
R O B O T N AV I G AT I O N

I N H U M A N E N V I R O N M E N T S

D I S S E RTAT I O N

zur Erlangung des Doktorgrades (Dr. rer. nat.)

der Mathematisch-Naturwissenschaftlichen Fakultät

der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

stefan oßwald

aus Lörrach

Bonn, Juni 2018

Angefertigt mit Genehmigung der
Mathematisch-Naturwissenschaftlichen Fakultät der
Rheinischen Friedrich-Wilhelms-Universität Bonn

Erste Gutachterin: Prof. Dr. Maren Bennewitz

Rheinische Friedrich-Wilhelms-Universität Bonn

Zweiter Gutachter: Prof. Dr. Wolfram Burgard

Albert-Ludwigs-Universität Freiburg

Tag der Promotion: 6. November 2018

Erscheinungsjahr: 2019

Dedicated to my grandparents Liesel and Herbert.

A B S T R A C T

For the near future, we envision service robots that will help us with
everyday chores in home, office, and urban environments. In contrast
to industrial applications, these robots need to work in environments
that were designed for humans and they have to collaborate with
humans to fulfill their tasks. In this thesis, we propose new methods for
communicating, transferring knowledge, and collaborating between
humans and robots in four different navigation tasks.

In the first application, we investigate how automated services for
giving wayfinding directions can be improved to better address the
needs of the human recipients. Route descriptions can contain sev-
eral different types of information such as metric distances, cardinal
directions, egocentric headings, or landmarks of various categories.
Which information is most valuable depends on the recipient, for
example street names are hardly of use for visually impaired persons
as they cannot see the street signs. We propose a novel method based
on inverse reinforcement learning that learns from a corpus of hu-
man-written route descriptions what amount and type of information
a route description should contain. By imitating the human teachers’
description style, our algorithm produces new route descriptions that
sound similarly natural and convey similar information content as the
human teachers do as we show in a user study.

In the second application, we investigate how robots can leverage
background information provided by humans for exploring an un-
known environment more efficiently. Typically, the first task of any
mobile robot is to explore its surroundings for generating a map us-
ing a Simultaneous Localization and Mapping (SLAM) approach. The
robot later uses this map for planning navigation tasks. In many cases,
background information such as a floor plan of the building or a
sketch provided by the user is available. We propose an algorithm
for exploiting such background information given as a topo-metric
graph by combining a global exploration strategy based on the solu-
tion of a traveling salesman problem with a local nearest-frontier-first
exploration scheme. Our simulation experiments in both artificial and
real-world environments show that the exploration tours are signifi-
cantly shorter and that our system allows the user to effectively select
the areas that the robot should explore. We show that the approach is
robust against noise and errors in the provided graph.

In the second part of this thesis, we focus on humanoid robots
in home and office environments. The human-like body plan allows
humanoid robots to navigate in environments and operate tools that
were designed for humans, for example to step across obstacles, climb

v

stairs, or open cupboards and drawers, making humanoid robots suit-
able for a wide range of applications. As localization and mapping are
prerequisites for all navigation tasks, we first introduce a novel feature
descriptor for RGB-D sensor data and integrate this building block into
an appearance-based SLAM system that we adapt and optimize for the
usage on humanoid robots. Our real-world experiments show that
our optimized system is able to track a Nao humanoid robot more
accurately and more robustly than existing approaches.

As the third application, we investigate how humanoid robots can
cover known environments efficiently with their camera, for example
for inspection or search tasks. We extend an existing next-best-view
approach based on sampled raycasting by integrating the concept
of inverse reachability maps. Pre-recording an inverse reachability
map for a humanoid robot allows us to efficiently sample and check
collision-free full-body poses so that the algorithm can take the full
body pose into account already when sampling camera poses from
where large portions of the environment are visible. Our approach
enables the robot to bend over boxes and peak behind and below
objects to inspect as much of the environment as possible.

In our fourth application, we extend the coverage scenario to en-
vironments that also include articulated objects that the robot has
to actively manipulate to see behind them, for example to open a
cupboard for investigating its contents. Introducing articulated objects
increases the complexity for computing a coverage tour even further,
demanding efficient approaches for navigation and camera pose sam-
pling. Hence, we introduce algorithms for the computation of cost
maps and utility maps and for estimating the information gain of a
camera view pose that run highly parallelized on graphics process-
ing units for embedded devices. Together with a novel heuristic for
estimating utility maps, our system allows to find high-utility camera
poses for efficiently covering environments with articulated objects.

All techniques presented in this thesis were implemented in software
and thoroughly evaluated in user studies, simulations, and experi-
ments in both artificial and real-world environments. Our approaches
advance the state of the art towards universally usable robots in every-
day environments.

vi

Z U S A M M E N FA S S U N G

In naher Zukunft erwarten wir Serviceroboter, die uns im Haushalt, im
Büro und in der Stadt alltägliche Arbeiten abnehmen. Im Gegensatz zu
industriellen Anwendungen müssen sich diese Roboter in Umgebun-
gen zurechtfinden, die für Menschen gebaut wurden, und sie müssen
mit den Menschen zusammenarbeiten um ihre Aufgaben erledigen zu
können. In dieser Arbeit schlagen wir neue Methoden für die Kommu-
nikation, Wissenstransfer und Zusammenarbeit zwischen Menschen
und Robotern bei Navigationsaufgaben in vier Anwendungen vor.

In der ersten Anwendung untersuchen wir, wie automatisierte
Dienste zur Generierung von Wegbeschreibungen verbessert werden
können, um die Wegbeschreibungen besser an die Bedürfnisse der
Empfänger anzupassen. Wegbeschreibungen können mehrere verschie-
dene Arten von Informationen enthalten, beispielsweise metrische
Distanzen, Himmelsrichtungen, egozentrische Richtungsangaben oder
Landmarken unterschiedlicher Kategorien. Welche Information für
den Empfänger am wertvollsten ist, hängt von der Situation und dem
Empfänger ab, beispielsweise sind Straßennamen kaum von Nutzen
für sehbehinderte Menschen, die keine Straßenschilder lesen können.
Wir schlagen eine neue Methode vor, die inverses bestärkendes Lernen
nutzt, um aus einem Korpus von von Menschen geschriebenen Weg-
beschreibungen zu lernen, wie viel und welche Art von Information
eine Wegbeschreibung enthalten sollte. Indem unser Algorithmus den
Stil der Wegbeschreibungen der menschlichen Lehrer imitiert, kann
der Algorithmus neue Wegbeschreibungen erzeugen, die sich ähnlich
natürlich anhören und einen ähnlichen Informationsgehalt vermitteln,
wie wir in einer Benutzerstudie zeigen.

In der zweiten Anwendung untersuchen wir, wie Roboter von Men-
schen bereitgestellte Hintergrundinformationen ausnutzen können,
um eine bisher unbekannte Umgebung schneller zu erkunden. Die
erste Aufgabe eines mobilen Roboters besteht in der Regel darin, sei-
ne Umgebung zu erkunden um eine Karte mit einem simultanen
Lokalisierungs- und Kartierungsverfahren (SLAM) zu erstellen, die
der Roboter später zur Planung von Navigationsaufgaben nutzen
kann. Oftmals stehen Hintergrundinformationen zur Verfügung, bei-
spielsweise Gebäudegrundrisse oder von einem Benutzer gezeichnete
Skizzen. Wir schlagen einen Algorithmus vor, der solche Hintergrund-
informationen in Form eines topometrischen Graphen nutzt, indem
er eine globale Explorationsstrategie basierend auf der Lösung eines
Problems des Handlungsreisenden kombiniert mit einer lokalen Ex-
plorationsstrategie, welche die nächstliegende noch nicht explorierte
Grenze zwischen Freifläche und noch unbekanntem Gebiet als nächs-

vii

tes ansteuert. Unsere Simulationsexperimente mit künstlichen und
realen Umgebungen zeigen, dass die Erkundungstouren signifikant
kürzer werden und dass unser System dem Benutzer eine effektive
Möglichkeit bietet, die Regionen zu spezifizieren, die der Roboter
erkunden soll. Wir zeigen, dass der Ansatz robust ist gegenüber Un-
genauigkeiten und Fehlern in dem zur Verfügung gestellten Graphen.

Im zweiten Teil dieser Arbeit legen wir den Fokus auf humanoide
Roboter in Umgebungen zuhause und im Büro. Der menschenähnliche
Körperbau ermöglicht es humanoiden Robotern, in Umgebungen zu
navigieren und Werkzeuge zu benutzen, die für Menschen gebaut
wurden. Humanoide Roboter können zum Beispiel über Hindernisse
steigen, Treppen steigen oder Schranktüren und Schubladen öffnen,
wodurch humanoide Roboter für eine große Bandbreite an Aufga-
ben eingesetzt werden können. Da Lokalisierung und Kartierung
Grundvoraussetzungen für alle Navigationsaufgaben sind, führen
wir zunächst einen neuen Merkmalsdeskriptor für RGB-D-Sensorda-
ten ein und integrieren diesen Baustein in ein erscheinungsbasiertes
SLAM-System, das wir an die Besonderheiten von humanoiden Robo-
tern anpassen und optimieren. Unsere Experimente in einer realen
Umgebung zeigen, dass unser optimiertes System in der Lage ist,
die Position eines humanoiden Roboters genauer und robuster zu
verfolgen als es mit existierenden Ansätzen möglich ist.

Als dritte Anwendung untersuchen wir, wie humanoide Roboter
bekannte Umgebungen effizient mit ihrer Kamera abdecken können,
beispielsweise zu Wartungs- und Inspektionszwecken oder zum Su-
chen eines Gegenstands. Wir erweitern ein bestehendes Verfahren, das
mithilfe von Raycasting zufällig gezogener Strahlen die nächstbeste
Beobachtungsposition berechnet, indem wir das Konzept von inversen
Erreichbarkeitskarten integrieren. Das Vorberechnen einer inversen
Erreichbarkeitskarte für einen humanoiden Roboter ermöglicht es, kol-
lisionsfreie Ganzkörperposen effizient zu generieren und zu prüfen.
Dadurch kann der Algorithmus Ganzkörperposen bereits berücksich-
tigen, wenn er Beobachtungspunkte in der Umgebung bestimmt, von
denen aus große Teile der Umgebung sichtbar sind. Unser Ansatz
ermöglicht es dem Roboter, sich über Kisten zu beugen und hinter und
unter Objekte zu schauen um so viel wie möglich von der Umgebung
zu untersuchen.

In unserer vierten Anwendung erweitern wir dieses Szenario be-
züglich Umgebungen, die auch bewegbare Gegenstände enthalten,
sodass der Roboter aktiv Objekte bewegen muss um hinter das Objekt
zu sehen, beispielsweise einen Schrank zu öffnen um den Inhalt zu
inspizieren. Bewegliche Gegenstände einzuführen erhöht die Komple-
xität des Problems eine Inspektionstour zu planen erheblich, wodurch
effiziente Ansätze für die Navigation und das Bestimmen der Beob-
achtungspunkte notwendig werden. Daher führen wir Algorithmen
für die Berechnung von Kosten- und Nutzenkarten und die Schätzung

viii

des Informationsgewinns eines Beobachtungspunkts ein, die hoch
parallelisiert auf Grafikkarten von eingebetteten Systemen ausgeführt
werden. Zusammen mit einer neuen Heuristik zur Schätzung von Nut-
zenkarten ermöglicht dies unserem System Beobachtungspunkte mit
hohem Nutzen zu finden, um Umgebungen mit bewegbaren Objekten
effizient zu inspizieren.

Die vorgestellten Techniken wurden in Software implementiert und
sorgfältig evaluiert in Benutzerstudien, Simulationen und Experimen-
ten sowohl mit künstlichen als auch mit realen Umgebungen. Unsere
Verfahren bringen den Stand der Forschung voran in Richtung univer-
sell einsetzbarer Roboter in alltäglichen Umgebungen.

ix

A C K N O W L E D G M E N T S

On my journey as a PhD student, I met many people who taught,
encouraged, and supported me and I would like to express my deepest
thanks to them. First of all, I would like to thank Maren Bennewitz,
Cyrill Stachniss, and Wolfram Burgard for giving me the opportu-
nity to work in their labs and for supervising and counseling me
throughout my studies. Their experience guided my research and they
sparked my interest in robotics. I would also like to thank Olivier
Stasse for giving me the opportunity of a research internship at the
Gepetto team at LAAS-CNRS in Toulouse, it was a great experience
and gave me many new ideas.

Many thanks to Armin Hornung for supervising me during my
Bachelor and Master studies. I learned a lot from him and he prepared
me well for life as a PhD student.

I would like to thank my colleagues and fellow students at the
Universities of Freiburg and Bonn, at LAAS-CNRS, and my colleagues
from the SFB/TR-8 in Bremen for their support and friendship.

For their contributions on our collaborative projects and research,
I thank my co-authors Henrik Kretzschmar, Rasha Sheikh, Philipp
Karkowski, Peter Regier, and Christian Dornhege.

Thanks to Philipp Karkowski and Rasha Sheikh for proof-reading
earlier versions of this thesis.

Finally and most importantly, my deepest thanks go to my family
who always encourage and support me.

The work on this thesis has been generously supported by the German
Research Foundation (DFG) under contract number SFB/TR-8 “Spatial
Cognition” and by the European Commission under contract number
FP7-ICT-600890-ROVINA.

xi

We’re fascinated with robots because they are reflections of ourselves.

— Ken Goldberg

C O N T E N T S

1 introduction 1

1.1 Key contributions . 5

1.2 Publications . 5

1.3 Collaborations . 7

1.4 Notation . 8

2 learning to give route directions

from human demonstrations 9

2.1 Introduction . 9

2.2 Related work . 11

2.3 Learning to give directions for routes from human
demonstrations . 14

2.3.1 Giving directions as a reinforcement learning
problem . 14

2.3.2 Maximum entropy inverse reinforcement learning 17

2.3.3 Features . 19

2.3.4 Contexts . 23

2.4 Experimental evaluation 24

2.4.1 Acquiring training data 24

2.4.2 Learned policies 26

2.4.3 Experimental setup for evaluating the generated
descriptions . 28

2.4.4 How human-like are the directions generated by
our approach? . 29

2.5 Discussion . 32

2.6 Conclusions . 33

3 speeding-up mobile robot exploration using

background knowledge 35

3.1 Introduction . 35

3.2 Related work . 38

3.3 Guiding exploration with background knowledge . . . 40

3.3.1 Representation of background information
about the environment 40

3.3.2 Representation of the exploration problem . . . 40

3.3.3 Solving the TSP 41

3.3.4 Frontier-based exploration exploiting the TSP
solution . 42

3.3.5 Re-planning . 44

3.4 Experimental evaluation 46

3.4.1 Environments . 46

3.4.2 Background information 49

xv

xvi contents

3.4.3 Traveled distance 50

3.4.4 Run time . 51

3.4.5 Robustness . 51

3.4.6 Influence of information gain 53

3.5 Discussion . 54

3.6 Conclusions . 54

4 slam for humanoids with a combined

rgb and depth descriptor 57

4.1 Introduction . 57

4.2 Related work . 61

4.2.1 RGB-D SLAM . 61

4.2.2 Appearance-based loop closing 61

4.2.3 SLAM and visual odometry for humanoid robots 62

4.3 Proposed RGB-D feature descriptor 62

4.4 Appearance-based SLAM 65

4.4.1 Pose tracking . 66

4.4.2 Mapping . 68

4.4.3 Place recognition for loop closing 69

4.5 Experimental evaluation 70

4.5.1 Evaluation of descriptors 71

4.5.2 Place recognition 74

4.5.3 Simultaneous localization and mapping 75

4.5.4 Computational cost 77

4.6 Discussion . 78

4.7 Conclusions . 79

5 efficient coverage of 3d environments with hu-
manoid robots using inverse reachability maps 81

5.1 Introduction . 81

5.2 Related work . 84

5.3 Problem description and framework 85

5.4 Reachability map and pose evaluation 86

5.5 Efficient representation of the IRM 89

5.6 Planning a tour of viewing poses 91

5.6.1 Sampling candidate viewing poses 91

5.6.2 Determining whole-body configurations 92

5.6.3 Formulation as a traveling salesman problem . 93

5.7 Experiments . 94

5.7.1 Generating the inverse reachability map 94

5.7.2 Coverage of simulated environments 94

5.7.3 Coverage of a real scene 98

5.8 Discussion . 98

5.9 Conclusions . 100

contents xvii

6 gpu-accelerated next-best-view exploration

of articulated scenes 101

6.1 Introduction . 101

6.2 Related work . 103

6.3 Problem formulation . 105

6.4 GPU algorithms . 106

6.4.1 Properties of the graphics pipeline 106

6.4.2 Cost map computation 107

6.4.3 Single-source shortest path 108

6.4.4 Information gain computation 112

6.4.5 Estimating the utility map 112

6.4.6 Covering environments with a robot’s camera . 115

6.5 Experimental evaluation 116

6.5.1 Benchmarking the GPU algorithms 116

6.5.2 Information gain map estimation 119

6.5.3 Covering environments with a robot’s camera . 120

6.6 Discussion . 120

6.7 Conclusions . 121

7 conclusions 123

a appendix 127

a.1 Nao humanoid robot: Technical data 127

a.2 ASUS Xtion Pro Live RGB-D camera: Technical data . 128

list of figures 129

list of tables 131

list of algorithms 132

acronyms 133

bibliography 135

1
I N T R O D U C T I O N

Robots are about to step into our daily lives: Vacuum cleaner robots
and autonomous lawn mowers have already conquered many homes,
robots work as concierges in hotels, as servers in restaurants, and as
tour guides in museums, they park our cars in automated garages
or even drive cars themselves. For the future, we envision robots to
become indispensable companions and everyday tools in business,
education, entertainment, and public services much like the devel-
opment of personal computers has revolutionized many domains of
our lives. We believe that humans and robots will make great teams —
not because of their similarities, but because of their differences that
complement each other. Humans have creativity, intuition, emotions,
and broad background knowledge that allows them to adapt to new
environments and situations on a daily basis. Robots can process vast
amounts of data, they are patient and persevering, and they can be
designed to be strong, fast, and precise. Combining their strengths,
humans and robots can unlock synergies to achieve higher produc-
tivity and higher standards of living. To leverage the full potential
of this human-robot collaboration, humans and robots need to work
closely together by sharing common workspaces, using the same fa-
cilities and tools, and communicating naturally and intuitively about
tasks and observations. In this thesis, we present novel approaches
for reaching these goals for successful human-robot collaboration in
everyday navigation tasks.

In recent years, technology for mobile and humanoid robots has
evolved rapidly: The availability of lightweight and energy-efficient
RGB-D cameras has improved the robots’ sensing capabilities. Com-
bined with fast map representation techniques such as OctoMaps [75],
a large toolbox of point cloud processing techniques collected in the
open source Point Cloud Library (PCL) [147], and advances in 3D
Simultaneous Localization and Mapping (SLAM) techniques, these
sensors allow robots to map and navigate complex environments. Ad-
vances in neural networks and deep learning techniques [137] together
with the increasing availability of dedicated parallel computing de-
vices have opened up new opportunities for computer vision and scene
understanding that allow a robot to act in domestic environments.
Progress in the area of natural language processing and generation
allows for a more natural interaction and communication between
humans and robots. With the Robot Operating System (ROS), these
advances in technology have been made accessible for research teams
world-wide, fostering development in the whole field of robotics.

1

2 introduction

(a) Cosero (b) Nao cleaning up (c) Pepper tour bot

Figure 1.1: Robots acting in human environments. (a): University of Bonn’s
Cosero opening a fridge to investigate its contents (source: [169]).
(b): Our Nao robot cleaning up a children’s room as part of the
SQUIRREL project (source: [158]). (c): Pepper robot providing an
interactive tour of a lab at Queensland University (source: [166]).

This progress in developing general-purpose robots for daily appli-
cations is particularly visible in the RoboCup@Home championship.
The RoboCup@Home championship puts emphasis on two aspects:
First, the scenarios for the challenges are set up in everyday environ-
ments such as homes, offices, supermarkets, or restaurants that are
unknown to the robots and the developers before the competition.
In contrast to the RoboCup Soccer championship or industrial ap-
plications, RoboCup@Home does not abstract the environments or
tailor the environments to the needs of robots, for example by adding
fiducials. As “uncertainty is part of the concept” [15], the robots have
to deal with human environments that they have to understand and
manipulate.

Second, large parts of the RoboCup@Home challenge focus on
human-robot interaction, for example the cocktail party task where a
robot has to serve drinks to previously unknown people, or the help
me carry task where a robot has to cooperate with a human operator
by following the person and executing voice commands. Natural
interaction is key for the success of domestic robots, as untrained
persons have to be able to work with and command the robots without
having any programming skills.

In this thesis, we explore how humans and robots can collaborate
to solve navigation tasks in human environments by leveraging syn-
ergies in four different scenarios. In the first application (Chapter 2),
we investigate how humans and automated computer systems can
join forces to create better route descriptions. Wayfinding is a task
that we face every day, for example when we travel to an unknown
city or when we describe how to reach the train station to a foreign
visitor. While we already often rely on technical devices such as GPS

navigation devices or web-based routing services, these automated
systems do not speak our language: Automated routing services typi-
cally produce phrases like “Turn left after 250 m” even though metric

introduction 3

distances are rather difficult to estimate for humans, making the route
descriptions hard to follow. If you ask a random passer-by how to get
to the train station, they will rather refer to salient landmarks that they
choose depending on the recipient: Which landmarks catch someone’s
attention is different for children and adults, locals and non-locals, or
blind and sighted people. Hence, we propose to combine the strengths
of humans and automated systems: Humans know the target audience
and have an intuition about what types of information are most useful
for the person receiving the description, but on the other hand, they
frequently make mistakes such as confusing left and right, miscount-
ing intersections, and inaccurately estimating distances. Computer
systems, by contrast, have access to a large amount of information
such as an accurate, detailed map, but they are bad at judging what
information is “ergonomic” for the recipient. The core idea of our
approach is that automated systems should learn from humans how
to describe routes: From a corpus of descriptions written by humans
for a specific audience, our algorithm learns how much and what type
of information it should include in a route description. Afterwards,
the algorithm uses the learned policy to create new route descriptions
that are correct and complete according to the map data, but also easy
to understand and useful for the targeted audience.

In this first application, we investigate how automated systems can
communicate navigation strategies to humans in a natural way. In
the second application (Chapter 3), we consider the opposite scenario:
How can humans effectively communicate background knowledge to
a robot to help the robot better navigate in an unknown environment?
The prerequisite for robot navigation is an accurate representation of
the environment. In most scenarios considered in the literature, robots
start with zero knowledge about the environment and use a SLAM

approach to build an environment model from scratch following an
exploration strategy that determines which areas will be explored next.
If the robot does not have access to any background information, the
decision on which area to explore next can lead to an arbitrarily ineffi-
cient exploration behavior. In many cases, however, some background
information about the environment would be available, for example a
sketch drawn by a human operator or a floor plan showing the basic
building layout. We propose an algorithm to make background infor-
mation from sources like these available to the robot and investigate
how the robot can exploit this information to optimize the exploration
tour, leading to shorter exploration times. We show an application
where our algorithm uses data generated from archeological sketch
maps to compute efficient navigation strategies for exploring a historic
Roman catacomb.

While Chapters 2 and 3 target the communication aspect of navi-
gating in human environments, the remaining chapters focus on the
question of how robots can navigate in environments that are tailored

4 introduction

to humans. As we work towards universally usable robots working in
everyday environments, these environments can hardly be modified
to suit the needs of robots. In contrast to industrial environments,
for example, it would be impractical to fit homes, shops, and even
whole cities with induction loops or reflective fiducials that robots can
use to navigate. Hence, robots have to use the environment itself to
localize and navigate. In continuation of our previous work on robot
navigation based on visual floor features [126], recognizing staircases
in laser scans [128], and fine-positioning on staircases based on edge
features [127, 129], we present a new feature descriptor for RGB-D data
in Chapter 4 and optimize an existing appearance-based SLAM system
for the usage in humanoid robots. Robust localization and mapping is
a prerequisite for robots that execute tasks for humans in their homes.

One example for such a task is to search for an object in a known
environment, for example to look for the car keys in an apartment. In
Chapters 5 and 6, we consider the task of covering a known environ-
ment with a robot’s camera, for example for mapping, inspection, or
search tasks in user-defined regions of the environment. We extend
an approach that Dornhege et al. [40, 41] originally developed for
locating trapped persons in disaster rescue scenarios to make the tech-
nique usable on humanoid robots. In contrast to wheeled or tracked
platforms, humanoid robots are better suited for human environments
because they have a similar body plan as humans and can thus better
use facilities and tools designed for humans. They can, for example,
climb stairs, bend over boxes, crouch down to peek under objects, or
open doors to see inside cupboards. The higher dexterity and degrees
of freedom, however, come with higher planning complexity. In par-
ticular, bipedal robots have to maintain their balance while moving,
introducing many constraints in the planning space, making sampling-
based planning techniques as used in Dornhege’s original approach
infeasible. Hence, we introduce inverse reachability maps into the
framework which allows us to quickly enumerate and verify stable
body poses already in the camera viewpoint planning phase so that
our algorithm generates coverage plans that are feasible, flexible, and
efficient in static scenes.

As we envision our robots to help us with daily chores, the robots
will also have to manipulate articulated objects, for example open draw-
ers and cupboards or moving obstacles aside. Hence, we introduce
articulated objects into our coverage planning scenario in Chapter 6.
In addition to the high-dimensional planning problem of planning
full-body poses, the robot now also has to decide in which order to
manipulate multiple objects, for example when opening drawers and
doors of a kitchenette that might occlude each other, increasing the
planning complexity further. In order to be able to determine regions
visible from the robot’s perspective for a substantial amount of articu-
lation configurations, we formulate the path planning and visibility

1.1 key contributions 5

determination subproblems as rendering problems and use Graphics
Processing Unit (GPU) acceleration to speed up the computation. In
contrast to existing approaches that use dedicated high-end comput-
ing devices, we only use features available in the embedded systems
subset of the Open Graphics Library (OpenGL) standard and show that
the algorithm runs efficiently on a smartphone. In combination with a
novel heuristic for estimating utility maps, our algorithm generates
efficient plans for covering a known environment, which includes
manipulating objects to gain access to hidden regions.

In Chapter 7, we summarize the results of this thesis and discuss
open questions for future research.

1.1 key contributions

In this thesis, we investigate several aspects of human-robot collabora-
tion and robot navigation in environments designed for humans. In
summary, our key scientific contributions are:

• an inverse reinforcement learning approach for learning how to
describe routes from a corpus of human-written route descrip-
tions (Chapter 2),

• a planning approach that exploits background information given
by the user to create an efficient exploration strategy for explor-
ing unknown environments (Chapter 3),

• a feature descriptor that combines RGB and depth information
for the usage in appearance-based SLAM systems on humanoid
robots (Chapter 4),

• an approach that combines an existing next-best-view approach
for planning a coverage tour through a known environment with
inverse reachability maps for generating full-body poses for a
humanoid robot (Chapter 5), and

• a heuristic and techniques leveraging GPUs to compute utility
maps for covering known environments that contain also articu-
lated objects (Chapter 6).

1.2 publications

Parts of this thesis have been published in international journals and
conference proceedings. The following list gives an overview about
the individual publications.

6 introduction

• Chapter 2:
S. Oßwald, H. Kretzschmar, W. Burgard, and C. Stachniss.
“Learning to give route directions from human demonstra-
tions.” In: Proc. of the IEEE Int. Conf. on Robotics & Automa-
tion (ICRA). 2014, pp. 3303–3308.
doi: 10.1109/ICRA.2014.6907334.

Best Cognitive Robotics Paper–Finalist.

• Chapter 3:
S. Oßwald, M. Bennewitz, W. Burgard, and C. Stach-
niss. “Speeding-up robot exploration by exploiting back-
ground information.” In: IEEE Robotics and Automation Let-
ters (RA-L) 1.2 (2016), pp. 716–723. issn: 2377-3766.
doi: 10.1109/LRA.2016.2520560.

• Chapter 4:
R. Sheikh, S. Oßwald, and M. Bennewitz. “A combined
RGB and depth descriptor for SLAM with humanoids.”
In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS). In press. 2018.

• Chapter 5:
S. Oßwald, P. Karkowski, and M. Bennewitz. “Efficient
coverage of 3D environments with humanoid robots using
inverse reachability maps.” In: Proc. of the IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids). 2017, pp. 151–157.
doi: 10.1109/humanoids.2017.8239550.

• Chapter 6:
S. Oßwald and M. Bennewitz. “GPU-accelerated next-
best-view coverage of articulated scenes.” In: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS).
In press. 2018.

The following publications were written while employed as a research
assistant, but are not covered by this thesis:

• S. Oßwald, A. Hornung, and M. Bennewitz. “Improved
proposals for highly accurate localization using range and
vision data.” In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems (IROS). 2012, pp. 1809–1814.
doi: 10.1109/IROS.2012.6385657.

• A. Hornung, S. Oßwald, D. Maier, and M. Bennewitz.
“Monte Carlo localization for humanoid robot navigation
in complex indoor environments.” In: Int. Journal of Hu-
manoid Robotics 11.2 (2014).
doi: 10.1142/S0219843614410023.

https://dx.doi.org/10.1109/ICRA.2014.6907334
https://dx.doi.org/10.1109/LRA.2016.2520560
https://dx.doi.org/10.1109/humanoids.2017.8239550
https://dx.doi.org/10.1109/IROS.2012.6385657
https://dx.doi.org/10.1142/S0219843614410023

1.3 collaborations 7

• P. Regier, S. Oßwald, P. Karkowski, and M. Bennewitz.
“Foresighted navigation through cluttered environments.”
In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS). 2016, pp. 1437–1442.
doi: 10.1109/IROS.2016.7759234.

• P. Karkowski, S. Oßwald, and M. Bennewitz. “Real-time
footstep planning in 3D environments.” In: Proc. of the
IEEE-RAS Int. Conf. on Humanoid Robots (Humanoids). 2016,
pp. 69–74.
doi: 10.1109/HUMANOIDS.2016.7803256.

1.3 collaborations

Parts of this thesis are the results of collaborative work with other
researchers, hence we consistently use “we” within this thesis. The
collaborations on the work in this thesis and my contributions are as
follows:

• Chapter 2: The system for learning to give route directions was
developed in collaboration with Henrik Kretzschmar and su-
pervised by Cyrill Stachniss and Wolfram Burgard. I designed
and implemented the system. Henrik Kretzschmar contributed
knowledge and experience about the general inverse reinforce-
ment learning approach. I designed, executed, and evaluated the
experiments jointly with Henrik Kretzschmar.

• Chapter 3: The development of the system for robot exploration
with background knowledge was supervised by Cyrill Stachniss
and data for the experiments has been provided by the ROVINA
project.

• Chapter 4: The combined depth and RGB descriptor was origi-
nally developed within the Master’s thesis of Rasha Sheikh. The
design, implementation, and evaluation of the system was done
entirely by Rasha Sheikh. I developed the project idea, super-
vised and advised the work on her thesis. We jointly executed
the real-world experiments.

• Chapter 5: The system for covering 3D environments with hu-
manoid robots was developed as an extension of Christian Dorn-
hege’s framework [41] in collaboration with Philipp Karkowski
and was supervised by Maren Bennewitz. Philipp Karkowski
contributed the design and implementation of the method for
systematic sampling of rays described in Section 5.6.1.

• Chapter 6: The work on GPU-accelerated coverage tour planning
was supervised by Maren Bennewitz.

https://dx.doi.org/10.1109/IROS.2016.7759234
https://dx.doi.org/10.1109/HUMANOIDS.2016.7803256

8 introduction

1.4 notation

We will use the following notation throughout this work:

Symbol Description

a, b, . . . scalar value

x, y, . . . vector

A, B, . . . matrix

xT, AT transpose of a vector or a matrix

‖x‖ norm (length) of a vector

det(A) determinant of a matrix

[a, b] continuous range including a and b

S = {s1, s2, . . . } set

|S| cardinality (number of elements) of a set

S \ T set subtraction

x ← a assignment of value a to a variable x

p (x) probability distribution of a random variable x

p (x | y) conditional probability of x given y

E [X] expectation value of random variable X

1a=b indicator function, returns 1 if a = b and 0 otherwise

ã empirical value from training data

a ∨ b logical disjunction (OR operation)

a ∧ b logical conjunction (AND operation)

(φ, θ, ψ) Euler angles roll, pitch, yaw

2
L E A R N I N G T O G I V E R O U T E D I R E C T I O N S
F R O M H U M A N D E M O N S T R AT I O N S

For several applications, robots and other computer systems must
provide route descriptions to humans. These descriptions should
be natural and intuitive for the human users. In this chapter, we
present an algorithm that learns how to provide good route descrip-
tions from a corpus of human-written directions. Using inverse
reinforcement learning, our algorithm learns how to select the in-
formation for the description depending on the context of the route
segment. The algorithm then uses the learned policy to generate
directions that imitate the style of the descriptions provided by
humans, thus taking into account personal as well as cultural
preferences and special requirements of the particular user group
providing the learning demonstrations. We evaluate our approach
in a user study and show that the directions generated by our policy
sound similar to human-given directions and substantially more
natural than directions provided by commercial web services.

2.1 introduction

Providing and following route directions is a task we face on a daily
basis, for example when asking staff members how to get to the
right aisle in a library or shopping center, or when moving in an
unknown city following instructions provided by a navigation device.
When driving cars, we already rely on web services such as Google
Maps [61] and satellite navigation systems that provide turn-by-turn
instructions at every decision point. For some applications, however,
giving turn-by-turn instructions in real-time is impractical or impos-
sible, for example in indoor navigation where global positioning is
not available. In such applications, computer systems should be able
to give spoken directions of the complete route in advance. This is
relevant for information kiosks in public buildings, tour guide robots
in museums, or navigation devices for visually impaired persons who
are unable to read maps.

Existing commercial web services typically follow rigid patterns
for giving directions, usually referring to the metrical distance to the
forthcoming turning and the name of the street that the user has
to take, e.g., “Turn left after 267 m onto Market Street.” While these
descriptions are technically correct, precise, and complete, they are
still hard to follow for human users and they do not resemble the
directions a human would give. Instead of providing precise metric

9

10 learning to give route directions from demonstrations

information, humans usually refer to salient landmarks along the
route [177], trade off the amount of information that the recipient
requires against the memory load caused by long descriptions, and
take into account personal and cultural preferences when giving route
directions [77].

The goal of this work is to develop a system that gives route di-
rections in spoken or written form that humans can naturally and
intuitively understand. We propose an approach that learns how to
generate route descriptions from a corpus of human-generated de-
scriptions. In this way, the user can train our system to use a particular
style of instructions that is appropriate for the use case at hand. One of
the key challenges is to choose the right amount and type of informa-
tion that a route description should contain. What constitutes a “good”
description depends on the user and the situation. Street names, for
instance, are hardly of use for visually impaired, blind, or illiterate
recipients as they cannot read the corresponding street signs. Street
names are also challenging for foreigners who cannot decipher street
signs written in Cyrillic, Arabic, or other scripts unknown to them.
For blind recipients, tactile pavements and audible cues are much
better suited description elements. By imitating the style of existing
descriptions written for a particular user group, our system can learn
to choose the type of information that best suits the needs of the users.

The person giving the directions also has to trade off the amount of
information to give to the recipient. More detailed or even redundant
descriptions may help the user to resolve ambiguities and recover
from errors, but on the other hand require more memory and are thus
harder to remember. As mentioned above, Hund et al. [77] found in
a user study that cultural backgrounds influence the style of route
directions. Participants from the United States who are accustomed to
the typical grid-like layout of US cities with numbered streets would
be more aware of street names and cardinal directions and use these
elements when giving directions. Participants from the Netherlands,
by contrast, would use these elements less, as the cities they are
familiar with are typically irregular without any systematic street
name scheme. They would instead refer to landmarks such as rivers,
bridges, railroad crossings, and salient buildings.

Many other factors influence the decision of which ingredients
to choose for composing a route description, such as personal pref-
erences, the environment, familiarity of the recipient with the city,
available tools such as sketches or maps, and the situation in which
the description is given. Designing a rule-based expert system that
takes all these factors into account is infeasible. Hence, we propose
an adaptive system that can be trained to generate route descriptions
tailored to a particular situation and audience by imitating the style
of descriptions of a corpus of human-written descriptions.

2.2 related work 11

The contribution of this work is a novel approach to learn a model
of human-like directions for routes. We formulate the problem of
giving directions as a Markov decision process. Hence, we assume
that humans seek to optimize an unknown reward function when
giving directions. We apply maximum entropy inverse reinforcement
learning to infer the reward function from a set of directions provided
by humans. The reward function is expressed in terms of features that
capture relevant properties of the directions such as the amount and
type of information given in the individual instructions. We collected a
corpus of directions in a user study, trained our system on that corpus,
and applied the learned policy to new routing description tasks. In a
second user study, we asked human subjects to rate the descriptions
generated by our system with respect to how natural they sound.
The results suggest that the directions generated by our approach are
significantly more human-like than the directions provided by existing
route description services.

2.2 related work

Studies in psychology, cognition, geo sciences, linguistics, and com-
puter science have investigated the principles underlying the process
of giving route descriptions. The work by Allen [6] and Lovelace
et al. [100] identify basic structures and common characteristics of
good route descriptions. For instance, humans typically give directions
in linear order along the projected route, focus on critical choice points
along the route such as intersections where the user has to turn, and
increase the amount of information towards the end of the route.

In his dissertation [144], Kai-Florian Richter presents a detailed
study on the differences and similarities between human-written and
automatically generated route directions, mainly focusing on cogni-
tive, linguistic, and representation-theoretic aspects. He identifies and
systematizes commonly used components of route descriptions such
as path representation, reference systems, roles of landmarks, chunk-
ing of subsequent instructions, and levels of granularity when giving
directions. Based on these components, Richter formulates the task of
giving route descriptions as an optimization problem that has to be
solved by partially or exhaustively generating multiple possible route
descriptions and choosing the best one according to an optimization
criterion. As the main optimization criterion, Richter opts for mini-
mizing the number of distinct blocks of information conveyed to the
recipient of the description, arguing that shorter descriptions are easier
to memorize and to process. In our work, we use similar components
to describe routes. Most notably, we use the same mechanisms for
chunking multiple subsequent instructions into a single instruction.
We also formulate the problem as an optimization problem, but we
choose a Markov decision process as a framework allowing to opti-

12 learning to give route directions from demonstrations

mize more general optimization criteria. While the conciseness of the
description is an important criterion, we believe that other aspects
must be taken into account as well. The shortest description is not
necessarily the best description, as redundant information might help
to disambiguate situations or prevent errors, for example when a land-
mark is temporarily obstructed by a construction site. By introducing a
learning and imitation component, our approach is more flexible and
can better adapt to the needs of the users compared to a hand-crafted
optimization criterion.

