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Abstract

This thesis presents methods for reconstructing human motion in a variety of ap-

plications and begins with an introduction to the general motion capture hardware

and processing pipeline.

Then, a data-driven method for the completion of corrupted marker-based mo-

tion capture data is presented. The approach is especially suitable for challenging

cases, e.g., if complete marker sets of multiple body parts are missing over a long

period of time. Using a large motion capture database and without the need for

extensive preprocessing the method is able to fix missing markers across different

actors and motion styles. The approach can be used for incrementally increasing

prior-databases, as the underlying search technique for similar motions scales well

to huge databases.

The resulting clean motion database could then be used in the next applica-

tion: a generic data-driven method for recognizing human full body actions from

live motion capture data originating from various sources. The method queries an

annotated motion capture database for similar motion segments, able to handle tem-

poral deviations from the original motion. The approach is online-capable, works in

realtime, requires virtually no preprocessing and is shown to work with a variety of

feature sets extracted from input data including positional data, sparse accelerome-

ter signals, skeletons extracted from depth sensors and even video data. Evaluation

is done by comparing against a frame-based Support Vector Machine approach on a

freely available motion database as well as a database containing Judo referee signal

motions.

In the last part, a method to indirectly reconstruct the effects of the human

heart’s pumping motion from video data of the face is applied in the context of

epileptic seizures. These episodes usually feature interesting heart rate patterns like

a significant increase at seizure start as well as seizure-type dependent drop-offs near

the end. The pulse detection method is evaluated for applicability regarding seizure

detection in a multitude of scenarios, ranging from videos recorded in a controlled

clinical environment to patient supplied videos of seizures filmed with smartphones.
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1
Introduction

Motion capture (mocap) is the process of recording the body and/or facial motion

of an actor for further processing using a computer. Motions captured by motion

capture systems have found their way into many different industries. Computer

animated movies and games might be the first applications that come to mind, but

motion capture system are used in our everyday lives as well, e.g., in consumer

electronics gaming devices like the Microsoft Kinect. In medical rehabilitation, such

systems help people with injuries of the musculoskeletal system and even stroke

patients regain their previous abilities of movement and thereby help to increase

quality of life itself. Other uses include ergonomics research, biomechanics, sports

analysis, robotics and military applications.

The utilized sensor systems range from a single noisy accelerometer, which can

be found in almost every smartphone manufactured today, over more complex and

sophisticated devices like orientation sensors, wearable exoskeletons, video and depth

cameras to high quality and costly optical motion capture systems which can deliver

sub-millimeter accuracy at very high frame rates. The individual systems differ in

many ways and the type chosen for a specific application depends on several factors,

including acquisition and maintenance cost, capture accuracy, ease of use, ability

for outdoor recordings and many more.

This work primarily concentrates on passive optical mocap, which is used in ap-

plications that need mocap data of high spatial as well as high temporal resolution.

In this type of mocap, retro-reflective markers are attached to specific locations

on an actor’s body who wears a purpose made, tightly fitting motion capture suit

(see Fig. 1.1a). The actor’s motion performance is simultaneously filmed by multiple

1



2 CHAPTER 1. INTRODUCTION

(a) Passive optical markers attached
to the author’s body. The photo was
taken using a flash to emphasize the
reflective nature of the markers.

(b) Photo of a Vicon motion capture
camera with its outer ring of scene
illuminating LEDs.

Figure 1.1: Passive optical motion capture

Figure 1.2: Example of a 12 camera motion capture setup using a Vicon system.
Cameras are placed in a circular pattern around the center point of the capture
volume, whose circular outline is marked as a reference on the floor using tape
strips.
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Figure 1.3: Typical passive optical motion capture workflow.
Left: The actor is recorded wearing a set of retroreflective markers.
Center: A skeleton abstraction is computed from the marker data.
Right: The animation data is used to animate a retargeted, virtual character.

scene illuminating infrared cameras, strategically placed in such a way that every

part of the capture volume, i.e., the area where the actor is allowed to perform (see

Fig. 1.2), is seen by at least three cameras to allow triangulation of each marker’s po-

sition. Unlike active optical mocap systems, where each marker flashes in a distinct

frequency and thus making it relatively easy to identify and label, passive optical

systems need to employ sophisticated labeling and tracking algorithms that merge

all of the 2D camera inputs to calculate and label the individual marker trajectories.

Problems arise when markers are occluded from view for a prolonged time, e.g., the

innermost markers of two actors in a close dance. Also, most markers are commonly

attached to the suit using hook and loop fasteners, which means they can fly off due

to the centrifugal forces generated by highly dynamic performances or even simply

because the fastener is worn out.

After recording an actor’s motion performance, a skeleton abstraction can be

computed from the marker data. In practice, the resulting data is often applied

to an animated character with the same skeleton, but different proportions (see

Fig. 1.3). In this case, a technique called retargeting [Gle98] can be applied to

ensure that the resulting animation satisfies various constraints like proper ground

contacts (i.e., feet not above or below the ground plane) and step sizes (i.e., no feet
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skating artefacts that would result from simply scaling the original skeleton).

Not every new motion has to be recorded with a mocap system. In their classic

paper Motion Graphs [KGP02], Kovar et al. present a technique to synthesize new

motions from a database of existing motions. Here, a directed graph is used where

database motions are represented as nodes and possible transitions between these

motions as edges. Now, new motions can be generated by simply building walks

over the graph.

Regardless of the chosen motion capture system, challenging capture situations

rarely produce satisfactory results. The raw recordings often contain missing parts

that need to be completed with sophisticated techniques in a post-processing step.

A data-driven method for these situations is presented in Chapter 2.

Activity recognition, i.e., the detection of known human actions from motion

data, has become very popular in recent years. Applications include fitness tracking

software (e.g., how many push-ups, pull-ups or squats were performed in a training

session), controlling a game character with the player’s actions as well as smart

robots, that act according to what a nearby human is currently doing. Chapter 3

presents a technique for action recognition capable of using any combination of

sensors. The method is applied to sensor inputs ranging from simple accelerometers

to high quality optical motion capture data.

When there is no actual physical sensor attached to an actor’s body, vision

based motion capture techniques can be applied to video recordings. This can even

be taken one step further by using algorithms that indirectly capture the motion

of a subject’s heart and chest, i.e., heart and respiration rates, and thus enable

monitoring of direct and derived body vital signs. In Chapter 4, a video pulse

detection technique is evaluated on patients with epilepsy, where distinct heart rate

patterns can be observed during seizures.



2
Completion of Motion Capture Data

This chapter presents an extended version of the publication:

Data-Driven Completion of Motion Capture Data [BKZW11].

2.1 Introduction

Optical motion capture is the standard technique for creating realistic human mo-

tions in computer animation: Multiple cameras are used to record and track markers

that are attached to an actor’s body (see Chapter 1). Finally, 3D trajectories of the

individual markers are reconstructed from the two dimensional images by triangu-

lation. Using fitting techniques, skeleton abstractions may be computed.

During motion capture, markers are often occluded from the view of too many

or even all cameras, resulting in a gap in the final 3D marker trajectory. This is

usually unproblematic for small gaps, because these can be filled by a cubic spline

interpolation. In larger gaps, when only a single marker of a body segment is missing,

the rigid body relationship of the segment’s other markers can be used for trajectory

reconstruction.

If gaps in several markers occur for a long time period (e.g., several seconds)—a

scenario quite common if closely interacting actors are captured simultaneously or

interaction with the environment is essential, sophisticated methods for the comple-

tion of the maker trajectories need to be employed.

Although the topic of cleaning motion capture data is a classical one and var-

ious techniques are available in commercial mocap system software, the problem

is far from being solved and has obtained renewed attention in the last years

5



6 CHAPTER 2. COMPLETION OF MOTION CAPTURE DATA

[LMPF10, LC10, XFH11, FXZ+14, XSZF16]. Unfortunately, the majority of the

existing approaches have major limitations, especially if no previously captured mo-

tions of the same actor which are similar to the one to be cleaned are available. Many

approaches are also limited by the size of motion database that can be handled (e.g.,

Grochow et al. [GMHP04]).

This chapter presents a general framework for data-driven completion of gaps

in marker-based mocap data. The novel approach can handle challenging cases,

especially if complete marker sets of multiple body parts are missing over a long

period of time. Without the need for extensive preprocessing the framework is

able to fix missing markers across different actors and motion styles. The results

agree with human intuition and key features of the original input motion are greatly

retained.

2.2 Related Work

Rudimentary gap filling is available in commercial software systems like Vicon IQ or

Blade [Vic]. These methods rely on simple techniques, such as linear or spline inter-

polation of marker trajectories and thus fail if curvatures change sign. Such simple

methods do not account for a correlated motion of markers that occurs when markers

are attached to the same body segment. This marker group forms an approximate

rigid body of which the inter-marker distances remain nearly constant. For this

reason, the above mentioned software systems also provide methods to recover a

missing marker from a group of other markers if a rigid relationship between both

the marker and the group may be assumed. However, in order to uniquely recon-

struct the missing marker’s position, at least three other markers or joint positions

relative to the missing marker’s segment need to be present in the gap.

Herda et al. [HFP+00] develop a skeleton based marker tracking and recon-

struction technique to infer the positions of missing markers by using kinematic

information provided by the underlying skeleton and the markers’ positional data

from previous frames that are attached to the same bone. This method is applicable

to short time occlusions of single markers, but fails if entire segments are occluded

for extended time periods.

Kalman filters are used in [DU03] to predict the trajectories of missing mark-
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ers. However, Kalman filter based approaches fail when markers are missing for an

extended time period or are missing entirely.

Li et al. [LMPF10] propose a method for occlusion filling of marker data by

learning a linear dynamical system that respects inter-marker distances. However,

their method relies on the existence of other markers on the same segment to make

inter-marker distance measurements possible at all.

A data-driven method, which uses a piecewise linear modeling approach, is pro-

posed by Liu and McMillan [LM06] for estimating missing markers.

Additional data-driven methods for cleaning motion capture data have been

proposed [LC10, XFH11]. Lou and Chai [LC10] are able to filter corrupted motion

data by learning a series of spatial-temporal filter bases from prerecorded motion

data. Using their filtering approach in a nonlinear optimization framework they are

able to reduce noise, remove outliers and fill gaps while keeping the spatial-temporal

patterns of the filtered human motion intact. Their method requires creation of a

training database in a time consuming pre-processing step which exclusively contains

motions similar to the motion to be cleaned. Thus, in contrast to the method in this

chapter, it cannot handle different motion styles simultaneously without expensive

preprocessing.

Xiao et al. [XFH11] devise a method for filling gaps by representing incomplete

poses by a linear combination of a few poses from a training set. Their approach

as well as the work in [LC10] requires the training mocap data to be clean and to

contain similar motion patterns (of the same actor) as the input motion. Moreover,

the robustness of their approach to additional unrelated data in the training set is

not discussed.

The problem of pose and motion reconstruction from sparse markers has also

been the topic of various papers. In [GMHP04] and its accompanying video, the

authors show the reconstruction of motion from sparse marker data. Although the

results of their method are visually appealing, it largely depends on a specifically

learned model that fails to capture the natural diversity of human motion. In [CH05],

Chai and Hodgins show how to transform the positions of a small number of markers

to full body poses. They construct a neighbor graph with the poses of the prior

database as vertices. In a preprocessing step, an edge between two poses is added

to the graph if the poses are near each other. This limits the NN-search to poses
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already in the database and can only give approximate results if the query pose is not

contained within the available example motions. Due to its quadratic preprocessing

time, it does not scale well with respect to the size of the database. Moreover, in

the optimization step, the synthesized motion depends on the positional information

contained in the prior database while completely ignoring the temporal evolution

(e.g., velocities and accelerations) of the local model. This might be an issue at

turning points in the motion’s trajectory. The method presented in this chapter

incorporates this additional information yielding smooth and natural results. Krüger

et al. [KTWZ10] improve on the method presented in [CH05] by using a kd-tree for

determining the neighborhood of a query pose resulting in exact neighborhoods for

arbitrary query poses.

Since the method presented in this chapter is data-driven, it uses motions from a

mocap database to construct a prior-database. Currently, the largest freely available

database is the Carnegie Mellon University mocap database [Car04], which contains

2605 trials in 6 categories and 23 subcategories. Another large database, the HDM05

library [MRC+07], was recorded at the Hochschule der Medien in Stuttgart and

contains more than three hours of systematically recorded and well documented

motion capture data. Both of these databases provide the data in marker based

(c3d) as well as skeleton based (asf/amc) data formats.

2.3 Overview

The presented approach takes advantage of data driven techniques. For that reason,

a mocap-database containing motions which are comparable to the clip to be pro-

cessed is needed. One fundamental assumption of the proposed method is that all

poses contained in the database as well as the motion to be cleaned share the same

marker set. In this work, the marker set presented in Table 2.1 is used. Further-

more, it is assumed that valid markers — i.e., the set of markers that are assumed

to contain reliable positional information — are given for each frame of the input

motion to be completed.

