
Security and Data Analysis
—

Three Case Studies

Dissertation
zur

Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

von
Henning Perl

aus
Hannover

Bonn, Februar 2017

Dieser Forschungsbericht wurde als Dissertation von der
Mathematisch-Naturwissenschaftlichen Fakultät der Universität Bonn angenommen
und ist auf dem Hochschulschriftenserver der ULB Bonn
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

1. Gutachter: Prof. Dr. Matthew Smith
2. Gutachter: Prof. Dr. Michael Meier

Tag der Promotion: 15.09.2017
Erscheinungsjahr: 2017

http://hss.ulb.uni-bonn.de/diss_online

Abstract

In recent years, techniques to automatically analyze lots of data have advanced signific-
antly. The possibility to gather and analyze large amounts of data has challenged security
research in two unique ways. First, the analysis of Big Data can threaten users’ privacy
by merging and connecting data from different sources. Chapter 2 studies how patients’
medical data can be protected in a world where Big Data techniques can be used to eas-
ily analyze large amounts of DNA data. Second, Big Data techniques can be used to
improve the security of software systems. In Chapter 4 I analyzed data gathered from
internet-wide certificate scans to make recommendations on which certificate authorit-
ies can be removed from trust stores. In Chapter 5 I analyzed open source repositories to
make predicitions of which commits introduced security-critical bugs. In total, I present
three case studies that explore the application of data analysis – “Big Data” – to system
security. By considering not just isolated examples but whole ecosystems, the insights
become much more solid, and the results and recommendations become much stronger.
Instead of manually analyzing a couple of mobile apps, we have the ability to consider a
security-critical mistake in all applications of a given platform. We can identify systemic
errors all developers of a given platform, a given programming language or a given se-
curity paradigm make – and fix it with the certainty that we truly found the core of the
problem. Instead of manually analyzing the SSL installation of a couple of websites, we
can consider all certificates – in times of Certificate Transparency even with historical
data of issued certificates – andmake conclusions based on the whole ecosystem. We can
identify rogue certificate authorities as well as monitor the deployment of new TLS ver-
sions and features and make recommendations based on those. And instead of manually
analyzing open source code bases for vulnerabilities, we can apply the same techniques
and again consider all projects on e.g. GitHub. Then, instead of just fixing one vulner-
ability after the other, we can use these insights to develop better tooling, easier-to-use
security APIs and safer programming languages.

iii

Contents

1 Introduction 1

2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data 5
2.1 Introduction . 5

2.1.1 Our contributions . 6
2.1.2 Outline . 8

2.2 Related Work . 8
2.2.1 Private Information Retrieval (PIR) 8
2.2.2 Garbled Circuits . 9
2.2.3 Trusted Computing . 9
2.2.4 Encrypted CPU / hCrypt . 10

2.3 Preliminaries . 10
2.3.1 Homomorphic Encryption Schemes 10
2.3.2 Bloom Filters . 12

2.4 Obfuscated Bloom Filters . 13
2.5 Bloom Filter Search . 15

2.5.1 High-Level View of the Search Scheme 15
2.5.2 Setup of the Bloom Filter Tree . 16
2.5.3 Search Using Bloom Filters and Binary Search 17
2.5.4 Exact Search Using hCrypt . 19

2.6 Security Analysis . 22
2.7 Choosing an Obfuscation Parameter . 23
2.8 Implementation . 24

2.8.1 Source Code . 24
2.8.2 Web Service . 25
2.8.3 Asymptotic Runtime and Communication Complexity 27

2.9 Use Case . 29
2.9.1 Example . 29

2.10 Performance Evaluation . 30
2.10.1 Performance Comparison with PIR Schemes 32

v

2.11 Conclusion . 34

3 Evaluation of SSL Validation Systems 37
3.1 Introduction . 37
3.2 Related Work . 39
3.3 Certificate Transparency . 40
3.4 An Evaluation Framework for SSL Validation 41

3.4.1 Deployability Benefits . 41
3.4.2 Security and Privacy Benefits . 43
3.4.3 On Usability . 44

3.5 Evaluation of SSL With A CA-PKI . 45
3.6 Evaluation of Alternative Validation Systems 46

3.6.1 Perspectives . 46
3.6.2 Convergence . 48
3.6.3 Certificate Transparency . 49
3.6.4 CT + Revocation Transparency 50
3.6.5 Sovereign Keys . 50
3.6.6 TACK . 51
3.6.7 DANE . 52
3.6.8 AKI . 53
3.6.9 ARPKI . 53
3.6.10 Summary of The Evaluation . 53

3.7 Open Problems . 54
3.8 Conclusion . 55

4 On Removing Unused Certificate Authorities From Trust Stores 57
4.1 Introduction . 58

4.1.1 Outline . 59
4.2 Related Work . 59
4.3 Technical Setup . 60
4.4 Trusted Root CA Certificates . 60

4.4.1 Windows Trust Store . 62
4.4.2 OSX and iOS Trust Store . 62
4.4.3 Linux/OpenBSD Trust Stores . 62
4.4.4 Mobile Trust Stores (Android, BlackBerry) 62
4.4.5 Restricting the Purpose of CA Certificates 63

4.5 Removing Unneeded CAs . 63
4.5.1 Potential Problems and Current Solutions 64

4.6 Conclusion . 65

vi

5 Finding Potential Vulnerabilities in Open-Source Projects 67
5.1 Introduction . 68

5.1.1 Our Contributions . 70
5.2 Related Work . 71
5.3 Methodology . 73

5.3.1 Terminology . 73
5.3.2 List of Repositories . 74
5.3.3 Vulnerability-contributing Commits 74
5.3.4 Features . 76
5.3.5 Excluded Features . 79
5.3.6 Statistical Analysis of Features 81

5.4 Learning-Based Detection . 83
5.4.1 Generalized Bag-of-Words Models 84
5.4.2 Classification and Explainability 85

5.5 Evaluation . 86
5.5.1 Case Study . 88
5.5.2 Flagged Unclassified Commits . 89
5.5.3 Comparison to Flawfinder . 90
5.5.4 Full List of CVEs flagged . 92

5.6 Take-Aways . 93
5.7 Limitations . 95
5.8 Conclusion . 96

6 Conclusion 97

List of Figures 111

List of Tables 113

vii

CHAPTER 1

Introduction

In recent years, techniques to automatically analyze Big Data have advanced significantly.
The characteristics of Big Data are often described with the “three vs”: velocity – having
lots of data points in quick succession (in units of bytes per second); variety – having
lots of data of differnt type and/or schemaless data; and volume – having a huge amount
of information in total (in units of bytes). Even though there is no clear definition of
which amount of data qualifies data as Big Data, it is clear that the possibility to gather
and analyze large amounts of data has challenged security research in two unique ways.
First, the analysis of Big Data can threaten users’ privacy bymerging and connecting data
from different sources. Chapter 2 studies how patients’ medical data can be protected
in a world where Big Data techniques can be used to easily analyze large amounts of
DNA data. Second, Big Data techniques can be used to improve the security of software
systems. In Chapter 4 I analyzed data gathered from internet-wide certificate scans to
make recommendations onwhich certificate authorities can be removed from trust stores.
In Chapter 5 I analyzed open source repositories to make predicitions of which commits
introduced security-critical bugs.

Usable security describes the idea that when designing and evaluating computer secur-
itymechanisms, one always has to consider howhumans interact with thosemechanisms
as well. A system that is proven to be secure in theory – assuming correct usage – but
at the same time very hard to use will therefore not be secure in practice. As users cut
corners and fight the system, the assumptions the security proofs are based on will no
longer be satisfied. A seminal work describing this effect in detail is a usability evalu-
ation of PGP called “Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.” by
Whitten and Tygar [1]. The authors showed that even though email encryption with PGP
is secure if all rules are followed, the rules too hard to follow and the concepts too hard
to grasp that in practice, users just give up. In the same year, Adams and Sasse published

1

Chapter 1 Introduction

“Users are not the enemy” [2], stating that one should rather blame the system for being
too complex instead of the user for not following the rules.

Both works inspired vast research focussing on end users interacting with security
mechanisms. And indeed many security mechanisms were deemed unusable, such as
SSL warnings [3] or passwords [4].

This work focusses on improving the usability of security systems for IT professionals.
One differentiates between system administrators, who will set up and maintain systems
that are then used by end users; and developers, who write code that is executed by end
users. Improving the usability of security mechanisms for these groups holds a great
multiplication effect: Every mistake that one developer makes can endanger the data of
a multitude of users. Similarly, with good tools, a system administrator is able to protect
a multitude of end users.

In the following chapters, this work proposes, implements and evaluates several meth-
ods and techniques aiming to gain usability benefits in security and privacy critical con-
texts through the analysis of large data sets.

Chapter 2 discusses a technique protecting the patients’ privacy when conducting re-
search on bio-medical data. The problem domain is as follows: In the future, during
medical diagnostics, parts of a patient’s DNA may be looked up in a database of DNA
samples indicating certain diseases. Doing so unencrypted would leak the patient’s DNA.
This would result in the database operator knowing which diseases the patent has. Using
a homorphically encrypted query (as described in Chapter refchapter:hcrypt) results in
a query scheme where the correct result can be retrieved without the database operator
knowing the exact query. The big advantage in terms of usability is that this can be com-
pletely oblivious to the user (the medical doctor as well as the patient) as well as that it
outperforms Private Information Retrieval (PIR) schemes and thus making the approach
viable in practice.

Chapter 3 focusses on the evaluation of alternative SSL validation methods. SSL is a
technology that touches both system administrator as well as developers. For system ad-
ministrators, the chore of generating and managing valid certificates is cumbersome and
error-prone. A big part of that process is dictated by how the client determines whether
or not the certificate is valid. Some alternative validation schemes, such as TACK, put
fewer burdens on the system administrator, i.e. by not requiring the certificates to be
signed at all. Other alternatives, such as AKI or ARPKI, increase the burden by offering
more configuration options and optionally requiring two or more valid signatures for a
certificate. In that regard, it is important to keep in mind the effects the design decisions
have for the system administrator. Beyond system administrators, SSL validation holds
pitfalls for developers as well. First, the inability to properly validate a SSL certificate

2

opens the application for Man-in-the-middle attacks, accepting all certificates. Second,
for applications communicating with a fixed API server, the validation rules could po-
tentially be made stricter by pinning either the particular certificate or the certificate
authority signing the concrete certificate. However, pining is still hard to implement
correctly in the major programming languages and frameworks.

Whereas the previous chapter is a survey of multiple improvements, Chapter 4 is a
concrete contribution to the security of the current CA-based SSL validation system. For
this work, I analyzed which certificate authorities never signed a single certificate that
actually appears in internet-wide scans. These certificate authorities can thus safely be
removed from the browsers’ and operating systems’ trust stores. This step improves the
security of the SSL ecosystem without any drawbacks or usability impacts for either the
system administrators, the developers, or the end users.

Finally, Chapter 5 discusses an improvement for the usability of tooling for security
experts, precisely code reviewers. With VCCFinder, the tool developed as part of this
work, researchers can limit the amount of code they need to review to those parts where
security vulnerabilities are most likely.

All in all, each chapter improves on a specific problem statement by considering how
the system is interacted with by the users.

3

CHAPTER 2

Privacy/Performance Trade-off in
Private Search on Bio-Medical Data

The trade-off between privacy on the one hand and performance on the other hand is
crucial when designing a system that should be both usable as well as secure. This work
explores that trade-off in a context where the privacy of the users’ data is utterly import-
ant: bio-medical data.

This chapter is based on work published as “Fast confidential search for bio-medical
data using bloom filters and homomorphic cryptography” at the 2012 IEEE 8th Inter-
national Conference on E-Science [5], and as “Privacy/performance trade-off in private
search on bio-medical data” in the journal Future Generation Computer Systems pub-
lished by Elsevier [6]. Both publications were joint work with Yassene Mohammed, who
consulted on the problem domain of bio-medical data, Michael Brenner, who consulted
on the usage of homomorphic cryptography, and Matthew Smith, who did general con-
sulting. The rest is my own work.

2.1 Introduction

Trust remains a crucial challenge concerning the outsourcing of computational tasks to
the Cloud in the biomedical domain. Data can be transferred via encrypted channels, but
as soon as processing begins, the data is disclosed to the Cloud provider that subsequently
has reading access to the data and applies the processing algorithm to it in the clear (c.f.
Figure 2.1). This is a significant hindrance for many data intensive applications that could
make good use of Cloud computing but have privacy and data protection requirements
that forbid disclosure of sensitive data to a third party. The search for DNA or a protein

5

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

sequence in a database is an example of a biomedical application that uses patient related
data that may allow re-identification of the subject. Gymrek et al. [7] describe how the
re-identification of subjects is possible using their publicly available DNA data that had
been thought of as anonymized.

Homomorphic Cryptography (hCrypt, c.f. [8] for Gentry’s breakthrough work) is a
theoretically promising technology that provides a solution to this problem by allowing
a remote party to execute arbitrary algorithms on encrypted data. This would allow the
outsourcing of privacy constrained computational tasks to Cloud resources without the
need to establish trust, as the Cloud provider could not read the encrypted data. However,
the performance of plain hCrypt for large data setsmakes it unfeasible formost real world
problems if used as a stand-alone solution, since recrypts are necessary after every AND
gate and recrypts are a very expensive operation. Even in a recent scheme by Coron,
Naccache and Tibouchi [9], a recrypt operation takes 51 s for λ = 62 bits of security.
Thus, the overhead from hCrypt housekeeping quickly dominates the real work.

The family of Private Information Retrieval (PIR) schemes establish a cryptographic
protocol that allows a user to search the database without revealing which item was
queried. While some progress has been made in terms of runtime and communication
complexity by Boneh et al. [10] and Gentry and Ramzan [11], and Kushilevitz and Os-
trovsky [12], searching the database is still at best bound linearly to the size of the data-
base. For applications in biology and bioinformatics with large datasets, PIR schemes are
still not feasible, as shown by our performance comparison.

2.1.1 Our contributions

Since hCrypt and PIR both solve the problem of private search in theory only, we have
developed a Bloom filter based approach to privacy preserving search on databases [5]
that allows for the feasible outsourcing of searching a sequence in a database by intro-
ducing a privacy/performance trade-off: Instead of a hard security guarantee, the search
result is hidden in noise. The ratio between real search and the noise can be configured
so that it conforms to data protection regulations. The huge benefit of this somewhat
weaker security guarantee is a performance increase of a factor of 2650 for the time it
takes to execute a query compared to recent PIR schemes (see Section 2.10.1). In detail,
the runtime complexity of our scheme is in O(log |A|+ |s|+ |R|) for a database A with the
search term s and the result set R. This qualifies the algorithm to search large data sets.

The search algorithm operates on an Obfuscated Bloom filter (OBF) of the search term.
In this chapter we prove that it is cryptographically hard to deduce the search term from
the OBF or the result set. Furthermore, the additive property of Bloom filters is used to
combine a set of queries into one that matches any search term of the set. This makes

6

2.1 Introduction

AGTTCGCC
ATAGGATT

DNA

f=?nQ§+m%K
O/*i#@z;Ac

patient’s data

SSL encryption

Search provider

db AGTTCGCC
ATAGGATT

plaintext

results
(a) Encryption of transfer channels only.

AGTTCGCC
ATAGGATT

DNA

#$s?dq@&#
+Hp=sb?V)*

patient’s data

OBF/hCrypt

Search provider

db
#$s?dq@&#
+Hp=sb?V)*

real results
(b) This article: Obfuscation of the search query.

searching in a stream as efficient as searching in a set of discrete strings. We present
a real world application of this principle from the biomedical domain and show that
protected and secured search of encrypted DNA sequence queries in the complete human
chromosomes is feasible. The output of this Bloom filter based search algorithm is then
large enough to conform to the data protection regulations, as well as small enough to
allow further processing using hCrypt.

In this article we also present an analysis of how the Bloom filter search performs
against private information retrieval schemes on real-world datasets. In performance
tests a search of a 50 nucleotides long sequence against human chromosomes can be
securely executed in less than 0.1 seconds on a 2.8 GHz Intel Core i7. Finally, we show
how the Bloom filter search can be integrated into existing e-Science ecosystems as a
Web service. We implement the Bloom filter search as ready-to-use REST service.

7

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

2.1.2 Outline

In Section 2.2, we consider alternativemethods to solve the problem of privacy preserving
search possibilities and evaluate those against the Bloom filter search. In Section 2.3, a
common notation for homomorphic encryption schemes and Bloom filters is established.
Obfuscated Bloom filters are introduced in Section 2.4 as a crucial component to the
search. In Section 2.5, we discuss the Bloom filter search in detail and show a security
analysis in Section 2.6. An implementation of the algorithms along with Web service
interfaces is introduced in Section 2.8; a real world use case is analyzed in Section 2.9.
We conclude with a performance evaluation and comparison with two PIR schemes in
Section 2.10.

2.2 Related Work

2.2.1 Private Information Retrieval (PIR)

In 2007, Boneh et al. [10] published a protocol that supports queries on encrypted data
using a somewhat homomorphic crypto system by Boneh, Goh and Nissim [13]. This
crypto system allows for an arbitrary amount of additions, but only one multiplication.
The system they present has a communication complexity of O(

√
A log3 A) with A being

the size of the database, whereas our approach only has a communication complexity of
O(|s|) with s as the search term, as shown in Equation (2.5). Therefore the communication
complexity of our scheme does not depend on the size of the database at all. Boneh et al.
achieve a runtime complexity of O(|A| · |s| · poly λ) in combination with the PIR protocol
by Cachin, Micali and Stadler [14]. In comparison, the total runtime complexity of our
scheme is in O(log |A| + |s| + |R|) for |R| being the size of intermediate results produced
by the Bloom filter search. Comparing security properties, Boneh’s scheme completely
hides the query from the server, whereas our scheme hides the query in |R| =

(
λ+k
λ

)
queries

(where k is the number of hash functions used in the Bloom filters and λ the obfuscation
parameter). When setting |R| ≈ |A|, we achieve the same security and runtime complexity
as [10]. The parameter λ can be used to control the level of obfuscation and enables a
security/performance trade off. This allows for the practical use of the system for a given
amount of obfuscation (c.f. Sections 2.4, 2.9).

Camenisch, Dubovitskaya and Neven [15] show how to integrate access permissions
and policies into an oblivious transfer protocol by introducing a third party. This work
focuses on confidential access to public databases without access policies.

Canetti, Riva and Rothblum [16] determine ways to provide verifiable results of deleg-
ated computation and information retrieval. Apart from the performance problem, this

8

2.2 Related Work

is another great challenge for future delegation scenarios but out of the scope of this
work.

2.2.2 Garbled Circuits

The first secure approach to solve the problem of secret function evaluation was intro-
duced in 1986 by Yao [17]. He presented the concept of Garbled Circuits, in which al-
gorithms are translated to single-pass boolean circuits. The state tables of the gates in
the circuit are then encrypted and shuffled within the state table, disguising the boolean
function of a gate and essentially the function of the whole circuit.

Although this method is usable to some extent in an implementation by Malkhi et al.
[18] and Malka [19], the core concept has some inherent deficits:

• The encryption and shuffling of the state tables introduce a dependency between
the gates. This means that the circuit is only able to pass in one large pre-defined
run. Modularity is not possible.

• Furthermore, the security of the scheme relies on the fact that each gate only runs
once. Therefore, only linear circuits are possible. Loops, for example, have to be
unrolled completely.

• Lastly, the input from the circuit creator is encoded right into the garbled circuit.
In consequence, no memory access is possible, because the value of a memory cell
can not act as input for the next cycle.

These restrictions lead to the fact that only limited algorithms can be transformed into
a garbled circuit. Since the circuits can only be passed once, it is impossible to search
twice with the same database and circuit.

2.2.3 Trusted Computing

In Trusted Computing [20], the integrity of the system is ensured through specialized
hardware, the Trusted Platform Module (TPM). The TPM can measure the integrity of
the bootloader, the operating system and software running in the operating system and
help prevent tampered components from starting. The data and programs processed
by the platform cannot be protected against the owner of the platform, as they are in
possession of the root key for the platform. Therefore, Trusted Computing can not be
used to outsource searches if the database server is not trusted.

9

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

2.2.4 Encrypted CPU / hCrypt

Gentry [8, 21] introduced a fully homomorphic crypto system. In this work he also
stated that it is possible to evaluate circuits with arbitrary depth by mapping the math-
ematical operations to boolean operations, thus offering significant ground work for the
encrypted execution of arbitrary programs. Based on this and the cryptosystem by Smart
and Vercauteren [22], Brenner et al. [23] developed an encrypted CPU capable of execut-
ing arbitrary programs by addressing issues such as memory access, branching and self-
modifying code. With this CPU it is possible to execute arbitrary encrypted code as well
as access an encrypted memory from within the code.

Although the simulated CPU solves the problem of secure function evaluation (SFE),
it is still slower than native code by several orders of magnitude. The following reasons
can be identified:

• Because of the oblivious memory access, the simulated CPU must re-evaluate all
memory cells in every cycle, regardless of whether or not the plaintext value actu-
ally changed.

• It is not possible to determine the end of a program without knowledge of the
secret key. Therefore when approximating the number of required cycles for the
encrypted CPU, worst-case runtime has to be assumed.

2.3 Preliminaries

In this section we will introduce the basic components that are part of our search scheme
as well as highlight their utility in the scheme.

2.3.1 Homomorphic Encryption Schemes

The discovery of a fully homomorphic encryption scheme by Gentry [8, 21] in 2009 is
an important foundation for the techniques described in this work. However, for the
construction of our approach we do not require a particular instance of a homomorphic
encryption scheme. Thus we use this generic definition:

10

2.3 Preliminaries

Definition 2.3.1. A fully homomorphic encryption scheme E is a tuple of functions

(KeyGenE() 7→ (pk, sk),

EncryptE(m, pk) 7→ c,
DecryptE(c, sk) 7→ m,

EvaluateE(ci,C, pk) 7→ c′)

with the following properties:
1. Correctness of the encryption scheme:

Decrypt(Encrypt(m, pk), sk) = m

for all outputs (pk, sk) of KeyGen().
2. Correctness of the homomorphic property:

Decrypt
(
Evaluate(

(Encrypt(m0, pk), . . . , Encrypt(mn, pk)),C, pk), sk
)
= C(m0, . . . ,mn)

for all outputs (pk, sk) of KeyGen() and all boolean circuits C : {0, 1}m → {0, 1}.

For the remainder of this work we assume that all functions (KeyGen() …) belong to the
same encryption scheme, even without the index E.

We set the plain text space P to be {0, 1} and treat the cipher texts as encrypted bits for
the boolean operations XOR and AND (which correspond to the addition and multiplic-
ation of two cipher texts). The cipher text space C of course depends on the particular
scheme used.

In the search scheme, homomorphic encryption is used to execute an exact match
search over the query and a reduced set of the database. Note that since the homomorphic
encryption scheme is an asymmetric scheme, someone that wants to evaluate a circuit
only needs the public key pk (along with the inputs) to compute Evaluate(). Further, since
Encrypt() can also be executed by the evaluator, the computations can also consist of a
mix of plaintext and ciphertext. The result would then be encrypted and retrievable only
through the secret key sk.

11

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

CCGA AGGTCATA

1 1 0 0 1 1 0 11001010

ACGA ⇒ ACGA < {CATA, CCGA, AGGT}

(3)(1) (2)

Figure 2.1: Example of a Bloom filter for {CATA, CCGA, AGGT} with three hash functions.

2.3.2 Bloom Filters

Bloom filters have been proposed by Bloom [24] in 1970. They provide a way to check
whether a string is included in a set of strings, with a small probability that the Bloom
filter wrongly outputs that the string is in the set while it is not (false positive). A Bloom
filter is a bit array with a fixed lengthm. In order to create a Bloom filter from strings, one
needs to also agree on a set of k hash functions that each have a target set corresponding
to the indexes of the Bloom filter {0, . . .m}. For example, a Bloom filter for a string x is
then created by hashing the string with each of the k hash functions and marking that
index in the Bloom filter by writing a 1 at the position of the index. A Bloom filter for a
set of strings {a, b, c} is created by first creating the Bloom filters of the elements a, b, and
c and then computing a component-wise boolean OR, i.e. a position in the Bloom filter is
marked if that position was marked in any of the elements’ Bloom filters. The creation
of Bloom filters with size m = 15 and k = 3 hash functions for the set {CATA, CCGA, AGGT}
is shown in Figure 2.1.

In order to use the Bloom filters to check for set membership (e.g. whether AGGT ∈
{CATA, CCGA, AGGT}), the Bloom filters of an element AGGT and a set {CATA, CCGA, AGGT} are
checked component-wise. If an index exists in the Bloom filters that is marked in the
Bloom filter of the element AGGT but not in the Bloom filter of the set, then certainly AGGT

is not included in the set (because the Bloom filter of the set is just a component-wise
OR over the elements). If, however, every marked position in the Bloom filter of AGGT is
also marked in the Bloom filter of the set, then AGGT is probably included in the set. This
probability is bound by (1 − e−k(|A|+0.5)/(m−1))k as shown by Goel and Gupta [25]. Going
back to the example in Figure 2.1, the string ACGT is not included in {CATA, CCGA, AGGT},
because hash function (2) for ACGTmarked a position that was not marked for either CATA,
CCGA, or AGGT.

Notation We denote
• Bk,m(a) for the Bloom filter of a with size m and k hash functions,

12

2.4 Obfuscated Bloom Filters

ACGA

0 0 1 0 1 1 0 11001010

0 0 0 0 1 1 0 01001000

Figure 2.2: A Bloom filter for ACGA with obfuscation parameter λ = 4.

• Bk,m(A) for the Bloom filter of a set A,
• Bk,m(a) ∈ Bk,m(A) if for all indices i: Bk,m(a)i ≤ Bk,m(A)i; and Bk,m(a) < Bk,m(A)
otherwise. Note that we use ‘≤’ here instead of ‘=’ to compare the values of the in-
dex positions, because this way the definition naturally extends to counting Bloom
filters.

In this work, Bloom filters are used to construct a binary tree to quickly reduce a large
set of data to a small set of possible matches via a binary search. In order to search for
a string x in a large database, we recursively check for set membership of x in the set
containing all words in the database and continue to check for membership in the left
and right half of the whole set if x is included in it.

