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Abstract
by Abhilash Srikantha

for the degree of

Doctor rerum naturalium

Humans have an unmatched capability of interpreting detailed information about
existent objects by just looking at an image. Particularly, they can effortlessly perform
the following tasks: 1) Localizing various objects in the image and 2) Assigning func-
tionalities to the parts of localized objects. This dissertation addresses the problem of
aiding vision systems accomplish these two goals.

The first part of the dissertation concerns object detection in a Hough-based frame-
work. To this end, the independence assumption between features is addressed by
grouping them in a local neighborhood. We study the complementary nature of in-
dividual and grouped features and combine them to achieve improved performance.
Further, we consider the challenging case of detecting small and medium sized house-
hold objects under human-object interactions. We first evaluate appearance based star
and tree models. While the tree model is slightly better, appearance based methods
continue to suffer due to deficiencies caused by human interactions. To this end, we
successfully incorporate automatically extracted human pose as a form of context for
object detection.

The second part of the dissertation addresses the tedious process of manually an-
notating objects to train fully supervised detectors. We observe that videos of human-
object interactions with activity labels can serve as weakly annotated examples of
household objects. Since such objects cannot be localized only through appearance or
motion, we propose a framework that includes human centric functionality to retrieve
the common object. Designed to maximize data utility by detecting multiple instances
of an object per video, the framework achieves performance comparable to its fully
supervised counterpart.

The final part of the dissertation concerns localizing functional regions or affor-
dances within objects by casting the problem as that of semantic image segmentation.
To this end, we introduce a dataset involving human-object interactions with strong
i.e. pixel level and weak i.e. clickpoint and image level affordance annotations. We
propose a framework that utilizes both forms of weak labels and demonstrate that
efforts for weak annotation can be further optimized using human context.

Keywords: Object detection, human pose, context, weak supervision, affordance,
semantic segmentation
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1.1. MOTIVATION

Breakthroughs in emerging sectors such as energy, computing, materials science and robotics
have created an infrastructure that collects an unprecedented amount of data from billions of
people. Artificial intelligence enables extracting information from this bulk of unstructured
knowledge thereby shaping our approach to consumption: from media recommendations to
connecting professionals, from language translation to virtual assistants and from manufac-
turing cars to ordering a taxi. Given the scope and rate at which it influences contemporary
social and economic factors, we are expecting to enter a new phase of industrial revolution [1].
A precondition to this convergence between the physical and digital worlds is for automated
systems to be able to deduce high level semantic information from visual data, a goal that is
shared with computer vision.

As examples of such applications, robots can assist humans in performing routine chores
like in the 1985–89 television series Small Wonder or virtual reality can make games like
Pokémon Go more indulging and interactive or self driving vehicles can ease navigation. In
such scenarios, it is imperative for computers to be able to assess images like in Fig 1.1(a)
and answer the following questions: What objects are present? Where are they located? What
functionalities do object parts serve? The goal of this dissertation is to develop data-driven
techniques that help realize this goal.
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(a)

  

(b)

Fig. 1.1: Object detection at work. (a) Images illustrating humans performing daily activities.
(b) Ideal outputs of the system: drawing tight bounding boxes around objects and labeling
object part functionalities. See text for details.
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Assuming that the input is an RGB or RGBD image or video stream, we formulate the

above problems as a set of well-defined simpler tasks. They are: a) Mark each instance of a
predefined object by a tight bounding box around its visual extent. b) Label regions within each
bounding box by their functionality or affordance. Following the popular convention of [2],
the problems are formulated as category level object detection and semantic segmentation
tasks respectively. Fig 1.1(b) shows the ground truth responses for these tasks. Here, all
instances of objects bowl, microwave and box are bounded in red, green and blue respectively
and functional regions within these objects are highlighted in cyan for containable, magenta
for openable and yellow for holdable.

Significant progress has been achieved in object detection in the recent past. In categories
where objects cover large image regions, the problem is well addressed. For instance, Average
precision (AP) for large objects (size above 962 px) using a baseline method [3] is 0.369,
whereas the performance for medium (size between 362 and 962 px) and small objects (size
below 362 px) is 0.264 and 0.072, respectively, leaving a large scope for improvement. This
leads us to ponder over why this problem is so challenging.

1.2. CHALLENGES

Inverse problems such as computer vision are required to cope with many challenges. This is
because such systems are purported to deduce accurate inferences from noisy and lossy 2d
projections of a 3d scene. In case of object detection, class membership must be interpreted
despite inherent inconsistency while digitizing visual concepts into language representations.
Apart from this semantic fuzziness, change in viewpoint, deformation, illumination, occlusion
and motion results in high intra-class variations. The interplay between these factors produces
a rich diversity in visual appearance making object detection challenging. These factors are
illustrated in Fig 1.2 and are described as follows.

Discrete category labels: While humans have an unmatched capability of associating
objects and categories, the underlying mechanisms are not clearly understood. It is in fact
unclear if categorization is a suitable representation for computer vision [4, Chapter 1].
E.g., categorizations emerge from languages which are in turn continuously evolving,
giving rise to visual polysemy [5] where visually disparate instances are grouped together
e.g. mouse pertains to both rodents and computer accessories. Another source of dispar-
ity is due to categorization based on functionality e.g. a mobile phone and a traditional
phone might not look similar but cater the same purpose. Also, subtle semantic differences
contribute to inconsistency across examples of the same class e.g. between house and building.

Intra-Class Variability: Generic object detection tasks are required to handle variation in
appearance intrinsic to the object category. For instance, variations in color and shape can
cause significant variability within mugs and variations in texture and number of parts can
alter the appearance of chairs drastically. The problem is intensified for functionality driven
definitions that encapsulate a variety of objects resulting in a specific action e.g. whisker for
“beating an egg”.

Articulation and Viewpoint: Articulated objects or part wise rigid objects can cause
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(a)(a) (b)(b)

(c)(c)

(d)(d)

(e)(e) (f)(f)

(g)(g) (h)(h)

Fig. 1.2: Why is object detection challenging? (a) discrete category labels merging bathing and
coffee mugs together, (b) intra-class variations within coffee mugs, (c) viewpoint variations
and articulation, (d) illumination, (e) background clutter, (f) occlusion, (g) alternative func-
tionalities and (h) motion blur. Images courtesy of websites: magicemart, qualitylogoproducts,
toxel, ikea, wayfair, foodspotting, alicdn, financialexpress, tinydeal, terapeak, designsponge,
herpeculiarlife, thisiswhyimbroke, thisiswhyimbroke, wordpress, craftychica, netdna-cdn.

substantial variation in appearance. Many daily life objects e.g. microwave, scissors etc.
fall into this category. Also, large relative changes in the object-camera viewpoint result in
substantial changes in 2d shape and appearance for many objects, e.g., front and side views
of car, bicycle, etc. However, the advantage is that starkly different viewpoints can provide
information about parts hidden in other views but are visually highly diverse. On the other
hand, small object distortions or viewpoint variations can be approximated as deformations of
a template.

Motion Blur: This is a common artifact which is introduced due to digitized temporal domain.
This occurs because relative motion of objects involved is far too high in comparison with
the rate of image capture. The blurring obscures perceived appearance and position of the
object resulting in more challenging detection scenarios. Typically, deconvolution techniques
and/or optical flow are employed to either improve image quality or pool information from
neighboring frames, respectively.

Illumination: Variation in object appearance can also be caused by extrinsic factors such as
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illumination, i.e. the position and the number of light sources. This has an immediate impact
on brightness, contrast and hue of the 3d scene captured in an image. Varying illumination
also causes shadows, reflections and transparencies in the 3d scene which can create artifacts,
e.g. false boundaries, double reflections, etc. in an image.

Truncation and Occlusion: Understanding from image data must also handle truncation
when the object lies partially within the image’s field of view. This results in incomplete
image evidence frequently dooming object detection based on low and mid level image
representations. Partial loss of image evidence also occurs due to occlusion when parts of
objects are obscured by themselves or others. Occlusion reasoning can either be data driven,
i.e. by learning occlusion patterns as features or driven by geometry, where depth ordered
reasoning using additional imaging modalities can be useful.

Background clutter: Most real world images contain objects in their natural environments.
In some cases, background can implicitly improve the confidence of object sighting, e.g. sheep
on grass or can explicitly guide object localization, e.g. mouse detection can gain from prior
localization of monitor, keyboard, etc. In other cases, background can be highly unstructured
resulting in low level and scale space ambiguities thereby making object detection challenging.

1.3. PRIOR WORK

The tryst with object detection started with Project Mac, a summer assignment in MIT in
1966. In the past decades, basic principles of addressing this problem have evolved in tandem
with those in related areas, e.g. neuroscience, computation, materials science etc. Early work
until the 1980s posed object detection as an alignment between a predefined (3d) shape and
image evidence as a whole. As a result, considerable attention was devoted to representing
shapes as a (hierarchical) combination of primitives as well as edge/line based techniques
to establish correspondences. Improved representations (snakes) and models (scale space,
pictorial structures (PS)) in combination with optimization methods (variational approaches,
graphical models, e.g. Markov random field (MRF)) enhanced robustness against intra-class
variations and noise.

To further accommodate the challenges of object detection, the theme of invariance gained
popularity. Numerous approaches designed features invariant to geometry, e.g. under homo-
graphies or more specifically, under affinities, similarities, rotations; or invariant to appear-
ance, e.g. scale invariant feature transform (SIFT), local binary patterns (LbP) [6], histogram
of gradients (HOG) [7] etc. Starting with statistical methods, such as Eigenfaces [8] for object
recognition, usage of more sophisticated machine learning techniques paved way for feature
based learning, which was further strengthened by advances in convex optimization techniques
(support vector machine (SVM), graphcuts). Increased robustness to background clutter was
achieved by sliding window classifiers that operated in two major paradigms: bag of words
(BOW) model which ignored spatial ordering between object parts and Pictorial Structures
(PS) model which did the opposite.

In the past few years, feature based learning has gained immensely due to large annotated
datasets, efficient hardware and high capacity models, e.g. deep convolutional neural networks
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Fig. 1.3: An overview of research themes for addressing the object detection problem.

(DCNN) which has enabled end-to-end learning. Simultaneously, efficient search mechanisms
have evolved from exhaustive sliding window to data driven techniques, e.g. object proposals
where search is restricted to image subregions. In this regard, Fig 1.3 illustrates various re-
search themes within object detection which are briefly discussed below. Furthermore, a more
detailed prior work of each subproblem is discussed in the corresponding chapters.

1.3.1. Object Modeling

Template matching using sliding window search [8, 9] is a primitive method of object model-
ing. Improved accuracy is obtained by boosting where subsequent weak classifiers are tuned
by previously misclassified examples [9], specifically using random forests in [10]. Fur-
ther, [11] performs a non-linear mapping of original samples based on basis samples before
learning a weak classifier, where basis samples are composed of hard negative examples. As
discussed in Section 1.2, high variability in object appearance is a challenging problem. One
possible solution is to use an ensemble of exemplar-SVMs [12] which are shown to gener-
alize well. Another choice is to learn mixture models where each component represents a
subset of examples. Clustering examples is either predefined e.g. based on viewpoints [13]
or performed automatically [14]. Alternatively, a boosted classifier based on soft binning is
proposed in [15]. Here, clustering is based on various features pooled from regionlets, which
are base feature extraction regions with fixed relative positions within the object.

Conversely, the BOW model [16] neglects spatial ordering and defines objects as a col-
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lection of local features. Although this model is intuitive and generative, the lack of rigorous
treatment of spatial relations between object components holds it back from localizing prob-
lems such as segmentation. This problem is partially dealt with by extending the model using
a multi-resolution approach [17].

A more robust extension is the Implicit Shape Model (ISM) or Star Model [18] which
combines object recognition and segmentation within a generalized Hough transform. To this
end, a codebook that maps an image patch appearance to the probabilistic vote for the possible
location of the object centroid is learned. A discriminative interpretation is proposed in [19]
which learns class specific weights for votes from training data. This is further generalized by
efficiently replacing generative with discriminative, class-specific codebooks using a random
forest framework in [20, 21]. Boosting is incorporated into the model during classification [22]
or regression [23] or both [24] and a multi-class extension is proposed in [25].

In order to reason about object parts instead of only its centroid, a Deformable Part Model
(DPM) or Tree Model is proposed in [26, 27]. Testing in a sliding window procedure, the
model maximizes the linear combination of part visibility scores and inter-part deformations,
which can be efficiently solved if the latter graph is a tree. During training, linear weights
are learned in a convex procedure by pre-determining the otherwise hidden part locations
greedily. More principled approaches to discovering parts are proposed in [28, 29, 30, 31] and
in [32] where parts between various object models are shared. Variations due to deformation
are parameterized at the object level [33] or part level [34] and part-occlusion is addressed
in [35, 36, 37, 38]. While inter-part deformation is realized as a predefined tree in [27], it can
also be learned from training data as in [39]. We compare the tree and star model for object
detection in Chapter 4.

New paradigms replacing computationally expensive sliding window protocol is presently
an active field of research. While an efficient search strategy is proposed in [40], a majority of
approaches formulate object detection as classifying object proposals [41, 42]. Further, stand-
alone techniques that directly regress object locations are proposed in [43, 44]. Combining
large annotated datasets with high capacity models, the latter approaches currently are state-
of-the-art. A study indicating the strengths and limitations of such models is presented in [45]
and [46] discusses possible future directions for research on this topic.

1.3.2. Designing Features

Recent trends in feature learning have surpassed most handcrafted features. However, a
historical perspective is presented here for completeness. Low level features based on
pixel intensities within a local neighborhood are computed as corners [47], interest points
(SIFT) [48, 49, 50], gradient histograms (HOG) [7], textures (LbP) [6] and their combina-
tions [51]. HOG, being highly popular, is generalized to 3d in [52] and its computation is sped
up using lookup tables in [53, 54]. An extension from gradients to textures is presented in the
histogram of sparse codes [55]. With increasing ubiquity of depth cameras, low level features
based on new modalities are proposed in [56, 57].

Mid level features are defined over a larger spatial support and are often defined by group-
ing local low level information. Popular features in this category are contours which are ob-
tained by grouping boundary [58] or edge [59] information. Contour based object detection is
proposed in [60, 61, 62, 63, 64]. Adaptive pooling of appearance based features is proposed
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in [65, 66] and an approach with similar motivation is investigated in Chapter 3.

High level features have a wide spatial support and often span the entire image. Fisher
vectors [67] which are composed of average-pooled zero and first order moments of local
features have been applied to object detection [68]. GIST [69] is also composed of aggregated
mid level features extracted from predefined partitions of the image. Classifier scores pooled
over the entire image are also used as features as in [70].

1.3.3. Object Proposals

As discussed in Section 1.3.1, there is increasing interest towards designing class agnostic
object proposal techniques. Bottom-up methods rely on grouping low level (e.g. pixel level)
information to achieve the end goal. In [71], a sequential keypoint proposal scheme is pre-
sented where a keypoint is localized in the context of previously proposed keypoints and their
appearance. As for region proposals, [72] is based on saliency computation and [73, 74] are
based on related ad-hoc measures. In [75, 76], region proposals are obtained by grouping su-
perpixels, which are in turn obtained by image segmentation. Casting entirely as a regression
problem, [77] learns a function using deep neural networks to output object bounding boxes
given an image as input. On the other hand, [78, 79] design cascaded classifiers to perform an
exhaustive search for image subregions containing objects.

Top down methods rely on high level (e.g. image level) information to achieve the end
goal. In [80], object proposals are adopted from K-nearest annotated training images which are
retrieved based on similarity between global image descriptors. An approach based on guided
partitioning of image subregions to search for those containing objects is designed in [81].
The issue of finding small objects in images due to low resolutions is dealt with using a multi-
resolution framework in [82]. Finally, a study towards understanding the characteristics and
limitations of various object proposal techniques is presented in [83].

1.3.4. Non Maximal Suppression

It is desirable to have object detection systems performing at high recall and precision. Follow-
ing standard evaluation [2], duplicate detections of an object are considered as false positives
thereby deteriorating performance. This is often the case with sliding window approaches
which can have multiple highly overlapping windows classified as the same instance of an
object. To this end, a class specific approach to combine multiple such detections into a single
bounding box is proposed in [84, 85, 86]. This is generalized in [87, 88] where co-occurrence
statistics between multiple classes is utilized to reconcile multiple detections within and be-
tween classes. A different strategy is adopted in [89, 90] where coarse bounding box estimates
are iteratively refined into those that tightly fit objects.

1.3.5. Context

There is a broad agreement about the ability of contextual cues to offset challenges posed by
object modeling [91]. For instance, given the context of larger, more easily detectable objects
like keyboard and monitor, detecting a mouse could be more accurate. Typically, context
has been employed to improve classifier performance. In [92], each window is scored in
the context of all other windows of the image considering their appearance as well as spatial
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relations. Similar approaches are proposed in [88, 93, 94, 95, 96]. This strategy is generalized
in [51, 97, 98] where all windows are jointly labeled in the context of each other. This is
realized as a conditional random field (CRF) where unary potentials are independent window
classifier scores and pairwise potentials impose the contextual constraints.

Further, recurring image regions unrelated to objects and occurring outside them are dis-
covered as parts in [99]. High level information has also been used as contextual cues to
improve performance. E.g., in [100, 101] high level facial pose and bodypart priors are used
to improve localizing facial and bodyparts respectively. We investigate the utility of high level
cues in form of human pose for object detection in Chapter 4.

Context can also been used to efficiently search image regions for objects. An active search
strategy that sequentially chooses the next window for classification based on previously eval-
uated windows is proposed in [102, 103, 104, 105].

1.3.6. Video data

Videos provide not only temporal continuity constraints but also rich information regarding
artifacts caused by objects undergoing motion, e.g. deformations, occlusions and motion blur.
In this regard, video data is routinely used to adapt detectors pretrained on image data to the
video domain. Inspite of ignoring temporal modeling, performance gains are obtained from
incorporating motion incurred appearance variation in [106, 107, 108, 109]. Enforcing tempo-
ral consistency within a video to improve object detector performance is demonstrated in [110]
and is generalized to joint object discovery and segmentation within a single video in [111].
Learning object models from a collection of videos is also popular and an unsupervised ap-
proach is presented in [112]. Weakly supervised approaches typically operate on a labeled
collection of videos and localize objects based on appearance or motion similarities across the
collection [113, 114, 115, 116]. We explore this aspect in the context of small and medium
sized household objects in Chapter 5.

1.3.7. Unified Problems

Approaching traditionally disparate problems in a unified framework can be advantageous in
that redundant processing can be coupled and each subtask can gain complementary informa-
tion from the rest. This also resonates with the long term goal of realizing a computationally
efficient multi-tasking agent.

To this end, detection and segmentation are closely associated problems and are often
coupled together. Instance segmentation has been explored as preprocessing for object detec-
tion in [68, 117, 118] and for 3d object detection in [119]. An opposite strategy is explored
in [56]. Several approaches explore bidirectional interaction between object detection and in-
stance segmentation [120, 121] and semantic segmentation in images [122, 123, 124, 125] and
video [111].

Object detection has also been combined with object pose estimation [126, 127] and other
higher level tasks such as action detection [128, 129] and human pose estimation [35]. We
demonstrate unified object detection and human pose estimation under human-object interac-
tions in Chapter 4.
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1.3.8. Attributes and Affordances

Attributes are descriptive physical quantities e.g. weight, size etc. As these are more semantic,
gains are typically obtained from complementary modalities such as text or web-data. On
the other hand, most object classes are designed for predefined functionality. Affordances
i.e. physically grounded regions in objects that serve a specific functionality, can be used as
an alternate representation to offset the complex variety in appearance. Pixelwise affordance
reasoning of objects is explored in [130, 131] and in Chapter 6.

1.3.9. Reduced supervision

Increasing diversity in training data is primordial for improvement in object detection per-
formance [32]. However, collecting ground truth annotations over ever increasing data can
be expensive and intractable. This provides an apt motivation towards exploring techniques
that can perform well despite of reduced supervision levels. Several approaches optimize the
extent of human intervention for annotation during model learning [132, 133, 134].

Other approaches investigate incorporation of unlabeled examples. Semi supervised ap-
proaches initialize models using a few examples which are then improved by augmented un-
labeled image data [135] or unlabeled videos [136, 137]. Strong human intervention is also
reduced by using motion cues in videos to improve object detectors in [107, 138]. Data aug-
mentation through the use of generative approaches e.g. projecting 3d models of objects on
the image plane is explored in [139, 140]. In a different strategy, hard negative examples are
mined [26, 141] to augment the set of negative examples.

Weakly supervised approaches utilize ground truth labels acquired at a higher level of ab-
straction. A popular scheme is to utilize ground truth labels at an image level thereby lacking
object localization information. Approaches in [93, 142, 143, 144, 145] explore such a sce-
nario. A further generalization is explored in [146, 147, 148] where ground truth labels are
available only on collections of images called bags. A positive bag is where the object of
interest occurs in at least one image, and negative bags are where the object occurs in none of
them. An exactly opposite strategy is employed in [149, 150] where localization is inferred
by the responses of a pretrained classifier on various subregions of an image. In the context of
weakly supervised learning, we address learning object detectors from weakly labeled videos
in Chapter 5 and weakly supervised segmentation in Chapter 6.

Unsupervised approaches renounce the support of data annotation and learn object models
by exploring data for recurring patterns. A survey is presented in [151]. While the approach
in [152] proposes to represent novel object classes as a combination of pretrained detectors, a
co-detection and segmentation approach for dominant objects is adopted in [28, 125, 153]. In
a different approach, assuming human-object interactions are indicative of object class, high
level joint trajectory information is used to localize objects in [154].

1.4. THESIS LAYOUT

The dissertation segregates the broad problem of object detection into smaller sub-problems
and dedicates a chapter to studying each of them in detail. The underlying theme of the thesis is
for each sub-problem to detect or describe small and medium sized objects within the purview
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of human-object interactions. Fig 1.4 illustrates the problems addressed by each chapter. The
thesis is organized as follows:

• Chapter 2 briefly discusses fundamental modules that are used in this dissertation. This
includes Hough forest for object detection [20, 21], TRW-S algorithm [155] for in-
ference over loopy MRFs, superpixel representation [156] of RGB/RGBD images and
optical flow [157] between video frames in order to extract dense correspondences.

• Chapter 3 addresses the independence assumption of image patches in the Hough based
object detection framework [20]. To this end, mid level representations derived from
grouping low level features in a local neighborhood are shown to improve object de-
tection performance in RGB and RGBD image datasets. Considering inherent sparsity
of the mid level features, oblique forests which are shown to perform better than axis-
aligned forests are proposed. The sparsity is controlled by adjusting the support of the
grouping neighborhood. Further, the benefit of combining hypotheses from low level
and mid level features is demonstrated, indicating that both features encode comple-
mentary information. The details of this chapter was published in [158].

