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1. Einleitung 

1.1 Embryonale Stammzellen 

Die Embryonalentwicklung beginnt mit der Teilung der befruchteten Eizelle, die ihr 

totipotentes Stadium verlässt und die Blastozyste bildet. Umliegend entsteht der 

Trophoblast, der später die Plazenta und das Extraembryonalgewebe formt. Innen 

liegend hat sich die innere Zellmasse (inner cell mass, ICM) abgesetzt (Abb. 1), 

deren Zellen weiter in die drei Keimblätter sowie in die Zellen der Keimbahn 

differenzieren. Durch die fortlaufende Spezifizierung entwickelt sich final der gesamte 

Embryo. Die embryonalen Stammzellen (embryonic stem cells, ESC) werden aus der 

ICM der Blastozyste gewonnen (Abb. 1). In diesem Stadium sind sie undifferenziert, 

pluripotent, und fähig sich selbst zu erneuern.  
 

 

Abb. 1: Gewinnung von humanen pluripotenten embryonalen Stammzellen. 
Für die Generierung von humanen embryonalen Stammzellen (embryonic stem cells, ESC) wird die 
befruchtete Eizelle in Kultur genommen und in vitro differenziert. Die pluripotenten Zellen werden aus 
der inneren Zellmasse der Blastozyste gewonnen und in einem definierten Medium kultiviert. 
Schließlich werden die pluripotenten Zellpopulationen mechanisch isoliert. Die so entstandenen 
humanen ESC-Linien können in die drei Keimblätter Ektoderm, Mesoderm und Endoderm sowie in die 
Zellen der Keimbahn differenziert werden. Modifiziert nach Yabut & Bernstein, 2011. 

Erstmals gelang es 1981 zwei Forschungsgruppen gleichzeitig, murine ESCs zu 

isolieren und in Kultur zu bringen (Evans & Kaufman, 1981; Martin, 1981). Erst 

17 Jahre später schafften Thomson et al den Durchbruch und isolierten erfolgreich 

humane ESCs (Thomson et al, 1998). Die Stammzellen formten kompakte 

Zellkolonien und zeigten eine robuste Zellerneuerung. Sie exprimierten pluripotenz-

assoziierte Oberflächenantigene und waren in der Lage, in alle drei Keimblätter zu 

differenzieren. 

Blastozyste

Trophoblast

Innere Zellmasse

Embryonale Stammzellen

Ektoderm

Befruchtung

Embryo

Mesoderm Endoderm Keimbahn

Gehirn, Haut Lunge, Darm, LeberMuskel, Blut, 

Knochen, Knorpel

Spermien, Eizellen

Isolation
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Aufgrund ihrer pluripotenten Eigenschaften sind ESCs für die Forschung und Medizin 

von großem Nutzen. Durch die Fähigkeit zur Selbsterneuerung und des hohen 

Differenzierungspotentials stellen sie eine unbegrenzte Quelle für den 

therapeutischen Einsatz gewebespezifischer Zellen und möglicherweise sogar für 

Gewebe oder gesamte Organe dar. Dieser Therapieansatz ist besonders 

vielversprechend für Krankheiten, die mit einem bleibenden Verlust von Gewebe 

oder spezifischen Zelltypen einhergehen, wie bei Morbus Parkinson oder einem 

Herzinfarkt. Neben dem Gewebeersatz eignen sich ESCs auch als in vitro-Modell. Es 

können die molekularen Mechanismen einer Zelle untersucht werden, wie die 

Genregulation, Proteininteraktionen oder die Zellkommunikation. Des Weiteren kann 

die Embryonalentwicklung studiert und Medikamente in einem humanen System 

entwickelt und getestet werden. Für Fragestellungen, die einen bestimmten Zelltyp 

betreffen, ist es notwendig, die ESCs in der Zellkulturschale gezielt in den 

gewünschten somatischen Zelltyp zu differenzieren. Zahlreiche Studien 

demonstrierten bereits ein Differenzierungspotential von murinen ESCs, aber auch 

von humanen ESCs in verschiedene Zelltypen. Unter spezifischen Zellkultur-

bedingungen konnten z. B. Zellen mesodermalen Ursprungs, wie hämatopoetische 

Zellen (Pick et al, 2007; Chadwick et al, 2003; Kaufman et al, 2001) oder Zellen 

endodermalen Ursprungs, wie Hepatozyten (Agarwal et al, 2008; Cai et al, 2007), 

aber auch Zellen des Ektoderms, wie dopaminerge Neurone (Yan et al, 2005; Perrier 

et al, 2004) oder Motorneurone (Li et al, 2005), generiert werden. 

1.2 Induziert pluripotente Stammzellen 

In den letzten Jahrzehnten wurden die Mechanismen der Pluripotenz eingehend 

studiert. Die Arbeiten über den somatischen Zellkerntransfer (Wilmut et al, 1997; 

Briggs & King, 1952) und die Fusion von somatischen Zellen mit Stammzellen (Tada 

et al, 2001) zeigten auf, dass Stammzellen Faktoren exprimieren, die Pluripotenz 

induzieren und aufrechterhalten können. Diese Erkenntnisse wurden genutzt, um, 

neben den ESCs, alternative Wege für die Generierung pluripotenter Stammzellen zu 

finden. Im Jahr 2006 beschrieben Takahashi und Yamanaka zum ersten Mal die 

Reprogrammierung somatischer Zellen der Maus in induziert pluripotente 

Stammzellen (induced pluripotent stem cells, iPSC; Takahashi & Yamanaka, 2006). 

Sie nutzten die retrovirale Transduktion der vier Transkriptionsfaktoren Octamer 

(Oct) 4, sex-determining region Y-related HMG box (Sox) 2, Kruppel-like factor (Klf) 4 

und c-Myc (Takahashi & Yamanaka, 2006). Die entstandenen iPSCs ähnelten den 
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ESCs in vielen Haupteigenschaften, wie der Morphologie und dem in vitro- und 

in vivo-Differenzierungspotential in alle drei Keimblätter. Bereits Ende 2007 

beschrieben zwei Forschungsgruppen zeitgleich die Generierung von iPSCs aus 

humanen Fibroblasten (Takahashi et al, 2007; Yu et al, 2007). Nach diesem 

Durchbruch folgten zahlreiche Arbeiten, die eine Generierung humaner iPSCs 

(hiPSCs; Lowry et al, 2008; Mali et al, 2008) sowie die Generierung von iPSCs aus 

anderen humanen somatischen Zellen zeigten, wie Keratinozyten (Aasen et al, 2008; 

Aasen & Izpisúa Belmonte, 2010), Stammzellen der Nabelschnur (Ye et al, 2009) 

oder Hepatozyten (Liu et al, 2010). 

Die iPSC-Technologie revolutionierte die Stammzellforschung. Neben einer 

unerschöpfbaren Quelle an Stammzellen können auch patientenspezifische und 

damit autologe Stammzellen generiert werden, die bei einer möglichen Zellersatz-

therapie nicht abgestoßen werden. Bei genetisch bedingten Krankheiten kann der 

Gendefekt in den patientenspezifischen iPSCs korrigiert werden. Nach einer 

Differenzierung der korrigierten Zellen in den zu ersetzenden somatischen Zelltyp 

können sie anschließend in das gewünschte Zielorgan des Patienten transplantiert 

werden (Abb. 2). Darüber hinaus können Erkrankungen, bei denen die 

krankheitsspezifischen Zellen schwer zu isolieren sind (z. B. Gehirn oder Herz), mit 

Hilfe von hiPSCs in der Zellkulturschale modelliert und die molekularen 

Pathomechanismen untersucht werden. Zusätzlich können diese Krankheitsmodelle 

auch für Wirkstoffscreenings und Toxizitätsassays herangezogen werden (Abb. 2). 

Bevor eine klinische Anwendung von hiPSCs in Betracht gezogen werden kann, 

muss die Generierung der iPSCs optimiert werden. Die Effizienz der 

Reprogrammierung soll gesteigert und das Risiko der Tumorigenität, welches durch 

die retrovirale Integration und die Verwendung der Onkogene c-MYC und KLF4 

hervorgerufen wird, vermindert werden. Als Alternative zu den Retroviren wurden 

andere Methoden verwendet, um die Transkriptionsfaktoren in die Zellen 

einzubringen. Dazu zählen nicht-integrative Adenoviren (Zhou & Freed, 2009; 

Stadtfeld et al, 2008) und Expressionsplasmide (Okita et al, 2008; Si-Tayeb et al, 

2010b) sowie episomale (Yu et al, 2009), lentivirale (Sommer et al, 2009) oder 

Transposonvektoren, die wieder aus dem Empfängergenom entfernt werden können 

(Kaji et al, 2009; Woltjen et al, 2009). 
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Abb. 2: Medizinische Anwendung von patientenspezifischen iPSCs. 
Für die Generierung autologer induziert pluripotenter Stammzellen (induced pluripotent stem cells, 
iPSC) wird dem Patienten eine Hautbiopsie entnommen und in Kultur genommen (Mitte). Die 
auswachsenden Fibroblasten werden durch die retrovirale Transduktion der vier Transkriptions-
faktoren OCT4, SOX2, KLF4 und cMYC in iPSCs reprogrammiert. Die generierten patienten-
spezifischen iPSCs können für die Entwicklung von Medikamenten herangezogen werden (links). 
Hierfür werden die Zellen in vitro in den beeinträchtigten Zelltypen differenziert. Diese werden für das 
Screening von therapeutischen Komponenten genutzt. Der Patient kann final mit dem krankheits-
spezifischen Medikament behandelt werden. Darüber hinaus kann in den patientenspezifischen iPSCs 
der genetische Defekt korrigiert und die iPSCs weiter in den gewünschten Zelltyp in vitro differenziert 
werden. Schließlich können die korrigierten Zellen in das gewünschte Zielorgan des Patienten zur 
Zellersatztherapie transplantiert werden (rechts). Modifiziert nach Robinton & Daley, 2012. 

IPSCs wurden auch mit Hilfe von DNA-freien Methoden generiert, wie rekombinante 

Proteine (Zhou et al, 2009; Kim et al, 2009a), nicht-integrierende RNA-Viren (Fusaki 

et al, 2009), synthetische mRNAs (Warren et al, 2010) oder microRNAs (Miyoshi et 

al, 2011). Darüber hinaus wurden für die Onkogene c-MYC und KLF4 Alternativen 

gefunden. Beide konnten durch die Zugabe von NANOG und LIN28 (Haase et al, 

2009; Yu et al, 2009, 2007) oder durch die Verabreichung der Chemikalie 

Valproinsäure (valproic acid, VPA; Huangfu et al, 2008) ersetzt werden. Zusätzlich 

ermöglichte die Verwendung bestimmter somatischer Zellen den Ausschluss 

verschiedener Transkriptionsfaktoren. Bei Stammzellen der Nabelschnur sowie bei 

Nierenepithelzellen, die sich im Urin befinden, reichten OCT4 und SOX2 für die 

Generierung der hiPSCs aus (Zhou et al, 2012; Giorgetti et al, 2010). Neurale 
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Stammzellen benötigten aufgrund ihrer hohen endogenen SOX2-Expression nur 

OCT4, um erfolgreich reprogrammiert zu werden (Kim et al, 2009b). 

Um die Effizienz der Reprogrammierung zu steigern, setzten Judson und Kollegen 

microRNAs ein (Judson et al, 2009). Weitere Arbeiten zeigten auch, dass eine 

sauerstoffarme Umgebung der zu reprogrammierenden Zellen (Yoshida et al, 2009) 

sowie die Zugabe von Vitamin C (Esteban et al, 2010) zu einer Steigerung der 

Reprogrammierungseffizienz führen kann.  

Neben dem Ziel, das Krebsrisiko zu senken und die Effizienz der Reprogrammierung 

zu steigern, müssen die iPSCs, um therapeutisch eingesetzt werden zu können, 

in vitro zielgerichtet in den gewünschten Zelltypen differenziert werden. Das stellt 

eine weitere Herausforderung dar. Viele Differenzierungsprotokolle sind sehr 

komplex und zeitaufwendig. Dadurch kann es zu einer hohen Variabilität in der 

Zielzellpopulation kommen. Je nach Gewebeart liegt die Schwierigkeit darin, die 

iPSCs nicht nur vollständig, sondern auch möglichst effizient in den gewünschten 

Zelltypen zu differenzieren. Es wurden bereits verschiedene aus hiPSCs abgeleitete 

somatische Zellenlinien generiert, z. B. Hepatozyten (Cho et al, 2012; Si-Tayeb et al, 

2010a), Lungenepithelzellen (Wong & Rossant, 2013) sowie neurale Zellen 

(Chambers et al, 2009; Zhou et al, 2010; Kreitzer et al, 2013; Karumbayaram et al, 

2009) oder Blutzellen (Ebihara et al, 2012; Dias et al, 2011).  

1.3 Anwendungsmöglichkeiten von humanen iPSCs im Fokus der 
Neurobiologie 

1.3.1 IPSC-basierte in vitro-Modelle neurologischer Erkrankungen 

Eine große Herausforderung bei der Generierung von stammzellbasierten in vitro-

Modellen einer Krankheit ist die gerichtete Differenzierung der hiPSCs in den 

beeinträchtigten somatischen Zelltyp. Dieser soll idealerweise die charakteristischen 

Merkmale der Krankheit aufweisen. Es ist wichtig, ein entsprechendes 

Differenzierungsprotokoll zu Verfügung zu haben, um nicht nur den richtigen 

Gewebetyp, sondern auch spezifische und vor allem reifere Zelltypen eines 

Gewebes zu generieren. Da viele neurodegenerative Krankheiten erst im späten 

Lebensalter auftreten, ist eine lange in vitro-Differenzierung in den beeinträchtigten 

Zelltyp vorherzusehen. Außerdem werden einige Erkrankungen nicht nur durch 

genetische Faktoren bestimmt, sondern kommen sporadisch vor und/oder werden 

durch äußere Umstände beeinflusst, die schwierig in einem in vitro-Modell 

experimentell dargestellt werden können. Schließlich müssen geeignete Methoden 
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verfügbar sein, um einen möglichen Phänotyp der entsprechenden Krankheit 

aufdecken zu können. 

Die ersten Arbeiten über iPSC-basierte in vitro-Modelle demonstrierten zwar die 

Generierung von patientenspezifischen iPSCs, scheiterten aber an dem Nachweis 

möglicher krankheitsspezifischer Merkmale (Park et al, 2008; Dimos et al, 2008; 

Soldner et al, 2009). Es fehlten entsprechende Differenzierungsprotokolle und die 

untersuchten Krankheiten traten sporadisch auf. Dimos et al hatten darüber hinaus 

Schwierigkeiten, die Fibroblasten von einer älteren Patientin zu reprogrammieren. 

Demzufolge stellt nicht nur die Differenzierung des krankheitsspezifischen 

somatischen Zelltyps, sondern auch das Alter der Fibroblasten selbst eine 

Herausforderung für die Generierung von in vitro-Modellen dar. Zum ersten Mal 

gelang es Ebert et al 2009 von einem Patienten, der an spinaler Muskelatrophie 

(SMA) litt, hiPSCs zu generieren, diese in den beeinträchtigten Zelltypen zu 

differenzieren und einen krankheitsspezifischen Phänotyp aufzuzeigen (Ebert et al, 

2009). Bei der SMA handelt es sich um eine monogenetische Erkrankung, die durch 

Mutationen im survival motor neuron (SMN)-Gen ausgelöst wird. Das führt zu einer 

reduzierten Expression des SMN-Proteins und im weiteren Verlauf zu einem Verlust 

der unteren Motoneuronen. Mit einem entsprechenden Differenzierungsprotokoll 

demonstrierte diese Arbeitsgruppe, dass die patientenspezifischen Zellen zwar 

Motoneurone bilden konnten, diese aber aufgrund der reduzierten SMN-Expression 

nicht weiter differenzierten bzw. verfrüht degenerierten (Ebert et al, 2009). Im selben 

Jahr wurde ein iPSC-basiertes in vitro-Modell der Familiären Dysautonomie (FD) 

vorgestellt (Lee et al, 2009). Bei der FD handelt es sich um eine tödliche periphere 

Neuropathie. Sie wird durch eine Punktmutation im IKBKAP (I-κ-B kinase complex-

associated protein)-Gen ausgelöst. Das führt zu einem Verlust der autonomen und 

sensorischen Neuronen. Lee und Kollegen generierten FD-abgeleitete Vorläufer-

zellen der Neuralleiste (Lee et al, 2009). Bei der Differenzierung dieser Zellen in 

periphere Neurone stellten sie neben dem Splicing-Defekt im IKBKAP-Gen zusätzlich 

Defizite in der neuronalen Differenzierung und dem Migrationsverhalten fest.  

Andere Arbeitsgruppen konnten bei weiteren monogenetischen Erkrankungen, die 

das Nervensystem betreffen, einen krankheitsspezifischen Phänotyp in vitro 

demonstrieren. Dazu gehörten unter anderen das Rett-Syndrom (Marchetto et al, 

2010; Ananiev et al, 2011; Cheung et al, 2011), die Adrenoleukodystrophie (Jang et 

al, 2011) und die Spinocerebelläre Ataxie Typ 3 (SCA3; Koch et al, 2011). Zusätzlich 

konnten auch Krankheiten, die durch verschiedene Mutationen und äußere Faktoren 
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beeinflusst werden, in der Zellkulturschale modelliert werden, wie Morbus Alzheimer 

(Alzheimer´s disease, AD; Duan et al, 2014; Israel et al, 2012; Kondo et al, 2013; 

Yagi et al, 2011) oder Morbus Parkinson (Parkinson´s disease, PD; Devine et al, 

2011; Imaizumi et al, 2012; Nguyen et al, 2011; Sánchez-Danés et al, 2012; Seibler 

et al, 2011). 

Methoden zur Induktion krankheitsspezifischer Merkmale in in vitro-Modellen 

Wenn in einem krankheitsspezifischen in vitro-Modell, trotz bekannter Mutationen, 

kein Phänotyp festgestellt werden kann, kann das verschiedene Gründe haben. 

Beispielsweise treten die Krankheiten im Menschen sporadisch auf und/oder werden 

nicht nur durch genetische Faktoren, sondern auch durch äußere Einflüsse, wie den 

Lebensgewohnheiten oder der Umwelt, bestimmt. Das späte Auftreten einer 

Krankheiten im Menschen kann auch ein Grund für das Ausbleiben eines krankheits-

spezifischen Erscheinungsbildes in in vitro-Kulturen sein. Meistens weisen die in den 

Zellkultursystemen enthaltenen Zellen ein junges Reifestadium auf und können 

deshalb keinen krankheitsspezifischen Phänotyp entwickeln. Um Zellen mit einem 

höheren Reifegrad zu erhalten, können die Zellen über einen längeren Zeitraum 

differenziert werden. Eine länger andauernde Kultivierung ist jedoch zeitaufwendig, 

mit Kosten verbunden und durch äußere Einflüsse limitiert. Die Gefahr einer 

Kontamination ist groß und die heute zur Verfügung stehenden Zellkultursubstrate, 

auf denen die Zellen wachsen, reichen für eine lang andauernde Kultivierung meist 

nicht aus. Die Zellen sterben oder schwimmen ab. Ein 3D-Kultursystem kann dem 

entgegenwirken. Choi und Kollegen differenzierten in einem basalmembranartigen 

Matrix-basierten System AD-abgeleitete Neurone und konnten AD-spezifisches 

Krankheitsmerkmale aufzeigen. Die Neurone wiesen Aggregate des Tau-Proteins auf 

und in der umliegenden Matrix konnten β-Amyloid-Plaques detektiert werden (Choi et 

al, 2014).  

Neben der Kultivierung der Zellen über einen längeren Zeitraum, kann der 

Alterungsprozess in den Zellen auch aktiv beschleunigt werden. Reaktive Sauerstoff-

verbindungen lösen in Zellen Stress aus, was wiederum mit Altern assoziiert wird. 

Demzufolge kann der Einsatz von oxidativen Stressfaktoren, wie Rotenon oder 

Wasserstoffperoxid, einen altersbedingten Phänotyp in vitro induzieren. Nguyen und 

Kollegen generierten iPCS-abgeleitete dopaminerge Neurone von Patienten, die an 

sporadischer PD litten (Nguyen et al, 2011). Bei PD kommt es zum Absterben dieser 

Zellen in der Substantia nigra und es entstehen Proteinaggregate aus α-Synuclein. 
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Nguyen et al kultivierten krankheitsspezifische dopaminerge Neurone mit 

Wasserstoffperoxid und stellten eine sensitivere Reaktion dieser Neurone im 

Vergleich zu den Kontrollzellen fest. Die Zellen reagierten mit Aktivierung der 

Caspase-3 und einem darauffolgenden Zelltod. Auch Progerin, eine verkürzte Form 

von Lamin A, verursacht ein vorzeitiges Altern im Menschen. Eine Studie 

demonstrierte durch die Expression dieses Proteins in iPSC-abgeleiteten 

Fibroblasten und Neurone charakteristische Altersmerkmale, wie die Kürzung der 

Telomere und eine Verminderung der Zellteilungen (Miller et al, 2013). Zusätzlich 

konnte in PD-spezifischen dopaminergen Neuronen durch die Progerin-Expression 

ein altersbedingter Phänotyp demonstriert werden. Die Neuriten der Neurone waren 

degeneriert und die Mitochondrien vergrößert (Miller et al, 2013). Darüber hinaus 

kann der Phänotyp einer neurodegenerativen Krankheit in vitro auch durch eine 

Glutamat-induzierte neuronale Aktivität ausgelöst werden. Koch und Kollegen 

setzten Neurone von SCA3-Patienten hohen extrazellulären Konzentrationen an 

Glutamat aus. Das führte in den Zellen zur Aggregation des Ataxin3-Proteins und 

spiegelte so den krankheitsrelevanten Phänotyp wider (Koch et al, 2011).  

Generierung von in vitro-Modellen durch Gene Editing  

Viele genetisch bedingte neurodegenerative Erkrankungen kommen sehr selten vor. 

Das stellt für die Generierung eines krankheitsspezifischen Zellkulturmodells eine 

weitere Herausforderung dar. Es gibt wenige Patienten, denen eine Gewebeprobe 

entnommen werden kann und der Wissenschaft steht somit wenig Zellmaterial zur 

Verfügung. Einen Lösungsweg bietet das sogenannte Gene Editing, bei dem ein 

Gendefekt artifiziell in die Zellen eingebracht wird. Durch die homologe 

Rekombination wird das mutierte Gen mittels viraler Vektoren in das Genom der 

Zellen eingefügt. Die zielgerichtete Induktion von Doppelstrangbrüchen mittels 

Zinkfingernukleasen (Hockemeyer et al, 2009), TALENs (transcription activator-like 

effector nucleases; Hockemeyer et al, 2011; Miller et al, 2011) oder CRISPR–Cas9 

(clustered regularly interspaced short palindromic repeat-associated 9; Cong et al, 

2013; Fu et al, 2013; Mali et al, 2013; Ran et al, 2013) kann die Effizienz des Gene 

Editing deutlich erhöhen. Umgekehrt können mit dieser Methode auch Gendefekte in 

patientenspezifischen Zellen eliminiert werden. Dabei wird der mutierte Bereich des 

Gens durch eine gesunde Sequenz ersetzt. So konnten bereits isogene Zelllinien von 

verschiedenen neurodegenerativen Erkrankungen generiert werden (Corti et al, 2012; 

An et al, 2012; Ryan et al, 2013; Soldner et al, 2011; Reinhardt et al, 2013b; Sanders 
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et al, 2014). Diese Linien haben den Vorteil, dass das Genom, bis auf den Gendefekt, 

identisch ist und sich so linienspezifische Unterschiede minimieren lassen und 

krankheitsspezifische Charakteristika genau studiert werden können. 

1.3.2 IPSC-basierte Therapieansätze zur Behandlung neurologischer 
Erkrankungen 

Viele neurologische Erkrankungen gehen mit dem Verlust von Nervenzellen einher. 

Dazu gehören neben den neurodegenerativen Erkrankungen auch traumatische 

Hirn- und Rückenmarksverletzungen. Dabei kann sich das abgestorbene 

Nervengewebe nicht regenerieren, und es kommt zu irreversiblen Schäden. Ein 

therapeutischer Ansatz ist, das geschädigte Gewebe durch neues zu ersetzen, wobei 

die Herausforderung sowohl in einem strukturellen als auch in einem funktionellen 

Zellersatz liegt. Nicht nur das zerstörte Gewebe muss an der richtigen Stelle erneuert 

werden, sondern die transplantierten Zellen müssen in das Empfängergewebe 

migrieren, sich integrieren und die entsprechenden Funktionen aufnehmen. Es ist 

wichtig, dass der richtige Zelltyp transplantiert wird, der idealerweise keinen Krebs 

auslöst und vom Empfänger nicht abgestoßen wird. Bevor zellbasierte Therapien im 

Menschen Anwendung finden, müssen diese zuvor präklinisch in entsprechenden 

Tiermodellen evaluiert werden. 

Die Entwicklung der iPSC-Technologie hat die regenerative Medizin vorangebracht. 

Wo zuvor ESC-basierte Therapieansätze studiert wurden, können heute patienten-

spezifische iPSCs als Grundlage dienen und neben einer unbegrenzten Quelle an 

pluripotenten Zellen eine Abstoßungsreaktion im Patienten vermeiden. Bei genetisch 

bedingten Krankheiten mit einem bekannten Gendefekt kann dieser mittels Gene 

Editing in den patientenspezifischen Zellen korrigiert werden und dem Patienten 

können die eigenen genetisch modifizierten Zellen transplantiert werden (Abb. 2). 

Der erste iPSC-basierte Therapieeinsatz auf dem Gebiet der neurodegenerativen 

Erkrankungen gelang Wernig und Kollegen. Sie generierten aus reprogrammierten 

murinen Fibroblasten dopaminerge Neurone, da diese vornehmlich in der PD 

betroffen sind, und transplantierten die Zellen in PD-Modellratten (Wernig et al, 2008). 

Die Tiere zeigten eine Verbesserung in den motorischen Tests. Es folgten weitere 

Studien, in denen gesunde humane iPSCs in neurale Zellen differenziert und in 

verschiedene PD-Tiermodelle transplantiert wurden (Han et al, 2015; Doi et al, 2014; 

Rhee et al, 2011; Kikuchi et al, 2011). Auch hier differenzierten die transplantierten 

Zellen in dopmaninerge Neurone und führten zu einer Verbesserung der motorischen 

Fähigkeiten in den Tieren. Ein weiteres Beispiel für einen iPSC-basierten Therapie-
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ansatz einer neurodegenerativen Erkrankungen stellten Nizzardo et al vor. Sie 

forschten an der Amyotrophe Lateralsklerose (ALS). Bei dieser Krankheit kommt es 

im Patienten zu einem Verlust der oberen und unteren Motoneuronen, was 

schließlich zu Lähmungen und einem frühzeitigem Tod führt. Nizzardo et al 

transplantierten gesunde hiPSC-abgeleitete neurale Stammzellen in ein ALS-

Mausmodell (Nizzardo et al, 2014). Nach der Transplantation konnten in den Mäusen 

die motorischen Störungen vermindert und die Lebenserwartung der Tiere erhöht 

werden.  

Eine erste klinische Studie für einen iPSC-basierten Therapieansatz beschreibt das 

Moorfields Eye Hospital in England (Clinical Trial NCT02464956, 2016). Von 

Patienten, die an der altersbedingten Makuladegeneration (AMD) leiden, sollen 

iPSC-abgeleitete Zellen des retinalen Pigmentepithels (RPE) generiert werden. Das 

Ziel ist es, die Sicherheit und Effizienz der Methode zu überprüfen. Möglicherweise 

können die Zellen für Transplantationen zur Behandlung der AMD herangezogen 

werden. Bei der AMD sterben mit zunehmendem Alter die RPE-Zellen ab. Das kann 

zu einer Beeinträchtigung der Sehfähigkeit und schließlich zum Erblinden führen. 

Eine Transplantation der patientenspezifischen RPE-Zellen soll den Krankheits-

verlauf verlangsamen oder sogar aufhalten können.  

Dennoch birgt die therapeutische Verwendung von hiPSCs weiterhin das Risiko der 

Tumorigenität. Außerdem dauern sowohl der Prozess der Reprogrammierung an 

sich als auch die Differenzierung in entsprechende somatische Zelltypen sehr lange. 

Das kann zu genetischen und epigenetischen Veränderungen in den Zellen führen 

(Pera, 2011; Hussein et al, 2011; Gore et al, 2011; Lister et al, 2011). Um dem 

entgegenzuwirken, kann dieser Prozess verkürzt werden. Bei der direkten 

Konversion wird das pluripotente Stadium umgangen und leicht zugängliche 

somatische Zellen direkt in den präferierten Zelltypen transdifferenziert. Bei neuralen 

Zellen gelang zum ersten Mal 2010 die Induktion funktioneller Neurone (induzierte 

Neurone, iN) aus murinen Fibroblasten durch die ektopische Expression der 

Transkriptionsfaktoren achaete-scute complex homolog (Ascl) 1, Brn2 (Pou3f2) und 

myelintranscription factor 1 like (Myt1I) (Vierbuchen et al, 2010). Durch die Zugabe 

eines vierten Faktors, neurogenic differentiation 1 (NeuroD1), gelang derselben 

Forschungsgruppe kurz darauf die Generierung von iNs aus humanen Fibroblasten 

(Pang et al, 2011). Yoo und Kollegen zeigten im selben Jahr mit Hilfe der microRNAs 

miR-9/9* und miR-124 die direkte Konversion von humanen Fibroblasten in iNs (Yoo 

et al, 2011). Ladewig et al demonstrierten durch den Einsatz von Faktoren, die eine 
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neurale Differenzierung begünstigen, wie Inhibitoren des SMAD-Signalwegs oder der 

Glykogensynthase-Kinase 3β, eine gesteigerte Effizienz der Transdifferenzierung 

(Ladewig et al, 2012). Schließlich konnten auch tripotente neurale Vorläufer- bzw. 

Stammzellen (Lujan et al, 2012; Thier et al, 2012) sowie oligodendrogliale 

Vorläuferzellen (Najm et al, 2013; Yang et al, 2013; Kim et al, 2015) aus murinen 

Fibroblasten transdifferenziert werden. 

1.3.3 IPSC-basierte in vitro-Modelle für Wirkstoffscreenings zur Behandlung 
von neurologischen Erkrankungen 

Neben der Untersuchung von Krankheitsaspekten auf zellulärer Ebene eignet sich 

ein iPSC-basiertes Zellkulturmodell auch für Toxizitätsstudien und Wirkstoff-

screenings im Kontext einer präklinischen Arzneimittelentwicklung. Lange wurden 

hierfür Tiermodelle und daraus gewonnene primäre Zellen verwendet. Diese spiegeln 

aber nicht exakt die humanen physiologischen Gegebenheiten und die damit 

verbundenen phänotypischen Eigenschaften wider. Das kann dazu führen, dass 

bestimmte Substanzen unterschiedliche Effekte in den verschiedenen Spezies 

hervorrufen. Zum Beispiel führte die Gabe von Vitamin E oder Kreatin in einem 

transgenen Mausmodell für ALS zu einer Verbesserung der motorischen Fähigkeiten 

und einer verlängerten Lebenserwartung der Tiere. Im Menschen war dagegen keine 

deutliche Besserung zu erkennen (Desnuelle et al, 2001; Groeneveld et al, 2003; 

Shefner et al, 2004; Gurney et al, 1996). Um solche speziesspezifischen 

Unterschiede besser verifizieren zu können, können iPSC-basierte Zellkultursysteme 

herangezogen werden. Es können Zeit und Geld gespart sowie klinische Studien 

schneller in die Wege geleitet werden (zusammengefasst nach Singh et al, 2015). 

Bei neurodegenerativen Erkrankungen haben schon viele Arbeitsgruppen Nutzen 

aus iPSC-abgeleiteten Krankheitsmodellen gezogen und Wirkstoffe gefunden, die 

den krankheitsrelevanten Phänotyp verbessern konnten. Beispielsweise zeigten 

Ebert und Kollegen 2009 in einem iPSC-basierten Modell für die SMA, dass im 

Vergleich zu gesunden Motoneuronen in SMA-abgeleiteten Zellen, die einen 

reduzierten Proteingehalt von SMN aufwiesen, die Verabreichung der Substanzen 

VPA und Tobramycin zu einem Anstieg des Proteinlevels von SMN führte (Ebert et al, 

2009). In einer weiteren Studie zur Familiären Dysautonomie (FD) konnten die 

Wissenschaftler durch bereits bekannte Substanzen sowie durch ein großangelegtes 

Wirkstoffscreening zwei Substanzen ausfindig machen, die einen positiven Effekt 

zeigten (Lee et al, 2009, 2012). Das Pflanzenhormon Kinetin und der α2-

Andrenozeptor-Antagonist SKF-86466 verbesserten beide die neuronale 
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Differenzierung und das Migrationsverhalten der FD-spezifischen Zellen. Für die 

Adrenoleukodystrophie (ALD) wurden auch iPSC-abgeleitete Zellen herangezogen, 

um Wirkstoffe ausfindig zu machen. Die ALD resultiert aus einer Mutation im ABCD1 

(adenosine triphosphate [ATP]-binding-cassette transporter superfamily D 

member 1)-Gen. Das führt unter anderem zu Anhäufungen von Fettsäuren in 

Oligodendrozyten, die dadurch ihr Myelinisierungspotential verlieren. Jang et al 

generierten ALD-spezifische Oligodendrozyten, in denen sie Akkumulationen dieser 

Fettsäuren detektieren konnten. Durch Behandlung der Zellen mit den Arzneistoffen 

Lovastatin oder Natriumphenylbutyrat konnte eine Reduktion der Fettsäuren erreicht 

werden (Jang et al, 2011). Auch für weitere neurodegenerative Erkrankungen, wie 

der AD oder der ALS wurden Wirkstoffe entdeckt, die einen positiven Effekt auf das 

krankheits-spezifische Erscheinungsbild in den entsprechenden iPSC-basierten 

Zellkultursystemen zeigten (AD: Israel et al, 2012; Kondo et al, 2013; Mertens et al, 

2013; Yagi et al, 2011; Yahata et al, 2011; ALS: Burkhardt et al, 2013; Egawa et al, 

2012). 

1.4 Oligodendrozyten 

Das zentrale Nervensystem (ZNS) von Säugetieren besteht aus Neuronen, 

Astrozyten und Oligodendrozyten sowie aus Mikrogliazellen, Ependymzellen und 

Blutgefäßen. Die Oligodendrozyten sind die myelinbildenden Zellen und vorwiegend 

in der weißen Substanz des Gehirns zu finden. Ihre Hauptfunktion ist die Bildung der 

Myelinmembranen. Diese dienen der elektrischen Isolierung der Axone von 

Neuronen und gewährleisten eine schnelle und exakte Reizweiterleitung. Neben der 

Myelinmembran ist die Plasmamembran der Oligodendrozyten wichtig für die 

Biogenese, Sortierung und den Transport von Komponenten der Myelinmembran. 

1.4.1 Entstehung der Oligodendrozyten 

Während der Embryonalentwicklung entstehen die Oligodendrozytenvorläuferzellen 

(oligodendrocyte precursor cells, OPC) zu unterschiedlichen Zeitpunkten in 

verschiedenen Bereichen des Nervensystems (Richardson et al, 2006). Da der 

Zugang zu humanem fetalen Gewebe limitiert ist, beruhen die Erkenntnisse der 

Oligodendrozytenentwicklung hauptsächlich auf Studien in Nagetieren. Dabei ist die 

Entstehung der OPCs im Rückenmark am besten erforscht. Der Großteil dieser 

OPCs (85-90 %) entsteht im ventralen Bereich des sich entwickelnden Rückenmarks 

in einer spezialisierten Domäne, der Motoneurondomäne (pMN-Domäne, Richardson 
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et al, 2006). Diese Domäne formt sich mit anderen neuralen Vorläuferdomänen in 

dorso-ventraler Orientierung unter Einfluss eines gegenläufigen Gradienten von 

ventral sezerniertem sonic hedgehog (SHH) und dorsal wirkenden bone 

morphogenetic proteins (BMP) und Wnt (Wingless/Integrated)-Proteinen (Wilson & 

Maden, 2005). Die Domänen sind durch die Expression bestimmter Transkriptions-

faktoren charakterisiert und bringen unterschiedliche Zelltypen hervor (Briscoe et al, 

2000; Richardson et al, 2006; Abb. 3).  
 

 
Abb. 3: Neurale Vorläuferdomänen im embryonalen Rückenmark. 
Während der Embryogenese entstehen im Rückenmark unter Einfluss eines gegenläufigen 
Gradienten von SHH (sonic hedgehog) und BMPs (bone morphogenetic proteins) in Kombination mit 
Wnt-Proteinen neurale Vorläuferdomänen in dorso-ventraler Orientierung. Die Neurone werden vor 
den Gliazellen (Astrozyten und Oligodendrozytenvorläuferzellen (oligodendrocyte precursor cells; 
OPC)) generiert. Grundsätzlich bilden sich OPCs vor Astrozyten und ventrale vor dorsalen Zellen. In 
der Grafik wird deutlich, dass jede Vorläuferdomäne durch die Expression bestimmter Transkriptions-
faktoren beeinflusst wird. OPCs entstehen nach der Entwicklung von Motoneuronen durch einen 
Neuron-zu-Glia Wechsel aus der pMN-Domäne. Danach entwickeln sich OPCs auch in den dorsalen 
Bereichen des Rückenmarks. Modifiziert nach Richardson et al, 2006. 

Die Vorläuferzellen der pMN-Domäne sind durch die Expression der Transkriptions-

faktoren Nkx6- (Qiu et al, 1998; Briscoe et al, 2000) und oligodendrocyte 

transcription factor 2 (Olig2) gekennzeichnet (Abb. 3; Mizuguchi et al, 2001; Novitch 

et al, 2001). Es entstehen zuerst Motoneurone und anschließend nach einem 

Neuron-zu-Glia Wechsel die OPCs (Richardson et al, 1997; Sun et al, 1998; Zhou & 

Anderson, 2002). In einer späteren Phase der Embryogenese entwickeln sich 

zusätzlich OPCs, unabhängig von Nkx6 und SHH in den dorsalen Bereichen des 

Rückenmarks. Sie machen hier den kleineren Anteil (10-15 %) der OPC-Population 

aus (Cai et al, 2005; Fogarty et al, 2005; Vallstedt et al, 2005; Zhu et al, 2011). 

Weitere OPCs entstehen im Vorderhirn zu zwei aufeinanderfolgenden Zeitpunkten in 
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verschiedenen Bereichen des ventralen Telencephalon. Von hier aus bevölkern sie 

das gesamte embryonale Telencephalon und den cerebralen Cortex. Später bilden 

sich zusätzlich OPCs im postnatalen Cortex (Kessaris et al, 2006). 