2.4 Obfuscated Bloom Filters

We extend Bloom filters to make false positives in the set membership check more prob-
able. The motivation behind this is to pass an Obfuscated Bloom filter (OBF) of the query
to the database that then finds all database entries that contain the OBF. Without obfus-
cation, this set would be small enough for the database to learn about the actual query.
By using the OBF, we will show that the probability to retrieve the plain Bloom filter can
be made small enough that the actual result is hidden in the large set of false positives, i.e.
the noise; yet small enough to make the processing of these intermediate results in the
homomorphic cipher text space feasible. Thus it can be ensured that only a configurable
percentage of the results is not noise.

Obfuscating a Bloom filter works by incrementing λ random components of the Bloom
filter b = Bk,m(a), where λ is the obfuscation parameter. Figure 2.2 shows a Bloom filter
for a string ACGA that is obfuscated with λ = 4. The hamming weight of the OBF is always
k + λ.

The following algorithm increments the components by picking a random index until

13

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

one is found who’s entry not zero, and then setting that location to one.
function obfuscate(b, m, λ):

for l in [λ] {

while (i R←− [m] and bi = 1)
bi ← 1

}

Because obfuscation marks λ additional positions in the Bloom filter, the set member-
ship check needs some modification. Recall that set membership is tested by checking
for each position in the Bloom filter of the potential element whether that position is
also marked in the set. Now that the potential element is obfuscated, set membership is
already concluded if at least k marked positions exist that are also marked in the set.

We now show that OBFs preserve the set membership property of plain Bloom filters.

Claim 1. Given a Bloom filter B = Bk,m(A) for a setA and a (plain) Bloom filter b = Bk,m(a)
as well as an obfuscated version b′′′ = obfuscate(b,m, λ). Then:

1. b ∈ B⇒ b′ ∈λ B

2. b′ ∈λ B⇒ Pr[b ∈ B] = 1/
(
k+λ
k

)

Proof. Let v← b′ − b, v ∈ ∆λ be the vector the Bloom filter b was obfuscated with.
1.

b ∈ B⇒ ∀i ∈ [m] : bi ≤ Bi

⇒ ∀i ∈ [m] : b′i − vi ≤ Bi

⇒ ∀i ∈ [m] : b′i ≤ Bi + vi
⇒ ∀i ∈ [m] : ∃v ∈ ∆λ : b′i ≤ Bi + vi
⇒ b′ ∈λ B

2. Given b′ ∈ B, Pr[b ∈ B] = Pr[b′ − v ∈ B] for the random vector v that b was
obfuscated with. For a fix obfuscated vector b′ (with ∑

i b
′
i = k+λ), there exist

(
k+λ
λ

)
vectors v so that v = b′ − b. Therefore Pr[b ∈ B] = 1/

(
k+λ
λ

)
.

□

14

2.5 Bloom Filter Search

U

Bloom filter search
↓

hCrypt search

S

data

search term s
↓

encrypted query:
obfuscate(Bk,m(s)),

Encrypt(s)

OBF/hCrypt
query

encrypted result
Decrypt result

Figure 2.3: Model for the search query.

2.5 Bloom Filter Search

2.5.1 High-Level View of the Search Scheme

Figure 2.3 shows a general overview of how a search query is created and evaluated. User
U wants to query Server S for a search term swithout S learning about this search term
or the result. First of all, U and S agree on a common alphabet Σ that influences the
following parameters:

• The domain of each hash function used in the Bloom filters is Σ∗.
• The search term s ofU is an element of Σ∗ (a word of the alphabet Σ).
• The database A of S is a subset of P(Σ∗), the power set of Σ∗ (a set of words of the
alphabet Σ).

To execute a search, U transforms the search term into an encrypted query, which is an
OBF of s.

This query is then sent to S and used in the search algorithm. The server uses the OBF
to reduce the database to a smaller set of possible matches.

We formalize this protocol as follows.
1. Setup of the Bloom filter tree.

15

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

S sets T← buildTree(root, database).
2. Construction of the query.

The userU chooses a search term s and an hCrypt key pair (pk, sk)← KeyGen().
He sets b← obfuscate(Bk,m(s), λ) as well as s← Encrypt(s, pk).

3. Transfer of the encrypted query.
U transfers (

b, λ, s, pk
) to S.

4. Bloom filter search.
S obtains a set of results R← searchTree(T, b, λ).

5. hCrypt Search.
S obtains an encrypted result res of the hCrypt algorithm on R and s.

6. Transfer of the results.
S transfers res back toU, who then retrieves the final result r← Decrypt(res, sk).

2.5.2 Setup of the Bloom Filter Tree

As mentioned above, a binary tree of Bloom filters is used to pre-filter the search res-
ults. Every node of the binary tree is a tuple (b, d, l, r), where b contains the Bloom filter
associated with this node and l and r reference the left and right child of the node respect-
ively. The l and r references are set to ‘null’ iff. the node is a leaf. In this case d holds the
database entry associated with the leaf.

Now we can describe the algorithm that builds the binary tree from a database A.
Note that this step is independent of the actual query and can therefore be calculated
beforehand and used for many different queries.
1: function buildTree(node,A):
2: node.b← Bk,m(A)
3: if (|A| = 1) {
4: node.l← null
5: node.r← null
6: return
7: }
8: buildTree(node.l,A|0..⌊|A|/2⌋)
9: buildTree(node.r,A|⌊|A|/2⌋+1..|A|)

10: return

The algorithm calculates the Bloom filter for the current node and then recursively calls
itself on the left and right half of the database A when filling the left and right children

16

2.5 Bloom Filter Search

B(X)

B
(
X
∣∣∣0...⌊ |X|2 ⌋)

B({x0}) B({x1}) B({x2}) B({x3})

B
(
X
∣∣∣⌊ |X|

2
⌋
+1...|X|

)

B({xn−3}) B({xn−2}) B({xn−1}) B({xn})

Figure 2.4: Binary tree of Bloom filters

of the node. Note that although the initial construction of the binary tree runs in time
O(|A|), updates to the binary tree are quite cheap, because only the nodes along the path
from the changed node to the root need to be updated. Updates therefore run in time
O(log |A|).

Figure 2.4 shows the content of the binary tree after the construction.

2.5.3 Search Using Bloom Filters and Binary Search

Once the binary tree is constructed, the Bloom filter search is just a modified binary
search over the Bloom filter of the query. In the following algorithm, node is initially the
root node of the binary tree and b = obfuscate(Bk,m(s), λ) is the OBF of the query.
1: function searchTree(node, b, λ):
2: if (b <λ node.b) {
3: return ∅
4: }
5: if (node.l = null or node.r = null) {
6: return {node.d}
7: } else {
8: l← searchTree(node.l, b, λ)
9: r← searchTree(node.r, b, λ)

10: return l ∪ r
11: }

17

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

Stream

Q-grammatch

Search term

Q-gram

1

D
at
ab

as
e

Search term{
Q-grams with different offsets

2

{ one bloom filter for search
(a) Schematic transformation.

. . . acgg tagc ttac . . .Stream
4-Grams

ggtagcSearch term

...
acgg

tagc

ttac

...

1

Database
ggta

gtag

tagc

Search term{
4-grams with different offsets

{ one Bloom filter for search

2

(b) Transformation by example for the query “ggtagc”.

Figure 2.5: Transforming Bloom filter search to a stream search.

18

2.5 Bloom Filter Search

Extension to Stream Search

For our application scenario we require the capability to search on streams, so we show
how the Bloom filter search can be modified to find a substring in a stream (instead of
a discrete set of words). Let s be the search term of U and A the database of S, i.e. a
character stream. The following steps are necessary to achieve a stream search:

1. Set the length of the Q-grams Q ≤ ⌊|s|/2⌋. This guarantees that at least one Q-gram
consists only of characters found in the search term.

2. Split the stream into Q-grams, thus getting a database of roughly |A|/Q words of
size Q (1. in Figure 2.5).

3. From the search term, generate |s| Q-grams with offsets 0 . . . |s| − 1 (2. in Figure 2.5).
4. Combine the search termQ-grams into a single Bloomfilter by adding them component-

wise.
5. Execute the search with one Bloom filter as described above.
6. For each result, do an exact-match comparison in the cipherspace, working directly

on the encrypted search term and the stream.
7. Compress the result in the cipherspace to return the encrypted positions of the

search term in the stream.

This stream search extension is what we use to implement the real world use case in
Section 2.9.

2.5.4 Exact Search Using hCrypt

AfterS executed the Bloom filter search described above, the (intermediate) set of results
R contains matches based on the OBF of the original search term s and may contain only
a small percentage of real results. In order to send just these real results back to the
userU, hCrypt can optionally be used to execute an exact match search. This serves as
an example of how hCrypt can be used on the results of the Bloom filter search to add
further processing to the whole search algorithm.

The goal of this step is for S to construct a single encrypted result res that contains
a small number of matches of the search query of U. First, S constructs an indication
vector ind that marks all exact matches. Then, S uses this indication vector to filter just
those intermediate results into the final set of results which were marked before.

As all these transformations happen in the homomorphic cryptospace, S gains no
knowledge over the final results during its construction.

19

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

Exact Match Search

First, S marks which results are actual matches of s in the homomorphic cipherspace.
This is done by generating an encrypted bit-array ind with the same size as the set of
results that will serve as an indication vector. More precisely let {ri}li=1 = R be the set of
results. Then we want to construct an encrypted indication vector {indi}li=1 ∈ Cl for the
cipherspace C so that

ri = s⇔ Decrypt(indi, sk) = 1 for all i ∈ [l].

Note that in order to construct such a ind in the homomorphic cipherspace, S only needs
an encrypted version of s as well as the public key pk, which both can be sent to S as
part of the encrypted query.

We assume that the plain text space P = {0, 1}. In order to compare words ∈ Σ∗
in the ciphertext space, words from the alphabet must first be transformed to a binary
representation. Let binary : Σ∗ → {0, 1}∗ be this function. This function can easily be
constructed by first giving each character c ∈ Σ a unique number and then encode a
word w ∈ Σ∗ as a sequence of the padded binary representation of each character in w.

Let
s = {sj}j∈[|s|] ← {Encrypt(binary(s)j, pk)}

be the encrypted search term and

b = {bij}i∈[l],j∈[|s|] ← {Encrypt(binary(ri)j, pk)}

be the encrypted intermediate set of results. The circuit for the character-level compar-
ison is constructed as follows:

indi ←
∧
j

bij ⊕ sj ⊕ 1 for all i ∈ [l]. (2.1)

Now that the indication vector is filled, the marked intermediate results need to be
mapped to the final result.

Compressing the results

Assume that there are at most c entries in the vector indmarked with 1. This number can
be approximated from the number of results in the result set and the security parameter
λ. Then an indication vector containing at most c marks can be expressed as a bit-vector
with length c · |s|. The basic idea is to shift each result which is a match (for which

20

2.5 Bloom Filter Search

R︷ ︸︸ ︷

AGCT
AGGT
CGAA
TGAG
AGGT
GGAT
AGGT

ind︷︸︸︷

0
1
0
0
1
0
1

{

sum︷ ︸︸ ︷

0 0
0 1
0 0
0 0
1 0
0 0
1 1

{

mask︷ ︸︸ ︷

0 0 0
0 0 1
0 0 0
0 0 0
0 1 0
0 0 0
1 0 0

{

encrypt(AGGT)
encrypt(AGGT)
encrypt(AGGT)

︸ ︷︷ ︸
res

Figure 2.6: Steps for compressing a set of results. For the query “AGGT” the exact-match search
circuit marked entries 2, 5 and 7 in ind, which is then transfomed according to Eq. (2.2)–(2.4).

Decrypt(indi, sk) = 1) by |s| bits.
Let hamming(v) be the circuit that calculates the hamming weight of v as constructed

by Smart and Vercauteren [22, p. 15]. This circuit returns a bit vector of length ⌈ln c+1⌉ if
there are atmost c 1’s in v. Then, write down the cumulative sumof ind as the |R|×⌈ln c+1⌉-
matrix (sumij) using the following circuit:

sumij = hamming(ind0..i)j ∧ indi (2.2)

Next, set the |R| × c-matrix

maskij =

1
∑⌈c⌉

k=0 2
k · sumik = j

0 else.
(2.3)

The final result can then be written as a c × |R|-matrix (resij) with

resij =

|R|−1⊕
k=0

encrypt(Rk)j ∧maskki. (2.4)

Figure 2.6 shows the steps for a small example. The rows are mirrored for better readab-
ility.

After this step, S holds an encrypted final set of results res, which contains at most c
matches of the database against the search term s. These results are then sent toU, who
decrypts res using her private key sk.

21

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

2.6 Security Analysis

For the search scheme to be secure one needs to show that an adversary is unable to ex-
tract the plain search query from the inputs, i.e. security against ciphertext-only attacks
(COA) on the encrypted query. More precisely, given a tuple

q = (b = obfuscate(Bk,m(s)), λ, Encrypt(s, pk), pk)

it is hard for an adversary A to retrieve s in probabilistic polynomial time (PPT). With
that in mind we define the following security game:
Definition 2.6.1. For COA-security of the search scheme, we consider the following game
between a challenger C (which takes the role of the user in our scheme) and an adversary
A. The functions KeyGen(), Encrypt(), Decrypt() and Evaluate() are assumed to be indistin-
guishable under chosen-plaintext attack (IND-CPA secure). For example, the encryption
schemes by Brakerski, Gentry and Vaikuntanathan [26] or Smart and Vercauteren [22]
are all IND-CPA secure. The game consists of the following steps:

1. C chooses a random s, generates a key pair (pk, sk) = KeyGen(), computes q as
above and sends it toA.

2. A can repeatedly ask for the encryption of a specific query l; C replies by sending
(b = obfuscate(Bk,m(l)), λ, Encrypt(l, pk), pk).

3. A computes a query s′ and sends it to C.
4. C outputs 1 iff. s = s′.

The adversary’s advantage AdvA(λ) is defined as Pr[s = s′]. A search scheme is COA-
secure if, for allA ∈ PPT the function AdvA(λ) is negligible.
Claim 2. AdvA(λ) is a negligible function for any adversary that runs in probabilistic
polynomial time.

Proof. We show that AdvA(λ) ≤ 1/
(
k+λ
λ

)
, which is negligible in λ, by contradiction.

Assume that there exists an adversary A that runs in probabilistic polynomial time
and breaks the security game with advantage > 1/

(
k+λ
λ

)
. Then we distinguish between

three distinct cases:
1. A breaks the game by using (b = obfuscate(Bk,m(s)), λ) to retrieve s from the en-

crypted query (Encrypt(s, pk), pk).
A can then be used to break IND-CPA security of the underlying crypto system.
Recall that the IND-CPA security game challenges an adversaryA′ who generated
two plaintexts (s1, s2) to decide whether a ciphertext c is an encryption of s1 or s2
with non-negligible advantage. This is howA′ breaks the game usingA:

22

2.7 Choosing an Obfuscation Parameter

a) A′ sends (s1, s2) to the challenger and receives a ciphertext c and a public key
pk.

b) A′ usesA to ask for the encrypted queries qi = {(b)i, λ, ci, pk
′}2i=1.

c) A′ sets qi ← {(b)i, λ, c, pk}2i=1 and uses A to retrieve s′1, s′2 (which we assumed
A can do).

d) A outputs i where s′i = si.
This contradicts the assumption that the underlying cryto system is IND-CPA se-
cure.

2. A already breaks the game with inputs only (Encrypt(s, pk), pk)).
It is easy to see that this again gives an adversaryA′ that breaks CPA-security of the
underlying homomorphic crypto system and therefore contradicts the assumption
that the crypto system is IND-CPA secure. Note that this also covers the case where
A uses (Encrypt(s, pk), pk)) to retrieve s from (b, λ).

3. A already breaks the game with inputs only (b, λ).
A can then construct a large set A = {ai}li=1 so that b ∈λ Bk,m(ai) for each i. Then
starting from the assumption

1(
λ+k
λ

) < AdvA(λ)

we have the contradiction

AdvA(λ) = Pr[s = ai] (Definition of AdvA)
≤ Pr[b ∈λ Bk,m(ai)] (Apply Bloom filters)

=
1(
λ+k
λ

) (Claim 1)

⇒ 1(
λ+k
λ

) < 1(
λ+k
λ

) .

□

2.7 Choosing an Obfuscation Parameter

The real results to noise ratio is a measure of how unlikely captured data by an attacker
would be useful. The smaller the ratio is, the harder an attacker can make any use of

23

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

it. For instance hiding in 1 % means the probability that any conclusions of an attacker
about the original search term and the results will be wrong in 99 % of the cases. So
if a study associate one sequence S with a specific illness and we search for S on the
genome with 1 % real results to noise hiding ratio, it means that an attacker will have
99 wrong sequences along with S. An attacker can increase the certainty of her choices
by including more reasoning knowing for instance which searches the user is interested
in, what the user is attempting to publish, what results does not make sense for the user,
and so on. Anyhow, taking into account that the real results to noise hiding ratio can be
variable and is unknown to the attacker, it involves huge effort from an attacker to reach
a certainty that make any conclusions statistically valid.

2.8 Implementation

2.8.1 Source Code

The Bloom filter search algorithm was implemented in C as a binary tree with one root
node and a pointer to the left and right child of the node. Each node contains information
about the Bloom filter that represents the current subtree. Further, each leaf contains the
corresponding database value.

The construction of the Bloom filter tree (i.e., indexing of the database) is done iterat-
ively from a file. The algorithm scans the file to determine the number of nodes required
and then builds the Bloom filter tree from the bottom up. The advantage over a naïve
recursive implementation is that all memory allocation can be done in one call.

The source code can be found at https://github.com/hperl/bf-search and builds
using CMake. For compilation and linking, we require OpenSSL (for the hash functions in
the Bloom filter tree) as well as Ruby 1.9 for theWeb service (described below). Amongst
others, the command-line program bloom_search is built, which takes as a mandatory
parameter a chromosome file to index. In the path /chromosomes is a script download.sh
that fetches all human chromosome files from http://hgdownload.cse.ucsc.edu/.

The implementation code for the Bloom filter search is organized in four parts: The
main executable in src/bloom_search, the libraries for the Bloom filter and the Bloom
filter tree in src/lib/bloomfilter and src/lib/tree respectively, and the ruby bindings
in src/binding. Last but not least, unit tests can be found in the directory src/test. As
themain executable does nothing else than parsing command line parameters and calling
the libraries, we focus on those in the following sections.

24

https://github.com/hperl/bf-search
http://hgdownload.cse.ucsc.edu/

2.8 Implementation

Implementation of the Bloom filter

Internally, a Bloom filter is represented as an array of 64-bit integers. Each entry in the
Bloom filter is then represented as a bit in one of the integers, so that a Bloom filter
of size n can be represented as an array of size ⌈ n64⌉. The functions bf_getpos() as well
as bf_setpos() are used to access the individual entries without direct byte-arithmetrics.
Further, functions for creating a Bloom filter from a string (bf_hash()) and obfuscation
(bf_obfuscate()) are included in this module.

Implementation of the Bloom filter tree

A Boom filter tree is an opaque struct that can be created by indexing a chromosome file
(tree_index_file()). The struct contains a reference to the root node, the filename, and a list
of matches which will be filled during the search. Indexing the database from a file has
been parallelized using the pthreads library. The algorithms for indexing and searching
have been discussed in detail in Sections 2.5.2 and 2.5.3.

2.8.2 Web Service

TheBloomfilter search library is written in C in consideration of speed and portability. In
order to provide integration with various different infrastructures, we provide a wrapper
around the library that exposes the search functionality through a Web service. The
service understands Representational State Transfer (REST).

REST interface

Using REST, the Web service interface is exposed through HTTP verbs (GET, POST, PUT,
PATCH, DELETE) that connect to a URI. The Web service is written in Ruby (as a rack-
application) and can be found in the path ws/rest-server/rest.rb. The script expects a
Ruby-C-extension built in build/bftree.so (which can be satisfied by using build/ as
the build directory) as well as the chromosomes downloaded in chromosomes/.

For the search service, only one endpoint is required: GET /search. The following
parameters must be specified in the request:
query: The obfuscated Bloom filter, encoded as 0’s and 1’s.
obfuscations: The obfuscation parameter.
The service then replies with a JSON-encoded hash containing the query, the obfusca-
tions, the time the search took, and an array of matches.

25

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

Example The client sends the following message to the server:

http://localhost:1338/search?

obfuscations=10&

query=00000000000001001001010001000100001000010000001010000001011

0000100000100000000000000000000000001000000000000000000100000100

The server responds with the following message:

{

”query”: ”0000000000000100100101000100010000...”,

”time”: 0.0500000007450581,

”matches”: [

{ ”match”: ”AAGCT”, ”position”: 7 },

{ ”match”: ”ggctg”, ”position”: 428050 },

{ ”match”: ”GTTGC”, ”position”: 54161548 }

]

}

Clients

Amongst others, the obfuscation of the Bloom filter happens on the client side. Since the
Bloom filters are used for the actual search, it is crucial that client and server construct
the Bloom filters in the same way. In the following pseudo code, m is the size of the
Bloom filter and k the number of hash functions. The hash functions are all derived from
a SHA hash of the query.
1: function construct_bf(str):
2: bf← {0}m−1i=0
3: d← bytes(SHA1(str))
4: for i in [k] {
5: bfdi mod m ← 1
6: }
7: return true

Forwriting a new client, one could either use the bf_hash() function in the libbloomfilter
library or use the client in ws/client/. The client is written in JavaScript and runs en-
tirely in the browser. Communication with the REST Web service is done through asyn-
chronous HTTP requests (AJAX).

26

2.8 Implementation

2.8.3 Asymptotic Runtime and Communication Complexity

Communication Complexity

Looking at the protocol introduced in Section 2.5.1, the only information sent fromU to
S is the tuple q = (b, λ). Splitting up the tuple into it’s components, we get

• |b| = |Bk,m| is in O(m), as b is a vector of length m,
• |λ| is in O(log λ), as λ has log λ bits in binary representation,

Because the encrypted query is just a concatenation of the components, |q| ∈ O(m +
log λ). The information sent from S to U is the set of results R with the size |R| =

(
k+λ
λ

)
.

Combining the total traffic, the overall combined complexity is in

O
(
m + log λ +

(
k + λ
λ

))
≈ O(|s|) , (2.5)

because the other parameters do not depend on the input ofU but instead are parameters
of the search scheme.

Note that the communication complexity depends only on parameters of the search
protocol and not on the size of the database.

Runtime Complexity

TheBloomfilter tree search resembles a binary searchwith runtime complexity inO(log |A|)
for a database A, as shown in the pseudo code for searchTree(). For each step of the tra-
versal of the Bloom filter tree, the set membership ∈λ has to be computed. This can be
done in O(m) (for Bloom filter size m) using the following algorithm:
1: function included_in(b, B, λ):
2: for i in [m] {
3: if (bi > Bi) { // Check for mismatch
4: λ← λ − (bi − Bi) // use λ to make B larger
5: if (λ < 0) { // …until no tolerance is left
6: return false // …which concludes <
7: }
8: }
9: }

10: return true

This concludes that the runtime complexity of the Bloom filter search is in O(m · log |A|).
Next, we look at the complexity of the hybrid homomorphic part. The computational

27

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

⊕
∧⊕

⊕

binary(c1)i binary(c2)i

1 2

log2(|s| · log2 Σ)

log2 |R|

Figure 2.7: Sketch of the search circuit

complexity of this part relates to the number of gates of the circuit, which can be split
into two parts as follows.

1. Construction of the indication vector ind.

This circuit has been constructed in Equation (2.1). The inner term (bij ⊕ sj ⊕ 1)
is conjugated over the binary representation of s and |binary(s)| = |s| · log2 |Σ|. The
conjunction can be expressed as a tree of binary AND-gates with s1 = 2+(|s|·log2 |Σ|)
total gates.

2. Construction of the final set of results res.

In Equation (2.4) the marked results are translated into the final set of results. The
XOR over all intermediate results R can again be written as a tree of binary XOR-
gates, resulting in s2 = |R| total gates.

In Figure 2.7 a schematic view of the depth of the circuit is shown. The final number of
gates of the circuit is then given by

s1 + s2 = 2 + (|s| · log2 |Σ|) + |R| ∈ O(|s| + |R|) , (2.6)

again because the other parameters do not depend on the inputs of U or S but instead
are parameters of the search scheme.

The size of R can be controlled by the parameters of the Bloom filter k and m as well
as the security parameter λ.

Putting together the Bloomfilter search and the homomorphic circuits, the total runtime
complexity is in

O(log |A| + |s| + |R|) (2.7)

when just considering the inputs fromU and S.

28

2.9 Use Case

2.9 Use Case

Moving from genetic to genomic research as well as the advances in the proteome re-
search have resulted in sophisticated and large databases infrastructures, e.g. Ensembl
(http://www.ensembl.org/), European Nucleotide Archive (ENA, http://www.ebi.ac.
uk/ena/), or UniProt (http://www.uniprot.org/). Among different applications, these
databases are used to perform sequence alignment or sequences search. In the sense
of moving towards personalized medicine as a strategic future healthcare paradigm, as
well as pharmacogenetics and/or pharmacogenomics as a part of new drugs development
process, performing an exact search of a specific nucleotide subsequence of a patient or
subject in one or more of these genomic databases is essential. A key question regarding
such search is the data protection and privacy constraints of the queried sequence. For
instance, genetic/genomic sequences carry indication to different phenotypes. As not all
genotypes-phenotypes correlations are known to us, outsourcing any database search
that involve sending subject’s genomics/genetic data outside the research institute be-
comes risky and violate the subject’s privacy in many cases. This depends on the context
of the subject consent, the country to where the data is outsourced and different other
aspects. All of this makes outsourcing of plain text sequence search difficult, and often
forbidden due to privacy laws.

The hybrid homomorphic search introduced in this work in cooperation with the bio-
informatics lab of the Leiden University Medical Center allows us to operate outsourced
searches in this environment without endangering patient privacy.

2.9.1 Example

The following example should illustrate the application of the stream search to find a
subsequence in a larger DNA sequence. For this purpose, let the large DNA sequence D
with |D| = 48 be given by

D = aggtcaagtccggaatacgtacgaacgtggcagctactcgagatccga (2.8)

and the search term s with |s| = 8 given by

s = cgaacgtg. (2.9)

29

http://www.ensembl.org/
http://www.ebi.ac.uk/ena/
http://www.ebi.ac.uk/ena/
http://www.uniprot.org/

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

Next, choose Q = 4 ≤ ⌊|s|/2⌋ and split D into twelve 4-grams

D0 = aggt D6 = acgt
D1 = caag D7 = ggca
D2 = tccg D8 = gcta
D3 = gaat D9 = ctcg
D4 = acgt D10 = agat
D5 = acga D11 = ccga

and build up the Bloom filter tree from these Bk,m(Di)’s. This completes the indexing
phase on the server side.

