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Abstract

Convergence of exponentially advancing technologies is driving medical research with life

changing discoveries. On the contrary, repeated failures of high-profile drugs to battle
Alzheimer’s disease (AD) has made it one of the least successful therapeutic area. This
failure pattern has provoked researchers to grapple with their beliefs about Alzheimer’s
aetiology. Thus, growing realisation that Amyloid-f and tau are not ‘the’ but rather ‘one of
the’ factors necessitates the reassessment of pre-existing data to add new perspectives. To
enable a holistic view of the disease, integrative modelling approaches are emerging as a
powerful technique. Combining data at different scales and modes could considerably
increase the predictive power of the integrative model by filling biological knowledge gaps.
However, the reliability of the derived hypotheses largely depends on the completeness,
quality, consistency, and context-specificity of the data. Thus, there is a need for agile

methods and approaches that efficiently interrogate and utilise existing public data.

This thesis presents the development of novel approaches and methods that address
intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-
known AD candidates using highly curated and precise knowledge derived from integrated
data. Here much of the emphasis is put on quality, reliability, and context-specificity. This
thesis work showcases the benefit of integrating well-curated and disease-specific
heterogeneous data in a semantic web-based framework for mining actionable knowledge.
Furthermore, it introduces to the challenges encountered while harvesting information from
literature and transcriptomic resources. State-of-the-art text-mining methodology is
developed to extract miRNAs and its regulatory role in diseases and genes from the
biomedical literature. To enable meta-analysis of biologically related transcriptomic data,
a highly-curated metadata database has been developed, which explicates annotations
specific to human and animal models. Finally, to corroborate common mechanistic patterns
— embedded with novel candidates — across large-scale AD transcriptomic data, a new

approach to generate gene regulatory networks has been developed.

The work presented here has demonstrated its capability in identifying testable mechanistic
hypotheses containing previously unknown or emerging knowledge from public data in

two major publicly funded projects for Alzheimer’s, Parkinson’s and Epilepsy diseases.
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Zusammenfassung

Die Konvergenz exponentiell fortschreitender Technologien treibt die medizinische
Forschung mit lebensverindernden Entdeckungen voran. Andererseits das wiederholte
Versagen von hochkardtigen Medikamenten gegen die Alzheimer-Krankheit hat sie zu
einem der am wenigsten erfolgreichen Therapiegebiet gemacht. Dieses Versagensmuster
hat Forscher dazu veranlasst, sich mit ihren Uberzeugungen iiber die Alzheimer-Atiologie
auseinanderzusetzen. Die wachsende Erkenntnis, dass AP und tau nicht die Faktoren,
sondern einer der Faktoren sind, macht eine Neubewertung bereits vorhandener Daten
erforderlich, um neue Perspektiven zu er6ffnen. Um eine ganzheitliche Betrachtung der
Krankheit zu ermdglichen, entwickeln sich integrative Modellierungsansitze zu einer
wirkungsvollen Methode. Die Kombination von Daten aus verschiedenen Ebenen und
Modi wird die Vorhersagekraft des integrativen Modells erheblich erhéhen, indem
biologische Wissensliicken geschlossen werden. Die Zuverlédssigkeit der abgeleiteten
Hypothesen héngt jedoch in hohem Mafle von der Vollstindigkeit, Qualitit, Konsistenz
und Kontextspezifitit der Daten ab. Daher bedarf es agiler Methoden und Ansitze, die

offentlich verfiigbare Datensdtze effektiv und effizient abfragen und nutzen.

Diese Arbeit stellt die Entwicklung neuer Ansdtze und Methoden vor, die sich mit
wesentlichen Fragen der Datenintegration und -analyse in der Alzheimer-Forschung
befassen. Sie zielt auf die Priorisierung von weniger bekannten Alzheimer-Kandidaten mit
Hilfe von hochgradig kuratiertem und prizisem Wissen, das aus integrierten Daten
gewonnen wird. Dabei wird der Schwerpunkt auf Qualitit, Zuverldssigkeit und
Kontextspezifitit gelegt. Diese Arbeit zeigt den Nutzen der Integration gut kuratierter und
krankheitsspezifischer heterogener Daten in ein semantisches web-basiertes Framework
fir die Gewinnung von handlungsfahigem Wissen. Dariiber hinaus werden die
Herausforderungen bei der Extraktion von Informationen aus Literatur und
transkriptomischen Ressourcen vorgestellt. Modernste Text-Mining-Methodik werden
entwickelt, um miRNAs und ihre regulatorische Rolle bei Krankheiten und Genen aus der
biomedizinischen Literatur zu extrahieren. Um die Metaanalyse von biologisch verwandten
transkriptomischen Daten zu ermdglichen, wird eine hochgradig kuratierte Metadaten-
Datenbank entwickelt, die Annotationen spezifisch fiir menschliche und tierische Modelle
bereitstellt. ~ SchlieBlich  wird ein neuer Ansatz zur Generierung von

Genregulationsnetzwerken entwickelt, um gemeinsame mechanistische Zusammenhénge
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nachzuweisen, die mit neuartigen Kandidaten in umfangreichen transkriptomischen

Alzheimer-Daten eingebettet sind.

Die hier vorgestellte Arbeit hat gezeigt, dass sie in der Lage ist, testbare mechanistische
Hypothesen zu identifizieren, die bisher unbekannte oder neu entstehende Erkenntnisse aus
bestehenden offentlich verfiigbare Daten enthalten. Diese Daten stammen aus zwei
offentlich finanziert Projekten, die sich mit Alzheimer-, Parkinson- und Epilepsie-

Erkrankung beschéftigen
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Glossary

This glossary provides information on the tools applied in this thesis. Further information

on the listed tools can be found under the URLs provided.

A software platform for visualization and analysis of complex
Cytoscape biological networks along with integration of experimental of data

http://www.cytoscape.org/

A text annotation tool integrated in the Protégé for manual
Knowtator information extractions tasks

http://knowtator.sourceforge.net/index.shtml

A named entity and concepts recognition tool used in the field of life

sciences
ProMiner ) o )
https://www.scai.fraunhofer.de/de/geschaeftsfelder/bioinformatik/pr

odukte/prominer.html

A knowledge representation framework for ontology development
Protégé and management

https://protege.stanford.edu/products.php

A semantic search engine for biomedical concepts and entities from

scientific literature using comprehensive biomedical terminologies
SCAIView . ‘

and disease ontologies

https://www.scaiview.com/en/introduction.html

A SQL-based relational database management system
MySQL
https://www.mysqgl.com/

A leading knowledge management platform that integrates data

storage and data mining applications needed for translational research
tranSMART )

and genomic research

http://transmartfoundation.org/
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Chapter 1 Introduction

The irreversible and debilitating nature of neurodegenerative diseases (NDD) — with no
cure — has made it a daunting medical and socio-economic issues of our time. A focused
interdisciplinary effort to transform our biological understanding of the brain, driven by
technological advancements and large-scale data, aims to treat and eradicate NDDs. Today,
it is possible to sequence a human genome in a day with cost of approx. $1000 compared
to the cost of $3 billion and several years of effort needed for the first human genome
sequencing. Yet, the multifactorial nature of these diseases has made it difficult to unravel
its molecular underpinnings; leading to repeated drug failures. Thus, innovative paradigms
are needed to discover meaningful players and gain biological insights from high

dimensional feature space.

1.1 Alzheimer’s disease: A looming global crisis

NDDs share a common property of progressive dysfunction and loss of neurons, which is
the major cause of motor (ataxia) and mental dysfunction (dementia). In 2016, 47 million
people were demented with an estimated global cost of $818 billion [1]. Owing to 100%
drug attrition rate in the last two decades' [2], WHO has recognised dementia as the “public
health priority” [3]. Alzheimer’s disease (AD) is the most prevalent form of NDD,
representing approximately 60-70% of the dementia cases. This global epidemic is
currently the 6™ leading cause of death and costs $160 billion in the USA alone, which will
spike to $1 trillion by 2050 [4]. Moreover, AD prevalence has increased from less than 1%
to 2.5% as the first baby boomers turned 65 [4]. If unaddressed, AD’s economic burden

will simply become unsustainable, driving millions below the poverty line.

