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“All models are wrong but some are useful” 

“Now it would be very remarkable if any system existing in the real world could be exactly 

represented by any simple model. However, cunningly chosen parsimonious models often 

do provide remarkably useful approximations. For example, the law PV = RT relating pres-

sure P, volume V and temperature T of an ‘ideal’ gas via a constant R is not exactly true for 

any real gas, but it frequently provides a useful approximation and furthermore its structure 

is informative since it springs from a physical view of the behavior of gas molecules. 

For such a model there is no need to ask the question ‘Is the model true?’. If ‘truth’ is to be 

the ‘whole truth’ the answer must be ‘No’. The only question of interest is ‘Is the model illu-

minating and useful?’.” 

[Box, 1979; pages 202-203] 
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[8]  ABSTRACT 

II ABSTRACT 

Antipsychotic drugs are highly effective in reducing positive symptoms of psychosis. However, 

despite major efforts, negative and cognitive symptoms are still not sufficiently treatable. Im-

portantly, these symptoms have been found to be strongly related to psychosocial functioning, 

thus emphasizing the urgent requirement of new treatments. Model systems are one ap-

proach to investigate underlying mechanisms of psychosis and aid the development of new 

treatments. 

In this thesis, I investigated the validity of schizotypy, a multidimensional attribute that includes 

positive, negative, and disorganized traits, and of sleep deprivation as model systems of psy-

chosis. Furthermore, I combined the two models to evaluate potential interactions between 

them. In order to validate cognitive performance alterations in schizotypy and after sleep dep-

rivation, I applied widely studied oculomotor biomarkers of psychosis (i.e. smooth pursuit eye 

movements and antisaccades). To evaluate the usefulness of oculomotor biomarkers as time 

stable cognitive patterns, I additionally conducted a study on the trait-like nature of saccadic 

tasks. 

The first part of the thesis deals with the research background of psychotic disorders, the foun-

dation of schizotypy and sleep deprivation as valuable model systems, and an introduction to 

widely studied oculomotor biomarkers of psychosis. The following chapter is a description with 

introductory information about the methods that I have deployed in the empirical studies. 

These methods include the recording and analysis of eye movements, latent state-trait mod-

eling, and functional magnetic resonance imaging. Following the presentation of the main find-

ings of the empirical studies, the thesis closes with an integration of the results in the present 

research literature and with indications to limitations of the studies and ideas for future re-

search. 
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III ZUSAMMENFASSUNG 

Antipsychotika sind wirksam in der Behandlung von Positivsymptomen der Psychose. Nega-

tivsymptome und kognitive Symptome sind trotz größter Bemühungen immer noch nicht zu-

friedenstellend behandelbar. Da die negativen und kognitiven Symptome eng mit dem psycho-

sozialen Funktionsniveau zusammenhängen, werden dringend neue Behandlungsmöglichkei-

ten gebraucht. Modellsysteme stellen einen vielversprechenden Ansatz dar, um zugrunde lie-

gende Mechanismen der Psychose zu untersuchen und die Entwicklung von neuen Behand-

lungsmöglichkeiten zu unterstützen. 

In der folgenden Dissertation habe ich die Validität von Schizotypie, einem multidimensionalen 

Persönlichkeitsmerkmal aus positiven, negativen und desorganisierten Eigenschaften und von 

Schlafentzug als mögliche Modellsysteme der Psychose untersucht. Außerdem habe ich diese 

beiden Modellsysteme in einer Studie kombiniert, um Interaktionen zwischen ihnen zu erfor-

schen. Zur Validierung der Veränderung von kognitiven Prozessen in hoch schizotypen Proban-

den und nach Schlafentzug habe ich bekannte okulomotorische Biomarker der Psychose ein-

gesetzt (glatte Augenfolgebewegungen, Antisakkaden). Um die Nützlichkeit von okulomotori-

schen Biomarkern als reliable kognitive Muster zu evaluieren, habe ich außerdem eine Studie 

zur Zeitstabilität von Sakkaden durchgeführt. 

Im ersten Teil der Dissertation werden der Forschungshintergrund zu psychotischen Störungen 

und die Grundlagen von Schizotypie und Schlafentzug als Modellsysteme vorgestellt, sowie ein 

Überblick zu den wichtigsten okulomotorischen Biomarkern der Psychose gegeben. Im folgen-

den Kapitel werden die empirischen Methoden vorgestellt, die in den Studien eingesetzt wor-

den sind. Diese Methoden umfassen die Aufzeichnung und Auswertung von Augenbewegun-

gen, Latent-State-Trait Analysen und funktionelle Kernspintomographie. Nach der Darstellung 

der Hauptbefunde werden die Studienergebnisse in der Diskussion in die bisherige Literatur 

eingeordnet und es werden Limitationen und Ideen für Folgestudien vorgestellt.  
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IV INTRODUCTION 

IV.I Model systems of psychosis 

IV.I.I Schizophrenia and the psychosis spectrum 

“The concept of schizophrenia only covers the 30% poor outcome fraction of a much broader 

multidimensional psychotic syndrome, yet paradoxically has become the dominant prism 

through which everything ‘psychotic’ is observed […].” 

[Guloksuz & Van Os, 2017; page 1] 

 

Psychotic disorders have a lifetime prevalence of about 3.5% (Perälä et al., 2007) and are 

among the third most expensive brain disorders in Europe with costs of approximately €93 

billion per year (DiLuca & Olesen, 2014; Olesen, Gustavsson, Svensson, Wittchen, & Jönsson, 

2012). Importantly, two thirds of the costs arise from indirect costs (e.g., lost productivity, so-

cial security), mirroring the high rate of unemployment amongst patients with psychosis 

(Evensen et al., 2016; Olesen et al., 2012). In addition to low employment, further serious 

problems result from poor social functioning, high rates of physical health problems, and lack 

of stable housing (Morgan et al., 2017). 

According to the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM 

5; American Psychiatric Association, 2013), key features of the schizophrenia spectrum and 

other psychotic disorders include delusions, hallucinations, disorganized thinking and motor 

behavior, and negative symptoms (e.g., diminished emotional expression, avolition, anhe-

donia). Additionally, cognitive deficits are common and appear to play an important role in the 

functional outcome (Barch et al., 2013; Heckers et al., 2013). 

However, although only 30% of the people that meet the criteria of a psychotic disorder suffer 

from schizophrenia (Perälä et al., 2007), schizophrenia is far more investigated than the other 

categories and is often suggested to represent a distinct genetic brain disorder (Van Os, 2016). 
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Therefore, most of the research presented in the current thesis is based on patients with schiz-

ophrenia. Nevertheless, there are many reports of psychotic symptoms across diagnostic cat-

egories (Mancuso et al., 2015; Murray et al., 2004) as well as the general population (Linscott 

& Van Os, 2013; Van Os, Linscott, Myin-Germeys, Delespaul, & Krabbendam, 2009), which 

question the concept of schizophrenia as a distinct entity and request the conceptualization of 

a psychosis spectrum ranging from mild symptoms to severe schizophrenia (Guloksuz & Van 

Os, 2017). Following this rationale, the results of the current thesis are embedded into the 

context of the spectrum of psychotic disorders. 

 

IV.I.II Model systems and their benefits 

Antipsychotic drugs constitute the main approach in the treatment of psychotic features in 

schizophrenia and other psychotic disorders and they are very effective in reducing positive 

symptoms such as hallucinations and delusions (Dunlop & Brandon, 2015; Jann, 2014; Köster, 

Carbon, & Correll, 2014; Rothschild, 2013; Sommer et al., 2012). However, despite major ef-

forts in the development of new compounds, negative and cognitive symptoms are still not 

sufficiently treatable (Chou, Twamley, & Swerdlow, 2012; Hill, Bishop, Palumbo, & Sweeney, 

2010; Keefe et al., 2013; Köster et al., 2014; Nielsen et al., 2015; Remington et al., 2016). Im-

portantly, these symptoms have been found to be strongly related to various social outcome 

variables (Chang, Hui, Chan, Lee, & Chen, 2016; Green, 2016; Rabinowitz et al., 2012), which 

underlines the urgent requirement of new treatments. 

A substantial problem in the development of new drugs is the high attrition rate due to lack of 

efficiency in clinical phase 2 (Breier, 2005; Kola & Landis, 2004). Thus, one impactful approach 

in further the understanding of the pathophysiology of psychosis and in identifying new drugs 

that are likely to succeed in clinical phase 2 is to create a condition resembling psychosis adding 

to clinical phase 1, e.g., using model systems. These model systems lack the confounds related 

to patient research and might be helpful in informing expensive clinical trials in phase 2 

(Carpenter & Koenig, 2008; Koychev et al., 2012). 
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As has been argued elsewhere “[the] ideal model of schizophrenia would faithfully mimic the 

biological changes driving pathogenesis and carry high predictive value for the efficacy of novel 

therapeutics” (Steeds, Carhart-Harris, & Stone, 2015). In order to attain this goal, many differ-

ent model systems have been developed (for an overview with examples see Table IV—1). 

 

Table IV—1.Overview of psychosis model systems 

Human models 

Surrogate populations  Schizotypy (Barrantes-Vidal, Grant, & Kwapil, 2015) 

 Low performers (Vollenweider, Barro, Csomor, & Feldon, 2006) 

Pharmacology Amphetamine (Bramness et al., 2012) 

 Cannabis (Koethe, Hoyer, & Leweke, 2009) 

 Lysergic Acid Diethylamide (De Gregorio, Comai, Posa, & Gobbi, 2016) 

 Ketamine (Javitt, Zukin, Heresco-Levy, & Umbricht, 2012) 

Deprivation Sleep deprivation (Ettinger & Kumari, 2015) 

 Sensory deprivation (Daniel, Lovatt, & Mason, 2014) 

Animal models 

Development Social isolation (Marsden, King, & Fone, 2011) 

Pharmacology Lysergic acid diethylamide (Halberstadt & Geyer, 2013) 

Lesions Ventral hippocampal lesion (Tseng, Chambers, & Lipska, 2009) 

Genetics Dopamine D1 receptor knockout mice (Van Den Buuse, 2010) 

 

Generally, these model systems can be subdivided into long-term trait (e.g., surrogate popula-

tions) and short-term state (e.g., pharmacological and experimental interventions) models. 

However, psychotic disorders are heterogeneous and complex and thus several limitations 

have been expressed concerning pharmacological model systems, e.g., receptor tautology 

(Geyer, Olivier, Joëls, & Kahn, 2012) and limited phenomenological specificity for negative or 

cognitive symptoms (Carhart-Harris, Brugger, Nutt, & Stone, 2013). Furthermore, animal 

model systems are valuable and have widely been applied in the preclinical phase of pro-cog-

nitive drug development for schizophrenia but their success has been limited so far (Burrows 

& Hannan, 2016; Mao, Cui, Zhao, & Ma, 2015; Pratt, Winchester, Dawson, & Morris, 2012; 

Young & Geyer, 2015). Therefore, systematic validation of additional model systems is needed. 
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Here, I will focus on schizotypy as a trait and sleep deprivation as a non-pharmacological hu-

man state model system. These may provide new insights into the underlying mechanisms of 

psychotic disorders and could be helpful to further the development of effective treatments. 

 

IV.I.III Schizotypy as a trait model of psychosis 

“She reports having a consistently ‘uneasy’ feeling when around others […]. She has experi-

enced herself as ‘different from others’ for as long as she can remember […]. She often feels 

that numbers, symbols, and certain images are imbued with a magical power of sorts […]. 

When walking down the street, she is especially attentive to the expressions on the faces of 

those who pass her. To her, a smile on the face of a stranger is often taken to mean that the 

stranger knows something about her […].” 

[Lenzenweger, 2010; pages 6-7] 

 

Schizotypy refers to temporally stable (Chan et al., 2015; Gross, Silvia, Barrantes-Vidal, & 

Kwapil, 2015; Venables & Raine, 2015) and multidimensional personality traits. There is broad 

agreement that schizotypal traits can be assigned to positive (e.g., unusual perceptual experi-

ences, ideas of reference), negative (e.g., dislike of emotional and physical intimacy, lack of 

enjoyment from social sources), and disorganized (e.g., odd speech, eccentric behavior) factors 

(Mason, Claridge, & Jackson, 1995; Raine et al., 1994). The factors were found to be invariant 

across cultures (Chan et al., 2015, 2016; Fonseca-Pedrero et al., 2015; Yu, Bernardo, & Zaroff, 

2016), time (Venables & Raine, 2015), sex (Fonseca-Pedrero, Paíno, Lemos-Giráldez, Sierra-

Baigrie, & Muñiz, 2011; Fossati, Raine, Carretta, Leonardi, & Maffei, 2003; Reynolds, Raine, 

Mellingen, Venables, & Mednick, 2000), and age (Bora & Baysan Arabaci, 2009; Fonseca-

Pedrero et al., 2011). However, the number of factors also depends on the measure of schizo-

typy, e.g., yielding only positive and negative schizotypy factors in some of the instruments 

(Gross et al., 2015; Kwapil, Barrantes-Vidal, & Silvia, 2008) and additional factors in others 
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(Davidson, Hoffman, & Spaulding, 2016; Gross, Mellin, Silvia, Barrantes-Vidal, & Kwapil, 2014; 

Stefanis et al., 2004). 

There are many different self-report and interview instruments that capture the construct of 

schizotypy (for overviews refer to Fonseca-Pedrero et al., 2008; Kwapil & Chun, 2015; Mason, 

2015; Vollema & Van den Bosch, 1995). The most widely used measurements represent the 

Schizotypal Personality Questionnaire (SPQ; Cohen, Matthews, Najolia, & Brown, 2010; 

Davidson et al., 2016; Raine, 1991; Raine & Benishay, 1995; Wuthrich & Bates, 2005), the Chap-

man Scales (Chapman, Chapman, & Raulin, 1976, 1978; Eckblad & Chapman, 1983; Winterstein 

et al., 2011), and the Oxford-Liverpool Inventory of Feelings and Experiences (O-LIFE; Grant et 

al., 2013; Mason & Claridge, 2006; Mason et al., 1995; Mason, Linney, & Claridge, 2005). Most 

importantly, these different instruments were found to substantially correlate with each other, 

emphasizing the measurement of one underlying construct (Asai, Sugimori, Bando, & Tanno, 

2011; Gross et al., 2014; Rössler et al., 2015; Venables & Raine, 2015). 

The distribution of schizotypy in the population can be described by two competing models 

(Kwapil & Barrantes-Vidal, 2015). The first model, proposed by Meehl (1962, 1989, 1990), in-

spired by Rado (1953), and further pursued by Lenzenweger (2006, 2010), assumes schizotypy 

to represent a qualitative latent construct that is either present or absent. Meehl (1990) ar-

gued that about 10% of the population is afflicted by schizotaxia, an anomaly of the central 

nervous system caused by the schizogene, that almost always leads to a schizotypal personal-

ity. The second model, developed by Claridge and colleagues (Claridge, 1972, 1987; Claridge & 

Beech, 1995; Claridge & Broks, 1984), based on the ideas of Eysenck (Eysenck, 1967; Eysenck 

& Eysenck, 1968), argues that schizotypy constitutes a fully dimensional trait that is continu-

ously distributed in the population. Taxometric analyses provide an ongoing discussion about 

the distribution of schizotypy across the general population (Beauchaine, Lenzenweger, & 

Waller, 2008; Everett & Linscott, 2015; Linscott, 2013; Rawlings, Williams, Haslam, & Claridge, 

2008a, 2008b). However, the fully dimensional model was found to be superior to the quasi-

dimensional view in the explanation of various recent findings on schizotypy and schizophrenia 

(Grant, Munk, Kuepper, Wielpuetz, & Hennig, 2015; Nelson, Seal, Pantelis, & Phillips, 2013) but 

the issue has not been resolved (Lenzenweger, 2015; Mason, 2014). 
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Overlap between schizotypy and psychosis has been found on different levels of measurement 

(Barrantes-Vidal et al., 2015). The three factors of schizotypy resemble the factors previously 

found in schizophrenia (Liddle, 1987) and factor analyses revealed similar underlying structures 

of schizotypy in schizophrenia patients and healthy controls (Chan et al., 2016; Rossi & 

Daneluzzo, 2002). Additionally and in accordance with the psychosis spectrum, schizotypal 

traits were also found to be elevated not only in schizophrenia but also in patients with bipolar 

disorder (Brosey & Woodward, 2015; Chan et al., 2016; Cochrane, Petch, & Pickering, 2010; 

Dembińska-Krajewska & Rybakowski, 2016; Heron et al., 2003; Rossi & Daneluzzo, 2002). Fur-

thermore, there is evidence for genetic overlap (Walter, Fernandez, Snelling, & Barkus, 2016; 

however see Stefanis et al., 2007), shared cognitive deficits (Giakoumaki, 2012; Siddi, Petretto, 

& Preti, 2017; however see Chun, Minor, & Cohen, 2013), and similar deviations in brain struc-

ture and function (Ettinger et al., 2015) for high schizotypes and patients with schizophrenia. 

Together, these findings suggest that schizotypy shares many common features with clinical 

psychosis in an attenuated form, emphasizing its usefulness as a model system of psychosis.  

Studying schizotypy as a model system provides the advantage to examine underlying mecha-

nisms of psychosis without disruptive effects of clinical illness, medication, and hospitalization 

(Lenzenweger, 2010). Furthermore, conversion rates in high schizotypes were reported to be 

low (Chapman, Chapman, Kwapil, Eckblad, & Zinser, 1994; Gooding, Tallent, & Matts, 2005). 

Thus, as a trait model, schizotypy offers the possibility to image mechanisms of vulnerability 

rather than the symptomatic state (Koychev et al., 2011). Schizotypal traits vary in the normal 

population (Nelson et al., 2013) and can be assessed using self-report instruments that are 

cheap, reliable, and easy to administer (Kwapil & Chun, 2015; Mason, 2015). Therefore, schizo-

typy provides a relatively easy available opportunity to study the pathophysiology of psychosis 

and to support the development of new treatments. 
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IV.I.IV Sleep deprivation as a state model of psychosis 

“I spent like 10 days sleeping 4 or even just 2 hours, and sometimes not at all. It was sunday 

and I felt uncredibly well. I did not sleep, or slept only 2 hours...and so, monday I got crazy. 

[…]... then my mind climbed, climbed... I had deliriums, I would be the new president... then I 

was taken to the hospital believing and saying the most crazy things. A doctor gave me an 

injection and I finally got asleep.” 

[M. G., personal communication, 2017] 

 

Randy Gardner’s experience of 11 days (264 hours) of sleep deprivation is one of the most 

cited records of long-term wakefulness (Coren, 1998; Ross, 1965). Symptoms of sleep depriva-

tion began with difficulty focusing the eyes (day 2) and moodiness (day 3). Hallucinations (mis-

took a street sign for a person) and a first delusional episode (imagined he was a famous foot-

ball player) followed on day 4 and, together, with fragmented thinking and memory lapses, 

these experiences became worse until day 11 (Coren, 1998; Ross, 1965). The symptoms were 

reversible with no physical or mental problems persisting after Gardner had slept again (Coren, 

1998). 

