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Abstract

The state estimation of dynamical systems based on measurements is an ubiquitous problem.

This is relevant in applications like robotics, industrial manufacturing, computer vision, target

tracking etc. Recursive Bayesian methodology can then be used to estimate the hidden states of

a dynamical system. The procedure consists of two steps: a process update based on solving the

equations modeling the state evolution, and a measurement update in which the prior knowledge

about the system is improved based on the measurements. For most real world systems, both the

evolution and the measurement models are nonlinear functions of the system states. Addition-

ally, both models can also be perturbed by random noise sources, which could be non-Gaussian

in their nature. Unlike linear Gaussian models, there does not exist any optimal estimation

scheme for nonlinear/non-Gaussian scenarios.

This thesis investigates a particular method for nonlinear and non-Gaussian data assimilation,

termed as the log-homotopy based particle flow. Practical filters based on such flows have been

known in the literature as Daum Huang filters (DHF), named after the developers. The key con-

cept behind such filters is the gradual inclusion of measurements to counter a major drawback

of single step update schemes like the particle filters i.e. namely the degeneracy. This could re-

fer to a situation where the likelihood function has its probability mass well separated from the

prior density, and/or is peaked in comparison. Conventional sampling or grid based techniques

do not perform well under such circumstances and in order to achieve a reasonable accuracy,

could incur a high processing cost. DHF is a sampling based scheme, which provides a unique

way to tackle this challenge thereby lowering the processing cost. This is achieved by dividing

the single measurement update step into multiple sub step, such that particles originating from

their prior locations are graduated incrementally until they reach their final location. The mo-

tion is controlled by a differential equation, which is numerically solved to yield the updated

states.

DH filters, even though not new in the literature, have not been fully explored in the detail yet.

They lack the in-depth analysis that the other contemporary filters have gone through. Espe-

cially, the implementation details for the DHF are very application specific. In this work, we

have pursued four main objectives. The first objective is the exploration of theoretical concepts

behind DHF. Secondly, we build an understanding of the existing implementation framework

and highlight its potential shortcomings. As a sub task to this, we carry out a detailed study of

important factors that affect the performance of a DHF, and suggest possible improvements for

each of those factors. The third objective is to use the improved implementation to derive new

filtering algorithms. Finally, we have extended the DHF theory and derived new flow equations

and filters to cater for more general scenarios.



II

Improvements in the implementation architecture of a standard DHF is one of the key contribu-

tions of this thesis. The scope of applicability of DHF is expanded by combining it with other

schemes like the Sequential Markov chain Monte Carlo and the tensor decomposition based

solution of the Fokker Planck equation, resulting in the development of new nonlinear filtering

algorithms. The standard DHF, using improved implementation and the newly derived algo-

rithms are tested in challenging simulated test scenarios. Detailed analysis have been carried

out, together with the comparison against more established filtering schemes. Estimation error

and the processing time are used as important performance parameters. We show that our new

filtering algorithms exhibit marked performance improvements over the traditional schemes.

Index terms— Log homotopy based particle flow filter, Fokker Planck equation, Massive

sensor data, Sequential Markov chain Monte Carlo, Confidence sampling, Subsampling,

Tensor decomposition, Alternating least squares, Gaussian mixture models.
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Chapter 1

Introduction

The natural world is full of individual bodies and objects that interact with each other, and

through those interactions they influence each other’s behavior. In scientific terms, such a group

of interacting entities which constitute one complex whole is referred to as a system. The

first step in analyzing a system is to chart out its specific input/output behavior. It starts with

specifying the condition of a system as a function of time, and is referred to as its state. By

describing a system in terms of its state(s), allows it to be studied quantitatively. All systems

can be categorized into two groups: static or dynamical systems. A static system is one that

does not change its state(s) over the time, or does so very slowly. Examples of this include

mechanical systems like a bridge, a high rise building, etc. A dynamical system, on the other

hand, exhibits a perceivable change in its state over time. Examples of such systems include

the solar system, interacting molecules in a chemical reaction, human body responding to the

administration of a drug, network of computers, ecological system, socio-cultural systems etc.

Another categorization can be made on the basis of the change systems undergo w.r.t. the time.

They can be either be continuous time systems, for which the state evolution is perpetual over

the time, or discrete time systems that exhibit change only at certain time instances. Almost

all real world systems belong to the former category. In most of the cases, the study of the

continuous time dynamical systems is rather complex to be carried out effectively. Therefore,

as a possible solution, they are converted into an equivalent discrete time representation through

a mathematical procedure called the discretization.

State estimation of a discretized dynamical system is usually carried out in a state space frame-

work, where a set of defining states, comprising a state vector is used for its description. The

state evolution is defined by a system function, which could depend on the state values from the

previous time steps, and external control inputs. Furthermore, there could be inherent uncer-

tainties in the evolutionary process, which could lead to a non-deterministic state progression.

In most cases, it is not possible to directly observe the state vector. Instead, a related set of

variables are usually observed. This set is referred to as the measurements. Measurements and

the states could relate to each other in a linear or nonlinear manner. Furthermore, measurements

could also be corrupted by random noises. In Figure 1.1, we depict a state space model for a

generic discrete time system. Here, k is the time index and xk, uk and zk are the state, control

and the measurement vectors, respectively. Also, wk and vk are the system and measurement

noises. The system block refers to the state evolutionary function, while the measurement block

represents the functional relationship between states and measurements.
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System

wk

uk

Measurement

vk

zk
xk

Delay (∆)

Figure 1.1: State space model for a generic discrete time dynamical system

The delay block points to the fact that the state evolution is a recursive process. Since both

the system and the measurement models have random noise contributions, the state estimation

based on a simple inverse transformation (measurements to state) could be imprecise. There-

fore, the state estimation has to be done in a framework, which includes the statistical formula-

tion of the uncertainties.

Luckily, we have just that type of framework in the form of Recursive Bayesian Estimation

(RBE). Instead of calculating a single point estimate, RBE allows for the formulation of in-

formation about the state in terms of a probability density function (pdf). Measurements are

represented through a likelihood function. The process starts with an initial state pdf, which

represents the measure of uncertainty at the beginning. Upon the arrival of measurements, the

initial density is updated with the help of the likelihood function, yielding the posterior pdf.

This is also called the Data assimilation step. This is followed by the time update of the pos-

terior pdf through the System, leading to the formation of a prior belief for the second data

assimilation step. The procedure continues thereafter in a similar recursive manner. We show a

generic RBE procedure in Figure 1.2,

Time propagation

Measurement update

zk

p(xk|zk, · · · , z1)
Posterior density at time k

p(xk|zk−1, · · · , z1)
Prior density at time k

k
→

k
+

1

Figure 1.2: Bayesian recursive estimation

The posterior density in this form is also called the filtering density. The main focus of this thesis

is to develop new methods to solve the RBE for the filtering density, in an efficient manner.
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1.1 Motivating examples

Satellite based positioning

Accurate navigation has always been a main concern of travelers throughout the history. In the

ancient days, stars were used by the caravans criss-crossing deserts and sailors on their voy-

ages to the known and unknown lands. In particular, navigation on the high seas was of special

interest, as it was through there that most of the world trade and exploration was carried out.

Star based positioning was later on augmented by the use of instruments like astrolabes, clocks,

compasses and gyroscopes. This led to the use of Dead reckoning to plot the current location of

a ship based on its last estimated position, current speed, time elapsed since the last way-point

and its bearing. Given the rather unsophisticated nature of the measurement devices, inher-

ent faults and natural limitations (like requirement for the clear weather) were always present,

leading to faulty navigation over the large stretches of oceans. The paradigm was significantly

changed with the advent of radio communications making the maritime navigation much more

accurate. This evolved through the use of the radio navigation systems like OMEGA, TACAN,

DECCA, LOREN-C etc. to estimate the direction to a known radio source. These systems were

later aided by the more accurate, though localized, radar based navigation techniques used both

by the maritime and airborne traffic. However, a key requirement for using the radio navigation

methods was the existence of the supporting terrestrial infrastructure in the area of operation

e.g. radio stations. This limited their usage.

With the arrival of the space age, new possibilities arose to significantly improve the navigation

across the whole globe. The concept was to use space vehicles orbiting the earth in lower

orbits, to broadcast the necessary information to accurately position a ground object anywhere

on the globe. The archetype is called the Global Navigation Satellite System (GNSS), which

is usually based on a constellation of satellites circling the earth in low to medium earth orbits.

Examples of GNSS include the American NAVSTAR Global Positioning system or GPS, the

Russian GLONASS, the European Galileo and the Chinese Beidou navigation system.

Figure 1.3: Global Navigation Satellite System (GNSS) constellation

Amongst all, the GPS is the most matured and well established system, which is also the most
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widely used one. GPS consists of three major components: space, control and users. Space

component consist of twenty four satellites placed in six orbital planes equispaced around the

equator, transmitting navigational signals. The arrangement ensures that any user on the earth

has always a direct line of sight with at least four satellites. The control component includes the

ground tracking stations used for monitoring the satellites and adjustments in their parameters.

The last segment consists of users equipped with GPS receivers. These receivers are responsible

for Radio Frequency and the Baseband processing of the received signal in order to calculate

the estimated satellite positions and the signal transit time. This information is further used by

an embedded Navigation unit to estimate the user states i.e position, velocity, heading and the

time. The transit time, calculated in the form of pseudo-ranges, are rendered inaccurate due

to the presence of atmospheric delays, selective availability, multipaths, receiver noise, carrier

frequency tracking ambiguities and the satellite and receiver clock biases [Far08]. Furthermore,

the pseudo-range measurements are nonlinear functions of the receiver location. This makes

the user state estimation a nonlinear RBE problem, requiring the use of appropriate models and

filtering algorithms.

Maritime Surveillance

Sea borne trade is the backbone of global trade, and one of the major drivers of the world’s

economy. According to the annual report of United Nations Conference on Trade and Develop-

ment (UNCTAD), 80 percent of the global trade by volume and 70 percent of the global trade

by value is done through the maritime routes [UNC15]. Presented below, is a snapshot of the

maritime traffic across the world oceans and inland waterways.

Figure 1.4: Maritime traffic map (Source: https://www.marinetraffic.com/en/ais/home)

Therefore, the monitoring and supervision of traffic on the high seas and inland waterways
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is of prime interest. There are several types of operations that fall in this category [EU117].

Firstly, navies all around the world maintain vigil to monitor their respective national maritime

zones against enemy surface or sub-surface incursions. This also includes keeping a close

eye on the coastal areas for thwarting any potential attempts of infiltration by enemy military

personnel for sabotage and other subversive activities. Next, the law enforcement agencies of

countries with extensive coastline have to be on a look out for smuggling activities and illegal

trafficking. in this task, they can be aided by military maritime patrol assets. Specialized

operations like visit, board, search, and seizure (VBSS) can be conducted, designed to capture

enemy vessels, to combat terrorism, piracy and smuggling, and to conduct customs, safety

and other inspections. Another important task is the protection and regulation of fishing and

exploitation of the natural resources in a country’s exclusive economic zones. Lastly, maritime

agencies might have to respond to the distress calls in the case of vessel damage or sinking. This

might require launching search and rescue missions (SAR), involving helicopters and boats to

the last reported position of the vessel.

Figure 1.5: A typical maritime surveillance scenario

A main feature of any maritime surveillance operation is the acquisition of vessels positioning

data. This could be done through three methods: Self reporting, Observation based data and

Information database. Sea vessels typically self report their position and other relevant infor-

mation through the Automatic Identification System (AIS) in their vicinity to avoid collisions.

They can also transmit the data via satellite communication links to the competent authorities

for identification and tracking purposes. As the second mode of vessel positioning, passive or

active sensors could be employed to gather data. This might include space borne platforms

like Synthetic Aperture Radar (SAR) or Electro-Optical (EO) sensors equipped satellites, high

flying unmanned observation platforms (UAV) or maritime patrol aircraft (MPA). Thirdly, in-

formation about the vessels like their appearance, construction, history, type, etc. can also be

used to identify them. All of these methods have their inherent limitations, which restrict their

stand alone application for the general maritime surveillance. For example, sensors could have

different sampling rates, latencies, errors etc. Also not all information might be available to
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maritime authorities at any given time. In addition, the self reported information could be fal-

sified. Therefore, the fusion of data is necessary to improve the positioning accuracy of sea

vessels. This is done at a command and control (C2) center, where the data gathered by all

sources is merged. The information generated thereof is used in the situation prediction (to

forecast traffic maps), anomaly detection (identifying abnormal traffic pattern which could be

due to an illegal activity), mapping activities at the sea and improving the overall maritime

safety and security [EUJ17]. Sensor fusion lies at the heart of all such activities, and is carried

out in a recursive Bayesian estimation context.

Advanced Driver Assistance Systems

Passive automotive safety systems are designed to lessen the effects of accidents or collisions.

They cannot influence the occurrence of such incidents in the first place. Examples of such

systems include seat belts, air bags and belt pre-tensioner etc. However, with the proliferation

of cheap sensors and computational technology, the automotive industry has been provided

with the necessary tools to significantly improve drivers safety and comfort. This calls for the

development of specialized hardware and the software, that could present the driver with the

most needed information, thereby augmenting his/her ability to make timely decisions through

better judgment. This could not only result in a smoother and safer driving, but it could also

lead to the automation of major driving tasks, hence reducing driver’s work load. In the later

case, an on board computer can facilitate the driver by assisting him/her or by completely taking

over the driving tasks. The whole concept relies on the fusion of sensory data, gathered by the

on-board sensors to create a general picture of vehicle’s surroundings, which is subsequently

Figure 1.6: Sensor fusion based vehicular ADAS system. The figure shows a typical highway

scenario, with ongoing works on the one half. Ego vehicle (green) employs ADAS to help the

driver in safely navigating through the jam. The two sensor shown are the top mounted camera

and radars located in the front and back of the vehicle. The white cone represents the field of

vision of the camera.
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used by control units to perform the required tasks. This constitutes the realm of Advanced

Driver Assistance Systems (ADAS). ADAS are designed to prevent accidents by changing the

dynamical parameters of the car. Examples of such systems include collision avoidance, Anti-

lock Braking System (ABS) and Adaptive Cruise Control (ACC). A detailed description of such

systems can be found in [Eid04], [Jan05] and [Gus05]. All active safety systems employ state

estimation of the ego vehicle i.e. the vehicle to be controlled, and most of the times, of the

other vehicles and the surrounding road objects. Typical vehicular states include the position,

velocity, acceleration, three angles (pitch, roll, yaw) and their rates. Usually a host of sensors

are employed in the estimating those states. This could include, GPS, steering angle, wheel

speed, Inertial Measurement unit (IMU), Radar, Camera, Map database etc. Some early works

in this field include [Nwa93], [SFD02], [SSCT04], [GdlEA13] and [SY16].

A typical ADAS scenario is shown in Figure 1.6. The car is shown to be carrying two sen-

sors aboard, a radar and a camera. The camera is used to extract feature information from the

captured images, which can be further used to track objects. In addition to that, the radar pro-

vides information regarding the range, relative velocity, acceleration and the relative heading. A

camera sensor is very good at locating object in the azimuth but suffers from poor radial range

accuracy. Radar, on other hand is very good at estimating the direct distance between vehicles

but its cross range uncertainty is relatively large. It should be noted that measurements from

both sensors are nonlinearly related to the true states, and are also corrupted by noise. One of

the methods used to combine the two data is the so called Covariance intersection (CI) method,

as described in the context of the Track-to-Track fusion (T2TF) in [SR08]. This happens in two

stages. In the first stage, each sensor runs its own Bayesian filter on the data and generates a

mean and a covariance estimate. In the second step, the processed estimates from the two filters

are combined using the CI method. CI results are optimal if the noise densities are Gaussian

and there exist no cross variance between two filtered estimates. The Covariance intersection

is shown below,

x̂rad,P̂rad

x̂cam,P̂cam

Figure 1.7: Fusion of camera & radar based estimates using Covariance intersection

However, neither of the two assumptions hold valid in the reality. The noise densities are seldom

Gaussian, and most of the times, the two estimates (from radar and camera) are correlated.

Hence, the need for a better nonlinear estimation methodology, to be used in the sensor fusion

context is ever present. At this point it is worth rephrasing a particular comment from [Gus05]:

It is more important to have accurate state information than advanced control algorithms.



8 1 Introduction

1.2 Traditional state estimation methodologies: Strengths & Weaknesses

Based on the form of the state propagation and measurement functions, a system can be classi-

fied as either being linear or nonlinear. Another categorization can be made based on the nature

of uncertainties. In the case of a linear Gaussian system (LGS), i.e. one in which both state

propagation and measurement functions are linear and the two noises together with the initial

uncertainty are Gaussian, a closed form estimator can be derived. This turns out to be the much

celebrated Kalman Filter (KF), as derived by Rudolf E. Kalman [Kal60]. Kalman filter is opti-

mal for LG conditions in the sense that, there exists no other estimator which has a lower mean

square error (MSE). The filter has an elegant form, and it is also very simple to implement.

Since the filter is based on the Gaussian assumption, it remains bounded in its dimensionality

throughout the time. This is because the sufficient statistics to represent the Gaussian densities

are just the mean and the covariance matrix. However, real life systems are seldom linear and/or

Gaussian. Hence, Kalman filter can not be directly applied in those cases.

Generally, it is quite hard to derive an exact closed form estimator for nonlinear / non-Gaussian

cases, and therefore, approximate methods are sought after. One can broadly categorize most

of these methods into four classes: Kalman filter based methods, Grid based schemes, Sequen-

tial Monte Carlo (SMC) and Sequential Markov Chain Monte Carlo (SMCMC) methods. In

a first approach, Kalman filter theory is extended to incorporate the effect of nonlinear func-

tions, while still assuming the Gaussian assumptions for the initial uncertainty and noises. In

its first manifestation, the linearization of the two models is performed around the current state

estimate, allowing for the Kalman filter equation to be applied. Alternatively, a set of determin-

istically sampled values are propagated through nonlinear functions. The transformed points

are then used in the estimation of the prior and posterior point estimates e.g. mean and covari-

ance. Examples of these method include the Extended Kalman Filter (EKF), Unscented Kalman

Filter (UKF) and Cubature Kalman Filter (CKF). However, these methods are generally sub-

optimal and their performance degrades with the increase in the nonlinearity, and also when the

transition and measurement densities are non-Gaussian (e.g. multimodal, exponential). For an

illustration, we solve the Bayesian recursion for the following dynamical system,

xk+1 = 0.5xk + 25
xk

1 + x2
k

+ 2 cos(1.2k) + wk , zk+1 =
x2
k+1

20
+ vk+1

and plot the evolution of the true posterior density alongside the EKF based density estimates in

Figure 1.8. Here, the initial density is given by N (3, 5), whereas the process and measurement

noiseswk and vk areN (0, 10) andN (0, 1), respectively. We can observe that the true posterior

density is clearly non-Gaussian (bi-modal) for most of the time, which makes the EKF based

density estimates diverge from the true posterior density.

The second class of estimators numerically approximates the prior and posterior densities over

a discretized region of the state space, as discussed in [BL97], [SKS02], [SKS06], [SK15a]

and [KUD+16]. Process update is usually carried out by numerically solving a Partial Differ-

ential Equation (PDE) or an Integral Equation (IE), yielding a prior density estimate over the

discretized region. In the measurement update step, the prior density is point-wise multiplied

with the likelihood and normalized to form the posterior density estimate The main disadvantage

with these type of methods is unfavorable scaling of the number of grid points with increasing

dimensionality.
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Figure 1.8: EKF based estimation of the true posterior density

The third class of nonlinear/non-Gaussian estimators fall in the category of Sequential Monte

Carlo (SMC) methods, more famously known as particle filters [AMGC02], [GSS93]. In its

most basic form, a particle filter is initialized with a set of particles, which are drawn from

some initial distribution. State update is performed by sampling from an importance density.

On the arrival of measurements, particles are weighted according to their likelihood. Particles

are then used to estimate the state mean and covariance. Finally, the most likely particles are

replicated and assigned uniform weights, while the rest are discarded. This procedure is per-

formed recursively. Several versions of particle filters have been proposed in the literature, e.g.

the sampling importance resampling (SIR) filter [GSS93] also known as the bootstrap parti-

cle filter, the auxiliary sampling importance resampling (ASIR) filter [PS99], the regularized

particle filter (RPF) [MOLG01] etc.

Sequential Markov Chain Monte Carlo (SMCMC) based methods constitute yet another class

of state estimation procedures. Traditionally, MCMC has been employed in sampling from

complex distributions occurring in statistical physics [MRR+53]. A Markov chain is created

whose stationary distribution is the distribution of interest. New samples are generated using

a proposal density, which can either be accepted or rejected. If accepted, the chain is said to

have moved. When applied to sampling from a posterior distribution in a sequential setting,

such as in the target tracking, the procedure is known as SMCMC. SMCMC methods provide a

powerful tool for the state estimation of nonlinear / non-Gaussian system [KBD05]. Depending

on the length of the constructed chain and the space exploration methodology, they can provide

very accurate estimates of the posterior distribution.

While grid based methods, SMC and SMCMC based approaches can effectively deal with non-

linearities and non-Gaussian noises, they suffer from the so called curse of dimensionality. It

refers to the exponential increase in the size of the discretized problem (in the first case) or the

required number of statistical samples (for the rest of the two) to adequately represent the in-

volved densities, with a linear increase in the system dimensionality. As a consequence, it could

become computationally very hard to efficiently solve the RBE, even for moderately sized prob-

lems. Another problem, faced specifically by SMC methods is the weight degeneracy. Weight

degeneracy refers to the fact that after few updates all but one or very few particles have negli-

gible weights. Weight degeneracy occurs when the posterior distribution does not significantly

overlap with the prior distribution. SMCMC also has its specific limitations. E.g. the proposal

distribution has to be very well adapted to the target distribution (posterior), if its processing

time has to be kept under a certain threshold. In the other case, the required number of iterations
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could be very large even for simple high dimensional models, as illustrated in [FSMG15]. We

will elaborate on these concepts in more detailed manner in the Chapter 2.

1.3 Particle flow : A paradigm for nonlinear & non-Gaussian data as-

similation

It was earlier pointed out that the exponentially increasing required number of particles and

their degeneracy are some of the major issues faced by nonlinear / non-Gaussian estimation

algorithms. A careful analysis can reveal that these two issues are coupled to each other. A

degenerated set of particles, upon re-sampling, leads to a particle set with too small variance.

Particle replication could be helpful, but at the cost of reduced statistical diversity. This means

that the target density cannot be accurately approximated if degeneration of particles happens.

This problem gets exacerbated in higher dimensions because the inter-sample distance in higher

dimensions could be very large. Thus, by reducing the set of good particles, the density approx-

imation gets even worse. This concept is explained in more detail in paragraph 2 of the section

2.3.3.

It was realized that one possible remedy to this problem could be a gradual inclusion of mea-

surements, in the measurement update step of a RBE algorithm. This could be done is several

ways. For example, one could form a set of intermediate densities, filling in between the prior

and the posterior densities, and sample from that set in a sequential manner [GC01]. Another

concept could be to parameterize the densities and then introduce the likelihood in a sequential

manner, to the updated parameters of the posterior density in steps [HF03], [HJSM11]. A more

thorough approach is provided by the authors in [Rei13], [HDP15], [BG14], and [EMFD15],

where particles from the prior density are moved through a fictitious time by solving an ordinary

differential equation (ODE), such that its solution yields the updated posterior samples. These

methods circumvent the need for the solution of a particular partial differential equation (PDE),

governing the change in the density, and instead approximately update the particle states by

solving a relatively simple differential equation. The PDE being referred to here is the Fokker-

Planck equation (FPE), which describes the evolution of the probability w.r.t. some measure of

time, for particles flowing in a force field undergoing simultaneous drift and diffusion.

A common issue with all of the above mentioned methods is that, while they are better than

SMC in performance, they are usually computationally very demanding. Therefore, we look

for another type of method, which though similar in concept, strikes a better trade-off between

the complexity and estimation accuracy. We find that such a method for nonlinear/non-Gaussian

has been suggested by F. Daum and J. Huang in a series of papers [DH07]- [DH09a], which is

also based on the gradual inclusion of the measurements. The key idea there is to model the

transition of particles from the prior to the posterior density as a physical flow under the influ-

ence of an external force (measurements). Particles are sampled from the state transition den-

sity and a notion of synthetic time also called the pseudo-time is introduced in which particles

are flown, until they reach their posterior locations. The FPE describes the density evolution.

Again, instead of solving it, an ODE termed as the flow equation is solved, which is derived

analytically by solving the FPE under different assumptions. The flow vector is integrated nu-

merically, yielding the updated particles states. This filter is termed as log-homotopy based

particle flow filter or simply Daum Huang filter (DHF), named after the developers. Different

flow solutions have been derived, including the incompressible flow [DH07], zero diffusion ex-

act flow [DH09b], Coulomb’s law flow [DHN11a] and zero-curvature flow [DH13b] non zero



1.3 Particle flow : A paradigm for nonlinear & non-Gaussian data assimilation 11

diffusion flow (NZD) [DH13a]. It has been shown that the DHF are generally more effective in

dealing with the particle degeneracy and they outperform particle filters for solving difficult high

dimensional nonlinear / non-Gaussian problems ( [DC12], [KU15], [KBS15], [MC15], [LC16]).
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Figure 1.9: Prior density & likelihood (a) and the particle flow based posterior density approxi-

mations at different values of λ.

To illustrate the workings of the log homotopy based particle flow method, we show NZD flow

based single measurement update step for a two dimensional state space system in Figure 1.9.
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We use the following measurement model,
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where vr ∼ N (0, 0.1) and vθ ∼ N (0, 5) represent the additive measurement noises. The prior

density is given by a Gaussian, N
((

20

20

)
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))

. We use 40 geometrically space

pseudo-time λ points between 0 and 1. The main thing to note is that the high probability mass

regions of the prior density and the likelihood are well separated, which makes the scenario

very challenging from the particle degeneration aspect. Details on the exact procedure behind

the log homotopy based particle flow will be given in the Chapter 3 of this thesis.

1.4 Thesis Scope and Contribution

This thesis achieves four objectives: it creates a better understanding of the main theoretical

concepts behind the log-homotopy based particle flow filters in relation to similar approaches

mentioned in the literature; a detailed analysis is performed to understand the shortcomings of

the current implementation architecture of DHF and the suggestions of possible improvements;

the derivation is provided of new algorithms based on these flows for the estimation of complex

nonlinear/non-Gaussian problems and the extension of existing theoretical framework to cater

for more general cases. Below, we enumerate and explain the individual contributions in detail.

1. The first objective is develop a thorough understanding of the main principles behind

the log homotopy based particle flow method, as described by F. Daum and J. Huang in

their series of papers. This includes the elaboration of the log-homotopic relationship

between the probability densities in the context of Bayesian data assimilation, and the

use of Fokker Planck equation to derive a generic particle flow equation. Furthermore,

different flow solutions of the FPE are discussed in detail.

2. DHF implementations have been reported in several publications. While conceptually

quite intuitive, DHF performance suffers in practice due to several assumptions made in

the implementation. The second contribution of this thesis is in gaining better under-

standing of the implementation aspects of DHF. The objective is to carefully study the

process in order to discern key steps, which if not properly implemented, could result in

bad results. In the continuation of this, we identify most important factors affecting the

performance of the DHF. As the continuation, a detailed study of those key factors has

carried out. We individually discuss the possible options for each of them. Finally, we

suggest possible improvements in the DHF implementation architecture to increase the

efficiency.

3. Thirdly, we develop new filtering algorithms by combining the particle flow based mea-

surement update with other methods.

(a) In the first instance, we embed the particle flow based data assimilation step in-

side an SMCMC framework for the Bayesian estimation of massive sensor data .

It refers to a scenario where a large number of measurements are available to be
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processed at any given time instance. A straightforward application of SMCMC

is often computationally quite expensive. Also, SMCMC needs a well-suited pro-

posal distribution for achieving good performance in a reasonable amount of time.

We realized that the DHF can be used to form a good proposal for sampling the

posterior distribution in the case of massive sensor data. We build upon the existing

work of De Freitas et.al. [FSM15], and combine a clustering driven DHF with the

Confidence sampling based SMCMC to considerably improve upon the estimation

accuracy of the later, while keeping the processing cost under a bearable limit. The

new scheme performs considerably well against the increasing state dimensionality.

(b) The use of the tensor decomposition based representation for the probability den-

sities and linear operators has been noted as a key factor in defeating the Curse

of dimensionality in discretized problems. These concepts can be used to develop

a framework for the propagation of a pdf through time, by numerically solving

the Fokker-Planck equation (FPE). This has been discussed in [SK14], [SK15b],

[SK15c] and [SK15d], where it has been highlighted that the discretized prob-

lem based on a tensor decomposition approach exhibits a much lower degree of

freedom. This is essential to check the exponential growth of the number of free

variables. Building on these works, we develop a Continuous-Discrete filtering

algorithm, whereby we combine the log homotopy based flow with the tensor de-

composition based solution of the FPE. We solve FPE twice, first in the continuous

time propagation step of the RBE to form a prior density estimate, and the secondly

together with the log homotopy based flow in the measurement update step in order

to get the posterior density.

4. Lastly, we expand on the existing mathematical framework and derive new flow equations

for sum of Gaussian based prior densities, and the filtering algorithms based on them.

In the following, we define the outline of the thesis.

Chapter 2

This is a survey chapter, in which both the traditional and progressive measurement update

based solution for the Bayesian data assimilation are mentioned in detail. We start with the

generic formulation of RBE for state space systems. Next, we describe the RBE solution for

linear & Gaussian systems i.e. the Kalman filter. This is followed by the discussion on various

traditional solution for nonlinear and/or non-Gaussian systems, namely, the Kalman filter based

methods, Grid based methods, Sequential Monte Carlo or particle filters and SMCMC. Partic-

ularly, in the reference to the last two, we discuss the curse of dimensionality and the particle

degeneracy. Later on, we describe a number of non-traditional methods for data assimilation

based on the gradual inclusion of measurements. This becomes the major part of this chapter.

Finally, we conclude the chapter by highlighting the strengths and weaknesses of these methods.

Chapter 3

This is the main chapter of this thesis. We start by expanding on the concepts of SDE and

FPE. This is followed by the description of the log homotopy based particle flow method. We

mainly follow the derivational guidelines mentioned by F.Daum and J.Huang in their papers.
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We derive a generic particle flow equation and solve it under different assumption, leading to

specific flow solutions. We describe each of the derived flow solutions in detail. Next, the typ-

ical implementation methodology for the DHF is described, and the key steps are highlighted.

We also refer to our previous results where the sub standard performance of the DHF was noted.

This becomes a strong motivation for looking into the ways to improve the implementation ar-

chitecture of the DHF. In the proceeding section, the important factors in the DHF are studied

in detail, with several possible options suggested for each of them. This culminates into our

modified implementation termed as the Improved DHF. To test the performance of the new im-

plementation, we consider state estimation of a complex nonlinear system, with both Gaussian

and non-Gaussian measurement noises. The effect of different methods on the performance of

DHF is studied individually for both noise cases. The main take away lesson from this chap-

ter is by carefully designing a DHF, its performance can be substantially improved over more

traditional implementations.

In the following, we list our publications related to this chapter.

[KU14] M. Altamash Khan and M. Ulmke. Non-linear and non-Gaussian state estimation us-

ing log-homotopy based Particle Flow Filters. In Sensor Data Fusion: Trends, Solutions,

Applications (SDF), 2014, pages 1–6, October 2014

[KU15] M. Altamash Khan and M. Ulmke. Improvements in the Implementation of Log-

Homotopy based Particle Flow Filters. In Proceedings of the 18th International Confer-

ence on Information Fusion (FUSION), pages 74–81, July 2015

[KUK17] M. Altamash Khan, M. Ulmke, and W. Koch. Analysis of Log-Homotopy based

Particle Flow Filters. Journal of Advances in Information Fusion (JAIF), 12(1), June

2017

Chapter 4

In this chapter, we propose a novel approach for the Bayesian processing of the massive sensor

data, by combining the log homotopy based particle flow with SMCMC. We propose an initial

measurement clustering, after which the log-homotopy flow is applied. The samples after the

flow are assumed to be approximately in the vicinity of their actual posterior locations, though

not exactly there. Hence, they can form an excellent proposal to be used in the subsequent

Confidence sampling driven MCMC procedure. The main purpose of the last step is to have the

convergence guarantee, that comes associated with later procedure. In this way, we essentially

bring the strength of both methods under one banner.

In this chapter, we start by revisiting the basics of SMCMC. Next, some important solutions

for massive sensor data processing via SMCMC are highlighted. Probabilistic sub sampling

i.e. confidence sampling methodology is identified as one such promising method, which we

discuss in detail. We then move on to describing potential issues with the choice of proposal

distribution in the context of SMCMC. The use of DHF together with the data clustering to

form a better proposal is also advocated in the same section. Our DHF based new algorithm

for the Bayesian processing of massive sensor data is mentioned in the next section. At the

end, we test our algorithm in a challenging multi target tracking scenario using range & bearing

measurements in the presence of strong clutter. We study the effect of different algorithm and
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system parameters in detail. It is shown that our newly devised scheme outperforms the other

nonlinear estimation schemes.

The related publications include an accepted conference paper and a planned journal paper,

which will most likely be submitted to the Journal of Advanced in Information Fusion (JAIF).

[KdFL+17] M. Altamash Khan, A. de Freitas, L.Mihaylova, M. Ulmke, and W. Koch.

Bayesian Processing of Big Data using Log Homotopy Based Particle Flow Filters. In

Sensor Data Fusion: Trends, Solutions, Applications (SDF), 2017, pages 1–6, October

2017

[KdFL+18] M. Altamash Khan, A. de Freitas, L.Mihaylova, M. Ulmke, and W. Koch. Im-

proving Adaptive Markov chain Monte Carlo using Log-Homotopy Particle Flow based

proposal. To be submitted to Journal of Advances in Information Fusion (JAIF), 2018

Chapter 5

In this chapter, we explore another interesting approach to the solution of RBE i.e. the grid

based methodology. In particular, we build on the tensor decomposition based framework,

as developed by Y. Sun and M. Kumar in their series of papers, and combine it with the log

homotopy based particle flow to devise a novel nonlinear filtering method. We employ the FPE

not only to predict the probability density into future times, but also to perform the measurement

update. We include measurements using the log-homotopy flow by solving the tensorized FPE

w.r.t. the pseudo-time to get the estimated posterior density, hence completing one cycle of the

Bayesian recursion.

Since the solution of FPE in higher dimensions entails solving a tensor equation, we start the

main presentation by discussing the basics of tensors. Next, we present the basics of the sep-

arated representation of multi-dimensional functions and the tensor decomposition. Based on

the notations and methodology developed, we study problems admitting stationary solutions

and derive equations describing the FPE in the tensorized format. This is done to gain basic

insights in the tensor decomposition based solution for FPE. Next, we provide details of the

unified framework for the solution of the FPE, as described by Y. Sun and M. Kumar in their

series of paper [SK14], [SK15b], [SK15c] and [SK15d]. We not only reproduce the details of

the methodology as mentioned in these papers, but we also give a detailed derivation of the

related equations. Based on this, we derive the tensor decomposition based nonlinear filtering

algorithm, which we term as the tensorized filter. We study the effect of different algorithm

parameters on its performance. We use optimally tuned tensorized filter to estimate a nonlinear

scenario.

Publications related to this chapter are given below.

[KUD+16] M. Altamash Khan, M. Ulmke, B. Demissie, F. Govaers, and W. Koch. Combin-

ing Log-Homotopy Flow with Tensor decomposition based solution for Fokker-Planck

equation. In Proceedings of the 19th International Conference on Information Fusion

(FUSION), pages 2229–2236, July 2016

[DKG16] B. Demissie, M. Altamash Khan, and F. Govaers. Nonlinear filter design using

Fokker-Planck propagator in Kronecker tensor format. In Proceedings of the 19th Inter-

national Conference on Information Fusion (FUSION), pages 1–8, July 2016
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Chapter 6

In the work leading to this chapter, we have been using the existing flow solutions to develop

new filtering algorithms. In this chapter, we expand on the existing mathematical framework

and start the work with a more general assumption in order to derive new flow equations. In

particular, we use a sum of Gaussians based form for the prior density. We solve the FPE for

the unknown flow, by assuming it to be of the same form as the exact flow. This leads to the

derivation of two flow equations. This is a new theoretical development in the context of log

homotopy based particle flow filters, and is one of our recent works. We use the newly derived

flows to develop a new filtering algorithm. We test it for the estimation of scalar nonlinear and

non-Gaussian example.

We have the following publication related to this chapter.

[KUK16] M. Altamash Khan, M. Ulmke, and W. Koch. A log homotopy based particle flow

solution for mixture of Gaussian prior densities. In 2016 IEEE International Conference

on Multisensor Fusion and Integration for Intelligent Systems (MFI), pages 546–551,

September 2016

Chapter 7

This is the final chapter, in which we conclude the whole thesis. We also hint out directions for

the possible extension of this work.



Chapter 2

Progressive measurement update methods

The Bayesian estimation framework offers an intuitive way for the estimation of hidden states

of a dynamical system, based on the observational data. As discussed in the previous chapter,

the Bayesian estimation is carried out recursively, typically consisting of a prediction and a

correction step. A transition density describes the time evolution of the state conditioned on the

previous values, while a measurement density describes the likelihood of measurements given

the current state. These densities can then be used in the RBE framework for the evaluation of

prior and posterior state distributions at any given moment of time.

This is a survey chapter, in which we look into the existing literature on nonlinear state estima-

tion with the main focus on the progressive measurement update methods. We start by defining

the general recursive Bayesian estimation in section 2.1. The optimal estimator for a linear

Gaussian case is described in section 2.2. Next, in section 2.3, we start by describing a general

nonlinear estimation problem and highlight the fact that the an optimal closed form estimator

does not exist. Therefore, for the derivation of a practical nonlinear / non-Gaussian estimator,

some level of approximation has to be made. Based on this fact, we describe the traditional

solutions for nonlinear RBE in detail. This is followed by section 2.4, where we list some of

the novel techniques for data assimilation in nonlinear systems based on the gradual inclusion

of the measurements. Finally, the conclusion is given in section 2.5.

2.1 Bayesian recursive estimation

We start with the general formulation of Bayesian recursive estimation for a Markovian state

space system. Let xk ∈ Rd denote the state vector and zk ∈ Rm denote the measurement vector

at time k. Similarly, let uk ∈ Rn denote a control vector. The three vectors are related through

the following set of general nonlinear and/or non-Gaussian recursive equations.

xk+1 = φφφk+1(xk, uk,wk)

zk+1 = ψψψk+1(xk+1, vk+1) (2.1)

whereφφφk is termed as the process / dynamical model andψψψk as the measurement model. wk and

vk are referred to as the process and the measurement noises, respectively. The expression 2.1 is

general enough in the sense that the two noises can be statistically correlated, non-Gaussian or
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multiplicative in nature, or all. The following diagram depicts a first order Markovian nonlinear

state space system.

uk−1 uk

wk−1 wk

· · · xk−1 φφφk xk φφφk+1 xk+1 · · ·

vk−1 ψψψk−1 vk ψψψk vk+1 ψψψk+1

zk−1 zk zk+1

Figure 2.1: A non-linear Markovian state space system

The vector uk represent the effect of the an external control input and is included here for the

sake of completeness. Its presence is more important when studying the control behavior of

dynamical systems. Since, the main focus of the discussion is limited to the state estimation uk
can be dropped, without the loss of any generality.

In an alternative formulation, the state space model can also be expressed in the terms of con-

ditional probabilities,

xk+1 ∼ p(xk+1|xk)
zk+1 ∼ p(zk+1|xk+1)

p(xk+1|xk) and p(zk+1|xk+1) are referred to as the transition and the measurement/likelihood

densities. Assuming additive process and measurement noises wk and vk we can write

p(xk+1|xk) = pwk
(xk+1 − φk+1(xk)) (2.2)

p(zk+1|xk+1) = pvk+1(zk+1 − ψk+1(xk+1)) (2.3)

Furthermore, let Zk denote the set of measurements up to time k including zk, such that, Zk
= {z1, z2 , ... , zk }. Then according to the Chapman-Kolmogorov equation and the Bayes
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theorem, the prior density p(xk+1|Zk) and the posterior density p(xk+1|Zk+1) are recursively

defined as,

p(xk+1|Zk) =
∫

p(xk+1|xk)p(xk|Zk)dxk (2.4)

p(xk+1|Zk+1) =
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)
(2.5)

where p(xk|Zk) is posterior density at time k, also referred to as the filtering density. These

are also referred to as the process and measurement update equations respectively. The con-

ditional density p(zk+1|Zk) appears as a normalization constant in the measurement update

formula, and it describes the distribution of measurement at time k+1, conditioned on the set of

all previous measurements. The Bayesian recursion starts with an initial density p(x0), which is

then propagated through time using (2.4) to yield p(x1|Z0). At the arrival of the first measure-

ment, the density is updated using the equation (2.5) which results in the first posterior density

p(x1|Z1). For the next time step, the posterior density becomes the input to the equation (2.4)

resulting in the prior estimate for the time step 2, which is again followed by the measurement

update step. This recursion can be continued as long as it is needed. The objective of any esti-

mation algorithm is to solve the Bayesian recursion at each time step, in order to derive an exact

or approximate form of the prior and posterior densities, which could be used in the calculation

of the lower order central moments.

2.2 Linear Recursive Estimation

The Linear State Space (LSS) model can be derived from (2.1). The main assumption is that

the state propagation and the measurements are linear functions of the state variable. If additive

noise is assumed, the LSS model can be expressed as,

xk+1 = Fk+1xk + Gk+1wk+1 (2.6)

zk+1 = Hk+1xk+1 + vk+1 (2.7)

where Fk+1, Hk+1, Gk+1 are the propagation, measurement and the noise gain matrices. It is

assumed that the two noises are Gaussian in nature such that, wk+1 ∼ N (0,Qk+1) and vk+1 ∼
N (0,Rk+1). To simplify matters, it is further assumed that the two noises are statistically un-

correlated i.e. E[wk+1vTk+1] = 0. If the initial state density is also Gaussian, then for such

a linear Gaussian system, a finite dimensional analytical solution can be derived to solve the

RBE i.e. (2.4) and (2.5). It is also known as the Kalman Filter or KF [Kal60], which has both

the prior and the posterior densities given by Gaussians i.e. p(xk+1|Zk) ∼ N (x̂k+1|k,Pk+1|k)
and p(xk+1|Zk+1) ∼ N (x̂k+1|k+1,Pk+1|k+1). KF is an optimal estimator for linear Gaussian

systems in the minimum mean square error (MMSE) sense, i.e there exists no estimator with

a lower mean square error (MSE) [Gus13]. Filter dimensionality remains bounded through

out the time, as Gaussian densities are completely described by their means and covariance

matrices. The KF is described in the Algorithm 1.
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Algorithm 1 Kalman Filter

1: Initialize the filter as x̂0|0 = E(x0) and P0|0 = E[(x̂0|0 − x0)(x̂0|0 − x0)
T ].

2: for k = 0 : kmax − 1 do

1. Time Update step

x̂k+1|k = Fk+1x̂k|k (2.8)

Pk+1|k = Fk+1Pk|kF
T
k+1 + Gk+1Qk+1G

T
k+1 (2.9)

2. Measurement Update step

x̂k+1|k+1 = x̂k+1|k + Pk+1|kH
T
k+1[Hk+1Pk+1|kH

T
k+1 + Rk+1]

−1

× (zk+1 −Hk+1x̂k+1|k) (2.10)

Pk+1|k+1 = Pk+1|k − Pk+1|k[Hk+1Pk+1|kH
T
k+1 + Rk+1]

−1
Hk+1Pk+1|k (2.11)

3: end for

2.3 Traditional solutions to Non-Linear Recursive Estimation

Most of the actual real-world problems are nonlinear and/or non-Gaussian in nature. With

the assumption of additive noise, such systems can be expressed through the following set of

equations,

xk+1 = φφφk+1(xk) + wk (2.12)

zk+1 = ψψψk+1(xk+1) + vk+1 (2.13)

The noise processes are assumed to have arbitrary distributions. Even if the initial state is as-

sumed to be Gaussian, the state density at times greater than 0 will not remain so. That is

because the state undergoes a nonlinear transformation every time the process update is car-

ried out. Finite dimensional solutions exist in only few cases e.g. [Dau86], [KE97]. How-

ever, no exact solution (in the MMSE sense) are available for the state estimation of a general

nonlinear/non-Gaussian system. Instead, approximate methods are used for the state estimation

of such systems, resulting in sub-optimal algorithms. Most of such methods can be categorized

into four main types.

2.3.1 Kalman filter based methods

These type of methods are based on the Kalman filter (KF) theory applied to nonlinear systems,

with Extended Kalman Filter (EKF) being the simplest. Like KF, it also makes the Gaussian as-

sumption for the transition density p(xk+1|xk) and the likelihood p(zk+1|xk+1). Model nonlin-

earities are dealt in a simple manner; approximating them by a linear or quadratic function based

on the Taylor series expansion. Therefore, the time/process and measurement updates step look

very similar to those of a KF, but with the presence of the corresponding Jacobian/Hessian

terms. The approximation gives satisfactory results for problems where the nonlinearities in the

process and measurement models are not too strong. While the EKF presents itself as a simple

and intuitive solution, it fails to adequately approximate the posterior density when the degree
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of nonlinearity is high, potentially resulting in the filter divergence. To compensate the draw-

backs of EKF, other solutions have been proposed. This usually involves the selection of a set of

deterministically sampled points to capture a number of low-order moments of the prior density

p(xk+1|Zk) in the best possible manner. These points are propagated through nonlinear func-

tions (both transition and measurement). Point estimates are formed by using the transformed

points together with the set of corresponding weights. Example of such methods include the

Unscented Kalman Filter (UKF) [JUDW95] and the Cubature Kalman Filter (CKF) [AH09].

In the former, the sampled points are termed as the Sigma-points while in the later these are

called the Cubature points. These methods are derivative free, since they do not involve the

Taylor series approximations. In general, however these methods are also sub-optimal and their

performance degrades with the increase in the nonlinearity, and also when the transition and

measurement densities are non-Gaussian (e.g. multi modal, exponential).

2.3.2 Grid-based methods

The second class of estimators numerically approximate the prior and posterior densities over a

discretized region of the state space. An example of this type is the so called Point Mass Filter

or PMF [BL97], [SKS02], [SKS06]. Typically, in all implementations of PMF, the integrals

in (2.4) and (2.5) are replaced with Riemann sums over a finite interval. The state space is

divided into regions, each characterized by an indicator function (e.g. hypercubes) and the

probability for each such function is calculated as being its weight. The posterior density is

approximated as the sum of weighted and shifted indicators functions. Another approach to

implement the PMF is using the frequency domain. It is assumed that the densities involved are

band limited, and therefore can be appropriately sampled. The process update (2.4) can then be

seen as a convolution integral; it results in a simple multiplication of the two spectra, while the

measurement update can be carried out using multiplication in the time domain after taking the

inverse Fast Fourier transform (iFFT). Another type of grid based method involves tensorization

of the involved densities. The process update is then carried out by solving the Fokker Planck

equation yielding in a prior density estimate [SK15b], [KCJ07]. In the measurement update

step, the estimated density tensor is combined with the likelihood to form the posterior density

estimate [KUD+16], [SK15a].

The main disadvantage with grid based methods is unfavorable scaling of the number of grid

points with increasing dimensionality i.e. more and more points are required to discretize the

space as the number of state variables increase. Also, a uniform domain discretization can lead

to an inefficient sampling. However, the tensorization approach has been shown to be able to

thwart this ill effect to a certain extent in problems having special structure. For more details,

please refer to Chapter 5.
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2.3.3 Sequential Monte Carlo (SMC)

The third class of nonlinear/non-Gaussian estimators fills the category of Sequential Monte

Carlo (SMC) methods, more famously known as the particle filters. [AMGC02], [GSS93].