In a preprocessing step all mocap data from the prior-database are first nor-

malized with respect to global position and orientation. Then, an efficient spatial

indexing structure (kd-tree) is built based on normalized positional data of valid
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kD-tree

valid markers
clean marker-

based motion clip
marker-based
optimization

gap filling

preprocessing
normalization
and feature
extraction

kD-tree
construction

mocap database
(marker-based data)

raw marker-based
motion clip

Figure 2.1: Workflow of the proposed method.

markers. In addition, linear marker velocities as well as accelerations are calcu-

lated using finite differences and stored in the mocap database. These quantities

contribute to continuity and smoothness of the prior-based motion synthesis. The

whole preprocessing step is explained in more detail in Section 2.4.1.

Subsequently, missing markers are synthesized for a given motion clip using non-

linear optimization. To this end, similar examples from the database are retrieved by

kd-tree based nearest neighbor search. These examples serve as priors to drive the

synthesis process as discussed in Section 2.4.2. The whole pipeline of the proposed

method is sketched in Fig. 2.1.

2.4 Workflow

2.4.1 Preprocessing

The presented method is inspired by the solution to the pose matching problem pre-

sented by Krüger et al. [KTWZ10]. Here, the key idea is to analyze similarity of poses
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Figure 2.2: Examples of normalizations of poses represented as marker point cloud
data. In order to give meaning to positional comparisons, original poses (left) are
translated to the global root position and rotated so that the waist faces forward
and lies in one plane with the horizontal plane (right).

by employing kd-tree based k-nearest-neighbor-search in dedicated feature spaces.

Please note that this approach requires normalization of all poses with respect to

global orientation and position. As — in contrast to Krüger et al. [KTWZ10] —

no skeleton representation but point cloud marker data is given, normalized poses

are estimated by exploiting rigid connectivity between segment markers. Poses can

be normalized using the markers of any valid segment. In this work, the centroids

of the poses’ waist markers are translated to the global root position and rotated

so that the waist planes are parallel to the horizontal plane and pointing along a

common fixed axis. Examples of poses and their normalized counterparts can be

seen in Fig. 2.2.

Let x be a pose vector involving M markers, where components are given by

positional marker data. Using the motion database (kd-tree), a search for the k

nearest neighboring poses (yi), i ∈ {1, . . . , k} is done using a subset of all markers.

The actual choice of this subset is based on two different criteria. First, only re-

liable markers are considered where the placement is well-defined according to the

markerset, such as the knee and elbow markers for the standard markersets used in

[MRC+07] and [Car04]. This first criterion can be formalized by a static bit vector

(m̃ = m̃i), i ∈ {1, . . . ,M} that determines if a marker is suitable for k-nn search

(one) or not (zero) (see Table 2.1). Second, only markers that are valid according

to the capturing logic are considered. Such markers are indicated by another bit
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vector m = (mi), i ∈ {1, . . . ,M}. In contrast to m̃, which is independent of the

motion to be cleaned, the bit vector m is computed per gap that is to be filled.

Once viable markers are selected, i.e., markers with m̃i = mi = 1, their respective

coordinates form a vector space that is used for building a kd-tree from all motion

data included in the database. As missing markers depend on the actual motion,

this kd-tree is build from scratch for each cleaning process. Please note that building

this tree takes only a few seconds even for the largest currently available databases

and thus does not resemble a bottleneck in the method. Using finite differences,

linear velocities and accelerations are computed in advance from normalized poses

for all motion clips contained in the mocap database used for cleaning. Fig. 2.3

shows a visualization of neighboring poses and their respective local velocity and

acceleration vectors on an example pose.

2.4.2 Gap Filling

For each pose that requires to be cleaned by the proposed technique, a search for

the k nearest neighbor poses is performed. To this end, each of the given frames

is normalized with respect to position and orientation, similar to the data in the

knowledge base. A set (yi), i = [1..k] of k nearest neighbors is retrieved that can be

used for the data-driven gap filling procedure, which uses prior-driven optimization

to synthesize the positional data of the missing markers. An energy minimization

formulation is employed which is frequently used in data driven computer animation.

The specific choice of the energy terms to be minimized most closely resembles the

one used in [TZK+11]. In this case, the objective function consists of three different

terms: pose prior Epose enforcing position and motion priors Emotion and Esmooth

enforcing velocities and accelerations of the missing markers to be comparable to

examples retrieved from the database.

xbest = argmin
x

( Epose(x) + Emotion(x) + Esmooth(x) ) (2.1)

Prior Terms

Let (yi), i = [1..k] be the poses retrieved from the database by k-nearest-neighbor

search and (νi), i = [1..k] and (αi), i = [1..k] their respective velocities and acceler-
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Figure 2.3: Local pose neighborhood visualization of a walking motion. Neighboring
poses’ marker positions are shown in blue, vectors of local velocities and accelerations
in red and yellow, respectively.
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Table 2.1: Table of markers, their body locations and if usable as a feature for
the presented method. To determine reliable markers that are (if valid) suitable
for k-nearest-neighbor-search, a bit vector m̃ is used. Here, for each marker of the
markerset, a component indicates if a marker is usable (1) or unreliable (0).

Label Location m̃

LFHD Left Front Head 1
RFHD Right Front Head 1
LBHD Left Back Head 1
RBHD Right Back Head 1
C7 Vertebra C7 1
T10 Vertebra T10 0
CLAV Between Clavicles 0
STRN Sternum 1
RBAC Right Back 0
LSHO Left Shoulder 0
LUPA Left Upper Arm 0
LELB Left Elbow 1
LFRM Left Forearm 0
LWRA Left Wrist A 1
LWRB Left Wrist B 1
LFIN Left Fingers 1
RSHO Right Shoulder 0
RUPA Right Upper Arm 0
RELB Right Elbow 1
RFRM Right Forearm 0
RWRA Right Wrist A 1

Label Location m̃

RWRB Right Wrist B 1
RFIN Right Fingers 1
LFWT Left Front Waist 0
RFWT Right Front Waist 0
LBWT Left Back Waist 0
RBWT Right Back Waist 0
LTHI Left Thigh 0
LKNE Left Knee 1
LSHN Left Shin 0
LANK Left Ankle 1
LHEE Left Heel 1
LTOE Left Big Toe 0
LMT5 Left Small Toe 0
RTHI Right Thigh 0
RKNE Right Knee 1
RSHN Right Shin 0
RANK Right Ankle 1
RHEE Right Heel 1
RTOE Right Big Toe 0
RMT5 Right Small Toe 0
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ations. Let ν(x) and α(x) be the velocity and acceleration of a given pose. Then,

kernel regression is used for each of the prior terms along the lines of [TZK+11]

considering only markers that are assumed to be invalid:

Epose(x) =
k∑

i=1

(m̄ ◦ (yi − x))2 (2.2)

Emotion(x) =
k∑

i=1

(m̄ ◦ (νi − ν(x)) ·∆t)2 (2.3)

Esmooth(x) =
k∑

i=1

(m̄ ◦ (αi −α(x)) ·∆t2)2 (2.4)

with m̄ denoting the component wise inversion of the bit vectorm. Please note that

for all the above priors only markers that are assumed to be invalid are considered

by the component-wise operating Hadamard product (◦).

2.4.3 Optimization Procedure

The objective function (2.1) is minimized using gradient descent. To improve effi-

ciency, only a subset of all frames is considered during optimization. This includes

frames with the highest associated costs as well as neighboring frames indirectly af-

fecting reconstruction results through temporal derivatives occurring in motion and

smoothness priors. This is referred to as scheduling. Also, to improve the robust-

ness of the method and to speed up the process of optimization, a multi-resolution

approach is employed where optimization takes place on subsequently higher tem-

poral resolutions of the motion to be cleaned, starting with the lowest. This requires

resampling the motion to a predefined number of lower resolutions. When the error

on a certain resolution cannot be improved by at least a certain threshold (set to 1 %

in this work), the algorithm upsamples the results and switches to the next higher

resolution. Given the number of resolutions n and the highest resolution rmax, lower

resolutions ri are calculated by

ri =
rmax

2i
. (2.5)

For every possible resolution, positions, velocities and accelerations have to be pre-

computed in the prior-database. Moreover, separate kd-trees have to be created.
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Figure 2.4: Reconstruction example showing a pose of a walking motion missing the
markers of both arms (left), the corresponding database retrieved pose neighborhood
(center) and the fully reconstructed pose (right).

Please note that the memory requirements of this multiscale approach is bounded

by twice the memory consumption of the original data.

An example of the presented gap filling procedure is shown in Fig. 2.4, where

the method is used to reconstruct the markers of both arms during the course of a

walking motion.

2.5 Results

In order to evaluate the effectiveness of the proposed method, originally artifact-

free mocap data is taken and certain markers or sets of markers representing body

segments are discarded for time spans of varying lengths. Since ultimately, the

visual perception and the possibility of using the resulting mocap data in practice

is most important, the reconstruction results are analyzed not only numerically but

also visually. Besides synthetic test cases the method is also employed on data

containing real gaps.



16 CHAPTER 2. COMPLETION OF MOTION CAPTURE DATA

For a visual comparison see the accompanying video contained in the supple-

mental material, showing:

1. Examples of real gaps in original marker data taken from the HDM05

database [MRC+07].

2. Reconstruction of a motion with missing markers on the left arm.

3. Gap-filled cartwheel motion with leg markers missing.

4. Comparison of databases according to section 2.5.1.

5. Example of a running motion that was presented and reconstructed

in [LMPF10]. For this example the complete CMU database [Car04] was

used as prior-database.

6. Comparison of reconstructions of a walking motion based on [KTWZ10] and

the method presented here.

7. Reconstructions of gaps found in real motion capture data.

In Fig. 2.5, the dependency of the computation times on the length of the filled

gaps is shown. As had to be expected, the computation times scale linearly with

the durations of the gaps. There are certain variations with respect to the used

motion classes and numbers of missing markers, but these effects yield much smaller

variations than the primary dependency on the gap size. The computation times

are obtained using a single threaded implementation on a Dual Core 3 GHz PC with

8GB of memory. Roughly speaking, the computation times are about 10 times the

length of the longest gaps for this implementation. Hence, it is already practical for

interactive applications even without having performed code optimization or using

multi-threading.

The following conducted experiments show that the method is able to fill gaps

in motions ranging from missing a single marker to missing multiple body segments

for up to several seconds.
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Figure 2.5: Computation times for various examples with respect to the length of
the filled gap.

2.5.1 Evaluation on Synthetic Examples

This section reports on a series of tests on synthetic examples. Several aspects of the

proposed method are evaluated. For this reason, markers are deliberately removed

from intact motion sequences to be able to compare the results with ground truth

data. All results are computed on motions resampled to 30 Hz.

Tests on Single Missing Markers

For three test motions taken from the HDM05 database, each marker

is systematically removed and reconstructed. These test motions are:
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Figure 2.6: Mean distances (blue bars) between original marker trajectories and synthezised trajectories and the
corresponding standard deviations (red lines) are shown for three testing motions, where the indicated marker was
removed.
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1. walk: HDM bd 01 01-01 120.c3d,

frames 650 – 1100

2. jump: HDM tr 01-05 01 120.c3d,

frames 1000 – 1350

3. cartwheel: HDM tr 05-03 03 120.c3d,

frames 2550 – 3000

The database used for these experiments included all motions from the HDM05

database except the whole take the test sequence was taken from. Figure 2.6 shows

the results of this test. The mean distance between the original and the synthesized

markers as well as the standard deviation of this distance is presented. As can be

seen on the left of Figure 2.6, the walking motion gives very good results, showing

a mean distance of 0.77 cm over all examples. For the more complex jump and

cartwheel motions the means are 1.27 cm and 1.81 cm, respectively.

Tests on Groups of Missing Markers

On the three motions that were used on the single marker leave-out evaluation, more

tests were performed where several groups of markers were removed simultaneously.

For each test, six markers of the segments of the left arm were removed. For the walk

and jump motion, these markers will not be in contact with the ground, whereas for

the cartwheel motion a contact of the left arm with the ground occurs. For these

tests, the following scenarios were regarded

1. The prior-database does not contain motions of the actor of the test motion.

2. The prior-database contains motions of various performers, including motions

of the actor (other than the test motion).

3. Only motions of the actor were included in the prior-database.

The results of the tests are summarized in Fig. 2.7. If motions of the actor are not

contained in the prior-database, the average reconstruction errors are more than

twice as high as in the other cases for all three examples. However, the reconstruction

results are still good, with a mean error ranging from 2.5 cm for the walking motion



20
C

H
A

P
T

E
R

2.
C

O
M

P
L

E
T

IO
N

O
F

M
O

T
IO

N
C

A
P

T
U

R
E

D
A

T
A

0 10 20 30 40 50 60 70 80
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035
full DB
DB without actor
DB only actor

time [frames]

m
ea

n 
er

ro
r [

m
]

walk motion

0 20 40 60 80 100
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

 

 
full DB
DB without actor
DB only actor

time [frames]

m
ea

n 
er

ro
r [

m
]

jump motion

0 20 40 60 80 100
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
full DB
DB without actor
DB only actor

time [frames]

m
ea

n 
er

ro
r [

m
]

cartwheel motion

Figure 2.7: Mean distances over all markers for three motion sequences. The distances are presented for three different
databases: The full database, excluding only the test motion (blue), a database where the actor was completely
removed (green) and a database where only motions from the actor were included (red).
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Figure 2.8: Results of tests with actors of different sizes. The mean reconstruction
error is plotted for a walking sequence (HDM ** 01 01 01 120.C3D) versus the body
size of the actors. The actors were not included in the database for this experiment.

to 5 cm for the cartwheel motion. Moreover, the reconstructed motions have a high

visual fidelity (see the accompanying video).

