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Bonn 2018



Referent: PD Dr. Jürgen Schellberg

Korreferent: Prof. Dr. Uwe Rascher

Tag der mündlichen Prüfung: 19.10.2018
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Zusammenfassung

Das Potenzial von Produktivitätssteigerungen bei Nutzpflanzen wird regelmäßig in

agronomischen Feldversuchen untersucht. Eine periodische Erfassung von biophysikali-

schen Pflanzenvariablen in den oft kleinparzellierten Versuchen ist nötig, um gesicherte

Aussagen über die Leistung der Pflanzen treffen zu können. Händische Messungen im

Feld sind mühsam, teuer und räumlich eingeschränkt. Unmanned Aerial Vehicle (UAV)-

basierte Fernerkundung bietet durch die flexible Einsatzmöglichkeit der Plattform sowie

die räumlich und zeitlich hochaufgelösten Sensordaten Potenzial, um Variablen in Feld-

versuchen schnell, günstig und zerstörungsfrei zu erfassen.

In dieser Dissertation wurde untersucht, ob sich Daten UAV-gestützter, kostengünstiger

modifizierter Kompaktkameras dazu eignen, die Variablen grüner Blattflächenindex

(gLAI) und Lichtnutzungseffizienz (RUE) in einem Mais-Feldversuch bei unterschied-

lichen Managementeinflüssen zu erfassen. Hierzu wurde in den Jahren 2015 und 2016

auf der universitätseigenen Forschungsstation Campus Klein-Altendorf südwestlich von

Bonn ein Feldversuch angelegt, bei dem in vier Behandlungen (zwei Varianten von

Stickstoffgabe sowie zwei Varianten von Pflanzdichte) mit jeweils fünf Wiederholun-

gen die Ausbildung von Blattfläche unterschiedlich beeinflusst werden sollte. gLAI und

Biomasse wurde destruktiv gemessen, UAV-basierte Daten wurden in ca. 14-tägigen

Abständen erhoben, bei denen der gesamte Versuch beflogen wurde. Drei Studien wur-

den angefertigt, die zur Begutachtung bei internationalen Fachzeitschriften eingereicht

wurden.

In Studie I wurden drei ausgewählte spektrale Vegetationsindizes (NDVI, GNDVI,

3BSI) in Beziehung zu den destruktiven gLAI-Messungen gesetzt. Die gefundenen Zu-

sammenhänge pro Behandlungsstufe waren unterschiedlich, aber eindeutig. Die Schätzung

von gLAI mithilfe von Zwei-Band-Indizes (NDVI, GNDVI) zeigte gute Ergebnisse bis

gLAI-Werte von 3. Der 3-Band-Ansatz (3BSI) zeigte keinerlei Vorteile. Ein Vergleich

von statistischen Ergebnissen der gLAI-Messungen und solcher der Indizes führte zur

Schlussfolgerung, dass die alleinige Feststellung der Einflüsse von Managementfaktoren

auf Blattflächenentwicklung über Vegetationsindizes nicht möglich war.

In Studie II wurden, auf Studie I aufbauend, parametrische und nicht-parametrische

i



Regressionsmethoden hinsichtlich ihrer Vorhersagefähigkeit in Bezug auf gLAI von Mais

evaluiert. Hierzu wurden in den UAV-basierten Bilddaten einmal die Pixel, die keine

Pflanzeninformationen enthielten (d.h. schattierter oder sonnenbeschienener Boden)

in der Analyse berücksichtigt, ein weiteres Mal nicht. Hinsichtlich der parametrischen

Methoden wurden alle möglichen Bänderkombinationen für eine ausgewählte Zahl von

Zwei- und Dreiband-Formulierungen sowie verschiedener Anpassungsfunktionen getes-

tet. Hinsichtlich der nicht-parametrischen Methoden wurden sechs Algorithmen (Ran-

dom Forests Regression, Support Vector Regression, Relevance Vector Machines, Gaus-

sian Process Regression, Kernel Regularized Least Squares, Extreme Learning Machine)

getestet. Die Ergebnisse zeigten, dass alle nicht-parametrischen Methoden bessere Vor-

hersageergebnisse lieferten als die parametrischen, wobei kernel-basierte Algorithmen

besonders hohe Genauigkeit erreichten. Der Ausschluss von Pixel ohne Pflanzeninfor-

mationen verschlechterte die Leistung der Methoden. Bei parametrischen Methoden

war keine Unterscheidung von gLAI-Werten >3 möglich, und keine bei Werten >4 bei

nicht-parametrischen Methoden.

In Studie III wurde untersucht, ob a) die Daten der Kameras es erlaubten, die Lichtnut-

zungseffizienz von Mais in verschiedenen Parzellen des Versuchs von 2016 zu schätzen,

b) diese Werte sich von jenen unterschieden, die in anderen Veröffentlichungen zu finden

waren und c) ob es Unterschiede zwischen den Werten der RUE-Definitionen RUEtotal

und RUEgreen gab. Mithilfe der Fernerkundungs-Daten wurden Bedeckungsgrad und

Reflektanz geschätzt. Die Werte für RUEtotal variierten zwischen 4.05 und 4.59, und

zwischen 4.11 und 4.65 für RUEgreen. Im Vergleich mit publizierten Werten sind sie

höher, aber noch in einem plausiblen Rahmen. Die Differenz zwischen RUEtotal und

RUEgreen war minimal, was möglicherweise auf ein verlängertes Grün der Pflanzen (in-

duziert durch das Stay-Green-Merkmal der angebauten Sorte) zurückzuführen ist.

Es lässt sich schlussfolgern, dass UAV-basierte Daten kostengünstiger modifizierter

Kompaktkameras sich mit Einschränkung zur Schätzung von gLAI und RUE in Mais-

Feldversuchen eignen.
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Abstract

The potential for improved crop productivity is readily investigated in agronomic field

experiments. Frequent measurements of biophysical crop variables are necessary to

allow for confident statements on crop performance. Commonly, in-field measurements

are tedious, labour-intensive, costly and spatially selective and therefore pose a chal-

lenge in field experiments. With the versatile, flexible employment of the platform and

the high spatial and temporal resolution of the sensor data, Unmanned Aerial Vehicle

(UAV)-based remote sensing offers the possibility to derive variables quickly, contact-

less and at low cost.

This thesis examined if UAV-borne modified low-cost camera imagery allowed for re-

mote estimation of the crop variables green leaf area index (gLAI) and radiation use

efficiency (RUE) in a maize field trial under different management influences. For this,

a field experiment was established at the university’s research station Campus Klein-

Altendorf southwest of Bonn in the years 2015 and 2016. In four treatments (two levels

of nitrogen fertilisation and two levels of plant density) with five repetitions each, leaf

growth of maize plants was supposed to occur differently. gLAI and biomass was mea-

sured destructively, UAV-based data was acquired in 14-day intervals over the entire

experiment. Three studies were conducted and submitted for peer-review in interna-

tional journals.

In study I, three selected spectral vegetation indices (NDVI, GNDVI, 3BSI) were related

to the gLAI measurements. Differing but definite relationships per treatment factor

were found. gLAI estimation using the two-band indices (NDVI, GNDVI) yielded good

results up to gLAI values of 3. The 3-bands approach (3BSI) did not provide improved

accuracies. Comparing gLAI results to the spectral vegetation indices, it was deter-

mined that sole reliance on these was insufficient to draw the right conclusions on the

impact of management factors on leaf area development in maize canopies.

Study II evaluated parametric and non-parametric regression methods on their capa-

bility to estimate gLAI in maize, relying on UAV-based low-cost camera imagery with

non-plants pixels (i.e. shaded and illuminated soil background) a) included in and b) ex-

cluded from the analysis. With regard to the parametric regression methods, all possible
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band combinations for a selected number of two- and three-band formulations as well as

different fitting functions were tested. With regard to non-parametric methods, six re-

gression algorithms (Random Forests Regression, Support Vector Regression, Relevance

Vector Machines, Gaussian Process Regression, Kernel Regularized Least Squares, Ex-

treme Learning Machine) were tested. It was found that all non-parametric methods

performed better than the parametric methods, and that kernel-based algorithms out-

performed the other tested algorithms. Excluding non-plant pixels from the analysis

deteriorated models’ performances. When using parametric regression methods, signal

saturation occurred at gLAI values of about 3, and at values around 4 when employing

non-parametric methods.

Study III investigated if a) UAV-based low-cost camera imagery allowed estimating

RUEs in different experimental plots where maize was cultivated in the growing season

of 2016, b) those values were different from the ones previously reported in literature

and c) there was a difference between RUEtotal and RUEgreen. Fractional cover and

canopy reflectance was determined based on the RS imagery. Our study showed that

RUEtotal ranges between 4.05 and 4.59, and RUEgreen between 4.11 and 4.65. These

values were higher than those published in other research articles, but not outside the

range of plausibility. The difference between RUEtotal and RUEgreen was minimal,

possibly due to prolonged canopy greenness induced by the stay-green trait of the cul-

tivar grown.

In conclusion, UAV-based low-cost camera imagery allows for estimation of plant vari-

ables within a range of limitations.
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1 Introduction

With an anticipated world population of 9 billion people by the year 2050, im-

pacts of climate change and limited availability of arable land and fresh water,

agriculture faces great challenges to ensure global food security through increas-

ing yields, while simultaneously reducing environmental costs (Cui et al., 2016;

Fedoroff et al., 2010).

The potential for improved crop productivity is readily investigated in scientific

experiments, which aim at finding the optimal agricultural conditions by varying

management factors, in possible combination with the modification of the genetic

composition of crop varieties (Maat, 2011). Results from controlled environments

(e.g. greenhouse or growth chamber), however, are distinct from the actual sit-

uations that plants experience in the field and therefore difficult to extrapolate

to conditions outside of these (Araus and Cairns, 2014; Yang et al., 2017). For

simulation of the ’real world cropping system’, scientists turn to field experiments

where the crop response to different factors can be evaluated under natural con-

ditions.

The biophysical crop variables selected for evaluation should be measured fre-

quently, simultaneously and in various locations to allow for confident statements

on crop performance. Commonly, in-field measurements are tedious, labour-

intensive, costly and spatially selective, and therefore pose a challenge in field

experiments.

Satellite-based remote sensing (RS) has become an extremely useful technology

for collecting data for various agricultural applications over larger areas (Sankaran

et al., 2015). The high cost, susceptibility to cloud coverage, long revisit periods

and the lack of spatial resolution, however, limit its applicability in field experi-

ments, since plot sizes are commonly below the spatial resolution of spaceborne

sensors (Yang et al., 2017). It is furthermore difficult to compare the satellite

data with in-field ground measurements, because processes may display a finer-

scale heterogeneity (Brüser et al., 2014).

The ongoing advancement of Unmanned Aerial Vehicle (UAV)-based RS has
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opened up new opportunities in agronomic research. The versatile, flexible em-

ployment of the platform and the high spatial resolution of the sensor data enables

researchers to monitor crop development with unprecedented temporal resolution

and great spatial detail.

With ground sampling distances (GSD) ranging from millimetres to centimetres,

this data can add value to field experiments, as biophysical plant variables can

be captured non-destructively, frequently and rapidly over a larger amounts of

plots (Rasmussen et al., 2016; Zaman-Allah et al., 2015). Yet, the high pro-

curement cost of the UAV-carried sensors puts constraints on the applicability

of this data in experimental research. Commercial off-the-shelf (COTS) digi-

tal camera imagery with a similar information content, commonly derived from

cameras that cost only a fraction of sensors developed for scientific use, might

provide an alternative. This, however, comes at the expense of data certainty,

given that specifications of COTS cameras are rarely documented in great detail

(Berra et al., 2015).

Maize (Zea mays L.) is one of the three major cereal crops in the world, besides

wheat and rice (Tollenaar and Wu, 1999). First cultivated by farmers in Mexico

7000 to 10,000 years ago, it has spread around the globe ever since, with the

three countries USA, China and Brazil accounting for more than 75% of today’s

worldwide production (Ranum et al., 2014). Its grain is a major staple food in

several countries of Central and Latin America, Eastern and Southern Africa as

well as Southeast Asia, whereas it is mainly grown for animal fodder (both grain

and residual biomass for silage) and energy production (ethanol, biogas) in the

rest of the world (Ranum et al., 2014; Shiferaw et al., 2011). Through plant

breeding, the plant has adapted to the growing conditions of temperate regions,

which is why it is widely found under cultivation on German fields. Given the

importance of the maize crop in the agricultural production worldwide, increases

in productivity are central to efforts concerning food security and reduction of

worldwide carbon emissions.

The green leaf area index (gLAI) and the radiation use efficiency (RUE) are im-

portant variables for crop growth analysis since they ultimately indicate crop

productivity. Several studies have shown that RS allows for remote estimation of

gLAI, RUE and other variables in maize based on large-scale multispectral satel-

lite data (e.g. Dong et al. (2017); González-Sanpedro et al. (2008); Kira et al.

(2017); Kross et al. (2015)).
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However, until lately no attention has been paid to the UAV-based estimation of

gLAI and RUE in maize in small-scale experimental plots.
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2 Objectives of Study

The estimation of biophysical crop variables over larger areas via satellite-based

RS is well-explored and well-documented in scientific literature. The rise of UAV-

based RS, however, has opened up new opportunities, given the high spatial

resolution of the data and the versatile employment of the platform.

We1 were interested in the potentials of UAV-based COTS camera imagery for

estimating gLAI and RUE in a controlled biannual maize field experiment located

at Campus Klein-Altendorf (CKA), one of the university’s agricultural research

stations located southwest of Bonn.

The objectives of this study therefore were:

i To generally evaluate if UAV-based COTS camera imagery can be used to

estimate gLAI and RUE of maize in a biannual field experiment consisting

of small plots of different treatments;

ii To particularly locate potentials and limitations in gLAI estimation accu-

racy using different regression methods and different band combinations;

iii To explore if improving estimations of gLAI is possible by excluding non-

relevant information present in the ultra-high spatial resolution data;

iv To explore if it is possible to rely entirely on the RS data to analyse the

effects of different treatments on leaf area development.

The data that provides the basis for this study was collected in the years 2015

and 2016, and was subsequently analysed with regard to the study objectives

listed above. Three manuscripts were prepared and submitted for publication in

scientific journals.

The main part of this thesis is structured as follows:

1The three studies in chapters 5, 6 and 7, submitted for publication, and forming the core
part of this thesis were written in collaboration with my first supervisor PD Dr. Jürgen
Schellberg. To conform with the formulations of those chapters, the term ’we’ will be used
throughout the entire thesis. However, I would like to point out that all other chapters are
solely my own intellectual product.
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Chapter 3 provides a general overview of the basic concepts of vegetation RS,

RS-based estimation of biophysical plant variables, UAV-based RS and the

handling of COTS camera imagery,

Chapter 4 presents a detailed look into the study area, the image acquisition

workflow and the preprocessing of the images ahead of the analysis,

Chapter 5 examines the relationship between three selected spectral vegetation

indices (NDVI, GNDVI, 3BSI) derived from UAV-based COTS imagery and

the field-based gLAI measurements. It furthermore compares gLAI results

of different treatments with those of the corresponding spectral vegetation

indices,

Chapter 6 evaluates parametric and non-parametric regression methods on their

capability to estimate gLAI in maize, relying on imagery with non-plants

pixels (i.e. shaded and illuminated soil background) a) included in and b)

excluded from the analysis,

Chapter 7 investigates if a) UAV-based COTS camera imagery allowed estimat-

ing RUEs in different experimental plots where maize was cultivated in the

growing season of 2016, b) those values were different from the ones previ-

ously reported in literature and c) there was a difference between RUEtotal

and RUEgreen.

This chapter was peer-reviewed and published as:

Tewes, A., Schellberg, J., 2018. Towards Remote Estimation of Ra-

diation Use Efficiency in Maize Using UAV-Based Low-Cost Camera Im-

agery. Agronomy 8, 16. https://doi.org/10.3390/agronomy8020016

Chapter 8 summarizes the main results of this thesis in relation to the research

questions. It furthermore discusses the overall limitations of the findings,

and provides an outlook for future research.
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3 State of Research

3.1 The Basic Concepts of Remote Sensing of

Vegetation

RS techniques are increasingly contributing valuable information for the study of

vegetation systems and their functioning. Of particular advantage is that they

are contactless and non-destructive, and observations can easily be extrapolated

to larger scales (Jones and Vaughan, 2010). With the gathering of information at

a distance as the central concept, it has evolved into a discipline that is applied by

a range of scientists in different fields such as agriculture, archaeology, forestry,

geography or geology. RS uses electromagnetic radiation in one or more regions

of the electromagnetic spectrum to derive information (see figure 3.1), reflected

or emitted from the objects of interest (Campbell and Wynne, 2011). Knowl-

edge about the properties of that radiation and its interaction with the object

as well as the atmosphere through which it travelled and the detecting sensor

allows for correct interpretation by the analyst (Campbell and Wynne, 2011;

Jones and Vaughan, 2010). The electromagnetic spectrum describes the contin-

uum of electromagnetic waves of all existing frequencies and wavelengths. The

sun produces a full spectrum of electromagnetic radiation, which passes through

the atmosphere before reaching the surface of the earth. A part of it is reflected,

another part is absorbed and then re-radiated as thermal energy. The spectrum

is commonly divided into regions, with the optical spectrum (from 0.3 µm to 15

µm) defined as those wavelengths that can be reflected and refracted with lenses

and mirrors, and the reflective spectrum (from 0.38 µm to 3 µm) defined as the

portion of the solar spectrum that is used directly for RS (Campbell and Wynne,

2011; Jones and Vaughan, 2010). The visible (VIS) spectrum constitutes only a

small portion of the spectrum (0.4 to 0.7 µm), but is of great importance in RS of

vegetation, since it approximately corresponds with the photosynthetically active

region (PAR). The infrared (IR) region, which is partitioned into the near-infrared
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(NIR, 0.7-1 µm), the mid-infrared (MIR, 1-4 µm), the thermal infrared (TIR, 4-

15 µm) and the far infrared (15-100 µm) is found on the longer-wavelength side

(Jones and Vaughan, 2010). Radiation in the NIR region behaves, with regard

to optical systems, in an analogous manner to radiation in the visible spectrum.

This implies that films, filters and cameras with similar designs to those intended

for use with visible light can be used (Campbell and Wynne, 2011). Microwaves

are the longest wavelengths commonly used in RS, ranging from 1 mm to 1 m in

length. These can be sensed passively, but most RS in the microwave region uses

radiation that is artificially generated (Jones and Vaughan, 2010).

The spectral resolution of most remote sensing systems can be described in terms

of number and width of the bands of the electromagnetic spectrum (Jensen, 2007).

Figure 3.1 shows the most important wavelength ranges of the bands used in RS,

and the corresponding parts of the spectrum that are covered.

Figure 3.1: Electromagnetic spectrum with important remote sensing bands.
Source: Toth and Jóźków (2016)

For more information on the basic concepts of RS, the interested reader is referred

to introductory literature such as Campbell and Wynne (2011), Jensen (2007),

Lillesand (2000) or Jones and Vaughan (2010).

3.1.1 Remote Sensing Instruments and Platforms

RS is a quickly advancing technology, where the progress is mainly driven by

imaging sensor developments and the increasing performance of the informa-

tion infrastructure, including processing, storage and communication (Toth and

Jóźków, 2016). Science can nowadays benefit from a large variety of RS data

provided by different passive and active RS instruments carried by range of plat-

forms (the components acting together is referred to as RS system), ranging from

the early aerial camera to the modern hyperspectral scanner (Homolová et al.,
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2013; Jones and Vaughan, 2010). Additionally, new sensor-carrying platforms

are introduced and continuously improved. Especially Unmanned Aerial Vehi-

cles (UAV) have seen unprecedented development in recent times (Colomina and

Molina, 2014; Pajares, 2015). The choice of sensor for a particular purpose de-

pends on a number of factors, such as the use to which the data will be put, the

most suitable wavelength of electromagnetic radiation, the frequency at which the

observation is required, and the scale and variability in the scene observed (Jones

and Vaughan, 2010). Current operating RS systems can provide a wide variety

of spatial, spectral and temporal resolutions, with the majority being imaging

instruments.

The purpose of the platform is to position the sensor over the area of interest;

the choice may affect the spatial and temporal resolution of the data obtained.

The requirements of the desired measurements therefore determine the selection

of the platform (Jones and Vaughan, 2010). Typical ones comprise static and

’within-field’ platforms, UAVs, aircrafts and spaceborne satellites, each platform

exhibiting different operational parameters (see table 3.1). The prevailing sys-

tems used in vegetation studies are optical, passive systems. These optical spec-

troradiometers aboard satellite-, airborne- and ground-based platforms represent

a trade-off between spatial, spectral and temporal resolutions. The electromag-

netic spectrum is commonly sampled only with a few spectral bands (Homolová

et al., 2013).

Belward and Skøien (2015) provide an overview over satellites under civilian

and/or commercial control with the potential to gather global land-cover ob-

servations, Toth and Jóźków (2016) present a review of state-of-the-art remote

sensing technologies, including platforms and sensors. Besides the introductory

books listed above, the interested reader is referred to these publications for fur-

ther information.

3.1.2 Radiative Properties of Leaves and Canopies

The radiative properties of a plant canopy as a whole and its components (leaves,

stems, soil, water) are fundamental principles to the understanding of remote

sensing of vegetation in general and remote sensing of crops in particular. The

interaction of radiation with plant leaves and the resulting magnitudes of spectral

reflectance (ρλ), spectral absorption (αλ) and spectral transmission (ατ ) does not

only depend on the wavelength, but also on a range of structural and chemical
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Table 3.1: Typical sensor and platform configurations with main operational pa-
rameters. MS: Multispectral, HSI: Hyperspectral Image, LiDAR: Light
Detection and Ranging, SAR: Synthetic Aperture Radar. Source: Toth
and Jóźków (2016, modified)

Applicability and
operation aspects

Data acquisition
platforms

Satellite Airborne UAV Static

Maneuverability No/limited Moderate High Limited

Observation space Worldwide Regional Local Local

Sensor diversity MS / HSI / SAR MS / HSI / LiDAR
/ SAR

MS / LiDAR / HSI MS / LiDAR / HSI

Environment Outdoors Outdoors Outdoors/Indoors Outdoors/Indoors

Scale (inverse sen-
sor range)

Small Small/Medium Medium/Large Medium/Large

Ground Coverage Large (10km) Medium (1km) Small (100m) Small (50m)

FOV Narrow Wide Wide/Super Wide Wide/Super Wide

Repeat Rate Day Hours Minutes Minutes

Spatial Resolution
(GSD)

0.3-300 m 5-25 cm 1-5 cm 1-5 cm

Spatial Accuracy 1-3m 5-10cm 1-25cm 3-50cm

Deployability Difficult Complex Easy Moderate

Observability Vertical/Oblique Vertical / Oblique Vertical / Oblique
/ 360

Oblique / 360

Operational Risk Moderate High Low Moderate

Cost $$$$$ $$$ $ $$

characteristics (see Figure 3.2 for a typical spectrum of healthy green vegetation)

(Jones and Vaughan, 2010). All leaves absorb a large proportion of incident ra-

diation in the visible wavelength. This is largely determined by photosynthetic

pigments (especially chlorophyll, but also carotenoids and flavonoids) found in

the palisade layer of the leaf. Chlorophyll absorbs sunlight for photosynthesis,

preferentially in the blue and red part of the spectrum (Figure 3.3), with as much

as 70% to 90% of the incident light. Less light is absorbed in the green region

due to the gap in the absorption spectrum of chlorophyll a and b, which is why

foliage appears green to the human eye (Figure 3.3) (Campbell and Wynne, 2011;

Jensen, 2007). Radiative properties of other pigments are usually masked by the

dominance of chlorophyll absorption, and only emerge during leaf senescence or

environmental stress, when chlorophyll concentration decreases (Jensen, 2007).

Relatively little radiation is absorbed in the infrared, where radiative properties

are controlled by the structure of the spongy mesophyll tissue, not by plant pig-

ments (Figure 3.3) (Campbell and Wynne, 2011). Mesophyll tissue is composed
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Figure 3.2: Typical spectral reflectance characteristics for healthy green vegeta-
tion for the wavelength interval from 400 nm to 2,500 nm. Source:
Jensen (2007)

of many cells and intercellular air spaces that result in highly diffuse reflectance

(40% to 60%) and transmittance (40% to 60%) of light especially in the near-

infrared (NIR) (Campbell and Wynne, 2011; Jensen, 2007). The sharp rise of

reflectance between the red and NIR region is called red-edge.

Reflection of radiation from canopies depends both on the radiative properties

of the individual components of the vegetation (i.e. leaves, stems, soils, water,

etc.), and on the detailed canopy architecture or spatial organisation (i.e. average

leaf angle) in relation to the orientation of the sensor and the angular distribu-

tion of the incident radiation (Jones and Vaughan, 2010). Measured reflectance

therefore is a result of the interactions of those components (Figure 3.4), and is

considerably lower than reflectances measured for individual leaves (approx. 10%

for a single leaf and approx. 3-5% for a canopy in the visible region, approx.