AD is characterised clinically by progressive cognitive decline and neuropathologically by
the presence of intraneuronal neurofibrillary tangles (NFTs) and extracellular amyloid-beta
(AP) deposits — hallmark pathological features [5,6]. It begins with slowly progressing
memory loss and advances to deteriorate higher intellectual and cognitive abilities, namely

language, recognition, and personality [7]. The actual AD neuropathology(-ies) is thought

! https://www.ohe.org/publications/dementia-rd-landscape (this and subsequent URLs have been last
accessed on 15" March 2018)
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to begin 2025 years before any apparent clinical symptoms, making it difficult for early
diagnosis and treatment [8]. Moreover, a very thin line delineates the memory loss in the
initial phase of normal ageing and AD [9]. This awareness has recently led to the refinement
(first revision since 1984) of current AD guidelines and diagnostic criteria [10]. Thus, based
on the disease continuum, AD is now classified as: (i) preclinical AD (newly defined stage)
represents asymptomatic individuals with evidence of amyloidosis, synaptic dysfunction,
and not overtly evident cognitive changes [11] (ii) in AD-MCI stage noticeable changes in
memory and thinking are observed, disrupting day-to-day activities [12] (iii) AD dementia
causes severe impairments of memory, thinking, and behaviour, needing support in

everyday life [13].

Furthermore, two major categorisations of AD cases are: (i) Based on the inheritance
pattern — familial and sporadic (ii) Based on the age of onset — early-onset AD (EOAD)
and late-onset AD (LOAD). Familial AD exhibits the mendelian autosomal dominant
pattern of inheritance attributed to several and varied highly penetrant mutations in more
than 20 genes [14]. Accounting for 95% of the AD cases, sporadic AD is the commoner
form whose precise aetiology is not yet known. However, it is attributed to multiple
inheritances that include low penetrant genetic variants and non-genetic factors such as
environmental risks [15]. Since sporadic AD mostly occurs after the age of 65 years, it is
synonymously used with LOAD. EOAD accounts for 1-2% of all the AD cases with age of

onset earlier than 65 years and accounts for 10% of familial AD cases [16,17].

1.2 AD etiopathogenesis

Although the AD cause-consequence debate still continues, many researchers have tried to
elucidate its insidious features since its first description by Alois Alzheimer in 1907 [18].
Indeed, with the advent of molecular revolution in the mid-1980s, identification of AD
genetic risks offered a promise of more rapid development in unravelling the AD aetiology
[15]. However, some of the elementary questions asked decades ago about A} and NFTs,

although highly topical, remains unanswered.

1.2.1 Amyloid cascade hypothesis

At this point of time, the central role of “neurotoxic AP plaques” is very strong in AD
pathogenesis and believed to be “too big to fail”’; Joseph et al. described it as the “Church
of the Holy Amyloid” [19,20]. It has long been hypothesised that the core of AP plaques

2



AD etiopathogenesis

formation is due to disordered proteolytic actions of o-, y- and P-secretases on APP
processing leading to abnormal folding of AP peptides, aggregating as insoluble plaques.
Hardy and Allsop [21] postulated this AR dyshomeostasis as the primary event in AD
pathological chain, known as the amyloid cascade hypothesis (ACH). Nonetheless, it was
later transpired that (a) the mutations in the familial AD genes caused overproduction of
AP 42 peptide (b) e4 allele of APOE (APOE4) gene is a potent risk factor [22] (c) decreased
AP clearance was observed in LOAD cases [7] (d) soluble AP oligomers were primary
neurotoxic agents [23] and (e) trisomy 21 (Down syndrome) led to overexpression of APP
gene [24]. Most researchers accept that the downstream effect of AP plaques initiate tau
hyperphosphorylation, leading to NFT formation, further synapse destruction, and
subsequently causing neuronal death. However, studies also report that A accumulation is

observed in elderly individuals who show no signs of cognitive decline [25].

1.2.2 Tau hypothesis

The tau hypothesis identifies hyperphosphorylated tau protein as the possible culprit of AD
pathogenesis and that tau tangles (also known as NFTs) occur prior to A plaques formation
[26,27]. Hyperphosphorylated tau loses its ability to bind to microtubules causing it to
aggregate into insoluble tangles (known as paired helical filaments (PHFs)) to eventually
form NFTs”. There is good evidence that hyperphosphorylated tau and its aggregates lead
to the disruption of axonal transport, resulting in synaptic dysfunction [28]. Recent imaging
studies, involving a large autopsy cohort (3618 brains), have linked tau deposits more
closely to age at onset of cognitive impairment, disease duration and dementia than A}
deposits [29]. Thus, tau is a speculated to be a better and more robust predictor of different

stages when patients transition from healthy to severe AD [30].

1.2.3 Alternative hypotheses

With the passage of time, growing evidence reject the linear structure of either AP or tau
being the singular cause in the cascade of AD pathogenesis. Conversely, we should not

ignore the entirety of these hypotheses, rather revisit them with an assumption that they are

> NFTs are bundles of PHFs found in the cytosol of neurons
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the consequence of paradoxical associations. To better unify and reconcile the existing

hypotheses, alternative perspectives are proposed [31].

A steadily growing body of evidence suggests that the brain may compensate for the effect
caused by Af, but the combined work of A and tau drive the dramatic decline of healthy
neurons [32]. The duo effect takes place either when tau renders neuronal dendrites to A
toxicity, or AP and tau synergistically amplify each other’s toxic effect [28]. Some
researchers have repositioned the causal molecular events of AD within the ageing
spectrum as the histological boundaries between them are not absolute. Thus, AD’s onset
could represent the failure of the ageing brain to revert back the altered cell functioning due

to events such as injury, infection, stress, negative life event, to name a few [33,34].

A recent study by AddNeuroMed Consortium [35], posits mitochondrial dysfunction as the
primary pathology; reported altered mitochondrial genes in blood before any clinical
diagnosis of AD. Furthermore, strong indications of oxidative stress and DNA damage in
early AD pathology due to redox imbalance is reported [36,37]. Several neuroscientists
argue that continuum of abnormalities in the cholinergic system [38], autophagy and/or
lysosomal pathways [39,40], hormonal imbalance [41] and Ca2+ homeostasis [42] lies in
the core of AD pathology. The vital role of neuroinflammation [43,44], highly active innate
immune system [45,46], and disrupted insulin signalling [47,48] are strongly argued.
Figure 1.1 depicts this conceptualization using three of the major AD contributing factors,

refer [9,50,52,53].

Evidence suggests that some or all the above-mentioned events may augment to A3 plaque
formation and tau hyperphosphorylation, forming a vicious cycle that promotes AD
pathogenesis [49,50]. Given this, Prof. Garrett proposes to approach the AD pathology as
‘A Complexity Theory’ where the effects of several causal variances are seemingly
independent but rely on each other in ways, yet unknown, to bring about systematic

malfunctions linking to the disease symptoms [51].

1.3 Status quo of AD therapeutics

Since 1960, ACH hypothesis has maintained supremacy in driving AD drug development
strategies. Additional burden has been casted by gnawing controversies and major gaps in

the basic biology and clinical pathophysiology. Despite huge investments, AD is one of the
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Figure 1.1: Overview of several factors that contribute to the clinical symptoms of AD.

