Genomweite CNV-Analyse und zielgerichtetes Next-Generation-Sequencing zur Identifizierung neuer Kandidatengene bei Patienten mit HNPCC

Dissertation

zur

Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Katrin Kayser

aus

Leverkusen

Bonn, März 2017

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-Universität Bonn

- 1. Gutachter: Prof. Dr. Stefan Aretz
- 2. Gutachter: Prof. Dr. Jörg Höhfeld
- Tag der Promotion: 16. November 2017
- Erscheinungsjahr: 2018

Inhaltsverzeichnis

In	halts	/erzei	chnisI		
A	bkürz	ungsv	erzeichnis1		
1	Eir	nleitu	ng1		
2	Th	Theoretische Grundlagen3			
	2.1	Vari	iation des menschlichen Genoms3		
	2.2	Кор	ienzahlvarianten3		
	2.2	2.1	Entstehungsmechanismen von CNVs4		
	2.2	2.2	CNV-Detektion5		
	2.2	2.3	Interpretation von CNVs7		
	2.2	2.4	Pathomechanismus von CNVs8		
	2.3	Erbl	licher Darmkrebs9		
	2.3	3.1	Adenom-Karzinom-Sequenz9		
	2.3	3.2	Zwei-Treffer-Hypothese nach Knudson10		
	2.3	3.3	Familiäre adenomatöse Polyposis11		
	2.3	3.4	MUTYH-assoziierte Polyposis11		
	2.3	3.5	Polymerase Proofreading-assoziierte Polyposis12		
	2.3	3.6	HNPCC und Lynch-Syndrom		
	2.4	Ziel	der Arbeit20		
3	M	ateria	l und Methoden22		
	3.1	Pati	enten		
	3.2	Kon	trollen23		
	3.3	Mat	terialien		
	3.3	3.1	Geräte und technische Ausrüstungen23		
	3.3	3.2	Reagenzien und Kits		

	3.3	.3	Chemikalien2	5
	3.3	.4	Lösungen2	5
	3.3	.5	Software und Datenbanken20	6
	3.4	Prin	ner Design2	7
	3.5	DNA	A Isolierung2	8
	3.6	Kon	zentrations- und Reinheitsmessung28	8
	3.7	San	ger-Sequenzierung28	8
	3.7	.1	Polymerase-Kettenreaktion29	9
	3.7	.2	Cycle Sequencing: Kettenabbruchmethode nach Sanger	D
	3.7	.3	Laserfluoreszenzdetektion	1
	3.7	.4	Aufreinigungsschritte	1
	3.8	ML	PA32	2
	3.9	Ider	ntifizierung und Validierung von Kopienzahlveränderungen	3
	~ ~			2
	3.9	.1	Genomweite SNP-Array-Analyse	3
	3.9 3.9	.1 .2	Genomweite SNP-Array-Analyse	3 6
	3.9 3.9 3.9	.1 .2 .3	Genomweite SNP-Array-Analyse	3 6 8
	3.9 3.9 3.9 3.9	.1 .2 .3 .4	Genomweite SNP-Array-Analyse	3 6 8 2
	3.9 3.9 3.9 3.9 3.9	.1 .2 .3 .4 .5	Genomweite SNP-Array-Analyse	3 6 8 2 5
	3.9 3.9 3.9 3.9 3.9 3.9 3.9	.1 .2 .3 .4 .5 .6	Genomweite SNP-Array-Analyse	3 6 8 2 5
	3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.9	.1 .2 .3 .4 .5 .6 .7	Genomweite SNP-Array-Analyse	3 6 8 2 6 5 5
	3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.10	.1 .2 .3 .4 .5 .6 .7 N	Genomweite SNP-Array-Analyse	3 6 8 2 6 6 5 5
	3.9 3.9 3.9 3.9 3.9 3.9 3.9 3.10 3.10	.1 .2 .3 .4 .5 .6 .7 N 0.1	Genomweite SNP-Array-Analyse	3 6 8 2 6 5 5 7
	3.9 3.9 3.9 3.9 3.9 3.9 3.10 3.10 3.1 3.1	.1 .2 .3 .4 .5 .6 .7 N 0.1 0.2	Genomweite SNP-Array-Analyse	368266679
	3.9 3.9 3.9 3.9 3.9 3.9 3.10 3.1 3.1 3.1	.1 .2 .3 .4 .5 .6 .7 N 0.1 0.2 0.3	Genomweite SNP-Array-Analyse	3 6 8 8 2 6 6 6 6 6 7 7 9 9
4	3.9 3.9 3.9 3.9 3.9 3.9 3.10 3.1 3.1 3.1 Erg	.1 .2 .3 .4 .5 .6 .7 N 0.1 0.2 0.3 rebni	Genomweite SNP-Array-Analyse	3 6 8 2 6 6 6 7 9 9 3

	4.1	.1	Voruntersuchungen und Ausschluss von Patienten mit ursächlichen Mutationen 53	3
	4.1	.2	Untersuchung seltener Ursachen eines MSH2-Ausfalls54	ţ
	4.1	.3	Kandidatengensequenzierung des Proteasom-Signalwegs55	5
	4.2	Diff	erentialdiagnosen	5
	4.2	.1	Somatische Mutationen	5
	4.3	CN۱	/-Analyse	7
	4.3	.1	Suche nach Kandidatengenen57	7
	4.3	.2	CNVs in bekannten CRC-Genen und Interaktionspartnern von MSH258	3
	4.3	.3	Filterschritte auf Genebene)
	4.3	.4	Priorisierung der Gene61	L
	4.3	.5	Suche nach Long Range Regulatoren von MSH265	5
	4.3	.6	Netzwerk-Analyse	5
	4.3	.7	Pathway-Analyse	3
	4.3	.8	Segregationsanalyse)
	4.4	Nex	xt-Generation-Sequencing73	}
	4.4	.1	Bekannte CRC-Gene der Literatur73	3
	4.4	.2	Gene des Proteasom-Signalwegs75	5
	4.4	.3	CNV-Gene75	5
	4.5	Zus	ammenfassung der Ergebnisse aus CNV- und NGS-Analyse	3
5	Dis	kussi	ion81	L
	5.1	Urs	ächlich aufgeklärte Patienten des Kollektivs81	L
	5.2	CN۱	/-Analyse	ļ
	5.3	Seq	uenzierung der CRC-Gene der Literatur95	5
	5.4	Seq	uenzierung von Tumor-DNA97	7
	5.5	Lim	itationen98	3
6	Zus	amn	nenfassung)

7	Ausblick	103			
8	Literaturverzeichnis	104			
9	Eigene Publikationen	120			
Anha	ang	I			
Danksagung					

Eidesstattliche Erklärung

Abkürzungsverzeichnis

®	rechtlich geschützt
μl	Mikroliter
∞	unendlich
А	Adenin
AFAP	attenuierte familiäre adenomatöse Polyposis
BAC	Bacterial Artificial Chromosome
BAF	B Allele Frequency
bp	basepairs
С	Cytosin
CGH	Comperative Genomic Hybridization
Chr	Chromosom
Cl	Chlorid
CN	Copy Number (Kopienzahl)
CNP	Copy Number Polymorphism
CNV	Copy Number Variation
CRC	Colorectal Cancer
СТ	Cycle Threashold
ddNTPs	Didesoxyribonukleotidtriphosphate
Del	Deletion
del	deletiert
DEPC	Diethyldicarbonat
DGV	Database of Genomic Variants
DNA	Desoxyribonukleinsäure
dNTPs	Desoxyribonukleotidtriphosphat
Dup	Duplikation
dup	dupliziert
EC	Endometriumkarzinom
EDTA	Ethylendiamintetraessigsäure
EVS	Exome Variant Server
ExAC	Exome Aggregation Consortium
F	forward
FA	Familienanamnese
FAP	familiäre adenomatöse Polyposis
FISH	Fluorescence-In-Situ-Hybridization
FFPE	Formalin-Fixed, Paraffin-Embedded
FoSTeS	Fork Stalling and Template Switching
G	Guanin
H ₂ 0	Wasser
HI	Haploinsuffizienz
HKG	House-Keeping-Genes
HNPCC	Hereditary Non-Polyposis Colorectal Cancer
HNR	Heinz-Nixdorff-Recall
HR	homologe Rekombination

IGV	Integrative Genome Viewer
IHC	Immunohistochemie
k	tausend
kb	kilobasen
KHCO ₃	Kaliumhydrogencarbonat
LCR	Low Copy Repeats
LBF	Log Bayes Faktor
LoF	Loss of Function
Log R	Logarithmus von R
LOH	Loss of Heterozygosity
LRR	Log R ratio
LS	Lynch-Syndrom
m	männlich
MAP	MUTYH-assoziierte Polyposis
mB	megabasen
MLPA	Mulitplex Ligation-dependent Probe Amplification
mМ	Millimol
MSI	Mikrosatelliteninstabilität
MSI-H	hohe Mikrosatelliteninstabilität
MSI-L	niedrige Mikrosatelliteninstabilität
MSS	Mikrosatellitenstabilität
n	Teilchenzahl
NAHR	nicht-allelische homologe Rekombination
n. u.	nicht untersucht
NaCl	Natriumchlorid
NaOH	Natriumhydroxid
NCBI	National Center for Biotechnology Information
ng	Nanogramm
NGS	Next-Generation-Sequencing
NH ₄ Cl	Ammoniumchlorid
NHEJ	Non-Homologous End-Joining
nM	Nanomol
р	kurzer Arm eines Chromosoms
PCR	Polymerase-Kettenreaktion
PLIGU	Patienten- und Laborinformationssystem für genetische
	Untersuchungen
pM; pmol	picomol
ΡΡΑΡ	Polymerase Proofreading-assozilerte Polyposis
q	langer Arm eines Chromosoms
Q	Qualitat
qPCR	quantitative Polymerase-Kettenreaktion
R	reverse
RetSeq	NCBI Reference Sequence
KNA	Ribonukleinsaure
RIC	reversible Terminator Chemie
RVIS	Residual Value of Intolerance Score
SBE	Single Base Extansion

SNP	Single Nucleotide Polymorphism
SNV	Single Nucleotide Variant
Т	Thymin
t	Zeit
TCGA	The Cancer Genome Atlas
Tris	Tris(hydroxymethyl)-aminomethan
TSG	Tumorsuppressorgen
UPD	Uniparentale Disomie
USCS	University of California Santa Cruz
v	Version
VUS	Variance of Unkown Significance
w	weiblich
WGS	Whole Genome Sequencing
WHO	World Health Organisation
Z	Zielsequenz
Δ	Delta
3	epsilon
λ	delta

1 Einleitung

Das kolorektale Karzinom (Colorectal Cancer, CRC) stellt mit etwa 62.400 Neuerkrankungen im Jahr die zweithäufigste Krebserkrankung in Deutschland dar (RKI Stand 2013, http://www.rki.de/). Eine genetische Prädisposition wird für etwa 20-30% aller CRC angenommen, wobei nur etwa 5% der Fälle auf eine monogene Form mit hochpenetranter Keimbahnmutation zurückzuführen sind (Hegde et al., 2014). Die monogenen Formen des erblichen Darmkrebses werden in polypöse und nicht-polypöse Erkrankungen unterteilt. Das Lynch-Syndrom (LS), im deutschen Sprachraum auch als hereditärer nicht-polypöser Darmkrebs (Hereditary Non-Polyposis Colorectal Cancer, HNPCC) bezeichnet, gilt als die häufigste monogene Form. Anders als beim sporadischen Darmkrebs, bei dem das durchschnittliche Erkrankungsalter bei 70 Jahren liegt, tritt das LS meistens vor dem 50. Lebensjahr auf. Zudem lässt sich in den betroffenen Familien eine Häufung syndrom-spezifischer extrakolonischer Tumoren finden, allen voran das Endometriumkarzinom bei Frauen. Für das LS sind Mutationen in Mismatch-Repair (MMR)-Genen und Deletionen im EPCAM-Gen verantwortlich (Lynch et al., 2009; Kuiper et al., 2010). Bei vorhandener Mutation liegt das Lebenszeitrisiko für Darmkrebs zwischen 30-70% und für das Endometriumkarzinom zwischen 40-50% (Steinke et al., 2014).

Bei klinischem Verdacht auf ein Tumorsyndrom ist die Identifizierung der genetischen Ursache aufgrund des hohen Lebenszeitrisikos und dem hohen Erkrankungsrisiko bei Familienangehörigen bedeutend für die Versorgung der Patienten und ihrer Angehöriger. Wird ein Tumorsyndrom rechtzeitig erkannt, ist durch die angebotenen Vorsorge- bzw. Früherkennungsmaßnahmen oft eine effektive Krebsprävention möglich. Zu den Vorsorge- und Früherkennungsprogrammen beim LS gehören eine jährliche Koloskopie sowie für Frauen zusätzlich ein transvaginaler Ultraschall mit Endometriumbiopsie. Wurde die familiäre Keimbahnmutation bei einer erkrankten Person identifiziert, ist es mittels prädiktiver genetischer Testung von Familienmitgliedern möglich, alle Anlageträger in einer Familie präsymptomatisch zu identifizieren und die Vorsorgemaßnahmen auf die tatsächlichen Anlageträger einer Familie zu beschränken. Nicht-betroffene Familienmitglieder werden psychisch entlastet und können aus dem strengen Vorsorgeprogramm entlassen werden.

Einleitung

Bei bis zu 50% der Patienten, welche die klinischen Auffälligkeiten für ein LS aufweisen, lässt sich trotz umfassender diagnostischer Screening-Methoden keine ursächliche Keimbahnmutation nachweisen (Bonis et al., 2007, p. 20; McPhillips et al., 2005; Obermair et al., 2010). Die familiäre Häufung von Tumoren wie auch das Auftreten von Tumoren in jungen Jahren (< 50) sprechen allerdings für eine zugrunde liegende genetische Prädisposition. Neben der Möglichkeit, dass Mutationen in den bekannten, LS-assoziierten Genen mit routinediagnostischer Methoden übersehen werden, können auch weitere, bisher unbekannte Gene ursächlich für das Auftreten der Erkrankung sein. Ziel dieser Arbeit war es daher, bei mutationsnegativen Patienten mit klinischem Verdacht auf Vorliegen eines LS mittels neuer molekulargenetischer Methoden (CNV-Analyse, Hochdurchsatzsequenzierung) sowohl Mutationen in bereits etablierten Genen zu finden, wie auch weitere ursächliche Gene oder Risikovarianten zu identifizieren und weiter zu charakterisieren.

In den letzten Jahren konnten seltene Kopienzahlvarianten (*Copy Number Variations*, CNVs), insbesondere größere heterozygote Deletionen, als ein quantitativ wichtiger Mutationstyp bei einer Reihe erblicher Tumorsyndrome nachgewiesen werden (Kuiper et al. 2010; Krepischi et al., 2012). Es ist deshalb davon auszugehen, dass größere Kopienzahlvarianten auch zum Mutationsspektrum noch unbekannter ursächlicher Gene des LS gehören. Für die Suche nach neuen ursächlichen Genen wendeten wir deshalb eine genomweite CNV-Analyse zur Identifizierung seltener Keimbahn-Deletionen und -Duplikationen und eine Hochdurchsatz-Sequenzierung von Kandidatengenen an. Hierfür wurde ein großes, gut charakterisiertes Kollektiv nicht-verwandter Patienten mit starkem Verdacht auf Vorliegen eines LS (erfüllte klinische Kriterien und isolierter Ausfall des MSH2-Proteins im Tumor) untersucht.

2 Theoretische Grundlagen

2.1 Variation des menschlichen Genoms

Lange Zeit wurden nur die beiden genetischen Größenextreme untersucht: große, mikroskopisch sichtbare chromosomale Veränderungen (Zerres et al., 1992) oder Einzelbasen-Polymorphismen (*Single Nucleotide Polymorphims*, SNPs) bzw. pathogene Punktmutationen (International HapMap Consortium, 2005; Lander et al., 2001). Im Größenbereich dazwischen liegen die Strukturvarianten, mit denen man sich erst seit den letzten zehn Jahren eingehend befasst (Iafrate et al., 2004; Korbel et al., 2007; McCarroll et al., 2008; Redon et al., 2006; Sebat, 2004).

Strukturvarianten sind kleinere oder größere Umbauten des Genoms. Inversionen oder Translokationen mit gleichbleibender Kopienzahl werden als <u>balancierte</u> Strukturvarianten bezeichnet. Strukturvarianten mit veränderter Kopienzahl, sogenannte Kopienzahlvarianten (*Copy Number Variations,* CNVs), zählen zu den <u>unbalancierten</u> Strukturvarianten. Sie können als Deletionen (Kopienzahl = 0 oder 1) oder Duplikationen / Multiplikationen (Kopienzahl \ge 3) vorliegen (Feuk et al., 2006).

Werden CNVs mit berücksichtigt, kommt man zu der Einschätzung, dass zwei Menschen bis zu 99,5% genetisch identisch sind (Levy et al., 2007). Diese ~0,5% inter-individuellen Unterschiede bestimmen unter anderem, wie sensibel wir auf Umwelteinflüsse reagieren, wie und ob wir auf bestimmte Arzneimittel ansprechen und für welche Erkrankungen wir ein erhöhtes Risiko tragen (Feuk et al., 2006; Hastings et al., 2009). Diese Varianten sind daher Mittelpunkt der genetischen Forschung.

2.2 Kopienzahlvarianten

Hinsichtlich der Anzahl an betroffenen Basenpaaren nehmen CNVs den größten Anteil aller Varianten im menschlichen Genom ein (Conrad et al., 2010; Levy et al., 2007; Pang et al., 2014; Redon et al., 2006). Die Größendefinition eines CNVs ist durch die verbesserten Auflösungsmöglichkeiten von ursprünglich 1 kb (Feuk et al., 2006) auf heutzutage ~50 bp (MacDonald et al., 2014) herabgesetzt worden. Noch kleinere Insertionen oder Deletionen werden zusammengefasst als "Indels" bezeichnet.

Abb. 1 SNVs, Indels und CNVs

Eigene Abbildung. Rot: SNVs, gelb: Indels, blau: CNVs

2.2.1 Entstehungsmechanismen von CNVs

CNVs werden in "rekurrente CNVs" mit identischer Länge und gemeinsamen Bruchpunkten und in "nicht-rekurrente CNVs" mit unterschiedlicher Länge und Bruchpunkten unterteilt. Die zugrundeliegenden Entstehungsmechanismen sind die nicht-allelische homologe Rekombination (NAHR) für rekurrente CNVs und das *Non-Homologous End-Joining (NHEJ)* sowie das *Fork Stalling and Template Switching (FoSTeS)* für nicht-rekurrente CNVs (Abb. 2) (Stankiewicz und Lupski, 2002, 2010).

Abb. 2 Rekurrente und nicht-rekurrente CNVs

a) Rekurrente CNVs in Regionen mit flankierenden Bereichen von *Low Copy Repeats (LCRs)*, mit gleicher Länge und homologen Bruchpunkten. Entstehungsmechanismus: nicht-allelische homologe Rekombination.

b) Nicht-rekurrente CNVs mit unterschiedlich großen CNVs und versetzten Bruchpunkten. Entstehungsmechanismus: *Non-Homologous End-Joining* und *Fork Stalling and Template Switching*. Befinden sich LCRs in der Umgebung, gruppieren sich die Bruchpunkte dort.

(Stankiewicz und Lupski, 2010).

Nicht-allelische homologe rekombination

Rekurrente CNVs entstehen in Regionen mit *Low Copy Repeats* (LCR). Dies sind kurze, repetitive DNA-Segmente von 10-400 kb mit hoher Sequenzidentität (Bailey et al., 2001). In der S-Phase der Mitose oder Meiose kann es durch die hohe Homologie dieser Regionen zu falschem

Aneinanderlagern der Schwesterchromatide kommen. Durch ungleiches Crossing-over entstehen so in der Tochterzelle Kopienzahlveränderungen mit identischer Länge und Bruchpunkten (Stankiewicz und Lupski, 2002). Spielt sich dieser Vorgang während der Meiose ab, besteht die Möglichkeit, dass es zu der Entstehung eines CNVs kommt, der für das Auftreten einer genetischen Erkrankung des Kindes verantwortlich ist. In somatischen, sich teilenden Zellen können diese gebildeten Kopienzahlveränderungen zur Krebsentstehung führen (Gu et al., 2008).

Non-Homologous End-Joining

NHEJ ist ein Reparaturmechanismus für Doppelstrangbrüche. Er findet in jeder Phase des Zellzyklus statt und ist unabhängig von LCR oder anderen Mediatoren. Beim NHEJ werden die beiden gebrochenen DNA-Enden enzymatisch modifiziert und abschließend ligiert. Während der Modifizierung kann ein größeres DNA-Stück entfernt oder doppelt synthetisiert werden, sodass an den Verbindungsstellen im Reparaturprodukt Deletionen oder Duplikationen entstehen (Gu et al., 2008; Weterings and van Gent, 2004).

Fork stalling and template switching

FoSTeS ist ein Modell, welches CNVs mit ungleichen Bruchpunkten und komplexen Strukturen erklärt. Es wird auf DNA-Replikationsfehler zurückgeführt. Während der Neusynthese bricht die Replikationsgabel ab, der Folgestrang löst sich und bindet aufgrund von Mikrohomologien an eine andere, offene Replikationsgabel in örtlicher Nähe. Der transferierte Strang wird weiter prozessiert. Bindet der Folgestrang in eine Replikationsgabel in Vorwärtsrichtung, führt dies zu einer Deletion, springt er nach hinten, kommt es zur Duplikation. Dieser Vorgang kann sich mehrere Male wiederholen (Gu et al., 2008; Lee et al., 2007). Auch Inversionen können dadurch zustande kommen.

2.2.2 CNV-Detektion

Durch die 1997 eingeführte Array-Technologie war die Identifizierung unbalancierter submikroskopischer Kopienzahlveränderungen möglich (Iafrate et al., 2004; Sebat, 2004). Es wird technisch zwischen der Array-CGH (*Comparative Genomic Hybridisation*) und den SNP-Arrays unterschieden. Bei der Array-CGH werden Proben- und Kontroll-DNA kompetitiv an eine Ziel-DNA (*Bacterial Artificial Chromosome, BAC* oder Oligonukleotide) gebunden. Die Probenund Ziel-DNA sind dabei zur Unterscheidung unterschiedlich farbig fluoreszenzmarkiert. Anhand von Unterschieden in der Fluoreszenzintensität zwischen der Proben- und der Kontroll-DNA können Kopienzahlveränderungen ermittelt werden. Die SNP-Arrays bestehen aus einer Oberfläche, auf der unzählige über das Genom verteilte SNP-Marker gebunden sind. Die SNPs beruhen auf HapMap-Genotypisierungsdaten. Die neuesten SNP-Arrays beinhalten > 1 Million solcher SNP-Marker mit einer Allelfrequenz von 1% (Altshuler et al., 2010; Belmont et al., 2005). Im Vergleich zur Array-CHG haben SNP-Arrays den Vorteil, dass neben den Kopienzahlveränderungen auch Informationen über den Genotyp erfasst werden, sodass auch Regionen mit kopienzahlneutralen aber homozygoten Genotypen (z.B. bei Isodisomien) erfasst werden können. Sie kommen auf eine Auflösung von bis zu 5 kb (Conrad et al., 2006; McCarroll et al., 2008; Redon et al., 2006).

Weitere Techniken zur CNV-Detektion sind: *Die Fluorescence-In-Situ-Hybridization* (FISH), die *Multiplex Ligation-dependend Probe Amplification* (MLPA), die quantitative PCR (qPCR) oder *Southern Blots*. Diese Techniken eignen sich jedoch nicht für genomweite hypothesenfreie Untersuchungen. Sie benötigen spezifische Sonden oder Primer (Emanuel und Saitta, 2007) und kommen daher nur zur gezielten Detektion begrenzter Genombereiche oder zur Validierung zum Einsatz. Abb. 3 zeigt die Auflösungen der unterschiedlich verfügbaren Detektionstechniken an.

Abb. 3 Auflösung verschiedener Detektionsmethoden von genomischen Veränderungen In Anlehnung an http://www.fisherbiotec.com.au Orange: CNV-Bereich

Durch die sinkenden Preise der Hochdurchsatz-Sequenzierung in Verbindung mit verbesserten Algorithmen und besserer Abdeckung (*Coverage*) wird zukünftig das *Whole Genome Sequencing* (WGS) die Methode der Wahl werden, um alle Arten von Varianten - SNV, Indels, Strukturvarianten - auf einmal zu erfassen und somit ein komplettes Bild der genomischen Varianz zu erhalten.

Große internationale Kollaborationsprojekte wie das 1000-Genome-Projekt (TGP) veröffentlichten *Whole-Genome*-Sequenzierdaten von über tausend Individuen und machten diese in Datenbanken wie dem UCSC Genome Browser (https://genome.ucsc.edu/) (1000 Genomes Project Consortium et al., 2012) zugänglich. Dafür analysierten sie eine große Anzahl von Proben einer breiten Population, waren aber in ihrer Auflösung limitiert. Dadurch ist es nur möglich, häufige genetische Variationen, die mit einer Allelfrequenz von 1% in der Population auftreten, zu analysieren.

2.2.3 Interpretation von CNVs

Die phänotypischen Auswirkungen von CNVs sind sehr variabel und reichen von fehlenden bis embryonal letalen Effekten (Beckmann et al., 2007; Hurles et al., 2008). Die Übergänge dazwischen sind fließend und die Ursächlichkeit der CNVs nicht immer sicher nachzuvollziehen (Sebat, 2004). Hochpenetrante pathogene Mutationen von benignen Varianten zu unterscheiden ist daher eine komplexe Aufgabe. Neben Segregationsanalysen und funktionellen Untersuchungen bieten Frequenzeinschätzungen von CNVs eine Möglichkeit, die Pathogenität zu bewerten. Ähnlich wie SNPs handelt es sich bei häufig auftretenden CNVs nicht um hoch penetrante Mutationen, die monogenen Erkrankungen wie den erblichen Tumorsyndromen zugrunde liegen können (Kuiper et al., 2010). Seltene SNVs oder CNVs hingegen können hochpenetrant sein und innerhalb der betroffenen Familie mit dem Phänotyp segregieren (Shlien und Malkin, 2010). Die Database of Genomic Variants (DGV) ist eine CNV-Datenbank gesunder Individuen und enthält Einträge aus 61 Studien mit insgesamt 6.266.574 CNVs (http://dgv.tcag.ca/dgv/app/home, Stand: Juli 2015). Hierdurch ist eine Frequenzeinschätzung von detektierten CNVs möglich.

7

2.2.4 Pathomechanismus von CNVs

CNVs erzielen ihre pathogene Wirkung über verschiedene Mechanismen (vgl. Abb. 4):

- A) Komplette Gen-Deletionen in dosissensitiven Genen führen in der Regel zu einem Funktionsverlust des betreffenden Proteins, während komplette Gen-Duplikationen eine Überexpression des Proteins bewirken können.
- B) CNVs, die Gene nur partiell betreffen, können je nach Lage des Bruchpunktes zu einer Inaktivierung des Gens führen und einen Funktionsverlust des betreffenden Proteins zur Folge haben.
- C) Durch CNVs, die zwei benachbarte Gene zum Teil betreffen, können Fusionsproteine mit veränderter Funktion oder komplettem Funktionsverlust entstehen.
- D) Als Positionseffekt bezeichnet man die veränderte Expression eines Gens, häufig durch Translokation der regulatorischen Einheiten (Kleinjan und van Heyningen, 2005). Bei CNVs spricht man von einem Positionseffekt, wenn ein CNV den regulatorischen, nicht kodierenden Gen-Bereich betrifft und dieses dadurch über- oder unterexprimiert wird (Lupski und Stankiewicz, 2005). Dieser Effekt ist auch noch nachweisbar, wenn die regulatorische Einheit bis zu 1,5 Mb zum assoziierten Ziel-Gen entfernt liegt (Klopocki et al., 2008).

Abb. 4 Modell von CNV-Effekten

Horizontale Linien zeigen homologe chromosomale Bereiche an. Die vom CNV betroffenen Bereiche sind in Klammern gesetzt. Gestrichelte Linien zeigen CNVs (Deletion oder Duplikation) an. Gene sind durch ausgefüllte schwarze Rechtecke wiedergegeben (Lupski und Stankiewicz, 2005).

2.3 Erblicher Darmkrebs

Nach dem Brustkrebs bei der Frau und dem Prostata- sowie Lungenkrebs beim Mann stellt das kolorektale Karzinom (CRC) in Europa die zweithäufigste Krebstodesursache beider Geschlechter dar (WHO 2015; http://www.euro.who.int/; RKI http://www.rki.de/). Etwa 70% davon sind sporadisch, d. h. sie treten meist als Einzelfälle in der Familie in höherem Lebensalter auf und haben keine monogene Ursache. Bei 20 - 30% der Erkrankten sieht man eine familiäre Häufung von Darmkrebserkrankungen (oligogen oder multifaktoriell), aber nur bei etwa 5% handelt es sich um eine monogen erbliche Form, die durch Keimbahnmutationen mit hoher Penetranz hervorgerufen werden (Abb. 4) (Hegde et al., 2014). Unter den Patienten mit Verdacht auf ein monogenes kolorektales Tumorsyndrom bleiben 30-50% ohne aufgeklärte Ursache. Die monogenen Formen werden in die verschiedenen Polyposis-Erkrankungen und den erblichen Darmkrebs <u>ohne</u> Polyposis (Lynch-Syndrom, LS oder *Hereditary Non-Polyposis Colorectal Cancer*, HNPCC) unterteilt. Bestimmte Polyposisformen weisen überschneidende Merkmale zum LS auf. Konnte ein LS molekulargenetisch nicht bestätigt werden, sollte dies differentialdiagnostisch berücksichtigt werden.

2.3.1 Adenom-Karzinom-Sequenz

Bei der Entstehung von Darmkrebs (sporadisch wie hereditär) kommt es zur schrittweisen Umwandlung von gesunder Darmschleimhaut über adenomatöse Polypen zum Karzinom. Dieser Vorgang wird als Adenom-Karzinom-Sequenz bezeichnet (Vogelstein et al., 1988).

Adenome sind gutartige Geschwulste aus Drüsenepithelzellen und weisen eine dysplastische Morphologie und veränderte Differenzierung der betroffenen Epithelzellen auf (Fearon, 2011). Damit aus einem Adenom ein Karzinom wird, ist eine Abfolge von somatischen Mutationen und epigenetischen Veränderungen einer Zelllinie der Darmschleimhaut notwendig. Da bei den autosomal-dominant erblichen Darmkrebsarten die initiale Mutation bereits in allen Zellen vorliegt, ist die Wahrscheinlichkeit für die Entstehung von Karzinomen erhöht.

Beim sporadischen Darmkrebs (Abb. 5a) können sowohl Mutationen in Onkogenen als auch in Tumorsuppressorgenen (TSG) und DNA-Reparaturgenen für die Ausbildung des Adenoms ursächlich sein. Bei Mutationen in Tumorsuppressorgenen bedarf es, entsprechend der "Zwei-Treffer Hypothese", eines Verlustes des zweiten Allels, bis es zur Tumorbildung kommt.

Bei der FAP (Kap. 2.3.3) entwickeln sich aufgrund der heterozygoten Keimbahnmutation im Tumorsuppressorgen APC viele Adenome schon in jungem Alter. Nichtsdestotrotz sind noch weitere individuelle somatische Mutationen oder epigenetische Veränderungen wie Methylierungen in spezifischen Onkogenen, Reparaturgenen und TSG erforderlich, bis ein Karzinom auftritt (Abb. 5b) (Chung, 2000; Vogelstein et al., 2013). Beim HNPCC / LS (Kap. 2.3.6) kommt es wie beim sporadischen CRC durch unabhängige Mutationen zur Entstehung vereinzelter Adenome im mittleren Lebensalter Abb. 5c) (Toribara und Sleisenger, 1995). Der sich später ereignende second hit durch somatische Mutation des Wildtyp-Allels des entsprechenden **DNA-Reparatur-Gens** verursacht den Mismatch-Repair (MMR)-Funktionsverlust und hat eine Anhäufung weiterer Mutationen in den betroffenen Zellen zur Folge (Rustgi, 2007; Fishel 1995; Vilar und Gruber, 2010). Vom Adenom zum Karzinom dauert es dann meist weniger als drei Jahre (Pino et al., 2009).

Abb. 5 Adenom-Karzinom Tumor Entwicklung

Übernommen aus (Fearon, 2011)

2.3.2 Zwei-Treffer-Hypothese nach Knudson

Die Zwei-Treffer-Hypothese nach Knudson besagt, dass bei Vorliegen einer Keimbahnmutation in einem Tumorsuppressor- oder DNA-Reparaturgen erst die somatische Inaktivierung des zweiten Allels die Krebsentstehung initiiert. Bei dem zweiten Treffer handelt es sich häufig um eine größere Deletion des entsprechenden Chromosomenabschnitts, die z.B. mittels eines *Loss of Heterozygosity* (LOH) nachgewiesen werden kann. Doch auch Punktmutationen oder epigenetische Veränderungen wie eine Promotor-Hypermethylierung des entsprechenden Gens (z. B. für das DNA-Reparaturgen *MLH1* beschrieben) (Nagasaka et al., 2010) können den *second hit* darstellen und initiieren ggf. eine maligne Tumortransformation (Knudson, 2001).

Abb. 6 Zwei-Treffer-Hypothese nach Knudson

Aus "Klinik und Genetik des familiären Darmkrebses" (Steinke et al., 2010)

2.3.3 Familiäre adenomatöse Polyposis

Die familiäre adenomatöse Polyposis (FAP) ist ein autosomal-dominant vererbtes Tumorsyndrom und repräsentiert < 1% aller kolorektalen Karzinomerkrankungen. Sie betrifft etwa eine von 10.000 Personen in der Bevölkerung und ist damit das häufigste gastrointestinale Polyposis-Syndrom (Galiatsatos und Foulkes, 2006). Bei der klassischen FAP finden sich hunderte bis tausende adenomatöse Polypen im gesamten Dickdarm (Lynch und de la Chapelle, 2003). Die ersten Polypen können bereits im Kindesalter auftreten und entwickeln sich, sofern unbehandelt, in fast 100% der Fälle bis zum Alter von 35-40 Jahren zu Karzinomen weiter (Bisgaard et al., 1994).

Die genetische Ursache sind Mutationen im *APC*-Gen, einem Tumorsuppressorgen, welches als Antagonist im Wnt-Signalweg und für die Zellzykluskontrolle verantwortlich ist. Das mutierte *APC*-Gen aktiviert über die Akkumulation von ß-Catenin mehrere Transkriptionsfaktoren und leitet so die Tumorgenese ein (Galiatsatos und Foulkes, 2006). Die Erkrankung besitzt eine nahezu hundertprozentige Penetranz (Galiatsatos und Foulkes, 2006). Mildere Verlaufsformen mit einem höheren Erkrankungsalter und einem geringeren Polypenauftreten werden als attenuierte FAP (AFAP) bezeichnet.

2.3.4 MUTYH-assoziierte Polyposis

Im Gegensatz zu der FAP / AFAP wird die MAP autosomal-rezessiv durch biallelische *MUTYH*-Mutationen vererbt (Sampson und Jones, 2009). Das Erkrankungsbild der MAP, verursacht durch biallele *MUTYH*-Mutationen, ist sehr heterogen und weist phänotypische Überschneidungen mit dem LS auf (Aceto et al., 2005; Aretz et al., 2006; Jones et al., 2002; Morak et al., 2010; Sieber et al., 2003). So kann bei einer MAP in seltenen Fällen auch eine hohe Mikrosatelliteninstabilität (MSI-H) vorliegen (Colebatch et al., 2006; Morak et al., 2014). Die MSI-H ist hierbei jedoch ursächlich somatischen Mutationen in MMR-Genen geschuldet. Durch den hier gestörten *base-excition-repair* ist die Mutationsrate im Tumor stark erhöht. Ein HNPCC/LS mit Ausfall eines MMR-Gens kann somit vorgetäuscht werden.

2.3.5 Polymerase Proofreading-assoziierte Polyposis

Spezifische Keimbahnmutationen in den Exonuklease-Domänen der Polymerase-Gene *POLE* (c.1270C>G; p.Leu424Val; NM_006231) und *POLD1* (c.1433G>A; p.Ser478Asn; NM_002691) sind seit kurzem als sehr seltene, hochpenetrante Mutationen bei Patienten mit frühmanifesten multiplen kolorektalen und duodenalen Adenomen und Karzinomen beschrieben worden (Palles et al., 2013, Spier et al 2015). Für die Erkrankung wurde der Begriff "Polymerase Proofreading-assoziierte Polyposis (PPAP)" eingeführt (Briggs und Tomlinson, 2013). Zudem wurde für Mutationen in *POLD1* ein erhöhtes Risiko für Endometriumkarzinome beschrieben (Briggs und Tomlinson, 2013; Palles et al., 2013). PPAP-Patienten weisen eine große inter- und intrafamiliäre Variabilität in Bezug auf die Anzahl der Adenome und Karzinome sowie dem Erkrankungsbeginn auf. Die Tumoren wurden als mikrosatellitenstabil (MSS) und chromosomeninstabil charakterisiert (Palles et al., 2013).

Eine kürzlich erschienene Studie konnte zeigen, dass sich die bekannte Exonuklease-Domain-Keimbahnmutation in *POLE* auch bei Patienten mit MSI-H und MMR-Verlust im Tumor finden lässt. Die Mutation wurde bei 3/1188 (0,25%) Indexpatienten aus Familien mit familiärem Darmkrebs nachgewiesen (Elsayed et al., 2014). Diese Frequenz entspricht der früherer Studien (Palles et al., 2012; Valle et al., 2014). Bei HNPCC-Familien ohne genetische Ursache in den MMR-Genen sollte deshalb auch eine *POLE*-Mutation als sehr seltene Ursache in Betracht gezogen werden.

2.3.6 HNPCC und Lynch-Syndrom

Das HNPCC (Hereditary Non-Polyposis Colorectal Cancer) bezeichnet ein klinisches Syndrom, das durch folgende Kriterien definiert wird: (i) Erfüllte Amsterdam- oder (revidierte) Bethesda-Kriterien (siehe Box 1 und 2); (ii) Vorliegen des Verlusts mindestens eines Mismatch-RepairProteins im Tumor<u>oder</u> Nachweis einer Mikrosatelliteninstabilität (MSI) im Tumor; (iii) Kein Nachweis einer ursächlichen Mutation in einem der MMR-Gene (*MLH1, MSH2, MSH6* und *PMS2*) oder im EPCAM-Gen. Einige Autoren benutzen dafür auch die Bezeichnung "Lynch Like Syndrome" (Mensenkamp et al., 2014; Rodríguez–Soler et al., 2013). Von einem Lynch-Syndrom (LS) im engeren Sinne spricht man, wenn die ursächliche Keimbahnmutation identifiziert werden konnte.

Als weitere Unterform soll noch auf den "Familial CRC type X" hingewiesen werden. Bei diesem mutmaßlich erblichen Syndrom (erfüllte Amsterdam-Kriterien), liegt weder ein Verlust eines MMR-Proteins im Tumor vor, noch weist der Tumor eine Mikrosatelliteninstabilität auf (Lindor et al., 2005). Die genetische Ursache wird daher abseits eines Mismatch-Repair-Defizits vermutet (Valle et al., 2007).

Im klinischen Alltag werden die Begriffe LS und HNPCC häufig synonym verwendet. In dieser vorliegenden Arbeit wird die Bezeichnung LS verwendet, wenn die ursächliche Mutation bekannt ist und HNPCC, wenn die genetische Ursache (noch) unbekannt ist.

Klinik und Klassifikation

Das LS (OMIM #120435) stellt die häufigste monogene Prädisposition für Kolonkarzinome dar und ist verantwortlich für etwa 3% aller Kolonkarzinome (Hampel et al., 2008). Man schätzt die Inzidenz in der Bevölkerung auf etwa 0,2% (1 auf 500) (Steinke et al., 2013). Frauen entwickeln in 39-50% ein Endometriumkarzinom. Das vollständige Tumorspektrum mit dazugehörigem Lebenszeitrisiko für das LS sind in Tab. 1 wiedergegeben.

Tab. 1 Tumorspektrum und Lebenszeitrisiko für LS Patienten (für alle MMR-Gene)

Tumor	Risiko für Männer	Risiko für Frauen
Kolonkarzinom	34-73%	32-59%
Endometriumkarzinom	-	39-50%
Ovarialkarzinom		7-8%
Magenkarzinom	1-6	%
Urothelgänge	2-8	%
Gallengänge	1-4	%
Dünndarm	1-4	%
Gehirn/CNS	~ 2	%
Pankreas	~ 4	%
Haut (Talgdrüse)	abhängig vom be	etroffenen Gen
Daten aus dem HNPC	CC-Konsortium aus Stein	ke et al., 2013

Mutationsträger entwickeln häufig bereits in jungem Alter (vor dem 50. Lebensjahr) einen für das LS typischen Tumor. Nicht selten entstehen mehrere synchrone oder metachrone Tumoren im Laufe des Lebens.

Das mittlere Erkrankungsalter von Mutationsträgern liegt mit 45 Jahren deutlich vor dem mittleren Erkrankungsalter sporadischer Kolonkarzinome, welche meist erst mit über 60 Jahren auftreten (Toribara und Sleisenger, 1995). Insgesamt ist der Krankheitsverlauf allerdings sehr variabel und dann zum Teil klinisch nur schwer von sporadischen Fällen zu unterscheiden (Hampel et al., 2005; Watson et al., 2008). Andererseits können sporadische CRC in einzelnen Fällen auch sehr früh auftreten (Mensenkamp et al., 2014); die Unterscheidung zwischen erblichen und nicht-erblichen Fällen ist daher klinisch oft schwierig.

International anerkannte klinische Kriterien sollen bei der Identifikation von Patienten mit einem HNPCC bzw. LS helfen und einen Hinweis geben, wann eine Untersuchung auf HNPCCtypische Veränderungen im Tumorgewebe sinnvoll ist. Bei zusätzlich auffälligem Resultat der Tumoruntersuchung wird die Keimbahnmutationssuche eingeleitet. Des Weiteren werden den Patienten und ihren Angehörigen engmaschige Vorsorgemaßnahmen empfohlen. Die klinischen Kriterien (Amsterdam- und Bethesda-Kriterien) sind in Box 1 und 2 dargestellt. Sie beziehen im Wesentlichen die folgenden drei Punkte mit ein:

- 1. Frühes Erkrankungsalter (< 50. Lebensjahr)
- 2. Synchrone und / oder metachrone Tumoren aus dem HNPCC-Spektrum
- 3. Positive Familienanamnese

Amsterdam-II-Kriterien

Alle Kriterien müssen zutreffen:

- Mindestens drei Familienangehörige mit histologisch gesichertem kolorektalem Karzinom oder einem Karzinom des Endometriums, Dünndarms, Ureters oder Nierenbeckens, davon einer mit den beiden anderen erstgradig verwandt; FAP muss ausgeschlossen sein
- 2. Wenigstens zwei aufeinander folgende Generationen betroffen
- 3. Diagnosestellung bei mindestens einem Patienten vor dem Alter von 50 Jahren

Box 1 Amsterdam-II-Kriterien (Vasen et al., 1999)

Revidierte Bethesda-Kriterien

Mindestens eines der genannten Kriterien muss erfüllt sein:

- a) Patienten mit kolorektalem Karzinom vor dem 50. Lebensjahr
- b) Patienten mit synchronen oder metachronen kolorektalen Karzinomen oder anderen HNPCC-assoziierten Tumoren*, unabhängig vom Alter
- c) Patienten mit kolorektalem Karzinom mit MSI-H-Histologie** vor dem 60. Lebensjahr
- d) Patient mit kolorektalem Karzinom (unabhängig vom Alter), der einen Verwandten
 1. Grades mit einem kolorektalem Karzinom oder einem HNPCC-assoziierten Tumor vor dem 50. Lebensjahr hat
- e) Patient mit kolorektalem Karzinom (unabhängig vom Alter), der mindestens zwei Verwandte 1. oder 2. Grades hat, bei denen ein kolorektales Karzinom oder ein HNPCCassoziierter Tumor (unabhängig vom Alter) diagnostiziert wurde
- * Zu den HNPCC-assoziierten Tumoren gehören Tumoren in: Kolorektum, Endometrium, Magen, Ovarien, Pankreas, Urothel, Gallengang, Dünndarm, Gehirn (meist Glioblastom), Talgdrüsenadenome und Keratoakanthome
- **Hohe Mikrosatelliteninstabilität (MSI-H) bei Vorliegen von Tumor-infiltrierenden Lymphozyten, Crohnähnlicher lymphozytärer Reaktion, muzinöser / Siegelring-Differenzierung oder medullärem Wachstumsmuster

Genetik des Lynch-Syndroms

Das LS wird wie die FAP autosomal-dominant vererbt (Wiederholungsrisiko für erstgradig Verwandte von 50%). Im Tumor lässt sich der Funktionsverlust eines MMR-Proteins nachweisen. Ursächlich hierfür sind meist heterozygote pathogene Keimbahnmutationen in einem der vier ursächlich bekannten MMR-Gene: *MSH2, MSH1, MSH6* oder *PMS2* (Lynch et al., 2015). Daneben führen auch Deletionen der letzten beiden Exons von *EPCAM,* welches oberhalb (*upstream*) von *MSH2* liegt, über eine epigenetische Inaktivierung von MSH2 zu der Erkrankung. Dies geschieht nur in Zellen, in denen *EPCAM* exprimiert wird. Dadurch kommt es zu einem mosaikartigen MSH2-Inaktivierungsmuster (Ligtenberg et al., 2009).

Neben der Beteiligung bei der Apoptose und Zellzykluskontrolle besteht die Hauptaufgabe der MMR-Proteine darin, DNA-Replikationsfehler zu korrigieren (Bonis et al., 2007; Jiricny, 2006).

Die Proteine arbeiten als Heterodimere zusammen: MSH2 geht hierbei sowohl mit MSH6 (MutS- α), als auch mit MSH3 (MutS- β) einen Komplex ein (Acharya et al., 1996). Diese beiden MutS-Heterodimere sind für die Detektion der Fehlpaarungen zuständig, wobei MutS- α Einzelnukleotid-Substitutionen und kleinere Insertions-Deletions-Schleifen erkennt und bindet und MutS- β eine stärkere Affinität für größere Insertions-Deletions-Schleifen mit bis zu 10 Nukleotiden besitzt (Boland und Goel, 2010). Für die komplette Reparatur der fehlgepaarten Nukleotide lagert sich in einem darauffolgenden Schritt ein weiteres Heterodimer MutL- α (MLH1-PMS2) an. Mit Hilfe zusätzlicher Proteine wie EXO-1, PCNA und der DNA-Polymerase, wird der DNA-Tochterstrang bis zur Fehlpaarung herausgeschnitten und resynthetisiert. MLH1 ist auch in der Lage Heterodimere mit PMS1 und MSH3 einzugehen, deren Funktionsweisen jedoch nicht tiefergehend untersucht wurden (Boland und Goel, 2010).

Die beiden Proteine MSH2 und MLH1 übernehmen in ihren Komplexen jeweils die zentrale Aufgabe. Zellen, welche einen Expressionsverlust von MSH2 oder MLH1 aufweisen, zeigen keine MMR-Aktivität mehr. Bei dem Verlust der MSH6- oder PMS2-Expression ist die MMR-Aktivität nur vermindert. Patienten mit inaktivierenden *MSH6*- oder *PMS2*-Mutationen zeigen daher meist einen milderen Phänotyp mit verminderter Penetranz (Boland et al., 2008). Die Funktion von *MSH3* und *PMS1* ist noch nicht vollständig geklärt (Boland und Goel, 2010). Eine Assoziation mit dem LS konnte für *MSH3* und *PMS1* bisher nicht nachgewiesen werden (Boland et al., 2008; Boland und Goel, 2010). Kürzlich wurden compound-heterozygote Keimbahnmutationen in *MSH3* mit einer rezessiv vererbten Polyposis-Erkrankung assoziiert (Adam et al., 2016).

Routine-Diagnostik des HNPCC

Liegt der Verdacht eines LS vor, wird der Tumor zunächst auf Mikrosatelliteninstabilität (MSI) sowie Expressionsverlust eines MMR-Proteins mittels Immunohistochemie (IHC) untersucht.

Mikrosatelliten sind kurze, über das Genom verteilte Nukleotidsequenzen von 1-5 bp, die sich tandemartig 8-25-mal wiederholen (Tautz und Schlötterer, 1994). Eine Mikrosatelliteninstabilität liegt vor, wenn im Vergleich zwischen normalen Zellen und Tumorzellen Längenunterschiede der Mikrosatelliten bestehen. Eine hohe Mikrosatelliteninstabilität (MSI-H) ist das Kennzeichen eines MMR-Defekts (Lynch und de la Chapelle, 2003). Dessen ungeachtet weisen etwa 5% aller bestätigten LS-Patienten keine MSI-H auf (Hendriks et al., 2004). Kolorektale Karzinome von Patienten mit LS zeigen in 95% eine MSI-H (Aaltonen et al., 1993; Peltomäki et al., 1993). Der genaue Mechanismus der Entsehung von MSI bei MMR-Verlust ist in Abb. 7 wiedergegeben.

Abb. 7 Molekularer Mechanismus der MSI

Während der Replikation der Mikrosatelliten-Region (C10) kommt es häufiger zu Fehlern der Polymerase und es entstehen zu lange (oder zu kurze) Fragmente (G11). Bei funktionierender MMR-Aktivität wird das Extra-Nukleotid durch die MMR-Heterodimere MutS (*MSH2-MSH6*) und MutL (*MLH1-PMS2*) herausgeschnitten. In Zellen mit gestörter MMR-Funktion bleibt das Extra-Nukleotid jedoch bestehen und wird bei wiederholter DNA-Replikation fest in den neuen Strang eingebaut (C11). EXO1: Exonuklease 1, MSI: Mikrosatelliteninstabilität, MSS: Mikrosatellitenstabilität, PCNA: *Proliferierating Cell Nuclear Antigen*, Pol δ : DNA Polymerase- δ (Lynch et al., 2015). Für die immunohistochemische Untersuchung werden markierte Antikörper gegen die MMR-Proteine verwendet. Zellen mit zwei defekten Kopien eines MMR-Gens weisen keine Expression des zugehörigen Gens auf, entsprechend fällt die immunhistochemische Färbung negativ aus. Die immunohistochemische-Testung aller vier MMR-Proteine kann somit Hinweise liefern, welches der MMR-Gene am wahrscheinlichsten von einer pathogenen Mutation betroffen ist und schränkt damit die Suche nach pathogenen Keimbahnmutationen ein (Giardiello et al., 2014). Bei ursächlichen *MSH2*-Mutationen fällt immer auch MSH6 im Tumorgewebe mit aus, da MSH2 der einzige Bindungspartner von MSH6 ist. Bei Mutationen im *MSH6*-Gen hingegen bleibt die MSH2-Expression üblicherweise erhalten, da MSH2 noch weiter Bindungen mit MSH3 eingehen kann (Lynch et al., 2015).

Alternative Gründe für den MSH2-Verlust

In den allermeisten Fällen kommt es entsprechend der Zwei-Treffer-Hypothese nach Knudson (Kap. 2.3.2) zum MSH2-Verlust bei Vorliegen einer pathogenen Keimbahnmutation im *MSH2*-Gen und der anschließenden somatischen Inaktivierung des zweiten Allels. Nachfolgend werden weitere mögliche Ursachen für das Vorliegen des MSH2-Proteinverlustes im Tumorgewebe vorgestellt.