From the query, generate five 4-grams

s0 = cgaa s3 = acgt
s1 = gaac s4 = cgtg
s2 = aacg

and build one query Bloom filter Bk,m({si}). Note that this query has the same property
as an obfuscated query (see Section 2.4) with an obfuscation parameter of λ = 16. The
complete query q consists of (Bk,m({si}), λ, s, pk) where s = Encrypt(s) is the encrypted
query. This completes the preparation phase on the client side.

The actual search is conducted using the Bloom filter search described above, using the
set membership ∈λ. In this example, the set of results R will include {(acgt, 4), (acgt, 6),
(acgt, 9)}. This set of results is transfered back to the client, who then checks each element
of the results for an actual match.

2.10 Performance Evaluation

As an example of real world problem sizes the procedure described above was used
to index and search two human chromosomes of different sizes (available at ftp://

hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/ or using the script in the
chromosomes/ folder of the source code1). The experiments were run on a 2.8 GHz In-
tel Core i7 with 8GB RAM. The index process utilizes all four hardware threads, the
search runs only single-threaded. All timings are averages over 100 runs and can be
reproduced by executing script/benchmark.rb in the source code package. The script
1 https://github.com/hperl/bf-search

30

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/chromosomes/
https://github.com/hperl/bf-search

2.10 Performance Evaluation

expects that the Ruby library has been build in build/release.
Table 2.1 and Figure 2.8 show the results for different human chromosomes. We chose

Bloom filters of size 123, as 123 bits fit well into two native 64-bit integers with 5 bits
left for internal flags, and 10 SHA-based hash functions to have enough room left for
obfuscation as well as set-based Bloom filters. The percentage corresponds to the ratio
of real results

noise . For example, hiding in 5 % means that only 5 % of the results are real, the
other 95 % of the results was noise added because of the Obfuscated Bloom filters. The
baseline performance is given as a search with no obfuscation added.

It should be noted that using our approach the database containing the Chromosomes
only needs to be indexed once independently of the number of users querying the data-
base.

Search (hiding in x%)

File size Index Baseline 11 % 5% 1 %

chr1.fa 254MB 3.62 s 0.016 s 0.056 s 0.078 s 0.096 s
chr2.fa 248MB 3.56 s 0.011 s 0.046 s 0.079 s 0.096 s
chr3.fa 201MB 2.74 s 0.009 s 0.038 s 0.063 s 0.076 s
chr4.fa 194MB 2.65 s 0.008 s 0.036 s 0.061 s 0.073 s
chr5.fa 184MB 2.50 s 0.008 s 0.034 s 0.056 s 0.070 s
chr6.fa 174MB 2.49 s 0.008 s 0.032 s 0.060 s 0.071 s
chr7.fa 162MB 2.24 s 0.007 s 0.030 s 0.049 s 0.061 s
chr8.fa 149MB 2.04 s 0.007 s 0.029 s 0.047 s 0.057 s
chr9.fa 144MB 2.10 s 0.005 s 0.023 s 0.039 s 0.047 s
chr10.fa 138MB 1.84 s 0.006 s 0.025 s 0.042 s 0.051 s
chr11.fa 137MB 1.82 s 0.006 s 0.025 s 0.042 s 0.051 s
chr13.fa 117MB 1.59 s 0.004 s 0.018 s 0.031 s 0.037 s
chr14.fa 109MB 1.48 s 0.004 s 0.016 s 0.028 s 0.034 s
chr15.fa 104MB 1.38 s 0.004 s 0.015 s 0.026 s 0.032 s
chr16.fa 92MB 1.22 s 0.004 s 0.015 s 0.025 s 0.031 s
chr17.fa 82MB 1.11 s 0.003 s 0.014 s 0.024 s 0.030 s
chr18.fa 79MB 1.04 s 0.003 s 0.014 s 0.024 s 0.030 s
chr19.fa 60MB 0.79 s 0.002 s 0.010 s 0.018 s 0.022 s
chr20.fa 64MB 0.85 s 0.003 s 0.011 s 0.019 s 0.023 s
chr21.fa 49MB 0.67 s 0.001 s 0.007 s 0.012 s 0.015 s
chr22.fa 52MB 0.72 s 0.001 s 0.006 s 0.011 s 0.014 s

Table 2.1: Performance of the Obfuscated Search

31

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

40MB

60MB

80MB

100MB

120MB

140MB

160MB

180MB

200MB

220MB

240MB

0 s

0.02 s

0.04 s

0.06 s

0.08 s

0.10 s

Baseline

11 %

5 %

1 %

Figure 2.8: Plot of the Performance of the Obfuscated Search

As stated above, these results can be processed further using hCrypt due to the small
size of the results generated by the Bloom filter search. The performance figures of an
exact match search using hCrypt for different set of results and search term sizes are
outlined in Table 2.2.

Size of the set

Searchterm size 100 elements 1000 elements

5 Bit 0.007 s 0.067 s
16 Bit 11.300 s 115.000 s
32 Bit 27.800 s 288.000 s
64 Bit 55.600 s 560.000 s

Table 2.2: Performance of homomorphic post-processing.

2.10.1 Performance Comparison with PIR Schemes

We will use data from Costea et al. [27] for a performance comparison between the Ob-
fuscated Bloom filter search and Private Information Retrieval (PIR) techniques. Costea
et al. have implemented two PIR schemes: One based on the Quadratic Residuosity As-
sumption (QRA-PIR) by Kushilevitz and Ostrovsky [12], and one based on the ϕ-hiding

32

2.10 Performance Evaluation

Assumption (ϕ-PIR) by Gentry and Ramzan [11]. Both implementations were written in
C++, which is roughly comparable to the C implementation of the Bloom filter search.

The PIR implementations operate on location-based data, but the general search scen-
ario is the same: A private search for a point of interest (POI) in a database. We assume
that a POI has a size of 32 bytes, i.e. it just contains the GPS coordinates. Figure 2.9 shows
the performance comparison of the two PIR schemes along with the performance of the
Obfuscated Bloom filter search. Because the differences between the compared systems
is so huge, the numbers can also be seen in Table 2.3. Since Costea et al. did not publish
their source code for the PIR schemes, we relied on their measurements, which we took
from the graphs in [27, Fig. 3–4]. For the communication size of ϕ-PIR, the graphs did
not show a significant deviation from zero, which is why we set the column to 0.0MB.
Still, at least a single result would need to be transmitted.entirely on the server, we do
not consider the client CPU timings of [27].

For the server CPU timings, OBF is significantly faster than both PIR schemes, even
when hiding in 1 % of the results. Search times of 12 s for QRA-PIR and even 75 s for ϕ-PIR
for a file under 2MB size shows that even recent PIR schemes are still far from achieving
the performance needed to search in large datasets common in biology. Considering
the communication size, OBF is about as good as ϕ-PIR, and a drastic improvement over
QRA-PIR (OBF: 1478 B, QRA-PIR: 1.25MB). When combining the server CPU time and
the communication size, the compared PIR schemes are either fast on the server or light
on the wire, but not both. However, PIR still promises a stronger security, yet without
the possible trade-off to sacrifice a little bit of security for a large performance boost.

Server CPU (time) Communication (size)

File size QRA ϕ-PIR OBF QRA ϕ-PIR OBF

0.58MB 3.5 s 13.0 s 0.0098 s 0.55MB 0.0MB 422 B
0.79MB 4.2 s 17.0 s 0.0105 s 0.65MB 0.0MB 529 B
0.95MB 5.5 s 21.5 s 0.0138 s 0.75MB 0.0MB 637 B
1.03MB 6.0 s 35.0 s 0.0139 s 0.80MB 0.0MB 745 B
1.48MB 10.0 s 60.0 s 0.0200 s 1.15MB 0.0MB 674 B
1.90MB 12.0 s 75.0 s 0.0283 s 1.25MB 0.0MB 1478 B

Table 2.3: Comparison of the Bloom filter search with two different PIR schemes

33

Chapter 2 Privacy/Performance Trade-off in Private Search on Bio-Medical Data

Obfuscated Bloom filters
QRA-PIR
ϕ-PIR

0.0
09

8s

0.0
10

5s

0.0
13

8s

0.0
13

9s

1.0
20

0s

1.0
28

3s

3.5
s

4.2
s

5.5
s

6.0
s

10
.0
s

12
.0
s

0.58 0.79 0.95 1.03 1.48 1.90
File size in MB

13
.0
s 17
.0
s 21
.5
s

35
.0
s

60
.0
s

75
.0
s

(a) Comparison of Server CPU time

42
2B

52
9B

63
7B

74
5B

67
4B

14
78

B

0.5
5M

B

0.6
5M

B

0.7
5M

B

0.8
M
B

1.1
5M

B

1.2
5M

B

0.58 0.79 0.95 1.03 1.48 1.90
File size in MB

0.0
M
B

0.0
M
B

0.0
M
B

0.0
M
B

0.0
M
B

0.0
M
B

(b) Comparison of Communication size

Figure 2.9: Comparison of the Bloom filter search with two different PIR schemes

2.11 Conclusion

In this work, we introduced a search algorithm that utilizes Obfuscated Bloom filters to
ensure the confidentiality of search queries as well as the results of the search. Through
obfuscation, the query can be made secure enough to conform to data protection regu-
lations, yet the set of results is small enough to allow further processing with hCrypt,
e.g. an exact-match search as demonstrated in this work. Our approach achieves a com-
munication complexity of O(|s|) as well as the runtime complexity of O(log |A| + |s| + |R|)
with a flexible parameter to adjust the size of the set of results R.

Also, the size of the database that can be searched is sufficiently large and the search
itself is fast enough (O(log |A|)) for first real world use cases to be practically implemen-
ted. We showed extensive performance analysis and comparisons with PIR schemes. We
presented a security analysis of our design and demonstrated its feasibility using datasets
containing human chromosomes. This is one of the first systems to enable the practical
use of hCrypt. Beyond offering a solution for search with encrypted terms, this work also

34

2.11 Conclusion

serves as an example of how systems can be designed to incorporate the new possibilities
of Homomorphic Encryption.

35

CHAPTER 3

Evaluation of SSL Validation Systems

Although SSL/TLS is inwidespread use today, certificate validation currently suffers from
the weakest link property created by the fact that any trusted CA can sign a certificate for
any domain. Thus, if a single CA is compromised or coerced, any and all hosts using CA-
signed certificates can be endangered. Over the years, there have been many proposals
on how to fix this problem, but only one is en route to real world deployment right now:
Certificate Transparency.

In this chapter we look at how Certificate Transparency and other approaches aim to
strengthen the security of SSL validation and evaluate their respective deployability prop-
erties. We conduct a thorough evaluation of the current CA-based PKI and the alternative
approaches Perspectives, Convergence, Certificate Transparency, Sovereign Keys, TACK
and DANE. Finally, we have identified a list of open problems on the road to a better TLS
public key infrastructure.

The work in this chapter was presented as a poster at the 2013 IEEE Security & Privacy
conference, where Clark and Oorschot also published their SoK on SSL and HTTPS [28].
Thiswas jointworkwith Sascha Fahl, who helpedme refine the description of the benefits
and with whom I also collaborated on other research concerning the SSL landscape [29–
31]; as well as Matthew Smith, who did general counseling. The rest is my own work.

3.1 Introduction

The TLS/SSL protocol is one of the mainstays of Internet security. However, unrest is
growing as more large scale compromises and real world MITMAs are discovered. This
reflects the fact that the current certificate authority based public key infrastructure (CA-
PKI) is a prominent example of a weakest-link security system: Since all trusted root

37

Chapter 3 Evaluation of SSL Validation Systems

CAs can issue certificates for any domain, an attacker can pick the weakest or most
coercible CA to target for an attack — and a single vulnerable, malicious or coercible
CAs undermines the security of the entire system. To make matters worse, these attacks
can go unnoticed quite easily. According to the EFF’s SSL Observatory, current browsers
trust roughly 1500 different CAs from roughly 650 different organizations [32].

As an example, the following security breaches have recently made the news:
• In 2010, VeriSign was compromised, allowing the attackers to issue arbitrary certi-
ficates [33].

• In March 2011, an attacker from Iran was able to compromise the Comodo cer-
tificate authority [34] and get certificates for www.google.com, login.yahoo.com,
login.skype.com, addons.mozilla.org, and login.live.com. A MITMA attack with at
least one these certificate was observed.

• In August 2011, attackers used the DigiNotar CA to issue at least 200 fraudulent
certificates and used them to impersonate web servers [35]. The breach eventually
lead to the exclusion of the CA from most browsers and operating systems.

All these incidents were discovered after the fact by vigilant users and security research-
ers, who detected the man-in-the-middle attacks (e.g. Google pinning its own certificates
in Chrome). The CAs were either unaware or hiding the fact that they had been com-
promised. Either way this set of circumstances is highly critical, since most sites do not
use certificate pinning and most users are not capable of detecting a MITMAwith a valid
certificate.

This shows that the flaws in the current system are already being exploited by attackers.
It should also be considered that several government agencies legally own trusted root
CAs and thus can also execute MITMA attacks against arbitrary users and sites. While it
is only speculative whether these kind of organizations actually use their CAs to mount
MITMAs, it should be considered that they have the power to do so without much effort.
Rogue states are also a concern in this scenario.

Due to these obvious issues with the current SSL validation mechanism, a number of
proposals have been made that promise to strengthen the security of certificate valida-
tion. Some of the most prominent approaches are: Perspectives [36], Convergence [37],
Certificate Transparency [38], Sovereign Keys [39], TACK [40], and DANE [41]. Of these,
only Certificate Transparency is currently being rolled out, i.e. used for Extended Valid-
ation (EV) certificates since January 2015.

This wealth of new solutions also inspired Clark and Oorschot [28] to publish a Sys-
tematization of Knowledge (SoK) paper on certificate trust model enhancements in 2013.
Instead of evaluating the proposed solutions directly, the authors evaluated primitives
that were used by those proposals. Certificate Transparency is only evaluated under the

38

3.2 Related Work

primitive “List of Active Certificates”, which according to the authors offers only the prop-
erty of “Responsive Revocation”. The authors further assert CT the primitive “Multipath
Probing”. However, although multipath probing could be used with CT, it is deliberately
not included in the proposal, as side-channels during the handshake can cause failures,
e.g. when connecting to a captive portal that blocks all other internet access. The CT
team found that those extra connections fail at least 1 % of the time1.

We are now in the comfortable situation that we can look at both the other proposed
solutions and see what they are missing in comparison to Certificate Transparency, as
well as what [28] is missing in the evaluation of Certificate Transparency. We proceed by
carefully revisiting both the SoK as well as CT and extract the essence of the proposal that
make CT feasible for real world deployment. We then take another look at the proposals
with a focus on the properties that helped CT be deployable. We introduce an evaluation
framework based on a catalog of desirable benefits of SSL validation systems. We identify
the different strengths and weaknesses of the systems, try to shed light on the trade-offs
all systems have to make and point out which disadvantages they incur that currently
hinder adoption.

The contribution of our work is as follows:
• We propose an evaluation framework to compare and discuss SSL certificate valid-
ation schemes to help organize and formalize the ongoing debate in this area.

• We evaluate Perspectives, Convergence, Certificate Transparency, TACK, Sover-
eign Keys, AKI, ARPKI and DANE using our framework and highlight the compar-
ative strengths and weaknesses.

• We identify a list of open problems on the road to a better TLS public key infra-
structure.

3.2 Related Work

Clark and Oorschot [28] published a systematization of knowledge paper on SSL and HT-
TPs where they revisited issues of the crypto protocol as well as the trust model between
the CAs and the browsers. Then, they introduce an evaluation system for primitives
that improve the CA/browser trust model. The primitives were split into three groups as
follows.

In the first group, key pinning (as in TACK or TOFU), multipath probing (as in Per-
spectives, Convergence), and key agility (as in AKI) are all primitives for detecting man-
in-the-middle attacks. This is also the main focus of our evaluation system work.
1 http://www.certificate-transparency.org/comparison

39

Chapter 3 Evaluation of SSL Validation Systems

The second group contains primitives that are concerned with SSL stripping protec-
tion. Here, the authors evaluate HTTPS-only pinning on the server, the client (through
a preloaded list), and through DNS.

The third group of primitives is related to revocation. They evaluated CRLs, OCSP-
stapling, short-lived certificates, and a list of active certificates, like the certificate log in
CT.

However, the author’s systematization fails to show how and if the combination of
primitives can inherit the benefits of both primitives. In the next section, we will focus
intensively on CT, since it is the only system with an active deployment plan. From
looking at just the evaluation in [28], it is puzzling that CT can be thought of as a system
improving the security of TLS, since it was only evaluated for revocation.

3.3 Certificate Transparency

Certificate Transparency [38] (CT) is currently being developed by Ben Laurie, Adam
Langley and Emilia Kasper at Google. When a certificate for a server has been signed by
a CA, the server or the CA submits the certificate to a log server. There need to be a small
number of log servers that periodically check each other for consistency as well as query
updates. The log servers insert the certificates into append-only data structures based on
Merkle hash trees. The hash trees ensure that tampering with the log is easily detectable
andwould thus revoke trust in the log server. If a new certificate is added to the log, a new
branch with a new root will be inserted into the tree, the old root eventually becoming
a child of the new root. This means that the new tree can still prove consistency for an
older log.

CT was designed specifically for real-world requirement of no side-channels. During a
TLS handshake, there should be no other connections necessary. This is important, since
those extra connections might fail, or even just slow down the handshake significantly.
We modeled this requirement in D12 (Quasi-) No-Out-Of-Band-Connection.

This is realized in CT through embedding a signed certificate timestamp (SCT) assur-
ing that the certificate was logged either into the certificate (delivered through an X.509
extension) or in an OCSP response (delivered through OCSP stapling, a TLS handshake
extension). The biggest advantage of CT however is, that not all clients even need to
check these extensions. Themain problemCT solves is that of CAs issuing fraudulent cer-
tificates unnoticed. By collecting all issued certificates, CT enables inspection of which
CA issued which certificates. As long as some percentage of the clients check the SCTs,
certificates without SCTs will get reported. And as long as some CAs as well as domain
owners check that no other CA issued a certificate without explicit order from the do-

40

3.4 An Evaluation Framework for SSL Validation

main owner, those malicious CAs will be detected. Misbehaving CAs can then be named
and blamed, and the fraudulent certificates can be revoked.

There is a high incentive for CAs to be perceived as reliable, since ultimately browser
and operating system vendors decide which CA certificates they include in their trust
stores, and a CA’s signature is only valuable as long as it is included into all major trust
stores. For example, after the DigiNotar hack, vendors decided to no longer include
DigiNotar’s root certificate.

So while CT does not prevent man-in-the-middle attacks from happening right after a
CA has been hacked, it does strengthen the whole CA ecosystem by detecting publicising
compromises very quickly.

For an in-depth discussion of CTs and other validation systems’ advantages and disad-
vantages we introduce a list of benefits in the next section and then evaluate the Systems
in Sections 3.5–3.6.

3.4 An Evaluation Framework for SSL Validation

In this chapter we suggest such a framework loosely following the design of the frame-
work presented by Bonneau et al. [42] for evaluating web authentication schemes. Our
findings are filed into one of two categories: deployability, or security. In each category,
we describe a set of benefits, consisting of a mnemonic title and a description. In addition,
we indicate the correlation to the benefit from [42] when applicable.

3.4.1 Deployability Benefits

In this category deployment aspects are evaluated.
D1 No-User-Cost: The cost for the user of the scheme is negligible. This means for in-

stance that the system does not require special hardware which would need to be
purchased by the end user. (c.f. [42, D2: Negligible-Cost-per-User]).

D2 No-Server-Cost: The total cost per user of the scheme is negligible for the server. As
opposed to D 1 we only consider costs for the server here. We say that additional
CPU or bandwidth costs are negligible, but additional recurring fees are not. A
system has Quasi-No-Server-Cost if it is possible to enrol a server without costs but
it is common to use a paid service. (c.f. [42, D2: Negligible-Cost-per-User]).

D3 Server-Compatible: On the server side, the system is compatible with SSL and X.509
certificates. Servers don’t need to patch their web server or SSL library. (c.f. [42,
D3: Server-Compatible])

41

Chapter 3 Evaluation of SSL Validation Systems

D4 Browser-Compatible: On the browser side, the system is compatible with SSL and
X.509 certificates. The browser doesn’t need to be patched. (c.f. [42, D4: Browser-
Compatible]).

D5 Incrementally-Deployable: The system can be deployed incrementally. The full bene-
fit should only be awarded if early adopters already benefit from the system even
if wide-spread adoption has not occurred yet. The benefit should not be granted
if the benefit to adopters only kicks in once everybody has migrated, even if the
technical migration can be executed in an incremental and backwards compatible
way. A system is Quasi-Incrementally-Deployable if early adoption is beneficial and
safe for the case that each client can securely acquire a list of servers that already
offer the new service, i.e. no downgrade attacks are possible.

D6 Negligible-Communication-Overhead: The total communication overhead between
the client, the server, and (potentially) a third party is negligible. The system is
plausible for mobile devices and settings with a low bandwidth connection.

D7 Negligible-Computational-Overhead: The total computational overhead combined
for the client, the server, and (in some cases) a third party is negligible. The system
is plausible for mobile devices and settings with low processing power. The sys-
tem has Quasi-Negligible-Computational-Overhead, if the computational overhead
is negligible for the user.

D8 No-Additional-Infrastructure: For the deployment, no additional infrastructure is ne-
cessary. The system either reuses the CA or DNS infrastructure or doesn’t need
any at all. We award a Quasi-No-Additional-Infrastructure if the systems reuses the
CA or DNS infrastructure but requires those services to integrate the system.

D9 Trusted-Root-CA-support: The system can validate trusted root-CAs that are distrib-
uted out-of-band, e.g. in the Browser or OS.

D10 Custom-Root-CA-support: The system can integrate custom root-CAs that are only
trusted by clients that explicitly choose to trust them. This enables organizations
to use the system to develop a closed PKI-infrastructure that can be combined with
the public structure. A system has Quasi-Custom-Root-CA-support if user action is
required to include custom root-CAs.

D11 Selfsigned-Certificate-support: Thesystem can validate certificates that are not signed
by any third party.

D12 No-Out-Of-Band-Connection: For the client to verify the server, the client only
needs connectivity to the server, not to any other third party. We award Quasi-
No-Out-Of-Band-Connection, if an out-of-band connection is only required in rare
cases, e.g. if the certificate has just been issued or to download periodic updates.

42

3.4 An Evaluation Framework for SSL Validation

D13 X.509-compatible: Thecertificates used for authentication are compatiblewith X.509.
For example, systems that require or support multiple CA signatures in one certi-
ficate are not X.509-compatible, since the X.509 structure only allows for one issuer
for a certificate.

3.4.2 Security and Privacy Benefits

S 1 Built-In-Revocation: The system has build in capability to revoke certificates. This
can become necessary in the case when a server’s private key was stolen. We allow
for a short grace period bound by the network delay, before the compromised cre-
dentials must be revoked. The full benefit should only be awarded if the revocation
mechanism is built into the system as an integral component.

S 2 OCSP-or-CRL-Compatibility: The system can support revocation through OCSP or
CRL.

S 3 Resilient-To-DOS-Attacks: The system does not rely on an infrastructure that is re-
quired for validation that can be knocked out through a denial of service. It is
Quasi-Resilient-To-DOS-Attacks if an out-of-band connection is only needed from
time to time or in special cases. This benefit is closely linked to 8.

S 4 User-Privacy-Preserving: When using the system for server authentication, the in-
formation that the client is visiting a specific server does not leak to any third
party.

S 5 Secure-Key-Migration: When a domain’s owner changes keys this can be done in an
automatic and verifiable way. The system has Quasi-Secure-Key-Migration if migra-
tion is possible but for the client the process is indistinguishable from a MITMA.

S 6 Secure-Key-Migration-After-Credential-Theft: When a domain owner changes keys
because a credential theft was detected, this can be done in an automatic and veri-
fied way. The system has Quasi-Secure-Key-Migration-After-Credential-Theft if mi-
gration is possible but the process is indistinguishable from aMITMA for the client.

S 7 Secure-Domain-Migration: The system allows the owner of a domain to change in a
verifiable way. This benefit may not be awarded if this process leaves the previous
owner the capability to impersonate the new owner for any amount of time. A sys-
tem has Quasi-Secure-Domain-Migration if migration is possible but for the client
the process is indistinguishable from a MITMA.

S 8 First-Contact-Protection: The system protects the connection fully from the very first
connection from the client. The benefit should not be award if it is a “trust on first
use” system. The system offers Quasi-First-Contact-Protection against an adversary
if an incident is detectable after the fact. This benefit is evaluated according to the

43

Chapter 3 Evaluation of SSL Validation Systems

adversary capabilities in Section 3.4.2.
S 9 Connection-Protection: The system protects the adversary from eavesdropping on the

connection. This is equivalent to server impersonation. The system offers Quasi-
Connection-Protection against an adversary if an incident is detectable after the fact.
This benefit is evaluated according to the adversary capabilities in Section 3.4.2.

Adversary Capabilities

For a more precise security analysis of benefits S 8 and S 9 we consider adversaries of
different capability levels.

Level 1. ActiveMITMArequired Theadversary only controls the connection between
the client and the server.

Level 2. Trusted CA certificate required Additionally, the adversary can sign any
certificate using an arbitrary trusted root-CA (i.e. a “weakest link” attack).

Level 3. Compromising user chosen third parties required Additionally, the ad-
versary can compromise any n third parties of his choice (i.e. n “strongest links” attack).

Defense against a first-level adversary is already covered by the current CA-PKI. The
minimum improvement needed by any system is to protect against an attacker at level 2.
Optionally a system also requires the attacker to successfully compromise or knock out n
further third parties. Ideally this is combined with trust agility, meaning that the user can
choose which n parties are used to validate the connection thus making it even harder
for the attacker since he either has to know which n parties were chosen or compromise
all possible third parties.

3.4.3 On Usability

We decided not to include usability benefits in the catalog for specific reasons. Even
though the user experience of a SSL validation system may have a large impact on the
security of the system e.g. through the way warning messages as well as safe connec-
tions are represented, we found it impossible to judge the various merits of the different
systems objectively. While there might be differences in how helpful a system is when
compiling information for a warning message, ideally a system should not show any
false-positive warnings at all. Yet, no SSL system purposely introduces the possibility
for false positives. When they occur, they occur because the server was misconfigured.