50% for a single leaf and approx. 35% for a canopy in the near-infrared) (Camp-

bell and Wynne, 2011). This is because much of the light has undergone more

than one reflection. The relative lower decrease in the NIR than in the VIS is
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Figure 3.3: Interaction of leaf structure with visible and infrared information.
Source: Campbell and Wynne (2011)

due to the leaf additive reflectance, where both the high reflectance and trans-

mission lead to an enrichment of the signal with increasing depth of the canopy

(Jensen, 2007; Jones and Vaughan, 2010). The mechanisms that influence leaf

reflectance are in general well understood, but the interpretation of reflectance at

canopy level remains challenging due to to the multiple light interactions between

canopy elements and the background (Homolová et al., 2013). The leaf area in-

dex (LAI) is the most important plant variable determining radiation absorption

and transmission by canopies. It is defined as the total one-sided area of leaf

tissue per unit ground surface area (Bréda, 2003), and frames the area that inter-

acts with radiation and therefore provides the signal captured by remote sensing.

In a homogeneous canopy where absorbing components are evenly distributed

and small in comparison with the size of the canopy, spectral absorption can be

approximated by the Beer’s law (Equation 3.1):

I = I0e
−kL, (3.1)

where I0 is the irradiance above the canopy, I the irradiance at a point in the

canopy above which there is a leaf area index of L. k is the dimensionless ex-

tinction coefficient that determines the rate of attenuation through the canopy,

largely influenced by leaf-angle distribution (Hay and Porter, 2006; Jones and

Vaughan, 2010).
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Figure 3.4: Illustration of possible interactions of radiation with a plant canopy
(left). Leaves are randomly oriented, showing varying scattering
events. (A) shows incident sunlight directly reflected back to the sky,
(B) a small fraction that is transmitted through the leaf is reflected
from a second leaf, or (C) even a third. Some light is reflected from
the soil (D). The right illustration shows a simplification, where the
canopy is treated as a set of thin layers. The downward radiation is
attenuated by absorption and scattering at each layer, while the up-
ward radiation is the sum of all upwardly scattered radiation. Source:
Jones and Vaughan (2010)

3.2 Remote Sensing-Based Estimation of

Biophysical Crop Variables

Over the course of the years, a variety of methodologies have been developed to

estimate crop variables based on optical RS data. They rely on measurements

from the visible to shortwave infrared spectral region, and sensors stretching from

digital cameras to full-range spectroradiometers. In their review paper, Verrelst

et al. (2015a) developed a categorisation that binned retrieval methods into four

groups:

i Parametric regression methods,

ii Non-parametric regression methods,

iii Physically-based methods and

iv Hybrid methods.

The four groups are briefly reviewed below.
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3.2.1 Parametric Regression Methods

Parametric regression methods have been the most popular approach to estimate

biophysical variables of vegetation using optical RS. Commonly, a parameterized

expression relates one or several spectral bands to the variable of interest (e.g.

field measurements) via a fitting function. This fitting function may be either

linear or non-linear (e.g. exponential, power or x-order polynomial). Figure 3.5

shows a generalized procedure for parametric regression. Homolová et al. (2013)

state that these methods are computationally fast and may work well for the par-

ticular area and sensor of interest, but lack cause-effect relationships. As a result,

the statistical relationships suffer from lack of robustness and transferability, as

they are site, species and time specific (Homolová et al., 2013).

Figure 3.5: Flowchart of a generalized procedure of parametric regression meth-
ods. Source: Verrelst et al. (2015a)

The contrast between visible and NIR vegetation canopy reflectance has resulted

in the development and investigation of a number of spectral vegetation indices

(SVI), facilitating the estimation of certain biophysical variables due to the higher

information content than either visible or near-infrared measurements exhibit

alone (Jensen, 2007). SVIs are dimensionless measures derived from radiomet-

ric data, with the use to indicate the amount of green vegetation present in the

sensor’s view. The vast majority is based on the sharp increase in reflectance

between the visible and the NIR spectrum. They are most commonly used when

the relationship is based on data from sensors that deliver only a limited number

of broad spectral bands (e.g. multispectral sensors mounted on satellites or aerial

vehicles). SVI-based approaches are the most popular because they are simple,

easy to understand, and well-documented for a number of vegetation variables

(see figure 3.6 for an example, where the LAI of wheat is related to the NDVI).

Over the years, many SVIs have been developed. They can be categorized ac-

cording to their mathematical definition (Verrelst et al., 2015a):

13



• Two-band SVIs, which comprise the vast majority of indices reported, such

as the simple ratio (SR), the normalized difference vegetation index (NDVI),

the green normalized difference vegetation index (GNDVI), the soil ad-

justed vegetation index (SAVI) or the wide dynamic range vegetation index

(WDRVI).

• Three-band SVIs, such as the enhanced vegetation index (EVI), the trian-

gular VI (TVI) or the modified chlorophyll absorption in reflectance index

(MCARI).

• Four or more band SVIs, which typically combine two SVIs such as the

TCARI/OSAVI.

SVIs have been widely developed and used for data delivered by sensors with a

limited amount of spectral bands (e.g. most satellite-based multispectral sensors),

but are increasingly used in hyperspectral RS as well. Reducing those larger

datasets into simple SVI formulations might lead to the situation that parts of the

information remain unexploited. Decisions on band selection, index formulation

and fitting function should therefore be carefully made (Verrelst et al., 2015a).

Figure 3.6: An example for parametric regression. Here, the relation between the
normalized difference and LAI is examined. The solid line shows the
relation for the growth period, the dashed line the relation for the
senescence period. Source: Asrar et al. (1984)
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3.2.2 Non-Parametric Regression Methods

Non-parametric regression methods have evolved in RS-based estimation of bio-

physical crop variables due to the development and adaptation of sophisticated

learning models to regression challenges. Based on training data, they minimize

the estimation error of the variables by adjustment of weights (coefficients) (Ver-

relst et al., 2015a). An important advantage over parametric regression methods

is the use of all spectral bands offered by the sensor (i.e. the full spectrum in case

of a hyperspectral measurement), with no explicit selection needed. Complex

associations (e.g. non-linear relationships) between the variable of interest and a

potentially unlimited number of explanatory predicting variables can be featured

without the explicit knowledge of the underlying processes (Houborg and Mc-

Cabe, 2018). Model over-fitting is prevented by defining model weights through

a combination of training set approximation error minimisation while limiting

model complexity (Verrelst et al., 2015a). Typical learning approaches include

decision trees (e.g. random forests), artificial neural networks, kernel-based algo-

rithms (e.g. support vector machines) and Gaussian process regression (Houborg

and McCabe, 2018). A scheme of a generalized non-parametric regression work-

flow is illustrated in figure 3.7.

Figure 3.7: Flowchart of a generalized procedure of non-parametric regres-
sion methods. Contrary to parametric regression, the band selec-
tion/transformation is optional. Source: Verrelst et al. (2015a)

3.2.3 Physically-Based Methods

Physically-based methods rely on the inversion of models that establish cause-

effect relationships based on physical laws (Verrelst et al., 2015a). They com-

monly make use of radiative transfer models (RTMs), which simulate light ab-

sorption and scattering inside a vegetation canopy, thereby accounting for leaf bio-

chemical composition and canopy structural properties (Homolová et al., 2013).
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Physically-based methods were not in focus of this study; they are mentioned

here for the sake of completion. Thus, we refrain from further elaboration. Addi-

tional information on this topic is available in the review paper of Verrelst et al.

(2015a) or chapter 8 of Jones and Vaughan (2010).

3.2.4 Hybrid Methods

Hybrid methods combine elements of the flexible, computationally-efficient non-

parametric methods with physically-based methods, which offer advantages in

their generalization levels. In this inverse mapping approach, radiative transfer

model-simulated data is used to train a non-parametric model. Contrary to the

physically-based approaches, the hybrid methods make use of all available data,

and not just the simulated spectrum closest to the measured one.

Hybrid methods were also not in focus of this study, the interested reader is

referred to Verrelst et al. (2015a) for a review of publications investigating this

approach.

3.3 UAV-Based Remote Sensing

The integration of unmanned aerial vehicles (UAV) into the field of RS unfolded

quickly and has had major impacts in the last years, perhaps best expressed by

the increase of scientific publications documenting UAV-related RS research (see

Cummings et al. (2017) for analysis), the organisation of UAV-devoted confer-

ences such as the biannual ISPRS International Conference on Unmanned Aerial

Vehicles in Geomatics (UAV-g), by special issues in well-established scientific

journals (e.g. ’UAV-Based Remote Sensing Methods for Modeling, Mapping, and

Monitoring Vegetation and Agricultural Crops’ or ’Recent Trends in UAV Remote

Sensing’ in Remote Sensing, ’Unmanned Aerial Vehicles for Environmental Appli-

cations’ in International Journal of Remote Sensing and ’Small Unmanned Aerial

System Development and Applications in Precision Agriculture and Natural Re-

source Management’ in European Journal of Remote Sensing) or the creation of

scientific journals such as Drones (MDPI AG, Basel, Switzerland) or Journal of

Unmanned Vehicle Systems (NRC Research Press, Ottawa, Canada).

The application of UAVs in recent years has evolved rapidly due to advancements

and price declines in electronics, optics, computer science, batteries, among oth-

ers (González-Jorge et al., 2017).
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There are various acronyms and names under which UAVs are also described, such

as UAS (Unmanned Aerial System), drone, aerial robot, or RPAS (Remotely-

Piloted Aerial System) (Colomina and Molina, 2014). The term UAS describes

the entire system comprising the unmanned vehicle, the ground control station

and a communications data link for command and control of the vehicle, whereas

the term UAV only the vehicle (Colomina and Molina, 2014). Most scientific

publications indeed cite the term UAV (Cummings et al., 2017). Whatever the

acronym used, they commonly refer to vehicles with flying capacity without any

person onboard, able to fly autonomously or fly remotely controlled (Pajares,

2015; Sankaran et al., 2015). In practice, both fixed and rotating wing solutions

(or rotocopter) are used (see figure 3.8 for photos). Fixed-wing solutions gen-

erally offer longer flying times for the same payload. In contrast, rotating-wing

solutions, such as quadcopter, hexacopter or octocopter provide better manoeu-

vrability and need little space for take off and landing (Toth and Jóźków, 2016).

The flying height controls the spatial resolution of the sensor, the maximum area

Figure 3.8: Types of Unmanned Aerial Vehicles. Source: Sankaran et al. (2015)

covered is mainly defined by the available onboard power, the flight regulations in

the area and the communication range between the UAV and the operator (Toth

and Jóźków, 2016).

Nowadays, UAV versions of all sensors carried on traditional RS systems are avail-

able on the market (Cummings et al., 2017). These comprise LiDAR (Lin et al.,

2011; Wallace et al., 2012), multispectral cameras (Berni et al., 2009; Verger et al.,

2014; Zhou et al., 2017), hyperspectral cameras (Aasen et al., 2015; Yue et al.,

2017), spectrometers (Burkart et al., 2015; von Bueren et al., 2015) and thermal

cameras (Berni et al., 2009; Gonzalez-Dugo et al., 2013). The majority of studies

published on UAV-based environmental research, however, have utilized COTS
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digital cameras, which combine good image performance with light payload and

cheap procurement cost (Cummings et al., 2017). This type of sensor was also

employed in this study. A general overview is presented in section 3.4.

For further information on UAV-based RS, the reader is referred to the excellent

reviews by Zhang and Kovacs (2012), Colomina and Molina (2014), Salamı́ et al.

(2014), Pajares (2015), Sankaran et al. (2015), Yang et al. (2017) and González-

Jorge et al. (2017).

3.4 Modified Commercial Off-The-Shelf Digital

Cameras as Low-Cost Solution

3.4.1 Introduction to COTS Cameras

Commercial off-the-shelf digital cameras (COTS) are increasingly used for re-

search in vegetation-related sciences, due to their low cost, easy operation, light

weight, compact size and compact data storage, as well as their possibility to

sense NIR light after modification of the body (Rabatel et al., 2014). COTS

cameras may be employed with the original characteristics (unaltered), or they

may be modified to detect NIR radiation (Verhoeven et al., 2009).

UAV-based COTS applications in crop science comprise crop height estimation

(Chu et al., 2016; De Souza et al., 2017; Geipel et al., 2014; Holman et al., 2016;

Li et al., 2016; Schirrmann et al., 2017), biomass estimation via canopy height

(Bendig et al., 2014, 2015; Li et al., 2016; Maresma et al., 2016), biomass estima-

tion via vegetation indices (Schirrmann et al., 2016; Vega et al., 2015), analysis

of phenology (Burkart et al., 2017), LAI estimation (Córcoles et al., 2013; Hunt

et al., 2010; Lelong, 2008), yield prediction (Haghighattalab et al., 2017; Maresma

et al., 2016; Zhou et al., 2017), crop and weed mapping and classification (Cal-

vario et al., 2017; Castaldi et al., 2016; Yang et al., 2014; Zhang et al., 2016),

canopy cover (Chu et al., 2016; Liebisch et al., 2015; Torres-Sánchez et al., 2014;

Yang et al., 2014), assessment of field conditions (Gnädinger and Schmidhalter,

2017; Khot et al., 2016) plant vigor and stress assessment (Gago et al., 2015; Ren

et al., 2017b) and plant density estimation (Jin et al., 2017).

COTS cameras are typically fitted with either a CCD (Charge Coupled De-

vice) or a CMOS (Complementary Metal Oxide Semiconductor) sensor, where

the silicon-based sensor substrate is inherently sensitive to electromagnetic ra-
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diation in the wavelengths between 350 nm and 1100 nm, including ultraviolet

(UV) and NIR (Nijland et al., 2014). Most digital cameras use a Bayer pat-

tern array of filters to obtain red, green and blue bands for a digital image (see

below for a detailed explanation) (Hunt et al., 2010). Along with VIS radia-

tion, these filters transmit UV and NIR radiation, which is why cameras are

fitted with an internal hot-mirror filter blocking these wavelengths (Hunt et al.,

2010; Nijland et al., 2014). If the rejection filter is removed, the transmission

profiles of the Bayer filters remain, and each band is sensitive to its original

colour and NIR radiation (Nijland et al., 2014). If the hot-mirror filter is re-

placed by a filter that allows transmittance of NIR light and selected regions of

the visible spectrum, it is possible to acquire NIR-only information in one band.

Available filters comprise the following, with a number of commercial companies

(e.g. Life Pixel Infrared, Mukilteo, WA, USA; LDP LCC Inc., Carlstadt, NJ,

USA; Optik Macario GmbH, Mönchengladbach, Germany; DSLR AstroTEC,

Engen, Germany) and do-it-yourself online guides (e.g. https://publiclab.

org/wiki/near-infrared-camera, accessed December 22, 2017 or http://www.

instructables.com/id/infrared-digital-camera---the-real-way/, accessed

December 22, 2017) offering the conversion:

• 550 or 590 nm long-pass filter giving R = Red + NIR, G = Green + NIR

and B = NIR only,

• Dual-band-pass filter that transmits light only in the 400-600 nm and 700-

800 nm domains, giving R = NIR only, G = Green and B = Blue,

• NIR only (>700 nm long pass), where all bands have NIR-only sensitivity,

but with a wider range in R than in B and G,

• Monotone NIR-only filter, with a more or less same NIR sensitity in all

bands (Nijland et al., 2014).

Unfortunately, the filter choice influences the spectral sensitivity and dynamic

range of the sensor, resulting in large exposure differences between the bands

and possibly causing loss of dynamic range (Nijland et al., 2014). The challenge

when employing COTS (modified or unmodified) however is that neither of those

are optimized for accurate radiance capture in a scientific context, but rather

to produce images that appear pleasing to the human eye. The internal image

processing firmware introduces nonlinearities through brand- and model-specific
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operations that may change colour, contrast and white balance of the images.

Subsequently, the images are transformed to a nonlinear RGB space and com-

pressed in a lossy, irreversible fashion (Figure 3.9) (Akkaynak et al., 2014). Thus,

without control over the alteration of image information in a black-box cam-

era system, scientists may compromise data quality and repeatability (Akkaynak

et al., 2014).

Figure 3.9: Basic image processing pipeline in a consumer camera. Source:
Akkaynak et al. (2014)

3.4.2 Working with RAW Imagery

The RAW format commonly exhibits a linear relationship to scene radiance, con-

trary to the compressed, widely-used JPG format (Akkaynak et al., 2014). A

RAW file is the analogue sensor information that was amplified and converted to

digital data, without being subjected to any major processing by the camera’s

firmware (Verhoeven, 2010).

The most widespread method to give colour sensitivity to a camera’s sensor is the

use of a colour filter array (CFA). A CFA is a mosaic pattern of coloured filters

that is positioned on top of the sensor, allowing only specific spectral wavelengths

to be collected by the photodiodes. Nowadays, almost all sensors have a Bayer

colour filter array, which combines a red, a blue and two green sensor cells (to

mimic the higher sensitivity to green light by the human visual system and en-

large the perceived sharpness of the digitally recorded scene) into one true-colour

image pixel (Nijland et al., 2014; Verhoeven, 2010). The filters are characterized

by their spectral sensitivity, which is unique to every make and model (i.e.two

different cameras record different RGB values for the same scene) (Akkaynak

et al., 2014). Camera manufacturers typically do not publish this information

(Berra et al., 2015). Scientists may therefore either measure or estimate the sen-

sitivity, commonly by taking photographs of monochromatic light produced by a
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monochromator (Darrodi et al., 2015). Figure 3.10 shows the spectral response

curves from three different unmodified RGB cameras. The analysis of both shape

and intensity of the curves shows differences among the camera models (Berra

et al., 2015).

Because each pixel senses only one spectral component, an algorithm is needed

to estimate the missing colour values (Lebourgeois et al., 2008; Verhoeven, 2010).

This interpolation process is also known as demosaicking or CFA colour inter-

polation (Lebourgeois et al., 2008). A broad range of algorithms (linear and

non-linear) with varying complexity and computational demand have been devel-

oped in recent years, which give the users the choice (and possibly confusion) to

select a specific one according to the data source (Verhoeven, 2010). Verhoeven

(2010) tested different demosaicking algorithms and found the AHD (Adaptive

Homogeneity-Directed) algorithms to be the best suited for digital NIR imagery.

Unfortunately, RAW unprocessed data contains modifications that may occur

during the collection, processing and transmission of the data by the sensor sys-

tem, which are otherwise removed by the in-camera firmware, and that include

processes that either introduce unwanted additional measurements or directly

alter the strength or spatial properties of the incoming radiance (especially vi-

gnetting and lens distortion) (Kelcey and Lucieer, 2012).

Vignetting is defined as a spatially dependent light intensity fallof that results in

a progressive radial reduction in radiance strength towards the edges of the im-

age (Kelcey and Lucieer, 2012). The primary mechanism arises from differences

in irradiance across the image plane due to the optical properties of the camera

lense. The occlusion of light is increased by widening angles, leading to a radial

shadowing effect as illumination is reduced (Kelcey and Lucieer, 2012; Lebour-

geois et al., 2008). Vignetting causes problems when radiometric quantities are

estimated from images (Lebourgeois et al., 2008). Lelong (2008) found the mean

digital number to decrease by 5% in the visible bands and by 35% in the infrared

one, with the latter mostly due to an additive high-pass filter employed in front

of the sensor.

The most-widely used correction method relies upon the generation of a per-pixel

correction factor lookup-table (LUT) from a flat field image. Being a uniform,

spectrally homogeneous, Lambertian surface, the brightness variations can only

be attributed to vignetting, not to the flat field (Kelcey and Lucieer, 2012; Le-

long, 2008). Corresponding correction factor imagery can be generated, assuming
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Figure 3.10: Spectral response curves of three unmodified RGB cameras, nor-
malised to the peak value of each camera’s green channel. A: Pana-
sonic DMCLX5, B: Canon A2200, C: Sony Nex7. Source: Berra
et al. (2015)
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Figure 3.11: Forms of lens distortion: original, barrel lens distortion, pincushion
lens distortion. Source: Kelcey and Lucieer (2012)

that the brightest pixel within the image represents the true radiance not influ-

enced by vignetting (Kelcey and Lucieer, 2012). Another method is to average

an ensemble of a high number of randomly taken images at different sites, and

create a LUT under the assumption that directional effects cancel out statistically

(Burkart et al., 2017; Verger et al., 2014). Since vignetting varies between bands,

exposure length, filters, aperture and focal length, a different LUT needs to be

created for each band and setting (Lebourgeois et al., 2008).

Lens distortion is a modification altering the spatial properties of incoming ra-

diance, and results in a radially dependent geometric shift in a measurement

position (Kelcey and Lucieer, 2012). It is caused by a combination of differences

in magnification level across the lens surface and the misalignment between lens

and the detector plane. It is commonly expressed as radial and tangential distor-

tion, with radial distortion showing a curving effect towards the centre of the lens.

Negative displacement results in pincushion distortion, positive displacement in

a barrel distortion effect (see figure 3.11) (Kelcey and Lucieer, 2012). Tangential

distortion is caused by the non-alignment of the lens with the sensor, resulting in

a planar shift in the perspective of the image (Kelcey and Lucieer, 2012).

A widely used model for lens distortion is the Brown-Conrady model, which is

able to calculate both the radial and tangential components of lens distortion. It

makes use of an even-order polynomial model to calculate the radial displacement

of a given pixel. For this, distortion coefficients need to be calculated, which can

be done via the utilisation of a planar calibration grid of known geometric prop-

erties. Images of the grid are taken from different orientations, which allows for

the estimation of both the intrinsic and extrinsic camera parameters based on the

point correspondence between the defined geometric properties of the grid and
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the distorted points within the image (Kelcey and Lucieer, 2012).

Other modifications include sensor noise and radiance strength disparities, but

are commonly not accounted for in studies employing COTS imagery in their

analysis. Kelcey and Lucieer (2012) provide a detailed discussion of those modi-

fications.

3.4.3 Processing UAV-Acquired COTS Imagery

A UAV-based image acquisition campaign over a larger area commonly results in

hundreds or thousands of images at very high resolution (Laliberte et al., 2011).

Every image requires correction for the modifications mentioned above as well

as for variations in radiance. The radiance measured by the camera depends on

incident radiation at the given time of acquisition, plus the optical properties of

the scene. Both the quantity and quality (i.e. the spectral composition) are re-

lated to the solar zenith angle and to prevalent atmospheric conditions. To make

images comparable, they need to be radiometrically normalised, accounting for

both incident radiation and camera settings (Lebourgeois et al., 2008; Zaman

et al., 2014). Thereby, the spectral information stored as digital numbers (DN)

is converted to reflectance values that correct for factors listed above. This ap-

proach is especially important in applications where multitemporal acquisitions

are required, such as agriculture or forestry (Berra et al., 2017).

For the creation of an orthophoto, images need to be mosaicked (although Ras-

mussen et al. (2016) point out that mosaicking is not necessary in agricultural

applications, but may facilitate analysis). Two approaches are known: The first

relies on traditional photogrammetric methods (software such as Microsoft ICE,

or Erdas PhotoModeler), the second approach on software coming from the com-

puter vision domain (Structure from Motion - SfM). The main difference is that

SfM software computes 3D points and bases the stitching process on the 3D infor-

mation, where the colour is assigned accurately to the pixels (Rasmussen et al.,

2016). Furthermore, the perspective distortions of the camera are corrected for,

which is not necessarily the case in the photogrammetric approach (Rasmussen

et al., 2016). Both approaches are computationally intensive.
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4 Material and Methods

4.1 Study Area and Field Experiment

This study was based on a field experiment that was established at Campus Klein-

Altendorf (CKA), the university’s agricultural research facility located 15 km

southwest of Bonn between the cities of Meckenheim and Rheinbach (6◦59′32′′E,

50◦37′51′′N, 184 meters above sea level). The climate at CKA is characterized

by temperate humid conditions with maritime influence. Its location lies in the

rain shadow of the Eifel region, in the warmer, rural part of the Lower Rhine

Basin. Long-term average yearly precipitation from 1956 to 2014 was 603 mm,

the long-term average temperature for the same period was 9.4 ◦C. The soil is

classified as hypereutric, siltic Haplic Luvisol1 that developed from Loess. The

measure of productivity of the field according to the German system2 is 85 - 90

(www.cka.uni-bonn.de/standort, accessed December 22, 2017).

The field experiment was established in a completely randomised sampling design

and consisted of a combination of two plant densities (PD) and two treatments

of nitrogen (N) fertilization.

This design is commonly used to compare treatments when environmental con-

ditions are fairly uniform, and the principles of replication and randomisation

apply. Every treatment is randomly applied to several experimental plots. This

ensures that there is no subjectivity in the allocation of treatments to plots. Fur-

thermore, the effects of other factors are expected to cancel out when the means

of treatments are compared (Clewer and Scarisbrick, 2013).

Implementation occurred during the growing seasons (May - October) in the years

2015 and 2016. Plant densities comprised 50,000 plants ha-1 (S1) and 100,000

plants ha-1 (S2), the N treatments 100 kg N ha-1 (N1) and 200 kg N ha-1 (N2),

respectively. Every treatment was conducted on a plot sized 3 m x 30 m, with five

repetitions each. Row spacing was 0.75 m. S1 plots were thinned out manually

1Deutsche Bodensystematik: Normparabraunerde aus Löss
2Ackerzahl nach Reichsbodenschätzung
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immediately after emergence since the drilling machine could not be adjusted

to varying plant densities. Additionally, all plots were checked for wrongly set

plants. N was applied as inorganic ammonium sulfate (ASN) before planting

as a one-time treatment. A herbicide (Zintan Platin Plus Pack, Syngenta Agro

GmbH, Maintal, Germany) was applied according to standard practice to sup-

press the growth of weeds. No irrigation scheme was practised.