Landmarks are generally considered an essential ingredient of good
route descriptions and there are many studies investigating their roles
and properties in verbal descriptions, e.g. [148, 177, 181]. Landmarks
can be used to negotiate the initial heading at the start of the route, as
reference points along the route, as distant “lighthouse” landmarks
helping the user to maintain their global sense of orientation, or as a
hint that the user has overshot the goal (“When you reach the church,
you’ve gone too far”). However, there is no clear consensus on how
to select appropriate landmarks for including them into route de-
scriptions. The saliency of a category of landmarks is often a largely
subjective measure depending on a person’s interests, physical abili-
ties, age, experience, and familiarity with the environment. The same
also holds for other components of route descriptions. Hund et al. [77]
showed in a user study that participants from the US are more likely
to use cardinal directions when describing routes compared to partic-
ipants from the Netherlands, illustrating that cultural backgrounds
influence the style of giving route descriptions. Ward et al. [180] found
evidence for gender differences, as male participants of their study
were more inclined to use cardinal directions and metric distances
compared to females and that this difference is a stylistic preference
rather than due to spatial representation ability. Lovelace et al. [100]
showed that familiarity with the route affects the types of landmarks
that a speaker chooses and that the choice of landmarks likely changes
when the speaker gets more familiar with a route. These examples
illustrate that there is a large number of influences on how humans
describe routes, and it is obviously impossible to model all these influ-
ences explicitly in an automated system. Hence, we instead propose
a learning algorithm that adapts the style of giving route directions
to the preferences of the particular user group by imitating humans.
This allows us to exploit the knowledge and intuition of humans on
how to describe routes to a particular audience for creating similar
descriptions with an automated system.

Several research groups investigated how natural language process-
ing can be used to understand and follow route directions [88, 103],
which can be seen as the inverse problem to generating directions.
The main challenge these works address is the problem of grounding
natural language, that means the association of a word or phrase to

2.2 related work 13

a physical object (e.g., a landmark) or a spatial concept (e.g., a direc-
tion). A system that learns to describe routes by imitating existing
descriptions also needs to execute such a grounding step. However, as
natural language processing and interpretation is a difficult problem
on its own that is beyond the scope of our work, we instead use semi-
automated assignment by generating a set of similar phrases matching
the corresponding route segment and have a human operator select
the most similar one.

Look [99] implemented a system for generating overview descrip-
tions consisting of subgoals and neighborhoods along the route that
complement and structure turn-by-turn instructions according to cog-
nitive principles. Dale et al. [36] manually analyzed references and
structures in a corpus of human-written directions and derived a
set of rules for generating route descriptions that appear to be more
human-like. In our work, we follow a similar approach but attempt to
learn the user preferences directly from the human-generated corpus
instead of manually inferring a set of rules.

Several algorithms have been proposed for altering the route in
order to generate better descriptions, for example, for finding the
most reliable path [67], or the simplest instructions [145]. Goeddel
et al. [59] propose to use a particle filtering technique for maximizing
the chances for arriving at the goal despite possible errors the user
makes while traveling. Such approaches optimizing the route can be
combined with our approach in a two-step process to create a system
that optimizes both the route and its description.

Our algorithm learns policies that cater to specific user groups with
particular needs and preferences. The generated descriptions are not
necessarily optimal with respect to efficiency, reliability, simplicity,
or similar metrics, as descriptions given by humans are not optimal
according to these metrics either. We do not intend to optimize for
such metrics, as we imitate the style of a corpus of human-written
descriptions assuming that the corpus has been tailored to the needs
and preferences of a particular audience.

Cuayáhuitl et al. [33] propose a hierarchical reinforcement learning
approach for choosing a route and generating suitable directions along
that route. The learned policy minimizes the number of instructions
necessary to describe the route and the “user confusion” based on
hand-crafted reward functions and transition models that consider
the user’s familiarity with the environment, the distance between
subsequent decision points, and the saliency of the landmarks that the
directions refer to. In contrast to that, our approach learns how much
information and which pieces of information the route description
should include by imitating descriptions given by humans without
the need for estimating parameters of the underlying model, such as
the “user confusion” probabilities.

14 learning to give route directions from demonstrations

Inverse reinforcement learning techniques have been used to ad-
dress a variety of imitation learning problems including autonomous
helicopter aerobatics [2], learning pedestrian navigation behavior [92,
191], and learning the preferences of cab drivers [190]. In particular,
Abbeel and Ng [1] suggest to match features that capture relevant
aspects of the behavior that is to be imitated. However, feature match-
ing does not lead to a unique cost function. To resolve this ambiguity,
maximum entropy inverse reinforcement learning [189] relies on the
principle of maximum entropy [80] and, hence, aims to find the policy
with the highest entropy subject to feature matching. In this work,
we apply maximum entropy inverse reinforcement learning to learn
a model of “human-like” route descriptions from a set of directions
given by humans. Our approach is able to imitate their style of route
directions in order to generate route descriptions that appear natural
and intuitive to the recipients.

2.3 learning to give directions for routes

from human demonstrations

The objective of this work is to learn a model of natural-language
route directions from human demonstrations. We model the problem
of giving directions for routes as a reinforcement learning problem
in terms of a Markov Decision Process (MDP) [16]. We apply inverse
reinforcement learning to elicit the unknown reward function from a
set of directions provided by humans. The reward function captures
relevant characteristics of the route directions and allows us to apply
reinforcement learning to generate directions for new routes that
mimic the human demonstrations.

2.3.1 Giving directions as a reinforcement learning problem

A MDP is commonly represented as a tuple (S, A, P, r, P0), where s ∈ S
is a set of states and a ∈ A is a set of actions that allow to transition
between the states. In the general case, actions do not necessarily have
to be deterministic and a probability distribution P(s′ | s, a) specifies
the probability that the system transitions from state s to state s′ when
executing action a. The reward function r : S× A× S→ R specifies an
immediate reward for transitioning from state s to state s′ by executing
action a. Finally, P0 is the probability distribution over the start states.
A trajectory τ = {s1:T, a1:T} is a sequence of states and actions that
adheres to the state transition probabilities. A policy π(a | s) is given
by a probability distribution over actions a to take when in state s.
The goal of reinforcement learning is to compute a policy π(a | s) that
maximizes the expected cumulative reward

R =
∞

∑
i=1

γtr(si, ai, si+1) (2.1)

2.3 learning to give directions for routes 15

where γ is a discount factor trading off between current and future
rewards.

MDPs are a commonly used representation of learning problems
where costs and rewards can be defined for individual actions or
for reaching a certain state, and the goal of the learning approach is
to discover strategies for minimizing costs and maximizing rewards.
In learning to play soccer, for example, scoring a goal leads to an
immediate reward and moving on the soccer field comes with costs for
decreasing stamina. Scoring a goal, however, is only possible through
a chain of events and decisions and it is not obvious what benefit
a particular action will bring in the long run. Through experience,
though, a human player or an algorithm can learn to estimate which
actions are the most promising ones in a particular situation towards
the long-term objective of scoring a goal.

In our problem of learning how to describe routes, however, it is not
clear how to define immediate or long-term rewards, as it is difficult to
formalize when descriptions are “good” or “bad”, in particular as this
depends on many factors such as the familiarity of the recipient with
the environment, whether or not the recipient has to memorize the
description, which landmarks the recipient would consider as salient,
etc. While it would be possible to define rewards for the effectiveness
of the description, i.e., whether or not the recipient reaches the des-
tination when following the description, such a definition would be
impractical in a learning framework as learning algorithms need a
large amount of training data, so a large number of user studies where
a human actually navigates to a destination would be required, which
is too time-consuming and costly in practice.

We assume that humans still optimize a reward function, con-
sciously or not, as they know by intuition or by experience what
information would be useful for the recipient to solve the task and
they try to optimize the description to match the recipient’s needs. It is
also easy to collect a body of sample descriptions written by humans,
for example by soliciting descriptions from participants of a user
study, by collecting freely available descriptions on the Internet, or by
using model descriptions from foreign language learning textbooks.
Hence, the problem of learning to describe routes can be formulated
as an Inverse Reinforcement Learning (IRL) problem, which is the
problem of recovering an unknown reward function given a set of
demonstrations {τ1, . . . , τn}.

As illustrated in Figure 2.1, we model the environment as a graph
G = (V, E), where the nodes v ∈ V represent intersections, and the
edges e ∈ E represent streets. The space of all directions that guide
a user through the environment from their current location v1 to
a specific destination location vgoal along a given route is encoded
by a deterministic MDP M. In particular, each action a of the MDP

corresponds to a single instruction that guides the user from node vi

16 learning to give route directions from demonstrations

v1

v2

v3

v4 v5 v6

s1

s2

s3

s4 s5 s6

sgoal

Go to Freiburg.
Go straight

ahead.
Turn left
at the third
junction.

Go straight
ahead.

Go straight
ahead. Turn

left.

Your goal will be
on the right side.

Start heading
south.

Walk towards
the church.

Figure 2.1: The problem of giving route directions as a reinforcement learn-
ing problem. Left: The route to be described (blue). Right: The
corresponding Markov decision process encodes all valid descrip-
tions of the route.

to node vj. Consequently, each trajectory τ in the MDP M corresponds
to valid directions that guide the user all the way from its current
location to its target location. For example, the descriptions “Walk
towards the church. Go straight ahead. Go straight ahead. Turn left.”
and “Start heading south. Turn left at the third junction” are both
complete, valid, unambiguous descriptions for guiding a user from
the start node v1 to v5, but they have a different level of granularity
and amount of information that the recipient has to memorize. Hence,
every path through the MDP from the start node to the goal node
represents a valid natural-language description of the same route, but
in different words.

We assume that all actions are deterministic, meaning that we expect
that the recipient correctly executes the instructions. In practice, this
might not be the case, as the user might miscount intersections, confuse
left and right, or there might be changes in the environment such as
a new street that had not yet been registered in the map that the
algorithm used to generate the description. However, it would be
difficult to incorporate user mistakes, as the person or algorithm
giving the directions can hardly foresee what error the recipient will
make. Without knowing the error, it is not possible to give meaningful
instructions for correcting the error in advance. This problem could
be alleviated by altering the route to reduce the risk for errors as
Goeddel et al. [59] propose, or by including “When you arrive at . . . ,
you’ve gone too far” instructions, as Lovelace et al. [100] suggest. Both
approaches, however, are computationally expensive and difficult to
integrate into a common system.

2.3 learning to give directions for routes 17

The MDP defined here is acyclic, as returning to a previously visited
state would be redundant. As there are no cycles and each action
advances the user’s state towards the goal, the MDP has a finite horizon,
thus discounting factors are not necessary and γ can be set to 1. These
properties are desirable as they make the learning algorithm more
efficient.

2.3.2 Maximum entropy inverse reinforcement learning

If the reward function of an MDP is known, reinforcement learning
can be used to derive a policy that optimizes the expected cumulative
reward. In our case, however, the reward function is inaccessible as
we do not have an explicit representation of the goals that human
route describers optimize for. Instead, we only have access to a body
of demonstrations represented as a set of trajectories through the MDP

and we assume that human subjects created these demonstrations
by following an underlying unknown reward function. The goal of
Inverse Reinforcement Learning (IRL) [119] is to determine a new
reward function and a corresponding policy that can be transferred to
new problems for creating trajectories with similar properties as the
demonstrated trajectories.

The properties in which the newly created trajectories should be sim-
ilar to the demonstrated are called features. A feature f : (S, A)T → R

maps a trajectory τ = {(s1, a1) , . . . , (sT, aT)} to a real value. Examples
for features are the length of the trajectory, frequencies of particu-
lar states or actions, or frequencies of repeating elements along the
trajectory. All features combined form a feature vector fτ ∈ Rn of a
trajectory τ.

The reward function R decides on the distribution of the feature
values when sampling new trajectories and we consider the distribu-
tion of these feature values to choose the reward function that best
matches the demonstrations. Hence, we define R as a function of the
feature values parameterized by a parameter vector θ ∈ Rn. From
each possible reward function Rθ, a policy πθ can be derived using
reinforcement learning. When this policy πθ is applied to an MDP, it
induces a probability distribution pθ (τ) over all trajectories τ leading
through the MDP’s graph. Given this probability distribution, the goal
of IRL is to find suitable parameters θ of the reward function so that
the following necessary condition is satisfied:

f̃τ = Epθ
[f(τ)]. (2.2)

f̃τ is the empirical feature vector summed up over all demonstrations
τ, and Epθ

[f(τ)] is the expectation value of the feature vector over all
demonstrations.

While this necessary condition guarantees that the learned policy
reproduces the same feature value distribution when applied to the

18 learning to give route directions from demonstrations

training data, it does not lead to a unique solution. There is an infinite
number of reward functions that produce the same feature distribu-
tions, including solutions that overfit to the training data or introduce
preferences for certain policies that are not part of the training demon-
strations and do not reflect the hidden true reward function. Hence,
we follow the principle of maximum entropy [80] that suggests se-
lecting the distribution that least favors any particular outcome while
still satisfying the necessary constraint from Equation 2.2. Ziebart ap-
plied this maximum entropy principle to IRL, leading to the Maximum
Entropy Inverse Reinforcement Learning (MaxEnt IRL) approach [189].

The MaxEnt IRL approach optimizes the objective function

p?θ = argmax
pθ

Hpθ(τ) such that f̃τ = Epθ
[f(τ)], (2.3)

where H(pθ) is the Shannon entropy of distribution pθ.
Solving this optimization problem in the general case is hard, as it

requires to determine a probability distribution over the large space of
all possible trajectories in the MDP. To make this problem tractable, we
adopt the same assumptions and simplifications that Ziebart proposed.
First, we transfer the Markov property of the MDP also to features,
requiring that all features must be the sum of values assigned to indi-
vidual states or actions and that the value assigned with a state must
not depend on previous or future states. Instead of having to estimate
the probability of each complete trajectory, this assumption allows us
to estimate the visitation frequency Dθ (s, a) of each state-action pair
(s, a) in the MDP and calculate the expected feature distribution as

Epθ
[f(τ)] = ∑

(si ,ai)∈τ

Dθ(si, ai)f(si, ai). (2.4)

If we also assume that the reward function is a linear combination
of the feature values

Rθ = ∑
(si ,ai)∈τ

θTf(si, ai), (2.5)

then the solution of Equation 2.3 is given according to Ziebart [189] as

p?θ(τ) ∝ e−θTf(τ). (2.6)

Our goal is now to maximize the likelihood p?θ(τ) of the trajectories
demonstrated by the user. To solve this problem, we apply gradient-
based optimization on the logarithmic likelihood to iteratively refine
the parameters θ to achieve feature matching. The gradient with
respect to the parameters θ of the reward function is

∇θ ln p?θ(τ) = f̃ τ −Epθ
[f(τ)] (2.7)

The empirical feature count f̃ τ can be determined directly by summing
up the features in the demonstrated trajectories.

2.3 learning to give directions for routes 19

To compute the expected feature count Epθ
[f(τ)], we use Ziebart’s ef-

ficient dynamic programming algorithm [189] to compute the expected
visitation frequency Dθ(si, ai) of each state-action pair (si, ai) ∈ τ. Al-
gorithm 2.1 shows the original algorithm proposed by Ziebart. The
algorithm has four stages: First, a backward pass propagates a proba-
bility mass Z from the goal nodes towards the start nodes. This can
be interpreted as a “flooding” the graph with mass injected at the
goal nodes and transporting the mass along the transition edges in
opposite direction one node at a time. Hence, this backward step has
to be repeated N times for a finite time horizon N. The second phase
computes the policy π

(
ai,j | si

)
that specifies which action to take

in each state. This policy is computed as the ratio of the probability
masses Zai,j of the outgoing actions and the mass Zsi of the state. In the
third phase, a forward pass propagates the state visitation frequencies
Dsi from the initial nodes towards the goal nodes according to the
computed policy and transition probabilities. Again, this step has to be
repeated for a finite time horizon. In the fourth step then accumulates
the visitation frequencies of the individual time steps to compute the
overall state frequencies.

As explained above, our MDP graph is acyclic with a finite hori-
zon. Hence, we can reduce the computation time for the visitation
frequencies even further by processing the states in topological order.
If the states are processed in topological order, only a single sweep is
necessary to propagate the visitation frequencies along the graph, so
the visitation frequencies converge faster. Mathematically speaking,
we define a partially ordered set (S,≤) over the set of states S so that
si ≤ sj if there is a path from si to sj in the directed graph representing
the MDP. Propagating the probability masses in this order eliminates
the need for repeating the propagation step as the probability masses
will not change anymore after the first pass. Algorithm 2.2 shows
our modified version of Ziebart’s algorithm. In Ziebart’s original for-
mulation, rewards are attributed to states only, hence the algorithm
computes state visitation frequencies only. As the policy is also ex-
plicitly computed, however, computing the visitation frequencies of
state-action pairs can be done straightforwardly, allowing us to at-
tribute rewards to any combination of state, action, and successor state
of a transition (but not to other states and actions before or after the
transition due to the Markov property).

2.3.3 Features

Inverse reinforcement learning uses feature vectors to characterize
each possible solution of the task to be learned and tries to imitate
the style of the given demonstrations by matching the feature value
distribution. Hence, the choice and definition of features is critical for
the learning task. In our scenario, the features represent properties

20 learning to give route directions from demonstrations

Algorithm 2.1 Ziebart’s algorithm for computing state visitation
frequencies from [189]

// Backward pass
1: Zsterminal ← 1
2: for N iterations compute recursively:
3: Zai,j ←∑

k
P
(
sk | si, ai,j

)
ereward(si |θ)Zsk

4: Zsi ←∑
ai,j

Zai,j + 1{si=sterminal}

// Local action probability computation

5: πθ

(
ai,j | si

)
←

Zai,j
Zsi

// Forward pass
6: Dsi ,t ← P0 (si)
7: for N iterations recursively compute recursively:
8: Dsk ,t+1 ←∑

si

∑
ai,j

Dsk ,tπθ

(
ai,j | si

)
P
(
sk | ai,j, si

)
// Summing frequencies

9: Dsi ←∑
t

Dsi ,t

Algorithm 2.2 Our modified algorithm for computing visitation
frequencies of state-action pairs for acyclic finite-horizon MDPs

// Pre-process graph
1: Sort and re-index states so that si ≤ si+1 according to topologic

order of the MDP graph
// Backward pass

2: Zsterminal ← 1
3: for i from |S| to 1 do
4: Zai,j ←∑

k
P
(
sk | si, ai,j

)
eθT f (si ,ai)Zsk

5: Zsi ←∑
ai,j

Zai,j + 1{si=sterminal}

// Local action probability computation

6: πθ

(
ai,j | si

)
←

Zai,j
Zsi

// Forward pass
7: Dsi ← P0 (si)
8: for i from 1 to |S| do
9: Dsi ← Dsi + ∑

k
∑
ak,i

Dsk πθ (ak,i | sk) P (si | ak,i, sk)

// Calculate state-action pair frequency
10: Dθ (si, ai)← Dsi πθ

(
ai,j, si

)

2.3 learning to give directions for routes 21

Feature Description

number of instructions total number of instructions in the route description

number of slots number of pieces of information an instruction contains
(see Section 2.3.3)

abstraction level turn-by-turn instruction, chunked instruction, or desti-
nation description

segment length length of the described route segment in meters

number of intersections number of intersections covered by the instruction

street name references number of street names mentioned

street name saliency saliency of the street name if mentioned according to the
web search metric described in Section 2.4.1

cross street references number of crossing street names mentioned

cross street saliency saliency of crossing street if mentioned

street category references number of street categories mentioned (footpath, resi-
dential road, motorway, etc.)

cross street category ref. number of crossing street categories mentioned

“head towards” ref.


number, saliency and distance of landmarks that in-
dicate the heading, but are not part of the route,
e.g. “head towards the ocean”

“head towards” saliency

“head towards” distance

landmark reference number of landmarks mentioned

landmark distance distance of landmark if mentioned

landmark direction direction of landmark relative to recipient (back, side,
ahead, etc.)

landmark saliency saliency of landmark based on the number of hits re-
turned from a web search for the landmark’s name (see
Section 2.4.1 for details)

turn anchor turn at landmark / after metric distance / etc.

metric reference discretized mileage mentioned, e.g. “turn right after
200 m”

counter reference counter value mentioned, e.g. “turn right at the second
intersection”

reference frame at turns cardinal (e.g. “turn north”), allocentric (e.g. “turn left”),
or using counter (e.g. “take the second exit in the round-
about”)

reference frame at start cardinal, relative to landmark, or using street name
(e.g. “Start on Main St.”)

“n times” chunking e.g. “turn right twice”

Table 2.1: Features characterizing route descriptions. See Section 2.3.3 for
detailed explanations.

22 learning to give route directions from demonstrations

of the route directions such as the length of the description, the land-
marks mentioned in the instructions, or the frame of reference used to
indicate turn directions. Table 2.1 shows all features implemented in
our system. They can be grouped into three categories:

amount of information The amount of information that the
directions should include depends on the situation in which the user
gives the directions to the recipients. For example, if the recipients will
receive the directions as a printed text that they can take along while
traveling, the descriptions can be more detailed compared to situations
in which they have to memorize the whole description. We introduce
two features to measure the amount of information on different levels:
First, we count the total number of instructions. Second, we define a
feature measuring the number of pieces of information within each
instruction inspired by Mark’s concept of slots [107]. For instance, the
instruction “Turn right at the second intersection into Market Street”
contains three pieces of information that the recipient has to remember.

abstraction levels Instructions can occur at different granular-
ity levels. At the lowest level, turn-by-turn instructions refer to each
decision point individually (e.g. “Turn right”). Chunked instructions,
by contrast, direct the recipient across multiple decision points (e.g.
“Go straight ahead until you get to the church”), which is a more
concise description, but may be more difficult to follow as the user
has to count intersections or watch out for a particular landmark. At
the highest level, destination descriptions just give an intermediate
goal without specifying how to get there (e.g. “Drive to Freiburg”),
assuming that the user either already knows how to get there, or can
find the way by other means, for example by following road signs. We
define features that count the frequencies of these abstraction levels
as well as features measuring the number of decision points and the
length of the route segment covered by an instruction.

description style Personal and cultural preferences also influ-
ence the description style, e.g., the person giving the directions can
use cardinal directions, allocentric directions, or directions relative to
landmarks to indicate in which direction the recipient has to travel.
Furthermore, they can choose to include street names, street categories,
mileages, and landmarks in the description. These elements can occur
in several roles. Landmarks, for example, can be used to negotiate
a common reference frame (e.g. “Start facing the cathedral”), mark
a waypoint that the recipient has to pass, or indicate the heading
without being part of the route (e.g. “Head towards the ocean”). There-
fore, we define features that count the frequencies of these types of
information.

2.3 learning to give directions for routes 23

Context Description

is at start true if recipient is at start location of the route

is at goal true if recipient is at goal location of the route

is dead end true if recipient’s position is in a dead end

is turn true if recipient has to change direction

turn angle discretized turn angle (straight ahead, 90° turn, slight
turn, hard turn)

navigation complexity complexity measure of the intersection (see Section 2.3.4)

landmark present true if any suitable landmark is nearby

best landmark saliency highest saliency of nearby landmarks

street name saliency saliency of the current street name according to the web
search metric described in Section 2.4.1

street category category of the current street (e.g. foot path, living road,
residential road, tertiary road, primary road, motorway)

street category difference difference between street category of current and next
road segment (−2, . . . ,+2)

Table 2.2: Contexts characterizing the route segment and its environment.
See Section 2.3.4 for detailed explanations.

For learning how to choose suitable landmarks, we define features of
the saliency of the landmarks (see Figure 2.4.1), the distance between
the landmarks and the decision points, and the directions of the
landmarks relative to the user.

2.3.4 Contexts

The description of a particular route segment typically depends on the
environment of the route segment. For example, turning at complex
intersections requires more information than simply going straight
ahead. To integrate the context information into the learning process,
we introduce contexts as functions c : A → K that map properties
of the route segment covered by actions A to discrete, finite sets K
(e.g. the set of discretized turn angles). In contrast to features, contexts
only depend on the route and its surroundings, but not on the user’s
description.

For example, we calculate a complexity measure of each intersection
based on the number and geometry of the streets meeting at that
intersection, the direction in which the route continues, and the street
names of the inbound and outbound segment of the route. Similarly,
we define discretized measures for the turn direction angle, for the
street category ranging from foot paths to motorways, and for the
presence of landmarks near the decision point.

24 learning to give route directions from demonstrations

In line with Ziebart’s approach for context-aware inverse reinforce-
ment learning [190], we consider features f k that are only active in a
particular context, i.e.,

∀k ∈ K : f k(a) :=

 f (a) if c(a) = k

0 otherwise.
(2.8)

To determine which features depend on which contexts, we define
for each feature f the probability distribution P(f) as the histogram of
feature values observed during the demonstrations. We then compute
for each feature and each context the mutual information (information
gain)

MI(f ; c) = H(f)− H(f | c), (2.9)

where H(·) denotes the Shannon entropy, and P(c) is the distribution
of context values in the training data. The mutual information MI(f ; c)
measures how informative the context is for determining the distri-
bution of feature values. Following the approach commonly used in
decision tree learning [142], we combine the features and contexts
yielding the highest information gain. For instance, the “is turn” con-
text provides a high information gain for the feature “street name
references”, as humans mention street names more often when turning
than when going straight ahead.

2.4 experimental evaluation

We conducted a two-part user study for evaluating our approach. In
the first part, we collected a corpus of directions for a set of given
routes from the participants. Using this corpus, we learned a reward
function, which we then used to generate descriptions for a set of test
routes. In the second part of the experiment, we presented human-
written and computer-generated directions to other participants and
asked them to rate how natural the descriptions sound to them.

2.4.1 Acquiring training data

In order to acquire training data for learning a route description
policy, we asked 13 participants in a web-based survey to describe up
to three routes within Freiburg. All participants were locals and fluent
in English. We provided an unmodified, interactive OpenStreetMap
map to the participants and asked them to describe the route marked
on the map. Initially, the map showed only the first part of the route,
forcing the participants to interact with the map by moving it and
zooming in or out, and they were allowed to (but not limited to) use
any information they found in the map. The instructions introducing

2.4 experimental evaluation 25

Save

Imagine the following situation. After a successful
meeting, your business partner from abroad decides to
walk to his next meeting and asks you for directions.

Have a look at the map on the right and provide
directions to him. In case you want to look up details, feel
free to move and zoom the map using your mouse.

Keep in mind:

• Your business partner is nonlocal. However, he had
 visited the city a few times before, so he has some
 rudimentary knowledge about the city.

• He is supposed to stick to the route shown in blue.
• He will walk to his next meeting.
• You will print out the text and give it to him. He will

 take along your text, but he will not have a map of
 the area.

• Write in English in simple but complete sentences.
• Click the “Save” button when you're done.

Your business
meeting

Reset view

Data CC-By-SA by OpenStreetMap

Figure 2.2: Screenshot of the first experiment for soliciting route descriptions
from participants.

the experiment stated that the recipient of the description was a non-
local business partner who had some rudimentary knowledge about
the city. The recipient would print out the directions and take them
along while walking, but would not have a map at his disposal. See
Figure 2.2 for a screen capture of the experiment.

In this experiment setup, we collected a corpus of 28 descriptions for
ten routes ranging from 0.6 km to 2.9 km in both urban and downtown
environments.

For each route, our system generated natural-language instructions
corresponding to the route segments based on OpenStreetMap data.
All generated descriptions are valid in the sense that they correctly
describe the navigation actions the recipient has to execute in order
to reach the target. The corresponding MDPs used in the experiments
contained between 11 and 50 nodes representing decision points and
between 4,614 and 86,643 actions corresponding to single natural-
language instructions.

In order to estimate the saliency of landmarks, we use a two-step
metric. First, the algorithm counts the frequency of each category
of landmarks in the human-written descriptions, yielding a saliency
value for each landmark category. We then weight the individual
saliency of each landmark within its group. For estimating landmark
saliency, commonly used metrics rely on the visual appearance and
semantic attraction of the landmark (e.g. [121]). Unfortunately, pub-
licly available data sources such as OpenStreetMap do not provide
the information these metrics require. Hence, our algorithm resorts
to querying a web search engine to get a rough saliency estimate.
For landmarks with unique proper names (e.g. Eiffel Tower), the al-

26 learning to give route directions from demonstrations

gorithm searches for the location and exact name of the landmark
(e.g. Paris “Eiffel Tower”) and estimates the saliency of the landmark
based on the relative number of hits. We argue that landmarks that
are often mentioned on the web are likely to be better known and
more salient. For unnamed landmarks and landmarks without unique
names, such as branches of banks or fast-food chains, we estimated
the individual saliency based on the density of landmarks of the same
type in the vicinity, arguing that landmarks are only valuable if they
are distinguishable and not ambiguous. If the map contained enough
information on the shape and physical appearance of the landmarks,
then the distinctiveness and the visibility of the landmarks from the
user’s view point could also be incorporated into the saliency measure.

As natural language processing is beyond the scope of this work,
we manually matched each description in the collected corpus to the
closest description generated by the MDP corresponding to the route.
This step implicitly corrects obvious errors in the human-provided
descriptions, such as left-right confusions or miscounted intersections,
as the generating model always produces correct instructions. We also
replaced descriptions of the appearance of landmarks with the name
of the respective landmark as we only consider which landmarks to
include in the directions, but not how to describe them in words. For
example, we rewrite “you reach a square with a statue of a rider in the
middle” as “you reach the Bertoldsbrunnen fountain.” In future work,
an additional step could be introduced in the text generation procedure
that substitutes the names of the landmarks back to descriptions
generated from additional sources, such as the Wikipedia entry of the
landmark or information from tourist guide books.

We implemented our approach in Java using the Traveling Salesman
framework [183] and accessing the OpenStreetMap database via its
public API. Based on the corpus of route descriptions, our algorithm
learned a weight vector. To generate a description for a novel route,
the algorithm generates the corresponding MDP, computes a policy for
the MDP using Ziebart’s algorithm, and samples a path through the
MDP according to the learned policy to generate a route description.

2.4.2 Learned policies

One of the advantages of our formulation of the reward function
as a linear combination of context-aware features is that the learned
coefficients can be interpreted and provide insight on the style of
direction giving the participants used. Table 2.3 shows the reward
weights that determine whether or not a street name is mentioned in
an instruction depending on three of the contexts listed in Table 2.2. If
the reward is higher, then it is more likely that a street name is men-
tioned in the given context. Most weights are negative, indicating that
the participants used street names rather sparingly. Despite negative

2.4 experimental evaluation 27

Context Context value
Reward for using

street name

turn angle
continue straight ahead −0.82

slight turn −0.47

90° turn −0.10

navigation
complexity

1 (simple) −0.98

2 −0.53

3 −0.07

4 (difficult) −0.37

street category
change

−2 (e.g. primary→ residential road) +0.01

−1 (e.g. residential→ living road) −0.16

±0 (continue on same category) −0.28

+1 (e.g. primary road→ motorway) +0.09

+2 (e.g. residential→ primary road) +1.83

Table 2.3: Learned reward weights for using street names in instructions
depending on the context of the instruction.

weights, using street names can still occur in descriptions as there
are also rewards for including a certain amount of information in the
descriptions and other types of information may have higher penalties.
The weights are high when the route follower has to turn at an inter-
section, when the navigation complexity of the intersection is high,
or when the street category changes considerably, for example when
turning from a primary road into a small residential road, indicating
that street names should be mentioned in these cases.

Other insights include that the participants in our study generally
avoided cardinal directions for describing turns along the route, which
is in line with studies showing that European participants generally
avoid cardinal direction terms unless they are explicitly primed to do
so (e.g. [77] for Dutch participants). However, some subjects resorted
to cardinal direction terms for negotiating the start orientation of the
recipient if there was no landmark nearby that they could refer to.
The reward weights also reflect that complex intersections require
more instructions, whereas the recipient needs less information at
simpler intersections. Regarding the question of which landmarks to
mention, the algorithm learned some correlations from the corpus as
we expected, for example that humans prefer landmarks ahead of the
user over landmarks in the recipient’s back or to the side, that humans
mention landmarks with higher saliency more often than landmarks
with lower saliency, and that the importance of landmarks rapidly
decays with increasing distance to the decision point. Counting inter-
sections as in “Turn right at the third intersection.” never appeared
in the corpus with numbers higher than three, hence the resulting

28 learning to give route directions from demonstrations

weights are low for the features measuring the counter references
higher than three.

The learned weight vector reflects these properties and provides dis-
tributions over the discretized features. However, the learned weights
only match the style of the particular user group we asked to give the
directions. We expect the weights to be different if other user groups
provide the directions, e.g. visually impaired people or people from
other cultural backgrounds.

2.4.3 Experimental setup for evaluating the generated descriptions

The goal of our work is to imitate the way humans give directions. A
popular approach for evaluating how well a system imitates human
behavior is to present test instances created by humans and instances
created by a machine to human subjects in a blind study and have
the participants predict whether the instance was created by a human
or a machine. If the participants cannot identify the machine-created
instances with a hit rate better than chance, then the imitation would be
perfect. This approach, however, would contravene our intended use
case: In order to disguise the fact that a route description was written
by a machine, the algorithm would have to deliberately add errors
to make up for the errors that are quite frequent in human-written
descriptions. A typical type of error is left-right confusion, as around
20 % of the human population report that they frequently confuse left
and right [65]. While adding errors would make the descriptions more
human-like, it would defeat the purpose of helping the recipient with
a wayfinding task. Hence, we designed our experiment for evaluating
how well the learned policy imitates the direction given by humans by
asking the participants how “natural” the descriptions sound without
cueing them to look for hints on whether the description was written
by a human or a machine.

As the screen capture of the experiment in Figure 2.3 shows, we
provided the participants with a route marked on an interactive Open-
StreetMap map together with either a human-written description
gathered in the first experiment, a description generated automatically
according to the learned policy, or a description generated by one
of three popular web services (Google Maps [61], Bing [113], and
MapQuest [106]). We did not inform the participants beforehand that
the descriptions originate from different sources.

For the computer-generated descriptions, we used the same routes
as in the first experiment to allow for direct comparison with the
human-written descriptions, as well as four novel routes. We asked the
participants to answer the question “How natural does this description
sound to you?” by dragging a continuous slider between “sounds like
a computer” and “sounds natural (human-like).” Each subject rated
twelve descriptions in random order, each description corresponding

2.4 experimental evaluation 29

sounds like
a computer

sounds natural
(human-like)

34 % completed

The following directions describe the route drawn in blue
on the map on the right:

“Start going through the Katharinenstraße.
When you get to a huge intersection, turn left onto the
big street.
Go straight until you come to the trail of the tram. Turn
right there.
Walk along the trail of the tram, then at the
Bertoldsbrunnen you have to turn left onto the Salzstraße.
Walk up to the Augustinermuseum, where you have to
turn right and enter the Augustinerplatz.
You reach your goal.”

How natural does this description sound to you? Drag the
blue slider to the right or click somewhere the scale to rate
whether the description sounds rather computer-generated
or more like a human would describe the route.

← Back Continue →

Reset view

Start

Data CC-By-SA by OpenStreetMap

Figure 2.3: Screenshot of the second experiment for evaluating how natural
directions sound.

to a different route. The subjects were allowed to go back to previous
routes to revise their answer.

We processed the human-written descriptions according to the
manual annotations that the algorithm used for learning the policy.
We furthermore fixed typos and spelling errors. As a result of that,
the regenerated descriptions have the same structure and contain the
same information as the original input, but use the same formatting
as the computer-generated instructions. Table 2.4 provides example
descriptions for a given route.

2.4.4 How human-like are the directions generated by our approach?

Figure 2.4 shows the distribution of the ratings that the participants of
the second experiment assigned to the routes and the corresponding
box plots. The participants generally rated the descriptions generated
by our approach to sound more natural than the descriptions provided
by the commercial web services. The difference is statistically highly
significant (t-test with 99.9 % significance).

Overall, the participants rated the generated descriptions and the
human-written descriptions similarly. The mean of the slider values
are slightly higher for the human-written descriptions (71.7) compared
to the generated descriptions (69.5), but the difference is not statisti-
cally significant. Both distributions have high variances, reflecting that
there is no clear consensus among the participants what constitutes
“natural” instructions.

We furthermore analyzed the number of training instances our
system requires. Figure 2.5 suggests that a low number of training

30 learning to give route directions from demonstrations

Human-provided description

Start going through the Katharinenstraße. When you get to a huge
intersection, turn left onto the big street. Go straight until you come
to the trail of the tram. Turn right there. Walk along the trail of the
tram, then at the Bertoldsbrunnen you have to turn left onto the
Salzstraße. Walk up to the Augustinermuseum, where you have to
turn right and enter the Augustinerplatz.

Generated by our algorithm

On Katharinenstraße start heading towards the Altstadt. Go along
the street until you encounter a large intersection. Turn left onto
the Friedrichstraße, and pass the Vapiano on your right. Go ahead
until you come to the tram track. Turn right there onto the Kaiser-
Joseph-Straße. Turn left after the Drogerie Müller. Turn right at the
second possibility and enter the Augustinerplatz. You are at your
target when you get there.

Google Maps description (similar result for Bing and MapQuest)

Head north on Katharinenstraße toward Rheinstraße. Turn right
onto Rheinstraße. Turn right onto Merianstraße. Continue onto
Rathausplatz. Continue onto Universitätsstraße. Turn left onto
Bertoldstraße. Continue onto Salzstraße. Turn right onto Augustin-
erplatz.

Table 2.4: Example instructions for a given route.

2.4 experimental evaluation 31

0%

10%

20%

30%

40%

0

sounds natural
(human-like)

50 60 70 80 9040302010

sounds like
a computer

100

Fr
eq

ue
nc

y

(a) Directions written by human participants.

Fr
eq

ue
nc

y

0%

10%

20%

30%

40%

0

sounds natural
(human-like)

50 60 70 80 9040302010

sounds like
a computer

100

(b) Directions generated according to the learned policy.

0%

10%

20%

30%

40%

0

sounds natural
(human-like)

50 60 70 80 9040302010

sounds like
a computer

100

Fr
eq

ue
nc

y

(c) Directions generated by routing web services.

Figure 2.4: Results of the second user study. The values on the horizontal axis
represent the user ratings of the directions from 0 (“sounds like a
computer”) to 100 (“sounds natural (human-like)”). The box plots
show the minimum, lower quartile Q1, median (thick line), mean
(asterisk), upper quartile Q3, and maximum, and outliers (circles).
Data points are considered to be outliers if they are outside the
1.5 interquartile range [Q1 − 1.5(Q3 − Q1), Q3 + 1.5(Q3 − Q1)].
N = 54 for (a) and (b), N = 22 for (c).

32 learning to give route directions from demonstrations

0

4

8

12

16

20

24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Eu
cl

id
ea

n
di

st
an

ce
of

fe
at

ur
e

ve
ct

or
s

Number of training samples

learned policy vs. human
webservices vs. human

Figure 2.5: The difference between the feature vector of the demonstrations
and the learned feature expectations quickly converges.

samples is sufficient to achieve this level of similarity between human
and generated directions, as the Euclidean distance between the fea-
ture vector of the demonstrations and the feature expectations quickly
converges.

