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Summary

LetMpn, dq be the set of all isometry classes of closed n-dimensional Riemannian man-
ifolds pM, gq with | secpMq| ď 1 and diampMq ď d. It is a well-known result by Gromov
that any sequence inMpn, dq admits a subsequence converging to a compact metric space
Y in the Gromov-Hausdorff topology. A convergent sequence is said to collapse if the di-
mension of the limit space Y is strictly less than n.

The aim of this thesis is to study the behavior of the spectrum of the Dirac operator
on collapsing sequences of spin manifolds inMpn, dq. Since a limit space Y has in general
many singularities we focus on two special cases. We assume that Y is a Riemannian
manifold or that the Hausdorff dimension of Y is pn´ 1q.

In Chapter 1 we state the basic definitions and properties of the Gromov-Hausdorff
distance. Afterwards we summarize the known results for collapse with bounded curvature
and diameter. One of the most important results is that a collapsing sequence inMpn, dq
can be approximated by a collapsing sequence of singular Riemannian affine fiber bundles.

The main result of Chapter 2 is that the Hausdorff dimension of a limit space Y of a
convergent sequence pMi, giqiPN inMpn, dq is larger than or equal to pn´ 1q, if and only
if there are positive constants C, r such that C ď volpB

Mi
r pxqq

injMi pxq
for all x P Mi and i P N. To

show this we first prove that for a Riemannian submersion f : M Ñ Y there is a constant
C, such that injpf´1ppqq ď C injMpxq for all x P f´1ppq if the injectivity radius of M
is sufficiently small compared to the injectivity radius of Y . As a conclusion, we define
the set Mpn, d, Cq that contains all isometry classes of closed Riemannian manifolds in
Mpn, dq satisfying C ď

volpMq
injpMq

. Moreover, we show that the arising limit spaces are n-
dimensional Riemannian manifolds or pn ´ 1q-dimensional Riemannian orbifolds with a
C1,α-metric and bounded curvature in the weak sense.

Since any collapsing sequence in Mpn, dq with a smooth limit space can be approx-
imated by a collapsing sequence of Riemannian affine fiber bundles f : M Ñ B, we
discuss these special bundles thoroughly in Chapter 3. The results proven in that chapter
are mainly a preparation for the study of Dirac eigenvalues on collapsing sequences in
Chapter 4. Using O’Neill’s formulas we discuss how the metric on the total space M is
related to the metric on the base space B and derive various bounds that are needed in
the next chapter. Then we show by various examples that, in general, a spin structure
on the total space M does not induce a spin structure on the base space B. If we restrict
to the case of S1-principal bundles f : M Ñ B then a spin structure on M induces a
spin structure on B if the S1-action lifts to the spin structure on M . As the limit of a
collapsing sequence can be non orientable we also briefly discuss pin structures. Loosely
speaking, pin structures are a generalization of spin structures to non orientable spaces.
Afterwards we restrict our attention to spin structures on the total space M that admit
affine parallel spinors, which can be interpreted as spinors that are “invariant” along the
fibers. We show that the space of affine parallel spinors is isometric to the sections of a
twisted spinor bundle P over the base space B. Furthermore, we show that there is an
elliptic first order self-adjoint differential operator on P that is isospectral to the Dirac
operator on M restricted to the space of affine parallel spinors.

In Chapter 4 we first consider collapsing sequences inMpn, dq converging to a Rieman-
nian manifold. In that case we show that the spectrum of the Dirac operator restricted
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to the space of affine parallel spinors converges to the spectrum of a twisted Dirac oper-
ator with a Hölder continuous symmetric potential. This determines the behavior of the
Dirac spectrum on collapsing sequences with smooth limit space because it was shown
by Lott that the remaining part of the spectrum diverges in the limit. In addition, we
state conditions such that the spectrum of the Dirac operator converges to the spectrum
of the Dirac operator on the limit space up to multiplicity. Afterwards we extend a result
by Ammann regarding Dirac eigenvalues on collapsing S1-principal bundles to arbitrary
collapsing sequences of spin manifolds in the setMpn` 1, d, Cq introduced in Chapter 2.
Similar to the results for collapsing sequences with smooth limit space we show that the
spectrum of the Dirac operator restricted to the space of affine parallel spinors converges
to the spectrum of a twisted Dirac operator with symmetric Hölder continuous potential.
In addition, we study the structure of the Dirac spectrum on S1-orbifold bundles and
prove a lower and an upper bound for the Dirac eigenvalues.

We included a small introduction to infranilmanifolds in Appendix A. Appendix B
deals with Riemannian submersions with a fixed spin structure on the total space. There
we derive formulas for the spinorial connection and the Dirac operator. These formulas
describe explicitly how the vertical and the horizontal components interact with each
other which is helpful for the considerations in Chapter 3. Moreover, in Appendix B we
also restate O’Neill’s formulas for Riemannian submersions. In Appendix C, we recall that
the Dirac spectrum is continuous under a C1-variation of the metric and in Appendix D
we discuss the convergence of S1-principal bundles with connection.
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Introduction

In differential geometry many results for Riemannian manifolds are proved under assump-
tions on the geometry of the manifold like curvature and volume. But can we also say
something about the set of all isometry classes of Riemannian manifolds satisfying dif-
ferent assumptions on the geometry? Let Mpn, d, vq be the set of all isometry classes
of closed n-dimensional Riemannian manifolds pM, gq with | sec | ď 1, diampMq ď d and
volpMq ě v. Cheeger showed that the set of diffeomorphism classes in Mpn, d, vq is fi-
nite [Che70, Theorem 3.1, Theorem 4.2]. If we remove the lower volume bound then the
resulting setMpn, dq contains infinitely many diffeomorphism classes. Nevertheless, Gro-
mov was able to show that any sequence in Mpn, dq contains a convergent subsequence
with respect to the Gromov-Hausdorff topology [Gro81, Théorème 5.3].

In this thesis we are interested in those convergent sequences in Mpn, dq where the
volume of the manifolds goes to zero in the limit. It follows that the limit space of
such sequences is a compact metric space Y of strictly lower dimension, i.e. the sequence
collapses. Easy examples of collapsing sequences arise by scaling flat manifolds like the
torus, see Examples 1.12, 1.13. To the author’s knowledge, the first nontrivial example of
a collapsing sequence was pointed out by Marcel Berger in about 1962. He considered the
Hopf fibration S1 Ñ S3 Ñ S2. Starting with the standard round metric on S3, Berger
rescaled the metric tangent to the fibers by ε ą 0 while keeping the metric in the directions
orthogonal to the fibers fixed. As ε Ñ 0 the sectional curvature remains bounded while
the volume converges to 0. Furthermore, S3 resembles more and more a two-sphere with
constant sectional curvature equal to 4 as εÑ 0 (see Example 1.14 for more details).

One of the first results on collapse with bounded curvature is Gromov’s characteri-
zation of almost flat manifolds [Gro78, Main Theorem 1.4]. Gromov showed that there
is a positive εpnq such that any closed n-dimensional Riemannian manifold pM, gq with
diampMq ď 1 and | sec | ď εpnq is an almost flat manifold, i.e. for any ε ą 0 there is a
metric gε such that diampM, gεq “ 1 and | secε | ď ε. Moreover, Gromov showed that any
almost flat manifold is finitely covered by a nilmanifold M̃ . Employing additional ana-
lytic arguments, Ruh showed that M is an infranilmanifold, i.e. the deck transformation
group of M̃ Ñ M consists of affine diffeomorphisms with respect to the canonical affine
connection on M̃ [Ruh82].

Further important results are Fukaya’s fibration theorems [Fuk87b, Fuk89]. Fukaya
showed that if two manifoldsM PMpn`k, dq and B PMpn, dq are sufficiently close with
respect to the Gromov-Hausdorff distance then there is a fibration M Ñ B such that the
fibers are infranilmanifolds. In a next step, Fukaya applied his fibration theorems to the
sequence of orthonormal frame bundles of a collapsing sequence inMpn, dq and derived
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2 INTRODUCTION

a description of the boundary ofMpn, dq [Fuk88, Theorem 0.12, Theorem 10.1].
Around the same time, Cheeger and Gromov studied collapse with bounded curvature

from a different point of view [CG86, CG90]. Cheeger and Gromov define local group
actions and the action of a sheaf of groups on Riemannian manifolds. Using these def-
initions, Cheeger and Gromov showed that on each sufficiently collapsed Riemannian
manifold there is a sheaf of tori with additional regularity conditions acting on it. This
structure is called an F -structure, where “F ” stands for flat. One of the advantages of
this approach is that they do not need to assume a uniform diameter bound.

These two approaches are combined in [CFG92]. Generalizing Fukaya’s fibration the-
orem, Cheeger, Fukaya and Gromov show that the orthonormal frame bundle FM of a
sufficiently collapsed Riemannian manifold M is locally the total space of a fibration with
infranil fibers and affine structure group. Then Cheeger, Fukaya and Gromov generalized
the theory developed by Cheeger and Gromov to show that there is a sheaf of nilpotent
groups acting on FM with additional regularity conditions generalizing the notion of an
F -structure. These generalized structures are called N-structures.

Our first main result gives a characterization for codimension one collapse, i.e. con-
vergent sequences inMpn, dq with pn´ 1q-dimensional limit space. The motivation here
is that, in general, the limit space of a collapsing sequence in Mpn, dq has many singu-
larities. However, for codimension one collapse, the limit space is always a Riemannian
orbifold [Fuk90, Proposition 11.5], while the limit space has in general non orbifold sin-
gularities if its dimension is less than pn´ 1q, [NT11, Theorem 1.1].

Theorem 0.1. Let pMi, giqiPN be a sequence in Mpn, dq converging to a compact metric
space pY, dY q in the Gromov-Hausdorff topology. Then the following are equivalent

(1) dimHauspY q ě pn´ 1q,

(2) for all r ą 0 there is a positive constant Cpn, r, Y q such that

C ď
volpBMi

r pxqq

injMipxq

holds for all x PMi and i P N,

(3) for some r ą 0 there is a positive constant Cpn, r, Y q such that the above inequality
holds for all x PMi and i P N.

The intuition behind this theorem is that for a collapsing sequence pMi, giqiPN in
Mpn, dq the volume of a ball represents all collapsed and non collapsed directions, while
the injectivity radius represents only the fastest scale of collapse. If we have a codimen-
sion one collapse then then it happens on the scale of the injectivity radius. But if a
collapsing sequence pMi, giqiPN loses two or more dimensions in the limit then the loss of
volume of the balls in Mi is larger than the injectivity radius. In particular, the sequence
´

volpB
Mi
r pxqq

injMi pxq

¯

iPN
has to vanish in the limit.
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It follows from this theorem that the possible limit spaces of the set Mpn, d, Cq of
all isometry classes of Riemannian manifolds pM, gq P Mpn, dq with C ď

volpMq
injpMq

are n-
dimensional Riemannian manifolds or pn ´ 1q-dimensional Riemannian orbifolds. More-
over, the sectional curvatures of the limit spaces are uniformly bounded in the weak sense.

A further interesting question concerning collapse in Mpn, dq is the behavior of the
spectra of geometric operators. We would like to know how the limit of the spectra is
related to the spectrum of the corresponding geometric operator on the limit space.

For a sequence in Mpn, dq converging to a limit space B in the measured Gromov-
Hausdorff topology, Fukaya showed that the Laplace spectrum converges to the spectrum
of a self-adjoint operator over B [Fuk87a, Theorem 0.4]. If B happens to be a manifold,
then the limit of the Laplace spectrum does in general not coincide with the Laplace
spectrum of B, see Example 4.4. In [Lot02b, Lot02c] Lott generalized this behavior to
the spectrum of the Laplace operator acting on differential forms. Then Lott combined
these results with Bochner-type formulas for Dirac operators to prove similar results for
Dirac-type operators on G-Clifford bundles, where G P tSOpnq, Spinpnqu [Lot02a]. If
the limit space B is a Riemannian manifold then the results of [Lot02a] state that the
Dirac spectrum converges to the spectrum of an elliptic first order differential operator
DB “

?
∆`H acting on a G-Clifford bundle over B. Here ∆ is the Laplacian with

respect to a limit measure and H is a symmetric potential arising as the weak-˚-limit of
curvature terms.

In this thesis we will give an explicit description of the limit operator DB for sequences
of spin manifolds inMpn, dq converging to Riemannian manifolds of lower dimensions and
for collapsing sequences of spin manifolds inMpn, d, Cq.

One of the main ingredients of the proofs is that any collapsing sequence pMi, giqiPN
in Mpn, dq with a smooth limit space pB, hq can be realized as a collapsing sequence
pfi : pMi, giq Ñ pB, hiqqiPN of fiber bundles with infranil fibers and affine structure group
[Fuk87b,Fuk89]. Using this property of collapsing sequences inMpn, dq we describe the
behavior of the Dirac spectrum.

Theorem 0.2. Let pMi, giqiPN be a sequence of spin manifolds inMpn` k, dq converging
to a closed n-dimensional Riemannian manifold pB, hq. Then for all i P N the space of
L2-spinors on Mi can be decomposed into

L2
pΣMiq “ Si ‘ SKi

such that all eigenvalues of the Dirac operator on Mi restricted to SKi go to ˘8 as iÑ 8

and the eigenvalues of the Dirac operator on Mi restricted to Si converge to the spectrum
of the self-adjoint elliptic first-order differential operator

DB “ ĎT
`H

acting on a twisted Clifford bundle P over B. Here, ĎT is a Dirac operator on P and H
a C0,α-symmetric potential for α P r0, 1q.

In fact, we will give a complete description of the twisted Clifford bundle P and
of the potential H. We show that the following three geometric objects of the fiber
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bundles fi : Mi Ñ B contribute to DB: The holonomy of the vertical distribution, the
integrability of the horizontal distributions and the intrinsic curvature of the fibers. These
three different conditions are independent from each other as can be seen in the Examples
3.6, 3.5, 3.7, 3.9.

Corollary 0.3. Let pfi : pMi, giq Ñ pB, hiqqiPN be a collapsing sequence of fiber bundles
with infranil fiber such that pMi, giqiPN is a spin manifold inMpn` k, dq for all i P N and
B is a closed n-dimensional manifold. Further, we denote by Zi the closed k-dimensional
infranilmanifold which is diffeomorphic to the fiber of fi : pMi, giq Ñ pB, hiq. If in the
limit iÑ 8 the holonomy of the vertical distribution is trivial, the instrinsic curvature of
the fibers is flat and the horizontal distribution is integrable then there is a subsequence
such that the spectrum of the Dirac operator DMi

|Si converges, up to multiplicity, to the
spectrum of DB if n or k is even, and to the spectrum of DB ‘´DB if n and k are odd.

Next, we consider the behavior of the Dirac operator on sequences of spin manifolds
inMpn`1, d, Cq. As collapsing sequences inMpn`1, d, Cq can always be approximated
by a sequence of S1-orbifold bundles [Fuk88], [Fuk90, Proposition 11.5], we are able to
give a complete description of the behavior of the Dirac spectrum. This extends results of
[Amm98a], [Amm98b, Kapitel 7], [AB98, Section 4] where collapsing S1-principal bundles
under slightly different assumptions were considered. First we show that the results of
Theorem 0.2 and Corollary 0.3 carry over to collapsing sequences in Mpn ` 1, d, Cq.
Further, we prove a lowerand an upper bound on the Dirac eigenvalues on collapsing
sequences in Mpn ` 1, d, Cq generalizing the bounds stated in [Amm98a, Theorem 3.1,
Theorem 4.1], [Amm98b, Satz 7.2.1, Satz 7.3.2].

Proposition 0.4. Let pMi, giqiPN be a sequence of spin manifolds inMpn` 1, d, Cq con-
verging to an n-dimensional Riemannian orbifold pB, hq. Then we can number the Dirac
eigenvalues pλj,kpiqqjPZ,k where k P Z if there is an induced spin structure on B and
k P pZ ` 1

2
q else, such that for any ε ą 0 there is an index I ą 0 such that for all i ě I

there are S1-fibrations fi : Mi Ñ B such that for all j, k,

|λj,kpiq| ě sinh

ˆ

arsinh

ˆ

|k|

}li}8
´

1

2

”n

2

ı
1
2
CA ´ ε

˙

´ ε

˙

.

Here 2πli is the length of the fibers and CA is a constant depending on n, d and C. In
particular, limiÑ8 |λj,kpiq| “ 8 whenever k ‰ 0 since limiÑ8 li “ 0.

For any i ě I, let ωi P ΩpMi,Viq be the orthogonal projection onto Vi :“ kerpdfiq,
where fi : Mi Ñ B. If, in addition, there is a constant C such that

}dωi}C0,1 ď C

for all i ě I, then for all j P Z and k P Z (projectable spin structures), resp. k P pZ` 1
2
q

(non projectable spin structures),

lim sup
iPN

ˆ

min
pPB

lippq|λj,kpiq|

˙

ď |k|.
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As we will see in Example 4.4 these results cannot be extended to the Dirac operator
acting on differential forms.

A brief outline of this thesis is as follows: In Chapter 1 we recall the definition and
basic properties of the Gromov-Hausdorff distance and discuss the basic results for collapse
with bounded curvature and diameter. The characterization of codimension one collapse,
Theorem 0.1, is proven in Chapter 2. Then we start with the preparation for the study
of Dirac eigenvalues in Chapter 3. Since any collapsing sequence inMpn, dq with smooth
limit space can be approximated by a sequence of fiber bundles f : M Ñ B with infranil
fibers and affine structure group, we discuss the relation between the geometry of the
total space M and the base space B on such fiber bundles in great detail. There we
also show that, in general, a spin structure on M does not induce a spin structure on
B. Nevertheless we show that the space of affine parallel spinors on M , i.e. spinors
that are “invariant” along the fibers, is isometric to the space of sections of a twisted
Clifford bundle over B. All these results are used in Chapter 4 to show the results for
Dirac eigenvalues on collapsing sequences in Mpn, dq with smooth limit spaces, proving
Theorem 0.2, Corollary 0.3, and on collapsing sequences in Mpn ` 1, d, Cq, where we
prove Proposition 0.4. Moreover, we show that the limit operator DB is a twisted Dirac
operator with symmetric H1,8-potential. Thus, we generalize our convergence results to
the spectrum of Dirac operators with symmetric potentials that are uniformly bounded
in the H1,8-topology. In that generality we conclude that the spectra of Dirac operators
with symmetric H1,8-potential restricted to the space of affine parallel spinors converges
again to the spectrum of a Dirac operator with a symmetric H1,8-potential over the limit
space.

In Appendix A we define infranilmanifolds and discuss under which assumptions there
is a spin structure with affine parallel spinors. Then we consider Riemannian submersions
f : M Ñ B where M is a spin manifold in Appendix B. We derive formulas for the
spinorial connection and the Dirac operator on M decomposing them into their vertical
and horizontal parts. Moreover, we recall O’Neill’s formulas for Riemannian submersions.
Afterwards we review the continuity of Dirac spectra under a C1-variation of Riemannian
metrics following [Now13] in Appendix C. In Appendix D we discuss the convergence of
S1-principal bundles with connection. These results are used to prove the upper bound
in Proposition 0.4.

We would like to remark that the results of this thesis have been published in several
articles. The characterization of the codimension one collapse, which is proven in Chapter
2, is the content of [Roo18a]. In [Roo18c] the behavior of the Dirac spectrum on collapsing
sequences in Mpn ` 1, d, Cq is discussed and its sequel [Roo18b] deals with the Dirac
operators on collapsing sequences in Mpn, dq with smooth limit spaces. The content of
[Roo18c] and [Roo18b] corresponds to Chapter 3 and Chapter 4. The results of Appendix
D can be found in [Roo17, Section 4.1].





Chapter 1

Convergence of Riemannian manifolds

LetMpn, dq be the set of isometry classes of closed n-dimensional Riemannian manifolds
pM, gq such that | secM | ď 1 and diampMq ď d. It follows from [Gro81, Théorèm 5.3]
that any sequence pMi, giqiPN in Mpn, dq has a subsequence that converges with respect
to the Gromov-Hausdorff distance to a compact metric space with dimension less than
or equal to n. If the dimension of the limit space is strictly smaller than n then one
says that the sequence pMi, giqiPN collapses. The structure of collapsing sequences with
bounded curvature and diameter was intensively studied by Cheeger, Fukaya and Gromov
[CG86,CG90,Fuk87b,Fuk88,Fuk89,CFG92].

Before discussing collapse with bounded curvature and diameter in detail we first
briefly recall the definition and properties of the Gromov-Hausdorff distance dGH. Then
we state the known results regarding the structure of the boundary ofMpn, dq in Section
1.2. For later use, we carry out the following two special cases in more detail: Collapsing
sequences pMi, giqiPN converging to a smooth manifold and collapsing sequences inMpn, dq
with pn´ 1q-dimensional limit space.

We will roughly follow the lines of [Ron07] to give a summary of the known results
regarding the boundary ofMpn, dq.

1.1 The Gromov-Hausdorff distance
Let A and B be two compact subsets of a fixed metric space pZ, dZq. The Hausdorff
distance between A and B is defined as

dZHpA,Bq :“ mintε ą 0 : B Ă TεpAq and A Ă TεpBqu,

where TεpAq :“ tx P Z : dZpx,Aq ă εu is an open ε-neighborhood of A.
By construction the Hausdorff distance is symmetric and satisfies the triangle inequal-

ity. Furthermore, dZHpA,Bq “ 0 if and only if A “ B. Thus, the Hausdorff distance
defines a metric on the space of all compact subsets of Z. Loosely speaking, the Haus-
dorff distance measures the “uniform closeness” of two compact subsets in a fixed metric
space.

In [Gro81, Chapitre 3] Gromov studies the space of isometry classes of compact metric
spacesMetc. To define a metric onMetc the Hausdorff distance is modified in the following
way:

7



8 CHAPTER 1. CONVERGENCE OF RIEMANNIAN MANIFOLDS

Definition 1.1. Let pX, dXq and pY, dY q be two compact metric spaces. A metric d̃ on
the disjoint union X\Y is called an admissible metric if it extends the metrics on X and
Y , i.e. d̃px1, x2q “ dXpx1, x2q for all x1, x2 P X and d̃py1, y2q “ dY py1, y2q for all y1, y2 P Y .
The Gromov-Hausdorff distance between X and Y is defined as

dGHpX, Y q :“ inft dd̃HpX, Y q : d̃ is an admissible metric on X \ Y u.

One can show that dGH also satisfies the triangle inequality. But in contrast to the
Hausdorff distance, two compact metric spaces pX, dXq and pY, dY q satisfy dGHpX, Y q “ 0
if and only if they are isometric to each other. As dGH is symmetric by construction
it follows that the Gromov-Hausdorff distance defines a complete metric on the set of
isometry classes of compact metric spaces Metc.

Remark 1.2. The definition of the Gromov-Hausdorff distance given above is an equiv-
alent formulation of the original definition [Gro81, Définition 3.4]. There the Gromov-
Hausdorff distance between two compact metric spaces pX, dXq and pY, dY q is defined
as

dGH “ inftdZHpϕpXq, ψpY qqu,

where the infinuum is taken over all metric spaces pZ, dZq such that there are isometric
embeddings ϕ : X ãÑ Z and ψ : Y ãÑ Z.

Moreover, pMetc, dGHq is a complete metric space. To get an intuition for the Gromov-
Hausdorff distance we give a proof of that result (see also [Ron07, Section 2]).

Proposition 1.3. pMetc, dGHq is a complete metric space.

Proof. Let pXi, dXiqiPN be a Cauchy sequence inMetc with respect to the Gromov-Hausdorff
distance. It is clear that for any Cauchy sequence

(1) there is a uniform bound on the diameter,

(2) for any ε ą 0 there is an Npεq such thatfor any i P N there is an ε-dense subset
Xipεq Ă Xi whose cardinality is bounded by Npεq.

By passing to a subsequence, if necessary, we assume that for any i P N there is an
admissible metric on Xi \Xi`1 such that di,i`1

H pXi, Xi`1q ă 2´i. In what follows xi will
always denote an element of Xi.

In the next step we define a metric dY on Y :“
Ů

iPNXi by setting

dY pxi, xi`jq :“ min
xi`kPXi`k

#

j´1
ÿ

k“0

di`k,i`k`1pxi`k, xi`k`1q

+

.

Loosely speaking, dpxi, xi`jq is the distance of the shortest path from xi to xi`j passing
Xi`1, . . . , Xi`j´1. By construction, pXiqiPN is a Cauchy sequence in pY, dY q with respect
to the Hausdorff-distance dYH .
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Now we construct a possible candidate pX, dXq for the limit of the sequence pXiqiPN.
We define

X :“ tpxiqiPN Cauchy sequence in Y with xi P Xiuä„,

where pxiqiPN „ pyiqiPN if limiÑ8 dY pxi, yiq “ 0. The metric dX on X is defined as

dXppxiqi, pyiqiq :“ lim
iÑ8

dY pxi, yiq.

It follows from the properties (1) and (2) that pX, dXq is a compact metric space. We
want to show that pX, dXq is the Gromov-Hausdorff limit of pXiqiPN. Therefore, we define
an admissible metric dY\X on Y \X by

dY\Xpy, pxiqiq :“ lim
iÑ8

dY py, xiq.

Then X is the Hausdorff limit of pXiqiPN in Y \X. Hence, X is also the Gromov-Hausdorff
limit since

dGHpXi, Xq ď dY\XH pXi, Xq 0 .iÑ8
l

In fact, one can show that the properties (1) and (2) in the above proof are also
sufficient to choose a convergent subsequence. Considering the set of all isometry classes
of closed n-dimensional Riemannian manifolds pM, gq with diampMq ď d, Gromov uses
Bishop-Gromov volume comparison to observe that a lower bound on the Ricci curvature
controls the size of ε-dense subsets [Gro81, Théorème 5.3].

Theorem 1.4. Let k, d be positive numbers. Any sequence of closed n-dimensional Rie-
mannian manifolds pMi, giqiPN with RicMi ě ´k and diampMiq ď d contains a dGH-
convergent subsequence.

Remark 1.5. Note that the limit of a dGH-convergent sequence of Riemannian manifolds
does not need to be a Riemannian manifold, see for instance Example 1.15.

For later use, we also discuss how the symmetry of compact metric spaces is preserved
under the Gromov-Hausdorff convergence. Let pXiqiPN be a sequence of compact metric
spaces converging to X in the Gromov-Hausdorff topology. Further, we assume that for
each i P N there is an isometric and effective action of a compact group Gi on Xi. Is there
a compact group G acting as isometries on X whose action is related to the actions of Gi

on Xi? If yes, does the sequence of quotients
´

Xi{Gi

¯

iPN
converges to the quotient space

X{G in the Gromov-Hausdorff topology? To answer these questions we briefly discuss
the notion of equivariant Gromov-Hausdorff convergence. This equivariant extension of
the Gromov-Hausdorff distance was first introduced by Fukaya [Fuk86, Chapter 1] and
achieved its final form with Fukaya and Yamaguchi [FY92, Section 3].

Before defining the equivariant Gromov-Hausdorff distance, we first have to introduce
the following “equivalent” concept of Gromov-Hausdorff convergence.

Let pX, dXq and pY, dY q be two compact metric spaces. A map f : X Ñ Y is called
an ε-Gromov-Hausdorff approximation if



10 CHAPTER 1. CONVERGENCE OF RIEMANNIAN MANIFOLDS

• Y is contained in TεpfpXqq,

• |dXpx1, x2q ´ dY pfpx1q, fpx2qq| ă ε for all x1, x2 P X.

We define

d̂GHpX, Y q :“ inf

"

ε ą 0 :
D ε-GH approximations f : X Ñ Y

and g : Y Ñ X

*

.

The map d̂GH on Metc is symmetric and d̂GHpX, Y q “ 0 if and only if X is isometric to
Y . But in general d̂GH does not satisfy the triangle inequality, since for three compact
metric spaces pX, dXq, pY, dY q and pZ, dZq with an ε1-Gromov-Hausdorff approximation
f : X Ñ Y and an ε2-Gromov-Hausdorff approximation g : Y Ñ Z it does not necessarily
follow that Z is a subset of Tε1`ε2pgpfpXqqq. Nevertheless, it can be shown that

1

2
dGH ď d̂GH ď 2dGH.

Hence, dGH and d̂GH have the same Cauchy-sequences and limits.
Next we define an equivariant version of d̂GH. Let pX, dXq and pY, dY q be two compact

metric spaces and assume that there are compact groups G, H acting on X, respectively
Y as isometries. Then a pair of maps pf, ϕq, where f : X Ñ Y and ϕ : G Ñ H, is an
ε-equivariant Gromov-Hausdorff approximation if

• f is an ε-Gromov-Hausdorff approximation,

• for any g P G and x P X, dY
`

ϕpgq
`

fpxq
˘

, fpgpxqq
˘

ă ε.

Similarly to d̂GH we define

deq.GH ppX,Gq, pY,Hqq :“ inf

$

&

%

ε ą 0 :
D ε- equivariant-GH approximations

pf, ϕq : pX,Gq Ñ pY,Hq
and pg, ψq : pY,Hq Ñ pX,Gq

,

.

-

.

With this definition we obtain the following convergence result (see for instance [Ron07,
Lemma 2.2]).

Lemma 1.6. Let pXiqiPN be a sequence of compact metric spaces such that each Xi admits
an isometric and effective group action by a compact group Gi. If pXiqiPN converges to X
in the Gromov-Hausdorff topology, then there is a compact group G of isometries on X

such that pXi, GiqiPN converges to pX,Gq with respect to deq.GH and
´

Xi{Gi

¯

iPN
converges

to X{G in the Gromov-Hausdorff topology.

Proof. Since pXiqiPN converges to X in the Gromov-Hausdorff topology there is a van-
ishing sequence pεiqiPN, i.e. limiÑ8 εi “ 0, such that for any i P N there are εi-Gromov-
Hausdorff approximations fi : Xi Ñ X and hi : X Ñ Xi. Furthermore, we choose
for any i an εi-dense subset Xpεiq Ă X such that Xpεiq Ă Xpεjq for all i ă j. Let
pCpXpεiq, Xq, dεiq be the space of all maps from Xpεiq to X endowed with the metric
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dεipϕ, ψq :“ maxxPXpεiq dXpϕpxq, ψpxqq. It is easy to check that pCpXpεiq, Xq, dεiq is a
compact metric space.

Fix an i P N. For any j ě i we define the map

φj : Gj Ñ CppXpεiq, Xqq,

g ÞÑ fj ˝ χ
j
g ˝ hj,

where χj : Gj ˆ Xj Ñ Xj denotes the isometric group action. Since pCpXpεiq, Xq, dεiq
is compact, there is a subsequence pφjpGjqqjěi converging to a compact group G1i Ă
pCpXpεiq, Xq, dεiq. By construction it follows that g : Xpεiq ãÑ X is an isometric embed-
ding for any g P G1i. Let G be the direct limit of pG1iqiPN. Then G is a closed group of
isometric embeddings

Ť

iPNXpεiq ãÑ X. These embeddings extend to isometries of X. It
is immediate that G is a closed subgroup of isometries of X with the claimed properties.l

In the next section we use the following precompactness result for the equivariant
Gromov-Hausdorff distance due to Fukaya [Fuk88, Lemma 1.11 and Lemma 1.13].

Lemma 1.7. Let Mpn, d;Gq be the set of all pairs pM,χq of isometry classes of closed
n-dimensional Riemannian manifolds pM, gq with | sec | ď 1 and diampMq ď d and an
isometric and effective action χ : GˆM ÑM of a compact group G. Then any sequence
pMi, χiqiPN admits a subsequence that converges with respect to deq.GH to a compact metric
space Y with an isometric action χ of G on Y . Furthermore,

lim
iÑ8

dGH

´

Mi{G,
Y {G

¯

“ 0.

1.2 Collapse with bounded curvature and diameter
In this section we discuss sequences pMi, giqiPN in the set Mpn, dq of isometry classes of
closed n-dimensional Riemannian manifolds with | secM | ď 1 and diampMq ď d. By The-
orem 1.4 any sequence inMpn, dq contains a Gromov-Hausdorff converging subsequence.
In the following we discuss the structure of these converging sequences and their limit
spaces. By scaling, the results discussed here also hold for the setMpn, d | kq of isometry
classes of closed n-dimensional Riemannian manifolds with diampMq ď d and | secM | ď k.

There are two kinds of converging sequences inMpn, dq: the non collapsing and the
collapsing sequences. These two cases are characterized by the behavior of the injectivity
radius of the considered manifolds. If the injectivity radius remains bounded away from
zero then the sequence is said to be non collapsing. Otherwise the sequence collapses in
the limit.

The behavior of non collapsing sequences and the structure of their limit spaces is
characterized in the Cheeger-Gromov compactness theorem, summarizing results from
[Che67,Che70,Gro81,GW88,Pet87]. Before stating this theorem, we need to define the
notion of C1,α-convergence of Riemannian manifolds.

Definition 1.8. A sequence of n-dimensional Riemannian manifolds pMi, giqiPN converges
to a Riemannian manifold pM8, g8q in the C1,α-topology if there are diffeomorphisms
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fi : M8 ÑMi such that the pullback metrics f˚i gi converge to g8 in the C1,α-sense. More
precisely, there is a C2,α-atlas on M8 compatible with its smooth structure, such that
pf˚i giqiPN converges to g8 in local coordinates.

Theorem 1.9. Any sequence in

Mpn, d, ιq :“ tpM, gq PMpn, dq : injpMq ě ιu

contains a subsequence that converges to a Riemannian manifold M8 with a C1,α-metric
g8 in the C1,α-topology. In particular, Mpn, d, ιq contains only finitely many diffeomor-
phism types of Riemannian manifolds.

Remark 1.10. In [Che70, Corollary 2.2] Cheeger showed that for any n-dimensional
Riemannian manifold pM, gq with | secM | ď K, diampMq ď d and volpMq ě v there is a
positive constant C :“ Cpn,K, d, vq such that injpMq ą C. Hence, the lower bound on
the injectivity radius in the above theorem can be replaced by a lower volume bound.

Remark 1.11. The above theorem also holds if the two-sided bound on the sectional
curvature is replaced by a two-sided bound on the Ricci curvature [And90, Theorem 1.1].
In that generality the lower bound on the injectivity radius cannot be replaced by a lower
volume bound.