Two different cultivars were grown between the years, due to unavailability of the

cultivar seeds grown in 2015 in the proceeding year. In 2015, the hybrid Panasch

(AGA Saat, Neunkirchen, Germany) was cultivated, the hybrid Ricardinio (KWS

Saaten SE, Einbeck, Germany) in 2016.

4.2 UAV-based Image Acquisition

4.2.1 The UAV

We deployed an Mikrokopter OktoXL6S12 (HiSystems GmbH, Moormerland,

Germany) rotary copter. The device was lifted by eight engines, which in turn

were powered by two 6S batteries. Maximum flight time depended on wind speed

and payload, but was usually around 20 minutes. The installed camera mount

was able to compensate the copter’s rotations in roll and pitch direction, which

held the cameras in a stable nadir viewing angle.

The copter mastered waypoint flights via a GPS module. Flight planning was

done ahead of the first flight, and the same plan was used for every image acqui-

sition campaign.

4.2.2 Cameras and Imagery

We used two Canon ELPH 110HS compact digital cameras with an effective still

resolution of 16.1 megapixels to acquire images. Each camera was equipped with

a 1/2.3-inch CMOS sensor containing 4608 x 3456 recording pixels. Originally,

both cameras were sensitive to light in the blue, green and red (RGB) domain,

due to the Bayer filter mounted on top of the sensor. The modification was done

by LDP LLC Inc. (Carlstad, NJ, USA), with installation of filters that were

developed in-house. The first camera (hereafter: RGNIR camera) was fitted a

blue rejection filter, which supposedly blocked light in the blue domain and in

turn rendered this band sensitive to NIR light from roughly 800 nm to 900 nm.
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After the modification, this camera delivered R = Red + NIR, G = Green +

NIR and B = NIR only (Figure 4.2b). The second camera (hereafter: BGNIR

camera) was fitted a dual-band pass filter that blocked light in the red domain;

the red channel became sensitive for light in the wavelengths 680 nm to 780 nm

(covering the red edge, fig. 4.2a). When the cameras were combined, 5 bands

were available (Fig. 4.2c), with a redundancy of the green band.

The Canon Hack Development Kit (CHDK - http://chdk.wikia.com/, accessed

December 22, 2017) was used as the software application to capture RAW im-

agery, since the cameras’ original firmware did not provide this feature. CHDK is

an open-source, freely available software provided for Canon cameras, that adds a

number of features not provided by the original software, such as shooting images

in RAW, ultra-fast shutter speeds, shutter-priority exposure or aperture-priority

exposure. The software also allows for fixed shutter speeds and aperture, which

was used to capture all images with the same camera settings.

Images were acquired with a focal length of 4.3 mm. Shutter speed was adjusted

per sampling date depending on incident light conditions, but was commonly

held between 1/1600s and 1/800s. CHDK was programmed to shoot in an inter-

val mode, with one image every 4 seconds. Images were acquired from approx.

50 meters above ground level.

The flight altitude defines the ground sampling distance (GSD) of each pixel in

the images and the maximum area covered without change of batteries (Mesas-

Carrascosa et al., 2015), and therefore represents the fair balance between desired

spatial resolution and maximum flight time. The ground sampling distance is a

result of sensor size, flight altitude and focal length and was calculated to be 1.55

cm given the set of cameras and the flight height.

4.3 Preprocessing of Images

4.3.1 Demosaicking, Removal of Lens Distortion and

Vignetting

All RAW images were converted to 16 bit linear TIFF using the dcraw software

(David Coffin, https://www.cybercom.net/~dcoffin/dcraw/, accessed Decem-

ber 22, 2017). The AHD demosaicking algorithm was used as suggested by Ver-

hoeven (2010). We used Agisoft Lens (Agisoft LLC, St. Petersburg, Russia) to
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calculate the Brown-Conrady coefficients. Agisoft Lens is an automatic lens cali-

bration software, which uses a calibration grid (chessboard design) displayed upon

a flat panel computer LCD screen to estimate camera calibration parameters. A

series of images was taken from slightly different angles with both cameras, and

fed into the software, which calculated the coefficients subsequently.

Vignetting effects were quantified averaging 1,500 randomly taken RAW images.

A per-pixel correction factor LUT for every band was generated (Fig. 4.3), as-

suming the brightest pixel corresponds to the true radiance. Every image used

in this study was corrected for vignetting effects using the corresponding LUT.

The workflow was implemented in R (R Core Team, 2017) via the raster package

(Hijmans, 2016).

4.3.2 Conversion to Reflectance

The empirical line calibration method was used to convert the DNs to reflectance

values. This method uses an empirically-derived equation which predicts re-

flectance from radiance (Fig. 4.4), based on reflectance spectra from calibration

targets within the image and their respective radiances recorded by the sensor

(Smith and Milton, 1999). A separate equation is developed for each band, and

then applied to each pixel of the image. The equations attempt to remove both

illumination and atmospheric effects (Smith and Milton, 1999).

We used aluminium plates sized 50 cm x 50 cm covered with Nextel coating

(Mankiewicz Gebr. & Co., Hamburg, Germany) placed on the ground next to

the field as targets for conversion of digital numbers to reflectance (Fig. 4.5).

Covered with the coating, the targets exhibited a fairly uniform reflectance along

the electromagnetic spectrum between 400 nm and 1100 nm, with good lamber-

tian characteristics (see Aasen et al. (2015, Figure 8) for spectra of targets used).

In 2015, three panels were used (black, grey, white) for conversion. Due to the

NIR bands’ low sensitivities, shutter speed had to be adjusted accordingly, which

led to saturation of the white panel’s signal in the visible bands. Therefore, only

the black and grey panels responses were used for conversion of the visible bands,

all three panels for conversion of the NIR bands. In 2016, five panels (black,

darkgrey, grey, lightgrey, white) were placed next to the field, but only the same

ones as in 2015 were used for conversion. We found that, when using all five pan-

els for conversions and comparing reflectance values of invariant features from

2015 and 2016 (e.g. asphalt from the road next to the field), reflectance differed
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between 2% to 3%. 100 pixels per panel were extracted from the image that

captured the panels from closest to nadir position, averaged, and related to the

panel reflectance.

4.3.3 Orthomosaicking

Agisoft Photoscan Professional (Agisoft LLC, St. Petersburg, Russia) was used

to perform the photogrammetric processing. It includes the following main steps:

i Image alignment and referencing, where the camera position and orienta-

tion is found in 3-dimensional space and coordinates are assigned based on

ground control points (GCPs) visible in the images. We used six GCPs lo-

cated at the edges of the field to reference our images. The position of the

points was determined using a Trimble Geo7X (Trimble Inc., Sunnyvale,

CA, USA) differential GPS. Alignment was done with the accuracy set to

high.

ii Creation of a dense point cloud. Based on the estimated camera positions,

Photoscan calculates depth information and combines them into a single

dense 3D point cloud. This step is computationally very intensive. We

chose a medium reconstruction quality.

iii Mesh creation. Here, the structure of the captured objects is approximated

by a number of small polygons. We selected ’Height field’ as the surface

type, and the dense cloud as the source data.

iv Building the orthomosaic. In this step, Photoscan generates a high resolu-

tion image based on the source photos and the reconstructed model. We

disabled the blending mode, such that the value for the pixel is taken from

the picture with the camera view being almost along the normal to the

reconstructed surface in that point. Our intention was to thereby minimise

directional effects, since only the central part of each image captured in

nadir position contributes to the orthomosaic.

Multi-camera approaches require image registration to accurately establish a re-

lationship between the pixel coordinates of every camera (Rabatel and Labbé,

2016). This is either done by registering all bands directly, or computing a geo-

referenced and orthorectified mosaic for every set of camera imagery, and subse-

quently overlaying them based on their coordinates (Rabatel and Labbé, 2016).
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We used the first option, processing the images of both cameras in the same

workspace and finally built separate orthomosaics (see figure 4.6 for example). A

visual assessment of accuracy revealed alignment at sub-pixel accuracy.

This workflow explained above resulted in two orthomosaics per measurement

date, one for each camera respectively. They were subsequently analysed in R (R

Core Team, 2017).
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Figure 4.1: The location of Campus Klein-Altendorf in the Lower Rhine Basin.
Source: osm.org

(a) BGNIR Response (b) RGNIR Response (c) Combined Response

Figure 4.2: Cameras’ spectral responses as provided by the modifying company.
Source: maxmax.com
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(a) BGNIR Blue Band (b) BGNIR Green Band (c) BGNIR NIR Band

(d) RGNIR Red Band (e) RGNIR Green Band (f) RGNIR NIR Band

Figure 4.3: Visualisation of vignetting effects.

Figure 4.4: Prediction equation development from two calibration targets using
the empirical line method. Source: Smith and Milton (1999)
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Figure 4.5: Calibration targets seen from 50 m height, visible between the two
vehicles. Image captured with RGNIR camera.

(a) BGNIR

(b) RGNIR

Figure 4.6: Example of the two separate orthomosaics generated for every acqui-
sition day. Figure 4.6a shows orthomosaic generated from the BGNIR
camera data, figure 4.6b the orthomosaic generated from the RGNIR
camera data. Images were acquired on June 25, 2015. Overlying
polygons indicate extent of experimental plots. Destructive sampling
areas are visible towards the left and right edges of the block. To
lower the size of the dataset, spaces between blocks were removed.
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5 Study I: Remote green LAI

Estimation in Maize Using

UAV-based Modified Consumer

Camera Imagery Part I. Impact

of Plant Density and Nitrogen

Fertilisation

5.1 Abstract

Measuring field trial green leaf area index (gLAI) development in maize using in-

situ measurements is labor-intensive, costly work, with often inaccurate results.

Unmanned Aerial Vehicle (UAV)-based remote sensing (RS) facilitates estimation

due to quick and easy deployment of sensors that are able to cover a number of

treatment plots in little time. Modified low-cost cameras with sensitivity in the

visible and near-infrared (NIR) domain have recently gained the attention of

the scientific community. However, their potential to sense differences in gLAI

in maize induced by management factors is largely unexplored. We used two

UAV-mounted modified low-cost consumer cameras to acquire nadir images of a

maize trial that comprised four treatments in five repetitions, including two plant

densities and two nitrogen fertilization levels. The UAV data covered two growing

seasons (years 2015 and 2016) in bi-weekly intervals with a ground sampling

distance of 1.5 cm. gLAI was measured destructively using a planimeter, on the

same days as the image acquisition, with at least 32 samples per date. Relating

three selected spectral vegetation indices (NDVI, GNDVI, 3BSI) to our gLAI

measurements, we found differing but definite relationships per treatment factor.
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gLAI estimation using the two-band indices (NDVI, GNDVI) yielded good results

up to gLAI values of 3. The 3-bands approach (3BSI) did not offer any benefits.

Comparing gLAI results to the spectral vegetation indices, we determined that

sole reliance on vegetation indices was insufficient to draw the right conclusions

on the impact of management factors on leaf area development in maize canopies.

5.2 Introduction

Leaf area index (LAI) is one of the key variables in crop growth analysis due to its

influence on light interception, biomass production, plant growth and ultimately

on crop yield, and is critical to understanding the function of many crop manage-

ment practices (Wilhelm et al., 2000). It is defined as the total one-sided area of

leaf tissue per unit ground surface area (Jonckheere et al., 2004), and can be sub-

divided into photosynthetically active and inactive components (Nguy-Robertson

et al., 2012). The former is composed of green leaf area as a photosynthetically

functional component and referred to as green LAI (gLAI) (Viña et al., 2011).

Green LAI is a commonly derived variable in field experiments that evaluate the

influence of management factors on crops (e.g. fertilizer supply, plant density or

pest management). Throughout literature, the terms referring to the leaf area of

plants vary. We use the term LAI to describe the total one-sided area including

green and senescent tissue, and the term gLAI to describe green, photosyntheti-

cally functional leaf area only. Furthermore, the term Green Area Index (GAI)

refers to all green elements of the plant canopy (not just leaves) that contribute

to the reflected radiation.

Leaf area development of maize (Zea mays) is influenced by genotype, climate,

plant density (PD) and soil fertility (especially nitrogen supply (N)) with the

two latter widely recognized as the most important crop management practices

that determine maize plant development and ultimately grain yield in modern

agriculture (Yan et al., 2017). The positive yield response to N is mainly due

to a larger LAI which increases the amount of radiation intercepted throughout

the growing period, a higher average daily photosynthesis rate, or a combination

of both (Vos et al., 2005). LAI is reduced in low N supply, mainly by reduc-

tion of individual leaf area. Increased plant densities lead to higher LAIs due

to increased optimum plant population in modern maize hybrids. On the other

hand, high stand densities result in intraspecific competition, which causes an
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early increase in interplant variability and may accelerate rate of leaf senescence,

thereby post-silking dry matter accumulation.

As ground-based green LAI (gLAI) estimation for detection of differences or sim-

ilarities between treatments is time-consuming, labour-intensive and spatially re-

stricted, there is need for covering larger amounts of plots at low-cost and within

a short period of time. Remote sensing (RS) has proven to estimate gLAI accu-

rately (Gitelson et al., 2003; Nguy-Robertson et al., 2012; Viña et al., 2011), with

different approaches documented in scientific literature. The most common and

simplest approach assumes a relationship between the spectral data and plant

gLAI and thus relies on an explicit parameterized formula, typically derived from

statistical knowledge of measured gLAI values and their respective spectral re-

sponse (Verrelst et al., 2015a). Spectral vegetation indices (SVI) are widely used

as the link to gLAI, since they combine information from wavelengths of light

absorption and reflectance of plants and limit the impact of directional effects.

The interpretation of SVI time courses, however, suffer from soil background re-

flectance and soil moisture influences as well as saturation of the signal at high

gLAI values (Zheng and Moskal, 2009).

With the advancement and easy employment of unmanned aerial vehicles (UAV)

and the capability of low cost cameras to sense light in the visible and near-

infrared domain, new domains have opened for scientists and agronomists to

explore the determination of green leaf area index values at very high temporal

and spatial resolution, possibly de-coupled from weather conditions and high pro-

curement cost for technical equipment.

A selection of publications has focused on the RS of leaf area index in crops us-

ing UAV based imagery. In a parametric regression approach using a modified

RGB camera, Hunt et al. (2010) found the Green Normalized Difference Vegeta-

tion Index (GNDVI) to be linearly related to LAI in winter wheat where values

were below 2.7 (with an R2 of 0.85); the index was not responsive to changes

above that value. They concluded that more research is needed to distinguish

differences in values caused by variation in leaf chlorophyll concentration from

those caused by variation in leaf area index (Hunt et al., 2010). In a physically-

based approach, Verger et al. (2014) used a UAV-mounted multispectral camera

to invert the PROSAIL radiative transfer model using the reflectances from 4

bands for estimation of green area index above wheat and rapeseed. They found

that normalized reflectance improved performance of GAI estimates, particularly
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under unstable illumination conditions. RMSE for estimates was 0.17 (Verger

et al., 2014). Córcoles et al. (2013) used a standard RGB camera to estimate

leaf area index of onion via the relationship between estimated canopy cover and

LAI. They found that the relationship varied depending on the stage of crop

development, with a closer relationship in early growing stages (Córcoles et al.,

2013). We were interested in the potentials of UAV-based modified low cost cam-

eras for gLAI estimation in a factorial maize experiment that simulated the two

most common crop management practices (plant density and nitrogen fertilizer

application). Our objectives of this study therefore were:

i Firstly, we wanted to evaluate the functional dependence between gLAI and

selected spectral vegetation indices based on low-cost imagery per manage-

ment factor at very high spatial resolution,

ii Secondly, we assumed the existence of a functional dependence and so

wanted to determine to what extent the chosen broadband indices cover

green LAI temporal dynamics induced by plant density and/or nitrogen

supply. We wanted to learn if it is possible to draw the same conclusion on

the effects of management factors on gLAI development by solely relying

on SVI data.

To our knowledge, no study has looked at gLAI – SVI relationships using modified

consumer camera imagery in maize before.

5.3 Material and Methods

5.3.1 Study Site and Field Experiment

The study field was located at the University of Bonn’s agricultural research fa-

cility Campus Klein-Altendorf (CKA), located some 15 kilometers southwest of

the city of Bonn, Germany (6◦59′32′′E, 50◦37′51′′N, 184 meters above sea level).

Climate is characterized by temperate humid conditions with maritime influence.

The long-term average precipitation is 625 mm, the average temperature 9.6◦C.

Soil is classified as alkaline, nutrient rich Haplic Luvisol that developed from loess

(Gaiser et al., 2012; Kautz et al., 2010).

The field experiment consisted of a combination of two plant densities and two

treatments of nitrogen (N) fertilization arranged in a random sampling design,

37



and was conducted during the growing seasons (May – October) in the years 2015

and 2016. The plant densities comprised 50,000 plants ha-1 (S1) and 100,000

plants ha-1 (S2), the N treatments 100 kg ha-1 (N1) and 200 kg ha-1 (N2), re-

spectively. Every treatment was conducted on a plot sized 3 m x 30 m, with

5 repetitions each (see figure 5.1 for experimental layout). Row spacing was

0.75 m. No irrigation scheme was practiced. Herbicides were applied according

to standard practices. Low plant density plots were thinned out by hand after

emergence, and all plots were checked for wrongly set plants. N was applied

Figure 5.1: Experimental setup (S1 = low planting density (50.000 plants ha-1),
S2 = high planting density (100.000 plants ha-1), N1: low nitrogen
application (100 kg ha-1), N2: high nitrogen application (200 kg ha-
1)). The enlargement on the right shows gLAI sampling spots.

as inorganic ammonium sulfate (ASN) before planting as a one-time treatment.

During the 2015 growing season, the early maturing hybrid cultivar Panash (AGA

Saat, Neunkirchen, Germany) was planted, the hybrid cultivar Ricardinio in 2016

(KWS Saaten AG, Einbeck, Germany). Both cultivars are similar in their char-

acteristics (FAO number, medium late ripening). The location of the trial was

shifted by 170 meters between the years. Table 5.1 provides further details about

the trials, including captured phenological stages according to the BBCH scale.

Rainfall and air temperature were recorded at a weather station in the vicinity

of the field. The distribution of rainfall differed between the years; 2015 received

less rain during the early growing phases (˜80 mm difference at a temperature

sum of 500). In total, more rain fell until harvest in 2015 than in 2016 (Figure

5.2). The temperature sum was calculated using 8◦C as base temperature as

confirmed for temperature climates by Birch et al. (2003). Temperatures beyond

30◦C were included in the calculation as the maximum temperature of 30◦C, since

no increased growth was observed beyond that temperature.
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Table 5.1: Basic data about the trials 2015 and 2016. Temperature sum at dif-
ferent phenological stages given in brackets.

Year 2015 2016
Cultivar Panash (AGA Saat)

FAO 200
Ricardinio (KWS) FAO
220

Planting Date 05 May 2015 04 May 2016
Emergence 15 May 2015 10 May 2016
Begin Flowering 14 July 2015 (536.32) 15 July (585.27)
Fruit Development:
Milk-ripe stage

14 August 2015 (888.01) 15 August 2016 (918.41)

Full ripening 13 October 2015
(1244.11)

23 September 2016
(1346.67)

Harvest 22 October 2015 29 October 2016
Precipitation until har-
vest [mm]

393.2 353.1

Temperature Sum until
harvest [◦Cd]

1251.2 1454.2

Figure 5.2: Temperature sum (◦Cd) vs. precipitation (mm). The solid line shows
data for 2015, the dashed line data for 2016.
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(a) The UAV (b) The camera system

Figure 5.3: UAV and camera setup. Left picture shows the octocopter employed
in this study, the right picture the two cameras mounted inside the
frames.

5.3.2 The UAV and Camera System

We employed two Canon ELPH 110 HS digital compact Red-Green-Blue (RGB)

cameras, modified by LDP LLC Inc. (Carlstad NJ, United States). The cameras

1 2/3 inch sized CMOS sensor comprised 4608 x 3456 recording pixels (i.e. 16.1

Megapixels). The first camera (hereafter: RGNIR camera) was fitted a blue re-

jection filter, with sensitivity in the near-infrared (NIR) domain from roughly 800

nm – 900 nm. The information in the blue band was replaced by information in

the NIR domain. The second camera (hereafter: BGNIR camera) was fitted with

a dual-band-pass filter that blocked light in the red domain; this rendered the

sensor sensitive for light in the wavelengths 680 nm to 780 nm. Sensitivity was

specified by the provider and was not further investigated from our side. Due to

the inherent sensitivity of the camera sensor and the colour filter array fused on

top to light in the visible and near-infrared domain, each band became sensitive

to the original spectral domain and/or infrared radiation (Nijland et al., 2014).

The RGNIR camera delivered R = Red + NIR, G = Green + NIR and B = NIR

only, the BGNIR camera delivered B = Blue + NIR, G = Green and R = NIR.

The cameras were mounted inside a frame underneath a Mikrokopter OktoXL6S12

(HiSystems GmbH, Moormerland, Germany) octocopter (see Figure 5.3 for pic-

ture), a system that has been widely used in scientific studies (Aasen et al., 2015;

Bendig et al., 2015; Rasmussen et al., 2016). Zhou et al. (2016) as well as Lu and

He (2017) employed the BGNIR camera model in their studies.
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5.3.3 Field Measurements

For measuring green leaf area index, 0.5 m of plants in two adjacent rows were

sampled destructively at two positions (see Figure 5.1 for visualisation) within 4

plots of each treatment at every sampling date (i.e. 4 treatments x 4 plots x 2

samples = 32 samples per sampling date). To minimize edge effects, we did not

sample the outer rows of each plot and skipped 0.5 m of standing plants between

the collection dates. Four plots (i.e. one plot per treatment) remained unsampled

during the entire course of the trial. Samples were immediately transported back

to the institute and leaf area was measured using the LI-COR LI-3100C area me-

ter (LI-COR Inc., Lincoln, NE, USA). gLAI was determined by dividing the total

leaf area of each sample by the sampling area (i.e. leaf area / 0.75 m2). In total,

samples were taken on eight dates in 2015 and ten dates in 2016, with a rough in-

terval of 14 days. Assessing LAI and gLAI respectively by destructive sampling is

considered the most accurate, labour-intensive method and often serves as calibra-

tion for indirect measurement techniques (Jonckheere et al., 2004). Multispectral

data was collected on mostly cloud-free days immediately before the sampling

of the plants. To avoid major shadow cast, image acquisition took place around

solar noon. Images were acquired from an altitude of 50 m, which translates into

a ground sampling distance (GSD) of 1.5 cm. Each image was taken with a focal

length of 4.3 mm at nadir view. The shutter speed was adjusted from date to

date depending on incident light conditions, but remained constant throughout

each flight campaign. Six ground control points (GCP) were distributed around

the field to ensure correct georeferencing and alignment of the orthophotos, with

the position of the GCPs measured by a Trimble Geo7x differential GPS (Trimble

Inc., Sunnyvale, CA, USA). We used three different greyscale reference targets

corresponding to 5%, 16%, and 58% reflectance respectively in a level position

next to the field to convert the images’ digital numbers to reflectance values.

5.3.4 Preprocessing of Images

Images were captured in RAW format using the Canon Hackers Development Kit

(CHDK - http://chdk.wikia.com/wiki/CHDK, accessed 21 October, 2017) to

maintain a linear relationship to scene irradiance (Akkaynak et al., 2014; Verho-

even, 2010). The conversion to 16 bit linear TIFF was done using the dcraw soft-

ware (David Coffin, https://www.cybercom.net/~dcoffin/dcraw/, accessed 21
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October, 2017) with the adaptive homogeneity directive (AHD) mosaicking algo-

rithm employed following the recommendation by Verhoeven (2010); no gamma

correction was applied. Vignetting effects were removed by creating pixel lookup-

tables through averaging 1,500 randomly taken images (Burkart et al., 2017;

Lebourgeois et al., 2008; Verger et al., 2014). Lens barrel distortion was removed

by implementing the Brown-Conrady model implemented in the Agisoft Lens

(Agisoft LLC, St. Petersburg, Russia) software package.

We realized that the NIR influence in the visible domains of the cameras did not

increase proportionally with increasing NIR reflectance; due to low sensitivity of

the sensor in the near-infrared domain, the influence remained stable beyond a

certain level. We used a logarithmic function to normalize all pixels in the red

and blue bands domain for near-infrared influence. For this, we acquired images

of five different grey-scaled panels with nominal reflectances of 5%, 8%, 16%,

30% and 58%, calculated the ratios between the bands in the visible domain and

the near-infrared band and fitted a function through the points of red and blue

reflectance and the ratios, respectively. Subsequently, the ratio between each red,

blue and the respective NIR pixel in each image was calculated, and corrected

using the derived function described above. The green band of the RGNIR cam-

era was ignored because we relied on the undisturbed green information from the

BGNIR camera. Digital numbers (i.e. pixel values as provided by the cameras)

were subsequently converted to reflectance values using the empirical line cali-

bration method via the response of the calibration targets (see Smith and Milton

(1999) for a method explanation). Agisoft Photoscan Professional (Agisoft LLC,

St. Petersburg, Russia) was used to mosaic and rectify all images to one orthomo-

saic per camera per acquisition date. We disabled the blending mode to prevent

an alteration of pixel values; Agisoft hereby takes the values of each pixel from

the photo with the camera view that is closest to nadir view of the reconstructed

surface in that point.