The generated descriptions sometimes contain repetitions, for ex-
ample if two subsequent instructions refer to the same landmark or if
the description contains instructions like “Keep going straight ahead”
multiple times in a row. According to participants of the second ex-
periment, repetitions make the directions appear less natural. In our
framework, however, the Markov property of the MDP prohibits to de-
fine a suitable feature for measuring repetitions, as features must only
depend on the current action, but not on the previous path leading
up to the current state. An additional filtering step after generating
the descriptions could address this problem by combining subsequent
repetitive instructions to a single instruction that sounds more natural.

2.5 discussion

In our work, we focused on the aspect of which information to include
in a route description rather than the linguistic aspects of producing a
natural-language description. Hence, we used sentence templates with
placeholders that the algorithm filled with the sampled information
pieces. For each instruction type, we created multiple templates that
the algorithm can fill in and combine so that there is some diversity in
the generated descriptions, resulting in 228 templates overall. The tem-
plates were selected by random shuffling to avoid repeating the same
instruction template multiple times. However, the human-written de-
scriptions still feature higher sentence complexity and higher diversity
in sentence formulations. Daniele et al. [37] addressed this issue by

2.6 conclusions 33

extending our IRL approach for learning how to describe routes by
adding a subsequent step of “translating” the instructions generated
in a formal language to natural language. They achieve this surface
realization step using a recurrent neural network trained on human-
written descriptions. This approach eliminates the need for templates
and allows the surface realizer to produce sentence constructs that are
similar to sentences that humans produce. The authors evaluate the re-
sulting descriptions both according to scoring metrics commonly used
in machine translation research and in a human user study showing
that their approach produces high-quality route descriptions.

Our approach depends on the correctness and completeness of the
map data more than classic turn-by-turn navigation. As an example,
the instruction “Turn right at the third traffic lights” may be incor-
rect in case the map is incomplete and some traffic lights along the
way are not registered on the map, whereas “Turn right after 250 m”
is unambiguous as long as the metric distance is correct. As road
networks and landmarks such as shops change frequently, this is a
problem with all map sources, but with OpenStreetMap this issue is
particularly visible as the map data is collected by volunteers and map
coverage consequently varies substantially between regions. However,
this issue is not limited to automatic route generation as humans also
frequently miscount landmarks or miss that a landmark they choose
may be ambiguous due to similar landmarks in the vicinity.

Generating correct verbal instructions from raw map data is also a
challenging problem that is not entirely solved. In historically grown
cities, for example in European medieval city centers, intersections
can appear in various irregular shapes that are difficult to describe
in words. Modern motorway junctions with multi-level bridges, large
intersections with pedestrian, cyclist, and rail crossings and are also
confusing even for humans. Additionally, the data representation and
tagging of route elements in maps is often inconsistent, as the data may
be aggregated from different providers in commercial map systems or
contributed by different volunteers in open data projects. It is difficult
to design rule sets for describing such complicated situations. Hence,
it might be worth to investigate whether learning approaches from
automatic description generation from images [18] can be transferred
to the problem of generating verbal descriptions of routes through
intersections in future work.

2.6 conclusions

In many applications, robots and other computer systems are required
to provide route descriptions to humans. It is desirable that these
descriptions are natural and intuitive to human users. In order to
generate such natural descriptions, we presented an approach that uses
inverse reinforcement learning to compute a reward function based

34 learning to give route directions from demonstrations

on human demonstrations. This approach allows for generating route
directions that sound natural to humans by imitating the description
style of a particular user group. Our algorithm learns from a corpus
of human-written route descriptions which pieces of information are
relevant depending on the route and its environment. We carried out a
user study to evaluate the quality of the descriptions generated by our
approach in terms of how natural they appear to human participants.
The results suggest that our learning algorithm produces descriptions
that sound similarly natural as human-written descriptions and clearly
outperform the descriptions generated by commercial routing web
services.

3
S P E E D I N G - U P M O B I L E R O B O T E X P L O R AT I O N
U S I N G B A C K G R O U N D K N O W L E D G E

In this chapter, we present a solution to the question of how robots
can leverage background knowledge provided by the user to speed
up autonomous exploration of the environment. Our method is
relevant for several real-world applications in which the rough
structure of the environment is known beforehand. We present an
approach that exploits such background information given as a topo-
metric graph and enables a robot to cover the environment with
its sensors faster compared to a greedy exploration system without
this information. We implemented our exploration system in ROS

and evaluated it in different environments. As the experimental
results demonstrate, our proposed method significantly reduces the
overall trajectory length needed to cover the environment with the
robot’s sensors and thus yields a more efficient exploration strategy
compared to state-of-the-art greedy exploration, if the additional
information is available.

3.1 introduction

In the previous chapter, we investigated how automated systems can
help human users with wayfinding tasks by providing the information
that is most useful to the human users. Now we will turn to the
opposite scenario and answer the question of how humans can help
robots with exploration tasks by providing background information
on the coarse structure of the environment. Acquiring a map of its
surroundings is one of the very first tasks that a mobile robot has to
execute after being unboxed in an unknown environment, as having
access to an accurate map is a prerequisite for all navigation tasks. We
assume that the robot already has means for solving the underlying
SLAM problem, i.e., it can learn a map and track its pose in this map
given sensor data. The exploration task then reduces to generating
motion commands that guide the robot to build a complete model of
the environment.

Typical approaches to mobile robot exploration assume zero prior
knowledge about the world. Accordingly, the robot starts with an
empty map and seeks to find a sequence of motion commands to cover
the full environment with its sensors. Only few approaches consider
additional background knowledge, such as semantic information [161]
or information retrieved from dialog with a human user [50].

35

36 mobile robot exploration using background knowledge

(a) Graph given by user (b) Computed exploration tour

start

(c) Greedy exploration

start

(d) Our approach

Figure 3.1: Stages of computing an exploration tour. Based on the graph
given by the user (a), our algorithm computes an exploration
tour for visiting the nodes using a traveling salesman problem
solver (b). While the greedy nearest-first exploration scheme has
to revisit rooms (c), our approach exploits the background knowl-
edge by using the computed exploration tour as a guideline for
minimizing the overall traveled distance (d).

3.1 introduction 37

In this chapter, we take a different approach to exploration than
the majority of existing methods. We investigate means that allow a
robot to explore an environment faster if additional information is available.
We seek to answer the question: How much faster can a robot cover
an environment with its sensors if it knows the rough layout of the
environment beforehand? This problem is relevant for a large number
of real-world exploration problems, as in several application scenarios
the approximate layout of the environment is known beforehand.
This holds, for example, when exploring underground structures
such as abandoned mines [171], archaeologically relevant tunnels
such as ancient catacombs [62], but also for inspection tasks such
as mapping visually intact but possibly unstable buildings after an
earthquake [91]. Thus, we do not address the problem of exploring a
completely unknown environment in this work. Instead, we provide
an efficient exploration strategy given prior information about the
layout of the environment.

Our work relies on a topo-metric map. This can be seen as a sim-
plified Voronoi-style graph modeling the environment. Figure 3.1a
shows an example of such a user-provided graph. Using this informa-
tion, our approach seeks to find an efficient exploration strategy (see
Figure 3.1b) to cover the scene with the robot’s proximity sensor as
fast as possible. Such a topo-metric graph can be provided by humans
or can be automatically derived from floor plans, from previously
built maps, or from hand-drawn maps. By knowing the topology of
the environment including an estimate of the metric distances, the
robot can generate more effective exploration trajectories that avoid
redundant work. The robot typically explores dead ends, small loops,
and similar structures first so that it will not have to return to these
locations later during the mission. In the environment in Figure 3.1,
for example, it is advantageous to explore the rooms on the outside
first, as the robot then has to traverse the corridor only once. We
formulate the problem as a Traveling Salesman Problem (TSP) and use
its solution to guide the robot through the environment. The length
of the path that our approach generates (Figure 3.1d) is significantly
shorter than the one resulting from greedy exploration (Figure 3.1c)
because it avoids traversing the corridor multiple times. Finally, our
approach combines the TSP solution with frontier-guided exploration.
This combination avoids redundant work on a global scale and at the
same time ensures that all areas are covered by the robot’s sensors. In
addition to that, exploiting such a graph structure also allows opera-
tors to easily exclude parts of the environment that the robot should
not explore by simply labeling nodes or edges in the graph as “no go
areas”. As we will show in our experimental evaluation, our approach
leads to significantly shorter overall exploration trajectories and thus
significantly reduces the time needed to cover the terrain.

38 mobile robot exploration using background knowledge

3.2 related work

Typical approaches to mobile robot exploration aim at selecting view
points that minimize the time needed to cover the whole terrain.
The most popular approach is probably frontier-based exploration by
Yamauchi [187] in which the robots always move towards the closest
unexplored location. Another option is using stochastic differential
equations for goal-directed exploration [152]. The idea is to seed par-
ticles in the workspace and subject them to forces so that they move
toward unexplored areas. The particles themselves follow molecular
dynamics and eventually enter unknown areas and provide candidate
goal positions for the exploring robot. A usual assumption in explo-
ration systems is the knowledge about the pose of the robot during the
mission, but there exist also exceptions such as information-theoretic
methods that seek to minimize the uncertainty in the belief about the
map and the trajectory [104, 159] simultaneously. In a similar way,
Sim et al. [154] select vantage points to optimize the map accuracy by
striving for loop closures.

The majority of exploration approaches start from scratch, i.e., they
do not exploit background information or any assumptions about the
structure of the environment. There are only a few techniques that
incorporate background information into the decision-making process
of where to move next. An interesting approach by Fox et al. [52] aims
at incorporating knowledge about other environments into a coopera-
tive mapping and exploration system for multiple robots. Related to
that, Perea et al. [136] exploit already explored spaces to predict future
loop-closures and to guide the exploration in this way. Others use
semantic information [160, 161] or an environment segmentation [184]
as background knowledge to optimize the target location assignment.
Such approaches received considerable attention in multi-robot explo-
ration. In addition to that, Zlot et al. [192] propose a multi-robot target
assignment architecture that follows the ideas of a market economy.
The assignment considers sequences of potential target locations and
trades individual tasks among the robots using single-item first-price
sealed-bid auctions. Similar approaches using auctions for task al-
location processes have been applied by Gerkey and Matarić [56].
In contrast to that, Ko et al. [86] present an approach that uses the
Hungarian method [94] to compute the optimal assignments of open
frontier cells to robots in a given instance. The work of Ko et al. fur-
thermore focuses on aligning the robot trajectories in case the start
locations of the robots are unknown. Wurm et al. [184] propose a
coordinating technique for teams of robots using a segmentation of
the environment to determine exploration targets for the individual
robots. This is related to the spatial semantic hierarchy introduced by
Kuipers and Byun [95]. Thus, semantic information [161] or segmenta-
tions [184] approaches show that by assigning robots to unexplored

3.2 related work 39

segments instead of frontier targets, a more balanced distribution of
the robots over the environment is obtained. A related approach has
been presented in the work by Holz et al. [73], which first analyses
different exploration approaches and then proposes heuristics for
improving the performance of the exploration strategies.

In this chapter, we investigate means for allowing robots to explore
an environment faster if additional information is available. We target
application scenarios in which the approximate layout of the environ-
ment to explore is known beforehand. This is also related to coverage
techniques [105, 185] but we do not assume a grid map or polygon to
be given beforehand for planning view points. In contrast to purely
graph-based coverage techniques as in [186], we also consider the
surroundings around the graph nodes in a local exploration strat-
egy. Patrolling approaches such as [135, 138] focus on multi-robot
coordination and global exploration strategies, while our approach
combines global with local strategies. Exploiting abstracted map infor-
mation has also been investigated in other navigation problems. For
example, Chronis and Skubic [31] exploit hand-drawn sketch maps
for navigation, which enables robots to derive and use qualitative
spatial relations to move along the given path. Related to that, Freksa
et al. [54] use schematic maps to derive qualitative spatial relations
for supporting navigation. Our work also exploits topo-metric infor-
mation in form of a graph but the user is not expected to specify the
path for the robot. Instead, the environment information is used for
computing an optimal exploration strategy at a global scale once in
the beginning, which is then used for visiting the individual areas in
the environment. Our approach is also related to works by Brummit
and Stentz [27] as well as Faigl et al. [44] as both approaches formulate
the problem of coordinating multiple robots during exploration as a
Multiple Traveling Salesman Problem (MTSP). Our approach also uses
the TSP formulation but on the user-provided graph and combines the
solution with local exploration at the individual locations.

Kulich et al. [96] also try to minimize the length of the remaining
exploration tour by solving TSPs. In their approach, the nodes of the
TSP consist of open frontiers and the edges represent shortest paths
between the frontiers. To reduce the size of the graph and thus the
complexity of the TSP, they choose a subset of frontiers from where
the remaining frontiers are within the robot’s viewing range. They
directly use the TSP solution to determine the next frontier and repeat
the process after exploring the frontier. In a related approach, Férmin-
León et al. [45] construct a TSP from topological segmentation online
while exploring an unknown environment. In contrast to Kulich’s
and Férmin-León’s approaches, our approach constructs a TSP on
the user-provided graph which contains more a-priori information
about the topology of the environment so that better plans can be
generated. Our approach solves a TSP only once in the beginning or

40 mobile robot exploration using background knowledge

after detecting and correcting errors in the graph. As each node of the
TSP potentially represents multiple frontiers, the TSP graph is typically
small and simple in structure, thus easier to solve than a general TSP.

3.3 guiding exploration with background knowledge

In this section, we describe our approach to generating navigation
actions for acquiring sensor data about the complete environment. We
hereby exploit background knowledge in form of a graph-structure
provided to the robot. We model the global navigation problem as a
Traveling Salesman Problem (TSP) in order to find a tour that covers
the whole area and is as short as possible. Our approach solves the TSP

once in the beginning and uses the TSP tour to guide a frontier-based
exploration. In case the robot detects changes in the environment, it
updates the graph and re-computes the TSP solution.

3.3.1 Representation of background information about the environment

We represent the background knowledge as a graph G(V, E) consisting
of nodes V = {v1, . . . , vn} and undirected edges E ⊆ V×V. The nodes
represent rooms or other convex regions in the environment and the
edges indicate the connections between the regions, for example doors
or passages. We hereby assume that each room to be explored contains
at least one node and corridors contain a node in front of each door and
intersection (note that the terms “room”, “corridor”, “intersection”,
etc. are only used for illustrative purposes here, the algorithm itself
does not contain any notion of these concepts). The lengths of the
edges need to reflect only roughly the true metric distances (see
Section 3.4.5 for an evaluation of the robustness against noise). The
resulting graph is a topo-metric representation of the environment
and is used to optimize the exploration tour with the starting position
and orientation of the robot with respect to the graph given by the
user.

In order to guide the exploration, the user may wish to explicitly
exclude regions from the exploration, for example regions that are
dangerous for the robot or regions that are not of interest for the
task. We represent the user’s instructions by annotating the nodes of
the graph with labels A : V → {explore, skip} indicating whether the
region close to the node should be explored or not.

3.3.2 Representation of the exploration problem

The robot’s objective is to optimize the tour length given the user-
provided graph. The tour must visit each node at least once in order
to cover the surrounding region. In most cases, there will be rooms
that the robot has to pass through more than once, for example, the

3.3 guiding exploration with background knowledge 41

robot will have to enter the corridor multiple times to access the
individual rooms. Hence, our goal is to find the shortest path T in the
graph G that visits all nodes at least once and returns to the start node.
This problem is closely related to the well-known Traveling Salesman
Problem (TSP): Given a list of cities and the distances between each
pair of cities, find the shortest tour that visits all cities exactly once
and finally returns to the starting point. A TSP solver is able to provide
the optimal solution to this problem.

To represent this problem as a traveling salesman problem, we
complete the graph G to a clique by adding edges between each pair
of nodes. We define the length of the new edge

(
vi, vj

)
as the length

of the shortest path between the positions of nodes vi and vj and use
Johnson’s algorithm [81, 153] to compute the shortest path distances
between all pairs of nodes in time O(|V|2 log|V|+ |V||E|).

The resulting graph G′ is symmetric and the triangle inequality
holds, as the length of newly inserted edges between two nodes is
never longer than the distance of the shortest path between these
nodes. G′ is a clique, thus there exists a shortest tour T′ in G′ that
visits each node exactly once and returns to the start node. The shortest
tour T in the original graph G that visits all nodes at least once cannot
be shorter than T′ due to the triangle inequality. The tour T with
revisiting nodes can be easily retrieved from T′ by replacing the edges
added using Johnson’s algorithm by the shortest path between the
edge’s end nodes.

In some scenarios, it might not be required that the robot returns
to the starting location after completing the exploration task. In this
case, the robot only requires a shortest path from the given start node
vs ∈ V that visits all nodes and leads to an arbitrary end node. This
case can also be modeled as an asymmetric TSP by setting the length
of the edges from vi to vs to zero for all vi ∈ V \ {vs}, so the robot can
“teleport” from an arbitrary node back to the start node at no costs.
After determining the shortest tour, the zero-length edge (ve, vs) is
removed so that the remaining path leads from vs to the arbitrary end
node ve without returning. The case where both the start node vs and
the end node ve are fixed can be modeled similarly by setting the costs
or (vi, vs) to infinity for all vi ∈ V \ {vs, ve}. Note that in both cases
the modified graph is not symmetric and consequently not metric
anymore.

3.3.3 Solving the TSP

Unfortunately, solving the TSP is NP-complete in the general case.
For metric TSPs, however, there exist polynomial-time approximation
schemes. For example, the Christofides algorithm [30] is able to find a
tour that is guaranteed to be at most 1.5 times longer than the optimal
solution and requires a run time of O(|V|3).

42 mobile robot exploration using background knowledge

The problem instances we consider, however, typically generate TSP

instances of moderate complexity. State-of-the-art TSP solvers such
as Concorde [9] can determine the exact solution to such problems
within a few seconds. As our algorithm has to solve a TSP only once at
the beginning of the mission, this step only adds a marginal amount
to the overall run time in comparison to the time the robot needs to
actually move through the environment and acquire sensor data. Thus,
we use the Concorde solver in our implementation instead of resorting
to suboptimal approximation schemes.

3.3.4 Frontier-based exploration exploiting the TSP solution

The tour determined by the TSP solver provides a global strategy for
visiting all regions of the environment by ordering the correspond-
ing nodes. Although the tour is the optimal solution to the TSP, the
resulting trajectory is likely to be a suboptimal exploration trajectory
for a real robot. The reason for that is that the TSP formulation does
not consider visibility information of the robot’s sensor. For example,
parts of the environment may be visible from multiple nodes, so that
the robot only has to visit one of the nodes. At the same time, the
exploration system must ensure that the surroundings of a node in
the TSP is fully explored.

Therefore, we combine the TSP and the problem of exploring the
surroundings of each node taking into account the sensing capabilities
of the platform. To this end, we use a frontier-based exploration
approach [187] for the local exploration but using the TSP solution on
the global scale. In order to incorporate the sensor information into
the world model, we rely on a standard graph-based SLAM system
for 2D range sensing. It builds a grid map while moving through the
environment and acquiring sensor data. The robot’s grid map consists
of cells that are initially labeled as unknown. While traveling, the robot
updates the cells within its field of view towards free or occupied
with a standard occupancy model. Cells on the border between free
and unknown space that have not been covered yet are called frontier
cells. The robot can extend its knowledge about how the environment
looks like by navigating to frontier cells in order to inspect the cells
laying beyond the frontier. During this exploration, multiple frontiers
appear and the robot has to decide to which frontier to move next. A
common approach for choosing a frontier is to apply a cost function
to the frontiers that takes into account cost factors such as the distance
between the robot’s current pose r and the frontier position f , the
relative orientation, and the expected Information Gain (IG):

cost(f) := α1 · distance (r, f)

+ α2 · orientation (r, f)

− α3 · IG (f) (3.1)

3.3 guiding exploration with background knowledge 43

Figure 3.2: The graph is used to guide the exploration and this requires an
assignment of frontiers to graph nodes. The algorithm assigns
each new frontier (green) to the nearest graph node (green arrow)
by considering the length of the shortest path from the frontier to
any node of the graph. The areas for the assignment are illustrated
through the dashed lines and walls of the map. In unexplored
areas, only the graph can be used to estimate the assignment.
While the explored region grows, the assignment of a frontier to a
node can change due to newly sensed walls. The thickness of the
frontiers has been increased artificially in this figure to improve
visibility.

For applications which require additional or more complex cost terms,
in particular probabilistically dependent or synergic cost terms, a
multi-criteria decision making framework [12] could be used to design
a suitable cost function. The robot updates the map based on the
perceptions, computes the frontiers, and decides to navigate to the
frontier with the lowest cost at a fixed frequency of 1 Hz.

In order to account for the global navigation strategy determined
by the TSP tour, we add another cost factor to the cost function. When-
ever a new frontier appears, we determine the nearest node v? using
Dijkstra’s algorithm on the grid map, see Figure 3.2 for an illustration
of the assignment process.

The robot may explore the frontier at any time when passing by that
node. When the robot passes by v? for the last time while following
the global tour computed by the TSP, however, our strategy enforces
that the robot explores the frontier in order to avoid having to return
to the node another time, as that would increase the tour length
unnecessarily. Hence, we follow the TSP tour from the robot’s original

44 mobile robot exploration using background knowledge

start node vs up to the point when the TSP tour passes through v? for
the last time:

p := ((vs, vk1) , (vk1 , vk2) , . . . , (vkm , v?)) (3.2)

We then sum up the lengths of the edges along the tour

d := ∑
(vi ,vj)∈p

length
((

vi, vj
))

(3.3)

and add this distance d to the cost function in Equation 3.1 with a
high weight α4 so that it dominates the cost function. In this way, the
robot explores the frontiers in the order determined by the solution of
the TSP and applies the original cost function within each room, as d is
the same for all frontiers within the neighborhood of the nearest node.

During exploration, the robot might encounter frontiers that are un-
reachable because of obstacles. If the robot’s path planner determines
that it cannot navigate to a frontier, the robots adds this frontier to a
blacklist. If the user has annotated nodes to be skipped during explo-
ration, the algorithm adds all frontiers associated with those nodes to
the blacklist. When the association of frontiers to nodes changes, the
algorithm modifies the blacklist accordingly.

3.3.5 Re-planning

Our approach relies on the assumption that the user-provided graph
correctly represents the topology of the environment. If the graph
contains non-traversable edges, the resulting global strategy will be
suboptimal as the robot would make a detour around the obstacle and
continue to explore the frontiers in the order as planned originally. To
avoid such detours, the robot has to re-plan the global strategy once it
detects that the planned path is obstructed:

1) Correct the user’s graph according to the observations.

2) Complete the graph to a clique G′ as explained above.

3) Remove the nodes that have already been visited and do not
have any frontiers associated with them, except for node vs to
which the robot has to return after exploring (if applicable) and
the robot’s current node vr.

4a) If the robot has to return to the original start node vs: After
exploring the last remaining node, the robot has to return to
vs instead of the current node vr. Hence, we replace the edge
lengths (vi, vr) for all i ∈ {1, . . . , n} by the shortest path costs
between the positions of nodes vi and vs, making the TSP asym-
metric.

3.3 guiding exploration with background knowledge 45

(a) Original exploration tour (b) Unexpected obstacle

(c) Modified graph (d) New plan

Figure 3.3: Re-planning in case of unexpected obstacles. Based on the graph
given by the user, the algorithm computes an exploration tour, in
this case without returning to the start location (a). While trav-
eling, the robot encounters an unexpected obstacle blocking the
planned path (b). The algorithm modifies the graph by removing
the blocked edge (magenta) and already visited nodes without
open frontiers (green) (c). Solving the TSP on the new graph then
yields a global strategy for exploring the remaining parts of the
environment (d).

46 mobile robot exploration using background knowledge

4b) If the robot does not have to return to the start node: Set the
edge lengths of (vi, vr) to zero for all i ∈ {1, . . . , n} to allow the
path to end at an arbitrary node as explained in Section 3.3.2.

5) Solve the TSP to get a tour T′ for the remaining nodes.

6) Replace the edges added by Johnson’s algorithm by the shortest
paths, passing previously visited nodes if necessary.

The resulting tour lets the robot explore the remaining areas on
the shortest path assuming that the rest of the topology is correct.
Figure 3.3 shows an example of a re-planning step.

3.4 experimental evaluation

For testing our approach, we implemented our system in ROS [141]
and simulated the exploration in Player/Stage [57]. We based our
exploration implementation on the ROS exploration stack [42] that
already implements frontier-based exploration. We keep the default
cost function, except for setting the weight for the expected informa-
tion gain to zero (see Section 3.4.6 for a discussion). This ROS greedy
exploration strategy serves as a baseline for the evaluation of our
approach.

3.4.1 Environments

For our evaluation, we use a set of different maps, containing artificial
maps, real maps recorded with mobile robots, and maps created from
hand drawings of archaeological sites. See Figures 3.4 and 3.5 for an
overview of the maps used in the experiments. Maps 1– 4 are artificial
maps for studying the behavior of our approach in environments with
different levels of connectedness. We furthermore used a map of the
Intel research lab in Seattle (Figure 3.4e). This map contains a high
amount of clutter, which poses a challenge to exploration algorithms
in general.

Finally, we evaluated our approach using the data from a real-
world application for digitizing cultural heritage sites. Within the
ROVINA project, we digitized the Catacomb of Priscilla in Rome,
Italy [62]. During previous expeditions, archaeologists created hand-
drawn maps of the catacombs. Based on these maps, we created a
graph of the catacomb’s topology (see Figure 3.5a).

We then used this information as background knowledge for our
exploration system. As the access to the catacomb is quite restrictive,
we used a map (see Figure 3.5b) built in the Catacomb of Priscilla
during a previous robotic mission with the SLAM system. In this
previous mission, the robot was joysticked through the environment
and we used the map from this run for the simulation, so that multiple

3.4 experimental evaluation 47

(a) Map 1 (b) Map 2

(c) Map 3 (d) Map 4

(e) Intel research lab Seattle

Figure 3.4: Maps and graphs used in the experiments: Part I. (a)–(d): Artificial
maps. (e): Interior of the Intel research lab in Seattle, courtesy of
Dieter Fox.

48 mobile robot exploration using background knowledge

(a) Priscilla catacomb sketch map

(b) Priscilla catacomb SLAM map

Figure 3.5: Maps and graphs used in the experiments: Part II. (a): Map drawn
by archaeologists of the Priscilla Catacomb in Rome, Italy. (b): Cor-
responding map built by a real robot.

3.4 experimental evaluation 49

Map Runs Mean difference Gain p value

Map 1 10 40.6 m 13.9 % 0.019

Map 2 10 50.1 m 17.3 % 0.002

Map 3 10 9.0 m 4.0 % 0.051

Map 4 10 30.6 m 15.2 % 0.004

Intel lab 10 164.5 m 16.5 % 0.001

Priscilla with return 5 49.3 m 10.6 % 0.020

Priscilla without return 5 101.8 m 24.5 % 0.004

Table 3.1: Comparison of the traveled distance.

exploration runs can be simulated and evaluated with statistical tests.
Please note that the SLAM map deviates from the sketch map in some
parts. For example, some corridors that are straight on the hand-drawn
map appear curved on the SLAM map. Our experiments show that our
approach compensates for such inaccuracies as long as the frontiers
can be assigned correctly to graph nodes.

3.4.2 Background information

We created the graphs resembling the background information manu-
ally by placing one node per room and connecting the nodes accord-
ing to the map topology. In general, one node per convex region is
sufficient, as the greedy exploration then dominates the exploration
strategy in the convex regions, for which it is well-suited. If the user
places more than one node in a convex region, the global tour strat-
egy gains influence, giving the user more control on the exploration
strategy.

With our approach, the human operator can easily limit the explo-
ration area by marking nodes that the robot should not explore. In the
Priscilla catacomb shown in Figure 3.5a, for example, we marked the
nodes that should explored in blue and the nodes to be skipped in
red. The robot then deliberately leaves frontiers open that get assigned
to the red parts of the graph, so the robot only explores the desired
region.

Depending on the application scenario, the robot may be required to
return to its starting position after completing the exploration. For the
Priscilla map, we run experiments both with and without returning to
the starting location.

50 mobile robot exploration using background knowledge

Priscilla
w/o return

Priscilla
with return

Intel lab

Map 4

Map 3

Map 2

Map 1

20 % 40 % 60 % 80 % 100 % 120 %0 %

Greedy nearest frontier first Our approach

Figure 3.6: Mean and 95 % confidence interval of the traveled distance. The
distances are normalized so that the greedy approach equals
100 %.

3.4.3 Traveled distance

The distance that a robot has to travel to explore the whole environ-
ment depends on the start location. Hence, we chose a set of start
locations for each map and executed our approach and the baseline
approach once for each start location.

Figure 3.6 visualizes the mean length of the exploration trajectory
together with the corresponding 95 % confidence intervals. Table 3.1
shows the results of a paired t-test at the 0.05 level for the exploration
tour length for 10 respectively 5 runs in the environments. The tra-
jectories generated by our approach are significantly shorter than the
trajectories generated by the baseline approach on all maps except
Map 3. On Map 3, the greedy strategy is already near-optimal in many
cases, as the map is similar to a large freespace area.

For the Priscilla map, we run experiments both with returning to
the starting location and without. Our approach uses the knowledge
about whether or not to return to the starting location to optimize the
exploration tour as described in Section 3.3.2. In case the robot has to
return to the starting location, the TSP tour generated by our approach
is independent of the starting location of the robot. The robot explores
the rooms always in the same sequence, hence the variance of the
exploration tour length is small. In the baseline approach of greedy
exploration, by contrast, the order in which the robot explores the
rooms strongly depends on the starting location, leading to a higher
variance in the tour length. In case the robot does not have to return to
the start, the overall tour length depends on the start location, leading

3.4 experimental evaluation 51

Nodes to Time required
Map explore to solve TSP

Maps 1–4 16–36 (0.013± 0.006) s

Intel lab 65 (0.84± 0.43) s

Priscilla catacomb with return 94 (5.92± 2.57) s

Priscilla catacomb without return 94 (0.38± 0.11) s

Table 3.2: Time required for solving the TSP.

to a higher variance in the tour length for both approaches when
averaged over different starting locations.

As can be seen in Table 3.1, our approach outperforms frontier-based
exploration in all settings. The gain in exploration time is achieved
by better planning the exploration. For example, on the Priscilla map
when the robot does not have to return to the starting location, our
approach always explores the corridor system in the left half of the
map last (or first in case the robot starts already in the corridor) so that
the robot does not have to traverse the corridor system for a second
time. On a local scale, our approach enforces that the robot finishes
exploring a room completely before moving on to the next room, such
that the robot will not have to enter the room again.

3.4.4 Run time

For computing the global exploration strategy, our approach has
to solve a traveling salesman problem once at the beginning of the
exploration. In our experiments, we use the Concorde solver [9], which
attempts to find the optimal solution of the TSP using branch-and-cut
strategies. Table 3.2 shows the time required to solve the TSP for
the individual maps. As the TSP has to be solved only once in the
beginning (or when changing the graph leads to re-planning), the
required time adds only marginally to the total exploration time.

During exploration, our algorithm needs to maintain a distance
information for assigning each frontier to the nearest graph node (see
the illustration in Figure 3.2). For this purpose, a low resolution map
is sufficient. As this shortest path information changes whenever new
walls appear during the exploration, we recompute it at a frequency
of 1 Hz at a grid resolution of 15 cm, which can easily be done online
during the exploration.

3.4.5 Robustness

To evaluate the robustness of our approach, we added Gaussian noise
with increasing standard deviation to the node positions of the user-

52 mobile robot exploration using background knowledge

0 0.5 1 1.5 2 2.5
0 %

20 %

40 %

60 %

80 %

100 %

120 %

Tr
av

el
ed

di
st

an
ce

0 0.5 1 1.5 2 2.5
0 %

20 %

40 %

60 %

80 %

100 %

120 %

Our approach Greedy nearest frontier first

Standard deviation of the Gaussian noise on the graph

Figure 3.7: Robustness of the exploration strategy when Gaussian noise is
added to the human-provided graph. The figure shows the experi-
ments for Map 4 on the left and Map 2 on the right (see Figure 3.4
for the original graphs provided by the human user). Top: Gaus-
sian noise of σ = 1 m added to the original graph. Bottom: Mean
and 95 % confidence interval of the traveled distance for different
amounts of Gaussian noise (n = 10 for each condition). The dis-
tances are normalized so that the greedy approach equals 100 %
for the respective map.

3.4 experimental evaluation 53

0 %

20 %

40 %

60 %

80 %

100 %

0 s 100 s 200 s 300 s 400 s 500 s 600 s

Ex
pl

or
ed

ar
ea

Time

nearest frontier w/o information gain
nearest frontier with information gain

our approach w/o information gain
our approach with information gain

Figure 3.8: Comparison of the exploration progress for different strategies
for a run on Map 4 shown in Figure 3.4d. While the nearest
frontier approach makes faster progress at first, our approach
explores more thoroughly and avoids having to backtrack, thus
our approach finishes in a shorter total time.

provided graphs shown in Figure 3.4, which consequently also changes
the edge lengths, and evaluated the effect on the overall tour length.
Figure 3.7 shows that our approach still works even if the graph
provided by the user is considerably inaccurate. For Gaussian noise
with a standard deviation of σ = 1 m as shown in the top of the
figure, our approach still performs significantly better than the greedy
approach according to a paired t-test at the 0.05 level. This robustness
is mainly achieved by dynamically updating the assignment between
frontiers and graph nodes using Dijkstra’s algorithm as explained in
Section 3.3.4.

3.4.6 Influence of information gain

Many exploration approaches use the estimated information gain in
the cost function for selecting the next goal. The rationale of this
approach is to greedily explore the largest frontiers first in order to
cover the largest possible area within a given time limit. However, this
strategy tends to leave smaller frontiers unexplored, which would be
counterproductive in our scenario as the robot would have to come
back later to complete the exploration.

Figure 3.8 illustrates how fast the presented approaches make
progress during exploration. The nearest frontier strategy explores
greedily, while our approach explores thoroughly. Consequently, the
greedy approach covers more area per time frame than our approach
in the beginning. After exploring the biggest frontiers, however, the
greedy approach has to backtrack to explore the smaller areas and
rooms that it left out, which is time-consuming and causes the total
exploration time to be longer than with our approach. Considering the

54 mobile robot exploration using background knowledge

information gain in the cost function increases this effect even further,
leading to longer overall exploration times.

Our goal is to explore a map completely without having a fixed time
limit after which the mission is stopped. Hence, our approach without
considering the information gain is the best choice for covering the
complete environment.

3.5 discussion

In this work, we focused on the question of how to benefit from back-
ground information made available by the user in form of a topo-
metric graph. Metric information is available in many cases, for ex-
ample when floor plans or in our case archeological drawings are
available. When the user provides the background information as a
sketch map, however, the proportions of the areas drawn in the sketch
are likely to be incorrect or distorted. Hence, two questions remain:
How to interpret information given by the user, and how to align the
spatial representations of the robot with the given background infor-
mation. Other research groups have presented interesting approaches
for solving these questions. Skubic et al. have presented extensive
research on how to interpret hand-drawn sketch maps for wayfinding,
including the role of landmarks, spatial relations, and connections to
linguistics [31, 155, 156]. Shah and Campbell [149, 150] also presented
systems for interpreting sketches drawn by human users and showed
in user studies that the interface is natural and easy to use even for
novice users. While these approaches focus on spatial relations be-
tween the robot and landmarks, Boniardi et al. [25, 26] instead use
floor plans sketched by a human user to localize and navigate in
indoor environments. Based on a Monte Carlo localization algorithm,
they additionally track two scaling variables in the robot’s state space
to account for distortions in the user’s drawings, making the system
robust against metric inaccuracies. Integrating such a sketch inter-
pretation system with our system for generating efficient exploration
strategies would lead to a natural interface for guiding a robot in
exploration tasks. The sketch interpretation might be improved even
further by including recent advances in sketch interpretation with
neural networks [64] that allow the algorithm to recognize shapes and
symbols within the drawing.

3.6 conclusions

We presented a novel approach to autonomously learning a model
of the environment under the assumption that the layout of the envi-
ronment is known beforehand in form of a topo-metric graph. Such
a graph can be provided by humans or automatically derived from
existing floor plans or other maps. Our system exploits the given topo-

3.6 conclusions 55

metric graph to generate shorter navigation trajectories that cover the
terrain. We represent the problem as a traveling salesman problem
and derive a global exploration strategy from its solution. Locally,
a frontier-based approach is used that exploits the TSP solution and
fully covers the environment with the robot’s sensors. Accordingly,
the overall trajectory length is reduced as the robot will move to dead
ends, small loops, and similar structures first and thus does not need
to return to these locations later on. We implemented and thoroughly
tested our approach in different environments. The results show that
our approach significantly reduces the time needed to cover the terrain
with the robot’s sensors requiring a negligible amount of additional
computational resources. Our approach is valuable for several real-
world exploration problems, for example, when exploring abandoned
mines or archaeological sites, or for inspection tasks where the layout
of the environment is not completely unknown.

In this chapter, we focused on an exploration task where background
knowledge is available only on a coarse level as a topo-metric graph. In
Chapters 5 and 6, we will have a look at the closely related problem of
planning a coverage tour through a known environment for observing
as much of the environment as possible with a robot’s camera. In that
case, we will assume that the robot already has access to a 3D model
of the environment and we will present an approach for automatically
creating a metric graph as an abstraction of the environment. We will
again formulate the problem as a TSP and use its solution to guide the
robot on a tour through the environment.

4
S L A M F O R H U M A N O I D S W I T H A
C O M B I N E D R G B A N D D E P T H D E S C R I P T O R

Simultaneous Localization and Mapping (SLAM) is a prerequisite
for all autonomous mobile robots. For humanoid robots, this task
is particularly challenging due to limited sensing and processing
capabilities and additional constraints. In this chapter, we extend
an existing appearance-based SLAM system to address these chal-
lenges. We introduce a new binary descriptor that combines color,
depth, and intensity information to increase the reliability and ro-
bustness of the tracking and place recognition steps. We integrate
the new descriptor into the state-of-the-art ORB-SLAM system, add
additional filtering and geometrical verification steps for better
data association, and replace the place recognition module with
a modified version of FAB-MAP. In experiments under controlled
conditions and in real-world experiments with a Nao humanoid
equipped with an RGB-D camera, we show that our new descriptor
outperforms established descriptors in precision and recall. Our
new descriptor and our extensions to the SLAM system lead to more
reliable tracking of features even in image sequences suffering from
motion blur. Consequently, the trajectories generated by our SLAM

system have lower absolute trajectory errors in comparison to the
original ORB-SLAM and loop closures are detected more reliably.