• Chapter 4 explores two paradigms for appearance based object modeling, namely star
and tree model. It is shown that while the tree model achieves slightly better perfor-
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mance, appearance features are of limited reliability for small and medium sized ob-
jects. To this end, the chapter explores an interaction centric perspective by introducing
human context to modeling objects. This is formulated as an approach that combines
two modalities, namely image appearance and human pose, for object detection. Eval-
uation is performed on three challenging video datasets that contain small objects that
are often occluded during human-object interactions. It is shown that while human pose
alone is insufficient to accurately localize objects, combining it with an independently
learned appearance based detector results in improved performance, irrespective of the
underlying pose estimation technique. The details of this chapter was published in [159].

• Chapter 5 addresses weakly supervised detection of small and medium sized objects
from a collection of activity videos. This is formulated as a two stage framework where
the first stage generates a set of spatio-temporal object proposals and a subsequent stage
selects a subset that best describes the object common in all videos. The framework
greedily infers multiple object instances from each video to maximize the utility of data.
We show that approaches that rely entirely on object motion or appearance fail for this
task. Further, we show that low level object appearance and high level human pose based
functionality are complementary and coupling them greatly improves performance. This
is demonstrated on three challenging datasets where performance comparable to fully
supervised methods are obtained despite reduced supervision. The details of this chapter
was published in [160].

• Chapter 6 addresses the problem of localizing functional regions within objects. As-
suming objects are pre-localized, this is formulated as a weakly supervised semantic
affordance segmentation problem. To this end, an expectation-maximization approach
that can be trained on image level and/or clickpoint annotations is proposed. Further, we
explore the possibility of using contextual information from human-object interactions
to transfer clickpoint annotations to images with only image level labels. The approach
is evaluated on two datasets, including a custom dataset containing 3090 images and
9916 object instances with rich contextual information with pixel wise affordance anno-
tations. The details of this chapter can be found in [161].

• Finally, Chapter 7 presents conclusion and future work.

Related work of each sub-problem will be discussed in further detail in the corresponding
chapter that addresses it.
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CHAPTER 2

Preliminaries
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2.1. HOUGH FORESTS FOR OBJECT DETECTION

Hough forests are random forests adapted to efficiently implement a generalized Hough trans-
form. We now briefly discuss the approach proposed in [20, 21].

For training, it is assumed that for each class c P C, a set of training images is available.
For the positive classes, D-dimensional bounding box annotations to determine the center and
the size of the positive examples are also provided. Here, D “ 2. Each tree T in the Hough
forest T “ tTtu is then constructed from a set of patches tPi “ pIi, ci,diqu that are sampled
from the examples where Ii are the extracted features associated with a patch of fixed size in
RD, ci is the class label of the exemplar the patch is sampled from and di is the displacement
vector from the patch center to the centroid of the training exemplar. Patches from negative
instances have a class label ci “ 0 and a pseudo displacement di “ 0. The positive examples
are scaled to unit size, so that the longest spatial dimension is about su “ 100. Without loss
of generality, it is assumed that the per class aspect ratio is fixed and that the size of the object
can be represented by a scale factor s{su.

A tree is composed of leaf and non-leaf nodes. To construct a leaf node L, information
from incoming patches is used to store the class probability ppc|Lq and a list DL

c “ tdiuci“c
of valid offset vectors. Non-leaf nodes are assigned binary tests whose domain is the feature
descriptor Ii “ pI1

i , . . . , I
F
i q, where each Iji is a fixed sized feature matrix e.g. intensity,

gradient and/or associated human pose and F is the number of channels. A binary test on a
patch tθpIq Ñ t0, 1u parameterized by θ “ tf,p,q, τu is defined using f P t1, 2, . . . , F u,
two positions p P RD and q P RD within the feature matrix and a real valued threshold τ .
The test is defined as:

tθpIiq “
#

0 if Ifi ppq ă Ifi pqq ` τ,

1 otherwise.
(2.1)

A Hough tree is constructed recursively starting from the root. During construction, a node
receives a set of training patches P “ tPiu. If the depth of the node is maximum dmax “ 25
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or the number of patches is below a threshold Nmin “ 20, the constructed node is declared as
a leaf and corresponding

`

ppc|Lq, DL
c

˘

cPC information is computed and stored. Otherwise, a
non-leaf node is created and an optimal binary test θ̂ is chosen from a large pool of randomly
generated binary tests such that

θ̂ “ argmax
θk

∆U˚pP, θ
kq

∆U˚pP, θq “ U˚pP q ´
ÿ

bPt0,1u

|Pbpθq|

|P |
U˚ pPbpθqq ,

(2.2)

where children nodes with incoming patches Pbpθq “ tPj |Pj P P, tθpIjq “ bu are created
by binary test tθ. The evaluation criterion U˚ for a binary test is designed to minimize uncer-
tainties in both discrete and continuous random variables i.e. class labels and offset vectors,
respectively. To this end, the class-label uncertainty measuring the impurity of class labels ci
is defined as:

U1pP q “ ´|P | ¨
ÿ

cPC
ppc|P q ln pppc|P qq . (2.3)

The second measure is called offset uncertainty and corresponds to the impurity of the offset
vectors di, defined as:

U2pP q “
ÿ

cPCz0

¨

˝

ÿ

dPDP
c

›

›

›

›

›

›

d´
1

|DP
c |

ÿ

d1PDP
c

d1

›

›

›

›

›

›

2˛

‚, (2.4)

where DP
c is the set of all offsets of patches from class c in set P . This corresponds to the

variance of the vote distribution which is assumed to be unimodal in the present case. Further,
it is to be noted that background patches corresponding to ci “ 0 are ignored here.

As for the pool of binary test parameters, tθku are first generated by sampling parameters
f,p and q uniformly. Parameter τ is sampled from the interval observed from incoming
patches. This is followed by assigning U˚ by randomly choosing between Equations (2.3)
and (2.4) unless there are too few (ă 5%) negative patches in which case Eqn (2.3) is selected.

Fig. 2.1: For each of the three patches emphasized in (a), the pedestrian class-specific Hough
forest casts weighted votes about the possible location of a pedestrian (b) (each color channel
corresponds to the vote of a sample patch). Note the weakness of the vote from the background
patch (green). After the votes from all patches are aggregated into a Hough space (c), the
pedestrian can be detected (d) as a peak in this image. Figure adapted from [21].
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It is to be noted that ˚ “ 1 or 2, depending on the random choice. Interleaving the nodes that
penalize both class label and offset uncertainties ensures low variations on both fronts within
patches incoming in a leaf.

During detection, as shown in Fig 2.1, image patches are passed through each tree in the
Hough forest and the resulting leaves are used to cast votes in the Hough space H Ď RH .
The Hough space encodes the hypothesis h for an object position in scale-space and class, i.e.
here, H “ 4. Let a patch Py “

`

Iy, cy,dcpyq
˘

be centered at position y P Ω Ď RD in the test
image. Here Ω is set of all pixel locations, Iy is the set of observed features of the patch, cy
is the hidden class label and dcpyq is the hidden displacement from the patch to the unknown
object’s center. Based on the appearance Iy, patch Py ends in a leaf Lpyq. Let hpc,x, sq

be the hypothesis for the object belonging to class c with size s and centered at x P Ω. The
conditional probability pph|Lq1 can be computed as

p phpc,x, sq|Lpyqq “
ÿ

lPC
p
`

hpc,x, sq
ˇ

ˇcpyq “ l, Lpyq
˘

¨ p
`

cpyq “ l
ˇ

ˇLpyq
˘

,

“ p
`

hpc,x, sq
ˇ

ˇcpyq “ c, Lpyq
˘

¨ p
`

cpyq “ c
ˇ

ˇLpyq
˘

,

“ p

ˆ

x “ y ´
s

su
dpcq

ˇ

ˇ

ˇ
cpyq “ c, Lpyq

˙

¨ p
`

cpyq “ c
ˇ

ˇLpyq
˘

,

(2.5)

where su is the unit size from the training data. Both factors in Eqn (2.5) are estimated during
training. While ppc|Lq is estimated by the proportion of patches per class label reaching the
leaf after training, the distribution pph|c, Lq can be approximated by a sum of Dirac measures
δd for the displacement vectors d P DL

c :

p phpc,x, sq|Lpyqq “
p pcpyq “ c|Lpyqq

|D
Lpyq
c |

¨

˝

ÿ

dPD
Lpyq
c

δd

ˆ

supy ´ xq

s

˙

˛

‚. (2.6)

For the entire forest T , we pass the features of the patch Iy through all the trained trees and
average the probabilities from Eqn (2.6) from different leaves:

p ph|Iyq “
1

T

|T |
ÿ

t“1

p ph|Ltpyqq , (2.7)

where Ltpyq is the corresponding leaf for tree Tt. The votes from all patches of the image are
accumulated into the Hough spaceH:

p ph|Iq “
ÿ

yPΩ

p ph|Iyq . (2.8)

The modes of p ph|Iq can be obtained by searching for local maxima using a Parzen estimator
with a Gaussian kernel K:

1In the text, abbreviated forms pph|Lq, pph|c, Lq and ppc|Lq are used for p phpc,x, sq|Lpyqq,
p phpc,x, sq|cpyq “ c, Lpyqq and p pcpyq “ c|Lpyqq, respectively.
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p̂ ph|Iq “
ÿ

h1PN phq
wh1 ¨Kph´ h1q,where

wh1 “
ÿ

yPΩ

|T |
ÿ

t“1

ÿ

dPD
Ltpyq
c

p pcpyq “ c|Ltpyqq

|D
Ltpyq
c |

δd

ˆ

supy ´ xq

s

˙

.

(2.9)

The weight of a hypothesiswh1 accumulates votes that support similar hypotheses h1pc,x, sq P

H. After all votes are cast, p̂ph|Iq represents the sum of the weights of the hypotheses in the
neighborhood of h weighted by a Gaussian kernel K. While the location of a local maximum
ĥpc,x, sq encodes class, position and size of the object, the value of p̂pĥ|Iq is not a probability
but serves as a confidence measure for each hypothesis.

2.2. CONVERGENT TREE-REWEIGHTED MESSAGE PASSING FOR ENERGY
MINIMIZATION

Algorithms for minimizing discrete energy are of fundamental importance in computer vision.
We now briefly discuss a technique proposed in [155] which is guaranteed to yield a locally
optimal solution. Many problems can be formulated in terms of minimizing an energy defined
over an undirected graph G “ pV, Eq given by

E px|θq “ θconst `
ÿ

uPV
θs pxsq `

ÿ

pu,vqPE
θuv pxu, xvq , (2.10)

where V corresponds to a set of vertices and E corresponds to a set of edges. For each u P V ,
let xu be a variable taking values in some discrete label space Cu. Concatenating the variables
at each node, we obtain a vector x with n “ |V| elements. The vector takes values in the space
C “ C1 ˆ C2 ˆ ¨ ¨ ¨ ˆ Cn. Let symbols u and v denote nodes in V , pu, vq an edge in E , and j
and k be values in Cu and Cv, respectively.

Parameters θ of the energy are specified by the constant term θconst, the unary term θu pjq

and the pairwise term θuv pj, kq. The last two terms are further denoted as θu;j and θuv;jk,
respectively. Then θ can be viewed as a vector θ “ tθα|α P J u P Rd where the index set J is

J “ tconstu Y tpu; jqu Y tpuv; jkqu.

Note that puv; jkq ” pvu; kjq, so θuv;jk and θvu;kj are the same element. Also, θu and θuv are
used to denote vectors of size |Cs| and |Cu ˆ Cv| respectively. The energy in Eqn (2.10) can
then be written as the Euclidean product depending on two vectors θ and x as

E px|θq “ xθ, φ pxqy “
ÿ

αPJ
θαφα pxq , (2.11)

where the different spaces of θ and x are reconciled by the mapping φ : C Ñ Rd, which is in
turn defined by φα : C Ñ R
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φconst pxq “ Iptrueq

φu;j pxq “ Ipxu “ jq

φuv;jk pxq “ Ipxu “ jq ¨ Ipxv “ kq,

where Ip¨q is an indicator function returning one if its argument is true, and zero otherwise.
Belief Propagation (BP) algorithms approximate minimization of the energy E px|θq as in

Eqn (2.10). Typically, they maintain a message Muv “ tMuv:k|k P Ctu for each directed edge
puÑ vq P E , which is a vector of |Ct| components. The vector of all messages is denoted as
M “ tMuvu. The basic operation of BP is to pass a message from node u to node v for the
directed edge puÑ vq P E . It consists of updating the vector Muv as follows:

Muv;k :“ min
jPCu

"

pθ̄u;j `
ÿ

pwÑuqPE,w‰v
Mwu;jq ` θ̄uv;jk

*

` constv, (2.12)

where constv is a constant independent of k. The message for a directed edge puÑ vq is said
to be valid if this update does not change Muv. The BP algorithm keeps passing messages
from edges in some order until convergence, i.e. until all messages are valid. While it pro-
vides exact solutions if the graph is a tree, general convergence is not guaranteed for graphs
containing loops. Significant speedups in the latter case have been obtained for special classes
of pairwise potentials using distance transforms [162]. Alternatively, instead of storing the
original parameter vector θ̄ and messages M , a single parameter vector after reparameteriza-
tion θ “ θ̄ pMq can be stored, where θ is called a reparameterization of θ̄ i.e. θ ” θ̄ if they
define the same energy function (i.e. E px|θq “ E

`

x|θ̄
˘

@ x P C).
Further, let T be a collection of trees in graph G and ρT , T P T be some distribution on

T . It is assumed that each tree has a non zero probability and each edge in E is covered by at
least one tree. For a given tree T “

`

VT , ET
˘

a set corresponding to the indices associated
with vertices and edges in the tree is defined as

J T “ tconstu Y tpu; jq |u P VT u Y tpuv; jkq | pu, vq P ET u.

To each tree T P T , an energy parameter θT is associated that respects the structure of T .
More precisely, the parameter θT must belong to the following linear constraint set:

AT “ tθT P Rd | θTα “ 0 @ α P J zJ T u (2.13)

By concatenating all of the tree vectors, a larger vector θ “ tθT |T P T u is created, which is
an element of Rdˆ|T |. The constraint set of vector θ is given by

A “ tθ P Rdˆ|T | | θT P AT @ T P T u (2.14)

Considering the function Φρ : AÑ R defined as follows:

Φρ “
ÿ

T

ρTmin
xPC
xθT , φ pxqy, (2.15)



22 Chapter 2. Preliminaries

Algorithm 1 TRW-S algorithm for a graph with monotonic chains
1: Set all messages to zero
2: Set Ebound to constant

For nodes u P V do the following operations in the order of increasing ipuq:
´Compute θ̂u “ θ̄u `

ř

pw,uqPE Mwu. Normalize vector θ̂u as follows:

δ :“ min
j
θ̂u;j θ̂u;j :“ θ̂u;j ´ δ Ebound :“ Ebound ` δ

´ For all edges pu, vq P E with ipuq ă ipvq update and normalize message Muv as
follows:
Muv;k :“ min

j
tpγuv θ̂u;j ´Mvu;jq ` θ̄uv;jku

δ :“ min
j
Muv;k Muv;k :“Muv;k ´ δ Ebound :“ Ebound ` δ

3: Reverse the ordering: set ipuq :“ |V| ` 1´ ipuq

4: Check whether a stopping criterion is satisfied; if yes, terminate, otherwise go to step 2.

it can be shown that if
ř

T ρ
T θT “ θ̄ then Φρ pθq is a lower bound on the optimal value of the

energy for vector θ̄ as per Eqn (2.10), following from Jensen’s inequality. To get the tightest
bound, the following maximization problem is considered

max
θPA,

ř

T ρ
T θT”θ̄

Φρ pθq . (2.16)

While several versions of maximizing Eqn (2.16) are possible, a practical algorithm is
described in Alg 1. The input to the algorithm is an energy function specified by parameter
vector θ̄. The method works by passing messages; for each directed edge puÑ vq P E there
is a message Muv which is a vector of Ct components. The algorithm is initialized by (1)
selecting an ordering of nodes ip¨q, i.e. a mapping of nodes in V onto the set t1, 2, . . . , |V|u;
(2) selecting chains T P T which are monotonic with respect to ip¨q, 2 where each edge is
covered by at least one chain; and (3) choosing a probability distribution ρ over chains T P T
such that ρT ą 0,

ř

T ρ
T “ 1. These choices define coefficients γuv in Alg 3 by γuv “ ρuv{ρu

where ρuv and ρu are edge and node appearance probabilities, respectively.
The stopping criterion is defined using a heuristic where the procedure is terminated if the

value of the lower energy bound Ebound has not increased during the lastN iterations. Finally,
constructing a solution x given reparameterization θ̂ “

ř

T ρ
T θT involves greedily choosing

label xu that minimizes θ̂pxuq `
ř

ipwqăipuq θ̂wupxw, xuq in the order defined by ip¨q.

2.3. IMAGE SUPERPIXEL REPRESENTATION

The problem of segmenting an image into regions plays a powerful role in computational
vision problems. We briefly discuss the approach from [156] that efficiently captures percep-
tually important groupings or regions in an image using a graph based approach. Let the image
be represented as an undirected graph G “ pV, Eq with vertices u P V corresponding to pixels
and edges pu, vq P E corresponding to pairs of neighboring pixels. Each edge pu, vq P E

2Graph G and chains T P T are said to be monotonic iff the ordering of nodes ipuq, u P V exists such that
each chain T satisfies the following property: if uT

1 , . . . , u
T
npT q are the consecutive nodes in the chain, then the

sequence ipuT
1 q, . . . , ipu

T
npT qq is monotonic.
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Algorithm 2 Graph based segmentation algorithm
1: Input is a graph G “ pV, Eq with n vertices and m edges. The output is a segmentation of
V into components S “ pS1, . . . ,Srq.

2: Sort E into E “ po1, . . . , omq, by non-decreasing edge weight.
3: Start with a segmentation S0, where each vertex u is its own component.
4: for q “ 1, . . . ,m do
5: To construct Sq given Sq´1, let u and v denote the vertices connected by the qth edge in

the ordering i.e. oq “ pu, vq. Let components of Sq´1 be such that Sq´1
i contains u and

Sq´1
j contains v. If Sq´1

i ‰ Sq´1
j and θst ď MIntpSq´1

i ,Sq´1
j q then Sq is obtained

by merging Sq´1
i and Sq´1

j . Otherwise Sq “ Sq´1.
6: Return S “ Sq.

has a corresponding weight θuv, which is a non-negative measure of dissimilarity between
neighboring elements u and v based on low level attributes such as color, depth, optical flow
etc.

In the graph based approach, a segmentation S is a partition of V into components such
that each component Si P S corresponds to a connected component in a graph Gi “ pVi, Eiq
where Vi Ď V and Ei Ď E . The partitioning is subject to the constraint that vertices in a
component are similar, whereas those in different components are dissimilar.

To this end, a predicate D is defined to evaluate whether or not there is evidence for a
boundary between two components in a segmentation. The internal difference of a component
Vi Ď V is defined to be the largest weight in the minimum spanning tree of the component
MST pVi, Eiq. That is,

IntpViq “ max
pu,vqPMST pVi,Eiq

θuv. (2.17)

The difference between two components Vi,Vj Ď V is defined as the minimum weight of
the edge connecting the two components. That is,

Dif pSi,Sjq “ max
uPVi,vPVj ,pu,vqPE

θuv. (2.18)

If there is no edge connecting Si and Sj then Dif pSi,Sjq “ 8. The evidence for a
boundary between a pair of components is given by checking the difference between them as:

DpSi,Sjq “
#

true if Dif pSi,Sjq ą MIntpSi,Sjq,
false otherwise

(2.19)

where the minimum internal difference, MInt , is defined by

MIntpSi,Sjq “ min
ˆ

IntpSiq `
k

|Si|
, IntpSjq `

k

|Sj |

˙

, (2.20)

where k is a parameter that sets the scale of observation in that larger k causes a preference for
larger components. The segmentation algorithm is shown in Alg 2. It can be shown that the
final segmentation produced is independent of which non-decreasing order of edges is used
and is neither too coarse nor too fine in spite of the inherently greedy procedure.
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2.4. LARGE DISPLACEMENT OPTICAL FLOW

Motion in the form of optical flow is one of the fundamental bottom-up cues for segmentation
and tracking. We briefly discuss the large displacement optical flow proposed in [157]. Let I1

and I2 : pΩ Ď R2q Ñ Rd be the first and the second frame to be aligned. A gray scale image
is represented with d “ 1, whereas d “ 3 for color images. Further, x :“ px, yqJ denotes
a point in the image domain Ω, and w :“ pu, vqJ is the optical flow field, i.e., a function
w : Ω Ñ R2. A common assumption is that of color constancy, i.e. corresponding points
should have the same gray or color value. This can be expressed by the energy

Ecolorpwq “

ż

Ω
Ψ
`

|I2px`wpxqq ´ I1pxq|
2
˘

dx, (2.21)

which penalizes deviations from the assumption of color constancy. A robust function
Ψps2q “

?
s2 ` ε2, ε “ 0.001 allows to deal with long displacements, occlusions and other

non-Gaussian deviations of the matching criterion. Allowing for illumination variations, the
constraint in Eqn (2.21) is supplemented by a constraint on the gradient, which is invariant to
additive brightness changes:

Egradpwq “

ż

Ω
Ψ
`

|∇I2px`wpxqq ´∇I1pxq|
2
˘

dx. (2.22)

Complementary to energies based on local descriptors, regularization can be enforced by pe-
nalizing the total variation of the flow field as:

Esmoothpwq “

ż

Ω

`

|∇upxq|2 ` |∇vpxq|2
˘

dx. (2.23)

As color and gradients are low level, incorporating more descriptive features such as point
correspondences can help emphasize small structures and is formulated as:

Ematchpw,w1q “

ż

δpxq ρpxqΨ
`

|wpxq ´w1pxq|
2
˘

dx, (2.24)

where w1pxq denotes the correspondence vectors obtained by descriptor matching at some
points x. δpxq is an indicator function returning one if a descriptor is available at point x and
zero otherwise. ρpxq is the matching score and serves as weighting of the point correspon-
dence. The matching task w1 : Ω Ñ Ω is formulated as another energy term to be minimized:

Edescpw1q “

ż

δpxq |f2px`w1pxqq ´ f1pxq|
2dx, (2.25)

where f1pxq and f2pxq denote the fields of feature vectors in frame 1 and frame 2, respectively.
Gathering all terms together into a single optimization problem; we arrive at the following
formulation:

Epwq “ Ecolorpwq ` γEgradpwq `αEsmoothpwq ` βEmatchpw,w1q `Edescpw1q. (2.26)

Here, α, β and γ are parameters. The goal is to solve Eqn (2.26) using a continuation
method [163] which solves the original problem by solving a sequence of subproblems at
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Fig. 2.2: Image of a sequence where the person is stepping forward and moving his hands
followed be a sequence of evolving flow field from coarse to fine. The region correspondences
dominate the estimate at the beginning. Outliers are removed over time as more and more data
from the image are taken into account. Figure adapted from [157].

different levels of resolution by smoothing the input images. As a preprocessing step, key-
point matching between the two images is computed. The confidence of the match is used as
the score ρpxiq.