In addition to Randy Gardner and similar individual case reports, scientific researchers became 

interested in systematically investigating the effects of sleep deprivation on cognitive and psy-

chological variables. Early studies used descriptive impressions to characterize the conse-

quences of acute sleep deprivation. They found prolonged wakefulness with durations of 90 

to 205 hours to evoke experiences similar to hallucinations (smoke issuing from under 

doors/the walls/objects, humming or ringing noises in the ears, voices while a water tap was 

running, tingling sensations in the skin), to delusional thinking (feeling threatened by the fellow 

participants), and to negative (disinterest in the outside world, tendency to withdraw) and dis-

organized (overt confusion, disorientation, odd speech) psychosis symptoms (Berger & 

Oswald, 1962; Heinemann, 1966; Kales et al., 1970; Kollar et al., 1969; Luby et al., 1962; Patrick 

& Gilbert, 1896). 
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Later studies applied rating scales (Scott, McNaughton, & Polman, 2006) and validated psycho-

logical inventories (Kahn-Greene, Killgore, Kamimori, Balkin, & Killgore, 2007; Killgore et al., 

2008) to explore the effects of sleep deprivation. Those studies detected higher paranoia 

(Kahn-Greene et al., 2007) and greater confidence in formal superstitions and magical thinking 

processes (Killgore et al., 2008), as well as higher depressed mood (Kahn-Greene et al., 2007; 

Scott et al., 2006) and reduced positive thinking (Killgore et al., 2008). In addition to experi-

mental induced sleep deprivation, sleep dysfunctions, e.g., symptoms of insomnia, were also 

found to be associated to increases of psychotic experiences (Barton, Varese, Jones, Kyle, & 

Haddock, 2017; Reeve, Emsley, Sheaves, & Freeman, 2017). 

Beside alterations in mental states, sleep deprivation was reported to induce cognitive deficits 

such as reduced attention, working memory, and processing speed (Koslowsky & Babkoff, 

1992; Lim & Dinges, 2010; Phillips, 2005; Pilcher & Huffcutt, 1996) that are accompanied by 

widespread changes in brain function (Krause et al., 2017) and overlap with those seen in pa-

tients with psychotic disorders (Fatouros-Bergman, Cervenka, Flyckt, Edman, & Farde, 2014; 

Hill et al., 2013; Reichenberg & Harvey, 2007; Schaefer, Giangrande, Weinberger, & Dickinson, 

2013). 

There is an ongoing debate in the literature about the underlying mechanisms of the sleep 

deprivation induced cognitive deficits (Jackson et al., 2013; Lim & Dinges, 2010). On the one 

hand, fundamental attentive processes were emphasized to be responsible for the cognitive 

dysfunctions being present specifically in monotonous tasks. These hypotheses stress lapses 

(Williams, Lubin, & Goodnow, 1959), state instability (Doran, Van Dongen, & Dinges, 2001), 

less controlled attention (Pilcher, Band, Odle-Dusseau, & Muth, 2007), and reduced arousal 

(Wilkinson, 1961) and vigilance (Lim & Dinges, 2008) as relevant factors to explain cognitive 

impairments after sleep loss. On the other hand, Harrison, Horne and colleagues (Harrison, 

Horne, & Rothwell, 2000; Horne, 2000; Horne, 1993; Jones & Harrison, 2001) argue that sleep 

deprivation impacts on higher-order cognitive tasks that are mediated through the prefrontal 

cortex such as language (Harrison & Horne, 1998) and decision making (Harrison & Horne, 

2000) tasks, analogous to a healthy ageing condition (Harrison et al., 2000; Zhou, Wu, Yu, & 

Lei, 2017; however see Tucker, Stern, Basner, & Rakitin, 2011). To date, there are findings that 
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point to more integrative approaches, suggesting that cognitive decline through prolonged 

wakefulness is a result of both a reduction of attentional arousal and impaired central pro-

cessing (Boonstra, Stins, Daffertshofer, & Beek, 2007; Ratcliff & Van Dongen, 2009). 

Additionally, various characteristics and systematic interindividual differences seem to affect 

how people respond to long-term wakefulness (Van Dongen, Baynard, Maislin, & Dinges, 

2004), e.g., age (Brendel et al., 1990; Philip et al., 2004; Smulders, Kenemans, Jonkman, & Kok, 

1997; Webb, 1985), sex (Corsi-Cabrera, 2003), genetic variation (Dissel et al., 2015; Holst et al., 

2017), perceived sleep quality (Cosgrave et al., 2017), and personality (Killgore, Richards, 

Killgore, Kamimori, & Balkin, 2007; Rupp, Killgore, & Balkin, 2010; Taylor & McFatter, 2003). 

Interestingly, evidence for further amplifying factors on the impact of sleep deprivation was 

found in early studies investigating the effects of psychotomimetic drugs after prolonged 

wakefulness (Bliss, Clark, & West, 1959; Safer, 1970a, 1970b). Safer studied the effects of ly-

sergic acid diethylamide (1970b) and scopolamine (1970a) and found stronger cognitive im-

pairments and intense hallucinations in the combined drug sleep deprivation groups than the 

drug alone groups. 

Disturbances of sleep are common in schizophrenia patients (Freeman, Pugh, Vorontsova, & 

Southgate, 2009; Monti & Monti, 2004; Reeve et al., 2017) and symptoms appear to deterio-

rate under acute sleep deprivation (Koranyi & Lehmann, 1960). Emphasizing the association 

between sleep disruption, psychosis symptoms, and cognitive dysfunctions from a clinical per-

spective, sleep dysfunctions seem to be related to the severity of symptoms (Xiang et al., 2009) 

and poor cognitive functioning in schizophrenia patients (Ferrarelli, 2015; Wilson & 

Argyropoulos, 2012). 

Using sleep deprivation to model psychosis symptoms offers some crucial benefits (for an 

overview see Ettinger & Kumari, 2015) to existing models. Sleep deprivation is inexpensive, 

easy to apply, and can be considered as a safe model system as effects have been found to be 

completely reversible (Everson, 1997). Additionally, prolonged sleep can be combined with 

nearly any biomarker and can be applied cross-species (Frau et al., 2008).  
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IV.II Biomarkers and their application in psychosis research 

IV.II.I Definition and delimitation 

Biological markers, mostly abbreviated as biomarkers, represent characteristics that are “ob-

jectively measured and evaluated as indicators of normal biological processes, pathogenic pro-

cesses, or pharmacological responses to a therapeutic intervention” (Biomarkers Definitions 

Working Group, 2001). 

In clinical applications, biomarkers are proposed to be helpful with regard to diagnostic (clas-

sification of the presence of a disorder), prognostic (prediction of the development of a disor-

der), and theranostic (prediction of the response to a certain treatment) purposes (Weickert, 

Weickert, Pillai, & Buckley, 2013). Additionally, in scientific research contexts, biomarkers are 

beneficial in the development and evaluation of model systems (Ettinger & Kumari, 2015) and 

drug treatments (De Visser, Van der Post, Pieters, Cohen, & Van Gerven, 2001; Green, 

Nuechterlein, et al., 2004). Due to their objective measurement they can circumvent the prob-

lems of subjectivity and variability that are common in traditional measures such as rating 

scales and interviews (Koychev et al., 2011; Weickert et al., 2013). Thus, biomarkers might 

constitute a valuable addition to clinical ratings and interviews (Bender, Weisbrod, & Resch, 

2007). 

To achieve these goals, a biomarker must be closely associated to a given disorder. In practical 

terms, a biomarker should be an accurate indicator of the development, the presence or the 

progression of a specific disorder. Thus, biomarkers can represent persistent deviations, they 

can occur episodic and symptom-related, or they can be sequelae of the existing disorder 

(Thibaut et al., 2015). In other words, biomarkers can refer to altered behavioral and biological 

processes that are associated to the core of a disorder (trait biomarkers) or mirror the status 

of clinical symptoms (state biomarkers) (Chen, Bidwell, & Norton, 2006). Both, trait and state 

biomarkers can in principle be addressed by pharmacological compounds. However, modula-

tion of trait biomarkers should be independent from symptom alterations (Chen et al., 2006). 

When using biomarkers in the context of drug development, a consistent response across spe-

cific drugs with a clear response to a therapeutic dose and a dose-response relationship are 
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required. Additionally, a comprehensible association between the biomarker, the drug phar-

macology, and the pathogenesis of the disorder should be obtained (De Visser et al., 2001). 

Furthermore, test-retest reliability and the utility as a repeated measure are key elements of 

biomarkers that can be applied in clinical trials (Nuechterlein et al., 2008). 

Biomarker is often used as an umbrella term that comprises further concepts such as endo-

phenotypes. Endophenotypes, also referred to as intermediate phenotypes, can be considered 

as a subset of biomarkers that additionally meet the criteria of heritability and co-segregation 

(Glahn et al., 2014; Gottesman & Gould, 2003; Gould & Gottesman, 2006; for reviews of the 

endophenotype rationale and current scientific issues see Braff, 2015; Braff, Greenwood, 

Swerdlow, Light, & Schork, 2008; Flint & Munafò, 2007; Glahn et al., 2014; Gould & Gottesman, 

2006; Insel & Cuthbert, 2009). As the aim of the present thesis does not involve findings on 

genetic alterations or results from non-affected family members, the preferably used term 

here is considered to be biomarker. 

 

IV.II.II Importance of cognitive biomarkers 

“[…] cognitive deficits of schizophrenia are a core feature of the illness. A core feature means 

that the cognitive performance deficits are not simply the result of the symptoms, nor of the 

current treatments of schizophrenia. Instead, these deficits represent a fundamental aspect 

of the illness.” 

[Green et al., 2004; page 302] 

 

Generally, there is a broad literature on many different types of biomarkers that have been 

found to be relevant in schizophrenia research, e.g., neuropsychological, neurophysiological, 

neuroendocrine, and neuroimmune assessments (for overviews refer to Allen, Griss, Folley, 

Hawkins, & Pearlson, 2009; De Visser et al., 2001; Goff et al., 2016; Greenwood et al., 2016; 

Lai et al., 2016; Rodrigues-Amorim et al., 2017; Schmitt, Martins-de-Souza, et al., 2016; 
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Schmitt, Rujescu, et al., 2016; Stöber et al., 2009; Thibaut et al., 2015; Tomasik, Rahmoune, 

Guest, & Bahn, 2016). 

However, as cognitive dysfunctions are very common in schizophrenia (Aquila & Citrome, 

2015; Bhattacharya, 2015; Fioravanti, Carlone, Vitale, Cinti, & Clare, 2005; Heinrichs, 2004; 

Palmer, Dawes, & Heaton, 2009; Schaefer et al., 2013) and the broader psychosis spectrum 

(Reilly & Sweeney, 2014) and can still not be treated effectively (Keefe et al., 2013; Nielsen et 

al., 2015; Vingerhoets, Bloemen, Bakker, & Van Amelsvoort, 2013), biomarkers of cognition are 

particularly valuable in the research of new treatment options. Impairments of cognition were 

found to play a key role in schizophrenia and represent a much discussed topic among experts 

in the field (Keefe et al., 2015). Additionally, in order to advance treatment approaches, there 

is strong effort to develop suitable measures of cognitive processes (Carter & Barch, 2007; 

Green, Nuechterlein, et al., 2004; Nuechterlein et al., 2008).  

Cognitive impairments in schizophrenia include e.g., deficits of processing speed, attention, 

working memory, and executive functioning (Schaefer et al., 2013). Some of the dysfunctions 

are already present before the manifestation of the illness, e.g., in subjects with clinical high 

risk to develop psychosis (Bora & Murray, 2014; Seidman et al., 2016) and remain relatively 

stable from the first episode over the course of the illness (Bergh et al., 2016; Ekerholm et al., 

2012; Hoff, Svetina, Shields, Stewart, & DeLisi, 2005; Rund et al., 2016). Additionally, cognitive 

deficits have been found regardless of drug treatment, e.g., in medication naïve first episode 

patients (Fatouros-Bergman et al., 2014) and relatively independent from remission of clinical 

symptoms (Bergh et al., 2016; Braw et al., 2013; Heilbronner, Samara, Leucht, Falkai, & Schulze, 

2016). Impairments in cognition do not only relate to schizophrenia but also to the psychosis 

spectrum (Bora & Pantelis, 2015; Bora, Yucel, & Pantelis, 2010; Hill et al., 2013; Kuswanto et 

al., 2016; Lewandowski, Cohen, & Ngur, 2011; Reichenberg et al., 2009; Trotta, Murray, & 

MacCabe, 2015). In order to account for the important role of cognitive impairments, the latest 

version of the DSM has included a dimensional assessment of cognitive impairments in the 

psychotic disorders section (Barch et al., 2013). 



[22]  INTRODUCTION 

Most importantly and emphasizing its impact as a treatment goal, numerous findings have 

demonstrated that cognitive impairments are associated to psychosocial functioning, out-

come, and relapse (Chang et al., 2016; Chen et al., 2005; Fervaha, Foussias, Agid, & Remington, 

2014; Green, 1996; Green, Kern, Braff, & Mintz, 2000; Green, Kern, & Heaton, 2004; 

Nuechterlein et al., 2011). Widely used measures to display cognitive functioning in patients 

represent neuropsychological tests (e.g., MATRICS Consensus Cognitive Battery; Nuechterlein, 

Green, et al., 2008) that through their complexity may have problems to detect subtle effects 

of pharmacological treatments (Reilly & Sweeney, 2014). In contrast to neuropsychological 

tests, neurophysiological measures, e.g. prepulse inhibition (PPI) and oculomotor measures, 

are far more specific and may therefore be advantageous in evaluating pharmacological alter-

ations in cognitive functioning (Green et al., 2009; Hill et al., 2010; Reilly, Lencer, Bishop, Keedy, 

& Sweeney, 2008). 

 

IV.II.III Oculomotor biomarkers 

i. Foundations and oculomotor tasks 

“The oculomotor system is a microcosm of the brain -it has sensory input, motor output, and 

incorporates bits of virtually all the major anatomical structures. In clinical neurological prac-

tice, few diagnostic tests discover quite so much quite so quickly as a test of oculomotor func-

tion.” 

[Carpenter, 1994; page 341] 

 

Foundations 

Measuring oculomotor control offers some crucial benefits in the assessment of cognitive func-

tions and there has been much progress with many new insights in the last decades. The pro-

gress involves technical advances of oculomotor measure methods (Duchowski, 2007) and a 

lot of practical research on eye movements (Klein & Ettinger, 2008; Kowler, 2011). 
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Generally, the assessment of oculomotor variables offers a tool to study cognitive functions 

using highly selective measures and an efficient way as regards to time and personnel re-

sources. Mostly, oculomotor tasks are short and their instructions are straightforward (Klein & 

Ettinger, 2008). Thus, in accordance with the required criteria of tolerability and practicability 

(Green, Nuechterlein, et al., 2004), the assessment is relatively simple to implement and fea-

sible even in severely impaired patients (Poletti et al., 2017). Furthermore, oculomotor tasks 

can be adapted systematically to tap into different cognitive functions very specifically (Barnes, 

2008; Hutton, 2008). In addition, the neural underpinnings of the oculomotor systems are well-

understood as the use and combination of many different measurement methods have ad-

vanced this field, by applying e.g., lesion studies (Müri & Nyffeler, 2008; Sharpe, 2008), assess-

ments in non-human primates (Ilg & Thier, 2008; Johnston & Everling, 2008), and investigations 

using various imaging and electrophysiological methods in humans (Lencer & Trillenberg, 2008; 

McDowell, Dyckman, Austin, & Clementz, 2008). 

Another strength of measuring oculomotor function is the limited set of types of eye move-

ments that have different properties with regards to their role in vision and their physiological 

and anatomical characteristics. Leigh and Zee (2015) differentiate vestibular (keep images sta-

ble on the retina during brief rotations of the head), vergence (disjunctive eye movements to 

keep/place images on the fovea), optokinetic (keep images stable on the retina during sus-

tained rotations of the head), and smooth pursuit (SPEM; hold the image of a small moving 

object on the fovea) eye movements, fixations (hold images of a stationary object on the fo-

vea), quick phases of nystagmus (reposition the eyes during sustained rotation towards the 

oncoming scene), and saccades (cause objects of interest to be placed on the fovea). 

SPEM and saccades have been most widely studied in relation to cognitive and brain functional 

disturbances of patients with psychotic disorders. 

 

SPEM 

SPEM are a mechanism that allows to follow a small moving object solely with the eyes aiming 

to provide a clear vision of this object (Leigh & Zee, 2015). Two factors are important to attain 
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this goal (Barnes, 2008). First, as motion of the object’s image on the retina adversely affects 

visual acuity, retinal motion has to be minimized and retinal velocity error/retinal slip velocity 

(difference between target velocity and eye velocity) is used as sensory input to SPEM. Sec-

ondly, the fovea is the area of the retina with the highest acuity and, therefore, the image of 

the object should ideally be processed close to the fovea. Whenever position error is detected, 

small saccadic eye movements are used to realign the eyes (see Orban de Xivry & Lefèvre, 2007 

for further information on the collaboration network of pursuit and saccades). 

Saccadic eye movements that disrupt pursuit are divided into compensatory and intrusive sac-

cades (Levy, Sereno, Gooding, & O’Driscoll, 2010). Compensatory saccades reduce position er-

ror by repositioning the eyes on the target (catch-up saccades, back-up saccades). Intrusive 

saccades increase the position error of the eye by disturbing the correspondence between eye 

and target (anticipatory saccades, leading saccades, square wave jerks). A full description of 

the saccade types can be found in Chapter V.I. However, as opposed to saccades towards sta-

tionary stimuli, the programming involves not only the position error but also information 

about the target motion (De Brouwer, Missal, & Lefèvre, 2001). 

Generating SPEM can be divided into two successive phases (open-loop, closed-loop; 

Lisberger, Morris, & Tychsen, 1987). SPEM are initiated roughly 100ms after a stimulus has 

started to move (Robinson, 1965), presumably due to 70ms processing delay and 30ms initia-

tion time (Wyatt & Pola, 1987). The first 100ms pursuit were found to be guided by the per-

ception of target motion across the retina and do not depend on visual feedback comparable 

to an open-loop system (Lisberger & Westbrook, 1985). The initiation of pursuit can be inves-

tigated using ramp tasks or, in order to avoid the initial saccade that realign the image to the 

fovea, step-ramp tasks can be applied (Carl & Gellman, 1987; Rashbass, 1961). 

After 100ms, retinal slip velocity is deployed as a feedback control and the system works 

closed-loop (Lisberger et al., 1987), relying on retinal (slip velocity) and (after a short familiari-

zation period) extra-retinal (prediction, anticipation) input. The maintenance of pursuit is com-

monly studied with triangular or sinusoidal target movements. Thereby, stressing the impact 
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of predictive mechanisms, these periodic waveforms can be tracked more accurately than pre-

dicted from usually existing visual processing delays (Barnes, 2008). Findings that have exam-

ined the role of periodicity on prediction reported that unexpected changes to periodic wave-

forms result in poor adjustment to the novel waveform partly due to maintaining eye velocity 

consistent with the preceding waveform (Barnes & Asselman, 1991a, 1991b). Furthermore, 

the use of predictive and anticipatory functions has been explored using target occlu-

sion/blanking (for an overview see Fukushima, Fukushima, Warabi, & Barnes, 2013). SPEM can 

be sustained, albeit with lower accuracy, during short periods of target disappearance (Becker 

& Fuchs, 1985) and even recover when expecting the target to reappear (Bennett & Barnes, 

2003, 2004). Additionally, SPEM can be generated anticipatorily when the stimulus is blanked 

initially but reappears shortly afterwards (Barnes & Collins, 2008). 