Algorithm 2 Sequential Monte Carlo

1: Draw a set of particles {x̂i0}Np

i=1 from some distribution p(x0) ⊲ Initialize particles

2: for k = 0 : kmax − 1 do

3: x̂
(i)
k+1 ∼ q(xk+1|x(i)

k ,Zk+1) ∀i = 1, 2, · · · , Ns ⊲ Importance sampling

4: x̂
(i)
0:k+1

∼= {x̂(i)
0:k, x̂

(i)
k+1}

5: w
(i)
k+1 ∝ w

(i)
k

p(zk+1|x
(i)
k+1

)p(x̂
(i)
k+1

|x
(i)
k

)

q(x̂
(i)
k+1

|̂x
(i)
k
,Zk+1)

⊲ Weight calculation

6: ŵ
(i)
k+1 = w

(i)
k+1

[

Ns
∑

i=1

w
(i)
k+1

]−1

⊲ Weight normalization

7: Neff =

[

Ns
∑

i=1

(ŵ
(i)
k+1)

2

]−1

⊲ Effective sample size

8: if Neff ≤ Threshold then ⊲ Re-sampling

• Resample {x(i)
k+1}Ns

i=1 with replacement from {x̂(i)
k+1}Ns

i=1 according to ŵ
(i)
k+1

• Set {ŵk+1}Ns
i=1 = 1

Ns

9: end if

10: end for

The main idea is to represent the posterior density by a weighted set of random samples (par-

ticles), which are then used to form point estimates, e.g., mean and variance [AMGC02]. No

prior assumption is made for the type of the densities involved. In particle filters, the prior and

posterior densities are recursively estimated by solving (2.4) and (2.5). In its most basic form,

a particle filter is initialized with a set of particles, which are drawn from some initial distri-

bution. State update is performed by sampling from an importance density q(xk+1|xk,Zk+1).
On the arrival of measurements, particles are re-weighted according to their likelihood, which

are then used to estimate the central moments like state mean and covariance. Finally, the most

likely particles are replicated and assigned uniform weights, while the rest are discarded. This

procedure is performed recursively, as shown in Algorithm 2. The posterior density under these

settings approximately represents the path distribution, i.e., distribution of the state through the

time, conditioned on the measurements.

p(xk+1|Zk+1) ≈
Ns
∑

i=1

ŵ
(i)
k+1δ(xk+1 − x̂

(i)
k+1) (2.14)

Several version of particle filters have been proposed in the literature, e.g., Sampling Impor-

tance Re-sampling filter also known as Bootstrap particle Filter (SIR-PF) [GSS93], Auxiliary

Sampling Importance Re-sampling particle filter (ASIR-PF) [PS99], Regularized particle fil-

ter (RPF) [MOLG01] etc. While SMC based approaches can effectively deal with the system

nonlinearities and non-Gaussian noises, they suffer from the two major problems: Weight de-

generacy and the Curse of dimensionality.
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2.3.3.1 Weight degeneracy

Weight degeneracyrefers to the fact that after few updates all but one particle have negligible

weights. Weight degeneracy occurs when the posterior distribution does not significantly over-

lap with the prior distribution e.g. when the likelihood function is quite peaked and/or far from

the region of significant probability mass of the prior density. This is shown in Figure 2.2. 1

(a) (b)

(c)

Figure 2.2: (a) Prior density, (b) likelihood and (c) the posterior density depicting a scenario

with particle degeneration. Red dots represent sampled particles.

It can be seen that the likelihood is very sharp and only few samples have non-zero weights.

For an SMC method, these have to be replicated to make up for the rest of the lot. As a result,

the statistical diversity in the samples is lost and the particle set looses it ability to properly

represent the posterior distribution.

2.3.3.2 Curse of dimensionality

The curse of dimensionality is the other issue faced by SMC methods.It refers to the geometric

increase in the size of the discretized problem with the increase in the size of state dimension-

ality. In fact, this is one of the most severe issues faced by all numerical methods employed to

solve higher dimensional problems. In the context of particle filtering, it means that to main-

tain a certain performance level, the required number of particles increases exponentially with

the increase in the state dimension, as reported in [DH03] e.g. if 100 particles are required to
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adequately represent a density in one dimensional space, the requirement will be 100× 100 for

representing a similar density in 2D space, 100 × 100 × 100 for a 3D space and so on and so

forth. This is depicted in the following figure.

x x

y

x

y

z

Figure 2.3: Increasing requirement for the number of discretized points with increasing dimen-

sion

It is more of an issue when the individual dimensions are independent, making the probability

mass along each of them (marginal distribution) approximately the same. This point can be

very well illustrated by comparing the volumes of a d-dimensional hyper-sphere to a hypercube

of similar dimensions. If we take r as the radius of the hypersphere and 2r to be the length of

each side of the hypercube, the ratio between their volumes Rd can be expressed as,

Rd =
Sd(r)

Cd(r)
=

2−dπ
d
2 rd

Γ(d
2
+1)

rd
=

2−dπ
d
2

Γ( d
2
+ 1)

(2.15)

The ratio is plotted as a function of the state dimension d in Figure 2.4a. It can be noted that

the ratio falls rather quickly as the number of dimensions is increased, in fact becoming quite

insignificant for d ≈ 10. This indicates that as the dimensionality increases, more and more

volume gets concentrated around the surface of the hypercube. To understand the consequences

of this result for the sampling of higher dimensional probability density, we consider the volume

of a standard Gaussian multivariate density inside the radius of 1.65,

Prob(|X|µ=0,σ=1 ≤ α) = erfd

(

α√
2

)

(2.16)

The exact solution for the above equation has been derived in detail in [M.B63]. Here, we just

quote the results. For an even number of dimensions, erfd is given by,

erf2m (x) = 1− e−x2
(

1 +
x2

1!
+
x4

2!
+ · · ·+ x2(m−1)

(m− 1)!

)

(2.17)

On the other hand, when the d is odd the formula is,

erf2m+1 (x) = erf0 − e−x
2
(

(2x)0!

1!
+

(2x)31!

3!
+ · · ·+ (2x)2m−1(m− 1)!

(2m− 1)!

)

(2.18)
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with erf0 being the standard error function for 1 dimension given by,

erf0 (x) =
2√
π

x
∫

0

e−y
2

dy (2.19)

For a univariate case, Prob(|X|µ=0,σ=1 ≤ α) is just around 90%. We plot the erfd(x) against d
in Figure 2.4b.
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Figure 2.4: (a)Ratio of the volumes of a hyper-sphere to a hyper-cube in d-dimensions and (b)

Volume of a d-dimensional standard Gaussian density within radius 1.65 vs. the state dimension

d.

We see the trend is quite similar to the one exhibited by Rd. What this essentially means is

that for higher dimensional Gaussian densities, most of the volume is concentrated in the tails

and not near the center. The implication of this result is that the tails for densities in higher

dimensions cannot be ignored when generating samples, thus increasing the required number

of samples for the adequately representation. This also has consequences for the choice of the

importance densities for state spaces with large number of variables. Another subtle point is

that the curse of dimensionality and weight degeneracy become intertwined issues in higher

dimensions, one complementing the other.

2.3.4 Sequential Markov chain Monte Carlo

Sequential Markov Chain Monte Carlo (SMCMC) based methods constitute yet another class

of state estimation algorithms. Traditionally, MCMC has been employed in sampling from

complex distributions occurring in statistical physics [MRR+53]. A Markov chain is created

whose stationary distribution is the distribution of interest. New samples are generated using a

proposal density, which can accepted or rejected. If accepted, the chain is said to have moved.

This is referred to as the Metropolis-Hastings (MH) step. When applied in sampling from a

posterior distribution in a sequential setting, such as in target tracking, the procedure is known as

SMCMC. SMCMC methods provide a powerful tool for the state estimation of nonlinear / non-

Gaussian system. Depending on the length of the constructed chain and the space exploration

methodology, they can provide very accurate estimate of the posterior distribution. A typical

SMCMC implementation is shown in the Algorithm 3,
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Algorithm 3 Sequential Markov Chain Monte Carlo

1: Initialize the particle {x̄i0}Np

i=1

2: for k = 0 : kmax − 1 do

3: Initialize the Markov chain: x0
k+1

4: for m = 0 : Nc +Nb do

5: x∗
k+1 ∼ q(x∗

k+1|xmk+1) ⊲ Draw from the proposal distribution

6: u ∼ U [0, 1] ⊲ Uniform random draw

7: β(xmk+1, x
∗
k+1) = log

[

u
p(x∗k+1|Zk+1)q(xmk+1|x

∗
k+1)

p(xm
k+1

|Zk+1)q(x∗
k+1

|xm
k+1

)

]

⊲ MH step

8: if β(xmk+1, x
∗
k+1) > 0 then

9: xmk+1 = x∗
k+1

10: else

11: xmk+1 = xm−1
k+1

12: end if

13: end for

14: p(xk+1|Zk+1) ≈ 1
Nc

Nb+Nc
∑

m=Nb+1

δ(xk+1 − xmk+1)

15: end for

where q(x∗
k+1|xmk+1) is the proposal distribution, while the posterior distribution p(xk+1|Zk+1)

is considered the target to be sampled. SMCMC can be used together with SMC, e.g. posterior

distribution in the SMC can be used as the proposal in the SMCMC to further improve upon the

accuracy. Alternatively, SMCMC step can be used within the SMC loop as a resample-move

step to increase the statistical diversity [BG01]. However, these methods tend to be quite pro-

cessing intensive, and therefore generally are not the first choice while choosing an estimator.

Primarily this is due to three reasons: the difficulty in the choice of a right proposal density

and evaluation of the target density itself. A bad proposal could result in the chain stuck in the

regions of lower probability for most of the times. Hence, in order to increase the estimation

accuracy, chains of longer lengths could become necessary. On the other hand, the evaluation

of a complex target distribution at each iteration could also result in the greatly increased pro-

cessing time e.g. in the case of extended object tracking or when multiple measurements are

present. The main disadvantage is the evaluation of the likelihood term, which could be very

expensive [FSM15]. Moreover, SMCMC also suffers from the curse of dimensionality.
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2.4 Progressive measurement update based nonlinear data assimilation

It was noted in the previous section that SMC based methods are plagued by the problem of

the particle degeneracy. As a possible remedy, it has been noted that the gradual inclusion

of measurements could lead to a more equitable distribution of the particle weights. There

are a number of ways in which this can be accomplished. It can either be done by sam-

pling the particles from a set of intermediate densities [GC01], introducing the likelihood in

a sequence and modeling the posterior by a Gaussian mixture model [HF03], [HJSM11] or

moving the set of particles w.r.t. a fictitious time by solving an ordinary differential equation

(ODE) [Rei13], [HDP15], [BG14], and [EMFD15]. A progression parameter controls the mea-

surements inclusion rate in all such cases. As a result of gradual inclusion of measurements, the

likelihood starting as a flat function, is continuously deformed until it gets into its actual form.

This leads to a step by step formation of the posterior distribution estimate. It is hoped that by

adopting this approach, the problem of degeneracy can be solved to a great extent.

In the rest of the chapter, we present an overview of the most commonly cited methods,

paving the way for the introduction of the log homotopy based particle flow methods [DH07]-

[DHN16], which is the main focus of this thesis as described in the subsequent chapters. Please

note that only the details of the measurement update step are provided here for the described

algorithms, while assuming the process update to be of generic nature.

2.4.1 Bridging densities

Degeneracy among the particles can happen either due to the separation of the areas of signifi-

cant probability mass or limited number of samples used to represent the prior density, or both.

To improve upon this, the use of MCMC step after the weight normalization (step 8, Algorithm

2) has been suggested in [GC01], with the posterior density as the stationary distribution of the

chain. As noted by the authors, if the particles are already drawn correctly in the importance

sampling step, a MCMC step will replace a good set of particles with an equally good set. If

particles are far from their posterior locations, the application of MCMC step will move the

particles closer to the target, thus improving on the accuracy. Instead of working on the filter-

ing density, authors in [GC01] have described their method using the framework of smoothing

density defined as following,

p(x1:k+1|Z1:k+1) ⋍

Ns
∑

i=1

ŵ
(i)
k+1δ(x1:k+1 − x̂

(i)
1:k+1) (2.20)

Its has however been noted that the required number of iterations in the MCMC stage can

become quite large, leading to an increased processing overhead. Therefore, an alternative

approach is presented where a number of intermediate distributions (L-1) are placed between

the importance distribution π0 = q(x1:k+1) and the posterior πL = p(x1:k+1|Z1:k+1). The

intermediate distributions are called bridging densities and defined as,

πm(xk+1) ∝ q(x1:k+1)
λlp(x1:k+1|Z1:k+1)

1−λl (2.21)

where λl is the progression parameter with values such that 1 > λ1 > λ2 · · · > λL > 0. As

an example, if the importance density is the same as in the SIR particle filter,

q(x1:k+1) = p(xk+1|xk)
Ns
∑

i=1

ŵ
(i)
k δ(xk − x̂

(i)
k ) (2.22)
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then the intermediate densities can be written as,

πl(xk+1) ∝ p(x1:k+1|Z1:k)p(xk+1|xk)p(zk+1|xk+1)
1−λl (2.23)

In the exact word used by authors, the task now is to move the particle cloud through this se-

quence of densities by any available means. In practical terms, particles are moved towards

their posterior locations in steps. Starting with π0(xk+1), π1(xk+1) becomes the target distri-

bution for the MCMC step at the first stage. The sampling process continues, such that for the

lth intermediate step the target is πl(xk+1). The corresponding weight update is given by,

ŵ
(i)(l)
k+1 ∝ ŵ

(i)(l−1)
k+1

πl(x
(i)(l−1)
1:k+1 )

πl−1(x
(i)(l−1)
1:k+1 )

(2.24)

It can be hoped that by graduating in steps, the problem of a sudden transition will be resolved,

with a small increase in the processing cost.

2.4.2 Progressive Bayesian update

A full description of a continuous state posterior probability density estimate for a nonlinear /

non-Gaussian system could possibly require an infinite number of parameters. This of course

is not practical and hence approximations are sought after. Gaussian mixture models (GMM)

have been more commonly used in the literature to approximate an arbitrary probability den-

sity [AS72], [KD03]. The modeling accuracy can be controlled by varying the number of GMM

components used in the approximation. Updating components individually could lead to a sub-

optimal result, while a joint update based on minimizing the distance between the true (poste-

rior) density and its approximation is a tough optimization problem. The most favored solution

is the Expectation Maximization (EM) method, but it could result in a local minimum. Also,

the EM algorithm could exhibit slower convergence if the initialization is not done properly.

In [HF03], a new approach for Bayesian measurement update has been suggested. It relies on

approximating the posterior density through a GMM, together with a gradual introduction of

the measurements. The new approach is termed as the Progressive Bayes. The main idea is to

update parameters of the mixture model in a way that the integrated squared error between the

true density and its approximation is minimized. Since the true density can be multi-modal, an

algorithm based on a simple minimization might require a large computational effort. In order

to speed up the convergence while still keeping the processing cost manageable, the progressive

approximations are made to the posterior density i.e. the true density is parameterized using a

progression parameter λ, which can take values between 0 and 1. When λ is 0, the true density

is just the prior density while the transformation is completed to the posterior for λ equals 1.

A distance measure is defined between the parameterized true density p(xk+1, λ|Zk+1) and its

approximation p̃(xk+1, θθθ|Zk+1),

D(θθθ, λ) =
1

2

∫

R

(

p(xk+1, λ|Zk+1)− p̃(xk+1, θθθ|Zk+1)
)2

dx (2.25)

As a result, a set of intermediate approximations is made based on the discretization of λ. Since

the approximated density is modeled through a GMM, it can be represented as,

p̃(xk+1, θθθ|Zk+1) =

M
∑

i=1

α(i)N (xk+1|x̂(i),ΣΣΣ
(i)) (2.26)
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withθθθ(i) = [α(i), x̂(i), vec(ΣΣΣ(i))]T andθθθ =
[

(θθθ(1))T (θθθ(2))T · · · (θθθ(L))T
]T

. Next, the problem

is exactly converted into a system of explicit first order ODEs,

v(θθθ, λ) = V(θθθ)θ̇θθ (2.27)

where the coefficients are given by,

v(θθθ, λ) =

∫

R

∂p(xk+1, λ|Zk+1)

∂λ
P(xk+1, θ̄θθ)dxk+1 (2.28)

and,

V(θθθ) =

∫

R

P(xk+1, θ̄θθ)P(xk+1, θ̄θθ)
Tdxk+1 (2.29)

where, θ̄θθ is the nominal parameter vector used in the linearization of p̃(xk+1, θθθ|Zk+1) with the

associated gradient,

P(xk+1, θ̄θθ) =
∂

∂θ̄θθ
p̃(xk+1, θ̄θθ|Zk+1) (2.30)

A numerical solution to (2.27) over a discretized domain is sought, which yields the updated

parameters for any given value of λ. To make the algorithm more robust, structural adaptations

are made by adding more Gaussian components to the GMM representation or merging two

closely spaced ones.

While conceptually very interesting with providing a great deal of theoretical insight, an appli-

cation of progressive Bayes for recursive estimation of a higher dimensional system could be

computationally quite demanding. This is due to the discretization of a larger space, and also

the higher number of components needed to accurately represent the posterior density. Further-

more, a peaked or tailed likelihood could make the situation worse as it would require a much

finer resolution of the progression parameter λ.

2.4.3 Homotopy based optimal parameterization of the posterior density

In [HJSM11], an approach similar to the Progressive Bayes has been suggested. The authors

have used the progressive measurement inclusion together with a homotopic relationship de-

fined between the prior density and the likelihood, in a way that leads to the following form of

the intermediate density,

p(xk+1, λ|Zk+1) = p(xk+1|Zk)p(zk+1|xk+1)λ (2.31)

When λ is 0 p(xk+1, λ|Zk+1) is just the prior density, while for λ equal to 1 it corresponds to

an unnormalized posterior density.

Also, in a way similar to Hanebeck et.al. [HF03], the intermediate density is approximated by a

parameterized density p(xk+1, θθθ|Zk+1), which happens to be a GMM as well, at every λ step.

A cost function is defined in terms of a distance measure, whose minimization yields the set of

the optimal parameters. One difference to the former scheme is the use of measures other than

the integrated squared error. Specifically, the use of Kullback-Leibler (KL) divergence and the

squared Hellinger distance have been suggested. The KL distance between the intermediate and

the parameterized densities is defined as:

DH(θθθ||λ)KL =

∫

p(xk+1, θθθ|Zk+1) log
p(xk+1, θθθ|Zk+1)

p(xk+1, λ|Zk+1)
dxk+1 (2.32)
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While this gives a measure of (dis)similarity between the two densities, it is not symmetric, and

hence, not a true distance metric. The second distance metric is given as,

DH(θθθ, λ)H2

=
1

2

∫

(

√

p(xk+1, θθθ|Zk+1)−
√

p(xk+1, λ|Zk+1)
)2

xk+1 (2.33)

Given any of the two measures DH(θθθ, λ)∗, the optimal set of parameters can be found by its

minimization,

θθθ(λ) =arg min
θ

DH(θθθ, λ)∗ (2.34)

The density p(xk+1, θθθ|Zk+1) modelled through a GMM, is supposed to consist of L compo-

nents. Therefore, the parameter set of the approximated density consists of the weights, means

and the covariance matrices i.e. {wi, x̂i,Σi}Li=1. A vectorization of this set yields the parameter

vector θθθ, defined in terms of an ODE,

θθθ′(λ) = −
[∂2DH(θθθ, λ)

∂θθθ2

]−1 ∂2DH(θθθ, λ)

∂θθθ∂λ
(2.35)

Equation (2.35) has been termed as the homotopy differential equation. Unless the prior and

the likelihood are supposed to be Gaussians, (2.35) does not admit exact analytical solutions.

Therefore, an approximated solution is sought whereby the integrals are solved approximately

over a discretized domain Ω. This is done by replacing integrals with the Riemann sum and

partial derivatives by first/second order differences. More over, a first order Euler’s method

has been suggested to update parameters over the λ, which is also discretized into N points.

Applying the numerical approximation, (2.35) can be expressed as,

θ̄θθλi
= θ̄θθλi−1 −M(θ̄θθλi

, λi)
−1

n(θ̄θθλi
, λi)∆λi (2.36)

Starting from the θ̄θθλ0 = θθθ0, the parameter vector representing the prior density, the correspond-

ing posterior vector θ̄θθλ1 is found by recursively solving (2.36) through λ ∈ [0, 1].
This method bears a great similarity to the idea of Hanebeck et.al., with the main notable

differences being the explicit definition of homotopic relationship between the prior and the

un-normalized posterior and the use of alternative distance measures. As a consequence, the

parameter vector is updated by solving a first order ODE over a range of λ. The approach has

been applied by the authors for the estimation of two dimensional problems involving linear

and nonlinear measurement models. While the results are promising in terms of an increased

accuracy, comparatively speaking, the homotopy based optimal parameterization of density is a

rather expensive solution. As for the progressive Bayes, the requirement of an increased number

of GMM components and larger/more finely grated solution domain for degenerated problems

could increase the computational expenses. Whereas in the former case analytical expressions

could be found for some of the integrals, the use of alternative distance metrics could render an

exact solution impossible in the current case. This could add to the processing overhead. All of

these issues could become more severe for the estimation in higher dimensions.

From now onwards, we simplify notations by dropping the time index k, and represent the prior

density p(xk+1|Zk) by g(x) and the likelihood p(zk+1|xk+1) with the term h(x). Any interme-

diate density in the progression will be represented with p(x, λ) with λ being the progression

parameter such that the posterior density p(xk+1|Zk+1) is given by p(x, 1). We further assume

that the parameter λ is discretized into L values such that λ0 = 0 ≤ λ1 ≤ · · · ≤ λL = 1.



2.4 Progressive measurement update based nonlinear data assimilation 31

2.4.4 Guided sequential Monte Carlo

The sequential Monte Carlo family is very effective for the recursive estimation of nonlinear/

non-Gaussian problems, but they suffer from the curse of dimensionality as elaborated in the

section 2.3.3.2. The main issue is that the importance sampling fails to adequately sample

the regions of higher probability when the number of states gets sufficiently large. On the other

hand, techniques like Ensemble Kalman Filter (EnKF) [Eve94], [HM98] have been successfully

used in the geosciences community for higher dimensional Bayesian estimation, e.g. weather

forecasting. However, this is achieved by assuming the Gaussian nature of the transition and

the likelihood densities. In [Rei13], an attempt has been made to merge the two concepts into

a single framework, termed as the Guided Sequential Monte Carlo or GSMC. The crux of

this new idea is to gradually move the samples from the prior density towards the regions of

higher probability mass of the posterior density, such that the re-sampling of particles is not

needed. A continuous deformation of the prior density into the posterior is made via gradual

introduction of measurements using a deterministic function, also called a transport map, until

all the measurements have been included. In the case of the existence of such a continuous

transformation, the prior and the posterior densities are related as follows,

p(x, 1) =
1

|J∇ψ(x)|g(x) (2.37)

whereJ refers to the Jacobian matrix, formed by taking the spatial derivative of the transformed

vector ∇ψ(x). ∇ψ(x) defines the transport map between the prior and the posterior density.

Equation (2.37) is a nonlinear elliptical PDE, and its exact solution for a single dimensional case

can be formulated in terms of cumulative density functions of the involved densities. However,

for a general N-dimensional nonlinear/non-Gaussian problem, an analytical solution cannot be

found. Therefore, approximations are made by introducing the idea of deterministic coupling

between the prior and the posterior state variables. This is done dynamically, by describing the

state transition through an ODE w.r.t a fictitious time parameter λ such that,

dx

dλ
= − 1

p(x, λ)
∇̺(x) (2.38)

with the intermediate density p(x, λ) formed by linearly interpolating between the prior and the

posterior densities,

p(x, λ) = (1− λ)g(x) + λ

(

g(x)h(x)
∫

g(x)h(x)dx

)

λ ∈ [0, 1] (2.39)

and an associated Poisson’s equation involving potential ̺,

∇ · (∇̺) = −g(x) + g(x)h(x)
∫

g(x)h(x)dx
(2.40)

The desired map is a first order ODE, given by (2.38) which describes the gradual change

of the state variable w.r.t. λ. Its solution yields the estimated state, after the assimilation of

the measurement data. Remaining true to the original formulation of EnKF, a particle/ensemble

based approach is used by the authors, i.e. prior and the posterior distributions are approximated

by the set of weighted particles {(w̄(i), x̄(i))}Ni=1 and {(ŵ(i), x̂(i))}Ni=1 respectively. It is shown
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in [Rei11] that under the Gaussian approximation, (2.38) admits the following exact solution

for the ith particle,

dx(i)

dλ
= −1

2
P̄H

T
R

−1
(

Hx
(i) + Hx̄− 2z

)

(2.41)

where x̄, P̄ are the empirical mean vector and the prior covariance matrix respectively, H the

measurement matrix, R the noise covariance matrix while z is the latest set of measurements.

With the prior set of particles forming the initial condition, an iterative discretized solution of

(2.41) can be formed,

x
(i)
λj

= x
(i)
λj−1

− 1

2
PHR

−1
([

Hx
(i)
λj−1

+ Hx̄− 2z
]

∆λ
)

(2.42)

such that x
(i)
λM

= x̂
(i). Since the Gaussian assumption was made while deriving (2.42), the

approximate prior density is given by ĝ(x) = N (x|x̄, P̄). This is strictly true if the system is

linear and Gaussian. If either of these conditions is not true, the transport map gets subopti-

mal, which could result in mis sampling of the important state space regions. To counter this

discrepancy, a weight correction step followed by the re-sampling might be required. Weight

correction requires a better approximation of the prior density. While several choices might be

available, in [Rei13] a Gaussian kernel density estimator (GKDE) is chosen,

ḡ(x) ≈
N
∑

i=1

w̄(i)N (x|x̄(i), hPN ) (2.43)

where PN is the empirical covariance matrix with the bandwidth h. Given the set of prior

particles (2.42) and a finer approximation of the prior density (2.43), the weight update can

finally be given as,

ŵ(i) ∝ w̄(i) × ĝ(x̄(i))

ĝ(x̂(i))
× ḡ(x̂(i))

ḡ(x̄(i))
(2.44)

While quite intuitive, the GSMC based particle flow is based on the Gaussian assumption.

For cases where the prior density and/or likelihood cannot be modeled sufficiently well by

Gaussians, this flow could struggle in accurately moving the particles to their correct posterior

locations. Also, the choice of the bandwidth parameter h could be tricky, as it might require

heuristic tuning.

2.4.5 Gibbs transport particle flow

Another interesting approach for deriving an approximate transport map has been reported in

[HDP15], which is based on conditional distributions of the intermediate density. One major

contribution of the work is the derivation of the flow ODE which does not require solving any

PDE. For the one dimensional case, the flow ODE is given as,

f̃(x, λ) =
γ′
λ

g(x)h(x)γλ



Fλ(x)

∞
∫

−∞

log h(y)g(y)h(y)γλdy −
x
∫

−∞

log h(y)g(y)h(y)γλdy





(2.45)

where Fλ is the cumulative distribution function (CDF). The likelihood is introduced into the

flow at the rate γ′
λ. For dimensions greater than one, a straightforward extension of (2.45) does
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not work. This is due to the fact that the flow thus derived does not obey the vanishing prop-

erty, i.e the flow does not vanish in the tails. However, the regularization helps to resolves

the issue. Flow equation in higher dimension requires the evaluation of multi-dimensional

integrals, which due to the curse of dimensionality becomes progressively harder to approx-

imate. The task becomes somehow easier if the intermediate density can be factorized as

p(x, λ) =
∏d
l=1 p(xi, λ). However, as for most of the examples encountered in the real world,

this is a rather strong assumption. In order to get around this problem, an approximate flow

equation is derived that is based on conditioned densities as opposed to the joint distribution.

Hence, the flow is termed as the Gibbs flow or GbF. The flow ODE for the Gibbs flow is de-

scribed as,

f̃l(x, λ) =
γ′
λ

g(x)h(x)γλ



Fλ(xl|x−l)

∞
∫

−∞

log h(yl, x−l)g(yl, x−l)h(yl, x−l)
γλdyl

−
xl
∫

−∞

log h(yl, x−l)g(yl, x−l)h(yl, x−l)
γλdyl



 (2.46)

Notationally, p(yi, x−i) means p(x1, x2, · · · , xl−1, yl, xl+1, · · · , xd), while Fλ(xl|x−l) repre-

sents the conditional CDF. It can be noted that (2.46) requires the evaluation of one dimensional

integrals, which are relatively easy to compute. The term γλ, also referred to as the temperature

function, is chosen to minimize the integrated absolute squared error.

For the numerical implementation of the Gibbs flow, an appropriate λ schedule needs to be

chosen and the integrals involved in (2.46) be approximated. The authors suggest the use of

Newton-Cotes quadrature for the latter. Particles are sampled from the prior density. Once the

integrals in the flow equations are approximated, the flow ODE for the ith particle is solved

using the Euler’s method,

x
(i)
λj

= x
(i)
λj−1

+ f(x
λ
(i)
j−1

, λj−1)∆λj = ΦΦΦλj
(x

(i)
λj−1

) (2.47)

which can also be described as x
(i)
λj

= ΨΨΨλj
(x

(i)
0 ) = ΦΦΦλj

◦ ΦΦΦλj−1 ◦ · · · .ΦΦΦλ1(x
(i)
0 ). Using

this construction, it is possible to relate the intermediate density with the prior density in the

following way,

p(x
(i)
λj
, λj) = g(ΨΨΨ−1

λj
(x

(i)
λj
))
∣

∣

∣
detJΨΨΨλj

(x
(i)
λj
)
∣

∣

∣
(2.48)

where JΨΨΨλj
is the Jacobian matrix of the transport maps ΨΨΨλj

(x
(i)
0 ) and needs to be estimated

on the run. Since approximations are used for the flow equation, its Jacobian is also dependent

on the accuracy of the estimates. Finally, weights are calculated according to the following

equation,

w
(i)
λj
∝ w(i)

λj−1
× 1
∣

∣

∣
detJΨΨΨλj−1

(x
(i)
λj−1

)
∣

∣

∣

×
g(x

(i)
λj
)h(x

(i)
λj
)λj

g(x
(i)
λj−1

)h(x
(i)
λj−1

)λj−1

(2.49)

Conceptually, the Gibbs flow is very sound as it is based on the vanishing property, which en-

sures that the flow is always convergent. Also, in the light of the studied numerical examples, the

authors have shown the flow to work reasonably well for non-Gaussian distributions featuring
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multi-modality. However, there are a couple of points to be noted. First, the Gibbs flow is based

on estimation of the flow components individually along each dimension, which ignores the

possible inter-coupling. This is the result of a simplification of the more complex flow, which

requires the evaluation of multi-dimensional integrals (see section 3.3 of [HDP15]). This raises

questions about the applicability of GbF for the scenarios with strongly coupled/correlated di-

mensions. Secondly, the integrals involved in the flow equations need to be numerically approx-

imated. With the increasing number of dimensions, this could become prohibitively expansive

even if Monte Carlo schemes are used for the approximation. Yet other possible sources of the

performance degradation could come from the use of Euler’s scheme for the numerical integra-

tion and the subsequent evaluation of the Jacobian matrix required for the weight update step.

Unless the posterior density retains a conditionally independent structure, the overall measure-

ment update procedure could be quite time consuming and prone to numerical errors.

2.4.6 Gaussian particle flow with importance sampling

Authors in [BG13], [BG16] and [BG14] mention that although particle flow and optimal trans-

port methods developed in [Rei11]- [HDP15] are theoretically quite elegant, their performance

suffers from a series of approximations made during the practical implementation. These in-

clude approximations made while deriving the flow, approximation made for the prior density

and the numerical integration of the flow ODE. These could lead to the introduction of bias

and loss of asymptotic consistency. Authors in [BG14] have derived an alternative formula-

tion of progressive measurement update, termed as the Gaussian particle flow with Importance

sampling or GFIS. This approach combines the particle flow concept with that of the impor-

tance sampling. This main derivation starts from a linear Gaussian case, and is modified to

be used for the nonlinear/ non-Gaussian models. Numerical integration is not required as the

flow equation can be used to sample the state at any discrete moment in the pseudo-time. Also,

the processed particles are not directly used in the formation of posterior point estimates (e.g.

mean, covariance), instead, they are considered samples coming from an importance density.

Therefore, particle weights are calculated which theoretically allows for the corrections of the

errors incurred due to the approximations made. Another highlight of GFIS is the use of both

deterministic and stochastic terms within the flow equation, essentially making it a stochastic

differential equation (SDE), instead of an ODE.

Starting with a linear Gaussian model, the intermediate density is given exactly as p(x, λ) =
N (xλ|mλ,Pλ) such that,

Pλ =
[

P
−1
0 + λH

T
R

−1
H
]−1

mλ = Pλ

[

P
−1
0 m0 + λH

T
R

−1
z
]−1

(2.50)

where m0 and P0 represent the prior mean and covariance respectively. Rest of the terms

have the same meaning as in the description of the Kalman filter, described in the section 2.2.

Actually, these equations (2.50) are similar to the Kalman filter measurement update equations,

given in the information fusion form. The variable xλ is defined as a Orstein-Uhlenbeck (OU)

process with p(x, λ) being its stationary density. Therefore, it can be sampled and its mean and

covariance matrix be determined for any value of λ. An SDE defines the progressive change for

the OU process,

dxλ = f(x, λ)dλ+ σσσ(x, λ)dǫǫǫλ (2.51)
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Here f(x, λ) represents the deterministic drift term, while ǫǫǫλ is the standard Wiener process

with intensity σσσ(x, λ) and is called the diffusion term, characterizing the stochastic part of the

flow. The main task is to derive expressions for the drift and the diffusion terms and solve the

SDE recursively.

When the measurement function ψ is nonlinear, Taylor series based approximations are made

such that Ĥλ = ∂ψ
∂x

∣

∣

xλ
and zλ ≈ z−ψ(xλ)+Ĥλxλ. Since a numerical solution is sought after,

λ is discretized into non-overlapping intervals and SDE (2.51) is solved for each such interval.

The flow starts with the m̂λ0 = m0 and P̂λ0 = P0, and continues to sample the approximate

Gaussian intermediate density for the ith particle. The updates for the state (drift and diffusion

terms) , mean and the covariance matrices during the pseudo-time interval [λi,λi−1] are given

below,

m̂
(i)
λj

= m̂
(i)
λj−1

+ P̂
(i)
λj−1

Ĥ
T
λj−1

(

Ĥλj−1 P̂
(i)
λj−1

Ĥ
T
λj−1

+
R

λj − λj−1

)−1

×
(

ẑλj−1 − Ĥλj−1m̂λj−1

)

P̂
(i)
λj

= P̂
(i)
λj−1

− P̂
(i)
λj−1

Ĥ
T
λj−1

(

Ĥλj−1 P̂
(i)
λj−1

Ĥ
T
λj−1

+
R

λj − λj−1

)−1

Ĥλj−1 P̂
(i)
λj−1

x̂
(i)
λj

= x̂
(i)
λj−1

+ΓΓΓλj−1,λj

(

x̂
(i)
λj−1

− m̂
(i)
λj−1

)

+ΩΩΩλj−1,λj

1
2 ξξξλj−1,λj

(2.52)

where ΓΓΓλj−1,λj
, ΩΩΩλj−1,λj

and ξξξλj−1,λj
are given by,

ΓΓΓλj−1,λj
= exp

{

− 1

2
γ(λj − λj−1)

}

(P̂
(i)
λj
)
1
2 (P̂

(i)
λj−1

)−
1
2

ΩΩΩλj−1,λj
=

[

1− exp
{

γ(λj − λj−1)
}]

P̂
(i)

λi

ξξξλj−1,λi
=

∫ λj

λj−1
γ

1
2 exp

{

− 1
2
γ(λj − λj−1)

}

dǫǫǫλ
[

1− exp
{

γ(λi − λj−1)
}] 1

2

∼ N (.|0, I)

γ is the scaling parameter for OU process and it controls the behavior of the system; flow

is completely deterministic for γ = 0 and stochastic otherwise. λ can be discretized using a

constant or adaptive step size. If the prior density and the likelihood are non-Gaussian, the

flow equations can still be used. This is done by using the Laplace approximation which fits

a Gaussian distribution to an arbitrary density at one of the modes. Since the flow involves

approximations for the measurement model and/or the noise density, the particles are not con-

sidered to be samples from the posterior distribution, and hence not used directly while forming

the point estimates. Instead, it is thought as if the particle stream is coming out from an im-

portance sampler. Hence, the weight correction is needed. The weight update formulae for the

deterministic and stochastic cases are respectively given as,

w
(i)
λj

∝ w
(i)
λj−1

×
p(x

(i)
λj
)h(x

(i)
λj

)λj

p(x
(i)
λj−1

)h(x
(i)
λj−1

)λj−1

×

√

√

√

√

√

|P̂
λ
(i)
j

|

|P̂(i)

λj−1
|

(2.53)

w
(i)
λj

∝ w
(i)
λj−1

×
p(x

(i)
λj

)h(x
(i)
λj
)λj

p(x
(i)
λj−1

)h(x
(i)
λi−1

)λj−1

×
N (x

(i)
λj−1
|m̂(i)

λj−1
, P̂

(i)

λj−1
)

N (x
(i)
λj
|m̂(i)

λj
, P̂

(i)
λj
)
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Algorithm performance improves with the reduction in the λ step size, which can also be cho-

sen adaptively. Resampling might be required after the particles have been flown to their final

locations, i.e at λ=1. Resampling with replacement from a set of finite particles introduces

dependencies amongst particles. In order to mitigate this effect, a MCMC step might be used

to move particles independent of each other, nudging them towards the posterior density, i.e. a

resample-move step as described in [BG01]. Authors in [BG14] have used the GFIS particle

flow to approximate Optimal Importance Density within the standard particle filtering frame-

work.

The GFIS framework is based on extending a flow, which is exact for a linear Gaussian system.

The extension entails linearization of the observation model as well as the Laplace approxi-

mation for non-Gaussian densities. Stochasticity has been added to sample the intermediate

densities in an efficient manner. However, as shown in [LZC15], the performance of a filter

based on GFIS could suffer in practice. This could be due to several approximation made while

deriving the flow. The inclusion of the stochastic term is also a matter of uncertain utility. Al-

though it could lead to a more diverse set of samples, but since the flow is only approximate,

it is possible that a flow without the noise term could outperform the one having it, as amply

demonstrated in numerical examples provided in [BG14].

2.4.7 Stochastic particle flow

In [EMFD15], a new method type for particle flow has been presented. The main inspiration for

the work comes from two sources: the GFIS particle flow [BG14] and the Riemann Manifold

Metropolis adjusted Langevin algorithm mMALA [GCC11]. The first influence comes through

the use of the stochastic term in the particle flow. Also, similar to [BG14], the particles are

weighted to form posterior density estimate. However, weighting is carried out at the end of

the flow, as opposed to being done recursively through out the λ loop. The use of tensor metric

associated with Riemann manifold, as done in mMALA, seems to be the second major source of

inspiration. The main intuition behind the mMALA is the exploitation of the local structure of

the target density when proposing new samples to improve the overall mixing of the chain in a

MCMC setting. By merging the two concepts, authors in [EMFD15] have devised a new flow,

termed as the Stochastic Particle flow or SPF. Below, we briefly summarize the key aspects of

SPF.

A set of particles {x(i)
λ ∈ Rd : i = 1, · · · ,N} dependent on continuous pseudo-time variable

λ ∈ [0,∞) are assumed such that x
(j)
0 = x̄

(i)
k+1 and x

(i)
∞ = x̂

(j)
k+1. Please note that the λ here

does not carry the same notation as in all of the previously described methods. Though still a

synthetic time, it does not define an exact homotopic relation between the prior and the posterior

density. Given this, the state dynamics of the particles obey the Itô SDE similar to (2.51). The

main task becomes to find expressions for the drift and diffusion components of the flow. Based

on the argument of the vanishing probability current for a stationary Fokker-Planck equation,

the following form of the drift vector is derived,

f(x, λ) =
1

2
D(λ)∇ log p(x, λ) (2.54)

The SDE governing the state transition can thus be written as,

dx =
1

2
D(λ)∇ log p(x, λ)dλ+ D

1
2 (λ)dǫǫǫλ (2.55)
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with the yet unknown diffusion matrix D(λ). In [GCC11], the discretized stochastic Langevin

equation for a flat Riemann manifold with a constant curvature has the diffusion matrix given

by the inverse of a position dependent tensor G(x). In the context of Bayesian estimation, the

tensor is set to be the observed FIM as G(x(λ)) = −Hx [log p(x)], where Hx represents the

Hessian matrix. This results in the following form of the locally approximated diffusion matrix,

D(λ) = [−Hx [log g(x) + log h(x)]]−1
x=xλ

(2.56)

Next, an integration method is devised for solving the SDE in (2.55), which is based on Ozaki’s

discretization scheme. As λ is not restricted to the interval [0, 1] and can have any positive

real value, the selection of a proper integration time horizon T and the step size ∆λ is critical

for the performance. This requires a priori knowledge of certain parameters, which in turn are

functions of the maximum a posteriori estimate that has to be estimated before the particle flow

is initiated. As a result, the λ is discretized into L distinct values such that 0 < λ1 < λ2 <
· · · < λL−1 < T . Unlike [BG14] where a Gaussian density approximates the intermediate

densities, here p(x, λj) is approximated through a Gaussian mixture where one component is

associated with each particle.

p(x, λj) =

Np
∑

i=1

w(i)N (xλj
|m(i)

λj
,P

(i)
λj
) (2.57)

Equations for the state, mean and covariance matrix update for each component are shown

below,

x
(i)
λj

= x
(i)
λj−1

+
1

2

λj
∫

λj−1

D(x
(i)
λj−1

)∇ log p(x
(i)
λj−1

)dλ+

λj
∫

λj−1

D
1
2 (x

(i)
λj−1

)dǫǫǫλ (2.58)

m
(i)
λj

= m
(i)
λj−1

+

λj
∫

λj−1

[

A(x
(i)
λj−1

)m
(i)
λj−1

+ b(x
(i)
λj−1

)
]

dλ (2.59)

P
(i)
λj

= P
(i)
λj−1

+

λj
∫

λj−1

[

A(x
(i)
λj−1

)P
(i)
λ + P

(j)
λ A

T (x
(i)
λj−1

)
]

dλ+

λj
∫

λj−1

D(x
(i)
λj−1

)dǫǫǫλ (2.60)

where,

A(x
(i)
λj
) = −1

2
D(x

(i)
λj
)
[

P
−1
0 + H

T
λj

R
−1
k+1Hλj

]

(2.61)

b(x
(j)
λi

) =
1

2
D(x

(i)
λj
)
[

P
−1
0 φ(x

(i)
λj

) + H
T
λi

R
−1
k+1zλj

]

(2.62)

with zλj
= zk+1 + Hkx

(i)
λj
− ψ(x

(i)
λj
). P0 is the prior density covariance estimate, Rk the

measurement noise covariance matrix, φ(xλj
) the transition function while Hλj

is the Jacobian

matrix of the measurement function ψ(xλj
). Weights are associated with the particles which

are evaluated at the end of the pseudo-time recursion, based on the following equation,

w
(i)
k+1 ∝ w

(i)
k

∫

p(zk+1|x′
k+1)pj(x

′
k+1|Zk)dx

′
k+1 (2.63)
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All integrals are approximated using Ozaki’s discretization scheme. Resampling with replace-

ment might be needed in order reduce the weight variance. SPF has been used to derive two

types of particle filters: a Gaussian sum particle filter and a marginal particle filter.

SPF scheme builds further on the GFIS flow. One of the major differences is that posterior

density is approximated by a mixture of Gaussians, as opposed to a single multivariate Gaussian

(MVG). Also, no explicit assumption on the Gaussianity of the models is made, which make

SPF quite attractive. Moreover, the flow takes into account the local curvature of the prior

and the likelihood in form of the Hessian matrices. Altogether, SPF seems to offer a superior

alternative to the existing particle flow methods. But this must be understood in the light of the

fact that the flow is based on some a posteriori knowledge. Also, it is quite demanding from

an implementation point of view. This is evident from the fact that the pseudo-time has to be

adaptively resolved every time and instead of one, N Gaussian components need to be updated

through out the pseudo-time loop. Finally, the integration method chosen is more intensive than

a simple first order Euler integration, as suggested for many of the earlier discussed methods.
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2.5 Summary

The aim of the chapter was to describe the main methods employed for nonlinear state estima-

tion. This included traditional as well non-traditional methods based on gradual inclusion of

the measurements. Both types of methods are approximate in the sense that each of the derived

solution relies on a set of assumptions and approximations. In the case of EKF, the assumption

is that the prior density and the likelihood can be approximately modeled as being Gaussian.

This lessens the generality of Kalman filter based methods. While SMC and SMCMC make no

such assumption, they suffer from the degeneration of the particles and also the curse of dimen-

sionality. To alleviate these problems, especially the former, a novel concept has been worked

out by many researchers in the field of nonlinear filtering, which aims for a gradual or step by

step inclusion of the observational data in the measurement update step. It is hoped that this

would help lessen the degeneracy, and could also help against the curse of dimensionality to a

certain extent. Even though the idea is rather recent, a plethora of literature has already been

published on new filters based thereof. We have described seven such methods in this chapter.

All of these methods come with their own set of specific assumptions and simplifications, and

they have garnered varied level of success. The overarching concept behind all these methods

is that instead of introducing the likelihood in its full form in a single step, its effect is injected

gradually by morphing a flat function into the actual form of the likelihood.

Bridging densities can be regarded as one of the earlier attempts to deal with the problem of

degeneracy using progressive update. Though quite elegant, the actual implementation might

require a large number of intermediate sampling stages. Each of such stages might require

running many MCMC iterations. Also, the optional resampling step might be necessary to

reduce the weight variance. All of these issues limits its practicality. GFIS and GSMC, on

the other hand are quite easy to implement, but they are limited in the performance owing to

the underlying Gaussian assumption, though post correction is made to cater for the inherent

discrepancies. Methods like Progressive Bayes, Optimal homotopy based parameterization,

SPF and GbF could result in much improved accuracy, but the actual implementation is rather

involved and comes at much higher processing cost. The first two methods are limited in terms

of their applicability, since they require the solution of a large set of ODEs even for a one

dimensional example. Also, the state space discretization could increase exponentially as the

system dimensionality increases. The last two methods involve the estimation of a large number

of integrals, which might require very fine space and pseudo-time discretization to achieve the

desired accuracy. Better levels of accuracy can of course be achieved, albeit at much higher

processing cost. After all, as it is said, there is no free lunch to be found anywhere.
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Chapter 3

Log Homotopy based particle flow filters

In the previous chapter, existing methods for nonlinear state estimation were discussed in de-

tail. The focus, in particular, was on the so called progressive measurement inclusion methods,

in which the measurement update step is carried out gradually. It was highlighted that most

of such methods are either based on the modification of a basic Gaussian framework which

lessened their applicability, or they require solution of several integrals over adjoint state space

regions which could become progressively hard to compute with the increase in the state space

dimensionality.

Therefore, we look for a different method which, though similar in concept, strikes a nice trade-

off between the complexity of the method and the accuracy of the results. In our search, we

find one such very compelling methodology, which is also based on the gradual inclusion of

the measurements. This has been suggested by Daum and Huang in a series of papers [DH07]-

[DHN16]. The method is based on the particle representation of the involved probability densi-

ties. The key idea is to model the transition of particles from the prior to the posterior density as

a physical flow under the influence of an external force (measurements). Particles are sampled

from the state transition density and a notion of synthetic time also called the pseudo-time is in-

troduced, in which particles flow until they reach correct posterior locations. An ordinary differ-

ential equation defines the flow of particles in pseudo-time, while the a partial differential equa-

tion (Fokker-Planck equation or FPE) describes the density evolution. A homotopy is defined

between the log prior and the log posterior densities, through the likelihood. The likelihood

term is introduced gradually, with the pseudo-time parameter controlling the inclusion rate. By

combining the log-homotopy equation with the FPE under different assumptions, a series of

ODE characterizing the flow vector is obtained. The flow ODE is then integrated numerically

to yield the updated states of particles. The new filter is termed as log-homotopy based parti-

cle flow filter or simply Daum-Huang filter (DHF) after the developers. Amongst many flow

solutions that have been derived, the famous ones are the incompressible flow [DH07], zero

diffusion exact flow [DH09b], Coulomb’s law flow [DHN11a], zero-curvature flow [DH13b]

and non zero diffusion flow [DH13a].

In this chapter, we first describe the theory behind the DHF. The most common variants of the

log-homotopy based flow will be derived. Then, we study the typical implementation of DHF

and highlight the critical steps. Each of those steps are studied in detail and recommendations

for improvements are made, culminating into a modified DHF implementation. Finally, using
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nonlinear and non-Gaussian examples, we study the effects of the proposed changes in the

implementation. The outline of the chapter is given as follows: We start by a brief mention

of the background concepts in the section 3.1. Next, we present a description of homotopy

based particle flow together with the derivation of the generic homotopy based flow equation

and specific flow solutions in section 3.2. In the section 3.3, we present a generic algorithm

for the DHF implementation, and highlight the important steps in the section 3.4. In there, we

describe, in detail, a number of possible schemes that could be employed for each of critical

steps mentioned in the previous section. The improved implementation is described in section

3.5. Section 3.6 starts with the description of the two models used in the numerical analysis,

followed by a sub-section on the parameter settings and the simulation methodology. Results

for proposed alternative methods are described in section 3.7. Finally, the chapter is concluded

by section 3.8.