It is worth noting that point correspondences are integrated into the continuation method,
giving them high impact at the beginning of the process, where the image resolution is very
small and the correspondences dominate the color and gradient constancy terms, thereby guid-
ing the solution towards large displacement solutions. As the resolution increases, the ratio
between the fixed number of point correspondences and the number of pixels in the image
drops, thereby tuning down the impact of point correspondences and relying more on low
level color and gradient cues. The evolving flow field is illustrated in Fig 2.2.
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3.1. INTRODUCTION

As discussed in Section 2.1, Hough-based voting approaches or implicit shape models
(ISM) [18, 164, 165] model an object by a codebook of features and their spatial offsets to
the center or root of the object. This is also known as a star model. For object detection,
features of the test image are matched to the codebook, where each codebook entry models
a distribution over the space of object hypotheses. Based on these distributions, each feature
votes for an object hypothesis that usually encodes the class and bounding box of the object,
but it can also provide additional information like depth [166].

In the past few years, several improvements have been introduced. For instance, a max-
margin framework has been proposed to learn the voting discriminatively [19, 167]. In [168],
the voting is not performed by points in the scale-space but by lines in order to resolve am-
biguities in location and scale. The learning of a codebook has been addressed in [21, 169],
where random forests [170, 171] that solve classification and regression problems simultane-
ously have been introduced. The performance of these methods has been further improved by
using self-similarity features [172], enforcing voting consistency by learning several models
per object class [14], which is in the spirit of [27], or by training the trees with a global loss
function instead of a local one [22].

In this chapter, the independence assumption of the features is addressed. While modeling
distributions for each codebook entry independently makes the above methods very efficient,
it often yields a low recall if a high precision is required, i.e. if the number of false positives
needs to be very low. It is therefore beneficial to model the probability for an object hypoth-
esis not conditioned on a single feature but for groups of features in a local neighborhood, as
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(a) (b) (c) (d)

Fig. 3.1: Illustration of Hough-based voting with independent (or low level) features. Each
pixel of an image (a) is assigned to a codeword. Each color in (b) corresponds to a codeword.
For independent features, each pixel votes according to its assigned codebook entry (c). For
grouped (or mid level) features, the voting depends also on the assigned codebook entries in
its neighborhood (d).

illustrated in Fig 3.1. To this end, a discriminative Hough forest model of an object is initially
learned on independent features and a second classification-regression forest is used to learn
the probability of a hypothesis for a group of features. This is inspired by the work of Shotton
et al. [173] that introduces semantic texton forests to solve classification problems like seg-
mentation and image-categorization tasks very efficiently. In the experiments, it is shown that
the split functions used in segmentation forests [173] are too weak for the task of object detec-
tion. To this end, oblique classification-regression forests are proposed that combine features
from different trees and outperform features from a single tree. Also, the benefit of combining
independent and grouped features is investigated and the approach is evaluated on four RGB
and RGBD datasets.

3.2. RELATED WORK

The grouping of sparse contour features during test time has been addressed in [62]. The
approach iteratively estimates the group assignments and optimal affine transformation of the
detected groups for voting. Instead of learning groupings from training data, the approach tries
to resolve ambiguities in the test image. While this makes the approach suitable for datasets
with only a handful of training examples, the bottom-up grouping used is very specific to
contour features and not suitable for densely extracted image features that are more generic.
Contour features have also been an avenue for attention in other works. In [61], a codebook
of recurring contour-pairs is learned from positive examples and an active appearance model
for the object boundary is used for detection. During testing, Hough voting is performed by
contour-pairs to identify hypotheses. However, the lack of a strong global model requires an
additional verification stage [174]. Similarly, [60] ranks contours against a predefined bound-
ary model using a partial matching scheme and allows most promising contours to individually
vote for the hypothesis in parametric space. This approach also uses an additional classifier for
verification [168]. A similar partial match based approach is used in [175], where the location
of individual contours is jointly optimized for generating object hypotheses. More recently, a
max-margin framework has been proposed to learn a bag of jointly placed contours that rep-
resent the object [176]. During testing, individual contour matches are considered and a joint
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placement of all other expected contours is verified against the hypothesis. In [63] an object
shape is modeled as a sparse linear combination of contours found in the positive training ex-
amples. Furthermore, an explicit part based model is used to facilitate discriminative learning
for object detection. A mixed approach of combining contour and appearance information is
adapted in [177], where objects are detected by grouping superpixels and jointly optimizing
for boundary and appearance terms. What all these methods have in common is that they rely
on implicit or explicit shape matching procedures. While these methods perform very well on
datasets where the contours of objects can be relatively easily extracted and do not need many
training examples, we focus on an approach that is not limited to a very specific set of sparse
features.

3.3. HOUGH-BASED OBJECT DETECTION

As discussed in Section 2.1, implicit shape models [18] or Hough-based voting approaches
represent an object by features like image patches or contour fragments that appear at certain
locations with respect to the object center. These object features are often treated as inde-
pendent entities during testing and the probability for an object hypothesis h, which encodes
the label, position, scale and aspect ratio of an object, is approximated by the sum of the
probabilities of the hypothesis for each feature Ipyq:

pph|Iq «
ÿ

yPΩ

pph|Ipyqq (3.1)

where Ipyq denotes a feature extracted from image I at location y. This chapter relaxes the
independence assumption of the features by computing the probabilities of the hypothesis for
groups of features instead of single features:

pph|Iq «
ÿ

yPΩ

pph|IpN pyqqq (3.2)

where IpN pyqq denotes the features within a neighborhood of y. This is illustrated in Fig 3.1.
Eqn (3.1) is briefly described before discussing Eqn (3.2) in Section 3.3.2.

3.3.1. Independent Features

A Hough forest consists of an ensemble of decision trees. While training a tree, each non-leaf
node is assigned a binary test that is applicable to all data samples encountering the node.
The sample is directed to either the left or the right child depending on the result of this test.
Consequently, each leaf node holds data samples that have been grouped together according
to the intent of the preceding binary tests. In order to attain better generalization, each tree
is trained randomly, which is achieved by (1) training each tree with a random set of samples
from the training data and (2) considering a random subset of possible binary tests for each
non-leaf node and choosing the one that results in an optimal split of the incoming data points.
Implementation details relevant for Section 3.3.2 are described below.

Training data. Each tree T of a forest is trained on a set of patches tPi “ pIi, ci,diqu
that are randomly sampled from the positive and negative example images. Each patch has the
same size and Ii denotes the appearance of the patch, represented by low level features like
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color and histograms of gradients. di is the offset vector from the patch center to the object
center given by the center of the bounding box if the class label ci is positive. If the patch has
been sampled from a negative example image or from the background of a positive example
image, the class label ci is zero and di is not used.

Splitting function. The splitting functions tθpIiq Ñ t0, 1u at each non-leaf node of the
tree split the training data arriving at the node into two sets, where θ is the parameter vector
that defines the binary test. In [21], the functions are defined by

tθpIiq “
#

0 if Ifi ppq ´ I
f
i pqq ă τ ,

1 otherwise
(3.3)

where Ifi ppq and Ifi pqq are the values of low level feature f at pixel locations p and q of patch
Pi. The family of binary tests is therefore defined by θ “ pf,p,q, τq.

Training. The trees are constructed recursively starting from the root node. For a given
set of training patches P arriving at a node, the best split function is selected from a random
set of generated split functions. The goodness of a split function tθ, which splits the training
patches into two sets P0pθq and P1pθq, is measured either by the classification objective

∆U1pθq “ U1pP q ´
ÿ

lPt0,1u

|Pl|

|P |
U1pPlpθqq, (3.4)

where U1p¨q is the entropy measuring class uncertainty, or by a regression objective that mini-
mizes the variance of the offset vectors:

∆U2pθq “ U2pP q ´
ÿ

lPt0,1u

|Pl|

|P |
U2pPlpθqq, (3.5)

whereU2p¨q is the variance of the offset distances. As in [21], one of the objectives is randomly
selected for each node. The training continues until the maximal depth, 25, is reached or if
|P0| or |P1| of the best split is below a threshold, 20. At each leaf LT of tree T , the class
probability ppc|LT q and the distribution of the offset vectors ppd|c, LT q for the positive class
are stored.

Testing. For object detection, the peaks of pph|Iq in Eqn (3.1) are detected for different
scales s and aspect ratios a. To this end, the image is resized according to scale and aspect
ratio and each image patch Iy, y P Ω is passed through all trees T . The probability of a
hypothesis for class c and location x is then given by

pphpc,x, s, aq|Iyq “
1

|T |
ÿ

TPT
pphpc,x, s, aq|LT pyqq, (3.6)

with pphpc,x, s, aq|LT pyqq “ ppdpy,x, s, aq|c, LT pyqq ¨ ppc|LT pyqq, (3.7)

where dpy,x, s, aq is the scale and aspect ratio normalized offset vector between y and x.

3.3.2. Grouped Features

The approach to model pph|IN pyqq in Eqn (3.2) instead of independent features in Eqn (3.1) is
inspired by semantic texton forests [173]. Texton forests convert pixels into a set of semantic
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textons and a second classifier trained on the textons is used to segment or classify an image. In
the present context, the probability of a hypothesis based on all leaves within a neighborhood
of y is learned instead of simply averaging the probabilities of all leaves as in Eqn (3.6) as:

pph|IN pyqq “ pph|tLT pN pyqquTPT q. (3.8)

In order to learn the probability, a second forest that is trained on the patch-to-leaf assign-
ments obtained from the original forest is employed. To this end, the approach discussed in
Section 3.3.1 is modified suitably:

Training data. Instead of training a forest on patches of low level image features, the
forests are now trained on histograms of leaves (HOL). This mid level representation pools
features originally designed to serve a high level task, as learned by the first classifier, over
a local neighborhood. While the class label ci and the offset vector di of a group of fea-
tures Gi “ pHOLi, ci,diq are the same as in Section 3.3.1, histograms of leaves consist of a
histogram for each tree HOLT where the entries are given by LT pN pyqq, i.e. by the leaves
within a rectangular region around image location y. The histograms are normalized such that
ř

LPT HOLT pLq “ 1.
Splitting function. As splitting functions, we investigate two families. In [173], the value

of a single bin of a histogram is used as test function:

fθpHOLq “

#

0 if HOLT pLT q ă τ ,

1 otherwise
(3.9)

where θ “ pT, LT , τq. While T selects the histogram HOLT , LT is the index of one bin in the
histogram. Because this family of splitting functions is shown to be not powerful enough for
the task at hand, a larger family of split functions is proposed:

fθpHOLq “

#

0 if
ř

TPT wT ¨ HOLT pLT q ă τ ,

1 otherwise
(3.10)

with θ “ ptwT uTPT , tLT uTPT , τq. The real-valued weights wT combine the features from
different trees resulting in so-called oblique forests [171].

Training and Testing. The training is performed as in Section 3.3.1. For testing, the first
forest is applied to all scales and aspect ratios in order to assign each image patch to some
leaves tLT uTPT . The probability of an object hypothesis h is then given by the two forests
stacked together:

pphpc,x, s, aq|IN pyqq “ pphpc,x, s, aq|tLT pN pyqquTPT q (3.11)

“
1

|Tgr|
ÿ

TgrPTgr

pphpc,x, s, aq|LTgrptLT pN pyqquTPT qq, (3.12)

where T is the first forest with independent features and Tgr is the second forest. The approach
is illustrated in Fig 3.1 for a single tree.

Further, a version where the probabilities for the hypotheses of independent features as in
Eqn (3.6) and the grouped features as in Eqn (3.11) are combined is also investigated:

pphpc,x, s, aq|Iy, IN pyq, λq 9 pphpc,x, s, aq|IN pyqqλ ¨ pphpc,x, s, aq|Iyq1´λ (3.13)

where the parameter λ P r0, 1s steers the impact of the two probabilities.
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support: 7ˆ 7 13ˆ 13

depth: 5 10 16 5 10 16

Applelogos 55.0/60.0 90.0/90.0 75.0/75.0 15.0/15.0 75.0/75.0 10.0/10.0
Bottles 92.8/92.8 89.2/89.2 75.0/75.0 57.1/57.1 71.4/71.4 32.2/32.2
Giraffes 72.3/74.5 78.7/80.8 83.0/83.0 61.7/61.7 83.0/85.1 74.5/74.5
Mugs 61.3/61.3 67.7/74.2 61.3/61.3 45.2/45.2 61.3/61.3 51.6/51.6
Swans 70.6/76.5 70.6/70.6 58.8/58.8 58.8/58.8 82.3/88.2 41.2/58.8

Table 3.1: Recall for ETHZ dataset at 0.3/0.4 FPPI (%) for given spatial supportN and depth
of the first forest to generate histograms of leaves (HOL).

3.4. EXPERIMENTS

The effectiveness of the proposed grouped features is evaluated on four different datasets of in-
creasing difficulty and its performance is compared with previously published results. In each
case, the evaluation protocols of previous works is adopted to facilitate comparison. Hypothe-
ses are classified according to the PASCAL-VOC criterion [2] and performance is quantified
using false positives per image [178] (FPPI) and average precision [2] (AP) measures.

ETHZ Dataset. The dataset consists of 255 images classified into five categories: Applel-
ogos, Bottles, Giraffes, Mugs, Swans. Giraffes is the largest class consisting of 87 examples
and Swans is the smallest consisting of 32 examples. There are two protocols [19] and [61]
for this dataset. We use the protocol as in [19] where half of the images of a class are taken
as positive examples for training and an equal number of negative examples is taken from the
other classes. The other images are used for testing. The baseline with independent features
is trained using 5 trees with maximal depth of 25. After normalizing positive examples to unit
scale and aspect ratio, all patches have a fixed size of 16ˆ16 pixels and each tree is trained
on 20,000 positive and 20,000 negative patches. Half of the negative patches are drawn from
the background of positive examples and the other half from the negative examples. Patch
features consist of 15 feature channels [21]: 6 color channels obtained by the Lab color space
processed by a 5 ˆ 5 min- and max- filter and 9 gradient features obtained by 9 HOG bins

Fig. 3.2: Average Precision plots for varying parameter λ as in Eqn (3.13) for each class of the
ETHZ dataset. The black and red bars correspond to independent and group features, respec-
tively. While for Applelogos, Bottles and Swans the combination gives a clear improvement
for a value around 0.6, the combination does not work well for Giraffes and Mugs.
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using a 5 ˆ 5 cell and soft binning. Testing is performed by spanning three aspect ratios and
five scales.

Object detection with grouped features depends on the spatial support of the neighborhood
N , but also on the depth of the first forest to generate the HOL. To study the effect of both
parameters, we used tree depth P t5, 10, 16u and spatial support P t7 ˆ 7, 13 ˆ 13u for com-
puting HOL. The resulting performance for each case is shown in Table 3.1. The tree depth
is very important since for very deep trees the leaves become highly specific causing a drop
in performance. The neighborhood size also has an impact on the performance. Since the
configuration pair t10, 7ˆ7u performs reasonably for all classes, it is used for all experiments
henceforth.

Further, the combination according to Eqn (3.13) is studied. Fig 3.2 presents results for
all classes as a function of parameter λ. The combination performs well only for three out
of five classes. This is mainly due to the small size of the dataset (cf. VOCB3DO dataset
below). Fig 3.3 and Table 3.2 also compare independent features, grouped features, and the
best combination using different measures.

In addition, comparison with state-of-the-art methods is presented in Tables 3.3 and 3.4.
Although the proposed method does not perform optimally for all classes due to the very small
amount of training data, the performance is comparable to state-of-the-art methods, which
either involve an additional verification step or are specifically tailored to contour features
suited for this shape dataset.

INRIA Horse Dataset. The dataset consists of 170 positive and 170 negative examples;
of which the first 50 in each case are used for training. The baseline is made up of 5 trees, each
trained with 40,000 positive patches and 40,000 negative patches. Furthermore, hard-negative
training is performed by mining the 50 hardest negative examples in the training data. The
hard-negatives contributes to an additional gain of 8% recall at 0.3 FPPI.

Three types of splitting functions are investigated on this dataset. Firstly, axis aligned

(a) Applelogos (b) Bottles (c) Giraffes

(d) Mugs (e) Swans

Fig. 3.3: Precision-recall plots for (red) independent features, (black) group features and
(green) the best combination. As seen in Fig 3.2, the performance varies among classes.
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Average Precision optimal λ Recall at 0.3/0.4 FPPI
(3.6) (3.11) (3.13) (3.6) (3.11) (3.13)

Applelogos 77.8 77.4 85.4 0.9 80.0/80.0 90.0/90.0 90.0/90.0
Bottles 85.9 84.3 93.8 0.7 92.9/96.4 89.2/89.2 96.4/96.4
Giraffes 82.6 76.9 83.4 0.1 91.5/93.6 78.7/80.8 91.5/91.5
Mugs 84.9 62.6 84.1 0.1 90.3/90.3 67.7/74.2 87.1/90.1
Swans 83.2 63.3 90.2 0.6 100/100 70.6/70.6 100/100

Table 3.2: Performance comparison for ETHZ dataset wrt independent features Eqn (3.6),
grouped features Eqn (3.11) and their combination Eqn (3.13)

Proto. Verific. Applelogos Bottles Giraffes Mugs Swans

Ours [19] N 90.0/90.0 96.4/96.4 91.5/91.5 90.3/90.3 100/100
[19] [19] Y 95.0/95.0 92.9/96.4 89.6/89.6 93.6/96.7 88.2/8.2

[177] [19] Y 100/100 96.0/97.0 86.0/91.0 90.1/91.0 98.0/100
[63] [19] Y 95.0/95.0 100/100 87.2/89.6 93.6/93.6 100/100

[27] [61] N 95.0/95.0 96.3/100 84.7/84.7 96.7/96.7 94.1/94.1
[27] [61] N 95.0/95.0 100/100 72.9/72.9 83.9/83.9 58.8/64.7

[176] [61] N 95.0/95.0 100/100 91.3/91.3 96.7/96.7 100/100
[175] [61] N 92.0/92.0 97.9/97.9 85.4/85.4 87.5/87.5 100/100
[60] [61] Y 93.3/93.3 97.0/97.0 79.2/81.9 84.6/86.3 92.6/92.6

[168] [61] Y 95.0/95.0 89.3/89.3 70.5/75.4 87.3/90.3 94.1/94.1
[61] [61] Y 77.7/83.2 79.8/81.6 39.9/44.5 75.1/80.0 63.2/70.5

Table 3.3: Comparing performance for ETHZ dataset wrt Eqn (3.13) with state-of-the-art
methods (recall at 0.3/0.4 FPPI). Note that there are two different protocols [19] and [61].
The proposed approach based is comparable to state-of-the-art without requiring an additional
verification stage

Proto. Verific. Applelogos Bottles Giraffes Mugs Swans mean

Ours [19] N 85.4 93.8 83.4 84.9 90.2 87.5
[63] [19] Y 84.5 91.6 78.7 88.8 92.2 87.2
[175] [61] N 88.1 92.0 75.6 86.8 95.9 87.7
[168] [61] Y 86.9 72.4 74.2 80.6 71.6 71.1
[27] [61] N 89.1 95.0 60.8 72.1 39.1 71.2
[176] [61] N -NA- -NA- -NA- -NA- -NA- 88.2

Table 3.4: Comparison of Eqn (3.13) with state-of-the-art methods (Average precision) for
ETHZ dataset

forests that employ splitting functions as Eqn (3.9). Secondly, oblique forests that employ
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(a) INRIA Horse Dataset (b) Weizmann Dataset

Fig. 3.4: Precision-recall plots showcasing the performance of three types of splitting func-
tions for grouped features. The oblique forests as per Eqn (3.10) outperform axis aligned
forests as per Eqn (3.9).

splitting functions as Eqn (3.10) with weights wT P r0, 1s and lastly, oblique forests with
weights wT P r´1, 1s. Performance of each of the three variants is shown in Fig 3.4(a). While
the oblique forests outperform Eqn (3.9), also allowing negative weights does not change the
performance. Table 3.5 compares combining grouped and individual features (λ “ 0.1) with
state-of-the-art methods.

Weizmann Horse Dataset. The dataset comprises 200 and 456 images for training and
testing respectively. For the independent features, a forest of 5 trees with 20,000 positive
and 20,000 negative patches followed by hard-negative mining is trained. As for the INRIA
horse dataset, performance of the three types of splitting functions is shown in Fig 3.4(b).
The oblique forests again outperform the axis-aligned forests. Table 3.6 compares combining
grouped and individual features (λ “ 0.1) with state-of-the-art methods.

Berkeley 3-D Object Dataset. The dataset is a collection of real-world images captured
with a Kinect sensor comprising RGBD image pairs for over 50 classes. A six-fold split is pre-
defined for 8 of these classes, resulting in 48 splits, over which baseline performances using a
part based model [27] for various RGB, D and RGBD features are presented in [57]. Interest-
ingly, the authors report a significant drop in performance upon including depth information.

The forests of the independent features are ensembles of 10 trees, each trained with
100,000 positive patches and an equal number of negative patches without any hard negative
training. The utility of depth channel is investigated by comparing forests built on indepen-
dent RGB-only features ignoring depth information, and independent RGBD features where
the depth of a pixel is used as an additional feature. The results are tabulated in Table 3.7. A
significant improvement of RGBD over RGB features is observed in contrast to [57].

The forest on grouped features is based on an oblique forest with wT P r0, 1s. Each forest
consists of 10 trees and is trained with the same protocol as for independent features. The
performance of grouped features is at most equal to that of independent features with an ex-
ception for bottles, where a gain of 0.5% in average precision is seen. Further, both forests also
combined as in Eqn (3.13) by fixing the parameter λ for each split using a validation dataset,
which is obtained by splitting the training data in half. Table 3.7 presents performances of the
best possible combination, the value of λ set using validation and the resulting performance. It
is to be noted that combining both forests mostly results in an improved performance, indicat-
ing that although the grouped features alone do not outperform their individual counterparts,
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they contain complementary information.

The approach based on Eqn (3.13) with λ estimated on the validation set achieves an
average precision of 0.314 and is comparable or better than the state-of-the-art methods [57]
and [119], which achieve 0.280 AP and 0.312 AP, respectively. The approach [38] reports
0.592 AP, but it follows a different evaluation procedure by using custom annotation of the
dataset. Qualitative results of detections from individual and grouped features from the various
datasets are shown in Fig 3.5.