1. In der Routinediagnostik nicht identifizierte Mutationen

Zu den Mutationen, die durch die gängigen Methoden (Sanger, NGS, Deletions-Screening) in der Routinediagnostik bisher nicht erfasst werden, gehören tief-intronische Mutationen im Promotorbereich, somatische Mosaike und komplexe strukturelle Veränderungen wie Inversionen. Tief-intronische Mutationen können zu der Generierung einer neuen Spleißstelle führen. Die dabei gebildeten Pseudoexons sind durch eine Transkriptanalyse nachweisbar. Eine ursächliche, tief-intronische Mutation wurde bisher in einer australischen Familie nachgewiesen. Die Mutation (c.212-478T>G) befindet sich im Intron 1 des *MSH2*-Gens und verursacht die Aktivierung einer kryptischen Spleißstelle mit Einschluss eines Pseudoexons in die RNA (Clendenning et al., 2011). Eine 10 Mb große Inversion, welche die Exons 1-7 von *MSH2* einschließt, wurde von zwei unabhängigen Arbeitsgruppen beschrieben (Rhees et al., 2014; Wagner et al., 2002).

2. Epigenetische Veränderungen

Angeborene epigenetische Mutationen in MMR-Genen durch monoallelische Methylierung und posttranskriptionellem Expressionsverlust sind eine sehr seltene alternative Ursache für ein LS in MMR-Gen mutationsnegativen Fällen (Lynch et al., 2015). Die allermeisten dieser bei *MLH1* berichteten Epimutationen entstehen *de novo* (Hitchins et al., 2005). Ob die epigenetische Programmierung eines Menschen vererbbar ist, wurde lange Zeit kontrovers diskutiert (Chong und Whitelaw, 2004). In der Regel wird das epigenetische Muster in der frühen Embryogenese reprogrammiert, sodass eine direkte Vererbung ausgeschlossen ist (Lee et al., 2002). Die Transmission einer *MSH2*-Epimutation wurde bisher einmalig berichtet. Das Methylierungsmuster im Bereich des MSH2-Promotors wurde in drei nachfolgenden Generationen nachgewiesen. Zwei SNPs im Bereich des MSH2-Promotors konnten mit der hereditären Epimutation assoziiert werden (Chan et al., 2006).

3. Posttranskriptionelle Degradierung von MSH2

Ein interessanter Interaktionsmechanismus zwischen Proteinen des Proteasom-Pathways und MSH2 ist bei humoralen Krebszellen beschrieben worden. Demnach führen somatische Deletionen von *PRKCZ* zu einer messbaren Degradierung von MSH2 mit MSH2-Ausfall im Tumorgewebe (Diouf et al., 2011; Hernandez-Pigeon et al., 2005). Darüber hinaus konnte gezeigt werden, dass auch Deletionen weiterer Gene des Signalwegs (*MTOR, HERC1, PRKCZ* oder *PIK3C2B*) diesen Effekt auf MSH2 ausüben. Ein gezielter Knockdown dieser Gene rekapituliert den MSH2-Degradierungsvorgang in Leukämiezellen (Diouf et al., 2011). Ob auch *Loss of Function* (LoF)-Mutationen der Keimbahn der o.g. Proteasom-Gene bei Patienten mit HNPCC einen MSH2-Verlust im Tumor bewirken können, ist eine bisher noch nicht überprüfte Hypothese. Abb. 8 zeigt die Interaktion der Proteasom-Pathway-Gene und ihre Verbindung zu MSH2.

Abb. 8 Somatische MSH2-Degradierung über den Proteasom-Pathway Übernommen aus (Diouf et al., 2011)

4. Biallele somatische Mutationen von MSH2 (Phänokopien)

Treten zwei biallele somatische Ereignisse in MSH2 auf, so kommt es zum MSH2-Verlust im Tumor mit MSI, der leicht mit dem HNPCC verwechselt werden kann. Man spricht daher auch von "Phänokopie". Die betroffenen Patienten zeigen häufig einen milderen Verlauf der Erkrankungen und ein späteres Auftreten der Tumore. Drei Studien kamen zu dem Ergebniss das dieses Phänomen recht häufig auftritt und > 50% der Patienten mit Verdacht auf ein LS ausmacht (Geurts-Giele et al., 2014; Haraldsdottir et al., 2014; Mensenkamp et al., 2014).

5. Verlust beider Bindungspartner

Ein weiterer theoretisch denkbarer Mechanismus bei dem es zu einem MSH2-Verlust ohne Vorliegen einer ursächlichen Mutation kommen kann wäre, wenn MSH2 beide Bindungspartner MSH3 und MSH6, z.B. durch pathogene Mutationen in MSH3 und MSH6, verliert.

2.4 Ziel der Arbeit

Bei bis zu 50% der Patienten welche die klinischen Kriterien für das LS erfüllen und einen MMR-Defekt im Tumor aufweisen, lässt sich keine ursächliche Keimbahnmutation in den bekannten MMR-Genen nachweisen. Das primäre Ziel dieser Arbeit war daher die Suche nach neuen ursächlichen Genen beim genetisch ungeklärten HNPCC mit MSH2-Ausfall. Hierfür wurde eine genomweite CNV-Analyse an einem Kollektiv von 95 HNPCC-Patienten durchgeführt. Umfangreiche Filterschritte wurden angewandt, um seltene und damit potentiell pathogene CNVs in neuen Kandidatengenen aufzufinden. Die anschließende Sequenzierung der Kandidatengene diente der Identifizierung zusätzlicher Punktmutationen. Um die Relevanz der Gene weiterhin zu erforschen wurde eine Segregationsanalyse, eine Netzwerk- und Pathway-Analyse durchgeführt.

Ergänzende Untersuchungen betrafen in der Literatur beschriebene alternative Ursachen für den MSH2-Verlust wie eine Degradierung von MSH2 durch Mutationen bestimmter Gene des Proteasom-Biosynthesewegs oder eine zusätzliche Untersuchung auf seltene in der Literatur beschriebene *MSH2*-Mutationen (eine spezifische große Inversion und eine tief intronische Mutation).

Die Aufklärung der Pathophyiologie der Erkrankung hat eine wichtige Bedeutung für die Versorgung der Patienten. Erst wenn die ursächlichen Mechanismen bekannt sind, kann den Betroffenen eine sichere Diagnose gestellt werden, das exakte Wiederholungsrikiso für Verwandte berechnet, und eine prädiktive genetische Testung von Familienangehörigen ermöglicht werden. Außerdem wird durch das Aufdecken der genetischen Ursachen ein tiefergreifendes Verständnis der biologischen Grundlagen ermöglicht.

3 Material und Methoden

3.1 Patienten

Das Patientenkollektiv umfasst 95 nicht-verwandte Indexpatienten des Deutschen HNPCC-Konsortiums und einige Patienten eines niederländischen Kollektivs. Sie wurden in den Jahren 2002 - 2012 am Institut für Humangenetik Bonn oder in den anderen in Tab. 1 aufgelisteten Zentren rekrutiert. Die Studie wurde von den lokalen Ethikkommissionen aller teilnehmenden Zentren angenommen und in Übereinstimmung mit den Vorgaben der Deklaration von Helsinki durchgeführt.

Die Bedingungen für eine Teilnahme waren:

- (i) das Vorliegen einer schriftlichen Einverständniserklärung für die Teilnahme am Forschungsprojekt
- (ii) die Erfüllung der klinischen Verdachtskriterien für das HNPCC (revidierte Bethesda-Kriterien, vgl.
 Kap. 2.4.1)
- (iii) einen MSH2/MSH6-Verlust im Tumor, nachgewiesen mittels Immunohistochemie*
- (iv) keine nachgewiesene ursächliche Keimbahnmutation in MSH2 und EPCAM

* Zwei Patienten des Kollektivs zeigten keinen MSH2/MSH6-Verlust im Tumor. Bei einem dieser Patienten konnte jedoch nur ein Adenom untersucht werden, weshalb die Untersuchung nur eingeschränkte Aussagekraft hat. Der zweite Patient weist eine hohe Mikrosatelliteninstabilität im Tumorgewebe auf, was für einen MMR-Defekt spricht. Beide Patienten erfüllen die Amsterdam-Kriterien und waren somit interessante Kandidaten für die genomweite CNV-Analyse

Eine hohe Mikrosatelliteninstabilität ist ein weiteres Merkmal des LS, es wurden jedoch auch Patienten mit niedriger Mikrosatelliteninstabilität (MSI-L) und mikrosatellitenstabile Fälle (MSS) mit aufgenommen, sofern sie die klinischen Kriterien erfüllten und einen Ausfall von MSH2/MSH6 im Tumor aufwiesen.

Zentrum	Anzahl Patienten	m	w	A	В	pos. FA*	IHC-MSH2	MSI-H	VUS <i>MSH2</i>
Bonn	66	41	25	12	54	36	64	54	7
Bochum	8	4	4	1	7	8	8	6	1
Dresden	7	5	2	1	6	5	7	7	1
Düsseldorf	1	1	-	-	1	-	1	-	-
Regensburg	2	-	2	1	1	1	2	2	-
München	7	3	4	1	6	2	7	7	-
Leiden, NL	4	3	1	-	4	4	4	2	-
Summe	95	57	38	16	79	56	93	78	9

Tab. 2 Zusammensetzung des Kollektivs

m: männlich, w: weiblich, A: Amsterdam-Kriterien erfüllt; B: Bethesda-Kriterien erfüllt, IHC: Immunohistochemie (Ausfall von MSH2), FA: Familienanamnese; MSI-H: hohe Mikrosatelliteninstabilität; VUS: Varianten mit unklarer funktioneller Relevanz (*Variants of Unkown Significance*)

*pos. FA: erstgradig Verwandter mit Tumor des HNPCC-Spektrums

3.2 Kontrollen

Die verwendeten Heinz-Nixdorf recall (HNR)-Kontrollen stammen aus einer Längsschnittstudie des Universitätsklinikums Essen. Die Studie ermittelt den populationsbasierten Einfluss von Risikofaktoren für kardiovaskuläre Erkrankungen Das Gesamtkollektiv umfasst über 4.500 gesunde Frauen und Männer im Alter zwischen 45 und 75 Jahren (Altersdurchschnitt: 60 Jahre). (Schmermund et al., 2002). Aus diesem Gesamtkollektiv wurden 1320 Kontrollen zufällig ausgewählt. Sie sind alle deutscher Abstammung und wurden auf dem gleichen SNP-Array (HumanOmniExpress-12, Illumina, HG 19) wie unsere Patienten genotypisiert.

3.3 Materialien

3.3.1 Geräte und technische Ausrüstungen

Pipetten	 Multipette[®] Xstream, Eppendorf AG Research Plus: 2,5-20 μl; 10-100 μl; 20-200 μl; 100-1000 μl Research Pro: 1-Kanal und 8-Kanal: 0,5-10 μl, 5-100 μl
Pippetier Roboter	Biomek NXP Laboratory Automation Workstation Beckman Coulter GmbH
96 Well PCR Platten	 Corning Costar Thermowell, Fisher Scientific Framestar, 4titude Hard-Shell Plate (HSP), BioRad MicroAmp, Applied Biosystems / Life Technologies MIDI Platte, Thermo Scientific Multiply-PCR Plate, Sarstedt

	 MultiScreen, Merck Millipore
384 well qPCR-Platten	Microtiterplatte, Applied Biosystems, Life Technologies
Platten Adhesivfolien	 Microseal 'A', BioRad Mircoseal 'B', BioRad Adhesive Plate Seal, 4titude PCR seal, 4titude
Reagenzien Reservoir	25 μl, Thermo Scientific
Genotypisierungssystem	BeadStation 500GX System, Illumina
Genotypisierungs - Scanner	i-scan, Illumina
Vortexer	 VELP[®] scientificate Vortex Genie 2, Scientific Industries
Zentrifugen	 Centrifuge, 5430, 5430R, 5810R Eppendorf AG HeraeusTM Megafuge 1.0, Thermo Scientific HeraeusTM Biofuge frescoTM Microzentrifuge, ThermoScientific
DNA Aufkonzentrations- Filtersystem	Amicon Ultrazentrifuge 0,5 ml, Merck Millipore
Waagen	TE3102S/ TE 3135-DS, Sartorius AG
Thermocycler	PTC-225, MJ Research Inc., Peltier Thermal Cycler
Nukleinsäure-Messgeräte	 2100 Bioanalyzer, Agilent Technologies NanoDropTM 2000 Thermo Scientific Inc. PeqLab Biotechnologie GmbH Qubit[®] Fluorometric Quantitation 2.0, Life Technologies
Sequenzierer	 Genetic Analyzer 3500XL Genetic Analyzer 3130XL Applied Biosystems, Life Technologies MiSeq 2000, Illumina
qPCR – Gerät	ViiA [™] 7 Real-Time PCR System, Applied Biosystems [™]
Schüttel-, Mix-, Magnet- und Heizgeräte	 High Speed Micro Plate Shaker, VWR MS 3 digital Kleinschüttler, IKA[®] Magnetic stand-96, Ambion Thermomixer comfort, Eppendorf AG Tru Temp Microheating System, Illumina
3.3.2 <u>Reagenzien und Kits</u>	
Agilent DNA 1000 Kit	Agilent Technologies
BigDye [®] Terminator v1.1	Applied Biosystems, Life Technologies
BigDye [®] Removal: DyeEx 2.0 Spin Kit (25	50) Qiagen

Hi-Di[™] Formamide

HotStarTaq DNA Polymerase (Master Mix) Infinium II Whole-Genome Genotyping Kit

Applied Biosystems, Life Technologies

ster Mix) Qiagen GmbH

Illumina
Lichrosolv [®] destilliertes Wasser zu Chromatographiezwecken	Merck Millipore
MS-102-2002 MiSeq Reagent Kit v2 (300 cycles)	Illumina
Nextera [®] Rapid Capture Custom Enrichment Kit; 48 samples	Illumina
Power SYBR [®] -Green I Master Mix	Applied Biosystems, Life Technologies
Qubit [®] 2.0 NGS Starter Kit	Life Technologies
SALSA [®] MLPA [®] PCR Kit, Reagent kit SALSA [®] MLPA [®] probemix – P003 MLH1/MSH2 – P072 EPCAM	MRC-Holland
Sephadex [™] G-50 Superfine	GE-Healthcare
TE-Puffer	Invitrogen

3.3.3 Chemikalien

- Agencourt, AMPureXP, Beckman Coulter
- Diethyldicarbonat (DEPC), PanReac, AppliChem
- Destilliertes Wasser für Chromatographiezwecke
- Ethanol, PanReac, AppliChem
- Etylendiamintetraessigsäure reinst (EDTA), Merck kGaA
- KHCO₃, Merck kGaA
- NaCl, Merck kGaA
- NaOH, Merck kGaA
- NH₄Cl, Chemsolute, Th. Geyer GmbH
- TE-Puffer, Life Technologies
- Tris-Cl, Fluka Biochemika
- Tween 20, Roche Diagnostics GmbH

3.3.4 Lösungen

- EDTA [1 mM], 0,1% DEPC: 500 μl 0,5 M EDTA, 250 μl DEPC, ad 250 ml Wasser
- Ethanol 70%: 700 mL reines Ethanol auf 1 l destilliertes Wasser
- Ethanol 80%: 800 mL reines Ethanol auf 1 l destillieres Wasser
- Frischblutlysispuffer: 155 mM NH₄Cl, 10 mM KHCO₃, 0,1 mM EDTA
- Kernlysispuffer (NaCl-EDTA-Puffer): 75 mM NaCl, 24 mM EDTA pH 8,0
- NaOH 0,2 N: 200 μl NaOH 1,0 N, 800 μl Wasser für Chromatographiezwecke

- TE-Puffer (Tris-EDTA TE-4): 10 mM Tris-Cl, 0,1 mM Na-EDTA, pH 8,0
- Tris-Cl 10 mM, ph 8,5: 20 μl Tris-Cl 1,0 M, 1980 μl destilliertes Wasser
- Tween 20 0,5%: 5 μl Tween 20, 995 μl destilliertes Wasser

3.3.5 Software und Datenbanken

Software

3500 Data Collection Sotware BaseSpace Biomek® Software Bioanalyzer-2100 Expert Software vB.02.08 Coffalyser DesignStudio Excel 2010 GenomeStudio V2011.1 (Genotyping v. 1.9.4) IGV (Integrative Genomics Viewer) v. 2.3.52 (67) Illumina Experiment Manager MISeq Control Software NanoDrop 2000/2000c Software v.1.5 PLIGU (Patienten- und Laborinformationssystem für

genetische Untersuchungen), Microsoft Access 2003 Power Point 2010 qPCR Analysis VIIA[™] 7 Software v. 1.2 QuantiSNP v2 SeqMan Pro v. 9.0 (2011) Sequenzing Analysis Software v. 5.4 Sequence Pilot Software v. 4.1.2 VariantStudio v. 2.2 Word 2010

Datenbanken

Database of Genomic Variants (DGV) Ensembl, Welcome trust SANGER Institute Exome Aggregation Consortium (ExAC) v0.3 Exome Variant Server (EVS) Applied Biosystems, Life Technologies Illumina **Beckman Coulter Agilent Technologies MRC-Holland** Illumina **Microsoft Corporation** Illumina **Broad Institute** Illumina Illumina Thermo Fisher Scientific, Peqlab Biotechnologie **Microsoft Corporation Microsoft Corporation** Applied Biosystems / Life Technologies University of Oxford DNAStar[®] Inc. Lasergene Applied Biosystems, Life Technologies JSI medical systems Illumina **Microsoft Corporation**

http://dgv.tcag.ca/dgv/app/home http://www.ensembl.org/index.html http://exac.broadinstitute.org/ http://evs.gs.washington.edu/EVS/

Genecards, Weizmann Institute of Science	http://www.genecards.org/
Human Splicing Finder v3.0	http://www.umd.be/HSF3/
LOVD, Leiden Open Variation Databaase v.3.0	http://www.lovd.nl/3.0/home
MutationTaster	http://www.mutationtaster.org/
National Center for Biotechnology Information (NCBI)	http://www.ncbi.nlm.nih.gov
PolyPhen-2 v2.2.2	http://genetics.bwh.harvard.edu/pph2/
Primer3 v. 0.4.0	http://bioinfo.ut.ee/primer3/)
PROVEAN Craig Venter Institute	http://provean.jcvi.org/
SIFT, Craig Venter Institute	http://sift.jcvi.org/
STRING v.9	http://www.string-db.org
The Cancer Genome Atlas (TCGA)	https://cancergenome.nih.gov/
USCS Genome Browser, University Santa Cruz	http://genome.ucsc.edu/
1000 Genomes-Projekt	http://browser.1000genomes.org

3.4 Primer Design

Für die Auswahl der Oligonukleotid-Primer wurde das öffentlich zugängliche Onlineprogramm Primer3 verwendet (http://bioinfo.ut.ee/primer3-0.4.0/) (Rozen und Skaletsky, 1999). Tab. 3 gibt die verwendeten Einstellungen zur Auswahl der Primer durch Primer3 wieder. Alle Primer wurden von der Firma Metabion bezogen.

 Tab. 3
 Allgemeine Vorgaben zur Auswahl der Primer

Produktgröße	400-1000 bp (PCR); 110-150 bp (qPCR)
Primer Größe	min 18, opt. 20, max. 24 Basen
Primer Temperatur	min 57 °C, opt. 60 °C, max. 62 °C
Primer GC-Anteil	min. 20%, opt. 46%, max. 60%

Die erhaltenen Oligonukleotide wurden auf Homologien in anderen Regionen getestet. Dazu wurden die Programme "In-Silico PCR" und "BLAST" des UCSC Genome Browsers verwendet (Kent et al., 2002) (http://genome.ucsc.edu/). Es wurden nur Primer verwendet, die an eine spezifische Sequenz im Genom binden. Alle in dieser Arbeit verwendeten Primer sind im Anhang in Tab. A.1 bis Tab. G.1 aufgelistet.

3.5 DNA Isolierung

Die DNA-Extraktion aus Patientenblutproben erfolgte im Rahmen der allgemeinen Diagnostik mit der nach Miller entwickelten Aussalzmethode (Miller et al., 1988). Hierfür wurden 10 mL venöses Vollblut verwendet und im ersten Schritt einer Zelllyse unterzogen. Ein anschließender Proteinverdau mit Proteinase K setzt die Nukleinsäure frei, die im nachfolgenden Schritt durch Isopropanol gefällt werden kann.

3.6 Konzentrations- und Reinheitsmessung

Zur Konzentrations- und Reinheitsmessung von Nukleotiden (DNA oder einzelsträngige Oligonukleotide), wurde das NanoDrop[™] 2000 Spectralphotometer verwendet. Etwa 1,5 µl Probenlösung werden auf den unteren Messfühler des Geräts aufgetragen. Mittels des Lambert-Beerschen Gesetzes (Tab. 4) wird die Konzentration anhand der Extinktion (optische Dichte) berechnet. Sie beschreibt das Verhältnis von Lichtintensität der Referenzprobe (Puffer) zur Probenlösung (DNA in Puffer).

Tab. 4	Lambert-Beersches	Gesetz zur	Messung der	optischen	Dichte
--------	-------------------	------------	-------------	-----------	--------

$c = (A\lambda \times \epsilon \lambda)/b$
c = Nukleinsäurekonzentration [ng/μl]
Aλ= Extinktion [AU]
$\epsilon\lambda$ = Extinktionskoeffizient in Abhängigkeit zur Wellenlänge [ng x cm-1 / μ l]
b = die Länge zwischen oberem und unterem Messfühler in cm

Neben der Konzentration kann auch die Reinheit der Nukleinsäure bestimmt werden. Dazu wird die Extinktion bei 260 nm (Absorptionsmaximum von Nukleinsäuren) und 280 nm (Absorptionsmaximum von Phenolen, Proteinen und anderen Verunreinigungen) gemessen und ins Verhältnis gesetzt. Ein Verhältnis 260 nm / 280 nm ≥ 1,8 wird als rein für DNA, ein Wert von mindestens 2,0 als rein für RNA, angesehen. Je kleiner der Wert, desto größer die Verunreinigung.

3.7 Sanger-Sequenzierung

Die Sanger-Sequenzierung gliedert sich in drei Arbeitsschritte. Zunächst wird die Ziel-DNA-Sequenz durch die Polymerase-Kettenreaktion (Polymerase Chain Reaction, PCR) (3.7.1) amplifiziert. Im daran anschließenden Cycle Sequencing (3.7.2), dem entscheidenden Schritt der Sanger-Methode, werden fluoreszensmarkierte Didesoxynukleotidtriphosphate in die Sequenz eingebaut und die Sequenz hierdurch zum Abbruch gebracht. Im letzten Schritt werden die Didesoxynukleotide per Laserfluoreszenz detektiert (3.7.3). Zwischen jedem Vorgang ist ein Waschschritt (0) zur Entfernung der Enzyme, Puffer sowie überschüssiger Nukleotide durchzuführen.

3.7.1 Polymerase-Kettenreaktion

Die PCR stellt eine *in vitro*-Methode zur zielgerichteten Vervielfältigung der DNA dar (Mullis und Faloona, 1987). Die Reaktion erfolgt in drei Schritten und wird zyklisch bis zu 30-mal wiederholt. Bei jedem Schritt wird der zu amplifizierende Bereich verdoppelt, das PCR-Produkt wächst somit exponentiell.

Im ersten Schritt wird der DNA-Doppelstrang bei 95 °C denaturiert (1. Denaturierung). Die beiden DNA-Einzelstränge dienen im nächsten Schritt als Matrize für jeweils einen spezifischen komplementären Vorwärts (*forward*, F)- bzw. Rückwärts (*reverse*, R)-Primer. Diese lagern sich nun durch eine Temperaturerniedrigung knapp unterhalb der Schmelztemperatur der Primer (~58 °C) an (2. Anlagerung). Im letzten Schritt wird die Temperatur auf 72 °C eingestellt. Dabei entfaltet die thermostabile Taq-Polymerase ihre volle Aktivität und bindet die in der Reaktion beigefügten freien Desoxynukleotidtriphosphate (dNTPs) an die freien 3'OH-Enden der Primer (3. Elongation).

Tab. 5 zeigt den verwendeten Reaktionsansatz. Das gewählte PCR-Programm (Tab. 6) basiert auf zwei Stufen mit unterschiedlichen Anlagerungstemperaturen. Nach 15 Zyklen sorgt eine um 2-3 °C erniedrigte Primer-Anlagerungstemperatur dafür, dass vermehrt spezifische Anlagerungsprodukte gebildet werden. Die initiale Denaturierungszeit von 15 Minuten wird benötigt, um die zu Beginn eingesetzte genomische DNA vollständig zu denaturieren.

Tab. 5 PCR Reaktionsansatz

	Volumen
DNA [20ng/μl]	5 µl
Taq PCR MasterMix*	12,5 μl
F-Primer [5pmol/ μl]	2 µl
R-Primer [5pmol/ μl]	2 µl
H ₂ 0 RNAse-frei (bidest)	3,5 μl
*1000 Einheiten Taq DNA Po	lymerase

Tab. 6 PCR-Programm

	Temperatur in °C	Zeit in Minuten	Wiederholung
Initiale Denaturierung	94	15:00	
Denaturierung	94	0:30	
Primer-Anlagerung	58	0:20	15-mal
Elongation	72	0:45	
Denaturierung	94	0:30	
Primer-Anlagerung	55	0:20	15-mal
Elongation	72	0:45	
Finale Elongation	72	7:00	
Endkühlung	8-15	~	

3.7.2 Cycle Sequencing: Kettenabbruchmethode nach Sanger

Die enzymatische Kettenabbruch (Didesoxy)-Methode nach Sanger (Sanger et al., 1992) beruht auf der Anlagerung fluoreszensmarkierter Didesoxynukleotidtriphosphate, welche die wachsende Kette zum Abbruch bringen. Die Reaktion beginnt mit der Denaturierung des DNA-Doppelstrangs bei 94 °C. Beim Abkühlen des Ansatzes auf 50 °C lagert sich der zugegebene Vorwärts- oder Rückwärsprimer an. Bei 60 °C beginnt die Polymerase, die in dem Reaktionsmix (BigDye[®], Beckman-Coulter) im Überschuss enthaltenen Desoxyribonukleotidtriphosphate und Didesoxyribonukleotidtriphosphate (dNTPs und ddNTPs) einzubauen. Die dNTPs und ddNTPs, denen am 3′ Ende eine Hydroxylgruppe (-OH) zur Anlagerung weiterer Nukleotide fehlt, konkurrieren dabei mit den dNTPs. Jedes Mal, wenn ein ddNTP eingebaut wird, bricht die Kette ab. Dies geschieht zufällig und kann jede Stelle des Basenstranges betreffen, weshalb eine Mischung von Fragmenten jeder Länge entsteht. Basenspezifische Fluoreszensmarker, die an die ddNTPs gekoppelt sind, ermöglichen eine anschließende Detektion.

3.7.3 Laserfluoreszenzdetektion

Bei der Laserfluoreszenzdetektion werden die DNA-Fragmente kapillarelektrophoretisch aufgetrennt und anschließend detektiert. Dabei wird das Fluoreszenzsignal der ddNTP's mittels Laser in ein optisches Signal umgesetzt. Nachfolgend kann abgelesen werden, welche Base (A, T, G oder C) sich an dieser letzten Position der Kette befindet. Die Sequenz beginnt mit dem kürzesten Fragment und endet mit dem längsten. Tab. 7 gibt den Reaktionsansatz, Tab. 8 das verwendete Programm für das *Cycle Sequencing* wieder.

	Volumen
PCR Produkt ad [60ng/ μl]	x μl
BigDye®	1,6 µl
TE-Puffer	3 <i>,</i> 4 μl
F- oder R-Primer [5ng/ μl]	1 µl
Wasser	ad 20 µl

Tab. 7 Cycle Sequencing Reaktionsansatz

Tab. 8Cycle Sequencing Programm

	Temperatur in °C	Zeit in Minuten	Wiederholung
Initiale Denaturierung	94	5:00	
Denaturierung	94	0:15	
Primer-Anlagerung	50	0:10	25-mal
Elongation	60	4:00	
Finale Elongation	60	10:00	
Endkühlung	8-15	∞	

3.7.4 Aufreinigungsschritte

1. Agencourt[®] Solid-Phase Reversible Immobilization

Die *Solid-Phase Reversible Immobilization (SPRI®) beads*-Technologie eignet sich zur Aufreinigung niedrig konzentrierter DNA (DeAngelis et al., 1995). Sie beruht auf paramagnetischen SPRI[®]-*beads* (Partikel), welche durch ihre spezielle Beschichtung eine reversible Bindung mit der DNA eingehen können. Wird von außen ein Magnetfeld aufgebaut, binden sich die *beads* mit der gebundenen DNA an dieses Feld und die verbleibenden Kontaminanten (Primer, dNTPs, nicht verbrauchte Polymerase) können herausgewaschen

werden. Danach wird die DNA von den *beads* gelöst und in ein separates Gefäß überführt (http://www.beckmancoulter.de).

2. Sephadex[®] Gelfiltation (Größen-Ausschluss-Chromatographie)

Sephadex[®] ist der Handelsname für ein quervernetztes Dextran-Gel (GE-Healthcare Bio-Sciences AB, Pharmacia), welches für die Gelfiltration verwendet wird. Dextrane sind hochmolekulare, verzweigte Glucose-Einheiten. Für diese Aufreinigung, die nach dem *Cycle Sequencing* erfolgt, wird das Sephadex[®]-Pulver auf eine Microfilterplatte verteilt und durch die Zugabe von je 0,3 mL Wasser pro *well* (Platten-Vertiefung) zum Quellen gebracht. Nach dem Abzentrifugieren von überschüssigem Wasser erhält man eine Gelsäule aus einer porösen Matrix, welche alle niedermolekularen Kontaminanten (Salze, Pufferreste) auffängt. Die hochmolekulare aufgereinigte DNA wird durch erneute Zentrifugation (5 Min. bei 2500 rpm) aufgefangen (http://www.gelifesciences.com).

3.8 MLPA

Die MLPA (*Multiplex Ligation-dependent Probe Amplification*) ist eine etablierte semiquantitative Methode zum Nachweis abweichender Kopienzahlen (Kap. 2.2.2 "CNV Detektion") (Schouten et al., 2002). Mit dieser Methode können hetero- und homozygote Deletionen und Duplikationen im Größenbereich von einem Exon sowie im Promoterbereich eines Gens erfasst werden. Voraussetzung dafür ist, dass die Region, in der die Kopienzahlveränderung nachgewiesen werden soll, vorher bekannt ist.

Das Prinzip beruht auf spezifischen MLPA-Sonden. Diese beinhalten eine kurze Sequenz, die zur Zielregion komplementär ist. Als Erkennungssequenz tragen die Sonden zusätzliche Oligonukleotide mit variabler, sondenspezifischer Länge, welche nicht komplementär zur Zielregion sind und deshalb nicht gebunden werden. Eine Untersuchung von *MSH2* und *EPCAM* auf Deletionen und Duplikationen mittels MLPA wurde vor Beginn der wissenschaftlichen Arbeit im Rahmen der genetischen Diagnostik durchgeführt.

Die Proben-DNA (100 ng) wird thermisch denaturiert und die MLPA-Sonden (MRC-Holland, Niederlande), jeweils zwei aneinandergrenzende Sonden pro Zielregion, lagern sich an die Zielregion an. Durch eine Ligierungsreaktion werden die hybridisierten Fragmente miteinander verbunden. Nur an die Zielsequenz gebundene und damit ligierte Sonden werden in der anschließenden PCR-Reaktion (Kap. 3.7.1) amplifiziert. Pro Reaktion können bis zu 60 verschiedene Sondenpaare parallel eingesetzt werden. Durch die unterschiedlich langen Erkennungssequenzen der MLPA-Sonden werden die Amplifikate im Sequenzer (Genetic Analyzer 3130XL, Life Technologies) elektrophoretisch aufgetrennt und können dadurch unterschieden werden.

Die Peakhöhe im Vergleich zu einer Referenz entscheidet über das Vorliegen einer Kopienzahlveränderung. Die Peakhöhe ist dabei proportional zur relativen DNA-Menge. Bei einer Deletion liegt ein kleinerer Peak, bei einer Duplikation ein größerer Peak im Vergleich zu den Kontrollen vor. Die Differenz zwischen Kontrollpeak und Probenpeak beträgt dabei > 25%. Die Ergebnisse werden mit dem Coffalyser (MRC-Holland) ausgewertet. Tab. 9 gibt das Programm der MLPA wieder.

Reaktion	Temperatur in °C	Zeit in Min.	Wiederholung
Densturieren der Brehen DNA	98	8:00	
Denaturieren der Froben DNA	25°C	Pause	
Hybridicierungsreaktion	95	2:00	
Hybridisier dingsi eaktion	60	16 Stunden	
	54	Pause	
Ligasereaktion	54	15:00	
Ligasereaktion	98	5:00	
	4	Pause	
	95	0:40	
PCR-Reaktion	60	0:30	35-mal
	72	0:90	
	72	20:00	
	15	~	

Tab. 9 MLPA-Programm

3.9 Identifizierung und Validierung von Kopienzahlveränderungen

3.9.1 <u>Genomweite SNP-Array-Analyse</u>

Für die CNV-Analyse wurde das SNP-Array "HumanOmniExpress-12" der Firma Illumina verwendet, das über 700.000 über das Genom verteilte SNP-Marker enthält. Die genomische Test-DNA wird an vorgefertigte artifizielle Oligonukleotide gebunden, welche über kleine *beads* (Silicium Perlen) auf dem *Array* (der Matrix) fixiert sind. Die verwendete Technologie des

Illumina Infinium HD Assays basiert auf der Einzelbasen-Verlängerungs (*single base extension*, SBE)-Reaktion. Auf jedem *bead* sind viele hunderttausende Kopien von zielgerichteten 50-mer Oligonukleotidsonden gebunden. Jedes Oligonukleotid gibt einen spezifischen Locus im Genom wieder (Steemers et al., 2006). Die Eigenschaften des HumanOmniExpress-12 SNP-Arrays sind in Tab. 10 aufgeführt.

BeadChip	HumanOmniExpress-12
Anzahl SNP-Marker	733.202
Benötigte DNA Menge	200 ng
Assay	Infinium HD
Durchschnittliche Call Rate	99,84% (<99%)
Reproduzierbarkeit	99,99% (>99.9%)
Standard Log R	0,15 (<0,3)
Abstand (kb)	4,0 (mittlerer)/ 2,1 (Median)
Anzahl SNPs in 10kb RefSeq Genen	382.197
Nicht-synonyme SNPs	15.062

Tab. 10	Eigenschaften des HumanOmniExpress-12 SNP-Arrays
---------	--

Als Ausgangskonzentration werden 200 ng genomische DNA benötigt. Diese wird zunächst denaturiert, neutralisiert und anschließend über Nacht isothermisch amplifiziert. Diese wholegenome-Amplifizierung erhöht die Menge der DNA um den Faktor 1000-3000. Bei 200 ng Ausgangskonzentration erhält man dementsprechend 0,2-0,6 mg DNA. Als nächstes wird die amplifizierte DNA in Fragmenten von 200-400 bp enzymatisch fraktioniert, mit Isopropanol präzipitiert und auf niedermolekulare Zielkonzentration resuspendiert. Diese so vorbereiteten genomischen Fragmente können nun komplementär mit den Oligonukleotidsonden auf dem BeadArray hybridisieren (http://technology.illumina.com). Die Oligonukleotidsonden enden jeweils exakt ein Basenpaar vor dem zu analysierenden SNP. Durch die nun stattfindende SBE-Reaktion baut die Polymerase ein einzelnes der vier hapten-gelabelten Didesoxynukleotide ein, welches komplementär zur Ziel-DNA ist (Abb. 9). Die folgende immunohistochemische Fluoreszensmarkierung folgt einem 2-Farben Code, wobei die Nukleotide Adenin und Thymin rot, Guanin und Cytosin grün erscheinen (Steemers et al., 2006). Die Verwendung von zwei Farben schränkt die mögliche Auswahl an SNPs ein, da nur vier von sechs SNP-Gruppen verwendet werden können (A/G, T/C, A/C, und T/G) (Gunderson et al., 2006). Die verbleibenden Genotypen A/T und G/C können somit nicht mit erfasst werden. Sie machen jedoch nur einen geringen Teil der genomweiten SNPs aus und können daher vernachlässigt werden (Steemers und Gunderson, 2007).

Abb. 9 Einzelbasenpaar-Verlängerungsreaktion (single base extension)

Schritt 1): Bindung der Ziel-DNA an die komplementäre, fixierte Oligonukleotidsonde, welche ein Basenpaar vor dem zu analysierenden SNP liegt.

Schritt 2): Abhängig von der Ziel-DNA baut die Polymerase ein spezifisches markiertes Nukleotid ein, welches anhand des 2-Farben Codes (siehe oben) detektiert wird (http://technology.illumina.com/).

Ein hochauflösender Laserscanner (i-scan, Illumina) detektiert das von den eingebauten Nukleotiden ausgehende Fluoreszenssignal. Dieses wird in Abhängigkeit zur Gesamtmenge an gebundener DNA in Form von Signalintensität erfasst und vom Laserscanner in ein optisches Bildsignal umgewandelt. Für diploide Organismen werden bei biallelen Genorten drei Cluster (AA, BB und AB) (Abb. 10) erwartet.

Abb. 10 Typischer diploider Genotypisierungsplot eines spezifischen Locus

Die drei verschiedenen Cluster repräsentieren die AA, BB, bzw. AB Genotypen (GenomeStudio, Illumina).

3.9.2 In-silico Analyse der Array-Daten

GenomeStudio

Aus den Rohdaten des SNP-Arrays berechnet die Software *GenomeStudio* (Illumina) verschiedene Werte, die für die Auswertung der Daten benötigt werden. Die *B Allele Frequency* (BAF) und die *Log R Ratio* (LRR) sind die zwei relevanten Werte für die CNV-Analyse.

Die BAF beschreibt den Genotyp eines SNP-Markers einer Person. Abhängig von dem Nukleotid, das während der *single base extension* eingebaut wurde, wird ein unterschiedliches Fluoreszenzsignal emittiert. Bei einer normalen Kopienzahl (CNV=2) kann ein homozygoter Genotyp (AA/BB) vorliegen. Es wird eine hauptsächlich rote bzw. grüne Fluoreszenz detektiert. Bei einem heterozygoten Genotyp (AB) ergibt sich eine Mischfarbe. Die normalisierten Rohdaten werden zusammen mit dem Referenzdatensatz der HNR-Proben auf ein Koordinatensystem aufgetragen. Proben mit gleichem Genotyp (AA, AB oder BB) werden zu Clustern zusammengefasst. Die BAF bezeichnet die allelische Zusammensetzung eines SNPs innerhalb des Genotyp-Clusters. Sie liegt zwischen 0 und 1. Dabei hat der Genotyp AA eine BAF von 0, der Genotyp AB eine BAF von 0,5 und BB eine BAF von 1. Bei einer heterozygoten Deletion (CNV=1; Abb. 11) erwartet man durch den Verlust des zweiten Allels immer einen homozygoten Genotypen. Die BAF liegt daher bei 0 oder 1. Bei einer Duplikation (CNV=3; Abb. 12) ergeben sich mehrere mögliche Kombinationen. Die beiden homozygoten Genotypen (AAA oder BBB) führen weiterhin zu einer BAF von 0 oder 1. Bei den heterozygoten Genotypen (ABA/AAB bzw. BAB/BBA) liegt die BAF bei 0,33 bzw. 0,66.

Mit der BAF alleine kann noch keine Aussage über das Vorliegen eines CNVs getroffen werden. Dies ist erst in Kombination mit der Log R Ratio (LRR) möglich. Die LRR gibt Auskunft über die Intensität des Fluoreszenz-Signals eines Markers. Sie ergibt sich aus dem Verhältnis der gemessenen Intensität des Markers bei dem jeweiligen Patienten im Vergleich zu einer Kontrollgruppe. Entspricht die Intensität des Probenmarkers der zu erwartenden Intensität, liegt eine LRR von Null vor. Bei Patient und Kontrollgruppe liegt also die gleiche Kopienzahl vor. Ist die Intensität der Marker beim Patienten im Vergleich zur Kontrollgruppe erniedrigt, so liegt ein Wert kleiner Null vor (Deletion Abb. 11), ist sie wie bei einer Duplikation erhöht, so liegt eine LRR größer Null vor (Abb. 12).

Die Standardabweichung der LRR (Intensität Patient zu Referenz) ist ein Qualitätsmerkmal des Arrays. Proben mit einer hohen LRR weisen aufgrund des hohen Signalrauschens (*signal noise*) mehr falsch-positive CNVs auf, daher wurden Proben mit einer Standardabweichung LRR > 0,3 ausgeschlossen. Ein weiteres Qualitätsmerkmal ist die *Call Rate*. Sie gibt den prozentualen Anteil an Markern wieder, welcher während des Scanvorgangs erkannt wurde. Die *Call Rate* sollte nicht kleiner als 98% sein.

Jeder Punkt repräsentiert einen SNP. BAF: *B Allele Frequency*, LRR: Log R Ratio. Die roten Marker beschreiben den Bereich der Kopienzahlveränderung. Die BAF liegt für alle untersuchten SNPs im deletierten Bereich bei 0 oder 1. Die LRR ist sichtbar herabgesetzt (< 0).

Abb. 12 Darstellung einer heterozygoten Duplikation auf Chromosom 10 (GenomeStudio)

Jeder Punkt repräsentiert einen SNP. BAF: *B Allele Frequency*, LRR: Log R Ratio. Die roten Marker beschreiben den Bereich der Kopienzahlveränderung. Die BAF zeigt die vier verschiedenen Genotypen: BBB, BBA, BAA, und AAA, an. Die LRR ist sichtbar erhöht (> 0).

QuantiSNP

Zur Identifizierung der potentiellen CNVs wurde das Programm QuantiSNP (v2) verwendet, welches in einer vergleichenden Studie mit als bestes Detektierprogramm abgeschnitten hat (Dellinger et al., 2010; Winchester et al., 2009). QuantiSNP wurde von der Universität Oxford und dem Wellcome Trust Centre for Human Genetics entwickelt (http://www.well.ox.ac.uk/ QuantiSNP). Dem Programm liegt ein Algorithmus zugrunde, der als Hidden Markov Model bezeichnet wird (Colella et al., 2007). Hierbei werden die Wahrscheinlichkeiten, mit der ein Zustand ein bestimmtes Signal emittiert, abgebildet. Der eigentliche Zustand ist verborgen (hidden state). Dieser Algorithmus greift auf die von GenomeStudio wiedergegebene B Allele Frequency, die Log R Ratio und die chromosomale Position der entsprechenden SNPs zurück. QuantiSNP errechnet für jeden detektierten CNV den Log Bayes-Faktor (LBF), einen Wahrscheinlichkeitswert für die Echtheit des CNVs. Je höher der Wert, desto wahrscheinlicher ist die detektierte Kopienzahlveränderung echt. Die Entwickler von QuantiSNP empfehlen einen Schwellenwert von LBF=30 einzusetzen, da ab diesem Wert die Falsch-Positiv-Rate auf unter 1% sinkt (http://sites.google.com/site/quantisnp/howto). Das bedeutet, dass für alle CNVs mit einem LBF ≥ 30 die detektierte Kopienzahlveränderung mit sehr hoher Wahrscheinlichkeit auch wirklich vorliegt. Da dadurch jedoch das Auflösungsvermögen verringert wird, wurde in dieser Arbeit der LBF auf bis zu \geq 10 herabgesetzt. Alle CNVs wurden daraufhin validiert, um mögliche falsch-positiv detektierte CNVs zu entfernen.

3.9.3 <u>Filterkriterien der CNV-Analyse</u>

Aufgabe dieser Arbeit war es, seltene, hochpenetrante CNVs, welche als krankheitsverursachend für den Phänotyp einzustufen sind, zu ermitteln. Um diese aus der

Gesamtzahl der detektierten CNVs ausfindig zu machen, wurden stringente Filterkriterien angewandt. Die ersten vier Filterschritte sind technischer Natur. Die Filterschritte 5-8 dienen einer ersten Beurteilung der CNVs bezüglich ihrer ätiologischen Relevanz.

1. Qualitätskontrolle

Die Standardabweichung der *Log R Ratio* beschreibt die Abweichung der Intensität des Probensignals bei einem Patienten im Vergleich zur Referenz. Für sie wurde ein Schwellenwert von $\leq 0,3$ festgelegt. Alle Patienten mit einer Standardabweichung *Log R Ratio* größer 0,3 wurden aus der Analyse ausgeschlossen. Die *Call Rate* bezieht sich auf den Anteil aller detektierten Marker. Es wurden nur Patienten eingeschlossen, deren *Call Rate* größer oder gleich 98% betrug.

2. Länge der CNVs ≥ 10 kb

Es wurden nur CNVs mit einer Größe ab 10 kb in die Analyse eingeschlossen. Dies hat vor allem technische Gründe. Kleinere CNVs sind mit dem verwendeten Array aufgrund der vorhandenen Auflösung (mittlerer Abstand der SNP-Marker 4 kb) schwierig zu detektieren. Zudem ist die Rate an falsch-negativen Befunden aufgrund der geringen SNP-Abdeckung in diesem Bereich sehr hoch.

3. Anzahl konsekutiver SNP-Marker ≥ 5

Um die Anzahl an falsch-positiven CNVs weiter einzuschränken, wurden nur CNVs berücksichtigt, bei denen die Kopienzahlveränderung anhand von mindestens fünf konsekutiven SNP-Markern detektiert wurde.

4. Log Bayes Faktor $\geq 10 / \geq 20$

Der Log Bayes Faktor (LBF) ist das von QuantiSNP errechnete Wahrscheinlichkeitsmaß für die Echtheit eines detektieren CNVs (Kap. 3.9.2). Für diese Arbeit wurde ein LBF von ≥ 10 für Deletionen und ≥ 20 für Duplikationen ein LBF gewählt. Dieser Wert wurde im Laufe dieser Arbeit empirisch ermittelt. Begonnen wurde mit einem LBF von ≥ 30 . Anschließend wurde der Wert in Zehnerschritten herabgesetzt, um weitere, möglicherweise relevante CNVs mit einzubeziehen. Bei den Duplikationen mit einem LBF ≤ 20 zeigte sich jedoch, dass diese häufig nicht mehr verifiziert werden konnten, daher wurde der LBF 20 für Duplikationen auf \ge gesetzt, während bei Deletionen ein LBF von ≥ 10 möglich war. Alle CNVs unterhalb dieser Schwelle wurden nicht analysiert.

5. Ausschluss von häufigen putativen CNVs

Um Array-spezifische Artefakte als auch in der Population häufige CNVs auszuschließen, wurden die Patienten-CNVs mit den CNVs von 1320 *In-House* (HNR)-Kontrollen verglichen. Die Kontroll-DNA wurden hierzu auf dem gleichen SNP-Array (HumanOmniExpress-12, Illumina) wie die Patienten-DNA genotypisiert. Die CNVs der Patienten und Kontrollen wurden nach den oben beschriebenen Schritten 1 - 4 gefiltert. Deletionen und Duplikationen wurden getrennt voneinander verglichen. Es wurden alle CNVs, die mindestens drei Mal (\geq 3x) in den Kontrollen auftraten (Frequenz \geq 0,2%), herausgefiltert. Diese Frequenz wurde entsprechend des Auftretens von HNPCC und LS in der Allgemeinbevölkerung, etwa 1/500 (Steinke et al., 2013), gewählt.

6. Ausschluss von CNVs in nicht-proteinkodierenden Genen

CNVs in proteinkodierenden Genbereichen wurden über die *RefSeq*-Gen-Annotation (Pruitt et al., 2007) des *UCSC Genome Browsers* ermittelt. CNVs, die lediglich olfaktorische Gene und Pseudogene enthielten, wurden von der Analyse ausgeschlossen. Ebenso CNVs in nicht-kodierenden Bereichen, mit Ausnahme von intronischen Gen-Regionen. Als weitere Ausnahme wurde zusätzlich nach potentiell cis-regulatorischen Elementen von *MSH2* gesucht. Weit entfernte *long-range* cis-regulatorische Elemente können bis zu 1,5 Mb entfernt vom Zielgen liegen und seine Expression regulatorisch beeinflussen (Epstein, 2009). Für die Suche nach CNVs in cis-regulatorischen Bereichen von *MSH2* wurde daher der Chromosomenbereich 1,5 Mb vor und nach *MSH2* (chr2:47.580.206-47.760.367) mit eingeschlossen.

7. Ausschluss von CNVs in Bereichen segmentaler Duplikationen

Segmentale Duplikationen sind definitionsgemäß genomische Regionen > 1 kb mit 90-98%iger Sequenzidentität. Durch die hohe Sequenzidentität ist es schwierig, eine ausreichend hohe spezifische Markerabdeckung zu erreichen, dort detektierte CNVs sind meist Artefakte. Da in diesen Regionen auch Primer nicht spezifisch binden, ist eine Validierung aufwändig und teils unmöglich. Des Weiteren sind die meisten Gene, welche in Bereichen segmentaler Duplikationen lokalisiert sind, selten kopienzahlsensitiv und somit nicht krankheitsverursachend. Aus diesen Gründen wurden CNVs, welche größtenteils von Bereichen segmentaler Duplikationen betroffen waren, ausgeschlossen.

8. Filtern gegen die Database of Genomic Variants

Die Database of Genomic Variants (DGV) (dgv.tcag.ca/) (MacDonald et al., 2014) umfasst eine Datenbank humaner genomischer Kopienzahlvarianten, die bei gesunden Kontrollpersonen identifiziert wurden. Sie ermöglicht damit einen umfassenden Vergleich der in dieser Studie ermittelten CNVs mit denen der Allgemeinbevölkerung hinsichtlich Ausdehnung und Frequenz. Es wurden alle CNVs aus unserer Analyse ausgeschlossen, welche in der DGV mit einer Frequenz von größer 0,2% und/oder bei mindestens 3 Personen beschrieben wurden. Es wurden hierfür in der DGV nur Studien berücksichtigt, welche die Kopienzahlveränderungen mittels Oligo-Array-CGH oder SNP-Array detektiert hatten. Der in dem CNV enthaltene Genbereich musste vollständig von dem CNV der Vergleichsstudie abgedeckt sein, um ausgeschlossen zu werden. Deletionen wurden getrennt von Duplikationen verglichen.

9. Validierung der CNVs

Die Software *GenomeStudio* bietet die Möglichkeit, alle CNVs zu visualisieren und zu analysieren. Durch diese optische Beurteilung kann eine erste Einschätzung der Validität der berechneten CNVs vorgenommen werden. Abb. 11 und Abb. 12 zeigen eine beispielhafte Darstellung einer Deletion und Duplikation im GenomeStudio. Alle CNVs mit Ausnahme vereinzelter, sehr großer CNVs mit einem LBF > 60, wurden zusätzlich per qPCR validiert. Alle für die qPCR verwendeten Primer sind in Tab. A.1 und Tab. A.2 aufgelistet.

10. Priorisierung der CNVs

Die gefilterten CNVs wurden in zwei parallelen Schritten weiter priorisiert. Das erste Kriterium berücksichtigte die Art der Mutation (Deletion/Duplikation, komplett/partiell/intronisch) zusammen mit der Genfunktion. Für die Beschreibung der Genfunktion wurden die PubMedund die GeneCards-Datenbank herangezogen. Hierbei wurden Gene, welche hinsichtlich der bekannten Funktion in einem möglichen Zusammenhang zur Tumorentwicklung stehen (Onkogen/Tumorsuppressorgen) bzw. in relevante onkologische Signalwege involviert sind, ausgewählt. Die beschriebene Genfunktion musste mit dem zu erwartenden Effekt (*gain of Function/Loss of Function*) übereinstimmen.

Das zweite Kriterium berücksichtigte, welche der 76 Gene sensitiv auf den Verlust eines Allels reagieren, bzw. intolerant gegenüber trunkierenden Mutationen sind. Dafür wurden zwei Scores, der Haploinsuffizienz- (HI) und der Intoleranz (*Residual Value of Intolerance Score*,

RVIS)-Score, herangezogen. Niedrige Scores stehen hierbei für haploinsuffiziente bzw. variantenintolerante Gene. Die Schwelle wurde auf \leq 35% für den HI-Score und auf \leq 25% für den RVIS-Score gesetzt. Dies entsprach den 10% aller detektierten Gene mit den niedrigsten Scores. Die Scores lassen sich nur auf Deletionen oder partielle Duplikationen mit einem vermuteten LoF-Effekt anwenden. Komplette Gen-Duplikationen, bei denen man von einem *gain of function* ausgeht, können nicht bewertet werden.