Neural core regions of SPEM include (for overviews refer to Leigh & Zee, 2015; Lencer & 

Trillenberg, 2008) motion-sensitive area V5 (Dukelow et al., 2001; Mukherjee, Battifarano, 

Simoncini, & Osborne, 2015), frontal eye fields (Fukushima et al., 2002; Gagnon, Paus, 

Grosbras, Pike, & O’Driscoll, 2006; Rosano et al., 2002; Tanaka & Lisberger, 2001), supplemen-

tary eye fields (Gagnon et al., 2006; Lencer, Nagel, et al., 2004; Missal & Heinen, 2004; Schmid, 

Rees, Frith, & Barnes, 2001), and parietal eye fields (Lencer, Nagel, et al., 2004; Nagel et al., 

2006; Nagel, Sprenger, Hohagen, Binkofski, & Lencer, 2008; Schmid et al., 2001). 

Models based on control theory have made a major contribution to the specification of the 

dynamic characteristics and physiological foundations of SPEM (for overviews refer to Barnes, 

2008; Glasauer, 2007; Leigh & Zee, 2015; Lencer & Trillenberg, 2008). A key model proposed 

by Yasui and Young (1975) is based on the assumption that stable pursuit is obtained by the 

positive feedback of an efference copy (Von Holst & Mittelstaedt, 1950)/corollary discharge 

signal (Sperry, 1950) of the oculomotor command. According to this and similar models (e.g., 

Robinson, Gordon, & Gordon, 1986) the stimulus for SPEM is an internal representation com-

bining retinal slip velocity inferred from the retina and the efference copy of the motor com-

mand. However, the models cannot account for findings of e.g., recovery of eye velocity shortly 

before expected target reappearance (Bennett & Barnes, 2003, 2004). Therefore, more recent 

methods suggest to add a predictive pathway (second internal loop that stores information 
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about target velocity similar to a working memory; Fukushima, Fukushima, Warabi, & Barnes, 

2013) or use generative models that rely on active inference (sample sensory inputs in order 

to minimize errors of prediction; Adams, Perrinet, & Friston, 2012). 

The main dependent variables can be classified into global and specific measures (for an 

overview see Smyrnis, 2008). Global measures refer to the full recording of SPEM thus includ-

ing sections of pursuit as well as sections of saccadic eye movements. Therefore, using global 

measures (e.g., global error of eye compared to target position, root mean square error; RMSE) 

to evaluate SPEM yield no clear distinctions between possible inabilities either to pursue the 

target or to suppress the saccadic system (“abnormalities of pursuit” or “abnormalities during 

pursuit”; Abel & Ziegler, 1988). However, the RMSE was found to be highly valuable for quan-

tifying deficits in clinical populations (Clementz, Iacono, & Grove, 1996). Specific measures re-

fer either to the pursuit (e.g., velocity gain; how well does eye velocity match target velocity) 

or to the saccadic system (e.g., number of saccadic intrusions per second). A full description of 

the measures can be found in Chapter V.I. 

 

Prosaccades and antisaccades 

Prosaccades are visually-guided saccades that require the participant to look as fast and as 

accurately as possible towards a sudden-onset peripheral target (Figure IV—1). The cognitive 

influences on the generation of saccades can be illustrated using the LATER (Linear Approach 

to Threshold with Ergodic Rate) model proposed by Carpenter and colleagues (1981; 1995). 

Briefly summarized, there is a decision signal that increases from baseline with a certain rate 

until a threshold value is attained and the saccade is triggered. All model parameters can po-

tentially be affected by cognitive processes. Thus, these cognitive modulations can be respon-

sible for whether a saccade and how quickly this saccade is triggered (Hutton, 2008). In addi-

tion, the generation of a saccade always requires balancing bottom-up (e.g., stimulus position, 

size, luminance) and top-down (e.g., goals, intentions) signals (Hutton, 2008). 
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There is a strong association between saccade execution and attention. In their eye-mind as-

sumption, Just and Carpenter (1980) summarized the relationship as follows: “there is no ap-

preciable lag between what is being fixated and what is being processed” (page 331). Even 

though there is broad agreement that saccadic eye movements and spatial attention are 

closely linked to each other (Hutton, 2008), it remains unclear how to describe the relationship 

itself (e.g., overt and covert shifts of attention are functionally independent, Hunt & Kingstone, 

2003; they are loosely functionally connected, Fischer & Weber, 1993; or they are more explicit 

functionally relate, Schneider, 1995). 

In the antisaccade paradigm (Hallett, 1978), the participant is required to perform a saccade 

to the opposite direction of a sudden-onset peripheral target (Figure IV—1). Antisaccades typ-

ically result in a considerable proportion of direction errors (~20%), which in almost all cases 

(~99%) are immediately followed by a correct antisaccade (Hutton & Ettinger, 2006; Tatler & 

Hutton, 2007). Prosaccades are often used as a control condition in addition to antisaccades. 

They represent an elegant and convenient experimental control because both tasks share the 

same stimuli and they only differ in their task instructions (Hutton, 2008; Munoz & Everling, 

2004). Thereby, they can either be presented separately in blocks consisting only of prosac-

cades or antisaccades or in a mixed design with randomized alternating prosaccades and anti-

saccades (Cherkasova, Manoach, Intriligator, & Barton, 2002; Dyckman, Camchong, Clementz, 

& McDowell, 2007). Obtaining prosaccades in addition to antisaccades is strongly recom-

mended in clinical and experimental research (Antoniades et al., 2013) because prosaccade 

data are helpful to model antisaccades and allow to investigate whether performance impair-

ments are already present in low-level visuomotor control. 

The performance of correct antisaccades is thought to consist of two relevant processes: First, 

the automatic answer towards the peripheral target must be suppressed and second, the lo-

cation of the peripheral stimulus has to be transformed into a voluntary eye movement away 

from the target (Cutsuridis, 2017; Everling & Fischer, 1998; Hutton & Ettinger, 2006; Munoz & 

Everling, 2004). Thereby, previous findings suggest parallel saccade programming and a com-

petition between the exogenously elicited prosaccade and the endogenously activated anti-
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saccade starting at stimulus onset (Hutton & Ettinger, 2006; Massen, 2004). Thus active inhib-

itory processes have been proposed to represent key features in suppressing erroneous pro-

saccades and executing correct antisaccades (Crawford, Bennett, Lekwuwa, Shaunak, & 

Deakin, 2002; Hutton, 2008). Additional cognitive processes that are relevant to calculate ap-

propriate coordinates and initiate the correct antisaccade include working memory (Mitchell, 

Macrae, & Gilchrist, 2002) and goal activation (Nieuwenhuis, Broerse, Nielen, & Jong, 2004). 

Figure IV—1. Illustration of a correct performed prosaccade (left) and antisaccade (right). 
 

The neural saccade circuit comprises the primary visual and extra-striate cortices, regions of 

posterior parietal cortex, frontal and supplementary eye fields, striatum, thalamus, and the 

superior colliculus (Jamadar, Fielding, & Egan, 2013; McDowell et al., 2008). Generally, antisac-

cades have been shown to elicit more extended brain activation than prosaccades. Differences 

were most consistently found in parietal and dorsolateral prefrontal cortices and in frontal and 

supplementary eye fields (DeSouza, Menon, & Everling, 2002; Dyckman et al., 2007; Ettinger 

et al., 2008; for overvews refer to Cieslik, Seidler, Laird, Fox, & Eickhoff, 2016; Hutton & 

Ettinger, 2006; Jamadar, Fielding, & Egan, 2013; McDowell et al., 2008; Munoz & Everling, 

2004). However, task properties (block/mixed design) may play an important role in explaining 

divergent results regarding neural differences between prosaccades and antisaccades across 

studies (Dyckman et al., 2007). Additionally, variation in brain activation between prosaccades 
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and antisaccades was proposed to stem from preparatory and not from movement related 

differences (DeSouza et al., 2002). 

The main dependent variables for prosaccades and antisaccades (Antoniades et al., 2013; Leigh 

& Zee, 2015) include percentages of direction errors, latencies (time that is needed to start the 

saccade), accuracy measures (how accurate does the amplitude of the saccade match the am-

plitude of the target), and peak velocities. A full description of the measures can be found in 

Chapter V.I. 

 

ii. Oculomotor dysfunctions in psychosis 

“If one’s experience of the sensory consequences of one’s action was not attenuated, then 

when one made an active movement it would feel like a passive movement. It would feel as if 

one’s action was being driven by an external force.” 

[Fletcher & Frith, 2009; page 50] 

 

SPEM 

Diefendorf and Dodge showed in 1908 that patients with schizophrenia suffer from deterio-

rated SPEM (Diefendorf & Dodge, 1908). Nearly 70 years later, Holzman and colleagues repli-

cated these deficits (Holzman, Proctor, & Hughes, 1973). Since then numerous studies have 

been conducted on the performance of SPEM in schizophrenia and findings of impaired per-

formance have widely been replicated (for overviews refer to Franco, De Pablo, Gaviria, 

Sepúlveda, & Vilella, 2014; Hutton & Kennard, 1998; Levy, Holzman, Matthysse, & Mendell, 

1993, 1994; Levy, Sereno, Gooding, & O’Driscoll, 2010; O’Driscoll & Callahan, 2008; Tandon, 

1999; Thaker, 2000, 2008; Trillenberg, Lencer, & Heide, 2004). 

The most frequently reported deficit in schizophrenia patients is low maintenance gain (Bagary 

et al., 2004; Boudet et al., 2005; Fabisch et al., 2009; Haraldsson et al., 2008, 2009; Hutton et 

al., 2004; Ivleva et al., 2014; Kathmann, Hochrein, Uwer, & Bondy, 2003; Lencer et al., 2015; 

Lencer, Trillenberg, et al., 2004; Louchart-De La Chapelle et al., 2005; Morita et al., 2017; Nagel 
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et al., 2007; Nkam et al., 2010; Spering, Dias, Sanchez, Schutz, & Javitt, 2013; Sprenger, 

Trillenberg, Nagel, Sweeney, & Lencer, 2013; Trillenberg et al., 2017). 

Furthermore, poor performance in schizophrenia has been detected using global measures 

such as reduced SPEM quality (Amador et al., 1991; Chen, Levy, et al., 1999), higher signal to 

noise ratio (Allen, 1997; Benson et al., 2012; Kelly et al., 1990), and increased global position 

error (Benson et al., 2012; Lee, Williams, Loughland, Davidson, & Gordon, 2001; Sponheim, 

Iacono, Thuras, Nugent, & Beiser, 2003; Sweeney et al., 1993). 

Additionally, schizophrenia patients demonstrate more frequent saccadic intrusions during 

SPEM (Allen, 1997; Campion et al., 1992; Haraldsson et al., 2008, 2009; Mather, Neufeld, 

Merskey, & Russell, 1992). More specifically, schizophrenia has been found to be associated to 

higher frequencies (Abel, Friedman, Jesberger, Malki, & Meltzer, 1991; Friedman et al., 1995; 

Lencer et al., 2008; Nkam et al., 2001) and amplitudes (Sweeney, Clementz, et al., 1994; 

Sweeney, Haas, Li, & Weiden, 1994) of catch-up saccades and higher rates of anticipatory 

(Friedman, Abel, Jesberger, Malki, & Meltzer, 1992; Ross, Olincy, Harris, Sullivan, & Radant, 

2000; Spengler et al., 2006; Sweeney et al., 1993) and leading (Martin et al., 2007; Ross et al., 

2002, 2000; Ross, Olincy, Harris, et al., 1999) saccades. No differences between patients and 

controls were reported for square wave jerks (Campion et al., 1992; Clementz, Sweeney, Hirt, 

& Haas, 1990; Flechtner, Steinacher, Sauer, & Mackert, 1997; Nkam et al., 2001; Sweeney et 

al., 1993) and back-up saccades (Litman, Hommer, Radant, Clem, & Pickar, 1994; Radant & 

Hommer, 1992). 

In addition to disturbed closed-loop SPEM, patients with schizophrenia display worse pursuit 

initiation (Chen, Levy, et al., 1999; Chen, Nakayama, Levy, Matthysse, & Holzman, 1999; Hong, 

Avila, Adami, Elliot, & Thaker, 2003; Lencer et al., 2010, 2015; Sweeney et al., 1999; Trillenberg 

et al., 2017) and reduced capacities of SPEM prediction during stimulus disappearance (Hong 

et al., 2003; Ivleva et al., 2014; Thaker, Ross, Buchanan, Adami, & Medoff, 1999; Trillenberg et 

al., 1998, 2017). 
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A comprehensive meta-analysis (O’Driscoll & Callahan, 2008) that summarized studies from 

1998 to 2008 (k=57, npatients=2049, ncontrols=1927) reported high effect sizes for global variables 

(d=0.70-1.55), maintenance gain (d=0.87), and leading saccade rate (d=1.31).  

Neural correlates of SPEM impairments in schizophrenia mainly comprise abnormal activation 

in frontal and occipital areas. Specifically, most studies have reported lower brain activity dur-

ing SPEM for schizophrenia patients compared to healthy controls in frontal and supplemen-

tary eye fields (Hong et al., 2005; Keedy, Ebens, Keshavan, & Sweeney, 2006; Tregellas et al., 

2004). In addition, impaired SPEM were found to be associated to reduced gray matter integ-

rity (Bagary et al., 2004) and lower metabolism (Ross et al., 1995) in frontal areas. However, 

there are also findings of SPEM related increased activations in dorsolateral prefrontal cortex 

and frontal eye fields in schizophrenia (Lencer et al., 2011; Nagel et al., 2007). Furthermore, 

patients with schizophrenia were found to exhibit abnormal brain activation in the motion-

sensitive V5 complex (Hong et al., 2005; Lencer, Nagel, Sprenger, Heide, & Binkofski, 2005; 

Nagel, Sprenger, Steinlechner, Binkofski, & Lencer, 2012). A recent study that combined SPEM 

recording with electroencephalography found schizophrenia patients to demonstrate reduced 

frontal/posterior phase synchronization in beta to gamma range frequency bands (Krishna, 

O’Neill, Sánchez-Morla, & Thaker, 2014). 

Emphasizing stability independent from clinical status, most studies revealed no significant as-

sociations between SPEM performance and severity of clinical symptoms (Haraldsson et al., 

2008; Hutton et al., 2004; Kallimani et al., 2009; Kelly et al., 1990; Lencer et al., 2008, 2015; 

Louchart-De La Chapelle et al., 2005; Schlenker et al., 1994) or differences between non-deficit 

and deficit schizophrenia patients (Nkam et al., 2001, 2010). However, some studies reported 

that higher SPEM deficits were modestly related to more pronounced (predominantly nega-

tive) schizophrenia symptoms (Hong et al., 2003; Lee et al., 2001; Lees Roitman, Keefe, Harvey, 

Siever, & Mohs, 1997; Malaspina et al., 2002; Ross et al., 1996, 1997; Sweeney, Clementz, et 

al., 1994). 

SPEM deficits have been assessed in chronic schizophrenia (Katsanis & Iacono, 1991; Litman et 

al., 1991), in the residual subtype (Arolt, Teichert, Steege, Lencer, & Heide, 1998), and in first 
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episode medicated (Bagary et al., 2004; Hutton et al., 1998, 2004; Keedy et al., 2006), un-

treated (Lencer et al., 2011; Rybakowski & Borkowska, 2002), and medication naïve (Keedy et 

al., 2006; Lencer et al., 2008; Sweeney, Haas, et al., 1994) patients. Some studies that com-

pared treated and untreated first episode and chronic patients reported rather similar SPEM 

disturbances in all patient groups compared to healthy controls (Campion et al., 1992; Hutton 

et al., 2001; Thaker et al., 1999). Additionally, SPEM have been found to be impaired in unaf-

fected first-degree relatives of schizophrenia patients (Lencer et al., 2015). In accordance with 

these findings, SPEM in schizophrenia patients were found to maintain stable over time 

(Benson et al., 2012; Calkins, Iacono, & Curtis, 2003; Lencer et al., 2010; Yee, Nuechterlein, & 

Dawson, 1998), despite improvement of clinical symptoms (Flechtner, Steinacher, Sauer, & 

Mackert, 2002; Gooding, Iacono, & Beiser, 1994; Kallimani et al., 2009; Schlenker & Cohen, 

1995) or commencement of medical treatment (Campion et al., 1992; Sweeney, Haas, et al., 

1994). Together, these findings of time stability, independence of clinical symptoms, and pres-

ence in unaffected first-degree relatives suggest SPEM impairments to represent a valuable 

trait biomarker of schizophrenia. 

Studies on the impacts of current available antipsychotic medication on SPEM performance in 

schizophrenia revealed either no/minimal (Flechtner et al., 2002; Sweeney et al., 1998; 

Sweeney, Haas, et al., 1994) or even adverse (Friedman, Jesberger, & Meltzer, 1992; Lencer et 

al., 2008; Litman et al., 1994) effects. More specifically, Hutton and colleagues (2001) found 

that SPEM gain was unaffected by short-term but deteriorated by long-term antipsychotic 

medication. 

Cognitive deficits that play an important role in the explanation of SPEM deficits in schizophre-

nia cover impairments in motion processing, prediction/anticipation, and attention. Facilita-

tion of attention during SPEM (monitor changes of the stimulus) revealed an improvement of 

overall performance in patients and controls (Amador et al., 1991; Cegalis & Sweeney, 1981; 

Schlenker et al., 1994; Sweeney, Clementz, et al., 1994; Sweeney, Haas, et al., 1994; however 

see Yee et al., 1998). These findings suggest that impairments of attentive processes do not 

constitute the primary reason of SPEM deficits in schizophrenia (Sweeney, Clementz, et al., 
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1994). In accordance with the rather subtle effects of attention enhancement on SPEM per-

formance in schizophrenia patients, Stuve and colleagues (1997) found a strong association 

between deteriorated SPEM and lower motion perception even after controlling for measures 

of attention. Additionally, underlining the responsibility of deficient motion perception, many 

studies have reported impairments of sensorimotor transformation in schizophrenia that are 

mostly reflected by reduced initial eye velocity/acceleration (Lencer et al., 2010, 2015; 

Trillenberg et al., 2017). With regard to higher cognitive functions, schizophrenia patients fail 

to adequately use efference copy/predictive (Spering et al., 2013) and anticipatory (Avila, 

Hong, Moates, Turano, & Thaker, 2006) information (however see Trillenberg et al., 2017). 

Furthermore, patients with schizophrenia were found to demonstrate difficulties maintaining 

SPEM during periods of blanking (Ivleva et al., 2014; Thaker et al., 1999; Trillenberg et al., 2017; 

however see Sprenger et al., 2013). The use of efference copy information to attenuate sen-

sory experiences is important in distinguishing self-generated from externally-generated ac-

tions. Adversely affected efference copy function was found to significantly contribute to ex-

planation approaches of psychosis symptoms (Feinberg, 1978; Ford & Mathalon, 2012; Pynn 

& DeSouza, 2013) and higher deficits were found to be associated to higher symptom severity 

in schizophrenia patients (Rösler et al., 2015). 

In agreement with the hypothesized overlap between different phenotypes of psychosis 

(Tamminga et al., 2013), SPEM deficits have been found to be present not only in schizophrenia 

but also in patients with schizoaffective (Martin et al., 2007) and affective (Ivleva et al., 2014; 

Kathmann et al., 2003; Lencer et al., 2010; Sponheim et al., 2003; Sweeney et al., 1999; 

Trillenberg et al., 2017) disorders. However, some findings concluded that impairments in 

schizophrenia were more severe compared to other disorders of the psychosis spectrum 

(Amador et al., 1991; Lencer et al., 2015; Lencer, Trillenberg, et al., 2004). Emphasizing diag-

nostic specificity to psychosis spectrum disorders, rather intact SPEM were found for patients 

with predominantly non-psychotic affective disorders (Abel et al., 1991; Fabisch et al., 2009; 

Friedman et al., 1995), substance use disorders (Kathmann, Wagner, Rendtorff, Schöchlin, & 

Engel, 1995; Radant & Hommer, 1992), and attention-deficit/hyperactivity disorder (Ross et 
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al., 2000). Additionally minimal or distinct deficits were reported in obsessive compulsive dis-

order (Damilou, Apostolakis, Thrapsanioti, Theleritis, & Smyrnis, 2016; Farber et al., 1997; 

Lencer et al., 2004; Spengler et al., 2006; for an overview see Jaafari et al., 2011) and posttrau-

matic stress disorder with secondary psychotic symptoms (Cerbone et al., 2003). 