3.5. SUMMARY

An approach for mid level grouping features for Hough-based object detection in RGB and
RGBD images has been presented. Evaluation is based on four datasets of various difficulties,
where a performance comparable to state-of-the-art methods has been achieved. Hard nega-
tive training for independent features improves performance for two datasets albeit at the cost
of doubled training time. It is observed that highly specific independent features and small
datasets adversely affect performance in Eqn (3.13). Also, the oblique forests for grouped
features outperform axis-aligned forests. While the grouped features do not perform well for
all classes of the ETHZ dataset with very few training examples, they outperform independent
features on the more realistic VOCB3DO dataset. The experiments also show that a combina-
tion of independent and grouped features improves performance, indicating that both feature
sets encode complementary information.

proposed [176] [177] [62] [19]

recall 88.0 93.7 92.4 87.3 85.3

Table 3.5: Recall at 1.0 FPPI for INRIA Horse dataset

proposed [21] [179]

AP 97.2 98.0 96.0
recall 94.3 95.1 91.5

Table 3.6: Recall at 1.0 FPPI for Weizmann Horse dataset

Class RGB RGBD Group bestComb. λ Combin. [57]
bowl 0.231 0.402 0.394 0.423 0.5 0.420 0.430
cup 0.123 0.346 0.339 0.358 0.5 0.357 0.260

monitor 0.282 0.540 0.530 0.547 0.4 0.547 0.750
mouse 0.208 0.282 0.275 0.302 0.4 0.301 0.190
phone 0.076 0.163 0.129 0.172 0.3 0.163 0.180

keyboard 0.085 0.314 0.283 0.321 0.4 0.321 0.170
chair 0.028 0.208 0.161 0.211 0.4 0.206 0.140
bottle 0.022 0.178 0.183 0.201 0.2 0.195 0.120

Table 3.7: Average precision for the VOCB3DO Dataset
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Fig. 3.5: Detections from (blue) individual and (red) group features on various datasets. (rows
1–3:) ETHZ Dataset (rows 4–5:) INRIA and Weizmann Horse (row 6:) VOCB3DO dataset.
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Using Human Pose as Context for
Object Detection
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4.1. INTRODUCTION

The previous chapter investigated improved appearance based representations using a star
model. To this end, mid level features based on grouping low level features in a local neighbor-
hood was proposed. It was shown that information encoded by both features was complemen-
tary and that improved object detection performance could be achieved by combining them.
Nonetheless, appearance based object detection is still an open problem [3, 82] for small and
medium sized objects where visual evidence become unreliable due to poor resolutions and
frequently occurring human interactions. This introduces new challenges as objects are heav-
ily occluded and undergo large pose and appearance variations during the process. Therefore,
this chapter investigates the advantages of adopting part based models and utilizing high level
human pose as a contextual cue for object detection.

The context of human-object interactions has been adopted by numerous recent meth-
ods [35, 180, 181, 182, 183, 184]. For instance, [35] extends a deformable part model
(DPM) [26] to model spatial relations between body parts and parts of objects. This approach,
however, only works well for images showing the instant of human-object interaction, i.e.,



40 Chapter 4. Using Human Pose as Context for Object Detection
when a human is closely in contact with an object. For images without an interaction, pose
and objects are independently modeled, e.g., by having several models including either object
or pose, or both together. In such cases, the additional information from human context is
therefore not exploited.

This chapter investigates an approach that includes human pose as an additional context
for object detection. The approach is not limited to images showing explicit human-object
interactions, but also works for general images where human pose can be inferred. For in-
stance, a pose related to emptying a tin indicates that a tin opener might be close although the
person does not use the tin opener at this moment. To this end, objects are represented by a
part based model where location of a part is predicted from both image and human pose data
using regression forests.

The experiments show that jointly modeling human and object as in [35] leads to subop-
timal performance for object detection. On the other hand, the proposed approach which has
flexibility to incorporate potential gains from either modality is successfully demonstrated on
three datasets [154, 180, 185] that have varying quality of automatically extracted 2d or 3d hu-
man pose. Further, the effect of various human pose estimation techniques on object detection
accuracy is investigated. An outline of the approach is presented in Figure 4.1.

4.2. RELATED WORK

Combining humans and objects together to address various problems in computer vision has
received considerable attention in the recent past. [86] builds a discriminative model for action
classification by reasoning about spatial co-occurrences of body parts and objects. In [186] a
weakly supervised approach is proposed for action classification that does not require annota-
tions of objects and humans in training images. Human context has also been used to deduce
object functionality either by inferred [187] or by hypothesized human pose [181].

As for methods relating to object detection, [182] proposes a generative model that com-
bines body part trajectories and object appearance. However, it uses strictly handcrafted met-
rics to tap human motion information which can be difficult to adapt to realistic actions. [183]
learns a discriminative random field model by representing body part location priors as nodes
and spatial relations between body parts and objects as edges. However, mixture models are
treated independently resulting in poor performance for complex data. In this regard, [184]
introduces a coarse-to-fine hierarchical grammar for a more concise representation of mixture
models. Introducing phraselets, [35] extends a DPM [188] to improve the quality of mix-
tures by clustering training examples based on their relative locations. The method reports
state-of-the-art results for joint pose estimation, action classification and object detection.

4.3. OBJECT DETECTION

As illustrated in Figure 4.1(f), an object is represented through a tree model by a set of de-
scriptive keypoints K “ tkiu where ki P R2 encodes the image location of the ith keypoint.
As in the pictorial structures model [188], the spatial relations between them are defined by a
directed graph E and the prior on any keypoint configuration is given by

ppKq “
ź

i,jPE
ψijpki,kjq, (4.1)
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Fig. 4.1: Detecting teapots: (a) Input is an image and automatically extracted human pose. (b)
Object keypoint unaries based on appearance features and (c) Keypoint unaries based on hu-
man pose features. Note the reduced keypoint localization capability. (d) Linear combination
of unaries. (e) Inferring keypoints using the pictorial structures model. (f) Regressing object
bounding box using the inferred keypoints.

where the pairwise potentials ψijpki,kjq model spatial relations between two keypoints ki
and kj . Given an observation D, an optimal configuration is estimated by the maximum of the
posterior distribution

ppK|Dq 9 ppD|Kq ¨ ppKq
9
ź

i

φipkiq ¨
ź

i,jPE
ψijpki,kjq (4.2)

While 3-mixture Gaussians are used as pairwise potentials to model relative keypoint offsets in
the star structured graph E for efficient inference as in [188], this chapter focuses on extracting
more discriminative unary potentials φipkiq derived from appearance and human pose features.
The unary potentials will be discussed in Section 4.4.

A bounding box px1, y1, x2, y2qmust be predicted from the inferred keypoint configuration
K since evaluation is based on the PASCAL-VOC [2] criterion. To this end, a mixture of linear
least squares regressors is used to predict each parameter of the bounding box independently.
For the regression, keypoint locations are normalized such that the mean becomes zero and
variance one. A mixture of 3 regressors is used, each of which is trained on a cluster of training
data. As for the feature vector for clustering, the aspect ratio to the normalized keypoints is
added resulting in a p2|K| ` 1q dimensional vector. The aspect ratio is calculated using the
smallest rectangle enclosing all keypoints.

The inference procedure results in multiple overlapping detections for each object in-
stance. Therefore, redundant detections are eliminated using a greedy approach. Given an
image, a set of detected bounding boxes and their respective scores ppK|Dq is obtained. The
set is sorted according to the score and all bounding boxes that have an intersection-over-union
(IOU) ratio over 0.5 with a higher-scoring bounding box are discarded.
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4.4. KEYPOINT REGRESSORS

The unary potentials φipkiq in Eqn (4.2) are modeled by probabilities over keypoint location
ki. The probabilities are estimated from two modalities, namely the object appearanceDA and
the human pose DP , i.e.

φipkiq “ ppki|DA,DP q. (4.3)

As random forests are used as regressors, they are briefly introduced in Section 4.4.1. Sec-
tions 4.4.2, 4.4.3 and 4.4.4 then present unary potentials based on individual features and their
combination.

4.4.1. Random Forests

Hough forests, as discussed in Section 2.1, are used for object detection. However, instead
of voting for the center of the bounding box, the random forests are used to predict keypoints
of an object. These keypoints are then used to infer object bounding box as described in
Section 4.3. A tree T in a forest T is built from a random subset P “ tPiu of the training
data. For each training image, features Ii are extracted. For training a tree, the set P is
recursively divided into two subsets P0 and P1 using a binary split function tθ̂pIiq Ñ t0, 1u.
The split function, which maximizes the information gain ∆U˚pP, θq, is chosen from a pool
of randomly generated split functions:

θ̂ “ argmax
θ

∆U˚pP, θq (4.4)

∆U˚pP, θq “ U˚pP q ´
ÿ

sPt0,1u

|Pspθq|

|P |
U˚pPspθqq, (4.5)

where U˚ is randomly chosen to be the class entropy or the squared error of the predicted
mean. The best split function is stored at the node and the training continues recursively until
the maximum depth of the tree is reached or the number of samples in a node falls below a
threshold. Incoming training data P is stored at the leaves.

4.4.2. Appearance Features

The case when keypoints are predicted from image data is first considered. In this case, an
observation DA “ tPau consists of a set of image patches. The image features Ia are as
described in Section 3.4, i.e. , they consist of 15 feature channels: 6 color channels obtained
by the Lab color space processed by a 5 ˆ 5 min- and max- filter and 9 gradient features
obtained by 9 HOG bins using a 5ˆ 5 cell and soft binning.

To train a forest for each keypoint, patches are sampled from training images where
patches within a radius of 100 pixels are considered as positive examples and as negative
examples otherwise. Each patch is further augmented with a binary class label c and in case of
a positive patch the scale s of the object and the offset d to the keypoint are also stored. The
splitting functions used are pixel comparisons as in Section 2.1:

tθpIaq “
#

0 if Ifa ppq ´ Ifa pqq ă τ ,

1 otherwise
(4.6)
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where parameters θ “ pf,p,q, τq are described by coordinates p and q within the patch, the
selected feature f P t1, 2, ¨ ¨ ¨ , 15u and a threshold τ . In Eqn (4.5), the splitting functions are
either based on optimizing the classification or regression criterion:

U1pP q “ ´
ÿ

c

ppc|P q logpppc|P qq

U2pP q “
1

|DP
`|

ÿ

dPDP
`

∥∥∥∥∥∥d´
1

|DP
`|

ÿ

dPDP
`

d

∥∥∥∥∥∥
2

, (4.7)

where DP
` is the set of offsets of positive patches. At the leaves, class probabilities ppc|Lq,

distributions of the offset vectors with respect to a quantized scale ŝ and keypoint class c, i.e.
ppd|c, ŝ, Lq, are stored. The unary potential based on appearance for a given scale ŝ is then
defined by

φAi pki, ŝq “
ÿ

yPΩ

1

|Ti|
ÿ

TPTi

ppki ´ y|c, ŝ, LT q ¨ ppc|LT q, (4.8)

where Ti is the forest trained for the ith keypoint and Ω is a set of locations in the image.
In contrast to [21], training examples are not scaled to a fixed object size since this requires

performing object detection over several scaled versions of the test image. Instead, scale of
objects in training images is stored in the leaves and a test image is processed at a resolution as
is. The unaries φAi pki, ŝq are therefore modeled for pixel location ki and scale ŝ. The keypoint
configuration K is then inferred as per Eqn (4.2) for each scale independently.

4.4.3. Human Pose Features

When the keypoints are predicted from automatically extracted 2d or 3d human pose, the
observationDP are pose features Ip are based on joint locations jm as in [189], i.e., for all joint
combinations the Euclidean distance between two joints is computed and for all quadruples of
joints the normal plane feature and the velocity feature are used. The features are illustrated
in Fig 4.2.

Fig. 4.2: Human pose based features used for object detection: (left) 2d or 3d distance be-
tween two randomly chosen joint locations, shown in red (middle) perpendicular distance
from a joint, shown in red, to the plane defined by randomly chosen joints, shown in green
(right) projection of the velocity of a joint, shown in red, along the displacement between two
randomly chosen joints, shown in green.
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To train a forest for each keypoint, training images with the object of interest are con-

sidered as positive examples and as negative examples otherwise. For each image, pose is
augmented with a binary class label c. The positive examples are further augmented with
scale s of the object and offsets dm from all joints to the keypoint. The splitting functions are
defined by

tθpIpq “
#

0 if Ifp ă τ ,

1 otherwise
(4.9)

where Ifj is a randomly chosen pose feature. The splitting functions are selected as in
Eqn (4.7).

Besides class probabilities ppc|Lq, the distributions of offset vectors with respect to a quan-
tized scale ŝ and keypoint class c for each jointm, i.e. , pmpdm|c, ŝ, Lq, are stored at the leaves.
The unary potential based on pose for a given scale ŝ is then defined by

φPi pki, ŝq “
M
ÿ

m“1

1

|Ti|
ÿ

TPTi

pmpki ´ jm|c, ŝ, LT q ¨ ppc|LT q, (4.10)

where Ti is the forest trained for the ith keypoint and M is the number of joints.

4.4.4. Combining Appearance and Pose

The unary potential in Eqn (4.2) is a linear combination of the filtered unaries discussed in
Sections 4.4.2 and 4.4.3:

φipki, ŝq “
`

KpσAq˚ φAi pki, ŝq
˘

` λ
`

KpσP q˚ φPi pki, ŝq
˘

, (4.11)

where ˚ represents the convolution operation and σ is the standard deviation for the Gaussian
blur kernel K. Since the human pose can only provide a rough prior for the location of an
object class but is insufficient for accurate object localization, σP ą σA. The parameters λ,
σA and σP are estimated by cross-validation.

4.5. EXPERIMENTS

The proposed approach is evaluated on three datasets: ETHZ-Activity [154], CAD-120 [180]
and MPII-Cooking [185]. Human pose is inferred in all three datasets using different methods.
ETHZ-Activity uses a model based method to extract 3d joint locations of the upper body,
CAD-120 uses the OpenNI SDK to extract 3d full body joint locations and MPII-Cooking
uses a PS model to extract the 2d joint locations for the arms.

The datasets collectively represent a rich variety of human-object interactions. E.g.,
elementary interactions are captured in ETHZ-Activity, multi-object interactions in MPII-
Cooking and CAD-120 also captures varying viewpoints. There is also a diversity in objects
ranging from large to small and from rigid to deformable. The amount of occlusion also varies
and the objects are sometimes barely visible. Figure 4.3 shows some cropped representative
images. The ground truth of 5 keypoints for each object in the three datasets was manually
labeled for every 10th frame of the training data1.

1Annotations can be found at http://ps.is.tue.mpg.de/person/srikantha

http://ps.is.tue.mpg.de/person/srikantha
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Evaluation is based on the PASCAL-VOC measure [2] that considers a detected bounding

box as true positive when the IOU ratio with the ground truth bounding box exceeds 0.5. Mul-
tiple detections overlapping with a true positive are counted as false positives. Performance
is reported as area under the precision-recall curve (AUC or AP) where the precision at any
recall level r is replaced by the maximum precision measured at recall levels exceeding r as
in [2].

Implementation details are presented in Section 4.5.1 followed by the evaluation on the
three datasets in Sections 4.5.2– 4.5.4.

4.5.1. Implementation Details

Random Forests: A forest consists of 4 trees with a maximum depth of 25. A tree based on
appearance features is trained with 100,000 positive and negative 16ˆ 16 sized image patches
each and contains at least 20 samples in a leaf. At each node, a pool for splitting functions is
generated by randomly choosing 10 thresholds τ and 100 combinations for other parameters
in θ. A tree based on human pose features is trained with all positive and negative examples
and contains at least 10 samples in a leaf. The pool of splitting functions is generated by
randomly choosing 80 parameters and 8 thresholds. The pairwise potentials in Eqn (4.2) are
modeled by a mixture of 3 Gaussians.

Setting parameters: The proposed method has three parameters as per Eqn (4.11). These
parameters are set by grid search on the validation dataset which is obtained by splitting the
training data in half. The search was σA and σP P t5, 11, 41, 161u and λ P t0, 100, 250, 500u.
Generally, the parameters are found to be stable across several splits of a dataset. In such
cases, parameters are therefore estimated only using the first split.

4.5.2. MPII-Cooking Dataset

The dataset contains two cooking activities performed by 12 actors. The object classes and
annotations are adopted from [160], which is a subset of the dataset [185]. A 7 fold cross
validation is performed for evaluation as in [185]. Typically, a split contains 6,000 positive
and 4,000 negative training examples and 2,000 testing examples. Regarding running times,
while training the proposed method on one split took 40hrs on a 6-core 3.2GHz machine,
running [35] took 72hrs on the same setup.

The AP for each object class averaged over all 7 splits are given in Table 4.1. Firstly,
the proposed approach based on appearance and pose features (Comb), which is described in
Section 4.4.4, is compared to only one of the two modalities, namely appearance (Appr) and
pose (Pose), which are described in Section 4.4.2 and Section 4.4.3, respectively. Although the
pose features perform worse than the appearance features, the combination results in improved
performance. While a separate forest is trained for each modality, the performance of an
approach where a single forest is trained on a concatenation of appearance and pose features
is indicated as Concat. In this case both splitting functions Eqn (4.6) and Eqn (4.9) are used
in a single tree. The accuracy of this approach, however, drops sharply in contrast to the
appearance features.

The proposed method is also compared to the three most related approaches. In [21],
Hough forests are used for object detection. While the proposed approach uses a tree model as
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class Appr. Pose RCNN [3] Gall [21] Desai [35] Concat. PoseObject Comb.

bowl 0.25 0.15 0.22 0.17 0.07 0.02 0.15 0.27
bread 0.50 0.45 0.22 0.30 0.20 0.13 0.29 0.60
pan 0.20 0.20 0.57 0.34 0.22 0.14 0.21 0.23
plate 0.51 0.48 0.44 0.54 0.22 0.49 0.42 0.51
grater 0.13 0.02 0.11 0.15 0.03 0.03 0.13 0.14

squeezer 0.33 0.22 0.18 0.35 0.07 0.21 0.33 0.35
tin 0.16 0.07 0.14 0.11 0.14 0.05 0.03 0.16

spiceholder 1.00 0.15 1.00 1.00 0.60 0.92 0.15 1.00
average 0.38 0.22 0.36 0.37 0.19 0.25 0.21 0.41

Table 4.1: Average precision for the MPII-Cooking dataset.

described in Section 4.3, [21] uses a star model (using a single keypoint). When comparing it
with the proposed approach using only appearance features, we observe that the multi-keypoint
is only slightly better than the single-keypoint setup. Also in [3], deep neural networks are used
for object detection. The performance using this approach (RCNN) is worse in comparison
with [21] indicating the limitation of such methods to small and medium sized objects.

The method [35] combines human pose estimation and object detection. The method
is trained on the training data with estimated human pose and annotated keypoints for the
objects. The approach actually performs worse than the pose features. Therefore, an approach
using random forests (PoseObject) by using appearance based features and using the joints
of the human pose as additional keypoints is implemented. The results are also worse than
the pose features. In order to analyze if the reduced accuracy stems from the additional pose
estimation, which is not performed by the proposed approach since the estimated human poses
provided by the dataset [185] are used, the impact of the chosen pose estimation method for
the proposed approach is evaluated. To this end, a pose estimator [101] trained on a separate
training set for pose estimation [185] was used to estimate poses on both training and test
data. Using the poses estimated by the approach [101] does not change the object detection
accuracy, which remains at 0.41. This indicates that it is not the pose estimation that results in
a poor performance, but the combination of objects and pose as proposed in [35] is not flexible
enough to model object-pose relations that are not limited to the moment of an interaction.

Additionally, the importance of estimating human pose using the same method for the
training and testing data is investigated. Hence, the proposed approach is modified by retaining
the poses provided by [185] for the training data but replacing poses for the testing data. When
using [101] for estimating the human pose on the test data, the accuracy slightly drops from
0.41 to 0.40, showing that the approach can be trained and tested with different methods
for human pose estimation. Upon using human poses obtained by [35] on the test data, the
accuracy drops slightly to 0.39, but is still better than using the appearance features only.

4.5.3. ETHZ-Activity Dataset

The ETHZ-Activity dataset contains 143 sequences where 6 subjects interact with 12 different
objects. Evaluation is performed through a 6 fold cross validation protocol for each of the 12
objects. Typically, a split contains 400 positive and 4,000 negative training examples and 1,500
testing examples. As a preprocessing stage, all images are normalized for lighting conditions



4.5. Experiments 47

class Appr. RCNN [3] Pose Gall [21] Desai [35] Concat. Comb.

brush 0.37 0.10 0.10 0.24 0.51 0.20 0.46
calculator 0.98 0.91 0.70 1.00 0.84 0.32 0.98

camera 0.77 0.26 0.80 0.74 0.79 0.72 0.93
headphone 0.42 0.07 0.43 0.25 0.64 0.13 0.47

marker 0.09 0.10 0.02 0.02 0.08 0.06 0.09
mug 0.25 0.25 0.13 0.30 0.54 0.05 0.30

phone 0.33 0.32 0.02 0.05 0.07 0.01 0.33
puncher 0.74 0.09 0.08 0.78 0.64 0.30 0.76
remote 0.24 0.17 0.05 0.33 0.10 0.15 0.29
roller 0.45 0.53 0.08 0.48 0.68 0.14 0.51
teapot 0.42 0.41 0.36 0.51 0.46 0.36 0.42

videogame 0.48 0.48 0.12 0.40 0.63 0.42 0.52

average 0.46 0.29 0.24 0.42 0.50 0.23 0.51

Table 4.2: Average precision for the ETHZ-Activity dataset.

using ACE [190] with parameters a “ 8 and levels of interpolation set to 12.
The results, reported in Table 4.2, trend similarly as for the MPII-Cooking dataset. The ap-

pearance features outperform the pose features except for the classes camera and headphone.
The proposed combination outperforms each of the modalities and the concatenation of both
features. The method [21] performs slightly worse than the PS model with appearance fea-
tures. However, RCNN [3] performs considerably worse. As can be seen, the method performs
poorly for small classes such as marker, remote and phone. A closer examination revealed low
recall of the object proposal stage for such objects. The approach from [35] performs better
for this dataset and achieves a higher accuracy than the pose or appearance features, but the
proposed combination still performs better on average.