Weitere Bewertungskriterien waren zum einen das Vorkommen von somatischen Mutationen in diesen Gene bei Adenokarzinomen des TCGA (*The Cancer Genome Atlas*). Interessant waren solche Gene, die somatische Mutationen \geq 3% der 295 nicht-hypermutierten Adenokarzinome aufwiesen. Die hypermutierten Tumordaten wurden ausgeschlossen, um die Daten gegen *Passenger*-Mutationen zu korrigieren. Zum anderen wurde untersucht, ob die CNV-Gene laut Daten des UniGene Est-Profiles (NCBI) in Darmschleimhaut exprimiert werden.

3.9.4 Quantitative PCR

Die quantitative PCR (qPCR) ist eine etablierte Methode der Validierung von CNVs. Von der Methodik her unterscheidet sich die qPCR nur unwesentlich von einer herkömmlichen PCR. Ein wichtiges Unterscheidungsmerkmal ist der Einsatz von Fluoreszenzfarbstoffen zum Reaktionsgemisch, deren Fluoreszenzsignal proportional zur Konzentration des PCR-Produkts ist. Während der PCR-Reaktion wird der Anstieg des Fluoreszenzsignals konstant gemessen. Der Eintritt in die Exponentialphase in Relation zur Anzahl der gelaufenen PCR-Zyklen ist bedeutend für die Ermittlung der Menge des Produkts (Klein 2002, Kubista et al., 2006).

Als Farbstoff wurde Power SYBR[®]-Green I (Applied Biosystems), ein asymmetrisches Cyanin, eingesetzt. Es interkaliert unspezifisch in doppelsträngige DNA, in geringerem Maße aber auch in einzelsträngige DNA und RNA. Die Verwendung von Power SYBR[®]-Green I bietet, im Vergleich zu fluoreszierenden TaqMan-Sonden, den Vorteil einer einfachen und kostengünstigen Anwendung. Ein Nachteil ist jedoch, dass auch Nebenprodukte und RNA-Verunreinigungen mitdetektiert werden. Um dies zu vermeiden, muss bei der qPCR auf besondere Reaktionsbedingungen (s. u.) sowie auf möglichst spezifische Primer geachtet werden. Die Schmelzkurvenanalyse gibt Aufschlüsse über vorhandene mitamplifizierte Nebenprodukte (Klein, 2002). Werden mehrere Peaks detektiert (Abb. 13A), muss die qPCR unter veränderten Bedingungen wiederholt werden.

Abb. 13 Beispiel für Schmelzpunktkurven der PCR-Produkte.

A zeigt die Schmelzpunktkurve eines unspezifischen PCR-Produktes neben dem Hauptprodukt. B zeigt den idealen Kurvenverlauf mit nur einem signifikanten Peak.

Reaktion

Jeder Reaktionsansatz enthält DNA-Triplikate von vier gesunden Kontrollen und die Patienten-DNA, jeweils in einer Konzentration von 10 ng/µl. Für jede Zielregion wurden, je nach Größe des Bereichs, zwei bis drei Primerpaare verwendet. Neben der Zielregion werden auch drei interne Kontrollbereiche in so genannten Housekeeping genes (HKG) mit amplifiziert. Diese Gene werden ubiquitär exprimiert und liegen üblicherweise mit normaler Kopienzahl (CNV = 2) vor. Hier wurden die drei Gene *BNC1* (basonuclin1), *CFTR* (cystic fibrosis transmembrane conductance regulator) und *RPP38* (ribonuclease P/MRP 38kDA subunit) verwendet. Das qPCR-Programm und der Reaktionsansatz sind in Tab. 11 und Tab. 12 dargestellt. Die PCR-Läufe wurden auf dem VIIATM 7 Real-Time PCR System, Applied Biosystems durchgeführt.

Tab. 11 qPCR Programm

	Temperatur in °C	Zeit in Minuten	Wiederholung
	50	2:00	
Initiale Denaturierung	95	10:00	
Denaturierung	95	0:15	
Primer-Anlagerung mit	60	1.00	40 Mal
Sequenz-Elongation	00	1.00	
Endkühlung	8-15	8	

Tab. 12 qPCR Reaktionsansatz

	Volumen
DNA [10ng/µl]	2 µl
Power SYBR [®] Green I	5 µl
F-Primer [50pmol/ μl]	0,4 μl
R-Primer [50pmol/ µl]	0,4 μl
destillierte H ₂ 0	2,2 μl
Gesamtvolumen	10 µl

Berechnung: 2^{-∆∆t}-Methode

Nach der PCR werden anhand des gemessenen Fluoreszenzsignals die CT-Werte (Cycle Threashold) für jede Position auf der Platte wiedergegeben. Der CT-Wert beschreibt die Anzahl an Zyklen, bei welcher das Signal einen festgesetzten Schwellenwert überschreitet und die Reaktion in die Exponentialphase übergeht (Abb. 14) (Kubista et al., 2006).

Abb. 14 qPCR Reaktionskurve

Dieser Wert gilt als Maß für die Konzentration der Ziel-DNA in der PCR-Reaktion. Der CT-Wert reagiert sehr sensibel auf äußere Einflüsse, wie eine veränderte Zielkonzentration (erwünscht), als auch Unterschiede im Reaktionsansatz, dem verwendeten Instrument und dem pH-Wert der Lösung (unerwünscht). Daher wird jeder Messwert gegen alle drei internen Kontrollen (HKG) normalisiert. Durch Subtraktion des CT-Werts der internen Kontrolle (HKG) von der Zielsequenz (Z) erhält man den Δ CT-Wert (Δ CT=CT_Z-CT_{HKG}). Aus allen drei Δ CT-Werten wird der Mittelwert gebildet.

Im nächsten Schritt wird der $\Delta\Delta$ CT-Wert berechnet, indem man von dem Mittelwert der Δ CT-Differenzen des untersuchten Patienten (P) den Δ CT-Mittelwert einer gesunden Referenzperson (R) subtrahiert. Jeder Wert wird in Bezug zu allen vier Patienten gesetzt ($\Delta\Delta$ CT= Δ CT_P- Δ CT_R).

2^{-ΔΔCT} gibt die Anzahl an DNA-Zielabschnitten in der qPCR nach Normalisierung mit einer endogenen Kontrolle (HKG) und in Relation zu jeder der vier Referenzpersonen (R) wieder. Die

Multiplikation 2 x $2^{-\Delta\Delta CT}$ zeigt die relative Kopienzahl des gesuchten DNA-Abschnitts im Genom des Patienten an (Livak und Schmittgen, 2001).

3.9.5 Segregationsanalyse

Dort wo DNA von betroffenen Familienangehörigen verfügbar war, wurde überprüft, ob der ermittelte CNV co-segregiert. Hierfür wurde eine qPCR bei dem betroffenen Familienangehörigen durchgeführt. Der Index-Patient diente hierbei als Positiv-Kontrolle. Es wurden dieselben Primer wie zur Validierung des CNVs verwendet.

3.9.6 Pathway-Analyse

Eine Pathway-Analyse wurde mit einer webbasierten Software (Ingenuity Pathway Analyse) durchgeführt. Hierfür wurden alle CNV-Gene gemeinsam mit 38 relevanten CRC-Kandidatengenen (Tab. 1.1.1.1F) hochgeladen, um nach einer zufälligen Häufung der identifizierten Kandidatengene in bestimmten Signalwegen zu suchen oder Gene zu identifizieren, die mit bekannten onkologischen Signalwegen assoziiert sind und damit für die Pathogenese der Erkrankung eine mögliche Rolle spielen. Alle Pathways mit einem p-Wert \leq 0,05 wurden in Betracht gezogen.

3.9.7 Netzwerk-Analyse

Für die Suche nach funktioneller Assoziation zwischen MSH2 und den Proteinen der CNV-Analyse wurde eine "STRING"-Abfrage durchgeführt. Diese Datenbank verwendet bekannte und prognostizierte Assoziationen zwischen Proteinen und basiert auf *genomic context* Analysen, Hochdurchsatz-Untersuchungen, Co-Expressionsdaten und Algorithmus-basierten Analyseverfahren (Franceschini et al., 2013).

3.10 Next-Generation-Sequencing

Das Next-Generation-Sequencing (NGS) bietet die Möglichkeit, große DNA-Bereiche in kurzer Zeit zu sequenzieren und Punktmutationen sowie kleine Deletionen und Duplikationen (*Indels*) aufzuspüren. Für den vorliegenden Zweck wurde über die webbasierte Illumina-Software *DesignStudio* ein *Customized targetet NGS Panel* mit 104 ausgewählten Genen erstellt. Dieses individuelle *Custom-Panel* umfasst die 66 interessantesten Kandidategene aus der CNV-Analyse sowie weitere 38 Gene aus der Literatur, die bereits im Zusammenhang mit einem erhöhten Darmkrebsrisiko beschrieben wurden. Um die Sequenzierreaktion zu starten, bedarf es zunächst manueller Vorbereitung der DNA. Hierbei wurde das Nextera Rapid Capture Enrichment-Protokoll angewandt.

3.10.1 Nextera Rapid Capture Enrichment

Das dreitägige Nextera Rapid Capture Enrichment-Protokoll umfasst 14 Arbeitsschritte. In einem Lauf können die DNA-Proben von bis zu zwölf Patienten gleichzeitig angereichert werden. Die eingesetzte genomische DNA (50 ng) wird gleichmäßig fragmentiert und mit universellen Adaptern (*nextera transposomes*) ligiert. Nach dem ersten Amplifizierungsschritt werden die Fragmente mit unterschiedlichen Indizes versehen. Diese wurden den Personen zuvor zugeteilt und ermöglichen später eine automatische Zuordnung der Sequenzen nach dem Lauf. Nach diesem Schritt können die zwölf verschiedenen DNA-Proben in einem Probengefäß weiterverarbeitet werden (*pooling*). Weitere Amplifizierungs- und (beheizte) Waschschritte folgen, um eine *sample-library* mit hoher Spezifität und Reinheit zu erhalten. Nach der letzten Konzentrations- (Qubit[®], Life Technologies) und Fragmentlängenmessung (Bioanalyzer, Agilent Technologies) wird die Probe auf eine finale Endkonzentration von 6-8 pM verdünnt, mit NaOH dehybridisiert und auf das Sequenziergerät (MiSeq 2000, Illumina) geladen.

Reaktion (bridge amplification und SBS-Reaktion)

Die vorpräparierten Zielbereiche werden maschinell auf die *flow cell* (Durchflusszelle) transferiert. Diese Mikroglasplatte mit 8-Kanälen ist der Ort, wo die eigentliche Sequenzierreaktion stattfindet. Auf ihrer Oberfläche befinden sich mehrere Millionen Oligonukleotide. Diese Oligonukleotide sind komplementär zu den ligierten Adaptersequenzen der Fragmente und hybridisieren mit diesen. Die gebundenen Fragmente werden durch eine Brückenbildung auf der *flow cell*-Oberfläche amplifiziert (*bridge Amplification*). Es wird ein dichtes Cluster von einer Million Kopien des Originalfragments gebildet. Diese Million von Clustern werden basierend auf dem Prinzip des *sequencing by synthesis* auf der *flow cell*-Oberfläche parallel sequenziert (Abb. 15).

Abb. 15 Illumina sequenzing-by-synthesis

Fragmentierte, genomische DNA wird mit spezifischen Adaptern von beiden Seiten ligiert. Einzelsträngige Fragmente hybridisieren mit Oligos auf der *flow cell*-Oberfläche. Durch die Brücken-Amplifizierung mit unmarkierten Nukleotiden wird ein dichtes Netz von Clustern erhalten. Anschließend erfolgt die Sequenzierreaktion (Mardis, 2008).

Jeder Zyklus gliedert sich dabei wie folgt: Alle vier fluoreszenzmarkierten Nukleotide werden simultan auf die *flow cell* aufgebracht. Die DNA-Polymerase baut eines der vier Nukleotide ein. Durch die Kompetition der Nukleotide untereinander wird der Einbau einer falschen Base minimiert. Eine Schutzgruppe, welche die 3'OH-Stelle des Nukleotids blockiert, verhindert die Anlagerung weiterer Nukleotide. Es folgt die Signalintensitätsmessung des Fluorophors der eingebauten Base. Über die Fluoreszenz wird in einem nun nachfolgenden bildgebenden Schritt die eingebaute Nukleinsäure erfasst und anschließend werden der Fluorophor sowie die Schutzgruppe chemisch entfernt (reversible Terminator Chemie, RTC, Abb. 16).

Abb. 16 Reversible Terminator-Chemie (RTC)

Bei jedem Zyklus wird ein fluoreszenzmarkiertes Desoxynukleotid (dNTP) eingebaut. Nach der Detektion erfolgt die Entfernung des Fluorophors und der Schutzgruppe (http://www.illumina.com).

Die entsprechende Base wird direkt über die Signalintensitätsmessungen des Fluorophors während jedes Zyklus erfasst (*base call*). Der *Base-Call-Algorithmus* ordnet die Sequenzen einander zu. Alle überschüssigen Desoxynukleotide und DNA-Polymerasen werden weggewaschen und ein neuer Zyklus beginnt. Bei einer *paired-end read* (Ansequenzierung von beiden Seiten) von 150 bp wird dieser Zyklus insgesamt 300 Mal wiederholt. Eine integrierte Qualitätsprüfung wertet die Daten von jedem Lauf aus und entfernt automatisch Sequenzen, die der Referenzsequenz nicht zugeordnet werden konnten (Mardis, 2008).

3.10.2 Bioinformatische Datenanalyse

Nach der Sequenzierreaktion werden die kurzen DNA-Fragmente (*reads*) an einer Referenzsequenz ausgerichtet. Dieser Prozess des *Alignments* ist essentiell für das Ermitteln von Varianten in der Probensequenz (Ruffalo et al., 2011). Durch das Alignment werden *fastąfiles* generiert, die dann in *BAM-files* konvertiert werden können. Anhand der *BAM-files* findet darauffolgend die eigentliche Identifizierung der genetischen Varianten (*variant calling*) statt. Hierfür wird nur die in der Manifest-Datei hinterlegte Zielregion berücksichtigt. Die Daten werden in generierten *VCF-files* gespeichert.

3.10.3 Varianten-Filterung

Die nach dem Lauf detektierten Varianten wurden mit dem *VariantStudio* (Illumina) weiter gefiltert. Die ersten drei Filterschritte zielen darauf ab, Artefakte aus der Analyse auszuschließen. In den anschließenden Schritten (4 und 5) sollen seltene und mutmaßlich pathogene Varianten herausgefiltert werden.

1. Qualität (Q > 30)

Die Qualität der Varianten, bezogen auf die Wahrscheinlichkeit, eine falsche Base ermittelt zu haben, wird in logarithmischen Q-Scores angegeben. Ein Q-Score von 30 bedeutet eine Wahrscheinlichkeit von 1 zu 1000, eine falsche Base zu ermitteln. Hier wurde ein Q-Score von > 30 gewählt. Somit liegt die Wahrscheinlichkeit, eine falsche Base ermittelt zu haben, bei < 0.1%.

2. Sequenziertiefe (Read Depth) (> 10)

Die *read depth* entspricht der Abdeckung einer bestimmten Position und beschreibt, wie häufig diese von einzelnen *reads* sequenziert wurde. Es wurden nur Bereiche mit einer *read depth* > 10 ausgewertet, da die Berechnung von Varianten bei einer niedrigen *read depth* zu einer hohen falsch-positiv Rate führt.

3. Anteil mutierter Reads (> 10%)

Der Anteil mutierter Reads beschreibt das Verhältnis mutierter zu nicht-mutierter Reads (Wildtyp). Da bei einer großen Zahl mutierter Reads von einem falsch-positiven Ergebnis auszugehen ist, wurde der Anteil mutierter Reads ≤ 10% nicht bewertet.

4. Allelfrequenz (< 0,01% dominantes Modell, < 1% rezessives Modell)

Ausgehend von einem dominanten Modell wurden nur potentiell hochpenetrante, seltene Varianten, die mit einer Allelfrequenz < 0,01% in der Allgemeinbevölkerung auftreten, berücksichtigt. Für die Bestimmung der Allelfrequenz der Varianten wurden drei verschiedene Browser herangezogen (ExAC; 1000 Genomes; EVS), die auf weltweite Kollektive zurückgreifen. Für die Suche nach Varianten, die einem rezessiven Vererbungsmodell folgen könnten und daher als heterozygote Varianten häufiger in der Allgemeinbevölkerung vorkommen, wurde die Allelfrequenz auf < 1% erhöht.

5. Abschätzung der relativen Pathogenität der Varianten

Zur Abschätzung der relativen Pathogenität aller Arten von Punktmutationen oder kleinerer Indels wurde der "skalierte C-Score" angewandt (Kircher et al., 2014). Er vereint verschiedene Annotationen aus Daten zur Konservierung, Genregulation, Transkription und Scores, die die Funktionalität der Variante auf Protein-Ebene abschätzen (SIFT und PolyPhen), zu einem einzigen Score. Er basiert auf dem Prinzip des "kombinierten annotationsabhängigen Verlusts" (*Combined Annotation Dependent Depletion,* CADD). Für die Berechnung der CADD wurden 14,7 Millionen Allele aus Daten des *ENCODE-Projects* (Consortium, 2012) mit simulierten 8,6 Milliarden möglichen Varianten berücksichtigt. Die daraus abgeleiteten C-Scores vereinen Informationen zur Alleldiversität, Funktionalität, Pathogenität, Schwere der daraus entstehenden Erkrankung sowie experimentell ermittelte regulatorische Effekte und komplexer Assoziationen. Der C-Score gibt die "Schädlichkeit der Varianten" (*deleteriousness*) wieder.

Für die einfache Interpretation wurde aus den ermittelten C-scores *phred-like scores* (scaled C-scores) definiert. Jede Variante wurde dabei in Relation zu allen 8,6 Milliarden möglichen SNVs betrachtet und einem Wert von 1 - 99 zugeordnet. Werte mit einem skalierten, logarithmischen C-Score > 10 beziehen sich auf die höchsten 10% der C-Scores (-10log₁₀) und somit der am unwahrscheinlichsten zu beobachtenden Allele. Werte > 20 bezeichnen die höchsten 1% und Werte von > 30 bezeichnen die höchsten 0,1% unter allen C-Scores (Kircher et al., 2014). In die Auswertung mit einbezogen und als mutmaßlich schädlich definiert wurden alle Varianten mit einem log C-Score = CADD-Score von \geq 20.

Für die Einordnung von Missense-Varianten in MMR-Genen wurde zudem die Pathogenitätseinschätzung nach dem 5-Klassen-System des Variant Interpretation Committees (VIC) der International Society for Gastrointestinal Hereditary Tumors (InSiGHT) verwendet (http://www.insight-group.org) (Plazzer et al., 2013; Thompson et al., 2013). Sie basiert auf einer Kombination klinischer, familiärer, genetischer und laborchemischer Daten sowie den Ergebnissen funktioneller Tests. Anhand einer auf diesen Daten beruhenden Wahrscheinlichkeitsberechnung werden die Varianten einer von fünf Pathogenitätsklassen zugeordnet (Plon et al., 2008) (Tab. 13).

Klasse	Definition	Wahrscheinlichkeit Pathogenität
1	nicht pathogen/ keine klein. Signifikanz	0-0,1%
2	wahrscheinlich nicht pathogen / geringe klinische Signifikanz	0,1-5%
3	Varianten unklarer funktioneller Signifikanz (VUS)	6-94%
4	wahrscheinlich pathogen	95-99%
5	pathogen	99-100%

Tab. 13 Pathogenitätsklassen nach Plon et al.,2008

Varianten der Klasse 1 und 2 (nicht pathogen/wahrscheinlich nicht pathogen) wurden nicht berücksichtigt. Varianten der Klasse 4 und 5 der MMR-Gene wurden als pathogen betrachtet. Wurden bei Probanden im Laufe der Arbeit solche pathogenen Mutationen in MMR-Genen detektiert, galten diese Fälle als aufgeklärt und sie wurden von der weiteren Suche nach neuen Ursachen des LS ausgeschlossen. Die Varianten unklarer funktioneller Relevanz (*Variants of Unknown Significance,* VUS) bilden die Klasse 3. Sie wurden als "möglicherweise pathogen" betrachtet und in den Ergebnissen dargestellt. Missense-Mutationen werden zum Großteil der Pathogenitätsklasse 3 zugeordnet. Da die Pathogenität von Missense-Mutationen häufig nicht klar bestimmt werden kann, stellen sie eine Herausforderung bei der Interpretation genetischer Varianten der MMR-Gene dar.

6. Validierung der gefilterten Varianten

Der Integrative Genome Viewer (IGV) diente der optischen Vorvalidierung der Varianten (Robinson et al., 2011). Hierfür werden die generierten BAM-files verwendet. Abb. 17 zeigt die IGV-Darstellung einer Missense-Mutation auf Chromosom 5. Die G>A-Transition liegt mit einem Anteil mutierter reads von 50% vor.

Abb. 17 Darstellung einer Missense-Mutation (G>A) auf Chromosom 5 im IGV

Alle relevanten Varianten nach Filterschritt Nr. 4 wurden zusätzlich mittels Sanger-Sequenzierung bestätigt.

4 Ergebnisse

4.1 Keimbahnmutationsanalyse

4.1.1 Voruntersuchungen und Ausschluss von Patienten mit ursächlichen

<u>Mutationen</u>

Bei allen Patienten mit klinischem Verdacht auf Vorliegen eines LS war nach bestätigtem Ausfall von MSH2/MSH6 im Tumorgewebe vor Durchführung dieser Studie bereits eine Mutationssuche durchgeführt worden. Die Mutationssuche zielte auf die pathogenen Punktmutationen und großen Deletionen/Duplikationen in *MSH2* und *MSH6* sowie auf eine Deletionsanalyse der letzten beiden Exons des *EPCAM*-Gens ab. Diese Keimbahn-Untersuchungen wurden an der Leukozyten-DNA der Patienten vorgenommen. Alle 95 Patienten ohne ursächliche Mutation wurden in diese Arbeit aufgenommen.

Bei 25 Patienten, die vor 2010 rekrutiert worden waren, erfolgte die Suche nach pathogenen Punktmutationen mit dem damals gebräuchlichen DHPLC-Screening-Verfahren und anschließender Sanger-Sequenzierung der auffälligen Exons. Diese heute in der Regel nicht mehr eingesetzte Methode ist aber weniger sensitiv als die direkte Sequenzierung des kompletten Gens. Aus diesem Grund wurde im Rahmen dieser Studie eine ergänzende Sanger-Sequenzierung des kompletten *MSH2-* und *MSH6-*Gens durchgeführt. Durch diese Vorgehensweise wurden vorher nicht detektierte pathogene *MSH2-* und *MSH6-*Keimbahnmutationen bei sieben der 25 Patienten identifiziert (Tab. 14) (Primer siehe Anhang Tab. B.1 und Tab. B.2).

Gen	Patienten-ID	IHC-Befund	Mutation	Konsequenz			
MSH2	HNPCC_09	MSH2*	c.1276+1G>A	aberrantes Spleißen			
MSH6	HNPCC_12	MSH2/MSH6	c.467C>G	p.Ser156Ter			
MSH2	HNPCC_13	MSH2/MSH6	c.942+3A>T	aberrantes Spleißen			
MSH2	HNPCC_14	MSH2*	c.942+3A>T	aberrantes Spleißen			
MSH6	HNPCC_15	MSH2/MSH6	c.1190_1191delAT	p.Tyr397CysfsX3			
MSH2	HNPCC_16	MSH2/MSH6	c.1165C>T	p.Arg389Ter			
MSH6	HNPCC_17	MSH2/MSH6	c.3261dupC	p.Phe1088Leufs*5			
* MSH6 nicht unt	* MSH6 nicht untersucht						

Tab. 14 Nachträglich identifizierte pathogene MSH2-/MSH6-Mutationen des Kollektivs

Neun Patienten des Gesamtkollektivs wiesen Varianten unklarer klinischer Signifikanz (VUS) (InSiGHT Klasse 3) in *MSH2* oder *MSH6* auf. Im Laufe der Analyse wurde bei vier Patienten mit unklaren Varianten eine Hochstufung dieser VUS auf Klasse 4 (wahrscheinlich pathogen) oder Klasse 5 (erwiesenermaßen pathogen) vorgenommen. Diese vier Patientenfälle gelten demnach ebenfalls als aufgeklärt. Bei einem weiteren Patienten bestand nach erneuter Aktensichtung eine MUTYH-assoziierte Polyposis; anschließend wurden biallele Keimbahnmutationen im *MUTYH*-Gen identifiziert (siehe Kap. 4.2 Differentialdiagnosen).

Die Daten dieser insgesamt 12 Patienten, für die nachträglich eine genetische Ursache der

Erkrankung gefunden wurde, wurden aus dem Datensatz entfernt. Folglich standen noch 83

Patienten für die Suche nach neuen genetischen Ursachen für das LS zur Verfügung.

4.1.2 <u>Untersuchung seltener Ursachen eines MSH2-Ausfalls</u>

Zur Suche nach weiteren in der Literatur beschriebenen Veränderungen, die mit einem MSH2-Ausfall einhergehen, wie z.B. intronische *MSH2*-Mutationen, *MSH2*-Inversionen und Mutationen des *MSH2*-Promotors, führten wir im Rahmen eines Kooperationsprojektes mit der Humangenetik der Ludwig-Maximilians-Universität München und des Medizinisch Genetischen Zentrums München ergänzende Untersuchungen durch. Eingeschlossen wurden hierfür 84 HNPCC-Patienten, davon 52 aus diesem Kollektiv (Primer Tab. C.1 und Tab. C.2 im Anhang). Die beschriebene intronische *MSH2*-Mutation sowie die 10 kb große *MSH2*-Inversion zwischen Exon 1 und 7 wurde bei keinem der Patienten gefunden. Einer der Patienten wies eine unklare Variante (c.-82G>C) in der *MSH2*-Promotorregion auf.

4.1.3 Kandidatengensequenzierung des Proteasom-Signalwegs

Der Proteasom-Signalweg beeinflusst unter anderem den Abbau von MSH2 in den Zellen. Somatische Deletionen der beteiligten Gene können in bestimmten Tumoren eine Degradierung von MSH2 herbeiführen (Diouf 2012). Als Pilotprojekt vor der CNV- und NGS-Analyse erfolgte deshalb eine Sanger-Sequenzierung der kodierenden Bereiche von vier Genen des Proteasom-Signalwegs *(HERC1, MTOR, PIK3C2B* und *PRKCZ)*. Hierbei sollte untersucht werden, ob auch Keimbahnmutationen dieser vier Gene über den beschriebenen Interaktionsmechanismus zum MSH2-Ausfall in unserem Patientenkollektiv geführt haben könnten. Die Sequenzierung der vier Gene wurde an fünf nicht-verwandten Patienten (HNPCC_20; HNPCC_24; HNPCC_26; HNPCC_40 und HNPCC_41) mit besonders auffälliger Eigen- und Familiengeschichte durchgeführt.

Hierbei wurde lediglich bei einem Patienten (HNPCC_24) eine Missense-Variante in *PRKCZ* (c.520G>A;p.Gly174Ser) entdeckt. Diese Variante wird laut Exome Aggregation Consortium (ExAc) als seltene Variante geführt (MAF 0,048%) Der CADD-Score liegt bei 23. Er gehört damit zu den höchsten 1% aller ermittelten C-Scores und ist damit als potentiell schädlich anzusehen (vgl. Kap. 3.10.3 Varianten-Filterung "5. Abschätzung der Pathogenität") (Primer siehe Anhang Tab. D.1. bis Tab. D.4).

4.2 Differentialdiagnosen

Bei allen Patienten des Bonner Kollektivs wurde nach biallelen *MUTYH*-Mutationen und nach pathogenen *POLE*- und *POLD1*-Mutationen gesucht, um der klinischen Differentialdiagnose einer MAP bzw. PPAP nachzugehen.

Bei einem Patienten wurden zwei wahrscheinlich biallele *MUTYH*-Keimbahnmutationen detektiert, sodass der hochgradige Verdacht auf Vorliegen einer MUTYH-assoziierten Polyposis (MAP) besteht (Tab. 15).

Vier unterschiedliche heterozygote Missense-Varianten in *POLE* wurden bei vier Patienten detektiert. Die CADD-Scores liegen zwischen 26 und 35, was für eine Pathogenität dieser

Varianten spricht. Keine der Mutationen befand sich jedoch in der Exonuklease-(Proofreading) Domäne des Proteins, die bisher als verantwortlich für die Ausbildung des Phänotyps gilt (Tab. 15).

Gen	Patienten- ID	Variante	vermutete Konsequenz	CADD- Score	HI- Score; RVIS %	ExAC MAF
		c.504+19_31del13	aberrantes Spleißen	_	64:54	_
WOTTH	INT CC_50	c.1012C>T	p.Gln335X		04, 34	
POLE	HNPCC_23	c.2770C>T	p.Arg924Cys	34		0,002%
POLE	HNPCC_37	c.274A>C	p.Ser92Arg	28	11. 2	0,006%
POLE	HNPCC_52	c.4709G>A	p.Arg1570Gln	35	11, 5	-
POLE	HNPCC_65	c.5492T>C	p.Leu1831Pro	26		0,002%

Tab. 15 Missense Mutationen in MUTYH und POLE

4.2.1 Somatische Mutationen

Das Institut für Pathologie des Universitätsklinikums Bonn und das Klinikum der Universität zu Köln stellten für die Suche nach biallelen somatischen Mutationen in *MSH2* und *MSH6* Tumor-DNA von 11 Patienten bereit. Für diese Untersuchung wurde das NGS *TruSight Cancer Panel* (Illumina) verwendet. Alle Varianten in *MSH2* und *MSH6*, die in mindestens zehn reads vorkamen, wurden ausgewertet.

Es wurden drei heterozygote, potentiell pathogene, somatische Mutationen (CADD-Score > 20) bei zwei der elf untersuchten Patienten detektiert (Tab. 16). Keine der Varianten ist in der InSiGHT-LOVD-Datenbank oder der Adenokarzinom-Exom-Datenbank des *The Cancer Genome Atlas* (TCGA) aufgeführt. Bei einem der zwei Patienten (HNPCC_23) wurden zwei potentiell biallele Missense-Mutationen in *MSH2* gefunden. Ein CADD-Score von > 20 indiziert, dass die Varianten unter den höchsten 1% aller ermittelten C-Scores liegen und damit möglicherweise pathogen sind.

Für die Suche nach größeren Deletionen im Tumor, die zusammen mit einer pathogenen Punktmutation für ein bialleles Ereignis sprechen, wurde eine MLPA mit der Tumor-DNA der elf Patienten durchgeführt. Aufgrund der unzureichenden Qualität der Tumor-DNA konnten diese Daten jedoch nicht ausgewertet werden.

Gen Patienten-ID		Varianto	Drotoin Ändorung	Mutationstyn	CADD-	E۸	
		Vallante	Protein-Anderung	νιατατιοπετγρ	Score	FA	
MSH2		c.1993C>G	p.His665Asp	Missense	25	Muttor Co"	
MSH2	HNPCC_25	c.1835C>T	p.Ser612Leu	Missense	26	Wuller "Ca	
MSH2	HNPCC_06	c.1100delT	p.Val367GlufsTer6	Frameshift	35	-	
FA: Familienanamnese; Ca: Karzinom; CRC: Kolorektales Karzinom							

Tab. 16 Somatische Punktmutationen

4.3 CNV-Analyse

Eine Keimbahn-CNV-Analyse wurde durchgeführt, um seltene, hochpenetrante Mikrodeletionen und -duplikationen in bisher nicht mit LS assoziierten, potentiell ursächlichen Genen zu identifizieren. Die Analyse wurde an 83 nicht-verwandten Index-Patienten mit erfüllten klinischen Kriterien für ein HNPCC; MSH2-Proteinausfall im Tumorgewebe, aber nicht identifizierbarer Keimbahnmutation in *MSH2* durchgeführt. Alle Patienten wurden auf dem HumanOmniExpress Bead-Array von Illumina genotypisiert.

4.3.1 Suche nach Kandidatengenen

Qualitätskontrolle

Als Qualitätskontrolle wurden für jede Probe die Standardabweichung Log R Ratio (LRR) und die Call-Rate bestimmt (Vgl. Kapitel 3.9.2). Zehn Patienten wiesen eine Standardabweichung der LRR von größer 0,3 auf. Da ihre Intensitätssignale die Genauigkeit der detektierten CNVs beeinflussen, wurden diese Proben aus der Analyse entfernt. Die eingeschlossenen 73 Patienten wiesen eine Standardabweichung der LRR zwischen 0,11 bis 0,29 auf. Die erforderliche Call-Rate von ≥ 98% wurde bei allen Proben erreicht. Die durchschnittliche Call-Rate lag bei 99,7%.

CNV-Calling

Als CNV-*Calling* wird die Berechnung der CNVs über die Signalintensitäts- und Genotypisierungsdaten bezeichnet. Hierfür wurde der QuantiSNP-Algorithmus verwendet. Tab. 17 gibt eine Übersicht über die nach dem CNV-*Calling* erhaltenen CNVs.

Anzahl	Anzahl	Dol	Dup	CNV/Patient	CNV/Patient	CNV/Patient
Patienten	CNVs	Dei	Dup	(Durchschnitt)	min.	max.
73	8.460	2.025	6.435	116	26	190

 Tab. 17
 Berechnete CNVs (QuantiSNP) nach Qualitätskontrolle

Herausfiltern von Artefakten

Nach Anwendung der in Kapitel 3 dargestellten Filterkriterien ("Filterkriterien der CNV-Analyse", S. 38) (Größe der CNVs \geq 10 kb; Anzahl konsekutiver SNP-Marker \geq 5 SNPs; Log-Bayes-Faktor \geq 10 für Deletionen bzw. \geq 20 für Duplikationen) reduzierte sich die Zahl der CNVs von 8.460 auf 628. Zwei Patienten (HNPCC_81 und HNPCC_87) zeigten ab diesem ersten Filterschritt keine CNVs mehr (vgl. Tab. 18). Die größte Anzahl an mutmaßlich echten CNVs lag bei 17 CNVs pro Patient und wurde bei zwei Patienten (HNPCC_05 und HNPCC_45) ermittelt. Im Durchschnitt wiesen die Patienten 9 CNVs auf.

Tab. 18 CNVs nach erstem Filterschritt

	Anzahl Personen	Anzahl CNVs	Del.	Dup.	CNV/Patient (Durchschnitt)	CNV Größe
Patienten	71	628	367	261	9	10 kb– 3,9 Mb

4.3.2 CNVs in bekannten CRC-Genen und Interaktionspartnern von MSH2

Alle im Bereich der durch QuantiSNP berechneten, qualitätskontrollierten, ungefilterten 8.460 CNVs der Patienten wurden mit den 97 bekannten CRC-Genen und Interaktionspartnern von *MSH2* ± 50 kb verglichen (siehe Anhang Tab. F.1). Es wurden 171 Patienten-CNVs detektiert, welche sich im Genbereich (± 50 kb) von 22 der 97 Kandidatengene lokalisieren ließen. Nach Anwendung des Log Bayes Faktor-Filters \geq 10 für den Ausschluss von Artefakten blieben noch 21 potentiell echte CNVs von 18 Patienten übrig. Diese 21 CNVs umfassten die Genbereiche ± 50 kb von *POLE, F10, MCM4* und *HRAS*. Nach Abgleich dieser CNVs mit den HNR-Kontrollen blieb eine 90 kb große Deletion übrig die mit keinem CNV der HNR-Kontrollen überlappte und den direkt kodierenden Bereich von *MCM4* betraf (siehe Tab. 19). Alle weiteren CNVs lagen als Duplikation (CNV=3) oder Multiplikation (CNV=4) vor und überlappten \geq 35 Mal mit den CNVs der HNR-Kontrollen.

Gen	Patienten-ID	Chr	start (bp)	stop (bp)	Länge	Anzahl SNP-Marker	CNV	LBF
MCM4	HNPCC_41	8	48792199	48882899	90701	13	Deletion	43

Tab. 19 Suche nach CNVs in bekannten CRC-Genen und Interaktionspartnern von MSH2

4.3.3 Filterschritte auf Genebene

Seltene CNVs im Bereich proteinkodierender Gene

Für die Suche nach seltenen CNVs im Bereich proteinkodierender Gene wurden weitere Filterschritte angewandt (proteinkodierende CNVs, < 3-mal in 1320 *In-House*-Kontrollen; < 0.2% in der *Database of Genomic Variants*; Ausschluss von CNVs in Regionen segmentaler Duplikationen).

Durch die Beschränkung auf CNVs im Bereich proteinkodierender Gene und den Vergleich mit den *In-House*-Kontrollen wurde die Anzahl der CNVs von 628 auf 55 stark reduziert. Der Vergleich mit der *Database of Genomic Variants* brachte den Ausschluss von drei CNVs im Bereich von insgesamt vier proteinkodierenden Genen (Tab. 20). CNVs, die durch Überlappung mit Bereichen segmentaler Duplikationen ausgeschlossen wurden, sind in Tab. 21 aufgelistet. Hiervon waren sechs CNVs mit neun Genen betroffen.

Gen-	Patienten-	Chromosomale		Anzahl CNVs pro	Studion	
Name	ID	Position	CINV	Anzahl Kontrollen	Studien	
CSMD1	HNPCC 17	chr8.3683879-371103/	Del	39/270.52/1109	(Redon et al., 2006;	
CONIDI		cm0.5005075 5711054	Der	55/2/0, 52/1105	Vogler et al., 2010)	
		ab 20.4555050 4507645	Dun	6/1100.16/771	(Pinto et al., 2007;	
CSIVIDI	HNPCC_25	(1110.4555950-4597045	Dup	0/1109, 10/7/1	Vogler et al., 2010)	
					(Itsara et al., 2009;	
COorfee				8/270; 6/1109;	Pinto et al., 2007;	
	HNPCC_74	chr9:185632-271455	Dup	29/771; 10/2026;	Redon et al., 2006;	
DUCK8				8/1557	Shaikh et al., 2009;	
					Vogler et al., 2010)	

Tab. 20 Ausgeschlossene CNVs durch den Vergleich mit der Database of Genomic Variants

Gen-Name	Patienten-ID	Chromosomale Position	CNV
UGT2B10	HNPCC_50	chr4:69678679-69706273	Dup
OCLN; GTF2H2C; GUSBP3	HNPCC_45	chr5:68749848-69175823	Dup
TRIM49B; TRIM64C	HNPCC_86	chr11:48747611-49124182	Dup
TRIM48	HNPCC_86	chr11:54794237-55049310	Dup
CELA3B	HNPCC_29	chr1:22296307-22310080	Del
ОСМ	HNPCC_45	chr7:5883522-5925156	Del

Tab. 21 Ausgeschlossene CNVs aufgrund Überlappungen mit Bereichen segmentaler Duplikationen

Validierung der CNVs mit GenomeStudio und qPCR

Die 45 übrigen CNVs wurden mit GenomeStudio und qPCR validiert. Zwei der CNVs stellten sich in der qPCR als falsch-positiv heraus (Tab. 22). Die proteinkodierende Region lag bei beiden Patienten und den vier Kontrollpersonen jeweils in der gleichen Kopienzahl (CNV = 2) vor. Die beiden CNVs waren insgesamt sehr klein (11 kb und 42 kb) und wiesen wenig Marker auf (5 und 7). Der niedrige LBF von 12 und 15 indiziert zudem eine geringe Wahrscheinlichkeit für die Echtheit der CNVs.

Größe Anzahl SNP-CNV LBF Gen Patienten-ID chromosomale Position Markern (kb) TP63 HNPCC_36 Del^{intr} 7 15 chr3:189364424-189379493 42 Del^{intr} STARD13 HNPCC 17 chr13:34140341-34151488 5 11 12 Del: Deletion, intr: intronischer Bereich des Gens

Tab. 22 Ausgeschlossene CNVs durch Validierung mit qPCR (falsch-positive CNVs)

Ergebnisse der Filterschritte

Nach Anwendung der genannten Filterschritte und der qPCR-Validierung verblieben 43 echte CNVs (21 heterozygote Deletionen und 22 Duplikationen) bei 30 der 73 Patienten (41%). Diese 43 CNVs umfassen 76 proteinkodierende Gene. Jeder CNV trat nur einmal auf und es gab keine Überschneidungen zwischen den CNVs. Auch war kein Gen doppelt / mehrfach von einem CNV betroffen. Alle CNVs waren im Vergleich zu den *In-House*-Kontrollen und DGV selten (< 0.2%). 28 CNVs wurden von keinem der *In-House*-Kontrollen geteilt und gelten somit als "neu" (*novel*). Bei 15 Patienten-CNVs traten Überschneidungen zu ein bis zwei Kontroll-CNVs auf. Sie waren nach unserer Definition "seltene CNVs". Tab. 23 gibt eine Gesamtübersicht über die Anzahl der
CNVs und proteinkodierenden Gene bezogen auf die Anzahl der Patienten pro Filterschritt. Abb. 18 zeigt das Fluss-Diagramm der Filterschritte mit der jeweiligen Anzahl der CNVs.

Filterschritte	QuaniSNP	Größe, SNP-	proteinkodierende	DGV, Segmentale	Validierung	
Thersentite	calling, QC	Marker, LBF	Gene, HNRs	Duplikationen	valuerung	
# Patienten	73	71	36	32	30	
CNVs	8460	628	56	45	43	
Gene	n. u.	n. u.	92	78	76	
n u nicht untersucht						

Abb. 18 Flussdiagramm CNV-Analyse

QC: Qualitätskontrolle, LRR: Log R Ratio

4.3.4 Priorisierung der Gene

Die 76 gefilterten Gene wurden in zwei parallelen Schritten priorisiert, um funktionell relevante sowie mutationssensitive Gene aufzuspüren.

1. Art der Mutation und funktionelle Relevanz des betroffenen Gens (Kriterium I)

Für dieses erste Priorisierungskriterium wurde berücksichtigt, ob das vom CNV betroffene Gen in einem Zusammenhang zur Karzinogenese steht und ob die Art der Mutation (Deletion/Duplikation, partiell/komplett) und der daraus abzuleitende Effekt (*Loss of function/Gain of function*) mit der beschriebenen Funktion übereinstimmt (vgl. 2.2.4 Pathomechanismus von CNVs und Kap. 3.9.3 Filterkriterien der CNV-Analyse). Bei der Einordnung partieller Duplikationen wurde davon ausgegangen, dass potentiell immer auch ein LoF-Effekt denkbar ist.

Unter den 76 proteinkodierenden Genen befanden sich sechs Gene (8%), die vollständig von einer heterozygoten Deletion, 21 Gene (28%), die vollständig von einer Duplikation und 49 Gene (64%), die partiell von einem CNV (Deletion oder Duplikation) betroffen waren. Zehn dieser partiell betroffenen Gene lagen ausschließlich im Intronbereich des jeweiligen Gens (Tab. 24).

Unter den sechs Genen, die von einer kompletten heterozygoten Gen-Deletion (CNV = 1) betroffen waren, werden drei der Gene (*VWDE, ZNF154 und ZNF671*) im direkten Zusammenhang mit Krebs erwähnt. *VWDE* (Von Willebrand Faktor D und EGF Domäne) ist allerdings als Onkogen beschrieben. Da dies nicht zu dem *Loss-of-Function*-Modell einer kompletten heterozygoten Gen-Deletion passt, wurden unter den kompletten Gen-Deletionen nur *ZNF154* und *ZNF671* als mögliche Kandidatengene berücksichtigt (Tab. 24, CNV: del, Kriterium: I). Unter den 21 kompletten Gen-Duplikationen wurden vier Gene (*DDX24, GNB2L1, LAMP3* und *PFKP*) als potentielle Onkogene eingestuft (Tab. 24, CNV: dup, Kriterium: I). Unter den Genen, welche partiell von einem CNV betroffen waren, wurde für 38% (19/49) ein Zusammenhang zu malignen Erkrankungen beschrieben (Tab. 24, CNV: del^{part} oder dup^{part} bzw. del^{intr} oder dup^{intr}, Kriterium: I).

2. Bioinformatische Scores zur Bewertung der Sensitivität von LoF-Mutationen (Kriterium II)

Der Haploinsuffizienz- und Intoleranz-Score wurde für die Bewertung der Sensitivität von LoF-Mutationen herangezogen (vgl. Kap. 3.9.3. Filterkriterien der CNV-Analyse).

Unter den 55 Genen, die von einer vollständigen Deletion oder partiellen Deletion/Duplikation betroffen waren, weisen 23 einen niedrigen Haploinsuffizienz-Score (HI-Score ≤ 35%) und/ oder

Intoleranz-Score (RVIS \leq 25%) auf. Dies spricht dafür, dass bei diesen Genen der Verlust bzw. die mutationsbedingte Inaktivierung eines Allels kritische Auswirkungen auf die Proteinfunktion haben. Unter den dosissensitiven/variantenintoleranten Genen befinden sich auch solche Gene, die bisher in keinem Zusammenhang zu malignen Erkrankungen stehen. In Tab. 24 werden alle 76 detektierten CNV-Gene mit CNV-Status, Scores und ggf. Angabe des erfüllten Kriteriums (I/II) aufgelistet.

Solche Gene, die sowohl Kriterium I (relevante Funktion in Bezug auf die Art der Mutation) als auch Kriterium II (dosissensitive/variantenintolerante Gene) erfüllen, sind in Tab. 25 mit einer kurzen Funktionsbeschreibung aufgeführt. Dies trifft auf 13 der 76 Gene (17%) zu.

Gen	Patienten-ID	CNV	Hi-Score%	RVIS %	Kriterium
ABCB1	HNPCC_34	Del ^{intr}	14	23	II
AGMO	HNPCC_29	Del ^{part}	-	96	-
ASB2	HNPCC_01	Dup	(77)	(96)	-
ATP12A	HNPCC_97	Dup ^{part}	70	72	-
B3GNT5	HNPCC_73	Dup	(78)	(47)	-
C9orf84	HNPCC_07	Dup ^{part}	60	88	-
CAPN13	HNPCC_32	Dup ^{part}	91	96	-
CHST2	HNPCC_97	Dup	(61)	(31)	-
DCUN1D1	HNPCC_73	Dup ^{part}	31	56	l und ll
DDX24	HNPCC_01	Dup	(50)	(79)	I
DLG2	HNPCC_28	Del ^{intr}	1	4	l und ll
DPP10	HNPCC_72	Dup ^{intr}	30	50	l und ll
DUSP11	HNPCC_45	Dup ^{part}	53	18	l und ll
ENOX1	HNPCC_24	Dup ^{part}	22	9	l und ll
ESYT2	HNPCC_92	Dup	-	(38)	-
FAM181A	HNPCC_01	Dup	-	(53)	-
FBXO36	HNPCC_24	Del ^{part}	53	89	-
GNB2L1	HNPCC_38	Dup	(60)	(25)	I
GNG10	HNPCC_07	Dup	(45)	(56)	-
GRIK4	HNPCC_94	Del ^{part}	41	16	II
HMHB1	HNPCC_40	Dup	(96)	(78)	-
IFI27L1	HNPCC_01	Dup ^{part}	-	86	-
IQSEC3	HNPCC_26	Dup ^{part}	17	30	II
ITIH2	HNPCC_89	Dup ^{part}	51	72	I.
ITIH5	HNPCC_89	Dup	(91)	-	-
KATNAL1	HNPCC_90	Dup ^{part}	29	20	II
KLHDC4	HNPCC_33	Del ^{part}	36	96	-
KLHL24	HNPCC_73	Dup	(49)	(20)	-
KLHL32	HNPCC_91	Delintr	86	16	II
KLHL6	HNPCC_73	Dup	(46)	(35)	-
LAMP3	HNPCC_73	Dup	(70)	(71)	I.
LCLAT1	HNPCC 32	Dup ^{part}	-	34	-

Tab. 24 Alle 76 Gene mit CNV-Status, Scores und Angabe des Kriteriums (I / II).

MCCC1	HNPCC_73	Dup	(28)	(83)	-
MCF2L2	HNPCC_73	Dup	(12)	(38)	-
MCM4	HNPCC_41	Del ^{part}	2	4	I und II
MTHFD1L	HNPCC_50	Dup ^{part}	86	43	-
MYH6	HNPCC_18	Dup ^{part}	5	10	П
MYH7	HNPCC_18	Dup ^{part}	19	0.3	П
NCAPG2	HNPCC_92	Dup	(9)	(46)	-
NMNAT3	HNPCC_18	Del ^{intr}	36	50	-
NOSIP	HNPCC_18	Del	51	25	П
NPS	HNPCC_45	Del	100	76	-
NRG3	HNPCC_38	Del ^{intr}	62	30	I
OTUB2	HNPCC_01	Dup	(9)	(47)	-
PAG1	HNPCC_47	Del ^{part}	35	39	I und II
PDZRN4	HNPCC_41	Dup ^{intr}	71	68	I
PFKP	HNPCC_28	Dup	(45)	(5)	I
PITPNC1	HNPCC_21	Del ^{intr}	15	19	II
PITRM1	HNPCC_28	Dup ^{part}	81	99	-
PLEKHG1	HNPCC_50	Dup ^{part}	61	52	-
PRIMA1	HNPCC_01	Dup ^{part}	56	48	I
PRKCA	HNPCC_42	Del ^{intr}	5	9	l und ll
PRKDC	HNPCC_41	Del ^{part}	9	-	l und ll
PRRG2	HNPCC_18	Del ^{part}	72	80	-
RAP1GDS1	HNPCC_38	Del ^{part}	44	35	-
RBM19	HNPCC_38	Dup ^{part}	40	88	I
RUNDC3B	HNPCC_34	Del ^{part}	66	19	I und II
SLC9A9	HNPCC_97	Dup	(43)	(7)	-
SLCO4C1	HNPCC_31	Dup ^{part}	38	21	I und II
SRBD1	HNPCC_31	Del ^{intr}	53	83	-
TPRKB	HNPCC_45	Dup	(43)	(54)	-
TRIM41	HNPCC_38	Dup ^{part}	83	62	I
TRIM52	HNPCC_38	Dup	(88)	(45)	-
TRMT44	HNPCC_43	Del ^{part}	75	91	-
TSPAN5	HNPCC_38	Del ^{part}	32	23	I und II
TSPAN9	HNPCC_18	Dup ^{part}	59	39	I
VWDE	HNPCC_32	Del	-	-	-
WDR60	HNPCC_92	Dup ^{part}	76	91	-
WFDC10A	HNPCC_55	Del	92	69	-
WFDC11	HNPCC_55	Del ^{part}	88	61	-
WFDC9	HNPCC_55	Del ^{part}	99	75	-
YEATS2	HNPCC_73	Dup ^{part}	74	42	-
ZNF154	HNPCC_79	Del	66	92	I
ZNF551	HNPCC_79	Del ^{part}	94	35	-
ZNF671	HNPCC_79	Del	89	22	l und ll
ZNF776	HNPCC_79	Del ^{part}	94	18	П

Del: Deletion; Dup: Duplikation

intr: CNV betrifft nur intronischen Bereich;

part: kodierender Gen-Bereich partiell vom CNV betroffen

Kriterium I: Funktionell relevant in Bezug zur Art der Mutation;

Kriterium II: Gene mit einem Hi-Score ≤ 35 oder RVIS ≤ 25

Werte in Klammern: Komplette Gen-Duplikation, Scores nicht vollständig

anwendbar

Gen	Patienten-ID	CNV-Art	Funktion/involvierter Signalweg
DCUN1D1	HNPCC_73	Dup ^{part}	Plattenepithelzellkarzinom der Lunge und Adrenocorticales- Karzinom. Bewirkt Zelltransformation und Fortschreiten der Karzinogenese
DLG2	HNPCC_28	Del ^{intr}	Mögliches TSG. An der Regulation der Zellproliferation und Apoptose beteiligt.
DPP10	HNPCC_72	Dup ^{intr}	CRC-Gen. Expressionsverlust von DPP10 in CRC wird in Zusammenhang mit dem Fortschreiten der Karzinogenese gebracht
DUSP11	HNPCC_45	Dup ^{part}	Inhibiert Mitglieder des MAPK-Signalwegs
ENOX1	HNPCC_24	Dup ^{part}	Zellverteidigung, Zellwachstumskontrolle, Zellüberleben. Assoziiert mit Prostata-Karzinom
MCM4	HNPCC_41	Del ^{part}	Initialisierung der Genom-Replikation. Überexpression in verschiedenen Karzinomen (Brust, Ösophagus, Meningeom)
PAG1	HNPCC_47	Del ^{part}	Lymphom; Prostata-Ca; mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) Signalweg
PRKCA	HNPCC_42	Del ^{intr}	TSG, Fördert ß-Catenin-Degradierung/-Phosphorylierung; Colon-, Prostata-, Leber-Karzinom
PRKDC	HNPCC_41	Del ^{part}	Reparatur von Doppelstrangbrüchen und Rekombination. Funktionsverlust führt zu vermehrten Falschpaarungen in der DNA der betroffenen Zellen
RUNDC3B	HNPCC_34	Del ^{part}	Assoziiert mit Brust- und Lungenkrebs, interagiert mit der MAPK- Kaskade Zellproliferation und -differenzierung. Karzinogenese in Lymphdrüsenkrebs
SLCO4C1	HNPCC_31	Dup ^{part}	NOTCH und TP53 Singnalweg. Inaktiviert über Methylierung / somatische Mutationen in Tumorzellen
TSPAN5	HNPCC_38	Del ^{part}	Signaltransduktionsmediation für die Zellregulation, Zellaktivierung und Wachstum
ZNF671	HNPCC_79	Del	Transkriptionsregulator, Zellwachstum und -differenzierung, Hypermethylierung in Tumorzellen von Nieren-; Cervix- und Urothel-Karzinom
Del: Deletion;	Dup: Duplikation	; TSG: Tumo	orsuppressorgen;

intr: CNV betrifft nur intronischen Bereich, part: kodierender Gen-Bereich partiell vom CNV betroffen

4.3.5 Suche nach Long Range Regulatoren von MSH2

Um nach Veränderungen in long range Regulatoren von MSH2 zu suchen (Kap 2.2), wurden alle CNVs ± 1,5 Mb um MSH2 separat untersucht. Nach Abgleich dieser CNVs gegen die In-House-Kontrollen konnte kein seltener CNV in dieser Region festgestellt werden.