Während die Proliferation und Migration von Neuronen hauptsächlich pränatal 

stattfinden, sind die Proliferation und Migration von glialen Zellen weitestgehend 

postnatale Prozesse. Vor allem die Differenzierung und Reifung der Zellen findet 

nach der Geburt statt. In Nagern laufen die Entstehung der OPCs und deren 

Migration und Reifung innerhalb von wenigen Wochen ab. Im Menschen dauern 

diese Prozesse gemäß deren Entwicklung länger, sind aber in den Grundzügen 

miteinander vergleichbar. Die ersten OPCs erscheinen im Nager an Embryonaltag 9 

und im Menschen in der 10 Schwangerschaftswoche (SW). Deren Ausreifung findet 

bei Nagetieren weitestgehend postnatal statt, beim Menschen beginnt sie noch 

pränatal in der 18 SW. Erste myelin basic protein (MBP)-positive Zellen und damit 

reife Oligodendrozyten sind beim Menschen während der Schwangerschaft zwischen 

der 28-40 SW zu beobachten, im Nager erst eine Woche nach der Geburt. Während 

in den Nagetieren die Myelinisierung nach wenigen Wochen vollständig 

abgeschlossen ist, dauert diese beim Menschen sogar bis ins Jugendalter an 

(zusammengefasst nach Barateiro & Fernandes, 2014) 

1.4.2 Entwicklung der Oligodendrozyten 

Die entstandenen OPCs besitzen ein sehr großes Migrationspotential und wandern 

von ihren Entstehungsorten in die Faserstrukturen des ZNS. Dort vermehren sie sich 

und reifen schließlich zu myelinisierenden Oligodendrozyten aus (Ono et al, 2001). 

Während dieser Entwicklung passieren die Zellen gewisse Stadien, wobei jedes 

Stadium durch bestimmte morphologische Eigenschaften, dem Proliferations- und 

Migrationsverhalten sowie dem Myelinisierungspotential und einem spezifischen 

Expressionsmuster charakterisiert ist (Abb. 4).  

OPCs haben eine bipolare Morphologie, sie proliferieren und sind migratorisch aktiv 

(Abb. 4). Die typischen Marker in dieser Phase sind der platelet-derived growth factor 

receptor alpha (PDGFRα; Pringle et al, 1992) und das Chondroitin-Sulfat-

Proteoglykan CSPG4/NG2 (NG2; Nishiyama et al, 1999; Polito & Reynolds, 2005), 

die auf der Oberfläche der OPCs detektiert werden können. Der Transkriptionsfaktor 

Olig2 als frühester oligodendrozytenspezifischer Marker ist ein weiteres wichtiges 

charakteristisches Merkmal (Lu et al, 2000; Zhou et al, 2000). 
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Abb. 4: Die Entwicklung von Oligodendrozyten. 
Die Entwicklung der Oligodendrozyten kann in vier verschiedene Stadien unterteilt werden. Zuerst 
entstehen bipolare OPCs, die vorwiegend PDGFRα, NG2 und Olig2 exprimieren. Pre-
Oligodendrozyten bilden bereits mehrere Ausläufer aus und zeigen zusätzlich eine Expression von O4. 
Während der Differenzierung zu unreifen Oligodendrozyten erhöht sich der Verzweigungsgrad der 
Zellen und sie exprimieren CNPase und GalC. Final bilden die Oligodendrozyten reich verzweigte 
Fortsätze und Myelinmembranen aus. Sie exprimieren die Myelinproteine MBP, MAG, MOG und PLP 
sowie verschiedene Transkriptionsfaktoren, wie z. B. Sox10. Bild von Julia Fischer, modifiziert nach 
Buchet & Baron-Van Evercooren, 2009. 

Pre-Oligodendrozyten exprimieren neben NG2 zusätzlich das Glykolipid Sulfatid O4 

auf der Zelloberfläche (Berg & Schachner, 1981; Sommer & Schachner, 1981). In der 

weiteren Entwicklung verlassen die noch unreifen, nicht-myelinisierenden 

Oligodendrozyten das proliferative Stadium und beginnen langsam auszureifen. Die 

Komplexität der Zellmorphologie nimmt zu und sie bilden multiple Fortsätze aus. In 

diesem Stadium ist die Expression der 2',3'-cyclischen Nukleotid-3' 

Phosphodiesterase (CNPase; Buchet & Baron-Van Evercooren, 2009; Zhang, 2001) 

und der Galactocerebrosidase (GalC; Ranscht et al, 1982) typisch. Reife und 

myelinisierende Oligodendrozyten haben reich verzweigte Fortsätze ausgebildet und 

exprimieren verschiedene Myelinproteine, z. B. das proteolipid protein (PLP) oder 

MBP (zusammengefasst nach Buchet & Baron-Van Evercooren, 2009).  

Auf molekularer Ebene wird die Oligodendrozytenspezifizierung und -differenzierung 

durch verschiedene Transkriptionsfaktoren, wie Olig1/2, Nkx2.2, Sox9 und Sox10 

reguliert (Rowitch, 2004; Richardson et al, 2006). Viele Studien haben gezeigt, dass 
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Olig1 und Olig2 besonders wichtig für die Spezifizierung der Oligodendrozyten sind 

(Lu et al, 2000, 2002; Zhou et al, 2000; Takebayashi et al, 2002). Die Expression der 

Transkriptionsfaktoren Sox10 und Nkx2.2 spielt während der terminalen 

Differenzierung und Myelinisierung der Oligodendrozyten eine wichtige Rolle (Stolt et 

al, 2002; Qi et al, 2001). Neben den intrinsischen Faktoren gibt es auch 

Komponenten, die von außen auf den Prozess der Oligodendrozytendifferenzierung 

einwirken. PDGF-AA, ein Homodimer des PDGFs, wirkt positiv auf die Proliferation 

der OPCs (Noble et al, 1988; Richardson et al, 1988; Wilson et al, 2003). Zusätzlich 

wirken Trijod-L-Thyronin (T3) und Retinsäure (retinoic acid, RA) stimulierend auf die 

Differenzierung der OPCs (Barres et al, 1994; Huang et al, 2011).  

1.4.3 Aufbau und Funktion von Myelin 

Im ZNS wird das Myelin von den Oligodendrozyten gebildet und besteht aus 

mehreren Lagen von Membranen. Ein Oligodendrozyt kann mehrere Axone 

ummanteln. Die Ummantelung ist in Segmente kompakten Myelins, den 

sogenannten Internodien, und in kurze freiliegende Bereiche des Axons, den 

Ranvier-Schnürringen, unterteilt (Abb. 5).  
 

 

Abb. 5: Myelinisierung im ZNS. 
Der Oligodendrozyt bildet mehrlagige Myelinmembranen aus und ummantelt damit mehrere Axone 
von Neuronen. Dabei entstehen kompakte Myelinsegmente (Internodien), die durch myelinfreie 
Bereiche, den Ranvier-Schnürringen, unterteilt werden. In den Schnürringen befinden sich 
Ionenkanäle, die eine saltatorische Reizweiterleitung ermöglichen. Modifiziert nach Popko, 2003. 

Reifes Myelin besteht zu 70 % aus Glykolipiden, wobei Galactosylceramid und das 

sulfatierte Derivat Sulfatid den Hauptanteil ausmachen. Der Rest besteht aus 

Proteinen. MBP und PLP machen dabei 80 % der Gesamtproteine aus. Die Lipide 

und Proteine werden größtenteils in den Zellkompartimenten des Oligodendrozyten 
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Axon

Myelin

Internodium



Einleitung 
 

23 

gebildet und schließlich zur Membran transportiert. MBP ist eine Ausnahme und wird 

in der Myelinmembran synthetisiert. Die Myelinmembranen sind sehr stabil und die 

Metabolisierung der Komponenten dauert Wochen bis Monate (Saher & Simons, 

2010). In den Ranvier-Schnürringen befinden sich spannungsabhängige Ionenkanäle. 

Das ermöglicht die saltatorische Reizweiterleitung, eine sprunghafte Weiterleitung 

der Reize von Schnürring zu Schnürring, die dadurch um ein 100-faches erhöht wird. 

Neben der elektrischen Isolierung modulieren die Oligodendrozyten durch die 

Myelinisierung auch Reifung, Überleben und Regenerationsfähigkeit von Axonen. 

Eine Fehlfunktion oder Verlust von Myelin kann zu einer axonalen und neuronalen 

Degeneration führen (zusammengefasst nach Paz Soldán & Pirko, 2012). 

1.4.4 Differenzierung von humanen Oligodendrozyten in vitro 

Aufgrund einer Vielzahl von neurologischen Erkrankungen, die mit dem Verlust oder 

der Schädigung von Myelin einhergehen, ist das Interesse sehr groß, humane 

Oligodendrozyten in vitro zu generieren. Das ermöglicht unter pathologischen 

Bedingungen, molekulare Mechanismen in den Zellen zu untersuchen sowie 

potentielle Zellen für eine Ersatztherapie zur Verfügung stehen zu haben. 

Eine Quelle für humane oligodendrogliale Zellen stellt das humane Nervengewebe 

selbst dar. Das ist allerdings schwer zugänglich und es muss auf abgetriebene Föten 

zurückgegriffen werden. Verschiedene Arbeitsgruppen gelang eine erfolgreiche 

Isolierung der humanen fetalen oligodendroglialen Zellen und deren Differenzierung 

in reifere Zellstadien (Monaco et al, 2012; Cui et al, 2012; Zhang et al, 2000). 

Dennoch wurden alternative Differenzierungsprotokolle generiert, welche die 

Gewinnung von oligodendroglialen Zellen aus humanen ESCs ermöglichten und die 

Verwendung von humanen Föten vermieden. Die Grundlage für diese Protokolle 

waren Studien an murinen ESCs, die nicht nur eine Differenzierung in 

Oligodendrozyten, sondern auch erste Transplantationsexperimente dieser Zellen in 

das Gehirn und Rückenmark von Mäusen demonstrierten (Glaser et al, 2005; Liu et 

al, 2000; Brüstle et al, 1999; Zhang et al, 2006). 2005 stellten Nistor und Kollegen die 

ersten aus humanen ESCs gewonnenen Oligodendrozyten vor (Nistor et al, 2005). 

Sie nutzten unabhängig von SHH ein RA-basiertes Protokoll mit Unterstützung von 

Insulin, T3 und fibroblast growth factor (FGF). Die Funktionalität der Zellen wurde 

in vivo in adulten Ratten mit Rückenmarksverletzungen demonstriert (Keirstead et al, 

2005). Sieben Tage nach der Verletzung wurden hESC-abgeleitete OPCs in das 

Rückenmark transplantiert. Die OPCs differenzierten in Oligodendrozyten, 
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remyelinisierten das geschädigte Gewebe und führten so zu einer Verbesserung der 

motorischen Fähigkeiten der Tiere. Es folgten weitere Differenzierungsprotokolle an 

hESCs, die auf die verschiedenen entwicklungsbiologischen Aspekte der 

embryonalen und postnatalen Oligodendrogenese zurückgriffen. Dazu gehörte die 

Expression der für die Entstehung von Oligodendrozyten wichtigen Transkriptions-

faktoren, wie Nkx2.2, Olig2 und Sox10 (Stacpoole et al, 2013; Sundberg et al, 2011) 

sowie die Antagonisierung von BMPs, wie z. B. durch Noggin (Izrael et al, 2007) oder 

die Spezifizierung der Zellen in Abhängigkeit von SHH (Hu et al, 2009; Stacpoole et 

al, 2013; Sundberg et al, 2011). Nachdem 2006 die Generierung von iPSCs 

beschrieben wurde, wurden auch diese Zellen herangezogen, um funktionelle 

Oligodendrozyten zu differenzieren (Ogawa et al, 2011b; Pouya et al, 2011; Czepiel 

et al, 2011; Piao et al, 2015; Wang et al, 2013), wobei die Ergebnisse stark variierten. 

Wang und Kollegen, deren Differenzierung auf den Arbeiten von Izrael et al und Hu 

et al basierte, konnten nach ca. 150 Tagen Oligodendrozyten mit einer Effizienz von 

79 % bilden und deren Funktionalität in vivo in myelindefizienten Mäusen bestätigen 

(Wang et al, 2013). Vor kurzem wurden auch Oligodendrozyten aus patienten-

spezifischen iPSCs generiert (Douvaras et al, 2014; Numasawa-Kuroiwa et al, 2014; 

Jang et al, 2011). Zum Beispiel differenzierten Douvaras et al Multiple Sklerose 

(MS)-spezifische Oligodendrozyten. Sie konnten zwar ein Myelinisierungspotential 

der Zellen in vivo zeigen, aber keine krankheitsspezifischen Merkmale aufdecken. 

Die oben erwähnten Protokolle für die Differenzierung von humanen ESC- und iPSC-

abgeleiteten Oligodendrozyten sind technisch sehr anspruchsvoll und zeitintensiv 

(Nistor et al, 2005; Izrael et al, 2007; Hu et al, 2009; Kang et al, 2007; Sundberg et al, 

2011; Stacpoole et al, 2013; Jang et al, 2011; Ogawa et al, 2011b; Pouya et al, 2011; 

Czepiel et al, 2011; Wang et al, 2013; Piao et al, 2015). Als Ausgangszellpopulation 

dienten immer pluripotente Stammzellen, die auf einem direkten Differenzierungsweg 

in Oligodendrozyten und deren Vorläuferzellen differenziert wurden. Die langen 

Differenzierungsphasen (> 100 Tage) können zu einer hohen Variabilität in den 

Ergebnissen verschiedener Ansätze führen. Eine Population von neuralen Stamm-

zellen als stabiler Zwischenschritt kann dem vorbeugen und aufgrund der Fähigkeit 

dieser Zellen, sich selbst zu erneuern, als konstante Ausgangszellpopulation für die 

Generierung der Oligodendrozyten dienen. Es wurden bereits neurale Stammzell-

populationen beschrieben, die aber wenig bis gar nicht in Oligodendrozyten 

differenziert werden konnten (Chambers et al, 2012; Elkabetz et al, 2008; Falk et al, 

2012; Koch et al, 2009; Lee et al, 2010; Li et al, 2011; Reinhardt et al, 2013a). Ein in 
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unserem Labor kürzlich etabliertes Protokoll beschreibt die Generierung einer 

stabilen Zellpopulation von radialgliaähnlichen neuralen Vorläuferzellen (radial glia-

like, RGL; neural precursor cells, NPC; RGL-NPC; Gorris et al, 2015). Verschiedene 

vorangegangene Studien zeigten bereits, dass sowohl aus murinen als auch aus 

humanen radialen Gliazellen (RG-Zellen) Oligodendrozyten entstehen können 

(Fogarty et al, 2005; Ganat et al, 2006; Sun et al, 2008; Mo & Zecevic, 2009; Casper 

& McCarthy, 2006). Die RGL-NPCs sollen somit vorwiegend als effiziente Quelle für 

humane Oligodendrozyten dienen. Während der Embryogenese entstehen RG-

Zellen im sich entwickelnden ZNS durch asymmetrische Zellteilung aus 

neuroepithelialen Zellen. Die RG-Zellen stellen  sowohl in der Gliogenese als auch in 

der Neurogenese eine wichtige Vorläuferzellpopulation dar (Barry et al, 2014). 

Typische Merkmale für diese Zellen sind neben der Expression von brain lipid-

binding protein (BLBP) und dem Glutamat-Aspartat Transporter (GLAST) (Morest & 

Silver, 2003), zytoplasmatische Glycogengranulate (Gadisseux & Evrard, 1985) 

sowie die Expression des für neurale Stammzellen wichtigen Faktors Nestin 

(Hartfuss et al, 2001). Sie haben eine längliche bipolare Morphologie und 

multipotente Differenzierungseigenschaften (Barry et al, 2014). Die in Gorris et al 

beschriebenen RGL-NPCs spiegelten viele dieser Merkmale wider und erhielten 

folglich den Namen einer radialgliaähnlichen neuralen Vorläuferzellpopulation. Sie 

können in einem  Embryoidkörper (embryonic body, EB)-basierten Protokoll sowohl 

von humanen ESCs als auch von iPSCs generiert werden. EBs sind Aggregate aus 

Stammzellen, die entstehen, wenn die pluripotenten Zellkolonien ohne Kontakt zu 

einer Oberfläche kultiviert werden. Nach ihrer Entstehung enthalten die EBs alle 

Zellen der drei Keimblätter (Keller, 1995). Im Differenzierungsprotokoll nach Gorris et 

al wird die neurale Differenzierung der ektodermalen Zellen durch die Zugabe von 

Retinsäure (all-trans retinoic acid, ATRA) angeregt. Nach 4 Wochen werden die EBs 

plattiert und aus den auszuwachsenden Zellen werden die RGL-NPCs mit Hilfe einer 

Immunselektion nach CD133 angereichert. CD133 ist ein Stammzellmarker, mit dem 

bereits Stammzellen aus humanen Gehirngewebe gewonnen werden konnten 

(Tamaki et al, 2002; Uchida et al, 2000). Die isolierten RGL-NPCs wachsen adhärent 

und sind über mehrere Wochen stabil proliferativ. Sie können expandiert und 

kryokonserviert werden. Unter Entzug von Wachstumsfaktoren und der Zugabe 

entsprechender Faktoren können sie in Neurone, Astrozyten und besonders in 

Oligodendrozyten differenziert werden. Damit bestätigen sie ihr tripotentes 

Differenzierungsvermögen. Aufgrund ihres starken oligodendroglialen 
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Differenzierungspotentials können die RGL-NPCs herangezogen werden, um 

oligodendrozyten- und krankheitsspezifische Mechanismen zu untersuchen. Darüber 

hinaus können sie für einen möglichen Zellersatz in der regenerativen Medizin 

eingesetzt werden. 

1.4.5 Die Funktionalität von in vitro generierten humanen Oligodendrozyten 
in vivo 

Eine Schädigung oder der Verlust von Myelin können verschiedene Ursachen haben. 

Dazu gehören traumatische Verletzungen (z. B. im Rückenmark) sowie chronische 

(z. B. MS) und neurodegenerative Erkrankungen (z. B. Metachromatische 

Leukodystrophie, Pelizeus-Merzbacher-Krankheit). In den meisten Fällen sind die 

myelinbildenden Zellen geschädigt und/oder sterben ab. Im weiteren Verlauf kann es 

zur Degeneration der Axone und schließlich zum Absterben der Neurone kommen. 

Zellersatztherapien können helfen, das geschädigte Gewebe wieder aufzubauen und 

freigelegte Axone mit Hilfe von intakten Oligodendrozyten zu remyelinisieren. Um 

diese Therapieansätze zu evaluieren und die Funktionalität der Oligodendrozyten zu 

überprüfen, können die Zellen in entsprechenden Tiermodellen untersucht werden. 

Die ersten Arbeiten wurden mit humanen embryonalen Gewebefragmenten bzw. 

Zellen durchgeführt (Gumpel et al, 1987; Brüstle et al, 1998; Seilhean et al, 1996). 

1987 beschrieben Gumpel und Kollegen zum ersten Mal, dass transplantierte 

humane Zellen fähig sind, das ZNS von myelindefizienten Mäusen zu remyelinisieren 

(Gumpel et al, 1987). Sie verwendeten kleine Gehirnfragmente von humanen Föten, 

die im ersten Trimester der Schwangerschaft abgetrieben wurden, und 

transplantierten diese in das Gehirn der Shiverer-Maus. In diesem Tiermodell kann 

aufgrund einer Deletion im Mbp-Gen kein kompaktes Myelin gebildet werden 

(Molineaux et al, 1986; Dupouey et al, 1979). Demzufolge ist diese Maus gut 

geeignet, um die Remyelinisierung von transplantierten Zellen in vivo zu studieren. In 

späteren Experimenten wurden die oligodendroglialen Zellen gezielt aus bereits 

gewonnenem humanen Gehirngewebe isoliert und anschließend in die Shiverer-

Maus transplantiert (Windrem et al, 2004, 2008, 2014). Die Zellen integrierten 

erfolgreich in das Mausgewebe und reiften zu myelinbildenden Zellen aus. Die 

Lebensdauer der Tiere konnte teilweise durch die Remyelinisierung verlängert 

werden (Windrem et al, 2008, 2014). Trotzdem stellt der eingeschränkte Zugang zu 

humanem primären Nervengewebe einen Nachteil der vorgestellten Studien dar. 

Eine Alternative stellen in vitro generierte, von Stammzellen abgeleitete 

oligodendrogliale Zellen dar. Das erste Transplantationsexperiment wurde mit aus 
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murinen ESCs abgeleiteten Oligodendrozytenvorläuferzellen durchgeführt (Brüstle et 

al, 1999). Die Zellen wurden in myelindefiziente (MD) Ratten eingebracht. Im Gehirn 

der Tiere konnte anschließend eine Remyelinisierung beobachtet werden. Sechs 

Jahre später wurden zum ersten Mal humane ESC-abgeleitete OPCs in die Shiverer-

Maus transplantiert. Auch hier konnte eine erfolgreiche Integration, Reifung und 

Myelinausbildung der eingebrachten Zellen demonstriert werden (Nistor et al, 2005). 

Neben weiteren Transplantationsstudien an ESC-abgeleiteten oligodendroglialen 

Zellen (Keirstead et al, 2005; Izrael et al, 2007; Hu et al, 2009; Sharp et al, 2010; 

Erceg et al, 2010; Kim et al, 2012) wurden mit Entwicklung der iPSC-Technologie 

auch iPSC-abgeleitete Zellen in vivo hinsichtlich ihrer Funktionalität Myelin 

auszubilden untersucht (Wang et al, 2013; Douvaras et al, 2014). Wang und 

Kollegen zeigten in ihrer Arbeit, dass die transplantierten hiPSC-abgeleiteten OPCs 

in die Shiverer-Maus nicht nur zu einer weitreichenden Myelinisierung, sondern auch 

zu einer deutlichen Verlängerungen der Lebenserwartung der Tiere führte (Wang et 

al, 2013). 

Neben der Shiverer-Maus gibt es weitere Tiermodelle, um in vivo-Myelinisierung zu 

studieren. Dazu gehört die bereits erwähnte MD-Ratte. Durch eine Mutation im X-

Chromosom-gekoppelten Plp-Gen kann bei den männlichen Trägern im Gehirn kein 

PLP gebildet werden, was zu einer Demyelinisierung führt (Csiza & de Lahunta, 1979; 

Simons & Riordan, 1990). In Tieren mit traumatischen Rückenmarksverletzungen 

oder in denen eine Demyelinisierung künstlich erzeugt wurde, kann auch eine 

Remyelinisierung durch die eingebrachten Zellen untersucht werden. Die 

Demyelinisierung kann artifiziell z. B. durch die Immunisierung mit Myelinproteinen 

(Experimentelle autoimmune Enzephalomyelitis; Steinman, 1999) oder durch die 

Verabreichung von Lysolecithin (Blakemore et al, 1977; Woodruff & Franklin, 1999) 

hervorgerufen werden. 

1.5 Lysosomale Speichererkrankungen 

Lysosomale Speichererkrankungen umfassen eine Gruppe von mehr als 40 

Stoffwechselkrankheiten. Sie werden meist durch einen Gendefekt verursacht, der 

wiederum zur einer Fehlfunktion von lysosomalen Enzymen, Membran- oder 

Transportproteinen führt (Futerman & van Meer, 2004). Dadurch wird der 

intrazelluläre Stoffwechsel gestört, was wiederum zu intralysosomalen Ablagerungen 

von verschiedenen Substraten, wie Sphingolipiden, Glykosaminoglykanen, Glyko-

proteinen und Glykogen, in verschiedenen Geweben und Organen führt. Der 
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entstehende Phänotyp einer lysosomalen Speicherkrankheit ist meist sehr komplex 

und betrifft mehrere Gewebe oder Organe (zusammengefasst nach Parenti et al, 

2013). 

1.5.1 Transport lysosomaler Enzyme 

Lysosomen sind membranumgebene zytoplasmatische Organellen tierischer Zellen. 

Sie haben ein inneres saures pH-Optimum und ermöglichen den Abbau von 

Substraten in einer geschützten Umgebung. Lysosomen enthalten mehr als 50 

lösliche saure Hydrolasen (z. B. Proteasen, Lipasen oder Sulfatasen) und mehr als 

120 Membranproteine, die ständig neu ersetzt werden müssen (Braulke & Bonifacino, 

2009). Sie werden im Endoplasmatischen Retikulum (ER) gebildet, danach im Golgi-

Apparat modifiziert und schließlich in Vesikel verpackt zum Endosom transportiert 

(Abb. 6; Braulke & Bonifacino, 2009). Final werden die Proteine durch die 

vollständige Fusion von Endosom und Lysosom oder durch wiederholte transiente 

Fusionsprozesse zwischen den beiden Kompartimenten in das Lysosom übertragen 

(Pryor & Luzio, 2009). Der vesikuläre Transport der Proteine erfordert komplexe 

Sortierungssignale und Erkennungsproteine. Ein wichtiges Signal stellen die 

Mannose-6-Phosphat-(M6P)-Reste dar, die als lysosomales Lokalisierungssignal 

dienen und an M6P-spezifische Rezeptoren (MPR) binden können (Abb. 6; Braulke 

& Bonifacino, 2009). Die MPRs befinden sich nicht nur in der Membran des Golgi-

Apparats und der Endosomen, sondern auch in der äußeren Plasmamembran aller 

Säugetierzellen (Braulke et al, 1987; Braulke & Bonifacino, 2009). Somit ist es 

möglich, extrazelluläre lysosomale Enzyme, die an einen M6P-Rest gekoppelt sind, 

aufzunehmen und zu den Lysosomen zu transportieren (Abb. 6, Schritt 9). Zusätzlich 

entkommt während der Sortierung ein gewisser Anteil (5-20 %) der löslichen 

lysosomalen Enzyme und wird aus den Zellen in den Extrazellulärraum sezerniert 

(Abb. 6; Schritt 10; Chao et al, 1990; Braulke & Bonifacino, 2009). Diese Prozesse 

ermöglichen den Vorgang der sogenannten Kreuzkorrektur. Exogen verabreichtes 

oder von einer benachbarten Zelle sekretiertes lysosomales Enzym kann von einer 

anderen Zelle über die M6P-Rezeptoren aufgenommen, zum Lysosomen 

transportiert werden und dort die enzymatische Funktion aufnehmen (Platt & 

Lachmann, 2009; Matzner & Gieselmann, 2005). Auf diesem Vorgang beruhen 

verschiedenen Therapieansätze lysosomaler Speichererkrankungen, die das Ziel 

haben, das defekte Enzym durch Enzymsubstitution zu ersetzen, wie bei der 
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Enzymersatztherapie, in vivo Gentherapien oder zellbasierten Therapien (siehe 

Punkt 1.5.4). 
 

 

Abb. 6: Synthese und Transport lysosomaler Enzyme. 
Lysosomale Enzyme werden im rauen Endoplasmatischen Retikulum (ER) synthetisiert und ko-
translational glykolisiert (1). Anschließend werden sie an den cis-Golgi-Apparat übergeben (2), wo 
mindestens ein Mannose-Rest des Enzyms phosphoryliert wird (3). Die phosphorylierten Enzyme 
binden an Mannose-6-Phosphat-(M6P)-Rezeptoren. Diese befinden sich in der Membran von Vesikeln, 
die sich vom trans-Golgi-Netzwerk formen und schließlich lösen (4). Die Clathrin-umhüllten Vesikel 
fusionieren mit späten Endosomen (5). Der niedrige pH-Wert führt zur Freisetzung des 
phosphorylierten Enzyms. Durch eine weitere Fusion (transient oder vollständig) wird das aktive 
Enzym in das Lysosom übergeben (6). Der M6P-Rezeptor wird wiederverwendet und zurück zum 
Golgi-Apparat transportiert (7). Ein Teil der Rezeptoren wird auch zur Plasmamembran gebracht (8). 
Hier können sezernierte lysosomale Enzyme über M6P durch rezeptorvermittelte Endozytose 
aufgenommen werden und über das Endosom zum Lysosom transportiert werden (9). Zusätzlich 
können im rauen ER synthetisierte Proteine mittels Exozytose aus den Zellen sekretiert werden (10). 
Modifiziert nach Desnick & Schuchman, 2002. 

1.5.2 Metachromatische Leukodystrophie 

Die Metachromatische Leukodystrophie (MLD) ist eine lysosomale Speicherkrankheit 

und gehört zu den Sphingolipidosen. Sie ist monogenetisch und wird autosomal-

rezessiv vererbt. Die Erkrankung ist panethnisch und somit in vielen verschiedenen 

Volksgruppen, z. B. bei Europäern, Japanern, Arabern, Südafrikanern, Iranern und 

Indern vertreten (von Figura et al, 2001). In Europa liegt die Prävalenz bei 1:100.000 

(Heim et al, 1997; Poorthuis et al, 1999). Die MLD wird verursacht durch eine 

Defizienz des lysosomalen Enzyms Arylsulfatase A (ARSA, EC 3.1.6.8). Unter 

physiologischen Bedingungen katalysiert ARSA den Abbau von 3’-O-Sulfo-

Galaktosylceramid (Sulfatid; Abb. 7).  
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Aufgrund der ARSA-Defizienz kann Sulfatid nicht abgebaut werden und lagert sich 

intralysosomal ab. Pathologische Sulfatidakkumulationen finden sich in 

verschiedenen Geweben, wie in der Gallenblase, der Niere und insbesondere im 

Nervengewebe (Baier & Harzer, 1983; Satoh et al, 1988; Joosten et al, 1975). Als 

Glycosphingolipid stellt Sulfatid eine Hauptkomponente der Myelinmembranen dar 

(Saher & Simons, 2010). Demzufolge betreffen die pathologischen Ablagerungen 

hauptsächlich die myelinbildenden Zellen, die Oligodendrozyten im ZNS und die 

Schwann-Zellen im peripheren Nervensystem (PNS). Dabei kann das pathologische 

Speichermaterial nicht nur in den Lysosomen, sondern auch in der Myelinmembran 

auftreten (Saravanan et al, 2004). Zusätzlich können die Ablagerungen in Neuronen 

und Astrozyten vorkommen (Molander-Melin et al, 2004; Hess et al, 1996; Peng & 

Suzuki, 1987). 
 

 

 
Abb. 7: Hydrolyse von Sulfatid. 
Das lysosomale Enzym Arylsulfatase A (ARSA) hydrolysiert durch die Abspaltung eines Sulfatrestes 
an der Glukoseeinheit den Abbau von 3’-O-Sulfo-Galaktosylceramid (Sulfatid) zu Galaktosylceramid. 
Das Aktivatorprotein Saponin B (Sap-B) wird benötigt, um das Sulfatid der ARSA zugänglich zu 
machen (Gieselmann & Krägeloh-Mann, 2010). 

Im Verlauf der MLD kommt es zu einer fortschreitenden Demyelinisierung des 

Nervensystems, die von verschiedenen neurologischen Symptomen begleitet wird, 

wie Bewegungsstörungen, Krämpfen und zunehmenden Koordinations- und 

Sprachschwierigkeiten (Gieselmann, 2008). Vermutlich sind die zu Anfang 

auftretenden neurologischen Symptome ein Resultat der Sulfatidablagerungen in 

Neuronen und nicht durch den Verlust von Myelin verursacht (Hess et al, 1996). Im 

weiteren Krankheitsverlauf tritt die Demyelinisierung mehr in den Vordergrund und 

deren klinische Konsequenzen dominieren den MLD-Phänotyp. Die Schädigung des 

Myelins führt sekundär zu einem weiteren Verfall der Axone.  
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Warum die Sulfatidablagerungen in Neuronen zu einem Funktionsverlust und in der 

weißen Substanz zur Demyelinisierung führen, ist bislang noch nicht genau geklärt 

(Gieselmann & Krägeloh-Mann, 2010). Vermutlich führen die zunehmenden 

Sulfatidakkumulationen zu einer Störung des lysosomalen-endosomalen Systems 

und lösen so weitere sekundäre pathogene Prozesse aus, die eine Apoptose in den 

Zellen herbeiführen können (Vitner et al, 2010). In den myelinbildenden Zellen kann 

das negative Auswirkungen auf die Zusammensetzung des Myelins haben und so 

zur Instabilität der Membran führen (O’Brien & Sampson, 1965).  

Je nach Beginn der Krankheit können drei verschiedene klinische Formen 

unterschieden werden, die spätinfantile, die juvenile und die adulte Form (von Figura 

et al, 2001; Kolodny & Moser, 1983). Die Erstgenannte ist die schwerwiegendste 

Form der MLD und entwickelt sich in den ersten beiden Lebensjahren. Diese 

Patienten überleben kaum das erste Lebensjahrzehnt. Bei der juvenilen Form treten 

die ersten Symptome zwischen dem 3. und 16. Lebensjahr auf. Die Krankheit endet 

meist im zweiten oder dritten Jahrzehnt tödlich. Die adulte Form stellt die schwächste 

Form dar. Sie beginnt erst nach dem 16. Lebensjahr, führt aber dennoch mit der Zeit 

zum Tod (Polten et al, 1991). Insgesamt ist der Verlauf der adulten Form langsamer 

als bei der juvenilen und spätinfantilen Form, wobei die adulte und juvenile Form 

teilweise überlappen können (von Figura et al, 2001). 

Genetisch betrachtet ist die MLD sehr heterogen. Bis heute sind mehr als 150 

Mutationen im ARSA-Gen bekannt (The Human Gene Mutation Database ARSA, 

2016). Die Mutationen kommen sowohl in hetero- als auch in homozygoter Form vor, 

und in einem Patienten können verschiedene Mutationen gleichzeitig im ARSA-Gen 

auftreten. Daraus resultieren die unterschiedlichen Schweregrade der MLD (siehe 

oben). Von den genetischen Veränderungen sind ungefähr 75 % durch Punkt-

mutationen ausgelöst (The Human Gene Mutation Database ARSA, 2016). Es kann 

aber auch zu Veränderungen in Schnittstellen zwischen Exon und Intron, sowie zu 

Deletionen oder frühzeitigen Stopp-Sequenzen kommen (Gieselmann & Krägeloh-

Mann, 2010). Welche Form der MLD entsteht, hängt von den jeweiligen Mutationen 

ab und korreliert mit der ARSA-Enzymaktivität. Homozygote Nullallel-Träger leiden 

immer an der spätinfantilen Form. Die Mutationen führen zu starken Struktur-

veränderungen des ARSA-Proteins, sodass es sofort proteasomal abgebaut wird und 

kein funktionelles Enzym das Lysosom erreicht (Poeppel et al, 2005, 2010). Bei der 

juvenilen und adulten Form besteht eine ARSA-Restaktivität. Das Protein ist nur 

teilweise falsch gefaltet, und ein geringer Anteil gelangt vorbei an der Qualitäts-
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kontrolle der Zelle zum Lysosom (von Figura et al, 1983; von Bülow et al, 2002). Das 

erklärt sowohl den späteren Beginn als auch den langsameren Verlauf der beiden 

Formen (Gieselmann, 2008). Bei der adulten Form liegt meist eine homo- oder 

heterozygote Mutation vor, die mit einer Restaktivität assoziiert ist (Berger et al, 1997; 

Polten et al, 1991). Die juvenile MLD beinhaltet zusätzlich oder einzeln eine 

heterozygote Mutation, die mit einem vollständigen Verlust der Enzymaktivität 

assoziiert wird (Berger et al, 1997). Bei einem Vergleich von Geschwistern mit 

identischen Genotypen wurde ein unterschiedlicher Krankheitsverlauf der MLD 

festgestellt (Arbour et al, 2000). Diese Heterogenität lässt vermuten, dass weitere 

unbekannte genetische und epigenetische Faktoren einen Einfluss auf den Phänotyp 

und Krankheitsverlauf der MLD haben können (Gieselmann, 2008). 

1.5.3 Krankheitsmodelle der MLD 

Die molekularen Pathomechanismen der MLD sind noch nicht ausreichend geklärt, 

und die Erkrankung ist bis heute nicht heilbar. Um die Krankheit besser verstehen zu 

können und um geeignete Therapiemöglichkeiten zu finden, ist es wichtig, ein 

passendes Krankheitsmodell zur Verfügung zu haben. Das sollte idealerweise die 

Hauptmerkmale der MLD, wie Sulfatidablagerungen, Demyelinisierung und 

neuronale Degenration, widerspiegeln. 

Da die MLD bislang nur im Menschen beschrieben wurde, existiert kein natürlich 

vorkommendes Tiermodell. 1996 generierten Hess und Kollegen die Arsa-defiziente 

(Arsa-/-)-Maus. Durch die Eliminierung des Arsa-Gens mittels homologer 

Rekombination wird das Arsa-Protein nicht gebildet (Hess et al, 1996). Das 

Tiermodell spiegelt biochemisch die spätinfantile Form der MLD wider. Im Vergleich 

zum Menschen zeigt die Maus allerdings einen milderen Phänotyp. Mit 

zunehmendem Alter entstehen in dem Tier, wie beim Menschen, fortschreitende 

Sulfatidakkumulationen.  Dennoch treten nur milde neurologische Symptome auf und 

es findet keine weitreichende Demyelinisierung im Nervensystem statt. Lediglich der 

Durchmesser der myelinisierten Axone ist vermindert (Hess et al, 1996). Um den 

Phänotypen zu verstärken, wurde ein weiteres Tiermodell generiert. Zusätzlich zur 

Arsa-Defizienz wurden die sulfatidsynthetisierenden Enzyme (UDP-

Galaktose:Ceramid Galaktosyltransferase und 3‘-Phosphoadenosin-5‘-

Phosphosulfat:Cerebrosid Sulfotransferase) in den neuralen Zellen überexprimiert 

(Ramakrishnan et al, 2007; Eckhardt et al, 2007). Das führte im Tier zu einem 
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Anstieg der Sulfatidakkumulationen und zu einer Degenration der Axone. Die Maus 

entwickelte vergleichbare neurologische Symptome wie im MLD-Patienten.  

Auch wenn die Arsa-/--Maus nicht den umfassenden MLD-Phänotyp widerspiegelt, 

dient sie heute als wichtiges Tiermodell, um Therapiemöglichkeiten für die MLD zu 

evaluieren. Gerade bei Therapien, die darauf basieren, das defekte Enzym zu 

ersetzen, konnten in diesem Tiermodell erste Erfolge sichtbar gezeigt werden (siehe 

Punkt 1.5.4). Dagegen können Therapien, die neben der Wiederherstellung der 

Enzymaktivität zusätzlich auf einen Zellersatz und eine Remyelinisierung abzielen, 

nur vermindert in der Arsa-/--Maus studiert werden. Eine zusätzliche Mutation im 

Tiermodell, die dazu führen würde, dass kein Myelin gebildet werden kann oder es 

zu einer Demyelinisierung kommt, kann dieses Problem beheben. 

Neben Tiermodellen sind krankheitsspezifische in vitro-Modelle von großer 

Wichtigkeit für die Erforschung von Erkrankungen. Sie sind leichter zugänglich und 

ermöglichen, molekulare Mechanismen in der Zellkulturschale zu untersuchen. Für 

die MLD existieren bereits derartige Modelle. Humane primäre Fibroblasten von 

MLD-Patienten wurden herangezogen, um verschiedene Aspekte der Krankheit zu 

studieren, wie die ARSA-Enzymaktivität oder die molekularen Grundlagen der 

unterschiedlichen Mutationen (Polten et al, 1991; von Figura et al, 1983, 1986). Im 

Jahr 2004 stellten Saravanan et al ein in vitro-Modell von sulfatidspeichernden Zellen 

vor. Dabei handelte es sich um primäre Nierenzellen, die aus der Arsa-/--Maus 

gewonnen wurden (Saravanan et al, 2004). In der MLD speichern Nierenzellen, nach 

den Zellen des Nervensystems, am meisten Sulfatid (Gieselmann et al, 1998; Hess 

et al, 1996; Lüllmann-Rauch et al, 2001). Saravanan und Kollegen stellten mit Hilfe 

dieser Zellen fest, dass das myelin and lymphocyte protein (MAL) in Arsa-defizienten 

Nierenzellen fehllokalisiert ist und im Zusammenhang mit den Sulfatidablagerungen 

und der MLD-Pathologie steht (Saravanan et al, 2004). Klein und Kollegen nutzten 

ebenfalls die Arsa-defizienten Nierenzellen und untersuchten den Prozess der 

lysosomalen Exozytose von Sulfatid. Sie zeigten, dass ein Teil des akkumulierten 

Speichermaterials in den Extrazellulärraum abgegeben werden kann (Klein et al, 

2005). Allerdings können mit den beschriebenen Zellen nur gewisse Fragestellungen, 

wie Mutationen, die Enzymaktivität oder die Speicherung von Sulfatid studiert werden. 

