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Summary

Let M(n,d) be the set of all isometry classes of closed n-dimensional Riemannian man-
ifolds (M, g) with |sec(M)| < 1 and diam(M) < d. It is a well-known result by Gromov
that any sequence in M (n, d) admits a subsequence converging to a compact metric space
Y in the Gromov-Hausdorff topology. A convergent sequence is said to collapse if the di-
mension of the limit space Y is strictly less than n.

The aim of this thesis is to study the behavior of the spectrum of the Dirac operator
on collapsing sequences of spin manifolds in M (n, d). Since a limit space Y has in general
many singularities we focus on two special cases. We assume that Y is a Riemannian
manifold or that the Hausdorff dimension of Y is (n — 1).

In Chapter 1 we state the basic definitions and properties of the Gromov-Hausdorff
distance. Afterwards we summarize the known results for collapse with bounded curvature
and diameter. One of the most important results is that a collapsing sequence in M (n, d)
can be approximated by a collapsing sequence of singular Riemannian affine fiber bundles.

The main result of Chapter 2 is that the Hausdorftf dimension of a limit space Y of a
convergent sequence (M;, g;)ien in M(n,d) is larger than or equal to (n — 1), if and only

if there are positive constants C, r such that C' < %ﬁlzg)) for all z € M; and i € N. To
show this we first prove that for a Riemannian submersion f : M — Y there is a constant
C, such that inj(f~'(p)) < Cinj”(x) for all x € f~'(p) if the injectivity radius of M
is sufficiently small compared to the injectivity radius of Y. As a conclusion, we define
the set M(n,d,C) that contains all isometry classes of closed Riemannian manifolds in
M(n,d) satisfying C' < IVI?JI((%))
dimensional Riemannian manifolds or (n — 1)-dimensional Riemannian orbifolds with a
CY®metric and bounded curvature in the weak sense.

Since any collapsing sequence in M (n,d) with a smooth limit space can be approx-
imated by a collapsing sequence of Riemannian affine fiber bundles f : M — B, we
discuss these special bundles thoroughly in Chapter 3. The results proven in that chapter
are mainly a preparation for the study of Dirac eigenvalues on collapsing sequences in
Chapter 4. Using O’Neill’s formulas we discuss how the metric on the total space M is
related to the metric on the base space B and derive various bounds that are needed in
the next chapter. Then we show by various examples that, in general, a spin structure
on the total space M does not induce a spin structure on the base space B. If we restrict
to the case of S'-principal bundles f : M — B then a spin structure on M induces a
spin structure on B if the S'-action lifts to the spin structure on M. As the limit of a
collapsing sequence can be non orientable we also briefly discuss pin structures. Loosely
speaking, pin structures are a generalization of spin structures to non orientable spaces.
Afterwards we restrict our attention to spin structures on the total space M that admit
affine parallel spinors, which can be interpreted as spinors that are “invariant” along the
fibers. We show that the space of affine parallel spinors is isometric to the sections of a
twisted spinor bundle 3 over the base space B. Furthermore, we show that there is an
elliptic first order self-adjoint differential operator on 3 that is isospectral to the Dirac
operator on M restricted to the space of affine parallel spinors.

In Chapter 4 we first consider collapsing sequences in M(n, d) converging to a Rieman-
nian manifold. In that case we show that the spectrum of the Dirac operator restricted

Moreover, we show that the arising limit spaces are n-
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to the space of affine parallel spinors converges to the spectrum of a twisted Dirac oper-
ator with a Holder continuous symmetric potential. This determines the behavior of the
Dirac spectrum on collapsing sequences with smooth limit space because it was shown
by Lott that the remaining part of the spectrum diverges in the limit. In addition, we
state conditions such that the spectrum of the Dirac operator converges to the spectrum
of the Dirac operator on the limit space up to multiplicity. Afterwards we extend a result
by Ammann regarding Dirac eigenvalues on collapsing S!-principal bundles to arbitrary
collapsing sequences of spin manifolds in the set M(n + 1,d, C') introduced in Chapter 2.
Similar to the results for collapsing sequences with smooth limit space we show that the
spectrum of the Dirac operator restricted to the space of affine parallel spinors converges
to the spectrum of a twisted Dirac operator with symmetric Holder continuous potential.
In addition, we study the structure of the Dirac spectrum on S'-orbifold bundles and
prove a lower and an upper bound for the Dirac eigenvalues.

We included a small introduction to infranilmanifolds in Appendix A. Appendix B
deals with Riemannian submersions with a fixed spin structure on the total space. There
we derive formulas for the spinorial connection and the Dirac operator. These formulas
describe explicitly how the vertical and the horizontal components interact with each
other which is helpful for the considerations in Chapter 3. Moreover, in Appendix B we
also restate O’Neill’s formulas for Riemannian submersions. In Appendix C, we recall that
the Dirac spectrum is continuous under a C'-variation of the metric and in Appendix D
we discuss the convergence of S'-principal bundles with connection.
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Introduction

In differential geometry many results for Riemannian manifolds are proved under assump-
tions on the geometry of the manifold like curvature and volume. But can we also say
something about the set of all isometry classes of Riemannian manifolds satisfying dif-
ferent assumptions on the geometry? Let M(n,d,v) be the set of all isometry classes
of closed n-dimensional Riemannian manifolds (M, g) with |sec| < 1, diam(M) < d and
vol(M) = v. Cheeger showed that the set of diffeomorphism classes in M(n,d,v) is fi-
nite [Che70, Theorem 3.1, Theorem 4.2]. If we remove the lower volume bound then the
resulting set M(n, d) contains infinitely many diffeomorphism classes. Nevertheless, Gro-
mov was able to show that any sequence in M(n,d) contains a convergent subsequence
with respect to the Gromov-Hausdorff topology |Gro81, Théoréme 5.3].

In this thesis we are interested in those convergent sequences in M(n,d) where the
volume of the manifolds goes to zero in the limit. It follows that the limit space of
such sequences is a compact metric space Y of strictly lower dimension, i.e. the sequence
collapses. Fasy examples of collapsing sequences arise by scaling flat manifolds like the
torus, see Examples[[.12] [I.13] To the author’s knowledge, the first nontrivial example of
a collapsing sequence was pointed out by Marcel Berger in about 1962. He considered the
Hopf fibration S — S3 — S2. Starting with the standard round metric on S®, Berger
rescaled the metric tangent to the fibers by € > 0 while keeping the metric in the directions
orthogonal to the fibers fixed. As ¢ — 0 the sectional curvature remains bounded while
the volume converges to 0. Furthermore, S® resembles more and more a two-sphere with
constant sectional curvature equal to 4 as € — 0 (see Example for more details).

One of the first results on collapse with bounded curvature is Gromov’s characteri-
zation of almost flat manifolds [Gro78, Main Theorem 1.4]. Gromov showed that there
is a positive ¢(n) such that any closed n-dimensional Riemannian manifold (M, g) with
diam(M) < 1 and |sec| < e(n) is an almost flat manifold, i.e. for any ¢ > 0 there is a
metric g. such that diam(M, g.) = 1 and |sec. | < €. Moreover, Gromov showed that any
almost flat manifold is finitely covered by a nilmanifold M. Employing additional ana-
lytic arguments, Ruh showed that M is an infranilmanifold, i.e. the deck transformation
group of M — M consists of affine diffeomorphisms with respect to the canonical affine
connection on M [Ruh82].

Further important results are Fukaya’s fibration theorems |Fuk87b, Fuk89|. Fukaya
showed that if two manifolds M € M(n+k,d) and B € M(n,d) are sufficiently close with
respect to the Gromov-Hausdorff distance then there is a fibration M — B such that the
fibers are infranilmanifolds. In a next step, Fukaya applied his fibration theorems to the
sequence of orthonormal frame bundles of a collapsing sequence in M(n,d) and derived

1



2 INTRODUCTION

a description of the boundary of M(n,d) [Fuk88, Theorem 0.12, Theorem 10.1].

Around the same time, Cheeger and Gromov studied collapse with bounded curvature
from a different point of view |[CG86,/CGI0]. Cheeger and Gromov define local group
actions and the action of a sheaf of groups on Riemannian manifolds. Using these def-
initions, Cheeger and Gromov showed that on each sufficiently collapsed Riemannian
manifold there is a sheaf of tori with additional regularity conditions acting on it. This
structure is called an F'-structure, where “F” stands for flat. One of the advantages of
this approach is that they do not need to assume a uniform diameter bound.

These two approaches are combined in [CFG92|. Generalizing Fukaya’s fibration the-
orem, Cheeger, Fukaya and Gromov show that the orthonormal frame bundle FM of a
sufficiently collapsed Riemannian manifold M is locally the total space of a fibration with
infranil fibers and affine structure group. Then Cheeger, Fukaya and Gromov generalized
the theory developed by Cheeger and Gromov to show that there is a sheaf of nilpotent
groups acting on F'M with additional regularity conditions generalizing the notion of an
F-structure. These generalized structures are called N -structures.

Our first main result gives a characterization for codimension one collapse, i.e. con-
vergent sequences in M(n,d) with (n — 1)-dimensional limit space. The motivation here
is that, in general, the limit space of a collapsing sequence in M(n,d) has many singu-
larities. However, for codimension one collapse, the limit space is always a Riemannian
orbifold |Fuk90, Proposition 11.5|, while the limit space has in general non orbifold sin-
gularities if its dimension is less than (n — 1), [NT11, Theorem 1.1].

Theorem 0.1. Let (M;, g;)ien be a sequence in M(n,d) converging to a compact metric
space (Y, dy) in the Gromov-Hausdorff topology. Then the following are equivalent

(1) dimpas(Y) = (n — 1),
(2) for all v > 0 there is a positive constant C'(n,r,Y") such that

vol(B;"(x))

i

C<—
inj

x)
holds for all x € M; and i € N,

(3) for some r > 0 there is a positive constant C(n,r,Y) such that the above inequality
holds for all x € M; and i € N.

The intuition behind this theorem is that for a collapsing sequence (M, g;)ien in
M(n,d) the volume of a ball represents all collapsed and non collapsed directions, while
the injectivity radius represents only the fastest scale of collapse. If we have a codimen-
sion one collapse then then it happens on the scale of the injectivity radius. But if a
collapsing sequence (M;, g;)ien loses two or more dimensions in the limit then the loss of

volume of the balls in M; is larger than the injectivity radius. In particular, the sequence
<V01(B% (2)

T > has to vanish in the limit.
inji(z)  /ien



It follows from this theorem that the possible limit spaces of the set M(n,d,C) of
all isometry classes of Riemannian manifolds (M, g) € M(n,d) with C' < YSJI((]\A?))
dimensional Riemannian manifolds or (n — 1)-dimensional Riemannian orbifolds. More-
over, the sectional curvatures of the limit spaces are uniformly bounded in the weak sense.

are n-

A further interesting question concerning collapse in M(n, d) is the behavior of the
spectra of geometric operators. We would like to know how the limit of the spectra is
related to the spectrum of the corresponding geometric operator on the limit space.

For a sequence in M(n,d) converging to a limit space B in the measured Gromov-
Hausdorff topology, Fukaya showed that the Laplace spectrum converges to the spectrum
of a self-adjoint operator over B [Fuk87a, Theorem 0.4]. If B happens to be a manifold,
then the limit of the Laplace spectrum does in general not coincide with the Laplace
spectrum of B, see Example . In |[Lot02b, Lot02c| Lott generalized this behavior to
the spectrum of the Laplace operator acting on differential forms. Then Lott combined
these results with Bochner-type formulas for Dirac operators to prove similar results for
Dirac-type operators on G-Clifford bundles, where G € {SO(n),Spin(n)} |[Lot02a]. If
the limit space B is a Riemannian manifold then the results of [Lot02a| state that the
Dirac spectrum converges to the spectrum of an elliptic first order differential operator
DB = /A + H acting on a G-Clifford bundle over B. Here A is the Laplacian with
respect to a limit measure and H is a symmetric potential arising as the weak-+-limit of
curvature terms.

In this thesis we will give an explicit description of the limit operator D for sequences
of spin manifolds in M(n, d) converging to Riemannian manifolds of lower dimensions and
for collapsing sequences of spin manifolds in M(n,d, C').

One of the main ingredients of the proofs is that any collapsing sequence (M;, g;)ien
in M(n,d) with a smooth limit space (B, h) can be realized as a collapsing sequence
(fi: (M;,9;) = (B, hi)),.y of fiber bundles with infranil fibers and affine structure group
[Fuk87b| Fuk89|. Using this property of collapsing sequences in M(n,d) we describe the
behavior of the Dirac spectrum.

Theorem 0.2. Let (M;, g;)ien be a sequence of spin manifolds in M(n+ k,d) converging
to a closed n-dimensional Riemannian manifold (B,h). Then for all i € N the space of
L?-spinors on M; can be decomposed into

L* (M) = S @ S}

such that all eigenvalues of the Dirac operator on M restricted to Si- go to +oo asi — oo
and the eigenvalues of the Dirac operator on M; restricted to S; converge to the spectrum
of the self-adjoint elliptic first-order differential operator

DP =D +H

acting on a twisted Clifford bundle B over B. Here, D7 is a Dirac operator on B and H
a C%*-symmetric potential for o € [0, 1).

In fact, we will give a complete description of the twisted Clifford bundle 8 and
of the potential H. We show that the following three geometric objects of the fiber



4 INTRODUCTION

bundles f; : M; — B contribute to D?: The holonomy of the vertical distribution, the
integrability of the horizontal distributions and the intrinsic curvature of the fibers. These
three different conditions are independent from each other as can be seen in the Examples

Corollary 0.3. Let (f;: (M;,9;) — (B, hi)),cy be a collapsing sequence of fiber bundles
with infranil fiber such that (M;, g;)ien s a spin manifold in M(n +k,d) for alli € N and
B s a closed n-dimensional manifold. Further, we denote by Z; the closed k-dimensional
infranilmanifold which is diffeomorphic to the fiber of f; : (M;,g;) — (B, h;). If in the
limit i — oo the holonomy of the vertical distribution is trivial, the instrinsic curvature of
the fibers is flat and the horizontal distribution is integrable then there is a subsequence
such that the spectrum of the Dirac operator Df‘é converges, up to multiplicity, to the

spectrum of DP if n or k is even, and to the spectrum of DB @ —DP if n and k are odd.

Next, we consider the behavior of the Dirac operator on sequences of spin manifolds
in M(n+1,d,C). As collapsing sequences in M(n+1,d, C') can always be approximated
by a sequence of S'-orbifold bundles |[Fuk88|, [Fuk90, Proposition 11.5|, we are able to
give a complete description of the behavior of the Dirac spectrum. This extends results of
[Amm98a], [AmmI8Db, Kapitel 7], [ABI8|, Section 4] where collapsing S!-principal bundles
under slightly different assumptions were considered. First we show that the results of
Theorem and Corollary carry over to collapsing sequences in M(n + 1,d,C).
Further, we prove a lowerand an upper bound on the Dirac eigenvalues on collapsing
sequences in M(n + 1,d,C') generalizing the bounds stated in [Amm98a, Theorem 3.1,
Theorem 4.1|, [Amm98b, Satz 7.2.1, Satz 7.3.2].

Proposition 0.4. Let (M;, g;)ien be a sequence of spin manifolds in M(n+ 1,d,C) con-
verging to an n-dimensional Riemannian orbifold (B,h). Then we can number the Dirac
ergenvalues (N (i) ez, where k € Z if there is an induced spin structure on B and
ke (Z+ %) else, such that for any € > 0 there is an index I > 0 such that for all i > 1
there are S-fibrations f; : M; — B such that for all j, k,

, . : k 1nyz
|\ x(2)| = sinh <arsmh (ﬁ ~3 [5] Cy— 6) — 5> :

Here 2ml; is the length of the fibers and C4 is a constant depending on n, d and C. In
particular, lim; o, |A; ;(7)| = o0 whenever k # 0 since lim;_,, [; = 0.

For any i = I, let w; € Q(M;,V;) be the orthogonal projection onto V; = ker(df;),
where f; : M; — B. If, in addition, there is a constant C' such that

|dw;|cos < C

for allt = I, then for all j € Z and k € Z (projectable spin structures), resp. k € (Z + %)
(non projectable spin structures),

ieN

lim sup <minli(p)])\j7k(i)]) < |kl
peB



As we will see in Example these results cannot be extended to the Dirac operator
acting on differential forms.

A brief outline of this thesis is as follows: In Chapter 1 we recall the definition and
basic properties of the Gromov-Hausdorff distance and discuss the basic results for collapse
with bounded curvature and diameter. The characterization of codimension one collapse,
Theorem is proven in Chapter 2. Then we start with the preparation for the study
of Dirac eigenvalues in Chapter 3. Since any collapsing sequence in M(n, d) with smooth
limit space can be approximated by a sequence of fiber bundles f : M — B with infranil
fibers and affine structure group, we discuss the relation between the geometry of the
total space M and the base space B on such fiber bundles in great detail. There we
also show that, in general, a spin structure on M does not induce a spin structure on
B. Nevertheless we show that the space of affine parallel spinors on M, i.e. spinors
that are “invariant” along the fibers, is isometric to the space of sections of a twisted
Clifford bundle over B. All these results are used in Chapter 4 to show the results for
Dirac eigenvalues on collapsing sequences in M(n, d) with smooth limit spaces, proving
Theorem Corollary and on collapsing sequences in M(n + 1,d,C), where we
prove Proposition Moreover, we show that the limit operator D? is a twisted Dirac
operator with symmetric H%*-potential. Thus, we generalize our convergence results to
the spectrum of Dirac operators with symmetric potentials that are uniformly bounded
in the H*-topology. In that generality we conclude that the spectra of Dirac operators
with symmetric H'®-potential restricted to the space of affine parallel spinors converges
again to the spectrum of a Dirac operator with a symmetric H'*-potential over the limit
space.

In Appendix A we define infranilmanifolds and discuss under which assumptions there
is a spin structure with affine parallel spinors. Then we consider Riemannian submersions
f : M — B where M is a spin manifold in Appendix B. We derive formulas for the
spinorial connection and the Dirac operator on M decomposing them into their vertical
and horizontal parts. Moreover, we recall O’Neill’s formulas for Riemannian submersions.
Afterwards we review the continuity of Dirac spectra under a C'-variation of Riemannian
metrics following [Now13| in Appendix C. In Appendix D we discuss the convergence of
Sl-principal bundles with connection. These results are used to prove the upper bound

in Proposition [0.4]

We would like to remark that the results of this thesis have been published in several
articles. The characterization of the codimension one collapse, which is proven in Chapter
2, is the content of [Roo18a]. In |[Rool8¢| the behavior of the Dirac spectrum on collapsing
sequences in M(n + 1,d,C) is discussed and its sequel |[Rool8b| deals with the Dirac
operators on collapsing sequences in M (n,d) with smooth limit spaces. The content of
|[Roo18¢| and [Roo18b| corresponds to Chapter 3 and Chapter 4. The results of Appendix
D can be found in [Rool7, Section 4.1].






Chapter 1

Convergence of Riemannian manifolds

Let M(n,d) be the set of isometry classes of closed n-dimensional Riemannian manifolds
(M, g) such that |sec™ | < 1 and diam(M) < d. Tt follows from |Gro81, Théorém 5.3
that any sequence (M;, g;)ien in M(n,d) has a subsequence that converges with respect
to the Gromov-Hausdorff distance to a compact metric space with dimension less than
or equal to n. If the dimension of the limit space is strictly smaller than n then one
says that the sequence (M;, g;)ien collapses. The structure of collapsing sequences with
bounded curvature and diameter was intensively studied by Cheeger, Fukaya and Gromov
[CG86L|CGI0, Fuk87h,[Fuk88, Fuk89, CFG92].

Before discussing collapse with bounded curvature and diameter in detail we first
briefly recall the definition and properties of the Gromov-Hausdorff distance dgy. Then
we state the known results regarding the structure of the boundary of M(n,d) in Section
[1.2] For later use, we carry out the following two special cases in more detail: Collapsing
sequences (M;, g;)ien converging to a smooth manifold and collapsing sequences in M (n, d)
with (n — 1)-dimensional limit space.

We will roughly follow the lines of [Ron07| to give a summary of the known results
regarding the boundary of M(n,d).

1.1 The Gromov-Hausdorff distance

Let A and B be two compact subsets of a fixed metric space (Z,dz). The Hausdorff
distance between A and B is defined as

d%(A, B) == min{e > 0: B c T.(A) and A c T.(B)},

where T.(A) :={z € Z : dz(z, A) < €} is an open e-neighborhood of A.

By construction the Hausdorff distance is symmetric and satisfies the triangle inequal-
ity. Furthermore, d&(A, B) = 0 if and only if A = B. Thus, the Hausdorff distance
defines a metric on the space of all compact subsets of Z. Loosely speaking, the Haus-
dorff distance measures the “uniform closeness” of two compact subsets in a fixed metric
space.

In |Gro81|, Chapitre 3] Gromov studies the space of isometry classes of compact metric
spaces Met,.. To define a metric on Met,. the Hausdorff distance is modified in the following
way:



8 CHAPTER 1. CONVERGENCE OF RIEMANNIAN MANIFOLDS

Definition 1.1. Let (X, dy) and (Y, dy) be two compact metric spaces. A metric d on
the disjoint union X 1Y is called an admissible metric if it extends the metrics on X and
Y, ie. J(xl,xQ) = dx(x1,2) for all 1,25 € X and J(yl,yQ) = dy (y1,y2) for all y;,y, € Y.
The Gromov-Hausdorff distance between X and Y is defined as

deu(X,Y) = inf{ dil(X, Y) : d is an admissible metric on X LY}

One can show that dgp also satisfies the triangle inequality. But in contrast to the
Hausdorff distance, two compact metric spaces (X, dx) and (Y, dy) satisty deu(X,Y) =0
if and only if they are isometric to each other. As dgp is symmetric by construction
it follows that the Gromov-Hausdorff distance defines a complete metric on the set of
isometry classes of compact metric spaces Met,.

Remark 1.2. The definition of the Gromov-Hausdorff distance given above is an equiv-
alent formulation of the original definition |Gro81, Définition 3.4]. There the Gromov-
Hausdorff distance between two compact metric spaces (X, dx) and (Y,dy) is defined
as

den = inf{df (0(X), ¥ (Y))},

where the infinuum is taken over all metric spaces (Z,dy) such that there are isometric
embeddings ¢ : X — Zand ¢ : Y — Z.

Moreover, (Met,, dgy) is a complete metric space. To get an intuition for the Gromov-
Hausdorff distance we give a proof of that result (see also [Ron07, Section 2|).

Proposition 1.3. (Met.,dgy) is a complete metric space.

Proof. Let (X;, dx, )ien be a Cauchy sequence in Met, with respect to the Gromov-Hausdorff
distance. It is clear that for any Cauchy sequence

(1) there is a uniform bound on the diameter,

(2) for any € > 0 there is an N(e) such thatfor any i € N there is an e-dense subset
X;(e) € X; whose cardinality is bounded by N(e).

By passing to a subsequence, if necessary, we assume that for any ¢ € N there is an
admissible metric on X; 1 X;,; such that d%Jrl(Xi,XHl) < 27% In what follows z; will
always denote an element of X;.

In the next step we define a metric dy on Y :=| |, X; by setting

j—1
dY(fEia $z‘+j) = min {Z di+k,i+k+1($z‘+k, $i+k+1)} .

Titk€Xitk 0

Loosely speaking, d(x;,x;1;) is the distance of the shortest path from x; to z;4; passing
Xit1,. .., Xitj—1. By construction, (X;)en is a Cauchy sequence in (Y, dy) with respect
to the Hausdorff-distance d.
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Now we construct a possible candidate (X, dy) for the limit of the sequence (X;);en.
We define

X :— {(7)ien Cauchy sequence in Y with x; € XZ-}/N
where (z;)ien ~ (Yi)ien if im; o dy (75, y;) = 0. The metric dx on X is defined as
dx ((zi)i; (Yi)i) = lim dy (23, Ys)-

It follows from the properties (1) and (2) that (X,dx) is a compact metric space. We
want to show that (X, dx) is the Gromov-Hausdorff limit of (X;);cny. Therefore, we define
an admissible metric dy,,x on Y 1 X by

dy x (Y, (24)i) = Zlgg dy (y, ;).
Then X is the Hausdorff limit of (X;);eny in YU X. Hence, X is also the Gromov-Hausdorff
limit since ‘
dan(X;, X) < di-X(X;, X) —% 0 . O

In fact, one can show that the properties (1) and (2) in the above proof are also
sufficient to choose a convergent subsequence. Considering the set of all isometry classes
of closed n-dimensional Riemannian manifolds (M, ¢g) with diam(M) < d, Gromov uses
Bishop-Gromov volume comparison to observe that a lower bound on the Ricci curvature
controls the size of e-dense subsets |Gro81, Théoréme 5.3].

Theorem 1.4. Let k,d be positive numbers. Any sequence of closed n-dimensional Rie-
mannian manifolds (M;, g;)ien with Ric® > —k and diam(M;) < d contains a dgy-
convergent subsequence.

Remark 1.5. Note that the limit of a dgp-convergent sequence of Riemannian manifolds
does not need to be a Riemannian manifold, see for instance Example [1.15]

For later use, we also discuss how the symmetry of compact metric spaces is preserved
under the Gromov-Hausdorff convergence. Let (X;);ey be a sequence of compact metric
spaces converging to X in the Gromov-Hausdorff topology. Further, we assume that for
each 7 € N there is an isometric and effective action of a compact group G; on X;. Is there
a compact group G acting as isometries on X whose action is related to the actions of G;

on X;7 If yes, does the sequence of quotients <Xl/ Gi) - converges to the quotient space
€

X /¢ in the Gromov-Hausdorff topology? To answer these questions we briefly discuss
the notion of equivariant Gromov-Hausdorff convergence. This equivariant extension of
the Gromov-Hausdorff distance was first introduced by Fukaya |Fuk86, Chapter 1] and
achieved its final form with Fukaya and Yamaguchi [FY92, Section 3|.

Before defining the equivariant Gromov-Hausdorff distance, we first have to introduce
the following “equivalent” concept of Gromov-Hausdorff convergence.

Let (X,dx) and (Y,dy) be two compact metric spaces. A map f : X — Y is called
an e-Gromov-Hausdorff approximation if
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e Y is contained in T.(f(X)),
o |dx(z1,x2) — dy(f(z1), f(x2))| < & for all 21,29 € X.
We define

5 . - 3 e-GH approximations f: X — Y
dGH(X,Y).—IIlf{€>O. andg:Y—>X .

The map den on Met, is symmetric and CZGH(X ,Y) = 0 if and only if X is isometric to
Y. But in general den does not satisfy the triangle inequality, since for three compact
metric spaces (X, dx),(Y,dy) and (Z,dz) with an €;-Gromov-Hausdorff approximation
f X — Y and an e5,-Gromov-Hausdorff approximation g : Y — Z it does not necessarily
follow that Z is a subset of T;, ., (g(f(X))). Nevertheless, it can be shown that

1 R
§dGH < dgn < 2dgn.

Hence, dgy and den have the same Cauchy-sequences and limits.

Next we define an equivariant version of dgy. Let (X, dx) and (Y, dy) be two compact
metric spaces and assume that there are compact groups GG, H acting on X, respectively
Y as isometries. Then a pair of maps (f,¢), where f : X — Y and ¢ : G — H, is an
e-equivariant Gromov-Hausdorff approzimation if

e f is an e-Gromov-Hausdorff approximation,

e for any g€ G and z € X, dy (¢(9)(f(2)), f(g(z))) <e.

Similarly to den we define

3 e- equivariant-GH approximations
deqon (X, G), (Y,H)) =inf S e >0: (f,p): (X,G) > (Y,H)
and (g,¢) : (Y, H) — (X,G)

With this definition we obtain the following convergence result (see for instance [Ron07,
Lemma 2.2]).

Lemma 1.6. Let (X;)ien be a sequence of compact metric spaces such that each X; admits
an isometric and effective group action by a compact group G;. If (X;)ien converges to X
in the Gromov-Hausdorff topology, then there is a compact group G of isometries on X

such that (X;, G;)ien converges to (X, G) with respect to deq gu and (Xi/G.> converges
v/ ieN
to X/G in the Gromov-Hausdorff topology.

Proof. Since (X;)en converges to X in the Gromov-Hausdorff topology there is a van-
ishing sequence (&;);en, i.e. lim; 4 &; = 0, such that for any ¢ € N there are £;-Gromov-
Hausdorft approximations f; : X; — X and h; : X — X;. Furthermore, we choose
for any ¢ an ¢;-dense subset X (¢;) < X such that X(g;) < X(g;) for all i < j. Let
(C(X (&), X),d.,) be the space of all maps from X (g;) to X endowed with the metric
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de,(¢,) = maxgex(e,) dx(¢(x),¥(x)). It is easy to check that (C(X(e;),X),d.,) is a
compact metric space.
Fix an ¢ € N. For any j > ¢ we define the map

¢; Gy — C((X(e:), X)),
g = fioxloh;,

where x’/ : G; x X; — X denotes the isometric group action. Since (C'(X(g;), X),ds,)
is compact, there is a subsequence (¢,(G;));>; converging to a compact group G; <
(C(X(g;),X),d.,). By construction it follows that ¢ : X(g;) < X is an isometric embed-
ding for any g € G). Let G be the direct limit of (G});,ey. Then G is a closed group of
isometric embeddings | J,. X (€;) < X. These embeddings extend to isometries of X. It
is immediate that G is a closed subgroup of isometries of X with the claimed properties.[]

In the next section we use the following precompactness result for the equivariant
Gromov-Hausdorff distance due to Fukaya [Fuk88|, Lemma 1.11 and Lemma 1.13].