Three major AD contributing factors are represented in the ovals: cellular imbalances (orange), genetic risk
factors (green), and modifiable and non-modifiable factors (blue). Genes emphasized in green indicate their
role in EOAD. The intersection between any two ovals remain empty to depict interaction between factors

in ways currently unknown, contributing (trigger symbol) to common AD symptoms (in red).

least successful therapeutic areas with 0.5% success rate and with no blockbuster drug yet
[52]. Many pharma companies are wary about investing significantly (both time and
money) in AD after a series of high profile late stage failures, questioning investment in
AD research [53]. To increase the probability of being successful and to speed up the hunt
for AD’s holy grail, several public-private initiatives such as the Innovative Medicines
Initiative (IMI)’ are providing platforms for collaborative projects to boost pharmaceutical
innovation. Given the burning need for AD (prevention) therapy, FDA is now granting fas¢-
track designations to potential interventions to reach the global deadline set in G8 summit
— to prevent or effectively treat AD by 2025 [54,55]. Several countries have joined this
global fight by encouraging a number of key strategic initiatives [55,56].

® http://www.imi.europa.eu/content/home




Introduction

Subject Characteristics (Shape)
A Asymptomatic-Healthy

Disease-Modifying
Immunotherapy

Mechanism of Action (Color)
. Amyloid-related

v Asymptomatic-High Risk

O wc1/ Prodromal AD/ Mild me

PHASE |
Ea

. Tau-related

) others

D AD Dementia @ kHK6640
[ AaDvac1

@ mEeDI1814.

O ro4602522
OAtomnxetine
O suvn-502
O pr-05212377
[0 B1409306

O[O paois

. Methylene Blue

O ave-78

D Pimavanserin

O Piromelatine

© PXT00864
O mk-7622

@ B1409306

V Crenezumab

[Albumin + 1vi6 ¥/ caD106

O Ac-1204
D Aripiprazole

D Brexpiprazole
[ Lu AE58054

[X] orRm-12741 O sa7445

O Lithium

@ 1.¥2599666 + Solanezumab

PHASE 11

Qi

UB-311 © BaN2401

PHASE 111

' Gantenerumab

.v Solanezumab

6

Symptomatic A O renz201
Agents O Levetiracetam [0 nabilone Oazp3293 Orrpass
[ pr-05212377 [ rvr-101 V Njsa861911
[ TrRx0237

O Masitinib

OO vx-7a5 [arp

© jNj-54861911

V INj54861911

o Allopregnanolone

.Aducanumab 0MK-8931
OVPioglitazone
V cnpszo0 [0 cv-971
OaALzT-0P1a/b

! Nilvadipine Olnsulin

D Exenatide

O siar A onps20 O Metformin
O Riluzole [l TPi-287 EIMK-8931
OTelmisartan GM-CSF

A\ PF-06751979

© LuAF20513
LY3002813

I Tpi287

[Oanavexz-73

DBenfotiamine ACT1812

© Azpos30

Or-817MA

D Bryostatin 1
o Cilostazol

O [OE2609

O Insulin glulisine
D Insulin detemir

DFormoterol A&B
Q Poo12
o Liraglutide
D Rasagiline

Disease-Modifying
Small Molecules

v Telmisartan

Figure 1.2: Overview of the ongoing clinical trials for AD therapeutics, reported according to their

mechanism of action, phase of study, type of agents and targeted subjects.

Reproduced from Cumming et al. [57] under Creative Commons Attribution-NonCommercial-No

Derivatives License.

Knowledge of neurotransmitter disturbances led to the development of currently approved

AD palliative treatments [6]: (i) inhibitors of cholinesterase (tacrine, donepezil,

galantamine, and rivastigmine) and (ii)) NMDA (N-methyl-D-aspartate) antagonist

(memantine). These drugs show no evidence of modifying the disease pathology but rather

aim to slow the decline in quality of life — symptomatic treatment. However, increasing

knowledge of AD’s multifactorial nature has amplified the drug discovery ecosystem and

rationales for modification in therapeutic strategies [58,59]. Although lagging behind AB-

directed agents, some of these disease-modifying agents have advanced to initial human

trials. Figure 1.2 provides an overview of the currently investigated AD drugs along with
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the details of their mechanism of action, broadly categorised under (visit the PARMA
Foundation® for more details) [9,58,60,61]:
e Apf related —targeting a-, y- and [-secretases, clearance of AP aggregates,
proteases, chaperones, immunotherapy (both active and passive)
e tau related — inhibition/clearance of tau aggregates, immunotherapy (both active
and passive), targeting kinases and phosphatases, stabilizing microtubules
e others — modulating abnormalities in multiple neurotransmitters pathways such as
cholinergic, glutamatergic, and GABAergic system, microglia-mediated
inflammatory response, modifying epigenetics and/or epidemiological factors such

as mitochondrial dysfunction, and metabolic disorders

Adding to the decade of bitter disappointments, two of the potential ground-breaking drugs
have recently failed, verubecestat (MK-8931) and solanezumab, despite promising results
in phase 2 trials [62]. Nevertheless, repeated drug failures have not yet unequivocally
disproved the ACH belief [63]. Examining closer, failed trials provide no evidence of target
being the problem but rather acknowledges methodological weaknesses: lack of
drug/placebo difference, unacceptable toxicity, misdiagnosis of the enrolled patients, low
dosage, and so on [58,59,64,65]. Many experts argue that the fundamental problem is the
lack of awareness between cause and visible effects [66] and the lack of translation from

mouse to human [67].

Increasing interest in combination drug therapies involving a “cocktail” of medications,
aimed at several targets — with common associated biology — could address the profound
complexity in AD, similar to current treatments in cancer [68]. This represents an important
future direction in AD therapeutics; genuinely considering the systems biology approach
and ending the vigorous debate between TAUists and BAPtists [69,70]. Moreover,
neuroscientists suggest intervening early in the disease process before irreversible neuronal
dysfunction prevails; similar to treating hypertension years before the incidence of cerebral
infarction [66,71]. Unravelling new pathways amenable to neuronal changes (genetics or
epigenetics) could improve the disease understanding and provide new therapeutic

approaches [72].

4 http://phrma-docs.phrma.org/sites/default/files/pdf/medicines-in-development-drug-list-alzheimers.pdf

5 http://www.alz.org/research/science/alzheimers treatment horizon.asp
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1.4 Elucidating AD mechanisms through computational
approaches

Modern biomedical research is driven by technological advancements with growing
prodigious amount of disparate data; drowning with information. Yet, it is the one that
bedevils the progress as we still starve for knowledge. With millions of data points and
myriad clinical information®, the life science industry faces an increasing challenge of
converting the harvested (complex-)data into actionable knowledge. In addition, there
remain incredible barriers that have significantly stigmatized AD diagnosis and
therapeutics: the high complexity of brain, the inaccessibility to good quality brain tissue,
the lack of direct access to brain tissue in living patients, the lack of well characterised
animal models, inadequate molecular diagnosis for cohort selection, huge cost and the time
for extensive drug development processes, and current graveyard of AD clinical trials [73].
Thus, to stay in AD treatment race, pharma companies need to remain agile by skilfully
drawing meaningful insights in a relatively short time, from limited observations and sparse
data [74]. To increase the prediction accuracy, maximising the yield and biological
relevance in downstream processes and critical evaluation of planned research, they need

to leverage on huge volume of accumulated prior knowledge [75,76].

To derive a realistic model on modular nature of cellular architecture and functioning,
taking stock of available knowledge on physical and functional associations between
biomolecules have become a standard approach. In contrast, not all domain expert’s
knowledge is explicitly stated and manual interpretation is a daunting task; often leading
to the question “How can [ realise the potential of these resources to construct a systems-

level understanding?”

Data integration approaches capable of describing complex systems and supporting broader
interoperability are key to efficient integrative data analysis. Through these approaches, we
may bring together previously overlooked factors (may or may not involve indicative
biomarkers) that can uncover essential mechanistic relationships between molecular
changes and diseases [77]. Biological information about diseases, genetic variants,

experimental datasets, protein-protein interaction (PPIs), among others are well-

6 https://www.nia.nih.gov/research/blog/2016/12/increasing-usability-big-data-alzheimers-research
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documented and well-annotated in databases. However, these databases represent only a
small percentage of information when the bulk of scientific publications are taken into
account. Furthermore, experimental data, not being fully exploited contain compelling
evidence for biological understanding (or validating) a new hypothesis. Moreover, to
harness the full potential of the integrated data, the inferred biological hypothesis must
assume the form of biological networks such as gene regulatory networks or projected onto
previously compiled pathways. On the other hand, one must take into account that these
public resources are fragmented, lack harmonisation and reproducibility is by and large

inconsistent’”* [78-82].