3.1 Background

Before delving into the log-homotopy based particle flow filters, we would like to introduce

some basic concepts required in the forthcoming discussion.

3.1.1 Stochastic differential equations

An Ordinary Differential equation (ODE) describes the evolution of a non-stochastic dynamic

system over the time. The system is described in terms of its state vector, such that the ODE is

defined by the following functional equation,

g(x(t), x′(t), x′′(t), · · · , x(N)(t)) = 0 (3.1)

A simple first order ODE can be expressed as,

x
′(t) =

dx(t)

dt
= f(t, x(t)) (3.2)

Given the initial state x(0) = x0, the value at anytime t>0 can be uniquely specified by the

following

x(t) = x(0) +

τ=t
∫

τ=0

f(t, x(t))dτ (3.3)

Generally speaking, analytical solutions of ODEs can only be found for some exceptional cases.

Hence numerical methods have to be relied upon. A stochastic differential equation (SDE) is a

generalization of ODE, in the sense that in addition to the deterministic term f(t, x(t)), a second

term D(x, t) is also added to equation (3.2), representing the stochastic part. A first order SDE

is given by,

dx(t) = f(t, x(t))dt+ σσσ(x(t), t)dWt (3.4)

Here Wt represents a M-dimensional Wiener or Brownian process, while f(t, x(t)) ∈ Rd×1

and σσσ(t, t) ∈ Rd×M are deterministic terms called as the drift vector and the diffusion matrix

respectively. A Brownian process is a stochastic process which has continuous sample paths,
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with stationary independent increments. Also for t>0, Wt has a normal distribution N (0, t).
The solution of (3.4) can be expressed as,

x(t) = x(0) +

τ=t
∫

τ=0

f(t, x(t))dτ +

τ=t
∫

τ=0

σσσ(x, τ )dWt (3.5)

The first is the standard Riemann integral, while the second one is an Itô stochastic integral.

Necessary proofs for the existence and uniqueness of the solution can be found in [Øk14]. Like

their deterministic counterparts, exact solutions for SDEs can only be found in certain special

cases. Typically, an SDE can be numerically solved using a variety of methods, such as the

Euler-Maruyama approximation, Milstein approximation and Stochastic Runge-Kutta method

etc.

3.1.2 Fokker-Planck equation

Given some initial description of a probability density for some stochastic process, a pertinent

question could be, how does the density evolves over the passage of time. As discussed before,

an arbitrary stochastic process can have both deterministic and probabalistic parts. Therefore,

the evolution of the density with time would require a framework that includes both aspects of

the governing SDE. One of the first studies describing the time evolution of probability density

was carried out by Einstein in 1905. It appeared in the context of describing the Brownian

motion, i.e. random motion of tiny particles suspended in a fluid, using the statistical concepts

where the governing SDE was a simple diffusion equation (see Sect. 1.2 of [Gar04]). The

resulting Partial Differential Equation (PDE) was very similar to the heat diffusion equation as

proposed by Fourier in 1827, though the connections were not made until done by Einstein.

Later on, the concept was generalized to include a drift component as well. The resulting PDE

equation describing the time evolution of a PDF is termed as the Fokker-Planck equation or

FPE. An FPE in one dimension is given as:

∂p(x, t)

∂t
= − ∂

∂x
[f(x, t)p(x, t)] +

1

2

∂2

∂x2
[σ2(x, t)p(x, t)] (3.6)

where f(x, t) and σ(x, t) are the drift and the diffusion components of the SDE, respectively.

The equation was jointly named after Adrian Fokker and Max Planck, as they both worked

on the foundational aspects of a complete theory of particle fluctuations inside a radiation field.

The FPE is also called the Kolmogorov forward equation and the Smoluchkowski equation. FPE

can be written as,

∂p(x, t)

∂t
=

∂

∂x

[

−f(x, t)p(x, t) + 1

2

∂

∂x
[σ2(x, t)p(x, t)]

]

=
∂

∂x
J(x, t) (3.7)

Here J(x, t) is termed as the probability current, as its integral over any surface defines the net

flow of probability across it. For a stochastic process admitting a stationary PDF, the probability

current progressively goes to zero with the passage of time. The stationary solution is found

by putting ∂
∂x
J(x, t) to zero and solving the resultant equation under appropriate boundary

conditions. Few examples of processes admitting a stationary solution include the diffusion of

particles in a force field (e.g. gravitational), Rayleigh and the Orstein-Uhlenbeck processes etc.

We study the concept of stationary FPE in detail in the chapter 5 of this thesis. As discussed
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in the Sect. 3.5.2 of [Gar04], FPE can be seen as a special case of the more general Differen-

tial Chapman Kolmogorov equation. In d-dimension, the FPE corresponding to the stochastic

process governed by SDE (3.4) is given by ,

∂p(x, t)

∂t
= −

d
∑

i=1

∂

∂xi
[fi(x, t)p(x, t)] +

1

2

d
∑

i=1

d
∑

j=1

∂2

∂xi∂xj
[Qi,j(x, t)p(x, t)] (3.8)

where Q(x, t) is the diffusion tensor, defined as,

Qi,j(x, t) =

M
∑

l=1

σi,l(x, t)σl,j(x, t) (3.9)

3.2 Log-homotopy based particle flow

Now we can formally start with describing the details of the log-homotopy based particle flow.

Filters based on such flows have been termed in the literature as the Daum-Huang particle flow

filters or simply the Daum-Huang filters DHF, after the original developers. Conceptually, the

log-homotopy based particle flow methodology bears a great deal of similarity with the other

particle based progressive data assimilation methods described in the previous chapter. A ho-

motopic relationship is defined between the prior and posterior densities through the likelihood,

albeit in the logarithmic domain. The likelihood inclusion is controlled by a certain parameter,

which also serves the role of an artificial or pseudo time. It is assumed that the particles, start-

ing from their prior locations, obey an Itô stochastic differential equation in their motion w.r.t.

that pseudo time parameter, until they reach their final (posterior) locations. Also, the evolution

of the prior density into the posterior is described by an FPE. The SDE is termed as the flow

equation, and the main task is to derive an expression for it. This is done by combining the log

homotopic relationship between the densities with the FPE defined in the pseudo-time. This

leads to the so called generic flow equation, which under specific set of assumptions yields a

number of particular flow solutions. These can be solved to update the particles states, forming

the progressive measurement update step.

We now formally start with mathematical description of this concept. Let λ be the pseudo time

parameter, controlling the likelihood inclusion. A log-homotopy function log p(xk, λ) which

bridges the prior and the posterior densities, can then defined using the homotopy parameter λ,

log p(xk+1, λ) = log g(xk+1) + λ log h(xk+1)− logK(λ). (3.10)

where g(xk+1) represents the prior p(xk+1|Zk), h(xk+1) the likelihood p(zk+1|xk+1) and λ
assumes the role of a pseudo-time varying from 0 to 1. K(λ) is the normalization constant

for the posterior density independent of xk+1. λ = 0 sets p(xk+1, λ) equal to the prior density

while with λ = 1 the transformation is completed to the normalized posterior density. Therefore,

p(xk+1, λ) serves the same roles as the intermediate densities in the other progressive methods.

Please note that the λ is an artificial/synthetic time construct, as there is no real time flow

involved between the change of prior to the posterior distribution. From now on we drop the

time index k for the sake of convenience.

Now given the above formulation of the log homotopic relationship, it is further supposed that

the flow of particle obey the Itô SDE defined in the pseudo-time,

dx = f(x, λ)dλ+ σσσ(x, λ)dWλ (3.11)
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where f(x, λ) is the flow vector, w is the M-dimensional Wiener process with diffusion matrix

σσσ(x, λ). For a flow characterized as in (3.11), the evolution of the density p(x, λ) w.r.t the

parameter λ is given by the Fokker-Planck equation, defined w.r.t. the pseudo-time λ,

∂p(x, λ)

∂λ
= −

d
∑

i=1

∂

∂xi
[fi(x, λ)p(x, λ)] +

1

2

d
∑

i=1

d
∑

j=1

∂2

∂xi∂xj
[Qi,j(x, λ)p(x, λ)] (3.12)

where Q(x, λ) is the diffusion tensor. It can also be expressed in short hand notion as,

∂p(x, λ)

∂λ
= −∇ · (f(x, λ)p(x, λ)) + 1

2
∇TQ(x, λ)p(x, λ)∇ (3.13)

where ∇ is the spatial vector differentiation operator. From (3.10), the pseudo-time derivative

of the density p(x, λ) can be formulated.

∂p(x, λ)

∂λ
= p(x, λ)

(

log h(x)− ∂ logK(λ)

∂λ

)

(3.14)

By combining equations (3.13) and (3.14) we get,

p(x, λ)

(

log h(x)− ∂ logK(λ)

∂λ

)

= −∇· (f(x, λ)p(x, λ)) + 1

2
∇TQ(x, λ)p(x, λ)∇ (3.15)

Using the vector calculus identity,

∇ · (ab) = (∇ · a) b + a · (∇b)

Equation 3.15 can be further expanded,

log h(x)− ∂ logK(λ)

∂λ
= −f

T (x, λ) · ∇ log p(x, λ)−∇ · f(x, λ)

+
1

2p(x, λ)

(

∇TQ(x, λ)p(x, λ)∇
)

(3.16)

Then, the objective becomes to solve the generic flow equation (3.16) for the yet unknown flow

f(x, λ). Various flow solutions have been obtained by solving (3.16) under different assump-

tions. Here we discuss four such flows derived by F. Daum and J. Huang in their series of

papers.

Incompressible flow

The first solution of (3.16) appeared in [DH07], which was based on two distinct assumptions.

Firstly, the diffusion term σσσ(x, λ) in (3.11) is ignored. Secondly, the flow is considered incom-

pressible, i.e. ∇ · f(x, λ) = 0. Also the derivative of the logarithm of normalization constant
∂ logK(λ)

∂λ
is assumed to be very small, and therefore neglected. This leads to the flow equation,

f(x, λ) = − log h(x)
∇ log p(x, λ)

||∇ log p(x, λ)||2 (3.17)

The flow described by (3.17), has the magnitude proportional to the log h(x) and acts in the

direction of the gradient of the log-homotopy. According to [DH07], the implementation needs
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care, otherwise outliers can result from the direct application of equation (3.17). The gradient

in (3.17) can be found by taking the derivative of log-homotopy equation (3.10),

∇ log p(x, λ) = ∇ log g(x) + λ∇ log h(x) (3.18)

Given the measurement model, ∇ log h(x) can be found analytically. This might not be the

case for∇ log g(x) because here the function g(x) is represented by set of randomly distributed

points (particles) in d-dimensional space. Authors in [DHKK09] and [DHNK09] have sug-

gested seventeen dubious methods for gradient estimation of the log-homotopy function. Out of

these seventeen methods two are said to be most general and overall best.

The first method approximates the gradient as a solution of k linear equations where each equa-

tion corresponds to the directional derivative approximated by a simple first difference. It in-

volves finding k approximate neighbors (as opposed to the k real neighbors) to each particle in

order to reduce the computational complexity. The search for nearest particles is split in to two

phases,

1. First, all particles are projected along a line and M closest 1-dimensional points are found

for each particle. That line is chosen to be the eigenvector corresponding to the largest

eigenvalue of the error covariance matrix of particles. Normally, the number of particles

required for DHF are quite low, therefore it is advised to run a EKF/UKF in parallel to

get an estimate of prior covariance matrix.

2. Second, the M particle are projected back and k nearest points in the original d-

dimensional space are searched. These k points are the approximated nearest neighbors.

This algorithm is termed as fast k-NN algorithm. These points can be used to find the

gradient.

An implementation for incompressible particle flow DHF has been mentioned in [CWDH11].

Another detailed analysis for one dimensional incompressible flow is presented in [CM10],

where it is shown that for certain initial conditions (prior values), a solution for the flow equation

might not exist. This is caused by the existence of singularities, which are also the reason behind

the phenomenon of outliers. Several methods to deal with the singularity are discussed, such

as moving only those particles which have a flow solution, stopping the flow entirely when

reaching a singularity or temporarily stopping the particles and restart in the next iteration. It

has also been reported that the incompressible flow DHF is a good mode estimator. The filter

based on the incompressible flow is termed as DHF-IC.

Exact flow

If the diffusion term is still assumed to be zero and
∂ logK(λ)

∂λ
is neglected, but the flow is

allowed to be compressible, the following equation can be derived from (3.16)

log h(x) + f
T (x, λ) · ∇ log p(x, λ) = −∇ · f(x, λ) (3.19)

Different flows have been derived in [DH10a] based on solutions of (3.19). One particular

solution relates to the case when log g(x) and log h(x) are bilinear in the components of the

vector x, e.g. Gaussian prior and likelihood.

log g(x) = −1

2
(x− x̄)T P

−1 (x− x̄) (3.20)

log h(x) = −1

2
(z− ψ(x))T R

−1 (z− ψ(x)) (3.21)
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Then, the gradient of the two densities can be written as,

∇ log p(x, λ) = −P
−1 (x− x̄) + λH

T
R

−1 (z− ψ(x)) (3.22)

where H = ∂ψ
∂x

∣

∣

xλ
. More generally speaking, if the additive noise processes wk and vk belong

to the exponential family, then an analytical solution termed as the exact flow can be derived.

This is given as,

f(x, λ) = A(λ)x + b(λ) (3.23)

After some calculation, A(λ) and b(λ) turn out to be,

A(λ) = −1

2
PH

T (λHPH
T + R)−1

H (3.24)

b(λ) = (I + 2λA)[(I + λA)PH
T

R
−1

z + Ax̄] (3.25)

For nonlinear systems, the measurement model can be linearized by a Taylor series expansion

up to the first order term, such that z ≈ z−ψ(xλ)+Hxλ. The detailed derivation, as described

in [DC12], is given in the Appendix 3.A. We abbreviate this filter type as DHF-EF.

Coulomb’s law based flow

Yet another solution can be developed in which the flow of particles in the pseudo-time is

derived from the gradient of Poisson’s equation [DHN11a]. The diffusion term in (3.16) is again

assumed to be zero, but the derivative of the normalization constant is not ignored. Instead, it is

derived and an exact expression is found,

∂ logK(λ)

∂λ
= E (log(h(x))) (3.26)

Then the equation (3.16) is written in the form

∇ · q(x, λ) = −η(x, λ) (3.27)

where, q(x, λ) = f(x, λ)p(x, λ) and η(x, λ) = −p(x, λ)
(

log h(x)− ∂ logK(λ)
∂λ

)

It is noticed

that the integral of η(x, λ) w.r.t. x along the flow is zero,

∫

Ω

η(x, λ) = 0 (3.28)

where Ω is the relevant volume of the state space. This is analogous to a zero divergence of

the electric flux density out of an enclosed region without any charge (first Maxwell equation).

Next, it is reasoned that if the function q(x, λ) can be assumed to be the gradient of scalar

potential function V (x, λ), then (3.27) can be expressed as Poisson’s equation for the potential

V (x, λ).

∆V (x, λ) = η(x, λ) (3.29)

such that,

f(x, λ) =
∇V (x, λ)

p(x, λ)
(3.30)
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where ∆ is the Laplacian operator. The solution of (3.29) can be expressed in terms of the

convolution integral for d≥3,

V (x, λ) = −
∫

Ω

η(y, λ)
c

||x− y||d−2
dy (3.31)

where c = (4π)−
d
2 Γ( d

2
− 1) and y is the running variable. The above equation gives the

solution of the scalar potential V (x, λ), whereas our quantity of interest is its gradient. Taking

the gradient of (3.31) we get,

∇V (x, λ) = E

[(

log h(y)− ∂ logK(λ)

∂λ

)

c (2− d) (x− y)T

||x− y||d
]

(3.32)

Using the Monte Carlo approximation for the integrals, (3.32) can be approximated,

∇V (xi, λ) ≈ 1

k

∑

j∈Si



log h(xj)− 1

k

∑

j∈Sj

log h(xj)



 ·
(

c (2− d) (xi − xj)
T

||xi − xj ||d + α

)

(3.33)

The expression for the gradient∇V (x, λ) is similar to the electromagnetic force equation given

by Coulomb’s law, hence the name of the flow. In order to reduce the computational complexity,

the outer summation is carried out over the subset of k nearest neighbors of the ith particle xi,

which is denoted here by Si. This is motivated by the fact that as the state space dimensionality

increases, the contribution of particles far apart approaches zero exponentially. α is set to
1
β
Tr(P )

d
2 , where both α and β are the design parameters. Their purpose is to regularize the

expression for ∇V (x, λ). Also, P can be approximated by a prior covariance matrix estimate.

Fast Multipole Method (FMM) is suggested as an alternative method for solving the Poisson’s

equation. The filter based on this type of flow is referred as DHF-CLF.

Non zero diffusion constrained flow

The last type of flow we consider can be derived by not ignoring the diffusion term in equation

(3.16) as suggested in [DH13a]. It starts by taking the gradient of the generic flow equation

(3.16), which yields,

∇ log h(x) = −∇ log p(x, λ)T · ∇f(x, λ)

− f
T (x, λ) · ∇2 log p(x, λ)−∇ (∇ · f(x, λ))

+∇
(

1

2p(x, λ)
∇TQ(x, λ)p(x, λ)∇

)

(3.34)

An analytical evaluation of the equation (3.34) for the flow f(x, λ) is not possible, though nu-

merical methods could be employed for this purpose. Depending on the dimensionality of the

state-space, this can become computationally demanding. However, a little trick can lead to a

closed form solution for the flow, if the following constraint holds,

∇
(

1

2p(x, λ)
∇TQ(x, λ)p(x, λ)∇

)

= ∇ log p(x, λ)T · ∇f(x, λ)

+∇ (∇ · f(x, λ))
(3.35)
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This results in a simple formula for the flow equation, given by

f(x, λ) = −
(

∇2 log p(x, λ)
)−1

(

∇ log h(x)
)T

(3.36)

The flow derivation does not involve neglecting the diffusion term, instead it appears in the

constraint equation. Hence this flow is termed as non-zero diffusion constrained flow (NZDCF),

and the DHF with this particular flow is termed as DHF-NZDCF.

A closer look at (3.36) reveals that it requires Hessian matrices of the log-prior and the likeli-

hood densities, as well as the gradient of the log-likelihood. The gradient ∇ log h(x) and the

Hessian of the log-likelihood, ∇2 log h(x) can be calculated analytically in most cases. On

the other hand, there is no single method for the evaluation of the Hessian of the prior density,

∇2 log g(x). The most straightforward method is to approximate the prior density by a mul-

tivariate Gaussian density, and use the negative of the inverse of its covariance matrix −P−1.

This leads to the following,

∇2 log p(x, λ) = ∇2 log g(x) + λ∇2 log h(x)

≈ −P−1 + λ∇2 log h(x) (3.37)

It has been suggested in the paper by F.Daum and J.Huang that the matrix P can be set to

the prior covariance matrix of a parallel running EKF/UKF. Another method suggested by the

same authors is to use the fast k-NN algorithm to compute the hessian of the prior, similar to

the incompressible flow. Alternatively, an approximation can be used instead, where P is the

state covariance matrix computed directly from the prior position of particles.

The non-zero diffusion flow equation is more general in its context and applicability. This

is because it does not assume any particular form of the prior density and likelihood function.

However, it imposes two requirements. Firstly, the two functions should be no-where vanishing,

and secondly, they should be sufficiently smooth. Both of these conditions guarantee that the

gradient and the Hessian of the logarithm of densities always exist. Some regularization might

be necessary if either of these two assumption does not remain valid.

Due its generality, we primarily focus on analyzing the NZDCF in the rest of this chapter.

Since the flow can be ill-posed due to the possible violation of two necessary conditions, we

suggest improvements in the implementation architecture to regularize the flow and to improve

the overall performance of the filter.
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3.3 Typical DHF implementation

Numerical results for the DHF have been presented in [DH10b]. DHF based on the incompress-

ible and exact flows have been implemented by Choi. et al. in [CWDH11] for nonlinear scalar

and linear vector system models. Exact flow DHF implementations for multi-target tracking

have been reported in [DC12], where mobile targets are tracked based on the their received

signal strength at a fixed sensor. In [BS14], joint probabilistic data association (JPDA) and

maximum a posteriori penalty function (MAP-PF) algorithms based on the exact flow DHF

have been derived. Recently, many researchers have carried out the comparative analysis for

the DHF-NZDCF, in different application. This includes a comparison of DHF performance

against more traditional methods for angle only filtering in 3D by Gupta et.al. [DGYM+15],

comparing the tracking performance of DHF vs. other methods for super-maneuverable targets

by Kreucher et.al. in [KBS15], and the comparison of multi-sensor fusion using DHF against

the particle filters in Mostagh and Chan in [MC15]. Results show a varying degree of success

for DHF. While in some applications particle flow filters are shown to outperform the com-

petitors, in others they do not perform quite well. The main issue is that while particle flow

filters are theoretically quite elegant, their performance suffer from approximations made, both

in theory and in the practical implementation. This includes the approximations made while de-

riving the flow, in the estimation of the prior density and also in the use of numerical integration

techniques. This leads to the introduction of bias and loss of asymptotic consistency [BG14].

In Algorithm 4, we outline the implementation as described by T. Ding and M. Coates in

[DC12].

Algorithm 4 Generic implementation of DHF

1: procedure DHF

2: Initialize DHF: Generate initial set of particles

3: Initialize EKF/UKF: Initial mean and covariance

4: Pseudo-time grid discretization

5: for Loop over the time do

6: Propagate particles using the dynamic model

7: Prior covariance matrix estimate from EKF/UKF

8: for Loop over the pseudo-time do

9: for Loop over individual particles do

10: Integration of the flow equation

11: end for

12: end for

13: Measurement Update for EKF/UKF

14: Redraw particles (Optional)

15: end for

16: end procedure

Particles are generated by sampling the transition density. An EKF/UKF is run in parallel to the

main algorithm. This is done in order to approximate the prior covariance matrix. Next, the flow

equation is solved in pseudo-time for all particles. The flow equation uses the prior covariance

estimate from the parallel running EKF/UKF. Once done, the mean state vector is estimated and

the measurement update is carried out for EKF/UKF. This process is repeated until the end of
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the simulation time. The steps colored in red are the crucial factors in the performance of the

DHF.

The first is the pseudo-time λ discretization strategy together with the numerical integration

method. As the DHF flow is described by an ordinary differential equation, a suitable dis-

cretization is essential to capture the flow dynamics. Then the flow equation is integrated w.r.t.

λ. While the exact implementation details in [DH13a], [CWDH11], [BS14] are not clear, au-

thors in [DC12] have used single step Euler integration, as mentioned in the pseudo-code.The

method is based on first order Taylor series expansion. It is simple to implement and is fairly

quick. But care has to be taken as the flow ODE can exhibit stiffness. In that case a straight

forward λ discretization together with the single step Euler integration might not work. For

example, it has been mentioned in [DH13a] that the incompressible flow and ZDEF-DHF can

implemented with uniform step size ∆λ = 0.1, but not the NZDCF-DHF. For a comparison

between the two flows, we refer to the multi-target tracking example studied in [KU14], with a

special process model, termed as the Coupled motion model. Also the measurement model has

non-Gaussian noise contribution. These specific models are mentioned in detail in section 3.6.

We plot the average of the flow vector norm against the pseudo-time λ for the zero diffusion ex-

act flow (ZDEF) and the non-zero diffusion constrained flow (NZDCF), for the strongly coupled

motion model.
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Figure 3.1: Log homotopy based flows as a function of λ

Here the averaging is done across the number of particles (Np). It can be seen that the NZDCF

has relatively high value at very small values of λ. Also it is more dynamic than the ZDEF as

it exhibits three order of magnitude change in the same interval. This implies that, if the flow

is coarsely sampled, say uniformly with δλ = 0.1, the loss in performance for NZDCF-DHF

can be far greater than for ZDEF-DHF as the flow dynamics would not be captured sufficiently

well. The Jacobian of the NZDCF for this example has two zero eigenvalues. Also its Lipschitz

constant is quite large, which points to the stiffness of this flow. EF on other hand is a non-

stiff flow as its Jacobian is well-conditioned, and its Lipschitz constant is also relatively small.

Therefore, the proper discretization of the pseudo time λ is very important.

Secondly, the non zero diffusion flow requires an estimate of the prior covariance matrix. While

prior covariance estimate from parallel running EKF/UKF can be used as an approximation,
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this makes the DHF accuracy dependent on that of the EKF/UKF. On the other hand, a sample

covariance estimate can often be ill-conditioned. The question then becomes, whether there is a

better method to estimate the prior covariance matrix. Finally, the re-generation of a new set of

particles is an important step. Unlike a standard particle filter, the re-sampling/re-drawing step is

not mandatory in the DHF, but optional. Instead, it has been mentioned that the homotopy flow

moves the particles to their correct locations in the state space. But due to the approximations

made in the derivations, the flow may not be accurate, which could reduce the accuracy of the

estimates. Hence, the effect of particle re-generation is worth investigating.

To compare the performance of a typically implemented DHF, we again refer to the [KU14].

In the following figure, the root average mean square error (RAMSE) vs. time is plotted for

different variants of DHF together with the EKF and SIR-PF.
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Figure 3.2: Estimation error for the model discussed in [KU14] with the traditional DHF im-

plementation.

As mentioned earlier, the measurement model used in this example is a nonlinear and non-

Gaussian one. Hence, it presents challenges to all estimation schemes based on Gaussian as-

sumptions. This includes the ZDEF-DHF and the EKF. Since the NZDCF is more general in its

working, its expected performance should be better. Also, the prior covariance matrix is taken

from a parallel running Kalman filter and no redrawing takes place. From the plot above, it

can be seen that although NZDCF-DHF performs better than all other versions of DHF and the

EKF, does not reach the performance of standard particle filters with the similar execution time.

This points towards the inadequacy or ineffectiveness of the traditional DHF implementation

methodology.

In the following section of the chapter, we look for improvements in the DHF performance by

considering changes in the existing implementation architecture, as mentioned in Algorithm 4.

Please note that the important or the key steps in the implementation are highlighted in red.
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3.4 Important factors in DHF Implementation

In this section we individually discuss the aforementioned key factors affecting the DHF per-

formance.

3.4.1 Pseudo-time discretization

In the previous section, it was shown that non-zero diffusion flow is considerably stiffer when

compared to the exact flow. Hence, in order to efficiently solve the flow ODE, λ has to be

finely grated. This has been mentioned in [DH13a] where the usage of exponentially spaced

time steps or higher order integration schemes is recommended. In this paper we consider both

uniform and non-uniform grid discretization. The idea is to analyze the effect of a particular

grid discretization strategy and the numerical integration scheme on the filter performance, in

terms of the estimation error and the processing time. While a coarse λ discretization would not

result in the correct solution, a fine discretization on the other hand would lead to a substantial

increase in the computational cost. Therefore, a middle point has to be chosen such that the flow

dynamics at very small λ values are maximally captured, while only moderately increasing the

processing cost.

3.4.2 Numerical solution of the flow ODE

The homotopy flow is defined by a vector ODE. In the current work, we seek for the nu-

merical solution of the ODE. Broadly speaking, ODEs can be categorized into being stiff

and non-stiff. While there is no precise definition of the stiffness, in the literature two cri-

teria are generally mentioned for describing a stiff ODE. First, the condition number of the

Jacobian matrix J(x, λ) = ∂f(x,λ)
∂x

of a stiff ODE is quite large. As a consequence, multi-

ple timescales exist in the ODE. Time scales, often referred to as modes, are defined by the

inverse absolute eigenvalues of the Jacobian J(x, λ). Secondly, in the Lipschitz inequality

||f(x2, λ2) − f(x1, λ1)|| ≤ L||λ2 − λ1||, the Lipschitz constant L is typically very large for

a stiff ODE. Non-zero diffusion ODE can be characterized as stiff according to both criteria.

Therefore, care has to be taken when choosing the numerical integration scheme for solving the

flow ODE.

The standard Euler’s method has been used for solving the flow ODE in earlier works. It is

a first order method with a truncation error in the order of O(h2). In this paper, we intend to

compare the performance of some other numerical integration (NI) schemes for solving stiff

ODEs alongside the Euler’s method. There are several choices available. In the following, we

mention some of the common NI methods for solving stiff ODEs.

3.4.2.1 Forth-order Runge-Kutta method

The forth-order Runge-Kutta method (RK4) is our second integration method. RK4 method has

local truncation error in the order ofO(h5) ,while the total accumulated error is of orderO(h4).

3.4.2.2 Rosenbrock method

The Rosenbrock method belongs to the family of multistage procedures to solve stiff ODEs.

The Jacobian matrix appears in the integration formula. Like the Runge-Kutta methods, Rosen-

brock method successively form intermediate results. If the Jacobian matrix is ignored then
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the method turns into the explicit Runge-Kutta scheme. Therefore, they are also called Runge-

Kutta-Rosenbrock methods. Rosenbrock method preserve exact conservation properties due to

the use of the analytic Jacobian matrix, and possess optimal linear stability properties for stiff

problems.

3.4.2.3 Gear’s method

Gear’s method [C.G69] belongs to the class of methods known as backward differentiation for-

mulae. It is an implicit integration method and uses the first and higher order derivatives. It is a

predictor-corrector type scheme where each time step is initiated by prediction. Corrector itera-

tions are then carried out until prescribed convergence criteria are achieved or non-convergence

is deemed to have occurred.

3.4.3 Prior covariance shrinkage estimation

The evaluation of the flow equation (3.37) requires the availability of the prior covariance esti-

mate. The covariance estimate can be derived in several ways. The simplest way is to estimate

the covariance matrix using the prior particles. This is referred to as the sample covariance

estimate S. S is an unbiased estimator of the true prior covariance P , and is the maximum

likelihood estimate if the data is Gaussian distributed. But for nonlinear models / non-Gaussian

noises, the Gaussian assumption does not remain valid. Also S could progressively get ill-

conditioned, i.e. the spread of the eigenvalues gets larger with the time. This is especially the

case, when the d
Np

ratio is non-negligible, where d is the state vector dimension and Np is the

number of particles. As a consequence, the matrix inversion could lead to stability problems.

For the case d > n, the resulting covariance matrix is not even full rank and hence not invertible.

An alternative method suggested by the authors in [DH09a] is to run an EKF/UKF in parallel

to DHF, and to use the prior covariance matrix generated by those filters. We refer to such a

matrix as PXKF, where XKF could be an extended or unscented versions of the KF. While this

method is better than using the raw data based covariance estimate, it ties the DHF estimation

accuracy to that of the EKF/UKF. PXKF could also exhibit a wide spread of the eigenvalues.

Therefore, we look for an alternative method of covariance matrix estimation. That method

should have two properties: the resulting matrix should always be positive definite (PD) and the

matrix should be well-conditioned [SS05b]. One approach could be to start with the sample co-

variance, and ensure that the matrix is always PD. Such a matrix might not be well-conditioned.

Alternatively, variance reduction techniques could be used to get a well-conditioned matrix, but

this could be computationally expensive [SS05a]. There is another approach used in the multi-

variate statistics literature for the estimation of the covariance matrices, known as the shrinkage

estimation. The use of such methods dates back to work of Stein [Ste56]. The main idea is to

merge the raw estimate (S) which is unbiased but normally with high variance, together with

a more structured but typically biased target (B) through a scale factor, to get the combined

estimate (P∗). The objective is to reduce the estimation error, typically in a mean squared sense

(MSE), by achieving an optimal trade off between the biased (B) and the unbiased (S) esti-

mators. The scale factor is also called shrinkage intensity ρ as it shrinks the eigenvalues of

S optimally towards the mean of eigenvalues of the true covariance matrix P [LW04b]. The

resulting covariance matrix (P∗) will be biased, but will improve w.r.t. the two aforementioned

properties, and is expected to lower the estimation error. There are several shrinkage estimators

mentioned in the literature, with different target covariance matrices. In the current work, we
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describe some of the more established shrinkage estimators. In subsections 3.4.3.1 to 3.4.3.3,

shrinkage estimators are defined through a convex combination of the matrices B and S. The

objective becomes to find an optimal shrinkage intensity that minimizes the cost function,

min
ρ

E[||P∗ − P ||2] (3.38)

where P∗ = ρB + (1− ρ)S.

3.4.3.1 Shrinkage towards the Identity matrix

Shrinkage towards the Identity matrix is described in [LW04b]. The two main objectives de-

fined are, 1) to get an asymptotically consistent estimator that is more accurate than the sample

covariance matrix S, and is 2) also well-conditioned. No prior structure is assumed for the target

matrix B, as it could lead to an increased bias. Instead, a simple matrix with same covariance

terms and zero cross-variances (scaled identity) is chosen as the target. The shrinkage estimator

has the following form

P∗ =
α2

δ2
µ2I +

β2

δ2
S, (3.39)

The estimator P∗ asymptotically shrinks its eigenvalues towards the mean eigenvalue of the

true covariance matrix P , in quadratic mean sense i.e. The terms α, β, δ and µ depend on

the unobserved true covariance matrix P . Therefore, a consistent estimator of P∗ is derived

under the assumptions of general asymptotics. We term this estimator as PLW0, and it has the

following form,

PLW0 =
a2n
d2n
mnI +

b2n
d2n
S, (3.40)

where mn = tr(S)/d and,

d2n = ||S −mnI ||2 b̄2n =
1

n2

Np
∑

i=1

[||Xi
n(X

i
n)
T − S||2]

b2n = min(b̄2n, d
2
n) a2n = d2n − b2n.

||.|| is the squared Frobenius norm and Xi
n is the ith particle. Also the shrinkage intensity ρ

is given by
a2n
d2n

. It is shown that the MSE for PLW0 asymptotically approaches that of P∗ i.e.

E
[

||P∗ − P ||2n
]

− E
[

||PLW0 − P ||2n
]

→ 0. One main advantage of this estimator is that it

does not assume any particular distribution for the data, and therefore is distribution-free.

3.4.3.2 Shrinkage towards the constant correlation matrix

This estimator is derived in [LW04a], in the context of portfolio optimization. The target matrix

is chosen according to the constant correlation model. It means that pairwise correlations are

identical, which is given by the average of all the sample correlations. We denote this estimator

by PLW1. The target matrix B is given by

B =







Sii : i = j

r̄
√

SiiSjj : i 6= j
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where r̄ is the average sample correlation. It is defined as

r̄ =
2

d(d− 1)

d−1
∑

i=1

d
∑

j=i+1

Sij
√

SiiSjj
(3.41)

The shrinkage intensity is defined as ρ = max{0,min{1, κ
d
}}, with κ given as κ = π̂− ˆ̺

γ̂
.

π̂ denotes the sum of asymptotic variances of the entries of the sample covariance matrix S,

while ˆ̺ denotes the sum of asymptotic covariances of the entries of the shrinkage target B with

the entries of the sample covariance matrix. γ̂ gives a measure of the misspecification of the

shrinkage target. The hats (̂.) on top of terms indicate the fact that these are the estimates of the

true values, which are not known. π̂ are ˆ̺ are given by,

π̂ =
1

d

n
∑

i=1

n
∑

j=1

d
∑

k=1

{(xik − x̄i)(xjk − x̄j)− sij}2

ˆ̺ =
n
∑

i=1

π̂ii +
n
∑

i=1

n
∑

j=1
j 6=i

r̄

2

(

√

Sjj
Sii

ϑii,ij +

√

Sii
Sjj

ϑjj,ij
)

, (3.42)

where

ϑii,ij =
1

d

d∑

k=1

{(xik − x̄i)
2 − x̄i)− Sii}{(xik − x̄i)(xjk − x̄j)− Sij}

ϑjj,ij =
1

d

d∑

k=1

{(xjk − x̄j)
2 − x̄j)− Sjj}{(xik − x̄i)(xjk − x̄j)− Sij}. (3.43)

Finally γ̂ is given by

γ̂ =
n
∑

i=1

n
∑

j=1
j 6=i

(Bij − Sij)2. (3.44)

3.4.3.3 Shrinkage towards the perfect costive correlation matrix

The authors in [LW03] suggest single-factor matrix as the shrinkage target. The paper is con-

cerned with estimating the structure of the risk in the stock market and the modeling of the stock

returns. The fact that stock returns are positively correlated with each other, is exploited. The

shrinkage target is given by,

Bij =







Sii : i = j
√

SiiSjj : i 6= j

The resulting linear estimator is denoted as PLW2. The shrinkage intensity has the same form

as for PLW1, but with slightly different formula for ˆ̺, which is given below.

ˆ̺ =
n
∑

i=1

π̂ii +
n
∑

i=1

n
∑

j=1
j 6=i

1

2

(

√

Sjj
Sii

ϑii,ij +

√

Sii
Sjj

ϑjj,ij
)

(3.45)
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3.4.3.4 Empirical Bayesian Estimator

In [Haf80], an estimator for multivariate Gaussian data is derived. It is given by the linear

combination of the sample covariance matrix S and the scaled identity matrix. The scaling

factor is estimated from the data. We denote this estimator by PEB and it is given by

PEB =
Npd− 2Np − 2

N2
pd

[det(S)]
1
d I +

Np
Np + 1

S (3.46)

3.4.3.5 Stein Haff Estimator

This estimator is described in [Ste75]. The general form of the estimator is

V (S)Φ(l(S))V (S)T , where matrix V (S) contains the eigenvectors of the sample covariance

matrix S while Φ(l(S)) is a matrix that is a function of the eigenvalues l(S) of the S. The

data is assumed to be normally distributed. and the sample covariance estimate S is there-

fore Wishart distributed S ∼ W(P, d). The Stein-Haff estimator is denoted by PSH . It is

constructed by leaving the eigenvectors of S unchanged while replacing the eigenvalues l by

˜̂
li = nli/

(

n− p+ 1 + 2li
Np
∑

j=1,j 6=i

1
li−lj

)

. Eigenvalues can get disordered by the transforma-

tion and might become negative, which could lead to the covariance estimate losing its positive

definiteness. Therefore another algorithm called Isotonic regression is used in conjunction with

the transformation [LP85]. This leads to eigenvalues l̃ = {l̃1, l̃2...l̃p}T . Hence the estimate

PSH is given by V (S)D(̃l)V (S)T .

3.4.3.6 Minimax Estimator

The final shrinkage estimator considered is derived in [Ste82]. Again, Gaussian assumption is

made. This estimator is termed Minimax because under a certain loss function, it has the lowest

worst case error [LW04b]. Its structure is similar to PSH , but sample eigenvalues are replaced

by l̃i = n
n+p−1−2i

li. This estimator is denoted here by PMX . Isotonizing regression is not

applied in this case.

There is another interesting covariance estimator by Ledoit and Wolf [LW12] in which nonlinear

transformation of the sample eigenvalues is considered. Also, it requires solving a nonlinear

optimization problem using sequential linear programming. It is shown that the new nonlinear

estimator outperforms the linear shrinkage estimators described earlier in this section. In the

current work we don’t consider this method.
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3.4.4 Re-generating the particles set

In the standard particle filter, a new set of particles is generated after the measurement inclusion

step. This is done in order to avoid the particle degeneracy. A measure of the particle degeneracy

is the effective number of particlesNeff .WhenNeff falls below a certain threshold, resampling

of the particles is carried out. Depending on the number of particles, this can be computationally

expensive. Homotopy based particle flow filters try to avoid the particle degeneracy by the

gradual inclusion of the measurements. Unlike standard particle filters, resampling is not a

mandatory step in the DHF according to [DH09a], as it moves the particles to the correct region

of the state-space. However due to the inexactness of the homotopy flow ODE, the particle state

update itself is imperfect. Hence the generation of a new particle set could potentially help in

relocating/confining the particles to the correct region. Instead of the conventional resampling,

an optional redrawing of the particles is hinted out by Daum and Huang in their papers. We

have found a single paper which describes the particles redrawing method. In [DC12], it is

suggested to redraw a new set of posterior particles by sampling a Gaussian distribution. The

mean of the distribution is estimated using particles, while the filtered covariance matrix is

provided by the EKF. In the current work we consider two redrawing schemes, one using a

single multivariate Gaussian distribution(MVG), and other using a Gaussian mixture model

(GMM) that is estimated through the Kernel density estimation (KDE).

3.4.4.1 MVG

Our first technique is inspired by the one described in the pseudo-code in [DC12]. The main

difference is that we don’t re-draw the whole set of particles. Instead, only those particles are

re-drawn which are deemed too wayward. A multivariate Gaussian distribution is fitted to the

posterior particles. This amounts to the estimation of the mean and variance of the MVG given

the particles. New particles are generated from this MVG.

3.4.4.2 KDE-GMM

Our next re-drawing scheme is based on the intuition that a Gaussian fit to the posterior distri-

bution might not be well suited for all cases. Hence we look for a non-Gaussian approximation

to the filtered particles. The next most intuitive approach is to fit a Gaussian mixture model

(GMM) to the data. The key-factor in the GMM approximation is the number of components,

which can be set to a fixed value or could be data driven. The textbook approach to estimate

the GMM parameters is the expectation-maximization or EM method [Bis06]. Alternatively,

non-parametric methods like Kernel Density Estimation (KDE) may be employed for the esti-

mation of the probability density, which is given by the sum of estimation kernels with a certain

smoothing factor, centered at data points. Smoothing factor is also called bandwidth. In this

paper we use the online KDE approach described by Kristan et.al. in [KLS11], in which a new

method for online KDE is described. The method enables the construction of a multivariate

probability density estimate by observing only a single sample at a time. The KDE of the target

distribution is estimated using the sample distribution which is constructed by online cluster-

ing of the data points. Each new observation is treated as a distribution in the form of Dirac

delta functions, and the sample distribution is modeled by a mixture of Gaussian and Dirac

delta functions. Let ps(x) define the sample distribution, modeled as d-dimensional data as an
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N-component Gaussian mixture model,

ps(x) =

N
∑

i=1

wKDEi ϕΣsi(x− xi) (3.47)

where,

ϕΣsi(x− µ) = (2π)−
d
2 |Σ|− 1

2 exp

(

−1

2
(x− µ)TΣ−1(x− µ)

)

(3.48)

is the Gaussian kernel. The kernel density estimate (KDE) is defined as the convolution of ps(x)
with the kernel of covariance matrix H, also called the bandwidth.

p̂KDE(x) = ϕH(x) ∗ ps(x) =
N
∑

i=1

wKDEi ϕH+Σsi(x− xi) (3.49)

Next, the bandwidth of the kernel is estimated. Asymptotic means integrated squared error

(AMISE) is used as a metric for measuring the closeness of the estimated density pKDE(x)
with the unknown underlying density.

AMISE = (4π)−
d
2 |H |− 1

2N−1
w +

1

4
d4
∫

tr2{HGp(x)}dx (3.50)

where,

Nw =
1

N
∑

i=1

(wKDEi )2

G = Σ̂smp
4

Nα(d+ 2)

2
d+4

(3.51)

The sample distribution is continuously refined and compressed in order to keep the algorithm

complexity low. This is done by replacing clusters of components in ample distribution by a

single Gaussian. The main idea is to identify clusters, such that each cluster can be sufficiently

well approximated by a single component. The number of identified clusters are chosen such

that the total error does not exceeds the threshold Dth. This threshold is a free parameter and

can be chosen to achieve the desired level of accuracy.

M̂ = argmin
M

E(Ξ(M)), s.t. E(Ξ(M̂)) ≤ Dth (3.52)

Hence, Dth controls the degree of approximation i.e. the number of GMM components fitted

to the data. A lower value of Dth results in an increase in the number of components, and

vice-versa. Another important step is re-vitalization which aims to counter the ill-effects of

over-compression. This is done by maintaining an additional Gaussian mixture model (termed

as detailed model) for each component in the ps(x), and comparing the errors for both models.

Components having higher contribution to the total error are then replaced by two components

of its detailed model. The process is repeated at the arrival of each data sample. Even though

the original method is meant for online applications where the data is assumed to arrive in a

sequential manner, we use this for our off-line estimation scenario (all filtered particle are used

at once).

The output of the KDE in our contexts is a GMM, fitted to the posterior particles. We term this

scheme as KDE-GMM.
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3.4.4.3 Redrawing Algorithm

The purpose of re-drawing is to reduce the spread of the particles and relocate them in the

appropriate region of the state space. We use the Mahalanobis distance (δM ) for deciding the

waywardness of the particles. Given N (xk+1|µ̄̄µ̄µk+1, P̄k+1), the MVG approximation to the

posterior, the distance (δM ) for the posterior particle x̄ik+1 is given by,

δMVG
M (i) = (x̄ik+1 − µ̄̄µ̄µk+1)

T
P̄
−1
k+1(x̄

i
k+1 − µ̄̄µ̄µk+1) (3.53)

We define a similar measure for the GMM model with K components
K
∑

l=1

wlN (xk+1|µ̄̄µ̄µlk+1, P̄
l
k+1), such that,

δGMM
M (i) =

K
∑

l=1

wl
(

x̄
i
k+1 − µ̄̄µ̄µlk+1

)T

[P̄
l
k+1]

−1
(

x̄
i
k+1 − µ̄̄µ̄µlk+1

)

(3.54)

where wl , µ̄̄µ̄µl and P̄
l

are the weight, mean and covariance of the kth component of the GMM

estimated through the online-KDE.

Algorithm 5 Redrawing Algorithm

1: procedure REDRAWPARTICLES({x̄ik+1}Np

i=1 )

2: ς(i) = 1
δ∗
M

(i)
∀i

3: Υ = 1










Np
∑

i=1

ς(i)

Np
∑

i=1
ς(i)











2

4: if Υ ≤ νM ·Np then

5: if δ∗M (i) ≥
√

Υ
Np
·max δ∗M ∀i then

6: Redraw fromN (xk+1|µ̄̄µ̄µk+1, P̄k+1) or
K
∑

l=1

wlN (xk+1|µ̄̄µ̄µlk+1, P̄
l
k+1)

7: else

8: NoRedraw

9: end if

10: else

11: NoRedraw

12: end if

13: return {x̄i,redrawk+1 }Np

i=1

14: end procedure

The inverse of the distance ς = 1/δ∗M is a measure of the closeness of a particle to the estimated

mean value. We use this value as a sort of weight ascribed to the particle, such that a particle

close to the mean value is assigned a higher weight and vice versa. These weights are then

normalized. Next, the particle assemblage, denoted as Υ is calculated. Υ has the same form

as the effective sample size (ESS), in the traditional particle filter, and is a measure of the

particle spread about the mean value. A higher value of Υ indicates an relatively even spread

of the particles about the mean, whereas a lower value might suggest fragmentation of the
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particles into sub-clusters. A detailed analysis of this measure is presented in the Appendix

3.B. Redrawing takes place only when the assemblage falls below a certain value, which equals

νM · Np. We call νM as the redrawing intensity and its value can be set to any value between

0 and 1. When νM is 0, redrawing never takes place, while redrawing happens surely for the

value 1. In [KU15], we redrew the whole set of posterior particles, when the redrawing criterion

was met. Here we make a small change and redraw only certain particles, which are deemed

too off the main cluster(s). For that purpose, we compare δ∗M for each particle against a certain

threshold which is dependent on the assemblage. If the criterion is met, the particle is redrawn

from the MVG or GMM. The procedure is summarized in Algorithm 5.

3.5 Improved DHF implementation

Finally, we describe the revised DHF implementation. The whole procedure is shown in the

algorithmic form in the Algorithm 6.