In summary, many studies have replicated SPEM disturbances in schizophrenia patients 

(O’Driscoll & Callahan, 2008) and their neural correlates were found to comprise abnormal 

activation in frontal and motion-sensitive posterior areas (Hong et al., 2005; Nagel et al., 2012). 

These trait-like deficits remain stable over time (Benson et al., 2012), are rather independent 

from clinical symptoms (Lencer et al., 2015), pertain the further psychosis spectrum (Lencer et 

al., 2015), and the beneficial effects of current available medication is low (Lencer et al., 2008). 

Underlining its importance in every day functioning, impaired SPEM in schizophrenia patients 

were also found in natural settings (Dowiasch et al., 2016) and to be associated to reduced 

occupational and social functioning (Beiser et al., 1994; Katsanis, Iacono, & Beiser, 1996). 

 

Prosaccades and antisaccades 

In 1988, Fukushima and colleagues first detected disturbances in the control of antisaccades 

in schizophrenia patients (Fukushima et al., 1988). Since then, numerous studies have repli-

cated increased direction error rates (Ettinger et al., 2006; Ettinger, Kumari, Crawford, et al., 

2004; Haraldsson et al., 2008; Mazhari et al., 2011; Nkam et al., 2001; Radant et al., 2010, 

2015; Reilly et al., 2014), promoting antisaccades to be a highly valuable biomarker of schizo-

phrenia (Thibaut et al., 2015). Importantly, schizophrenia patients display normal error correc-

tion rates underlining adequate task understanding and intact error awareness (Nkam et al., 

2001; Polli et al., 2008). Thus, this finding emphasizes that the reasons for deteriorated anti-

saccade performance are associated to impairments in cognitive control mechanisms and not 

to deficient understanding of the task instructions or lack of motivational aspects. 

In addition to direction errors, schizophrenia patents were found to demonstrate prolonged 

latencies and reduced spatial accuracy (Haraldsson et al., 2008; Maruff, Danckert, Pantelis, & 

Currie, 1998; Mazhari et al., 2011; Radant et al., 2015; for an overview, see Gooding & Basso, 
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2008). When comparing schizophrenia patients and healthy controls in basic saccade genera-

tion, e.g., prosaccades, most studies agree that both groups display similarly intact perfor-

mance (Broerse, Crawford, & den Boer, 2001; Gooding & Basso, 2008). 

The neural correlates of antisaccade deficits in schizophrenia include dysfunctions in fronto-

striatal regions. Schizophrenia patients were found to demonstrate frontal cortical atrophy 

(Fukushima et al., 1988) and they fail to demonstrate higher brain activity in dorsolateral pre-

frontal cortex (Fukumoto-Motoshita et al., 2009; McDowell et al., 2002; Nakashima et al., 

1994) and further frontal regions (Tu, Yang, Kuo, Hsieh, & Su, 2006) during antisaccades, a 

neural pattern that is apparent in healthy controls. In addition to reduced activation of pre-

frontal cortex, Camchong and colleagues (2008) also detected lower brain signal during anti-

saccades for patients in frontal and supplementary eye fields, middle occipital gyrus, insula, 

cuneus, and anterior cingulate. Higher antisaccade direction errors were found to be associ-

ated to reduced grey matter volume in the medial superior frontal cortex (Bagary et al., 2004) 

and longer latencies of correct antisaccades were related to smaller prefrontal lobe volume in 

schizophrenia patients and healthy controls (Schulze et al., 2006). 

Recently, deficient antisaccade performance was suggested to be explained by an aberrant 

pattern in rostral and dorsal anterior cingulate cortices and ventrolateral prefrontal cortex dur-

ing the preparation of antisaccades (Manoach et al., 2013; Polli et al., 2008). Furthermore, 

associations between number of antisaccade errors and activation of anterior cingulate corti-

ces were less pronounced in patients than controls (Polli et al., 2008). Further evidence for 

abnormal response preparation comes from electrophysiological studies: Schizophrenia pa-

tients were found to lack higher contingent negative variation when preparing antisaccades 

compared to prosaccades (Klein, Heinks, Andresen, Berg, & Moritz, 2000; Reuter, Herzog, 

Endrass, & Kathmann, 2006) and to present neural abnormalities over prefrontal cortex prior 

to the execution of antisaccades (Kang, Dionisio, & Sponheim, 2011). 

Besides frontal alterations, further relevant differences between schizophrenia and healthy 

controls were found in thalamus (Fukumoto-Motoshita et al., 2009) and striatal regions. Lower 
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brain activation during antisaccades was shown in striatum (Raemaekers et al., 2002) and len-

tiform nucleus (Tu et al., 2006) and volume of the caudate was reported to predict antisaccade 

latency and gain in first episode psychosis (Ettinger, Kumari, Chitnis, et al., 2004). Furthermore, 

Crawford and colleagues (1996) found schizophrenia patients with high error rates to display 

lower regional cerebral blood flow in the anterior cingulate, insula, and striatum than patients 

with normal error rates. 

Another conceivably relevant factor in the explanation of schizophrenia dysfunctions includes 

abnormal timing of hemodynamic responses during antisaccades in schizophrenia. Dyckman 

and colleagues (2011) found delayed and prolonged hemodynamic responses in frontal eye 

fields that did not differ in amplitude during antisaccades for patients compared to healthy 

controls, suggesting that these functions that are necessary to achieve correct antisaccades 

take longer to implement and are more persistent. 

Consistent with intact behavioral performance of prosaccades, no differences in neural activa-

tion were found between patients and healthy controls during basic saccade generation 

(McDowell et al., 2002). Altogether, these findings suggest functionally intact circuit of basic 

saccades, whereas mechanisms underlying the generation of antisaccades display severe dis-

turbances (for an overview see Gooding & Basso, 2008). 

The relationship between antisaccade impairments and severity of schizophrenia symptoms 

revealed mixed findings. In accordance with trait stability independent from clinical status, 

most findings demonstrated no/minimal significant correlations between antisaccade 

measures and schizophrenia symptom severity (Haraldsson et al., 2008; Harris, Reilly, Thase, 

Keshavan, & Sweeney, 2009; Hutton et al., 2004; Kallimani et al., 2009; Nkam et al., 2001; Reilly 

et al., 2014). However, some studies found that poorer antisaccade performance was associ-

ated to higher clinical (predominantly negative) symptom ratings (Ettinger, Kumari, Chitnis, et 

al., 2004; Louchart-De La Chapelle et al., 2005; Müller, Riedel, Eggert, & Straube, 1999; Nieman 

et al., 2000). 

Impairments of antisaccade performance have been found in first-episode/recent-onset (De 

Wilde et al., 2008; Grootens et al., 2008; Hutton, Joyce, Barnes, & Kennard, 2002), medication-
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naïve (Harris et al., 2009), and drug-treated (Hutton et al., 1998; Maruff et al., 1998; Nieman 

et al., 2000) patients as well as in acute (Curtis, Calkins, Grove, Feil, & Iacono, 2001) and remit-

ted (Curtis et al., 2001) schizophrenia. Furthermore, antisaccade deficits have been reported 

in unaffected first-degree relatives of schizophrenia patients (Reilly et al., 2014). Additionally, 

emphasizing their role as core features of the illness (Green, Nuechterlein, et al., 2004), longi-

tudinal studies have reported antisaccade deficits in schizophrenia patients to represent high 

test-retest reliabilities despite fluctuations in clinical states (Calkins et al., 2003; Gooding, 

Mohapatra, & Shea, 2004; Kallimani et al., 2009; Light et al., 2012). Together, these findings of 

time stability independent of clinical symptoms and the presence of deficits in unaffected first-

degree relatives suggest antisaccade impairments to demonstrate a valuable trait biomarker 

of schizophrenia. 

To date, studies that have examined the effects of antipsychotic medication on antisaccades 

in schizophrenia patients have mainly detected no or only few beneficial effects (Burke & 

Reveley, 2002; Harris, Reilly, Keshavan, & Sweeney, 2006; Hill, Reilly, Harris, Khine, & Sweeney, 

2008; Larrison et al., 2011; Müller et al., 1999), possibly due to baseline dependency (Babin et 

al., 2011). 

Conceivable explanations for antisaccade deficits in schizophrenia rather point to cognitive 

than sensory sources (Leonard et al., 2013). Several cognitive functions such as inhibition 

(Barton, Pandita, Thakkar, Goff, & Manoach, 2008), working memory (Hutton et al., 2004), and 

attention (Tendolkar et al., 2005) seem to be involved in the deterioration of antisaccade per-

formance in schizophrenia (for an overview see Gooding & Basso, 2008). Additionally, antisac-

cade deficits can be considered as an essential deficit in goal-directed behavior (Nieuwenhuis 

et al., 2004; Reuter & Kathmann, 2004), a concept that is closely related to symptoms of schiz-

ophrenia (Reuter & Kathmann, 2007; Rinaldi & Lefebvre, 2016). 

In addition to antisaccade deficits in patients with schizophrenia, similar impairments have also 

been found in schizoaffective (Martin et al., 2007; Reilly et al., 2014) and affective disorders 

with psychotic features (Harris et al., 2009; Katsanis, Kortenkamp, Iacono, & Grove, 1997; Reilly 

et al., 2014). Furthermore, borderline personality disorder patients with psychotic features had 
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higher antisaccade error rate that those without these features (Grootens et al., 2008). Under-

lining its specificity to the psychosis spectrum, rather unimpaired (Fukushima et al., 1990; 

Harris et al., 2009) and unstable (Gooding et al., 2004) antisaccade performance was reported 

in affective disorders without psychotic features. Similarly, patients with obsessive compulsive 

disorder demonstrate low or distinct impairments (Damilou et al., 2016; McDowell & 

Clementz, 1997; Spengler et al., 2006) compared to patients from the psychosis spectrum (for 

an overview see Jaafari et al., 2011). 

To summarize, schizophrenia is associated with behavioral antisaccade disturbances, specifi-

cally increased direction errors (Radant et al., 2015) whereas basic saccade generation circuits 

seem to be largely intact (Gooding & Basso, 2008). On the brain functioning level, disruption 

of antisaccades is mainly reflected in abnormal activation of frontal-striatal circuits (Camchong 

et al., 2008; Raemaekers et al., 2002). The antisaccade performance deficits were reported to 

be time-stable and independent from fluctuations in clinical symptoms (Light et al., 2012) and 

current available antipsychotic medication has only minimal beneficial effects (Hill et al., 2008). 

 

iii. Evaluation of SPEM and antisaccades as biomarkers of psychosis 

As discussed above, SPEM and antisaccades meet several important criteria for biomarkers of 

schizophrenia (for a review see Koychev et al., 2011). First, both tasks can be assessed with 

high objectivity, thereby showing high internal consistency and test-retest reliability (Ettinger 

et al., 2003). Furthermore, the tasks are short und their instructions are simple which makes 

them applicable even in severely impaired patients (Klein & Ettinger, 2008). Additionally, in 

contrast to complex and time-consuming neuropsychological assessments, oculomotor 

measures are easy to administer and variables can be analyzed in real time (Benson et al., 

2012). 

Secondly, SPEM and antisaccade measures demonstrate high construct validity. Neural net-

works of SPEM and antisaccades have been well-established in humans (SPEM: Lencer & 

Trillenberg, 2008; antisaccades: McDowell et al., 2008) and non-human primates (SPEM: Ilg & 
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Thier, 2008; antisaccades: Johnston & Everling, 2008). Additionally their cognitive underpin-

nings have been clearly studied and can be manipulated systematically (SPEM: Barnes, 2008; 

antisaccades: Hutton, 2008). 

Third, SPEM and antisaccade impairments have widely been replicated in schizophrenia and 

the psychosis spectrum (SPEM: Lencer et al., 2015; antisaccades: Reilly et al., 2014). In order 

to provide further evidence for using the measures as indicators of pathogenic processes, al-

gorithms to quantify classification accuracies were applied. Using logistic regression ap-

proaches, oculomotor variables (in combination with further biomarkers) were found to be 

useful in the classification of schizophrenia patients with sensitivities between 82%-95% and 

specificities between 83%-88% (Martin et al., 2007; Millard et al., 2016; Price et al., 2006). 

Furthermore, applying neural network algorithms on oculomotor data, patients with schizo-

phrenia can be distinguished from controls with high levels of discrimination (80%-98%; 

Benson et al., 2012; Campana, Duci, Gambini, & Scarone, 1999). 

Fourth, underlining the general responsiveness of SPEM and antisaccade measures to pharma-

cological treatments, both measures were found to display dose-dependent responses to an-

tipsychotic drugs in healthy participants (De Visser et al., 2001; Reilly et al., 2008). Neverthe-

less, the effects of current available antipsychotic drugs on oculomotor performance in pa-

tients with psychosis were found to be of only small benefit or even adverse (Hill et al., 2008; 

Lencer et al., 2008), emphasizing the importance of the development of new compounds. 

Altogether, SPEM and antisaccade measures represent valuable biomarkers that are clearly 

associated to disorders of the psychosis spectrum. In terms of practical application, they might 

be highly beneficial in supporting the diagnosis of cognitive disturbances in psychotic disorders 

(Benson et al., 2012) and in developing alternatives to traditional disorder categories 

(Clementz et al., 2016; Hudgens-Haney et al., 2017; Insel et al., 2010). Furthermore, the as-

sessment of oculomotor control can be helpful in the evaluation of pharmacological responses 

to new therapeutic interventions for schizophrenia patients (Reilly et al., 2008). 
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IV.III Oculomotor biomarkers in the schizotypy and sleep deprivation models 

IV.III.I SPEM, saccades, and schizotypy 

SPEM 

Studies of SPEM in high schizotypes have found performance deficits similar to those reported 

in studies with psychotic patients. An overview of all studies can be found in Table IV—2 and 

an exemplary illustration of SPEM in schizotypy is in Figure IV—2b. Reduced performance in 

schizotypy includes deficits in global measures, e.g., lower quality of SPEM (O’Driscoll, 

Lenzenweger, & Holzman, 1998), higher percentage of poor eyetrackers (Holahan & O’Driscoll, 

2005; Simons & Katkin, 1985), and higher RMSE (Gooding, Miller, & Kwapil, 2000; Smyrnis et 

al., 2007; Van Kampen & Deijen, 2009). Additionally, performance deficits were reported using 

specific SPEM measures, e.g., lower velocity gain (Gooding et al., 2000; Holahan & O’Driscoll, 

2005; Kattoulas, Evdokimidis, et al., 2011; Koychev et al., 2016), and higher frequency of sac-

cade rate (Lenzenweger & O’Driscoll, 2006; Smyrnis et al., 2007). In most studies, different 

saccade types were combined to compute the total rate of saccades (Koychev et al., 2016; 

Schmechtig et al., 2013; Smyrnis et al., 2007). The few studies that have distinguished saccade 

subtypes, discovered positive associations between schizotypy and catch-up (Lenzenweger & 

O’Driscoll, 2006) but not anticipatory (Gooding et al., 2000) saccade rate. 

Poor SPEM have been found in high schizotypes comprising the positive, negative, and disor-

ganized factors (Gooding et al., 2000; Holahan & O’Driscoll, 2005; Kattoulas, Evdokimidis, et 

al., 2011; Lenzenweger & O’Driscoll, 2006; Smyrnis et al., 2007), and the total schizotypy score 

(Koychev et al., 2016; Schmechtig et al., 2013; Van Kampen & Deijen, 2009). 

Additionally, schizotypy-related SPEM deficits were found using different methodological ap-

proaches. Most studies have examined extreme groups with high schizotypes and average 

(Gooding et al., 2000; Holahan & O’Driscoll, 2005; Kattoulas, Smyrnis, et al., 2011; Koychev et 

al., 2016; Smyrnis et al., 2007; Van Kampen & Deijen, 2009) and/or low (Koychev et al., 2016; 

Simons & Katkin, 1985) control participants. Additionally, few studies have investigated schizo-

typal traits in participants with high or poor oculomotor accuracy (Kendler et al., 1991; Siever, 
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1982; Siever et al., 1989). Furthermore, correlative designs have been used to explore associ-

ations between schizotypy and SPEM (Kattoulas, Smyrnis, et al., 2011; Kelley & Bakan, 1999; 

Lenzenweger & O’Driscoll, 2006; Smyrnis et al., 2007). 

However, there are also studies that have not detected any schizotypy-related differences in 

SPEM (Blackwood et al., 1994; Schmechtig et al., 2013; Thaker, Cassady, Adami, Moran, & Ross, 

1996). Reasons for the non-significant findings may include too unspecific and imprecise SPEM 

measures (Blackwood et al., 1994; Thaker et al., 1996) and extremely strict study inclusion 

criteria that may have blurred the rather small effects of schizotypy (Schmechtig et al., 2013). 

Almost all studies have focused on closed-loop maintenance SPEM. In most of these studies, 

sinusoidal movement patterns using frequencies ranging from 0.2Hz to 0.8Hz were applied 

(Holahan & O’Driscoll, 2005; Kelley & Bakan, 1999; Koychev et al., 2016; Lenzenweger & 

O’Driscoll, 2006). Additionally, some studies have employed triangular movement patterns 

with velocities ranging from 8°-30°/sec (O’Driscoll et al., 1998; Smyrnis et al., 2007; Van 

Kampen & Deijen, 2009). Similar to schizophrenia patients (O’Driscoll & Callahan, 2008), per-

formance deficits in schizotypy were found to be largely independent from frequency/velocity 

(Koychev et al., 2016; Smyrnis et al., 2007; Van Kampen & Deijen, 2009) occurring with differ-

ent target movement patterns (Koychev et al., 2016; Van Kampen & Deijen, 2009). Until now, 

there is only one study that has investigated predictive SPEM in schizotypy. Kattoulas and col-

leagues (2011) found disorganized schizotypy to be related to lower residual gain and, unex-

pectedly, high negative schizotypes had higher residual gain. These results remain inconclusive 

and need to be further investigated. Until now, there is no research on the open-loop response 

in high schizotypal subjects. 

A further major issue comprises the neural correlates of SPEM deficits in schizotypy. To date 

there is no study that has addressed the underlying neural mechanisms of reduced SPEM per-

formance found in high schizotypes. 

In summary, schizotypal traits are associated with lower maintenance SPEM, e.g., higher RMSE 

and lower velocity gain (Gooding et al., 2000; Koychev et al., 2016), compatible with findings 
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from schizophrenia patients (O’Driscoll & Callahan, 2008). However, the neural mechanisms of 

these behavioral performance deficits remain unclear. 

 

Prosaccades and antisaccades 

Previous research in high schizotypes have reported antisaccade deficits that are similar to 

those observed in patients with psychotic disorders. An overview of these studies is in Table 

IV—3. Most importantly, high schizotypes have been found to demonstrate higher rates of 

direction errors (Aichert, Williams, Möller, Kumari, & Ettinger, 2012; Ettinger et al., 2005; 

Gooding, Shea, & Matts, 2005; Holahan & O’Driscoll, 2005; Koychev et al., 2016; Schmechtig 

et al., 2013). Additionally, most studies have applied prosaccade tasks as a control condition. 