Technological and data resources required to determine links to diseases are pieces of the
puzzle that when put together, promise to reveal novel regulators in pathomechanisms. The
following paragraphs introduce fundamentals and applications of various bioinformatic
approaches and resources used in this thesis: first, introduction to integrative approaches
applied to the AD domain, focusing on semantic web (SW) technology; second, a detailed
description of the technologies and methods applied to distil knowledge from existing

resources before integration.

1.5 Connecting the dots: semantic data integration to boost
identification of AD driving mechanisms

To generate new insights into AD, several researchers have developed methods/tools to
combine and show the extraordinary value of a wide variety of existing data through
innovative re-analyses. Fowler ef al. prioritized two genes involved in neuronal oxidative
damage, to stratify patient subsets based on gender and APOE status: NEURODG6 for
APOE4+ female and SNAP25 APOE4+ male patients; through the integration of publicly
available gene expression datasets, a disease associated SNP datasets, and multiple
databases [83]. Chen et al. developed a heuristic algorithm and scoring method to rank-
order proteins based on their functional relevance in an AD-PPI network [84]. To derive a
highly-connected AD-PPI network, an initial seed of AD-related genes was extracted from

the OMIM database, which was further enriched with PPIs from OPHID database using a

7 http://www.alzforum.org/news/research-news/replication-challenge-quest-alzheimers-blood-test

8 http://protomag.com/articles/replication-in-research-problem
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nearest-neighbour expansion method. Similar to Chen ef al., Soler-Lopez et al. applied an
interaction discovery strategy using initial seed gene list, and interaction network from
public databases to prioritize novel genes, suggesting a link between plaque formation and
inflammatory processes [85]. Krauthammer et al. presented a molecular triangulation to
predict unknown genetic variants by computing the graph-theoretic distance between
expert-curated seed genes and other biomolecules in the literature-derived molecular
network [86]. Considerable studies integrated information about genetics, functional,
dysregulated expression, and interaction from public data to unveil novel AD candidates
and provide new hypotheses for mechanisms underlying AD [87]; for drug discovery [88—
90]. Among others, most widely used data integration strategies include data warehousing,

data centralization, and federated databases [91].

Problems for data integration are rooted in the data itself; resources are broadly distributed,
across the web and encompass heterogeneity and diversity in data formats, concepts,
semantics, syntax, to name a few. Of course, these approaches have strengths and
limitations and there is no “one-size fits all” solution [75,92]. Furthermore, these
integration solutions are local and fail to operate at the global level and cannot cope with
the updates of resources such as newly added information and changes in the data structure,
formats, and naming convention. In general, most of these approaches overlook the
importance of data quality, and context-specificity. Semantic web technology is the first
truly global integrative solution revolutionising the lossless exchange and formalisation of

data, calling it “smart data” [93].

Since the inception of World Wide Web, its inventor Tim Berners-Lee ef al. envisioned
SW as “intelligent agents” capable of universal integration and exchange of data through
the incorporation of machine-readable meaning (or semantics) and logical relations
between data elements® [94]. Thus, resulting in a network of linked data, whose
formalization allows identification of new implicit connections by reasoning over the data.
To realize the vision of SW, World Wide Web Consortium (W3C) focused on empowering
SW technologies, among which RDF, OWL, SKOS, and SPARQL have become de facto
standards'®. The 7-layered Semantic Web Stack, depicted in Figure 1.3, shows, how the

? the definitions and descriptions of SW are taken from W3C’s web page https://www.w3.org/TR/

10 https://www.w3.org/standards/semanticweb/
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proposed technologies (although still evolving) realise each other’s capabilities towards

building SW. Interested readers are referred to Glimm ef al. for the overview of the SW

developments since its inception 15 years ago [95].

User interface and applications

Proof
Unifying Logic
Ontologies: Rules: P
Querying: OWL RIF/SWRL %
SPARQL " g
Taxonomies:RDFS Q
o
el
=r
<

Data interchange:RDF

Syntax:XML

Identifiers: URI Character Set: UNICODE

Figure 1.3: Semantic Web Architecture, also informally known as “layer cake”

This figure is taken from Wikipedia page'' under Creative Commons (CCO) License. The original
illustration proposed by Tim Berners-Lee is available here'? Copyright © 2015 W3C® (MIT, ERCIM,
Keio, Bcihang)”.

1.5.1 Semantic web technology standards

Resource Description Framework (RDF) is a W3C’s proposed standard for publishing and
exchanging data on the web [96]. The core concept of RDF lies in the usage of a unique
global identification system called as “Universal Resource Identifiers (URIs)” and more
recently IRIs (Internationalized Resource Identifier) [97]. RDF data model uses the syntax
of Extensible Markup Language (XML) to impose structural constraints for representing
the data as graph structures. Due to high flexibility and cost effectiveness of graph

databases (introduced in sub-section Biological databases), RDF-centric databases have

" https://en.wikipedia.org/wiki/Semantic Web Stack
12 https://www.w3.0rg/2007/Talks/0130-sb-W3CTechSemWeb/#(24)

3 http://www.w3.org/Consortium/Legal/2015/doc-license
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become a choice for managing highly connected data. RDF triplestore is a semantic graph
database which stores semantic facts as a network of links containing directed edges;
termed as RDF statements or triples, hence the name triplestore [98]. Figure 1.4 shows the
anatomy of a basic triple statement; subjects and objects are concepts (called resources),
connected using verbs which represents the relationship types, called predicates and literals

(also a resource) are the constant values mapped to the resources.

SUBJECT PREDICATE OBJECT

. http://www.ebi.ac.uk/efo/EFO_0005847
http://purl.bioontology.org/ontolo

http://bio2rdf.org/omim:104300

gy/MEDDRA/10042209
increased risk
Stress Alzheimer’s Disease
LITERAL LITERAL

Figure 1.4: Anatomy of a triple statement.

Ovals represent subjects and objects; rectangle literals; arc predicates.

The RDF’s simple triple format — although simpler to implement — does not allow higher
levels of expressiveness such as the union of existing concepts, hierarchical relations
between concepts, reasoning, among others [99]. Thus, W3C introduced two data modeling
languages: RDF schema (RDFS) and Web Ontology Language (OWL). RDEFS is objected
oriented in nature and formally describes RDF data properties as taxonomies of object
classes, and relationship properties using ontologies. Simply put, it defines a metamodel of
concepts such as Resource, Literal, Class, and Datatype and relationships such as
subClassOf, domain, and subPropertyOf. Ontologies allow explicit formal description of
the terms — rich vocabulary with highest level of expressivity — in the data to map distinct
terms to the same concept. Semantic Web Rule Language (SWRL) is an extension of OWL
to provide more powerful “deductive reasoning” capabilities [99]. Although it is a daunting
task to provide data linked to ontologies, the merit lies in higher interoperability. SPARQL,
a self-referencing acronym for SPARQL Protocol and RDF Query Language, is a SQL-like
query language for accessing RDF data. SPARQL queries can be federated, meaning one
can access diverse and evolving data from various RDF resources in one query. The

advantage of SPARQL over other query languages is the availability of a query interface

12



Connecting the dots: semantic data integration to boost identification of AD driving mechanisms

called SPARQL endpoint. Several programming environments have been developed to
parse RDF data: PerIRDF for Perl, and Apache Jena for Java framework. Data exchange
standards'* for RDF include: RDFa, RDF/XML, N-Triples, Turtle, Javascript Object
Notation-LD (JSON-LD), among others. Several optimized databases'” are available for
storing RDF data, namely Virtuoso, GraphDB™, Stardog, and AllegroGraph. Among the
variety of extraction tools, strategies, and interfaces to transform non-RDF into RDF
resources: GRDDL transforms XML into RDF, and R2ZRML maps relational databases to
RDF.

