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Chapter 1

Introduction

Computer chips are at the heart of most electronic devices in our daily lives: embedded
systems, smartphones, personal computers and servers. Many applications need powerful
chips that yet can be operated efficiently. At the same time processing ever increasing
amounts of data constantly requires faster and faster microprocessors.

Creating the next generations of these miniature and almost magic devices is achieved
in the physical design process. Here the most advanced manufacturing technologies meet
with the fields of computer science and mathematics. Many practical challenges can be
formulated as fascinating combinatorial optimization problems.

Designing chips with billions of transistors would not be possible without the help of
automatic tools. To manage this complexity, transistors are partitioned into modules that
either compute a Boolean function or store bits. These essential building blocks are called
circuits or cells.

This thesis focuses on the placement problem, where circuits have to be arranged
without overlaps on the chip image. As one of the very first stages of physical design,
placement quality has far reaching effects on the overall chip performance. At the same
time this stage is repeated frequently which particularly requires fast algorithms.

Favorable placements primarily need to enable good interconnections of the cells. On
the one hand, these connections must be realized by wires in the subsequent routing design
phase. On the other hand, all signals on a chip have to meet individual deadlines at which
they must reach certain points on the design. Meeting these deadlines particularly requires
short and thus fast connections. The deadlines define the contracts by which different cells
are guaranteed to interoperate correctly. Especially for modern technology nodes these
timing challenges require great attention already during the placement stage.

Algorithms for placement usually distinguish between two types of problems: Macro
placement deals with comparably few but very large cells, the macros. Finding good
positions for macros is challenging since packing macros disjointly is NP-hard and since
the effect of macro positions on the overall placement objectives is hard to estimate. With
fixed macro positions the remainder of cells, the standard cells, all share a common width or
height. This property considerably simplifies finding feasible placements. But identifying
good standard cell positions that can be routed easily and satisfy timing requirements
remains challenging, both in theory and practice.

To the best of our knowledge, we address timing characteristics for the very first
time directly during macro placement. This leads to new extensions of BonnPlace,
the placement framework of the BonnTools suite (Korte, Rautenbach and Vygen 2007)
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Chapter 1. Introduction

developed at the Research Institute for Discrete Mathematics of the University of Bonn
in an industrial cooperation with International Business Machines Corporation (IBM).

For this purpose we propose a new timing model for macros and develop algorithms
that compute macro placements with good timing traits in this model. For evaluating
macro placements thoroughly we extend BonnPlace to become more efficient and yet
more effective with respect to routing and timing objectives.

In Chapter 2 we formally introduce common chip design notation and outline general
placement objectives and constraints, particularly arising from routing and timing opti-
mization. Afterwards we focus on the two central problem variants, Macro Placement
and Global Placement, before we review previous work.

Thereafter we explain how timing objectives for macros can be translated into geo-
metric distance bounds. This leads to an extension of the classical Rectangle Packing
Problem that is presented in Chapter 3. We analyze basic properties of this generalized
packing problem before we develop a very efficient algorithm for a certain class of in-
stances. We show in Theorem 3.34 that such instances can be solved optimally in O(nm)
running time where n and m denote the number of rectangles and distance constraints.
Moreover we devise strategies for computing equivalent and compact representations of
our macro timing model. We prove that for any pair of rectangles a single (generalized)
distance constraint suffices.

Chapter 4 is devoted to BonnMacro, the macro placement module of BonnPlace.
We first revisit the central approach of this algorithm. Afterwards we elaborate how to
optimize timing characteristics of macros in this framework. Therefore we develop the
essential ingredient to enable this optimization: an efficient formulation as mixed-integer
program.

In Chapter 5 we focus on global placement in order to evaluate timing characteristics
of macro placements accurately. We develop a geometric pre-processing to significantly
speed up partitioning during BonnPlaceGlobal, the global placement module of Bonn-
Place. The proposed model of partitioning as minimum-cost flow instance is proven to
have minimum cardinality. Furthermore we propose Self-Stabilizing BonnPlace, an
extension of this partitioning-based placer by a force-directed placement framework. This
approach provides the necessary versatility for optimizing routing and timing objectives
at the same time.

The quality and performance of all presented algorithms is analyzed and discussed
in Chapter 6, both on benchmark instances and on challenging real-world designs pro-
vided by our industry partner IBM. We demonstrate the increased efficiency of par-
titioning, particularly for the largest and most complicated test cases. The quality of
Self-Stabilizing BonnPlace is confirmed both for congestion mitigation and timing
optimization on challenging designs. Thereafter we analyze our mixed-size placement flow
that combines timing-driven BonnMacro as well as Self-Stabilizing BonnPlace.
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Chapter 2

Placement Problems

Placement is one of the most challenging and at the same time important steps in the
physical design of VLSI chips. The quality of the placement has far-reaching effects on
the whole design process.

In this chapter we elaborate the context of placement. We start by fixing a common
notation in Section 2.1. Section 2.2 is devoted to introduce chip design notation and
placement problems in particular constraints (Section 2.2.1) and objectives (Section 2.2.2).
Finally we introduce the two placement problems which are most important for this thesis:
Macro Placement (Section 2.3) and Global Placement (Section 2.4). We explain
further details and review previous work.

2.1 Basic Definitions
This thesis deals with a multitude of objects representable by rectangles. In order to
establish a common understanding, we fix the following notation:

Definition 2.1. A rectangle r ⊆ R2 is a set of the form r = [x0, x1 ] × [y0, y1 ] where
xi, yi ∈ R for i ∈ J2K and z0 < z1 for z ∈ {x, y}.

We emphasize that by Definition 2.1 rectangles are always closed, axis-parallel, non-
empty and have non-zero area.

We mostly deal with configurations of rectangles with fixed width and height:

Definition 2.2. The (anchor) position of a rectangle r = [x0, x1 ]×[y0, y1 ] is the lower left
corner (x0, y0) ∈ R2. Conversely placing r at p ∈ R2 means translating r by p− (x0, y0).

Note that by Definition 2.2 placing rectangle r at p ∈ R2 refers to the (anchor) position
of r. Thus clearly the position of r placed at p is p itself.

For shapes possibly composed of multiple rectangles, we use the following terminology:

Definition 2.3. A rectilinear shape is a set of points S ⊆ R2 for which k ∈ N and
rectangles ri ⊆ R2 for i ∈ JkK exist with ⋃i∈JkK ri = S. The set of rectangles {ri : i ∈ JkK}
is called a representation of S.

Clearly the representation of rectilinear shapes is not unique.

Definition 2.4. The intersection of rectangles a and b is a∩ b := (a ∩ b)◦. Furthermore
we define the intersection of two rectilinear shapes R and S as ⋃i⋃j ri ∩ sj where ri and
sj are representations of R and S.
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Chapter 2. Placement Problems

Note that the interior in Definition 2.4 refers to the interior in R2. Consequently by
Definition 2.4 we disregard one-dimensional areas in the intersection of rectangles. Thus
for rectangles a and b, a∩ b is a rectangle if and only if a∩ b 6= ∅. Note that Definition 2.4
for rectilinear shapes does not depend on the representation and thus is well defined.

Definition 2.5. For a given finite set P ⊆ R2, the bounding box BB(P ) is the smallest
set of the form BB(P ) :=[x0, x1 ] × [y0, y1 ] ⊆ R2 containing P where zi ∈ R and z0 ≤ z1
for i ∈ J2K, z ∈ {x, y}.

Note that BB(P ) is not necessarily a rectangle according to Definition 2.1 since BB(P )
may have zero area.

For graph theory we use the notation of Korte and Vygen (2018).

2.2 Placement
Now we turn our attention towards Chip Design and placement in particular. We start
with a couple of introductory definitions:

Definition 2.6. A netlist is a tuple (C,P, γ,N) of finite sets C and P of circuits and
pins where γ : P → C ·∪{�} maps pins to either a circuit or the chip image � and N is
a partition of P denoting the nets, i.e. N is a family of non-empty disjoint subsets of P
whose union is P .

The circuits are also commonly referred to as cells or gates. Pins p ∈ P with γ(p) = �
are preplaced pins (also ports or primary in- or output pins).

Cells of a netlist not only encode abstract connectivity information but also are physical
objects:

Definition 2.7. Let (C,P, γ,N) be a netlist. The cell shape A(c) of a cell c ∈ C is a
rectangle. Furthermore each pin p ∈ P has a designated offset off (p) where off (p) ∈ R2.

In practice cells are actually not required to have a shape which is a rectangle. Theo-
retically it is possible that a cell’s shape consists of multiple rectangles forming a connected
shape with axis-parallel borders. Depending on their size it is reasonable to include such
cells in the model of Definition 2.7 either by considering an enclosing rectangle shape in-
stead or by splitting such a cell into multiple tightly connected cells. But such cell shapes
hardly ever appear – in particular not in any practical instance considered in this thesis.
Thus modelling cell shapes as rectangles is a minor simplification.

Moreover pins actually also have a physical shape. But pin shapes are rather small
compared to cell shapes. This especially applies to large cells which are the main focus of
this work. Thus it is a common assumption in placement to consider pins as points in R2.

The pin offset off (p) ∈ R2 of a pin p ∈ P denotes the relative position of this point
on γ(p) ∈ C ·∪{�}. For a cell c ∈ C we denote the reference point on A(c) for all off (p)
of pins p ∈ γ−1(c) as anchor. By translating off (p) accordingly we further consider the
anchor of cell c ∈ C to be the lower left corner of A(c). For having a uniform notation,
we select 0 ∈ R2 as the anchor of �.

With this understanding of the physical realization of a netlist, we can define our
primary objective:

Definition 2.8. A placement for a netlist (C,P, γ,N) is a map l : C → R2.
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2.2. Placement

We interpret the position l(c) of cell c ∈ C and placement l according to Definition 2.8
as the location of the anchor of c. By Al(c) ⊆ R2 we denote the placed shape of cell
c ∈ C with anchor translated to l(c). This aligns the notion of placement for c with
placement for rectangle A(c) (cf. Definition 2.2). We extend any placement l to � by
l(�) := 0 ∈ R2. This choice naturally extends the notation of placement to pins p ∈ P via
l(p) := l

(
γ(p)

)
+ off (p).

In practice it is additionally usually allowed to rotate a cell by integer multiples of
π
2 or flip a cell along a vertical axis. (Note that flipping along a horizontal axis can be
expressed by this.) Recall that both operations preserve rectangles. We refer to the state
of a cell with respect to flipping and rotating it as orientation or flip-code.

Technically the orientation of a cell corresponds to one of eight linear maps applied
to A(c) all preserving a cell’s anchor. In that sense also Al(c) depends on the orientation
of c ∈ C. In our application rotations by odd multiples of π

2 are always prohibited.
Consequently we can change a cell’s orientation without changing its placed shaped (by
adapting the placement accordingly). For the remainder of this thesis however it is
sufficient to consider fixed cell orientations unless explicitly stated otherwise.
2.2.1 Placement Constraints
We now describe the most important practical constraints for a placement which will lead
to the major problem definitions in the following sections.

Definition 2.9. A chip image is a pair (A,B) of a rectangle A, the chip area, and a
rectilinear shape B ⊆ A of blockages.

Blockages encode areas of the chip image which are prohibited to be occupied by cells
of the netlist. These blocked areas are reserved for special purposes in the design process.
Most commonly blockages preserve space for parts of a chip designed by a different team.
Also design stages following after placement may require additional space in predetermined
regions e.g. for inserting buffers. Such buffer bays cause blockages as well.

The minimum requirements for a reasonable placement of a netlist on a given chip
image are the following:

Definition 2.10. Consider a netlist (C,P, γ,N) and a chip image (A,B). We call a
placement l legal if all of the following conditions are satisfied:

• Distinct cells do not overlap, i.e. Al(c0) ∩ Al(c1) = ∅ for ci ∈ C and i ∈ J2K with
c0 6= c1.

• Each cell is placed in the chip area, i.e. Al(c) ⊆ A for all c ∈ C.
• Cells are placed disjointly from blockages, i.e. Al(c) ∩B = ∅ for all c ∈ C.

Recall that disjointness in Definition 2.10 always refers to the notion stated in Defini-
tion 2.4.

In addition to the constraints formulated in Definition 2.10 placements have to meet
further important criteria:

Most importantly, each cell can not be placed in arbitrary positions but rather has to
be placed on a grid. More precisely a predetermined anchor offset on the cell has to be
aligned with a grid which depends on the cell’s orientation.

Grid constraints originate from the power supply for cells. Power is distributed over the
entire chip image in a regular grid. These power grids have differing granularity depending
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Chapter 2. Placement Problems

on the routing layer. The necessity for cells to pick up the power supply is modeled by
grid constraints for placement.

The granularity of these grids differs greatly depending on the cell. Most of the cells in
a netlist, the standard cells, are very small. All standard cells have a common width or
height. These cells contain very limited wiring resources internally and consequently only
require alignment with a fine power grid on the lowest routing layers. This grid has the
same delta as the common width or height due to which cells are required to be placed in
columns or rows. Meeting such grid constraints can usually be achieved by moving cells
locally which is subject to standard cell legalization (cf. Section 2.2.3).

But this is not the case for all cells, particularly not for macros which are the primary
focus of this thesis. In contrast to standard cells, such cells are larger and contain more
routing resources internally. Macros are designed independently by different teams or even
bought entirely from contractors. For reasons of aligning to power supply on upper routing
layers, macro grids are relatively coarse. Due to both size and grid granularity of macros,
such cells require special algorithms (cf. Section 2.3).

Another important placement constraint is encoded by movebounds. Such constraints
restrict feasible locations for cells to be not only within the chip image, but rather even
within a smaller rectilinear shape.

Definition 2.11. Amoveboundm is a rectilinear shape. For a given netlist (C,P, γ,N)
assigned movebounds (M,µ) are a set of movebounds M with a map µ : C →M .

Note that according to Definition 2.11 we consider unconnected movebounds in par-
ticular. Movebounds restrict feasible placements in the following sense:

Definition 2.12. Consider a netlist (C,P, γ,N) with assigned movebounds (M,µ). A
placement l is legal with respect to (M,µ) if and only if Al(c) ⊆ µ(c) for all c ∈ C.

Movebound constraints do not arise for reasons of manufacturability. They rather serve
as powerful tool for designers to control the placement solution space. There are many
reasons why such influence is desirable: First and foremost, it allows tools to adapt to the
concept of a designer. Although this is not a mathematical objective, it is an important
goal in practice. Especially at early design stages of a chip, not all parts of the netlist are
worked out yet. Using movebounds allows designers to anticipate future netlist changes
for their placements. Furthermore the organization of the chip design process also imposes
constraints that can be modeled by movebounds. There are certain parts of the netlist
requiring to be placed in close proximity, e.g. parts designed by the same team or operated
on the same power-level.

Note that theoretically the concept of movebounds makes blockages obsolete. Any
blockage could be modeled by subtracting it from all movebounds. This is not done
in practice as it increases the complexity of the representation of movebounds. As also
commonly done in literature, we use both the notion of blockages and movebounds here.

In practice movebounds are used as optional constraints, i.e. there are cells without
any movebound whatsoever. We incorporate this into the notion of Definition 2.11 by
adding an artificial movebound m for which m is the complete chip area. Cells without
actual movebound instead can equivalently be assigned to m. This simplifies movebound
considerations in this thesis.

Practical movebound constraints are also applied in two different flavors: either as
inclusive or as exclusive movebounds. Definition 2.12 refers to inclusive movebounds.

6



2.2. Placement

Exclusive movebounds m in contrast require Al(c) ∩m = ∅ for all cells c with µ(c) 6= m.
In other words m is limited to be used by cells c with µ(c) = m.

We can avoid the special case of exclusive movebounds in Definition 2.12 using the
following pre-processing: For any two exclusive movebounds m0 and m1 we introduce
blockages m0 ∩ m1. This is no restriction since this intersection must not be utilized
by any cell whatsoever. Subsequently for an exclusive movebound m we subtract m
from m′ for all other (inclusive and exclusive) movebounds m′. After doing so, exclusive
movebounds are disjoint from all other movebounds and thus impose no extra constraints
any longer. Thus all movebounds can be treated as (inclusive) movebounds according to
Definition 2.12 from now on.

This pre-processing is computable in terms of intersections and complements of rect-
angles. Thus it has polynomial running time in particular. In the following we always
assume that this pre-processing has been applied. As a consequence we avoid the special
case of exclusive movebounds throughout this thesis without loss of generality.
2.2.2 Placement Objectives
Placement is one of the earliest steps of the chip design flow. Thus placement has to
satisfy all the requirements of the subsequent design stages. Since many of these stages are
difficult optimization problems themselves, their needs are usually modeled as objectives.

A primary placement objective is netlength:

Definition 2.13. For a given netlist (C,P, γ,N) with placement l and net weights w : N →
R+, the (weighted) bounding box netlength BBL is

BBL(l) :=
∑
n∈N

w(n) · BBL
({
l(p) : p ∈ n}),

where BBL(P ) for finite P ⊆ R2 denotes half the perimeter of BB(P ).