4.3.6 Netzwerk-Analyse

Für die Suche nach direkten Interaktionen zwischen den bei der CNV-Analyse erhaltenen Genen (bzw. ihren daraus kodierenden Proteinen) und MSH2, wurde eine Netzwerk-Analyse mit Hilfe der STRING-Datenbank (*Search Tool for the Retrieval of Interacting Genes/Proteins*) durchgeführt. Für die Analyse wurden alle 76 Gene gemeinsam mit *MSH2* in die Datenbank hochgeladen. Es wurden insgesamt 12 der 76 Gene (16%) als direkte oder indirekte Interaktionspartner von MSH2 ausfindig gemacht (*ABCB1, ATP12A, GNB2L1, MCM4, NRG3, PAG1, PRKCA, PRKDC, RUNDC3B, SLC9A9, TRIM41* und *TRIM52*) (Abb. 20). Eine experimentell begründete Evidenz für die vorliegenden Interaktionen liegt für sieben der zwölf Proteine (GNB2L1, MCM4, PAG1, PRKCA, PRKDC, TRIM41 sowie TRIM52) vor. Die Protein-Interaktion zwischen MCM4 und MSH2 welche zuvor bei der Interaktionspartnersuche festgestellt wude (Kap. 4.3.2) konnte über die Netzwerk-Analyse bestätigt werden.

Mit PRKDC wurde ein weiterer direkter Interaktionspartner ausfindig gemacht. PRKDC ist laut STRING-Analyse ein Bindungspartner von MSH2. MCM4 ist für die Initiierung der genomischen Replikation verantwortlich. PRKDC ist an der Reparatur von Doppelstrangbrüchen involviert. Die 91 kb große Deletion überspannt beide Gene bis zur Hälfte. Abb. 19 zeigt die *UCSC-GenomeBrowser*-Abbildung der Gene *MCM4* und *PRKDC* und des zugehörigen CNVs (in rot).

Abb. 19 MCM4_PRKDC Deletion HNPCC_41 (UCSC GenomeBrowser hg19)

Über PRKDC und PRKCA, welche viele verschiedene Verbindungen zueinander aufweisen (gegenseitige Aktivierung oder Inhibierung, Expressionsbeeinflussung und Bindungspartnerschaften), sind weitere Gene an das Netzwerk angeschlossen. Tab. 26 listet alle 12 Proteine auf.

Abb. 20 Netzwerkpartner von MSH2 nach STRING-Netzwerk-Analyse – Evidenz

Linienfarbe: gelb: algorithmus-basiert, schwarz: Co-expression, pink: experimentell, hellblau: Datenbank Einstellungen STRING: Spezies: Homo sapiens, Interaktionsdatenbank-Referenzen: Alle; Min. geforderter Interaktions-Score: Mittleres Konfidenzlevel (0,4); Nur Interaktionen zwischen eingegebenen Proteinen

Protein	CNV	Patientencode	HI-Score%	RVIS%
ABCB1	Del ^{intr}	HNPCC_34	14	23
ATP12A	Dup ^{part}	HNPCC_97	70	72
GNB2L1	Dup	HNPCC_38	(60)	(25)
MCM4	Del ^{part}	HNPCC_41	2	4
NRG3	Del ^{intr}	HNPCC_38	62	30
PAG1	Del ^{part}	HNPCC_47	35	39
PRKCA	Del ^{intr}	HNPCC_42	5	9
PRKDC	Del ^{part}	HNPCC_41	9	-
RUNDC3B	Del ^{part}	HNPCC_34	66	19
SLC9A9	Dup	HNPCC_97	(43)	(7)
TRIM41	Dup ^{part}	HNPCC_38	83	62
TRIM52	Dup	HNPCC_38	(88)	(45)

Tab. 26 Netzwerkpartner von MSH2

Del: Deletion; Dup: Duplikation

intr: CNV betrifft nur intronischen Bereich

part: Gen partiell vom CNV betroffen (CNV überlappt Exon-Bereiche); Werte in Klammern: Komplette Gen-Duplikation, Scores nicht genügend anwendbar

4.3.7 Pathway-Analyse

Die Ingenuity Pathway-Analyse (Qiagen) wurde verwendet, um eine signifikante Anreicherung der betroffenen Gene der CNV-Analyse in bestimmten Signalwegen oder eine Beteiligung dieser Gene an Signalwegen bekannter CRC-Gene aufzudecken. Hierfür wurden alle 76 CNV-Gene zusammen mit 38 relevanten CRC-Genen analysiert. Insgesamt wurden 38 signifikante (p-Werte < 0,05) kanonische Signalwege, in denen insgesamt 13 CNV-Gene (18%) und 29 CRC-Gene (76%) gemeinsam involviert sind, ermittelt (siehe Tab. H.1 im Anhang). Von allen detektierten Signalwegen wurden 29 als relevant für die Entwicklung von Malignomen eingeschätzt (76%) (Tab. 27). Unter diesen 29 relvanten Signalwegen sind sieben der 76 CNV-Gene beteiligt (*DLG2, DUSP11, GNB2L1, MCM4, NRG3, PRKCA, PRKDC*).

kanonische Signalwege	Gene	Anzahl CRC-Gene
6 6		(+ CNV-Gene)
Colorectal Cancer Metastasis Signaling	TP53, MAP2K4, PIK3C2B, SMAD2, AXIN1, GNB2L1 , MLH1, APC, CDH1, AKT1, MSH2, MSH6, SMAD4, GSK3B, TCF7L2	14 (+1)
Molecular Mechanisms of Cancer	TP53, MAP2K4, PIK3C2B, PRKDC , SMAD2, AXIN1, PRKCZ, APC, CDH1, AKT1, BMPR1A, SMAD4, GSK3B, CHEK2, PRKCA	13 (+2)
ErbB Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, NRG3 , GSK3B, PRKCZ, PRKCA	6 (+2)
Glioma Signaling	TP53, PIK3C2B, MTOR, AKT1, PDGFRA, PRKCZ, PRKCA , PTEN	7 (+1)
14-3-3-mediated Signaling	MAP2K4, TSC1, PIK3C2B, AKT1, TSC2, GSK3B, PRKCZ, PRKCA	7 (+1)
mTOR Signaling	TSC1, PIK3C2B, MTOR, AKT1, PPP2CA, TSC2, PPP2R1B, PRKCZ, PRKCA	8 (+1)
p53 Signaling	TP53, PIK3C2B, PRKDC , AKT1, GSK3B, CHEK2, PTEN	6 (+1)
p70S6K Signaling	PIK3C2B, MTOR, AKT1, PPP2CA, PPP2R1B, PRKCZ, PRKCA	6 (+1)
HIPPO Signaling	SMAD2, PPP2CA, DLG2 , SMAD4, PPP2R1B, PRKCZ	5 (+1)
EGF Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, PRKCA	4 (+1)
ErbB2-ErbB3 Signaling	PIK3C2B, AKT1, NRG3 , GSK3B, PTEN	4 (+1)
Gαq Signaling	PIK3C2B, AKT1, GNB2L1 , GSK3B, PRKCZ, PRKCA	4 (+2)
CXCR4 Signaling	MAP2K4, PIK3C2B, AKT1, GNB2L1 , PRKCZ, PRKCA	4 (+2)
ErbB4 Signaling	PIK3C2B, AKT1, NRG3 , PRKCZ, PRKCA	3 (+2)
Role of Tissue Factor in Cancer	TP53, PIK3C2B, MTOR, AKT1, PRKCA , PTEN	5 (+1)
Protein Kinase A Signaling	PTPRJ, GNB2L1 , SMAD4, DUSP11 , GSK3B, TCF7L2, PRKCZ, PRKCA , PTEN	7 (+3)
P2Y Purigenic Receptor Signaling Pathway	PIK3C2B, AKT1, GNB2L1 , PRKCZ, PRKCA	4 (+2)

 Tab. 27
 Relevante Signalwege und betroffene Gene, Ingenuity Pathway Analyse

Gβγ Signaling	AKT1, GNB2L1 , PRKCZ, PRKCA	2 (+2)
Cell Cycle: G2/M DNA		
Damage Checkpoint	TP53, PRKDC , PRKCZ, CHEK2	3 (+1)
Regulation		
HGF Signaling	MAP2K4, PIK3C2B, AKT1, PRKCZ, PRKCA	4 (+1)
PPARα/RXRα Activation	MAP2K4,SMAD2,SMAD4, PRKCA	4 (+1)
PDGF Signaling	MAP2K4, PIK3C2B, PDGFRA, PRKCA	3 (+1)
Signaling by Rho Family	MAP2KA PIK3C2B CDH1 GNB2I1 PRKCZ	4 (+1)
GTPases		
Wnt/Ca+ pathway	AXIN1, GSK3B, PRKCA	2 (+1)
Cell Cycle Control of	MCMA CHEKA	1 (+1)
Chromosomal Replication		1 (+1)
Apoptosis Signaling	TP53, MAP2K4, PRKCA	2 (+1)
VEGF Signaling	РІКЗС2В, АКТ1, РККСА	2 (+1)
RhoGDI Signaling	CDH1, GNB2L1, PRKCA	1 (+2)
ERK/MAPK Signaling	PIK3C2B, PPP2CA, PPP2R1B, PRKCA	3 (+1)
Hervorgehobene Gene: CNV-0	Sene	

4.3.8 <u>Segregationsanalyse</u>

Bei vorhandener Segregation treten CNV und Phänotyp innerhalb der betroffenen Familien gemeinsam auf, sie segregieren. Die Stärke der Segregation hängt insbesondere von der Zahl untersuchter Patienten bzw. gesunder Kontrollpersonen ab und ist ein wichtiger Hinweis zur kausalen Bedeutung einer Keimbahnvariante für den vorliegenden Phänotyp. Es wurden alle mutmaßlichen LoF-Gene, wie auch potentielle, von einer kompletten Duplikation betroffene Onkogene berücksichtigt. Mit eingeschlossen wurden darüber hinaus solche CNV-Gene, die durch die Netzwerk- und Pathway-Analyse besonders relevant erschienen. Dies betraf 23 CNV-Gene, welche in der Keimbahn von 14 Indexpatienten mutiert vorliegen. Tab. 28 listet die Index-Patienten mit allen CNVs und den darin betroffenen Genen auf.

Ergebnisse

#	Patienten-ID	FA	Gen	Art der Mutation
1	HNPCC_01	Mutter ⁺ CRC 50 J.,70 J	DDX24	Dup
2	HNPCC_24	Mutter BRCA 79 J Großvater CRC 42 J Onkel Prostata-Ca 72 J	ENOX1	Dup ^{part}
		Cousine 2x CRC Cousin† CRC 30 J	ΓΒΛΟΣΟ	jet
2		Schwaster FC FO L	DLG2	Del ^{intr}
5	HNPCC_20	Schwester EC 50 J.	PFKP PITRM1	Dup
			SLCO4C1	Dup ^{part}
4	HNPCC_31	Onkel mit CRC 37 J.	SRBD1	Del ^{intr}
5	HNPCC 34	unbekannt	ABCB1	Del ^{intr}
	-		RUNDC3B	Del ^{part}
			GNB2L1	Dup
			NRG3	Del ^{mart}
c			RAPIGDS1	Del ^{part}
6	HNPCC_38	Mutter 81 J. EC-Ca	RBINI19	Dup ^r
				Dup
				Dup Del ^{part}
		Schwester FC 30 L CRC 601	PDZRN4	Dun ^{intr}
7	HNPCC 41	Mutter Leberkrebs 76 L	MCM4	Del ^{part}
		Vater Leukämie 37 J.	PRKDC	Del ^{part}
8	HNPCC 42	Vater [†] CRC 55 J.	PRKCA	Del ^{intr}
	_		DUSP11	Dup ^{part}
9	HNPCC_45	Mutter "Ca" 45 J.	NPS	Del
		Großvater CRC 83 J	TPRKB	Dup
10	HNPCC_47	Onkel "Malignome" Cousin CRC, Magen-Ca	PAG1	Del ^{part}
11	HNPCC_72	Vater Gehirntumor 62 J.**	DPP10	Dup ^{intr}
			B3GNT5	Dup
			DCUN1D1	Dup ^{part}
			KLHL24	Dup
12	HNPCC_73	Mutter CRC 67 J.	KLHL6	Dup
		Valer CRC 62 J., CRC 77 J.	LAIVIP3	Dup
			MCE212	Dup
			YFATS2	Dup ^{part}
			ZNF154	Del
			ZNF551	Del
13	HNPCC_79	Vater CRC 32 J.**	ZNF671	Del
			ZNF776	Del ^{part}

Tab. 28 Index-Patienten für die Segregationsanalyse

			ATP12A	Dup ^{part}			
14	HNPCC_97	Schwester Ovarial-Ca 63 J.**	CHST2	Dup			
			SLC9A9	Dup			
					_	111	

BRCA: Brust-und Eierstockkrebs; CA: Karzinom; CRC: Kolorektales Karzinom, Del: Deletion; Dup: Duplikation; EC: Endometriumkarzinom, FA: Familienanamnese; [†] bereits verstorben, hervorgehoben: relevante CNV-Gene, die für die Segregationsanalyse berücksichtigt wurden, intr: CNV betrifft nur intronischen Bereich, part: kodierender Gen-Bereich partiell vom CNV betroffen, *Patient hinterher im NGS als ursächlich aufgeklärt (pathogene *MSH6*-Mutation), **Patienten des HNPCC-Konsoriums, keine Kontaktaufnahme mit Angehörigen möglich

Dreizehn der 14 Index-Patienten wiesen eine positive Familienanamnese auf. Allerdings konnten nur bei sechs der Familien betroffene, noch lebende Angehörige ausfindig gemacht werden. Lediglich von einer der sechs kontaktierten Familien erhielten wir eine Rückmeldung eines weiteren erkrankten Angehörigen. Daraufhin wurde die Blutprobe der metachron an Darmkrebs erkrankten Cousine der Index-Patientin angefordert. Der Stammbaum dieser Familie ist in Abb. 21 dargestellt. Die Index-Patientin (HNPCC_24) weist eine partielle Duplikation in *ENOX1* auf.

Die Kopienzahl wurde mittels einer qPCR überprüft. Hierbei stellte sich heraus, dass die Cousine eine normale Kopienzahl im *ENOX1*-Gen aufwies. Eine Co-Segregation dieser partiellen Duplikation mit dem Phänotyp konnte hier somit nicht festgestellt werden. *ENOX1* ist somit mit hoher Wahrscheinlichkeit kein hochpenetrantes Kandidatengen für den vorliegenden Phänotyp.

Abb. 21 Stammbaum von HNPCC_24 ENOX1 (partielle Duplikation)

Die Indexpatientin trägt den Pfeil. Untersucht wurde die betroffene Cousine (III:7). BRCA: Brust- und Eierstockkrebs; Ca: Karzinom; CRC: Kolorektales Karzinom; EC: Endometriumkarzinom

Ergebnisse

4.4 Next-Generation-Sequencing

Für die Suche nach putativ pathogenen Punktmutationen (CADD-Score \geq 20) in den CNV-Kandidatengenen dieser Studie sowie bekannten CRC-Genen wurden alle Patienten des Kollektivs, von denen genügend DNA in ausreichender Qualtität zur Verfügung stand (n = 44), mit einem CustomTarget NGS-Panel von Illumina sequenziert. Das Target-Panel bestand aus 106 Genen: 68 Gene der CNV-Analyse, 30 CRC-Gene und 8 Gene des Proteasom-Signalweges (siehe Anhang Tab. G.1 "Genliste NGS"). Aufgrund von limitierten finanziellen Mitteln konnten nicht alle Gene berücksichtigt werden, daher wurde eine Auswahl getroffen. CNV-Gene, die funktionell und aufgrund der Voruntersuchungen keinerlei Hinweis auf eine Kausalität zur Erkrankung lieferten, wurden ausgeschlossen, ebenso bekannte CRC-Gene, die einen bekanntermaßen unterschiedlichen Phänotyp hervorrufen.

Hierbei wurden insgesamt 12.956 Varianten bei den 44 Patienten detektiert. Nach dem Herausfiltern potentieller Artefakte durch Anwendung mehrerer Filterschritte (Q>30, Read Depth > 10, Alt Variant Freq > 10) wurden für die Suche nach dominanten Mutationen häufige Varianten mit einer Allelfrequenz > 0,01% (TGP, EVS und ExAc) ausgeschlossen. Hierbei blieben 112 seltene Varianten in 63 der 106 Gene übrig. Für die Suche nach rezessiven Varianten wurde der Allelfrequenz-Filter von < 0,01% (sehr seltene Varianten) auf < 1% hochgesetzt, da rezessive Varianten in heterozygotem Zustand weitaus häufiger in der Allgemeinbevölkerung auftreten. Mit dieser Allelfrequenz von < 1% wurde nach zwei Varianten pro Gen (homozygot oder potentiell compound heterozygot) desselben Patienten gesucht. Es konnten dadurch keine rezessiven Varianten detektiert werden.

Zur Beurteilung der negativen Auswirkungen (*deleteriousness*) der Varianten wurden "skalierte C-Scores / PHRED-like scores" verwendet (vgl. Kap. 3.10.3 Varianten-Filterung, S.49). Bewertet wurden alle Varianten mit einem CADD-Score \geq 20, was für eine beeinträchtigende Auswirkung der Variante auf die Proteinfunktion spricht.

4.4.1 Bekannte CRC-Gene der Literatur

Das Custom-Panel umfasste unter anderem die für das LS verantwortlichen MMR-Gene. In den MMR-Genen *MLH1, MSH2* und *MSH6* wurden sechs bisher nicht detektierte heterozygote, pathogene Mutationen gefunden (Tab. 29). Die Patienten wurden daraufhin nachträglich von

der CNV-Studie ausgeschlossen. In den MMR-Genen wurden zudem Missense-Varianten unklarer Signifikanz (VUS) nachgewiesen (Tab. 30).

Gen Patienten-ID		cDNA Ändorung	Drotoin Ändorung	Mutations-	InSiGHT	CADD-
Gen	Patienten-ID	CDNA-Anderung	Protein Anderung	typ	Klasse	Score
MLH1	HNPCC_27	c.62C>A	p.Ala21Glu	Missense	5	35
мснэ		c 9/3-24>G	aberrantes	Intronisch	Λ	25
WISHZ HINFCC_55	0.545 2470	Spleißen	intromsen	-	25	
MSH2	HNPCC_20	c.1147C>T	p.Arg383Ter	Stopp	5	40
MSH6	HNPCC_02	c.650_651insT	p.Lys218Ter	Frameshift	5	26
MSH6	HNPCC_07	c.2401_2042delCT	p.Ser682CysfsTer15	Frameshift	5	34
MSH6	HNPCC_62	c.3227delG	p.Arg107Profs*3	Frameshift	5	34

Tab. 29 Pathogene Punktmutationen der MMR-Gene

Tab. 30 MMR-Gen-Varianten unklarer funktioneller Signifikanz (InSiGHT Klasse 3)

Gon	Patienten-ID	cDNA Ändorung	Protein Änderung	Mutation	CADD-
Gen	Fallenten-ID	CDINA-AIIdei diig	Protein Anderung	withation	Score
MSH2	HNPCC_60	c.818T>A	p.Val273Glu	Missense	32
MSH2	HNPCC_22	c.1864C>A	p.Pro622Thr	Missense	28
MSH6	HNPCC_46	c.722G>T	p.Ser24lle	Missense	24
MSH6	HNPCC_65	c.1372C>T	p.His458Tyr	Missense	26

Weiterhin wurde eine klar pathogene Stopp-Mutation im *APC*-Gen, welches für die familiäre adenomatöse Polyposis verantwortlich ist ausfindig gemacht (HNPCC_63: c.6344T>G;p.Leu2115Ter). Der Patient wurde ebenfalls von der Studie ausgeschlossen. Zusätzlich wurden im APC-Gen VUS bei zwei Patienten (HNPCC_22 und HNPCC_24) detektiert (Tab. 31).

In weiteren, für erbliche Darmkrebsformen verantwortlichen Genen, wurden Varianten von unklarer klinischer Signifikanz (VUS) entdeckt. In *CHEK2* wurde eine Missense-Mutation und in *MAP2K4* eine intronische Variante detektiert (Tab. 31). Da diese Mutationen derzeit nicht sicher eingeordnet werden können, wurden diese Patienten nicht von der Studie ausgeschlossen.

Gen	Patienten-ID	Variante	vermutete Konsequenz	Mutations -typ	CADD- Score	HI- Score; RVIS %
APC	HNPCC_63	c.6344T>G	p.Leu2115Ter	Stopp	40	
APC	HNPCC_22	c.1703G>A	p.Ser568Asn	Missense	28	17; 0,2
APC	HNPCC_24	c.8425G>A	p.Val2809Met	Missense	25	
CHEK2	HNPCC_47	c.1441G>T	p.Asp481Tyr	Missense	33	1; 70
MAP2K4	HNPCC_25	c3A>G	aberrantes Spleißen	Intronisch	20	21; 26

Tab. 31 Punktmutationen in bekannten Genen für erbliche Darmkrebsformen

4.4.2 <u>Gene des Proteasom-Signalwegs</u>

Unter den Genen des Proteasom-Signalwegs konnten sechs seltene, heterozygote Varianten in vier der acht Gene identifiziert werden (Tab. 32). Diese Gene stehen in Verdacht, bei einem Funktionsverlust des kodierten Proteins eine Downregulation von MSH2 zu bewirken (siehe Kap. 2.4.5). *HERC1* wies hierbei drei heterozygote Varianten in drei verschiedenen Patienten auf; darunter zwei Varianten mit CADD-Scores von 35, was für eine relative Pathogenität der Varianten spricht. In *AKT1, TSC1* und *TSC2* wurde jeweils eine Variante entdeckt.

Gen	Patienten-	Varianto	vermutete	Mutationstyp	CADD-	HI-Score;
	ID	Variance	Konsequenz	νιατοπετγρ	Score	RVIS %
AKT1	HNPCC_06	c.361C>T	p.Arg121Trp	Missense	26	0,4; 8
	HNPCC_10	c.9508C>T	p.Arg3170Cys	Missense	35	
HERC1	HNPCC_43	c.10660C>T	p.Arg3554Trp	Missense	35	45; 0,05
	HNPCC_65	c.14297A>G	p.Asn4766Ser	Missense	24	
TSC1	HNPCC_23	c.532G>A	p.Vl178lle	Missense	24	6; 19
TSC2	HNPCC_22	c.4545C>G	p.Asn1515Lys	Missense	24	4; 1

Tab. 32 Punktmutationen in Genen des Proteasom-Signalwegs

4.4.3 CNV-Gene

Unter den 68 auf dem Panel befindlichen CNV-Genen wurden 15 seltene heterozygote Varianten mit einem CADD-Score \geq 20 ermittelt (Tab. 33).

Die 15 Punktmutationen bestehen zum überwiegenden Teil (75%) aus putativen *Missense*-Varianten. Die übrigen Varianten verteilen sich auf zwei intronische Varianten außerhalb der hochkonservierten Spleiß-Konsensus-Regionen eine synonyme Variante und zwei *Inframe*- Deletionen. Die Signifikanz dieser Varianten ist unsicher. Sicher pathogene trunkierende Mutationen wurden nicht gefunden.

Die meisten Varianten (4 Missense-Varianten) wurden in *GRIK4* gefunden. In *TRIM41* wurden wurden zwei Missense-Varianten entdeckt. Alle weiteren Gene waren von je einer Variante betroffen. Eine der Missense-Varianten in *TRIM41* wurde bei demselben Patienten (HNPCC_38) gefunden, welcher auch eine partielle Duplikation im *TRIM41*-Gen aufwies. Die Variante liegt in dem Bereich des Gens, der von der Duplikation betroffen ist. Dies könnte auf eine rezessive Form der Vererbung hindeuten; die Compound-Heterozygotie lies sich allerdings nicht prüfen. Weitere Hinweise auf eine rezessive Vererbung (zwei pathogene Punktmutationen im selben Patienten mit einer Allelfrequenz < 1%) wurden nicht detektiert.

Gene	Patienten-ID	Varianta	vermutete	Mutationstyn	Patienten-ID	CNV	CADD-
	NGS	variante	Konsequenz	wittationstyp	CNV		Score
GRIK4	HNPCC_08	c.514C>T	p.Leu172Phe	Missense		Del ^{part}	29
	HNPCC_36	c.569C>T	p.Ser190Phe	Missense			24
	HNPCC_39	c.2219T>C	p.lle740Thr	Missense	HNPCC_94		26
	HNPCC_46	c.896C>G	p.Thr299Ser	Missense			20
KATNAL1	HNPCC_22	c.1082C>T	p.Pro361Leu	Missense	HNPCC_90	Dup ^{part}	29
LAMP3	HNPCC_52	c.607C>T	p.Arg203Cys	Missense	HNPCC_73	Dup	23
MTHFD1L	HNPCC_55	c.2924T>C	p.Val975Ala	Missense	HNPCC_50	Dup ^{part}	26
NOSIP	HNPCC_44	c.277G>A	p.Gly93Ser	Missense	HNPCC_18	Del	23
OTUB2	HNPCC_38	c.146G>A	p.Gly49Glu	Missense	HNPCC_01	Dup	28
PRKCA	HNPCC_45	c.1658_1660delACA	p.Asn554del	Inframe-Deletion	HNPCC_42	Del ^{intr}	23
PRKDC	HNPCC_31	c.8811G>A	p.Thr2937	Synonym	HNPCC_41	Del ^{part}	22
PRRG2	HNPCC_55	c.254C>A	p.Thr85Asn	Missense	HNPCC_18	Del ^{part}	22
	HNPCC_38	c.1084C>T	p.Arg362Cys	Missense		Duppart	24
1 KIIVI41	HNPCC_65	c.1561G>T	p.Gly521Cys	Missense	HNPCC_30	Dup	24
VWDE	HNPCC_47	c.4430G>A	p.Arg1477His	Missense	HNPCC_31	Del	23

Tab. 33 Punktmutationen in CNV-Genen

Del: Deletion, Dup: Duplikation; intr. CNV betrifft nur intronischen Bereich; part: kodierender Gen-Bereich partiell vom CNV betroffen hervorgehobene Gene: CNV-Kandidatengene mit zusätzlichen Varianten im Gen

4.5 Zusammenfassung der Ergebnisse aus CNV- und NGS-Analyse

Unter Anwendung stringenter Filter auf CNV- und Gen-Ebene und unter Berücksichtigung aller nachfolgenden Analysen wurden die zehn spannendsten Kandidatengene ermittelt (*DLG2*, *DUSP11*, *GNB2L1*, *MCM4*, *PAG1*, *PRKCA*, *PRKDC*, *RUNDC3B*, *TRIM41* und *TRIM52*) (Tab. 34). Für die Einschätzung berücksichtigt wurden dabei: die Genfunktion, der Hi- und RVIS-Score, die Ergebnisse der Netzwerk-, Pathway-, Segregations- und NGS-Analyse, der Vergleich mit den Ergebnissen vorangegangener CNV-Studien zu ungeklärten Tumorsyndromen (Tab. 35) und das Vorliegen einer Expression in der Darmschleimhaut sowie das Vorliegen als somatische Mutationen \geq 3% in 295 nicht-hypermutierten Adenokarzinomen der TCGA-Datenbank.

Die selektierten Gene sind funktionell relevant; sieben der Gene sind potentielle TSG, drei potentielle Onkogene. Dabei stimmt die Art des CNVs (Del/Dup, partiell/komplett) mit dem daraus abzuleitenden Effekt auf die Genfunktion (LoF/gain of Function) überein (Kriterium I, vgl. Kap. 4.3.4). Alle sieben potentiellen LoF-Gene weisen zudem einen niedrigen Hi-/RVI-Score auf, sie sind folglich dosissensitiv/variantenintolerant gegenüber Mutationen. Acht der Gene (GNB2L1, MCM4, PAG1, PRKCA, PRKDC, RUNDC3B, TRIM41, TRIM52) sind in einem gemeinsamen Netzwerk mit MSH2 beschrieben. Sechs der Gene (DLG2, DUSP11, GNB2L1, MCM4, PRKCA, PRKDC) sind in einem Pathway beschrieben, der als relevant für die Entwicklung von Malignomen eingeschätzt wurde und an dem weitere bekannte CRC-Gene beteiligt sind. In drei der Gene (PRKCA, PRKDC, TRIM41) wurden zusätzliche Keimbahnvarianten identifiziert. Für fünf Gene (DUSP11, MCM4, PRKCA, TRIM41 und TRIM52) wurde in nah verwandten Genen anderer **CNV-Studien** Patienten mit ungeklärtem familiärem CRC bei bereits Kopienzahlveränderungen identifiziert. Die berücksichtigten Studien sind in Tab. 35 aufgelistet. Keines der Gene wies somatische Mutationen ≥ 3% in nicht-hypermutierten Adenokarzinomen der TCGA-Datenbank auf.

Eine komplette Auflistung aller CNV-Gene befindet sich im Anhang in Tab. E.1.

Gen	ID	Art des CNVs	LoF-/Onkogen	Hi-/ RVI- Score	Kriterium	Netzwerk- Analyse	Pathway- Analyse	NGS	Literaturvergleich	Expression in Darmschleimhaut
DLG2	28	Del ^{intr}	LoF-Gen	1; 4	I und II	-	х	-	-	х
DUSP11	45	Dup ^{part}	LoF-Gen	53; 18	I und II	-	x	-	Masson et al., 2013 (DUSP8, Dup)	х
GNB2L1	38	Dup	Onkogen	(60); (25)	I und -	x	х	-	-	х
МСМ4	41	Del ^{part}	LoF-Gen	2; 4	I und II	x	x	-	Horpaopan et al., 2015 (MCM3AP, Dup ^{part})	х
PAG1	47	Del ^{part}	LoF-Gen	35; 39	I und II	х	-	-	-	х
PRKCA	42	Del ^{intr}	LoF-Gen	5;9	I und II	x	x	x	Masson et al., 2013 (PRKCI, Dup ^{part})	х
PRKDC	41	Del ^{part}	LoF-Gen	9; -	I und II	х	х	х	-	х
RUNDC3B	34	Del ^{part}	LoF-Gen	66; 19	I und II	х	-	-	-	х
TRIM41	38	Dup ^{part}	Onkogen	83; 62	I und -	x	-	x	Masson et al., 2013 (TRIM69, 2x Dup ^{part})	х
TRIM52	38	Dup	Onkogen	(88); (45)	l und -	x	-	-	Masson et al., 2013 (TRIM69, 2x Dup ^{part})	х

 Tab. 34
 Zusammenfassung der Ergebnisse aller Analysen (CNV und NGS)

Del: Deletion; Dup: Duplikation; intr: CNV betrifft nur intronischen Bereich;

part: kodierender Gen-Bereich partiell vom CNV betroffen

Kriterium I: Funktionell relevant in Bezug zur Art der Mutation;

Kriterium II: Gene mit einem Hi-Score \leq 35 oder RVIS \leq 25

x: Proteinprodukt dieses Gens beteiligt an Netzwerk- / Pathwayanalyse; Variante im NGS detektiert; exprimiert in Darmschleimhaut

Werte in Klammern: Komplette Gen-Duplikation, Scores nicht vollständig anwendbar

Ergebnisse

Krebskohorte (familiär / früh- manifestiert)	# Pat.	# Kontr.	# CNVs	Keimbahn CNVs (Details der Studie)	Referenzen
Pankreas-Ca	57	607	56	nichtrekurrente, seltene CNVs (nicht in Kontrollpersonen)	(Lucito et al., 2007)
MSS CRC ohne Polyposis	41	1600	7	nichtrekurrente, seltene CNVs (in keinen Kontrollen und DGV)	(Venkatachalam et al., 2011)
Brust- und Eierstockkrebs	68	258	26	nichtrekurrente, seltene CNVs (in keinen Kontrollen und DGV)	(Krepischi et al., 2012)
CRC	371	1262	1	Seltene 12p12.3 Deletion in 2 Patienten und keinen Kontrollen (DGV)	(Yang et al., 2014)
Pankreas-Ca	223	169	2	nichtrekurrente, seltene CNVs (in keinen Kontrollen DGV)	(Willis et al., 2014)
Melanom	62	17	1	nichtrekurrente, seltene Duplikation auf 4q13 in 3 Patienten einer Familie und keinen Kontrollen	(Yang et al., 2012)
HNPCC* und LS- Patienten	35 und 65	384	1	seltene Duplikation auf 7q11.21 (in 28% der Patienten und in keinem der Kontrollen)	(Talseth-Palmer et al., 2013)
HNPCC*	125	40	207	rekurrente seltene CNVs (nicht in Kontrollen)	(Masson et al., 2013)
Polyposis	221	531	125	nichtrekurrente, seltene CNVs (nicht in Kontrollen und DGV)	(Horpaopan et al., 2015)
Brust- und Eierstockkrebs	81	36	35	nichtrekurrente, seltene CNVs (in keinen Kontrollen und DGV)	(Kuusisto et al., 2013)
HNPCC*	45	100	35	nichtrekurrente, seltene CNVs (in keinen Kontrollen, DGV, Affymetrix Database of Variants)	(Villacis et al., 2015)

Tab. 35 Berücksichtigte CNV-Studien zu familiären Tumorsyndromen

* Erfüllte Amsterdam/Bethesda-Kriterien, keine Mutation in einem der MMR-Gene CRC: Kolorektales Karzinom; Ca: Karzinom; LS: Lynch Syndrom hervorgehobene Studien: im Vergleich mit unserer Studie übereinstimmendes Gen von CNV betroffen

5 Diskussion

Bei 30 bis 50% aller Patienten, welche die klinischen Kriterien für das LS erfüllen und die typischen Merkmale im Tumor aufweisen (Ausfall eines Mismatch-Repair-Proteins, hohe Mikrosatelliteninstabilität), lässt sich keine ursächliche pathogene Keimbahnmutation nachweisen. Aufgrund des Auftretens typischer, frühmanifester HNPCC-assoziierter Tumoren (meist kolorektale Karzinome oder Endometriumkarzinome im Alter < 50 Jahre) oder dem zusätzlich gehäuften Auftreten dieser Tumoren innerhalb der Familien, ist jedoch eine erbliche genetische Komponente zu vermuten. Dieser fehlende genetische Faktor könnte auf eine noch unbekannte monogene, hochpenetrante Mutation zurückzuführen sein, oder auf mehreren milder penetranten Varianten beruhen, welche in Form eines komplexen Zusammenspiels die Erkrankung verursachen. Bei einer Reihe erblicher Tumorsyndrome konnten seltene CNVs, insbesondere heterozygote Deletionen, als Teil des Mutationsspektrums nachgewiesen werden (Krepischi et al., 2012; Manolio et al., 2009). Weitere Mikrodeletionen oder -duplikationen könnten demnach für die noch ungeklärten Fälle beim HNPCC verantwortlich sein. Um nach neuen hochpenetranten monogenen Varianten zu suchen, führten wir eine genomweite CNV-Analyse in einem ausgewählten HNPCC-Kollektiv mit MSH2-Verlust durch.

5.1 Ursächlich aufgeklärte Patienten des Kollektivs

Durch die gründliche Aufarbeitung des Kollektivs konnte für insgesamt 19 (20%) der ursprünglich 95 HNPCC-Patienten nachträglich eine pathogene Mutation in einem bekannten, etablierten Gen nachgewiesen werden. Für 17 der 19 Patienten wurde hierbei die Diagnose eines LS gestellt. Ein Patient konnte einer FAP, ein anderer einer MAP zugeteilt werden.

Vier der 19 Patienten erfuhren eine Hochstufung von MMR-Gen-Varianten der Klasse 3 (unklare klinische Signifikanz) zu Varianten der Klasse 4 (wahrscheinlich pathogen) oder Klasse 5 (erwiesenermaßen pathogen). Da sich die Einstufungen des InSiGHT-VIC je nach Datenlage ändern können, sind Neuklassifizierungen der VUS möglich.

Bei 13 der 19 Patienten konnten vorher nicht detektierte pathogene Keimbahnmutationen in MMR-Genen identifiziert werden. Hierunter befanden sich sieben Patienten, bei denen zuvor nur die DHPLC-Methode zum Mutations-Screening eingesetzt worden war. Heute ist bekannt,

dass durch die Anwendung dieser Methode häufig Mutationen übersehen werden (Medlock et al., 2012). Durch eine im Rahmen dieser Studie ergänzende Sanger-Sequenzierung des kompletten MSH2- und MSH6-Gens wurden bei diesen Patienten vier Keimbahnmutationen in MSH2 und drei Keimbahnmutationen in MSH6 identifiziert (siehe Kap. 4.1.1). Bei den übrigen sechs der 13 Patienten wurden pathogene MMR-Gen-Mutation über das NGS-Panel detektiert. Darunter befanden sich zwei MSH2-Mutationen, die über die vorausgegangene Sanger-Sequenzierung übersehen worden waren, sowie weiterhin drei MSH6- und eine MLH1-Mutation (Kap. 4.4.1). Der Nachweis der MSH6-Mutationen und der MLH1-Mutation war überraschend, da aufgrund des immunohistochemischen Befundes (MSH2-Ausfall) nur MSH2-Mutationen zu erwarten waren und daher nur nach diesen gesucht worden war. Die Immunohistochemie ist eine in der Diagnostik etablierte Methode, welche die Suche nach pathogenen Keimbahnmutationen erleichtert. Zum einen erspart man sich so die Kosten für die Sequenzierung aller vier MMR-Gene, zum anderen vereinfacht sie auch die Interpretation der funktionellen Relevanz einer detektierten Variante. Sensitivität und Spezifität der Methode liegen allerdings nicht bei 100%, sodass falsch positive und negative Befunde vorkommen (Steinke et al., 2010). Bei ursächlichen MSH2-Mutationen fällt immer auch MSH6 im Tumorgewebe mit aus, da MSH2 der einzige Bindungspartner von MSH6 ist. Bei Mutationen im MSH6-Gen hingegen, bleibt die MSH2-Expression üblicherweise erhalten, da MSH2 noch weiter Bindungen mit MSH3 eingehen kann (vgl. Kapitel 2.3.6). Da dies in der Praxis jedoch nicht immer zutrifft ist man inzwischen in der Diagnostik dazu übergegangen auch bei alleinigem Ausfall von MSH2 (bzw. MLH1), den Komplexpartner MSH6 (bzw. PMS2) mitzusequenzieren.

Bei zwei Patienten konnte molekulargenetisch eine MAP bzw. FAP diagnostiziert werden. Der Verdacht einer MAP ergab sich durch erneute Aktensichtung. Der Patient erkrankte mit 40 Jahren an Dickdarmkrebs. Koloskopisch ließen sich 23 kolorektale Adenome nachweisen. Zudem war sein Bruder im Alter von 42 Jahren an Dickdarmkrebs erkrankt. Die anschließende Sanger-Sequenzierung offenbarte zwei wahrscheinlich biallele Keimbahnmutationen im *MUTYH*-Gen. Bei dem weiteren Patienten wurde eine pathogene *APC*-Mutation detektiert. Dies war ein Zufallsbefund der über das NGS-Panel detektiert wurde. Die Familien- und Eigengeschichte des Patienten sowie der Tumorbefund lieferten keinen Hinweis auf eine FAP. Der Patient wurde infolge eines Dünndarmkarzinoms mit einer geringen Anzahl kolorektaler Adenome zusammen mit den typischen Veränderungen im Tumorgewebe (hohe Mikro-

satelliteninstabilität und Ausfall von MSH2) phänotypisch als HNPCC-Patient klassifiziert. Zudem war seine Mutter mit 49 Jahren an einem Magenkarzinom, einem zum HNPCC-Spektrum gehörenden Tumor, erkrankt. Aufgrund der geringen Polypenzahl und der MSI-H wurde klinisch keine FAP vermutet. Bei der klassischen FAP können bis zu tausende Polypen im gesamten Darm auftreten. In Bezug auf Anzahl, Größe und Verteilung der Polypen gibt es bei der FAP allerdings eine weite interfamiliäre und interindividuelle Variabilität (Giardiello et al., 1994). Generell rufen Mutationen am 3'-Ende des APC-Gens, wie hier vorliegend, ein attenuiertes Krankheitsbild mit wenigen Polypen hervor. Die Polypen sind in der Regel mikrosatellitenstabil. Das Auftreten von MSI bei FAP-Patienten ist bislang nicht näher untersucht. Es könnte sich um zufällige somatische Mutationen im Tumor mit dadurch bedingter MSI gehandelt haben. Die weitere Krankheitsgeschichte des Patienten verlief untypisch: Mit dreieinhalb Jahren erkrankte er an einer akuten lymphatischen Leukämie, mit 21 Jahren an einem Akustikusneurinom und mit 29 Jahren an einem Zungengrundkarzinom. Diese Tumoren gehören nicht zu dem Spektrum der HNPCC- oder FAP-Tumoren. Die Ursachen für die extraintestinalen Krebserkrankungen des Patienten sind durch die APC-Mutation nicht zu erklären. Hierfür kann das Vorliegen weiterer genetischer Risikofaktoren nicht ausgeschlossen werden. Der Patient wies keine seltenen CNVs und keine weiteren pathogenen Punktmutationen in den untersuchten Genen auf.

Die Daten demonstrieren, dass der etablierte diagnostische Algorithmus (Einteilung nach Familiengeschichte und Eigenanamnese als auch Tumorbefund) nicht vollständig sensitiv ist. Eine Umstellung auf NGS-Panel, mit denen eine Vielzahl kausaler Gene synchron untersucht werden können, könnte dieses Problem in Zukunft lösen. Vorteil dieser Methode ist die schnelle, kostengünstige Sequenzierung mehrerer Gene gleichzeitig unter Einsatz einer nur geringen DNA-Menge. Durch die hohe Abdeckung (*coverage*) könnte die Detektionsrate beim NGS höher sein als bei der Sanger-Sequenzierung. In der vorliegenden Arbeit war die Detektion zweier pathogener *MSH2*-Mutationen erst mittels NGS möglich. Andererseits ist bekannt, dass homopolymere Bereiche, wie sie auch im *MSH2-Gen* vorkommen, über das NGS nicht sicher abgedeckt werden (Simbolo et al., 2015). Somit ist auch mit dieser Technik keine vollständige Sensitivität zu gewährleisten. Des Weiteren weist das NGS eine gewisse falsch-positiv Rate auf, weshalb momentan noch für diagnostische Zwecke alle mit NGS detektieren Varianten mit Sanger validert werden müssen.

5.2 CNV-Analyse

Die für diese Arbeit durchgeführte genomweite CNV-Analyse von 83 nicht-verwandten, mutationsnegativen HNPCC-Patienten hatte zum Ziel, neue ursächliche Gene für das LS aufzudecken. Da bei dem zugrundeliegenden Phänotyp der in dieser Studie eingeschlossenen Patienten (junges Erkrankungsalter, über die Hälfte der ausgewählten Patienten mit positiver Familienanamnese) von einer monogenen genetischen Ursache auszugehen ist, wurde nach seltenen und somit potenziell hochpenetranten CNVs gesucht. Insbesondere bei erfüllten Amsterdam-Kriterien (Tumoren aus dem engeren HNPCC-Spektrum bei mindestens drei erstgradig Verwandten) ist von einer monogen-dominanten Vererbung auszugehen.

Die Anwendung des Hi- und RVI-Scores zur Bewertung der Dosissensitivität und Variantenintoleranz, die Berücksichtigung der Art des CNVs (Deletion/Duplikation, partiell/komplett) und seiner beschriebenen Funktion, eine *in-silico* Netzwerk-, Pathway- und Segregations-Analyse sowie der Vergleich mit bereits durchgeführten CNV-Studien bei Patienten mit ungeklärten Tumorsyndromen dienten der Selektion möglicher ursächlicher Kandidatengene. Weiterhin wurde berücksichtigt, ob die Gene eine zusätzliche Keimbahnvariante aufwiesen, ob sie in Darmschleimhaut exprimiert werden, oder ob sie bei Adenokarzinomen des TCGA von somatischen Mutationen betroffen sind.

Das Patientenkollektiv der CNV-Analyse wurde in sieben Zentren aus Deutschland und den Niederlanden rekrutiert. Die CNV-Daten von zehn der insgesamt 83 Patienten (12%) mussten zu Beginn der Analyse aufgrund einer zu großen Standardabweichung des Intensitätssignals Log R Ratio (LRR > 0,3) entfernt werden. Die Ursache für eine zu große Standardabweichung der LRR ist in den meisten Fällen eine minderwertige DNA-Qualität. Qualitätsverluste der DNA sind bei langer oder unsachgemäßer Lagerung oder bei unsauberer Extraktion festzustellen. Auch mechanische Einwirkungen, wie zu starkes Vortexen oder zu hohe Zentrifugalkräfte, können zu Brüchen in der DNA-Struktur führen, die eine nachfolgende sensitive Untersuchung verhindern.

Für die Berechnung der CNVs wurde der QuantiSNP-Algorithmus beruhend auf dem *Hidden Markov Model* verwendet. Programme wie cnvPartion oder PennCNV sind gebräuchliche Alternativen, die in Tests unterschiedliche *Calling*-Ergebnisse erzielten (Marenne et al., 2011). Die Anwendung mehrerer Algorithmen minimiert die Anzahl an falsch-positiven *calls* (erhöhte Spezifität). Gleichzeitig führt dies zu Einbußen in der Sensitivität. In einer vergleichenden Studie schnitt QuantiSNP als leistungsfähigster Algorithmus unter den sieben gebräuchlichsten CNV-Algorithmen ab (Dellinger et al., 2010). Wir verwendeten daher QuantiSNP als einziges Programm und benutzten weitere Filterkriterien (Größenfilter, Anzahl konsekutive SNPs, Log Bayes Faktor), um die Zahl an falsch-positiven CNVs auf ein Minimum zu reduzieren.

Die 73 ausgewerteten Patienten wiesen nach dem QuantiSNP calling 8.460 CNVs durchschnittlich 116 CNVs pro Patient, auf. Duplikationen sind meistens mit einem milderen Phänotyp verbunden und stehen unter weniger negativem Selektionsdruck (Zarrei et al., 2015). Duplikationen kommen daher im Allgemeinen häufiger im Genom vor, sind jedoch schwieriger zu detektieren und daher häufig in den CNV-Analysen unterrepräsentiert (Buizer-Voskamp et al., 2011; Dauber et al., 2011). In unserer Analyse wurden hingegen deutlich mehr Duplikationen als Deletionen detektiert (2.025 Deletionen zu 6.435 Duplikationen). Unter diesen gecallten Duplikationen waren jedoch > 90% artifizieller Natur. Von den 6.435 Duplikationen wiesen 5.603 Duplikationen einen Log Bayes Faktor (LBF) < 10 auf und wurden im ersten Filterschritt ausgeschlossen. Die anschließende Validierung der CNVs ergab, dass selbst Duplikationen mit einem LBF zwischen 10 und 20 nicht nachweisbar waren, woraufhin dieser Validitätsfilter für Duplikationen auf ≥ 20 hochgesetzt wurde. Das Verhältnis Deletionen zu Duplikationen war daraufhin mit 367 Deletionen zu 261 Duplikationen annähernd ausgeglichen. Zwischen den Deletionen und Duplikationen ließen sich Größenunterschiede feststellen. So waren unter den Duplikationen deutlich größere CNVs (> 500 kb) als unter den Deletionen. Dies lässt sich wiederum mit der geringeren phänotypischen Auswirkung von Duplikationen auf den Organismus erklären. Große (≥ 1 Mb) Deletionen in genhaltigen Bereichen resultieren häufig in phänotypisch schwerwiegenden Erkrankungen (z.B. angeborene Fehlbildungen) (Watson et al., 2014). Da unsere Patienten eine spätmanifeste Erkrankung aufweisen und weder eine mentale Retardierung, noch bekannte Dysmorphien oder Fehlbildungen zeigten, war der Nachweis von kleineren Deletionen (≤ 500 kb) mit meist nur ein bis drei gemeinsam betroffenen Genen entsprechend zu erwarten.

Ähnlich wie SNPs haben häufig auftretende CNVs (CNPs) meistens keine nennenswerten phänotypischen Auswirkungen auf den Organismus oder spielen lediglich als niedrig-penetrante Risikofaktoren eine Rolle (Shlien und Malkin, 2010). Selten auftretende CNVs jedoch können als kausal relevante monogene Faktoren potenziell krankheitsverursachend sein. Für die Suche nach hochpenetranten Risikogenen für das HNPCC waren daher seltene CNVs von Bedeutung. Neben dem Vergleich der Ergebnisse mit CNVs von *In-House*-Kontrollen bietet insbesondere die *Database of Genomic Variants* eine gute Möglichkeit, die Häufigkeit von CNVs in gesunden Kontrollen mit der in Patientenkollektiven zu vergleichen.

Neben der Anwendung von Häufigkeitsfiltern wurden CNVs in nicht-kodierenden Regionen (siehe Abschnitt 5.5 Limitationen) sowie in Regionen segmentaler Duplikationen ausgeschlossen. Segmentale Duplikationen sind duplizierte Genregionen > 1 kb mit einer hohen Sequenzidentität. Sie befinden sich häufig in Telomer- oder Chromatinregionen (Bailey et al., 2001, 2002). Der Nachweis dieser CNVs ist durch unspezifische Primerbindung in diesen Bereichen hoher Sequenzidentität schwierig durchzuführen.