RDF is capable of handling intuitive and powerful semantic queries (set of inference rules)
to infer new triples (logical consequences) out of asserted facts; turning information into
knowledge. For example, “If two diseases have common genes, then they affect each
other’s incidence”. This gives a competitive edge for most pharma industries by creating
more value and easily scaling up the derived knowledge into smart solutions. RIF (Rule
Interchange Format) is a standard for exchanging rules between disparate semantic data
models by combining ontologies. Using semantic reasoners, one can infer implicit facts out
of explicit statements, thus uncovering hidden relationships. Since OWL provides
Description Logic (DL)-based reasoning capabilities, a number of reasoners including
Racer [100], Fact++ [101], Pellet [102], and KAON2'® have been developed. Mishra e al.

[103] have published an overview of semantic reasoners recently.

1.5.2 Bridging the knowledge gap through semantic web: focus
on neuroscience

Despite the youth of SW technologies, active researchers and developers have been
developing tools and infrastructures, both open source and commercial, that foster FAIR
data (findable, accessible, interoperable and reusable) principles [104]. The OBO Foundry
and BioPortal serve as an umbrella of ongoing collaborative efforts for standardisation,
storage, and linking of public biomedical ontologies [105]. The Identifiers.org registry

provides persistent official identifiers to scientific terms. Observing the immense advantage

" hitps://www.w3.org/TR/rdf1 1 -new/

15 https://www.w3.org/wiki/LargeTripleStores

16 http://kaon2.semanticweb.org/
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of linked open data, a number of existing bioinformatics resources have adopted SW as
data exchange standards: Entrez Gene, EBI data resources, KEGG, and many more
[106,107]. The importance of semantic data integration and mining in the life science
domain was brought to limelight by the Bio2RDF and subsequently by Linking Open Drug
Data (LODD) project [82,107]. These projects demonstrated the possibility of querying
heterogeneous life science resources (public) as linked data. Steady efforts by W3C’s
Semantic Web interest group to focus on Health Care and Life Sciences (HCLSIG) has led
to the launch of projects such as for modeling ontologies [108], RDF-based graph system
(LinkHub [109]), biological pathways (BioPAX [110]), and drug discovery (AlzPharm
[111], TMKB [112][113]). A series of annually hosted DBCLS BioHackathons'’ serve as
the driving force to integrate life science databases using SW technologies, through
improved interaction between providers of data and bioinformatics tools. Recently, "The
Monarch Initiative'®" has taken the semantic route to enable reasoning over genotype-
phenotype equivalence (similarity analysis of biochemical models) for generating new

hypothesis and prioritising candidates/variants within and across species.

A number of initiatives and projects are striving to advance neuroscience research by
allowing sustained interlinking between data using SW technologies. Government-
sponsored endeavours such as the USA’s BRAIN'? initiative and Europe’s Human Brain
Project (HBP)* are among a few leveraging on SW technologies for data management.
Under the premise of the US government, the Neuroscience Information framework (NIF)*!
project, an initiative of NIH Blueprint for Neuroscience, aims to advance neuroscience
research by providing “one-stop-shop” to public neuroscience data and tools in a
semantically enhanced networked environment. Some of the NIF — backend research

outcome includes BIRN, NIFSTD, NeuroLex, and many more 22 Other NIH-funded

17 http://www.biohackathon.org/

18 https://monarchinitiative.org/

19 http://www.darpa.mil/program/our-research/darpa-and-the-brain-initiative

20 https://www.humanbrainproject.eu/en/
21

http://neuinfo.org
2 https://neuinfo.org/Resources/search?q=%2A&l=
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projects that use SW technologies include BD2K [114], and Commons™. The Open Science
Framework”*, the International Neuroinformatics Coordination Facility’s (INCF)®, the
Neuroscience Database Gateway (NDG) [115], NeuroML*’, DARPA’s Big Mechanism
program [116], and others are fostering community efforts to use SW technologies as the
core to catalyse neuroscience research. Originally as a part of HBP, the SenseLab project
provides a suite of interrelated databases to gain insights into the neuronal basis of
behaviour [117]. As part of SenseLab, the BrainPharm database®’ stores information of
NDD drugs/agents targeting neuronal receptors and signal transduction pathways
(differentiates between diseased and healthy). The Linked Neuron Data (LND) [118]
provides a platform for integration of multi-scale brain and neuroscience data and
knowledge sources with the aim to understand the association between cognitive functions
and brain diseases. Currently, LND integrates structured neuroscience knowledge from
Allen Brain Atlas, NeuroLex, NeuroMorpho, Mesh terms, etc. The IMI’s Open PHACTS
project [119] aimed to integrate diverse chemical and biological data resources for
pharmacological research. Apart from these, BioGateway, BAMS, NeuroMorpho,
NeuroSynth database, Entrez Neuron, DisGeNet, Cognitive Atlas, to name a few also apply
SW technologies [120]. For more details refer to Nielsen for neuroinformatics databases

[121] and Okano et al. for brain mapping projects [120].

Among the several collaborative AD projects that receive European Union funding and that
are under Framework Programme, European Medical Information Framework (EMIF)*®,
AETIONOMY"’, EU Joint Programme — Neurodegenerative Disease Research (JPND)’!,
and ELIXIR™ utilise(-d) (partially-)SW technologies for data management. One notable
community effort in AD is The Alzheimer Research Forum (Alzforum) [122], which

2 https://datascience.nih.gov/commons
24

https://osf.io/

2 https://www.incf.org/

26 https://www.neuroml.org/

27 https://senselab.med.yale.edu/brainpharm/
28

www.emif.eu

30 http://www.aetionomy.eu/en/vision.html

3 http://www.neurodegenerationresearch.eu/

32 https://www.elixir-europe.org/about-us/how-funded/eu-projects
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benefits from both social and technical solutions to nurture productive discussion and
informal discourse to advance AD therapeutics. Alzforum’s SW initiative, AlIzZSWAN
(SWAN — Semantic Web Applications in Neuromedicine) is a hypotheses management
system that captures a significant amount of AD scientific discourse from hypotheses,
claims, dialogues, publications, and digital repositories. Active participation of Alzforum
in the HCLSIG has led AlzPharm development — integrates BrainPharm and SWAN [111].
The Global Alzheimer’s Association Interactive Network (GAAIN) project [80] attempts
to build a global collaborative platform for sharing AD data such as ADNI, by overcoming

data-sensitive sharing impediments.

1.6 Knowledge discovery: Needles in stacks of needles

An important requirement for any data integration approach is to first capture the relevant
data from diverse resources in an efficient and effective way. However, the most common
problem is to condense useful information from these data mountains and transform them
into actionable knowledge. Several data mining methods have shown great promise in
closing the gap between large disparate data and discovering hidden/new knowledge. In
this thesis, we have focused on three major data sources: databases, literature, and

transcriptomic data.