4.1 introduction

In the previous chapters, we used 2D representations of the environ-
ment for planning our navigation tasks: In Chapter 2, we worked with
graph structures representing road networks, and in Chapter 3, we
combined topo-metric graphics with occupancy grid maps created
by a SLAM approach. 2D representations, however, are not sufficient
for truly autonomous robots working in home and office environ-
ments, in particular if we would like to leverage the full potential
of humanoid robots that can climb stairs, step over obstacles, bend
over boxes to inspect their contents, or use tools designed for humans.
For these applications, we need approaches for building accurate 3D
representations.

In recent years, there has been huge progress in the development of
SLAM techniques, for example in the context of self-driving cars. For
humanoid robots, however, SLAM is still particularly challenging due
to the specific problems inherent with bipedal robots. One of the main
challenges with humanoid robots is that they typically cannot carry

57

58 slam with a combined rgb and depth descriptor

Figure 4.1: Nao robot with an RGB-D camera mounted on its head navigating
through an environment cluttered with toys. We present a SLAM

system with a feature descriptor that combines depth and color
information, allowing the robot to distinguish both texture and
shape of objects.

heavy payloads due to limited torque in their lower body motors, bal-
ance constraints, and limitations on energy consumption. While cars
and wheeled robots are often equipped with multiple LIDAR systems
providing 360° scans, humanoid robots have to resort to lightweight
and energy-efficient sensors such as webcam-grade cameras or pro-
jected stereo RGB-D cameras. The Nao humanoid robots that we use for
our experiments (Figure 4.1), for example, have two built-in monocular
cameras with a resolution of 1280× 960 pixels and a diagonal field
of view of 72.6° (full specifications in Appendix A.1). As the cameras
point in different directions, they cannot be used for stereo vision.
Additionally, we mount an ASUS Xtion PRO LIVE RGB-D camera with
a diagonal field of view of 70° on top of the robot’s head (full specifica-
tions in Appendix A.2). The narrow opening angles of these cameras
as well as the limited depth range of projected stereo cameras make
the localization problem more difficult, as usually only a small portion
of the environment is visible, leading to the aperture problem where
localization is impossible if only parts of an edge or plane are in the
field of view, but not their boundaries. Optical cameras are subject
to motion blur, which is a frequent problem with humanoid robots
as the walking cycle leads to hard impacts when the swing foot hits
the ground at the beginning of a double support phase. Bad lighting
conditions in indoor environments worsen this issue as longer shutter
times are required. The swinging motion of a humanoid’s upper body
while walking is harder to predict than trajectories of wheeled robots,

4.1 introduction 59

in particular constant velocity assumptions are generally not justified
on humanoid robots. Due to limited processing power and network
bandwidth of embedded systems, it is usually not possible to process
the incoming sensor data at high frame rates. In combination, these
factors make localization and mapping hard problems for humanoid
robots.

As humanoid robots have limited sensing capabilities, it is necessary
to extract and combine as much information as possible from the
sensor data to get good localization results. In our previous work,
we investigated how geometrical features such as planes and edges
can be used to detect staircases and align the robot accurately with
the next step [128, 129]. While these geometrical approaches work
well in cases where the robot interacts with an object of known shape
such as a staircase, other approaches are better suited for entirely
unknown environments. In this chapter, we use appearance-based
methods that extract features from the environment and use these
features to recognize previously seen portions of the environment and
to stitch together the corresponding environment models in a SLAM

approach.
In this context, features are interest points together with an abstracted

description of their local neighborhood. An example for such a feature
could be the corner of an object with the colors and angles of the
adjacent patches. Our applications require the features to be:

• Unique: The features must be descriptive to avoid ambiguities.
Regions with different appearances should produce different
descriptors to avoid incorrect localizations.

• Repeatable: The same region should always produce similar fea-
ture descriptors so that the region can be recognized reliably.

• Robust: The feature descriptor should be robust against noise,
illumination changes, and different viewing angles.

• Fast to compute: For mapping and localization applications, vast
amounts of features need to be processed, hence the descriptors
must be fast to compute.

Hence, the challenge of designing a good feature descriptor is to
trade off between keeping local information that makes the descriptor
unique and dropping redundant information to avoid overfitting to
a particular observation to make the descriptor robust, repeatable,
and fast. In the literature, several feature descriptors already exist.
Scale-Invariant Feature Transform (SIFT) [101] and Speeded Up Robust
Features (SURF) [14] are two well-established feature detectors and
descriptors for textured images, and more recently ORB [146] was
introduced as a computationally more efficient alternative. For depth
images acquired with stereo cameras, a variety of descriptors has
been developed, for a comparison see Hänsch et al. [66]. To achieve

60 slam with a combined rgb and depth descriptor

higher uniqueness and robustness, however, information of all avail-
able channels should be combined. Color Signature of Histograms
of Orientations (CSHOT) [172] and Binary Robust Appearance and
Normals Descriptor (BRAND) [117], for example, use both texture and
depth information in their descriptors.

In this chapter, we present a novel feature descriptor for RGB-D data
that combines depth, intensity, and color information. In contrast to
BRAND, it combines depth and color in separate fields instead of merg-
ing them in an “OR” operation, making the descriptor less ambiguous.
We integrate our new descriptor into the ORB-SLAM system [114], a
state-of-the-art visual SLAM system, and adapt the system to better
address the particular challenges of humanoid robots. In summary,
we add the following modifications:

1. We replace the ORB feature descriptor by our new descriptor that
combines color, intensity, and depth information into a binary
descriptor.

2. As constant velocity assumptions are not justified on humanoid
robots due to the swinging motion of the upper body, predicting
the motion of features between frames is not reliable. Hence, we
use brute force matching between all extracted features of con-
secutive images instead and rely on a Random Sample Consen-
sus (RANSAC) filter for geometric validation to remove outliers.

3. We estimate the current camera pose from a sequence of camera
poses estimated from previous frames.

4. We replace the place recognizer DBoW2 [55] with FAB-MAP [58] be-
cause FAB-MAP produces more correct loop closures than DBoW2

in the experiments for our particular environment. Which one
of the two frameworks performs better seems to depend on
the dataset, as other research groups have also reported mixed
results for the direct comparison of the two approaches, e.g.
in [116]. As the original FAB-MAP implementation uses SURF, a
continuously valued descriptor, we modified the FAB-MAP im-
plementation to accept our new binary descriptor, which also
results in faster computation.

To assess the performance of our approach, we first evaluate the pre-
cision and recall metrics of the descriptor under controlled conditions
with manually applied image transformations such as translations
and rotations of the image. The results show that our new descriptor
yields comparable or higher precision while still keeping a high recall
level. Afterwards, we evaluate the complete SLAM system with a Nao
humanoid robot (see Figure 4.1) in real environments by comparing
the trajectory estimated by our system to the ground truth trajectory
recorded by an external motion capture system. The results show that
our SLAM system is able to reliably track features in image sequences

4.2 related work 61

even if they contain images affected by motion blur, which happens
frequently due to the motion cycle of humanoids while walking. Ad-
ditionally, our new place recognition module has a higher percentage
of correctly identified matches. In combination, our system loses track
less frequently and produces trajectories with lower absolute error
than the original ORB-SLAM implementation.

4.2 related work

4.2.1 RGB-D SLAM

Henry et al. [70] and Endres et al. [43] were among the first who devel-
oped a 3D mapping system for data acquired with an RGB-D camera.
The general idea of these approaches is to combine the matching of
features with pose optimization to reduce the error in the estimates
after loop closures. Mur-Artal et al. [114, 115] proposed ORB-SLAM,
which performs mapping, tracking, relocalization, and loop closure
in real-time using ORB features [146]. Figueroa et al. [46] combined
visual odometry and KinectFusion [118] to reconstruct indoor scenes
using the BRAND descriptor [117].

In our work, we apply a modified version of ORB-SLAM, which tracks
sparse features and therefore is not as computationally expensive as
methods that run on GPUs [46, 178, 182]. We replaced the ORB de-
scriptor with our new binary descriptor and enhanced the tracking
behavior so it can also handle images with poor features, and can
recover from cases where the current camera transformation cannot
be determined.

Our new descriptor is based on BRAND [117] but we separate the
appearance and depth information as mixing them causes ambiguity.
Additionally, we change the way depth information is used. We do
not use the point clouds and perform fast pixel tests on patches to
speed-up the construction of the descriptor.

4.2.2 Appearance-based loop closing

Cummins et al. developed FAB-MAP [34], which is an appearance-based
approach for mapping. It uses the bag-of-words model to decide
whether a place is a new location or has been visited before. Hereby,
the system uses the observation that some features are more likely to
appear together rather than separately.

Gálvez-López and Tardos presented DBoW2 [55], a fast place recog-
nizer that is also based on the bag-of-words approach. To speed up the
feature extraction step, the authors initially used the binary feature de-
scriptor BRIEF. Mur-Artal and Tardós then modified DBoW2 to use ORB

features [116], which are rotation and scale invariant. ORB-SLAM [114]
uses DBoW2 as its place recognition module. In the experiments with

62 slam with a combined rgb and depth descriptor

our Nao robot, we experienced that a lot of the images it identifies
as similar are in fact of different places. We therefore replaced DBoW2

with FAB-MAP [58] and modified it so that it works with our new de-
scriptor. Since the new descriptor is binary, it is also faster compared
to when using SURF, the descriptor originally used by FAB-MAP.

Sünderhauf et al. have presented a method that relies on CNNs

for feature extraction, but it is computationally more expensive and
requires processing on GPU [167].

4.2.3 SLAM and visual odometry for humanoid robots

Stasse et al. [162] presented a 3D SLAM system for humanoid robots.
The authors combined data from the robot’s walking pattern generator
with odometry, Inertial Measurement Unit (IMU) data, and visual
features from a monocular camera in an Extended Kalman Filter (EKF)
framework. Since images taken by humanoid robots can suffer from
blur due to the swaying motion during walking, Pretto et al. [139]
investigated how to mitigate that effect by developing an approach
that only selects highly distinctive features.

Oriolo et al. [123] used the head pose provided by the Parallel
Tracking and Mapping (PTAM) algorithm and the torso orientation
from the IMU measurements in the correction step of EKF to localize a
humanoid robot.

In our work, we use the RGB and depth information to simultane-
ously localize the robot and map the environment. We match features
of consecutive images and apply bundle adjustment to optimize the
pose of the robot. We use distinctive frames, i.e., images with their
estimated camera poses, to build a pool of locations for the place
recognition module, which indicates whether a loop closure is likely
to have appeared.

4.3 proposed rgb-d feature descriptor

Feature descriptors are one of the core components of appearance-
based place recognition and SLAM approaches, as the quality of the
descriptors determines the quality of the overall result. As we already
discussed in the introduction to this chapter, good feature descriptors
need to be unique, repeatable, robust, and fast to compute. Hence, we
designed a novel feature descriptor with these criteria in mind.

Regarding the time needed to process the descriptors, binary de-
scriptors are generally faster than continuously valued descriptor
vectors. SIFT and SURF, for example, produce descriptor vectors with
64 or 128 floating point components. To solve the data association
problem of finding corresponding keypoints descriptors in subsequent
images, these algorithms calculate the Euclidean distance between de-
scriptor pairs to find the nearest neighbors, which is a time-consuming

4.3 proposed rgb-d feature descriptor 63

operation. Binary descriptors, by contrast, can be compared using
fast metrics such as the Hamming distance that counts the bits that
differ between two descriptors. Computing the Hamming distance
can be implemented very efficiently by applying an XOR operation
to determine the bits that differ and by counting the bits with the
popcnt (population count) instruction that is present in many CPUs,
for example in Intel’s SSE4.2 instruction set. Hence, we use binary
descriptors in our approach.

Our new descriptor is inspired by the Binary Robust Appearance
and Normals Descriptor (BRAND) [117] that also combines intensity
and depth information. Given a point of interest, BRAND describes the
local neighborhood of the point by a binary string of length 256. The
value fi of bit i is computed by comparing two pixels xi, yi that are
chosen in a pattern around the interest point. The pattern is arbitrary
but fixed and is pre-computed by drawing locations from a Gaussian
distribution centered at the interest point. The value of the bit is
computed according to

fi =

1 if (I (xi) < I (yi)) ∨ τ (xi, yi)

0 otherwise,
(4.1)

where I(·) is the intensity of the pixel and τ(·) is a function comparing
the normal displacement and surface complexity in the local vicinity
of the two pixels. For more details, see the original publication [117].

The main problem with this descriptor is that it combines intensity
and depth in an “OR” logical disjunction operation that creates am-
biguity as regions may lead to the same descriptor even though only
their texture matches, but not the shape, or vice versa. We propose to
resolve this ambiguity by partitioning the descriptor and storing depth
and intensity cues in separate bits, eliminating the OR operation.

The BRAND descriptor only considers the intensity of each pixel. The
color information, however, is also valuable for distinguishing objects
based on their texture. As we already use the intensity information,
we represent the color information as the a∗ and b∗ components of
the CIE L∗a∗b∗ colorspace. The a∗ coordinate indicates the position of
the color between the complementary colors magenta and green and
the b∗ coordinate indicates the position between the colors yellow and
blue. We use the L∗a∗b∗ colorspace because the values are well-defined
for desaturated colors in contrast to the hue-saturation-value (HSV)
colorspace where the hue is undefined for black, white, and shades of
gray.

Combining the discussed components, we define our descriptor as
a 256 bit binary descriptor consisting of four parts with 64 bits each
representing the depth value D, intensity value L∗, and the two color
components a∗ and b∗ of the L∗a∗b∗ colorspace. Each of the 64 bits
again represents the result of a comparison of two patches drawn from
an arbitrary, but fixed pattern around the interest point.

64 slam with a combined rgb and depth descriptor

1

w2

w1

P

D L? a? b?

0 255

d1 <d2

Figure 4.2: Layout of our descriptor. Each field in the binary descriptor is
filled out by comparing one pair of windows in a patch P. The
descriptor is 256 bits long and has equal sections for the depth,
intensity, and color channels.

The descriptor needs to be invariant to different viewing angles and
distances so that an interest point can be recognized from different
poses while the robot walks through the environment. Hence, we
apply the same mechanisms that the original BRAND method proposes:
Before computing the descriptor, we rotate and scale the patch that
we consider for calculating the descriptor to a canonical position. In
contrast to descriptors for 2D images where the scale of the patch has
to be estimated, we can directly use the measured depth to scale the
patch so that it encompasses the same object region irrespective of the
distance to the camera. Following the original approach, we scale the
patch size between 9× 9 and 48× 48 pixels linearly with the viewing
distance. To compute a canonical rotation, we use the Haar wavelet
responses to find the dominant orientation as both the BRIEF and SURF

descriptors do.
Computing the descriptor for a given interest point is done in the

following steps: We first convert the RGB camera image to the L∗a∗b∗

colorspace. We then scale and rotate the predefined pattern of pixel
pairs according to the measured distance and dominant orientation.
For each pixel pair in the pattern, we compare the depth, intensity, a∗

and b∗ values and fill the corresponding four bits with the test result.
To reduce the impact of noise in the data, we do not compare the
values of the two pixels directly, but compute the sum of the 9× 9
neighborhood of the pixels and compare the sums. To speed up the

4.4 appearance-based slam 65

computation of this averaging step, we pre-compute an integral image
S once for the whole image according to

S(x, y) =


0 if x, y outside image
v(x, y) + S(x− 1, y)

+ S(x, y− 1)− S(x− 1, y− 1)
otherwise,

(4.2)

where v (x, y) is the value of the image at pixel coordinate (x, y).
Summing up 81 values in the 9× 9 sliding window centered at (x, y)
then reduces to summing up four components:

4

∑
∆x=−4

4

∑
∆y=−4

v(x + ∆x, y + ∆y) (4.3)

= S(x− 4, y− 4) + S(x + 4, y + 4) (4.4)

− S(x + 4, y− 4)− S(x− 4, y + 4).

Figure 4.2 illustrates the process of constructing the descriptor for a
patch of pixels P centered at an interest point. The integral sum value
of the depth values in window w1 denoted as d1 is compared to that
of the second window w2 denoted as d2. If d1 is smaller than d2, the
associated bit in the binary vector is set to 1. In the same way, we also
compute the intensity and color components of the descriptor.

4.4 appearance-based slam

In this thesis, we focus on mobile robots acting in human environ-
ments, for example service robots performing tasks in home and office
environments, or robots that can autonomously go for grocery shop-
ping in a nearby store. The environments that we have in mind have
in common that they are highly dynamic as robots and humans share
the same environment, they constantly change during the course of
the day and during seasons, and they are large as we expect the robots
to work in a whole building or even in an urban neighborhood. Hence,
we need SLAM solutions that support robust long-term navigation.
Appearance-based SLAM is a class of SLAM systems that meet these
requirements well. The core component of appearance-based systems
is a database that stores the “appearance” of places. During naviga-
tion, the robot queries this database to retrieve a set of places with
appearances that are similar to what the robot is currently perceiv-
ing, giving the robot a set of hypotheses about its current location.
The appearance of a place consists of global features, for example
geometrical objects, or of a constellation of smaller features detected
in the environment. If the environment changes, for example when
objects are removed from the scene, the algorithm can still recognize
the place if the overall feature constellation is still intact. This property

66 slam with a combined rgb and depth descriptor

Detector Descriptor Filter

T R A C K I N G

M A PR E C O G N I T I O N
P L A C E

L O O P C L O S I N G

L
O

C
A

L
M

A
P

P
IN

G

Loop Correction Loop Detection

RGB-D
Frame

Pre-process Input Pose Prediction
(Motion Model)
or Relocalization

Track
Local Map

New KeyFrame
Decision

KeyFrame

KeyFrame
Insertion

Recent
MapPoints

Culling

New Points
Creation

Local BA

Local
KeyFrames

Culling

Compute
SE3

Loop
Fusion

Optimize
Essential

Graph

Visual
Vocabulary

Recognition
Database

Covisibility
Graph

Spanning
Tree

KeyFramesMapPoints

Query
Database

Figure 4.3: Overview of the ORB-SLAM system, adapted from [115]. We mod-
ified the parts marked in green to the better match the specific
requirements of humanoid robots.

makes appearance-based SLAM robust against dynamic changes in the
environment. In contrast to SLAM approaches that create dense maps,
appearance-based approaches can be applied on large scales. The au-
thors of FAB-MAP 2.0 [35], for example, demonstrated that their system
is capable of finding correct loop closures in a dataset consisting of
omnidirectional images recorded along a road network of 1000 km.
Several appearance-based SLAM systems have been presented in the
literature, see Bacca et al. [11] for a survey.

In this chapter, we analyze ORB-SLAM2, a state-of-the-art SLAM sys-
tem for monocular, stereo, and RGB-D cameras presented in 2016 by
Mur-Artal et al. [114], and extend the system to better suit the re-
quirements of humanoid robots. Figure 4.3 shows an overview of the
system with the components that we modified highlighted in green.
In the following sections, we will provide more detail on the changes
and design decisions for the individual steps of the algorithm.

4.4.1 Pose tracking

The first step of the algorithm is to pre-process the raw input data
received from the RGB-D camera. To detect interest points, we keep the
extended FAST algorithm that the original ORB implementation uses,
but we exchange the feature descriptor for our new binary descriptor
introduced in Section 4.3.

The original ORB-SLAM approach then tries to track the extracted
features over a sequence of camera frames by predicting their position
with a motion model and searching for matching feature descriptors

4.4 appearance-based slam 67

in a window around the predicted position. While constant velocity
or constant acceleration models yield useful predictions for wheeled
platforms, aerial vehicles, or (to a certain extent) hand-held cameras,
these predictions are often not accurate enough when applied to hu-
manoid robots. The walking cycle of bipedal robots leads to swinging
motions of the upper body while moving forward and irregular mo-
tion patterns when turning on the spot. Due to the limited processing
power and bandwidth, the camera frame rate is typically low, so that
subsequent images are often captured during different phases of the
walking cycle. Hence, the motion between frames is difficult to pre-
dict. Additionally, the impact of the swing foot on the ground also
affects the camera, especially in robots such as the Nao robots that do
not have mechanisms for damping the impact. This impact results in
motion blur and jittering of the camera. As a result, the displacement
of features in subsequent images is hard to predict. In the original
approach, this often leads to the case where the data association fails,
forcing ORB-SLAM to restart with a new trajectory segment. The system
can only recover if it finds a loop closure between the two segments
later. Hence, we do not use a motion model for tracking. Instead, we
try to match all pairs of feature descriptors to find data association can-
didates. As the Hamming distance that we use to compare descriptors
is fast to compute, this process is still reasonably fast.

To improve the quality of the data association, we introduce filters
to reduce the features to the ones that are the most distinctive, hoping
that these features will lead to correct data associations. We only
accept features that are mutually the best match, i.e., a pair of features
(q, a) with q from the current image and a from the previous image is
considered a match if a is the best match for q among all features in
the previous image, and q is the best match for a among all features
in the current image. If this is the case, we add another filter step: We
only accept (q, a) as a valid feature pair if the distance to the second
best match b in the previous image is substantially bigger than the
distance to a, i.e.

dqa < r · dqb, (4.5)

where r is a fixed ratio and dqa, dqb are the corresponding Hamming
distances. Feature pairs that pass both filters are probably unique and
descriptive.

The two filters added so far work on pairs of features from subse-
quent frames without considering the other features. As a third filter
step, we hence use a Random Sample Consensus (RANSAC) method
to verify that the feature pairs follow a consistent geometric trans-
formation, similarly to the approach used by Endres et al. [43]. We
project the features back from 2D image space to 3D space using the
depth information provided by the camera. We randomly select a
subset of feature pairs and compute the transformation between the

68 slam with a combined rgb and depth descriptor

selected feature locations in the previous and current frame using
a Singular Value Decomposition (SVD). We then count the number
of feature pairs that support this transformation hypothesis, called
inliers. A feature pair is considered an inlier if the Euclidean distance
between the projection of the old feature according to the computed
transformation and the new feature detected in the current frame is
below a threshold. After running multiple sampling iterations, we
keep the transformation hypothesis that is supported by the most
inliers.

The largest set of inliers is then used to estimate the motion of the
camera between the two images by optimizing the pose with g2o [93]
using a variant of local bundle adjustment where the points are fixed
and the pose is optimized.

In some cases, no valid transformation between subsequent frames
can be found, for example if the image suffers from motion blur that
makes recognizing features impossible, if the data association fails due
to self-similarities in the environment, or if no features are available,
for example if only a plain wall is in the robot’s field of view. To
recover from short-term failures, we keep a history of the last five
frames for which a valid transformation was found. If the algorithm
is unable to find a transformation between the previous frame and
the current frame, we try to compute the transformation using earlier
frames instead, going back in time. If the algorithm still does not find
a transformation, we skip the image.

4.4.2 Mapping

After tracking the robot’s pose locally, the second component of the
SLAM system is the mapping component. As keeping the information
of all frames is infeasible, the algorithm has to decide which frames
and their corresponding transformations to keep. These frames are
called keyframes. The mapping algorithm represents these keyframes
as nodes of a graph and the corresponding transformations between
the keyframes as edges between the nodes. From this graph rep-
resentation, the mapper reconstructs a sparse representation of the
environment. The keyframes are selected based on the estimated error
of the transformation between the images and the number of usable
features.

While dropping frames is necessary to keep the algorithm efficient,
selecting appropriate keyframes is difficult. When the robot returns
to the same location later, it may fail to detect the loop closure if the
corresponding frames were dropped and the nearest keyframes are too
far away. Hence, we first keep all frames with a valid transformation
as keyframes to increase the chances that loop closures get detected.
As the robot explores the environment, the mapper accumulates the
3D points from the frames. At regular intervals, we perform bundle

4.4 appearance-based slam 69

adjustment on the local point cloud, merge identical points, and drop
redundant keyframes. Hence, we only drop keyframes that overlap
in large parts with other keyframes so that loop closures can still
be reliably detected. In contrast to the original implementation, we
run the mapping component synchronized with the pose tracking
component every 10 keyframes to keep the size of the local maps
approximately equal, leading to more consistent coverage of the map.

4.4.3 Place recognition for loop closing

The third major component of SLAM systems is detecting loop closures.
Appearance-based methods use a database for storing places within
the map together with the overall “appearance” of the place. The
appearance of a place is a constellation of local features, often repre-
senting the geometric arrangement of multiple objects present in the
place. These constellations can be represented in a Bag of Words (BoW)
approach where a codebook for a particular type of environment is cre-
ated in an offline step. The words in this vocabulary consist of cluster
centers representing clusters of visual features detected in the training
images. This learned vocabulary can then be used to describe places
in new environments by choosing a subset of words that describe a
place.

The original ORB-SLAM approach that we base our system on uses
Dynamic Bag of Words (DBoW2) [116] as the place recognition mod-
ule. In preliminary tests with datasets recorded in our experimental
environment, however, we found that DBoW2 produces a substantial
amount of false positive loop detections. Such incorrect loop closures
are detrimental for SLAM as they can irrecoverably destroy the layout
of the map. FAB-MAP [58], by contrast, produced less false positives.
Hence, we replaced DBoW2 by FAB-MAP as the place recognition mod-
ule.

As the original FAB-MAP implementation uses SURF which produces
continuously valued feature vectors, we modified the approach to
work with our new binary descriptor. Hence, we replaced the Eu-
clidean similarity metric for assigning features to clusters in the train-
ing phase by the Hamming distance which counts the number of bits
in which two descriptors differ.

After assigning feature descriptors to clusters for creating the vo-
cabulary, the original approach computes the mean of the assigned
descriptors to determine the cluster center. For binary strings, however,
there is no meaningful definition of an “average”. Hence, we follow
the approach from [55] to replace the computation of the cluster cen-
ter by a majority voting scheme. For each bit of the descriptor, each
member descriptor of the cluster votes for either one or zero in that bit
position. After voting, the algorithm assigns ones to the bit positions

70 slam with a combined rgb and depth descriptor

Figure 4.4: The robot revisits an old place and FAB-MAP with our descriptor
returns a possible candidate for loop closure. If there are enough
matched features after RANSAC as in this example, a loop closure
takes place.

where the majority of member descriptors voted for one, and zeros to
the other bit positions.

Whenever the pose tracker creates a new keyframe, we compute
the BoW descriptor of the keyframe and query the database for places
with similar appearance. If a candidate for a matching place is found,
we verify whether there is a consistent geometric transformation be-
tween the feature pairs of the corresponding frames. We again use the
RANSAC algorithm described in Section 4.4.1 to check whether a trans-
formation exists and enough feature pairs support the transformation
as inliers. If the detected loop closure passes the geometric validation,
we optimize the transformation between the frames by minimizing
the reprojection error as we did in the tracking phase and add the
loop closure edge to the graph representing the map.

Afterwards, we add the BoW descriptor of the new keyframe to
the database if at least 10 frames have passed since the last added
keyframe to avoid adding redundant key frames with negligible visual
change.

The algorithm then applies a g2o [93] optimization run to optimize
the graph representing the map where each node represents a camera
pose and the edges represent transformations between subsequent
frames or loop closure frames. The optimization step distributes the
error along the loops, thus decreasing the local errors.

4.5 experimental evaluation

We evaluate our approach on real-world datasets in three steps: First,
we evaluate the robustness of our new binary descriptor to changes
in the camera perspective in a controlled environment. We transform
RGB-D images of real-world scenes and show that the descriptor is
invariant to translations and rotations in the image. We show that

4.5 experimental evaluation 71

our descriptor performs better than existing descriptors in terms of
precision and recall.

Second, we run our modified SLAM system including our new de-
scriptor on real-world datasets recorded with a Nao humanoid robot
and compare the resulting trajectories to the ground truth trajectories
recorded with a motion capture system. The results show that our
approach leads to lower absolute trajectory errors.

Third, we provide a comparison of the run times of the different
descriptors that shows that our novel descriptor is substantially faster
than SIFT, SURF, and BRAND and almost as fast as ORB.

4.5.1 Evaluation of descriptors

For tracking features in a sequence of frames, the pose tracker of our
SLAM system has to solve a data association problem: Which features
in the previous and current frame represent the same location in the
physical world? The problem of finding corresponding features can
be interpreted as an instance of the information retrieval problem.
Given a database of feature descriptors from the previous frame,
the algorithm queries the database for records matching the feature
descriptors of the current frame. The database then returns a set of
descriptor pairs. In the optimal case, the system is precise, meaning that
all returned descriptor pairs actually originate from the same location
in the real world, and efficient, meaning that it returns all such pairs
that exist in the database. In reality, however, the retrieval is usually
not perfect so that the retrieval returns false positives, i.e., descriptor
pairs that originate from different locations in the environment, or it
omits descriptor pairs that actually match (a false negative). The quality
of an information retrieval procedure is commonly evaluated with the
two measures precision and recall:

precision =
true positive

true positive + false positive
(4.6)

=
correctly returned matches

all returned matches
(4.7)

recall =
true positive

true positive + false negative
(4.8)

=
correctly returned matches

all correct matches in the database
(4.9)

(4.10)

Hence, precision is the percentage of returned pairs that are actually
correct matches, and recall is the percentage of correct matches re-
trieved from the database.

In our application, we order all pairs of feature descriptors by their
Hamming distance, remove matches with distances above a threshold,

72 slam with a combined rgb and depth descriptor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

re
ca

ll

1− precision

ORB

BRAND

SURF

SIFT

New

Figure 4.5: Precision-recall diagram for evaluating the invariance of descrip-
tors when transforming images with a translation of 10 pixels.
The points along a curve represent different thresholds on the
similarity metric. Our descriptor performs best since it produces
the highest recall and precision (note that the horizontal axis
shows 1− precision).

and filter out unlikely or uncertain matches in three filter steps as
described in Section 4.4.1 before passing the remaining descriptor pairs
to the algorithm for estimating the camera transform based on these
matches. By changing the thresholds and filter parameters such as the
distance ratio r in Equation 4.5, we can influence the balance between
precision and recall. Returning more pairs increases the recall up to
the trivial solution of returning all pairs, leading to a recall of 1 by
definition. But returning more pairs generally also lowers precision, as
returning less likely matches increases the risk of including incorrect
matches. Hence, we have to find a trade-off between precision and
recall. In SLAM applications, precision is usually preferred over recall
as incorrect loop closures are detrimental to the map quality and may
lead to situations that the robot cannot recover from. If the recall is
too low, however, the algorithm may fail to compute transformations
between camera frames, leading to disconnected local maps.

For the experimental procedure for determining precision and recall,
we follow the approaches used by Nascimento et al. [117] and Rublee
et al. [146]. For a set of images captured with an RGB-D camera in
a real world scene, we first detect interest points and calculate the
corresponding descriptors. We then apply geometrical transformations
such as translations and rotations to the images to create a new set of
images. As we transform the images manually, we know the ground
truth for the expected feature locations, data associations, and max-
imum number of potential correct feature matches inside the image
boundaries. For the experiments, we used 1000 randomly selected
images from the benchmark dataset provided by Sturm et al. [165]. We

4.5 experimental evaluation 73

0

0.1

0.2

0.3

0.4

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

re
ca

ll

1− precision

ORB

BRAND

SURF

SIFT

New

Figure 4.6: Precision-recall diagram when transforming the images with a
rotation of 30°. The precision is lower than for translation-only
transforms due to discretization into a pixel raster. Again, our
new descriptor has the highest precision among the descriptors.

set the parameters of the detector to choose 500 interest points per im-
age and generated the corresponding feature descriptors with our new
descriptor and four existing descriptors for comparison. We then trans-
formed the images, re-run the detector and descriptors, and searched
for matching features with the procedure from Section 4.4.1 includ-
ing the three filter stages. We validated the returned matches against
the projection of the features of the original frame with the ground
truth transformation to determine the number of correct matches for
calculating the precision and recall metrics.

Figure 4.5 shows the result for a translation of 10 pixels and Fig-
ure 4.6 shows the result for a rotation of 30°. Note that the horizontal
axis shows 1− precision for better readability and consistency with
the results presented in [117], so a system with optimal precision
and recall would produce a data point in the top left corner. In both
cases, we varied the threshold on the Hamming distance of acceptable
pairs to shift the balance between precision and recall. Each point
in the resulting curve represents the precision and recall at a certain
threshold. The range for the threshold is 0– 255 in steps of 5 for the
binary descriptors ORB, BRAND, and our new descriptor. For the contin-
uously valued descriptors with Euclidean similarity metric, we chose
a range of 0– 10000 in steps of 100 for SIFT and 0–10 in steps of 0.1 for
SURF. As expected, increasing the threshold increases the recall and
decreases precision. As can be seen, our descriptor performs best in
comparison to the other descriptors under both translation and rota-
tion transformations. The results show that the depth cue is valuable
for differentiating features and that resolving the ambiguity between
intensity and depth cues leads to better performance in comparison to
BRAND.

74 slam with a combined rgb and depth descriptor

Frames Candidates Correct

Dataset 1

FAB-MAP-New 2534 1805 1805

FAB-MAP-ORB 2534 1876 1862

DBoW2 2534 2038 799

Dataset 2

FAB-MAP-New 3160 2124 2124

FAB-MAP-ORB 3160 2280 2266

DBoW2 3160 2360 430

Table 4.1: Place Recognition Results.

Note that our experimental setup for these results also includes the
detector stage. We run the detector separately on the original image
and the transformed image with a fixed number of interest points to
detect. As the image transformation leads to some parts of the image
being clipped, the detected interest points are inevitably different. The
detector might also detect interest points at slightly different locations
as a result of the discretization of the image. This effect also lowers
precision and recall.

4.5.2 Place recognition

Recognizing places that have been visited before is the core com-
ponent of all SLAM systems as loop closures allow the system to
correct accumulated errors and to generate more accurate maps. In
appearance-based SLAM, place recognition is done by extracting fea-
tures in the current camera image, computing a bag of words descrip-
tor according to a pre-trained vocabulary, and querying a database
for places with similar combination of words. In this work, we com-
pare two appearance-based place recognition systems: Dynamic Bag
of Words (DBoW2) as used in the original ORB-SLAM implementation
and our modified version of FAB-MAP working with our new binary
descriptor as explained in Section 4.4.3. To evaluate these approaches,
we recorded datasets with a Nao humanoid robot walking in an in-
door environment and queried the two place recognition modules for
places that the robot has seen previously along the trajectory. Table 4.1
shows the results for two datasets. The first column is the total number
of frames recorded along the trajectory. The second column shows
the number of frames that the system has recognized as frames from
previously seen locations, and the last column indicates how many of
those candidates are correct according to manual labeling. As FAB-MAP

4.5 experimental evaluation 75

returns images that potentially match the query image together with
confidence values, we follow [34] and only consider frames with a
confidence value of 0.98 or higher as candidates.

The results in Table 4.1 show that although using FAB-MAP with ORB

leads to higher detection rates than when using the new descriptor, the
percentage of correct detections is lower. As discussed above, incorrect
loop closures are harmful for SLAM as they might destroy the layout
of the map to the point where the robot cannot localize anymore and
thus cannot recover. On the other hand, missing a loop closure is less
critical, as usually several subsequent frames show the same place and
a low number of matching images is enough to correct the map with
loop closures.

Manual inspection of the matches returned erroneously by FAB-MAP

with ORB reveals that the main cause is the lack of distinctive features.
Due to the small opening angle of the cameras, it frequently happens
that the portion of the scene that is in the robot’s field of view does
not provide enough diversity for recognizing the place. Other causes
of incorrectly returned matches are occlusions by people moving in
front of the robot and images affected by motion blur.

The original implementation of ORB-SLAM uses DBoW2 as its place
recognition component. The last column in Table 4.1 shows that DBoW2

generates a large number of false positives, hence this approach is less
suitable for SLAM.

4.5.3 Simultaneous localization and mapping

To evaluate the performance of the overall SLAM system, we recon-
structed the robot’s trajectory with the SLAM trajectory and compared
the trajectory to the ground truth provided by a motion capture system.
As the error metric, we compute the Absolute Trajectory Error (ATE):

ATE =

√
∑N ‖Xt − Gt‖2

N
, (4.11)

where Xt and Gt are the estimated and ground truth poses respectively
at time t, and N is the number of pose estimates. We computed
the ATE using the benchmark evaluation utility from [165]. As the
transformation between the world frames of the motion capture system
and the frame of the SLAM system is unknown, the utility aligns the
trajectories in a least-squares optimization. The resulting ATE is a
measure for the global consistency of the estimated trajectory.

Table 4.2 reports the results for four different trajectories recorded
with a Nao robot with an ASUS Xtion camera mounted on top, as well
as the results for a dataset recorded with a wheeled Pioneer platform
that is provided by the RGB-D benchmark dataset from [165].

Figure 4.7 shows the corresponding estimated and ground truth
trajectories for these datasets. The top two rows show that our system

76 slam with a combined rgb and depth descriptor

Ground truth
Our approach

0.5 m

ATE RMSE: 0.0757 m

(a)

Ground truth
ORB-SLAM

0.5 m

ATE RMSE: 0.1905 m

(b)

Ground truth
Our approach1 m

ATE RMSE: 0.0969 m

(c)

1 m
Ground truth
ORB-SLAM

ATE RMSE: 0.2315 m

(d)

ATE RMSE: 0.0330 m

Ground truth
Our approach

1 m

(e)

ATE RMSE: —

Ground truth
ORB-SLAM

1 m

(f)

Figure 4.7: SLAM results on several datasets. Our system (left column) tracks
the robot accurately and the ATE is lower than when using ORB-
SLAM (right column). The top two rows show the results for
data recorded with the Nao robot (datasets Nao1 and Nao2 in
Table 4.2), whereas the last row shows the results for a benchmark
dataset of a Pioneer wheeled robot.

4.5 experimental evaluation 77

Datasets Nao1 Nao2 Nao3 Nao4 Pioneer

Our system 0.08 m 0.1 m 0.04 m 0.05 m 0.03 m

ORB-SLAM 0.19 m 0.23 m 0.04 m 0.09 m —

Table 4.2: Absolute Trajectory Error.

Descriptor ORB Ours SURF BRAND SIFT

Time 4 ms 14 ms 94 ms 125 ms 132 ms

Table 4.3: Time to compute 100 descriptors of each type.

performs well with data recorded with the Nao robot and outperforms
ORB-SLAM. Pose tracking with legged robots such as the Nao is more
challenging than with wheeled robots since the movement of the head
can result in blurry images that may not have well-defined features.
The last row of Figure 4.7 shows the estimated and the ground truth
trajectory for the Pioneer dataset. In contrast to ORB-SLAM which is
not able to track the robots pose, our system accurately tracks the
trajectory and performs loop closing.

As can be seen from Figure 4.7 (f), ORB-SLAM cannot track the pose
as the robot makes a turn. ORB-SLAM first uses the motion model from
the previous frames to initialize the new pose. This new pose, however,
is not supported by enough matches so it then tries to compute the
transformation from the keyframe of the local map. Since there was
a rotation in the movement of the robot, the reference keyframe no
longer shares enough points with the current frame and matching
fails.