Nach Eingrenzung der Daten auf CNV-Ebene erfolgte eine Eingrenzung auf Gen-Ebene. Es wurden zunächst über die CNV-Analyse detektierte Pseudogene sowie olfaktorische Gene ausgeschlossen. Im menschlichen Genom kommen über 1.000 olfaktorische Rezeptorgene vor, von denen etwa 60% mutiert vorliegen (Gilad et al., 2003; Glusman et al., 2001; Zozulya et al., 2001). Diese Klasse von Genen weist einen niedrigen Selektionsdruck auf und ist sehr tolerant gegenüber Mutationen (Intoleranz-Score > 90%). Denn trotz des gehäuften Auftretens von Mutationen, darunter auch Stopp-Mutationen, lassen sich keine klinischen Konsequenzen daraus ableiten (Petrovski et al., 2013).

Unter Ausschluss der anschließend über das NGS detektierten sieben mutationspositiven Patienten (vgl. Kap. 4.4.1) wurden zusammenfassend 42 seltene CNVs (21 Deletionen und 21 Duplikationen), welche insgesamt 74 Gene betreffen, in 29 von 66 (44%) mutationsnegativen Patienten detektiert. Jeder CNV kam nur bei einem Patienten im Kollektiv vor und es fanden sich keine Überschneidungen unter den CNVs oder den betroffenen Genen innerhalb der Patientengruppe. Diese Befunde sind vergleichbar mit den wenigen bisher durchgeführten genomweiten CNV-Analysen zu ungeklärten familiären Tumorsyndromen, welche ebenfalls individuelle, nicht-rekurrente CNVs identifizierten (Horpaopan et al., 2015; Krepischi et al., 2012; Kuusisto et al., 2013; Lucito et al., 2007; Venkatachalam et al., 2011; Villacis et al., 2015; Willis et al., 2014; Yang et al., 2012). Dies schließt eine Ursächlichkeit der nur von einzelnen Patienten betroffenen Gene allerdings nicht aus. Es ist davon auszugehen, dass bisher nicht identifizierte Gene, die für familiäre Tumorprädispositions-Syndrome ursächlich sind, sehr selten vorkommen. Die 2013 von Palles et. al. detektierte Keimbahnmutation in dem Polymerase-Gen *POLD1*, die zusammen mit Mutationen in *POLE* für die PPAP verantwortlich gemacht wird, wurde einmalig in einem Kollektiv aus 3.805 Patienten (0,03%) mit ungeklärten multiplen kolorektalen Adenomen und CRC nachgewiesen (Palles et al., 2013). Masson et al. hingegen konnten in ihrem Kollektiv aus 125 HNPCC Patienten einzelne Gene nachweisen, die in bis zu vier Patienten überschneidend als Deletionen oder Duplikationen vorlagen (Masson et al., 2013). Unter diesen Genen fand sich auch *NRG3*, welches bei einem unserer Patienten eine intronische Deletion aufwies (s.u.).

Unter den 66 ausgewerteten mutationsnegativen Patienten der CNV-Analyse wies etwas mehr als die Hälfte (56%) keine seltenen CNVs in proteinkodierenden Genen auf. Für diese Patienten mit ungeklärtem familiärem CRC sind womöglich andere genetische Faktoren, wie Punktmutationen oder häufige niedrigpenetrante Varianten, ursächlich für die CRC-Prädisposition.

Eine Segregationsanalyse war aufgrund der geringen Anzahl noch lebender und als erkrankt einzustufender Familienmitglieder sowie der schwierigen Kontaktaufnahme nur in einem Fall möglich. Die Index-Patientin wies eine partielle Duplikation in ENOX1 auf. Das kodierende Protein, ein Plasmamembran-Elektronentransporter, erfüllt weitere Funktionen in der Kontrolle des Zellwachstums und Zellüberlebens. In der Arbeit von Kluth et al. wurden 0,5% der untersuchten Prostatakarzinomzellen mutiert vorgefunden (Kluth et al., 2015). Aufgrund seiner Funktion bei der Kontrolle des Zellwachstums und seiner niedrigen Hi- und RVI-Scores (22% und 9%), die auf eine Dosissensitivität und Variantenintoleranz hindeuten, wurde es als interessantes Kandidatengen gewertet. Bei der Segregationsanalyse konnte allerdings keine Segregation mit dem entsprechenden CNV bei der zweimal hintereinander an CRC betroffenen Cousine festgestellt werden. Dies kann entweder bedeuten, dass kein Zusammenhang zwischen dem CNV und der Erkrankung besteht, oder dieser CNV nur als moderater Risikofaktor (neben weiteren) zu werten ist. ENOX1 wurde daher nicht als final hochpenetrantes Kandidatengen gewertet. Einige Studien konnten eine Segregation einzelner CNVs in betroffenen Familienangehörigen feststellen (Villacis et al., 2015; Yang et al., 2012, 2014). Wir fanden keine Überschneidungen mit den in dieser Studie nachgewiesenen CNVs in den beschriebenen Regionen (12p12.3, 4q13) (Yang et al., 2012, 2014) bzw. den betroffenen Genen (GALNT1, *KMT2C*) (Villacis et al., 2015).

Aus der Gesamtheit der durchgeführten Untersuchungen der CNV-Gene (Literaturrecherche, Anwendung bioinformatischer Scores, Segregations-, Pathway-, Netzwerk- und NGS-Analyse, dem Literaturvergleich mit vorangegangenen CNV-Studien bei Patienten mit ungeklärten Tumorsyndromen) wurden die zehn überzeugendsten Kandidatengene (DLG2, DUSP11, GNB2L1, MCM4, PAG1, PRKCA, PRKDC, RUNDC3B, TRIM41 und TRIM52) selektiert. Nah verwandte Gene von DUSP11, MCM4, PRKCA, TRIM41, TRIM52 wurden bereits in früheren Studien bei Patienten mit ungeklärtem familiärem CRC als Kopienzahlveränderung detektiert (Horpaopan et al., 2015, Masson et al. 2013, Villacis et al., 2015). Hierbei stimmte die Art des CNVs (Del/Dup) und dem daraus abzuleitenden denkbaren Effekt (LoF/Gain of Function) bis auf eine Ausnahme mit den bei uns betroffenen Genen überein. Acht der zehn Gene (GNB2L1, MCM4, PAG1, PRKCA, PRKDC, RUNDC3B, TRIM41 und TRIM52) sind in einem gemeinsamen Netzwerk mit MSH2 beschrieben (vgl. Kap. 4.3.6). Sie könnten über einen noch unbekannten Mechanismus potentiell ursächlich für den MSH2-Verlust sein. DUSP11, GNB2L1, PRKCA, PRKDC und TRIM41 weisen funktionell eine Verbindung zur Proteinkinase A oder C auf, die u.a. an der Regulation des Zellwachstums, der Zelldifferenzierung, der Zelladhesion und Angiogenese sowie der Tumorgenese beteiligt sind. Drei dieser zehn Gene (PRKCA, PRKDC, TRIM41) sind von zusätzlichen, potentiell pathogenen (CADD-Score ≥ 20) Keimbahnvarianten betroffen. Alle zehn Kandidatengene werden in der Darmschleimhaut exprimiert. Keiner der Kandidatengene wies somatische Mutationen \geq 3% in nicht-hypermutierten Adenokarzinomen der TCGA-Datenbank auf.

Die final interessantesten Kandidatengene wurden aufgrund der Gesamtheit aller Analyseergebnisse und unter Berücksichtigung der Informationen aus Literatur- und Datenbankrecherche ausgewählt. Weitere zunächst interessant erschienene Gene wurden letztlich nicht berücksichtigt, da sie nur einzelne Kriterien erfüllten, in der Summe der Analysen aber widersprüchliche Ergebnisse lieferten.

ATP12A (ATPase H+/K+ Transporting Non-Gastric Alpha2 Subunit) und NRG3 (Neuregulin 3) beispielsweise erschienen zunächst relevant, da CNVs dieser Gene bereits in vorherigen Studien bei Kollektiven mit genetisch ungeklärtem familiärem CRC detektiert wurden (Masson et al., 2013; Villacis et al., 2015; unveröffentlichte Daten unserer Arbeitsgruppe). ATP12A reguliert mit Hilfe von ATP den Austausch von H⁺ und K⁺ über die Plasmamembran. Das Protein wird

hauptsächlich in der Luftröhre exprimiert. *NRG3* ist ein Ligand des transmembranen Tyrosinkinase-Rezeptors ERBB4, welcher zur Familie der EGFR (*Epidermal Growth Factor*)-Rezeptoren gehört. Somatische Mutationen in ERBB4 wurden mit Prostata-, Ovarial- und Brustkrebs assoziiert (Hashemi et al., 2016; Kim et al., 2016; Saglam et al., 2017). Aus diesem Grund erschien *NRG3* funktionell relevant für die Entstehung des LS zu sein. Die vorliegende tief-intronische Deletion ist jedoch mit hoher Wahrscheinlichkeit nicht pathogen, da im tiefintronischen Genbereich selten Spleißvorgänge stattfinden. *NRG3* ist ein bekanntes Suszeptibilitätsgen für Schizophrenie und wird primär im Gehirn exprimiert. *ATP12A* und *NRG3* weisen hohe HI- und RVI-Scores auf. Sie sind somit nicht dosissensitiv oder variantenintolerant. Daher wurden sie nicht in die Liste der finalen Kandidatengene mit aufgenommen. ATP12A steht zudem funktionell in keinem Zusammenhang zu malignen Erkrankungen.

GRIK4 erschien zunächst besonders relevant, da bei fünf Patienten unserer Studie mögliche pathogene Varianten in diesem Gen identifiziert wurden: Neben der bei uns detektierten partiellen Deletion wurden zusätzlich vier Missense-Mutationen detektiert. Das Gen kodiert für den ionotropen Kainat-4-Glutamatrezeptor. Glutamat ist der bedeutendste exzitatorische Neurotransmitter im zentralen Nervensystem. Eine balancierte Translokation zwischen Exon 2 und 3 in *GRIK4* wurde mit Schizophrenie assoziiert (Pickard et al., 2006). GRIK4 wird wie NRG3 im Gehirn exprimiert. Aufgrund seiner Genfunktion und mangels seiner primären Expression im Gehirn wurde es letztlich nicht als finales Kandidatengen gewertet.

Die finalen Kandidatengene und ihre Proteinfunktionen werden im Weiteren näher diskutiert:

DLG2

Discs Large Homolog 2 (DLG2) ist ein Mitglied der Membran-assoziierten Guanylat-Kinase-Familie. Das Protein bildet mit Mitgliedern der DLG-Familie Heterodimere aus, die an postsynaptischen Seiten mit Rezeptoren, Ionenkanälen und assoziierten Signalproteinen interagieren. Eine mögliche Rolle als TSG wird diskutiert, die genaue Funktion des Proteins ist noch unklar. Der in dieser Studie vorliegende betroffene Patient erkrankte im Alter von 49 Jahren an CRC, die Schwester mit 50 Jahren an einem Endometriumkarzinom. Über die CNV-Analyse wurde eine tief-intronische Deletion von 31 kb in *DLG2* detektiert. Eine Beeinträchtigung der Proteinfunktion wäre somit vor allem über ein aberrantes Spleißen oder betroffene regulatorischer Bereiche zu erklären. Tief-intronische Spleißstellen sind unvollständig erfasst und wenig beschrieben, da häufig funktionelle Studien fehlen, die ihre Auswirkungen auf die Proteinfunktion untersuchen (Svaasand, 2015). *In silico*-Programme zur Spleiß-Prädiktion beschränken sich meist nur auf die ersten 15 bis 41 Basen ab der kanonischen 5', 3' Spleißstelle (Baralle und Baralle, 2005). *DLG2* weist einen niedrigen HI- und RVI-Score auf (1% und 4%), die einen Funktionsverlust des Proteins bei Vorliegen einer Deletion/Mutation anzeigen. Bei der Pathway-Analyse wurde *DLG2* im *Hippo-Pathway* gemeinsam mit den CRC-Kandidatengenen *SMAD2* und *SMAD4, PPP2CA* und *PPP2R1B* und *PRKCZ* beschrieben. Dieser Signalweg ist für die Regulation der Zellproliferation und Apoptose verantwortlich. Es konnten keine zusätzlichen Punktmutationen in *DLG2* in unserem sequenzierten Kollektiv nachgewiesen werden. Auch wenn DLG2 in keinem direkten Zusammenhang zu MSH2 steht, ist die Funktion des Gens als möglicher Tumorsuppressor interessant. Mögliche aberrante Spleißprodukte die durch die intronische Deletion auftreten könnten, müssten mittels einer RNA-Untersuchung (Transkriptanalyse) untersucht werden. Eine Transkriptanalyse war für den hier vorliegenden Fall allerdings nicht möglich, da kein entsprechendes Material von dem Patienten erhalten werden konnte.

DUSP11

DUSP11 ist ein Mitglied der dual-spezifischen Phosphatase-Familie. Sie inaktivieren ihre Zielkinasen durch Dephosphorylierung der Phosphoserin/-threonin und Phosphotyrosinreste. Sie inhibieren Mitglieder des MAPK-Signalwegs (MAPK/ERK, SAPK/JNK, p38), welcher mit zellulärer Proliferation und Differenzierung assoziiert und bei der Entwicklung von Krebserkrankungen involviert ist (Beeram et al., 2005). Eine erhöhte Expression von DUSP11 wurde in einem *in vitro* Modell zur Nachbildung der *in vivo* Tumorformation bei Kolonkarzinomzellen vorgefunden (Dardousis et al., 2007). Im hier untersuchten Kollektiv liegt *DUSP11* bei einem Patienten partiell dupliziert vor. Unter der Annahme eines LoF-Effekts passt die beschriebene Funktion von DUSP11 (Inhibitor des MAPK-Signalweges) zu der Hypothese einer kausalen Beteiligung am Phänotyp des Patienten. Der Patient erkrankte im Alter von 50 Jahren an einem CRC, seine Mutter bereits im Alter von 45 Jahren an einem Karzinom unklarer Ätiologie. Die Pathway-Analyse ergab eine Beteiligung von DUSP11 am Proteinkinase-A-Signalweg. Dieser Signalweg ist assoziiert mit der Entstehung und dem Fortschreiten verschiedener Tumorarten (Caretta und Mucignat-Caretta, 2011). Eine weitere CNV-Studie an HNPCC-Patienten detektierte eine vollständige Duplikation in *DUSP8*, einem nah verwandten Gen mit identischer Funktion. Bei einer vollständigen Duplikation ist von einer Überexpression des Proteins auszugehen, was wiederum nicht zu der bekannten Proteinfunktion passt. Die Ursächlichkeit von *DUSP11* ist damit derzeit unklar.

GNB2L1 (RACK1)

Das Guanin Nukleotide Binding Protein, Receptor of Activated Protein Kinase C; Human Lung Cancer Oncogene, Proliferation Inducing Gene (GNB2L1) taucht bei einer Reihe relevanter Signalwege, wie dem Proteinkinase-A-Signalweg, CRC-Metastase-Signalweg, Gaq-Signalweg, CXCR4-Signalweg, PSY-Purigenic-Rezeptor-Signalweg, Gβγ–Signalweg und Signaling by Rho-Family GTPase auf. Aus den Daten der Netzwerk-Analyse ist abzuleiten, dass GNB2L1 über PRKCA und PRKDC mit MSH2 in Verbindung steht. Diese Verbindung ist experimentell begründet. Sie beruht auf der gemeinsamen Beteiligung dieser Proteine am Integrin-Adhesionskomplex (Byron et al., 2012). Dieser Komplex reguliert sowohl die Zell-Zell-Interaktion als auch die Interaktion zwischen Zellen und der extrazellulären Matrix. Hierüber werden wichtige Signaltransduktionsvorgänge und die Rekrutierung verschiedener Proteine vermittelt (Byron et al., 2012). GNB2L1 weist eine veränderte Expression (Über- als auch Unterexpression) in einer Reihe von Tumoren (u.a. Magenkarzinom, Speiseröhrenkrebs, CRC, Ovarial-Karzinom) auf (Chen et al., 2015; Cheng et al., 2016; Jin et al., 2014; Li und Xie, 2015; Lin et al., 2014; Wang et al., 2015). Je nach Zellkontext werden ihm sowohl apoptotische als auch Zellwachstumkontrolloder Zellwachstumsinhibitions-Funktionen antiapoptotische zugeschrieben. In Kolonkrebszellen wurde eine Interaktion zwischen GNB2L1 und Fem1b, einem pro-apoptotischen Protein, nachgewiesen. Erhöhte GNB2L1-Level führen demnach zur Degradierung von Fem1b. Durch die Degradierung wird der induzierte Zelltod verhindert und eine Progression der Krebszellen ist möglich (Subauste et al., 2009). In der vorliegenden Studie liegt GNB2L1 bei dem mit 49 Jahren an einem CRC erkrankten Patienten als vollständige heterozygote Duplikation vor, die zu einer Überexpression des Proteins führen könnte. Zudem besteht über den Integrin-Adhesions-Komplex eine Verbindung von GNB2L1 zu MSH2. Wie genau die einzelnen Proteine dabei miteinander in Kontakt treten, ist noch ungeklärt.

MCM4

MCM4 gehört zum Minichromosomalen-Mainenance-Komplex, der für die Initiierung der eukaryotischen Genomreplizierung essentiell ist. Punktmutationen in diesem Gen werden mit

Brustkrebs in Verbindung gebracht. Bei Mäusen führte die Mutation zu einer beeinträchtigten Proteinfunktion, was mit einem gestörten Zellwachstum und der Entwicklung von genomischer Instabilität einherging (Chuang et al., 2012; Shima et al., 2007). In diesem Gen wurde bei einem Patienten des Kollektivs eine partielle Deletion von 91 kb detektiert, die sowohl den 3'-Bereich von PRKDC als auch von MCM4, welche auf Chromosom 8 Kopf an Kopf liegen, umfasst. Die betroffene Patientin erkrankte mit 48 Jahren an einem EC und mit 72 Jahren an einem CRC. Die Schwester erkrankte mit 30 Jahren an einem EC und mit 60 Jahren an einem CRC. Die Mutter hatte Leberkrebs und der Vater Leukämie. Die dem Gen zugeordneten Scores (HI-Score 2%, RVI-Score 4%) indizieren, dass Mutationen in diesem Gen äußerst selten sind und eine Auswirkung auf die Proteinfunktion zu erwarten ist. Das Protein steht im engen Netzwerk mit MSH2 und interagiert dort zusammen mit PRKDC, einer DNA-aktivierten Proteinkinase, die an der Reparatur von DNA-Doppelstrangbrüchen involviert ist (Karmakar et al., 2010). Über die Pathway-Analyse wurde MCM4 im Zell-Zyklus-Kontroll-Signalweg gemeinsam mit CHEK2, einem wichtigen Tumorsuppressorgen, aufgefunden. In einer weiteren CNV-Studie wurde bei Patienten mit ungeklärter adenomatöser kolorektaler Polyposis eine partielle Duplikation in MCM3AP sowie eine Frameshift-Mutation und zwei vermutlich pathogene Missense-Mutationen nachgewiesen (Horpaopan et al. 2015). Alle detektierten Varianten sind somit Kompatibel mit einem erwarteten LOF-Effekt. MCM3AP bewirkt die Acetylierung von MCM3, einem weiteren Protein des Minichromosom-Maintenance Komplexes. Acetyliertes MCM3 bewirkt eine Inhibierung der DNA-Replikation. Damit verhindert es das Fortschreiten des Zellzyklus (Takei et al., 2002). Die reduzierte Expression eines MCMs bewirkt zudem eine reduzierte Expression aller Proteine des Komplexes.

PAG1

In der CNV-Analyse wurde bei einem mit 40 Jahren an einem Hodgkin Lymphom und mit 44 Jahren an CRC erkranktem Patienten in *PAG1* eine partielle Deletion nachgewiesen, welche mit einem Funktionsverlust des Proteins einhergehen könnte. *Phosphoprotein Associated with Glycosphingolipid-enriched microdomains 1* (PAG1) ist ein potentielles TSG, welches in vielen Krebszellen herunterreguliert ist (Suzuki et al., 2011). Das Protein wirkt inhibierend auf seine Zielkinasen und unterdrückt dadurch die Zellproliferation und Antigenstimulation (Rolland et al., 2014). In Tumorzellen konnte eine Inhibierung der Invasion und Metastasierung von Krebszellen durch PAG1 gezeigt werden (Yu et al., 2010). Die bei uns nachgewiesene Mutation

bei dem Patienten passt somit zu der beschriebenen Funktion von *PAG1* als TSG. In der Netzwerk-Analyse zeigte sich eine entfernte Verbindung zu MSH2.

PRKCA

Die Proteinkinase C Alpha (PRKCA) gehört zur Familie der Serin- und Threonin-spezifischen Proteinkinasen. PRKCA gilt als Tumorsuppressorgen, da es die Aktivierung des EGFR (Epidermal Growth Factor)-Rezeptors verhindern kann (Koese et al., 2013). Der EGFR-Rezeptor ist ein Transmembranrezeptor, welcher im aktivierten Zustand über eine Kaskade biochemischer Prozesse zur weiteren Aktivierung von downstream Signalwegen wie dem Ras/Raf MAP-Kinase-, PI3K/Akt- und Jak2/STAT3-Signalweg führt. Am Ende der Kaskade werden Zellproliferation, Angiogenese und Metastasierung angeregt und der programmierte Zelltod verhindert (Prenzel et al., 2001). Der EGFR-Rezeptor wird von normalen als auch von Tumorzellen exprimiert. Er liegt bei einer Reihe epithelialer Tumoren, wie dem Nicht-Kleinzelligen Bronchialkarzinom (40-80%), CRC (72-82%), Kopf-Hals-Karzinom (95-100%), Brustkrebs (14-91%) und Nierenkrebs (50-90%), überexprimiert vor. Die antiproliferative Aktivität der Proteinkinase C beruht auf der Hemmung von EGFR und wurde in Kolonepithelzellen nachgewiesen. Eine erniedrigte Aktivität von PRKCA wurde in kleinen Adenomzellen beschrieben (Assert et al., 1999). PRKCA gilt als dosissensitiv und mutationsintolerant (Hi-score 5%, RVI-Score 9%). Die bei uns vorliegende intronische Deletion könnte über ein aberrantes Spleißen (Überspringen eines Exons, Einbehalten des Introns, Einfügen einer neuen Spleißsstelle) zu einem Funktionsverlust dieses Proteins geführt haben. Der Patient, welcher die PRKCA-Deletion aufwies, entwickelte mit 43 Jahren, sein Vater mit 55 Jahren ein CRC. Eine Interaktion mit MSH2 wurde über die in-silico Netzwerk-Analyse beschrieben. Mittels NGS konnte neben dem CNV bei einem weiteren Patienten eine Punktmutation (Inframe-Deletion) nachgewiesen werden, die als potentiell pathogen einzuschätzen ist (CADD-Score 23). In einem vergleichbaren Kollektiv von HNPCC-Patienten wurde eine partielle Duplikation eines nah verwandten Gens (PRKCI) detektiert. Auch bei dieser genetischen Alteration ist von einem LoF-Effekt auszugehen.

PRKDC

PRKDC kodiert für die *DNA-dependent protein kinase catalytic subunit* (DNA-PKcs), dem Schlüsselprotein des NHEJ (Dietlein et al., 2014). PRKDC gehört zur Familie der Pi3/Pi4-Kinasen und ist eine Untereinheit der DNA-abhängigen Serin/Threonin-Kinase DNA-PK. Im Darmgewebe

konnte gezeigt werden, dass eine funktionelle Beeinträchtigung von DNA-PKcs zu einer signifikanten Erhöhung von Fehlpaarungen führt. Der Signalweg tritt als Antwort von DNA-Schädigungen auf und ist zelltypspezifisch. Für PRKDC wurde über die Netzwerk-Analyse eine direkte Interaktion zu MSH2 aufgezeigt (von Eyss et al., 2012). Das Gen ist im *Damage-Checkpoint-Regulation-Signalweg gemeinsam mit wichtigen CRC-Genen wie TP53, PRKCZ* und *CHEK2* involviert. In der vorliegenden Studie wurde eine partielle Deletion und eine synonyme Variante detektiert. Die Deletion umfasst *PRKDC* und *MCM4,* welche auf Chromosom 8 Kopf an Kopf nebeneinander liegen. Die Deletion überdeckt beide Gene zur Hälfte. Bei der betroffenen Patientin wurde EC und CRC im Alter von 48 und 72 Jahren diagnostiziert. Die Schwester entwickelte ebenfalls ein EC und CRC, die Mutter hatte Leberkrebs und der Vater Leukämie. Durch den niedrigen HI-Score von *PRKDC* (9%) ist von einer beeinträchtigten Proteinfunktion bei Ausfall eines Allels auszugehen.

RUNDC3B

Das Proteinprodukt von *RUN Domain Containing 3B* (*RUNDC3B*) interagiert über seine Nterminale Region mit Rap2, einer wichtigen Komponente der mitogen-aktivierten Proteinkinase (MAPK)-Kaskade, welche die zelluläre Proliferation und Differenzierung reguliert. RUNDC3B dient möglicherweise als Mediator zwischen der Rap2 und der MAPK-Signalkaskade (Burmeister et al., 2015). Es soll an der Transformation und Progression von Brustkrebs beteiligt sein (Raguz et al., 2005). Über die Netzwerk-Analyse wurde es als entfernter Interaktionspartner von MSH2 ermittelt. Ein Patient unseres Kollektivs wies eine partielle heterozygote Deletion von 34 kb auf, welche die Exons 3 und 4 (von insg. 11 Exons) des Gens einschließt. Der Patient erkrankte mit 36 Jahren an einem Appendixkarzinom. Die Familiengeschichte ist unauffällig.

TRIM41 (RINCK) und TRIM52

Tripartite Motif Containing 41 (*TRIM41*) kodiert für eine E3-Ligase der Proteinkinase C und spielt eine mögliche Rolle bei der Ubiquitinierung und Proteindegradierung von PKC. Da PKC als Tumorsuppressor eingeordnet wird, kommt *TRIM41* somit eine onkogene Funktion zuteil. Für TRIM41 konnte über die Netzwerk-Analyse eine experimentell bewiesene Verbindung zu MSH2 hergestellt werden (vgl. Kap. 4.3.6). Neben der partiellen Duplikation wurden zwei Missense-Mutationen in *TRIM41* detektiert. Als zusätzliche Besonderheit wurde dabei eine der

Punktmutationen in demselben Patienten (HNPCC_38) nachgewiesen. Dies könnte auf eine rezessive Vererbung hindeuten. Die Missense-Mutation liegt auf Höhe des CNVs, wobei nicht bekannt ist, ob sie auf dem duplizierten oder dem gegenüberliegenden Allel liegt. Die hier vorliegende Duplikation umfasst weiterhin vollständig die Gene GNB2L1 (s.o.) und TRIM52. Mit der Duplikation auf TRIM52 liegen somit zwei Duplikationen in einem Gen der TRIM-Familie vor. Die genaue Funktion von TRIM52 ist noch unbekannt. TRIM52 ist ebenfalls in dem Netzwerk mit MSH2 beteiligt. Es wurden keine weiteren Punktmutationen in TRIM52 nachgewiesen, auch war es nicht an der Pathway-Analyse beteiligt. In einer vorherigen CNV-Studie bei HNPCC-Patienten wurden weitere Duplikationen in einem Gen der TRIM-Familie detektiert. Dort wurden zwei vollständige Gen-Duplikationen für TRIM69 beschrieben (Masson et al., 2013). TRIM41, TRIM52 und TRIM69 werden in der Darmschleimhaut exprimiert. Die Familie der TRIM-Proteine ist an der Zellproliferation, Zellzyklusregulation, Apoptose und Immunantwort beteiligt (Chen et al., 2007). Aufgrund der vorliegenden Befunde sind die Gene TRIM41 und TRIM52 spannende Kandidaten. Ob sie ursächlich für den MSH2-Ausfall sein könnten, müsste durch nachfolgende Analysen (Überexpressionsstudie in Zellmodellen) näher untersucht werden.

5.3 Sequenzierung der CRC-Gene der Literatur

Zusätzlich zu der Suche nach weiteren Punktmutationen in CNV-Genen wurden bekannte CRC-Gene bei der zielgerichteten Sequenzierung mitberücksichtigt. In diesen CRC-Genen fanden sich weitere Missense- und Spleiß-Mutationen (Kap. 4.4.1). In *APC* wurden zwei Missense-Mutationen entdeckt. Missense-Mutationen sind für APC ungewöhnlich; bei den allermeisten handelt es sich tatsächlich um an den Exon-Enden gelegene Spleißmutationen (Friedl und Aretz, 2005; Kaufmann et al., 2009). Die in dieser vorligenden Studie Missense-Mutationen befinden sich nicht an den Exon-Enden von APC, daher ist hier am ehesten von seltenen Polymorphismen oder niedrig-penetrante Varianten auszugehen, die keine oder allenfalls geringe Auswirkung auf die Proteinfunktion haben. Die Patienten wiesen zudem klinisch keinerlei Anzeichen einer polypösen Erkrankung auf.

Weitere Missense-Mutationen wurden in *CHEK2, MAP2K4,* und *POLE* detektiert. MAP2K4 (*Mitogen-activated protein kinase*) ist bei einer Reihe zellulärer Prozesse wie Proliferation, Differenzierung und Transkriptionsregulation beteiligt. Das Gen liegt bei zahlreichen

Krebserkrankungen mutiert vor. Die biochemischen Eigenschaften der mutierten Kinase und ihre Rolle bei der Tumorgenese sind noch nicht vollständig bekannt. In CHEK2 und POLE wurden Missense-Mutationen mit besonders hohen CADD-Scores (> 30) detektiert. Sie zählen damit zu den höchsten 0,1% der C-Scores aller genomweit berücksichtigten Mutationen. Dies spricht für eine hohe Wahrscheinlichkeit eines krankheitsverursachenden Effekts dieser Mutationen. CHEK2 (Checkpoint Kinase 2) ist ein Zellzyklus-Checkpoint-Regulator und ein potenzieller Tumorsuppressor. Es ist ein bekanntes, mäßig penetrantes Krebsgen, dessen Zusammenhang mit Darmkrebs kontrovers diskutiert wird. Heterozygote Mutationen in CHEK2 werden mit einem erhöhten Risiko für Brustkrebs in Verbindung gebracht (Bell et al., 1999; Cybulski et al., 2006; Walsh et al., 2006). Das Proteinprodukt von CHEK2 reguliert über die Phosphorylierung von p53/TP53 die Apoptose. Bei Abwesenheit des Proteins im Tumor z.B. durch somatische Mutationen beobachtet man eine chromosomale Instabilität des Tumors. Die bei uns detektierte Missense-Mutation (CHEK2:c.1441G>T;p.Asp481Tyr) ist in der LOVD-Datenbank (Leiden Open Variation Database) als sehr seltene Mutation mit einer Frequenz von 4/13006, hinterlegt. Der Effekt dieser Missense-Mutation ist derzeit unklar. Bei zwei Patienten wurden POLE-Mutationen mit einem CADD-Score > 30 detektiert (c.2770C>T;p.Arg924Cys und c.4709G>A;p.Arg1570Gln) (Kap. 4.2 "Differentialdiagnosen"). POLE-Mutationen sind als Ursache für die sehr seltene Polymerase-Proofreading-Assoziierte-Polyposis beschrieben (Vgl. Kap. 2.3.5) (Palles et al., 2013). Bisher ist allerdings nur eine Mutation in der hochkonservierten Exonuklease-Domain in Exon 13 (c.1270C>G;p.Leu424Val) als ursächlich charakterisiert worden (Elsayed et al., 2014; Palles et al., 2013; Spier et al., 2015; Valle et al., 2014). Die im Rahmen dieser Untersuchung gefundenen POLE-Mutationen befanden sich nicht in der Exonuklease-Domäne weswegen man zum heutigen Zeitpunkt nicht von einer pathogenen Ursache dieser Mutationen ausgehen kann.

In den Genen des Proteasom-Signalwegs (Kap. 4.4.2) fanden sich sechs Mutationen in vier der acht untersuchten Gene (in *AKT1, HERC1, TSC1* und *TSC2*). Zwei der drei Missense-Mutationen in *HERC1* (c.9508C>T;p.Arg3170Cys und c.10660C>T;p.Arg3554Trp) sind aufgrund der CADD-Scores von 35 von besonderer Relevanz. Kein Patient trug mehr als eine Mutation in einem der Proteasom-Pathway-Gene, was mit der Theorie übereinstimmt, dass für die Tumorentstehung in der Regel nur ein entscheidendes Gen innerhalb eines Pathways mutiert sein muss. Es wurde beschrieben, dass somatische Deletionen, welche zu einem Ausfall eines Gens des Proteasom-

96
Pathways führen, eine MSH2/MSH6-Downregulation zur Folge haben. Dies wurde bei akuter myelotischer Leukämie und sporadischem Darmkrebs nachgewiesen (Diouf et al., 2011). Dieser Mechanismus wurde bisher nicht für Keimbahn-, bzw. Punktmutationen beschrieben. Um die Plausibilität dieser Hypothese zu überprüfen, sollten daher weitere Untersuchungen, wie Expressionsstudien, durchgeführt werden. Da der beschriebene Mechanismus post-transkriptionell abläuft, sind hohe mRNA-Expressionslevel von MSH2 und MSH6 im Tumor bei gleichzeitigem Proteinausfall zu erwarten. Heterozygote Keimbahnmutationen der genannten Proteasom-Pathway-Gene sind außer bei dem beschriebenen Interaktionsmechanismus mit MSH2 (Diouf et al., 2011) auch für definierte Tumor-Syndrome verantwortlich.

Eine spezifische, aktivierende Mutation im *AKT1*-Gen ist als somatisches Mosaik Ursache des Proteus-Syndroms (Lindhurst et al., 2011). Bei diesem Syndrom erfahren bestimmte Körperteile im Laufe des kindlichen Wachstums eine asymmertrische Vergrößerung und Malformationen. Im späteren Alter entwickeln sich Tumoren (Cohen, 2014). Trunkierende Keimbahnmutationen in *TSC1* und *TSC2* sind verantwortlich für die tuberöse Sklerose, die von Tumoren des Gehirns, Hautveränderungen, epileptischen Anfälle und geistiger Retardierung gekennzeichnet ist. Die Erkrankung wird autosomal-dominant vererbt, etwa die Hälfte der Fälle ensteht *de-novo* (Crino et al., 2006). Der Phänotyp unserer Patienten passt nicht zu diesen Krankheitsbildern. Die Wirkung der vorliegenden Mutationen auf die Funktion der Proteine lässt sich nicht vorhersagen. Eine hochpenetrante aktivierende bzw. trunkierende Mutation von *AKT1* bzw *TSC1/-2* ist jedoch auszuschließen.

5.4 Sequenzierung von Tumor-DNA

Bei der Sequenzierung der Tumor-DNA von insgesamt elf Patienten konnten drei somatische *MSH2*-Mutationen bei zwei der elf Patienten identifiziert werden (Kap. 4.2.1). Einer dieser beiden Patienten wies hierbei zwei somatische, möglicherweise biallele, MSH2-Missense-Mutationen auf (c.1993C>G;p.His665Asp und c.1835C>T;p.Ser612Leu). Dadurch ergibt sich für diesen Patienten ein Hinweis auf eine sporadische Erkrankungsursache. Der Patient erkrankte mit 81 Jahren an einem Dünndarmkarzinom. Aus der Familiengeschichte ist wenig bekannt: Die Mutter erkrankte in einem unbekannten Alter an einem "Karzinom". Die revidierten Bethesda-Kriterien sind für diesen Patienten somit vermutlich nicht erfüllt. Da der Patient erst in hohem Alter erkrankte, ist eine sporadische, nicht-erbliche Ursache plausibel. Bei einem weiteren

Patienten (HNPCC 06) wurde eine heterozygote somatische MSH2-Frameshift-Mutation detektiert. Diese sicher pathogene Mutation könnte, zusammen mit einer weiteren somatischen Mutation (beispielsweise einer Deletion), zu einer sporadischen Tumorerkrankung geführt haben. In der Familiengeschichte des Betroffenen sind keine HNPCC-typischen Tumoren bekannt. Kürzlich veröffentlichte Studien fanden bei über 50% der untersuchten, mutationsnegativen Patienten mit einem Verdacht auf ein LS zwei somatische Ereignisse (Geurts-Giele et al., 2014; Haraldsdottir et al., 2014; Mensenkamp et al., 2014). Die Suche nach größeren Deletionen konnte aufgrund von unzureichender Menge und Qualität der Tumor-DNA (archiviertes FFPE-Material) nicht ausgewertet werden. Da insgesamt nur von elf Patienten Tumor-DNA zur Verfügung stand, war eine Bestimmung der Rate an somatischen Ereignissen in dem Kollektiv außerdem nicht möglich. Interessanterweise wiesen sowohl die Patienten mit nachträglich ursächlich bestätigter Keimbahnmutation in den MMR-Genen, als auch die Patienten mit möglicher sporadischer Erkrankungsursache, mit einer einzigen Ausnahme, keine seltenen CNVs auf. Dies unterstützt die Hypothese, dass die detektierten, seltenen CNVs einen kausalen Beitrag zur Entstehung des Phänotyps der betroffenen Patienten leisten. Somatische Mutationen in MMR-Genen sind allerdings kein Beweis für ein sporadisches CRC. Auch bei bestimmten erblichen CRC-Syndromen wie der MAP oder PPAP können als Folge der gestörten DNA-Reparatur gehäuft somatische Mutationen in MMR-Genen aufteten.

5.5 Limitationen

Wie bei anderen, vergleichbaren wissenschaftlichen Studien war es trotz gründlicher Untersuchung und der Verwendung neuester Technik nicht möglich, das gesamte Spektrum molekulargenetischer Veränderungen zu erfassen. Mittels CNV-Analyse wurden unbalancierte Strukturvarianten detektiert. Balancierte Strukturvarianten, wie Inversionen oder Translokationen, konnten durch die angewandte Technik nicht erfasst und ausgewertet werden. Ebenso war es aufgrund des verwendeten SNP-Arrays technisch nicht möglich, CNVs kleiner als 10 kb sicher zu erfassen und abzubilden. CNVs in nicht-kodierenden Regionen wurden, mit Ausnahme von intronischen Genbereichen und der Region 1,5 Mb um MSH2 herum, nicht berücksichtigt. Zum einen wiesen die SNP-Marker des Arrays in den nichtkodierenden Regionen große Lücken auf, zum anderen ist die Interpretation von CNVs in genfreien Bereichen äußerst schwierig und bedarf weiterer funktioneller Aufarbeitung die im Rahmen dieser Arbeit nicht möglich gewesen wäre. Durch die Anwendung stringenter Filterkriterien wurde die Zahl häufig auftretender CNVs stark reduziert. Für die Suche nach dominanten Varianten wurde die Allelfrequenz auf \leq 0,01% gesetzt. In der Allgemeinbevölkerung häufig auftetende CNVs würden allenfalls moderat und gemeinsam mit Umweltfaktoren zur Erkrankung beitragen; sie wurden deshalb in dieser Arbeit nicht berücksichtig. Mosaike, d.h. Varianten, die nur in einem Teil der Zellen vokommen, wurden ebenso nicht berücksichtigt. Es ist davon auszugehen, dass niedriggradige (*low-level*) Mosaike eine untergeordnete Rolle für die Krankheitsentstehung spielen. Des Weiteren ist eine Validierung und Unterscheidung zwischen niedrig auftretenden Mosaiken und Artefakten schwierig.

6 Zusammenfassung

Bei bis zu 50% der Patienten, welche die klinischen Kriterien für das Lynch-Syndrom (LS) erfüllen, lässt sich keine ursächliche Keimbahnmutation in den bekannten Mismatch-Repair (MMR)-Genen nachweisen. Das frühe Auftreten von Tumoren (primär kolorektales Karzinom (CRC) oder Endometriumkarzinom) bzw. das gehäufte Auftreten dieser Tumoren innerhalb der betroffenen Familien, deuten zusammen mit den typischen Tumormerkmalen (Ausfall eines MMR-Gens und hohe Mikrosatelliteninstabilität) auf eine erbliche Erkrankungsursache hin. Das Ziel unserer Arbeit war es daher, (i) neue genetische Faktoren für das LS mit MSH2-Defekt aufzudecken, (ii) in der Literatur beschriebene alternative Ursachen für den MSH2-Ausfall zu untersuchen und (iii) die klinische Relevanz der Kandidatengene durch weitere Untersuchungen zu erforschen (Segregationsanalyse, Screening nach Keimbahnpunktmutationen, Netzwerk- und Pathway-Analyse).

In der Ätiologie einer Vielzahl von Tumorsyndromen spielen konstitutive Kopienzahlvarianten (*Copy Number Variations*, CNVs) eine bedeutende Rolle. Für die Suche nach weiteren ursächlichen Genen führten wir deshalb eine genomweite CNV-Analyse in einem Kollektiv mutationsnegativer LS-Patienten durch. Nach Anwendung stringenter Filterschritte (Ausschluss von Artefakten, Vergleich mit CNVs gesunder Kontrollen) wurden 43 seltene Keimbahn-CNVs (21 Deletionen und 22 Duplikationen) bei 30 Patienten (45%) identifiziert, welche 76 proteinkodierende Gene betreffen. Übereinstimmend mit publizierten CNV-Studien verwandter Phänotypen trat jeder CNV nur einmal innerhalb des Patientenkollektivs auf. Es gab keine Überschneidungen zwischen den betroffenen Genen. Keiner der CNVs betraf die regulatorischen Bereiche von *MSH2*.

Segregationsanalysen zur weiteren Abklärung der pathogenen Relevanz der CNVs konnten abgesehen von einem Fall mit fehlender Segregation (*ENOX1*) aufgrund fehlender weiterer betroffener Verwandter oder mangels entsprechedem Material nicht durchgeführt werden.

Ein zielgerichtetes Sequenzieren mittels *Next-Generation-Sequencing* zur Suche nach zusätzlichen Punktmutationen in den CNV-Kandidatengenen identifizierte 15 weitere potentiell pathogene Keimbahnmutationen in elf der 68 untersuchten CNV-Gene. Hierbei traten zum überwiegenden Teil Missense-Mutationen unklarer Signifikanz auf; trunkierende Mutationen wurden nicht detektiert. Lediglich im *TRIM41-Gen* fand sich bei einem Patienten ein Hinweis auf eine rezessive Vererbung.

Unter durchgeführten Berücksichtigung aller Untersuchungen der CNV-Gene (Literaturrecherche, Anwendung bioinformatischer Scores, Segregations-, Pathway-, Netzwerkund NGS-Analyse, dem Literaturvergleich mit vorangegangenen CNV-Studien bei Patienten mit ungeklärten Tumorsyndromen) konnten die zehn überzeugendsten Kandidatengene (DLG2, DUSP11, GNB2L1, MCM4, PAG1, PRKCA, PRKDC, RUNDC3B, TRIM41, TRIM52) selektiert werden. Die Gene DUSP11, GNB2L1, PRKCA, PRKDC und TRIM41 weisen funktionell eine Verbindung zur Proteinkinase A oder C auf. Diesen Proteinkinasen kommt eine wichtige Bedeutung bei der Regulation des Zellwachstums, der Zelldifferenzierung, der Zelladhesion und Angiogenese sowie der Tumorgenese zu. MCM4 und PRKDC sind an der DNA-Reparatur involviert; zusammen mit GNB2L1, PAG1, PRKCA, RUNDC3B, TRIM41 und TRIM52 sind sie zudem in einem gemeinsamen Netzwerk mit MSH2 beschrieben. Sie könnten aufgrund noch unbekannter Mechanismen potentiell ursächlich für den MSH2-Ausfall sein. Nah verwandte Gene von DUSP11, MCM4, PRKCA, TRIM41 und TRIM52 wurden bereits bei vorherigen CNV-Studien zu ungeklärtem familiärem CRC detektiert (Horpaopan et al., 2015, Masson et al. 2013, Villacis et al., 2015). Dies bestärkt den Verdacht, dass diese Gene ursächlich für die Tumorprädisposition sein könnten.

Zur weiteren differentialdiagnostischen Abklärung wurde die DNA der Patienten auf Keimbahnpunktmutationen in 30 bekannten CRC-Genen untersucht. Hierbei ließen sich 23 Varianten in zehn CRC-Genen identifizieren. Bei acht Patienten wurde eine ursächliche Keimbahnmutation detektiert. Darunter befanden sich sechs Patienten mit einer pathogenen MMR-Gen-Mutation, ein Patient mit einer *APC*-Stopp-Mutation und ein Patient mit einer vermutlich biallelen *MUTYH*-Mutation. Weiterhin wurden Keimbahnvarianten unklarer Signifikanz in den Genen *APC*, *BUB1B*, *CHEK2*, *MAP2K4*, *PPP2R1B* und *POLE* detektiert.

Ergänzend wurde nach Mutationen in den Genen des Proteasom-Pathways gesucht. Diese Gene stehen in Verdacht, bei Ausfall die Degradierung von MSH2 herbeizuführen. Hierbei ließen sich Missense-Mutationen in *AKT1, HERC1, TSC1* und *TSC2* sowie eine synonyme Mutation in *MTOR* nachweisen. Zwei der Missense-Mutationen in *HERC1* sind aufgrund des hohen CADD-Scores von 35 von besonderer Relevanz.

101

Da davon auszugehen ist, dass bei einem Teil der Patienten ohne Nachweis einer MMR-Keimbahnmutation somatische Mutationen im Tumorgewebe für den MSH2-Ausfall verantwortlich sind, führten wir eine Suche nach somatischen Mutationen in *MSH2* und *MSH6* durch. Die Sequenzierung der Tumor-DNA detektierte bei zwei der elf Patienten drei heterozygote, potentiell pathogene somatische Mutationen. Bei einem dieser zwei Patienten wurden dabei zwei potentiell biallele somatische Missense-Mutationen in *MSH2* detektiert.

Insgesamt konnten 19 der ursprünglich 95 eingeschlossenen Patienten (20%) im Verlauf dieser Studie durch eine ursächliche pathogene Mutation in etablierten Genen aufgeklärt werden.

Die vorliegende Arbeit stellt die erste systematische genomweite CNV-Analyse bei Patienten mit klinischem Verdacht auf ein LS mit MSH2-Ausfall ohne nachgewiesener MMR-Keimbahnmutation dar.

Mittels CNV-Analyse und unter Einbeziehung aller nachfolgenden Analysen sowie Literatur- und Datenbankrecherchen, konnte eine Gruppe von Kandidatengenen selektiert werden, für die eine Beteiligung an der Entstehung der Erkrankung denkbar ist. Eine monogene Ursache für die Erkrankung konnte in dieser Studie nicht sicher nachgewiesen werden. In Übereinstimmung mit früheren Studien traten innerhalb unseres Kollektivs kaum rekurrent betroffene Gene auf; dies spricht für eine große Heterogenität der genetischen Faktoren. Um die kausale Relevanz der Kandidatengene als monogene, hoch-penetrante Risikofaktoren weiter abzuklären, wären unter anderem Segregationsanalysen in geeigneten Familien, der Nachweis rekurrent mutierter Gene in großen Patientenkollektiven internationaler Konsortien und funktionelle Analysen notwendig.

7 Ausblick

Die CNV-Analyse deckte eine Reihe interessanter Kandidatengene auf. Um die Relevanz dieser Gene zu bewerten, sollte nach wiederkehrenden Mutationen bei Patienten mit demselben Phänotyp gesucht werden. Hierfür wäre die Einbeziehung größerer Kollektive hilfreich, was aufgrund der Seltenheit der Erkrankung eine Herausforderung darstellt. EU-weite Kooperationen mit europaweiten Kollektiven sind ein nächstes Ziel.

Ausgehend von einem monogenen Ansatz mit einzelnen hoch-penetranten Mutationen bietet sich eine Exom- (oder Genom-)sequenzierung an, um innerhalb des Kollektivs nach pathogenen Punktmutationen zu suchen.

Um die Ursachen der gefundenen Mutationenen sicher bewerten zu können, müssen in einem nächsten Schritt funktionelle Analysen folgen. Hierfür bieten sich experimentell durchgeführte Expressionsstudien, Interaktions- und Pathway-Analysen in Zellkulturen an.

Sollte eine Ursächlichkeit für einige der hier mutierten Gene bestätigt werden, so ergeben sich über die Beteiligung neuer Biosynthesewege auch weitere Therapieoptionen für die Patienten. Ein effizienterer Einsatz von Zytostatika die zielgerichtet in den betroffenen Signalweg eingreifen, wäre somit denkbar.

8 Literaturverzeichnis

- 1000 Genomes Project Consortium, Abecasis, G.R., Auton, A., Brooks, L.D., DePristo, M.A., Durbin, R.M., Handsaker, R.E., Kang, H.M., Marth, G.T., McVean, G.A., 2012. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65. doi:10.1038/nature11632
- Aaltonen, L.A., Peltomäki, P., Leach, F.S., Sistonen, P., Pylkkänen, L., Mecklin, J.P., Järvinen, H., Powell, S.M., Jen, J., Hamilton, S.R., 1993. Clues to the pathogenesis of familial colorectal cancer. Science 260, 812–816.
- Aceto, G., Cristina Curia, M., Veschi, S., De Lellis, L., Mammarella, S., Catalano, T., Stuppia, L., Palka, G., Valanzano, R., Tonelli, F., Casale, V., Stigliano, V., Cetta, F., Battista, P., Mariani-Costantini, R., Cama, A., 2005. Mutations of APC and MYH in unrelated Italian patients with adenomatous polyposis coli. Hum. Mutat. 26, 394–394. doi:10.1002/humu.9370
- Acharya, S., Wilson, T., Gradia, S., Kane, M.F., Guerrette, S., Marsischky, G.T., Kolodner, R., Fishel, R., 1996. hMSH2 forms specific mispair-binding complexes with hMSH3 and hMSH6. Proc. Natl. Acad. Sci. 93, 13629–13634.
- Adam, R., Spier, I., Zhao, B., Kloth, M., Marquez, J., Hinrichsen, I., Kirfel, J., Tafazzoli, A., Horpaopan, S., Uhlhaas, S., Stienen, D., Friedrichs, N., Altmüller, J., Laner, A., Holzapfel, S., Peters, S., Kayser, K., Thiele, H., Holinski-Feder, E., Marra, G., Kristiansen, G., Nöthen, M.M., Büttner, R., Möslein, G., Betz, R.C., Brieger, A., Lifton, R.P., Aretz, S., 2016. Exome Sequencing Identifies Biallelic MSH3 Germline Mutations as a Recessive Subtype of Colorectal Adenomatous Polyposis. Am. J. Hum. Genet. doi:10.1016/j.ajhg.2016.06.015
- Altshuler, D.M., Gibbs, R.A., Peltonen, L., Altshuler, D.M., Gibbs, R.A., Peltonen, L., Dermitzakis, E., Schaffner, S.F., Yu, F., Peltonen, L., Dermitzakis, E., Bonnen, P.E., Altshuler, D.M., Gibbs, R.A., de Bakker, P.I.W., Deloukas, P., Gabriel, S.B., Gwilliam, R., Hunt, S., Inouye, M., Jia, X., Palotie, A., Parkin, M., Whittaker, P., Yu, F., Chang, K., Hawes, A., Lewis, L.R., Ren, Y., Wheeler, D., Gibbs, R.A., Marie Muzny, D., Barnes, C., Darvishi, K., Hurles, M., Korn, J.M., Kristiansson, K., Lee, C., McCarroll, S.A., Nemesh, J., Dermitzakis, E., Keinan, A., Montgomery, S.B., Pollack, S., Price, A.L., Soranzo, N., Bonnen, P.E., Gibbs, R.A., Gonzaga-Jauregui, C., Keinan, A., Price, A.L., Yu, F., Anttila, V., Brodeur, W., Daly, M.J., Leslie, S., McVean, G., Moutsianas, L., Nguyen, H., Schaffner, S.F., Zhang, Q., Ghori, M.J.R., McGinnis, R., McLaren, W., Pollack, S., Price, A.L., Schaffner, S.F., Takeuchi, F., Grossman, S.R., Shlyakhter, I., Hostetter, E.B., Sabeti, P.C., Adebamowo, C.A., Foster, M.W., Gordon, D.R., Licinio, J., Cristina Manca, M., Marshall, P.A., Matsuda, I., Ngare, D., Ota Wang, V., Reddy, D., Rotimi, C.N., Royal, C.D., Sharp, R.R., Zeng, C., Brooks, L.D., McEwen, J.E., 2010. Integrating common and rare genetic variation in diverse human populations. Nature 467, 52–58. doi:10.1038/nature09298
- Aretz, S., Uhlhaas, S., Goergens, H., Siberg, K., Vogel, M., Pagenstecher, C., Mangold, E., Caspari, R., Propping, P., Friedl, W., 2006. MUTYH-associated polyposis: 70 of 71 patients with biallelic mutations present with an attenuated or atypical phenotype. Int. J. Cancer 119, 807–814. doi:10.1002/ijc.21905
- Assert, R., Kötter, R., Bisping, G., Scheppach, W., Stahlnecker, E., Müller, K.M., Dusel, G., Schatz, H., Pfeiffer, A., 1999. Anti-proliferative activity of protein kinase C in apical

compartments of human colonic crypts: evidence for a less activated protein kinase C in small adenomas. Int. J. Cancer J. Int. Cancer 80, 47–53.