44

3.5 Evaluation of SSL With A CA-PKI

Since all can be theoretically be misconfigured and both this and the quality of the warn-
ing messages are influenced more by implementation and deployment than the system
itself, we decided not to score these aspects. In many cases the user interface will look
the same as it looks today, with any other SSL system under the hood. Writing good
warning messages is certainly a big challenge, with a whole bag of definitions on what
“good” means in this context and should be evaluated separately.

The ambiguousness of the warning message depends on the number of false positives.
If false positives are more probable, warning messages have to account for the possibility
that everything could be OK. So in that sense, the usability of a SSL system is directly
related to how easy it is to set up for a server administrator. We cover this as part of the
deployability benefits. Finally, the debate of whether validation systems should block
the connection if in doubt has been discussed by Sunshine et al. [3] and applies to all
proposals as well.

3.5 Evaluation of SSL With A CA-PKI

We use the current SSL system based on a Certificate Authority Infrastructure (CA-PKI)
as a baseline and to make the reader familiar with the evaluation framework.

Server authentication with a CA-PKI is made up of the following steps: Prior to the
connection attempt by the client, the server has obtained a signature for its certificate
from a trusted certificate authority. The certificate authority has made sure that the
person issuing the certificate request has access to the specified domain, then signed the
certificate. The certificate is sent to the client as part of the SSL handshake. The client
checks the certificate for a signature by a trusted certificate authority, and on success
concludes that the server is authentic.

As the CA-PKI is already fully deployed, it has a head start in the deployability as-
pects. It has No-User-Cost as well as Quasi-No-Server-Cost. While there are trusted CAs
(such as StartSSL) that offer free certificates, it is very common for server to used payed
for certificates, especially for services like Extended Validation or wildcard certificates.
It is Server-Compatible, Browser-Compatible, and Incrementally-Deployable and trivially
has the No-Additional-Infrastructure benefit. While there are alternative systems which
are server compatible, all of the current alternatives require the browser to execute non
standard steps and thus currently require browser plugin to enable this. This benefit will
become relevant when one or more of the systems reaches a higher level of maturity and
starts getting adopted by browser vendors.

We rate the CA-PKI as having Negligible-Communication-Overhead and Negligible-
Computational-Overhead and use it as a baseline for the evaluation of the alternative

45

Chapter 3 Evaluation of SSL Validation Systems

systems. The CA-PKI has Trusted-Root-CA-support and Quasi-Custom-Root-CA-support,
since the user is required to install additional CA certificates on the client. Selfsigned-
Certificates are not supported (the user is presented with a warning when connecting to
a self-signed certificate). It needs no Out-Of-Band-Connections.

CA-PKI has no Build-In-Revocation, but is OCSP-or-CRL-Compatible. In order to keep
the complexity manageable we do not consider knock on effects of OCSP such as the out-
of-band communication in the main system, but the reader should be aware that both
OCSP and CRL come with their own sets of benefits and problems. CA-PKI is however
Resilient-To-DOS-Attacks since there is no third party involved during the connection at-
tempt and the protocol is not asymmetrically in favor of the attacker. Considering the
security benefits, the CA-PKI is User-Privacy-Preserving since no connections other than
to the server are needed. It follows the same protocol regardless of whether a client
connects for the first time or not, hence it has First-Contact-Protection and Connection-
Protection against an adversary that can only do an active MITMA. In order to success-
fully execute a MITMA, an attacker needs to intercept the connection (Active-MITMA-
Required) and additionally requires a valid certificate from any trusted root CA (Trusted-
CA-Certificate-Required). CA-PKI does not get the benefitCompromising user chosen third
parties required, as indicated by the empty arrow in Table 3.1, which means that a suc-
cessful attack against a single CA renders the whole scheme vulnerable.

The CA-PKI can handle Secure-Key-Migration with or without credential loss, as a
newly signed certificate is just as valid as the last one. However, Secure-Key-Migration-
After-Credential-Theft renders the connections vulnerable against an adversary capable
of an active MITMA. Note: This can of course be counter using an add-on like OCSP,
however, as stated above we do not mix the benefits of the systems in this round of eval-
uation. The CA-PKI does not provide Secure-Domain-Migration: The old owner of the
domain still has a valid certificate that can be used for an attack; likewise the new owner
could fool domain visitors into thinking that they are still seeing the old site.

3.6 Evaluation of Alternative Validation Systems

3.6.1 Perspectives

The Perspectives system proposed by Wendlandt, Andersen and Perrig [36] is an infra-
structure of distributed semi-trusted notary servers that periodically record the public
keys of SSL protected servers on the web. Each notary keeps a record containing in-
formation about which server used which certificates in the past. Trusted CAs are not
needed.

46

Capabilities

Scheme Ref. D
ep

lo
ya

bi
lit

y
be

ne
fit

s

N
o-
Us

er
-C

os
t

N
o-
Se

rv
er
-C

os
t

Se
rv

er
-C

om
pa

tib
le

Br
ow

se
r-
Co

m
pa

tib
le

In
cr
em

en
ta
lly

-D
ep

lo
ya

bl
e

N
eg

lig
ib
le
-C

om
m
un

ic
at
io
n-

O
ve

rh
ea

d

N
eg

lig
ib
le
-C

om
pu

ta
tio

na
l-O

ve
rh

ea
d

N
o-
Ad

di
tio

na
l-I

nf
ra
st
ru

ct
ur

e

Tr
us

te
d-
Ro

ot
-C

A-
su

pp
or

t

Cu
st
om

-R
oo

t-C
A-

su
pp

or
t

Se
lfs

ig
ne

d-
Ce

rti
fic

at
e-
su

pp
or

t

N
o-
O
ut
-O

f-B
an

d-
Co

nn
ec

tio
n

X.
50

9-
Co

m
pa

tib
le

Se
cu

ri
ty

be
ne

fit
s

Bu
ilt
-In

-R
ev

oc
at
io
n

O
CS

P-
or

-C
RL

-C
om

pa
tib

ili
ty

Re
sil

ie
nt
-T
o-
D
O
S-
A
tta

ck
s

Us
er
-P

riv
ac

y-
Pr

es
er
vi
ng

Se
cu

re
-K

ey
-M

ig
ra
tio

n

Se
cu

re
-K

ey
-M

ig
ra
tio

n-
A
fte

r-
Cr

ed
en

tia
l-Th

eft

Se
cu

re
-D

om
ai
n-

M
ig
ra
tio

n

Ac
tiv

e
M
IT

M
A

re
qu

ire
d

Tr
us

te
d
CA

ce
rti

fic
at
e
re
qu

ire
d
(w

ea
ke

st
lin

k)

Co
m
pr

om
isi

ng
us

er
ch

os
en

th
ird

pa
rti

es
re
qu

ire
d

(st
ro
ng

es
tl
in
k)

Fi
rs
t-C

on
ta
ct
-P

ro
te
ct
io
n

Co
nn

ec
tio

n-
Pr

ot
ec

tio
n

SSL with CA-PKI —

(90’s)

0
Perspectives [36]

(2008)

n

DANE [41]

(2010)

1
Convergence [37]

(2011)

n

Sovereign Keys [39]

(2011)

1
Certificate Transparency [38]

(2012)

1
CT + Revocation [43]

Transparency

(2014) 1
TACK [40]

(2012)

0
AKI [44]

(2013)

n

ARPKI [45]

(2014)

n

= offers the benefit; = almost offers the benefit, = does not offer the benefit.

= step required; = step not required for MITMA.

Table 3.1: Evaluation of SSL validation systems

Chapter 3 Evaluation of SSL Validation Systems

When a client wants to authenticate a server, the client queries N notary servers and
compares their stored certificates for the server with the certificate presented by the
server. If the certificate presented matches the certificates seen by the notaries then it is
unlikely that there is an active MITMA (which would use a different certificate than the
one observed by the notaries). To succeed the attacker would have had to successfully
compromise or MITMA all N user selected notaries as well as the connection between
the user and the server. Since the notaries report the same state to all queries in the
MITMA case an attacker would have to additionally MITMA all connections to the target
server and all connection to all notaries to remain undetected. The number and choice
of notaries as well as how many notaries need to confirm the server’s certificate can be
configured by the client.

As deployability benefits, Perspectives has No-User-Cost as well as No-Server-Cost. Al-
though servers still need certificates, it does not matter whether they are self-signed,
or signed by a trusted or custom root CA (Trusted-Root-CA-support, Custom-Root-CA-
support, Selfsigned-certificate-support). It is Server-Compatible, because notaries work
with the standard X.509 certificates. It is however not Browser-Compatible, because cli-
ents need to query the notaries for verification. The system is Incrementally-Deployable,
meaning that as soon as enough notaries are available, clients could use the system
even though no one else uses it. However it does not have Negligible-Communication-
Overhead, as connections to the notaries need to bemade during the request. As Perspect-
ives requires a separate notary infrastructure which is different from the current CA-PKI,
it has no No-Additional-Infrastructure. Further, Out-Of-Band-Connections are required.

Perspectives has no Built-In-Revocation, as no mechanism for revocation exists and
the notaries can not tell the difference between a second valid certificate and one that
got created because the first certificate has been stolen. However, it has OCSP-or-CRL-
Compatibility, and the revocation could even be handled by the notaries directly. Further,
it is not Resilient-To-DOS-Attacks, as it requires the notary infrastructure to be online dur-
ing certificate validation. It is not User-Privacy-Preserving, because the browser history
leaks to the notaries. It hasQuasi-Secure-Key-Migration (with or without credential theft),
as the new certificate will get picked up by the notaries automatically, but this is not dis-
tinguishable from aMITMA from a client’s perspective. For aMITMA, an attacker would
need to compromise the answer of the N notaries the client chose. Against level 1 and 2
adversaries, Perspectives offers First-Contact-Protection and Connection-Protection.

3.6.2 Convergence

Convergence by Marlinspike [37] is based on Perspectives. Both systems use notaries to
verify the authenticity of the server. However, in convergence, notaries can use valida-

48

3.6 Evaluation of Alternative Validation Systems

tion strategies other than simply requesting the server’s certificate via HTTPS. Possible
strategies are: DNSSEC, BGP data, or “SSL observatory” results. Furthermore, a two-step
onion routing protocol is used for the queries to the notaries to preserve the privacy of
the client.

As Convergence and Perspectives follow a very similar design, we only focus on the
difference here. Convergence is User-Privacy-Preserving, since the IP address of the client
does not reach the notary during a query.

3.6.3 Certificate Transparency

See Section 3.3 for an introduction to Certificate Transparency.
The system has No-User-Costs as well as Quasi-No-Server-Cost-per-User, as a server

need a signed X.509 certificates.
CT is not Browser-Compatible: The automated client-side request for appearance of a

server’s certificate in the append-only logs has to be integrated into the Browser for CT
to work. It is not Server-Compatible, since servers need to pass extra information in the
SSL handshake. CT is Quasi-Incrementally-Deployable, as a MITM could omit CT related
information during the attack. However, this can be detected by the client either if the cli-
ent has previously connected to the host in question or by looking up the server in a list of
CT-ready hosts. While it is in theory possible to setup CT incrementally and with respect
to backwards compatibility, the true benefit of basing trust decisions on the appearance
of a certificate in the append-only logs is only applicable when the switch to CT is com-
plete. CT has both Negligible-Communication-Overhead and Negligible-Computational-
Overhead, as the proof of validity is included directly in the certificate. With the log
servers, a new infrastructure is needed, thus CT does not get the benefit No-Additional-
Infrastructure. Trusted-Root-CA-support is supported, however it is currently not possible
to add Custom-Root-CA-support2 or Selfsigned-Certificate-support, since certificates need
to be signed by a trusted root-CA known to the log server. Since the client must sometimes
connect to the CT server CT only gets the Quasi-No-Out-Of-Band-Connection.

As revocation is not part of CT, it only has OCSP-or-CRL-Compatibility. It is only
Quasi-Resilient-To-DOS-Attacks since an attacker could force a situation in which the
client needs an update from the CT server which the attacker could then deny. CT is
User-Privacy-Preserving, as only the roots of the Merkle trees are sent from the CT server
to the client. The CT server does not receive any information about browsing behaviour.
CT has Secure-Key-Migration with or without credential theft through resubmission to
the log. It does allow for Secure-Domain-Migration, because the previous owner of the
2 There is ongoing work that could address this in the near future

49

Chapter 3 Evaluation of SSL Validation Systems

domain can’t attack the current owner once he submitted the new certificate to the log
and it is always visible that a new key was registered. Finally, in order to MITMA a
connection, the adversary would need to acquire a valid certificate as well as manipulate
the log server so that it adds the certificate to the log. While the MITMA in his case
would be successful it would also be detectable in the logs of the CT server. Thus we
award a partial benefit even for this attack. CT offers both First-Contact-Protection and
Connection-Protection.

3.6.4 CT + Revocation Transparency

CT + Revocation Transparency [43] (CTRT) is an extension to CT proposed by Mark
Ryan. In addition to the chronologically ordered Merkle tree in CT, CTRT introduces
a second tree called LexTree, where all leaf nodes are ordered lexicographically. Ryan
shows that consistency proofs between the old and the new tree can be done through
random checking, which is sufficient to detect cheating in practice. The advantage of the
LexTree representation is that this tree allows for proofs of absence as well as proofs of
currency. Those proofs of currency can then be used along CT’s proof of inclusion.

Thus, the only benefit CTRT adds to CT is Built-In-Revocation.

3.6.5 Sovereign Keys

Sovereign Keys (SK) is a system developed by Eckersley [39]. Both Certificate Transpar-
ency and Sovereign Keys share the idea of a central repository of certificates, called “log
server” in the former and “timeline server” in the latter. Unlike Certificate Transparency,
the timeline servers are just flat files. The append-only property can still be guaranteed
throughmutual checking in a network of timeline servers. However there exists no short
proof that a certificate is in the timeline server as it would in Certificate Transparency.
This means that the timeline server would need to be queried every time a certificate
needs verification.

As Sovereign Keys and Certificate Transparency share a similar design, many bene-
fits are the same, hence we focus on the differences. Since the client needs to contact
the timeline server every time, SK does not have Negligible-Communication-Overhead
and relies on Out-Of-Band-Connections. It is therefore also not User-Privacy-Preserving.
Yet, this also means that SK has Built-In-Revocation, because certificates can be revoked
through a special entry in the timeline server. It is not Resilient-To-DOS-Attacks, because
blocking the timeline servers hinders the verification process.

50

3.6 Evaluation of Alternative Validation Systems

3.6.6 TACK

Trust Assertions for Certificate Keys (TACK) [40] is a SSL extension suggested by Moxie
Marlinspike. As in standard SSL, the server generates a SSL key pair for securing the
transfer channel. Additionally, the server generates a TACK key pair and signs the public
SSL key with it. The idea behind the TACK key pair is that the SSL key pairs may change
more often, but the TACK key should stay the same for a given domain. Therefore it is
possible to conduct pinning on the domain / TACK key pair, called a pin.

In detail, when the client connects to the server, it requests the tack pin through a
SSL extension in client_hello. In the server_hello message, the server then sends the
TACK public key along with the SSL public key signed by the TACK secret key (TSK).
The status of the connection can have three states: “unpinned”, “pinned” and “rejected”.
Assuming the client connects to the server for the first time, it has never seen the pin
before, and the connection is “unpinned”. If it has seen the pin before, the pin is activated
for a time span equal to the time interval between the first and the last pin for that host.
If the client has an active pin for the domain the connection is “pinned”. In all other
cases the connection is “rejected”. Marlinspike extends the protocol with an additional
min_generation attribute for all pins in order to do revocation (i.e. incrementing the
min_generation invalidates all pins with a smaller generation number).

Sharing the pins between clients and even relying on external sources for pins is en-
tirely possible. But, as the authors state, “this will require additional protocols outside
the scope of this document” [40, Section 8.2]. Because great care has to be taken in the
engineering of the third party trust infrastructure in order to ensure that no client can
be tricked into accepting or submitting incorrect pins, we do not consider pin sharing in
the analysis of TACK.

Since TACK keys are generated by the server and clients base their trust entirely on
the state of the pins, no CAs are required, and hence the system has No-User-Cost as
well as No-Server-Cost. It is neither Server-Compatible nor Browser-Compatible, because
the TACK public key must be transferred. However, it is Incrementally-Deployable, be-
cause once a client has pinned a server, the connection is safe as long as the pin is active.
BothComputational-Overhead andCommunication-Overhead is negligible, as only a small
TACK public key needs to be exchanged. TACK works with Trusted-Root-CAs, Custom-
Root-CAs, and Selfsigned-Certificates. Further, TACK has No-Additional-Infrastructure,
because the whole communication happens exclusively between the server and the cli-
ent. Thus, no Out-Of-Band-Connection is needed.

As for revocation, TACK differentiates between loosing “just” the credentials, which
is handled gracefully without user intervention; and loosing the TACK secret key, which
requires the user to accept the new TACK key manually. Therefore, TACK has Quasi-

51

Chapter 3 Evaluation of SSL Validation Systems

Built-In-Revocation. OCSP or CRLs are not supported due to the missing infrastructure.
It is Resilient-To-DOS-Attacks as well as User-Privacy-Preserving, because no other con-
nection is required during verification.

Secure-Key-Migration is no problem since TACK supports publishing the new tack
along with the old one. However, Secure-Key-Migration-After-Credential-Theft means,
in the case that the TACK secret key got compromised, that the user needs to trust the
new TACK key pair. The same argumentation holds for Secure-Domain-Migration.

TACK is the only system in our set which does not have both First-Contact-Protection
and Connection-Protection since it follows the trust-on-first-use model. However, Con-
nection-Protection is ensured against all levels of adversaries.

3.6.7 DANE

DNS-based Authentication of Named Entities (DANE) by Schlyter and Hoffman [41] is a
system that strongly relies on the Domain Name System Security Extensions (DNSSEC).
In DANE, the SSL certificate for a server is specified in the corresponding DNS record. As
part of the DNS response, the client gets the certificate for the requested domain. Then
the client can simply compare that certificate with the one from the server.

Of course, the security of this solution depends heavily on the security of the DNS
connection. If theDNS request could be spoofed, the attacker could choose any certificate.
DNSSEC has been described in detail in RFC 2535. The main issue with DNSSEC is the
incomplete and slow moving deployment. Although over 100 TLDs already deployed
DNSSEC, very few ISPs have done the same. Yet, only after DNSSEC is fully deployed
does it offer proper protection.

As DANE is going to be integrated in the DNS services, it has No-User-Cost as well
as Quasi-No-Server-Cost, since DNS providers charge for their service. DANE is Server-
Compatible but not Browser-Compatible, as fetching the certificate is done by the client.
It is not Incrementally-Deployable, since DANE requires that every domain is DNSSEC-
ready, which itself is not incrementally deployable (and pending for a long time). DNS
features both Negligible-Communication-Overhead, Negligible-Computational-Overhead,
but only Quasi-No-Additional-Infrastructure because of the DNSSEC deployment require-
ment. The features Trusted-Root-CAs, Custom-Root-CAs and Selfsigned-Certificates are
present, because it does not matter if the certificate is trusted as long as it comes from the
DNSSEC secured DNS server. Finally, DANE has No-Out-Of-Band-Connection: Although
the DNS query can be viewed as an out-of-band connection, we award the benefit since
in most cases this connection it is necessary anyway.

DANE has no Built-In-Revocation, but is OCSP-or-CRL-Compatible. It is Resilient-To-

52

3.6 Evaluation of Alternative Validation Systems

DOS-Attacks, because the only exposed infrastructure are the DNS servers. While the
DNS server can of course be DOSed, it would also mean that the name resolution failed
and the connection from the client to the server would not be possible either. DANE
is User-Privacy-Preserving, as the information about which server the client connects to
gets transferred just to the DNS server which knows about the request anyway. DANE
supports Secure-Key-Migration as well as Secure-Domain-Migration, as the certificates can
be rolled-over through the DNS server. DANE is secure (First-Contact-Protection and
Connection-Protection) against level 1 and 2 adversaries, but falls when the adversary
manages to compromise the DNS server.

3.6.8 AKI

Accountable Key Infrastructure (AKI) is a system proposed by Hyun-Jin Kim et al. [44].
They introduce a new party, the Integrity Log Server (ILS). Server certificates need to be
registered with the ILS, and can contain signatures from multiple CAs. The ILS checks if
the registration can proceed by through multiple conditions. For example, if the domain
has been registered before, the new certificate must either be signed by the old key or
have been signed by a larger number of CAs, optionally from a custom configured list
of CAs. Users can configure many parameters of the registration process through X.509
extensions in their server’s certificate.

AKI shares many properties with CT derived from the benefit of having a central cer-
tificate log. AKI is not Browser-Compatible, since the clients need to check for the ILS
proofs. It supports Custom-Root-CAs through a X.509 extension that allows the user to
specify a list of trusted CAs for the certificate. The biggest benefit compared to CT is
that in AKI, an attacker is required to compromise n trusted parties (CAs), where n can
be configured by the user, i.e. the owner of the system.

3.6.9 ARPKI

Attack Resilient Public-Key Infrastructure (ARPKI) [45] is inspired by AKI’s design and
employs some of its concepts. ARPKI improves AKI in several ways (c.f. [45, Section
4.6]), including a more mature implementation and a formal verification. However, none
of these changes add or take any benefits with respect to our evaluation system.

3.6.10 Summary of The Evaluation

In Table 3.1 all the benefits of the evaluated systems are listed to allow for a quick com-
parison. While the most of the benefits are listed only once per system, the connection

53

Chapter 3 Evaluation of SSL Validation Systems

protection benefits are split up into three subgroups depending on the capabilities of the
adversary. In the first row (), the adversary is only assumed to have the ability to
execute an active MITMA against the client and the server. In the second row (), the
adversary is also capable of generating an arbitrary certificate that is signed by a trusted
root-CA. In the third row (x), the adversary can additionally compromise n parties
involved in the verification process, excluding the client and the server. Black arrows in-
dicate that this step is required for a successful man-in-the-middle attack, white arrows
indicate that this step is not necessary.

As the status quo, SSL with CA-PKI scores high in the deployability benefits. However,
the security is quite low: as soon as an attacker has a valid certificate for the domain, all
defensive measures can be circumvented. Perspectives and Convergence have a much
stronger security guarantee by requiring the attacker to compromise n notaries chosen
by the client. Their critical weakness is that additional infrastructure is required during
the validation, infrastructure that incurs a communication overhead and may be blocked
or targeted by attacks. Certificate Transparency solves the problem of out-of-band con-
nections nicely using a Merkle tree as a log server and embedding the proof that the log
server saw the certificate directly into the certificate. However, this does not solve the
problem of revocation: If there is no out-of-band connection, revocation relies on irreg-
ular updates. Sovereign keys is very similar to CT however it requires an online connec-
tion during every validation thus offering revocation but incurring the same problems
Perspectives and Convergence have.

Critically both CT and Sovereign Keys currently do not allow custom trusted CAs to
be used. This is particularly problematic for businesses wishing to operate their own CA.
Choosing a completely different approach, TACK relies on the client pinning the certi-
ficate (more precisely the TACK key). This approach features strong deployability and
security benefits, but with the disadvantage that there is no protection when connect-
ing for the first time. Last but not least, DANE promises very strong security benefits.
Yet, the deployment of DANE depends on the deployment of DNSSEC, which is only
progressing slowly. A continuous survey by the US National Institute of Standards and
Technology (NIST) shows that only approximately 1 % of large US industries completely
deployed DNSSEC3.

3.7 Open Problems

As can be seen none of the surveyed systems offer a clean sweep of the benefits. We see
multiple open problems on the road to a more secure PKI for TLS.
3 http://fedv6-deployment.antd.nist.gov/cgi-bin/generate-com

54

http://fedv6-deployment.antd.nist.gov/cgi-bin/generate-com

3.8 Conclusion

Incremental Deployability of TLS validation systems An important focus of fur-
ther research should be on solutions that support incrementally deployment. Certificate
Transparency is a good example, since browsers can simply have a whitelist of domains
and/or CAs where they expect SCTs and thus allow for gradual upgrading. It is worth
exploring if similar venues exists for the other validation systems discussed here.

True man-in-the-middle protection for Certificate Transparency Many of the
design decisions for Certificate Transparency were made to fulfill the tight constraints
and requirements of CAs and HTTPS server administrators, e.g. the need to instantly
recover from key loss or the CAs requirement to be able to issue certificates without
delay. This comes at the cost of having no true man-in-the-middle attack protection
for CT. Fraudulent CA behavior will be detected after the fact, but there will be a time
window in which end users can be attacked without defense. AKI and ARPKI do protect
the end users, but don’t satisfy the CAs requirements of issuing certificates without delay.
Exploring this trade-off is still open research.

Industry feedback for TLS validation systems Finally, the research community
should engage with the industry in discussion about a future TLS validation system. CAs,
CDNs or large websites are important stakeholders and have requirements that are hard
to deduce from academic discussions alone.

3.8 Conclusion

The quest to strengthen the certificate authority infrastructure and remove the weak-
est link nature of the system has produced a fair number of different solutions. In this
chapter we introduced an evaluation framework focusing on the deployment issues and
evaluated Perspectives, Convergence, Certificate Transparency, Sovereign Keys, TACK,
AKI, ARPKI and DANE. We discussed the different merits and problems of these systems.
Our evaluation framework can be helpful for researchers to hone in on open problems
and combine beneficial elements of different systems in their quest to improve SSL certi-
ficate validation and get that system deployed.

55

CHAPTER 4

On Removing Unused Certificate
Authorities From Trust Stores

Whereas the previous chapter focused on improving the security of the SSL/TLS ecosys-
tem by replacing or adding parts of the validation logic, in this chapter we look into a
way to improve the security properties while waiting for one of the solutions to gain
traction. While there are several proposals how the CA system could be improved or re-
placed, none of these solutions is receiving widespread adoption yet, and even in a best
case scenario it would take years to replace the current system.

In this chapter we examine a root problem of the weakest-link property and propose
a simple stop-gap measure which can improve the security of HTTPS immediately. Cur-
rently, over 400 trusted entities are contained in each of the common trust stores of vari-
ous platforms and operating systems. To find out which of these trusted root certificates
are actually needed for the HTTPS ecosystem, we analyzed the trust stores of Windows,
Linux, MacOS, Firefox, iOS and Android, discuss the interesting differences and conduct
an extensive analysis against a database of roughly 47 million certificates collected from
HTTPS servers. We found that of the 426 trusted root certificates, only 66 % were used
to sign HTTPS certificates. We discuss the benefits and risks involved in removing the
other 34 % of trusted roots. On the whole, we argue that this removal is an important
first step to improve HTTPS security.