Viele Fragen, die gerade die myelinbildenden Zellen, aber auch Neurone und deren 

gemeinsame Interaktion sowie die Auswirkungen der Demyelinisierung betreffen, 

bleiben offen. Weitere Arbeitsgruppen isolierten aus der Arsa-/--Maus Schwann-

Zellen oder neurale Vorläuferzellen, die weiter in Oligodendrozytenvorläufer 
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differenziert wurden (Pituch et al, 2015; Saravanan et al, 2007). Allerdings handelt es 

sich hierbei um murine Modelle, die aus der Arsa-/--Maus gewonnen wurden und 

nicht alle Krankheitsmerkmale aufweisen. Es fehlt ein robustes Kultursystem auf der 

Basis humaner und vorzugsweise oligodendroglialer Zellen. Humane Fibroblasten 

sind am einfachsten zugänglich, bergen aber das Problem, nicht alle MLD-Merkmale 

widerzuspiegeln. Mit Hilfe der iPSC-Technologie (siehe Punkt 1.2) ist es möglich, 

Fibroblasten, die von MLD-Patienten gewonnen wurden, zu reprogrammieren. Die 

generierten MLD-spezifischen iPSCs können anschließend mit entsprechenden 

Protokollen in Oligodendrozyten oder Schwann-Zellen differenziert werden. 

1.5.4 Therapiemöglichkeiten zur Behandlung der MLD 

Die MLD ist bis heute nicht heilbar. Patienten werden häufig nur symptomatisch 

behandelt. Allerdings wurden bereits viele Ansätze kausaler Therapiemöglichkeiten 

beschrieben (Abb. 8). Die meisten beruhen darauf, dass ARSA über M6P-

Rezeptoren von den MLD-spezifischen Zellen aufgenommen und so die 

Enzymaktivität wiederhergestellt werden kann (siehe Punkt 1.5.1). Dazu gehört die 

hämatopoetische Stammzelltherapie (haematopoetic stem cell therapy, HSCT), die 

Enzymersatztherapie (enzyme replacement therapy, ERT) sowie die Gen- und 

Zelltherapie (Abb. 8). 

Die HSCT macht sich zu Nutze, dass die transplantierten hämatopoetischen 

Stammzellen (haematopoetic stem cells; HSC) über die Bluthirnschranke zum 

Wirkungsort gelangen (Asheuer et al, 2004; Simard & Rivest, 2004) und dort ARSA 

abgeben, welches von den defizienten Zellen aufgenommen werden kann (Platt & 

Lachmann, 2009; Matzner & Gieselmann, 2005). Es wurden bereits viele MLD-

Patienten, die an unterschiedlichen Formen der MLD litten, mittels HSCT behandelt 

(Görg et al, 2007; Solders et al, 1998; Kidd et al, 1998; Navarro et al, 1996; Malm et 

al, 1996; Kapaun et al, 1999; Guffon et al, 1995; Krivit et al, 1999; Bredius et al, 

2007). Dabei wurde ersichtlich, dass Transplantationen in Patienten, die an der 

spätinfantilen Form leiden, weniger effektiv sind (Bredius et al, 2007; Malm et al, 

1996; Malatack et al, 2003). Im Gegensatz dazu konnten Patienten in frühen Stadien 

der juvenilen und adulten Form durchaus von den Transplantationen profitieren, da 

der Krankheitsverlauf langsamer voranschreitet (Görg et al, 2007; Guffon et al, 1995; 

Kapaun et al, 1999; Kidd et al, 1998; Malm et al, 1996; Navarro et al, 1996; Solders 

et al, 1998). Es konnte ein Aufschub der Krankheitsentwicklung, aber keine 

vollständige Heilung erreicht werden. Ein deutlicherer Effekt konnte in einem 
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weiteren Ansatz erzielt werden, in dem HSCs genetisch verändert wurden und ARSA 

überexprimierten. In der Arsa-/--Maus führte die Transplantation dieser Zellen zu 

einer fast vollständigen Umkehrung der Sulfatidablagerungen im ZNS und PNS (Biffi 

et al, 2006, 2004). Basierend auf diesen Ergebnissen wurde eine klinische Phase I/II 

Studie eingeleitet (Clinical Trial NCT01560182, 2016). Erste Ergebnisse zeigten, 

dass an der spätinfantilen MLD leidende Patienten, die vor dem Auftreten erster 

schwerwiegender Symptome behandelt wurden, von dieser Therapie profitieren 

konnten (Biffi et al, 2013). 
 

 

Abb. 8: Therapiemöglichkeiten zur Behandlung der MLD. 
Die meisten Therapieansätze der MLD verfolgen das Ziel, das defekte ARSA-Enzym zu ersetzen. Die 
hämatopoetische Stammzelltherapie (haematopoetic stem cell therapy, HSCT), die 
Enzymersatztherapie (enzyme replacement therapy, ERT) und Zelltherapien machen sich zu Nutze, 
dass extrazelluläre ARSA von defizienten Zellen aufgenommen werden kann. Einen weiteren Ansatz 
stellt die in vivo Gentherapie dar, die durch Vektor-vermittelte ARSA-Expression die Enzymaktivität 
wiederherstellt. Bei der Chaperontherapie schützen Enzyminhibitoren fehlgefaltete ARSA-Proteine vor 
einem schnellen proteasomalen Abbau. Die Substratreduktionstherapie zielt darauf ab, die 
Sulfatidsynthese zu blockieren und so die pathologischen Akkumulationen zu verhindern (Patil & 
Maegawa, 2013). 

ERTs werden bereits erfolgreich bei anderen lysosomalen Speichererkrankungen 

eingesetzt (Beck, 2010). Allerdings stellen Speichererkrankungen, bei denen das 

Nervensystem involviert ist, eine besondere Herausforderung dar. Das verabreichte 

rekombinante Protein muss die Bluthirnschranke passieren. Trotzdem konnten bei 

der MLD erste Therapieerfolge erzielt werden. Durch mehrfache intravenöse 

Verabreichung von ARSA in die Arsa-/--Maus konnte die Pathologie und Funktion im 

ZNS verbessert werden (Matthes et al, 2012; Matzner et al, 2005, 2009b). In einem 

weiteren Ansatz wurde versucht, die Bluthirnschranke zu umgehen, indem 

Minipumpen intrecerebroventrikular in MLD-Tiermodelle implantiert wurden, die 

kontinuierlich rekombinantes ARSA in die Cerebrospinalflüssigkeit abgaben 

(Stroobants et al, 2011). Die Sulfatidablagerungen und neurologischen Symptome 

konnten so reduziert werden. Ein ähnlicher Ansatz, bei dem ARSA direkt intrathekal 
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verabreicht wird, ist bereits in der klinischen Phase I/II (Clinical Trial NCT01510028, 

2016). 

Zelltherapien können neben dem ARSA-Protein gleichzeitig, in Abhängigkeit vom 

gewählten Zelltyp, das geschädigte Gehirngewebe ersetzen. Es wurden bereits 

primäre murine Oligodendrozytenvorläufer und neurale Vorläuferzellen sowie murine 

ESC-abgeleitete gliale Vorläuferzellen in die Arsa-/--Maus transplantiert (Klein et al, 

2006; Kawabata et al, 2006; Givogri et al, 2006, 2008). Kürzlich generierten Doerr et 

al humane MLD-spezifische iPSCs und differenzierten diese weiter in neurale und 

astrogliale Vorläuferzellen. Durch eine Überexpression von ARSA wurde der 

Gendefekt in den Zellen korrigiert. Eine Transplantation der Zellen in das Gehirn von 

Arsa-/--Mäusen führte zu einer Reduktion der Sulfatidablagerungen (Doerr et al, 

2015). 

Da die MLD vorwiegend durch den Defekt in einem Enzym verursacht wird, eignen 

sich auch in vivo Gentherapien zur Behandlung der Krankheit. Dabei wird ARSA über 

Lentiviren, Adenoviren oder Adeno-assoziierte Vektoren direkt intracerebral 

verabreicht. Dies führte in bereits erfolgten Studien sowohl zu einer weitreichenden 

Expression von ARSA im Gehirn von Ratten und nichtmenschlichen Primaten als 

auch zu einer Verbesserung der neuropathologischen Veränderungen und 

Bewegungsstörungen in den genannten MLD-Tiermodellen (Colle et al, 2010; 

Consiglio et al, 2001; Kurai et al, 2007; Miyake et al, 2014; Piguet et al, 2012; 

Rosenberg et al, 2014; Zerah et al, 2015). In vivo Gentherapien haben den Vorteil 

der Langzeitkorrektur, greifen aber auch durch Verwendung viraler Vektoren in das 

Genom des Patienten ein.  

Ein weiterer Therapieansatz macht sich zu Nutze, dass das defekte ARSA-Enzym 

aufgrund seiner Fehlfaltung im Proteasom schnell abgebaut wird, aber grundsätzlich 

aktiv ist. Bei dieser sogenannten Chaperontherapie werden Enzyminhibitoren 

verabreicht, die eine korrekte Faltung des ARSA-Enzyms unterstützen und somit 

einen frühzeitigen Abbau verhindern sollen (Fan, 2008). Das Enzym gelangt in das 

Lysosom und kann seiner Funktion nachgehen.  

Die Substratreduktionstherapie zielt darauf ab, die Synthese von Sulfatid zu 

inhibieren und so die pathologischen Ablagerungen zu minimieren (Platt & Lachmann, 

2009; Beck, 2010).  
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1.6 Ziel der Arbeit 

Mit Hilfe der iPSC-Technologie können patientenspezifische Zellkulturmodelle 

generiert werden, die es nicht nur erlauben, die krankheitsverursachenden Prozesse 

zu studieren, sondern auch ermöglichen, therapeutische Wirkstoffe auszutesten. Das 

Ziel dieser Arbeit war es, ein iPSC-basiertes humanes MLD-spezifisches in vitro-

Modell zu generieren. Es wurden Hautfibroblasten von vier MLD-Patienten in iPSCs 

reprogrammiert und unter Verwendung eines in unserem Labor etablierten 

Differenzierungsprotokolls in einen der am meisten betroffenen Zelltypen der MLD, 

den Oligodendrozyten, differenziert. Der Vorteil an diesem Protokoll ist die 

Generierung einer stabilen Zellpopulation an RGL-NPCs (Gorris et al, 2015). Diese 

Zellen können nicht nur wiederholt als Ausgangszellpopulation für Oligodendrozyten, 

sondern auch für Astrozyten und Neurone herangezogen werden. Das erlaubt, 

zelltypspezifische Untersuchungen sowie Interaktionen zwischen den einzelnen 

Subtypen zu studieren. Das generierte MLD-spezifische in vitro-System sollte 

idealerweise vielseitig einsetzbar sein und Aufschluss über die Pathomechanismen 

der MLD geben. Eine Herausforderung stellte hierbei die Differenzierung in 

Oligodendrozyten selbst und die Aufdeckung von krankheitsspezifischen 

Unterschieden in den Kulturen dar. Darüber hinaus sollen die generierten RGL-NPCs 

genutzt werden, um die Aufnahme von extrazellulärer ARSA in den ARSA-

defizienten Zellen in vitro zu studieren. Auf diesem Vorgang der sogenannten 

Kreuzkorrektur basieren verschiedene Therapieansätze der MLD und die RGL-NPCs 

können demzufolge für Vorversuche entsprechender Therapiestrategien heran-

gezogen werden.  

Neben Zellkulturmodellen sind in vivo-Modelle ein unverzichtbares Hilfsmittel in der 

Forschung. Es können krankheitsrelevante Prozesse verfolgt und mögliche 

Therapieansätze erforscht werden. In dieser Arbeit wurde durch die Kreuzung der 

Arsa-/-- und Shiverer-Maus ein neues Tiermodell generiert. Resultierend aus der 

Defizienz des Arsa-Proteins entstehen in der Maus Sulfatidablagerungen, der 

Genotyp der Shiverer-Maus führt zu einem Verlust des kompakten Myelins. Dieses 

Mausmodell wurde genutzt, um die Funktionalität und das Differenzierungsverhalten 

in vitro-generierter MLD-RGL-NPCs in einem krankheitsspezifischen Milieu zu 

studieren. Mit diesem Ansatz können mögliche Zusammenhänge zwischen 

Sulfatidablagerungen und Demyelinisierung aufgedeckt werden. 
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2. Material und Methoden 

2.1 Hersteller 

Adobe, Irland 

Analytical Instrument, USA 

AppliChem, Deutschland 

Axxora, Deutschland 

Bayer Healthcare, 
Deutschland 

BD Bioscience, Belgien 

Biocare Medical, USA 

Biometra, Deutschland 

BioRad, Deutschland 

Biozym, Deutschland 

Brand, Deutschland 

Branson, USA 

Canon, Deutschland 

Carl Roth, Deutschland 

Carl Zeiss, Deutschland 

CellSystems, Deutschland 

Chart Industries, USA 

Coriell Institute for Medical 
Research, USA 

Corning, USA 

Covance, USA 

DAKO, Deutschland 

Dianova, Deutschland 

DNAstar®, USA 

DSHB, USA 

Engelbrecht, Deutschland 

Eppendorf, Deutschland 

Faust, Deutschland 

Fresenius Kabi, Deutschland 

Graphpad, USA 

Greiner Bio-One, Deutschland 

Illumina, USA 

Kendro, Deutschland 

Leica, Deutschland 

Life Technologies, 
Deutschland 

Merck Millipore, Deutschland 

Mettler Toledo, Deutschland 

Microsoft, USA 

Miltenyi Biotech, Deutschland 

Molecular Devices, 
Deutschland 

NeoLab, Deutschland 

New England BioLabs, USA 

NIH, USA 

Nikon, Deutschland 

Nunc, Deutschland 

PAA Laboratories, 
Deutschland 

Panasonic, Deutschland 

Peprotech, USA 

PEQLAB, Deutschland 

Pfizer, Deutschland 

Promega, Deutschland 

Qiagen, Deutschland 

R&D Systems, Deutschland 

RAD Source, USA 

Sakura Finetek, Deutschland 

Sarstedt, Deutschland 

Sartorius, Deutschland 

Schott, Deutschland 

Serva, Deutschland 

Severin, Deutschland 

Sigma-Aldrich, Deutschland 

SPL Life Sciences, Korea 

StemCells, Inc, UK 

Systec, Deutschland 

The Jackson Laboratory, USA 

Thermo Fisher Scientific, 
Deutschland 

Tree Star, USA 

Vector Laboratories, USA 

VELP Scientifica, USA 

VWR, Deutschland 

Zymo Research Europe, 
Deutschland 

Zytomed Systems, 
Deutschland 

2.2 Technische Ausstattung 

Alle Geräte, die im Folgenden nicht aufgeführt worden sind, gehören zum 
allgemeinen Laborstandard. 
 
Gerät Hersteller 

DFC290 Kamera (für DM 
1000 LED) Leica 

Autoklav D-150 Systec 

AxioCam MRm  Carl Zeiss 

Axioskop 2 Carl Zeiss 

Axiovert 200M Carl Zeiss 

  

Gerät Hersteller 

Biological Irradiator RS 
2000 RAD Source 

Cryostat Microm Cryo-Star 
HM 560 GMI 

Digitalkamera  Powershot 
G5 Canon 

Elektrophoresekammern Biometra 
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Gerät Hersteller 

FACS® Calibur BD 
Biosciences 

FACS® DiVa BD 
Biosciences 

Fluoreszenzlampe mbq 52 Carl Zeiss 

Flüssigstickstoff Chart 
Industries 

Gefriertruhe -170 °C Panasonic 

GelDoc BioRad 

Inkubator HeraCell150 Thermo 
Scientific 

Inverse Lichtmikroskope 
(Axiovert 25, 40C, 40CFL) Carl Zeiss 

Kühlschränke (4 °C); 
Gefrierer (-20 °C, -80 °C); 
Trockenschrank; Backofen 

Thermo 
Scientific 
(Liebherr, 
Kendro, 
Heraeus) 

Leica DM 1000 LED Leica 

Leica DM IL LED Leica 

Leica Live Cell DMI6000 B  Leica 

Megafuge 40 R & 1.0 R Thermo 
Scientific 

Microzentrifuge Galaxy Mini VWR 

Mikrowelle Severin 

Minizentrifuge NeoLab 

Mr Frosty Thermo 
Scientific 

  

Gerät Hersteller 

Multipipette Eppendorf 

Nano Drop ND-1000 PEQLAB 

Netzteil 
Elektrophoresekammer 
Standard P25 

Biometra 

pH Meter Mettler Toledo 

Pipette-boy Accu-Jet Brand 

Pipetten  Eppendorf 

Spectrophotometer 
OptiMax Tunable 
Microplate Reader 

Analytical 
Instrument 

Stereomikroskop SMZ1500 Nikon 

Sterilbank HERAsafe/guard Thermo 
Scientific 

Thermocycler T 
Professional Trio Biometra 

Thermocycler T3000 Biometra 

Thermomixer compact Eppendorf 

Tischzentrifuge 5415R Eppendorf 

Ultraschallbad 1510 Branson 

Vortex Mixer 2X3 VELP 
Scientifica 

Waage Sartorius 

Zählkammer nach Fuchs-
Rosenthal Faust 

Zeiss 
AxioImager.Z1/ApoTome Carl Zeiss 

2.3 Material 

2.3.1 Verbrauchsmaterialien 

Alle Verbrauchsmaterialien, die im Folgenden nicht aufgeführt worden sind, gehören 
zum allgemeinen Laborstandard. 
 
Verbrauchsmaterialien Hersteller 

12-, 24-, 96-Well Zellkulturschale Corning 

4-Well Zellkulturschale Nunc 

6-Well Zellkulturschale Thermo Scientific 

CellstarTM 175 cm2 Flasche  Greiner Bio-One 

Deckgläser Engelbrecht 

FACS Röhrchen (5 ml) Sarstedt 

Glaspipetten (5; 10; 25 ml) Brand 
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Verbrauchsmaterialien Hersteller 

Glasware (Flaschen; Kolben; Bechergläser) Brand, Schott, VWR 

Kryoröhrchen (1; 1,8 ml) Nunc 

Multipipette Spitzen Eppendorf 

Objektträger Superfrost® Plus Thermo Scientific 

Pasteurpipetten Brand 

Pasteurplastikpipette (3 ml) Brand 

PCR-Stripes (0,2 ml) Biozym 

Petrischale (Ø 10 cm) BD Bioscience 

Pipettenspitzen  Greiner Bio-One 

Serologische Plastikpipetten (1; 2; 5; 10; 25 ml) BD Bioscience 

Spritzen (10; 20; 50 ml) BD Bioscience 

Tubes (0,5; 1,5) Eppendorf 

Tubes (15; 50 ml) Greiner Bio-One 

Zellkulturflasche (25, 75 cm2) Nunc 

Zellkulturschale Ø 15 cm SPL Life Sciences 

Zellkulturschalen (Ø 3,5; 6; 1  cm) VWR 

Zellschaber Corning 

Zellsieb 40 µm Nylon BD Bioscience 
 

2.3.2 Chemikalien und Reagenzien 

Chemikalie Hersteller/Nr. 

2-Mercaptoethanol  Sigma Aldirch 
/63689 

4-Nitrocatechol sulfate 
dipotassium salt 

Sigma Aldrich/ 
N7251 

Agarose PEQLAB/35-1020 

Alcian Blue 8GX Sigma Aldrich/ 
A3157 

Alfazym PAA Laboratories/ 
L11-012 

Ampuwa® H2O Fresenius Kabi 

Apo-Transferrin, 
human 

Sigma Aldrich/ 
T1147 

Ascorbinsäure Sigma Aldrich/ 
A4403 

B27 Life Technologies/ 
17504-044 

B27 ohne Vitamin A Life Technologies/ 
12587-010 

BDNF R&D Systems/248-
BD-025 

Chemikalie Hersteller/Nr. 

bFGF Life Technologies/ 
13256-029 

Blocklösung Zytomed Systems/ 
ZUC007-100 

Bromophenol blau Sigma 
Aldrich/B0126  

BSA Sigma 
Aldrich/A7030 

BSA Fraktion V 
(7,5 %) 

Life Technologies/ 
15260-037 

Cytoseal™ XYL Thermo Scientific/ 
8312-4 

D-Glukose Sigma Aldrich/ 
G8270 

D-Saccharose Carl Roth/4621 

DABCO Sigma Aldirch/ 
290734 

DAPI Sigma Aldirch/ 
D9542 

DMSO Sigma Aldrich/ 
D2650 
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Chemikalie Hersteller/Nr. 

DNA-Leiter (1 kb) PEQLAB/25-2030 

DNA-Leiter (100 bp) PEQLAB/25-2010 

DNAse (RNA) Life Technologies/ 
18068-015 

DNAse (Zellkultur) CellSystems/ 
LS002140 

dNTPs PEQLAB/20-2011 

EDTA Carl Roth/X986 

EGF, human R&D Systems/236-
EG-01M 

Essigsäure Merck/100063 

Eisessig 96 %  Carl Roth/T179 

Eosin 1 % wässrige 
Lösung Carl Roth/3137 

Ethanol Merck, AppliChem 

Ethidiumbromid Carl Roth/2218 

FGF-2, human R&D Systems/Bulk 
233-FB/CF 

Forskolin Sigma 
Aldrich/F6886 

Gelatine Life Technologies/ 
G-1890 

Glukose-6-Phosphat Sigma Aldrich/ 
G7250 

Glutaraldehyd (25 %) Serva/23114.01 

Glycerin Sigma Aldrich/ 
G5516 

Glycin Carl Roth/3908 

Haematoxylin Biocare Medical/    
CATHE-H 

HCl Carl Roth/X942 

Insulin Sigma Aldrich/ 
I6634-1G 

Isopropanol AppliChem/A3928 

Ketanest S 25 mg/ml Pfizer/Apotheke 

Kollagenase Typ IV Life Technologies/ 
17104019 

L-Glutamin 200 mM Life Technologies/ 
25030024 

Laminin Sigma Aldrich/ 
L2020 

Magnesiumchlorid 
Hexahydrat Carl Roth/A537 

Mannose-6-Phosphat Sigma Aldrich 
/M3655 

Chemikalie Hersteller/Nr. 

Mowiol 4-88 Carl Roth/0713 

MatrigelTM BD 
Bioscience/354230 

Methanol Carl Roth/4627 

N2-Supplement PAA Laboratories/ 
F005-004 

Natriumchlorid (NaCl) Carl Roth/9265 

Natriumhydroxid 
(NaOH) Carl Roth/6771 

NGS  Life Technologies/ 
16050130 

Noggin R&D Systems/ 
6057-NG 

Paraformaldehyd Sigma Aldrich/ 
P6148 

PDGF-AA Peprotech/100-13A 

Poly-L-Ornithin Sigma Aldrich/P-
3655 

Propidiumiodid  Molecular 
Devices/P-21493 

Retinsäure Sigma Aldrich/ 
R2625 

rhARSA Prof. V Gieselmann 

Rompun 2 % Bayer/Apotheke 

Tissue-Tek® Sakura Finetek/ 
4583 

Trijod-L-Thyronin  Sigma Aldrich/T551 

Tris base Carl Roth/AE15 

Triton-X 100 Sigma Aldrich/T878 

TritonTM N-101 Sigma 
Aldrich/303135 

Trypanblau Lösung 
(0,4 %) 

Life Technologies/ 
15250-061 

Trypsin-EDTA  Life Technologies/ 
15400-054 

Trypsin-Inhibitor  Life Technologies/ 
17075029 

Tween-20 Carl Roth/9127 

Vectashield®  Axxora//A-1000 

Wasserstoff-
peroxidase 30 % Carl Roth/CP26 

Xylene Cyanol Sigma Aldrich/ 
X4126 

Xylol Carl Roth/CN80 

Y27632 Merck//688000 
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2.3.3 Gebrauchsfähige Reagenzien 

Kits Hersteller 
CytoTune®-iPS Sendai Reprogramming Kit Life Technologies 

DAB-Subtrate Kit High Contrast Zytomed Systems 

DNA Clean & ConcentratorTM-5 Kit Zymo Research 

DNase I, Amplification Grade Life Technologies 

DNeasy® Blood & Tissue Kit Qiagen 

GoTaq® Flexi DNA Polymerase Promega 

iScript™cDNA Synthese Kit BioRad 

LongAmp® Taq PCR Kit New England BioLabs 

Quick-RNA™ MiniPrep Zymo Research 

REDExtract-N-Amp Tissue PCR Kit Sigma Aldrich 

RNeasy® Mini Kit Qiagen 

Taq DNA Polymerase Kit Life Technologies 

Vector® Blue Alkaline Phosphatase Substrate 
Kit III SK-5300 Vector Laboratories 

  

2.3.4 Mausstämme 

CD1-Maus 

Der CD1-Mausstamm wurde verwendet, um embryonale Mausfibroblasten (mouse 
embryonic fibroblasts, MEF) zu gewinnen und diese nach Bestrahlung als Feeder-
Zellen (siehe Punkt 2.4.5) einzusetzen. Die Mäuse stammen aus dem Haus für 
Experimentelle Therapie der Universität Bonn. 

Rag2-defiziente Maus 

Rag2-defiziente (Rag2-/-, C57BL/6-Rag2tm1CGN/J) Mäuse besitzen durch eine 
homozygote Mutation im recombination activating gene 2 (Rag2) keine reifen und 
immunkompetenten B- und T-Lymphozyten (Shinkai et al, 1992). Dieser Mausstamm 
ist immundefizient und wurde für Teratomanalysen (siehe Punkt 2.5.10) verwendet. 
Außerdem wurde dieser Mausstamm in die nachfolgend beschriebenen 
Mausstämme eingekreuzt. Dadurch wurde bei einer Transplantation von humanen 
Zellen eine Abstoßungsreaktion vermindert. Es waren somit keine zusätzlichen 
immunsupressiven Maßnahmen notwendig. Die Mäuse stammen aus dem Haus für 
Experimentelle Therapie der Universität Bonn. 

Arsa- und Rag2-defiziente Maus 

In der Arsa-/--Maus (CST-tg/ASA-KO; Hess et al, 1996) wurde das Arsa-Gen mittels 
homologer Rekombination inaktiviert. Somit weisen sie keine Enzymaktivität für Arsa 
auf und können kein Sulfatid metabolisieren. Die Sulfatidablagerungen entstehen 
schon wenige Wochen nach der Geburt und nehmen mit fortschreitendem Alter zu. 
Genetisch und biochemisch spiegelt die Arsa-/--Maus den Phänotyp der MLD wider. 
Im Vergleich zum Menschen zeigt die Maus aber keine weitreichende 
Demyelinisierung und schwächere neurologische Symptome. Sie reflektieren ein 
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frühes Stadium der humanen MLD. Im späteren Alter entwickeln die Mäuse unter 
anderem Gang- und Bewegungsstörungen, sowie Hyperaktivität und Ataxien. Die 
Lebenserwartung der Tiere ist nicht verkürzt (Hess et al, 1996). Um die Arsa-/--Maus 
für Transplantationen zu verwenden, wurde im Vorfeld der genetische Hintergrund 
der Rag2-/--Maus eingekreuzt (Arsa-/-/Rag2-/-, CST-tg/ASA-KO /Rag2tm1CGN/J). Die 
Arsa-/--Maus wurde von Prof. Volkmar Gieselmann (Institut für Biochemie und 
Molekularbiologie, Universität Bonn) zur Verfügung gestellt. 

Shiverer/Rag2-/--Maus 

Die Shiverer (Shi) Maus (C3Fe.SWV.B6-Mbpshi/J) besitzt eine Deletion im Mbp-Gen. 
Dadurch kann im homozygoten Fall kein kompaktes Myelin im ZNS dieser Maus 
gebildet werden. Ab dem 12. postnatalen Tag zeigen sich erste neurologische 
Symptome in Form von Tremor. Die Symptome verstärken sich mit zunehmendem 
Alter und führen später zu lang anhaltenden Krampfanfällen. Für homozygote Tiere 
liegt die Lebenserwartung zwischen 50-100 Tagen (Chernoff, 1981; Molineaux et al, 
1986). 
Um die Shiverer-Maus für Transplantationen zu verwenden, wurde zusätzlich der 
genetische Hintergrund der Rag2-/--Maus eingekreuzt (Shi/Rag2-/-, 
C3Fe.SWV.C57BL/6-Mbpshi/shiRag2tm1CGN/J). Die Shiverer-Maus wurde vom Jackson 
Laboratory (USA) bezogen. 

Arsa-/-/Shi/Rag2-/--Maus 

Die Arsa-/-/Shi/Rag2-/-(C3Fe.SWV.C57BL/6-ASA(tm1Gie)Mbp(shi/shi)Rag2(tm1CGN)/J)-Maus 
wurde im Vorfeld durch die Einkreuzung der verschiedenen Mausstämme generiert. 
Dieses Tiermodell kombiniert den Verlust der Enzymaktivität von Arsa (Arsa-/-) mit 
dem Verlust von kompakten Myelin im ZNS (Shi). 
 

2.3.5 Primäre Zellpräparationen  

Offizielle 
Nomenklatur 

Labor-
bezeichnung Zelltyp Herkunft 

LB-C-31f Ctrl-1 Humane 
Hautfibroblasten 

Institut für Rekonstruktive Neurobiologie, 
Bonn, Deutschland 

LB-C-6m Ctrl-3 Humane 
Hautfibroblasten 

Coriell Institute for Medical Research, 
Camden, USA (GM00200) 

LB-MLD-1f aMLD Humane 
Hautfibroblasten 

Dr. Volkmar Gieselmann; Institut für   
Biochemie und Molekularbiologie,      
Universität Bonn, Deutschland 

LB-MLD-3m liMLD-2 Humane 
Hautfibroblasten 

Coriell Institute for Medical Research, 
Camden, USA (GM00243) 

LB-MLD-4m liMLD-3 Humane 
Hautfibroblasten 

Coriell Institute for Medical Research, 
Camden, USA (GM00197) 

LB-MLD-5m liMLD-4 Humane 
Hautfibroblasten 

Coriell Institute for Medical Research, 
Camden, USA (GM02331) 

RG Ctrl-2 Humane 
Hautfibroblasten 

Raphaela Gorris, Institut für Rekonstruktive 
Neurobiologie, Bonn, Deutschland 

CD1 CD1 Embryonale 
Mausfibroblasten 

Institut für Rekonstruktive Neurobiologie, 
Bonn, Deutschland 
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2.3.6 Antikörper 

Primärantikörper 

Epitop Verdünnung Immunglobolin Hersteller  
473HD 1:300 Ratte IgM Faissner et al, 1994 
4860 1:800 Ratte IgM Czopka et al, 2009 

AFP 1:200 Kaninchen IgG DAKO 

Cd133-APC 1:20 Maus IgG Miltenyi Biotech 

Cd133-Biotin 1:11 biotinylated Miltenyi Biotech 

GFAP 1:1000 Kaninchen IgG DAKO 

GLAST-PE 1:11 Maus IgG Miltenyi Biotech 

HN 1:500 Maus IgG Life Technologies 

Isotyp-PE 1:11 Maus IgG Miltenyi Biotech 

Map2ab 1:500 Maus IgG Sigma Aldrich 

MBP 1:25 Maus IgG Merck Millipore 

Nestin 1:100 Kaninchen IgG Merck Millipore 

NG2 1:100 Kaninchen IgG Merck Millipore 

Nogo-A 1:20 Schaf IgG R&D Systems 

O4 1:100 Maus IgM R&D Systems 

OLIG2 1:500 Kaninchen IgG Merck Millipore 

PDGFRα 1:100 Ziege IgG R&D Systems 

SMA 1:200 Maus IgM DAKO 

SOX2 1:100 Maus IgG R&D Systems 

SOX9 1:200 Ziege IgG R&D Systems 

SSEA-4 1:200 Maus IgG DSHB 

STEM121TM 1:1000 Maus IgG StemCells 

STEM123TM 1:1000 Maus IgG StemCells 

Sulph1 (SU:R3) 1:100/400 Maus IgG Prof. Jan-Eric Månsson 

Tra-1-60 1:500 Maus IgM Merck Millipore 

Tra-1-81 1:500 Maus IgG Merck Millipore 

TUBB3 1:1000 Kaninchen IgG Covance 

TUBB3 1:1000 Maus IgG Covance 

Vimentin 1:100 Maus IgM Merck Millipore 
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Sekundärantikörper 

Epitop, Konjugat Verdünnung Hersteller  
anti-Kaninchen IgG, Alexa 488/555 1:1000 Life Technologies 

anti-Maus IgG, Alexa 488/555 1:1000 Life Technologies 

anti-Maus IgG, Biotin 1:200 Dianova 

anti-Maus IgM, Alexa 488/555 1:1000 Life Technologies 

anti-Ratte IgG, Alexa 555 1:1000 Life Technologies 

anti-Ratte IgM, Alexa 488 1:1000 Life Technologies 

anti-Schaf IgG, Alexa 555 1:1000 Life Technologies 

anti-Ziege IgG, Alexa 555 1:1000 Life Technologies 

Streptavidin, Cy3 1:450 Dianova 

ZytoChemPlus (HRP) Polymer anti-Maus / Zytomed Systems 
   

2.3.7 Oligonukleotide 

Die Oligonukleotide wurde von Life Technologies bezogen.  

Gen Sequenz Hybridisierungs-
temperatur 

Produkt-
größe 

    

ARSA 5´-CTCTCTTGGGACAGACCCCT-3 
5´-GGCGGCCCTAGAGGGTG-3 60 °C 258 bp 

ARSB 5´-GACTCTTCACCGTGTCCCAG-3´ 
5´-GGACAGGAGCTTTGTGACGA-3 60 °C 300 bp 

ASCL1 5’-CGGCCAACAAGAAGATGAGT-3’ 
5’-TGGAGTAGTTGGGGGAGATG-3’ 60 °C 150 bp 

BLBP 5’-CCAGCTGGGAGAAGAGTTTG-3’ 
5’-CTCATAGTGGCGAACAGCAA-3’ 62 °C 196 bp 

CD133 5’-GCATTGGCATCTTCTATGGTT-3’ 
5’-CGCCTTGTCCTTGGTAGTGT-3’ 60 °C 170 bp 

GAPDH 5’-ATGACCCCTTCATTGACCTCAACT-3’ 
5’-ATACTTCTCATGGTTCACACCCAT-3’ 60 °C 320 bp 

GFAP 5’-TCATCGCTCAGGAGGTCCTT-3’ 
5’-CTGTTGCCAGAGATGGAGGTT-3’ 60 °C 383 bp 

NES 5’-CAGCGTTGGAACAGAGGT-3’ 
5’-TGGCACAGGTGTCTCAAGGGTAC-3’ 60 °C 389 bp 

OLIG2 5’-GCTGCGTCTCAAGATCAACAG-3’ 
5’-CACCAGTCGCTTCATCTCCTC-3’ 60 °C 196 bp 

PAX6 5’-GTGTCCAACGGATGTGTGAG-3’ 
5’-CTAGCCAGGTTGCGAAGAAC-3’ 60 °C 254 bp 

PDGFRα 5’-CTATCCACACTGTCAAACAGGTTG-3’ 
5’-ACTGCTGGACTGAGAAGTTTCATC-3’ 60 °C 545 bp 

SeV 5’-GGATCACTAGGTGATATCGAGC-3’ 
5’-ACCAGACAAGAGTTTAAGAGATATGTATC-3’ 60 °C 181 bp 

SOX2 5’-GTATCAGGAGTTGTCAAGGCAGAG-3’ 
5’-TCCTAGTCTTAAAGAGGCAGCAAAC-3’ 60 °C 78 bp 

SOX9 5’-GACTCGCCACACTCCTCCT-3’ 
5’-CTCGATGTTGGAGATGACG-3’ 62 °C 234 bp 

VIM 5’-GGAAGAGAACTTTGCCGTTG-3’ 
5’-TCCAGCAGCTTCCTGTAGGT-3’ 56 °C 174 bp 
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2.4 Zellkultur 

Alle Zellen wurden bei 37 °C in 5 % CO2 in einer wasserdampfgesättigten 
Atmosphäre kultiviert. Falls nicht abweichend erwähnt, wurden hiPSCs bei 130 x g 
für 3 min, RGL-NPCs und Fibroblasten bei 300 x g für 5 min zentrifugiert. 
Zellzahlen wurden unter Verwendung einer Fuchs-Rosenthal Zählkammer bestimmt. 
Dafür wurden die Zellen in einer 1:4 Verdünnung mit Trypanblau-Lösung versetzt 
und in die Zählkammer gegeben. Anschließend wurden 4 Kleinquadrate ausgezählt 
und die ZellzahlGesamt wie folgt berechnet. Der Faktor 5 berücksichtigt die Tiefe der 
Zählkammer: 
 

 
 

Alle Grundmedien sowie die Natrium-Pyruvat-Lösung, NEAA-Lösung, L-Glutamin-
Lösung, Penicillin/Streptomycin-Lösung (Pen/Strep), 2-Mercaptoethanol-Lösung, das 
KnockOutTM Serum Replacement, fetale Kälberserum (fetal calf serum, FCS) und 
PBS wurden von Life Technologies bezogen. 

2.4.1 Zellkulturmedien 

1 x MEF-Einfriermedium 
DMEM 
10 % FCS, hitzeinaktiviert 
10 % DMSO 

MEF-Medium 
DMEM 
10 % FCS, hitzeinaktiviert 
1 mM Natrium Pyruvat 
0,1 mM NEAA 
1 mM L-Glutamin 

DMEM/F-12 hiPSC-Medium 
DMEM/F-12 
50 % KnockOutTM Serum Replacement 
0,1 mM NEAA 
0,5 mM L-Glutamin 
1 x Pen/Strep  
0,1 mM 2-Mercaptoethanol 
4-10 ng/ml bFGF 

hiPSC-Medium 
KnockOutTM DMEM 
20 % KnockOutTM Serum Replacement 
0,1 mM NEAA 
1 mM L-Glutamin 
0,1 mM 2-Mercaptoethanol 
4-10 ng/ml bFGF 

Einfriermedium hiPSC/RGL-NPC 
90 % KnockOutTM Serum Replacement 
10 % DMSO 

2 x MEF-Einfriermedium 
DMEM 
20 % FCS, hitzeinaktiviert 
20 % DMSO 

5 % Adv. DMEM 
Advanced DMEM 
5 % FCS, hitzeinaktiviert 
1 mM L-Glutamin 
1 x Pen/Strep 

EB-Medium 
KnockOutTM DMEM 
20 % KnockOutTM Serum Replacement 
0,1 mM NEAA 
1 mM L-Glutamin 

N2-Medium 
DMEM/F-12 
1,6 g/l D-Glukose 
1 x N2-Supplement 
0,02 mg/ml Insulin 
0,1 mg/ml humanes Apo-Transferrin 
1 x Pen/Strep 
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2.4.2 Zellkulturreagenzien 

Gelatine (0,1 %) 
1 g Gelatine in 1 l ddH20 lösen, 
autoklavieren und bei 4 °C lagern. 

Matrigel® (MG) 
MG bei 4 °C auf Eis ü. N. auftauen lassen. 
Mit einer vorgekühlten Pipette Aliquots à 
1 ml auf Eis pipettieren und bei -20 °C 
lagern. 