A compendium of transcriptomic studies provides quantitative information on the state of
the gene in a cell. Most certainly, modeling of interactome and regulatory relations
represent confirmed knowledge when derived from omics data. However, they do not
account for the domain knowledge, which is important in any scientific discovery.
Databases provide a systematised collection of biologically important information;
increasing in number every year according to Nucleic Acids Research journal’s annual
compendium of peer reviewed databases [123]. However, they do not fully represent the
current state of rapidly growing knowledge. Conversely, vast collections of literature data
are a massive body of existing current knowledge that can fill knowledge gaps and assist
in informed decision making. However, due the data deluge, it becomes unmanageable.
Below we discuss how data mining approaches applied to these data models contribute to

knowledge discovery.
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1.6.1 Omics data analysis: complex biological data streams

The advent of high-throughput technologies has fuelled the search for unique molecular
markers that govern the information flow in “the central dogma” framework of molecular
biology. Omics-based approaches are now broadly used for the identification of disease
markers and understanding underlying pathomechanisms; supporting hypothesis-free
elucidation. Particularly, it provides a holistic view of genes (genomics), gene expression
(transcriptomics), proteins (proteomics), and metabolites (metabolomics) through a variety
of techniques including mRNA and miRNA arrays, NGS, and mass spectrometry [124].
Recent research has led to the revelation that RNA is not just a simple genetic messenger
but rather plays a central role in translating genetic code into protein, gene silencing, post-
transcriptional regulation, and as a modulator of epigenetic elements [125]. Relative to the
fixed nature of DNA sequence variation, gene expression varies tremendously between
tissues, cells, and response to external stimuli [126]. Thus, gene expression profiling,
encompassing many species of RNA such as miRNA, mRNA, and snoRNA, represents a
rich source for early diagnosis by revealing altered transcriptome signatures of the cells,

and tissues under a given biological state [127].

Quantification of RNA abundance using microarray technologies [128] or, more recently,
developed RNA-Seq [127] methods have led to the accumulation of large amounts of data
in public repositories. As of 15" March 2018, GEO contains 2,429,236 samples from 4,348
datasets[129] and ArrayExpress hosts 70,834 experiments [130]. Although RNA-Seq is a
substantially advanced technology with several advantages over microarray [127,131],
microarrays are still widely used as they are less expensive, more consistent with the
already existing wealth of data, and there exist substantial number of robust statistical
methods [132,133]. Extracting biological information from these data is done by
identifying individual genes (differentially expressed (DE) genes) associated with a
particular biological effect (such as fold change) or finding global signatures composed of
multiple gene expression changes. A more consistent and robust approach is looking for
genes that share a particular biological characteristic [134]. However, low reproducibility
and low overlap with similar studies performed by other study groups, render gene
expression levels incomparable, mainly arising due to several technical and biological
variabilities like applied analytical methods, different platforms, and dependency on library

preparation [131,135,136]. Due to difficulties in acquiring human brain tissue and the
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associated cost, NDD research experiments are composed of small sample sizes, resulting
in less robust gene signatures and missing out on less apparent signals [137]. Thus, there is
a need to fully exploit the existing data for more compelling evidence that could pave way

for next ground-breaking discoveries.

Combining multiple transcriptomic studies (termed as “cross-platform normalisation
(CPN)”) or their results (termed as “horizontal meta-analysis™) has been advocated to
increase the power of derived conclusion by overcoming the biases of individual studies
[137-140]. These approaches have been used to uncover disease subtypes, predict survival,
discover new biomarker and therapeutic targets [ 141-144]. Although it is argued that CPN
is more powerful, it is less frequently used as: (i) it fails to eliminate batch effects across
experiments (ii) very few well-established algorithms are available and (iii) increased
complexity of data integration [145]. Refer to Rudy and Valafar for detailed comparative
analysis of different CPN methods [146]. Most current meta-analysis methods are gene-
centric, combining DE genes based on majority voting, gene rank aggregation, and
combining univariate summary statistics, such as p-values and effect sizes [147-149]. A
more consistent and robust approach is through functional enrichment of the identified
genes using established pathway knowledge such as KEGG [150], MSigDB [151], or, more
recently, NeuroMMSig [152]. For the majority of the meta-analysis approaches, functional
enrichment has become a standard follow-up. However, these approaches often have a
tendency to converge towards genes that express in large magnitudes and generated
hypotheses are restricted by current understanding of pathways. Moreover, these
approaches do not shed light on the coordinated genes that collectively orchestrates the
underlying (patho-)mechanism, unravelling dysregulated events heralding known and
unknown patterns. Network-based approaches that rely on the coherence of functionally
dependent genes could ameliorate DE gene’s dependency and increase confidence in

biological validation by collapsing the number of testable hypotheses with regulatory clues.

1.6.2 Biological network inference

Cellular and molecular components work in concert with a large number of dynamic
partners — directly or indirectly — to execute or govern cell/tissue phenotypes [153]. The
power of biological networks resides precisely in simplifying the complex systems merely
as nodes (biomolecules) and edges (intramolecular interactions) in the form of pathways,

protein-protein interactions (PPIs), miRNA-target interactions (MTIs), among others. In an
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attempt to dissect higher level organisation of molecular and cellular communications,
information on modules of genes, proteins, or miRNAs that are physically associated, or
functionally co-ordinated are translated into physical and functional networks. Physical
interaction networks represent how biomolecules of interest interact with each other.
Functional networks aim to connect not only interacting but also non-interacting
biomolecules that depict functional or regulatory dependencies; examples include
pathways, co-expression networks (CENs), and gene regulatory networks (GRNs).
Analysis of these networks relies on characteristic topological properties, which serve as
scaffold information for global and local graph theory [154—156]. Through these networks,
useful discoveries for identification of putative biomarkers, understanding the disease-

driving mechanisms, and insights into the research findings can be made.

Network inference (NI) methods have recently emerged as highly effective “reverse
engineering framework”™ to reconstruct biological networks based on educated inference
from data profiles, reducing the cost and time associated with the experimental
investigation by prioritising putative candidates [157—161]. In the last few years, we have
seen a swarm of NI approaches that majorly fall under: (i) deconvolution methods applied
to the literature [162,163], databases [150], and multi-omics data and (ii) prediction

algorithms based on thermodynamic stability, and sequence similarity [164,165].

Networks inferred from literature and databases represent “what is already known” and are
usually used as reference or gold standard to put the inferred results from other NI
approaches in a specific biological context. Although, these networks as quite large, most
of the interactions cannot be easily filtered for a specific biological context and data formats
are not easily interchangeable. Recent endeavours have led to the development of
standardised languages that use rich semantics for modelling networks: OpenBEL, and
PySB [166]. On the other hand, use of genomic profiling technologies is more reliable for
uncovering previously unknown and underappreciated mechanistic links along with
involved putative candidates. Genomic data-based NI approaches have transformed
biological research by enabling comprehensive monitoring of co-expressed and co-
regulated components. I refer the reader to Lee et al. [167] for conceptually different GRN
methods, Markowetz et al. [168] for other NI approaches, and a book chapter by Vert [169]

for machine-learning based NI approaches. Series of The Dialogue for Reverse Engineering
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Assessment and Methods (DREAM) challenges allow comparison of strengths and

weaknesses of different network inference methods™.

Gene regulatory networks and co-expression networks

Most researchers mistakenly use GRNs and CENs synonymously, however, the latter may
contain co-regulated genes that represent the former [170-173]. CENs comprise of gene
clusters where the edge (non-directed) represent similarity or dependency in expression
patterns between two genes across tissues/cells. Similarities are usually quantified by
Pearson correlation, Spearman correlation, mutual information, or linear modelling [174—
176]. On the other hand, GRNs (directed graphs) capture regulatory relationships (such as
causal influence, and transcription regulation) assuming that changes in expression level of
regulatory elements should be mirrored in expression levels of its regulated elements [170].
Allen et al. proposes four co-expression measures to define gene similarity metric for
inferring GRNs [177]: (i) probabilistic-based, e.g. Bayesian networks [178] (ii) correlation-
based, e.g. Weighted Correlation Network Analysis (WGCNA) [179] (iil) partial
correlation [180], and (iv) mutual information-based (MI), e.g. ARACNE [181], MRNET
[182], and CLR [183]. For details of these measures, I refer the reader to Song et al. [184]
and Kiani et al. [185].