The work in this chapter was published at the International Conference on Financial
Cryptography andData Security [46] togetherwith Sascha Fahl andMatthew Smith, both
of who provided useful pointers in discussions. The rest is my own work.

57

Chapter 4 On Removing Unused Certificate Authorities From Trust Stores

4.1 Introduction

Although the collection of trusted CA certificates, called trust store, can in theory be
configured by the user, it is de facto the operating system and browser vendors that issue
the trust in the CAs. And while there is a broad consensus for a set of common CAs
that are trusted by all common vendors, all vendors trust additional uncommon CAs that
are not trusted by other vendors. Particularly in light of recent spying revelations, the
inclusion of these uncommon CAs should be analyzed and if possible unneeded CAs
should be removed.

This is a common-sense step which, surprisingly, is not actively being pursued by any
of the companies responsible for the decisions on who we trust. There is a very small
community of power-users who manually remove CAs they think they do not need and
some tutorials on how this can be done, however, the decision on which CAs should be
removed is based on anecdotal evidence and gut instinct.

As we will show in the course of this chapter, a broad majority of HTTPS servers use
only CA certificates which are in all major trust stores to sign their server certificate. This
makes perfect sense: Only by using a CA trusted by all platforms can a server adminis-
trator be sure that no user receives warning messages. In contrast, an adversary may be
fine with an attack working only under, e.g. Windows. Therefore, those uncommon CA
certificates are still a security threat.

This is especially true since an attacker could identify the client’s platform by analyzing
the choice and order of supported cipher suites in the TLS handshake. If those match a
vulnerable platform, a MITM attack is launched; otherwise the connection would be
forwarded to the legitimate server. Such an attack could go undetected for a very long
time. Additionally, a CA that is present only in a few trust stores may not be subject to
as much rigorous auditing as a common CA.

In this chapter we conduct a scientific analysis of which CAs are trusted on which plat-
forms and correlate this data with 48million certificates from Durumeric et al. that were
collected by periodically scanning port 443 using ZMAP [47]. Based on this analysis, we
identify 148 CA candidates that are never used to sign HTTPS server certificates. Follow-
ing an in-depth analysis of these certificates, we create a list of CAs that can be removed
from users’ trust stores without hampering their everyday Internet activities while signi-
ficantly reducing the attack surface against them. While this reduction of attack surface
does not replace the need to find an improved certificate validation strategy, it is a very
simple and extremely low cost measure which can be applied with minimal effort and
should thus be considered as a first step to improve the security of SSL. We evaluate our
reduced set of trust against two months’ worth of traffic analysis in our university’s net-
work and show that there were no cases in which our proposed improvements would

58

4.2 Related Work

have caused any problems to ours users.

4.1.1 Outline

In Section 4.2 we highlight previous and parallel efforts to making SSL and the CA-PKI
more secure. Section 4.3 describes our technical setup. In Section 4.4 we show which
trust stores include which and how many certificates as well as how many certificates
are present in every major trust store. Based on those findings, we propose a set of 140
CA certificates that can be removed from trust stores in Section 4.5. Section 6 concludes
the chapter and outlines future work.

4.2 Related Work

There have been various approaches and attempts to improve the CA-PKI system. Per-
spectives [36] and Convergence [37] use network perspectives and multi-path probing
to validate certificates and were suggested as a way to replace CAs completely. Both ap-
proaches need an additional network connection, which significantly impacts perform-
ance during connection establishment. Other approaches like Certificate Transparency
[48], Sovereign Keys [39], or AKI [44] aim to control the PKI by keeping track of which
CA issued which certificate. TACK [40] combines pinning with elegant key rollover. Fi-
nally, DNS DANE [49] focuses on putting certificates directly in the DNS record. While
elegant, this requires the roll-out of DNSSEC, which also suffers from adoption prob-
lems [50]. All of these approaches fundamentally change the way validation is done in
TLS. However, the deployment of such a new system is a huge effort. In this chapter,
we focus on improving the security of the CA-PKI on the short term, offering solutions
that can be deployed today to provide additional security benefits to individual users
immediately.

Akhawe et al. [51] looked at click-through rates for SSL warning messages in web
browsers and found that users ignore one quarter to one third of all validation errors.
Based on a large dataset of TLS handshakes, Akhawe et al. [52] aimed to reduce the
number of warning messages that are due to configuration or administration errors. By
relaxing the validation algorithm, i.e. allowing a certificate that was issued for a certain
domain to also be used for the www sub domain they were able to reduce the number of
warnings the end user has to deal with.

In a related effort to reduce the trust put into CAs, Kasten et al. [53] analyzed which
CAs usually sign for which TLDs and suggest restricting CA signing capabilities based
on their signing history. They show that this can be effective, however, their system also

59

Chapter 4 On Removing Unused Certificate Authorities From Trust Stores

requires some fundamental changes to the CA system.

4.3 Technical Setup

In order to evaluate which CAs could potentially be removed, we ran extensive analyses
and simulations to assert that our recommendations would not lead to false positive SSL
warnings. We used two different data sets for the analysis: a collection of certificates
from Internet-wide ZMAP scans (the ZMAP database) [47], as well as all CA certificates
found in trust stores (the trust store database). Additionally, we used a collection of two
months’ worth of TLS handshakes collected in our university’s network in order to assert
that the reduced set of CAs is still capable of validating all certificates our users encounter.

The ZMAP database consists of approximately 48million certificates collected in peri-
odical scans of port 443 in 2012 and 2013. For each certificate in the ZMAP database,
the chain from the leaf certificate to a self-signed root was rebuilt by validating the sig-
nature of the child certificate with the parent’s public key. This step was important as,
according to RFC 5280 [54], HTTPS servers only need to supply intermediate CAs, not
the trusted root CA. With the reconstructed chain, our dataset is independent of the
server administrators’ configurations.

For the trust store database, we scraped certificates from twelve trust stores used in
smart phone operating systems (Android, BlackBerry, iOS), Linux distributions (CentOS,
Debian, Gentoo, openSUSE, Ubuntu), as well as Mozilla Firefox, OpenBSD, OSX and
Windows 8. Google Chrome does not have a trust store of its own but rather uses the
trust store of the underlying operating system. Since Apple has the same policies for iOS
as for OSX, both of those trust stores contain the same CA certificates. Table 4.1 shows
the size of the trust stores we analyzed. Our further analysis is based on these datasets.

4.4 Trusted Root CA Certificates

The set of CA certificates included in different trust stores varies significantly. While
there is a core set of 114 certificates that are included in all major trust stores (Windows,
OSX, iOS, Android, Mozilla), only 28 CA certificates are present in all eleven trust stores
(counting iOS and OSX as one), c.f. Figure 4.1.

60

4.4 Trusted Root CA Certificates

Number of certificates Percentage

included in 1 trust store 202 certificates 47 %
included in 2 trust stores 47 certificates 11 %
included in 3 trust stores 16 certificates 4 %
included in 4 trust stores 8 certificates 2 %
included in 5 trust stores 4 certificates 1 %
included in 6 trust stores 6 certificates 1 %
included in 7 trust stores 15 certificates 3 %
included in 8 trust stores 25 certificates 6 %
included in 9 trust stores 52 certificates 12 %
included in 10 trust stores 28 certificates 6 %
included in all trust stores 28 certificates 6 %

nu
m
be

r
of

ce
rt
ifi

ca
te
s

included in x trust stores

100

200

300

400

500

1234567891011

28
56

108
133 148 154 158 166

182

229

431

Figure 4.1: How many certificates are included in 11 (all), 10, …, trust stores?

61

Chapter 4 On Removing Unused Certificate Authorities From Trust Stores

4.4.1 Windows Trust Store

With 377 certificates, the Windows trust store is the largest by far. Moreover, of the 202
CA certificates included in only one trust store, 168 are included only in the Windows
trust store. This is partially due to the fact that the Windows trust store also contains a
large number of CA certificates used for other purposes like email encryption (S/MIME)
or code signing. It is possible for the Windows trust store to restrict the purpose a CA
certificate can be used for, however, this is hardly done in practice. This unfortunately
means that all these CAs are also trusted for HTTPS connections.

However, users may not notice how many CAs they trust, as additional CA certific-
ates may be downloaded from the Microsoft servers as needed. Certificates can be in-
spected and manipulated using either the Microsoft Management Console or through
the certmgr.exe command line tool.

4.4.2 OSX and iOS Trust Store

In OSX, administration of CA certificates is done through either the Keychain app or the
security command line tool. Although the trust for a CA certificate can be customized
to e.g. never trust the certificate for SSL, no certificate has those restrictions enabled by
default. Furthermore, Apple includes their Apple Root Certificate Authority certificate
in the iOS and OSX trust stores, which has never been used to sign a certificate used for
HTTPS.

4.4.3 Linux/OpenBSD Trust Stores

On Linux and OpenBSD, the certificates are usually stored in a directory. By default this
is /etc/ssl/certs/. While this makes adding and deleting certificates trivial, it is not
possible to restrict the purpose of the CA certificate, for instance, to only use it for code
signing.

However, the trust stores of Linux distributions are more consensus-driven: No CA
certificates appear in only one trust store on these platforms. On the other side, OpenBSD
is the only trust store that still includes an old CAcert Class 3 Root, while all other trust
stores (that trust CAcert) include a newer CA certificate.

4.4.4 Mobile Trust Stores (Android, BlackBerry)

According to our measurements, trust stores on mobile devices tend to be both smaller
in size (146 CA certificates for Android, 90 for BlackBerry), and have less unused CA

62

4.5 Removing Unneeded CAs

Platform Total Unused To be Unknown Purpose Restrictions
certs certs removed purpose restrictable? used?

Windows 377 122 114 8 ✓ —
Mozilla 172 23 15 8 ✓ —
OSX/iOS 207 46 38 8 ✓ —
Ubuntu 159 23 15 8 — —
Debian 159 23 15 8 — —
Gentoo 159 23 15 8 — —
Android 146 15 7 8 — —
openSUSE 144 14 6 8 — —
CentOS 120 16 10 6 — —
BlackBerry 90 14 7 7 — —
OpenBSD 60 17 14 3 — —

total 431 148 140 8

Table 4.1: Used and unused CA certificates in trust stores.

certificates. Further, none of these trust stores have CA certificates that no one else
trusts. This shows that it is possible to build a trust store focusing on small size and
consensus while supporting all CAs needed for HTTPS.

4.4.5 Restricting the Purpose of CA Certificates

The Windows and OSX trust stores theoretically allow restricting CA certificates so that
they can only be used for specific purposes like code signing, SSL, S/MIME, etc. However,
we did not find any purpose-restricted CA certificates. While Windows and OSX do not
use this sensible option, Linux does not offer it at all.

4.5 Removing Unneeded CAs

Roughly 34 % of all CA certificates are never used for signing HTTPS certificates. Obvi-
ously certificates could be used for other purposes and HTTPS is not the only (although
most prominent) use of TLS. However: these 148 certificates can be used for signing cer-
tificates and thus for launching a MITM attack. By distrusting these CAs for SSL connec-
tions, the number of potential weakest links is reduced in a simple and straightforward
manner.

63

Chapter 4 On Removing Unused Certificate Authorities From Trust Stores

Instead of removing only non-signing CAs, we further checked in how many trust
stores the CAs are included. However, this only makes a difference for very few CA
certificates: Of the 148 unused certificates, 140 are not included in all twelve trust stores,
and 140 are not included in all major trust stores (Windows, OSX, iOS, Android, Mozilla).

Based on these results, we make two recommendations: conservative and very conser-
vative. In the conservative recommendation, we propose that users distrust (remove/restrict)
all CAs that have never signed an HTTPS certificate. This would lead to the removal of
148 CAs over all trust stores. We consider this a safe choice, since it is based on the
ZMAP datasets and thus no known HTTPS certificate would create a false positive warn-
ing. Our very conservative recommendation only removes those 140 CAs which are not
contained in the trust stores of Microsoft, Apple, Google, and Mozilla. Table 4.1 shows
howmany certificates could be removed fromwhich trust store. While both recommend-
ations are safe in relation to the ZMAP dataset, the very conservative recommendation
is safer with respect to the possible use of a previously unused CA for signing a HTTPS
certificate. However, it should be noted that especially the CAs included in all the major
trust stores but have never been seen to sign an HTTPS certificate could be considered a
risk factor for government coercion. The number of these CAs per trust store is listed in
the Unknown Purpose column of Table 4.1.

4.5.1 Potential Problems and Current Solutions

Problem: False positive warnings. Removing CA certificates from the trust store
could have annoying and – in the long term – potentially dangerous consequences. If
users encounter a certificate that was ultimately signed by a removed CA, they will see a
warning. No matter whether the users click through the warning message or stop using
the site, this would encourage habituation of warning messages and further weaken the
effectiveness of SSL warnings – at least for that site (c.f. [3, 55]). Therefore, when remov-
ing CA certificates, care must be taken that no legitimate certificates become invalid.

Solution. We ensured this by using a current, extensive database of HTTPS certificates
that represents the current SSL landscape. Additionally, we evaluated our solution on a
database of 130 million SSL handshakes and found that the proposal would not invalidate
any previously valid certificates.

Problem: CA certificates are used for other purposes than SSL. As described
above, our database only includes certificates for HTTPS servers. Thus CA certificates
that are only used for code signing, IPSec gateways, or S/MIME would go unnoticed, be
removed and could break functionality.

64

4.6 Conclusion

Solution. We counter this problem in two different ways. For the browser-based trust
stores, there does not seem to be a reason to include CAs that do not sign HTTPS cer-
tificates, so they can simply be removed. For the Windows and OSX trust stores we
recommend removing the HTTPS capabilities of those certificates (c.f. Figure 4.2). This
is a conservative approach which still leaves the user open to MITM attacks for proto-
cols such as S/MIME, however, further research is needed to determine the relevance
of CAs for other protocols. Until then, breaking (non-HTTPS) SSL functionality by re-
moving CAs too aggressively does not seem like a good idea. One caveat lurks on the
Windows platform starting with Windows 7. From 7 on, Microsoft only ships a small set
of CAs during the installation, but may load additional CAs on demand. This presents
a unnecessary danger for the user, since it is not possible to restrict the capabilities of
CAs which have not been downloaded yet. To counter this, we trigger the download of
all CAs trusted by Windows and then edit the trust settings. This prevents them from
being downloaded on demand with more capabilities than they need.

A critical exception to our approach is Linux which is not capable of restricting what
a trusted CA can do: It is only possible to remove the CA entirely, which endangers any
browser relying on the OS trust store. Interestingly, while the Google Chrome browser
relies on the OS trust store onWindows and OSX, they use their own approach on Linux.
The trust settings for Chrome on Linux can be configured using certutil, which is part
of the NSS command line tools.

The potential problems for mobile devices are still work in progress. Both iOS and
Android also use CA certificates for other protocols, such as RADIUS. Thus there could
potentially be problems if CAs are removed solely because they have never signed a
HTTPS certificate.

4.6 Conclusion

In this chapter we argued for the removal of CA certificates that do not sign any cer-
tificates used in HTTPS connections from desktop and browser trust stores. We based
our analysis on an Internet-wide dataset of 48 million HTTPS certificates and compared
them to trust stores from all major browser and OS vendors. We were able to identify
140 CA certificates included in twelve trust stores from all major platforms that are never
used for signing certificates used in HTTPS. Based on these findings, we suggest to re-
move or restrict these CA certificates. Using two months’ worth of TLS handshake data
from our university network, we confirmed that removing these certificates from users’
trust stores would not result in a single HTTPS warning message. Thus, this action
provides a simple and low-cost real-world improvement that users can implement right

65

Chapter 4 On Removing Unused Certificate Authorities From Trust Stores

(a) Disabling a certificate in OSX (b) Disabling a certificate in Mozilla Firefox

Figure 4.2: Disabling certificates for the purpose of SSL/HTTPS

now to make their HTTPS connections more secure. We are working on creating tools
and scripts to automate this process for different browsers and operating systems.

Our current estimate of CAs we recommend for removal is a conservative one. It
includes all CAs that have never signed a HTTPS certificate. In future work, we would
like to analyze the trade-off between false positives and the size of the trust store, as
well as look into mechanisms to restrict the capabilities of certificates on the Android
platform.

66

CHAPTER 5

Finding Potential Vulnerabilities in
Open-Source Projects to Assist Code
Audits

Securing the transport layer, as discussed in Chapters 3 and 4, is only one of many battles
for more secure software in general. Together with Sascha Fahl et al. I have published
work at CCS 2013 on making the usage of SSL more usable for Android developers [29].
Again with Sascha Fahl et al. we published at CCS 2014 work on how to make application
markets’ behaviour transparent, i.e. guaranteeing that updates rolled out to either all or
no users, but not to only a specific subgroup.

In the same spirit of Usable Security for developers, the work in this chapter focuses
on helping to audit security-critical code by limiting the amount of code that needs to
be reviewed. The motivation for this is clear: the number of critical vulnerabilities as
well as the amount of malware exploiting these is rising at an alarming speed. Despite
the security community’s best effort, the number of serious vulnerabilities discovered in
software is increasing rapidly.

In theory, security audits should find and remove these vulnerabilities before the code
ever gets deployed. However, due to the enormous amount of code being produced, as
well as a the lack of manpower and expertise, not all code is sufficiently audited. Thus,
many vulnerabilities slip into production systems. A best-practice approach is to use a
code metric analysis tool, such as Flawfinder, to flag potentially dangerous code so that
it can receive special attention. However, because these tools have a very high false-
positive rate, the manual effort needed to find vulnerabilities remains overwhelming.

In this chapter, we present a newmethod of finding potentially dangerous code in code

67

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

repositories with a significantly lower false-positive rate than current state-of-the-art sys-
tems. We combine code-metric analysis with metadata gathered from code repositories
to help code review teams prioritize their work. The chapter makes three contributions.
First, we conducted the first large-scale mapping of CVEs to GitHub commits in order to
create a vulnerable commit database. Second, based on this database, we trained a SVM
classifier to flag suspicious commits. Compared to Flawfinder, our approach reduces the
amount of false alarms by over 99 % at the same level of recall. Finally, we present a thor-
ough quantitative and qualitative analysis of our approach and discuss lessons learned
from the results.

The work of this chapter was published as “VCCFinder: Finding Potential Vulnerabil-
ities in Open-Source Projects to Assist Code Audits” in the proceedings of the 22nd ACM
CCS in 2015 [56]. Of the coauthors of this paper, Sergej Dechand, Matthew Smith and
Konrad Rieck contributed through general discussions and proof-reading; Daniel Arp
was responsible for the machine learning in Section 5.4; Fabian Yamaguchi contributed
his experiences of analyzing C source code in order to find vulnerabilities [57]; Sascha
Fahl, who provided fruitful discussions and ideas especially in the early stages of the
project; and Yasemin Acar, who helped with the statistical analysis of the VCS features.
The rest is my own work.

5.1 Introduction

Despite the best effort of the security community, the number of serious vulnerabilities
discovered in deployed software is on the rise. The Common Vulnerabilities and Expos-
ures (CVE) database operated by MITRE tracks the most serious vulnerabilities. In 2000,
around 1,000 CVEs were registered. By 2010, there were about 4,500. In 2014, almost
8,000 CVEs were registered. The trend seems to be increasing in speed.

While it is considered a best practice to perform code reviews before code is released,
as well as to retroactively checking old code, there is often not enough manpower to rig-
orously review all the code that should be reviewed. Although open-source projects have
the advantage that anybody can, in theory, look at all the source code, and although bug-
bounty programs create incentives to do so, usually only a small team of core developers
reviews the code.

In order to support code reviewers in finding vulnerabilities, tools and methodologies
that flag potentially dangerous code are used to narrow down the search. For C-like
languages, a wide variety of code metrics can raise warning flags, such as a variable
assigned inside an if-statement or unreachable cases in a switch-statement. The Clang
static analyzer [58] aswell as the dynamic analyzer Valgrind [59] and others, can pinpoint

68

5.1 Introduction

further pitfalls such as invalid memory access. For the Linux kernel, the Trinity system
call-fuzzer [60] has found and continues to find many bugs. Finally, static analysis tools
like Flawfinder [61] help find possible security vulnerabilities. Finally, many languages
have lint derivatives (jslint for JavaScript, pylint for Python) that can help code reviewers
home in on potentially unsafe code.

Most of these approaches operate on an entire software project and deliver a (fre-
quently very large) list of potentially unsafe code. However, software grows increment-
ally and it is desirable to have tools to assist in reviewing these increments as well as tools
to check entire projects. Most open-source projects manage their source code with ver-
sion control systems (VCS) such as Git, Mercurial, CVS or Subversion. In such systems,
code – including vulnerable code – is inserted into the software in the form of commits
to the repository. Therefore, the natural unit upon which to check whether new code is
dangerous is the commit. However, most existing tools cannot simply be executed on
code snippets contained within a commit. Thus, if a code reviewer wants to check the se-
curity of a commit, the reviewer must execute the analysis software on the entire project
and then check if any of the warnings relate to the commit. This can be a considerable
amount of work, especially since many tools require source code to be annotated and
dynamic tests would have to be constructed in a way that triggers the commit.

Static and dynamic code analysis tools focus exclusively on the code without the con-
text of who wrote the code and how it was committed. However, code repositories con-
tain a wealth of metadata which can be highly relevant to the code quality. For instance,
it can be seen whether a committer is new to the project or if they are one of the core
contributors. It is possible to see the time of day or night at which code was submitted
and to monitor the activity of development in certain regions of code. Moreover, most
existing code-metric-based tools have very high false-positive rates, creating a (some-
times impossibly) high workload and undermining trust in the effectiveness of the tools.
For instance, the state-of-the-art Flawfinder tool created 5460 false positives warnings
for only 53 true positives on the dataset used in this work. It is intuitively clear that code
reviewers who want to find 53 vulnerabilities in a set of 5513 flagged commits have a
tough time ahead of them.

In this chapter, we present a classifier that can identify potentially vulnerable com-
mits with a significantly lower false-positive rate while retain state-of-the-art recall rates.
Therefore, unlike most existing tools for vulnerability finding, we don’t focus solely on
code metrics, but also leverage the rich metadata contained in code repositories. We spe-
cifically focus on reducing the falsely flagged commits, as we believe the high false alarm
rate to be one of the main reasons why many tools are not seeing widespread adoption.

To evaluate the effectiveness of our approach, we conduct a large-scale evaluation of
66 GitHub projects with 170860 commits, gathering both metadata about the commits

69

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

as well as mapping CVEs to commits to create a database of vulnerability-contributing
commits (VCCs) and a benchmark for future research.

We conducted a statistical analysis of the VCCs and trained a Support Vector Machine
(SVM) to detect them based on the combination of code metric analysis and GitHub
metadata. For our evaluation we trained our classifier only on data up to December
31, 2010 and ran our tests against CVEs discovered in 2011–2014. We consider this a
realistic test, since in a production environment we will train on all available data and
then attempt to predict future vulnerabilities on a commit by commit basis.

In this dataset, our approach, called VCCFinder, produces only 36 false positives com-
pared to Flawfinder’s 5460 at the same level of recall. This is a reduction of over 99 % and
significantly eases the workload of code reviewers.

While VCC can be used independently both on a commit by commit basis as well as
to analyse entire projects, it is also well suited to be combined with other tools such as
clang, Valgrind, Trinity etc.

5.1.1 Our Contributions

In summary, we make the following contributions in this work:

• We present VCCFinder, a code analysis tool that flags suspicious commits using a
SVM-based detection model. Our method outperforms Flawfinder by a great mar-
gin, reducing the false positives by over 99 % at the same level of recall. Ourmethod-
ology is suited to work on code snippets, enabling us to analyse code at the commit
level and making a lightweight analysis of new code far easier than requiring a
full build environment to be set up for each test. At Flawfinders level of recall VC-
CFinder flags 89 commits as potentially dangerous of which 53 are true positives
and only 36 are false positives.

• We construct the first large-scale database mapping CVEs to vulnerability-contri-
buting commits (VCCs). The database contains 66 GitHub projects, 170860 commits
and 640 VCCs. We conduct an extensive evaluation of the methodology used to
create this database to ascertain its quality as a benchmark for future research. As
of now, this kind of benchmark database is sorely lacking, depriving researchers of
test-data and a means for comparing the effectiveness of different approaches.

• We present a statistical analysis of a wide variety of different commit metrics and
C/C++ keyword frequencies in relation to CVEs.

• We present an extensive quantitative and qualitative evaluation of VCCFinder and
discuss take-aways, including, for instance that developers who work “9-to-5” are

70

5.2 Related Work

more likely to produce vulnerable code than developers who commit code outside
regular work hours; and that, from a security perspective, gotos are not generally
harmful but in combination with error-handling code they are responsible for a
significant number of VCCs.

5.2 Related Work

The discovery of vulnerabilities in program code is a fundamental problem of computer
security. Consequently, it has received much attention in the past. In the following, we
give a sample of the prior work most closely related to our approach.

Static analysis Several approaches to identify vulnerabilities based on lightweight
scanning of source code have been presented in the past [e.g., 61–64]. Evans and Larochelle
[64] introduced Splint, a lightweight static analysis tool for C based on programmer-
provided annotations. However, creating the annotations must be done manually. Band-
hakavi et al. [65] search for vulnerabilities in browser extensions by applying static
information-flow analysis to the JavaScript code. Flawfinder [61] and RATS [62] scan
source code for calls to certain functions commonly associatedwith vulnerabilitieswithout
requiring manual assistance, making them popular tools. This code-metric-based ap-
proach is well suited to find known bad practices. However, they do not find complex
vulnerabilities and suffer from high false-positive rates, since not all bad-practice code
leads to vulnerabilities.

Dynamic analysis Cho et al. [66] use a combination of symbolic and concrete exe-
cution to build an abstract model of the analyzed application and find vulnerabilities in
several open-source projects. Yamaguchi et al. [57] provide an analysis platform offering
fuzzy parsing of code that generates a graph representing code suitable to be mined with
graph-database queries. This approach allows application-specific vulnerability patterns
to be expressed; however, in contrast to our approach, it requires manual specification
of these patterns by the analyst. Dahse and Holz [67] introduced a static analyzer for
PHP that can detect sophisticated attacks against web applications. Holler, Herzig and
Zeller [68] used fuzzing on code fragments to find vulnerabilities in the Mozilla JavaS-
cript interpreter and the PHP interpreter. While fuzzing can produce good results it is
not directly applicable to code contained in commits since the code is non-executable in
that form.