Trypsin-EDTA (TE) 
0,5 %ige Trypsin/EDTA Stock-Lösung mit 
PBS zur gewünschten Konzentration 
verdünnen und bei 4 °C lagern. 

Kollagenase Typ IV (1 mg/ml) 
Kollagenase Typ IV in KnockOutTM DMEM 
lösen, steril filtrieren und nicht länger als 
eine Woche bei 4 °C lagern. 

Poly-L-Ornithin (PO, 15 µg/ml) 
Stock-Lösung (1,5 mg/ml): 
100 mg PO in 67 ml ddH2O lösen, steril 
filtrieren und bei -20 °C lagern. 
Arbeitslösung: Stock-Lösung 1:100 in 
ddH2O verdünnen und bei 4 °C lagern. 

Trypsin-Inhibitor (TI) 
2,5 g Trypsin-Inhibitor in 1 l ddH20 lösen, 
steril filtrieren, aliquotieren und bei -20 °C 
lagern.  

Hitzinaktiviertes FCS 
FCS bei 37 °C im Wasserbad auftauen 
und anschließend unter wiederholtem 
Schütteln bei 56 °C 30 min inkubieren. 
Aliquots à 50 ml bei -20 °C lagern. 

 

2.4.3 Zellkulturlösungen 

Reagenz Konzentration und Lösungsmittel Lagerung 

Apo-Transferrin 10 mg/ml in ddH2O -20 °C 

Ascorbinsäure 100 mM in ddH2O -20 °C 

BDNF 10 µg/ml in 0,1 % BSA in PBS -20 °C 

DNase 1% 10 mg/ml in PBS -20 °C 

EGF 10 µg/ml in 0,1 % BSA/10 mM Eisessig in ddH2O -20 °C 

bFGF 10 µg/ml in 0,1 % BSA in PBS -20 °C 

FGF-2 10 µg/ml in 0,1 % BSA in PBS -20 °C 

Forskolin 10 mM in Ethanol -20 °C 

G6P 0,75 M in ddH2O -20 °C 

Insulin 5 mg/ml in 10 mM NaOH -20 °C 

M6P 0,75 M in ddH2O -20 °C 

Noggin 100 µg/ml in PBS -20 °C 

PDGF-AA 10 µg/ml in 0,1 % BSA/4 mM HCl in ddH2O -20 °C 

Trijod-L-Thyronin 30 µg/ml in 0,33 M Natriumhydroxid -80 °C 

Retinsäure 10 mM in DMSO -80 °C 

Y27632  10 mM in ddH2O -20 °C 
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2.4.4 Oberflächenbeschichtung für Zellkulturschalen 

Reagenz Beschichtung 

Poly-L-Ornithin (PO) 

 

Die Zellkulturschalen wurden mit der PO-Lösung bedeckt und ü. N. 
bei 37 °C inkubiert (PO-Schalen). Vor dem Gebrauch wurde die PO-
Lösung abgenommen und die Schalen 2 x mit PBS gewaschen. 

Gelatine (0,1 %) 

 

Die Zellkulturschalen wurden mit Gelatine-Lösung bedeckt und 
mindestens 20 min bei 37 °C inkubiert. 

Laminin (Ln) 

 

Die PO-Schalen wurden 2 x mit PBS gewaschen und mit einer 
2 µg/ml Ln-Lösung in PBS für mindestens 4 h bei 37 °C oder ü. N. 
bei 4 °C beschichtet (PO/Ln-Schalen). 

Matrigel® (MG) 

 

Das MG wurde über Nacht bei 4 °C auf Eis aufgetaut. Mit einer 
vorgekühlten Pipette wurde 1 ml MG in 29 ml gekühltem DMEM/F-12 
Medium gelöst. Die Zellkulturschalen wurden mit der verdünnten 
MG-Lösung für 4 h bei RT oder ü. N. bei 4 °C beschichtet. 

  

2.4.5 Mitotische Inaktivierung von primären murinen embryonalen Fibroblasten 

Die MEFs wurden aus Embryonen des Mausstammes CD1 gewonnen und zur 
Expansion, Bestrahlung und weiteren Verwendung als sogenannte Feeder-Zellen zur 
Verfügung gestellt. Die Feeder-Zellen dienten der Kokultivierung mit humanen 
Stammzellen, um so deren Wachstum und Erhaltung der Pluripotenz während der 
Proliferation zu gewährleisten (Lim & Bodnar, 2002). 
Bevor MEFs als Feeder-Zellen verwendet werden konnten, wurden sie mittels γ-
Bestrahlung mitotisch inaktiviert. Die zuvor isolierten MEFs wurden bei Passage 
(P) 0 eingefroren. Ein Kryoröhrchen wurde auf 3 x 15 cm Zellkulturschalen aufgetaut 
und bis P3 expandiert. Dafür wurde das gefrorene Röhrchen im Wasserbad bei 
37 °C angetaut, die Zellsuspension in 9 ml vorgewärmten MEF-Medium 
aufgenommen und die Zellen durch Zentrifugation sedimentiert. Die Zellen wurden in 
frischem MEF-Medium als P1 ausplattiert. Sobald die Zellen konfluent waren, wurden 
sie mit 0,05 % TE abgelöst, die enzymatische Reaktion mit MEF-Medium gestoppt, 
und die Zellen durch Zentrifugation gesammelt. Anschließend wurden sie auf neue 
Zellkulturschalen ausplattiert, wobei im ersten Expansionsschritt die Zellen von 3 auf 
10 und im zweiten von 10 auf 30 x 15 cm Zellkulturschalen ausplattiert wurden. Das 
Medium wurde während der Expansion alle 2-3 Tage erneuert. Zellen von 
konfluenten P3-Zellkulturschalen wurden mit 0,05 % TE gelöst, die Reaktion mit 
MEF-Medium gestoppt und die Zellen mittels Zentrifugation sedimentiert. Sie wurden 
in 30 ml MEF-Medium aufgenommen und in eine T175 cm2-Zellkulturflasche mit 
geschlossenem Deckel überführt. Die mitotische Inaktivierung erfolgte durch die 
Bestrahlung der Zellen mit 15 Gy in einem γ-Bestrahlungsgerät (160 kV, 25 mA für 
6 min, 45 s). 
Anschließend wurden die γ-bestrahlten MEFs oder auch Feeder-Zellen zur weiteren 
Lagerung und Verwendung eingefroren. Hierfür wurde die Zellzahl bestimmt und die 
Zellen mittels Zentrifugation sedimentiert. In einem Kryoröhrchen wurden je 2,4 x 106 
Zellen in 1 ml 1 x MEF-Einfriermedium eingefroren. Zu diesem Zweck wurden die 
Zellen in der Hälfte des entsprechenden Volumens an DMEM-Grundmedium gelöst, 
sukzessive mit gekühltem 2 x MEF-Einfriermedium gemischt, in Kryoröhrchen gefüllt 
und in eine auf -20 °C vorgekühlte Styroporbox überführt. Nach 1 h bei -20 °C 
wurden die Zellen ü. N. bei -80 °C gelagert und anschließend zur Langzeitlagerung in 
flüssigem Stickstoff überführt. 
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2.4.6 Generierung, Charakterisierung und Kultivierung von humanen iPSCs 

Für die Generierung von hiPSCs wurde das CytoTuneTM-iPS Sendai Reprogramming 
Kit verwendet. Dieses Kit basiert auf der Reprogrammierung von somatischen Zellen 
mit Hilfe von nicht-integrativen Sendaiviren (Fusaki et al, 2009). Die Viren kodieren 
für die Transkriptionsfaktoren c-MYC, KLF4, OCT-4 und SOX2. Nach Entstehung der 
gewünschten Stammzellkolonien werden die Viren nach einigen Passagen aus den 
Zellen ausgeschleust. Die Existenz der Viren kann mit Hilfe von entsprechenden 
Oligonukleotiden, die die Virussequenz erkennen und der Expression des 
Hämagglutinin-Neuraminidase(HN)-Proteins an der Zelloberfläche überprüft werden. 

Reprogrammierung der Hautfibroblasten 

Für die Reprogrammierung mussten zuerst die Hautfibroblasten aufgetaut werden. 
Dafür wurde das gefrorene Kryoröhrchen im Wasserbad bei 37 °C angetaut, die 
Zellsuspension in 9 ml vorgewärmten MEF-Medium aufgenommen und die Zellen 
durch Zentrifugation sedimentiert. Die Zellen wurden in frischem MEF-Medium auf 
unbeschichtete Zellkulturschalen oder -flaschen ausplattiert. Zum Start der 
Reprogrammierung wurden an Tag 1 150.000 Fibroblasten pro Vertiefung einer MG-
beschichteten 12-Well Zellkulturplatte ausgesät. Am nächsten Tag wurden die Viren 
nach Herstellerangaben in 5 % Adv. DMEM verdünnt und auf die Zellen gegeben. 
Anschließend wurden diese durch Zentrifugation bei 37 °C, 3000 x g und 45 min mit 
den Viren infiziert. Die darauffolgenden Tage wurde das Medium der infizierten 
Zellen jeden Tag erneuert. An Tag 6 nach der Infektion wurden entsprechende 10 cm 
Zellkulturschalen mit Feeder-Zellen vorbereitet, wobei ein Kryoröhrchen auf eine 
10 cm Zellkulturschale aufgetaut wurde. Einen Tag später wurden 100.000 infizierte 
Zellen pro 10 cm Zellkulturschale in 5 % Adv. DMEM-Medium ausgesät. Um 
Apoptose zu verringern und das Überleben der infizierten Zellen zu steigern, wurden 
diese 1 h vor Ablösung mit 10 µM Rho Kinase Inhibitor Y (Y27632, ROCK-Inhibitor) 
inkubiert (Ishizaki et al, 2000; Watanabe et al, 2007). Anschließend wurden sie mit 
0,025 % TE abgelöst und die Reaktion mit 50 %igem TI gestoppt. Die Zellen wurden 
mittels Zentrifugation gesammelt und entsprechend ausgesät. Einen Tag später 
wurde das Medium zu DMEM/F-12-basierten hiPSC-Medium gewechselt und alle 
zwei Tage erneuert. Die ersten Kolonien konnten 4-7 Wochen nach der Infektion 
gepickt werden. Das Picken der Kolonien wurde unter einer Horizontal-Sterilbank mit 
Hilfe eines Stereomikroskops durchgeführt. Gepickte Kolonien wurden trituriert und 
zusammen mit ROCK-Inihibitor auf Feeder-Zell-beschichtete 12-Well 
Zellkulturplatten überführt. Entstandene iPSC-Klone wurden mindestens 5 x 
passagiert, bevor sie eingefroren oder zur weiteren Charakterisierung und 
Differenzierung verwendet wurden. 

Charakterisierung der generierten iPSCs 

Ausgewählte Klone (3 Linien pro Patient) wurden zur Charakterisierung 
herangezogen. Dafür wurde die Expression verschiedener Pluripotenzmarker (Tra-1-
60, Tra-1-81 und SSEA-4) sowie des HN-Proteins mittels immunozytochemischer 
Färbungen (siehe Punkt 2.5.9) überprüft. Die Aktivität der Alkalischen Phosphatase 
(AP) wurde mit dem Blue Alkaline Phosphatase Substrate Kit III SK-5300 untersucht. 
Wie oben bereits erwähnt wurde zusätzlich die Expression der Sendaivirus-
assoziierten Gene mittels spezifischen Oligonukleotiden und RT-PCR (RT: reverse 
transcription; PCR: polymerase chain reaction) überprüft. Um die genomische 
Integrität der hiPSCs zu untersuchen, wurde eine genomweite Einzelnukleotid-
Polymorphismus (Single Nucleotide Polymorphism, SNP) Analyse wie in Punkt 2.5.6 
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beschrieben durchgeführt. Die Differenzierung in alle drei Keimblätter wurde in vitro 
und in vivo (Teratomanalyse, Wesselschmidt, 2011) überprüft (siehe Punkt 2.4.7 und 
2.5.10). 

Kultivierung und Passagieren der generierten iPSCs 

Die generierten hiPSCs wurden nach Standardprotokollen in hiPSC-Medium auf 
Feeder-Zellen kultiviert (Thomson et al, 1998). Die Zellen wurden alle 3-4 Tage 
passagiert und das Medium wurde täglich erneuert. Einen Tag vor dem Passagieren 
der hiPSCs wurden Feeder-Zellen in einem Verhältnis von einem Kryoröhrchen auf 
zwei gelatinebeschichtete 6-Well-Zellkulturplatten in MEF-Medium aufgetaut. Dazu 
wurden die eingefrorenen Feeder-Zellen bei 37 °C im Wasserbad aufgetaut, die 
Zellsuspension in 9 ml vorgewärmtem MEF-Medium aufgenommen und die Zellen 
durch Zentrifugation sedimentiert. Die Zellen wurden in frischem MEF-Medium in 
Suspension gebracht, auf die 6-Well-Zellkulturplatten überführt und über Nacht 
kultiviert. Am nächsten Tag wurden die hiPSC-Kolonien mit 1 mg/ml Kollagenase 
Typ IV-Lösung für 60 min bei 37 °C abgelöst, mit PBS abgespült und durch 
Zentrifugation gesammelt. Die hiPSCs wurden mechanisch durch mehrfaches 
Triturieren mit einer 1 ml Feinpipette zerkleinert und in einem Verhältnis von 1:3 in 
hiPSC-Medium auf die vorbereiteten Feeder-Zellen überführt.  

Kryokonservierung der generierten iPSCs 

Um hiPSCs zu lagern, wurden sie als Einzelzellsuspension eingefroren. Hierfür 
wurden die Kulturen zunächst für 60 min bei 37 °C mit 10 µM ROCK-Inhibitor 
behandelt, anschließend mit PBS gewaschen und 5-10 min bei Raumtemperatur (RT) 
mit Alfazym inkubiert bis einzelne hiPSCs durch sanftes Klopfen von der Schale 
gelöst werden konnten. Die Zellen wurden mit PBS abgespült, zur Einzelzell-
suspension trituriert und durch Zentrifugation bei 4 °C und 300 x g für 5 min 
gesammelt. Danach wurde das Zellpellet im Einfriermedium resuspendiert, wobei die 
Zellen aus einem Well einer 6-Well-Zellkulturplatte in 1 ml in einem Kryoröhrchen 
eingefroren wurden. Die Zellen wurden langsam bei -80 °C eingefroren und für die 
Langzeitlagerung am folgenden Tag in flüssigen Stickstoff überführt. 
Um hiPSCs aufzutauen, wurden einen Tag zuvor auf entsprechende 6-Well 
Zellkulturplatten wie oben beschrieben frische Feeder-Zellen ausgesät. Eingefrorene 
hiPSCs wurden im Wasserbad bei 37 °C aufgetaut, die Zellsuspension in 9 ml 
vorgewärmtem hiPSC-Medium aufgenommen und zentrifugiert (5 min, 210 x g). Ein 
Kryoröhrchen wurde auf eine 6-Well Zellkulturplatte mit Feeder-Zellen in frischem 
hiPSC-Medium mit 10 µM ROCK-Inhibitor ausgesät. 

2.4.7 Keimblattdifferenzierung in vitro 

Für die in vitro-Keimblattdifferenzierung wurden die hiPSCs als intakte Kolonien 
mittels Kollagenase Typ IV wie in Punkt 2.4.6 beschrieben abgelöst und bei 4 °C und 
130 x g für 3 min gesammelt. Anschließend wurden sie ohne zu triturieren in hiPSC-
Medium auf nicht-adhäsive 10 cm Zellkulturschalen überführt. Am nächsten Tag 
hatten sich aus den hiPSC-Kolonien freischwimmende runde EBs gebildet. Das 
Medium wurde zu EB-Medium gewechselt und die Aggregate für 7 Tage kultiviert, 
wobei alle 2 Tage das Medium erneuert wurde. Anschließend wurden sie auf MG-
beschichtete 6 cm Zellkulturschalen plattiert und das Medium am darauffolgenden 
Tag gewechselt. Für die Differenzierung in ektodermales Gewebe wurden die 
plattierten EBs in N2-Medium und für die Differenzierung in Derivate von Mesoderm 
und Endoderm im MEF-Medium kultiviert. Drei Wochen später konnten die aus den 
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EBs ausgewachsenen und differenzierten Zellen mittels immunzytochemischer 
Färbungen (siehe Punkt 2.5.9) analysiert werden. 

2.4.8 Generierung und Kultivierung von RGL-NPCs 

Die Generierung von RGL-NPCs erfolgte nach einem an hESCs etablierten Protokoll 
(Gorris et al, 2015). Dieses basiert auf der Bildung von EBs und der Differenzierung 
in einem Medium mit absteigender Konzentration von ATRA. 
Um die neurale Differenzierung zu starten, wurden hiPSCs so lange kultiviert bis sie 
große und andifferenzierte Kolonien gebildet hatten. Diese wurden mit Hilfe von 
Kollagenase Typ IV wie in Punkt 2.4.6 beschrieben als intakte Kolonien abgelöst und 
durch Zentrifugation (4 °C,130 x g, 3 min) abgesetzt. Anschließend wurden sie ohne 
zu triturieren in hiPSC-Medium auf unbeschichteten 10 cm Zellkulturschalen 
überführt und ü. N. kultiviert. Die mit überführten Feeder-Zellen sollten dadurch 
entfernt werden und sich absetzen. Am darauffolgenden Tag hatten sich aus den 
hiPSC-Kolonien nicht-adhärente runde EBs gebildet, die im weiteren Verlauf auf 
nicht-adhäsive 10 cm Zellkulturschalen überführt und für 7 Tage in EB-Medium 
kultiviert wurden. Das Medium wurde alle 2 Tage gewechselt. Um die neurale 
Differenzierung zu initiieren, wurden die EBs in Medium überführt, das zu gleichen 
Teilen aus EB-Medium und N2-Medium bestand. Am nächsten Tag wurde dem 
Medium 10 µM ATRA zugefügt und einen weiteren Tag später wurde das Medium 
vollständig zu N2-Medium gewechselt, dem neben 10 µM ATRA auch 1 % B27-
Supplement, 20 ng/ml epidermal growth factor (EGF) und 30 ng/ml T3 zugefügt 
wurde. Das Medium wurde täglich erneuert. Nach weiteren 7 Tagen wurde dem 
Medium keine zusätzliche ATRA zugefügt und ein Medienwechsel erfolgte für 
14 Tage jeden zweiten Tag. Für eine weitere Woche wurden die EBs in N2-Medium 
kultiviert, dem 1 % B27-Supplement ohne Retinsäure, 20 ng/ml EGF und 30 ng/ml T3 
zugesetzt wurde. Das Medium wurde weiterhin jeden zweiten Tag erneuert. Im 
letzten EB-Kultivierungsschritt wurden die EBs im zuletzt verwendeten Medium auf 
MG-beschichtete 10 cm Zellkulturschalen überführt. Nicht-adhärente Aggregate 
wurden am nachfolgenden Tag mit einem Medienwechsel entfernt, und die Zellen 
wurden für eine Woche zusätzlich mit 20 ng/ml FGF-2 kultiviert. Es erfolgte jeden 
zweiten Tag ein Medienwechsel, wobei an den übrigen Tagen den Kulturen je 
20 ng/ml EGF und FGF-2 zugefügt wurde. 

Isolierung der RGL-NPCs mittels FACS 

Aus den plattierten EBs wuchsen heterogene Zellpopulationen heraus, die unter 
anderen Kolonien mit bipolaren Zellen beinhalteten. Die RGL-NPCs wurden mittels 
fluoreszenzaktivierter Zellsortierung (Fluorescent activated cell sorting, FACS) 
angereichert. Alle durchflusszytometrischen Experimente wurden von der Flow 
Cytometry Core Facility am Institut für Molekulare Medizin und Experimentelle 
Immunologie der Universität Bonn durchgeführt. Zur Anreicherung neuraler Zellen 
aus plattierten EBs wurden die Zellen mit 0,05 % TE und TI abgelöst und trituriert. 
Die Zellen wurden durch ein 40 µm-Zellsieb gegeben, um eine Einzelzellsuspension 
zu erhalten. Die Zellkonzentration wurde auf 106 Zellen/50 µl in FACS Block-Lösung 
eingestellt. Dann wurden die Zellen für 15 min auf Eis inkubiert, um unspezifische 
Bindungsstellen abzudecken. Anschließend wurde ein APC-konjugierter anti-CD133 
Antikörper in einer Verdünnung von 1:20 hinzugefügt, kurz mit den Zellen vermischt 
und für weitere 15 min bei 4 °C im Dunkeln inkubiert. Ungebundener Antikörper 
wurde durch die Zugabe von PBS entfernt und die Zellen im Anschluss durch 
Zentrifugation sedimentiert. Sie wurden anschließend in einer Konzentration von 
5 x 106 Zellen/ml in FACS-Puffer resuspendiert. Unmittelbar vor dem Sortieren wurde 
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20 µg/ml DNase zu den Zellen gegeben und die Zellsuspension durch eine 40 µm-
Nylonmembran pipettiert. Um zwischen lebenden und toten Zellen differenzieren zu 
können, wurde 500 ng/ml Propidiumiodid hinzugefügt. Anschließend wurden die 
Zellen mit einem FACS® DiVa Sortierer durch eine 90 µm Düse sortiert. 
 

FACS Block-Lösung 
PBS mit 
0,1 % BSA 
5 % NGS 

FACS-Puffer 
PBS mit 
0,1 % BSA 
 

 

Kultivierung der generierten RGL-NPCs 

Aus hiPSCs abgeleitete RGL-NPCs wurden in N2-Medium unter dem Einfluss von je 
20 ng/ml EGF und FGF-2 auf PO/Ln-beschichteten Zellkulturschalen kultiviert. An 
einem Tag wurde das Medium gewechselt, am nächsten Tag wurden die Faktoren 
erneut dem Medium zugegeben. Konfluente Zellen wurden mit 0,025 % TE und 50 % 
TI in einem Verhältnis von 1:2 passagiert. Um die RGL-NPCs zu lagern, wurden 
konfluente 6 cm Zellkulturschalen jeweils in 1 ml Einfriermedium in 1 Kryoröhrchen 
eingefroren. Die Zellen wurden wie Fibroblasten im entsprechenden Medium sowie 
auf entsprechende Zellkulturschalen aufgetaut. 

2.4.9 Oligodendrogliale, astrogliale und neuronale Differenzierung von RGL-
NPCs  

Oligodendrogliale Differenzierung 

Die Differenzierung in Oligodendrozyten erfolgte nach dem an hESC-abgeleiteten 
RGL-NPCs etablierten 3-stufigen Differenzierungsprotokoll (Gorris et al, 2015). Im 
ersten Schritt wurden die RGL-NPCs in einer Dichte von 1 x 106 Zellen pro MG-
beschichtete 3 cm Zellkulturschale in N2-Medium (je 20 ng/ml EGF und FGF-2) 
ausgesät. Am nächsten Tag wurde das Medium zu N2-Medium mit 20 ng/ml EGF, 
10 ng/ml PDGF-AA und 10 µM Forskolin gewechselt. Über 2 Wochen wurde die 
Hälfte des  Mediums alle 2-3 Tage erneuert. Im zweiten Schritt wurde dem N2-
Medium 1 Woche neben 10 ng/ml PDGF-AA auch 30 ng/ml T3, 500 ng/ml Noggin 
sowie 200 µM Ascorbinsäure (ascorbic acid; AA) zugefügt. Ein halber 
Mediumwechsel erfolgte wiederum alle 2-3 Tage. Im letzten Schritt wurde das N2-
Medium mit 30 ng/ml T3, 200 µM AA und 2 µg/ml Ln versetzt. Unter diesen 
Bedingungen wurden die Zellen für mindestens vier weitere Wochen kultiviert und 
das Medium alle 2-3 Tage zur Hälfte gewechselt. 

Astrogliale Differenzierung 

Für die Differenzierung von hiPSC-abgeleiteten RGL-NPCs in Astrozyten wurden 
1 x 106 Zellen pro PO/Ln-beschichteter 3 cm Zellkulturschale in N2-Medium mit je 
20 ng/ml EGF und FGF-2 ausplattiert. Am nächsten Tag wurde das Medium erneuert, 
die Wachstumsfaktoren entzogen und dem Medium 10 % FCS zugefügt. Das 
Medium wurde über 14 Tage alle 3-4 Tage gewechselt. 
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Neuronale Differenzierung 

Die neuronale Differenzierung von hiPSC-abgeleiteten RGL-NPCs erfolgte auf MG-
beschichteten 3 cm und 6 cm Zellkulturschalen. Die Zellen wurden mit einer Dichte 
von 1 x 106 bzw. 2,2 x 106 Zellen pro Schale in N2-Medium (je 20 ng/ml EGF und 
FGF-2) ausgesät. Am darauffolgenden Tag wurde das Medium gewechselt, die 
Wachstumsfaktoren entzogen und die Zellen unter dem Einfluss von 20 ng/ml brain 
derived neurotrophic factor (BDNF) für 3-6 Wochen kultiviert. Ein Mediumwechsel 
erfolgte alle 2-3 Tage. 

2.4.10 Quantitative Durchflusszytometrie  

Die RGL-NPCs wurden mit 0,025 % TE und 50%igem TI abgelöst, gezählt und durch 
Zentrifugation gesammelt. Die Zellkonzentration wurde auf 106 Zellen/100 µl in FACS 
Block-Lösung eingestellt. Pro Zelllinien wurden 2 Ansätze vorbereitet. Die 
Zellsuspensionen wurden zunächst 15 min auf Eis geblockt. Anschließend wurde sie 
für weitere 12 min mit einem PE-gekoppelten GLAST-Antikörper bzw. der 
dazugehörigen Isotypkontrolle (Maus IgG-PE) bei 4 °C inkubiert. Ungebundener 
Antikörper wurde durch die Zugabe von PBS entfernt. Im Anschluss wurden die 
Zellen durch Zentrifugation sedimentiert und in einer Konzentration von 1 x 106 
Zellen/ml in PBS resuspendiert und in FACS-Röhrchen überführt. Die quantitative, 
durchflusszytometrische Analyse wurde in einem FACS Calibur Durchflusszytometer 
durchgeführt. Für die spätere Auswertung der ermittelten Ergebnisse mittels FlowJo 
8.7 Software wurden Forward Scatter, Side Scatter und die Fluoreszenz 
aufgenommen. 

2.4.11 Quantifizierung der Zellen 

Die Quantifizierung der neural differenzierten Zellen erfolgte an immunzytochemisch 
angefärbten Kulturen. Die Bilder wurden mit dem Zeiss Axiolmanager.Z1/ApoTome 
aufgenommen. Anschließend wurden die Zellen mit Hilfe der ImageJ 1.42q Software 
gezählt. In einem Gesichtsfeld wurden alle DAPI-positiven Zellen sowie alle Zellen, 
die positiv für einen zellspezifischen Marker waren, quantifiziert. Im Anschluss wurde 
der prozentuale Anteil dieser Zellen mit Hilfe von Excel 2008 berechnet und 
schließlich aus den Zahlen der unterschiedlichen Gesichtsfelder unter Verwendung 
von Prism6 der Mittelwert und die Standardabweichung ermittelt sowie eine Grafik 
erstellt. In den oligodendroglialen Kulturen wurden die O4-positiven Zellen gezählt 
und jeweils drei Gesichtsfelder in drei unabhängigen Experimenten ausgewertet. Für 
die astroglialen Kulturen wurden GFAP-positive Zellen in drei Gesichtsfelder von drei 
unabhängigen Experimenten quantifiziert. Bei den neuronal differenzierten Kulturen 
wurden jeweils zwei Gesichtsfelder in zwei unabhängigen Experimenten 
herangezogen und die TUBB3-positiven Zellen gezählt.  

2.4.12 Behandlung der MLD-RGL-NPCs mit rhARSA 

Um RGL-NPCs mit rekombinanter humaner Arylsulfatase A (rhARSA) zu behandeln, 
wurden die Zellen bis zu einer Konfluenz von 90 % kultiviert. Bevor die Zellen 
behandelt wurden, wurden sie 1 x mit PBS gewaschen, und das Medium 
anschließend im entsprechenden Volumen auf die Zellen gegeben und für 24 h 
inkubiert. Um eine bessere Aufnahme des ARSA-Proteins zu erhalten, wurde den 
Zellen zusätzlich 0,3 % BSA hinzugefügt (Matthes et al, 2011). Nach der Behandlung 
wurde der Überstand gesammelt und die Zellen zunächst 2 x mit PBS gewaschen. 
Anschließend wurden sie mit einem sauren Waschpuffer für 3 min inkubiert, um 
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mögliches Protein, welches an der Zelloberfläche haftet, zu entfernen (Bockenhoff et 
al, 2014). Danach wurden die Zellen erneut 2 x mit PBS gewaschen und pelletiert. 
Sie wurden entweder direkt weiter verwendet oder bei -80 °C gelagert. 
Um die Aufnahme von ARSA über den M6P-Weg zu hemmen, wurde zusätzlich bei 
der Behandlung der Zellen M6P (7,5 mM) zu den Kulturen hinzugefügt. Um einen 
Unterschied der ARSA-Aufnahme durch eine Veränderung der Osmolarität im 
Medium auszuschließen, wurde als Kontrolle neben M6P immer ein Ansatz mit 
Glukose-6-Phosphat (G6P; 7,5 mM) durchgeführt (Bockenhoff et al, 2014). 
Das rhARSA wurde von Dr. Ulrich Matzner (Institut für Biochemie und 
Molekularbiologie, Universität Bonn) zur Verfügung gestellt und gemäß Matthes et al, 
2012 hergestellt. 
 

Saurer Waschpuffer 
50 mM Glycin, 150 mM NaCl 
Zusätze in H2O lösen, pH-Wert auf 3,0 einstellen, bei 4 °C lagern. 
 

2.4.13 Bestimmung des intrazellulären Sulfatidmetabolismus 

Für die Bestimmung des Sulfatidmetabolismus der RGL-NPCs wurden die Zellen in 
einer Dichte von 0,6 x 106 Zellen pro Well einer MG-beschichteten 6-Well-
Zellkulturplatte ausgesät. Am nächsten Tag wurden die Zellen 24 h mit 
konzentriertem konditioniertem Überstand bzw. rhARSA wie in Punkt 2.4.12 
behandelt. Nach einem zweifachen Waschschritt mit PBS wurden die Zellen in N2-
Medium ohne Phenolrot kultiviert (je 20 ng/ml EGF und FGF-2). Anschließend 
wurden sie für 6 h mit 5 nmol des fluoreszenzmarkierten Sulfatidanalogons N-[12-[(7-
nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-cerebroside 3-sulfate (NBD-
Sulfatid; Matreya, Pleasant Gap, PA, USA) inkubiert (nach Monti et al, 1992). Im 
Anschluss wurden sie in PBS gewaschen und für weitere 18 h in frischem N2-
Medium ohne Phenolrot (je 20 ng/ml EGF und FGF-2) gehalten. Wenn NBD-Sulfatid 
abgebaut wird, entstehen neben NBD-Galactosylceramid noch weitere NBD-
markierte Abbauprodukte, die aufgrund der hohen Wasserlöslichkeit des Fluorophors 
von den Zellen in das Medium abgegeben werden. Die Gesamtlipide wurden aus 
dem Medium durch Festphasenextraktion isoliert und mittels Dünnschicht-
chromatographie aufgetrennt. Durch die angehängte Fluoreszenz können die 
Banden der Abbauprodukte mit Hilfe eines Fluoreszenzscanners bei einer 
Wellenlänge von 473 bzw. 537 nm detektiert werden. Die Präsenz der Banden der 
Abbauprodukte kann als Indikator für die Funktionalität der zellulären ARSA 
herangezogen werden. Das Experiment wurde zum größten Teil im Institut für 
Biochemie und Molekularbiologie der Universität Bonn durch Herrn Dr. Ulrich 
Matzner durchgeführt. 

2.5 Molekularbiologie 

2.5.1 Ernte von Zellen 

Für die Isolation von RNA, genomischer DNA oder Protein müssen die Zellen zuerst 
geerntet werden. Bei hiPSC-Kolonien wurden die Zellen entsprechend des 
Passagiervorgangs mit Hilfe von Kollagenase Typ IV gewonnen, um eine mögliche 
Kontamination durch Feeder-Zellen zu vermeiden. Bei allen anderen Zelltypen 
wurden die lebenden Zellen 1 x mit PBS gewaschen, um diese anschließend in PBS 
mit einem Zellschaber von der Zellkulturschale zu lösen und mittels Zentrifugation 
(4.000 U/min und 4 °C für 5 min) zu sedimentieren. Die Zellpellets wurden entweder 
direkt weiterverwendet oder bei -80 °C eingefroren. 
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2.5.2 Isolation von RNA 

Die Gesamt-RNA der Zellen wurde unter Verwendung des Quick-RNA™ MiniPrep Kit 
gemäß Herstellerangaben isoliert. Die RNA wurde in 40 µl DNase- und RNase-freiem 
Wasser eluiert. Anschließend wurde eine Verdauung mit DNase I vorgenommen. 
Hierfür wurde die RNA-Lösung mit je 5 µl DNase-Puffer und DNase versetzt und für 
15 min bei RT inkubiert. Nach Zugabe von 5 µl 25 mM EDTA wurde die DNase für 
10 min bei 65 °C unter leichter Rotation inaktiviert. Der Gehalt an RNA wurde mit 
Hilfe des Nano Drop (ND)-1000 gemessen. Danach konnte die RNA für weitere 
Experimente verwendet werden oder wurde bei -80 °C gelagert. 

2.5.3 Isolation von  genomischer DNA 

Für die Isolation von genomischer DNA wurde das DNeasy® Blood & Tissue Kit laut 
Herstellerangaben verwendet. Der Gehalt an genomischer DNA wurde mit Hilfe des 
ND-1000 gemessen. Die eluierte genomische DNA wurde direkt weiterverwendet 
oder bei -20 °C gelagert. 

2.5.4 Isolation von Proteinen 

Für die Isolation von Proteinen für den ARSA-Enzymaktivitätsassay wurde das Pellet 
in eiskaltem TN-101-Puffer resuspendiert. Das Volumen der Pufferlösungen variierte 
entsprechend der Pelletgröße, und die Isolation fand weitestgehend auf Eis bzw. bei 
4 °C statt. Im nächsten Schritt wurde die Proteinlösung für 3 min in einem 
Ultraschallbad behandelt. Das führt zum Aufschluss der Zellwände. Anschließend 
wurden die Lysate bei 13.000 U/min und 4 °C für 15 min zentrifugiert. Das Pellet 
wurde verworfen und der Überstand gesammelt, der entweder direkt verwendet oder 
bei -20 °C gelagert wurde. 
 

TN-101-Puffer 
0,5 % TritonTM TN-101 werden in 1x TBS pH 7,0 gelöst und bei 4 °C gelagert. Der Puffer 
kann bis zu einer Woche gelagert werden.  

Bestimmung der Proteinkonzentration 

Um die Proteinkonzentrationen der Zelllysate zu bestimmen wurde das Pierce® BCA 
Protein Assay Kit gemäß Herstellerangaben verwendet. Zuerst wurde eine 
Verdünnungsreihe (2 mg/ml; 1 mg/ml; 0,5 mg/ml; 0,25 mg/ml; 0,125 mg/ml, 
0,025 mg/ml und 0,0 mg/ml) mit bovinem Serumalbumin (BSA) in TN-101-Puffer 
angesetzt. Es wurden jeweils 12,5 µl der Verdünnungen mit 100 µl der Arbeitslösung 
des Kits vermischt und für 30 min bei 37 °C inkubiert. Anschließend wurde die 
Absorption bei einer Wellenlänge von 562 nm im ND-1000 gemessen. Mit den 
daraus ermittelten Werten wurde eine Standardkurve erstellt, mithilfe derer die 
Proteinkonzentrationen von unbekannten Proteinproben unter Verwendung des Kits 
bestimmt werden konnten. Als Leerwert dienten die Pufferlösungen. 
 

2.5.5 RT-PCR 

Im Vorfeld wurde die RNA mit dem iScript™cDNA Synthese Kit gemäß 
Herstellerangaben in cDNA umgeschrieben. Der cDNA Gehalt wurde mit dem 
ND1000 gemessen und die Konzentrationen entsprechend mit ddH2O angeglichen. 
Alle PCRs wurden in Thermocyclern der Firma Biometra mit der GoTaq® Flexi DNA 
Polymerase nach Herstellerangaben durchgeführt. Die Hybridisierungstemperatur (X) 
variierte je nach Oligonukleotidpaar. Alle Proben wurden anhand der Expression von 
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GAPDH normiert. Als Positivkontrolle diente cDNA, die aus humaner fetaler Hirn-
RNA (Agilent Technologies/540157) synthetisiert wurde. 
 
Die Reaktionskomponenten und Zyklenkonditionen waren wie folgt: 
 
1x Reaktionsansatz:       

Green GoTaq® Flexi Puffer 1x  94 °C 2 min   
dNTPs (10 mM) 0,4 mM  94 °C 30 s  30-36 

Zyklen Oligonukleotid-Mix (100 µM) 8,0 µM   X °C 30 s  
cDNA  6 ng  72 °C 30 s  
GoTaq® DNA Polymerase  1,25 U  72 °C 10 min    
H2O ad 25 µl  4 °C ∞    
 

Zur Darstellung der amplifizierten PCR-Produkte wurde die DNA über ein 1,5 %iges 
(in 1 x TAE-Puffer + 1 ng/ml Ethidiumbromid) Agarosegel aufgetrennt und unter UV-
Licht detektiert. 
 

50 x Tris-Acetat EDTA (TAE)-Puffer 
2 M Tris, 50 mM EDTA pH 8,0, 1 M Eisessig 
Reagenzien in H2O lösen bzw. mischen und bei RT lagern, für Einfachkonzentrierung 1:50 
mit H2O verdünnen. 
 

0,5 M EDTA Lösung (für 50 x TAE) 
0,5 M EDTA in ddH2O bei alkalischem pH (NaOH Plättchen) lösen, pH-Wert mit 1 M HCl auf 
8,0 einstellen, Volumen auf 1 l mit H2O aufgefüllt. 

2.5.6 Einzelnukleotid-Polymorphismus Analyse 

Für die SNP-Analyse wurde die genomische DNA wie in Punkt 2.5.3 beschrieben 
isoliert. Der Elutionsschritt wurde anstatt mit dem zur Verfügung gestellten Puffer mit 
TE-4-Puffer durchgeführt. Anschließend wurde der DNA-Gehalt mit Hilfe des ND-
1000 gemessen und die Konzentration der DNA auf 60 ng/µl eingestellt. Die SNP-
Analyse wurde am Institut für Humangenetik der Universität Bonn durchgeführt. Die 
genomische DNA wurde fragmentiert und an sequenzspezifische Oligomere, die an 
Beads an einem HumanCytoSNP-12 DNA Analysis BeadChip von Illumina® 
gebunden waren, hybridisiert. Die Datenanalyse erfolgte mit Hilfe der von Illumina® 
bereitgestellten Software BeadStudio und GenomeStudio. 
 

TE-4-Puffer 
10 mM Tris base, 0,1 mM EDTA 
Reagenzien in H2O lösen, pH-Wert auf 8,0 einstellen, bei 4 °C lagern.  