In accordance with psychotic patients (Broerse et al., 2001; Gooding & Basso, 2008), schizo-

types were reported to show intact prosaccade performance (Aichert et al., 2012; Gooding, 

1999; Gooding, Shea, et al., 2005; Larrison, Ferrante, Briand, & Sereno, 2000). Contrary to 

schizophrenia (Gooding & Basso, 2008), schizotypy is not associated to prolonged antisaccade 

latencies (Aichert et al., 2012; Ettinger et al., 2005; Gooding, Shea, et al., 2005; Holahan & 

O’Driscoll, 2005; Koychev et al., 2016). 

Increased antisaccade direction errors have been found to be associated with positive (Aichert 

et al., 2012; Ettinger et al., 2005, 2017; Gooding, Shea, et al., 2005; Larrison et al., 2000), neg-

ative (Gooding, 1999; Gooding, Shea, et al., 2005), as well as to overall high schizotypy 

(Koychev et al., 2016; Schmechtig et al., 2013). However, in studies that have compared posi-

tive and negative schizotypy, antisaccade deficits were found to arise more consistently in pos-

itive schizotypes (Ettinger et al., 2005, 2017; Holahan & O’Driscoll, 2005). 

Furthermore, schizotypy-related antisaccade deficits have been discovered with different 

methodological approaches. Most studies used extreme groups using mean deviation criteria 

with high schizotypes and average (Gooding et al., 2000; Gooding, Shea, et al., 2005; Koychev 

et al., 2016; Larrison et al., 2000; Schmechtig et al., 2013) and/or low (Koychev et al., 2016; 

Larrison et al., 2000) control subjects. Additionally, a study of Klein and colleagues (2000) ap-

plied a median split to discriminate high and low schizotypy groups. Furthermore, three studies 
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have investigated larger samples with correlative analyses (Aichert et al., 2012; Ettinger et al., 

2005; Smyrnis et al., 2003). 

However, there are also studies that revealed no differences in antisaccade performance for 

high and low schizotypes (Klein et al., 2000; Thaker et al., 2000, 1996). Reasons for the lack of 

differences may include methodological details. For example, the gap and overlap task varia-

tions were used in the study by Klein and colleagues (2000), but not the standard step task. 

Studies that discovered elevated antisaccade direction error rate in schizotypy have mostly 

applied a step task design (Aichert et al., 2012; Ettinger et al., 2005; Gooding, Shea, et al., 2005; 

Koychev et al., 2016; Schmechtig et al., 2013). Additionally, Holahan and O’Driscoll (2005) com-

pared step, gap, and overlap designs in one study and schizotypy-related group differences 

were only detected using the step design. However, a study by Larrison and colleagues (2000) 

also reported effects of schizotypy in a gap design antisaccade task. Further reasons for non-

significant results may be due to imprecise definitions of schizotypal traits. Despite considera-

ble overlap between schizophrenia spectrum personality symptoms and schizotypy measured 

with the Chapman Scales (Thaker, Moran, Adami, & Cassady, 1993), Thaker and colleagues 

(2000, 1996) did not detect any performance differences between healthy subjects with and 

without schizophrenia spectrum symptoms. 

Until today, there is only one study that has examined the neural mechanisms of antisaccade 

performance in schizotypy. Aichert and colleagues (2012) demonstrated that higher positive 

schizotypy was associated to less brain activity in putamen, cerebellum, thalamus, and visual 

cortex during antisaccades compared to fixation, a pattern that overlaps with dysfunctions 

previously reported in schizophrenia patients (Camchong et al., 2008; Fukumoto-Motoshita et 

al., 2009; Raemaekers et al., 2002).To summarize, high schizotypes have been found to display 

elevated antisaccade direction errors, similar to patients with psychotic disorders (Koychev et 

al., 2016; Reilly et al., 2014). In addition, the neural correlates of poor antisaccade performance 

were found to overlap between schizotypy (Aichert et al., 2012) and schizophrenia 

(Raemaekers et al., 2002) which underlines the meaningfulness and utility of schizotypy as a 

model system for schizophrenia. 
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Table IV—2. Summary of studies on schizotypy and SPEM. 

 
Authors 

Study Design 
[Sample Size] 

Schizotypy Measure 
[Dimension] 

Task Velocity/Frequency 
[Dependent Variables] 

 
Results 

Siever (1982) n=68 good eyetrackers, n=9 poor 
eyetrackers 

MMPI [total] 
 

sinusoidal, 0.4Hz Poor eyetrackers had higher social introversion. 

Simons & Katkin 
(1985) 

extreme groups [(a) n=17 PhysAn, 
n=16 low controls; (b) n=37 
PhysAn/PerAb, n=14 average con-
trols] 

Chapman Scales [positive, 
negative] 

sinusoidal, 0.33Hz/0.4Hz 
[pursuit quality, % poor eye-
trackers] 

There were no differences for pursuit quality. 
High schizotypes had higher % poor eyetrackers. 

Siever et al. (1989) n=31 good eyetrackers, n=13 poor 
eyetrackers 

Rating Scale for Borderline 
and Schizotypal Characteris-
tics [positive, negative] 

sinusoidal, 0.4Hz Poor eyetrackers scored higher on various schizo-
typy characteristics. Additionally, SPEM accuracy 
was negatively correlated to social isolation. 

Kendler et al. (1991) n=52 good eyetrackers, n=5 poor 
eyetrackers [twin study] 

Structured Interview for 
Schizotypy, SRQ [positive, 
negative] 

sinusoidal, 0.3Hz [RMSE] There were no differences in schizotypy traits 
and positive symptom schizotypy between the 
good and poor eyetrackers. Poor eyetrackers had 
higher negative symptom schizotypy. 

Blackwood et al. 
(1994) 

extreme groups [n=17 high, n=17 
controls] 

Baron Schedule for Schizoty-
pal Personality Disorder 

sinusoidal, 0.4Hz [ln (S/N)] There were no differences between high and low 
schizotypes. 

Thaker, Cassady, 
Adami, Moran, & Ross, 
(1996) 

n=46 without symptoms, n=22 with 
symptoms 

Schizophrenia spectrum 
symptoms [highly correlated 
to the Chapman Scales; 
Thaker et al., 1993] 

sinusoidal, 0.5Hz [pursuit 
quality] 

There were group differences on SPEM perfor-
mance. SPEM performance was not associated to 
spectrum symptoms. 

O’Driscoll, 
Lenzenweger, & 
Holzman (1998) 

extreme groups [n=31 PerAb, n=24 
average controls] 

Chapman Scales [positive] triangular, 8°/sec [pursuit 
quality] 

High schizotypes had lower quality of pursuit. 

Kelley & Bakan (1999) correlations [n=121] MMPI [total] sinusoidal, 0.4Hz/0.8Hz 
[RMSE] 

Higher schizotypy was associated to higher 
RMSE.  

Gooding et al. (2000) extreme groups [n=97 PerMag, 
n=54 SocAn, n=31 PhysAn, n=94 
controls] 

Chapman Scales [positive, 
negative] 

sinusoidal, 0.4Hz [RMSE, 
gain, total and anticipatory 
saccades] 

High schizotypy groups had higher RMSE and 
lower gain. No differences were found for total 
and anticipatory saccades. 
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Holahan & O’Driscoll 
(2005) 

extreme groups [n=21 PerAb, n=20 
PhysAn, n=29 controls] 

Chapman Scales [positive, 
negative] 

sinusoidal, 0.4Hz [% poor 
eyetrackers, gain] 

Both groups had higher % poor eyetrackers and 
PhysAnh but not PerAb showed lower gain than 
controls. 

Lenzenweger & 
O’Driscoll (2006) 

correlations [n=300] SPQ [total, positive, negative, 
disorganized] 

sinusoidal, 0.4Hz [gain, CUS] SPQ total score and all sub-scales were associ-
ated with lower gain and higher disorganization 
was correlated with higher CUS. 

Smyrnis et al. (2007) correlations [n=1087] and extreme 
groups [n=55 PerAb, n=26 SPQ to-
tal, n=34 cognitive-perceptual, n=41 
negative, n=23 disorganization, 
n=19 paranoia, n=1032-1068 con-
trols] 

Chapman Scales, SPQ [total, 
positive, negative, disor-
ganized] 

triangular, 10°,20°,30°/sec 
[RMSE, gain, total saccade 
frequency] 

Negative schizotypy was positively correlated to 
saccade frequency at 30°/sec. No other associa-
tions were found in the whole sample. Using sub-
groups with extreme scores, high PerAb had 
higher RMSE and high disorganized presented 
lower gain and higher saccade frequency. 

Van Kampen & Deijen 
(2009) 

extreme groups [n=19 high, n=19 
average controls] 

SSQ [total] triangular, 5°,10°,20°/sec 
[RMSE] 

High schizotypes showed higher RMSE than con-
trols. 

Kattoulas et al. (2011) correlations [n=762-763] and ex-
treme groups [n=46 PerAb, n=19 
SPQ total, n=34 cognitive-percep-
tual, n=32 negative, n=17 disorgani-
zation, n=15 paranoia, n=717-747 
controls] 

Chapman Scales, SPQ [total, 
positive, negative, disor-
ganized] 

triangular with blanking, 
10°/sec [gain, latency, decel-
eration time] 

Disorganized schizotypy was negatively related to 
residual gain. Using sub-groups with extreme 
scores, high negative schizotypes presented 
higher residual gain. No effects were found for 
latency and deceleration time. 

Schmechtig et al. 
(2013) 

extreme groups separated by three 
drugs and placebo 

SPQ [total] sinusoidal, 
0.25Hz/0.5Hz/0.75Hz [gain, 
total saccade frequency] 

No effects for schizotypy were found. 

Koychev et al. (2016) extreme groups [n=30 high, n=31 
average, n=22 low] 

SPQ [total] sinusoidal, 
0.25Hz/0.5Hz/0.75Hz [gain, 
total saccade frequency] 

Average schizotypes displayed lower gain com-
pared to low schizotypes. High schizotypes per-
formed intermediate and there were no differ-
ences to the low and average schizotypy groups. 
No differences were found for frequency of sac-
cades. 

Notes. Studies are presented in chronological order. Only studies using adult samples are included. SPEM=smooth pursuit eye movements. SRQ=self-report questionnaire for schizotypy. 
PhysAn=physical anhedonia scale. SocAn=social anhedonia scale. PerAb=perceptual aberration scale. PerMag=perceptual aberration/magical ideation scale. MMPI=Minnesota multiphasic 
personality inventory. SPQ=schizotypal personality questionnaire. SSQ=schizotypic syndrome questionnaire. RMSE=root mean square error. CUS=catch-up saccade.  
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Table IV—3. Summary of studies on schizotypy and saccades. 

 
Authors 

Study Design 
[Sample Size] 

Schizotypy Measure 
[Dimension] 

Task Design 
[Dependent Variables] 

 
Results 

Thaker et al. (1996) n=45 without symptoms, n=23 with 
symptoms 

Schizophrenia spectrum 
symptoms [highly correlated 
to the Chapman Scales; 
Thaker et al., 1993] 

PS, AS [step]  There were no group differences on PS and AS 
performance. Saccade performance was not as-
sociated to spectrum symptoms. 

O’Driscoll, 
Lenzenweger, & 
Holzman (1998) 

extreme groups [n=31 high, n=24 
average controls] 

Chapman Scales [positive] AS [step, 12°] [% correct, la-
tency, perseverative errors, 
non-perseverative errors] 

High schizotypes had lower % correct AS and a 
higher rate of perseverative errors. The groups 
did not differ in latencies to correct antisaccades 
or errors and non-perseverative errors. 

Gooding (1999) extreme groups [n=90 PerMag, 
n=39 SocAnh, n=89 controls] 

Chapman Scales [positive, 
negative] 

PS, AS [step, 4°, 8°, 12°] 
[direction errors, latency] 

Both high schizotypy groups had higher AS error 
rate than controls. No group differences were 
found for PS error rates and PS and AS latencies. 

Klein, Brügner, 
Foerster, Müller, & 
Schweickhardt (2000) 

extreme groups using median split 
[n=20 high, n=21 average controls] 

SPQ [total] PS, AS [gap, overlap, 4°] 
[direction errors, latency, % 
anticipatory saccades, % ex-
press saccades] 

There were no differences between the two 
groups. 

Larrison, Ferrante, 
Briand, & Sereno, 
(2000) 

extreme groups [n=16 high, n=7 av-
erage, n=13 low] 

RISC [positive] PS, AS [gap, non-gap, 7.2°] 
[direction errors, latency] 

High schizotypes had higher error rate in the AS 
gap condition compared to low schizotypes. No 
other effects were significant. 

Thaker et al. (2000) n=37 without symptoms, n=25 with 
symptoms 

Schizophrenia spectrum 
symptoms [highly correlated 
to the Chapman Scales; 
Thaker et al., 1993] 

PS, AS [step, 10°-150°] 
[direction errors, latency, 
gain, peak velocity] 

There were no group differences and associa-
tions between saccade measures and spectrum 
symptoms. 

Smyrnis et al. (2003) correlations [n=1273] and extreme 
groups [n=68 PerAb, n=39 SPQ, 
n=1205-1234 controls] 

Chapman Scales, SPQ [posi-
tive, total] 

AS [step, 2-10°] [direction er-
rors, mean and SDs of la-
tency] 

Schizotypy was only weakly associated to AS per-
formance. High PerAb group had higher direction 
error rate and SD of AS latency than controls. No 
significant differences were found for the SPQ 
group. 
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Ettinger et al. (2005) correlations [N=115] RISC, PSQ-80 [positive, nega-
tive, thought disorder] 

PS, AS [step, 6°, 12°] [direc-
tion errors, latency, spatial 
error] 

AS direction errors and PS spatial error were pos-
itively associated with positive schizotypy. Addi-
tionally, PS latency was negatively correlated to a 
measure of thought disorder. 

Gooding, Shea, & 
Matts (2005) 

extreme groups [n=50 PerMag, 
n=32 SocAnh, n=39 controls] 

Chapman Scales [positive, 
negative] 

PS, AS [step, 4°, 8°, 12°] [di-
rection errors, latency] 

Both high schizotypy groups had higher AS direc-
tion errors than controls and, additionally, at fol-
low-up, the SocAnh group produced more error 
than the PerMag group. No group differences 
were found for PS and AS latencies. 

Holahan & O’Driscoll 
(2005) 

extreme groups [n=21 PerAb, n=20 
PhysAn, n=29 controls] 

Chapman Scales [positive, 
negative] 

AS [step, gap, overlap, 10°] 
[direction errors, latency] 

The PerAb group showed higher AS direction er-
ror rates in the step task compared to controls 
and the PhysAnh group were found to score in-
termediate. No group differences were found for 
latencies and the gap and overlap tasks. 

Aichert, Williams, 
Möller, Kumari, & 
Ettinger (2012) 

correlations [N=54] RISC [positive] PS, AS [step, 8°] [direction er-
rors, latency] 

AS error rate was related to higher schizotypy. 
No associations were found for latencies. Fur-
thermore, higher schizotypy was associated to 
less activation in putamen, cerebellum, thala-
mus, and visual cortex during AS and less activity 
in posterior IPS, SEF, and visual cortex during PS. 

Schmechtig et al. 
(2013) 

extreme groups separated by three 
drugs and placebo 

SPQ [total] PS, AS [step, 7.25°, 14.5°] [di-
rection errors, latency, ampli-
tude gain, peak velocity] 

High schizotypes made more direction errors 
than medium schizotypes in the placebo condi-
tion. No effects for schizotypy were found for the 
other variables. 

Koychev et al. (2016) extreme groups [n=30 high, n=31 
average, n=22 low] 

SPQ [total] AS [step, 7.25°, 14.5°] [direc-
tion errors, latency, saccade 
amplitude, peak velocity] 

High schizotypes had higher direction error rates 
than low schizotypy controls. No effects were 
found for the other variables. 

Notes. Studies are presented in chronological order. Only studies using adult samples are included. PS=prosaccades. AS=antisaccades PhysAn=physical anhedonia scale. SocAn=social 
anhedonia scale. PerAb=perceptual aberration scale. PerMag=perceptual aberration/magical ideation scale. SPQ=schizotypal personality questionnaire. RISC=Rust inventory of schizotypal 
cognitions. PSQ-80=personality syndrome questionnaire. For further overviews, see also Myles, Rossell, Phillipou, Thomas, & Gurvich (2017) and Wan, Thomas, Pisipati, Jarvis, & Boutros 
(2017). 
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IV.III.II SPEM, saccades, and sleep deprivation 

SPEM 

Healthy subjects have been found to show sleep deprivation-related impairments on SPEM 

performance that are similar to those seen in patients with psychotic disorders. An overview 

of all studies can be found in Table IV—4 and an exemplary illustration of SPEM after sleep 

deprivation is in Figure IV—2d. The performance deficits mainly comprised reduced mainte-

nance gain (De Gennaro, Ferrara, Urbani, & Bertini, 2000; Fransson et al., 2008; Tong, Maruta, 

Heaton, Maule, & Ghajar, 2014). Additionally, there are findings of reduced accuracy (Fransson 

et al., 2008) and elevated anticipatory but not catch-up saccade rate (Tong et al., 2014). 

Durations of sleep deprivation ranged from 7 hours (Porcu, Ferrara, Urbani, Bellatreccia, & 

Casagrande, 1998) to 40 hours (De Gennaro et al., 2000). All studies examined closed-loop 

SPEM and most of them used sinusoidal tasks (De Gennaro et al., 2000; Tong et al., 2014) with 

frequencies between 0.2Hz-1.1Hz. Additionally, there is one study that has applied stimuli 

moving with different constant velocities (10°-40°/sec; Fransson et al., 2008). Until now, there 

is no study that has investigated the effects of sleep deprivation in open-loop and predictive 

SPEM tasks. 

Furthermore, there are also studies that did not find any sleep deprivation-related differences 

in the performance of SPEM (Quigley, Green, Morgan, Idzikowski, & King, 2000; Van Steveninck 

et al., 1999). Both studies compared the performance of subjects after a normal sleep night 

and a night of sleep deprivation, a design that has been successfully applied in other studies 

(Fransson et al., 2008; Tong et al., 2014). However, both studies failed to provide information 

on their measures and, additionally, Quigley and colleagues (2000) did not describe the param-

eters of the task. Therefore, it is difficult to guess any reasons for the non-significant results. 

In summary, there is evidence for sleep deprivation to deteriorate the maintenance of SPEM 

(Fransson et al., 2008; Tong et al., 2014) in a similar way to disturbances that are present in 

schizophrenia patients (O’Driscoll & Callahan, 2008). However, further studies are needed to 

characterize these deficits in more detail using additional measures and task variations. 
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Prosaccades and antisaccades 

Consistent with increased antisaccade error rates and latencies in psychosis, sleep deprivation 

was found to disrupt antisaccade performance in healthy subjects (see Table IV—5 for an over-

view). Total sleep deprivation was reported to increase antisaccade direction errors and laten-

cies (Bocca, Marie, & Chavoix, 2014). Additionally, a recent study displayed higher antisaccade 

error rates even after partial sleep deprivation (Lee, Manousakis, Fielding, & Anderson, 2015). 

However, other studies failed to find sleep deprivation-related increases in antisaccade impair-

ments (Crevits, Simons, & Wildenbeest, 2003; Gais et al., 2008; Zils, Sprenger, Heide, Born, & 

Gais, 2005). As time-of-day was found to impact on response control (Manly, Lewis, Robertson, 

Watson, & Datta, 2002; Wachowicz et al., 2015), reasons for the inconsistent findings may 

include confounding with circadian effects (Crevits et al., 2003; Fimm & Blankenheim, 2016). 