71

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

Softwaremetrics Several authors have proposed to employ software metrics to home
in on regions of code more likely to contain vulnerabilities. For example, Zimmermann,
Nagappan and Williams [69] perform a large-scale empirical study on Windows Vista,
indicating that metrics such as code churn, code complexity [see 70, 71] and organiz-
ational measures allow vulnerabilities to be detected with high precision at low recall
rates, while code dependency measures achieve low precision at high recall rates. How-
ever, Jay et al. [72] point out that many of these metrics may be highly correlated with
lines of code. In particular, they show empirically that the relation between cyclomatic
complexity and lines of code is near-linear, meaning that no reduction in the amount of
code to read is achieved in this way.

Repository analysis There is a range of researchwork looking at software repositories
in relation to software vulnerabilities. The most relevant with respect to our project
can be divided into two groups: those that look at code metrics and those that look at
metadata. For example, Livshits and Zimmermann [73] present Dynamine, which learns
software patterns in Java programs based on previous commits and combines that with
a dynamic code analysis.

Neuhaus et al. [74] use the vulnerability database of the Mozilla project to extract
which software components have had vulnerabilities in the past and which imports and
function calls were involved. They use this to predict which software components of
the Mozilla Internet suite are most likely to contain more vulnerabilities. Unlike our ap-
proach, they do not use any metadata in their analysis and the results flag entire software
components rather than single commits. The results are thus more generic in the sense
that they can say only that one set of software components is more worth checking than
others.

On the other side, work conducted by Meneely et al. and Shin et al. analyzes differ-
ent code repository metadata in relation to CVEs [75–77]. Specifically, they check how
features such as code churn, lines of code, or the number of reviewers from a project’s
repository and review system data correlate to reported vulnerabilities. They do this
manually for the Mozilla Firefox Browser, Apache HTTP server and an excerpt of the
RHEL Linux kernel. Unlike the work above and our work, they do not use this data to
predict vulnerabilities; moreover, unlike our work, they do not combine the features but
look at each separately.

Thus, our work goes beyond the above approaches in several ways. We combine both
code metrics as well as metadata in our analysis and use a machine-learning approach to
extract and combine relevant features as well as to create a classification engine to predict
which commits are more likely to be vulnerable. In contrast to the work above, we do
this for a large set of projects in an automated way instead of hand-picking features and

72

5.3 Methodology

analyzing single projects.

Machine-learning techniques Both machine-learning and data-mining have been
proposed by several authors for finding vulnerabilities. For example, Scandariato et
al. [78] train a classifier on textual features extracted from source code to determine
vulnerable software components. Moreover, several unsupervised machine-learning ap-
proaches have been presented to assist in the discovery of vulnerabilities. For example,
Yamaguchi et al. [79] introduce a method to expose missing checks in C source code
by combining static tainting and techniques for anomaly detection. Similarly, Chang,
Podgurski and Yang [80] present a data-mining approach to reveal neglected conditions
and discover implicit conditional rules and their violations.

However, in order to identify vulnerabilities, these approaches concentrate only on
features extracted from source code. In contrast, we show that additional meta informa-
tion, such as the experience of a developer, are valuable features that improve detection
performance.

5.3 Methodology

In this section, we describe howwe created a database of commits that introduced known
vulnerabilities in open-source projects and which features we extracted from the com-
mits. We focus on 66 C/C++ projects using the version control system Git (see Sec-
tion 5.3.2 for the list). These 66 projects contain 170860 commits and 718 vulnerabilities
reported by CVEs. Readers unfamiliar with Git can find a description of the Git features
used in our analysis in appendix 5.3.1.

5.3.1 Terminology

Popularized through the source code hosting platform GitHub, Git is a common choice
for many open-source projects. Further, many more projects whose maintainers do not
use Git still have Git mirrors on GitHub. Thus, basing our analysis on Git was a natural
choice. For generality, our approach can easily be extended to other VCS either through
one of the many Git import functions or through translating the primitives to the other
VCS.

Herewe introduce someGit terminology and primitiveswe use throughout this chapter.
• commit: In Git, a commit includes the state of the project at a certain point in its
history (the “tree”) alongwith amessage as well as information about who authored

73

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

and committed it.
• diff: A diff lists the differences between two Git trees. E.g. if one is interested in
the changes introduced by a certain commit, one would compute the diff between
its parent’s tree and its own tree.

• blame: For each line in a given file lists the commit that is to “blame” for the change.
• HEAD: The HEAD of a Git branch references the most current version.

Strictly speaking a (Git) repository is only part of an (open-source) project. However, as
we want to find bugs in the later through analysis of the former, we use the terms project
and its corresponding main repository interchangeably.

5.3.2 List of Repositories

We used the following list of repositories: Portspoof, GnuPG, Kerberos, PHP, HHVM,
apServer, Mozilla Gecko, Quagga, libav, Libreswan, Redland Raptor RDF syntax library,
charybdis, Jabberd2, ClusterLabs pacemaker, bdwgc, pango, qemu, glibc, OpenVPN, torque,
curl, jansson, PostgreSQL, corosync, tinc, FFmpeg, mosh, nedmalloc, trojita, inspircd, ns-
pluginwrapper, cherokee webserver, openssl, libfep, quassel, polarssl, radvd, tntnet, An-
droid Platform Bionic, uzbl, LibRaw, znc, nbd, Pidgin, V8, SpiderLabs ModSecurity, file,
graphviz, Linux Kernel, libtiff, ZRTPCPP, taglib, Phusion passenger, suhosin, monkey,
memcached, lxc, libguestfs, libarchive, Beanstalkd, Flac, libX11, Xen, libvirt, Wireshark,
and Apache HTTPD.

5.3.3 Vulnerability-contributing Commits

In order to analyze the common features of commits that introduce vulnerabilities, we
first needed to find out which commits actually introduced vulnerabilities. To the best
of our knowledge, no large-scale database exists that maps vulnerabilities as reported
by CVEs to commits. Meneely et al. and Shin et al. [75–77] manually created such
mappings for the Mozilla Firefox Browser, Apache HTTP server and parts of the RHEL
Linux kernel. We contacted the authors to inquire whether they would share this data,
since we could have used that as a baseline for our larger analysis. Unfortunately, this
was not possible at the time, although the data might be released in the future.

Since at this point we are only interested in CVEs relating to projects hosted on Git-
hub, we utilized two data sources as starting points for our mapping. As a first source, we
selected all CVEs containing a link to a commit of one of the 66 projects fixing a vulner-
ability as part of the “proof”. As a second source for fixing commits, we created a crawler
that searches commit messages of the 66 projects for mentions of CVE IDs. To check the

74

5.3 Methodology

accuracy of our mapping we took a random sample of 10 % and manually checked the
mapping and found no incorrectly mapped CVEs. This gave us a list of 718 CVEs. This
list is potentially not complete since there might be CVEs that do not link to the fixing
commit and which are also not mentioned in the commit messages. However, this does
not represent a problem for our approach since 718 is a large enough sample to train our
classifier.

We then developed and tested a heuristic to proceed from these fixing commits to the
vulnerability-contributing commits (VCCs). Recall that we are operating on Git commits,
which means that we have access to the whole history of a given project. One (appropri-
ately named) Git subcommand is git blame, which, given a file, for each line names the
commit that last changed the line. The heuristic for finding the commit that introduced
a vulnerability given a commit that fixed it is as follows:

1. Ignore changes in documentation such as release notes or change logs.
2. For each deletion, blame the line that was deleted.

Rationale: If the fix needed to change the line, that often means that it was part of
the vulnerability. Note that Git diffs only know of added and deleted lines. If a line
was changed, it shows up as a deletion and an addition in the diff.

3. For every continuous block of code inserted in the fixing commit, blame the lines
before and after the block
Rationale: Security fixes are often done by adding extra checks, often right before
an access or after a function call. Initially, we did not blame for inserted lines at all,
which then lead to a number of fixes which just inserted code and consequently did
not have any blamed commit.

4. Finally, mark the commit as vulnerable that was blamed the most in the steps above.
If two commits were blamed for the same amount of lines, blame both.

Our heuristic maps the 718 CVEs of our dataset to 640 VCCs. The reason we have
fewer VCCs than CVEs is that a single commit can induce multiple CVEs. To estimate
the accuracy of our heuristic, we took a 15 % random sample of all VCCs flagged by our
heuristic (i.e. 96 VCCs) and manually checked them. We found only three cases (i.e.
3.1 %) where our heuristic blamed a wrong commit for the vulnerability. All three of the
mis-mappings occurred in very large commits. For example, one commit of libtiff1 that
fixes CVE-2010-1411 also upgrades libtool to version 2.2.8. The method we propose for
VCCFinder is capable of dealing with noisy datasets, so for the purpose of this work, an
error rate of 3.1 % is acceptable. However, improving our blame heuristics further is an
interesting avenue for future research.

1 https://GitHub.com/vadz/libtiff/commit/31040a39

75

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

Apart from the 640 VCCs, we have a large set of 169502 unclassified commits. We
name these commits unclassified, since, while no CVE points to them, they might still
contain unknown vulnerabilities.

At this point we have a large dataset mapping CVEs to vulnerability-contributing com-
mits. Our goal now is to extract features from these VCCs in order to detect further
potential VCCs in the large number of unclassified commits.

Next, we describe which features we extracted from these commits.

5.3.4 Features

First we extracted a list of characteristics thatwe hypothesized could distinguish commits.
One of our central hypotheses is that combining code metrics with GitHub metadata fea-
tures is beneficial for finding VCCs. First, we test each feature separately using statistical
analysis, e.g. for each feature wemeasured whether the distribution of this feature within
the class of vulnerable commits was statistically different from the distribution within
all unclassified commits.

Here is a list of hypotheses concerning metadata we started with:
• New committers are more likely to introduce security bugs than frequent contrib-
utors.

• It is good to “commit early and often” according to theGit Best Practices2. Therefore,
longer commits may be more suspicious than shorter ones.

• Code that has been iterated over frequently, possibly by many different authors,
is more suspicious than code that doesn’t change often. Meneely and Williams
[76] already analyzed these code churn features in their work. We integrate and
combine these features below.

Table 5.1 shows a list of all features along with a statistical evaluation (cf. Section 5.3.6)
of all numerical features except for project-scoped features. In the following, we discuss
the features. For brevity reasons, we omit the discussion of self-explaining features here.
All our analyses are based on commits. A commit can contain changes to one or more
files. The metrics about files and functions are aggregated in the corresponding commit.

Features scoped by project are obviously the same for every commit in that project.
However, in combination with other commit-based features, these can still become rel-
evant.

2 http://sethrobertson.GitHub.io/GitBestPractices/#commit

76

http://sethrobertson.GitHub.io/GitBestPractices/#commit

5.3 Methodology

mean mean
Feature Scope VCCs others U effect size

Number of commits Repository 282 171.39 103 980.95 32 143 126* 40 %
Number of unique contributors Repository 524.99 236.90 30 528 184* 43 %

Contributions in project Author 5 % 15% 31 263 040* 42 %

Additions Commit 306.19 71.54 20 215 148* 62 %
Deletions Commit 73.93 37.46 42 983 290* 20 %
Past changes Commit 627.17 385.53 40 715 632* 24 %
Future changes Commit 792.46 396.63 36 261 346* 33 %
Past different authors Commit 40.16 22.70 40 292 116* 25 %
Future different authors Commit 136.58 51.44 29 534 644* 45 %
Hunk count Commit 17.68 9.88 32 348 343* 40 %
Commit message 1 Commit
Commit patch 1 Commit
Keywords 2 Commit

Added functions Function 6.51 1.03 28 724 694* 46 %
Deleted functions Function 1.07 0.49 50 084 674* 7 %
Modified functions Function 6.79 3.59 41 446 509* 23 %

1 These features are text-based and thus not considered in the statistical analysis.
2 See Table 5.2 for a statisical analyis of each keyword.

Table 5.1: Overview of the features and results of the statistical analysis of the numeric features. Mann–
Whitney U test significant (*) if p < 0.00059.

Features Scoped by Project

Programming language Theprimary language the project is written in, as determined
by GitHub through their open-source linguist library. In our analysis, we focused
on projects written in either C or C++. The main reason for limiting our focus
to one language was that we wanted to ensure comparability between the features
extracted from the commit patches. Whenmixing different languages and syntaxes,
this can’t be ensured. We chose C andC++ specifically sincemany security-relevant
projects (Linux, Kerberos, OpenSSL, etc.) are written in these languages.

Star count (number) The number of stars the project has received on GitHub. Stars
are a user’s way of keeping track of interesting projects, as starred projects show
up on the own profile page.

77

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

Fork count (number) Forking a project on GitHub means copying the repository un-
der your personal namespace. This is often the first step to contributing back to the
project by then making changes under the personal namespace and sending a pull
request to the official repository.

Number of commits (number) We counted the number of commits that are reachable
from the main branches HEAD. The canonical main branch is “master”, but some
projects like bestpractical/rt use “stable” as the default branch. In those cases we
used the branch set at GitHub by the maintainer of the project.

Watchers count (number) If a user watches a project, she will receive updates about
the project’s activity.

Number of contributors (number) The number of distinct authors that contributed
to this project.

Project age (time and date) For the project age we took the date and time of the oldest
commit reachable from the main branches HEAD.

Features Scoped by Author

Contributions (percentage) The percentage of how many commits the author has
made in this project, i.e. the number of commits authored divided by the number
of total commits.

Features Scoped by Commit

Number of Hunks (number) As a hunk is a continuous block of changes in a diff, this
number assesses how fragmented the commit is (i.e. lots of changes all over the
project versus one big change in one file or function).

Patch (text) All changes made by the commit as text represented as a bag of words.
Patch keywords (number) For each patch, we counted the number of occurrences of

each C/C++ keyword. See Table 5.2 for a statistical analysis of the different distri-
butions of each keyword.

Added, deleted and total lines (number) The number of lines added and deleted by
the commit as well as the total number of changed lines.

Commit message (text) The commit message as text.
Commit time with zone (time and date) Information about when this commit was

authored.

78

5.3 Methodology

Features Scoped by File

Future changes (number) If the commit at hand is not the most current one, this is the
number of times the file will be changed by later commits. We only use this feature
for our historical analysis and not for the classifier, since this feature is naturally
not available for new commits.

Past changes (number) The number of times this file has been changed prior to the
current commit.

Past different authors (number) Thenumber of different authors that have edited the
given file.

Future different authors (number) Similar to “Future changes”, the number of differ-
ent authors that have changed the file in later commits.

Added, deleted and Modified functions (number) For each changed file, we record
the number of added, deleted and modified functions.

mean mean effect
Keyword VCCs others U size

if 39.00 7.82 37 013 390* 70 %
int 31.30 7.02 39 930 128* 68 %
struct 32.38 3.66 39 729 656* 68 %
return 18.76 3.60 41 342 834* 67 %
static 15.17 3.58 45 382 955* 64 %
void 12.52 4.31 63 935 365* 49 %
unsigned 8.66 1.51 64 440 969* 48 %
goto 5.92 0.43 64 798 818* 48 %
sizeof 4.37 0.78 66 764 357* 46 %
break 5.56 0.84 74 389 604* 40 %
char 6.71 2.68 93 400 907* 25 %

Table 5.2: Statistical analysis of C/C++ keywords sorted by effect size [81], Mann–Whitney U test
significant (*) if p < 0.000357.

5.3.5 Excluded Features

As can be seen in Table 5.1, the vast majority of the features depend only on data gathered
from the version control system and not from additional information on GitHub or any

79

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

other platform. In fact, we left out some features that were only available on some pro-
jects or for few commits since the data was too sparse to reveal anything reliable. We
will briefly discuss why we excluded some features which might seem counter-intuitive.

One feature that in principle would be promising but which we did not include was
issue tracker information. GitHub provides an issue tracker and even links texts like “fixes
#123” in the commit message to the corresponding issue. However, the projects which
use this feature tend to be smaller projects, while the older and larger projects for which
we have a rich set of CVE data predominantly use an external issue tracker. Thus, this
feature is not useful for us at this time. Although a fair number of smaller projects use
this, older and bigger projects often use an external issue tracker. Unfortunately these
are precicely the projects for which we also have a large number of CVEs. For example,
the Linux kernel use Bugzilla3. Although a REST API is scheduled for version 5.0, the
current stable version does not have an API yet to automatically retrieve issues for a
project. Other projects like OpenSSL use a Request Tracker4, which does supply a REST
API. Still this is something that would need to be configured for each project individually.
OpenSSL for example requires an account in order to see the tickets.

Another piece of information that is interesting – but unfortunately too sparse at the
moment – is the content of the discussion surrounding the inclusion of a change into
the main repository. For this information, features could be the length of the discus-
sion, the number of people involved, or the mean experience (in terms of contributions)
of the people involved. Projects that use GitHub’s functionalities extensively often do
this through “pull requests”. A contributor submits a commit to his own, unofficial re-
pository and subsequently notifies the maintainer of the official repository to pull in the
changes he made. GitHub provides good support for this work flow, including the ability
to make comments on a pending pull request. Although this data could be useful for the
classification of commits, at this point, too few projects use this work flow to be useful.

Both issue and feature request tracking as well as discussions surround a commit are
handled vastly different for each project. Older projects tend to have established their
work flow long before GitHub, mostly using a self-hosted issue tracker and a mailing
list to discuss changes. Even if one could extract this information from all the different
setups, which is certainly possible, it is questionable whether the data is comparable from
project to project. Therefore, the analysis of these features is left for future work.

3 http://www.bugzilla.org/
4 https://www.bestpractical.com/rt/

80

5.3 Methodology

5.3.6 Statistical Analysis of Features

For each numerical feature, we wanted to assess its fitness with respect to distinguish-
ing VCCs from unclassified commits. We used the Mann–Whitney U test5 in order to
compare the distribution of a given feature within the set of commits with vulnerabilities
against the set of all unclassified commits. The null hypothesis states that the feature is
distributed independently from whether the commit contained a bug or not. If we can
reject the null hypothesis, the feature is distributed differently in each set and thus is a
promising candidate as input for the machine-learning algorithms.

We used the Bonferroni correction to correct for multiple testing for the 17 features
we tested. Therefore, we test against the stricter significance level of 0.00059, which
corresponds to a non-corrected p ≤ 0.01 for each individual test. The date and time
features (project age and commit with time zone) were converted to numerical features
based on seconds that have elapsed since January 1, 1970 UTC (Unix epoch).

Features Scoped by Project

These features were attributed to the commit depending on the project the commit was
taken from. Since all commits from a repository, whether containing vulnerabilities or
not, have the same features, these features are too broad to actually distinguish commits.
However, they can be valuable in combination with other features later on. For brevity,
we do not discuss the features on their own here, though the table shows the significance
testing.

The project statistics from GitHub (star count, fork count, watchers count, and sub-
scribers count) do not provide any indication to whether commits from that repository
contain bugs.

The features, number of contributors, number of commits as well as project age actually
do have significantly different distributions with respect to CVEs. These three features
are dependent: the longer a project exists, the more commits it has and the more con-
tributors it has. This probably is also the reason that there is a correlation to CVEs - the
more commits a project has the more likely it is to also contain commits which lead to
CVEs.

Second, we looked at commits and attributed their projects’ feature to them. Since
security-relevant projects like OpenSSL “generate” far more CVEs than others it is no
surprise that this creates different distributions. Therefore, on its own, this result does not
bear much meaning. Bigger projects probably contain more bugs than smaller projects,
5 The Mann–Whitney U test is used to test whether a value is distributed differently between two popu-
lations.

81

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

but there is no information on where to find them. Still, we included those features in
the machine-learning algorithms, for some combination of project and commit scoped
features could prove valuable.

Patch Keyword Features

For each commit we counted the occurrences of each of the following 28 C and C++
keywords: bool, char, const, extern, false, float, for, if, int, long, namespace, new,
operator, private, protected, sizeof, static, static, struct, switch, template, throw,
typedef, typename, union, unsigned, virtual, and volatile.

We then used theMann–Whitney U test to find out whether the given keyword is used
more or less frequently in VCCs compared to unclassified commits. Table 5.2 shows a
subset of those keywords with high significance and high effect. We say that an effect is
significant if p < 0.000357, corresponding to 0.01/28, again accounting for a Bonferroni
correction for multiple testing for the 28 keywords.

The effect size measures the percentage of pairs that support the hypothesis. For ex-
ample, for the keyword if, the vulnerable commits containmore ifs than the unclassified
commits in 70 % of the cases. As can be seen by looking at the mean values for each distri-
bution, if there is a statistical effect, the VCCs are more likely to contain those keywords
compared to unclassified commits.

Features Scoped by Commit or File

All remaining features except for the number of deleted lines are distributed differently
over VCC versus unclassified commits, with p = 3.9 × 10−6 the number of hunks being
the least significant result. We note that the fact that a feature is distributed differently
does not mean that this feature can be used to distinguish between the two sets. How-
ever, these results provide some hint as to why a machine-learning approach that uses a
combination of these features can be successful.

The only feature where the difference was not significant was the number of deleted
lines (p = 4.6 × 10−4), contrary to the number of added lines (p = 3.9 × 10−37), for which
there is a significant difference in the distribution. Whenwemanually looked at commits
with known vulnerabilities and compared them to unclassified commits, we saw that
the former often added a great deal of code, whereas the number of deleted or edited
lines were the same as for unclassified commits. This finding confirms the intuition that
security bugs are not commonly introduced by code edits or refactoring, but that new
code is a more likely entry points for vulnerabilities. To the best of our knowledge this
fact has not been used to ease the workload of code reviewers.

82

5.4 Learning-Based Detection

Text-Based Features

One of the central tenets of ourwork is that combining codemetricswithGitHubmetadata
can help with the detection of VCCs. While both the code and the metadata features
detailed above are “hard” numerical features, there are also a number “soft” features con-
tained in GitHub that can be helpful. These text-based features, like the commit mes-
sage, cannot be evaluated using statistical tests as above, but will be integrated into the
machine-learning algorithm using a generalized bag-of-words model as we will discuss
in Section 5.4.1.

In summary, we have observed that many features, whether coming directly from the
commit or the version control system, are distributed differently within VCCs compared
to unclassified commits.

5.4 Learning-Based Detection

The different features presented in the previous sections provide information for analyz-
ing the search for suspicious commits and the discovery of potential vulnerabilities. As
the large number of these features renders the manual construction of detection rules dif-
ficult, we apply techniques from the area of machine-learning to automatically analyze
the commits and rank them so code-reviewers can prioritise their work. The construction
of a learning-based classifier, however, poses several challenges that need to be addressed
to make our approach useful in practice:

1. Generality: Our features comprise information that range from numerical codemet-
rics to structuredmetadata, such as words in commit messages or keywords in code.
Consequently, we strive for a classifier that is capable of jointly analyzing these het-
erogeneous features and inferring a combined detection model.

2. Scalability: To analyze large code repositories with thousands of source files and
commits, we require a very efficient learning method which is able to operate on
the large amount of available features in reasonable time.

3. Explainability: To help an analyst in practice, it is beneficial if the classifier can give
a human-comprehensible explanation as to why the commit was flagged, instead
of requiring an analyst to blindly trust a black-box decision.

We address these challenges by combining two concepts from the domains of inform-
ation retrieval and machine-learning. In particular, we first create a joint representation
for the heterogeneous features using a generalized bag-of-words model and then apply a
linear Support VectorMachine (SVM)—a learningmethod that can be extended to provide

83

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

explanations for its decisions and which is also efficient enough to cope with the large
number of features which need to be analysed.

5.4.1 Generalized Bag-of-Words Models

Bag-of-word models have been initially designed for analysis of text documents [82, 83].
In order to combine both code metric based numerical features with GitHub metadata
features, we generalize these models by considering a generic set of tokens S for our
analysis. This set can contain textual words from commit messages as well as keywords,
identifiers and other tokens from the code of a commit. In particular, we obtain these
tokens by splitting the commit message and its code using spaces and newlines. Further-
more, we ignore certain tokens, such as author names and email addresses, since they
might bias the generality of our classifier and could compromise privacy.

Formally, we define the mapping φ from a commit to a vector space as

φ : X −→ R|S|, φ : x 7−→ (
b(x, s)

)
s∈S,

where X is the set of all commits and x ∈ X an individual commit to be embedded in
the vector space. The auxiliary function b(x, s) returns a binary flag for the presence of a
token s in x and is given by

b(x, s) =

1 if token s is contained in x

0 otherwise.

To also incorporate numerical features like the author contribution into this model,
we additionally convert all numerical features into strings. This enables us to add all
arbitrary numbers to S and thereby treat both kinds of features equally. However, when
using a string representation for numerical features we have to ensure that similar values
are still identified as being similar. This is obviously not the case for a naive mapping, as
“1.01” and “0.99” represent totally different strings.

We tackle this problem by mapping all numerical features to a discrete grid of bins
prior to the vector space embedding. This quantization ensures that similar values fall
into the same bins. We choose different bin sizes depending on the type of the feature. If
the numerical values are rather evenly distributed, we apply a uniform grid, whereas for
features with skewed distribution we a apply a logarithmic partitioning. For the latter,
we apply the logarithmic function to its values and cut off all digits after the first decimal
place.

To better understand this generalized bag-of-words model, let us consider a fictitious

84

5.4 Learning-Based Detection

commit x, where a patch has been written by a user who did not contribute to a project
before. The committed patch is written in C and contains a call to an API function which
is associated with a buffer write operation. The corresponding vector representation of
the commit x looks as follows

φ(x) 7→

· · ·
1
0
· · ·
1
0
· · ·

· · ·
AUTHOR_CONTRIBUTION:0.0

AUTHOR_CONTRIBUTION:10.0

· · ·
buf_write_func();

some_other_func();

· · ·

The two tokens indicative of the commit are reflected by non-zero dimensions, while
all unrelated tokens are associated with zero dimensions. Note that the resulting vector
space is high-dimensional and may contain several thousands of dimensions. For a con-
crete commit x, however, the vast majority of these dimensions are zero and thus the
vector φ(x) can be stored in a sparse data structure. We make use of the open-source
tool Sally [84] for this purpose, which implements different strategies for extracting and
storing sparse feature vectors.

5.4.2 Classification and Explainability

While in principle a wide range of methods are available for learning a classifier for
the detection of vulnerability contributing commits, only few methods scale with larger
amount of data while also providing explanations for their decisions. One technique
satisfying both properties are linear Support VectorMachines (SVM).This variant of classic
SVMs does not apply the kernel trick for learning, but instead directly operates in the
input space. As a result, the run-time complexity of a linear SVM scales linearly in the
number of vectors and features.