Lemma 1.7. Let M(n,d;G) be the set of all pairs (M, x) of isometry classes of closed
n-dimensional Riemannian manifolds (M, g) with |sec| < 1 and diam(M) < d and an
1sometric and effective action x : G x M — M of a compact group G. Then any sequence
(M;, Xi)ien admits a subsequence that converges with respect to de, gu to a compact metric
space Y with an isometric action x of G on'Y . Furthermore,

tim dax (MY /) = 0

1.2 Collapse with bounded curvature and diameter

In this section we discuss sequences (M;, g;)ien in the set M(n,d) of isometry classes of
closed n-dimensional Riemannian manifolds with |sec™ | < 1 and diam(M) < d. By The-
orem any sequence in M (n, d) contains a Gromov-Hausdorff converging subsequence.
In the following we discuss the structure of these converging sequences and their limit
spaces. By scaling, the results discussed here also hold for the set M(n,d| k) of isometry
classes of closed n-dimensional Riemannian manifolds with diam(M) < d and | sec™ | < k.

There are two kinds of converging sequences in M(n,d): the non collapsing and the
collapsing sequences. These two cases are characterized by the behavior of the injectivity
radius of the considered manifolds. If the injectivity radius remains bounded away from
zero then the sequence is said to be non collapsing. Otherwise the sequence collapses in
the limit.

The behavior of non collapsing sequences and the structure of their limit spaces is
characterized in the Cheeger-Gromov compactness theorem, summarizing results from
[Che67,/Che70,/Gro81, GWS8S, Pet87|. Before stating this theorem, we need to define the
notion of C'h®-convergence of Riemannian manifolds.

Definition 1.8. A sequence of n-dimensional Riemannian manifolds (M, ¢;)en converges
to a Riemannian manifold (My, g,) in the C1*-topology if there are diffeomorphisms
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fi : My, — M; such that the pullback metrics fg; converge to g, in the C1*-sense. More
precisely, there is a C?“-atlas on M, compatible with its smooth structure, such that
(f¥gi)ien converges to g, in local coordinates.

Theorem 1.9. Any sequence in
M(n,d,0) = {(M,g) € M(n,d) : inj(M) > 1}

contains a subsequence that converges to a Riemannian manifold M., with a CY®-metric
g in the CY*~topology. In particular, M(n,d, 1) contains only finitely many diffeomor-
phism types of Riemannian manifolds.

Remark 1.10. In |[Che70, Corollary 2.2| Cheeger showed that for any n-dimensional
Riemannian manifold (M, g) with |sec | < K, diam(M) < d and vol(M) > v there is a
positive constant C' := C(n, K, d,v) such that inj(M) > C. Hence, the lower bound on
the injectivity radius in the above theorem can be replaced by a lower volume bound.

Remark 1.11. The above theorem also holds if the two-sided bound on the sectional
curvature is replaced by a two-sided bound on the Ricci curvature [And90, Theorem 1.1].
In that generality the lower bound on the injectivity radius cannot be replaced by a lower
volume bound.

The main step of the proof of Theorem is to construct an atlas whose charts are
Riemannian normal coordinates on balls of a definite size such that the transition functions
are controlled, see |Che67, Theorem 1|, [Che70, Theorem 3.1, Theorem 4.2|. Cheeger
concluded that the limit space has to be a Riemannian manifold of lower regularity.
Regarding the regularity, Gromov proved uniform C2-bounds on the transition functions
of the above atlas |Gro81, Théoréme 8.25|, hence, uniform C'-bounds on the metric.
In [GWS8S| Pet87| the authors used harmonic coordinates to show that the regularity of
the limit metric can be improved to C'® with a € [0,1). This regularity is optimal and
cannot be improved under the assumptions of Theorem [1.9] c.f. [Pet87, Example 5.1|.

The Cheeger-Gromov compactness theorem shows that the behavior of non collapsing
sequences in M(n,d) is well understood. For the remainder of this section we focus on
collapsing sequences, i.e. Gromov-Hausdorff-convergent sequences (M;, g;)ien in M(n, d)
such that lim; ., inj(M;) = 0. Such sequences converge in the Gromov-Hausdorff topology
to compact metric spaces of strictly lower dimension. One of the easiest examples of such
sequences are collapsing tori.

Example 1.12. Let T? := S x S! be the torus with the flat metric g := g3 @ gg, where
gs is the standard metric on S'. For any i € N we set g; := gs ® %gs. By construction,
the sequence (T2, g;)sen is contained in M(2,27). As i — oo we observe that the torus
becomes thinner and thinner and collapses to a circle in the limit.
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Example 1.13. Consider for each i € N the metric g; := +g5 @ 1gs on the torus T?. As
above, the sequence (T2, g;)ien is contained in M(2,27). As i — oo the torus just gets
smaller and smaller and in the limit it collapses to a point.

To the author’s knowledge, the first nontrivial example of collapse with bounded cur-
vature was pointed out by Marcel Berger in 1962. In the following we discuss this example
in detail.

Example 1.14. Let S% := {(2,w) € C?: |z|> + |w|* = 1} be the unit 3-sphere. The circle
St acts on S? by multiplication,

¢St xS 83,
(1.14.1)
(87 (Z,U))) = (9 ’ Z,9 ’ U))
The orbits of this S'-action are the Hopf circles. The corresponding Hopf map is defined
as
f:8%— 5%
1 (1.14.2)

(z,w) — zw ™.

It is easy to check that f is a submersion and that the preimage of any p € S? is a Hopf
circle. Moreover, f : S® — S? is an S'-principal bundle called the Hopf fibration. If
g is the standard metric on S® and (S?,h) is the round sphere of radius %, then f is a
Riemannian submersion.

Now we want to construct a sequence of metrics g; on S3 such that (S2, g;);en converges
to the round 2-sphere S? of radius % in the Gromov-Hausdorff topology as ¢+ — co. It is
well-known that S? is diffeomorphic to SU(2). Let X, Y, Z be a basis of the Lie algebra

su(2) such that X is parallel to the fibers of the Hopf map ([1.14.2)) and such that
[X,Y] =22, [Y,Z] = 2X, [Z,X] = 2Y.

Considering the dual basis X*, Y* and Z* we define for each ¢ € N the metric

1
9= 5 X*@X* +Y* QY + Z*® 2.
]

For ¢+ = 1 the metric g; is the standard metric on S®. Furthermore, the metrics g; are
left-invariant under the S'-action (1.14.1]), for any ¢ € N. A straightforward calculation
shows that the sectional curvatures of g; are given by

: 3
sec'(V,Z) =4— —

. 1
sec'(X, Z) = =
i

- 1
sec'(X,Y) = =
i

2

Hence, (S2,¢i)ien is a collapsing sequence with bounded curvature and diameter whose
Gromov-Hausdorff limit is the round 2-sphere S? of radius %
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In general, the limit of a collapsing sequence has singularities. Such examples can
already be constructed by modifying the above example of the collapsing Hopf fibration.

Example 1.15. Let %’ be a complete reduced fraction. We consider the circle action on
S3 defined via
Gpg : S' x S — GB,
(97 (Z,U))) - (gp ’ Zaeq ’ U))

Analogous to Example , we take a global frame X,Y, Z of S such that X is parallel
to the orbits of the S'-action (1.15.1) and Y and Z are perpendicular to the orbits with
respect to the standard metric on S3. Let X*, Y* and Z* be the dual basis. For any
1 € N we define the metric

(1.15.1)

1
9i= 3 X" QX" +Y' QY '+ 7" R Z".
1

The sequence (53, gi)ien collapses with bounded curvature and diameter to a compact
metric space (Y, dy ). Depending on the fraction § we obtain the following different limit
spaces:
If p = q = 1 then the sequence (53, ¢;)ien coincides with the collapsing ‘
sequence in Example [1.14] Thus, the limit space (Y,dy) is the round \—7

1

2-sphere of radius 5.

singular point at the north pole. The singularity at the north pole is
locally isometric to the disk modulo the Z,-action of rotations around
the origin. Such orbifolds are also called “teardrop” orbifolds.

If p# 1 and ¢ = 1 then (Y,dy) is a Riemannian orbifold with one !
Nz

points at the poles. At the north pole (Y, dy) is locally isometric to the
disk modulo the Z,-action of rotations around the origin and at the
south pole (Y, dy) is locally isometric to the disk modulo the Z,-action
of rotations around the origin.

If p # 1 and ¢ # 1 then (Y, dy) is a Riemannian orbifold with two singular I

We see that, if p # ¢ then the limit space (Y, dy) is not a manifold but an orbifold with
singular points. In particular, we observe that (Y, dy) does not have to be a manifold.

Before we study collapse in M(n,d) in general we first discuss the special case of
sequences (M;, g;)ien in M(n,d) converging to a Riemannian manifold (B,h) of lower
dimension. Fukaya studied such collapsing sequences in |[Fuk87b,Fuk89| and summarized
their behavior in his fibration theorem.

Notation 1.16. Here and subsequently 7(¢|zy, ..., x) denotes a non negative continuous
function such that for any fixed choice of x1,..., g, lim._o7(¢|z1,...,2%) = 0. During
calculations, the explicit value of 7 might change. Since we are only interested in the
behavior as € — 0 we omit putting indices if the explicit expression of 7 changes.
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Theorem 1.17. For any integer n and positive constant p there is a positive constant
e(n, u) such that for any two closed Riemannian manifold (M, g) and (B, h) with

dim(B) < dim(M) = n,
|sec(M)| <1, |sec(B)| <1
inj(B) = u,

that are e-close in the Gromov-Hausdorff sense, i.e. dguy(M, B) < e < &(n, i), then there
1s a map f: M — B such that

(1) (M, B, f) is a fiber bundle,
(2) the fibers of f are diffeomorphic to a connected infranilmanifold Z,
(3) the structure group of the fibration lies in Aff(Z),

(4) f is an almost Riemannian submersion, i.e. if X is perpendicular to a fiber of f then

—7(€) < ‘df(X)| < €T(E),
X

(5) the second fundamental form of the fibers is bounded by a positive constant c(n).

Definition 1.18. Z is an infranilmanifold if it is diffeomorphic to the quotient F\N ,
where N is a connected and simply-connected nilpotent Lie group and I' is a cocompact
discrete subgroup of Aff(N) = Ny x Aut(N). Here Ny, is the group of left-translations
acting on N and Aut(N) is the automorphism group of N. Furthermore, Aff(Z) denotes
those diffeomorphisms of Z that lift to diffeomorphisms in Aff(N).

We refer to Appendix [A] for more details and the basic properties of infranilmanifolds.
If B is a point, Theorem coincides with Gromov’s theorem on almost flat manifolds
|Gro78, [ Ruh&2|.

Theorem 1.19. For any n € N there is an £(n) > 0 such that any closed n-dimensional
Riemannian manifold (M, g) with diam(M) = 1 and |sec| < £(n) is diffeomorphic to an
infranilmanifold P\N. Furthermore, there is a positive constant w(n) such that we have

[T:TnNg] <w(n).

At this point we want to remark that any infranilmanifold Z admits a sequence of
metrics (g:)e<1 such that the sectional curvature of (Z,¢.) is uniformly bounded in e
and (Z, g:)e<1 collapses to a point as ¢ — 0. In the following example we show how
such a sequence of metrics is constructed on a nilpotent Lie group N. As the universal
cover of any infranilmanifold is a connected and simply-connected nilpotent Lie group,
the construction of the following example can be modified to the case of infranilmanifolds.
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Example 1.20. Let N be a nilpotent Lie group with Lie algebra n, i.e. there is a k£ such
that its lower central series

n =10, ny = [n,ny], ng = [n,ny, ...

terminates at n,; = 0. It is an easy observation that n;;; < n; and that [n;, n;] < n,4;.
For any left-invariant metric g the sectional curvature satisfies the inequality

[R(X,Y)Zl, < 6] ad 3] X],|Y ] Z],
for all vector fields X, Y, Z, where
[ad g = max{[[X, Y]|g - | X[, = [Y]y = 1, X, Y en}.

To construct a collapsing sequence of metrics with uniform bounded curvature we first fix
a left-invariant metric g; on N. Let Ej, := {eq, }azea, be an orthonormal basis of ng. Then
there is an orthonormal set of vectors Eyx_1 = {€a,_; }ay_,ea,_, Such that Ex U Ey_; is an
orthonormal basis for n;_;. In that way we construct an orthonormal basis Ule E; forn
such that U - E; is an orthonormal basis for n; for any j € {1,...,k}. Since [n;, n;] < n;4;
it follows that for all €o; € E; and eg, € E; their Lie bracket is determined by their Lie
algebra coefficients {75 }a,,6,, defined by

eanes] = 3 e

Zi+jn=1

For any € > 0 we define the metric g. via

gs(eam eai) = €2i

for all e,, € E; and 1 < i < k. It follows immediately that {e ‘e, } a;e, is an orthonormal
1<z<k
basis for g.. This kind of Scahng is called an inhomogeneous scaling.

The sequence (N, g.). converges to a point in the Gromov-Hausdorff topology as ¢ — 0.
Furthermore, the sectional curvature of (V, g.) remains bounded since

1 1
’6— ’ ‘6—’ [eaia eﬁj] ’Qs =g () Z Z Tazﬁje’n
Q4 | ge ﬁj ge l>Z+j = 1 g
< e Hi)giti Z Z T;Zﬁj < Jad|,,,
Izi+jy=1

for all e,, € Ej, eg, € Ej and € € (0,1]. In particular, |ad ||, < |ad], for all ¢ <1 and
therefore

[sect | < 6] ad 2 < 6] ad |2,
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As we have seen in Example the limit of a collapsing sequence can have singu-
larities. Therefore, we can not apply Theorem directly to an arbitrary collapsing
sequence in M(n,d). In |[Fuk88| Fukaya dealt with this problem in the following way:
Instead of studying a convergent sequence (M;, g;)ien in M(n,d) he considered the asso-
ciated sequence of orthogonal frame bundles F'M;. We recall that the orthogonal frame
bundle FM of an n-dimensional Riemannian manifold (M, g) is defined as

FM = |_| {A:T,M — R": Ais an isometry}.

peM

Clearly, FM is an O(n)-principal bundle. Up to the choice of a biinvariant metric on
O(n) there is a canonical metric g* on FM such that the projection m : FM — M
is a Riemannian submersion with totally geodesic fibers. By construction, the quotient
manifold £'M /O(n) with the induced quotient metric is isometric to (M, g).

Let (M;, g;)ien be a sequence in M(n, d) converging to a compact metric space Y in the
Gromov-Hausdorff topology. It follows from Lemma [I.7 that there is a compact metric

space Y on which O(n) acts as isometries such that Y/O(n) is isometric to Y, i.e.

(FM;,0(n)) —=" 5 (V,0(n))

mi lﬁ

d
M; o > Y .

Fukaya showed that the metric space Y is in fact a Riemannian manifold [Fuk88, Section
6 - 8] and that Theorem can be generalized to the G-equivariant Gromov-Hausdorft
topology [Fuk88| Theorem 9.1]|. Therefore, the G-equivariant version of Theorem can
be applied to the sequence (F'M;, g )ien of frame bundles.

Theorem 1.21. Let (M;, g;)ien be a sequence in M(n,d) converging with respect to the
Gromov-Hausdorff metric to a compact metric space Y. For sufficiently large 1 there is a
map f; : M; — 'Y, and a compact metric space Y on which O(n) acts isometrically, and
an O(n)-equivariant map f; : FM; — Y such that the diagram

FM, I

=~

A
3

h<

commutes, and
(1) Y is a Riemannian manifold with C*-metric tensors,
(2) fi is a fiber bundle with affine structure group and infranil fibers,

(3) fz is an almost Riemannian submersion, i.e. if X € T,FM; is perpendicular to the

fibers of f; then

e—T(dGH(Mi,Y)\n,d) < ’dfl<X)‘ <6’r(dGH(M,-,Y)\n,d)

X ’
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(4) M; and 'Y are isometric to FM/O(n) and Y/O(n) respectively,

(5) for each p €Y the groups Gz = {g € O(n)|g(p) = p} for p € 7' (p) are isomorphic to
each other. We set G, == G; for some fized p € 7 (p).

Remark 1.22. Let F M (n,d) be the set of all isometry classes of frame bundles (F'M, g*')
of Riemannian manifolds (M, g) € M(n,d). There are positive constants Cy(n) and Cy(n)

such that

Recall that M(n,d|k) denotes the set of all isometry classes of closed n-dimensional

Riemannian manifolds (M, g) with diam(M) < d and |sec™ | < k. Let FM(n,d) be the
closure of FM(n,d). Then there is a further constant Cs(n) > 0 such that

(n—1)(n—2)

FM(n,d) = M <n+ L+ Cy(n)

n+ (n71)2(n72)

FMn,dyn | M(k,d|Cs(n))

is a dense subset of F M (n, d) with respect to the Lipschitz distance, see [Fuk88, Theorem
6.1].

In [Fuk88, Theorem 0.5] it is shown that every limit space Y has a well-defined Haus-
dorff dimension k € N. Moreover, Y is a stratified space, i.e. Y = S3(Y) 2 5(Y) >... D
Sk(Y') such that S;(Y)\S;11(Y) is a (k — j)-dimensional smooth Riemannian manifold.
Using this structure, we can say a little bit more about the fibers of the singular fibrations
fi: M; =Y (see also [Fuk88, Theorem 0.12]).

Corollary 1.23. Let (M;, g;)ien be a convergent sequence in M(n,d) with limit space Y
and let f; : M; —'Y be the singular fibrations from Theorem|1.21. Setting k = dim pa,s(Y")
we have that

(1) for any j € {0,...,k}, the restriction of fi to f;i ' (S;(Y)\S;11(Y)) is a fiber bundle
with infranil fibers,

(2) for any p € Y\S1(Y), G, acts freely on the fiber F; = f[l(ﬁ), where f; : FM; — Y
and w(p) = p. Here G, is defined as in Theorem . In particular, the fiber f'(p)
is diffeomorphic to the quotient space Fi/Gp,

Another approach to study the structure of collapse with bounded curvature was
carried out by Cheeger and Gromov [CG86,|(CG90|. They generalized local group actions
and introduced an action of a sheaf of groups. In particular, they considered actions of
sheaves of tori with additional regularity conditions. This defines the so-called F-structure
(where “F” stands for flat). Cheeger and Gromov proved that each sufficiently collapsed
complete Riemannian manifold admits an F-structure of positive rank. An advantage
of this approach is that no uniform bound on the diameter is required. However, the
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Hausdorff dimension of the limit space of a collapsing sequence without a uniform diameter
bound is not necessarily well-defined (see for instance [CG86, Example 0.2]).

Combining these two approaches, Cheeger, Fukaya and Gromov defined in |[CFG92|
the notion of nilpotent structures (N-structures) and showed that they exist on each
sufficiently collapsed part of a complete Riemannian manifold (M, g) with |sec| < 1.
Roughly speaking, if M is sufficiently collapsed, its frame bundle F'M is locally the total
space of a fibration with infranil fibers and affine structure group. Thus, there is a sheaf
on F'M whose local sections are given by locally defined right invariant vector fields
on the fiber. These local right invariant vector fields represent the locally defined left
multiplications by the simply connected nilpotent Lie group covering the infranil fiber.
Similar to [CG86,CG90| no upper bound on the diameter is required.

A further main result of |[CFG92| is the existence of invariant metrics on manifolds
admitting an N-structure. These metrics are invariant in the sense that the local sections
of the sheaf on the frame bundle are given by locally defined Killing vector fields. To
construct such a metric the authors first applied the following theorem due to Abresch
|[Abr88, Theorem 1.1] to obtain uniform bounds on the derivatives of the curvature (see
also [Shi89, Theorem 1.2] for a proof using the Ricci flow).

Theorem 1.24. For any e > 0 and n € N there is a smoothing operator S, such that on
any complete Riemannian manifold (M, g) with |sec? | < 1 the metric g := S.(g) satisfies

(1) efg < g < ey,
(2) IV - V| <e,
(3) |VIR| < Aj(n,¢) for all j = 0.

In addition, Rong showed that, for sufficiently small €, we have the following bounds
on the sectional curvature of S.(g), c.f. [Ron96|, Proposition 2.5|.

Proposition 1.25. There is a constant §(n) > 0 such that for any complete Riemannian
manifold (M, g) with |sec? | < 1 and any 0 < € < 9, there is a positive constant C'(n) such
that the metric g .= S-(g) satisfies

minsec? —C(n)e < sec? < maxsec? +C(n)e.

Let A = (A;) en be a sequence of non negative numbers. Then a Riemannian manifold
is called A-regular if |V/R| < A; for all j € N. Further, we denote by C(A) a constant
depending only on finitely many A;.

Applying Theorem [1.24] it suffices to study sequences of A-regular manifolds. For
such sequences, these so-called invariant metrics were constructed in [CFG92, Section
4, Section 7, Section 8|. Since we are interested in collapsing sequences in M(n,d) we
summarize the results of [CFG92|, Section 4, Section 7, Section 8| restricted to this special
case.

Theorem 1.26. Let (M;,gi)ien be a sequence of A-regular Riemannian manifolds in
M(n,d) converging to a lower dimensional space Y. In addition, let (Y, h) be the O(n)-
equivariant Gromov-Hausdorff limit of the corresponding sequence (FM;, gF )ien of frame
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bundles. For any i sufficiently large there is an O(n)-invariant metric gZF on F'M; which
induces a Riemannian metric §; on M; and an O(n)-invariant metric h; on'Y such that
forall 7 =0,

V(g —3l)
V7 (h — hy)

C(”a A7j>dG’H<M7 Y)7
Cl(na A>])dGH<M7 Y)7

NN

and such that the map f; : (FM;, §F) — (Y, h;) is a Riemannian submersion. In addition,
the second fundamental form of the fibers is bounded by a positive constant C(n) and for
any p € Y, the induced metric on the infranil fiber Zy 18 affine parallel, i.e. it lifts to a
left-invariant metric on its universal cover.

From Theorem [1.26] Theorem [1.24] and Proposition the next lemma follows
immediately.

Lemma 1.27. Let (M;, g;)ien be a collapsing sequence in M(n,d). Then there is an index
I > 0 such that for all © = I there is an invariant metric §; on M; in the sense of the
above theorem such that

lim [|g; — gi|cr = 0.
1—00

Furthermore, the sectional curvature and the diameter of the sequence (M;, ;)ien are
uniformly bounded.

Let (M;, g;)ien be a collapsing sequence in M(n,d) with limit space Y such that the
metrics g; are invariant in the sense of Theorem [1.26] We observe that the corresponding
sequence (F'M;, g )ien can be viewed as a sequence of special fiber bundles, see Theorem
and Theorem[1.26] To simplify notation we summarize the properties of these arising
fiber bundles.

Definition 1.28. A fiber bundle f : (M, g) — (B, h) is called a Riemannian affine fiber
bundle if

e f is a Riemannian submersion,

e for each p € B the fiber Z, := f~!(p) is an infranilmanifold with an induced affine
parallel metric g,,

e the structure group lies in the group of affine diffeomorphisms, Aff(Z7).

In the following corollary we summarize the results of Theorem [1.21], Theorem [1.26
and Lemma [[.27]

Corollary 1.29. Let (M, g;)ien be a sequence in M(n, d) converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then there is a Riemannian manifold Y with
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a CY*-metric h on which O(n) acts as isometries such that Y/O(n) 18 1sometric to'Y and
an I > 0 such that for any v = I the following diagram commutes.

ml lﬂ (1.29.1)

M~y
Furthermore, the index I can be chosen such that for all i = I there is an invariant metric
gi on M; and an O(n)-invariant metric h; on'Y such that f; - (FM;, g&') — (Y, h;) is an
O(n)-equivariant Riemannian affine fiber bundle and

lim ||§z - giH01 =0,
1—00

lim ||h; — hfer = 0.
1—00

Moreover, the second fundamental forms of the fibers of the Riemannian submersions ﬂ
are uniformly bounded in norm by a positive constant C(n) and the sectional curvature of
(M;, Gi)ien are uniformly bounded by a positive constant K(n).

Remark 1.30. If a sequence (M;, ¢;)ieny in M(n, d) converges to a Riemannian manifold
(Y, h) then the above corollary simplifies to the statement that for all i > I there are
metrics §; on M; and h; on Y such that f; : (M;, §;) — (Y, h;) is Riemannian affine fiber
bundles with (M;, §;) € M(n,d| K(n)) for all i > I and

lim ”fh - giHCI =0,
1—>00

lim | — s = 0.
1—00

Let (M;, g;)ien be a collapsing sequence in M(n, d) with limit space Y. In general, Y is
not a Riemannian manifold, see for instance Example [[.15, We recall from Corollary [T.29]

that Y is isometric to the quotient Y/ O(n) of a Riemannian manifold Y. In particular,
all singularities of Y have at least quotient singularity structure.

In Theorem we defined for any p € Y the group G, which is the stabilizer group
of the O(n)-action on Y. In [NT11, Theorem 2.1] it is shown that dim(G,) < n—dim(Y").
Thus, it follows that as the difference n — dimy,,s(Y") gets large the possible singularities
that can occur get worse.

If n —dim(Y) = 1 then dim(G,) = 0 for all p € Y. In particular, the group G, is
finite for all p € Y. This leads to the following proposition which was already proven
in [Fuk90, Proposition 11.5].

Proposition 1.31. Any (n — 1)-dimensional metric space Y in the boundary of M(n,d)
is a Riemannian orbifold Y with a CY“-metric h.

Loosely speaking, Riemannian orbifolds are locally modeled as quotients of Rieman-
nian manifolds by a finite isometric group action. As Riemannian orbifolds are, by def-
inition, locally finitely covered by Riemannian manifolds many geometric concepts like
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Toponogov’s triangle comparison and Bishop-Gromov volume comparison carry over to
Riemannian orbifolds. For a thorough introduction to Riemannian orbifolds we refer the
reader to [BGO8, Chapter 4], [Thu80, Chapter 13].

If n — dimpaus(Y) = 2 we do not know, a priori, if the group G, is trivial, finite
or infinite. In [NT11, Theorem 1.1], the authors characterize the set of singularities as
follows.

Theorem 1.32. Let (M;, g;)ien be a sequence in M(n,d) converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then there is a closed set S of Hausdorff
dimension

dimpaus(S) < min{n — 5,dim(Y") — 3}
such that Y\S is a Riemannian orbifold with a C**-metric h.

The upper bound on the Hausdorff dimension of the singular set S is sharp as the
authors show in various examples [NT11, Example 1.1 - 1.4].



Chapter 2

Codimension one collapse

We say that a sequence (M;, g;)ien in M(n,d) is a codimension one collapse if (M;, g;)ien
converges to an (n — 1)-dimensional compact metric space Y. In this special case we
already know that Y is a Riemannian orbifold with a C''®-metric, see Proposition m
As shown in Theorem this is a special case because if the limit space Y of a col-
lapsing sequence in M(n,d) has dimp,,s Y < (n — 1) then Y has in general non orbifold
singularities. Since Riemannian orbifolds are locally modeled as quotients of Rieman-
nian manifolds by a finite isometric group action many geometric concepts carry over to
Riemannian orbifolds. This motivates the main result of |Rool8a] which characterizes
codimension one collapse in M(n, d) and proves Theorem [0.1]

Theorem 2.1. Let (M;, gi)ien be a sequence in M(n,d) converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then the following are equivalent

(1) dimpaus(Y) = (n — 1),
(2) for all r > 0 there is a positive constant C(n,r,Y) such that

vol(B}"(x))

C < iy (2.1.1)

inj"(x)

holds for all x € M; and i € N,

(3) for some r > 0 there is a positive constant C(n,r,Y") such that the inequality (2.1.1)
holds for all x € M; and i € N.

The idea behind Theorem is the following illustrative observation. Let (M, g;)ien
be a collapsing sequence in M(n, d). Then the r-balls around a sequence of points x; € M;
contain all collapsing directions, while the injectivity radii at the points x; only represent
the fastest scale of collapse. If we have a codimension one collapse then the collapse
happens on the scale of the injectivity radius. Hence, the volume of the balls BMi(z;)
and the injectivity radii inji(z;) converge to 0 at the same rate. In particular, the ratio
(2.1.1) can be uniformly bounded from below. However, if the collapse has codimension
larger than or equal to two then the injectivity radius “sees” only a part of the collapse.
Thus, the volume of the balls BMi(z;) converges on a larger scale to 0 than the injectivity
radii inj*(x;), i.e. the quotients converge to 0 as i — o0.

23



24 CHAPTER 2. CODIMENSION ONE COLLAPSE

Example 2.2. Consider the sequence (T? g; = gs @ % gs)ien of flat tori from Example
This sequence collapses to S'. As inj%(z) = %, it follows that for any r > 0 and
x € T?, vol(BY%(z)) ~ 2min{r, 7} - 2% as i — 0. Therefore, we derive for r < 7 that

vol(Bf(x)) 4T

lim =llm7i=4r>0.

imeinj(r) iow §
In particular, this quotient is uniformly bounded from below, as stated in Theorem [2.1]

Example 2.3. As in Example , we consider the sequence (T?, g; = % gs D %gg)ieN of
flat tori. This sequence collapses to a point. No matter how small we choose r > 0 there
exists some I € N such that vol(B%(z)) = 2 - 2= for all z € T? and i > I. As inj%(z) = T
for all € T2, we conclude that

vol(BYi (z)) 47

zlggy inj% (z) - zlgg o 0

Thus, we cannot find a uniform positive lower bound for this quotient.

The proof of Theorem [2.1]is divided into three steps. First, we show that, in order to
prove Theorem [2.1] it suffices to restrict to sequences of manifolds with invariant metrics,
as introduced in Theorem [1.26] Next, we show that (1) implies (2) by constructing a
lower bound as required in for any given r > 0. As the implication from (2) to
(3) is trivial it remains to show that (3) implies (1). This direction will be proved by
contradiction. By Corollary any collapsing sequence in M(n,d) is a sequence of
collapsing singular fibrations over the limit space. Thus, we will bound the volume of
BMi(z), up to a constant, from above by the injectivity radius and the diameter of the
corresponding collapsing fiber. It remains to bound the injectivity radius of the collapsing
fiber from above by the injectivity radius of the manifold in z. This is done by modifying
results of [Tap00| for bounded Riemannian submersions. In the end, we show that the
constructed upper bound on the quotient converges to 0, giving a contradiction.