In contrast to largely intact prosaccade performance in schizophrenia (Gooding & Basso, 2008), 

sleep deprivation was additionally found to impair prosaccade performance, e.g., increase di-

rection errors (Porcu et al., 1998) and latencies (Bocca & Denise, 2006; De Gennaro et al., 2000; 

Van Steveninck et al., 1999) and reduce spatial accuracy (Bocca & Denise, 2006; Porcu et al., 

1998; Zils et al., 2005). 

Sleep deprivation in these experimental settings was carried out once, with durations varying 

between 7 hours (Porcu et al., 1998) and 72 hours (Thomas et al., 2003). Additionally there are 

studies that have examined the effects of chronic sleep deprivation and of wakefulness due to 

working conditions. Persistent partial sleep deprivation with seven days of only 3 to 5 hours 

sleep per night was shown to prolong saccadic peak velocities (Russo et al., 2003; however see: 

Wachowicz et al., 2015). Another study compared the saccade performance of physicians dur-

ing a 24 hours on-call shift to a routine working day (non on call). They found that the on-call 

shift yielded in increased time awake and longer latencies of saccades (lower rates of saccades 

with latencies below 150ms; Ernst et al., 2014). 

Overall, prolonged wakefulness adversely affects the performance of both antisaccades and 

prosaccades. The disturbances of antisaccade control (Bocca et al., 2014; Lee et al., 2015) cor-

respond to findings of patients with psychotic disorders (Radant et al., 2015). Until now, there 
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are only few studies that have explicitly compared antisaccades and prosaccades within one 

study (Crevits et al., 2003; Gais et al., 2008; Lee et al., 2015; Zils et al., 2005) and only one of 

these studies did not compare morning and evening data (Lee et al., 2015). Thus, further stud-

ies are needed to allow direct comparisons of sleep deprivation effects on these tasks. 

 

Figure IV—2. Illustration of sinusoidal SPEM at 0.4Hz (eye position plotted against time). 
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Table IV—4. Summary of studies on sleep deprivation and SPEM in healthy humans. 

 
Author 

 
Sample Size 

 
Task Design 

 
Measures 

 
Duration of SD 

 
Study Design 

 
Results 

Porcu et al. 
(1998) 

N=5 males sinusoidal move-
ment pattern with 6 
frequencies be-
tween 0.2-0.7Hz 

velocity gain, phase 
shift 

up to 7h Measurements were conducted at 
12pm, after NSC, and later at midnight, 
2am, 4am, and 6 am with intermediate 
day sleep [2:30pm-11:00pm]. 

For velocity gain the performance 
decreased at the end of the night. 
There were no effects of SD for 
phase shift.  

van 
Steveninck 
et al. (1999) 

N=9 
[n=5 females, 
n=4 males] 

sinusoidal move-
ment pattern with 9 
frequencies be-
tween 0.3-1.1Hz 

not specified 1 night Measurements were conducted after 
NSC, during SD, and after SD. Order of 
NSC and SD was randomized [within-
subjects] and nights were scheduled 1 
week apart. 

There were no significant effects of 
SD on SPEM variables. 

De Gennaro 
et al. (2000); 
Ferrara et al. 
(2000) 

N=9 males sinusoidal move-
ment pattern with 6 
frequencies be-
tween 0.2-0.7Hz 

velocity gain, phase 
shift 

up to 40h Measurements were taken every 2h 
from 10am in the pre-deprivation day to 
10pm of the day following SD. 

Velocity gain was reduced on meas-
urements after SD compared to 
NSC. There were no effects of SD 
for phase shift. 

Quigley et al. 
(2000) 

N=16 
[n=8 females, 
n=8 males] 

not specified not specified 1 night Measurements were taken before/after 
NSC/SD on two consecutive test days on 
the same time of day [between-sub-
jects]. 

There were no significant effects of 
SD. 

Fransson et 
al. (2008) 

N=18 
[n=8 females, 
n=10 males] 

constant velocity 
[10-40°/sec] 

velocity gain, accu-
racy 

24h, 36h Participants were measured after NSC 
and after 24h and 36h of SD. Order of 
NSC and SD was randomized [within-
subjects] and nights were scheduled 1 
week apart. 

Velocity gain was reduced after 36h 
of SD and accuracy was lower after 
24h SD but recovered at 36h of SD. 

Tong et al. 
(2014) 

N=87 
[n=19 females, 
n=68 males] 

sinusoidal clockwise 
movement pattern 
at 0.4Hz 

phase/radial/tan-
gential error, gain, 
average powers of 
radial and tangen-
tial velocities, sac-
cade rate 

up to 26h Measurements were taken at 6:30am 
after NSC and at 2:00am and 6:30am af-
ter SD.  

SD reduced velocity gain and aver-
age power of tangential velocity and 
increased standard deviations and 
anticipatory saccade rate. No ef-
fects were found for phase error, 
radial error, average power of radial 
velocity, and catch-up saccades. 

Notes: NSC=normal sleep control night. SD=sleep deprivation. Unless otherwise indicated, studies included healthy participants. Studies are presented in chronological order. Table is 
adapted from Meyhöfer and colleagues (2016).  
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Table IV—5. Summary of studies on sleep deprivation and saccades in healthy humans. 

 
Author 

 
Sample 

Task Design [Tar-
get Eccentricity] 

 
Measures 

 
Duration of SD 

 
Study Design 

 
Results 

Porcu et al. 
(1998) 

N=5 males PS [5-30°] latency, 
gain, error 
rate 

up to 7h Measurements were conducted at 12pm af-
ter NSC and later at midnight, 2am, 4am, 
and 6am with intermediate day sleep 
[2:30pm-11:00pm].  

For gain and error rate the per-
formance decreased at the end of 
the night. There were no SD ef-
fects for latency. 

van 
Steveninck et 
al. (1999) 

N=9, age [n=5 fe-
males, n=4 males] 

PS [15°, 20°] latency, 
peak veloc-
ity 

1 night Measurements were conducted after NCS, 
during SD, and after SD. Order of NSC and 
SD was randomized [within-subjects] and 
nights were scheduled 1 week apart. 

After SD there was a decrease in 
peak velocity and an increase in 
saccadic latency. 

De Gennaro 
et al. (2000); 
Ferrara et al. 
(2000) 

N=9 males PS [5-30°] latency, 
gain, peak 
velocity 

up to 40h Measurements were taken every 2h from 
10am in the pre-deprivation day to 10pm of 
the day following the SD. 

Performance for latency and peak 
velocity was worsened on meas-
urements after the day following 
SD. No SD effects for gain were 
found. 

Quigley et al. 
(2000) 

N=16 [n=8 females, 
n=8 males] 

not specified e.g. peak 
velocity, ac-
celeration 

1 night Measurements were taken before/after 
NSC/SD on two consecutive test days on the 
same time of day [between-subjects]. 

Peak velocity and acceleration 
were significantly decreased after 
SD. 

Crevits et al. 
(2003) 

N=21 [n=11 females, 
n=10 males] 

block design, fixed 
order: PS [14°], 
voluntary sac-
cades [14°], AS 
[14°] 

latency, er-
ror rate 

20h Measurements were conducted on the 
evening before SD [9:30pm] and on the 
morning after SD [6am]. 

There were no significant differ-
ences between the measure-
ments. 

Thomas et al. 
(2000;2003) 

N=17 males PS [20°] saccadic ve-
locity 

24h, 48h, 72h Measurements were conducted on baseline 
and after the next consecutive days of SD. 

There was a decrease in saccadic 
velocity with prolonged SD. 

Rowland et al. 
(2005) 

N=12 [n=6 females, 
n=6 males] 

PS [20°] peak veloc-
ity 

64h Measurements were conducted at baseline 
[every 3 h], after partial sleep deprivation 
[every 3h], and after total sleep deprivation 
[every 3h]. 

Saccadic peak velocity decreased 
with duration of total SD. 
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Zils et al. 
(2005) 

N=15 males block design: PS 
[gap, 10° and 20°], 
AS [gap, 10° and 
20°], MGS [10° 
and 20°] 

latency, 
peak veloc-
ity, gain, Er-
ror Rate 
[AS] 

24.5h Measurements were conducted in the even-
ing before the NSC/SD night [8pm], in the 
morning [7:30am] after NSC/SD, and in the 
morning after a recovery night [7:30am]. Or-
der of NSC and SD was randomized [within-
subjects] and nights were scheduled at least 
4 weeks apart. 

PS: Gain and peak velocity were 
reduced after SD. No SD effect for 
latency. AS: Peak velocity was re-
duced after SD. No SD effects for 
latency, gain, and error rate. 
MGS: There were longer latencies 
and reduced peak velocity after 
SD. No SD effects for gain were 
found. 

Bocca and 
Denise (2006) 

N=10 males block design: PS 
[gap, 15°], PS 
[overlap, 15°] 

latency, 
gain, peak 
velocity 

1 night Measurements were conducted in the 
morning [10:00am] after NSC and after a 
night of SD. Order of NSC and SD was ran-
domized [within-subjects] and nights were 
scheduled 2 weeks apart. 

Latency was increased after SD 
especially for the gap task and 
gain after SD was reduced for 
both tasks. There were no SD ef-
fects for peak velocity. 

Fransson et 
al. (2008) 

N=18 [n=8 females, 
n=10 males] 

PS [10°-30°] gain, peak 
velocity, ra-
tio velocity 
divided by 
amplitude 

24h, 36h Participants were measured after NSC and 
after 24h and 36h of SD. Order of NSC and 
SD was randomized [within-subjects] and 
nights were scheduled 1 weeks apart. 

Peak velocity decreased after SD 
[24h and 36h], gain was higher af-
ter 36h of SD, and the ratio be-
tween saccade velocity and am-
plitude was reduced after SD 
[24h and 36h]. 

Gais et al. 
(2008) 

N=20 [n=10 females, 
n=10 males] 

block design: PS 
[gap, 10°,20°], AS 
[gap, 10°,20°] 

latency, 
gain, peak 
velocity, er-
ror rate 
[AS] 

1 night Measurements were taken in the evening 
before the NSC/SD night [8pm], in the morn-
ing after NSC/SD [7:30am], and in the fol-
lowing morning after a night of recovery 
sleep [7:30am]. Subjects were randomly as-
signed to one of the groups [between-sub-
jects]. 

PS and AS latencies were reduced 
only after sleep [for the NSC 
group after the first sleep night, 
for the SD group after the recov-
ery night] and peak velocity was 
decreased after SD. There were 
no SD effects for gain and error 
rate. 

Goldich et al. 
(2010) 

N=13 [n=8 females, 
n=5 males] 

PS [26.8°] saccade ve-
locity 

up to 28h Measurements were taken every hour after 
two nights of sleep [8am-1pm], the day be-
fore SD [8am, 10am, 12am], and the night 
during SD [11pm, 1am, 3am, 5am, 8am, 
10am, 12am]. 

Saccade velocity was decreased 
during SD [for measurements at 
8am-12am]. 
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Grace et al. 
(2010) 

N=10 healthy partic-
ipants [n=2 females, 
n=8 males] 

PS [35°] peak veloc-
ity 

1 night Healthy participants either received intrave-
nous morphine or saline placebo infusion, 
both before and after SD. Measurements 
were taken pre- and post-dose [two-way 
crossover, randomized, double-blind, pla-
cebo-controlled]. 

Peak velocity was decreased both 
after SD and morphine infusion 
and there was an additive effect 
of SD and morphine infusion. 

Hirvonen et 
al. (2010) 

N =11 males block design: PS 
[gap and overlap, 
10°] 

peak veloc-
ity 

up to 60h Measurements were taken every six hours 
during SD. 

Peak velocity decreased during 
SD. 

McClelland et 
al. (2010) 

N=23 non-sleep de-
prived [n=15 fe-
males, n=8 males]; 
N=26 sleep- de-
prived [n=12 fe-
males, n=14 males] 

PS saccadic ve-
locity 

up to 26h Non sleep-deprived subjects had two meas-
urements before and three measurements 
after NSC [between 8am-8pm]. Participants 
in the SD condition completed five testing 
sessions between 8pm and 10am during the 
SD. 

Peak velocity remained stable in 
the NSC but decreased in the SD 
condition. 

Bocca et al. 
(2014) 

N=12 [n=4 females, 
n=8 males] 

AS [gap, 15°] latency, ICV 
latency, er-
ror rate 

30h Participants were measured after NSC [2pm] 
and after 30h of SD [2pm]. Order of NSC and 
SD was randomized [within-subjects] and 
nights were scheduled 2 weeks apart. 

SD increased AS mean latency, 
ICV of latency, and error rate.  

Lee et al. 
(2015) 

N=16 males block design, or-
der was counter-
balanced: PS 
[step, 5°, 10°], AS 
[step, 5°, 10°] 

latency, er-
ror rate 

Participants’ 
sleep was re-
stricted to 5h 
[2am-7am]. 

Participants either received a drink with or 
without alcohol. Measurements were taken 
after NSC and sleep restriction [1pm] [4 con-
ditions, within-subjects]. Conditions took 
place at least 5 days apart. 

PS: After sleep restriction alone, 
there was a reduction of saccadic 
latency. AS: There was an in-
crease in saccadic latency for the 
combined alcohol and sleep re-
striction condition. Error rate was 
increased after sleep restriction 
alone. 

Fimm & 
Blankenheim, 
2016s 

N=13 males block design, fixed 
order: PS [gap, 6°, 
12°; gap/overlap, 
10°], AS [gap, 6°, 
12°] 

latency, 
peak veloc-
ity 

up to 24h Measurements were taken every four hours 
during the SD. 

There were no significant effects 
of SD. 

Notes: NSC=normal sleep control night. SD=sleep deprivation. PS=prosaccades. AS=antisaccades. MGS=memory-guided saccades. ICV= intra-individual coefficient of variation. Unless 
otherwise indicated, studies included healthy participants. Studies are presented in chronological order. Table is adapted from Meyhöfer and colleagues (2016). 
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IV.IV Open questions and goals of the current thesis 

Current antipsychotic drugs have little beneficial effects on cognitive disturbances in patients 

with psychotic disorders (Nielsen et al., 2015). However, as cognitive impairments have widely 

been emphasized as a core feature of schizophrenia (Green, Nuechterlein, et al., 2004), new 

treatments are urgently needed (Reilly & Sweeney, 2014). 

Model systems of psychosis are one approach in further investigating the pathophysiology of 

psychosis and aiding the development of new treatments (Carpenter & Koenig, 2008), espe-

cially when combined with well-studied and symptom-related biomarkers. Due to short and 

specific tasks, oculomotor biomarkers are particularly suitable to aid further investigation on 

model systems and drug development (Klein & Ettinger, 2008). 

Antisaccades have been found to represent well-validated trait biomarkers of psychosis (Reilly 

et al., 2014). Due to repeated measurements, high time stability is required to apply antisac-

cades as biomarkers in clinical trials (Nuechterlein et al., 2008). However, a detailed description 

of situational (state) and time-stable (trait) aspects in the antisaccade tasks in standard labor-

atory settings is missing (study 1). 

Based on previous research, schizotypy constitutes a useful model systems of psychotic disor-

ders (Barrantes-Vidal et al., 2015; Kwapil & Barrantes-Vidal, 2015), especially when combined 

with oculomotor biomarkers. However, until now, there is no research on the underlying neu-

ral mechanisms of SPEM in schizotypy (study 2). 

Furthermore, sleep deprivation has been proposed as a model system of psychosis in rats (Frau 

et al., 2008). Further research to validate the model system in humans is needed (study 3). 

Additionally, the combination of a trait (schizotypy) and a state (sleep deprivation) model might 

be especially valuable in modelling psychotic symptoms (study 4). 

To investigate the outlined goals, the work reported in this dissertation combined recording of 

eye movement data, latent-state-trait (LST) modeling, and functional magnetic resonance im-

aging (fMRI).  
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V METHODS 

The following chapter includes a brief description of the methods applied in the current dis-

sertation. The first part introduces the recording and analysis of oculomotor data. In the sec-

ond part is a short outline of LST theory and the models that can be used to compute the 

amount of trait and state variation in a given measure. The third part deals with the basic as-

sumptions of fMRI as a powerful tool to study the neural mechanisms of cognitive processes. 

V.I Recording and analysis of eye movements 

“The eyes have it!” 

[Gegenfurtner, 1999] 

 

A number of methods are available to record changes in eye and/or gaze position. Commonly 

used eye movement measurement methodologies comprise the electro-oculography, scleral 

contact lens/search coil, video-oculography, and video-based combined pupil and corneal re-

flection (VCPCR) techniques (for extensive overviews refer to Duchowski, 2007; Young & 

Sheena, 1975). The VCPCR method is the most frequently applied approach and provides an 

opportunity to measure the point of regard (eye position with relation to its orientation in the 

space). To be able to separate eye movements from head rotation, two reference points on 

the eye, namely pupil center and corneal reflection from an infra-red light source, are recorded 

and brought into relation. Thus, the method is based on the observation that eye movements 

lead to rotation of the pupil whereas the corneal reflection (typically the first Purkinje image) 

remains relatively stable (Duchowski, 2007). 

The calculation of the gaze position can be divided into subsequent steps of image acquisition, 

image analysis, and gaze estimation (Holmqvist et al., 2011). First, images of the eye are rec-

orded by the camera, with the number of images depending on the sampling frequency (spec-

ified in Hz; corresponds to number of images taken per second). Then, pupil and corneal re-

flection are segmented mostly by applying either feature-based or model-based algorithms. 
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Finally, geometric computations together with the calibration procedure are used to map the 

position of the eye to the stimulus. Therefore, the distance between the centers of pupil and 

corneal reflection is calculated, and, together with the exemplary position data gained through 

calibration, the gaze position can be estimated. 

The raw recording of eye movements typically results in eye position coordinates (x, y; ex-

pressed in pixels) with associated time stamps and is commonly transferred to degrees of visual 

angle. Thus, events (fixations, saccades, blinks) have to be detected in the raw data samples 

applying appropriate position (°), velocity (°/sec), and acceleration (°/sec²) criteria (Holmqvist 

et al., 2011). Finally, dependent variables are computed from the stream of data samples based 

on the classification of the oculomotor events and details of the task that was accomplished. 

As there are hardly any freely available computer programs to analyze SPEM data, a major part 

within the framework of the current thesis was to develop analytic routines to compute SPEM 

measures in a fast and efficient way. 

Widely used algorithms for dependent measures of SPEM, prosaccade, and antisaccade tasks 

are summarized in Table V—1 and Table V—2. 
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Table V—1. Overview of SPEM and saccade variables 

Variable Definition Computation Details 

SPEM 

Root mean square error [RMSE] 
[°] 

Deviation between eye and target position including segments of pursuit and sac-
cades 

RMSE scores are computed using the sum of the squared 
differences between eye and target position for each point 
in the SPEM segment. Finally, the square root of this sum 
divided by the number measurement points is the RMSE. 

Velocity gain [%] Ratio between eye and target velocity including only segments of pursuit (mostly 
time-weighted)  

[eye velocity / target velocity] × 100 

Saccade frequency [N/sec] Number of saccadic intrusions interrupting pursuit (there are different types of 
saccades that can either be combined or calculated separately) 

For further details see Table V—2. 

 

Pursuit latency [sec] Time that elapses between onset of stimulus movement and onset of eye acceler-
ation (used to examine the initiation of SPEM) 

The beginning of eye acceleration is specified when eye ve-
locity exceeds baseline velocity by a certain factor. Then 
eye velocity is modelled by linear regression whereas the 
slop represents the initial eye acceleration and the inter-
cept with the abscissa (time) is the latency. 