In another test suite to estimate the influence of properties of the performing ac-

tor, leave-out tests are performed for any of the five actors doing walking motions in

the HDM05 database. Again, marker positions for the left arm are first removed and

then reconstructed. For this experiment, the takes HDM ** 01 01 01 120.C3D were

used which were performed by each actor for this test. The results are summarized

in Fig. 2.8.

2.5.2 Comparison with Previous Work

The results of the presented method are compared with the motion reconstruction

technique described by Krüger et al. [KTWZ10], which is an extension, based on

fast similarity searches, of the technique originally described by Chai and Hod-

gins [CH05]. For this comparison, six scenarios of missing data were regarded: left

arm, right arm, both arms, left leg, right leg and both legs. Since the presented

method only reconstructs missing marker positions, a skeleton was fit to the ground

truth and reconstructed marker data using the method of de Aguiar et al. [dATS06].
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To make the marker fit skeleton comparable to the standard asf/amc skeleton used in

the HDM05 library, a set of joints was selected as the intersecting set of joints of both

skeleton topologies. An obvious error measure to compare different reconstructions

is to calculate the average distance between this set of joints of the reconstructed

and the ground truth motion for every frame. The mean reconstruction error is then

calculated as the mean over all individual frame errors. The numeric results of both

reconstructions are given in Table 2.2.

The approach presented in this work uses multi resolution optimization combined

with scheduling and a more sophisticated prior model to produce natural looking

results while Krüger et al. use ad-hoc smoothness and framewise optimization com-

bined with a kd-tree nearest neighborhood search. In most cases, the presented

method proves to be numerically better using the standard error measure and the

difference in the visually perceived quality of the results can also be seen in the

accompanying video.

2.6 Conclusion and Future Work

This chapter presented a data driven method for filling large gaps in marker based

mocap data. The method works well, even for large gaps of multiple seconds from

the perspective of required computational resources as well as quality of results—

provided that there are sufficiently similar motions available in the prior-database.

The basic mechanism can be extended to other cleaning and reconstruction tasks,

such as optimal skeleton fitting and correcting marker-mislabelings. These exten-

sions will be one topic of future work.

In contrast to previous approaches, all available and cleaned motion capture

data can be kept in the prior-database, and the approach scales well to huge prior-

databases. The quality of the gap filling methods depends on the similarity of data

contained in the prior-database and somewhat better results are obtained if mo-

tions of the performing actor of the clip to be cleaned are already contained in the

prior-database. Nevertheless, the method also works quite well if such data is not

available. In principle, in this approach it is possible to incorporate model knowl-

edge about skeleton constraints and contact constraints. Using a good algorithmic

heuristic to estimate contact constraints from motion data—e.g., the method pre-



2.6. CONCLUSION AND FUTURE WORK 23

Table 2.2: Results for motion reconstructions based on the method presented in
this paper (this), compared to reconstructions based on the method of Krüger et
al. [KTWZ10]. The table gives the mean reconstruction error in centimeters.

scenario

motion method left arm right arm both arms

HDM bd 01-01 01 120 this 0.64 0.59 1.23
Frames: 650 – 1100 KTWZ10 1.00 1.56 2.29

HDM bd 01-02 03 120 this 1.20 1.18 3.63
Frames: 450 – 750 KTWZ10 1.81 2.43 4.71

HDM bk 01-01 03 120 this 1.29 1.47 4.80
Frames: 6300 – 6600 KTWZ10 2.05 2.44 5.91

HDM mm 02-03 02 120 this 1.00 3.50 10.20
Frames: 450 – 750 KTWZ10 2.89 4.46 12.07

HDM dg 01-06 01 120 this 1.20 0.94 1.81
Frames: 1000 – 1300 KTWZ10 1.68 1.26 3.69

scenario

left leg right leg both legs

HDM bd 01-01 01 120 this 0.88 0.82 2.47
Frames: 650 – 1100 KTWZ10 1.35 1.48 4.55

HDM bd 01-02 03 120 this 1.60 2.20 4.00
Frames: 450 – 750 KTWZ10 1.63 2.19 4.62

HDM bk 01-01 03 120 this 1.27 1.61 4.24
Frames: 6300 – 6600 KTWZ10 1.86 2.65 6.26

HDM mm 02-03 02 120 this 0.95 1.11 2.00
Frames: 450 – 750 KTWZ10 0.97 1.37 1.85

HDM dg 01-06 01 120 this 1.70 1.58 3.56
Frames: 1000 – 1300 KTWZ10 1.42 1.59 4.68
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sented in [LCB06]—the contact information can be incorporated into the search and

all defined constraints can be incorporated into the optimization procedure. One

can presume that such information is useful in all settings and might be crucial if

for a gap-filling the information of body segments such as lower or upper body parts

only are considered. Such restrictions to body parts allow an extension of the notion

of “similar motion” to ones being similar for body parts only.

Future work will explore the algorithmic techniques and should perform empirical

investigations for incremental extension of the prior-databases: cleaned motion clips

can be incrementally added to the prior-database potentially allowing a step-wise

extension of the expressibility of the prior-database. With such extensions, motions

which could not be handled by an original prior-database might become tractable

by the newly added clips.

The scenario of missing markers on entire body segments for longer time periods

is a common challenge even for single user capture using practical low-cost equipment

such as the Kinect. Here, instead of markers, gaps in skeleton node trajectories

could be reconstructed using database information. The integration of the presented

algorithms into a capturing and processing pipeline for such low-cost devices could

be a topic of future work.



3
Detection of Human Actions

This chapter presents an extended version of the publication:

Action Graph: A Versatile Data Structure for Action Recognition [BWKW14].

3.1 Introduction

Consumer motion capture systems (like Kinect, WiiMote, EyeToys, accelerometers)

have received a lot of attention in recent years, primarily because they enable the

user to interact with an application in a very natural way using low cost consumer

hardware. The field of usage exceeds replacing the classic game controller in com-

puter games. New applications beyond the field of computer games are emerging.

This chapter is motivated by such a novel example application: The automated

detection of Judo referee signals, i.e., the recognition of full body movements (of

Judo referees) as belonging to a set of small motion segments which are detected as

certain referee signals (usually denoted by their Japanese names). Taking the de-

veloped method to the gym would allow for cost-effective automatic score counting

and time keeping and greatly reduce the administrative overhead required at Judo

competitions.

Technically, a fully data-driven action recognition scheme is devised, where mo-

tion sequences can be detected in real-time. The method is very flexible concerning

the used sensor input data, which can range from high quality optical motion capture

data, over medium quality Kinect skeletons to highly noisy accelerometer readings.

Adding robust feature extraction from video data to the recognition pipeline even

enables the approach to detect actions from video input. All this various input

25
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data can be compared in real-time with previously recorded sample motions in the

database. The framework detects if the performed motion is similar (and possibly

time-warped) to an annotated motion contained in the database.

The method requires very little preprocessing—only sample motions for each

action to be recognized have to be labeled by the name of the action. No further

explicit learning phases are required. Additional flexibility comes from the ability

to add action templates to the used action database in an online manner, requiring

only minimal processing.

For the purpose of evaluating different aspects of the method it is applied to

prerecorded high quality motion capture data, to live captured low quality motion

data obtained by a Microsoft Kinect sensor, to features extracted from video data

and to a sparse accelerometer sensor setup with only four sensors attached to the

actor’s body. Interestingly, even for these very sparsely distributed accelerometers,

the method is able to detect actions, making it very effective in a low-cost sensor

setup.

The approach uses a framework for motion matching using k-nearest neighbor

searches. It is shown that these previously devised techniques can be adapted and

are then also very suitable for the task of action recognition.

3.2 Related Work

Related work for the method can be divided into four groups, image-based ac-

tion recognition, 3D point trajectory action recognition methods, methods using

accelerometers as sensors and data-driven techniques in the field of computer ani-

mation.

The first group of techniques uses 2D information such as images coming from

a video camera to infer information about the actions taking place. The work by

Bobick and Davis [BDSS01] presents a view-based approach to action recognition

using temporal templates, which are static vector-images where the vector value at

each point is a function of the motion properties at the corresponding spatial location

in an image sequence. In [SLC04], Schüldt et al. use local space-time features in

combination with SVM classification schemes for action recognition.

The second group works directly on 3D point trajectory data. Barbič et al.



3.2. RELATED WORK 27

[BSP+04] show methods for automatically segmenting motion capture data into

distinct behaviours. Campbell and Bobick [CB95] present techniques for represent-

ing movements based on space curves in subspaces called phase spaces, recognizing

actions by calculating distances between these curves at every time step.

Arikan et al. [AFO03] use an interactively guided Support Vector Machine to gen-

eralize example annotations made by a user to the entire motion capture database.

Their approach works well on the small (7 minutes) motion capture database pre-

sented in their paper. The method presented in this chapter uses a similar SVM

approach for comparison with the developed method.

Data-driven k-nearest neighbor approaches have been quite popular in the field

of computer animation in recent years. In the context of synthesizing motions,

Chai and Hodgins [CH05] show how to transform the positions of a small number

of markers to full body poses. For nearest neighborhood pose searches, they con-

struct a neighbor graph, allowing approximate NN-searches and requiring a quadratic

preprocessing time in the size of the number of poses in the database. Krüger et

al. [KTWZ10] improve the method presented in [CH05] by querying a kd-tree for

determining the neighborhood of a query pose resulting in exact neighborhoods for

arbitrary query poses.

A novel and very intuitive puppet interface is used by Numaguchi et al.

in [NNSH11] to retrieve motions from a motion capture database. By sketching

actions with the 17-degree of freedom puppet, the method matches the puppet’s

sensor readings retargeted to human motion to behaviour primitives stored in the

motion database.

In [RKH11], Raptis et al. develop a method to classify human dance gestures by

using a special angular skeleton representation designed for recognition robustness

under noisy input. They use a cascaded correlation-based classifier for multivariate

time-series data in combination with a dynamic-time warping based distance metric

to evaluate the difference in motion between a performed gesture and an oracle for

the matching gesture. Although the classification accuracy of their approach is very

good, it assumes that the input motion adheres to the underlying musical beat,

whereas the approach presented here does not rely on such assumptions.

Another class of methods is about using accelerometers for activity recognition.

Bao and Intille [BI04] present a system designed for context-aware activity recogni-
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tion detecting everyday physical activities from acceleration data. They focus on a

semi-naturalistic data collection protocol to train a set of classifiers, and find this is

best evaluated by decision tree recognition algorithms. Along the same lines, Maurer

et al [MSSD06] study the effectiveness of activity classifiers also within a multi-sensor

system. Their analysis of the proposed activity recognition and monitoring system

concludes it is able to identify and record a subject’s activity in real-time.

While Ravi et al. [RDML05] also study the activity recognition techniques, they

present a solution that only uses a single triaxial accelerometer worn within differ-

ent data collection setups. Within this context, they analyze the quality of known

classifiers for recognizing activities with particular emphasis on the importance of

selected features and level of difficulty of recognizing specific activities. The sys-

tem developed by Khan et al. [KLLK10] is capable of recognizing a broad set of

human physical activities using only a single triaxial accelerometer. The approach

is of higher accuracy than the previous works due to a novel augmented-feature

vector. Additionally, they provide a data acquisition protocol using data collected

by the subjects at home without the researcher’s supervision. Similarly, Wyatt et

al. [WPC05] describe techniques for mining simple discriminative models of arbi-

trary object-based activities and for controlling the precision and accuracy of the

resulting classifications. The novelty of their approach lies in the description of how

to learn labeled models of physical activity from sensor data without any human

intervention per activity, even for the annotation of the data.

Since activity-aware systems have inspired novel user interfaces and new appli-

cations, recognizing human activities in smart environments becomes increasingly

important. In this spirit, Choudhury et al. [CBC+08] propose an automatic activity

recognition system using on-body sensors. Several real-world deployments and user

studies show the relevance of using the results to improve the hardware, software

design, and activity recognition algorithms to context-aware ubiquitous computing

applications. In a similar spirit, [KWM11] introduce their activity recognition tech-

nique which uses cell phone accelerometer data trained from users as they performed

daily activities to induce a predictive model for activity recognition.