Minimizing netlength indirectly models various other optimization goals which we will
discuss shortly. Furthermore it is widely considered in literature on placement tools as
well as in publicly available benchmarks, e.g. the ISPD placement contests (Nam 2006;
Nam et al. 2005).

Another important objective is routability. All pins of the nets have to be intercon-
nected by wires located on various routing layers. Thereby both intolerable detours have
to be avoided and involved distance requirements have to be obeyed. On the one hand,
this requires short interconnections while on the other hand avoiding too densely packed
wires.

In addition to routing, placements have to satisfy strict timing requirements. Elec-
trical signals have to arrive in time at specified points on the chip in order to guarantee
various interdependent parts of the netlist operate correctly all together. This can only
be achieved with sufficiently short nets but also requires additional optimizations for in-
dividual connections, e.g. buffering and gate sizing.

A placement not only has to enable such optimizations, i.e. avoid packing cells too
densely, but also should require as few as possible of these operations. Additional gates
as well as faster gates consume more power which is an important objective to minimize.

To make things even more complicated, also manufacturing costs should be taken into
account. Theoretically this can be achieved by facilitating placement on smaller chip areas
by which more processors could be produced on a single wafer. But for the most part of

7



Chapter 2. Placement Problems

the design process the chip area is considered to be fixed. In practice the yield is a main
focus, i.e. the fraction of produced chips that actually work as designed. This is primarily
achieved by avoiding local routing configurations that can not be manufactured reliably.

All these objectives correlate to some extent to placements with small netlength. But
considering this as the only optimization goal is not sufficient for the placement of modern
microprocessors any longer.

In the following we explain routing and timing objectives in further detail. Both are
of primary focus throughout this thesis and will subsequently be targeted directly.

Routing Objectives
Any placement defines a routing instance for which all pins of the nets have to be
interconnected by wires located on various routing layers. Mathematically such a routing
can be seen as a packing of 3-dimensional Steiner trees. Unfortunately the Steiner Tree
Problem is known to be difficult (NP-hard due to Karp (1972), MaxSNP-hard due to
Bern and Plassmann (1989)), which is why even routing a single net is complicated. In
addition routing both has to obey involved distance requirements and avoid intolerable
detours. Extensive information on routing can be found in Alpert, Mehta and Sapatnekar
(2008) as well as Gester et al. (2013).

Nevertheless placements have to be routed eventually. In practice this not only requires
a theoretical guarantee of routability, but rather a concrete routing algorithm implemen-
tation capable of finding the desired routing in reasonable time.

Such algorithms usually distinguish between global and detailed routing. During
global routing a rough outline of the wiring is determined. Thereby density constraints
for wiring capacities on all layers have to be obeyed and detours should be avoided while
connections are allowed to overlap. The task of detailed routing is completing such a global
wiring to an actual routing. This involves complicated distance requirements arising from
the manufacturing process. Detailed routing is of subordinate interest for this thesis as
placements usually can be optimized locally for detailed routability (e.g. during detailed
placement).

Therefore the central routing objective during placement is routing congestion,
which is an estimate for the wire density required for routing the placement (determined
by a global routing algorithm). The underlying assumption that any placement with low
congestion can actually be routed is met in practice.

From the perspective of placement there are two different types of congestion: If
cells have been placed too far apart, nets become too long to be able to pack all needed
wires on the chip. This type of global congestion is somewhat attacked by netlength
minimization. But in addition placements have to avoid local congestion caused by
tightly entangled circuits in close proximity. This effect will require special treatment and
extra optimization steps.

Timing Objectives
Before we elaborate how to optimize for good timing characteristics, we need to explain
how timing is actually modeled and evaluated.

Signal propagation times are computed within a connected, acyclic, directed graph on
the pins of the netlist, the so called timing graph. Signals are propagated along the
directed edges in the timing graph.

In practice, the timing graph actually is more complicated in order to be more efficient:
It contains multiple nodes for each pin (corresponding to different types of timing analysis).
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In addition the timing graph de facto also contains artificial vertices in order to avoid
complete bipartite subgraphs. Since the efficiency of the timing engine is not of concern
for this thesis, we may assume no such vertices have been added. Moreover duplicate
nodes for the same pins can be handled as virtual pins in the netlist. In order to simplify
notation, we thus assume that the vertices of the timing graph are exactly the pins of the
netlist.

Constraints arise when signals need to have reached certain nodes in the timing graph.
These ensure various parts of the netlist are able to interoperate jointly. Particular care
is needed for storage elements which save and emit formerly computed bits. Such storage
elements fall into two categories, those storing multiple bits (usually modeled by some
macro) and those storing single bits only. Circuits of the latter category are called latches
and appear frequently in any netlist. Non-memory circuits on the chip are also referred
to as logic.

Saving and emission of storage elements takes place synchronously and in cycles, i.e.
all those gates periodically start picking up the current signal and emitting a former one.
This time interval is called clock cycle and its length is the cycle time. The timing
graph expresses the signal propagation that is required to take place within any single
clock cycle.

The cycle time directly affects the overall performance of the chip. Executing the same
computations within shorter clock cycles results in faster chips. In practice an ambitious
cycle time is fixed upfront and most part of the design process aims at making the set goal
possible.

The time in each clock cycle at which a signal reaches a given node v in the timing
graph is the arrival time at(v). Similarly the latest possible arrival time at node v
by which the cycle time is not exceeded is the required arrival time rat(v). The
amount of time left between required and actual arrival time is denoted by slack(v), i.e.
slack(v) := rat(v)− at(v).

Those vertices v in the timing graph with predefined arrival times at(v) or required
arrival times rat(v) are called timing startpoints or timing endpoints. Not all nodes
are start- or endpoints, but e.g. those corresponding to memory elements usually are of
this kind, which particularly applies to latches.

The constant (required) arrival times for timing start- and endpoints are known as as-
sertions. Note that by definition assertions are independent from the placement. Timing
assertions define the contracts by which all gates of the chip are able to interoperate.

For any fixed placement all values at(v) and rat(v) can be computed by timing
engines based on the assertions. The resulting (required) arrival times crucially depend
on the used delay function which denotes the time needed for a signal to traverse an
edge in the timing graph. This computation considers further properties of the nodes in
the timing graph which are not important for our purpose. We will refer to a fixed timing
engine with fixed delay model as timing model.

There are multiple delay models varying in accuracy, complexity and underlying as-
sumptions. The presented evaluation context is known as static timing analysis and goes
back to Hitchcock, Smith and Cheng (1982) and Kirkpatrick and Clark (1966). The sim-
plest models therein neglect any delay resulting from wires entirely or assume a linear
delay proportional to the distance between connected pins (e.g. Otten 1998). More accu-
rate models view the timing graph as electrical network of resistances and capacitances
resulting in quadratic delay functions (Elmore 1948). With more computational effort
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even preciser models can be derived, e.g. Rice (Ratzlaff and Pillage 1994), Maise (Liu
and Feldmann 2008–2008) or statistical timing (Visweswariah et al. 2006).

Depending on the stage in the chip design process and consequently the required
accuracy either of the mentioned delay models is used in practice. For more details on
timing analysis in general, the aforementioned delay models in particular and also further
higher order delay models we refer to Sapatnekar (2004) and Alpert, Mehta and Sapatnekar
(2008, 546 ff.).

For this thesis, we focus on the virtual timing model (cf. Alpert et al. 2006; Otten
1998). This model assumes that all nets can be buffered optimally and therefore the delay
along any net is linear in the distance of the endpoints. The coefficient involved depends
on the layer the net is predominantly assigned to. This model copes well with various
uncertainties during placement e.g. topologies remaining to be selected for multi-terminal
nets or buffers to be inserted. Virtual timing is an optimistic model that bounds actual
delay from below and estimates it reasonably well in practice, particularly for the most
critical nets (Alpert et al. 2006). In addition it can be computed and updated in linear
time by propagation in the timing graph in topological order. This is why virtual timing
is a good model to consider during placement.

For any path P in the timing graph, Ec(P ) denotes the circuit internal edges
of P i.e. those connecting vertices corresponding to the same circuit. Analogously
Ew(P ) := E(P ) \ Ec(P ) stands for the wiring edges whose endpoints eventually have to
be connected by actual wires.

Furthermore for given path P in the timing graph and placement l of the netlist, d(P, l)
denotes the virtual timing model delay. By assumption on this delay function, it
is composed of two components: dc(P ) :=∑e∈Ec(P ) d(e, l) stands for the circuit internal
delay of P . Note that by assumption on d, dc is independent from the placement l.
Furthermore

dw(P ) :=
∑

e ∈ Ew(P )
d(e, l) =

∑
(v, w) ∈ Ew(P )

α(v,w) ·
∥∥l(w)− l(v)

∥∥
1

denotes the wiring delay where αe ∈ R is the coefficient depending on the assignment
of wiring edge e.

The primary timing objective during placement is maximization of the worst slack,
i.e. the minimum slack of any node in the timing graph. The worst slack denotes how
much later all signals could arrive without being too late. In practice assertions are often
ambitious, in which case positive slack often can not be achieved.

Only a small fraction of nodes in the timing graph contributes to the worst slack.
Thus usually secondary objectives, to which larger parts of the netlist contribute, are
considered in addition to worst slack. The most prominent among these is the figure of
merit (FOM) which specifies the sum of slacks at all endpoints in the timing graph.
There is also a variant of the FOM, the so called pFOM, for which the slack of even more
nodes is taken into account. For the pFOM all slacks of endpoints and those nodes v with
|δ+(v)| > 2 are summed up.
2.2.3 Placement Problem Variants
For various stages in the chip design process, different types of placement problems arise
in practice and have been studied in literature.

Chronologically first considered in the order of a hierarchical design process is the
Floorplanning Problem. Here only few but large circuits are placed which corre-
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spond to macros or units that will be designed separately. For such units, only a very
rough sketch is known. Often neither the concrete size, nor the precise aspect ratio nor
detailed pin positions have been determined yet. All these details are subject to optimiza-
tion under the constraint that copies of the same unit share identical characteristics. With
so much uncertainty only netlength can be optimized during floorplanning.

Once concrete shapes for all cells in the netlist have been settled upon, placement
requirements resulting from the hierarchical design process are usually formulated as
movebound constraints (cf. Definitions 2.11 and 2.12) for all further placement steps.
The first of these placement stages is the Macro Placement Problem. At this
stage positions for all large cells in the netlist, so called macros, have to be determined,
which subsequently remain more or less fixed for the remainder of the flow.

The involved constraint of placing macros disjointly is challenging in practice since
large fractions of the chip can be occupied by few macros. Macro Placement focuses
on positioning macros in a way that allows extending the placement to the complete netlist
nicely. This primarily targets approximations of netlength since all actual objectives are
very hard to estimate at this point.

Further placement goals can only be incorporated by reiterating the complete design
flow for few, manually selected promising placement changes. Consequently at this point
large safety margins are required for the actual placement of logic. This allows reacting
to any potential issues later in the flow without the need of redesigning the whole chip.
On the other hand, it likely is overly conservative for the most part.

For fixed macro positions, the next step is placing the remainder of the netlist. In
the Global Placement Problem this is addressed while neglecting local grid
constraints. Instead of grids Global Placement considers density constraints to ensure
finding legal on-grid positions afterwards can be achieved easily. While netlength has been
the predominant objective of Global Placement for many years, routability and timing
characteristics are becoming increasingly important in recent technology nodes.

In the final placement stage, the Detailed Placement Problem, local place-
ment issues are addressed. For this purpose all non-standard circuits are assumed to be
already fixed and only considered as blockages. Input for Detailed Placement usually
is a feasible global placement. The task of this placement step is finding a placement
satisfying local constraints (e.g. grids or additional constraints for pin accessibility) while
perturbing the input as little as possible. A common objective is total squared movement.

The problem of snapping standard circuits into their respective grids imposed by the
circuit rows is also referred to as Legalization Problem. In contrast to the Macro
Placement Problem, finding any legal solution is usually easy. This is due to the
facts that in this case cells share a common width or height and sufficient whitespace is
guaranteed via Global Placement’s density constraints.

We refer to the combination of macro and global placement followed by legalization as
Mixed-Size Placement Problem.

With this preliminary introduction to placement in general, in the following two
sections we will elaborate details of two components of mixed-size placement centrally
considered in this thesis.

2.3 Macro Placement
The Macro Placement Problem is central to this thesis. A solution to this problem,
a macro placement, is a legal placement map restricted to macro cells. Good macro
placements can easily be extended to good placements for the entire netlist.
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Consequently it is reasonable to incorporate special macro handling into existing global
placement algorithms. This has been done for min-cut based Capo (Roy et al. 2006),
force-directed FastPlace (Viswanathan, Pan and Chu 2006, 2007) and Kraftwerk
(Eisenmann and Johannes 1998; Spindler, Schlichtmann and Johannes 2008), as well as
non-linear, analytical APlace (Kahng and Wang 2005), mPL6 (Chan et al. 2006, 2007),
ePlace (Lu, Zhuang et al. 2015; Lu, Chen et al. 2015), NTUPlace3 (Chen, Jiang et al.
2008) and Maple (Kim et al. 2012). Further details of these and other global placement
algorithms are presented in Section 2.4.

Placing standard cells and macros simultaneously allows to model objectives accurately.
Since all placeable objects are considered at the same time, such algorithms always have
a global view. But on the flipside, achieving legal macro positions is complicated.

Some of the mentioned approaches, e.g. FastPlace, mPL6 and Maple, handle this
requirement in a rough pre-legalization estimate. While this guarantees legal positions,
these algorithms suffer from suboptimal relative positions that need to be fixed early.
Analytical placers incorporate disjointness requirements into the objective. This often
fails to find an actual legal placement, particularly on instances where macros occupy the
majority of the chip area. In this case additional techniques are required.

Partitioning based placement algorithms on the other hand can easily guarantee legal-
ity by assigning macros to different bins of the partitioning grid. The central challenge
thereby is to support fine grids with bins smaller than macros. This has been tackled by
tentatively blocking multiple bins for macros, which later can be revised (Adya et al. 2004)
or even completely undone (PolarBear: Cong, Romesis and Shinnerl 2005). Khatkhate
et al. (2004) instead propose to enhance the partitioning paradigm and consider fractional
cuts in their placer FengShui.

There is also a different approach for deriving initial macro positions with potential
overlaps. Instead of working on the netlist with macros, it is possible to consider an
artificial netlist without such large cells.

Adya and Markov (2005) and Doll, Johannes and Antreich (1994) first proposed
replacing macros with fixed outlines by many small and tightly interconnected artificial
cells. This technique is commonly referred to as macro shredding and the artificial
cells are called macro fragments. Based on a placement of the shredded netlist macro
positions can finally be inferred from their respective fragments, e.g. their center of gravity.
This step is known as macro reassembly.

It is possible to apply all existing algorithms for the Global Placement Problem to
the netlist with shredded macros (cf. Section 2.4). With good global placement algorithms
and accordingly adapted shredded netlist (e.g. fragment sizes and interconnections) the
resulting macro positions only overlap locally but are well spread globally. This concept
has also been used in BonnMacro (Brenner 2007), the macro placement component
of BonnPlace (Brenner, Struzyna and Vygen 2008), as well as in ComPLx (Kim and
Markov 2012).

In a second step any potential macro overlaps need to be resolved while perturbing the
input as little as possible. This is also referred to as Macro Legalization Problem.
Recall that all cell shapes in fact are modeled as rectangles by Definition 2.7. Consequently
Macro Legalization leads to the geometric problem of packing rectangles.

If two rectangles are placed without overlaps their disjointness can be certified by a
spatial relation:
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Definition 2.14. There are four spatial relations: C (left) , B (right) , O (below) and
M (above) . For given rectangles ri where i ∈ J2K and ∼ ∈ {C,B,O,M} we write r∼ r′ if
“∼” holds for the positions of ri, e.g. r0C r1 in case of xmax(r0) ≤ xmin(r1).

The spatial relation of two rectangles ri depends on the placement of both ri or more
precisely on the relative placement of them. Finding a disjoint placement in particular
includes selecting one spatial relation for each pair of rectangles that holds in the place-
ment.

For simply packing rectangles disjointly, any spatial relation is sufficient for any pair
of rectangles. In our application though, it is valuable to restrict the available choices of
relations. Therefore we consider allowed relations ϕ : R × R → P({C,B,O,M}). We
always assume ϕ is anti-symmetric, i.e. x ∈ ϕ

(
r, r′

)
if and only if x ∈ ϕ

(
r′, r

)
where

C :=B, O :=M and vice versa.
Moreover we even require relation dependent minimum distance constraints for all

rectangle pairs (in order to model macro grid constraints less pessimistically). More
precisely, a relation ∼ ∈ {C,B,O,M} holds with additional space s ∈ R if and only
if the ∼-defining inequality holds with slack at least s.

With the introduced additional notation we formalize the standard problem of packing
rectangles as follows:

Rectangle Packing Problem
Instance: A finite set of rectangles R, allowed relations ϕ : R × R → P({C,B,O,M}),

required spacing ψ : R×{C,B,O,M}×R→ R+, feasible area rectangles A(r)
for r ∈ R.