We implement our classifier for commits using the open-source tool LibLinear [85] that
provides different optimization algorithms for linear SVMs. Each of these algorithms
seeks a hyperplane w that separates two given classes with maximum margin, in our
case corresponding to unclassified commits and vulnerability-contributing commits. As
the learning is performed in the input space, we can use this hyperplane vector w for
explaining the decisions of our classifier.

By calculating the inner product between φ(x) and the vector w, we obtain a score
which describes the distance from φ(x) to the hyperplane; that is, how likely the commit

85

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

introduces a vulnerability,

f(x) = ⟨φ(x),w⟩ =
∑
s∈S

ws b(x, s).

As this inner product is computed using a summation over each feature, we can simply
test which features provide the biggest contribution to this distance and thus are causal
for the decision.

Finally, to calibrate free parameters of the linear SVM, namely the regularization para-
meter C and the class weight W, we perform a standard cross-validation on the training
data. We then pick the best values corresponding to a regularization cost C = 1 and a
weight W = 100 for the class of suspicious commits.

5.5 Evaluation

We evaluate the effectiveness of our approach in several different ways. First, we use a
temporal split between the training and test data to evaluate the predictiveness of the
SVM. We picked 2011 as the split data to have the relation of two-thirds to one-thirds
training vs test data.6 Since we have the ground truth for the years 2011 to 2014 this
method allows us to realistically and reliably test the effectiveness of VCCFinder.

Note that if we would choose a random split, as is common for other machine-learning
problems, a fixing commit could end up in the training set, while the corresponding VCC
is contained in the testing set. The SVM would then be biased towards finding VCCs for
fixes it already knows about, which is useless for actually finding new VCCs. Table 5.3
shows the distribution of commits, CVEs, and VCCs.

Second, we discuss the features learnt by the SVM as well as the true positives, i.e.
vulnerabilities our classifier found in the test set. Third, we discuss the commits that
are flagged by our classifier but lie outside the ground truth we have based on the CVEs.
These could either be false positives or point to previously undetected vulnerabilities.
Finally, we compare our approach to Flawfinder, a state-of-the-art open-source static
code analyzer.

6 This is a standard approach to evaluate classifiers. The first dataset contains all commit data up until
the 31st of December 2010. We use this dataset for the design and training of our classifier. The dataset
can be considered the ‘historical’ dataset. The second ‘testing’ dataset contains all commit data from
2011 to 2014 which is then used to evaluate our approach. This simulates VCCFinder being used in the
beginning of 2011 having being trained on all existing data at the time and then trying to predict the
unkown VCCs of the future (2011 to 2014).

86

5.5 Evaluation

Dataset

Historical Test Total

CVEs 469 249 718
VCCs 421 219 640
Unclassified commits 90 282 79 220 169 502

Table 5.3: Distribution of commits, CVEs, and VCCs.

Comparing feature sets We start with an evaluation of the impact of different feature
sets and their combination on the detection performance of our classifier. Figure 5.1(a)
shows the precision-recall curves for these experiments. To this end, we train a classifier
on code metric features and meta-information. As can be seen, the classifier that com-
bines all the features (shown in blue) out-performs the classifiers which only operate
on a sub-set of the features, showing that combining the different features is beneficial.
Figure 5.1(b) shows the precision recall curve of our VCCFinder compared to Flawfinder,
which only operates on code metrics. The comparison with Flawfinder will be discussed
in greater depth in section 5.5.3. Although the code metrics alone already provide a good
detection performance, the overall precision can still be improved by using the metadata
obtained fromGitHub, raising the precision from 0.46 to 0.57 at a recall of 0.25. The result
clearly shows that additional metadata contains useful information that can be used to
improve the detection performance of our classifier.

To get further insights into these result, we inspect features that provide the biggest
contribution to the detection of VCCs using the meta-information classifier. We find
that often authors contributing to a project the first time and adding large amount of
lines are often related to vulnerabilities. Moreover, commits where the developer differs
from the actual submitter, which is indicated by a “signed-off” token, are flagged as being
suspicious. Intuitively this combination of features describes the phenomena, that code
written by inexperienced developers often contains vulnerabilities, but is submitted to a
project without being carefully checked in advance.

Although this experiment was conducted on GitHub data in retrospective, since we
split the data training on everything up to 2010 and tested it on data from 2011 to 2014, it
clearly demonstrates that our classifier is capable of automatically flagging commits that
are likely to contain vulnerabilities and thus would help a developer in narrowing in on
flaws in their code.

87

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

o
n

combined

code metrics

code

meta-data

(a) Detection performance of VCCFinder using different fea-
ture sets.

0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re
ci
si
o
n

VCCFinder

Flawfinder

(b) Detection performance of our approach and FlawFinder
as precision-recall curve.

Figure 5.1: Detection performance of VCCFinder.

5.5.1 Case Study

The previous section shows the precision of our approach for the different levels of recall.
In practice, developers can simply decide how many commits they can afford (time- and
cost-wise) to review and VCCFinder will improve their chances of finding vulnerabilities.
For the sake of comparison with Flawfinder, we now set VCCFinder’s recall to the same
as that of Flawfinder (i.e. 0.24 cf. Table 5.4) and discuss some examples of the VCCswhich
would have been flagged byVCCFinder if it had been run from 2011 to 20147. In these four
years, VCCFinder would only have flagged 89 out of 79688 commits for manual review
compared to 5513 commits flagged by Flawfinder. We believe this is a very manageable
amount of code reviews to ask reviewers to do for a high return. Additionally, projects
can increase the number of commits to review at any time. In the following, we present
an excerpt of the vulnerabilities that VCCFinder found, when set at the very conservative
level of Flawfinder’s recall. We also discuss which features our classifier used to spot the
VCCs. The full list of CVEs flagged by VCCFinder in this setting is shown in Section 5.5.4.

7 As previously mentioned we use the years 2011–2014 as the test dataset, since we have ground truth
data on which to base the discussion.

88

5.5 Evaluation

CVE-2012-2119 Commit 97bc3633be includes a buffer overflow in the macvtap device
driver in the Linux kernel before 3.4.5, when running in certain configurations, allows priv-
ileged KVM guest users to cause a denial of service (crash) via a long descriptor with a long
vector length8. Considering metadata, our SVM detects this commit because of the edited
file’s high code churn, and because the author made few contributions to the Kernel in
combination with the fact the the developer used sockets.

CVE-2013-0862 FFmpeg commit 69254f4628 introduces multiple integer overflows in
the process_frame_obj function in libavcodec / sanm.c in FFmpeg before 1.1.2 that allow
remote attackers to have an unspecified impact via crafted image dimensions in LucasArts
Smush video data, which triggers an out-of-bounds array access9. The SVM detected that
the author contributed little to the project before as well as that the commit inserted a
large chunk of code at once.

CVE-2014-0148 In commit e8d4e5ffdb of Qemu the block driver for Hyper-V VHDX
Images is vulnerable to infinite loops and other potential issues when calculating BAT entries.
This is due to missing bounds checks for block_size and logical_sector_size variables10. The
SVM found that the patch of the VCC included many keywords indicating errorprone
byte manipulation, such as “opaque”, “*bs”, or “bytes”.

CVE-2014-1438 In commit 1361b83a13, the restore_fpu_checking function in the file
arch/x86/include/asm/fpu-internal.h in the Linux kernel before 3.12.8 on the AMD K7
and K8 platforms does not clear pending exceptions before proceeding to an EMMS instruc-
tion, which allows local users to cause a denial of service (task kill) or possibly gain privileges
via a crafted application.11 The SVM detected a high amount of exceptions, a high number
of changed code, inline ASM code, and variables containing user input such as __input
and user.

5.5.2 Flagged Unclassified Commits

Whilewe discussed the known true positive hits of our classifier for the years 2011 to 2014
above, we also have 36 commits that were flagged as potentially dangerous, for which
we have no known CVE. These are commits that need be checked by code reviewers. We
have shared our results with several code reviewing teams and will follow responsible
8 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2119
9 http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0862

10 https://bugzilla.redhat.com/show_bug.cgi?id=1078212
11 https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1438

89

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2012-2119
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2013-0862
https://bugzilla.redhat.com/show_bug.cgi?id=1078212
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1438

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

disclosure in all cases, so we cannot discuss the flagged commits at this time. However,
we can already talk about one vulnerability found by VCCFinder in commit d08d7142fd
of the FFmpeg project, since this vulnerability was fixed in commit cca1a42653 before it
ever was released. Thus, discussing the findings poses no harm to the FFmpeg project.

Commit d08d7142fd of FFmpeg introduces a new codec for Sierra Online audio files
and Apple QuickDraw and was flagged in the 101 commits, but is not associated with a
CVE. However, we discovered that in the newly created file libavcodec/qdrw.c, start-
ing at line 72, the author does not check the size of an integer read from an adversary-
supplied buffer.

for (i = 0; i <= colors; i++) {

int idx;

idx = BE_16(buf); /* color index */
buf += 2;

a->palette[idx * 3 + 0] = *buf++;

buf++;

a->palette[idx * 3 + 1] = *buf++;

buf++;

a->palette[idx * 3 + 2] = *buf++;

buf++;

}

The macro BE_16() reads two bytes from the argument and returns an unsigned 16 bit
integer. This means that an adversary controlling buf (e.g. through a malicious video)
could address 3 · 65535 bytes of memory which will be filled by data from buf itself.

The SVM classified the commit because of raw byte manipulation, indicated by uses
of “buf” as well as an inexperienced committer pushing a large chunk of code at once.

5.5.3 Comparison to Flawfinder

We compare our findings against Flawfinder [61] version 1.31, a state-of-the-art static
source code scanner. Flawfinder is a mature open-source tool that has been under active
development since 2001 and fulfills the requirements of being able to process C and C++
code on the level of commits. We have chosen Flawfinder for multiple reasons: first, it
is open-source and under active development since 2001. Second, the requirements are
similar to our tool, namely that it assumes the source to be written in C or C++ and it
can operate on code-snippets as is needed to analyse commits, i.e. it does not require a
working build environment. In contrast to a tool like Splint neither Flawfinder nor our

90

5.5 Evaluation

tool depends on extra annotations. When given a source file, Flawfinder returns lines
with suspected vulnerabilities. It offers a short explanation of the finding as well as a
link to the Common Weakness Enumeration (CVE) database.12 For the comparison, we
run Flawfinder on each added or modified file of a commit. We then record the lines
which Flawfinder flags that were inserted by the commit. Consequently, we say that
Flawfinder marked a commit if it found a flaw in one of the lines the commit inserted.

We then evaluated both our tool and Flawfinder against the test dataset. Table 5.4
shows the contingency table, precision and recall for both tools. We argue that precision
is the most important metric in this table and the one which should be used to compare
Flawfinder and VCCFinder, as this value determines how many code locations a security
researcher needs to look at in order to find a vulnerability. While a higher recall would
theoretically mean that more vulnerabilities can be found, in practice they would be bur-
ied in a large amount of false positives. So for now, we accept that we will not find all
vulnerabilities but create an environment in which it is realistic for a reviewer to check
all flagged commits and achieve a decent success rate. Each row compares VCCFinder to
Flawfinder with a different configuration. In the first row, we set VCCFinder’s recall to
that of Flawfinder’s. As can be seen, VCCFinder’s precision is significantly higher. Our
approach improves the false positive rate by over 99 %! This is the most realistic config-
uration, since this configuration can be used in a real world setting. For the next com-
parison, we set VCCFinder’s false positives to the same number as Flawfinder’s. While
of course the number of false positives is then prohibitively high, VCCFinder does find
almost three times as many VCCs as Flawfinder. In the final comparison, we set VC-
CFinder’s precision to Flawfinder’s very poor value. While the number of false positives
is prohibitively high, VCCFinder finds almost 90% of all VCCs compared to Flawfinder’s
24%.

In Table 5.5 we also compare VCCFinder and Flawfinder based on their top results. In
the first row, we select the top 100 flagged commits, then 500 and finally 1000. Among
the top 100 commits, VCCFinder identifies 56 VCCs correctly, significantly reducing the
amount of commits a security researcher would need to review before finding a commit
containing a vulnerability. Compared to FlawFinder, its precision is more than 50 times
higher and it already identifies more than 25% of all VCCs in the data set at this point.

VCCFinder significantly outperforms Flawfinder in all possible comparisons. Import-
antly, we were able to reduce the number of false positives to the point where it becomes
realistic for reviewers to carefully check all flagged commits. This represents a significant
improvement over the current state-of-the-art.

We would have liked to compare our approach to more alternatives; however, since

12 http://cwe.mitre.org/

91

http://cwe.mitre.org/

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

True False False True
positive positive negative negative Precision Recall

Flawfinder 53 5460 166 73 760 0.01 0.24

VCCFinder
— with same recall/true positives 53 36 166 79 184 0.60 0.24
— with same number of false positives 144 5460 75 73 760 0.03 0.66
— with same precision 185 24 288 34 54 932 0.01 0.84

Table 5.4: Comparison of the tools

TP FP FN TN Pr
ec

is
io
n

Re
ca

ll

Flawfinder
Top 100 1 99 218 79 121 0.01 0.00
Top 500 6 494 213 78 726 0.01 0.03
Top 1000 13 987 206 78 233 0.01 0.06

VCCFinder
Top 100 56 44 163 79 176 0.56 0.26
Top 500 88 412 131 78 808 0.18 0.40
Top 1000 105 895 114 78 325 0.11 0.48

Table 5.5: Confusion matrix of the tools by top X commits.
T: True, F: False, P: Positive, N: Negative.

most research papers have not published the datasets they worked on and since their
tools are not applicable to commits at the scale at which we tested VCCFinder, this was
not possible. We are releasing our VCC database and results to the community, so that fu-
ture researchers have a benchmark against which different approaches can be compared.

5.5.4 Full List of CVEs flagged

VCCFinder flagged the following 53 CVEs:
CVE-2014-7284, CVE-2014-7145, CVE-2014-5207, CVE-2014-5045, CVE-2014-4653, CVE-2014-3610,

92

5.6 Take-Aways

CVE-2014-3145, CVE-2014-2889, CVE-2014-1739, CVE-2014-0049, CVE-2013-7281, CVE-2013-6432,
CVE-2013-6376, CVE-2013-4591, CVE-2013-4563, CVE-2013-4513, CVE-2013-4220, CVE-2013-4205,
CVE-2013-4163, CVE-2013-4129, CVE-2013-4127, CVE-2013-4125, CVE-2013-3675, CVE-2013-3230,
CVE-2013-3226, CVE-2013-2930, CVE-2013-2636, CVE-2013-2634, CVE-2013-2548, CVE-2013-1979,
CVE-2013-1959, CVE-2013-1957, CVE-2013-1956, CVE-2013-1918, CVE-2013-1828, CVE-2013-1763,
CVE-2013-0862, CVE-2013-0313, CVE-2012-6544, CVE-2012-6543, CVE-2012-6536, CVE-2012-4508,
CVE-2012-4461, CVE-2012-3375, CVE-2012-2119, CVE-2011-4594, CVE-2011-4127, CVE-2011-4098,
CVE-2011-2689, CVE-2011-2497, CVE-2011-2492, CVE-2011-2479, and CVE-2011-0999.

5.6 Take-Aways

As the results above show, VCCFinder’s performance means that it can realistically be
used in production environments without overburdening developers with a huge number
of reviews. Since it can work on code snippets it can be used automatically when new
commits come in without requiring a complex test environment.

Apart from this, we would like to present some qualitative take-aways we found while
developing and evaluating VCCFinder, which can be useful even without using the tool.
While some of these take-aways confirm well-known beliefs, we found it interesting to
see that our machine-learning approach also came to these conclusions and backed them
up with quantitative data, but also generated new insights.

Error handling is hard When looking at the features the SVM learnt by classifying
VCCs, we saw that the adage “gotos considered harmful” [86] still holds true today, as
amongst others the keyword goto and the according jump labels such as out: and error:

increase the likelihood of vulnerable code. We can confirm this by looking at Table 5.2.
However, we found that the SVM also flags returning error values such as -EINVAL as
potentially dangerous. Combined with gotos, these are common C mechanisms for error
and exception handling. So unlike Dijkstra’s argument that gotos are harmful because
they lead to unreadable code, in our context gotos are considered harmful because they
frequently occur in an error-handling context. So instead of merely detecting gotos, our
SVM gives exception and error-handling code a higher potential vulnerability ranking.
Our explanation of this effect is as follows: because it is easy to miss some cases, excep-
tion handling is easy to get wrong (e.g. Apple’s goto fail bug in their TLS implement-
ation13). In conclusion, where there is error handling, there could be bugs. And more
importantly, those bugs have far more potential to become security vulnerabilities than
in other places of the source code. So it’s a good idea to review each change in that area
13 https://www.imperialviolet.org/2014/02/22/applebug.html

93

https://www.imperialviolet.org/2014/02/22/applebug.html

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

very carefully.

Variable Usage and Memory Management When examining highly ranked fea-
tures of the SVM, we noticed that some memory management constructs lead to a higher
vulnerability ranking. For instance, sizeof(struct, a high usage of sizeof in general,
len and length as variable names occurred more often in vulnerable commits. In ad-
dition, we observed that variable names consisting of specific strings often occurred in
VCCs: buf, net, socket and sk. While the presented keywords and variables alone do
not lead to vulnerabilities, they may indicate more critical areas of the code.

Beware 9-to-5 coders We compared commits authored between business hours (from
9 to 5) with those authored outside of business hours (cf. Table 5.6). Overall, code written
from 9 to 5 is 22% more likely to contain vulnerabilities (Pearson’s χ2 = 7.18, p = 0.007).
While the trend was not significant when limited to only new contributors (χ2 = 0.66,
p = 0.4), it was even stronger for frequent contributors, with an 37% increase in the
likelihood of containing vulnerabilities (χ2 = 6, p = 0.014). This suggests that frequent
contributors produce fewer vulnerabilities outside regular working hours. We find this
is a fascinating insight and plan to investigate it further in future work.

Unclassified
VCCs commits Percentage

New contributors
— not 9-to-5 257 54 072 0.47 %
— 9-to-5 213 41 549 0.51 %
Factor 1.08 (p = 0.4)

Frequent contributors
— not 9-to-5 126 151 381 0.083 %
— 9-to-5 118 103 693 0.110 %
Factor 1.37 (p = 0.014)

Everyone
— not 9-to-5 383 205 453 0.19 %
— 9-to-5 331 145 242 0.23 %
Factor 1.22 (p = 0.007)

Table 5.6: Comparison of commits authored between and outside of 9 to 5 o’clock.

94

5.7 Limitations

Help new contributors We found that new contributors, i.e. contributors with less
than 1% of all commits in a given project, are about five times as likely to commit a vul-
nerability as their counterparts who frequently contribute. While new contributors au-
thored 470 of 95,621 VCCs, or 0.49 %, frequent contributors authored only 244 of 255,074
VCCs, or 0.10 % (Pearson’s χ2: p < 0.0001). While this is of course also no big surprise,
we hope quantifying this risk will help convince projects to introduce more stringent
review policies.

Final Thoughts As both the evaluation and the take-aways show, commits have a
myriad of possible reasons for being flagged as VCCs. These reasons can be code-based
or metadata-based or, importantly, a combination of the two. The examples above give
us an intuitive understanding of why this is. While our main recommendation is to use
VCCFinder to classify potentially vulnerable commits to prioritize reviews, there also
general recommendation which can be extracted from the classifier results.

5.7 Limitations

Our approach has several limitations. We selected 66 open-source projects written in C
or C++ that created at least one CVE but otherwise varied in numbers of contributors,
commits, or governance. We believe that applying our results to other projects using C
or C++ should not threaten the validity. However, we can make no predictions on how
VCCFinder performs on projects which to date have not received any CVEs. For gener-
alization to other programming languages, the feature extraction and machine-learning
will need to be re-done per language, so that the SVM does not mis-train based on differ-
ences in syntax.

We used a heuristic to map CVEs to VCCs. Our manual analysis of 15 % of these
mappings showed that we have an error rate of 3.1 %. This needs to be taken into account
by any project building on this dataset.

While we were able to map CVEs to VCCs, it is of course unknown how many un-
known vulnerabilities are contained in our annotated database. Thus, our true positives
must be considered a lower bound and the false positives an upper bound. So both VC-
CFinder’s and Flawfinder’s resultsmight be better than reported and the relation between
them could change. However, since VCCFinder outperforms Flawfinder by a large mar-
gin, it seems unlikely that the outcome would change.

Our experiments demonstrate that VCCFinder is able to automatically spot commits
that contribute to vulnerabilities with high precision; yet this alone does not ensure that
an underlying vulnerability will be uncovered. Significant work and expertise is still

95

Chapter 5 Finding Potential Vulnerabilities in Open-Source Projects

necessary to audit commits for potential security flaws. However, our approach reduces
the amount of code to inspect considerably and thus helps increase the effectiveness of
code audits.

Construct validity. The code that constructs the data set could have bugs, resulting in
inconsistent data and false conclusions. We mitigated this threat by writing unit tests for
each component as well as checking the consistency of the resulting data using database
constraints as well as additional test scripts. Further, we used the heuristic described in
Section 5.3.3 in order to mark the VCCs. We manually validated the heuristic against
30 CVEs and found only one falsely marked VCC. Since this is only a small number, the
heuristic should not significantly alter the results. And even a manual process would be
prone to misclassifications.

5.8 Conclusion

In this chapter, we present and evaluate VCCFinder, an approach to improve code audits.
Our approach combines code-metric analysis with metadata gathered from code repos-
itories using machine-learning techniques. Our results show that our approach signi-
ficantly outperforms the state-of-the-art vulnerability finder Flawfinder. We created a
large test database containing 66 C/C++ project with 170860 commits on which to evalu-
ate and compare our approach. Training our classifier on data up until 2010 and testing
it against data from 2011 to 2014, VCCFinder produced 99% fewer false positives than
Flawfinder, detecting 53 of the 219 known vulnerabilities and only producing 36 false
positives compared to Flawfinder’s 5460 false positives.

To enable future research in this area, we will release our annotated VCC database
and results so that future approaches can use this database both as a training set and as a
benchmark to compare themselves to existing approaches. The community is currently
lacking such a baseline and we hope to spur more comparable research in this domain.

We see a very large amount of interesting future work. While the results are already
significantly better than the state-of-the-art Flawfinder tool, we believe that we have
only begun to scratch the surface of what can be ascertained by combining the differ-
ent features. Further analyzing the results of the classifier will likely allow us to make
more general recommendations on how to minimize the likelihood that vulnerabilities
make it from the initial vulnerable commit into deployed software. Especially differences
between new and frequent committers seems a promising avenue of future research. It
will also be interesting to analyze the differences between the separate projects in more
detail.

96

CHAPTER 6

Conclusion

As each chapter already features a detailed conclusion of each part’s work, I will just
highlight some overall take-aways from this work.

Take-Away 1: New cryptographic primitives can help protect the users’ privacy against
the threats of Big Data. As more and more data can easily be collected and aggregated,
we need to look into new cryptographic primitives (such as homomorphic cryptography
as introduced in Chapter 2) or apply new measurements such as differential privacy.

In detail, in that chapter, I facilitated Obfuscated Bloom filters to create a search al-
gorithm that ensures the confidentiality of the queries as well as the result. The obfus-
cation parameter allows the scheme to be configured according to the concrete use case.
The communication complexity of the scheme is linear with respect to the length of the
search query. The computational complexity is logarithmic with respect to the size of
the database, and linear with respect to both the length of the query as well as the length
of the results. This means that even for large databases, the scheme is fast enough to
be applied to real world use cases. Therefore, the presented technique is a vast improve-
ment over PIR schemes which are not utilizing homomorphic cryptography. This work
is also one of the first systems to use homomorphic cryptography practically. Beyond
offering a solution for search with encrypted terms, this work also serves as an example
of how systems can be designed to incorporate the new possibilities of Homomorphic
Encryption.

Take-Away 2: Big Data analytics on software and infrastructure can improve security.
When we apply data analysis techniques to assess software and infrastructure instead of
spying on users, we can use the results to pinpoint weak points to fix.

97

Chapter 6 Conclusion

Both Chapter 4 about removing unneeded certificate authorities from trust stores as
well as Chapter 5 about the analysis of version control commits of open source projects
highlight this.

In detail, in Chapter 4 I used data from internet-wide scans of port 443 containing ap-
proximately 48 million X.509 certificates in order to find certificate authorities that are
contained in one or more trust store (i.e. trusted by one or more operating system or
browser) but have not signed any actual certificate on public-facing websites. I found
140 of those certificate authorities which are included in all twelve major trust stores. I
confirmed these findings with two months’ worth of TLS handshake data from the Uni-
versity of Hanover. Based on this result, the logical recommendation is to disable the
certificate authorities in question or at least limit their authorities such as to revoke their
trust for validating certificates as part of HTTPS. It is notable that this list for removal
is a very conservative one, since it only includes certificate authorities that have never
signed a single X.509 certificate accessible over public HTTPS. However, one could fur-
ther consider for removal those certificate authorities that only sign a small amount of
certificates, or trust some certificate authorities only for certain domains. The last point
is especially interesting for certificate authorities from German universities. Each ma-
jor university holds a certificate authority and can technically sign certificates for any
domain. However in practice, and by policy, they only sign certificates for their own sub-
domains *.some-university.de. Therefore, a university’s certificate authority only ever
needs trust for their own (sub)domains. This would further reduce the attack surface in
case of a compromise without affecting valid usage.

In Chapter 5 I presented an approach to improve code audits by applying machine
learning to a combination of code-metric analysis and metadata gathered from code
repositories. The data-driven approach significantly outperforms the state-of-the-art
vulnerability finder Flawfinder by producing 99 % fewer false positives than Flawfinder.
While the results are already significantly better than the state-of-the-art Flawfinder tool,
a lot more can be done by combining the different features. Further analyzing the results
of the classifier will likely allow one to make more general recommendations on how to
minimize the likelihood that vulnerabilities make it from the initial vulnerable commit
into deployed software. Especially differences between new and frequent committers
seem a promising avenue of future research. It will also be interesting to analyze the
differences between the separate projects in more detail.