The main step of the proof of Theorem 1.9 is to construct an atlas whose charts are
Riemannian normal coordinates on balls of a definite size such that the transition functions
are controlled, see [Che67, Theorem 1], [Che70, Theorem 3.1, Theorem 4.2]. Cheeger
concluded that the limit space has to be a Riemannian manifold of lower regularity.
Regarding the regularity, Gromov proved uniform C2-bounds on the transition functions
of the above atlas [Gro81, Théorème 8.25], hence, uniform C1-bounds on the metric.
In [GW88,Pet87] the authors used harmonic coordinates to show that the regularity of
the limit metric can be improved to C1,α with α P r0, 1q. This regularity is optimal and
cannot be improved under the assumptions of Theorem 1.9, c.f. [Pet87, Example 5.1].

The Cheeger-Gromov compactness theorem shows that the behavior of non collapsing
sequences in Mpn, dq is well understood. For the remainder of this section we focus on
collapsing sequences, i.e. Gromov-Hausdorff-convergent sequences pMi, giqiPN inMpn, dq
such that limiÑ8 injpMiq “ 0. Such sequences converge in the Gromov-Hausdorff topology
to compact metric spaces of strictly lower dimension. One of the easiest examples of such
sequences are collapsing tori.

Example 1.12. Let T2 :“ S1 ˆ S1 be the torus with the flat metric g :“ gS ‘ gS, where
gS is the standard metric on S1. For any i P N we set gi :“ gS ‘

1
i
gS. By construction,

the sequence pT2, giqiPN is contained in Mp2, 2πq. As i Ñ 8 we observe that the torus
becomes thinner and thinner and collapses to a circle in the limit.
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Example 1.13. Consider for each i P N the metric gi :“ 1
i
gS ‘

1
i
gS on the torus T2. As

above, the sequence pT2, giqiPN is contained in Mp2, 2πq. As i Ñ 8 the torus just gets
smaller and smaller and in the limit it collapses to a point.

To the author’s knowledge, the first nontrivial example of collapse with bounded cur-
vature was pointed out by Marcel Berger in 1962. In the following we discuss this example
in detail.

Example 1.14. Let S3 :“ tpz, wq P C2 : |z|2 ` |w|2 “ 1u be the unit 3-sphere. The circle
S1 acts on S3 by multiplication,

φ : S1
ˆ S3

Ñ S3,

pθ, pz, wqq ÞÑ pθ ¨ z, θ ¨ wq.
(1.14.1)

The orbits of this S1-action are the Hopf circles. The corresponding Hopf map is defined
as

f : S3
Ñ S2,

pz, wq ÞÑ zw´1.
(1.14.2)

It is easy to check that f is a submersion and that the preimage of any p P S2 is a Hopf
circle. Moreover, f : S3 Ñ S2 is an S1-principal bundle called the Hopf fibration. If
g is the standard metric on S3 and pS2, hq is the round sphere of radius 1

2
, then f is a

Riemannian submersion.
Now we want to construct a sequence of metrics gi on S3 such that pS3, giqiPN converges

to the round 2-sphere S2 of radius 1
2
in the Gromov-Hausdorff topology as i Ñ 8. It is

well-known that S3 is diffeomorphic to SUp2q. Let X, Y , Z be a basis of the Lie algebra
sup2q such that X is parallel to the fibers of the Hopf map (1.14.2) and such that

rX, Y s “ 2Z, rY, Zs “ 2X, rZ,Xs “ 2Y.

Considering the dual basis X˚, Y ˚ and Z˚ we define for each i P N the metric

gi “
1

i2
X˚

bX˚
` Y ˚ b Y ˚ ` Z˚ b Z˚.

For i “ 1 the metric g1 is the standard metric on S3. Furthermore, the metrics gi are
left-invariant under the S1-action (1.14.1), for any i P N. A straightforward calculation
shows that the sectional curvatures of gi are given by

secipX, Y q “
1

i2
, secipX,Zq “

1

i2
, secipY, Zq “ 4´

3

i2
.

Hence, pS3, giqiPN is a collapsing sequence with bounded curvature and diameter whose
Gromov-Hausdorff limit is the round 2-sphere S2 of radius 1

2
.
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In general, the limit of a collapsing sequence has singularities. Such examples can
already be constructed by modifying the above example of the collapsing Hopf fibration.

Example 1.15. Let p
q
be a complete reduced fraction. We consider the circle action on

S3 defined via
φpq : S1

ˆ S3
Ñ S3,

pθ, pz, wqq ÞÑ pθp ¨ z, θq ¨ wq.
(1.15.1)

Analogous to Example 1.14, we take a global frame X, Y, Z of S3 such that X is parallel
to the orbits of the S1-action (1.15.1) and Y and Z are perpendicular to the orbits with
respect to the standard metric on S3. Let X˚, Y ˚ and Z˚ be the dual basis. For any
i P N we define the metric

gi “
1

i2
X˚

bX˚
` Y ˚ b Y ˚ ` Z˚ b Z˚.

The sequence pS3, giqiPN collapses with bounded curvature and diameter to a compact
metric space pY, dY q. Depending on the fraction p

q
we obtain the following different limit

spaces:
If p “ q “ 1 then the sequence pS3, giqiPN coincides with the collapsing
sequence in Example 1.14. Thus, the limit space pY, dY q is the round
2-sphere of radius 1

2
.

If p ‰ 1 and q “ 1 then pY, dY q is a Riemannian orbifold with one
singular point at the north pole. The singularity at the north pole is
locally isometric to the disk modulo the Zp-action of rotations around
the origin. Such orbifolds are also called “teardrop” orbifolds.

If p ‰ 1 and q ‰ 1 then pY, dY q is a Riemannian orbifold with two singular
points at the poles. At the north pole pY, dY q is locally isometric to the
disk modulo the Zp-action of rotations around the origin and at the
south pole pY, dY q is locally isometric to the disk modulo the Zq-action
of rotations around the origin.

We see that, if p ‰ q then the limit space pY, dY q is not a manifold but an orbifold with
singular points. In particular, we observe that pY, dY q does not have to be a manifold.

Before we study collapse in Mpn, dq in general we first discuss the special case of
sequences pMi, giqiPN in Mpn, dq converging to a Riemannian manifold pB, hq of lower
dimension. Fukaya studied such collapsing sequences in [Fuk87b,Fuk89] and summarized
their behavior in his fibration theorem.

Notation 1.16. Here and subsequently τpε|x1, . . . , xkq denotes a non negative continuous
function such that for any fixed choice of x1, . . . , xk, limεÑ0 τpε|x1, . . . , xkq “ 0. During
calculations, the explicit value of τ might change. Since we are only interested in the
behavior as εÑ 0 we omit putting indices if the explicit expression of τ changes.
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Theorem 1.17. For any integer n and positive constant µ there is a positive constant
εpn, µq such that for any two closed Riemannian manifold pM, gq and pB, hq with

dimpBq ď dimpMq “ n,

| secpMq| ď 1, | secpBq| ď 1,

injpBq ě µ,

that are ε-close in the Gromov-Hausdorff sense, i.e. dGHpM,Bq ď ε ă εpn, µq, then there
is a map f : M Ñ B such that

(1) pM,B, fq is a fiber bundle,

(2) the fibers of f are diffeomorphic to a connected infranilmanifold Z,

(3) the structure group of the fibration lies in AffpZq,

(4) f is an almost Riemannian submersion, i.e. if X is perpendicular to a fiber of f then

e´τpεq ď
|dfpXq|

|X|
ď eτpεq,

(5) the second fundamental form of the fibers is bounded by a positive constant cpnq.

Definition 1.18. Z is an infranilmanifold if it is diffeomorphic to the quotient Γz
N ,

where N is a connected and simply-connected nilpotent Lie group and Γ is a cocompact
discrete subgroup of AffpNq “ NL ¸ AutpNq. Here NL is the group of left-translations
acting on N and AutpNq is the automorphism group of N . Furthermore, AffpZq denotes
those diffeomorphisms of Z that lift to diffeomorphisms in AffpNq.

We refer to Appendix A for more details and the basic properties of infranilmanifolds.
IfB is a point, Theorem 1.17 coincides with Gromov’s theorem on almost flat manifolds

[Gro78,Ruh82].

Theorem 1.19. For any n P N there is an εpnq ą 0 such that any closed n-dimensional
Riemannian manifold pM, gq with diampMq “ 1 and | sec | ď εpnq is diffeomorphic to an
infranilmanifold Γz

N . Furthermore, there is a positive constant wpnq such that we have
rΓ : ΓXNLs ď wpnq.

At this point we want to remark that any infranilmanifold Z admits a sequence of
metrics pgεqεď1 such that the sectional curvature of pZ, gεq is uniformly bounded in ε
and pZ, gεqεď1 collapses to a point as ε Ñ 0. In the following example we show how
such a sequence of metrics is constructed on a nilpotent Lie group N . As the universal
cover of any infranilmanifold is a connected and simply-connected nilpotent Lie group,
the construction of the following example can be modified to the case of infranilmanifolds.
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Example 1.20. Let N be a nilpotent Lie group with Lie algebra n, i.e. there is a k such
that its lower central series

n1 “ n, n2 “ rn, n1s, n3 “ rn, n2s, ...

terminates at nk`1 “ 0. It is an easy observation that ni`1 Ă ni and that rni, njs Ă ni`j.
For any left-invariant metric g the sectional curvature satisfies the inequality

|RpX, Y qZ|g ď 6} ad }2g|X|g|Y |g|Z|g

for all vector fields X, Y, Z, where

} ad }g :“ maxt|rX, Y s|g : |X|g “ |Y |g “ 1, X, Y P nu.

To construct a collapsing sequence of metrics with uniform bounded curvature we first fix
a left-invariant metric g1 on N . Let Ek :“ teαkuαkPAk be an orthonormal basis of nk. Then
there is an orthonormal set of vectors Ek´1 :“ teαk´1

uαk´1PAk´1
such that Ek YEk´1 is an

orthonormal basis for nk´1. In that way we construct an orthonormal basis
Ťk
i“1Ei for n

such that
Ťk
i“j Ei is an orthonormal basis for nj for any j P t1, . . . , ku. Since rni, njs Ă ni`j

it follows that for all eαi P Ei and eβj P Ej their Lie bracket is determined by their Lie
algebra coefficients tτ γlαiβjuαi,βj ,γl , defined by

reαi , eβj s “
ÿ

lěi`j

Al
ÿ

γl“1

τ γlαiβjeγl .

For any ε ą 0 we define the metric gε via

gεpeαi , eαiq “ ε2i

for all eαi P Ei and 1 ď i ď k. It follows immediately that tε´ieαiuαiPAi
1ďiďk

is an orthonormal

basis for gε. This kind of scaling is called an inhomogeneous scaling.
The sequence pN, gεqε converges to a point in the Gromov-Hausdorff topology as εÑ 0.

Furthermore, the sectional curvature of pN, gεq remains bounded since

1

|eαi |gε
¨

1

|eβj |gε
| reαi , eβj s |gε “ ε´pi`jq

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lěi`j

Al
ÿ

γl“1

τ γlαiβjeγl

ˇ

ˇ

ˇ

ˇ

ˇ

gε

ď ε´pi`jqεi`j

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

lěi`j

Al
ÿ

γl“1

τ γlαiβj

ˇ

ˇ

ˇ

ˇ

ˇ

ď } ad }g1 ,

for all eαi P Ei, eβj P Ej and ε P p0, 1s. In particular, } ad }gε ď } ad }g1 for all ε ď 1 and
therefore

| secgε | ď 6} ad }2gε ď 6} ad }2g1
.
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As we have seen in Example 1.15 the limit of a collapsing sequence can have singu-
larities. Therefore, we can not apply Theorem 1.17 directly to an arbitrary collapsing
sequence in Mpn, dq. In [Fuk88] Fukaya dealt with this problem in the following way:
Instead of studying a convergent sequence pMi, giqiPN inMpn, dq he considered the asso-
ciated sequence of orthogonal frame bundles FMi. We recall that the orthogonal frame
bundle FM of an n-dimensional Riemannian manifold pM, gq is defined as

FM :“
ğ

pPM

tA : TpM Ñ Rn : A is an isometryu.

Clearly, FM is an Opnq-principal bundle. Up to the choice of a biinvariant metric on
Opnq there is a canonical metric gF on FM such that the projection π : FM Ñ M
is a Riemannian submersion with totally geodesic fibers. By construction, the quotient
manifold FM{Opnq with the induced quotient metric is isometric to pM, gq.

Let pMi, giqiPN be a sequence inMpn, dq converging to a compact metric space Y in the
Gromov-Hausdorff topology. It follows from Lemma 1.7 that there is a compact metric
space Ỹ on which Opnq acts as isometries such that Ỹ {Opnq is isometric to Y , i.e.

pFMi,Opnqq pỸ ,Opnqq

Mi Y .

deq.GH

πi π

dGH

Fukaya showed that the metric space Ỹ is in fact a Riemannian manifold [Fuk88, Section
6 - 8] and that Theorem 1.17 can be generalized to the G-equivariant Gromov-Hausdorff
topology [Fuk88, Theorem 9.1]. Therefore, the G-equivariant version of Theorem 1.17 can
be applied to the sequence pFMi, g

F
i qiPN of frame bundles.

Theorem 1.21. Let pMi, giqiPN be a sequence in Mpn, dq converging with respect to the
Gromov-Hausdorff metric to a compact metric space Y . For sufficiently large i there is a
map fi : Mi Ñ Y , and a compact metric space Ỹ on which Opnq acts isometrically, and
an Opnq-equivariant map f̃i : FMi Ñ Ỹ such that the diagram

FMi Ỹ

Mi Y

f̃i

πi π

fi

commutes, and

(1) Ỹ is a Riemannian manifold with C1,α-metric tensors,

(2) f̃i is a fiber bundle with affine structure group and infranil fibers,

(3) f̃i is an almost Riemannian submersion, i.e. if X P TxFMi is perpendicular to the
fibers of f̃i then

e´τpdGHpMi,Y q|n,dq ă
|df̃ipXq|

|X|
ă eτpdGHpMi,Y q|n,dq,
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(4) Mi and Y are isometric to FM{Opnq and Ỹ {Opnq respectively,

(5) for each p P Y the groups Gp̃ “ tg P Opnq|gpp̃q “ p̃u for p̃ P π´1ppq are isomorphic to
each other. We set Gp :“ Gp̃ for some fixed p̃ P π´1ppq.

Remark 1.22. Let FMpn, dq be the set of all isometry classes of frame bundles pFM, gF q
of Riemannian manifolds pM, gq PMpn, dq. There are positive constants C1pnq and C2pnq
such that

FMpn, dq ĂM

˜

n`
pn´ 1qpn´ 2q

2
, d` C1pnq

ˇ

ˇ

ˇ

ˇ

ˇ

C2pnq

¸

.

Recall that Mpn, d | kq denotes the set of all isometry classes of closed n-dimensional
Riemannian manifolds pM, gq with diampMq ď d and | secM | ď k. Let FMpn, dq be the
closure of FMpn, dq. Then there is a further constant C3pnq ą 0 such that

FMpn, dq X
n` pn´1qpn´2q

2
ď

k“0

Mpk, d |C3pnqq

is a dense subset of FMpn, dq with respect to the Lipschitz distance, see [Fuk88, Theorem
6.1].

In [Fuk88, Theorem 0.5] it is shown that every limit space Y has a well-defined Haus-
dorff dimension k P N. Moreover, Y is a stratified space, i.e. Y “ S0pY q Ą S1pY q Ą . . . Ą
SkpY q such that SjpY qzSj`1pY q is a pk ´ jq-dimensional smooth Riemannian manifold.
Using this structure, we can say a little bit more about the fibers of the singular fibrations
fi : Mi Ñ Y (see also [Fuk88, Theorem 0.12]).

Corollary 1.23. Let pMi, giqiPN be a convergent sequence inMpn, dq with limit space Y
and let fi : Mi Ñ Y be the singular fibrations from Theorem 1.21. Setting k :“ dimHauspY q
we have that

(1) for any j P t0, . . . , ku, the restriction of fi to f´1
i pSjpY qzSj`1pY qq is a fiber bundle

with infranil fibers,

(2) for any p P Y zS1pY q, Gp acts freely on the fiber Fi “ f̃´1
i pp̃q, where f̃i : FMi Ñ Ỹ

and πpp̃q “ p. Here Gp is defined as in Theorem 1.21. In particular, the fiber f´1
i ppq

is diffeomorphic to the quotient space Fi{Gp
,

Another approach to study the structure of collapse with bounded curvature was
carried out by Cheeger and Gromov [CG86,CG90]. They generalized local group actions
and introduced an action of a sheaf of groups. In particular, they considered actions of
sheaves of tori with additional regularity conditions. This defines the so-called F -structure
(where “F ” stands for flat). Cheeger and Gromov proved that each sufficiently collapsed
complete Riemannian manifold admits an F -structure of positive rank. An advantage
of this approach is that no uniform bound on the diameter is required. However, the
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Hausdorff dimension of the limit space of a collapsing sequence without a uniform diameter
bound is not necessarily well-defined (see for instance [CG86, Example 0.2]).

Combining these two approaches, Cheeger, Fukaya and Gromov defined in [CFG92]
the notion of nilpotent structures (N -structures) and showed that they exist on each
sufficiently collapsed part of a complete Riemannian manifold pM, gq with | sec | ď 1.
Roughly speaking, if M is sufficiently collapsed, its frame bundle FM is locally the total
space of a fibration with infranil fibers and affine structure group. Thus, there is a sheaf
on FM whose local sections are given by locally defined right invariant vector fields
on the fiber. These local right invariant vector fields represent the locally defined left
multiplications by the simply connected nilpotent Lie group covering the infranil fiber.
Similar to [CG86,CG90] no upper bound on the diameter is required.

A further main result of [CFG92] is the existence of invariant metrics on manifolds
admitting an N -structure. These metrics are invariant in the sense that the local sections
of the sheaf on the frame bundle are given by locally defined Killing vector fields. To
construct such a metric the authors first applied the following theorem due to Abresch
[Abr88, Theorem 1.1] to obtain uniform bounds on the derivatives of the curvature (see
also [Shi89, Theorem 1.2] for a proof using the Ricci flow).

Theorem 1.24. For any ε ą 0 and n P N there is a smoothing operator Sε such that on
any complete Riemannian manifold pM, gq with | secg | ď 1 the metric g̃ :“ Sεpgq satisfies

(1) e´εg ă g̃ ă eεg,

(2) |∇´ ∇̃| ă ε,

(3) |∇̃jR̃| ă Ajpn, εq for all j ě 0.

In addition, Rong showed that, for sufficiently small ε, we have the following bounds
on the sectional curvature of Sεpgq, c.f. [Ron96, Proposition 2.5].

Proposition 1.25. There is a constant δpnq ą 0 such that for any complete Riemannian
manifold pM, gq with | secg | ď 1 and any 0 ď ε ď δ, there is a positive constant Cpnq such
that the metric g̃ :“ Sεpgq satisfies

min secg̃ ´Cpnqε ď secg ď max secg̃ `Cpnqε.

Let A “ pAjqjPN be a sequence of non negative numbers. Then a Riemannian manifold
is called A-regular if |∇jR| ď Aj for all j P N. Further, we denote by CpAq a constant
depending only on finitely many Aj.

Applying Theorem 1.24, it suffices to study sequences of A-regular manifolds. For
such sequences, these so-called invariant metrics were constructed in [CFG92, Section
4, Section 7, Section 8]. Since we are interested in collapsing sequences in Mpn, dq we
summarize the results of [CFG92, Section 4, Section 7, Section 8] restricted to this special
case.

Theorem 1.26. Let pMi, giqiPN be a sequence of A-regular Riemannian manifolds in
Mpn, dq converging to a lower dimensional space Y . In addition, let pỸ , hq be the Opnq-
equivariant Gromov-Hausdorff limit of the corresponding sequence pFMi, g

F
i qiPN of frame
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bundles. For any i sufficiently large there is an Opnq-invariant metric g̃Fi on FMi which
induces a Riemannian metric g̃i on Mi and an Opnq-invariant metric h̃i on Ỹ such that
for all j ě 0,

|∇j
pgFi ´ g̃

F
i q| ď cpn,A, jqdGHpM,Y q,

|∇j
ph´ h̃iq| ď c1pn,A, jqdGHpM,Y q,

and such that the map f̃i : pFMi, g̃
F
i q Ñ pỸ , h̃iq is a Riemannian submersion. In addition,

the second fundamental form of the fibers is bounded by a positive constant Cpnq and for
any p P Ỹ , the induced metric on the infranil fiber Zp is affine parallel, i.e. it lifts to a
left-invariant metric on its universal cover.

From Theorem 1.26, Theorem 1.24, and Proposition 1.25 the next lemma follows
immediately.

Lemma 1.27. Let pMi, giqiPN be a collapsing sequence inMpn, dq. Then there is an index
I ą 0 such that for all i ě I there is an invariant metric g̃i on Mi in the sense of the
above theorem such that

lim
iÑ8

}g̃i ´ gi}C1 “ 0.

Furthermore, the sectional curvature and the diameter of the sequence pMi, g̃iqiPN are
uniformly bounded.

Let pMi, giqiPN be a collapsing sequence inMpn, dq with limit space Y such that the
metrics gi are invariant in the sense of Theorem 1.26. We observe that the corresponding
sequence pFMi, g

F
i qiPN can be viewed as a sequence of special fiber bundles, see Theorem

1.21 and Theorem 1.26. To simplify notation we summarize the properties of these arising
fiber bundles.

Definition 1.28. A fiber bundle f : pM, gq Ñ pB, hq is called a Riemannian affine fiber
bundle if

• f is a Riemannian submersion,

• for each p P B the fiber Zp :“ f´1ppq is an infranilmanifold with an induced affine
parallel metric ĝp,

• the structure group lies in the group of affine diffeomorphisms, AffpZq.

In the following corollary we summarize the results of Theorem 1.21, Theorem 1.26
and Lemma 1.27.

Corollary 1.29. Let pMi, giqiPN be a sequence inMpn, dq converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then there is a Riemannian manifold Ỹ with
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a C1,α-metric h on which Opnq acts as isometries such that Ỹ {Opnq is isometric to Y and
an I ą 0 such that for any i ě I the following diagram commutes.

FMi Ỹ

Mi Y .

f̃i

πi π

fi

(1.29.1)

Furthermore, the index I can be chosen such that for all i ě I there is an invariant metric
g̃i on Mi and an Opnq-invariant metric h̃i on Ỹ such that f̃i : pFMi, g̃

F
i q Ñ pỸ , h̃iq is an

Opnq-equivariant Riemannian affine fiber bundle and

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

Moreover, the second fundamental forms of the fibers of the Riemannian submersions f̃i
are uniformly bounded in norm by a positive constant Cpnq and the sectional curvature of
pMi, g̃iqiPN are uniformly bounded by a positive constant Kpnq.

Remark 1.30. If a sequence pMi, giqiPN inMpn, dq converges to a Riemannian manifold
pY, hq then the above corollary simplifies to the statement that for all i ě I there are
metrics g̃i on Mi and h̃i on Y such that fi : pMi, g̃iq Ñ pY, h̃iq is Riemannian affine fiber
bundles with pMi, g̃iq PMpn, d |Kpnqq for all i ě I and

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

Let pMi, giqiPN be a collapsing sequence inMpn, dq with limit space Y . In general, Y is
not a Riemannian manifold, see for instance Example 1.15. We recall from Corollary 1.29
that Y is isometric to the quotient Ỹ {Opnq of a Riemannian manifold Ỹ . In particular,
all singularities of Y have at least quotient singularity structure.

In Theorem 1.21 we defined for any p P Y the group Gp which is the stabilizer group
of the Opnq-action on Ỹ . In [NT11, Theorem 2.1] it is shown that dimpGpq ă n´dimpY q.
Thus, it follows that as the difference n´ dimHauspY q gets large the possible singularities
that can occur get worse.

If n ´ dimpY q “ 1 then dimpGpq “ 0 for all p P Y . In particular, the group Gp is
finite for all p P Y . This leads to the following proposition which was already proven
in [Fuk90, Proposition 11.5].

Proposition 1.31. Any pn´ 1q-dimensional metric space Y in the boundary ofMpn, dq
is a Riemannian orbifold Y with a C1,α-metric h.

Loosely speaking, Riemannian orbifolds are locally modeled as quotients of Rieman-
nian manifolds by a finite isometric group action. As Riemannian orbifolds are, by def-
inition, locally finitely covered by Riemannian manifolds many geometric concepts like
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Toponogov’s triangle comparison and Bishop-Gromov volume comparison carry over to
Riemannian orbifolds. For a thorough introduction to Riemannian orbifolds we refer the
reader to [BG08, Chapter 4], [Thu80, Chapter 13].

If n ´ dimHauspY q ě 2 we do not know, a priori, if the group Gp is trivial, finite
or infinite. In [NT11, Theorem 1.1], the authors characterize the set of singularities as
follows.

Theorem 1.32. Let pMi, giqiPN be a sequence inMpn, dq converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then there is a closed set S of Hausdorff
dimension

dimHauspSq ď mintn´ 5, dimpY q ´ 3u

such that Y zS is a Riemannian orbifold with a C1,α-metric h.

The upper bound on the Hausdorff dimension of the singular set S is sharp as the
authors show in various examples [NT11, Example 1.1 - 1.4].



Chapter 2

Codimension one collapse

We say that a sequence pMi, giqiPN inMpn, dq is a codimension one collapse if pMi, giqiPN
converges to an pn ´ 1q-dimensional compact metric space Y . In this special case we
already know that Y is a Riemannian orbifold with a C1,α-metric, see Proposition 1.31.
As shown in Theorem 1.32 this is a special case because if the limit space Y of a col-
lapsing sequence inMpn, dq has dimHaus Y ă pn ´ 1q then Y has in general non orbifold
singularities. Since Riemannian orbifolds are locally modeled as quotients of Rieman-
nian manifolds by a finite isometric group action many geometric concepts carry over to
Riemannian orbifolds. This motivates the main result of [Roo18a] which characterizes
codimension one collapse inMpn, dq and proves Theorem 0.1.

Theorem 2.1. Let pMi, giqiPN be a sequence in Mpn, dq converging to a compact metric
space Y in the Gromov-Hausdorff topology. Then the following are equivalent

(1) dimHauspY q ě pn´ 1q,

(2) for all r ą 0 there is a positive constant Cpn, r, Y q such that

C ď
volpBMi

r pxqq

injMipxq
(2.1.1)

holds for all x PMi and i P N,

(3) for some r ą 0 there is a positive constant Cpn, r, Y q such that the inequality (2.1.1)
holds for all x PMi and i P N.

The idea behind Theorem 2.1 is the following illustrative observation. Let pMi, giqiPN
be a collapsing sequence inMpn, dq. Then the r-balls around a sequence of points xi PMi

contain all collapsing directions, while the injectivity radii at the points xi only represent
the fastest scale of collapse. If we have a codimension one collapse then the collapse
happens on the scale of the injectivity radius. Hence, the volume of the balls BMi

r pxiq
and the injectivity radii injMipxiq converge to 0 at the same rate. In particular, the ratio
(2.1.1) can be uniformly bounded from below. However, if the collapse has codimension
larger than or equal to two then the injectivity radius “sees” only a part of the collapse.
Thus, the volume of the balls BMi

r pxiq converges on a larger scale to 0 than the injectivity
radii injMipxiq, i.e. the quotients (2.1.1) converge to 0 as iÑ 8.

23



24 CHAPTER 2. CODIMENSION ONE COLLAPSE

Example 2.2. Consider the sequence pT2, gi “ gS ‘
1
i
gSqiPN of flat tori from Example

1.12. This sequence collapses to S1. As injgipxq ” π
i
, it follows that for any r ą 0 and

x P T2, volpBgi
r pxqq « 2 mintr, πu ¨ 2π

i
as iÑ 8. Therefore, we derive for r ď π that

lim
iÑ8

volpBgi
r pxqq

injgipxq
“ lim

iÑ8

4r π
i

π
i

“ 4r ą 0.

In particular, this quotient is uniformly bounded from below, as stated in Theorem 2.1.

Example 2.3. As in Example 1.13, we consider the sequence pT2, gi “
1
i
gS ‘

1
i
gSqiPN of

flat tori. This sequence collapses to a point. No matter how small we choose r ą 0 there
exists some I P N such that volpBgi

r pxqq “
2π
i
¨ 2π
i
for all x P T2 and i ą I. As injgipxq “ π

i

for all x P T2, we conclude that

lim
iÑ8

volpBgi
r pxqq

injgjpxq
“ lim

iÑ8

4π

i
“ 0.

Thus, we cannot find a uniform positive lower bound for this quotient.

The proof of Theorem 2.1 is divided into three steps. First, we show that, in order to
prove Theorem 2.1, it suffices to restrict to sequences of manifolds with invariant metrics,
as introduced in Theorem 1.26. Next, we show that (1) implies (2) by constructing a
lower bound as required in (2.1.1) for any given r ą 0. As the implication from (2) to
(3) is trivial it remains to show that (3) implies (1). This direction will be proved by
contradiction. By Corollary 1.29 any collapsing sequence in Mpn, dq is a sequence of
collapsing singular fibrations over the limit space. Thus, we will bound the volume of
BMi
r pxq, up to a constant, from above by the injectivity radius and the diameter of the

corresponding collapsing fiber. It remains to bound the injectivity radius of the collapsing
fiber from above by the injectivity radius of the manifold in x. This is done by modifying
results of [Tap00] for bounded Riemannian submersions. In the end, we show that the
constructed upper bound on the quotient converges to 0, giving a contradiction.

The content of this chapter corresponds to [Roo18a, Section 3 and 4].
In Section 2.1 we show that under appropriate assumptions on the geometry of a

Riemannian submersion f : M Ñ Y there is a positive constant C such that we have
injpf´1ppqq ď C injMpxq for all x P f´1ppq, if injMpxq is sufficiently small compared to the
injectivity radius of Y . This proposition is essential to prove the direction (3) to (1) in
Theorem 2.1.

Using this proposition together with the structure of collapsing sequences inMpn, dq,
see Corollary 1.29, we prove Theorem 2.1 in Section 2.2 with the strategy explained above.

In conclusion, we define the space Mpn, d, Cq consisting of all isometry classes of
Riemannian manifolds in Mpn, dq with C ď

volpMq
injpMq

. We show that there is a uniform
bound on the essential supremum of the sectional curvature and a uniform lower bound
on the volume for all pn´ 1q-dimensional limit spaces ofMpn, d, Cq.

2.1 The injectivity radius of a fiber
Let f : pM, gq Ñ pY, hq be a Riemannian submersion between two Riemannian manifolds.
Henceforth, we denote the fiber over p P Y by Fp :“ f´1ppq and k :“ dimpFpq. It is
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well-known that TM “ H ‘ V , where H is the horizontal distribution isomorphic to
f˚TY and V “ kerpdfq is the vertical distribution. The relations between the curvatures
of pM, gq,pB, hq and the fibers pFp, ĝpq are given by O’Neill’s formulas, see Theorem B.6.
These formulas involve the two fundamental tensors T and A which are defined as

T pX, Y q :“
`

∇XV Y V
˘H
`
`

∇XV Y H
˘V
,

ApX, Y q :“
`

∇XHY V
˘H
`
`

∇XHY H
˘V
,

(2.3.1)

for all vector fieldsX, Y P ΓpTMq. HereXV , XH denote the vertical, resp. horizontal part
of the vector field X. Roughly speaking, the T -tensor is related to the second fundamental
form of the fibers and the A-tensor vanishes if and only if the horizontal distribution H
is integrable. A Riemannian submersion is called bounded if the fundamental tensors A
and T are bounded in norm by positive constants CA resp. CT .

The goal of this section is to show the following proposition that is essential for the
proof of Theorem 2.1 (see Notation 1.16 for the τ -notation).

Proposition 2.4. Let f : Mn`k Ñ Y n be a bounded Riemannian submersion such that
| secM | ď K for some K ą 0. If injMpxq ă mint π?

K`3C2
A

, 1
4

injY ppqu for some x P Fp then

injpFpq ď
´

1` τpinjMpxq|CA, CT , k,Kq
¯

¨ injMpxq.

The explicit expression of the constant
´

1`τpinjMpxq|CA, CT , k,Kq
¯

is given in the proof.

The main ingredient of the proof of Proposition 2.4 is a homotopy with fixed endpoints
between a curve γ with endpoints in a fiber Fp and a curve γ̃ lying completely in the fiber
Fp. Such a homotopy was constructed in the proof of Theorem 3.1 in [Tap00].

Proposition 2.5. Let f : M Ñ Y be a bounded Riemannian submersion with Y being
compact and simply-connected. Then there exists a positive constant C :“ CpY, k, CT , CAq
such that any curve γ : ra, bs Ñ M with endpoints in the fiber Fp, p “ fpγpaqq, is
homotopic to a curve γ̃ in the fiber Fp satisfying

lpγ̃q ď C lpγq.

We observe that there are a few differences between the assumptions of Proposition
2.5 and the assumptions of Proposition 2.4. First, in Proposition 2.5, Tapp requires Y to
be compact and simply-connected. These assumptions are needed to guarantee that for
any loop α : r0, 1s Ñ Y there is a nullhomotopy H : r0, 1s ˆ r0, 1s Ñ Y , i.e. H satisfies
Hp1, tq “ αptq, Hp0, tq “ αp0q and Hps, 0q “ Hps, 1q “ αp0q for all s P r0, 1s, whose
derivatives are uniformly bounded [Tap00, Lemma 7.2]. As we are only interested in the
local behavior around a chosen fiber Fp of the Riemannian submersion f : M Ñ Y it
suffices to consider a small neighborhood of p P Y . It follows from the assumptions of
Proposition 2.4 that the considered non contractible geodesic loop γ based at x P Fp has
length lpγq “ 2 injMpxq ă 1

2
injY ppq. Since the ball B 1

4
injY ppqppq is convex and contractible,

the loop f ˝ γ is contractible in Y . Furthermore, by assuming a bound on the sectional
curvature of Y , there is a nullhomotopy with bounded derivatives for curves with length
less than 1

2
injY ppq.
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Lemma 2.6. Let Y be a Riemannian manifold with ´λ2 ď secY ď Λ2 for some λ,Λ ą 0.
Furthermore, let α : r0, 1s Ñ Y be a loop in Y based at p and lpαq ă mint2π

Λ
, 1

2
injY ppqu.