Task: Find placement l : R→ R2 s.t.

• ∀r0, r1 ∈ R placed according to l with ϕ(r0, r1) 6= ∅:
∃∼ ∈ ϕ(r0, r1) s.t. r0∼ r1 with additional space ψ(r0∼ r1)

• ∀r ∈ R: r placed at l(r) is contained in A(r)

or decide that no such locations l exist at all.

Recall that the Rectangle Packing Problem refers to the placement of rectangles
introduced in Definition 2.2.

Note that the presented formulation of the Rectangle Packing Problem also
includes rectangles with prescribed positions. Those can be modeled by appropriate
feasible areas allowing the desired placement only, i.e. A(r) := r. We often call rectangles
with such restrictive feasible areas fixed.

Clearly Rectangle Packing contains the problem of placing rectangles disjointly
via ϕ :≡{C,B,O,M}. As part of the extension with restricted relations, in particular no
required relation is possible, i.e. ϕ(r0, r1) = ∅. In this case r0 and r1 may overlap in a
feasible solution l. We will explicitly use this possibility in Chapters 3 and 4.

The presented form of the Rectangle Packing Problem is a decision problem only.
There are many variants of this problem studied in literature with different objectives.
Motivated by the chip design application, minimizing netlength and particularly movement
from an illegal placement is of special interest. Moreover Rectangle Packing is a
special case of Floorplanning with fixed outlines. This is why minimizing the area of
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an enclosing rectangle also has been studied. We will generalize the Rectangle Packing
Problem in order to model timing on macros in Chapter 3.

The Rectangle Packing Problem is a notoriously difficult optimization problem
(cf. Theorem 3.16). Consequently large instance can not be solved to optimality in practice.

Many practical approaches start with representations of possible placement topologies,
e.g. sequence pairs (Jerrum 1985; Murata et al. 1996), bounded sliceline grids (Nakatake
et al. 1996), Q-sequences (Zhuang et al. 2002–2002), O-trees (Guo, Cheng and Yoshimura
1999; Takahashi 2000), B?-trees (Chang et al. 2000), corner sequences (Lin, Chang and
Lin 2003), transitive closure graphs (Lin and Chang 2005), or adjacent constraint graphs
(Zhou and Wang 2004). These and further representations have been surveyed in Chen
and Chang (2008) and Young (2008). For all schemes there are exponentially many repre-
sentations for solutions to Rectangle Packing. The tightest bounds on the cardinality
of representations have recently been shown by Silvanus and Vygen (2017).

Naturally an optimum packing representation can not be enumerated in practice. To
circumvent this many heuristics have been applied: Almost all authors of previously
mentioned representations apply simulated annealing, but also dedicated local search
algorithms (e.g. Adya and Markov (2003), Janiak, Kozik and Lichtenstein (2010) and
Moffitt et al. (2006) on constraint graphs or Guo, Cheng and Yoshimura (1999) on O-
trees), genetic algorithms (e.g. Tang and Sebastian (2005) on O-trees or Fernando and
Katkoori (2008) on sequence pairs) as well as particle swarm optimization (e.g. Sun et al.
(2006) on B?-trees) have already been studied. Various heuristics for area minimization
were surveyed by Bortfeldt (2013). Other (unsurprisingly popular) heuristics simply mimic
the common designer’s approach of moving macros to the corners (e.g. MP-trees by Chen,
Yuh et al. (2008)).

A different approach is heuristically selecting small packing sub-instances whose opti-
mum solutions can be combined to an overall solution. Onodera, Taniguchi and Tamaru
(1991) started this using a branch-and-bound algorithm for area minimization. This was
subsequently improved by Korf, Moffitt and Pollack (2010) via a formulation as meta con-
straint satisfaction problem which improved pruning. Similar strategies have also been
generalized and improved by Funke, Hougardy and Schneider (2016) for the version of
netlength minimization. An evolution of their Spark implementation is a fundamental
component of today’s BonnMacro.

Depending on input placement quality, minimizing movement from an initial place-
ment during Macro Legalization is not sufficient. Yan, Viswanathan and Chu (2014)
proposed to include clusters of standard cells with variable outline in legalization with their
placer Flop. This results in a problem variant very similar to actual Floorplanning.

All mentioned macro placement approaches primarily target netlength as objective.
Timing requirements for non-standard cells have been translated to netweighting heuristics
by Gao, Vaidya and Liu (1992), but only in case the packing problem actually is easy.
This concept is very similar to common timing-driven standard cell placement paradigms
(cf. Section 2.4).

2.4 Standard Cell Placement
Solving the Global Placement Problem is a crucial step in the physical design of
VLSI chips. The quality of the placement has far-reaching effects on the whole design
process.

For Global Placement macro positions are fixed and the remaining standard cells
of roughly equal height have to be arranged on the chip. Thereby cell grids are ignored.
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Moreover small overlaps are also allowed, which expectedly can be easily resolved by
subsequent Legalization of standard cells (cf. Section 2.2.3). Nevertheless movebound
and density constraints (e.g. measured on a regular grid across the chip) have to be
respected.

Finding any feasible global placement satisfying these constraints can usually be accom-
plished easily. Since chips contain sufficient unused space, the packing problem becomes
simple. But nevertheless optimizing for good placements is challenging, in particular on
modern designs with multiple millions of cells.

Global placement tools typically minimize the total interconnect length. In addition,
they have to guarantee routability of their placements while meeting tight timing con-
straints on individual signals.

Most state-of-the-art placement tools are analytical algorithms. They start off with
a placement minimizing a smoothed approximation of the half-perimeter wirelength, but
allowing cells to overlap arbitrarily (Brenner and Vygen 2008). Afterwards the task is to
reduce the overlapping of cells.

There are different ways to work towards an overlap-free placement. In principle, two
major approaches have been applied in practice. Actual implementations often combine
various methods of either paradigm.

In partitioning-based algorithms, the chip area is divided into bins and the algorithm
ensures that no bin contains too many cells. Those approaches often are highly efficient
and meet density constraints very accurately. The intrinsic challenge for these approaches
is the partitioning of cells into bins during which original objectives can only be considered
indirectly.

Other approaches iteratively apply artificial forces pulling cells from crowded areas
of the chip towards free space. Forces can be seen as punishments for the illegality
of an analytical placement. Those force-directed placers vary widely in their force
computation and modulation. Usually they require many iterations in order to obey
density constraints. In contrast to partitioning-based algorithms though, each iteration
has a global view on the actual objective.

Analytical placement tools start with an arrangement of cells optimizing a smooth
approximation of the resulting interconnect netlength if all constraints are ignored. In
particular, cells will overlap in the obtained initial solution. Objectives thereby considered
range from super-linear (e.g. quadratic by Kleinhans et al. 1991), over log-sum-exp
(Naylor, Donelly and Sha 2001) to the weighted-average netlength model (Hsu, Balabanov
and Chang 2013). With such a solution, the goal is to find a placement subject to density
constraints which is almost as good as the initial arrangement.

Force-directed placers perform multiple placement iterations. Successively increasing
forces pull cells out of overfull areas of the chip in order to achieve legality. This was first
applied by Kraftwerk (Eisenmann and Johannes 1998; Spindler, Schlichtmann and
Johannes 2008) successfully. Here forces are computed locally as gradient of the density
violation.

Forces are computed differently in RQL (Viswanathan et al. 2007), FastPlace
(Viswanathan, Pan and Chu 2006, 2007) as well as in SimPL (Kim, Lee and Markov
2012, 2013) including its subsequent evolutions SimPLR (Kim et al. 2011), Ripple (He
et al. 2011), ComPLx (Kim and Markov 2012), Maple (Kim et al. 2012) and Polar
(Lin and Chu 2014; Lin et al. 2015). Here a rough legalization is computed and each
cell is pulled towards its legalized position. Different to Lagrangian multipliers, forces do
not penalize illegality directly but punish the difference to one particular legal placement
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which has been computed previously. Hence the quality of the overall algorithm heavily
depends on the legalization itself. The legalization applied in SimPL-based papers is fast
but not very sophisticated. As a result cells can be pulled only slightly towards their
former legal positions. Consequently a large number of iterations is necessary.

All algorithms mentioned so far introduce forces as artificial connections subsequently
smoothed by the respective analytical interconnect minimizer. Other analytical ap-
proaches directly incorporate smooth approximations for the opposing placement goals
density and legality. APlace (Kahng and Wang 2005) does this based on the patent of
Naylor, Donelly and Sha (2001). In mPL (Chan et al. 2006, 2007) density constraints
are globally smoothed using the Helmholtz equation. NTUPlace4 (Hsu et al. 2011)
uses quadratic functions to penalize violations of a locally smoothed density function and
of a smoothed congestion estimation. More recently, ePlace (Lu, Zhuang et al. 2015;
Lu, Chen et al. 2015) successfully models placement instances as electrostatic systems
translating density violations to the system’s potential energy.

In contrast to those ideas, partitioning-based algorithms recursively subdivide the chip
area while assigning circuits to the respective regions. Capo 10.5 (Roy et al. 2006) does
this while minimizing the induced cut in the netlist hypergraph. Xiu and Rutenbar (2007)
iteratively determine a non-uniform grid that optimizes density violations and scale these
assignments into a regular grid. Also BonnPlace (Brenner, Struzyna and Vygen 2008;
Struzyna 2013) contains a partitioning-based global placement algorithm. BonnPlace
uses flow-based partitioning which efficiently solves the global partitioning problem via a
series of min-cost flow problems.

In order to improve running time and solution quality many global placers use clus-
tering. A cluster is a group of cells that will be handled as single, artificial object by the
algorithm. Clustering can be integrated well into iterative placement paradigms (cf. Chen
et al. 2003; mFAR: Hu and Marek-Sadowska 2005; FastPlace 3.0: Viswanathan, Pan
and Chu 2007).

Above mentioned and many further global placement algorithms have been surveyed
by Nam and Cong (2007), Markov, Hu and Kim (2015) and Alpert, Mehta and Sapatnekar
(2008, Chapters 15 – 18).

With ever increasing design complexity, optimizing netlength is insufficient for suc-
cessful routing. In order to mitigate routing failures, congestion-driven global placement
algorithms require additional techniques.

Placements with small netlength are a good starting point that globally honors routing
resources. Most placer can reliably avoid local routing congestion by spreading cells apart
that contribute to routing hotspots. A placement of locally lower density provides more
routing resources for fewer nets and hence is easier to route. At the same time density
reduction needs to be traded carefully against congestion mitigation: longer nets require
more routing resources which needs to be prevented on a global scale. Spreading cells can
either be achieved by adjusting the target density locally or by artificially inflating cells
(Hou et al. 2001).

A crucial difference between various congestion-driven placement paradigms is the
actual congestion estimation. The earliest approaches by Cheng (1994) use a probabilistic
routing estimation. This approach has been refined and extended to account for pin
densities in a former version of BonnPlace (Brenner and Rohe 2003).

Modern approaches rely on fast modes of actual global routing engines: This is the case
for many routability-driven evolutions of SimPL (Kim, Lee and Markov 2012) including
SimPLR (Kim et al. 2011) based on BFG-R (Hu, Roy and Markov 2010) as well as
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Polar2 (Lin and Chu 2014) based on FastRoute4 (Xu, Zhang and Chu 2009). Recent
versions of BonnPlace are based on BonnRouteGlobal (Müller, Radke and Vygen
2011).

There are also different approaches which incorporate routing estimates more directly:
The congestion-driven version Rooster (Roy and Markov 2007) of Capo (Roy et al. 2006)
considers cuts in the netlist based on Steiner tree estimates in order to avoid congestion.
NTUPlace4 (Hsu et al. 2011), the congestion-driven NTUPlace3 (Chen, Jiang et al.
2008), incorporates congestion penalties into the overall smoothed objective function.

Further literature on congestion-driven global placement has been surveyed by Adya
and Yang (2008) and Markov, Hu and Kim (2015).

But even a placement that can be routed easily is not satisfactory for modern technol-
ogy designs. In addition placements need to ensure that various parts of the netlist can
interoperate jointly. To meet these timing requirements, certain connections must not be
too long.

A very common approach is iteratively computing multiple placements while incen-
tivizing the placer to shorten nets with negative slack. This is primarily done using net
weights, i.e. coefficients of the nets in the objective.

Effective net weighting schemes have already been proposed by Burstein and Youssef
(1985) and Dunlop et al. (1984). Kong (2002) extends this idea and emphasizes shared
critical nets by path counting. Weights can also be inferred as Lagrangian multipliers for
relaxed timing constraints (Hamada, Cheng and Chau 1993; Srinivasan, Chaudhary and
Kuh 1992; Szegedy 2005; Wu and Chu 2017).

Other approaches restrict the length of critical nets (Zhong and Dutt 2002). For small
instances it is also possible to replace an analytical placement with timing-driven input
locations as determined by a linear program. This has been done in Allegro (Jackson
and Kuh 1989). In order to apply this to larger instances, Luo, Newmark and Pan (2006)
pursue a hybrid approach: They use net weights as well as local linear programs ensuring
good timing characteristics.

Similar ideas have been used in many of the aforementioned global placement algo-
rithms. Kraftwerk (Eisenmann and Johannes 1998) even use net weights based on
Elmore delay.

More literature on timing-driven global placement has been summarized by Markov,
Hu and Kim (2015) and Pan, Halpin and Ren (2008).
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Chapter 3

Timing-Driven Rectangle Packing

In this thesis we develop a tool to optimize timing characteristics of macro placements.
This chapter lays the theoretical foundation for this purpose. We introduce an extension
of the classical Rectangle Packing Problem motivated by our application in Macro
Placement.

In Section 3.1 we first translate timing information into geometric constraints which
leads to the Timing-Driven Rectangle Packing Problem. Section 3.2 elaborates how
to compute this model. We analyze basic properties of the generalized packing problem
in Section 3.3, before we focus on certain instances in Section 3.4. Here we prove the
essential Theorem 3.34, an efficient, exact algorithm for this subclass of instances.

Afterwards in Section 3.5, we discuss techniques for representing our geometric con-
straints more efficiently. Corollary 3.42 proves that for any pair of rectangles a single
generalized distance constraint suffices. We close this chapter by a comparison of classical
and generalized Rectangle Packing for fixed spatial relations in Section 3.6.

3.1 Distance-Bound Model
Macro Placement is an important problem in the chip design flow, but at the same
time a very difficult one (cf. Section 2.3). This particularly holds with regard to the timing
objective. Even simply evaluating timing properties of a given macro placement involves
solving a timing aware Global Placement Problem. In order to still optimize timing
characteristics of macro placements, we will make some simplifying considerations.

Recall that we are assuming a virtual timing environment which has been explained
in Section 2.2.2 (page 8 ff.). In this model we distinguish between gate-internal (Ec, dc)
and wiring (Ew, dw) edges and delay. The gate-internal delay thereby is constant, while
the correlation of distance and wiring delay is linear and layer-dependent.

Throughout this section we consider a fixed instance of the Macro Placement
Problem with arbitrary but also fixed placement l. More precisely this includes a netlist
with dedicated macro cells, blockages and movebounds as well as a timing environment,
particularly a timing graph. Recall that we assume without loss of generality the nodes
of the timing graph are exactly the pins of the netlist.

Consider two pins s and t of macros as vertices in the timing graph. In the following we
denote by α the (smallest) delay-per-distance coefficient of the fastest layer. Consequently
for any s-t-path P in the timing graph
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Chapter 3. Timing-Driven Rectangle Packing

d(P, l) = dw(P, l) + dc(P ) =
∑

e ∈ Ec(P )
dc(e) +

∑
(u, v) ∈ Ew(P )

α(u,v) ·
∥∥l(v)− l(u)

∥∥
1

≥
∑

e ∈ Ec(P )
dc(e) +

∑
(u, v) ∈ Ew(P )

α ·
∥∥l(v)− l(u)

∥∥
1.

Using l(t)− l(s) = ∑
(u,v)∈E(P )

(
l(v)− l(u)

)
we derive

∑
(u, v) ∈ Ew(P )

∥∥l(v)− l(u)
∥∥

1 ≥
∥∥l(t)− l(s)∥∥1 −

∥∥∥∥∥∥∥
∑

(u, v) ∈ Ec(P )
l(v)− l(u)

∥∥∥∥∥∥∥
1

(3.1)

≥
∥∥l(t)− l(s)∥∥1 −

∑
(u, v) ∈ Ec(P )

∥∥l(v)− l(u)
∥∥

1 (3.2)

by the triangle inequality. Thus we see the following lower bound on d(P, l)

d(P, l) ≥ α
∥∥l(t)− l(s)∥∥1 +

∑
(u, v) ∈ Ec(P )

[
dc(u, v)− α

∥∥l(v)− l(u)
∥∥

1

]
. (3.3)

Most importantly, the delay bound Equation (3.3) only depends on the placement
l of the endpoints s and t of P . Both dc and

∥∥l(v)− l(u)
∥∥

1 are constant for circuit
internal edges of the timing graph. To emphasize this, we further use the notation
‖u, v‖1 :=

∥∥l(v)− l(u)
∥∥

1.
Since this lower bound holds for any s-t-path P , we are particularly interested in the

most restrictive bound. This motivates the following definition:

Definition 3.1. Consider an instance of Macro Placement with placement l and two
pins s and t in the timing graph. We denote the maximum path delay dl(s, t) between
s and t as

dl(s, t) := max
{

d(P, l) : P is an s-t-path
}
.