4.5.4 Computational cost

Computing the descriptors has a major share in the overall computa-
tion time of the SLAM system as it has to compute a large number of
descriptors for every input frame. Table 4.3 shows a comparison of
the computation times for the different descriptors. The table shows
the time needed to create 100 descriptors of each type on a single
Intel Core Pentium 987 CPU. While ORB descriptors are the fastest
to compute, they contain less information as they do not consider
depth. Our new descriptor is significantly faster than BRAND which
also considers depth information. The main speed-up is attributed to
how the depth information is used. We compare depth values directly,
whereas BRAND computes normals from the local neighborhood of the
interest points and uses them in the geometric tests. Our descriptor,
however, is both faster and better in terms of precision and recall as
shown in Section 4.5.1.

78 slam with a combined rgb and depth descriptor

Step Time

L∗a∗b∗ colorspace conversion 0.012 ms

Integral image computation 0.011 ms

Canonical orientation computation 0.073 ms

Color, depth, and intensity tests 0.048 ms

Total 0.144 ms

Table 4.4: Breakdown of processing time needed to create one instance of our
descriptor.

The more detailed breakdown of the run time of our descriptor in
Table 4.4 shows that the most expensive step is the computation of
the patch orientation. It uses the same method as in SURF where the
Haar wavelet responses are computed and summed in the x and y
directions.

4.6 discussion

Our work presented in this chapter is a step towards robust SLAM

systems for humanoid robots with their limited sensing capabilities
and particular challenges arising from the complex motion patterns.
We showed that our improvements to existing appearance-based SLAM

systems leads to higher precision and recall in the feature matching
step and thus more robust and accurate tracking of the robot. There
are, however, still situations where tracking fails, in particular when
there are not enough descriptive features in the robot’s field of view
or when bad lighting conditions disturb the recognition of features. To
improve the results in these situations, it might be worth to integrate
more information available to the robot such as the kinematic walking
odometry, IMU data, and sonar measurements. Integration of these
measurements, however, need well-calibrated sensor models as these
measurements are typically rather inaccurate and subject to drift. To
avoid blurry images, capturing images could be synchronized with
the walking cycle so that the robot takes the images in phases with
less motion and jitter.

Even when integrating all available information, there might still
be situations where there are not enough features to track. In these
situations, the robot could actively perform actions for recovering,
for example by standing still to avoid motion blur or turning its
head to search for features outside its regular field of view. In our
previous work [126], we presented a reinforcement learning approach
for learning when to perform such actions by trading off between

4.7 conclusions 79

localization uncertainty and time required for the navigation task, and
which actions to perform for successfully arriving at the goal location.
Integrating such a learned active recovery policy into a SLAM system
would lead to a more robust system.

The experiments in this chapter were performed on a single core CPU.
There is a lot of potential for parallelization both by multi-threading
and by exploiting Single Instruction Multiple Data (SIMD) architectures.
In Chapter 6, we show that many navigation tasks can be formulated as
rendering problems that can be solved highly parallelized on dedicated
graphics cards. It may be worth to investigate which parts of the
computation and evaluation of feature descriptors could benefit from
offloading to a GPU.

Feature descriptors are not only used in appearance-based SLAM,
but also in other robotics applications. Most prominently, robust fea-
tures can be used for object detection and classification in images, for
example for semantic scene classification or when searching for objects
in an environment.

4.7 conclusions

In this chapter, we adapted and improved an existing appearance-
based SLAM system to improve its accuracy and robustness on hu-
manoid robots. SLAM on humanoid robots is particularly challenging
due to irregular motion patterns originating from the walking cycle
that are hard to predict and due to the limited sensing capabilities. We
developed a novel binary descriptor that extracts more information
from the input RGB-D data by combining intensity, depth, and color
information from patches around interest points in an unambiguous
way. We presented modifications to the existing ORB-SLAM system to
make it more robust by adding filtering, improving geometric vali-
dation, and replacing the place recognition module with a modified
version of FAB-MAP that uses our binary descriptor.

We thoroughly evaluated our approach on real-world datasets. First,
we compared the precision and recall metrics of our new descriptor
to four existing descriptors and showed that our novel descriptor
has a higher precision with comparable recall. As avoiding incorrect
loop closures is crucial in SLAM to prevent irrecoverable damage to
the constructed map, the high precision of our descriptor makes it
especially useful for SLAM.

Second, we compared the accuracy of the loop closure step of our
modified system with existing approaches. The results showed that the
percentage of correct loop closure candidates generated by the place
recognition module is higher with our proposed system than with
existing approaches using DBoW2 or FAB-MAP with ORB descriptors.

Finally, we evaluated the overall performance of our SLAM system
on real-world data sets recorded with an RGB-D camera mounted on a

80 slam with a combined rgb and depth descriptor

Nao humanoid robot and on benchmark datasets for a wheeled robot.
The results demonstrate that our system outperforms ORB-SLAM as
it follows the ground truth trajectory more closely and has a lower
absolute trajectory error. Our modifications make the SLAM system
robust even in sequences with blurred images, which frequently occur
with walking humanoids.

5
E F F I C I E N T C O V E R A G E O F 3 D E N V I R O N M E N T S
W I T H H U M A N O I D R O B O T S U S I N G
I N V E R S E R E A C H A B I L I T Y M A P S

Covering a known 3D environment with a robot’s camera is a com-
monly required task, for example in inspection and surveillance,
mapping, or object search applications. In addition to the problem of
finding a complete and efficient set of view points for covering the
whole environment, humanoid robots also need to observe balance,
energy, and kinematic constraints for reaching the desired view
poses. In this chapter, we approach this high-dimensional planning
problem by introducing a novel inverse reachability map represen-
tation that can be used for fast pose generation and combine it
with a next-best-view algorithm. We implemented our approach
in ROS and tested it with a Nao robot on both simulated and real-
world scenes. The experiments show that our approach enables the
humanoid to efficiently cover room-sized environments with its
camera.

5.1 introduction

In Chapter 3, we investigated the problem of how a mobile robot
can explore an unknown environment as efficiently as possible if the
user provides background knowledge about the topological layout of
the environment. We presented an approach that solves a traveling
salesman problem to generate a tour for visiting all areas so that the
robot can build a full model of the environment.

In this chapter, we will turn to the closely related problem of covering
a known environment with the robot’s sensors. The goal is again to
generate a tour for observing as much as possible of the environment.
This time, however, the robot has access to a full 3D model of the
environment instead of just an abstract topo-metric graph. We assume
that either the robot has captured this 3D model previously with a
SLAM approach, or that the human has given the model to the robot
beforehand as a CAD model. In either case, the robot’s task is to use the
given map to calculate a tour through the environment from where it
can cover the relevant areas with its camera as efficiently as possible.
This problem is relevant for several real-world applications such as
searching a lost object in an apartment, taking stock in a grocery
store, inspecting technical installations for damage, or re-mapping an
environment to incorporate changes into the map.

81

82 coverage of 3d environments with humanoid robots

Figure 5.1: Nao inspecting an environment. The robot bends over to peek
into a box for completing the task of completely covering the
environment with its camera, e.g., for finding objects.

Coverage planning is a problem that has been investigated before,
for example in the context of RoboCup Rescue where the robot has
to find victims in a disaster scene, in the context of cleaning robots
that have to plan a tour for vacuuming a floor or wiping a table, or
in the context of patrol robots that should guard a building. What
sets our approach apart from previous approaches is that we focus on
humanoid robots operating in human environments. Humanoid robots
are particularly well suited for executing inspection tasks in human
environments, as they can bend over to look into boxes like the robot
in Figure 5.1, bend down to peek below tables and chairs, and open
drawers and cupboards to inspect their contents. As humanoid robots
have a similar body plan as humans, they can typically reach regions
that are interesting to humans and operate facilities designed for
humans, making them ideal for collaborating with human users.

Before we will turn to articulated environments where the robot
has to actively move and manipulate objects in the next chapter, we
first focus on static scenes. In this chapter, we present an approach
for covering a known environment with the camera of a humanoid
robot by integrating view point planning with whole-body motion
planning.

Our approach adapts the next-best-view algorithm for 3D coverage
originally presented by Dornhege et al. [41] to meet the requirements
of humanoid robots. The original approach has been used in RoboCup
Rescue disaster scenes on tracked vehicles with cameras mounted
on a robotic arm with six degrees of freedom. This setup allows

5.1 introduction 83

the robot to position its camera freely within a spherical working
volume with radius 1 m around its base position. Humanoids with
head-mounted cameras, by contrast, have a much smaller reachable
volume to place the camera due to the kinematic limitations of the
robot. To move the camera, the robot can turn and tilt its head, bend
over with its whole upper body to peek downwards, or arch its back to
look upwards. As a result, a humanoid robot can place its camera only
within a small, irregularly shaped reachable volume (see Figure 5.2 on
page 86 for an illustration). While the original approach uses sampling
methods to determine camera positions within the reachable volume
for computing valid pairs of endeffector and base poses, the smaller
reachability volume renders these sampling methods inefficient for
humanoid robots.

Additionally, using such whole-body movements to position the
camera is difficult as the robot has to maintain its balance at all times
to avoid falling over. Bending the upper body forward is particularly
strenuous for the hip, leg, and ankle joints, increasing both the energy
consumption and the risk of overheating these joints. Hence, the robot
has to consider walking and pose stability, self-collisions and collisions
with the environment, energy consumption, and overheating when
planning view poses for observing the scene. Due to the high degree
of freedom, planning whole-body postures while searching next-best-
view poses is computationally highly expensive.

To cope with these additional constraints to the planning problem
introduced by humanoids, we propose to use pre-computed Inverse
Reachability Maps (IRMs) that can be queried efficiently while planning
the view points of the coverage tour. In a first step, our approach
generates promising view poses by casting rays from surfaces and
sampling candidate camera poses for free-space voxels where many
of these rays pass through. Afterwards, we use the IRM to evaluate
possible whole-body configurations to reach the views. As a result,
we get a set of camera poses that cover the environment, including
suitable foot poses and whole-body configurations for reaching these
camera poses. By computing the shortest paths for navigating between
all pairs of robot poses, we compute a graph and use a Traveling
Salesman Problem (TSP) solver to find the shortest connecting tour. The
formulation as a TSP instance is similar to the approach for exploration
with background knowledge that we presented in Section 3.3.2. In the
current chapter, however, we derive the node positions and the graph
automatically from a 3D map instead of relying on a user-provided
graph.

To validate our approach, we performed experiments in both simu-
lation and real-world scenarios with a Nao robot. Our results show
that our system enables the humanoid to successfully and efficiently
inspect home-like environments covering all interesting surfaces.

84 coverage of 3d environments with humanoid robots

5.2 related work

Finding view points from where a whole known or unknown scene can
be observed is a well-known, challenging problem in both robotics and
computer graphics. A large number of applications need to solve this
problem, including autonomous exploration, autonomous scanning
and reconstruction of 3D objects, and coverage and surveillance tasks.

The optimization problem of finding the minimum number of view-
ing points required for observing a known environment has been
formulated as the art gallery problem, which asks for the positions
where guards or CCTV cameras have to be placed for monitoring an
art gallery with a polygonal floor plan in 2D or a polyhedral model
in 3D. The art gallery problem is known to be NP-hard and APX-hard
even in 2D environments [124].

Stasse et al. [163] and Foissotte et al. [48, 49] presented a two-step
approach for exploration and coverage with a humanoid robot. In the
first step, a next-best-view algorithm is used for finding suitable view
poses. In the second step, a posture generator tries to find postures to
reach the desired view poses. The two steps are alternated in a greedy
iterative scheme. Separating view pose planning and pose planning
has the disadvantage that collision checks, stability constraints, and
energy optimization cannot be considered while optimizing the view
points. Generating a pose for every candidate view point is infeasible.
We overcome this problem by pre-computing an inverse reachability
map that can be queried fast enough to be used in the view point
planning stage.

In the past, several variations of next-best-view algorithms for find-
ing a good sequences of view points to observe a scene have been
proposed. Bissmarck et al. [21] published a run-time comparison of
some existing solutions. Next-best-view algorithms have also been
successfully applied to find view points for 3D reconstruction using
in-hand manipulation [89], using cameras mounted on robotic arms
with a fixed base [90], and using unmanned aerial vehicles [19]. Our
scenario, however, requires a humanoid robot to walk around in the
environment, which makes planning more difficult as balancing con-
straints and pose optimization have to be considered. In contrast to
approaches that reduce the problem complexity by limiting view point
candidates to convex hulls [133] or bounding spheres [175] surround-
ing the objects of interest, we sample candidate view poses in the
whole volume that the robot can reach.

While we focus on the task of covering a known environment com-
pletely, the general framework can also be used for autonomous explo-
ration as in the work of Dornhege and Kleiner [40]. In the autonomous
exploration task, covering the known surfaces of the environment is
replaced by covering the frontiers between known and unknown re-
gions, as we discussed in our exploration with background knowledge

5.3 problem description and framework 85

approach in Section 3.3.4. The information gain of a view point is
estimated based on the size of the unknown voids in the field of view.
Daudelin and Campbell [38] propose a probabilistic extension of the
work by Isler et al. [79], which consider the information gain for each
cell in the vicinity of frontier surfaces for computing the next best
view.

In Chapter 3, we introduced an approach for speeding up explo-
ration tasks by exploiting background knowledge. Based on a topo-
logical graph provided by the user, the robot computes a global explo-
ration strategy using a traveling salesman problem solver. This global
strategy can be combined with a local exploration strategy determined
with the approach we present in this chapter.

Burget and Bennewitz [28] applied inverse reachability maps for
selecting suitable stance poses of a humanoid for grasping tasks. This
application requires high maneuverability of the endeffector, and
hence the authors use a manipulability measure based on the Jacobian
matrix of the kinematic chain. For our coverage task, high maneuver-
ability is not needed and we evaluate poses based on stability, energy
consumption, and required time for reaching the whole-body pose
instead.

5.3 problem description and framework

Our goal is to completely cover a known environment with the camera
of a humanoid robot. We assume that a complete 3D model of the en-
vironment is already given, for example generated during a previous
SLAM run or provided by the user. The robot then has to determine a
sequence of lookout poses for the camera so that all relevant regions
can be covered, e.g., for the purpose of executing a search or inspec-
tion task. Thus, the goal is to find a preferably small set of viewing
poses that respect the robot’s kinematic limits and stability constraints
and from where the whole scene can be observed. As discussed in
Section 5.2, the problem of finding the minimum set of view poses
that cover the whole environment is known to be a hard problem on
its own according to complexity theory. Solving this problem in the
context of humanoid robots introduces several constraints and long
planning times due to the many degrees of freedom, which increase
the complexity of the problem even further.

We approach this challenge by implementing a sampling-based
next-best-view algorithm that has already been successfully used on
tracked vehicles [41]. For efficient planning for humanoid robots, we
extend this approach by pre-computing possible robot poses in an
inverse reachability map that can be queried efficiently while searching
for good view poses. In the following sections, we will introduce our
efficient implementation of the inverse reachability map and present
its applicability within a next-best-view planning algorithm.

86 coverage of 3d environments with humanoid robots

Figure 5.2: Reachability map of a Nao robot. The colored boxes represent
poses that the top camera mounted in the robot’s head can reach
given the robot’s current feet positions. Green poses have low
costs according to the cost function (Equation 5.4), whereas red
poses with high costs should be avoided.

5.4 reachability map and pose evaluation

Whole-body planning for humanoid robots is a challenging prob-
lem due to the high-dimensional configuration space and due to
computationally expensive constraints such as posture stability and
self-collision avoidance. Planning times can be significantly reduced
by pre-computing valid postures and storing them as a Reachabil-
ity Map (RM). A reachability map is a volumetric representation of
the poses that an endeffector can reach given that the robot’s base
frame (i.e., the center pose between the feet poses on the ground) is
located at the origin of the RM. The RM is typically computed by sam-
pling in the configuration space. Each cell of the RM that is marked as
reachable can be annotated with one or more joint configurations for
reaching the desired pose together with a cost value associated with
that joint configuration. During motion planning, the planner uses
the RM as a lookup table for finding a set of suitable robot configura-
tions without having to perform expensive kinematic computations
or stability and self-collision checks. The planner then only has to
perform location-dependent checks such as collision checks with the
environment and optimize a cost criterion.

Reachability maps have already been successfully used for grasp
planning [174] and stance pose planning [28] with humanoid robots
where a 6D grasp pose is given in world coordinates and the robot has
to find suitable, collision-free stance poses for reaching the desired
grasp pose. Transferring this concept to our application of full coverage
planning, however, needs two modifications as the requirements are
different.

First, the size of the reachable volume is different. In the grasp
planning application, the reachable volume of a robotic arm with
multiple degrees of freedom is large as it covers the robot’s whole

5.4 reachability map and pose evaluation 87

workspace and the endeffector can be translated and rotated in all
six dimensions. In our application, by contract, the endeffector is a
head-mounted camera, which typically can only move within a small
and thin volume, shaped like a spherical segment (see Figure 5.2 for
an example). Nao robots do not have a roll joint in the neck and the
two hip joints are mechanically connected, hence the robot can only
rotate the camera around the roll axis within a very limited range of a
few degrees by tilting the whole upper body when shifting the knee
positions. As the reachability map is sparse in our case, it would be
inefficient to represent it as a full 6D grid map and to sample pose
candidates from a full grid structure. Hence, we will instead propose
an indexed database in the next section.

Second, the optimization criterion of grasp planning application
is not useful in our application. The optimization criterion in the
grasp planning is based on a manipulability measure. Using a tool
with the robot’s hand requires the ability to move the endeffector
to nearby poses, e.g., for turning a screw with a screwdriver. Hence,
Yoshikawa [188] proposed the manipulability measure

w =
√

det (J JT), (5.1)

where J is the Jacobian of the joint configuration with respect to endef-
fector pose. w indicates how easily the robot can move the endeffector
from the current pose in any of the six dimensions by moving its joints.
If the endeffector position is a singularity from where it cannot be
moved in a certain direction, then J JT does not have full rank and
w drops to zero. Vahrenkamp et al. [173] extended this measure by
adding penalties for configurations near joint limits and endeffector
positions nearby obstacles.

In our application, however, manipulability of the endeffector is
not important. The robot only has to reach a given camera pose for
observing the environment, but it does not necessarily have to move
the camera around in that position. Hence, it is acceptable if the
kinematic chain reaches a singularity. Penalties for endeffector poses
near obstacles would be redundant in our application, as the next-best-
view algorithm selecting the camera poses already prefers panoramic
viewpoints that are far away from obstacles so that large parts of the
environment are visible in the robot’s field of view.

Hence, we propose a new cost function tailored to coverage planning
that considers the constraints that are relevant for humanoid robots.
The three most important constraints are pose stability, time needed
to reach the pose, and energy consumption.

Pose stability is a critical issue because the robot has to go to the
limits of what is physically possible to reach all desired camera poses.
To peek down into a box on the ground, for example, the robot has
to bend over with its torso and tilt its head down, which moves both
the center of gravity and the zero moment point to the boundary

88 coverage of 3d environments with humanoid robots

0

0.2

0.4

0.6

0.8

1

all weight
on left foot

double support all weight
on right foot

costs cw

Figure 5.3: Cost function for measuring pose stability based on the weight
distribution between the feet. Postures in double support are pre-
ferred as they lead to bigger support polygons and are considered
to be more stable than single support postures.

of the support polygon. While the robot should be able to move to
less stable poses when necessary, it should generally prefer stable
poses. Hence, the first component our optimization criterion is a pose
stability measure. One possibility for defining such a measure is to
calculate the zero moment point and to determine the location of the
point with respect to the support polygon, or alternatively to measure
the center of pressure on both feet directly with sensors. When the
center of pressure approaches the boundary of the support polygon,
the robot posture gets unstable and small perturbations put the robot
at risk of tipping over. For the Nao robots that we use during our
experiments, however, the center of pressure cannot be measured
reliably enough, hence, we use an approximate stability measure that
compares the weight distribution on the two feet. Postures where the
robot is in double support are more stable than poses where all the
weight rests on one foot only. Let wl , wr be the weight on the left
and right foot, respectively, as measured by the foot pressure sensors
located in the soles of the feet. Then, we define a weight ratio

r =

min
(

max(wl ,wr)
min(wl ,wr)

, m
)

if min(wl , wr) > 0

0 otherwise
(5.2)

that is the ratio of the weight distribution between the two feet clamped
to the range [1, m] where m is a user-defined constant, meaning that a
pose is considered unstable if the weight on one foot is more than m
times higher than the weight on the other foot. The ratio is symmetric
with respect to both feet. In practice, a value of m = 3 yields reasonable
results. We then define a cost function

cw =
(r− 1)2

(m− 1)2 (5.3)

5.5 efficient representation of the irm 89

that increases quadratically with increasing weight ratio and is nor-
malized to the range [0,1]. See Figure 5.3 for an illustration of the cost
function.

A low run time for reaching a camera pose is important for effi-
ciency of the whole coverage process. To estimate the time ∆t to reach
the desired robot posture, we measure the time to get from a standard
walking pose that the robot uses for navigation to the desired pose. Al-
ternatively, the run time can be estimated from the joint displacements
and the maximum joint velocities.

As the motors of humanoid robots easily overheat when remaining
in a stressful pose for a longer period of time, we minimize the
energy consumption of the motors in our optimization criterion. We
continuously measure the electric current for each joint using the
built-in shunt resistors while moving from the standard walking pose
to the desired pose and back to the walking pose. Given the technical
properties of the motors given in the data sheet of the robot, we
compute the consumed power P integrated over the whole movement.

We then combine the three cost components to a cost function

c = kw · cw + kt · ∆t + kp · P (5.4)

with the components defined above and linear coefficients kw, kt, kp

that we determined experimentally. Our view-point planning algo-
rithm tries to find poses that cover the environment while minimizing
this cost function.

For generating the reachability map, we sample a large number n of
robot postures q in the configuration space, execute the configuration
on a real robot, measure the time, power, and stability data, and
compute the cost function. The result is a set

R = {(q, c (q)) | i = 1 . . . n} (5.5)

of postures with associated costs that can be visualized as a reachabil-
ity map (see Figure 5.2). The individual cells of this reachability map
reflect the reachable workspace of the robot and the color of the boxes
in the figure shows the associated cost. If more than one configuration
leads to the same pose, the costs of the lowest cost pose is shown.

5.5 efficient representation of the irm

In both the grasping application and our view-point planning applica-
tion, the desired endeffector pose is implied by the task, whereas the
robot’s base position can be chosen freely. Hence, it is more efficient to
invert the reachability map to create an Inverse Reachability Map (IRM)
where the endeffector is located in the origin and the cells reflect the
potential locations of the base frame from where the robot can reach
the desired endeffector pose. The IRM can be represented as a 6D voxel
structure where the voxel coordinates correspond to the 6D pose of

90 coverage of 3d environments with humanoid robots

the robot’s base frame and each voxel contains a list of one or more
joint configurations. Given a desired endeffector pose, the algorithm
transforms the IRM into the world coordinate system so that the origin
of the IRM matches the desired endeffector pose. The intersection of
the transformed IRM with the ground plane yields a list of potential
stance foot positions, which then have to be checked for collisions and
optimized for the cost value.

Intersecting the two volumetric representations of the IRM and the
environment model as Burget and Bennewitz suggest [28], however,
is time-consuming and storing the IRM as a sparse 6D structure is
not memory efficient. Making the assumption that the robot can only
stand on horizontal planes allows for a more efficient implementation.
If the robot’s feet rest flat on the ground, then the roll and pitch angle
of the feet relative to the endeffector frame as well as the distance
between the endeffector and the feet on the vertical axis can be di-
rectly derived from the endeffector coordinates in the world frame.
Hence, we propose to represent the IRM as a database instead of a
volumetric representation. As the schematic layout of the database
in Figure 5.4 shows, each entry of the database consists of a list of
base frame poses relative to the endeffector and a whole-body joint
configuration to reach the endeffector pose from the given base pose
with a corresponding cost value. We index the database on the roll
(φ), pitch (θ), and z component of the base frame pose discretized into
equally spaced bins (φ, θ, z). As these coordinates can be computed
directly from the desired endeffector pose under the assumption that
the feet rest flat on the ground, we can access the candidate base
frame poses without having to perform geometrical intersections of
volumes by finding the nearest neighbor in the database. In practice,
the IRM can be implemented as a k-d tree or octree that allows quick
nearest-neighbor searches. For a given query, the database returns a
list of candidate feet poses to reach the desired camera view pose.
The algorithm then selects the configuration with the lowest costs that
does not collide with the environment.

Index List of entries(
φ, θ, z

)
configuration 1: (x, y, z, φ, θ, ψ), (q1, . . . , qN) , c

...

configuration k: (x, y, z, φ, θ, ψ)︸ ︷︷ ︸
base position

wrt. endeffector

, (q1, . . . , qN)︸ ︷︷ ︸
whole-body joint

configuration

, c︸︷︷︸
costs

(Eq. 5.4)

Figure 5.4: Schematic layout of the database for storing the IRM. Each bin
indexed by

(
φ, θ, z

)
contains a list of k whole-body configurations

with associated costs.

5.6 planning a tour of viewing poses 91

5.6 planning a tour of viewing poses

For generating view points and planning a sequence of poses to
cover the environment, we adopt ideas of the approach by Dornhege
et al. [41]. Please refer to the original publication for a more detailed
description including mathematical formulations of the problem and
algorithm.

5.6.1 Sampling candidate viewing poses

The known model of the environment is represented efficiently as
an OctoMap [75]. Our algorithm first determines which occupied
voxels belong to surfaces that should be covered. For our application,
the ground plane does not have to be observed, so we filter it out
and limit the region of interest to a user-defined bounding volume.
However, our system still keeps the full OctoMap for collision checks
and navigation planning.

For each occupied voxel to be observed, the algorithm casts rays
starting from the occupied voxel into free space. The ray is clipped
at a minimum and maximum distance from the occupied start voxel
corresponding to the distance range where the robot can well observe
the surface. For each free-space voxel, a counter is created that counts
the number of rays traversing the voxel. If many rays pass through
one voxel, this voxel is assumed to be a good lookout point as many
interesting surfaces can be observed. Contrary to Dornhege’s original
approach, we do not sample random linear rays, but subdivide the
unit sphere around the occupied voxel into 512 equally shaped conic
rays. We then iterate through the cells in each cone from the tip
outwards and increment the voxel counters of the traversed cells.
When a collision occurs, we continue with the next cone. This approach
is more systematic and a better representation of the utility of the
view pose candidates, as it eliminates the systematic bias of cells near
walls that get traversed more often if randomly sampled linear rays
are used. We filter the traversed voxels by the height above the ground
and do not consider voxels that are above or below the range where
the robot’s camera can be placed.

We then sort the remaining free-space voxels by decreasing utility
according to the ray count. For each voxel at position (x, y, z), we
sample n random 3D orientations (φi, θi, ψi) to get a set of 6D camera
poses {(x, y, z, φi, θi, ψi) | i = 1, . . . , n}. The yaw angles ψi are sampled
from the full range [0, 2π]. As we represent the inverse reachability
map as a database indexed by bins (φ, θ, z) (see Section 5.5), we can
directly sample roll angles φi and pitch angles θi for a given z from
the inverse reachability map, guaranteeing that all sampled poses
are within the feasible kinematic range of the robot. For each of the
n camera poses, we determine the number of surface voxels that are

92 coverage of 3d environments with humanoid robots

visible in the viewing frustum, which yields a utility value for that
camera pose.

5.6.2 Determining whole-body configurations

If the utility of a camera pose is above a threshold, our system de-
termines whether there is a collision-free robot pose for reaching
that view. The methods used in Dornhege’s original approach are
not efficient and capable enough for humanoid robots with very
limited reachability ranges and constraints on stability and energy
consumption. To cope with these challenges, our algorithm queries
the inverse reachability map (see Section 5.5) to retrieve a list of candi-
date whole-body configurations for reaching the given camera pose.
Each configuration consists of a list of joint angles, the poses of the
robot’s feet relative the camera frame, and a cost term. For each of the
configurations, we transform the feet poses into the world coordinate
system and perform a sequence of checks to determine whether the
whole-body pose is reachable:

1. Check that the desired robot location is reachable from the
robot’s start location. As computing a full plan from the start
location to the desired location is too computationally expensive
to be executed for a large number of candidate views, we instead
pre-compute a 2D reachability map once at the beginning and
update the reachability map in case the environment changes.
In our current implementation, we generate a 2D occupancy
grid map by down-projecting the 3D model onto the map. In
the resulting map, we use a region-growing algorithm to mark
all free-space cells that are definitely reachable from the robot’s
starting position.

2. Check that the feet poses of the configuration (including stepping
safety margins) do not collide with obstacles by comparing the
feet polygons to the 2D grid map of the environment.

3. Check that the full body of the robot does not collide with the
environment. In our experiments, we use the Flexible Collision
Library [134] for fast collision checks.

The checks are ordered by ascending complexity for lazy evalua-
tion, as the more complex checks do not have to be performed if a
simpler check already failed. If a given camera pose can be reached
by multiple robot configurations, which is usually the case, we select
the configuration with the lowest costs according to the cost func-
tion (see Equation 5.4). If no whole-body configuration is found, then
the camera pose is unreachable and is not considered further.

5.6 planning a tour of viewing poses 93

5.6.3 Formulation as a traveling salesman problem

The user can trade off the run time of the view pose search versus
the thoroughness of the coverage by setting the number of view pose
samples and the utility thresholds, i.e., the ray count for the voxels and
the number of visible surface voxels for the sampled camera poses.
After sampling and evaluating camera poses for all high-utility voxels,
we get a set of camera poses that cover large parts of the environment.
Following Dornhege’s approach [41], we partition the observed voxels
by the viewing poses to determine the smallest set of viewing poses
that still covers all observed voxels. This step reduces the number of
poses that the robot has to navigate to and thus reduces the size of the
planning problem to make it tractable.

The final step before the robot can start executing its task is to com-
pute a tour for visiting all viewing poses, starting at the robot’s current
location. Dornhege [41] provides a comparison of different planning
algorithms including utility-based and cost-based greedy algorithms,
set cover and traveling salesman planners, and an exhaustive search.
The best choice of the planning algorithm depends on the application:
For object search tasks, it makes sense to start with panoramic view
points where large parts of the environment are visible, as it is likely
that the object can be seen from these view points and the search can
be completed early. Hence, a utility-based greedy approach should
be used in this scenario. If, by contrast, the task requires that all view
points must be visited, for example in an inspection or mapping task,
then a cost-minimizing planner is preferred. For our experiments, we
choose to formulate the problem as a traveling salesman problem
on a graph and use a Lin-Kernighan heuristic solver [69] to find the
shortest-path solution that visits all viewing points necessary for com-
pletely covering the environment. As Dornhege showed, the additional
time required for solving a TSP in comparison to greedy approaches is
outweighed by the gain in the time and energy required to execute
the plan, which is especially true for humanoid robots.

To plan the coverage tour, we follow the same approach as for
exploration with background knowledge in Section 3.3.2. The nodes of
the TSP graph consist of the viewing poses and the robot’s start location.
For each pair of nodes, we add an edge annotated by the length of
the shortest path between the corresponding poses as computed by an
A* planner on the 2D occupancy grid map. As we don’t require the
robot to return to the start location, we make the graph asymmetric
by replacing the costs for traveling from any view point back to the
start node by 0, meaning that the robot can “teleport” at no costs from
the last visited view pose back to the start. In the resulting tour, the
last edge is removed, leading to the shortest open-end path starting
at the robot’s current location and visiting all viewing poses. For

94 coverage of 3d environments with humanoid robots

a mathematical formulation of this process and a discussion of the
consequences for the problem complexity see Section 3.3.2.

5.7 experiments

To evaluate our approach, we conducted a series of experiments in
both simulated environments and real-world settings with a Nao
humanoid robot (see Appendix A.1 for technical specifications of the
robot).

5.7.1 Generating the inverse reachability map

As a first step, we need to record an IRM once in the beginning for the
given robot. Generating the IRM in simulation is not accurate enough,
especially as the simulators that support Nao robots cannot simulate
critical factors for stability such as joint backlash and inertia effects.
Power consumption is also hard to estimate in closed-loop reactive
systems. Hence, we propose to record the IRM in real world in an
automated process where the robot moves to sampled poses while
measuring the required quantities for computing the cost function.

Any posture generator can be used to create the set of samples to
be stored in the IRM, including kinesthetic teaching by a human or
random sampling in a physics simulator. In our case, we used the
whole-body controller provided by the manufacturer as a black-box
posture generator for recording the IRM. The whole-body controller
formulates the generalized inverse kinematics problem as a quadratic
problem including joint limit constraints and stability criteria that
constrain the center of mass to the support polygon. The controller
then solves the quadratic problem in a fixed cycle of 20 ms. More
details on the whole-body controller are given in the manufacturer’s
documentation [4]. We systematically sampled head orientations in
the feasible range and torso heights between 24 cm and 32 cm and
let the whole-body controller find suitable joint configurations. The
configurations are evaluated and stored in the reachability map as
described in Section 5.4. In our experiments, the IRM contained 1514

robot configurations in 277 database records. For more complex robots
with more degrees of freedom, the pose sampling density can be
reduced to keep the algorithm efficient while still covering the full
configuration workspace.

5.7.2 Coverage of simulated environments

We tested our approach first in simulation experiments with a Nao
humanoid simulated using the Choregraphe framework provided by
Aldebaran Robotics. To generate footstep plans, we used the anytime
search-based footstep planner by Hornung et al. [74]. To study our

5.7 experiments 95

Figure 5.5: Bathroom scene, model based on [22]. Top: Overview of the scene.
Middle: Utility of candidate viewing poses (see Section 5.6.1).
Light blue voxels indicate panoramic view points from where
large parts of the scene are visible. The robot’s task is to observe
the red parts of the environment, whereas the gray objects are
only considered for collision checking and path planning, but do
not have to be observed. Bottom: Resulting set of poses and areas
covered by the robot’s camera (green). The maximum viewing
range of the camera is 3 m.

96 coverage of 3d environments with humanoid robots

Figure 5.6: Coverage results of further simulation experiments. Top: “The
White Room” model based on [68]. Note that the robot inspects
the ceiling lamp by leaning backwards and looking up. Bottom:
“Library-Home Office” model based on [23].

algorithm’s behavior in realistic settings, we downloaded openly avail-
able models of indoor rooms and apartments provided by the Blender
community and rendered the models as OctoMaps [75]. Figure 5.5
shows an example scene in a bathroom based on a model from [22].
The red surfaces are the relevant environment regions that the user
selected for the robot to inspect. The figure in the middle visualizes
the utility map generated with the algorithm described in Section 5.6.1.
Light blue voxels are traversed by many conic rays emitted from the
user-selected surfaces, thus these voxels are panoramic view points
from where large parts of the environment are visible. The algorithm
considers these voxels first when sampling view poses. The bottom
figure of Figure 5.5 shows the resulting robot poses and the areas cov-
ered by the robot’s camera in green. Some surfaces are unobservable
for the robot due to its body height, e.g., the top face of shelves.

Figure 5.6 shows additional experiments in other environments. The
top figure visualizes a living room scene and highlights that the robot

5.7 experiments 97

Figure 5.7: Trading off between completeness of coverage and time required
to execute the plan. Both images show the “Living Room” model
based on [120]. By adapting the utility threshold, the user can
trade off between completeness of coverage versus the number
of poses and thus the time for task completion. Top: The envi-
ronment is fully covered by 26 robot poses. Bottom: The three
robot poses with the highest utility already cover large parts of
the environment.

98 coverage of 3d environments with humanoid robots

also has to lean back and look up to inspect the ceiling lamp. The
bottom figure shows a library scene. The remaining areas in red are
either inaccessible to the robot, for example the table top, or are left
out by the robot as the information gain is too small compared to the
costs of navigating to a suitable view point.

Figure 5.7 shows the same living room scene covered with different
numbers of view poses. By choosing the threshold for the candidate
view utility appropriately, the user can trade off between completeness
of coverage versus run time. A low utility threshold (Figure 5.7 top
image) leads to 26 view poses that cover all observable details of the
scene. A higher threshold on the utility, in contrast, leads to a small set
of high-utility poses that already cover large parts of the environment.
The bottom image of Figure 5.7 shows the coverage of the three highest
utility poses that already cover most of the environment. In object
search tasks, a planner should be used that executes these highest
utility poses first, thus the robot searches for the object from panoramic
view points first and proceeds with lower utility, close-up view points
of smaller details until the object has been found.

5.7.3 Coverage of a real scene

We conducted experiments with a Nao humanoid in a real-world
environment with children’s toys and furniture that matches the size
of the robot. The 3D map was recorded with a SLAM approach run-
ning on RGB-D data from an ASUS Xtion Pro Live camera (technical
specifications in Appendix A.2). Figure 5.8 shows an example scenario
of such an environment where the robot successfully covers all objects.
The results show that our approach can handle environment models
with measurement noise.

5.8 discussion

In this work, we used a sampling-based raycasting approach to find
panoramic viewpoints from where large portions of the environment
are visible. The advantage of this approach is that it can be applied
in unstructured environments without relying on planar surfaces,
polygonal representations, or similar assumptions. For this reason,
this approach was chosen in the original application of finding persons
in disaster scenarios in [41]. This flexibility, however, comes at the
expense of longer planning times as raycasting is generally a time-
consuming operation. Adapting the number of rays and the resolution
of the map representation allows trading off between accuracy and
efficiency. The optimal parameters depend on the task, the robot, and
the environment. In search tasks, for example, the map resolution
should be chosen in relation to the object to be searched, as searching
for smaller objects needs finer resolutions than searching for bigger

5.8 discussion 99

Figure 5.8: Real-world experiment. Top: Overview of the scene. Bottom: Re-
sulting set of poses and covered surfaces (green). The computed
strategy contains both panoramic view points where large parts
of the scene are visible and close-up view poses for peeking into
the cupboard. The maximum viewing range of the camera is
1.5 m.

100 coverage of 3d environments with humanoid robots

objects. For the experiments shown in this chapter, the run times for
planning the coverage tours are in the range of 30 s to a few minutes
as we have chosen relatively fine resolutions. As the run times strongly
dependency on the parameters and the environment, however, the
exact run times for the experiments are only of limited relevance. In the
following chapter, we will present a different approach for the coverage
problem that uses a rendering pipeline instead of raycasting. The new
approach will be orders of magnitude faster, but requires environment
models that can be efficiently represented as triangulated meshes,
which is generally more likely the case in structured environments
such as indoor home and office environments.

The utility measure in this work considers the information gain
from observing the environment as a positive factor and the costs for
energy consumption, execution time, and potential pose instability
as negative factors. Depending on the task of the robot, this basic
utility function can be extended. If, for example, the task is to search
an object in a home environment, the likelihood of finding the object
in a particular location should be included in the utility function,
as finding a coffee cup in the kitchen is more likely to finding it
in the bathroom. Several approaches for estimating such likelihoods
have been presented in the literature, for example semantic mapping
approaches [140], object co-occurrence estimation, or heuristics for
finding objects in structured environments that leverage knowledge
about typical object arrangements [82].