Then there is a smooth nullhomotopy H : r0, 1s ˆ r0, 1s Ñ Y , i.e. Hp0, tq “ p and
Hp1, tq “ αptq and Hps, 0q “ Hps, 1q “ p for all s P r0, 1s, such that

ˇ

ˇ

ˇ

ˇ

B

Bt
H

ˇ

ˇ

ˇ

ˇ

ď
Λ

λ
¨

sinhpλ lpαq
2
q

sinpΛ lpαq
2
q
¨ lpαq,

ˇ

ˇ

ˇ

ˇ

B

Bs
H

ˇ

ˇ

ˇ

ˇ

ď
sinhpλ lpαq

2
q

λ lpαq
2

¨
lpαq

2
,

for all s, t P r0, 1s.

Proof. Let α be parametrized proportional to arclength, such that
ˇ

ˇ

Bα
Bt

ˇ

ˇ ” lpαq. Since α
satisfies lpαq ă 1

2
injY ppq, it lifts to a contractible loop α̃ :“ exp´1

p ˝α in TpY . Thus, the
nullhomotopy H̃ps, tq :“ s ¨ α̃ptq with s, t P r0, 1s is well-defined. Clearly, we have that

ˇ

ˇ

ˇ

ˇ

B

Bs
H̃

ˇ

ˇ

ˇ

ˇ

“ |α̃| ď
lpαq

2
.

To estimate
ˇ

ˇ

ˇ

B

Bt
H̃
ˇ

ˇ

ˇ
, we first observe that it follows from the assumption ´λ2 ď secY ď Λ2

that

sinpΛ|v|q

Λ|v|
|w| ď |pDv exppqpwq| ď

sinhpλ|v|q

λ|v|
|w|

for all v P TpY with |v| ă π
Λ
and w P TvTpY , see e.g. [Jos05, Corollary 5.6.1]. Therefore,

we obtain for q P B 1
4

injY ppqppq with dpp, qq ă
π
Λ
and u P TqY that

|pDq exp´1
p qu| ď

Λ| exp´1
p pqq|

sinpΛ| exp´1
p pqq|q

|u|.

As by assumption dpp, αptqq ď lpαq
2
ă π

Λ
, we conclude that

ˇ

ˇ

ˇ

ˇ

B

Bt
H̃

ˇ

ˇ

ˇ

ˇ

ď

ˇ

ˇ

ˇ

ˇ

B

Bt
α̃

ˇ

ˇ

ˇ

ˇ

ď
Λ|α̃|

sinpΛ|α̃|q

ˇ

ˇ

ˇ

ˇ

B

Bt
α

ˇ

ˇ

ˇ

ˇ

ď
Λ lpαq

2

sinpΛ lpαq
2
q
¨ lpαq.

By construction H :“ expppH̃q is a smooth nullhomotopy of α in Y with

ˇ

ˇ

ˇ

ˇ

B

Bs
H

ˇ

ˇ

ˇ

ˇ

ď
sinhpλ|H̃ps, tq|q

λ|H̃ps, tq|

ˇ

ˇ

ˇ

ˇ

B

Bs
H̃

ˇ

ˇ

ˇ

ˇ

ď
sinhpλ lpαq

2
q

λ lpαq
2

¨
lpαq

2
.

The corresponding bound on
ˇ

ˇ

B

Bt
H
ˇ

ˇ follows similarly. l

The next corollary follows immediately by adjusting the bounds on the derivative of
the exponential map.
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Corollary 2.7. Let Y be a Riemannian manifold with ´λ2 ď secY ď ´Λ2 for some
λ ě Λ ě 0. Furthermore, let α : r0, 1s Ñ Y be a loop in Y based at p and lpαq ă 1

2
injY ppq.

Then there is a smooth nullhomotopy H : r0, 1s ˆ r0, 1s Ñ Y , as in Lemma 2.6, such that

ˇ

ˇ

ˇ

ˇ

B

Bt
H

ˇ

ˇ

ˇ

ˇ

ď
Λ

λ
¨

sinhpλ lpαq
2
q

sinhpΛ lpαq
2
q
¨ lpαq,

ˇ

ˇ

ˇ

ˇ

B

Bs
H

ˇ

ˇ

ˇ

ˇ

ď
sinhpλ lpαq

2
q

λ lpαq
2

¨
lpαq

2
.

If Λ “ 0, we set sinhpΛq
Λ

“ 1.

Next, we prove Proposition 2.4. Therein we keep carefully track of the dependence of
the constants on injMpxq because this is the quantity going to 0 in a collapsing sequence
while the other quantities will be uniformly bounded.

Proof (Proof of Proposition 2.4). We assume without loss of generality that the curve γ
is parametrized proportional to arclength such that | 9γ| ” lpγq. Since injMpxq ă π?

K

there is a non contractible geodesic loop γ based at x such that lpγq “ 2 injMpxq. As
injMpxq ă 1

4
injY ppq, the composition f ˝ γ is a contractible loop in Y . By Proposition

2.5, γ is homotopic to a non contractible loop γ̃ in the fiber Fp such that lpγ̃q ď C ¨ lpγq
for a positive constant C :“ CpY, k, CA, CT q. Thus,

2 injFp ď lpγ̃q ď C ¨ lpγq “ C ¨ 2 injMpxq.

We claim that C “
`

1` τplpγq|CA, CT , k,Kq
˘

. The proof consists of a careful study of
the constant C, following the proof of [Tap00, Theorem 3.1]. In this proof, Tapp modifies
the path γ such that it is a concatenation of paths pγiqi with endpoints in the fiber Fp
such that lpγiq ă p2 diampY q ` 1q for all i. Since in our case lpγq ă p2 diampY q ` 1q
already holds by assumption we do not need this modification.

Set αptq :“ f ˝ γ and let α̃ be the horizontal lift of αptq with α̃p0q “ γp0q. We observe
that α̃p1q “ hαpxq “: z, where hα : Fp Ñ Fp is the holonomy diffeomorphism associated to
α. The vertical curve γ̃ is the concatenation of the paths β1 and β2 which are constructed
as follows [Tap00, proof of Theorem 3.1]:

Let H : r0, 1s ˆ r0, 1s Ñ Y be the nullhomotopy for α from Lemma 2.6. We lift H
horizontally to a homotopy H̃ : r0, 1sˆ r0, 1s ÑM such that H̃p1, tq “ α̃ptq and such that
H̃ps, iq “ α̃piq for i P t0, 1u and all s P r0, 1s. Then β1ptq :“ H̃p0, tq is a path in the fiber
Fp connecting x “ α̃p0q and z “ α̃p1q.

The path β2 can be understood as a “horizontal transport” of γ to the fiber Fp. To
be concrete, β2ptq :“ htpγptqq, where ht : Fαptq Ñ Fp is the holonomy diffeomorphism
associated to α|rt,1s. By construction, β2 : r0, 1s Ñ Fp is a path from z to x.
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Tapp showed that the length of the vertical curve

γ̃ptq :“

#

β1p2tq, if t ď 1
2

β2p2t´ 1q, if t ą 1
2

is bounded by

lpγ̃q “ lpβ1q ` lpβ2q ď P ¨ lpγq ` L ¨ lpγq “ C ¨ lpγq

for some explicit positive constants P and L, compare with [Tap00, p. 645]. We will study
these constants P and L in detail.

First we consider the inequality lpβ1q ď P ¨ lpγq. The constant P is an upper bound
on the derivative of the function l ÞÑ ρlp1q between l “ 0 and l “ lpγq, where ρlpγqptq is
the solution to the differential equation

pρlpγqq
1
ptq “ kCAQsQtlpγqp1` 4kk!q ` kQtlpCT ` 4kk!CAqρlptq ,

ρlpγqp0q “ 0.
(2.7.1)

The constants Qt and Qs are the bounds on the nullhomotopy H of the path αptq in Y ,
i.e.

ˇ

ˇ

B

Bt
H
ˇ

ˇ ď Qtlpγq and
ˇ

ˇ

B

Bs
H
ˇ

ˇ ď Qs.
Since ´K ď secY ď pK ` 3C2

Aq, by O’Neill’s formula B.7.3, and, by assumption,
lpαq ď lpγq ă mint 2π?

K`3C2
A

, 1
2

injY ppqu, we apply Lemma 2.6 and derive that

Qt “

a

K ` 3C2
A?

K
¨

sinhp
?
K lpγq

2
q

sinp
a

K ` 3C2
A
lpγq

2
q
,

Qs “
sinhp

?
K lpγq

2
q

?
K lpγq

2

¨
lpγq

2
“: Q̃slpγq.

(2.7.2)

Note that for any loop ᾱ in Y of length less than or equal to lpγq the corresponding
nullhomotopy H̄ of ᾱ satisfies the bounds

ˇ

ˇ

B

Bt
H̄
ˇ

ˇ ď Qtlpᾱq and
ˇ

ˇ

B

Bs
H̄
ˇ

ˇ ď Q̃slpᾱq.
Thus, in our case, the differential equation (2.7.1) reads as

pρlq
1
ptq “ kCAQ̃sQtl

2
p1` 4kk!q ` kQtlpCT ` 4kk!CAqρlptq ,

ρlp0q “ 0,
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for 0 ď l ď lpγq, compare [Tap00, Lemma 3.3]. For simplicity, we set

G1 :“ kCAQ̃sQtp1` 4kk!q,

G2 :“ kQtpCT ` 4kk!CAq.

Using the variation of constants, we conclude

ρlp1q “
G1

G2

l
`

eG2l ´ 1
˘

.

Therefore,
d

dl
ρlp1q “

G1

G2

`

eG2l ´ 1
˘

`G1le
G2l

ď
G1

G2

`

eG2lpγq ´ 1
˘

`G1lpγqe
G2lpγq “: P.

(2.7.3)

It remains to check the behavior of this term as lpγq becomes small. Since Qt and Q̃s are
the only appearing quantities depending on lpγq we first conclude from (2.7.2) that

lim
lpγqÑ0

Qt “ 1,

lim
lpγqÑ0

Q̃s “
1

2
.

(2.7.4)

Hence, we extract the quantities in Qt and Q̃s in 2.7.3,

G1

G2

“
kCAQ̃sQtp1` 4kk!q

kQtpCT ` 4kk!CAq
“ Q̃s

CAp1` 4kk!q

CT ` 4kk!CA
“: Q̃s ¨ C1pCA, CT , kq,

G1lpγq “ kCAQ̃sQtp1` 4kk!qlpγq “: Q̃sQtlpγq ¨ C2pCA, kq,

G2lpγq “ kQtpCT ` 4kk!CAqlpγq “: Qtlpγq ¨ C3pCA, CT , kq.

Therefore, it follows with (2.7.4) that

lim
lpγqÑ0

G1

G2

“
1

2
¨ C1pCA, CT , kq,

lim
lpγqÑ0

G1lpγq “ 0 ¨ C2pCA, kq “ 0,

lim
lpγqÑ0

G2lpγq “ 0 ¨ C3pCA, CT , kq “ 0.

Summarizing these observations we conclude

lim
lpγqÑ0

P “ lim
lpγqÑ0

G1

G2

`

eG2lpγq ´ 1
˘

`G1lpγqe
G2lpγq

“
1

2
C1pCA, CT , kq

`

e0
´ 1

˘

` 0 ¨ e0
“ 0.

This shows that P “ τplpγq|CA, CT , k,Kq.
Next, we consider the inequality lpβ2q ď L ¨ lpγq. Here, L is the maximum of the

Lipschitz constants of the holonomy diffeomorphism hα associated to paths α in Y . Since
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hα satisfies the Lipschitz constant eCT ¨lpαq (c.f. [GW00, Lemma 4.2]) and lpαq is bounded
from above by lpγq we conclude that

L “ eCT ¨lpγq “ 1` τplpγq|CT q.

Summarizing all these observations we conclude

2 injFp ď lpγ̃q ď C ¨ lpγq

“ pP ` Lq ¨ lpγq

“

´

1` τplpγq|CA, CT , k,Kq
¯

¨ lpγq

“

´

1` τ̃pinjMpxq|CA, CT , k,Kq
¯

¨ 2 injMpxq. l

Remark 2.8. If ´K ď secM ď ´κ for some κ ą 0 such that p´κ ` 3C2
Aq ď 0 then the

assumption injMpxq ă 1
4

injY ppq is already sufficient for Proposition 2.4 to hold, as M , as
well as Y , do not have any conjugate points. In particular, the injectivity radius at some
point x PM equals half of the length of the shortest non contractible geodesic loop based
at x.

2.2 Characterization of codimension one collapse
In this section we prove Theorem 2.1. Further, we discuss the properties of the set
Mpn, d, Cq consisting of all isometry classes of Riemannian manifolds pM, gq inMpn, dq
with C ď volpMq

injpMq
.

First we note that in the case of a non collapsing sequence inMpn, dq the statement
of Theorem 2.1 is obviously true as the limit space is a closed n-dimensional Riemannian
manifold, see Theorem 1.9. Therefore, we only consider the case of collapsing sequences
inMpn, dq.

The first step of the proof of Theorem 2.1 is to reduce the statement to sequences of
sufficiently collapsed manifolds with invariant metrics in the sense of Theorem 1.26. This
is done in the following lemma. Then it suffices to prove Theorem 2.1 for that special
case.
Lemma 2.9. Let pMi, giqiPN be a collapsing sequence in Mpn, dq with limit space Y .
There is a small positive δ and an index I ą 0 such that for any i ě I, there is an
invariant metric g̃i on Mi with

|gi ´ g̃i| ă pe
δ
´ 1q ` Cpn, δqdGHpMi, Y q,

|∇i ´ ∇̃i| ď δ ` C1pn, δqdGHpMi, Y q,

|∇̃j
i R̃i| ď Cpj, n, δqp1` dGHpMi, Y qq.

In particular,

e´τpdGHpMi,Y q|n,δq´τpδ|nq
volpB̃Mi

r pxqq

Ăinj
Mi
pxq

ď
volpBMi

r qpxq

injMipxq

ď eτpdGHpMi,Y q|n,δq`τpδ|nq
volpB̃Mi

r pxqq

Ăinj
Mi
pxq

,
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where B̃Mi
r pxq and Ăinj

Mi
pxq are taken with respect to the metric g̃i. Moreover, the Haus-

dorff dimension of the limit space Ỹ of pMi, g̃iqiPN equals the Hausdorff dimension of the
limit space Y of the original sequence pMi, giqiPN.

Proof. First, we apply Abresch’s smoothing theorem, Theorem 1.24 for some small δ ą 0
to the sequence pMi, giqiPN. We obtain the sequence pMi, ĝiqiPN consisting only of A-regular
manifolds, with pAjpn, δqqjPN, i.e. for all i, j P N,

|∇̂j
i R̂i| ď Aj,

where ∇̂i, R̂i is the Levi-Civita connection, respectively the curvature of the metric ĝi.
Moreover, by choosing δ sufficiently small, Proposition 1.25 implies that

|xsecMi | ď p1` cpnqδq.

It follows from the estimates for the metrics gi and ĝi in Theorem 1.24 that for all
i ě I1,

e´τpδ|nq
volpB̂Mi

r pxqq

xinj
Mi
pxq

ď
volpBMi

r qpxq

injMipxq
ď eτpδ|nq

volpB̂Mi
r pxqq

xinj
Mi
pxq

. (2.9.1)

Here, I1 is chosen to be sufficiently large such that for all i ě I1, injMipxq, resp. xinj
Mi
pxq, is

smaller than the conjugate radius of pMi, giq, resp. pMi, ĝiq, which is uniformly bounded
from below in terms of the upper sectional curvature bound. Thus, the bound on the
conjugate radius for pMi, ĝiq only changes slightly if we choose δ ą 0 to be sufficiently
small.

By Theorem 1.26 there is a further index I2 such that for each element of pMi, ĝiqiPN
with i ě I2 there is an invariant metric g̃i onMi. This leads to a new sequence pMi, g̃iqiPN.
The claimed bounds on g̃i follow by combining the inequalities given in Theorem 1.24 and
Theorem 1.26. In particular, after a small rescaling, pMi, g̃iqiPN lies again inMpn, dq.

Moreover, as |ĝi ´ g̃i|C8 ď τpdGHpMi, Y q|n, δq, see Theorem 1.26, it follows that

e´τpdGHpMi,Y q|n,δq
volpB̃Mi

r pxqq

Ăinj
Mi
pxq

ď
volpB̂Mi

r qpxq

xinj
Mi
pxq

ď eτpdGHpMi,Y q|n,δq
volpB̃Mi

r pxqq

Ăinj
Mi
pxq

, (2.9.2)

uniformly for i ě maxtI1, I2u “: I, as before.
Since |ĝi ´ g̃i|C8 ď τpdGHpMi, Y q|n, δq, the sequences pMi, ĝiqiPN and pMi, g̃iqiPN con-

verge to the same limit space Ỹ . Furthermore, as dGHppMi, giq, pMi, g̃iqq ď τpδq it follows
from [Fuk88, Lemma 2.3] that the Lipschitz-distance between the limit spaces Y and Ỹ is
also bounded by τpδq (the explicit value of τpδq might change). In particular, Y and Ỹ are
homeomorphic to each other. Thus, they have the same Hausdorff dimension. Together
with (2.9.1) and (2.9.2) the claim follows. l

Let pMi, giqiPN be a sequence in Mpn, dq converging to a compact metric space Y of
lower dimension. By the above lemma, we assume without loss of generality, that for
all i P N the metric gi is an invariant metric in the sense of Theorem 1.26. Moreover,
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we can assume without loss of generality that injMipxq ă π for all x P Mi and i ě I.
Consequently, we can restrict our attention to collapsing sequences pMi, giqiPN inMpn, dq
such that for every i P N the manifold pMi, giq is A-regular, injMipxq ă π for all x P Mi,
and the metric gi is invariant.

The next proposition together with Lemma 2.9 proves the implication (1) to (2) in
Theorem 2.1.

Proposition 2.10. Let pMi, giqiPN be a collapsing sequence of A-regular manifolds in
Mpn, dq converging to a compact metric space Y in the Gromov-Hausdorff topology. Sup-
pose that for each i P N the metric gi is invariant. If dimHauspY q “ pn´ 1q then, for each
r ą 0, there is a positive constant C :“ Cpn, r, Y q such that

C ď
volpBMi

r pxqq

injMipxq
(2.10.1)

for all x PMi and i P N.

Proof. Since dimHauspY q “ pn ´ 1q it follows from Proposition 1.31 that Y is a compact
Riemannian orbifold. Furthermore, Corollary 1.29 implies that we have for any i P N an
S1-bundle f̃i : pFMi, g

F
i q Ñ Ỹ . Here Ỹ is the Gromov-Hausdorff limit of the sequence

pFMi, g
F
i qiPN. By Theorem 1.21, Ỹ is Riemannian manifold and the quotient Ỹ {Opnq is

isometric to Y . Hence, fi : Mi Ñ Y is an S1-orbifold bundle. As by assumption, for any
i P N the metric gi is invariant there is a Riemannian orbifold metric hi on Y such that
fi : pMi, giq Ñ pY, hiq is a Riemannian orbifold submersion. As pMi, giq is an A-regular
manifold it follows that the metric hi on Y is BpAq-regular for all i P N. Thus, there is a
subsequence such that phiqiPN converges to a smooth metric on Y in the C8-topology.

Now we fix some r ą 0. As i Ñ 8, the ball BMi
r pxq resembles more and more

f´1
i pB

Y
r pfipxqqq. Hence, there is an index I such that for any i ą I,

f´1
i pB

Y
r
2
ppqq Ă BMi

r pxq

for all p P Y and x P F i
p :“ f´1

i ppq. This is a direct consequence of Toponogov’s triangle
comparison.

Since the T -tensor of the Riemannian submersions f̃i : FMi Ñ Ỹ is uniformly bounded
by a constant CT pnq , see Corollary 1.29, it follows that for any r ą 0 there is a positive
constant C1 :“ C1pr, n, CT q such that, for all i ą I,

volpBMi
r pxqq ě C1 volpBYi

r
2
ppqq volpF i

pq

“ C1 volpBYi
r
2
ppqq 2 injpF i

pq.

For the last equality we used that F i
p – S1 for all i P N. In the above estimate, Yi denotes

the Riemannian orbifold pY, hiq. Now the claim follows from

volpBMi
r pxqq

injMipxq
ě 2C1 volpBYi

r
2
ppqq

injpFpq

injMipxq

ě 2C1 inf
iPN

min
pPY

volpBYi
r
2
ppqq ą 0. l
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To finish the proof of Theorem 2.1 it remains to show that (3) implies (1). The main
idea here is to derive a contradiction by constructing an upper bound on the inequal-
ity (2.1.1) that vanishes in the limit. Together with Lemma 2.9, the next proposition
completes the proof of Theorem 2.1.

Proposition 2.11. Let pMi, giqiPN be a collapsing sequence of A-regular manifolds in
Mpn, dq converging to a compact metric space Y in the Gromov-Hausdorff topology. Sup-
pose that for each i P N, injMipxq ă π for all x P Mi and that the metric gi is invariant.
If there exist positive constants r and C such that

C ď
volpBMi

r pxqq

injMipxq
(2.11.1)

for all x PMi and all i P N, then dimHauspY q “ n´ 1.

Proof. Let pMi, giqiPN be a collapsing sequence inMpn, dq such that the Gromov-Hausdorff
limit Y satisfies n´dimHauspY q “: k ě 2. Assume further that there are positive numbers
r and C such that (2.11.1) holds for all x PMi and i P N.

By Theorem 1.32 there is a closed set S Ă Y with dimHauspSq ď dimHauspY q ´ 3 such
that Ŷ :“ Y zS is a Riemannian orbifold.

Moreover, it follows from Corollary 1.29 that the second fundamental form of the
Riemannian submersion f̃i : pFMi, g

F
i q Ñ pỸ , h̃iq is uniformly bounded by a constant

C̃T pnq, where gFi is the metric induced by the metric gi and a biinvariant metric on Opnq.
Considering the commutative diagram (1.29.1), it follows that for any r ą 0 there is a
constant C1pr, n, C̃T q such that

volpBMi
r pxqq ď C1 volpBYi

r pfipxqqq volpF i
fipxq

q

for any x PMi, i P N. Here, Yi stands for the metric space pY, hiq, where hi is the quotient
metric of pỸ , h̃iq{Opnq.

Let p P Ŷ be a regular point, i.e. p has an open neighborhood that is diffeomorphic
to an open manifold. Then, there is a κ ą 0 such that BYi

κ ppq is an open Riemannian
manifold for all i P N.

Now the maps fi restricted to the preimage f´1
i

`

BYi
κ ppq

˘

are Riemannian submersions
between manifolds for all i P N. Since the T -tensor of the Riemannian submersions f̃i is
uniformly bounded, by Corollary 1.29 it follows that the T -tensor of fi restricted to the
preimage of BYi

κ ppq is also uniformly bounded by a constant CT .
As the sequence pMi, giqiPN only consists of A-regular manifolds, we can extract a

subsequence, denoted by pMi, giqiPN, such that the Riemannian metrics pf̃iq˚pgFi q on Ỹ
converge in C8. Thus, the metrics pfiq˚pgiq converge in C8 on BY

κ ppq. In particular, the
sectional curvature on BY

κ ppq can be uniformly bounded in i. Therefore, it follows from
O’Neill’s formula, B.7.3, that the A-tensor is uniformly bounded in norm by a constant
CA on BY

κ ppq.
Since injMipxq ă π, there is a non contractible geodesic loop γ based at x P F i

p such
that lpγq “ 2 injMipxq. We observe that for all i sufficiently large, the assumptions of
Proposition 2.4 are fulfilled. Hence, there is an I P N such that for all i ě I,

injpF i
pq ď

`

1` τpinjMipxq|k, CT , CAq
˘

¨ injMipxq “: C2 injMipxq. (2.11.2)
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By O’Neill’s formula, B.7.1, it follows that

| secF
i
p | ď | secMi | ` 2C2

T “: K2.

Therefore, we can apply [HK78, Corollary 2.3.2], to obtain

volpF i
pq ď C3pkq injpF i

pq

ˆ

sinhpdiampF i
pqKq

K

˙k´1

.

Together with (2.11.2) we conclude

C ď
volpBMi

r pxqq

injMipxq

ď
C1 volpBYi

r ppqq volpF i
pq

injMipxq

ď

C1 volpBYi
r ppqq

˜

C3pkq injpF i
pq

ˆ

sinhpdiampF ipqKq

K

˙k´1
¸

injMipxq

ď C1C2C3 volpBYi
r ppqq

˜

sinh
`

diampF i
pqK

˘

K

¸k´1

.

As pMi, giqiPN is a collapsing sequence, limiÑ8 diampF i
pq “ 0. In particular, since k ě 2

by assumption, it follows that

lim
iÑ8

ˆ

sinhpdiampF i
pqKq

K

˙k´1

“ 0.

Hence, we obtain in the limit i Ñ 8 that C ď 0 which contradicts our assumption that
C is a positive constant. l

As an example we consider Berger’s example of the collapsing Hopf fibration (see
Example 1.14) and show that the characterization of Theorem 2.1 applies.

Example 2.12. Consider the collapsing sequence pS3, giqiPN from Example 1.14 whose
Gromov-Hausdorff limit pS2, hq is the round two-sphere of radius 1

2
. It is easy to check

that the Hopf maps fi : pS3, giq Ñ pS2, hq are totally geodesic Riemannian submersions
with uniformly bounded A-tensors. Let r “ π, and x P f´1

i ppq “: F i
p. Then

volpS3, giq “ volpBgi
π pxqq “ volpF i

pq volpBh
π
2
ppqq “

2π

i
volpS2, hq “

2π2

i
.

Therefore, we derive for r “ π,

lim
iÑ8

volpBgi
π pxqq

injgipxq
“ lim

iÑ8

2π2

i
π
i

“ 2π “ 2 volpS2, hq.
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We conclude this chapter, by examining the following subset ofMpn, dq.

Definition 2.13. For given positive numbers n, d, and C, we defineMpn, d, Cq to be the
set of all isometry classes of closed Riemannian manifolds pM, gq inMpn, dq satisfying

C ď
volpMq

injpMq
.

By Theorem 2.1 and the following lemma it follows that the closure CMpn, d, Cq of
Mpn, d, Cq with respect to the Gromov-Hausdorff distance only consists of n-dimensional
Riemannian manifolds and pn ´ 1q-dimensional Riemannian orbifolds. For simplicity we
consider each limit of a sequence inMpn, d, Cq as an orbifold and understand a manifold
as a special case.

Lemma 2.14. Let pM, gq P Mpn, dq with injpxq ă π
2
for all x P M . Then there is a

constant C :“ CpmaxxPM injpxq, dq such that for all x, y PM ,

C´1 injpxq ď injpyq ď C injpxq.

Proof. The idea of this proof is to find a constant C 1 such that

|D injpxq| ď C 1 injpxq (2.14.1)

holds for all x PM . Here we interpret the injectivity radius as a map inj : M Ñ R. Then
it follows from this inequality that for all x, y PM ,

injpyq ď injpxq ¨ eC
1dpx,yq, (2.14.2)

where dpx, yq denotes the geodesic distance between x and y. Since diampMq ď d the
lemma is an immediate consequence of (2.14.2).

To construct a constant C 1 as in (2.14.1) we consider the map

F : TM ÑM ˆM,

px, vq ÞÑ px, expxpvqq.

Since | secM | ď 1,

sinp|v|q

|v|
|w| ď |pDv exppqpwq| ď

sinhp|v|q

|v|
|w|. (2.14.3)

By assumption injpxq ă π
2
. Thus, the injectivity radius is everywhere strictly smaller

than the conjugate radius, which is bounded from below by π. Hence, for every x P M
there is a geodesic loop γ with lpγq “ 2 injpMq. In particular, for every x PM there is at
least one v P TxM with expxpvq “ x and |v| “ 2 injpxq.

Thus, let px0, v0q P TM be such that expx0
pv0q “ x0 and |v0| “ 2 injpx0q. Then,

F px0, v0q “ px0, x0q. Since BF
Bv

is invertible by (2.14.3), it follows by the implicit function
theorem that there is a small open neighborhood U Ă M of x0 and a map h : U Ñ TM
such that hpx0q “ v0 P Tx0M and F px, hpxqq “ px, xq for all x P U . Furthermore, it follows
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from the implicit function theorem that we can bound the derivative of the function h as
follows:

|∇h| ď |pDvF q
´1
px,hpxqq||DxFpx,hpxqq|

“ |pDhpxq expxq
´1
||hpxq|

ď
|hpxq|

sinp|hpxq|q
|hpxq|.

Next, we observe that for every point x0 P h and direction ξ P Tx0M , |ξ| “ 1 there is
a v0 P Tx0M such that the corresponding implicit function h satisfies

|ξpinjq| “
1

2

ˇ

ˇ

ˇ
ξp|h|q

ˇ

ˇ

ˇ
.

Hence, we conclude that

|D injpxq| “
1

2

ˇ

ˇ

ˇ
dp|hpxq|q

ˇ

ˇ

ˇ

ď
1

2
|∇hpxq|

ď
1

2

|hpxq|

sinp|hpxq|q
|hpxq|

ď

ˆ

max
yPM

2 injpyq

sinp2 injpyqq

˙

¨ injpxq “: C 1 injpxq.

In the second line we used Kato’s inequality, which states that any section S of a smooth
Riemannian vector bundle E ÑM satisfies |d|S|| ď |∇S| (see for instance [CGH00]). l

For later use we want to remark that the closure CMpn, d, Cq of Mpn, d, Cq has a
dense subspace that only consists of smooth elements, as defined in [Fuk88, Definition
0.4].

Definition 2.15. An element Y of the closure of Mpn, dq is smooth if for any p P Y
there is a neighborhood U of p and a compact Lie group Gp with a faithful representation
into the orthogonal group Opnq such that U is isometric to the quotient V {Gp

for a
neighborhood V of 0 in Rm together with a Gp-invariant smooth Riemannian metric ḡ.

This observation is necessary because we want to use the following lemma due to
Fukaya (c.f. [Fuk88, Lemma 7.8]).

Lemma 2.16. Let pMi, xiqiPN be a sequence of pointed manifolds in the dGH-closure of
Mpn, dq converging to a smooth element pY, pq. Suppose that the sectional curvature of
Mi at xi are unbounded. Then the dimension of the group Gp, defined in Theorem 1.17,
is positive.

Combining this with Proposition 1.31 we conclude the following properties of the set
CMpn, d, Cq.
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Theorem 2.17. Any sequence pMi, giqiPN in Mpn, d, Cq contains a subsequence that ei-
ther converges to an n-dimensional closed Riemannian manifold in the C1,α-topology or
to a compact pn´ 1q-dimensional Riemannian orbifold pY, hq with a C1,α-metric h in the
Gromov-Hausdorff topology. Furthermore, there are positive constants v :“ vpn, d, Cq and
K :“ Kpn, d, Cq such that any element Y in CMpn, d, Cq with dimpY q “ pn´ 1q satisfies
} secY }L8 ď K and volpY q ě v.

Proof. Let pMi, giqiPN be a sequence inMpn, d, Cq. Then there exists by Theorem 1.4 a
dGH-convergent subsequence converging to a compact metric space Y .

If dimpY q “ n then the injectivity radius of the manifolds Mi is uniformly bounded
from below by a constant ι. Thus, this sequence lies inMpn, d, ιq and the claim follows
from Theorem 1.9.

If dimpY q ă n, it follows from Lemma 2.14 and Theorem 2.1 that dimpY q “ pn ´ 1q.
Thus, Y is a Riemannian orbifold by Proposition 1.31. In particular, it follows from
Theorem 1.32 that Y has a C1,α-metric h. This proves the first part of the theorem.

For the second part, we assume that there is a sequence pYi, hiqiPN of pn´1q-dimensional
Riemannian orbifolds in CMpn, d, Cq such that there is a sequence of points pi P Yi where
the sectional curvatures are unbounded as iÑ 8. Without loss of generality, we assume
that the metrics hi are smooth for all i P N. As each element Yi can be realized as the limit
space of a codimension one collapse inMpn, dq, there is a subsequence pYiqiPN converging
to an element Y8 in CMpn, d, Cq and a point p8 with unbounded sectional curvature.
Since smooth elements, see Definition 2.15, are dense in the closure of Mpn, d, Cq, we
assume without loss of generality that Y8 is a smooth element. By a diagonal sequence
argument there is a sequence pMj, gjqiPN inMpn, d, Cq converging to Y8. Thus, it follows
from Theorem 2.1 and Lemma 2.14 that Y8 is an pn´1q-dimensional Riemannian orbifold.
As CMpn, d, Cq is a subset of the dGH-closure ofMpn, dq we can apply Lemma 2.16. It
follows that the group Gp8 has positive dimension. This is a contradiction because the
group Gp8 has to be finite by Proposition 1.31. Consequently, there exists a constant
K :“ Kpn, d, Cq as claimed.

For the volume bound we assume that there exists a sequence pYi, hiqiPN in CMpn, d, Cq
such that dimpYiq “ pn´1q for all i P N and limiÑ8 volpYiq “ 0. We see at once that pYiqiPN
defines a collapsing sequence with limit space Y8. By a diagonal sequence argument we
can construct a converging sequence pMj, gjqjPN inMpn, d, Cq whose limit space Y8 is of
dimension less than pn ´ 1q. But this is a contradiction to Theorem 2.1. In particular,
there is a constant v :“ vpn, d, Cq such that volpY q ě v for all pn´ 1q-dimensional spaces
in CMpn, d, Cq. l





Chapter 3

Riemannian affine fiber bundles

In Chapter 1.2 we have seen that for any sequence pMi, giqiPN in Mpn, dq converging
to a lower dimensional Riemannian manifold pB, hq in the Gromov-Hausdorff topology
there is an index I such that for any i ě I there is a fibration fi : Mi Ñ B such that
the fibers are infranilmanifolds, see Theorem 1.17. Furthermore, there are metrics g̃i on
Mi and h̃i on B such that limiÑ8 }g̃i ´ gi}C1 “ 0, limiÑ0 }h̃i ´ h}8 “ 0 and such that
fi : pMi, g̃iq Ñ pB, h̃iq is a Riemannian affine fiber bundle, see Corollary 1.29 and Remark
1.30. We recall from Definition 1.28 that a fibration f : pM, gq Ñ pB, hq between two
closed Riemannian manifolds is a Riemannian affine fiber bundle if

• f is a Riemannian submersion,

• for each p the fiber Zp :“ f´1ppq is an infranilmanifold with an induced affine parallel
metric ĝp,

• the structure group lies in AffpZq.