2.5.7 Sequenzierung der Mutationen im ARSA-Gen 

Die Mutationen im ARSA-Gen der MLD-Patienten, die vom Coriell Institute for 
Medical Research (USA) erhalten wurden, waren nicht bekannt. Sie wurden wie folgt 
ermittelt: 
Das ARSA-Gen liegt auf Chromosom 22 (22q13.33) und beinhaltet 8 Exons 
(Kreysing et al, 1990). Aufgrund der Größe von 3 kb der kodierenden Region wurden 
zunächst fünf Oligonukleotidpaare, die die gesamte Sequenz, einschließlich Stop- 
und Start-Codon sowie Exons und Introns abdecken, konstruiert (Quelle: 
NG_009260.2, NCBI; Kreysing et al, 1990). Die Oligonukleotidpaare wurden unter 
bestimmten Bedingungen generiert. Das 5´- und 3´-Ende sollte mit der Base C oder 
G beginnen bzw. enden, wobei das 3´-Ende nicht mehr als drei Basen der Base C 
bzw. G beinhalten sollte. Die Länge eines Oligonukleotids sollte zwischen 18 und 
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22 bp liegen und die Hybridisierungstemperatur zwischen 52 und 58 °C, wobei die 
Temperaturen zwischen den beiden Oligonukleotidpaaren nicht mehr als 2 °C 
voneinander abweichen sollten. Ein weiteres Kriterium war der Gehalt an GCs, der 
zwischen 40 und 60 % liegen sollte. Die Lage der Oligonukleotide eines Paares in 
der Gensequenz sollte so gewählt werden, dass sie mindestens 500 bp auseinander 
liegen. Wenn Oligonukleotidpaare mit Hilfe dieser Kriterien im ARSA-Gen ermittelt 
worden waren, wurden sie zusätzlich auf zweifache Basenwiederholungen und lange 
Reihe an einzelnen Basen überprüft, wobei beides ein Ausschlusskriterium darstellte.  
Um die Oligonukleotide zu erstellen, wurden verschiedene Programme, wie ApE, 
Primer BLAST (NCBI) und Oligonucleotide Properties Calculator verwendet. Unter 
Berücksichtigung der genannten Kriterien ergaben sich folgende Oligonukleotidpaare 
für die Sequenzierung des gesamten ARSA-Gens: 
 

Name Sequenz 
Hybridisierungs- 

temperatur 

Produkt-
größe 

    

ARSA 1 5´- AGAGCCTGCTGGAGCCAAGTAG-3´ 
5´-GTGGTTCCTACCTGGTCGTG-3´ 60 °C 680 bp 

ARSA 2 5´-CTCTACCACTCCCAACCTGGAC-3´ 
5´-CTGAACTGAGGGTAGTGGGTGTG-3´ 58 °C 908 bp 

ARSA 3 5’-CAGTGCTAACTCCAGTCTTTGC-3 
5’-AAGGTGACATTGGGCAGTGG-3´ 60 °C 820 bp 

ARSA 4 5’-GGTCTCTTGCGGTGTGGAAAGG-3’ 
5’-CAGGTTGTAGTTCTCACCAGGGTC-3’ 62 °C 896 bp 

ARSA 5 5’-CCTCGGCAGTCTCTCTTCTTC-3’ 
5’-TCAAATCCCAGCCCAACCTC-3’ 60 °C 816 bp 

 
Um die Mutation der einzelnen Patienten im ARSA-Gen zu überprüfen, wurde aus 
den Hautfibroblasten die genomische DNA wie in Punkt 2.5.3 isoliert und 
anschließend unter folgenden Bedingungen mit den Oligonukleotidpaaren ARSA 1-5 
mittels PCR amplifiziert. Die Reaktionskomponenten und Zyklenkonditionen waren 
wie folgt: 
 

1x Reaktionsansatz:       

LongAmp® Puffer 5x  94 °C 30 s   
dNTPs (10 mM) 0,3 mM  94 °C 20 s  

34 Zyklen Oligonukleotid-Mix (100 µM) 8 µM   60 °C 35 s  
DNA (100 ng/µl) 100 ng  65 °C 2 min  
LongAmp® Taq 1 µl  65 °C 10 min    
H2O Ad 25 µl    4 °C ∞    
 

 
In Abb. 9 ist beispielhaft das Ergebnis einer PCR einer Patientenlinie dargestellt. 
Hierfür wurden jeweils 1/5 der entstandenen PCR-Amplifikate verwendet und mit 
10 x Agarosegel Probenpuffer versetzt. Alle Banden der fünf Amplifikate liefen auf 
der richtigen Höhe (Abb. 9). Im nächsten Schritt wurden die übriggebliebenen 4/5 der 
PCR-Amplifikate mittels DNA Clean & ConcentratorTM-5 Kit aufgereinigt und in 
mindestens 10 µl DNA Waschpuffer eluiert. 
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Abb. 9: PCR-Amplifikate der Oligonukleotide ARSA 1-5.  
Die PCR wurde beispielhaft an der genomischen DNA des Patienten liMLD-4 dargestellt. Anhand der 
Basenpaarlänge und dem Vergleich mit der 1 kb DNA-Leiter kann festgestellt werden, ob die 
Oligonukleotide die richtigen DNA-Fragmente erkannt haben. Oligonukleotidpaar ARSA 1 bildet ein 
680 bp großes Amplifikat, ARSA 2 ein 908 bp, ARSA 3 ein 820 bp, ARSA 4 ein 896 bp und ARSA 5 
ein 816 bp. 

Für die abschließende Sequenzierung (durchgeführt von Seqlab) wurde das 
aufgereinigte PCR-Produkt wie folgt eingesetzt: 
 

Ansatz pro Oligonukleotid:  

Tris-HCl 0,1 M, pH 8,4 0,7 µl  
Oligonukleotid (100 µM) 1 µl 
DNA (200-300 ng) 4 µl 
H2O 1,3 µl 

 

Die Ergebnisse der Sequenzanalyse wurden mit Hilfe der Lasergene 11 Software 
von DNAstar® für jede Patientenlinie einzeln zusammengefügt. Es wurden 
kodierende und nicht-kodierende Sequenzen ab dem Start- bis zum Stopcodon 
berücksichtigt. Unter Verwendung eines Nukleotid BLAST Programms (NCBI) und 
dem Vergleich zur wildtypischen humanen ARSA-Sequenz konnten so 
Veränderungen in der Basensequenz festgestellt werden und vor allem Mutationen 
an Schnittstellen von Exons und Introns aufgedeckt werden. Zur weiteren 
Identifizierung von Mutationen, die zu einem Aminosäureaustausch führten, wurden 
die Sequenzen der Patientenlinien unter ausschließlicher Berücksichtigung der 
kodierenden Sequenzen mit Hilfe des EMBOSS Transeq Tool (EMBL-EBI) in die 
entsprechenden Aminosäure- bzw. Proteinsequenz umgewandelt. Der Vergleich zur 
wildtypischen humanen ARSA-Proteinsequenz mittels eines Protein BLAST 
Programms (NCBI) konnte Austausch, Deletion und Duplikation von Aminosäuren 
aufdecken. Wenn alle Mutationen der Patientenlinie bekannt waren, wurden die 
Sequenzen erneut in der Lasergene 11 Software auf Homo- bzw. Heterozygotie der 
Mutationen überprüft. Eine Mutation ist dann heterozygot, wenn die Kurve der Base 
der Mutation im Elektropherogramm zwei Basen anzeigt. Eine der Basen sollte der 
wildtypischen Sequenz entsprechen. Zusätzlich wurden die aufgedeckten Mutationen 
mit Datenbanken für bereits bekannte Mutationen im ARSA-Gen abgeglichen 
(ARSA-Datenbank, 2016, The Human Gene Mutation Database ARSA, 2016). 
 
0,1 M Tris/HCl Puffer pH 8,4 
0,1 M Tris base in H2O lösen, pH-Wert mit 1 M HCl auf 8,4 einstellen, Volumen entsprechend 
mit H2O auffüllen, bei RT lagern 

1 k
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1000 bp
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2.5.8 Bestimmung der ARSA-Enzymaktivität 

Die Proteinisolation der Zellen erfolgte wie in Punkt 2.5.4 beschrieben. Das Protokoll 
zur Bestimmung der ARSA-Enzymaktivität wurde von Prof. Gieselmann (Institut für 
Biochemie und Molekularbiologie, Universität Bonn) zur Verfügung gestellt und in 
dieser Arbeit entsprechend angepasst und optimiert. Um die ARSA-Aktivität zu 
messen, wurden 96-Well-Platten (Corning® #3599) verwendet. Die Proteinlysate 
wurden in Duplikaten auf Eis auftragen, und es wurden 10 µl Proteinlösung pro 
Ansatz eingesetzt. Als Leerwert diente der TN-101-Puffer. Mit einer Multipipette 
wurden 100 µl/Ansatz des ARSA-Substrats 4-Nitrocatechol sulfate dipotassium salt 
(pNCS) hinzugefügt und das 96-Well im Anschluss bei 37 °C für 60 min inkubiert. 
Anschließend wurde die Substratumsetzung mit 100 µl/Ansatz 1 M NaOH gestoppt. 
Die Messung der Absorption erfolgte in einem Spektrophotometer bei 515 nm. Bei 
niedrigen bzw. hohen Enzymaktivitäten wurden die Volumina bzw. Inkubationszeiten 
entsprechend variiert. Zur Berechnung der Enzymaktivität wurde der Leerwert 
abgezogen und folgende Gleichung angewendet: 

 

 
 

A: Enzymaktivität in mU/ml 
V: Gesamtvolumen in ml 
106: Faktor zur Umrechnung von mol in ε  

(mol/l-1 x min-1) auf µmol in U (µmol/min) 
1000:  Faktor zur Umrechnung in mU 
t:  Inkubationszeit in min 
ε: Extinkionskoeffizient in (mol/l-1 x min-1), für 

ARSA 12,4 x 106  
d: Schichtdicke in cm; bei 96-Well Platte Corning 

und 10 µl Proteinlösung: 0,6325 
v: Volumen der Proteinlösung, standardmäßig 

10 µl 
OD515nm: Absorption bzw. optische Dichte bei 515 nm 

abzüglich des Leerwertes 
 
Um die gesamte Enzymaktivität (AGes) in mU/mg zu bestimmen, wurde die 
Enzymaktivität auf die Gesamtproteinmenge wie folgt bezogen: 

 

 
 
 

0,5 M Na-Acetat Puffer pH 5 
0,5 M Na-Acetat wurden in ddH2O gelöst, 
der pH auf 5,0 eingestellt und mit ddH2O 
aufgefüllt.  

1 x TBS pH 7,0 
10 mM Tris base 
150 mM NaCl 
in ddH2O lösen, pH-Wert mit 1 M HCl auf 
7,0 einstellen und bei 4 °C lagern. 

1 M NaOH 
1 M NaOH in ddH2O lösen. 
 

ARSA-Substrat 
10 mM pNCS und 10 % (w/v) NaCl in 
0,5 M Na-Acetat Puffer (pH 5,0) lösen, 
aliquotieren und lichtgeschützt bei -20 °C 
lagern. 
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2.5.9 Immunzytochemische Färbungen 

Alle immunzytochemischen Analysen wurden, wenn nicht anders erwähnt, bei RT 
durchgeführt, und zwischen den einzelnen Inkubationsschritten wurden die Zellen 3 x  
für je 10 min mit PBS gewaschen. Zu Beginn wurden die lebenden Zellen zuerst mit 
PBS gewaschen, bevor sie in 4 % Paraformaldehyd für 15 min fixiert wurden. Bei 
Verwendung von Antikörpern, die an ein intrazelluläres Epitop binden, wurden zuerst 
die Zellmembranen für 10 min permeabilisiert. Anschließend wurden bei allen 
Färbungen die unspezifischen Bindungsstellen für 30 min mit einer Blocklösung 
abgesättigt. Nachfolgend wurde der Primärantikörper in Blocklösung verdünnt für 
mindestens 2 h (bei RT) bis ü. N. (bei 4 °C) inkubiert. Der Sekundärantikörper wurde 
ebenfalls in Blocklösung für 1 h inkubiert. Zellkerne wurden für 1 min mit DAPI 
(1:10.000 in PBS) angefärbt und die Zellen schließlich mit Mowiol unter einem 
Deckgläschen eingedeckelt. 
 

4 % Paraformaldehydlösung 
4 % Paraformaldehyd zusammen mit 3-4 
NaOH-Plättchen in 500 ml PBS auf einem 
Magnetrührer lösen, pH-Wert auf 7,4 mit 
1 M HCl einstellen, Lösung durch 
Filterpapier filtrieren, aliquotieren und bei  
-20 °C lagern. 

PBS/Azid 
0,5 g Natrium-Azid (0,1 %) in 500 ml PBS 
lösen und bei RT lagern. 

Blocklösung 
5 % NGS bzw. 1 % BSA in PBS/Azid 

Permeabilisierungslösung 
0,1 % Triton X-100 in PBS/Azid. 

Mowiol 
2,4 g Mowiol 4-88, 6 g Glycerol (ca. 
4,8 ml), 6 ml H2O. Reagenzien 2 h auf 
Magnetrührer mischen, dann 0,2 M Tris 
pH 8,5 hinzufügen und ü. N. auf 
Magnetrührer mischen, bei 5000 x g 
15 min zentrifugieren, Überstand 
abnehmen und mit 0,1 % (w/v) DABCO 
versetzen, mischen, aliquotieren und bei  
-20 °C lagern.  

0,2 M Tris/HCl Puffer pH 8,5 
0,2 M Tris base in H2O lösen, pH-Wert mit 
1 M HCl auf 8,5 einstellen, Volumen 
entsprechend mit H2O auffüllen, bei RT 
lagern. 

2.5.10 Transplantationen und Gewebeaufarbeitung 

Alle Tierversuche wurden nach den Richtlinien der Universität Bonn sowie des 
Tierschutzgesetzes des Landes Nordrhein-Westfalen durchgeführt. Die 
Teratomtransplantationen sind im Tierversuchsantrag “Transplantation humaner 
pluripotenter Stammzellen in Labornagetieren” vom Landesamt für Natur, Umwelt 
und Verbraucherschutz unter dem Aktenzeichen 8.87-50.10.37.09.290 genehmigt. 
Alle weiteren durchgeführten Tierversuche sind im Tierversuchsantrag 
„Transplantation iPS-Zell-abgeleiteter neuraler und glialer Vorläuferzellen in das 
Nervensystem Arylsulfatase A-defizienter Mäuse (MLD Transplantate)“ (Akten-
zeichen 84-02.04.2013.A247) genehmigt. Die Tierhaltung und -pflege erfolgte nach 
Standards des Hauses für Experimentelle Therapie des Universitätsklinikums Bonn. 

Teratomanalyse 

Die Bildung von Teratomen diente der Überprüfung der pluripotenten Eigenschaften 
der hiPSCs in vivo. Teratome sind Tumore, die Derivate aller drei Keimblätter 
beinhalten können. Es wurden Rag2-/--Mäuse (immundefizient) verwendet, um eine 
mögliche Abstoßung der humanen Zellen in vivo zu verhindern. Zuerst wurden die 
hiPSCs so lange kultiviert bis sie große und andifferenzierte Kolonien gebildet hatten. 
Eine komplette 6-Well Zellkulturplatte einer Linie wurde mittels Kollagenase Typ IV 
wie in Punkt 2.4.6 beschrieben abgelöst und bei 4 °C und 130 x g für 3 min abgesetzt. 
Anschließend wurden die intakten Kolonien in 500 µl PBS aufgenommen und die 



Material und Methoden 
 

61 

Lösung in einen Hoden einer Rag2-/--Maus injiziert. Nach 6-8 Wochen wurden die 
Teratome präpariert und in 4 % Paraformaldehydlösung fixiert. Anschließend wurden 
sie in Paraffin eingebettet, geschnitten und mittels Hämalaun-Eosin(HE)-Färbung 
angefärbt (durchgeführt von Prof. Torsten Pietsch, Diagnostiklabor, Institut für 
Neuropathologie, Universität Bonn). 

Genotypisierung der Mausstämme 

Um den transgenen Phänotyp eines Mausstammes zu bestimmen, wurde die 
genomische DNA der Tiere aus Schwanzspitzen unter der Verwendung des 
REDExtract-N-Amp Tissue PCR Kits gemäß Herstellerangaben isoliert. Die DNA-
Lösung wurde im weiteren Verlauf in entsprechenden PCR-Reaktionen eingesetzt. 
Um den Arsa-/--Phänotyp zu überprüfen, wurden je 0,75 µl der DNA-Lösung als 
Vorlage für die PCR eingesetzt. Mit Hilfe des REDExtract-N-Amp PCR Reaction Mix 
und zwei Paaren von Oligonukleotiden konnten sowohl ein endogenes Kontroll-
Produkt von 480 bp Größe (sense/anti) als auch ein DNA-Fragment der Mutation von 
1100 bp Größe (anti/neo) amplifiziert werden. 
 

ARSAsense: 5´-TAGGGTGGAAGTTACCCTAGA-3´ 
ARSAanti: 5´-TGACCCAGGCCTTGTTCCCAT-3´ 
ARSAneo: 5´-GGAGAGGCTATTCGGCTATGAC-3´ 

 

Die Reaktionskomponenten und Zyklenkonditionen der Arsa-/--PCR sind wie folgt: 
 

Reaktionsansatz:       

REDTaq Mix 10 µl  94 °C 3 min   
ARSAsense/anti/neo (100 µM) 0,75 µl  94 °C 30 s  

31 Zyklen DNA-Lösung 0,75 µl  56 °C 30 s  
H2O 8,5 µl  72 °C 1min  
   72 °C 3 min    
   4 °C ∞    
 

Die PCR-Produkte wurden in einem 1,5 %igem Agarosegel (in 1 x TAE Puffer + 
1 ng/ml Ethidiumbromid) mittels Gelelektrophorese aufgetrennt und unter UV-Licht 
detektiert. Zur Größenkontrolle wird ein 100 bp DNA-Leiter verwendet. Proben von 
Wildtyp-Tieren zeigten das 480 bp große Kontrollfragment, während Proben von 
homozygoten Arsa-/--Mäusen ein 1100 bp großes Fragment zeigten. PCR-Produkte 
von heterozygoten Tieren wiesen beide Fragmente auf. 
 

Der transgene Shiverer-Phänotyp wurde gemäß den Anleitungen von Jackson 
Laboratory bestimmt. Hierfür wurden je 2 µl der DNA-Lösung als Vorlage für die PCR 
genutzt, in der mittels Taq DNA Polymerase und zwei Oligonukleotidpaaren sowohl 
ein endogenes Kontroll-Produkt von 200 bp Größe (IMR0015/0016) als auch ein 
DNA Fragment der Mutation von 308 bp Größe (IMR0968/0969) amplifiziert werden 
konnten. 
 

IMR0015: 5´-CAAATGTTGCTTGTCTGGTG-3´ 
IMR0016: 5´-GTCAGTCGAGTGCACAGTTT-3´ 
IMR0968: 5´-ACCGTCCTGAGACCATTGTC-3´ 
IMR0969: 5´-GTGCTTATCTAGTGTATGCCTGTG-3´ 
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Die Reaktionskomponenten und Zyklenkonditionen der Shiverer-PCR waren wie folgt: 
 

Reaktionsansatz:       

PCR Puffer 0,8 x  94 °C 3 min   
MgCl2 2 mM  94 °C 30 s  

35 Zyklen dNTPs 0,2 mM  60 °C 1 min  
IMR0015 0,667 µM  72 °C 1min  
IMR0016 0,667 µM  72 °C 2 min    
IMR0968 1 µM  4 °C ∞    
IMR0969 1 µM      
Taq DNA Polymerase 0,025 U/µl      
H2O ad 12 µl      
 

Auch hier wurden die PCR-Produkte mittels Gelelektrophorese aufgetrennt und unter 
UV-Licht detektiert. Das 200 bp große Kontrollfragment wurde in Proben von Wildtyp-
Tieren angezeigt, während Proben von homo- und heterozygoten Tieren ein 308 bp 
großes Fragment aufwiesen. Homozygote Tiere konnten nur phänotypisch 
identifiziert werden. Bereits nach 2 Wochen entwickelten die Tiere einen Tremor, der 
durch Zittern der Hinterbeine deutlich zu erkennen war. 
 

10 x Agarosegel Probenpuffer 
250 mg Bromphenol Blau, 250 mg Xylene Cyanol  
in 33 ml 150 mM Tris/HCl pH 7,6 lösen und 60 ml Glycerol und 7 ml ddH2O hinzufügen und 
bei RT lagern.  
 

150 mM Tris/HCl Puffer pH 7,6 
150 mM Tris base in H2O lösen, pH-Wert mit 1 M HCl auf 7,6 einstellen, Volumen 
entsprechend mit H2O auffüllen und bei RT lagern. 

Neonatale Transplantation und Gewebeaufarbeitung 

RGL-NPCs wurden mittels TE und TI von den Schalen gelöst, gezählt und in PBS mit 
0,1 % BSA und 20 µg/ml DNase auf 50.000 Zellen/µl konzentriert. Arsa-/-/Rag2-/-- bzw. 
Arsa-/-/Shi/Rag2-/--Mäuse wurden 1-2 Tage nach der Geburt für die Transplantationen 
herangezogen. Die Tiere wurden durch Hypothermie (2 min in Eis) anästhesiert. In 
jede Hemisphäre wurde je 1 µl der Zellsuspension mit einer gezogenen Glaskapillare 
transplantiert (100.000 Zellen/Tier). Die transplantierten Mäuse wurden bis zum 
vollständigen Erwachen bei 37 °C beobachtet und anschließend zum Muttertier 
zurückgesetzt. Im Alter von 3 Wochen wurden die Tiere abgesetzt und regelmäßig 
kontrolliert. 
Die transplantierten Arsa-/-/Rag2-/--Mäuse wurden nach 2, 8 und 12 Wochen nach 
Transplantation analysiert und Arsa-/-/Shi/Rag2-/--Mäuse nach 8 Wochen. Letztere 
haben keine hohen Lebenserwartungen und werden in der Regel nicht älter als 
9 Wochen. Alle Mäuse wurden zu den entsprechenden Zeitpunkten durch eine 
intraperitoneale Injektion von 0,9 mg Ketanest und 0,18 mg Rompun je 10 g 
Körpergewicht anästhesiert und mit 40 ml PBS, gefolgt von 45 ml 4 % 
Paraformaldehydlösung transkardial perfundiert. Die Gehirne wurden entnommen, 
ü. N. in 4 % Paraformaldehydlösung postfixiert und anschließend bis zum Absinken 
bei 4 °C in 30 % Saccharoselösung inkubiert. Zur weiteren Aufarbeitung wurden die 
kryoprotektierten Gehirne in Tissue-Tek® eingebettet und bei -80 °C eingefroren. Mit 
einem Kryostaten wurden 20 µm-dicke Schnitte auf Objektträgern angefertigt, die im 
weiteren Verlauf histologisch analysiert wurden. 
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4 % Paraformaldehydlösung 
4 % Paraformaldehyd zusammen mit 3-4 NaOH-Plättchen in 500 ml PBS auf einem 
Magnetrührer lösen, pH-Wert auf 7,6 mit 1 M HCl einstellen, Lösung durch Filterpapier 
filtrieren, aliquotieren und bei -20 °C lagern. 
 
30 % Saccharoselösung 
150 g Saccharose in 400 ml PBS/Azid lösen, anschließend auf 500 ml auffüllen und bei RT 
lagern. 

2.5.11 Histologie 

Alle histologischen Färbungen an Hirnschnitten wurden, wenn nicht anders erwähnt, 
bei RT in einer Feuchtkammer durchgeführt. Zu Beginn wurden die eingefrorenen 
Hirnschnitte für 10 min aufgetaut und für weitere 10 min mit PBS rehydriert. 
Anschließend konnte mit der gewünschten Färbemethode begonnen werden. 

Immunhistochemie  

Nach Rehydrierung der Hirnschnitte wurden sie 1 x mit PBS gewaschen und die 
Schnitte für 10 min mit 0,5 %iger Triton X-100-Lösung inkubiert. Nach zwei 
Waschschritten mit PBS wurden alle unspezifischen Bindungsstellen 5 min mit einer 
Blocking-Lösung (Zytomed) abgedeckt. Anschließend wurden die Schnitte 
mindestens 2 x mit PBS gewaschen. Der 1. Antikörper wurde in 0,1 %iger Triton X-
100-Lösung verdünnt und 2 h (bei RT) oder ü. N. (bei 4 °C) inkubiert. Am nächsten 
Tag wurden die Schnitte erneut 2 x mit PBS gewaschen. Die Inkubation mit dem 
entsprechenden 2. Antikörper erfolgte auch in 0,1 %iger Triton X-100-Lösung für 2 h. 
Nach zweimaligem Waschen wurden die Zellkerne für 2 min mit DAPI angefärbt. 
Abschließend wurden die Schnitte wiederholt mit PBS gewaschen und schließlich mit 
Mowiol unter einem Deckgläschen eingedeckelt. 
 

0,1 %ige und 0,5 %ige Triton X-100-Lösung 
0,1 % bzw. 0,5 % Triton-X 100 in PBS lösen, bei RT lagern. 

Immunohistochemischer Nachweis von Sulfatid 

Sulfatid wurde unter der Verwendung des Sulph1-Antikörpers (zur Verfügung gestellt 
von Prof. Jan-Eric Månsson, Sahlgrenska University Hospital, Göteborg, Schweden; 
Fredman et al, 1988) auf Gehirnschnitten nachgewiesen. Hierzu wurden die 
Hirnschnitte nach Rehydrierung in 0,05 %iger Glycin-Lösung für 30 min behandelt. 
Danach folgte für 3-4 h eine Inkubation mit der BSA-Blocklösung I, bevor der primäre 
Sulph1-Antikörper in einer Verdünnung von 1:100 in BSA-Blocklösung II bei 4 °C 
ü. N. inkubiert wurde. Am nächsten Tag wurden die Schnitte 3 x 10 min mit PBS 
gewaschen und anschließend mit dem entsprechenden sekundären Antikörper für 
3 h bei RT inkubiert. Nach einer 2-msinütigen DAPI-Kernfärbung wurden die Schnitte 
erneut mehrfach gewaschen und schließlich mit Mowiol eingedeckelt. Zusätzlich zum 
Sulph1 Antikörper konnten auch andere Primärantikörper mit dieser Färbemethode 
eingesetzt werden. 
 

0,05 %ige Glycin-Lösung 
0,05 % Glycin in PBS 
 

BSA-Blocklösung I 
0,05 % Tween-20 und 1 % 
BSA in PBS  
 

BSA-Blocklösung II 
0,01 % Tween-20 und 1 % 
BSA in PBS  
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Alcian Blau-Färbung 

Mit der Alcian Blau-Färbung wurde histologisch die Akkumulation von Sulfatid 
nachgewiesen (Wittke et al, 2004; Ramakrishnan et al, 2007). Die Färbung beruht 
darauf, dass Alcian Blau sich an die negative Ladung des Sulfatids im Gewebe 
bindet. Es ist wichtig, den pH-Wert von 5,7 genau einzuhalten.  
Zuerst wurden die gefrorenen Hirnschnitte aufgetaut. Das PBS wurde abgenommen 
und die Schnitte für insgesamt 24 h mit Scott-Lösung inkubiert, wobei die Lösung 
mindestens 3 x gewechselt wurde. Nach 24 h wurden die Schnitte mit 0,025 %iger 
Alcian Blau-Lösung für 3-4 h angefärbt und im Anschluss für weitere 24 h mehrmals 
mit Scott-Lösung gewaschen, um die unspezifische Hintergrundfärbung zu verringern. 
Nach der Alcian Blau-Färbung wurden die Hirnschnitte mehrmals mit PBS 
gewaschen und falls gewünscht, die humanen Zellen mittels DAB-Färbung detektiert. 
Hierfür wurden im ersten Schritt die endogenen Peroxidasen mittels 1 %iger H2O2-
Lösung in ddH2O gehemmt. Die Schnitte wurden im Anschluss 2 x 5 min mit PBS 
gewaschen und für 30 min mit 0,5 %iger Triton X-100-Lösung behandelt. Nach 
einem erneuten zweimaligen Waschschritt wurden alle unspezifischen Bindungs-
stellen 5 min mit einer Blocking-Lösung (Zytomed) abgedeckt und der Primär-
antikörper Stem121TM für 1 h inkubiert. Nach wiederholtem Waschen wurden die 
Schnitte für 30 min mit einem HRP-gekoppelten Antikörper (Zytomed) inkubiert. Die 
Detektion mit DAB erfolgte nach zweimaligem Waschen und unter Verwendung des 
DAB-Subtrate Kit High Contrast nach Herstellerangaben. Direkt im Anschluss 
wurden die Schnitte für 5 min in destilliertem Wasser gewaschen und in PBS 
überführt. Nach einer Dehydrierung (Schwenken in 100 % EtOH, erneut 100 % 
EtOH, Isopropanol, jew. 2 min in Xylol, erneut Xylol) wurden die Schnitte mit 
Cytoseal™ XYL eingedeckelt. 
 
2.5 M MgCl2 Lösung 
2.5 M MgCl2 x 6 H2O (trocken gelagert) in 
entsprechendem Volumen H2O lösen und 
sofort verwenden. 

 0,1 M Na-Acetat Puffer pH 5,7 
0,1 M Na-Acetat in entsprechendem 
Volumen H2O lösen, pH-Wert auf 5,7 
einstellen und bei RT lagern. 

Scott-Lösung 
2,5 % Glutaraldehyd    
0,3 M MgCl2     
25 mM Na-Acetat Puffer pH 5,7  

 0,025 %ige Alcian Blau Lösung 
0,025 % Alcian Blue 8GX in Scott-Lösung 
unter Verwendung eines Ultraschallbads 
lösen. Anschließend Lösung filtrieren, 
aliquotieren und bei -20 °C lagern.  

2.6 Software 

Software Hersteller Anwendung 

A Plasmid Editor 2.0.39 M (ApE) Wayne Davis Sequenzanalyse 

AxioVision 40 4.5.0.0 Carl Zeiss Aufnahmen ApoTome  

AxioVision Rel. 4.6/8 Carl Zeiss Aufnahmen Axioskop 2/200M 

EMBOSS Transeq Tool  EMBL-EBI Sequenzanalyse 

Excel 2008 Microsoft Auswertung 

FlowJo 8.7 Tree Star Datenerfassung FACS® Calibur 

GenomeStudie Illumina Auswerung SNP Daten 

Illustrator CS3 Adobe Bildbearbeitung 

ImageJ 1.42q NIH Bildbearbeitung 
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Software Hersteller Anwendung 

LAS AF Leica Aufnahmen Leica Live Cell      
DMI6000 B  

LAS V3.3.0 Leica Aufnahmen Leica DM IL LED 

Lasergene 11 DNAstar® Sequenzanalyse 

NanoDrop 1000 PEQLAB NanoDrop 

Nukleotid BLAST  NCBI Sequenzanalyse 

Oligonucleotide Properties 
Calculator  

Northwestern 
University Primer Design 

Photoshop CS3 Adobe Bildbearbeitung 

Primer Blast  NCBI Primer Design 

Prism6 Graphpad Statistik 

Protein BLAST NCBI Sequenzanalyse 

Quantity One 4.6.8 Biorad Datenerfassung GelDoc  

SOFTmax Pro Molecular Devices Datenerfassung ARSA-Assay 

Word 2011 Microsoft Textbearbeitung 
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3. Ergebnisse 

3.1 MLD-spezifische Hautfibroblasten weisen distinkte Mutationen im 
ARSA-Gen auf  

Für die Generierung von hiPSCs wurden Hautfibroblasten verwendet, die von 

Spendern stammten, die an unterschiedlichen Formen der MLD erkrankt sind. Als 

Kontrollen dienten Hautfibroblasten von nicht MLD-spezifischen Spendern (Control, 

Ctrl), die auch in hiPSCs reprogrammiert wurden (siehe Tabelle 1).  

Die Fibroblasten der Spenderin aMLD wurden von Prof. Volkmar Gieselmann (Institut 

für Biochemie und Molekularbiologie, Universität Bonn) zur Verfügung gestellt. Die 

Patientin leidet an der adulten Form der MLD (aMLD), die durch eine homozygote (-/-) 

Mutation (p.P426L) im ARSA-Gen ausgelöst wird (siehe Tabelle 1; Polten et al, 

1991). Ein Basenaustausch von C zu T führt in der Aminosäuresequenz (p) an 

Position 426 zu einem Austausch von Prolin (P) durch Leucin (L; Abb. 10). Das 

verursacht eine Fehlfaltung im Protein, wodurch ARSA verfrüht abgebaut wird. Die 

Funktionalität des Enzyms ist nicht beeinträchtigt. Ein geringer Anteil des Proteins 

entgeht dem vorzeitigen Abbauprozess und gelangt ins Lysosom. Somit kann eine 

Restenzymaktivität von ARSA in aMLD-Patienten bestehen (von Figura et al, 1983; 

von Bülow et al, 2002).  
 

Tabelle 1: Überblick der humanen Hautfibroblasten und deren Eigenschaften. 
 

Spender Geschlecht Alter Beginn der 
MLD MLD-Form Mutation/en 

im ARSA-Gen 
ARSA-

Aktivität 

aMLD w 14 > 16 Jahre adult p.P426L (-/-) niedrig 

liMLD-2 m 3 < 2 Jahre spätinfantil IVS2 +1 (-/-); 
p.W193C  (-/-) keine 

liMLD-3* m 4 < 2 Jahre spätinfantil IVS3 +1(+/-); 
p.P426L (+/-) keine 

liMLD-4 m 5 < 2 Jahre spätinfantil p.P426L (-/-) keine 

Ctrl-1 w 23 / / keine normal 

Ctrl-2 w 28 / / keine normal 

Ctrl-3* m 5 / / keine normal 

*Geschwister 
 

Alle weiteren MLD-spezifischen Spender leiden an der spätinfantilen Form der MLD 

(late infantile MLD; liMLD-2, -3 und -4) und weisen keine ARSA-Enzymaktivität auf 
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(siehe Tabelle 1). Die durch die Mutationen ausgelösten strukturellen Veränderungen 

im Protein führen zu einem sofortigen proteasomalen Abbau der ARSA und kein 

funktionelles Enzym erreicht das Lysosom (Poeppel et al, 2005, 2010). Die 

Fibroblasten der liMLD-Patienten und die der Kontrolle Ctrl-3, wurden vom Coriell 

Institute for Medical Research (USA) bezogen. Spender Ctrl-3, dessen Zellen in der 

vorliegenden Arbeit als Hauptkontrolle dienten, ist verwandt mit Spender liMLD-3 

(angezeigt durch * in Tabelle 1). Da die MLD-verursachenden Mutationen der liMLD-

spezifischen Spender im Vorfeld nicht bekannt waren, wurde das gesamte ARSA-

Gen dieser Fibroblasten sequenziert.  
 

 
Abb. 10: Aufbau des humanen ARSA-Gens mit Kennzeichnung der MLD-

verursachenden Mutationen.  
Der Aufbau des humanen ARSA-Gens ist schematisch dargestellt. Die Positionen der Mutationen sind 
mit roten Pfeilen angezeigt. Die Polymorphismen sind kursiv geschrieben. (Exons: Balken; Introns: 
Linien; kodierende Sequenz: schwarz; 5’ bzw. 3’ untranslatierte Region: weiß; Start-/Stopp-Codon: 
ATG/TGA, N-Glycolisierungsmodifikationen: schwarze Dreiecke). Modifiziert nach Gieselmann et al, 
1994. 

Der Patient liMLD-2 trägt eine homozygote Mutation an einer Schnittstelle zwischen 

Exon 2 und Intron 2 (Intervening Sequence 2, IVS2; Abb. 10). Durch den 

Basenaustausch von G zu A wird die eigentliche Schnittstelle um eine Stelle (+1) 

verschoben (IVS2+1G>A; Polten et al, 1991; Zlotogora et al, 1994). Zusätzlich tritt 

durch einen Basenaustausch in der ARSA-Gensequenz (842G>T) eine weitere 

Veränderung in der Proteinstruktur an Position 193 auf. Die Aminosäure Tryptophan 

(W) wird durch Cystein (C) ersetzt (p.W193C; Abb. 10). Diese Mutation würde alleine 

die adulte Form der MLD auslösen (Polten et al, 1991; Ricketts et al, 1996).  

Der Spender liMLD-3 trägt neben der p.P426L-Mutation in heterozygoter (+/-) Form 

eine weitere heterozygote Mutation an einer Schnittstelle in Intron 3 (IVS3+1G>A, 

Abb. 10). Diese wird mit der spätinfantilen MLD in Verbindung gebracht (Barth et al, 

1995).  

Patient liMLD-4 leidet gemäß den Informationen vom Coriell Institute for Medical 

Research auch an der spätinfantilen Form der MLD (Coriell GM00197, 2016). Die 

ATG TGA

p.P426LIVS2+1G>A
IVS3+1G>A

IVS7+20C>Gp.W193C
1386A>G

2059C>T

1 kb
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Sequenzierung des ARSA-Gens ergab, dass dieser Spender die p.P426L-Mutation      

(-/-) trägt (Abb. 10). Diese hat zwar einen Effekt auf die ARSA-Proteinstruktur, wird 

aber eher mit einem milderen Phänotypen der MLD (aMLD) assoziiert (Polten et al, 

1991). Zusätzlich besitzt der Patient noch drei weitere Mutationen (1386A>G, 

2059C>T und IVS7+20; Abb. 10), bei denen es sich aber um bereits bekannte 

Polymorphismen handelt (ARSA-Datenbank, 2016; Coulter-Mackie & Gagnier, 1997; 

Gort et al, 1999). 

3.2 MLD-spezifische Hautfibroblasten können in iPSCs reprogrammiert 
werden 

Die Reprogrammierung der in Tabelle 1 aufgelisteten Hautfibroblasten wurde mit 

Hilfe des CytoTuneTM-iPS Sendai Reprogramming Kit durchgeführt. Es basiert auf 

der Reprogrammierung von somatischen Zellen unter der Verwendung nicht-

integrativer Sendaiviren (SeV; Fusaki et al, 2009). Die Viren kodieren für die 

Transkriptionsfaktoren c-MYC, KLF4, OCT-4 und SOX2. Die Hautfibroblasten (Abb. 

11 A, D) wurden mit den beschriebenen SeV infiziert. Die Generierung und 

Validierung der hiPSC-Linien wird beispielhaft jeweils für eine Kontrolllinie (Ctrl-3 

#S12) und eine MLD-spezifische Linie (liMLD-3 #S19) dargestellt.  
 

 
Abb. 11: Reprogrammierung von Hautfibroblasten zu hiPSCs. 
Die Hautfibroblasten von Kontroll- (Ctrl-3 #S12; A) und MLD-spezifischen (liMLD-3 #S19; D) Spendern 
wurden unter der Verwendung des CytoTuneTM-iPS Sendai Reprogramming Kit mit nicht-integrativen 
Sendaiviren infiziert. Nach 7 Tagen wurden die infizierten Zellen (B, E) auf Feeder-Zellen umgesetzt. 
Die entstandenen hiPSCs formten runde, definierte Kolonien (C, F, gestrichelte Linien). 
Maßstabsbalken: A-F: 100 µm. 

Die infizierten Zellen veränderten wenige Tage nach der Infektion ihre Morphologie, 

von einer länglichen ellipsoiden zu einer kompakteren kugeligen Form, wobei viele 

Zellen starben (Abb. 11 B, E). Nachdem die infizierten Zellen auf einen Rasen von 
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Feeder-Zellen umgesetzt wurden, bildeten sich nach wenigen Wochen dicht 

gepackte Kolonien. Diese wiesen morphologische Charakteristika von Stammzell-

kolonien auf. Die Feeder-Zellen sind für den Erhalt der Pluripotenz von Stammzellen 

wichtig, da sie die dafür notwendigen Faktoren in das Medium sezernieren (Lim & 

Bodnar, 2002). Die neu entstandenen iPSC-Kolonien wurden mechanisch isoliert und 

auf einen frischen Feeder-Rasen gesetzt. Dort formten die gewonnenen Zellen 

rundlich abgegrenzte und kompakte Kolonien (Abb. 11 C, F). Für jede Spenderlinie 

wurden drei iPSC-Klone nach morphologischen Kriterien ausgewählt und für die 

weitere Validierung herangezogen (Tabelle 2).  
 