This chapter presents a data-driven method that uses motions from a mo-

tion capture database to construct a prior-database. Publicly available datasets,

like the Carnegie Mellon University motion capture database [Car04] and the
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HDM05 [MRC+07] library, recorded at the Hochschule der Medien in Stuttgart,

contain large amounts of motion capture data. In this work, the data of the HDM05

library is used, which contains more than three hours of systematically recorded

and well documented motion capture data. Of great benefit in the evaluation of

the action recognition method are the manually cut out motion clips that were ar-

ranged into 64 different classes and styles. Each such motion class contains 10 to

50 different realizations of the same type of motion covering a broad spectrum of

semantically meaningful variations. The resulting motion class database contains

457 motion clips with a total length of roughly 50 minutes of motion data.

3.3 Overview

The workflow of the proposed action recognition method (see Fig. 3.1) can be divided

into three distinct processes. First, in an offline step, the motion capture database is

created from motion data, where the quality can range from sparse and noisy data,

such as that of a sensor setup using a single accelerometer only, to highly accurate

optical motion capture data. All such data sets can easily be handled and are

manually or automatically annotated by specifying start and end frames as well as a

keyword for labeling. This is followed by a preprocessing phase in which a kd-tree is

created using a specific feature set allowing fast k-nearest neighborhood searches on

the poses stored in the database. This feature set depends on the application which,

in turn, is interdependent on the specific type of motion capture system respectively

the employed sensor setup.

Since the approach at hand is generic, the input need not be of a specific data

type and may even cover cross-modal signals. In the online phase, actions are

recognized from any type input motion sequence by feeding new frames of the input

motion into the annotation module. This module uses similar poses retrieved from

the kd-tree in a neighborhood graph called Action Graph to output all recognized

actions as soon as they are detected.
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Figure 3.1: Workflow of the proposed method. Starting out with a motion capture
database annotated with actions of interest in an offline phase, the method builds up
a kd-tree from this data in the preprocessing phase. The online phase then consists
of feeding new frames of the input motion into the annotation module, recognizing
actions as soon as the actor finishes executing them.

3.4 Action Recognition Methods

3.4.1 Data Preparation

Since the preparation of motion capture data for the presented method is highly

dependent on the application and sensors used, no general rules for preparing the

data in the database or for processing the poses of the query motion can be given.

Various applications presented in the results in Section 3.5 show realistic examples.

3.4.2 Data Annotations

For the training phase of the action recognition methods, as well as for evaluations

during the testing phase, accurate annotations are needed. Annotations inform the

system at which time in a motion sequence specific actions are performed by the

actor. For this reason, in this method, all used datasets were annotated by hand.
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Another possibility would be to use automatically annotated mocap data, e.g., by

methods presented in [AFO03] or [WPC05]. In this work, the decision was made

on a complete, reliable and manual annotation procedure to ensure that the results

are not affected by possibly false, automatically computed annotations. For each

relevant action, an annotator gives a start frame, an end frame and a keyword that

describes the performed motion, ultimately creating a mapping from database frame

f to the annotations stored in f .

3.4.3 Action Graph Based Recognition

The presented action recognition method searches for motion segments that are

similar to annotated actions in the motion database by taking into account the

temporal continuity of the underlying motion. This is in contrast to the SVM-based

approach presented in Section 3.4.4 for comparison, which ignores this information

and decides whether a frame belongs to an action on a frame-by-frame basis, leading

to many possible ambiguities. To avoid these, the Action Graph detects if an action

ends at the current frame and then searches the input motion’s history to find

possibly time-warped motion segments spanning the action in its entirety. Looking

at the individual pose neighborhoods of the knn-search alone can lead to possibly

many different annotations. By using the Action Graph, paths representing motion

segment matches can be found through the annotated neighborhoods, resolving the

ambiguity.

Basically, the method presented in this chapter extends the Lazy Neighborhood

Graph (LNG) proposed by Krüger et al. [KTWZ10] to find motion segments similar

to the currently performed motion. In its original implementation, the LNG first

retrieves the k nearest neighbors from a motion database for every pose in the query

motion. To bridge the gap from these locally matching poses of the retrieved pose

neighborhoods to globally matching similar motions in the database, their method

constructs a directed acyclic graph by regarding the retrieved local neighboring poses

from the motion database as vertices in the graph. Now, an edge connects a pair of

neighbors of temporally adjacent pose neighborhoods, if certain step size conditions

are satisfied, similar to Dynamic Time Warping. In its simplest form, the step tuple

(steppose, steptime) = (1, 1) connects pose index p at time t to pose index p + 1 at

time t + 1. By allowing additional step tuples, e.g., (2, 1), (1, 2), the results could
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also possibly be time warped. After having made all possible connections, a single

source vertex s is connected to all the pose neighbors in the first neighborhood.

The problem of finding a motion contained in the database which is most similar

to the query motion can now be reduced to solving a single-source shortest paths

problem. Starting the search at vertex s, the algorithm only has to check whether

there exists a path that terminates at a vertex in the last neighborhood. The entire

global matching can be solved in O(km log(n)), where k is the number of retrieved

nearest neighbors, m the number of frames contained in the query motion and n the

number of frames in the motion capture database.

In contrast to the original implementation of the LNG, the developed action

recognition framework tries to find motion segments which start close to the be-

ginning of an annotated action having the currently processed frame close to the

terminating frame of an annotation (see Fig. 3.2). This is accomplished by first

inspecting the pose neighborhood of the current frame for annotated action ending

poses. Now, every annotated action starting pose containing the same annotation as

the found ending pose in the pose neighborhood queue of a certain window size w is

connected with the single source vertex mentioned above. The parameter w is cho-

sen so that all possible actions from the database (including time warped actions) fit

into the window. If an annotated action in the database is similar to the currently

performed motion and is contained in the pose neighborhood queue of length w, the

single-source shortest paths algorithm is able to find paths from the beginning of an

action to the end of the action, containing only the specified annotation. The found

actions are possibly time-warped according to the allowed time-steps, making the

method very flexible and robust to time variations in motion performance.

In the technical part of the motion detection scenario, a query motion take

(e.g., a Kinect recording), is tested against a set of query action classes A, that

is, annotated classes that are present in the database. As a result of searching

the Action Graph for motions associated with these class annotations a set of path

candidates C = {si} is returned, consisting of similar motion segments si. The size

of this set depends on the employed database, but may range from zero to several

thousand retrieved segments. Consequently, the percentage of detected paths si from

the Action Graph which agree with the query set A is computed, thus automatically

addressing the fundamental question whether one came across any action contained
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in A. The annotations which are represented most strongly are collected, i.e., make

for more than 10% of the whole set C, and their respective start and end frames

are computed as follows. The frame window which contains the intersection of the

annotation ground truth and a minimum of 75% of all according paths retrieved

from the Action Graph is computed. The start and end of this window marks the

start and end frame of the annotation at hand. Note that when the aim is evaluation

rather than detection, a slightly different protocol is followed. This will be addressed

in Section 3.5.

3.4.4 SVM-Based Recognition

In the evaluation part of this chapter, two different action recognition methods are

compared side-by-side, the online-capable Action Graph, where the input motion se-

quence is efficiently compared to annotated motions in the motion capture database,

and a Support Vector Machine (SVM) approach similar to one that was introduced

for motion capture data by Arikan et al. [AFO03]. Here, frame classification based

on a Support Vector Machine (SVM) with a standard Radial Basis Function kernel

(RBF) was implemented. To this end, the LibSVM implementation [CL11] was used.

Optimal SVM parameters C balancing hyperplane minimization and the influence of

slack variables as well as the RBF kernel width γ are determined using grid search

with cross validation. To reduce the time consumption for training, only 30% of

the frames of each training sequence were used and chosen randomly. To take the

possible influence of this random selection into account, four runs were conducted,

each time using a different training frame selection and the resulting classification

accuracies were averaged.

The SVM and the Action Graph based methods basically share the same work-

flow (see Fig. 3.1). Within the SVM-based situation, the preprocessing phase con-

sists of learning SVM parameters on a training set, whereas in the online phase, the

SVM classifier checks whether a frame derived from the input query motion belongs

to a previously annotated action.
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Figure 3.2: Detecting actions in current frame fn using the Action Graph. In this
example, detecting a ’Jumping Jack’ motion is illustrated which is performed in the
last six frames (fn−5 to fn) using a window of w = 6 frames. The poses of the
’Jumping Jack’ are color coded, ranging from green to red, representing the start
and end of the action, respectively. First, all poses annotated with starting poses
of actions (green) are connected to the single source vertex required for the single-
source shortest path algorithm, regarding all past neighborhoods up to window size
w. Now, for every neighborhood, poses are connected with edges according to the
allowed time and pose steps S (S = {(1, 1), (2, 2)} in this example). After running
the single-source shortest path algorithm, the method checks for every candidate
path terminating at an action ending pose (red pose in neighborhood fn) whether
the nodes on the path are consistently annotated with the same action, in which case
this action is reported as found. Note that every ’JumpingJack’ motion contains a
’ClapAboveHead’ in its middle, as can be seen in the pose neighborhoods (dashed
circles). Consequently, this clap was also detected by the algorithm, but at an earlier
stage (frame fn−2).
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Figure 3.3: Example action recognition run on frames 0 − 1686 of motion
HDM bd 03-05 02 120 from the HDM05 motion capture library, consisting of four
jumping jack motions followed by three complete and one half skiing motion starting
with the left foot. Note that the action recognition method also detects sub-actions
like the clap above the head, which is contained in the middle of each jumping jack.
The half-executed skiing motion at the end is not detected, because the Action
Graph is unable to find an annotated end frame in this case.

3.5 Results

3.5.1 Applications Used for Evaluation

For evaluation purposes, six applications were considered. First, in Section 3.5.4,

action recognition tests were performed on the cut dataset taken from the HDM05

motion capture database. Here, the cut sequence database was separated into a

training part that contained exactly nine realizations of each motion class, and

a testing part that contained at least three realizations. The same motion capture

database is then used to test the algorithm on a sparse accelerometer setup, detecting

actions using a total of four simulated accelerometers on the wrists and ankles.

In Section 3.5.5, the behavior of the methods was tested with Judo referee signal

movements in an online scenario, using query motions coming from an optical mocap

system. In this scenario the database contained typical referee signals performed by

three different actors with at least three repetitions. This database was captured

with a Vicon motion capture system and the motion capture data was stored in the

skeleton based .v file format.

The previous scenario was also modified to a cross-modal scenario, so that the

query motion was captured with a Microsoft Kinect sensor, obtaining the skeletal

data using Microsoft’s Kinect SDK. For this reason, the Judo database had to be

resampled to the native frequency of the Kinect sensor (30 Hz).
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In the next application example (Section 3.5.6), interest points extracted from

video data serve as input for the proposed algorithm, demonstrating applicability

in a vision-based context.

Lastly, in Section 3.5.7, an attempt is made to extract usable feature set data

from laser range scanner recordings.

Some applications which require poses in the database to be comparable need to

perform a normalization step on each pose, making them scale- and view-invariant.

Along the lines of Krüger et al. [KTWZ10], the root node of the skeleton is trans-

formed such that the skeleton faces forward and is anchored at the global coordinate

frame origin. If the skeleton is given in a hierarchical representation (e.g., HDM05

and Judo database skeletons), the root node’s position is translated to (0, 0, 0)T

and its orientation is set to the multiplicative identity quaternion, followed by a

forward kinematics calculation to update the remaining skeleton nodes. When nor-

malizing skeletons where joint positions are given in absolute world coordinates with

no rotational information (e.g., Kinect skeletons), the orientation of the root node

is estimated by exploiting rigid connectivity between the pelvis and its neighbor-

ing joints, similar to the normalization step used for raw optical marker data in

Chapter 2.

To obtain scale-invariance, the bones of any query skeleton are resized to match

the skeleton that was used to build up the database.

3.5.2 Description of the Evaluation

Allowing detection of more than one particular action at a time does not make

sense for evaluation of the detection method, especially when this is done by means

of confusion matrices. The decision criteria presented in Section 3.4.3, which allow

for several strongly represented action classes to contribute to the detection results,

are clearly not suitable for evaluation purposes. Instead, a choice is made for the

single most strongly represented action class found in the Action Graph paths. To

evaluate the quality of the decision method, the following cases are distinguished:

1. The retrieved motion paths lie completely within the relevant ground truth

interval, in which case the method is regarded as properly working.

2. The motion paths lie outside the ground truth interval as a whole, in which
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case the method is dismissed as incorrect (this case was rarely observed).

3. The retrieved path set intersects the ground truth interval, in which case

further differentiation is necessary: if the intersection includes more than 90%

of the total retrieved paths, the method is considered to work well, otherwise

this hypothesis is dismissed.

According to the above, matrices similar to confusion matrices are used to visualize

the performance of the action recognition algorithm. The columns of the matrix

represent instances of the recognized actions while the rows represent the actual

actions. Taking into account the cases in which the algorithm fails to detect any

action, a column labeled none is added. A perfect action recognition would have a

confusion matrix with 1 on the main diagonal and 0 for every other element.