The content of this chapter corresponds to [Rool8al Section 3 and 4.

In Section [2.1] we show that under appropriate assumptions on the geometry of a
Riemannian submersion f : M — Y there is a positive constant C' such that we have
inj(f~1(p)) < Cinj(z) for all z € f~1(p), if inj™ (z) is sufficiently small compared to the
injectivity radius of Y. This proposition is essential to prove the direction (3) to (1) in
Theorem 2.1

Using this proposition together with the structure of collapsing sequences in M (n,d),
see Corollary [I.29] we prove Theorem [2.1]in Section 2.2 with the strategy explained above.

In conclusion, we define the space M(n,d,C) consisting of all isometry classes of
Riemannian manifolds in M(n,d) with C' < YSJI((A]?)) . We show that there is a uniform
bound on the essential supremum of the sectional curvature and a uniform lower bound
on the volume for all (n — 1)-dimensional limit spaces of M(n,d,C).

2.1 The injectivity radius of a fiber

Let f:(M,g) — (Y, h) be a Riemannian submersion between two Riemannian manifolds.
Henceforth, we denote the fiber over p € Y by F, == f~!(p) and k = dim(F}). It is
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well-known that TM = H @V, where H is the horizontal distribution isomorphic to
f*TY and V = ker(df) is the vertical distribution. The relations between the curvatures
of (M, g),(B,h) and the fibers (F), g,) are given by O’Neill’s formulas, see Theorem [B.6]
These formulas involve the two fundamental tensors 7" and A which are defined as

T(X,Y) = (VoY) + (VY

Y ” (2.3.1)
AXY) = (VxuY")" + (VxuY™)",
for all vector fields X, Y € I'(T'M). Here XV, X# denote the vertical, resp. horizontal part
of the vector field X. Roughly speaking, the T-tensor is related to the second fundamental
form of the fibers and the A-tensor vanishes if and only if the horizontal distribution H
is integrable. A Riemannian submersion is called bounded if the fundamental tensors A
and T are bounded in norm by positive constants C'4 resp. Cr.
The goal of this section is to show the following proposition that is essential for the
proof of Theorem [2.1] (see Notation for the T-notation).

Proposition 2.4. Let f : M"™* — Y™ be a bounded Riemannian submersion such that

|sec” | < K for some K > 0. If inj’™ (z) < min{ K1302 , 2inj¥ (p)} for some x € F, then
A

inj(F,) < (1 + 7 (inj™ (2)|Ca, Cr, K, K)) - inj™ (z).

The explicit expression of the constant <1 +7(injM(2)|Ca, Cr, K, K)) is given in the proof.

The main ingredient of the proof of Proposition [2.4]is a homotopy with fixed endpoints
between a curve v with endpoints in a fiber F}, and a curve 7 lying completely in the fiber
F,. Such a homotopy was constructed in the proof of Theorem 3.1 in [Tap00].

Proposition 2.5. Let f : M — Y be a bounded Riemannian submersion with Y being
compact and simply-connected. Then there exists a positive constant C' == C(Y, k,Cp, C}y)
such that any curve v : [a,b] — M with endpoints in the fiber F,, p = f(y(a)), is
homotopic to a curve 7y in the fiber F,, satisfying

() < Cl(y).

We observe that there are a few differences between the assumptions of Proposition
and the assumptions of Proposition 2.4l First, in Proposition [2.5, Tapp requires Y to
be compact and simply-connected. These assumptions are needed to guarantee that for
any loop a : [0,1] — Y there is a nullhomotopy H : [0,1] x [0,1] — Y, i.e. H satisfies
H(1,t) = a(t), H(0,t) = «(0) and H(s,0) = H(s,1) = «(0) for all s € [0, 1], whose
derivatives are uniformly bounded [Tap00, Lemma 7.2]. As we are only interested in the
local behavior around a chosen fiber F, of the Riemannian submersion f : M — Y it
suffices to consider a small neighborhood of p € Y. It follows from the assumptions of
Proposition that the considered non contractible geodesic loop v based at x € F}, has
length () = 2inj" () < 1 inj"'(p). Since the ball By () (p) is convex and contractible,
the loop f o+ is contractible in Y. Furthermore, by assuming a bound on the sectional
curvature of Y, there is a nullhomotopy with bounded derivatives for curves with length
less than 1 inj* (p).
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Lemma 2.6. Let Y be a Riemannian manifold with —)\* < sec¥ < A? for some A\, A > 0.
Furthermore, let o : [0,1] — Y be a loop in'Y based at p and l(c) < min{ZF, 1inj" (p)}.

Then there is a smooth nullhomotopy H : [0,1] x [0,1] — Y, ie. H(0,t) = p and
H(1,t) = a(t) and H(s,0) = H(s,1) = p for all s € [0,1], such that

0 A sinh() 12

A <5 Sm(E\ @)) a),
2

0 sinh(\ @) (@)

s ’ /\l(;) 2

for all s, t € [0,1].

Proof. Let o be parametrized proportional to arclength, such that ‘%—2‘ = l(a). Since «
satisfies [(ar) < £ inj* (p), it lifts to a contractible loop & = exp,'oa in T,Y. Thus, the
nullhomotopy H (s,t) i= s - a(t) with s, t € [0,1] is well-defined. Clearly, we have that

0 - ol
Ch =8 <
0s ‘ 4 2
To estimate %ﬁ , we first observe that it follows from the assumption —\? < sec¥ < A?
that
sin(Alv]) sinh(A|v])
_~ 'V < Dv < —2
1l < D, exp, 0] < A

for all v € T,Y with |v| < T and w € T,T,Y, see e.g. [Jos05, Corollary 5.6.1]. Therefore,
we obtain for ¢ € Bijv (p) with d(p,q) < § and u € T;Y that

Alexp, ' (q)]
D exp_1 ul < — P ul.
oty 2= SR ey 1))
As by assumption d(p, a(t)) < @ < %, we conclude that
gl <|%al« MaL |2 1o A
ot | " fot | " sin(Alal) [0t T| T sin(A 1) '

By construction H := expp(I:[ ) is a smooth nullhomotopy of a in Y with

0 H‘ < sinh(\|H (s,1)])

3 \ 0 ﬁ[' _ sinh(A ey (o)
AlH (s,1)]

= = . _
0s prc 2

0s

The corresponding bound on ‘%H ‘ follows similarly. O

The next corollary follows immediately by adjusting the bounds on the derivative of
the exponential map.
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Corollary 2.7. Let Y be a Riemannian manifold with —\?> < secY < —A? for some

A= A= 0. Purthermore, let o : [0,1] — Y be a loop inY based at p and l(a) < inj* (p).
Then there is a smooth nullhomotopy H : [0,1] x [0,1] = Y, as in Lemma[2.6, such that

inh (A
iH‘ < é-W—M-l(Q),
ot )\ Slnh(A T)
sinh(A @) l(a)

0
0s ,\@ 2

(o
)
)

. sinh(A)
If A =0, we set =5~ = 1.

Next, we prove Proposition 2.4l Therein we keep carefully track of the dependence of
the constants on inj™ (z) because this is the quantity going to 0 in a collapsing sequence
while the other quantities will be uniformly bounded.

Proof (Proof of Proposition . We assume without loss of generality that the curve

™

is parametrized proportional to arclength such that || = I(v). Since inj™(z) < Wid

there is a non contractible geodesic loop v based at z such that I(y) = 2inj”(x). As
inj™(z) < 1inj"(p), the composition f o~ is a contractible loop in Y. By Proposition
, 7 is homotopic to a non contractible loop ¥ in the fiber F), such that I(¥) < C - [(v)
for a positive constant C' := C(Y, k,C4,Cr). Thus,

2inj™ < 1(7) < C-1(7) = C - 2inj™ (z).

We claim that C' = (1+7(I(y)|Ca, Cr, k, K)). The proof consists of a careful study of
the constant C, following the proof of [Tap00, Theorem 3.1]. In this proof, Tapp modifies
the path v such that it is a concatenation of paths (v;); with endpoints in the fiber F,
such that I(y;) < (2diam(Y’) + 1) for all 4. Since in our case I(y) < (2diam(Y) + 1)
already holds by assumption we do not need this modification.

Set a(t) := f o~ and let & be the horizontal lift of a(t) with &(0) = v(0). We observe
that &(1) = h*(z) =: z, where h® : F}, — F, is the holonomy diffeomorphism associated to
a. The vertical curve 7 is the concatenation of the paths f; and [y which are constructed
as follows |Tap00, proof of Theorem 3.1]:

Let H : [0,1] x [0,1] — Y be the nullhomotopy for o from Lemma 2.6l We lift H
horizontally to a homotopy H : [0,1] x [0,1] — M such that H(1,t) = G(t) and such that
H(s,i) = &(i) for i € {0,1} and all s € [0,1]. Then 8(t) := H(0,t) is a path in the fiber
F, connecting x = @(0) and z = a(1).

The path 3y can be understood as a “horizontal transport” of v to the fiber F,. To
be concrete, fa(t) == h'(y(t)), where h' : Fyy — F, is the holonomy diffeomorphism

associated to ayp1). By construction, 3, : [0,1] — F}, is a path from z to z.
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1

~ . 51(2t)7 if ¢ <
) = {52(%— 1), ift>

N = N

is bounded by

() = 1(B) +1(B2) < P-1(y) + L-1(y) = C-1(v)

for some explicit positive constants P and L, compare with [Tap00} p. 645]. We will study
these constants P and L in detail.

First we consider the inequality [(8;) < P - [l(y). The constant P is an upper bound
on the derivative of the function [ — p;(1) between [ = 0 and [ = I(7), where py)(t) is
the solution to the differential equation

(o)) (1) = KCAQsQul (7) (1 + 4°k!) + kQul(Cr + 4" KICa)pu(1)
Py (0) = 0.

The constants Qt and s are the bounds on the nullhomotopy H of the path a(t) in Y,
ie. ‘atH‘ and}aH‘

Since —K < sec” < (K + 36’ A), by O’'Neill’s formula [B.7.3, and, by assumption,
l(a) <l(y) < min{\/;jigci, % inj* (p)}, we apply Lemma and derive that

0r - VK +3C%  sinh(VE'Q)
t VK sin(+/ K + 30%%)’

(2.7.1)

2.7.2
s = : = Lstly)-
1(v)
VER 72
Note that for any loop & in Y of length less than or equal to l( ) the corresponding
nullhomotopy H of & satisfies the bounds | g | ) and | o 2H ‘ < Qsl(a).

Thus, in our case, the differential equation (|2 reads as

() (t) = kCaQsQ*(1 + 4¥KY) + kQuL(Cr + 4"KICA) py(t) |
pi(0) =0,
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for 0 < 1 < I(v), compare [Tap00, Lemma 3.3]. For simplicity, we set

Gy = kC4Q.Q:(1 + 4%k,
Gy = kQ,(Cr + 4"K1C,).

Using the variation of constants, we conclude

_& Gal _
pi(1) = Ggl(e 1).

Therefore,
d G
gD = G (€ = 1) + G
G2 (2.7.3)
<—1(6G2l() 1) + Gil(y)e Gl = p,
Go

It remains to check the behavior of this term as [(v) becomes small. Since @); and Q, are
the only appearing quantities depending on [(-y) we first conclude from ([2.7.2)) that

l(li)rn Q=1
—0
1 (2.7.4)
1 s = —.
i, @ =5

Hence, we extract the quantities in Q; and Q, in m
G kCaQ.Qu(1 + 4%k _o Ca(1 + 4%K!)
G B th(CT + 4kk'CA) B SCT + 4kE1Cy
Gil(y) = kCaQsQu(1 + 4°kDI(7) = QsQil(7) - C2(Ca, k),
Gal(y) = kQi(Cr + 4"KIC)I(7) = Qil(7) - C5(Ca, Cr. k).

= Qs ) CI(CA7 CT7 k))

Therefore, it follows with (2.7.4)) that
lim &
1()-0 G
lim Ghl(y) =0-Cy(Ca, k) =0
l(y)—0

1
= 5 ' OI(OAa OT7 k)a

lim GQl(’Y) =0- Cg(CA, CT, k) =0
I(v)—0
Summarizing these observations we conclude

G,
lim P = lim — (e —1) + Gyl Gal()
e o Gg( 1) (v)e

— §Cl(CA,CT,k)(60 —1)+0-€"=0.
This shows that P = 7(I(y)|Ca, Cr, k, K).

Next, we consider the inequality {(52) < L -I(). Here, L is the maximum of the
Lipschitz constants of the holonomy diffeomorphism A% associated to paths o in Y. Since



30 CHAPTER 2. CODIMENSION ONE COLLAPSE

h* satisfies the Lipschitz constant T (c.f. [GW00, Lemma 4.2]) and I(«) is bounded
from above by () we conclude that

L= — 1 4 7(1(7)|Cr).
Summarizing all these observations we conclude
2inj™» <1(7) < C - 1(7)
=(P+1L) l(v)

(v
_ (1 +7(1(7)|Ca, Cr, K, K)) I(7)
_ (1 + #(inj™ (2)|Ca, O, k,K)) - 2inj™ (2). 0

Remark 2.8. If —K < sec™ < —x for some x > 0 such that (—x + 3C3) < 0 then the
assumption inj™ (z) < }Linjy(p) is already sufficient for Proposition to hold, as M, as
well as Y, do not have any conjugate points. In particular, the injectivity radius at some
point x € M equals half of the length of the shortest non contractible geodesic loop based
at x.

2.2 Characterization of codimension one collapse

In this section we prove Theorem [2.I] Further, we discuss the properties of the set
M(n,d,C') consisting of all isometry classes of Riemannian manifolds (M, g) in M(n,d)

vol(M)
with C' < i& an -

First we note that in the case of a non collapsing sequence in M(n, d) the statement
of Theorem is obviously true as the limit space is a closed n-dimensional Riemannian
manifold, see Theorem [I.9) Therefore, we only consider the case of collapsing sequences
in M(n,d).

The first step of the proof of Theorem is to reduce the statement to sequences of
sufficiently collapsed manifolds with invariant metrics in the sense of Theorem [I.26] This
is done in the following lemma. Then it suffices to prove Theorem for that special
case.

Lemma 2.9. Let (M;, g:)ien be a collapsing sequence in M(n,d) with limit space Y.
There is a small positive 6 and an index I > 0 such that for any i > I, there is an
mvariant metric §; on M; with

|gi — §z| < (66 1) + C(n (5)dGH(Mi,Y),
Vi — Vi| <0+ Ci(n,8)deu(M;,Y),
IVIR;| < C(j,n,8)(1 + de(M;,Y)).

In particular,

—r(dau(M;,Y)|n,6)—7(5|n) VOl(Byi (2)) < VOl(ByZ)(x)
w )

< o7(dan(MY)[n,8)+7(3ln) vol(BYi(x))
S ~ M, —,
inj " (z)

e
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~ ~M; . ..
where BMi(x) and inj "(x) are taken with respect to the metric g;. Moreover, the Haus-
dorff dimension of the limit space Y of (M;, Gi)ien equals the Hausdorff dimension of the
limit space Y of the original sequence (M;, g;)ien.

Proof. First, we apply Abresch’s smoothing theorem, Theorem for some small § > 0
to the sequence (M;, g;)ien. We obtain the sequence (M;, §;)ien consisting only of A-regular
manifolds, with (A4;(n,d));en, i.e. for all 7,5 e N,

A

where @i, R; is the Levi-Civita connection, respectively the curvature of the metric g;.
Moreover, by choosing ¢ sufficiently small, Proposition [1.25| implies that

sec™ | < (1 + ¢(n)d).

It follows from the estimates for the metrics g; and g; in Theorem that for all
v =1,

JYOUBY () _ vol(BY)(w) _ iy vol(BY ()

—~M; = s M = —~M;
inj (z) inj™ () inj (x)

e—T((S\n

(2.9.1)

Here, I; is chosen to be sufficiently large such that for all i > I, inji(x), resp. I/II\JM (x), is
smaller than the conjugate radius of (M;, g;), resp. (M;, g;), which is uniformly bounded
from below in terms of the upper sectional curvature bound. Thus, the bound on the
conjugate radius for (M;, g;) only changes slightly if we choose § > 0 to be sufficiently
small.

By Theorem there is a further index Iy such that for each element of (M;, §;)ien
with i > [, there is an invariant metric g; on M;. This leads to a new sequence (M;, §;)ien-
The claimed bounds on g; follow by combining the inequalities given in Theorem and
Theorem . In particular, after a small rescaling, (M;, §;)ien lies again in M(n, d).

Moreover, as [§; — Gi|c» < T(dau(M;,Y)|n,d), see Theorem [1.26] it follows that

—7(dau(M;,Y)|n,5) VOI(B%@)) < vol(BY)(x) < r(dcn(M;,Y)n,6) VOl(Bq{m (2))
inj  (z) inj (z) inj  (z)

e . (292)

uniformly for ¢ > max{[, I} =: I, as before.

Since |§; — gilc= < T(dau(M;,Y)|n,d), the sequences (M;, §;)ien and (M;, G;)ien con-
verge to the same limit space Y. Furthermore, as dau((M;, g;), (M;, §;)) < 7(6) it follows
from [Fuk88, Lemma 2.3| that the Lipschitz-distance between the limit spaces Y and Y is
also bounded by 7(6) (the explicit value of 7(§) might change). In particular, ¥ and Y are
homeomorphic to each other. Thus, they have the same Hausdorff dimension. Together

with (2.9.1) and (2.9.2)) the claim follows. O

Let (M;, gi)ien be a sequence in M(n,d) converging to a compact metric space Y of
lower dimension. By the above lemma, we assume without loss of generality, that for
all i € N the metric ¢; is an invariant metric in the sense of Theorem [I.26] Moreover,
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we can assume without loss of generality that inj™ (z) < 7 for all z € M; and i > I.
Consequently, we can restrict our attention to collapsing sequences (M;, g;)ien in M(n, d)
such that for every i € N the manifold (M;, g;) is A-regular, inj"i(z) < 7 for all x € M;,
and the metric g; is invariant.

The next proposition together with Lemma proves the implication (1) to (2) in
Theorem 2.1

Proposition 2.10. Let (M;, g;)ien be a collapsing sequence of A-reqular manifolds in
M(n,d) converging to a compact metric space Y in the Gromov-Hausdorff topology. Sup-
pose that for each i € N the metric g; is invariant. If dimpga,s(Y) = (n—1) then, for each
r > 0, there is a positive constant C = C(n,r,Y) such that

vol(B/"(x))

) (2.10.1)

~

for all x € M; and i € N.

Proof. Since dimp,,s(Y) = (n — 1) it follows from Proposition that Y is a compact
Riemannian orbifold. Furthermore, Corollary implies that we have for any i € N an
S'-bundle f; : (FM;,g{) — Y. Here Y is the Gromov-Hausdorff limit of the sequence

(FM;, g )ien. By Theorem [1.21 Y is Riemannian manifold and the quotient Y/O(n) is

isometric to Y. Hence, f; : M; — Y is an S*-orbifold bundle. As by assumption, for any
it € N the metric g; is invariant there is a Riemannian orbifold metric h; on Y such that
fi + (M;,9;) — (Y, h;) is a Riemannian orbifold submersion. As (M;, g;) is an A-regular
manifold it follows that the metric h; on Y is B(A)-regular for all i € N. Thus, there is a
subsequence such that (h;),en converges to a smooth metric on Y in the C*-topology.

Now we fix some r > 0. As i — o0, the ball BMi(z) resembles more and more
71 (BY (f:(z))). Hence, there is an index I such that for any i > I,

J7H(BY () = BY(a)

forall pe Y and z € Fg = f;l(p). This is a direct consequence of Toponogov’s triangle
comparison.

Since the T-tensor of the Riemannian submersions f; : FM; — Y is uniformly bounded
by a constant Cp(n) , see Corollary it follows that for any r > 0 there is a positive
constant C; := C(r,n, Cr) such that, for all i > I,

vol(BMi(2)) = C, VOI(B? (p)) vol(F})
= Cyvol(BY (p)) 2 inj(F}).

[N

For the last equality we used that Fg =~ S! for all i € N. In the above estimate, Y; denotes
the Riemannian orbifold (Y, ;). Now the claim follows from

vol(BMi(z)) Y, inj(F})
—————= > 2C vol( B’ -
> 2C inf min vol(BY'(p)) > 0. (]

€N peY 2
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To finish the proof of Theorem [2.1]it remains to show that (3) implies (1). The main
idea here is to derive a contradiction by constructing an upper bound on the inequal-
ity that vanishes in the limit. Together with Lemma the next proposition
completes the proof of Theorem [2.1]

Proposition 2.11. Let (M;, g;)ien be a collapsing sequence of A-reqular manifolds in
M(n,d) converging to a compact metric space Y in the Gromov-Hausdorff topology. Sup-
pose that for each i € N, inj™i(2) < 7 for all x € M; and that the metric g; is invariant.
If there exist positive constants r and C' such that
vol(B, (x))
inj "

for all x € M; and all i € N, then dimp,,s(Y) =n — 1.

C < (2.11.1)

z)

Proof. Let (M;, g;)ien be a collapsing sequence in M (n, d) such that the Gromov-Hausdorff
limit Y satisfies n — dimp,,s(Y) = £ = 2. Assume further that there are positive numbers
r and C such that holds for all x € M; and 7 € N.

By Theorem there is a closed set S < Y with dimpyays(S) < dimpaus(Y) — 3 such
that YV = Y'\S is a Riemannian orbifold.

Moreover, it follows from Corollary that the second fundamental form of the
Riemannian submersion f; : (FM;, gy — (v, h;) is uniformly bounded by a constant
C’T(n), where gf” is the metric induced by the metric g; and a biinvariant metric on O(n).
Considering the commutative diagram , it follows that for any r > 0 there is a
constant C4(r,n, Cr) such that

vol(B)i(x)) < Cyvol(BY(fi(x))) vol(Fj, ()
for any = € ~Mi~ , i € N. Here, Y; stands for the metric space (Y, h;), where h; is the quotient
metric of (¥ hz)/O(n)

Let p € Y be a regular point, i.e. p has an open neighborhood that is diffeomorphic
to an open manifold. Then, there is a £ > 0 such that BYi(p) is an open Riemannian
manifold for all ¢ € N.

Now the maps f; restricted to the preimage f;'(BY(p)) are Riemannian submersions

between manifolds for all 7 € N. Since the T-tensor of the Riemannian submersions f; is
uniformly bounded, by Corollary it follows that the T-tensor of f; restricted to the
preimage of BYi(p) is also uniformly bounded by a constant Cr.

As the sequence (M, g;)ien only consists of A-regular manifolds, we can extract a
subsequence, denoted by (M;, g;)ien, such that the Riemannian metrics (f;).(gF) on Y
converge in C*. Thus, the metrics (f;)+(g;) converge in C* on BY (p). In particular, the
sectional curvature on BY (p) can be uniformly bounded in i. Therefore, it follows from
O’Neill’s formula, [B.7.3] that the A-tensor is uniformly bounded in norm by a constant
C4 on BY (p).

Since inji(x) < , there is a non contractible geodesic loop 7 based at x € F]ﬁ such
that I(y) = 2inji(z). We observe that for all 4 sufficiently large, the assumptions of
Proposition are fulfilled. Hence, there is an I € N such that for all ¢ > I,

inj(F}) < (1 + 7(inj™ (x)|k, Cp, Ca) ) - inj*i(z) = Coinj™(x). (2.11.2)
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By O’Neill’s formula, it follows that
|sec’ | < [sec™ | + 202 = K2,

Therefore, we can apply |[HK78, Corollary 2.3.2|, to obtain

anhuﬁanmfgykj)k{

vol(£) < Caliy () (T

Together with (2.11.2) we conclude

injMi ()
C} vol(BYi(p)) vol(FY)
inj™i(
i\ L
Cyvol(B)i(p)) (Cg(k) inj(F?) (M) >

inj*" (z)

sinh (diam(F))K) ) e

C <

<

z)

<

< C1C2C3vol(B) (p)) < K

As (M;, gi)ien is a collapsing sequence, lim;_, diam(Fg) = (0. In particular, since k > 2
by assumption, it follows that

k—1

(smh(diam(Fé)K >) _0.

I
zl)Hoé K
Hence, we obtain in the limit ¢ — oo that C' < 0 which contradicts our assumption that

C' is a positive constant. O

As an example we consider Berger’s example of the collapsing Hopf fibration (see
Example|1.14)) and show that the characterization of Theorem applies.

Example 2.12. Consider the collapsing sequence (52, ¢;)iny from Example whose

Gromov-Hausdorff limit (S?, h) is the round two-sphere of radius 3. It is easy to check

that the Hopf maps f; : (S®,¢;) — (52, h) are totally geodesic Riemannian submersions
with uniformly bounded A-tensors. Let r = 7, and z € f; ' (p) =: F;. Then

2
vol(5%, gi) = vol( B (z)) = vol(F2) vol(BL (p)) = — vol($%, h) = “-—.

7 [

Therefore, we derive for r = 7,

vol(B% (z)) .. =
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We conclude this chapter, by examining the following subset of M(n,d).

Definition 2.13. For given positive numbers n, d, and C', we define M(n, d, C) to be the
set of all isometry classes of closed Riemannian manifolds (M, g) in M(n, d) satisfying
vol(M)

inj(M)”

C <

By Theorem and the following lemma it follows that the closure CM(n,d, C') of
M(n,d,C) with respect to the Gromov-Hausdorff distance only consists of n-dimensional
Riemannian manifolds and (n — 1)-dimensional Riemannian orbifolds. For simplicity we
consider each limit of a sequence in M(n, d,C) as an orbifold and understand a manifold
as a special case.

Lemma 2.14. Let (M,g) € M(n,d) with inj(z) < 5 for all v € M. Then there is a
constant C = C'(maxyep inj(z), d) such that for all x,y € M,

C~tinj(r) < inj(y) < Cinj(z).

Proof. The idea of this proof is to find a constant C” such that

|Dinj(z)| < C"inj(z) (2.14.1)
holds for all x € M. Here we interpret the injectivity radius as a map inj : M — R. Then
it follows from this inequality that for all z,y € M,

inj(y) < inj(z) - 4@V (2.14.2)

where d(z,y) denotes the geodesic distance between z and y. Since diam(M) < d the
lemma is an immediate consequence of (2.14.2]).
To construct a constant C” as in (2.14.1)) we consider the map
F:TM — M x M,
(z,v) = (z, exp,(v)).

Since |secM | < 1,

sin(|v|) sinh(|v])

[l

lw| < [(Dy exp,)(w)| < |w. (2.14.3)

]

By assumption inj(xz) < 7. Thus, the injectivity radius is everywhere strictly smaller
than the conjugate radius, which is bounded from below by 7. Hence, for every x € M
there is a geodesic loop v with I(y) = 2inj(M). In particular, for every € M there is at
least one v € T, M with exp,(v) = = and |v| = 2inj(z).

Thus, let (z¢,v9) € TM be such that exp, (vo) = z¢ and |vg| = 2inj(xg). Then,
F(z0,v0) = (%o, 9). Since & is invertible by (2.14.3), it follows by the implicit function
theorem that there is a small open neighborhood U <« M of ¢y and a map h : U — TM
such that h(zg) = vy € T,y M and F(x,h(x)) = (x,z) for all z € U. Furthermore, it follows
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from the implicit function theorem that we can bound the derivative of the function h as
follows:

VA < (Do F) a1 DaF e o]

|
|(Dhga) expy) "2 (2)]

Next, we observe that for every point z € h and direction & € T,, M, || = 1 there is
a vy € Ty, M such that the corresponding implicit function h satisfies

n)] = 5|eaD]

Hence, we conclude that

Dini(o)] = 3 |dll(x))

<%\Vh(:c)|
L@l
2sin(\h(m)\)|h( )

2inj(y) s .
< — ] - =C )
(I;é%} sin(2inj(y)) inj(z) inj(z)
In the second line we used Kato’s inequality, which states that any section S of a smooth
Riemannian vector bundle £ — M satisfies |d|S|| < |V.S| (see for instance [CGH00|). [

<

For later use we want to remark that the closure CM(n,d,C) of M(n,d,C) has a
dense subspace that only consists of smooth elements, as defined in |[Fuk88, Definition
0.4].

Definition 2.15. An element Y of the closure of M(n,d) is smooth if for any p € Y
there is a neighborhood U of p and a compact Lie group G, with a faithful representation
into the orthogonal group O(n) such that U is isometric to the quotient V/Gp for a
neighborhood V' of 0 in R™ together with a G,-invariant smooth Riemannian metric g.

This observation is necessary because we want to use the following lemma due to
Fukaya (c.f. [Fuk88, Lemma 7.8]).

Lemma 2.16. Let (M;, x;)ien be a sequence of pointed manifolds in the dgy-closure of
M(n,d) converging to a smooth element (Y,p). Suppose that the sectional curvature of
M; at x; are unbounded. Then the dimension of the group G,, defined in Theorem
1S positive.

Combining this with Proposition [1.31] we conclude the following properties of the set

CM(n,d,C).



2.2. CHARACTERIZATION OF CODIMENSION ONE COLLAPSE 37

Theorem 2.17. Any sequence (M;, gi)ien in M(n,d,C) contains a subsequence that ei-
ther converges to an n-dimensional closed Riemannian manifold in the CY*-topology or
to a compact (n — 1)-dimensional Riemannian orbifold (Y, h) with a C**-metric h in the
Gromov-Hausdorff topology. Furthermore, there are positive constants v = v(n,d,C) and
K = K(n,d,C) such that any element Y in CM(n,d,C) with dim(Y) = (n — 1) satisfies
|secY | < K and vol(Y) = wv.

Proof. Let (M;, g;)ien be a sequence in M(n,d,C'). Then there exists by Theorem a
dgu-convergent subsequence converging to a compact metric space Y.