4.5.4. CAD-120 Dataset

The CAD-120 dataset contains 120 sequences of 10 different high level activities performed
by 4 subjects. Evaluation follows a 4 fold cross validation protocol for each of the 10 objects.
Each split contains between 3,000 and 8,000 training examples and 4,000 testing examples.
It must be noted that while most classes have a sufficient amount of training data, this is not
the case for the classes book and remote, resulting in most object detectors to fail. Also,
the human pose extracted from OpenNI SDK not only has noisy joint locations specially for
hands and legs, but also consists of missing joints due to low detection confidence or frequent
occlusion. Missing joint locations are handled by assigning them to a default value of zero.

The results are reported in Table 4.3. The pose features perform poorly on the dataset due
to low quality of estimated human poses. In particular, arms are often wrongly estimated as
shown in Figure 4.3. Nevertheless, using pose features in addition to the baseline appearance
features improves accuracy. The method [21] performs worse than the keypoint approach with
appearance features on average. The accuracy of the approach [35] is similar to the accuracy
of the concatenated features, which is lower than the proposed approach with appearance fea-
tures. However, RCNN [3] outperforms all baselines. Significant improvements are found
particularly for classes such as cloth, microwave and medicinebox where objects have rela-
tively reliable and expressive appearance based features.
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class Appr. RCNN [3] Pose Gall [21] Desai [35] Concat. Comb.

book 0.00 0.02 0.00 0.00 0.03 0.00 0.00
bowl 0.69 0.76 0.17 0.68 0.17 0.48 0.69
box 0.60 0.74 0.10 0.55 0.03 0.27 0.60
cloth 0.03 0.66 0.00 0.02 0.12 0.00 0.03
cup 0.24 0.71 0.02 0.26 0.12 0.03 0.24

medicinebox 0.35 0.95 0.17 0.32 0.69 0.39 0.40
microwave 0.15 0.55 0.15 0.13 0.30 0.10 0.20

milk 0.75 0.09 0.30 0.71 0.61 0.69 0.75
plate 0.25 0.55 0.02 0.26 0.03 0.03 0.25

remote 0.00 0.09 0.00 0.00 0.00 0.00 0.00

average 0.31 0.63 0.09 0.29 0.21 0.20 0.32

Table 4.3: Average precision for the CAD-120 dataset.

4.6. SUMMARY

This chapter compares two models for object representations, namely star and tree model.
While the tree model is found to perform slightly better, the challenges incurred during human-
object interaction are addressed with an approach that combines image appearance and human
pose for object detection. The approach is evaluated on three challenging datasets that contain
small objects that are often occluded during human-object interaction. The experiments not
only show that human pose improves an appearance based object detector irrespective of the
underlying pose estimation technique, but also that the proposed combination of a separate
forest for each modality outperforms the concatenation of features or a joint model for human
pose estimation and object detection.
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Fig. 4.3: Qualitative results showing input human pose and most confident inferred bounding
boxes as per Eqn (4.11). Top six rows: Successful detections are shown for classes Milk-
box, Cloth, Bowl from CAD-120; Plate, Squeezer, Tin, Bowl from MPII-Cooking and Brush,
Marker, Videogame, Roller, Teapot from ETHZ-Activity. Last row: Failed detections due to
scale problems, occlusions and faulty bounding box regression. Groundtruth bounding boxes
are shown in green.
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5.1. INTRODUCTION

The previous chapter addressed the problem of detecting small and medium sized objects dur-
ing human-object interactions. A major challenge in such scenarios is that of reduced visual
evidence which drastically affects the performance of even state-of-the-art object detection ap-
proaches [3, 35]. To this end, an improved method that incorporates both low level appearance
features and high level human pose features is successfully demonstrated on three datasets.
However, as is innate to all data driven object detection, a vast amount of annotated training
examples is crucial for good performance.

This dependence can be a bottleneck in many scenarios either because of efforts involved
or inherent ambiguity involved during bounding box annotation. In the future, present-day
crowdsourcing solutions will be impractical due to high associated costs and ever increasing
amount of data. Moreover, this also ignores the vast amount of freely available weakly struc-
tured data. As a result, recent works in object detection have turned towards utilizing weakly
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labeled data [125, 144, 145, 146, 191, 192, 193, 194], particularly videos [109, 116, 195]. Crit-
ically, these methods assume that motion or appearance of objects are sufficient descriptors for
segmenting them with relative ease, which is indeed the case for large active objects such as
flying airplanes and walking tigers. The assumption is further strengthened by the abundance
of labeled videos on the Internet which are characteristically object- or action-centric. How-
ever, modeling daily objects such as markers, remotes or plates is still largely unresolved [45].
Exploiting weakly labeled data for such objects is further complicated by the scarcity of clean
data because such objects do not form popular subjects for generating and sharing videoclips.

Nonetheless, labeled videos involving human activity e.g. pouring milk or eating cereal
are abundantly available but violate the principal assumption of objects with dominant appear-
ance based features. This is because prevelant themes of videos are now human body parts
and background clutter instead of objects of interest. The problem is further complicated by
varying appearance and pose of objects undergoing interactions coupled with low resolutions
and frequent occlusions. As a result, appearance-only approaches are limited in capacity to
detect such objects.

To this end, an approach which addresses the problem of weakly supervised learning for
medium or small sized objects from action videos where humans interact with them is pro-
posed. The method is composed of two stages, as shown in Fig 5.1. The first stage tackles the
issue of objects of interest, which need not necessarily be dominant motion segments. Instead,
we generate seeds by sampling superpixels that are likely to overlap with objects and track
them to form spatio-temporal tubes as illustrated in Fig 5.2. To tackle the rich variety of object
appearance and motion, tracking is made robust by sampling from a pool of algorithms and
parameters. The second stage tackles the issue of appearance features alone being insufficient
to describe objects. To this end, an object similarity measure is proposed that depends not only
on appearance and size but also on functionality derived from relative motion with respect to
the human. Further, the method facilitates extracting (possibly) numerous tubes from each
video. This results in increased economy of tapping information from the data. Also, due to
inherent clutter and noise, having flexibility to choose no tube from a video can potentially
improve homogeneity within inferred tubes. This is realized as a greedy iterative procedure.

As in the previous chapter, the robustness of the proposed approach is demonstrated on
three demanding datasets, namely one RGB dataset [185] and two RGBD datasets [154, 180].
Each dataset is recorded with a different type of sensor viz. time of flight [154], color cam-
era [185] and structured light sensor [180]. Automatically extracted human pose in each
dataset also varies in the number of detected body parts and in the quality of joint localization.

5.2. RELATED WORK

Object detection encapsulates determining whether an image contains instances of a certain
object category and their locations. Optionally, additional information, e.g., about part lo-
cations [26], object pose [35, 184] and occlusion [36, 37, 196, 197] has been inferred. The
fundamental challenge is to effectively model inter and intra class appearance and shape vari-
ation of objects. To this day, this is usually achieved by designing a parametric model.

To this day, the parameters of the model are learned through a set of training instances
using statistical machine learning techniques. The various learning methods can therefore be
characterized by the extent of supervision involved during learning. At one end of the spec-
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trum, fully supervised methods require careful annotation of object locations in the form of
bounding boxes [21, 26, 41], segmentations [198] or even object part locations [199, 200],
which is costly and can frequently introduce inconsistency and ambiguity. On the other hand,
unsupervised learning methods that do not require any supervision aim at finding similar ob-
jects in a set of unlabeled images [151, 193] or videos [111]. They are, however, often limited
to frequently occuring and visually consistent objects and are easily susceptible to background
clutter. The stringent requirements regarding cleanliness of input data has been relaxed by us-
ing exemplar samples [201] or by employing pretrained object detectors [152, 202, 203]. On
similar lines, cosegmentation [125, 191, 192, 194] approaches identify object instances up to
a bounding box or segmentation on a collection of images with an object class label. Fur-
ther, [204] segments objects in videos by clustering long term point trajectories. However, the
method assumes similarity between trajectories from object regions and does not investigate
relationships between videos.

Weakly supervised learning lies at the middle of the spectrum by providing annotations
at a higher level of abstraction, thereby reducing the annotation effort. This is an important
scenario for many practical applications because weak labels are more readily available, e.g.,
in the form of text tags [205], movie transcripts [206, 207], geographical meta-data [208] or
captions [209]. Weakly labeled videos are exploited in [109, 116, 160, 195, 210, 211].

In the context of object detection, the common practice has been to model object location
with latent variables while jointly learning an appearance model. Most approaches impose
certain assumptions for successful application, e.g., [116, 144, 145, 146, 149] assume a single
predominant object in the input data and [116, 195] assume rigid or articulated objects with
motion distinctive from its background. These assumptions guide the latent variables such that
the solution extracts object instances despite object deformations and background. In practice,
however, the quality of a solution depends on the similarity measure used. For instance, [145,
146, 149] obtain a solution set that is most consistent in terms of shape and color, [116, 195]
exploit motion and appearance consistency within the input data and [144] exploits symmetry
constraints of objects in a multiclass framework. The solution is mostly obtained by multiple
instance learning [146] or by minimizing an energy on a fully connected graph [116, 160].
Most methods fail to exploit training data completely as they only select one instance per
image or video. This is a suboptimal choice because all other instances of that object in the
image are ignored therefore failing to tap its true potential. This limitation is dealt within [144]
by introducing a latent SVM formulation that exploits presence of multiple object instances in
an image. On similar lines, the proposed method is also designed towards extracting multiple
examples within the framework of exploiting human context for building models of small and
medium sized objects.

The theme of scene understanding driven by human context has gained recent atten-
tion owing to advances in techniques and commercial SDKs for human pose estimation
[154, 180, 212, 213, 214, 215, 216, 217, 218, 219, 220]. In [218, 220], image regions are
segmented based on observed human trajectories in office and street environments. While sev-
eral works [182, 221, 222] investigate combining object detection and action recognition, the
works [154, 180, 217, 219] employ affordance cues as higher level representation for video
understanding. In [217], both object detection and activity recognition are improved by jointly
representing objects and their functionality. Unsupervised clustering of objects based on their
motion relative to humans is performed in [154]. Further, human activity is recognized based
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Fig. 5.1: Processing pipeline: Input is a set of action videos with human pose. Multiple
sequences of object proposals (tubes) are generated from each video. By defining a model that
encodes the similarity between tubes in terms of appearance and object functionality, instances
of the common object class are detected.

on object functionality in the context of hand-object interactions in [219] or based on high
level attribute co-occurrence statistics in [223, 224]. In [180], activities and object affordances
are learned simultaneously, while [225] deals with appearance based object detection based
on weak action-object labels in egocentric videos.

Human models have also been used to hallucinate their interactions with given scenes.
In [214], scene locations that can afford the action sittable are learned through geometric
relations between the scene and a human pose representing the action. A similar approach
is incorporated for 3D scene labelling in [212, 216] and extracting scene geometry in [213]
by modeling relations between objects and human pose. An opposite approach is followed
by [215] where human poses are inferred based on scene geometry.

5.3. LEARNING OBJECT MODELS FROM ACTIVITIES

Fig 5.1 illustrates the pipeline for detecting instances of an object class in a set of RGBD or
RGB videos. Input to the pipeline is a collection of videos that is labeled with the involved
activity of human-object interaction. E.g., the label cleaning microwave indicates the presence
of a microwave. It is also assumed that the 2d or 3d human pose has already been extracted.
This is readily feasible because of freely available SDKs for RGBD data and due to significant
progress in 2d pose estimation in the recent past. No further restrictions are imposed on the
nature of input videos in that they may contain a multitude of activities, persons and/or objects.
For instance, the labels eating cereal and stacking bowls are different activities that, among
many other objects, commonly involve a bowl.

The first step involves generating several object proposals per video. An object proposal
is modeled as a spatio-temporal region in the video, also called a tube. Multiple tubes are
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sampled from a video using a simple graphical model representing human-object interactions.
This procedure is explained in Section 5.3.1. While the purpose is to extract tubes that sig-
nificantly overlap with the objects of interest, this is hardly true in practice as they overlap
mostly with background clutter or body parts; thereby lacking object information. To this end,
given a collection of tubes from all videos, a subset of tubes best describing the object from
each video is selected. This is realized by minimizing an energy functional that comprises
unary and pairwise potentials. Unary potentials evaluate the presence or absence of an object
in a tube and pairwise potentials evaluate the similarity of objects between two tubes. All
potentials incorporate appearance and functionality as described in Section 5.3.3.

5.3.1. Generating tubes

Extracting dominant motion segments as in [116, 226] is a naive way of generating tubes.
Such methods cannot generate meaningful tubes in the present context as dominant motion
segments mostly correspond to body parts. Instead, a tube Tv is generated from video v by
tracking a frame based superpixel S over time. Owing to the rich variety of objects and actions,
no unique universal setting that yielded tubes of good quality was found for either superpixel
selection or tracking. Therefore, this uncertainty is modeled by randomly selecting a tracking
algorithm τ from a pool of tracking algorithms. In other words, a set of tubes is obtained by
sampling from the probabilistic graphical model defined over the tubes, given by

ppTv, τ, Sq “ ppTv|τ, SqppτqppSq. (5.1)

In practice, a pool of two tracking algorithms that are selected with uniform probability i.e.
ppτq “ 0.5 is used. The first method is based on propagating a superpixel (cf. Section 2.3)
based on median optical flow [157] (cf. Section 2.4) into the neighboring frame. The second
method is based on mean shift [227]. While the first method tracks medium sized rigid objects
well, it is easily misled by fast motion, background clutter or small objects. The second method
is more robust to fast motion but gets misled by occlusions during human-object interactions.
Since either case fails for long term tracking, the length of each tube is limited to a maximum
of 300 frames.

For generating superpixels S, the method from [156] is modified to incorporate depth as
an additional feature. Since the relevance of depth information depends on material properties,
object size and object characteristics, a pool of data channels is used. In practice, the pool is
defined as σ P tRGB,D,RGBDu. Each configuration in the pool represents the data using
which superpixels are generated. The probability of selecting a superpixel also depends on
frame f and a spatial prior that depends on the frame ppl|fq. A superpixel is obtained by
sampling from

ppS, f, l, σq “ ppS|f, σqppl|fqppfqppσq. (5.2)

A uniform prior is set over σ. ppfq is a temporal prior that represents the probability of close
human-object interaction in frame f . While a high level representation of humans and objects
can be utilized to model this probability, a uniform distribution is employed here. In other
words, it is assumed that human-object interaction occurs in all frames. As for the spatial
prior ppl|fq, human pose information is incorporated. To this end, the joint with the highest
variance in location, computed within a temporal neighborhood of 15 frames is selected. The
probability ppl|fq is then modeled as an isotropic uniform distribution at joint location j at
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Fig. 5.2: Illustrating the tube generation process. Images of the top half: The first image
shows joint trajectories. The most active joint is used to compute the spatial prior for select-
ing superpixels. The three images next to it show three superpixel representations computed
using depth (D), color (RGB) and both (RGBD). Colored superpixels are within the specified
distance of the most active joint. Each of the last two rows visualizes a tube Tv sampled from
the blue and green superpixel S respectively.

frame f with radius 400mm in case of RGBD videos. Since human pose from RGB does not
provide 3d information, the location of the parent joint jp is used to compute the radius of the
circle }γpj ´ jpq} and its center j ` γpj ´ jpq. In practice, γ is set to 0.2.

Sampling a tube from Eqn (5.1) corresponds to sampling a superpixel and a tracking
method. Sampling a superpixel S from Eqn (5.2) involves sampling a configuration σ to
generate a superpixel segmentation of a randomly selected frame f among which one super-
pixel S is chosen based on the spatial prior ppl|fq. This is then tracked over time using a
randomly sampled tracking algorithm τ as per Eqn (5.1) to generate a tube Tv. The procedure
is illustrated in Fig 5.2. As for the number of tubes generated per video, it is to 30 for all our
experiments.

5.3.2. Generating object hypotheses

Given a set of candidate tubes Tv in each video v, the goal of [116, 160, 228] is to select
one tube per video that contains the object class and is tight around the object. This has been
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formulated in [116] as an energy minimization problem defined jointly over all N videos. Let
lv P Lv “ t1, . . . , |Tv|u be a label that selects one tube out of a video. The energy of all
selected tubes pl1, . . . , lN q is defined as

Epl1, . . . , lN q “
N
ÿ

v“1

˜

Φplvq `
N
ÿ

w“v`1

Ψplv, lwq

¸

(5.3)

where the unary potentials Φ measure the likelihood of a single tube being a tight fit around
an object. The binary potentials Ψ measure the homogeneity in object appearance and func-
tionality of a pair of tubes.

The constraint of selecting exactly one tube per video, however, assumes that there is at
least one tube containing the object and limits the amount of information extracted from the
data. In some cases, a video might contain more than one object instance or might not contain
the object at all. Therefore, Eqn (5.3) is reformulated to select a varying number of tubes from
each video. To this end, the objective is to find a set of tubes Sv Ď Lv for each video, which
can also be an empty set. The energy of a configuration S “ pS1, . . . ,SN q is then defined as

E pSq “
N
ÿ

v“1

#

|Sv |
ÿ

j“1

Φ
`

ljv
˘

`

N
ÿ

w“v`1

|Sv |
ÿ

j“1

|Sw|
ÿ

k“1

Ψ
´

ljv, l
k
w

¯

` α

˜

1´
γ|Sv |e´γ

|Sv|!

¸+

. (5.4)

The first two terms Φ and Ψ are the same as in Eqn (5.3), but they are computed over all se-
lected tubes Sv for each video. The last term is a prior on the number of expected tubes with
object instances per video, modeled by a Poisson distribution Pγp|Sv|q. The term 1´Pγp|Sv|q
is used since Eqn (5.4) is minimized. The parameter γ represents the expected number of
object-overlapping tubes. The impact of this prior is controlled by α. Upon enforcing the con-
straint |Sv| “ 1 for all videos v, minimizing Eqn (5.4) is equivalent to minimizing Eqn (5.3)
since the last term reduces to a constant.

To minimize Eqn (5.4), an iterative, greedy approach is proposed. To this end, the label
set is extended by an auxiliary label, i.e. , L̂v “ t0, 1, . . . , |Tv|u. Let St´1

v denote the selected
tubes for each video at the end of iteration t ´ 1. In the next iteration, either one tube or no
tube, which corresponds to l̂tv “ 0, is selected. The already selected tubes are excluded as
l̂tv P L̂tv “ L̂vzSt´1

v and the energy for iteration t is defined by

Epl̂t1, . . . , l̂
t
N |St´1q “

N
ÿ

v“1

˜

Φpl̂tvq `
N
ÿ

w“v`1

|St´1
w |
ÿ

k“1

Ψpl̂tv, l
k
wq `

N
ÿ

w“v`1

Ψpl̂tv, l̂
t
wq

¸

(5.5)

where

Φpl̂tv“0q “ α

¨

˝1´

|St´1
v |
ÿ

n“0

γne´γ

n!

˛

‚

and Ψp0, l̂wq “ Ψpl̂v, 0q “ 0.

(5.6)

In Eqn (5.5), the constant terms

N
ÿ

v“1

|St´1
v |
ÿ

j“1

Φ
`

ljv
˘

and
N
ÿ

v“1

N
ÿ

w“v`1

|St´1
v |
ÿ

j“1

|St´1
w |
ÿ

k“1

Ψ
´

ljv, l
k
w

¯

(5.7)
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Algorithm 3 Greedy inference procedure

1: Initialize S0
v “ H , L̂v “ t0, 1, . . . , |Tv|u @ 1 ď v ď N

2: Precompute unaries Φpl̂vq and binaries Ψpl̂v, l̂wq

3: Iterator t “ 0

4: Continue “ True

5: while Continue do
6: t “ t` 1

7: Update set of possible labels as L̂tv “ L̂vzSt´1
v

8: Obtain pl̂t1, . . . , l̂
t
N q by minimizing Eqn (5.9)

9: Update Stv “ St´1
v Y l̂tv if l̂tv ‰ 0

10: Continue “ True iff l̂tv ‰ 0 for any v else False
11: return tSt1, . . . ,StNu

are omitted. The Poisson prior Pγp|Sv|q is expressed in the greedy approach by Eqn (5.6). In
other words, the cost of selecting no tube corresponds to the probability that the video contains
more than |St´1

v | tubes with object instances. Using Φ̂pl̂tvq “ Φpl̂tvq `
ř

w

ř

k Ψpl̂tv, l
k
wq,

Eqn (5.5) can be rewritten as

Epl̂t1, . . . , l̂
t
N |St´1q “

N
ÿ

v“1

˜

Φ̂pl̂tvq `
N
ÿ

w“v`1

Ψpl̂tv, l̂
t
wq

¸

. (5.8)

Accumulating binary potentials into the unaries as in Eqn (5.8) encourage tubes selected
in the present iteration to be similar to those in the past. This can cause undesirable effects as
errors in the present iteration are propagated to the next. Therefore, independently optimizing
each iteration can be advantageous and is formulated as

Epl̂t1, . . . , l̂
t
N |St´1q “

N
ÿ

v“1

˜

Φpl̂tvq `
N
ÿ

w“v`1

Ψpl̂tv, l̂
t
wq

¸

. (5.9)

Tree-Reweighted Message Passing (cf. Section 2.2) is used for minimizing Eqn (5.8)
or (5.9) and the solution set is updated for each video by Stv “ St´1

v Y l̂tv if l̂tv ‰ 0. The
optimization procedure terminates if l̂tv “ 0 for all videos v. The greedy approach is described
in Algorithm 3. While this does not necessarily converge to the global minimum of Eqn (5.4),
it produces satisfying results as shown in the experiments.

The proposed formulation can also be used to infer instances of object classes from videos
or images without human context since it can be combined with any type of unary and pairwise
potentials. This chapter, however, focuses on explicit modeling of human context for the task
and therefore introduces potentials that model appearance similarity as well as functionality
of the object class.

5.3.3. Unary potentials Φ

Unary potential is used to measure the quality of tube lv in video v. It is composed of four
aspects, each of which aims to select tubes tightly bound to objects and interacted with. They
are described as follows.
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5.3.3.1. Appearance Saliency

Appearance saliency is a commonly used objectness measure since the appearance of an object
generally stands out from the background. The saliency of the kth frame of a tube is based
on two distributions. While the first captures the RGB or RGBD distribution computed on
region Ik inside the tube, the latter captures the distribution from the region Sk equal to and
surrounding Ik. Saliency for frame k is then computed as the χ2 distance between the two.
Assuming tube saliency factorizes over individual frames, the potential is given by

Φappplvq “
1

K

K
ÿ

k“1

˜

1´
1

2

ÿ

i

pIk,i ´ Sk,iq
2

Ik,i ` Sk,i

¸

. (5.10)

The effect of the unary potential is that it penalizes tubes that are loosely or partially bound
around objects. In either case, appearance inside and outside the tube is more similar than for
a tightly bound case.