Our goal is to study the behavior of Dirac eigenvalues on a collapsing sequence of spin
manifolds in Mpn, dq with smooth limit space. Since Dirac eigenvalues are continuous
under a C1-variation of metrics, see Appendix C, it suffices to study the behavior of Dirac
eigenvalues on the total space of Riemannian affine fiber bundles. For this reason we will
study Riemannian affine fiber bundles in detail in this chapter.

The content of this chapter is a mix of [Roo18c, Section 3 and 4] and [Roo18b, Section
3 and 4] and a preparation for the proofs of the main results regarding the behavior of
Dirac eigenvalues on codimension one collapse [Roo18c] and on collapsing sequences in
Mpn, dq with smooth limit space [Roo18b].

Here and subsequently we fix a Riemannian affine fiber bundle f : pM, gq Ñ pB, hq with
dimpMq “ pn ` kq and dimpBq “ n. In particular, the fibers Z are closed k-dimensional
infranilmanifolds. In the first section we exploit the fact that f is a Riemannian submer-
sion and show via various examples how the geometry of the fiber bundle f : M Ñ B
influences the relation between the Levi-Civita connection on pM, gq and the Levi-Civita
connection on pB, hq. For the second section, we assume in addition that the total space
pM, gq is a spin manifold with a fixed spin structure. First, we discuss whether the spin
structure on M induces a spin structure on the fibers Zp, p P B, and on the base space
B. We show that if the fibers are one-dimensional, i.e. k “ 1 then there is an induced

39
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structure on B. But for k ě 2 we cannot make such a statement without further as-
sumptions. Nevertheless, as the induced metrics on the fibers are affine parallel there is
an induced affine connection ∇aff on the spinor bundle of M . Thus, the notion of affine
parallel spinors is well-defined, see [Lot02a, Section 3]. We will show that the subspace
of affine parallel spinors on M is isometric to the space of spinors of a twisted Clifford
bundle over the base space B. In particular, there is an elliptic first order self-adjoint
differential operator DB on B that is isospectral to the Dirac operator on M restricted to
the space of affine parallel spinors.

3.1 The Geometry of Riemannian affine fiber bundles

Let f : pM, gq Ñ pB, hq be a Riemannian affine fiber bundle. Since f is a Riemannian
submersion TM “ H‘V , where H is the horizontal distribution isomorphic to f˚TB and
V “ kerpdfq is the vertical distribution. The relations between the curvatures of pM, gq,
pB, hq and the fibers pZp, ĝpq, p P B, are given by O’Neill’s formulas, see for instance
Theorem B.6. These formulas involve the two fundamental tensors T and A, see (B.4.1)
for the definition. In the remainder of this chapter many calculations are carried out in a
special local orthonormal frame defined as follows:

Definition 3.1. Let f : pM, gq Ñ pB, hq be a Riemannian affine fiber bundle. A local
orthonormal frame pξ1, . . . , ξn, ζ1, . . . , ζkq around a point x PM is called a split orthonor-
mal frame if pξ1, . . . , ξnq is the horizontal lift of a local orthonormal frame pξ̌1, . . . , ξ̌nq
around the point p “ fpxq P B and pζ1, . . . , ζkq are locally defined affine parallel vector
fields tangent to the fibers.

Here and subsequently we label the vertical components a, b, c, . . ., and the horizontal
components α, β, γ, . . .. The Christoffel symbols with respect to a split orthonormal frame
pξ1, . . . , ξn, ζ1, . . . , ζkq can be calculated simply with the Koszul formula:

Γcab “ Γ̂cab,

Γαab “ ´Γbaα “ gpT pζa, ζbq, ξαq,

Γbαa “ gprξα, ζas, ζbq ` gpT pζa, ξαq, ζbq,

Γaαβ “ ´Γβαa “ ´Γβaα “ gpApξα, ξβq, ζaq,

Γγαβ “ Γ̌γαβ.

(3.1.1)

Here Γ̂cab are the Christoffel symbols of the fiber pZ, ĝq with respect to pζ1, . . . , ζkq, see
(A.0.1), and Γ̌γαβ are the Christoffel symbols of pB, hq with respect to pξ̌1, . . . , ξ̌nq. For
later use we need to consider the following two operators characterized by their action on
vector fields X, Y .

∇Z
XY :“

`

∇XV Y V
˘V
,

∇V
XY :“

`

∇XHY V
˘V
.

We observe that for each p P B, ∇Z restricted to a fiber Zp is the Levi-Civita connection
with respect to the induced metric ĝp on Zp. Since ĝp is by assumption affine parallel,
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it follows that ∇Z preserves the space of affine parallel vector fields. The difference
Z :“ ∇Z ´ ∇aff is a one-form with values in EndpTZq, where we view TZ as a vector
bundle over M . We observe that Z “ 0 if and only if the induced metric ĝp is flat for all
p P B.

The operator ∇V can be interpreted as a connection of the vertical distribution V in
horizontal directions. Since the metric g is affine parallel it is immediate that ∇V also
preserves the space of affine parallel vector fields.

As the space of affine parallel vector fields on an infranilmanifold is finite dimensional,
see Appendix A, there is a finite dimensional vector bundle P over B such that, for
any p P B, the fiber Pp is given by the space of affine parallel vector fields of the fiber
Zp “ f´1ppq. It follows that P is a well-defined vector bundle. By the discussion above,
it follows that Z descends to a well-defined operator on P and ∇V induces a connection
on P . In addition, there is an A P Ω2pB,P q characterized by

ApX, Y q “ ApX̃, Ỹ q,

for any vector fields X, Y on B. Here X̃, Ỹ denote the horizontal lifts of X and Y .
It will be shown that exactly these three operators, ∇V , Z, and A contribute ad-

ditionally to the limit of Dirac operators on a collapsing sequence of spin manifolds in
Mpn` k, dq with smooth n-dimensional limit space. To ensure the continuity of the cor-
responding spectra, we will choose subsequences such that these three operators converge
in the C0,α-topology for any α P r0, 1q. Our strategy is to prove uniform a priori C1pBq-
bounds. Then it follows from the compactness of the embedding C1 ãÑ C0,α, for α P r0, 1q
that there is a subsequence such that these three operators ∇V , Z, and A converge in
C0,α for any α P r0, 1q. For a fixed Riemannian affine fiber bundle f : M Ñ B, the
C1pBq-bounds on ∇V , Z, and A will depend on the following three bounds:

}A}8 ď CA,

}T }8 ď CT ,

}RM
}8 ď CR.

We show in the following lemma that such constants exist uniformly for any sequence
pMi, giqiPN inMpn` k, dq converging to an n-dimensional Riemannian manifold pB, hq.

Lemma 3.2. Let pMi, giqiPN be a sequence inMpn`k, dq converging to an n-dimensional
Riemannian manifold pB, hq. Then there is an index I such that for all i ě I there are
metrics g̃i on Mi and h̃i on B such that fi : pMi, g̃iq Ñ pB, h̃iq is a Riemannian affine
fiber bundle and

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.
(3.2.1)

In particular, there is a positive constant CRpnq, such that | secg̃i | ď CR for all i ě I.
Moreover, there are positive constants CApn, k,Bq, CT pn ` kq such that the fundamental
tensors Ai and Ti of the Riemannian submersion fi : pMi, g̃iq Ñ pB, h̃iq are uniformly
bounded in norm, i.e. for all i ě I,

}Ai}8 ď CA,

}Ti}8 ď CT .
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Proof. Applying Corollary 1.29, see also Remark 1.30, there is an index I such that for
all i ě I there are metrics g̃i on Mi, and h̃i on B such that fi : pMi, g̃iq Ñ pB, h̃iq is a
Riemannian affine fiber bundle. By Lemma 1.27, the metrics pg̃iqiěI and ph̃iqiěI satisfy
(3.2.1). Moreover, there is a positive constant CRpnq such that | secg̃i | ď CR for all i ě I,
see e.g. Remark 1.30.

We recall from Theorem 1.21 that for all i ě I there is a Riemannian manifold pB̃, h̃Fi q
with an isometric Opn` kq-action such that B̃{Opn` kq is isometric to pB, h̃iq. Further-

more, there is a Λ1pn ` kq ą 0 such that | sech̃
F
i | ď Λ1 for all i ě I, see for instance

Remark 1.22. Since B̃{Opn` kq is a Riemannian manifold, there is a Λ2pn ` k,Bq ą 0

such that the sectional curvature of pB, h̃iq is uniformly bounded, i.e. | sech̃i | ď Λ2 for all
i ě I. Thus, it follows via O’Neill’s formula, B.7.3, that

}Ai}
2
8 ď

npn´ 1q

6
p| secg̃i | ` | sech̃i |q ď

npn´ 1q

6
pCRpnq ` Λ2q “: C2

A.

The uniform bound on the T -tensor follows directly from Corollary 1.29. l

In the remainder of this section we prove C1pBq bounds for ∇V , Z, and A on a fixed
Riemannian affine fiber bundle f : pM, gq Ñ pB, hq. As before, we set dimpMq “ pn` kq,
dimpBq “ n.

First we deal with ∇V . We denote by pξ1, . . . , ξnq the horizontal lift of a local or-
thonormal frame pξ̌1, . . . , ξ̌nq of B. Let pe1, . . . , ekq be a locally affine parallel frame for
the vertical distribution V such that rξα, eas “ 0 for all α P t1, . . . , nu. We write x., .y for
the locally defined metric on V characterized by xea, eby “ δab. There is a positive definite
symmetric operator xW satisfying

gpxWU, V q “ xU, V y,

for all vertical vector fields U, V . We consider its unique positive definite square root
W :“

a

xW . Then,

gpU, V q “ xW pUq,W pV qy (3.2.2)

holds for all vertical vector fields U, V . Since the induced metric on the fiber is affine
parallel, it follows that W is affine parallel as well. Setting ζa :“ W´1peaq it is immediate
that pξ1, . . . , ξn, ζ1, . . . , ζkq is a split orthonormal frame. A short computation shows that

gpT pζa, ξαq, ζbq “
1

2
xpW´1ξαpW q ` ξαpW qW

´1
qea, eby. (3.2.3)

Hence,

Γbαa “ gprξα, ζas, ζbq ` gpT pζa, ξαq, ζbq

“ gpξαpW
´1
qea, ζbq `

1

2
xpW´1ξαpW q ` ξαpW qW

´1
qea, eby

“
1

2
xpW´1ξαpW q ´ ξαpW qW

´1
qea, eby “: xWξαea, eby.
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By abuse of notation, we use the same letter W for the connection one-form of ∇V . As
discussed above ∇V induces a well-defined connection on the vector bundle P Ñ B. To
show that for a collapsing sequence pMi, giqiPN inMpn` k, dq as in Lemma 3.2 there is a
subsequence such that p∇ViqiPN converges in C0,α for any α P r0, 1q, it suffices to bound
the norm of W and of its derivatives XpWq for basic vector fields X, i.e. X is horizontal
and projectable.

Lemma 3.3. Let f : M Ñ B be a Riemannian affine fiber bundle such that

}T }8 ď CT ,

}A}8 ď CA,

}RM
}8 ď CR.

Then,

}WX}8 ď 2CT }X},

}XpWq}8 ď CpCT , CA, CRq}X},

for any basic vector field X.

Proof. It suffices to do all calculations pointwise. Hence, let pξ1, . . . , ξn, ζ1, . . . , ζkq be a
split orthonormal frame around a fixed point x PM with ζa “ W´1ea, as above. Clearly,
W can be viewed as a field of symmetric positive definite matrices.

For the first inequality, we use (3.2.3) to calculate

|T |2 “
n
ÿ

α“1

k
ÿ

a,b“1

gpT pζa, ξαq, ζbq
2

“
1

4

n
ÿ

α“1

k
ÿ

a,b“1

xpξαpW qW
´1
`W´1ξαpW qqea, eby

2

“
1

4

n
ÿ

α“1

|ξαpW qW
´1
`W´1ξαpW q|

2

“
1

2

n
ÿ

α“1

tr
`

pW´1ξαpW qq
2
˘

` tr
`

W´2ξαpW q
2
˘

.

As W´1 and ξαpW q are symmetric, it follows that

tr
`

W´2ξαpW q
2
˘

“ |W´1ξαpW q|
2
ě 0.

Since W´1 is also symmetric and positive definite it has a unique symmetric positive-
definite square root C, i.e. C2 “ W´1. Replacing W´1 by C2 leads to

tr
`

pW´1ξαpW qq
2
˘

“ trpC2ξαpW qC
2ξαpW q

˘

“ |CξαpW qC|
2
ě 0.

Thus,

1

2

n
ÿ

α“1

}W´1ξαpW q}
2
8 ď }T }

2
8 ď C2

T . (3.3.1)
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Now the first inequality follows immediately from

}Wξα}8 “
1

2
}W´1ξαpW q ´ ξαpW qW

´1
}8 ď 2CT .

For the second inequality we also fix a point x P M . Suppose that pξ1, . . . , ξnq is the
horizontal lift of an orthonormal frame parallel in p “ fpxq. All following calculations are
done with respect to x. We compute

ξβpWξαq “
1

2

´

W´1ξβξαpW q ´ ξβξαpW qW
´1

` ξαpW qW
´1ξβpW qW

´1
´W´1ξβpW qW

´1ξαpW q
¯

.

By the inequality (3.3.1), it remains to bound the second derivatives.
A straightforward calculation shows that

gpp∇ξβT qpζa, ζbq, ξαq “
1

2
x

´

ξβξαpW qW
´1
`W´1ξβξαpW q

` ξβpW qW
´1ξαpW qW

´1

´W´1ξβpW qW
´1ξαpW q

´ ξβpW qW
´1W´1ξαpW q

`W´1ξαpW qξβpW qW
´1

¯

ea, eby

(3.3.2)

for all 1 ď a, b ď k. Since ξβξαpW q “ ξαξβpW q, it follows from the inequality (3.3.1) that

χα,β,i,j :“ gpp∇ξαT qpζi, ζjq, ξβq ´ gpp∇ξβT qpζi, ζjq, ξαq

is bounded by

|χα,β,i,j| ď 8C2
T .

Next, we apply the identity B.8.16 to conclude that

χα,β,i,j “ gpp∇ζiAqpξβ, ξαq, ζjq ` gpp∇ζjAqpξβ, ξαq, ζiq.

Inserting this equality in the identity B.6.4 we obtain

gpRM
pζj, ζiqξβ, ξαq “ gpp∇ζiAqpξβ, ξαq, ζjq ´ gpp∇ζjAqpξβ, ξαq, ζiq

` gpApξβ, ζjq, Apξα, ζiqq ´ gpApξβ, ζiq, Apξα, ζjqq

´ gpT pζj, ξβq, T pζi, ξαqq ` gpT pζi, ξβq, T pζj, ξαqq

“ 2gpp∇ζiAqpξβ, ξαq, ζjq ´ χα,β,i,j

` gpApξβ, ζjq, Apξα, ζiqq ´ gpApξβ, ζiq, Apξα, ζjqq

´ gpT pζj, ξβq, T pζi, ξαqq ` gpT pζi, ξβq, T pζj, ξαqq.

Thus,

|gpp∇ζiAqpξβ, ξαq, ζjq| ď
1

2
CR ` 5C2

T ` C
2
A “: C1.
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Using the formula B.6.3 we conclude

gpRpζj, ξβqξα, ζiq “ gpp∇ξβT qpζi, ζjq, ξαqq ´ gpT pζj, ξβq, T pζi, ξαqq

` gpp∇ζiAqpξβ, ξαq, ζjq ` gpApξβ, ζjq, Apξα, ζiqq.

Hence,

|gpp∇ξβT qpζi, ζjq, ξαqq| ď CR ` C
2
T ` C

2
A ` C1 “: C2.

Together with the inequality (3.3.1), we conclude from (3.3.2) that

}W´1ξβξαpW q ` ξβξαpW qW
´1
}8 ď C2 ` 4C2

T :“ C3.

Using the same strategy as in the proof of the inequality (3.3.1), it follows that

}W´1ξβξαpW q}8 ď C3.

Collecting everything so far, the claim follows by linearity and from the inequality

}ξβpWξαq}8 ď C3 ` 2C2
T . l

Remark 3.4. The connection ∇V is gauge equivalent to the trivial connection if and only
if the holonomy HolpV ,∇Vq is trivial, see for instance [Bau14, Section 4.3].

In the following examples we show that ∇V can be gauge equivalent to the trivial
connection although the T -tensor is nontrivial.

Example 3.5. Let M “ B ˆ Tk be the trivial Tk-bundle over a closed n-dimensional
Riemannian manifold pB, hq. In this situation the vertical distribution V is the trivial
vector bundle B ˆ Rk. For any i P N we endow M with the Riemannian product metric

gi :“ h`
1

i2
u2ĝ,

where u : B Ñ R is a fixed smooth non constant function and ĝ is the standard flat
metric on Tk. Then pM, giqiPN is a collapsing sequence with bounded sectional curvature
and diameter. Consider the Riemannian submersions fi : pM, giq Ñ pB, hq. The fibers
are embedded flat tori and the horizontal distribution is integrable for all i P N. The
T -tensor is given by

TipU, V q “
gradpuq

u
gipU, V q ‰ 0

for any two vertical vectors U , V and any i P N. In particular, the T -tensor is nontrivial
for all i P N. We claim that the induced connection ∇V is trivial with respect to an
isometric trivialization. To see this claim, we adapt the notation of Lemma 3.3. Let
pe1, . . . , enq be a global orthonormal vertical frame on pM, gq such that rX, eis “ 0 for all
basic vector fields X and all i P t1, . . . , ku. By construction, it follows that pe1, . . . , ekq is
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a global orthogonal vertical frame for all i P N. With respect to this orthogonal vertical
frame, Wi, defined as in (3.2.2), is given by

Wi “
u

i
Id .

Hence,

pWiqX “
1

2
pW´1

i XpWiq ´XpWiqW
´1
i q

“
1

2

ˆ

i

u

Xpuq

i
´
Xpuq

i

i

u

˙

Id

“ 0.

Therefore, Wi “ 0 for all i P N, although the T -tensor is nontrivial. In particular, ∇V is
the trivial connection on the trivial vector bundle V “ B ˆ Rk.

Next, we give an example of a collapsing sequence such that the corresponding con-
nections ∇Vi do not converge to a connection that is gauge equivalent to the trivial
connection.

Example 3.6. Consider the two-dimensional torus T2 and choose an arbitrary nontrivial
element of AutpT2q – GLp2,Zq, e.g.

H :“

ˆ

2 1
1 1

˙

.

Let C :“ r0, 1s ˆ T2 be the cylinder over T2 and set

M :“ Cä„,

where we identify p0, xq with p1, Hxq for all x P T2. This defines a nontrivial T2-bundle
f : M Ñ S1. Note that f : M Ñ S1 is not a T2-principal bundle. Using a partition of
unity we can find a Riemannian metric g “ h` ĝ onM such that h is the standard metric
on S1 and pĝpqpPS1 is a family of flat metrics on T2. Then pM, giqiPN with gi :“ h ‘ 1

i2
ĝ

defines a collapsing sequence with bounded sectional curvature and diameter such that
the vertical distribution Vi is nontrivial for all i P N. In particular, ∇Vi is never gauge
equivalent to the trivial connection.

Next, we take a look at Z “ ∇Z ´ ∇aff P Ω1pM,EndpTZqq. By construction, ∇Z

restricted to a fiber Zp is the Levi-Civita connection of pZp, ĝpq, where ĝp is the induced
affine parallel metric. Moreover, Z “ 0 if and only if the induced metric ĝp is flat for all
p P B. The following example shows that for a collapsing sequence of Riemannian affine
fiber bundles with non flat fibers the one-form Z does not have to vanish in the limit.

Example 3.7. Let M “ Γz
N be the nilmanifold, where N is the 3-dimensional Heisen-

berg group

N :“

$

&

%

¨

˝

1 x z
0 1 y
0 0 1

˛

‚: x, y, z P R

,

.

-
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and

Γ :“

$

&

%

¨

˝

1 x z
0 1 y
0 0 1

˛

‚: x, y, z P Z

,

.

-

.

The Lie algebra n of N is given by

n :“

$

&

%

¨

˝

0 x z
0 0 y
0 0 0

˛

‚: x, y, z P R

,

.

-

.

We fix the basis

X :“

¨

˝

0 1 0
0 0 0
0 0 0

˛

‚, Y :“

¨

˝

0 0 0
0 0 1
0 0 0

˛

‚, Z :“

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚

and let X˚, Y ˚, Z˚ be the dual basis. We observe that the Lie brackets are given by

rX, Y s “ Z, rX,Zs “ 0, rY, Zs “ 0.

For any i P N we consider the affine parallel metric

gi :“
1

i2
X˚

¨X˚
`

1

i2
Y ˚ ¨ Y ˚ `

1

i4
Z˚ ¨ Z˚.

At this point we want to remark that this construction is exactly the inhomogeneous
scaling that we introduced in the example of collapsing nilpotent Lie groups, Example
1.20. It is not hard to check that pM, giqiPN defines a collapsing sequence with bounded
curvature and diameter that converges to a point as i Ñ 8. For each i P N we consider
the orthonormal frame pe1, e2, e3q defined by

e1 “ iX, e2 “ iY, e3 “ i2Z.

The Koszul formula shows that the Christoffel symbol Γ3
12piq “

1
2
for all i P N. Therefore,

the Levi-Civita connection ∇Zi does not converge to the affine connection ∇aff as iÑ 8,
i.e. Zi does not vanish in the limit. That Zi “ Z1 for all i P N does also follow from the
fact that

pM, g1q Ñ pM, giq ,
¨

˝

1 x z
0 1 y
0 0 1

˛

‚ ÞÑ

¨

˝

1 ix i2z
0 1 iy
0 0 1

˛

‚,

is an i4-fold isometric covering.

Since M Ñ B is a Riemannian affine fiber bundle, the induced metric ĝp on the fiber
Zp is affine parallel. Therefore, the space of affine parallel vector fields is invariant under
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the action of Z P Ω1pM,EndpTZqq, where we view TZ as a vector bundle over M . We
recall the vector bundle P Ñ B, where for any p P B the fiber Pp is given by the space of
affine parallel vector fields on the fiber Zp of f : M Ñ B. As the action of Z preserves the
space of affine parallel vector fields, there is an induced operator Z on the vector bundle
P Ñ B. Further, we want to remark that the actions of ∇Z and Z coincide on the space
of affine parallel vector fields.

Lemma 3.8. Let f : M Ñ B be a Riemannian affine fiber bundle such that

}T }8 ď CT ,

}A}8 ď CA,

}RM
}8 ď CR.

Then

}Z}8 ď Cpk, CT , CRq,

}XpZq}8 ď Cpk, Ct, CA, CRq}X},

for all basic vector fields X.

Proof. Let pζ1, . . . , ζkq be a local orthonormal vertical frame such that ζ1, . . . , ζk are affine
parallel. Their structural coefficients τ cab are defined via

rζa, ζbs “
k
ÿ

c“1

τ cabζc.

These are the structural coefficients of the Lie algebra n of the connected and simply-
connected nilpotent Lie group N that covers Z. We recall from (3.1.1) and (A.0.1) that

Γcab “ Γ̂cab “
1

2

`

τ cab ´ τ
b
ac ´ τ

a
bc

˘

.

By [Lot02c, Lemma 1] we have

k
ÿ

a,b,c“1

pτ cabq
2
“ ´4 scalpZq.

Thus,

}Z}2 “
k
ÿ

a,b,c“1

pΓcabq
2

“
3

4

k
ÿ

a,b,c“1

pτ cabq
2
`

1

2

k
ÿ

a,b,c“1

pτ bacτ
a
bc ´ τ

c
abτ

b
ac ´ τ

c
abcτ

a
bcq

“ ´3 scalpZq,
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because
řk
b,c“1 τ

c
abτ

b
ac “ 0 since n is nilpotent. The first inequality follows from O’Neill’s

formula, B.7.1,

| scalpZq| ď
ÿ

a,b“1

| secZpζa, ζbq|

“
ÿ

a,b“1

| secMpζa, ζbq ´ |T pζa, ζbq|
2
` gpT pζa, ζaq, T pζb, ζbqq|

ď k2
pCR ` 2C2

T q.

The second inequality is also proven in local coordinates. First we observe that

|XpZq|2 “
k
ÿ

a,b,c“1

|XpΓcabq|
2

for any basic vector field X. Since Γcab “ gp∇ζaζb, ζcq it follows that

|XpΓcabq| “ |gp∇X∇ζaζb, ζcq ´ gp∇ζaζb,∇Xζcq|

“ |gpRM
pX, ζaqζb `∇rX,ζasζb `∇ζa∇Xζb, ζcq ´ gp∇ζaζb,∇Xζcq|

“ |gpRM
pX, ζaqζb `∇rX,ζasζb, ζcq ´ gp∇Xζb,∇ζaζcq ´ gp∇ζaζb,∇Xζcq|.

As the Lie bracket rX, ζas is vertical, for any basic vector field X and 1 ď a ď k, we use
Lemma 3.3 to conclude that

|gp∇rX,ζasζb, ζcq| ď |rX, ζas| }Z}
“ |∇V

Xζa ` T pζa, Xq|}Z}
ď 3CT }Z}|X|,

and

|gp∇Xζb,∇ζaζcq| ď |gp∇V
Xζb,∇Z

ζaζcq| ` |gpApX, ζaq, T pζa, ζcqq|

ď p2CT }Z} ` CACT q|X|,

hold for any basic vector field X. Now we combine these inequalities to conclude

|XpΓcabq| ď
´

CR ` 7CT }Z} ` 2CACT

¯

|X|. l

Finally, we consider A P Ω2pB,Pq. On a Riemannian affine fiber bundle f : M Ñ B
this two-form is characterized by the property that pf˚AqpX, Y q “ ApX, Y q for all basic
vector fields X, Y . Recall that for any p P B the fiber Pp of the vector bundle P Ñ B
is the space of affine parallel vector fields of the fiber Zp of the Riemannian affine fiber
bundle f : M Ñ B. In the following example we see that this two-form A can be non
zero while Z and ∇V are trivial.

Example 3.9. Let f : pM, gq Ñ pB, hq be an S1-principal bundle such that f is a
Riemannian submersion with totally geodesic fibers of length 2π. Suppose further that the
curvature form A of the S1-principal bundle is nontrivial. We observe that for any i P N,
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the cyclic subgroup Zi ă S1 acts on M as isometries. Thus, the sequence pM{Zi, giqiPN
converges with bounded sectional curvature and diameter to pB, hq. Here gi is the induced
quotient metric. By construction, the T -tensor and the one-form Z P ΩpTS1q vanish
identically for any i P N. But the A-tensor of the fibration pM{Zi, giq Ñ pB, hq is given
by

AipX, Y q “ ´
1

2
ApX, Y qV,

where X, Y are basic vector fields and V is a vertical vector field of unit length with
respect to the metric gi. In particular, Ai “ A for all i P N.

Lemma 3.10. Let f : M Ñ B be a Riemannian affine fiber bundle. Then there exists
an A P Ω2pB,P q such that f˚ApX, Y q “ ApX, Y q for all basic vector fields X, Y . If in
addition,

}A}8 ď CA,

}T }8 ď CT ,

}RM
}8 ď CR,

then

}A}C1pBq ď Cpk, n, CA, CT , CRq.

Proof. As f : M Ñ B is a Riemannian affine fiber bundle, the induced metrics on the
fibers are affine parallel. Therefore, ApX, Y q is an affine parallel vector field for all basic
vector fieldsX, Y . In particular, there is anA P Ω2pB,P q such that f˚ApX, Y q “ ApX, Y q
for all basic vector fields X, Y .

It remains to bound A in C1pBq. We use a split orthonormal frame, see Definition
3.1. For any pair of basic vector fields X, Y we obtain

pf˚AqpX, Y q “ ApX, Y q “
k
ÿ

a“1

gpApX, Y q, ζaq ζa

“:
k
ÿ

a“1

AapX, Y q ζa

“:
k
ÿ

a“1

pf˚AaqpX, Y q ζa .

Hence,

}A}C1pBq ď

k
ÿ

a“1

p}Aa}8 ` }∇pAaq}8q

ď kCA `
k
ÿ

a“1

}∇pAaq}8.
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We calculate the second term pointwise. Let p P B be arbitrary and x P f´1ppq. Further,
let pξ1, . . . , ξkq be the horizontal lift of a local orthonormal frame

`

ξ̌1, . . . , ξ̌n
˘

that is
parallel in p P B. Using the explicit description of the Christoffel symbols, (3.1.1), we
derive

|∇pAaq|2 “ 1

2

n
ÿ

α,β,γ“1

|p∇ξ̌α
Aaqpξ̌β, ξ̌γq|2

“
1

2

n
ÿ

α,β,γ“1

k
ÿ

a“1

|g
`

p∇ξαAqpξβ, ξγq, ζa
˘

|
2

“
1

2

n
ÿ

α,β,γ“1

k
ÿ

a“1

ˇ

ˇ

ˇ
g
`

RM
pξβ, ξγqξα, ζa

˘

´ g
`

Apξβ, ξγq, T pζa, ξγq
˘

` g
`

Apξγ, ξαq, T pζa, ξβq
˘

` g
`

Apξα, ξβq, T pζa, ξγq
˘

ˇ

ˇ

ˇ

2

ď
1

2

n
ÿ

α,β,γ“1

pCR ` 3CACT q
2.

Here, we used in the first line that
`

ξ̌1, . . . , ξ̌n
˘

is parallel in p and in the third line we
applied the O’Neill formula B.6.5. l

3.2 Spin structures on Riemannian affine fiber bundles
In this section we study Riemannian affine fiber bundles f : pM, gq Ñ pB, hq where pM, gq
is a spin manifold with a fixed spin structure. Let us briefly review the definition of a
spin structure: For any positive integer n the group Spinpnq is a double cover of SOpnq. If
n ě 3, Spinpnq is actually the universal cover of SOpnq. A spin structure on an orientable
Riemannian manifold pM, gq is a Spinpnq-principal bundle PSpinM that defines a double
cover of the oriented orthonormal frame bundle PSOM that is compatible with the group
double cover Spinpnq Ñ SOpnq, i.e.

Spinpnq ˆ PSpinM PSpinM

M .

SOpnq ˆ PSOM PSOM

Locally there is always a double cover of PSOM , but it might not extend to a globally well-
defined Spinpnq-principal bundle over M . The condition for a manifold to be spin is the
vanishing of the second Stiefel-Whitney class which is defined purely topologically. The
spinor bundle ΣM is the associated complex vector bundle of PSpinM and the canonical
complex spinor representation θn : Spinpnq Ñ GLpΣnq where Σn is a vector space with
complex dimension dimCpΣnq “ 2r

n
2 s. The standard literature for spin structures and

spin manifolds is [LM89]. Further good references, we want to mention here, are [Fri97]
and [BHM`15].
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First we consider a fixed Riemannian affine fiber bundle f : M Ñ B and discuss
whether the spin structure on M induces a spin structure on B or on the fibers Zp, p P B.
The main observation of the first subsection is that there is an induced spin structure
on each fiber Zp, p P B. Moreover, we cannot determine whether there is an induced
structure on B if dimpZq “ k ě 2. If k “ 1 then the fibers of the Riemannian affine
fiber bundle f : M Ñ B have to be diffeomorphic to S1. In that special case there is
always an induced structure on B. For instance, if f : M Ñ B is an S1-principal bundle
then there is an induced spin structure on B if the S1-action lifts to PSpinM . Otherwise
there is an induced spinc structure. For the case of B being non orientable we have
similar results with pin structures. Roughly speaking, pin structures can be interpreted
as a generalization of spin structures to non orientable spaces. Since the limit space of a
codimension one collapse in Mpn, dq is a Riemannian orbifold, see Proposition 1.31, we
extend our observation to Riemannian orbifolds in the case k “ 1.

In the second subsection we restrict ourselves to spin structures with affine parallel
spinors. For a Riemannian affine fiber bundle f : M Ñ B the induced metrics on the
fibers are affine parallel. Thus, there is an induced affine connection ∇aff on the spinor
bundle ΣM . Hence, we can consider the space of affine parallel spinors on M . It follows
that the Dirac operator leaves the space of affine parallel spinors invariant. The main
result of the second subsection is that the space of affine parallel spinors is isometric to
the space of sections of a twisted Clifford bundle over the base manifold B. Furthermore,
there is an elliptic first order self-adjoint differential operator DB that is isospectral to
the Dirac operator on M restricted to the space of affine parallel spinors.

3.2.1 Induced structures

Let f : pM, gq Ñ pB, hq be a Riemannian affine fiber bundle with infranil fiber Z. In the
remainder of this section we assume thatM is a spin manifold with a fixed spin structure.
Since any fiber Zp, p P B, is an embedded oriented submanifold with trivial normal
bundle, it follows that there is an induced spin structure on Zp. Moreover, each path
in B connecting two points p, q P B induces an isomorphism between the induced spin
structure on Zp and the induced spin structure on Zq. In particular, the spin structures
on Zp and Zq are equivalent, for all p, q P B. The construction of this isomorphism is
analogous to the construction given in Appendix C. Nevertheless, there is in general no
induced spin structure on B as can be seen in the example of the Hopf fibration S5 Ñ CP2,
c.f. Example 3.16. There are even examples of Riemannian affine fiber bundles M Ñ B
where M is spin and B is non orientable.

Example 3.11. Let M :“ Up1q ˆZ2 S
2, where Z2 acts on Up1q via complex conjugation

and on S2 via the antipodal map. Then M is spin and f : M Ñ RP2 is a nontrivial
S1-bundle over the non orientable manifold RP2.

For this reason, we also consider pin˘ structures. Loosely speaking, pin˘ structures
are a generalization of spin structures to a non orientable setting. In the following, we
briefly sketch the definition and basic properties of pin˘ structures. For further details,
we refer to [KT90] and [Gil89, Appendix A].