- Bailey, J.A., Gu, Z., Clark, R.A., Reinert, K., Samonte, R.V., Schwartz, S., Adams, M.D., Myers, E.W., Li, P.W., Eichler, E.E., 2002. Recent segmental duplications in the human genome. Science 297, 1003–1007. doi:10.1126/science.1072047
- Bailey, J.A., Yavor, A.M., Massa, H.F., Trask, B.J., Eichler, E.E., 2001. Segmental duplications: organization and impact within the current human genome project assembly. Genome Res. 11, 1005–1017.
- Baralle, D., Baralle, M., 2005. Splicing in action: assessing disease causing sequence changes. J. Med. Genet. 42, 737–748. doi:10.1136/jmg.2004.029538
- Beeram, M., Patnaik, A., Rowinsky, E.K., 2005. Raf: a strategic target for therapeutic development against cancer. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 23, 6771–6790. doi:10.1200/JCO.2005.08.036
- Bell, D.W., Varley, J.M., Szydlo, T.E., Kang, D.H., Wahrer, D.C., Shannon, K.E., Lubratovich, M., Verselis, S.J., Isselbacher, K.J., Fraumeni, J.F., Birch, J.M., Li, F.P., Garber, J.E., Haber, D.A., 1999. Heterozygous germ line hCHK2 mutations in Li-Fraumeni syndrome. Science 286, 2528–2531.
- Belmont, J.W., Boudreau, A., Leal, S.M., Hardenbol, P., Pasternak, S., Wheeler, D.A., Willis, T.D., Yu, F., Yang, H., Gao, Y., others, 2005. A haplotype map of the human genome. Nature 437, 1299–1320.
- Bisgaard, M.L., Fenger, K., Bülow, S., Niebuhr, E., Mohr, J., 1994. Familial adenomatous polyposis (FAP): Frequency, penetrance, and mutation rate. Hum. Mutat. 3, 121–125. doi:10.1002/humu.1380030206
- Boland 2010 MSI in CRC.pdf, n.d.
- Boland, C.R., Goel, A., 2010. Microsatellite Instability in Colorectal Cancer. Gastroenterology 138, 2073–2087.e3. doi:10.1053/j.gastro.2009.12.064
- Boland, C.R., Koi, M., Chang, D.K., Carethers, J.M., 2008. The biochemical basis of microsatellite instability and abnormal immunohistochemistry and clinical behavior in Lynch Syndrome: from bench to bedside. Fam. Cancer 7, 41–52. doi:10.1007/s10689-007-9145-9
- Bonis, P.A., Trikalinos, T.A., Chung, M., Chew, P., Ip, S., DeVine, D.A., Lau, J., 2007. Hereditary nonpolyposis colorectal cancer: diagnostic strategies and their implications. Evid. ReportTechnology Assess. 1–180.
- Briggs, S., Tomlinson, I., 2013. Germline and somatic polymerase ϵ and δ mutations define a new class of hypermutated colorectal and endometrial cancers: DNA polymerase mutations in colorectal and endometrial cancers. J. Pathol. 230, 148–153. doi:10.1002/path.4185
- Buizer-Voskamp, J.E., Muntjewerff, J.-W., Genetic Risk and Outcome in Psychosis (GROUP)
 Consortium Members, Strengman, E., Sabatti, C., Stefansson, H., Vorstman, J.A.S.,
 Ophoff, R.A., 2011. Genome-wide analysis shows increased frequency of copy number
 variation deletions in Dutch schizophrenia patients. Biol. Psychiatry 70, 655–662.
 doi:10.1016/j.biopsych.2011.02.015
- Burmeister, D.W., Smith, E.H., Cristel, R.T., McKay, S.D., Shi, H., Arthur, G.L., Davis, J.W., Taylor,
 K.H., 2015. The expression of RUNDC3B is associated with promoter methylation in
 lymphoid malignancies. Hematol. Oncol. doi:10.1002/hon.2238

- Byron, A., Humphries, J.D., Craig, S.E., Knight, D., Humphries, M.J., 2012. Proteomic analysis of α4β1 integrin adhesion complexes reveals α-subunit-dependent protein recruitment. Proteomics 12, 2107–2114. doi:10.1002/pmic.201100487
- Caretta, A., Mucignat-Caretta, C., 2011. Protein Kinase A in Cancer. Cancers 3, 913–926. doi:10.3390/cancers3010913
- Chan, T.L., Yuen, S.T., Kong, C.K., Chan, Y.W., Chan, A.S.Y., Ng, W.F., Tsui, W.Y., Lo, M.W.S., Tam, W.Y., Li, V.S.W., Leung, S.Y., 2006. Heritable germline epimutation of MSH2 in a family with hereditary nonpolyposis colorectal cancer. Nat. Genet. 38, 1178–1183. doi:10.1038/ng1866
- Chen, D., Gould, C., Garza, R., Gao, T., Hampton, R.Y., Newton, A.C., 2007. Amplitude Control of Protein Kinase C by RINCK, a Novel E3 Ubiquitin Ligase. J. Biol. Chem. 282, 33776–33787. doi:10.1074/jbc.M703320200
- Chong, S., Whitelaw, E., 2004. Epigenetic germline inheritance. Curr. Opin. Genet. Dev. 14, 692–696. doi:10.1016/j.gde.2004.09.001
- Chuang, C.-H., Yang, D., Bai, G., Freeland, A., Pruitt, S.C., Schimenti, J.C., 2012. Posttranscriptional homeostasis and regulation of MCM2-7 in mammalian cells. Nucleic Acids Res. 40, 4914–4924. doi:10.1093/nar/gks176
- Chung, D.C., 2000. The genetic basis of colorectal cancer: Insights into critical pathways of tumorigenesis. Gastroenterology 119, 854–865. doi:10.1053/gast.2000.16507
- Clendenning, M., Buchanan, D.D., Walsh, M.D., Nagler, B., Rosty, C., Thompson, B., Spurdle, A.B., Hopper, J.L., Jenkins, M.A., Young, J.P., 2011. Mutation deep within an intron of MSH2 causes Lynch syndrome. Fam. Cancer 10, 297–301. doi:10.1007/s10689-011-9427-0
- Cohen, M.M., 2014. Proteus syndrome review: molecular, clinical, and pathologic features. Clin. Genet. 85, 111–119. doi:10.1111/cge.12266
- Colebatch, A., Hitchins, M., Williams, R., Meagher, A., Hawkins, N.J., Ward, R.L., 2006. The role of MYH and microsatellite instability in the development of sporadic colorectal cancer. Br. J. Cancer 95, 1239–1243. doi:10.1038/sj.bjc.6603421
- Colella, S., Yau, C., Taylor, J.M., Mirza, G., Butler, H., Clouston, P., Bassett, A.S., Seller, A., Holmes, C.C., Ragoussis, J., 2007. QuantiSNP: an Objective Bayes Hidden-Markov Model to detect and accurately map copy number variation using SNP genotyping data. Nucleic Acids Res. 35, 2013–2025. doi:10.1093/nar/gkm076
- Conrad, D.F., Andrews, T.D., Carter, N.P., Hurles, M.E., Pritchard, J.K., 2006. A high-resolution survey of deletion polymorphism in the human genome. Nat. Genet. 38, 75–81. doi:10.1038/ng1697
- Conrad, D.F., Pinto, D., Redon, R., Feuk, L., Gokcumen, O., Zhang, Y., Aerts, J., Andrews, T.D., Barnes, C., Campbell, P., Fitzgerald, T., Hu, M., Ihm, C.H., Kristiansson, K., MacArthur, D.G., MacDonald, J.R., Onyiah, I., Pang, A.W.C., Robson, S., Stirrups, K., Valsesia, A., Walter, K., Wei, J., Tyler-Smith, C., Carter, N.P., Lee, C., Scherer, S.W., Hurles, M.E., 2010. Origins and functional impact of copy number variation in the human genome. Nature 464, 704–712. doi:10.1038/nature08516
- Consortium, T.E.P., 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74. doi:10.1038/nature11247
- Crino, P.B., Nathanson, K.L., Henske, E.P., 2006. The tuberous sclerosis complex. N. Engl. J. Med. 355, 1345–1356. doi:10.1056/NEJMra055323
- Cybulski, C., Wokołorczyk, D., Huzarski, T., Byrski, T., Gronwald, J., Górski, B., Debniak, T., Masojć, B., Jakubowska, A., Gliniewicz, B., Sikorski, A., Stawicka, M., Godlewski, D.,

Kwias, Z., Antczak, A., Krajka, K., Lauer, W., Sosnowski, M., Sikorska-Radek, P., Bar, K., Klijer, R., Zdrojowy, R., Małkiewicz, B., Borkowski, A., Borkowski, T., Szwiec, M., Narod, S.A., Lubiński, J., 2006. A large germline deletion in the Chek2 kinase gene is associated with an increased risk of prostate cancer. J. Med. Genet. 43, 863–866. doi:10.1136/jmg.2006.044974

- Dardousis, K., Voolstra, C., Roengvoraphoj, M., Sekandarzad, A., Mesghenna, S., Winkler, J., Ko,
 Y., Hescheler, J., Sachinidis, A., 2007. Identification of Differentially Expressed Genes Involved in the Formation of Multicellular Tumor Spheroids by HT-29 Colon Carcinoma Cells. Mol. Ther. 15, 94–102. doi:10.1038/sj.mt.6300003
- Dauber, A., Yu, Y., Turchin, M.C., Chiang, C.W., Meng, Y.A., Demerath, E.W., Patel, S.R., Rich, S.S., Rotter, J.I., Schreiner, P.J., Wilson, J.G., Shen, Y., Wu, B.-L., Hirschhorn, J.N., 2011. Genome-wide association of copy-number variation reveals an association between short stature and the presence of low-frequency genomic deletions. Am. J. Hum. Genet. 89, 751–759. doi:10.1016/j.ajhg.2011.10.014
- DeAngelis, M.M., Wang, D.G., Hawkins, T.L., 1995. Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res. 23, 4742.
- Dellinger, A.E., Saw, S.M., Goh, L.K., Seielstad, M., Young, T.L., Li, Y.J., 2010. Comparative analyses of seven algorithms for copy number variant identification from single nucleotide polymorphism arrays. Nucleic Acids Res. 38, e105–e105. doi:10.1093/nar/gkq040
- Dietlein, F., Thelen, L., Jokic, M., Jachimowicz, R.D., Ivan, L., Knittel, G., Leeser, U., van Oers, J., Edelmann, W., Heukamp, L.C., Reinhardt, H.C., 2014. A functional cancer genomics screen identifies a druggable synthetic lethal interaction between MSH3 and PRKDC. Cancer Discov. 4, 592–605. doi:10.1158/2159-8290.CD-13-0907
- Diouf, B., Cheng, Q., Krynetskaia, N.F., Yang, W., Cheok, M., Pei, D., Fan, Y., Cheng, C., Krynetskiy, E.Y., Geng, H., Chen, S., Thierfelder, W.E., Mullighan, C.G., Downing, J.R., Hsieh, P., Pui, C.-H., Relling, M.V., Evans, W.E., 2011. Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat. Med. 17, 1298–1303. doi:10.1038/nm.2430
- Elsayed, F.A., Kets, C.M., Ruano, D., van den Akker, B., Mensenkamp, A.R., Schrumpf, M., Nielsen, M., Wijnen, J.T., Tops, C.M., Ligtenberg, M.J., others, 2014. Germline variants in POLE are associated with early onset mismatch repair deficient colorectal cancer. Eur. J. Hum. Genet.
- Emanuel, B.S., Saitta, S.C., 2007. From microscopes to microarrays: dissecting recurrent chromosomal rearrangements. Nat. Rev. Genet. 8, 869–883. doi:10.1038/nrg2136
- Epstein, D.J., 2009. Cis-regulatory mutations in human disease. Brief. Funct. Genomic. Proteomic. 8, 310–316. doi:10.1093/bfgp/elp021
- Fearon, E.R., 2011. Molecular Genetics of Colorectal Cancer. Annu. Rev. Pathol. Mech. Dis. 6, 479–507. doi:10.1146/annurev-pathol-011110-130235
- Feuk, L., Carson, A.R., Scherer, S.W., 2006. Structural variation in the human genome. Nat. Rev. Genet. 7, 85–97. doi:10.1038/nrg1767
- Fishel 1995 MMR genes role in cancer development.pdf, n.d.
- Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., von Mering, C., Jensen, L.J., 2013. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 41, D808–D815. doi:10.1093/nar/gks1094

- Friedl, W., Aretz, S., 2005. Familial Adenomatous Polyposis: Experience from a Study of 1164 Unrelated German Polyposis Patients. Hered. Cancer Clin. Pract. 3, 95–114. doi:10.1186/1897-4287-3-3-95
- Galiatsatos, P., Foulkes, W.D., 2006. Familial Adenomatous Polyposis. Am. J. Gastroenterol. 101, 385–398. doi:10.1111/j.1572-0241.2006.00375.x
- Geurts-Giele, W.R., Leenen, C.H., Dubbink, H.J., Meijssen, I.C., Post, E., Sleddens, H.F., Kuipers, E.J., Goverde, A., van den Ouweland, A.M., van Lier, M.G., Steyerberg, E.W., van Leerdam, M.E., Wagner, A., Dinjens, W.N., 2014. Somatic aberrations of mismatch repair genes as a cause of microsatellite-unstable cancers: Somatic MMR aberrations cause Lynch syndrome-like tumours. J. Pathol. 234, 548–559. doi:10.1002/path.4419
- Giardiello, F.M., Krush, A.J., Petersen, G.M., Booker, S.V., Kerr, M., Tong, L.L., Hamilton, S.R., 1994. Phenotypic variability of familial adenomatous polyposis in 11 unrelated families with identical APC gene mutation. Gastroenterology 106, 1542–1547.
- Gilad, Y., Bustamante, C.D., Lancet, D., Pääbo, S., 2003. Natural Selection on the Olfactory Receptor Gene Family in Humans and Chimpanzees. Am. J. Hum. Genet. 73, 489–501.
- Glusman, G., Yanai, I., Rubin, I., Lancet, D., 2001. The complete human olfactory subgenome. Genome Res. 11, 685–702. doi:10.1101/gr.171001
- Gu, W., Zhang, F., Lupski, J.R., 2008. Mechanisms for human genomic rearrangements. PathoGenetics 1, 4. doi:10.1186/1755-8417-1-4
- Gunderson, K.L., Steemers, F.J., Ren, H., Ng, P., Zhou, L., Tsan, C., Chang, W., Bullis, D., Musmacker, J., King, C., Lebruska, L.L., Barker, D., Oliphant, A., Kuhn, K.M., Shen, R., 2006. Whole-genome genotyping. Methods Enzymol. 410, 359–376. doi:10.1016/S0076-6879(06)10017-8
- Hampel, H., Frankel, W.L., Martin, E., Arnold, M., Khanduja, K., Kuebler, P., Clendenning, M., Sotamaa, K., Prior, T., Westman, J.A., Panescu, J., Fix, D., Lockman, J., LaJeunesse, J., Comeras, I., de la Chapelle, A., 2008. Feasibility of Screening for Lynch Syndrome Among Patients With Colorectal Cancer. J. Clin. Oncol. 26, 5783–5788. doi:10.1200/JCO.2008.17.5950
- Hampel, H., Stephens, J.A., Pukkala, E., Sankila, R., Aaltonen, L.A., Mecklin, J.-P., de la Chapelle,
 A., 2005. Cancer Risk in Hereditary Nonpolyposis Colorectal Cancer Syndrome: Later Age
 of Onset. Gastroenterology 129, 415–421. doi:10.1053/j.gastro.2005.05.011
- Haraldsdottir, S., Hampel, H., Tomsic, J., Frankel, W.L., Pearlman, R., de la Chapelle, A., Pritchard, C.C., 2014. Colon and Endometrial Cancers With Mismatch Repair Deficiency Can Arise From Somatic, Rather Than Germline, Mutations. Gastroenterology 147, 1308–1316.e1. doi:10.1053/j.gastro.2014.08.041
- Hashemi, M., Moradi, N., Rezaei, M., Sanaei, S., Ziaee, S. a. M., Narouie, B., Sotoudeh, M., Bahari, G., Ghavami, S., 2016. ERBB4 gene polymorphisms and the risk of prostate cancer in a sample of Iranian Population. Cell. Mol. Biol. Noisy--Gd. Fr. 62, 43–48.
- Hastings, P.J., Lupski, J.R., Rosenberg, S.M., Ira, G., 2009. Mechanisms of change in gene copy number. Nat. Rev. Genet. 10, 551–564. doi:10.1038/nrg2593

- Hegde, M., Ferber, M., Mao, R., Samowitz, W., Ganguly, A., 2014. ACMG technical standards and guidelines for genetic testing for inherited colorectal cancer (Lynch syndrome, familial adenomatous polyposis, and MYH-associated polyposis). Genet. Med. 16, 101– 116. doi:10.1038/gim.2013.166
- Hendriks, Y.M.C., Wagner, A., Morreau, H., Menko, F., Stormorken, A., Quehenberger, F., Sandkuijl, L., Møller, P., Genuardi, M., van Houwelingen, H., Tops, C., van Puijenbroek, M., Verkuijlen, P., Kenter, G., van Mil, A., Meijers-Heijboer, H., Tan, G.B., Breuning, M.H., Fodde, R., Winjen, J.T., Bröcker-Vriends, A.H.J.T., Vasen, H., 2004. Cancer risk in hereditary nonpolyposis colorectal cancer due to MSH6 mutations: impact on counseling and surveillance. Gastroenterology 127, 17–25. doi:10.1053/j.gastro.2004.03.068
- Hernandez-Pigeon, H., Quillet-Mary, A., Louat, T., Schambourg, A., Humbert, O., Selves, J., Salles, B., Laurent, G., Lautier, D., 2005. hMutSα is Protected from Ubiquitinproteasome-dependent Degradation by Atypical Protein Kinase Cζ Phosphorylation. J. Mol. Biol. 348, 63–74. doi:10.1016/j.jmb.2005.02.001
- Hitchins, M., Williams, R., Cheong, K., Halani, N., Lin, V.A.P., Packham, D., Ku, S., Buckle, A., Hawkins, N., Burn, J., Gallinger, S., Goldblatt, J., Kirk, J., Tomlinson, I., Scott, R., Spigelman, A., Suter, C., Martin, D., Suthers, G., Ward, R., 2005. MLH1 Germline Epimutations as a Factor in Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 129, 1392–1399. doi:10.1053/j.gastro.2005.09.003
- Horpaopan, S., Spier, I., Zink, A.M., Altmüller, J., Holzapfel, S., Laner, A., Vogt, S., Uhlhaas, S., Heilmann, S., Stienen, D., Pasternack, S.M., Keppler, K., Adam, R., Kayser, K., Moebus, S., Draaken, M., Degenhardt, F., Engels, H., Hofmann, A., Nöthen, M.M., Steinke, V., Perez-Bouza, A., Herms, S., Holinski-Feder, E., Fröhlich, H., Thiele, H., Hoffmann, P., Aretz, S., 2015. Genome-wide CNV analysis in 221 unrelated patients and targeted high-throughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis: CNV analysis polyposis. Int. J. Cancer 136, E578–E589. doi:10.1002/ijc.29215
- Iafrate, A.J., Feuk, L., Rivera, M.N., Listewnik, M.L., Donahoe, P.K., Qi, Y., Scherer, S.W., Lee, C., 2004. Detection of large-scale variation in the human genome. Nat. Genet. 36, 949–951. doi:10.1038/ng1416
- International HapMap Consortium, 2005. A haplotype map of the human genome. Nature 437, 1299–1320. doi:10.1038/nature04226
- Jacobs, P.A., Browne, C., Gregson, N., Joyce, C., White, H., 1992. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J. Med. Genet. 29, 103–108.
- Jiricny, J., 2006. The multifaceted mismatch-repair system. Nat. Rev. Mol. Cell Biol. 7, 335–346. doi:10.1038/nrm1907
- Jones, S., Emmerson, P., Maynard, J., Best, J.M., Jordan, S., Williams, G.T., Sampson, J.R., Cheadle, J.P., 2002. Biallelic germline mutations in MYH predispose to multiple colorectal adenoma and somatic G: C→ T: A mutations. Hum. Mol. Genet. 11, 2961– 2967.
- Karmakar, S., Mahajan, M.C., Schulz, V., Boyapaty, G., Weissman, S.M., 2010. A multiprotein complex necessary for both transcription and DNA replication at the β-globin locus. EMBO J. 29, 3260–3271. doi:10.1038/emboj.2010.204
- Kaufmann, A., Vogt, S., Uhlhaas, S., Stienen, D., Kurth, I., Hameister, H., Mangold, E., Kötting, J., Kaminsky, E., Propping, P., Friedl, W., Aretz, S., 2009. Analysis of rare APC variants at the

mRNA level: six pathogenic mutations and literature review. J. Mol. Diagn. JMD 11, 131–139. doi:10.2353/jmoldx.2009.080129

- Kent, W.J., Sugnet, C.W., Furey, T.S., Roskin, K.M., Pringle, T.H., Zahler, A.M., Haussler, D., 2002. The human genome browser at UCSC. Genome Res. 12, 996–1006.
- Kim, J.-Y., Jung, H.H., Do, I.-G., Bae, S., Lee, S.K., Kim, S.W., Lee, J.E., Nam, S.J., Ahn, J.S., Park,
 Y.H., Im, Y.-H., 2016. Prognostic value of ERBB4 expression in patients with triple negative breast cancer. BMC Cancer 16, 138. doi:10.1186/s12885-016-2195-3
- Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., Shendure, J., 2014. A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310–315. doi:10.1038/ng.2892
- Klein, D., 2002. Quantification using real-time PCR technology: applications and limitations. Trends Mol. Med. 8, 257–260.
- Kleinjan, D.A., van Heyningen, V., 2005. Long-Range Control of Gene Expression: Emerging Mechanisms and Disruption in Disease. Am. J. Hum. Genet. 76, 8–32.
- Klopocki, E., Ott, C.-E., Benatar, N., Ullmann, R., Mundlos, S., Lehmann, K., 2008. A microduplication of the long range SHH limb regulator (ZRS) is associated with triphalangeal thumb-polysyndactyly syndrome. J. Med. Genet. 45, 370–375. doi:10.1136/jmg.2007.055699
- Knudson, A.G., 2001. Two genetic hits (more or less) to cancer. Nat. Rev. Cancer 1, 157–162.
- Koese, M., Rentero, C., Kota, B.P., Hoque, M., Cairns, R., Wood, P., Vilà de Muga, S., Reverter, M., Alvarez-Guaita, A., Monastyrskaya, K., Hughes, W.E., Swarbrick, A., Tebar, F., Daly, R.J., Enrich, C., Grewal, T., 2013. Annexin A6 is a scaffold for PKCα to promote EGFR inactivation. Oncogene 32, 2858–2872. doi:10.1038/onc.2012.303
- Korbel, J.O., Urban, A.E., Affourtit, J.P., Godwin, B., Grubert, F., Simons, J.F., Kim, P.M., Palejev, D., Carriero, N.J., Du, L., Taillon, B.E., Chen, Z., Tanzer, A., Saunders, A.C.E., Chi, J., Yang, F., Carter, N.P., Hurles, M.E., Weissman, S.M., Harkins, T.T., Gerstein, M.B., Egholm, M., Snyder, M., 2007. Paired-End Mapping Reveals Extensive Structural Variation in the Human Genome. Science 318, 420–426. doi:10.1126/science.1149504
- Krepischi, A.C., Achatz, M.I., Santos, E.M., Costa, S.S., Lisboa, B.C., Brentani, H., Santos, T.M., Gonçalves, A., Nóbrega, A.F., Pearson, P.L., others, 2012. Germline DNA copy number variation in familial and early-onset breast cancer. Breast Cancer Res 14, R24.
- Krepischi, A.C.V., Pearson, P.L., Rosenberg, C., 2012. Germline copy number variations and cancer predisposition. Future Oncol. 8, 441–450. doi:10.2217/fon.12.34
- Kubista, M., Andrade, J.M., Bengtsson, M., Forootan, A., Jonák, J., Lind, K., Sindelka, R., Sjöback,
 R., Sjögreen, B., Strömbom, L., Ståhlberg, A., Zoric, N., 2006. The real-time polymerase chain reaction. Mol. Aspects Med. 27, 95–125. doi:10.1016/j.mam.2005.12.007
- Kuusisto, K.M., Akinrinade, O., Vihinen, M., Kankuri-Tammilehto, M., Laasanen, S.-L., Schleutker, J., 2013. Copy Number Variation Analysis in Familial BRCA1/2-Negative Finnish Breast and Ovarian Cancer. PLoS ONE 8, e71802. doi:10.1371/journal.pone.0071802
- Lander, E.S., Linton, L.M., Birren, B., Nusbaum, C., Zody, M.C., Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., others, 2001. Initial sequencing and analysis of the human genome. Nature 409, 860–921.
- Lee, J., Inoue, K., Ono, R., Ogonuki, N., Kohda, T., Kaneko-Ishino, T., Ogura, A., Ishino, F., 2002. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 129, 1807–1817.

- Lee, J.A., Carvalho, C.M.B., Lupski, J.R., 2007. A DNA Replication Mechanism for Generating Nonrecurrent Rearrangements Associated with Genomic Disorders. Cell 131, 1235– 1247. doi:10.1016/j.cell.2007.11.037
- Levy, S., Sutton, G., Ng, P.C., Feuk, L., Halpern, A.L., Walenz, B.P., Axelrod, N., Huang, J., Kirkness, E.F., Denisov, G., others, 2007. The diploid genome sequence of an individual human. PLoS Biol 5, e254.
- Li, J.-J., Xie, D., 2015. RACK1, a versatile hub in cancer. Oncogene 34, 1890–1898. doi:10.1038/onc.2014.127
- Ligtenberg, M.J.L., Kuiper, R.P., Chan, T.L., Goossens, M., Hebeda, K.M., Voorendt, M., Lee, T.Y.H., Bodmer, D., Hoenselaar, E., Hendriks-Cornelissen, S.J.B., Tsui, W.Y., Kong, C.K., Brunner, H.G., van Kessel, A.G., Yuen, S.T., van Krieken, J.H.J.M., Leung, S.Y., Hoogerbrugge, N., 2009. Heritable somatic methylation and inactivation of MSH2 in families with Lynch syndrome due to deletion of the 3' exons of TACSTD1. Nat. Genet. 41, 112–117. doi:10.1038/ng.283
- Lindhurst, M.J., Sapp, J.C., Teer, J.K., Johnston, J.J., Finn, E.M., Peters, K., Turner, J., Cannons, J.L., Bick, D., Blakemore, L., Blumhorst, C., Brockmann, K., Calder, P., Cherman, N., Deardorff, M.A., Everman, D.B., Golas, G., Greenstein, R.M., Kato, B.M., Keppler-Noreuil, K.M., Kuznetsov, S.A., Miyamoto, R.T., Newman, K., Ng, D., O'Brien, K., Rothenberg, S., Schwartzentruber, D.J., Singhal, V., Tirabosco, R., Upton, J., Wientroub, S., Zackai, E.H., Hoag, K., Whitewood-Neal, T., Robey, P.G., Schwartzberg, P.L., Darling, T.N., Tosi, L.L., Mullikin, J.C., Biesecker, L.G., 2011. A mosaic activating mutation in AKT1 associated with the Proteus syndrome. Ν. Engl. Med. 365, J. 611–619. doi:10.1056/NEJMoa1104017
- Lindor, N.M., Rabe, K., Petersen, G.M., Haile, R., Casey, G., Baron, J., Gallinger, S., Bapat, B., Aronson, M., Hopper, J., Jass, J., LeMarchand, L., Grove, J., Potter, J., Newcomb, P., Terdiman, J.P., Conrad, P., Moslein, G., Goldberg, R., Ziogas, A., Anton-Culver, H., de Andrade, M., Siegmund, K., Thibodeau, S.N., Boardman, L.A., Seminara, D., 2005. Lower Cancer Incidence in Amsterdam-I Criteria Families Without Mismatch Repair Deficiency: Familial Colorectal Cancer Type X. JAMA 293, 1979. doi:10.1001/jama.293.16.1979
- Livak, K.J., Schmittgen, T.D., 2001. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2–ΔΔCT Method. Methods 25, 402–408. doi:10.1006/meth.2001.1262
- Lucito, R., Suresh, S., Walter, K., Pandey, A., Lakshmi, B., Krasnitz, A., Sebat, J., Wigler, M., Klein, A.P., Brune, K., Palmisano, E., Maitra, A., Goggins, M., Hruban, R.H., 2007. Copy-number variants in patients with a strong family history of pancreatic cancer. Cancer Biol. Ther. 6, 1592–1599. doi:10.4161/cbt.6.10.4725
- Lupski, J.R., Stankiewicz, P., 2005. Genomic Disorders: Molecular Mechanisms for Rearrangements and Conveyed Phenotypes. PLoS Genet. 1, e49. doi:10.1371/journal.pgen.0010049
- Lynch, H., Lynch, P., Lanspa, S., Snyder, C., Lynch, J., Boland, C., 2009. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin. Genet. 76, 1–18. doi:10.1111/j.1399-0004.2009.01230.x
- Lynch, H.T., de la Chapelle, A., 2003. Hereditary colorectal cancer. N. Engl. J. Med. 348, 919– 932. doi:10.1056/NEJMra012242
- Lynch, H.T., Snyder, C.L., Shaw, T.G., Heinen, C.D., Hitchins, M.P., 2015. Milestones of Lynch syndrome: 1895-2015. Nat. Rev. Cancer 15, 181–194.

- MacDonald, J.R., Ziman, R., Yuen, R.K.C., Feuk, L., Scherer, S.W., 2014. The Database of Genomic Variants: a curated collection of structural variation in the human genome. Nucleic Acids Res. 42, D986–D992. doi:10.1093/nar/gkt958
- Manolio, T.A., Collins, F.S., Cox, N.J., Goldstein, D.B., Hindorff, L.A., Hunter, D.J., McCarthy, M.I., Ramos, E.M., Cardon, L.R., Chakravarti, A., Cho, J.H., Guttmacher, A.E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C.N., Slatkin, M., Valle, D., Whittemore, A.S., Boehnke, M., Clark, A.G., Eichler, E.E., Gibson, G., Haines, J.L., Mackay, T.F.C., McCarroll, S.A., Visscher, P.M., 2009. Finding the missing heritability of complex diseases. Nature 461, 747–753. doi:10.1038/nature08494
- Mardis, E.R., 2008. Next-Generation DNA Sequencing Methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402. doi:10.1146/annurev.genom.9.081307.164359
- Marenne, G., Rodríguez-Santiago, B., Closas, M.G., Pérez-Jurado, L., Rothman, N., Rico, D., Pita, G., Pisano, D.G., Kogevinas, M., Silverman, D.T., Valencia, A., Real, F.X., Chanock, S.J., Génin, E., Malats, N., 2011. Assessment of Copy Number Variation Using the Illumina Infinium 1M SNP-Array: A Comparison of Methodological Approaches in the Spanish Bladder Cancer/EPICURO Study. Hum. Mutat. 32, 240–248. doi:10.1002/humu.21398
- Masson, A., Talseth-Palmer, B., Evans, T.-J., Grice, D., Duesing, K., Hannan, G., Scott, R., 2013. Copy Number Variation in Hereditary Non-Polyposis Colorectal Cancer. Genes 4, 536– 555. doi:10.3390/genes4040536
- McCarroll, S.A., Kuruvilla, F.G., Korn, J.M., Cawley, S., Nemesh, J., Wysoker, A., Shapero, M.H., de Bakker, P.I.W., Maller, J.B., Kirby, A., Elliott, A.L., Parkin, M., Hubbell, E., Webster, T., Mei, R., Veitch, J., Collins, P.J., Handsaker, R., Lincoln, S., Nizzari, M., Blume, J., Jones, K.W., Rava, R., Daly, M.J., Gabriel, S.B., Altshuler, D., 2008. Integrated detection and population-genetic analysis of SNPs and copy number variation. Nat. Genet. 40, 1166–1174. doi:10.1038/ng.238
- McPhillips, M., Meldrum, C.J., Creegan, R., Edkins, E., Scott, R.J., 2005. Deletion Mutations in an Australian Series of HNPCC Patients. Hered. Cancer Clin. Pract. 3, 43–47. doi:10.1186/1897-4287-3-1-43
- Medlock, M.M., Tester, D.J., Will, M.L., Bos, J.M., Ackerman, M.J., 2012. Repeat long QT syndrome genetic testing of phenotype-positive cases: prevalence and etiology of detection misses. Heart Rhythm Off. J. Heart Rhythm Soc. 9, 1977–1982. doi:10.1016/j.hrthm.2012.08.010
- Mensenkamp, A.R., Vogelaar, I.P., van Zelst–Stams, W.A.G., Goossens, M., Ouchene, H., Hendriks–Cornelissen, S.J.B., Kwint, M.P., Hoogerbrugge, N., Nagtegaal, I.D., Ligtenberg, M.J.L., 2014. Somatic Mutations in MLH1 and MSH2 Are a Frequent Cause of Mismatch-Repair Deficiency in Lynch Syndrome-Like Tumors. Gastroenterology 146, 643–646.e8. doi:10.1053/j.gastro.2013.12.002
- Miller, S.A., Dykes, D.D., Polesky, H.F., 1988. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215.
- Morak, M., Heidenreich, B., Keller, G., Hampel, H., Laner, A., de la Chapelle, A., Holinski-Feder, E., 2014. Biallelic MUTYH mutations can mimic Lynch syndrome. Eur. J. Hum. Genet.
- Morak, M., Laner, A., Bacher, U., Keiling, C., Holinski-Feder, E., 2010. MUTYH-associated polyposis - variability of the clinical phenotype in patients with biallelic and monoallelic MUTYH mutations and report on novel mutations. Clin. Genet. 78, 353–363. doi:10.1111/j.1399-0004.2010.01478.x

- Mullis, K.B., Faloona, F.A., 1987. [21] Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction, in: Ray Wu (Ed.), Methods in Enzymology. Academic Press, pp. 335–350.
- Nagasaka, T., Rhees, J., Kloor, M., Gebert, J., Naomoto, Y., Boland, C.R., Goel, A., 2010. Somatic Hypermethylation of MSH2 Is a Frequent Event in Lynch Syndrome Colorectal Cancers. Cancer Res. 70, 3098–3108. doi:10.1158/0008-5472.CAN-09-3290
- Obermair, A., Youlden, D.R., Young, J.P., Lindor, N.M., Baron, J.A., Newcomb, P., Parry, S., Hopper, J.L., Haile, R., Jenkins, M.A., 2010. Risk of endometrial cancer for women diagnosed with HNPCC-related colorectal carcinoma. Int. J. Cancer 127, 2678–2684. doi:10.1002/ijc.25501
- Palles, C., Cazier, J.-B., Howarth, K.M., Domingo, E., Jones, A.M., Broderick, P., Kemp, Z., Spain, S.L., Almeida, E.G., Salguero, I., Sherborne, A., Chubb, D., Carvajal-Carmona, L.G., Ma, Y., Kaur, K., Dobbins, S., Barclay, E., Gorman, M., Martin, L., Kovac, M.B., Humphray, S., Thomas, H.J.W., Maher, E., Evans, G., Lucassen, A., Cummings, C., Stevens, M., Walker, L., Halliday, D., Armstrong, R., Paterson, J., Hodgson, S., Homfray, T., Side, L., Izatt, L., Donaldson, A., Tomkins, S., Morrison, P., Goodman, S., Brewer, C., Henderson, A., Davidson, R., Murday, V., Cook, J., Haites, N., Bishop, T., Sheridan, E., Green, A., Marks, C., Carpenter, S., Broughton, M., Greenhalge, L., Suri, M., Donnelly, P., Bell, J., Bentley, D., McVean, G., Ratcliffe, P., Taylor, J., Wilkie, A., Donnelly, P., Broxholme, J., Buck, D., Cazier, J.-B., Cornall, R., Gregory, L., Knight, J., Lunter, G., McVean, G., Taylor, J., Tomlinson, I., Wilkie, A., Buck, D., Gregory, L., Humphray, S., Kingsbury, Z., McVean, G., Donnelly, P., Cazier, J.-B., Broxholme, J., Grocock, R., Hatton, E., Holmes, C.C., Hughes, L., Humburg, P., Kanapin, A., Lunter, G., Murray, L., Rimmer, A., Lucassen, A., Holmes, C.C., Bentley, D., Donnelly, P., Taylor, J., Petridis, C., Roylance, R., Sawyer, E.J., Kerr, D.J., Clark, S., Grimes, J., Kearsey, S.E., Thomas, H.J.W., McVean, G., Houlston, R.S., Tomlinson, I., 2012. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136-144. doi:10.1038/ng.2503
- Palles, C., Cazier, J.-B., Howarth, K.M., Domingo, E., Jones, A.M., Broderick, P., Kemp, Z., Spain, S.L., Guarino, E., Guarino Almeida, E., Salguero, I., Sherborne, A., Chubb, D., Carvajal-Carmona, L.G., Ma, Y., Kaur, K., Dobbins, S., Barclay, E., Gorman, M., Martin, L., Kovac, M.B., Humphray, S., CORGI Consortium, WGS500 Consortium, Lucassen, A., Holmes, C.C., Bentley, D., Donnelly, P., Taylor, J., Petridis, C., Roylance, R., Sawyer, E.J., Kerr, D.J., Clark, S., Grimes, J., Kearsey, S.E., Thomas, H.J.W., McVean, G., Houlston, R.S., Tomlinson, I., 2013. Germline mutations affecting the proofreading domains of POLE and POLD1 predispose to colorectal adenomas and carcinomas. Nat. Genet. 45, 136–144. doi:10.1038/ng.2503
- Pang, A.W.C., MacDonald, J.R., Yuen, R.K.C., Hayes, V.M., Scherer, S.W., 2014. Performance of High-Throughput Sequencing for the Discovery of Genetic Variation Across the Complete Size Spectrum. G3amp58 GenesGenomesGenetics 4, 63–65. doi:10.1534/g3.113.008797
- Peltomäki, P., Lothe, R.A., Aaltonen, L.A., Pylkkänen, L., Nyström-Lahti, M., Seruca, R., David, L., Holm, R., Ryberg, D., Haugen, A., 1993. Microsatellite instability is associated with tumors that characterize the hereditary non-polyposis colorectal carcinoma syndrome. Cancer Res. 53, 5853–5855.

- Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S., Goldstein, D.B., 2013. Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes. PLoS Genet. 9, e1003709. doi:10.1371/journal.pgen.1003709
- Pickard, B.S., Malloy, M.P., Christoforou, A., Thomson, P.A., Evans, K.L., Morris, S.W., Hampson, M., Porteous, D.J., Blackwood, D.H.R., Muir, W.J., 2006. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol. Psychiatry 11, 847–857. doi:10.1038/sj.mp.4001867
- Pino, M.S., Mino-Kenudson, M., Wildemore, B.M., Ganguly, A., Batten, J., Sperduti, I., Iafrate, A.J., Chung, D.C., 2009. Deficient DNA Mismatch Repair Is Common in Lynch Syndrome-Associated Colorectal Adenomas. J. Mol. Diagn. 11, 238–247. doi:10.2353/jmoldx.2009.080142
- Plazzer, J.P., Sijmons, R.H., Woods, M.O., Peltomäki, P., Thompson, B., Den Dunnen, J.T., Macrae, F., 2013. The InSiGHT database: utilizing 100 years of insights into Lynch syndrome. Fam. Cancer 12, 175–180. doi:10.1007/s10689-013-9616-0
- Plon, S.E., Eccles, D.M., Easton, D., Foulkes, W.D., Genuardi, M., Greenblatt, M.S., Hogervorst, F.B.L., Hoogerbrugge, N., Spurdle, A.B., Tavtigian, S.V., for the IARC Unclassified Genetic Variants Working Group, 2008. Sequence variant classification and reporting: recommendations for improving the interpretation of cancer susceptibility genetic test results. Hum. Mutat. 29, 1282–1291. doi:10.1002/humu.20880
- Prenzel, N., Fischer, O.M., Streit, S., Hart, S., Ullrich, A., 2001. The epidermal growth factor receptor family as a central element for cellular signal transduction and diversification. Endocr. Relat. Cancer 8, 11–31.
- Pruitt, K.D., Tatusova, T., Maglott, D.R., 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35, D61–D65. doi:10.1093/nar/gkl842
- Raguz, S., De Bella, M.T., Slade, M.J., Higgins, C.F., Coombes, R.C., Yagüe, E., 2005. Expression of RPIP9 (Rap2 interacting protein 9) is activated in breast carcinoma and correlates with a poor prognosis. Int. J. Cancer J. Int. Cancer 117, 934–941. doi:10.1002/ijc.21252
- Redon, R., Ishikawa, S., Fitch, K.R., Feuk, L., Perry, G.H., Andrews, T.D., Fiegler, H., Shapero, M.H., Carson, A.R., Chen, W., Cho, E.K., Dallaire, S., Freeman, J.L., González, J.R., Gratacòs, M., Huang, J., Kalaitzopoulos, D., Komura, D., MacDonald, J.R., Marshall, C.R., Mei, R., Montgomery, L., Nishimura, K., Okamura, K., Shen, F., Somerville, M.J., Tchinda, J., Valsesia, A., Woodwark, C., Yang, F., Zhang, J., Zerjal, T., Zhang, J., Armengol, L., Conrad, D.F., Estivill, X., Tyler-Smith, C., Carter, N.P., Aburatani, H., Lee, C., Jones, K.W., Scherer, S.W., Hurles, M.E., 2006. Global variation in copy number in the human genome. Nature 444, 444–454. doi:10.1038/nature05329
- Rhees, J., Arnold, M., Boland, C.R., 2014. Inversion of exons 1–7 of the MSH2 gene is a frequent cause of unexplained Lynch syndrome in one local population. Fam. Cancer 13, 219– 225. doi:10.1007/s10689-013-9688-x
- Robinson, J.T., Thorvaldsdóttir, H., Winckler, W., Guttman, M., Lander, E.S., Getz, G., Mesirov, J.P., 2011. Integrative Genomics Viewer. Nat. Biotechnol. 29, 24–26. doi:10.1038/nbt.1754
- Rodríguez–Soler, M., Pérez–Carbonell, L., Guarinos, C., Zapater, P., Castillejo, A., Barberá, V.M., Juárez, M., Bessa, X., Xicola, R.M., Clofent, J., Bujanda, L., Balaguer, F., Reñé, J., de– Castro, L., Marín–Gabriel, J.C., Lanas, A., Cubiella, J., Nicolás–Pérez, D., Brea–Fernández, A., Castellví–Bel, S., Alenda, C., Ruiz–Ponte, C., Carracedo, A., Castells, A., Andreu, M.,

Llor, X., Soto, J.L., Payá, A., Jover, R., 2013. Risk of Cancer in Cases of Suspected Lynch Syndrome Without Germline Mutation. Gastroenterology 144, 926–932.e1. doi:10.1053/j.gastro.2013.01.044

- Rolland, D., Basrur, V., Conlon, K., Wolfe, T., Fermin, D., Nesvizhskii, A.I., Lim, M.S., Elenitoba-Johnson, K.S.J., 2014. Global phosphoproteomic profiling reveals distinct signatures in B-cell non-Hodgkin lymphomas. Am. J. Pathol. 184, 1331–1342. doi:10.1016/j.ajpath.2014.01.036
- Rozen, S., Skaletsky, H., 1999. Primer3 on the WWW for general users and for biologist programmers, in: Bioinformatics Methods and Protocols. Springer, pp. 365–386.
- Ruffalo, M., LaFramboise, T., Koyutürk, M., 2011. Comparative analysis of algorithms for nextgeneration sequencing read alignment. Bioinformatics 27, 2790–2796. doi:10.1093/bioinformatics/btr477
- Rustgi, A.K., 2007. The genetics of hereditary colon cancer. Genes Dev. 21, 2525–2538. doi:10.1101/gad.1593107
- Saglam, O., Xiong, Y., Marchion, D.C., Strosberg, C., Wenham, R.M., Johnson, J.J., Saeed-Vafa, D., Cubitt, C., Hakam, A., Magliocco, A.M., 2017. ERBB4 Expression in Ovarian Serous Carcinoma Resistant to Platinum-Based Therapy. Cancer Control J. Moffitt Cancer Cent. 24, 89–95.
- Sampson, J.R., Jones, N., 2009. MUTYH-associated polyposis. Best Pract. Res. Clin. Gastroenterol. 23, 209–218. doi:10.1016/j.bpg.2009.03.006
- Sanger, F., Nicklen, S., Coulson, A.R., 1992. DNA sequencing with chain-terminating inhibitors. 1977. Biotechnol. Read. Mass 24, 104–108.
- Schmermund, A., Möhlenkamp, S., Stang, A., Grönemeyer, D., Seibel, R., Hirche, H., Mann, K., Siffert, W., Lauterbach, K., Siegrist, J., Jöckel, K.-H., Erbel, R., 2002. Assessment of clinically silent atherosclerotic disease and established and novel risk factors for predicting myocardial infarction and cardiac death in healthy middle-aged subjects: Rationale and design of the Heinz Nixdorf RECALL Study. Am. Heart J. 144, 212–218. doi:10.1067/mhj.2002.123579
- Schouten, J.P., McElgunn, C.J., Waaijer, R., Zwijnenburg, D., Diepvens, F., Pals, G., 2002. Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res. 30, e57.
- Sebat, J., 2004. Large-Scale Copy Number Polymorphism in the Human Genome. Science 305, 525–528. doi:10.1126/science.1098918
- Shima, N., Alcaraz, A., Liachko, I., Buske, T.R., Andrews, C.A., Munroe, R.J., Hartford, S.A., Tye, B.K., Schimenti, J.C., 2007. A viable allele of Mcm4 causes chromosome instability and mammary adenocarcinomas in mice. Nat. Genet. 39, 93–98. doi:10.1038/ng1936
- Shlien, A., Malkin, D., 2010. Copy number variations and cancer susceptibility. Curr. Opin. Oncol. 22, 55–63. doi:10.1097/CCO.0b013e328333dca4
- Sieber, O.M., Lipton, L., Crabtree, M., Heinimann, K., Fidalgo, P., Phillips, R.K., Bisgaard, M.-L., Orntoft, T.F., Aaltonen, L.A., Hodgson, S.V., others, 2003. Multiple colorectal adenomas, classic adenomatous polyposis, and germ-line mutations in MYH. N. Engl. J. Med. 348, 791–799.
- Simbolo, M., Mafficini, A., Agostini, M., Pedrazzani, C., Bedin, C., Urso, E.D., Nitti, D., Turri, G., Scardoni, M., Fassan, M., Scarpa, A., 2015. Next-generation sequencing for genetic testing of familial colorectal cancer syndromes. Hered. Cancer Clin. Pract. 13. doi:10.1186/s13053-015-0039-9

- Spier, I., Holzapfel, S., Altmüller, J., Zhao, B., Horpaopan, S., Vogt, S., Chen, S., Morak, M., Raeder, S., Kayser, K., Stienen, D., Adam, R., Nürnberg, P., Plotz, G., Holinski-Feder, E., Lifton, R.P., Thiele, H., Hoffmann, P., Steinke, V., Aretz, S., 2015. Frequency and phenotypic spectrum of germline mutations in *POLE* and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas: *POLE* Mutations in Polyposis. Int. J. Cancer 137, 320–331. doi:10.1002/ijc.29396
- Stankiewicz, P., Lupski, J.R., 2010. Structural Variation in the Human Genome and its Role in Disease. Annu. Rev. Med. 61, 437–455. doi:10.1146/annurev-med-100708-204735
- Stankiewicz, P., Lupski, J.R., 2002. Genome architecture, rearrangements and genomic disorders. TRENDS Genet. 18, 74–82.
- Steemers, F.J., Chang, W., Lee, G., Barker, D.L., Shen, R., Gunderson, K.L., 2006. Whole-genome genotyping with the single-base extension assay. Nat. Methods 3, 31–33. doi:10.1038/nmeth842
- Steemers, F.J., Gunderson, K.L., 2007. Whole genome genotyping technologies on the BeadArray platform. Biotechnol. J. 2, 41–49. doi:10.1002/biot.200600213
- Steinke, V., Engel, C., Büttner, R., Schackert, H.K., Schmiegel, W.H., Propping, P., 2013. Hereditary nonpolyposis colorectal cancer (HNPCC)/Lynch syndrome. Dtsch. Ärztebl. Int. 110, 32.
- Steinke, V., Vogt, S., Aretz, S., 2010. Klinik und Genetik des familiären Darmkrebses. Med. Genet. 22, 265–281. doi:10.1007/s11825-010-0226-z
- Subauste, M.C., Ventura-Holman, T., Du, L., Subauste, J.S., Chan, S.-L., Yu, V.C., Maher, J.F., 2009. RACK1 downregulates levels of the pro-apoptotic protein Fem1b in apoptosis-resistant colon cancer cells. Cancer Biol. Ther. 8, 2297–2305.
- Suzuki, K., Oneyama, C., Kimura, H., Tajima, S., Okada, M., 2011. Down-regulation of the tumor suppressor C-terminal Src kinase (Csk)-binding protein (Cbp)/PAG1 is mediated by epigenetic histone modifications via the mitogen-activated protein kinase (MAPK)/phosphatidylinositol 3-kinase (PI3K) pathway. J. Biol. Chem. 286, 15698–15706. doi:10.1074/jbc.M110.195362
- Svaasand, E.K., 2015. A Novel Deep Intronic Mutation Introducing a Cryptic Exon Causing Neurofibromatosis Type 1 in a Family with Highly Variable Phenotypes: A Case Study. Hered. Genet. 04. doi:10.4172/2161-1041.1000152
- Takei, Y., Assenberg, M., Tsujimoto, G., Laskey, R., 2002. The MCM3 Acetylase MCM3AP Inhibits Initiation, but Not Elongation, of DNA Replication via Interaction with MCM3. J. Biol. Chem. 277, 43121–43125. doi:10.1074/jbc.C200442200
- Talseth-Palmer, B.A., Holliday, E.G., Evans, T.-J., McEvoy, M., Attia, J., Grice, D.M., Masson, A.L., Meldrum, C., Spigelman, A., Scott, R.J., 2013. Continuing difficulties in interpreting CNV data: lessons from a genome-wide CNV association study of Australian HNPCC/lynch syndrome patients. BMC Med. Genomics 6, 10. doi:10.1186/1755-8794-6-10
- Tautz, D., Schlötterer, null, 1994. Simple sequences. Curr. Opin. Genet. Dev. 4, 832–837.
- Thompson, B.A., Spurdle, A.B., Plazzer, J.-P., Greenblatt, M.S., Akagi, K., Al-Mulla, F., Bapat, B., Bernstein, I., Capellá, G., den Dunnen, J.T., du Sart, D., Fabre, A., Farrell, M.P., Farrington, S.M., Frayling, I.M., Frebourg, T., Goldgar, D.E., Heinen, C.D., Holinski-Feder, E., Kohonen-Corish, M., Robinson, K.L., Leung, S.Y., Martins, A., Moller, P., Morak, M., Nystrom, M., Peltomaki, P., Pineda, M., Qi, M., Ramesar, R., Rasmussen, L.J., Royer-Pokora, B., Scott, R.J., Sijmons, R., Tavtigian, S.V., Tops, C.M., Weber, T., Wijnen, J., Woods, M.O., Macrae, F., Genuardi, M., Castillejo, A., Sexton, A., Chan, A.K.W., Viel, A., Blanco, A., French, A., Laner, A., Wagner, A., van den Ouweland, A., Mensenkamp, A.,