We implemented tools for recording and visualizing inverse reach-
ability maps and implemented the whole-body planner from Sec-
tion 5.6.2 as a kinematics plugin compatible with the MoveIt! motion
planning framework. Hence, our planning module can be re-used
in other projects for computing whole-body poses for given camera
poses in real time.

5.9 conclusions

In this chapter, we presented a framework for planning view points
and full-body postures for covering a known environment with the
camera of a humanoid robot. We introduced a novel representation for
inverse reachability maps that supports fast sampling and validation
of robot poses. Integrating our inverse reachability map representa-
tion with a sampling-based next-best-view algorithm allows us to
interleave view point planning with full-body pose planning for a
humanoid robot. Our algorithm produces a set of full-body postures
that are feasible and energy efficient and allow the robot to cover the
whole observable 3D environment with its camera. In combination
with a traveling salesman problem solver, our algorithm generates
an efficient plan that can be used in a wide range of applications
including inspection, surveillance, mapping, and search tasks.

6
G P U - A C C E L E R AT E D N E X T- B E S T- V I E W
E X P L O R AT I O N O F A RT I C U L AT E D S C E N E S

In this chapter, we extend the coverage problem discussed in the
previous chapter to environments that also contain articulated envi-
ronments where the robot also has to manipulate objects to inspect
obstructed areas. This problem is particularly challenging due to
the additional degrees of freedom resulting from the articulation.
We propose to exploit graphics processing units that are present in
many embedded devices to parallelize the computations of a greedy
next-best-view approach. We implemented algorithms for cost map
computation, path planning, as well as simulation and evaluation of
viewpoint candidates in OpenGL for Embedded Systems and bench-
marked the implementations on multiple device classes ranging
from smartphones to multi-GPU servers. We introduce a heuristic
for estimating a utility map from images rendered with strategically
placed spherical cameras and show in simulation experiments that
robots can successfully explore complex articulated scenes with our
system.

6.1 introduction

In the previous chapter, we presented an approach for planning a tour
for covering a known environment with a robot’s camera, for example
for the purpose of searching for an object. Real-world environments,
however, are often more complex. If we would like a service robot to
search for an object in home and office environments, the robot will
likely have to manipulate objects to inspect their contents, for example
to open cupboards, drawers, and dishwashers, or to move furniture
aside to observe occluded areas. In this case, the robot has to plan a
whole action sequence of manipulating objects and moving to suitable
camera poses to investigate both the environment and the inside of
containers. As discussed in the previous chapter, the coverage problem
is hard even for static scenes, as well-known NP-hard problems such as
the art gallery problem and the set coverage problem can be reduced to
coverage of known scenes. Considering articulated objects adds even
more degrees of freedom, making it infeasible to solve the planning
problem by exhaustive search. While several approaches for covering
known scenes exist in the literature, including sampling-based and
probabilistic techniques, these methods mostly consider only static
scenes due to the high complexity of the planning problem. In this
chapter, we propose to make the complex problem of planning a

101

102 gpu-accelerated next-best-view exploration

Figure 6.1: Nao inspecting a kitchen environment. The robot’s task is to
search for an object in the user-defined regions of interest marked
in red. Kitchen model based on [60].

coverage tour in articulated scenes more tractable by applying two
approaches: First, we identify subproblems that are parallelizable
and propose algorithms for solving these problems efficiently on the
computer’s Graphics Processing Unit (GPU), and second, we propose
a novel heuristic for estimating utility maps to speed up the process
of finding suitable camera poses.

As in the previous chapter, we again assume that the robot already
has access to a 3D model of the environment, as well as user-defined
regions of interest that the robot shall cover. Additionally, we now
also assume that the robot has knowledge about how to manipulate
the articulated objects in the scene, for example how to open the
door of a cupboard. We propose a greedy next-best-view approach
that selects the next viewpoint by maximizing the expected utility,
which trades off the costs for the robot navigating to the viewpoint
and the expected information gain from observing the environment.
Estimating this utility function contains several subproblems. We
define the information gain as the size of the newly observed portion of
the region of interest in the camera image, hence our algorithm needs
to render a virtual camera view from each potential view pose. In the
navigation cost function, we need to consider that the robot has to keep
a safety clearance to obstacles, so we follow the popular approach of
computing an inflation cost map. Determining the costs for navigating
to viewpoint candidates includes solving a single-source shortest path
problem. All these problems are highly parallelizable. Hence, we
propose to exploit the computer’s GPU to parallelize the workload for
solving the subproblems, which allows us to compute utility maps for
a large number of articulation configurations in a reasonable amount
of time, making the planning problem more tractable.

6.2 related work 103

Fast GPUs are widespread and due to the popularity of deep learning
algorithms their power and availability will likely increase even more
in the future. In the literature, algorithms for some of the mentioned
subproblems have already been successfully formulated and solved
using General-Purpose Computation on Graphics Processing Units
(GPGPU) on devices that support high-level frameworks such as CUDA,
OpenCL, or ROCm. Variations of Dijkstra’s shortest path algorithm, for
example, have been implemented on CUDA [108]. GPGPU approaches,
however, need high-end graphics cards. Embedded systems such as
robots, smartphones, and single-board computers often do have a
GPU, but only provide a subset of functions needed for their original
purpose of graphics rendering. To leverage the computing power of
embedded systems GPUs, we formulate all algorithms as rendering
problems and implement them in OpenGL for Embedded Systems
(OpenGL ES), which is an open standard and widely supported across
platforms.

The three main contributions of the approach presented in this chap-
ter are: First, we adapt the jump flood algorithm for computing cost
inflation maps, the Bellman-Ford algorithm for shortest path planning,
and a view simulation algorithm for estimating the information gain
for being solved with an OpenGL ES graphics pipeline. We show opti-
mizations for increasing the throughput of the algorithms and make
use of modern OpenGL features such as transform buffer feedback
and random image access. We benchmark the algorithms on multiple
device classes ranging from smartphones to multi-GPU servers.

Second, we introduce a heuristic for estimating a utility map based
on rendering the scene with virtual spherical panorama cameras
placed strategically at the edge of articulated objects and compare
the result with a ground-truth utility map obtained by exhaustive
sampling.

Third, we integrate the algorithms and the heuristic into a system
for exploring an articulated scene and show in simulation experiments
how a humanoid robot successfully explores home environments such
as the kitchen environment in Figure 6.1.

6.2 related work

In Section 5.2, we already discussed problems related to coverage
of known scenes such as the art gallery problem and the traveling
salesman problem and we referenced other next-best-view approaches
for exploration and coverage planning. These algorithms, however,
are designed for Central Processing Units (CPUs). In this chapter, we
propose to leverage the GPU to accelerate the search for the next-best-
view candidates.

Graphics processing units have originally been developed to speed
up typical rendering tasks such as texture mapping and interpolation,

104 gpu-accelerated next-best-view exploration

polygon rendering, coordinate system transformations, and raytrac-
ing. These tasks are characterized by two properties: First, they are
memory intensive, hence modern GPUs include specialized caches to
reduce the time needed to fetch data. Second, these tasks belong to
a class of problems coined “embarrassingly parallel problems” [71],
i.e., problems that can be split into concurrent tasks with little or no
effort, promising high potentials for speed up through parallelization
according to Amdahl’s law [8]. To exploit this data parallelism, GPUs

use Single Instruction Multiple Data (SIMD) processor architectures
that execute the same sequence of operations on multiple pieces of
data in parallel.

As these characteristics also apply to many problems in robotics, par-
allelization techniques have been investigated before. Lee and Lin [97]
presented a design for a SIMD machine in 1991 and showed how this
architecture can be exploited to speed up the computation of kinemat-
ics, dynamics, and Jacobians including their inverses. More recently,
Taylor and Kleeman [168] reported a 4– 8 times reduction in execution
time when exploiting the multimedia and streaming extensions of
modern regular CPUs for processing images in a hand-eye coordination
scenario on a robot platform. Martínez et al. [109] provide a direct
comparison of CPUs with SIMD extensions and GPUs in the context of
emotion-based decision making in service robots. In contrast to these
approaches that focus on the low-level structure of the problem and its
parallelization, we formulate navigation tasks as high-level rendering
problems and delegate the parallelization to the driver of the graphics
card.

As the parallelization architecture of GPUs is also beneficial for many
problems beyond computer graphics, GPUs have evolved in recent years
to general-purpose computing boards that can be freely programmed
in high-level languages. This concept is known as General-Purpose
Computation on Graphics Processing Units (GPGPU). In the domain of
navigation planning in robotics, several problems have been solved
with GPGPU approaches, for example path planning with Dijkstra’s al-
gorithm [108], the Bellman-Ford algorithm with bucketing [39], parallel
breadth-first search [111], or multi-agent path planning with potential
field methods [47]. These algorithms, however, need GPGPU frame-
works such as CUDA. In our work, by contrast, we limit GPU usage
to the embedded systems subset of OpenGL that is more widespread,
cross-platform, and does not require dedicated high-end computation
boards. Camporesi and Kallmann [29] also use OpenGL GPU shaders
to compute shortest paths based on shortest path trees. In contrast to
their approach, our approach is not restricted to 2D polygonal input
data, but can use any renderable scene.

OpenGL is a popular tool in robotics for the simulation and visual-
ization of 3D scenes. It is used, for example, in the Gazebo [87] and
Webots [112] simulators and in simulations of robot kinematics [179].

6.3 problem formulation 105

In our work, by contrast, we do not use OpenGL for visualization or
simulation purposes, but for accelerating the computation of navi-
gation subproblems by exploiting the parallel computation power of
GPUs.

To the best of our knowledge, there are no existing algorithms
for calculating exploration or coverage tours in environments with
articulated objects that the robot has to actively manipulate.

6.3 problem formulation

In this chapter, we consider the problem of planning a tour for covering
user-defined regions of interest with a robot’s sensor. We assume that
the robot already has a renderable 3D model of the environment, either
provided by the user or previously acquired using a SLAM approach
and that the model contains a mechanism for moving the articulated
objects. In our implementation, we represent the scene as a Collada
model and the articulation mechanisms as bone animations. Each
possible pose of an articulated object is mapped to a position variable
p ∈ [0, 1]. For a sliding door, for example, p = 0 means that the door
is closed and p = 1 means that the door is fully open. For movable
furniture, p indicates the position of the piece of furniture along a
defined path.

Let A be the set of articulation objects contained in the scene. Each
articulation object a ∈ A is represented as a = (p0, c), where p0 ∈ [0, 1]
is the initial state of the articulated object and c (pi−1, pi) is a cost
function returning the costs for moving the articulated object from
position pi−1 to pi.

We assume that the user defines the robot’s task by specifying
one or more regions of interest R that the robot should cover. In our
implementation, we represent the regions of interest as textured objects
with a designated color, marked in red in the figures throughout this
chapter. The algorithm then keeps track of observed portions of R by
marking them in a different designated color (green throughout this
chapter).

We also assume that the scene model contains one or more surfaces
C where the robot’s camera can be placed. For mobile robots with
cameras mounted on the base these surfaces will typically be planes
parallel to the ground, whereas for arm-like robots sphere surfaces
can be used.

The goal of our approach is to find a sequence s1, s2, . . . of view-
points and articulation positions si =

(
vi, p1

i , . . . , p|A|i

)
with low costs

from where the robot can see as much as possible of the defined
regions of interest. We define the costs as

cost(si) = infl(vi) + dist(vi−1, vi) +
|A|

∑
a=1

c(pa
i−1, pa

i), (6.1)

106 gpu-accelerated next-best-view exploration

where infl(vi) are costs exponentially decaying with the distance to
the nearest obstacle following the commonly used inflation cost map
approach, dist(vi−1, vi) is the shortest path distance from the robot’s
current position vi−1 to the new viewpoint vi, with v0 designating
the robot’s initial position, and c are the costs for manipulating the
articulated objects as defined above. In a single time step, multiple
articulation objects can be moved, but typically only few articulation
objects have to be changed to uncover a region of interest.

Finally, we define the information gain IG(v) of visiting a camera
viewpoint v as the number of texels of the region of interest R that
are visible from v and have not been observed before. The goal of our
approach is then to maximize the utility function

U(si) = IG(vi)− cost(si) (6.2)

to iteratively determine the next best view.

6.4 gpu algorithms

We tailor our algorithms to GPUs of embedded systems, hence we im-
plement our approach in OpenGL for Embedded Systems version 3.2,
which is an open standard and widely supported on many platforms.

6.4.1 Properties of the graphics pipeline

OpenGL defines a pipeline of shaders. Shaders are simple programs
that the GPU executes either for each vertex of the input mesh or
for each pixel of an output image. Originally, these programs were
used to compute light and shadow on rendered surfaces, hence the
name shader. Nowadays, shaders are used for a wide variety of post-
processing and special effects in computer graphics. As shaders are
freely programmable, they can also be used for other purposes as long
as the problem to be solved can be formulated to fit into the pipeline
stages defined in the standard. The pipeline stages relevant for this
work are as follows:

1. The vertex shader takes one vertex of the scene mesh at a time
in world coordinates and transforms the coordinates to screen
coordinates by multiplying with camera and projection matrices.

2. The geometry shader takes one primitive of the scene mesh at
a time (i.e., a point, line, or triangle) and outputs an arbitrary
number of primitives of the same type. This mechanism can be
used to manipulate or duplicate the geometry of scene parts.

3. The rasterizer converts geometric primitives to a set of pixels
and interpolates vertex attributes such as color and texture co-
ordinates. The combined data for generating an output pixel is

6.4 gpu algorithms 107

called fragment. This stage can be influenced by parameters, but
in contrast to the other stages it is not freely programmable.

4. The fragment shader takes the fragment data for one pixel at a
time and computes the final output color of the pixel. The frag-
ment shader can neither modify the pixel position, nor consider
neighboring pixels.

All shaders can perform additional work, e.g., reading and writing
to textures or passing variables to other pipeline stages. The perfor-
mance gain that GPUs offer is mainly achieved by running the shader
programs in parallel for multiple vertices or pixels using Single In-
struction Multiple Data (SIMD) architectures. Considering the special
architecture of GPUs, we followed these design guidelines:

• SIMD instructions by definition require that the same instruc-
tion is executed for all data. Branching into if/else constructs
reduces the possibilities for parallelization, hence branching
should be avoided where possible. While lazy evaluation para-
digms speed up sequential computations, the overhead of com-
puting unneeded data with SIMD might be smaller than branch-
ing based on whether or not the data is needed.

• The GPU processes the pipeline asynchronously. The graphics
driver keeps the pipeline filled with about three next instruc-
tions for the GPU. Reading back data from the GPU to the CPU

may introduce synchronization points that flush the pipeline.
Following best practices [20, 110, 176], our GPU algorithms write
to ring buffers that the CPU reads back with a delay of three
frames, allowing the GPU to continue writing the next frame to a
different buffer while data is transferred from an older buffer.

• In our implementation, we reduce data transfer between CPU

and GPU to the minimum. All intermediate results are held on
the GPU and only the final results are transferred to the CPU

through a ring buffer.

6.4.2 Cost map computation

For safe navigation, robots need to keep a safety clearance from ob-
stacles. A commonly used approach (e.g., implemented in the ROS

navigation stack [102]) is to create an occupancy grid map indicating
the obstacles and free space and to “inflate” the size of the obstacles
by the safety margin. In a cost map, the costs for all cells inside the
inflation radius around obstacles are set to infinity or a high constant.
To get smoother paths around obstacles, the cost function is often
modeled as exponentially decaying from inflation edges towards free
space so that the robot can get close to objects if necessary, but gets an
incentive to stay further away.

108 gpu-accelerated next-best-view exploration

Algorithm 6.1 Cost map computation of an n× n grid map

1: // Initialization
2: render obstacles
3: for all obstacle fragments p do in parallel:
4: colorp ← encode(coordinates of p)

5: // Jump Flood Algorithm
6: for all i ∈ {1, . . . , log(n)} do:
7: s← 2log(n)−i

8: for all map pixels p do in parallel:
9: for q ∈ {p + (x, y) | x, y ∈ {−s, 0, s}} do:

10: if decode(q) < decode(p) then
11: colorp ← colorq

12: // Compute cost map
13: for all map pixels do:
14: compute distance to color-coded cell coordinate
15: compute cost value and write to output

For computing both the inflation cells and the decay function, the
distance of each cell to the nearest obstacle is required. We use the
Jump Flood Algorithm (JFA) [63] to compute a Voronoi diagram where
each cell contains the coordinates of the nearest occupied cell, which
can directly be converted to a distance transform map. For a map of
size n× n, the algorithm needs one shader pass for initialization, log n
shader passes for propagating the coordinates of the nearest obstacles,
and one shader pass to compute the Euclidean distance and the cost
function. The resulting distance transform is not exact, as the error
discussion in [63] shows, but we found that the errors are negligible in
our application, especially as the cost map is only an approximation
of the actual navigation cost as the true motion of a humanoid robot
is much more complex.

Algorithm 6.1 gives a high-level overview of the algorithm. The basic
idea of the JFA is to encode the coordinate of the nearest obstacle found
so far as a color value in each cell and to propagate the information
on the nearest obstacle in exponentially decreasing “jumps” across the
map. Figure 6.2 illustrates the process in a toy example with a grid
map containing three occupied cells. Rong Guodong analyzed the JFA

in detail including its variants, potential failure cases, and applications
in his PhD thesis [63] that we refer to for more details.

6.4.3 Single-source shortest path

Planning the shortest path from the robot’s current location to one
or more destinations is a basic component for many navigation tasks.
While there exist efficient algorithms for solving the Single-Source
Shortest Path (SSSP) problem, these algorithms rely on special data

6.4 gpu algorithms 109

(a) Occupancy map
with obstacles.

(b) Step length 8

for one cell.
(c) Step length 8

for all cells.

(d) Step length 4

for one cell.
(e) Step length 4

for all cells.
(f) Step length 2

for one cell.

(g) Step length 2

for all cells.
(h) Voronoi diagram. (i) Cost map.

Figure 6.2: Illustration of the jump flood algorithm computing a Voronoi
diagram and cost map. (a) shows an occupancy map with three
cells marked as obstacles. The light colors in (b)-(h) indicate the
closest obstacle found so far. In each step, each cell is updated
with the closest obstacle registered in the 8 horizontal, vertical,
and diagonal neighbor cells “jumping” over steps of 8, 4, 2, and 1

cells. In (f), the Euclidean distance of the cell to the blue obstacle
is smaller than the distance to the red obstacle, hence the cell is
updated by registering the blue obstacle. The resulting Voronoi
diagram (h) contains a reference to the nearest obstacle in each
cell, which is used to compute the distance transform and cost
map (i) (cyan: safety margin around the obstacles that the robot
must not enter, yellow: costs decaying with distance to the nearest
obstacle)

110 gpu-accelerated next-best-view exploration

Algorithm 6.2 Bellman-Ford algorithm for single-source shortest
path computation

1: // Initialization
2: for all map pixels p do in parallel:

3: distp ←

0 if pixel is robot’s current location

∞ otherwise

4: changedp ←

true if pixel is robot’s location

f alse otherwise

5: // Wavefront propagation
6: #changed← 1
7: while #changed > 0 do:
8: #changed← 0
9: for all map pixels p do in parallel:

10: changedp ← f alse
11: for all neighbor pixels q of p do:
12: if changedq then
13: d← distq + ‖p− q‖+ costp

14: if d < distp then
15: distp ← d
16: changedp ← true

17: if changedp then
18: atomically increment #changed

structures such as Fibonacci heaps (e.g., Dijkstra’s algorithm [53]) or
bucketing structures (e.g., Thorup’s algorithm [170]) that are not suit-
able for being implemented in a graphics pipeline. The core problem
with these algorithms is that they rely on processing nodes sequentially
in a particular order, whereas GPUs are most efficient at processing
nodes in parallel.

The Bellman-Ford algorithm [17, 51], by contrast, can be parallelized.
In a grid map with the same size as the occupancy grid map of the
environment, we store the shortest-path distance from the robot’s
location. We initialize the robot’s current grid cell with distance 0 and
all other cells with ∞. For each grid cell, we then check which of the
eight neighbor cells have changed and decrease the cell’s distance in
case a shorter path via a changed neighbor has been found. In this
way, a wavefront of cells with decreasing distance emerges, and we
repeat the process as long as cells change. The speed-up of using the
GPU stems from processing all wavefront cells in parallel.

We present two implementations. In the first implementation in Al-
gorithm 6.2, we use a “changed” flag to mark changed cells similar to
the EBellflaging algorithm in [85]. We encode the “changed” flag as the
sign and the current distance as the absolute value of a single-channel

6.4 gpu algorithms 111

Algorithm 6.3 Bellman-Ford algorithm variant with transform
feedback buffer (XFB)

1: // Initialization
2: for all map pixels p do in parallel:

3: distp ←

0 if pixel is robot’s current location

∞ otherwise

4: changedp ←

true if pixel is robot’s location

f alse otherwise

5: // Wavefront propagation
6: emit robot’s neighbor cell coordinates to XFB

7: while XFB is not empty do:
8: for all cells p in XFB do in parallel:
9: changedp ← f alse

10: for all neighbor pixels q of p do:
11: if changedq then
12: d← distq + ‖p− q‖+ costp

13: if d < distp then
14: distp ← d
15: changedp ← true

16: if changedp then
17: emit neighbor cells of p to XFB

integer texture. As we are only interested in the length of the shortest
path, we do not store a pointer to the predecessor of each cell. OpenGL

enforces protection against memory access collisions when processing
pixels in parallel by denying fragment shaders to write to other pixels
and by requiring separate buffers for reading and writing. Hence, we
read from and write to two separate buffers and swap the buffers after
each pass. We implemented the counter for counting changed pixels
as an atomic counter and read back the counter value with a delay of
three frames to prevent CPU-GPU synchronization points with pipeline
flushes as explained in Section 6.4.1. The overhead of processing two
extra shader passes after the wavefront has stopped is negligible in
comparison to the loss of computation power that would occur with
synchronous readbacks requiring to flush the graphics pipeline.

The disadvantage of the first implementation is that in each shader
pass, the fragment shader has to check for each neighbor whether it
has changed in the previous iteration. Reading neighbor cells require
costly texture fetches. Modern OpenGL ES implementations support a
Transform Feedback Buffer (XFB) that captures the output of the geometry
shader in a buffer that can be used as input for the vertex shader in
subsequent passes. In our second implementation in Algorithm 6.3, we
enqueue the neighbor cells of a changed cell by emitting the neighbor

112 gpu-accelerated next-best-view exploration

Algorithm 6.4 Computing the information gain of a viewpoint
candidate

1: enable depth test
2: render obstacles to depth buffer
3: render region of interest surfaces
4: for all front facing region of interest fragments p do in parallel:
5: compute texture coordinate t corresponding to p
6: store “observed” flag to region of interest texel t

7: #covered← 0
8: for all region of interest texels t do in parallel:
9: if t has “observed” flag then

10: atomically increment #covered

cell’s coordinate from the geometry shader. The next pass processes
in parallel only the queued cells, reducing overhead. However, this
technique requires both XFB and texture access in the geometry shader,
which is not supported on some of the tested devices.

After computing the shortest distance map with either of the two
Bellman-Ford implementations, we combine the distance map includ-
ing the inflation costs from Algorithm 6.1 with the articulation costs,
which are constant for all cells, to a combined cost map according to
Equation 6.1.

6.4.4 Information gain computation

The information gain of a viewpoint is based on counting texels of
the region of interest that are observable from the viewpoint and
have not been seen before. When rendering a region of interest object,
the fragment shader accesses the texel at the texture coordinates
given in the fragment data to determine the fragment’s color. Using
the imageStore command present since OpenGL ES 3.1, the fragment
shader can modify the texture at the same time. We use this mechanism
to mark the texel as observed by writing a flag to the texture. By
rendering the region of interest objects last with early depth tests and
backface culling enabled, we make sure that the fragment shader only
marks texels visible from the camera as observed. Counting the newly
marked texels then yields the information gain value as Algorithm 6.4
shows.

6.4.5 Estimating the utility map

Algorithm 6.4 can be used to estimate the information gain for a
single camera viewpoint. For choosing the next best view optimizing
the utility function in Equation 6.2, we would need to compute the
information gain for every possible camera location. Alternatively, the

6.4 gpu algorithms 113

Algorithm 6.5 Rendering a spherical panorama with semantic
information.

1: enable depth test
2: render to 6-side cube map:
3: obstacles (depth only)
4: region of interest surfaces with texture from Algorithm 6.4
5: reachable surfaces with index texture
6: for all color cube map pixels do
7: project pixel to equirectangular coordinates

algorithm could render an image with virtual cameras placed at every
possible region of interest surface location to determine the freespace
volume from where the given region of interest texel can be observed.
Both variants would require rendering a large number of images from
different camera locations, causing high computational loads. Hence,
we propose a novel heuristic for estimating an information gain map
by rendering a spherical panorama image with a virtual camera placed
at the edge of articulated objects or other obstacles. The core idea is
that a spherical camera image placed in the opening of a drawer,
cupboard, or other container shows the inside of the container on
one side and the freespace volume from where the contents can be
observed on the opposite side of the panorama image. Figure 6.3b
shows an example panorama rendered by a virtual camera placed at
the crosshair in Figure 6.3a.

Algorithm 6.5 describes the standard method of rendering a spheri-
cal panorama by first rendering all objects to the six sides of a cube
map and then projecting the cube map texture to equirectangular
coordinates. We first render all obstacles to a depth cube map only,
as we do not need the color information of the obstacles. With depth
testing enabled, we then render the region of interest surfaces with
the texture from Algorithm 6.4 that indicates for each texel whether
it has been observed before or not. Finally, we render the surface of
reachable camera poses with a special texture that encodes the tex-
ture coordinate of each texel as its color value. This technique allows
us to convert back from spherical coordinates to coordinates of the
reachable surface later for projecting information gain values onto
the cost map. Figure 6.3b shows the result for an example scene. If a
region of interest texel t and a camera viewpoint v on the surface of
reachable poses are on opposite sides of the sphere, that means that t
just becomes visible when the camera moves to v.

To estimate the information gain of moving the camera to v, we
calculate an integral image by accumulating the number of region
of interest pixels while pivoting a ray around the spherical camera’s
center. Figure 6.4 illustrates the concept of computing the integral im-
ages for two spherical panorama cameras c1 and c2. At the panorama
image cell A, the container edge blocks the line of sight through the

114 gpu-accelerated next-best-view exploration

(a) Scene with a cupboard. The region of interest is marked in red.

−90°

0°

+90°

−180° −90° 0° +90° +180°

Lo
ng

it
ud

e

Latitude

(b) Same scene rendered with a spherical panorama camera located at the crosshair
in (a). The green surface indicates the reachable camera poses.

Figure 6.3: Example scene illustrating the process of estimating an informa-
tion gain map. The scene is rendered as a spherical panorama
image from virtual cameras placed at the edges of articulated
objects. If a region of interest (red) is opposite the surface of
reachable camera poses (green), then there is a direct line of sight.
We use the panorama image to determine which region of interest
parts are getting into the field of view when the camera moves
on the reachable surface.

6.4 gpu algorithms 115

region of interest

container

c1 c2
0

0
1

2

12

12

12

A

B C

D 0

0
1

2
12

12

12

Figure 6.4: Estimating the information gain map by calculating the integral
images of two spherical cameras c1 and c2. The numbers indicate
the estimated information gain accumulated by pivoting rays
through the camera center in the direction indicated by arrows.

camera origin to the region of interest. Pivoting counterclockwise
around the camera center, the region of interest first becomes visible
at B. Moving towards C, we increment the information gain estimate
as long as new region of interest texels come into view. Between C and
D, the container edge again blocks the line of sight to new region of
interest texels, hence the information gain stays constant. Adding the
information gain estimates for the two cameras c1 and c2 gives a good
approximation of the true information gain map without having to ren-
der panoramas at all camera positions between c1 and c2. Computing
the integral image is done in the first part of Algorithm 6.6.

The remainder of the algorithm estimates the utility map. As we ren-
der the surface of reachable camera poses with a special index texture
that encodes the texture coordinates on the surface in Algorithm 6.5,
we can use these coordinates to compute the corresponding position
on the cost map. If a pixel p = (lat, lon) on the sphere image belongs to
the reachable surface, the algorithm looks up the associated cost value
from the cost map and subtracts it from the estimated information
gain value encoded at the pixel (lat, lon) on the opposite side of the
sphere, writing the output to a utility map with the same coordinate
system as the cost map.

6.4.6 Covering environments with a robot’s camera

We use the utility map estimated with Algorithm 6.6 to determine the
next best view pose in a greedy iterative scheme. For each articula-
tion object, the robot uses Algorithm 6.6 to estimate how the utility

116 gpu-accelerated next-best-view exploration

Algorithm 6.6 Estimating utility map

1: // calculate integral image I
2: for all lon ∈ [−90°, 90°] do in parallel:
3: c (lon)← 0

4: for lat ∈ {−180°, . . . , 180°} do in sequence:
5: for all lon ∈ [−90°, 90°] do in parallel:
6: if pixel at (lat, lon) is region of interest then
7: c (lon)← c (lon) + 1

8: I (lat, lon)← c (lon)

9: // calculate utility map U
10: for all pixel p at lon ∈ [−90°, 90°], lat ∈ [−180°, 180°] do in parallel:
11: coord← color-decode(p)
12: if p is marked as reachable surface then
13: lat← lat + 180°
14: lon← −lon
15: U (lat, lon)← I

(
lat, lon

)
− cost(coord)

16: else
17: U (lat, lon)← −cost(coord)

map changes when manipulating the object. Our algorithm currently
actuates objects separately to avoid collisions with other articulated
objects, as for example doors and drawers of cupboards can block
each other. A high-level planner could be used to resolve this issue
and generate feasible configurations of multiple objects. The algo-
rithm then determines the articulation object and the robot position
on the utility map with the highest estimated utility. To determine
the best camera orientation, we sample orientations on a unit sphere
and use Algorithm 6.4 to determine the orientation with the highest
information gain.

6.5 experimental evaluation

We implemented our approach in OpenGL ES 3.2 and evaluated the
approach with models of home and office environments created with
Computer-Aided Design (CAD) software. We first present the results of
benchmarking the individual algorithms and then show experiments
where a robot successfully explores an environment with our novel
utility map heuristic.

6.5.1 Benchmarking the GPU algorithms

We designed our approach to be compatible with a wide range of
devices ranging from embedded devices to multi-GPU servers, hence
we evaluated the performance on different device classes. Table 6.1 lists

6.5 experimental evaluation 117

Class Test device

Smartphone

Device: Google Pixel

CPU: Qualcomm Snapdragon 821 (4 cores, 2.4 GHz)

GPU: Qualcomm Adreno 530

OpenGL profile: 3.2 ES

Notebook
CPU: Intel i7-4710MQ (4 cores, 8 threads, 3.5 GHz)

GPU: Intel Haswell Mobile HD 4600

OpenGL profile: 3.3 core

Desktop
CPU: Intel Core i7-3770 (4 cores, 8 threads, 3.4 GHz)

GPU: NVIDIA GeForce GTX 660 Ti

OpenGL profile: 4.3 core

Server
CPU: Intel Xeon E5-1630 (4 cores, 8 threads, 3.7 GHz)

GPU: 4×NVIDIA GeForce GTX 1080

OpenGL profile: 4.6 core

Table 6.1: Devices used for benchmarking.

the technical specifications of the tested devices. We chose an Android
smartphone as a representative of embedded devices and implemented
the CPU-side code using the Android Native Development Toolkit
(NDK) in C++. Apart from device-specific initialization, we use the
same code base on all systems.

Unfortunately, the required OpenGL ES profiles are yet not available
on the version 4 and 5 Nao robots that we use for our experiments. The
upcoming version 6 of the Nao robots [5], however, will be equipped
with an Intel Atom E3845 processor that supports the OpenGL 4.2
and OpenGL ES 3.0 profiles on Linux [78], hence we expect that our
algorithms will be able to run on-board on the next Nao generation.

Table 6.2 shows the benchmarking results for tested each device. Al-
gorithm 6.3 could not be tested on the notebook device due to missing
support for image access in geometry shaders. While the OpenGL API is
standardized, the GPU architectures and driver implementations differ
significantly between manufacturers and device generations, hence
the benchmarking results also vary strongly between devices. The
algorithms for cost map computation, information gain estimation,
and panorama rendering run in less than 3 ms on all devices, showing
the potential of our approach. The standard deviation of computation
times is very small in many cases, which is due to the design principle
of reducing branching, making the run time independent of the input
data.

118 gpu-accelerated next-best-view exploration

Algorithm Smartphone Notebook

Algorithm 6.1: cost map 2.572± 2.492 ms 0.142± 0.010 ms

Algorithm 6.2: Bellman-Ford 272.9± 21.05 ms 52.29± 0.987 ms

Algorithm 6.3: Bellman-Ford XFB 251.4± 26.87 ms N/A

Algorithm 6.4: information gain 2.116± 7.228 ms 0.092± 0.006 ms

Algorithm 6.5: panorama rendering 0.667± 0.541 ms 0.103± 0.069 ms

Algorithm 6.6: utility map 575.2± 32.17 ms 245.4± 2.284 ms

Algorithm Desktop Server

Algorithm 6.1: cost map 0.097± 0.013 ms 0.071± 0.002 ms

Algorithm 6.2: Bellman-Ford 10.92± 0.103 ms 9.432± 2.191 ms

Algorithm 6.3: Bellman-Ford XFB 11.08± 0.274 ms 8.694± 0.040 ms

Algorithm 6.4: information gain 0.099± 0.016 ms 0.084± 0.002 ms

Algorithm 6.5: panorama rendering 0.083± 0.009 ms 0.060± 0.024 ms

Algorithm 6.6: utility map 30.92± 0.745 ms 12.34± 0.723 ms

Table 6.2: Benchmark results: time per frame with standard deviation. See
Table 6.1 for device specifications.

utility: low high

current robot position

doordoor

(a) Real utility map

current robot position

doordoor

(b) Estimated utility map

Figure 6.5: Comparison of the real utility map obtained by exhaustive sam-
pling and the estimated utility map generated by Algorithm 6.6
for the scene with a cupboard shown in Figure 6.3.

6.5 experimental evaluation 119

robot camera

(a) Example utility map at start (b) First exploration step

(c) Second exploration step (d) Intermediate result after 7 steps

Figure 6.6: Progress of exploring a kitchen scene. The robot first estimates
utility maps for multiple articulation configurations. The robot
then chooses the articulation object and view point with the
highest utility (b). Afterwards, the algorithm computes utility
maps from the new location taking into account already observed
regions. Regions of interest are marked in red, observed regions in
green, and the robot’s camera is symbolized as a white pyramid.

6.5.2 Information gain map estimation

Figure 6.5 shows a comparison of the estimated utility map and the
real utility map generated by exhaustive sampling for the cupboard
scene in Figure 6.3a. As can be seen, the estimated utility map is
similar to the real utility map. Our heuristic, however, focuses on
covering hard-to-reach corners due to the placement of the virtual
spherical cameras at the edges of articulated objects. The information
gain of center portions of regions of interest tend to be underesti-
mated, but these regions are usually covered along the way when
inspecting the rest of the region. Coverage of the center regions can be
improved by adding additional panorama cameras inside the openings
of articulated objects.

120 gpu-accelerated next-best-view exploration

6.5.3 Covering environments with a robot’s camera

Figure 6.6 shows the progress of a robot covering a kitchen environ-
ment. Starting from the initial pose in Figure 6.6a, the robot estimates
a utility map for each articulated object in turn. The floor texture indi-
cates the combined estimated utility map for three articulated objects
partly opened. The robot then chooses the articulated object with the
highest estimated utility, articulates the object, and investigates the
scene from the location and camera orientation with the highest util-
ity (Figure 6.6b). The observed regions of interest are marked in green.
The average time required to compute the next-best-view position
is 4.85 s± 0.29 s for this scene on the desktop computer specified in
Table 6.1.

6.6 discussion

In this chapter, we presented algorithms for solving common naviga-
tion problems efficiently on GPUs and we showed that these building
blocks can be integrated into a system for planning coverage tours
through articulated, known environments. Despite these promising
results, there is further space for improvement towards a system that
can find the optimal solution in environments with many articulated
objects.

In our approach, we used a greedy utility-based approach. As
discussed in Section 5.6.3, this approach is most suitable for object
search tasks where the most promising locations should be searched
first. In applications where the whole environment has to be covered
in any case, offline planning strategies such as the TSP approach used
in the previous chapter are better suited as they minimize the tour
length.

Articulated objects often block each other or have to be moved
conjointly. The drawers of a dresser, for example, should not be opened
at the same time, as the upper drawers would then obstruct access to
the lower drawers. A cupboard with multiple sliding doors moving
behind and in front of each other is another example of articulated
objects with inherent constraints on their movement. To generate
useful plans for operating these articulated objects with constraints,
a symbolic planner could be integrated to determine the order in
which to open and close the doors and drawers to get access to all
compartments.

Another open question is how the robot can recognize which objects
can be manipulated and how to manipulate them. Other research
groups have presented solutions to this problem of determining “object
affordances” including haptic exploration [32], detection of visual
cues such as handles [24, 83], and learning kinematic models from

6.7 conclusions 121

observations or kinesthetic teaching [164] that could potentially be
integrated with our system.

In this chapter, we represented the reachable volume of the robot’s
camera with one or more planes parallel to the ground. To consider
the additional constraints of a humanoid robot such as kinematic
constraints, balance, and energy consumption, the inverse reachability
map approach from Chapter 5 could be integrated into the system.

In future work, it might also be interesting to investigate whether
our approach can be extended to other navigation problems, for ex-
ample to path planning techniques or components of SLAM systems.
To benefit from the full speed-up of hardware acceleration, however,
it is necessary that all components of the system run on the GPU, as
large data transfers between GPU and CPU generally slow down the
system. The system presented in this chapter follows this principle by
uploading all geometry and shaders to the GPU once in the beginning
and minimizing all subsequent data transfer. In particular, our system
does not download maps and object textures indicating the region of
interest and its observed portions from the GPU, except for visualiza-
tion if requested. Hence, combining components running on both GPU

and CPU may be detrimental to performance due to expensive data
transfers, which limits the possibilities for applying our approach to
other problems as not all problems can be parallelized.

6.7 conclusions

In this chapter, we proposed a novel approach for covering known
scenes containing articulated objects that the robot has to manipulate
for inspecting user-defined regions of interest. We presented algo-
rithms for cost map estimation, path planning, and information gain
estimation that run on GPUs. In this way, our system can parallelize
the necessary computations to determine the next best view. We in-
troduced a heuristic for estimating information gain maps based on
spherical panoramic images and showed in simulation experiments
that our approach enables a robot to successfully inspect home envi-
ronments. Our algorithms run on GPUs for embedded systems and we
showed benchmark results for multiple device classes.

7
C O N C L U S I O N S

In this thesis, we investigated how humans and robots can success-
fully collaborate in navigation tasks as a step towards universally
programmable, intuitively usable service robots in everyday environ-
ments. Our focus was on how humans and robots can communicate
about navigation tasks in a natural and intuitive way, and on how we
can leverage the body plan of humanoid robots for executing tasks in
environments designed for humans. The presented novel approaches
for four different applications as well as a novel descriptor for RGB-D

data and optimizations to an appearance-based SLAM system as a
building block for robot navigation.