If dim(Y") = n then the injectivity radius of the manifolds M; is uniformly bounded
from below by a constant ¢. Thus, this sequence lies in M(n, d, ) and the claim follows
from Theorem [I1.9

If dim(Y) < n, it follows from Lemma and Theorem [2.1| that dim(Y) = (n — 1).
Thus, Y is a Riemannian orbifold by Proposition [I.31] In particular, it follows from
Theorem that Y has a C*-metric h. This proves the first part of the theorem.

For the second part, we assume that there is a sequence (Y;, h;);en of (n—1)-dimensional
Riemannian orbifolds in CM (n,d, C') such that there is a sequence of points p; € Y; where
the sectional curvatures are unbounded as i — o0. Without loss of generality, we assume
that the metrics h; are smooth for all 7 € N. As each element Y can be realized as the limit
space of a codimension one collapse in M(n, d), there is a subsequence (Y;);en converging
to an element Y, in CM(n,d,C) and a point p,, with unbounded sectional curvature.
Since smooth elements, see Definition , are dense in the closure of M(n,d,C), we
assume without loss of generality that Y., is a smooth element. By a diagonal sequence
argument there is a sequence (M, g;)ien in M(n, d, C') converging to Y,,. Thus, it follows
from Theorem[2.1]and Lemmal[2.14]that Y, is an (n—1)-dimensional Riemannian orbifold.
As CM(n,d,C) is a subset of the dgu-closure of M(n,d) we can apply Lemma [2.16] It
follows that the group G, has positive dimension. This is a contradiction because the
group G, has to be finite by Proposition . Consequently, there exists a constant
K = K(n,d,C) as claimed.

For the volume bound we assume that there exists a sequence (Y, h;)seny in CM(n, d, C')
such that dim(Y;) = (n—1) for all i € N and lim;_,, vol(Y;) = 0. We see at once that (Y;);en
defines a collapsing sequence with limit space Y,,. By a diagonal sequence argument we
can construct a converging sequence (M;, ¢;)jen in M(n,d, C') whose limit space Yy, is of
dimension less than (n — 1). But this is a contradiction to Theorem In particular,
there is a constant v := v(n, d, C') such that vol(Y') = v for all (n — 1)-dimensional spaces

in CM(n,d,C). OJ






Chapter 3

Riemannian affine fiber bundles

In Chapter we have seen that for any sequence (M;, g;)ieny in M(n,d) converging
to a lower dimensional Riemannian manifold (B, k) in the Gromov-Hausdorff topology
there is an index I such that for any ¢ > [ there is a fibration f; : M; — B such that
the fibers are infranilmanifolds, see Theorem Furthermore, there are metrics §; on
M; and h; on B such that lim; . 1gi — gilcr = 0, lim;_,g Hﬁz — hlle = 0 and such that
fi: (M, 3;) — (B, hy) is a Riemannian affine fiber bundle, see Corollary and Remark
1.30l We recall from Definition that a fibration f : (M,g) — (B,h) between two

closed Riemannian manifolds is a Riemannian affine fiber bundle if
e f is a Riemannian submersion,

e for each p the fiber Z, :== f~!(p) is an infranilmanifold with an induced affine parallel
metric gy,

e the structure group lies in Aff(Z2).

Our goal is to study the behavior of Dirac eigenvalues on a collapsing sequence of spin
manifolds in M(n,d) with smooth limit space. Since Dirac eigenvalues are continuous
under a C'-variation of metrics, see Appendix|[C] it suffices to study the behavior of Dirac
eigenvalues on the total space of Riemannian affine fiber bundles. For this reason we will
study Riemannian affine fiber bundles in detail in this chapter.

The content of this chapter is a mix of [Roo18c, Section 3 and 4| and [Rool8bl Section
3 and 4] and a preparation for the proofs of the main results regarding the behavior of
Dirac eigenvalues on codimension one collapse |[Rool8c| and on collapsing sequences in
M(n,d) with smooth limit space [Roo18b.

Here and subsequently we fix a Riemannian affine fiber bundle f : (M, g) — (B, h) with
dim(M) = (n + k) and dim(B) = n. In particular, the fibers Z are closed k-dimensional
infranilmanifolds. In the first section we exploit the fact that f is a Riemannian submer-
sion and show via various examples how the geometry of the fiber bundle f : M — B
influences the relation between the Levi-Civita connection on (M, g) and the Levi-Civita
connection on (B, h). For the second section, we assume in addition that the total space
(M, g) is a spin manifold with a fixed spin structure. First, we discuss whether the spin
structure on M induces a spin structure on the fibers Z,, p € B, and on the base space
B. We show that if the fibers are one-dimensional, i.e. £ = 1 then there is an induced

39
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structure on B. But for £ > 2 we cannot make such a statement without further as-
sumptions. Nevertheless, as the induced metrics on the fibers are affine parallel there is
an induced affine connection V* on the spinor bundle of M. Thus, the notion of affine
parallel spinors is well-defined, see [Lot02a, Section 3]. We will show that the subspace
of affine parallel spinors on M is isometric to the space of spinors of a twisted Clifford
bundle over the base space B. In particular, there is an elliptic first order self-adjoint
differential operator D? on B that is isospectral to the Dirac operator on M restricted to
the space of affine parallel spinors.

3.1 The Geometry of Riemannian affine fiber bundles

Let f: (M,g) — (B,h) be a Riemannian affine fiber bundle. Since f is a Riemannian
submersion T'M = H®V, where H is the horizontal distribution isomorphic to f*7T'B and
V = ker(df) is the vertical distribution. The relations between the curvatures of (M, g),
(B,h) and the fibers (Z,,§,), p € B, are given by O’Neill’s formulas, see for instance
Theorem [B.6] These formulas involve the two fundamental tensors 7' and A, see (B.4.1)
for the definition. In the remainder of this chapter many calculations are carried out in a
special local orthonormal frame defined as follows:

Definition 3.1. Let f : (M,g) — (B,h) be a Riemannian affine fiber bundle. A local
orthonormal frame (&y,...,&,, (i, ..., () around a point x € M is called a split orthonor-
mal frame if (&1,...,&,) is the horlzontal lift of a local orthonormal frame (&,...,¢&,)
around the point p = f(z) € B and ((i,...,(x) are locally defined affine parallel Vector
fields tangent to the fibers.

Here and subsequently we label the vertical components a, b, ¢, ..., and the horizontal
components «, 3,7, .... The Christoffel symbols with respect to a split orthonormal frame
(&1, -, &0, Gy -+, () can be calculated simply with the Koszul formula:

re, = re

ab’
Lo, =Tty = 9(T (¢ &), €a),
I, = 9([éar Ca)s &) + 9(T(Car €a), G, (3.1.1)
Tog = —Th, = —Th, = g(A(fa, &s), Ca),
I, =170,

Here I‘Cb are the Christoffel symbols of the fiber (Z, g) with respect to (Ci,...,Cx), see
, and I']; are the Christoffel symbols of (B, h) with respect to (i,...,&,). For

later use we need to consider the following two operators characterized by their action on
vector fields X, Y.

VZY = (Vi vY)Y
VLY = (VynY")

We observe that for each p € B, VZ restricted to a fiber Z, is the Levi-Civita connection
with respect to the induced metric g, on Z,. Since g, is by assumption affine parallel,
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it follows that V# preserves the space of affine parallel vector fields. The difference
Z = VZ -V is a one-form with values in End(7Z), where we view TZ as a vector
bundle over M. We observe that Z = 0 if and only if the induced metric g, is flat for all
pe B.

The operator VY can be interpreted as a connection of the vertical distribution V in
horizontal directions. Since the metric ¢ is affine parallel it is immediate that VY also
preserves the space of affine parallel vector fields.

As the space of affine parallel vector fields on an infranilmanifold is finite dimensional,
see Appendix [A] there is a finite dimensional vector bundle P over B such that, for
any p € B, the fiber P, is given by the space of affine parallel vector fields of the fiber
Z, = f~X(p). Tt follows that P is a well-defined vector bundle. By the discussion above,
it follows that Z descends to a well-defined operator on P and VY induces a connection
on P. In addition, there is an A € Q%(B, P) characterized by

AX,Y) = AX,Y),

for any vector fields X,Y on B. Here X, Y denote the horizontal lifts of X and Y.

It will be shown that exactly these three operators, VY, Z, and A contribute ad-
ditionally to the limit of Dirac operators on a collapsing sequence of spin manifolds in
M(n + k,d) with smooth n-dimensional limit space. To ensure the continuity of the cor-
responding spectra, we will choose subsequences such that these three operators converge
in the C%*-topology for any « € [0,1). Our strategy is to prove uniform a priori C'(B)-
bounds. Then it follows from the compactness of the embedding C' — C% for a € [0,1)
that there is a subsequence such that these three operators VY, Z, and A converge in
C% for any o € [0,1). For a fixed Riemannian affine fiber bundle f : M — B, the
C1(B)-bounds on VY, Z, and A will depend on the following three bounds:

We show in the following lemma that such constants exist uniformly for any sequence
(M;, g;)ien in M(n + k, d) converging to an n-dimensional Riemannian manifold (B, h).

Lemma 3.2. Let (M;, g;)ien be a sequence in M(n+k,d) converging to an n-dimensional
Riemannian manifold (B,h). Then there is an index I such that for all i = I there are
metrics §; on M; and h; on B such that f; : (M;, g;) — (B,Bi) is a Riemannian affine
fiber bundle and

Zh_{g 19 — gillcr =0,

s (3.2.1)
lim [|h; — hcr = 0.
1—00

In particular, there is a positive constant Cr(n), such that |sec? | < Cg for all i > I.
Moreover, there are positive constants Ca(n, k, B), Cr(n + k) such that the fundamental
tensors A; and T; of the Riemannian submersion f; : (M;, g;) — (B,fzi) are uniformly
bounded in norm, i.e. for all i > 1,
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Proof. Applying Corollary [1.29] see also Remark [I.30] there is an index I such that for
all i > I there are metrics §; on M;, and h; on B such that f; : (M;,§) — (B, k) is a
Riemannian affine fiber bundle. By Lemma , the metrics (g;);>; and (ﬁl)@ ; satisfy
(3-2.1). Moreover, there is a positive constant Cg(n) such that |sec? | < Cp for all i > I,

see e.g. Remark [1.30] o
We recall from Theorem that for all 7 > I there is a Riemannian manifold (B, hE)

with an isometric O(n + k)-action such that B/O(n + k) 1s isometric to (B, h;). Further-

more, there is a Ay(n + k) > 0 such that |sec"’

< A; for all ¢ > I, see for instance

Remark |1.22| Since B/O(n +k)isa Riemannian manifold, there is a Ay(n + k, B) > 0

such that the sectional curvature of (B, h;) is uniformly bounded, i.e. |sec | < A, for all

i = I. Thus, it follows via O’Neill’s formula, [B.7.3] that

n(n—1)
6

The uniform bound on the T-tensor follows directly from Corollary [1.29 O

+ ]seci” (Cr(n) + Ay) =: CF.

n(n—1) y
[ Aill% < —=——= (I sec” ) <

In the remainder of this section we prove C*(B) bounds for VY, Z, and A on a fixed
Riemannian affine fiber bundle f : (M, g) — (B, h). As before, we set dim(M) = (n + k),
dim(B) = n.

First we deal with VY. We denote by (&1, ...,&,) the horizontal lift of a local or-
thonormal frame (&;,...,&,) of B. Let (eq,...,ex) be a locally affine parallel frame for
the vertical distribution V such that [£,,e,] = 0 for all a € {1,...,n}. We write {.,.) for
the locally defined metric on V characterized by (e, €,) = d4p. There is a positive definite
symmetric operator W satisfying

g(WU,V) = (U, V),

for all vertical vector fields U, V. We consider its unique positive definite square root
W =V W. Then,

g(U, V) =W (U),W(V)) (3.2.2)

holds for all vertical vector fields U, V. Since the induced metric on the fiber is affine
parallel, it follows that TV is affine parallel as well. Setting ¢, == W ~!(e,) it is immediate
that (§1,...,&0, (1, -, () 18 a split orthonormal frame. A short computation shows that

I (Cora), ) = (W) + (W)W e 1) (3:23)
Hence,

Fga = g([fa, ga]a Cb) + g<T(Caa fa)a Cb)

= (a0, )+ VW) + W)W e 1)

1

= §<(W71£Q(W) - fa(W)Wiwea; €b> = <W£aea7 eb>-
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By abuse of notation, we use the same letter W for the connection one-form of VY. As
discussed above VY induces a well-defined connection on the vector bundle P — B. To
show that for a collapsing sequence (M;, g;)ien in M(n + k, d) as in Lemma (3.2 there is a
subsequence such that (VY),cy converges in C%* for any « € [0, 1), it suffices to bound
the norm of W and of its derivatives X (W) for basic vector fields X, i.e. X is horizontal
and projectable.

Lemma 3.3. Let f: M — B be a Riemannian affine fiber bundle such that

|70 < Cr,
[ Al < Ca,
[ Bl < Ch.

Then,

Wx oo < 2C7] X,
HX(W)HOO < C(CT7 CA’ CR)HXH>

for any basic vector field X .

Proof. Tt suffices to do all calculations pointwise. Hence, let (&1,...,&,,Ch,..., () be a
split orthonormal frame around a fixed point € M with (, = W~le,, as above. Clearly,
W can be viewed as a field of symmetric positive definite matrices.

For the first inequality, we use to calculate

T? = 229 (Cara), G)?

WYW ™+ W (W))ey, )

|
|
M:
M??‘

1 & 1
:Z;‘g (WW !+ W, (W)
e (o)

As W1 and ,(W) are symmetric, it follows that
tr (W 2,(W)?) = (W (W)? > 0.

Since W' is also symmetric and positive definite it has a unique symmetric positive-
definite square root C, i.e. C? = WL, Replacing W~! by C? leads to

tr (W€ (W))2) = tr(C2, (W) CPa (W) = [CE(W)CP > 0
Thus,

1 n
3 Z W= ea(W)[5 < IT1% < CF. (3.3.1)
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Now the first inequality follows immediately from
1 _ _
Weo o = SIW 7 6a(W) = &(W)W o < 2Cr.

For the second inequality we also fix a point x € M. Suppose that (£, ...,&,) is the
horizontal lift of an orthonormal frame parallel in p = f(z). All following calculations are
done with respect to x. We compute

&) = 3 (W (W) — &6 (W)W
+ &l W)W TGN — W6 (W)W (W) ).

By the inequality (3.3.1]), it remains to bound the second derivatives.
A straightforward calculation shows that

oV T) (o @) a) = (€6 W)W 4 e, (V)
+ (W)W, ()1
— W (W) e () (332
— W)W g ()

FWE MG Jea 1)

for all 1 < a,b < k. Since g€, (W) = £,&3(WW), it follows from the inequality (3.3.1)) that

Xagig = 9(Ve, TN G G),€8) — 9(Ve, T) (G, G5) o)
is bounded by

X85 < 8CF.

Next, we apply the identity to conclude that

Xapij = 9((Ve,A)(Es, €a)s G) + 9(V; A)(€p, &a), G-
Inserting this equality in the identity we obtain

g(RM (¢, 6)s,a) = 9((Ve, A) (€8, 60), &) — 9((Ve, A) (s, &), G)
+ 9(A(&s, (), AlSas G)) — 9(A(&s: ) Aléas G5))
— 9(T(¢,€5), T(Gir €a)) + 9(T(Giy €5), T (G5 6a))
=29((VeA)(€s:6a), G) — Xaniing
+ 9(A(&s, (), AlSas G)) — 9(A(€s, Gi)s Al6as G5))
— 9(T(¢:€p): T(Gir o)) + 9(T(Gir €8), T €a))-

Thus,

1
‘g((VQA)<€,B,£a), Cj)| < §CR + 50% + Ci = Cl.
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Using the formula we conclude

g(R<CJ755)€a> Cz) = g((VfBT)(Civ Cj)?ga)) - g(T(Cja gﬁ)vT(Q;ga))
+ g((VCiA)(€/37 ga)a Cj) + Q(A(fﬁ, Cj)> A(gav Cz))

Hence,
19((Ve, T)(Gi G3), €))| < Cr + CF + CF + Cy = Co.
Together with the inequality , we conclude from that
[W™Ea6a (W) + €6 (W)W oo < Co + 4CF 1= Cs.
Using the same strategy as in the proof of the inequality , it follows that
W€ (W)]o0 < Cs.
Collecting everything so far, the claim follows by linearity and from the inequality

1€Es(We)lloo < O3 + 2C7. O

Remark 3.4. The connection VY is gauge equivalent to the trivial connection if and only
if the holonomy Hol(V, VV) is trivial, see for instance |[Baul4, Section 4.3].

In the following examples we show that VY can be gauge equivalent to the trivial
connection although the 7T-tensor is nontrivial.

Example 3.5. Let M = B x T* be the trivial T*-bundle over a closed n-dimensional
Riemannian manifold (B, h). In this situation the vertical distribution V is the trivial
vector bundle B x R¥. For any i € N we endow M with the Riemannian product metric

1
gi=h+ .—2U2§,
i

where u : B — R is a fixed smooth non constant function and ¢ is the standard flat
metric on T*. Then (M, g;):en is a collapsing sequence with bounded sectional curvature
and diameter. Consider the Riemannian submersions f; : (M, g;) — (B,h). The fibers
are embedded flat tori and the horizontal distribution is integrable for all ¢ € N. The
T-tensor is given by

d
T(U,V) = %@”g@-(a V) £0

for any two vertical vectors U, V and any ¢ € N. In particular, the T-tensor is nontrivial
for all i € N. We claim that the induced connection VY is trivial with respect to an
isometric trivialization. To see this claim, we adapt the notation of Lemma 3.3 Let
(é1,...,€,) be a global orthonormal vertical frame on (M, g) such that [X,e;] = 0 for all
basic vector fields X and all 7 € {1,...,k}. By construction, it follows that (eq,...,ex) is
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a global orthogonal vertical frame for all 7 € N. With respect to this orthogonal vertical
frame, W;, defined as in (3.2.2)), is given by

W, = 21d.
(3

Hence,

—_

Wy)x = =(W ' X(W,) = X(W)W; 1)
1 /1 X(u) X(u)i
=3 (aT - T;) 1d
= 0.

N}

Therefore, W; = 0 for all i € N, although the T-tensor is nontrivial. In particular, VV is
the trivial connection on the trivial vector bundle ¥V = B x R*.

Next, we give an example of a collapsing sequence such that the corresponding con-
nections VYi do not converge to a connection that is gauge equivalent to the trivial
connection.

Example 3.6. Consider the two-dimensional torus T? and choose an arbitrary nontrivial
element of Aut(T?) =~ GL(2,7Z), e.g.

2 1
()
Let C :=[0,1] x T? be the cylinder over T? and set

M=Cy

where we identify (0,z) with (1, Hz) for all x € T2?. This defines a nontrivial T?-bundle
f: M — S Note that f : M — S' is not a T?-principal bundle. Using a partition of
unity we can find a Riemannian metric g = h+ ¢ on M such that h is the standard metric
on S! and (gp)pesl is a family of flat metrics on T?. Then (M, g;)ien With g; == h @ Z%f]
defines a collapsing sequence with bounded sectional curvature and diameter such that
the vertical distribution V; is nontrivial for all 7 € N. In particular, VY is never gauge
equivalent to the trivial connection.

Next, we take a look at Z2 = VZ — V€ OY(M,End(TZ)). By construction, VZ
restricted to a fiber Z, is the Levi-Civita connection of (Z,, §,), where g, is the induced
affine parallel metric. Moreover, Z = 0 if and only if the induced metric g, is flat for all
p € B. The following example shows that for a collapsing sequence of Riemannian affine
fiber bundles with non flat fibers the one-form Z does not have to vanish in the limit.

Example 3.7. Let M = P\N be the nilmanifold, where NN is the 3-dimensional Heisen-
berg group

x,y,z€R

Il
O O =
O~ 8
[l SR N
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and
1 » =z
I':= 01 yl: x,y,2€eZ
0 01
The Lie algebra n of N is given by
0 x z
n:= 0 0 y]: z,y,2zeR
0 00
We fix the basis
010 000 0 01
X=1000,Y={001),Z2=10 00
000 000 0 00

and let X*, Y* Z* be the dual basis. We observe that the Lie brackets are given by
[X,Y] = 2, [X,2] =0, [Y,Z] = 0.

For any 7 € N we consider the affine parallel metric

1 1 1
gi= X5 X YR YR 7 2
1 1 1

At this point we want to remark that this construction is exactly the inhomogeneous
scaling that we introduced in the example of collapsing nilpotent Lie groups, Example
. It is not hard to check that (M, g;);en defines a collapsing sequence with bounded
curvature and diameter that converges to a point as ¢ — 0. For each ¢ € N we consider
the orthonormal frame (eq, es, €3) defined by

€1 = ’LX, €y = ZY, €3 = ’LZZ

The Koszul formula shows that the Christoffel symbol I',(i) = 3 for all i € N. Therefore,
the Levi-Civita connection V% does not converge to the affine connection V* as i — oo,
i.e. Z; does not vanish in the limit. That Z; = Z; for all 7+ € N does also follow from the

fact that

(M7gl> - (M’gi)a

1 = =z 1 iz i’z
01 y|l— (0 1 2y,
0 0 1 0O 0 1

is an i*-fold isometric covering.

Since M — B is a Riemannian affine fiber bundle, the induced metric g, on the fiber
Z, is affine parallel. Therefore, the space of affine parallel vector fields is invariant under
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the action of Z € QY(M,End(TZ)), where we view TZ as a vector bundle over M. We
recall the vector bundle P — B, where for any p € B the fiber P, is given by the space of
affine parallel vector fields on the fiber Z, of f : M — B. As the action of Z preserves the
space of affine parallel vector fields, there is an induced operator Z on the vector bundle
P — B. Further, we want to remark that the actions of VZ and Z coincide on the space
of affine parallel vector fields.

Lemma 3.8. Let f: M — B be a Riemannian affine fiber bundle such that

1T e
Al
(1ol P8

CT7

A7

//\ //\ N

R

Then

HZHOO < (k,CT,CR),
IX(2)]eo < C(k,Cr,Ca, Cr)| X,

for all basic vector fields X .

Proof. Let ((i, ..., () be alocal orthonormal vertical frame such that (i, ..., (; are affine
parallel. Their structural coefficients 75, are defined via

[Car Gb] = 2 e

These are the structural coefficients of the Lie algebra n of the connected and simply-
connected nilpotent Lie group N that covers Z. We recall from (3.1.1)) and (A.0.1) that

c _ tec __ c b a
Fab - Fab - (Tab — Tae — Tbc) :

DO | —

By |Lot02c, Lemma 1] we have

k

D (75)? = —4scal(Z).

a,b,c=1
Thus,

k

[21P = ) (T5)

a,b,c=1

3 c\2 1 - b _a c b c a
= Z (Tab) + 5 Z (Tachc — TabTac — TabCTbc)
a,b,c=1 a,b,c=1

= —3scal(Z2),
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because Zl,f o1 75T = 0 since n is nilpotent. The first inequality follows from O’Neill’s

formula, [B.7.1
[scal(Z)] < D [sec”(Car )

a,b=1

= > Isee™ (Car &) = T (Car )P + 9(T(Car Ca)s TG b))

a,b=1

< k’Q(CR + 2072«)

The second inequality is also proven in local coordinates. First we observe that

X)) = ) XTI

a,b,c=1

for any basic vector field X. Since I'¢, = g(V¢, G, () it follows that

X(Te) = 19(Vx Ve, G &) — 9(Ve, G, VxCe)|
= |g(RM(X,¢)& + VixeaG + Ve, VG, ¢) — 9(Ve, &, Vx ()]
= [g(RM(X, )G + VixeaCo C) — 9(VxGo, Ve, &) — 9(VeuGoy Vi Co)l-

As the Lie bracket [ X, (,] is vertical, for any basic vector field X and 1 < a < k, we use
Lemma [B.3] to conclude that

19(Vx.¢1G C)| < |[X, Gl 2]
= |VXG+ T(¢ X 2]
< 3Cr| 2] | X],

and

19(VxCo, Ve, Co)| < 19(V X G, VE Co)| + 19(A(X, Ca), T(Car C))
< (207]|Z] + CaCr)| X],

hold for any basic vector field X. Now we combine these inequalities to conclude
X(T5)| < (Cr + TCrI 2] +2C4Cr ) 1X]. 0

Finally, we consider A € Q?(B,P). On a Riemannian affine fiber bundle f : M — B
this two-form is characterized by the property that (f*A)(X,Y) = A(X,Y) for all basic
vector fields X, Y. Recall that for any p € B the fiber P, of the vector bundle P — B
is the space of affine parallel vector fields of the fiber Z, of the Riemannian affine fiber
bundle f : M — B. In the following example we see that this two-form A can be non
zero while Z and VY are trivial.

Example 3.9. Let f : (M,g9) — (B,h) be an S'-principal bundle such that f is a
Riemannian submersion with totally geodesic fibers of length 2. Suppose further that the
curvature form A of the S'-principal bundle is nontrivial. We observe that for any i € N,
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the cyclic subgroup Z; < S! acts on M as isometries. Thus, the sequence (M / L i )ieN
converges with bounded sectional curvature and diameter to (B, h). Here g; is the induced
quotient metric. By construction, the T-tensor and the one-form Z € Q(T'S') vanish
identically for any i € N. But the A-tensor of the fibration (M/ZZ,, g:) — (B, h) is given
by

AX,Y) = =S AKX Y)Y,

where X, Y are basic vector fields and V is a vertical vector field of unit length with
respect to the metric g;. In particular, A; = A for all 7 € N.

Lemma 3.10. Let f : M — B be a Riemannian affine fiber bundle. Then there exists
an A € Q*(B, P) such that f*A(X,Y) = A(X,Y) for all basic vector fields X,Y. If in
addition,

| Al < Ca,
o x VT,

T < ©
| R0 < Cr,

then

||AHC'1(B) < O(kv n, OA7 OT7 CR)

Proof. As f : M — B is a Riemannian affine fiber bundle, the induced metrics on the
fibers are affine parallel. Therefore, A(X,Y) is an affine parallel vector field for all basic
vector fields X, Y. In particular, there is an A € Q?(B, P) such that f*A(X,Y) = A(X,Y)
for all basic vector fields X, Y.

It remains to bound A in C'(B). We use a split orthonormal frame, see Definition
3.1l For any pair of basic vector fields X,Y we obtain

Mw

(f*-A)(Xa Y) = A(X7 Y) = g(A(X, Y)aCa) Ca

a=1

AYX,Y) G,

Il
M??‘

Q
Il
—_

I
MET‘

(fFA)X,Y) G -

Q
Il
—

Hence,

E

| Allcr sy 2 (1A oo + [V(A") )

<kCat VA

a=1
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We calculate the second term pointwise. Let p € B be arbitrary and z € f _1(p2. Further,
let (&1,...,&) be the horizontal lift of a local orthonormal frame (51, e ,fn) that is
parallel in p € B. Using the explicit description of the Christoffel symbols, (3.1.1)), we

derive

V) - ;; (Ve A7) En )P
- %;Z (Ve A)€5,6.). )
= %a;;_lg ‘g (RM(€5,€)6a: Ca) — 9(A(€8:6,): T(Car &)
9(A(Es £). T(C0 89)) + 9(A(Ew &), (G, &)
< % ;_ (Cg + 3C4Cr)>.

a 1

Here, we used in the first line that (fl, e ,fn) is parallel in p and in the third line we
applied the O’Neill formula |B.6.5| O

3.2 Spin structures on Riemannian affine fiber bundles

In this section we study Riemannian affine fiber bundles f : (M, g) — (B, h) where (M, g)
is a spin manifold with a fixed spin structure. Let us briefly review the definition of a
spin structure: For any positive integer n the group Spin(n) is a double cover of SO(n). If
n = 3, Spin(n) is actually the universal cover of SO(n). A spin structure on an orientable
Riemannian manifold (M, g) is a Spin(n)-principal bundle Pspi, M that defines a double
cover of the oriented orthonormal frame bundle PsoM that is compatible with the group
double cover Spin(n) — SO(n), i.e

Spin(n) x PspinM —— PspinM

l |

SO(TL) X PS()M _— PS()M

Locally there is always a double cover of Pso M, but it might not extend to a globally well-
defined Spin(n)-principal bundle over M. The condition for a manifold to be spin is the
vanishing of the second Stiefel-Whitney class which is defined purely topologically. The
spinor bundle ¥ M is the associated complex vector bundle of Pgpi, M and the canonical
complex spinor representation #,, : Spin(n) — GL(3,) where ¥, is a vector space with

complex dimension dim¢(%,) = ol5]. The standard literature for spin structures and
spin manifolds is [LM89|. Further good references, we want to mention here, are |Fri97]
and [BHM™15].
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First we consider a fixed Riemannian affine fiber bundle f : M — B and discuss
whether the spin structure on M induces a spin structure on B or on the fibers Z,, p € B.
The main observation of the first subsection is that there is an induced spin structure
on each fiber Z,, p € B. Moreover, we cannot determine whether there is an induced
structure on B if dim(Z) = k > 2. If k = 1 then the fibers of the Riemannian affine
fiber bundle f : M — B have to be diffeomorphic to S'. In that special case there is
always an induced structure on B. For instance, if f : M — B is an S!'-principal bundle
then there is an induced spin structure on B if the S'-action lifts to Pgpin M. Otherwise
there is an induced spin® structure. For the case of B being non orientable we have
similar results with pin structures. Roughly speaking, pin structures can be interpreted
as a generalization of spin structures to non orientable spaces. Since the limit space of a
codimension one collapse in M(n, d) is a Riemannian orbifold, see Proposition , we
extend our observation to Riemannian orbifolds in the case k = 1.