The double cover Spinpnq Ñ SOpnq can be extended to a double cover of Opnq in two
inequivalent ways, called ρ` : Pin`pnq Ñ Opnq and ρ´ : Pin´pnq Ñ Opnq. As topological
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spaces Pin`pnq and Pin´pnq are both homeomorphic to Spinpnq \ Spinpnq but the group
structures of Pin`pnq and Pin´pnq are different. To see this, we consider the subgroup
tId, ru Ă Opnq, where r is a reflection along a hyperplane. Then

pρ`q´1
ptId, ruq – Z2 ‘ Z2,

pρ´q´1
ptId, ruq – Z4.

The notion of pin˘ structures is an extension of the definition of spin structures to the
double covers Pin˘pnq Ñ Opnq.

Definition 3.12. A pin˘ structure on an n-dimensional Riemannian manifold pM, gq is
a Pin˘-principal bundle PPin˘M that is a double cover of the orthonormal frame bundle
POM compatible with the group double cover Pin˘pnq Ñ Opnq.

Pin˘pnq ˆ PPin˘M PPin˘M

M .

Opnq ˆ POM POM

Example 3.13.

The real projective space RPn is

$

’

&

’

%

pin`, if n “ 4k,

pin´, if n “ 4k ` 2,

spin, if n “ 4k ` 3.

Similar to spin structures, the existence of a pin˘ structure is a topological prop-
erty characterized by the vanishing of specific Stiefel-Whitney classes. The proof of the
following theorem can be found in [KT90, Lemma 1.3].

Theorem 3.14. A manifold M admits a pin` structure if and only if the second Stiefel-
Whitney class w2pMq vanishes and a pin´ structure if and only if the Stiefel-Whitney
classes satisfy the equation w2pMq ` w1pMq

2 “ 0. The topological condition for a spin
structure is w2pMq “ w1pMq “ 0.

Since the first Stiefel-Whitney class of a manifold M vanishes if and only if M is
orientable it is an immediate consequence of the above theorem that an orientable manifold
is spin if and only if it admits a pin˘ structure.

As we are interested in the question whether the spin structure on the total space M
of a Riemannian affine fiber bundle f : pM, gq Ñ pB, hq induces a spin or pin˘ structure
on B we also consider the interplay between spin and pin˘ structures on short exact
sequences of vector bundles,

0 Ñ E Ñ F Ñ GÑ 0.
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We recall that a short exact sequence of vector bundles splits, i.e. F – E ‘G. Moreover,
it is well-known that the i-th Stiefel-Whitney class wi of the Whitney sum E‘G is given
by

wipE ‘Gq “
i
ÿ

k“1

wipEq Y wi´kpGq,

where Y is the cup product. Together with the above theorem, we conclude the following
lemma, see [Gil89, Lemma A.1.5].

Lemma 3.15. Let

0 Ñ V1 Ñ V2 Ñ V3 Ñ 0

be a short exact sequence of real vector bundles over a manifold M . For any permutation
ti, j, ku of t1, 2, 3u, we have that

(1) if Vi and Vj are spin, there is an induced spin structure on Vk,

(2) if Vi is spin and Vj is pin˘, there is an induced pin¯ structure on Vk,

(3) if Vi is pin˘ and Vj is pin¯ and Vk is orientable, then there is an induced spin structure
on Vk.

Let f : pM, gq Ñ pB, hq be a Riemannian affine fiber bundle and assume that M is
spin. Then we have the following short exact sequence of vector bundles,

0 Ñ f˚TB Ñ TM Ñ V Ñ 0.

Here V “ kerpdfq is the vertical distribution. As TM is by assumption spin, it follows
from Lemma 3.15 that f˚TB is spin if and only if V is spin and that f˚TB is pin˘ if and
only if V is pin¯. But a spin or pin˘ structure on f˚TB does not induce a corresponding
structure on B itself as can be seen in the following example.

Example 3.16. Consider S5 Ñ CP2. Then f˚w2pCP2q P H2pS5,Z2q. But H2pS5,Z2q is
trivial. Hence, f˚w2pCP2q “ 0 although CP2 is not spin.

Nevertheless, if B is spin or pin˘ then the corresponding structure can be pulled back
to f˚TB. Thus, if B is pin˘ and V is pin¯ then there is an induced spin structure on M
by Lemma 3.15.

If k “ 1 the fiber Z of a Riemannian affine fiber bundle has to be diffeomorphic to S1.
As discussed in Chapter 2, a sequence pMi, giqiPN inMpn, dq that converges to a compact
metric space Y with dimpY q ě pn ´ 1q can be characterized by a uniform lower bound
C ď

volpMiq

injpMiq
for all i P N. Furthermore, the limit has to be a Riemannian orbifold, see

Proposition 1.31. We recall the set

Mpn` 1, d, Cq :“

"

pM, gq PMpn` 1, dq : C ď
volpMq

injpMq

*
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of isometry classes of closed Riemannian manifolds from Definition 2.13. Combining
Theorem 2.17 and Corollary 1.29, it follows that for any collapsing sequence pMi, giqiPN
in Mpn ` 1, d, Cq converging to pB, hq in the Gromov-Hausdorff topology, there is, for
any i sufficiently large, an S1-orbifold bundle fi : Mi Ñ B with structure group in
AffpS1q – S1 ¸ t˘1u.

For a fixed S1-orbifold bundle f : M Ñ B with M being spin there are exactly two
cases that can occur. If B is orientable then f : M Ñ B is an S1-principal orbifold
bundle. If B is non orientable then the vertical distribution V has to be isomorphic to
the pullback of the determinant bundle detpTBq of B.

Similar to [Amm98a] and [Mor96] we distinguish between two types of spin struc-
tures on the total space M : The projectable and the non projectable spin structures.
Projectable spin structures and projectable spinors were studied for G-principal bundles
with compact Lie group G in [Mor96, Chapitre 1]. Since, in general, S1 does not act
by isometries we have replaced the spin structure by the larger so-called topological spin
structure P

ĄGL`
M Ñ PGL`M . Here PGL`M is the GL`pnq-principal bundle consisting of

all positively oriented frames and P
ĄGL`

M is a double cover of PGL`M that is compatible
with the corresponding group double cover ĂGL`pnq Ñ GL`pnq, i.e.

ĂGL`pnq ˆ PĄGL`
M P

ĄGL`
M

M .

GL`pnq ˆ PGL`M PGL`M

Definition 3.17. Let M Ñ B be an S1-orbifold bundle with M being spin. Then the
spin structure of M is called projectable if all local S1-actions along the fibers lift to the
topological spin structure.

Remark 3.18. For Riemannian affine fiber bundles f : pM, gq Ñ pB, hq with S1 fibers a
spin structure onM is projectable if and only if there are nontrivial affine parallel spinors.

In the case of an S1-principal bundle f : M Ñ B, where f is a Riemannian submersion,
a projectable spin structure onM induces a spin structure on B, [Amm98a, Section 2]. We
first show that a projectable spin structure on the total space of an S1-principal orbifold
bundle f : M Ñ B induces a spin structure on the orbifold B. To the author’s knowledge,
the first definition of spin orbifolds appeared in [DLM02].

Definition 3.19. An oriented Riemannian orbifold pB, hq is spin if there exists a two-
sheeted cover of the oriented orthonormal frame bundle PSOB such that for any orbifold
chart

´

Ũ Ñ Ũ{GU
– U Ă B

¯

there exists a Spinpnq-principal bundle PSpinŨ on Ũ such

that the spin structure PSpinB|U Ñ PSOB|U is induced by PSpinŨ Ñ PSOŨ .

Hence, the spin structure on a Riemannian orbifold can be understood as a locally
Gp-invariant spin structure on the locally defined smooth cover around p P B. Here, Gp

is the stabilizer group of the Riemannian orbifold pB, hq at p. This requires a lift of the
group Gp of isometries to the spin bundle.
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Definition 3.20. A singular point p P B is said to be spin if there exists a lift rGp

of the group Gp Ă SOpnq that projects isomorphically onto Gp via the double cover
Spinpnq Ñ SOpnq.

From now on, a spin orbifold is a Riemannian orbifold with a fixed spin structure.

Proposition 3.21. Let f : M Ñ B be an S1-principal orbifold bundle. If M is a spin
orbifold with a projectable spin structure then there is an induced spin structure on B. On
the other hand, if B is a spin orbifold then there is an induced projectable spin structure
on M .

Proof. Since all metric spin structures are isomorphic to each other, see Appendix C, we
can assume without loss of generality that f : M Ñ B is a Riemannian submersion, i.e.
S1 acts on M as isometries. The following proof is a locally equivariant version of the
construction given in [Mor96, Chapter 1].

For p P B we consider a local trivialization U around p. The local situation is described
by

S1 ˆ Ũ

pS1 ˆ Ũq{GU
– f´1pUq

Ũ

Ũ{GU
.

It follows that the spin structure on S1 ˆ Ũ is GU invariant.
If the spin structure onM is projectable, i.e. S1-invariant, the spin structure on S1ˆŨ

is S1ˆGU invariant. It follows that the spin structure on M induces a GU -invariant spin
structure on Ũ which in turn defines a spin structure on the quotient U .

On the other hand, if B is a spin orbifold it follows that the spin structure on M in-
duced by the pullback of the spin structure on B has to be S1-invariant, i.e. projectable.l

However, it can happen that a collapsing sequence of spin manifolds converges to a
non orientable space as we have seen in Example 3.11. In that situation we have to modify
the proof of the above proposition.

Proposition 3.22. Let f : M Ñ B be an S1-orbifold bundle where B is a non orientable
Riemannian orbifold. Then any projectable spin structure on M induces a pin´ structure
on B. Conversely, if B is pin´ and M is orientable then there is an induced projectable
spin structure on M .

Proof. As in the proof of Proposition 3.21 we assume that f is a Riemannian submersion.
In our situation it follows that TM – f˚pTB ‘ detpTBqq. If the spin structure on M

is projectable then the quotient PSpinM{S1 induces a spin structure on TB ‘ detpTBq.
Since detpTBq is a non orientable line bundle its first Stiefel-Whitney class is nontrivial
and its second Stiefel-Whitney class vanishes. Thus, detpTBq is pin` by Theorem 3.14.
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Now it is a direct consequence of Lemma 3.15 that there is an induced pin´ structure on
B.

On the other hand, ifB is pin´ then there is an induced spin structure on TB‘detpTBq
by Lemma 3.15. This spin structure pulls back to a projectable spin structure on M . l

Next, we consider an S1-principal orbifold bundle f : M Ñ B such that the spin
structure on M is non projectable. As before, we assume without loss of generality that
S1 acts as isometries. Since the spin structure of M is non projectable the S1-action does
not lift to PSpinM . Nevertheless, the double cover of S1 acts on PSpinM , where we use the
double cover S1 Ñ S1, λ ÞÑ λ2. At this point we want to remark that a non projectable
spin structure on B does not imply that B is not spin. If B is spin, then there exists a
group homomorphism ψ : π1pMq Ñ Z2 such that the composition π1pS

1q ãÑ π1pMq Ñ Z2

is surjective. In this case, we can twist the spin structure on M with ψ to obtain a
projectable spin structure. In short, B is spin if and only if M Ñ B has a square root as
a S1-principal bundle (cf. [Amm98b, Chapter 7.3]). Even if we can not determine whether
B is spin or not, we still have an induced structure on B. In the following lemma we
repeat the proof of [Amm98a, Section 4].

Lemma 3.23. Let f : M Ñ B be an S1-principal orbifold bundle. If M is a spin orbifold
with a non projectable spin structure then there is an induced spinc structure on B.

Proof. Let PSOpnqM be the SOpnq-principal bundle over M consisting of all positively
oriented orthonormal frames whose first vector is vertical. Its preimage defines a Spinpnq-
principal bundle P . Since the spin structure on M is non projectable, it follows that
not the S1-action itself but its double cover acts on P . This S1-action together with the
Spinpnq-action on P induces a free Spincpnq :“ pSpinpnq ˆZ2 S

1q-action on P . Hence,there
is an induced spinc structure on B. l

Conversely, if we have a fixed S1-principal orbifold bundle f : M Ñ B such that B is
spinc, then it does not follow that M is a spin manifold.

Example 3.24. Let M :“ S1ˆCP2 be the trivial S1-bundle over the complex projective
space CP2. It is known that CP2 is spinc but not spin. Since any spin structure on M
would induce a spin structure on CP2, M cannot be spin.

An easy modification of the proof of Lemma 3.23 shows that if f : M Ñ B is an
S1-orbifold bundle such that the spin structure on M is non projectable and B is non
orientable then there is an induced a pinc structure on B, where Pincpnq :“ Pin´pnqˆZ2S

1.

3.2.2 Spin structures with affine parallel spinors

Let f : pM, gq Ñ pB, hq be a fixed Riemannian affine fiber bundle and let Z be the fiber.
In Appendix B we discuss in detail Riemannian submersions whose total space has a fixed
spin structure. In the following, we use the results derived in Appendix B.

We set n :“ dimpBq and k :“ dimpZq. Suppose that pM, gq has a fixed spin structure.
Since f is a Riemannian submersion, we know from Appendix B that

ΣM – f˚p Σ˛ Bq b ΣV ,
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where

Σ˛ B :“

#

ΣB, if n or k is even,
Σ`B ‘ Σ´B, if n and k are odd.

Here ΣB and ΣV are the locally defined spinor bundles of the base manifold B and
the vertical distribution V . We refer to Appendix B for details. Although they might
not be defined globally their tensor product is well-defined on all of M . Furthermore,
Σ`B and Σ´B denote two copies of ΣB where Clifford multiplication γ with vector fields
X P ΓpTBq acts on Σ`B as γpXq and as ´γpXq on Σ´B. We recall the basic properties
of Clifford multiplication in Appendix B. For a thorough introduction to spin geometry
we recommend [LM89,BHM`15].

Since ΣM – f˚p Σ˛ Bq b ΣV , any spinor Φ can locally be written as a finite linear
combination Φ “

ř

l f
˚ϕlbνl. This decomposition allows us to study the influence of the

horizontal and the vertical distributions on the spinors onM . The following formulas are a
special case of the formulas in Lemma B.4. They follow from straightforward calculations
using the local formulas for the spinorial connection, (B.3.1) and the Dirac operator,
(B.3.2).

Lemma 3.25. Let f : pM, gq Ñ pB, hq be a Riemannian affine fiber bundle such that M
has a fixed spin structure. With respect to a split orthonormal frame pξ1, . . . , ξn, ζ1, . . . , ζkq,
see Definition 3.1, any spinor Φ “ f˚ϕb ν satisfies the following identities.

∇M
ξαΦ “ pf˚∇B

ξαϕq b ν ` f
˚ϕb∇V

ξαν `
1

2

n
ÿ

β“1

γpξβqγ pApξα, ξβqqΦ

“: ∇T
ξαΦ`

1

2

n
ÿ

β“1

γpξβqγ pApξα, ξβqqΦ,

∇M
ζaΦ “ f˚ϕb∇Z

ζaν `
1

2

k
ÿ

b“1

γpζbqγ pT pζa, ζbqqΦ`
1

4

n
ÿ

α“1

γpξαqγ pApξα, ζiqqΦ

“: ∇Z
ζaΦ`

1

2

k
ÿ

b“1

γpζbqγ pT pζa, ζbqqΦ`
1

4

n
ÿ

α“1

γpξαqγ pApξα, ζaqqΦ,

DMΦ “
n
ÿ

α“1

γpξαq∇T
ξαΦ`

k
ÿ

a“1

γpζaq∇Z
ζaΦ´

1

2

k
ÿ

a“1

γ pT pζa, ζaqqΦ

`
1

2

n
ÿ

α,β“1
αăβ

γ pApξα, ξβqq γpξαqγpξβqΦ

“: DT Φ`DZΦ´
1

2

k
ÿ

a“1

γ pT pζa, ζaqqΦ`
1

2
γpAqΦ.

Here ∇B, ∇V and ∇Z are the induced connections by the respective connections on TM ,
defined in Section 3.1, and DT , DZ are the associated Dirac operators.

Since for any p P B the induced metric ĝp on the fiber Zp is affine parallel it follows from
the discussion in Appendix A that the affine connection ∇aff induces an affine connection,
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also denoted by ∇aff , on the spinor bundle ΣM . Hence, the space of affine parallel spinors
is well-defined,

Saff :“ tΦ P L2
pΣMq : ∇affΦ “ 0u.

The main goal of this section is to construct an isometry between Saff and the L2-
sections of a twisted Clifford bundle over the base manifold B. We recall from Appendix
A that the space of affine parallel spinors on Z is finite dimensional. In addition, the spin
structure on M induces a spin structure on each fiber Zp, p P B and for all p, q P B the
induced spin structures on Zp and Zq are equivalent. In particular, the dimension of the
space of affine parallel spinors on a fiber Zp is the same for all p P B. Hence, there is a
locally well-defined vector bundle P Ñ B such that for each p, the fiber Pp is given by
the space of affine parallel spinors on Zp with respect to the induced spin structure. In
the next lemma, we construct an isometry in the spirit of [Amm98b, Lemma-Definition
7.2.3].

Lemma 3.26. Let f : M Ñ B be a Riemannian affine fiber bundle such that M is spin.
Then there is an isometry

Q : L2
p Σ˛ B b Pq Ñ Saff .

Moreover, the connection ∇T induces a connection q∇T on Σ˛ B b P. Taking a split
orthonormal frame pξ1, . . . , ξn, ζ1, . . . , ζkq around x, we have the identity

∇M
ξαQpΦ̌qx “ Qpq∇T Φ̌qx `

1

2

n
ÿ

β“1

γpξβqγpApξα, ξβqqQpΦ̌qx ´
ξ̌αpvolpZfpxqqq

2 volpZfpxqq
QpΦ̌qx.

Proof. It follows from the discussion in Appendix B that ΣM – f˚p Σ˛ Bq b ΣV , where
the spinor bundles Σ˛ B and ΣV are in general only defined locally. Let f´1pUq – U ˆZ
be a trivializing neighborhood on which ΣB and ΣV are well-defined. Then any spinor
Φ restricted to f´1pUq can be written as finite linear combination Φ “

ř

l f
˚ϕl b νl. By

linearity it suffices to consider elementary tensors f˚ϕb ν. We observe that

∇aff
pf˚ϕb νq “ f˚ϕb∇affν.

Thus, a spinor is affine parallel if and only if ν, restricted to any fiber, is an affine parallel
spinor of Z. Hence, on any trivializing neighborhood we obtain an isomorphism

Q´1 : Saff
Ñ L2

p Σ˛ B b Pq,

pf˚ϕb νqx ÞÑ
b

volpZfpxqq ϕfpxq b νfpxq,

where νfpxq denotes the restriction of ν to the fiber Zfpxq. Due to the factor
a

volpZfpxqq
it is evident that Q´1 defines an isometry. Here volpZfpxqq is the volume of the fiber Zfpxq
with respect to the induced affine parallel metric ĝfpxq. Since the structure group of the
Riemannian affine fiber bundle f : M Ñ B lies in AffpZq it follows that Q´1 extends to
a well-defined global isometry. Taking its inverse gives the desired map Q.

It follows from the discussion in Chapter 3.1 that Saff is invariant under the action
of ∇T

ξα
for any α P t1, . . . , nu. Hence, there is an induced connection q∇T on Σ˛ B b P .

Using Lemma 3.25 the claimed identity follows from a straightforward calculation. l
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Corollary 3.27. Let f : M Ñ B be a Riemannian affine fiber bundle with a fixed spin
structure on M such that Saff is nontrivial. With respect to a split orthonormal frame
pξ1, . . . , ξn, ζ1, . . . , ζkq, any spinor Φ P Saff satisfies

DMΦ “ Q ˝ ĎT
˝Q´1Φ`

1

2

k
ÿ

a,b,c“1
băc

ΓcabγpζaqγpζbqγpζcqΦ`
1

2
γpAqΦ

“: Q ˝ ĎT
˝Q´1Φ`

1

2
γpZqΦ` 1

2
γpAqΦ.

Here, ĎT is the Dirac operator on Σ˛ B b P associated to the connection ∇̌T .

Proof. Let Φ be an affine parallel spinor. Since f : M Ñ B is a Riemannian affine fiber
bundle, Saff is invariant under the action of the Dirac operator DM . With respect to a
split orthonormal frame pξ1, . . . , ξn, ζ1, . . . , ζkq, see Definition 3.1, we obtain

DMΦ “
n
ÿ

α“1

γpξαq∇ξαΦ`
k
ÿ

i“1

γpζaq∇ζaΦ

“

n
ÿ

α“1

γpξαq∇ξα

`

Q ˝Q´1
pΦq

˘

`
1

4

k
ÿ

a“1

γpζaq

˜

k
ÿ

b,c“1

ΓcabγpζbqγpζcqΦ

¸

´
1

2

k
ÿ

a“1

γpT pζa, ζaqqΦ`
1

4

k
ÿ

a“1

n
ÿ

α“1

γpζaqγpξαqγpApξα, ζaqqΦ

“ Q ˝ ĎT
˝Q´1Φ`

1

2

n
ÿ

α“1

n
ÿ

β“1

γpξαqγpξβqγpApξα, ξβqqQpΦ̌qx

´
1

2
γ

ˆ

gradpvolpZfpxqq

volpZfpxqq

˙

Φ`
1

2

k
ÿ

a,b,c“1
băc

ΓcabγpζaqγpζbqγpζcqΦ

´
1

2

k
ÿ

a“1

γpT pζa, ζaqqΦ`
1

4

k
ÿ

a“1

n
ÿ

α“1

γpζaqγpξαqγpApξα, ζaqqΦ

“: Q ˝ ĎT
˝Q´1Φ`

1

2
γpZqΦ` 1

2
γpAqΦ.

Here we used Lemma 3.25, Lemma 3.26, and the formulas for the Christoffel symbols, see
(3.1.1). The last line follows from the fact (see for instance [GLP99, Lemma 1.17.2]) that

k
ÿ

a“1

T pζa, ζaq “ ´ gradplnpvolpZpqqq. l

If k “ 1 the Riemannian affine fiber bundle f : M Ñ B is an S1-bundle with structure
group in AffpS1q – S1 ¸ t˘1u. From the discussion in Chapter 3.2.1 we know that if
Saff is nontrivial then there is an induced spin structure on B, if B is orientable, and an
induced pin´ structure, if B is non orientable. If B is orientable then P is just the trivial
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complex line bundle. In particular, Σ˛ B b P – Σ˛ B. If B is non orientable we denote
by Σ˛ PB the corresponding pin´ bundle. We consider the embedding

ι : Opnq ãÑ SOpn` 1q,

A ÞÑ

ˆ

detpAq 0
0 A

˙

,

and its lift ι̃ : Pin´pnq ãÑ Spinpn`1q. Let θn`1 : Spinpn`1q Ñ GLpΣn`1q be the canonical
complex spin representation. Then

ΣM “ PSpinM ˆθn`1 Σn`1

– pf˚PPin´pnqpBq ˆι̃ Spinpn` 1qq ˆθn`1 pΣn b Cq
– f˚ Σ˛ PB b f˚pdetpTBq b Cq
“: f˚ Σ˛ PB b f˚ detpTBqC,

where Σ˛ PB is defined similarly to the notation for spin bundles,

Σ˛ PB :“

#

ΣPB, if n is even,
ΣP`B ‘ ΣP´B, if n is odd.

Thus, we obtain the isomorphism Σ˛ B b P – Σ˛ PB b detpTBqC.
Now we fix a Riemannian affine fiber bundle f : pM, gq Ñ pB, hq such that pM, gq is an

pn` kq-dimensional spin manifold and B is a closed n-dimensional Riemannian manifold.
We conclude this section by taking a closer look at elements W P H1,8pΣMq. In the
following proposition we relate them with an affine parallel operator W such that the
difference }W ´W}L8 depends on the derivatives of W and the diameter of the fibers.
The following results will be used in the next chapter to study the eigenvalues of Dirac
operators with symmetric potentials.

Proposition 3.28. Let f : pMn`k, gq Ñ pBn, hq be a Riemannian affine fiber bundle with
fibers Zp :“ f´1ppq, p P B, such that

}T }8 ď CT ,

}RM
}8 ď CR,

and such that pM, gq is spin. For any W P HompΣM,ΣMq there is an affine parallel
operator W, i.e. ∇affW “ 0, such that

}W ´W}L8 ď 2 max
pPB

pdiampZpqq}∇affW }L8

ď 2 max
pPB

pdiampZpqq p}∇W }L8 ` Cpk, CR, CT q}W }L8q .

Proof. First we consider a fixed closed infranilmanifold Z “ Γz
N . Here, N is a connected

and simply-connected Lie group and Γ is a cocompact discrete subgroup of the group
AffpNq – NL ¸ AutpNq, where NL is the group of left-translations and AutpNq is the
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automorphism group. In particular, π : N Ñ Z is the universal cover. Since N is
nilpotent, it has a biinvariant Haar measure µ. It is a general fact, that µ is unique up to
multiplication with a positive constant. Hence, we assume without loss of generality that
µpFq “ 1, where F Ă N is a fundamental domain of Z, i.e. π : F Ñ Z is an isomorphism.

Let W : Z Ñ V be a map from Z into an arbitrary vector space V . Then its pullback
ĂW :“ π˚W : N Ñ V is invariant under the action of Γ. We define

ĂW :“

ˆ
F
pL˚g

ĂW qdµpgq.

By construction ĂW is affine parallel, i.e. left-invariant, since

L˚h
ĂW “

ˆ
F
L˚hL

˚
g
ĂW dµpgq

“

ˆ
F
L˚gh

ĂW dµpgq

“

ˆ
Rh´1 pFq

L˚g
ĂW dµpgh´1

q

“

ˆ
F
L˚g

ĂW dµpgq “ ĂW .

Here, we used in the last line, that µ is a biinvariant Haar measure. It remains to show
that ĂW descends to a well-defined operator on Z. So let γ P Γ. Then

γ˚ĂW “

ˆ
F
γ˚L˚g

ĂW dµpgq

“

ˆ
F
pLg ˝ γq

˚
ĂWdµpgq

“

ˆ
F
L˚γ´1pgqγ

˚
ĂW dµpgq

“

ˆ
γ´1pFq

L˚g
ĂW dµpγ´1

pgqq “ ĂW

since ĂW is Γ invariant and Γ preserves the Haar measure µ. Hence, there is an induced
affine parallel operator W on Z such that π˚W “ ĂW .

Now, let f : M Ñ B be a Riemannian affine fiber bundle with fiber Z such that M
is spin and let W P HompΣM,ΣMq. We can interpret W as a map M Q x ÞÑ Wx, where
Wx is a homomorphism of the fiber ΣMx. Let pUαqα be a bundle atlas for M . For each α
and pp, zq P Uα ˆZ we define the operator Wα on f´1pUαq – Uα ˆZ as explained above.
Since the structure group of a Riemannian affine fiber bundle lies in AffpZq it follows,
that the transition maps preserve the Haar measure. In particular, the transition maps
commute with the averaging operator. Hence, the locally defined operators pWαqα glue
together to a well-defined affine parallel operator W P HompΣM,ΣMq.

It remains to estimate the difference between the operators W and W . Although we
are interested in the essential supremum, it suffices to do the calculation at a fixed point
x P M where Wx and its derivative are defined. As before, we lift the whole situation to
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N via the universal cover π : N Ñ Z. In the following calculation, we set p :“ fpxq and
let ĝp be the induced affine parallel metric on the fiber Zp “ f´1ppq. Then gNp :“ ĝp is a
left-invariant metric on N . From the calculations in the beginning of the proof we recall
the fundamental domain F of the quotient Z “ ΓåN . Let x̃ be the unique point in F
such that πpx̃q “ x P f´1ppq. Further, we consider for each g P N the geodesic γg from x̃
to Lgpx̃q with respect to gNp . We assume without loss of generality that γg is parametrized
by arc length, i.e. |γ1g| ” 1. At last, we set dp to be the distance function on pN, gNp q.
Using this notation we calculate the norm of the difference pW ´W q with respect to the
metric g,

}pW ´W qx}8 “

›

›

›

›

ˆ
F
pL˚g

ĂW qx̃ ´ĂWx̃dµpgq

›

›

›

›

8

“

›

›

›

›

›

ˆ
F

ˆ dppx̃,Lgpx̃qq

0

L˚γgptq

´

∇aff
γ1gptq

ĂW
¯

x̃
dtdµpgq

›

›

›

›

›

8

ď 2 diampZ, ĝpq}∇affWx}8

ď 2 diampZ, ĝpq
`

}∇ZWx}8 ` }Z}8 }Wx}8
˘

.

Since }Z}L8 ď Cpk, CT , CRq by Lemma 3.8 the claim follows. l





Chapter 4

The behavior of Dirac eigenvalues

To the author’s knowledge, the first result regarding the behavior of Dirac eigenvalues
on collapsing sequences of spin manifolds was proved by Ammann in his PhD thesis
[Amm98b, Kapitel 7], see also [Amm98a, AB98]. There he considered collapsing S1-
principal bundles over a fixed manifold. As discussed in Section 3.2.1, we distinguish
between projectable and non projectable spin structures. In the case of projectable spin
structures Ammann proved:

Theorem 4.1. Let pB, hq be a closed n-dimensional Riemannian spin manifold with a
fixed spin structure. Further, let pMi, giqiPN be a sequence of pn` 1q-dimensional Rieman-
nian spin manifolds such that there are Riemannian submersions fi : pMi, giq Ñ pB, hq
defining an S1-principal bundle. Let 2πli be the length of the fibers and iωi be the unique
imaginary connection one-form such that kerpωiq is orthogonal to the fibers with respect
to gi. If for all i P N the spin structure on pMi, giq is projectable and induces the fixed
spin structure on B and if in addition

lim
iÑ8

}li}8 “ 0,

lim
iÑ8

}li ¨ dωi}8 “ 0,

α :“ lim sup
iÑ8

} grad li}8 ă 1,

then the eigenvalues pλj,kpiqqjPZ,
kPZ

of the Dirac operator DMi can be numbered in such a way
that:

(1) For all ε ą 0 there is an I P N such that for any i ě I and j P Z, k P Z

}li}
2
8λj,kpiq

2
ě |k|p|k| ´ αq ´ ε.

In particular, λj,kpiq2 Ñ 8 as iÑ 8 whenever k ‰ 0.

Furthermore, if Mi and ωi do not depend on i, then we also have for j P Z and
k P Zzt0u that

lim sup
iÑ8

ˆ

min
pPB

lippq

˙2

λj,kpiq
2
ď |k|p|k| ` αq.

This upper bound of λj,kpiq2 is not uniform in j and k.

65
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(2) Let pµjqjPN be the eigenvalues of the Dirac operator DB on B. If n is even then

lim
iÑ8

λj,0piq “ µj.

However, for n odd we obtain

lim
iÑ8

λjp0qpiq “ µj

lim
iÑ8

λ´jp0qpiq “ ´µj.

In both cases the convergence of the eigenvalues λj,0piq is uniform in j.

In the case of non projectable spin structures the eigenvalues pλj,kpiqq jPZ,
kPpZ` 1

2
q

of the

Dirac operators DMi can be numbered in such a way that k P pZ ` 1
2
q. The same lower

bound as in the above theorem holds also for non projectable spin structures [Amm98b,
Satz 7.3.1]. Since k can never be 0 all eigenvalues diverge to ˘8 as i Ñ 8. We explain
the details concerning the numbering of the Dirac eigenvalues in Section 4.2.

The setting in Theorem 4.1 differs slightly from our setting of collapsing sequences
inMpn` 1, d, Cq. Let pfi : pMi, giq Ñ pB, hqqiPN be a collapsing sequence of S1-principal
bundles such that fi is a Riemannian submersion and pMi, giq P Mpn ` 1, d, Cq, for all
i P N. It follows from Corollary 1.29 and Theorem 2.17 that the corresponding A- and
T -tensor of the Riemannian submersions fi are uniformly bounded in norm by positive
constants CApn, d, Cq, and CT pnq respectively. A straightforward calculation shows that

›

›

›

›

grad li
li

›

›

›

›

8

ď CT ,

}li ¨ dωi}8 ď 2CA.

In particular, α :“ lim supiÑ8 } grad li}8 “ 0 for any collapsing sequence inMpn`1, d, Cq.
But we do not necessarily have that limiÑ8 }lidωi} “ 0, as can be seen in Example 3.9.
It will be shown in Chapter 4.2 that for such sequences the eigenvalues λj,0piq do not
converge to the eigenvalues of the Dirac operator DB on B but to the eigenvalues of
the Dirac operator with a symmetric potential depending on the limit behavior of the
A-tensors.

In [Lot02a] Lott studied the behavior of Dirac eigenvalues on arbitrary collapsing
sequences inMpn, dq. There Lott combined his results for the eigenvalues of the p-form
Laplacian on collapsing sequences [Lot02c,Lot02b] with the Bochner-type formulas for the
Dirac operator. Moreover, Lott’s results also hold for the Dirac operator on differential
forms, i.e. the operator

D “ d` d˚ : Ω˚pMq Ñ Ω˚pMq,

where d˚ is the adjoint of the exterior derivative d with respect to the L2-inner product.

Theorem 4.2. Given n P N and G P tSOpnq, Spinpnqu, let pMi, giqiPN be a sequence of
connected closed oriented n-dimensional Riemannian manifolds with a G-structure. Let
V be a G-Clifford module. Suppose that for some d,K ą 0 and for each i P N we have
diampMiq ď d and }RMi}8 ď K. Then there is
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(1) a subsequence of pMi, giqiPN which we relabel as pMiqiPN,

(2) a smooth closed G-manifold X̌ with a G-invariant Riemannian metric gTX̌ which is
C1,α-regular for all α P r0, 1q,

(3) a positive G-invariant function χ P CpX̌q with
´
X̌
χ dvol “ 1,

(4) a G-invariant function V P L8pX̌qbEndpV q such that if ∆X̌ denotes the Laplacian on
L2pX̌, χ dvolqbV and |DX | denotes the operator

a

∆X̌ ` V acting on the G-invariant
subspace pL2pX̌, χ dvolq b V qG then for all k P N,

lim
iÑ8

λkp|D
Mi |q “ λkp|D

X
|q.

The limit measure χ is also necessary for the analogous results regarding the behav-
ior of the eigenvalues of the Laplacian on functions [Fuk87a] and the eigenvalues of the
Laplacian on forms [Lot02c,Lot02b], see Example 4.4.