We furthermore define the circuit internal delay estimate cd(s, t) between s and t as

cd(s, t) := max


∑

(u, v) ∈ Ec(P )

[
dc(u, v)− α‖u, v‖1

]
: P is an s-t-path

.
We abbreviate max∅ = −∞.

Please note that Definition 3.1 deliberately makes use of the weaker bound Equa-
tion (3.2). This is done as Corollary 3.13 proves that the stronger bound Equation (3.1)
would lead to an alternative version of cd(s, t) that is NP-hard to compute. This will be
discussed in Section 3.2 in detail.

We summarize the previous motivation in the following lemma:

Lemma 3.2. For any two pins s, t in an instance of Macro Placement and arbitrary
placement l

dl(s, t) ≥ α
∥∥l(t)− l(s)∥∥1 + cd(s, t).
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3.1. Distance-Bound Model

Proof. If t is not reachable from s, there is nothing to show since cd(s, t) = dl(s, t) = −∞.
Otherwise, we consider any s-t-path P certifying the value of cd(s, t), i.e. maximizing∑

(u,v)∈Ec(P )
[
dc(u, v)− α‖l(v)− l(u)‖1

]
. The stated bound on dl(s, t) follows from Equa-

tion (3.3) applied to P . �

This lower bound contains several simplifying assumptions, i.e. it is not always tight
even for slack-optimum placements. To start with, it assumes that simultaneously all
paths are shortest. For an example where this may not be achievable see Figure 3.1(a).
Here we assume the blue macros ri for i ∈ J4K are de facto fixed in their position e.g.
for reasons of other connections omitted for simplicity. For appropriate at- and rat-values
the depicted solution for the orange cell in the middle is the unique optimum regarding
slack. Despite that e.g. the r1-r0-path is not shortest as suggested by the lightly shaded
alternative position at the top. But this is what our lower bound assumes.

Additionally Lemma 3.2 expects no detours from circuit internal edges. But also this
aspect can be violated as depicted in Figure 3.1(b). In this example the orange circuit
spans a large distance, but thereby makes the highlighted path longer than estimated. If
it was rotated by 1

2π, our lower bound would be accurate. In practice however, circuits
that are not selected as macros will be small. This is why this effect only plays a minor
role in practice.

Lastly we assumed a uniform layer assignment to the fastest layer. This will hardly be
realizable for reasons of routing congestion. Consequently the actual delay will often be
longer than estimated as slower layers have to be utilized as well.

r0r1

r2 r3

(a) An instance with a worst r0-r1-path that is not
shortest.

(b) An instance where circuit offsets increase delay
on the critical path.

Figure 3.1: Two examples visualizing that Lemma 3.2 only defines a lower bound
on delay (macros in blue; non-macros in orange).

Using the lower bound of Lemma 3.2 we can state the following necessary condition
for achieving a certain slack:

Proposition 3.3. Consider any instance of Macro Placement. If there is a placement
l with slack r ∈ R, then∥∥l(t)− l(s)∥∥1 ≤ α−1[rat(t)− at(s)− r − cd(s, t)

]
for all startpoints s and endpoints t in the timing graph.

Proof. Since l has slack r, in particular dl(s, t) ≤ rat(t) − at(s) − r. Using Lemma 3.2
concludes the proof. �
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Chapter 3. Timing-Driven Rectangle Packing

But clearly, the inverse implication is not necessarily true. As already discussed in
Figures 3.1(a) and 3.1(b), Lemma 3.2 is only a necessary condition.

In the following, we want to translate distance requirements as considered in Proposi-
tion 3.3 to pure rectangles. Therefore we make the following definitions:

Definition 3.4. Consider a finite set of rectangles R. We define distance bounds as
an undirected graph G = (V,E,Ψ) on vertices V = R ·∪{�} with associated functions
b: E → R and oe : J2K→ R2 for e ∈ E. For brevity we also write Gb for such (G, b, o).

Distance bounds Gb are defined as general undirected graphs in the notation due to
Korte and Vygen (2018, Chapter 2.1): Ψ: E(G) → V(G)2 denotes the endpoints of the
edges. Since G is undirected, the ordering of Ψ(e) is insignificant for G but rather used to
distinguish different endpoints of e for o.

The b-function describes the distance bound length encoded by the edges E(G).
We use � as an artificial rectangle representing the chip area. For any edge e ∈ E(G) and
i ∈ J2K, oe(i) specifies the offset of the i’th endpoint of e w.r.t. Ψ (i.e. either a rectangle
v ∈ R or the artificial �).

Please note that Definition 3.4 requires no properties of G, b or o. We stress that G
may in particular contain loops, parallel edges as well as negative cycles with respect to b.
This is why we defined Gb in the rarely used notion of graphs. This generality is necessary
in order to encode arbitrary distance requirements as considered in Proposition 3.3.

A distance bound itself might seem like an odd concept. But before we can demonstrate
its intention and relation to Proposition 3.3, we need to extend the notion of slack to
distance bounds:

Definition 3.5. Consider a finite set of rectangles R with distance bounds Gb and
arbitrary placement l : R → R2. We define the distance bound slack slack(l, Gb )
as

slack(l, Gb ) := min
{

b(e)−
∥∥l(e, 0)− l(e, 1)

∥∥
1 : e ∈ E(G)

}
where l(e, i) := l

(
Ψ(e)i

)
+oe(i) is a shorthand for the location of the i’th endpoint of e and

l(�) :=(0, 0) ∈ R2. A bound {v, w} = e ∈ E(G) is critical if e defines the slack of l, i.e.
slack(l, Gb ) = b(e)−

∥∥l(e, 0)− l(e, 1)
∥∥

1.

This definition of (distance bound) slack is very analogous to the definition of slack(l)
with respect to the underlying timing graph: If l meets all distance bounds, slack(l, Gb ) ≥
0 defines the maximum threshold by which b could be tightened uniformly while preserving∥∥l(ve)− l(we)∥∥1 ≤ b(e) for all {v, w} = e ∈ E(G). If this is not the case, − slack(l, Gb ) > 0
defines the minimum relaxation necessary for b s.t. that this inequality holds for l.

Clearly the definition of slack does not depend on the ordering of endpoints for e ∈ E(G)
w.r.t. Ψ. To emphasize this we usually write

∥∥l(e)∥∥1 for
∥∥l(e, 0)− l(e, 1)

∥∥
1.

Up to this point distance bounds have not been related to timing in Macro Place-
ment. A priori it is not clear how to infer geometric distance bounds based on Propo-
sition 3.3. This is due to the fact that both rat- and at-values of macro pins depend on
the placement of successors and predecessors in the timing graph and thus are not known
in advance. Without reliable timing assertions, it is not apparent how to infer distance
bounds.

In the following, we want to use practical properties of macros to overcome this
problem: Macros mostly define start- and endpoints in the timing graph (cf. Section 2.2.2,
page 8 ff.). There are cases of macros requiring signal propagation through them in a
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3.1. Distance-Bound Model

single clock cycle, but these cases are extremely rare. We will later revisit handling such
special macros. For the reference, we state this assumption explicitly:

Assumption 3.6. We assume all pins of macros are start- or endpoints in the timing
graph.

Assumption 3.6 equivalently assumes fixed at- or rat-values for all macro pins. Note
that both thereby are in particular independent from the placement.

Based on Assumption 3.6 we can consider timing in Macro Placement using the
following distance bounds for a superset of the macros:

Definition 3.7. Consider an instance I of Macro Placement. Let S ⊆ P denote
timing startpoints (i.e. pins with fixed at); analogously define T ⊆ P as the timing
endpoints (i.e. with fixed rat). Let R be the rectangles for all shapes of cells γ(S ∪ T )∩C.
We thereby define the cannonical distance bounds Gb for I on V(G) :=R ·∪{�} as
E(G) :=

{
(s, t) : s ∈ S, t ∈ T }, Ψ

(
(s, t)

)
:=
(
γ(s), γ(t)

)
,

b
(
(s, t)

)
:= rat(t)− at(s)− cd(s, t)

α

and oe(i) to be the offset of ei on γ(ei) = Ψ(e)i for e ∈ E(G).

Consider a macro m ∈ M with any pin, i.e. γ−1(m) 6= ∅. By Assumption 3.6 on the
set of macros M , we have m ∈ γ(S ∪ T ). Consequently the canonical distance bounds Gb
of Definition 3.7 contains a rectangle rm ∈ V(Gb ) for each such macro m. Moreover edges
δGb (rm) represent distance requirements for all timing startpoints that m can be reached
from and endpoints reachable from m.

The series of previous definitions is motivated by the following correspondence of the
distance bound slack:

Proposition 3.8. Consider an instance of Macro Placement with corresponding
canonical distance bounds Gb . For every placement l of the netlist α slack(l, Gb ) ≥
slack(l).

Proof. If E(Gb ) = ∅ there is nothing to show.
Otherwise by Definition 3.7 of canonical bounds Gb , we have l(p) = l(e, i) for any

p ∈ S ·∪T , i ∈ J2K and e ∈ E(G) with ei = p. Consider any placement l with arbitrary
critical bound e = (s, t) ∈ E(G). Since s ∈ S and t ∈ T , we can apply Proposition 3.3 in
order to conclude

slack(l, Gb ) = b(e)−
∥∥l(e, 0)− l(e, 1)

∥∥
1

= rat(t)− at(s)− cd(s, t)
α

−
∥∥l(t)− l(s)∥∥1

Prop.
3.3≥ slack(l)

α
. �

Please note that Proposition 3.8 holds not only, but also in particular for feasible place-
ments. Moreover it is applicable to any placement obtained from a rectangle placement
extended arbitrarily to non-macro cells. Further note that this proposition is independent
from Assumption 3.6. In case this assumption is not met, slack(l, Gb ) only implies a
weaker upper bound for slack(l).

We already emphasized that Definition 3.4 imposes no requirements on b. In partic-
ular b may be negative and not necessarily allows slack( · , Gb ) ≥ 0. In fact it is very
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Chapter 3. Timing-Driven Rectangle Packing

common that distance bounds in practice are even negative. This stems from the fact
that some timing assertions are overly ambitious and hence lead to those bounds. We
defer normalization of those bounds to Section 3.3.

Already at this point we notice that the contribution of loops e ∈ E(G) to slack(l, Gb )
doesn’t depend on l. Such edges merely impose a priori upper bounds on the best possible
slack w.r.t. Gb .

Lemma 3.9. Consider an instance of Rectangle Packing with distance bounds Gb .
Let L ⊆ E(G) be the set of loops

L :=
{
e ∈ E(G) : Ψ(e) = (v, v) for some v ∈ V(G)

}
,

G′ :=
(
V(G),E(G) \ L) and xL := mine∈L

{
b(e)− ‖oe(0)− oe(1)‖1

}
. Here slack(l, Gb ) =

min
{
xL, slack(l, G′b )

}
for any placement l.

Proof. By definition of slack(l, Gb )

slack(l, Gb ) = min


min

{
b(e)−

∥∥l(e, 0)− l(e, 1)
∥∥

1 : e ∈ L
}
,

min
{
b(e)−

∥∥l(e, 0)− l(e, 1)
∥∥

1 : e ∈ E(G)
}


= min
{
xL, slack(l, G′b )

}
. �

By Lemma 3.9 it is no loss of generality to consider only distance bounds Gbwithout
loops from now on. Disregarding loops is helpful in order to simplify notation:

Firstly we commonly identify an edge e ∈ E(G) with the set {v, w} where Ψ(e) =
(v, w). But inevitably the {v, w} shorthand is ambiguous for parallel edges. We will make
sure that the concrete edge e with e = {v, w} is always apparent from the context. This
is why we drop Ψ entirely from here on.

Secondly since each {v, w} = e ∈ E(G) connects distinct vertices now, we will
commonly denote those by ve and we respectively. Formally this defines a shorthand
for a tuple (e, i) where e ∈ E(G), i ∈ J2K. We extend o-functions to this notation, i.e.
define o(ve) := oe(v). Consequently we can also define l(ve) := l(v) + o(ve) for a placement
l. We summarize the previously introduced notation with the following central problem:

Timing-Driven Rectangle Packing Problem
Instance: An instance I = (R,ϕ, ψ,A) of the Rectangle Packing Problem (cf.

page 13) together with distance bounds Gb without loops.
Task: Find a solution l of I with maximum bound slack slack(l, Gb ) or decide that

no feasible solution exists at all.

Instances of the Timing-Driven Rectangle Packing Problem with simple pack-
ing constraints will be discussed later on. In order to refer to those concisely, we make the
following definition:

Definition 3.10. Let I = (R,ϕ, ψ,A,Gb ) be an instance of the Timing-Driven Rect-
angle Packing Problem. I is said to be an elementary instance if I has no feasible
area constraints and no disjointness constraints, i.e. ϕ :≡∅.
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3.2 Computing Distance-Bounds
Definition 3.1 of cd(s, t) contains a choice between Equations (3.1) and (3.2) as under-
lying inequality. We start this section by justifying the deliberate choice for the weaker
Equation (3.2): Unless P = NP, the stronger version can not be computed in polynomial
time.

In order to elaborate this, we consider the following problem:

Normed Shortest Path Problem
Instance: d ∈ N, a norm ‖·‖ : Rd → R, a directed graph G with weights w : E(G) → Rd

and two distinct nodes s, t ∈ V(G).
Task: Find an s-t-path P with minimum

∥∥w(P )
∥∥ :=‖∑e∈E(P )w(e)‖ or decide that

there is no s-t-path at all.

Theorem 3.11. The Normed Shortest Path Problem is NP-hard even if G is acyclic
and d = 1.

Proof. Transformation from Partition, which is well known to be NP-complete (Karp
1972):

Consider an instance of Partition, i.e. numbers n, c0, . . . , cn−1 ∈ N. We define a graph
G :=(V,E) with V :={v0, . . . , vn } and E :=

{
ei, fi : i ∈ JnK

}
where fi := ei :=(vi, vi+1). Let

w : E(G) → R be defined as w(ei) := +ci and w(fi) :=−ci. We further select s := v0,
t := vn. The graph G is visualized in Figure 3.2.

v0 v1 v2 . . . vn

+c0 +c1 +c2 +cn−1

−c0 −c1 −c2 −cn−1

Figure 3.2: Constructed graph G for reducing Partition to Normed Shortest
Path.

By construction of G, any s-t-path contains for each i either ei or fi. As ‖·‖ is a norm,
‖x‖ = 0 if and only if x = 0. Thus G contains an s-t-path P with

∥∥w(P )
∥∥ = 0 if and only

if ∑i:ei∈E(P ) ci = ∑
i:fi∈E(P ) ci, i.e. {ci : ei ∈ E(P )} is a feasible partition. �

For general dimensions d the Normed Shortest Path Problem is even strongly
NP-hard:

Theorem 3.12. The Normed Shortest Path Problem is strongly NP-hard even if
G is acyclic and ‖·‖ ≡ ‖·‖∞.

Proof. Transformation from p-Partition, which is strongly NP-hard due to Garey and
Johnson (1975, 1978):

Consider an instance of p-Partition consisting of p, n, c0, . . . , cn−1 ∈ N. Define
C :=∑i∈ JnK ci. Then p-Partition is the problem to decide whether g : JnK → JpK with∑
j∈g−1(k) cj = C/p for all k ∈ JpK exists.
We consider a graph G :=(V,E) similar to the one constructed in the proof of The-

orem 3.11: V :={v0, . . . , vn } and E :={eki : k ∈ JpK, i ∈ JnK} where eki :=(vi, vi+1). We
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Chapter 3. Timing-Driven Rectangle Packing

further define d := p, s := v0, t := vn and weights w : E → Rp as w(eki ) :=χkci where χk is
the characteristic unit vector in dimension k.

By construction any s-t-path P in G uses exactly one edge of {eki : k ∈ JpK} for each
i ∈ JnK, thus

∥∥w(P )
∥∥
∞ ≥ C/p in general as

∥∥w(P )
∥∥

1 = c.
We claim that there is an s-t-path P in G with

∥∥w(P )
∥∥
∞ = C/p if and only if the

p-Partition instance is a yes-instance: Given a certificate g as above for the instance
of p-Partition, the path P with E(P ) :={eg(i)

i : 0 ≤ i < n} satisfies
∥∥w(P )

∥∥
∞ = C/p.