5.3.5 Extraction of Reflectance Values and Calculation of

Vegetation Indices

We used the raster package (Hijmans, 2016) implemented in R (R Core Team,

2017) to extract the reflectance values of those particular 0.75 m2 area in the

field where the samples were taken. The mean value of each band was calculated

subsequently. We calculated three spectral vegetation indices (SVI) based on
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the extracted values: NDVI (Normalized Difference Vegetation Index) as the

most widely used index in science, the GNDVI (Green Normalized Vegetation

Index) and the 3BSI (Three Band Spectral Index). The GNDVI uses the green

band instead of the red band; which renders it more responsive to different leaf

chlorophyll concentrations (Daughtry et al., 2000). The 3BSI was introduced by

Verrelst et al. (2015b) and outperformed most two-band vegetation indices in

parametric LAI regression performance. The indices were calculated as follows:

NDV I =
(ρNIR − ρRed)

(ρNIR + ρRed)
(5.1)

GNDV I =
(ρNIR − ρGreen)

(ρNIR + ρGreen)
(5.2)

3BSI =
(ρNIR − ρRed)

(ρGreen + ρRed)
(5.3)

5.3.6 Statistical Analysis

We used descriptive statistics to pronounce the characteristics of gLAI and spec-

tral vegetation index development. Minimal, maximal and mean values were used

to evaluate the impact of each treatment. The coefficient of variation was used

to assess the variability of measured values for each sampling date. The standard

analysis of variance (ANOVA) was calculated to determine whether there were

differences between the treatments regarding gLAI and spectral vegetation index

values. Tukey’s honest significant difference (HSD) test (α = 0.05) was used to

compare pair wise treatment results. Nonlinear least-squares regression was used

to establish the statistical relationship between the measured gLAI values and the

SVI values. Although possibly not providing the best fit, we only included expo-

nential models following the formula SV I = a ∗ (1− e(−b ∗ gLAI)) in our study,

due to the well-documented invariability of reflectance in the visible spectrum at

higher gLAI values (Asrar et al., 1984). At gLAI = 0, we fixed the intercept

to the soil reflectance derived from averaging 1,000 soil pixels. The residual sum

of squares (RSS) was used to evaluate models’ performances. RSS measures dis-

crepancy between the data and the derived model; small values indicated a good

fit.
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5.4 Results

5.4.1 Green Leaf Area (gLAI) Development Statistics

The growing seasons in 2015 and 2016 went well without major disruptive events.

First measurements were taken in mid-June of each year, last measurements in

mid-October. On average, the lowest gLAI was measured in the S1N1 treat-

ments, the highest in the S2N2 treatments (see Table A in the Appendix for

detailed results). The S2N1 treatment developed higher gLAI values than the

S1N2 treatment. In both years, the two low plant densities showed lower stan-

dard deviation than the high plant densities, the coefficient of variation however

did not indicate a trend. Absolute lowest values were measured in the S1N1

treatments (0.12 in 2015 and 0.06 in 2016), the highest values in S2N2 in 2015

(5.19) and in S2N1 in 2016 (5.53). The S1N2 trial developed higher gLAI values

in 2015 than in 2016.

For 2015, Tukey’s HSD revealed that gLAI values exhibited significant differ-

ences between all treatments. For 2016, no significant differences could be seen

between the N treatments. Figure 5.4 shows the gLAI development over time,

plotted against temperature sum. Leaf area developed quicker in 2015 than in

2016, and faster in high plant densities than in low plant densities. Leaf area

increased faster in high N treatments than in low N treatments. Senescence oc-

curred quicker in high plant densities, and earlier in 2016 than in 2015. In both

years, gLAI dropped quicker in the S2N2 treatment than in the S2N1 treatment.

Contrary to 2016, the 2015 development curves stagnated between 560 and 1100

degrees temperatures sum, without major increases or decreases in leaf area. 2016

showed a more dynamic progression, with S1N1 and S2N1 peaking at 828 degree

days, S2N2 earlier at 635 degree days, and S1N2 later at 918 degree days.

5.4.2 LAI-SVI Parametric Regression

Figure 5.5 to Figure 5.7 show the gLAI – SVI models, separated into N fertilisation

and plant density impact, per year. Figure 5.5 shows gLAI – NDVI models, Figure

5.6 the gLAI – GNDVI models, and Figure 5.7 the gLAI – 3BSI models, derived

as explained in subsection 5.3.5. NDVI models differed for 2015, and resembled

for 2016. For 2015, no saturation effect could be noticed within the range of

measured gLAI values. Models of S1N2 and S2N1 were similar. In 2016, gNDVI

models exhibited saturation at gLAI values > 3. The comparison between plant
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Figure 5.4: gLAI development in the years 2015 and 2016, as per treatment. Error
bars show standard deviation. Vertical lines show phenological stages
(first line: begin of flowering, second line: Milk-ripe stage, third line:
Full ripening).
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Figure 5.5: gLAI - NDVI relationships per management factor. The left column
shows N treatment effects, the right column plant density effects.

densities showed that the point of saturation remained stable, however at different

NDVI levels. S2 exhibited higher NDVI values at equal gLAI values. RSS values

< 0.32 indicated a good fit for all models, with the tendency of the 2016 models

performing better.

Similar to the results above, GNDVI – gLAI models resembled for 2016, and

differed for 2015 (Figure 5.6). A clear effect of saturation was noticed in the

2016 data, with gLAI values > 3 not showing an increase in GNDVI values. This

effect was not visible in the 2015 data. Models diverged in 2015 for N treatments

at low plant density and plant density at low N treatment level, the effect was

less strong for the other 2015 models. As for NDVI, models exhibited good fits

(all RSS values < 0.33), with the 2016 models performing better. All GNDVI

models performed better than NDVI models. No clear saturation effect could
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Figure 5.6: gLAI - GNDVI relationships per management factor. The left column
shows N treatment effects, the right column plant density effects.

be determined for the 3BSI – gLAI models within the measured range of values

(Figure 5.7). Contrary to the NDVI and GNDVI models, this applied to both

years. Models in 2016 only diverged at high gLAI values. RSS values were much

higher than for NDVI and GNDVI, indicating worse fits. Here, the 2016 models

showed better fits.

5.4.3 Influence of gLAI Development on Vegetation Indices

All spectral indices indicated differences between the total mean values of the

treatments, with S1N1 exhibiting the lowest value, and S2N2 exhibiting the high-

est (see tables B-D in the appendix for detailed results). The S2N1 treatment

showed higher values than the S1N2 treatment. However, differences between

the treatments were not as pronounced as differences between the gLAI measure-
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Figure 5.7: gLAI – 3BSI relationships per management factor. The left column
shows N treatment effects, the right column plant density effects.

48



ments. On average, standard deviation of NDVI and GNDVI values were similar.

GNDVI showed a lower coefficient of variation than NDVI. The 3BSI values

showed greater standard deviation and higher coefficient of variation than NDVI

and GNDVI. Absolute lowest values of all indices were found in the in S1N1 treat-

ments, maximum values were found during the flowering and grain filling periods,

with NDVI and GNDVI not exhibiting huge differences between the treatments,

contrary to 3BSI. The ANOVA for NDVI and 3BSI values showed no difference

between the S2N1 and S2N2 trials for both years. The GNDVI ANOVA illus-

trates no difference between the S1N2 and S2N1 treatments.

Figure 5.8 shows the SVI developments over time, plotted against temperature

sum. All three indices showed differences between the treatments during leaf de-

velopment; NDVI and GNDVI clearly saturated during flowering and grain-filling

phase, 3BSI continued to show differences between the trials. Only 3BSI captured

the senescence phase adequately.

5.5 Discussion

5.5.1 gLAI Measurement Technique

Contrary to studies that rely on indirect LAI measurement methods via the trans-

mission of radiation in the canopy, we used the direct method of harvesting the

maize plants and measuring the area of all leaves within the delimited area. Com-

pared to destructive sampling, indirect methods often underestimate LAI values

in maize (Bréda, 2003; Wilhelm et al., 2000). In this study, plants were harvested

per area, not per count. Sampling was conducted at uncommon very high tem-

poral resolution (roughly every two weeks). Given the detailed knowledge about

plant population and the precision of the measurement method, we have strong

confidence in the accuracy of our measured gLAI values.

However, discrepancy remains between the destructively measured area of green

leaves and the functional parts of the canopy which influence the spectral signal

and are sensed by the cameras, comprising not only leaves, but other parts of the

crop, such as stem and husks (commonly referred to as Green Area Index) (Baret

et al., 2010; Verger et al., 2014). We are not aware of any literature that discusses

a potential influence of green plant organs, apart from leaves, on reflectance and

gLAI estimates by remote sensing, especially in bigger crops where organ area is

hard to measure. Given the large area of leaves of maize plants, we hypothesize
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Figure 5.8: SVI development in 2015 (left column) and 2016 (right column). Error
bars show standard deviation. Vertical lines show phenological stages
(first line: begin of flowering, second line: Milk-ripe stage, third line:
Full ripening).
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that the influence of other organs to the overall signal is negligible.

5.5.2 SVI Statistics

All three indices managed to capture the general tendencies of the treatments,

with S1N1 showing the lowest values, and S2N2 the highest. In general, the coef-

ficient of variation of gLAI values was greater than those of the corresponding SVI

values. Given the confidence in our measured gLAI values, we conclude that all

spectral vegetation indices derived from our ultra-high resolution UAV imagery

failed to capture the variability at multi-plant level in the field. Surprisingly, this

was not only the case during flowering and grain filling time when the spectral

signal was less responsive, but also during periods of leaf growth and leaf senes-

cence. The 3BSI performed better than NDVI and GNDVI.

The analysis of variance for NDVI and 3BSI showed no significant difference be-

tween the high plant density treatments both in 2015 and 2016, contrary to the

results of the gLAI analysis. All three SVIs failed to capture the lack of dif-

ference between the N treatments in 2016. Additionally, GNDVI indicated no

difference between the S1N2 and S2N1 trials for both years. The gLAI data did

not show this result. Overall, it is obvious that conclusions drawn from the SVI

ANOVAS differed from those drawn from the direct measurements. This puts

the sole reliance of management factor analysis on SVIs derived from modified

COTS imagery into question; especially when expected gLAI values show asymp-

totic relationships in the spectral absorption ranges. NDVI and GNDVI curves

were only slightly responsive to gLAI changes at values > 3, especially visible in

2016.

5.5.3 Interpretation of LAI Statistics

Including all sampling dates, the interpretation of our analysis of variance indi-

cates that N fertilization differences, plant density differences and the combination

thereof show an effect on green leaf area index development in 2015. In 2016, the

two different N treatments do not result in different gLAI values. We attribute

this to an unequal distribution of rainfall between the years, with 2016 receiving

75 mm more of rain up to a temperature sum of 500. Despite the lack of difference

explained above, the treatments lead to different leaf area development dynamics

in both years. As expected, low N supply and low plant density resulted in the
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lowest gLAI values, high N supply and high plant density in the highest. This

development worked out to a range of gLAI values that could be sensed at equal

points in time.

Contrary to previous findings in literature, we cannot confirm that high plant

densities show greater variability in leaf area development.

5.5.4 LAI-SVI Relationships

The spectral data derived from the employed low-cost cameras delivered meaning-

ful relationships with the measured gLAI data. As expected, NDVI and GNDVI

sensitivity saturated at higher gLAI values, however at lower SVI values than as-

sumed from literature. This might be an effect of limited sensitivities and limited

dynamic range of the cameras. The gLAI – 3BSI relationship did not saturate

within the range of measured values.

Equal gLAI values did not necessarily result in equal spectral vegetation index

values, as visible in Figures 5.5 to 5.7. Models especially resembled in 2016,

where differences in N application did not show an effect on gLAI development.

We therefore assume that, as long as no other factor interferes, the difference in

plant density does not show a major effect on the derivation of similar gLAI –

SVI models. However, it needs to be taken into consideration that both 50,000

and 100,000 plants ha−1 resulted in canopy closure and invariability of values in

the visible spectrum due to maximum absorption of light in the canopy. The

small differences between models were induced by increased NIR reflectance. We

encourage more research to be done on gLAI – SVI relationships in plant densities

without canopy closure and/or gLAI values < 3, where the soil contributes to the

signal.

Model differences in 2015 were due to a wider spread of SVI values at equal

gLAI values. We can only conjecture about the reasons, since unfortunately no

variables were measured beyond gLAI. We rule out leaf angle distribution differ-

ences as cause since the same cultivar was grown within each year. Differences

in chlorophyll content might have caused differences in reflectance, induced by

both nitrogen supply and plant density. Effects were especially pronounced in

the low nitrogen supply treatment at differing plant densities, and in the low

plant density treatment with varying N supply. It is documented that variation

in N supply influences leaf structure and composition; lower N uptake results in

a lower absorption in the visible range due to a lower pigment content and higher
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reflectance in the near-infrared due to smaller and fewer cells (Al-Abbas et al.,

1974; Walburg et al., 1982). In 2015, during the early growing states, we observed

the highest absorption in the S2N2 treatment and the lowest in S1N1. Initial spec-

tral reflectance in 2015 was twice as high as high as the initial measurement in

2016, with values aligning well after flowering (data not shown). Contrary to

this, Ren et al. (2017a) found that chlorophyll content in maize plants decreased

significantly with increasing plant density, with densities ranging from 30.000 to

135.000 plants ha−1.

5.5.5 Camera Setup

In all (modified) low-cost commercial off-the shelf digital cameras (COTS), bands

have substantial overlap, spectral sensitivity of the bands and wavelength trans-

mittance of filters is unknown, unless exposed to monochromatic light (Berra

et al., 2015). We did not examine the spectral sensitivity of the cameras employed,

but doubt the correctness of the NIR sensitivities as stated by the provider. Berra

et al. (2015) investigated the spectral sensitivity of a Sony Nex7 equipped with

a top-notch filter and found that the camera responds to light beyond 900 nm

and even to the UV spectrum. Transmission in the NIR range is rather restricted

by the sensor substrate than by choice of the filter. This might as well be the

case with the RGNIR camera we employed. Due to lower sensitivity in the NIR

spectrum, exposure times had to be extended which might have caused a loss in

usable dynamic range, especially in the visible ranges.

5.5.6 Possible Shortcoming of UAV-based Imagery

In accordance with the preconditions defined by Rasmussen et al. (2016), we are

confident that the quality of the vegetation indices calculated in this study is

reliable. All images were acquired during stable illumination conditions. Angu-

lar variation is minimised because only pixels close to nadir view were used for

mosaicking (roughly all pixels within a radius of about 5 m around nadir view).

We are therefore confident that none of the effects discussed above is created or

influenced by angular variation. However, more research needs to be done on the

question up to what image extent information extracted is reliable.
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5.6 Conclusions

Getting back to our objectives, we conclude: Despite poor band segregation,

spectral data derived from UAV-based modified low-cost cameras delivered an

expressive relationship with measured gLAI values. GNDVI performed slightly

better than NDVI; a 3-band combination did not offer any advantages. How-

ever, the selected band combinations reached their limits at gLAI values > 3,

which is reached in maize well before flowering. Given this, one should be careful

when drawing conclusions from SVI values on the impact of management fac-

tors on gLAI development, as results might largely be influenced by the signal

saturation. Narrowband solutions based on UAV-imaging hyperspectral sensors

with band selections in the red-edge and NIR spectrum might perform better and

should be focused upon in further research activities.

Despite these drawbacks, we are convinced that UAV-based low-cost COTS cam-

era imagery can greatly contribute to the documentation of gLAI dynamics in

crop stands. With this approach, the monitoring is not solely restricted to a

few sampling spots in the field, but can cover entire fields at plant level. Het-

erogeneous growth might be captured, delivering valuable information necessary

for site-specific management or for extrapolating crop models from plant to field

level. Since most management interventions in maize are conducted before flow-

ering (with gLAI values < 3), the effects of band saturation might not be disad-

vantageous.
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6 Study II: Remote green LAI

Estimation in Maize Using

UAV-based Modified Consumer

Camera Imagery Part II.

Improving Parametric and

Non-Parametric Regression

Performance

6.1 Abstract

Green Leaf Area Index (gLAI) is an important variable in crop growth analysis,

and a frequently derived biophysical crop variable in field trials. Remote sens-

ing (RS) facilitates estimation, with UAV-based approaches offering flexible and

cost-effective deployment of sensor systems. Extending our analysis from ’Part

I: Impact of plant density and nitrogen fertilisation’, we evaluated parametric

and non-parametric regression methods on their capability to estimate gLAI in

maize, relying on UAV-based low-cost camera imagery with non-plants pixels

(i.e. shaded and illuminated soil background) a) included in and b) excluded

from the analysis. With regard to the parametric regression methods, we tested

all possible band combinations for a selected number of two- and three-band for-

mulations as well as different fitting functions. With regard to non-parametric

methods, we tested six regression algorithms (Random Forests Regression, Sup-

port Vector Regression, Relevance Vector Machines, Gaussian Process Regression,

Kernel Regularized Least Squares, Extreme Learning Machine). We found that
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all non-parametric methods performed better than the parametric methods, and

that kernel-based algorithms outperformed the other tested algorithms. Exclud-

ing non-plant pixels from the analysis deteriorated methods’ performances. When

using parametric regression methods, signal saturation occurred at gLAI values

of about 3, and at values around 4 when employing non-parametric methods.

6.2 Introduction

The leaf area index (LAI) is one of the key variable in crop growth analysis due to

its influence on light interception, photosynthetic rate, biomass production, plant

growth and ultimately crop yield. It is critical to understanding the response

of crops to many common crop management practices (Wilhelm et al., 2000),

such as fertilizer application and planting density. It is defined as the total one-

sided area of leaf tissue per unit ground surface area (Jonckheere et al., 2004),

and can be subdivided into photosynthetically active and inactive components

(Nguy-Robertson et al., 2012). The former is composed of green leaf area as

a photosynthetically functional component and referred to as green LAI (gLAI)

(Viña et al., 2011).

Remote sensing (RS) is widely used to detect crop biophysical variables such as

gLAI at various spatial and temporal scales. Spectral imagery has the advantage

to capture vegetation reflectance of the canopy, which is directly related to gLAI.

If based on unmanned aerial vehicles (UAV) as a vertile and flexible platform,

measurements can be performed at unprecedented ultra-high spatial resolutions,

commonly in ranges from millimetres to centimetres resolution per pixel (Pajares,

2015). Generally, the employment of commercial off-the-shelf (COTS) camera im-

agery has gained the attention of scientists in recent years (Verhoeven et al., 2009;

Verhoeven, 2010; Sakamoto et al., 2011, 2012; Akkaynak et al., 2014; Nijland et

al., 2014), especially in UAV-based agricultural applications (Lebourgeois et al.,

2008; Hunt et al., 2010; Zhang et al., 2016; Crusiol et al., 2017).

gLAI is a commonly derived variable in field experiments that evaluate the in-

fluence of management factors on crops (e.g. fertilizer supply, plant density or

pest management). While ground-based estimation for detection of differences or

similarities between treatments is time-consuming, labour-intensive and spatially

restricted, UAV-based RS covers larger amounts of plots at low-cost and within

a short period of time (see Part I of this study).
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Verrelst et al. (2015a) developed four methodological categories for general RS

based retrieval methods:

i Parametric regression methods: Methods that assume a relationship be-

tween spectral measurements and the biophysical variable. An expression is

derived from statistics or physical knowledge, containing parameters based

on a fitting function that normally hold only for the given spectral data

and biophysical variable. Commonly, spectral vegetation indices (SVI) are

used as the link to the variable of interest. Models are simple and easy to

understand.

ii Non-parametric regression methods: Regression functions are directly de-

termined according to the information from the derived spectral and field

data. No assumption about data distribution, spectral band relationships

or fitting functions is made. Methods can make use of the full spectral in-

formation provided, but are largely considered black boxes. Model weights

(coefficients) need to be adjusted to minimize the estimation error of the

variables to be predicted.

iii Physically-based methods: Models of cause-effect relationships based on

physical laws. The inversion of radiative transfer functions allows for an

inference on the variables.

iv Hybrid methods: A combination of non-parametric and physically-based

methods. They typically rely on the broad properties of physically-based

methods

RS has proven to estimate gLAI accurately with all of the methods categorised

above, with most applications based on multispectral satellite data or non-imaging

hyperspectral applications. Only few studies have focused on UAV-based deriva-

tion of LAI, with different target crops. COTS imagery provides information with

great spatial resolution, but with a spectral resolution that might not be known

in full detail.

In a parametric regression approach using a modified RGB camera, (Hunt et al.,

2010) found the Green Normalized Difference Vegetation Index (GNDVI) to be

linearly related to LAI in winter wheat where values were below 2.7 (with an

R2 of 0.85). The index however was not responsive to changes above that value.
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In a physically-based approach, Verger et al. (2014) applied a UAV-based mul-

tispectral camera to invert the PROSAIL radiative transfer model using the re-

flectances from 4 bands for the estimation of green area index over wheat and

rapeseed. They found that normalized reflectance improved performance of the

GAI estimates, particularly under unstable illumination conditions. RMSE for

estimates was 0.17 (Verger et al., 2014). Córcoles et al. (2013) used a standard

RGB camera to estimate leaf area index of onion via the relationship between

estimated canopy cover and LAI. They found that the relationship varied depend-

ing on the stage of crop development, with a closer relationship in early growing

stages (Córcoles et al., 2013).

To the knowledge of the authors, only few studies have been published so far that

investigated RS based LAI estimation applying parametric regression methods.

Camps-Valls et al. (2009) used two semi-supervised support vector regression

algorithms to estimate LAI in different crops, relying on hyperspectral and sim-

ulated multispectral data. The authors found good generalization capabilities,

with only a small number of samples (Camps-Valls et al., 2009). Wang et al.

(2011) compared multiple linear regression (MLR), partial least squares regres-

sion (PLSR) and least squares support vector machine (LS-SVM) methods for

the estimation of paddy rice LAI with 15 hyperspectral wavebands. They found

that SVM performed better than the other methods. Verrelst et al. (2012a) com-

pared narrowband vegetation indices and GPR for the retrieval of leaf chlorophyll

content, LAI and fractional cover based on CHRIS hyperspectral satellite data.

GPR outperformed the indices when using at least four out of the 62 bands pro-

vided by the sensor (Verrelst et al., 2012a). Yuan et al. (2017) compared random

forest (RF), artificial neural network (ANN) and support vector regression (SVR)

with a partial least-squares regression (PLRSR) model for the inversion of soy-

bean LAI, derived from UAV hyperspectral remote sensing. They found the RF

model suitable for estimating LAI when sample plots and variation are relatively

large, and the ANN model more appropriate when sample plots and variation are

relatively small Yuan et al. (2017).

A specific problem in estimating either green or total area of leaves or of all plant

organs from RS is the mixture of reflective responses of directly illuminated plant

organs with those of their background. Further, the spatial resolution of UAV-

based RS data may exceed those of the ground truth data. It is then common

practice to calculate the average reflectance of all pixels falling within a certain
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area, which is subsequently analysed in relation to the respective ground truth

data in the same area. The average values, however, might contain signals of

illuminated and shaded soil from shadow cast by plants (called ’non-plant pixels’

hereafter contrary to ’plant pixels’), and so introduce a source of irritation into

the regression that rather aims to capture only the area of plant organs. The

major advantage of ultra-high spatial resolution UAV imagery is, however, that

it enables to classify for cover of different crop features in an agricultural field,

potentially removing factors that might influence the relationship between mea-

sured gLAI and the mixed spectral signal of all features within the field of view.

This paper adds to our study ”Remote green LAI estimation in maize using UAV-

based modified consumer camera imagery” which is based on the findings of a

two-year maize trial. We investigated the influence of nitrogen (N) fertilization

and plant density (PD) on gLAI development, with frequent UAV-based spectral

coverage using a set of two modified consumer cameras. Part I (chapter 5) showed

that the widely used Normalized Difference Vegetation Index (NDVI), the Green

Normalized Difference Vegetation Index (GNDVI) and the 3-Band Spectral Index

(3BSI) documented by Verrelst et al. (2015b) all derived from modified low-cost

camera imagery hold a strong relationship with field-measured gLAI, when using

a parametric regression approach. Management factors, especially N fertilization

and – to a lesser extent - also plant density influenced regression parameters,

which even resulted in the shift of spectral signal saturation. Based on these

findings, in the second part of the study, we posed the following questions:

i Are NDVI, GNDVI and 3BSI the best SVI options for a parametric regres-

sion approach when all measurements across the two years and treatments

are merged, and annual differences in management and weather impact on

crop performance are neglected? Are there other band combinations and/or

fitting functions that work better than those mentioned above?

ii How well do non-parametric regression methods perform in estimating gLAI

based on COTS camera imagery?

iii Does model performance improve when non-plant pixels are not included

in the averaging of pixels across the gLAI sampling area?