For the special case of collapsing sequences inMpn, dq with a smooth limit space Lott
proved an accentuation of the above theorem [Lot02a, Theorem 2]. In the following we
say that for a given ε ą 0 two collections of real numbers paiqiPI and pbjqjPJ are ε-close if
there is a bijection α : I Ñ J such that |bαpiq ´ ai| ď ε holds for all i P I.

Theorem 4.3. Let B be a fixed smooth connected closed Riemannian manifold and let
n P N, G P tSOpnq, Spinpnqu and V be a G-Clifford module. For any ε ą 0 and K ą 0,
there are positive constants ApB, n, V, ε,Kq, A1pB, n, V, ε,Kq and CpB, n, V, ε,Kq such
that the following holds. LetM be an n-dimensional connected closed oriented Riemannian
manifold with a G-structure such that }RM}8 ď K and dGHpM,Bq ď A1. Then there are a
Clifford module EB on B and a certain first order differential operator DB on C8pB;EBq

such that

(1) tarsinhp λ?
2K

: λ P σpDMq, λ2 ď AdGHpM,Bq´2 ´ Cu is ε-close to a subset of
tarsinhp λ?

2K
: λ P σpDBqu,

(2) tarsinhp λ?
2K

: λ P σpDBq, λ2 ď AdGHpM,Bq´2 ´ Cu is ε-close to a subset of
tarsinhp λ?

2K
: λ P σpDMqu.

In the following section we discuss the special case of collapsing sequences pMi, giqiPN
of spin manifolds inMpn, dq converging to a Riemannian manifold pB, hq. There we will
give an explicit description of the limit operator DB as a twisted Dirac operator with a
symmetric C0,α-potential for all α P r0, 1q. Moreover, we show that the limit operator DB
satisfies the conclusions of Theorem 4.2 with χ ” 1. This is a special behavior for the
eigenvalues of the Dirac operator on spin manifolds and does not extend to the eigenvalues
of the Dirac operator acting on differential forms.

Example 4.4. Consider the torus T2 “ tpeis, eitq : s, t P Ru with the Riemannian metric

gε :“ ds2
` ε2cpsq2dt2,
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for a fixed positive function c : S1 Ñ R`. The sequence pT2, gεqεą0 is a collapsing sequence
with bounded sectional curvature and diameter converging to pS1, ds2q in the Gromov-
Hausdorff topology. We observe that the integrability tensor Aε vanishes identically for
all ε and the T -tensor is always characterized by c1psq

cpsq
independent of ε. In particular, the

T -tensor is nontrivial for all ε if we choose the function c to be non constant.
We endow pT2, gεq with the spin structure induced by the pullback of a chosen spin

structure on S1. It will be shown in Theorem 4.5 that the spectrum of the Dirac operator
Dε on pT2, gεq restricted to the S1-invariant spinors converges to the spectrum of the Dirac
operator DS1 of the chosen spin structure on S1. For our result, it does not matter, which
spin structure was chosen on S1.

Next, we take a look at the Dirac operator acting on differential forms. In that case
the space of affine parallel forms is given by

Saff :“ tf P C8pT 2
q :
B

Bt
f “ 0u Y tα ds P Ω1

pT 2
q :
B

Bt
α “ 0u.

The Dirac operator Dε “ d` d˚ acts on pf ` αdsq P Saff as

Dεpfpsq ` αpsqdsq “
B

Bs
fpsqds´ cpsq´1 B

Bs
pcpsqαpsqq.

We observe that pDεq|Saff is independent of ε. In particular, in the limit ε Ñ 0, the se-
quence pDεq|Saff induces a first order differential operatorD0 on Ω˚pS1q. For any eigenform
fpsq ` αpsqds P Ω1pS1q of D0 with eigenvalue λ we have that

λfpsq “ ´cpsq´1 B

Bs
pcpsqαpsqq,

λαpsqds “
B

Bs
fpsqds.

It follows at once that the eigenvalue problem for D0 is equivalent to the eigenvalue
problem

λ2fpsq “ ´cpsq´1 B

Bs

ˆ

cpsq
B

Bs
f

˙

. (4.4.1)

Furthermore, the eigenvalues of D0 are symmetric around 0, because, if fpsq ` αpsqds is
an eigenform of D0 with eigenvalue λ then fpsq ´ αpsqds is an eigenform with eigenvalue
´λ.

For a generic choice of cpsq the spectrum of D0 differs from the spectrum σpDS1
q “ Z

of the Dirac operator on S1.
For example, if cpsq “ ecospsq then one can calculate numerically, adapting the algo-

rithm from [Str16, page 3 - 6], that, without counting multiplicities, the first eigenvalues
are approximately given by

λ0 “ 0, λ1 « 0, 990, λ2 « 1, 137.

In particular, the spectrum of D0 does not coincide with the spectrum of the Dirac
operator DS1 as σpDS1

q “ Z.
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We can do a similar calculation for the Laplacian acting on functions. It follows that
for fpsq P Saff ,

∆εfpsq “ ´cpsq
´1B

B

ˆ

cpsq
B

Bs
f

˙

.

Since this equation is independent of ε it is immediate that
`

∆ε |Saff

˘

ε
induces a second

order differential operator ∆0 on S1 as ε Ñ 0. Furthermore, the eigenvalue problem for
∆0 is similar to the eigenvalue problem (4.4.1). In particular, the spectrum of ∆0 differs
from the spectrum of ∆S1

“ ´B
2

Bs
which is given by tk2 : k P Zu.

At this point we want to remark that Section 4.1 is an extended version of [Roo18b,
Section 5] where we added the behavior of Dirac eigenvalues with a symmetric uniformly
bounded H1,8-potential.

In Section 4.2 we give an explicit description of the behavior of Dirac eigenvalues for
any collapsing sequence in Mpn ` 1, d, Cq extending the results of Theorem 4.1. The
results stated in Section 4.2 also have been proved in [Roo18c, Section 5].

4.1 Dirac eigenvalues under collapse to smooth spaces
Let pMi, giqiPN be a collapsing sequence of Riemannian spin manifolds in Mpn ` k, dq
converging to an n-dimensional Riemannian manifold pB, hq. By Corollary 1.29 there is
an I P N such that for any i ě I there are metrics g̃i on Mi and h̃i on B such that
fi : pMi, g̃iq Ñ pB, h̃iq is a Riemannian affine fiber bundle (see Definition 1.28). Moreover,

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

Let ΣMi and ĄΣM i be the spinor bundles of pMi, giq and pMi, g̃iq respectively. In Appendix
C we constructed an explicit isometry

Θi : L2
pΣMiq Ñ L2

pĄΣM iq, (4.4.1)

following [BG92,Mai97].
For a Riemannian affine fiber bundle fi : pMi, g̃iq Ñ pB, h̃iq the space of affine par-

allel spinors Saff
i Ă L2pĄΣM iq is well-defined. The Dirac operator D̃Mi on pMi, g̃iq acts

diagonally with respect to the splitting

L2
pĄΣM iq “ Saff

i ‘
`

Saff
i

˘K
.

In general, for the original fibration fi : pMi, giq Ñ pB, hq the induced metrics on the
fibers is not affine parallel. Thus, the affine connection ∇aff does not induce a well-defined
connection on the spinor bundle ΣMi. Instead we use the isometry Θi to define

Si :“ Θ´1
i pSaff

i q.
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This induces the splitting

L2
pΣMiq “ Si ‘ SKi .

But in contrast to Riemannian affine fiber bundles, the Dirac operator DMi on pMi, giq,
in general, does not act diagonally with respect to this splitting. Nevertheless, it follows
from the continuity of the spectra of Dirac operators, see Theorem C.4, that

da

´

σpDMiq, σpD̃Miq

¯

0 ,iÑ8

where da is the distance in the arsinh-topology, see Definition C.3. Thus, the spectra of the
restrictions of DMi and D̃Mi to Si and Saff

i , respectively to their orthogonal complements,
have the same limit as iÑ 8.

Next we recall, that for a Riemannian affine fiber bundle fi : pMi, g̃iq Ñ pB, h̃iq we
defined the following objects in Chapter 3.1:

• The operator ∇Vi that acts on vector fields X, Y as ∇Vi
XY :“

`

∇XHY V
˘V , where the

superscripts H and V denote the horizontal, resp. the vertical part of a vector field.

• The one-form Zi P Ω1pMi,EndpTZiq, where we view TZi as a vector bundle over
Mi, is defined as Zi :“ ∇Zi ´ ∇aff . Here ∇Zi

X Y :“
`

∇XV Y V
˘V for any two vector

fields X, Y and ∇aff is the induced affine connection.

• The two-form Ai P Ω2pB,P q that is characterized by pf˚i AiqpX, Y q “ AipX, Y q for
all basic vector fields X, Y . Here Ai is the A-tensor of the Riemannian submersion
fi : pMi, g̃iq Ñ pB, h̃iq and P Ñ B is a vector bundle whose fiber Pp is given by the
affine parallel vector fields on Zp :“ f´1

i ppq for all p P B.

Similar to (4.4.1) there is also an isometry

θi : L2
pTMiq Ñ L2

pĄTM iq.

In the next theorem we interpret the operators ∇Vi , Zi and Ai on pMi, giq as the pullbacks
of the respective operators on pMi, g̃iq via the map θi.

Using this terminology and the notations introduced in Chapter 3.2.2 we state in
the following theorem the explicit description of the limit operator DB in Theorem 4.3
for collapsing sequences of spin manifolds converging to a Riemannian manifold of lower
dimension. Theorem 0.2 follows immediately from the following more specific theorem.

Theorem 4.5. Let pMi, giqiPN be a sequence of spin manifolds inMpn` k, dq converging
to a smooth n-dimensional Riemannian manifold pB, hq such that the space Si is nontrivial
for almost all i P N. Then there is a subsequence pMi, giqiPN such that the spectrum of
DMi

|Si converges uniformly with respect to the arsinh-topology to the spectrum of the elliptic
self-adjoint first order differential operator

DB : dompDBq Ñ L2
p Σ˛ B b Pq,

Φ ÞÑ ĎT8Φ`
1

2
γpŽ8qΦ`

1

2
γpǍ8qΦ,
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where

Σ˛ B :“

#

ΣB, if n or k is even,
Σ`B ‘ Σ´B, if n and k are odd.

Further,

(1) P represents the affine parallel spinors of the fibers Zi,

(2) ĎT8 is the twisted Dirac operator on Σ˛ B bP with respect to the twisted connection
q∇T8 “ ∇hb∇V8, where ∇h is the spinorial connection on pB, hq and ∇V8 is induced
by the C0,α-limit of ∇Vi for any α P r0, 1q,

(3) Ž8 is induced by the C0,α-limit of pZiqiPN for any α P r0, 1q,

(4) Ǎ8 is the C0,α-limit of pAiqiPN for any α P r0, 1q.

In particular, DB is self-adjoint with respect to the standard measure and the metric h on
B is C1,α for any α P r0, 1q.

Proof. The proof of this theorem is divided into several steps.
Step 1: Switching to invariant metrics. It follows from Corollary 1.29 that there is an

index I such that for all i ě I there exists a fibration fi : pMi, giq Ñ pB, hq. Moreover,
there are metrics g̃i on Mi and h̃i such that fi : pMi, g̃iq Ñ pB, h̃iq is a Riemannian affine
fiber bundle and

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

Applying Theorem C.4 it follows that the spectra of the Dirac operator DMi on pMi, giq
and D̃Mi on pMi, g̃iq are close in the arsinh-topology, see Definition C.3, i.e.

dapσpD
Miq, σpD̃Miqq ď C}gi ´ g̃i}C1 . (4.5.1)

Let Si and Saff
i be defined as above. It follows from the proof of Theorem 4.3 that all

eigenvalues of the restriction D̃Mi

|pSaff
i qK

, and therefore also of DMi

|SKi
go to ˘8 as i Ñ 8.

Furthermore, it was shown in the proof of Theorem 4.3 that the spectrum of D̃Mi

|Saff
i

has

a well-defined limit as i Ñ 8. Since the spectra of DMi and D̃Mi have the same limit
by (4.5.1) it suffices to show the claim for the sequence

´

fi : pMi, g̃iq Ñ pB, h̃iq
¯

iPN
of

Riemannian affine fiber bundles.
In this setting we can use the isometry Qi : L2p Σ˛ iB b Pq Ñ Saff

i , see Lemma 3.26,
and apply Corollary 3.27 to write

D̃Mi “ Qi ˝ Ď
Ti ˝Q´1

i `
1

2
γpZiq `

1

2
γpAiq.

We refer to Chapter 3 for the notation and definition of the separate terms. From the
discussion in Chapter 3.1 it follows that γpZiq and γpAiq act diagonally with respect to
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the splitting L2pĆΣMiq “ S̃aff
i ‘

´

S̃aff
i

¯K

. Thus, there are well-defined operators Ži and Ǎi
such that

D̃Mi
|S̃aff “ Qi ˝

ˆ

ĎTi `
1

2
γpŽiq `

1

2
γpǍiq

˙

˝Q´1
i

“: Qi ˝Di ˝Q
´1
i .

Since Qi : L2p Σ˛ iBbPiq Ñ S̃aff is an isometry, it follows that D̃i |S̃aff is isospectral to Di.
Furthermore, the operator Di is densely defined on H1,2p Σ˛ iB b Piq.

Now, we are going to choose a subsequence such that the spectrum σpDiq converges to
the spectrum of the claimed operator DB. The main problem here is that the operators
Di are defined on different spaces. Thus, we need to find a common space on which we
can study the behavior of the spectrum of the sequence pDiqiPN. This is done in the next
three steps.

By abuse of notation, we use the same index i for any subsequence we choose. The
following identifications are based on the constructions in [Lot02a, Section 4]. The idea
here is similar to Fukaya’s main idea in [Fuk88]. Namely, we will consider the corre-
sponding sequence of Spinpn ` kq-principal bundles and identify the spinors on pMi, g̃iq
with Spinpn ` kq-invariant functions on the corresponding Spinpn ` kq-principal bundle
PSpinpMi, g̃iq.

Step 2: Identification of the spinors. Let P̃i :“ PSpinpMi, g̃iq be the Spinpn ` kq-
principal bundle of pMi, g̃iq. Further, we set g̃Pi to be a Riemannian metric on P̃i such
that

π̃i : pP̃i, g̃
P
i q Ñ pMi, g̃iq

is a Riemannian submersion with totally geodesic fibers such that volpπ̃´1
i pxqq “ 1 for all

x PMi. Further, denote by

R : Spinpn` kq ˆ P̃i Ñ P̃i,

pA, x̃q ÞÑ RApx̃q

the isometric Spinpn` kq action on P̃i.
Next, we recall the canonical complex spinor representation

θn`k : Spinpn` kq Ñ Σn`k,

where Σn`k is a complex vector space of dimension 2r
n`k

2 s. In spin geometry, it is well-
known that there is a Hermitian product x., .y on Σn`k such that Clifford multiplication
is skew-symmetric with respect to x., .y. This product is unique up to a positive scalar
(see for instance [BHM`15, Proposition 1.35]).

Hence, there is an isometric Spinpn`kq action on the tensor product L2pP̃i, g̃
P
i qbΣn`k

defined by

ρ : Spinpn` kq ˆ L2
pP̃i, g̃

P
i q b Σn`k Ñ L2

pP̃i, g̃
P
i q b Σn`k,

pA,
ÿ

l

sl b ϕlq ÞÑ
ÿ

l

psl ˝RAq b θn`kpAqpϕq.
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Here we used that any element S P L2pP̃i, g̃
P
i q b Σn`k can be written as a finite linear

combination
ř

l sl b ϕl of elementary tensors. It is well-known that the tensor product
L2pP̃i, g̃

P
i q bΣn`k is isometric to the space of all L2-functions σ : P̃i Ñ Σn`k with respect

to the volume measure of pP̃i, g̃Pi q. We denote this space by L2pP̃i,Σn`kq.
We observe that the Spinpn` kq-invariant subspace of L2pP̃i, g̃

P
i q b Σn`k is given by

´

L2
pP̃i, g̃

P
i q b Σn`k

¯Spinpn`kq

:“
!

S P L2
pP̃i, g̃

P
i q b Σn`k : ρpAqS “ S, @A P Spinpn` kq

)

–

!

σ P L2
pP̃i,Σn`kq : σ ˝RA “ θ´1

n`kpAq ˝ σ, @A P Spinpn` kq
)

.

Since the spinor bundle ĄΣM i of pMi, g̃iq is defined as ĄΣM i “ P̃i ˆθn`k Σn`k it follows
at once that there is a canonical isomorphism

rΠi :
´

L2
pP̃i, g̃

P
i q b Σn`k

¯Spinpn`kq

Ñ L2
pĄΣM iq. (4.5.2)

To be more concrete, for an element σ P
´

L2pP̃i, g̃
P
i q b Σn`k

¯Spinpn`kq

the induced spinor
rΠipσq is given by

rΠipσqx “ rx̃, σpx̃qs, (4.5.3)

for any x P Mi and x̃ P π̃´1
i . Since σ is Spinpn ` kq-invariant the definition (4.5.3) does

not depend on the choice of x̃. It follows from our choice of the metric g̃Pi that the map
rΠi is in fact an isometry.

Step 3: Convergence of the Spinpn ` kq-principal bundles. After we have identified
the L2-spinors of pMi, g̃iq with the Spinpn ` kq-invariant subset of L2pP̃i, g̃

P
i q b Σn`k we

now consider the sequence pP̃i, g̃Pi qiPN. By construction, the sectional curvatures and
the diameter of this sequence are uniformly bounded in i. Thus, we can apply the G-
equivariant version of Gromov’s compactness theorem, Theorem 1.7, to the sequence
pP̃i, g̃

P
i qiPN. It follows that there is a subsequence, which we denote again by pP̃i, g̃Pi qiPN,

that converges to a compact metric space pB̃, h̃P q on which Spinpn`kq acts as isometries.
In particular, pB̃, h̃

P q{Spinpn` kq is isometric to the limit space pB, hq of the sequence
pMi, g̃iqiPN. Using the same strategy as in [Fuk88, Theorem 6.1] it follows that pB̃, h̃P q is
a Riemannian manifold. Moreover, the metric h̃P is C1,α by Theorem 1.32.

As Fukaya’s fibration theorem, Theorem 1.17, also holds in a G-equivariant setting
[Fuk88, Theorem 9.1], it follows that there is a further subsequence pP̃i, g̃Pi qiPN such that
for all i P N there is a Spinpn`kq-equivariant fibration f̃i : P̃i Ñ B̃ with infranil fibers and
affine structure group. Since for every i P N, the metric g̃i onMi is invariant, see Corollary
1.29, it follows that g̃Pi is also an invariant metric, i.e. there is a Spinpn ` kq-invariant
metric h̃Pi on B̃ such that

f̃i : pP̃i, g̃
P
i q Ñ pB̃, h̃Pi q

is a Spinpn` kq-equivariant Riemannian affine fiber bundle. Further, we want to remark
that πi : pB̃, h̃Pi q Ñ pB, h̃iq is a Riemannian submersion with totally geodesic fibers.
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Summarizing these observations, we conclude that the following diagram commutes for
every i P N.

pP̃i, g̃
P
i q pB̃, h̃Pi q

pMi, g̃iq pB, h̃iq .

π̃i

f̃i

πi

fi

Step 4: The space of affine parallel spinors. First we fix an i P N and recall the affine
connection ∇aff on pMi, g̃iq that is induced by the affine connection on the infranil fiber
Zi of the Riemannian affine fiber bundle fi : pMi, g̃iq Ñ pB, h̃iq. Since for all p P B the
induced metric ĝp on the fiber Zp “ f´1

i ppq is affine parallel, the connection ∇aff induces
an affine connection, also denoted by ∇aff on P̃i. Hence, there is a well-defined subspace
L2pP̃i, g̃

P
i q

aff Ă L2pP̃i, g̃
P
i q consisting of affine parallel functions. As we already know that

the space
´

L2pP̃i, g̃
P
i q b Σn`k

¯Spinpn`kq

is isometric to L2pĄΣM iq, see (4.5.2), (4.5.3), it
follows that there is an induced isometry

rΠi :
´

L2
pP̃i, g̃

P
i q

aff
b Σn`k

¯Spinpn`kq

Ñ Saff
i . (4.5.4)

Here Saff
i denotes as usual the space of affine parallel spinors.

Next, we observe that we can view L2pP̃i, g̃
P
i q

aff also as the space of functions in
L2pP̃i, g̃

P
i q that are constant along the fibers of the fibration f̃i : P̃i Ñ B̃. In particular,

for any s P L2pP̃i, g̃
P
i q

aff there is an š P L2pB̃, h̃Pi q such that f̃˚i š “ s. Hence, there is
a natural isomorphism between L2pP̃i, g̃

P
i q

aff and L2pB̃, h̃Pi q. But we want to have an
isometry between these spaces. Therefore, we consider the function

vi : B̃ Ñ R,
p̃ ÞÑ volpf̃´1

i pp̃qq.

Then,

L2
pB̃, h̃Pi q Ñ L2

pP̃i, g̃
P
i q

aff ,

š ÞÑ f˚i pv
´ 1

2
i šq

is an isometry. Combined with (4.5.4) we obtain the isometry

Q̃i :
´

L2
pB̃, h̃Pi q b Σn`k

¯Spinpn`kq

Ñ Saff
i ,

such that the following diagram commutes

´

L2pB̃, h̃Pi q b Σn`k

¯Spinpn`kq

L2p Σ˛ iB b Piq Saff
i .

Q̃i

Qi
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Here we used that there is an isometry
´

L2pB̃, h̃Pi q b Σn`k

¯Spinpn`kq

Ñ L2p Σ˛ B b Piq
similar to (4.5.2), (4.5.3).

We recall that

Σn`k – Σ˛ n b Σk,

with

Σ˛ n :“

#

Σn, if n or k is even,
Σ`n ‘ Σ´n , if n and k are odd,

where Σ`n and Σ´n are two isomorphic copies of Σn (compare (B.0.1), (B.1.1)). Then
´

L2
pB̃, h̃Pi q b Σn`k

¯Spinpn`kq

–

´

L2
pB̃, h̃Pi q b

`

Σ˛ n b Σk

˘

¯Spinpn`kq

– L2
p Σ˛ iB b Pq

for some fixed locally defined vector bundle P over B independent of i. In particular,
there are isomorphisms Pi Ñ P for all i P N. Using pullback metrics we obtain the
isometry

Qi : L2
p Σ˛ iB b Pq Ñ Saff

i . (4.5.5)

Now, Σ˛ iB is the only object left that depends on i. To remove also this i-dependency,
let us assume for the moment that B is a spin manifold. For any i P N we consider the
isometry

β̂h̃ih : L2
pΣBq Ñ L2

pΣiBq,

that was constructed in Appendix C. Here ΣB is the spinor bundle of pB, hq and ΣiB is
the spinor bundle of pB, h̃iq.

Going back to the original case, where B is not necessarily spin, we can still apply a
local version of the isometry β̂h̃ih to obtain an isometry

Θi : L2
p Σ˛ B b Pq Ñ L2

p Σ˛ iB b Pq.

Step 5: The convergence of the Dirac eigenvalues. We recall from Step 1 that the
Dirac operator D̃Mi on pMi, g̃iq restricted to Saff

i can be written as

D̃Mi
|S̃aff “ Qi ˝

ˆ

ĎTi `
1

2
γpŽiq `

1

2
γpǍiq

˙

˝Q´1
i

“: Qi ˝Di ˝Q
´1
i ,

where Qi is now the isometry (4.5.5). It is obvious that the calculations that we did in
Step 1 just carry over.

It follows by construction and Theorem C.2 that for any i P N the operator

Di :“ Θ´1
i ˝Di ˝Θi
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is isospectral to the restriction D̃Mi

|Saff
i

and densely defined on H1,2p Σ˛ B b Pq. By a small
abuse of notation, we continue to write

Di “ ĎTi `
1

2
γpŽiq `

1

2
γpǍiq.

First, we observe that the C1-norms corresponding to pB, h̃iq are all equivalent to the C1-
norm on pB, hq because limiPN }h̃i´h}C1 “ 0. By Lemma 3.8 it follows that the sequence of
operators

`

γpŽiq
˘

iPN is uniformly bounded in C1pB, hq. Further, we conclude from Lemma
3.10 that also the sequence

`

γpǍiq
˘

iPN is uniformly bounded in C1pB, hq. Since C1 ãÑ C0,α

is a compact embedding for all α P r0, 1q there is a subsequence such that
`

γpŽiq
˘

iPN and
`

γpǍiq
˘

iPN converge to well-defined operators γpŽ8q and γpǍ8q in C0,α for any α P r0, 1q.
As q∇Ti corresponds to the twisted connection ∇h̃ib q∇Vi , it follows from Theorem C.2 and
Lemma 3.3 that there is a further subsequence pMi, giqiPN such that the corresponding
sequence pDiqiPN is a sequence of operators that are densely defined on H1,2p Σ˛ B b Pq.
Furthermore, the sequence pDiqiPN converges in BpH1,2p Σ˛ B b Pq, L2p Σ˛ B b Pqq to the
claimed limit operator DB. Here, Bp., .q is the space of bounded linear operators endowed
with the operator norm.

Thus, the sequence pDiqiPN satisfies the assumptions of Theorem C.5. In particular,
it follows that the spectra pσpDiqqiPN converge to σpDBq uniformly in the arsinh-topology
as iÑ 8. l

As a conclusion we can characterize the special case where the spectrum of the limit
operator DB coincides with the spectrum of the Dirac operator on the manifold B up to
multiplicity. We formulate the following corollary for collapsing sequences of Riemannian
affine fiber bundles and use the notation of Chapter 3. Corollary 0.3 follows immediately
from Corollary 4.6 because any collapsing sequence pMi, giqiPN inMpn`k, dq with smooth
limit space pB, hq can be approximated by a collapsing sequence of Riemannian affine fiber
bundles pMi, g̃iq Ñ pB, h̃iq such that limiÑ8 }g̃i´gi}C1 “ 0 and limiÑ8 }h̃i´h}C1 “ 0, see
Corollary 1.29 and Remark 1.30. Further, we know that Dirac eigenvalues are continuous
under a C1-variation in the arsinh-topology, Theorem C.4.

Corollary 4.6. Let pfi : pMi, giq Ñ pB, hiqqiPN be a collapsing sequence of Riemannian
affine fiber bundles such that pMi, giqiPN is a spin manifold in Mpn ` k, dq and B is
a closed n-dimensional manifold. Further, we denote by Zi the closed k-dimensional
infranilmanifold which is diffeomorphic to the fibers of fi : pMi, giq Ñ pB, hiq. If

lim sup
iÑ8

}HolpVi,∇Viq ´ Id }8 “ 0,

lim sup
iÑ8

ˆ

sup
pPB

} scalpZi
pq}8

˙

“ 0,

lim sup
iÑ8

}Ai}8 “ 0,

and Si is nontrivial for almost all i P N, then there is a subsequence also denoted by
pMi, giqiPN such that the spin structure on pMi, giq induces the same spin structure on
B for all i P N and such that the spectrum of the Dirac operator DMi

|Si converges, up to
multiplicity, to the spectrum of DB, if n or k is even, and to the spectrum of DB ‘´DB,
if n and k are odd. Each eigenvalue is counted rankpPq-times.
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Proof. From the above theorem it follows that the limit operator DB equals DB b Id,
respectively pDB ‘´DBq b Id if

(1) ∇V8 is gauge equivalent to the trivial connection,

(2) Z8 “ 0,

(3) A8 “ 0.

Regarding the first point, we recall that ∇V8 is gauge equivalent to the trivial connection
if pVi,∇Viq is in the limit iÑ 8 a trivial vector bundle with trivial holonomy, see Remark
3.4. In this case it is immediate that P is the trivial vector bundle. Therefore, it follows
that also Σ˛ B is globally well-defined. In particular, there is a well-defined induced spin
structure on B. As there are only finitely many equivalence classes of spin structures on
a fixed closed Riemannian manifold (see for instance [LM89, Chapter II, Theorem 1.7]),
we can choose a subsequence, again denoted by pMi, giqiPN such that the spin structure
on pMi, giq induces the same spin structure on B for all i P N. Since }Zi}8 ď 3} scalZi }8,
see the proof of Lemma 3.8, the second condition implies that the limit Z8 vanishes
identically. Finally, it is immediate that A8 “ 0 is equivalent to the vanishing of the
A-tensor in the limit since }Ai}8 “ }Ai}8 by definition.

For the last statement, let l :“ rankpPq. Since P is the trivial vector bundle there is a
global frame pρ1, . . . , ρlq. Let ϕ be an eigenspinor of DB, resp. DB ‘´DB. Then for any
1 ď j ď l the spinor ϕb ρj is an eigenspinor of DB with the same eigenvalue. Hence, any
eigenvalue of DB, resp. DB ‘´DB is counted l-times. l

We conclude that there are three geometric obstructions for a convergence to the Dirac
operator on the base space. As discussed in the examples 3.5, 3.6, 3.7, 3.9 in Chapter 3.1
these geometric obstructions are all independent of each other. In the following example
we discuss a class of collapsing sequences that satisfy the assumptions of Corollary 4.6.

Example 4.7. Let G be a compact m-dimensional Lie group with Lie algebra g. Since
G is compact we can choose a biinvariant metric g. It is well-known that any Lie group
is parallelizable. Since we have chosen a biinvariant metric g it follows that PSOG –

Gˆ SOpmq. We see at once that pG, gq is spin. In the following we fix the spin structure

PSpinG – Gˆ Spinpmq. (4.7.1)

If G is connected and simply-connected, then the spin structure (4.7.1) is, up to equiva-
lence, the only spin structure on G.

Next we fix a maximal torus Tk in G. The torus Tk acts on G via left multiplication.
Since the metric g is biinvariant, the maximal torus Tk acts on G as isometries. In
the following we consider the homogeneous space B :“ Tk zG with the induced quotient
metric h. We would like to point out that the quotients Tk zG are called flag manifolds.
Let g “ t` b be the splitting of the Lie algebra of G into the Lie algebra t of Tk and its
orthogonal complement b – TfpeqB with respect to the biinvariant metric g. Here e is the
neutral element in G and f : GÑ B is the quotient map. Since g is a biinvariant metric
it follows that b is an AdpTkq-invariant subspace, where Ad is the adjoint representation.
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In particular, the map χ : Tk Ñ SOpbq, χptqpXq “ AdtpXq for all t P Tk and X P b is
well-defined and satisfies

Gˆχ SOpbq – PSOB.

Let ρ : Spinpbq Ñ SOpbq be the usual double cover. Then the spin structure (4.7.1) of G
induces a spin structure on the homogeneous space B if and only if there is a Lie group
homomorphism χ̃ : Tk Ñ Spinpbq lifting χ, see for instance [Bär92, Lemma 3],

Spinpbq

Tk SOpbq .

ρ

χ

χ̃

This is for example the case if the maximal torus equals the center of the Lie group as,
in that case, χ acts trivially.

By construction f : pG, gq Ñ pB, hq is a Tk-principal bundle. Furthermore, f is a
Riemannian submersion with totally geodesic fibers. We can write

g “ ǧ ` f˚h,

where ǧ vanishes on vectors orthogonal to the fibers. For any ε ą 0 we define

gε :“ ε2ǧ ` f˚h.

We observe that gε is left invariant for all ε ą 0 and biinvariant if and only if ε “ 1. As
ε Ñ 0 the sequence pG, gεqε converges to pB, hq in the Gromov-Hausdorff topology. For
abbreviation we denote by Gε the Riemannian manifold pG, gεq. It follows from [CG86,
Theorem 2.1] that there are constants C and d such that | secpGεq| ď C and diampGεq ď d
for all ε P p0, 1q.

Now we want to show that the assumptions of Corollary 4.6 are fulfilled. Thus, we
take a closer look at the Riemannian submersions fε : pG, gεq Ñ pB, hq. Since the fibers of
fε are totally geodesic for all ε ą 0 it follows that the tensor Tε vanishes identically for all
ε ą 0. Moreover, the vertical distribution Vε is a trivial Rk vector bundle over Gε as Tk
acts on Gε as isometries for all ε ą 0. Thus, it follows form Lemma 3.3 that for all ε ą 0,
∇Vε is gauge equivalent to the trivial connection. Applying this gauge transformation if
necessary, we can assume without loss of generality that∇Vε is the trivial connection on Vε
for all ε ą 0. By construction, the fibers of fε are embedded flat tori. Thus, the induced
Levi-Civita connection on the fiber is the affine connection, i.e. Zε “ 0 for all ε ą 0.
Next, we take a global orthonormal vertical frame pζ1, . . . , ζkq that trivializes the vertical
distribution V1 of pG, g1q. Then pε´1ζ1, . . . , ε

´1ζkq is an orthonormal vertical frame for
the vertical distribution Vε of Gε. For any two horizontal vectors X, Y we calculate

AεpX, Y q “
1

2

k
ÿ

a“1

gεprX, Y s, ε
´1ζaq

“
1

2

k
ÿ

a“1

ε2´1ǧprX, Y s, ζaq

“ εA1pX, Y q.
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In particular, it follows that limεÑ0 }Aε}gε “ 0. Hence, all assumptions of Corollary
4.6 are fulfilled. Thus, if for almost all ε P p0, 1s the space of affine parallel spinors is
nontrivial then there is an induced spin structure on B and the spectra of the Dirac
operators restricted to the space of affine parallel spinors converges, up to multiplicity, to
the spectrum of the Dirac operator DB of B “ Tk zG, if k or dimpBq is even, respectively
to the spectrum of DB ‘´DB, if dimpBq and k are odd.

It follows from Theorem 4.5 that the limit operator DB is a twisted Dirac operator with
a symmetric potential lying in C0,αXH1,8 for any α P r0, 1q. In the following proposition
we show that the spectrum of a Dirac operator with a symmetric H1,8-potential converges
to the spectrum of a Dirac operator with a symmetricH1,8-potential. To simplify notation
we define

Opn, dq :“ tpM, g,W q : pM, gq PMpn, dq and spin,W P HompΣM,ΣMqu.

Proposition 4.8. Let pMi, gi,WiqiPN be a sequence in Opn`k, dq converging to a smooth
n-dimensional Riemannian manifold pB, hq such that for almost all i P N the space Si is
nontrivial. Further, we suppose that, for all i P N, Wi is symmetric and }Wi}H1,8 ď Λ for
some positive constant Λ. Then there is a subsequence pMi, giqiPN such that the spectrum
of pDMi `Wiq|Si converges uniformly in the arsinh-topology to the spectrum of DB `|W8.
Here DB is as in Theorem 4.5 and |W8 is a symmetric H1,8-potential induced by the limit
of the sequence

`

Wi |Si
˘

iPN.