Algorithm 6 Improved DHF implementation

1: procedure LOGHOMOTOPYFLOWFILTER({x̂0}Np

i=1)

2: for k = 0 : kmax − 1 do

3: for i = 1 : Np do

4: x̂
i
k+1 = φk+1(x̄

i
k) + wk+1 ⊲ Propagate the particles in real time

5: end for

6: P̂k+1 = SHRINKAGEESTIMATOR({x̂ik+1}Np

i=1) ⊲ Prior cov. estimation

7: {∆λj , λj}Nλ
j=1 = PSEUDOTIMEDISCRETIZATION(Nλ) ⊲ λ grid

8: for i = 1 : Np do

9: y0 = x̂
i
k+1 ⊲ Temporary variable

10: for j = 1 : Nλ do

11: yj = FLOWINTEGRATION(yj−1, λj , zk+1,∆λj ) ⊲ Num. integration

12: end for

13: x̄ik+1 = yNλ

14: end for

15: Approximate p(xk+1|Zk+1) either through a MVG or a GMM

16: REDRAWPARTICLES({x̄ik+1}Np

i=1) ⊲ Redraw particle

17: end for

18: end procedure

The procedure starts with an initial particle set, which is propagated through the real time. After

that, the shrinkage estimator is used to form the Hessian estimate of the log prior density, while

gradient and Hessian of the log of likelihood are also evaluated. The next task then becomes to

numerically solve the flow equation over the pseudo-time range [0,1], to get the filtered particle

set. This is further followed by an optional particle redrawing step, after which one iteration of

the particle flow based filtering is completed. Here, {x̂ik+1}Np

i=1 and {x̄ik+1}Np

i=1 are the set of

prior and posterior particles respectively.
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3.6 Numerical Example: Model description

Here, we consider a scenario similar to the one described in [KU14], namely the tracking of

multiple targets in a 2D space using range and bearing measurements, in order to study the

effects of the methods proposed in the previous sections. States of targets are interdependent,

therefore resulting in a nonlinear coupled dynamical model. Furthermore, the target association

is assumed to be perfectly known and hence we do not use any data association algorithm.

The state vector for the target i at time instant k is x
(i)
k = (x

(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k ), where x

(i)
k and

y
(i)
k represent the position while ẋ

(i)
k and ẏ

(i)
k represent velocity components along the x and

y-axis respectively. The overall state vector is formed by concatenating the individual target

state vectors xk = [x
(1)
k , x

(2)
k . . . x

(N)
k ]. Also, the measurement vector for the target i is given

by z
(i)
k = (r

(i)
k , θ

(i)
k ), where r

(i)
k is the range to the target while θ

(i)
k is the target bearing.

The overall measurement vector at time k is generated in a similar way. The process model is

described in equations (D1), where axk+1 and ayk+1 ∼ N (0, σ2
a), ∆t is the time discretization

step size and N is the total number of targets. The intuition behind the model is to make the

motion of the targets coupled to each other. The target (i = 1) is pursued by all other targets

(i > 1). The changes in the speed and direction of the targets depend on their relative distances

to each other. κ1, κ2 and κ3 are the coupling constants in the model. Π1
xk

and Π1
yk

control

the speed/direction change for the pursued target and is inversely proportional to the sum of its

relative distances to the all others. As pursuers come close, the pursued target speed is increased

followed by a directional change. The direction change is realized through terms
v2t
rt

cos( vt
rt
k)

and
v2t
rt

sin( vt
rt
k). rt and vt are the turning radius and velocity respectively and δ is a small

offset. Similarly, the speed and direction changes for the pursuers are controlled by the terms

Πixk and Πiyk .

xik+1 = xik + ẋik∆t+
1

2
axk+1 ∆t2

yik+1 = yik + ẏik∆t+
1

2
ayk+1 ∆t2

ẋik+1 = ẋik +Πixk∆t+ axk+1 ∆t

ẏik+1 = ẏik +Πiyk∆t+ ayk+1 ∆t (3.55)

Π1
xk

=
1

N − 1

N
∑

i=2

( κ1
√

(x1
k − xik)2 + (y1k − yik)2 + δ

)v2t
rt

cos(
vt
rt
k)

Π1
yk

= − 1

N − 1

N
∑

i=2

( κ1
√

(x1
k − xik)2 + (y1k − yik)2 + δ

)v2t
rt

sin(
vt
rt
k)

Πixk = κ2(x
1
k − xik)− κ3ẋ

i
k

Πiyk = κ2(y
1
k − yik)− κ3ẏ

i
k (3.56)

If κ1, κ2 and κ3 are set to zero, then state dynamics corresponds to the standard Discrete white

noise acceleration (DWNA) model. Measurements consist of ranges and angles of the two
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object types, target and the pursuer.

rik+1 =

√

(x
(i)
k+1)

2 + (y
(i)
k+1)

2 + virk+1

θik+1 = tan−1
( y

(i)
k+1

x
(i)
k+1

)

+ viθk+1
(3.57)

We consider two measurement models, one with uncorrelated Gaussian noises for both range

and the angle, while the other has correlated Gaussian range noise and exponentially dis-

tributed angle noise. For the first model, the likelihood is given by (3.58). We assume that

both range and bearing measurement noise vθk+1
vectors are mutually independent at each

time step. Also, both noises are uncorrelated within themselves such that E[virk+1
vjrk+1

] = 0

and E[viθk+1
vjθk+1

] = 0 for i 6= j, In the non-Gaussian measurement model given in (3.59),

range measurement noises vrk+1 ∼ N (0,Rr) are mutually correlated but are independent

w.r.t.ṫhe bearing measurement noises vθk+1
. Bearing measurement noise elements viθk+1

are exponentially distributed with the scale parameter β, such that E[(viθk+1
)2] = β2 and

E[viθk+1
vjθk+1

] = 0. Rr represents the covariance matrix of vrk+1 with σ2
r = E[(virk+1

)2]

and σ2
rx = E[virk+1

vjrk+1
]. σ2

rx is assumed to be the same for any two targets. Measurement

noises are chosen in this particular way in order to create a challenging estimation scenario, in

which the relative strength of the particle flow method can be tested against the more traditional

solutions like the EKF and the particle filter.

Gaussian noise:

p(zk+1|xk+1) = p(rk+1|xk+1)p(θk+1|xk+1)

=
1

(

2πσrσθ
)N

N
∏

i=1

exp
{

− 1

2σ2
r

(

r
(i)
k+1 −

√

(x
(i)
k+1)

2 + (y
(i)
k+1)

2
)2

− 1

2σ2
θ

(

θ
(i)
k+1 − tan−1(

y
(i)
k+1

x
(i)
k+1

)
)2}

(3.58)

Non-Gaussian noise:

p(zk+1|xk+1) = p(rk+1|xk+1)p(θk+1|xk+1)

=
1

(

2πβ2
)N

2 |Rr| 12
exp

{

− 1

2

(

rk+1 − r̃k+1

)T
R−1
r

(

rk+1 − r̃k+1

)

}

×
N
∏

i=1

exp
{

− 1

β

(

θ
(i)
k+1 − tan−1(

y
(i)
k+1

x
(i)
k+1

)
)}

(3.59)

where the range measurement vector is given as,

r̃k+1 =
[

√

(x
(1)
k+1)

2 + (y
(1)
k+1)

2

√

(x
(2)
k+1)

2 + (y
(2)
k+1)

2 · · ·
√

(x
(N)
k+1)

2 + (y
(N)
k+1)

2
]T
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with the associated covariance matrix,

Rr =

















σ2
r σ2

rx · · · σ2
rx

σ2
rx σ2

r · · · σ2
rx
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...

...
...

σ2
rx σ2

rx · · · σ2
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3.6.1 Parameters setting

We simulate two targets (N =2) in our analysis. ∆t is set to 1, σ2
a to 0.5 ms−2, σ2

r is set to

2000m2, σ2
rx to 3

10
σ2
r , while β2 is set to 1

10
rad2. We note that σr < Di,kσθ ∀i, k, where Di,k

represents the distance of ith target from the radar location at time instant k.
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Finish
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Figure 3.3: Sample trajectory

In this paper, we work only with the strongly coupled model with coupling constants κ1, κ2

and κ3 set to 8000, 0.01 and 0.1 respectively. The turn radius rt and turn speed vt are set to

200 m and 10 ms−1 while δ is set to 0.001. We use 100 DHF particles (Np = 100). DHF

and SIR-PF particles are initialized by sampling a Gaussian distribution with mean of 20000

m and variance of 5000 m2 for position elements, while their velocities are sampled from a

Gaussian distribution with mean and variance of 5 ms−1 and 25 m2s−2 respectively. EKF is

initialized by sampling the Gaussian with initial state vector as mean and with variances 104

and 1 for the position and the velocity respectively. In Figure 3.3, we show a sample trajectory

generated by using these parameters. We note that the target object (i=1) is pursued by the

pursuing object (i=2). The target turns and increases speed as it is approached by the pursuer.

The trajectory has segments of straight run as well as turns in the middle and at the end. Turning,

in particular is challenging for the estimation algorithm, as this in addition to the nonlinearity

in the measurements, introduces nonlinearity in the process model as well.
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3.7 Numerical Example: Results

We use root average mean square error (RAMSE) as the performance metric. It is defined as

follows: Let M be the total number of simulation runs for a particular scenario, xi,mk and yi,mk
denote the positions of the ith target along X and Y-axis respectively, at time instant k in the mth

trial. Likewise, let x̂i,mk and ŷi,mk denote the estimated positions for the ith target. The RAMSE

εr is then defined as,

ǫr(k) =

√

√

√

√

1

M

M
∑

m=1

[

1

2N

N
∑

i=1

(

(

xi,mk − x̂i,mk
)2
+
(

yi,mk − ŷi,mk
)2
)

]

We simulate each scenario for a total of fifty times (M = 50). First, we describe the effect of

the numerical integration schemes.

3.7.1 Effect of numerical integration schemes

We compare the performance of the four methods mentioned in subsection 3.4.2, namely Eu-

ler’s method, Runge-Kutta scheme of fourth order, Rosenbrock formula of second order and

Gear’s method. While we wrote scripts for the first two methods, MATLAB provided functions

ode23s and ode15s were used for the Rosenbrock and the Gear’s methods respectively. We

also compare the effect of grid discretization on the performance of the above schemes. We

use two specific cases, 10 uniformly spaced pseudo-time points (coarse discretization) and 30

exponentially spaced points (fine discretization). We plot the RAMSE ǫr for different schemes

in Figures 3.4a and 3.4b.
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Figure 3.4: Comparison of numerical integration schemes for the (a) Gaussian noise (b) non-

Gaussian noise.

We see a general increasing trend in the RAMSE vs. time for all methods. This is due to the

specific process model used, which results in peculiar target trajectories involving rapid accel-

erations and sharp turns. It can be observed that the difference in the performance of different

integration schemes is more pronounced in the case with non-Gaussian noise, as evident by the

wider spread in the error curves. For the Gaussian case, we note that the Runge-Kutta method

with 30 λ points has the lowest error. Among the integration methods with 30 discretization
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points, Euler’s method has the highest error. We can also note that Gears-10 has the lowest

error for all methods employing 10 discretization points. The largest error is exhibited by the

Euler-10 method, which happens to be the fastest. On the other hand, Rosenbrock-30 is the

slowest of all the methods. Euler-30 ranks second in the processing speed, as it is almost 1.5

times faster than its nearest competitor Runge-Kutta-10, while being 3 times as fast as Gears-10

though slightly inferior in the performance. Next, we discuss the results for the model with

non-Gaussian measurement noise. As discussed earlier, the error curves show more spread.

Gaussian

Method Avg. ǫr [m] Proc.time (pp) [ms]

Euler-30 178.45 6.6

Euler-10 181.70 2.3

Runge-Kutta-30 163.06 27.4

Runge-Kutta-10 180.60 9.1

Rosenbrock-30 169.66 80.5

Rosenbrock-10 178.04 62.8

Gear-30 169.42 27.4

Gear-10 172.37 19.3

Non-Gaussian

Method Avg. ǫr [m] Proc.time (pp) [ms]

Euler-30 186.69 5.6

Euler-10 223.07 1.8

Runge-Kutta-30 181.68 38.5

Runge-Kutta-10 184.39 12.7

Rosenbrock-30 173.17 71.9

Rosenbrock-10 196.30 55.8

Gear-30 184.49 26.4

Gear-10 186.69 17.9

Table 3.1: Comparison for different integration schemes

We note that the Rosenbrock method with 30 λ points has the lowest RAMSE, while the Euler’s

scheme with 10 λ points is the worst performer followed closely by the Gear-10. Runge-Kutta

methods with both 10 and 30 points are the second best. In fact, the difference in the per-

formance between the two is very small. This is followed by the Gear-30 and the Euler-30

methods. We tabulate the time averaged RAMSE and the average processing time per particle



3.7 Numerical Example: Results 67

for all methods in Table 3.1. Note that the time values mentioned only represent the time spent

while solving the homotopy ODE for a single particle. The largest and the smallest values are

highlighted in red and green respectively. It can be seen that while the Rosenbrock-30 is the best

method, it is also computationally most expensive. On the other hand, the Euler-10 is the fastest

but the worst performer of all methods. Euler-30 represents a reasonable trade-off between the

performance and the processing time. While it is slightly worse than the Runge-Kutta and the

Gear-30, it is approximately six times faster than the Runge-Kutta-30 and more than twice as

fast as Runge-Kutta-10. In the proceeding analysis, we use Euler-30 as the default integration

scheme.

3.7.2 Effect of shrinkage covariance estimation

Next we analyze the effect of shrinkage estimation schemes. We compare the performance of

the six methods mentioned in subsection 3.4.3, together with that of sample covariance and

the prior covariance matrices S and PEKF respectively. We denote the DHF estimate generated

using a particular covariance estimation scheme X as DHF-X. We use four metrics to judge

the effectiveness of these methods. The first and the foremost is the RAMSE of the DHF

estimates. This is the central criterion for judging the effectiveness of the shrinkage schemes,

in terms of the accuracy of the DHF estimates. The second metric is the relative accuracy of

the covariance matrix estimates themselves. In the context of shrinkage estimation, we use the

percentage relative improvement in average loss or PRIAL as the measure for the exactness of

any shrinkage covariance estimate, as defined in [LW04b],

PRIAL =
(

1− E[||P(.) − P ||2]
E[||S − P ||2]

)

× 100 (3.60)

where ||(.)|| represents the Frobenius norm, S is the sample covariance matrix estimate, while

P(.) and P are the shrinked covariance and the true covariance estimates, respectively.
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Figure 3.5: Comparison of covariance estimation schemes for the (a) Gaussian noise (b) non-

Gaussian noise.

As P is not known, in the current scenario it is approximated by the covariance estimate from a

sampling importance resampling particle filter (SIR-PF) with 25000 particles. The third metric

is the shrinkage intensity ρ, which indicates the compromise between the unbiased but more
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variant sample based estimate and the biased but less variant target. A lower value of ρ repre-

sents the closeness of the covariance estimate to the sample covariance matrix S. On the other

hand, a higher value highlights a stronger influence of the target matrix B. At last, we use the

condition number kcond to analyze the spread in the eigenvalues of covariance estimates over

the time. Figures 3.5a and 3.5b show the comparison of RAMSE for different covariance esti-

mation schemes for the Gaussian and non-Gaussian noises, respectively. First, we discuss the

RAMSE for DHF with covariance estimates from all methods, for the Gaussian noise model.

DHF-MX (Minimax) has the highest error. This can be explained as follows: the Minimax

estimator scales the eigenvalues of the sample covariance matrix in a nonlinear fashion. The

highest
⌊

p−1
2

⌋

eigenvectors have their eigenvalues shrinked, while for the others the eigenval-

ues are expanded. Scaling is done just based on the order of the sorted eigenvalues and it does

not take into account any other possible information in the structure of the matrix S. This sim-

plicity renders the estimator performing worse as compared to the others. Next in the line is

the DHF-EKF. As can be seen in Figures 3.5 a & b, the error increases sharply after about 80s.

Although each simulated trajectory is not exactly the same, this is roughly the time when the

targets start turning in our coupled motion model in most of those runs. Hence this is a critical

point, as this tend to increase the nonlinearity in our motion model. We see that for the DHF

based on the EKF prior covariance, rising error indicates a failure in the proper tracking.
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Figure 3.6: PRIAL of covariance estimation schemes for the (a) Gaussian noise (b) non-

Gaussian noise.

This also proves to be a very strong motivation for the search of a covariance estimation scheme

that is better than PEKF . Interestingly, the performance of sample covariance based DHF

is better than many other schemes. In fact, for most of the simulation time it has an error

comparable to the better performing DHF-LW0. It starts to increase only when targets start

turning. After that time, the DHF-S fails to properly cope with the induced process nonlinearity

and the filter diverges rapidly. All variants of Ledoit-Wolf covariance estimators perform better,

with LW0 based DHF outperforming all other filters. This can be attributed to the optimal

convex combination (asymptotically) of the sample covariance matrix S and the scaled identity

matrix I. This structure of the estimator results in a well-conditioned covariance estimator, that

is more stable (from an inversion point of view). This property can be critical when considering

the turning motion of the targets, as DHF particles can be flung far and wide if the flow is

incorrect which of course depends on inverting the prior covariance matrix. DHF with the other



3.7 Numerical Example: Results 69

two covariance estimators by Ledoit and Wolf perform a little inferior relative to the DHF-

LW0. PLW1 and PLW2 were derived for special problems in portfolio estimation and have very

special structures. This lessens their generality and makes them very application specific. Next

we discuss the non-Gaussian case. We note that DHF-S is the worst method. DHF-EKF comes

next as its error also shows steeply diverging trend. This can be explained as follows: given that

the measurements are nonlinear functions of state variables, and bearing noise is exponentially

distributed, the EKF is not a good approximation for the resulting nonlinear and non-Gaussian

scenario. Hence the covariance estimates generated by the EKF will not be accurate. DHF-LW0

has the lowest average error amongst all methods. This is because PLW0 is a distribution free

estimator, and hence produces good estimates even in this non-Gaussian scenario. It is followed

by the Stein-Haff and Minimax estimators. Compared with the DHF-EKF, all estimators except

the sample covariance DHF-S have lower average RAMSE.
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Figure 3.7: Shrinkage intensity of covariance estimation schemes for the (a) Gaussian noise (b)

non-Gaussian noise.

Next we discuss the PRIAL for the covariance estimates. The expectation in formula (3.60)

is calculated by averaging over all simulation runs. A value of 100 means perfect estimation

accuracy, while 0 means accuracy as good as the sample covariance matrix S. Again, we discuss

the Gaussian case first based on the results in Figures 3.6 a & b . We note that the PRIAL for

PLW0 is highest while it is lowest for PLW2 Again, this can be attributed to the very specific

structure of this estimator. For the non-Gaussian case, we note that the PRIAL for PSH is the

highest on the average , while is lowest for the PLW2. One noteworthy thing is to compare

the PRIAL of the estimators in the Gaussian vs. non-Gaussian case. We see that the PRIAL,

on average, is lower for the Gaussian case. This can be explained by the fact that PRIAL

represents how better a particular estimator is compared to the sample covariance estimator S.

In non-Gaussian case, DHF-S is worse performer, which points to the fact that S is not a well-

suited estimator. In fact, all DHF are better than DHF-S. Hence we see that the PRIAL for

the estimators in the non-Gaussian case is significantly higher. On the other hand in the case

of Gaussian noise, S is not the worst estimator. This increases the ratio
E[||P(.)−P ||2]

E[||S−P ||2]
, which

results in the lower values of PRIAL. Shrinkage intensities ρ are shown in Figures 3.7 a & b.

We note that the lowest shrinkage intensity in both cases is exhibited by PLW0. This suggests

more contribution of the sample covariance than the scaled identity matrix. PSH has the highest

shrinkage intensity on average and is also the most consistent. Shrinkage intensities in the non-
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Gaussian case are higher, again suggesting the inadequacy of the sample covariance matrix

in the nonlinear/non-Gaussian scenario. Finally we discuss the average logarithmic condition

number log kcond. As expected, PLW0 has the lowest condition number over time, at least two

orders of magnitude smaller than all other estimators. Also, S has the highest condition number.

For the subsequent analysis, we consider PLW0 as the default covariance estimation scheme.

Gaussian

Method Ave. ǫr [m] Ave.PRIAL Ave. ρ Ave. kcond

Stein-Haff 164.29 41.34 0.36 38620

Minimax 188.03 7.86 0.34 272820

Emp.Bayesian 170.94 1.20 0.20 181380

Ledoit-Wolf-0 144.77 63.13 0.05 170

Ledoit-Wolf-1 163.05 27.26 0.05 55610

Ledoit-Wolf-2 171.10 1.63 0.19 60370

EKF covariance 179.23 23.79 0 71460

Sample covariance 168.09 0 0 139760

Non-Gaussian

Method Ave. ǫr [m] Ave.PRIAL Ave. ρ Ave. kcond

Stein-Haff 161.22 83.30 0.40 45080

Minimax 166.58 32.0711 0.38 55490

Emp.Bayesian 171.28 18.78 0.23 46730

Ledoit-Wolf-0 153.32 81.71 0.09 180

Ledoit-Wolf-1 161.92 27.01 0.09 53220

Ledoit-Wolf-2 171.27 9.38 0.21 48470

EKF covariance 189.80 15.15 0 67770

Sample covariance 213.41 0 0 142260

Table 3.2: Comparison for different covariance estimation schemes
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3.7.3 Effect of Redrawing

Once decided upon the pseudo-time discretization, flow integration and prior covariance es-

timation schemes, we now study the effect of redrawing on the performance of the DHF. As

mentioned in section 3.4.4, we consider two methods for regenerating the particles. The first

method is redrawing from a multivariate Gaussian (MVG), and the other from a Gaussian mix-

ture model fitted to the posterior particles, that is estimated using an online kernel density esti-

mation method. First, we discuss the redrawing from MVG.

3.7.3.1 Multivariate Gaussian

We follow the Algorithm 5 mentioned in section 3.4.4 for redrawing. The main parameter in

that algorithm is the redrawing intensity νM . We vary νM between 0 and 1 and use five distinct

values. First we study the effect of νM on the estimation accuracy, for which we plot the time

averaged RAMSE for both Gaussian and the non-Gaussian cases in Figure 3.8a.
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Figure 3.8: (a) Time averaged RAMSE vs. νM for Gaussian and non-Gaussian models (b)

Redrawing probability vs. νM for Gaussian and non-Gaussian models, (c)Average percentage

of particles redrawn vs. νM for Gaussian and non-Gaussian models.

We see that as the redrawing threshold is increased the error decreases monotonically: the

lowest error is for νM = 1. We note that the improvement in the performance by increasing νM
is stronger in the non-Gaussian case than in the Gaussian one. This suggests the presence of
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more wayward particles in the non-Gaussian case, which are subsequently moved to the right

regions after being redrawn. Next, in Figure 3.8b, we plot the redrawing probability vs. re-

drawing intensity. Redrawing probability is defined as the number of times particles are redrawn

in the simulation divided by the total simulation time. So if particles are redrawn for half of

the whole simulation duration, the redrawing probability is 0.5. The value is averaged over all

simulation runs. A higher value indicates a higher chance for particles to be redrawn during

the simulation. We note a monotonically increasing relation between νM and the redrawing

probability, which assumes a value of 1 for νM equals 1. This plot can also be used to infer

about the assemblage Υ . As νM is increased, the probability of finding Υ below the threshold

νM ·Np increases. e.g. from Figure 3.8b, it can be inferred that almost 30% of the time Υ value

is below 0.5Np. This suggests that the probability of having fragmentation of particles about

the mean into two sub-groups of equal sizes (or any other equivalent scenario resulting in Υ =

0.5) is non-negligible. Also almost 50% of the time the value of the assemblage is between 50

and 75, while it is between 75 and 100 for almost 20% of the time. In relation to the RAMSE,

we can conclude that the redrawing frequency has a direct positive effect on the estimation

error. A higher redrawing probability leads to the reduced estimation error. We note that both

the Gaussian and non-Gaussian cases have a similar trend.

But how many particles, on average, are redrawn at any time instance during the whole simu-

lation time? While several metrics can be used for this effect, we use in particular the average

percentage of particles redrawn, further averaged over the simulation time as plotted in Fig-

ure 3.8c. We see an interesting trend: The percentage of particles redrawn increases with the

increase in the intensity νM up to 0.5, at which it hits the maximum 7%-9% of the particles

for both cases. Then this value decreases. This can be explained in the light of the redrawing

probability. For νM between 0 and 0.5, the redrawing probability increases and so does the per-

centage of redrawn particles. This suggests that even though the assemblage can be expected to

be below 0.5Np about 30% of the time, at times there is a significant number of particles satis-

fying the redrawing condition δ∗M (i) ≥
√

Υ
Np
·max δ∗M . That is why the redrawing criterion

Υ ≤ νM ·Np is met in the first place, given the low value for νM . As νM is increased beyond

0.5, the redrawing probability increases, but the average number of particles satisfying the re-

drawing conditions decreases. That also points to the increase in the assemblage. We note that,

on average, more particles are redrawn in the case of non-Gaussian noise than in the Gaussian

case. This result is expected as estimation under the non-Gaussian noise is more challenging.

When seen together with the estimation error, we note that although the average rate of parti-

cles redrawn at any given time is not more than 10%, but redrawing those particles amounts

to a significant reduction in the error. Also, the particles redrawn for νM equal 1 have the

maximum effect on the estimation error as they are the few well separated from the rest of the

particle cluster(s). If redrawn, they are moved to the correct region of the state-space, and hence

contributing effectively to the point estimates.

3.7.3.2 Kernel Density Estimation

Now, we discuss the effect of redrawing particles from a GMM, estimated through the online

KDE (oKDE) as described in [KLS11], using Algorithm 5. We have used the source code for

the oKDE provided by the authors at [KLS16]. Although the method is general and can be used

with any estimation kernel, the authors have used a multivariate Gaussian kernel in their work.
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The oKDE method fits a GMM to the online data, which is supposed to arrive sequentially. In

our context, we use the oKDE method to approximate the density of the particles after they

move through the pseudo-time loop. Hence those particles can be thought of as coming from an

importance sampler, and the task is to estimate the corrected posterior distribution. As a result

we get an ensemble of weights, mean and covariances, {wk, µk,Σk}}Kk=1. Next, the averaged

distance of each particle given the estimated GMM is calculated, and those particles which are

thought to be too wayward are redrawn. As in the MVG case, we vary the redrawing threshold

νM between 0 and 1.

There are two parameters that control the degree of estimation accuracy: the error threshold

Dth, which controls the number of Gaussian components fitted to the data, and Ninit which

defines the number of data samples used for the initialization. Through experiments, we have

found out that Ninit, above a certain value, does not strongly influence the estimation accuracy.

Therefore in our study we have kept Ninit fixed to 33 (one third of total number of particles),

while the thresholdDth is varied between 0.3 and 0.7, in the steps of 0.1. In Figure 3.9a, we plot

the average number of GMM components (K) vs. the error threshold Dth. We note that as Dth
is increased, K decreases exponentially. This can be attributed to the particular implementation

method used by the authors in [KLS16]. Next, in Figure 3.9b, we show results for RAMSE vs

νM for various values of threshold Dth, for both Gaussian and non-Gaussian cases.
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Figure 3.9: (a) Average number of GMM components vs. νM for Gaussian and non-Gaussian

models, (b) RAMSE vs. νM for different values ofDth for Gaussian and non-Gaussian models.

There are a number of noteworthy things. First, we note that the error for the Gaussian cases

is less than that for the non-Gaussian, for all values of νM . We saw a similar behavior in the

previous section, where the redrawing was done using a MVG. This suggests that the posterior

distribution is modeled more accurately by using the GMM for the Gaussian as compared to

the non-Gaussian case. Secondly, we see that the error only slightly decreases with increasing

νM up to 0.75. After that we observe a significant reduction in the error for both cases. This

is explained in the following way: in contrast to redrawing from a MVG where the particles

far from the estimated mean value had lower weight defined by the ς , here such particles can

be softly assigned to more than one Gaussian components. And due to the relative weights

of the GMM components, the contribution of those particles is lessened. This results in a

higher assemblage Υ value, and hence the redrawing criterion is rarely met. But when νM is
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sufficiently high, such that Υ is below νM .Np, redrawing takes place. Particles which meet the

redrawing condition are redrawn using the GMM. Statistically, particles are more likely to be

redrawn from the components with the higher weights, and hence making those components

even stronger while the opposite happens to the original low weight components. As a result,

one can expect a significant reduction in the particle spread after redrawing is done in this

manner. Lastly, we observe that the error for a lower value of Dth(hence higher K) is lower for

both cases, for all values of νM . Again this is intuitive, as a higher number of GMM components

is suggestive of a better accuracy of the fitted distribution to the posterior particles.

Figure 3.10a shows the redrawing probability vs. νM .
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Figure 3.10: (a) Redrawing probability vs. νM for Gaussian and non-Gaussian models, (b)

Average number of particles redrawn per redraw vs. νM for Gaussian and non-Gaussian models.

We use the same definition for this probability as used in the previous section. We note that

the redrawing probability for both noise cases is almost zero for νM less than or equal to 0.25.

Between νM 0.25 and 0.75, we see a slight increase for the non-Gaussian case while it is still

very close to zero for the Gaussian case. E.g. at νM = 0.75, the redrawing probability is 10%

for the case with non-Gaussian noise. A sharp rise can be seen for both cases between 0.75

and 1. Also the redrawing probability is higher for lower values of Dth. This trend has been

explained in the previous paragraph, where it was mentioned that for higher assemblage values,

the probability of redrawing is quite low. Hence, the redrawing probability also reveals infor-

mation about the distribution of the assemblage. In contrast to the MVG case, the assemblage

values are significantly larger but less spread. Therefore redrawing is only expected to happen

for larger values of νM . Also, a higher Dth (smaller K) tends to make the assemblage lower,

and therefore increasing the redrawing probability.

The average percentage of particles drawn per redraw is shown in Figure 3.10b. We observe

a monotonically increasing trend for both Gaussian and non-Gaussian noises. We note that

while the assemblage Υ value affects the redrawing probability, it is the distribution of the

Mahalanobis distance itself that influences the average percentage of particles drawn per redraw.

From the results we can infer that Mahalanobis distance distributions for both Gaussian and

non-Gaussian noises are similar, although for the latter it is more skewed towards the right, as

evident from the higher percentage of redrawn particles. The average percentage of particles

drawn per redraw rises sharply for νM between 0.75 and 1, hence more particles are redrawn
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for these values. This is correlated with the large drop in the estimation error. Altogether,

it can be inferred that the redrawing done for νM between 0.75 and 1 significantly increases

the estimation accuracy. It can also be concluded that the GMM provides a more accurate

description for the posterior distribution. A higher percentage of particles is expected to be

redrawn for higher values of Dth as the estimated GMM has fewer components, hence it is not

accurate enough.

3.7.4 Comparison against other filters

In this subsection, we compare the performance of our modified DHF against the other versions

of DHF mentioned in section 3.2, together with the EKF and sampling importance resampling

particle filter (SIR-PF) with 25000 particles. In total, we present the results for eight different

variants for DHF, out of which three are different flavors of exact flow filter (EF), three are

variants of non-zero diffusion constrained flow based filters (NZDCF), while the other two are

based on the incompressible flow (IC) and the Coulomb’s law flow DHF (CLF) respectively.

The most basic version of the exact flow based DHF is reported in [CWDH11], where the

flow equation is solved by linearizing the measurement model about the estimated prior mean

value. We call this implementation EF-mean. The second implementation of the exact flow

has been reported by Ding and Coates in [DC12], and a pseudo-code is also provided. Two

distinct changes are made to the EF-mean. In the first modification, the linearization of the

measurement equation is carried out for individual particles, as opposed to being done only at

the prior mean location. The second modification is related to the feedback of the DHF state

estimates to the EKF, making the two filters coupled. In this study we consider these two cases

individually i.e. the first modification alone, and it together with the feedback. We call these

implementations EF-part and EF-part-fb respectively.

For the incompressible flow filter (IC), the flow equation (3.17) is solved for individual particles

by assuming a Gaussian prior. Finally for the Coulomb’s law based DHF (CLF), we use the

parameters settings mentioned by the authors in [DHN11b]. One third of nearest neighbors

are used in the evaluation of equation 3.33. We have found that this filter is very sensitive to

the parameters settings, and in general is very hard to tune. First we plot the RAMSE for the

different filters for the Gaussian case in Figure 3.11a.
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Figure 3.11: RAMSE comparison of different estimation methods with the (a) Gaussian noise,

(b) non-Gaussian noise.

We note that the CLF has the largest error. The issue with this filter is the estimation of the prob-

ability density p(x, λ) for all particles throughout the pseudo-time, which is used in evaluating

the flow equation f(x, λ) = ∇V(x, λ)/p(x, λ). As this is done using the few available parti-

cles, the resulting density estimate is not accurate enough and the filter is prone to diverge. This

is also the issue with the Monte-Carlo approximation of the integral for the gradient ∇V(x, λ).
Next, we see that DHF based on IC although being better than with CLF, still fares worse com-

pared with all other filters. The filter is based on the assumption of zero-divergence, which

appears to be a quite strict condition. Also, the flow might encounter singularities which can

make the filter diverge. Among the three variants of the exact flow, the EF-part-fb is the best.

This is expected as for this filter linearization is done about each particle, and also the filter

is coupled to a parallel running EKF. The best among all DHF variants are the ones based on

NZDCF, all of which use Euler integration with 30 time steps and LW0 covariance estimation

scheme. We denote the DHF-NZDCF without redrawing by NZD-LW0, with redrawing from

MVG by NZD-LW0-MVG, and the one with redrawing from GMM as NZD-LW0-GMM. For

the redrawing we set the threshold νM equal to 1. Also for the oKDE, we set Dth to 0.5, which

on average fits 4 GMM components to the posterior distribution. We note that the NZD-LW0-

GMM is the best of all the schemes, even surpassing the SIR-PF with 25000. NZD-LW0-MVG

is a little worse in performance to the SIR-PF, but is still better than the EKF.

Next we discuss the results for the non-Gaussian measurement noise, as plotted in Figure 3.11b.

We note that all filters, except the variants of DHF-NZDCF and SIR-PF, perform poorly. DHF-

IC and DHF-CLF fail to track the targets, with the latter being the worst in the performance.

All variants of DHF-EF show a diverging error trend. This is due to the fact that EF hinges on

the Gaussian assumption, which is not valid in the current case. As a part of the measurement

noise is non-Gaussian, we see that these filters are unable to properly track targets. The same

reasoning can be applied to EKF. NZD-LW0-GMM, NZD-LW0-MVG and SIR-PF are the first,

second and the third best performer respectively. The error for all filters is generally larger when

compared with the case with the Gaussian noise.

Next, we compare the execution time τ for a single update, including both the time and the

measurement update steps. MATLAB simulations were performed on a computer with Intel
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Core2 Quad with 2.66 GHz processors and 4 GB RAM. Table 3.3 shows the processing time

per time step in seconds. We note that the EKF is the fastest of all methods. Next in the line

are the EF based DHF, with DHF-EF-mean being the fastest. DHF with IC flow and NZD flow

have quite similar processing time. We can also note that the covariance estimation (LW0) and

redrawing from MVG do not incur any significant processing overhead. The oKDE, on the

other hand takes quite a while to compute the GMM components. The processing time is the

highest for Dth = 0.3 and it drops exponentially with increasing threshold. Redrawing with

threshold 0.5 takes almost 1.2 seconds per time step, which is 6 times the processing time of

the DHF-NZD-LW0. Hence the redrawing with KDE takes significant amount of time. The

particle filter with 25000 particles takes 4.5 seconds, which makes it almost 4 times slower

than the DHF-NZD-LW0-GMM. Finally, the slowest method is the DHF-CLF taking almost

8.5 second per time step. We note that the processing time for the model with non-Gaussian

noise is little higher in general for most of the schemes.

Method Processing time τ [s] Processing time τ [s]

(Gaussian) (Non-Gaussian)

EKF 0.0004 0.0004

EF-mean 0.004 0.005

EF-part 0.10 0.10

EF-part-fb 0.105 0.105

IC 0.19 0.20

CLF 8.34 8.57

NZD 0.195 0.20

NZD-LW0 0.202 0.205

NZD-LW0-MVG 0.205 0.21

NZD-LW0-GMM (Dth = 0.3) 1.77 1.83

NZD-LW0-GMM (Dth = 0.4) 1.33 1.36

NZD-LW0-GMM (Dth = 0.5) 1.19 1.21

NZD-LW0-GMM (Dth = 0.6) 1.12 1.13

NZD-LW0-GMM (Dth = 0.7) 1.09 1.11

SIR-PF (Np = 25000) 4.34 4.65

Table 3.3: Comparison of processing time for different filters
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3.8 Conclusion

DHF filters, even though not new in the literature, are still not fully explored in detail. They lack

the in-depth theoretical and numerical analysis that the other contemporary filters have gone

through. Especially, the implementation details are very application specific. In this chapter, we

have tried to point out the key factors affecting the performance of a generic DHF. Highlighted

factors have been studied individually in detail, with several possible methods provided for each

of them. This include the different methods for pseudo-time discretization, different integration

schemes, estimation of the prior covariance matrix and the redrawing. We have compared the

results for those different schemes under on a challenging, nonlinear simulated scenario, both

with Gaussian and non-Gaussian noises. The first critical step in the DHF implementation is

the pseudo-time discretization and integration of the flow equation. The Euler based numerical

integration scheme is quite simple, but together with a clever pseudo-time discretization, can

perform quite well. The Euler method with exponentially spaced pseudo-time points, provides a

nice trade off between the performance and the complexity. The next important step is the prior

covariance estimation. We have analyzed different shrinkage covariance estimation schemes in

this regard. Some of them have been derived for specific scenarios. The most general one is

shrinkage towards identity matrix where no prior structure of the target matrix is assumed. It is

a distribution free scheme and is shown to have outperformed other shrinkage estimators used

in our analysis. DHF with shrinkage estimation methods is shown to have outperformed the

DHF with the sample covariance matrix and the with the EKF estimate. Finally, we studied the

effect of redrawing on the quality of the filter estimates. We choose two redrawing schemes, a

single MVG based re-drawing and one based on the estimation of the posterior distribution via

GMM, based on the oKDE. The estimated density is then used to redraw particles which are

considered too off the main cluster. The re-drawing algorithm uses the Mahalanobis distance

of particles to calculate the assemblage Υ . When Υ falls below a certain threshold determined

by the redrawing intensity νM , particles deemed too wayward are redrawn. We show that

the redrawing, when combined with the shrinkage estimation reduces the error even further.

Redrawing from a GMM gives better estimation accuracy than from MVG. It has been shown

that the properly done redrawing together with the shrinkage estimation could outperform a

bootstrap particle filter, with considerably lesser execution time.



Appendix

3.A Derivation of the exact flow fEF (x, λ)

We start with (3.19),

log h(x) + f
T
EF (x, λ) · ∇ log p(x, λ) = −∇ · fEF (x, λ)

It is assumed that the prior density and the likelihood are given as Gaussian i.e. g(x) =
N (x|x̄,P) and h(x) = N (z|ψ(x),R). This leads to the following,

log g(x) = −1

2
(x− x̄)T P

−1 (x− x̄)

log h(x) = −1

2
(z− ψ(x))T R

−1 (z− ψ(x))

Given this, the gradient of the two densities then can be written as,

∇ log p(x, λ) = −P
−1 (x− x̄) + λH

T
R

−1 (z− ψ(x))

where, H = ∂ψ
∂x

.

Next, it is assumed that the flow can be expressed linearly as,

fEF (x, λ) = A(λ)x + b(λ)

We note that for this particular choice of flow∇· fEF (x, λ) = Tr(A(λ)). Plugging the all terms

in the equation (3.19), we get,

[A(λ)x + b(λ)]T
[

−P
−1 (x− x̄) + λH

T
R

−1 (z− ψ(x))
]

− 1

2
(z− ψ(x))T R

−1 (z− ψ(x)) = Tr(A(λ))

For nonlinear systems, the measurement model can be linearized by the Taylor series expansion

around the point x∗ up to the first term,

ψ(x) = ψ(x∗) + H (x− x
∗) +O(∆x

2)

This leads to ,

ψ(x) ≈ Hx + (ψ(x∗)−Hx
∗)

= Hx + γγγ∗
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And therefore,

[A(λ)x + b(λ)]T
[

−P
−1 (x− x̄) + λH

T
R

−1 (z−Hx− γγγ∗)
]

− 1

2
(z−Hx− γγγ∗)

T
R

−1 (z−Hx− γγγ∗) = Tr(A(λ))

We drop λ for now onwards. Following with the derivation, we get,

− x
T

A
T

P
−1

x− x
T

A
T

P
−1

x̄ + λx
T

A
T

H
T

R
−1 (z− γγγ∗)− λx

T
A
T

H
T

R
−1

Hx

− b
T

P
−1

x− b
T

P
−1

x̄ + λb
T

H
T

R
−1 (z− γγγ∗)− λb

T
H
T

R
−1

Hx

− 1

2
(z− γγγ∗)

T
R

−1 (z− γγγ∗)− 1

2
x
T

H
T

R
−1

Hx + (z− γγγ∗)
T

R
−1

Hx = Tr(A)

With the assumption that PTAT = AP and by combining similar terms we get,

1

2
(z− γγγ∗)

T
R

−1 (z− γγγ∗) + Tr(A) = −x
T

(

P
−1

A + λH
T

R
−1

HA +
1

2
H
T

R
−1

H

)

x

+
(

x̄P
−1

A + λ (z− γγγ∗)
T

R
−1

HA + (z− γγγ∗)
T

R
−1

H− λb
T

H
T

R
−1

H− b
T

P
−1

H
)

x

The above is a quadratic equation, which can be expressed as,

x
TΥx + δT x + e = 0

The next step is to set the coefficients of the monomial (quadratic and linear) terms to zero. This

can be justified as equation must hold for all values of x, which can be ensured by setting the

coefficients to zeros. By setting the quadratic term to zero, we get,

P
−1

A + λH
T

R
−1

HA +
1

2
H
T

R
−1

H = 0

This can be solved for yet unknown matrix A,

SIRparticlefilterA = −1

2

[

P
−1 + λH

T
R

−1
H
]−1

H
T

R
−1

H

Further simplifications can be made using the Woodbury’s lemma,

[A + BCD]−1
BC = A

−1
B
[

C
−1 + DA

−1
B
]−1

where A = P−1, B = HT , C = R−1 and D = λH. This leads to the following simplified form

for A,

A = −1

2
PH

T
[

λHPH
T + R

]−1

H
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Next, we turn our attention towards b. Putting the coefficient of the linear term to zero we get,

x̄P
−1

A + λ (z− γγγ∗)
T

R
−1

HA + (z− γγγ∗)
T

R
−1

H− λb
T

H
T

R
−1

H− b
T

P
−1

H = 0

b
T
[

P
−1 + λH

T
R

−1
H
]

= x̄P
−1

A + λ (z− γγγ∗)
T

R
−1

HA + (z− γγγ∗)
T

R
−1

H

Taking transpose and multiplying with P, we get

[

I + λPH
T

R
−1

H
]

b = Ax̄ + λAPH
T

R
−1 (z− γγγ∗) + PH

T
R

−1 (z− γγγ∗)

This leads to,

b =
[

I + λPH
T

R
−1

H
]−1 [

(I + λA)PH
T

R
−1 (z− γγγ∗) + Ax̄

]

We apply the Woodbury’s lemma yet again, but in a slight different form

[A + BCD]−1 = A
−1 − A

−1
B
[

C
−1 + DA

−1
B
]−1

DA
−1

Recognizing, A = I, B = λPHT , C = R−1 and D = H, we can solve for the first term on the

R.H.S as the following,

[

I + λPH
T

R
−1

H
]−1

= I− λIPH
T
[

R + λHPH
T
]−1

HI

= I + 2λA

This yields a simpler formula for b,

b = (I + 2λA)
[

(I + λA)PH
T

R
−1 (z− γγγ∗) + Ax̄

]



82 3 Log Homotopy based particle flow filters

3.B Assemblage Υ

Let D be the vector containing the Mahalanobis distances of the particles. We assume that the

particles can be divided into L distinct sub-clusters, each cluster has the same distance to the

estimated mean. In that case D = [d1, d2, . . . dL]. This could either mean that the particles lie

on hyper-balls in Rd with radii di concentric around the estimated mean, or each cluster is small

enough, and far apart from others, such that it can be approximated by individual hyper-balls.

Let the ith cluster has Ni number of particles such that
L
∑

i=1

Ni = Np. Let the vector Φ contain

the inverse of Mahalanobis distances

Φ =

[

(

1

d1

)

×N1

,

(

1

d2

)

×N2

, · · · ,
(

1

dL

)

×NL

]

The sum of the vector Φ is given by,

L
∑

i=1

Φi =
N1

d1
+
N2

d2
+ · · ·+ NL

dL

=

L
∑

i=1

(

L
∏

j=1,j 6=i

dj

)

Ni

L
∏

j=1

dj

Therefore the normalized vector Φ̃ is given by

Φ̃ =

[

(

1

d1

)

×N1

,

(

1

d2

)

×N2

, · · · ,
(

1

dL

)

×NL

]

×

L
∏

j=1

dj

L
∑

i=1

(

L
∏

j=1,j 6=i

dj

)

Ni

Next the sum of squares of the above vector is evaluated,
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L
∑

i=1

Φ̃2
i =

[

N1

(d1)2
+

N2

(d2)2
+ · · ·+ NL

(dL)2

]

×













L
∏

j=1

dj

L
∑

i=1

(

L
∏

j=1,j 6=i

dj

)

Ni













2

=

N1

L
∏

j=1,j 6=1

(dj)
2

L
∑

i=1

(

L
∏

j=1,j 6=i

(dj)2

)

Ni

+

N2

(

L
∏

j=1,j 6=2

dj

)2

(

L
∑

i=1

(

L
∏

j=1,j 6=i

dj

)

Ni

)2 +

· · ·+
NL

(

L
∏

j=1,j 6=L

dj

)2

(

L
∑

i=1

(

L
∏

j=1,j 6=i

dj

)

Ni

)2

=
L
∑

i=1

Ni













L
∏

j=1,j 6=i

dj

L
∑

k=1

(

L
∏

j=1,j 6=k

dj

)

Nk













2

and finally the assemblage Υ is given by,

Υ =
1

L
∑

i=1

Φ̃2
i

=

(

L
∑

k=1

Nk

(

L
∏

j=1,j 6=k

dj

))2

L
∑

i=1

Ni

(

L
∏

j=1,j 6=i

dj

)2

Below, we consider few special cases for the assemblage.

3.B.1 Number of clusters equals Np

Each particle is consider as single clusters, hence each clusters has one particle with distinct

distance di. assemblage in that case is given by,

Υ =

(

Np
∑

k=1

(

Np
∏

j=1,j 6=k

dj

))2

Np
∑

i=1

(

Np
∏

j=1,j 6=i

dj

)2
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3.B.2 All particles equidistant

If di ≈ d

Υ =

(

Np
∑

k=1

dNp−1

)2

Np
∑

k=1

(dNp−1)
2

=

(

Np d
Np−1

)2

Np d2(Np−1)
=
N2
p d

2(Np−1)

Np d2(Np−1)

which leads to,

Υ = Np

3.B.3 Two dominant clusters

Now suppose that there are two main sub-cluster i.e. L =2.

Υ =

(

2
∑

k=1

Nk

(

2
∏

j=1,j 6=k

dj

))2

2
∑

i=1

Ni

(

2
∏

j=1,j 6=i

dj

)2 =
(d2N1 + d1N2)

2

d22N1 + d21N2

Now assume that d1 >> d2. In that case we can say in the limiting sense,

lim
d1→∞

Υ = lim
d1→∞

(d2N1 + d1N2)
2

d22N1 + d21N2

=
N2

2

N2
= N2

Likewise for d2 >> d1, limd2→∞ Υ = N1.



Chapter 4

Bayesian processing of Massive sensor data

with log-homotopy based particle flow

In the presence of a large number of measurements, as known as the massive sensor data, most

estimator face serious computational challenges. This problem is more pronounced for particle

filters, SMCMC methods and the DHF. The problem can be pin pointed to the computation of

likelihood term or its derivatives, which become a bottle neck. Dimensionality reduction may

be employed, for example through data clustering, but it remains unclear whether the samples

generated thereof still belong to the true posterior distribution. An interesting solution has been

provided in [FSM15] based on [BDH15], where probabilistic subsampling also termed as the

confidence sampling, has been employed to reduce the number of likelihood evaluations in the

context of SMCMC. A major benefit of this approach is that it comes with a theoretical guar-

antee regarding the generated samples i.e.ṫhe sampled distribution always lie with in a user

specified tolerance of the true posterior distribution. On the other hand, a better suited proposal

distributions is one of the key requirements for the algorithm. While for some problems the se-

lection of proposal distribution could be straight forward e.g. moderately nonlinear or Gaussian

models, for others the choice may not be that obvious.

In this chapter, we present a novel approach for the Bayesian processing of massive sensor

data, by combining the log-homotopy based particle flow together with SMCMC. We propose

an initial measurement clustering, after which the log-homotopy flow is applied. The samples

after the flow are assumed to be approximately in the vicinity of their true posterior locations,

though not there exactly. Hence, they can form an excellent proposal to be used within the

subsequent confidence sampling driven MCMC procedure. The main purpose of the last step is

to have the convergence guarantee that comes associated with later procedure. In this way, we

essentially bring the strength of both methods under one banner.