If on the other hand any s-t-path P in G satisfies
∥∥w(P )

∥∥
∞ = C/p, the partition g

defined as g(i) := k where eki ∈ E(P ) certifies the original instance of p-Partition as
yes-instance. �

We have seen that the Normed Shortest Path Problem in general is strongly
NP-hard and remains NP-hard for d = 1. This is important, as it implies the following
corollary:

Corollary 3.13. The following problem is NP-hard: Given an instance of Macro
Placement with two pins s and t, compute

max


∑

e∈Ec(P )
dc(e)− α

∥∥∥∥∥∥∥
∑

e∈Ec(P )
δe

∥∥∥∥∥∥∥
1

: P is an s-t-path in the timing graph


where δe ∈ R2 is the offset of the pins of a circuit internal edge e.

Proof. Implied by Theorem 3.11 as this problem contains the Normed Shortest Path
Problem for acyclic G and d = 1 in the special case of dc ≡ 0. �

Due to Corollary 3.13 it is impossible to compute a variant of cd(s, t) based on
Equation (3.1) in polynomial time, unless P = NP. This is why Definition 3.1 makes
use of the inferior Equation (3.2).

But this definition of cd(s, t) still requires to consider all s-t-paths. Although there
may be exponentially many such paths, we can compute cd(s, t) efficiently.

Lemma 3.14. Consider an instance of Macro Placement. We can compute cd(s, t)
for s ∈ S ⊆ V , t ∈ T ⊆ V in O(k(n+m)

)
time and O(kn) space where n and m refer to

the timing graph and k := min
{ |S|, |T |}.

Proof. We compute cd(s, v) for all s ∈ S and v ∈ V ; in particular for v ∈ T . For any
s ∈ S, v ∈ V we have the recursion formula

cd(s, v) = max
{

cd(s, u) + cd(u, v) : (u, v) ∈ δ−(v)
}
,

where −∞+x :=−∞ for x ∈ R. Please note that cd(u, v) is either 0 for wiring edges (u, v)
or otherwise the (constant) circuit-internal delay contribution dc(u, v) − α‖u, v‖1 from u
to v.

We thus can compute cd(s, vi) for each s ∈ S by the recursion formula using a
topological ordering {v0, . . . , vn−1 } = V of the nodes. This takes O(n+m) time and
O(n) space for each s ∈ S. Analogously we can work on the reversed timing graph in case
|T | < |S| which concludes the proof. �
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The complexity of Lemma 3.14 is reasonable in cases where we can reach most of the
timing graph from s ∈ S. This is not the case in practice however. There we are confronted
with timing graphs where we can only reach very small fractions of the nodes from a fixed
s ∈ S. Consequently accounting for O(n) space and O(n+m) time for such a node s is a
huge overhead.

But we can improve Lemma 3.14 for those kinds of instances.

Proposition 3.15. Consider an instance of Macro Placement. We can compute
cd(s, t) for s ∈ S ⊆ V and t ∈ T ⊆ V in O(∑s∈S ns +ms) time and O(max{ns : s ∈ S })
space where we define ns :=|{v ∈ V : v reachable from s}| as well as ms :=|{(v, w) ∈ E :
v reachable from s}| for s ∈ S.

Proof. We proceed for each s ∈ S individually: We compute the subgraph Hs ⊆ G
reachable from s in O(ns +ms) time. In the same running time, we can compute cd(s, t)
for all t ∈ T by Lemma 3.14 applied to Hs. This implies the stated complexities for both
running time and space. �

The running time of Proposition 3.15 is clearly superior to the one of Lemma 3.14
since ns+ms ≤ n+m. For instances in practice this difference can be drastic. In addition
the space complexity is output sensitive.

Please note we analogously can propagate cd( · , t) backwards in topological order of the
timing graph. This yields a similar result to Proposition 3.15 with analogous definitions
of nt,mt ∈ N for t ∈ T .

3.3 Basic Properties
Up to now we have defined the Timing-Driven Rectangle Packing Problem and
recognized its practical relevance. In the following we want to gain a deeper understanding
of this problem. We start with an obvious negative observation:

Theorem 3.16. The Timing-Driven Rectangle Packing Problem is strongly NP-
hard.

Proof. It contains the Rectangle Packing Problem as the special case where there
are no bounds at all. This problem in turn contains p-Partition, which is known to be
strongly NP-hard due to Garey and Johnson (1975). �

Although the Timing-Driven Rectangle Packing Problem is computationally
difficult in general, it has interesting properties:

Lemma 3.17. Consider an instance (R,Gb ) of Timing-Driven Rectangle Packing
and δ ∈ R. There is a solution for (R,Gb ) with slack r ∈ R if and only if there is a
solution for (R,Gb +δ) with slack r + δ.

Proof. For any placement l we observe for each {v, w} = e ∈ E(G) individually

b(e)−
∥∥l(we)− l(ve)∥∥1 =

[
(b +δ)−

∥∥l(we)− l(ve)∥∥1

]
− δ.

Consequently slack(l, Gb ) + δ = slack(l, Gb +δ). �
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Chapter 3. Timing-Driven Rectangle Packing

Lemma 3.17 highlights a special aspect of the Timing-Driven Rectangle Packing
Problem: The problem is invariant under changing b by constants. Though this problem
was originally motivated as bounding lengths of paths, this property doesn’t apply to path
distances themselves. This is no contradiction but rather due to the fact that the type of
relaxation used in Lemma 3.17 represents a uniform increase of rats.

Lemma 3.17 allows us to henceforth assume the following non-negative normalization
of distance bounds:

Corollary 3.18. Let (R,Gb ) be an instance of Timing-Driven Rectangle Packing.
There is an equivalent instance (R,Gb′) for which min b′ = 0.

Proof. Apply Lemma 3.17 with δ :=−min
{

b(e) : e ∈ E(G)
}
. �

Since the distance bound slack(l, Gb ) is defined on individual edges, it is monotonic
w.r.t. subgraphs:

Lemma 3.19. Consider an instance of Rectangle Packing with different distance
bounds (G, b, o) and

(
G′, b, o

)
where G′ ⊆ G is a subgraph. For any placement l,

slack(l, Gb ) ≤ slack(l, G′b ).

Proof. Let He :=
(
(V(G), {e}), b, o) denote the restriction of Gb to a single edge e ∈ E(G).

As E
(
G′
) ⊆ E(G)

slack(l, Gb ) = min
{

slack(l,He) : e ∈ E(G)
}

≤ min
{

slack(l,He) : e ∈ E
(
G′
)}

= slack(l, G′b ). �

This implies the following corollary on the respective optimum solutions:

Corollary 3.20. Consider an instance of Rectangle Packing with distance bounds
(G, b, o) and

(
G′, b, o

)
where G′ ⊆ G is a subgraph. For optimum solutions l for Gb and l′

for G′b , slack(l, Gb ) ≤ slack(l′, G′b ).

Proof. By Lemma 3.19 and optimality of l′, slack(l, Gb ) ≤ slack(l, G′b ) ≤ slack(l′, G′b ). �

We now want to analyze the structure of optimum solutions of elementary instances
of Timing-Driven Rectangle Packing. Therefore we use the following geometric
definitions:

Definition 3.21. Consider an instance of Timing-Driven Rectangle Packing with
placement l. We define the angle ]l(re) of e =

{
r, r′

} ∈ E(G) w.r.t. l for 0 6=
(x, y) := l(r′e)− l(re) as

]l(re) :=


1
2π − arctan

(
xy−1

)
for y > 0

3
2π − arctan

(
xy−1

)
for y < 0

1
2π − 1

2π sgn(x) for y = 0.

Informally the angle ]l(re) is the angle of a horizontal line through l(re) and the line
segment connecting endpoints of e placed according to l (cf. Figure 3.3). We can easily
verify ]l(re)−]l(r′e) = π mod 2π by a case distinction whether y as in Definition 3.21 is
non-zero.
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e = {v, w}

]l (ve)

]l (we)

Figure 3.3: Edge e = {v, w} ∈ E(G) drawn in purple according to placement
l. The corresponding angles at ve and we are shown in orange, while respective
directions are specified in gray.

Definition 3.22. Consider an instance of Timing-Driven Rectangle Packing with
placement l. For e =

{
r, r′

} ∈ E(G) with l(e) > 0, we call a k ∈ J4K for which
](re) ∈ [k π2 , (k + 1)π2 ] mod 2π a direction of re. In case l(e) = 0, re is considered
to have all four directions.

In analogy to the compass directions we will identify k = 0 withNE, 1 andNW, 2 and
SW as well as 3 with SE (cf. Figure 3.3). Since Definition 3.22 considers closed intervals
of angles, re can have up to two directions if ‖l(e)‖1 > 0. Edges e with ‖l(e)‖1 = 0 even
have all four directions. We use the notion of directions in order to characterize certain
paths:

Definition 3.23. Consider an instance of Timing-Driven Rectangle Packing with
placement l. A path (v0, e0, . . . , ek−1, vk) in Gb is called l-monotone if all eivi have a
common direction k ∈ J4K w.r.t. l.

Monotone paths of critical edges will become crucial for finding optimum solutions.
We start by characterizing whether such paths exist:

Lemma 3.24. Consider an elementary instance (R,Gb ) of Timing-Driven Rectangle
Packing. Any optimum solution l for which the number of l-critical e ∈ E(G) is minimum,
has the following property: For each l-critical e ∈ E(G) with � ∈ e,

∥∥l(e)∥∥1 > 0 and
direction d ∈ J4K there is a monotone cycle with direction d of critical edges w.r.t. l
containing e.

Proof. Since G contains no loops, let {u,�} = e ∈ E(G) be critical with u ∈ R and∥∥l(e)∥∥1 > 0. Due to symmetry we may assume e has direction NE, possibly after mirroring
the instance. Denote by U ⊆ V(G) the nodes of G that can be reached from u by a NE-
monotone path of critical edges w.r.t. l. We will prove a contradiction if e can not be
extended to the desired cycle i.e. if � 6∈ U :

29



Chapter 3. Timing-Driven Rectangle Packing
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Figure 3.4: Construction for proving Lemma 3.24: Three green rectangles in U ,
two blue ones in R \ U . All six edges in purple are critical. The definitions of εS
and εW based on F are highlighted in orange and red.

Let εl := min
{

slack(l, f)− slack(l, Gb ) : f ∈ E(G) l-uncritical
}
. Denote by F all l-

critical edges f ∈ δ(U) and further

εW := min


∣∣∣∣∣x
(
l
(
vf
)
− l
(
wf
))∣∣∣∣∣ : f={v, w} ∈ F, v ∈ U, ]l

(
vf
)
∈
(
π

2 ,
3π
2

).
In other words, εW denotes the margin w.r.t. x-coordinates of edges leaving U to W
but not straight S or N. Analogously define εS w.r.t. y- instead of x-coordinates and
]l
(
uf
)
∈ (π, 2π), i.e. considering edges leaving U to S but not straight W or E. By choice

εl, εW, εS > 0 and consequently εU := min{εS, εW } > 0. The constellation is depicted in
Figure 3.4.

Consider another solution l′ obtained from l by translating U ⊆ R by −(ε, ε) ∈ R2 for
0 < ε := 1

2 min{εl, εU }. Since l was optimum, slack(l, Gb ) ≥ slack(l′, Gb ). By construction
slack(l, f) = slack(l′, f) for f ∈ E(G) \ δ(U). Moreover slack(l′, f) > slack(l, Gb ) for l-
uncritical edges f ∈ δ(U) due to ε < εl and thus f also l′-uncritical.

By choice of U no f ∈ F leaves U to NE w.r.t. l. Due to ε < εU no f ∈ F can leave
U to NE w.r.t. l′ as well, particularly not straight to N or E. For that reason and since
ε < εU , f ∈ F leaves U to NW or SE w.r.t. l if and only if this is the case w.r.t. l′. Thus by
construction of l′,

∥∥l(f)
∥∥

1 =
∥∥l′(f)

∥∥
1 for f ∈ F leaving U to NW or SE. Consequently we

obtain slack(l, f) = slack(l′, f). Finally all f ∈ F leaving U to SW excluding E and N are
not l′-critical since

∥∥l(f)
∥∥

1 >
∥∥l′(f)

∥∥
1 by choice of εU . This contradicts the assumptions

on l since this particularly applies to e. �

Lemma 3.24 can be used for proving a central proposition of this thesis. This ob-
servation for cycles through � can be used in order to characterize monotone cycles in
general:
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Proposition 3.25. Consider an elementary instance (R,Gb ) of Timing-Driven Rect-
angle Packing. Any optimum solution l for which the number of l-critical e ∈ E(G) is
minimum, has the following property: For each l-critical e ∈ E(G) and

∥∥l(e)∥∥1 > 0, there
is a monotone cycle C of critical edges w.r.t. l in G containing e.

Proof. Let e ∈ E(G) be l-critical with
∥∥l(e)∥∥1 > 0. If � ∈ e, the stated property is implied

by Lemma 3.24. Thus we assume � 6∈ e = {v, w}.
Let G′b be the instance where v is considered to be artificially fixed at l(v). In this

instance v corresponds to � and e to e′ :={�, w}. Due to e′ ∈ E
(
G′
)
, slack(l, Gb ) =

slack(l, G′b ). If l was suboptimal w.r.t. G′b , we could extend l(v) to an optimum solution
of Gb with no further critical edges. But this contradicts the assumption on l since such
an extension would avoid the l-critical edge e in particular. Thus l is an optimum solution
of G′b .

Moreover, since l has minimum number of critical edges for Gb , the same must hold
for G′b . Thus we can apply Lemma 3.24 for e′ which is why there is a monotone cycle C ′
of critical edges w.r.t. l in G′b starting with e′. Note that since v is fixed in G′b , C ′ does
not necessarily correspond to a cycle in Gb .

v

w

E

N

W

S

E

N

W

S

e′′ := {�, v }

e′ := {�, w}

Figure 3.5: Construction of cycle C in the proof of Proposition 3.25. Two l-
monotone cycles C ′ and C ′′ presented in orange and red both containing � with
opposite directions.

If the unique edge in δC′(�)\{e′} represents an edge in δG(v), C ′ is also a cycle in Gb .
Otherwise, we similarly consider the instance G′′b where w (e = {v, w}) is fixed at l(w).
By the same arguments, there is another l-monotone cycle of l-critical edges C ′′ ⊆ G′′

containing e′′ :={�, v} with direction opposite of C ′. If C ′′ corresponds to a cycle in G,
we are done. Otherwise C ′/C ′′ represents a v/w-�-path in G with opposite directions.
This situation is visualized in Figure 3.5. Thus C :=C ′ ∪ C ′′ ∪ {e} \ {e′, e′′} is a cycle
with the desired properties. �

3.4 Strongly Polynomial Algorithm
Now we develop an algorithm for finding the optimum slack s∗ for elementary instances
of Timing-Driven Rectangle Packing. Due to Proposition 3.25, there are optimum
solutions with critical edge of length 0 or monotone cycle of critical edges. The former
case, s∗ is easily identified.

In order to handle the latter case, we will compute s∗ as minimum with the following
guarantee: All monotone cycles have non-negative slack w.r.t. bounds relaxed by s∗. This
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is equivalent by Lemma 3.17. We will explicitly exploit Proposition 3.25 by considering
only monotone cycles when computing s∗ with this approach.

Therefore we need to consider the following classical optimization problem:

Minimum Ratio Cycle Problem
Instance: A directed graph G with wi : E(G) → R for i ∈ J2K where w1 ≥ 0 and w0 is

conservative on
(
V(G), {e ∈ E(G) : w1(e) = 0}).

Task: Find maximum λ ∈ R ·∪{∞} s.t. fλ :=w0 − λw1 is conservative.

The problem is well-defined, i.e. λ ∈ R exists s.t. fλ is conservative e.g.

λ < −
∑
e∈E(G)

∣∣w0(e)
∣∣

min
{
w1(e) : e ∈ E(G), w1(e) > 0

}
(for ·∞ := 0): For any cycle C ⊆ G, either fλ(C) ≥ 0 by choice of λ if there is an e ∈ E(C)
with w1(e) > 0, or by assumption on w0 otherwise.

The name of this problem stems from the fact that for instances with optimum λ∗ <∞
we have λ∗ = min

{
w0(E(C))/w1(E(C)) : C ⊆ G cycle

}
(when abbreviating ·0 :=∞). The

Minimum Ratio Cycle Problem generalizes the Minimum Mean Cycle Problem
for the special case of w1 ≡ 1.

For an instance (G, fλ) of Minimum Ratio Cycle we denote by mr (G, fλ) the
optimum solution λ of this instance.

Before we mention previously known positive results on the Minimum Ratio Cycle
Problem, we will first deal with negative results. The following variants are NP-hard:

Lemma 3.26. Consider the variation of Minimum Ratio Cycle where w0 is arbitrary
with the following task: determine the maximum λ s.t. fλ

(
E(C)

) ≥ 0 for all cycles C ⊆ G
with w1

(
E(C)

) 6= 0. This problem is NP-hard.

Proof. We reduce from Hamiltonian Path: Given a graph G with distinct s, t ∈ V(G),
decide whether a Hamiltonian s-t-path exists in G.