To our knowledge, no study has focussed on these questions using UAV-based

low-cost imagery. We did not focus on physically-based or hybrid methods as

explained above, since the spectral sensitivity of the cameras employed is largely
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unknown. Camera manufacturers typically do not release this information, and

wavelengths that are transmitted through filters installed in the modification

process are mostly not documented (Berra et al., 2015). Thus, we were not able

to simulate the sensors’ responses in radiative transfer functions.

6.3 Material and Methods

In this section, the field trial, measurement devices and methods as well as the

data processing are briefly presented. The reader is kindly referred to Part I of

this study for further in-depth information.

6.3.1 Green LAI (gLAI) Field Measurements

gLAI in maize was measured over the course of two growing seasons (years 2015

and 2016) in a field experiment located at Campus Klein-Altendorf (CKA) agri-

cultural research station near the city of Bonn, Germany (6◦59′32′′E, 50◦37′51′′N,

184 meters above sea level). The trial consisted of a combination of two N fer-

tilisation (100 kg N ha-1 and 200 kg N ha-1) and two plant density treatments

(50,000 plants ha-1 and 100,000 plants ha-1), which resulted in different develop-

ment dynamics of leaf area over the course of time.

The hybrid cultivar Panash (AGA Saat, Neunkirchen, Germany) was planted in

2015, the hybrid cultivar Ricardinio (KWS Saaten AG, Einbeck, Germany) in

2016. Both cultivars are similar in their characteristics (FAO number, medium

late ripening). Plants were sampled destructively and gLAI was measured in the

laboratory using the LI-COR LI-3100C area meter (LI-COR Inc., Lincoln, NE,

USA) in approximately 14-day intervals. In 2015, a total of 352 samples were

taken on eight sampling dates, in 2016 a total of 304 samples on ten dates. Green

LAI was determined by dividing the total leaf area of each plant sample by the

ground sampling area (i.e. leaf area / 0.75 m2).

6.3.2 Collection of Spectral Data and Preprocessing

Spectral data was collected using two Canon ELPH 110 HS digital compact red-

green-blue (RGB) cameras, modified by LDP LLC Inc. (Carlstad NJ, United

States). Each camera’s 1 2/3 inch sized CMOS sensor comprises 4608 x 3456

recording pixels (i.e. 16.1 Megapixels). The first camera (hereafter: RGNIR
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camera) was fitted a blue rejection filter, with sensitivity in the red, green and

near-infrared (NIR) domain from roughly 800 – 900 nm. Thereby, the spectral

information in the blue band was replaced by those in the NIR domain. The sec-

ond camera (hereafter: BGNIR camera) was fitted with a dual-band-pass filter

that blocked light in the red domain; this rendered the sensor sensitive for NIR

light in the wavelengths 680 nm to 780 nm. The RGNIR camera delivers R =

Red + NIR, G = Green + NIR and B = NIR only, the BGNIR camera delivers

B = Blue + NIR, G = Green and R = NIR.

UAV-based camera imagery was collected around solar noon to avoid shadow

cast, on mostly cloud-free days, immediately before the sampling of the plants.

Images were acquired from an altitude of 50 m (ground sampling distance of 1.5

cm) at nadir view, with a focal length of 4.3 mm and a variable shutter speed

that was adjusted from date to date depending on incident light conditions. Three

differently grey-scaled reference targets served for the conversion to reflectance

values.

Images captured in RAW format were subsequently corrected for lens barrel dis-

tortion, vignetting effects and NIR band interference before being converted to

reflectance values using the empirical line calibration method. Orthomosaics were

created using Agisoft Photoscan Professional (Agisoft LLC, St. Petersburg, Rus-

sia).

6.3.3 Extraction of Reflectance Values and Removal of

Background Information

We used the raster package (Hijmans, 2016) implemented in R (R Core Team,

2017) to extract the reflectance values within exactly the same ground area of the

field where plant each sample was taken. Subsequently, the average reflectance

value of each band of the cameras was calculated per sampling plot, i.e. each

replicate of the N fertilization and plant density treatments.

In order to classify each image into the components plant tissue, shadow and

soil and so to remove non-plant pixels from the data set, the supervised random

forest (RF) classifier implemented in the RStoolbox (Leutner and Horning, 2017)

was utilized separately for all five spectral bands. RF is a powerful classifier and

is readily used in RS studies (Basukala et al., 2017; Rodriguez-Galiano et al.,

2012). The classes ’illuminated soil’ and ’shaded soil’ were subsequently masked

and pixel values were replaced with missing values (see figure 6.1 for example).
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(a) Non-Plant Pixels Included

(b) Non-Plant Pixels Removed

Figure 6.1: Example of orthomosaic before (6.1a) and after (6.1b) removal of non-
plant pixels. Images acquired on June 25, 2015 with RGNIR camera.
Channel combination is R: Red, G: Green, B: NIR. Images show one
block of experimental plots. Destructive sampling areas are visible
towards the left and right edges of the block.

Pixel values of the sampling plots were extracted and averaged using the method

mentioned above, where NA values were ignored in the calculation.

6.3.4 Parametric Regression Methods

We used the spectral indices toolbox (Rivera et al., 2014) embedded in the

ARTMO (Automated Radiative Transfer Models Operator) (Verrelst et al., 2012b)

software package to test all possible vegetation indices, band combinations and

fitting models for reflectance values that do and do not contain non-plant pixel

information. The ARTMO package runs in MATLAB and can be accessed at:

http://ipl.uv.es/artmo/ (accessed 22 October, 2017). We split the data into

a training and a test data set by taking a simple random sample (with a 70%

- 30% apportionment). Model performance using the training set was evaluated

based on the estimate of root mean square error (RMSE) and the coefficient of

determination (R2). We used the k-fold cross validation resampling technique,
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Table 6.1: Types of published indices used in this study and their general formu-
las.

Type Formula Source

Simple Ratio (SR) ρa
ρb

(le Maire et al., 2004)

Normalized Difference
(ND)

(ρa−ρb)
(ρa+ρb)

(le Maire et al., 2004)

Modified Simple Ratio
(mSR)

(ρa−ρc)
(ρb−ρc) (le Maire et al., 2004)

Modified Normalized Dif-
ference (mND)

(ρa−ρb)
(ρa+ρb−2ρc)

(le Maire et al., 2004)

3 Band Spectral Index
(3BSI)

(ρa−ρc)
(ρb+ρc)

(Verrelst et al., 2015b)

3 Band Spectral Index
Wang (3BSI Wang)

(ρa−ρb+2ρc)
(ρa+ρb−2ρc)

(Wang et al., 2012)

3 Band Spectral Index
Tian (3BSI Tian)

(ρa−ρb−ρc)
(ρa+ρb+ρc)

(Tian et al., 2014)

which randomly partitions the samples into k sets of approximately the same

size, and fits a model using all samples but one of the subsets. The retained set

of samples was predicted by the model and utilized to estimate its performance.

Subsequently, the set was returned to the training set, and another set was then

retained. The k resampled estimates of performance were subsequently summa-

rized (Kuhn and Johnson, 2013). We used k = 10 as the number of folds and 10

as the number of complete sets of folds to compute. The test set was subsequently

compared to the model predicted values to evaluate the accuracy of the model

found.

Verrelst et al. (2015b) compiled a list of general index formulations identified in

scientific literature, with the majority of formulations extracted from le Maire

et al. (2004). We used this list as orientation, but excluded indices based on

reflectance signature derivates, as these are derived from continuous spectra of

hyperspectral measurements (le Maire et al., 2004), which were not available in

this study. Table 6.1 shows the types of indices investigated in this study, where

ρ is reflectance, and a, b and c represent the respective bands. Subsequently,

each index value was correlated to the measured gLAI value.
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6.3.5 Non-Parametric Regression Methods

Non-parametric regression was performed in the caret package (Kuhn et al., 2017)

in R (R Core Team, 2017). The caret package (abbreviation for classification

and regression training) streamlines algorithms to facilitate the training process

of regression and classification models (Kuhn, 2016). It thereby makes use of a

number of other R packages that implement the algorithms, evaluate the effect

of model tuning parameters on performance, choose the best-performing model,

and estimate model performance from a set of training data. Table 6.2 lists all

non-parametric regression algorithms used in this study, and the method group

to which they belong. As for parametric models, performance was evaluated

based on the estimate of root mean square error (RMSE) and the coefficient

of determination (R2), using the same split dataset. We used the radial basis

function kernel for all kernel-based methods, the most widely used kernel in RS

(Ghamisi et al., 2017). Method parameters were tuned via the caret package,

where a candidate set of values is generated and evaluated via a defined amount

of model runs (n = 100).

Random Forest Regression (RF)

Random Forests (RF) represent a popular ensemble method that has been widely

used in different fields of RS as a classification algorithm, but is rarely applied

in regression type analysis (Mutanga et al., 2012). It applies a set of decision

trees based on hierarchical connected nodes to improve prediction accuracy, and

is capable to deal with complex relationships of discrete or continuous nature.

Random Forests is tuned by number of randomly selected predictors to choose

from at each split.

Support Vector Regression (SVR)

Support vector regression (SVR) is the implementation of the support vector

machines (SVM) method for regression (Smola and Schölkopf, 2004). SVM has

found numerous applications in the field of RS because of their ability to handle

high-dimensional data with a limited number of training samples (Ghamisi et al.,

2017), with publications focussing both on classification and regression problems.

Although probably outdated, we recommend Mountrakis et al. (2011) for a thor-

ough review of SVMs in RS. SVR tries to minimize the error by constructing a
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hyperplane or a set of hyperplanes that maximize the margin into higher dimen-

sional space. The margin of tolerance is controlled by the ε loss function, where

all data points with residuals within the threshold ε do not contribute to the

regression fit, whereas all points with an absolute difference greater than ε do by

a linear-scale amount (Kuhn and Johnson, 2013). Overfitting is prevented by the

user-set cost parameter C, which imposes a penalty on large residuals outside the

ε margin. The generalization of the regression model is controlled by the kernel

function. The estimation accuracy of SVR depends on the good selection of the

tuning parameters C, ε and the kernel parameters. Kuhn and Johnson (2013)

however suggest fixing a value for ε and tuning over the other kernel parameters,

since there is a relationship between ε and the cost parameter, and the latter

provides more flexibility for tuning the model.

Relevance Vector Machines (RVM)

The relevance vector machine is a Bayesian approach analog to SVR (Kuhn and

Johnson, 2013), and is often used for classification and pattern recognition (Elarab

et al., 2015). Parameters have associated prior distributions, and relevance vec-

tors are determined using their posterior distribution. If the distribution is highly

concentrated around zero, the prediction equation does not include this sample.

Usually, less relevance vectors are constructed in the model than support vectors

in an SVR model (Kuhn and Johnson, 2013), but with a comparable generaliza-

tion function (Tipping, 2001). This results in much faster processing (Demir and

Erturk, 2007).

Elarab et al. (2015) used a RVM with LAI, NDVI, thermal and red bands as

input to estimate plant chlorophyll concentration over a larger area. The study

relied on imagery from a multispectral and a thermal camera mounted on a UAV

(Elarab et al., 2015).

Gaussian Process Regression (GPR)

Gaussian Process Regression is another kernel-based machine learning gaining

popularity for regression problems. It builds upon the Gaussian Process theory.

According to this theory, the learning of the regressor is formulated in terms of

a Bayesian estimation problem, where the parameters are assumed to be random

variables which are a priori jointly drawn from a Gaussian distribution (Pasolli
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et al., 2010). The parameters to be tuned comprise magnitude, characteristic

length, and noise variance (Hultquist et al., 2014).

Verrelst et al. employed gaussian process regression extensively to estimate bio-

physical plant variables using RS (Verrelst et al., 2012a, 2016, 2013).

Kernel Regularized Least Squares (KRLS)

Kernel Regularized Least Squares (KRLS) is a machine learning approach that

is based on the well-established Regularized Least Squares (RLS) method (Hain-

mueller and Hazlett, 2014). It is suitable for a range of regression and classifi-

cation problems, without relying on linearity or additivity assumptions. KRSL

constructs a flexible hypothesis space that uses kernels as radial basis functions,

and finds the best fitting surface in this space by minimizing a complexity-

penalized least squares problem (Hainmueller and Hazlett, 2014). The method is

controlled by the two tuning parameters lambda (regularisation parameter) and

sigma, which specifies the bandwidth of the Gaussian kernel.

We are not aware of any RS-based publication relying on KRLS regression for

estimation of biophysical plant variables.

Extreme Learning Machine (ELM)

The extreme learning machine learning (ELM) algorithm is a feedforward neural

network developed for classification or regression applications. It possesses only a

single layer of hidden nodes, and does not need any iterative tuning or parameter

setting. The input weights and hidden layer bias are randomly chosen and are

never updated; the weights between hidden layer and outputs are learned in a

single step. The only parameter to be tuned is the number of hidden nodes (Lima

et al., 2015). The learning speed of ELM is extremely fast, thereby decreasing the

required time for the training of a neural network (Shamshirband et al., 2016),

which is especially important when a big data set needs to be processed.

In RS-based applications, ELM was employed in classification of multispectral

(Pal, 2009) and hyperspectral images (Bazi et al., 2014; Moreno et al., 2014),

but, to our knowledge, not in any regression analysis. It has successfully been

used, however, in other predictive environmental applications, such as hydrology

(Deo et al., 2016; Rasouli et al., 2012) or climatology (Shamshirband et al., 2016).
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Table 6.2: List of non-parametric regression algorithms used in this study.

Group Name Source
Decision Tree Learning Random Forest Regres-

sion (RF)
(Breiman, 2001)

Kernel Methods

Support Vector Regres-
sion (SVR)

(Vapnik, 1998)

Relevance Vector Ma-
chines (RVM)

(Tipping, 2001)

Gaussian Process Re-
gression (GPR)

(Rasmussen, 2006)

Kernel Regularized Least
Squares (KRLS)

(Hainmueller and Ha-
zlett, 2014)

Neural Networks Extreme Learning Ma-
chine (ELM)

(Huang et al., 2006)

In this study, we decided not to include Artificial Neural Networks (ANN) in

our study due to their complexity. Verrelst et al. (2015b) stated that in the

future, ANNs should be replaced with alternative methods that are simpler to

train. Furthermore, we did not include linear non-parametric models (e.g. Prin-

cipal Component Regression or Partial Least Squares Regression) because of the

strong nonlinear relationship between gLAI and reflectance in the visible spec-

trum. Additionally, these methods were designed to deal with collinearity, and

perform better if a high number of predictors is given (e.g. a full range hyper-

spectral spectrum) (Kuhn and Johnson, 2013).

When analysing the correlation matrix of the predictors, we found strong collinear-

ity between the bands in the visible spectrum and the ρNIR680−780 band. To de-

crease model complexity, we decided to exclude the ρNIR680−780 band. Thus, the

following model was fitted to the gLAI and spectral data (equation 6.1):

gLAI ∼ ρBlue + ρGreen + ρRed + ρNIR(800−900) (6.1)

67



6.4 Results

6.4.1 Parametric Regression with Non-Vegetation Pixels

Included

All possible band combinations for the index formulations listed in table 6.1 were

tested and analysed. Table 6.3 lists the best-performing band combination and

fitting function for each index formulation, with non-vegetation pixels included

in the spectral information. Band combinations with a differing order of the

same bands and adjusted parameters might perform equally and are not listed

here. 3BSI Tian outperformed all other indices, with the lowest RMSE and the

highest R2 for the cross-validation. The other three-band indices (3BSI, 3BSI

Wang, mSR and mND) performed worse than two two-band indices, namely

Normalized Difference (ND) and Simple Ratio (SR). It is visible that the ρRed

and ρNIR800−900 bands were amongst the best bands in all index formulations.

For all formulations except Simple Ratio (SR), an exponential function showed

the best fit. Testing the derived combinations against the independent test set

Table 6.3: Cross-validation statistics (R2 and RMSE) for the best-performing
band combination and fitting function of each index formulation with
non-plant pixels included.

Index
Name

Formulation Fitting
Function

Best Bands R2(CV ) RMSE(CV ) R2val. RMSEval.

3BSI Tian
(ρa−ρb−ρc)
(ρa+ρb+ρc)

Exponential a:Red,
b:Blue,
c:NIR

0.692 0.715 0.753 0.702

ND
(ρa−ρb)
(ρa+ρb)

Exponential a:NIR,
b:Red

0.689 0.721 0.739 0.725

SR ρa
ρb

Linear a:NIR,
b:Red

0.685 0.712 0.739 0.684

3BSI
(ρa−ρc)
(ρb+ρc)

Exponential a:Red,
b:Green,
c:NIR

0.669 0.746 0.699 0.776

3BSI Wang
(ρa−ρb+2ρc)
(ρa+ρb−2ρc)

Exponential a:Red,
b:NIR,
c:Blue

0.636 0.797 0.673 0.824

mSR
(ρa−ρc)
(ρb−ρc)

Exponential a:Red,
b:Blue,
c:NIR

0.616 0.818 0.698 0.799

mND
(ρa−ρb)

(ρa+ρb−2ρc)
Exponential a:NIR,

b:Red,
c:Blue

0.604 0.822 0.689 0.783

showed that 3BSI Tian delivered the highest R2 and SR the lowest RMSE. The
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scatter plots of the three best performing index formulations (Figure 6.2) show

that accuracy decreased beyond gLAI values of 3.

Figure 6.2: Measured vs. estimated gLAI values of the three best-performing in-
dex formulations (3BSI Tian, ND and SR) including non-plant pixels,
along the 1:1 line.

6.4.2 Parametric Regression with Non-Vegetation Pixels

Removed

Table 6.4 lists the best-performing band combination for each index formulation,

with non-plant pixels removed. The best-performing indices were 3BSI Tian and

ND, which performed equally well (same R2 and RMSE). SR performed better

than all other 3-band spectral indices. ρRed as well as the ρNIR800−900 bands

were amongst the best bands. Exponential functions provided the best fit for

all index formulations but mSR, where the linear function worked best. Overall,

performance of regression with non-vegetation pixels removed was worse than

regression with non-vegetation pixels included in the measurements. Testing the

models against the validation dataset showed that results deteriorated compared

to the dataset that included the non-plant pixels. However, the saturation effect

was not indicated as distinctly as above (Figure 6.3).

6.4.3 Non-parametric Regression Algorithms with

Non-Vegetation Pixels Included

Table 6.5 shows the results of the cross-validation of all non-parametric regres-

sion algorithms, including non-plant pixels. All algorithms outperformed the

parametric regression approaches. The best-performing algorithms were Kernel
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Table 6.4: Cross-validation statistics (R2 and RMSE) for the best-performing
band combination and fitting function of each index formulation with
non-plant pixels removed.

Index
Name

Formulation Fitting
Function

Best Bands R2(CV ) RMSE(CV ) R2(val.) RMSE(val.)

3BSI Tian
(ρa−ρb−ρc)
(ρa+ρb+ρc)

Exponential a:Red,
b:Blue,
c:NIR(800-
900)

0.680 0.755 0.673 0.712

ND
(ρa−ρb)
(ρa+ρb)

Exponential a:NIR(800-
900),
b:Red

0.680 0.755 0.680 0.702

SR ρa
ρb

Exponential a:NIR(800-
900),
b:Red

0.679 0.766 0.689 0.696

3BSI
(ρa−ρc)
(ρb+ρc)

Exponential a:Red,
b:Green,
c:NIR(800-
900)

0.672 0.767 0.682 0.698

3BSI Wang
(ρa−ρb+2ρc)
(ρa+ρb−2ρc)

Exponential a:Red,
b:NIR(800-
900),
c:Green

0.651 0.797 0.669 0.715

mSR
(ρa−ρc)
(ρb−ρc)

Linear a:NIR(800-
900),
b:Blue,
c:Green

0.609 0.828 0.601 0.788

mND
(ρa−ρb)

(ρa+ρb−2ρc)
Exponential a:Blue,

b:NIR(800-
900),
c:Green

0.609 0.849 0.605 0.780

Figure 6.3: Measured vs. estimated gLAI values of the three best-performing
index formulations (3BSI, ND and SR) excluding non-plant pixels,
along the 1:1 line.

Regularized Least Squares (KRLS), Support Vector Regression (SVR) and Gaus-

sian Processes Regression (GPR), with R2 > 0.76 and RMSE < 0.64. Extreme

Learning Machine (ELM) performed worse than the other algorithms. The vali-
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dation run showed that SVR, GPR and KRLS outperform all other algorithms.

Figure 6.4 shows measured vs. estimated gLAI values for the best-performing

Table 6.5: Cross-validation statistics for non-parametric regression algorithms
used in this study, with non-plant pixels included.

Name of algorithm R2(CV ) RMSE(CV ) R2(val.) RMSE(val.)
RF 0.758 0.632 0.753 0.652
SVR 0.763 0.626 0.760 0.651
RVM 0.743 0.654 0.745 0.664
GPR 0.762 0.631 0.771 0.632
KRLS 0.765 0.625 0.777 0.622
ELM 0.725 0.673 0.759 0.648

non-parametric models (SVR, GPR, KRLS) including non-plant pixels. Points

are scattered closer around the 1:1 line, and no distinct saturation effect can be

seen for gLAI values up to 4.

Figure 6.4: Measured vs. estimated gLAI values of the three best-performing
non-parametric models (SVR, GPR and KRLS) including non-plant
pixels, along the 1:1 line.

6.4.4 Non-Parametric Regression Algorithms with

Non-Vegetation Pixels Removed

Table 6.6 displays the results for the cross-validation of all non-parametric re-

gression algorithms excluding all non-plant pixels. As above, Kernel Regularized

Least Squares (KRLS), Support Vector Regression (SVR) and Gaussian Pro-

cesses Regression (GPR) outperformed the other indices, with R2 > 0.74 and

RMSE < 0.657. Kernel Ridge Regression (KRR) and Extreme Learning Ma-

chine (ELM) showed the weakest performance, with R2 < 0.68 and RMSE > 0.7.
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Furthermore, these two algorithms exhibited a result worse than the best results

of parametric regression; all other algorithms provided a better result. The scat-

Table 6.6: Cross-validation statistics for non-parametric regression algorithms
used in this study, with non-plant pixels excluded.

Name of algorithm R2(CV ) RMSE(CV ) R2(val.) RMSE(val.)
RF 0.746 0.664 0.709 0.677
SVR 0.743 0.669 0.740 0.634
RVM 0.704 0.719 0.731 0.651
GPR 0.739 0.675 0.741 0.636
KRLS 0.749 0.661 0.744 0.633
ELM 0.666 0.761 0.687 0.694

ter plots of the three best-performing algorithms (SVR, GPR, KRLS) are shown

in Figure 6.5. Points are dispersed wider compared to Figure 6.4.

Figure 6.5: Measured vs. estimated gLAI values of the three best-performing
non-parametric models (SVR, GPR and KRLS) excluding non-plant
pixels, along the 1:1 line.

6.5 Discussion

This study aimed at evaluating parametric and non-parametric regression meth-

ods on their capability to estimate gLAI in maize, relying on UAV-based low-cost

camera imagery with non-plants pixels (i.e. shaded and illuminated soil back-

ground) a) included in and b) excluded from the analysis. This analysis is pos-

sible because we relied on ultra-high spatial resolution imagery that allows for

separation of plant and non-plant pixels. Furthermore, the flexible employment

of the UAV platforms makes the generation of a detailed data set possible. In
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the following subsection, we will discuss our employed material and methods in

detail.

6.5.1 Camera Set and Imagery

All (modified) low-cost commercial off-the-shelf digital cameras have substantial

band overlap, and spectral sensitivity as well as wavelength transmittance of

filters is unknown to the end user (see Berra et al. (2015) for an analysis of

sensitivities of different cameras). We did not examine the spectral sensitivity

of the cameras employed, but doubt the correctness of the NIR sensitivities as

stated by the provider. Berra et al. (2015) investigated the spectral sensitivity of

a Sony Nex7 equipped with a top-notch filter and found that the camera responds

to light beyond 900 nm and even to the UV spectrum. Transmission in the NIR

range is rather restricted by the sensor substrate than by choice of the filter. This

might as well be the case with the RGNIR camera we employed. Due to lower

sensitivity in the NIR spectrum, exposure times had to be extended which might

have caused a loss in usable dynamic range, especially in the visible ranges.

6.5.2 Parametric Regression

Our results showed that the widely used two-band indices such as NDVI or

GNDVI are not necessarily the best-performing ones to estimate gLAI; it may be

worthwhile to test three-band indices as well. In this study, the best-performing

index was 3BSI Tian using the band combination a = red, b = blue, c =

NIR800−900. The NIR band was included in the best bands selection of each

formulation, showing that information in the near-infrared is preferable in UAV-

based gLAI estimation over standard RGB imagery.

Improving model fit by selecting different fitting functions might make sense from

a mathematical point of view; however we would like to stress out that one should

consider the underlying physical principles when selecting a fitting function. It

is for example well documented that the spectral signal in the visible spectrum

saturates at high gLAI levels. Therefore, an exponential function makes sense for

normalized difference indices (when ρNIR/ρV IS > 1, with ρV IS as a band from

the visible spectrum).
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6.5.3 Non-Parametric Regression

Non-parametric regression showed good performance, with all algorithms exhibit-

ing R2 values > 0.72 and RMSE values < 0.67. Especially the kernel methods

SVR, GPR and KRLS delivered good results. We assume the strong nonlinear-

ity of the functional dependence between gLAI and reflected radiance leads to

good prediction results; furthermore the algorithms exploit the entire provision

of bands. Kernel methods are very attractive for retrieval of RS-based biophysi-

cal variables because they cope efficiently with low-sized data of potentially high

dimensionality, which is the case when models are trained using field-measured

data (Verrelst et al., 2013). Verrelst et al. (2012a) pointed out that calculating

a vegetation index is not necessary as input for non-parametric regression when

those bands are used as direct input. Using the individual bands even showed

better performance (Verrelst et al., 2012a).