The chapter is organized as the following. The problem formulation is done in section 4.1.

Section 4.2 revisits the basics of SMCMC. Next, in section 4.3, possible approaches for massive

sensor data processing via SMCMC are highlighted. This is followed by section 4.4, where

the probabilistic subsampling i.e.ċonfidence sampling methodology is discussed in the detail.

Potential issues with the choice of proposal distribution for SMCMC are mentioned in section

4.5. The use of DHF together with the data clustering to form a better proposal is also advocated

in the same section. Section 4.6 describes our devised DHF based, confidence sampling driven
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SMCMC algorithm. Mathematical models and simulation setup for test scenario used in the

evaluation of the new scheme are mentioned in section 4.7. Section 4.8 provide results for the

new method, followed by the conclusion in section 4.9.

4.1 Problem formulation

Recalling the standard formalism of recursive Bayesian estimation, as defined earlier in section

2.1,

p(xk+1|Zk) =
∫

p(xk+1|xk)p(xk|Zk)dxk (4.1)

p(xk+1|Zk+1) =
p(zk+1|xk+1)p(xk+1|Zk)

p(zk+1|Zk)
(4.2)

For a massive sensor data scenario, the vector zk comprises of multiple measurements at each

time step k. In case all measurements are independent, the likelihood can be written as,

p(zk+1|xk+1) =

Mk+1
∏

i=1

p(zik+1|xk+1) (4.3)

where Mk+1 is the number of measurements present at time k+1. For massive sensor data,

Mk+1 ≫ 1. In addition to the non-availability of exact solution for nonlinear/non-Gaussian

systems, the presence of a hugh number of measurements itself poses severe computational

challenges. In the current work, we are primarily interested in a SMCMC based method for

the evaluation of (4.2) in the presence of a large number of measurements. We will employ

confidence sampling to reduce the computational complexity, and use DHF based proposal to

increase the efficiency of the MCMC sampling procedure.

4.2 Sequential Markov chain Monte Carlo (SMCMC) - A recap

Markov chain Monte Carlo method were invented to simulate dynamics of gaseous system in

equilibrium [MRR+53]. It was realized that instead of simulating the exact system dynamics

and run it until the equilibrium, a simulation of a Markov chain was enough which had the

equilibrium distribution as its stationary distribution. Initially, their usage was limited to the

solution of lower dimensional problems , but with the increase in the computational power this

hurdle was largely overcome. It was not until 80’s that the statistical community got involved,

after which a plethora of literature got published regarding MCMC methods.

The use of sequential MCMC in target tracking problems has its roots in the inadequacy of

importance sampling in higher dimensional spaces. SMCMC, as used in the target tracking

applications [KBD05], [LSSM15] and [SPCG09], differs from SMC in that they do not sample

from the posterior distribution directly. Instead, at each time instance k, a stationary, reversible

jump, Markov chain is constructed through a Markov transition kernel q(xyk+1|xxk+1). Here,

x and y indicate the initial and the proposed states and the kernel is referred to as the pro-

posal distribution or simply the proposal. The chain is started at an arbitrary location and is
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continuously lengthened by appending samples. The chain is assumed to have the posterior dis-

tribution p(xk+1|Zk+1) as its stationary distribution. Every new sample generated through the

proposal distribution is either accepted or rejected, based on the Metropolis Hastings procedure,

as described in the Algorithm 7.

Algorithm 7 Pseudo-code for Metropolis Hastings (MH) algorithm

1: procedure MH(x0
k+1)

2: for m = 0, · · · , Niter do

3: x∗
k+1 ∼ q(x∗

k+1|xmk+1)
4: u ∼ U(0,1)
5: α(xmk+1, x

∗
k+1) =

p(x∗k+1|Zk+1)×q(xmk+1|x
∗
k+1)

p(xm
k+1

|Zk+1)×q(x∗
k+1

|xm
k+1

)

6: if u < α(xmk+1, x
∗
k+1) then

7: xm+1
k+1 ← x∗

k+1 ⊲ Accept

8: else

9: xm+1
k+1 ← xmk+1 ⊲ Reject

10: end if

11: end for

12: end procedure

Here x0
k+1 refers to the initial sample of the MCMC chain. Proposed samples are always

accepted when α(xmk+1, x
∗
k+1) ≥ 1 (moving to a higher probability region), whereas for

α(xmk+1, x
∗
k+1) < 1 samples are accepted with the corresponding probability. The chain is

assumed to have the posterior distribution p(xk+1|Zk+1) as its stationary distribution. After a

certain burn-in period has been expired, every pth sample is kept. This procedure is called thin-

ning out. N such samples are kept, which are assumed to have been approximately distributed

according to the posterior distribution. MCMC applied in a sequential setting, while generally

better than particle filters for the estimation of higher dimensional state spaces, does still require

a lot of processing due to extensive sampling of the involved densities [KBD05].

4.3 Massive sensor data processing using MCMC

Massive sensor data describes the situation where a large number of observations / measure-

ments are available to be processed at any time instant. This can occur in several situations. In

the most typical scenario, massive sensor data could arise in the tracking of a single or multiple

targets using the measurement gathered through a multitude of sensors. In that scenario, each

target could have several measurements that have to be processed together. Few such examples

are bearing only estimation in the presence of clutter [MMBs02], [BSDH09], and in the pres-

ence of position biases and offsets [TTKM16]. Alternatively, massive sensor data cold occur

when the tracked target(s) can no longer be modeled as point source object(s) due to the en-

hanced sensor resolution. Instead, each target can have multiple scattering centers, which could

also leads to more than one measurements per target, thereby constituting the realm of the ex-

tended object tracking [Koc08]. The presence of multiple objects and/or clutter exacerbate the

problem, as the identity resolution could become critical. This could render the employment

of traditional state estimation methods like EKF/UKF inadequate, while the other methods like
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PF and SMCMC could simply be too expensive for estimation in such higher dimensional state

spaces.

Massive sensor data, sometimes also referred to as the Big data in the literature [FSMG15],

has been a subject of continued research. The proposed MCMC methods for such data can

largely be categorized into two main classes. In the first class of methods, also termed as

the divide and conquer approach, measurements are divided into non-overlapping batches or

blocks. Each block is processed by individual processing nodes [SWC+10], resulting in batch

posterior MCMC based estimates. The main question then becomes how to optimally combine

these estimates. Typical solutions involve approximating local densities as Gaussian or Gaus-

sian kernel density estimates, which results in forming the overall posterior approximation by

the multiplication of batch densities [SBB+16], [NWX13] and [CCL15]. Divide and conquer

methods though quite simple in terms of tractability and implementation, rely on the underlying

Gaussian assumption. Their performance degrades when the assumption of local Gaussianity is

violated.

The other class of methods use the idea of subsampling or decimation of the measurement set,

such that MCMC is applied only to a subset of the whole data. This include methods like

pseudo-marginal MH which relies on using an unbiased non-negative estimator of the like-

lihood [AR09], MH independent approach based on stochastic gradient Langevin dynamics

(SGLD) [MW11] and approximate subsampling approaches like naive subsampling [BDH15]

etc. In [AR09], the proposed algorithm results in estimates with high variance and slow conver-

gence of the Markov chain. SGLD based method appears quite similar to Metropolis adjusted

Langevin algorithm (MALA) [RC04] and provides consistent estimates of the posterior density,

though it also suffers from a slow convergence rate. One can increase the speed by choosing

larger step sizes for solving the relevant stochastic differential equation, but this could lead the

chain away from the support of the target distribution [BDH15]. In naive subsampling, mea-

surements are subsampled at random to yield a lower sized data set of fixed cardinality. This has

a broadening effect on the likelihood as fewer samples contribute to the final estimate. Naive

subsampling while trivial to implement, does not guarantee that the Markov chain samples out

of the MH step are indeed from the correct target distribution. It also suffers from a slow con-

vergence speed. In [QVK14], authors propose an exact but expensive approach to reduce the

variance of the estimates, where instead of subsampling, importance sampling is performed

by assigning weights proportional to their likelihood. It uses Gaussian processes or splines

trained on small subset of the data. This method, while demonstrably efficient, still relies on the

Gaussian assumption and the learning of good proxies for the likelihood terms. The likelihood

proxies have to be cheap to compute and should approximate the likelihood reasonably well.

4.4 Confidence sampler: Probabilistic subsampling within MCMC

framework

An interesting approach has been proposed in [RAC14], where the probabilistic subsampling

of the data has been proposed. It relies on the use of the so called concentration inequalities,

which provide a bound on the maximum absolute deviation of the average likelihood ratio. The

method automatically select a subset of the measurement data based on the evaluation of a stop-

ping criterion. The MH accept-reject decision is based on a user defined probability 1-δ. This

leads to its convergence speed within O(δ) of that of the full MH, where all of the measure-
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ments are taken into account. Also, the resulting chain is uniformly ergodic provided that the

original chain also had the said property. Most importantly, the algorithm provides a theoretical

guarantee that the sampled density is with theO(δ) of the true posterior density p(xk+1|Zk+1).
The disadvantage of the approach is that the evaluation of the stopping criterion uses a measure

of the range of log-likelihood ratio set, which except for a few simple cases, requires likelihood

calculation for the whole data set. The concentration inequalities are the worst case assurances

but they carry with them an additional processing cost. Since the method utilizes a confidence

bound, it is also termed as the confidence sampler. Next, we briefly mention the highlights of

the confidence sampling procedure.

We begin with the reformulation of the MH step as described in the step 5 of the Algorithm 7.

u <
p(x∗

k+1|Zk+1)q(x
m
k+1|x∗

k+1)

p(xmk+1|Zk+1)q(x∗
k+1|xmk+1)

(4.4)

Now assuming that the likelihood can be decomposed into individual terms i.e.ȧssuming inde-

pendence of measurements, we can re-write as,

u <
p(x∗

k+1|Zk)q(xmk+1|x∗
k+1)

p(xmk+1|Zk)q(x∗
k+1|xmk+1)

Mk+1
∏

i=1

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)
(4.5)

Further manipulation of the equation leads to,

1

Mk+1
log

[

u
p(x∗

k+1|Zk)q(xmk+1|x∗
k+1)

p(xmk+1|Zk)q(x∗
k+1|xmk+1)

]

<
1

Mk+1

Mk+1
∑

i=1

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

ψ(xmk+1, x
∗
k+1) <ΛMk+1(x

m
k+1, x

∗
k+1) (4.6)

where the left side of the inequality is independent of the data, while the right hand side exclu-

sively depends on the measurements. We define the average log-likelihood ratio using full data

set, ΛMk+1 . When using a subset of measurements of sizeNm, the average log-likelihood ratio

can be defined as,

ΛNm =
1

Nm

Nm
∑

i=1

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

(4.7)

Concentration inequalities can be used to obtain a bound on the ΛNm .

P (|ΛMk+1(xmk+1, x
∗
k+1)− ΛNm (xmk+1, x

∗
k+1)| ≤ cNm) ≥ 1− δNm (4.8)

where δNm is the used-defined threshold and cNm is dependent on the particular form of the

inequality used. In [BDH15], the Bernstein’s inequality has been used which results in:

cNm =

√

2VSm log(3× δ−1
Nm

)

Nm
+

3R log(3× δ−1
Nm

)

Nm
(4.9)

In the formula above, VSm is the sample variance of the subsampled log-likelihood ratios and

R is the range given by,

Rk+1 = max
1≤i≤Mk+1

{

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]}

− min
1≤i≤Mk+1

{

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]}

(4.10)
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Now referring back to the standard MCMC method, we note that the accept reject decision is

based on the evaluation of (4.6). The average log-likelihood ratio based on the whole data set

is not of our interest, instead, we would like to base our decision on ΛNm (xmk+1, x
∗
k+1). It

results in a stopping criterion |ΛNm (xmk+1, x
∗
k+1) − ψ(xmk+1, x

∗
k+1)| > cNm . This, when seen

in the light of the concentration inequality, can be interpreted as taking the right decision with

probability at least 1-δ, if the stopping criterion is met.

We start with the user-defined parameter δs ∈ (0, 1). The algorithm starts with an empty setZk ,

for the subsampled measurements. At each iteration, measurements are added to this subset and

the stopping criterion is re-checked. The data aggregation stops as soon as |ΛNm (xmk+1, x
∗
k+1)−

ψ(xmk+1, x
∗
k+1)| > cNm holds true, or all measurements have been added to the set Zk+1, in

which case the accept-reject decision is based on the evaluation of the full data set. For some

ps >1, we set δSm = ps−1
psN

ps
m,k+1

δs which leads to ΣNm,k+1>1δSm ≤ δs. The event,

E =
⋂

Nm,k+1≥1

{|ΛMk+1(xmk+1, x
∗
k+1)− ΛNm (xmk+1, x

∗
k+1)| ≤ cNm} (4.11)

therefore, holds with the probability at least 1 − δ. It can be seen that (4.10) requires the

evaluation of log-likelihood ratios for the whole data set. While for some problems range can be

straightforwardly computed e.g. in the case of a Gaussian likelihood, it might not be generally

the case. Thus any potential gain achieved by subsampling the data is lost.

To alleviate the problem of the still high processing cost, an approximate method has been pre-

sented in [BDH15] which makes use of the so called proxies. Proxies are likelihood mimicking

terms which are cheap to evaluate, but at the same time should approximate the actual function

sufficiently well. The proxy based algorithm yield empirical gains, but still keeps the guarantees

of the original scheme. Additionally, proxy terms act as control variates, therefore reducing the

variance of the estimates. In [BDH15], three desirable criterion are described for any potential

proxy term Pi(x
m
k+1, x

∗
k+1):

1. The proxy term should well approximate the actual log-likelihood ratio

Pi(x
m
k+1, x

∗
k+1) ≈ log

[

p(zik+1|x
∗
k+1)

p(zi
k+1

|xm
k+1

)

]

2. Σ
Mk+1

i=1 Pi(x
m
k+1, x

∗
k+1) can be cheaply computed.

3. The rangeRk+1 can be uniformly bounded and cheap to compute.

The introduction of proxy terms leads to the modification of ΛNm ,

ΛNm =
1

Nm

Nm
∑

i=1

{

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

−Pi(x
m
k+1, x

∗
k+1)

}

(4.12)

Amongst the several choices available for proxies, the simplest is provided by the first order

Taylor series expansion, [FSM15]. Given, ℓi(xk+1) = log p(zik+1|xk+1), the linearized log

likelihood can be expressed as,

ℓ̂i(xk+1) = ℓi(x
+
k+1) + (∇ℓi )T

x
+
k+1

.(xk+1 − x
+
k+1) (4.13)

where∇ℓi is the gradient of the log-likelihood with the linearization carried about some point

x+
k+1.
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Algorithm 8 Confidence sampler with proxy

1: procedure CONFIDENCESAMPLER(xmk+1,x∗
k+1,zk+1,δ,ψ(.), γmcmc )

2: Nm,k+1 = 0 ⊲ Number of subsampled measurements

3: ΛNm = 0 ⊲ Subsampled log-likelihood

4: Z∗
k+1 = ∅ ⊲ Set of subsampled measurements

5: lN = 1 ⊲ Batch size

6: i = 0 ⊲ Loop counter

7: FLAG = UP ⊲ Flag variable

8: Compute RBk+1 according to (4.18) ⊲ Range

9: while FLAG == UP do

10: i = i + 1

11: {zNm,k+1+1,∗

k+1 , · · · , zb,∗k+1} ∼w/repl. Zk+1\zk+1

12: Z∗
k+1 = Z∗

k+1 ∪ {z
Nm,k+1+1,∗

k , · · · , zb,∗k+1}
13: ΛNm

= 1
lN



Nm,k+1 × ΛNm
+ Σ

lN
j=Nm,k+1+1



log
p(z

j,∗
k+1

|x∗
k+1)

p(z
j,∗
k+1

|xm
k+1

)
− Pi(xm

k+1
, x∗

k+1
)









14: Nm,k+1 = lN
15: δi =

ps−1
psips

δ
16: Compute c according to (4.9) ⊲ Confidence bound

17: lN = γmcmcNm,k+1 ∧Mk+1 ⊲ Geometrically increase the batch size

18: if |ΛNm + 1
Mk+1

Mk+1
∑

i=1

Pi(x
m
k+1, x

∗
k+1)− ψ(.)| ≥ c or Nm,k+1 ==Mk then

19: FLAG = DOWN

20: end if

21: end while

22: return Nm,k+1, ΛNm

23: end procedure

Finally, the proxy can be written as,

Pi(x
m
k+1, x

∗
k+1) = ℓ̂i(x

∗
k+1)− ℓ̂i(xmk+1)

= (∇ℓi )T
x
+
k+1

.(x∗
k+1 − x

m
k+1) (4.14)

Also,

1

Mk+1

Mk+1
∑

i=1

Pi(x
m
k+1, x

∗
k+1) =

1

Mk+1

Mk+1
∑

i=1

(∇ℓi )T
x
+
k+1

(x∗
k+1 − x

m
k+1) (4.15)

This leads to the following form of the range,

Rk+1 = max
1≤i≤Mk+1

{

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

−Pi(x
m
k+1, x

∗
k+1)

}

−

min
1≤i≤Mk+1

{

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

−Pi(x
m
k+1, x

∗
k+1)

}

(4.16)
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Now we can derive an upper bound on the rangeRBk+1, such that asRBk+1 ≥ Rk+1, which can

be computed efficiently.

RBk+1 = 2 max
1≤i≤Mk+1

{
∣

∣

∣

∣

log

[

p(zik+1|x∗
k+1)

p(zik+1|xmk+1)

]

−Pi(x
m
k+1, x

∗
k+1)

∣

∣

∣

∣

}

= 2 max
1≤i≤Mk+1

{

∣

∣ℓi(x
∗
k+1)− ℓi(xmk+1)− ℓ̂i(x∗

k+1) + ℓ̂i(x
m
k+1)

∣

∣

}

= 2 max
1≤i≤Mk+1

∣

∣Bi(x
m
k+1)−Bi(x∗

k+1)
∣

∣ (4.17)

where,Bi(xk+1) = ℓi(xk+1)−ℓ̂i(xk+1) is the residual error of the Taylor series approximation

bounded as, |Bi(xk+1)| ≤ 0.5||∇2 log l(xk+1)||∞||xk+1 − x+
k+1||22. We can further upper

bound the range,

RBk+1 = 2 max
1≤i≤Mk+1

∣

∣|Bi(xmk+1)|+ |Bi(x∗
k+1)|

∣

∣ (4.18)

The last equation follows after the application of the triangle inequality. The main advantage of

using Taylor series based proxies is the ease in their computation and that of the range measure

R. The full confidence sampling algorithm using proxies is described in the Algorithm 8.

4.5 A better proposal distribution for MH step

The confidence sampler requires the term ψ(xmk+1, x
∗
k+1) as an input, which in turn depends on

the proposal distribution q(x∗
k+1|xmk+1). In its simplest form, a proposal can simply be based

on the random walk. The resulting scheme is termed as the random walk Metropolis (RWM)

and was first described in [MRR+53]. The proposed value for a d-dimensional Markov chain is

chosen randomly from a pre-specified Lebesgue density, with a given step size. The acceptance

rate for RWM algorithm is reasonable for a 1D state space, but as the dimensionality increases, it

decreases dramatically. Also, if the target distribution is multi modal with far separated modes,

the Markov chain can get stuck at one of the modes and might take very long before it can

get to the others. This problem is of course exacerbated in higher dimensions. Therefore, it

makes sense to propose samples from a distribution that is well suited to the problem i.e.it has

support that is wide enough, so that any region with non-zero mass can be reached. A sufficient

condition is that q(x∗
k+1|xmk+1) is positive everywhere. The accept-reject step makes sure that

as the chain reaches stationarity, it is sampling from the correct target distribution indeed i.e

from p(xk+1|Zk+1).
The next most obvious choice for the proposal distributions is the prior density p(xk+1|Zk).
If chosen so, ψ(xmk+1, x

∗
k+1) reduces to log(u)/M , making it independent of the state values.

While quite simple, this choice is often not very, especially when the prior and posterior dis-

tributions have significant probability masses in well separated regions of the state space. This

could be the case when the likelihood is quite peaked, resulting in a very low acceptance rate. As

a possible remedy, one could sample from regions of the posterior with significant probability

mass to improve the acceptance rate.

As alluded to in the introduction, the log-homotopy based particle flow can be used to form a

better proposal. This is owing to the fact that the flow incrementally moves the particles towards

their posterior locations by gradually incorporating measurements. This helps solve the issue of

degeneracy in a standard estimation problem. DHF, if carefully implemented can also be com-

putationally cheaper than a standard particle filter [KUK17]. Hence, it comes naturally to use
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the particles out of the DHF to form the proposal distribution for the subsequent MCMC step.

Below we describe some basics of the homotopy based particle flow and its implementation

methodology.

4.5.1 Log homotopy based particle flow

The whole procedure is shown in an algorithmic form in the Algorithm 9, where {x̂ik+1}Np

i=1

and {x̄ik+1}Np

i=1 are the set of prior and posterior particles, respectively. We plan to use the DHF

based approximation for the posterior density as the proposal in the confidence sampling based

SMCMC i.e. q(xk+1|.) ≈ p̂DHF (xk+1|Zk+1). But before this can be done, there are two main

issues to be resolved. The first one is the processing time of the DHF. As the main focus of

the work is to propose a MCMC based method that can handle massive sensor data, the dimen-

sionality of the measurement space becomes a critical factor here. As it can be noted that non

zero diffusion constrained flow equation requires the Hessian of the log-likelihood function. A

direct application of the DHF, therefore, can be prohibitively expensive. The question becomes,

how to use the DHF while still maintaining a reasonably low processing cost. One answer to

this problem is to decimate or sub-sample the measurement set. The second question relates

with the finding of an analytical approximation for p̂DHF (xk+1|Zk+1), for its sampling and

evaluation.

Algorithm 9 Log homotopy flow based measurement update

1: procedure LOGHOMOTOPYFLOWUPDATE({x̂k+1}Np

i=1,{∆λj , λj}Nλ
j=1,zk+1 )

2: P̂k+1 = SHRINKAGEESTIMATOR(x̂ik+1) ⊲ Estimate the prior covariance matrix

3: for i = 1 : Np do

4: y0 = x̂
i
k+1 ⊲ Temporary variable

5: for j = 1 : Nλ do

6: Hλ = GETHESSIANMATRIX( log h(zk|yj−1) )

7: hλ = GETGRADIENTVECTOR( log h(zk|yj−1) )

8: m(yj) = -
[

P̂
−1

k + λjHλ

]−1

hTλ ⊲ Non zero diffusion constrained flow

9: yj = yj−1 + m(yj)∆λj ⊲ Propagate the particles in pseudo time

10: end for

11: x̄ik+1 = yNλ

12: end for

13: Evaluate the posterior mean µ̄̄µ̄µk+1 and covariance matrix P̄k+1

14: REDRAWPARTICLES({x̄ik+1}Np

i=1) ⊲ Redraw particle (Optional)

15: return {xik+1}Np

i=1, µ̄̄µ̄µk+1 , P̂k+1

16: end procedure

4.5.2 Data reduction

Firstly, we tackle the issue of dimensionality reduction. Below, we list some of the methods

which could be employed for reducing the number of measurements.
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4.5.2.1 Naive subsampling

This is the most basic method for shrinking the measurement set, which can be done by throwing

out elements at random keeping the overall set cardinality fixed. Alternatively, it can be done

by taking every mth measurement. This method does not take the structure present in the data

set into account. Though one of the simplest method, it could deteriorate the performance of

the filter if the not enough samples are chosen.

4.5.2.2 Data Clustering

The next approach is based on clustering of the data points in the measurement space. Clustering

turns out to be a quite effective means of dimensionality reduction. This has been a thoroughly

studied topic, with applications in areas like image processing, computer vision, machine learn-

ing etc. We use two clustering methods, K-means clustering and K-medoids clustering with the

partitioning done around medoids.

K-means clustering K-means clustering is essentially a vector quantization technique, with

origins in voice compression, that eventually got popular for the data analysis. The basic

idea in K-means clustering is to partition a fixed number of N-dimensional observations into

K sets/clusters, where each observation belongs to the cluster whose centroid is closest to it. It

is an iterative method consisting of two steps: Expectation (E) and the Maximization (M). The

process starts with choosing centroids as K random data points. In the E step, all data points are

assigned to the one of the centroids. Usually the L2-norm is chosen as the metric for measuring

inter-point distance. Next, the centroids locations are updated by averaging the points in their

respective clusters. The procedure is carried out until the convergence or a fixed number of

iterations have been carried out.

K-medoids clustering This is the second method we employ for the data clustering. A

medoids is a point within a cluster whose average dissimilarity to all other points in the cluster

is minimal. i.e.it is a most centrally located point in the cluster. While in K-mean clustering

the centroid is usually not point with the cluster set (average of points), a medoids is always

a point with in the cluster. Similar to the previous method, E and M steps are also iteratively

followed in the K-medoids algorithm. K-medoids clustering is said to be more robust to noise

and outliers as compared to K-means because it minimizes a sum of pairwise dissimilarities

instead of a sum of squared Euclidean distances.

4.5.3 Proposal density representation

As discussed before, the output of the DHF are the approximated posterior samples, represented

through a Dirac-delta approximation. For them to be used as a proposal density within a MCMC

step, they have to be further approximated by some closed form probability density expression.

As described in the [KU15], the redrawing step in the Algorithm 9 (step 14) returns an approx-

imated density, either as a single multivariate Gaussian (MVG) or as a Gaussian mixture model

(GMM). In the current work, we follow a similar approach and use a MVG approximated form

for the proposal density.
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4.6 Sequential MCMC with DHF based proposal for massive sensor data

processing

In [FSM15], MCMC is used together with the confidence sampler to estimate a high-

dimensional non-Gaussian state space. The overall procedure is termed as adaptive Sequential

Markov chain Monte Carlo (ASMCMC).

Algorithm 10 Adaptive SMCMC with particle flow based proposal

1: procedure SMCMCWITHPARTICLEFLOW({Zk}kmax
k=0 )

2: Initialize the particle {x̄i0}Np

i=1 ⊲ Initialize particles

3: for k = 0 : kmax − 1 do

4: zck+1 = CLUSTERMEASUREMENTS(zk+1 ) ⊲ Primary data decimation

5: zĉk+1 = LIKELIHOODBASEDCOMPRESSION(zck+1 ) ⊲ Sec. data decimation

6: {x̂ik+1}Np

i=1 = PRIORSAMPLING({x̄ik}Np

i=1) ⊲ Time update

7: {x̄ik+1}Np

i=1 = LOGHOMOTOPYFLOWUPDATE({x̂ik+1}Np

i=1,{∆λj , λj}Nλ
j=1,z

c/ĉ
k+1)

8: q(x∗
k+1|xmk+1) = GETPROPOSALDENSITY({xik+1}Np

i=1) ⊲ Form the proposal

9: Markov chain Monte Carlo

10: Initialize the Markov chain: x0
k+1

11: for m = 1 : Nc +Nb do

12: if m = 1 ∨Nb then

13:

[

{Pi(x
m
k+1, x

∗
k+1)}

Mk+1

i=1 ,RBk
]

= UPPRXYRNG({xik+1}Np

i=1, zk+1)

14: end if

15: x∗
k+1 ∼ q(x∗

k+1|xmk+1) ⊲ Draw from the proposal distribution

16: ψ(xmk+1, x
∗
k+1) = 1

M
log
[

u
p(x∗k+1|Zk)q(xmk |x∗k+1)

p(xm
k+1

|Zk)q(x∗
k+1

|xm
k+1

)

]

17: [Nm,k, ΛNm ] =CONFIDENCESAMPLER(xmk+1,x∗
k+1,zk+1,δ,ψ(.) )

18: if ΛNm > ψ(xmk+1, x
∗
k+1) - 1

Mk+1

n
∑

i=1

Pi(x
m
k+1, x

∗
k+1) then ⊲ Modified MH

19: xmk+1 = x∗
k+1

20: else

21: xmk+1 = xmk+1

22: end if

23: end for

24: p̄(xk+1|Zk+1) = 1
Np

Np
∑

i=1

δ(xk+1 − x̄ik+1) ⊲ MCMC based posterior density

estimate

25: end for

26: end procedure

The algorithm is based on two main steps: a initial joint drawing of the xk+1, xk with the target

density,

p(xk+1, xk|Zk) ∝ p(xk+1|xk)p(xk|Zk) (4.19)

and a secondary refinement step redrawing both of these variables individually. The latter step

is composed of two further substeps. All three sub stages use a Metropolis-Hastings step, with
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the first and the third employing the confidence sampling since the likelihood evaluations are

involved. Variants of transitional density are used as proposals distributions in the MH steps.

ASMCMC has been shown to sample the posterior density reasonably well, with lesser exe-

cution time when compared to the crude MCMC, while still achieving reasonable compres-

sion gain. The confidence sampling is the key in reducing the computational burden. Proxy

terms and the upper-bounded range are calculated only twice; once at the start of MCMC,

and secondly, after the burn-in phase has expired. In the current work, we make a distinction

from [FSM15], in that we specifically use a DHF based proposal distribution with in the Se-

quential MCMC. Since all components have been described in the earlier sections, the task at

hand is to embed all of them within a unified framework. We call this scheme adaptive SMCMC

with particle flow based proposal or ASMCMC-DHF, and is described in the Algorithm 10.

4.7 Model & Simulation setup

In order to test the performance of our algorithm, we consider multi-target tracking scenario

in the presence of clutter, similar to the one in [FSM15]. However, a major distinction is that

we use a nonlinear measurement model. Observations are generated by a sensor located at the

origin, and consist of range and bearing of targets. State vector for the target i at time instant

k is x
(i)
k = (x

(i)
k , y

(i)
k , ẋ

(i)
k , ẏ

(i)
k ), where x

(i)
k and y

(i)
k represent the position while ẋ

(i)
k and ẏ

(i)
k

representing velocity components along the x and y-axis respectively. The overall state vector

is formed by concatenating the individual target state vectors xk = [x
(1)
k , x

(2)
k . . . x

(NT )
k ]. We

assume a discrete white noise acceleration model (DWNA) p(xk+1|xik) = N (xk+1|Fxik,Q)
with transition matrix F given by,

F =





I2 TsI2

02 TsI2



 (4.20)

and the measurement noise covariance matrix,

Q = σ2
x





(T 3
s /2)I2 (T 2

s /2)I2

(T 2
s /2)I2 TsI2



 (4.21)

Since we are considering massive sensor data scenario, multiple measurements per target are

generated. The number of measurements per targets are considered to be Poisson distributed

with intensity λx. In addition to the target returns, there are clutter measurements whose number

at any time instance is also Poisson distributed with intensity λc. Furthermore, target associ-

ation is not assumed to be known, but we do not use any data association algorithm. This is

justified as the main purpose of this work is to test the efficacy of the use of DHF together with

ASMCMC. The total number of measurements received at the time instance k+1 is given by

µk+1 = NTM
x
k+1 +Mc

k+1, where Mx
k+1 represents the number of measurements per target,

while Mc
k+1 is the number of clutter measurements. The joint likelihood can then be expressed

as,

l(xk+1) =
e−µk+1

Mk+1!

Mk+1
∏

i=1

[

λcpc(z
i
k+1) + λx

NT
∑

j=1

px(z
i
k+1|xk+1,j)

]

(4.22)
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The measurement vector for the target i is given by z
(i)
k+1 = (r

(i)
k+1, θ

(i)
k+1), where r

(i)
k+1 is the

range to the target while θ
(i)
k+1 is the target bearing, resulting in the following form of the sub-

likelihood,

px(z
i
k+1|xk+1,j) = pi,jx = N (zik+1|h(xk+1,j),Rk+1) (4.23)

with,

h(xk+1,j) =

[

√

xk+1,j + yk+1,j , tan
−1

(

yk+1,j

xk+1,j

)]T

(4.24)

where Rk+1 being the measurement covariance matrix. The clutter measurements are indepen-

dent of the target measurements and are uniformly distributed with in the surveillance area of

sensor.

pc(z
i
k+1) = Ux(µ(zk+1,r, zk+1,θ))Uy(µ(zk+1,r, zk+1,θ)) (4.25)

We consider tracking of two targets (NT=2), under two separate conditions: a moderately mas-

sive sensor data scenario with λx=50 and λc=200, and a extremely massive sensor data scenario

with λx = 500 and λc = 2000. In the subsequent analysis, we will refer to the former case as

the MSD1 (Massive Sensor Data 1), while the later as MSD2 (Massive Sensor Data 2). As

the standard setting, σ2
a is set to 0.5 ms−2, σ2

r to 10m2 while σ2
θ is set to 0.01rad2. The two

targets start at position (-50 , -50) and (30 , 30), whereas initial velocities for the two targets are

given by (-0.1 , -0.1) and (0.1 , 0.5) respectively. We note that σr < Di,kσθ ∀i, k, where Di,k
represents the distance of ith target from the radar location at time instant k. As a consequence,

the sub-likelihood functions have characteristic banana-like shapes due to the higher bearing

measurement uncertainty. We consider 100 particles for DHF, Np = 100, and 30 geometri-

cally spaced pseudo-time points for solving flow ODE, as required in line 7 of the Algorithm

10. Also, we approximate the proposal density q(x∗
k+1|xmk+1) using the log-homotopy flow up-

dated particles through a multivariate Gaussian density. We use root average mean square error

(RAMSE) as the performance metric, which is defined as the following. Let Nsim be the total

number of simulation runs for a particular scenario, xi,mk and yi,mk denote the positions of the

ith target along X and Y-axis respectively, at time instant k in the mth trial. Likewise, let x̂i,mk
and ŷi,mk denote estimated positions for the ith target. The RAMSE ǫr(k), where k>0, is then

defined as,

ǫr(k) =

√

√

√

√

1

Nsim

Nsim
∑

m=1

[

1

2NT

NT
∑

i=1

(

(

xi,mk − x̂i,mk
)2
+
(

yi,mk − ŷi,mk
)2
)

]

We simulated each scenario a total of fifty times (Nsim = 50), with each simulation running

for a total of 50 seconds. The standard parameter setting for our Algorithm is shown in Table

4.1,
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Parameter Value Parameter Value Parameter Value

Np 100 Nmcmc 400 Nburn Nmcmc/4

γmcmc 1.5 δs 0.1 ps 2

Ts 1 λx 50/500 λc 200/2000

σ2
x 0.5 σ2

r 10 σ2
θ 0.01

Ameas 400 × 400 Tsim 50 Kclust 30

Table 4.1: Algorithm parameters

The proxy update step, mentioned in the line 13 of the Algorithm 10, basically refers to cal-

culation of the proxy terms and the range measure estimates as given by the (4.14) and (4.18)

respectively. These estimates are based on the evaluation of the gradient and the Hessian of the

log-likelihood terms. Its is hoped that the evaluation of these quantities is easier to carry out

than the actual likelihood evaluation. Also, this is done only twice while running the chain; first

in the beginning, and second after the burn-in phase has been expired. Also the linearization

point x+
k+1 is chosen to be the mid point between the current and the proposed states xmk+1 and

x∗
k+1.

Our analysis is twofold. First, we analyze the effect of some of the important parameters on the

performance of ASMCMC-DHF by varying those within a certain range. Secondly, we compare

the performance of ASMCMC-DHF against other estimation methods, namely the particle filter

and ASMCMC.

4.8 Results

We study the results of changing parameters of sub-components of the Algorithm 10. This

include: the primary data decimation (clustering), the secondary likelihood based data deci-

mation step, and the MCMC step parameters Nmcmc and γmcmc. We also consider the effect

of changing the system parameters like the process and measurement noise covariances (an-

gle), σ2
a and σ2

θ , respectively. Additionally, we also study the effect of increasing the state

dimensionality on the estimation error. We gauge the overall performance by considering three

variables: root average mean square error (RAMSE), acceptance rate and the compression ratio.

Acceptance rates and the compression ratios are calculated after the confidence sampling based

MCMC procedure has been carried out. The compression ratio is defined as, the total num-

ber of measurements available divided by the number of measurements actually used by the

confidence sampler i.e. |Zk|; a higher value is indicative of a lesser amount of data usage and

lower processing time and the vice-versa. Processing time is also considered when analyzing

the algorithm sub-components.
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4.8.1 Primary data decimation

The aim here is to study the effect of changing the number of measurements subsampled in the

initial step, using methods mentioned in 4.5.2. Number of measurements after the initial stage

data decimation via clustering is controlled by the parameter Kclust, for which we use three

value: 10,20 and 30. The purpose is to significantly reduce the number of measurements used

by the DHF while forming the proposal for the ASMCMC step. Clustering leads to a smaller

set of measurements (depending on the value ofKclust), which requires a change to be made in

measurement intensities λx and λc. The two intensities then become: λ̂x = Kclust× NT λx

λc+NT λx

and λ̂c = Kclust × λc

λc+NTλx
, respectively. Below, we plot typical measurement scans super-

imposed with the clustering centroids (Kclust = 30) for K-Means, for the two sets of λx and

λc,
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Figure 4.1: A typical measurement scan with K-Means clustering applied

We plot similar figures using K-medoids clustering, for both of the two sets of λx and λc,
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Figure 4.2: A typical measurement scan with K-Medoids clustering applied

For the first case (MSD1), we can see that centroids are less uniformly arranged, whereas for

MSD2 we see a more regular pattern. Secondly, since clutter is uniformly spread with a density

four times that of the target on the average, target centroids can be affected by the nearby clutter

measurements.
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Figure 4.3: RAMSE for data reduction schemes with MSD1(λx = 50, λc=200) (a,c,e) and

MSD2 (λx = 500, λc=2000) (b,d,f)
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λx = 50 , λc = 200

Method RAMSE Acceptance rate Compression ratio Processing time

Naive (Kclust=10) (1.47 , 2.32 , 3.41) (0.13 , 0.17 , 0.24) (1.30 , 1.69 , 2.45) (13.35 , 52.44 , 89.21)

Kclust = 20 (1.66 , 2.12 , 2.87) (0.13 , 0.20 , 0.28) (1.31 , 1.72 , 2.59) (23.62 , 61.81 , 94.95)

Kclust = 30 (1.59 , 2.18 , 3.20) (0.17 , 0.22 , 0.28) (1.43 , 1.77 , 2.40) (33.19 , 70.54 , 106.93)

K-means (Kclust=10) (1.12 , 1.67 , 2.51) (0.10 , 0.16 , 0.20) (1.55 , 1.89 , 2.24) (14.75 , 52.67 , 89.48)

Kclust = 20 (1.21 , 1.54 , 2.26) (0.13 , 0.19 , 0.24) (1.78 , 2.11 , 2.44) (24.98 , 63.40 , 100.90)

Kclust = 30 (1.13 , 1.43 , 2.08) (0.12 , 0.22 , 0.26) (1.84 , 2.29 , 2.51) (36.27 , 70.90 , 104.50)

K-medoids (Kclust=10) (0.90 , 1.44 , 2.33) (0.13 , 0.19 , 0.28) (1.79 , 2.26 , 2.71) (14.97 , 56.15 , 90.94)

Kclust = 20 (0.93 , 1.32 , 2.35) (0.14 , 0.21 , 0.30) (1.83 , 2.47 , 2.88) (23.97 , 65.45 , 99.05)

Kclust = 30 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74) (37.36 , 77.14 , 116.12)

λx = 500 , λc = 2000

Naive (Kclust=10) (0.73 , 1.34 , 2.07) (0.10 , 0.18 , 0.24) (1.53 , 2.04 , 2.40) (18.63 , 157.21 , 304.26)

Kclust = 20 (0.68 , 1.12 , 1.88) (0.13 , 0.20 , 0.25) (1.65 , 2.12 , 2.58) (30.93 , 167.03 , 312.34)

Kclust = 30 (0.55 , 1.03 , 2.02) (0.17 , 0.24 , 0.29) (1.64 , 2.15 , 2.69) (41.77 , 181.89 , 320.69)

K-means (Kclust=10) (0.79 , 1.28 , 2.17) (0.11 , 0.15 , 0.19) (1.89 , 2.22 , 2.80) (17.83 , 157.57 , 289.16)

Kclust = 20 (0.68 , 1.13 , 1.72) (0.12 , 0.18 , 0.21) (1.90 , 2.29 , 2.86) (32.99 , 170.19 , 314.78)

Kclust = 30 (0.56 , 0.91 , 1.34) (0.12 , 0.19 , 0.24) (2.03 , 2.34 , 3.12) (45.81 , 199.71 , 369.69)

K-medoids (Kclust=10) (0.35 , 0.69 , 1.64) (0.14 , 0.17 , 0.21) (1.84 , 2.55 , 2.74) (17.38 , 154.33 , 291.27)

Kclust = 20 (0.28 , 0.55 , 1.29) (0.14 , 0.19 , 0.24) (1.87 , 2.62 , 2.81) (32.34 , 170.28 , 299.81)

Kclust = 30 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (43.47 , 179.37 , 307.93)

Table 4.1: Minimum, median and maximum values for RAMSE, Acceptance rate and Compression ratio for the primary data decimation
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For the naive subsampling, Kclust number of measurements are chosen at random from the

whole set. Roughly speaking, this results in the selection of target measurements with the

probability NT λx

λc+NTλx
, while the clutter measurements are chosen at random with probability

λc

λc+NT λx
. Since the data set is quite large, we have given an approximation ignoring the effect

of sampling without replacement. In Figure 4.3, we present the box plot for RAMSE for the

two cases of massive sensor data considered, while further elaborating the results in Table 4.1.

For the number of subsampled measurements considered, error for the naive subsampling seems

not be affected much by the increase in Kclust. This can be attributed to the uniform measure-

ment sampling, where the probability of choosing target measurements increases only slightly

with the increase in Kclust. On the other hand, we see a more pronounced decreasing trend

in error with the increase in number of clusters, for both K-means and K-medoids clustering.

The latter has lesser error for all values of Kclust, which can be attributed to the closeness of

the target measurement centroids to the true values i.e. ones with out noise. Another thing to

be observed is that the error for MSD1 is higher than for MSD2. This is understandable, as

although the number of measurements after the initial clustering are the same, the whole set

of measurements is available to be sampled from in the later ASMCMC step. Secondly, the

centroids tend to be closer to the true values for MSD2.

We note that as the value of Kclust increases, the acceptance ratio is decreased. On the other

hand, we see a rising trend for the compression ratio. With more number of measurements per

targets available, the quality of the proposal density get better. In other words, the proposal gets

even closer to the target distribution (posterior), and therefore in the MH step, not many samples

are likely to be accepted. This also has a positive effect on the probabilistic subsampling of

measurements as fewer samples are required to meet the stopping criterion. Next, we compare

the execution speed for all of the schemes by plotting the median processing time in Figure 4.4,
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Figure 4.4: Median processing time for data reduction schemes for (a)(λx = 50, λc=200) and

(b)(λx = 500, λc=2000)

We have further classified the processing time into the two categories; time for generating pro-

posal through the DHF and the time taken by the confidence sampling based MCMC stage.

Firstly, we discuss the results for MSD1. We note that the DHF processing time increases lin-

early with the increase in the value of Kclust, which is similar for all methods. Since the flow

equation for individual particle requires the evaluation of the gradient and Hessian of the log-
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likelihood (which involves summation over all measurements 4.A), the cost grows linearly with

the increase in the number of measurements. On the other hand, we note a slight decrease in the

processing time for MCMC step. This can be attributed to the better quality of the DHF based

proposal used, resulting in higher compression ratios. DHF processing takes almost the same

time as running the MCMC chain for Kclust = 30. In the case of MSD2, we observe a similar

trend for the DHF processing times, while for MCMC they increase slightly with the increase in

the number of measurements. This might be an indication of a comparatively weaker proposal,

and potentially there is more to be gained by further increasing the number of clusters. But that

would come with an added processing cost. In the current setting, DHF takes almost 4 times less

to execute than the MCMC in the best case. A further increase in the number of clusters, though

could result in a slightly decreased error, it will come at a cost of much increased processing

time. Therefore based on the results, we choose K-medoids clustering with Kclust = 30 as the

default method from now onwards.

4.8.2 Likelihood based data decimation

Next, we study the effect of likelihood based decimation of measurements. This is an optional

secondary level data compression method, which is based on choosing the most likely samples

from the set of the previously clustered measurements. It works like this; the previous posterior

state estimate is used for predicting the next state vector. Given this estimate, likelihood is eval-

uated against all measurement medoids. The list is sorted and Kscnd number of measurements

are chosen. Since, the objective is to reduce the computation time for the DHF even further,

we have chosen Kscnd = NT i.e two most likely samples. It is hoped that in this way, the one

most likely measurement per target is selected. RAMSE, with the secondary stage decimation

(Double DD) applied is compared below against the single stage data decimation,
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Figure 4.5: RAMSE for secondary data decimation step for (a) λx = 50, λc=200, (b) λx = 500,

λc=2000

We note a higher estimation error with the likelihood based data decimation. Though seemingly

inconsistent, this can be explained by considering the fact that only two measurements are fed

to the DHF. Depending on the efficiency of the clustering process, these measurements may

or may belong to the two targets e.g. in the scan with very strong clutter, target measurements

could get masked. Therefore, clutter returns could be chosen instead, resulting in a bad proposal



104 4 Bayesian processing of Massive sensor data with log-homotopy based particle flow

for the ASMCMC and the subsequent posterior estimate. The problem can become exacerbated

in the presence of an even stronger clutter, or in the case when the paths of the two targets

cross-over.

λx = 50 , λc = 200

Data Dec. RAMSE Acceptance rate Compression ratio Processing time

Single DD (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 ) (37.36 , 77.14 , 116.12)

Double DD (1.38 , 2.11 , 3.17) (0.11 , 0.17 , 0.19) (1.48 , 1.81 , 2.13) (5.59 , 42.78 , 81.04)

λx = 500 , λc = 2000

Single DD (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (32.34 , 170.28 , 299.81)

Double DD (0.88 , 1.38 , 2.32) (0.12 , 0.16 , 0.22) (1.79 , 2.21 , 2.85) (14.17 , 150.72 , 280.95)

Table 4.2: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio for the secondary data decimation

In Table 4.2, it can be seen that acceptance rate is lower for double DD for both MSD1 and

MSD2. This is because, the constructed Markov chain is not long enough to sample from the

high probability regions of the posterior density. Compression ratio is also lower for double

DD as more samples are chosen by confidence sampler to get closer to the target distribution,

although the processing time for double DD is slightly less. The reduction mainly is due to the

use of far fewer measurements in the DHF. In the light of these results, we choose not to use the

secondary data decimation in our subsequent analysis.

4.8.3 MCMC chain length Nmcmc

The Markov chain length is a very important parameter in the Algorithm 10. A shorter chain

may not reach stationarity, while a longer chain length could be wasteful of the resources.

Hence, an appropriate length has to be chosen to strike a right balance. We consider three

values of the Markov chain length: 100 , 400, 1000 with a burn-in period of 25, 100 and 250

respectively. Below, we plot RAMSE against the chosen values of Nmcmc for both MSD1 and

MSD2.
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Figure 4.6: RAMSE for different values of Markov chain lengths Nmcmc with (a) λx = 50,

λc=200, (b) λx = 500, λc=2000

We note that for Nmcmc = 125, the error is the highest. RAMSE drops considerably by using

the chain of length 500, while a further increase to the length of 1250 eror is reduced even
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further, although the difference is rather small. By interpolating the trend, it can be argued that

yet longer Markov chains won’t lead to a very significant drop in the error, in particular for

MSD1. As will be shown later, the error has already reached very close to the Crámer-Rao

Lower Bound (CRLB). RAMSE for MSD2, on other hand, can still undergo further decrease in

error as CRLB is yet to be reached. The second consideration here is the processing time. As

the chain length is increased, it takes more time to draw samples. Since the number of mea-

surements are generated via Poisson processes and the SMCMC stage uses a probabilistically

chosen measurement subset, the exact relation between the processing time and the chain length

is not linear.

λx = 50 , λc = 200

Nmcmc RAMSE Acceptance rate Compression ratio Processing time

125 (1.65 , 2.19 , 3.09) (0.16 , 0.27 , 0.32) (1.79 , 1.97 , 2.34) (33.03 , 42.92 , 55.07)

500 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 ) (37.36 , 77.14 , 116.12)

1250 (0.89 , 1.17 , 1.55) (0.11 , 0.23 , 0.28) (1.83 , 2.67 , 2.88) (40.34 , 125.11 , 212.11)

λx = 500 , λc = 2000

125 (0.89 , 1.18 , 1.76) (0.05 , 0.22 , 0.38) (2.05 , 2.42 , 2.94) (41.59 , 74.28 , 112.13)

500 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (43.47 , 179.37 , 307.93)

1250 (0.31 , 0.49 , 0.8) (0.13 , 0.21 , 0.24) (1.88 , 2.77 , 2.93) (63.02 , 411.47 , 751.84)

Table 4.3: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio vs. Nmcmc

It can be seen from Table 4.3 that the acceptance rate for the shortest chain length is the greatest

and vice versa. This is intuitive, as more samples are expected to be accepted while stationarity

has not been reached. The acceptance rate saturates around 0.234 as the chain length is suffi-

ciently long [RC04]. Compression ratio, infact increases with the increase in the chain length.