For a given instance, we consider the graph H :=
(
V(G),E(G) ·∪{e∗ }) with e∗ :=(t, s).

Furthermore we define w0 :≡−1 and w1 :=χ{e∗ }. Let λ∗ be the optimum λ on this instance
of the Minimum Ratio Cycle Problem variant. G has a Hamiltonian s-t-path if and
only if λ∗ = −(n− 1). �

Although the λ computed in the variant of Lemma 3.26 seems to disregard cycles
C ⊂ G with w0

(
E(C)

)
< 0 and w1

(
E(C)

)
= 0 completely, the sole presence of such cycles

makes the problem difficult. The same arguments imply another negative result:

Lemma 3.27. Consider the variation of Minimum Ratio Cycle where w0 is arbitrary
with the following task: determine for a fixed e ∈ E(G) with w1(e) 6= 0 the maximum λ
s.t. fλ

(
E(C)

) ≥ 0 for all cycles C ⊆ G with e ∈ E(C). This problem is NP-hard.

Proof. Implied by the same reduction as used for the proof of Lemma 3.26. �

Now we can turn our attention to the positive results: The Minimum Mean Cycle
Problem can be solved in O(nm) by a dynamic programming algorithm due to Karp
(1978).
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The general Minimum Ratio Cycle Problem has been considered by Megiddo
(1983) who provides two different algorithms with running time O(n3 log2 n) and
O(n3 logn+mn log2 n log logn) respectively.

For the special case where w1(e) ∈ {0, 1} for all e ∈ E(G) faster algorithms are known:
Karp and Orlin (1981) generalized the dynamic programming approach for Minimum
Mean Cycle to an O

(
n3
)

algorithm for Minimum Ratio Cycle and proposed a
parametric shortest path algorithm with running time O(nm logn). The running time
of the latter approach was subsequently improved by Young, Tarjan and Orlin (1991) to
O
(
mn+ n2 logn

)
using Fibonacci-Heaps (Fredman and Tarjan 1987).

Now we work towards the announced algorithm for finding the optimum slack. This
will be done by computing minimum ratio cycles in the following auxiliary graph:

Definition 3.28. Let (R,Gb ) be an instance of Timing-Driven Rectangle Packing.
The distance graph D(G) is the bidirectionally oriented version of G, i.e. the directed
graph

D(G) :=
(
V(G),

{
(v, w) : {v, w} ∈ E(G)

})
.

For given direction d we further define fdλ :=wd0 − λ : E
(
D(G)

)→ R as

wd0
(
(v, w)

)
:= b(e) +

∑
z∈{x,y}

σdz · z
(
oe(v)− oe(w)

)
e = {v, w} ∈ E(G),

where σdz ∈ {−1, 1} is the signum of z-coordinates in direction d for z ∈ {x, y} i.e.

σdz :=

+1 if (z, d) ∈ {(x,NE), (x, SE), (y,NE), (y,NW)
}
,

−1 else.

Note that we usually omit the extra braces and just write fdλ(v, w) for fdλ
(
(v, w)

)
. The

distance graph is defined for general instances of Timing-Driven Rectangle Packing,
but will only be used for elementary ones.

By Definition 3.28, fdλ depends on λ for every e ∈ E
(
D(G)

)
. Thus (D(G), fdλ) is an

instance of the Minimum Mean Cycle Problem.
Before we can investigate the relation of the distance graph D(G) to Timing-Driven

Rectangle Packing, we analyze some basic properties: By definition of Timing-
Driven Rectangle Packing, G contains no loops. This is why the same holds for
the distance graph D(G).

Next we notice that despite D(G) being a directed graph, the certificates for edges in
this graph are unordered e ∈ E(G). Hence the distance graph D(G) contains so called
reverse edges, i.e. for e = (v, w) ∈ E

(
D(G)

)
the reverse edge e :=(w, v) ∈ E(D(G)).

Consequently every s-t-path P ⊆ D(G) corresponds to a t-s-path P in D(G) consisting of
reverse edges of P .

Lemma 3.29. Let (R,Gb ) be an instance of Timing-Driven Rectangle Packing
and c, d two opposite directions. The weighted graphs (D(G), f cλ) and (D(G), fdλ) are
isomorphic, i.e. ∃ϕ : E

(
D(G)

) → E
(
D(G)

)
bijective s.t. for each v ∈ V

(
D(G)

)
there is

v′ ∈ V
(
D(G)

)
with ϕ(δp(v)) = δq(v′) for {p, q} = {+,−} and for any e ∈ E

(
D(G)

)
we

have f cλ(e) = fdλ
(
ϕ(e)

)
.
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Proof. Mapping e w.r.t. f cλ to e according to fdλ defines such an isomorphism where we
choose v′ := v. �

Due to Lemma 3.29, we will only need to consider two of the four versions of the
distance graph D(G).

Next we explore the correspondence of cycles in D(G) and Gb . In order to analyze
cycles C ⊆ G and their corresponding counterparts in D(G), we introduce the following
notation:
Definition 3.30. Let C =

(
e0, . . . , ek−1

)
be a cycle in G with ei :={vi, vi+1 } ∈ E(G)

for i ∈ JkK (where indices k and 0 are identified). We define the corresponding distance
graph cycle dgc(C) as dgc(C) :=

(
(vi, vi+1) : i ∈ JkK

)
in D(G).

We further define the cycle dgc(e) :=
(
(ve, we), (we, ve)

)
in D(G) for a single edge

e = {v, w} ∈ E(G).
Please note that Definition 3.30 of dgc

(
e0, . . . , ek−1

)
for a cycle C = (e0, . . . , ek−1) is

independent from the starting edge e0 chosen, but rather assumes a fixed order of traversal
for C. If this order is inverted,

dgc
(
ek−1, . . . , e0

)
= dgc

(
e0, . . . , ek−1

)
consists of the reverse edges. In that sense, the definition of dgc depends on the chosen
order of C. For a general cycle in Gb , we will either explicitly mention the order or write
dgc(C) to emphasize the independence of any chosen order.

By construction of D(G) in Definition 3.28, any cycle in D(G) is the distance graph
cycle dgc(C) where C ⊆ G either is a single edge or a cycle. This applies to any minimum
ratio cycle C ′ of (D(G), fdλ) in particular.

In the following we investigate how the optimum slack for Gb relates to the minimum
ratio for any instance (D(G), fdλ) of the Minimum Ratio Cycle Problem.
Proposition 3.31. For an elementary instance (R,Gb ) of Timing-Driven Rectangle
Packing, we have s∗ ≥ mind{mr (D(G), fdλ)} where s∗ is the optimum slack achievable
in (R,Gb ).
Proof. If E(G) = ∅, there is nothing to show since s∗ =∞ by Definition 3.5. Otherwise,
we consider an optimum solution l∗ for Gb with minimum number of critical edges. By
Proposition 3.25 there either is an l∗-critical e ∈ E(G) with ‖l∗(e)‖1 = 0 or a monotone
cycle of critical edges w.r.t. l∗. We note ‖l∗(e)‖1 = b(e) − s∗ for any critical edge e by
Definition 3.5.

In the former case if e = {v, w} ∈ E(G) critical with ‖l∗(e)‖1 = 0 exists, the cycle
C := dgc(e) ⊆ D(G) satisfies for any direction d

fds∗(C) =
∑

(a,b)∈{(v,w),(w,v)}

b(e)− s∗ +
∑

z∈{x,y}
σdz · z

(
oe(a)− oe(b)

)
= 2

(
b(e)− s∗) = 2

∥∥l∗(e)∥∥1 = 0.

For the other case let D be an l∗-monotone and l∗-critical cycle in G and denote its
direction by d. We choose the order D :=

(
e0, . . . ek−1

)
with ei :={vi, vi+1 } s.t. ei has

direction d at vi. Consequently∑
z∈{x,y}

σdz · z
(
l∗
(
vi+1
ei

)
− l∗

(
viei

))
=
∥∥l∗(ei)∥∥1
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for all i ∈ JkK. As all ei are also critical, ‖l∗(ei)‖1 = b(ei) − s∗. For the cycle
C := dgc

(
e0, . . . , ek−1

) ⊆ D(G) we thus compute the telescoping sum

0 =
∑
i∈JkK

∑
z∈{x,y}

σdz · z
(
l∗
(
vi+1

)
− l∗

(
vi
))

=
∑
i∈JkK

∑
z∈{x,y}

σdz · z
([

l∗
(
vi+1
ei

)
− l∗

(
viei

)]
+
[

oei

(
vi
)
− oei

(
vi+1

)])

=
∑
i∈JkK

b(ei)− s∗ +
∑

z∈{x,y}
σdz · z

(
oei

(
vi
)
− oei

(
vi+1

))
=
∑
i∈JkK

fds∗
(
vi, vi+1

)
= fds∗(C).

In either case we constructed a corresponding cycle C ⊆ D(G) and direction d with
fds∗(C) = 0. Since E(C) 6= ∅, s∗ ≥ mind{mr (D(G), fdλ)}. �

In the following we work on the reverse direction i.e. upper bounds on the optimum
slack given by minimum ratio cycles in (D(G), fdλ). We start by showing equality for
certain subgraphs H ⊆ D(G) which will overall be sufficient to show the desired upper
bound.

Lemma 3.32. Let (R,Gb ) be an elementary instance of Timing-Driven Rectangle
Packing with e ∈ E(G). For the optimum slack s∗ of

(
V(G), {e})b we have s∗ =

mind{mr (dgc(e), fdλ)}.

Proof. Since G contains no loops, e has distinct endpoints. Thus there is a placement
l for R where e has l-length 0 i.e. ‖l(e)‖1 = 0 = b(e) − s∗. On the other hand,
fdλ
(
dgc(e)

)
= 2

(
b(e)− λ) for any direction d. Consequently s∗ = λ. �

The same holds for cycles but the proof requires more work.

Lemma 3.33. Let (R,Gb ) be an elementary instance of Timing-Driven Rectan-
gle Packing with cycle C ⊆ G. For the optimum slack s∗ of Cb we have s∗ =
mind{mr (dgc(C), fdλ)}.

Before we prove this lemma, note that Lemma 3.33 is independent of the direction of
C for dgc(C) since we consider all d and thus implicitly both choices for dgc(C).

Proof. We construct an optimum placement with the stated slack for V(C).
In order to do so, we normalize the instance Cb first. Let C = (e0, . . . , ek−1) for

ei = {vi, vi+1 } (vk = v0). We assume v0 = �. This is no loss of generality since in case
� 6∈ V(C), we have some degree of freedom and may fix the position of v0 arbitrarily in
advance.

We point out that the distance bound slack (Definition 3.5) of a single bound depends
on the placement only via the distance of its endpoints. This distance remains constant
when endpoints are translated equally. Thus for a single e = {v, w} ∈ E(G) and δ ∈ R2

arbitrary, o′e(x) := oe(x) + δ for x ∈ e defines an equivalent bound that in every solution
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has the same slack as e. We consider o′ obtained by translating offsets of all ei ∈ E(C)
with different δi ∈ R2, namely

δi :=
i−1∑
j=1

(
o
(
vj
ej−1

)
− o

(
vj
ej

))
− o(v0

e0)

where we abbreviate oe(v) by o(ve). For the resulting o′ we compute o′(v0
e0) = o(v0

e0)+δ0 =
o(v0

e0)− o(v0
e0) = 0 as well as for i > 0 and µi := o(viei−1)− o(viei)

o′
(
viei−1

)
= o

(
viei−1

)
+ δi−1 =

(
o
(
viei−1

)
− µi

)
+ (δi−1 + µi)

= o
(
viei

)
+ δi = o′

(
viei

)
.

Let µ := o′(vk
ek−1) = ∑

j∈JkK µj
By construction the instances Cb and (C, b , o′) are equivalent and thus it suffices to

prove the statement for the latter one. Since o′(viei−1) = o′(viei) and v0 = �, the instance
(C, b , o′) asks for a placement of the k−1 intermediate points between 0 ∈ R2 and µ. The
maximum slack achievable thereby is

s∗ = 1
k

−‖µ‖1 +
∑
i ∈ JkK

b
(
ei
).

and this can be realized by placing the points along any l1-shortest 0-µ-path in R2 every
(b(ei)− s∗) steps.

On the other hand, for any direction d

fdλ

(
dgc

(
e0, . . . , ek−1

))
=

∑
i ∈ JkK

[
b(ei)− λ

]
+
∑

z ∈ {x, y}
σdz · z

(
o′
(
viei

)
− o′

(
vi+1
ei

))
= −

∑
z ∈ {x, y}

σdz · z(µ) +
∑
i ∈ JkK

[
b(ei)− λ

]
.

Consequently fdλ(dgc(e0, . . . , ek−1)) ≥ 0 if and only if λ ≤ λd for

λd := 1
k

− ∑
z ∈ {x, y}

σdz · z(µ) +
∑
i ∈ JkK

b(ei)

.
We note that mind λd is attained for a direction d with ∑z∈{x,y} σ

d
zz(µ) = ‖µ‖1. Thus

λd = s∗ for this direction which concludes the proof. �

We have considered all building blocks to show the following main theorem:

Theorem 3.34. Let (R,Gb ) be an elementary instance of Timing-Driven Rectangle
Packing. For the optimum slack s∗ of (R,Gb ) we have

s∗ = min
d

{
mr
(
D(G), fdλ

)}
.
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Proof. Denote the righthand side of the equation by λ∗. Proposition 3.31 implies s∗ ≥ λ∗.
If E(G) = ∅, there is no cycle C ⊆ D(G) with E(C) 6= ∅. Consequently

mr (D(G), fdλ) =∞ for any direction d and s∗ =∞ = λ∗.
Otherwise λ∗ < ∞ since for any e ∈ E(G) there is the cycle dgc(e) ⊆ D(G) with

dgc(e) 6= ∅. Let d be a direction attaining λ∗ and C ⊆ D(G) a cycle with fdλ∗(C) = 0.
Denote by C ′ ⊆ G the subgraph with edges corresponding to E(C). Since C is a cycle, C ′
is either also a cycle or a single edge. Let s′ denote the optimum slack of the restricted
instance (R,C ′b) and λ′ := mind{mr (dgc(C ′b), fdλ)}.

As C ′b ⊆ Gb by Lemma 3.19 s∗ ≤ s′. If C ′ is a single edge s′ = λ′ by Lemma 3.32,
otherwise by Lemma 3.33. Since both dgc(C ′b) and D(G) contain the overall minimizer C,
we have λ∗ = λ′. Altogether s∗ ≤ λ∗. �

Consequently we can find the optimum slack for elementary instances of the Timing-
Driven Rectangle Packing Problem in strongly polynomial time:

Corollary 3.35. The optimum slack of an elementary instance (R,Gb ) of Timing-
Driven Rectangle Packing can be computed in O(nm) time where n :=|V(G)| and
m :=|E(G)| respectively.

Proof. By construction the distance graph D(G) has the same complexity as G both of
nodes and of edges. Using Theorem 3.34 we thus can compute the optimum slack in
O(nm) time using the Minimum Mean Cycle Algorithm of Karp (1978). �

For such elementary instances of Timing-Driven Rectangle Packing we not only
can determine the optimum slack. By a geometric argument we are also able to derive
solutions attaining a given slack:

Proposition 3.36. Let (R,Gb ) be an elementary instance of Timing-Driven Rectan-
gle Packing and s ∈ R. We can either find a placement l with slack(l, Gb ) = s or decide
that none exists at all in O(nm) time.

Proof. We assume G is connected as we otherwise use the algorithm below for individual
connected components, which results in the stated running time overall. Moreover we
assume � ∈ V(G) as we can otherwise fix an arbitrary r ∈ R at (0, 0) ∈ R2 and identify
it with � := r.

Let distd(v, w) denote the length of a shortest v-w-path in (D(G), fds ) for some direction
d. We run the algorithm of Bellman (1958), Ford (1956) and Moore (1959) on (D(G), fds )
for d ∈ {NE, SE} with source �. This takes O(nm) time. We thereby either find a
negative fds -cycle in D(G) or compute distSE(�, · ) as well as distNE(�, · ).

If D(G) contains a negative fds -cycle, there is no placement for Gb with slack s by
Theorem 3.34.

Otherwise distSE(�, r) and distNE(�, r) are finite since � ∈ V(G) and D(G) is strongly
connected as G is assumed to be connected. We consider the unique rightmost point
l(r) ∈ R2 with the given distances from � in SE and NE. The situation is visualized in
Figure 3.6. Thus we define for any r ∈ R ·∪{�}

l(r) :=
(

distNE(�, r) + distSE(�, r)
2 ,

distNE(�, r)− distSE(�, r)
2

)
∈ R2.

Automatically l(�) = 0 ∈ R2.
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x

y

l (�)

l (r)

x + y = distNE (�, r)

−x − y = distNE (�, r)

x − y = distSE (�, r)

y − x = distSE (�, r)

Figure 3.6: Visualization of the choice of l(r) for the proof of Proposition 3.36.