Proof. Similar to the proof of Theorem 4.5 it suffices to consider the associated sequence
´

fi : pMi, g̃iq Ñ pB, h̃iq
¯

iPN
of Riemannian affine fiber bundles. We recall that there are

explicitly constructed isometries Θi : L2pĄΣM iq Ñ L2pΣMiq, see Appendix C. Hence,
we can pull back Wi to an element ĂWi of HompĄΣM i, ĄΣM iq. For any i P N, let ĂWi be
the associated affine parallel operator for ĂWi defined in Proposition 3.28. Since ĂWi is
symmetric for all i P N it follows from [Kat76, Chapter 5, Theorem 4.10] that

lim
iÑ8

dist
´

σpD̃Mi `ĂWiq, σpD̃
Mi ` ĂWiq

¯

ď lim
iÑ8

}ĂWi ´Wi}8

ď lim
iÑ8

´

2 max
pPB

pdiampf´1
i ppqq¨

p}∇ĂWi}8 ` Cpk, CR, CT q}ĂWi}8

¯

ď 2 lim
iÑ8

ˆ

max
pPB

pdiampf´1
i ppqq

˙

p1` Cpk, CR, CT qqΛ

“ 0.

Therefore it suffices to study the spectrum of D̃Mi `ĂWi. First we note that this operator
acts diagonally with respect to the splitting L2pĄΣM iq “ Saff

i ‘
`

Saff
i

˘K. Thus the same
proof as for Theorem 4.5 applies in this setting. Let |Wi be the induced element on
Homp Σ˛ iBbP , Σ˛ iBbPq, where we used the same notation as in the proof of Theorem
4.5. Since }Wi}H1,8 ď Λ by assumption it is a simple matter to check that }|Wi}H1,8 ď Λ.
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In particular, there is a subsequence p|WiqiPN converging in the L8-topology to an operator
|W8 P Homp Σ˛ BbP , Σ˛ BbPq. The remaining steps are similar to the proof of Theorem
4.5. l

4.2 The Dirac operator and codimension one collapse

In Chapter 2.2 we introduced the set

Mpn` 1, d, Cq :“

"

pM, gq PMpn` 1, dq : C ď
volpMq

injpMq

*

of isometry classes of closed pn` 1q-dimensional Riemannian manifolds. In Theorem 2.17
we showed that any n-dimensional limit space pB, hq of a sequence in Mpn ` 1, d, Cq
is a Riemannian orbifold with a C1,α-metric h. In addition, the second derivatives of h
exist almost everywhere and } sech }L8 ď Kpn, d, Cq. As discussed in Chapter 3.2.1 spin
structures and Dirac operators are also defined on Riemannian orbifolds. In this section
we give an explicit description of the structure and behavior of the Dirac spectrum on
any collapsing sequence inMpn` 1, d, Cq.

Let pMi, giqiPN be a sequence of Riemannian spin manifolds inMpn`1, d, Cq converg-
ing to an n-dimensional Riemannian orbifold pB, hq. By Corollary 1.29 there is an index
I such that for any i ě I there is a fibration fi : Mi Ñ B defining an S1-orbifold bundle
with structure group in AffpS1q – S1 ¸ t˘1u. If B is orientable, then fi : Mi Ñ B is
an S1-principal bundle. Otherwise, we take the orientation cover B̂ of B and consider
the pullback bundle fi : M̂i Ñ B̂. As the structure group of the fibration fi : Mi Ñ B
lies in AffpS1q this pullback bundle is an S1-principal bundle. Hence, it often suffices
to consider sequences of S1-principal orbifold bundles. Moreover, for all i ě I there are
metrics g̃i on Mi and h̃i on B such that the fibrations fi : pMi, g̃iq Ñ pB, h̃iq are Rie-
mannian submersions, see Corollary 1.29. In addition, we have limiÑ8 }g̃i ´ gi}C1 “ 0
and limiÑ8 }h̃i ´ h}C1 “ 0. Since Dirac eigenvalues are continuous under a C1-variation
of metrics, see Theorem C.4, it suffices to consider sequences of Riemannian S1-principal
bundles i.e. S1-principal bundles f : pM, gq Ñ pB, hq such that f is a Riemannian sub-
mersion.

For the moment we fix a Riemannian S1-principal bundle f : pM, gq Ñ pB, hq such
that pM, gq is a spin manifold with a fixed spin structure. As discussed in Chapter 3.2.1 we
distinguish between two kinds of spin structures on the total space pM, gq, the projectable
spin structures, if the S1-action lifts to PSpinM , and the non projectable spin structures,
where a double cover of the S1-action acts on PSpinM . If the spin structure on M is
projectable then the spin structure on M induces a spin structure on B. Otherwise there
is an induced spinc structure. In the following, we discuss the structure of the spinor
bundle ΣM following [Amm98a], [Amm98b, Kapitel 7].

The isometric S1-action on pM, gq induces a Killing vector field K. Furthermore, the
length of the S1-fibers of f : M Ñ B equals 2πl, where l :“ |K|. In particular, we can
view l as a function defined on the base space B. As explained above, there is always an
induced isometric S1-action on PSpinM . Thus, we can define the Lie-derivative of a spinor
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ϕ in the direction of K as

LKϕpxq :“
d

ds

ˇ

ˇ

ˇ

ˇ

s“0

κ´spϕpκspxqqq,

where κ denotes the S1-action on ΣM and on M respectively. By construction LK is
the differential of the S1-action on L2pΣMq. It follows from representation theory for
compact abelian groups that LK has the eigenvalues ik, where k P Z if the spin structure
on M is projectable and k P pZ` 1

2
q if the spin structure on M is non projectable. Thus,

L2pΣMq decomposes as

L2
pΣMq “

à

k

Vk,

where Vk is the eigenspace of LK with respect to the eigenvalue ik.
Since S1 acts on L2pΣM) as isometries, LK commutes with the Dirac operator DM .

Therefore, LK and DM are simultaneously diagonalizable, i.e. for any eigenspinor ϕ of
DM there is a k such that ϕ P Vk. For any fixed k, let λj,k be the eigenvalues of DM

|Vk
such

that

. . . ď λ´1,k ď λ0,k ă 0 ď λ1,k ď λ2,k ď . . . .

Remark 4.9. It is easy to check that LK is the same as ∇aff
K in this setting. Hence, V0

is the space of affine parallel spinors.

Let L :“ M ˆS1 C be the associated line bundle. For any k P Z, resp. k P pZ ` 1
2
q,

Ammann constructed the isometry

Qk : L2
p Σ˛ B b L´kq Ñ Vk,

in [Amm98b, Lemma-Definition 7.2.3]. For k “ 0 this isometry coincides with the isometry
constructed in Lemma 3.26. Using the isometry Qk we can generalize the bounds on Dirac
eigenvalues given in Theorem 4.1 to any collapsing sequence in Mpn ` 1, d, Cq, proving
Proposition 0.4.

Proposition 4.10. Let pMi, giqiPN be a sequence of spin manifolds inMpn`1, d, Cq con-
verging to an n-dimensional Riemannian orbifold pB, hq. Suppose that the spin structures
on Mi are either all projectable or non projectable. Then we can number the Dirac eigen-
values pλj,kpiqqj,k with j P Z and k P Z (projectable spin structures), resp. k P pZ` 1

2
q(non

projectable spin structures), such that for any ε ą 0 there is an index I ą 0 such that for
all i ě I there are fibrations fi : Mi Ñ B with fibers diffeomorphic to S1 such that for
all j P Z and k P Z (projectable spin structures), resp. k P pZ ` 1

2
q (non projectable spin

structures),

|λj,kpiq| ě sinh

ˆ

arsinh

ˆ

|k|

}li}8
´

1

2

”n

2

ı
1
2
CA ´ ε

˙

´ ε

˙

.

Here 2πli is the length of the fibers and CA is a constant depending on n, d and C.
In particular, limiÑ8 |λj,kpiq| “ 0 whenever k ‰ 0 since limiÑ8 li “ 0.
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For any i ě I, let ωi P ΩpMi,Viq be the orthogonal projection onto Vi :“ kerpdfiq,
where fi : Mi Ñ B. If, in addition, there is a constant C such that

}dωi}C0,1 ď C

for all i ě I, then for all j P Z and k P Z (projectable spin structures), resp. k P pZ` 1
2
q

(non projectable spin structures),

lim sup
iPN

ˆ

min
pPB

lippq|λj,kpiq|

˙

ď |k|.

Proof. By Corollary 1.29 and Proposition 1.31, there is an index I1 such that for any
i ě I1 there is an S1-orbifold bundle fi : Mi Ñ B with affine structure group. If B is
orientable then this is an S1-principal orbifold bundle. If B is non orientable we consider
the pullback bundle f̂i : M̂i Ñ B̂ over the orientation covering B̂. Since the structure
group of the fibration fi : Mi Ñ B lies in AffpS1q – S1 ¸ t˘1u this pullback is an
S1-principal orbifold bundle. As (non) projectable spin structures pull back to (non)
projectable spin structures and as the spectrum σpDMiq is a subset of σpDM̂iq we can
assume without loss of generality that the limit space B is orientable

Applying Corollary 1.29 to the sequence pMi, giqiPN there are metrics g̃i on Mi and
metrics h̃i on B such that the fibration fi : pMi, g̃iq Ñ pB, h̃iq is a Riemannian S1-principal
orbifold bundle for all i ě I1. Moreover,

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

The change of the Dirac spectra is controlled by

| arsinhpλD̃j,kpiqq ´ arsinhpλDj,kpiqq| ď C}gi ´ g̃i}C1 , (4.10.1)

for a positive constant C, see Theorem C.4. Here λj,kpiqD denotes an eigenvalue of DMi

and λj,kpiq
D̃ an eigenvalue of D̃Mi , where the eigenvalues are numbered as explained in

the beginning of this section. At this point we want to remark, that the numbering of the
Dirac eigenvalues was derived for Riemannian S1-principal orbifold bundles only. Hence,
this numbering is a priori only defined for the eigenvalues pλD̃j,kpiqqj,k of the Dirac operator
D̃Mi on pMi, g̃iq. Nevertheless, it follows from Theorem C.4 that there is an induced
numbering pλDj,kpiqqj,k of the eigenvalues of the original Dirac operator DMi on pM, giq
such that the inequality (4.10.1) holds.

As shown in [Amm98b, Beweis von Satz 7.2.1], see also [Amm98a], the Dirac operator
can be written as

D̃Mi “
1

li
γ

ˆ

Ki

li

˙

LKi `DHi ´
1

4
γ

ˆ

Ki

li

˙

γpliFiq,

where Fi :“ dω̃i is the curvature of the unique connection one-form iω̃i, whose kernel is
orthogonal to the fibers, and DHi is described by its action on the eigenspaces Vkpiq of
LKi ,

DHi
|Vkpiq :“ Qk,i ˝Dk,i ˝Q

´1
k,i .
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In the above equation, Dk,i is the twisted Dirac operator on ΣiB b L´ki if n is even, and
it is the twisted Dirac operator on pΣ`i B‘Σ´i Bq bL

´k
i , if n is odd. Here Σ`i B and Σ´i B

are two copies of the spinor bundle ΣiB. However, Clifford multiplication by vector fields
X P ΓpTBq acts on Σ`i B as γpXq and on Σ´B as ´γpXq. For more details we refer the
reader to Appendix B.

Moreover, a straightforward calculation shows that

}liFi}8 “ 2}Ai}8, (4.10.2)

where Ai denotes the A-tensor of the Riemannian submersion fi : pMi, g̃iq Ñ pB, h̃iq. By
Theorem 2.17 there is a constant Kpn, d, Cq such that } secB }L8 ď Kpn, d, Cq. Now we fix
a positive constant K̃pn, d, Cq ą Kpn, d, Cq and a positive constant C̃pnq ą 1. It follows
from Lemma 1.27 that there is an index I2 ě I such that for all i ě I2 the sectional
curvature of pB, h̃iq is bounded by K̃, i.e. } sech̃i }8 ď K̃ and the sectional curvature of
pMi, g̃iq is bounded by C̃, i.e. } secg̃i }8 ď C̃.

Let pξ1, . . . , ξn, ζ1q be a split orthonormal frame, see Definition 3.1. In particular,
pξ1, . . . , ξnq is the horizontal lift of an orthonormal frame pξ̌1, . . . , ξ̌nq in pB, h̃iq. Now it
follows directly from O’Neill’s formula (B.7.3) that

|Ai|
2
“
ÿ

iăj

|Apξi, ξjq|
2

“
1

3

ÿ

iăj

sech̃ipξ̌i, ξ̌iq ´ secg̃ipξi, ξjq

ď
npn´ 1q

6

´

K̃ ` C̃pnq
¯

“: CApn, d, Cq
2.

Applying [HM99, Lemma 3.3] and the identity (4.10.2) we obtain
›

›

›

›

1

4
γ

ˆ

Ki

li

˙

γpliFiq

›

›

›

›

8

ď
1

4

”n

2

ı
1
2
}liFi}8 ď

1

2

”n

2

ı
1
2
}Ai}8 ď

1

2

”n

2

ı
1
2
CA.

Since 1
4
γ
´

Ki
li

¯

γpliFiq is symmetric it follows from [Kat76, Chapter 5, Theorem 4.10] that

dist

ˆ

σpD̃Miq, σ

ˆ

1

li
γ

ˆ

Ki

li

˙

LKi `DHi

˙˙

ď

›

›

›

›

1

4
γ

ˆ

Ki

li

˙

γpliFiq

›

›

›

›

8

ď
1

2

”n

2

ı
1
2
CA.

(4.10.3)

Let λWj,kpiq be an eigenvalues of Wi :“ 1
li
γ
´

Ki
li

¯

LKi ` DHi . It was shown in [Amm98a]
that for any ε ą 0 there is an I ě I2 such that

|λWj,kpiq| ě
|k|

}li}8
´ ε,

for all i ě I. Applying the inequalities (4.10.3) and (4.10.1) we obtain the claimed lower
bound.
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It remains to prove the upper bound. As explained in the beginning of this proof it
suffices to consider the S1-principal bundles fi : pMi, g̃iq Ñ pB, h̃iq. Let iω̃i be the unique
connection one-form such that kerpω̃iq is orthogonal to the fibers with respect to g̃i. Since

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0,

and ω̃i coincides with the orthogonal projection onto kerpdfiq it follows from the additional
assumptions that the curvatures F̃i :“ dω̃i are all uniformly bounded in C0,1pB, hq for all
i ě I. Thus, we can apply Theorem D.8 to deduce that there is subsequence pMi, g̃iqiPN
such that allMi are diffeomorphic to a fixed manifoldM and such that the sequence pω̃iqiPN
of connection one-forms converge in C1,α for any α P r0, 1q. Applying these isomorphisms
it suffices to consider the sequence

´

fi : pM, g̃iq Ñ pB, h̃iq
¯

iPN
of S1-principal bundles.

Next, we recall that for any k,

DHi

|Vkpiq
“ Qk,i ˝Dk,i ˝Q

´1
k,i .

As the manifold M does not depend on i the same holfd for the associated line bundle
L “M ˆS1 C. Moreover, as in Step 4 of the proof of Theorem 4.5, we obtain an isometry

L2
p Σ˛ iB b L

´k
q Ñ L2

p Σ˛ B b L´kq,

for any i P N. Applying these isometries and that limiÑ8 }h̃i´h}C1 “ 0 and the connection
one-forms pω̃iqiPN converge in C1,α for any αr0, 1q it follows from Theorem C.5 that the
spectrum pµjpiqqjPZ of the twisted Dirac operators Dk,i converges in the arsinh-topology
to the spectrum pµjqjPZ of the twisted Dirac operator Dk,8 on Σ˛ BbL´k. As before, we
consider the operator

Wi :“
1

li
γ

ˆ

Ki

li

˙

LKi `DHi .

It is straightforward to check that

W 2
i “ ´

1

l2i
pLKiq2 ` pDHiq

2
´ γ

ˆ

gradpliq

l2i

˙

.

AsWi is a self-adjoint operator it is immediate thatW 2
i is a nonnegative self-adjoint oper-

ator. A straightforward calculation using the Rayleigh quotient shows that any eigenvalue
λWj,kpiq of Wi |Vkpiq satisfies

pλWj,kpiqq
2
ď

|k|2

minpPB lippq2
` µjpiq

2
`
} gradpliq}8
minpPB lippq2

.

Multiplying this equation with minpPB lippq
2 leads to

min
pPB

lippq
2
pλWj,kpiqq

2
ď |k|2 `min

pPB
lippq

2µjpiq
2
`min

pPB
lippq} gradpliq}8
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Next, we observe that the T -tensor of the Riemannian submersion fi : pM, g̃iq Ñ pB, h̃iq
is given by

Ti

ˆ

Ki

li
,
Ki

li

˙

“
grad li
li

.

As the tensors pTiqiPN are uniformly bounded in i, see for instance Corollary 1.29,

lim sup
iÑ8

} gradpliq}8 “ 0.

Furthermore, the spectrum pµjpiqqjPZ of Dk,i converges to the spectrum pµjqjPZ of Dk,8

in the arsinh-topology. Combining these observations we obtain that

lim sup
iÑ8

min
pPB

lippq
2
pλWj,kpiqq

2
ď |k|2.

As for the lower bound, we conclude the claim by applying the inequalities (4.10.3),
(4.10.1) and taking the limit iÑ 8. l

An immediate consequence of this proposition is that the eigenvalues of the restrictions
DMi

|Vkpiq
tend to ˘8 in the limit iÑ 8 whenever k ‰ 0. In the case of non projectable spin

structures this means that all eigenvalues diverge. Whereas in the case of projectable spin
structures all eigenvalues diverge except those corresponding to the subspace V0piq, which
is the space of affine parallel spinors. This coincides with the previous results by Ammann,
Theorem 4.1 and Lott, Theorem 4.2, Theorem 4.3. In the following theorem we summarize
the complete behavior of Dirac eigenvalues on collapsing sequences inMpn` 1, d, Cq.

Theorem 4.11. Let pMi, giqiPN be a collapsing sequence of Riemannian spin manifolds
in Mpn ` 1, d, Cq. Then there is a C1,α-Riemannian orbifold pB, hq such that for a
subsequence, relabeled as pMi, giqiPN, there are S1-orbifold bundles fi : Mi Ñ B for which
one of the following two cases occur:

Case 1: There is a subsequence, relabeled as pMi, giqiPN such that the spin structures
on pMi, giq are non projectable. Then the eigenvalues of the Dirac operator DMi can be
numbered as pλj,kpiqq jPZ

kPpZ` 1
2
q

such that for all ε ą 0 there is an index I ą 0 such that for

all i ě I,

|λj,kpiq| ě sinh

ˆ

arsinh

ˆ

|k|

}li}8
´

1

2

”n

2

ı
1
2
CA ´ ε

˙

´ ε

˙

.

Here, 2πli is the length of the fibers and CA is a constant depending on n, d and C. In
particular, limiÑ8 |λj,kpiq| “ 8 for all j P Z and k P pZ` 1

2
q since limiÑ8 li “ 0.

For any i ě I, let ωi P ΩpMi,Viq be the orthogonal projection onto Vi :“ kerpdfiq,
where fi : Mi Ñ B. If, in addition, there is a constant C such that

}dωi}C0,1 ď C

for all i ě I, then for all j P Z and k P pZ` 1
2
q,

lim sup
iPN

ˆ

min
pPB

lippq|λj,kpiq|

˙

ď |k|.
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Case 2: There is a subsequence, relabeled as pMi, giqiPN, such that the spin structures
on pMi, giq are projectable and all of them induce the same spin structure on B, if B is
orientable, resp. the same pin´-structure on B, if B is nonorientable. Then the eigen-
values of the Dirac operator DMi can be numbered as pλj,kpiqqjPZ

kPZ
such that for all ε ą 0

there is an I ą 0 such that for all i ě I,

|λj,kpiq| ě sinh

ˆ

arsinh

ˆ

|k|

}li}8
´

1

2

”n

2

ı
1
2
CA ´ ε

˙

´ ε

˙

.

In particular, limiÑ8 |λj,kpiq| “ 8 for all j P Z and k ‰ 0 since limiÑ8 li “ 0.
For any i ě I, let ωi P ΩpMi,Viq be the orthogonal projection onto Vi :“ kerpdfiq,

where fi : Mi Ñ B. If, in addition, there is a constant C such that

}dωi}C0,1 ď C

for all i ě I, then for all j P Z and k P Z,

lim sup
iPN

ˆ

min
pPB

lippq|λj,kpiq|

˙

ď |k|.

For k “ 0, the eigenvalues λj,0piq converge uniformly with respect to the arsinh-topology
to the eigenvalues of the operator

DB
`
i

4
ωC
nγpFq, if n is even,

ˆ

DB i
4
γpFq

i
4
γpFq ´DB

˙

, if n is odd.

If B is orientable,

• DB is the Dirac operator of B,

• ωC
n is the complex volume element of ΣB, i.e. ωC

n “ ir
n`1

2 sγpe1q ¨ ¨ ¨ γpenq for any
orthonormal frame pe1, . . . , enq,

• F is a C0,α-two-form for α P r0, 1q.

If B is non orientable

• DB is the twisted Dirac operator on the twisted pin´ bundle ΣPBbdetpTBqC, where
detpTBqC is the complexified determinant bundle,

• ωC
n is the complex volume element of ΣPB b detpTBqC,

• F is a C0,α-two-form for α P r0, 1q.
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Proof. The behavior of the divergent eigenvalues as well as the upper bound follow di-
rectly from Proposition 4.10. As usual, we switch to invariant metrics and work with the
resulting sequence of Riemannian S1-orbifold bundles fi : pMi, g̃iq Ñ pB, h̃iq. Under the
assumption that all spin structures of pMi, g̃qiPN are projectable, each of them induces a
spin structure on B. As there are only finitely many equivalence classes of spin structures
on B (see for instance [LM89, Chapter II, Theorem 1.7]), there is a subsequence relabeled
as pMi, g̃iqiPN, such that the spin structure on pMi, g̃iq induces, up to equivalence, the same
spin structure on B for all i P N. We recall that for any i P N there is a unique imaginary
connection one-form iω̃i of the Riemannian S1-orbifold bundle fi : pMi, g̃iq Ñ pB, h̃iq such
that kerpωiq is orthogonal to the fibers with respect to g̃i. Let Fi :“ dω̃i be the curvature
form of ω̃i. To show the convergence behavior of the eigenvalues pλj,0piqqjPZ, it suffices to
observe that Ai |HiˆHi

“ 1
2
liFi if B is orientable. If B is non orientable we define Fi :“ 2Ai.

Then the claim follows from Theorem 4.5 and the rules for Clifford multiplication derived
in Appendix B. l

Finally, we want to mention that the same statement as in Proposition 4.8 also hold
for general collapsing sequences inMpn` 1, d, Cq. It is easy to check that all arguments
given in the proof of Proposition 4.8 also work when B is a Riemannian orbifold.





Appendix A

Infranilmanifolds

In this appendix we recall the basic properties and definitions of infranilmanifolds. For
a thorough introduction to infranilmanifolds we refer to [Dek17], [CFG92, Section 3]
and [Lot02c, Section 3].

Let N be a connected and simply-connected nilpotent Lie group. The Lie algebra n
of N is nilpotent, i.e. there is a k P N such that the lower central series

n1 “ n, n2 “ rn, n1s, n3 “ rn, n2s, ...

terminates at nk “ 0.
On the Lie groupN , there is a canonical flat connection∇aff defined by the requirement

that all left-invariant vector fields are parallel. Let AffpNq denote the subgroup of the
diffeomorphism group DiffpNq that preserves ∇aff . It follows that AffpNq is isomorphic to
the semi-product NL¸AutpNq. Here NL denotes the left-action of N on itself. Note that
NL isomorphic to N via the isomorphism N Ñ NL, g ÞÑ Lg. As usual, AutpNq denotes
the automorphism group of N .

An infranilmanifold Z is a quotient Γz
N of a connected and simply-connected nilpo-

tent Lie group N by a cocompact discrete subgroup Γ of AffpNq. By the generalized first
Bieberbach Theorem (see for instance [Dek17, Theorem 3.4]), the subgroup Γ̂ :“ ΓXNL

is of finite index in Γ. In fact, there is a constant Cpkq depending only on k :“ dimpZq
such that rΓ : Γ̂s ă Cpkq [Gro78, Main result]. Thus, we have the following diagram of
short exact sequences.

1 NL AffpNq AutpNq 1 ,

1 Γ̂ Γ ppΓq 1 .

p

It follows that Z is finitely covered by the nilmanifold Ẑ :“ Γ̂z
N . The finite deck trans-

formation group is given by F :“ ppΓq. Since Γ is a subgroup of AffpNq it follows that
the flat connection ∇aff on N descends to a well-defined flat connection on Ẑ and on Z.
Let n be the Lie algebra of N . The space of affine parallel vector fields on N and Ẑ is
isomorphic to n. Thus, the space of affine parallel vector fields on an infranilmanifold Z
is isomorphic to the subspace nF consisting of those elements that are invariant under the
induced action of F on n. Obviously, nF is finite dimensional.
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Let g be a left-invariant metric on N . For a local orthonormal frame pe1, . . . , ekq of
pN, gq the structural coefficients of the Lie algebra n of N are given by

rea, ebs “
k
ÿ

c“1

τ cabec.

The Christoffel symbols of ∇aff are trivial and the Christoffel symbols of the Levi-Civita
connection can be calculated using the Koszul formula,

Γcab “
1

2

`

τ cab ´ τ
b
ac ´ τ

a
bc

˘

. (A.0.1)

It follows that ∇aff is identical to the Levi-Civita connection if and only if N is abelian,
i.e. N is isometric to the additive group pRk,`q with the euclidean metric. We fix the
following terminology for tensor fields on a Riemannian infranilmanifold pZ, gq.

Notation A.1. Let pZ, gq be a Riemannian infranilmanifold. A tensor field X on Z is
called affine parallel if it is parallel with respect to the affine connection, i.e. ∇affX “ 0.
This is equivalent to say that X lifts to a left-invariant tensor field X̃ on the universal
cover N . On the other hand, a parallel tensor field X on Z is parallel with respect to the
Levi-Civita connection on pZ, gq.

In the remainder of this appendix we consider a closed k-dimensional Riemannian
infranilmanifolds pZ, gq with an affine parallel metric g. Let gN be the lift of g to N . Since
g is affine parallel gN is a left-invariant metric on N . Hence, the oriented orthonormal
frame bundle is trivial, i.e. PSON – N ˆ SOpkq. Thus, there is a canonical spin structure
on N given by

N ˆ Spinpkq Ñ N ˆ SOpkq. (A.1.1)

We recall that the equivalence classes on a spin manifold M are in one-to-one correspon-
dence with the cohomology class H1pM,Z2q, [LM89, Chapter II, Theorem 1.7]. Since N
is connected and simply-connected the cohomology group H1pN,Z2q is trivial. Thus, the
spin structure defined by (A.1.1) is, up to equivalence, the only spin structure on N .

As the metric g on Z “ Γz
N is affine parallel it follows that Γ is a discrete group of

isometries of pN, gNq. Hence, the oriented orthonormal bundle of Z is isomorphic to

PSOZ – Γz
pN ˆ SOpkqq.

At this point we want to remark that there are examples of infranilmanifolds that are not
spin, e.g. the Kleinian Bottle. An infranilmanifold Z is spin if and only if F Ă SOpkq and
if there exists a lift

Spinpkq

Γ F SOpkq .

ρ̃

ρ
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The different equivalence classes of spin structures of Z correspond to different lifts of the
map Γ Ñ SOpkq to Γ Ñ Spinpkq. Moreover, the group

HompΓ,Z2q – H1
pΓ,Z2q – H1

pZ,Z2q

acts freely and transitively on the set of equivalence classes.
It follows that the Spinpkq-principal bundle of Z is given by

PSpinpZq – Γz
pN ˆ Spinpkqq.

Let θk : Spinpkq Ñ AutpΣkq be the canonical complex spinor representation, where Σk is
a complex vector space with dimCpΣkq “ 2r

k
2 s. If there is a given lift ρ̃ : Γ Ñ Spinpkq,

then Γ acts on Σk via

Γˆ Σk Ñ Σk,

pγ, ϕq ÞÑ θkpρ̃pγqqpϕq.

Thus, the spinor bundle of Z is defined as

ΣZ “ PSpinZ ˆθk Σk – Γz
pN ˆ Σkq.

Next, we recall the affine connection ∇aff on Z that is induced by the canonical flat
connection ∇aff on N for which all left-invariant vector fields are parallel. Since the metric
g on Z is affine parallel ∇aff induces a connection on PSOZ and on PSpinZ. For brevity,
we continue to write ∇aff for these induced connections. In this thesis we are mainly
interested in the space of affine parallel spinors on an infranilmanifold pZ, gq with an
affine parallel metric g and a fixed spin structure, i.e.

P :“ tϕ P L2
pΣZq : ∇affϕ “ 0u.

First we observe that the space of affine parallel spinors is isomorphic to

ΣΓ
k “ tν P Σk : θkpρ̃pγqqpνq “ ν, @γ P Γu.

Since Γ̂ Ă NL it is immediate that ρpγq “ Id for all γ P Γ̂. Thus, ρ̃pΓ̂q takes values in
t˘1u. Here ˘1 denote the two preimages of the identity Id P SOpkq under the double
cover Spinpkq Ñ SOpkq. We conclude that ΣΓ

k “ t0u if there exists a γ P Γ̂ such that
ρ̃pγq “ ´1. If ρ̃

|Γ̂ “ 1 then ΣΓ
k “ ΣF

k , where the latter is the space of all elements in Σk

that are fixed by the action of the finite group F “ ρpΓq. Since ΣF
k Ă Σk, the space of

affine parallel spinors on Z is finite dimensional.





Appendix B

Spinors on Riemannian submersions

This appendix deals with Riemannian submersions f : M Ñ B where M is a spin man-
ifold. We discuss how the Clifford multiplication of vertical and horizontal vectors acts
on the spinors of M . The main goal of this appendix is to derive formulas for the spino-
rial connection and the Dirac operator on the total space M expressing the influence of
the “vertical” and the “horizontal” geometry. Afterwards we recall O’Neill’s formulas for
Riemannian submersions which are constantly used in this thesis.

We start with an elementary discussion of the canonical complex spin representation
(see [LM89, Chapter I, §5] for more details). First, we recall that the group Spinpnq is
contained in the Clifford algebra Clpnq :“ ClpCnq of Cn.

If n is even, then there is a unique irreducible representation χn : Clpnq Ñ GLpΣnq.
In the other case, i.e. n is odd, there are two inequivalent irreducible representations
χ˘n : Clpnq Ñ GLpΣnq. Here Σn is a complex vector space of complex dimension 2r

n
2 s.

The canonical complex spin representation is defined as

θn :“

#

χn |Spinpnq , if n is even,
χ`n |Spinpnq , if n is odd.

It is important to remark here, that the restrictions χ`n |Spinpnq and χ
´
n |Spinpnq are equivalent

to each other, although the non restricted representations χ`n and χ´n are inequivalent.
If n is even the canonical complex spin representation splits Σn “ pΣ`n ‘ pΣ´n such

that the restrictions θn |pΣ˘n are inequivalent irreducible representations of Spinpnq. This
splitting corresponds to the ˘1 eigenspaces of the complex volume element

ωC
n :“ ir

n`1
2 sγpe1q ¨ ¨ ¨ γpenq.

Here pe1, . . . , enq is the standard basis of Rn and γ : Rn Ñ GLpΣnq denotes Clifford
multiplication, i.e. γpvqγpwq ` γpwqγpvq “ ´2xv, wy, where x., .y is the standard scalar
product on Rn. The map

Σn “ pΣ`n ‘ pΣ´n Ñ Σn “ pΣ`n ‘ pΣ´n ,

ψ “ ψ` ` ψ´ ÞÑ ψ̄ “ ψ` ´ ψ´

is called complex conjugation.
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If n is odd the canonical complex spin representation θn is irreducible. The complex
volume element ωC

n acts trivially on Σn. For later use, we want to define θ´n :“ χ´n |Spinpnq

for which the complex volume element ωC
n acts as ´1. With respect to this representation,

the Clifford multiplication of x P Rn acts as ´γpxq. Recall from the discussion above that
the irreducible representations θn and θ´n are equivalent to each other.

Now we consider a Riemannian submersion f : pM, gq Ñ pB, hq such that pM, gq is a
spin manifold with a fixed spin structure. Here and subsequently, we set dimpMq “ n` k
and dimpBq “ n. In Chapter 3.2.1 we discuss the problem that, in general, we cannot
determine whether pB, hq has an induced spin or pin˘ structure. Nevertheless, we know
that there is an induced spin structure on each fiber Zp, p P B.

First, we discuss how the involved spinor representations interact with each other.
Since dimCpΣmq “ 2r

m
2 s it follows at once that

dimCpΣn`kq “

#

2 dimCpΣnq dimCpΣkq, if n and k are odd,
dimCpΣnq dimCpΣkq, if n or k is even.

Thus, if n or k is even, there is a vector space isomorphism

Σn`k – Σn b Σk, (B.0.1)

Here ΣnbΣk is to be understood as the tensor product of two complex vector spaces. We
discuss the behavior of the Clifford multiplication under this isomorphism later in this
appendix.

Counting dimensions, it follows that such an isomorphism cannot exist if n and k are
both odd. In that case, we proceed as follows:

Using the standard basis pe1, . . . , en`kq of Rn`k we consider the operator

ωC
n :“ ir

n`1
2 sγpe1q ¨ ¨ ¨ γpenq.

A short computation shows that pωC
n q

2 “ Id. Hence, the action of ωC
n decomposes Σn`k

into the two eigenspaces Σ`n`k and Σ´n`k with respect to the eigenvalues ˘1.

Remark B.1. If n and k are odd, the splitting Σn`k “ Σ`n`k ‘ Σ´n`k defined above is
different from the canonical splitting Σn`k “ pΣ`n`k‘

pΣ´n`k for even dimensions, as ωC
n and

ωC
n`k are not simultaneously diagonalizable.