Again this is indicative of the chain reaching stationarity. It still has to be studied as to what

value the compression ratio would saturate to.

4.8.4 Block length parameter γmcmc

The confidence based proxy sampler iteratively increase the measurement block size until the

stopping criterion is met or whole set has been exhausted. One important parameter is the

block length parameter γmcmc. It controls the size of the subsampled data set sampled from the

existing set without replacement. Below, we plot RAMSE for four different values of γmcmc:
1.01 , 1.5 , 2.0 and 4.0. We note the a sharp drop in the error between first two values of

γmcmc considered. For MSD1, the error stabilizes afterwards, while for MSD2 it continues

to drop even further, albeit more slowly. We see a decreasing trend for the acceptance rate

and the compression ratio with the increase in γmcmc. The later in particular decrease quite

significantly, as the block length parameter is increased from 2 to 4. This can be explained

in the following way: when γ is close to 1, the increase in the subsampled block size is very

small. As the measurements are sampled at random, the chances of choosing the measurements

belonging to the target (ones which make the stopping criterion more likely to be met) are

almost equal to those mentioned for naive subsampling in the section4.8.1.
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Figure 4.7: RAMSE for different values of γmcmc with (a) λx = 50, λc=200, (b) λx = 500,

λc=2000

This could mean that very often, the stopping criterion is met quite soon into the iterations,

leading to a significantly high compression ratio. RAMSE, on the other hand, is higher as a

smaller subset of samples is used in the MH step and the target distribution is not evaluated

properly. With the increase in the γmcmc, more samples could be chosen in one iteration of the

confidence sampler. This implies that more target measurements are available more often for

the likelihood evaluations, hence only better proposed samples are chosen i.e.l̇ower RAMSE,

acceptance rate and compression ratio.

λx = 50 , λc = 200

γmcmc RAMSE Acceptance rate Compression ratio Processing time

1.01 (1.41 , 1.86 , 2.66) (0.21 , 0.30 , 0.42) (2.12 , 3.03 , 3.34 ) (35.28 , 65.72 , 109.86)

1.5 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 ) (37.36 , 74.14 , 116.12)

2 (0.91 , 1.21 , 1.62) (0.14 , 0.18 , 0.24) (1.23 , 1.40 , 1.65 ) (38.50 , 75.40 , 121.70)

4 (0.89 , 1.16 , 1.65) (0.11 , 0.15 , 0.19) (1.18 , 1.30 , 1.47 ) (39.20 , 79.16 , 119.20)

λx = 500 , λc = 2000

1.01 (0.86 , 1.26 , 1.96) (0.17 , 0.27 , 0.35) (2.56 , 3.65 , 5.73) (38.99 , 161.72 , 424.59)

1.5 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (43.47 , 179.37 , 307.93)

2 (0.34 , 0.53 , 0.88) (0.09 , 0.14 , 0.18) (1.66 , 1.95 , 2.38) (46.00 , 179.47 , 300.26)

4 (0.34 , 0.47 , 0.80) (0.09 , 0.12 , 0.16) (1.63 , 1.82 , 2.01) (64.75 , 194.96 , 280.97)

Table 4.4: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio vs. γmcmc

Again, we note that MSD2 has a slightly more potential for the decrease in error with the

corresponding increase in γmcmc. Also more outlier are present in for MSD2.

Based on the results, we can infer that while a smaller value of γmcmc might be undesirable due

to higher error, a larger value is also not suited because of the significant decrease in the com-

pression ratio which directly translates into a higher number of likelihood evaluations, thereby

defeating the very purpose of confidence sampling. Therefore, a middle ground is stuck and

γmcmc is chosen to be 1.5 for the onward analysis.
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4.8.5 Process noise covariance

Now that we have studied the effect of algorithm parameters, we turn our attention to the param-

eters of the system model considered in this exercise. Firstly, we discuss the effect of changing

the process noise σ2
a. We have considered three values: 0.05, 0.5 and 5 ms−2.
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Figure 4.8: RAMSE for different values of σ2
a with (a) λx = 50, λc=200, (b) λx = 500, λc=2000

It can be readily seen that the error increase sharply with the increase in process noise covari-

ance. In particular, we see that for σ2
a = 5, while the medians for both MSD1 and MSD2 still

grow in a controlled manner, there are many outliers present with some having error 3 to 8 times

the median. This is due to the fact that target trajectories are more likely to cross over in the

case of stronger process noise. Since, no target association is considered, DHF particles can be

wrongly updated leading to ill proposed states. Even the SMCMC, with the current choice of

parameters (Nmcmc , γmcmc) is unable to properly sample the posterior distribution. Hence,

the results are not very surprising.

λx = 50 , λc = 200

σ2
a RAMSE Acceptance rate Compression ratio

0.05 (0.61 , 0.78 , 1.07) (0.14 , 0.26 , 0.35) (2.54 , 2.90 , 3.73 )

0.5 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 )

5 (1.25 , 2.69 , 9.34) (0.11 , 0.15 , 0.20) ( 1.35 , 1.68 , 2.17 )

λx = 500 , λc = 2000

0.05 (0.09 , 0.32 , 0.72) (0.19 , 0.23 , 0.26) (2.45 , 3.78 , 8.17)

0.5 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89)

5 (0.51 , 1.82 , 16.52) (0.04 , 0.07 , 0.15) (1.55 , 2.28 , 4.27)

Table 4.5: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio vs. σ2
a

We see a decrease in the acceptance rate and the compression ratio as well.

4.8.6 Measurement noise covariance

Next parameter considered in the series is the angular measurement noise covariance σ2
θ . The

reason of choosing angle instead of range is that the σ2
θ has a higher impact on the tracking
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performance. We consider three values: 0.001 , 0.01 , 0.1 mrad−2.
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Figure 4.9: RAMSE for different values of σ2
θ with (a) λx = 50, λc=200, (b) λx = 500, λc=2000

As can be seen from Figure 4.9, the estimation accuracy is quite severely affected by the increase

in σ2
θ . Infact, the median error grow almost exponentially with the corresponding increase in

noise power. Therefore, it can be concluded that the increase in measurement noise covariance

is more detrimental to the filter efficiency than a similar increase in the process noise.

λx = 50 , λc = 200

σ2
θ

RAMSE Acceptance rate Compression ratio

0.001 (0.35 , 0.52 , 0.80) (0.17 , 0.24 , 0.32) (1.83 , 3.01 , 5.23)

0.01 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 )

0.1 (3.81 , 5.67 , 9.48) (0.08 , 0.12 , 0.15) (1.09 , 1.24 , 1.42 )

λx = 500 , λc = 2000

0.001 (0.16 , 0.31 , 0.48) (0.18 , 0.23 , 0.30) (1.91 , 2.87 , 6.37)

0.01 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89)

0.1 (1.01 , 2.21 , 4.15) (0.11 , 0.16 , 0.21) (1.87 , 2.14 , 2.74)

Table 4.6: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio vs. σ2
θ

Interestingly, the compression ratio can be quite high for σ2
θ = 0.001 at times, and the acceptance

rate quite close to optimal.

4.8.7 Increase in the dimensionality

Higher dimensional state spaces present a major challenge to any estimation algorithm. This

is infact due to the curse of dimensionality, which occurs due to not having enough parti-

cles to properly represent the relevant probability densities. In this subsection, we intend to

study the effect of increasing the state dimensionality on the tracking performance. We had

considered two targets in the preceding analysis. That corresponds to having the state vec-

tor of length 8. Here we vary the number of targets NT between 2 to 5, corresponding to

the state vector of length between 12 and 20, thereby presenting a challenging estimation sce-

nario to our algorithm. The full initial state vector is chosen to be x5
0 = (x1

0, x
2
0, x

3
0, x

4
0, x

5
0)
T
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where x1
0 = (−50,−50,−0.5,−0.5) , x2

0 = (30, 30, 0.1, 0.5) x3
0 = (−20, 20,−0.3, 0.1) ,

x4
0 = (50,−50, 0.2,−0.1) and x5

0 = (0, 0, 0.01, 0.05), for NT = 5. For the lesser number of

targets, the initial state vector is derived by truncating x5
0. Below we present the RAMSE box

error plot,
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Figure 4.10: RAMSE for different number of targets NT with (a) λx = 50, λc=200, (b) λx =

500, λc=2000

We see that median error increase linearly with the increase in the state dimension, where as the

maximum error shows a geometric trend. More outliers are to be found in the case of MSD2.

This could mean two things: firstly, the proposal formed using the DHF gets less accurate and

secondly, the Markov chain length more inadequate as the state dimensionality increases. The

first issue can be tackled by increasing the number of DHF particles or by considering a better

form of the proposal density. In the current analysis, the proposal density is approximated as

being a Multivariate Gaussian. A better alternative could be approximating the DHF based

proposal using the Kernel density estimator, as demonstrated in [KUK17]. For the second,

longer chain lengths and higher value of γmcmc can be consider for the MCMC step.

λx = 50 , λc = 200

NT RAMSE Acceptance rate Compression ratio Processing time

2 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 ) (37.36 , 77.14 , 116.12)

3 (1.22 , 1.75 , 2.60) (0.11 , 0.17 , 0.23) (1.37 , 1.85 , 2.18 ) (42.96 , 92.56 , 138.18)

4 (1.68 , 2.15 , 3.60) (0.08 , 0.14 , 0.20) (1.22 , 1.39 , 1.59 ) (58.59 , 119.06 , 167.75)

5 (1.70 , 2.81 , 4.48) (0.09 , 0.12 , 0.17) (1.21 , 1.36 , 1.51 ) (72.49 , 145.67 , 202.71)

λx = 500 , λc = 2000

2 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (43.47 , 179.37 , 307.93)

3 (0.45 , 0.80 , 1.54) (0.08 , 0.15 , 0.19) (1.75 , 2.25 , 2.54) (49.99 , 217.03 , 378.75)

4 (0.77 , 1.21 , 2.08) (0.05 , 0.10 , 0.13) (1.77 , 2.04 , 2.36) (74.43 , 313.74 , 514.19)

5 (0.94 , 1.48 , 3.20) (0.04 , 0.06 , 0.08) (1.78 , 2.01 , 2.24) (123.08 , 511.09 , 826.15)

Table 4.7: Minimum, median and maximum values for RAMSE, Acceptance rate and Com-

pression ratio vs. NT

Acceptance rates and the compression ratios decrease with the increase in number of targets.

From Table 4.7, it can be seen that the median processing time for MSD1 increases linearly
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with the increase in the number of dimensions, while exponentially for the MSD2. This can

be explained by the fact that the DHF proposal based on the current choice of parameters, gets

progressively worse with the increase in the dimensionality. Hence, the MCMC step becomes

the increasing important and it dominates the overall processing cost. The actual likelihood is

very narrow (due to the product of higher number of terms), and full measurement block is used

more often by the confidence sampler to nudge the particle cloud ever closer to the true posterior

density. Though the same holds true for MSD2, but their the effect is not that prominent for the

choice of the number of dimensions.

4.8.8 Comparison against other methods

Finally, we compare the performance of our proposed ASMCMC-DHF scheme against other

methods. In the current analysis, we have used two such methods: the sampling importance

resampling particle filter (SIR-PF) with 1000, 10000 and 25000 particles, and the the ASM-

CMC method as described in [FSM15] with 500 and 1250 MCMC chain lengths. The effort

is made to make the comparison fair in the sense of similar execution times for all procedures.

Simulation were run on a server running MATLAB version 7.9 with 2x Intel Xeon E5530 2.40

GHz processors and with 12GB of RAM. The operating system was Windows Server 2008 R2

x64 Std. In Figures 4.11 a&b, we plot the RAMSE for all schemes under comparison together

with the Crámer-Rao Lower Bound (CRLB), while a tabulated description is provided in Table

4.8.
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Figure 4.11: Comparison of ASMCMC-DHF with other schemes for (a) λx = 50, λc=200, (b)

λx = 500, λc=2000

SIR-PF with 1000 particles is the worst performing method, showing a degree of divergence

towards the end. This reflects the inadequacy of the number of samples to properly approxi-

mate the involved densities. The approximation gets progressively better as more samples are

added. As can be seen for SIR-PF with 25000 particles, the RAMSE for both cases (MSD1 and

MSD2) is still not close enough to the CRLB, thereby suggesting potential improvements can be

achieved by further increasing the number of particles. Error in the case of MSD2 is expectedly

less than for MSD1. Next, we discuss the results for ASMCMC. Again, we note significant drop

in RAMSE by increasing the MCMC chain length from 500 to 1250. ASMCMC-500 seems to

have performance similar to SIR-PF-10000. Increasing the chain length to 1250 makes its per-
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formance somewhat close SIR-PF-25000. The difference is more noticeable in RAMSE for the

two schemes for MSD1 than MSD2. Although, ASMCMC based schemes exhibit quite decent

median acceptance rate they have rather insignificant compression ratios. This means that in

order to achieve better performance, the whole data needs to be exhausted, therefore, defeat-

ing the very purpose of using the confidence sampling. This happens due to the use of rather

simple Gaussian proposal densities in the two sampling stages. While this could work fine in

some cases e.g. one with linear measurement model, for nonlinear measurements the suggested

proposal is not the best choice. The compression ratio gets slightly better for MSD2.

Finally, we discuss the results for ASMCMC-DHF i.e.u̇sing a DHF based proposal together with

the confidence sampling for MCMC. We plot RAMSE for three values of Nmcmc considered

in section 4.8.3 i.e.1̇25, 500 and 1250. It is to be noted that 20% of initial samples of the

MCMC chain are discarded. For chain of length 125, we note that the error is quite high,

coming next only to SIR-PF-1000. This illustrates that although the clustering based DHF

proposal is better than a simple particle filter, when used with shorter MCMC chains it could

be detrimental to the overall performance. Since the MCMC chain is yet to reach stationarity,

estimates formed thereof could be biased and might not be accurate. As a possible remedy,

a higher value of γmcmc can be chosen when using shorter chains but that would lead to a

lowering of the compression gain, thus nullifying potential benefits. We note drastic reduction

in the error with the use of a moderate chain length of 500. With a further increase, we note

that the error approaches CRLB limit for the MSD1. For MSD2, there is still further room for

improvements.

At the very last, we discuss the processing time for a single update step (both time and measure-

ment) for all procedures. Since the measurements are generated randomly for each scan using

two independent Poisson processes, we observe a large variation in the processing times. SIR-

PF-1000 is the quickest of all methods, while ASMCMC-1250 being the slowest. The later is

because of the double use of confidence sampling. Furthermore, we note that SIR-PF-25000 and

ASMCMC-DHF-1250 have execution times comparable to that of ASMCMC-500, although the

later has higher error. ASMCMC-1250 can be seen as the most optimal method offering a right

trade-off between the estimation accuracy and the execution speed. In the retrospect, it can be

seen that the choice of the proposal density quite significantly affects the performance; a better

choice e.g. based on DHF particles not only decreases the error but also takes lesser time for

sampling the posterior density in the MCMC step.

4.9 Conclusion

The massive sensor data provides the possibility for extraction of more information content,

given a large measurement set, thus increasing the estimation accuracy. However, this comes

with enhanced computational requirements, hence limiting the use of many standard estimation

methods such as MCMC. The source of the problem can be pinpointed to the evaluation of

likelihood, which even in factorized format, presents formidable processing challenge. Many

solution have been proposed to solve/by-pass this bottle-neck. One such approximate method,

namely the confidence sampling is of particular interest. Confidence sampling squeezes the

original observational data set into a smaller one to be processed by an MCMC sampler, while

still maintaining theoretical guarantees for the sampled distribution. It is based on using the

so called concentration inequalities, which can be used to theoretically bound the maximum
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deviation of the approximated target density. When used in an MCMC setting, the use of such

inequalities yields a stopping criterion for the sampling procedure. Though the target density is

still approximated, there are potential processing gains to be achieved by limiting the evaluation

of likelihood to fewer terms, together with the guarantee ensuring that the sampled density is

always within a specified distance from the actual target density. The work done for this chapter

is an extension of [FSM15]. We have combined the idea of confidence sampling based MCMC

together with the log-homotopy based particle flow filters (DHF), in a way that the later is

used to construct a better proposal distribution used within the former. Since the processing

time for DHF grows linearly with the number of measurements, we choose a sub-sampled set

of measurements from the full set. This is done by employing standard clustering algorithms.

Next, using the clustered measurements, we run DHF and form a proposal distribution to be

used in the Metropolis-Hastings step within the ASMCMC. We have termed our newly proposed

method as the adaptive SMCMC with particle flow based proposal or ASMCMC-DHF. We have

thoroughly analyzed the performance of ASMCMC-DHF for the processing of massive sensor

data under different settings of algorithm and system parameters. We have noted that our new

scheme can handle the effect of increasing dimensionality in a graceful manner. Also, it has

been shown that our method not only outperforms the more well established method like the

particle filter, but also performs better than its parent algorithm, the ASMCMC.
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λx = 50 , λc = 200

Method RAMSE Acceptance rate Compression ratio Processing time

SIR-PF-1000 (1.87 , 2.42 , 3.67) - - (3.21 , 4.31 , 6.87)

SIR-PF-10000 (1.38 , 1.83 , 2.77) - - (40.89 , 57.27 , 62.86)

SIR-PF-25000 (1.36 , 1.73 , 2.32) - - (101.71 , 144.02 , 165.00)

ASMCMC-500 (1.90 , 2.10 , 2.37) (0.01 , 0.27 , 0.71) (1.00 , 1.01 , 4.04) (37.86 , 128.07, 184.48)

ASMCMC-1250 (1.19 , 1.52 , 1.89) (0.02 , 0.25 , 0.66) (1.00 , 1.05 , 4.31) (129.72 , 372.48 , 482.15)

ASMCMC-DHF-125 (1.65 , 2.19 , 3.09) (0.16 , 0.27 , 0.32) (1.79 , 1.97 , 2.34) (33.03 , 42.92 , 55.07)

ASMCMC-DHF-500 (0.80 , 1.24 , 1.67) (0.15 , 0.24 , 0.31) (1.91 , 2.52 , 2.74 ) (37.36 , 77.14 , 116.12)

ASMCMC-DHF-1250 (0.89 , 1.17 , 1.55) (0.11 , 0.23 , 0.28) (1.83 , 2.67 , 2.88) (40.34 , 125.11 , 212.11)

λx = 500 , λc = 2000

SIR-PF-1000 (1.19 , 1.57 , 2.15) - - (22.31 , 33.86 , 39.11)

SIR-PF-10000 (0.77 , 1.05 , 1.54) - - (253.33 , 324.52 , 355.37)

SIR-PF-25000 (0.59 , 0.82 , 1.26) - - (459.17 , 676.21 , 723.25)

ASMCMC-500 (0.84 , 0.98 , 1.47) (0.01 , 0.20 , 0.67) (1.06 ,2.01 , 5.15) (156.80 , 486.28 , 686.44)

ASMCMC-1250 (0.59 , 0.70 , 0.99) (0.01 , 0.18 , 0.59) (1.18 , 2.57 , 4.58) (367.31 , 1249.43 , 1576.67)

ASMCMC-DHF-125 (0.89 , 1.18 , 1.76) (0.05 , 0.22 , 0.38) (2.05 , 2.42 , 2.94) (41.59 , 74.28 ,112.13)

ASMCMC-DHF-500 (0.34 , 0.54 , 1.13) (0.14 , 0.21 , 0.25) (1.83 , 2.69 , 2.89) (43.47 , 179.37 , 307.93)

ASMCMC-DHF-1250 (0.31 , 0.49 , 0.8) (0.13 , 0.21 , 0.24) (1.88 , 2.77 , 2.93) (63.02 , 411.47 , 751.84)

Table 4.8: Minimum, median and maximum values for RAMSE, Acceptance rate and Compression ratio for different filtering schemes
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4.A Appendix

For the time index k, the likelihood function is given by,

l(xk) =
e−µk

Mk!

Mk
∏
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[

λcpc(z
i
k) + λx

NT
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(4.26)

log l(xk) = log
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log
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(4.27)

where,

xk,j = [xk,jyk,j ẋk,j ẏk,j ]
T

∇ log l(xk) =
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∑
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also,

∇2 log l(xk) =

Mk
∑

i=1















λx

(

λcpc(z
i
k) + λx

NT
∑

j=1

px(z
i
k|xk,j)

)

∇2pix − λ2
x(∇pix)(∇pix)T

(

λcpc(zik) + λx
NT
∑

j=1

px(zik|xk,j)
)2















(4.29)

where,

∇pix =
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pc(z
i
k) = Ux(µ(zk,r, zk,θ))Uy(µ(zk,r, zk,θ)) (4.31)

px(z
i
k|xk,j) = pi,jx = N (zik|h(xk,j),Rk) (4.32)

h(xk,j) =

[

√
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(4.33)
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(j,m)p

i,j
x =

∂2pi,jx
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= O
4×4

(4.36)

where,

Hk,j =
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k
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refers to the tensor vector product, resulting into a matrix. The

four matrices slices of the tensor Hk,j are given by,
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H3
k,j and H4

k,j are given by O4×2.

The hessian of the log-likelihood is given by a block diagonal matrix such that,
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The diagonal elements are given by,
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whereas the off-diagonal elements are given by,
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Chapter 5

Tensors and the Log homotopy based particle

flow

Bayesian estimation is carried out recursively, typically consisting of a prediction and a cor-

rection step. As discussed in the previous chapters, the prediction step is usually carried out

by solving or approximating the Chapman Kolmogorov equation. In fact, there exist a triad of

methods that can be employed to this effect: solving a stochastic differential equation for the

samples of the previous posterior density, solving CK integral equation or solving the Fokker-

Planck equation (FPE). In the Bayesian estimation context, FPE can be used for the propagation

of the posterior density at time step tk in order to get the prior density at time tk+1 for a system

with a drift and/or a diffusion component. Analytical solutions to the Fokker-Planck equation

are available in only few special cases. Therefore numerical methods have to be employed

in order to find an approximate solution. Any such method might face the following set of

problems,

• Positivity and normality: The FPE describes the time evolution of a probability density

function (PDF). Therefore any numerical solution of the FPE has to be non-negative over

the whole domain and it should integrate to unity.

• Domain truncation: Domain of a PDF is usually infinite. Since the numerical solution

has to be formed over a finite region of the state space, the truncation of the domain has

to be done judiciously in order to minimize the error incurred thereof.

• Curse of dimensionality: The most severe problem faced by any numerical solution for

a FPE is the exponential increase in the number of free variables with the increase in the

problem dimensionality. This is referred to as the curse of dimensionality. A related issue

is that for problems with higher dimensions, the time dimension has to be grated much

more finely, particularly at the start of the simulation [MB05].

In this chapter, we employ the FPE to not only predict the probability density into the future

times but also to perform the measurement update. We include the measurements using the

log-homotopy flow by solving the tensorized FPE in pseudo-time to get the posterior density,

hence completing one cycle of the Bayesian recursion. Since the multi-dimensional probability

density function, when discretized, leads to a tensor or an n-way array, a tensor based approach
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for solving FPE will be used. We elaborate on the tensor based approach and provide results for

the regularized optimization problem.

We start by defining the basics of FPE based prediction step and the Bayesian measurement

incorporation in section 5.1. The most common numerical methods employed in solving the

FPE are described in the section 5.2. Since the FPE solution in higher dimensions entails

solving a tensor equation, we discuss the basics of tensors in the section 5.3 while the related

concepts are elaborated in the section 5.4. Based on the notations and methodology developed

in the two previous sections, we study two problems admitting stationary solutions and derive

equations describing the FPE in tensorized format in the section 5.5. We further convert those

equations into matrix-vector format and define appropriate constraints. Next, in section 5.6,

we provide the details for the tensorization based unified framework for the solution of the

FPE, as described by Y.Sun and M.Kumar in their series of paper [SK14], [SK15b], [SK15c]

and [SK15d] which is followed by the description of our devised nonlinear filtering algorithm

in the section 5.7 termed as the tensorized filter. Next, we present the numerical results for

the two stationary problems in the section 5.8, together with those for a dynamical problem.

This constitutes a nonlinear filtering scenario, which is solved using the tensorized filter. Future

works make up the section 5.9, which is followed by the conclusion in the section 5.10.

5.1 Continuous-discrete filtering

We consider a general N dimensional nonlinear system with drift f(t,x). The system is per-

turbed by white noise defined by a P dimensional Brownian process B(t).

dx = f(x, t)dt+ g(x, t)dB, x ∈ R
N

(5.1)

B(t) has zero mean and variance given by Qt. Also, f(x, t) : RN × [0,∞) −→ RN . Likewise,

g(x, t) : [0,∞) × RN −→ RN×P . Let the multivariate function U(x, t) define the PDF for

the state vector x at time t. Given the initial PDF W0(x, t0), the U(x, tk) density at any time

tk ≥ t0 can be obtained by solving the FPE.

∂

∂t
U(x, t) = LFP{U(x, t)} (5.2)

where LFP is called the Fokker-Planck operator (FPO) and is defined as,

LFP = −
N
∑

i=1

∂

∂xi
fi(x, t) +

1

2

N
∑

i=1

N
∑

j=1

∂2

∂xi∂xj
(Υ(x, t))i,j , (5.3)

with Υ(x, t) being the diffusion matrix defined as g(x, t)Qg(x, t)T . Hence, the FPE describes

the time evolution of the PDF W0(x, t0) through the system defined by (5.1). Equation (5.2)

can describe the change of PDF between any two time instants tk and tk+1. Next, we consider

a discrete time measurement process defined as,

ztk = ψ(x, tk) + νtk , ztk ∈ R
M

(5.4)

where, ψ(xtk , tk) : RN −→ RM is called the measurement function and νtk the measure-

ment noise. Measurements are supposed to be generated at discrete time instances t1, t2, · · · tk.
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Let Ztk denote the set of measurements up to time tk, then according to Bayes theorem, the

posterior density at time tk i.e. the density after the inclusion of measurements is given as,

U(x, tk|Ztk
) =

p(ztk |x, tk)U(x, tk|Ztk−1
)

p(ztk |Ztk−1)
, (5.5)

where U(x, tk|Ztk−1
) is prior density at time tk and p(ztk |x, tk) the measurement likelihood.

The conditional density p(ztk |Ztk−1) appears as a normalization constant in the measurement

update formula, and it describes the distribution of measurement at time tk, conditioned on

the set of all previous measurements. The PDF U(x, t0) is used as the starting point for the

first prediction step given by the solution of FPE (5.2), followed by the measurement inclusion

step as given in (5.5). U(x, t1|Zt1
) becomes the input to the next prediction step and hence the

process is continued.

Since the process/time update is carried by solving a continuous time PDE, while the measure-

ment update is done by introducing a discrete time measurement process, the whole approach

is termed as the Continuous Discrete filtering.

5.2 Numerical methods for the solution of FPE

There have been several numerical methods, proposed in the literature, for solving FPE. These

include higher order finite difference method (FDM) and finite element method (FEM) ap-

plied to two and four dimensional problems [KN06], homotopic Galerkin approach [Cha06],

meshless partition of unity finite element method (PUFEM) by Kumar et al. in [KCJ07]. Re-

cently, a tensor based approach has been introduced by Y.Sun and M.Kumar in the series of

papers, [SK14], [SK15a], [SK15b], which will become the basis for the construction of our

tensor based nonlinear filtering algorithm. The key concept idea is to express the multidi-

mensional PDF in separable form, which is then tensorized together with the Fokker Planck

operator (FPO). Both the sought after PDF and the Fokker Planck operator are expressed in the

CANDECOMP-PARAFAC decomposition (CPD) form. Expressing them in CPD form and the

subsequent tensorization has been described as instrumental in dealing with the curse of dimen-

sionality. Once done, the individual components are computed using alternating least squares

(ALS) algorithm. Details of CP decomposition and the ALS algorithm can be found in [Bro97].

This leads to separation of dimensions, as high dimensional operations are broken down into

a series of single dimensional ones, which in turn lead to a linear rather than an exponential

rise in the problem complexity. Another key aspect of that framework is the decoupling of

the temporal domain from the spatial ones, thereby considering it as an additional dimension.

By doing this the benefits of the tensor approach can be used to the fullest. Furthermore, the

authors use the Chebyshev spectral method for the domain discretization and differentiation,

as opposed to the finite difference method. In this way the occurrence of the so called Runge

phenomenon [Epp87] is avoided.

But we before start describing the tensor decomposition based approach to solve FPE and our

developed nonlinear filtering algorithm, we will first explain some of the important concepts

involved.
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5.3 Tensors: An N-dimensional extension of arrays

In many cases, scientific data can be arranged in tables, indicating some sort of dependence

or relationship between variables. For two dimensional data, the table is referred to as an

array or a matrix. Matrix analysis is a quite well studied branch of mathematics. Tensors, also

called Multidimensional or N-way arrays, are the generalization of matrices to higher dimension

[Tuc64]. The use of tensor decomposition first started to appear in experimental fields like

chemometrics and psychometrics as early as 1920s. Since then, their use has been proliferated to

many other disciplines like signal processing [DD96], computer vision [VT02], neuro sciences

[BS05], spectroscopy [JMKB96] etc. Tensor processing appears to have been extensively used

in the area of digital communications e.g. the blind source separation DS-CDMA [SD01], Joint

detection and estimation of OFDM systems subject to CFO [JS03], Multiple-invariance sensor

array processing [SBG00] and Blind coding of linear space-time codes [SB02]. In the current

work, the focus is on solving the discretized FPE to get an approximation of the probability

density function. Since in higher dimension state spaces, a discretized PDF is represented by an

n-way array or a tensor, it becomes imperative to study the basics of tensor analysis. Therefore,

the current section and the one following it are devoted to the description of important concepts

involved therein.

A rank-1 tensor is a generalization of a rank-1 matrix.

U
=

a
b

c

Figure 5.1: A 3D rank-1 tensor

Such a tensor in three dimensions U ∈ RP1×P2×P3 can be defined as

U = a ⊛ b ⊛ c (5.6)

where ⊛ refers to the outer product between two vectors. An individual element of the tensor

U is defined by the following product:

uη1,η2,η3 = aη1bη2cη3

In N dimensions, a rank-1 tensor U ∈ RP1×P2×···×PN is defined as

U = u1 ⊛ u2 ⊛ · · ·⊛ uN (5.7)

The element uη1,η2,··· ,ηN of the tensor is defined as

uη1,η2,··· ,ηN = u1,η1u2,η2 · · ·uN,ηN
Generalizing on this, a general tensor in 3 dimensions can be written as a sum of RU rank-1

tensors,

U =

RU
∑

i=1

ai ⊛ bi ⊛ ci (5.8)
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Vectors ai, bi and ci are referred to as the loading vectors. They are also referred to as the basis

vectors. Stacking these vectors next to each other leads to the so called factor matrices. E.g.

the first factor matrix of the tensor described in (5.17) is given by, U1 = [u1, u2, · · · , uRU ].
Factor matrices along other dimensions can be described in a similar way. The tensor U can be

represented into a matrix and a vector. These processes are referred to as the matricization and

the vectorization of the tensor. For a 3 dimensional tensor, we have the following three matrix

unfoldings i.e. tensor data expanded into matrices along the individual dimensions,

U
(1) = A(C⊙ B)T

U
(2) = B(C⊙ A)T

U
(3) = C(B⊙ A)T

where A, B and the C are three factor matrices, and ⊙ is the Khatri-Rao product between the

two matrices and is defined as,

A⊙ B = [a1 ⊗ b1|a2 ⊗ b2| · · · |aN ⊗ bN ] (5.9)

Here ⊗ refers to the Kronecker product between two matrices, such that

a1 ⊗ b1 = [a
(1)
1 b1‖a(2)1 b1‖ · · · ‖a(P1)

1 b1] (5.10)

where | and ‖ denote the horizontal and the vertical concatenation, respectively. Also a
(j)
i refers

to the jth element of the vector ai. Kronecker product between two matrices A ∈ RP1×n and

B ∈ Rm×P2 is given by C ∈ RmP1×nP2 and is defined in a similar way such that,

A⊗ B =











a1,1B · · · an,1B

...
. . .

...

aP1,1B · · · aP1,nB











(5.11)

For the case where the rank-1 tensor represents the data in N-dimensional space, there will be

N such matrices and vectors that the tensor U can be folded into. The exact relationships are

given below,

U
(i) = Ui (UN ⊙ UN−1 ⊙ · · · ⊙ Ui+1 ⊙ Ui−1 ⊙ · · · ⊙ U1)

T
(5.12)

The following identity can be used for the further unfolding of the matrix into a vector,

vec(ABC) = (CT ⊗ A)vec(B) (5.13)

5.4 Preliminaries for the Tensor Decomposition based analysis

Owing to their size, tensors in high dimensions are not easy to work with. Hence alternative

representations are sought after. One such representation is based on the concept of seperation

of the variables. This will become the foundation of the unified framework for the solution of

FPE in discretized form, as described later on in this chapter. Therefore, before undertaking

that task we would like to explain some key concepts.
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5.4.1 Variable separation

Representing a function in dimensions greater than 2 gets increasingly complex in terms of

computation. It is because the number discretized points making up the function in a hypercu-

bic space grows geometrically with the increase in the dimension d i.eN = n1×n2×· · ·×nd.

In the context of numerics, this phenomenon, like in the Sequential Monte Carlo, is referred to

as the curse of dimensionality. Separation of variable representation has been noted as one of

the key factor in effectively handling this issue for solving high dimensional discretized prob-

lems. A very important contribution in this regard is [BM05], where authors have developed a

framework to efficiently represent functions and operator in such scenarios and have applied it

to compute the wavefunction for the multiparticle Schrödinger equation with one-dimensional

particles and simplified potentials. In our work, we will heavily borrow from [BM05], as it is

required to solve the discretized Fokker-Planck equation in higher spaces.

We start with a very basic separated representation for a d dimensional function

u(x1, x2, · · · , xd) : Rd → R,

u(x1, x2, · · · , xd) ≈ u1(x1)u2(x2) · · ·ud(xd) (5.14)

As it can be seen the function is separated into its constituent one dimensional functions. How-

ever, this is a very simple expression and in most of the cases it is not sufficient for the accurate

approximation. It is natural to extend the expression containing the sum of RU such terms,

u(x1, x2, · · · , xd) ≈
RU
∑

j=1

θju
j
1(x1)u

j
2(x2) · · ·ujd(xd)

=

N
∑

j=1

d
∏

i=1

θju
j
i (xi) (5.15)

This expression is more general and depending on the approximation rankRU , can approximate

an arbitrary function much better. By having the function u(x1, x2, · · · , xd) in the form above,

many linear operations in d dimensional spaces decompose into the corresponding operations

in one dimensional space. The main task is to keep the approximation rank as low as possible.

5.4.2 Tensor decomposition

Once the function has been approximated in the above form, the next step is to discretize it,

u(x1(η1), x2(η2), · · · , xd(ηd)) =
RU
∑

j=1

θju
j
1(x

η1
1 )uj2(x

η2
2 ) · · ·ujd(xηdd ) (5.16)

where {ηi}di=1 are the indices of the data points along the d dimensions. Each dimension is

discretized using ni points. Since each axis is orthogonal, the discretized representation of the

function in (5.15) becomes a d-dimensional tensor,

U =

RU
∑

j=1

θju
j
1 ⊛ u

j
2 ⊛ · · ·⊛ u

j
d (5.17)

Discretized functions ud become the loading/basis vectors. Therefore, the tensor U is written

as a sum of RU rank-1 tensor, each composed of the outer products of d loading vectors. In
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[BM05], the expression in (5.17) is also termed as the vector in d dimension. Representing

a tensor in 2D (array) by a summation of RU rank-1 bears a special name, the singular value

decomposition. For a real matrix U ∈ RP1×P2 , ai ∈ RP1×1 and bi ∈ RP2×1 can be called

the left and right singular values vectors if there exist a non-negative number σi such that

Uai = σibi and UT bi = σiai. In that case the matrix U may be expressed as,

U = AΣΣΣB

=

RU
∑

i=1

σiãib
T
i =

RU
∑

i=1

aib
T
i

whereRU is the decomposition rank. If such decomposition exist, it is referred to as the singular

value decomposition (SVD) of the matrix U. The matrices A and B then hold the left and right

singular vectors of U, which form a set of orthonormal basis functions.

≈U a1
b1

+ a2
b2

+ · · · + aRU

bRU

Figure 5.1: A SVD representation for 2D arrays

For a three or a higher dimensional tensor, the similar decomposition is referred to as the Canon-

ical decomposition or the Parallel factor decomposition (CANDECOMP-PARAFAC Decompo-

sition or CPD) and is defined by the equation 5.17. There are some interesting properties of CP

decomposition. First, the approximation rank defined as the smallest number of rank-1 tensors

that exactly generate the full tensor, can only be known within certain bounds. That is, assuming

such a sum actually exist in the first place. Secondly, as opposed to SVD, CPD can be uniquely

determined under a much milder set of assumptions, except for the inherent permutation and

scaling indeterminacies. Typically, the CPD is computed using the Alternating Least Squares

(ALS) algorithm. For a very lucid description of tensor representation, decomposition and re-

lated topics, please refer to [KB09]. A typical CPD representation of a three dimensional tensor

is shown below,

U
≈

a1
b1

c1

+
a2

b2

c2

+ · · · +
aRU

bRU

cRU

Figure 5.2: A CPD representation for a 3D tensor

5.4.3 Tensorization of a linear operator

A linear operator A in dimension d can be defined as a linear map A : F → F, where F being

the space of functions in dimension d. A matrix A in dimension d is a defined to be the discrete

representation of a linear operator in dimension d. In the way similar to the representation of
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the function in dimension d, the operator A is first represented with the indices,

A =

NA
∑

j=1

µjA
j
1(x

η1,η
′
1

1 )Aj2(x
η2,η

′
2

1 , ) · · ·Ajd(x
ηd,η

′
d

d , ) (5.18)

which is further discretized to yield the following representation,

A =

NA
∑

j=1

µjA
j
1 ⊛ A

j
2 ⊛ · · ·⊛ A

j
d (5.19)

Next, two important operations are defined. The first is the inner product between two d dimen-

sional vectors (tensors),

〈U ,V〉 =
NU1
∑

j1=1

NU2
∑

j2=1

θj1θj2〈uj11 v
j2
1 〉〈uj12 v

j2
2 〉 · · · 〈uj1d v

j2
d 〉 (5.20)

Vectors along each dimensions are multiplied such that the result is a scaler. Next, the operation

of a tensorized operator on a tensorized function is defined such that,

〈A,V〉 =
NA
∑

i=1

NU
∑

j=1

µiθj
(

A
i
1v
j
1

)

⊗
(

A
i
2v
j
2

)

⊗ · · · ⊗
(

A
i
dv
j
d

)

(5.21)

It can be seen that the result of this product is another tensor, albeit with increased approxima-

tion rank N ′
U = NA ×NU . The important thing to note is the operator has been decomposed

into its constituent matrices, each of which operates along its dimension individually. In other

words, a multi-dimensional operator has been decomposed into a sequence of single dimen-

sional operators. This is a very major advantage of using the separated representation for func-

tions and operators. This will be put to fullest of use in the description of a unified framework

for the solution of FPE as per [SK15b], in the section 5.6.

5.5 An Ab initio approach for numerically solving FPE

In the previous section, we described the Separable representation of real valued functions and

the tensor decomposition based representation for such functions and linear operators. We can

now discuss the solution of the FPE based on these two concepts. We start by studying two

cases, each of which admits a stationary solution to the FPE. The main idea is to demonstrate

the key steps involved in the derivation of equations describing the tensorized density. The

equations for the factor matrices are derived, which are later solved via ALS. This main aim of

this section is to provide an insight into the complexities involved in solving for the FPE via

Ab initio method for rather simple cases. That also becomes the motivation for the search for a

more unified framework for numerically solving the Fokker Planck equation.
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5.5.1 2 dimensional nonlinear harmonic oscillator

In the first example, we consider a two dimensional harmonic oscillator defined by the following

SDE,

ẍ+ bẋ+ x+ a(x2 + ẋ2)ẋ = gη(t) (5.22)

where η(t) is the white noise process with variance E[η2] = σ2
η. The process in (5.22) admits

a stationary solution which is given as,

Ps(x, y) = K exp

(

− 1

g2ση2

[a

2

(

x2 + y2
)2

+ b
(

x2 + y2
)

]

)

(5.23)

where K is the normalization constant. Now, the above SDE is converted into a system of SDE

such that,

x2 = ẋ1

ẋ2 = −bx2 − x1 − a(x2
1 + x2

2)y + gη(t) (5.24)

which can be expressed in vectorized form,




ẋ1

ẋ2



 =





x2

−bx2 − x1 − a(x2
1 + x2

2)x2



+





0

1



 gη(t) (5.25)

Since the system described by (5.25) is two dimensional, the solution of the related FPE is

derived via singular value decomposition. As will be seen in the next example, the methodology

for the solution of a higher dimensional FPE via tensor decomposition follows a very similar

approach. Hence, the current example serves as a nice illustration for grasping the key concepts.

There are two main parts of the solution: expressing the individual components of the FPE in the

separable form and the subsequent discretization of the drift and diffusion terms together with

the basis functions along individual axis. Below, we start with the first phase of the derivation.

From (5.25), it can readily be seen that the drift terms are already in the separable form,

f1(x1, x2) =
2
∏

d=1

f1d(xi) = (1)(x2)

f2(x1, x2) =

3
∑

j=1

2
∏

d=1

f j2d (xi) = −x2(b+ ax2
2)− ax1 − ax2

1x2

= (1)(−x2(b+ ax2
2)) + (ax1)(1) + (−ax2

1)(x2) (5.26)

while the diffusion matrix is given by,

D = g2σ2
η





0 0

0 1



 (5.27)

Therefore, the FPE describing the evolution of the density for the system described in (5.22)

can be expressed as,

∂

∂t
U(x1, x2) = − ∂

∂x1
f1(x1, x2)U(x1, x2)− ∂

∂x2
f2(x1, x2)U(x1, x2)

+
1

2

∂

∂x2
2

g2σ2
ηU(x1, x2)

(5.28)
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Also, we assume that the density can be likewise expressed in the separable form,

U(x1, x2) =

RU
∑

i=1

ui1(x1)u
i
2(x2) (5.29)

Now, with the drift and diffusion terms of the stochastic process together with the density ex-

pressed in separable form, we can proceed to expand the individual terms in FPE (5.28). First,

we describe the two drift terms,

∂

∂x1
f1(x1, x2)U(x1, x2) =

∂

∂x1

[

x2

RU
∑

i=1

ui1(x1)u
i
2(x2)

]

(5.30)

= x2

RU
∑

i=1

u̇i1(x1)u
i
2(x2) (5.31)

and,

∂

∂x2
f2(x1, x2)U(x1, x2) =

∂

∂x2

[(

3
∑

j=1

2
∏

d=1

f j2d (xi)

)(

RU
∑

i=1

ui1(x1)u
i
2(x2)

)]

=

(

3
∑

j=1

f j21(x1)f
j
22
(x2)

)(

RU
∑

i=1

ui1(x1)u̇
i
2(x2)

)

+

(

3
∑

j=1

f j21(x1)ḟ
j
22
(x2)

)(

RU
∑

i=1

ui1(x1)u
i
2(x2)

)

The derivatives of the individual terms ḟ j22(x2) are given below,

ḟ1
22(x2) =

∂

∂x2

(

−x2

(

a+ bx2
2

))

= −a− 3by2

ḟ2
22(x2) =

∂

∂x2
(1) = 0

ḟ3
22(x2) =

∂

∂x2
(−x2) = 1

The diffusion part can be expressed as,

2
∑

i=1

2
∑

j=1

∂2

∂xixj
Di,jU(x1, x2) = σ2

η
∂2

∂x2
2

(

RU
∑

i=1

ui1(x1)u
i
2(x2)

)

= g2σ2
η

RU
∑

i=1

ui1(x1)ü
i
2(x2)
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putting every thing together, the Fokker-Planck equation can be written as,

∂

∂t

RU
∑

i=1

ui1(x1)u
i
2(x2) = −x2

RU
∑

i=1

u̇i1(x1)u
i
2(x2)

−
[

3
∑

j=1

f j21 (x1)f
j
22
(x2)

][

RU
∑

i=1

ui1(x1)u̇
i
2(x2)

]

−
[

(−a− 3bx2
2) + ax2

2

]

[

RU
∑

i=1

ui1(x1)u
i
2(x2)

]

+g2σ2
η

RU
∑

i=1

ui1(x1)ü
i
2(x2) (5.32)

Now, we start with the second part of the procedure i.e. discretization of the individual terms.

Let x1 = {xp1}P1
p=1 and x2 = {xq2}P2

q=1 be the vectors of P discretized points along x1 and x2

axis. Thus the partial differential operators can be expressed using the finite difference / Cheby-

shev differentiation matrices such that ∂
∂xi
7−→ Dxi and likewise ∂

∂x2
i

7−→ D2
xi . Likewise, the

ith basis vectors evaluated at the points set x1 and x2 be vectorized, yielding the basis/loading

vectors ui1, ui2. Overall, discretization of all such vector yield the factor matrices U1 and U2.