In the second subsection we restrict ourselves to spin structures with affine parallel
spinors. For a Riemannian affine fiber bundle f : M — B the induced metrics on the
fibers are affine parallel. Thus, there is an induced affine connection V" on the spinor
bundle ¥ M. Hence, we can consider the space of affine parallel spinors on M. It follows
that the Dirac operator leaves the space of affine parallel spinors invariant. The main
result of the second subsection is that the space of affine parallel spinors is isometric to
the space of sections of a twisted Clifford bundle over the base manifold B. Furthermore,
there is an elliptic first order self-adjoint differential operator D that is isospectral to
the Dirac operator on M restricted to the space of affine parallel spinors.

3.2.1 Induced structures

Let f: (M, g) — (B, h) be a Riemannian affine fiber bundle with infranil fiber Z. In the
remainder of this section we assume that M is a spin manifold with a fixed spin structure.
Since any fiber Z,, p € B, is an embedded oriented submanifold with trivial normal
bundle, it follows that there is an induced spin structure on Z,. Moreover, each path
in B connecting two points p,q € B induces an isomorphism between the induced spin
structure on Z, and the induced spin structure on Z,. In particular, the spin structures
on Z, and Z, are equivalent, for all p,q € B. The construction of this isomorphism is
analogous to the construction given in Appendix [C] Nevertheless, there is in general no
induced spin structure on B as can be seen in the example of the Hopf fibration S® — CP?2,
c.f. Example [3.16] There are even examples of Riemannian affine fiber bundles M — B
where M is spin and B is non orientable.

Example 3.11. Let M = U(1) xz, S?, where Z, acts on U(1) via complex conjugation
and on S? via the antipodal map. Then M is spin and f : M — RP? is a nontrivial
Sl-bundle over the non orientable manifold RP2.

For this reason, we also consider pin® structures. Loosely speaking, pin* structures
are a generalization of spin structures to a non orientable setting. In the following, we
briefly sketch the definition and basic properties of pin® structures. For further details,
we refer to |[KT90| and |Gil89, Appendix A].

The double cover Spin(n) — SO(n) can be extended to a double cover of O(n) in two
inequivalent ways, called p™ : Pin*(n) — O(n) and p~ : Pin™(n) — O(n). As topological
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spaces Pin™(n) and Pin™(n) are both homeomorphic to Spin(n) L Spin(n) but the group
structures of Pin™(n) and Pin™ (n) are different. To see this, we consider the subgroup
{Id, r} = O(n), where r is a reflection along a hyperplane. Then

(") ({1d,1}) = Zy © Zo,
(™) ({1d,7}) = Zy.

The notion of pint structures is an extension of the definition of spin structures to the
double covers Pin*(n) — O(n).

Definition 3.12. A pin® structure on an n-dimensional Riemannian manifold (M, g) is
a Pin*-principal bundle Pp;,+ M that is a double cover of the orthonormal frame bundle
PoM compatible with the group double cover Pin®(n) — O(n).

Pin*(n) x Ppy,+ M —— Pp, =+ M
| | =
/

M .

O(n) x PoM ——— PoM

Example 3.13.

pin®, if n = 4k,
The real projective space RP" is < pin~, if n =4k + 2,
spin, if n =4k + 3.
Similar to spin structures, the existence of a pin® structure is a topological prop-
erty characterized by the vanishing of specific Stiefel-Whitney classes. The proof of the
following theorem can be found in [KT90, Lemma 1.3].

Theorem 3.14. A manifold M admits a pin® structure if and only if the second Stiefel-
Whitney class wa(M) vanishes and a pin~ structure if and only if the Stiefel-Whitney
classes satisfy the equation wo(M) + wi(M)? = 0. The topological condition for a spin
structure is wo(M) = wy (M) = 0.

Since the first Stiefel-Whitney class of a manifold M vanishes if and only if M is
orientable it is an immediate consequence of the above theorem that an orientable manifold
is spin if and only if it admits a pin® structure.

As we are interested in the question whether the spin structure on the total space M
of a Riemannian affine fiber bundle f : (M, g) — (B, h) induces a spin or pin* structure
on B we also consider the interplay between spin and pin® structures on short exact

sequences of vector bundles,

0—-FE—->F—->G—-D0.
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We recall that a short exact sequence of vector bundles splits, i.e. F' =~ F® G. Moreover,
it is well-known that the i-th Stiefel-Whitney class w; of the Whitney sum F® G is given
by

wi(E®G) = Y wi(E) v wi_(G),
k=1

where U is the cup product. Together with the above theorem, we conclude the following
lemma, see |Gil89, Lemma A.1.5].

Lemma 3.15. Let

be a short exact sequence of real vector bundles over a manifold M. For any permutation
{i,7,k} of {1,2,3}, we have that

(1) if V; and V; are spin, there is an induced spin structure on Vi,
(2) if Vi is spin and V; is pin®, there is an induced pin® structure on Vj,

(3) if Vi is pin®™ and Vj is pin® and Vj, is orientable, then there is an induced spin structure
on V.

Let f: (M,g) — (B,h) be a Riemannian affine fiber bundle and assume that M is
spin. Then we have the following short exact sequence of vector bundles,

0— f*TB —TM —V — 0.

Here V = ker(df) is the vertical distribution. As T'M is by assumption spin, it follows
from Lemma [3.15]that f*T'B is spin if and only if V is spin and that f*T'B is pin® if and
only if V is pinT. But a spin or pin* structure on f*7T'B does not induce a corresponding
structure on B itself as can be seen in the following example.

Example 3.16. Consider S° — CP2. Then f*w,(CP?) e H%(S® Z,). But H*(S°,Z,) is
trivial. Hence, f*w,(CP?) = 0 although CP? is not spin.

Nevertheless, if B is spin or pint then the corresponding structure can be pulled back
to f*T'B. Thus, if B is pin* and V is pinT then there is an induced spin structure on M
by Lemma |3.15]

If k£ = 1 the fiber Z of a Riemannian affine fiber bundle has to be diffeomorphic to S*.
As discussed in Chapter [2] a sequence (M, g;)ien in M(n,d) that converges to a compact
metric space Y with dim(Y) = (n — 1) can be characterized by a uniform lower bound
C < % for all © € N. Furthermore, the limit has to be a Riemannian orbifold, see
Proposition [I.31] We recall the set

M(n +1,d,0) = {(M g)eMn+1,d):C< YI?;((J]\Z))}



3.2. SPIN STRUCTURES ON RIEMANNIAN AFFINE FIBER BUNDLES 55

of isometry classes of closed Riemannian manifolds from Definition Combining
Theorem and Corollary it follows that for any collapsing sequence (M;, g;)ien
in M(n + 1,d,C) converging to (B,h) in the Gromov-Hausdorff topology, there is, for
any ¢ sufficiently large, an S!'-orbifold bundle f; : M; — B with structure group in
AfF(SY) =~ ST x {£1}.

For a fixed S'-orbifold bundle f : M — B with M being spin there are exactly two
cases that can occur. If B is orientable then f : M — B is an S'-principal orbifold
bundle. If B is non orientable then the vertical distribution V has to be isomorphic to
the pullback of the determinant bundle det(7'B) of B.

Similar to |[Amm98a] and [Mor96] we distinguish between two types of spin struc-
tures on the total space M: The projectable and the non projectable spin structures.
Projectable spin structures and projectable spinors were studied for G-principal bundles
with compact Lie group G in [Mor96, Chapitre 1]. Since, in general, S' does not act
by isometries we have replaced the spin structure by the larger so-called topological spin
structure Py, M — Per, M. Here Pgr, M is the GL, (n)-principal bundle consisting of
all positively oriented frames and P@LM is a double cover of Pqr,, M that is compatible

with the corresponding group double cover Cf}\iJr(n) — GL4(n), ie.

GL,(n) x Pgz, M —— Pz M

| |

GL+(H) X PGL+M E— PGL+M

Definition 3.17. Let M — B be an S'-orbifold bundle with M being spin. Then the
spin structure of M is called projectable if all local S'-actions along the fibers lift to the
topological spin structure.

Remark 3.18. For Riemannian affine fiber bundles f : (M, g) — (B, h) with S fibers a
spin structure on M is projectable if and only if there are nontrivial affine parallel spinors.

In the case of an S'-principal bundle f : M — B, where f is a Riemannian submersion,
a projectable spin structure on M induces a spin structure on B, [Amm98a, Section 2|. We
first show that a projectable spin structure on the total space of an S!-principal orbifold
bundle f : M — B induces a spin structure on the orbifold B. To the author’s knowledge,
the first definition of spin orbifolds appeared in [DLMO02].

Definition 3.19. An oriented Riemannian orbifold (B, h) is spin if there exists a two-
sheeted cover of the oriented orthonormal frame bundle PsoB such that for any orbifold

chart <U — U/GU ~U c B) there exists a Spin(n)-principal bundle Pspinﬁ on U such
that the spin structure Pspin By — Pso By is induced by PspinU — PSOU .

Hence, the spin structure on a Riemannian orbifold can be understood as a locally
Gp-invariant spin structure on the locally defined smooth cover around p € B. Here, G,
is the stabilizer group of the Riemannian orbifold (B, h) at p. This requires a lift of the
group G, of isometries to the spin bundle.
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Definition 3.20. A singular point p € B is said to be spin if there exists a lift ép
of the group G, < SO(n) that projects isomorphically onto G, via the double cover
Spin(n) — SO(n).

From now on, a spin orbifold is a Riemannian orbifold with a fixed spin structure.

Proposition 3.21. Let f : M — B be an S*-principal orbifold bundle. If M is a spin
orbifold with a projectable spin structure then there is an induced spin structure on B. On

the other hand, if B is a spin orbifold then there is an induced projectable spin structure
on M.

Proof. Since all metric spin structures are isomorphic to each other, see Appendix [C|, we
can assume without loss of generality that f : M — B is a Riemannian submersion, i.e.
St acts on M as isometries. The following proof is a locally equivariant version of the
construction given in [Mor96, Chapter 1].

For p € B we consider a local trivialization U around p. The local situation is described
by
U

T

(S' x U)

Sl

lIe

/Gy = fHU)

—

Yic, -

It follows that the spin structure on S! x U is Gy invariant.

If the spin structure on M is projectable, i.e. S'-invariant, the spin structure on S* x U
is S1 x Gy invariant. It follows that the spin structure on M induces a Gy-invariant spin
structure on U which in turn defines a spin structure on the quotient U.

On the other hand, if B is a spin orbifold it follows that the spin structure on M in-
duced by the pullback of the spin structure on B has to be S!-invariant, i.e. projectable.[]

Se—— x

However, it can happen that a collapsing sequence of spin manifolds converges to a
non orientable space as we have seen in Example|3.11} In that situation we have to modify
the proof of the above proposition.

Proposition 3.22. Let f : M — B be an S'-orbifold bundle where B is a non orientable
Riemannian orbifold. Then any projectable spin structure on M induces a pin~ structure
on B. Conwversely, if B is pin~ and M 1is orientable then there is an induced projectable
spin structure on M.

Proof. As in the proof of Proposition we assume that f is a Riemannian submersion.
In our situation it follows that TM =~ f*(T'B @ det(T'B)). If the spin structure on M
is projectable then the quotient Fspin /g1 induces a spin structure on T'B @ det(T'B).
Since det(T'B) is a non orientable line bundle its first Stiefel-Whitney class is nontrivial
and its second Stiefel-Whitney class vanishes. Thus, det(7'B) is pin* by Theorem [3.14
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Now it is a direct consequence of Lemma that there is an induced pin~ structure on
B.

On the other hand, if B is pin~ then there is an induced spin structure on T'B@®det(T B)
by Lemma [3.15] This spin structure pulls back to a projectable spin structure on M. []

Next, we consider an S'-principal orbifold bundle f : M — B such that the spin
structure on M is non projectable. As before, we assume without loss of generality that
St acts as isometries. Since the spin structure of M is non projectable the S'-action does
not lift to Pspin M. Nevertheless, the double cover of S* acts on Pgpin M, where we use the
double cover S' — S', X\ — A2, At this point we want to remark that a non projectable
spin structure on B does not imply that B is not spin. If B is spin, then there exists a
group homomorphism ¢ : 7 (M) — Z, such that the composition 71 (S!) < m (M) — Z,
is surjective. In this case, we can twist the spin structure on M with 1 to obtain a
projectable spin structure. In short, B is spin if and only if M — B has a square root as
a S'-principal bundle (cf. [Amm98b, Chapter 7.3]). Even if we can not determine whether
B is spin or not, we still have an induced structure on B. In the following lemma we
repeat the proof of [Amm98al Section 4].

Lemma 3.23. Let f : M — B be an S*-principal orbifold bundle. If M is a spin orbifold
with a non projectable spin structure then there is an induced spin® structure on B.

Proof. Let PsowmyM be the SO(n)-principal bundle over M consisting of all positively
oriented orthonormal frames whose first vector is vertical. Its preimage defines a Spin(n)-
principal bundle P. Since the spin structure on M is non projectable, it follows that
not the S'-action itself but its double cover acts on P. This S'-action together with the
Spin(n)-action on P induces a free Spin‘(n) := (Spin(n) xz, S')-action on P. Hence,there
is an induced spin® structure on B. O

Conversely, if we have a fixed S!-principal orbifold bundle f : M — B such that B is
spin®, then it does not follow that M is a spin manifold.

Example 3.24. Let M = S' x CP? be the trivial S'-bundle over the complex projective
space CP2. It is known that CP? is spin® but not spin. Since any spin structure on M
would induce a spin structure on CP2?, M cannot be spin.

An easy modification of the proof of Lemma shows that if f : M — B is an
Sl-orbifold bundle such that the spin structure on M is non projectable and B is non
orientable then there is an induced a pin® structure on B, where Pin®(n) := Pin™ (n) xz,S*.

3.2.2 Spin structures with affine parallel spinors

Let f: (M,g) — (B,h) be a fixed Riemannian affine fiber bundle and let Z be the fiber.
In Appendix Bl we discuss in detail Riemannian submersions whose total space has a fixed
spin structure. In the following, we use the results derived in Appendix [B]

We set n := dim(B) and k := dim(Z). Suppose that (M, g) has a fixed spin structure.
Since f is a Riemannian submersion, we know from Appendix |Bf that

SM =~ f*(°SB) @V,
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where

g ¥B, if n or k is even,
" |StB@®X B, ifn and k are odd.

Here ¥B and XV are the locally defined spinor bundles of the base manifold B and
the vertical distribution V. We refer to Appendix [B] for details. Although they might
not be defined globally their tensor product is well-defined on all of M. Furthermore,
YT B and ¥~ B denote two copies of 3B where Clifford multiplication « with vector fields
X eI'(T'B) acts on X" B as y(X) and as —y(X) on X~ B. We recall the basic properties
of Clifford multiplication in Appendix [B] For a thorough introduction to spin geometry
we recommend |LM89, BHM™15|.

Since XM =~ f*(°¥B) ® XV, any spinor ¢ can locally be written as a finite linear
combination ® = Y, f*¢;®u;. This decomposition allows us to study the influence of the
horizontal and the vertical distributions on the spinors on M. The following formulas are a
special case of the formulas in Lemma|[B.4] They follow from straightforward calculations
using the local formulas for the spinorial connection, and the Dirac operator,
(B.3.2)).

Lemma 3.25. Let f: (M,g) — (B, h) be a Riemannian affine fiber bundle such that M
has a fized spin structure. With respect to a split orthonormal frame (&1, ..., &0, Ciy -5 Cr)s
see Definition any spinor ® = f*o @ v satisfies the following identities.

VIO = (f*VEQ)®v+ [*e@VEv+ Z A(&a,65)) @

l\DI»—t

=: VCCD—F

N)I}—t

Z 50475,3))

m»—

Vb= @ Viv Zm) T(Cas ) 2 Allar 6) @

«

Z A(&a, Ca)) @,

»-I>I>—‘

= VZ®+ - Zm T(Car Gb))

n

DM® = y(&) vT<1>+Z (Ca VCZ;P——ZV (Car Ca)) @

ol

+

Sk

7 (Aa: £8)) 7(8a)1(Ep) P

1
1
2a 1

a<<

isy)

= D"®+D?® — Z V(T (Car Ca)) © + %’V(A)@-
a=1

Here VB, VY and VZ are the induced connections by the respective connections on TM ,
defined in Sect@'on and DT, D? are the associated Dirac operators.

Since for any p € B the induced metric g, on the fiber Z,, is affine parallel it follows from
the discussion in Appendix that the affine connection V*# induces an affine connection,
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also denoted by V#, on the spinor bundle X M. Hence, the space of affine parallel spinors
is well-defined,

= {de L*(XM): VD = 0}.

The main goal of this section is to construct an isometry between S*! and the L2-
sections of a twisted Clifford bundle over the base manifold B. We recall from Appendix
[A] that the space of affine parallel spinors on Z is finite dimensional. In addition, the spin
structure on M induces a spin structure on each fiber Z,, p € B and for all p,q € B the
induced spin structures on Z, and Z, are equivalent. In particular, the dimension of the
space of affine parallel spinors on a fiber Z, is the same for all p € B. Hence, there is a
locally well-defined vector bundle P — B such that for each p, the fiber P, is given by
the space of affine parallel spinors on Z, with respect to the induced spin structure. In
the next lemma, we construct an isometry in the spirit of [Amm98b, Lemma-Definition
7.2.3|.

Lemma 3.26. Let f: M — B be a Riemannian affine fiber bundle such that M s spin.
Then there is an isometry

Q:L*"TBRP) - &

Moreover, the connection V7 induces a connection VT on °SB® P. Taking a split
orthonormal frame (&1,...,&n,C1, -, (k) around x, we have the identity

. L % » 0 (VOl(Z 4 .
VEQU): = QT+ 5 V() (A QD). - .
Proof. Tt follows from the discussion in Appendix [B| that ¥M =~ f*(°¥B) ® ¥V, where
the spinor bundles °¥X B and XV are in general only defined locally. Let f~(U) >~ U x Z
be a trivializing neighborhood on which ¥B and XV are well-defined. Then any spinor
@ restricted to f~1(U) can be written as finite linear combination ® = Y, f*¢, ® 1. By
linearity it suffices to consider elementary tensors f*¢p ® v. We observe that

VE(fre®v) = ffo@ Vi

Thus, a spinor is affine parallel if and only if v, restricted to any fiber, is an affine parallel
spinor of Z. Hence, on any trivializing neighborhood we obtain an isomorphism

Q':8M L [2(°EBRP),
(ffe®V)s = A/VOUZf(2)) Pfa) B Vi(a),

where v, denotes the restriction of v to the fiber Zy(,). Due to the factor 4/vol(Zy(s))
it is ev1dent that Q! defines an isometry. Here vol(Zy(,)) is the volume of the fiber Zy )
with respect to the induced affine parallel metric g¢,. Since the structure group of the
Riemannian affine fiber bundle f : M — B lies in Aff(Z) it follows that Q! extends to
a well-defined global isometry. Taking its inverse gives the desired map Q).

It follows from the discussion in Chapter [3.1] that S*¥ is invariant under the action
of VC for any o € {1,...,n}. Hence, there is an induced connection V7 on “SB® P.
Using Lemma the clalmed identity follows from a straightforward calculation. ]
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Corollary 3.27. Let f : M — B be a Riemannian affine fiber bundle with a fized spin
structure on M such that S is nontrivial. With respect to a split orthonormal frame
(&1,.. ., 60,CLy ., G), any spinor @ € S satisfies

DY = Qo BTo@ 0+ 3 T (Gn(c)e + e

abc 1 2
b<c
. 1 1
—QoDToQ'®+ 57(2)(1) + 57(/1)@.

Here, D7 is the Dirac operator on B Q@ P associated to the connection V.

Proof. Let ® be an affine parallel spinor. Since f : M — B is a Riemannian affine fiber
bundle, S*¥ is invariant under the action of the Dirac operator D™. With respect to a
split orthonormal frame (&1, ...,&n, (i, - -, (i), see Definition 3.1 we obtain

0) Ve, @ —1—27 (a)Ve, @

«a vga Q Q %2 Ca (Z ng’y(Cb)’Y(Cc)(I)>

KEDIS
RIS

a=1 b,c=1

k kK n
- % Z Caa Ca 411 Z Z (gow Ca))

:@omo@m;gi (EEN A £)QLD).

-5 () o LY penani)e

VOl(Zf abc 1
1 . 1 L b<c
-5 2 T(Car C)® + 7 2, 2, 7(¢ (A& Ca))®
a=1 a=1a=1
= QoDToQ 7' + %V(Z)QD + %V(A)CID.

Here we used Lemma Lemma [3.26] and the formulas for the Christoffel symbols, see
(3.1.1). The last line follows from the fact (see for instance |GLP99, Lemma 1.17.2|) that

k

21 T(Car Ca) = — grad(In(vol(Z,))). [

a=1

If k = 1 the Riemannian affine fiber bundle f : M — B is an S'-bundle with structure
group in Aff(S') =~ S x {+1}. From the discussion in Chapter we know that if
S is nontrivial then there is an induced spin structure on B, if B is orientable, and an
induced pin~ structure, if B is non orientable. If B is orientable then P is just the trivial
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complex line bundle. In particular, ¥ B ® P =~ °¥ B. If B is non orientable we denote
by °S” B the corresponding pin~ bundle. We consider the embedding

t:0(n) — SO(n + 1),

A (detéA) 31) |

and its lift 7 : Pin™(n) < Spin(n+1). Let 6,41 : Spin(n+1) — GL(X,11) be the canonical
complex spin representation. Then

XYM = PSpinM X011 z]nJrl
= (" Ppin—(m)(B) X7 Spin(n + 1)) xq,., (3, ® C)
~ f*EPB® f*(det(TB) ® C)
= f*EPB® f*det(TB)",

where °2¥ B is defined similarly to the notation for spin bundles,

s P R YPB, if n is even,
| SPtB@ P B, ifnis odd.

Thus, we obtain the isomorphism 2B ® P =~ °~” B ® det(TB)C.

Now we fix a Riemannian affine fiber bundle f : (M, g) — (B, h) such that (M, g) is an
(n + k)-dimensional spin manifold and B is a closed n-dimensional Riemannian manifold.
We conclude this section by taking a closer look at elements W € H»*(XM). In the
following proposition we relate them with an affine parallel operator VW such that the
difference |[W — W)| L= depends on the derivatives of W and the diameter of the fibers.
The following results will be used in the next chapter to study the eigenvalues of Dirac
operators with symmetric potentials.

Proposition 3.28. Let f : (M"**, g) — (B", h) be a Riemannian affine fiber bundle with
fibers Z,, == f~(p), p € B, such that

< CT7
R <

and such that (M, g) is spin. For any W € Hom(XM,XM) there is an affine parallel
operator W, i.e. V¥W = 0, such that

W —=W| e < Zman(diam(Zp))HVaHWHLoo
pe
< 2max(diam(Z,)) (|[VW||L» + C(k,Cr, Cr)|W| L) .

peB

Proof. First we consider a fixed closed infranilmanifold Z = F\N . Here, N is a connected
and simply-connected Lie group and I' is a cocompact discrete subgroup of the group
Aff(N) =~ Np x Aut(N), where Ny, is the group of left-translations and Aut(NV) is the
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automorphism group. In particular, 7 : N — Z is the universal cover. Since N is
nilpotent, it has a biinvariant Haar measure u. It is a general fact, that p is unique up to
multiplication with a positive constant. Hence, we assume without loss of generality that
wu(F) =1, where F < N is a fundamental domain of Z, i.e. 7 : F — Z is an isomorphism.
__ Let W:Z —V be amap from Z into an arbitrary vector space V. Then its pullback
W = a*W : N — V is invariant under the action of I". We define

W = /(L;W)du(g).
f
By construction W is affine parallel, i.e. left-invariant, since
LW = | L5 dulg)

f

= / L;hW du(g)
f

- [ LW auen
Rh—l(]'—)

= /FL;Wdu(g) =W.

Here, we used in the last line, that u is a biinvariant Haar measure. It remains to show
that W descends to a well-defined operator on Z. So let v € I'. Then

7*W=/7*L§Wdu(g)
F
- [ @0 Wauts)
f
— [ L W duto)

= / LEW du(y"Y(g)) = W
v HF)

since W is T invariant and T preserves the Haar measure p. Hence, there is an induced
affine parallel operator YW on Z such that 7#*WW = W.

Now, let f : M — B be a Riemannian affine fiber bundle with fiber Z such that M
is spin and let W € Hom(XM,>XM). We can interpret W as a map M 3 x — W,,, where
W, is a homomorphism of the fiber XM,. Let (U,), be a bundle atlas for M. For each «
and (p, z) € U, x Z we define the operator W, on f~1(U,) =~ U, x Z as explained above.
Since the structure group of a Riemannian affine fiber bundle lies in Aff(Z) it follows,
that the transition maps preserve the Haar measure. In particular, the transition maps
commute with the averaging operator. Hence, the locally defined operators (W,), glue
together to a well-defined affine parallel operator W € Hom (XM, X M).

It remains to estimate the difference between the operators W and . Although we
are interested in the essential supremum, it suffices to do the calculation at a fixed point
x € M where W, and its derivative are defined. As before, we lift the whole situation to
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N via the universal cover 7 : N — Z. In the following calculation, we set p := f(z) and
let g, be the induced affine parallel metric on the fiber Z, = f~'(p). Then g}’ := g, is a
left-invariant metric on N. From the calculations in the beginning of the proof we recall
the fundamental domain F of the quotient Z = F\N . Let & be the unique point in F
such that (%) = z € f~!(p). Further, we consider for each g € N the geodesic v, from z
to Ly(Z) with respect to g;)V . We assume without loss of generality that v, is parametrized
by arc length, i.e. |y)| = 1. At last, we set d, to be the distance function on (N,g)).
Using this notation we calculate the norm of the difference (W — W) with respect to the
metric g,

OV = W), = H [ (L3 - Wty

0

@ Ly@) .
/f /O s (Vi) dtda(g)

< 2diam(Z, §,)| VW, |
< 2diam(Z, g,) (IV*Waloo + |20 [Weoo) -

0

Since | Z| = < C(k,Cr,Cr) by Lemma |3.§| the claim follows. O






Chapter 4

The behavior of Dirac eigenvalues

To the author’s knowledge, the first result regarding the behavior of Dirac eigenvalues
on collapsing sequences of spin manifolds was proved by Ammann in his PhD thesis
[Amm98b, Kapitel 7], see also [Amm98al|AB98]. There he considered collapsing S*-
principal bundles over a fixed manifold. As discussed in Section we distinguish
between projectable and non projectable spin structures. In the case of projectable spin
structures Ammann proved:

Theorem 4.1. Let (B,h) be a closed n-dimensional Riemannian spin manifold with a
fized spin structure. Further, let (M;, g;)ien be a sequence of (n+ 1)-dimensional Rieman-
nian spin manifolds such that there are Riemannian submersions f; : (M;, g;) — (B,h)
defining an S*-principal bundle. Let 27l; be the length of the fibers and iw; be the unique
imaginary connection one-form such that ker(w;) is orthogonal to the fibers with respect
to gi. If for all i € N the spin structure on (M;, g;) is projectable and induces the fized
spin structure on B and if in addition

lim [|£;o = 0,

1—00

1—00

a = limsup | grad [;||,, < 1,

1—00

then the eigenvalues (\; x(i))jez, of the Dirac operator DMi can be numbered in such a way
keZ
that:

(1) For all € > 0 there is an I € N such that for anyi>1 and jeZ, k€ Z
[ll5A (0 = [K[([K] — @) —e.

In particular, \;(i)> — o0 as i — o0 whenever k # 0.

Furthermore, if M; and w; do not depend on i, then we also have for j € Z and

k € Z\{0} that

2
lim sup (min li(p)) Nie(D)? < k|(JK] + ).

i—00 peB

This upper bound of \;x(¢)? is not uniform in j and k.

65
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(2) Let (1) jen be the eigenvalues of the Dirac operator DB on B. If n is even then

lim )\j,O(i) = M-

1—00

Howewver, for n odd we obtain
Tim A;(0)(2) = #
lim A (0)(3) = —p;.

1—00

In both cases the convergence of the eigenvalues \;jo(i) is uniform in j.

In the case of non projectable spin structures the eigenvalues (X\;x(7)) jez, of the
ke(z+1)
Dirac operators D™ can be numbered in such a way that k € (Z + %) The Sar2ne lower
bound as in the above theorem holds also for non projectable spin structures [Amm98b,
Satz 7.3.1]. Since k can never be 0 all eigenvalues diverge to +00 as i — o0. We explain
the details concerning the numbering of the Dirac eigenvalues in Section [4.2]

The setting in Theorem differs slightly from our setting of collapsing sequences
in M(n+1,d,C). Let (f; : (M;,9;) — (B,h)),cy be a collapsing sequence of S*-principal
bundles such that f; is a Riemannian submersion and (M;, g;) € M(n + 1,d,C), for all
i € N. It follows from Corollary and Theorem that the corresponding A- and
T-tensor of the Riemannian submersions f; are uniformly bounded in norm by positive
constants Cy(n,d,C), and Cr(n) respectively. A straightforward calculation shows that

!

In particular, a := limsup,_,, | grad ;| = 0 for any collapsing sequence in M(n+1,d, C).
But we do not necessarily have that lim; . ||l;dw;|| = 0, as can be seen in Example [3.9]
It will be shown in Chapter that for such sequences the eigenvalues \;o(i) do not
converge to the eigenvalues of the Dirac operator D® on B but to the eigenvalues of
the Dirac operator with a symmetric potential depending on the limit behavior of the
A-tensors.

In [Lot02a] Lott studied the behavior of Dirac eigenvalues on arbitrary collapsing
sequences in M(n,d). There Lott combined his results for the eigenvalues of the p-form
Laplacian on collapsing sequences |Lot02c,Lot02b| with the Bochner-type formulas for the
Dirac operator. Moreover, Lott’s results also hold for the Dirac operator on differential
forms, i.e. the operator

M;

di;
gadhl <o,
? 0

I, - dwser < 2C.a.