Data-driven analysis of software and security ecosystems In summary, I presen-
ted three case studies that explore the application of data analysis – “Big Data” – to sys-
tem security. In that regard, the ability to automatically analyze data is not only a threat
we need to defend our users’ privacy against, but is more so also a discipline that helps

98

improve security. By considering not just isolated examples but whole ecosystems, the
insights become much more solid, and the results and recommendations become much
stronger. Instead of manually analyzing a couple of mobile apps, we have the ability
to consider a security-critical mistake in all applications of a given platform. We can
identify systemic errors all developers of a given platform, a given programming lan-
guage or a given security paradigm make – and fix it with the certainty that we truly
found the core of the problem. Instead of manually analyzing the SSL installation of a
couple of websites, we can consider all certificates – in times of Certificate Transpar-
ency even with historical data of issued certificates – and make conclusions based on the
whole ecosystem. We can identify rogue certificate authorities as well as monitor the de-
ployment of new TLS versions and features and make recommendations based on those.
And instead of manually analyzing open source code bases for vulnerabilities, we can
apply the same techniques and again consider all projects on e.g. GitHub. Then, instead
of just fixing one vulnerability after the other, we can use these insights to develop better
tooling, easier-to-use security APIs and safer programming languages.

99

Bibliography

[1] Alma Whitten and J Doug Tygar,
“Why Johnny Can’t Encrypt: A Usability Evaluation of PGP 5.0.”, Usenix Security,
vol. 1999, 1999 (cit. on p. 1).

[2] Anne Adams and Martina Angela Sasse, Users are not the enemy,
Communications of the ACM 42 (1999) 40 (cit. on pp. 1, 2).

[3] Joshua Sunshine, Serge Egelman, Hazim Almuhimedi, Neha Atri and
Lorrie Faith Cranor,
“Crying wolf: An empirical study of SSL warning effectiveness”,
Proceedings of the 18th Usenix Security Symposium, 2009 (cit. on pp. 2, 45, 64).

[4] Anne Adams, Martina Angela Sasse and Peter Lunt,
“Making Passwords Secure and Usable”,
People and Computers XII: Proceedings of HCI ’97,
ed. by Harold Thimbleby, Brid O’Conaill and Peter J. Thomas,
Springer London, 1997 1, isbn: 978-1-4471-3601-9 (cit. on p. 2).

[5] Henning Perl, Yassene Mohammed, Michael Brenner and Matthew Smith,
“Fast confidential search for bio-medical data using bloom filters and
homomorphic cryptography”,
E-Science (e-Science), 2012 IEEE 8th International Conference on, IEEE, 2012
(cit. on pp. 5, 6).

[6] Henning Perl, Yassene Mohammed, Michael Brenner and Matthew Smith,
Privacy/performance trade-off in private search on bio-medical data,
Future Generation Computer Systems 36 (2014) 441 (cit. on p. 5).

[7] Melissa Gymrek, Amy L McGuire, David Golan, Eran Halperin and Yaniv Erlich,
Identifying Personal Genomes by Surname Inference, Science 339 (2013) 321
(cit. on p. 6).

[8] Craig Gentry, A fully homomorphic encryption scheme,
PhD thesis: Stanford University, 2009 (cit. on pp. 6, 10).

101

Bibliography

[9] Jean-Sébastien Coron, David Naccache and Mehdi Tibouchi,
“Public key compression and modulus switching for fully homomorphic
encryption over the integers”, EUROCRYPT’12: Proceedings of the 31st Annual
international conference on Theory and Applications of Cryptographic Techniques,
Springer-Verlag, 2012 (cit. on p. 6).

[10] Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky and William Skeith,
Public key encryption that allows PIR queries,
Advances in Cryptology-CRYPTO 2007 (2007) 50 (cit. on pp. 6, 8).

[11] Craig Gentry and Zulfikar Ramzan, “Single-Database Private Information
Retrieval with Constant Communication Rate”, Automata, Springer-Verlag, 2005
803 (cit. on pp. 6, 33).

[12] Eyal Kushilevitz and Rafail Ostrovsky, “Replication is not needed: single database,
computationally-private information retrieval”,
Foundations of Computer Science, 1997. Proceedings., 38th Annual Symposium on,
1997 364 (cit. on pp. 6, 32).

[13] Dan Boneh, Eu-Jin Goh and Kobbi Nissim,
Evaluating 2-DNF Formulas on Ciphertexts, ed. by Joe Kilian,
Theory of Cryptography, vol. 3378, Lecture Notes in Computer Science,
Springer-Verlag, 2005 (cit. on p. 8).

[14] Christian Cachin, Silvio Micali and Markus Stadler, “Computationally Private
Information Retrieval with Polylogarithmic Communication”,
Advances in Cryptology—EUROCRYPT’99, Springer-Verlag, 1999 402 (cit. on p. 8).

[15] Jan Camenisch, Maria Dubovitskaya and Gregory Neven,
“Oblivious transfer with access control”, CCS ’09: Proceedings of the 16th ACM
conference on Computer and communications security,
ACM Request Permissions, 2009 (cit. on p. 8).

[16] Ran Canetti, Ben Riva and Guy N Rothblum,
“Practical delegation of computation using multiple servers”, CCS ’11: Proceedings
of the 18th ACM conference on Computer and communications security,
ACM Request Permissions, 2011 (cit. on p. 8).

[17] Andrew Chi-Chih Yao, How to generate and exchange secrets,
Foundations of Computer Science, 1986., 27th Annual Symposium on (1986) 162
(cit. on p. 9).

[18] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella et al.,
“Fairplay—Secure Two-Party Computation System.”, USENIX Security Symposium,
vol. 4, San Diego, CA, USA, 2004 (cit. on p. 9).

102

Bibliography

[19] Lior Malka,
“VMCrypt: modular software architecture for scalable secure computation”,
CCS ’11: Proceedings of the 18th ACM conference on Computer and communications
security, ACM Request Permissions, 2011 (cit. on p. 9).

[20] Chris Mitchell and Chris, eds., Trusted Computing,
Institution of Engineering and Technology, 2005 (cit. on p. 9).

[21] Craig Gentry, “Fully homomorphic encryption using ideal lattices”,
STOC ’09: Proceedings of the 41st annual ACM symposium on Theory of computing,
ACM Request Permissions, 2009 (cit. on p. 10).

[22] Nigel P Smart and Frederik Vercauteren,
“Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes.”,
Public Key Cryptography, vol. 6056, Springer, 2010 420 (cit. on pp. 10, 21, 22).

[23] Michael Brenner, Jan Wiebelitz, Gabriele Von Voigt and Matthew Smith,
“Secret program execution in the cloud applying homomorphic encryption”,
Digital Ecosystems and Technologies Conference (DEST), 2011 Proceedings of the 5th
IEEE International Conference on, IEEE, 2011 114 (cit. on p. 10).

[24] Burton H Bloom, Space/time trade-offs in hash coding with allowable errors,
Communications of the ACM 13 (1970) 422 (cit. on p. 12).

[25] Ashish Goel and Pankaj Gupta, “Small subset queries and bloom filters using
ternary associative memories, with applications”,
SIGMETRICS ’10: Proceedings of the ACM SIGMETRICS international conference on
Measurement and modeling of computer systems, ACM Request Permissions, 2010
(cit. on p. 12).

[26] Zvika Brakerski, Craig Gentry and Vinod Vaikuntanathan,
“(Leveled) fully homomorphic encryption without bootstrapping”, ITCS ’12:
Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
ACM Request Permissions, 2012 (cit. on p. 22).

[27] Sergiu Costea, Dumitru Marian Barbu, Gabriel Ghinita and Razvan Rughinis,
“A comparative evaluation of private information retrieval techniques in
location-based services”, Intelligent Networking and Collaborative Systems (INCoS),
2012 4th International Conference on, IEEE, 2012 618 (cit. on pp. 32, 33).

[28] Jeremy Clark and Paul C van Oorschot, “SoK: SSL and HTTPS: Revisiting past
challenges and evaluating certificate trust model enhancements”,
Security and Privacy (SP), 2013 IEEE Symposium on, IEEE, 2013 511
(cit. on pp. 37–40).

103

Bibliography

[29] Sascha Fahl, Marian Harbach, Henning Perl, Markus Koetter and Matthew Smith,
“Rethinking SSL development in an appified world”, Proceedings of the 2013 ACM
SIGSAC conference on Computer & communications security, ACM, 2013 49
(cit. on pp. 37, 67).

[30] Sascha Fahl, Yasemin Acar, Henning Perl and Matthew Smith,
“Why eve and mallory (also) love webmasters: a study on the root causes of SSL
misconfigurations”, Proceedings of the 9th ACM symposium on Information,
computer and communications security, ACM, 2014 507 (cit. on p. 37).

[31] Sascha Fahl, Sergej Dechand, Henning Perl, Felix Fischer, Jaromir Smrcek and
Matthew Smith, “Hey, NSA: Stay away from my market! Future proofing app
markets against powerful attackers”, Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, ACM, 2014 1143
(cit. on p. 37).

[32] EFF, SSL Observatory, url: https://www.eff.org/observatory (cit. on p. 38).
[33] Joseph Menn, Key Internet operator VeriSign hit by hackers,

url: http://www.reuters.com/article/2012/02/02/us-hacking-verisign-
idUSTRE8110Z820120202 (cit. on p. 38).

[34] Comodo, Comodo Report of Fraud Incident,
url: https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
(cit. on p. 38).

[35] Jonathan Nightingale, DigiNotar Removal Follow Up, 2013, url: https:
//blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
(cit. on p. 38).

[36] Dan Wendlandt, David G Andersen and Adrian Perrig, “Perspectives: Improving
SSH-style Host Authentication with Multi-Path Probing”,
USENIX 2008 Annual Technical Conference on Annual Technical Conference, 2008
321 (cit. on pp. 38, 46, 47, 59).

[37] Moxie Marlinspike, “SSL And The Future Of Authenticity”, BlackHat USA 2011
(cit. on pp. 38, 47, 48, 59).

[38] Ben Laurie, Adam Langley and Emilia Kasper, Certificate Transparency. Network
Working Group Internet-Draft, v12, work in progress, 2013,
url: http://tools.ietf.org/html/draft-laurie-pki-sunlight-12
(cit. on pp. 38, 40, 47).

[39] Peter Eckersley, Sovereign Key Cryptography for Internet Domains,
url: https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-
design.txt;hb=master (cit. on pp. 38, 47, 50, 59).

104

https://www.eff.org/observatory
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
http://www.reuters.com/article/2012/02/02/us-hacking-verisign-idUSTRE8110Z820120202
https://www.comodo.com/Comodo-Fraud-Incident-2011-03-23.html
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
https://blog.mozilla.org/security/2011/09/02/diginotar-removal-follow-up/
http://tools.ietf.org/html/draft-laurie-pki-sunlight-12
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=master
https://git.eff.org/?p=sovereign-keys.git;a=blob;f=sovereign-key-design.txt;hb=master

Bibliography

[40] Moxie Marlinspike, TACK: Trust Assertions for Certificate Keys,
url: http://tack.io/draft.html (cit. on pp. 38, 47, 51, 59).

[41] Jakob Schlyter and Paul Hoffman, The DNS-Based Authentication of Named
Entities (DANE) Protocol for Transport Layer Security (TLS): TLSA, 2012,
url: https://tools.ietf.org/html/rfc6698 (cit. on pp. 38, 47, 52).

[42] Joseph Bonneau, Cormac Herley, Paul C van Oorschot and Frank Stajano,
The Quest to Replace Passwords: A Framework for Comparative Evaluation of Web
Authentication Schemes, Security and Privacy (SP), 2012 IEEE Symposium on ()
(cit. on pp. 41, 42).

[43] Mark D Ryan, Enhanced certificate transparency and end-to-end encrypted mail,
Proceedings of NDSS. The Internet Society (2014) (cit. on pp. 47, 50).

[44] Tiffany Hyun-Jin Kim, Lin-Shung Huang, Adrian Perrig, Collin Jackson and
Virgil Gligor, “Accountable Key Infrastructure (AKI): A Proposal for a Public-Key
Validation Infrastructure”, Proceedings of the 2013 Conference on World Wide Web,
2013 (cit. on pp. 47, 53, 59).

[45] David Basin, Cas Cremers, Tiffany Hyun-Jin Kim, Adrian Perrig, Ralf Sasse and
Pawel Szalachowski, “ARPKI: Attack resilient public-key infrastructure”,
Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2014 382 (cit. on pp. 47, 53).

[46] Henning Perl, Sascha Fahl and Matthew Smith, “You Won’t Be Needing These
Any More: On Removing Unused Certificates From Trust Stores”,
International Conference on Financial Cryptography and Data Security,
Springer, 2014 307 (cit. on p. 57).

[47] Zakir Durumeric, Eric Wustrow and J Alex Halderman,
“ZMap: Fast Internet-wide scanning and its security applications”,
Proceedings of the 22nd USENIX Security Symposium, 2013 (cit. on pp. 58, 60).

[48] B. Laurie, A. Langley and E. Kasper, Certificate Transparency,
RFC 6962 (Experimental), Internet Engineering Task Force, 2013,
url: http://www.ietf.org/rfc/rfc6962.txt (cit. on p. 59).

[49] P. Hoffman and J. Schlyter, The DNS-Based Authentication of Named Entities
(DANE) Transport Layer Security (TLS) Protocol: TLSA,
RFC 6698 (Proposed Standard), Internet Engineering Task Force, 2012,
url: http://www.ietf.org/rfc/rfc6698.txt (cit. on p. 59).

105

http://tack.io/draft.html
https://tools.ietf.org/html/rfc6698
http://www.ietf.org/rfc/rfc6962.txt
http://www.ietf.org/rfc/rfc6698.txt

Bibliography

[50] Wilson Lian, Eric Rescorla, Hovav Shacham and Stefan Savage,
“Measuring the practical impact of DNSSEC deployment”,
Proceedings of the 22nd USENIX conference on Security, USENIX Association, 2013
573 (cit. on p. 59).

[51] Devdatta Akhawe and Adrienne Porter Felt, “Alice in warningland: A large-scale
field study of browser security warning effectiveness”,
Proceedings of the 22th USENIX Security Symposium, 2013 (cit. on p. 59).

[52] Devdatta Akhawe, Bernhard Amann, Matthias Vallentin and Robin Sommer,
“Here’s my cert, so trust me, maybe?: understanding TLS errors on the web”,
Proceedings of the 22nd international conference on World Wide Web,
International World Wide Web Conferences Steering Committee, 2013 59
(cit. on p. 59).

[53] James Karsten, Eric Wustrow and J Alex Halderman,
“CAge: Taming Certificate Authorities by Inferring Restricted Scopes”,
FC’13: Proceedings of the 17th international conference on Financial Cryptography
and Data Security, 2013 (cit. on p. 59).

[54] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley and W. Polk,
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, RFC 5280 (Proposed Standard), Updated by RFC 6818,
Internet Engineering Task Force, 2008,
url: http://www.ietf.org/rfc/rfc5280.txt (cit. on p. 60).

[55] Serge Egelman, Lorrie Faith Cranor and Jason Hong, “You’ve been warned”,
Proceeding of the twenty-sixth annual CHI conference, ACM Press, 2008 1065
(cit. on p. 64).

[56] Henning Perl, Sergej Dechand, Matthew Smith, Daniel Arp, Fabian Yamaguchi,
Konrad Rieck, Sascha Fahl and Yasemin Acar, “VCCFinder: Finding Potential
Vulnerabilities in Open-Source Projects to Assist Code Audits”, Proceedings of the
22Nd ACM SIGSAC Conference on Computer and Communications Security,
CCS ’15, ACM, 2015 426, isbn: 978-1-4503-3832-5,
url: http://doi.acm.org/10.1145/2810103.2813604 (cit. on p. 68).

[57] Fabian Yamaguchi, Nico Golde, Daniel Arp and Konrad Rieck,
“Modeling and Discovering Vulnerabilities with Code Property Graphs”,
Security and Privacy (SP), 2014 IEEE Symposium on, IEEE, 2014 (cit. on pp. 68, 71).

[58] Clang Static Analyzer, http://clang-analyzer.llvm.org/, Accessed: 2015-05-08
(cit. on p. 68).

[59] Valgrind, http://valgrind.org/, Accessed: 2015-05-08 (cit. on p. 68).

106

http://www.ietf.org/rfc/rfc5280.txt
http://doi.acm.org/10.1145/2810103.2813604
http://clang-analyzer.llvm.org/
http://valgrind.org/

Bibliography

[60] Trinity: A Linux system call fuzzer,
http://codemonkey.org.uk/projects/trinity/, Accessed: 2015-05-08
(cit. on p. 69).

[61] David A. Wheeler, Flawfinder, http://www.dwheeler.com/flawfinder/,
visited January, 2015 (cit. on pp. 69, 71, 90).

[62] Rough Auditing Tool for Security (RATS),
https://code.google.com/p/rough-auditing-tool-for-security/,
visited January, 2015 (cit. on p. 71).

[63] PREfast Analysis Tool,
https://msdn.microsoft.com/en-us/library/ms933794.aspx,
visited January, 2015 (cit. on p. 71).

[64] David Evans and David Larochelle,
Improving security using extensible lightweight static analysis,
IEEE software 19 (2002) 42 (cit. on p. 71).

[65] Sruthi Bandhakavi, Samuel T King, Parthasarathy Madhusudan and
Marianne Winslett,
“VEX: Vetting Browser Extensions for Security Vulnerabilities.”,
USENIX Security Symposium, vol. 10, 2010 339 (cit. on p. 71).

[66] Chia Yuan Cho, Domagoj Babic, Pongsin Poosankam, Kevin Zhijie Chen,
Edward XueJun Wu and Dawn Song, “MACE: Model-inference-Assisted Concolic
Exploration for Protocol and Vulnerability Discovery.”,
USENIX Security Symposium, 2011 139 (cit. on p. 71).

[67] Johannes Dahse and Thorsten Holz,
“Static Detection of Second-Order Vulnerabilities in Web Applications”,
23rd USENIX Security Symposium (USENIX Security 14),
USENIX Association, 2014 989 (cit. on p. 71).

[68] Christian Holler, Kim Herzig and Andreas Zeller, “Fuzzing with Code Fragments”,
Presented as part of the 21st USENIX Security Symposium (USENIX Security 12),
USENIX, 2012 445 (cit. on p. 71).

[69] Thomas Zimmermann, Nachiappan Nagappan and Laurie Williams, “Searching
for a needle in a haystack: Predicting security vulnerabilities for windows vista”,
Software Testing, Verification and Validation (ICST), 2010 Third International
Conference on, IEEE, 2010 421 (cit. on p. 72).

[70] Thomas J McCabe, A complexity measure,
Software Engineering, IEEE Transactions on (1976) 308 (cit. on p. 72).

107

http://codemonkey.org.uk/projects/trinity/
http://www.dwheeler.com/flawfinder/
https://code.google.com/p/rough-auditing-tool-for-security/
https://msdn.microsoft.com/en-us/library/ms933794.aspx

Bibliography

[71] Maurice H Halstead, Elements of software science,
Elsevier computer science library : operational programming systems series,
North-Holland, 1977 (cit. on p. 72).

[72] Graylin Jay, Joanne E Hale, Randy K Smith, David P Hale, Nicholas A Kraft and
Charles Ward, Cyclomatic Complexity and Lines of Code: Empirical Evidence of a
Stable Linear Relationship., JSEA 2 (2009) 137 (cit. on p. 72).

[73] Benjamin Livshits and Thomas Zimmermann, “DynaMine: Finding Common
Error Patterns by Mining Software Revision Histories”, Proceedings of the 10th
European Software Engineering Conference Held Jointly with 13th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-13,
2005 (cit. on p. 72).

[74] Stephan Neuhaus, Thomas Zimmermann, Christian Holler and Andreas Zeller,
“Predicting vulnerable software components”,
Proceedings of the 14th ACM conference on Computer and communications security,
ACM, 2007 529 (cit. on p. 72).

[75] Andrew Meneely, Alberto C. Rodriguez Tejeda, Brian Spates, Shannon Trudeau,
Danielle Neuberger, Katherine Whitlock, Christopher Ketant and Kayla Davis,
“An Empirical Investigation of Socio-technical Code Review Metrics and Security
Vulnerabilities”,
Proceedings of the 6th International Workshop on Social Software Engineering,
SSE 2014, ACM, 2014 37 (cit. on pp. 72, 74).

[76] Andrew Meneely and Oluyinka Williams,
Interactive Churn Metrics: Socio-technical Variants of Code Churn,
SIGSOFT Softw. Eng. Notes 37 (2012) 1 (cit. on pp. 72, 74, 76).

[77] Andrew Meneely, Harshavardhan Srinivasan, Ayemi Musa,
Alberto Rodriguez Tejeda, Matthew Mokary and Brian Spates, “When a patch
goes bad: Exploring the properties of vulnerability-contributing commits”,
Empirical Software Engineering and Measurement, 2013 ACM/IEEE International
Symposium on, IEEE, 2013 65 (cit. on pp. 72, 74).

[78] Riccardo Scandariato, James Walden, Aram Hovsepyan and Wouter Joosen,
Predicting vulnerable software components via text mining,
IEEE Transactions on Software Engineering 40 (2014) 993 (cit. on p. 73).

[79] Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon and Konrad Rieck,
“Chucky: Exposing missing checks in source code for vulnerability discovery”,
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, ACM, 2013 499 (cit. on p. 73).

108

Bibliography

[80] Ray-Yaung Chang, Andy Podgurski and Jiong Yang,
Discovering neglected conditions in software by mining dependence graphs,
IEEE Transactions on Software Engineering 34 (2008) 579 (cit. on p. 73).

[81] Hans W Wendt, Dealing with a common problem in Social science: A simplified
rank-biserial coefficient of correlation based on the U statistic,
European Journal of Social Psychology 2 (1972) 463 (cit. on p. 79).

[82] Gerard Salton and Michael J. McGill, Introduction to Modern Information Retrieval,
McGraw-Hill, 1986 (cit. on p. 84).

[83] Gerard Salton, Mathematics and information retrieval,
Journal of Documentation 35 (1979) 1 (cit. on p. 84).

[84] Konrad Rieck, Christian Wressnegger and Alexander Bikadorov,
Sally: A Tool for Embedding Strings in Vector Spaces,
Journal of Machine Learning Research (JMLR) 13 (2012) 3247 (cit. on p. 85).

[85] Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang and Chih-Jen Lin,
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research (JMLR) 9 (2008) 1871 (cit. on p. 85).

[86] Edsger W Dijkstra, Letters to the editor: go to statement considered harmful,
Communications of the ACM 11 (1968) 147 (cit. on p. 93).

109

List of Figures

2.1 Example of a Bloom filter for {CATA, CCGA, AGGT} with three hash functions. 12
2.2 A Bloom filter for ACGA with obfuscation parameter λ = 4. 13
2.3 Model for the search query. 15
2.4 Binary tree of Bloom filters . 17
2.5 Transforming Bloom filter search to a stream search. 18
2.6 Steps for compressing a set of results. For the query “AGGT” the exact-

match search circuit marked entries 2, 5 and 7 in ind, which is then trans-
fomed according to Eq. (2.2)–(2.4). 21

2.7 Sketch of the search circuit . 28
2.8 Plot of the Performance of the Obfuscated Search 32
2.9 Comparison of the Bloom filter search with two different PIR schemes . 34

4.1 How many certificates are included in 11 (all), 10, …, trust stores? 61
4.2 Disabling certificates for the purpose of SSL/HTTPS 66

5.1 Detection performance of VCCFinder. 88

111

List of Tables

2.1 Performance of the Obfuscated Search 31
2.2 Performance of homomorphic post-processing. 32
2.3 Comparison of the Bloom filter search with two different PIR schemes . 33

3.1 Evaluation of SSL validation systems . 47

4.1 Used and unused CA certificates in trust stores. 63

5.1 Overview of the features and results of the statistical analysis of the nu-
meric features. Mann–Whitney U test significant (*) if p < 0.00059. . . . 77

5.2 Statistical analysis of C/C++ keywords sorted by effect size [81], Mann–
Whitney U test significant (*) if p < 0.000357. 79

5.3 Distribution of commits, CVEs, and VCCs. 87
5.4 Comparison of the tools . 92
5.5 Confusion matrix of the tools by top X commits.

T: True, F: False, P: Positive, N: Negative. 92
5.6 Comparison of commits authored between and outside of 9 to 5 o’clock. 94

113

	Introduction
	Privacy/Performance Trade-off in Private Search on Bio-Medical Data
	Introduction
	Our contributions
	Outline

	Related Work
	Private Information Retrieval (PIR)
	Garbled Circuits
	Trusted Computing
	Encrypted CPU / hCrypt

	Preliminaries
	Homomorphic Encryption Schemes
	Bloom Filters

	Obfuscated Bloom Filters
	Bloom Filter Search
	High-Level View of the Search Scheme
	Setup of the Bloom Filter Tree
	Search Using Bloom Filters and Binary Search
	Exact Search Using hCrypt

	Security Analysis
	Choosing an Obfuscation Parameter
	Implementation
	Source Code
	Web Service
	Asymptotic Runtime and Communication Complexity

	Use Case
	Example

	Performance Evaluation
	Performance Comparison with PIR Schemes

	Conclusion

	Evaluation of SSL Validation Systems
	Introduction
	Related Work
	Certificate Transparency
	An Evaluation Framework for SSL Validation
	Deployability Benefits
	Security and Privacy Benefits
	On Usability

	Evaluation of SSL With A CA-PKI
	Evaluation of Alternative Validation Systems
	Perspectives
	Convergence
	Certificate Transparency
	CT + Revocation Transparency
	Sovereign Keys
	TACK
	DANE
	AKI
	ARPKI
	Summary of The Evaluation

	Open Problems
	Conclusion

	On Removing Unused Certificate Authorities From Trust Stores
	Introduction
	Outline

	Related Work
	Technical Setup
	Trusted Root CA Certificates
	Windows Trust Store
	OSX and iOS Trust Store
	Linux/OpenBSD Trust Stores
	Mobile Trust Stores (Android, BlackBerry)
	Restricting the Purpose of CA Certificates

	Removing Unneeded CAs
	Potential Problems and Current Solutions

	Conclusion

	Finding Potential Vulnerabilities in Open-Source Projects
	Introduction
	Our Contributions

	Related Work
	Methodology
	Terminology
	List of Repositories
	Vulnerability-contributing Commits
	Features
	Excluded Features
	Statistical Analysis of Features

	Learning-Based Detection
	Generalized Bag-of-Words Models
	Classification and Explainability

	Evaluation
	Case Study
	Flagged Unclassified Commits
	Comparison to Flawfinder
	Full List of CVEs flagged

	Take-Aways
	Limitations
	Conclusion

	Conclusion
	List of Figures
	List of Tables