5.3.3.2. Pose-object Relation

This is a measure to evaluate if the tube is being interacted with by the human. Given the
frame k, this is evaluated as the 2d or 3d Euclidean distance between the locally active end
effector joint jk of the human pose and the center ck of the tube in that frame. To make the
measure robust to pose estimation errors and interactions spanning short time duration, e.g.,
interaction with a bowl during eating cereal, α “ 0.3 trimmed mean filtering is performed.
Assuming that the measure factorizes over individual frames, the potential is given by

ΦPoseplvq “
1

K

p1´αq¨K
ÿ

k“α¨K

}cDpkq ´ jDpkq}, (5.11)

where D is a lookup table to index over the sorted list of distances.

5.3.3.3. Body part avoidance

Body part avoidance guides the energy functional towards meaningful solutions in the weakly
supervised setting. The need is highlighted in the case of body parts which are consistently
present in all videos, thereby guiding the optimization to these trivial solutions. Without the
aid of this term, background regions corresponding to body parts such as faces and hands,
which occur in all videos, will be selected instead of objects. The appearance of the body is a
mixture comprising models for skin, upper and lower bodies. The potential is then defined as

Φbodyplvq “ max tp̄skinpIq, p̄upperpIq, p̄lowerpIqu ,

with p̄xpIq “
1

K

ÿ

k

pxpIkq, (5.12)

where Ik is the color histogram of the tube at frame k. 5-component Gaussian mixture models
(GMM) are used for both upper and lower bodies, learned directly using pixels around relevant
joints of the estimated pose. As for skin color, the generic model from [229] is used.
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5.3.3.4. Size prior

A prior on the size of an object is an important cue that can be inferred relative to the human
size in human-object interaction scenarios. In other words, there are bounds on the physical
size of an object a human can interact with. E.g., interactions with phone, plate and markers
are possible, but not with the floor or the cap of a marker. Such image level priors can be
helpful when tubes are very small, rendering other potentials unreliable. The prior on the
object size is modeled as a Gaussian distribution given as

Φsizeplvq “ exp

ˆ

pwlv ´ 2whq
2 ` phlv ´ 2hhq

2

2σ2
h

˙

, (5.13)

where pwh, hhq and pwlv , hlvq are average width and height of the hand and tube respectively
and σh is 1.5 times the average size of the hand.

5.3.3.5. Unary potential

The final unary potential is formed by linearly combining the four terms as

Φ plvq “ λ1Φapp plvq ` λ2Φpose plvq ` λ3Φbody plvq ` λ4Φsize plvq , (5.14)

where the weighting parameters λi are learned from a held-out validation set as explained in
Section 5.4.

5.3.4. Pairwise potentials Ψ

The pairwise potential measures the similarity between two tubes lv and lw and is composed
of two terms. The first term measures the inter-tube appearance similarity and the second term
measures the similarity of their motion during interaction.

5.3.4.1. Shape

Following [116], the appearance similarity between two tubes is based on Pyramid-HOG
(PHOG) [230]. The appearance of a tube is described by a multiresolution histogram of gra-
dients computed over 50 uniformly sampled frames in the tube. Further, the two sequences
are first aligned using dynamic time warping to account for varying object appearance during
interaction. The warping is performed using the joint locations of the head, shoulders and
hands as features. Since the alignment between two distinct action sequences is meaningless,
original tubes are retained if the alignment error exceeds a certain threshold. The pairwise
potential Ψshapeplv, lwq is defined as the median χ2 distance between PHOG features from
corresponding frames k of tubes lv and lw is given as

Ψshapeplv, lwq “ median
k

#

1

2

ÿ

i

`

Pωvpkq,i ´ Pωwpkq,i

˘2

Pωvpkq,i ` Pωwpkq,i

+

, (5.15)

where ωu is the dynamic time warping (DTW) function for tube lu and Pωupkq,i is ith bin of
the PHOG feature extracted from the kth frame of tube lu after warping.
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(a) Unary Potential (See caption for details): Appearance Saliency

(b) Unary Potential: Pose-object Relation

(c) Unary Potential: Body part avoidance

(d) Unary Potential: Size prior

(e) Pairwise Potential: Shape

(f) Pairwise Potential: Functionality

Figure 5.3: Illustrating the unary and pairwise potentials. Bounding boxes in the first two
columns favour the energy in Eqn (5.4) by decreasing it in comparison with those in the last
two columns. (a)–(d) correspond to unary potentials and illustrate two distinct favorable cases
and unfavorable cases each. (e)–(f) correspond to pairwise potentials and illustrate a single
favorable case and unfavorable case. Temporal paths of the most active joint location and the
bounding box are marked in yellow and cyan respectively.
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5.3.4.2. Functionality

Assuming relative trajectories of objects with respect to the human correlated with object
functionality, the relative Euclidean distance between the center of the tube and the human is
measured. After having preprocessed the tubes as for the shape potential, 50 pairs of corre-
sponding frames are sampled uniformly. Given frame k, the distance between the center cupkq
of the tube lu and the head position hupkq is computed and normalized by the distance between
the head and the locally active end effector jupkq:

dupkq “
}hupkq ´ cupkq}

}hupkq ´ jupkq}
. (5.16)

While the normalization accounts for lack of 3d information in 2d human poses, it also com-
pensates for varying body sizes in 3d human poses. Given the DTW functions ω˚, the potential
Ψfuncplv, lwq is then the median of these differences:

Ψfuncplv, lwq “ median
k

 

|dωvpkq ´ dωwpkq|
(

. (5.17)

Pairwise potential The final pairwise potential is formed by the linear combination given by

Ψ plv, lwq “ λ5Ψshape plv, lwq ` λ6Ψfunc plv, lwq , (5.18)

where weighting parameters λi are learned together with the weights of the unary potential
(5.14) from a validation set.

5.4. EXPERIMENTS

The proposed method is evaluated on two RGBD datasets and one RGB dataset1, which
represent a rich variety of modalities: ETHZ-Action [231], CAD-120 [180] and MPII-
Cooking [185]. The ETHZ-Action is an RGBD dataset composed of a time-of-flight and a
color camera with a resolution of 170ˆ 144 and 640ˆ 480, respectively. The dataset contains
6 different actors, each performing high level activities with 12 objects totaling to 143 video
sequences. An 8-joint upper body 3d human pose is extracted using a model based method.
While interactions are mostly restricted to a single object, there is significant intra-class vari-
ation in object appearance due to the interaction. The 12 objects range from being medium
sized, e.g., brush and teapot to small sized, e.g., marker and videogame. A typical frame
illustrating the relative size of an object is shown in Fig 5.4.

CAD-120 is an RGBD dataset captured using the Kinect sensor. Therefore, both color
and depth images have a resolution of 640 ˆ 480. The dataset contains 4 actors performing
10 different high level activities totaling to 120 video sequences. The OpenNI SDK is used
to extract human pose consisting of 15 3d whole body joint locations with binary confidence
flags for each joint. Noise in the pose is more pronounced for limb joints, i.e., hands and legs.
Some activities involve multiple instances of the same object, e.g., stacking objects or multiple
objects, e.g., taking medicine that indicates presence of medicinebox and cup. It must be noted
that the classes book and remote appear in only three video sequences each.

1Annotations for all three datasets can be found at http://ps.is.tue.mpg.de/person/srikantha

http://ps.is.tue.mpg.de/person/srikantha
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Fig. 5.4: Illustrating human-object interaction from ETHZ-Action dataset, CAD-120 dataset
and MPII cooking dataset with human pose overlayed in orange and objects with a red bound-
ing box.

The MPII-Cooking is a high resolution (1624 ˆ 1224) RGB dataset. It contains 2 high
level activities performed by 12 different actors totaling to 65 video sequences. The extracted
human pose consists of 8 2d joint locations for the arms. Therefore, in the pairwise potential
Ψfuncplv, lwq in Eqn (5.17), the location of the head is replaced by the mean location of both
shoulders. This is a challenging dataset where objects evolve in appearance and frequently
undergo occlusions. E.g., bread evolves from being a layer of dough to an arrangement of
vegetables during the preparation a pizza.

Further, comparison with a weakly supervised approach [116] and an unsupervised ap-
proach [231] is provided. The method in [231] discovers objects by clustering trajectories of
human joint locations. The method in [116] uses motion segments to generate object propos-
als, which are then fed into an energy functional similar to Eqn (5.3). The unary and pairwise
potentials are inspired purely by appearance features. While unary potentials are composed
of objectness [73], intra-tube shape consistency and bounding-box heuristics, pairwise poten-
tials are based on inter-tube shape consistency. Their solution involves extracting one tube per
video which best represents the latent object.

5.4.1. Inference

The output of the system is a collection of tubes that best describe an object class common to
all input videos. Detected instances of object classes are shown in Fig 5.8. In order to evaluate
the quality of these tubes, frame- and class-wise PASCAL IOU measures are presented. A
frame-IOU measure is defined as a ratio of areas of intersection over union of the ground
truth and inferred bounding boxes. A tube-IOU is defined as the average of all frame-IOUs.
Similarly, a class-IOU is defined as the average of all inferred tube-IOUs.

Validation dataset comprises ground truth annotations of one randomly chosen object class
per dataset: puncher (ETHZ-Action), milkbox (CAD-120) and whisker (MPII-Cooking). The
configuration of model parameters λ P t0.05, 0.25, 0.50, 0.75, 1.00u , α and γ is set via grid-
search in with an objective to maximize class-IOU for the validation class. These are therefore
excluded from all performance evaluations that follow.

5.4.2. Comparison

In the context of detecting objects from videos with activities, the experiments show that naive
motion based segmentation as in [116] and object proposal method [232] fail at varying levels
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[116] modif-[116] Eqn (5.3) Eqn (5.8) Eqn (5.9)

ETHZ-Action 0.063 0.249 0.447 0.439 0.471
CAD-120 0.039 0.246 0.410 0.393 0.423
MPII-Cooking 0.023 0.221 0.342 0.333 0.348

Table 5.1: Average class-IOU of the proposed model for the three datasets. The Eqn (5.9)
which infers multiple tubes per video outperforms Eqn (5.3) which extracts a single tube per
video and [116] which relies on motion segments and object appearance and ignores object
functionality.

of severity. Improved performance is shown in Table 5.1 due to improved object proposals
as generated by Section 5.3.1 and the inclusion of object functionality in Eqn (5.3). Further
extending Eqn (5.3) to select a varying number of tubes from each video as per Eqn (5.8) and
(5.9) improves the quality of inferred tubes and the subsequent object detection performance.
It is found that the framework presented in Eqn (5.8) is prone to noise, thereby often yield-
ing suboptimal solutions and the independence assumption incorporated in Eqn (5.9) helps
alleviate this limitation. Further experimental evaluation is presented below.

Firstly, an object proposal technique [232] is compared against the proposed tube genera-
tion process. For this experiment, every 10th frame in the ETHZ-Action dataset is considered.
The recall of [232] for (102, 103, 104) proposals per image is (0.19, 0.58, 0.67), respectively,
against 0.65 for 30 tube proposals as generated in Section 5.3.1.

Regarding overall accuracy, a method for learning from weakly labeled videos [116] is
compared with an approach that optimizes Eqn (5.3). The average class-IOU for all three
datasets is presented in Table 5.1. Optimizing Eqn (5.3) outperforms [116] significantly. The
poor performance of [116] is due to the inferior quality of object proposals which are extracted
based on dominant motion segments, which overlap mostly with human body parts instead of
objects. The method is therefore modified by replacing object proposals with those gener-
ated from Section 5.3.1, but retaining the energy functional proposed in [116]. The modified
approach is denoted as modif-[116] in Table 5.1. While modif-[116] performs significantly
better than its baseline [116], it still underperforms when compared to Eqn (5.3).

Equations (5.8), (5.9) extend Eqn (5.3) by inferring multiple tubes. While the former lags
behind the baseline Eqn (5.3) on all three datasets, the latter performs favorably in ETHZ-
Action and CAD-120 datasets and comparably in the MPII-Cooking dataset. To reason about
the superior performance of Eqn (5.9) against that of Eqn (5.8), the energy obtained by both
methods as per Eqn (5.4) is compared. It is found that energies pertaining to Eqn (5.9) are
lower in 9 out of 12 classes in ETHZ-Action and 6 out of 9 classes in CAD-120 dataset. A
possible reasoning for this is that assuming independence between iterations in Eqn (5.9) can
better handle noise without propagating it into further iterations.

In order to further evaluate the quality of inferred tubes, class-accuracy is defined as the
fraction of bounding boxes with an IOU ratio greater than a given threshold. Fig 5.5 shows
class-accuracy averaged over all classes for decreasing IOU ratios. Because of the inferior
performance of [116], accuracy is reported for modif-[116]. As can be seen, modif-[116]
underperforms in all three datasets verifying the suboptimality of related potentials. The in-
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(a) ETHZ-Action (b) CAD-120

(c) MPII-Cooking (d) Algorithm (3)

Fig. 5.5: (a–c) The accuracy is measured as the fraction of bounding boxes with IOU ratio
greater than a given threshold. The x-axis plots 1-IOU i.e. the higher the value on the x-axis,
the more tolerant is the success threshold and the higher the accuracy. The accuracy presented
is averaged over all classes. (d) Number of selected tubes inferred in each iteration. After
the third iteration, the approach has converged because no new tubes are added to the set of
selected tubes Stv.

troduction of new potentials as in Eqn (5.3) shows improvements, the biggest of which is
for the ETHZ-Action dataset at 1-IOU=0.8 where the former performs at 0.36 and the latter
at 0.86. Although introducing multi-tube inference as in Eqn (5.8) results in reduced perfor-
mance, the independence assumption in Eqn (5.9) is favorable on all three datasets. Significant
improvements are found in ETHZ-Action and MPII-Cooking at 1-IOU=0.5 with around 10%

increase in accuracy from the performance of Eqn (5.3). At IOU=0.5, the accuracy of Equa-
tions (5.9), (5.3) and modif-[116] are (0.62, 0.48, 0.16) for ETHZ-Action, (0.60, 0.56, 0.42)
for CAD-120 and (0.63, 0.53, 0.29) for the MPII-Cooking dataset, respectively.

The number of tubes selected in each iteration for the datasets is shown in Fig 5.5(d).
For the ETHZ-Action dataset, all tubes are selected after two iterations. For the other two
datasets, the approach converges after three iterations. Using the multiple instance inference
of Eqn (5.9), a total of 124, 310 and 488 tubes are selected for the ETHZ-Action, CAD-120 and
MPII-Cooking dataset, respectively. As a comparison, single instance inference of Eqn (5.3)
selects only 106, 126 and 244 tubes for the datasets.

Regarding running times, the CPU only implementation takes about 1 hour to extract 30
tubes per video and about 5 hours to precompute unary and pairwise potentials. The inference
procedure is fast and takes about 15 seconds for a collection of 20 videos.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.6: Sensitivity of parameters for Equations (5.14) and (5.18). Accuracy is measured by
average class-IOU.

5.4.3. Evaluating parameter sensitivity

The parameters of Equations (5.14) and (5.18) are estimated on a validation set as described
in Section 5.4.1. In order to show the sensitivity of these parameters, each of the learned
weights is varied and the resulting average class-IOU is shown in Fig 5.6(a)–(f). As can be
seen, while varying almost any potential has minimal effect on MPII-Cooking, the effects are
more drastic for ETHZ-Action. The performance on CAD-120 is sensitive to variations in
Φbody and Ψshape.

5.4.4. Impact of Potentials

The potentials are grouped into three categories to study the nature of contributions from the
designed potentials. They are: APP consisting of potentials that are inherent to object ap-
pearance tΦapp,Ψshapeu, SIZ denotes the size prior tΦsizeu and FUN consisting of potentials
derived from human-object interaction tΦpose,Φbody,Ψfuncu. Table 5.2 presents the perfor-
mance of Eqn (5.3) under various group combinations.

The foremost observation is that the group APP underperforms in comparison with modif-
[116] for all datasets. This is an expected fall in performance due to the difference in the
representation of appearance information by both methods. The performance improves upon
adding the size prior (APP+SIZ). The importance of incorporating human-object interaction
is seen when the functionality terms (FUN) outperform modif-[116] and APP on both ETHZ-
Action and MPII-Cooking datasets. Further, combination of (FUN+APP) outperforms individ-
ual settings indicating that both groups encode complementary information. Finally, the pair
of (FUN+SIZ) performs best among all proper subset combinations attaining more than 80%
of the maximum recorded performance. This indicates that all potential groups are important
for achieving maximum performance.

Additionally, the effect of discarding a single potential from the model in Eqn (5.9) is
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Eqn (5.3) modif-[116] Eqn (5.3) APP APP+SIZ FUN APP+FUN FUN+SIZ

ETHZ-Action 0.249 0.447 0.192 0.305 0.292 0.312 0.390
CAD-120 0.246 0.410 0.168 0.191 0.147 0.202 0.350
MPII-Cooking 0.221 0.342 0.079 0.149 0.229 0.235 0.288

Table 5.2: Studying the contribution of various potential groups in Eqn (5.3). Average class-
IOU is presented for (APP+SIZ+FUN) for the three datasets. All three types of potentials that
model object appearance (APP), size prior (SIZ) and object functionality (FUN) are important
for the final performance.

Eqn (5.9) Φapp Φpose Φbody Φsize Ψshape Ψfunc

ETHZ-Action -3.27 -11.40 -6.09 -13.17 -2.43 -3.00
CAD-120 -9.48 -0.85 -6.38 -9.19 -10.06 -11.71
MPII-Cooking -10.33 -7.47 -7.47 -3.54 -9.79 -34.00

Table 5.3: Percentage change in average class-IOU performance when any given potential is
discarded from Eqn (5.9).

Eqn (5.3) Φapp Φpose Φbody Φsize Ψshape Ψfunc

ETHZ-Action 0.35 1.88 -25.49 -13.50 -4.62 -8.86
CAD-120 -48.66 -15.73 -18.89 -20.80 -40.15 -9.19
MPII-Cooking -15.85 0.06 -31.09 -10.70 0.058 -60.95

Table 5.4: Percentage change in average class-IOU performance when any given potential is
discarded from Eqn (5.3).

presented in Table 5.3. It can be observed that eliminating any potential causes a drop in
performance. Appearance based features have minimal impact on the ETHZ-Action dataset
as they are not reliable for small objects. Discarding Ψfunc most adversely affects the MPII-
Cooking dataset due to closer interaction between human and objects in comparison with the
other two datasets. On the other hand, discarding Φpose has the least impact on the CAD-
120 dataset. This is because the inferred human pose is noisy due to missing joints and poor
localization accuracy. In fact a qualitative evaluation confirmed that the pose quality for CAD-
120 is the lowest among the three datasets. Φbody and Φsize reduce the performance for all
three datasets. Due to the small size of the objects in ETHZ-Action, Φsize has the biggest
impact on this dataset. Study on Eqn (5.3) showed similar results and is presented in Table 5.4.

Further, the robustness of pose-related potentials is studied with respect to strong pose
estimation noise on the CAD-120 dataset. To this end, normally distributed noise with variance
100cm2, 200cm2 and 400cm2 is added to each 3d joint position. The average class-IOU then
drops to 0.365, 0.342 and 0.323 respectively from the baseline of 0.423 (see Table 5.1). The
performance, however, is still higher than without using these potentials (see APP+SIZ in
Table 5.2).
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Class GTr. Infer Eqn 4.11 Class Gtr. Infer Eqn 4.11

ETHZ-Action
brush 45.1 38.0 37.0 calcul. 100.0 100.0 80.0

camera 83.5 73.0 73.0 remote 49.4 36.7 32.2
mug 38.0 30.2 31.4 headph. 69.8 63.7 36.1

marker 39.7 39.7 05.1 teapot 63.2 59.2 60.3
videog. 78.3 77.6 46.1 roller 99.6 66.1 46.3
phone 0.05 11.9 05.5 Avg. 60.6 54.2 41.2

CAD-120
book 11.2 03.2 03.2 medbox. 58.3 53.3 38.1
bowl 24.5 24.5 24.5 mwave. 71.4 71.0 30.0
box 24.4 21.5 21.0 plate 16.2 14.3 11.4
cup 14.8 12.9 13.7 remote 14.1 08.3 08.3

cloth 20.1 18.6 05.6 Avg. 29.4 25.3 17.3

MPII-Cooking
bowl 69.2 64.4 41.0 spiceh. 100.0 100.0 63.2
bread 25.5 13.2 13.2 squeez. 61.5 61.5 61.5
plate 43.4 43.4 55.0 tin 33.0 26.4 32.6
grater 02.2 01.2 01.2 Avg. 47.8 44.3 34.2

Table 5.5: Average precision (%) for different datasets comparing object models built from
ground truth data (GTr.) and inferred data (Infer) from Eqn (5.9).

5.4.5. Evaluating object models

The quality of inferred tubes from Eqn (5.9) are now evaluated in terms of object detection
performance. Training and testing data are obtained by defining splits on each dataset such
that they share no common actors. For training, data from 3 out of 4 actors in CAD-120, 5 out
of 6 actors in ETHZ-Action and 9 out of 12 actors in the MPII-Cooking dataset are considered.
The rest of the data i.e. Subject-1 for CAD-120, actor-14 for ETHZ-Action and ts18,s19,s20u
for MPII-Cooking is used for testing.

For object detection, a Hough forest (cf. Section 2.1) with 5 trees is used. Each tree is
trained until a maximal depth of 25 and with 50,000 positive and 50,000 negative patches
(drawn uniformly from the background). Depth data is not used for this experiment. The
fully supervised baseline, denoted as ‘GTr.’ in Table 5.5, is based on manually annotated
bounding boxes of training images, i.e., every 10th frame of the training sequences. The
‘Infer’ training data is based on an equal number of frames from the automatically extracted
tubes by Eqn (5.9). Further, ‘Eqn 4.11’ incorporates human pose as context as described in
Section 4.4.4.

The results show that optimal performance is achieved for categories like calculator,
marker in ETHZ-Action, bowl, microwave in CAD-120 and spiceholder, squeezer in MPII-
Cooking. On the other hand, a loss in performance is observed for many categories due to
weaker supervision. This is due to noisier extracted tubes in comparison with manually anno-
tated data. Nevertheless, performances of the object detectors trained on weakly supervised
videos achieve 89.4% (ETHZ-Action), 86.1% (CAD-120) and 92.6% (MPII-Cooking) of that
from full supervision. Further, incorporating human pose as per Eqn 4.11 generally results
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in worse performance because the training data is biased towards humans closely interacting
with objects unlike in the testing data, and yet, improvements are seen in classes like plate and
tin where the degree of interaction is more consistent.