3.5.3 Details on the knn Search

Choosing a feature set for the HDM05 cut database was straightforward. The results

from Krüger et al. [KTWZ10] indicated that feature set F 15
E , which includes the

positions of the head, hands and feet, would work very well on this database. The

confusion matrices presented in Fig. 3.4 confirm that this assumption holds. Instead

of directly including temporal information in the feature set, it is implicitly encoded

in the structure of the Action Graph: Edges are inserted between successive database

indices, according to the allowed step size conditions.

According to [KTWZ10], the steps sizes (1,1), (2,1), (1,2) and (2,2) are used. The

first three step sizes allow normal speed steps, half speed steps and double speed

steps, respectively, while the last step size allows the algorithm to completely skip a

single neighborhood at normal speed. In this configuration, the Action Graph easily

runs in real-time when searching for 256 nearest neighbors, achieving an average

frame rate above 75Hz in a multi-threaded implementation on the regarded motion

capture databases. The described results were obtained using a system with an Intel

hex core cpu with 3.33 GHz and 24 Gb of memory.

The knn search used in our approach can be replaced by a fixed radius search.

This variation does not produce convincing results, due to the following reasons:

First, a fixed radius can mean that the method does not find any neighbors. Second,

as was determined in tests of this variant, the variability between motions in some
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Figure 3.4: Confusion matrices for Action Graph and SVM-based recognition meth-
ods, calculated on the HDM05 cut database using feature set F 15

E and the corre-
sponding precision-recall diagram.

classes (e.g., cartwheel) is larger than the variability in other classes (e.g., walk

two steps). Therefore it is not possible to specify a uniform radius for all regarded

motion classes.

3.5.4 Action Recognition Tests on HDM05 Motion Classes

Action recognition tests were conducted on the HDM05 cut library, which contains

manually cut out motion clips that were arranged into several different classes and

styles, having multiple realizations of the same motion. These motions were divided

into a training set, containing 142 motions, and a test set, containing 273 motions.

The confusion matrices for the two action recognition methods on this dataset using
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Figure 3.5: Confusion matrices for Action Graph and SVM-based recognition meth-
ods, calculated on the HDM05 cut database using data obtained from accelerometers
attached to the wrists and ankles. Also, the corresponding precision-recall diagram
is shown.
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Figure 3.6: Confusion matrices for different values of the parameter k (128, 256, 512)
using feature set F 15

E on the HDM05 database and the corresponding precision-recall
diagram.
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k = 1024 in the k-nearest neighborhood search can be seen in Fig. 3.4. Examining

the confusion matrices shown in Fig. 3.4, the SVM-based approach shows a good

performance for a pose-based approach, having a clearly visible diagonal with a

few outliers, primarily confusing walking motions. The Action Graph shows a crisp

diagonal, with only two major outliers, namely recognizing a sideways punch instead

of a cartwheel starting with the right hand and recognizing a clap above the head

instead of a jumping jack. However, in both cases the correct actions are sub-actions

of the recognized action. Also, when visually comparing the cartwheel instances with

the sideways punches, the starting phases of the cartwheels show huge similarities

with the sideways punches, leading to false recognitions. This indicates that the

method is broadly suitable. Inspecting the accuracy plot for the HDM05 library in

Fig. 3.6, the recognition method detects 90% of actions correctly and its accuracy

peaks at approximately 90% using k = 1024.

3.5.5 Action Recognition Tests on Judo Referee Signals

In a cross-modal scenario, skeletons extracted from a Microsoft Kinect device were

used to query for similar motions in the optical motion capture database containing

the Judo referee signal motions. Skeletal data obtained from this sensor contains

positional data only and is of much lower quality than the optical mocap data,

meaning the positional noise is much more noticable and the accuracy of the system

is not on par with optical systems. Since the Microsoft Kinect delivers skeletal

motion data at 30 Hz, whereas the optical motion capture system has a frame rate

of 119.88 Hz, the Vicon data is downsampled to the lower rate to obtain temporal

comparability.

In order to improve the probability of finding paths through the pose neighbor-

hoods using the Action Graph, additional tests were run with an increased number

of allowed steps (see Fig. 3.8). Interestingly, feature set F 15
E gains in accuracy when

allowing 8 step tuples and 210 neighbors.

3.5.6 Action Recognition Tests on Video Data

To show that the action recognition concept easily applies to other sorts of data, this

section presents an example of action recognition from video data. In order to keep
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Figure 3.7: Confusion matrices for the Action Graph based recognition method,
calculated on Judo referee motions using feature set F 15

E for Kinect and V-Files
(actor in- and excluded) and the corresponding precision-recall diagram.
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Figure 3.8: Confusion matrix and precision-recall diagram for Kinect queries in the
Judo scenario where larger step sizes were used.

Figure 3.9: Screenshots of the video used for action recognition in Section 3.5.6 with
the extracted features highlighted in red.

emphasis on the action recognition method, a simple setup is used to demonstrate the

concept. To this end, the positions of hands, feet and the head are annotated in the

first frame of video data and standard feature detection methods (MSCR and SURF)

are used to track the relevant features used in the algorithm (see the jumping jack

example in Fig. 3.9). Based on these, a ten-dimensional feature set F 10
E-2d is obtained

consisting of five two-dimensional positions. Camera parameters are derived by

incorporating knowledge about the scene and actors. Since the motion database in

this example consists of three-dimensional positional data and the feature extraction

from video yields two-dimensional interest points, parallel projections of all poses

contained in the database were performed. To handle different viewing directions,

projections were calculated from varying viewing angles in 20 degree steps. All

resulting two-dimensional features were used to construct a kd-tree for knn search.
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The back-projection of kd-tree indices results in database indices in the motion’s

original space, enabling the use of the Action Graph to detect the performed actions.

Since the tracked features are very noisy in this case, the Action Graph does not

return paths in all relevant cases. To alleviate this, step size conditions were adapted

for this scenario to allow for steps (1,3),(3,1),(4,1) and (1,4) in addition to those

previously mentioned. The results of the action recognition tests on video data can

be seen in the accompanying video, contained in the supplemental material.

3.5.7 Action Recognition on Laser Range Scanner Data

Laser range scanners (LRS), like the Velodyne LRS shown in Fig. 3.10, output

distance information to points in a scene. The applications of depth data range

from providing information about surroundings to collision and object avoidance on

autonomous vehicles in civilian [TMD+07] and military robotics applications. The

devices can also be used for surveillance or mapping of areas. The most recent

versions are light enough to even be mounted on small unmanned aerial vehicles

(UAV).

By use of a rotating head with an array of laser emitting diodes, a laser range

scanner delivers a 360 degree view of the scene around it. The distance to an object

is measured by determining the time it takes for the laser light to travel to the

target and back to the device. A typical indoor scene captured with a LRS can

be seen in Fig. 3.11. Information about motions performed by actors in a scene

captured by a LRS could be of great value in many applications. One example

would be self-driving cars that could benefit from predicting pedestrian movement

by analyzing the LRS data stream. Another example from a military context could

be a robot following a soldier, anticipating movement and following commands by

understanding full body gestures. All of these additional features come at virtually

no extra cost, because the scanners are usually already mounted on the vehicles,

making it a very cost effective and useful add-on.

In this section, a known and well working method for extracting feature set F 15
E

developed for depth image data [PGKT10, BMB+11] is applied to LRS data with the

ultimate goal to detect the performed actions using the Action Graph. While depth

data delivered by a Kinect or time of flight (TOF) camera usually has high frame

rates as well as spatially dense data with comparably little noise, the LRS produces
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Figure 3.10: Rotating Velodyne laser range scanner.

highly noisy data at low frame rates. The advantages of the LRS are a 360 Degree

field-of-view, a much greater range and applicability in outdoor environments.

Assume that for a LRS recording with N ∈ N frames the isolated actor point

cloud Pf is given for every frame f . LRS poses now have to be normalized and the

corresponding features of F 15
E extracted to make them comparable to poses stored in

the mocap database. Along the lines of Plagemann et al. [PGKT10], the centroids

of all Pf are calculated. Then, the points belonging to the torso are estimated by

checking whether they are inside a sphere with radius 0.15 m and the corresponding

centroid as center point. The direction that the actor is facing can be estimated

by projecting the normal of a least-squares plane fit to the torso points onto the

ground plane. Similar to Baak et al. [BMB+11], a graph structure in combination

with Dijkstra’s Algorithm [Cor09] is used to compute the first 5 geodesic extrema,

which often correspond to the end effector positions (see Figs. 3.12 and 3.13).

Unfortunately, frame overlap (double limb) artifacts originating from dynamic

actor movement result in ambiguous geodesic extrema estimations (see Fig. 3.13).

Due to low spatial resolution and laser diode dead zones, the distance threshold for

building the local vertex neighborhoods used to build up the graph structure as in
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Figure 3.11: Typical frame (point cloud) of an indoor LRS recording, The actor point cloud is highlighted.
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[BMB+11] needs to be a relatively large value. This in turn results in falsely merged

connected components, especially in the leg area, when limbs are too near to each

other (see Fig. 3.12). In addition, estimation of the viewing direction, which is used

to rotationally normalize the point cloud prior to feature extraction, is also afflicted

with significant errors. The frame-wise error between the estimated and ground

truth viewing direction during the course of a jumping jack motion is shown in

Fig. 3.14. Note that during this experiment, the actor was intentionally positioned

as near as possible to the LRS. Placing the actor further away results in lower spatial

resolution, deteriorating results even more. As apprehended, an action recognition

test run using the extracted features resulted in no database motions similar to the

performed one.

In summary, feature set F 15
E extracted from LRS recordings using normalized

point clouds in combination with the Action Graph does not allow action recognition,

even when large step sizes are used to accommodate for the highly noisy data.

3.5.8 Comprehensive Analysis of the Results

As demonstrated by the confusion matrices in Fig. 3.4 and Fig. 3.5, the results of the

above-mentioned tests show that the proposed detection method works very well on

optical motion capture data and still well for accelerometer data. However, the Judo

results lag far behind this good score both for motion capture data as well as data

from Kinect recordings (see Fig. 3.7). In both cases this is partly due to the fact that

the recorded referee motion repertoire turns out to be a challenge for the method

in itself: For one, most of the gestures typical for Judo referees are fairly static

and do not display the continual movement a sensible action recognition method

is based on. Additionally, referee gestures with different meanings often differ only

marginally, especially for the noisy Kinect data and its poorly aligned skeletons.

This causes conditions to deteriorate.

Fig. 3.6 illustrates the transition of the resulting precision respectively recall for

increasing choices of the number k of nearest neighbors in the action recognition

test. As can be seen, the results for k = 512 already display satisfactorily high

precision. Achieving this is obviously easy if as little recall is required. A more

reliable framework forces the recall to be higher by employing a parameter k = 1024

although this effects in some loss of precision.
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3.6 Conclusion and Future Work

This chapter examined methods to automatically detect human full body motions

using motion capture data obtained from various sensor setups. This includes work-

ing with high quality optical motion capture data, skeletons output by the Microsoft

Kinect within a cross-modal setup as well as sparse and noisy data obtained from

accelerometers. Moreover, the method extends to features extracted from video

data. In particular, the presented data-driven motion based detector was found to

be superior to Support Vector Machines in terms of their performance.

The approach at hand is parameterized by the employed feature sets, hence will

work with other capabilities. It will therefore be a matter of future work to use

and to evaluate the recently proposed more robust feature sets [OCK+14] within

the framework. There are certain areas which turn out to serve as fertile grounds

for future work: From one point of view, the application of the fixed radius search

method has revealed there is a striking amount of variation in the respective re-

trieved pose neighborhoods of certain queries. In particular, the gaps occurring

within these neighborhoods seem noteworthy. Analyzing neighborhood variation

phenomena should provide interesting new insight.

Although the presented method is already real-time capable in many scenarios,

it allows for modifications to increase this capability to scenarios with many allowed

time steps and large pose neighborhoods: It is clearly not necessary to create a

complete graph structure for every single frame throughout the process. Working

out a more efficient solution which avoids discarding previously acquired information

in the spirit of Tautges et al. [TZK+11] will contribute significantly to greater

efficiency. Moreover, since all significant processes involved in the method are easy

to parallelize, they come with even more advantages when executed on highly parallel

units. In particular, implementing the proposed techniques on a GPU seems a logical

step which shall be taken in the future.