Also, let G1 ∈ RP1×3 and G2 ∈ RP2×3 represent the matricized drift components f21 and f22 ,

such that ith matrix row corresponds to the particular function values evaluated at points x1,i

and x2,i respectively. Given all this, the discretized drift part of the FPE can be expressed as,

D(1)
p,q =

∂

∂x1
f1(x1, x2)U(x1, x2)

∣

∣

∣

∣x1=x1,p
x2=x2,q

= x2,q

RU
∑

i=1

∂

∂x1
ui1(x1,q)u

i
2(x2,p)

= x2,q

RU
∑

i=1

ui1(x1,p) (Dx1U1)p,i (5.33)

and,

D(2)
p,q =

∂

∂x1
f2(x1, x2)U(x1, x2)

∣

∣

∣

∣x1=x1,p
x2=x2,q

=

(

3
∑

j=1

f j21(x1,p)f
j
22
(x2,q)

)(

RU
∑

i=1

ui1(x1,p)
∂

∂x2
ui2,q(x2,q)

)

+

(

3
∑

j=1

f j21(x1,p)
∂

∂x2
f j22(x2,q)

)(

RU
∑

i=1

ui1(x1,p)u
i
2(x2,q)

)

=

(

3
∑

j=1

f j21(x1,p)f
j
22
(x2,q)

)(

RU
∑

i=1

ui1(x1,p) (Dx2U2)q,i

)

+

(

3
∑

j=1

f j21(x1,p) (Dx2G2)q,i

)(

RU
∑

i=1

ui1(x1,p)u
i
2(x2,q)

)

(5.34)
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Similarly, the diffusion term can be expressed as,

D(3)
p,q = g2σ2

η
∂2

∂x2
2

U(x1, x2)

∣

∣

∣

∣x1=x1,p
x2=x2,q

=

RU
∑

i=1

ui1(x1,q)
∂2

∂x2
1

ui2(x2,p)

= x2,q

RU
∑

i=1

ui1(x1,p)
(

D
2
x2U2

)

p,q
(5.35)

In the full matrix form, (5.35) and (5.34) can be given as,

D
(1) = (Dx1U1) (Diag(x2)U2)

T

= Dx1U1U
T
2 Diag(x2) (5.36)

D
(2) =

(

G1G
T
2

)

◦
(

U1 (Dx2U2)
T
)

+
(

G1 (Dx2G2)
T
)

◦
(

U1U
T
2

)

=
(

G1G
T
2

)

◦
(

U1U
T
2 D

T
x2

)

+
(

G1G
T
2 D

T
x2

)

◦
(

U1U
T
2

)

(5.37)

D
(3) = g2σ2

ηU1U
T
2

(

D
2
x2

)T
(5.38)

where ◦ represents the Hadamard or pair-wise product between the two matrices and Diag(x2)
refers to the diagonal matrix with x2 forming the diagonal. When looking for the stationary

solution of the FPE, it is assumed that the probability current has reached zero. Hence, the

L.H.S. of the (5.32) can be put to zero. This lead to the following matricized form of the FPE,

1

2
D

(3) = D
(1) + D

(2)
(5.39)

which leads to,

1

2
g2σ2

ηU1U
T
2

(

D
2
x2

)T
= Dx1U1U

T
2 Diag(x2)

+
(

G1G
T
2

)

◦
(

U1U
T
2 D

T
x2

)

+
(

G1G
T
2 D

T
x2

)

◦
(

U1U
T
2

)

(5.40)

The task now becomes to solve for the unknown factor matrices U1 and U2. It is done here

in two steps. First, with the help of following vector identities, we convert (5.40) into a vector

equation.

vec(ABC) = (CT ⊗ A)vec(B)

vec(AB) = (IT ⊗ A)vec(B)

vec(A ◦ B) = vec(A) ◦ vec(B) (5.41)

Applying these identities, the equation (5.40) can be transformed into a in the following way,

1

2
g2σ2

ηvec(U1U
T
2

(

D
2
x2

)T
) = vec(Dx1U1U

T
2 Diag(x2))

+ vec
((

G1G
T
2

)

◦
(

U1U
T
2 D

T
x2

))

+ vec
((

G1G
T
2 D

T
x2

)

◦
(

U1U
T
2

))

(5.42)
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Solving for U1, one gets,

1

2
g2σ2

η((D
2
x2U2)⊗ I)vec(U1) = ((Diag(x1)U2)⊗ Dx1) vec(U1)

+ vec(G1G
T
2 ) ◦ ((Dx2U2)⊗ I) vec(U1)

+ vec(G1G
T
2 D

T
x2) ◦ (U2 ⊗ I) vec(U1) (5.43)

which can be further simplified as,

[

1
2
g2σ2

η(D
2
x2U2)⊗ I− (Diag(x1)U2)⊗ Dx1 − vec(G1GT

2 ) ◦ ((Dx2U2)⊗ I)

+ vec(G1GT
2 DTx2) ◦ (U2 ⊗ I)

]

vec(U1) = 0

Au1vec(U1) = 0 (5.44)

The vector equation for U2 can be derived in the similar way

[

1
2
g2σ2

η(D
2
x2 ⊗ U1)− Diag(x1)

T ⊗ (Dx1U1)− vec(G1GT
2 ) ◦ (Dx2 ⊗ U1)

+ vec(G1GT
2 DTx2) ◦ (I⊗ U1)

]

vec(UT2 ) = 0

Au2vec(UT2 ) = 0 (5.45)

where Au1 and Au2 are represent the two modes of the matricized FPO. The second step in

getting the factor matrices U1 and U2 is to recursively solve (5.44) and (5.45). Both matrices

are initialized with random values and iterations are run until the convergence. One last thing is

the use of appropriate boundary value and normality constraints. The first is enforced by simply

removing the outer most rows and column of the matrices Au1 and Au2 and of the two loading

matrices U1 and U2. The normalization constraint is imposed in order to have

∫

Ω

U(x1, x2)dx1dx2 = 1 (5.46)

Due to the separable form for the PDF, the double integral is decoupled into two one dimen-

sional integrals. The integrals are numerically approximated through the some quadrature e.g.

the Clenshaw-Curtis quadrature wC such that (5.46) is approximated as wTCU1UT2 wC ≈ 1.

Therefore, the constrained ALS equations are given by,





Au1

(wTCU2)⊗ wC



 vec(U1) =





0

1



 (5.47)

and for the second dimension we have,





Au2

wTC ⊗ (wTCU1)



 vec(U2) =





0

1



 (5.48)

The simulation results for this example will be mentioned in the section 5.8.
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5.5.2 P dimensional linear harmonic oscillator

We further demonstrate the efficacy of the use of separable representation and the tensor de-

composition for solving FPE by considering a generalized linear oscillator. Here, again the

objective is to derive equations to be solved for the factor matrices via ALS. The following 2P

dimensional, linear and separable system is considered,

ẋ2i−1 = x2i

ẋ2i = −a2ix2i − a2i−1
∂V

∂x2i−1
+ ξi, i = 1, · · · , P (5.49)

where V (x1, x3, · · · , x2P−1) = 1
2

P
∑

i=1

x2
2i−1 and ξi is uncorrelated white noise such that

E[ξi, ξj ] = σ2
i,j = 0 and E[ξ2i ] = σ2

i,i = 2a2i−1a2iT . Given this, the stochastic process

in the (5.49) admits the following stationary solution,

Ps(x1, x2, · · · , x2P ) =
P
∏

i=1

(

1

16π2T 2√a2i−1

)− 1
2

exp

[

− 1

4T

P
∑

i=1

(

x2
2i−1 +

x2
2i

a2i−1

)

]

(5.50)

For simplicity, we restrict the system dimensionality to four i.e. P = 2. The resulting system

can be written in the following form

















ẋ1

ẋ2

ẋ3

ẋ4

















=

















0 1 0 0

−a1 −a2 0 0

0 0 0 1

0 0 −a3 −a4

































x1

x2

x3

x4

















+

















0 0

1 0

0 0

0 1





















ξ1

ξ2



 (5.51)

Once again, we assume a separable form for the stationary density,

U(x1, y1, x2, y2) =

RU
∑

l=1

ul1(x1)u
l
2(x2)u

l
3(x3)u

l
4(x4) (5.52)

Next, we express the drift and diffusion components individually. The drift components can
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already be seen to be in a separable form,

D(1) =
∂

∂x1
f1(x1, y1, x2, y2)U(x1, y1, x2, y2) = x2

RU
∑

l=1

u̇l1(x1)u
l
2(x2)u

l
3(x3)u

l
4(x4)

D(2) =
∂

∂x2
f2(x1, y1, x2, y2)U(x1, y1, x2, y2)

= (−a1x1 − a2x2)

RU
∑

l=1

ul1(x1)u̇
l
2(x2)u

l
3(x3)u

l
4(x4)

− a2

RU
∑

l=1

ul1(x1)u
l
2(x2)u

l
3(x3)u

l
4(x4)

D(3) =
∂

∂x3
f3(x1, y1, x2, y2)U(x1, y1, x2, y2) = x4

RU
∑

l=1

ul1(x1)u
l
2(y2)u̇

l
3(x3)u

l
4(x4)

D(4) =
∂

∂x2
f4(x1, y1, x2, y2)U(x1, y1, x2, y2)

= (−a3x3 − a4x4)

RU
∑

l=1

ul1(x1)u
l
2(x2)u

l
3(x3)u̇

l
4(x4)

− a4

RU
∑

l=1

ul1(x1)u
l
2(x2)u

l
3(x3)u

l
4(x4)

(5.53)

Similarly, the diffusion terms are given as,

D(5) =
∂

∂x1
f1(x1, y1, x2, y2)U(x1, y1, x2, y2) = γ1

RU
∑

l=1

ul1(x1)ü
l
2(y2)u

l
3(x3)u

l
4(x4)

D(6) =
∂

∂x3
f3(x1, y1, x2, y2)U(x1, y1, x2, y2) = γ2

RU
∑

l=1

ul1(x1)u
l
2(y2)u

l
3(x3)ü

l
4(x4)

(5.54)

where γ1 = 2a1a2T and γ2 = 2a3a4T , respectively. Next, we consider the discretization

of the dimensions, such that each dimension is discretized with Pi points i.e. xi = {xpi }Pi
p=1.

Again, we use the notation of Ud to represent the factor matrix along the dth dimension. Also

the discretized differential operator along the same dimension will be represented as Dxd . Given
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this, equations 5.53 and 5.54 can be expressed as,

D(1)
p1,p2,p3,p4 = x2,p2

RU
∑

l=1

ul2(x2,p2)u
l
3(x3,p3)u

l
4(x4,p4)(Dx1U1)p1,i

D(2)
p1,p2,p3,p4 =

2
∑

j=1

f j21(x1,p1)f
j
22
(x1,p2)

RU
∑

l=1

ul1,p1(x1)u
l
3,p3(x3)u

l
4,p4(x4)(Dx2U2)p2,i

+

2
∑

j=1

f j21(x1,p1)(Dx2f
j
22
(x1,p2))p2,j

RU
∑

l=1

ul1,p1(x1)u
l
2,p2(x2)u

l
3,p3(x3)u

l
4,p4(x4)

D(3)
p1,p2,p3,p4 = x4,p4

RU
∑

l=1

ul1(x1,p1)u
l
2(x2,p2)u

l
4(x4,p4)(Dx3U3)p3,i

D(4)
p1,p2,p3,p4 =

2
∑

j=1

f j41(x1,p3)f
j
42
(x1,p4)

RU
∑

l=1

ul1,p1(x1)u
l
2,p2(x2)u

l
3,p3(x3)(Dx4U4)p4,i

+

2
∑

j=1

f j31(x3,p3)(Dx4f
j
42
(x1,p4))p4,j

RU
∑

l=1

ul1,p1(x1)u
l
2,p2(x2)u

l
3,p3(x3)u

l
4,p4(x4)

D(5)
p1,p2,p3,p4 = γ1

RU
∑

l=1

ul1(x1,p1)u
l
3(x3,p3)u

l
4(x4,p4)(D

2
x2U2)p2,j

D(6)
p1,p2,p3,p4 = γ2

RU
∑

l=1

ul1(x1,p1)u
l
2(x4,p2)u

l
3(x3,p3)(D

2
x4U4)p2,j

(5.55)

Tensorizing the above series of equations leads to,

D(1) =

RU
∑

l=1

(Dx1U1)l ⊗ (Diag(x2)U2)l ⊗ (U3)l ⊗ (U4)l

D(2) =

RU
∑

l=1

(

[(U1)l ⊗ (Dx2U2)l] ◦G1G
T
2

)

⊗ (U3)l ⊗ (U4)l

+

RU
∑

l=1

(

[(U1)l ⊗ (U2)l] ◦
[

G1G
T
2 D

T
x2

])

⊗ (U3)l ⊗ (U4)l

D(3) =

RU
∑

l=1

(U1)l ⊗ (U2)l ⊗ (Dx3U3)l ⊗ (Diag(x4)U4)l

D(4) =

RU
∑

l=1

(U1)l ⊗ (U2)l ⊗
(

[(U3)l ⊗ (Dx4U4)l] ◦ G3G
T
4

)

+

RU
∑

l=1

(U3)l ⊗ (U4)l ⊗
(

[(U3)l ⊗ (U4)l] ◦
[

G3G
T
4 D

T
x4

])

(5.56)
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and,

D(5) = γ1

RU
∑

l=1

(U1)l ⊗ (D2
x2U2)l ⊗ (U3)l ⊗ (U4)l

D(6) = γ2

RU
∑

l=1

(U3)l ⊗ (U4)l ⊗ (U3)l ⊗ (D2
x4U4)l

(5.57)

Here (Ui)l refers to the lth column of the corresponding factor matrix, while Gi refers to the

matricized drift elements along the ith dimension. Similar to the last example, we look for the

stationary solution of the Fokker Planck equation. In the tensor notation, this can be expressed

as below,

D1 +D2 +D3 +D4 − 1

2
D5 − 1

2
D6 = 0 (5.58)

The next task is to find expressions for the four unknown factor matrices. This is done by

matricization and the subsequent vectorization of the tensor equation 5.58, along the different

four modes. Lets define the following matrices,

Λ1
1 = vec(I)T ⊗ (G1GT

2 ) Λ1
2 = vec(I)T ⊗ (G1DTx2GT

2 )

Π1
1 = vec(G1GT

2 )
T ⊗ I Π1

2 = vec(G1DTx2GT
2 )
T ⊗ I

Λ2
1 = vec(I)T ⊗ (G1GT

2 )
T Λ2

2 = vec(I)T ⊗ (G1DTx2GT
2 )
T

Π2
1 = vec(G1GT

2 )
T ⊗ IT Π2

2 = vec(G1DTx2GT
2 )
T ⊗ IT

Λ3
1 = I⊗ vec(G3GT

4 )
T Λ3

2 = I⊗ vec(G3DTx4GT
4 )
T

Π3
1 = (G3GT

4 )⊗ vec(I)T Π3
2 = (G3DTx4GT

4 )⊗ vec(I)T

Λ4
1 = (I)T ⊗ vec(G3GT

4 )
T Λ4

2 = (I)T ⊗ vec(G3DTx4GT
4 )
T

Π4
1 = (G3GT

4 )
T ⊗ vec(I)T Π4

2 = (G3DTx4GT
4 )
T ⊗ vec(I)T

where I is the matrix containing all ones, of appropriate dimensions. Using (5.12) and (5.41),

the matricizing and vectorization along the individual dimensions are given by,

Mode 1 unfolding

Dx1U1[U4 ⊙ U3 ⊙ (U2Diag(x2))]
T + U1[(U4Diag(x4))⊙ (Dx3U3)⊙ U2]

T +

Λ1
1 ◦ [U1(U4 ⊙ U3 ⊙ (Dx2U2))

T ] + Λ1
2 ◦ [U1(U4 ⊙ U3 ⊙ U2)

T ] +

Π1
1 ◦ [U1((Dx4U4)⊙ U3 ⊙ U2)

T ] + Π1
2 ◦ [U1(U4 ⊙ U3 ⊙ U2)

T ]−
1
2
γ1U1(U4 ⊙ U3 ⊙ (D2

x2U2))
T − 1

2
γ2U1((D

2
x4U4)⊙ U3 ⊙ U2)

T = 0
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(

[U4 ⊙ U3 ⊙ (U2Diag(x2))]⊗ Dx1 + [(U4Diag(x4))⊙ (Dx3U3)⊙ U2]⊗ I +

Diag(vec(Λ1
1))[(U4 ⊙ U3 ⊙ (Dx2U2))⊗ I] + Diag(vec(Λ1

2))[(U4 ⊙ U3 ⊙ U2)⊗ I] +

Diag(vec(Π1
1))[((Dx4U4)⊙ U3 ⊙ U2)⊗ I] + Diag(vec(Π1

2))[(U4 ⊙ U3 ⊙ U2)⊗ I]−
1
2
γ1[(U4 ⊙ U3 ⊙ (D2

x2U2))⊗ I]−
1
2
γ2[((Dx4U4)⊙ U3 ⊙ U2)⊗ I]

)

vec(U1) = 0 (5.59)

Mode 2 unfolding

Diag(x2)U2[U4 ⊙ U3 ⊙ (Dx1U1)]
T + U2[(U4Diag(x4))⊙ (Dx3U3)⊙ U1]

T +

Λ2
1 ◦ [Dx2U2(U4 ⊙ U3 ⊙ U1)

T ] + Λ2
2 ◦ [U2(U4 ⊙ U3 ⊙ U1)

T ] +

Π2
1 ◦ [U2((Dx4U4)⊙ U3 ⊙ U1)

T ] + Π2
2 ◦ [U2(U4 ⊙ U3 ⊙ U1)

T ]−
1
2
γ1D2

x2U2(U4 ⊙ U3 ⊙ U1)
T − 1

2
γ2U2((D

2
x4U4)⊙ U3 ⊙ U1)

T = 0

(

[U4 ⊙ U3 ⊙ (Dx1U1)]⊗ Diag(x2) + [(U4Diag(x4))⊙ (Dx3U3)⊙ U1]⊗ I +

Diag(vec(Λ2
1))[(U4 ⊙ U3 ⊙ U1)⊗ Dx2 ] + Diag(vec(Λ2

2))[(U4 ⊙ U3 ⊙ U1)⊗ I] +

Diag(vec(Π2
1))[((Dx4U4)⊙ U3 ⊙ U1)⊗ I] + Diag(vec(Π2

2))[(U4 ⊙ U3 ⊙ U1)⊗ I]−
1
2
γ1[(U4 ⊙ U3 ⊙ U1)⊗ D2

x2 ]−
1
2
γ2[((Dx4U4)⊙ U3 ⊙ U2)⊗ I]

)

vec(U2) = 0 (5.60)

Mode 3 unfolding

U3[U4 ⊙ (U2Diag(x2))⊙ (Dx1U1)]
T + Dx3U3[(U4Diag(x4))⊙ U2 ⊙ U1]

T +

[U3(U4 ⊙ (Dx2U2)⊙ U1)
T ] ◦ Λ3

1 + [U3(U4 ⊙ U2 ⊙ U1)
T ] ◦ Λ3

2 +

[U3((Dx4U4)⊙ U2 ⊙ U1)
T ] ◦Π3

1 + [U3(U4 ⊙ U2 ⊙ U1)
T ] ◦ Π3

2 −
1
2
γ1U3(U4 ⊙ (D2

x2U2)⊙ U1)
T − 1

2
γ2U3((D

2
x4U4)⊙ U2 ⊙ U1)

T = 0

(

[U4 ⊙ (U2Diag(x2))⊙ (Dx1U1)]⊗ I + [(U4Diag(x4))⊙ U2 ⊙ U1]⊗ Dx3 +

[(U4 ⊙ (Dx2U2)⊙ U1)⊗ I]Diag(vec(Λ3
1)) + [(U4 ⊙ U2 ⊙ U1)⊗ I]Diag(vec(Λ3

2)) +

[((Dx4U4)⊙ U2 ⊙ U1)⊗ I]Diag(vec(Π3
1)) + [(U4 ⊙ U2 ⊙ U1)⊗ I]Diag(vec(Π3

2))−
1
2
γ1[(U4 ⊙ (D2

x2U2)⊙ U1)⊗ I]−
1
2
γ2[((Dx4U4)⊙ U2 ⊙ U1)⊗ I]

)

vec(U3) = 0 (5.61)

Mode 4 unfolding

U4[U3 ⊙ (Diag(x2)U2)⊙ (Dx1U1)]
T + U4Diag(x4)[(Dx3U3)⊙ U2 ⊙ U1]

T +

[U4(U3 ⊙ (Dx2U2)⊙ U1)
T ] ◦ Λ4

1 + [U4(U4 ⊙ U2 ⊙ U1)
T ] ◦ Λ4

2 +

[Dx4U4(U3 ⊙ U2 ⊙ U1)
T ] ◦ Π4

1 + [U4(U3 ⊙ U2 ⊙ U1)
T ] ◦Π4

2 −
1
2
γ1U4(U3 ⊙ (D2

x2U2)⊙ U1)
T − 1

2
γ2D2

x4U4(U3 ⊙ U2 ⊙ U1)
T = 0



5.5 An Ab initio approach for numerically solving FPE 137

(

[U3 ⊙ (Diag(x2)U2)⊙ (Dx1U1)]⊗ I + [(Dx3U3)⊙ U2 ⊙ U1]⊗ Diag(x4) +

[(U3 ⊙ (Dx2U2)⊙ U1)⊗ I]Diag(vec(Λ4
1)) + [(U3 ⊙ U2 ⊙ U1)⊗ I]Diag(vec(Λ4

2)) +

[(U3 ⊙ U2 ⊙ U1)⊗ Dx4 ]Diag(vec(Π4
1)) + [(U3 ⊙ U2 ⊙ U1)⊗ I]Diag(vec(Π4

2))−
1
2
γ1[(U3 ⊙ (D2

x2U2)⊙ U1)⊗ I]

1
2
γ2[(U3 ⊙ U2 ⊙ U1)⊗ Dx4 ]

)

vec(U4) = 0 (5.62)

The objective is to solve (5.59)-(5.62) iteratively for the unknown vectorized factor matrices. As

in the previous example, the boundary value and the normality constraints have to be imposed

before solving the equations. The first is done in the way similar to the earlier case. The

normality constraint yields,

∫

Ω1

∫

Ω2

∫

Ω3

∫

Ω4

p(x1, x2, x3, x4)dx1dx2dx3dx4 = 1 (5.63)

Approximating (5.63) using some quadrature and plugging the separable form for the density

yields,

≈
P1
∑

i=1

P2
∑

j=1

P3
∑

k=1

P4
∑

l=1

w1,iw2,jw3,kw4,l × p(x1,i, x2,j , x3,k, x4,l)

=

P1
∑

i=1

P2
∑

j=1

P3
∑

k=1

P4
∑

l=1

w1,iw2,jw3,kw4,l ×
RU
∑

m=1

(U1)m ⊗ (U2)m ⊗ (U3)m ⊗ (U4)m

= (w1 ⊗ w2 ⊗ w3 ⊗ w4)
T

vec

[

Mat

(

RU
∑

m=1

(U1)m ⊗ (U2)m ⊗ (U3)m ⊗ (U4)m

)]

= (w1 ⊗ w2 ⊗ w3 ⊗ w4)
T vec[U1(U4 ⊙ U3 ⊙ U2)

T ]

where vec(.) and Mat(.) refer to the vectorization and matricization operations. Therefore, we

get,

(w1 ⊗ w2 ⊗ w3 ⊗ w4)
T [(U4 ⊙ U3 ⊙ U2)⊗ I]vec(U1) = 1 (5.64)

Similarly, for other dimensions we have,

(w1 ⊗ w2 ⊗ w3 ⊗ w4)
T [(U4 ⊙ U3 ⊙ U1)⊗ I]vec(U2) = 1

(w1 ⊗ w2 ⊗ w3 ⊗ w4)
T [(U4 ⊙ U2 ⊙ U2)⊗ I]vec(U3) = 1

(w1 ⊗ w2 ⊗ w3 ⊗ w4)
T [(U3 ⊙ U2 ⊙ U1)⊗ I]vec(U4) = 1

(5.65)

As in the previous, we describe the results for this case in the section 5.8 as well.
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5.6 A unified framework for the solution of non-stationary FPE

In the previous section, we presented two cases to demonstrate the key steps required in solving

a discretized FPE. As it can seen that even for simple two and four dimensional examples, the

full procedure is quite involved, and if not done carefully, could easily result in mistakes. Hence,

we look for a framework that is compact enough to be employed for the solution of a general

FPE. There have been several numerical methods, proposed in the literature, for solving FPE.

Recently, a tensor based approach has been introduced by Y.Sun and M.Kumar in the series of

papers, [SK14], [SK15a], [SK15b]. Their main idea is to express the multidimensional PDF in

separable form, which is then tensorized together with the Fokker Planck operator (FPO).

In this section, we summarize the method for solving FPE via tensorization, as described in

[SK15b]. The main objective here is to solve the tensorized version of (5.2) via ALS. The first

step is to approximate the multivariate PDF W(x, t) as the sum of the product of uni-variate

functions spatial and temporal basis functions uid(xd) and τ i(t).

U(x, t) ≈
RU
∑

i=1

[(

N
∏

d=1

uid(xd)

)

τ i(t)

]

(5.66)

Above, U(x, t) stands for the approximate representation withRU as the rank of the approxima-

tion of the true PDF W(t,x). From now on, we only refer to the approximated density U(x, t).
Note that the temporal dimension has also been resolved into RU basis functions in this repre-

sentation and is not ignored like in the Ab-initio cases. This signifies the fact that non-stationary

solutions are being sought after. As will be clear in the subsequent analysis, time is treated just

like an additional dimension. Next, all basis functions are discretized along their respective

dimensions. This results in RU basis vectors of length nd for each of the spatial dimension d,

and vectors of length nt for the time. Along every dimension, basis vectors can be arranged into

factor matrix form as Ud =
[

u1
d, u

2
d, · · · , uRU

d

]

or in case of time as ΓΓΓ =
[

τττ 1, τττ 2, · · · , τττRU
]

.

5.6.1 Chebyshev spectral differentiation

The numerical solution of the FPE is sought in a spatio-temporal hypercube, where each dimen-

sion is discretized with sufficient number of points. One of the main advantage of the solution

via tensor decomposition is that the higher dimensional operations like the first and second or-

der partial derivatives are decoupled into the corresponding single dimensional ones. Generally,

a finite differentiation matrix (FDM) is used to approximate the first order derivatives, while the

second order partial derivative is approximated by its square. One issue with FDM is that for

higher order derivatives, the number of points required for an adequate and stable approxima-

tion grows much faster. As noted in [CBS00], the time domain discretization has to be much

fine for the solution to be stable, if the explicit FDM is employed. Another problem with FDM

is the so called Runge phenomenon, which refers to the problem of oscillation at the edges of

an discretized interval. It occurs when using the polynomial interpolation with polynomials of

high degree over a set of equispaced interpolation points. E.g. when approximating the function

f(x) using n points {xi}ni=0 together with the Lagrange polynomials ℓi, the resulting error can

be expressed as,

f(y)−
n
∑

i=0

f(xi)ℓi(y) =
f (n+1)(ξ)

(n+ 1)!

n
∏

i=0

(y − xi) (5.67)



5.6 A unified framework for the solution of non-stationary FPE 139

Two factors affect the approximation accuracy, the (n+1)th derivative f (n+1)(ξ) and the position

of the points xi. Since the first term is problem dependent, it leaves the judicious choice of the

second to manage the approximation error. In [SK15b], Chebyshev spectral differentiation to

generate the optimally spaces interpolation points. This is because among all the polynomials

of degree n with leading coefficient 1 (
n
∏

i=0

(y−xi) = yn+an−1y
n−1+ · · ·+a0y0) , the unique

polynomial which has the smallest maximum on interval [-1,1] is the Chebyshev polynomial.

This leads to the use of its extrema as the interpolation locations,

xdj = cos

(

jπ

nd

)

j = 0, 1, · · · , nd (5.68)

These points are the projections onto the x-axis of equally spaced points on the unit circle. Point

density is higher close to the end of the axis than in the middle.
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Figure 5.1: Chebyshev distributed points

As opposed to the finite difference matrix, the Chebyshev differentiation matrix has a dense

structure. One such matrix along the dth dimension is defined as following,

Dd(i, j) =



























2nd
2+1
6

, i, j = 0

− 2nd
2+1
6

, i, j = nd
−xj

2(1−x2
j
)
, i, j = 1, · · · , nd − 1,

ci(−1)i+j

cj(xi−xj)
, i 6= j, i, j = 1, · · · , nd − 1

where

ci =

{

2 i = 0 or nd

1 otherwise

5.6.2 Tensorization of the Fokker Planck operator

It is now assumed that the discretization of the individual dimensions in (5.66) has yielded the

density tensor U(t, x) in the CPD form as per (5.17),

U(x, t) =
RU
∑

iu=1

(

N
⊗

d=1

u
iu
d

)

τττ i, (5.69)
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Here, we abuse the notation a bit and represent the outer product between the basis vectors

and factor matrices with
⊗

. It will be explicitly mentioned when the sign is used to denote a

Kronecker product. Having the PDF in the CPD format is a key factor in combating the curse

of dimensionality. The next step is to tensorize the FPO LFP in the form mentioned in (5.19).

LFP = A ≈
RA
∑

iA=1

N
⊗

d=1

A
iA
d (5.70)

It is assumed that the scalars θi and µi have been absorbed into one of the loading vector/factor

matrix.

The first task now is to express the individual terms in the drift vector f(x, t) and the diffusion

matrix Υ(x, t) in the separable form as in the (5.66), which is followed by their discretization

as done previously. Below, one such operation for the drift term fi((x, t)) is shown,

fi(x, t) =

R1i
∑

j=1

[(

N
∏

d=1

f jid (xd)

)

f jit

]

(5.71)

If the drift and diffusions are not be analytically expressed in the CPD format, they are then

approximated using ALS or Fourier series. The next step is to apply the differential operator
∂
∂xi

, given in form of the Chebyshev differentiation matrix DN to this representation. This can

be expressed as,

∂

∂xi
fi(x, t) ≈

R1i
∑

j=1

(

i−1
⊗

d=1

diag(f jid )

)

⊗
(

diag(Ddf
j
id
) + diag(f jidDd)

)

(

N
⊗

d=i+1

diag(f jid)

)

⊗ diag(f jit),

(5.72)

where diag represents the diagonalization of the vector under operation and R1i the CPD ap-

proximation rank for fi(x, t). This procedure is applied to all components of the drift vector

and the diffusion matrix. For the later, the second derivative is given by squaring the matrix

DN . This results in the following tensorized form of the Fokker-Planck operator,

A =

RA0
∑

iA

[(

N
⊗

d=1

A
iA
d

)

⊗ A
iA
t

]

, (5.73)

where Ad and At are nd × nd and nT × nT matrices respectively. Generally, the drift and the

diffusion terms do not have explicit time dependency. Hence At is usually replaced by It. The

left hand side of (5.2) can also be expressed in the tensorized form as,

∂

∂t
≈
(

N
⊗

d=1

Id

)

⊗ Dt = At. (5.74)

where, Dt is the temporal differentiation matrix. Finally the whole equation can be written

down as,

A
′U = 0, (5.75)

where A′ = A−At, withRA = (RA0 +1)× (N +1) as its overall approximation rank . Also

please note that the time is treated as another dimension in the analysis.
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5.6.3 Solution of the discretized FPE via R-ALS

Alternating Least squares method can be used to solve the tensor equation (5.75), but it would

lead to a trivial solution. Additional constraint terms have to be added in order to have a non-

trivial solution. Three such constraints have been identified in [SK15b], one for initial value,

boundary value and normality each. This leads to the new formulation of the minimization

objective function R,

min
{ur

k
,τττr}
||A′U||2F + α||NU − U0||2F + β||MU||2F + γ||BU − Q||2F . (5.76)

α, β and γ refer to the penalties associated with the three constraints. The first penalty term

refers to the initial value constraint, where U0 is the initial value tensor,

U0 =

RU0
∑

iu=1

[(

N
⊗

d=1

uiu0,d

)

⊗ [1]

]

(5.77)

and N is the projection tensor given by,

N =

(

N
⊗

d=1

I
i
xd

)

⊗ e (5.78)

and e is given by the row vector [1, 0, · · · , 0]. Likewise the boundary value constraint is realized

using the tensorM,

M =

N
∑

iM=1





(

iM−1
⊗

d=1

I
′
xd

)

⊗ I
′′
xiM





N
⊗

d=iM+1

Ixd



⊗ It



 (5.79)

where I′xd
= diag([0, 1, · · · , 1, 0]), I′′xd

= diag([1, 0, · · · , 0, 1]) and Ixd
is the identity matrix.

Finally the normality constraint term contains tensors,

B =

(

N
⊗

d=1

bd

)

⊗ It, Q =

(

N
⊗

d=1

[1]

)

⊗ 1. (5.80)

with 1 being the unit vector and bd the Clenshaw-Curtis quadrature for the dth dimension. The

root mean squared error Rrms is given as,

√

R/(nT
N
∏

d=1

nd).
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Algorithm 11 Regularized Alternating Least Squares

1: procedure R-ALS(α,β,γ,δ,ǫ1,ǫ2,ω0,jmax,R0
U ,RmaxU ,U0)

2: Initialize:

3: Get xk,Dxk∀ k

4: Get t,Dt

5: Tensorize the FPO as in (5.73)

6: RU=R0
U

7: Set U equal to U0
8: while Rrms > ǫ1 & RU ≤ RmaxU do

9: ω = ω0

10: while ∆Rrms > ǫ2 & j ≤ jmax do

11: for k=1 : N+1 do

12: Solve for −→uk or −→τ using regularized eqn.(5.82)

13: end for

14: ω = δ . ω
15: j=j+1

16: end while

17: if RU < RmaxU then

18: Initialize: u
RU+1
k , tRU+1

19: RU = RU + 1

20: else

21: break

22: end if

23: end while

24: Reshape −→uk / −→τττ into Uk / ΓΓΓ
25: return Factor matrices Ud
26: end procedure

In [SK15b], (5.76) is solved directly yielding,

[M+ αMI + βMB + γMN ]−→uk = αvI + γvN (5.81)

where −→uk represents the vectorized factor matrix Uk i.e −→uk = vec(Uk). A similar expression

can be derived for the time factor matrix ΓΓΓ, yielding −→τ . M, MI , MB and MN are all block

matrices with RU ×RU sub-matrices. We provide the description of these sub-matrices in the

Appendix. We make a small change and instead of solving the problem directly, we regularize

the objective function and then solve the ALS problem. This leads to the following,

−→
uk = [M+ αMI + βMB + γMN + ωIR]

−1 ×
(

αvI + γvN + ω−→uk
)

(5.82)

ω is the regularization parameter and the IR is identity matrix of appropriate dimensions. It is

recommended to gradually reduce ω after each successive iteration [LKN13]. Equation (5.82)

is a single step of a series of iterations, also called refinements. We describe the implementa-

tion of the regularized ALS algorithm for solving (5.82) in Algorithm 11, where RmaxU is the

maximum approximation rank, jmax is the maximum number of refinement iterations, δ is the

regularization control parameter. while ǫ1 and ǫ2 are user defined tolerances.



5.7 Tensorized Filter: A Tensor decomposition based nonlinear filtering algorithm 143

5.7 Tensorized Filter: A Tensor decomposition based nonlinear filtering

algorithm

Our main contribution is to combine the tensor based solution for FPE with the log-homotopy

based flow method for the measurement inclusion, and thus defining a recursive Bayesian filter-

ing strategy. We start with the initial density tensor U0 at t0. In the time propagation step, we

solve the FPE with the real time flow f(x, λ) and diffusion Υ(x, λ) to get the tensorized prior

density Uprior at time step t1. Next using this as the initial condition, we again solve the FPE but

this time based on the homotopy flow fH(x, λ) as given in (6.1.2) in order to get the tensorized

posterior density Upost.

fH(x, λ) = A(λ)x + b(λ) (5.83)

with A(λ) and b(λ) given by,

A(λ) = −1

2
PH

T (λHPH
T + R)−1

H (5.84)

b(λ) = (I + 2λA)[(I + λA)PH
T

R
−1

z + Ax̂]. (5.85)

In this manner we incorporate measurements, which completes one cycle of the recursive

Bayesian estimation. We term our new filter as the Tensor-Homotopy based filtering, or simply

the tensorized filter. The full procedure is described in the Algorithm 12.

Algorithm 12 Tensorized filter

1: procedure TENSORIZED DHF(Process model (5.1) & Measurement model (5.4) )

2: Initialize: U0,kmax,α,β,γ,δ,ǫ1,ǫ2,ω0,jmax,RmaxU

3: Measurements: {zt1 ,zt2 ,...,ztkmax
}

4: Tensorize the realtime and pseudo-time FPOs

5: Set R0
U = 1

6: for k=1:kmax do

7: Prediction step

8: Resolve t ∈ (tk−1, tk]
9: Apply Algorithm 11 with the drift f(x, t) and diffusion Υ(x, t) to get prior tensor

Uprior at t = tk, starting with Upost at t = tk−1

10: R0
U = RmaxU

11: Measurement Update step

12: Resolve λ ∈ (0, 1]
13: Apply Algorithm 11 with the drift fH(x, λ) to get posterior tensor Upost at λ = 1

starting with

14: Uprior at t = tk
15: end for

16: return Uprior & Upost at tk
17: end procedure

There are two important observations here. If the drift and the diffusion terms cannot be written

in the separable form, then an approximation has to be made using some numerical method.

This can be done using the ALS algorithm to find the factor matrices to define the FPO. Sec-

ondly, the homotopy drift terms, as given by (6.1.2) have explicit dependence on the pseudo-

time λ. Thus in the tensorized representation of FPO, identity matrices for the time dimensions
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cannot be used. Instead the appropriate matrices are chosen based on the CPD approximation

of the homotopy drift terms.

5.8 Results

In this section, we describe the results for the studied examples. This comes in two parts. First,

the results for the solution of stationary FPE via ab-initio approach will be given. This will be

followed by an example describing a dynamic nonlinear filtering case where we use our newly

devised Tensorized filter to estimate the probability density tensor.

5.8.1 Solution for stationary FPE

5.8.1.1 2D density

We start with the solution for the test example mentioned in the section 5.5.1. The two dimen-

sional state equations are given as,




ẋ1

ẋ2



 =





x2

−bx2 − x1 − a(x2
1 + x2

2)x2



+





0

1



 gη(t)

In the current example, we set a=0.125, b=-0.5, g=1 while the noise variance ση is set to 0.4.

We solve iteratively solve (5.47) and (5.48). We use discretize both axis in the interval [-4 , 4]

with 69 Chebyshev points in each of them. Also we use five basis functions for each dimension,

which are plotted in the following,
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Figure 5.1: Basis function along (a) x and (b) y

All basis functions have been L2-normalized. We note that all of them show significant mass

in the interval [-3 , 3] and assume negligible values outside. Symmetry of the basis functions

can also be noted in all but two, basis function 4 and 5 of along x axis, where they are both

anti-symmetric and also opposed to each other as well.

The total number of degree of freedom is given by (number of nodes per dimension) × (number

of dimension)× (number of basis function) = 69× 2× 5 = 690. Next, we plot the 2D stationary

density generated thereof and the difference w.r.t. the exact solution in figures 5.2 a & b. (5.23).
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Figure 5.2: (a) Stationary density U(x,y) and (b) the error

We note that the 2D density appears like a mug that tapers towards the top instead to the bottom.

Next, we see that error in the estimated solution is approximately of the order of 10−4. As it

can be seen that fairly decent result have been achieved with the current parameter setting.

5.8.1.2 4D density

Next, we give the results for the solution of the 4D FPE described in the section 5.5.2. The state

space model is given as,
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ẋ3

ẋ4
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We set a1 = 1, a2 = 1, a3 = 2, a4 = 1.2, while T = 0.5. Also, the noise powers are given

by E[ξ21 ] = 2a1a2T = 1 and E[ξ22 ] = 2a3a4T = 2.4. This leads to the following form of the

stationary density,

Ps(x1, x2, x3, x4) =

P
∏

i=1

(

1

16π2T 2
√
a2i−1

)− 1
2

exp

[

− 1

4T

P
∑

i=1

(

x2
2i−1 +

x2
2i

a2i−1

)

]

=

(

1

4π2

)− 1
2
(

1

8π2

)− 1
2

exp

[

−1

2

(

x2
1 + x2

3 + x2
2 + (1/2)x2

4

)

]

We discretize each axis with 100 Chebyshev points in the interval [-5 , 5] and have 10 basis

functions along each dimension. We iteratively solve (5.59)-(5.62) together with (5.65). Below,

we plot the basis functions along the four dimensions,
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Figure 5.3: Basis function along (a) x1, (b) x2, (c) x3 and (d) x4.

We note that the spread of the basis functions is lowest for the third dimension, whereas the

highest spread is shown by the basis function along the second dimension. The total degree of

freedom for the discretized problem is 100× 4× 10 = 4000 which is about 1
400000

times that of

the fully tensorized density if the same number of points are assumed along each dimension i.e.

a total of 1004. This shows that the scheme utilizing the tensorization of the FPO together with

the CPD representation of the density can achieve a good solution while requiring significantly

less number of discretization points. As will be seen, this result will be very useful when solving

the FPE for a dynamic case in a nonlinear filtering setting.
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Next, we plot the six 2D marginal densities.
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Figure 5.4: Marginalized densities along (a) x1-x2 , (b) x1-x3 , (c) x1-x4 , (d) x2-x3 , (e) x2-x4

and (f) x3-x4 axis.
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5.8.2 Solution for non-stationary FPE: Nonlinear filtering

Finally, we discuss a nonlinear filtering example where our devised Tensorized filter will be

employed to recursively solve for the prior and posterior densities. FPE will be solved twice

using the R-ALS, once for the time update step and the second time for the measurement update

using the exact flow. We consider a single target moving in a plane, represented by a four state

nearly constant velocity model (NCV) for our numerical experiments.

dx =

















0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

















xdt+

















0 0

0 0

1 0

0 1

















dw (5.86)

where the state vector x = [x, y, vx, vy], and the noise power spectral density Q = σ2
w.I2×2.

Time constitutes the fifth dimension. As can be seen, the drift components can easily be written

in separable form. We use range and angle measurements from a radar sensor located at the

origin.
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 =





√

x2 + y2

tan−1( y
x
)



+





vr

vθ



 (5.87)

with vr ∼ N (0, σ2
r) and vθ ∼ N (0, σ2

θ) representing the two mutually uncorrelated measure-

ment noises. We choose time interval between two consecutive measurements to be 1 second.

Domains for the x and y-axis are discretized with 150 points such that x , y ∈ [4970 , 5130],

while vx and vy have 150 points each in the interval [-10 , 10]. Both real time t and the pseudo-

time λ are discretized for each prediction interval with 50 points. As evident the velocity axis is

more finely discretized than the position ones. U0 is initialized with univariate Gaussian vectors

for the two position and two velocity dimensions. The mean and variance of the initial position

basis vectors are chosen randomly from N (5000, 50). The same is done for the two velocity

vectors, but in this case the sampling density is N (1, 2). The t dimension is initialized with a

vector consisting of all ones i.e. 1.

5.8.2.1 R-ALS parameter tuning

The next task is to decide upon the values of different parameters used in R-ALS, as described

in the Algorithm 11. In order to do that, we simulate the time propagation for a total of 20

seconds. Since the process model is linear and Gaussian, we can exactly know about the form

of the density given that the initial density is also Gaussian. E.g. given the initial density

N (x0, P0), the change in the state density and the covariance matrix is given by the Time

update step of the Kalman-Bucy filter,

d

dt
x(t) = F(t)x(t) (5.88)

d

dt
P(t) = FP(t) + P(t)F(t)T + Q(t) (5.89)
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Given the initial condition, we numerically solve this set of equations in the interval [0 20], to

get the mean and the covariance of the Gaussian at t=20s. We also simulate the scenario using

the R-ALS to get the numerical representation for the density. Then, we compute the integrated

square error (ISE) between the densities according to the following

ǫr
(

PKB , P̂ALS
)

=

∫ ∫ ∫ ∫

‖PKB(x, y, vx, vy)− P̂ALS(x, y, vx, vy)‖2dxdydvxdvy

(5.90)

where PKB(x, y, vx, vy) is the solution found by numerically solving (5.88), while

P̂ALS(x, y, vx, vy) is the 2D marginal formed after solving the R-ALS. The idea is start with

a base set of parameters values , and to find the optimal by changing one at a time. The value

thus found will be used later on while using the filtering algorithm 12.

Number of points per dimension and basis vectors First, we describe the effect of changing

the maximum number of the basis vectors RUmax and the number of points per dimension Np,
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Figure 5.5: ISE v.s. (a) Number of basis functions (b) Number of points per dimension.

We note that ISE decrease significantly for RUmax between 2 and 4. Afterwards it stays con-

stant more or less until the RUmax is 10. After that it drops again but the drop is shallow. In

the second plot, we see a constant drop in the error against the value of number of points per

dimensions considered, albeit the drop being less significant after Np > 150. Processing time

is another consideration that has to be taken into account. The processing time increases expo-

nentially with the increase in both the number of basis functions and the number of the points

per dimensions, though the rise is much steeper against the Np. In particular, the processing

time increases six fold with by changing Np from 150 to 250. Against the RUmax, the in-

crease seems almost linear up to 10, after which the exponential growth is more clearly visible.

Therefore, we choose a middle ground by selecting RUmax=10 while Np is set to be 150.

Error tolerances Next, we describe the effect of varying the two tolerances, ǫ1 and ǫ2, on the

ISE.
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Figure 5.6: ISE v.s. the two tolerances

The first of the two tolerances pertain to the absolute normalized error, whereas the second one is

about the relative error. We note that the choice of ǫ1 is not very critical, whereas the estimation

accuracy is strongly dependent on the value of ǫ2. Processing time increases exponentially with

the lowering of ǫ2, unless the iterations are aborted after a fixed number of times jmax have

been run. The later is there to ensure that the loop is always terminated. Therefore, we set ǫ1
and ǫ2 to 10=10, while jmax to 50.

Constraint penalties Finally, we discuss the effect of changing the three penalty terms.
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Figure 5.7: ISE v.s. (a) Initial value and (b) the Boundary value constraint

We select the value of α from the vector [10−8, 10−6, 10−4, 10−2, 1, 102] while β and γ from

[10−6, 10−4, 10−2, 1, 102, 104]. It should be reminded that α, β and γ refer to the penalty

associated with the initial value, boundary value and the normality constraints respectively.

It can be seen that the R-ALS algorithm is most sensitive to the choice of the penalty term

enforcing the initial value constraint. α has to be set largest out of the three. Next, we see that β
also has to be set to a fairly large value in order to minimize the estimation error. γ the on other

hand, appears to have a detrimental role. Though its presence is necessary to ensure that the
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density tensor is always normalized, a larger value could be contribute to a significant increase

in the ISE.
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Figure 5.8: ISE v.s. Normality constraint

Therefore based on the results, we choose α = 104 , β = 102, while γ = 10−6. Below, we

summarize the values of the ALS algorithm parameters together with the values for the noise

covariances.

Parameter Value Parameter Value Parameter Value

α 104 β 102 γ 10−6

ω 10−10 δ 10−1 ǫ1 10−10

ǫ2 10−10 kmax 50 RUmax 10

σ2
w 0.01 σ2

r 100 σ2
θ

π
180

Table 5.1: R-ALS Parameters
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5.8.2.2 Prediction

To show how our proposed method works, we first present the results for the prediction step.

We have plotted the L2-normalized basis vectors and the two dimensional position marginal

U(x, y) at t=20s, in Figure 5.9.
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Figure 5.9: Basis function along (a) x, (b) y, (c) ux, (d) uy (e) t axis and the marginalized

density U(x, y) at t = 20s.

Note that these results are for pure time propagation and do not include the measurement inclu-

sion. First the FPO is tensorized and represented in the form of equation (5.73). This yields 25
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terms for the representation of A′ in the equation (5.75) i.e. RA = 25. Next, the prediction of

the density is carried out in steps of one second as per the Algorithm 2. The maximum number

of basis vectors RmaxU is capped at 8 for all dimensions. The results after each prediction step

is used as the intial condition for the next. The last elements of all time vectors are absorbed

in one of the four spatial dimensions to form the initial tensor for the next time step. This is

possible as U0 does not involve the time dimension.

5.8.2.3 Measurement Inclusion via homotopy

The main step is to write the log-homotopy based flow equation in the separable form, which for

the exact flow equation (6.1.2), is a straightforward step. For instance the ith flow component

can be written as,

fHi(x, λ) = ai1(λ)x+ ai2(λ)y + ai3(λ)vx

+ ai4(λ)vy + bi(λ)

= (x)(1)(1)(1)(ai1(λ)) + (1)(y)(1)(1)(ai2(λ))

+ (1)(1)(vx)(1)(ai3(λ)) + (1)(1)(1)(vy)(ai4(λ))

+ (1)(1)(1)(1)(bi(λ))

=

5
∑

j=1

[(

4
∏

d=1

f jid (xd)

)

f jiλ

]

where aij and bi are entries of the matrix A(λ) and vector b(λ) respectively. All components

are expressed in the above form. The next step is to tensorize the Fokker-Planck operator in the

pseudo-time λ, following the same procedure as for the real time. For the exact flow equation,

RA = 105. As for the progressive prediction mentioned before, the prior density tensor Uprior
at time tk serves as the starting point to the Algorithm 1.

4930 5070x

4950

5030

y

zk
xk

x̄EKF

x̂H

x̄H
λ= 1

3

x̄H
λ= 2

3

x̄Hλ=1

(a)

0 0.33 0.66 1

130

210

λ

tr
P̄
H

(b)

Figure 5.10: (a)Position error vs. time and (b) Velocity error vs. time.

It can be noted that the equation (6.1.2) required the prior covariance matrix P , and the evalua-

tion of the measurement function ψ and its Jacobian H . In a typical implementation, P is taken

from a parallel running EKF [DC12] or as discussed in the chapter 3, using some shrinkage

estimation method. However, as we already have the prior density available in the tensorized



154 5 Tensors and the Log homotopy based particle flow

format, we can directly get this. In Figures 5.10a and 5.10b, we show the results for a generic

measurement update step. The first plot shows the true position vector x0, measurement vector

zk, EKF based position estimate x̄EKF , Tensor-homotopy based prior estimate x̂H , and esti-

mates x̄H(λ) for three values of λ with the last being the posterior estimate x̄H . Also shown

are the associated error ellipses. It can be seen that the error ellipses shrink as λ approaches 1.

This can also be inferred from the trace of the covariance matrix PH(λ). The purpose of this

presentation is to show the effectiveness of homotopy based measurement update step.

5.8.2.4 Filtering results

Having analyzed the results of the individual prediction and measurement updates, we now

analyze their combined effect in the Bayesian filtering. We run 20 simulations for the Tensor-

Homotopy based filtering, with randomized intial conditions. For EKF we use 100 simulation

runs. We compare our results with that of EKF and the Crámer-Rao Lower Bound (CRLB).

We note that σr < Dkσθ ∀k, where Dk represents the distance of the target from the radar

location at time instant k. The considered example has simple linear dynamics, but the high

cross range measurement error creates a challenging scenario from the filtering perspective. We

use the root mean squared error (RMSE) as the performance metric. For the position, RMSE

formula is shown below

ǫr =

√

√

√

√

1

M

M
∑

m=1

[

(xmk − x̄mk )2 + (ymk − ȳmk )2
]

(5.91)

where M is the number of Monte Carlo simulation runs which equals 20 in the current case.
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Figure 5.11: (a) Position error vs. time and (b) Velocity error vs. time.