6.5.4 Effect of Non-Plant Pixels Removal

To our surprise, both parametric regression and non-parametric regression per-

formance was worse when non-plant pixels were removed, compared to non-plant

pixels included in the area of measurement and in the models. As already laid

out in chapter 5, we attribute this to differing chlorophyll contents in the trials

between the years; this resulted in a wider spread of reflectance values at equal

gLAI values. This effect is even more pronounced when the influence of soil

and shadow pixels on the average value of each sampling area is removed. Soil

has higher reflectance in the visible and lower reflectance in NIR spectrum than

healthy vegetation, and thus reduces the offset between the contrasting ranges

when the average is calculated over an area of different pixels. Given this, we do

not see any benefit in removing non-plant pixels from the sampling since their

influence does not seem to improve prediction performance.

6.5.5 Parametric vs. Non-Parametric Regression

The comparison between parametric and non-parametric regression methods showed

that all non-parametric methods outperformed the parametric ones. R2 values

were higher, RMSE values were lower, and the estimates of the three best-

performing algorithms were closer to the 1:1 line. A saturation effect only oc-

curred at gLAI > 4 when relying on non-parametric regression methods, and at
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gLAI > 3 when relying on parametric regression.

Processing speed was not an evaluation criterion in our study. We did not con-

sider this relevant, since our set of measurements was rather small (n=656). It

might play a role when dealing with larger datasets; Verrelst et al. (2015b) found

that processing the cross-validation statistics of for the best-performing index

formulation was considerably faster than processing non-parametric regression

algorithms.

6.6 Conclusions

The estimation of gLAI via means of RS has been in focus of research since the

1970s; the emergence of UAVs however has opened up new possibilities and chal-

lenges. Our study aimed at improving remote green LAI estimation in maize

using UAV-based modified camera imagery by investigating parametric and non-

parametric regression methods. Furthermore we were interested in the influence of

shadow and soil presence on our model outcome. Our results suggested that non-

parametric regression methods outperform the widely-used parametric methods

based on spectral vegetation indices. Especially the kernel methods SVR, GPR

and KRLS performed well, seemingly able to cope with the non-linear nature of

the relationship between gLAI and canopy reflectance. If reliance on parametric

regression is needed, one should also look at three-band indices, as our results

suggested a better performance than two-band indices. Given the limited number

of bands and their broad sensitivities, signal saturation at high gLAI values re-

stricts estimation to maximum gLAI values of 3 when using parametric methods

and 4 when using non-parametric methods.

Furthermore, our results showed that model performance possibly even decreases

when non-plant pixels are removed from the analysis. This is due to confound-

ing factors that might influence plant reflectance especially in-between different

years. When investigating gLAI – spectral data relationships, we suggest to al-

ways measure chlorophyll content in a reasonable amount of plants. However, the

small difference between the results of inclusion and exclusion of non-plant pixels

suggested that it is not necessary to remove non-plant pixels. Further studies on

the confounding factors that influence crop reflectance are of great importance for

evaluating and improving the methods tested here. Given the ultra-high spatial

resolution however, we can think of beneficial effects of separating plant from soil
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pixels for cover estimation and analysis of the spatial arrangement of plants in

the field.

We assume that our findings are crop-, site- and camera-specific. Marking the

start of further research, we suggest studies in maize using the same set of cam-

eras in different locations, later expanding to different crops. What has been

presented here for maize in a factorial experiment also offers opportunities for

applications at larger spatial extents. The gLAI mapping of time series across

large fields or even within agricultural regions and with lower spatial resolution

provides useful information on crop performance. The latter is least dependent

on water availability, nutrient supply and soil properties and their interaction.

The flexibility of UAVs for crop observation allows for the provision of informa-

tion that is very useful for decision making at various spatial scales, especially for

nutrient management, precision farming applications, early stress detection and

environmental protection schemes. Further, if combined and interpreted together

with phenomapping (Parplies et al., 2016) and existing soil maps, georeferenced

gLAI data as key variables of crop growth provide an excellent and easy to derive

data source for spatial crop modelling.
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7 Study III: Towards Remote

Estimation of Radiation Use

Efficiency in Maize Using

UAV-based Low-Cost Camera

Imagery

7.1 Abstract

Radiation Use Efficiency (RUE) defines the productivity with which absorbed

photosynthetically active radiation (APAR) is converted to plant biomass. Read-

ily used in crop growth models to predict dry matter accumulation, RUE is

commonly determined by elaborate static sensor measurements in the field. Dif-

ferent definitions are used, based on total absorbed PAR (RUEtotal) or PAR

absorbed by the photosynthetically active leaf tissue only (RUEgreen). Previous

studies have shown that the fraction of PAR absorbed (f APAR), which supports

the assessment of RUE, can be reliably estimated via remote sensing (RS), but

unfortunately at spatial resolutions too coarse for experimental agriculture. UAV-

based RS offers the possibility to cover plant reflectance at very high spatial and

temporal resolution, possibly covering several experimental plots in little time.

We investigated if a) UAV-based low-cost camera imagery allowed estimating

RUEs in different experimental plots where maize was cultivated in the growing

season of 2016, b) those values were different from the ones previously reported

in literature and c) there was a difference between RUEtotal and RUEgreen. We

determined fractional cover and canopy reflectance based on the RS imagery. Our

study found that RUEtotal ranges between 4.05 and 4.59, and RUEgreen between

4.11 and 4.65. These values are higher than those published in other research ar-
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ticles, but not outside the range of plausibility. The difference between RUEtotal

and RUEgreen was minimal, possibly due to prolonged canopy greenness induced

by the stay-green trait of the cultivar grown. The procedure presented here

makes time-consuming APAR measurements for determining RUE especially in

large experiments superfluous.

7.2 Introduction

In agronomy, radiation-use efficiency (RUE, also referred to as light use efficiency

LUE) is defined as crop biomass produced per unit of total solar radiation or

photosynthetically active radiation (PAR) intercepted by the canopy (Stöckle

and Kemanian, 2009). It follows the concept introduced decades ago (Monteith,

1977), where the amount of photosynthates or dry biomass production (g m-2)

is expressed as the product of the fraction of absorbed photosynthetically active

radiation (fAPAR, with APAR defined as absorbed solar radiation between 400

nm - 700 nm wavelength in MJ m-2) and the efficiency (ε) with which the absorbed

light is converted into fixed carbon (equation 7.1).

DM = fAPAR ∗ PAR ∗ ε (7.1)

This concept is widely used in dynamic crop growth modelling (Stöckle and Kema-

nian, 2009), where daily biomass production is estimated as the product of the

amount of radiation intercepted and the RUE for forecasting crop growth and

yield. The model’s estimation accuracy is affected by limitations of the model

itself, because factors influencing biomass production are not considered by the

model, and when model parameters or input variables, such as cultivar-dependent

RUE, are not available (Morel et al., 2014). Commonly, a constant RUE value is

assumed, determined by elaborate field measurements. Unfortunately, there is no

standardized procedure to estimate RUE, which has led to various units and ex-

perimental approaches (Sinclair and Muchow, 1999). Gitelson and Gamon (2015)

point out that there are at least three widely used definitions of photosynthetic

RUE based on

i incoming radiation (RUEinc) calculated as

RUEinc = DM/PARinc (7.2)

78



with PARinc = incident PAR, and DM = dry matter produced,

ii total absorbed light (RUEtotal) calculated as

RUEtotal = DM/(fAPAR ∗ PARinc) (7.3)

with fAPAR as the fraction of daily PAR absorbed, and

iii radiation absorbed by photosynthetically active vegetation (RUEgreen) cal-

culated as

RUEgreen =
DM

fAPARgreen

∗ PARinc (7.4)

with fAPARgreen calculated as

fAPARgreen = fAPAR ∗ (
greenLAI

totalLAI
) (7.5)

where green leaf area index (gLAI) describes the photosynthetically func-

tional leaf tissue per unit ground area, and total LAI the combination of

both green and senesced (i.e. brown) leaf area per unit ground area.

The authors furthermore argue that the estimation of crop productivity could be

different if different RUE definitions are used, and so they recommend considering

RUEgreen as the standard RUE definition, since it is not confounded by changing

pigment and green canopy structure during plant growth and senescence (Gitel-

son and Gamon, 2015). During the vegetative stage, when LAIgreen is equal to

total LAI, fAPARgreen represents the fraction of absorbed photosynthetically

active radiation used for photosynthesis. However, during the reproductive stage

and subsequent senescence, fAPARtotal becomes insensitive to decreasing crop

greenness since both, photosynthetic and non-photosynthetic components, inter-

cept PARinc, while progressively less is used for photosynthesis. Therefore, to

obtain a measure of the fAPAR absorbed solely by the photosynthetic component

of the vegetation, the fraction of radiation absorbed by photosynthetically active

green vegetation (fAPARgreen) is calculated (Gitelson et al., 2015).

The most widely used method to calculate RUE is to fit a linear relationship be-

tween cumulative biomass accumulation and cumulative radiation interception,

with the slope of the linear relationship representing the RUE (Sinclair and Mu-

chow, 1999). The determination of RUEinc and RUEtotal in the field requires

the measurement of intercepted or absorbed radiation and dry biomass at time
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intervals that are adequate for accurate estimations of both (Stöckle and Kema-

nian, 2009). The determination of RUEgreen requires additional measurements of

green LAI and brown LAI (i.e. senesced material). Dry biomass used in the cal-

culation usually comprises net aboveground biomass, but not root mass (Sinclair

and Muchow, 1999). Absorbed PAR (APAR) is commonly derived as:

APAR = PARinc − PARout − PARtransm + PARsoil (7.6)

with PARinc representing the incoming PAR radiation above the canopy, PARout

the PAR radiation reflected by canopy and soil, PARtransm the PAR radiation

transmitted through the canopy and PARsoil the PAR radiation reflected by the

soil (and subsequently absorbed by plant tissue). PARinc is measured by a sen-

sor above the canopy, pointing towards the sky, PARout with a sensor pointing

downwards towards the canopy. PARtransm is tracked with a sensor placed just

above the ground underneath the canopy looking upward, and PARsoil with a

sensor placed a few centimetres above the ground, looking downward (e.g. done

by (Gitelson et al., 2015; Lindquist et al., 2005; Viña and Gitelson, 2005)).

RUE can be affected by environmental factors such as temperature, radiation

and air humidity, or by plant factors such as nutritional and water status, plant

development, and source-sink regulation (Stöckle and Kemanian, 2009). It is

therefore critical that estimates of crop growth and RUE are obtained under op-

timal growth conditions (Lindquist et al., 2005). A range of potential maize (Zea

mays L.) RUE values have been reported in the literature (see Table 7.1 for a

list), with most values ranging between 3.3 g MJ−1 and 3.8 g MJ−1.

The overall RUE of a maize crop throughout the growing season strongly de-

pends on the duration of greenness of plant tissue. Recently, the stay green (SG)

trait has been identified as an important component in the genetic improvement

of several crops to promote stress tolerance and yield improvement (Luche et al.,

2015). In maize, this is associated with delayed canopy senescence compared

to standard genotypes, which implies a longer period of photosynthetic activity

and a longer N retention in the leaves during grain filling, but also lower ker-

nel N concentrations, which might result in lower grain yield (Antonietta et al.,

2014). Swanckaert et al. (2017) found, however, that the stay green trait does not

necessarily provoke higher assimilate accumulation in the leaves, but is rather a

cosmetic one (Swanckaert et al., 2017).

Remote sensing offers potential to reliably estimate the fraction of incoming PAR

80



Table 7.1: List of maximum RUE values reported for maize.

Source Average RUE Based on Location Comments

Lindquist
et al. (2005)

3.8 g MJ−1 APAR Sterling, NE,
and Lincoln,
NE, U.S.A.

Near-optimal
growth conditions,
five growing
seasons, irrigated

Gitelson et al.
(2015)

2.24 gC
MJ−1

APARgreen Mead, NE,
U.S.A.

Multiyear obser-
vations, irrigated
and rainfed, high
variability within
maize cultivars

Singer et al.
(2011)

3.35 g MJ−1 IPAR Ames, IA,
U.S.A.

One growing sea-
son, rainfed

Sinclair and
Muchow
(1999)

1.6 g MJ−1

during
vegetative
growth, 1.7 g
MJ−1 during
reproductive
growth

Solar radia-
tion

Various Review of publica-
tions from differ-
ent locations with
different measure-
ment techniques

Claverie et al.
(2012)

3.3 g MJ−1 APAR Toulouse,
France

Three growing sea-
sons, irrigated

Dong et al.
(2017)

3.41 g MJ−1 APAR Southern On-
tario, Canada

One growing sea-
son, rainfed, ni-
trogen/no nitrogen
treatment

Factors for conversion to total solar radiation basis: 0.5 for IPAR, 0.425 for APAR (Sinclair and Muchow, 1999)
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absorbed by active tissue in the canopy, even across larger areas. This is based

on the premise that surface structural and optical properties are governed by the

vegetation fraction and leaf area index. The interlink is established either via

relating fAPAR to spectral vegetation indices (SVI) or via the usage of radiation

transfer models (Gitelson et al., 2014). In mixed pixels containing different land

covers, precise land cover estimation through remote sensing is challenging. The

SVI-fAPAR model is commonly chosen where the spectral reflectance is a linear

combination of values of background soil and vegetation (Jones and Vaughan,

2010).

UAV-based remote sensing offers coverage at unprecedented spatial and temporal

resolutions due to the low flying altitudes and the versatile, flexible employment

of the platform possibly independent from irradiation conditions. UAV-based

applications in agronomy comprise biomass estimation via plant height measure-

ments (Bendig et al., 2014; Yue et al., 2017), LAI estimation (Córcoles et al.,

2013; Hunt et al., 2010), analysis of phenology (Burkart et al., 2017) and yield

prediction (Haghighattalab et al., 2017; Maresma et al., 2016; Zhou et al., 2017),

amongst others.

Well-calibrated UAV-based spectral imagery provides reflectance information at

much greater detail than other sensors, which reduces the amount of mixed pixels

combining soil and vegetation information. This could be used to draw conclusion

on the light absorption ability of crop canopies over the course of the growing

season, especially within small-scale experimental plots. Furthermore, the spatial

resolution allows for the separation of plant tissue, soil and other features in the

field.

Based on these findings, we asked:

i Does UAV-based commercial off-the-shelf (COTS) digital camera imagery

reflectance data allow for fAPAR estimation support, for ultimately deter-

mining RUEs of maize in small-scale experimental plots of variable LAI and

biomass development (measured destructively)?

ii Do RUE values of maize derived from this technique differ substantially

from field-collected ones reported in the literature?

iii Is there a difference between RUEtotal and RUEgreen in the treatments?

We are not aware of any study that partly estimates fAPAR for RUE determina-

tion from UAV-based low-cost camera imagery.
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7.3 Material and Methods

7.3.1 Study Site and Field Experiment

The field experiment was established in 2016 at Campus Klein-Altendorf (CKA),

University of Bonn’s own agricultural research facility located southwest the city

of Bonn, Germany (6◦59′32′′E, 50◦37′51′′N, 184 meters above sea level). Climate

is characterized by temperate humid conditions with maritime influence. Long-

term average precipitation is 625 mm; average temperature is 9.4◦C. The soil

is classified as alkaline, nutrient-rich Haplic Luvisol that developed from Loess

(Gaiser et al., 2012; Kautz et al., 2010).

The sole purpose of this experiment was to expand plant productivity by for-

mation of different leaf areas; variability in biomass thus resulted from different

light absorption over time. Our assumption was to thereby improve the general

statement of this study, which could represent heterogeneous growth in a com-

mon field. It was not our intention to investigate the influence of management

on biomass accumulation.

Established in a random sampling design, the experiment consisted of a com-

bination of two plant densities (PD) and two treatments of nitrogen (N). The

plant densities comprised 50,000 plants ha-1 and 100,000 plants ha-1, the nitro-

gen treatments 100 kg ha-1 and 200 kg ha-1, respectively. Every treatment was

conducted on a plot sized 3 m x 30 m, with 5 repetitions each. Row spacing

was 0.75 m (i.e. 4 rows per plot). Nitrogen was applied as inorganic ammonium

sulphate (ASN) before planting as one-time treatment. Pesticides were applied

according to standard practices, and no irrigation scheme was practised. All

treatments were checked for wrongly set plants. Low plant density plots were

manually thinned out after emergence.

Rainfall, air temperature at 2 m aboveground and incoming global solar radiation

were recorded at the research station’s weather station (GWU-Umwelttechnik

GmbH, Erftstadt, Germany) in the vicinity of the field.

The hybrid cultivar Ricardinio (KWS Saaten AG, Einbeck, Germany) with stay-

green characteristics was grown, which has a recommended plant density, ac-

cording to the seed producer, of 90,000-95,000 plants ha-1 in non-water limited

environments (see Table 7.2 for further information, including captured pheno-

logical stages according to BBCH scale). The temperature sum was calculated

using 8◦C as base temperature as confirmed for temperate climates by Birch et
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Table 7.2: Basic data about the trial.

BBCH stage Date Temperature Sum [◦Cd]
Planting Date 04 May 2016 -
Emergence 10 May 2016 44.45
Begin Flowering 15 July 2016 585.72
Fruit Development:
Milk-ripe stage

15 August 2016 918.41

Full Ripening 23 September 2016 1346.67
Harvest 29 October 2016 1454.2

al. (2003). Temperatures beyond 30◦C were included in the calculation as the

maximum temperature of 30◦C, since no increased growth was observed beyond

that temperature. A total sum of 353.1 mm of precipitation was recorded between

planting and harvest. The recorded long-term average (1956-2017) precipitation

from May to October is 361 mm (www.cka.uni-bonn.de, accessed Jan 15, 2018).

7.3.2 Leaf Area Index and Dry Biomass Measurements

For measuring leaf area index, 0.5 m of plants in two adjacent rows were sampled

destructively at two positions within 4 plots of each treatment at every sampling

date (i.e. 4 treatments x 4 plots x 2 samples = 32 samples per sampling date). To

minimize edge effects, we did not sample the outer rows of each plot and skipped

0.5 m of standing plants between the collection dates. Four plots (i.e. one plot

per treatment) remained unsampled during the entire course of the trial. Sam-

ples were immediately transported back to the institute and split into green and

senescent material by visual assessment. Green and senescent leaf area was mea-

sured separately using the LI-COR LI-3100C area meter (LI-COR Inc., Lincoln,

NE, USA). gLAI and brown LAI respectively, was determined by dividing the

leaf area of each sample by the sampling area (i.e. leaf area / 0.75 m2). Samples

were taken on ten dates in 2016, with an interval of roughly 14 days. Assessing

leaf area by destructive sampling is considered the most accurate method and of-

ten serves as calibration for indirect measurement techniques (Jonckheere et al.,

2004).

Aboveground biomass was measured from the same samples taken for leaf area

measurements. Samples were oven-dried at 105◦C for at least 48 hrs until constant

weight and weighed subsequently.
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7.3.3 Collection of Spectral Data and Preprocessing

Spectral data was collected using two Canon ELPH 110 HS digital compact red-

green-blue (RGB) cameras, modified by LDP LLC Inc. (Carlstad NJ, USA).

The cameras 1 2/3 inch sized CMOS sensor comprised 4608 x 3456 recording

pixels (i.e. 16.1 Megapixels). The first camera (hereafter: RGNIR camera) was

fitted a blue rejection filter, with sensitivity in the red, green and near-infrared

(NIR) domain from roughly 800 – 900 nm. The information in the blue band

was replaced by information in the NIR domain. The second camera (hereafter:

BGNIR camera) was fitted with a dual-band-pass filter that blocks light in the

red domain; this rendered the sensor sensitive for NIR light in the wavelengths

680 nm to 780 nm. The RGNIR camera delivered R = Red + NIR, G = Green

+ NIR and B = NIR only, the BGNIR camera delivered B = Blue + NIR, G =

Green and R = NIR.

The cameras were mounted inside a frame underneath a Mikrokopter OktoXL6S12

(HiSystems GmbH, Moormerland, Germany) octocopter. Data was collected

around noon to avoid shadow cast, on mostly cloud-free days, immediately be-

fore the sampling of the plants. Images were acquired from an altitude of 50 m

(ground sampling distance of 1.5 cm) at nadir view, with a focal length of 4.3 mm

and a variable shutter speed that was adjusted from one campaign to the next,

depending on incident light conditions. Three differently grey-scaled reference

targets placed next to the field served for the conversion to reflectance values

(with nominal reflections of 4%, 16% and 58% of light).

Images captured in RAW format were subsequently corrected for lens barrel dis-

tortion, vignetting effects (Burkart et al., 2017; Kelcey and Lucieer, 2012) and

NIR band interference before being converted to reflectance values using the em-

pirical line calibration method (Smith and Milton, 1999). Orthomosaics were

created using Agisoft Photoscan Professional (Agisoft LLC, St. Petersburg, Rus-

sia).

7.3.4 Image Classification and Estimation of Fractional Cover

We classified each orthomosaic into the components plant tissue, illuminated soil

and shaded soil (cast from plants) using the supervised random forest (RF) clas-

sifier implemented in R’s (R Core Team, 2017) RStoolbox (Leutner and Horning,

2017). RF is a powerful classifier and widely used in RS applications based on
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(a) Original Image (b) Classification (c) Soil pixels removed

Figure 7.1: Example of an original image (left), the classification (centre) with
green representing plant tissue, brown representing illuminated soil,
and black representing shaded soil. The third image (right) shows
original image after removal of soil pixels. Black rectangles delin-
eate spots where plants were later sampled destructively for LAI and
biomass measurements.

multispectral and hyperspectral data (Ghamisi et al., 2017; Rodriguez-Galiano

et al., 2012).

We estimated fractional cover (fCover, i.e. the area of each sampling plot covered

by plant material in relation to the entire plot area) to relate reflectance of plant

tissue to the gap fraction that would be measured by static sensors in the field.

To do this, we divided the number of pixels classified as plant tissue within each

sampling plot by the number of total pixels (comprising plant tissue, illuminated

soil and shaded soil).

For removal of non-plant reflectances, the classes ’illuminated soil’ and ’shaded

soil’ were subsequently masked and pixel values were replaced with missing val-

ues. Pixel values of plant tissue were extracted and averaged within exactly the

same ground area of the field where each sample was taken, using the raster (Hi-

jmans, 2016) package implemented in R (R Core Team, 2017). NA values were

ignored in the calculation. Figure 7.1 shows the example of an original image,

the classification and the image after removal of soil pixels.
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7.3.5 Derivation of fAPAR and APAR

fAPARtotal and fAPARgreen were calculated as shown in equations 7.7 and 7.8.

fPARout describes the fraction of incoming PAR (PARinc) that was reflected by

the canopy, fPARtransm the fraction of PARinc that was transmitted through

the canopy. fPARsoil is the fraction of PAR transmitted through the canopy

that was reflected by the soil. fCover describes the fractional vegetation cover in

each sampling plot.

fAPARtotal = (100% − fPARout − fPARtransm + fPARsoil) ∗ fCover (7.7)

fAPARgreen = fAPARtotal ∗
gLAI

totalLAI
(7.8)

In order to derive RUE based on UAV-based low cost imagery, we assumed the

following:

• The spectrum captured by the blue, red and green bands of the cameras

corresponded roughly to the spectrum of photosynthetically active radiation

(PAR, 400 nm – 700 nm).

• PARinc (derived as 0.5 * total solar radiation) measured by the weather

station corresponded to PARinc above the canopy in the field.

• fPARout corresponded to the average reflectance value (%) that was derived

from the red, green and blue bands of the converted camera imagery.

• fPARtransm was not measured directly. We estimated the fraction of PAR

transmitted through the canopy by applying the Lambert-Beer law (equa-

tion 7.9), where k is the extinction coefficient and gLAI the green leaf area

index:

fPARtrans = e−k∗gLAI (7.9)

A number of k values have been reported for maize, with recent publications

suggesting a range between 0.49 (Lindquist et al., 2005), 0.63 (Liu et al.,

2017) and 0.65 (Maddonni et al., 2001) for maize hybrid plants. We selected

a k value of 0.55 for our analysis.

• fPARsoil reflects a fixed amount of fPARtransm back into the direction of

the canopy, where it is absorbed by the plants. We averaged all pixel values

in the class ’illuminated soil’, thereby neglecting those influences that vary
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soil moisture levels and so affect soil reflectance. An average reflectance of

10% was assumed, based on the average of soil reflectance within the class

’illuminated soil’.

• Temporal increase in fAPAR between sampling dates follows a linear rela-

tionship.

• The plants grew free from environmental stresses.