We claim l is the desired placement with slack s: Let e = {v, w} ∈ E(G) where we
select v s.t. e leaves v in direction d which is NE or SE, i.e. x

(
l(ve)

) ≤ x
(
l(we)

)
. Finally

∥∥l(ve)− l(we)∥∥1 =
∑

z∈{x,y}
σdz · z

([
l(w) + oe(w)

]− [ l(v) + oe(v)
])

= distd(�, w)− distd(�, v) +
∑

z∈{x,y}
σdz · z

(
oe(w)− oe(v)

)
=
(
distd(�, w)− distd(�, v)− fds (v, w)

)
+ b(e)− s

≤ b(e)− s,

since distd(�, w) ≤ distd(�, v) + fds (v, w) for (v, w) ∈ E(D(G)) by Bellman’s principle of
optimality and conservativity of fds . Consequently we conclude slack(l, Gb ) ≥ s. �

Before we discuss consequences of Proposition 3.36, we point out that the proposed
algorithm does not necessarily find a solution with minimum number of critical edges. An
example where this is not the case, even when applied with the optimum slack s∗ of the
instance, is shown in Figure 3.7.

In this example the number of critical bounds could be reduced. This can be achieved
by moving r1 to the left whereby the worst slack attained at r0 remains constant.

By Corollary 3.35 we can solve the Timing-Driven Rectangle Packing Problem
on elementary instances in strongly polynomial time:

Corollary 3.37. Let (R,Gb ) be an elementary instance of Timing-Driven Rectangle
Packing. We can compute an optimum solution in O(nm) time.
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r0 r1

Figure 3.7: Example instance with uniform bounds where the algorithm of Propo-
sition 3.36 does not find a solution with minimum number of critical edges.

Proof. By Corollary 3.35 we can find the optimum slack s∗ ∈ R in O(nm) time. If
s∗ = ∞, we have E(G) = ∅ and thus any placement is optimum. Otherwise we apply
Proposition 3.36 for s∗ in the same running time to obtain a solution l with slack(l, Gb ) =
s∗. �

3.5 Distance Bound Pruning
In this section we work on efficient representations of Timing-Driven Rectangle Pack-
ing instances. Crucially we are not only interested in preserving the worst slack value but
also any optimum solution. Therefore we mainly focus on pruning bounds that are in
some way induced by other bounds.

First we focus on parallel bounds. We will see that for any pair (r, r′) ∈ R× (R ·∪{�})
a constant number of edges connecting r and r′ are sufficient. The reason for this are
geometric arguments known due to Chao et al. (1992) and Li et al. (2010). In the following
we present a different, more thorough proof for a slightly stronger statement.

We start by formalizing the central geometric problem:

Definition 3.38. Let Q :=
{

(qi, si) : i ∈ JnK
}
for 0 < n ∈ N, points qi ∈ R2 and shifts

si ∈ R. The maximum shifted point distance msdQ is the function msdQ : R2 → R
defined as

msdQ(p) := max
{
s+ ‖p, q‖1 : (q, s) ∈ Q

}
.

By this definition msdQ can clearly be evaluated in O(n) time. But this naïve approach
can be improved: We develop a representation of msdQ in O(n) pre-processing time that
can be evaluated in O(1) time. In order to find such a representation we need the following
building block:

Definition 3.39. A Manhattan arc is a set of convex combinations

A =
{
λa0 + (1− λ)a1 : λ ∈ [0, 1]

} ⊆ R2

of ai ∈ R2 with |y(a0)− y(a1)| = |x(a0)− x(a1)|, i.e. A is a closed line segment with angle
1
4π or 3

4π and endpoints ai for i ∈ J2K.

As we will see, Manhattan arcs are important since any function msdQ can be ex-
pressed by the distance to such an arc (up to a constant). We further abbreviate
‖p,X‖1 := inf

{
‖p, x‖1 : x ∈ X

}
for any X ⊆ R2, in particular for Manhattan arcs.

We start by analyzing certain functions closely related to msdQ. One instance of such
a function is visualized in Figure 3.8. With this image in mind it is not surprising that
such functions can be expressed as distance to a Manhattan arc.
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Figure 3.8: Visualization of the distance to a Manhattan arc as seen from two
different angles.

Lemma 3.40. Consider gd : R2 → R defined as gd(p) := cd +∑z∈{x,y} σ
d
z · z(p) for cd ∈ R

and d ∈ J4K. Then there is Manhattan arc A and c ∈ R s.t. g(p) := max
{
gd(p) : d ∈ J4K

}
=

c+ ‖p,A‖1 for all p ∈ R.
Proof. We first consider hi : R2 → R defined as hi(p) := max

{
gi(p), gi+2(p)

}
for i ∈ J2K.

The function h0 (for NE and SW) attains its minimum m0 := 1
2(c0 + c2) along the straight

line L0 of points (x, y) with x+y = 1
2(c2 − c0). Moreover above (below) L0 the function h0

is defined by g0 (g2) and thus h0(p) = m0 + ‖p, L0‖1. By symmetry h1(p) = m1 + ‖p, L0‖1
where m1 := 1

2(c1 + c3) and L1 is the straight line of points (x, y) with x− y = 1
2(c1 − c3).

Possibly after rotating by 1
2π we may assume w.l.o.g. m1 ≤ m0. As g(p) =

max
{
hi(p) : i ∈ J2K

}
, g attains its minimum c :=m0 on A :=L0 ∩ Bδ(L1) ⊆ R2 for

δ :=m0 − m1. Since L0 and L1 are orthogonal, A is bounded. Moreover as A ⊆ L0,
A is a Manhattan arc. This construction is depicted in Figure 3.9.

Let Qi ⊆ R2 for i ∈ J4K denote the points where g is defined by gi. The geometry
of Qi can be observed in Figure 3.9. For p ∈ Qi we thus have g(p) = gi(p) = hj(p) =
mj +

∥∥∥p, Lj∥∥∥1
for j ∈ J2K with i ≡ j (mod 2). By construction ‖p, L0‖1 = ‖p,A‖1 for

p ∈ Q0 ∪ Q2. Denote by qi ∈ R2 the unique point in Qi ∩ A for i ∈ {1, 3}. Thus for
any p ∈ Qi where i ∈ {1, 3}, we have ‖p, L1‖1 = ‖p, qi‖1 + δ = ‖p,A‖1 + δ. Clearly⋃
i∈J4KQi = R2 and thus in any case g(p) = c+ ‖p,A‖1 as claimed. �

Note that the proof of Lemma 3.40 is constructive and explicitly states how to compute
Manhattan arc A and shift c. Moreover all steps involved can be performed in constant
time altogether.

We can use this lemma in order to find an efficient representation of maximum shifted
point distance functions:
Proposition 3.41. Consider any maximum shifted point distance msdQ. We can compute
s ∈ R and a Manhattan arc with endpoints ai ∈ R2 for i ∈ J2K with msdQ ≡ msdQ∗ where
Q∗ :={(ai, s) : i ∈ J2K} in O(|Q|) time.
Proof. Let Q =

{
(qi, si) : i ∈ JnK

}
. We define ϕd : R2 → R as

ϕd(p) :=
∑

z∈{x,y}
σdz · z(p)
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L0

L1

A

δ

δ

Q0Q1

Q2 Q3

q1

q3

Figure 3.9: Construction of the Manhattan arc A in the proof of Lemma 3.40.

for each direction d ∈ J4K. Further let cid := si − ϕd(qi) for i ∈ JnK and d ∈ J4K.
As ‖p, q‖1 = max

{
ϕd(p)− ϕd(q) : d ∈ J4K

}
, si + ‖p, qi‖1 = max{cid + ϕd(p) : d ∈ J4K}

for all p ∈ R2. By Definition 3.38 of msdQ, we deduce

msdQ(p) = max
{

max
{
cid + ϕd(p) : i ∈ JnK

}
: d ∈ J4K

}
.

For any direction d, all cid + ϕd are parallel affine linear functions. Thus msdQ(p) =
max

{
cd + ϕd(p) : d ∈ J4K

}
for cd := max{cid : i ∈ JnK}. Consequently we can apply

Lemma 3.40 and obtain a Manhattan arc A ⊆ R2 and s′ ∈ R s.t. msdQ(p) = s′ + ‖p,A‖1
for all p ∈ R2.

Let a′i for i ∈ J2K be the endpoints of A. By Definition 3.39 of Manhattan arcs, a′i are
opposite corners of a square S ⊆ R2. Let δ ∈ R denote the edge length of S. We finally
define the desired s := s′ − δ and ai for i ∈ J2K to be the corners of S other than a′i. As a′i
are the endpoints of a Manhattan arc, so are ai. Consequently for any p ∈ R2

msdQ(p) = s′ + ‖p,A‖1 =
(
s′ − δ

)
+ max

{
‖p, ai‖1 : i ∈ J2K

}
= msdQ∗(p).

It takes O(|Q|) time to determine all cd, everything else can be computed in constant
time. �

Equipped with Proposition 3.41 we return to distance bounds. It allows the following
pruning of parallel distance bound edges:

Corollary 3.42. Consider an instance (R,Gb ) of Timing-Driven Rectangle Pack-
ing with r ∈ R and r′ ∈ R ·∪{�}. Denote all bounds for r and r′ by P := E

(
G[{r, r′ }]). We

can compute an extension of b and o to e0 := e1 :={r, r′ } in O(|P |) time s.t. slack(l, Gb ) =
slack(l,Hb) for any placement l where H :=G− P + {e0, e1 }.

Proof. To simplify notation, we first translate op( · ) by − op(r) for all p ∈ P (as has already
been done before e.g. in the proof of Lemma 3.33). Thus we may assume op(r) = 0 for all
p ∈ P .
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Let G′ :=G[{r, r′ }]. For any placement l, slack
(
l, G′b

)
depends only on the distance

of l(r) and l(r′). Thus we also assume fixed l(r′) = 0 ∈ R2 without loss of generality for
the following arguments.

By Definition 3.5 of slack, this implies

slack
(
l, G′b

)
= −max

{∥∥∥∥l(r)− op
(
r′
)∥∥∥∥

1
− b(p) : p ∈ P

}
= −msdQ

(
l(r)

)
for Q :=

{
(op(r′),b(p)) : p ∈ P

}
. Thus by Proposition 3.41 there are ai ∈ R2 for i ∈ J2K

and s ∈ R s.t. msdQ ≡ msdQ′ for Q′ :=
{

(ai, s) : i ∈ J2K
}
. Consequently oei(r′) := ai and

b(ei) := s for i ∈ J2K defines the two bounds that are equivalent to P .
The running time is dominated by applying Proposition 3.41 and thus O(|P |). �

Note that the argument of translating distance bound offsets used for Corollary 3.42
requires fixed orientations for all rectangles. If we would consider variable orientations as
part of the Timing-Driven Rectangle Packing Problem, this statement no longer
holds.

Using this corollary for parallel edges in Gb we obtain the following algorithm:

Proposition 3.43. For an elementary instance of Timing-Driven Rectangle Pack-
ing, we can compute an optimum solution in O(n3 +m) time.

Proof. Let (R,Gb ) denote the elementary instance. First we prune parallel edges in G
using Corollary 3.42. This takes O(m) time overall and leaves at most n2 edges. On the
remaining instance the algorithm of Corollary 3.37 needs O(n3) time. �

We emphasize that in practice there are many parallel edges in Gb . Therefore Propo-
sition 3.43 states an important improvement for those cases.

Now we turn our attention to more complex configurations involving paths. Note that
due to Lemma 3.17, a solution l with maximum slack(l, Gb ) corresponds to the maximum
s ∈ R for which slack(l, Gb−s) ≥ 0. For paths however, this relaxation is added to each
edge. Consequently for large enough s a single edge e ∈ E(G) can never be dominated by
a path P with E(P ) ≥ 2.

An example for this is presented in Figure 3.10: Either P0 :=(e0, e1) or P1 :=(e0, f0, f1)
can define the optimum position for r: For fixed b(ei), the optimum slack s =
1
2
(‖p, q‖1 − b(e0)− b(e1)

) ∈ R can be arbitrary depending on ‖p, q‖1. In this case P1
defines the most restrictive constraints for r if and only if s ≥ b(f0) + b(f1)− b(e1).

rp qe0

f0

e1

f1

Figure 3.10: Example where either path (e0, e1) or (e0, f0, f1) can induce the
tightest constraints for r.
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In practice however, we can use a priori bounds on the slack (e.g. lower bounds by
legal placements or upper bounds by Corollary 3.37). Consequently we may restrict the
considered slack to some interval S ⊆ R. The length of this range S will affect the
effectiveness of the following pruning strategies.

Lemma 3.44. Consider an instance of Timing-Driven Rectangle Packing with
S ⊆ R. Let e∗ = {u,w} ∈ E(G) and P = (e0, . . . , ek−1) for ei = {vi, vi+1 } ∈ E(G),
0 < k ∈ N a u-w-path in G. Further assume e∗ 6= ei for i ∈ JkK, as well as for all s ∈ S∑

i∈JkK

(
b(ei)− s

)
+

∑
i∈Jk+1K

∥∥∥δi∥∥∥
1

+
∥∥δ∗∥∥1 ≤ b(e∗)− s,

where δi ∈ R2 are defined as δi := o(vi+1
ei+1)−o(vi+1

ei
) for i ∈ Jk − 1K as well as δ∗ := o(v0

e0)−
o(v0

e∗) + o(vke∗)− o(vk
ek−1).

In that case every solution l with slack(l,Hb) ∈ S satisfies slack(l,Hb) = slack(l, Gb ) ∈
S where H :=G− e∗.

Proof. To simplify notation we also use the shorthand o(ve) for oe(v). We can translate
oe∗( · ) by o(v0

e0)−o(v0
e∗). Thus we may assume o(v0

e∗) = o(v0
e0) and o(vke∗)−o(vk

ek−1) = δ∗.
As slack(l,Hb) ∈ S and ei 6= e∗ we have ‖l(ei)‖1 ≤ b(ei)− slack(l,Hb). Consequently

by the triangle inequality along P∥∥l(e∗)∥∥1 ≤
∑
i∈JkK

∥∥∥l(ei)∥∥∥
1

+
∑

i∈Jk−1K

∥∥∥o(vi+1
ei+1)− o(vi+1

ei )
∥∥∥

1
+
∥∥∥o(vke∗)− o(vkek−1)

∥∥∥
1

≤
∑
i∈JkK

[
b(ei)− slack(l,Hb)

]
+

∑
i∈Jk−1K

∥∥∥δi∥∥∥
1

+
∥∥δ∗∥∥1

≤ b
(
e∗
)− slack(l,Hb)

Thus slack(l,Hb) ≤ slack
(
l, {e? }b

)
by which slack(l,Hb) ≤ slack(l, Gb ). According to

Lemma 3.19 slack(l, Gb ) ≤ slack(l,Hb). Consequently slack(l, Gb ) = slack(l,Hb) ∈ S. �

This lemma has an immediate implication on the set of optimum solutions preserved:

Corollary 3.45. Consider the setting of Lemma 3.44. If S contains the optimum slack,
we have opt(Gb ) = opt(Hb) for the set of optimum solutions opt(X) of (R,X).

Proof. Any solution l with slack(l,Hb) ∈ S satisfies slack(l,Hb) = slack(l, Gb ) by
Lemma 3.44. This particularly holds for optimum l for either Hb or Gb . �

3.6 LP-Formulation for Fixed Relations
Practical algorithms for the Rectangle Packing Problem often use a branch-and-
bound approach on the relations of the rectangles. This is why the special case of solving
a Rectangle Packing Problem with fixed relations is interesting.
Primal Timing-Driven Rectangle Packing LP
For the timing-driven version of this problem, we can also use an LP formulation. There-
fore we denote by zmin(r), zmax(r) the boundaries of the feasible area A(r) of r ∈ R in
dimension z ∈ {x, y}. Moreover we use the shorthand rCz r′ for rC r′ and rO r′ depend-
ing on whether z = x or z = y.

With this notation we formulate the following primal linear program:
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max s

s.t. − zr ≤ −zmin(r)
zr ≤ zmax(r)

(r ∈ R; z ∈ {x, y}) (3.4a)

zr − zr′ ≤ − len(r, z) (r, r′ ∈ R; rCz r′; z ∈ {x, y}) (3.4b)
z−e − zr ≤ z

(
oe(r)

)
zr − z+

e ≤ −z
(
oe(r)

) (r ∈ R; e ∈ δ(r); z ∈ {x, y}) (3.4c)

s+
∑

z∈{x,y}

(
z+
e − z−e

)
≤ b(e) (e ∈ E(G)) (3.4d)

Constraints 3.4a ensure coordinates zr are within the feasible area of rectangle r. Dis-
jointness in dimension z according to the fixed relations is guaranteed by constraints 3.4b.
Constraints 3.4c describe the defining properties of the maximum/minimum z-coordinate
z+
e /z−e of bound e ∈ E(G). Using these extrema, constraints 3.4d model the defining
property of the worst slack s.