Next we observe that the operator

ωC
k :“ ir

k`1
2 sγpen`1q ¨ ¨ ¨ γpen`kq

anticommutes with ωC
n . Moreover, pωC

k q
2 “ Id. Hence, the action of ωC

k defines an involu-
tion

ωC
k : Σ˘n`k Ñ Σ¯n`k.

In the following, we identify Σ´n`k with the image ωC
k pΣ

`
n`kq. Since

dimCpΣ
˘
n`kq “

1

2
dimCpΣn`kq “ dimCpΣnq dimCpΣkq,
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there is an vector space isomorphism

Σ˘n`k – Σ˘n b Σk.

Here, the notation Σ˘n symbolizes that ωC
n acts as ˘1. Later we will see, that in fact Σ˘n

corresponds to the two irreducible spinor representations θn, θ´n . Summarizing the above
discussion, we conclude

Σn`k “ Σ`n`k ‘ Σ´n`k, if n and k are odd.
–
`

Σ`n b Σk

˘

‘
`

Σ´n b Σk

˘

–
`

Σ`n ‘ Σ´n
˘

b Σk.

(B.1.1)

Next we want to determine how Clifford multiplication with vectors in Rn`k “separates”
into Clifford multiplications on Σn and Σk. For all natural numbers n and k the Clifford
algebra Clpn ` kq is canonical isomorphic to the graded tensor product Clpnq b̂Clpkq,
endowed with the multiplication

pa b̂ϕq ¨ pb b̂ψq “ p´1qdegpϕqdegpbq
pa ¨ bq b̂ pϕ ¨ ψq,

see for instance [BHM`15, Proposition 1.12].
If n or k is even, the multiplication of the graded tensor product Clpnq b̂Clpkq carries

over to ΣnbΣk. In the remaining case, n and k odd, we recall the eigenvalue decomposition
Σn`k “ Σ`n`k ‘ Σ´n`k together with the involution ωC

k : Σ˘n`k Ñ Σ¯n`k. Since ω
C
k anticom-

mutes with ωC
n it follows that Clifford multiplication with vectors v P Spante1, . . . , enu acts

as γpvq on Σ`n`k and as ´γpvq on Σ´n`k. On the other hand, Clifford multiplication with
any vector in Spanten`1, . . . , en`ku interchanges the eigenspaces Σ˘n`k and commutes with
ωC
k . Using the isomorphisms (B.0.1) and (B.1.1) combined with the above discussion, we

obtain the following identifications for Clifford multiplication with vectors px, vq P RnˆRk:

γppx, vqqpψ b νq –

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

pγpxqψq b ν ` ψ̄ b pγpvqνq, if n is even,
pγpxqψq b ν̄ ` ψ b pγpvqνq, if k is even,

pγpxqψ` ‘´γpxqψ´q b ν ` pψ´ ‘ ψ`q b pγpvqνq,

if n and k are odd.

(B.1.2)

Here, ψ̄ is the complex conjugation, introduced in the beginning of this appendix, with
respect to the Z2 grading on Σp, whenever p is even. In the case, where n and k are even,
both possibilities are isomorphic to each other.

Now we return to the case of a Riemannian submersion f : pM, gq Ñ pB, hq where M
is a spin manifold with a fixed spin structure. Applying the above discussion pointwise
we conclude that

ΣM –

#

f˚pΣBq b ΣV , if n or k is even,
pf˚pΣ`Bq ‘ f˚pΣ´Bqq b ΣV , if n and k are odd.

(B.1.3)
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Remark B.2. Instead with the usual complex spinor bundles, we could also work with
the corresponding real spinor bundles, see [LM89, Example 3.7]. For an n-dimensional
Riemannian spin manifold pM, gq the corresponding real spinor bundle is defined as

ClSpinpMq :“ PSpinpMq ˆl ClpRn
q,

where ClpRnq is the Clifford algebra of Rn which can be viewed as a module over itself
by left multiplication l. Since Spinpnq Ă ClpRnq it follows that ClSpinpMq is a ClpRnq-
principal bundle.

Now let f : pMn`k, gq Ñ pBn, hq be a Riemannian submersion such that M is a spin
manifold with a fixed spin structure. Similar to the complex Clifford algebras there is
a canonical isomorphism ClpRn`kq – ClpRnqb̂ClpRkq for all n, k P N. Since ClSpinpMq
is a ClpRn`kq-principal bundle the isomorphism ClpRn`kq – ClpRnqb̂ClpRkq just carries
over, i.e.

ClSpinpMq – ClSpinpBqb̂ClSpinpVq.

Therefore, we do not need the case distinction (B.1.3). Nevertheless it is more common
to work with complex spinors and the spinor bundle ΣM .

As can be seen in Chapter 3.2.1, the base manifold B and the vertical distribution V ,
in general, are not spin. Thus, the spinor bundles ΣB and ΣV are only defined locally
but their tensor product is defined globally. The rules for Clifford multiplication (B.1.2)
carry over to the spinor bundle ΣM . In the setting of Riemannian manifolds, these rules
allow us to distinguish Clifford multiplication with horizontal and vertical vector fields.

Notation B.3. Let f : M Ñ B be a Riemannian submersion such that M has a fixed
spin structure. For abbreviation we write

ΣM – f˚p Σ˛ Bq b ΣV ,

where

Σ˛ B :“

#

ΣB, if n or k is even,
Σ`B ‘ Σ´B, if n and k are odd.

We recall, that there is a canonical Hermitian product x., .y on ΣM , see e.g. [BHM`15,
Proposition 2.5], such that

xγpXqϕ, ψy “ ´xϕ, γpXqψy

for all vector fields X and spinors ϕ, ψ.
Next we calculate the spinorial connection on ΣM with respect to a local orthonormal

frame pξ1, . . . , ξn, ζ1, . . . , ζkq such thatpξ1, . . . , ξnq is the horizontal lift of a local orthonor-
mal frame pξ̌1, . . . , ξ̌nq in the base space B and pζ1, . . . , ζkq is a locally defined vertical
orthonormal frame. In the following, we use the indices a, b, c, . . . for the vertical compo-
nents and the indices α, β, γ, . . . for the horizontal components.
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For any vector field X and spinor Φ the spinorial connection ∇M onM is locally given
by

∇M
X Φ “ XpΦq `

1

4

n`k
ÿ

i,j“1

gp∇Xei, ejqγpeiqγpejqΦ, (B.3.1)

where pe1, . . . , en`kq is a local orthonormal frame. This connection is metric with respect
to the canonical Hermitian product and satisfies the Leibniz rule relative to the Clifford
product, i.e.

∇Y pγpXqϕq “ γp∇YXqϕ` γpXq∇Y ϕ

for all vector fields X, Y and spinors ϕ.

The action of the Dirac operator on a spinor Φ is locally define via

DMΦ “
n`k
ÿ

i“1

γpeiq∇M
ei

Φ. (B.3.2)

It follows from (B.1.3) that locally any spinor Φ on M can be written as a finite linear
combination Φ “

ř

l f
˚ϕlbνl. The next lemma follows from straightforward calculations,

where we use that the Christoffel symbols of M are given by

Γcab “ Γ̂cab,

Γαab “ ´Γbaα “ gpT pζa, ζbq, ξαq,

Γbαa “ gprξα, ζas, ζbq ` gpT pζa, ξαq, ζbq,

Γaαβ “ ´Γβαa “ ´Γβaα “ gpApξα, ξβq, ζaq,

Γγαβ “ Γ̌γαβ.

Here pΓ̂cabq1ďa,b,cďk are the Christoffel symbols of the fibers with respect to pζ1, . . . , ζkq and
pΓ̌γαβq1ďα,β,γďn are the Christoffel symbols of the base space B with respect to pξ̌1, . . . , ξ̌nq.

Lemma B.4. Let f : pMn`k, gq Ñ pBn, hq be a Riemannian submersion. Suppose that
M is a spin manifold with a fixed spin structure. With respect to a local orthonormal frame
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pξ1, . . . , ξn, ζ1, . . . , ζkq as above, any spinor Φ “ f˚ϕb ν satisfies the following identities:

∇M
ξαΦ “ pf˚∇B

ξαϕq b ν ` f
˚ϕb∇V

ξαν `
1

2

n
ÿ

β“1

γpξβqγ pApξα, ξβqqΦ

“: ∇T
ξαΦ`

1

2

n
ÿ

β“1

γpξβqγ pApξα, ξβqqΦ,

∇M
ζaΦ “ f˚ϕb∇Z

ζaν `
1

2

k
ÿ

b“1

γpζbqγ pT pζa, ζbqqΦ`
1

4

n
ÿ

α“1

γpξαqγ pApξα, ζiqqΦ

“: ∇Z
ζaΦ`

1

2

k
ÿ

b“1

γpζbqγ pT pζa, ζbqqΦ`
1

4

n
ÿ

α“1

γpξαqγ pApξα, ζaqqΦ,

DMΦ “
n
ÿ

α“1

γpξαq∇T
ξαΦ`

k
ÿ

a“1

γpζaq∇Z
ζaΦ´

1

2

k
ÿ

a“1

γ pT pζa, ζaqqΦ

`
1

2

n
ÿ

α,β“1
αăβ

γ pApξα, ξβqq γpξαqγpξβqΦ

“: DT Φ`DZΦ´
1

2

k
ÿ

a“1

γ pT pζa, ζaqqΦ`
1

2
γpAqΦ.

Here ∇B, ∇V and ∇Z are the induced connections by the respective connections on TM ,
defined in Section 3.1.

In the remainder of this appendix we recall O’Neill’s formulas for Riemannian submer-
sion [O’N66,Gra67]. We follow [Bes08, Chapter 9, Sections C and D], where the authors
summarized the formulas from [O’N66,Gra67].

Let f : pM, gq Ñ pB, hq be a Riemannian submersion, where dimpMq “ n ` k and
dimpBq “ n. In the following we denote by Fp :“ f´1ppq the fiber over p P B and with ĝp
the induced metric on Fp. It is a general fact that the tangent bundle TM “ H‘V splits
into the horizontal distribution H – f˚TB and the vertical distribution V :“ kerpdfq. In
particular, any X P TM can be written as X “ XH `XV , where XH , resp. XV denotes
the horizontal, resp. vertical component. O’Neill introduced the two fundamental tensors
T and A that are defined by their actions on vector fields X, Y ,

T pX, Y q :“
`

∇XV Y V
˘H
`
`

∇XV Y H
˘V
,

ApX, Y q :“
`

∇XHY V
˘H
`
`

∇XHY H
˘V
.

(B.4.1)

Loosely speaking, the T -tensor corresponds to the second fundamental form of the fibers.
In particular, T vanishes identically if and only if the Riemannian submersion f : M Ñ B
is totally geodesic. On the other hand, the A-tensor vanishes identically if and only if the
horizontal distribution H is integrable. If both, T and A, vanish identically, then M is
locally isometric to the Riemannian product B ˆ F .

Here and subsequently, R is the curvature tensor of g, and Ř :“ f˚RB is the pullback
of the curvature tensor of B. Further, we denote by R̂p the curvature tensor of the induced
metric ĝp on the fiber Fp, where p P B.
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Notation B.5. Following the notation of [O’N66], U, V,W,W 1 will always be vertical
vector fields and X, Y, Z, Z 1 will always be horizontal vector fields. In addition, E,E1, E2

will denote arbitrary vector fields.

Theorem B.6. For a Riemannian submersion f : pM, gq Ñ pB, hq, the curvature tensor
R of M satisfies the following identities:

gpRpU, V qW,W 1
q “ gpR̂pU, V qW,W 1

q ` gpT pU,W q, T pV,W 1
qq

´ gpT pV,W q, T pU,W 1
q,

(B.6.1)

gpRpU, V qW,Xq “ ´gpp∇V T qpU,W q, Xq ` gpp∇UT qpV,W q, Xq, (B.6.2)

gpRpX,UqY, V q “ ´gpp∇XT qpU, V q, Y q ` gpT pU,Xq, T pV, Y qq

´ gpp∇UAqpX, Y q, V q ´ gpApX,Uq, ApY, V qq,
(B.6.3)

gpRpU, V qX, Y q “ ´gpp∇UAqpX, Y q, V q ` gpp∇VAqpX, Y q, Uq

´ gpApX,Uq, ApY, V qq ` gpApX, V q, ApY, Uqq

` gpT pU,Xq, T pV, Y qq ´ gpT pV,Xq, T pU, Y qq,

(B.6.4)

gpRpX, Y qZ,Uq “ ´gpp∇ZAqpX, Y q, Uq ´ gpApX, Y q, T pU,Zq

` gpApY, Zq, T pU,Xqq ` gpApZ,Xq, T pU, Y qq,
(B.6.5)

gpRpX, Y qZ,Z 1q “ gpŘpX, Y qZ,Z 1q ` 2gpApX, Y q, ApZ,Z 1qq

´ gpApY, Zq, ApX,Z 1qq ` gpApX,Zq, ApY, Z 1q
(B.6.6)

The corresponding formulas for the sectional curvatures follow immediately from the
above theorem. In the following, sec denotes the sectional curvature on M , |sec the
pullback of the sectional curvature on B and xsecp the intrinsic sectional curvature of the
fiber Fp, p P B.

Corollary B.7. If gpU, V q “ 0, gpX, Y q “ 0 and all of them have unit length, then

secpU, V q “ xsecpU, V q ` |T pU, V q|2 ´ gpT pU,Uq, T pV, V qq, (B.7.1)

secpX,Uq “ gpp∇XT qpU,Uq, Xq ´ |T pU,Xq|
2
` |ApX,Uq|2, (B.7.2)

secpX, Y q “ |secpX, Y q ´ 3|ApX, Y q|2. (B.7.3)

Finally, we want to state various relations between the tensors A, T and their deriva-
tives. All of these relation can be proven by straightforward calculations.

Proposition B.8. Let f : pM, gq Ñ pB, hq be a Riemannian submersion. Then the
tensors p∇E1T qpE2, ¨ q and p∇E1AqpE2, ¨ q are alternating and

gpp∇ET qpU, V q, Xq “ gpp∇ET qpV, Uq, Xq, (B.8.1)
gpp∇EAqpX, Y q, Uq “ ´gpp∇EAqpY,Xq, Uq. (B.8.2)
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Moreover,

p∇XT qpY, ¨ q “ ´T pApX, Y q, ¨ q, (B.8.3)

p∇UT qpX, ¨ q “ ´T pT pU,Xq, ¨ q, (B.8.4)

p∇UAqpV, ¨ q “ ´ApT pU, V q, ¨ q, (B.8.5)

p∇XAqpU, ¨ q “ ´ApApX,Uq, ¨ q. (B.8.6)

Furthermore, the derivatives of T satisfy

gpp∇XT qpU, V q,W q “ gpApX, V q, T pU,W qq ´ gpApX,W q, T pU, V qq, (B.8.7)

gpp∇XT qpU, Y q, Zq “ gpApX, Y q, T pU,Zqq ´ gpApX,Zq, T pU, Y qq, (B.8.8)

gpp∇UT qpV,W q,W
1
q “ gpT pU,W q, T pV,W 1

q ´ gpT pU,W 1
q, T pV,W qq, (B.8.9)

gpp∇UT qpV,Xq, Y q “ gpT pU,Xq, T pV, Y qq ´ gpT pV,Xq, T pU, Y qq, (B.8.10)

and the derivatives of A satisfy

gpp∇UAqpX, V q,W q “ gpT pU, V q, ApX,W qq ´ gpT pU,W q, ApX, V qq, (B.8.11)

gpp∇UAqpX, Y q, Zq “ gpApX,Zq, T pU, Y qq ´ gpApX, Y q, T pU,Zqq, (B.8.12)

gpp∇XAqpY, Uq, V q “ gpApX,Uq, ApY, V qq ´ gpApX, V q, ApY, Uqq, (B.8.13)

gpp∇XAqpY, Zq, Z
1
q “ gpApX,Zq, ApY, Z 1qq ´ gpApX,Z 1q, ApY, Zqq, (B.8.14)

and

gpp∇XAqpY, Zq, Uq ` gp∇YAqpZ,Xq, Uq ` gp∇ZqApX, Y q, Uq

“ gpApX, Y q, T pU,Zqq ` gpApY, Zq, T pU,Xqq ` gpApZ,Xq, T pU, Y qq.
(B.8.15)

In addition,

gpp∇UAqpY, Zq, Uq ` gpp∇VAqpX, Y q, Uq

“ gpp∇Y qpU, V q, Xq ´ gpp∇XT qpU, V q, Y q.
(B.8.16)



Appendix C

Continuity of Dirac spectra

In Section 3.1 we observed that any collapsing sequence pMi, giqiPN inMpn ` k, dq with
smooth n-dimensional limit space pB, hq can be approximated by a sequence of Rieman-
nian affine fiber bundles fi : pMi, g̃iq Ñ pB, hiq such that

lim
iÑ8

}g̃i ´ gi}C1 “ 0,

lim
iÑ8

}h̃i ´ h}C1 “ 0.

Since we are interested in Dirac eigenvalues, we have to verify that the Dirac spectrum
is continuous with respect to a C1-variation of metrics. Although this behavior is well-
known we want to discuss this topic in more detail following [Now13]. Furthermore, we
formulate an explicit consequence of [Now13, Theorem 4.10] that is crucial for the proof
of Theorem 4.5.

Let M be an n-dimensional spin manifold with a fixed topological spin structure. We
recall, that a topological spin structure is a ĂGL`-principal bundle PĄGL`

pMq such that
it is a double cover P

ĄGL`
pMq Ñ PGL`pMq of the GL`pnq-principal bundle PGL`pMq

consisting of positively oriented frames that is compatible with the group double cover
ĂGL`pnq Ñ GL`pnq, i.e.

ĂGL`pnq ˆ PĄGL`
M P

ĄGL`
M

M .

GL`pnq ˆ PGL`M PGL`M

Let RpMq denote the space of all Riemannian metrics on M endowed with the C1-
topology. For any g P RpMq, the topological spin structure induces a spin structure on
pM, gq by restricting to the preimage of the oriented orthogonal frame bundle PSOpM, gq
of pM, gq. Let ΣgM be the spinor bundle of pM, gq. The relation between spinor bundles
and Dirac operators with respect to different metrics was studied in [BG92,Mai97]. In
the following we recall the identifications of different metric spin structures.

For any g, h P RpMq, there is a unique symmetric positive definite endomorphism field
Hg such that gpHgX, Y q “ hpX, Y q for all vector fields X, Y . Hence, there is a unique

101
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symmetric positive definite square root bhg :“
a

Hg such that for all vector fields X, Y ,

gpbhgX, b
h
gY q “ gpHgX, Y q “ hpX, Y q.

In particular, there is an SOpnq-equivariant isomorphism

pbhgq
n : PSOpM,hq Ñ PSOpM, gq,

pe1, . . . , enq ÞÑ pbhge1, . . . , b
h
genq.

Remark C.1. Reversing the roles of g and h, it follows that

bgh “ pb
h
gq
´1.

However, if we consider three metrics g, h, k P RpMq, then in general

bgk ‰ bhk ˝ b
g
h.

Since M is by assumption a closed n-dimensional Riemannian manifold with a fixed
topological spin structure, it follows that bhg lifts to a Spinpnq-equivariant isomorphism

Ćpbhgq
n : PSpinpM,hq Ñ PSpinpM, gq.

In particular, we obtain an isometry of the corresponding spinor bundles,

βhg : ΣhM “ PSpinpM,hq ˆθn Σn Ñ ΣhM “ PSpinpM, gq ˆθn Σn,

ϕ “ rA, ξs ÞÑ βhgϕ :“ rĆpbhgq
npAq, ξs.

Here, θn : Spinpnq Ñ Σn denotes the canonical complex spinor representation.
However, the induced map βhg : L2pΣhMq Ñ L2pΣgMq is not an isometry as the

volume forms are not the same, i.e. dvolh ‰ dvolg. Hence, we define

β̂hg :“ fhg β
h
g , (C.1.1)

where fhg is a positive function such that dvolh “ pf
h
g q

2 dvolg. By construction,

β̂hg : L2
pΣhMq Ñ L2

pΣgMq

is an isometry of Hilbert spaces. This isometry allows us, to pullback the Dirac operator
Dg of ΣgM to an elliptic first order differential operator

Dh g :“ β̂gh ˝Dg ˝ β̂
h
g

“ βghDgβ
h
g ´ f

g
h b

h
gpgradg f

h
g q

(C.1.2)

We summarize the properties of this construction in the following proposition, see also
[Mai97, Section 2]
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Proposition C.2. Let h be a fixed Riemannian metric on a closed spin manifold M with
a fixed topological spin structure. Then for every metric g P RpMq the operator Dh g,
defined in (C.1.2), is isospectral to the Dirac operator Dg on ΣgM . Furthermore, Dh g is
closed and densely defined on H1,2pΣhMq. Moreover, the map

RpMq Ñ B
`

H1,2
pΣhMq, L

2
pΣhMq

˘

,

g ÞÑ Dh g,

is continuous. Here, Bp., .q denotes the space of bounded linear operators endowed with
the operator norm.

Following an idea of Lott, [Lot02a], Nowaczyk studied the continuity of Dirac eigen-
values with respect to the arsinh-topology.

Definition C.3. On RZ, let the metric da be defined by

dapu, vq :“ sup
jPZ
| arsinhpupjqq ´ arsinhpvpjqq|

for all u, v P RZ. The topology induced by da is called the arsinh-topology.

In this setting, the continuity result for Dirac eigenvalues [Now13, Main Theorem 2]
reads as

Theorem C.4. Let M be a spin manifold with a fixed topological spin structure. There
exists a family of functions pλj P C0pRpMq,RqqjPZ such that the sequence pλjpgqqjPZ are
the eigenvalues of Dg. In addition, the sequence parsinhpλjqqjPZ is equicontinuous and
non decreasing.

In fact, the above theorem is a restriction of a more general continuity statement
proven in [Now13, Section 4].

Theorem C.5. Let H be an Hilbert space, The spectrum of a family of unbounded self-
adjoint operators T : E Ñ CpHq is continuous in the arsinh-topology if

(1) there exists a dense subspace Z Ă H, such that domTe “ Z for all e P E,

(2) there exists a norm |.| on Z such that Te : Z Ñ H is bounded and the graph norm of
Te is equivalent to |.|,

(3) E is a topological space,

(4) the map E Ñ BpZ,Hq, e ÞÑ Te is continuous.

By Theorem C.2 the family of Dirac operators associated to a C1-convergent sequence
of Riemannian metrics on a fixed spin manifold M satisfies these conditions.





Appendix D

Convergence of S1-principal bundles

The goal of this appendix is to establish a general notion of convergence for S1-principal
bundles with connection. The content of this appendix was published in [Roo17, Section
4.1].

First, we show that for a suitable bound on the curvature of the S1-principal bundle
there are only finitely many possibilities of isomorphism classes of S1-principal bundles
satisfying it. Thus, we can focus on a sequence of connection one-forms on a fixed S1-
principal bundle where we obtain a converging subsequence by applying suitable gauge
transformations.

In the beginning, we recall the basic classification results for S1-principal bundles. For
more details see e.g. [Bla10, Chapter 2] and [Bry08, Chapter VI]. These results are the
main ingredients to prove the desired convergence results.

We recall the following terminology: Two S1-principal bundles P and P 1 together with
connections iω resp. iω1 are isomorphic with connections if there is a principal bundle
isomorphism Φ : P Ñ P 1 such that Φ˚ω1 “ ω.

Isomorphism classes of S1-principal bundles as well as gauge equivalence classes are
classified by the Čech-cohomology of the underlying base manifold M . Especially the
classification of isomorphism classes is a well-known result which we restate here.

Theorem D.1. Let M be a compact manifold. Then there is a bijection between the
Čech-cohomology group Ȟ2pM,Zq and the isomorphism classes of S1-principal bundles
over M .

Let P be an S1-principal bundle over a compact manifold M . Then P defines, up to
isomorphism, a unique class in Ȟ2pM,Zq. This class is called the first Chern class of P .

The curvature of a connection one-form iω on P is given by a closed two-form F on
M , namely

dω “ F.

The de Rham class r 1
2π
F s P H2pM,Rq is the image of the first Chern class of P under the

Čech-de Rham isomorphism. A short calculation shows that r 1
2π
F s is independent of the

choice of the connection one-form iω on P . Thus, it depends only on the isomorphism
class of the S1-principal bundle.

105



106 APPENDIX D. CONVERGENCE OF S1-PRINCIPAL BUNDLES

We want to show that there is a suitable bound on the curvature of S1-principal
bundles such that there are, up to isomorphism, only finitely many S1-principal bundles
satisfying it. To do so, we recall from Hodge theory that on a compact Riemannian
manifold pM, gq each de Rham class rωs admits a unique harmonic representative rω.
Moreover, rω minimizes the L2-norm in the class rωs. In addition, the projection from
closed to harmonic forms is continuous in L2. Thus, it is a natural choice to assume an
L2-bound on the curvature for our purpose .

Lemma D.2. Let pM, gq be a compact Riemannian manifold and K a fixed nonnegative
number. Then there are only finitely many isomorphism classes of S1-principal bundles
P with connection over M whose curvature F satisfies }F }L2 ď K.

Proof. By Theorem D.1 the isomorphism classes of S1-principal bundles over M are clas-
sified by Ȟ2pM,Zq. By the universal coefficient theorem, we have Ȟ2pM,Zq – Zb2pMq‘T1,
where T1 is the torsion of Ȟ1pM,Zq which is finite, and b2pMq is the second Betti number
of M . The kernel of the homeomorphism h : Ȟ2pM,Zq Ñ H2pM,Rq is given by T1. More-
over, the cohomology class r 1

2π
F s P H2pM,Rq is an integral class, i.e. it lies in the image

of h.
Since the harmonic representative of a de Rham class minimizes the L2 norm it fol-

lows that the set of isomorphism classes of S1-principal bundles whose curvature satisfies
}F }L2 ď K is given by h´1pCq, where

C :“

#

rωs P H2
pM,Rq : }rω}L2 ď

1

2π
K

+

.

Here rω denotes the unique harmonic representative of rωs.
As H2pM,Rq – H2pMq – Rb2pMq, with H2pMq denoting the space of harmonic two-

forms, is a finite dimensional vector space and the projection from closed to harmonic
forms is continuous in L2, it follows that C is compact. In particular, Imagephq X C is
compact, hence finite. Since the kernel of h is also finite the claim follows. l

We recall now the characterization of the gauge equivalence classes of connections on
a fixed S1-principal bundle P over M which can be found in the standard literature.

Theorem D.3. For a fixed S1-principal bundle P over a compact Riemannian manifold
M two principal connections are gauge equivalent if and only if their difference is repre-
sented by a closed integral one-form. In particular, the space of gauge equivalence classes
of connections with fixed curvature F is given by the Jacobi torus Ȟ1pM,Rq{Ȟ1pM,Zq.

Using this theorem we are able to prove the following convergence result. Observe that
in general we will not obtain C8-convergence. Therefore, we establish here the following
notion: A connection one-form iω is called Ck,α if its associated Christoffel symbols are
Ck,α. Further on, we only consider α P r0, 1q.

Theorem D.4. Let pPi, iωiqiPN be a sequence of S1-principal bundles with connection over
a fixed compact Riemannian manifold pM, gq. For each i let Fi “ dωi be the corresponding
curvature. If there is a nonnegative K such that }Fi}Ck,α ď K for all i, then for any β ă α
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there is an S1-principal bundle P with a Ck`1,β-connection ω and a subsequence, again
denoted by pPi, iωiqiPN together with principal bundle isomorphisms Φi : P Ñ Pi such that
Φ˚i ωi converges to ω in the Ck`1,β-norm

Proof. As the Ck,α-norm of the curvatures of the S1-principal bundle Pi is uniformly
bounded in i, it is immediate that the L2-norm of the curvatures is also uniformly bounded.
Applying Lemma D.2 we conclude that this sequence only contains finitely many isomor-
phism classes of S1-principal bundles. Hence, we find a subsequence pPi, iωiqiPN such that
for each i there is an isomorphism Ψi : Pi Ñ P for some fixed P .

Using that the connections on P form an affine space over Ω1pMq, we fix ω1 as a
reference connection. The difference Ψ˚

i ωi ´ Ψ˚
1ω1 is given by a unique ηi P Ω1pMq. We

will apply the Hodge decomposition various times and show for each part separately how
we obtain a converging subsequence.

Since P is fixed
“

1
2π

Ψ˚
i Fi

‰

“
“

1
2π

Ψ˚
kFk

‰

for all i, k. Hence, for each i there is a one-form
ζi such that

Ψ˚
i Fi “ Ψ˚

1F1 ` dζi.

It follows from our assumptions on the curvatures that there is a positive constant rK such
that }dζi}Ck,α ď rK uniformly in i.

By Hodge decomposition we can choose ζi “ d˚ξi for some closed two-form ξj which
is orthogonal to kerp∆q in L2. Thus, dζi “ ∆ξi. Applying Schauder’s estimate we find a
positive constant C such that for all i

}ξi}Ck`2,α ď C}∆ξi}Ck,α ď C rK.

As the embedding Ck,α ãÑ Ck,β is compact for any β ă α there is a subsequence pξiqiPN
converging in Ck`2,β. Thus, pd˚ξiqiPN converges in Ck`1,β. In general, the limit is not
smooth.

For each i the connections Ψ˚
i iωi and Ψ˚

1 iω1 ` id˚ξi have the same curvature. Thus,
for each i, there is a unique closed one-form ηi such that

Ψ˚
i ωi “ Ψ˚

1ω1 ` d˚ξi ` ηi.

Again we apply Hodge decomposition and obtain for each i a smooth function fi and a
harmonic one-form νi such that

ηi “ dfi ` νi.

If dfi ‰ 0 we apply the gauge transformation Gi “ e´ifi and obtain

G˚i Ψ
˚
i ωi “ Ψ˚

1ω1 ` d˚ξi ` νi.

Now, we need to find a subsequence and suitable gauge transformations such that the
sequence of the remaining harmonic parts pνiqiPN converges. To obtain these we take a
closer look at the classification of connections on a fixed S1-principal bundle. By Theorem
D.3, the gauge equivalence classes of connections for a fixed curvature form are classified
by the Jacobi torus Ȟ1pM,Rq{Ȟ1pM,Zq. By Hodge theory, there is exactly one harmonic
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representative in each de Rham class. Since Ȟ1pM,Zq has no torsion elements it is em-
bedded in H1pM,Rq via the Čech-de Rham isomorphism. Hence, we obtain the quotient
of harmonic forms divided by harmonic integral forms which is isomorphic to the torus
Tb1pMq. As the projection from closed to harmonic forms is continuous in L2 the Jacobi
torus is compact in the L2-topology.

The sequence pνiqiPN induces a sequence in the Jacobi torus. Since the Jacobi torus is
a compact quotient in the L2-topology there is a subsequence of harmonic representatives
prνiqiPN converging in L2 to a smooth harmonic one-form rν. Note that each νi is equivalent
to rνi. By standard elliptic estimates it follows that prνiqiPN converges in C l for any l ą 0.

Taking the corresponding gauge transformations Hi, we obtain the sequence

pH˚
i G

˚
i Ψ

˚
i ωi “ Ψ˚

1ω1 ` d˚ξ1 ` rν1qiPN ,

which converges in Ck`1,β. Setting Φi :“ Ψi ˝Gi ˝Hi finishes the proof. l

Remark D.5. Similarly a uniform upper bound on the Hk,2-norm of the curvature leads
to a H l`1,2-converging subsequence of the underlying connection one-forms for any l ă k.

This theorem shows that the space of S1-principal bundles over a fixed compact Rie-
mannian manifold pM, gq with a uniform bound on the Ck,α-norm of the curvature is
“precompact in the Ck`1,β-topology" for any β ă α. Now we also want to vary the
base manifold pM, gq. For this we use the following compactness theorem by Ander-
son, [And90, Theorem 1.1], see also Remark 1.11.

Theorem D.6. For given positive numbers Λ , ι, and d the setMpn,Λ, ι, dq of isometry
classes of closed Riemannian n-manifolds pM, gq with

|RicM | ď Λ, injpMq ě ι, diampMq ď d,

is precompact in the C1,α-topology for any α P r0, 1q. Furthermore, the subspace consisting
of Einstein manifolds is compact in the C8-topology.

Combining this class of manifolds with the assumptions in Theorem D.4 we define
the following set of isometry classes of closed Riemannian manifolds with S1-prinicpal
bundles.

Definition D.7. Let MS1
pn,Λ, ι, d,Kq be the set of isometry classes of S1-prinicpal

bundles P π
ÝÑ M with principal connection iω such that pM, gq P Mpn,Λ, ι, dq and

}F }C0,1pgq ď K where F “ dω is the corresponding curvature.

Theorem D.8. Any sequence pMi, gi, Pi, ωiqiPN inMS1
pn,Λ, ι, d,Kq admits a subsequence,

again denoted by pMi, gi, Pi, ωiqiPN, such that for any α P r0, 1q there is an S1-principal
bundle P over a closed Riemannian manifoldM with a C1,α-metric g and a C1,α-connection
iω such that for each i there is a principal bundle isomorphism

P Pi

M Mi

Φi

φi

with Φ˚i ωi and φ˚i gi converging to ω resp. g in C1,α.
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Proof. Let pMi, gi, Pi, ωiqiPN be a sequence inMS1
pn,Λ, ι, d,Kq. Since any manifold in this

sequence lies inMpn,Λ, ι, dq there exists a subsequence again denoted by pMi, gi, Pi, ωiqiPN
and a C1,α-Riemannian manifold pM, gq such that for each i there exists a diffeomorphism
φi : M ÑMi such that φ˚i gi converges to g in C1,α, see Theorem D.6.

By pulling back each element in pMi, gi, Pi, ωiqiPN with the diffeomorphism φi we obtain
a sequence of metrics and S1-principal bundles with connections over a fixed compact
manifold M which we call pM, gi, Pi, ωiqiPN for simplicity.

We fix the initial metric g1 as our background metric. Applying Theorem D.4 to the
sequence pPi, ωiqiPN viewed as S1-principal bundles over pM, g1q we obtain a subsequence
together with principal bundle isomorphism Ψi : P Ñ Pi such that Ψ˚

i ωi converges in
C1,αpg1q.

Since pφ˚i giqiPN converges to g in C1,α the claim follows. l
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