Tabelle 2: Überblick der generierten hiPSC-Klone und deren Validierung sowie 
Differenzierung in RGL-NPCs.  

Linie iPSCs Klone für 
Validierung SeV Pluri-

potenz 
Keimblatt                    

in vitro   in vivo 
SNP-

Analyse RGL-NPCs 

aMLD ✔  #S5, 15, 17 frei ✔  ✔  ✔  ✔  #S5, 15 

liMLD-2 ✔  #S1, 4 frei ✔  ✔  ✔  ✔  #S1, 4 

liMLD-3 ✔  #S10, 17, 19 frei ✔  ✔  ✔  ✔  #S10, 17, 19 

liMLD-4 ✔  #S1, 4, 6, 12 frei ✔  ✔  ✔  ✔  #S1, 4, 6, 12 

Ctrl-1 ✔  #S9, 10, 24 frei ✔  ✔  ✔  ✔  #S9, 10 

 Ctrl-2* ✔  #8* frei ✔  ✔  ✔  ✔  #8* 

Ctrl-3 ✔  #S1, 8, 11, 
12 frei ✔  ✔  ✔  ✔  #S1, 8, 11, 

12 
 

Es ist dargestellt, welche Klone (#) von welcher Linie verwendet wurden, welche 
Validierungsprozesse (weiße Überschriften) sie durchlaufen haben und aus welchen Linien 
schließlich RGL-NPCs gewonnen wurden. Die iPSCs und RGL-NPCs der Linie Ctrl-2 wurden 
von Julia Fischer (Institut für Rekonstruktive Neurobiologie, Universität Bonn) generiert und 
charakterisiert (gekennzeichnet mit *). 
 
Im Rahmen der Validierung wurde zu Beginn überprüft, ob die ausgewählten iPSC-

Klone noch SeV enthalten. Die SeV sind nicht-integrativ und werden nach 

Entstehung der Stammzellkolonien nach einigen Passagen aus den Zellen 

ausgeschleust. Außerdem können sie sich im Zytoplasma der Zellen nicht replizieren, 

da sie durch die Deletion des F-Gens keine infektiösen Partikel bilden können. 

Anhand einer RT-PCR und entsprechenden Oligonukleotiden, die das SeV-

Transkript erkennen, konnte überprüft werden, ob in den Zellen noch SeV existieren. 
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Zusätzlich konnte die Expression des membranständigen Hämagglutinin-

Neuraminidase (HN)-Proteins Aufschluss über die Existenz der Viren in den Zellen 

geben. HN befindet sich nur auf der Zelloberfläche, wenn die Zellen noch Viren 

enthalten. In Kontroll- und MLD-spezifischen hiPSCs konnten nach wenigen 

Passagen (P) im Vergleich zu den frisch infizierten Zellen (1 Tag nach Infektion) 

sowohl auf Transkript- als auch auf Proteinebene keine SeV mehr nachgewiesen 

werden (Abb. 12 A-D). 
 

 

Abb. 12: Nachweis der Sendaiviren in den generierten iPSCs. 
Anhand einer RT-PCR mit spezifischen SeV-Oligonukleotiden (A) und einer immunzytochemischen 
Anfärbung des Hämagglutinin-Neuraminidase(HN)-Proteins (B-D) konnten im Vergleich zu den frisch 
infizierten Zellen (Tag 1; A, B) in den entstandenen hiPSCs keine SeV detektiert werden. In der 
isolierten RNA von Kontroll- (Ctrl-3 #S12; Passage (P) 5) und MLD-spezifischen (liMLD-3 #S19; P 6) 
hiPSCs konnte mit Hilfe einer RT-PCR keine SeV-RNA nachgewiesen werden (A). Beide hiPSC-
Klone zeigten auf der Zelloberfläche keine HN-Expression mehr (C, D). A: Der Nachweis des GAPDH-
Transkripts diente als Ladekontrolle. B-D: Zellkerne wurden mit DAPI angefärbt. Maßstabsbalken: 
100 µm. 

Die Pluripotenz ist eine wichtige Eigenschaft von ESCs und iPSCs und kann anhand 

der Expression von verschiedenen humanen pluripotenzassoziierten Zelloberflächen-

markern nachgewiesen werden. Die hiPSC-Kolonien von MLD-spezifischen und 

Kontrollspendern zeigten eine positive Immunfärbung für Tra-1-60, Tra-1-81 und 

SSEA-4 (Abb. 13 A-C, E-G). Zusätzlich wurden diese Ergebnisse durch eine positive 

Anfärbung für die Alkalische Phosphatase (AP) untermauert (Abb. 13 D, H). AP wird 

auch von undifferenzierten pluripotenten Stammzellen exprimiert. 
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Abb. 13: Expression pluripotenzassoziierter Proteine in hiPSCs. 
Die generierten Kontroll- (Ctrl-3 #S12) und MLD-spezifischen (liMLD-3 #S19) hiPSCs exprimierten 
neben den pluripotenzassoziierten Oberflächenantigenen Tra-1-60, Tra-1-81 und SSEA-4 (A-C; E-G) 
auch die Alkalische Phosphatase (AP; D, H). Zellkerne wurden mit DAPI angefärbt (A-C, E-G). 
Maßstabsbalken: 100 µm. 

Weiterhin konnte die Pluripotenz durch eine ungerichtete Differenzierung der 

generierten hiPSCs in die Zellen der drei Keimblätter Endoderm, Mesoderm und 

Ektoderm in vitro und in vivo überprüft werden. In vitro wurden aus den hiPSCs EBs 

generiert, die nach Plattieren, Differenzieren und Auswachsen von Zellen hinsichtlich 

ihrer Differenzierung in die verschiedenen Keimblattderivate analysiert wurden. Zur 

Identifizierung von meso-, endo- und ektodermalen Zelltypen wurden die Marker 

smooth muscle actin (SMA), alpha-fetoprotein (AFP) bzw. βIII-tubulin (TUBB3) 

herangezogen und konnten sowohl in den Kontroll- als auch in MLD-spezifischen 

Linien detektiert werden (Abb. 14 A-C, G-I). 

Für den in vivo-Nachweis wurden die hiPSCs jeweils in einen Hoden von 

immundefizienten Mäusen injiziert. 6-8 Wochen später hatten sich Teratome geformt, 

die hinsichtlich der Differenzierung in die verschiedenen Keimblätter untersucht 

wurden. Nach einer HE-Färbung (Prof. Torsten Pietsch, Institut für Neuropathologie, 

Universität Bonn) konnten in allen überprüften und aus hiPSCs entstandenen 

Teratomen Derivate der Keimblätter, wie Knorpel (Mesoderm, Abb. 14 D, J), 

Drüsengewebe (Endoderm, Abb. 14 E, K) oder Pigmentepithel (Ektoderm, Abb. 14 F, 

L) morphologisch nachgewiesen werden. 
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Abb. 14: In vitro- und in vivo-Keimblattdifferenzierung der hiPSCs. 
Die generierten Kontroll- (Ctrl-3 #S12) und MLD-spezifischen (liMLD-3 #S19) hiPSCs konnten in vitro 
über die ungerichtete Differenzierung von plattierten EBs in Zellen aller drei Keimblätter differenziert 
werden, in Mesoderm (SMA; A, G), Endoderm (AFP; B, H) und Ektoderm (TUBB3; C, I). In 
Teratomanalysen in immundefizienten Mäusen konnte in vivo die Differenzierung in die verschiedenen 
Keimblattderivate, wie Knorpelgewebe (Mesoderm; D, J), Drüsengewebe (Endoderm; E, K) und 
pigmentiertes Epithel (Ektoderm; F, L) anhand einer HE-Färbung nachgewiesen werden. Zellkerne 
wurden mit DAPI angefärbt (A-C, G-I). Maßstabsbalken: A-C, G-I: 50 µm; D-F, J-L: 100 µm. 

Die genomische Integrität der generierten hiPSC-Klone wurde mit Hilfe einer SNP-

Analyse überprüft. Hierfür wurde die genomische DNA der hiPSCs isoliert und mittels 

hochauflösender SNP-Microarrays analysiert. Mit dieser Methode konnten die 

Frequenzen einzelner Allele quantitativ bestimmt und Abweichungen der Anzahl der 

Kopien eines bestimmten DNA-Abschnittes innerhalb des Genoms, wie Deletionen 

oder Duplikationen, festgestellt werden. In den ausgewählten hiPSC-Klonen von 

Kontroll- und MLD-spezifischen Spendern konnten im Vergleich zu den 

entsprechenden Fibroblastenlinien keine neuen genetischen Aberrationen detektiert 

werden (Abb. 15). 
 

Mesoderm

Maßstabsbalken: A-C, G-I: 50 µm; D-F; J-L: 100 µm.
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Abb. 15: Genomische Integrität der hiPSCs. 
Die genomische Integrität wurde mir Hilfe einer SNP-Analyse überprüft. Für jedes einzelne 
Chromosom der ausgewählten Patienten sind die B-Allelfrequenz (B Allele Freq; oben), die den 
Genotyp anzeigt, und der LogR ratio, der Aufschluss über den DNA-Gehalt gibt (unten), dargestellt. 
Durch die Reprogrammierung sind in den hier beispielhaft gezeigten Kontroll- (Ctrl-3 #S12) und MLD-
spezifischen (liMLD-3 #S19) hiPSCs keine weiteren genetischen Aberrationen aufgetreten. 

3.3 MLD-spezifische iPSCs können unter definierten Medienbedingungen 
in RGL-NPCs differenziert werden 

Die neurale Differenzierung von Kontroll- und MLD-spezifischen hiPSCs in RGL-

NPCs erfolgte anhand eines an humanen ESCs etablierten Protokolls (Gorris et al, 

2015). In diesem EB-basierten Protokoll wurden die hiPSCs über einen Zeitraum von 

4 Wochen unter schrittweiser Reduktion von ATRA zunächst neuralisiert und im 

weiteren Verlauf zu RGL-NPCs differenziert und angereichert. Zu Beginn wurden die 

hiPSC-Kolonien (Abb. 16 A) abgelöst und in Suspension gebracht, um die Bildung 

der EBs zu initiieren (Abb. 16 B). Die Medienbedingungen waren so gewählt, dass 

die Entstehung neuraler und insbesondere glialer Zellen begünstigt und die 

Differenzierung in Zellen anderer Keimblätter unterdrückt wurde. Die EBs wurden 

einer hohen Konzentration an ATRA ausgesetzt, die im Verlauf des Differenzierungs-

protokolls von 4 Wochen reduziert wurde. Schließlich wurden die EBs plattiert. Sie 

enthielten sowohl proliferierende als auch ausdifferenzierte Zellen. Um die 

Ctrl-3 #S12 liMLD-3 #S19
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Proliferation der auswachsenden Zellen zu stimulieren, wurden sie unter Zusatz der 

Wachstumsfaktoren epidermal growth factor (EGF), FGF-2 und dem Schilddrüsen-

hormon T3 kultiviert. Die aus den plattierten EBs auswachsenden Zellen bildeten 

eine heterogene Kultur unterschiedlicher Zelltypen, zwischen denen Zellen mit 

bipolarer, neuraler Morphologie beobachtet werden konnten (Abb. 16 C). 
 

 
Abb. 16: Neurale Differenzierung von hiPSCs in RGL-NPCs. 
Die neurale Differenzierung von hiPSCs in RGL-NPCs wird beispielhaft dargestellt. Die runden, 
abgegrenzten hiPSC-Kolonien (A; gestrichelte Linie) wurden in Suspension gebracht und formten 
schwimmende EBs (B). Diese wurden über 4 Wochen Faktoren ausgesetzt, die eine neurale und 
gliale Differenzierung der Zellen begünstigten. Anschließend wurden sie plattiert und die 
auswachsenden Zellen (C) mittels FACS zu bipolaren RGL-NPCs (D) angereichert. Maßstabsbalken: 
A, C-D: 100 µm; B: 200 µm. 

Aufgrund der starken Heterogenität der auswachsenden Zellen wurden die RGL-

NPCs mittels FACS und einem Antikörper, der den neuralen Stammzellmarker 

CD133 erkennt, angereichert. Die isolierten RGL-NPCs bildeten eine adhärente und 

homogene Zellpopulation, die stabil unter dem Einfluss von EGF und FGF-2 

proliferierte. In Tabelle 2 ist aufgeführt, aus welchen hiPSC-Klonen erfolgreich RGL-

NPCs gewonnen werden konnten. Im weiteren Verlauf wurden die generierten RGL-

NPCs anhand von typischen neuralen Stammzell- und radialen Gliazellmarkern 

charakterisiert. Die Ergebnisse werden beispielhaft an zwei Kontroll- (Ctrl-3 #S1/8) 

und an mehreren MLD-spezifischen Linien (aMLD #S15, liMLD-2 #S4, liMLD-3 

#S10/19) dargestellt. Alle generierten RGL-NPC-Linien zeigten eine typische bipolare 

Zellmorphologie (Abb. 17 A1-F1). 

CB DA
schwimmende EBs plattierter EB RGL-NPCshiPSC-Kolonie

Maßstabsbalken: A, C-D: 100 μm; B: 200 μm.
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Abb. 17: Expressionsprofil der RGL-NPCs auf Proteinebene. 
Die Kontroll- (Ctrl-3 #S1/8) und MLD-spezifischen (aMLD #S15, liMLD-2 #S4, liMLD-3 #S10/19) RGL-
NPCs wiesen eine bipolare Morphologie auf (A1-F1). Sie exprimierten neurale Stammzellmarker, wie 
CD133, Nestin (NES), SOX2 und SOX9 (A2-F4) und den radialen Gliazellmarker Vimentin (VIM; A5-
F5) sowie PDGFRα, einen frühen Oligodendrozytenmarker (A6-F6). Zellkerne wurden mit DAPI 
angefärbt. Maßstabsbalken: A1-F1: 100 µm; A2-F6: 50 µm. 

Die Proteinexpression wurde mittels immunzytochemischer Analysen überprüft. Die 

generierten Kontroll- und MLD-spezifischen RGL-NPC-Linien exprimierten neben 

CD133 auch weitere typische neurale Stammzellmarker, wie Nestin (NES), SOX2 

und SOX9 (Abb. 17 A2-F4). Zusätzlich konnte die Expression des radialen 

Gliazellmarkers Vimentin (VIM) und des frühen OPC-Markers PDGFRα in allen 

Linien detektiert werden (Abb. 17 A5-F6). 

Die Ergebnisse der immunzytochemischen Analysen konnten auf Transkriptions-

ebene mit einer semiquantitativen RT-PCR bestätigt werden (Abb. 18). Der neurale 

Stammzellcharakter der generierten RGL-NPC-Linien wurde erneut durch die 

Expression von CD133, Nestin (NES), SOX2 und SOX9, wie auch durch die 

Expression von ASCL1 und paired box (PAX) 6 demonstriert. Neben Vimentin (VIM) 

konnte eine Expression der charakteristischen radialen Gliazellmarker BLBP und 

glial fibrillary acidic protein (GFAP) nachgewiesen werden. Die RGL-NPCs 
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exprimierten auch PDGFRα und den Transkriptionsfaktor OLIG2, der wichtig für die 

Oligodendrozytenentwicklung ist. Ein teilweise variables Expressionsmuster, wie z. B. 

bei PAX6, GFAP und PDGFRα, ist vermutlich auf linienspezifische Unterschiede 

zurückzuführen. 

 

 

Abb. 18: Expressionsprofil der RGL-NPCs auf Transkriptionsebene. 
Das Genexpressionsprofil von Kontroll- (Ctrl-3 #S1, #S8) und MLD-spezifischen (liMLD-2 #S4, liMLD-
3 #S10/19) RGL-NPCs zeigte, dass alle Linien neurale Stammzell- bzw. radiale Gliazellmarker wie 
CD133, Nestin (NES), SOX2, ASCL1, SOX9, PAX6, Vimentin (VIM), BLBP, OLIG2, GFAP und 
PDGFRα exprimierten. Der Nachweis des GAPDH-Transkripts diente als Ladekontrolle. Als 
Positivkontrolle wurde die cDNA von humanem, fetalen Hirn und als Negativkontrolle Wasser 
eingesetzt.  

Die Expression des humanen radialen Gliazellmarkers GLAST wurde mittels 

quantitativer FACS-Analyse detektiert. In Abb. 19 ist zu erkennen, dass die Kontroll- 

und MLD-spezifischen RGL-NPCs eine hohe Immunreaktivität für diesen Marker 

aufwiesen (Abb. 19). 
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Abb. 19: Quantitative FACS-Analyse der GLAST-Expression in RGL-NPCs. 
Kontroll- (Ctrl-3 #S1) und MLD-spezifische (liMLD-2 #S4, liMLD-3 #S10/19) RGL-NPCs zeigten eine 
starke Expression des Glutamat-Transporters GLAST (dunkelblau). Die Fluoreszenzintensität von 
GLAST wird relativ zur Zellzahl angezeigt und mit einer Isotypkontrolle (hellblau) für jede Zelllinie 
verglichen. 

3.4 RGL-NPCs differenzieren unter bestimmten Kulturbedingungen in 
Neurone, Astrozyten und Oligodendrozyten  

Im Folgenden wurde das tripotente Differenzierungspotential der Kontroll- und MLD-

spezifischen RGL-NPCs in die drei Hauptzelltypen des ZNS, in Neurone, Astrozyten 

und Oligodendrozyten, untersucht. Für eine gerichtete Differenzierung der RGL-

NPCs wurden den Zellen die Wachstumsfaktoren EGF und FGF-2 entzogen und 

Faktoren entsprechend der Differenzierung hinzugefügt. Die Ergebnisse werden 

beispielhaft an einer Kontroll- (Ctrl-3 #S1) und an zwei MLD-spezifischen Linien 

(liMLD-3 #S10/19) dargestellt. 

Um die RGL-NPCs von Kontroll- und MLD-spezifischen Spendern in neuronale 

Zelltypen zu differenzieren, wurden sie unter dem Einfluss von brain derived 

neurotrophic factor (BDNF) kultiviert. Dieser Faktor stimuliert die Differenzierung, das 

Wachstum und das Überleben von Neuronen (Vicario-Abejón et al, 1995). Nach 

4 Wochen konnten in den Kulturen Zellen detektiert werden, die immunpositiv für den 

panneuronalen Marker TUBB3 und den reifen Neuronenmarker MAP2ab waren (Abb. 

20 A1-C2). Die Anzahl der TUBB3-positiven Neurone war zwischen den Kontroll- und 

MLD-abgeleiteten Kulturen mit ca. 35 % ähnlich (Abb. 20 D). Mögliche 
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Schwankungen in der Zellzahl sind dabei eher auf linienspezifische als auf MLD-

spezifische Unterschiede zurückzuführen. 

Die Differenzierung in Astrozyten konnte unter Einfluss von 10 % FCS induziert 

werden. Es ist bekannt, dass FCS neben BMPs auch den ciliary neurotrophic factor 

(CNTF) enthält. Diese begünstigen die astrogliale Differenzierung und führen zu der 

Expression des astrozytären Markers GFAP (Chiang et al, 1996; Mabie et al, 1997). 

Die Kontroll- und MLD-spezifischen Kulturen enthielten nach 2 Wochen ca. 80 %  

GFAP-positive Astrozyten (Abb. 20 A3-C3, E).  
 

 

Abb. 20: Astrogliale und neuronale Differenzierung der RGL-NPCs. 
A-C: Kontroll- (Ctrl-3 #S1) und MLD-spezifische (liMLD-3 #S10/19) RGL-NPCs konnten unter der 
Zugabe von BDNF in Neurone differenziert werden und exprimierten nach 4 Wochen den 
panneuronalen Marker TUBB3 (A1-C1) sowie den reifen Neuronenmarker MAP2ab (A2-C2). Die 
Differenzierung in Astrozyten (2 Wochen) wurde durch FCS initiiert und durch eine positive GFAP-
Färbung bestätigt (A3-C3). Zellkerne wurden mit DAPI angefärbt. Maßstabsbalken: 50 µm. D, E: Die 
differenzierten Kulturen der Kontroll- (Ctrl-3 #S1; schwarz) und MLD-spezifischen Linien (liMLD-3 
#S10, #S19; weiß) wurden quantifiziert. In den neuronalen Kulturen (4 Wochen) wurden die TUBB3-
positiven (D) und in den astroglialen Kulturen (2 Wochen) die GFAP-positiven Zellen gezählt (E). Die 
Anzahl der Zellen ist im Verhältnis zur Gesamtzellzahl (DAPI-positive Zellkerne) angegeben. Die 
Werte sind in Mittelwert + Standardabweichung dargestellt. 

Für die gerichtete Differenzierung der Kontroll- und MLD-spezifischen RGL-NPCs in 

Oligodendrozyten wurde ein komplexes Differenzierungsprotokoll verwendet. Es 

wurde zuvor an humanen ESCs etabliert (Gorris et al, 2015). Zu Beginn wurde die 

Proliferation von Oligodendrozytenvorläufern unter Einfluss von PDGF-AA, EGF und 

Forskolin für 2 Wochen induziert (Abb. 21 A). Zur Unterstützung der Proliferation 

dieser Vorläuferzellen wurden sie anschließend in Gegenwart von PDGF-AA, T3, 

Ascorbinsäure (ascorbic acid; AA) und dem BMP-Antagonisten Noggin für 1 Woche 
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kultiviert (Abb. 21 A). Die terminale Ausreifung der Zellen in Oligodendrozyten 

erfolgte unter Einfluss von T3, AA und Laminin für weitere 4-6 Wochen (Abb. 21 A). 

 
 

 
Abb. 21: Oligodendrogliale Differenzierung der RGL-NPCs. 
A: Schematische Darstellung der oligodendroglialen Differenzierung nach Gorris et al, 2015. Die RGL-
NPCs wurden zunächst für 2 Wochen in der Gegenwart von EGF, PDGF-AA und Forskolin zur 
Induktion glialer Zelltypen kultiviert. Anschließend wurden die Zellen für eine weitere Woche unter 
Einfluss von PDGF-AA, T3, AA und Noggin kultiviert, um die Proliferation oligodendroglialer Zellen zu 
unterstützen, bevor diese für 4-6 Wochen in der Gegenwart von T3, AA und Laminin terminal zu 
Oligodendrozyten (OL) differenziert und ausgereift wurden. B: In den oligodendroglialen Kulturen 
(4 Wochen terminal) der Kontroll- (Ctrl-3 #S1; schwarz) und der MLD-spezifischen Spendern (liMLD-3 
#S10/19; weiß) wurden die O4-positiven Zellen quantifiziert. Die Anzahl der Zellen ist im Verhältnis zur 
Gesamtzellzahl (DAPI-positive Zellkerne) angegeben. Die Werte sind in Mittelwert + 
Standardabweichung dargestellt. C-E: Aus den Kontroll- (Ctrl-3 #S1) und MLD-spezifischen (liMLD-3 
#S10/19) RGL-NPCs konnten über Oligodendrozytenvorläufer (473HD, OLIG2; 3 Wochen; C1-E1), 
frühe Oligodendrozyten (NG2; 4 Wochen terminal; C2-E2) bis hin zu reiferen Oligodendrozyten (O4; 
4 Wochen terminal; C3-E3), die eine immer mehr verzweigte Morphologie ausbildeten (4860; 
6 Wochen terminal; C4-E4), generiert werden. Zellkerne wurden mit DAPI angefärbt. Maßstabsbalken: 
50 µm. 

Die einzelnen Entwicklungsschritte konnten immunzytochemisch in den 

differenzierten Kulturen nachverfolgt werden. Nach 3 Wochen wurden bereits 
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Oligodendrozytenvorläufer detektiert. Sie waren positiv für OLIG2 und 473HD (Abb. 

21 C1-E1). Eine Ausnahme war bei der Linie liMLD-3 #S19 festzustellen, die kein 

positives OLIG2-Signal zeigte (Abb. 21 E1), aber dennoch in der Lage war, 

Oligodendrozyten zu bilden (Abb. 21 E2-E4). 473HD ist ein monoklonaler Antikörper 

(mAB), der an die Oberfläche von frühen Oligodendrozyten der Maus bindet 

(Faissner et al, 1994; Karus et al, 2016). Karus et al zeigten, dass dieser auch 

humane Oligodendrozyten eines frühen Stadiums erkennen kann. Nach 4 Wochen 

terminaler Ausreifung konnten neben Oligodendrozytenvorläuferzellen und Pre-

Oligodendrozyten, die rudimentär verzweigte bipolare Fortsätze hatten und NG2 

exprimierten (Abb. 21 C2-E2), auch reifere O4-positive Oligodendrozyten in den 

Kulturen nachgewiesen werden (Abb. 21 C3-E3). Letztere bildeten eine komplexere 

Morphologie mit multiplen Fortsätzen aus. Die Anzahl der O4-positiven 

Oligodendrozyten in den oligodendroglialen Kulturen war bei den ausgewerteten 

Linien sehr variabel, lag aber im Durchschnitt bei ca. 11 % (Abb. 21 B). 

Nach einer terminalen Ausreifung von 6 Wochen wiesen die Oligodendrozyten einen 

noch höheren Grad an Verzweigung auf und exprimierten das Epitop für den mAB 

4860 (Abb. 21 C4-E4). Gorris et al demonstrierten bereits, dass mit diesem Marker 

neben murinen auch humane Oligodendrozyten detektiert werden können (Gorris et 

al, 2015). In der Erstbeschreibung des Antikörpers markierte dieser komplex 

verzweigte und MBP-exprimierende Oligodendrozyten der Maus (Czopka et al, 2009). 

Neben den Oligodendrozyten fanden sich trotz gerichteter Differenzierung auch 

Neurone und Astrozyten in den Kulturen (Abb. 22). Es handelt sich daher um 

Mischkulturen, die im weiteren Verlauf als oligodendrogliale Kulturen bezeichnet 

werden. 
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Abb. 22: Neurone und Astrozyten in oligodendroglialen Kulturen. 

In den 4  Wochen terminal differenzierten oligodendroglialen Kulturen von Kontroll- (Ctrl-3 #S1) und 
MLD-spezifischen (liMLD-3 #S10/19) Zellen konnten neben den Oligodendrozyten (Abb. 21) auch 
TUBB3-positive Neurone (A-C) und GFAP-positive Astrozyten (D-F) detektiert werden. Zellkerne 
wurden mit DAPI angefärbt. Maßstabsbalken: 50 µm. 

3.5 MLD-spezifische Zellen sind ARSA-defizient 

Die Hauptursache der MLD ist ein Defekt im ARSA-Gen. Das kann zu einer 

eingeschränkten oder dem vollständigen Verlust ARSA-Enzymaktivität führen. Diese 

Defizienz kann mit Hilfe eines pNCS-basierten Enzymaktivitätsassays überprüft 

werden (Baum et al, 1959; Lee-Vaupel & Conzelmann, 1987). Für diesen Assay 

werden die intrazellulären löslichen Proteine aus den gewünschten Zellen isoliert und 

dem künstlichen ARSA-Substrat pNCS ausgesetzt. Die Umsetzung des Substrates 

kann anhand des Farbumschlags mit einem Spectrophotometer gemessen werden.  

Die patientenspezifischen Zellen stammten von Spendern, die an unterschiedlichen 

Formen der MLD erkrankt waren und eine niedrige bis gar keine ARSA-

Enzymaktivität aufweisen sollten. Es wurde überprüft, ob die Hautfibroblasten und 

die daraus abgeleiteten RGL-NPCs gemäß ihrer Krankheitsform die zu erwartenden 

Enzymaktivitäten in vitro zeigten. In Abb. 23 ist zu sehen, dass die Zellen, die von 

MLD-Patienten (grün, blau) gewonnen wurden, zwar das ARSA-Transkript 

exprimierten (Abb. 23 A1, B1), aber im Vergleich zu den Kontrollzellen (rot) kaum 

eine intrazelluläre Enzymaktivität aufwiesen (Abb. 23 A2, B2).  
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Abb. 23: Expression und Enzymaktivität von ARSA in Hautfibroblasten und RGL-
NPCs. 

A1, B1: Anhand einer RT-PCR konnte festgestellt werden, dass alle untersuchten Hautfibroblasten 
und RGL-NPC-Linien, sowohl von MLD-spezifischen als auch von Kontrollspendern, das Transkript 
von ARSA und ARSB exprimierten. Der Nachweis des GAPDH-Transkripts diente als Ladekontrolle 
und die cDNA von humanem, fetalen Hirn diente als Positivkontrolle. A2, B2: Der ARSA-
Enzymaktivitätsassay zeigte, dass bei den Hautfibroblasten (A2) und den RGL-NPCs (B2) die MLD-
spezifischen Zellen (grün, blau) eine niedrige bis keine intrazelluläre Aktivität im Vergleich zu den 
Kontrollzellen (rot) aufwiesen. Die ARSA-Enzymaktivität ist angegeben in mU/mg. Es sind Mediane 
und Einzelwerte dargestellt.  

Eine gemessene ARSA-Enzymaktivität in den MLD-spezifischen Zellen (grün, blau) 

ist möglicherweise auf die Expression der Arylsulfatase B (ARSB) zurückzuführen, 

welche auch das ARSA-Substrat im Enzymaktivitäts-Assay metabolisieren kann 

(Lee-Vaupel & Conzelmann, 1987). ARSB wird von allen Kontroll- und MLD-

abgeleiteten Zelllinien exprimiert (Abb. 23 A1, B1).  

Neben den Hautfibroblasten und RGL-NPCs wurden auch die astroglial, neuronal 

und oligodendroglial differenzierten Kulturen hinsichtlich ihrer Fähigkeit das ARSA-

Substrat umzusetzen, untersucht. Erneut konnte in den MLD-abgeleiteten Kulturen 

(grün, blau) eine niedrige bis keine intrazelluläre ARSA-Enzymaktivität im Vergleich 

zu den Kontrollkulturen (rot) gemessen werden (Abb. 24).  
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Abb. 24: ARSA-Aktivität in astroglialen, neuronalen und oligodendroglialen 

Kulturen. 
Die astroglialen, neuronalen und oligodendroglialen Kulturen der MLD-spezifischen Zellen (grün, blau) 
zeigten eine niedrige bis keine intrazelluläre ARSA-Enzymaktivität im Vergleich zu Kulturen von 
Kontrollzellen (rot). Die ARSA-Enzymaktivität ist angegeben in mU/mg. Es sind Mediane und 
Einzelwerte dargestellt.  

3.6 MLD-spezifische und Kontroll-Oligodendrozyten zeigen eine ähnliche 
Differenzierung sowie einen vergleichbaren Nachweis von Sulfatid 

Im Krankheitsverlauf der MLD kann aufgrund der ARSA-Defizienz Sulfatid nicht 

abgebaut werden und lagert sich intralysosomal ab. Da Sulfatid ein Hauptbestandteil 

des Myelins ist, kommen die pathologischen Anhäufungen vorwiegend in den 

myelinbildenden Zellen des ZNS, den Oligodendrozyten, vor. In dem hier 

vorgestellten in vitro-Kultursystem war es möglich, MLD-abgeleitete 

Oligodendrozyten zu generieren. Es wurde überprüft, ob in diesen Zellen, 

entsprechend der fehlenden ARSA-Enzymaktivität, in vitro ebenfalls prominente 

Sulfatidablagerungen sowie daraus resultierende Defekte in der Oligodendrozyten-

differenzierung detektiert werden können. 

In Abb. 25 A-D ist mit Hilfe der oligodendrozytenspezifischen Marker zu erkennen, 

dass es zu den untersuchten Zeitpunkten keinen erkennbaren Unterschied im 

Differenzierungsverhalten der Oligodendrozyten zwischen Kontroll- und MLD-

abgeleiteten Zellen gab. Nach 4 Wochen terminaler Ausreifung bildeten sich in 

beiden oligodendroglialen Kulturen O4-positive Oligodendrozyten mit multiplen 

Fortsätzen (Abb. 25 A, C). Nach 6 Wochen differenzierten die Zellen weiter aus und 

4860-positive und reich verzweigte Oligodendrozyten konnten bei beiden 

dargestellten Linien detektiert werden (Abb. 25 B, D). 
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Abb. 25: Vergleich der Kontroll- und MLD-spezifischen Oligodendrozyten in vitro. 
Nach terminaler Ausreifung von 4 (O4; A; C) bzw. 6 Wochen (4860; B, D) konnten Oligodendrozyten 
von Kontroll- (Ctrl-3 #S1) und MLD-spezifischen (liMLD-3 #S19) Spendern generiert werden. Mit Hilfe 
eines spezifischen Antikörpers für Sulfatid (Sulph1) wurde in 4 und 6 Wochen terminal differenzierten 
Oligodendrozyten (Kontrolle und MLD-abgeleitet) ein positives Sulph1-Signal festgestellt (E-J). Eine 
intrazelluläre Kofärbung von Sulph1 mit O4, welcher auch Sulfatide erkennt, bestätigte ein 
spezifisches Signal für den Sulph1-Antikörper (G, H, Pfeile). Nach terminaler Ausreifung von 4-
6 Wochen konnten auch in weiteren Kontroll- und MLD-abgeleiteten oligodendroglialen Kulturen O4- 
(K-N) sowie Sulph1-positive Zellen (O-R) detektiert werden. Zellkerne wurden mit DAPI angefärbt. 
Maßstabsbalken: A-D; K-R: 50 µm; E-J: 25 µm. 

Auch im Vergleich zu weiteren Kontroll- und MLD-abgeleiteten O4-positiven 

Oligodendrozyten konnte kein Unterschied in der Morphologie oder Quantität der 
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Zellen festgestellt werden (Abb. 21 B, Abb. 25 K-N). Um die Sulfatidablagerungen 

sichtbar zu machen, wurde Sulfatid mit Hilfe des spezifischen Antikörpers Sulph1 

intrazellulär angefärbt (Fredman et al, 1988). Die Kontroll- und MLD-abgeleiteten 

Oligodendrozyten zeigten ein vergleichbares Sulph1-Signal, sowohl nach 4 Wochen 

in einer Kofärbung mit O4 (Abb. 25 E, F), als auch nach 6 Wochen in einer 

Kofärbung mit 4860 (Abb. 25 I, J). Um eine Kreuzreaktion des O4-Antikörpers mit 

Sulph1 auszuschließen, wurde die Färbung unter Anwendung von Triton-X-100 

wiederholt. Dadurch wurden die Zellmembranen aufgebrochen und intrazelluläre 

Epitope freigelegt. Die Färbung bestätigte ein spezifisches Signal für den Sulph1-

Antikörper, welches nicht O4-positiv war (Abb. 25 G, H; Pfeile). Es konnte kein 

Unterschied zwischen den Kontroll- und MLD-spezifischen Oligodendrozyten 

festgestellt werden. Die intrazelluläre Immunreaktivität für Sulph1 konnte auch in 

weiteren Kontroll- und MLD-abgeleiteten Oligodendrozyten nachgewiesen werden 

(Abb. 25 O-R).  

Zusammenfassend zeigen diese Ergebnisse, dass es in den hier untersuchten 

Differenzierungszeitpunkten der Oligodendrozyten in den oligodendroglialen 

Mischkulturen (4-6 Wochen) keinen offensichtlichen Unterschied zwischen Kontroll- 

und MLD-abgeleiteten Zellen gab. In den MLD-abgeleiteten Zellen konnten, bis auf 

die ARSA-Defizienz, keine weiteren Charakteristika der MLD festgestellt werden. 

3.7 RGL-NPCs als humanes Zellkulturmodell für die Aufnahme 
extrazellulärer ARSA 

Extrazelluläre ARSA kann über M6P-Rezeptoren von ARSA-defizienten Zellen 

aufgenommen und zum Lysosom transportiert werden, um dort die Enzymaktivität 

wiederherzustellen. Dieser Vorgang der Kreuzkorrektur ist ein wichtiger Angriffspunkt 

für Therapieansätze der MLD, die darauf beruhen, das defekte Enzym zu ersetzen 

(Platt & Lachmann, 2009; Matzner & Gieselmann, 2005). In diesem Teil der Arbeit 

wurde überprüft, ob die ARSA-defizienten Zellen exogene ARSA aufnehmen können. 

Ein entsprechendes in vitro-Modell kann für Vorversuche für entsprechende 

Therapiestrategien von großem Nutzen sein.  

3.7.1 RGL-NPCs nehmen extrazelluläre rhARSA abhängig von M6P-Rezeptoren 
auf 

In einem ersten Versuch wurde überprüft, ob die generierten humanen MLD-

abgeleiteten Zellen fähig sind, exogene ARSA aufzunehmen. Dafür wurden die MLD-

spezifische RGL-NPCs (liMLD-2 #S4) mit rhARSA (zur Verfügung gestellt von Dr. 
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Ulrich Matzner, Institut für Biochemie und Molekularbiologie, Universität Bonn) in 

verschiedenen Konzentrationen für 24 h behandelt. Um sicherzustellen, dass 

ausschließlich die Enzymaktivität von intrazellulären löslichen Proteinen gemessen 

wurde, wurden die Zellen vor der Isolation mit einem sauren Waschpuffer behandelt. 

Dadurch wird das rhARSA-Protein, welches nach der Behandlung noch an der 

Zelloberfläche haftet und nicht aufgenommen wurde, entfernt (Bockenhoff et al, 2014; 

Matthes et al, 2011). Anschließend wurde die ARSA-Enzymaktivität gemessen. In 

allen behandelten liMLD-spezifischen Zellen (grün) konnte im Vergleich zu den 

unbehandelten Zellen (0 µg/ml, rot) eine Wiederherstellung der intrazellulären ARSA-

Aktivität demonstriert werden (Abb. 26 A).  
 

 
Abb. 26: Intrazelluläre Aufnahme von rhARSA. 
A: Das rhARSA-Protein wurde den liMLD-spezifischen Zellen (liMLD-2 #S4) in verschiedenen 
Konzentrationen verabreicht. Im Vergleich zu unbehandelten liMLD-Zellen (0 µg/ml, rot) konnte die 
Enzymaktivität in den behandelten Zellen (0,5 – 5 µg/ml, grün) wiederhergestellt werden. B: LiMLD-
spezifische RGL-NPCs (liMLD-2 #S4) wurden mit rhARSA in zwei verschiedenen Konzentrationen 
behandelt (0,5 und 2,5 µg/ml, grün). Durch die Zugabe von M6P (orange) konnte die Aufnahme von 
rhARSA reduziert werden. Die Zugabe von G6P (blau) hatte keinen Effekt auf die Aufnahme. Die 
ARSA-Enzymaktivität ist angegeben in mU/mg. Es sind Mediane und Einzelwerte dargestellt. 