D=d+d*:Q%(M) - Q*(M),
where d* is the adjoint of the exterior derivative d with respect to the L?-inner product.

Theorem 4.2. Given n € N and G € {SO(n),Spin(n)}, let (M;, g;)ien be a sequence of
connected closed oriented n-dimensional Riemannian manifolds with a G-structure. Let
V' be a G-Clifford module. Suppose that for some d, K > 0 and for each 1 € N we have
diam(M;) < d and |RMi||, < K. Then there is



67

(1) a subsequence of (M;, g;)ien which we relabel as (M;)en,

(2) a smooth closed G-manifold X with a G-invariant Riemannian metric g*~ which is

Cle-regular for all a € [0,1),
(3) a positive G-invariant function y € C(X) with [ x dvol = 1

(4) a G-invariant function V € L*(X)QEnd(V) such that if A~ denotes the Laplacian on

L*(X,x dvol)®V and | D¥| denotes the operator v/ AX +V acting on the G-invariant
subspace (L?(X,x dvol) @ V)€ then for all k € N,

Tim A (| D) = A (DY),

The limit measure y is also necessary for the analogous results regarding the behav-
ior of the eigenvalues of the Laplacian on functions [Fuk87a] and the eigenvalues of the
Laplacian on forms [Lot02c,[Lot02D], see Example [1.4]

For the special case of collapsing sequences in M(n, d) with a smooth limit space Lott
proved an accentuation of the above theorem |[Lot02a, Theorem 2|. In the following we
say that for a given € > 0 two collections of real numbers (a;);e; and (b;);e; are e-close if
there is a bijection a : I — J such that [b,) — a;| < € holds for all i € I.

Theorem 4.3. Let B be a fized smooth connected closed Riemannian manifold and let
neN, G € {SO(n),Spin(n)} and V' be a G-Clifford module. For any e > 0 and K > 0,
there are positive constants A(B,n,V,e, K), A'(B,n,V,e,K) and C(B,n,V,e, K) such
that the following holds. Let M be an n-dimensional connected closed oriented Riemannian
manifold with a G-structure such that |RM |, < K and dgu(M, B) < A’. Then there are a
Clifford module E® on B and a certain first order differential operator DB on C*(B; EP)
such that

(1) {arsmh(
{arsmh(

: X e o(DM), N2 < Adgy(M,B)™% — C} is e-close to a subset of
aeo(D?),

55

(2) {arsmh(
{arsinh (-2

: A e o(DP), N < Adgu(M,B)™% — C} is e-close to a subset of
)\EU(DM)}.

£

In the following section we discuss the special case of collapsing sequences (M;, g;)ien
of spin manifolds in M(n, d) converging to a Riemannian manifold (B, h). There we will
give an explicit description of the limit operator D? as a twisted Dirac operator with a
symmetric C%“-potential for all € [0,1). Moreover, we show that the limit operator D
satisfies the conclusions of Theorem with x = 1. This is a special behavior for the
eigenvalues of the Dirac operator on spin manifolds and does not extend to the eigenvalues
of the Dirac operator acting on differential forms.

Example 4.4. Consider the torus T? = {(e**, ) : s,¢ € R} with the Riemannian metric

g- = ds® + £%c(s)*dt?,
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for a fixed positive function ¢ : S' — R, . The sequence (T?, g. ).~ is a collapsing sequence
with bounded sectional curvature and diameter converging to (S!,ds?) in the Gromov-
Hausdorff topology. We observe that the integrability tensor A. vanishes identically for
all € and the T-tensor is always characterized by cc/((ss)) independent of . In particular, the
T-tensor is nontrivial for all € if we choose the function ¢ to be non constant.

We endow (T?, g.) with the spin structure induced by the pullback of a chosen spin
structure on S*. It will be shown in Theorem that the spectrum of the Dirac operator
D, on (T?, g.) restricted to the S'-invariant spinors converges to the spectrum of the Dirac
operator D® " of the chosen spin structure on S!. For our result, it does not matter, which
spin structure was chosen on S!.

Next, we take a look at the Dirac operator acting on differential forms. In that case
the space of affine parallel forms is given by

S = {fe CP(T?) %f =0} U {adse Q'(T?): %a =0}.

The Dirac operator D, = d + d* acts on (f + ads) € S* as

De(f(s) + a(s)ds) = %f(S)dS - 0(8)1%(0(8)04(8))-

We observe that (DE)‘ ganr 18 independent of €. In particular, in the limit ¢ — 0, the se-
quence (D,) 5. induces a first order differential operator Dy on 2*(S 1). For any eigenform
f(s) + a(s)ds € QY(S1) of Dy with eigenvalue A we have that

A(5) = —els) ™ (els)as),

0
Aa(s)ds = P (s)ds.

It follows at once that the eigenvalue problem for Dy is equivalent to the eigenvalue
problem

N f(s) = —c(s)la—as <c(s)%f) : (4.4.1)

Furthermore, the eigenvalues of Dy are symmetric around 0, because, if f(s) + a(s)ds is
an eigenform of Dy with eigenvalue A then f(s) — a(s)ds is an eigenform with eigenvalue
=\

For a generic choice of ¢(s) the spectrum of Dy differs from the spectrum o(D3") = Z
of the Dirac operator on S!.

For example, if c(s) = e®(*) then one can calculate numerically, adapting the algo-
rithm from [Strl6, page 3 - 6|, that, without counting multiplicities, the first eigenvalues
are approximately given by

Ao =0, A\ 0,990, \s ~ 1,137.

In particular, the spectrum of Dy does not coincide with the spectrum of the Dirac
operator DS' as o(D5") = Z.
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We can do a similar calculation for the Laplacian acting on functions. It follows that
for f(s) e S,

Since this equation is independent of € it is immediate that (AE | Saﬁ)g induces a second
order differential operator Ay on S! as ¢ — 0. Furthermore, the eigenvalue problem for
A is similar to the eigenvalue problem . In particular, the spectrum of A differs
from the spectrum of AS" = *g—z which is given by {k? : k € Z}.

At this point we want to remark that Section is an extended version of [Roo18b,
Section 5| where we added the behavior of Dirac eigenvalues with a symmetric uniformly
bounded H'*-potential.

In Section we give an explicit description of the behavior of Dirac eigenvalues for
any collapsing sequence in M(n + 1,d,C) extending the results of Theorem . The
results stated in Section also have been proved in [Rool8c, Section 5].

4.1 Dirac eigenvalues under collapse to smooth spaces

Let (M;, gi)ien be a collapsing sequence of Riemannian spin manifolds in M(n + k, d)
converging to an n-dimensional Riemannian manifold (B, k). By Corollary there is
an [ € N such that for any ¢ > I there are metrics §; on M, and ﬁz on B such that
fi  (M;, ;) — (B, h;) is a Riemannian affine fiber bundle (see Definition [1.28)). Moreover,

lim ||g; — g = 0,
1—00
lim ||h; — h|er = 0.
1—00

Let ¥ M; and ¥ M, be the spinor bundles of (M;, g;) and (M;, g;) respectively. In Appendix
[C] we constructed an explicit isometry

©; : L*(SM;) — L*(SM,), (4.4.1)

following [BG92,|Mai97]. .
For a Riemannian affine fiber bundle f; : (M;, g;) — (B, h;) the space of affine par-

allel spinors S = L2(SM;) is well-defined. The Dirac operator D™ on (M;, §;) acts
diagonally with respect to the splitting

LA(SM;) = 8 @ (827"

In general, for the original fibration f; : (M;,g;) — (B,h) the induced metrics on the
fibers is not affine parallel. Thus, the affine connection V* does not induce a well-defined
connection on the spinor bundle X M;. Instead we use the isometry ©; to define

S = 0;1(8),
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This induces the splitting
L* (M) = S @ S}

But in contrast to Riemannian affine fiber bundles, the Dirac operator D*i on (M;, g;),
in general, does not act diagonally with respect to this splitting. Nevertheless, it follows
from the continuity of the spectra of Dirac operators, see Theorem [C.4], that

d, (J(DMi),a(DMi)) RSN

where d,, is the distance in the arsinh-topology, see Definition [C.3] Thus, the spectra of the
restrictions of DMi and DMi to S; and S respectively to their orthogonal complements,
have the same limit as ¢ — 0.

Next we recall, that for a Riemannian affine fiber bundle f; : (M;, ) — (B, h;) we
defined the following objects in Chapter [3.1}

e The operator VY that acts on vector fields X,Y as V?Y = (VXHYV)V, where the
superscripts H and V' denote the horizontal, resp. the vertical part of a vector field.

e The one-form Z; € QY(M;, End(TZ;), where we view T'Z; as a vector bundle over
M;, is defined as Z; := V% — V* . Here V)Z(iY = (VXvYV)V for any two vector
fields X,Y and V" is the induced affine connection.

e The two-form A; € Q?(B, P) that is characterized by (f*A4A;)(X,Y) = A;(X,Y) for
all basic vector fields X, Y. Here A; is the A-tensor of the Riemannian submersion
fi (My,3;) — (B, h;) and P — B is a vector bundle whose fiber P, is given by the
affine parallel vector fields on Z, := f;'(p) for all p € B.

Similar to (4.4.1)) there is also an isometry
0; - L*(TM;) — L*(TM;).

In the next theorem we interpret the operators Vi, Z; and A; on (M;, g;) as the pullbacks
of the respective operators on (M;, ;) via the map 6;.

Using this terminology and the notations introduced in Chapter [3.2.2] we state in
the following theorem the explicit description of the limit operator D? in Theorem |4.3
for collapsing sequences of spin manifolds converging to a Riemannian manifold of lower
dimension. Theorem follows immediately from the following more specific theorem.

Theorem 4.5. Let (M;, g;)ien be a sequence of spin manifolds in M(n+ k,d) converging
to a smooth n-dimensional Riemannian manifold (B, h) such that the space S; is nontrivial
for almost all i € N. Then there is a subsequence (M;, g;)ien such that the spectrum of
Df\g converges uniformly with respect to the arsinh-topology to the spectrum of the elliptic
self-adjoint first order differential operator

D? . dom(D?) — L*(*TB®P),

- | 1,
®— DT P + §V(Zoo>q) + 57(“400)(1)7
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where

v g ¥.B, if n or k is even,
o STBO®Y B, ifn and k are odd.

Further,
(1) P represents the affine parallel spinors of the fibers Z;,

(2) D7* is the twisted Dirac operator on °X B ® P with respect to the twisted connection
V7T = Vh@ VY=, where V" is the spinorial connection on (B, h) and VV* is induced
by the CO*-limit of VYi for any a € [0,1),

(3) Z is induced by the CO%-limit of (Z;)ien for any o€ [0,1),
(4) Ay is the CO-limit of (A;)ien for any o € [0,1).

In particular, DB is self-adjoint with respect to the standard measure and the metric h on
B is CY* for any a € [0,1).

Proof. The proof of this theorem is divided into several steps.

Step 1: Switching to invariant metrics. It follows from Corollary that there is an
index I such that for all ¢ > I there exists a fibration f; : (M;,g;) — (B,h). Moreover,
there are metrics §; on M; and h; such that f; : (M;, §;) — (B, h;) is a Riemannian affine
fiber bundle and

lim ||g; — gillcr = 0,
1—00

lim [|h; — hfcr = 0.
1—00

Applying Theorem it follows that the spectra of the Dirac operator D™i on (M;, g;)
and DMi on (M;, g;) are close in the arsinh-topology, see Definition ie.

do(o (DY), 0(D™)) < Clgi — Giller. (4.5.1)

Let S; and S be defined as above. It follows from the proof of Theorem that all

eigenvalues of the restriction D‘ﬁiaﬁ) ., and therefore also of Dﬁgﬁ go to +oo as ¢ — o0.
Furthermore, it was shown in the proof of Theorem that the spectrum of f)lj‘ggﬂ has

a well-defined limit as ¢ — 0. Since the spectra of D™ and D™ have the same limit

by (4.5.1]) it suffices to show the claim for the sequence ( fi (M;,4;) — (B, le)> of
ieN
Riemannian affine fiber bundles. :
In this setting we can use the isometry Q; : L?(°X;B ® P) — S see Lemma [3.26),

and apply Corollary [3.27] to write

~ o - _ 1 1
DMi= Q0o DT o Q; + 5’7(21) + 5’7(Ai)-

We refer to Chapter [3] for the notation and definition of the separate terms. From the
discussion in Chapter (3.1 it follows that v(Z;) and v(.A;) act diagonally with respect to
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—_— ~ ~ 1 <
the splitting L?(XM;) = S @ (S?ﬁ) . Thus, there are well-defined operators Z; and A;
such that

- I U R )
DY g = Qi (D74 33(2) + 32040 ) 0 @7

= Q0D 0Q; .

Since Q; : L*(°X,B®P;) — S* is an isometry, it follows that D; §a 1 isospectral to D;.
Furthermore, the operator ®; is densely defined on H'*(°X,B ® P;).

Now, we are going to choose a subsequence such that the spectrum o(®;) converges to
the spectrum of the claimed operator DZ. The main problem here is that the operators
9, are defined on different spaces. Thus, we need to find a common space on which we
can study the behavior of the spectrum of the sequence (©;);en. This is done in the next
three steps.

By abuse of notation, we use the same index i for any subsequence we choose. The
following identifications are based on the constructions in [Lot02al Section 4]. The idea
here is similar to Fukaya’s main idea in [Fuk88|. Namely, we will consider the corre-
sponding sequence of Spin(n + k)-principal bundles and identify the spinors on (M;, g;)
with Spin(n + k)-invariant functions on the corresponding Spin(n + k)-principal bundle
PSpin(Mia gz)

Step 2: Identification of the spinors. Let P, = Pspin(M;, g;) be the Spin(n~—i— k)-
principal bundle of (M;,g;). Further, we set g to be a Riemannian metric on P; such
that

it (Pg)) — (Mi, i)
is a Riemannian submersion with totally geodesic fibers such that vol(7;*(z)) = 1 for all
x € M;. Further, denote by
R :Spin(n + k) x P, — P,
(A, 7) = Ra(Z)
the isometric Spin(n + k) action on P,
Next, we recall the canonical complex spinor representation

9n+k . Spln(n + k) - 2n+k,

where >, is a complex vector space of dimension ol*#*] spin geometry, it is well-
known that there is a Hermitian product {.,.) on %, 4 such that Clifford multiplication
is skew-symmetric with respect to {.,.). This product is unique up to a positive scalar
(see for instance [BHM ™15, Proposition 1.35]).

Hence, there is an isometric Spin(n+ k) action on the tensor product L?(P;, 7)) ® Ly
defined by

p:Spin(n + k) x L*(B, §7) ® Spak = L (P §7) ® S
(A, ) 51®¢1) = Y (510 Ra) ® O, 14(A) ().
l

l



4.1. DIRAC EIGENVALUES UNDER COLLAPSE TO SMOOTH SPACES 73

Here we used that any element S € LQ(PZ, P)Y® ¥, can be written as a finite linear
combination ), s; ® ¢; of elementary tensors It is well-known that the tensor product
L2(P;, g7) @ 2,41 is isometric to the space of all L>functions o : 15 — ¥,4% with respect
to the volume measure of (P;, §’). We denote this space by L*(P;, Lpis).

We observe that the Spin(n + k)-invariant subspace of L2(P;, G7) ® X, is given by

Spin(n+k)

(L?(g, P\ ® zm) - {s € LB, g7) ® Zpan : p(A)S = S, YA e Spin(n + k)}

=~ {a e L*(P;,Ynyk) 00 Ry = 0,1, (A) 00, ¥A e Spin(n + k)} :

Since the spinor bundle 27\“41 of (M;, g;) is defined as EM =P, X9, .r Snik it follows
at once that there is a canonical isomorphism

) Spin(n+k)

T, : <L2(R, PY® S ik — [A(SI). (4.5.2)

Spin(n+k) . .
> the induced spinor

To be more concrete, for an element o € (LQ(]Si, 7)) @ St

II;(c) is given by
ﬁz(a)x = [53’0('%)]7 (4'5'3)

for any z € M; and & € 7;'. Since o is Spin(n + k)-invariant the definition (£.5.3)) does
not depend on the choice of Z. It follows from our choice of the metric g that the map
I1; is in fact an isometry.

Step 3: Convergence of the Spin(n + k)-principal bundles. After we have identified
the L?-spinors of (M;, §;) with the Spin(n + k)-invariant subset of L*(P;, ) ® ¥, we
now consider the sequence (E,gf )ien- By construction, the sectional curvatures and
the diameter of this sequence are uniformly bounded in i. Thus, we can apply the G-
equivariant version of Gromov’s compactness theorem, Theorem [I.7, to the sequence
(]51‘, 7 )ien. Tt follows that there is a subsequence, which we denote again by (ﬁ’l, P )ien,
that converges to a compact metric space (B, h*) on which Spin(n+ k) acts as isometries.

In particular, (B, hP)/Spin(n + k) Is isometric to the limit space (B, h) of the sequence

(M;, §i)ien. Using the same strategy as in [Fuk88, Theorem 6.1] it follows that (B, h) is
a Riemannian manifold. Morcover, the metric 17 is C by Theorem [1.32]

As Fukaya’s fibration theorem, Theorem [I.17] also holds in a G-equivariant setting
|Fuk88, Theorem 9.1], it follows that there is a further subsequence (f’l, G7)ien such that
for all i € N there is a Spin(n+ k)-equivariant fibration f; : P, — B with infranil fibers and
affine structure group. Since for every ¢ € N, the metric g; on M; is invariant, see Corollary
1.29] it follows that g is also an invariant metric, i.e. there is a Spin(n + k)-invariant
metric hP on B such that

fi: (Pal) — (B, hY)

is a Spm(n k)- -equivariant Riemannian affine fiber bundle. Further, we want to remark

that m; : (B,hf) — (B,h;) is a Riemannian submersion with totally geodesic fibers.
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Summarizing these observations, we conclude that the following diagram commutes for
every 7 € N.

(M, ;) 5 (B, hy) .

Step 4: The space of affine parallel spinors. First we fix an ¢ € N and recall the affine
connection V1 on (M;, g;) that is induced by the affine connection on the infranil fiber
Z; of the Riemannian affine fiber bundle f; : (M;, §;) — (B, h;). Since for all p € B the
induced metric g, on the fiber Z, = f;*(p) is affine parallel, the connection V% induces
an affine connection, also denoted by Va4 on P;. Hence, there is a well-defined subspace

LQ(PZ, gh)t L2(1D27 g’) consisting of affine parallel functions. As we already know that
Spin(n+k)

the space (L%R,gﬁ) ®Zn+k> is isometric to L2(SM;), see [@.5.2), [@5.3), it
follows that there is an induced isometry

— S (4.5.4)

~ Spin(n+k)
Hi : <L2<Ra ~1P>aff ® EnJrlc) ’

Here S* denotes as usual the space of affine parallel spinors.

Next, we observe that we can view L?(P;,§)* also as the space of functions in
L2(P;, §F) that are constant along the fibers of the fibration f; : P, — B. In particular,
for any s € L*(P,, ") there is an § € L?(B,h) such that f*s = s. Hence, there is
a natural isomorphism between L2(P;, gP) and L2(B, ﬁf) ). But we want to have an
isometry between these spaces. Therefore, we consider the function

vi: B—> R,
B = vol(f71(D)).

Then,

is an isometry. Combined with (4.5.4) we obtain the isometry

Spin(n+k) off
g,

Qi : <L2(B, }le)) ® Lin+k
such that the following diagram commutes

(237 ©5,0) """

l Qi

L*(°S,BQP;) 8 Saff
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Spin(n+k)
) ’ L I2A°SB®P)

Here we used that there is an isometry <L2(B, hE) ® Sk

similar to (5.2), E53).

We recall that
En-{-k = Ozn & Eka
with

on 2, if n or k is even,
" @Y;, ifnand k are odd,

where 3t and ¥ are two isomorphic copies of ¥, (compare (B.0.1), (B.1.1))). Then

>Spin(n+k) )Spin(nJrk)

(L2(B, AP ® ik ~ <L2(B, W)@ (°%, ® )

~ [*(°X,B®P)
for some fixed locally defined vector bundle P over B independent of i. In particular,

there are isomorphisms P; — P for all i € N. Using pullback metrics we obtain the
isometry

Qi L*(°S,BQP) —» S (4.5.5)

Now, °3, B is the only object left that depends on i. To remove also this i-dependency,
let us assume for the moment that B is a spin manifold. For any ¢ € N we consider the
isometry

Bl . LX(SB) — L*(iB),

that was constructed in Appendix [Cl Here £B is the spinor bundle of (B, h) and ;B is
the spinor bundle of (B, h;).
Going back to the original case, where B is not necessarily spin, we can still apply a

local version of the isometry B,}l“ to obtain an isometry
0,: L*(°XB®P) - L*(°S,B®P).

Step 5: The convergence of the Dirac eigenvalues. We recall from Step 1 that the
Dirac operator DM on (M;, g;) restricted to S can be written as

- 1 L1 i
DM \gun = Q0 (DTl +57(2) + 5'7(~Ai)) 0 Q7"

= QiO@iOQfla

where ); is now the isometry (4.5.5)). It is obvious that the calculations that we did in
Step 1 just carry over.
It follows by construction and Theorem that for any 7 € N the operator

Di Z:@flogio@i



76 CHAPTER 4. THE BEHAVIOR OF DIRAC EIGENVALUES

is isospectral to the restriction ﬁﬁgﬂ and densely defined on H"?(°X~ B ® P). By a small

abuse of notation, we continue to write

. 1 - .
D, = D" + 3V(ZE) + 57 (A
First, we observe that the C' 1-n~0rms corresponding to (B, h;) are all equivalent to the C1-
norm on (B, h) because lim;ey |h;—h|cr = 0. By Lemmait follows that the sequence of

operators (’y(Zi))ieN is uniformly bounded in C''(B, h). Further, we conclude from Lemma
that also the sequence (V(Ai))z‘eN is uniformly bounded in C'*(B, h). Since C* — C%

is a compact embedding for all a € [0, 1) there is a subsequence such that (W(Zi))ieN and

(’y(/li))ieN converge to well-defined operators v(Z,) and v(A) in C%* for any a € [0, 1).
As Vi corresponds to the twisted connection V7 @V, it follows from Theorem and
Lemma that there is a further subsequence (M;, g;)ien such that the corresponding
sequence (D;)ien is a sequence of operators that are densely defined on H?(°X B ® P).
Furthermore, the sequence (D; )y converges in B(H"?(°XB® P), L*(°<B ® P)) to the
claimed limit operator DZ. Here, B(.,.) is the space of bounded linear operators endowed
with the operator norm.

Thus, the sequence (D;);ey satisfies the assumptions of Theorem . In particular,
it follows that the spectra (o(D;))sen converge to o(D?) uniformly in the arsinh-topology
as ¢ — 0. O

As a conclusion we can characterize the special case where the spectrum of the limit
operator D? coincides with the spectrum of the Dirac operator on the manifold B up to
multiplicity. We formulate the following corollary for collapsing sequences of Riemannian
affine fiber bundles and use the notation of Chapter 3] Corollary follows immediately
from Corollary because any collapsing sequence (M;, g;)ien in M(n+k, d) with smooth
limit space (B, h) can be approximated by a collapsing sequence of Riemannian affine fiber
bundles (M;, §;) — (B, h;) such that lim; o | i — gl = 0 and lim; o, |h; — hlcr = 0, see
Corollary and Remark [1.30, Further, we know that Dirac eigenvalues are continuous
under a C'-variation in the arsinh-topology, Theorem |C.4]

Corollary 4.6. Let (f;: (M;, 9;) = (B, h;)),ey be a collapsing sequence of Riemannian
affine fiber bundles such that (M;,g;)ien is a spin manifold in M(n + k,d) and B is
a closed n-dimensional manifold. Further, we denote by Z; the closed k-dimensional

infranilmanifold which is diffeomorphic to the fibers of f; : (M;, g;) — (B, h;). If
limsup | Hol(V;, VY¥) —1d ||, = 0,

i—0
lim sup (sup I scal(Z;,)oo) =0,
1—00 peB
limsup |A4;|» =0,

1—0
and S; is nontrivial for almost all © € N, then there is a subsequence also denoted by
(M;, g:)ien such that the spin structure on (M;, g;) induces the same spin structure on
B for all © € N and such that the spectrum of the Dirac operator Dﬂg converges, up to
multiplicity, to the spectrum of DB, if n or k is even, and to the spectrum of D® @ —D?,
if n and k are odd. Each eigenvalue is counted rank(P)-times.
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Proof. From the above theorem it follows that the limit operator D? equals D” ® Id,
respectively (D @ —DP) ®1d if

(1) VY= is gauge equivalent to the trivial connection,
(2) 2, =0,

Regarding the first point, we recall that VY= is gauge equivalent to the trivial connection
if (V;, VY¥) is in the limit ¢ — o0 a trivial vector bundle with trivial holonomy, see Remark
.4l In this case it is immediate that P is the trivial vector bundle. Therefore, it follows
that also °X B is globally well-defined. In particular, there is a well-defined induced spin
structure on B. As there are only finitely many equivalence classes of spin structures on
a fixed closed Riemannian manifold (see for instance [LM89, Chapter II, Theorem 1.7]),
we can choose a subsequence, again denoted by (M;, ¢;)ien such that the spin structure
on (M;, g;) induces the same spin structure on B for all i € N. Since | Z;], < 3| scal” |,
see the proof of Lemma [3.§ the second condition implies that the limit Z,, vanishes
identically. Finally, it is immediate that A, = 0 is equivalent to the vanishing of the
A-tensor in the limit since |A;]|s, = [|As]|so by definition.

For the last statement, let [ := rank(P). Since P is the trivial vector bundle there is a
global frame (p1,...,p). Let ¢ be an eigenspinor of DP, resp. DP @ —DP. Then for any
1 < j <[ the spinor ¢ ® p; is an eigenspinor of DP with the same eigenvalue. Hence, any
cigenvalue of DZ, resp. DB @ —D?® is counted [-times. O

We conclude that there are three geometric obstructions for a convergence to the Dirac
operator on the base space. As discussed in the examples [3.5] [3.6] [3.7] in Chapter
these geometric obstructions are all independent of each other. In the following example
we discuss a class of collapsing sequences that satisfy the assumptions of Corollary [4.6]

Example 4.7. Let G be a compact m-dimensional Lie group with Lie algebra g. Since
GG is compact we can choose a biinvariant metric g. It is well-known that any Lie group
is parallelizable. Since we have chosen a biinvariant metric g it follows that PsoG =~
G x SO(m). We see at once that (G, g) is spin. In the following we fix the spin structure

PspinG = G x Spin(m). (4.7.1)

If G is connected and simply-connected, then the spin structure (4.7.1)) is, up to equiva-
lence, the only spin structure on G.

Next we fix a maximal torus T* in G. The torus T* acts on G via left multiplication.
Since the metric ¢ is biinvariant, the maximal torus T* acts on G as isometries. In
the following we consider the homogeneous space B := Tk \G with the induced quotient
metric h. We would like to point out that the quotients \G are called flag manifolds.
Let g = t + b be the splitting of the Lie algebra of G into the Lie algebra t of T* and its
orthogonal complement b = T ) B with respect to the biinvariant metric g. Here e is the
neutral element in G and f : G — B is the quotient map. Since ¢ is a biinvariant metric
it follows that b is an Ad(T*)-invariant subspace, where Ad is the adjoint representation.
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In particular, the map y : TF — SO(b), x(¢)(X) = Ady(X) for all t € T and X € b is
well-defined and satisfies

G Xy SO([‘J) = PS()B.
Let p : Spin(b) — SO(b) be the usual double cover. Then the spin structure of G

induces a spin structure on the homogeneous space B if and only if there is a L1e group
homomorphism y : T — Spin(b) lifting y, see for instance |[Bir92, Lemma 3],

Spin(b

/l

—>SO

This is for example the case if the maximal torus equals the center of the Lie group as,
in that case, y acts trivially.

By construction f : (G, g) — (B,h) is a TF-principal bundle. Furthermore, f is a
Riemannian submersion with totally geodesic fibers. We can write

g=g+["h,
where ¢ vanishes on vectors orthogonal to the fibers. For any € > 0 we define
ge =g+ fh.

We observe that g. is left invariant for all € > 0 and biinvariant if and only if ¢ = 1. As
e — 0 the sequence (G, g.). converges to (B, h) in the Gromov-Hausdorff topology. For
abbreviation we denote by G. the Riemannian manifold (G, g.). It follows from |[CG86,
Theorem 2.1] that there are constants C' and d such that | sec(G.)| < C and diam(G.) < d
for all € € (0, 1).

Now we want to show that the assumptions of Corollary are fulfilled. Thus, we
take a closer look at the Riemannian submersions f; : (G, g.) — (B, h). Since the fibers of
f- are totally geodesic for all ¢ > 0 it follows that the tensor 7. vanishes identically for all
e > 0. Moreover, the vertical distribution V. is a trivial R*¥ vector bundle over G, as T*
acts on G, as isometries for all € > 0. Thus, it follows form Lemma [3.3| that for all ¢ > 0,
VY= is gauge equivalent to the trivial connection. Applying this gauge transformation if
necessary, we can assume without loss of generality that V= is the trivial connection on V.
for all € > 0. By construction, the fibers of f. are embedded flat tori. Thus, the induced
Levi-Civita connection on the fiber is the affine connection, i.e. Z. = 0 for all ¢ > 0.
Next, we take a global orthonormal vertical frame ((i, ..., (x) that trivializes the vertical
distribution V; of (G, g1). Then (¢7'(y,...,e7'¢;) is an orthonormal vertical frame for
the vertical distribution V. of G.. For any two horizontal vectors X,Y we calculate

As(Xa Y) = X Y 5_1Ca)

([X, Y], Ca)
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In particular, it follows that lim. o |A:|,. = 0. Hence, all assumptions of Corollary
are fulfilled. Thus, if for almost all ¢ € (0,1] the space of affine parallel spinors is
nontrivial then there is an induced spin structure on B and the spectra of the Dirac
operators restricted to the space of affine parallel spinors converges, up to multiplicity, to
the spectrum of the Dirac operator D® of B = \G, if k or dim(B) is even, respectively
to the spectrum of DB @ —D?B if dim(B) and k are odd.