Another line of future research is the exploration of other consumer electronic

devices—such as contact sensors, simple 1-or-2 axes accelerometers, altimeters,

etc.—and their combinations. Although not all of these might be suitable for the

current approach, many of them present promising perspectives. Especially smart-

phones come with an increasing variety of sensors and hence have become popular
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objects of study. Combining the information from different sensors at different body

locations combined with Bayesian a priori knowledge on the temporal evolution of

human motions taken from databases—as the approach can be summarized—might

be beneficial in this more general context as well.
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Figure 3.12: Frame of a LRS recording (jumping jack) with the actor point cloud
isolated. Each of the connected components of the neighboring graph is rendered in
a different color. Edges connecting neigbhboring connected components are drawn
as black lines while the geodesic extrema are rendered as black dots. Also, the
calculated viewing direction is projected onto the ground plane. Clearly, the frame
exhibits limb merging (legs), movement artifacts (arm) as well as dead zones, e.g.,
between waist and chest, not covered by the LRS. This leads to the situation that
two of the five geodesic extrema are falsely located (knee, wrong arm).
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Figure 3.13: Another frame of the same LRS recording already presented in Fig. 3.12.
Again, double limb movement artifacts are visible (arm). Although the orientation
of the actor to the camera has not physically changed when compared to Fig. 3.12,
the derived viewing direction differs significantly. Again, two of the five geodesic
extrema are falsely located (waist, wrong arm).
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4
Pulse Detection from Video Data and its

Application to Epileptic Seizure Detection

and Classification

4.1 Introduction

Epilepsy is a brain disease characterized by an enduring predisposition to generate

epileptic seizures affecting more than 50 million people worldwide [Wor, FAA+14]. It

is characterized by spontaneously recurring seizures which can present with a large

variety of symptoms, depending on the brain area that is affected by abnormally

synchronous activity of neurons. For instance, patients may simply have a short

and rising sensation of nausea, a tingling in an arm or a déjà-vu sensation. This

seizure type is called aura or simple-partial seizure (SPS). Seizures can also impair

the consciousness of patients (i.e., patients do not respond to external stimuli or are

not aware of what is happening in their surroundings) and patients display stereo-

typed automatisms such as smacking, chewing or swallowing (called oroalimentary

automatisms) or involuntary repetitive movements with their hands (called man-

ual automatisms). This seizure type is called complex-partial seizure (CPS). In

the worst case, the patient suffers from a generalized tonic-clonic seizure (GTCS)

which is characterized by a stiffening of the whole body that develops into repetitive

rhythmic jerking of arms and legs. Apart from these symptoms, epileptic seizures

frequently lead to alterations of autonomic body functions (i.e., breathing, heart

activity, sweating, and others). For instance, 80-90 % of the seizures are associated

53
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with an increase of heart rate [LSL+03].

The time during the seizure is called ictal (derived from the latin word “ictus”),

the time period before the seizure-onset is labelled preictal and the time period

after seizure-offset postictal, respectively. To control and suppress occurrence of

seizures, people with epilepsy take anticonvulsant drugs on a daily basis. The ther-

apeutic effect is commonly evaluated by seizure diaries in which patients, relatives

or caretakers report the seizures. A fundamental problem is, however, that self-

reported seizure diaries are notoriously incorrect, because patients are not aware

of their seizures or they forget them (amongst others because seizure also perturb

brain structures that are important for memory). About 50 % of the seizures are

incorrectly documented (i.e., not reported by the patients; [HPE07]), challenging

the validity of seizure diaries for evaluating the therapeutical efficacy. Therefore,

it would be very relevant for both daily clinical practice as well as pharmaceutical

drug trials to develop an automatic method to count seizures. Novel mobile health

technologies (e.g., smartphones, fitness-trackers) allow measurement of heart rate

and body movements, possibly improving the quality of seizure documentation.

A further challenge in the field of epilepsy is that about 18 % of patients who

were given the diagnosis of epilepsy do actually not suffer from epilepsy, but other

medical conditions [XNM+16]. For instance, syncopes (sudden loss of consciousness

along with body jerks) or psychogenic non-epileptic attacks can be mistaken for

epileptic seizures. The false diagnosis is often due to the fact that these episodes

happen in the absence of a qualified medical doctor and that the proper diagnosis

is commonly based on the report of laymen. However, the increasing number of

home-videos taken with smartphones may help to make the correct diagnosis. In

this context, it is important to note that heart rate was shown to provide some

help to support the distinction between these three entities [RPMD12]. Therefore,

in addition to the visible symptoms of the episode of unknown nature seen on the

video, it would be very useful to have additional information on autonomic features

such as heart rate.

In this chapter, it is asked whether information on heart rate can be extracted

from video films of epileptic seizures. A proof-of-concept under controlled conditions

is provided (i.e., simultaneous information on the heart rate as assessed by estab-

lished methods), limitations of the method are explored and it is tested on examples
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of videos originally taken with smartphones by relatives of epilepsy patients.

4.2 Overview

This chapter is organized as follows:

In Section 4.3, previous work related to video pulse detection methods as well as

their application in medical environments is presented.

Following in Section 4.4, a method for determining the heart rate from electrocar-

diography (ECG) signals is discussed and demonstrated on examples.

The method used for detecting the heart rate from a video of the human face is

presented in Section 4.5.

Section 4.6 evaluates the applicability and limitations of the video pulse detection

method in the context of epilepsy and contains results of selected usage scenarios.

The chapter closes in Section 4.7 with a conclusion and suggestions for future work.

4.3 Related Work

Photoplethysmography (PPG), i.e., an optically obtained plethysmogram, is a way

to optically measure the volumetric changes of an organ and was first introduced by

Hertzman and Spealman [HS37] in 1937. In daily clinical routine, PPG measurement

devices are usually attached to a finger and deliver heart rate and oxygen saturation

derived from the raw PPG signal, which is a reflection of variations in blood volume.

This is based on the principle that blood is more light absorbent than surrounding

tissue, thus affecting transmission and reflectance of irradiated light.

Scully et al. [SLM+12] demonstrate that no specialized clinical equipment is

necessary by showing that a fingertip placed directly on a smartphone camera is

enough to record a PPG signal.

Remote measurement of physiological parameters such as heart rate and res-

piration rate as well as oxygen saturation has seen increased interest over the

last years, starting with Wieringa et al. [WMvdS05] and Zheng et al. [ZHCS08].

Verkruysse et al. [VSN08] were the first to analyze remote PPG using videos of faces

filmed with a consumer photo camera in video mode in ambient lighting. Since then,

the method has been improved by several researchers, incorporating tracking of the
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subject’s face and increasing its robustness against subject movements and changes

in scene illumination [PMP10, PMP11, LCZP14].

Recently, Przybylo et al. [PKJA16] investigated the dependence on lighting

conditions and camera performance in videoplethysmography by evaluating the in-

fluence of the lighting spectrum, camera frame rate and video compression.

In a clinical context, the video pulse detection method was applied by

Tarassenko et al. [TVG+14], who estimated heart rate and respiratory rate from

long-term videos of patients undergoing haemodialysis in the Oxford Kidney Unit.

In another line of research, Balakrishnan et al. [BDG13] exploit subtle head

oscillations that accompany the cardiac cycle to derive the heart rate.

In Eulerian video magnification by Wu et al. [WRS+12] and its follow-up work

Phase-based video motion processing by Wadhwa et al. [WRDF13], the authors de-

scribe methods to both reveal and emphasize subtle color and motion changes in

video recordings.

4.4 Heart Rate from Electrocardiography Signals

In Electrocardiography (ECG), the electrical activity of the heart is recorded over

time by a set of electrodes that are placed on the skin. The electrical stimulus that

causes the heart to contract produces a potential variation on the skin and can be

measured by the electrodes. This noninvasive medical procedure produces a graph of

voltage versus time which is called an electrocardiogram (also abbreviated as ECG).

An example can be seen in Fig. 4.1.

Heart rates are usually given in heart beats per minute [bpm] and can be calcu-

lated from the raw ECG signal by measuring how many times the heart goes through

a cardiac cycle in 60 seconds. The QRS complex consists of three deflections in the

ECG waveform and reflects the depolarization of the right and left ventricles and

is the most prominent feature of the human ECG. On a near perfect ECG signal

as in Fig. 4.1, the easiest and most frequently used manual method employed by

physicians is to directly count the number of R-peaks, i.e., the most prominent fea-

ture of the QRS complex. Unfortunately, ECG signals often times exhibit all kinds

of noise, e.g., power line noise or electrical noise originating from nearby muscle

movement, possibly different amplitude levels throughout the recording or even in-
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Figure 4.1: Example of an easy to process raw ECG signal (20 s) recorded by a
clinical ECG system.
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Figure 4.2: Example of a raw ECG signal (20 s) that needs further processing before
R-peaks can be detected

verted R-peaks (see Fig. 4.2). This means that in order to automatically detect the

R-peaks, some preprocessing has to be done on the original signal.

The performance of ECG analyzers is commonly evaluated using a database of

ECG signals annotated by medical experts, e.g., the MIT-BIH arrhythmia database

[MM01, GAG+00]. Since, in this work, solely the timestamps of the R-peaks are of

interest, a simple peak detection algorithm is described that allows quick, accurate

and robust R-peak detection.

The first step in preparing the raw signal X := xi ∈ Rn of length n for R-peak

detection is centering the data by subtracting the mean:

X = xi ← xi −
1

n

n∑
k=1

xk.
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Figure 4.3: Processed ECG signal from Fig. 4.2. Detected peaks (red circles) above
0.25 normalized volts (dashed red line) and a minimum distance of 256/4 frames
represent the R-peaks.

Then, the signal is detrended to remove any linear trends. This is done by computing

the least-squares fit of a straight line to the data and subtracting the resulting func-

tion from the data. After detrending, the absolute value of the signal is calculated

to deal with the possibility of inverted R-peaks:

X = xi ← |xi|.

Finally, the signal is normalized to within the interval [0, 1] to allow a constant

peak detection threshold regardless of signal amplitude. The result of processing

the signal from Fig 4.2 can be seen in Fig. 4.3. R-peak detection can now be

accomplished by searching for all peaks in the signal that have a minimum height

of 0.25 normalized volts and a minimum peak distance of the signal’s sampling rate

divided by 4, resulting in inter-R-peak distances (RR intervals) no shorter than

one-fourth of a second, i.e., 240 bpm.

Let RR = rj ∈ Rm be the m RR intervals calculated from signal X, represented

in milliseconds. Now, with the average RR interval duration

R = RR,

the heart rate HR in beats per minute is calculated by

HR = 60 000 ms/R.
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Figure 4.4: Tracking example showing how a bounding box initialized in the first
frame is tracked in two frames of the video sequence. The screenshots show the
tracking points (white), the transformed bounding box (yellow) and the shrunk
bounding box used by the video pulse detection method (red).

4.5 Pulse Detection from Video Data

In this work, the heart rate of a human subject is determined by analyzing the subtle

changes in color of a portion of the facial skin, as recorded by a video camera.

Assume that the input video consists of n frames f1 to fn. To keep track of

the face, even during body movements or camera shake, the subject’s face or a

portion thereof is annotated in f1 for further tracking throughout the rest of the

video. This can be done manually by specifying a bounding box around the region of

interest (ROI) or automatically by means of face detection algorithms [VJ01, VJ04].

This ROI serves as the starting point for further tracking using the KLT algorithm

[LK81, TK91], that tracks a set of feature points from one frame to the next and

calculates the required transformation (see Fig. 4.4).

The initially tracked region usually contains parts of the background and hair

of the subject to allow robust tracking of the face. In order for the pulse detection

algorithm to work correctly, these areas as well as the changes in color resulting from

movements in the facial region e.g, chewing, talking, blinking, must be removed as

much as possible before further processing. Although very sophisticated methods

for removing these artefacts using information about face topology exist [LCZP14],

a simple and effective way is to shrink the tracked ROI’s dimensions by constant

scaling factors sx, sy ∈ (0, 1], as presented in [PMP10].

After tracking, assume that for every frame fi, i ∈ [1, n], the tracked ROI is
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specified by a bounding box represented as tuple

ROIi = (x, y, a, b) ∈ R4,

where x and y describe the two-dimensional position of the lower left corner and a

and b represent the width and height of the ROI, respectively. The calculation of

the shrunk bounding box that is centered in the original bounding box is as follows:

ROIshrunki = (x+ (a− a · sx
2

), y + (b− b · sy
2

), a · sx, b · sy).

This work uses sx = sy = 0.5 for all examples, because unlike the controlled envi-

ronment in [PMP10] where sx = 0.6 and sy = 1 were used, the orientation of the

subject’s face in the first frame of video is not given as upright in this work. Another

solution would be to use a non axis aligned bounding box to initialize the tracking,

but the results show that this is unnecessary overhead.

In previous works like [VSN08], the authors found that the green color channel

carries the most information with respect to pulse detection applications. Therefore,

after the shrunk ROI is calculated over all n frames, the mean green value ḡi of the

shrunk ROI’s pixels is calculated for every frame fi. An example of the resulting sig-

nal calculated on a real video recording can be seen in Fig. 4.5. The pulse detection

method determines the heart rate by converting a part of the mean green channel

signal of a certain window width w into the frequency domain using a fast fourier

transform. After the subsignal is selected, any linear trend is removed by detrend-

ing. Then, the signal is smoothed using a centered moving average filter with span

3. In order to limit the regarded pulse frequencies to those occuring in the human

body, the signal is bandpass filtered with low and high cutoff frequencies of 0.7 Hz

and 4 Hz (42-240 bpm), respectively. Finally, the signal is zero padded ([VSN08])

to 120 s to allow a finer frequency discretization. The average heart rate during

the time the data of window w was taken from is assumed to be the most powerful

frequency of Welch’s power spectral density estimation [Wel67] (see Fig. 4.7). The

choice of w = 16 s for all presented examples is explained in Section 4.6.3.
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Figure 4.5: Mean green channel signal calculated from the shrunk ROIs.