7.3.6 Calculation of RUE

RUE was derived using the cumulative biomass and APAR method, since the

majority of studies relies on this method. The amount of PAR that was absorbed

by the plants was derived for each sampling date by calculating the definite

integral in the plot of cumulated PAR over the growing season vs. fAPARtotal

and fAPARgreen, respectively. This value was plotted against destructively-

measured dry biomass; the slope of the linear regression indicated the RUE. The

entire workflow is illustrated in figure 7.2.

Figure 7.2: Flowchart of RUEtotal and RUEgreen estimation method.
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7.4 Results

7.4.1 Green LAI, Brown LAI and Fractional Cover

Development

The growing season 2016 passed without any major disruptive events. We took

the first LAI and biomass samples in mid-June and the last samples in mid-

October. The mean gLAI ranged from 0.15 to 0.35 on the first measurement

day (15 June, 312◦Cd), over 2.2 to 3.83 (15 August, 918◦Cd) in mid-season to

0.75 and 2.57 on the last measurement day (16 October, 1436◦Cd). Figure 7.3

shows the average gLAI development per treatment. On average, gLAI values >4

were rarely measured, the absolute peak value was 5.53. Lindquist et al. (2005)

reported peak gLAI values between 4.8 to 7.8 in different years, Liu et al. (2017)

values up to 7.53 and Timlin et al. (2014) average values between 2.2 and 4.28,

with peak values between 3 and 5.62.

Mean brown LAI ranged between 0.75 and 2.57 on the last measurement day.

Although not in focus of this study, we point out that senescence occurred earlier

and faster in the high than in the low plant densities (Figure 7.3). Low plant

densities showed more green than brown leaf area at the last measurement date,

contrary to the high plant densities.

fCover ranged from 15% to 36% at the beginning of the measurement period.

It increased quickly, and reached its maximum in all treatments around 828 ◦Cd

(Figure 7.4), with an average of 88% to 96 % of the measurement plots covered

with plant tissue. fCover dropped to an average between 70% and 76% at the

end of the growing season.

7.4.2 Biomass Development

The development of average biomass per treatment vs. growing degree days

is shown in Figure 7.5. The accumulation followed a typical sigmoidal growth

curve, including a decreasing accumulation rate towards the end of the growing

season. Measured average values ranged between 14 g m-2 and 32 g m-2 on the

first measurement date and between 1063 g m-2 and 1433 g m-2 in mid-season.

The average biomass measured at the last sampling date (16 October) comprised

1384 g m-2 in the S1N1 treatment, 2325 g m-2 in the S1N2 treatment, 2225 g m-2

in the S2N1 treatment and 2466 g m-2 in the S2N2 treatment. In comparison,
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Figure 7.3: Green and Brown LAI development over the course of the growing
season 2016. Error bars show standard deviation.

Figure 7.4: Fractional cover development over the course of the growing season
2016. Error bars show standard deviation. The horizontal position
was adjusted to avoid overlap.

Lindquist et al. (2005) reported total biomass values at physiological maturity

between 2257 and 2916 g m-2, Dong et al. (2017) up to 2500 g m-2.
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Given the broad range of measured gLAI and biomass values measured across

treatments and over time, the desired variability induced by the field experiment

was obtained.

Figure 7.5: Dry biomass development per treatment. Error bars show standard
deviation.

7.4.3 Radiation Use Efficiency Development

Figure 7.6 shows the sum of incoming PAR vs. fAPARtotal (left) and vs. fAPARgreen

(right). The course of the curves in both plots was identical until beyond 1000 MJ

m-2 accumulated PAR. Differences were only visible towards the end of the grow-

ing season, where fAPARtotal decreased comparatively less due to the stronger

influence of reflectance of the senesced leaves. fAPAR of the S2N2 treatment was

the highest during most of the growing season, and dropped to the lowest towards

the end of the growing season.

Estimated RUEtotal values for different treatments were 4.3 (S1N1), 4.6 (S1N2),

4.05 (S2N1) and 4.07 (S2N2). Differences to RUEgreen values were marginal, with

4.33 (S1N1), 4.65 (S1N2), 4.11 (S2N1) and 4.13 (S2N2) reported for the latter

(Figure 7.7).

7.5 Discussion

In this study, we determined RUE of maize based on UAV low-cost camera im-

agery. We are presenting one-year data on the relationship between spectral

reflectance of maize canopies, their PAR absorbed and biomass production at

the same time intervals. The focal point laid on the capability to derive RUE of

maize based on UAV-derived reflectance data rather than on the investigation of
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Figure 7.6: fAPARtotal (left) and fAPARgreen (right) vs. sum of incoming PAR.
Each line represents one treatment.

N and PD effects, which might vary between years. fPARout, biomass and LAI

were measured biweekly in four different treatments, which resulted in an extraor-

dinary comprehensive dataset, thus making yearly replications of measurement

series unnecessary.

7.5.1 Camera Sensitivity

In this study, we assumed that the sensitivity of the red, green and blue bands of

the cameras corresponded to the spectral region of PAR. The spectral sensitivity

of the bands and wavelength transmittance of filters of most COTS cameras

are unknown, unless exposed to monochromatic light (Berra et al., 2015). We

did not examine the response of our cameras employed. Berra et al. (2015)

investigated the spectral sensitivity of several unmodified and one filter-modified

camera, and found that all of the unmodified cameras showed similar ranges

within the visible spectrum, with almost all of the RGB channels covering the

range of 400-700 nm, but with varying degrees of sensitivity and substantial

band overlap (Berra et al., 2015). The filter-modified camera exhibited well-

characterized sensitivities in the visible range that were narrower and of more

equal intensities than those of the unmodified cameras. We are convinced that,

in our case, the influences of varying sensitivities were minimized by the band

wise conversion to reflectance values. Admittedly, sensitivity curves generally

follow a bell shape (Berra et al., 2015) contrary to PAR quantum sensors, which
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Figure 7.7: Cumulative maize aboveground biomass as a function of cumulative
absorbed photosynthetically active radiation. The top row shows re-
lationship per treatment based on APARtotal, the bottom row based
on APARgreen. The slope of the estimated regression equation is the
RUE. The intercept was suppressed.

closely follows the ideal quantum response (Ross and Sulev, 2000). Given this and

the overlapping band sensitivities, we are uncertain to make a statement about

whether our approach tended to under- or overestimate true PAR reflectance.

We encourage future researchers to look into this subject matter.
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7.5.2 Green and Brown LAI Development and Measurement

Techniques

For this study, green and brown LAI was measured to calculate RUEgreen. Con-

trary to studies that rely on indirect LAI measurement methods via the trans-

mission of radiation in the canopy, we used the direct method of harvesting the

maize plants and measuring the area of all leaves within the delimited area. Com-

pared to destructive sampling, indirect methods often underestimate LAI values

in maize (Bréda, 2003; Wilhelm et al., 2000). In this study, plants were harvested

per area, not per count. Sampling was conducted at uncommonly very high

temporal resolution (roughly every two weeks). Given the detailed knowledge

about plant population and the precision of the measurement method, we have

strong confidence in the accuracy of our measured green and brown LAI values.

However, discrepancy remains between the destructively measured area of green

leaves and the functional parts of the canopy which influence the spectral signal

and are sensed by the cameras, comprising not only leaves, but other parts of

the crop, such as stem and husks (commonly referred to as Green Area Index)

(Baret et al., 2010; Verger et al., 2014). We are not aware of any literature that

discusses a potential influence of green plant organs, apart from leaves, on re-

flectance and gLAI estimates by RS, especially in taller crops where organ area is

hard to measure. Given the large area of leaves of maize plants, we hypothesize

that the influence of other organs to the overall signal is negligible.

7.5.3 fAPAR Calculation Assumptions

Light attenuation in maize is influenced by canopy architecture, defined in terms

of the size, shape and orientation of the aboveground components of the plant

(Maddonni et al., 2001). Canopy architecture is influenced by various factors such

as management via plant density (Timlin et al., 2014) and row spacing (Andrade

et al., 2002), as well as cultivar-specific properties (plant height, leaf number, leaf

angle distribution). Modern maize hybrids usually have erect leaves above the

ear and flat leaves below the ear (Huang et al., 2017), with erectophile hybrids

usually associated with k values <0.5 (Ma et al., 2014). Huang et al. (2017)

recently found k values between 0.56-0.74. This shows that estimation of canopy

transmittance via the Beer’s law remains a great source of uncertainty.

Contrary to other studies estimating RUE in maize, we did not cultivate the
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maize crops under irrigated conditions. We assume that water stress did not

occur at any time, given the amount of precipitation that fell over the course

of the growing season. We furthermore calculated soil moisture retention from

data of a physical soil properties analysis (Gaiser et al., 2012) and concluded

that soil-moisture tension did not exceed pF values of 3 in 30 cm soil depth until

flowering, and at no point in time in 60 cm and 90 cm soil depth (soil mois-

ture measured with EC-5 sensors (Decagon Devices Inc., Pullman, WA, USA)

installed in-between the two mid-rows of the unsampled plots, data not shown).

Additionally, we did not observe leaf rolling, which is one of the main plant re-

actions to water stress. Given this, heat stress was also assumed to be minimal,

since the critical canopy temperature is generally reduced by the cooling effect of

water transpiration (Gabaldón-Leal et al., 2016).

Our approach furthermore assumed that PARsoil absorbed by the canopy com-

prises radiation transmitted through the canopy only; we neglected directional

or diffuse reflection from the surrounding area of the plants. The influence was

possibly larger during early growing stages before canopy closure. Especially il-

luminated soil in-between the rows, which was not covered by leaf tissue yet,

could have contributed to PAR absorption to a larger extent. Additionally, the

contribution of varying soil moisture to the PARsoil remains unknown. Wet soils

commonly reflect less PAR than dry soils (Lobell and Asner, 2002). A number

of studies neglected PARsoil altogether, assuming to have only little influence on

APAR (e.g. (Lindquist et al., 2005; Tollenaar and Aguilera, 1992)). Gallo and

Daughtry (1986) found that intercepted PAR (i.e. 1-PARtrans) overestimated

APAR in a maize canopy throughout most of the growing season by less than

4%, which emphasizes the little influence of PARsoil on total APAR.

7.5.4 RUE Values

The RUE values derived in this study were higher than those published in re-

cent articles. Lindquist et al. (2005) found an RUE of 3.8 g MJ-1 APAR for

aboveground biomass accumulation, PARsoil was not measured. We consider the

values presented here plausible, given the trends in biomass increase induced by

improved plant breeding. Biomass increase in modern maize hybrids is mostly

attributable to higher plant density tolerance (Antonietta et al., 2014), which

results from increased light intensity in the mid and lower canopy layers. Maize

adapts to increased density by increasing leaf spacing below the ear and the leaf

95



orientation above the ear, and by reducing leaf width and leaf angle (Gou et al.,

2017). Lower RUE in high plant densities could be a result of decreased absorp-

tion efficiency due to more self-shading.

In agreement with Lindquist et al. (2005), we also cannot support the common

perception that RUE declines during grain fill. Both absorption and biomass

increase occurred until the last sampling date.

Unfortunately, no statistical analysis was possible to determine differences or sim-

ilarities between RUEgreen and RUEtotal, and the impact of different treatments.

RUEgreen and RUEtotal values of the same treatments did not differ consider-

ably. Figure 7.6 furthermore suggests that a difference between fAPARtotal and

fAPARgreen only occurred towards the end of the growing season, around the

full ripening stage. The influence of the stay green trait possibly caused this;

the longer maintenance of greenness resulted in a weak influence of senesced ma-

terial to plant reflectance. Although both approaches produce similar results,

we nevertheless recommend relying on the RUEgreen concepts, since the onset of

senescence is both cultivar- and weather driven.

Since root mass is difficult to measure, it is commonly not included in RUE es-

timations. The inclusion would inevitably result in higher values. Root mass

of maize around anthesis may comprise 15% to 40% of the total crop mass. N

fertilization might decrease root mass or show no impact at all (Anderson, 1988).

As mentioned above, we computed RUE via cumulative APAR. However, Mitchell

et al. (1998) pointed out that this method gives false confidence in the true actual

value of RUE and so obscures all variation in RUE with time. In fact, the tem-

poral behaviour of RUE is characterized by short term facultative (day-to-day)

and long term constitutive (seasonal) variations (Gitelson et al., 2015). RUEgreen

can vary more than 3-fold over the season with no clear pattern, and additionally

show day-to-day variability, depending on the physiological status of the vegeta-

tion. The daily variability of PAR also causes RUEgreen day-to-day oscillation,

with a decrease due to excessive PARinc, which cannot be efficiently used by the

maize plant. The long term variation is affected by the physiological status and

phenology, furthermore by the temporal changes of green and brown plant tissue

(Gitelson et al., 2015).
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7.6 Conclusion

This study showed that UAV-based reflectance data derived from low-cost cam-

era imagery could be used to support the derivation of RUE values in small-scale

experimental plots (provided that the data is well-preprocessed). The great ad-

vantage of this approach is that fractional cover and fPARout as necessary inputs

for the calculation of RUE can be sensed over larger areas, and not just point-

based. Possibly, the above-mentioned variables could be mapped at small spatial

scales (e.g. m2) in fields, thereby revealing heterogeneous patterns that would

otherwise remain undetected. A cultivar-dependent RUE derivation is possible;

this gives crop modellers the chance to improve radiation-driven crop growth

models. gLAI can also be mapped with the help of UAVs and multispectral or

hyperspectral cameras; the mapping of brown LAI is encouraged to be focus of

research in future activities. First studies on the estimation of standing biomass

in cereals via UAV-based RS were recently published (Bendig et al., 2014; Li

et al., 2016; Yue et al., 2017). Taking this under consideration, the need for

labour-intensive, costly field measurements could be reduced to a minimum.
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8 Synthesis

The research that was documented in this thesis was motivated by the need for es-

timation of biophysical crop variables in agronomic field experiments, where plots

are commonly numerous and small. UAV-based RS delivers data with ultra-high

spatial and temporal resolution, since the sensor-carrying platform can be em-

ployed flexibly and the sensor is close to the object of interest.

As was shown, our approach relying on a set of modified COTS cameras offers

potential to estimate the two very important crop variables gLAI and RUE ac-

curately and contactless. All results of this thesis should, however, be considered

under limitations documented as follows.

8.1 Limitations

8.1.1 The Field Experiment

The field experiment as the foundation of this study was set up at Campus Klein-

Altendorf, which is characterized by generally favourable growing conditions and

fertile soils. The primary intention of the experiment with its four treatments

was to develop a broad range of leaf area being measurable simultaneously, over

different points in time.

As the data showed, this occurred only partly. The 2016 trial showed no signif-

icant differences of leaf area between the different N levels in both low and high

plant densities. Prevailing N availability and N nitrification before planting was

probably already at a high level, which resulted in no significant differences in

gLAI development between the N trials. It is therefore recommended to account

for residual nitrogen in field experiments and to choose extremely different N

fertilisation rates on these fertile soils (e.g. 0 kg ha−1 - 300 kg ha−1) to ensure

the effect on maize leaf growth.

Furthermore, the differences in reflectance at equal gLAI values between the years

were unexpected (probably caused by different N nitrification rates), which is why
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chlorophyll content was unaccounted for in our measurements.

Change of cultivars between the years did not happen for research purposes. The

seeds of the cultivar that was grown in 2015 were not available for purchase in

2016 any more.

In a nutshell, it can be said that a number of uncertainties remain in field exper-

iments that cannot necessarily be accounted for.

8.1.2 The Regression Models

Commonly, regression models between spectral data and biophysical crop vari-

ables are crop, sensor- and site-specific (Homolová et al., 2013). We therefore

assume that a recalibration of the models derived in this study is necessary if

the given set of cameras is used in a different location and/or for a different

crop. Furthermore, a recalibration is needed if the sensor system is a different

one. Considering this, the applicability of the derived models under different side

conditions is limited, the methodological approaches, however, are not.

Taking the restrictions of the gLAI regression models into account, the explana-

tory power at later growing stages of crops remains limited. This is when the

plants reach gLAI levels >4, and no distinction is possible via our UAV-based

approach. To overcome this issue, narrowband solutions that include information

from red-edge and NIR should be investigated (see below).

8.2 Contributions to Knowledge

The findings presented in this thesis, including the three studies in chapters 5,

6 and 7 can be summarized in their contribution to scientific knowledge and the

overall objectives of this study (chapter 2) as follows and have not been published

up to date in any other study:

• The employed platform (UAV) and sensor (low-cost cameras) combination

enables the user to cover larger maize field experiments with ultra-high

spatial resolution RS imagery repeatedly, effortless, in little time and under

illumination conditions different from clear blue skies;

• Elaborate preprocessing of the RAW data captured by the set of cameras

is necessary before the analysis is possible;
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• The data derived from UAV-based modified COTS camera imagery can be

used to estimate gLAI and RUE (via the estimation of fAPAR and fractional

cover) in different treatments of maize in experimental plots;

• A good estimation of gLAI is possible until values of around 3 when relying

on spectral vegetation indices, the signal saturates at greater values. This

implies that values >3 cannot be determined using this approach.

• Non-parametric regression methods perform better in their gLAI estima-

tion accuracy than SVIs; an estimation of gLAI values >4, however, is not

possible;

• Apparently, a general model across different treatments relying on SVIs for

gLAI estimation can only be derived at the expense of overall accuracy;

• A sole reliance on vegetation indices is not recommended to determine in-

fluences of management factors on gLAI development;

• The exclusion of non-plant pixel does not improve both parametric and

non-parametric regression performance substantially and is therefore not

necessary for gLAI prediction via UAV-based RS.

8.3 Feasibility of COTS Cameras for Variable

Estimation

This study relied on a set of COTS cameras that was modified with filters de-

veloped in-house by the modifying company. The exact spectral responses of the

cameras were unknown due to the lack of documentation, and to our knowledge,

no published study investigated this particular set of cameras. Berra et al. (2015),

however, inspected the spectral response of a modified Sony camera equipped with

the same filter as the RGNIR camera employed in this study (see figure 8.1 for

spectral response curves). They found a much lower sensitivity in the NIR range

than in the visible ranges. Additionally, they surprisingly determined sensitivity

of the camera to light in the UV range. It is therefore likely that the RGNIR

camera employed in this study exposed the same characteristics; the magnitude

of likely influence, however, is impossible to quantify.
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Figure 8.1: Spectral response of a modified Sony camera, equipped with the same
filter as the RGNIR camera employed in this study. Data is nor-
malised to the peak of the red channel. Source: Berra et al. (2015)

As shown in figure 3.10 on page 22 and figure 8.1, COTS cameras exhibit over-

lapping and varying sensitivities in different bands. In contrast, costly sensors

developed for scientific purposes show distinct sensitivities without overlap and

a similar magnitude. Both types commonly cover the ranges of the electromag-

netic spectrum that are influenced by varying leaf area (visible and NIR spectral

range), where transitions along the spectrum occur smoothly rather than sharply

(see a typical curve of vegetation reflectance in figure 3.2 on page 10).

With respect to the estimation of gLAI, we do not assume a vast performance

difference between the two types of cameras as long as the same parts of the

spectrum are included in the model. Signal saturation will definitely occur at

higher gLAI levels, since this condition is an optical property caused by plant

architecture and not by the camera type. Nevertheless, we strongly encourage

research comparing the results of the different camera types.

Narrowband solutions, however, might overcome the saturation problem. They

rely on bands with small widths covering parts of the electromagnetic spectrum

that are not prone to signal saturation at high gLAI levels (e.g. red edge and

NIR, see Yao et al. (2017) for an example). This approach cannot be implemented

relying on COTS imagery, as the widths of the bands are too wide.

The estimation of RUE was supported by the RS imagery via the calculation of

fAPAR and fCover. fAPAR was derived extracting the reflectances from all plant

tissue within the sampling plots. This approach relied on calibrated data in the

RGB range; NIR information was not necessary.

fCover was determined based on the classification including all available bands
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of all pixels inside the sampling plots. However, we assume that a classification

including the visible range would have delivered the same results as the difference

between plant tissue and soil reflectance is distinct. It can therefore be concluded

that study III could have also been conducted relying on calibrated imagery de-

livered by a RGB camera only.

The analysis of our camera data preceded an elaborate processing of the data,

which turned out to be very time-consuming. No information for these cam-

eras on any modifications prevalent in the RAW images (i.e. lens distortion,

vignetting effects) was available ahead of this study, such that we had to gather

this ourselves. Additionally, we developed the processing chain to convert the

cameras’ DNs to reflectance values. In contrast, modern imaging spectral sen-

sors assembled for UAV employment commonly include a preprocessing chain,

which reduces the time spent on data preparation to a minimum. The trade-off

between low procurement cost and time spent on data preparation for COTS

imagery should therefore be carefully considered.

8.4 Benefits of UAV-derived Ultra-High Spatial

Resolution Data

Data derived from airborne or satellite-based sensors commonly exhibits a much

lower spatial resolution than UAV-based RS imagery. This implies a greater

number of mixed pixels, which combine the signals of several land covers and

possibly hinder an analysis in case only one class is in focus of interest. Addi-

tionally, the scale of field-measured variables might not match the scale of the

RS data, and hereby obscures a plausible relationship between the two measure-

ments. Contrary to those resolutions, a GSD of 1.5 cm offered by our COTS

imagery captures the objects within the area of interest such that a distinction

of classes might be possible. Additionally, field measurements can be accurately

allocated to the corresponding RS data, possibly capturing variability much bet-

ter.

We therefore assumed that our derived imagery allowed for the separation of

different cover classes (plant tissue, illuminated soil and shaded soil) in our ex-

perimental plots, and hypothesized that the extraction of plant-only reflectance

benefits the estimation of gLAI and RUE.

The cover classification was successfully included in studies II (chapter 6 from
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page 55 onwards) and III (chapter 7 from page 77 onwards) as part of the method-

ology. In study II, it was used to investigate if the exclusion of non-plant pixels

improved parametric and non-parametric models for remote gLAI estimation. In

study III, it served both to extract reflectance values from plants only and to

calculate the fractional cover in every sampling plot.

To our surprise, an exclusion did not result in improvement of the models (see

chapter 6). Since the scale of the gLAI measurements (sampled on 0.75 m2) ex-

ceeded those of the camera imagery, all reflectance values within the sampling

area of each gLAI measurement were aggregated to one value. Taking the lack of

model improvement and the size of the sampling area into account, an ultra-high

spatial resolution (i.e. sub-plant level) as offered by our approach might not be

necessary and could be replaced by resolutions aggregating information at plant

to plot level.

Contrasting to this argument, neither the extraction of plant tissue reflectance

only nor the calculation of fCover would have been possible at those resolutions,

since the separation of cover classes was not possible.

In summary, it can be concluded that the utilisation of ultra-high spatial reso-

lution imagery at sub-plant level does not necessarily benefit the estimation of

gLAI in experimental plots; the estimation of RUE via fAPAR and fractional

cover, however, is not possible at spatial resolutions where plot cover classes

cannot be separated.
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8.5 Outlook

This thesis looked at the potential of UAV-based COTS imagery for gLAI and

RUE estimation in experimental plots. In this section, we would like to point out

new challenges and perspectives for dedicated research in the fields of RS and

agronomy, as well as for users outside these areas.

In chapters 5 and 6, we explored the capability to remotely estimate gLAI based

on parametric and non-parametric regression. Section 3.2, as part of the state

of research, additionally introduces physically-based and hybrid methods to esti-

mate crop variables based on optical RS data. These methods are well-established

in RS, typically relying on sensor data that is well-documented. Research could

be devoted to whether it is possible to estimate gLAI with these methods using

our RS system approach, where the spectral responses of the cameras are essen-

tially a blackbox.

Additionally, science could explore if the 3D point cloud, that is created as a by-

product for the ultimate generation of the orthomosaics (see subsection 4.3.3),

contains additional information that might be beneficial for gLAI and RUE esti-

mation (e.g. leaf inclination angle of individual plants for the estimation of the

k-value or estimation of plant height).

Another approach worth investigating could include plant reflectances measured

from different viewing angles. While the UAV moves along the designated flight

path above the field, the attached cameras continuously take images. With a des-

ignated forward and sideward overlap of the images of 70% to 80%, every point

in the field is captured from several different viewing angles. Oblique viewing

angles might offer additional information on understorey leaves, as the canopy is

not only viewed from nadir view. This information might also allow for a dis-

tinction of green and senesced leaf material both on top and further down the

canopy.

The multiangular observations derived from the imagery could also be used to

quantify angular effects of the plant canopy and its components. This supports

the estimation of the bidirectional reflectance factor (BRF - defined as the ratio

of the radiance reflected by a surface in a given direction to that which would

be reflected into the same reflected-beam geometry by an ideal standard surface

irradiated in exactly the same way as the target surface (Jones and Vaughan,

2010, page 199)), which could eventually, with several observations combined, be

used to model angular variation of the plant canopy.

104



Our approach requires the accurate installation of ground control points around

the field and the dedicated labour force of the pilot for the period of image ac-

quisition. With ongoing improvements in real time kinematic (RTK)-based GPS

positioning (i.e., up to centimetre-level accuracy ) and autonomous employment

of vehicles, it is imaginable that image acquisitions will occur automatically in

the future, without user interference. The collection of reference points on the

ground might become obsolete; so might the handling of the vehicle. The user

could be presented with frequently acquired data ready to be analysed (’smart

remote sensing’ ).