In the first two applications, we focused on the communication
aspect. In the first application, the robot is the one with access to
background information in form of a map and the robot’s task is
to describe a route for wayfinding to a human user. In the second
application, the roles are reversed, as it is now the human who conveys
information about the topological layout of an environment to a robot
for making the robot’s exploration task more efficient. In both cases,
we presented communication methods that are intuitive and natural
to use for the human user.

In the first application, we used natural language to communicate.
We collected a corpus of human-written route descriptions in a user
study and applied inverse reinforcement learning to learn a policy
describing what amount and type of information the human teachers
prefer in which context. This policy allowed the robot to generate
descriptions for new routes that imitate the description style and
content of human-written descriptions. By training on descriptions
written for particular user groups such as visually impaired persons
or children, the algorithm could adapt to the user group and tailor
the information content to the needs of the recipients. In a user study,
the participants rated the descriptions generated by our system as
similarly natural compared to human-written descriptions and as
significantly more natural than descriptions provided by existing
commercial routing web services.

In the second application, we investigated how a robot can make
use of the human user’s knowledge about the topology of the envi-
ronment during an exploration task. We assumed that the human user
provides a topo-metric graph that the robot then exploits to generate
an efficient global exploration strategy based on the solution of a Trav-
eling Salesman Problem (TSP). The background knowledge about the
coarse layout of the environment allowed the robot to make informed

123

124 conclusions

decisions about which areas to explore first so that it will not have
to return there later, thus avoiding unnecessary detours. Combined
with a local nearest-frontier-first exploration scheme, the robot could
efficiently explore the environment. Our experiments with artificial
and real-world environments showed that our approach leads to sig-
nificantly shorter exploration tours and that our approach is robust
against inaccuracies and noise. We also presented recovery strategies
in case the topological graph is incorrect, for example due to blocked
passages.

In the remaining two applications, we investigated the closely re-
lated problem of coverage planning in a known environment. We
assumed that the robot has access to a 3D model of the environment,
either captured in a previous SLAM run or provided by the user. The
robot’s task was to cover all surfaces that the user marked in the model
with its camera as efficiently as possible, for example for searching an
object or inspecting facilities for damage. In Chapter 5, we extended
an existing approach based on sampled raycasting by integrating
an Inverse Reachability Map (IRM). Querying a pre-recorded IRM al-
lowed the planner to consider balance, energy, and full-body collision
constraints of humanoid robots early in the planning process when
searching for camera view poses from where large portions of the
environment are visible. Once the algorithm had found a suitable set
of full-body poses for viewing as much as possible of the environment,
a TSP planner provided the shortest tour for visiting these camera view
points.

In Chapter 6, we extended our coverage planning approach from
static scenes to articulated environments where the robot has to ac-
tively move objects and furniture, for example to open doors and
drawers to inspect cupboards and dressers. Due to the increased
complexity of the planning problem, this application required fast ap-
proaches for cost map computing, path planning, and information gain
estimation. Hence, we introduced implementations for these subprob-
lems that leverage the parallelization power of graphics processing
units. In benchmark experiments, we showed that our algorithms run
efficiently on multiple devices classes including embedded systems.
We presented a novel heuristic for estimating utility maps based on
spherical panoramic images and integrated these components into
a greedy next-best-view planning system. Our experiments showed
that our approach enables a robot to successfully inspect a home
environment.

As accurate localization is a prerequisite for all robot navigation
tasks, we presented improvements to an appearance-based SLAM sys-
tem in Chapter 4. We introduced a novel feature descriptor for RGB-D

data and showed that the descriptor outperforms the precision of
existing descriptors while keeping recall levels high. We integrated the
descriptor in an existing SLAM system and proposed modifications to

conclusions 125

adapt the system to the particular challenges of humanoid robots. Our
experiments on benchmark datasets and real-world datasets recorded
with a Nao robot, we showed that our modifications make the SLAM

system more accurate and robust.
In summary, this thesis presented techniques and solutions to the

following questions:

• How can automated systems learn from human experts how to
generate route descriptions that better fit the needs of humans?

• How can robots leverage background knowledge provided by
human users to explore unknown environments more efficiently?

• How can humanoid robots plan view points and tours to cover
a known environment efficiently and use their whole body to
inspect hidden areas?

• How can robots plan coverage tours in environments with ar-
ticulated objects that they have to manipulate to get access to
occluded regions?

• How can the parallelization power of GPUs on embedded systems
be used to accelerate navigation tasks?

We believe that the approaches presented in this thesis advance
the state of the art towards robots that are universally programmable,
can be operated by non-expert users, and can accomplish tasks in
environments designed for humans.

outlook

The work presented in this thesis offers a starting point for further
research in the areas of robot navigation in human environments and
communication with humans about navigation concepts. We already
discussed limitations and potential extensions of our approaches in
the individual chapters. In this section, we will describe ideas how the
approaches presented in this thesis can be extended and integrated
into a bigger picture.

In this thesis, we investigated how humans and robots can commu-
nicate about navigation tasks through verbal descriptions and graphs
drawn by the user. As we have shown, inverse reinforcement learning
is a promising technique to make human-robot communication more
natural and intuitive for the human users. This approach could be
transferred to other tasks beyond navigation. The recently announced
Google Duplex system [98], for example, can automatically place
phone calls to accomplish tasks such as scheduling an appointment
with a hair salon or book a table at a restaurant with a human answer-
ing the phone. While the full technical details have not been published
at the time of writing this thesis, the article introducing the system [98]

126 conclusions

mentions that it uses a Recurrent Neural Network (RNN) trained on
a corpus of recorded phone conversations and that “real-time super-
vised training” by a human expert is used to improve the quality of
the system. It would be worth to investigate whether the system can
benefit from inverse reinforcement learning for selecting the amount
and type of information to convey in such automated phone calls.

Beyond natural language, we should also consider additional com-
munication modes to improve the communication and to make robots
more accessible to non-expert users. Most prominently, all applications
discussed in this thesis would benefit from non-verbal communica-
tion through gestures. Research in spatial cognition has shown that
gestures are an intuitive and expressive device for giving wayfinding
instructions [7, 157] and Okuno et al. [122] have shown the importance
of gestures also in human-robot wayfinding interaction. Pointing in
the direction where the user has to walk first is an intuitive way to
align the reference frames of the recipient and the person giving the
route directions, and pointing left or right helps to reduce left-right
confusion. In a scenario where a human user guides a robot through
an environment unknown to the robot, the user could use gestures to
give background information, for example information on adjacent
rooms, similar to the approach that Bastianelli et al. propose in [13].
In the coverage tour planning application, a humanoid robot could
report its findings to the human user using gestures, for example
by pointing at the object that the human asked the robot to search
for. Hence, approaches on recognizing and producing gestures with
humanoid robots could be integrated to improve the communication.

Besides gestures, other communication devices could be integrated
as well. Robots could use screens for presenting information, for exam-
ple on the Pepper humanoid’s built-in tablet computer, on TV screens
present in home environments, or on smartphones, for example for
showing photos of landmarks along the route when giving directions
as Hile et al. [72] propose.

A
A P P E N D I X

a.1 nao humanoid robot : technical data

In Chapters 4 and 5, we used the humanoid robot Nao for our
real-world experiments. The robot is manufactured by Aldebaran
Robotics (now part of SoftBank Robotics). In our work, we use ver-
sions 4 and 5 of the robot.

Nao version 4 and 5

height 57.3 cm

weight 5.2 kg

degrees of freedom 25 total (2 in neck, 1 in pelvis, 5 per arm, 5 per
leg, 1 per hand)

operating system Embedded GNU/Linux, distribution based on
Gentoo

CPU Intel Atom Z530 (single core, 1.60 GHz)

GPU Intel GMA 500 on Intel System Controller Hub
US15W, supports OpenGL 2.0

cameras 2 cameras, bottom camera tilted 40° downwards,
model MT9M114, resolution 1280 px× 960 px at
30 fps, field of view 60.9° horizontal, 47.6° verti-
cal, 72.6° diagonal, fixed focus

inertial unit 2-axis (version 4) or 3-axis (vesrion 5) gyrometer,
3-axis accelerometer

sonar 2 devices located in chest, resolution 1 cm to
4 cm, usable detection range 0.20 m to 0.80 m,
effective cone 60°

weight sensors 4 force sensitive resistors per foot, range 0 N to
25 N

joint sensors 36 magnetic rotary encoders using hall effect
sensor technology, resolution 0.1°

Table A.1: Nao robot technical specifications. For more details see the manu-
facturer’s data sheet [3]

127

128 appendix

a.2 asus xtion pro live rgb-d camera : technical data

For our real-world experiments in Chapters 4 and 5, we used an ASUS
Xtion Pro Live RGB-D camera mounted on top of a Nao’s head.

ASUS Xtion Pro Live

RGB camera resolution 1280 px× 1024 px (in our experiments:
640 px× 480 px)

depth camera resolution 640 px× 480 px

field of view 58° horizontal, 45° vertical, 70° diagonal

distance of use 0.8 m to 3.5 m

power consumption below 2.5 W

Table A.2: ASUS Xtion Pro Live technical specifications. For more details see
the manufacturer’s data sheet [10]

L I S T O F F I G U R E S

Figure 1.1 Robots acting in human environments. 2

Figure 2.1 Illustration: The problem of giving route direc-
tions as a reinforcement learning problem. . . 16

Figure 2.2 Screenshot of the first experiment for soliciting
route descriptions from participants. 25

Figure 2.3 Screenshot of the second experiment for evalu-
ating how natural directions sound. 29

Figure 2.4 Results of the second user study. 31

Figure 2.5 Convergence between the feature vector of the
demonstrations and the learned feature expec-
tations . 32

Figure 3.1 Stages of computing an exploration tour. . . . 36

Figure 3.2 Assignment of frontiers to graph nodes. 43

Figure 3.3 Re-planning in case of unexpected obstacles. . 45

Figure 3.4 Maps and graphs used in the experiments: Part I 47

Figure 3.5 Maps and graphs used in the experiments: Part II 48

Figure 3.6 Comparison of traveled distances. 50

Figure 3.7 Robustness of the exploration strategy when
Gaussian noise is added to the human-provided
graph . 52

Figure 3.8 Comparison of the exploration progress for dif-
ferent strategies 53

Figure 4.1 Nao robot navigating through an environment
cluttered with toys 58

Figure 4.2 Layout of our descriptor. 64

Figure 4.3 Overview of the ORB-SLAM system and our
changes. 66

Figure 4.4 Example situation where a loop closure occurs. 70

Figure 4.5 Precision-recall diagram for evaluating the in-
variance of descriptors to a translation transform. 72

Figure 4.6 Precision-recall diagram for evaluating the in-
variance to a rotation transform. 73

Figure 4.7 SLAM results on several datasets. 76

Figure 5.1 Nao inspecting an environment. 82

Figure 5.2 Reachability map of a Nao robot 86

Figure 5.3 Cost function for measuring pose stability
based on the weight distribution between the feet. 88

Figure 5.4 Schematic layout of the database for storing the
IRM. 90

Figure 5.5 Bathroom scene. 95

129

130 list of figures

Figure 5.6 Coverage results of further simulation experi-
ments. 96

Figure 5.7 Trading off between completeness and execu-
tion run time. 97

Figure 5.8 Real-world experiment. 99

Figure 6.1 Nao inspecting a kitchen environment. 102

Figure 6.2 Illustration of the jump flood algorithm com-
puting a Voronoi diagram 109

Figure 6.3 Example scene illustrating the process of esti-
mating an information gain map. 114

Figure 6.4 Estimating the information gain map by cal-
culating the integral images of two spherical
cameras. 115

Figure 6.5 Comparison of the real utility map and the
estimated utility map. 118

Figure 6.6 Progress of exploring a kitchen scene. 119

L I S T O F TA B L E S

Table 2.1 Features characterizing route descriptions. . . 21

Table 2.2 Contexts characterizing the route segment and
its environment. 23

Table 2.3 Learned reward weights for using street names
in instructions depending on the context of the
instruction. 27

Table 2.4 Example instructions for a given route. 30

Table 3.1 Comparison of the traveled distance. 49

Table 3.2 Time required for solving the TSP. 51

Table 4.1 Place Recognition Results. 74

Table 4.2 Absolute Trajectory Error. 77

Table 4.3 Time to compute 100 descriptors of each type. 77

Table 4.4 Breakdown of processing time needed to create
one instance of our descriptor. 78

Table 6.1 Devices used for benchmarking. 117

Table 6.2 Benchmark results. 118

Table A.1 Nao robot technical specifications. 127

Table A.2 ASUS Xtion Pro Live technical specifications. . 128

131

L I S T O F A L G O R I T H M S

Algorithm 2.1 Ziebart’s algorithm for computing state visita-
tion frequencies from [189] 20

Algorithm 2.2 Our modified algorithm for computing visita-
tion frequencies of state-action pairs for acyclic
finite-horizon MDPs 20

Algorithm 6.1 Cost map computation of an n× n grid map . 108

Algorithm 6.2 Bellman-Ford algorithm for single-source short-
est path computation 110

Algorithm 6.3 Bellman-Ford algorithm variant with transform
feedback buffer (XFB) 111

Algorithm 6.4 Computing the information gain of a viewpoint
candidate . 112

Algorithm 6.5 Rendering a spherical panorama with semantic
information. 113

Algorithm 6.6 Estimating utility map 116

132

A C R O N Y M S

api Application Programming Interface

apx Constant-factor Approximation Algorithms
(complexity class)

ate Absolute Trajectory Error

bow Bag of Words

brand Binary Robust Appearance and Normals Descriptor

brief Binary Robust Independent Elementary Features

cad Computer-Aided Design

cnn Convolutional Neural Network

cpu Central Processing Unit

cshot Color Signature of Histograms of Orientations

dbow2 Dynamic Bag of Words

ekf Extended Kalman Filter

fab-map Fast Appearance-Based Mapping

fast Features from Accelerated Segment Test

gpgpu General-Purpose Computation on Graphics
Processing Units

gps Global Positioning System

gpu Graphics Processing Unit

ig Information Gain

imu Inertial Measurement Unit

irl Inverse Reinforcement Learning

irm Inverse Reachability Map

lidar Light Detection and Ranging

jfa Jump Flood Algorithm

maxent irl Maximum Entropy Inverse Reinforcement Learning

mdp Markov Decision Process

133

134 acronyms

mi Mutual Information

mtsp Multiple Traveling Salesman Problem

ndk Android Native Development Toolkit

np Non-deterministic Polynomial Time
(complexity class)

opencl Open Computing Language

opengl es Open Graphics Library for Embedded Systems

opengl Open Graphics Library

orb Oriented FAST and Rotated BRIEF

pcl Point Cloud Library

ptam Parallel Tracking and Mapping

ransac Random Sample Consensus

rgb Red Green Blue (color space)

rgb-d Red Green Blue and Depth (color space)

rm Reachability Map

rmse Root Mean Squared Error

ros Robot Operating System

rnn Recurrent Neural Network

sift Scale-Invariant Feature Transform

simd Single Instruction Multiple Data

slam Simultaneous Localization and Mapping

sssp Single-Source Shortest Path

surf Speeded Up Robust Features

svd Singular Value Decomposition

tsp Traveling Salesman Problem

xfb Transform Feedback Buffer

B I B L I O G R A P H Y

[1] P. Abbeel and A. Ng. “Apprenticeship learning via inverse
reinforcement learning.” In: Proc. of the Int. Conf. on Machine
Learning (ICML). 2004.
doi: 10.1145/1015330.1015430.

[2] P. Abbeel, A. Coates, and A. Y. Ng. “Autonomous helicopter
aerobatics through apprenticeship learning.” In: Int. Journal of
Robotics Research 29.13 (2010), pp. 1608–1639.
doi: 10.1177/0278364910371999.

[3] Aldebaran Robotics. Datasheet NAO Next Gen – H21/H25 Model.
2013.
url: https://www.softbankrobotics.com/emea/sites/aldebaran/
files/datasheet_nao_next_gen_en.pdf.

[4] Aldebaran Robotics. Whole Body control – Aldebaran 2.1.4.13
documentation. 2015.
url: http://doc.aldebaran.com/2- 1/naoqi/motion/control-

wholebody.html.

[5] Aldebaran Robotics. Nao Technical Overview: Motherboard – Alde-
baran 2.8.2.15 Documentation. 2018.
url: http://doc.aldebaran.com/2- 8/family/nao_technical/

motherboard_naov6.html.

[6] G. L. Allen. “From knowledge to words to wayfinding: Issues
in the production and comprehension of route directions.”
In: Proc. of the Int. Conf. on Spatial Information Theory (COSIT).
London, UK: Springer-Verlag, 1997, pp. 363–372. isbn: 3-540-
63623-4.
doi: 10.1007/3-540-63623-4_61.

[7] G. L. Allen. “Gestures accompanying verbal route directions:
Do they point to a new avenue for examining spatial represen-
tations?” In: Spatial Cognition & Computation 3.4 (2003), pp. 259–
268.
doi: 10.1207/s15427633scc0304_1.

[8] G. M. Amdahl. “Validity of the single processor approach to
achieving large scale computing capabilities.” In: Proc. of the
AFIPS Spring Joint Computer Conference. Vol. 30. 1967, pp. 483–
485.
doi: 10.1145/1465482.1465560.

135

https://dx.doi.org/10.1145/1015330.1015430
https://dx.doi.org/10.1177/0278364910371999
https://www.softbankrobotics.com/emea/sites/aldebaran/files/datasheet_nao_next_gen_en.pdf
https://www.softbankrobotics.com/emea/sites/aldebaran/files/datasheet_nao_next_gen_en.pdf
http://doc.aldebaran.com/2-1/naoqi/motion/control-wholebody.html
http://doc.aldebaran.com/2-1/naoqi/motion/control-wholebody.html
http://doc.aldebaran.com/2-8/family/nao_technical/motherboard_naov6.html
http://doc.aldebaran.com/2-8/family/nao_technical/motherboard_naov6.html
https://dx.doi.org/10.1007/3-540-63623-4_61
https://dx.doi.org/10.1207/s15427633scc0304_1
https://dx.doi.org/10.1145/1465482.1465560

136 bibliography

[9] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. “TSP cuts
which do not conform to the template paradigm.” In: Com-
putational Combinatorial Optimization. Ed. by M. Jünger and D.
Naddef. Vol. 2241. Lecture Notes in Computer Science. Springer
Berlin Heidelberg, 2001, pp. 261–304. isbn: 978-3-540-42877-0.
doi: 10.1007/3-540-45586-8_7.

[10] ASUSTeK Computer Inc. Xtion PRO LiVE Datasheet. 2018.
url: https : / / www . asus . com / 3D - Sensor / Xtion _ PRO _ LIVE /

specifications/.

[11] B. Bacca, J. Salvi, and X. Cufí. “Appearance-based slam for mo-
bile robots.” In: Frontiers in Artificial Intelligence and Applications
202 (2009), pp. 55–64. issn: 0922-6389.
doi: 10.3233/978-1-60750-061-2-55.

[12] N. Basilico and F. Amigoni. “Exploration strategies based on
multi-criteria decision making for searching environments in
rescue operations.” In: Autonomous Robots 31.4 (2011), pp. 401–
417. issn: 0929-5593.
doi: 10.1007/s10514-011-9249-9.

[13] E. Bastianelli, D. D. Bloisi, R. Capobianco, F. Cossu, G.
Gemignani, L. Iocchi, and D. Nardi. “On-line semantic map-
ping.” In: Proc. of the Int. Conf. on Advanced Robotics (ICAR).
2013.
doi: 10.1109/icar.2013.6766501.

[14] H. Bay, T. Tuytelaars, and L. V. Gool. “SURF: Speeded-up
robust features.” In: Proc. of the European Conference on Computer
Vision (ECCV) (2006). issn: 1077-3142.
doi: 10.1016/j.cviu.2007.09.014.

[15] L. van Beek, D. Holz, M. Matamoros, C. Rascon, and S.
Wachsmuth. RoboCup@Home 2018: Rules and Regulations. 2018.
url: http://www.robocupathome.org/rules/.

[16] R. Bellman. “A Markovian decision process.” In: Indiana Univer-
sity Mathematics Journal 6 (4 1957), pp. 679–684. issn: 0022-2518.

[17] R. Bellman. “On a routing problem.” In: Quarterly of Applied
Mathematics 16 (1958), pp. 87–90. issn: 0033-569X.

[18] R. Bernardi, R. Cakici, D. Elliott, A. Erdem, E. Erdem, N. Ikizler-
Cinbis, F. Keller, A. Muscat, and B. Plank. “Automatic descrip-
tion generation from images: A survey of models, datasets,
and evaluation measures.” In: Journal of Artificial Intelligence
Research 55 (2016), pp. 409–442.
doi: 10.1613/jair.4900.

https://dx.doi.org/10.1007/3-540-45586-8_7
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/specifications/
https://www.asus.com/3D-Sensor/Xtion_PRO_LIVE/specifications/
https://dx.doi.org/10.3233/978-1-60750-061-2-55
https://dx.doi.org/10.1007/s10514-011-9249-9
https://dx.doi.org/10.1109/icar.2013.6766501
https://dx.doi.org/10.1016/j.cviu.2007.09.014
http://www.robocupathome.org/rules/
https://dx.doi.org/10.1613/jair.4900

bibliography 137

[19] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Sieg-
wart. “Receding horizon “next-best-view” planner for 3D explo-
ration.” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). 2016, pp. 1462–1468.
doi: 10.1109/ICRA.2016.7487281.

[20] L. Bishop, C. Kubisch, and M. Schott. “High-performance, low-
overhead rendering with OpenGL and Vulkan.” In: Proc. of the
Game Developers Conference (GDC). 2016.

[21] C. F. Bissmarck, M. Svensson, and G. Tolt. “Efficient algorithms
for next best view evaluation.” In: Proc. of the IEEE/RSJ Int. Conf.
on Intelligent Robots & Systems (IROS). 2015.
doi: 10.1109/IROS.2015.7354212.

[22] Blendswap user “cenobi”. “Bathroom”. Blender model, available
under a Creative Commons Attribution (CC-BY 3.0) license.
2012.
url: https://www.blendswap.com/blends/view/52486.

[23] Blendswap user “ThePefDispenser”. “Library-Home Office”.
Blender model, available under a Creative Commons Attri-
bution (CC-BY 3.0) license. 2017.
url: https://www.blendswap.com/blends/view/88906.

[24] N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Ruhr,
M. Tenorth, and M. Beetz. “Autonomous semantic mapping
for robots performing everyday manipulation tasks in kitchen
environments.” In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems (IROS). 2011.
doi: 10.1109/iros.2011.6094665.

[25] F. Boniardi, B. Behzadian, W. Burgard, and G. D. Tipaldi.
“Robot navigation in hand-drawn sketched maps.” In: Proc.
of the European Conference on Mobile Robots (ECMR). 2015.
doi: 10.1109/ECMR.2015.7324188.

[26] F. Boniardi, A. Valada, W. Burgard, and G. D. Tipaldi. “Au-
tonomous indoor robot navigation using a sketch interface for
drawing maps and routes.” In: Proc. of the IEEE Int. Conf. on
Robotics & Automation (ICRA). 2016.
doi: 10.1109/ICRA.2016.7487453.

[27] B. Brumitt and A. Stentz. “GRAMMPS: A generalized mission
planner for multiple mobile robots.” In: Proc. of the IEEE Int.
Conf. on Robotics & Automation (ICRA). 1998, pp. 1564–1571.
doi: 10.1109/ROBOT.1998.677360.

[28] F. Burget and M. Bennewitz. “Stance selection for humanoid
grasping tasks by inverse reachability maps.” In: Proc. of the
IEEE Int. Conf. on Robotics & Automation (ICRA). Seattle, USA,
2015, pp. 5669–5674.
doi: 10.1109/ICRA.2015.7139993.

https://dx.doi.org/10.1109/ICRA.2016.7487281
https://dx.doi.org/10.1109/IROS.2015.7354212
https://www.blendswap.com/blends/view/52486
https://www.blendswap.com/blends/view/88906
https://dx.doi.org/10.1109/iros.2011.6094665
https://dx.doi.org/10.1109/ECMR.2015.7324188
https://dx.doi.org/10.1109/ICRA.2016.7487453
https://dx.doi.org/10.1109/ROBOT.1998.677360
https://dx.doi.org/10.1109/ICRA.2015.7139993

138 bibliography

[29] C. Camporesi and M. Kallmann. “Computing shortest path
maps with GPU shaders.” In: Proc. of the Int. Conf. on Motion in
Games (MIG). 2014.
doi: 10.1145/2668064.2668092.

[30] N. Christofides. Worst-case analysis of a new heuristic for the
travelling salesman problem. Tech. rep. 388. Graduate School of
Industrial Administration, Carnegie Mellon University, 1976.

[31] G. Chronis and M. Skubic. “Sketch-based navigation for mobile
robots.” In: Proc. of the IEEE Int. Conf. on Fuzzy Systems (FUZZ).
2003, pp. 284–289.
doi: 10.1109/FUZZ.2003.1209376.

[32] V. Chu and A. L. Thomaz. “Understanding the role of haptics
in affordances.” In: RSS Workshop on Affordances in Vision for
Cognitive Robotics. 2014.

[33] H. Cuayáhuitl, N. Dethlefs, L. Frommberger, K.-F. Richter, and
J. Bateman. “Generating adaptive route instructions using hier-
archical reinforcement learning.” In: Proc. of Spacial Cognition.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 319–334.
doi: 10.1007/978-3-642-14749-4_27.

[34] M. Cummins and P. Newman. “FAB-MAP: Probabilistic lo-
calization and mapping in the space of appearance.” In: Int.
Journal of Robotics Research 27.6 (2008).
doi: 10.1177/0278364908090961.

[35] M. Cummins and P. Newman. “Appearance-only SLAM at
large scale with FAB-MAP 2.0.” In: The International Journal of
Robotics Research 30.9 (2011), pp. 1100–1123.
doi: 10.1177/0278364910385483.

[36] R. Dale, S. Geldof, and J. Prost. “Using natural language gen-
eration in automatic route description.” In: Journal of Research
and Practice in Information Technology 37.1 (2005).

[37] A. F. Daniele, M. Bansal, and M. R. Walter. “Navigational
instruction generation as inverse reinforcement learning with
neural machine translation.” In: Proc. of the ACM/IEEE Int. Conf.
on Human-Robot Interaction (HRI). ACM Press, 2017.
doi: 10.1145/2909824.3020241.

[38] J. Daudelin and M. Campbell. “An adaptable, probabilistic,
next best view algorithm for reconstruction of unknown 3D
objects.” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). 2017.
doi: 10.1109/LRA.2017.2660769.

https://dx.doi.org/10.1145/2668064.2668092
https://dx.doi.org/10.1109/FUZZ.2003.1209376
https://dx.doi.org/10.1007/978-3-642-14749-4_27
https://dx.doi.org/10.1177/0278364908090961
https://dx.doi.org/10.1177/0278364910385483
https://dx.doi.org/10.1145/2909824.3020241
https://dx.doi.org/10.1109/LRA.2017.2660769

bibliography 139

[39] A. Davidson, S. Baxter, M. Garland, and J. D. Owens. “Work-
efficient parallel GPU methods for single-source shortest
paths.” In: Proc. of the IEEE Int. Parallel and Distributed Pro-
cessing Symp. (IPDPS). 2014.
doi: 10.1109/ipdps.2014.45.

[40] C. Dornhege and A. Kleiner. “A frontier-void-based approach
for autonomous exploration in 3D.” In: Advanced Robotics 27.6
(2013), pp. 459–468.
doi: 10.1080/01691864.2013.763720.

[41] C. Dornhege, A. Kleiner, and A. Kolling. “Coverage search in
3D.” In: Proc. of the IEEE Int. Symp. on Safety, Security, and Rescue
Robotics (SSRR). 2013, pp. 1–8.
doi: 10.1109/SSRR.2013.6719340.

[42] C. DuHadway. The ROS exploration stack. 2012.
url: http://wiki.ros.org/exploration.

[43] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cremers, and W.
Burgard. “An evaluation of the RGB-D SLAM system.” In: Proc.
of the IEEE Int. Conf. on Robotics & Automation (ICRA). 2012.
doi: 10.1109/ICRA.2012.6225199.

[44] J. Faigl, M. Kulich, and L. Preucil. “Goal assignment using dis-
tance cost in multi-robot exploration.” In: Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (IROS). 2012, pp. 3741–
3746.
doi: 10.1109/IROS.2012.6385660.

[45] L. Férmin-León, J. Neira, and J. A. Castellanos. “TIGRE: Topo-
logical graph based robotic exploration.” In: Proc. of the Euro-
pean Conference on Mobile Robots (ECMR). IEEE, 2017.
doi: 10.1109/ecmr.2017.8098718.

[46] N. Figueroa, H. Dong, and A. El Saddik. “A combined ap-
proach toward consistent reconstructions of indoor spaces
based on 6D RGB-D odometry and KinectFusion.” In: ACM
Transactions on Intelligent Systems and Technology (TIST) 6.2
(2015).
doi: 10.1145/2629673.

[47] L. G. Fischer, R. Silveira, and L. Nedel. “GPU accelerated path-
planning for multi-agents in virtual environments.” In: Brazilian
Symp. on Games and Digital Entertainment. 2009.
doi: 10.1109/sbgames.2009.20.

[48] T. Foissotte, O. Stasse, A. Escande, P. Wieber, and A. Kheddar.
“A two-steps next-best-view algorithm for autonomous 3D
object modeling by a humanoid robot.” In: Proc. of the IEEE Int.
Conf. on Robotics & Automation (ICRA). 2009, pp. 1159–1164.
doi: 10.1109/ROBOT.2009.5152350.

https://dx.doi.org/10.1109/ipdps.2014.45
https://dx.doi.org/10.1080/01691864.2013.763720
https://dx.doi.org/10.1109/SSRR.2013.6719340
http://wiki.ros.org/exploration
https://dx.doi.org/10.1109/ICRA.2012.6225199
https://dx.doi.org/10.1109/IROS.2012.6385660
https://dx.doi.org/10.1109/ecmr.2017.8098718
https://dx.doi.org/10.1145/2629673
https://dx.doi.org/10.1109/sbgames.2009.20
https://dx.doi.org/10.1109/ROBOT.2009.5152350

140 bibliography

[49] T. Foissotte, O. Stasse, P. Wieber, A. Escande, and A. Khed-
dar. “Autonomous 3D object modeling by a humanoid using
an optimization-driven next-best view formulation.” In: Int.
Journal of Humanoid Robotics, Special issue on Cognitive Humanoid
Vision 7.3 (2010), pp. 407–428.
doi: 10.1142/S0219843610002246.

[50] T. Fong, C. E. Thorpe, and C. Baur. “Collaboration, dialogue,
human-robot interaction.” In: Proc. of the Int. Symposium of
Robotics Research (ISRR). Ed. by R. A. Jarvis and A. Zelinsky.
Vol. 6. Springer Tracts in Advanced Robotics. Springer Berlin
Heidelberg, 2003, pp. 255–266. isbn: 978-3-540-00550-6.
doi: 10.1007/3-540-36460-9_17.

[51] L. R. Ford. Network flow theory. Paper. RAND Corporation,
1956.

[52] D. Fox, J. Ko, K. Konolige, and B. Stewart. “A hierarchical
Bayesian approach to the revisiting problem in mobile robot
map building.” In: Proc. of the Int. Symposium of Robotics Research
(ISRR). 2003, pp. 60–69.
doi: 10.1007/11008941_7.

[53] M. Fredman and R. Tarjan. “Fibonacci heaps and their uses in
improved network optimization algorithms.” In: Annual Symp.
on Foundations of Computer Science. 1984.
doi: 10.1109/sfcs.1984.715934.

[54] C. Freksa, R. Moratz, and T. Barkowsky. “Schematic maps for
robot navigation.” In: Spatial Cognition II, Integrating Abstract
Theories, Empirical Studies, Formal Methods, and Practical Appli-
cations. London, UK: Springer-Verlag, 2000, pp. 100–114. isbn:
3-540-67584-1.
doi: 10.1007/3-540-45460-8_8.

[55] D. Gálvez-López and J. Tardos. “Bags of binary words for
fast place recognition in image sequences.” In: IEEE Trans. on
Robotics (TRO) 28.5 (2012).
doi: 10.1109/ICRA.2012.6224843.

[56] B. P. Gerkey and M. J. Mataric. “Sold!: Auction methods for
multirobot coordination.” In: IEEE Transactions on Robotics and
Automation 18.5 (2002), pp. 758–768. issn: 1042-296X.
doi: 10.1109/TRA.2002.803462.

[57] B. Gerkey, R. T. Vaughan, and A. Howard. “The Player/Stage
project: Tools for multi-robot and distributed sensor systems.”
In: Proc. of the Int. Conf. on Advanced Robotics (ICAR). 2003,
pp. 317–323.

https://dx.doi.org/10.1142/S0219843610002246
https://dx.doi.org/10.1007/3-540-36460-9_17
https://dx.doi.org/10.1007/11008941_7
https://dx.doi.org/10.1109/sfcs.1984.715934
https://dx.doi.org/10.1007/3-540-45460-8_8
https://dx.doi.org/10.1109/ICRA.2012.6224843
https://dx.doi.org/10.1109/TRA.2002.803462

bibliography 141

[58] A. Glover, W. Maddern, M. Warren, S. Reid, M. Milford,
and G. Wyeth. “OpenFABMAP: An open source toolbox for
appearance-based loop closure detection.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). 2012.
doi: 10.1109/ICRA.2012.6224843.

[59] R. Goeddel and E. Olson. “DART: A particle-based method for
generating easy-to-follow directions.” In: Proc. of the IEEE/RSJ
Int. Conf. on Intelligent Robots & Systems (IROS). 2012, pp. 1213–
1219.
doi: 10.1109/IROS.2012.6385471.

[60] A. Gonzalez. “Kitchen Nr 2”. Blender model, available under a
Creative Commons Attribution (CC-BY 3.0) license. 2013.
url: https://www.blendswap.com/blends/view/70272.

[61] Google. Google Maps. 2018.
url: https://maps.google.com.

[62] G. Grisetti, L. Iocchi, B. Leibe, V. Ziparo, and C. Stachniss. “Dig-
itization of inaccessible archeological sites with autonomous
mobile robots.” In: Conference on Robotics Innovation for Cultural
Heritage. 2012.

[63] R. Guodong. “Jump flooding algorithm on graphics hardware
and its applications.” PhD thesis. National University of Singa-
pore, 2007.

[64] D. Ha and D. Eck. “A neural representation of sketch draw-
ings.” In: Proc. of the Int. Conf. on Learning Representations (ICLR).
2018.

[65] H. J. Hannay, P. J. Ciaccia, J. W. Kerr, and D. Barrett. “Self-
report of right-left confusion in college men and women.” In:
Perceptual and Motor Skills 70.2 (1990), 451–457E.
doi: 10.2466/pms.1990.70.2.451.

[66] R. Hänsch, T. Weber, and O. Hellwich. “Comparison of 3D
interest point detectors and descriptors for point cloud fusion.”
In: ISPRS Annals of the Photogrammetry, Remote Sensing and
Spatial Information Sciences 2.3 (2014).
doi: 10.5194/isprsannals-II-3-57-2014.

[67] S. Haque, L. Kulik, and A. Klippel. “Algorithms for reliable
navigation and wayfinding.” In: Spatial Cognition V Reasoning,
Action, Interaction. Ed. by T. Barkowsky, M. Knauff, G. Ligozat,
and D. Montello. Vol. 4387. Lecture Notes in Computer Science.
Springer Verlag, 2007, pp. 308–326. isbn: 978-3-540-75665-1.
doi: 10.1007/978-3-540-75666-8_18.

[68] J. Hardy. “The White Room”. Blender model, available under a
Creative Commons Attribution (CC-BY 3.0) license. 2012.
url: https://www.blendswap.com/blends/view/41683.

https://dx.doi.org/10.1109/ICRA.2012.6224843
https://dx.doi.org/10.1109/IROS.2012.6385471
https://www.blendswap.com/blends/view/70272
https://maps.google.com
https://dx.doi.org/10.2466/pms.1990.70.2.451
https://dx.doi.org/10.5194/isprsannals-II-3-57-2014
https://dx.doi.org/10.1007/978-3-540-75666-8_18
https://www.blendswap.com/blends/view/41683

142 bibliography

[69] K. Helsgaun. “An effective implementation of the Lin-
Kernighan traveling salesman heuristic.” In: European Journal of
Operational Research 126.1 (2000), pp. 106–130.
doi: 10.1016/S0377-2217(99)00284-2.

[70] P. Henry, M. Krainin, E. Herbst, X. Ren, and D. Fox. “RGB-D
mapping: Using Kinect-style depth cameras for dense 3D mod-
eling of indoor environments.” In: Int. Journal of Robotics Re-
search 31.5 (2012).
doi: 10.1177/0278364911434148.

[71] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,
Revised Reprint. 1st. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2012. isbn: 9780123973375.

[72] H. Hile, R. Vedantham, G. Cuellar, A. Liu, N. Gelfand, R.
Grzeszczuk, and G. Borriello. “Landmark-based pedestrian
navigation from collections of geotagged photos.” In: Proc. of
the Int. Conf. on Mobile and Ubiquitous Multimedia (MUM). ACM
Press, 2008.
doi: 10.1145/1543137.1543167.

[73] D. Holz, N. Basilico, F. Amigoni, and S. Behnke. “A compara-
tive evaluation of exploration strategies and heuristics to im-
prove them.” In: Proc. of the European Conference on Mobile Robots
(ECMR). Örebro, Sweden, 2011, pp. 25–30.

[74] A. Hornung, A. Dornbush, M. Likhachev, and M. Bennewitz.
“Anytime search-based footstep planning with suboptimality
bounds.” In: Proc. of the IEEE-RAS Int. Conf. on Humanoid Robots
(Humanoids). 2012, pp. 674–679.
doi: 10.1109/HUMANOIDS.2012.6651592.

[75] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and
W. Burgard. “OctoMap: An efficient probabilistic 3D mapping
framework based on octrees.” In: Autonomous Robots 34.3 (2013).
Software available at http://octomap.github.com, pp. 189–
206.
doi: 10.1007/s10514-012-9321-0.

[76] A. Hornung, S. Oßwald, D. Maier, and M. Bennewitz. “Monte
Carlo localization for humanoid robot navigation in complex
indoor environments.” In: Int. Journal of Humanoid Robotics 11.2
(2014).
doi: 10.1142/S0219843614410023.