Failure to identify more complex dependencies between the genes by correlation-based
methods is overcome by MI methods. Moreover, MI-based methods apply refinement
approaches to eliminate indirect interactions for a given threshold using empirical
distribution ~ (CLR), Data  Processing Inequality @ (ARACNE), maximum
relevance/minimum redundancy criterion (MRNET), and predictions based on estimates of
MI values with a maximisation step (C3NET [186]). Although Bayesian inferred networks
are capable of modelling higher order dependencies, they lack feedback loops and some
are limited to time series data [187,188]. A recent trend, ensemble-based methods are
reported to improve stability and accuracy by formulating feature selection using random
forests [189], gradient boosting [190], least angle regression [191], and partial least squares
[192]. Briefly explained, these methods apply NI approach(-es) on bootstrapped data,
aggregating the results in a final network; examples include BC3Net [193], and GENIE3.

33 http://dreamchallenges.org/publications/
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Clearly, these methods have an advantage of being straightforward and efficient on large
computer clusters. A recently patented approach by Leiserson et al., called the heat
diffusion based genetic network analysis [194], identifies known and unknown pathways
by determining local neighbourhood influence of each mutated gene via physics of heat

diffusion in the network [195,196] has brought a lot of attention to GRNs.

Choice of the method to infer GRNs depends on the studied conditions such as type of data
(real or simulated), network size, number of samples, noise level, experimental design
(intervention, observational), underlying interaction structure (scale-free, random), error
measure (local, global), among others [197]. However, recently, de Matos Simoes et al.
demonstrated for C3Net, BC3Net, and ARACNE that the differences are not large if one

focuses on the biological consistency rather than technical [198].

Application of GRNs and CENs in AD

Using public transcriptomic data, Rhinn et al. identified key regulatory molecules (APBA2,
FYN, RNF219 and SV2A) and pathways (endocytosis, intracellular trafficking) involved
in APOE-based risk for LOAD [199,200]. Their work focuses on differences between
diseased and healthy co-expression patterns. Zhang et al. [201] identified eight immunity-
and microglia-specific genes, including TYROBP, strongly dominating the LOAD
pathology; inferred from GRNs generated using 1,647 post-mortem brain tissue of LOAD
and non-demented subjects. From these results, the authors concluded that the causal
network framework was a useful predictor of response to gene perturbations and could be
used to test models of disease mechanisms underlying LOAD. Forabosco et al. [202]
reported TREM2 to be a hub gene in 5 out of 10 brain regions in neuropathologically
normal individuals using the co-expression network analysis. Additionally, they found
highly enriched genes in TREM2-containg module that are genetically implicated in AD,
sharing common pathways centred on microglia functioning. Miller ef al. [203] identified
convergent and divergent co-expression modules between 18 human and 20 mouse public
microarray datasets. Significantly, they determined three hub genes (for human only) with
zinc-finger motifs, whose exact functioning in dementia was previously unknown. In a
similar approach, Ray et al. [204] revealed transcriptional commonalities that might
explain the co-occurrence of cardiovascular diseases and AD. Additionally, several efforts
have been made to unfold the links and common mechanisms between AD and ageing

[134].
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The current multi-omics-based GRN approaches have an intrinsic limitation of dependency
on (i) known interactions catalogued in databases and literature for follow-up analysis (ii)
well-known gene candidates to refine networks within its proximity and (iii) restricting
inference on genes that exhibit a clear shift in expression behaviour. This means that the
derived results have a tendency to converge to “what is already known”, missing out on
lesser-known candidates. Additionally, none of the above approaches elaborates on
context-specificity and completeness of the generated networks, undermining the modules

that approximate the biological truth.

1.6.3 Biological databases

Databases provide convenient, searchable, visualisable, and computable access to
organised prior knowledge. They are indispensable research tools for translating “big data
to big discovery”, hosting enriched and pertinent information, [205]. Biological databases
are developed for diverse purposes and encompass heterogeneous data types, and formats,
refer Kumari et al. [206]. These databases can be classified based on:

e type: primary, secondary (curated or/and value-added)

e nature of stored information: RNA, drugs, pathway, miRNAs, among others

e curation: expert-curated, community curated (crowd-sourced)

o storage type: MySQL, NoSQL, flat files

Primary databases host experimentally derived raw sequence read data (for proteins,
nucleotide, so on) or macromolecular structure, which is directly submitted by the
researchers; examples include ArrayExpress [207], miRBase [208], and GEO [129].
Secondary databases, mostly curated, build upon the information derived from primary
databases. For example, ExpressionAtlas derives knowledge about gene expression
patterns from ArrayExpress archive [209]. Zou et al. provides a comprehensive overview
of human databases, categorised based on the data type and nature of information stored
[205]. Highly knowledgeable and experienced biocurators critically assimilate and review
the information before being stored in expert-curated databases, namely UniProt [210,211].
Crowd-sourced databases have proven to be an efficient, economical, and faster way to
harness knowledge from the scientific community with broad coverage; RiceWiki is a good
example [212]. Relational databases (e.g. MySQL and PostgreSQL) are an efficient way to
access structured information using declarative query language (e.g. SQL) for a pre-

specified set of operations and schema. NoSQL databases are whiteboard friendly that
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reflect our natural thinking and support agile development for dynamic schemas and are
quickly scalable for additional data integration [213]. NoSQL databases include key-value
stores (e.g. Berkeley DB), document stores (e.g. MongoDB), wide column stores (e.g.

Cassandra), and graph databases (e.g. Neo4j) [214].

Community efforts keep researchers abreast with the growth of bioinformatics tools and
databases in the form of trusted directories/databanks, such as Biological Links Directory
[215], and OmicTools [216]. Several core bioinformatics organisations provide an
amalgamation of multiple primary and secondary databases covering different data types
and species; examples include NCBI [217], EMBL-EBI**, and Swiss Institute of
Bioinformatics [218]. In addition, several commercial ventures such as Ingenuity
Pathway’’, NextBio*®, and MetaCore™>’ provide a wealth of curated information in a
structured form. However, most of the databases vary in data quality and become obsolete

over time [219].

Primary transcriptomic repositories, namely GEO and ArrayExpress, provide a wealth of
molecular data to conduct integrative meta-analysis and inferring GRNs. This allows
researchers to reproduce and/or reanalyse existing data for new discoveries, especially
when the data availability is limited (see section Omics data analysis: complex biological
data streams). To consistently integrate heterogeneous data, accurate details of the
associated metadata information including patient’s age, gender, pathological diagnosis,
and comorbidity are crucial in clinical practice. In addition, mapping of this information to
standard ontologies could increase the compatibility and usability across studies. The
Ioannidis study [220] highlighted the importance of metadata information in reproducible
science. Pioneering attempts to adopt guidelines for submission of minimum metadata
information required for data reproducibility such as MIAME®® and MINISEQE™, still lack

compliance. Often, the data submitter and data generator are different persons, increasing

M https://www.ebi.ac.uk/services/all

35 https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/

36 http://www.nextbio.com/b/nextbio.nb

37 https://Isresearch.thomsonreuters.com/pages/solutions/1/metacore

38 https://www.ncbi.nlm.nih.gov/geo/info/MIAME.html

39 http://feed.org/projects/minseqe/
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the risk of errors and missing information [221]; sometimes leading to the metadata
information being scattered in the associated publication(s). There is no easy way to tackle
this problem and extensive manual effort is needed. Several (non-)commercial value-added
databases and tools such as NextBio, and ArrayExpress have invested considerably to
manually extract and correct the missing and erroneous metadata information. Indeed, to
our knowledge none of the value-added databases capture NDD specific metadata
information. In addition, they fail to explicate annotations that distinguish diseased human
from NDD-induced immortalised cell lines, and mouse/rat strains, which are critical for
translating preclinical studies to drug trials. Thus, there is a need for a dedicated approach

to extract and refine metadata annotations catered to NDD research.

