has
to be spent to realize the suitable selection of acquisition techniques for objects with
rather arbitrary 3D shapes. Not only an automatic segmentation has to be carried
out as discussed in Section 10.2.2 to handle objects made of different materials, but
also more different techniques for reflectance acquisition will have to be integrated
into the acquisition pipeline, i.e. more different BRDF and SVBRDF models will
have to be considered as well as more complex reflectance functions such as the
BSSRDF. In addition, the material database including the respective annotations
used for the selection of the appropriate acquisition techniques will have to be
significantly extended due to the huge variation in appearance encountered for
different materials.

In addition to the selection of appropriate geometry acquisition techniques such
as structured light approaches, shape-from-specularity approaches as well as tech-
niques for translucent and transparent materials, and the selection of adequate
reflectance acquisition techniques based on different models such as BRDFs,
SVBRDFs or BTFs, a future avenue of research might consider the automatic
selection of suitable exposure times used during the acquisition. Furthermore,
much more efficient algorithms for the measurement of material BTFs can be
devised if certain priors such as a class-specific database of sample materials are
present. As shown in [dBSHK14], BTFs can be acquired based on sparse mea-
surements for a wide range of materials if prior knowledge in the form of a BTF
database is available. In particular, the UBO2014 BTF database is used in the
corresponding investigations. As similar materials exhibit similar characteristics in
surface structure and surface reflectance, an initial clustering of the materials in the
database is performed. This is followed by the fitting of linear patch-based models
to each of the clusters and the reconstruction from sparse measurements can then
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be performed by solving a linear system of equations using a per-cluster sampling
strategy derived from the models.

Furthermore, the concept of an efficient acquisition framework as presented in
Chapter 9 might also significantly facilitate the acquisition of cloth. As the resolu-
tion of the fine-grained structures such as fibers or their hairiness is still below the
resolution of the typical geometry acquisition techniques and reflectance acquisi-
tion techniques, volumetric fiber-based statistical yarn models and cloth models
have been developed as discussed in e.g. [Sch13], where a pipeline to reverse
engineer cloth and estimate a parametrized cloth model from a single image is
introduced. The automatic estimation of yarn paths, yarn widths, their variation and
a weave pattern provides fundamental insights that are used to accurately model
the appearance of the original cloth sample. Furthermore, these properties derived
from the input image provide a physically plausible basis that is fully editable
using a few intuitive parameters.
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The following freely available data used in this thesis have been taken from external
sources.

Stanford Bunny
The Stanford 3D Scanning Repository
http://graphics.stanford.
edu/data/3Dscanrep/

Lucy
The Stanford 3D Scanning Repository
http://graphics.stanford.
edu/data/3Dscanrep/

Happy Buddha
The Stanford 3D Scanning Repository
http://graphics.stanford.
edu/data/3Dscanrep/
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St. Peter’s Basilica, Rome, Light Probe
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Dining room of the Ennis-Brown House,
Los Angeles, California, Light Probe
c©2008-2013 USC Institute for Creative

Technologies
http://gl.ict.usc.edu/Data/
HighResProbes/
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