Die Aufnahme von rhARSA findet über Mannose-6-Phosphat-Rezeptoren (MPR) 

statt (Klein et al, 2009; Bockenhoff et al, 2014). Die MPRs können in vitro über die 

Zugabe von M6P blockiert werden. Um in der vorliegenden Arbeit eine MPR-

abhängige Aufnahme von ARSA zu demonstrieren, wurde bei der Verabreichung von 

rhARSA in einem weiteren Experiment M6P hinzugegeben. Durch die Bindung von 

M6P an die MPRs soll verhindert werden, dass rhARSA aufgenommen werden kann. 
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Abb. 26 B zeigt, dass die ARSA-Aufnahme durch die kompetitive Hemmung der 

MPRs unterdrückt werden konnte. Das bestätigt eine MPR-abhängige Aufnahme von 

rhARSA in die Zellen. Die Zugabe von Glukose-6-Phosphat (G6P), einem weiteren 

phosphorylierten Zuckermolekül, hatte keinen negativen Effekt auf die ARSA-

Aufnahme (Abb. 26 B, blau). Die verminderte ARSA-Aufnahme durch M6P ist 

demnach spezifisch und nicht durch unspezifische Effekte, wie z. B. durch die 

Veränderungen der Osmolarität des Mediums, entstanden. Zusammenfassend 

demonstrieren diese Ergebnisse, dass die ARSA-defizienten RGL-NPCs 

grundsätzlich in der Lage sind, extrazelluläre ARSA über M6P-Rezeptoren 

aufzunehmen.  

3.7.2 Funktionelle Wiederherstellung der ARSA-Enzymaktivität in RGL-NPCs  

Mit Hilfe des ARSA-Enzymaktivitätsassays wird die intrazelluläre Aktivität der Zellen 

gemessen. Das in den Zellen befindliche ARSA-Protein setzt in isolierter Form das 

künstliche ARSA-Substrat pNCS um. Um sicherzustellen, dass das von den MLD-

Zellen aufgenommene ARSA-Protein seine physiologische Funktion erfüllt und 

Sulfatid bei saurem pH-Wert im Lysosom abbaut, wurde der Sulfatidmetabolismus in 

den Zellen genauer analysiert (durchgeführt von Dr. Ulrich Matzner, Institut für 

Biochemie und Molekularbiologie, Universität Bonn). Hierfür wurden die 

unbehandelte und behandelte Kontroll- und MLD-spezifischen RGL-NPCs mit dem 

fluoreszenzmarkiertem Sulfatidanalog NBD-Sulfatid inkubiert (nach Monti et al, 1992; 

Abb. 30 B). NBD-Sulfatid wird von den Zellen aufgenommen und abhängig von der 

intrazellulären Funktionalität der ARSA metabolisiert. Die möglich anfallenden 

Abbauprodukte, wie NBD-Galactosylceramid und NBD-Dodecansäure, werden durch 

die hohe Wasserlöslichkeit des angehängten Fluorophors in das Medium der Zellen 

abgegeben und können anschließend gemessen werden. Dazu werden sie aus dem 

Medium isoliert, anhand einer Dünnschichtchromatographie aufgetrennt und mit 

einem entsprechenden Fluoreszenzscanner bei einer bestimmten Wellenlänge 

sichtbar gemacht. Mit Hilfe entsprechender Standards gibt der Gehalt der 

Abbauprodukte Aufschluss über die funktionelle ARSA-Enzymaktivität in den Zellen.  

Im Medium von unbehandelten Kontroll-RGL-NPCs konnten neben NBD-

Galactosylceramid und NBD-Dodecansäure auch weitere NBD-markierte Lipide 

detektiert werden (Abb. 27, Spur 1). Das bestätigt, dass NBD-Sulfatid effizient 

intrazellulär im lysosomalen Kompartiment der Zellen hydrolysiert worden ist. Der 
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Anteil an hydrolysiertem NBD-Sulfatid wurde durch die Behandlung der Zellen mit 

rhARSA (0,5 µg/ml) nicht erhöht (Abb. 27, Spur 2). 
 

 
Abb. 27: Analyse des Sulfatidmetabolismus. 
Der Fluoreszenzscan zeigt die Dünnschichtchromatographie der fluoreszierenden Abbauprodukte im 
Medium von Kontroll- bzw. liMLD-spezifischen RGL-NPCs ohne Behandlung (1, 3) und behandelt mit 
0,5 µg/ml rhARSA (2, 4) und nach Inkubation (6 h) mit NBD-Sulfatid. Als Kontrollen liefen bei der 
Dünnschichtchromatographie NBD-Sulfatid (2 pmol, Spur 5), NBD-Galactosylceramid (2 pmol, Spur 6) 
und NBD-Dodecansäure (2 pmol, Spur 7) mit.  

Im Vergleich zu den Kontrollzellen produzierten liMLD-spezifische RGL-NPCs nur 

Spuren von NBD-Galactosylceramid und anderen NBD-markierten Lipiden (Abb. 27, 

Spur 3). Das bestätigt eine stark reduzierte ARSA-Enzymaktivität in diesen Zellen. 

Diese Defizienz konnte durch die Behandlung der Zellen mit rhARSA ausgeglichen 

werden (Abb. 27, Spur 4). Im Fluoreszenzscan der Dünnschichtchromatographie 

sind die Abbauprodukte von Sulfatid deutlich zu erkennen. Das bestätigt nicht nur die 

intrazelluläre Präsenz von ARSA, sondern auch die funktionelle Wiederherstellung 

der ARSA-Enzymaktivität. 

3.7.3 Patientenspezifische Unterschiede bei der Aufnahme von exogener 
rhARSA in MLD-RGL-NPCs 

Die Aufnahme von exogener rhARSA wurde auch in weiteren liMLD-spezifischen 

RGL-NPC-Linien überprüft (Abb. 28). Neben einer Kontrolllinie (Ctrl-3 #S1, rot) 

wurden von den vier zur Verfügung stehenden MLD-Patienten (siehe Tabelle 1, 2) 

jeweils zwei RGL-NPC-Linien für 24 h mit rhARSA (0,5 µg/ml) behandelt. 

Ctrl 
+ r

hA
RSA

liM
LD

 + 
rhA

RSA

Ctrl 
un

be
ha

nd
elt

liM
LD

 un
be

ha
nd

elt

NBD-
Dodecansäure 

NBD-
Galactosylceramid 

NBD-Sulfatid

1 2 3 4 5 6 7



Ergebnisse 
 

89 

 

 
Abb. 28: ARSA-Aktivität in rhARSA-behandelten MLD-spezifischen RGL-NPCs. 
Es wurden RGL-NPCs von einer Kontrolle (Ctrl-3 #S1, rot) und vier verschiedenen MLD-Patienten 
(jeweils 2 NPC-Klone) für 24 h mit rhARSA (0,5 µg/ml) behandelt. Anschließend wurde die ARSA-
Enzymaktivität gemessen. Die Ergebnisse wurden mit nicht behandelten (Medium) Kulturen 
verglichen. Die ARSA-Enzymaktivität ist angegeben in mU/mg. Es sind Einzelwerte und Mediane 
dargestellt.  

Es wurden drei unabhängige Experimente für jede Patientenlinie durchgeführt (Abb. 

28).  Ein p-Wert < 0,2 und > 0,05 wurde unter Berücksichtigung der Streuung, die 

beim Vergleichen von unabhängigen biologischen Präparaten zu erwarten ist, als 

potentiell biologisch relevant erachtet; p < 0,05 wurde als statistisch signifikant 

angesehen. In Tabelle 3 sind die p-Werte der einzelnen Vergleichspaare aufgeführt. 

Zwischen den einzelnen NPC-Klonen eines Patienten liegt weitestgehend keine 

interklonale Variabilität vor (siehe fettgedruckte Werte in Tabelle 3). Es sind aber 

durchaus relevante Unterschiede zwischen den Patienten zu erkennen. Hierbei fällt 

insbesondere die Linie liMLD-2 auf, die im Vergleich zu den anderen Patienten mehr 

ARSA-Enzym aufzunehmen scheint (Abb. 28, grün). 
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Tabelle 3: P-Werte zu den ARSA-Enzymaktivitätsmessungen an 
patientenspezifischen RGL-NPCs nach rhARSA-Behandlung. 

 

p-Werte aMLD 
#S15 

liMLD-2 
#S1 

liMLD-2 
#S4 

liMLD-3 
#S10 

liMLD-3 
#S19 

liMLD-4 
#S1 

liMLD-4 
#S6 

aMLD 
#S5 0,539 0,007 0,028 0,229 0,072 0,244 0,021 

aMLD 
#S15 - 0,010 0,038 0,366 0,154 0,244 0,042 

liMLD-2 
#S1  - 0,475 0,040 0,026 0,016 0,045 

liMLD-2 
#S4   - 0,130 0,104 0,061 0,191 

liMLD-3 
#S10    - 0,903 0,647 0,040 

liMLD-3 
#S19     - 0,421 0,369 

liMLD-4 
#S1      - 0,127 

 

Die statistische Auswertung wurde mittels t-Tests durchgeführt. Es sind die p-Werte zu den 
ARSA-Enzymaktivitätsmessungen an patientenspezifischen RGL-NPCs, die mit 0,5 µg/ml 
rhARSA behandelt wurden, aufgelistet. Kursive p-Werte sind statistisch signifikant mit 
p < 0,05 und fettgedruckte Werte stellen interklonale Übereinstimmungen dar. 

3.8 Das Verhalten von in vitro-generierten MLD-spezifischen Zellen in 
einem Arsa- und myelindefizienten Milieu 

Es gibt kein natürlich vorkommendes Tiermodell für die MLD. Um dennoch die 

molekularen Pathomechanismen und insbesondere mögliche Therapieansätze 

in vivo evaluieren zu können, wurde die Arsa-/--Maus mittels homologer 

Rekombination generiert (Hess et al, 1996). Durch die Arsa-Defizienz entstehen 

pathologische Sulfatidablagerungen, die mit dem Alter zunehmen. Dennoch 

entwickelt die Arsa-/--Maus einen milderen Phänotyp im Vergleich zum Menschen, 

ohne weitreichende Demyelinisierung und mit schwächeren neurologischen 

Symptomen. Um ein Tiermodell mit einem zusätzlichen myelindefizienten Milieu zu 

schaffen, wurde für diese Arbeit der genetische Hintergrund der Shiverer-Maus in 

den der Arsa-/-/Rag2-/--Maus eingekreuzt. Durch die Deletion im Mbp-Gen wird bei 

Homozygotie im ZNS der Mäuse kein kompaktes Myelin gebildet (Molineaux et al, 

1986; Dupouey et al, 1979). Aufgrund des Rag2-Hintergrunds wird eine Abstoßungs-

reaktion auf die transplantierten Zellen vermieden. Damit wurden Mäuse geschaffen, 

welche Arsa-defizient sind, kein Sulfatid abbauen und kein Myelin ausbilden können. 

Dieses Modell soll genutzt werden, um oligodendrogliale ARSA-defiziente Zellen 

in vivo zu studieren und therapeutische Anwendungen zu evaluieren. 
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3.8.1 Die Arsa-/-/Shi/Rag2-/--Maus ist myelindefizient und weist 
Sulfatidablagerungen im Gehirn auf 

Die Arsa-/-/Rag2-/-- und die Arsa-/-/Shi/Rag2-/--Maus wurden im Vergleich zur 

immundefizienten (Rag2-/-) Maus, die als Kontrolle diente, zuerst immun-

histochemisch hinsichtlich der MBP-Expression analysiert. In der neu generierten 

Arsa-/-/Shi/Rag2-/--Maus konnte im Gegensatz zur Rag2-/-- und zur Arsa-/-/Rag2-/--

Maus im gesamten Gehirn keine MBP-Immunreaktivität festgestellt werden (Abb. 29). 
 

 
Abb. 29: MBP-Expression in vivo. 
In der 8 Wochen (W) alten Arsa-/-/Shi/Rag2-/--Maus (C, C1) konnte im Vergleich zu den 12 Wochen 
alten Rag2-/-- (A, A1) bzw. Arsa-/-/ Rag2-/--Mäuse (B, B1) kein positives MBP-Signal festgestellt 
werden. Das Kästchen zeigt an, welcher Bereich vergrößert dargestellt worden ist. Zellkerne wurden 
mit DAPI angefärbt. CC = Corpus callosum. Maßstabsbalken: A-C: 1000 µm; A1-C1: 100 µm. 

Neben der MBP-Expression wurden auch die Sulfatidablagerungen in den 

verschiedenen Tiermodellen über den Sulfatid-spezifischen Antikörper Sulph1 

histologisch analysiert und verglichen (Abb. 30 A-C). Beispielhaft wurde das Corpus 

callosum (CC) genauer betrachtet. Es ist zu erkennen, dass die Immunreaktivität für 

den Antikörper in der Arsa-/-/Rag2-/-- und der Arsa-/-/Shi/Rag2-/--Maus gegenüber der 

Rag2-/--Maus stärker ausgeprägt war (Abb. 30 A-C1). Ein vergleichbares Ergebnis 

lieferte auch eine Alcian Blau-Färbung, die ebenfalls spezifisch angereicherte 

Sulfatide anfärbt (Abb. 30 D-F1; Wittke et al, 2004; Ramakrishnan et al, 2007). Die 

Alcian Blau-positiven Akkumulationen traten vorwiegend in den Arsa-defizienten 

Mausmodellen auf (Abb. 30 E1, F1, Pfeile). Bei genauerer Betrachtung der 

beispielhaft untersuchten Präparaten schienen die Sulph1- und Alcian Blau-positiven 

Ablagerungen in der Arsa-/-/Shi/Rag2-/--Maus (Abb. 30 C1, F1, Pfeile) prägnanter zu 

sein als in der Arsa-/-/Rag2-/--Maus (Abb. 30 B1, E1, Pfeile). 
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Abb. 30: Sulfatidablagerungen in vivo. 
Im Gegensatz zur Rag2-/--Maus (12 Wochen; A, D) konnten in der Arsa-/-/Rag2-/-- und in der           
Arsa-/-/Shi/Rag2-/--Maus nach 12 bzw. 8 Wochen (W) deutliche Sulfatidablagerungen detektiert werden 
(B-C1, E-F1). Die Ablagerungen sind mit Hilfe einer Sulph1- (A-C1) bzw. einer Alcian Blau-Färbung 
(D-F1) dargestellt. Pfeile deuten auf Sulfatidakkumulationen. Zellkerne wurden mit DAPI angefärbt. 
CC = Corpus callosum. Maßstabsbalken: A-C: 100 µm; A1-C1, D-F1: 10 µm. 

Insgesamt waren in der Arsa-/-/Rag2-/-- und Arsa-/-/Shi/Rag2-/--Maus die Sulph1-

positiven Ablagerungen hauptsächlich im Corpus callosum, im Striatum, sowie in 

schwächerer Ausprägung im Cortex zu finden. Alcian Blau-positive Akkumulationen 

wurden neben dem Corpus callosum auch in weiteren Fasersträngen der weißen 

Substanz, wie Commisura anterior und Fimbria detektiert.  

3.8.2 RGL-NPCs überleben in der Arsa-/-/Rag2-/--Maus und differenzieren in 
gliale Subtypen  

Die nachfolgend beschriebenen Transplantationsexperimente in der Arsa-/-/Rag2-/--

Maus dienten dazu, das Überleben und die Differenzierung der transplantierten 

Zellen in vivo zu untersuchen. Die Kontroll- (Ctrl-3 #S1, Ctrl) und liMLD-spezifische 

(liMLD-2 #S4, liMLD) RGL-NPCs wurden in die anterioren Anlagen des Corpus 
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callosum beider Hemisphären von neugeborenen Arsa-/-/Rag2-/--Mäusen 

transplantiert. Die Gehirne wurden nach 8 Wochen analysiert (Abb. 31). Durch die 

ARSA-Defizienz wurde ausgeschlossen, dass es in den MLD-abgeleiteten Zellen zu 

einer Kreuzkorrektur des ARSA-Enzyms durch das Mausgewebe kommt.  
 
 

 
Abb. 31: Analyse der transplantierten RGL-NPCs in vivo. 
Es wurden RGL-NPCs von Kontroll- (Ctrl) und liMLD-spezifischen (liMLD) Spendern in die beiden 
Hemisphären von neonatalen Arsa-/-/Rag2-/--Mäusen transplantiert. 8 Wochen später wurden die 
transplantierten Zellen analysiert. Der Fokus wurde auf das Corpus callosum (CC) gelegt, da hier von 
Beginn an STEM121-positive Zellen gefunden wurden (A, B). Sowohl unter den Ctrl- als auch unter 
den liMLD-Zellen konnten Zellen detektiert werden, die doppeltpositiv für GFAP/STEM123 (C, D) 
sowie für OLIG2 und den humanspezifischen Marker STEM121 bzw. Nogo-A waren (E-H; Pfeile 
deuten bespielhaft auf doppeltpositive Zellen). Die weißen Kästchen zeigen den vergrößerten 
Bildausschnitt an. Zellkerne wurden mit DAPI angefärbt. Maßstabsbalken: 10 µm. 

Die transplantierten Zellen wurden mit Hilfe des Antikörpers STEM121, der spezifisch 

humanes Zytoplasma markiert, identifiziert. 8 Wochen nach der Transplantation 

konnten die humanen Zellen (Ctrl und liMLD) hauptsächlich im Bereich des Corpus 

callosum und in den darunterliegenden Strukturen des Striatums beobachtet werden 

(Abb. 31 A, B). Sowohl unter den Kontroll- als auch unter den liMLD-abgeleiteten 

Zellen konnten neben GFAP- und STEM123-positiven Zellen, einem Marker für 

humane Astrozyten (Abb. 31 C, D), auch STEM121-positive Zellen, die gleichzeitig 
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ein positives Signal für OLIG2 zeigten (Abb. 31 E, F), detektiert werden. OLIG2 ist 

ein wichtiger Transkriptionsfaktor für die Entwicklung der Oligodendrozyten. Darüber 

hinaus waren auch Nogo-A (Neurite outgrowth inhibition protein A)- und OLIG2-

positive Oligodendrozyten zu finden (Abb. 31 G, H). Der Nogo-A-Antikörper ist 

humanspezifisch und wird unter anderem von Oligodendrozyten exprimiert wird 

(Chen et al, 2000). 

Mit diesem Ergebnis konnte demonstriert werden, dass sowohl die Kontroll- als auch 

die MLD-spezifischen transplantierten RGL-NPCs in dem Tiermodell überlebten und 

bereits nach 8 Wochen gliale Zelltypen ausbildeten. 

3.8.3 RGL-NPCs differenzieren in der Arsa-/-/Shi/Rag2-/--Maus in reife 
Oligodendrozyten 

Nachdem das Überleben und Differenzierungsverhalten der transplantierten Zellen 

in vivo studiert wurde, wurde ein weiteres Transplantationsexperiment durchgeführt. 

Mit Hilfe dieses Experimentes sollte überprüft werden, ob das Tiermodell zur 

Evaluierung möglicher Charakteristika der MLD, wie Sulfatidakkumulationen und 

Defekte im Myelinmetabolismus, sowohl in den transplantierten Zellen als auch in 

dem umliegende Mausgewebe, herangezogen werden kann. Dazu wurden Kontroll- 

und MLD-spezifische RGL-NPCs in neugeborene Arsa-/-/Shi/Rag2-/--Mäuse 

transplantiert. 8 Wochen nach der Transplantation wurden die Mäuse analysiert. Die 

humanen Zellen wurden mit STEM121 detektiert (Abb. 32 A, C). Die Zellen siedelten 

sich hauptsächlich im Corpus callosum an. Die Bildung von Myelin wurde durch die 

immunhistochemische Anfärbung von MBP dargestellt. Durch den Genotyp der 

Shiverer-Maus in der Arsa-/-/Shi/Rag2-/--Maus ist das Mbp-Gen nicht intakt 

(Molineaux et al, 1986). Demzufolge wird im Maushirn kein MBP gebildet. Ein 

detektiertes MBP-Signal kann somit nur von den eingebrachten humanen Zellen 

stammen (Molineaux et al, 1986; Dupouey et al, 1979). Sowohl die liMLD-Zellen als 

auch die Kontrollzellen exprimierten nach der Transplantation MBP im Gehirn der 

Mäuse (Abb. 32 B, E, D, G). Mögliche Sulfatidablagerungen wurden mit Hilfe einer 

Alcian Blau-Färbung visualisiert (Abb. 32 F, H). Bei beiden Transplantations-

experimenten konnten Alcian Blau-positive Akkumulationen detektiert werden (Abb. 

32 F, H, Pfeile).  
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Abb. 32: MBP-Expression und Sulfatidnachweis in transplantierten humanen 

Zellen und im Gewebe der Arsa-/-/Shi/Rag2-/--Maus. 
8 Wochen nach neonataler Transplantation von Kontroll- (Ctrl) und liMLD-spezifischen (liMLD) RGL-
NPCs in die Arsa-/-/Shi/Rag2-/--Maus wurden die humanen Zellen mit Hilfe von STEM121 identifiziert 
(A, C). Sowohl die Ctrl- als auch liMLD-Zellen exprimierten MBP (B, E; D, G). Mit Hilfe der 
Alcian Blau-Färbung konnten im Mausgehirn Sulfatidablagerungen festgestellt werden (F, H). Humane 
Zellen wurden mit STEM121 angefärbt und Pfeile zeigen Alcian Blau-angefärbte und sulfatidreiche 
Akkumulationen an. Zellkerne wurden mit DAPI angefärbt. Maßstabsbalken: A-D: 100 µm; E-H: 10 µm. 

Diese Ergebnisse zeigen, dass die Arsa-/-/Shi/Rag2-/--Maus prinzipiell dazu 

herangezogen werden kann mögliche MLD-spezifische Merkmale nicht nur in den 

eingebrachten Zellen, sondern auch im umliegenden Mausgewebe zu studieren. 

Dabei können sowohl die Ausbildung von Myelin als auch die Ablagerungen von 

Sulfatid analysiert werden. 
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4. Diskussion 

4.1 MLD-spezifische oligodendrogliale Kulturen dienen als Grundlage für 
ein humanes MLD-spezifisches in vitro-Modell 

In einem in vitro-Krankheitsmodell können sowohl die zugrundeliegenden 

Pathomechanismen studiert als auch mögliche Therapieansätze getestet werden. 

Für die MLD existieren verschiedene Zellkulturmodelle, die für unterschiedliche 

Fragestellungen eingesetzt werden. Fibroblasten von MLD-Patienten wurden z. B. 

genutzt, um die Mutationen im ARSA-Gen sowie Fehlfunktionen des Proteins zu 

untersuchen (Polten et al, 1991; Berger et al, 1997; von Figura et al, 1983, 1986). 

Aus der Arsa-/--Maus wurden primäre Zellen, wie Nierenzellen, Schwann-Zellen oder 

auch neurale Vorläuferzellen, isoliert (Pituch et al, 2015; Saravanan et al, 2007, 2004; 

Klein et al, 2005, 2009; Matzner et al, 2009a). Diese wurden zur Erforschung der 

molekularen Mechanismen der MLD herangezogen. Trotzdem sind die bisherigen 

in vitro-Modelle der MLD entweder nicht humanspezifisch und/oder spiegeln 

aufgrund des gewählten Zelltyps bzw. der Spezies nicht alle Krankheitsmerkmale 

wider (Klein et al, 2005, 2009; Polten et al, 1991; Saravanan et al, 2007, 2004; von 

Figura et al, 1986, 1983; Berger et al, 1997; Pituch et al, 2015). In der vorliegenden 

Arbeit sollte ein humanes und MLD-spezifisches in vitro-Modell generiert werden. 

Dieses sollte nicht nur einen geeigneten Zelltyp beinhalten, sondern auch 

entsprechende Krankheitsmerkmale aufweisen. Als Zielzellpopulation wurden 

Oligodendrozyten gewählt. Dieser Zelltyp ist neben den Schwann-Zellen 

hauptsächlich in der MLD betroffen. 

4.1.1 Mit den MLD-RGL-NPCs steht eine Quelle für humane MLD-spezifische 
Oligodendrozyten zur Verfügung 

Die iPSC-Technologie ermöglicht es, patientenspezifische Zellkulturmodelle zu 

entwickeln. Mit entsprechenden Differenzierungsprotokollen können aus den iPSCs 

die gewünschten Zelltypen generiert werden und für die Untersuchung von 

Pathomechanismen herangezogen werden. 

In der vorliegenden Arbeit wurden MLD-spezifische Hautfibroblasten als 

Ausgangszellpopulation genutzt und mit Hilfe nicht-integrativer Sendaiviren in iPSCs 

reprogrammiert. Die iPSCs wiesen die für pluripotente Stammzellen 

charakteristischen Merkmale auf (siehe Tabelle 2). Die weitere Differenzierung der 

Stammzellen in MLD-abgeleitete Oligodendrozyten erfolgte anhand eines in unserem 
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Labor etablierten Differenzierungsprotokolls (Gorris et al, 2015). Das Protokoll 

beinhaltet als Zwischenschritt eine stabile Zellpopulation an RGL-NPCs. Diese Zellen 

haben den Vorteil, dass sie als neurale Stammzellpopulation die Eigenschaft 

besitzen, sich selbst zu erneuern. Wenn sie einmal zur Verfügung stehen, können sie 

immer wieder erneut als Quelle für Oligodendrozyten eingesetzt werden. Darüber 

hinaus besitzen sie ein tripotentes Differenzierungspotential. Das erlaubt neben der 

Differenzierung der Zellen in Oligodendrozyten auch eine Differenzierung in 

Astrozyten und Neurone. In dieser Arbeit konnten von jeder Fibroblastenlinie nach 

erfolgreicher Reprogrammierung RGL-NPCs generiert werden. Die neuralen 

Vorläuferzellen wiesen eine charakteristische bipolare Morphologie auf und 

exprimierten typische Marker einer radialgliaähnlichen Stammzellpopulation auf 

Transkript- und Proteinebene (Abb. 17-19; Gorris et al, 2015). Die Differenzierung in 

Oligodendrozyten, Astrozyten und Neurone wurde mit Hilfe von zelltypspezifischen 

Differenzierungsprotokollen erreicht und anhand charakteristischer Marker überprüft 

bzw. demonstriert (Abb. 20, 21; Gorris et al, 2015). Bei den ausdifferenzierten 

Kulturen, ob oligodendroglial, astroglial oder neuronal, handelte es sich um 

Mischkulturen. Neben dem gewünschten Zelltyp konnten auch andere neurale Zellen 

in den Kulturen detektiert werden. Das wurde in immunzytochemischen Analysen 

qualitativ und quantitativ beobachtet (Abb. 20-22). Beispielsweise waren in den 

oligodendroglialen Kulturen neben den Oligodendrozyten auch Neurone und 

Astrozyten zu finden (Abb. 22). Der Vorteil ist, dass die Interaktion zwischen den 

Zelltypen untersucht und zusätzliche Kokulturen vermieden werden können. Das ist 

für bestimmte Fragestellungen von Nutzen. In der MLD sind auch Neurone und 

Astrozyten beeinträchtigt und können Sulfatidakkumulationen aufweisen (Molander-

Melin et al, 2004; Hess et al, 1996; Peng & Suzuki, 1987). Dagegen können einzelne 

Zellpopulationen, z. B. die Oligodendrozyten, nur bedingt separat studiert werden. 

Bei immunzytochemischen Untersuchungen stellt das keine Schwierigkeit dar. Aber 

bei Versuchen, die es erfordern, aus bestimmten Zellen RNA oder Protein zu 

isolieren, ist es nicht möglich zwischen den einzelnen Zelltypen zu differenzieren. Es 

wird, wie in der vorliegenden Arbeit, ein Gemisch aus den drei Zelltypen untersucht. 

Um dem entgegenzuwirken, können die Oligodendrozyten in einer frühen Phase der 

Differenzierung durch spezifische Oberflächenmarker, wie A2B5, CD140a oder O4, 

angereichert werden (Cizkova et al, 2009; Fischer et al, in Bearbeitung; Ogawa et al, 

2011a; Sim et al, 2011; Sommer & Schachner, 1981). Entweder können sie danach 

weiter kultiviert oder die isolierten Zellen direkt für weitere Analysen herangezogen 
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werden. Allerdings sind die Verfahren zur Anreicherung von spezialisierten Zellen 

herausfordernd. In dieser Arbeit enthielten die oligodendroglialen Kulturen ca. 11 % 

O4-positive Zellen (Abb. 21 B). Bei der Verwendung von O4 als Marker für die 

Isolation, würde eine hohe Gesamtzellzahl benötigt werden, um final genügend 

isolierte Zellen verfügbar zu haben. Außerdem muss ein geeignetes 

Differenzierungsstadium der Zellen gewählt werden, wenn die Zellen nach der 

Anreicherung weiter kultiviert werden sollen. Sind die Oligodendrozyten zu reif und 

haben viele Fortsätze ausgebildet, können sie sich unter Umständen nach der 

Isolierung nicht mehr kultivieren lassen. 

In der vorliegenden Arbeit konnten sowohl von den Kontroll- als auch von den MLD-

spezifischen Spendern in vitro humane Oligodendrozyten generiert werden. Auch 

wenn die Anzahl der Zellen gering ist, steht ein humanes Zellkulturmodell zur 

Verfügung. Es enthält MLD-spezifische Oligodendrozyten und kann als zelluläre 

Grundlage für weitere krankheitsspezifische Untersuchungen in Bezug auf die MLD 

herangezogen werden.  

Im Vergleich zu Gorris et al (ca. 53 % O4-positive Oligodendrozyten) war die Anzahl 

der Oligodendrozyten in den oligodendroglialen Kulturen dieser Arbeit nicht sehr 

hoch (ca. 11 % O4-positive Zellen; Abb. 21 B). Diese Differenz kann aufgrund der 

unterschiedlichen Ausgangszellpopulationen zustande gekommen sein. Bei Gorris et 

al wurden für die Quantifizierung ESC-abgeleitete Kulturen verwendet, in der 

vorliegenden Arbeit wurden iPSC-basierte Kulturen herangezogen. 

4.1.2 Das generierte in vitro-Modell weist MLD-spezifische Veränderungen auf 

Um als Zellkulturmodell für eine Krankheit von Nutzen zu sein, sollten neben einem 

geeigneten Zelltyp auch die Merkmale einer Erkrankung reflektiert werden. In der 

MLD sind vorwiegend die myelinbildenden Zellen, die Oligodendrozyten und 

Schwann-Zellen, betroffen. In diesen Zellen führt die Defizienz von ARSA zu 

intralysosomalen Ablagerungen von Sulfatid und im weiteren Verlauf zu einer 

weitreichenden Demyelinisierung im Nervensystem. In der vorliegenden Arbeit 

wurden die generierten MLD-spezifischen Zellen hinsichtlich eines krankheits-

spezifischen Phänotyps untersucht.  
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PNCS-basierter ARSA-Enzymaktivitätsassay bestätigt ARSA-Defizienz in MLD-

spezifischen Zellen  

Der Verlust der ARSA-Enzymaktivität konnte sowohl in den Fibroblasten der MLD-

Patienten als auch in den daraus abgeleiteten RGL-NPCs und differenzierten 

Kulturen festgestellt werden (Abb. 23 A2, B2; Abb. 24). Um den Aktivitätsverlust zu 

messen, wurde ein pNCS-basierter Enzymassay herangezogen (Baum et al, 1959; 

Lee-Vaupel & Conzelmann, 1987). Dieser Assay wird schon lange in der MLD-

Forschung eingesetzt, um zum einen die Krankheit nachzuweisen (Porter et al, 1969; 

Berger et al, 1997; Waheed et al, 1982; Rip & Gordon, 1998; Luzi et al, 2013), aber 

auch um mögliche Therapieansätze zu evaluieren (Matzner et al, 2000a, 2000b, 

2002; Sevin et al, 2006; Biffi et al, 2004, 2006; Rommerskirch et al, 1991; Matthes et 

al, 2011). Der Assay beruht auf der Umsetzung des künstlichen ARSA-Substrats 

pNCS bei einer festgelegten Zeit und Temperatur. Die Metabolisierung des Substrats 

wird anhand des Farbumschlags in einem Spectrophotometer gemessen. Der Vorteil 

des Assays liegt in der schnellen und einfachen Durchführung. Dagegen ist die 

Methode weniger sensitiv, und es treten leicht Schwankungen in den Ergebnissen 

auf (McKhann, 1984). In der vorliegenden Arbeit zeigten z. B. die Zellen der Patientin 

aMLD kein einheitliches Ergebnis in der ARSA-Aktivität (Abb. 23 A2, B2, grün). 

Generell kann in adulten MLD-Patienten eine ARSA-Restaktivität von bis 4 % im 

Vergleich zur normalen Enzymaktivität gemessen werden (Gieselmann & Krägeloh-

Mann, 2010). Allerdings wiesen die aMLD-spezifischen Fibroblasten in dieser Arbeit 

keine ARSA-Aktivität auf. Dagegen konnte in den daraus abgeleiteten RGL-NPC-

Linien teilweise eine Restaktivität von ca. 2,5 % im Vergleich zur Enzymaktivität der 

Kontrollzellen detektiert werden. Diese Unregelmäßigkeiten in den Aktivitäts-

messungen innerhalb verschiedener Zelltypen und -linien eines Spenders können 

durch verschiedene Faktoren ausgelöst worden sein. Das Enzym ARSB, welches 

ebenfalls das künstliche Substrat pNCS im Aktivitätsassay umzusetzen kann (Lee-

Vaupel & Conzelmann, 1987), kann diese Abweichungen in der Aktivitätsmessung 

verursacht haben. Die Aktivität von ARSB ist in der MLD nicht beeinträchtigt (Porter 

et al, 1969) und das Enzym wird von jeder Patientenlinie exprimiert (Abb. 23 A1, B1). 

Zusätzlich kann die Messung der Enzymaktivität durch den Zelltyp, die Passage 

einer Zelllinie oder sogar durch das Alter des Spenders beeinflusst werden 

(McKhann, 1984). Darüber hinaus wurden in dieser Arbeit nicht nur Schwankungen 

in den Werten von verschiedenen Zelllinien eines Patienten, sondern auch in den 
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Einzelwerten einer einzelnen Zelllinie festgestellt (Abb. 23 A2, B2). Die Ergebnisse 

der ARSA-Aktivitätsmessungen sind einheitlich mit Hilfe des Medians und den 

Einzelwerten dargestellt. Es ist gut zu erkennen, dass die Werte teilweise 

auseinander liegen (siehe Abb. 23 A2: Ctrl-1/-2, B2: Ctrl-3 #S1/12, aMLD #S15). 

Neben den bereits genannten Faktoren, die die Aktivitätsmessungen beeinflussen 

können, können auch äußere Umstände auf das Ergebnis Einfluss nehmen. Dazu 

zählen z. B. die Raumtemperatur, unterschiedliche Chargen des ARSA-Substrats 

oder der Probenumfang einer Aktivitätsmessung. Trotzdem konnte anhand der 

gemessenen ARSA-Enzymaktivitäten deutlich zwischen den Kontroll- und MLD-

spezifischen Zellen unterschieden werden (Abb. 23 A2, B2). Es war jedoch nicht 

möglich, mit Hilfe des pNCS-basierten ARSA-Enzymaktivitätsassays die drei MLD-

Formen zu unterscheiden (Abb. 23 A2, B2; grüne und blaue Werte). Dafür müssen 

andere Diagnoseverfahren herangezogen werden. Eine Methode stellt die 

Bestimmung des intrazellulären Sulfatidmetabolismus mit Hilfe von radio- oder 

fluoreszenzmarkiertem Sulfatid dar (McKhann, 1984; Porter et al, 1972; Monti et al, 

1992; Kudoh & Wenger, 1982). Bei diesem Verfahren korreliert der intrazelluläre 

Umsatz des verabreichten Sulfatids mit den drei Formen der MLD: spätinfantil 0-

10 %, juvenil 15-30 % und adult 30-50 % (McKhann, 1984). Demnach kann leicht ein 

Rückschluss auf die Form der MLD gezogen werden. 

Sulfatid kann sowohl in Kontroll- als auch in MLD-abgeleiteten Oligodendrozyten 

detektiert werden 

Durch die Defizienz von ARSA kann Sulfatid in den Zellen nicht abgebaut werden. Es 

lagert sich intralysosomal ab. Diese Ablagerungen wurden in den MLD-abgeleiteten 

Oligodendrozyten immunzytochemisch mit dem Antikörper Sulph1, der spezifisch 

Sulfatid erkennt, visualisiert (Fredman et al, 1988). Allerdings konnte sowohl in den 

Kontroll- als auch in den MLD-abgeleiteten terminal differenzierten Kulturen nach 4 

bzw. 6 Wochen ein intrazelluläres Sulph1-Signal in den Oligodendrozyten detektiert 

werden (Abb. 25 E-J). Dabei wiesen die MLD-spezifischen gegenüber den Kontroll-

Oligodendrozyten keine höhere Immunreaktivität für den Antikörper auf. Sulfatid 

kommt als Hauptbestandteil der Myelinmembran schon während der Differenzierung 

in unreifen Oligodendrozyten physiologisch vor (Pfeiffer et al, 1993). Das erklärt, 

warum es in beiden Kulturen detektiert werden konnte. Es verdeutlicht aber auch, 

wie schwierig es ist, pathologische Sulfatidablagerungen in myelinbildenden Zellen 

zu analysieren. Die Schwierigkeit ist, physiologisches von pathologischen Sulfatid zu 
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unterscheiden. In vitro-Modelle, die keine myelinisierenden Zellen beinhalten, z. B. 

primäre Nierenzellen, haben dieses Problem nicht (Saravanan et al, 2004). 

Physiologisch enthalten sie kein Sulfatid, aber in der MLD weisen sie 

Sulfatidakkumulationen auf (Gieselmann et al, 1998; Hess et al, 1996; Lüllmann-

Rauch et al, 2001). Um festzustellen, ob es sich bei dem detektierten Sulfatid in den 

MLD-Oligodendrozyten um pathologische Akkumulationen handelt, wurde eine 

Kofärbung mit dem Antikörper O4 durchgeführt (Abb. 25 G, H). O4 bindet neben 

weiteren Epitopen auch an Sulfatid. In der Regel wird er für Antigene eingesetzt, die 

sich an der Zelloberfläche befinden (Sommer & Schachner, 1981). In einer 

intrazellulären Färbung von Sulfatid mit O4 konnte ein spezifisches Signal für den 

Sulfatid-Antikörper identifiziert werden (Abb. 25 G, H). Dieses Signal war allerdings 

sowohl in MLD-abgeleiteten als auch Kontroll-Oligodendrozyten zu finden. 

Demzufolge ist das detektierte Sulfatid in den MLD-Zellen vermutlich nicht 

pathologisch. 

Kontroll- und MLD-abgeleitete RGL-NPCs zeigen eine vergleichbare Differenzierung 

in Oligodendrozyten  

Die pathologischen Ablagerungen von Sulfatid führen in den myelinbildenden Zellen 

in weiterer Konsequenz zu Defekten im Myelinmetabolismus. Das lässt in vitro ein 

Defizit in der Differenzierung bzw. Reifung dieser Zellen vermuten. In der 

vorliegenden Arbeit konnte in den MLD-spezifischen Oligodendrozyten im Vergleich 

zu den Kontrollzellen allerdings kein Unterschied im Differenzierungsverhalten und in 

der Morphologie der Zellen festgestellt werden. In beiden terminal differenzierten 

Kulturen konnten nach 4 Wochen O4-positive bzw. nach 6 Wochen 4860-positive 

und reich verzweigte Oligodendrozyten detektiert werden (Abb. 21 C-E; Abb. 25 A-D). 

Kleinere Unterschiede, die im Erscheinungsbild der Oligodendrozyten zu erkennen 

waren, sind als linienspezifisch zu betrachten. Selbst die Kontroll-Oligodendrozyten 

zeigten untereinander Abweichungen in der Morphologie auf (Abb. 25 A, K, L). Die 

Quantifizierung der O4-positiven Zellen lieferte ebenfalls ein vergleichbares Ergebnis 

zwischen den MLD- und Kontrollzellen (Abb. 21 B). Dagegen demonstrierte eine 

Studie an murinen Arsa-defizienten neuralen Vorläuferzellen ein anderes Resultat. 