[77] A. M. Hund, M. Schmettow, and M. L. Noordzij. “The impact
of culture and recipient perspective on direction giving in the
service of wayfinding.” In: Journal of Environmental Psychology
32.4 (2012), pp. 327–336. issn: 0272-4944.
doi: 10.1016/j.jenvp.2012.05.007.

https://dx.doi.org/10.1016/S0377-2217(99)00284-2
https://dx.doi.org/10.1177/0278364911434148
https://dx.doi.org/10.1145/1543137.1543167
https://dx.doi.org/10.1109/HUMANOIDS.2012.6651592
http://octomap.github.com
https://dx.doi.org/10.1007/s10514-012-9321-0
https://dx.doi.org/10.1142/S0219843614410023
https://dx.doi.org/10.1016/j.jenvp.2012.05.007

bibliography 143

[78] Intel Corp. Intel® Atom™ Processor E3800 Product Family and
Intel® Celeron® Processor N2807/N2930/J1900 – User Guide for
Yocto Project* Board Support Package (BSP) Graphics Driver. 2014.

[79] S. Isler, R. Sabzevari, J. A. Delmerico, and D. Scaramuzza.
“An information gain formulation for active volumetric 3D
reconstruction.” In: Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA). 2016, pp. 3477–3484.
doi: 10.1109/ICRA.2016.7487527.

[80] E. T. Jaynes. “Where do we stand on maximum entropy.” In:
Maximum Entropy Formalism (1978). Ed. by R. D. Levine and
M. Tribus, pp. 15–118.

[81] D. B. Johnson. “Efficient algorithms for shortest paths in sparse
networks.” In: ACM 24.1 (1977), pp. 1–13. issn: 0004-5411.
doi: 10.1145/321992.321993.

[82] D. Joho, M. Senk, and W. Burgard. “Learning search heuristics
for finding objects in structured environments.” In: Robotics &
Autonomous Systems 59.5 (2011), pp. 319–328.
doi: 10.1016/j.robot.2011.02.012.

[83] P. Kaiser and T. Asfour. “Autonomous detection and experimen-
tal validation of affordances.” In: IEEE Robotics and Automation
Letters (RA-L) 3.3 (2018), pp. 1949–1956.
doi: 10.1109/lra.2018.2808367.

[84] P. Karkowski, S. Oßwald, and M. Bennewitz. “Real-time foot-
step planning in 3D environments.” In: Proc. of the IEEE-RAS
Int. Conf. on Humanoid Robots (Humanoids). 2016, pp. 69–74.
doi: 10.1109/HUMANOIDS.2016.7803256.

[85] N. Kaushik and A. Kaushik. “Extended Bellman Ford algorithm
with optimized time of computation.” In: Advances in Intelligent
Systems and Computing. Springer Singapore, 2016, pp. 241–247.
doi: 10.1007/978-981-10-0135-2_23.

[86] J. Ko, B. Stewart, D. Fox, K. Konolige, and B. Limketkai. “A
practical, decision-theoretic approach to multi-robot mapping
and exploration.” In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems (IROS). Vol. 4. Las Vegas, NV, USA, 2003,
pp. 3232–3238.
doi: 10.1109/IROS.2003.1249654.

[87] N. Koenig and A. Howard. “Design and use paradigms for
Gazebo, an open-source multi-robot simulator.” In: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS). 2004,
pp. 2149–2154.

[88] T. Kollar. “Learning to understand spatial language for robotic
navigation and mobile manipulation.” PhD thesis. Cambridge,
USA: Massachusetts Institute of Technology, 2011.

https://dx.doi.org/10.1109/ICRA.2016.7487527
https://dx.doi.org/10.1145/321992.321993
https://dx.doi.org/10.1016/j.robot.2011.02.012
https://dx.doi.org/10.1109/lra.2018.2808367
https://dx.doi.org/10.1109/HUMANOIDS.2016.7803256
https://dx.doi.org/10.1007/978-981-10-0135-2_23
https://dx.doi.org/10.1109/IROS.2003.1249654

144 bibliography

[89] M. Krainin, B. Curless, and D. Fox. “Autonomous generation
of complete 3D object models using next best view manipu-
lation planning.” In: Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA). 2011, pp. 5031–5037.
doi: 10.1109/ICRA.2011.5980429.

[90] S. Kriegel, T. Bodenmüller, M. Suppa, and G. Hirzinger.
“A surface-based next-best-view approach for automated 3D
model completion of unknown objects.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). 2011, pp. 4869–4874.
doi: 10.1109/ICRA.2011.5979947.

[91] G. M. Kruijff et al. “Rescue robots at earthquake-hit Mirandola,
Italy: A field report.” In: Proc. of the IEEE Int. Symp. on Safety,
Security, and Rescue Robotics (SSRR). 2012, pp. 1–8.
doi: 10.1109/SSRR.2012.6523866.

[92] M. Kuderer, H. Kretzschmar, C. Sprunk, and W. Burgard.
“Feature-based prediction of trajectories for socially compli-
ant navigation.” In: Proc. of Robotics: Science and Systems (RSS).
Sydney, Australia, 2012.
doi: 10.15607/RSS.2012.VIII.025.

[93] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W.
Burgard. “g2o: A general framework for graph optimization.”
In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA).
2011.
doi: 10.1109/ICRA.2011.5979949.

[94] H. Kuhn. “The Hungarian method for the assignment prob-
lem.” In: Naval Research Logistics Quarterly 2.1 (1955), pp. 83–
97.

[95] B. Kuipers and Y. Byun. “A robot exploration and mapping
strategy based on a semantic hierarchy of spatial representa-
tions.” In: Journal of Robotics & Autonomous Systems 8.1-2 (1991),
pp. 47–63.
doi: 10.1016/0921-8890(91)90014-C.

[96] M. Kulich, J. Faigl, and L. Přeučil. “On distance utility in the
exploration task.” In: Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA). IEEE, 2011.
doi: 10.1109/icra.2011.5980221.

[97] C. S. G. Lee and C. T. Lin. “Parallel algorithms and fault-
tolerant reconfigurable architecture for robot kinematics and
dynamics computations.” In: Advances in Robotic Systems. Ed.
by C. T. Leondes. Vol. 40. Control and Dynamic Systems 2.
Elsevier, 1991, pp. 33–103.
doi: 10.1016/b978-0-12-012740-5.50007-4.

https://dx.doi.org/10.1109/ICRA.2011.5980429
https://dx.doi.org/10.1109/ICRA.2011.5979947
https://dx.doi.org/10.1109/SSRR.2012.6523866
https://dx.doi.org/10.15607/RSS.2012.VIII.025
https://dx.doi.org/10.1109/ICRA.2011.5979949
https://dx.doi.org/10.1016/0921-8890(91)90014-C
https://dx.doi.org/10.1109/icra.2011.5980221
https://dx.doi.org/10.1016/b978-0-12-012740-5.50007-4

bibliography 145

[98] Y. Leviathan and Y. Matias. Google Duplex: An AI System for
Accomplishing Real-World Tasks Over the Phone. Google Inc. 2018.
url: https://ai.googleblog.com/2018/05/duplex-ai-system-
for-natural-conversation.html.

[99] G. W. K. Look. “Cognitively-inspired direction giving.” PhD
thesis. Cambridge, USA: Massachusetts Inst. of Technology,
2008.

[100] K. L. Lovelace, M. Hegarty, and D. R. Montello. “Elements
of good route directions in familiar and unfamiliar environ-
ments.” In: Proc. of the Int. Conf. on Spatial Information Theory
(COSIT). London, UK: Springer-Verlag, 1999, pp. 65–82. isbn:
3-540-66365-7.
doi: 10.1007/3-540-48384-5_5.

[101] D. Lowe. “Object recognition from local scale-invariant fea-
tures.” In: Proc. of the Int. Conf. on Computer Vision (ICCV). IEEE,
1999.
doi: 10.1109/iccv.1999.790410.

[102] D. V. Lu, D. Hershberger, and W. D. Smart. “Layered costmaps
for context-sensitive navigation.” In: Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS). 2014.
doi: 10.1109/iros.2014.6942636.

[103] M. T. MacMahon. “Following natural language route instruc-
tions.” PhD thesis. Electrical and Computer Engineering De-
partment, University of Texas at Austin, 2007.

[104] A. Makarenko, S. B. Williams, F. Bourgault, and H. F. Durrant-
Whyte. “An experiment in integrated exploration.” In: Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS).
2002, pp. 534–539.
doi: 10.1109/IRDS.2002.1041445.

[105] R. Mannadiar and I. M. Rekleitis. “Optimal coverage of a
known arbitrary environment.” In: Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA). 2010, pp. 5525–5530.
doi: 10.1109/ROBOT.2010.5509860.

[106] MapQuest. Official MapQuest. 2018.
url: https://www.mapquest.com/.

[107] D. M. Mark. “Automated route selection for navigation.” In:
Aerospace and Electronic Systems Magazine, IEEE 1.9 (1986), pp. 2–
5. issn: 0885-8985.
doi: 10.1109/MAES.1986.5005198.

[108] P. J. Martín, R. Torres, and A. Gavilanes. “CUDA solutions
for the SSSP problem.” In: Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2009, pp. 904–913.
doi: 10.1007/978-3-642-01970-8_91.

https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://ai.googleblog.com/2018/05/duplex-ai-system-for-natural-conversation.html
https://dx.doi.org/10.1007/3-540-48384-5_5
https://dx.doi.org/10.1109/iccv.1999.790410
https://dx.doi.org/10.1109/iros.2014.6942636
https://dx.doi.org/10.1109/IRDS.2002.1041445
https://dx.doi.org/10.1109/ROBOT.2010.5509860
https://www.mapquest.com/
https://dx.doi.org/10.1109/MAES.1986.5005198
https://dx.doi.org/10.1007/978-3-642-01970-8_91

146 bibliography

[109] A. Martínez, C. Domínguez, H. Hassan, J.-M. Martínez, and
P. López. “Using GPU and SIMD implementations to improve
performance of robotic emotional processes.” In: IEEE Int. Work-
shop on Multicore and Multithreaded Architectures and Algorithms
(M2A2). 2015.
doi: 10.1109/hpcc-css-icess.2015.288.

[110] J. McDonald. “Avoiding catastrophic performance loss: Detect-
ing CPU-GPU sync points.” In: Proc. of the Game Developers
Conference (GDC). 2014.

[111] D. Merrill, M. Garland, and A. Grimshaw. “Scalable GPU graph
traversal.” In: ACM SIGPLAN Symp. on Principles and Practice of
Parallel Programming. 2012.
doi: 10.1145/2370036.2145832.

[112] O. Michel. “Webots: Professional mobile robot simulation.” In:
Journal of Advanced Robotics Systems 1.1 (2004), pp. 39–42.
doi: 10.5772/5618.

[113] Microsoft Corporation. Bing Maps. 2018.
url: https://www.bing.com/maps.

[114] R. Mur-Artal and J. D. Tardós. “ORB-SLAM2: An open-source
SLAM system for monocular, stereo and RGB-D cameras.” In:
IEEE Trans. on Robotics (TRO) 33.5 (2017).
doi: 10.1109/TRO.2017.2705103.

[115] R. Mur-Artal, J. Montiel, and J. D. Tardós. “ORB-SLAM: A
versatile and accurate monocular SLAM system.” In: IEEE
Trans. on Robotics (TRO) 31.5 (2015).
doi: 10.1109/TRO.2015.2463671.

[116] R. Mur-Artal and J. D. Tardós. “Fast relocalisation and loop
closing in keyframe-based SLAM.” In: Proc. of the IEEE Int. Conf.
on Robotics & Automation (ICRA). 2014.
doi: 10.1109/ICRA.2014.6906953.

[117] E. Nascimento, G. Oliveira, M. Campos, A. Vieira, and W.
Schwartz. “BRAND: A robust appearance and depth descrip-
tor for RGB-D images.” In: Proc. of the IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems (IROS). 2012.
doi: 10.1109/IROS.2012.6385693.

[118] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon.
“KinectFusion: Real-time dense surface mapping and tracking.”
In: Proc. of the IEEE/ACM Int. Symp. on Mixed and Augmented
Reality (ISMAR). 2011.
doi: 10.1109/ISMAR.2011.6092378.

https://dx.doi.org/10.1109/hpcc-css-icess.2015.288
https://dx.doi.org/10.1145/2370036.2145832
https://dx.doi.org/10.5772/5618
https://www.bing.com/maps
https://dx.doi.org/10.1109/TRO.2017.2705103
https://dx.doi.org/10.1109/TRO.2015.2463671
https://dx.doi.org/10.1109/ICRA.2014.6906953
https://dx.doi.org/10.1109/IROS.2012.6385693
https://dx.doi.org/10.1109/ISMAR.2011.6092378

bibliography 147

[119] A. Y. Ng and S. J. Russell. “Algorithms for inverse reinforce-
ment learning.” In: Proc. of the Int. Conf. on Machine Learning
(ICML). Morgan Kaufmann Publishers, 2000, pp. 663–670. isbn:
1-55860-707-2.

[120] T. Nguyễn. “Living Room”. Blender model, available under a
Creative Commons Zero (CC0 1.0) license. 2013.
url: https://www.blendswap.com/blends/view/70842.

[121] C. Nothegger, S. Winter, and M. Raubal. “Selection of
salient features for route directions.” In: Spatial Cogni-
tion & Computation 4.2 (2004), pp. 113–136.
doi: 10.1207/s15427633scc0402_1.

[122] Y. Okuno, T. Kanda, M. Imai, H. Ishiguro, and N. Hagita. “Pro-
viding route directions: Design of robot’s utterance, gesture,
and timing.” In: Proc. of the ACM/IEEE Int. Conf. on Human-
Robot Interaction (HRI). ACM Press, 2009.
doi: 10.1145/1514095.1514108.

[123] G. Oriolo, A. Paolillo, L. Rosa, and M. Vendittelli. “Humanoid
odometric localization integrating kinematic, inertial and visual
information.” In: Autonomous Robots 40.5 (2016).
doi: 10.1007/s10514-015-9498-0.

[124] J. O’Rourke. Art Gallery Theorems and Algorithms. New York, NY,
USA: Oxford University Press, Inc., 1987. isbn: 0-19-503965-3.

[125] S. Oßwald and M. Bennewitz. “GPU-accelerated next-best-view
coverage of articulated scenes.” In: Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS). In press. 2018.

[126] S. Oßwald, A. Hornung, and M. Bennewitz. “Learning reliable
and efficient navigation with a humanoid.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). 2010, pp. 2375–2380.
doi: 10.1109/ROBOT.2010.5509420.

[127] S. Oßwald, A. Görög, A. Hornung, and M. Bennewitz. “Au-
tonomous climbing of spiral staircases with humanoids.” In:
Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems
(IROS). 2011, pp. 4844–4849.
doi: 10.1109/IROS.2011.6094533.

[128] S. Oßwald, J. Gutmann, A. Hornung, and M. Bennewitz. “From
3D point clouds to climbing stairs: A comparison of plane
segmentation approaches for humanoids.” In: Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids). 2011, pp. 93–98.
doi: 10.1109/Humanoids.2011.6100836.

[129] S. Oßwald, A. Hornung, and M. Bennewitz. “Improved pro-
posals for highly accurate localization using range and vision
data.” In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems (IROS). 2012, pp. 1809–1814.
doi: 10.1109/IROS.2012.6385657.

https://www.blendswap.com/blends/view/70842
https://dx.doi.org/10.1207/s15427633scc0402_1
https://dx.doi.org/10.1145/1514095.1514108
https://dx.doi.org/10.1007/s10514-015-9498-0
https://dx.doi.org/10.1109/ROBOT.2010.5509420
https://dx.doi.org/10.1109/IROS.2011.6094533
https://dx.doi.org/10.1109/Humanoids.2011.6100836
https://dx.doi.org/10.1109/IROS.2012.6385657

148 bibliography

[130] S. Oßwald, H. Kretzschmar, W. Burgard, and C. Stachniss.
“Learning to give route directions from human demonstra-
tions.” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). 2014, pp. 3303–3308.
doi: 10.1109/ICRA.2014.6907334.

[131] S. Oßwald, M. Bennewitz, W. Burgard, and C. Stachniss.
“Speeding-up robot exploration by exploiting background in-
formation.” In: IEEE Robotics and Automation Letters (RA-L) 1.2
(2016), pp. 716–723. issn: 2377-3766.
doi: 10.1109/LRA.2016.2520560.

[132] S. Oßwald, P. Karkowski, and M. Bennewitz. “Efficient cover-
age of 3D environments with humanoid robots using inverse
reachability maps.” In: Proc. of the IEEE-RAS Int. Conf. on Hu-
manoid Robots (Humanoids). 2017, pp. 151–157.
doi: 10.1109/humanoids.2017.8239550.

[133] E. Palazzolo and C. Stachniss. “Information-driven autono-
mous exploration for a vision-based MAV.” In: Proc. of the
ISPRS Int. Conf. on Unmanned Aerial Vehicles in Geomatics (UAV-
g). 2017.
doi: 10.5194/isprs-annals-IV-2-W3-59-2017.

[134] J. Pan, S. Chitta, and D. Manocha. “FCL: A general purpose
library for collision and proximity queries.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). 2012, pp. 3859–3866.
doi: 10.1109/ICRA.2012.6225337.

[135] F. Pasqualetti, A. Franchi, and F. Bullo. “On cooperative pa-
trolling: Optimal trajectories, complexity analysis, and approxi-
mation algorithms.” In: IEEE Transactions on Robotics 28.3 (2012),
pp. 592–606. issn: 1552-3098.
doi: 10.1109/TRO.2011.2179580.

[136] D. Perea Strom, F. Nenci, and C. Stachniss. “Predictive explo-
ration considering previously mapped environments.” In: Proc.
of the IEEE Int. Conf. on Robotics & Automation (ICRA). 2015,
pp. 2761–2766.
doi: 10.1109/ICRA.2015.7139574.

[137] H. A. Pierson and M. S. Gashler. “Deep learning in robotics: A
review of recent research.” In: Advanced Robotics 31.16 (2017),
pp. 821–835.
doi: 10.1080/01691864.2017.1365009.

[138] D. Portugal and R. Rocha. “A survey on multi-robot patrolling
algorithms.” In: Technological Innovation for Sustainability. Ed. by
L. M. Camarinha-Matos. Vol. 349. IFIP Advances in Information
and Communication Technology. Springer Berlin Heidelberg,
2011, pp. 139–146. isbn: 978-3-642-19169-5.
doi: 10.1007/978-3-642-19170-1_15.

https://dx.doi.org/10.1109/ICRA.2014.6907334
https://dx.doi.org/10.1109/LRA.2016.2520560
https://dx.doi.org/10.1109/humanoids.2017.8239550
https://dx.doi.org/10.5194/isprs-annals-IV-2-W3-59-2017
https://dx.doi.org/10.1109/ICRA.2012.6225337
https://dx.doi.org/10.1109/TRO.2011.2179580
https://dx.doi.org/10.1109/ICRA.2015.7139574
https://dx.doi.org/10.1080/01691864.2017.1365009
https://dx.doi.org/10.1007/978-3-642-19170-1_15

bibliography 149

[139] A. Pretto, E. Menegatti, M. Bennewitz, W. Burgard, and E.
Pagello. “A visual odometry framework robust to motion blur.”
In: Proc. of the IEEE Int. Conf. on Robotics & Automation (ICRA).
2009, pp. 2250–2257.
doi: 10.1109/ROBOT.2009.5152447.

[140] A. Pronobis. “Semantic Mapping with Mobile Robots.” PhD
thesis. Stockholm, Sweden: KTH Royal Institute of Technology,
2011. isbn: 978-91-7501-039-7.

[141] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs, R.
Wheeler, and A. Y. Ng. “ROS: An open-source Robot Operating
System.” In: ICRA Workshop on Open Source Software. 2009.

[142] J. Quinlan. “Induction of decision trees.” In: Machine Learning
1.1 (1986), pp. 81–106. issn: 0885-6125.

[143] P. Regier, S. Oßwald, P. Karkowski, and M. Bennewitz. “Fore-
sighted navigation through cluttered environments.” In: Proc.
of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS).
2016, pp. 1437–1442.
doi: 10.1109/IROS.2016.7759234.

[144] K.-F. Richter. Context-specific route directions: Generation of cogni-
tively motivated wayfinding instructions. Dissertationen zur kün-
stlichen Intelligenz. Akademische Verlagsgesellschaft (Aka),
2007. isbn: 978-1-58603-852-6.

[145] K.-F. Richter and M. Duckham. “Simplest instructions: Finding
easy-to-describe routes for navigation.” In: Proc. of the Int. Conf.
on Geographic Information Science (GIScience). Park City, UT, USA:
Springer-Verlag, 2008, pp. 274–289. isbn: 978-3-540-87472-0.
doi: 10.1007/978-3-540-87473-7_18.

[146] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski. “ORB: An
efficient alternative to SIFT or SURF.” In: Proc. of the Int. Conf.
on Computer Vision (ICCV). 2011.
doi: 10.1109/ICCV.2011.6126544.

[147] R. B. Rusu and S. Cousins. “3D is here: Point Cloud Library
(PCL).” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). IEEE, 2011.
doi: 10.1109/icra.2011.5980567.

[148] L. T. Sarjakoski, P. Kettunen, H.-M. Flink, M. Laakso, M. Rön-
neberg, and T. Sarjakoski. “Analysis of verbal route descrip-
tions and landmarks for hiking.” In: Personal and Ubiquitous
Computing 16.8 (2011), pp. 1001–1011.
doi: 10.1007/s00779-011-0460-7.

[149] D. Shah, J Schneider, and M Campbell. “A robust sketch in-
terface for natural robot control.” In: Proc. of the IEEE/RSJ Int.
Conf. on Intelligent Robots & Systems (IROS). 2010.
doi: 10.1109/iros.2010.5649345.

https://dx.doi.org/10.1109/ROBOT.2009.5152447
https://dx.doi.org/10.1109/IROS.2016.7759234
https://dx.doi.org/10.1007/978-3-540-87473-7_18
https://dx.doi.org/10.1109/ICCV.2011.6126544
https://dx.doi.org/10.1109/icra.2011.5980567
https://dx.doi.org/10.1007/s00779-011-0460-7
https://dx.doi.org/10.1109/iros.2010.5649345

150 bibliography

[150] D. C. Shah and M. E. Campbell. “A qualitative path planner for
robot navigation using human-provided maps.” In: Int. Journal
of Robotics Research 32.13 (2013), pp. 1517–1535.
doi: 10.1177/0278364913496485.

[151] R. Sheikh, S. Oßwald, and M. Bennewitz. “A combined RGB
and depth descriptor for SLAM with humanoids.” In: Proc. of
the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS). In
press. 2018.

[152] S. Shen, N. Michael, and V. Kumar. “Autonomous indoor 3D
exploration with a micro-aerial vehicle.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). 2012, pp. 9–15.
doi: 10.1109/ICRA.2012.6225146.

[153] J. G. Siek, L.-Q. Lee, and A. Lumsdaine. The Boost Graph Library:
User Guide and Reference Manual. Boston, MA, USA: Addison-
Wesley Professional, 2002. isbn: 0-201-72914-8.

[154] R. Sim and N. Roy. “Global a-optimal robot exploration in
SLAM.” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). Barcelona, Spain, 2005, pp. 661–666.
doi: 10.1109/ROBOT.2005.1570193.

[155] M. Skubic, P. Matsakis, B. Forrester, and G. Chronis. “Extracting
navigation states from a hand-drawn map.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). IEEE, 2001.
doi: 10.1109/robot.2001.932563.

[156] M. Skubic, D. Anderson, S. Blisard, D. Perzanowski, and A.
Schultz. “Using a hand-drawn sketch to control a team of
robots.” In: Autonomous Robots 22.4 (2007), pp. 399–410.
doi: 10.1007/s10514-007-9023-1.

[157] W. C. So, T. H.-W. Ching, P. E. Lim, X. Cheng, and K. Y. Ip.
“Producing gestures facilitates route learning.” In: PLoS ONE
9.11 (2014). Ed. by M. W. Greenlee.
doi: 10.1371/journal.pone.0112543.

[158] SQUIRREL – Clearing Clutter Bit by Bit. Nao cleaning up. Official
website of the SQUIRREL EU Project.
url: http://squirrel-project.eu.

[159] C. Stachniss, G. Grisetti, and W. Burgard. “Information gain-
based exploration using Rao-Blackwellized particle filters.” In:
Proc. of Robotics: Science and Systems (RSS). Cambridge, MA,
USA, 2005, pp. 65–72.
doi: 10.15607/RSS.2005.I.009.

[160] C. Stachniss, Ó. M. Mozos, and W. Burgard. “Speeding-up
multi-robot exploration by considering semantic place informa-
tion.” In: Proc. of the IEEE Int. Conf. on Robotics & Automation
(ICRA). 2006, pp. 1692–1697.
doi: 10.1109/ROBOT.2006.1641950.

https://dx.doi.org/10.1177/0278364913496485
https://dx.doi.org/10.1109/ICRA.2012.6225146
https://dx.doi.org/10.1109/ROBOT.2005.1570193
https://dx.doi.org/10.1109/robot.2001.932563
https://dx.doi.org/10.1007/s10514-007-9023-1
https://dx.doi.org/10.1371/journal.pone.0112543
http://squirrel-project.eu
https://dx.doi.org/10.15607/RSS.2005.I.009
https://dx.doi.org/10.1109/ROBOT.2006.1641950

bibliography 151

[161] C. Stachniss, Ó. M. Mozos, and W. Burgard. “Efficient explo-
ration of unknown indoor environments using a team of mobile
robots.” In: Annals of Mathematics and Artificial Intelligence 52.2-4
(2 2008), pp. 205–227.
doi: 10.1007/s10472-009-9123-z.

[162] O. Stasse, A. J. Davison, R. Sellaouti, and K. Yokoi. “Real-time
3D SLAM for humanoid robot considering pattern generator
information.” In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent
Robots & Systems (IROS). 2006, pp. 348–355.
doi: 10.1109/IROS.2006.281645.

[163] O. Stasse, T. Foissotte, D. Larlus, A. Kheddar, and K. Yokoi.
“Treasure hunting for humanoids robot.” In: Proc. of the IEEE-
RAS Int. Conf. on Humanoid Robots (Humanoids). Workshop on
Cognitive Humanoid Vision. Daejeon, South Korea, 2008.

[164] J. Sturm. “Approaches to Probabilistic Model Learning for Mo-
bile Manipulation Robots.” PhD thesis. Germany: University
of Freiburg, 2011.

[165] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers.
“A benchmark for the evaluation of RGB-D SLAM systems.”
In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems
(IROS). 2012.
doi: 10.1109/IROS.2012.6385773.

[166] G. Suddrey, A. Jacobson, and B. Ward. “Enabling a Pepper
robot to provide automated and interactive tours of a robotics
laboratory.” In: Computing Research Repository (CoRR). 2018.

[167] N. Suenderhauf, S. Shirazi, A. Jacobson, F. Dayoub, E. Pepperell,
B. Upcroft, and M. Milford. “Place recognition with ConvNet
landmarks: Viewpoint-robust, condition-robust, training-free.”
In: Proc. of Robotics: Science and Systems (RSS). 2015.
doi: 10.15607/RSS.2015.XI.022.

[168] G. Taylor and L. Kleeman. Visual Perception and Robotic Ma-
nipulation – 3D Object Recognition, Tracking and Hand-Eye Coor-
dination. Vol. 26. STAR Springer tracts in advanced robotics.
Springer Berlin Heidelberg, 2006. isbn: 978-3-540-33454-5.
doi: 10.1007/978-3-540-33455-2.

[169] Team NimbRo@Home. Cosero opening a fridge. Autonomous
Intelligent Systems, University of Bonn.
url: https://www.ais.uni-bonn.de/nimbro/@Home.

[170] M. Thorup. “Undirected single-source shortest paths with pos-
itive integer weights in linear time.” In: Journal of the ACM 46.3
(1999), pp. 362–394.
doi: 10.1145/316542.316548.

https://dx.doi.org/10.1007/s10472-009-9123-z
https://dx.doi.org/10.1109/IROS.2006.281645
https://dx.doi.org/10.1109/IROS.2012.6385773
https://dx.doi.org/10.15607/RSS.2015.XI.022
https://dx.doi.org/10.1007/978-3-540-33455-2
https://www.ais.uni-bonn.de/nimbro/@Home
https://dx.doi.org/10.1145/316542.316548

152 bibliography

[171] S. Thrun, S. Thayer, W. Whittaker, C. R. Baker, W. Burgard,
D. Ferguson, D. Hähnel, M. D. Montemerlo, A. Morris, Z.
Omohundro, and C. F. Reverte. “Autonomous exploration and
mapping of abandoned mines.” In: IEEE Robotics and Automa-
tion 11.4 (2005), pp. 79–91.
doi: 10.1109/MRA.2004.1371614.

[172] F. Tombari, S. Salti, and L. Di Stefano. “A combined texture-
shape descriptor for enhanced 3D feature matching.” In: Proc.
of the IEEE Int. Conf. on Image Processing (ICIP). 2011.
doi: 10.1109/ICIP.2011.6116679.

[173] N. Vahrenkamp, T. Asfour, G. Metta, G. Sandini, and R. Dill-
mann. “Manipulability analysis.” In: Proc. of the IEEE-RAS Int.
Conf. on Humanoid Robots (Humanoids). IEEE, 2012.
doi: 10.1109/humanoids.2012.6651576.

[174] N. Vahrenkamp, D. Muth, P. Kaiser, and T. Asfour. “IK-Map:
An enhanced workspace representation to support inverse kine-
matics solvers.” In: Proc. of the IEEE-RAS Int. Conf. on Humanoid
Robots (Humanoids). 2015, pp. 785–790.
doi: 10.1109/HUMANOIDS.2015.7363443.

[175] J. I. Vasquez-Gomez, L. E. Sucar, R. Murrieta-Cid, and E. Lopez-
Damian. “Volumetric next-best-view planning for 3D object
reconstruction with positioning error.” In: Int. Journal of Ad-
vanced Robotics Systems 11.159 (2014).
doi: 10.5772/58759.

[176] S. Venkataraman. “Programming multi-GPUs for scalable ren-
dering.” In: Proc. of the GPU Technology Conference (GTC). 2012.

[177] D. Waller and Y. Lippa. “Landmarks as beacons and associative
cues: Their role in route learning.” In: Memory & Cognition 35.5
(2007), pp. 910–924. issn: 0090-502X.
doi: 10.3758/BF03193465.

[178] S. Wang, R. Clark, H. Wen, and N. Trigoni. “DeepVO: Towards
end-to-end visual odometry with deep recurrent convolutional
neural networks.” In: Proc. of the IEEE Int. Conf. on Robotics &
Automation (ICRA). 2017.
doi: 10.1109/ICRA.2017.7989236.

[179] Y.-S. Wang, Y.-X. Gai, and F.-Y. Wu. “A robot kinematics simu-
lation system based on OpenGL.” In: IEEE Int. Conf. on Robotics,
Automation and Mechatronics (RAM). 2011.
doi: 10.1109/ramech.2011.6070474.

[180] S. L. Ward, N. Newcombe, and W. F. Overton. “Turn left at
the church, or three miles north: A study of direction giving
and sex differences.” In: Environment and Behavior 18.2 (1986),
pp. 192–213.
doi: 10.1177/0013916586182003.

https://dx.doi.org/10.1109/MRA.2004.1371614
https://dx.doi.org/10.1109/ICIP.2011.6116679
https://dx.doi.org/10.1109/humanoids.2012.6651576
https://dx.doi.org/10.1109/HUMANOIDS.2015.7363443
https://dx.doi.org/10.5772/58759
https://dx.doi.org/10.3758/BF03193465
https://dx.doi.org/10.1109/ICRA.2017.7989236
https://dx.doi.org/10.1109/ramech.2011.6070474
https://dx.doi.org/10.1177/0013916586182003

bibliography 153

[181] H. Westerbeek and A. Maes. “Route-external and route-internal
landmarks in route descriptions: Effects of route length and
map design.” In: Applied Cognitive Psychology 27.3 (2013),
pp. 297–305.
doi: 10.1002/acp.2907.

[182] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and
J. McDonald. “Kintinuous: Spatially extended KinectFusion.”
In: RSS Workshop on RGB-D: Advanced Reasoning with Depth
Cameras. 2012.

[183] M. Wolschon et al. Traveling Salesman – open source navigation
and routing-application for OpenStreetMap. Software available
under the GPLv3 license.
url: https://sourceforge.net/projects/travelingsales/.

[184] K. M. Wurm, C. Stachniss, and W. Burgard. “Coordinated multi-
robot exploration using a segmentation of the environment.”
In: Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots & Systems
(IROS). 2008, pp. 1160–1165.
doi: 10.1109/IROS.2008.4650734.

[185] A. Xu, C. Viriyasuthee, and I. Rekleitis. “Efficient complete
coverage of a known arbitrary environment with applications
to aerial operations.” In: Autonomous Robots 36.4 (2014), pp. 365–
381. issn: 0929-5593.
doi: 10.1007/s10514-013-9364-x.

[186] L. Xu and A. Stentz. “A fast traversal heuristic and optimal
algorithm for effective environmental coverage.” In: Proc. of
Robotics: Science and Systems (RSS). 2010.
doi: 10.15607/RSS.2010.VI.021.

[187] B. Yamauchi. “Frontier-based exploration using multiple
robots.” In: Proc. of the Int. Conf. on Autonomous Agents. 1998,
pp. 47–53.
doi: 10.1145/280765.280773.

[188] T. Yoshikawa. “Manipulability of robotic mechanisms.” In: Int.
Journal of Robotics Research 4.2 (1985), pp. 3–9.
doi: 10.1177/027836498500400201.

[189] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey. “Maximum
entropy inverse reinforcement learning.” In: Proc. of the National
Conference on Artificial Intelligence (AAAI). Vol. 3. Chicago, Illi-
nois, 2008, pp. 1433–1438. isbn: 978-1-57735-368-3.

[190] B. D. Ziebart, A. L. Maas, A. K. Dey, and J. A. Bagnell. “Nav-
igate like a cabbie: Probabilistic reasoning from observed
context-aware behavior.” In: Proc. of the Int. Conf. on Ubiqui-
tous Computing (Ubicomp). 2008, pp. 322–331.
doi: 10.1145/1409635.1409678.

https://dx.doi.org/10.1002/acp.2907
https://sourceforge.net/projects/travelingsales/
https://dx.doi.org/10.1109/IROS.2008.4650734
https://dx.doi.org/10.1007/s10514-013-9364-x
https://dx.doi.org/10.15607/RSS.2010.VI.021
https://dx.doi.org/10.1145/280765.280773
https://dx.doi.org/10.1177/027836498500400201
https://dx.doi.org/10.1145/1409635.1409678

154 bibliography

[191] B. D. Ziebart, N. D. Ratliff, G. Gallagher, C. Mertz, K. M. Pe-
terson, J. A. Bagnell, M. Hebert, A. K. Dey, and S. S. Srinivasa.
“Planning-based prediction for pedestrians.” In: Proc. of the
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems (IROS). 2009,
pp. 3931–3936.
doi: 10.1109/IROS.2009.5354147.

[192] R. Zlot, A. Stentz, M. B. Dias, and S. Thayer. “Multi-robot explo-
ration controlled by a market economy.” In: Proc. of the IEEE
Int. Conf. on Robotics & Automation (ICRA). Vol. 3. Washington,
DC, USA, 2002, pp. 3016–3023.
doi: 10.1109/ROBOT.2002.1013690.

https://dx.doi.org/10.1109/IROS.2009.5354147
https://dx.doi.org/10.1109/ROBOT.2002.1013690

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Key contributions
	1.2 Publications
	1.3 Collaborations
	1.4 Notation

	2 Learning to Give Route Directions from Human Demonstrations
	2.1 Introduction
	2.2 Related work
	2.3 Learning to give directions for routes from human demonstrations
	2.3.1 Giving directions as a reinforcement learning problem
	2.3.2 Maximum entropy inverse reinforcement learning
	2.3.3 Features
	2.3.4 Contexts

	2.4 Experimental evaluation
	2.4.1 Acquiring training data
	2.4.2 Learned policies
	2.4.3 Experimental setup for evaluating the generated descriptions
	2.4.4 How human-like are the directions generated by our approach?

	2.5 Discussion
	2.6 Conclusions

	3 Speeding-Up Mobile Robot Exploration Using Background Knowledge
	3.1 Introduction
	3.2 Related work
	3.3 Guiding exploration with background knowledge
	3.3.1 Representation of background information about the environment
	3.3.2 Representation of the exploration problem
	3.3.3 Solving the TSP
	3.3.4 Frontier-based exploration exploiting the TSP solution
	3.3.5 Re-planning

	3.4 Experimental evaluation
	3.4.1 Environments
	3.4.2 Background information
	3.4.3 Traveled distance
	3.4.4 Run time
	3.4.5 Robustness
	3.4.6 Influence of information gain

	3.5 Discussion
	3.6 Conclusions

	4 SLAM for Humanoids with a Combined RGB and Depth Descriptor
	4.1 Introduction
	4.2 Related work
	4.2.1 RGB-D SLAM
	4.2.2 Appearance-based loop closing
	4.2.3 SLAM and visual odometry for humanoid robots

	4.3 Proposed RGB-D feature descriptor
	4.4 Appearance-based SLAM
	4.4.1 Pose tracking
	4.4.2 Mapping
	4.4.3 Place recognition for loop closing

	4.5 Experimental evaluation
	4.5.1 Evaluation of descriptors
	4.5.2 Place recognition
	4.5.3 Simultaneous localization and mapping
	4.5.4 Computational cost

	4.6 Discussion
	4.7 Conclusions

	5 Efficient Coverage of 3D Environments with Humanoid Robots Using Inverse Reachability Maps
	5.1 Introduction
	5.2 Related work
	5.3 Problem description and framework
	5.4 Reachability map and pose evaluation
	5.5 Efficient representation of the IRM
	5.6 Planning a tour of viewing poses
	5.6.1 Sampling candidate viewing poses
	5.6.2 Determining whole-body configurations
	5.6.3 Formulation as a traveling salesman problem

	5.7 Experiments
	5.7.1 Generating the inverse reachability map
	5.7.2 Coverage of simulated environments
	5.7.3 Coverage of a real scene

	5.8 Discussion
	5.9 Conclusions

	6 GPU-Accelerated Next-Best-View Exploration of Articulated Scenes
	6.1 Introduction
	6.2 Related work
	6.3 Problem formulation
	6.4 GPU algorithms
	6.4.1 Properties of the graphics pipeline
	6.4.2 Cost map computation
	6.4.3 Single-source shortest path
	6.4.4 Information gain computation
	6.4.5 Estimating the utility map
	6.4.6 Covering environments with a robot's camera

	6.5 Experimental evaluation
	6.5.1 Benchmarking the GPU algorithms
	6.5.2 Information gain map estimation
	6.5.3 Covering environments with a robot's camera

	6.6 Discussion
	6.7 Conclusions

	7 Conclusions
	A Appendix
	A.1 Nao humanoid robot: Technical data
	A.2 ASUS Xtion Pro Live RGB-D camera: Technical data

	List of Figures
	List of Tables
	List of Algorithms
	Acronyms
	Bibliography