Payá, A., Betz, B., Redeker, B., Smith, B., Espenschied, C., Cummings, C., Engel, C., Fornes, C., Valenzuela, C., Alenda, C., Buchanan, D., Barana, D., Konstantinova, D., Cairns, D., Glaser, E., Silva, F., Lalloo, F., Crucianelli, F., Hogervorst, F., Casey, G., Tomlinson, I., Blanco, I., Villar, I.L., Garcia-Planells, J., Bigler, J., Shia, J., Martinez-Lopez, J., Gille, J.J.P., Hopper, J., Potter, J., Soto, J.L., Kantelinen, J., Ellis, K., Mann, K., Varesco, L., Zhang, L., Le Marchand, L., Marafie, M.J., Nordling, M., Tibiletti, M.G., Kahan, M.A., Ligtenberg, M., Clendenning, M., Jenkins, M., Speevak, M., Digweed, M., Kloor, M., Hitchins, M., Myers, M., Aronson, M., Valentin, M.D., Kutsche, M., Parsons, M., Walsh, M., Kansikas, M., Zahary, M.N., Pedroni, M., Heider, N., Poplawski, N., Rahner, N., Lindor, N.M., Sala, P., Nan, P., Propping, P., Newcomb, P., Sarin, R., Haile, R., Hofstra, R., Ward, R., Tricarico, R., Bacares, R., Young, S., Chialina, S., Kovalenko, S., Gunawardena, S.R., Moreno, S., Ho, S.L., Yuen, S.T., Thibodeau, S.N., Gallinger, S., Burnett, T., Teitsch, T., Chan, T.L., Smyrk, T., Cranston, T., Psofaki, V., Steinke-Lange, V., Barbera, V.-M., 2013. Application of a 5-tiered scheme for standardized classification of 2,360 unique mismatch repair gene variants in the InSiGHT locus-specific database. Nat. Genet. 46, 107-115. doi:10.1038/ng.2854

- Toribara, N.W., Sleisenger, M.H., 1995. Screening for colorectal cancer. N. Engl. J. Med. 332, 861–867.
- Umar, A., Boland, C.R., Terdiman, J.P., Syngal, S., de la Chapelle, A., Rüschoff, J., Fishel, R., Lindor, N.M., Burgart, L.J., Hamelin, R., Hamilton, S.R., Hiatt, R.A., Jass, J., Lindblom, A., Lynch, H.T., Peltomaki, P., Ramsey, S.D., Rodriguez-Bigas, M.A., Vasen, H.F.A., Hawk, E.T., Barrett, J.C., Freedman, A.N., Srivastava, S., 2004. Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J. Natl. Cancer Inst. 96, 261–268.
- Valle, L., Hernandez-Illan, E., Bellido, F., Aiza, G., Castillejo, A., Castillejo, M.-I., Navarro, M., Segui, N., Vargas, G., Guarinos, C., Juarez, M., Sanjuan, X., Iglesias, S., Alenda, C., Egoavil, C., Segura, A., Juan, M.-J., Rodriguez-Soler, M., Brunet, J., Gonzalez, S., Jover, R., Lazaro, C., Capella, G., Pineda, M., Soto, J.L., Blanco, I., 2014. New insights into POLE and POLD1 germline mutations in familial colorectal cancer and polyposis. Hum. Mol. Genet. 23, 3506–3512. doi:10.1093/hmg/ddu058
- Valle, L., Perea, J., Carbonell, P., Fernandez, V., Dotor, A.M., Benitez, J., Urioste, M., 2007. Clinicopathologic and Pedigree Differences in Amsterdam I-Positive Hereditary Nonpolyposis Colorectal Cancer Families According to Tumor Microsatellite Instability Status. J. Clin. Oncol. 25, 781–786. doi:10.1200/JCO.2006.06.9781
- Vasen, H.F., Watson, P., Mecklin, J.-P., Lynch, H.T., others, 1999. New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116, 1453–1456.
- Venkatachalam, R., Verwiel, E.T.P., Kamping, E.J., Hoenselaar, E., Görgens, H., Schackert, H.K., van Krieken, J.H.J.M., Ligtenberg, M.J.L., Hoogerbrugge, N., van Kessel, A.G., Kuiper, R.P., 2011. Identification of candidate predisposing copy number variants in familial and early-onset colorectal cancer patients. Int. J. Cancer 129, 1635–1642. doi:10.1002/ijc.25821
- Vilar, E., Gruber, S.B., 2010. Microsatellite instability in colorectal cancer—the stable evidence. Nat. Rev. Clin. Oncol. 7, 153–162. doi:10.1038/nrclinonc.2009.237
- Villacis, R.A.R., Miranda, P.M., Gomy, I., Santos, E.M.M., Carraro, D.M., Achatz, M.I., Rossi, B.M., Rogatto, S.R., 2015. Contribution of rare germline copy number variations and common

susceptibility loci in Lynch Syndrome patients negative for mutations in the mismatch repair genes. Int. J. Cancer J. Int. Cancer. doi:10.1002/ijc.29948

- Vogelstein, B., Fearon, E.R., Hamilton, S.R., Kern, S.E., Preisinger, A.C., Leppert, M., Nakamura,
 Y., White, R., Smits, A.M., Bos, J.L., 1988. Genetic alterations during colorectal-tumor
 development. N. Engl. J. Med. 319, 525–532. doi:10.1056/NEJM198809013190901
- Vogelstein, B., Papadopoulos, N., Velculescu, V.E., Zhou, S., Diaz, L.A., Kinzler, K.W., 2013. Cancer Genome Landscapes. Science 339, 1546–1558. doi:10.1126/science.1235122
- von Eyss, B., Maaskola, J., Memczak, S., Möllmann, K., Schuetz, A., Loddenkemper, C., Tanh, M.-D., Otto, A., Muegge, K., Heinemann, U., Rajewsky, N., Ziebold, U., 2012. The SNF2-like helicase HELLS mediates E2F3-dependent transcription and cellular transformation. EMBO J. 31, 972–985. doi:10.1038/emboj.2011.451
- Wagner, A., van der Klift, H., Franken, P., Wijnen, J., Breukel, C., Bezrookove, V., Smits, R., Kinarsky, Y., Barrows, A., Franklin, B., Lynch, J., Lynch, H., Fodde, R., 2002. A 10-Mb paracentric inversion of chromosome arm 2p inactivatesMSH2 and is responsible for hereditary nonpolyposis colorectal cancer in a North-American kindred. Genes. Chromosomes Cancer 35, 49–57. doi:10.1002/gcc.10094
- Walsh, T., Casadei, S., Coats, K.H., Swisher, E., Stray, S.M., Higgins, J., Roach, K.C., Mandell, J., Lee, M.K., Ciernikova, S., Foretova, L., Soucek, P., King, M.-C., 2006. Spectrum of mutations in BRCA1, BRCA2, CHEK2, and TP53 in families at high risk of breast cancer. JAMA 295, 1379–1388. doi:10.1001/jama.295.12.1379
- Watson, C.T., Marques-Bonet, T., Sharp, A.J., Mefford, H.C., 2014. The genetics of microdeletion and microduplication syndromes: an update. Annu. Rev. Genomics Hum. Genet. 15, 215–244. doi:10.1146/annurev-genom-091212-153408
- Watson, P., Vasen, H.F.A., Mecklin, J.-P., Bernstein, I., Aarnio, M., Järvinen, H.J., Myrhøj, T., Sunde, L., Wijnen, J.T., Lynch, H.T., 2008. The risk of extra-colonic, extra-endometrial cancer in the Lynch syndrome. Int. J. Cancer 123, 444–449. doi:10.1002/ijc.23508
- Weterings, E., van Gent, D.C., 2004. The mechanism of non-homologous end-joining: a synopsis of synapsis. DNA Repair 3, 1425–1435. doi:10.1016/j.dnarep.2004.06.003
- Willis, J.A., Mukherjee, S., Orlow, I., Viale, A., Offit, K., Kurtz, R.C., Olson, S.H., Klein, R.J., 2014. Genome-wide analysis of the role of copy-number variation in pancreatic cancer risk. Front. Genet. 5. doi:10.3389/fgene.2014.00029
- Winchester, L., Yau, C., Ragoussis, J., 2009. Comparing CNV detection methods for SNP arrays. Brief. Funct. Genomic. Proteomic. 8, 353–366. doi:10.1093/bfgp/elp017
- Yang, R., Chen, B., Pfutze, K., Buch, S., Steinke, V., Holinski-Feder, E., Stocker, S., von Schonfels, W., Becker, T., Schackert, H.K., Royer-Pokora, B., Kloor, M., Schmiegel, W.H., Buttner, R., Engel, C., Lascorz Puertolas, J., Forsti, A., Kunkel, N., Bugert, P., Schreiber, S., Krawczak, M., Schafmayer, C., Propping, P., Hampe, J., Hemminki, K., Burwinkel, B., 2014. Genome-wide analysis associates familial colorectal cancer with increases in copy number variations and a rare structural variation at 12p12.3. Carcinogenesis 35, 315–323. doi:10.1093/carcin/bgt344
- Yang, X.R., Brown, K., Landi, M.T., Ghiorzo, P., Badenas, C., Xu, M., Hayward, N.K., Calista, D., Landi, G., Bruno, W., Bianchi-Scarrà, G., Aguilera, P., Puig, S., Goldstein, A.M., Tucker, M.A., 2012. Duplication of CXC chemokine genes on chromosome 4q13 in a melanoma-prone family: 4q13 duplication in a melanoma family. Pigment Cell Melanoma Res. 25, 243–247. doi:10.1111/j.1755-148X.2012.00969.x
- Yu, W., Wang, Y., Xie, Z., You, J., Wang, J., Cui, X., Pei, F., Zheng, J., 2010. [Screening of phosphoprotein associated with glycosphingolipid microdomains 1 (PAG1) by cDNA

microarray and influence of overexpression of PAG1 on biologic behavior of human metastatic prostatic cancer cell line in vitro]. Zhonghua Bing Li Xue Za Zhi 39, 88–94.

- Zarrei, M., MacDonald, J.R., Merico, D., Scherer, S.W., 2015. A copy number variation map of the human genome. Nat. Rev. Genet. 16, 172–183. doi:10.1038/nrg3871
- Zerres, K., Schüler, H., Gembruch, U., Bald, R., Hansmann, M., Schwanitz, G., 1992. Chromosomal findings in fetuses with prenatally diagnosed cysts of the choroid plexus. Hum. Genet. 89, 301–304.
- Zozulya, S., Echeverri, F., Nguyen, T., 2001. The human olfactory receptor repertoire. Genome Biol. 2, RESEARCH0018.

9 Eigene Publikationen

<u>Kayser K.</u>, Degenhardt F., Holzapfel S., Horpaopan S., Peters S., Spier I., Morak M., Vangala D., Rahner N., von Knebel-Doeberitz M., Schakert H. K., Engel C., Büttner R., Wijnen J., Doerks T., Moebus S., Herms S., Hofmann A., Fischer S., Hoffmann P., Aretz S., Steinke-Lange V.: *Copy number variation analysis and targeted NGS in suspected Lynch syndrome families reveals novel potential causative candidate genes*. submitted 2017. I. J. Cancer

Adam R., Spier I., Zhao B., Kloth M., Marquez J., Hinrichsen I., Tafazzoli A., Horpaopan S., Uhlhaas S., Kirfel J., Stienen D., Friedrichs N., Altmüller J., Laner A., Holzapfel S., Peters S., <u>Kayser K.</u>, Thiele H., Holinski-Feder E., Kristiansen G., Nöthen M.M., Büttner R., Möslein G., Betz R., Brieger A., Lifton R.P., Aretz S.: *Exome sequencing identifies biallelic MSH3 germline mutations as a novel recessive subtype of colorectal adenomatous polyposis.* Am. J. Hum. Genet. 2016;99:337-51

Horpaopan S., Spier I., Zink A.M., Altmüller J., Holzapfel S., Laner A., Vogt S., Uhlhaas S., Heilmann S., Stienen D., Pasternack S., Keppler K., Adam R., <u>Kayser K.</u>, Moebus S., Draaken M., Degenhardt F., Engels H., Hofmann A., Nöthen M.M., Steinke-Lange V., Herms S., Holinski-Feder E., Fröhlich H., Thiele H., Hoffmann P., Aretz S.: *Genome-wide CNV analysis in 221 unrelated patients and targeted high-throughput sequencing reveal novel causative candidate genes for colorectal adenomatous polyposis.* Int. J. Cancer 136; 2015 E578-E589. doi:10.1002/ijc.29215

Spier I., Holzapfel S., Altmüller J., Zhao B., Horpaopan S., Vogt S., Chen S., Morak M., Raeder S., <u>Kayser K.</u>, Stienen D., Adam R., Nürnberg P., Plotz G., Holinski-Feder E., Lifton R.P., Thiele H., Hoffmann P., Steinke V., Aretz S.: *Frequency and phenotypic spectrum of germline mutations in POLE and seven other polymerase genes in 266 patients with colorectal adenomas and carcinomas: POLE Mutations in Polyposis.* Int. J. Cancer 137, 2015, 320-331. doi.10.1002/ijc.29396

Anhang

A) Primer zur Validierung der CNVs mittels qPCR

Tab. A.1 Deletionen

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
AGMO_1F	TGCCAACATCAGAGCAAACT	58.01	100
AGMO_1R	CTTGTCTCCCTAGGTCACCG	59.18	
AGMO_2F	ACCTGCACTTTGATTGGTTCA	58.33	135
AGMO_2R	GCTCCTTTACTTTACAGGAAGCC	59.31	
AGMO_3F	GGAGATGAGGCTTGTACCAAAG	58.73	181
AGMO_3R	CATAGGGTTCATCATGGTAAGGA	57.43	
CLDN23_1F	CCAGTGGACGTGGAGTTGTA	59.6	146
CLDN23_1R	AGCGAGGTGACCATGAGTG	59.8	
CLDN23_2F	TGGATGGAAATCTGCCTTTC	60	142
CLDN23_2R	TATGAAAAGCCCGTCACTCC	60.1	
CSMD1_1F	CAAGCCTCACCAGAGAGACC	59.99	103
CSMD1_1R	AGAGTGAGGCATGAGGCTGT	60.02	
CSMD1_2F	GCGGCAGTTTCTAAGGATCA	60.35	123
CSMD1_2R	TTCAACATCTCACCCAATGC	59.5	
CSMD1_3F	GTTGAGGCAGACTGGAGGAG	59.99	167
CSMD1_3R	CTCCATTCCCAGTCCTTGAA	60.04	
DLG2_1F	AGCACCATCTGTTCATGCTC	58.8	137
DLG2_1R	TTCAGGGAAGCTGTTTTGCT	60	
DLG2_2F	TTGGGTAAAATGGTCCAGAGA	59.4	149
DLG2_2R	CAAGTTTGCTGTCTTCAGGGTA	59.4	
DLG2_3F	TCCTAACGAGTCTGAAAAAGTGC	59.9	129
DLG2_3R	ATGGGAGGGAGTAAGGGAGA	59.9	
FBXO36_1F	CCAATCACATGAGGCCAGGA	59.74	127
FBXO36_1R	CCTCCCTGGTAGCTGGGATT	60.7	
FBXO36_2F	GATGGTGGAAGATCTCTCTAAGGA	60.1	114
FBXO36_2R	TGTTCCGTTCCTTACCTTGAA	59.6	
FBXO36_3F	GACTTCCTTGAACGGCTCTCA	60	115

FBXO36_3R	TGACCGTTACCTTTGCAAATCTG	59.75	
KLHDC3_1F	CCAGGACTGTGACCCAAGTT	60	147
KLHDC3_1R	CACCAAGACCTGGGAACAAG	60.5	
KLHDC3_2F	TGGCTGCCTCTACACTTCCT	60	126
KLHDC3_2R	AGTCCAGCTCCATGGTTGTC	60.1	
KLHDC3_3F	GCACCCTGAAAGGGTACTCA	60.1	135
KLHDC3_3R	CCATGCACTGCAGATGATTT	59.1	
KLHL32_1F	AAGCAGTGTGAGCACAGCATA	59.7	115
KLHL32_1R	TGACTCATAAGCTCATCCCTTTC	59.7	
KLHL32_2F	GGATTTACTGGCCATGCTGT	60	111
KLHL32_2R	CTCGCATGCATTTTTCCAGT	61.2	
KLHL32_3F	TCTGTTAGCTGGGCTCTTGC	60.7	150
KLHL32_3R	ATAGATGCCCAGTCCAGGTG	60	
LINCO1473_1F	CTTCCTCTCACCACCCTCAG	59.8	110
LINCO1473_1R	ACAAGAACCACGTGTGGAAA	59	
LINCO1473_2F	TTTTCCTAACCTTGCTGAAGATG	59.8	120
LINCO1473_2R	TTGAGCTTCATGGTGATGGA	60.2	
LINCO1473_3F	GCATCCACACTGGACATCAG	60.1	142
LINCO1473_3R	AAGCTGCATGAAATGCACAG	60	
NMNAT3_1F	TATCCACCCATTGGCATTTT	60	137
NMNAT3_1R	ATACATGAAGGGCACCAAGG	59.8	
NMNAT3_2F	CTGAAGTGCACCCTGGGAAA	60.18	186
NMNAT3_2R	CAGTCTGTTTGTAAAGGCATGCA	60	
NOSIP_PRRG2_4F	CGCTGTAGGAGCACTGTTTG	59.7	123
NOSIP_PRRG2_4R	GTGCGGGAGACCAAATAAAC	59.7	
NOSIP_PRRG2_5F	TTAGCTAGGGTGGTGGCTGT	59.8	130
NOSIP_PRRG2_5R	CTTGGCCTCAGTCAGAGCTT	59.7	
NOSIP_PRRG2_6F	CTCCGAGACCCAGAAGTTTG	59.8	136
NOSIP_PRRG2_6R	ACATCCACCCACAGACAACA	59.8	
NRG3_1F	CAAAGGAATACATTCTCCCTCA	58.2	125
L	I		1

NRG3_1R	CTGCATTACCACAGCCTGAA	59.9	
NRG3_2F	GTGTGAGAAGTGGGCATGTG	60.2	112
NRG3_2R	ACACAGAAAGGGCAAAGCAG	60.4	
NRG3_3F	TTGTTTTGAAGAACTTGATGTGC	59.3	110
NRG3_3R	CCTTTCCTGGGGGTTAGAAT	59.3	
PAG1_1F	AAAGGCCAGCCTCTTCTTC	60	128
PAG1_1R	AGTGCTGTTGGGGTATCCTG	60	
PAG1_2F	TGTGCTGTACCACTGCCATT	60.2	127
PAG1_2R	CAAAGGGAATACATTGCCAGA	59.9	
PARK2_1F	TCGCATAGTGGAAAATGAACA	59.2	138
PARK2_1R	TTTTGCCATTCTTCCTTCTGA	59.8	
PARK2_2F	TGAGCGTATGGTGAGAAGGA	59.4	110
PARK2_2R	GAGTGGGGTAAGCACGTTTC	59.6	
PARK2_3F	CTTGTGCCAAAGTGGTCAAC	59.2	117
PARK2_3R	GGGCATGGCTTAAAGAAGGT	60.5	
PITPNC1_1F	GCAACTTGGTGTCAGGAACA	59.7	128
PITPNC1_1R	TACCCCCAGGATGAAAATCA	60.1	
PITPNC1_2F	AAGGGTTTGGACGTTGAGTG	60	122
PITPNC1_2R	CAAGGCCACAGAAACCAGTC	60.7	
PRKCA_1F	ATTTCCACCTCATCCACCAG	59.8	141
PRKCA_1R	ACCTCCCATCAGAATGTGGT	59.2	
PRKCA_2F	TAAGCAACCAGGCAAGATCC	60.2	146
PRKCA_2R	AGCAGCAGAAAGAAGCCTGA	60.4	
PRKCA_3F	CAAGCCACTTGCTGATGAGA	60.1	150
PRKCA_3R	AGAAACACACCCCACTGACC	59.9	
PRKDC_MCM4_1F	GCCAGCACTGCCATTTTAGT	60.3	121
PRKDC_MCM4_1R	AGCGAGCAACCAGAAACAC	60.4	
PRKDC_MCM4_2F	GAACACCAGGCTCTGTCCAT	60.1	144
PRKDC_MCM4_2R	AATCTTGCAGCCAGGTCATC	60.2	
PRKDC_MCM4_3F	TGCCTGTTCCCAAATGCTAT	60.5	155

TTGATTACCTCCCCAAGTCG	59.9	
TTACAGATGAGGGCAGAAGTG	58	102
TCTCATTGGCGGGATCTGTT	62.9	
TGGTTGAAGCAGGCCTAGTA	58.5	160
CCACATTCTTTGGCTGGCAT	63.3	
GGCTCTCCCAGGGCATTATT	62.5	134
GTGTGCCCCAGTTTGAGAAG	60.7	
GATTTCCCAAAGTTGCAGATG	59.6	113
CCGAAAGTCAATTCCATGCT	60.1	
TCTGCAGCATTGAAAATATGG	58.8	119
CACACCTTCCTGCTATTCCAA	60.1	
AGGGTAGAGCCTGGATCAGAG	59.8	155
TTCTGATTTCTGAGTCTTCAGGTG	59.9	
CAAACATTGTGCCCAAGAGA	59.7	133
ACCCCTCTGGTACCTCAGTTT	59	
CCTGTTGTTCACCAAAACACA	59.5	131
TTCTTGGTGAAGTTAGGAACCA	58.7	
AAGTCACAGCATGCCCTTCT	59.9	140
GGTCAAAGCATTCTGCTTCA	59	
CACATGCCCATCTCAGTAATTT	59	132
TGTCTAATTGAAATCCCTCACAC	58.1	
CTGCCTTCTCCCATCCATC	60.6	150
AAGAAGCAACATTTCCATTG	59.2	
TCCATTGTAACATGCCCTCA	59.9	123
CATCCAGGTGTTCTCAGTGG	59.1	
TTGGACACCAATGCAGTCAT	60	111
TGGGTGCTTTGTTTTGATG	59.6	
GGCGGTTCAAATCAAAGAAG	59.7	147
TTTGCAGGAGAAATGAAGGAA	59.8	
TCGGTGAAAGTGTTTCTGGA	59.3	142
	TTGATTACCTCCCAAGTCG TTACAGATGAGGGCAGAAGTG TCTCATTGGCGGGGATCTGTT TGGTTGAAGCAGGCCTAGTA CCACATTCTTTGGCTGGCAT GGCTCTCCCAGGGCATTATT GTGTGCCCCAGTTGAGAAG GATTTCCCAAAGTTGCAGATG CCGAAAGTCAATTCCATGCT TCTGCAGCATTGAAAATATGG CACACCTTCCTGCTATTCCAA AGGGTAGAGCCTGGATCAGAG TTCTGATTTCTGAGTCTTCAGGTG CAAACATTGTGCCCAAGAGA ACCCCTCTGGTACCTCAGGTG CAAACATTGTGCCCAAGAGA ACCCCTCTGGTACCTCAGTT CCTGTTGTTCACCAAAACACA TTCTTGGTGAAGTTAGGAACCA AAGTCACAGCATGCCTTCT GGTCAAAGCATTCTGCTTCA CACATGCCCATCTCAGTATT TGTCTAATTGAAATCCCTCACAC CTGCCTTCTCCCATCCACAC CTGCCTTCTCCCATCCATC AAGAAGCAACATTTCCATTG TCCATTGTAACATGCCCTCA CATCCAGGTGTTCTCAGTGG TTCCATTGTAACATGCCCTCA CATCCAGGTGTTCTCAGTGG TTGGACACCAATGCAGTGCTT TGGGTGCTTTGTTTTGATG GGCCGGTTCAAATGAAGAAG TTTGCAGGAGAAATGAAGAAG	TTGATTACCTCCCCAAGTCG59.9TTACAGATGAGGGCAGGAGTG58TCTCATTGGCGGGGATCTGTT62.9TGGTTGAAGCAGGCCTAGTA58.5CCACATTCTTTGGCTGGCAT63.3GGCTCTCCCAGGGCATTATT62.5GTGTGCCCCAGTTGAGAAG60.7GATTTCCCAAAGTTGCAGATG59.6CCCGAAAGTCAATTCCATGCT60.1TCTGCAGCATTGAAAATATGG58.8CACACCTTCCTGCTATTCCAA60.1AGGGTAGAGCCTGGATCAGAG59.8TTCTGATTTCTGAGTCTTCAGGTG59.9CAAACATTGTGCCCAAGAGA59.7ACCCCTCTGGTACCTCAGTTT59CCTGTTGTTCACCAAAACACA59.5TTCTTGGTGAAGTATGGGAACCA58.7AAGTCACAGCATGCCCTTCT59.9CACATGCCCATCTCAGTAGTAGGAACCA58.7AAGTCACAGCATGCCCTTCT59.9CACATGCCCATCTCAGTATT59TGTCTAATTGAAATCCTCAGTA59.1TTGGGTGACACACATTCCATTG59.2TCCATTGTAACATGCAGTCAT59.9CATCCAGGTGTTCTCAGTGG59.1TTGGAGACACAATGCAGTCAT60TGGGTGCTTGATTGTGTTTGATG59.6GGCCGGTTCAAATGAAGAAGAAGGAA59.8TTGGAGAGAAATGAAGAAGGAAATGAAGGAA59.8TTGGAGAGAAATGAAGAAGGAAATGAAGGAA59.8TTCGGTGAAAGTGTTTCTGGA59.3

VWDE_3R	CCACCAGCTTATTTCTCATGC	59.7	
WFDC9-WFDC11_1F	GCAGAAGCATCACAACTCCA	60	114
WFDC9-WFDC11_1R	TTGGGAAAAGACTTGCCTTC	59.3	
WFDC9-WFDC11_2F	TCGGCAAGAACACAAGACTG	60	131
WFDC9-WFDC11_2R	AAGTCGGAGCAGAGCAAGAG	59.9	
WFDC9-WFDC11_3F	GCCAGTGAATTGCTTTCCAA	61.1	150
WFDC9-WFDC11_3R	GGAGATGTTTGCTTGGGTGT	60	
ZNF415_1F	CCCTTCAGCTTGAAACTGCT	59.6	140
ZNF415_1R	CTACGGCCCCAAAAGAAAAT	60.3	
ZNF415_2F	CCCACCCTTTTGGTTTTCTT	60.2	165
ZNF415_2R	GCAAAGGGCTGAGATTCTTG	60	
ZNF415_3F	TGCCAGGAGTCTTTGGAAGT	59.8	115
ZNF415_3R	CGAGCTCCTCCCTGTGTATG	60.8	
ZNF551_ZNF776_1F	TACCTTGTGGCCCAGTTTCT	59.6	121
ZNF551_ZNF776_1R	TGTAAAAAGAGCTCCATAGTTCACA	59.4	
ZNF551_ZNF776_2F	AGGCAATAAGAGGCAGTTGG	59.3	120
ZNF551_ZNF776_2R	GCTGGTGACCTGAAAAGAGG	59.8	
ZNF551_ZNF776_3F	GACTTCCGGCGTCCTCTACT	60.8	111
ZNF551_ZNF776_3R	TCCACCTTCTGGGTTCAGTC	60.1	

Tab. A.2 Duplikationen

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
ENOX1_1F	TCTGAACATCAATCACCACCA	60	113
ENOX1_1R	TCCGTGAGGACAGAGACCTT	59.8	
ENOX1_2F	TCTTTGCCCTTGGTCACTCT	59.8	147
ENOX1_2R	TCACTGGGTTACAAGGAGAAGTC	59.7	
ENOX1_3F	TCCTGGTGTTGGCAAATAGA	59.1	149
ENOX1_3R	TGTGGAGCTGAGTCGTGTGT	60.5	
KATNAL1_1F	ATCCTTGATCCCAGCCAAC	59.9	116
KATNAL1_1R	CACCCCTTTCTCTCCCTACC	59.9	

)
)
)
3
•
)
5
7
5
3
5
3
)
1
)
ι

SLC04C1_1F	CAAACCAGTGAGGTGTGGAA	59.6	149
SLC04C1_1R	TTGGGGTCTCTTTTTGAAGG	59.1	
SLC04C1_2F	GACAGTGACCGGAGCTTCTC	60	141
SLC04C1_2R	CTCTGCCTTGTCCTCTGACC	60	
TPRKB_DUSP11_1F	GGACTGGCAAACCTTTTTGA	60.1	127
TPRKB_DUSP11_1R	CATTGAAGAGGGAGAAAAACAAA	59.6	
TPRKB_DUSP11_2F	CCAACAGGCTGGATAGGAGA	60.2	130
TPRKB_DUSP11_2R	TCCCCCTGGAGAGGACTATT	59.9	
TPRKB_DUSP11_3F	TGAGGAGCGTCCTGAAAAGT	60	147
TPRKB_DUSP11_3R	GGGTCTTATCCTGGCATTGA	59.9	
TRIM41_GNB2L1_TRIM52_1F	AAGCTGGGGCAGGATTTAGT	60.1	123
TRIM41_GNB2L1_TRIM52_1R	GGCGAGCAATAATGGAAAAA	60	
TRIM41_GNB2L1_TRIM52_2F	GCTTGCAGTTAGCCAGGTTC	60	110
TRIM41_GNB2L1_TRIM52_2R	AGAAGTGCCAAGCCCTTTTT	60.2	
TRIM41_GNB2L1_TRIM52_3F	AAGCACATGCCCTGATCATT	60.5	119
TRIM41_GNB2L1_TRIM52_3R	AGCTTTACACGTCGCAGCTT	60.2	
TSPAN9_1F	GGAGGGATCTCAGGTTGTCA	60	113
TSPAN9_1R	CAGCATTTTGGCATTTCTGA	59.8	
TSPAN9_2F	CTTCCTTTCCAGCTCTGTGG	60	144
TSPAN9_2R	CATGACAATGGTGCCTATGG	59.8	
TSPAN9_3F	TCATCCGTCTGTTTGCAGAG	60	110
TSPAN9_3R	AGACTTCCGCCCAATGTAGA	59.7	

B) Primer der Routinediagnostik für MSH2 und MSH6

Tab. B.1 MSH2

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
MSH2_1F	TCGCGCATTTTCTTCAACC	62.2	285
MSH2_1R	GTCCCTCCCAGCACGC	65.4	
MSH2_2F	GAAGTCCAGCTAATACAGTGC	54.3	286
MSH2_2R	CTTCACATTTTTATTTTTCTACTC	51.6	
MSH2_3F	GGTTCATAGAGTTTGGATTTTTCC	59.3	427
MSH2_3R	AAAGAGCCTTTCCTAGGCCTGG	64.2	
MSH2_4F	TAATGTAGGTGAATCTGTTATCAC	52.9	346
MSH2_4R	CTTCTAAAAAGTCACTATAGTTTAC	48.4	
MSH2_5F	TTTTTAAAATCTTTAGAACTGGATC	54.7	266
MSH2_5R	CCATTCAACATTTTTAACCCTT	57.1	
MSH2_6F	GTTTTCACTAATGAGCTTGCC	56.7	251
MSH2_6R	GTGGTATAATCATGTGGGTAAC	53.5	
MSH2_7F	GAGACTTACGTGCTTAGTTG	50.3	328
MSH2_7R	GTATATATTGTATGAGTTGAAGG	48.0	
MSH2_8F	CCTTTTGGATCAAATGATGCTTG	62.8	281
MSH2_8R	AACTTTCTTAAAGTGGCCTTTGC	60.2	
MSH2_9F	CCCATTATTTATAGGATTTTGTCAC	57.2	210
MSH2_9R	GTATAGACAAAAGAATTATTCCAAC	52.7	
MSH2_10F	TAGAATTACATTGAAAAATGGTAG	52.6	278
MSH2_10R	CATGTTAGAGCATTTAGGGAATT	56.6	
MSH2_10F	TAGAATTACATTGAAAAATGGTAG	52.6	278
MSH2_10R	CATGTTAGAGCATTTAGGGAATT	56.6	
MSH2_11F	TGGATATGTTTCACGTAGTACAC	54.4	220
MSH2_11R	AGCCAGGTGACATTCAGAAC	57.7	
MSH2_12F	ATTCAGTATTCCTGTGTACATT	50.6	327
MSH2_12R	CGTTACCCCCACAAAGCC	61.3	
MSH2_13F	CGCGATTAATCATCAGTG	53.4	353

MSH2_13R	GGACAGAGACATACATTTCTATC	52.2	
		52.2	
MSH2_14F	CATTTTATGTGATGGGAAATTTC	57.5	347
MSH2_14R	GGGTAGTAAGTTTCCCATTAC	52.2	
MSH2_15F	CTCTTCTCATGCTGTCCC	53.9	263
MSH2_15R	TAATAGAGAAGCTAAGTTAAAC	45.4	
MSH2_16F	GTCACTGTCTAACATGACTTTTAG	52.7	293
MSH2_16R	ACTATTACAGACAATAGCTTATC	47.2	

Tab. B.2 MSH6

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
MSH6_1F	CCTGTTGATTGGCCACTGGG	66.0	488
MSH6_1R	AACCCCCTGTGCGAGCCTC	67.1	
MSH6_2F	CTGCCTTTAAGGAAACTTGACC	59.3	330
MSH6_2R	GCCTGTCTGTCTGTTTCTCTC	56.7	
MSH6_3F	CTGCACCCGGCCCTTATTGT	66.4	270
MSH6_3R	CCCTTTCTTCCCCCATCACC	65.0	
MSH6_4aF	GTCAAAAAATCATAAGTTGAACTG	55.0	420
MSH6_4aR	GAGGGCGTTTCCTTCCTAG	58.9	
MSH6_4bF	CCTGAACAGCCCTGTCAAAG	60.8	391
MSH6_4bR	CTGAGACTTAATCTGCCACC	54.9	
MSH6_4cF	GATCACCCCGATTTTGATGC	62.5	406
MSH6_4cR	GTGTACCCTTGGTAATGATCC	55.9	
MSH6_4dF	CGAGTGGAACAGACTGAGAC	55.8	425
MSH6_4dR	GGTATCAGACCTTCCTGAAG	53.8	
MSH6_4eF	CGAGATTTAGGACTCTAGTGG	53.4	424
MSH6_4eR	CTTGTAGTGCTGACTGTGTC	51.5	
MSH6_4fF	CTACCTCAAAAAATGCCTTATTG	57.2	401
MSH6_4fR	TGAGTAGCCTCTCAAGATCTG	54.8	
MSH6_4gF	CGTCTAGATGCCATAGAAGACC	58.0	415
MSH6_4gR	GAGTAATAAGTCCAGTCTTTCG	52.7	

MSH6_4hF	CCTGAAGGTCGTTTTCCTGA	60.2	590
MSH6_4h_int_F	CACTCGCAATTTGCCAGAAG	61.9	324
MSH6_4hR	GTCAAAATATGTACCATATATACC	49.5	
MSH6_5F	AAAACCCCCAAACGATGAAGC	64.4	364
MSH6_5R	TCCTAATGTCACAAATGACTTTC	56.0	
MSH6_6F	CGTAAGGGTTCATAAGAAAGAC	54.9	246
MSH6_6R	CATCTAAATGACTGAATGAGAAC	53.3	
MSH6_7F	CGGCCAATAATTGCATAGTCTC	60.8	269
MSH6_7R	AGATAGTCTTCAAATGAGAAGTT	51.1	
MSH6_8F	CCTTTGAGTTACTTCCTTATGC	55.0	244
MSH6_8R	AGTGCCCTCTCAAAAAACCGA	63.2	
MSH6_9F	TCGGTTTTTTGAGAGGGCAC	62.4	331
MSH6_9R	CCCCTTTTACTGTTTCTTTG	54.2	
MSH6_10F	GGGAAGGGATGATGCACTATG	61.6	262
MSH6_10R	CCTAGAAAGAAAATGGAAAAATGG	59.4	

C) Primer zur Untersuchung selten beschriebener Ursachen für den MSH2-Ausfall

Tab. C.1 MSH2-Intron

Primer-Name	Primer Sequence 5′-3′	Primer Tm [°C]	Länge des Amplikons (bp)
MSH2_Intron_F	GCGGAAAGGACTTACCTTGTCTTG	64.4	761bp
MSH2_Intron_mitte	CACTGTATTAGCTGGACTTC	49.9	
MSH2_Intron_R	CTTCACATTTTTATTTTTCTACTC	51.6	

Tab. C.2 MSH2 Promotor

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
MSH2_Promotor_F	GCTCTACTAAGGATGCGCGTCTG	64.6	532bp
MSH2_Promotor_R	GTCCCTCCCCAGCACGC	65.4	

D) Primer der Proteasom-Pathway-Analyse

Tab. D.1 PRKCZ

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
PRKCZ_1F	GAGTTCCGCGGAGTTGAC	59.3	283
PRKCZ_1R	CGACGGCTGAGCCCTC	61.8	
PRKCZ_2F	CAAATATGCCCCACGGTAAC	60.1	na
PRKCZ_2R	AGGCAGTTCAAGACCAGAGC	59.6	
PRKCZ_3F	GCTGCAGGTGTACTGACTTCC	59.9	385
PRKCZ_3R	AGACACCCACAGCCAGGA	60.3	
PRKCZ_4F	TGTCCAGGTCCCTCTGATTG	61.1	535
PRKCZ_4R	CCCTGGACTTCTCATGCTACC	61.0	
PRKCZ_5F	AGGCCGTGACACCATGAG	60.7	455
PRKCZ_5R	CCCTAGTCAAAGCCTCATCC	58.7	
PRKCZ_6F	CCCAACCTTGGGATAGACC	59.2	
PRKCZ_6R	AGAGCTAGGACGGCACCAC	60.4	457
PRKCZ_7F	GAGGTTGAAGCTGCAGTGAG	58.8	
PRKCZ_7R	GCCAGGCTTGAAGACAATG	59.4	
PRKCZ_8F	TCAGAGTCGGCAGGTGTG	59.5	392
PRKCZ_8R	AGACATCCACACCCGTGAAG	61.0	
PRKCZ_9F	GGATATGTGGGACGCAGAAC	60.3	509
PRKCZ_9R	TTCCAGAACACATCCTGGTC	58.5	
PRKCZ_10F	GGATGGTGACAATGGTGGTA	59.1	411
PRKCZ_10R	AAGAGAGTCTGCTGGCCTGA	60.3	
PRKCZ_11F	CACTTCCCAAGTCCACACAC	59.0	462
PRKCZ_11R	CACCCGTCATCCCTCTGT	59.4	
PRKCZ_12F	GCCTGGTCATTGAGAGGATG	60.6	404
PRKCZ_12R	AGTGCTCGTTGTGTCACCAG	59.9	
PRKCZ_13F	ACAGGGACCTGAAGCTGGAC	61.6	428
PRKCZ_13R	GCTGAGGCCAGATGATGAC	59.3	
PRKCZ_14F	TGGTTCTGTTTGGGAAGTGG	60.9	439
PRKCZ_14R	GCATGTGACACAGGGTCTG	58.6	
-----------	-------------------------	------	-----
PRKCZ_15F	CAGCGCATGTAACCAGGAG	60.4	396
PRKCZ_15R	AACCCACACACCCGATACAC	60.6	
PRKCZ_16F	AAATGGAACGGAGCTTAACG	59.2	410
PRKCZ_16R	GGGTTGGGATGGATATTGG	59.8	
PRKCZ_17F	CACTTGGCAGTCAAATACTAGGC	60.2	447
PRKCZ_17R	ACCGTGTGTTCATTCCCTTG	60.8	

Tab. D.2 MTOR

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
MTOR_2F	TTCCTCAATCAGATCTCTCAACC	59.7	493
MTOR_2R	GCAACTGCTGCAAAAGAACC	61.0	
MTOR_3F	AATCAGATGATTGCAAGTTCAG	57.0	488
MTOR_3R	TGGTTCCGAGACTCCACTTC	60.2	
MTOR_4F	GGCTGGTCTCAAACTCCTGA	60.4	n/a
MTOR_4R	CCATCTCACAGCCTGGAATC	60.6	
MTOR_5F	TTGCTTTCCTTCCTGTCC	59.4	524
MTOR_5R	ACAAAGCAAGACTCCATCAC	55.3	
MTOR_6F	ACTGGCACTAGGCACTGAGC	60.6	418
MTOR_6R	TCTTCATAGAACTTGCTGCTATCTG	59.3	
MTOR_7F	GCCACCCTTCACTTTGGAAG	61.9	600
MTOR_7R	ACCTGTGAAGGCAGAAGGTC	59.3	
MTOR_8F	GGGTACAGCTCTCACCAAGG	59.7	486
MTOR_8R	GTCTGCTGCCTCTGACATTAG	57.7	
MTOR_9F	GAACTCCTGGCCTCAAACAC	59.7	n/a
MTOR_9R	CATATGATTTGCTATACCCTGGAG	59.0	
MTOR_10F	ATGGGTCCCTTTGAACTGTG	59.8	420
MTOR_10R	GCCTGTGTGTTTAGTCTAAGCTATC	57.9	
MTOR_11F	GGAGACCTGAGACTAAGCCAAG	59.5	619
MTOR_11R	CAAACTCAGTATGGGACAAAGAAAC	60.3	

MTOR_12F	CCTGCAGTGAGTGGAGATTG	59.4	713
MTOR_12R	GCGTAGTGGGAAGATTCCAG	59.7	
MTOR_13F	CTGGAATCTTCCCACTACGC	59.7	440
MTOR_13R	ACAAATGCGGCTTTTACCAG	60.1	
MTOR_14F	TAAGGCTGTTCTGCCTGTTG	59.1	447
MTOR_14R	TGATATGGCCCTTTGGTCTC	59.9	
MTOR_15F	CTTGGATTCATAAAGCCTAGAAGG	59.7	417
MTOR_15R	ATCTGGAGAGTTGGACATGTTTT	59.0	
MTOR_16F	ATGTTGGCTAGGCTGGTCTG	60.3	368
MTOR_16R	TGTCACACTCTGTTCTAGGCACT	59.1	
MTOR_17F	GATTGTTGCAGGGTTGTGTG	60.0	523
MTOR_17R	GTATCACGGATACTCCTCTCAGG	59.1	
MTOR_18F	GGCAAGAGAGAGATGGTTGC	60.0	491
MTOR_18R	TCCGGGATTCAAGAAGAAAC	59.1	
MTOR_19F	TGGTGAGAGGCTATTCATTGG	60.1	n/a
MTOR_19R	TGTGAGCCACTGCACCTG	60.6	
MTOR_20F	AGCCTCCAAACCTAGCCAAG	60.8	445
MTOR_20R	TTGTACCTGGGAACCTGGAG	60.0	
MTOR_21F	GAGGAGGGGAGTGAGGAGTT	59.7	419
MTOR_21R	TATGGAATGGGCATCAACCT	60.2	
MTOR_22F	AGTTTTCCCAGTCCCCAGAG	60.5	400
MTOR_22R	TTCCAATGGGATAGGGACAG	59.7	
MTOR_23F	TCTTAACTGTCCCTATCCCATTG	59.4	515
MTOR_23R	GGCACTTAGCTCACATAGGTTG	58.9	
MTOR_24F	GGCCACCATCATAAACCAG	58.8	492
MTOR_24R	TGTGTATGGCTGCTCTCAGG	60.0	
MTOR_25F	GCTAGTTGCATGGTTGCTTG	59.5	632
MTOR_25R	TCCATATTCCAAGGGAGCAC	59.9	
MTOR_26F	TGTGGTATGTTCCAGAGTTGC	58.6	529
MTOR_26R	GGAATTTGTGGTCTACTAGCAAGG	60.4	

MTOR_27F	AATTCTCTTGGACAGCACTGG	78.1	n/a
MTOR_27R	CAGCTCTCTCACCCAGCAG	59.9	
MTOR_28F	ATTCAGTTCCTTGGCCACAC	60.0	572
MTOR_28R	CAGCTCTCTCACCCAGCAG	59.9	
MTOR_29F	GGGAGGAGAGCACAAACCTC	61.2	346
MTOR_29R	TGAAGGTCAGGGCCAATAAC	59.9	
MTOR_30F	ATCCCAGGATCATTCCATCC	60.9	604
MTOR_30R	AAGGCTGTCCTGTCCTAGAGC	60.0	
MTOR_31F	AGGCATGGTTCCTATCCTTG	59.0	491
MTOR_31R	AGAAAGGACAGATGGAAGGTG	58.2	
MTOR_32F	ACGTCAACCTGCATAGTGTG	57.2	472
MTOR_32R	CTGACCTGCTGGCAGTCTTC	61.2	
MTOR_33F+34F	TCTCAAGCCATTCAGTTCTGG	60.4	698
MTOR_33R+34R	GCAAGCCAAGCAATACACTG	59.5	
MTOR_35F	GCCAAGATTGCACCACTG	58.7	n/a
MTOR_35R	GGTCACCTGAGGGTGAACTG	60.6	
MTOR_36F	CTTATGGTGCGGTCCCTTG	61.4	850
MTOR_36R	CCAGGAGCCACATCTATTTCC	60.8	
MTOR_37F	AGCCCAGTCTCTCCCAGTATC	59.7	490
MTOR_37R	TGCTGAACCTAGGAAAGCAAG	59.6	
MTOR_38F	AAGCCCATCTCCTTTCTTGC	60.7	804
MTOR_38R	CCCTCCATCAATCACATCTTT	58.8	
MTOR_39F	CAGCCATTTCTGAGTGTCTCC	59.9	564
MTOR_39R	AAGCCCTATCTCAGGCAGTG	59.5	
MTOR_40F	TGATACAGTTGCCATTTATTGAGTC	59.5	454
MTOR_40R	GGCCCAGTCAGCTGTTACTC	59.9	
MTOR_41F	GGAGGCCAAACACATTTGAG	60.5	424
MTOR_41R	GGTTCATTCCCTTCCCTTTAG	58.9	
MTOR_42F	GGTCCCAGTGTCAAGTGTCC	60.4	471
MTOR_42R	GGCTCAGTCTTCGAGGGAAC	61.3	

MTOR_43F	GAAAGCGTTCCCTCGAAGAC	61.3	477
MTOR_43R	CCTGAAGCCAAGAGAAGAAG	56.9	
MTOR_44F	CATAGACCCTGGTCCCTTAGC	60.0	499
MTOR_44R	CAGTGGAAAGGCCAGAGG	59.3	
MTOR_45F	GTTTGGAAGCTCCAGGGTTG	61.9	507
MTOR_45R	GGATTTAGTGTTCTGCCTCCAG	60.1	
MTOR_46F	GGGAATGTCAAGGACCTCAC	59.4	753
MTOR_46R	AGTCTCCAACACCTGCCTTC	59.3	
MTOR_47F	AGAACAGAGGAGGACAGAGTGG	59.9	636
MTOR_47R	ACTGCAGCCTTGAACTCCTG	60.6	
MTOR_48F	CCAAGATTGTGCCACTGC	58.7	n/a
MTOR_48R	TTTCTCCATATGGCCAGTGC	61.0	
MTOR_49F	CTGCACAGAAGGCCTATAAC	55.2	490
MTOR_49R	CGCTCTACAGCCAATCACAG	59.6	
MTOR_50F	AATAAGCTGGGCATGGTG	77.2	n/a
MTOR_50R	CCAGGATGACAGGCATGAG	60.2	
MTOR_51F	CAGTGGGACAACCTGTGATTC	60.4	644
MTOR_51R	TACTCAGAGGGCATGGGAAC	60.1	
MTOR_52F	ACCCTCCATACCACCTGTTG	59.7	636
MTOR_52R	CCCTCACTTAGGAAGCAGACAC	60.3	
MTOR_53F	TCCAAATGGGATCAGGACAG	60.9	651
MTOR_53R	GCGTGAGAACAGACTAATACATGC	60.2	
MTOR_54F	TCACATCCCATGCTAATACCC	59.7	406
MTOR_54R	GATGCACCCACTGACTGAAG	59.3	
MTOR_55F	GTAGGGCAGGCGTTAAAGG	59.7	359
MTOR_55R	CCTTCCTCTATGTCCGTCTTTG	60.1	
MTOR_56F	CAAAGACGGACATAGAGGAAGG	60.1	316
MTOR_56R	GCCAAAGCTCGTCACTAACAC	59.9	
MTOR_57F	TCCTTCATCTTCATGTCTGACG	60.3	388
MTOR_57R	ATAACAATGGGCACATGCAG	59.4	

MTOR_58F	GTGGGCATTAGCCTTGACTG	60.7	558
MTOR_58R	GGAGCAACTAGGTCATTCTTCC	59.2	

Tab. D.3 PIK3C2B

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
PIK3C2B_1F	CCTCCATCTTCCTGTACATTCC	59.8	559
PIK3C2B_1R	GCCCTTGGGAGGTAGAGTG	59.7	
PIK3C2B_2F	GAGAACAGAGCCAAGCAG	54.4	606
PIK3C2B_2R	CTCCGCATCATAGGTCGATT	60.1	
PIK3C2B_3F	ACCTCCAAGATCTCCCAGC	59.2	529
PIK3C2B_3R	GGTCCCAAAGAGGGTAGGAG	59.9	
PIK3C2B_4F	GCTTTGGCCACACTCTTGTC	60.8	581
PIK3C2B_4R	TGATCAGGATACTTTGACCATTC	58.1	
PIK3C2B_5F	GGGTTTCTCAGAGCTGCTACC	60.4	534
PIK3C2B_5R	AACCAGATAAAGCAGGCAAG	57.1	
PIK3C2B_6F	CTCGATTTCCACCTCATCTTG	59.7	616
PIK3C2B_6R	TCTTTGCCTAATCCCAGCTC	59.4	
PIK3C2B_7F	CAATATTTATACCGGCCAAGG	58.4	573
PIK3C2B_7R	GCTGATGGTCTGCTTGACAG	59.6	
PIK3C2B_8F	CCGCAAGTTTGACATTGAC	57.7	499
PIK3C2B_8R	GGAGAGAATGATGGCAAAGTTC	60.1	
PIK3C2B_9F	TCTTCCCTCTGGAACTTTGC	59.4	487
PIK3C2B_9R	AGCAGAATCCCTGACTACGC	59.5	
PIK3C2B_10F	GGAACGGCTGAAAGAATTG	58.3	602
PIK3C2B_10R	CAAGCAGTCCCAGGTAGCTC	60.0	
PIK3C2B_11F	CCGAGTAGCCTGAGGGTTG	60.8	479
PIK3C2B_11R	TGTGCTCTCCAGCTGTATCC	59.0	
PIK3C2B_12F	TCCCTGGGATTCTTATGGTG	59.7	885
PIK3C2B_12R	CCAGCACCAAGAGGGAATAAC	60.9	
PIK3C2B_13F	CCATCCCATTCTAGCCAATG	60.3	1596