It follows from Theoremthat the limit operator D¥ is a twisted Dirac operator with
a symmetric potential lying in C%* n H® for any « € [0,1). In the following proposition
we show that the spectrum of a Dirac operator with a symmetric H*-potential converges
to the spectrum of a Dirac operator with a symmetric H*-potential. To simplify notation
we define

O(n,d) ={(M,g,W):(M,g) e M(n,d) and spin, W € Hom(XM,XM)}.

Proposition 4.8. Let (M;, g;, W;)ien be a sequence in O(n+k,d) converging to a smooth
n-dimensional Riemannian manifold (B, h) such that for almost all i € N the space S; is
nontrivial. Further, we suppose that, for all i € N, W; is symmetric and |Wi||gr < A for
some positive constant A. Then there is a subsequence (M;, g;)ien such that the spectrum
of (DMi + Wi)is, converges uniformly in the arsinh-topology to the spectrum of DB + )7\//00.
Here DP is as in Theorem@ and V\\7Oc is a symmetric HY®-potential induced by the limit
of the sequence (W”Si)ieN'

Proof. Similar to the proof of Theorem it suffices to consider the associated sequence
( fi: (M, 9;) — (B, le)> of Riemannian affine fiber bundles. We recall that there are
ieN

1S
explicitly constructed isometries ©; : L?*(XM;) — L*(XM;), see Appendix Hence,
we can pull back W; to an element W; of Hom(XM;, ¥M;). For any i € N, let W, be
the associated affine parallel operator for W; defined in Proposition . Since W; is

symmetric for all ¢ € N it follows from [Kat76, Chapter 5, Theorem 4.10] that
lim dist <O'(DMi + VIN/,), o(DMi + Vrvz)) < lim HVIN/, — Wil
1—0 1—0

< lim <2 max(diam(f; " (p))-

i—0 peB ¢

(19 Wil + C (k. O, Cr)|[ Wil

< 2 lim <max(diam(fi1(p))) (14 C(k,Cgr,Cr))A

1—00 peB

= 0.

Therefore it suffices to study the spectrum of DMi + Wl First we note that this operator
acts diagonally with respect to the splitting LQ(mi) = ) (Sf‘ﬁ)L. Thus the same
proof as for Theorem applies in this setting. Let 17\//, be the induced element on
Hom(°¥,B®P, ¥, B®P), where we used the same notation as in the proof of Theorem
. Since |W;| g1 < A by assumption it is a simple matter to check that |W;| i < A.
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In particular, there is a subsequence (W/z’)ieN converging in the L*-topology to an operator
Wy € Hom(°XB®P, X B®P). The remaining steps are similar to the proof of Theorem
d.5 O

4.2 The Dirac operator and codimension one collapse

In Chapter we introduced the set

M(n+1,d,C) = {(M,g) eMn+1d):C< YI?JI((%;}

of isometry classes of closed (n + 1)-dimensional Riemannian manifolds. In Theorem [2.17]
we showed that any n-dimensional limit space (B,h) of a sequence in M(n + 1,d,C)
is a Riemannian orbifold with a C'®-metric h. In addition, the second derivatives of h
exist almost everywhere and | sec” |« < K(n,d,C). As discussed in Chapter [3.2.1] spin
structures and Dirac operators are also defined on Riemannian orbifolds. In this section
we give an explicit description of the structure and behavior of the Dirac spectrum on
any collapsing sequence in M(n + 1,d,C).

Let (M;, gi)ien be a sequence of Riemannian spin manifolds in M(n+1,d, C) converg-
ing to an n-dimensional Riemannian orbifold (B, h). By Corollary there is an index
I such that for any i > I there is a fibration f; : M; — B defining an S'-orbifold bundle
with structure group in Aff(S') = S* x {£1}. If B is orientable, then f; : M; — B is
an S'-principal bundle. Otherwise, we take the orientation cover B of B and consider
the pullback bundle f; : Ml — B. As the structure group of the fibration f; : M; — B
lies in Aff(S') this pullback bundle is an S'-principal bundle. Hence, it often suffices
to consider sequences of Sl-principal orbifold bundles. Moreover, for all i > I there are
metrics §; on M; and h; on B such that the fibrations f; (M;, g;) — (B,izl-) are Rie-
mannian submersions, see Corollary [.29] In addition, we have lim; o [g; — gillcr = 0
and lim;_., ||h; — h|cr = 0. Since Dirac eigenvalues are continuous under a C'-variation
of metrics, see Theorem it suffices to consider sequences of Riemannian S*-principal
bundles i.e. S'-principal bundles f : (M, g) — (B, h) such that f is a Riemannian sub-
mersion.

For the moment we fix a Riemannian S'-principal bundle f : (M,g) — (B,h) such
that (M, g) is a spin manifold with a fixed spin structure. As discussed in Chapter [3.2.1] we
distinguish between two kinds of spin structures on the total space (M, g), the projectable
spin structures, if the S*-action lifts to Pspi M, and the non projectable spin structures,
where a double cover of the S'-action acts on Pgpin M. If the spin structure on M is
projectable then the spin structure on M induces a spin structure on B. Otherwise there
is an induced spin® structure. In the following, we discuss the structure of the spinor
bundle XM following [Amm98a], [Amm98b, Kapitel 7|.

The isometric S'-action on (M, g) induces a Killing vector field K. Furthermore, the
length of the S'-fibers of f : M — B equals 2xl, where [ := |K|. In particular, we can
view [ as a function defined on the base space B. As explained above, there is always an
induced isometric S'-action on Ps,i, M. Thus, we can define the Lie-derivative of a spinor
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¢ in the direction of K as

d

Lip(w) = 3| nalolale)

where x denotes the S'-action on ¥M and on M respectively. By construction Lx is
the differential of the S'-action on L?*(XM). It follows from representation theory for
compact abelian groups that Lx has the eigenvalues ik, where k € Z if the spin structure
on M is projectable and k € (Z + %) if the spin structure on M is non projectable. Thus,
L*(XM) decomposes as

L*(EM) = D Vi,

where V}, is the eigenspace of L with respect to the eigenvalue ik.

Since S' acts on L*(XM) as isometries, Lx commutes with the Dirac operator D*.
Therefore, Lx and DM are simultaneously diagonalizable, i.e. for any eigenspinor ¢ of
DM there is a k such that ¢ € V4. For any fixed k, let \;x be the eigenvalues of Df\ék such
that

...<)\_17k</\0,k<0<)\1,k<)\27k<....

Remark 4.9. It is easy to check that Ly is the same as V3! in this setting. Hence, 1}
is the space of affine parallel spinors.

Let L == M x g1 C be the associated line bundle. For any k € Z, resp. k € (Z + %),
Ammann constructed the isometry

Qr: L*(‘°EBR L") -V,

in [Amm98b|, Lemma-Definition 7.2.3|. For k& = 0 this isometry coincides with the isometry
constructed in Lemma[3.26] Using the isometry Q) we can generalize the bounds on Dirac
eigenvalues given in Theorem to any collapsing sequence in M(n + 1,d, C), proving
Proposition [0.4]

Proposition 4.10. Let (M;, g;)ien be a sequence of spin manifolds in M(n+1,d,C) con-
verging to an n-dimensional Riemannian orbifold (B, h). Suppose that the spin structures
on M; are either all projectable or non projectable. Then we can number the Dirac eigen-
values (Ajk(2));, with j € Z and k € Z (projectable spin structures), resp. k € (Z+ 1) (non
projectable spin structures), such that for any € > 0 there is an index I > 0 such that for
all i = I there are fibrations f; : M; — B with fibers diffeomorphic to S* such that for
all j € Z and k € Z (projectable spin structures), resp. k € (Z + %) (non projectable spin

structures),
. : : k 1[nys
|[Aje(i)] = sinh (arsmh <||l|z|||oo ~3 [5] f 04— e) — 5) :

Here 27l; is the length of the fibers and Cy is a constant depending on n, d and C'.
In particular, lim; o |\ x(7)| = 0 whenever k # 0 since lim;_, [; = 0.
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For anyz' > I, let w; € Q(M;,V;) be the orthogonal projection onto V; = ker(df;),
where f; : M; — B. If, in addition, there is a constant C such that

|dwifgor < C

for all i = I, then for all j € Z and k € Z (projectable spin structures), resp. k € (Z + )
(non projectable spin structures),

lim sup (minli(p)])\m(i)]) < |k|.
ieN peB
Proof By Corollary [I.29] and Proposition -, there is an index I; such that for any

> I, there is an S'-orbifold bundle f; : M; — B with affine structure group. If B is
orlentable then this is an S* -principal orblfold bundle. If B is non orientable we consider
the pullback bundle fl . M; — B over the orientation covering B. Since the structure
group of the fibration f; : M; — B lies in Aff(S') =~ S' x {£1} this pullback is an
Sl-principal orbifold bundle. As (non) projectable spin structures pull back to (non)
projectable spin structures and as the spectrum o(D) is a subset of a(DMi) we can
assume without loss of generality that the limit space B is orientable

Applying Corollary to the sequence (M;, g;)ien there are metrics g; on M; and
metrics h; on B such that the fibration f; : (M;, §;) — (B, h;) is a Riemannian S'-principal
orbifold bundle for all + > I;. Moreover,

lim [ g; — gicr =0,
1—00
lim ||h; — h|er = 0.
1—00
The change of the Dirac spectra is controlled by
| arsinh(A2, (1)) — arsinh(AD, ()] < Cllgi — Gillen, (4.10.1)

for a positive constant C, see Theorem Here \;(7)" denotes an eigenvalue of D
and \;x(i)? an eigenvalue of DM where the eigenvalues are numbered as explained in
the beginning of this section. At this point we want to remark, that the numbering of the
Dirac eigenvalues was derived for Riemannian S'-principal orbifold bundles only. Hence,
this numbering is a priori only defined for the eigenvalues (AP, (i)); . of the Dirac operator
DMi on (M;, g;). Nevertheless, it follows from Theorem that there is an induced
numbering (A7 (7)), of the eigenvalues of the original Dlrac operator D™ on (M, g;)
such that the 1nequahty m ) holds.

As shown in [Amm98b| Beweis von Satz 7.2.1], see also [Amm98a], the Dirac operator

can be written as
- 1 K; 1 K;

where F; = dw; is the curvature of the unique connection one-form iw;, whose kernel is
orthogonal to the fibers, and D is described by its action on the eigenspaces Vj(i) of
EKN

D™ v,y == Qi © Dy o Q;:i
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In the above equation, Dy, ; is the twisted Dirac operator on ;B ® L; *if n is even, and
it is the twisted Dirac operator on (X B@® X, B)® L; ", if n is odd. Here ¥ B and ¥; B
are two copies of the spinor bundle ¥; B. However, Clifford multiplication by vector fields
X e T(TB) acts on 3] B as y(X) and on X~ B as —y(X). For more details we refer the
reader to Appendix [B]

Moreover, a straightforward calculation shows that

16 E5 oo = 2[| Aso, (4.10.2)

where A; denotes the A-tensor of the Riemannian submersion f; : (M;, ;) — (B, h;). By
Theorem there is a constant K (n, d, C) such that | sec? ||p= < K(n,d,C). Now we fix
a positive constant K (n,d,C) > K(n,d,C) and a positive constant C'(n) > 1. It follows
from Lemma that there is an index I, > I such that for all ¢« > I, the sectional
curvature of (B, h;) is bounded by K i.e. [sec | < < K and the sectional curvature of
(M;, §;) is bounded by C, i.e. |sec? ||, < C.

Let (&1,...,&,,¢1) be a split orthonormal frame, see Definition E In particular,
(&1,...,&) is the horizontal lift of an orthonormal frame (&,...,&,) in (B, h;). Now it
follows directly from O’Neill’s formula (B.7.3)) that

JAl” = D A )P

1<j
= —Zsec fufz — sec” (fz’>§j)
1<j
< n(n6— 1) (K+ C(n )) —: Cu(n,d,C)%

Applying [HM99, Lemma 3.3| and the identity (4.10.2]) we obtain
1 K; 1[nys 1nys 1rnisz
A EV V@R < 2 16Ee < 2 27 14, < 2 | 2] o
Hﬁ(li)ﬂz )| 4[2] JliFill 2[2] 4l 2[2] Ca

Since }17 <Iz(_,1> v(1; F;) is symmetric it follows from [Kat76, Chapter 5, Theorem 4.10] that
dist ( o(DM),0 | =y == ) Lk, + D™ ) ) < ||=7 | = | v(LF)
l; l; ' 4 l; o

Let A}, (i) be an eigenvalues of W; = v ( > Ly, + D" Tt was shown in [Amm98a]
that for any € > 0 there is an I > [, such that

il

(4.10.3)

_67

Ajk ()] =

for all i > I. Applying the inequalities (4.10.3]) and (4.10.1)) we obtain the claimed lower
bound.
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It remains to prove the upper bound. As explained in the beginning of this proof it
suffices to consider the S*-principal bundles f; : (M;, §;) — (B, h;). Let i&; be the unique
connection one-form such that ker(&;) is orthogonal to the fibers with respect to g;. Since

lim [|g; — gi|cr = 0,
1—00

1—00

and w; coincides with the orthogonal projection onto ker(d f;) it follows from the additional
assumptions that the curvatures F; := d@; are all uniformly bounded in C%'(B, h) for all
¢ = I. Thus, we can apply Theorem to deduce that there is subsequence (M;, ;)ien
such that all M; are diffeomorphic to a fixed manifold M and such that the sequence (@;);en
of connection one-forms converge in C* for any « € [0,1). Applying these isomorphisms
it suffices to consider the sequence ( fi: (M, g;)— (B, Bz)> - of S'-principal bundles.

Next, we recall that for any k,

Dr‘-[/z(i) = Qp,i 0 Do ngj
As the manifold M does not depend on i the same holfd for the associated line bundle
L = M x g C. Moreover, as in Step 4 of the proof of Theorem [£.5], we obtain an isometry

L*(°E,B L") - L*(°SB® L"),

for any i € N. Applying these isometries and that lim; o, [h;—h|c: = 0 and the connection
one-forms (@;);ey converge in CH for any «[0,1) it follows from Theorem that the
spectrum (11;());ez of the twisted Dirac operators Dy ; converges in the arsinh-topology
to the spectrum (u;) ez of the twisted Dirac operator Dy, o, on X B® L. As before, we
consider the operator

1 (K, ,

It is straightforward to check that

1 _ grad(l;
W2 =~ ) + (D) = (B,

As W is a self-adjoint operator it is immediate that TW? is a nonnegative self-adjoint oper-
ator. A straightforward calculation using the Rayleigh quotient shows that any eigenvalue
A (@) of Wiy, () satisfies

Lik 2 lerad(l)]«

——— 4+ 1 ()" + — .
min,ep 1;(p)? 210 min,ep l;(p)?

(Ae(1))? <
Multiplying this equation with min,ep l;(p)? leads to

min ;(p)* (A% (1)? < [k + min 1 (p)?;(4)* + min l;(p)|| grad (1) o
peB ’ peB peB
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Next, we observe that the T-tensor of the Riemannian submersion f; : (M, g;) — (B, h;)

is given by
K, K; grad [;
Tji - 7 | = .
( li "1 ) li

As the tensors (7;);en are uniformly bounded in i, see for instance Corollary |1.29]

lim sup || grad(l;)] . = 0.
—00
Furthermore, the spectrum (u;(¢));ez of Dy, converges to the spectrum (p;)jez of Dy o
in the arsinh-topology. Combining these observations we obtain that
lim sup min /;(p)* (A (4))? < |k,
i—oo DPEB ’

As for the lower bound, we conclude the claim by applying the inequalities (4.10.3),
(4.10.1)) and taking the limit ¢ — co. O

An immediate consequence of this proposition is that the eigenvalues of the restrictions
D\A‘Z 0 tend to +oo in the limit ¢ — co whenever k£ # 0. In the case of non projectable spin
structures this means that all eigenvalues diverge. Whereas in the case of projectable spin
structures all eigenvalues diverge except those corresponding to the subspace V; (i), which
is the space of affine parallel spinors. This coincides with the previous results by Ammann,
Theorem [4.T]and Lott, Theorem[4.2] Theorem[4.3] In the following theorem we summarize
the complete behavior of Dirac eigenvalues on collapsing sequences in M(n + 1,d, C).

Theorem 4.11. Let (M;, g;)ien be a collapsing sequence of Riemannian spin manifolds
in M(n + 1,d,C). Then there is a CY*-Riemannian orbifold (B,h) such that for a
subsequence, relabeled as (M, g;)ien, there are S*-orbifold bundles f; : M; — B for which
one of the following two cases occur:

Case 1: There is a subsequence, relabeled as (M;, g;)ien such that the spin structures
on (M;, g;) are non projectable. Then the eigenvalues of the Dirac operator D™i can be

numbered as (X (1)) jez  such that for all € > 0 there is an index I > 0 such that for
ke(Z+3)

. . : k 1nyz
|\ x(7)| = sinh <arsmh (”l‘l”’w ~5 [5] Cy — 5) - 5) .

Here, 27l; is the length of the fibers and Cy is a constant depending on n, d and C. In
particular, im;_,o |\jx(i)] = o0 for all j € Z and k € (Z + 3) since lim;_q, [; = 0.

For any i = I, let w; € Q(M;,V;) be the orthogonal projection onto V; = ker(df;),
where f; : M; — B. If, in addition, there is a constant C' such that

alli > 1,

|dwiflcor < C

for alli =1, then for all j € Z and k € (Z + 1),

ieN peB

lim stup (mmzxp)m(i)r) < Ikl
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Case 2: There is a subsequence, relabeled as (M;, g;)ien, such that the spin structures
on (M;, g;) are projectable and all of them induce the same spin structure on B, if B is
orientable, resp. the same pin~-structure on B, if B is nonorientable. Then the eigen-
values of the Dirac operator DMi can be numbered as (\;x(i)) ez such that for all e > 0

keZ

there s an I > 0 such that for alli > 1,

. . . k| 17nys
|Ajk(7)] = sinh (arsmh (|li|oo -3 [5] Co—c)—¢).

In particular, lim;_,o, | X, (7)| = 0 for all j € Z and k # 0 since lim; . [; = 0.
For any i = I, let w; € Q(M;,V;) be the orthogonal projection onto V; = ker(df;),
where f; : M; — B. If, in addition, there is a constant C' such that

||dw,-|\co,1 < C

forall 1> 1, then for all j € Z and k € 7Z,

i sup (smin )0 ) < [6

ieN pe

For k = 0, the eigenvalues \;o(i) converge uniformly with respect to the arsinh-topology
to the eigenvalues of the operator

DB + iwf’y(]:), if n is even,

B i
(zﬁ}-) 4jl()f3)> ; if n is odd.
4
If B is orientable,

e D% is the Dirac operator of B,

e WS is the complex volume element of ¥.B, i.e. wS = i[%ﬂ]y(el) —y(en) for any
orthonormal frame (eq, ..., e,),

o F is a C%-two-form for a € [0,1).
If B is non orientable

o DB is the twisted Dirac operator on the twisted pin~ bundle ©F Bdet(T B)C, where
det(T'B)C is the complexified determinant bundle,

e wC is the complex volume element of ¥ B ® det(T B)T,

o F is a C%*-two-form for a € [0,1).
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Proof. The behavior of the divergent eigenvalues as well as the upper bound follow di-
rectly from Proposition As usual, we switch to invariant metrics and work with the
resulting sequence of Riemannian S'-orbifold bundles f; : (M;, §;) — (B, h;). Under the
assumption that all spin structures of (M;, )y are projectable, each of them induces a
spin structure on B. As there are only finitely many equivalence classes of spin structures
on B (see for instance [LM89, Chapter II, Theorem 1.7]), there is a subsequence relabeled
as (M;, i )ien, such that the spin structure on (M;, §;) induces, up to equivalence, the same
spin structure on B for all ¢ € N. We recall that for any ¢ € N there is a unique imaginary
connection one-form i@; of the Riemannian S'-orbifold bundle f; : (M;, ;) — (B, 711) such
that ker(w;) is orthogonal to the fibers with respect to g;. Let F; := d@; be the curvature
form of @;. To show the convergence behavior of the eigenvalues (\;o()),ez, it suffices to
observe that A; |y, = %liFi if B is orientable. If B is non orientable we define F; := 2.A4,.
Then the claim follows from Theorem and the rules for Clifford multiplication derived
in Appendix [B] O

Finally, we want to mention that the same statement as in Proposition also hold
for general collapsing sequences in M(n + 1,d,C). It is easy to check that all arguments
given in the proof of Proposition also work when B is a Riemannian orbifold.






Appendix A

Infranilmanifolds

In this appendix we recall the basic properties and definitions of infranilmanifolds. For
a thorough introduction to infranilmanifolds we refer to |[Dekl7|, |CFG92, Section 3|
and [Lot02c, Section 3].

Let N be a connected and simply-connected nilpotent Lie group. The Lie algebra n
of N is nilpotent, i.e. there is a k € N such that the lower central series

N =nny = [ny nl]a ng = [na n2]7

terminates at ng = 0.

On the Lie group N, there is a canonical flat connection V*# defined by the requirement
that all left-invariant vector fields are parallel. Let Aff(N) denote the subgroup of the
diffeomorphism group Diff (V) that preserves V2. It follows that Aff(N) is isomorphic to
the semi-product Ny, x Aut(N). Here N, denotes the left-action of N on itself. Note that
Ny, isomorphic to N via the isomorphism N — Np,g — L,. As usual, Aut(/N) denotes
the automorphism group of V.

An infranilmanifold Z is a quotient F\N of a connected and simply-connected nilpo-
tent Lie group N by a cocompact discrete subgroup I' of Aff(/V). By the generalized first
Bieberbach Theorem (see for instance [Dek17, Theorem 3.4]), the subgroup I := ' n N,
is of finite index in I'. In fact, there is a constant C'(k) depending only on k := dim(Z)
such that [T : I < C(k) |Gro78, Main result]. Thus, we have the following diagram of
short exact sequences.

1 —— N, —— Aff(N) 2= Aut(N) —— 1,

! IL |

1 > ' > p(I') —— 1.

It follows that Z is finitely covered by the nilmanifold Z = f\N . The finite deck trans-
formation group is given by F' = p(I"). Since I' is a subgroup of Aff(N) it follows that
the flat connection V% on N descends to a well-defined flat connection on Z and on Z.
Let n be the Lie algebra of N. The space of affine parallel vector fields on N and 7 is
isomorphic to n. Thus, the space of affine parallel vector fields on an infranilmanifold 7
is isomorphic to the subspace n’" consisting of those elements that are invariant under the
induced action of F' on n. Obviously, n!" is finite dimensional.

89
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Let g be a left-invariant metric on N. For a local orthonormal frame (ey,...,ex) of
(N, g) the structural coefficients of the Lie algebra n of N are given by

k
[eas €] = Z TS Ec.
c=1

The Christoffel symbols of V2 are trivial and the Christoffel symbols of the Levi-Civita
connection can be calculated using the Koszul formula,

re, = (chb — TSC — T,f‘c) ) (A.0.1)

N | —

It follows that V2! is identical to the Levi-Civita connection if and only if N is abelian,
i.e. N is isometric to the additive group (R¥,+) with the euclidean metric. We fix the
following terminology for tensor fields on a Riemannian infranilmanifold (Z, g).

Notation A.1. Let (Z, g) be a Riemannian infranilmanifold. A tensor field X on Z is
called affine parallel if it is parallel with respect to the affine connection, i.e. VX = 0.
This is equivalent to say that X lifts to a left-invariant tensor field X on the universal
cover N. On the other hand, a parallel tensor field X on Z is parallel with respect to the
Levi-Civita connection on (Z, g).

In the remainder of this appendix we consider a closed k-dimensional Riemannian
infranilmanifolds (Z, g) with an affine parallel metric g. Let gx be the lift of g to N. Since
g is affine parallel gy is a left-invariant metric on N. Hence, the oriented orthonormal
frame bundle is trivial, i.e. PsoN = N x SO(k). Thus, there is a canonical spin structure
on N given by

N x Spin(k) — N x SO(k). (A.1.1)

We recall that the equivalence classes on a spin manifold M are in one-to-one correspon-
dence with the cohomology class H' (M, Z,), [LM89, Chapter II, Theorem 1.7|. Since N
is connected and simply-connected the cohomology group H(N, Z,) is trivial. Thus, the
spin structure defined by is, up to equivalence, the only spin structure on N.

As the metric g on Z = F\N is affine parallel it follows that I' is a discrete group of
isometries of (N, gn). Hence, the oriented orthonormal bundle of Z is isomorphic to

PS()Z = I‘\(N X So(k))

At this point we want to remark that there are examples of infranilmanifolds that are not
spin, e.g. the Kleinian Bottle. An infranilmanifold Z is spin if and only if F' < SO(k) and
if there exists a lift

Spin(k)
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The different equivalence classes of spin structures of Z correspond to different lifts of the
map I' — SO(k) to I' — Spin(k). Moreover, the group

Hom(T, Zy) = HY(T, Zy) =~ H'(Z, Z,)

acts freely and transitively on the set of equivalence classes.
It follows that the Spin(k)-principal bundle of Z is given by

Pspin(2) = p\(V x Spin(k)),

Let 0y : Spin(k) — Aut(3,) be the canonical complex spinor representation, where 3, is

a complex vector space with dimg(X;) = ol2], If there is a given lift p : I' — Spin(k),
then I' acts on X, via

I' x Ek - Ek,
(7, 0) = Ox(p(7)) ().

Thus, the spinor bundle of Z is defined as
N7 = PsyinZ xg, S = p\(V X Zk),

Next, we recall the affine connection V! on Z that is induced by the canonical flat
connection V¥ on N for which all left-invariant vector fields are parallel. Since the metric
g on Z is affine parallel V* induces a connection on PypZ and on PspinZ. For brevity,
we continue to write V* for these induced connections. In this thesis we are mainly
interested in the space of affine parallel spinors on an infranilmanifold (Z,¢g) with an
affine parallel metric g and a fixed spin structure, i.e.

P ={pe Ll’(2Z): V*Fp =0}.
First we observe that the space of affine parallel spinors is isomorphic to
5§ = {ve S 6,(5(1) () = v, VyeT}.

Since I' © Ny, it is immediate that p(y) = Id for all v € I'. Thus, 5(I') takes values in
{£1}. Here %1 denote the two preimages of the identity Id € SO(k) under the double
cover Spin(k) — SO(k). We conclude that XF = {0} if there exists a v € I' such that
p(v) = —1. If pp = 1 then YF = BF where the latter is the space of all elements in 3
that are fixed by the action of the finite group F' = p(T'). Since ©f = ¥, the space of
affine parallel spinors on Z is finite dimensional.






Appendix B

Spinors on Riemannian submersions

This appendix deals with Riemannian submersions f : M — B where M is a spin man-
ifold. We discuss how the Clifford multiplication of vertical and horizontal vectors acts
on the spinors of M. The main goal of this appendix is to derive formulas for the spino-
rial connection and the Dirac operator on the total space M expressing the influence of
the “vertical” and the “horizontal” geometry. Afterwards we recall O’Neill’s formulas for
Riemannian submersions which are constantly used in this thesis.

We start with an elementary discussion of the canonical complex spin representation
(see [LM89, Chapter I, §5] for more details). First, we recall that the group Spin(n) is
contained in the Clifford algebra Ci(n) := CI(C™) of C".

If n is even, then there is a unique irreducible representation x, : Cl(n) — GL(%,).
In the other case, i.e. n is odd, there are two inequivalent irreducible representations
Xt : Cl(n) — GL(X,). Here X, is a complex vector space of complex dimension ols].
The canonical complex spin representation is defined as

Xn|Spin(n)» It 118 even,

en = . .
{X7t|8pin(n) , if nis odd.

It is important to remark here, that the restrictions y;} ) and x,, n) are equivalent

| Spin(n | Spin(

to each other, although the non restricted representations . and y, are inequivalent.
If n is even the canonical complex spin representation splits ¥, = Xt @ X such

that the restrictions Qn@% are inequivalent irreducible representations of Spin(n). This

splitting corresponds to the +1 eigenspaces of the complex volume element

W€ =il I er) -y (en).

Here (ey,...,e,) is the standard basis of R” and v : R" — GL(X,) denotes Clifford
multiplication, i.e. y(v)y(w) + y(w)y(v) = —2{v,w), where {.,.) is the standard scalar
product on R™. The map

S, =Sres 5%, =Stes,
b=t Y D=yt~

is called complex conjugation.
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If n is odd the canonical complex spin representation 6, is irreducible. The complex
volume element w¢ acts trivially on ¥,,. For later use, we want to define 6, = y. | Spin(n)
for which the complex volume element w< acts as —1. With respect to this representation,
the Clifford multiplication of = € R™ acts as —y(z). Recall from the discussion above that
the irreducible representations 6,, and 6, are equivalent to each other.

Now we consider a Riemannian submersion f : (M, g) — (B, h) such that (M, g) is a
spin manifold with a fixed spin structure. Here and subsequently, we set dim(M) = n+ k
and dim(B) = n. In Chapter we discuss the problem that, in general, we cannot
determine whether (B, h) has an induced spin or pin® structure. Nevertheless, we know
that there is an induced spin structure on each fiber Z,, p € B.

First, we discuss how the involved spinor representations interact with each other.

m
2

Since dim¢(%,,) = 2l%] it follows at once that

2dimc¢(2,) dime(Xg), if n and k are odd,
dim¢(%,) dime(Xg),  if n or k is even.

dlmc(zn_,_k) = {

Thus, if n or k is even, there is a vector space isomorphism
En+k = En &® Ek, (BOl)

Here ¥, ® X;. is to be understood as the tensor product of two complex vector spaces. We
discuss the behavior of the Clifford multiplication under this isomorphism later in this
appendix.