Initial eye acceleration [°/sec²] Degree of eye acceleration in response to the start of the stimulus movement 
(used to examine the initiation of SPEM) 

See above 

Prosaccades and Antisaccades 

Direction errors [%] Initial saccade after peripheral stimulus onset is executed away from (prosaccade 
error)/towards (antisaccade error) the stimulus 

% errors = number of errors / [number of correct responses 
+ number of errors] × 100 

Latency [ms] Time that elapses between onset of the peripheral stimulus and start of the sac-
cade in correct trials 

 

Amplitude gain [%] Accuracy of the initial saccade compared to the target amplitude in correct trials 
(note that given two saccades that show inaccurate gain values, these inaccuracies 
can average out resulting in a mean of 100% (e.g., (80%+120%)/2=100%)) 

% gain = amplitudesaccade / amplitudetarget × 100 

Spatial error [%] Inaccuracy of the initial saccade compared to the target amplitude in correct trials |[amplitudesaccade - amplitudetarget] / amplitudetarget × 100| 

Peak velocity [°/sec] Peak eye velocity during a saccade in correct trials  

Notes. For further information on computation algorithms refer to Ettinger et al., 2003; Lencer & Trillenberg, 2008; Smyrnis, 2008.  
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Table V—2. Overview of definitions used to characterize saccades during SPEM. 

 

Name 

 

Function 

 

Direction 

 

Description 

 

Amplitude 

Pursuit after 

Saccade 

 

Relevant Studies 

CUS compensatory in target di-

rection 

reduces eye position error; starts and ends 
behind target; if starts behind and ends 
ahead of the target, post-saccadic position 
error must be ≤50% of pre-saccadic posi-
tion error 

  Ettinger et al., 2003; Ross et al., 1998, 

2002, 2000; Ross, Olincy, Harris, et al., 

1999 

BUS compensatory opposite of 

target direc-

tion 

reduces eye position error; starts and ends 

ahead of the target; if starts ahead and 

ends behind the target, post-saccadic posi-

tion error must be ≤50% of pre-saccadic 

position error 

  Lencer et al., 1999; Levy et al., 2000; 

Radant & Hommer, 1992 

Anticipatory 

Saccade 

intrusive in target di-

rection, takes 

the eye ahead 

of the target 

starts and ends ahead of target location; if 

starts behind and ends ahead of the tar-

get, the distance ahead of the target must 

be at least twice the distance the eye 

started behind the target 

>4° followed by 

50ms of eye ve-

locity ≤50% of 

target velocity 

Ettinger et al., 2003; Olincy, Johnson, & 

Ross, 2003; Ross et al., 1998, 2002; 

Ross, Olincy, Zerbe, & Radant, 2001; 

Ross, Olincy, & Radant, 1999 

Leading Sac-

cade 

intrusive see anticipa-

tory saccades 

see anticipatory saccades 1°-4° see anticipatory 

saccades 

Olincy et al., 2003; Ross et al., 2002, 

2001 

SWJ intrusive  two saccades in opposite directions, the 

first saccade increases and the second sac-

cade reduces eye position error; duration 

between the two saccades can range from 

50 to 500ms 

1°-5° eye velocity be-

tween saccades 

must be >65% 

of target veloc-

ity 

Abel & Ziegler, 1988; Clementz et al., 

1990; Friedman, Jesberger, Abel, & 

Meltzer, 1992; Lencer et al., 1999; Levy 

et al., 2000; Radant & Hommer, 1992; 

Shallo-Hoffmann, Perersen, & 

Muhlendyck, 1989 

Notes. SPEM=smooth pursuit eye movements. CUS=catch-up saccade. BUS=back-up saccade. SWJ=square wave jerks. See Smyrnis (2008) for an overview.
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V.II Latent-state-trait modeling  

LST theory is based on an extension of classical test theory and was proposed by Steyer and 

colleagues (Steyer, Ferring, & Schmitt, 1992; Steyer, Mayer, Geiser, & Cole, 2015; Steyer, 

Schmitt, & Eid, 1999; Steyer & Schmitt, 1990). Compared to classical test theory, which does 

not take into account any influences of situational aspects, LST theory assumes that not only 

the person itself but also the situation and the interaction between the person and the situa-

tion are valuable sources of variance during a measurement. Thus, “measurement does not 

take place in a situational vacuum” (Steyer et al., 1999; page 392) and variations between 

measurements are presumed to represent state differences that include person, situation, and 

person-situation interactions. LST assumes that a cross-sectional measure assesses a “person-

in-the-situation” score (Steyer et al., 2015). Furthermore, tools are provided that allow to dis-

entangle the different sources of variance (person/trait; situation, interaction between person 

and situation/state) using longitudinal study designs. 

There are several different classes of models that can be applied (e.g., multistate models, mul-

tistate-singletrait models, multistate-multitrait models) depending on the particular research 

question (Steyer et al., 2015). In order to estimate the proportion of state and trait variance in 

a multistate-singletrait model (several measurement occasions assuming a single underlying 

trait) a two-step decomposition is used: In the first step, the observed variables at each meas-

urement occasion (k) are subdivided in two test sets (i) and dismantled into latent states (Sk) 

and measurement errors (εk,i). In the second step, the latent states are decomposed into a 

latent trait variable (T) and occasion-specific state residuals (SRk) (Steyer et al., 1999). An ex-

ample is depicted in Figure VI—1a (for further fundamental assumptions that pertain to the 

methodological framework of LST refer to Steyer et al., 2015, 1999). States and traits are spec-

ified in terms of probability theory as latent random variables that can be estimated but not 

directly measured from the observed variables (Steyer et al., 2015). Structural equation mod-

eling (SEM) can be used to test the model and compute the relevant parameters. 

The components of an LST model can be conceptually identified as follows (Schermelleh-Engel, 

Keith, Moosbrugger, & Hodapp, 2004; Steyer et al., 1999): Latent state variables estimate the 
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attributes of the person and the situation during a single measurement occasion. The latent 

trait variable includes the amount of variation that is common across all measurement occa-

sions and therefore is supposed to constitute an attribute of the person itself. Finally, the oc-

casion-specific state residuals characterize the situational effects and the interactions between 

the person and the situation during a single measurement. 

After testing the model with SEM and evaluating the model fit (recommended indices: chi-

square statistic, comparative-fit index, root mean square error of approximation, and stand-

ardized root mean residual; Beauducel & Wittmann, 2005; Bentler, 2007; Hu & Bentler, 1999), 

parameters of the accepted models can be used to calculate the proportions of variances that 

quantify the situation specific and the stable trait influences of the examined measure (Steyer 

et al., 1992, 2015, 1999; Steyer & Schmitt, 1990). Common consistency 

[Con(Xk,i)=Var(T)/Var(Xk,i)] displays how well the observed variable (Xk,i) estimates the trait var-

iable (T). Occasion specificity [Spe(Xk,i)=Var(SRk)/ Var(Xk,i)] indicates how much variance of the 

observed variable (Xk,i) can be explained by the state residuals (SRk). Both common consistency 

and occasion specificity can be summed up to the coefficient of reliability 

[Rel(Xk,i)=Con(Xk,i)+Spe(Xk,i)]. Therefore, reliability [Rel(Xk,i)=Var(Sk)/Var(Xk,i)] represents the 

amount of variance of the observed variable (Xk,i) due to the latent state (Sk). 

V.III Functional magnetic resonance imaging 

fMRI allows to measure brain activation non-invasively and with relatively high spatial resolu-

tion (Logothetis, 2008). Therefore, this method has widely been used to study neural mecha-

nisms of cognitive processes (Niendam et al., 2012) and can additionally be combined with 

recording of eye movements to investigate the neural underpinnings of the oculomotor system 

(Jamadar et al., 2013). 

The fMRI method was introduced in the early 1990s (Bandettini, 2012) and is based on mag-

netization differences in different types of tissue (Huettel, Song, & McCarthy, 2008; Logothetis, 

2002). Whenever a strong magnetic field is applied to the protons of hydrogen atoms, they 

either align parallel (low-energy level) or antiparallel (high-energy level) to the field. The net 
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magnetization (difference between number of atoms in the parallel and the antiparallel state) 

provides the basis for the signal generation. Pulses of radiofrequency energy lead some nuclei 

to change from low- to high-energy states (excitation). Once these pulses are turned off, the 

equilibrium between nuclei in low- and high-energy levels is restored. The subsequent energy 

is measured (reception) and constitutes the MR signal. The MR signal changes over time (re-

laxation), resulting in the recovery of the longitudinal (T1) and the decay of the transverse (T2, 

T2*) components of net magnetization. Importantly, different types of tissues can be distin-

guished by their properties regarding the relaxation process. In order to create an image, su-

perimposed gradient magnetic fields that code spatial information are needed and Fourier 

transform is used to decode the signal. 

The most frequently used form is blood-oxygenation-level dependent (BOLD) fMRI. BOLD fMRI 

estimates brain activation indirectly from changes in blood oxygenation using T2* weighted 

scans (Ogawa, 2012; Ogawa, Lee, Kay, & Tank, 1990). The underlying assumption is that neural 

activity produces regional metabolic consequences that are linked to increases in blood flow 

in the same region, probably due to the demand for oxygen and glucose (Huettel et al., 2008; 

Logothetis & Wandell, 2004). Oxygen is delivered through hemoglobin and, importantly, deox-

ygenated hemoglobin was found to exhibit greater magnetic properties than oxygenated he-

moglobin (Pauling & Coryell, 1936). Thus, whenever the brain becomes active, more oxygen-

ated blood than needed is provided and the following decrease in the proportion of deoxygen-

ated hemoglobin results in a higher MR signal (hemodynamic response). Brain activation can 

therefore not be measured directly (Heeger & Ress, 2002). However, previous findings docu-

ment a close relationship between the BOLD signal and intra-cortical recordings of neural ac-

tivity (Goense & Logothetis, 2008; Logothetis, 2007; Logothetis, Pauls, Augath, Trinath, & 

Oeltermann, 2001) emphasizing that fMRI is a powerful tool to investigate neural processes 

spatially accurately and non-invasively. 
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VI STUDIES 

Table VI—1. Overview of studies included in the current thesis. 

 

Relevant publications for the present thesis 

1 Meyhöfer, I., Bertsch, K., Esser, M., & Ettinger, U. (2015). Variance in saccadic eye move-

ments reflects stable traits. Psychophysiology, 53, 566–578. 

http://doi.org/10.1111/psyp.12592 

2 Meyhöfer, I., Steffens, M., Kasparbauer, A., Grant, P., Weber, B., & Ettinger, U. (2015). 

Neural mechanisms of smooth pursuit eye movements in schizotypy. Human Brain Map-

ping, 36, 340–353. http://doi.org/10.1002/hbm.22632 

3 Meyhöfer, I., Kumari, V., Hill, A., Petrovsky, N., & Ettinger, U. (2016). Sleep deprivation as 

an experimental model system for psychosis: Effects on smooth pursuit, prosaccades, 

and antisaccades. Journal of Psychopharmacology, 31(4), 418-433. 

http://doi.org/10.1177/0269881116675511 

4 Meyhöfer, I., Steffens, M., Faiola, E., Kasparbauer, A.-M., Kumari, V., & Ettinger, U. (2017). 

Combining two model systems of psychosis: The effects of schizotypy and sleep depriva-

tion on oculomotor control and psychotomimetic states. Psychophysiology, 1-15. 

http://doi.org/10.1111/psyp.12917 

 

Further relevant publications 

 Ettinger, U., Meyhöfer, I., Steffens, M., Wagner, M., & Koutsouleris, N. (2014). Genetics, 

cognition and neurobiology of schizotypal personality: A review of the overlap with schiz-

ophrenia. Frontiers in Psychiatry, 5(18), 1–16. http://doi.org/10.3389/fpsyt.2014.00018 

 Steffens, M., Becker, B., Neumann, C., Kasparbauer, A. M., Meyhöfer, I., Weber, B., 

Mehta, M.A., Hurlemann, R, & Ettinger, U. (2016). Effects of ketamine on brain function 

during smooth pursuit eye movements. Human Brain Mapping, 37(11), 4047–4060. 

http://doi.org/10.1002/hbm.23294 

 Petrovsky, N., Ettinger, U., Hill, A., Frenzel, L., Meyhöfer, I., Wagner, M., Backhaus, J., & 
Kumari, V. (2014). Sleep deprivation disrupts prepulse inhibition and induces psychosis-
like symptoms in healthy humans. The Journal of Neuroscience, 34(27), 9134–9140. 
http://doi.org/10.1523/JNEUROSCI.0904-14.2014 

 Meyhöfer, I., Ettinger, U., Faiola, E., Petrovsky, N., & Kumari, V. (to be submitted). The ef-
fects of schizotypy and sleep deprivation on prepulse inhibition. 

Notes. The studies are sorted according to their relevance in the main text.  
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VI.I Study 1. Reliability of oculomotor tasks 

Meyhöfer, I., Bertsch, K., Esser, M., & Ettinger, U. (2015). Variance in saccadic eye movements 

reflects stable traits. Psychophysiology, 53, 566–578. http://doi.org/10.1111/psyp.12592 

 

Saccadic tasks have widely been studies in psychiatric disorders and are particularly useful as 

biomarkers of psychosis (Gooding & Basso, 2008). Furthermore, saccades have been studied 

in genetic research (Calkins, Iacono, & Ones, 2008; Mazhari et al., 2011), suggesting antisac-

cades to demonstrate a valuable endophenotype of psychotic disorders (Reilly et al., 2014). A 

requirement of endophenotypes is temporal stability (Glahn et al., 2014). However, there are 

only few studies that have examined the trait-like nature, i.e., the temporal stability, of sac-

cadic measures (Ettinger et al., 2003). 

The aim of the current study was to provide a detailed examination of the reliability of the 

most widely applied saccadic tasks in psychosis research. A special aim was to separate the 

amount of variance that is trans-situationally stable (trait) from variance that is situations-spe-

cific (state). As most oculomotor measures have previously been found to display moderate to 

high test-retest reliability (Ettinger et al., 2003), we hypothesized that high proportions of var-

iance can be explained by a stable trait component. 

A sample of N=68 healthy participants performed prosaccades, antisaccades, and memory-

guided saccades on three measurement occasions with an interval of one week between the 

sessions and each testing session was conducted at the same time of day. In order to investi-

gate the influences of state and trait in the saccade measures, formulas based on LST theory 

(Steyer et al., 2015, 1999) were applied. In addition to multistate-singletrait (LST) models, we 

also performed models that only assume a single underlying trait with no situations-specific 

contributions at all (singletrait models; LT models). An illustration of the models can be found 

in Figure VI—1. 

All saccadic variables could be modelled by assuming that each measurement occasion in-

cludes situations-specific variance and additionally the three occasions can be characterized 
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by a single underlying trait (LST models that include parallel or at least τ-equivalent measure-

ments for each of the three measurement occasions; Figure VI—1a). Furthermore, for some 

of the measures simpler LT models (Figure VI—1b) could be accepted. Mean saccadic variables 

of all tasks were found to represent high to excellent reliabilities. Intraindividual standard de-

viations were slightly less reliable. Most importantly, the largest part of the variance of the 

measure could be explained by the trans-situationally stable trait component and the role of 

situational aspects and person × situation interactions were rather negligible. 

In summary, prosaccade, antisaccade, and memory-guided saccade variables can be measured 

with high reliability. Additionally, the data collected in a single measurement occasion strongly 

reflect an underlying trait emphasizing its value in genetic research. Furthermore, oculomotor 

performance is stable (i.e. trait-like) in standard laboratory settings under constant conditions. 

This finding provides convincing evidence for the usefulness of antisaccades as a biomarker in 

repeated measurements, e.g., clinical trials to evaluate pharmacological treatments for cogni-

tive impairments in psychotic disorders. 

 

Figure VI—1. Schematic diagram of latent state-trait [a] and latent trait [b] models. 
Xk,i depict the observed [dependent] variables for each of the tasks [prosaccades, antisaccades, memory-guided saccades]. 

k=measurement occasion. i=test set. εk,i=measurement errors. Sk=latent states. SRk=latent state residuals. T=latent trait.  
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VI.II Study 2. Schizotypy and the neural mechanisms of SPEM 

Meyhöfer, I., Steffens, M., Kasparbauer, A., Grant, P., Weber, B., & Ettinger, U. (2015). Neural 

mechanisms of smooth pursuit eye movements in schizotypy. Human Brain Mapping, 36, 

340–353. http://doi.org/10.1002/hbm.22632 

 

Due to considerable overlap on different levels of measurement (Ettinger, Meyhöfer, Steffens, 

Wagner, & Koutsouleris, 2014), schizotypy is reported to represent a valuable model system 

of psychosis (Barrantes-Vidal et al., 2015). SPEM have intensively been investigated as a bi-

omarker of psychosis and performance deficits are widely replicated (Lencer et al., 2015; 

O’Driscoll & Callahan, 2008). Furthermore, studies on the neural correlates of SPEM impair-

ments in patients report abnormal brain activation in frontal and motion-sensitive posterior 

areas (Hong et al., 2005; Lencer et al., 2011; Nagel et al., 2012). Similarly, high schizotypes 

were found to demonstrate SPEM abnormalities (Table IV—2). However, no study has investi-

gated the neural mechanisms underlying the SPEM deficits in schizotypy. 

Therefore, the aim of the current study was to bridge the gap on the neural correlates of SPEM 

in schizotypy. We hypothesized that high schizotypes display lower SPEM performance than 

controls and, additionally, that the differences between schizotypes and controls will overlap 

with abnormalities seen in patients with psychotic disorders. 

To do so, n=12 schizotypes and n=19 controls underwent fMRI at 3T with concurrent oculo-

graphic recording while performing SPEM. An online version of the O-LIFE was applied to es-

tablish extreme groups of high and low schizotypes based on their overall schizotypy score. 

The key results of the study are shown in Figure VI—2. Behaviorally, high schizotypes demon-

strated higher frequency of saccadic intrusions in the slow (0.2Hz) but not the fast (0.4Hz) 

SPEM condition. At the same time, the high schizotypy group was found to display lower brain 

activation in different regions of the occipital lobe that was independent of target frequency. 

These regions (V3A, middle occipital gyrus, and fusiform gyrus) are associated with early sen-

sory/attentional processing and motion perception (Culham, He, Dukelow, & Verstraten, 
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2001). However, unlike previous studies of psychotic patients, no abnormal brain activation 

was found in frontal oculomotor areas. 

Together, these results replicate, as expected, altered SPEM performance in schizotypy (Table 

IV—2) that overlaps with impairments seen in psychotic patients (O’Driscoll & Callahan, 2008). 

Additionally, the posterior brain activation differences during SPEM are broadly in line with 

evidence of motion processing deficits from schizophrenia patients (Lencer et al., 2011; Nagel 

et al., 2012). However, in contrast to schizophrenia patients (Hong et al., 2005; Keedy et al., 

2006), we did not find any abnormalities in frontal motor areas, possibly indicating the opera-

tion of further genetic and/or illness-related influences in clinical patients. 