The findings presented in this thesis could be used by scientists working with

crop models to improve prediction performance by considering cultivar-specific

variables or the current status of the gLAI in the field. Furthermore, heterogene-

ity within the field could be reproduced, since crop models commonly simulate

at plant level and do not account for varying conditions in crop stands. Several

studies have been published on the coupling of RS data and crops models (e.g.

Dong et al. (2017); Jin et al. (2018); Machwitz et al. (2014); Morel et al. (2014)).

No study, however, relies on UAV-based COTS imagery.

Plant breeders cultivating different lines in extensive experiments could use the

approaches to quickly sense differences in leaf area before flowering, simultane-

ously examining the genotype-environment-management interaction (as part of

a high-throughput crop phenotyping scheme). A RUE mapping activity could

involve the destructive sampling of a few plants only to measure biomass over

points in time. Biomass could also be determined via UAV-based imagery; re-

search in this coupling process is highly encouraged.

The documented approach, however, is not just restricted to field experiments;

cultivated fields could be covered as well. Farmers might profit from the plant-

level information as differences in plant growth become apparent, allowing for

site-specific applications as part of precision farming rather than applications at

field-level. This reduces the environmental impact and monetary cost of the em-

ployed means.
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Córcoles, J. I., Ortega, J. F., Hernández, D., Moreno, M. A., May 2013.

Estimation of leaf area index in onion (Allium cepa L.) using an unmanned

aerial vehicle. Biosystems Engineering 115 (1), 31–42.

URL http://www.sciencedirect.com/science/article/pii/

S1537511013000214

Cui, Z., Vitousek, P. M., Zhang, F., Chen, X., Feb. 2016. Strengthening Agron-

omy Research for Food Security and Environmental Quality. Environmental

Science & Technology 50 (4), 1639–1641.

URL http://pubs.acs.org/doi/10.1021/acs.est.6b00267

Cummings, A., McKee, A., Kulkarni, K., Markandey, N., Apr. 2017. The Rise of

UAVs. Photogrammetric Engineering & Remote Sensing 83 (4), 317–325.

URL http://www.ingentaconnect.com/content/10.14358/PERS.83.4.317

Darrodi, M. M., Finlayson, G., Goodman, T., Mackiewicz, M., Mar. 2015.

Reference data set for camera spectral sensitivity estimation. Journal of the

Optical Society of America A 32 (3), 381.

URL https://www.osapublishing.org/josaa/abstract.cfm?uri=

josaa-32-3-381

Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B.,

McMurtrey III, J. E., Nov. 2000. Estimating Corn Leaf Chlorophyll Concen-

tration from Leaf and Canopy Reflectance. Remote Sensing of Environment

74 (2), 229–239.

URL http://www.sciencedirect.com/science/article/pii/

S0034425700001139

De Souza, C. H. W., Lamparelli, R. A. C., Rocha, J. V., Magalhães, P. S. G., Jan.
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man, M. E., Sep. 2013. Review of optical-based remote sensing for plant trait

mapping. Ecological Complexity 15, 1–16.

URL http://www.sciencedirect.com/science/article/pii/

S1476945X13000524

Houborg, R., McCabe, M. F., Jan. 2018. A hybrid training approach for leaf

area index estimation via Cubist and random forests machine-learning. ISPRS

Journal of Photogrammetry and Remote Sensing 135, 173–188.

URL https://www.sciencedirect.com/science/article/pii/

S0924271617303209

Huang, G.-B., Zhu, Q.-Y., Siew, C.-K., Dec. 2006. Extreme learning machine:

Theory and applications. Neurocomputing 70 (1–3), 489–501.

115



URL http://www.sciencedirect.com/science/article/pii/

S0925231206000385

Huang, S., Gao, Y., Li, Y., Xu, L., Tao, H., Wang, P., Feb. 2017. Influence of

plant architecture on maize physiology and yield in the Heilonggang River

valley. The Crop Journal 5 (1), 52–62.

URL http://www.sciencedirect.com/science/article/pii/

S2214514116300939

Hultquist, C., Chen, G., Zhao, K., Aug. 2014. A comparison of Gaussian process

regression, random forests and support vector regression for burn severity as-

sessment in diseased forests. Remote Sensing Letters 5 (8), 723–732.

URL http://dx.doi.org/10.1080/2150704X.2014.963733

Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T., Mc-

Carty, G. W., Jan. 2010. Acquisition of NIR-Green-Blue Digital Photographs

from Unmanned Aircraft for Crop Monitoring. Remote Sensing 2 (1), 290–305.

URL http://www.mdpi.com/2072-4292/2/1/290

Jensen, J. R., 2007. Remote sensing of the environment: an earth resource

perspective, 2nd Edition. Prentice Hall series in geographic information

science. Pearson Prentice Hall, Upper Saddle River, NJ.

URL http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?

pid=4396626&custom_att_2=simple_viewer

Jin, X., Kumar, L., Li, Z., Feng, H., Xu, X., Yang, G., Wang, J., Jan. 2018.

A review of data assimilation of remote sensing and crop models. European

Journal of Agronomy 92 (Supplement C), 141–152.

URL http://www.sciencedirect.com/science/article/pii/

S1161030117301685
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Appendix

Table A: gLAI analysis results

Year Date Temperature Sum Trial Min Mean Max SD CV

2015

18.06.2015 279.6

S1N1 0.12 0.21 0.31 0.06 26.95

S1N2 0.27 0.45 0.53 0.08 17.68

S2N1 0.37 0.49 0.65 0.09 19.47

S2N2 0.52 0.80 1.02 0.18 22.01

30.06.2015 371.8

S1N1 0.38 0.70 1.01 0.18 25.27

S1N2 1.14 1.57 1.99 0.22 13.79

S2N1 1.11 1.65 2.78 0.38 23.15

S2N2 1.75 2.38 3.33 0.46 19.17

16.07.2015 564.7

S1N1 1.45 2.07 2.82 0.34 16.31

S1N2 1.87 3.22 4.49 0.66 20.60

S2N1 2.97 3.61 4.17 0.35 9.68

S2N2 3.38 4.18 4.92 0.50 11.95

03.08.2015 750.5

S1N1 1.59 2.01 2.29 0.24 12.19

S1N2 2.72 3.18 3.78 0.46 14.60

S2N1 3.40 3.65 4.08 0.28 7.75

S2N2 3.39 4.17 5.00 0.63 15.12

20.08.2015 931.1

S1N1 1.33 2.08 2.54 0.35 16.71

S1N2 1.99 2.88 3.94 0.59 20.67

S2N1 2.71 3.62 4.24 0.55 15.26

S2N2 3.52 4.23 5.19 0.59 13.85

11.09.2015 1110.4

S1N1 1.87 2.08 2.31 0.15 7.31

S1N2 2.33 3.17 4.16 0.58 18.26

S2N1 2.69 3.88 4.30 0.49 12.71

S2N2 2.34 3.69 4.23 0.64 17.46

30.09.2015 1202.9

S1N1 1.29 1.95 2.59 0.43 22.15

S1N2 1.57 2.46 3.32 0.57 23.03

S2N1 1.83 3.22 4.18 0.67 20.96

S2N2 2.35 3.14 3.97 0.59 18.86

12.10.2015 1244.1

S1N1 1.08 1.41 1.79 0.24 16.73

S1N2 1.20 1.73 2.09 0.27 15.89

S2N1 1.77 2.36 2.76 0.35 14.92

Continued on next page
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Table A – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

S2N2 1.88 2.34 2.88 0.37 15.68

2016

15.06.2016 312.7

S1N1 0.06 0.16 0.28 0.07 42.35

S1N2 0.12 0.19 0.28 0.06 30.98

S2N1 0.23 0.28 0.36 0.05 16.62

S2N2 0.18 0.35 0.56 0.11 30.60

27.06.2016 411.1

S1N1 0.15 0.43 0.74 0.20 47.15

S1N2 0.37 0.68 1.05 0.23 33.70

S2N1 0.58 0.85 1.24 0.23 26.95

S2N2 0.86 1.25 1.72 0.29 23.25

08.07.2016 515.4

S1N1 0.72 1.26 1.75 0.38 30.07

S1N2 1.55 1.88 2.23 0.23 12.25

S2N1 0.99 2.19 2.83 0.59 26.78

S2N2 2.38 3.04 3.94 0.50 16.59

19.07.2016 635.4

S1N1 1.49 2.17 3.06 0.57 26.21

S1N2 1.37 2.05 2.52 0.42 20.50

S2N1 2.18 3.22 4.00 0.65 20.08

S2N2 3.37 4.15 4.81 0.62 14.93

05.08.2016 828.9

S1N1 1.60 2.40 3.85 0.70 29.37

S1N2 1.56 2.36 3.51 0.60 25.58

S2N1 1.57 3.86 5.53 1.15 29.86

S2N2 3.51 4.11 4.83 0.43 10.41

15.08.2016 918.4

S1N1 1.50 2.21 2.80 0.45 20.28

S1N2 2.26 2.75 3.99 0.55 19.99

S2N1 2.69 3.73 4.16 0.47 12.67

S2N2 2.40 3.83 4.84 0.75 19.60

31.08.2016 1108.3

S1N1 1.40 1.98 2.55 0.46 23.22

S1N2 1.57 2.16 3.03 0.42 19.21

S2N1 0.39 2.89 4.31 1.20 41.50

S2N2 2.78 3.88 4.55 0.65 16.84

13.09.2016 1259.3

S1N1 1.49 1.74 2.20 0.22 12.82

S1N2 1.54 2.22 3.29 0.59 26.67

S2N1 2.21 2.75 3.84 0.49 17.82

Continued on next page
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Table A – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

S2N2 1.58 2.40 3.31 0.47 19.79

29.09.2016 1397.5

S1N1 0.69 1.34 2.05 0.39 29.02

S1N2 0.75 1.33 1.64 0.26 19.27

S2N1 0.93 1.28 1.85 0.33 25.50

S2N2 0.19 0.60 0.87 0.23 39.40

16.10.2016 1436.2

S1N1 0.62 0.81 0.97 0.15 18.16

S1N2 0.89 1.36 2.25 0.61 45.08

S2N1 0.64 0.84 0.94 0.14 16.58

S2N2 0.12 0.22 0.49 0.18 80.26
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Table B: NDVI analysis results

Year Date Temperature Sum Trial Min Mean Max SD CV

2015

18.06.2015 279.6

S1N1 0.12 0.14 0.16 0.01 7.78

S1N2 0.16 0.19 0.21 0.01 7.86

S2N1 0.18 0.20 0.23 0.01 6.66

S2N2 0.20 0.24 0.27 0.02 8.18

30.06.2015 371.8

S1N1 0.20 0.27 0.36 0.04 15.04

S1N2 0.31 0.38 0.44 0.04 10.98

S2N1 0.35 0.41 0.50 0.04 10.59

S2N2 0.34 0.45 0.54 0.05 11.42

16.07.2015 564.7

S1N1 0.49 0.55 0.59 0.03 5.22

S1N2 0.55 0.61 0.66 0.03 4.47

S2N1 0.62 0.64 0.69 0.02 2.62

S2N2 0.61 0.64 0.66 0.02 2.59

03.08.2015 750.5

S1N1 0.59 0.61 0.62 0.01 1.76

S1N2 0.63 0.64 0.66 0.01 1.77

S2N1 0.64 0.66 0.67 0.01 1.93

S2N2 0.64 0.66 0.68 0.01 2.03

20.08.2015 931.1

S1N1 0.61 0.63 0.66 0.02 2.76

S1N2 0.62 0.66 0.69 0.02 3.53

S2N1 0.66 0.68 0.70 0.01 1.59

S2N2 0.65 0.68 0.70 0.02 2.44

11.09.2015 1110.4

S1N1 0.55 0.57 0.60 0.02 3.22

S1N2 0.57 0.59 0.63 0.02 3.29

S2N1 0.60 0.62 0.66 0.02 3.65

S2N2 0.60 0.62 0.64 0.01 2.20

30.09.2015 1202.9

S1N1 0.55 0.58 0.60 0.02 2.93

S1N2 0.55 0.58 0.62 0.02 3.82

S2N1 0.58 0.62 0.63 0.02 2.74

S2N2 0.58 0.60 0.63 0.02 2.95

12.10.2015 1244.1

S1N1 0.53 0.56 0.60 0.02 4.17

S1N2 0.48 0.53 0.60 0.04 7.46

S2N1 0.51 0.57 0.61 0.03 5.21

S2N2 0.52 0.55 0.58 0.02 4.49

Continued on next page
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Table B – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

2016

15.06.2016 312.7

S1N1 0.12 0.19 0.23 0.04 18.75

S1N2 0.16 0.23 0.27 0.03 14.88

S2N1 0.23 0.25 0.28 0.02 7.29

S2N2 0.18 0.29 0.33 0.05 16.20

27.06.2016 411.1

S1N1 0.26 0.38 0.45 0.07 18.25

S1N2 0.38 0.47 0.52 0.04 8.87

S2N1 0.47 0.51 0.53 0.02 4.55

S2N2 0.47 0.56 0.62 0.05 8.55

08.07.2016 515.4

S1N1 0.37 0.47 0.55 0.06 12.77

S1N2 0.52 0.56 0.57 0.02 3.38

S2N1 0.57 0.60 0.64 0.02 3.00

S2N2 0.54 0.62 0.66 0.04 6.42

19.07.2016 635.4

S1N1 0.55 0.59 0.61 0.02 3.65

S1N2 0.62 0.63 0.64 0.01 1.32

S2N1 0.63 0.67 0.69 0.02 2.41

S2N2 0.65 0.67 0.69 0.01 1.98

05.08.2016 828.9

S1N1 0.62 0.65 0.66 0.01 2.11

S1N2 0.65 0.67 0.69 0.02 2.33

S2N1 0.67 0.69 0.73 0.02 2.75

S2N2 0.68 0.71 0.73 0.02 3.00

15.08.2016 918.4

S1N1 0.62 0.63 0.65 0.01 1.41

S1N2 0.66 0.66 0.67 0.01 1.08

S2N1 0.66 0.68 0.70 0.01 1.91

S2N2 0.66 0.69 0.72 0.02 3.62

31.08.2016 1108.3

S1N1 0.58 0.60 0.64 0.02 3.15

S1N2 0.60 0.62 0.64 0.01 2.11

S2N1 0.63 0.65 0.67 0.01 1.57

S2N2 0.61 0.65 0.68 0.02 3.16

13.09.2016 1259.3

S1N1 0.57 0.58 0.60 0.01 2.27

S1N2 0.56 0.59 0.62 0.02 3.52

S2N1 0.61 0.62 0.64 0.01 1.62

S2N2 0.56 0.59 0.62 0.02 3.56

Continued on next page
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Table B – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

29.09.2016 1397.5

S1N1 0.52 0.55 0.57 0.02 3.34

S1N2 0.47 0.53 0.57 0.03 6.13

S2N1 0.49 0.54 0.57 0.03 5.05

S2N2 0.42 0.46 0.49 0.02 4.65

16.10.2016 1436.2

S1N1 0.44 0.48 0.50 0.02 4.87

S1N2 0.37 0.45 0.52 0.06 13.06

S2N1 0.44 0.46 0.49 0.02 4.93

S2N2 0.34 0.39 0.44 0.04 10.33
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Table C: GNDVI analysis results

Year Date Temperature Sum Trial Min Mean Max SD CV

2015

18.06.2015 279.6

S1N1 0.29 0.31 0.34 0.01 3.58

S1N2 0.34 0.35 0.39 0.01 4.12

S2N1 0.34 0.36 0.38 0.01 3.44

S2N2 0.36 0.40 0.43 0.02 4.55

30.06.2015 371.8

S1N1 0.24 0.36 0.43 0.04 12.42

S1N2 0.38 0.46 0.53 0.04 9.16

S2N1 0.34 0.47 0.56 0.06 12.07

S2N2 0.45 0.54 0.65 0.05 9.41

16.07.2015 564.7

S1N1 0.57 0.61 0.64 0.02 3.83

S1N2 0.62 0.67 0.71 0.03 3.78

S2N1 0.65 0.68 0.70 0.01 1.82

S2N2 0.68 0.70 0.73 0.02 2.19

03.08.2015 750.5

S1N1 0.64 0.67 0.73 0.03 4.49

S1N2 0.66 0.69 0.74 0.02 3.47

S2N1 0.66 0.68 0.70 0.01 1.94

S2N2 0.69 0.70 0.74 0.02 2.30

20.08.2015 931.1

S1N1 0.65 0.67 0.71 0.02 2.53

S1N2 0.69 0.70 0.71 0.01 1.15

S2N1 0.68 0.70 0.71 0.01 1.87

S2N2 0.70 0.72 0.73 0.01 1.38

11.09.2015 1110.4

S1N1 0.53 0.55 0.59 0.02 3.42

S1N2 0.56 0.58 0.60 0.01 2.12

S2N1 0.56 0.59 0.60 0.01 1.87

S2N2 0.58 0.59 0.62 0.01 2.15

30.09.2015 1202.9

S1N1 0.55 0.60 0.64 0.03 4.90

S1N2 0.53 0.61 0.66 0.04 6.32

S2N1 0.60 0.63 0.65 0.01 2.36

S2N2 0.55 0.62 0.66 0.04 6.50

12.10.2015 1244.1

S1N1 0.56 0.59 0.60 0.01 2.36

S1N2 0.55 0.58 0.61 0.02 3.52

S2N1 0.58 0.61 0.64 0.02 3.27

S2N2 0.58 0.60 0.62 0.01 2.44

Continued on next page
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Table C – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

2016

15.06.2016 312.7

S1N1 0.33 0.37 0.40 0.03 8.93

S1N2 0.33 0.40 0.44 0.03 8.69

S2N1 0.38 0.41 0.44 0.02 5.14

S2N2 0.37 0.44 0.48 0.04 7.96

27.06.2016 411.1

S1N1 0.40 0.50 0.56 0.06 11.25

S1N2 0.49 0.56 0.59 0.03 5.51

S2N1 0.54 0.58 0.60 0.02 3.07

S2N2 0.55 0.62 0.66 0.03 5.53

08.07.2016 515.4

S1N1 0.52 0.57 0.63 0.05 8.28

S1N2 0.62 0.65 0.68 0.02 3.04

S2N1 0.63 0.65 0.67 0.01 2.16

S2N2 0.67 0.69 0.71 0.01 1.58

19.07.2016 635.4

S1N1 0.64 0.68 0.72 0.03 4.03

S1N2 0.66 0.70 0.76 0.03 4.37

S2N1 0.68 0.71 0.76 0.03 3.57

S2N2 0.72 0.74 0.80 0.02 3.31

05.08.2016 828.9

S1N1 0.62 0.67 0.72 0.03 5.17

S1N2 0.66 0.69 0.73 0.03 3.65

S2N1 0.66 0.68 0.71 0.02 2.99

S2N2 0.69 0.71 0.73 0.01 1.99

15.08.2016 918.4

S1N1 0.64 0.67 0.71 0.02 3.56

S1N2 0.65 0.68 0.73 0.02 3.57

S2N1 0.66 0.69 0.71 0.02 2.55

S2N2 0.67 0.70 0.72 0.02 2.26

31.08.2016 1108.3

S1N1 0.68 0.70 0.73 0.02 2.35

S1N2 0.68 0.71 0.75 0.03 3.91

S2N1 0.69 0.70 0.72 0.01 1.95

S2N2 0.67 0.72 0.78 0.03 4.27

13.09.2016 1259.3

S1N1 0.64 0.68 0.71 0.03 3.99

S1N2 0.66 0.68 0.73 0.03 4.21

S2N1 0.64 0.67 0.71 0.02 2.93

S2N2 0.63 0.66 0.69 0.02 3.25
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Table C – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

29.09.2016 1397.5

S1N1 0.63 0.67 0.68 0.02 2.97

S1N2 0.60 0.64 0.69 0.03 4.16

S2N1 0.58 0.62 0.65 0.02 3.69

S2N2 0.56 0.60 0.63 0.02 4.09

16.10.2016 1436.2

S1N1 0.48 0.55 0.58 0.05 8.43

S1N2 0.50 0.55 0.59 0.04 7.44

S2N1 0.52 0.55 0.58 0.03 4.97

S2N2 0.51 0.54 0.59 0.03 6.27
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Table D: 3BSI analysis results

Year Date Temperature Sum Trial Min Mean Max SD CV

2015

18.06.2015 279.6

S1N1 0.16 0.19 0.23 0.02 8.97

S1N2 0.23 0.27 0.32 0.03 9.50

S2N1 0.25 0.29 0.35 0.02 8.21

S2N2 0.29 0.38 0.44 0.04 10.45

30.06.2015 371.8

S1N1 0.28 0.41 0.61 0.08 19.32

S1N2 0.48 0.69 0.88 0.12 17.39

S2N1 0.55 0.77 1.09 0.15 19.74

S2N2 0.59 0.93 1.36 0.19 20.54

16.07.2015 564.7

S1N1 1.09 1.32 1.58 0.14 10.47

S1N2 1.37 1.76 2.14 0.19 10.91

S2N1 1.76 1.91 2.24 0.12 6.42

S2N2 1.77 1.94 2.11 0.11 5.63

03.08.2015 750.5

S1N1 1.63 1.70 1.77 0.06 3.29

S1N2 1.87 1.98 2.06 0.08 3.83

S2N1 1.85 2.03 2.17 0.11 5.17

S2N2 1.96 2.08 2.21 0.09 4.13

20.08.2015 931.1

S1N1 1.71 1.85 2.05 0.13 6.87

S1N2 1.87 2.07 2.23 0.12 5.86

S2N1 2.04 2.22 2.36 0.11 5.00

S2N2 2.04 2.27 2.42 0.11 4.91

11.09.2015 1110.4

S1N1 1.19 1.30 1.39 0.08 6.31

S1N2 1.34 1.41 1.52 0.07 4.85

S2N1 1.41 1.56 1.74 0.10 6.58

S2N2 1.52 1.57 1.63 0.04 2.42

30.09.2015 1202.9

S1N1 1.28 1.41 1.60 0.10 6.92

S1N2 1.19 1.44 1.71 0.15 10.08

S2N1 1.41 1.64 1.75 0.10 6.20

S2N2 1.35 1.57 1.78 0.16 10.31

12.10.2015 1244.1

S1N1 1.20 1.32 1.51 0.09 7.02

S1N2 1.00 1.21 1.50 0.16 13.45

S2N1 1.14 1.41 1.63 0.14 10.16

S2N2 1.16 1.31 1.47 0.11 8.13
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Table D – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

2016

15.06.2016 312.7

S1N1 0.17 0.29 0.36 0.06 22.21

S1N2 0.22 0.36 0.44 0.06 18.03

S2N1 0.34 0.40 0.45 0.04 9.92

S2N2 0.26 0.49 0.58 0.10 19.96

27.06.2016 411.1

S1N1 0.40 0.72 0.93 0.19 26.38

S1N2 0.71 1.02 1.21 0.15 14.47

S2N1 0.97 1.13 1.24 0.10 8.44

S2N2 0.97 1.42 1.72 0.24 16.73

08.07.2016 515.4

S1N1 0.71 1.02 1.36 0.24 23.28

S1N2 1.31 1.46 1.59 0.10 6.87

S2N1 1.48 1.65 1.80 0.10 5.95

S2N2 1.41 1.87 2.07 0.22 11.58

19.07.2016 635.4

S1N1 1.55 1.66 1.83 0.09 5.57

S1N2 1.79 1.91 2.08 0.08 4.31

S2N1 1.86 2.16 2.37 0.17 7.65

S2N2 2.25 2.32 2.43 0.06 2.60

05.08.2016 828.9

S1N1 1.69 1.93 2.12 0.15 7.75

S1N2 1.90 2.10 2.42 0.18 8.55

S2N1 1.98 2.23 2.57 0.18 7.94

S2N2 2.15 2.44 2.69 0.19 7.76

15.08.2016 918.4

S1N1 1.70 1.85 2.00 0.09 5.08

S1N2 1.89 2.01 2.18 0.10 5.06

S2N1 2.03 2.17 2.34 0.11 5.28

S2N2 2.05 2.28 2.60 0.19 8.34

31.08.2016 1108.3

S1N1 1.67 1.75 1.90 0.07 4.02

S1N2 1.81 1.91 2.10 0.11 5.69

S2N1 2.00 2.05 2.14 0.05 2.33

S2N2 1.86 2.08 2.32 0.16 7.80

13.09.2016 1259.3

S1N1 1.53 1.61 1.69 0.06 3.79

S1N2 1.51 1.68 1.87 0.11 6.50

S2N1 1.68 1.80 1.92 0.10 5.44

S2N2 1.45 1.60 1.79 0.11 6.58
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Table D – continued from previous page

Year Date Temperature Sum Trial Min Mean Max SD CV

29.09.2016 1397.5

S1N1 1.34 1.44 1.52 0.06 3.91

S1N2 1.11 1.33 1.50 0.14 10.51

S2N1 1.07 1.29 1.47 0.13 10.33

S2N2 0.89 1.03 1.12 0.09 8.54

16.10.2016 1436.2

S1N1 0.91 1.00 1.09 0.09 9.25

S1N2 0.69 0.95 1.18 0.20 21.59

S2N1 0.87 0.95 1.06 0.09 9.09

S2N2 0.64 0.77 0.95 0.13 16.76
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