Counting dimensions, it follows that such an isomorphism cannot exist if n and k are
both odd. In that case, we proceed as follows:

Using the standard basis (e1, ..., e,4x) of R"** we consider the operator

[nt1
wf =T Iy(en) -y (en).

A short computation shows that (wS)? = Id. Hence, the action of wS decomposes ¥,
into the two eigenspaces ¥}, and X, with respect to the eigenvalues +1.

Remark B.1. If n and k are odd, the splittjng Yok = 2F . @ X, ., defined above is
C

,and

different from the canonical splitting ¥, = X, @i; ., for even dimensions, as w

wy. . are not simultaneously diagonalizable.

Next we observe that the operator

[kl
wf =1 enn) - vennn)
anticommutes with wS. Moreover, (wF)? = Id. Hence, the action of w{ defines an involu-

tion

BIED SN Yas

n+k n+k-
In the following, we identify ¥, with the image wi (X}, ,). Since

: L. : :
dime(XE,,) = lem@(ZnM) = dim¢(2,,) dime(3y),
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there is an vector space isomorphism

£y
Yo =X, L.
Here, the notation ¥ symbolizes that wS acts as £1. Later we will see, that in fact ¥
corresponds to the two irreducible spinor representations 6,,, ;. Summarizing the above
discussion, we conclude

Yotk = S0 @ X 4, if n and k are odd.
= (5% (S, %) (B.1.1)
=~ (ZFe%,)) QL.

Next we want to determine how Clifford multiplication with vectors in R*** “separates”
into Clifford multiplications on ¥,, and ¥,. For all natural numbers n and k the Clifford
algebra Cl(n + k) is canonical isomorphic to the graded tensor product Cl(n)® Cl(k),
endowed with the multiplication

(a®¢) - (b®Y) = (-1)*D 0 (0 b) @ (¢ ¥),

see for instance [BHM*15, Proposition 1.12].

If n or k is even, the multiplication of the graded tensor product Cl(n) & CI(k) carries
over to 2,®>. In the remaining case, n and k£ odd, we recall the eigenvalue decomposition
Yotk = S, ® X, together with the involution wf : XX, — XF . Since wf anticom-
mutes with w® it follows that Clifford multiplication with vectors v € Span{ey, ..., e,} acts
as y(v) on X, and as —y(v) on 3, .. On the other hand, Clifford multiplication with
any vector in Span{e,, 1, ..., e, } interchanges the eigenspaces E:{ . and commutes with
wS. Using the isomorphisms and combined with the above discussion, we

obtain the following identifications for Clifford multiplication with vectors (x,v) € R" xR*:

(A(2)$) @ v + ¢ ® (v(v)v), if nis even,
(Y @)Y)®v + Y& (y(v)v), if kis even,

Y((z,0)) (Y Q@v) = (B.1.2)
(V@)W @ =y (@)W ) v+ (¥~ @YT) ® (v(v)v),

\ if n and k are odd.

Here, 1) is the complex conjugation, introduced in the beginning of this appendix, with
respect to the Zy grading on X, whenever p is even. In the case, where n and £ are even,
both possibilities are isomorphic to each other.

Now we return to the case of a Riemannian submersion f : (M, g) — (B, h) where M
is a spin manifold with a fixed spin structure. Applying the above discussion pointwise
we conclude that

(B.1.3)

_ ) EB)®@XY, if n or k is even,
- (f*(E*B)® f*(X"B))®XV, if n and k are odd.
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Remark B.2. Instead with the usual complex spinor bundles, we could also work with
the corresponding real spinor bundles, see [LM89, Example 3.7]. For an n-dimensional
Riemannian spin manifold (M, g) the corresponding real spinor bundle is defined as

Clspin(M) = Popin(M) x; CI(R™),

where CI(R") is the Clifford algebra of R™ which can be viewed as a module over itself
by left multiplication [. Since Spin(n) < CI(R™) it follows that Clgy, (M) is a CI(R™)-
principal bundle.

Now let f: (M™"* g) — (B™ h) be a Riemannian submersion such that M is a spin
manifold with a fixed spin structure. Similar to the complex Clifford algebras there is
a canonical isomorphism CI(R"*) ~ CI(R")®CI(R¥) for all n,k € N. Since Clgpi, (M)
is a CI(R™"*)-principal bundle the isomorphism CI(R"**) =~ CI(R")®CI(RF) just carries
over, i.e.

Clspin(M) = Clspin(B)®Clspin(V).

Therefore, we do not need the case distinction (B.1.3)). Nevertheless it is more common
to work with complex spinors and the spinor bundle X M.

As can be seen in Chapter [3.2.1] the base manifold B and the vertical distribution V,
in general, are not spin. Thus, the spinor bundles B and XV are only defined locally
but their tensor product is defined globally. The rules for Clifford multiplication
carry over to the spinor bundle ¥ M. In the setting of Riemannian manifolds, these rules
allow us to distinguish Clifford multiplication with horizontal and vertical vector fields.

Notation B.3. Let f : M — B be a Riemannian submersion such that M has a fixed
spin structure. For abbreviation we write

XM~ f*(°¥B)® XV,
where

oy p ¥.B, if n or k is even,
' YTB@® XY B, ifnand k are odd.

We recall, that there is a canonical Hermitian product {.,.) on XM, see e.g. [BHM ™15,
Proposition 2.5], such that

X)e, ¥y = =, v (X))

for all vector fields X and spinors ¢, 1.

Next we calculate the spinorial connection on XM with respect to a local orthonormal
frame (&1,...,&,,C1, .-, () such that(&, ..., &,) is the horizontal lift of a local orthonor-
mal frame (£,,...,&,) in the base space B and ((i,...,() is a locally defined vertical
orthonormal frame. In the following, we use the indices a, b, c, ... for the vertical compo-
nents and the indices «, 3,7, ... for the horizontal components.
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For any vector field X and spinor ® the spinorial connection V™ on M is locally given
by

1 n+k
VY@ = X(2)+ 7 > 9(Vxer e)v(e)(e;)®, (B.3.1)
ij=1
where (eq,...,e,.x) is a local orthonormal frame. This connection is metric with respect

to the canonical Hermitian product and satisfies the Leibniz rule relative to the Clifford
product, i.e.

Vy(v(X)g) = 7(VyX)e +v(X)Vyp

for all vector fields X, Y and spinors .

The action of the Dirac operator on a spinor @ is locally define via

n+k
DM® = y(e;) VYD, (B.3.2)

=1

It follows from (B.1.3)) that locally any spinor ® on M can be written as a finite linear
combination ® =}, f*¢;®v;. The next lemma follows from straightforward calculations,
where we use that the Christoffel symbols of M are given by

T =T
Te, = —Ton = 9(T(Ca &), )
Tou = 9([€ar Cals &) + 9(T(Car €a), o),
Pog = —Th, = =Ty = 9(A(6a: €p), Ca),
I, =T7

A

Here (I'¢, )1<a.b.c<k are the Christoffel symbols of the fibers with respect to ((i, . . , Ck) and

(I'25)1<a,8.4<n are the Christoffel symbols of the base space B with respect to ({1, ..., &)

Lemma B.4. Let f : (M™% g) — (B",h) be a Riemannian submersion. Suppose that
M is a spin manifold with a fived spin structure. With respect to a local orthonormal frame
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(&1, &ny Gy o, C) as above, any spinor ® = f*o @ v satisfies the following identities:

Z faafﬁ))

l\.’)l»—l

V?ﬁ@ = (f*Vggo)@)y—kf*go@Vga

= ch)—i_ Z 50575,3))

l\')lr—t

Z £a7<1>>

«

Z Al6ar Ca)) @,

mH

Vot =[e@Virt g Zv(@) T(Car )

»-lkl>—‘

2O+ - Zm T(Car b))

n

DM(I): ’}/fa VT(I)+Z Ca Viq)__z/y gaaga))
a=1 a=1
1 n
5 2 7 (A €6) 1(6) ()P
a,f=1
a<f

= D"®+ D7® — — Z V(T (Cay Ca)) @ + %V(A)q).

a=1

Here VB, VY and VZ are the induced connections by the respective connections on TM,
defined in Section [3.1]

In the remainder of this appendix we recall O’Neill’s formulas for Riemannian submer-
sion |[O’N66, Gra67]. We follow [Bes08, Chapter 9, Sections C and D|, where the authors
summarized the formulas from |O’N66}|Gra67].

Let f: (M,g) — (B,h) be a Riemannian submersion, where dim(M) = n + k and
dim(B) = n. In the following we denote by F, := f~!(p) the fiber over p € B and with g,
the induced metric on F},. It is a general fact that the tangent bundle M = H @V splits
into the horizontal distribution H =~ f*T'B and the vertical distribution V = ker(df). In
particular, any X € T'M can be written as X = X7 + XV where X resp. X" denotes
the horizontal, resp. vertical component. O’Neill introduced the two fundamental tensors
T and A that are defined by their actions on vector fields X, Y,

T(X,Y) = (Vo V) 4 (Vi V)

. y (B.4.1)
AXY) = (VxaY")" + (VxuYH)

Loosely speaking, the T-tensor corresponds to the second fundamental form of the fibers.
In particular, T vanishes identically if and only if the Riemannian submersion f : M — B
is totally geodesic. On the other hand, the A-tensor vanishes identically if and only if the
horizontal distribution H is integrable. If both, T" and A, vanish identically, then M is
locally isometric to the Riemannian product B x F.

Here and subsequently, R is the curvature tensor of g, and R := f*RP is the pullback
of the curvature tensor of B. Further, we denote by Z%p the curvature tensor of the induced
metric g, on the fiber F),, where p € B.
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Notation B.5. Following the notation of |[O’N66|, U, V, W, W’ will always be vertical
vector fields and X, Y, Z, Z’ will always be horizontal vector fields. In addition, E, E;, Ey
will denote arbitrary vector fields.

Theorem B.6. For a Riemannian submersion f: (M,g) — (B, h), the curvature tensor
R of M satisfies the following identities:

g(RUVIW,W') = g(R(U, V)W, W) + g(T(U,W),T(V,W"))

, (B.6.1)
_g(T(V> W),T(U,W),

g(RU V)W, X) = —g((VyT)(U, W), X) + g((VuT)(V, W), X), (B.6.2)

g(R(X,U)Y,V) = —g((VxT)(U,V),Y) + g(T(U, X), T(V,Y)) (B.6.3)
_g((vUA)(X’ Y)’V) - (A(X> U)vA(K V))a o

IR V)X,Y) = ~g(TuA)(X, 1), V) + g(Vy A (X, V), 0)
~ AU A, V) + g VLAY.D) (B64)
YT (U, X), T(V,Y)) = g(T(V, X), T(T, )
JR(X,Y)Z,U) = ~g((V2A)(X,Y),U) - g(A(X, V), T(U, 2) 565
+ gAY, 2), T(U, X)) + g(A(Z, X), T(U,Y ), "
g(R(X,Y)Z,Z") = g(R(X Y)Z,Z") + 29(A(X,Y), A(Z, Z")) (B.6.6)

—9(A(Y, 2), A(X, Z')) + g(A(X, Z), A(Y, Z")

The corresponding formulas for the sectional curvatures follow immediately from the
above theorem. In the following, sec denotes the sectional curvature on M, séc the

pullback of the sectional curvature on B and sec, the intrinsic sectional curvature of the
fiber F,, p e B.

Corollary B.7. If g(U,V) =0, g(X,Y) = 0 and all of them have unit length, then

sec(U, V) = sec(U, V) + |T(U,V)|? = g(T(U,U),T(V,V)), (B.7.1)
sec(X,U) = g((VxT)(U,U), X) — |T(U, X)|* + |A(X,U)]?, (B.7.2)
sec(X,Y) =sec(X,Y) — 3|A(X,Y)|% (B.7.3)

Finally, we want to state various relations between the tensors A, T and their deriva-
tives. All of these relation can be proven by straightforward calculations.

Proposition B.8. Let f : (M,g9) — (B,h) be a Riemannian submersion. Then the
tensors (Vg, T)(Es, - ) and (Vg, A)(Es, - ) are alternating and

g(VeT)(U,V), X) = g((VeT)(V,U), X), (B.8.1)
9(VeA)(X,Y),U) = —g((VeA)(Y, X),U). (B.8.2)
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Moreover,
(VxT)(Y, ) = -T(AX,Y), -)
(VUT)<X7 ) ) = _T<T<U7 X)7 ) )7
(Ve A)(V, ) = -ATU,V), ),
(VxA)(U, -) = —A(AX,U), )

Furthermore, the derivatives of T satisfy
g(VxT)(U,V), W) = g(A(X, V), T(U,
g(VxT)(U,Y), Z) = g(A(X,Y),T(U, Z)) — g(A(X, 2),T(U,Y)),
g(VeT) (V. W), W') = g(T(U,W),T(V,
g(VuT)(V, X),Y) = g(T(U, X),T(V,Y)) = g(T(V, X), T(U,Y)),

and the derivatives of A satisfy

G((VoA)(X, V), W) = g(T(U, V), ACX, W) — g(T(U, W), A(X, V),
9(VoA)(X,Y), Z) = g(A(X, 2), T(U,Y)) - g(A(X.Y), T(U, Z),
G(VXA)Y,U),V) = g(AX, U), A(Y,V)) — g(A(X, V), A(Y, D)),
9(VxA)Y, 2), 2') = g(A(X, 2), A(Y, Z')) - g(A(X, Z'), A(Y. 2)),

and

g((vXA)(Y7 Z)? U) + g(VYA>(Z7 X)? U) + g(vZ)A(X’ Y)v U)

= 9(AX,Y),T(U, 2)) + g(AY, 2), T(U, X)) + g(A(Z,X), T(U,Y)).

In addition,

g<<vUA)(}/7 Z)? U) + g((vVA)<X7 Y), U)
= g9((Vy)(U,V), X) = g((VxT)(U,V),Y).

W)) - g<A(X7 W)? T<U7 V)>7
A

W) = g(T(U,W"),T(V,W)),

(B.8.16)



Appendix C

Continuity of Dirac spectra

In Section we observed that any collapsing sequence (M;, g;)ien in M(n + k,d) with
smooth n-dimensional limit space (B, h) can be approximated by a sequence of Rieman-
nian affine fiber bundles f; : (M;, §;) — (B, h;) such that

lim ”fh - giHCI =0,
1—>00

lim | — s = 0.
1—00

Since we are interested in Dirac eigenvalues, we have to verify that the Dirac spectrum
is continuous with respect to a C'l'-variation of metrics. Although this behavior is well-
known we want to discuss this topic in more detail following [Now13|. Furthermore, we
formulate an explicit consequence of [Now13| Theorem 4.10] that is crucial for the proof
of Theorem (L5

Let M be an n-dimensional spin manifold with a fixed topological spin structure. We
recall, that a topological spin structure is a GL-principal bundle P&+(M ) such that
it is a double cover Pgy (M) — Par, (M) of the GL, (n)-principal bundle Pgr, (M)
consisting of positively oriented frames that is compatible with the group double cover

GLi(n) —» GLi(n), ie.
GLy(n) x Pz, M —— Pz M

GL+(7’L) X PGL+M e PGL+M

M .

Let (M) denote the space of all Riemannian metrics on M endowed with the C'-
topology. For any g € R(M), the topological spin structure induces a spin structure on
(M, g) by restricting to the preimage of the oriented orthogonal frame bundle Pso (M, g)
of (M, g). Let ¥,M be the spinor bundle of (M, g). The relation between spinor bundles
and Dirac operators with respect to different metrics was studied in [BG92,Mai97|. In
the following we recall the identifications of different metric spin structures.

For any g, h € R(M), there is a unique symmetric positive definite endomorphism field
H, such that g(H,X,Y) = h(X,Y) for all vector fields X,Y. Hence, there is a unique

101
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symmetric positive definite square root b’; := 4/ H, such that for all vector fields X, Y,
In particular, there is an SO(n)-equivariant isomorphism
(b2)™ : Pso(M, h) — Pso(M, g),
(e1,...,6n) — (bgel, ce bgen).
Remark C.1. Reversing the roles of g and h, it follows that
by = (b}~
However, if we consider three metrics g, h, k € SR(M), then in general

b # bj o bl

Since M is by assumption a closed n-dimensional Riemannian manifold with a fixed
topological spin structure, it follows that b;’ lifts to a Spin(n)-equivariant isomorphism

—~—

(b’;)n : PSpin(Ma h) - PSpin<M7 g)
In particular, we obtain an isometry of the corresponding spinor bundles,
Bl ShM = Psyin(M, h) X, S = SpM = Payin(M, g) X4, Sn,
p = [A, €] = By = [(h)"(A),€].

Here, 6, : Spin(n) — ¥, denotes the canonical complex spinor representation.
However, the induced map g : L*(X,M) — L*(3,M) is not an isometry as the
volume forms are not the same, i.e. dvol, # dvol,. Hence, we define

B = fhph, (C.1.1)
where f; is a positive function such that dvol, = ( f;)2 dvol,. By construction,
B LH(S,M) — LA(S,M)

is an isometry of Hilbert spaces. This isometry allows us, to pullback the Dirac operator
D, of ¥,M to an elliptic first order differential operator

hpy .— BZngoﬁAg

C12
_ 8D, — 9t (grad, 1) (C12)

We summarize the properties of this construction in the following proposition, see also
[Mai97, Section 2]
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Proposition C.2. Let h be a fized Riemannian metric on a closed spin manifold M with
a fized topological spin structure. Then for every metric g € (M) the operator "DI,
defined in (C.1.2), is isospectral to the Dirac operator D, on $,M. Furthermore, "D9 is
closed and densely defined on H“?(3,M). Moreover, the map

R(M) — B(H"(S,M), L*(3,M)),
g— "D,

is continuous. Here, B(.,.) denotes the space of bounded linear operators endowed with
the operator norm.

Following an idea of Lott, [Lot02a|, Nowaczyk studied the continuity of Dirac eigen-
values with respect to the arsinh-topology.

Definition C.3. On RZ, let the metric d, be defined by

do(u,v) = sjlég | arsinh(u(j)) — arsinh(v(7))|

for all u,v € RZ. The topology induced by d, is called the arsinh-topology.

In this setting, the continuity result for Dirac eigenvalues [Now13, Main Theorem 2|
reads as

Theorem C.4. Let M be a spin manifold with a fized topological spin structure. There
exists a family of functions (\; € CO(SR(M),R))jez such that the sequence (\;(g));ez are
the eigenvalues of D9. In addition, the sequence (arsinh()\;))jez is equicontinuous and
non decreasing.

In fact, the above theorem is a restriction of a more general continuity statement
proven in [Now13, Section 4].

Theorem C.5. Let H be an Hilbert space, The spectrum of a family of unbounded self-
adjoint operators T : E — C(H) is continuous in the arsinh-topology if

(1) there exists a dense subspace Z < H, such that domT, = Z for all e € E,

(2) there exists a norm |.| on Z such that T, : Z — H is bounded and the graph norm of
T. is equivalent to |.|,

(3) E is a topological space,

(4) the map E — B(Z, H),e — T, is continuous.

By Theorem the family of Dirac operators associated to a C''-convergent sequence
of Riemannian metrics on a fixed spin manifold M satisfies these conditions.






Appendix D

Convergence of S1-principal bundles

The goal of this appendix is to establish a general notion of convergence for S'-principal
bundles with connection. The content of this appendix was published in [Rool7), Section
4.1].

First, we show that for a suitable bound on the curvature of the S-principal bundle
there are only finitely many possibilities of isomorphism classes of S!-principal bundles
satisfying it. Thus, we can focus on a sequence of connection one-forms on a fixed S*-
principal bundle where we obtain a converging subsequence by applying suitable gauge
transformations.

In the beginning, we recall the basic classification results for S'-principal bundles. For
more details see e.g. |Blal0, Chapter 2| and |[Bry08, Chapter VI|. These results are the
main ingredients to prove the desired convergence results.

We recall the following terminology: Two S'-principal bundles P and P’ together with
connections iw resp. iw’ are isomorphic with connections if there is a principal bundle
isomorphism ¢ : P — P’ such that ®*w' = w.

Isomorphism classes of S'-principal bundles as well as gauge equivalence classes are
classified by the Cech-cohomology of the underlying base manifold M. Especially the
classification of isomorphism classes is a well-known result which we restate here.

Theorem D.1. Let M be a compact manifold. Then there is a bijection between the
Cech-cohomology group H?(M,Z) and the isomorphism classes of S*-principal bundles
over M.

Let P be an S'-principal bundle over a compact manifold M. Then P defines, up to
isomorphism, a unique class in H*(M, Z). This class is called the first Chern class of P.

The curvature of a connection one-form iw on P is given by a closed two-form F' on
M, namely

dw = F.

The de Rham class [5-F] € H?(M, R) is the image of the first Chern class of P under the
Cech-de Rham isomorphism. A short calculation shows that [5-F] is independent of the
choice of the connection one-form iw on P. Thus, it depends only on the isomorphism
class of the S'-principal bundle.
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We want to show that there is a suitable bound on the curvature of S!-principal
bundles such that there are, up to isomorphism, only finitely many S!-principal bundles
satisfying it. To do so, we recall from Hodge theory that on a compact Riemannian
manifold (M, g) each de Rham class [w] admits a unique harmonic representative @.
Moreover, @ minimizes the L?*norm in the class [w]. In addition, the projection from
closed to harmonic forms is continuous in L?. Thus, it is a natural choice to assume an
L?-bound on the curvature for our purpose .

Lemma D.2. Let (M,g) be a compact Riemannian manifold and K a fized nonnegative
number. Then there are only finitely many isomorphism classes of S'-principal bundles
P with connection over M whose curvature F satisfies |F|rz < K.

Proof. By Theorem the isomorphism classes of S!-principal bundles over M are clas-
sified by H2(M, Z). By the universal coefficient theorem, we have H*(M, Z) =~ Z>M @ Ty,
where T} is the torsion of Hy (M, Z) which is finite, and by(M) is the second Betti number
of M. The kernel of the homeomorphism h : H*(M, Z) — H?(M,R) is given by Ty. More-

over, the cohomology class [iﬂF | € H2(M,R) is an integral class, i.e. it lies in the image

2
of h.
Since the harmonic representative of a de Rham class minimizes the L? norm it fol-

lows that the set of isomorphism classes of S'-principal bundles whose curvature satisfies
|F| 2 < K is given by h=(C), where

1
C = { [W] S HQ(M,R) . HCEH[Q < Q_K}
v

Here & denotes the unique harmonic representative of [w].

As HA(M,R) = H*(M) =~ R2M) | with H2(M) denoting the space of harmonic two-
forms, is a finite dimensional vector space and the projection from closed to harmonic
forms is continuous in L?, it follows that C is compact. In particular, Image(h) N C is
compact, hence finite. Since the kernel of A is also finite the claim follows. ]

We recall now the characterization of the gauge equivalence classes of connections on
a fixed S'-principal bundle P over M which can be found in the standard literature.

Theorem D.3. For a fized S'-principal bundle P over a compact Riemannian manifold
M two principal connections are gauge equivalent if and only if their difference is repre-
sented by a closed integral one-form. In particular, the space of gauge equivalence classes

of connections with fixed curvature F' is given by the Jacobi torus H'(M, R)/ﬁl(M’ Z)-

Using this theorem we are able to prove the following convergence result. Observe that
in general we will not obtain C'°-convergence. Therefore, we establish here the following
notion: A connection one-form iw is called C*® if its associated Christoffel symbols are
C*e. Further on, we only consider a € [0, 1).

Theorem D.4. Let (P, iw;)ien be a sequence of S*-principal bundles with connection over
a fized compact Riemannian manifold (M, g). For each i let F; = dw; be the corresponding
curvature. If there is a nonnegative K such that | F;|gre < K for all i, then for any f < «
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there is an S*-principal bundle P with a C**%B-connection w and a subsequence, again
denoted by (P;,iw;)ien together with principal bundle isomorphisms ®; : P — P; such that
d*w; converges to w in the C**18-norm

Proof. As the C*®-norm of the curvatures of the S'-principal bundle P; is uniformly
bounded in 4, it is immediate that the L?-norm of the curvatures is also uniformly bounded.
Applying Lemma we conclude that this sequence only contains finitely many isomor-
phism classes of S'-principal bundles. Hence, we find a subsequence (P}, iw;);en such that
for each 7 there is an isomorphism ¥, : P; — P for some fixed P.

Using that the connections on P form an affine space over Q'(M), we fix w; as a
reference connection. The difference ¥Fw; — W¥w, is given by a unique n; € Q'(M). We
will apply the Hodge decomposition various times and show for each part separately how
we obtain a converging subsequence.

Since P is fixed [ W¥F}| = [- U;F}| for all 4, k. Hence, for each i there is a one-form
(; such that

U*F, = U*F) + dG.

It follows from our assumptions on the curvatures that there is a positive constant K such
that ||d¢;|cr.e < K uniformly in 7.

By Hodge decomposition we can choose ¢; = d*¢; for some closed two-form ¢; which
is orthogonal to ker(A) in L2 Thus, d¢; = A;. Applying Schauder’s estimate we find a
positive constant C' such that for all ¢

&l criza < C|AE | ora < CK.

As the embedding C** < C*F is compact for any 3 < « there is a subsequence (&;)en
converging in C**28. Thus, (d*&;)eny converges in C**12. In general, the limit is not
smooth.

For each ¢ the connections ¥¥iw; and Wiiw;, + id*¢; have the same curvature. Thus,
for each ¢, there is a unique closed one-form 7; such that

\If;kwi = \Ifalkwl + d*fz + ;.

Again we apply Hodge decomposition and obtain for each ¢ a smooth function f; and a
harmonic one-form v; such that

ni = dfi + vi.
If df; # 0 we apply the gauge transformation G; = e~/¢ and obtain

Now, we need to find a subsequence and suitable gauge transformations such that the
sequence of the remaining harmonic parts (v;)en converges. To obtain these we take a
closer look at the classification of connections on a fixed S*-principal bundle. By Theorem
[D.3] the gauge equivalence classes of connections for a fixed curvature form are classified

by the Jacobi torus H'(M, R)/ﬁl( M,7): By Hodge theory, there is exactly one harmonic
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representative in each de Rham class. Since H'(M,Z) has no torsion elements it is em-
bedded in H!(M,R) via the Cech-de Rham isomorphism. Hence, we obtain the quotient
of harmonic forms divided by harmonic integral forms which is isomorphic to the torus
T (M) As the projection from closed to harmonic forms is continuous in L? the Jacobi
torus is compact in the L?-topology.

The sequence (;)en induces a sequence in the Jacobi torus. Since the Jacobi torus is
a compact quotient in the L?-topology there is a subsequence of harmonic representatives
(7;)ieny converging in L? to a smooth harmonic one-form . Note that each v; is equivalent
to ;. By standard elliptic estimates it follows that (7;);en converges in C! for any [ > 0.

Taking the corresponding gauge transformations H;, we obtain the sequence

(H:‘Gf\lffwl = ‘Ilfwl + d*& + ﬁl)ieN 5
which converges in C¥*17. Setting ®; := U, o G; o H; finishes the proof. O

Remark D.5. Similarly a uniform upper bound on the H*2-norm of the curvature leads
to a H'*12-converging subsequence of the underlying connection one-forms for any I < k.

This theorem shows that the space of S'-principal bundles over a fixed compact Rie-
mannian manifold (M, g) with a uniform bound on the C*“norm of the curvature is
“precompact in the C*+1A-topology" for any 5 < a. Now we also want to vary the
base manifold (M, g). For this we use the following compactness theorem by Ander-
son, [And90, Theorem 1.1], see also Remark

Theorem D.6. For given positive numbers A |, v, and d the set M(n, A, ¢, d) of isometry
classes of closed Riemannian n-manifolds (M, g) with

|Ric” | < A, inj(M) =, diam(M) <d,

is precompact in the C1“-topology for any a € [0,1). Furthermore, the subspace consisting
of Einstein manifolds is compact in the C*-topology.

Combining this class of manifolds with the assumptions in Theorem we define

the following set of isometry classes of closed Riemannian manifolds with S!-prinicpal
bundles.

Definition D.7. Let ./\/lsl(n,A, t,d, K) be the set of isometry classes of S!-prinicpal
bundles P —> M with principal connection iw such that (M,g) € M(n,A,t,d) and
|F|co1¢g) < K where F' = dw is the corresponding curvature.

Theorem D.8. Any sequence (M;, g;, P;, w;)ien in ./\/lsl(n, A, i, d, K) admits a subsequence,
again denoted by (M;, g, P;,w;)ien, such that for any o € [0,1) there is an S'-principal

bundle P over a closed Riemannian manifold M with a CY*-metric g and a C**-connection
iw such that for each i there is a principal bundle isomorphism

P2, p

Lo

M —2 s 0,

with ®Fw; and ¢Fg; converging to w resp. g in C1*.
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Proof. Let (M;, gi, P;,w;)ien be a sequence in M5 (n, A, ¢, d, K). Since any manifold in this
sequence lies in M(n, A, ¢, d) there exists a subsequence again denoted by (M;, g;, Pi, w;)ien
and a C1*-Riemannian manifold (M, g) such that for each i there exists a diffeomorphism
¢; : M — M; such that ¢fg; converges to g in C'*, see Theorem .

By pulling back each element in (M;, g;, P;, w;)ieny with the diffeomorphism ¢; we obtain
a sequence of metrics and S'-principal bundles with connections over a fixed compact
manifold M which we call (M, g;, P;,w;)en for simplicity.

We fix the initial metric g; as our background metric. Applying Theorem [D.4] to the
sequence (P, w;)en viewed as S'-principal bundles over (M, g;) we obtain a subsequence
together with principal bundle isomorphism ¥; : P — P, such that ¥}w, converges in
Ch ().

Since (¢Fg;)ien converges to g in C1* the claim follows. OJ
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