Figure VI—2. Illustration of the key findings of study 2. 
[a] Brain activation pattern during SPEM>baseline across all subjects (blue) and differences between groups (controls>schizotypes, 

red). Whole brain FWE corrected for SPEM>baseline across all subjects, FWEc corrected with cluster threshold k=306 for group 

differences (peak voxel threshold<.001, uncorrected). n=19 controls, n=12 schizotypes. [b] Interaction group × target frequency 

for frequency of saccadic intrusions during SPEM. n=14 controls; n=10 schizotypes.  
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VI.III Study 3. Sleep deprivation and oculomotor control 

Meyhöfer, I., Kumari, V., Hill, A., Petrovsky, N., & Ettinger, U. (2016). Sleep deprivation as an 

experimental model system for psychosis: Effects on smooth pursuit, prosaccades, and anti-

saccades. Journal of Psychopharmacology, 31(4), 418-433. http://doi.org/10.1177/026988 

1116675511 

 

Sleep deprivation has been found to cause deficits in cognitive functions (Lim & Dinges, 2010), 

e.g., oculomotor control (Table IV—4 and Table IV—5). Furthermore, sleep deprivation has 

been reported to induce psychotomimetic states (Kahn-Greene et al., 2007; Killgore et al., 

2008). Together, these discoveries suggest that studying sleep deprivation may be an experi-

mental model systems for psychosis (Ettinger & Kumari, 2015). 

Therefore, in the current study, we aimed investigate the effects of short-term sleep depriva-

tion on psychosis-like experiences and performance in the most widely used oculomotor bi-

omarkers of psychosis, i.e. SPEM and antisaccades. We expected that 24h of sleep deprivation 

would deteriorate SPEM and antisaccade measures and concurrently increase psychosis-like 

experiences. 

To do so, N=32 participants (n=16 males, n=16 females) were examined after both a normal 

sleep night and a night of total sleep deprivation. The order of the sessions (normal sleep first, 

sleep deprivation first) was counterbalanced and participants were randomly assigned to one 

of the orders. The testing sessions were conducted with one week in between. Oculomotor 

control and other tasks (e.g., PPI; Petrovsky et al., 2014) were measured in the mornings after 

normal sleep and sleep deprivation (08:00 am-09:30am). Psychotomimetic states were quan-

tified with the Psychotomimetic States Inventory (PSI; Mason, Morgan, Stefanovic, & Curran, 

2008) in the evenings before and the mornings after normal sleep and sleep deprivation. 

The main results can be found in Figure VI—3. As expected, sleep deprivation adversely af-

fected numerous SPEM (e.g., velocity gain) and antisaccade (e.g., % direction errors) variables. 

Furthermore, sleep deprivation also impacted on prosaccade measures. However, some of the 
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variables were found to show influences of the order of testing, broadly suggesting stronger 

effects of sleep deprivation when this was the first night. Additionally, sleep deprivation in-

duced psychosis-like states covering the key symptom domains of psychosis. Specifically, 

scores on perceptual distortion, cognitive disorganization, and anhedonia were higher in the 

morning after sleep deprivation compared to the evening before and the morning after the 

normal sleep night. There were no significant associations between oculomotor measures and 

psychotomimetic states. 

Figure VI—3. Illustration of the key findings of study 3. 
 

In summary, as hypothesized, sleep deprivation resulted in impairments of oculomotor control 

and increases of psychosis like states. The findings of impaired SPEM and antisaccade measures 

are in line with findings from psychosis patients with psychotic disorders (Lencer et al., 2015; 

Reilly et al., 2014). 
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VI.IV Study 4. Schizotypy, sleep deprivation, and oculomotor control 

Meyhöfer, I., Steffens, M., Faiola, E., Kasparbauer, A.-M., Kumari, V., & Ettinger, U. (2017). 

Combining two model systems of psychosis: The effects of schizotypy and sleep deprivation 

on oculomotor control and psychotomimetic states. Psychophysiology, 1-15. http://doi. 

org/10.1111/psyp.12917 

 

Schizotypy has been found to constitute a valuable approach in gaining further understanding 

of the underlying mechanism of psychosis and has commonly been investigated as a trait 

model system of psychotic disorders (Barrantes-Vidal et al., 2015). Overlaps between schizo-

typy and psychosis were found on different levels of measurement (Ettinger et al., 2014) and 

Study 2 reported schizophrenia-like SPEM and BOLD correlates of schizotypy. Additionally, in 

Study 3, it was found that one night of sleep deprivation induces psychotomimetic states and 

deteriorates oculomotor measures (Meyhöfer, Kumari, et al., 2017), emphasizing its role as a 

promising state model system of psychosis. 

As psychotic disorders are very complex and heterogeneous, a single model system will possi-

bly not be sufficient in modelling all aspects of psychosis. Therefore, the purpose of the present 

study was (1) to replicate the SPEM impairments in schizotypy from Study 2, (2) to replicate 

the effects of sleep deprivation from Study 3, and (3) to combine a trait and a state model of 

psychosis in one study to closer examine potential interactions between the model systems. 

In order to investigate the role of schizotypy, an online version of the O-LIFE (Grant et al., 2013; 

Mason et al., 2005) was used to establish extreme groups based on the positive schizotypy 

dimension. Furthermore, to study the impact of sleep deprivation, the two groups (n=17 high 

schizotypes, n=19 controls) were measured after both a normal sleep night and a night of sleep 

deprivation. The study procedure is largely the same following the previous sleep deprivation 

study (Meyhöfer, Kumari, et al., 2017; Petrovsky et al., 2014). In addition to measures of psy-

chotomimetic states (Mason et al., 2008), we also applied state measures of anxiety (Laux, 
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Glanzmann, Schaffner, & Spielberger, 1981), depression (Chiappelli, Nugent, Thangavelu, 

Searcy, & Hong, 2014), and stress (Fliege et al., 2005). 

An overview of the key results can be found in Figure VI—4. High schizotypes were found to 

demonstrate worse SPEM performance (e.g., RMSE) and higher scores on psychotomimetic 

states, anxiety, depression, and stress than the control subjects, irrespective of sleep condi-

tion. However, there were no differences between the two groups with regard to antisaccade 

performance. Sleep deprivation resulted in impairments in numerous SPEM (e.g., RMSE), anti-

saccade (e.g., % direction errors), and prosaccade variables, irrespective of schizotypy group. 

Additionally, sleep deprivation led to increased levels of perceptual distortion, cognitive disor-

ganization, anhedonia, anxiety, and depression. Most importantly, both model systems inter-

acted on SPEM velocity gain. High schizotypes but not controls displayed deteriorated gain 

after sleep deprivation compared to normal sleep. 

In summary, as expected, we replicated the SPEM impairments in schizotypy. Furthermore, we 

replicated the effects of sleep deprivation on oculomotor control and psychosis-like experi-

ences, further strengthening sleep deprivation as a reliable and valid model system of psycho-

sis (Ettinger & Kumari, 2015). Additionally, the evidence of the interaction between sleep dep-

rivation and schizotypy demonstrates that the closest approximation to psychosis can be dis-

covered in high schizotypy after sleep deprivation. This finding underlines that the combination 

of the two model systems are particularly valuable in modelling psychosis and assisting the 

development of new treatments. 
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Figure VI—4. Illustration of the key findings of study 4. 
 

VII DISCUSSION 

The current thesis is a summary of four studies that (1) examined the time stability and trait-

like nature of widely used oculomotor biomarkers of psychosis (Study 1) and (2) applied these 

biomarkers to evaluate schizotypy and sleep deprivation as two non-pharmacological human 

model systems of psychosis (Studies 2 and 4). 
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VII.I Integration 

Cognitive dysfunctions are common in psychotic disorders and are closely related to several 

psychosocial functioning variables (Chapter IV.II.II). Unfortunately, there are no effective treat-

ment options until now (Köster et al., 2014; Nielsen et al., 2015). Oculomotor tasks provide a 

solid foundation to study cognitive and neural dysfunctions in patient samples (Bey et al., 2017; 

Lencer et al., 2015; Reilly et al., 2014) and the cognitive effects of pharmacological interven-

tions (Kasparbauer et al., 2016; Reilly et al., 2008). 

Test-retest reliability and the utility as a repeated measure are key elements in the selection 

of tasks that can be applied in clinical trials, e.g., to study the effects of new antipsychotic drugs 

on cognitive functions (Nuechterlein et al., 2008). Until now, there were only few studies that 

have examined parameters of reliability for oculomotor performance, mainly reporting good 

stability over time for most of the variables (Ettinger et al., 2003; Wöstmann et al., 2013). How-

ever, no study has clearly investigated how much variance of a saccade variable either refers 

to a time stable trait or to situations-specific state influences. Therefore, we conducted a study 

of commonly used saccadic tasks and applied LST analyses (Meyhöfer, Bertsch, Esser, & 

Ettinger, 2016). We were able to demonstrate that mean saccadic measures exhibit high to 

excellent reliabilities and, additionally, the largest part of the variance could be explained due 

to trans-situationally stable consistency. In summary, one measurement occasion is sufficient 

to quantify saccade performance thereby strongly reflecting the underlying trait. Thus, oculo-

motor measures are highly valuable in study designs involving e.g., single measurement group 

comparisons. Furthermore, oculomotor performance is stable (i.e. trait-like) in standard labor-

atory settings under constant conditions. This finding underlines that saccadic tasks are useful 

in repeated measurements because the performance is stable over time under regular condi-

tions and alterations are most likely associated to e.g., pharmacological or experimental inter-

ventions. 

Together with research on practicability (Klein & Ettinger, 2008), cognitive foundations 

(Hutton, 2008), neural mechanisms (Herweg et al., 2014; McDowell et al., 2008; Talanow et 
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al., 2016), and disturbances in psychosis disorders (Chapter IV.II.III‒ii), our findings further sup-

port that antisaccades are highly valuable to evaluate the validity of cognitive alterations in 

psychosis model systems. 

Animal model systems are commonly applied in the development of novel antipsychotic com-

pounds (Pratt et al., 2012). However, modeling cognitive impairments in rats/mice and cross-

species translatability is challenging (Burrows & Hannan, 2016). Therefore, human model sys-

tems might significantly advance this field. The most studied human model systems include 

pharmacological interventions (e.g., ketamine; Steffens et al., 2016) and personality traits (e.g., 

schizotypy; Chapter IV.I.III). Schizotypy is a time-stable (Venables & Raine, 2015), multidimen-

sional attribute that includes positive, negative, and disorganized dimensions (Mason et al., 

1995; Raine et al., 1994). There are many findings of considerable overlap between schizotypy 

and patients with schizophrenia on different levels of measurement (Ettinger et al., 2014), e.g., 

both groups share impairments in the performance of SPEM (Chapters IV.II.III—ii and IV.III.I). 

To further investigate the potential overlaps in brain activation that behaviorally result in SPEM 

deficits, a high schizotypy and a control group attended an fMRI session with concurrent ocu-

lographic recording (Meyhöfer et al., 2015). The high schizotypy group was found to display 

worse SPEM together with reduced activity in occipital regions. These neural abnormalities are 

broadly in line with findings of deficits in motion processing from schizophrenia patients 

(Lencer et al., 2011; Nagel et al., 2012) and ,therefore, further stress the value of schizotypy as 

a model system of psychosis. However, in contrast to patients with schizophrenia (Chapter 

IV.II.III—ii), we did not observe any differences in frontal brain areas. 

A further promising model system of psychosis, representing a main focus of the current thesis, 

is sleep deprivation (Chapter IV.I.IV). Sleep deprivation can be applied cross-species and has 

previously been found to disrupt PPI in rats. Interestingly, the PPI disturbance could be re-

versed through the administration of antipsychotic but not anxiolytic or antidepressant drugs 

(Frau et al., 2008). Based on these results, a following study of our group replicated PPI reduc-

tions after 24 hours of sleep deprivation in healthy humans (Petrovsky et al., 2014). 
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To further validate the sleep deprivation model, we examined oculomotor functions in healthy 

participants after both a night of sleep deprivation and a night of normal sleep (Meyhöfer, 

Kumari, et al., 2017). Sleep deprivation was found to disrupt SPEM and antisaccade perfor-

mance, in line with previous studies on oculomotor function after sleep deprivation (Table IV—

4 and Table IV—5) and deteriorations reported in patients with psychosis disorders (Chapter 

IV.II.III—ii). Additionally, sleep deprivation increased psychotomimetic states comprising the 

positive, negative, and disorganized spectrum, thus validating its striking resemblance to psy-

chosis on the perceptual level. 

In order to meet the complexity of psychotic disorders, we aimed to combine the two model 

systems and investigated potential interaction between them. To do so, a high schizotypy and 

a control group participated in a night of total sleep deprivation and a night of normal sleep 

(Meyhöfer, Steffens, et al., 2017). In line with former studies (Table IV—2; Takahashi et al., 

2010), the high schizotypy group demonstrated lower SPEM performance (Meyhöfer, Steffens, 

et al., 2017) and reduced PPI (Meyhöfer et al., to be submitted; Appendix D). Sleep deprivation 

disrupted several measures of SPEM and saccade tasks and increased psychotomimetic states 

(Meyhöfer, Kumari, et al., 2017). However, the sleep deprivation induced reduction of PPI 

failed to reach statistical significance (p=.07, Meyhöfer et al., to be submitted; Appendix D). 

Most importantly, sleep deprivation reduced SPEM gain in high schizotypes but not controls. 

Thus sleep deprived high schizotypes demonstrated the closest approximation to psychosis, 

illustrating the substantial value of combining the two model systems. However, the interac-

tions between schizotypy and sleep deprivation were limited to SPEM performance. The com-

bination of the two model systems is a demanding approach and, therefore, to increase its 

significance, it would have been desirable to observe additional interactive effects on further 

important biomarkers of psychosis (i.e. antisaccades, PPI). 

Schizotypy as a well-established trait psychosis model and sleep deprivation as a promising 

non-pharmacological intervention to induce psychosis states are different conceptual ap-

proaches, with each of them possessing individual advantages. Due to low correlations be-

tween the facets (Grant et al., 2013), positive and negative levels of schizotypy can be investi-

gated fairly independently. Thereby, the distinction of the positive and the negative dimension 
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provides a useful tool to shed light on the underlying mechanisms of psychotic disorders 

(Grant, 2015). Sleep deprivation was found to cause psychotomimetic alterations that cover 

the positive, negative, and disorganized symptom spectrum of psychosis (Studies 3 and 4). 

Therefore, sleep deprivation might become a valuable alternative choice to pharmacological 

interventions, allowing the investigation of the effects of innovative treatment options for psy-

chosis in translational study designs. 

Overall, the sleep deprivation model offers crucial benefits compared to other often applied 

model systems (for overviews see Ettinger & Kumari, 2015; Everson, 1997). First, sleep depri-

vation can be employed cross-species (Frau et al., 2008; Petrovsky et al., 2014). Secondly, sleep 

deprivation was found to induce psychosis-like experiences mirroring the whole spectrum of 

symptom dimensions (Chapter IV.I.IV, Studies 3 and 4). Thirdly, cognitive deficits provoked by 

sleep deprivation overlap with impairments reported in patients with psychotic disorders 

(Chapter IV.I.IV, Studies 3 and 4). Fourthly, the effects of short-term sleep deprivation are com-

pletely reversible, supporting the safety of the model system (Azizi et al., 2017; Elmenhorst et 

al., 2017). Lastly, sleep deprivation can be administered easily and inexpensively. 

Importantly, there are also some caveats concerning the application of sleep deprivation to 

model symptoms of psychosis that need to be mentioned. Though hallucinations in psychosis 

can occur in any sensory modality, they most frequently arise in the auditory domain (American 

Psychiatric Association, 2013). In contrast, sleep deprivation rather induces visual and less 

strong auditory hallucinations (Berger & Oswald, 1962; Coren, 1998; Kollar et al., 1969). Fur-

thermore, sleep deprivation studies are not double-blind. Due to the level of drowsiness re-

lated to sleep loss and the subject’s awareness of his sleep state, both the investigator and the 

participant know the experimental condition. 

More broadly, there are also caveats that arise from restrictions of the concept of model sys-

tems in principle. Psychosis disorders are heterogeneous and complex, thus leading to a virtu-

ally impossible challenge to mimic all aspects in a single model system. Accordingly, schizotypy 

and sleep deprivation have been found to demonstrate striking overlaps on cognitive and per-
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ceptual levels but they certainly do not exhibit/produce the full picture of psychosis. Further-

more, the cognitive and perceptual overlaps between schizotypy, sleep deprivation, and psy-

chosis do not prove that they share the same etiological foundation. In principle it would also 

be conceivable that these conditions have distinct underlying molecular and cellular mecha-

nisms resulting in a similar phenotype. 

VII.II Study limitations 

The results shown in the current thesis also have limitations that need to be addressed. The 

first concerns the size and comparisons of study samples. In Studies 2 and 4, only a small num-

ber of males could be included due to low availability of males that were interested in partici-

pating. Thus, further research is needed to investigate sex differences in relation to the effects 

of schizotypy and sleep deprivation found in these studies. However, the effects of sleep dep-

rivation were generally found to be independent from sex (Study 3). Additionally, in order to 

account for differences in schizotypy scores between males and females (Fonseca-Pedrero et 

al., 2011), we applied sex-specific inclusion criteria in Study 4, but unfortunately failed to use 

this criterion in Study 2. 

In Studies 3 and 4, the participants spent a normal sleep night and a night of sleep deprivation 

in our laboratory. Some participants had problems getting to sleep in the unfamiliar stetting. 

Therefore, additional studies would profit from implementing a familiarization night. 

We observed effects of the order of testing (either normal sleep first or sleep deprivation first) 

for psychotomimetic states and oculomotor measures, broadly indicating stronger effects of 

sleep deprivation when this was the first testing occasion (Studies 3 and 4). Thus, future studies 

might benefit from deploying a between-subjects design. 

Furthermore, in order to directly draw comparisons between schizotypy, sleep deprived par-

ticipants, and psychosis patients, prospective studies should additionally include a patient 

group. 
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VII.III Future studies 

In the current thesis we have investigated the time stability and trait-like nature of saccadic 

tasks thereby demonstrating their usefulness as endophenotypes in genetic research and as 

variables in repeated measures designs. As SPEM have been proven a valuable biomarker/en-

dophenotype of psychosis, we have applied SPEM in addition to saccadic tasks to evaluate the 

validity of the schizotypy and sleep deprivation psychosis model systems. However, until now 

there is only few research on the time stability of SPEM (Ettinger et al., 2003) and further re-

search is needed to explore the reliability of different SPEM tasks and its trait-like nature. 

Sleep deprivation was previously explored as a translational model system of psychosis 

(Ettinger & Kumari, 2015) and reduced PPI could be restored through antipsychotic drugs in 

rates (Frau et al., 2008). Building upon our findings of cognitive impairments and increases of 

psychotomimetic states after sleep deprivation (Study 3 and 4), future research might benefit 

from the investigation of antipsychotic drug effects on cognition in sleep deprived humans. 

In order to discover psychosis-like alterations after sleep deprivation, we have applied the PSI 

questionnaire (Mason et al., 2008). However, this instrument does not allow to separate audi-

tory and visual hallucinatory-like experiences. As psychotic patients mostly suffer from audi-

tory hallucinations (American Psychiatric Association, 2013), future studies should have a 

closer look on the types of hallucinatory-like experiences induced through sleep deprivation. 

VII.IV Conclusions 

Overall, schizotypy and sleep deprivation were found to demonstrate considerable overlaps 

with psychosis, both on symptom and on cognitive functioning levels. The combination of the 

two models provided the closest approximation to psychosis. It may thus be concluded that 

these non-pharmacological model systems when combined with oculomotor biomarkers 

demonstrate a valuable source to investigate the underlying mechanisms of cognitive deficits 

in psychosis and to evaluate new treatment approaches. Lastly, framing the findings in the 

words of Box (1979): Schizotypy and sleep deprivation are illuminating models whose useful-

ness is highly promising.  
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