4.6 Results

4.6.1 Overview

For evaluating the method presented in Section 4.5 and to determine its usefulness

in the context of epilepsy, the heart rates derived from video data are compared with

average heart rates calculated from simultaneously recorded clinical ECG data (see

Section 4.4) using the same window width as the video pulse detection. With the

exception of Sections 4.6.6 and 4.6.7, all videos were taken of patients undergoing

presurgical assessment at the Department of Epileptology at the University of Bonn.

Beginning with a video pulse detection example in Section 4.6.2, a typical result

of the video pulse detection method is shown and discussed.

In Section 4.6.3, the accuracy that the method is capable of is determined by

detecting the heart rates of 10 subjects during an interictal phase, i.e., phases with
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Figure 4.6:
Top: Unfiltered subsignal extracted from window w the signal in Fig. 4.5
Bottom: Detrended, smoothed and bandpass filtered subsignal

no seizure. Usually, these phases feature patients lying in bed reading, sleeping

or watching TV, i.e., phases with very little or no movement which could possibly

negatively influence the detection results. Also, using the results of this section, a

fixed value for the window width w is determined that is used for the rest of the

evaluation.

Then, in Section 4.6.4, the method is used to detect the heart rates in 10 ictal

scenarios by analyzing and comparing the seizures’ immediate preictal and postictal

phases.

During nighttime, clinical video/EEG monitoring of patients is done with in-

frared cameras. The performance and applicability of the video pulse detection

method on this type of video is evaluated in Section 4.6.5.
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Figure 4.7: Using Welch’s method [Wel67] to estimate the power spectral density of
the signal shown in Fig. 4.6 (bottom). The frequency with maximum power (0.88 Hz
in this example) is assumed to be the average heart rate during window w.

Often times, patients have smartphone video recordings of their seizures, either

self recorded or filmed by a family member. An example of the analysis of two

recordings is presented in Section 4.6.6.

Finally, the influence of makeup on the detection result are discussed in Sec-

tion 4.6.7.

4.6.2 Pulse Detection Example

A typical run of the method described in Section 4.5 can be seen in Fig. 4.8. Here,

the results of detecting the heart rate of approximately 3.8 minutes of video data

during the preictal, ictal and postictal phases of an epileptic seizure are shown and

compared to the ECG ground truth heart rate.

Interestingly, all of the data points of the heart rates detected from video lie

on discrete plateaus. This is a direct consequence of transforming the signal into

the frequency domain using a fast fourier transform. An important property of the

FFT is that, with a video sampling rate fs = 25 Hz and a window size w = 16 s =
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400 samples, a maximum frequency resolution of

fs
w

=
25 Hz

400 samples
= 0.0625 Hz = 3.75 bpm (4.1)

can be obtained [Sha49]. The obtainable frequency resolution is reduced even fur-

ther by using Welch’s method for power spectral density estimation, which reduces

noise at the cost of frequency resolution. By padding the signal with zeros (see

Section 4.5), a finer frequency discretization is achieved which, in this application,

allows better parameter estimation of the underlying signal.

4.6.3 Interictal Video Pulse Detection

In this section, the heart rates of 10 subjects (7 female, age 27.7 ± 13.2 years) are

analyzed with the video pulse detection method during interictal phases. In these

phases, patients and doctors wait for a seizure to happen, so that it can be recorded

by video/EEG for further analysis. In between seizures, patients usually spend their

time lying in bed reading books or watching television, which provides a near perfect

scenario for video pulse detection.

For each sample, the subject’s pulse was determined from 30 to 60 s of video

data with window w as a parameter, which was varied from 4 s to 20 s in 1 s steps.

Then, the average reconstruction error, i.e., the average distance to the clinical

ECG ground truth heart rate, was calculated along with its standard deviation.

The results are shown in Fig. 4.9. From this data, a window size of 16 s was chosen

for subsequent evaluations, because it provides the shortest window with almost

maximum accuracy.

Figure 4.10 shows an example of the video pulse detection during an interictal

phase using a window of 16 s. The plots for all other subjects can be found in

Appendix A.1.

In Table 4.1, the average video and ground truth heart rates as well as the

detection errors of the 10 interictal heart rate detection experiments are shown.

Figure 4.11 visualizes the interictal detection results and provides an overview of

the achievable detection accuracy, showing a very good average reconstruction error

of 0.84± 0.62 bpm calculated over all 10 samples.
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Figure 4.8: Pulse detection results and screenshot of 228 s of video (@25 fps) using
a window of 16 s. The ictal phase of the epileptic seizure, annotated from EEG
data, is highlighted in red. Although the subject lies in bed and is not involved in
any physical activity, the ground truth and video detected heart rates rise abruptly
at around frame 2200, indicating the potential beginning of an epileptic seizure.
At around frame 2800, possibly as a secondary effect of the epileptic seizure, the
subject quickly blinks her eyes for a prolonged time period, fooling the method into
detecting a quicker heart beat. At around frame 3800, the patient turns her head to
look at the nurse entering the room, which introduces high powers in low frequencies
of the power spectral density estimation due to a different illumination of the face.
Video pulse detection then returns to normal at around frame 4900, when these low
frequencies have left the 16 s window.
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Figure 4.9: Influence of reconstruction error on chosen window width w.

4.6.4 Ictal Video Pulse Detection

In order to determine the suitability of the presented method for epileptic seizure

detection, the videos of 10 patients (6 female, age 38 ± 14.62 years) with epileptic

seizures were analyzed. The ictal phases of these seizures were annotated using

the clinical EEG by an experienced expert in the field of epilepsy. In most cases,

excessive movement during the ictal phase results in too much illuminance variation

and face tracking problems, for which reason video detection was split into two

intervals, using data from the immediate preictal and postictal phases, respectively.

Plots of a complex partial seizure as well as a generalized tonic clonic seizure can

be seen in Fig. 4.12. The plots for all other subjects can be found in Appendix A.2.

To check if the heart rate rose above a predefined threshold indicating an epileptic

seizure, the heart rate detected from the preictal phase HRpre is used as the baseline
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Figure 4.10: Interictal video pulse detection example

heart rate and is combined with the heart rate from the postictal phase HRpost to

form the heart rate ratio

HRratio =
HRpost

HRpre

. (4.2)

The detection results are summarized in Table 4.2 and Fig. 4.13. Clearly, in 90 % of

the cases, a rise in heart rate is detectable by the method, indicating the possibility of

an epileptic seizure. In the case of the single exception (Subject 4, HRratio = 1.03),

it was not possible to find a large enough interval of video frames without patient

movement close to seizure offset. In this instance, at the earliest possible postictal

video pulse detection time, heart rate had already dropped to preictal baseline again.
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Figure 4.11: Interictal and nighttime video pulse detection results.

4.6.5 Nighttime Video Pulse Detection

Epileptic seizures often happen when patients are asleep. This is why, during clinical

video/EEG monitoring, video recording is switched to an infrared camera when the

monitoring room is insufficiently illuminated for regular video.

This section evaluates the performance of the video pulse detection method on

nighttime recordings of 10 patients (7 female, age 27.7± 13.2 years).

The clinic’s infrared camera outputs a RGB grayscale image, i.e., r = g = b for

each pixel in the frame, so the algorithm can be applied to this data without any

changes. The results are summarized in Table 4.3 and Fig. 4.11. A typical pulse

reconstruction example is presented in Fig. 4.14. The plots for all other subjects

can be found in Appendix A.3. Unfortunately, the results show that infrared light

reflection and transmission from the subjects’ faces carries little to no information
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Figure 4.12: Examples of pre- and postictal video pulse detection. The ictal phases
are annotated in red from EEG data. In contrast to the CPS example (top), the
GTCS example (bottom) shows a higher rise in heart rate at seizure onset, which
takes longer to return to the preictal baseline after seizure offset. As expected, the
heart rate ratio, i.e. the factor by which the postictal heart rate differs from the
preictal baseline, is much higher in the GTCS (2.0) than the CPS (1.22) case, also
taking into account the temporal distance between pre- and postictal measurements.
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Table 4.1: Interictal video heart rate (HR) and ECG measured ground truth heart
rate (GT) along with detection errors using 30 to 60 s of video for each sample.

Detected HR [bpm]

Subject Video GT Error [bpm± SD]

1 53.6 55.6 2.58± 2.12
2 63.4 63.7 0.83± 0.68
3 62.0 62.2 0.71± 0.64
4 56.1 55.9 0.58± 1.82
5 75.5 75.6 0.49± 1.17
6 50.3 50.4 0.66± 2.07
7 76.0 75.8 0.64± 0.49
8 62.7 62.6 0.60± 1.64
9 78.1 78.3 0.74± 0.46
10 65.2 65.0 0.53± 1.50

.

to reconstruct the heart rates, with the error averaging at 24.47±15.67 bpm over all

10 samples. The significant noise found in all nighttime videos might also contribute

to the high error. Interestingly, the nighttime video pulse detection of Subject 8 and

Subject 5 still produced very good (0.42± 1.91 bpm) and acceptable (4.08± 10.83

bpm) results, respectively. Also, all wrongly detected heart rates lie well above their

respective ground truth heart rates.

In another experiment, the videos from the daytime interictal recordings (see

Section 4.6.3) were converted to grayscale by eliminating the hue and saturation in-

formation while retaining the luminance. Then, the video pulse detection algorithm

was run on the modified videos. In this case, only marginal differences to the results

calculated on the original RGB videos (see Fig. 4.11) were observed.

4.6.6 Video Pulse Detection from Smartphone Videos

Often times, patients come to see a doctor for help and bring a self recorded video

of what they think was an epileptic seizure. These videos are either filmed by the

patients themselves or by a family member or friend. As described in Section 4.1,

seizures do not always have to be generalized tonic clonic seizures that are visually

distinguishable from everyday life due to excessive movement and loss of control.
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Table 4.2: Heart rate (HR) detection results of the preictal and postictal phases of 10 seizures, along with ground truth
(GT) heart rates calculated from ECG measurements, pre-/postictal HR ratios, lengths of the respective detection
intervals as well as the temporal distance between pre- and postictal video pulse detection measurements.

Detected HR [bpm]

Preictal Postictal HR Ratio Interval Length [s] Distance

Type Video GT Error Video GT Error Video GT Preictal Postictal Prepost [s]

GTCS 63.8 63.9 0.54± 0.42 73.5 73.2 0.60± 0.53 1.15 1.15 60.0 19.7 917.4
CPS 62.6 62.6 0.71± 0.59 82.3 82.6 0.60± 0.10 1.31 1.32 43.0 22.0 219.0
CPS 58.6 58.5 0.82± 0.77 70.7 71.2 0.79± 0.71 1.21 1.22 39.9 32.9 173.1
CPS 68.9 69.0 0.69± 0.52 70.8 71.3 0.94± 0.53 1.03 1.03 29.0 40.0 135.0
GTCS 58.8 58.9 0.74± 0.70 119.1 119.1 0.36± 0.20 2.03 2.02 36.0 30.0 996.0
SPS 91.6 91.7 0.57± 0.35 109.7 110.1 0.34± 0.48 1.20 1.20 40.0 18.0 221.4
CPS 58.3 58.4 0.52± 0.38 77.7 78.2 1.39± 1.03 1.33 1.34 107.0 24.0 41.0
GTCS 81.8 84.6 2.97± 4.77 102.5 101.6 1.84± 1.45 1.25 1.20 19.1 40.0 268.6
GTCS 65.7 65.6 0.29± 0.23 96.7 96.9 1.36± 0.42 1.47 1.48 40.0 19.3 610.7
GTCS 56.4 56.7 0.66± 0.65 71.8 76.1 4.35± 0.07 1.27 1.34 38.0 18.0 250.6
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Figure 4.13: Ictal (immediate pre and post) video pulse detection results

In general, epileptic seizures can be hard to detect without ground truth EEG and

may only be noticable by subtle differences in behaviour.

In this section, the heart rate is detected from two patients’ smartphone videos

during an assumed seizure, recorded by a family member. To protect the anonymity

of the patients, no screenshots of actual videos are presented in this work, only

descriptions are given:
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Figure 4.14: Pulse detection results and screenshot of a nighttime (infrared) video
(@25 fps) using a window of 16 s.
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Table 4.3: Nighttime video heart rate (HR) detection errors using 60 s of video for
each sample.

Detected HR [bpm]

Subject Video GT Error [bpm± SD]

1 80.1 49.7 30.58± 26.54
2 88.7 50.9 37.83± 27.01
3 80.9 62.9 18.15± 20.43
4 77.7 45.7 31.98± 21.57
5 65.7 64.9 4.08± 10.83
6 72.8 51.4 21.45± 24.44
7 124.1 75.5 51.39± 14.20
8 53.9 53.8 0.42± 1.91
9 76.4 63.8 15.19± 13.20
10 95.2 62.2 33.81± 19.92

Smartphone video example 1:

The video is 34 seconds long (@25 fps) and filmed in a vertical orientation. It shows

the face of an elderly woman, recorded with the smartphone of a family member.