A comparison of the object detection performance when training data is obtained from
Equations (5.3), (5.8), (5.9) is shown in Fig 5.7. It can be observed that object detectors based
on Eqn (5.9) generally outperform those from Equations (5.3) and (5.8). Particularly, the
average precision is improved when compared to Eqn (5.3) in all three datasets from 53.2%
to 54.2% for ETHZ-Action, 24.4% to 25.3% for CAD-120 and 35.3% to 44.3% in the MPII-
Cooking dataset. However, there is a small loss in performance for a few classes such as
camera, headphone in ETHZ-Action and book, remote in the CAD-120 dataset.

Also, a comparison with [231] which is an unsupervised approach that segments and clus-
ters videos based on pose features is presented. [231] generates 20 clusters for the ETHZ-
Action dataset without labels and only 3–21 object samples per cluster, while our approach
generates more than 300 samples per class. Although the resulting clusters cannot be directly
compared, they are labeled manually to train object detectors for all 12 classes. The average
precision on ETHZ-Action is 24.85% in comparison to 54.20% of the proposed approach.

5.4.6. Refining objectness using object detectors

Approaches like [136, 233] propose a weakly supervised method where a detector is initial-
ized using a few seed examples and later refined by incorporating new detections. To evaluate
whether iterating between training the detector and inferring training data from videos im-
proves accuracy, the object detector (Section 5.4.5) is applied to the tubes and the detector
confidence is used as a fifth unary potential in Eqn (5.14). The process is iterated until there is
no change in the set of selected tubes.

Repeating the experiments as described in Sections 5.4.1–5.4.2 with the augmented model,
the procedure for ETHZ-Action and CAD-120 terminated after the first iteration without any
improvement in average class-IOU measure. However, the procedure for MPII-Cooking ter-
minated after two iterations, yielding a marginal improvement from 0.342 to 0.343 (cf. Ta-
ble 5.2). The object detection performance remained unchanged for all datasets.

5.5. SUMMARY

This chapter addresses the problem of detecting instances of small and medium sized objects
from weakly labeled activity videos. The experiments show that approaches relying entirely on
object motion or appearance fail for this task. Although using only object appearance is shown
to be insufficient, coupling it with object functionality leads to greatly improved performance.
An interesting aspect is that the results reveal the complementary nature of functionality and
appearance related potentials for detecting objects. In order to maximize utilization of data, a
framework for inferring multiple object instances from each video is proposed which is solved
using a greedy approach. The superior quality of these tubes are verified by the experiments.
The generalization capabilities are demonstrated on three datasets that span a variety of dif-
ferent activities, modalities (RGB vs. RGBD), and pose representations (2d vs. 3d). Finally,
the weakly supervised approach outperforms an unsupervised approach and achieves between
86% and 92% of the performance of a fully supervised approach for object detection.
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(a)

(b)

(c)

Fig. 5.7: Average precision (%) for object detection on different datasets given training data
from ground truth and from Equations (5.9), (5.8) and (5.3).
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Fig. 5.8: Detected instances of the object classes as in Eqn (5.3): Marker, Mug, Camera,
Roller, Milkbox, Bowl, Cloth, Microwave, Plate, Tin, Bread, Squeezer and Failure cases
Teapot, Brush. The first image in each row shows relative object size by illustrating a typ-
ical action scene with overlayed human pose and a bounding box around the object of interest.
Since the objects are relatively small, images are best viewed by zooming in.





CHAPTER 6

Weakly Supervised Segmentation of
Object Affordances
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6.1. INTRODUCTION

The previous chapters dealt with detecting objects up to the resolution of bounding boxes.
While the appearance features alone are unreliable for small and medium sized objects, human
context was successfully incorporated in object-human interaction scenarios to improve object
detection. Further, improvements in weakly supervised object detection was demonstrated by
integrating complementary cues based on human centric object functionality. Such localizing
about objects through bounding boxes might be sufficient for numerous applications. How-
ever, more detailed information about object (part) affordances/functionalities might be useful
for other collaborative applications.

Object centric functionality can be categorized into abstract descriptive properties called
attributes [234, 235, 236] or physically grounded regions called affordances. Affordances are
important as they form the key representation to describe potential interactions. For instance,
autonomous navigation depends heavily on understanding outdoor semantics to decide if the
lane is changable or if the way ahead is drivable [237]. Similarly, assistive robots must have
the capability of anticipating indoor semantics like which regions of the kitchen are openable
or placeable [180]. Further, because forms of interaction are predetermined for virtually any
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Fig. 6.1: Overview of the weakly supervised approach for affordance labeling. (Left) Human
pose information available for all images is used to regress weak labels (clickpoints) in the
image subset without such annotation. (Section 6.4.4). (Right) The estimated clickpoints are
used to initialize the EM framework (Section 6.4.3). The E-step computes a point estimate of
the latent segmentation based on Gaussian distributions. The M-step learns the parameters of
the DCNN considering the point estimate as ground truth segmentation (Section 6.4.2).

object class, it is desirable to have recognition systems that are capable of localizing function-
ally meaningful regions or affordances alongside contemporary object recognition systems.

In most previous works, affordance labeling has been addressed as a stand-alone task. For
instance, the methods [131, 238, 239, 240] learn pixel-wise affordance labels using super-
vised learning techniques. Creating pixelwise annotated datasets, however, is heavily labor
intensive. Therefore, in order to simplify the annotation process, current affordance datasets
have been captured in highly controlled environments like a turntable setting [131]. How-
ever, this does not allow to study contextual information, specially those of humans, which
affordances are intrinsically related to. One of the contributions of this chapter is to propose
a pixel annotated affordance dataset within the purview of human interactions, thus creating
possibilities to tap rich contextual information thereby fostering work towards reduced super-
vision levels. In addition, it is shown that state-of-the-art end-to-end learning techniques in
semantic segmentation significantly outperform state-of-the-art supervised learning methods
for affordances.

The chapter also proposes a weakly supervised learning approach for affordance segmen-
tation. The approach is based on the expectation-maximization (EM) framework as proposed
in [241] where a constant bias term is used to learn a deep convolutional neural network
(DCNN) for semantic segmentation only from image level labels. In the proposed method,
clickpoints are considered as weak annotations as they are easy to obtain and have been used
in [242] for annotating a large material database. In order to learn from clickpoints, the frame-
work is extended to handle spatial dependencies. The approach can also be used to learn from
mixed sets of training images where one set is annotated by clickpoints and the other is anno-
tated by image labels. An overview of the proposed EM approach is illustrated in Figure 6.1.

Further, it is shown that automatically extracted human pose information can be effectively
utilized as context for affordances. It is used to transfer clickpoint annotations to images
without clickpoint annotations, which are then used to initialize the proposed EM approach.
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6.2. RELATED WORK

Properties of objects can be described at various levels of abstraction by a variety of attributes
including visual properties [234, 243, 244, 245] e.g. object color, shape and object parts,
physical properties [246, 247], e.g. weight, size and material characteristics and categorical
properties [248, 249]. Object affordances, which describe potential uses of an object, can also
be considered as other attributes. For instance, [250] describes affordances by object-action
pairs whose plausibility is determined either by mining word co-occurances in textual data
or by measuring visual consistency in images returned by an image search. [247] proposes
to represent objects in a densely connected graph structure. While a node represents one of
the various visual, categorical, physical or functional aspects of the object, an edge indicates
the plausibility of both node entities to occur jointly. Upon querying the graph with observed
information, e.g. {round, red}, the result is a set of most likely nodes, e.g. {tomato, edible,
10-100gm, pizza}.

Affordances have also been used as an intermediate representation for higher level tasks.
In [251], object functionality is defined in terms of the pose of relevant hand-grasp during
interactions. Object recognition is performed by combining individual classifiers based on
object appearance and hand pose. [252] uses affordances as a part of a task oriented object
modeling. They formulate a generative framework that encapsulates the underlying physics,
functions and causality of objects being used as tools. Their representation combines extrinsic
factors that include human pose sequences and physical forces such as velocity and pressure
and intrinsic factors that represent object part affordances. [253] models action segments us-
ing CRFs which are described by human pose, object affordance and their appearances. Using
a particle filter framework, future actions are anticipated by sampling from a pool of possible
CRFs thereby performing a temporal segmentation of action labels and object affordances.
[217] jointly models object appearance and hand pose during interactions. They demonstrate
simultaneous hand action localization and object detection through implicit modeling of affor-
dances.

Localizing object affordances based on supervised learning has been popular in the
robotics community. [238] performs robotic manipulations on objects based on affordances
which are inferred from the orientations of object surfaces. [239] learns a discriminative model
to perform affordance segmentation of point clouds based on surface geometry. [131] uses
RGBD data to learn pixelwise labeling of affordances for common household objects. They
explore two different features: one based on a hierarchical matching pursuit (HMP) and an-
other based on normal and curvature features derived from RGBD data. [240] learns to infer
object level affordance labels based on attributes derived from appearance features. [254] pro-
poses a two stage cascade approach based on RGBD data to regress potential grasp locations
of objects. In [130], pixelwise affordance labels of objects are obtained by warping the query
image to the K-nearest training images based on part locations inferred using DPMs. [255]
combines top-down object pose based affordance labels with those obtained from bottom-up
appearance based features to infer part based object affordances. Top-down approaches for
affordance labeling has been explored in [214, 216] where scene labeling is performed by
observing possible interactions between scene geometry and hallucinated human poses. Lo-
calizing object affordances based on human context has been also studied in [256]. They
propose a graphical model where spatial and temporal extents of object affordances are in-
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Fig. 6.2: (left) RGBD image pairs illustrating images from (top row) the UMD turntable
affordance dataset and (bottom row) the CAD-120 dataset. (right) Illustrating the various
levels of annotation (clockwise) original image, pixel level annotation, image level annotation,
clickpoint level annotation.

ferred based on observed human pose and object locations. A mixture model is used to model
temporal trajectories where each component represents a single type of motion e.g. repetitive
or random motion. The approach, however, does not provide pixelwise segmentation. Instead,
the coarse location of an affordance is described by a probability distribution.

Weakly-supervised learning for semantic image segmentation has been investigated in sev-
eral works. In this context, training images are only annotated at the image level and not
at pixel level. For instance, [257] formulate the weakly supervised segmentation task as a
multi-instance multi-task learning problem. Further, [258, 259] incorporate latent correlations
among superpixels that share the same labels but originate from different images. [260] simpli-
fies the above formulation by a graphical model that simultaneously encodes semantic labels
of superpixels and presence or absence of labels in images. [261] handles noisy labels from
social images by using robust mid level representations derived through topic modeling in a
CRF framework. More recently, a weakly-supervised approach based on a deep DCNN [262]
has been proposed in [241]. It uses an EM framework to iteratively learn the latent pixel labels
of the training data and the parameters of the DCNN. A similar approach is followed by [263]
where linear constraints derived from weak image labels are imposed on the label prediction
distribution of the neural network.

To investigate the problem of weakly labeled affordance segmentation, a pixel-wise la-
beled dataset that contains objects within the context of human-object interactions is first in-
troduced in Section 6.3.

Next, various forms for weak labels are investigated and an EM framework that is adaptive
to local image statistics is proposed in Section 6.4. In Section 6.4.4 it is shown that contextual
information in terms of automatically extracted human pose can be utilized to initialize the
EM framework thereby further reducing the need for labeled data. Finally, evaluations are
presented in Section 6.5.

6.3. AFFORDANCE DATASETS

There are not many datasets with pixelwise affordance labels. The RGBD dataset proposed
by [131] is an exception and focuses on part affordances of everyday tools. The dataset con-
sisting of 28,074 images is collected using a Kinect sensor, which records RGB and depth
images at a resolution of 640 ˆ 480 pixels and provides 7-class pixelwise affordance labels
for objects from 17 categories. Each object is recorded on a revolving turntable to cover a
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Fig. 6.3: Sample images from the proposed CAD-120 affordance dataset. The affordance
labels are background (brown), holdable (green), openable (yellow), supportable (blue), con-
tainable (red), cuttable (purple) and pourable (magenta).

full 360˝ range of views providing clutter-free images of the object as shown in Figure 6.2.
While such lab recordings provide images with high quality, they lack important contextual
information such as human-interaction.

Therefore, a dataset that contains objects within the context of human-interactions in a
more realistic environment is adopted. In this regard, the extended CAD-120 dataset [256]
is a well tailored for this purpose. It consists of 215 videos in which 8 actors perform 14
different high level activities. Each high level activity is composed of sub-activities, which in
turn involve one or more objects. In total, there are 32 different sub-activities and 35 object
classes. A few images of the dataset are shown in Figure 6.2. The dataset also provides
framewise annotation of the sub-activity, object bounding boxes and automatically extracted
human pose.

Regarding annotation, affordance labels openable, cuttable, containable, pourable, sup-
portable, holdable are annotated for every 10th frame from sequences involving an active
human-object interaction resulting in 3090 frames. Each frame contains between 1 and 12
object instances resulting in 9916 objects in total. All object instances are annotated with pix-
elwise affordance labels. A few images from the dataset are shown in Figure 6.3. As can be
seen, the appearance of affordances can vary significantly, e.g. visually distinct object parts
like the lid of a box, the cap of a bottle and the door of a microwave all have the affordance
openable. Similarly, the interiors of a bowl and a microwave are containable.

Figure 6.4 presents statistics of affordance segments at the level of object bounding boxes.
As can be seen, affordances holdable, supportable are most likely to occur because most
interacted objects are handheld in the context of a supportive structure. Also, affordances
like openable, containable which are a result of generic interactions have a fair chance to
be observed. However, precise affordances like cuttable, pourable not only occur rarely, but
also cover a minuscule portion of the object bounding box. All other affordances are well
represented visually in that they cover at least 15% of the object bounding boxes, which have
a median dimension of 68 ˆ 57. The dataset is also well balanced in terms of the number of
images contributed by each actor with a median of 382 and a range of 227–606 images.
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Fig. 6.4: Distribution of affordance labels at the object bounding box level in the proposed
dataset (left) probability of observing an affordance (right) median area covered by an affor-
dance segment in relation to its object bounding box.

6.4. PROPOSED METHOD

Supervised learning of affordances using appearance features has been addressed in [131,
238, 239, 240, 254, 255]. Recently, a supervised framework for object affordance labeling
in RGBD images is proposed by [131]. The framework treats each class independently by
learning standalone one-vs-all classifiers, affecting model scalability adversely. In this regard,
the proposed method builds on DeepLab [262] which is a state-of-the-art end-to-end technique
for semantic segmentation. DeepLab uses a DCNN to predict the label distribution per pixel,
followed by a fully connected CRF to smooth predictions while preserving image edges.

The learning procedure is now described at various levels of supervision. Given an image
I with n pixels, the image values are denoted as X “ tx1, x2, . . . , xnu where xi P R3 in case
of RGB images. The corresponding labeling is denoted as Y “ ty1, y2, . . . , ynu where yi P C
takes one of the |C| discrete labels C “ t1, 2, . . . , |C|u with yi “ 1 indicating the background
class. Note that these pixel level labels may not be available for the training set. Instead,
two cases of weak annotations are considered. In the first case, a set of image level labels
are provided. They are denoted by Z “ tz1, z2, . . . u, where zl P C and

ř

iryi “ zls ą 0,
i.e. Z contains the classes that are present anywhere in the image. In the second case, an
additional reference point in the image is provided for each z P Z. We denote this by Zx “
tpz1, p1, x1q, pz2, p2, x2q, . . . u where pl P Ω is the pixel location with label zl with value xl.
The latter case of weak annotation is based on single clickpoints annotated by users. This
technique has been used to scale up the annotation process for a large-scale material database
in [242]. Figure 6.2 illustrates the various levels of annotation.

The supervised learning based on [262] is briefly summarized in Section 6.4.1. In Sec-
tion 6.4.2, an approach for weakly supervised learning is proposed and its initialization is
discussed in Section 6.4.3. Finally, an approach that transfers annotations of the type Zx to
images with weaker annotations of type Z is proposed in Section 6.4.4. Automatically ex-
tracted human pose as context is exploited for the annotation transfer.

6.4.1. Pixel level annotation

In the fully supervised case, the objective function is the log likelihood given by

Jpθq “ log ppY |X; θq “
n
ÿ

i“1

log ppyi|X; θq, (6.1)
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where θ is the vector of DCNN parameters. The per-pixel label distribution is then given by

ppyi|X; θq 9 exp pfi pyi|X; θqq , (6.2)

where fi pyi|X; θq is the output of the DCNN at pixel i. For optimizing Jpθq, we adopt the
implementation provided by [262].

6.4.2. Weak annotation

Considering the case when only weak image level annotation is available, the observed vari-
ables are image data X and image level labels Z. The second case Zx is very similar and will
be discussed in Section 6.4.3. The pixel level segmentation Y forms the latent variables. The
proposed approach is based on the EM framework that has been proposed in [241]. While
[241] introduces class dependent bias terms that are constant for an entire image, i.e. indepen-
dent of the image location, this framework is extended to handle spatial dependencies. In this
way, the method can not only use image level labels Z, but can also use weak annotations of
the second type Zx.

An EM approach is formulated in order to learn the parameters θ of the DCNN model,
which is given by

ppX,Y, Z; θq “ ppY |X,Z; θq ppX,Zq

“

n
ź

i“1

ppyi|X,Z; θq ppX,Zq.
(6.3)

The M-step involves updating the model parameters θ by treating the point estimate Ŷ as
ground truth segmentation and optimizing

ÿ

Y

ppY |X,Z; θoldq log ppY |Z; θq « log ppŶ |X; θq “
n
ÿ

i“1

log ppŷi|X; θq, (6.4)

which can be efficiently performed by minibatch stochastic gradient descent (SGD) as in (6.1).
While the M-step is the same as in [241], the E-step differs since spatial dependencies of

the label distribution conditioned on Z are modeled. The E-step amounts to computing the
point estimate Ŷ of the latent segmentation as

Ŷ “ argmax
Y

log ppY |X,Z; θq “ argmax
ty1,...,ynu

n
ÿ

i“1

log ppyi|X,Z; θq (6.5)

ppyi|X,Z; θq “

$
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fbg`

ř

zPZzt1u

ř

k πz,kN pi;µz,kpX;θq,Σz,kpX;θqq , if yi “ 1

ř

k πyi,k
N pi;µyi,k

pX;θq,Σyi,k
pX;θqq

fbg`
ř

zPZzt1u

ř

k πz,kN pi;µz,kpX;θq,Σz,kpX;θqq , if yi P Zzt1u

0, otherwise

(6.6)

where z indicates set subtraction. For the background class, a spatially constant probability
fbg is assumed. For affordances that are not part of the weak labels Z the probability is set
to zero. The spatial distribution of an affordance z P Z is modeled by a Gaussian Mixture
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distribution with weights πz,k, means µz,k and covariance matrices Σz,k, which depend on θ
and X . Given the output of the DCNN, i.e. ppyi|X; θq from (6.2), the set of pixels that are
labeled by z, i.e. ti : z “ argmaxyippyi|X; θqu are computed. A binary Grabcut segmentation
is initialized with this set as foreground and the rest of the pixels as background. 8-neighbor
connected regions of size larger than 10% of the largest region are considered to estimate
parameters πz,k, µz,k and Σz,k.

6.4.3. Initialization

Two sets of training images are considered. While the first set is annotated by a set of click-
points Zx, a second set contains only image level labels Z as shown in Figure 6.2. The pro-
cedure starts with the first set annotated with Zx and initialize the Gaussian Mixture for zl
by a single Gaussian with µzl “ xl and Σzl “ 40I where I indicates an identity matrix.
The E-step is performed to learn the initial point estimate Ŷ using (6.5). The DCNN model
is initialized by a pre-trained model VGG16 [264] and the model parameters are updated ac-
cording to the M-step (6.4). The updated DCNN model is then applied to all training images
to compute (6.2) before continuing with the E-step. For the clickpoints pzl, xlq, the means of
the Gaussians µzl are retained as xl. The approach is then iterated until convergence.

6.4.4. Estimating clickpoints from human pose

Since affordances can be observed in the context of human-object interaction, clickpoint an-
notations from images can be transferred those that contain only image level labels. Given the
automatically extracted 2d human pose and detected bounding boxes of objects, the human
pose h is represented as a 2J dimensional vector of joint locations where J denotes the num-
ber of joints. For each affordance z P C, all annotated clickpoints xt are collected together
with the pose ht as a training set. The pose vector ht and xt are normalized by subtracting
the center of the object bounding box followed by mean and variance normalization over the
training data, i.e. setting mean to zero and standard deviation to one. K-means clustering is
then performed on these poses to learn a dictionary of size D, denoted as hD. For regressing
the normalized clickpoint x of an affordance z given the normalized pose h, a regularized
non-linear regression is used with an radial basis function (RBF) kernel

x “ θTψph,hDq “
D
ÿ

d“1

θd exp

ˆ

´
}h´ hd}

2
2

γ2

˙

(6.7)

where hd is the dth entry of dictionary hD. The regression weight θ is learned in the least
squared error sense. Hyperparameter γ, regularization parameter λ and dictionary size D are
learned through cross validation, which is obtained by splitting the training data in half.

6.5. EXPERIMENTS

Section 6.4.1 evaluates the fully supervised approach and compares it with other fully su-
pervised approaches for affordance segmentation. Section 6.4.2 then presents the weakly su-
pervised baselines and compares it against the fully supervised approaches. Evaluation is
performed on two affordance datasets presented in Section 6.3. As for the evaluation protocol,
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UMD Turntable Grasp Cut Scoop Contain Pound Support Wgrasp Mean

Fully Supervised Weighted F-Measure

HMP + SVM 0.37 0.37 0.42 0.81 0.64 0.52 0.77 0.557
DEP + SRF 0.31 0.28 0.41 0.63 0.43 0.48 0.66 0.457

DeepLab 0.59 0.71 0.55 0.90 0.33 0.70 0.87 0.664

Fully Supervised IOU

HMP + SVM 0.31 0.11 0.07 0.30 0.06 0.06 0.17 0.154
DEP + SRF 0.26 0.01 0.06 0.28 0.04 0.03 0.19 0.124

DeepLab 0.51 0.63 0.49 0.85 0.26 0.63 0.80 0.596

Weakly Supervised Weighted F-Measure

Weak+DeepLab [241] 0.09 0.11 0.14 0.30 0.12 0.20 0.27 0.176
Proposed 0.47 0.66 0.50 0.84 0.29 0.59 0.70 0.579

Weakly Supervised IOU

Weak+DeepLab [241] 0.09 0.10 0.13 0.27 0.10 0.18 0.23 0.157
CCNN [263] 0.09 0.00 0.00 0.31 0.00 0.00 0.29 0.099

Proposed + EM(1 Iter.) 0.28 0.38 0.30 0.61 0.24 0.44 0.60 0.407
Proposed 0.40 0.57 0.43 0.78 0.22 0.52 0.63 0.507

Table 6.1: Evaluating fully supervised approaches for affordance segmentation on the UMD
turntable dataset. Evaluation metrics based on weigted F-measure and IOU. HMP+SVM and
DEP+SRF are proposed in [131] and DeepLab in [262].

predefined train-test split for the UMD turntable dataset is employed. Regarding the CAD-
120 affordance dataset, images from actors t5, 9u are reserved as test and images from actors
tt1, 6u, t3, 7u, t4, 8uu are referred to as tTrainA, TrainB, TrainCu respectively. Further,
the union of the three training sets is indicated as allTrain.