Nach Einleitung der Differenzierung wurde eine geringere Anzahl an O4-positiven 

Oligodendrozyten im Vergleich zu den Kontrollkulturen beobachtet (Pituch et al, 

2015). Es handelte sich hierbei allerdings um murine Zellen, deren Differenzierung 

erfahrungsgemäß kürzer als bei humanen Zellen dauert. Demzufolge ist die 
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Ausbildung von Krankheitsmerkmalen schon nach wenigen Tagen möglich. In einem 

in unserem Labor etablierten Protokoll können innerhalb von 4-8 Tagen aus murinen 

neuralen Vorläuferzellen reife Oligodendrozyten generiert werden (Glaser et al, 2007, 

2005). Die Differenzierung der humanen RGL-NPCs in Oligodendrozyten dauert 

dagegen bis zu 7 Wochen, wobei es sich dann immer noch um ein jüngeres 

Differenzierungsstadium der humanen Zellen gegenüber dem der murinen handelt.  

Kritische Bewertung des generierten MLD-spezifischen Zellkulturmodells 

In der vorliegenden Arbeit konnten mit den verwendeten Methoden in den MLD-

abgeleiteten Oligodendrozyten neben der ARSA-Defizienz keine weiteren 

Krankheitsmerkmale, wie pathologische Sulfatidablagerungen, morphologische 

Unterschiede oder Differenzierungsdefekte der Oligodendrozyten, aufgedeckt 

werden. Ein Grund dafür kann das Reifestadium der Oligodendrozyten in den 

oligodendroglialen Kulturen sein. Zu den untersuchten Zeitpunkten waren die Zellen 

nicht lange differenziert (7-9 Wochen) und somit sehr jung. Im Menschen treten die 

ersten OPCs in der 10. Schwangerschaftswoche auf und die ersten Myelinisierungs-

anzeichen können nach 28 Wochen detektiert werden (Barateiro & Fernandes, 2014). 

Die Oligodendrozyten sind möglicherweise nicht reif genug, um über die ARSA-

Defizienz hinaus weitere Charakteristika der MLD zu entwickeln. Die Sulfatid-

akkumulationen sind eines der ersten Krankheitsanzeichen. Damit diese 

pathologischen Ansammlungen in den Oligodendrozyten entstehen können, muss 

das Sulfatid zuvor in die Stoffwechselprozesse eingegliedert worden sein und 

anschließend abgebaut werden. Voraussetzung hierfür ist, dass Sulfatid zuvor in der 

Myelinmembran integriert worden ist, deren Aufbau zuerst erfolgt sein muss. 

Zusätzlich ist die Metabolisierungsrate von Sulfatid im Myelin allgemein sehr 

langsam (Davison & Gregson, 1966; Jungalwala, 1974). Zusammenfassend lässt 

sich daraus schließen, dass pathologische Sulfatidablagerungen in dem hier 

vorgestellten in vitro-System erst detektiert werden können, wenn Myelin ausgebildet 

worden ist und eine Metabolisierung von Sulfatid stattgefunden hat. In den 

oligodendroglialen Kulturen konnten zu den untersuchten Zeitpunkten keine 

Anzeichen von reifem Myelin detektiert werden, wie z. B. die Expression von MBP 

(Daten nicht gezeigt). Demnach ist das in den iPSC-abgeleiteten Oligodendrozyten 

detektierte Sulfatid physiologisch und eher an Aufbauprozesse der Myelin-

membranen in den Zellen beteiligt (Pfeiffer et al, 1993), als ein pathologisches 

Anzeichen der MLD. 
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Um einen höheren Reifegrad der Oligodendrozyten zu erzielen, können die Zellen 

länger als 9 Wochen differenziert werden. Das ist allerdings schwierig, da die 

differenzierten Kulturen auf dem verwendeten Zellkultursubstrat meist nicht länger 

als 9-11 Wochen kultivierbar waren. Der Zellrasen löste sich meist nach mehr als 

9 Wochen oligodendroglialer Differenzierung ab. Um diese Problematik zu umgehen, 

können die Zellen in Suspension als oligodendrogliale Sphären differenziert werden. 

Es ist grundsätzlich möglich, die RGL-NPCs als Sphären zu kultivieren (Gorris et al, 

2015). Eine andere Möglichkeit ist, die Zellen in einem 3D-Kultursystem aus einer 

basalmembranartigen Matrix zu kultivieren (Choi et al, 2014). Dort können sie länger 

ausreifen und sich nicht verfrüht von der Zellkulturschale ablösen. Des Weiteren 

können die Zellen auch in ein entsprechendes Tiermodell transplantiert und dort 

in vivo in einem MLD-spezifischen Milieu länger differenziert werden (siehe Punkt 

4.3). 

Die linienspezifischen Unterschiede des vorgestellten Zellkultursystems stellen einen 

weiteren Nachteil dar. Von der Ausgangszellpopulation der Hautfibroblasten bis hin 

zu den Oligodendrozyten ist es eine lange Differenzierungsphase (bis zu 7 Monaten). 

In dieser Zeit werden die Zellen durch unterschiedliche Faktoren beeinflusst. Dazu 

zählen z. B. die Handhabung der Zellen, verschiedene Chargen der Zellkultur-

komponenten oder unterschiedliche Temperaturen im Labor. Diese Faktoren können 

dazu führen, dass sich einzelne Zelllinien anderes verhalten und Unterschiede in den 

Ergebnissen zeigen, obwohl die Zellen von Kontrollspendern oder von dem selben 

Patienten abstammen. So unterscheiden sich z. B. die RGL-NPCs unterschiedlich 

stark in ihrem Expressionsmuster (Abb. 18). Dabei ist auch zu beachten, dass diese 

Daten mit Hilfe einer semiquantitativen PCR generiert wurden, die lediglich eine 

qualitative Aussage darüber liefert, ob ein Gen transkribiert wird. Zusätzlich konnten 

auch in den oligodendroglialen Kulturen linienabhängige Unterschiede festgestellt 

werden. Dabei unterschieden sich sogar die Oligodendrozyten der verschiedenen 

Kontrollkulturen in ihrer Morphologie (Abb. 25 A, K, L). Das erschwert, insbesondere 

bei der Generierung eines krankheitsspezifischen Zellkulturmodells, minimale 

Unterschiede zwischen den Kontroll- und MLD-abgeleiteten Zellen aufzudecken. Um 

dem entgegenzuwirken, können isogene Zelllinien generiert werden (siehe Punkt 

1.3.1; An et al, 2012; Corti et al, 2012; Reinhardt et al, 2013b; Ryan et al, 2013; 

Sanders et al, 2014; Soldner et al, 2011). Diese Zellen sind bis auf den Gendefekt 

genetisch identisch. Abweichungen, die aufgrund von äußeren Einflüssen entstehen, 

können so minimiert werden. Der Gendefekt sollte in die RGL-NPCs eingefügt bzw. 
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entfernt werden. Dieser Zelltyp ist leichter zu kultivieren als die iPSCs und muss 

keine lange Differenzierungsphasen (von Fibroblasten über iPSCs hin zu RGL-NPCs) 

mehr durchlaufen. 

Neben dem jungen Reifegrad der Oligodendrozyten und den linienspezifischen 

Unterschieden erschwert zusätzlich der genetische Hintergrund jedes einzelnen 

Patienten die Bedingungen, ein in vitro-Modell zu generieren. Die MLD ist trotz der 

Monogenie genetisch sehr heterogen. Viele MLD-Patienten besitzen mehrere 

Mutationen im ARSA-Gen. Diese beeinflussen unterschiedlich stark und 

möglicherweise abhängig vom Zusammenspiel der auftretenden Mutationen die 

Entstehung der Krankheit. Auch die in der vorliegenden Arbeit verwendeten 

Patienten unterschieden sich in ihrem Genotyp und in der Ausprägung der MLD 

(Tabelle 1; Abb. 10). Der Patient liMLD-4 zeigte zusätzlich ein widersprüchliches Bild. 

Laut Coriell Institute for Medical Research leidet er an der spätinfantilen Form der 

MLD (Coriell GM00197, 2016). Genetisch betrachtet und entsprechend der Literatur 

müsste er dagegen die adulte Form entwickeln. Er trägt neben der bereits bekannten 

und mit der adulten MLD-assoziierten Mutation p.P426L (Polten et al, 1991) 

zusätzlich drei ebenfalls bekannte Polymorphismen (Abb. 10; ARSA-Datenbank, 

2016; Coulter-Mackie & Gagnier, 1997; Gort et al, 1999). Diese würden alleine nicht 

zum Ausbruch der MLD führen. Möglicherweise ist gerade die Kombination dieser 

vier Mutationen Auslöser für die spätinfantile Form der MLD in diesem Patienten. 

Darüber hinaus können auch noch bisher unbekannte genetische oder epigenetische 

Faktoren einen Einfluss auf die Entstehung und den Verlauf der MLD gehabt haben 

(Gieselmann, 2008). Bei Geschwistern, die die selben MLD-verursachenden 

Mutationen im ARSA-Gen trugen, konnte ein unterschiedlicher Verlauf der MLD 

beobachtet werden (Arbour et al, 2000). Das spricht dafür, dass neben dem Defekt 

im ARSA-Gen weitere Einflüsse auf die Entstehung der MLD wirken. Da diese 

Einflüsse nicht bekannt sind, können sie bei der Generierung eines MLD-

spezifischen Zellkulturmodells nicht berücksichtig werden. Das kann unter 

Umständen die Aufdeckung von MLD-spezifischen Merkmalen im Zellkultursystem 

erschweren. 

In der vorliegenden Arbeit konnten in den bislang untersuchten frühen Stadien des 

generierten Zellkulturmodells neben der ARSA-Defizienz keine weiteren Krankheits-

merkmale der MLD festgestellt werden. Trotzdem stellt dieses in vitro-Modell eine 

gute zelluläre Grundlage dar. Das Differenzierungsprotokoll von Gorris et al bietet mit 

den RGL-NPCs eine stabile Population an Vorläuferzellen. Diese Zellen können 
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wiederholt genutzt werden, um Oligodendrozyten zu generieren. Um jedoch die 

Oligodendrozyten als Modell für die MLD verwenden zu können, bedarf es weiterer 

Optimierungsmaßnahmen. Die Oligodendrozyten müssen einen höheren Reifegrad 

erreichen und die linienspezifischen Unterschiede sollten minimiert werden. Letzteres 

kann durch die Generierung isogener Linien erreicht werden. Voraussichtlich würden 

sich dann auch in den MLD-Zellen im Vergleich zu den Kontrollzellen minimale 

krankheitsspezifische Unterschiede in den Kulturen detektieren lassen. Außerdem 

können mit Hilfe der isogenen Zelllinien möglicherweise bisher unbekannte 

genetische Faktoren, die außerhalb des ARSA-Gens liegen und den Ausbruch oder 

den Verlauf der MLD beeinflussen, aufgedeckt werden. 

4.2 MLD-spezifische RGL-NPCs nehmen exogene ARSA auf und eignen 
sich als humanes neurales Zellkulturmodell, um entsprechende 
Therapieansätze zu evaluieren 

Ein wesentlicher Bestandteil vieler MLD-spezifischer Therapieansätze ist, das 

defekte ARSA-Enzym zu ersetzen, wie z. B. bei der Enzymersatz- oder der in vivo 

Gentherapie (ERT: Matthes et al, 2012; Matzner et al, 2005, 2009b; in vivo 

Gentherapie: Colle et al, 2009; Consiglio et al, 2001; Kurai et al, 2007; Miyake et al, 

2014; Piguet et al, 2012; Rosenberg et al, 2014; Zerah et al, 2015). Die Therapien 

basieren auf dem Mechanismus, dass extrazelluläre ARSA über Mannose-6-

Phosphat-Rezeptoren (MPR), die sich an der Zelloberfläche befinden, aufgenommen 

werden kann. Wenn ARSA einmal in der Zelle ist, wird es zum Lysosom transportiert. 

Dort kann dann durch die Bereitstellung des funktionellen Enzyms der metabolische 

Defekt in den ARSA-defizienten Zellen korrigiert werden (Platt & Lachmann, 2009; 

Matzner & Gieselmann, 2005). Schon im Jahr 1971 zeigten Porter und Kollegen, 

dass extrazelluläre ARSA im Medium von MLD-abgeleiteten Fibroblasten 

aufgenommen und die Enzymaktivität wiederhergestellt werden kann (Porter et al, 

1971). Auch die bisherigen Therapieansätze zur Enzymersatztherapie (ERT) in der 

Arsa-/--Maus klingen sehr vielversprechend (Matthes et al, 2012; Matzner et al, 2005, 

2009b). Durch eine wiederholte Verabreichung von rekombinanter ARSA konnte in 

der Arsa-/--Maus eine Verbesserung der Krankheitsmerkmale erzielt werden. Ebenso 

wurde bereits 2001 mit Hilfe von lentiviralen Vektoren eine Überexpression von 

ARSA im Gehirn von Arsa-/--Mäuse erreicht und eine erfolgreiche in vivo Gentherapie 

zur Behandlung der MLD demonstriert (Consiglio et al, 2001). Die anhaltende 

Expression von ARSA führte in den Mäusen zu einer Reduktion der Sulfatid-
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ablagerungen. Trotzdem werden weiterhin in vitro-Modelle zur Optimierung dieser 

Therapiestrategien herangezogen. Zum Beispiel nutzten Bockenhoff et al murine 

Arsa-defiziente Fibroblasten, um die Aufnahme verschiedener künstlich modifizierter 

ARSA-Proteine zu evaluieren (Bockenhoff et al, 2014). Matzner und Kollegen 

testeten in Zellen der Arsa-/--Maus die retrovirale Überexpression humaner ARSA 

und zeigten eine Korrektur des metabolischen Defekts in diesen Zellen (Matzner et al, 

2000a). Sie stellten mit dem retroviralen Vektor ein potentielles Instrument für die 

Entwicklung von Gentherapien zur Behandlung der MLD in Arsa-defizienten Mäusen 

vor (Matzner et al, 2000b, 2001, 2002).  

Das in der vorliegenden Arbeit generierte liMLD-spezifische Zellkulturmodell kann 

ebenfalls für Experimente zur Evaluierung entsprechender Therapien genutzt werden. 

In den liMLD-RGL-NPCs konnte die ARSA-Enzymaktivität sowohl durch eine 

Überexpression von ARSA mit Hilfe lentiviraler Vektoren (Daten nicht gezeigt) als 

auch durch die Zugabe von humaner rekombinanter ARSA (rhARSA) funktionell 

wiederhergestellt werden (Abb. 26, 27). Die Aufnahme von rhARSA konnte durch die 

Zugabe von Mannose-6-Phosphat (M6P) blockiert werden (Abb. 26). Das beweist 

eine MPR-abhängige Aufnahme von ARSA und, dass das vorgestellte Zellkultur-

system durch äußere Faktoren modelliert werden kann. Die Verabreichung von M6P 

ist eine gängige Methode, um die ARSA-Aufnahme über diese Rezeptoren zu 

evaluieren. Weitere Studien zeigten ebenfalls eine Blockierung der ARSA-Aufnahme 

durch M6P in verschiedenen Zellkultursystemen (Klein et al, 2009; Matzner & 

Gieselmann, 2005; Matthes et al, 2011; Bockenhoff et al, 2014; Matzner et al, 2008). 

In den ARSA-Enzymaktivitätsmessungen der Hautfibroblasten und RGL-NPCs 

konnten in den Einzelwerten einzelner Zelllinien Schwankungen festgestellt werden 

(Abb. 23 A2, B2). Derartige Abweichungen wurden auch bei den Aufnahme-

experimenten mit rhARSA detektiert (Tabelle 4; Abb. 26 B, grüne und blaue Werte). 

Das erschwert eine statistische Auswertung. Trotzdem lieferte jedes der Experimente, 

unabhängig voneinander betrachtet, das gleiche Ergebnis. Es ist deutlich zu 

erkennen, dass die Enzymaktivität im Vergleich zu den unbehandelten liMLD-RGL-

NPCs (Medium) durch die Verabreichung von rhARSA (0,5 bzw. 2,5 µg/ml) zunimmt 

und die Aufnahme durch M6P reduziert werden konnte (Tabelle 4; Abb. 26 B). 

Zusammenfassend zeigen die Aufnahmeexperimente, dass die liMLD-RGL-NPCs 

rhARSA abhängig von MPRs aufnehmen können und diese Aufnahme modelliert 

werden kann. Somit können die Zellen für die Evaluation verschiedener Therapie-

ansätze eingesetzt werden. Zum Beispiel können Wirkstoffe getestet werden, die den 
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Prozess der Aufnahme von ARSA positiv beeinflussen. Bockenhoff et al überprüften 

verschiedene Peptid-Vektoren in Arsa-defizienten Mauszellen, um eine verbesserte 

Aufnahme der ARSA zu erzielen (Bockenhoff et al, 2014). Auch Moleküle, die einen 

verfrühten Abbau des Enzyms verhindern sollen, können in den MLD-RGL-NPCs 

untersucht werden. Es wurde bereits in Fibroblasten von aMLD-Patienten gezeigt, 

dass der Abbau von ARSA durch die Verabreichung von Proteinaseinhibitoren 

verhindert werden kann (von Bülow et al, 2002; von Figura et al, 1983, 1986). 

Darüber hinaus kann das generierte in vitro-Modell auch verwendet werden, um 

potentielle patientenspezifische Therapien zu entwickeln. In der vorliegenden Arbeit 

wurde demonstriert, dass es patientenspezifische Unterschiede in der ARSA-

Aufnahme geben kann (Abb. 28). Die RGL-NPCs abgeleitet von Patient liMLD-2 

nahmen im Vergleich zu den anderen MLD-spezifischen Linien mehr rhARSA auf. 

Tabelle 4: Einzelwerte der ARSA-Enzymaktivitäten von liMLD-RGL-NPCs nach 
rhARSA-Behandlung  

 

liMLD-2 #S4 Experiment --- + M6P + G6P 

Medium 
1 
2 
3 

0 
1,46 

0 
/ / 

+ 0,5 µg/ml 
rhARSA  

1 
2 
3 

182,87 
321,09 

72 

13,22 
0 
0 

205,41 
258,83 
39,59 

+ 2,5 µg/ml 
rhARSA  

1 
2 

525,24 
348,68 

59,94 
48,08 

364,01 
478,71 

 

Es sind die Einzelwerte der intrazellulären ARSA-Aktivitäten (in mU/mg) von unbehandelten 
(Medium) und rhARSA-behandelten (0,5 bzw. 2,5 µg/ml) liMLD-spezifischen Zellen (liMLD-
2 #S4) ohne (---) und mit Zugabe von M6P bzw. G6P dargestellt. 
 

Der Vorgang der Kreuzkorrektur durch benachbarte Zellen stellt eine weitere 

Therapiemöglichkeit dar, die in einem entsprechenden Zellkulturmodell evaluiert 

werden kann. Es ist bekannt, dass Zellen während der Generierung von lysosomalen 

Proteinen einen Teil davon in den Extrazellulärraum abgeben (Chao et al, 1990). Bei 

ARSA sind das bis zu 10 % der neu synthetisierten Proteine (Waheed et al, 1982; 

von Figura et al, 1983). Das ausgeschleuste Protein kann dann von den defizienten 

Zellen aufgenommen werden. Auf diesem Prinzip basieren z. B. die hämatopoetische 

Stammzelltherapie (HSCT; Biffi et al, 2004, 2006, 2013) oder Zelltherapien (Doerr et 

al, 2015; Givogri et al, 2008, 2006; Kawabata et al, 2006; Klein et al, 2006). Die 

transplantierten Zellen wandern in das Gehirn ein (HSCT) oder werden direkt am 

Wirkungsort platziert (Zelltherapie). Dort geben sie kontinuierlich funktionelle ARSA 



Diskussion 
 

108 

in das ARSA-defiziente Gewebe ab. In vitro wurde der Vorgang der Kreuzkorrektur 

durch benachbarte Zellen erstmals von Sangalli und Kollegen demonstriert. Sie 

kultivierten murine ARSA-überexprimierende Fibroblasten zusammen mit 

Oligodendrozytenvorläufern und Schwann-Zellen von Kontrollratten. Es konnte eine 

erfolgreiche Aufnahme der sekretierten ARSA demonstriert werden (Sangalli et al, 

1998).  

In ersten Experimenten wurde dieser Vorgang auch an den liMLD-spezifischen RGL-

NPCs überprüft (Abb. 33). Die Kultivierung von ARSA-defizienten Zellen mit 

konditioniertem Medium bzw. Überstand (ÜS) von Kontroll-RGL-NPCs (für 6 Tage) 

war jedoch nicht ausreichend, um die ARSA-Enzymaktivität in den MLD-Zellen 

wiederherzustellen (Daten nicht gezeigt). Möglicherweise wurde von den Kontroll-

RGL-NPCs nicht genügend ARSA in das Medium abgegeben. Deshalb wurde nicht 

nur ARSA in den Zellen überexprimiert, sondern auch neuronal differenzierte 

Kulturen (3-5 Wochen) herangezogen. Diese wiesen eine höhere ARSA-Aktivität als 

die RGL-NPCs auf und konnten im Gegensatz zu den astroglialen oder 

oligodendroglialen Kulturen unter serumfreien Bedingungen bzw. in kürzerer Zeit 

kultiviert werden. Das konditionierte Medium der ARSA-überexprimierenden und 

neuronal differenzierten Kulturen wurde aufkonzentriert. Anschließend wurden die 

liMLD-RGL-NPC mit dem konzentrierten Überstand (konz. ÜS) kultiviert. Bereits 

nach 24 Stunden konnte eine Wiederherstellung der ARSA-Enzymaktivität in den 

liMLD-spezifischen RGL-NPCs erzielt werden (Abb. 33, grün). Die Aufnahme von 

ARSA aus dem Überstand konnte nur teilweise durch M6P geblockt werden (Abb. 33,  

orange). Das lässt vermuten, dass in diesem Experiment ein Teil der Enzyme 

unabhängig von den MPRs über andere Rezeptoren aufgenommen wurde.  
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Abb. 33: Wiederherstellung der ARSA-Enzymaktivität in liMLD-spezifischen Zellen 
durch die Kultivierung mit konzentriertem Überstand von neuronal 
differenzierten und ARSA-überexprimierenden Kulturen. 

Dargestellt wird die intrazelluläre ARSA-Enzymaktivität von unbehandelten liMLD-spezifischen RGL-
NPCs (Medium, rot) und von liMLD-RGL-NPCs, die 24 Stunden mit konzentrierten Überstand 
(konz. ÜS) von neuronal differenzierten Kontroll-Kulturen (Ctrl-3 #S1ARSA Neuro; 3-5 Wochen; grün) 
behandelt wurden. Die wiederhergestellte Enzymaktivität konnte durch die Zugabe von M6P (orange), 
aber nicht von G6P (blau), reduziert werden. Die ARSA-Enzymaktivität ist angeben in mU/mg. Es sind 
Einzelwerte und Mediane dargestellt.  

Zusammenfassend zeigen diese vorläufigen Ergebnisse, dass der Vorgang der 

Kreuzkorrektur in vitro in den liMLD-spezifischen Zellen studiert werden kann. Die 

ARSA-defizienten Zellen nehmen das von den Kontrollzellen sezernierte ARSA auf. 

Somit können sie für Experimente zur Evaluation von zellbasierten Therapien 

herangezogen werden. In zukünftigen Versuchen sollte zusätzlich der Überstand von 

oligodendroglialen Kulturen getestet werden, da die Oligodendrozyten vermutlich die 

Zellen sind, die bei einer Zelltherapie neben dem Ersatz von Gewebe bzw. der 

Myelinmembran auch funktionelle ARSA bereitstellen sollen. Aufgrund der niedrigen 

Fallzahl in den vorgestellten Kreuzkorrektur-Experimenten, sowohl mit rekombinanter 

(Abb. 26) als auch mit von Kontrollzellen sezernierter ARSA (Abb. 33), sind weitere 

Experimente notwendig, um die Ergebnisse zu untermauern.  
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4.3 Die Arsa-/-/Shi/Rag2-/--Maus eignet sich als in vivo-Modell zur 
Überprüfung der Funktionalität MLD-spezifischer Oligodendrozyten 
sowie für die Evaluation zellbasierter Therapien  

Um in vitro generierte Zellen in vivo zu studieren, aber auch um mögliche 

Therapieansätze zur Behandlung der MLD zu evaluieren, sollte ein geeignetes 

Tiermodell verwendet werden. Ein entsprechendes Modell für die MLD stellt die   

Arsa-/--Maus dar (Hess et al, 1996). Sie wurde künstlich durch die Inaktivierung des 

Arsa-Gens generiert. Dadurch kann die Maus kein Arsa-Protein bilden, und Sulfatid 

wird nicht mehr metabolisiert. Das überschüssige Sulfatid lagert sich pathologisch in 

verschiedenen Geweben ab, z. B. in Zellen der Niere, der Gallenblase oder des 

Gehirns. Diese Ablagerungen nehmen mit dem Alter der Maus zu. Im Gegensatz 

zum Menschen entsteht keine weitreichende Demyelinisierung im Nervensystem. 

Lediglich der Durchmesser der myelinisierten Axone ist verringert (Hess et al, 1996). 

Trotzdem wird die Arsa-/--Maus vielfach in der MLD-Forschung eingesetzt. Zahlreiche 

Therapieansätze, wie die HSCT oder ERT, wurden bereits in diesem Tiermodell 

getestet. So zeigten Biffi et al durch die Transplantation von ARSA-

überexprimierenden hämatopoetischen Stammzellen eine deutliche Verminderung 

der Sulfatidakkumulationen im ZNS und PNS der Arsa-defizienten Mäuse (Biffi et al, 

2006, 2004). Eine aufgrund dieser Resultate eingeleitete klinische Studie 

demonstrierte bereits erste Erfolge in liMLD-Patienten (Biffi et al, 2013; Clinical Trial 

NCT01560182, 2016). Zelltherapien, die neben einem funktionellen Ersatz des 

ARSA-Enzyms auch das Gewebe ersetzen sollen, können dagegen weniger gut in 

der Arsa-/--Maus studiert werden. Die Arsa-defiziente Maus zeigt keine 

Demyelinisierung im Gehirn. Somit kann in diesem Tiermodell die Neubildung von 

Myelin durch die eingebrachten Zellen nur erschwert analysiert werden. Am besten 

kann eine Remyelinisierung in einem myelindefizienten Tiermodell studiert werden. 

Dafür existieren bereits entsprechende in vivo-Modelle. Die Shiverer(Shi)-Maus wird 

bevorzugt für diese Fragestellungen eingesetzt. Durch die Deletion im Mbp-Gen 

kann in dieser Maus kein kompaktes Myelin gebildet werden (Molineaux et al, 1986; 

Dupouey et al, 1979). Somit wird eine optimale Grundlage geschaffen, um eine 

Remyelinsierung durch transplantierte Zellen zu untersuchen. Gorris et al nutzten die 

Shi-Maus, um die Funktionalität der RGL-NPC-abgeleiteten oligodendroglialen Zellen 

zu demonstrieren (Gorris et al, 2015). Eine weitere Arbeitsgruppe transplantierte 

hiPSC-abgeleitete Oligodendrozytenvorläuferzellen in dieses Tiermodell. Sie konnten 
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eine Myelinausbildung im gesamten Gehirn zeigen, die zu einer höheren 

Lebenserwartung der Tiere führte (Wang et al, 2013). 

In der vorliegenden Arbeit wurden die beiden beschriebenen Tiermodelle miteinander 

kombiniert. Durch die Arsa-/--Maus wird ein Arsa-defizientes Milieu bereitgestellt und 

eine Kreuzkorrektur von Arsa durch das Mausgewebe vermieden. Aufgrund des Shi-

Hintergrunds wird kein kompaktes Myelin im Gehirn gebildet. Zusätzlich wurde ein 

Rag2-/--Hintergrund in das Mausmodell eingekreuzt, wodurch eine Immunreaktion auf 

die transplantierten Zellen unterdrückt werden sollte.  

In der neu gezüchteten Arsa-/-/Shi/Rag2-/--Maus konnte im Gegensatz zu der Rag2-/-- 

und Arsa-/-/Rag2-/--Maus keine Expression von MBP im gesamten Gehirn detektiert 

werden (Abb. 29). Demzufolge wurde in diesem Tiermodell kein kompaktes Myelin 

gebildet. Die Sulph1- und Alcian Blau-positiven Sulfatidakkumulationen wurden 

vorwiegend in den Arsa-defizienten Mausmodellen detektiert (Abb. 30). Dabei 

schienen die Ablagerungen in den beispielhaft gezeigten Präparaten der              

Arsa-/-/Shi/Rag2-/--Maus im Vergleich zu den Präparaten der Arsa-/-/Rag2-/--Maus 

ausgeprägter zu sein. Das steht möglicherweise im Zusammenhang mit der 

zusätzlichen Deletion im Mbp-Gen in der Arsa-/-/Shi/Rag2-/--Maus. Durch das 

fehlende MBP kann keine kompakte Myelinmembran gebildet werden (Molineaux et 

al, 1986; Dupouey et al, 1979). Das Sulfatid, welches in die Membran eingebaut 

werden soll, ist demnach überschüssig und muss abgebaut werden. Aufgrund der 

fehlenden Funktionalität von Arsa ist das nicht möglich und Sulfatid häuft sich 

verfrüht pathologisch an.  

Erste Transplantationsexperimente in die Arsa-/-/Rag2-/-- bzw. Arsa-/-/Shi/Rag2-/--

Maus demonstrierten, dass die eingebrachten Kontroll- und MLD-abgeleitete RGL-

NPCs in vivo überlebten, sich in das Mausgewebe integrierten und die Zellen 

oligodendroglial differenzierten (Abb. 31, 32). Sie exprimierten spezifische Marker für 

Oligodendrozyten, wie OLIG2, Nogo-A oder MBP. OLIG2 stellt einen wichtigen 

Transkriptionsfaktor der Oligodendrozytenentwicklung dar (Lu et al, 2000; Zhou et al, 

2000). Das Transmembranprotein Nogo-A wird von Oligodendrozyten exprimiert und 

inhibiert das Axonwachstum (Chen et al, 2000). MBP ist als Myelinprotein ein 

wichtiger Bestandteil der Myelinmembran und ein Anzeichen für die Bildung der 

Isolierschicht (Campagnoni, 1988; Aggarwal et al, 2011). 

Zusammenfassend stellt die neu generierte Arsa-/-/Shi/Rag2-/--Maus ein geeignetes 

Instrument dar, um in vivo den Phänotyp von in vitro generierten humanen MLD-

spezifischen oligodendroglialen Zellen zu untersuchen. Das Tiermodell erlaubt eine 
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Differenzierung und Reifung von Oligodendrozyten in einem Arsa-defizienten Umfeld. 

So können mögliche Defekte in der Myelinisierung im Zusammenhang mit den 

pathologischen Sulfatidakkumulationen analysiert werden. Die Arsa-/-/Shi/Rag2-/--

Maus kann außerdem für die Evaluation von zellbasierten Therapien herangezogen 

werden. Doerr et al beschrieben bereits die Transplantation von ARSA-

überexprimierenden humanen MLD-spezifischen neuralen und astroglialen Vorläufer-

zellen in die Arsa-defiziente Maus. Dadurch konnte eine Reduktion der Sulfatid-

akkumulationen erzielt werden (Doerr et al, 2015). In der Arsa-/-/Shi/Rag2-/--Maus 

kann neben dem funktionellen Ersatz (ARSA-Substitution) auch ein Gewebeersatz 

durch die eingebrachten Zellen (Remyelinisierung) studiert werden.  

Für zukünftige Transplantationsexperimente sollten noch weitere Untersuchungs-

methoden herangezogen werden. Mit Hilfe von elektronenmikroskopischen 

Aufnahmen können sowohl die Myelinstrukturen als auch die Sulfatidakkumulationen 

detaillierter analysiert werden. Sulfatidspeichernde Lysosomen beinhalten 

charakteristische lamellenartige Strukturen (Wittke et al, 2004; Klein et al, 2005; 

Ramakrishnan et al, 2007). Kompaktes Myelin ist durch die Dicke der 

Myelinscheiden gekennzeichnet. Human- und zelltypspezifische Marker können 

zusätzliche Informationen darüber liefern, in welchen Zelltypen sich die Sulfatid-

ablagerungen genau befinden. Reifes und funktionelles Myelin kann durch weitere 

Myelinmarker sichtbar gemacht werden. Zum Beispiel liefert das contactin-

associated protein (Caspr) Hinweise für kompaktes Myelin. Auf unmyelinisierten 

Axonen wird Caspr eher diffus exprimiert. Kurz nach Beginn der Myelinisierung 

lokalisiert sich das Protein in den Ranvier-Schnürringen (Einheber et al, 1997). 

4.4 Perspektiven 

In der vorliegenden Arbeit wurden erfolgreich iPSC-abgeleitete und MLD-spezifische 

RGL-NPCs und Oligodendrozyten generiert. Das Ziel war, diese Zellen zu nutzen, 

um die lysosomale Speichererkrankung MLD in vitro studieren zu können. Auch 

wenn in den MLD-abgeleiteten Oligodendrozyten aktuell neben der ARSA-

Enzymdefizienz keine weiteren krankheitsspezifischen Merkmale nachgewiesen 

werden konnten, stellen diese Zellen eine gute zelluläre Basis für nachfolgende 

Forschungsansätze dar. Mit den RGL-NPCs ist eine Quelle von neuralen 

Stammzellen verfügbar, aus denen immer wieder neue MLD-spezifische 

Oligodendrozyten generiert werden können. Im Hinblick auf die Oligodendrozyten 

muss dieses Zellkultursystem verbessert werden. Wenn die Zellen einen höheren 
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Reifegrad erlangen, können möglicherweise Sulfatidablagerungen oder Defekte in 

der Reifung sowie im Myelinmetabolismus detektiert werden. Zusätzlich kann die 

Generierung von isogenen Zelllinien die linienabhängigen Unterschiede minimieren 

und eine Identifizierung krankheitsspezifischer Merkmale in vitro erleichtern.  

Darüber hinaus wurde demonstriert, dass die MLD-spezifischen RGL-NPCs als 

humanes neurales Zellkultursystem verwendet werden können, um die 

Mechanismen der ARSA-Aufnahme sowie die intrazelluläre ARSA-Aktivität zu 

studieren. Es können Therapieansätze, die den Abbau des Enzyms verhindern oder 

das Enzym ersetzen sollen, eingehend in den humanen MLD-spezifischen Zellen 

evaluiert werden.  

Mit der Arsa-/-/Shi/Rag2-/--Maus wurde ein Tiermodell vorgestellt, welches sich dazu 

eignet, in vitro generierte oligodendrogliale MLD-spezifische Zellen in vivo zu 

studieren. Erste Transplantationsexperimente zeigten, dass die Zellen überleben und 

in gliale Zellen differenzieren. Mit den zur Verfügung stehenden Methoden konnte 

bereits demonstriert werden, dass auch Sulfatid mit Hilfe spezifischer Färbungen und 

die Myelinausbildung anhand der MBP-Expression in dem Modell dargestellt werden 

können. Die Arsa-/-/Shi/Rag2-/--Maus kann zusammen mit den RGL-NPCs genutzt 

werden, um zellbasierte Therapien zu evaluieren. Im Tiermodell kann nach 

Transplantation der Kontrollzellen sowohl der Abbau von Sulfatid als auch der 

Prozess der Remyelinisierung studiert werden. 
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5. Zusammenfassung 

Die Metachromatische Leukodystrophie (MLD) wird verursacht durch eine 

funktionelle Defizienz des metabolischen Enzyms Arylsulfatase A (ARSA). Unter 

physiologischen Bedingungen baut ARSA das Membranlipid 3’-O-Sulfo-

Galaktosylceramid (Sulfatid) im Lysosom ab. In MLD-Patienten wird Sulfatid nicht 

degradiert und akkumuliert überwiegend in den myelinbildenden Zellen des 

Nervensystems, den Oligodendrozyten und Schwann-Zellen. Das führt zu einer 

Demyelinisierung und zu schwerwiegenden neurologischen Symptomen. Bislang 

sind die zugrunde liegenden Pathomechanismen unzureichend geklärt. Ein in vitro-

Modell, welches den Phänotyp der Krankheit widerspiegelt, kann neue Erkenntnisse 

über die Krankheitsmechanismen liefern. Das neu entwickelte Verfahren, induziert 

pluripotente Stammzellen (induced pluripotent stem cells, iPSC) herzustellen, bietet 

die Möglichkeit, aus somatischen Zellen patientenspezifische Kultursysteme zu 

generieren.  

In der vorliegenden Arbeit wurden Hautfibroblasten von vier MLD-Patienten mit 

distinkten Mutationen im ARSA-Gen erfolgreich mit Hilfe von nicht-integrierenden 

Sendaiviren in iPSCs reprogrammiert. Anschließend wurden die vollständig 

validierten MLD-spezifischen iPSCs in radialgliaähnliche neurale Vorläuferzellen 

(radial glia-like neural precursor cells, RGL-NPC) differenziert. Diese sind multipotent 

und konnten nach Entzug der Wachstumsfaktoren in Astrozyten, Neurone und 

Oligodendrozyten differenziert werden. Eine ARSA-Enzymaktivitätsmessung 

bestätigte die funktionelle Defizienz des Enzyms in den MLD-RGL-NPCs sowie 

deren ausdifferenzierten neuralen Subtypen. In den untersuchten Differenzierungs-

stadien der MLD-abgeleiteten Oligodendrozyten konnten im Vergleich zu Kontroll-

zellen sowohl bei der Ablagerung von Sulfatid als auch in der Morphologie und im 

Differenzierungsverhalten der Zellen kein Unterschied festgestellt werden. 

Zusätzlich wurde in den ARSA-defizienten RGL-NPCs die Aufnahme von exogener 

ARSA studiert. Die Verabreichung von ARSA führte in den MLD-spezifischen Zellen 

zu einer Wiederherstellung der intrazellulären ARSA-Enzymaktivität. Die MLD-RGL-

NPCs eignen sich somit als humanes neurales in vitro-Kultursystem, um die 

Mechanismen der ARSA-Aufnahme und die intrazelluläre ARSA-Aktivität zu 

studieren, sowie mögliche Wirkstoffe, die diese Prozesse beeinflussen können, zu 

evaluieren. 
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Um die Funktionalität sowie mögliche Sulfatidakkumulationen und Myelinisierungs-

defekte in den MLD-abgeleiteten Oligodendrozyten in vivo zu untersuchen, wurden 

die Zellen in ein krankheitsspezifisches Milieu eingebracht. Hierfür wurde ein 

Mausmodell generiert, welches die ARSA-Defizienz mit einer Myelin-Defizienz 

kombiniert. Mit Hilfe histologischer Analysen konnten prominente Sulfatid-

ablagerungen besonders in den myelindefizienten faserreichen Strukturen des 

Gehirns demonstriert werden. Erste Transplantationsstudien in neonatale Mäuse 

zeigten, dass die RGL-NPCs für mindestens 8 Wochen überlebten, sich in das 

Empfängergewebe integrierten und in gliale Subtypen differenzierten. Die 

transplantierten Zellen waren in der Lage, MBP-positive Oligodendrozyten zu bilden. 

Dieses Xenotransplantat-Modell kann Aufschluss über mögliche oligodendrogliale 

Fehlfunktionen im Zusammenhang mit der ARSA-Defizienz und den Sulfatid-

ablagerungen geben. 
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