Similar equation is used to define the velocity error ǫv . In Figure 5.11a and 5.11b, we show

the position and velocity error, ǫr and ǫv averaged over all runs. Finally we compare the exe-

cution time of both prediction and the measurement update steps. Simulations were performed

on a computer with Intel Core2 Quad with 2.66 GHz processors and 4 GB RAM. The pro-

cessing time depends on many factors like the problem dimensionality, number of points along

dimensions nd, the maximum approximation rank of the PDF RmaxU and of the FPO RA, the

tolerances ǫ1 and ǫ2, maximum number of iterations jmax etc. For the choice of parameters
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mentioned in Table 5.1, the first prediction step for t ∈ (t0, t1] takes about 50 seconds. This

is because basis vectors are incrementally increased, starting from 1 up to RmaxU , each refined

until the termination criterion is met. Subsequently, it takes about 20 seconds per prediction

step as the number of basis vectors are kept constant. The computationally most expensive part

is the measurement update. As the FPO in that case is comprised of 105 matrices, the R-ALS

iterations take about 200 seconds. Please note that in [SK15a], authors have worked on a simple

example with 1D linear measurement model. In such cases, the likelihood function can easily

be expressed in the separable form, which leads to a straightforward measurement update. This

is not the situation in our case, as likelihood separation would need an approximation. On the

other hand we use the homotopy flow, for which it is not an issue, although the penalty is paid

in terms of the extra processing cost. We can see that our method almost achieves the CRLB

for both position and velocity errors, as opposed to the EKF based estimate. Apart from the

tensorization based solution of FPE, the homotopy based particle flow is particularly important

in achieving this level of performance.
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Finally, we plot the 2D marginalized posterior density Upost(x, y) at different time instances in

Figure 5.12.
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Figure 5.12: (a) Initial density U0(x, y) and the marginalized densities U(x, y) at (b) 4s , (c) 8s

, (d) 12s , (e) 16s and (f) 20.

Since high values for the measurement noise covariances have been chosen, measurements are

spread over a large area. Hence, they do not show up in every plot i.e. measurements are out

side the discretized area.
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5.9 Possible avenue for Improvements

ALS based solution of the tensorized FPE is yielded by optimizing the multidimensional objec-

tive function, which could turn out to be non-convex. In such cases the ALS is not guaranteed

to converge to a global minimum. Also it is well known to have a slow convergence rate.

Regularization helps in the speeding up, but only up to a certain extent. There are other subop-

timal methods described in the literature that approximately solve the constrained least squares

for tensors. Some important contributions towards this end include the Enhanced Line Search

(ELS) [RCH08], replacement of the ALS iterations by several joint diagonalization problems

and the subsequent matching to get the best estimates of the factor matrices [RH08], a semi-

algebraic framework for approximate CPD via Simultaneous Matrix Diagonalization and Gen-

eralized Unfolding (SMD) [RSH12] and a Semi-Algebraic Tensor decomposition (SALT) based

on Joint Eigenvalue decomposition [LA11]. In particular, a cause of the slow convergence has

been noted to be the so called swampiness. This occurs when two or more loading vectors in a

factor matrix are collinear or nearly collinear. In [TPC16] a new algorithm for CPD has been

proposed that is based on the random partitioning of matrices, where each of the portion is up-

dated individually. It has been shown to achieve dramatic improvements in the convergence.

Secondly, in our work we have used a static grid and therefore had to discretize a large domain.

It can be conjectured that a significant speed up in the computation can be made by using dy-

namic grid adaptation. One idea is to use the concept described in [CBS00] for moving the grid

by computing the significant domain based on the Chebyshev inequality. The other approach,

which can be combined with it is the Sparse grids, as defined and used in [KS13] and [Gar01].

Thirdly, since the FPO for the exact flow contains 105 matrices, the processing time can po-

tentially be lowered by using other flows in the FPE defining the measurement update step,

provided the FPO is approximated using lesser terms. It is hoped that for higher dimensional

nonlinear/non-Gaussian problems, the full power of the tensor based approach can be exploited

and the extra computational cost can be justified by the higher level of accuracy achieved.

5.10 Conclusion

In this chapter, there two main objectives were pursued. The first objective was to describe

a numerical framework for the solution of the Fokker-Planck equation. The second one was

to propose a new nonlinear filtering algorithm that uses the log-homotopy based particle flow

within the developed framework. We have studied problems pertaining to two separate classes:

systems admitting stationary solution and nonlinear filter problems that do not admit stationary

densities. An Ab Initio method was followed to demonstrate the basics of the solution of FPE

via tensor methodology. The important take away lesson is that the step by step method though

very lucid in explaining the intricacies of the tensorization based FPE solution, is very rigorous,

and hence prone to errors. Therefore, we looked for a unified framework, which was found in

the CPD-ALS based solution for FPE ,as developed by W.Sun and M.Kumar ( [SK14], [SK15b]

and [SK15a]). Expressing the probability density and the FPE in the CPD form has been iden-

tified as the key in fighting the curse of dimensionality in the discretized problems. A cost

function comprising of the FPE and the associated constraints is formed and minimized. The

resulting matrix-vector equation is solved via the regularized Alternating least squares (R-ALS),

yielding the basis vectors. In the second part, we devised a nonlinear filtering algorithm, named

as the Tensorized filter. This is achieved by combining the tensor framework with the log-
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homotopy based particle flow. As opposed to the more widely used tensor multiplication based

measurement update [DKG16] or particle filter type solutions (DHF), we use the homotopy

flow for solving the tensorized FPE. Hence, for a single Bayesian recursive step, the FPE is

solved twice, first w.r.t. the real time and the second w.r.t. the pseudo time. We study three

examples: a 2D and a 4D case admitting stationary solution, and one five dimensional (four

spatial and one temporal) nonlinear filtering example. The first two are solved using the equa-

tion derived via Ab-Initio method. For the nonlinear filtering example, we used the R-ALS and

have demonstrated that our scheme not only works but in fact its estimation error approaches

the the Crámer-Rao lower bound, albeit at the cost of significant computational time.



Appendix

The objective is to minimize the cost function formed in parts by the tensorized FPO and the

initial value, boundary value and the normality constraint terms.

min
{ur

k
,τττr}

R = min
{ur

k
,τττr}
||A′U||2F + α||NU − U0||2F + β||MU||2F + γ||BU −Q||2F .

α, β and γ refer to the penalties associated with the three constraints. Also note that N refers

to the maximum number of spatial dimensions, while (N+1)th is the temporal dimension. Min-

imization is to be done w.r.t. both the spatial and the temporal dimensions i.e.

∂R

∂ukd
= 0,

∂R

∂τττk
= 0

Since the main term (one containing the tensorized FPO) and ones pertaining to specific con-

straints show up additively, therefore each one of them can be dealt separately.

5.A FPO

We start with the first term containing the tensorized FPO,

A
′U =

RA
∑

iA=1

RU
∑

iu=1

(

N
⊗

d=1

A
iA
d u

iu
d

)

A
iA
t τττ

iu

Building on the concepts presented in the section 5.4, it follows,

||A′U||2F = 〈A′U ,A′U〉 =
RA
∑

iA=1
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∑

jA=1

RU
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d u
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d 〉
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〈AiAt τττ iu ,AjAt τττ ju〉
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Taking derivative w.r.t. the spatial loading vector urk for k = 1, · · · , N , and putting the terms

to zero leads to the following equation,

∂

∂urk
< A
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which when put in the matrix form looks like
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where the sub-matrix (M)i,j is defined as,

(M)i,j =

RA
∑

iA=1

RA
∑

jA=1

(AjAk )TA
iA
k







N
∏

d=1
d 6=k

< A
iA
d u

j
d,A

jA
d u

i
d >






〈AiAt τττ i,AjAt τττ j〉

The same procedure when applied w.r.t. the spatial dimension τττr yields,
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with the corresponding sub-matrices given by,

(M)i,j =

RA
∑

iA=1

RA
∑

jA=1

(AjAt )TA
iA
t

(

N
∏

d=1

< A
iA
d u

j
d,A

jA
d u

i
d >

)

5.B Normality constraint term

Now turning to the normality constraint term, we can write

∂

∂urk
||BU −Q||2F =

∂

∂urk
(〈BU ,BU〉 − 2〈BU ,Q〉+ 〈Q,Q〉)

=
∂

∂urk
〈BU ,BU〉 − 2

∂

∂urk
〈BU ,Q〉 = 0
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Now, as per the previous sections we have

BU =

RU
∑

iu=1

(

N
⊗

d=1

〈uiud , bd〉
)

⊗ τττ iu

which further leads to,

〈BU ,BU〉 =

RU
∑

iu=1

RU
∑

ju=1

(

N
∏

d=1

〈uiud , bd〉〈ujud , bd〉
)

〈τττ iu , τττ ju〉

〈BU ,Q〉 =

RU
∑

iu=1

(

N
∏

d=1

〈uiud , bd〉
)

〈τττ iu ,1〉

The two derivatives are given as,

∂

∂urk
〈BU ,BU〉 =

RU
∑

ju=1

Bku
ju
k







N
∏

d=1
d 6=k

〈uiud , bd〉〈ujud , bd〉






〈τττ iu , τττ ju〉

+

RU
∑

iu=1

Bku
iu
k







N
∏

d=1
d 6=k

〈uiud , bd〉〈ujud , bd〉






〈τττ iu , τττ ju〉

and

∂

∂urk
〈BU ,Q〉 = bk







N
∏

d=1
d 6=k

〈uiud , bd〉






〈τττ iu ,1〉

The whole normality constraint in the matrix form is given by,











(MN)1,1 · · · (MN )1,RU

...
. . . · · ·

(MN )RU ,1 · · · (MN)RU ,RU





















u1
d

...

u
RU
d











=











(vN )1
...

(vN)RU











where,

(MN )i,j = Bk







N
∏

d=1
d 6=k

〈uid, bd〉〈bd, ujd〉






〈τττ i, τττ j〉

(vN)i = bk







N
∏

d=1
d 6=k

〈uidbd〉






〈τττ iτττ j〉
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Similarly, for derivative w.r.t. the temporal basis factor τττ r, we have the terms

∂

∂τττr
〈BU ,BU〉 =

RU
∑

ju=1

(

N
∏

d=1

〈uiud , bd〉〈ujud , bd〉
)

(τττ ju)T

+

RU
∑

iu=1

(

N
∏

d=1

〈uiud , bd〉〈ujud , bd〉
)

(τττ iu)T

and

∂

∂τττr
〈BU ,Q〉 =

(

N
∏

d=1

〈uiud , bd〉
)

1

For the temporal derivative, the sub-matrices of the matrix equation are given by

(MN)i,j = Ik

(

N
∏

d=1

〈uid, bd〉〈bd, ujd〉
)

and the sub-vectors,

(vN )i = 1

(

N
∏

d=1

〈uid, bd〉
)

where 1 = [1, 1, · · · , 1]T and Bk = bk × bTk .

5.C Initial value constraint term

We give the expressions for the sub-matrices and the sub-vector without going into the whole

derivation. Please note that for the initial value constraint, we have the initial value tensor U0
given by

U0 =

RU0
∑

iu=1

[(

N
⊗

d=1

uiu0,d

)

⊗ [1]

]

and corresponding projection tensor N is given by,

N =

(

N
⊗

d=1

Iixd

)

⊗ e

and e is given by the row vector [1, 0, · · · , 0]. Given this, we can derive the following expres-

sions for the spatial dimensions,

(MI)i,j = Ik







N
∏

d=1
d 6=k

〈uid, ujd〉






〈τ i, τ j〉

(vI)i =

RU0
∑

j=1

u
j
0,d







N
∏

d=1
d 6=k

〈uid, uj0,d〉






〈τττ i, e〉



5.D Boundary value constraint term 163

Similar terms for the temporal dimension are also given below,

(MI)i,j = E

(

N
∏

d=1

〈uid, ujd〉
)

(vI)i =

RU0
∑

j=1

e

(

k
∏

d=1

〈uid, uj0,d〉
)

where Ik is the identity matrix of appropriate dimensions and E = e× eT .

5.D Boundary value constraint term

Given the boundary value tensor,

M =
N
∑

iM=1





(

iM−1
⊗

d=1

I ′xd

)

⊗ I ′′xiM





N
⊗

d=iM+1

Ixd



⊗ It





we can derive the corresponding sub-matrices. First, for the spatial dimensions,

(MB)i,j =
N
∑

r=1

It

(

N
∏

d=1

〈(J)r,du
i
d, (J)r,du

j
d〉〈τττ i, τττ j〉

)

while for the temporal dimension we have,

(MB)i,j =
N
∑

r=1

It

(

N
∏

d=1

〈(J)r,du
i
d, (J)r,du

j
d〉〈τττ i, τττ j〉

)

where It is the identity matrix corresponding to the time dimension and J ∈ R

N
∑

d=1
nd×

N
∑

d=1
nd

given by,

J =























I′′x1
Ix2 Ix3 · · · IxN

I′x1
I′′x2

Ix3 · · · IxN

I′x1
I′x2

I′′x3
· · · IxN

...
...

... · · ·
...

I′x1
I′x2

I′x3
· · · I′′xN























The sub-matrices constituting the block matrix J have been described in the section 5.6. Finally,

all terms can be put together in the following equation,

[M+ αMI + βMB + γMN ]−→uk = αvI + γvN

where M, MI , MB and MN are all block matrices and −→uk is the vectorized factor matrix Uk.
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Chapter 6

Flow solution for the sum of Gaussians based

prior densities

We have discussed, implemented and analyzed several of the log-homotopy based particle flows

in the previous chapters. Among all flow solutions, the so-called exact flow is of particular inter-

est. The reason is that it has a closed form solution that is quite elegant and simple to implement.

It is based on the Gaussian assumption for the prior density and the likelihood, which together

with the assumption of zero diffusion term in the SDE, leads to a closed form analytical flow

solution. This flow has been subject of many studies e.g. [KU14], [BS14], [DGYM+15] etc.

The Gaussian assumption for the prior density is a rather strong one. In particular, the prior

density for highly nonlinear process/measurement models, or models with non-Gaussian noises

can exhibit multi-modality, and hence the exact flow may not be suitable. In this chapter, we

consider a more general scenario where the prior density may not be represented accurately by

a single multivariate Gaussian. Therefore, in order to cater for the non-Gaussianity of the prior,

we use a Gaussian mixture model (GMM). We solve the corresponding FPE for the unknown

flow and derive analytical flow solutions. Finally, we implement our new flows and show that a

filter based on one of the new flows outperforms the exact flow and the particle filter.

The outline of the chapter is given as follows: Section 6.1 contains the derivation of flow equa-

tions based on the Gaussian mixture assumption for the prior. Implementation methodology for

our new flows is described in the section 6.2. Numerical simulation results are mentioned in the

section 6.3, which is followed by the conclusion in the section 6.4.
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6.1 Derivation of Gaussian Mixture Flow

If the diffusion term is assumed to be zero but the flow is allowed to be compressible, the

following equation can be derived from (3.16),

log h(x) +∇ log p(x, λ)T · f(x, λ) = −∇ · f(x, λ) (6.1)

∂ logK(λ)
∂λ

represents the logarithmic change in the normalization constant. For a given value

of λ, this term is constant. Hence, it is ignored in the subsequent analysis. One particular

solution, termed as the exact flow, relates to the case of log g(x) and log h(x) being bilinear in

the components of vector x, e.g., assuming a Gaussian prior and likelihood.

log g(x) = log cP − 1

2
(x− x̄)T P

−1 (x− x̄) (6.2)

log h(x) = log cR − 1

2
(z− ψ(x))T R

−1 (z− ψ(x)) (6.3)

where cP and cR are the normalization constants associated with the prior and the likelihood.

The exact flow equation is then given by,

f(x, λ) = A(λ)x + b(λ) (6.4)

with,

A(λ) = −1

2
PH

T (λHPH
T + R)−1

H (6.5)

b(λ) = (I + 2λA)[(I + λA)PH
T

R
−1

z + Ax̄] (6.6)

Here P refers to the prior covariance matrix, x̄ is the prior mean vector, and H is the Jacobian

of the measurement function ψ(x). For more details on the implementation and analysis of this

type of flow, please refer to [KU14], [KU15] and [DC12]. In this work, we relax the Gaussian

assumption for the prior density. Instead, we assume that the prior density cannot be modeled

sufficiently well by a single Gaussian, and is rather approximated by a sum of Gaussian with M

components i.e.

g(x) =
M
∑

i=1

θiN (x|µi,Pi) (6.7)

where θi, µi and Pi are the weight, mean and the covariance matrices of the ith component.

The gradient of the log of the prior density then can be written as,

∇ log g(x, λ) =
M
∑

i=1

αi(x)P
−1
i (x− µi) (6.8)

with αi defined as,

αi(x) =
−θiN (x|µi,Pi)
M
∑

j=1

θjN (x|µj , Pj)
(6.9)
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The likelihood log h(x), on the other hand, is represented by a single component Gaussian. Its

gradient is defined as,

∇ log h(x, λ) = H
T

R
−1 (z− ψ(x)) (6.10)

Again we assume that the flow equation can be expressed in a linear form like in (6.4),

f(x, λ) = A(λ)x + b(λ) (6.11)

The matrix A(λ) and the vector b(λ) are unknowns, and our task is to find analytical expressions

for them. For this choice of flow, the divergence becomes∇ · f(x, λ) = Tr(A(λ)). For the sake

of brevity we drop λ from the arguments of both A and b. Now, we refer back to (6.1) and plug

in the values,

(

M
∑

i=1

αi(x)P
−1
i (x− µi) + λH

T
R

−1 (z− ψ(x))
)T

(Ax + b)

+ log cR − 1

2
(z− ψ(x))T R

−1 (z− ψ(x)) = Tr(A) (6.12)

The measurement model can be linearized by the Taylor series expansion up to the first term

about the point xλ, such that z̄ ≈ z − ψ(xλ) + Hxλ, where H = ∂ψ
∂x

∣

∣

xλ
. Linearization of the

measurement model leads to the following expansion of the (6.12),

M
∑

i=1

αi(x) (x− µi)T P
−1
i Ax +

M
∑

i=1

αi(x) (x− µi)T P
−1
i b

+ λ(z̄−Hx)TR
−1

HAx + λ(z̄−Hx)TR
−1

Hb

+ log cR − 1

2
z̄R

−1
z̄ + z̄

T
R

−1
Hx− 1

2
x
T

H
T

R
−1

Hx = −Tr(A) (6.13)

αi(x) are the only nonlinear factors in the (6.13). If they can be approximated by a linear or

a quadratic term, the resulting equation can be expressed as a polynomial in x. Therefore, we

expand the αi(x) via Taylor series up to the first term about some point x̃. Hence, αi(x) ≈
αi(x̃) + (x− x̃)T ai where ai = ∇αi(x)|̃x, which is given by,

ai(x) = −αi(x̃)
(

P
−1
i (x− µi) +

M
∑

j=1

αj(x̃)P
−1
j (x− µj)

)

(6.14)

For conciseness, we drop the x̃ from the arguments of α and a. With the linearization of αi(x)
at hand, we can open the summations in the (6.13). The first term then becomes,

M
∑

i=1

(

αi + (x− x̃)T ai

)

(x− µi)T P
−1
i Ax = x

T

(

M
∑

i=1

αiP
−1
i A

)

x−
(

M
∑

i=1

αiµ
T
i P

−1
i A

)

x

+x
T

(

M
∑

i=1

aix
T

P
−1
i A

)

x− x
T

(

M
∑

i=1

aiµ
T
i P

−1
i A

)

x− x
T

(

M
∑

i=1

x̃
T

aiP
−1
i A

)

x

+

(

M
∑

i=1

x̃
T

aiµ
T
i P

−1
i A

)

x (6.15)
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Likewise the second term can be expanded,

M
∑

i=1

(

αi(x̃) + (x− x̃)T ai

)

(x− µi)T P
−1
i b = x

T

(

M
∑

i=1

aib
T

P
−1
i

)

x +

(

M
∑

i=1

αib
T

P
−1
i

)

x

−
(

M
∑

i=1

bP
−1
i µia

T
i

)

x−
(

M
∑

i=1

x̃
T

aib
T

P
−1
i

)

x−
(

M
∑

i=1

αiµ
T
i P

−1
i b

)

+

(

M
∑

i=1

x̃
T

aiµ
T
i b

T
P
−1
i b

)

(6.16)

Now we combine these two parts,

x
TΘ(x)x + x

TΛx + βT x + c (6.17)

where,

Θ(x) =

M
∑

i=1

aix
T

P
−1
i A

Λ =

M
∑

i=1

[(

αiI− aiµ
T
i − x̃

T
aiI
)

A + aib
T
]

P
−1
i

βT =

M
∑

i=1

(

−αiµTi + x̃
T

aiµ
T
i

)

P
−1
i A+

M
∑

i=1

(

αib
T − b

T
P
−1
i µa

T
i Pi − a

T
i x̃b

T
)

P
−1
i

c =
M
∑

i=1

(

a
T
i x̃− αi

)

µTi P
−1
i b

The remaining terms on the LHS of the (6.13) can be condensed into a similar form given as

follows,

x
TΠx + γT x + d (6.18)

where,

Π = − λH
T

R
−1

HA− 1

2
H
T

R
−1

H

γT = λz̄
T

R
−1

HA− λb
T

H
T

R
−1

H + z̄
T

R
−1

H

d = log cR + λz̄
T

R
−1

Hb− 1

2
z̄
T

R
−1

z̄

Finally, (6.13) can be expressed as,

x
TΘ(x)x + x

TΥx + δT x + e = 0 (6.19)

where,

Υ = Λ+Π

δT = βT + γT

e = c+ d+ Tr(A)

The next step is to set the coefficients of the monomials (cubic, quadratic and linear) terms to

zero. This can be justified as (6.19) must hold for all values of x, which can be ensured by

setting the coefficients to zeros. Now we have two choices here to start with.
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6.1.1 Ignoring Θ(x)

In the first case, we ignore the cubic term and just consider the quadratic and the linear terms.

Then, Υ can be written as,

Υ = QA +

M
∑

i=1

aib
T

P
−1
i − λH

T
R

−1
HA− 1

2
H
T

R
−1

H (6.20)

where,

Qi =
(

αiI− aiµ
T
i − x̃

T
aiI
)

P
−1
i Q =

M
∑

i=1

Qi

Setting Υ to zero leads to

JA = K−
M
∑

i=1

aib
T

P
−1
i (6.21)

with,

J = Q− 2λK , K =
1

2
H
T

R
−1

H

Next, the same procedure is applied to δ,

δT =
M
∑

i=1

(

−αiµTi + x̃
T

aiµ
T
i

)

P
−1
i A

+

M
∑

i=1

(

αib
T − b

T
P
−1
i µia

T
i Pi − a

T
i x̃b

T
)

P
−1
i

+ λz̄
T

R
−1

HA− λb
T

H
T

R
−1

H + z̄
T

R
−1

H

=
M
∑

i=1

s
T
i A +

M
∑

i=1

b
T

Ui + λz̄
T

R
−1

HA− λb
T

H
T

R
−1

H

+ z̄
T

R
−1

H

= s
T

A + b
T

U + λz̄R
−1

HA− λb
T

H
T

R
−1

H

+ z̄R
−1

H

=
(

s
T + λz̄

T
R

−1
H
)

A + b
T
(

U− λH
T

R
−1

H
)

+ z̄
T

R
−1

H

(6.22)

where,

s
T
i =

(

−αiµTi + x̃
T

aiµ
T
i

)

P
−1
i s

T =
M
∑

i=1

s
T
i

Ui =
(

αiI− P
−1
i µia

T
i Pi − a

T
i x̃I
)

P
−1
i U =

M
∑

i=1

Ui



170 6 Flow solution for the sum of Gaussians based prior densities

This yields,

δT = f
T

A + b
T

G + m
T

(6.23)

with,

f
T = s

T + λm
T

G = U− 2λK

m
T = z̄

T
R

−1
H

By setting δT equal to zero in (6.23), bT can be written in terms of A,

b
T = −

(

f
T

A + m
T
)

G
−1 (6.24)

By inserting (6.21) into (6.24), we get

JA = K +

M
∑

i=1

ai

(

f
T

A + m
T
)

G
−1

P
−1
i

= K +

M
∑

i=1

aif
T

AG
−1

P
−1
i +

M
∑

i=1

aim
T

G
−1

P
−1
i (6.25)

Now using the vector identity,

vec (XYZ) =
(

Z
T ⊗ X

)

vec(Y) (6.26)

we can vectorize the equation(6.25) as below,

(I⊗ J)vec(A) = vec(K)

+
M
∑

i=1

(

(

G
−1

P
−1
i

)T ⊗
(

aif
T
))

vec(A)

+
M
∑

i=1

vec
(

aim
T

G
−1

P
−1
i

)

which leads to,

vec(A) = E
−1

(

vec(K) +
M
∑

i=1

vec
(

aim
T

G
−1

P
−1
i

)

)

(6.27)

where,

E =

[

(I⊗ J)−
M
∑

i=1

(

(

G
−1

P
−1
i

)T ⊗
(

aif
T
))

]

The matrix A from (6.27) is in vectorized form. First, it needs to be reshaped back into matrix

form. Once done, it can be inserted into (6.23) to get the vector b. This constitutes our first flow

equation, termed here as Gaussian Mixture Particle Flow-1 or GMPF-1.

fGMPF-1(x, λ) = A(λ)x + b(λ) (6.28)

By ignoring the cubic term, we have derived the flow with the matrix A and vector b being

independent of the state x, as originally assumed in the (6.4).
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6.1.2 Merging Θ(x) with the Υ

A second flow equation can be derive if the Θ(x) is not ignored, but it is merged with the

quadratic term such that,

Υ(x) = Λ + Π +Θ(x)

(6.29)

This makes the Υ matrix a function of the state x, which is given as,

Υ(x) = Q(x)A +
M
∑

i=1

aib
T

P
−1
i − λH

T
R

−1
HA− 1

2
H
T

R
−1

H (6.30)

with

Qi(x) =
(

aix
T
I+ αiI− aiµ

T
i − x̃

T
aiI
)

P
−1
i ,

Q(x) =
M
∑

i=1

Qi(x)

The rest of the derivation proceeds in the same way as in the previous case. The matrix A and

the vector b in the resulting flow equation will have spatial dependency, i.e. they depend not

only on the pseudo-time λ, but also on the state vector x. We term this flow as the Gaussian

Mixture Particle flow-2 or GMPF-2.

fGMPF-2(x, λ) = A(x, λ)x + b(x, λ) (6.31)

Checking the correctness of the derivation

The exact flow equation with Gaussian assumption is given by

fH(x, λ) = A(λ)x + b(λ)

with,

A(λ) = −1

2
PH

T (λHPH
T + R)−1

H

b(λ) = (I + 2λA)[(I + λA)PH
T

R
−1

z + Ax̄]. (6.32)

Now we check the correctness of the newly derived flow. In the case of the prior being a

single Gaussian i.e. g(x) = N (x|x̄,P), we will have θ = [1, 0, 0]T , α = [−1, 0, 0]T and

a = [0, 0, 0]T , µ = [x̄, 0, 0] and P = [P,0,0].

Q = −P
−1

J = −
(

P
−1 + λH

T
R

−1
H
)

E = I⊗ J (6.33)
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Therefore,

vec(A) = E
−1

vec(K)

(I⊗ J) vec(A) = vec(K)

vec (JA) = vec (K)

A = J
−1

K

leading to,

A = −1

2

(

P
−1 + λH

T
R

−1
H
)−1

H
T

R
−1

H (6.34)

which by the application of the matrix inversion lemma, can be written in the same form as in

(6.32). Similarly for b, we note that

U = −P
−1

G = −
(

P
−1 + λH

T
R

−1
H
)

f
T = x̄

T
P
−1 + λz̄

T
R

−1
H

which leads to,

b
T =

[

x̄
T

P
−1

A + z̄
T

R
−1

H (I + λA)
] [

P
−1 + λH

T
R

−1
H
]−1

(6.35)

Next, by taking the transpose of the equation (6.35) and with the assumption that PTAT = AP,

we can write,

b =
[

I + λPH
T

R
−1

H
]−1 [

(I + λA)PH
T

R
−1

z̄ + Ax̄
]

Again the inversion lemma leads to the familiar form. Please note that the assumption about the

symmetricity of the matrix product made above is also required for deriving the flow in (6.32),

as highlighted in the Appendix 3A.
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6.2 Implementation

In order to evaluate the performance of our new flow equations, we look for a scenario where

the prior density can be expressed by a GMM. Such a situation may arise in the case when the

process noise is non-Gaussian, but can be approximated through a Gaussian mixture, i.e.

p(wk) =

Nw
∑

i=1

ωiN (wk|νi,Qi) (6.36)

Also, we assume that the posterior density at the time k can be represented as p(xk|Zk) =
M
∑

j=1

θjkN (xk|µ̄jk , P̄jk ). As both the posterior and the transition densities are given by Gaussian

mixtures withM and Nw components respectively, the prior density at the time step k+1 will

consist of NwM integrals such that,

p(xk+1|Zk) =
Nw
∑

i=1

M
∑

j=1

ωiθ̄jk

∫

N (xk+1|f(xk) + νi,Qi)×N (xk|µ̄jk , P̄jk )dxk (6.37)

Here we have two issues at hand. First, as the integral is being carried out w.r.t. xk which

appears as an argument to the nonlinear function f, the individual components of the transition

density are no longer Gaussian. This means that the integrals in (6.37) generally can not be

evaluated analytically and therefore have to be approximated. Second, the number of terms in

the prior density increases geometrically with each time update step.

Algorithm 13 Gaussian Mixture Particle Flow - Time Update

1: procedure GMPF-TIMEUPDATE(p(xk|Zk))
2: Main steps:

1. SampleN (xk|µ̄jk , P̄jk ) to obtain {xl,jk }Ll=1 ∀j.
2. SampleN (xk+1|f(xl,jk ) + νi,Qi). to obtain x̂

l,m
k+1 ∀i, j | m = (i− 1).Nw + j.

3. Evaluate the mean µ̂mk+1 and the variance P̂mk+1 , ∀m using sample based estimates.

4. Get the weight of the components as

θ̂mk+1 =
ωiθ̄jk

Nw
∑

i=1

M
∑

j=1

ωiθ̄jk

∀m.

3: return {x̂l,mk+1}
L|Nw .M

l=1|m=1 ∼ p(xk+1|Zk)
4: end procedure

Therefore, some mechanism has to be adopted to keep the total number of components fixed

or under a certain threshold. Integrals like the ones appearing in (6.37) can be handled in two

ways. In the first approach, cubature rules can be used together with the deterministic sampling

to perform the time update step e.g. in the Cubature Kalman Filter [AH09]. The other option is

to use Monte Carlo sampling to evaluate the integrals. One such method has been described by
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Kotecha and Djuric in their paper on Gaussian sum particle filtering [KD03]. In the following,

we use the second approach to perform the time update step, which is summarized in Algorithm

13. Here L refers to the number of particles per component.

We see that after performing the time update, the number of components is increased from M
to NwM . Once samples from the prior density have been obtained, the measurement update is

carried out via log-homotopy flow given by the (6.28) or (6.31). After the particles have been

moved to their posterior locations, the next task becomes evaluating the posterior distribution

parameters. Again, we follow the method used in the [KD03] for obtaining the posterior GMM

parameters. The final step involves reducing the number of components. This can be accom-

plished in two ways, either by resampling the posterior Gaussian mixture such that only the M

strongest components are kept, or by merging the components based on some distance based

criterion. The first has been described in [KD03], while we find the second approach advocated

in [ALS07]. The distance between two components {θi, µi,Pi} and {θj , µj ,Pj} is defined as,

di,j =
θiθj
θi + θj

(µi − µj)P
−1 (µi − µj)T (6.38)

where P is the overall covariance. The procedure is started by merging the two components

having the shortest distance, and is then continued. Merging preserves the overall mean and the

covariance of the distribution. Therefore, the posterior density can be represented as,

p(xk+1|Zk+1) =
M
∑

i=1

θ̄mk+1N (xk|µ̄mk+1 , P̄mk+1) (6.39)

The measurement update procedure is described in the Algorithm 14.

Algorithm 14 Gaussian Mixture Particle Flow - Measurement Update

1: procedure GMPF-MEASUREMENTUPDATE({x̂l,mk+1}
L|Nw .M
l=1|m=1)

2: Main steps:

1. Integrate flow ODE (6.28) or (6.31) over the pseudo-time λ ∈ (0, 1], to move particles

to posterior locations x̄
l,m
k+1.

2. Update the GMM parameters.

3. Reduce the number of components via re-sampling or merging based on the distance

criterion (6.38).

3: return p(xk+1|Zk+1)
4: end procedure

6.3 Numerical Results

In this section, we describe the working our new flow. We divide the description into two parts.

First, using a simple example we gain more insight into the measurement update using our new

flows. This will help understand the benefits and potential issues. Next, using a 1D example of

a nonlinear process and measurement model, we present results for the GMPF filters compared

to those of a DHF based on the exact flow and a SIR-PF with 500 particles. The particular
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number for the SIR-PF particles is chosen, because the filter seem to saturate around this value.

Increasing it further does not lead to any significant improvement in the performance.

First, we study the working of our two new flow equations. For that we consider the tri-modal

form of the prior density,

p(xk+1|Zk) =
3
∑

i=1

wiN (xk+1|µi, Pi) (6.40)

where w = {0.6, 0.25, 0.15}, µµµ = {−10, 4, 10} and P = {1, 0.5, 3}. Also the likelihood is

given by,

p(zk+1|xk+1) =
1√
2π

exp

[

−0.5
(

zk+1 −
x2
k+1

20

)2
]

(6.41)
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Figure 6.1: (a) Prior density, (b) Likelihood and (c) the Posterior density for the toy model.

where zk+1 = 3. We see that the prior density is given by a tri-modal GMM, while the likeli-

hood is bi-model for the given set of parameters. We generate 100 samples from the prior den-

sity and apply equations (6.4), (6.28) and (6.31) separately to propagate the particles through

the pseudo-time loop. We discretize the λ into 30 geometrically spaced points between 0 and 1.

Below, we plot the three flow values for the particles vs. the pseudo-time values.
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Figure 6.2: (a) Exact flow, (b) GMPF-1 and (c) GMPF-2 vs. λ

We see some interesting trends here. The exact flow has very large dynamic range when com-

pared to the other two flows, thus suggesting a requirement for very fine λ discretization. The

flow values for GMPF-2 are more concentrated for all value of λ, suggesting lesser variance of

the particles. We see relatively large value of the flow for some particle, but they are not that

many. Finally, we plot the posterior particles super-imposed on the posterior density.
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Figure 6.3: True posterior density with the particle spread for (a) GMPF-1 and (b) GMPF-2.

Here, we see the full power of our new flows. The exact flow clearly fails to capture the mode

2, located at the x=4. Also, the spread about the two captured mode less than what is actual,

suggesting the inadequacy of the flow equation to fully capture the multi-modal dynamics. On

the other hand, the other flows nicely capture the full structure of posterior density, by not only

spreading the particles around the three modes but also encapsulating the information regarding

the variance of the individual modes. GMPF-2 is better than 1 as its mode variance is close to

the actual.

In the next part of this section, we consider a univariate non-stationary growth model, similar

to the one studied in [KD03].

xk+1 = 0.5xk + 25
xk

1 + x2
k

+ 8 cos(1.2k) +wk (6.42)

yk+1 =
x2
k+1

20
+ vk (6.43)

where wk is the bi-modal process noise distribution, represented by a GMM such that p(wk) =
0.5N (wk| − 2, 3) + 0.5N (wk|2, 3), while vk is the measurement noise given by N (vk|0, 1).
We compare the performance of DHF based on the variants of our new flows, employing

both resampling and merging for reducing the number of components. They are named here

as DHF-GMPF-1-resamp, DHF-GMPF-1-merge, DHF-GMPF-2-resamp and DHF-GMPF-2-

merge. We use 3 components to represent the initial density p(x0) i.e. M = 3. Mean and covari-

ance for individual components are chosen such that the overall mean is zero and covariance is

25. The number of particles per component, L, is chosen to be 50. We use 30 geometrically

spaced λ points between 0 and 1. Linearization of the process model h(x) and the variable

α(x) is carried about individual particles. In addition to the variants of our new flows, we also

study the performance of the Gaussian prior based exact flow with 100 particles (DHF-EF), SIR

particle filter with 500 particles (PF-500) and the Extended Kalman filter (EKF). We simulate

the scenario for a total of 50 times, each running for 100 time instances. Increasing the number

of particles beyond the values stated for the DHF-EF and SIR-PF, does not enhance the perfor-

mance significantly. Also, the choice of parameters for our new flows is made in part to achieve

a trade-off between the performance and the computational complexity. In Figure 6.4, we plot



178 6 Flow solution for the sum of Gaussians based prior densities

the time averaged root mean square error (RMSE) against the realizations (simulation index).
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Figure 6.4: Time averaged RMSE vs. realizations

We note that the lowest error is given by the DHF-GMPF-2-merge, closely followed by PF-500.

This is followed by DHF-GMPF-2-resamp and other the variants of DHF-GMPF-1. There are

three observations to be made here. First, the filter based on the inclusion of the cubic term in

the flow leads to a better performance. Secondly, merging of components seems to be a better

solution as compared to the resampling, and thirdly, differences between all GMPF versions

and PF-500 are not significant. Next we find that DHF-EF, in comparison to the GMPF and PF,

exhibits a large error. This further supports our claim, that a flow based on the single Gaussian

prior assumption might be inadequate for scenarios involving multi modal densities. EKF fails

to track the state and has the highest error amongst all. RMSE for the EKF is not shown in

Figure 6.4.

Method Avg. RMSE Var. RMSE

DHF-GMPF-1-resamp 3.04 7.02

DHF-GMPF-1-merge 2.99 6.93

DHF-GMPF-2-resamp 2.97 5.67

DHF-GMPF-2-merge 2.77 5.42

DHF-EF 5.08 6.20

EKF 19.2 14.24

PF-500 2.86 3.74

Table 6.1: Comparison for different filters

Furthermore, we note that the lowest value for the error standard deviation is given by the par-

ticle filter. DHF-GMPF-2-merge fares second, followed by the other variants of DHF-GMPF.

This shows that error variability for our newly proposed filters is slightly higher when compared

to the standard particle filter. EKF is the quickest of all filters, taking 0.004 second per iteration.

Next comes the PF-500 which takes about 0.009 second, followed by the DHF-EF with 0.013
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second, while the DHF-GMPF-2-merge takes about 0.04 second per iteration.

6.4 Conclusions

In the log-homotopy based particle flow filters, the prior density is usually approximated by a

single Gaussian. This assumption may be inadequate for scenarios with highly nonlinear models

and/or non-Gaussian noises. In this chapter, we have derived new Log-homotopy based flows,

for which the Gaussian assumption is relaxed. Instead, we model the prior density as a Gaussian

mixture. This leads to several new particle flow variants. We have studied one dimensional

systems with nonlinear process and measurement models. The process noise is chosen to be

non-Gaussian, represented by a mixture of two equally weighted Gaussian components. We

show that the filters based on our new flows have same RMSE as the optimal particle filter.

On the other hand the error variability for these filters is slightly high. Several factors might

affect the overall performance e.g. the number of components M , the number of particles per

components L, pseudo-time discretization ∆λ, choice of discretization points for h(x) and

α(x), choice of numerical integration etc.
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Chapter 7

Conclusion & Future works

State estimation of naturally occurring or man made dynamical systems is an ubiquitous prob-

lem. Recursive Bayesian estimation offers an intuitive framework for the inference of hidden

states of a dynamical system based on measurements. RBE consist of two steps: prediction

and correction. The correction step, also called the measurement update or the data assimila-

tion step is of the main interest. Measurements generated from the most dynamical systems are

typically related to states in a nonlinear manner. Additionally, they can also be corrupted by the

presence of non-Gaussian noises. This presents a challenge to the traditional state estimation

schemes like SMC, since they suffer from issues like the weight degeneracy and the curse of

dimensionality. Weight degeneracy could occur when the prior density and the likelihood have

very small overlapping region, e.g. the likelihood is peaked. The curse of dimensionality, on

the other hand, occurs due to the geometric increase in the number of particles required to ade-

quately represent probability densities, with a linear increase in the state space dimensionality.

These two problems can get coupled for some particularly degenerate problems. The progres-

sive inclusion of measurements has been cited in the literature as one of the methods to combat

these problems. The main concept is a gradual or step by step inclusion of the observational

data during measurement update step. It is hoped that this would help lessen the degeneracy,

and could also help against the curse of dimensionality to a certain extent.

The idea is rather recent, a plethora of literature has already been published. All of these

methods come with their own sets of specific assumptions and simplifications, and they have

garnered varied level of success. While some are simple in their operation, other can be too bur-

densome in terms of the computation. The log-homotopy based particle flow class of method,

also named DHF after their inventor, is a similar method of nonlinear/non-Gaussian data as-

similation that also introduces the effect of measurements gradually. The main idea behind it,

is the introduction of a synthetic time, in which particles are moved from their prior locations

to their corresponding posterior ones. An ordinary differential equation, also called the flow

equation, dictates the motion of the particle in the artificial time. DHF, even though not new in

the literature, is still not fully explored in detail. It lacks the in-depth theoretical and numerical

analysis that the other contemporary filters have gone through. Especially, the implementation

details are very application specific. In this thesis, we have pointed out the key factors affecting

the performance of a generic DHF. The highlighted factors have been studied individually in

the detail, and possible suggestions for the improvement have been made with regards to each
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of them. This includes different methods for the pseudo-time discretization, different integra-

tion schemes, estimation of the prior covariance matrix, and the particle redrawing. We have

compared the results for these different schemes by simulating a challenging, nonlinear and

non-Gaussian scenario. It has been shown that a DHF employing the shrinkage estimation and

properly done redrawing outperform a simple SMC method, i.e. a bootstrap particle filter, with

considerably lesser execution time.

Next, we looked into the Bayesian processing of massive data. The massive data approach pro-

vides the possibility for the extraction of more information content, given a larger set of mea-

surements, thus increasing the estimation accuracy. However, this comes with enhanced com-

putational requirements, hence limiting the use of many standard estimation methods such as

SMCMC. The source of the problem can be pinpointed to the evaluation of the likelihood func-

tion, which even in the case of factorization, presents a significant processing challenge. Many

solutions have been proposed to solve or bypass this bottleneck. One of these approximate

method, namely confidence sampling is of particular interest. Confidence sampling squeezes

the original observational data set to a smaller one to be processed by the MCMC sampler,

while still maintaining theoretical guarantees. It is based on the use of the so called concen-

tration inequalities, which can be used to theoretically bound the maximum deviation of the

approximated target density from the true target. When used in an MCMC setting, the use

of such inequalities yields a stopping criterion for the sampling procedure. Though the target

density is still approximated, there are potential processing gains achieved by limiting the eval-

uation of the likelihood to fewer terms, together with the guarantee ensuring that the sampled

density is always within a specified distance from the actual target density. In this work, we

have expanded on an earlier work done by Freitas et.al. in [FSM15] and have combined the

idea of confidence sampling based MCMC together with the log-homotopy based particle flow

filters (DHF), in that the later is used to construct a better proposal density to be used within

the former. We have termed our newly proposed method as the adaptive SMCMC with parti-

cle flow based proposal or ASMCMC-DHF. We have thoroughly analyzed the performance of

ASMCMC-DHF for the processing of massive data under different settings of algorithm and

system parameters. We have noted that our new scheme can handle the effect of the increasing

dimensionality in a graceful manner. Also, it has been shown that our method not only out-

performs the well established methods like the particle filter, but also performs better than its

parent algorithm, ASMCMC.

Our next contribution is to develop a grid based nonlinear filtering algorithm, by combining the

log-homotopy based flow with the tensor decomposition based solution of the Fokker-Planck

equation (FPE), as developed by W. Sun and M. Kumar ( [SK14], [SK15a] and [SK15b]).

Expressing the probability densities and the FPE in the Canonical/Parallel factor Decomposition

(CPD) form has been identified as the key in fighting the curse of dimensionality in discretized

problems. A cost function comprising of FPE and the associated constraints is formed, which is

then minimized. The resulting matrix-vector equation is solved via the regularized alternating

least squares (R-ALS), yielding the basis vectors. The nonlinear filtering algorithm has the

time update step based on the solution of the tensorized FPE w.r.t.ṫhe real time. The FPE is

solved for the second time for the measurement update step, though this time w.r.t.ṫhe pseudo-

time parameter λ. This is achieved by combining the tensor framework with the log-homotopy

based particle flow. We have named our newly devised filter as, the tensorized filter. For a

simulated scenario, we have shown that our newly devised filter approaches the Crámer-Rao
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lower bound, albeit at the cost of significant computational time.

As our final contribution, we have expanded the existing mathematical framework of the log-

homotopy based particle flows. This is done by generalizing the Gaussian assumption for one

of the more elegant flows, namely the exact flow. We start by modeling the prior density as a

sum of Gaussians. This leads to several new particle flow variants with the same form as the

exact flow. Based on these new flows, we have derived two new variants of the DHF. We show

that the filters based on our new flows have significantly improve the exact flow in the case of a

non-linear filtering problem

7.1 Future works

In this section, we will point towards some of the future extension of the current work.

Inclusion of stochastic term in the flow equation

Particle flow equations derived by F.Ḋaum and J.Ḣuang, and the ones derived in Chapter 6 of

this thesis are basically deterministic maps. Given an initial condition, one can exactly know

about the final state of a particle. These equations are not mathematically exact because of the

simplifying assumption made in their derivation. Hence, even though fulfilling the basic re-

quirements for the Bayesian assimilation of the data and working fine for the studied examples,

it would be interesting to see how the flows perform with the addition of a stochastic term. The-

oretically the stochastic term could cater for the inherent imperfectness of the flows that could

pose problems for extremely challenging real life applications. In a recent work [DHN16], the

stochastic term has been used in context of the log-homotopy based particle flow. As the flow

equation is no longer deterministic, this requires the use of stochastic integration methods. A

very thorough discussion on the integration of stochastic differential equations can be found

in [Cro15].

Improving the performance of the tensorized filter

In the discussion and implementation of the tensorized filter, we have only used the exact flow.

This is because it can readily be decomposed into a separable form, unlike the other flows,

where ALS algorithm might have to be run to get them into a similar format. This would lead

to an increase in the processing time. However, as noted in Chapter 3, the non-zero diffusion

constrained flow performs better than the exact flow, particularly in the non-Gaussian cases.

Therefore, it would be worth investigating its performance when used in a tensorized frame-

work. This might also necessitate the use of other methods to solve the quadratic optimization

problem to reduce the processing time. We mentioned several such methods in Chapter 6, such

as the enhanced line search (ELS) [RCH08], replacement of the ALS iterations by several joint

diagonalization problems and the subsequent matching to get the best estimates of the factor

matrices [RH08], a semi-algebraic framework for approximate CPD via simultaneous matrix

diagonalization and generalized unfolding (SMD-GU) [RSH12] and a semi-algebraic tensor

decomposition based on the joint eigenvalue decomposition [LA11]. In [TPC16] a new algo-

rithm for solving ALS problems has been proposed that is based on the random partitioning of

the factor matrices such that each of those portion is individually updated. It can be conjectured



184 7 Conclusion & Future works

that a significant speed up in the computation can also be achieved by using dynamic grid adap-

tation due to the relatively smaller domain involved. One idea is to use the concept described

in [CBS00] for moving the grid by computing the significant domain based on the Chebyshev

inequality. Another possible approach is to use sparse grids, as defined and used in [KS13]

and [Gar01]. It is hoped that for higher dimensional nonlinear/non-Gaussian problems, the full

power of the tensor based approach can be exploited and the extra computational cost can be

justified by the higher level of accuracy achieved.

Better approximation of nonlinear functions in DHF-GMPF

We have used a first order linear approximation for the variable α(x) and the measurement

functions ψ(x) in the derivation of the Gaussian mixture particle flow. It would definitely be

interesting to introduce the quadratic terms in these approximations, as it could increase the

performance of the new flows in systems with strong non-linearities.

Flow with Likelihood also modeled through a sum of Gaussians

Finally, as a natural extension of our latest work, a more general likelihood function could also

be modeled as a sum of Gaussians and further new flow equations can be derived.



Bibliography

[AH09] I. Arasaratnam and S. Haykin. Cubature Kalman Filters. IEEE Transactions on

Automatic Control, 54(6):1254–1269, June 2009.
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