She stares absently into the room and is unable to answer questions addressed to

her. Camera movement is existent in all directions and a slight zooming of the

video is present as well.

Smartphone video example 2:

The video has a length of 38 seconds (@29.97 fps) and shows a man at around 60

years of age lying on the floor of what seems like a restaurant, recovering from

an assumed epileptic seizure. He is able to respond to questions, but unable to

get up. Camera movement as well as shake are present. The scene is slightly backlit.

Even though no ground truth heart rate data is available in these self recorded

cases, one can still analyze the heart rates in these videos and compare them with

typical interictal or postictal phases that were recorded in a controlled, clinical

environment.

In the first example, the detection result displayed in Fig. 4.15 shows a steady

heart rate of 80 bpm. The lower part of the figure shows the development of Welch’s
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power spectral density estimation over time. Here, a continuous and well defined

crest can be observed. In typical interictal phases with no physical exertion during a

hospital stay, a resting pulse rate of 60 bpm was observed for this patient, indicating

that the smartphone video possibly showed a seizure due to the increased heart rate.

In the second example, the pulse derived from a part of the assumed postictal

smartphone video is shown in Fig. 4.16. Although the most prominent crest of

the power spectral density development is not as pronounced as in the first exam-

ple, the method is still able to reconstruct an almost constant pulse that averages

at 78.25 bpm. For this patient, the heart rate calculated from a seizure recorded

with the clinical ECG system showed preictal and postictal heart rates of 62 bpm

and 87 bpm, respectively. Here, the video detected pulse is close to the clinically

recorded postictal heart rate. Estimating from the downward sloping nature ob-

served in frames 0-31 in Fig. 4.16, the patient’s heart rate currently seems to be

slowly diminishing to normal resting pulse.

In reality, only a few of the patients’ smartphone videos exhibit the quality

that is needed to produce reliable pulse detection results. In most cases, video pulse

detection is impossible due to excessive camera and patient movement as well as bad

scene illumination. On the other hand, caretakers could be educated to properly

film seizures so that the video is processable by the method.

4.6.7 A Test of the Influence of Makeup on Video Pulse

Detection

During video recording, makeup can cover parts of or even the entire facial area.

Even when makeup is put on invisibly, i.e., in the same color tone as the underlying

skin, it could still prevent the video pulse detection algorithm from working correctly.

Unfortunately, in real world applications, the use of makeup cannot be controlled.

It is expected that applied makeup makes video pulse detection lose its accuracy or

even make it impossible. In this section, the influence of a makeup occlusion layer

is tested by making one half of the face up and leaving the other half untouched

(see Fig. 4.17). Then, the heart rate is independently determined from both halves

of the face using video pulse detection and compared against the simultaneously

recorded clinical ECG ground truth. To limit artefacts resulting from eye or mouth

movement, the initial ROIs are chosen so that, after shrinking, only the cheek of the
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Figure 4.15: Pulse detection result and power spectral density estimation develop-
ment of a smartphone video (Example 1) showing an assumed epileptic seizure.
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Figure 4.16: Pulse detection result and power spectral density estimation develop-
ment of a smartphone video (Example 2) showing the postictal phase of an assumed
epileptic seizure.
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Figure 4.17: Setup of the makeup influence evaluation experiment. The right half
of the face is covered with makeup while the other half is left untouched.

respective half face is used as input for video pulse detection. This can be seen in

Fig. 4.18.

The results of this evaluation are presented in Fig. 4.19. As expected, video

pulse detection from the untouched part of the face shows good results (detection

error: 0.99 ± 1.03 bpm), while the detected heart rates from the made up part of

the face exhibit a much larger variation (8.64± 1.03 bpm). A comparison between

the respective developments of the power spectral densities over time (see Fig 4.20)

shows a definitive crest along the maxima of the power spectra for the face half

without makeup while the made up side reveals an almost flat magnitude plane

and thus leaves the algorithm with no distinct prominent peaks to detect. Keep in

mind that this test was conducted in a controlled environment using studio lighting

equipment. It is to be expected that results are even worse under realistic conditions.

4.6.8 Limitations

The presented results show that the method is well suited for epileptic seizure heart

rate analysis in the pre- and postictal phases and, under suitable conditions, pro-
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Figure 4.18: ROIs (with tracking markers) used for the makeup influence test.
Left: Without makeup applied
Right: With makeup applied
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Figure 4.19: Results of the influence on makeup on video pulse detection test.
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Figure 4.20: Development of the power spectral densities and their maxima over
time, calculated from the face half without (top) and with (bottom) makeup applied.
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duces results equal to the ECG ground truth. In ictal video pulse detections, it

is often problematic to find a large enough, contiguous frame interval without ex-

cessive movement or occlusions, making tracking of the face and the subsequent

video pulse detection in these phases nearly impossible. Furthermore, nighttime

(infrared) videos were shown to be unsuitable for the method, whereas grayscale

converted RGB videos showed surprisingly good results. Also, the use of makeup

acts like an almost opaque layer between the skin and the visible face, which proved

to be a challenge for video pulse detection.

4.7 Conclusion and Future Work

In this chapter, a method for video pulse detection of epileptic seizures was presented

and evaluated against ground truth ECG annotated videos of patients during inter-

ictal, ictal and nighttime phases. The applicability on smartphone videos as well

as the influence of makeup on the detection result were also discussed. The results

show that careful application of the method whilst being aware of its limitations

makes heart rate ratio based seizure detection and even classification possible.

For future work, a method for estimating a confidence level of the detected

heart rates could be developed, so that in the absence of ground truth data, an

estimation of result reliability can be given. The continuity and prominence of the

power spectral density development crestline could possibly be used in this case.

The application of applying the method to thermal camera videos would be another

interesting line of research.





5
Conclusion

This thesis presented and summarized methods for the reconstruction of human mo-

tion using a multitude of sensors and motion capture setups in a variety of contexts

and applications.

Clean, raw motion capture data is the foundation of high quality animation and

is used as input for many algorithms in computer animation. When recording with

a passive optical mocap system, marker data may get lost due to tracking problems,

mislabelings or occlusions, amongst other reasons. The trajectories of single missing

markers or short time gaps in trajectories of multiple markers are generally easy to

fill by utilizing rigid body properties or spline interpolation. In the situation of

missing multiple markers for long-time gaps, a data-driven method was presented

in Chapter 2. The algorithm used a mocap database stored in an efficient spatial

indexing structure (kd-tree) to search for nearest pose neighbors using normalized

data of markers that are continuously valid in the gap. Ultimately, the retrieved

examples served as priors for synthesizing the missing marker data. The method was

applied to real gaps present in motions originating from publicly available motion

databases as well as to artificial gaps created for the purpose of evaluation and was

shown to work well over a variety of motion styles, databases and actors.

Unfortunately, many data-driven cleaning methods suffer from an out-of-sample

problem, i.e., they would be unable to reconstruct a cartwheel motion from a

database comprised of only walking motions. However, since the presented method

scales well to large mocap databases likely to contain a clean version of almost ev-

ery imaginable motion, it represents a useful aid in automated motion capture data

refinement. In the rare case that no poses of similar motions can be found in the

83
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database, a general cleaning framework could combine the presented data-driven

method with complementary approaches like [THC15, FXZ+14, Fed13, BL16].

Building upon having a motion capture database containing artifact-free mo-

tions, a method for analyzing a stream of motion data for similar, previously labeled

actions was developed in Chapter 3 by extending the Lazy Neighborhood Graph by

Krüger et al. [KTWZ10]. The method is not only able to detect exact copies of ac-

tions stored in the database, but can handle temporal deviations from the original

motion as well. It was shown that the method is very flexible regarding the sensor in-

put data by demonstrating successful action recognition from simple accelerometers,

Kinect skeletons, optical motion capture data and video based features.

Even though the chosen featuresets used for retrieving similar poses seemed to

work well in the discussed applications, it would be interesting to evaluate the action

recognition specific similarity models assessed by Valcik et al. [VSZ15a]. Also, in

case the presented action recognition scenarios used Kinect skeletons to query the

database for similar poses, an application of an improved Kinect skeleton estimation

algorithm like [VSZ15b] to the query skeleton data may improve recognition results.

In Chapters 2 and 3, motion completion and action recognition were applied to

traditional, full body motion capture recordings. In contrast, as presented in Chap-

ter 4, the indirect detection of the human heart’s pumping motion, i.e., the pulse

frequency, in the context of epileptic seizure detection and classification, represents

motion reconstruction on a much finer scale. Here, the normally invisible and sub-

tle color changes in a video recording of a subject’s face that are caused by blood

volume changing over time were analyzed and their dominant frequency extracted

using signal processing techniques. The algorithm was first tested under controlled,

non-seizure, clinical conditions, comparing the extracted frequencies with ground

truth ECG measurements, demonstrating that a high detection accuracy could be

achieved. In most cases, when applied in the context of detecting epileptic seizures,

where a significant increase in heart rate can usually be observed during the ictal

phase, the video pulse detection algorithm was unable to detect a valid pulse signal

due to excessive patient movement, camera shake, occlusions or changes in illumi-

nation. This was remedied by shifting the video pulse analysis to the immediate

pre- and postictal phases, allowing the calculation of the absolute and relative in-

creases in the subject’s heart rate. The results of this scenario were again validated



85

using simultaneously recorded clinical ECG data. Finally, the method has also been

shown to work on patient-supplied smart phone videos of seizures recorded outside

of the clinical environment. Here, the smartphone video detected heart rates were

compared to typical clinical seizure recordings of the same patient and shown to

have similar patterns.

When processing videos of seizures, one is not only limited to analyzing the

heart rate. During epileptic seizures, patients often display characteristic motion

patterns. This can range from a stiffening of the whole body that develops into

repetitive rhythmic jerking of arms and legs observable during a generalized tonic-

clonic seizure to more subtle, patient specific involuntary repetitive hand movements.

Using these motion patterns as actions in the proposed action recognition method

(see Section 3.5.6) in combination with video pulse detection would be a step towards

an automatic, video based epileptic seizure detection and alerting system.

Even outside of the epilepsy context, a system that is able to detect vital signs like

heart rate, body temperature and respiratory rates by analyzing RGB and thermal

camera video streams would be of great help during emergency situations like car

accidents. Here, first-aiders could record smartphone videos of unreachable, trapped

passengers to gain valuable first insights about their condition and forward them to

the notified rescue team.
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A.2 Ictal Video Pulse Detection Plots
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A.3 Nighttime Video Pulse Detection Plots
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Weber, Thomas Helten, Meinard Müller, Hans-Peter Seidel, and Bernd

Eberhardt. Motion reconstruction using sparse accelerometer data.

ACM Trans. Graph., 30:18:1–18:12, May 2011.

[Vic] Vicon Motion Capture Systems. http://www.vicon.com/.

[VJ01] Paul Viola and Michael Jones. Rapid object detection using a boosted

cascade of simple features. In Computer Vision and Pattern Recog-

nition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer

Society Conference on, volume 1, pages I–511. IEEE, 2001.

[VJ04] Paul Viola and Michael J Jones. Robust real-time face detection. In-

ternational journal of computer vision, 57(2):137–154, 2004.

[VSN08] Wim Verkruysse, Lars O Svaasand, and J Stuart Nelson. Re-

mote plethysmographic imaging using ambient light. Optics express,

16(26):21434–21445, 2008.

[VSZ15a] Jakub Valcik, Jan Sedmidubsky, and Pavel Zezula. Assessing similarity

models for human-motion retrieval applications. Computer Animation

and Virtual Worlds, 2015.

[VSZ15b] Jakub Valcik, Jan Sedmidubsky, and Pavel Zezula. Improving kinect-

skeleton estimation. In International Conference on Advanced Concepts

for Intelligent Vision Systems, pages 575–587. Springer, 2015.

http://www.vicon.com/


BIBLIOGRAPHY 111

[Wel67] Peter D Welch. The use of fast fourier transform for the estimation of

power spectra: A method based on time averaging over short, modi-

fied periodograms. IEEE Transactions on audio and electroacoustics,

15(2):70–73, 1967.

[WMvdS05] Fokko P Wieringa, Frits Mastik, and Antonius FW van der Steen. Con-

tactless multiple wavelength photoplethysmographic imaging: a first

step toward “spo2 camera” technology. Annals of biomedical engineer-

ing, 33(8):1034–1041, 2005.

[Wor] World health organization. epilepsy. (2012). http://www.who.int/

mediacentre/factsheets/fs999/en/index.html. Accessed: 2016-

11-08.

[WPC05] Danny Wyatt, Matthai Philipose, and Tanzeem Choudhury. Unsuper-

vised activity recognition using automatically mined common sense. In

Proceedings of the 20th national conference on Artificial intelligence -

Volume 1, AAAI’05, pages 21–27. AAAI Press, 2005.

[WRDF13] Neal Wadhwa, Michael Rubinstein, Frédo Durand, and William T Free-
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