For quantitative evaluation, the measure reported is per class IOU, also known as Jaccard
index, for both datasets. Since [131] reports performance in terms of a Weighted F-Measure,
this metric is also reported for the UMD turntable dataset.

6.5.1. UMD Turntable Dataset

6.5.1.1. Supervised training

In [131], two approaches have been presented for learning affordances from local appearance
and geometric features. The first approach is based on features derived from a superpixel
based hierarchical matching pursuit (HMP) together with a linear SVM and the second ap-
proach is based on curvature and normal features derived from depth data used within a struc-
tured random forest (SRF). For the fully supervised setting, DeepLab [262] is initialized by
VGG16 [264] and trained by SGD with a mini-batch of 6 images and an initial learning rate of
0.001 (0.01 for the final classifier layer), multiplying the learning rate by 0.1 after every 2000
iterations. Momentum is set to 0.9, weight decay to 0.0005 and the network is trained for
6000 iterations. The performance comparison on both IOU and weighted F-measure metrics
are shown in Table 6.1.

As can be observed, the trend in performance is similar irrespective of the evaluation
metric. The HMP+SVM consistently outperforms the DEP+SRF combination, indicating that
learning features from data is more effective than learning complex classifiers on handcrafted
features. DeepLab in turn outperforms HMP+SVM in almost all classes reconfirming the ef-
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Fig. 6.5: Results from supervised learning on UMD turntable dataset using (top) ground truth
segmentation (middle) DeepLab (bottom) DEP+SRF.

fectiveness of end-to-end learning. However, in spite of powerful learning techniques, the
performance for small affordance regions like pound, support is considerably low. A few
qualitative results are shown in Figure 6.5.

6.5.1.2. Weakly supervised training

In this setting, weak labels are derived from the pixel-annotated dataset. While the centroids
of 8-connected components of labeled foreground regions are used as clickpoint annotations
Zx, image level labels Z are computed as a union of pixel-wise labels. Baseline performances
of weakly supervised approaches are presented in Table 6.1. The method [241] is trained using
image labels on the training set with fg–bg bias set to 0.3–0.2. This performs with a mean accu-
racy of 0.16 (Weak+DeepLab). Further, another similar approach [263] performs similarly
with a mean accuracy of 0.10 (CCNN). Both these approaches underperform in comparison
with the proposed method (Proposed+EM(1 Iter.)) which is trained for a single E- and
M-step using clickpoint annotations on the training set. The proposed method converges in
two iterations with a performance of 0.51 IOU (Proposed).

6.5.2. CAD-120 Affordance Dataset

Since object bounding boxes in the dataset are pre-annotated, all experiments are performed on
cropped images after extending the bounding boxes by (a maximum of) 30px in each direction.

6.5.2.1. Supervised training

Firstly, the fully supervised approach is evaluated and compared. In this setting, the entire
training data allTrain with pixelwise label annotations is used as training set. The approaches
proposed in [131] are based on depth data. However, owing to noisy depth images from the
dataset, the performance of both approaches with depth features is found to be substantially
lower than that with CNN features. Therefore, the accuracy of the best setting is reported,
which is obtained by using features of all layers [66] of the VGG16 [264] network for the
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SRF. It must be noted that DeepLab [241] is also finetuned from a similar network. Referring
to Table 6.2, it can be seen that DeepLab performs at a mean IOU of 0.42 whereas the SRF
based approach performs at 0.26. In spite of the high quality of annotation and the rich model,
the accuracy for the classes cut and pour is almost zero for all methods. This is because of the
small spatial extent of both classes and the lack of training data (see Figure 6.4). Qualitative
results for both methods are presented in Figure 6.6.

6.5.2.2. Weakly supervised training with clickpoint annotations

In the second setting, pixel-wise label annotations are replaced by clickpoint annotations i.e.
the entire allTrain is used with Zx annotations as the training set. For the first experiment,
the proposed approach is initialized as described in Section 6.4.3 where Gaussians are ini-
tialied based on the clickpoints and a single E- and M-step is performed. This is denoted
as allTrain+EM(1 iter.) in Table 6.2. Compared to the fully supervised setting, the
mean accuracy decreases from 0.42 to 0.28. The proposed EM approach is found to con-
verge within 3–4 iterations resulting in increased accuracy for all classes. This is denoted
as allTrain+EM. The largest improvement can be observed for the class support, which
increases from 0.35 to 0.44. The mean accuracy increases from 0.28 to 0.31.

In (6.5), the spatial distributions of the affordances are modeled by Gaussian mixture distri-
butions. As a heuristic, the output of the Grabcut segmentation can also be used as Ŷ . This ap-
proach is denoted as allTrain+EM(1 iter.)+onlyGC. Similarly, the Grabcut segmen-
tation can be skipped and Gaussian mixture parameters can be estimated directly from (6.2),
denoted as allTrain+EM(1 iter.)+onlyGM. The substantial drop in performance in
both cases indicates that these components are critical for performance.

6.5.2.3. Weakly supervised training with mixed clickpoint and image annotations:

In the third setting, there exist two sets of training data. The first set is annotated by clickpoints
Zx and the second set is annotated by image labels Z. An evaluation averaged over three splits
is presented. For a split, one of the subsets trainA, trainB, or trainC is annotated with Zx and
the other subsets are annotated with Z.

To begin with, the proposed approach is trained only on trainX, i.e. the subset annotated
with Zx without using the training images annotated with Z. The approach is denoted as
TrainXOnly+EM(1 iter.) in Table 6.2. As expected, the reduction of training data by
one third decreases the mean accuracy from 0.28 to 0.22. Running the proposed EM approach
until convergence improves the results by 3% to 0.25, denoted as TrainXOnly+EM. The
approach serves as baseline for other weakly supervised approaches that use additional training
data annotated by Z.

The weakly supervised approach is compared with [241]. The method is initialized on
TrainX in the same way as the proposed method and the fg–bg bias is set to 0.3–0.2. The
best result is achieved using the semi-supervised mode of [241] where the initial segmen-
tation results on TrainX are not changed. This performs with a mean accuracy of only
0.16 (Semi+TrainX+DeepLab), which is lower than the baseline TrainXonly+EM. This
shows that constant bias terms proposed for the E-step in [241] are insufficient for the task of
affordance segmentation. Further, another weakly supervised approach [263] performs with
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Experiment Setting Bck Open Contain Support Hold Mean

Supervised training (allTrain)

DeepLab [262] 0.75 0.46 0.52 0.64 0.60 0.42
VGG + SRF [131] 0.62 0.20 0.22 0.39 0.39 0.26

Weakly supervised training (state-of-the-art)

Semi+TrainX+DeepLab [241] 0.42 0.17 0.09 0.26 0.20 0.16
CCNN [263] 0.46 0.60 0.10 0.25 0.15 0.14

Weakly supervised training (allTrain with clickpoints)

allTrain EM(1 iter.) 0.65 0.27 0.30 0.35 0.38 0.28
allTrain EM 0.67 0.29 0.34 0.44 0.42 0.31

allTrain EM(1 iter.)+onlyGC 0.60 0.19 0.19 0.23 0.30 0.22
allTrain EM(1 iter.)+onlyGM 0.40 0.19 0.09 0.27 0.20 0.16

Weakly supervised training (trainX with clickpoints)

TrainXOnly+EM(1 iter.) 0.48 0.17 0.20 0.41 0.31 0.22
TrainXOnly+EM 0.58 0.20 0.26 0.33 0.40 0.25

Weakly supervised training (trainX with clickpoints, rest with image labels)

TrainX+Pose+EM(1 iter.) 0.61 0.22 0.24 0.33 0.37 0.25
TrainX+Pose+EM 0.63 0.21 0.24 0.39 0.39 0.27

TrainX+EM 0.38 0.17 0.21 0.39 0.29 0.21
TrainX+BB+EM(1 iter.) 0.34 0.14 0.12 0.26 0.17 0.15

Table 6.2: Evaluating affordance segmentation on the CAD-120 affordance dataset under
various settings. The evaluation metric used is IOU. While the mean is computed over all
classes, class results are shown only for a subset of classes.

a mean accuracy of 0.14 (CCNN). Although the method also uses weak labels with respect to
region sizes, its performance does not surpass that of [241].

The effect of transferring clickpoints is now studied. In this regard, clickpoints Zx from
TrainX are transferred to other images in allTrain using the method described in Section 6.4.4.
The parameters of the regression in (6.7) are obtained by cross validation. This resulted inD “
200, γ “ 10, λ “ 1 which are used for all experiments. Referring to TrainX+Pose+EM(1
iter.), the clickpoint transfer based on human context followed by a single EM iteration
improves the mean accuracy by 3% to 0.25. The performance further increases to 0.27 when
iterated until convergence. The same experiment performed without clickpoint regression, i.e.
using TrainXOnly for the first EM iteration and using all training images for further iterations
resulted in a slight drop in performance to 0.21 (TrainX+EM).

In order to demonstrate that the performance gain is indeed from using human pose, the
above experiment is repeated but clickpoints are regressed from object bounding boxes instead
of human pose. To this end, the 2J dimensional pose vector ht is replaced by a 6d vector of the
bounding box consisting of the x- and y-coordinates of the top left corner, width and height of
the object bounding box. This setting, tabulated as TrainX+BB+EM, performs substantially
worse, showing that human pose provides a valuable source for weakly supervised learning of
affordances.

Figure 6.6 presents qualitative results of various discussed approaches presented in Ta-
ble 6.2. In the supervised setting, segmentation generated by DeepLab are greatly superior
to those generated from VGG+SRF, which performs poorly even for affordances with large
spatial extent like containable, openable. However, both approaches perform poorly for dif-
ficult affordances like cuttable. Regarding weakly supervised setting with clickpoints, there
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is a visible drop of quality for allTrain+EM(1 Iter.) when compared to the fully
supervised approach as expected. A further degradation is seen with TrainXOnly+EM(1
Iter.) due to the reduced training data. Comparing weakly supervised approaches with
mixed annotations, Semi+TrainX+DeepLab[262] allocates equally sized segments for all
affordances. By contrast, improvements due to the proposed EM approach can already be seen
for TrainXOnly+EM(1 Iter.). Further, improved spatial localization of affordances due
to regressing clickpoints from human pose is seen for TrainX+HPose+EM(1 Iter.)
which is further refined by TrainX+HPose+EM. Finally, the last row shows the poor per-
formance of TrainX+BB+EM(1 Iter). When compared with TrainX+HPose+EM(1
Iter.), this indicates the importance of clickpoint transfer based on human pose.

6.6. SUMMARY

This chapter addresses the problem of weakly supervised affordance segmentation. To this
end, an expectation-maximization approach that can be trained on weak clickpoint annota-
tions is proposed. In addition, it is shown how contextual information from human-object
interaction can be used to transfer such annotations to images with only image level annota-
tions. This improved the segmentation accuracy of the proposed EM approach substantially.
For evaluation, a pixel-wise annotated affordance dataset containing 3090 images and 9916
object instances with rich contextual information is introduced.
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Fig. 6.6: Results from CAD-120 affordance dataset as presented in Table 6.2. (1) Ground
truth (2) Supervised DeepLab[262] (3) Supervised VGG+SRF[131] (4) allTrain+EM(1
Iter.) (5) TrainX+EM(1 Iter.) (6) Semi+TrainX+DeepLab[241] (7)
TrainX+Pose+EM(1 Iter.) (8) TrainX+Pose+EM (9) TrainX+BB+EM(1
Iter.) Image best viewed in color.
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Computer vision, which aims at understanding digital images, has been crucial for usher-
ing new technologies such as virtual reality and robot assisted living where the ability to detect
and reason about objects is indispensable. Although humans perform such tasks effortlessly,
replicating such skills into computing agents has proved to be challenging. This is because
modeling the interplay between real world phenomena e.g. object deformations, interactions
and occlusions and imaging induced flaws e.g. truncation, noise and motion blur is a perplex-
ing problem. In practice, this is dealt using machine learning techniques that are trained to infer
tight bounding boxes around instances of object categories. Current state-of-the-art methods
are based on large annotated datasets in conjunction with high capacity models. While these
are highly successful in detecting large objects which admit reliable visual evidence, the case
of small and medium sized household objects is still an open problem.

This dissertation addresses the problem of characterizing such household objects under hu-
man interaction where an actor performs high level activities using (possibly multiple) object
classes e.g. making cereal involves a box and a bowl (cf. Fig 1.1). In such scenarios, detec-
tion performance of traditional appearance based techniques is limited due to unreliable visual
evidence, varying object pose, occlusions and motion blur, as verified by our experiments (cf.
Sections 4.5.2–4.5.4). However, the presence of human context is ubiquitous, aptly forming
the central theme of this dissertation. More specifically, we investigate the utility of human
pose in characterizing objects i.e. detecting objects and localizing their functional regions.

To this end, we first consider the problem of object detection at various levels of super-
vision. For full supervision, we show that appearance and human pose based detectors can
be combined for improved performance. As for combining both modalities, our experiments
show that a late combination is best suited due to inherently disparate localization capabilities
of both features. To address the demanding annotation requirements of the fully supervised
setup, we turn to weakly labeled activity videos as a source of object examples. We show
that both appearance and motion is primarily dominated by humans and are insufficient to
describe objects. In addition, we show that greatly improved performance can be achieved by
incorporating human pose centric object functionality (cf. Section 5.4.2).

Further, we observe that formalizing the localization aspect of object detection is some-
what unclear. While bounding box level information might suffice for many applications,
detailed pixelwise descriptions might be more suitable for others. To address this concern,
we turn to segmenting affordances or functional regions within objects. We cast the problem
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as that of semantic segmentation and tackle laborious pixelwise annotation needed by using
image and clickpoint level annotations (cf. Sections 6.5.1–6.5.2). Further, the utility of human
pose is demonstrated by transferring clickpoint annotations to new images yielding improved
performance.

The generalization capabilities of the proposed methods are mainly evaluated on (a subset
of) three human-object interaction datasets that span a variety of different activities, modalities
and human pose representations.

7.1. CONTRIBUTIONS

In detail, the dissertation addresses the following questions in order to characterize objects in
images.

Improving object detection with mid level appearance representation: The Hough-based
object detection framework assumes independence within patch-based individual features for
computational efficiency. In Chapter 3, we investigate an improved mid level appearance
representation by grouping patch-based features over a local neighborhood. We show that
small datasets and highly specific individual features cause grouped features to overfit. While
this is partly alleviated through oblique instead of axis-aligned forests, the benefits of large
training data is seen in VOCB3DO dataset where grouped features consistently outperform
individual features, unlike in the smaller ETHZ dataset. Further, improved performance is
obtained by linearly combining both features thus revealing their complementary nature. Also,
parallel developments in end-to-end feature learning using large annotated datasets and high-
capacity models have been successful in establishing reliable mid level features.

Comparing star and tree object models: As discussed in Section 1.3.1, the star model con-
siders the cumulative evidence of object parts. The tree model, on the other hand, uses finer
object part annotations and explicitly considers their relative locations during inference. In
order to ascertain their strengths and limitations, we evaluated both models on three challeng-
ing human-object interaction datasets (cf. Sections 4.5.2–4.5.4). Considering overall perfor-
mance, the tree model outperforms the star model with 3%´10% relative improvement which
is more pronounced for articulated objects e.g. microwave and videogame.

Using human pose to improve supervised object detection: During human-object inter-
actions, human pose can be indicative of the object involved e.g. routine actions such as
“making a phone call” or “clicking a photo” would involve phone and camera respectively.
Moreover, human interactions result in occlusions and poor visual representations therefore
forcing appearance-only based methods to underperform. To alleviate this limitation, we in-
vestigate ubiquitously available human pose as an alternative modality for object detection.
Our experiments show that while human pose features are able to reasonably classify objects,
they are intrinsically unable to resolve finer details regarding their location. This is verified by
the poor performance of detectors based on human pose which are (optionally) concatenated
with appearance features (cf. Section 4.5.2–4.5.4). Furthermore, improved performance can
be achieved by linearly combining a separate detector for each modality. We observe that
the linear coefficients are class dependent and that the performance of the combined model is
independent of the underlying human pose estimation technique.
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Unifying human pose estimation and object detection in a single model: As discussed
previously, improved object detection performance has been achieved by using pose estimates
obtained independently by a model tuned for human pose estimation. In order to investigate
if both problems can be solved jointly in a unified framework, we extend the tree model for
human pose estimation to include objects (and their parts, cf. Section 4.5.2). We observe
that the ensuing results are similar those from state-of-the-art methods although the previously
discussed cascade system outperforms the unified model.

Using human pose to improve weakly supervised object detection: To address the demand-
ing annotation requirements of the fully supervised setup, we turn to learning object models
with reduced supervision. To this end, object detectors are trained using instances automati-
cally detected from weakly labeled activity videos. We observe that frameworks that entirely
rely on object appearance or motion perform poorly indicating the complexity of the task. We
show that human centric object functionality encodes complementary information and results
in greatly improved performance (cf. Sections 5.4.2–5.4.4). In order to maximize the utility
of data, we model to infer multiple object instances from each video. The inference follows
a greedy procedure resulting in tubes of superior quality, as verified by the experiments (cf.
Section 5.4.2). The weakly supervised approach also outperforms an unsupervised approach
and performs between 86%´ 92% of its fully supervised counterpart.

Going beyond bounding boxes: The common consensus towards localizing objects in im-
ages is through bounding boxes. Although this might be sufficient for numerous applications,
other applications can utilize finer part based information. To this end, we turn to deducing
pixel wise affordance or object functionality within object bounding boxes. This is formu-
lated as a (weakly) supervised semantic segmentation problem. We observe that while DCNN
already yields state-of-the-art results, they require exorbitant annotation efforts. Therefore,
we propose a weakly supervised approach that uses less expensive image level and/or click-
point annotations. This performs between 50% ´ 74% of its fully supervised counterpart
(cf. Sections 6.5.1–6.5.2). Further, we show that human context can help transfer clickpoint
annotations to examples with only image level annotations.

New datasets and annotations: While generic object detection has seen steady advances
in the recent past, the case for small and medium sized objects under human interaction has
seen little consideration. In this regard, conceiving and designing datasets is indispensable
for building and comparing methods in the present era of data driven techniques. In line with
extending standard protocols, we adopt three human-object interaction datasets to train and
evaluate various object detection techniques. To this end, we have annotated objects and their
parts with bounding boxes and keypoints respectively (cf. Section 4.5). Further, we have
adopted the CAD-120 dataset for affordance reasoning by designing a pixel wise annotated
dataset containing 3090 images and 9916 object instances with rich human-contextual infor-
mation (cf. Section 6.3). We intend to make these annotations publicly available.

7.2. PERSPECTIVES

Generalizing human context: In this dissertation, the datasets considered are based on
single actors in lab environments. Generalizing approaches to human-object interactions in



90 Chapter 7. Conclusion
the wild would need to reconcile varying resolutions of pose estimates (e.g. upper body,
full body pose) and consider multiple persons (e.g. in [265], for human pose estimation).
Further, human context is represented as a coarse body pose (bodypart locations) owing to
significant strides in the domain. Although deducing finer pose details e.g. hand grasp, head
pose etc. might be challenging due to poor resolution, appearance information can serve as an
intermediary (e.g. in [266], for action recognition), but is currently forgone.

To invest in data or modeling? In this dissertation, we have used relatively simple linear
models to combine appearance and contextual human pose information. However, under-
standing objects from generic video data is a challenging task. There is a wealth of real
world video data available online in public archives. Such data, however, is ridden with
myriad varieties of noise e.g. marketing, entertainment and education media are composed
of fundamentally different camera work and visual distractions. Inferring from such data
should therefore combine more sophisticated data driven and model driven techniques. This is
because while some problems e.g. localizing regions of interest, identifying visual distractions
etc. are more suited to learning from data, other problems e.g. noise robustness, transfer
learning etc. are traditionally treated via modeling.

Detecting objects from activities: In Section 5.3, we have discussed a weakly supervised
approach for object detection. Here, a set of object proposals are first generated using a simple
generative model that encodes human interaction. Borrowing inspiration from recent works
on object proposals [82] and tracking, similar strategies can be tuned towards human-object
interaction centric proposals. Also, at present, weak labels are assumed to be decisively
indicative of object classes present in each activity. Relaxing this assumption is vital to
extend the framework to more generic videos as discusses above. This can be achieved by
incorporating cues from unsupervised clustering as used in [261]. Further, present measures
of functional similarity based on trajectory information can prove to be inadequate for
generic videos. Improved measures that incorporate 2d–3d pose estimates [267] and/or scene
affordances are promising directions.

Objects, humans and activities: We have shown in Section 4.5.2 that a single unified model
for human pose estimation and object detection performs poorly. This is because of the
inherent difficulty in modeling spatial distributions between parts of humans and objects.
Recent advances in data driven techniques for human pose estimation [268] offers a promising
direction where contextual information is naturally integrated into learning features from
images within deep neural architectures. Further, the independence assumptions imposed by
tree models to represent spatial priors between parts can be restrictive and more generalized
densely connected graphs might be a more suitable approach. Further, previous works have
demonstrated the benefit of action priors on human pose estimation [269, 270] and object pri-
ors on action recognition [223, 224]. This motivates a broader unified formulation of all three
problems as they are characteristically similar and can provide potentially complementary
information to each other.

Temporal evolution of objects: Traditionally, objects are not assumed to undergo topological
changes. This assumption also applies to approaches presented in Chapter 4 and Chapter 5.
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Consequently, modeling cases that violate this assumption e.g. dicing a tomato, slicing a
pizza etc. is an open problem. Prior work in [271] detects singularities caused by topological
changes by analyzing the displacement field of the underlying deformable model which are
then applied to a physics based model to track the object. Similarly, deformable tracking
in a household scenario is presented in [272]. Others resort to using mixture models [35]
which is further improved by imposing temporal order by grammar based models [180] or
HMM [273]. However, end-to-end learning of suitable discriminative models requires further
attention.

Inferring multiple affordance labels per pixel: In Chapter 6, we have assumed that a sin-
gle affordance is associated with each pixel. This simplification allows for adapting popular
semantic segmentation techniques for affordance segmentation. However, this is not true in
practice as object parts can serve multiple functionalities. E.g., the mouth of a cup can be both
containable and pourable. To this end, it would be fruitful to gather data in this more realistic
scenario and tune a suitable loss function.
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