PIK3C2B_13R	CAGTTAGGGTTAACAAGGAGCCT	60.1	
PIK3C2B_14F	GGCTGTATCCTCAGCCTCAG	60.0	491
PIK3C2B_14R	TCCTTAACATGGTCCTGTGC	58.6	
PIK3C2B_15F	CCAGACCAGGGTGTGGTTAG	60.4	544
PIK3C2B_15R	CAATTTAACCTCCAGGAGATGG	59.8	
PIK3C2B_16F	CATCTCCACCGAACCTCTTC	59.7	554
PIK3C2B_16R	TTCCTAGTGTCAGCTGATGGAG	59.5	
PIK3C2B_17F	AGCCATTTGGACTTAACTGG	56.8	648
PIK3C2B_17R	TGGTAGGCACATGGGTATTC	58.3	
PIK3C2B_18F	CATGGCTCAAGGCAGACTC	59.5	544
PIK3C2B_18R	AGACACAGCTCGTTTCAGGAG	59.7	
PIK3C2B_19F	TCCCAAGTGAGTCTGCATTC	58.8	1978
PIK3C2B_19R	TGTGGGTAGAGGAGAGACAGG	59.3	
PIK3C2B_20F	AAGACAGAGTGAGGGCACAG	58.0	522
PIK3C2B_20R	GGCCTAGTTTCCAGAGTCAGC	60.4	
PIK3C2B_21F	GCTGTTCTGCCATCTGCTC	59.7	571
PIK3C2B_21R	TTTCTGCCATGTGTGGGTAG	59.6	
PIK3C2B_22F	TGGGAGGTTAAGTGCTGGAG	60.2	569
PIK3C2B_22R	GCCTCCTAGAAAGCACTTCG	59.2	
PIK3C2B_23F	ATTGCAGGACAAGCTGGAAC	60.3	539
PIK3C2B_23R	CTGTCACGGCACCAAGTCTG	62.9	
PIK3C2B_24F	GCAGCTATGAACTGGAGAGACC	60.4	582
PIK3C2B_24R	TTTCTCAGTCCAGCATCAGG	59.0	
PIK3C2B_25F	CATGGGAGATGTTTCTGTGTG	59.0	582
PIK3C2B_25R	CCTTGGTAGGGAAGAACAGC	58.8	
PIK3C2B_26F	TGATGAGGGATGAGGGAAAC	59.9	499
PIK3C2B_26R	CAGATGCTGTGGGCAGTG	60.0	
PIK3C2B_27F	CCTGCCTGCCCTAGATAAAG	58.9	563
PIK3C2B_27R	ACACAGATGGGAAACCAAGG	59.8	
PIK3C2B_28F	TGTGCCAGTCATTTGCTTTATG	61.0	584

PIK3C2B_28R	TGCCAGGATCCTTGACTCAG	61.4	
PIK3C2B_29F	GATCTGCCTAGAATTGGGTAGC	59.2	548
PIK3C2B_29R	GAGCTTGGCCAGCAGG	59.1	
PIK3C2B_30F	GGGCCCTTGGAAATGTAGTC	60.7	505
PIK3C2B_30R	ACCCTCCTCCTGTCTTCTGC	60.8	
PIK3C2B_31F	AAGAACTGCATGTTGTTGGTTG	60.1	445
PIK3C2B_31R	GAGTTAATTGGGTTGGGATGG	60.4	
PIK3C2B_32F	CACAGGGTGGATATTCAGTCG	60.4	533
PIK3C2B_32R	TGAGGCTCAGAATGATTAGG	55.5	
PIK3C2B_33F	AGATGCCAGATGGCAGATG	59.8	400
PIK3C2B_33R	CTGCCATTGCAACATGAAAG	60.3	
PIK3C2B_34F	CAATACAAAGCCCTCACCTG	58.2	672
PIK3C2B_34R	ACTTTGCTGCAACCTCACAG	59.1	

Tab. D.4 HERC1

Primer-Name	Primer Sequence 5´-3´	Primer Tm [°C]	Länge des Amplikons (bp)
HERC1_2F	CACCCGGCTGCATTTCA	63	1270
HERC1_2R	CAGTAGTCTTAACACTGTACCAACCA	59	
HERC1_3F	TGTGATGCAGTAGCCAGCTC	60	454
HERC1_3R	CCCACCCTAGATACCCAGTTC	60	
HERC1_4F	ATTGTGTGTCTCCCGTTTCC	59.8	
HERC1_4R	CTGACCTCGTGATCCACCTG	61.7	
HERC1_5F	AAGGCCATTCGTGTTCTCTTAG	59.8	597
HERC1_5R	TTAAGCCAAAGGGTTGAAGG	59.2	
HERC1_6F	TCATCCTTGGCCTGAACAC	59.6	346
HERC1_6R	TTTGGCCTAGTAAATCTGCTCTC	59.1	
HERC1_7F	CCCAGTTTAGGAGCACCTT	56.8	439
HERC1_7R	TGCTCATCTGTATTTGAGTCATTC	58.4	
HERC1_8F	TGCCAGGTTAGTGATGGAAAC	60	434
HERC1_8R	CTGGGTCACATATGCCAGGT	60.8	

HERC1_9F	AAAGGCAGCATGATAAATCGC	61.4	448
HERC1_9R	CCCAGGCATAAACTTCATTATCTA	58.7	
HERC1_10F	TTTGAGACCCAAGCTTATTGAAGA	61.4	569
HERC1_10R	TCGGAAACATGTCTAACCTCAAC	60.4	
HERC1_11F	AGGTAATCTGCATTCCTTGG	56.8	400
HERC1_11R	GGAAACCAAACAAGAAAGAACAG	59.2	
HERC1_12F	AGAGGCGGGGTTTTGC	59.7	484
HERC1_12R	CAACATCCAATTGAAATTGTCC	59.7	
HERC1_13F	GATTAGCTATTTAGTGGCAAATCG	58.5	457
HERC1_13R	GCACAACACATTAACCCATCA	59.3	
HERC1_14F	TCCTAAATGGGATTAATTGGGTAG	59.5	494
HERC1_14R	GGTCTAGAGTTTGATTTCTATCATAGGTG	60.2	
HERC1_15F	CTCCCAAAGTGCTGGGATTA	60.1	
HERC1_15R	TGCCACACTGCTTGAGTTCT	59.6	
HERC1_16F	TGAACTGCTATGTTCACTACAGAAAC	59	523
HERC1_16R	CTGTCATGCCAAGTAGACTCTTTC	59.5	
HERC1_17F	TGTTTGTTGGTGGTACTTTCTGA	59.6	569
HERC1_17R	CTCCAGCCCAGGATTCTTTC	61.1	
HERC1_18F	TGCAGTACGGTAGGAGACTATGAGA	61.5	411
HERC1_18R	CAATTGGTGCCTGTCAGTTC	59.1	
HERC1_19F	TTGGAGTGTCACAATTGGTAGAG	59.2	613
HERC1_19R	TTTCACACAGTAGGTTTAAGTGG	56.1	
HERC1_20F	GCATTTGTTAAGTAACAGTTTAGAAAGATG	60.3	379
HERC1_20R	CTTTGTATACACAACGGTACACTTC	57	
HERC1_21F	CAGTGCAACTTTAAGTAATGAGTC	55.2	622
HERC1_21R	TTCAAATGTGGCCCAATC	57.8	
HERC1_22F	TGGGTTTTTGTAGTAAAGTTCATGTG	60.5	447
HERC1_22R	CAAATTGAGATCACCAGCAGA	58.9	
HERC1_23F	TCCCTCTTTCAGTAAGTTTTTGG	58.9	618
HERC1_23R	TCAGAAATTTATAGCCCATGCTG	60.5	

HERC1_24F	GCTCAGACAAGAGTCAGGATTTC	59.5	356
HERC1_24R	AACAAACATATTACTTACTCTAACCAAAG	59.5	
HERC1_25F	TGGGTTTTTAGGGACATTTTG	58.8	356
HERC1_25R	TTTTGCAGTTACATTTCAAAGACAA	60.1	
HERC1_26F	TTTGCTCAGATTCACTTAATGC	57.2	
HERC1_26R	AAAGCTCAGGTACAGGAAAGG	57.6	
HERC1_27F	AAAGCTCAGGTACAGGAAAGG	57.6	
HERC1_27R	CCATGTCTCCTACATCCAAAG	57.1	
HERC1_28F	GGCTCTAGCATAGACTAGAAATAAAA	56.2	476
HERC1_28R	AAACTGTAACCAGAAGCAGACG	58.6	
HERC1_29F	AGTAAACGGTTCCTGCAAATG	59.1	582
HERC1_29R	AAACACACAGAAGGGCAAGC	60.3	
HERC1_30F	TTGAAAGTGGCCAGTACAAGG	60.2	630
HERC1_30R	CAGAATGGGCAGTATGGTCAC	60.4	
HERC1_31F	GCTGACAGCCTAAGATTTTGC	59	374
HERC1_31R	AAGGTTACACATGGAGTGTTGCTA	60	
HERC1_32F	TACGCATTCATGGGTACAGG	59.4	514
HERC1_32R	TTTCTTTCCTTCTGACCTTGC	58.6	
HERC1_33F	ACCGTGCCTGGCTTCTAAT	59.7	459
HERC1_33R	GGGAGGGAATCAGTGGAAAG	60.8	
HERC1_34F	GTTCCTGTTGCCCTGCA	59.3	485
HERC1_34R	GAGTTCCTGTATATCCTTCACTTGG	59.5	
HERC1_35F	TGCCCTGCAAGATAAAGAATG	60.2	514
HERC1_35R	GGCACTTGAATAACCGAGTTG	59.6	
HERC1_36F	CCCAATAAGATTTTTGAAACAGAT	57.8	531
HERC1_36R	TCTTGTGACTGCACGTTTGA	59	
HERC1_37F	AACAGGGCAGCTTATTCCA	58.3	934
HERC1_37R	AAACCCACTAGTATTTCAAAGAACA	57.5	
HERC1_37F	CTTACTCTTTGGGGGCCAGT	60.5	730
HERC1_37R	GCAATGGCCTATTTCACCAT	59.8	

HERC1_38F	CACATCTCCCCATTTTCTCA		981
HERC1_38R	AAAAATCAGATAACATACCTTGCT		
HERC1_39F	TCATTACAATACTGTCTGTAGAGTCTGG	59.3	642
HERC1_39R	TGGGATCACCACTAACTGG	56.8	
HERC1_40F	AACCTGCTTTGTTGCTGG	57.4	579
HERC1_40R	GGCCATAATTCAATCCACAG	57.9	
HERC1_41F	GCCCAGCCACATATTCTGAG	60.6	444
HERC1_41R	AACAGTCTGATGCTGACTTTGG	59.4	
HERC1_42F	TTTAAGAGGCTATGAAACTTGG	55.6	445
HERC1_42R	TTTATGACGGGATATATAATAAATGG	56.8	
HERC1_43F	GAACTGTTCAAGGGATAAAGATGT	57.8	363
HERC1_43R	TTTGAATCTTCTTTAATGTGCCTTT	59.6	
HERC1_44F	GATCCAATAAGACAACTGAGATAGG	57.5	427
HERC1_44R	AACTCTAGGCAAGGCTGCTG	59.8	
HERC1_45F	AGCATTAATGAACATGTTGGAAA	58.6	538
HERC1_45R	CCCTTCTGCCCAAAGTGTAA	60.1	
HERC1_46F	TTTGTGCTGCTTTATTAATGACCT	59.3	259
HERC1_46R	CACACACACACACGAAGGTG	59.6	
HERC1_47F	AGAACAACCATTGCCAGCAG	61.2	523
HERC1_47R	AAGCGACCTTCTTTCTTCAGC	60.1	
HERC1_48F	TGTATAACCAAGTTCCAGATGAGC	59.6	476
HERC1_48R	TGAATGACCGATTGAGTGAATAAC	60.2	
HERC1_49F	CGTTTAGATGCCAGTTTCCA	58.8	609
HERC1_49R	CACCTGTTGCAGCAGAAATC	59.4	
HERC1_50F	ATTCTTGAGCCTTTTGAAATGA	58	462
HERC1_50R	ATCTTTGTTTCCATACACAGTGAA	57.7	
HERC1_51F	TAACCCATTTGCTTGTTCACC	59.9	489
HERC1_51R	TTGGTAACTGCCAGGAACATC	60	
HERC1_52F	AGCTGTTTGGAGGCTGAGG	60.5	590
HERC1_52R	TTGATTTAATTCTAAGTCCAGATACAG	56.6	

HERC1_53F	CTGCTAGCCAAGGTTTTGAA	58.2	356
HERC1_53R	TGAAGAGAAACCACTGTTTGGA	59.8	
HERC1_54F	CCTGCCTTCATGGTCTTATTC	58.7	550
HERC1_54R	TTTGACAGAGATGTGTGGTG	55.4	
HERC1_55F	AGCCCTTGTCACAGATAAGC	57	529
HERC1_55R	CAAGGGAGACTTGGAAGGTG	59.7	
HERC1_56F	AACATTTGTTGAGCTTTAACTGC	57.7	675
HERC1_56R	CAACCGAGGCCAATATTCTAAC	59.9	
HERC1_57F	TGTCCAGTGTGAAACTTGGTATG	59.9	443
HERC1_57R	AATGGATCTTGCCCTTTGG	59.9	
HERC1_58F	AAGCTTCAACAAAGGGAATCAG	59.8	581
HERC1_58R	TTAGCTAAATTCAGCAACGTC	55.1	
HERC1_59F	TTTCAGAATCCTCTGCCCTTAC	59.7	429
HERC1_59R	CCCTCTGGACATCAGGTTTC	59.5	
HERC1_60F	GGAATTTCGCAGATTAAATGG	58.6	439
HERC1_60R	CAAGAATAGGCTTAGGGTTGC	58	
HERC1_61F	TGATAAATGTGCCAGGGTTG	59.4	753
HERC1_61R	AGGTTTACAAGAGTTCAACAGTGCT	59.8	
HERC1_62F	CTAGCTTTGAATCACCAATGC	57.5	543
HERC1_62R	CAGCTGTCCATGCCTACCA	60.8	
HERC1_63F	TAAATGGATTAACGGCATGG	58.4	447
HERC1_63R	GGACAAGCTTTATCCCACAATAAG	60.2	
HERC1_64F	GGATGAATCTCATACATCTCTTGG	59	511
HERC1_64R	TGGAAATTAAGGCTGCACAC	58.8	
HERC1_65F	TCAGTAGCAGCTGCAAGTAAAG	57.7	417
HERC1_65R	TGACAAGCTCAAGAATGAATCTG	59.5	
HERC1_66F	TCCAGCCTAGGTGACAGAGC	60.6	452
HERC1_66R	CCTGATCTTCCTGAGGGTGT	59.1	
HERC1_67F	TGGTTTAGCCACAGACATTTG	58.7	594
HERC1_67R	GGAGACAGAAGCTTATCCTTGC	59.5	

HERC1_68F	TTTGGATTTGGGTCGAACAG	60.9	318
HERC1_68R	GAGAGCACATTCTGTAACACTGG	58.9	
HERC1_69F	CAGAACGTGGTGTACCTTTCC	59.5	523
HERC1_69R	ATACTTCTTTGGCCGCAGTC	59.3	
HERC1_70F	TATTGATGCTGATGCATGG	56.5	451
HERC1_70R	GCAGAACAAATGCCTGCTATG	60.8	
HERC1_71F	CCAACACAAATGCACACACC	60.9	550
HERC1_71R	CACAGAAGGAAGACCACTCTGTC	60.3	
HERC1_72F	CACCACAGCCTCCCAAAG	60.2	467
HERC1_72R	TGCTAGGCCCACTGTAACCA	61.6	
HERC1_73F	GTGGTTACAGTGGGCCTAGC	59.6	420
HERC1_73R	GAGGCTCACAAATGCATCC	59.2	
HERC1_74F	TACTCCTGCCCTGGATTGAC	60.1	527
HERC1_74R	GGCGTAAGCCACCATGC	61.2	
HERC1_75F	TCAACGTGTGATTAGGGAAGC	60.1	603
HERC1_75R	TAAACTGCTGCGGTTGAGC	60.1	
HERC1_76F	TGAGTCATCACATTCCTGCTG	59.8	538
HERC1_76R	TGAGACTGAACCACTGCACTC	59	
HERC1_77F	CAGCAGGGAGGCACTCTAAC	60	709
HERC1_77R	GGTGGCACGCACCTGTAG	61.3	
HERC1_78F	CTGGAGGAGGTGAGGACAAG	59.8	634
HERC1_78R	AACCTGACTGAGAGCACTTCG	59.7	

E) Alle CNVs

Tab. E.1 CNVs aller mutationsnegativer Patienten (hg19)

CNV Chromosomenposition	Patienten- ID	Länge CNV (bp)	Anzahl SNP- Marker	CNV	max. LBF	Gen / Gene
chr2:115453185-115689106	HNPCC_72	235.922	59	3	66	DPP10
chr2:230822296-230875311	HNPCC_24	53.016	8	1	22	FBXO36
chr2:30767529-30967074	HNPCC_32	199.546	79	3	189	LCLAT1, CAPN13
chr2:45752140-45765157	HNPCC_31	13.018	5	1	10	SRBD1
chr2:73937901-74007136	HNPCC_45	69.236	13	3	54	TPRKB, DUSP11
chr3:139306828-139336381	HNPCC_18	29.554	8	1	24	NMNAT3
chr3:142800051-143588201	HNPCC_97	788.151	40+237+12	3	119+86 0+30	CHST2, SLC9A9
chr3:182669780-183421149	HNPCC_73	751.370	177	3	304	DCUN1D1, MCCC1, LAMP3, MCF2L2, B3GNT5, KLHL6, KLHL24, YEATS2
chr4:8476118-8570973	HNPCC_43	94.856	39	1	89	TRMT44
chr4:99298166-99428163	HNPCC_38	129.998	27	1	97	RAP1GDS1, TSPAN5
chr5:101625154-101641550	HNPCC_31	16.397	7	3	21	SLCO4C1
chr5:143093377-143372963	HNPCC_40	279.587	63	3	246	HMHB1
chr5:180653039-180693127	HNPCC_38	40.089	13	3	30	TRIM41, GNB2L1, TRIM52
chr6:151118271-151412754	HNPCC_50	294.484	143	3	283	PLEKHG1, MTHFD1L
chr6:97440636-97476678	HNPCC_91	36.043	12	1	49	KLHL32
chr7:12335168-12487380	HNPCC_32	152.213	59	1	255	VWDE
chr7:15413574-15456251	HNPCC_29	42.678	10	1	34	AGMO
chr7:158401375-158651087	HNPCC_92	249.713	65	3	86	NCAPG2, ESYT2, WDR60
chr7:87307509-87341709	HNPCC_34	34.201	27	1	120	ABCB1, RUNDC3B
chr8:48792199-48882899	HNPCC_41	90.701	13	1	43	PRKDC, MCM4
chr8:81940988-81958305	HNPCC_47	17.318	11	1	18	PAG1
chr10:129321875-129350641	HNPCC_45	28.767	22	1	70	NPS
chr10:2711041-3212425	HNPCC_28	501.385	285	3	881	PFKP, PITRM1
chr10:7460252-7767196	HNPCC_89	306.945	142	3	369	ITIH5, ITIH2
chr10:84303712-84336472	HNPCC_38	32.761	10	1	40	NRG3
chr11:120487899-120875383	HNPCC_94	387.485	155	1	258	GRIK4
chr11:84596023-84627035	HNPCC_28	31.013	11	1	30	DLG2

chr12:114285113-114324609	HNPCC_38	39.497	13	3	30	RBM19
chr12:191619-216234	HNPCC_26	24.616	6	3	24	IQSEC3
chr12:3374920-3411438	HNPCC_18	36.519	20	3	38	TSPAN9
chr12:41846679-41891527	HNPCC_41	44.849	12	3	48	PDZRN4
chr13:25284183-25334331	HNPCC_97	50.149	20	3	38	ATP12A
chr13:30787214-30830634	HNPCC_90	43.421	14	3	43	KATNAL1
chr13:44030966-44172328	HNPCC_24	141.363	33	3	105	ENOX1
chr14:23856026-23883184	HNPCC_18	27.159	21	3	44	МҮН6, МҮН7
chr14:94195177-94557404	HNPCC_01	362.228	117 + 62	3	249 + 139	PRIMA1, FAM181A, ASB2, OTUB2, DDX24, IFI27L1
chr16:87781726-87802776	HNPCC_33	21.051	10	1	24	KLHDC4
chr17:64513878-64550045	HNPCC_42	36.168	19	1	42	PRKCA
chr17:65400254-65431947	HNPCC_21	31.694	9	1	14	PITPNC1
chr19:50056123-50086806	HNPCC_18	30.684	9	1	32	NOSIP, PRRG2
chr19:58194388-58259946	HNPCC_79	65.559	24	1	28	ZNF551, ZNF154, ZNF671, ZNF776
chr20:44238741-44279034	HNPCC_55	40.294	10	1	20	WFDC9, WFDC10A, WFDC11

F) CRC-Kandidatengene und Interaktionspartnergene von MSH2

		0				
Gen	Chr	Start	Ende	Größe	Start - 50kb	Ende + 50kb
МИТҮН	1	45794913	45805787	10.874	45744913	45855787
JUN	1	59246462	59249785	3.323	59196462	59299785
USP1	1	62901974	62917475	23.398	62851974	62967475
EXO1	1	242011492	242053241	41.749	241961492	242103241
EPCAM	2	47596286	47614167	17.881	47546286	47664167
KCNK12	2	47747914	47797470	49.556	47697914	47847470
MSH6	2	48010220	48034092	23.872	47960220	48084092
ERCC3	2	128014865	128051752	36.887	127964865	128101752
PMS1	2	190648810	190742355	93.545	190598810	190792355
BARD1	2	215593274	215674428	81.154	215543274	215724428
XRCC5	2	216974019	217071016	96.997	216924019	217121016

Tab. F.1 CRC-Kandidatengene und Interaktionspartnergene von MSH2 +- 50 kb (hg19)

OGG1	3	9791627	9808353	16.726	9741627	9858353
ХРС	3	14186647	14220172	33.525	14136647	14270172
TGFBR2	3	30647993	30735633	87.64	30597993	30785633
MLH1	3	37034840	37092337	57.497	36984840	37142337
CDC25A	3	48198667	48229801	31.134	48148667	48279801
ATRIP	3	48488113	48507054	18.941	48438113	48557054
TREX1	3	48506918	48509044	2.126	48456918	48559044
FHIT	3	59735035	61237133	1.502.098	59685035	61287133
МСМ2	3	127317252	127341278	24.026	127267252	127391278
MBD4	3	129149792	129158852	9.06	129099792	129208852
ATR	3	142168076	142297668	129.592	142118076	142347668
RFC4	3	186507681	186524484	16.803	186457681	186574484
MSX1	4	4861391	4865660	4.269	4811391	4915660
DHX15	4	24529087	24586184	57.097	24479087	24636184
RFC1	4	39289068	39368001	78.933	39239068	39418001
N4BP2	4	40058523	40159872	101.349	40008523	40209872
AASDH	4	57204456	57253638	49.182	57154456	57303638
MAD2L1	4	120980578	120988013	7.435	120930578	121038013
MSH3	5	79950466	80172634	222.168	79900466	80222634
XRCC4	5	82373316	82649579	276.263	82323316	82699579
APC	5	112043201	112181936	138.735	111993201	112231936
REEP5	5	112212080	112258031	45.951	112162080	112308031
RAD50	5	131892615	131980313	87.698	131842615	132030313
SIL1	5	138282409	138534065	251.656	138232409	138584065
DNAH8	6	38683116	38998574	315.458	38633116	39048574
POLH	6	43543877	43588260	44.383	43493877	43638260
МСМ3	6	52128811	52149679	20.868	52078811	52199679
ESR1	6	152011630	152424408	412.778	151961630	152474408
NUDT1	7	2281856	2290780	8.924	2231856	2340780
PMS2	7	6012869	6048737	35.868	5962869	6098737

RFC2	7	73645831	73668738	22.907	73595831	73718738
BRAF	7	140433812	140624564	190.752	140383812	140674564
SCARA3	8	27491576	27534286	42.71	27441576	27584286
WRN	8	30890777	31031277	140.5	30840777	31081277
MCM4	8	48872762	48890719	17.957	48822762	48940719
NBN	8	90945563	90996899	51.336	90895563	91046899
МҮС	8	128748314	128753680	5.366	128698314	128803680
CDKN2A	9	21967750	21994490	26.74	21917750	22044490
ХРА	9	100437190	100459691	22.501	100387190	100509691
POLE3	9	116169517	116173029	3.512	116119517	116223029
PTEN	10	89623194	89728532	105.338	89573194	89778532
MGMT	10	131265453	131565783	300.33	131215453	131615783
HRAS	11	532241	535550	3.309	482241	585550
FEN1	11	61560108	61564714	4.606	61510108	61614714
OTUB1	11	63753324	63765892	12.568	63703324	63815892
MRE11A	11	94150468	94227040	76.572	94100468	94277040
CHEK1	11	125495030	125546150	51.12	125445030	125596150
RAD52	12	1021254	1058863	37.609	971254	1108863
DPPA3	12	7864088	7870152	6.064	7814088	7920152
AICDA	12	8754761	8765442	10.681	8704761	8815442
RECQL	12	21621843	21654603	32.76	21571843	21704603
KRAS	12	25358179	25403854	45.675	25308179	25453854
UNG	12	109535398	109548798	13.4	109485398	109598798
RFC5	12	118454505	118470042	15.537	118404505	118520042
UBC	12	125396191	125399587	3.396	125346191	125449587
POLE	12	133200347	133263945	63.598	133150347	133313945
BRCA2	13	32889616	32973809	84.193	32839616	33023809
RFC3	13	34392205	34540695	148.49	34342205	34590695
ERCC5	13	103498190	103528351	30.161	103448190	103578351
LIG4	13	108859791	108870716	10.925	108809791	108920716

F10	13	113777112	113803843	26.731	113727112	113853843
MAX	14	65472818	65569262	96.444	65422818	65619262
MLH3	14	75480466	75518235	37.769	75430466	75568235
RAD51	15	40987326	41024356	37.03	40937326	41074356
BLM	15	91260578	91358686	98.108	91210578	91408686
NTHL1	16	2089815	2097867	8.052	2039815	2147867
CREBBP	16	3775055	3930121	155.066	3725055	3980121
ERCC4	16	14014013	14046205	32.192	13964013	14096205
E2F4	16	67226067	67232821	6.754	67176067	67282821
CDH1	16	68771194	68869444	98.25	68721194	68919444
RPA1	17	1733272	1802848	69.576	1683272	1852848
TP53	17	7571719	7590868	19.149	7521719	7640868
NF1	17	29421944	29704695	282.751	29371944	29754695
KAT2A	17	40265128	40273382	8.254	40215128	40323382
BRCA1	17	41196311	41277500	81.189	41146311	41327500
SMAD4	18	48556582	48611411	54.829	48506582	48661411
STK11	19	1205797	1228434	22.637	1155797	1278434
ERCC2	19	45854648	45873845	19.197	45804648	45923845
ERCC1	19	45910590	45927177	16.587	45860590	45977177
BAX	19	49458116	49465055	6.939	49408116	49515055
NR1H2	19	50879679	50886285	6.606	50829679	50936285
POLD1	19	50887579	50921275	33.696	50837579	50971275
PCNA	20	5095598	5107268	11.67	5045598	5157268
SPO11	20	55904830	55919049	14.219	55854830	55969049
СНЕК2	22	29083730	29137822	54.092	29033730	29187822
XRCC6	22	42017294	42060052	42.758	41967294	42110052

G) Target-Panel NGS

Tab. G.1 Genliste NGS

Genname	Ziel-Gen Herkunft	Chromosomenposition (hg19)	Genlänge (bp)
ABCB1	CNV-Analyse	chr7:87133178-87342639	209.461

AGMO	CNV-Analyse	chr7:15239942-15601640	361.698
ASB2	CNV-Analyse	chr14:94400498-94443076	42.578
B3GNT5	CNV-Analyse	chr3:182971031-182991179	20.148
C9orf84	CNV-Analyse	chr9:114448900-114545779	96.879
CAPN13	CNV-Analyse	chr2:30945637-31030311	84.674
CHST2	CNV-Analyse	chr3:142838617-142842856	4.239
DCUN1D1	CNV-Analyse	chr3:182660558-182698326	37.768
DDX24	CNV-Analyse	chr14:94517267-94547558	30.291
DLG2	CNV-Analyse	chr11:83166055-85338314	2.172.259
DPP10	CNV-Analyse	chr2:115199898-116602326	1.402.428
DUSP11	CNV-Analyse	chr2:73989324-74007284	17.960
ENOX1	CNV-Analyse	chr13:43787665-44203613	415.948
ESYT2	CNV-Analyse	chr7:158523688-158622319	98.631
FAM181A	CNV-Analyse	chr14:94385239-94395954	10.715
FBXO36	CNV-Analyse	chr2:230787206-230948016	160.810
GNB2L1	CNV-Analyse	chr5:180663927-180670906	6.979
GNG10	CNV-Analyse	chr9:114423850-114432526	8.676
GRIK4	CNV-Analyse	chr11:120382467-120856969	474.502
IFI27L1	CNV-Analyse	chr14:94547638-94569060	21.422
ITIH5	CNV-Analyse	chr10:7601231-7708961	107.730
KATNAL1	CNV-Analyse	chr13:30776766-30881191	104.425
KLHDC4	CNV-Analyse	chr16:87741417-87799598	58.181
KLHL24	CNV-Analyse	chr3:183353410-183402304	48.894
KLHL32	CNV-Analyse	chr6:97372495-97588630	216.135
KLHL6	CNV-Analyse	chr3:183205318-183273499	68.181
LAMP3	CNV-Analyse	chr3:182840002-182880667	40.665
LCLAT1	CNV-Analyse	chr2:30670122-30867091	196.969
MCCC1	CNV-Analyse	chr3:182733005-182817365	84.360
MCF2L2	CNV-Analyse	chr3:182895830-183145855	250.025
MCM4	CNV-Analyse	chr8:48872762-48890719	17.957
MTHFD1L	CNV-Analyse	chr6:151186814-151423023	236.209
NCAPG2	CNV-Analyse	chr7:158424002-158497520	73.518
NMNAT3	CNV-Analyse	chr3:139279022-139346606	67.584
NOSIP	CNV-Analyse	chr19:50058724-50083829	25.105
NRG3	CNV-Analyse	chr10:83635069-84746935	1.111.866
OTUB2	CNV-Analyse	chr14:94492723-94515276	22.553
PAG1	CNV-Analyse	chr8:81880045-82024303	144.258
PDZRN4	CNV-Analyse	chr12:41582249-41968392	386.143
PITPNC1	CNV-Analyse	chr17:65373396-65693379	319.983
PLEKHG1	CNV-Analyse	chr6:150920998-151153341	232.343
PRIMA1	CNV-Analyse	chr14:94184643-94254766	70.123
PRKCA	CNV-Analyse	chr17:64298925-64806862	507.937
PRKDC	CNV-Analyse	chr8:48685668-48872743	187.075
PRRG2	CNV-Analyse	chr19:50084586-50094265	9.679
RAP1GDS1	CNV-Analyse	chr4:99182526-99365012	182.486
RBM19	CNV-Analyse	chr12:114259858-114404176	144.318

RUNDC3B	CNV-Analyse	chr7:87257728-87461613	203.885
SLC9A9	CNV-Analyse	chr3:142984063-143567373	583.310
SLCO4C1	CNV-Analyse	chr5:101569691-101632253	62.562
SRBD1	CNV-Analyse	chr2:45615818-45838433	222.615
TPRKB	CNV-Analyse	chr2:73956956-73961718	4.762
TRIM41	CNV-Analyse	chr5:180650262-180662808	12.546
TRIM52	CNV-Analyse	chr5:180683385-180688119	4.734
TRMT44	CNV-Analyse	chr4:8442531-8481260	38.729
TSPAN5	CNV-Analyse	chr4:99391517-99579812	188.295
TSPAN9	CNV-Analyse	chr12:3186520-3395730	209.210
VWDE	CNV-Analyse	chr7:12370508-12443852	73.344
WDR60	CNV-Analyse	chr7:158649268-158738883	89.615
WFDC10A	CNV-Analyse	chr20:44258384-44259831	1.447
WFDC11	CNV-Analyse	chr20:44277201-44298878	21.677
WFDC9	CNV-Analyse	chr20:44236577-44259907	23.330
YEATS2	CNV-Analyse	chr3:183415605-183530413	114.808
ZNF154	CNV-Analyse	chr19:58211809-58220579	8.770
ZNF671	CNV-Analyse	chr19:58231118-58238995	7.877
ZNF776	CNV-Analyse	chr19:58193336-58269527	76.191
APC	CRC-Gen	chr5:111993201-112231936	238.735
APC2	CRC-Gen	chr19:1400148-1523243	123.095
AXIN1	CRC-Gen	chr16:287440-452676	165.236
AXIN2	CRC-Gen	chr17:63474683-63607740	133.057
BMPR1A	CRC-Gen	chr10:88466396-88734945	268.549
BUB1B	CRC-Gen	chr15:40403210-40563337	160.127
CDH1	CRC-Gen	chr16:68721195-68919444	198.249
CHEK2	CRC-Gen	chr22:29033730-29187822	154.092
FBXW7	CRC-Gen	chr4:153192410-153506185	313.775
GREM1	CRC-Gen	chr15:32960205-33076870	116.665
GSK3B	CRC-Gen	chr3:119490802-119863264	372.462
MAP2K4	CRC-Gen	chr17:11874135-12097148	223.013
MLH1	CRC-Gen	chr3:36984840-37142337	157.497
MSH2	CRC-Gen	chr2:47580206-47760367	180.161
MSH6	CRC-Gen	chr2:47960220-48084092	123.872
МИТҮН	CRC-Gen	chr1:45744913-45855787	110.874
PDGFRA	CRC-Gen	chr4:55045264-55214412	169.148
PMS2	CRC-Gen	chr7:5962869-6098737	135.868
POLD1	CRC-Gen	chr19:50837579-50971275	133.696
POLE	CRC-Gen	chr12:133150347-133313945	163.598
PPP2R1B	CRC-Gen	chr11:111558605-111687169	128.564
PTEN	CRC-Gen	chr10:89573194-89778532	205.338
PTPRJ	CRC-Gen	chr11:47952110-48242394	290.284
SFRP1	CRC-Gen	chr8:41069476-41216990	147.514
SMAD2	CRC-Gen	chr18:45309466-45506970	197.504
SMAD4	CRC-Gen	chr18:48506582-48661411	154.829
TCF7L2	CRC-Gen	chr10:114660009-114977436	317.427

1			
TP53	CRC-Gen	chr17:7521719-7640868	119.149
WIF1	CRC-Gen	chr12:65394404-65565346	170.942
AKT1	Proteasom-Pathway	chr14:105235636-105262130	26.494
HERC1	Proteasom-Pathway	chr15:63850817-64176147	325.330
MTOR	Proteasom-Pathway	chr1:11116588-11372608	256.020
РІКЗС2В	Proteasom-Pathway	chr1:204341758-204513852	172.094
PPP2CA	Proteasom-Pathway	chr5:133,532,148-133,561,950	29.802
PRKCZ	Proteasom-Pathway	chr1:1931909-2166834	234.925
TSC1	Proteasom-Pathway	chr9:135766684-135820070	53.386
TSC2	Proteasom-Pathway	chr16:2097939-2138763	40.824

H) Pathway-Analyse

Tab. H.1 Involvierte Signalwege der CRC-Kandidatengene

kanonische Signalwege	Gene	p-Wert
Colorectal Cancer Metastasis Signaling	TP53, MAP2K4, PIK3C2B, SMAD2, AXIN1, GNB2L1 , MLH1, APC, CDH1, AKT1, MSH2, MSH6, SMAD4, GSK3B, TCF7L2	1.00E-13
Factors Promoting Cardiogenesis in Vertebrates	SMAD2, AXIN1, BMPR1A, SMAD4, MYH7 , GSK3B, TCF7L2, APC, PRKCZ, PRKCA	5.01E-11
Molecular Mechanisms of Cancer	TP53, MAP2K4, PIK3C2B, PRKDC , SMAD2, AXIN1, PRKCZ, APC, CDH1, AKT1, BMPR1A, SMAD4, GSK3B, CHEK2, PRKCA	7.76E-10
ILK Signaling	MAP2K4, PIK3C2B, MYH6 , CDH1, MTOR, AKT1, PPP2CA, MYH7 , GSK3B, PPP2R1B, PTEN	3.63E-09
HER-2 Signaling in Breast Cancer	TP53, TSC1, PIK3C2B, AKT1, TSC2, GSK3B, PRKCZ, PRKCA	6.03E-09
UVB-Induced MAPK Signaling	TP53, MAP2K4, PIK3C2B, MTOR, AKT1, PRKCZ, PRKCA	1.12E-08
ErbB Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, NRG3 , GSK3B, PRKCZ, PRKCA	1.62E-08
Glioma Signaling	TP53, PIK3C2B, MTOR, AKT1, PDGFRA, PRKCZ, PRKCA , PTEN	4.57E-08
Role of Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis	MAP2K4, PIK3C2B, WIF1, AKT1, AXIN1, APC2, GSK3B, SFRP1, TCF7L2, APC, PRKCZ, PRKCA	5.01E-08
14-3-3-mediated Signaling	MAP2K4, TSC1, PIK3C2B, AKT1, TSC2, GSK3B, PRKCZ, PRKCA	1.82E-07
IL-8 Signaling	MAP2K4, PIK3C2B, CDH1, MTOR, AKT1, GNB2L1, PRKCZ, PRKCA	5.37E-07
mTOR Signaling	TSC1, PIK3C2B, MTOR, AKT1, PPP2CA, TSC2, PPP2R1B, PRKCZ, PRKCA	6.17E-07
p53 Signaling	TP53, PIK3C2B, PRKDC , AKT1, GSK3B, CHEK2, PTEN	8.32E-07
p70S6K Signaling	PIK3C2B, MTOR, AKT1, PPP2CA, PPP2R1B, PRKCZ, PRKCA	3.02E-06
Huntington's Disease Signaling	TP53, MAP2K4, PIK3C2B, MTOR, AKT1, GNB2L1 , PRKCZ, PRKCA	3.31E-06
AMPK Signaling	TSC1, PIK3C2B, MTOR, AKT1, PPP2CA, TSC2, PFKP , PPP2R1B	4.37E-06
Role of NFAT in Cardiac Hypertrophy	MAP2K4, PIK3C2B, AKT1, GNB2L1 , GSK3B, PRKCZ, PRKCA	4.57E-06
HIPPO signaling	SMAD2, PPP2CA, DLG2 , SMAD4, PPP2R1B, PRKCZ	6.03E-06
Neuregulin Signaling	MTOR, AKT1, NRG3 , PRKCZ, PRKCA , PTEN	6.76E-06
Breast Cancer Regulation by Stathmin1	TP53, PIK3C2B, PPP2CA, GNB2L1 , PPP2R1B, PRKCZ, PRKCA	7.41E-06
EGF Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, PRKCA	1.10E-05
Epithelial Adherens Junction Signaling	MYH6 , CDH1, AKT1, MYH7 , TCF7L2, APC, PTEN	1.17E-05
ErbB2-ErbB3 Signaling	PIK3C2B, AKT1, NRG3 , GSK3B, PTEN	1.20E-05
Gaq Signaling	PIK3C2B, AKT1, GNB2L1 , GSK3B, PRKCZ, PRKCA	1.23E-05
CXCR4 Signaling	MAP2K4, PIK3C2B, AKT1, GNB2L1 , PRKCZ, PRKCA	1.51E-05
ErbB4 Signaling	PIK3C2B, AKT1, NRG3 , PRKCZ, PRKCA	1.55E-05
Role of Tissue Factor in Cancer	TP53, PIK3C2B, MTOR, AKT1, PRKCA , PTEN	2.45E-05

Tight Junction Signaling	Tight Junction Signaling MYH6, AKT1, PPP2CA, MYH7, PPP2R1B, PRKCZ, PTEN	
CCR5 Signaling in Macrophages	CCR5 Signaling in Macrophages MAP2K4, GNB2L1, PRKCZ, PRKCA	
CREB Signaling in Neurons	PIK3C2B, AKT1, GRIK4, GNB2L1 , PRKCZ, PRKCA	3.24E-05
Type II Diabetes Mellitus Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, PRKCZ, PRKCA	3.31E-05
Protein Kinase A Signaling	PTPRJ, GNB2L1 , SMAD4, DUSP11 , GSK3B, TCF7L2, PRKCZ, PRKCA , PTEN	3.55E-05
B Cell Receptor Signaling	MAP2K4, PIK3C2B, MTOR, AKT1, PAG1 , GSK3B, PTEN	3.63E-05
P2Y Purigenic Receptor Signaling Pathway	PIK3C2B, AKT1, GNB2L1 , PRKCZ, PRKCA	3.80E-05
Production of Nitric Oxide and Reactive Oxygen Species in Macrophages	MAP2K4, PIK3C2B, AKT1, PPP2CA, PPP2R1B, PRKCZ, PRKCA	4.57E-05
RAR Activation	MAP2K4, SMAD2, AKT1, SMAD4, PRKCZ, PRKCA , PTEN	6.31E-05
UVC-Induced MAPK Signaling	TP53, MAP2K4, PRKCZ, PRKCA	6.76E-05
Xenobiotic Metabolism Signaling	CHST2, MAP2K4, PIK3C2B, ABCB1, PPP2CA, PPP2R1B, PRKCZ, PRKCA	9.55E-05
G Beta Gamma Signaling	AKT1, GNB2L1 , PRKCZ, PRKCA	1.00E-04
UVA-Induced MAPK Signaling	TP53, MAP2K4, PIK3C2B, MTOR, PRKCA	1.00E-04
Cell Cycle: G2/M DNA Damage Checkpoint	TP53, PRKDC , PRKCZ, CHEK2	1.26E-04
Cardiomyocyte Differentiation via BMP	BMPR1A, SMAD4, MYH7	1.48E-04
Cardiac Hypertrophy Signaling	MAP2KA PIK3C2B MTOR AKT1 GNB2L1 GSK3B	1 74F-04
Tec Kinase Signaling	MAP2KA PIK3C2B GNB211 PRKCZ PRKCA	1.74E 04
HGE Signaling	MAP2K4 PIK3C2B AKT1 PRKCZ PRKCA	2 29F-04
Ec Ensilon BI Signaling	MAP2K4 PIK3C2B AKT1 PRKC7 PRKCA	2 57F-04
fMLP Signaling in Neutrophils	PIK3C2B. GNB2L1 . PRKC7. PRKCA	2.57E-04
CCR3 Signaling in Fosinophils	PIK3C2B, GNB2L1 , PRKC7, PRKCA	3.72F-04
Non-Small Cell Lung Cancer Signaling	TP53. PIK3C2B. AKT1. PRKCA	3.72E-04
NRF2-mediated Oxidative Stress Response	MAP2K4, PIK3C2B, AKT1, GSK3B, PRKCZ, PRKCA	3.72E-04
Erythropoietin Signaling	PIK3C2B, AKT1, PRKCZ, PRKCA	4.17E-04
Thrombin Signaling	PIK3C2B, AKT1, GNB2L1 , PRKCZ, PRKCA	4.90E-04
IL-3 Signaling	PIK3C2B, AKT1, PRKCZ, PRKCA	5.25E-04
LPS-stimulated MAPK Signaling	MAP2K4, PIK3C2B, PRKCZ, PRKCA	5.89E-04
NF-ĸB Activation by Viruses	PIK3C2B, AKT1, PRKCZ, PRKCA	5.89E-04
VEGF Family Ligand-Receptor Interactions	PIK3C2B, AKT1, PRKCZ, PRKCA	6.76E-04
IL-12 Signaling and Production in Macrophages	MAP2K4, PIK3C2B, AKT1, PRKCZ, PRKCA	6.76E-04
PDGF Signaling	MAP2K4, PIK3C2B, PDGFRA, PRKCA	7.08E-04
Relaxin Signaling	PIK3C2B, AKT1, GNB2L1 , PRKCZ	7.24E-04
eNOS Signaling	PIK3C2B, NOSIP, AKT1, PRKCZ, PRKCA	9.12E-04
TR/RXR Activation	PIK3C2B, MTOR, AKT1, PFKP	1.05E-03
α-Adrenergic Signaling	GNB2L1, PRKCZ, PRKCA	1.12E-03
Signaling by Rho Family GTPases	MAP2K4, PIK3C2B, CDH1, GNB2L1 , PRKCZ	1.45E-03
Fcγ Receptor-mediated Phagocytosis in Macrophages and Monocytes	AKT1, PRKCZ, PRKCA , PTEN	1.45E-03
nNOS Signaling in Neurons	DLG2, PRKCZ, PRKCA	1.91E-03
Nitric Oxide Signaling in the Cardiovascular System	PIK3C2B, AKT1, PRKCZ, PRKCA	1.91E-03
Role of NFAT in Regulation of the Immune Response	PIK3C2B, AKT1, GNB2L1 , GSK3B	2.04E-03
Renin-Angiotensin Signaling	MAP2K4, PIK3C2B, PRKCZ, PRKCA	2.57E-03
Natural Killer Cell Signaling	PIK3C2B, AKT1, PRKCZ, PRKCA	2.69E-03

Hepatic Fibrosis / Hepatic Stellate Cell Activation	SMAD2, MYH6 , PDGFRA, SMAD4, MYH7	2.75E-03
Androgen Signaling	GNB2L1, PRKCZ, PRKCA	2.75E-03
Thrombopoietin Signaling	PIK3C2B, PRKCZ, PRKCA	3.02E-03
Wnt/Ca+ pathway	AXIN1, GSK3B, PRKCA	3.16E-03
IL-6 Signaling	MAP2K4, PIK3C2B, ABCB1 , AKT1	3.24E-03
GM-CSF Signaling	PIK3C2B, AKT1, GNB2L1	4.17E-03
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses	MAP2K4, PIK3C2B, PRKCZ, PRKCA	4.27E-03
Antiproliferative Role of Somatostatin Receptor 2	РІКЗС2В, GNB2L1	4.37E-03
Cardiac β-adrenergic Signaling	PPP2CA, GNB2L1 , PPP2R1B	5.25E-03
Macropinocytosis Signaling	PIK3C2B, PRKCZ, PRKCA	5.50E-03
Growth Hormone Signaling	PIK3C2B, PRKCZ, PRKCA	5.62E-03
Role of MAPK Signaling in the Pathogenesis of Influenza	MAP2K4, AKT1, PRKCA	5.62E-03
Actin Cytoskeleton Signaling	РІКЗС2В, МҮН6 , АРС2, МҮН7 , АРС	5.62E-03
Melatonin Signaling	MAP2K4, PRKCZ, PRKCA	5.89E-03
Ephrin B Signaling	AXIN1, GNB2L1	6.61E-03
Prolactin Signaling	PIK3C2B, PRKCZ, PRKCA	6.61E-03
Synaptic Long Term Depression	PPP2CA, PPP2R1B, PRKCZ, PRKCA	6.61E-03
Axonal Guidance Signaling	PIK3C2B, AKT1, GNB2L1 , GSK3B, PRKCZ, PRKCA	7.76E-03
Cell Cycle Control of Chromosomal Replication	MCM4 , CHEK2	8.71E-03
Gap Junction Signaling	PIK3C2B, AKT1, PRKCZ, PRKCA	8.91E-03
3-phosphoinositide Biosynthesis	PIK3C2B, PTPRJ, DUSP11 , PTEN	9.12E-03
GPCR-Mediated Nutrient Sensing in Enteroendocrine Cells	PRKCZ, PRKCA	9.77E-03
FGF Signaling	РІКЗС2В, АКТ1, РККСА	1.00E-02
Dopamine-DARPP32 Feedback in cAMP Signaling	PPP2CA, PPP2R1B, PRKCZ, PRKCA	1.02E-02
Hepatic Cholestasis	MAP2K4, ABCB1 , PRKCZ, PRKCA	1.02E-02
Apoptosis Signaling	ТР53, МАР2К4, РККСА	1.15E-02
Virus Entry via Endocytic Pathways	PIK3C2B, PRKCZ, PRKCA	1.15E-02
G Protein Signaling Mediated by Tubby	GNB2L1	1.20E-02
IL-1 Signaling	MAP2K4, GNB2L1	1.20E-02
VEGF Signaling	РІКЗС2В, АКТ1, РККСА	1.26E-02
RhoGDI Signaling	CDH1, GNB2L1 , PRKCA	1.29E-02
Ephrin Receptor Signaling	AKT1, AXIN1, GNB2L1	1.32E-02
PPARa/RXRa Activation	MAP2K4, SMAD2, SMAD4, PRKCA	1.41E-02
T Cell Receptor Signaling	MAP2K4, PIK3C2B, PAG1	1.45E-02
Amyotrophic Lateral Sclerosis Signaling	TP53, PIK3C2B, GRIK4	1.48E-02
Neuropathic Pain Signaling In Dorsal Horn Neurons	PIK3C2B, PRKCZ, PRKCA	1.55E-02
Cholecystokinin/Gastrin-mediated Signaling	MAP2K4, PRKCZ, PRKCA	1.58E-02
ERK/MAPK Signaling	PIK3C2B, PPP2CA, PPP2R1B, PRKCA	1.70E-02
Superpathway of Inositol Phosphate Compounds	PIK3C2B, PTPRJ, DUSP11 , PTEN	1.86E-02
phagosome formation	PIK3C2B, PRKCZ, PRKCA	1.95E-02
Mechanisms of Viral Exit from Host Cells	PRKCZ, PRKCA	1.95E-02
Leukocyte Extravasation Signaling	MAP2K4, PIK3C2B, PRKCZ, PRKCA	2.04E-02
D-myo-inositol (1,4,5,6)-Tetrakisphosphate Biosynthesis	PTPRJ, DUSP11 , PTEN	3.02E-02

D-myo-inositol (3,4,5,6)-tetrakisphosphate Biosynthesis	PTPRJ, DUSP11 , PTEN	3.02E-02
GNRH Signaling	MAP2K4, PRKCZ, PRKCA	3.02E-02
NAD Biosynthesis from 2-amino-3- carboxymuconate Semialdehyde	NMNAT3,	3.63E-02
NAD Salvage Pathway III	NMNAT3,	3.63E-02
Phospholipase C Signaling	GNB2L1, PRKCZ, PRKCA	3.63E-02
D-myo-inositol-5-phosphate Metabolism	PTPRJ, DUSP11 , PTEN	4.07E-02
3-phosphoinositide Degradation	PTPRJ, DUSP11 , PTEN	4.17E-02
Calcium-induced T Lymphocyte Apoptosis	PRKCZ, PRKCA	4.47E-02
Aldosterone Signaling in Epithelial Cells	PIK3C2B, PRKCZ, PRKCA	4.57E-02
PXR/RXR Activation	ABCB1 , AKT1	4.68E-02

Danksagung

Ich danke Prof. Stefan Aretz für die Übernahme des Doktorvaters im Verlauf der Arbeit und für die damit verbundene Betreuung.

Ich bedanke mich bei allen weiteren Mitgliedern der Prüfungskommission für die Begutachtung dieser Arbeit.

Ich möchte Per Hoffmann danken, der mir mit Rat und Tat in kritischen Momenten zur Seite stand.

Frau Steinke danke ich für die Bereitstellung dieses spannenden Themas und für die Zurverfügungstellung der Drittmittel.

Für die Einarbeitung im Labor möchte ich mich bei Marlies Sengteller, Helena Bär, Dietlinde Stienen und Sascha Fischer bedanken.

Ich danke der AG-Aretz, besonders Ning, Chris und Sophia, für den wissenschaftlichen Austausch und die schöne Zeit.

Mein besonderer Dank gilt meinen Freunden und meiner Familie.

Nicht zuletzt möchte ich meinem Freund danken, der mich über die Jahre hinweg immer wieder unterstützt und begleitet hat.

Ich danke der Deutschen Krebsforschung, allen Kooperationspartnern und den partizipierenden Patienten und ihren Familien.

Eidesstattliche Erklärung

Hiermit erkläre ich, dass

- die vorgelegte Arbeit abgesehen von den ausdrücklich bezeichneten Hilfsmitteln persönlich, selbstständig und ohne Benutzung anderer als der angegebenen Hilfsmitel angefertigt wurde.
- die aus anderen Quellen direkt oder indirekt übernommenen Daten und Konzepte unter Angabe der Quelle kenntlich gemacht sind.
- die vorgelegte Arbeit nicht bereits anderweitig als Dissertation eingereicht worden ist.
- für die Erstellung der vorgelegten Arbeit und/oder die Gelegenheit zur Promotion keine fremde Hilfe, insbesondere keine entgeltliche Hilfe von Vermittlungs- bzw. Beratungsdiensten in Anspruch genommen wurde.

Bonn, März 2017

Katrin Kayser