1.6.4 Text mining: discovering hidden connections

Biomedical literature is the key communication channel for scientific findings and
hypotheses in the form of research articles, conference proceedings, reviews, books, and
monographs [222]. Advancing with impressive speed, automated technologies — text
mining — have complemented the manual reading for extracting and reconstructing mosaic
of non-trivial and implicit knowledge from unstructured (or semi-structured) text, along
with provenance [223]. Although not trivial, text mined information has the capability to
shed perspective on modeling complex biological systems by summarising the entirety of
prior research [224]. Text mining techniques can be simply abstracted to four phases:
information retrieval (IR), information extraction (IE), knowledge discovery (KD), and

hypothesis generation [225,226].

IR deals in identifying and triaging relevant textual sources to seek background
information, addressing a research question at hand. For the overview of current IR
tools/services refer to Lu et al. [227]. In the biomedical domain, IE involves identification
of predefined classes of biomedical entities (genes/proteins, miRNAs, drugs, etc.) and
relations between these entities (drug-gene, gene-miRNAs) from the text. Tagging key
biological entity mentions in the text is the first step in IE, called as named entity
recognition (NER), performed using predefined vocabulary (dictionary-based), applying
rules (rule-based), or classifying (machine-learning-based) on the basis of training data
[228,229]. Relation extraction (RE) adds context to the identified entities by extracting
relationship(s) between them through association-based (co-occurrence and tri-occurrence)

or natural language processing (NLP)-based methods [222,230,231]. More narrowed
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application of RE is event extraction (EE) [232], which focuses on identifying specific
events such as phosphorylation, and inhibition. To benchmark the developed methodology,
several expert-annotated reference corpora are available, but they do not cover all the
entities and relations [230,231,233]. In contrast to IE, which extracts nuggets of
information, KD aims to extract new knowledge for answering biomedical queries [234].
Furthermore, hypothesis generation infers novel and testable insights from hidden clues in
the text that are not easily derivable through expert reading [235]. However, text-mined
information is error prone and must be crucially assessed by human experts as they are
inherently limited by variable quality, lack of systematisation, and absence of reporting
negative data [236-238]. Several annotation tools are in place to speed up manual curation
process [239-241]. Specialised databases are established to provide standardised and
structured accessibility of the harvested literature knowledge [242-245].

Many cellular functions — biological and pathological — are a result of cross-talk between
different bio-entities, namely genes, proteins, transcription factors, and miRNAs.
Therefore, to fully uncover the modular organization of the cellular networks it is crucial
to elucidate these players. Although extensively researched, protein-coding genes represent
only 2% of the human genome suggesting that PPIs are just half of the story in AD biology.
With the beginning of miRNA era in 2001, non-coding RNAs have become attractive
targets and research topic for novel diagnostic and therapeutic approaches [246].
Information about miRNA’s regulatory roles has been widely discussed in the literature.
Thus, utilising biomedical text-mining approaches to extract new evidence from existing

literature has become very crucial to drive AD research.

MicroRNAs (miRNAs) are highly conserved small non-coding RNAs (21-25nt), post-
transcriptionally regulating 30% of protein-coding genes through mRNA degradation and
translational inhibition. Previous studies have reported on the essential roles of miRNAs in
neuronal functioning, and survival and its potential implications in modulating AD genes
[247-249]. The cross-talks between AD-related miRNAs and genes/proteins are far more
intricate and dynamic than anticipated but poorly understood. Significant research efforts
in dissecting miRNA-related associations (e.g. miRNA-target, miRNA-disease) have
resulted in high-quality databases, curated networks, and prediction algorithms. In reality,
relative to PPIs, automated text-mining methods dedicated to the identification of miRNA-

related relationships are limited and not widely adopted [250]. Indeed, resulting in a lack
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of expert-annotated corpus needed for benchmarking the developed tools [251]. Thus, there
is a clear need for automated text-mining approaches/tools/resources to support and drive

the miRNA research for a new perspective on diseases at post-transcriptional level.
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Chapter 2 Goals and Objectives

Enabling scientists to reuse and extend the work of other researchers is frequently perceived
to have “an upper hand” in generating time and cost efficient testable hypotheses, assisting
biomarker and mechanism discovery. Repurposing public data using data collation and
integrative approaches could act as an evidence store for deriving new knowledge where
traditional approaches fail to deliver [252]. Several studies and projects have employed
data mining approaches on public data to identify novel mutations, genes, pathways, among
others that were previously undetected in AD [253—-255]. These reports are a proof that
retrospective analysis of public data can provide important insights for clinical utility.
However, they have also inherently raised several questions illuminating fundamental
aspects of data reusability and retrospective analysis: (i) lack of high-quality and
informative data (ii) lack of sufficient metadata information for more focused reanalysis
(ii1) overfitting the developed models to prior knowledge (iv) data bias, and (iv) a need of

a high-quality pre-competitive infrastructure for data integration.

2.1 Issues addressed and goal of this thesis

Motivated by the need of novel approaches for integrative analysis and considering the
scepticism around public data, the primary goal of my PhD thesis is to provide improved
and novel solutions for accessibility, reusability, and unbiased retrospective analysis of
high-quality public data with a potential impact on uncovering previously unattended AD
insights towards real world drug development. In this thesis, I offer a perspective on the
looming central issues of data reusability and limitation of current approaches that hinder

the progress in research on AD therapeutics.

Taking into account my previously made statement: “Technological and data resources
required to determine links to diseases are pieces of the puzzle that when put together,
promise to reveal novel regulators in pathomechanisms. — refer page 9”, the objectives
of my thesis work are summarised in Figure 2.1. The specific objectives of this thesis

addressing the issues stated above and in Chapter 1 are:
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Figure 2.1: Objectives of my thesis work

1. Problem Statement: Problems for data integration are rooted in the data itself;
resources are broadly distributed, across the web and encompass heterogeneity and
diversity in data formats, concepts, semantics, syntax, to name a few. Of course,
these approaches have strengths and limitations and there is no “one-size fits all”
solution [75,92]. Furthermore, these integration solutions are local and fail to
operate at the global level and cannot cope with the updates of resources such as
newly added information and changes in the data structure, formats, and naming
convention. In general, most of these approaches overlook the importance of data

quality, and context-specificity. — page 10

Objective: To build a high-quality and domain-specific pre-competitive
infrastructure for intellectual integration of existing resources to facilitate
interrogation of the distributed data legacy; enabling a systematic and objective

prioritisation of molecular protagonists and mechanisms in AD

2. Problem Statement: Many cellular functions — biological and pathological — are
a result of cross-talk between different bio-entities, namely genes, proteins,
transcription factors, and miRNAs. Therefore, to fully uncover the modular
organization of the cellular networks it is crucial to elucidate these players.

Although extensively researched, protein-coding genes represent only 2% of the
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human genome suggesting that PPIs are just half of the story in AD biology. With
the beginning of miRNA era in 2001, non-coding RNAs have become attractive
targets and research topic for novel diagnostic and therapeutic approaches [247].
Information about miRNA'’s regulatory roles has been widely discussed in the
literature. Thus, utilising biomedical text-mining approaches to extract new
evidence from existing literature has become very crucial to drive AD research. —

page 25

Objective: To develop an automated text-mining method for extracting new
interaction evidence from existing scientific literature using miRNA research

domain as an example.

Problem Statement: /ndeed, to our knowledge none of the value-added databases
capture NDD specific metadata information. In addition, they fail to explicate
annotations that distinguish diseased human from NDD-induced immortalised cell
lines, and mouse/rat strains, which are critical for translating preclinical studies to
drug trials. Thus, there is a need for a dedicated approach to extract and refine

metadata annotations catered to NDD research. — page 24

Objective: To develop a comprehensive and highly curated metadata database for
public NDD gene-expression studies that allow precise selection of data subsets for

meta-analysis and translational research

Problem Statement: The current multi-omics-based GRN approaches have an
intrinsic limitation of dependency on (i) known interactions catalogued in
databases and literature for follow-up analysis (ii) well-known gene candidates to
refine networks within its proximity and (iii) restricting inference on genes that
exhibit a clear shift in expression behaviour. This means that the derived results
have a tendency to converge to “what is already known”, missing out on lesser-
known candidates. Additionally, none of