The presented linear program 3.4 is general enough to include rectangles and pins
with fixed locations: Fixed rectangles can be modeled by appropriate feasible areas for
constraints 3.4a. We can further include the chip area � in R as artificial rectangle without
any disjointness constraints 3.4b. This rectangle � can be fixed at at 0 ∈ R2 as mentioned
previously.

Handling both those cases implicitly allows an easier notation for the primal pro-
gram 3.4. Note that all constraints of this LP are also normalized in order to easily look
at the corresponding dual LP.

Recall that for timing unaware Rectangle Packing with fixed relations and e.g.
netlength objective we can formulate a very similar LP. For this purpose, we would consider
a different graph G (namely the netlist hypergraph), simply eliminate constraints 3.4d and
optimize ∑e∈E(G)

∑
z∈{x,y}

(
z+
e − z−e

)
as new objective.

Altogether constraints 3.4d are the essential difference which have the following impli-
cations on the dual LP.
Dual Timing-Driven Rectangle Packing LP
We name dual variables f it corresponding to the inequality t in the ith group of the primal
linear program 3.4, i.e. for example f0

r,z and f1
r,z for constraints 3.4a.

In this notation we denote the objective function of the dual LP by

ν(f) :=
∑
z; r

(
zmax(r) · f1

r,z − zmin(r) · f0
r,z

)
+

∑
z; rCz r′

− len(r, z) · f2
r,r′,z

+
∑

z; r; e∈δ(r)
z
(
oe(r)

)(
f3
r,e,z − f4

r,e,z

)
+

∑
e∈E(G)

b(e) · f5
e .

Using this notation,we have the following LP dual to linear program 3.4:
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max ν(f)
s.t. f it ≥ 0 (3.5a)∑

e∈E(G)
f5
e = 1 (3.5b)

∑
r∈e

f3
r,e,z − f5

e = 0

f5
e −

∑
r∈e

f4
r,e,z = 0

(e ∈ E(G); z ∈ {x, y}) (3.5c)

f1
r,z +

∑
r′:rCz r′

f2
r,r′,z +

∑
e∈δ(r)

f4
r,e,z


−

f0
r,z +

∑
r′:r′ Cz r

f2
r,r′,z +

∑
e∈δ(r)

f3
r,e,z

 = 0 (r ∈ R; z ∈ {x, y}) (3.5d)

Note that constraint 3.5b corresponds to variable s in the primal LP, constraints 3.5c
are caused by z−b and z+

b while constraints 3.5d correspond to primal coordinate variables
zr. Non-negativity constraints 3.5a arise naturally from duality.

The dual linear program 3.5 is similar to the dual LP for the regular Rectangle
Packing Problem. The latter is equivalent to a minimum-cost flow problem. But this
is no longer the case for program 3.5:

The timing-driven dual LP contains f5
e variables corresponding to constraints 3.4d of

the primal LP. The constraints on those variables are no ordinary flow constraints simply
because f5

e appears in 5 constraints (and ordinary flow variables appear at most twice).
For timing-unaware dual LP formulation, there would be no problematic variables f5

e

which is why this dual is a minimum-cost flow problem.
We could split the dimension independent f5

e into f5
e,x and f5

e,y. If we disregard
constraint 3.5b for a moment, the resulting problem is a flow problem with additional
equality-constraints f5

e,x = f5
e,y.

Flow-problems with additional equality-constraints have been studied a little before.
They arise naturally from computing generalized matchings. Such Balanced Network Flows
problems have been studied by Kocay and Stone (1993, 1995) and Goldberg and Karzanov
(2004) in skew-symmetric, bipartite graphs. With this combinatorial structure it is in fact
easy to find a fractional flow satisfying the equality-constraints. Integral max-flows can be
computed by augmenting along pairs of paths. For balanced flows in arbitrary graphs or
with more general equality-constraints as arising in linear program 3.5, we are not aware
of any results – even in the unweighted case.
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Chapter 4

Timing-Driven Macro Placement

This chapter is devoted to BonnMacro, the framework for Macro Placement de-
veloped at the Research Institute for Discrete Mathematics of the University of Bonn.
Overviews of earlier versions of BonnMacro have been presented by Brenner (2007),
Brenner, Struzyna and Vygen (2008), Funke, Hougardy and Schneider (2016) and Schnei-
der (2009).

BonnMacro is applicable to the Macro Placement Problem introduced in Sec-
tion 2.2.3 (page 10). It specifically targets cells whose placement highly impacts the
overall solution i.e. large cells. We call these cells macros, although they are technically
not required to be large and it may even be reasonable to add certain standard cells
to BonnMacro instances. Recall that by Definition 2.7 all cells and thus particularly
macros have rectangles as cell shape.

Similar to other tools presented in Section 2.3 (page 11), BonnMacro initially deter-
mines possibly illegal positions for all cells, i.e. particularly macros. During this stage we
minimize (weighted) bounding box netlength subject to density constraints. This is done
using the global placement algorithm BonnPlace on an artificial netlist. In Section 4.1
we elaborate details of this approach.

Afterwards inter-macro overlaps need to be resolved. This stage is referred to as
macro legalization. We model macro legalization as Rectangle Packing Problem
subject to minimizing movement from the input locations. As Rectangle Packing is
hard (Theorem 3.16) the resulting instances with up to hundreds of rectangles can not be
solved optimally in practice.

In order to overcome this complexity, we successively legalize each macro optimally in
a smaller, local neighborhood to optimality. Thereby we make sure that no overlaps to
previously legalized macros can be introduced. When this can be completed for all macros
successfully, we end up with a feasible macro placement.

Details of the hinted workflow are elaborated in Section 4.2, particularly how local
instances are chosen and additional constraints are modeled in the Rectangle Packing
Problem. Afterwards in Section 4.3 we extend this framework to minimize violations of
timing constraints.

From this point onward, BonnMacro always preserves legality in the macro place-
ment. In additional post-optimization steps further objectives can be considered. We are
able to optimize for sufficient whitespace (e.g. for subsequent buffer insertion), macro align-
ment (for improved routability along straight channels) or even netlength of inter-macro
connections. These types of macro post-optimization will be considered in Section 4.4.
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Neither the overall BonnMacro approach nor single steps (e.g. macro legalization)
have any theoretical guarantees and even may fail on instances that are solvable feasibly.
Despite that, BonnMacro works very well in practice and finds competitive solutions
on a large variety of real-world instances. It is used regularly at IBM for interactive
workflows (e.g. manual illegal changes combined with BonnMacro legalization) in order
to gain insights in early design phases.

4.1 Shredded Placement
In this section we explain how the initial placement for BonnMacro is computed. These
initial locations are not required to obey all legality constraints e.g. may contain overlaps
and can ignore grid constraints entirely. On the other hand, this first solution is the
starting point for the subsequent macro legalization (cf. Section 4.2). Thus it should
in particular have reasonable netlength and be well spread i.e. roughly respect density
constraints.

In theory, this looks like a problem similar to Global Placement of standard cells.
As has already been elaborated in Section 2.3 (page 11), directly incorporating macro-
handling into global placement paradigms is complicated. Both predominantly used
placement approaches, force-directed and partitioning-based, have intrinsic drawbacks
when applied to mixed-size instances.

A common idea to overcome any issues with large cells is macro shredding. This
approach has been described first by Adya and Markov (2005) and Doll, Johannes and
Antreich (1994). The basic idea is to replace large macros by multiple artificial small
cells which we call macro fragments (cf. Figure 4.1). Special nets connecting these cells
ensure that all fragments of a macro are placed close to each other. Most importantly,
instances resulting from this type of macro shredding can directly be processed by any
existing global placement engine. A location for original macros can afterwards be inferred
from the respective fragments’ positions.

Figure 4.1: Macro representation by fragments. Artificial fragment interconnec-
tions are indicated in violet, original nets in orange. Pin positions in original nets
match offsets of the original (unshredded) macro.

Although this is a very simple idea it is very effective in practice and still in use today.
Clearly shredding a single macro into multiple fragments increases the netlist complexity.
Thus for solving real world instances with shredded macros, it is particularly important
to use a very fast and reliable global placer.

For this reason BonnMacro makes use of BonnPlaceGlobal for solving the
Global Placement Problem, which is another component of BonnPlace also devel-
oped at Research Institute for Discrete Mathematics of the University of Bonn. Further
details concerning this partitioning-based placer will be presented in Chapter 5.
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Figure 4.2: The placement with shredded macro fragments on Rosemarie. Frag-
ments colored according to the original macros.

4.1.1 Placement with Shredded Macros
We now elaborate considerations for macro shredding that we employ in order to infer
reliable location details using BonnPlace.

As a first adjustment we will neither execute the last levels of global placement
nor detailed placement. During a recursive partitioning scheme like BonnPlace, the
assignment of fragments becomes more or less fixed in very fine grids. This is due to the
fact that separating tightly connected macro fragments always has a negative effect on
netlength. On the other hand, all macro fragments together will not be part of a common
partitioning instance in a sufficiently fine grid. Since only locations of macro fragments
matter anyway, this has a minor effect on the output and saves unnecessary running time.

The size of the fragments is chosen significantly smaller than the finest grid window of
the last level performed. Thus we ensure no macro fragments ever require to be fixed in
place during any BonnPlace step.

Additionally macros should be placed more densely than standard cells – at least as
long as we are able to resolve all overlaps subsequently. Thus we scale fragments uniformly
such that placing them with (standard cell) target density (usually 75 %) results in a user
specified macro density (usually above 80 %).

All macro fragments are connected in a regular grid of highly weighted two-terminal
nets (cf. Figure 4.1). The pins of these nets are not directly attached to the fragments’
centers but rather shifted towards the outlines. This helps finding distinct locations for
fragments during analytical placement of BonnPlace, which in turn makes movement
minimization during partitioning more effective.
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In order to infer reasonable positions for original macros, fragments need to be placed
closely together. To enforce this, we use two different techniques: First we choose the net
weights for fragment interconnections significantly above the standard net weight. Our
choice of weights thereby also takes macro connectivity into account which results in larger
weights for macros with many pins.

On the other hand, we also cluster macro fragments. Clustering is a common technique
for global placement algorithms by which groups of multiple original cells are considered
as single artificial cell. This simplifies Global Placement which is why algorithms run
faster and often can compute better results. BonnPlace also supports clustering. In
each BonnPlace level, we adaptively dissolve clusters which became too large for the
respective partitioning grid. In contrast to global placement on regular netlists, we can
further delay such unclustering on netlists with clustered shredded macros.

We assign all macro fragments to the movebounds of their respective original macro.
This is why the shredded placement always already considers movebounds directly.

Finally we also use the self-stabilizing BonnPlace extension which we elaborate in
Section 5.2. In this force-directed framework we essentially perform multiple iterations of
complete global placement. For netlists with shredded macros we only run few (usually
3) iterations but use a larger force weight increase (usually 0.1).

A placement for shredded macros on Rosemarie computed by this approach is presented
in Figure 4.2. It can be observed that fragments are placed closely together and mostly
arrange in a shape which roughly is a rectangle. But these shapes are far from perfect
and often not entirely disjoint. Note that seemingly the respective fragments are smaller
than the original macros as visualized in Figure 4.3. But actually this is not the case: due
to clustering and reduced number of placement levels, fragments frequently overlap in the
finest grid considered. This explains the visual impression.
4.1.2 Macro Reassembly
Based on positions for shredded macro fragments we infer macro locations. An important
part of this macro reassembly also is the choice of an appropriate orientation for the
macros.

We proceed similar to Adya and Markov (2005) and use the center of gravity of the
fragments as position (for the center of gravity) of the original macro. The macro flip-code
is selected as the predominant orientation among the respective fragments.

There have been experiments to emphasize actual pin positions and relative positions
of corner macro fragments (Engels 2013). Such considerations usually result in macro
placements with less netlength but increase overlaps. This is why this approach is only
used for special cases, particularly not for experiments presented in this thesis.

The macro placement resulting from our reassembly based on the fragments’ locations
of Figure 4.2 is depicted in Figure 4.3. Note that macros are colored equally as their
respective fragments.

4.2 Macro Legalization
For a given, possibly illegal input placement, BonnMacro resolves all macro overlaps
as a next step. The main idea is to iteratively legalize macros one after another with
minimum movement. An outline of the overall algorithm is given in Algorithm 4.1.

MacroLegalization maintains a set L ⊆ M of legalized macros that is initially
empty (Algorithm 4.1, line 1). We always preserve the invariant that l is a legal solution
for the Macro Placement Problem restricted to L. In particular, all macros in L have
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Figure 4.3: The reassembled macro placement based on the fragments’ positions
of Figure 4.2 on Rosemarie.

to be placed on-grid and in their movebound. Moreover macros in L are disjoint from
other legalized macros and blockages.

In each iteration of the main loop (Algorithm 4.1, lines 2 to 10), we try to change the
placement l such that above invariant is satisfied for L ·∪{m}. For this purpose we try to
squeeze m between neighboring blockages and legalized macros in L.

As more and more macros are already legalized, it becomes harder to find a legal
position for the next macrom. This is why the order matters in which macros are legalized.
In our approach we impose an a priori ordering by priority of the macros (Algorithm 4.1,
line 2). We assign macros high priority whose positioning greatly influences the space of
remaining feasible solutions. Therefore we lexicographically prioritize macros with non-
trivial movebounds, with larger size and smaller distance to the chip boundary (in this
order).

Packing a given macrom is achieved by PackMacro (Algorithm 4.1, line 5). Here the
problem of legalizing m is modeled as geometric Rectangle Packing Problem. Since
this problem is NP-hard by Theorem 3.16, we only can handle small packing instances
with few rectangles. In this model we thus carefully ensure disjointness to macros in
L that can not be considered explicitly. We defer all details concerning this model to
Section 4.2.1. An example instance for PackMacro is visualized in Figure 4.4. Thereby
each such Rectangle Packing Problem instance either can not be solved at all or
implies an extension of l enhancing MacroLegalization invariants to L ·∪{m}.

As we will see, selecting local neighborhoods for m depends of various parameters that
effectively trade running time for overall solution quality. We call a reasonable combination
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Algorithm 4.1: MacroLegalization
Input : Instance of the Macro Placement Problem, possibly illegal target

locations t.
Output: Legal locations for all macros or failure.

1 L :=∅, l := t
2 foreach macro m in descending order of priority do
3 S :=∅
4 foreach packing mode pm do
5 s := PackMacro(m, L, pm, l, t)
6 if s is not failure then
7 S :=S ·∪{s}

8 if S = ∅ then
9 return failure

10 Extend l by BestSolution(S, t), L :=L ·∪{m}
11 return l

of these parameters packing mode. For better quality, we try to pack m with various
packing modes (Algorithm 4.1, lines 4 to 7). For each mode pm for which this is possible,
we save the obtained solution in S (lines 6 to 7).

MacroLegalization minimizes total area-weighted movement of l with respect to
target locations t. How PackMacro optimizes this objective precisely will be covered in
Section 4.2.1. Overall BestSolution greedily chooses a best solution amongst S with
regard to the same objective (Algorithm 4.1, line 10).

Any solution in S extends MacroLegalization invariants to L ·∪{m}. Consequently
if MacroLegalization never returns from line 9, L = M and thus l is a feasible solution
overall. We summarize the preceding elaboration in the following proposition:

Proposition 4.1. MacroLegalization (Algorithm 4.1) either fails or finds a feasible
solution to the Macro Placement Problem. �

Due to the restriction to consider only local packing instances, MacroLegalization
can not guarantee to find a feasible solution even on instances for which one exists.
4.2.1 Macro Packing
The main building block of MacroLegalization is PackMacro. An overall description
of the latter algorithm is presented in Algorithm 4.2.

PackMacro consists of two phases: Selecting appropriate details from the Macro
Placement instance for modelling as Rectangle Packing Problem (Algorithm 4.2,
lines 1 to 5) and solving the afore-built instance (lines 6 to 10). Recall that any sub-
component can fail, which in turn causes PackMacro to fail as well (lines 8 to 9).

We presented multiple strategies for solving the Rectangle Packing Problem by
enumeration in Section 2.3. Although theoretically not the fastest approach, we rely on
the Spark algorithm (Funke 2011; Funke, Hougardy and Schneider 2016). It is a branch-
and-bound approach enumerating all allowed spatial relations for any pair of rectangles.
Thus the worst case running time is exponential in the number of relations that have to
be determined. Despite that, Spark incorporates various bounding strategies making this
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Algorithm 4.2: PackMacro
Input : Instance of the Macro Placement Problem, Macro m, already

legalized macros L, packing mode pm, current positions l, target
locations t.

Output: Legal locations for L ·∪{m} or failure.
// Model as rectangle packing instance

1 U := SelectUnconstrained(m, L, pm, l)
2 w := SelectWindow(U, L, pm, l)
3 Let C be the shapes of b ∈ B and m′ ∈ L \ U intersecting w acc. to l
4 F := SelectFeasibleArea(U, C, l, w)
5 S := SelectRelations(U, C, pm, l)

// Solve rectangle packing instance
6 Find rectangle packing p for (U ·∪C,F, S, t)
7 Round p on-grid towards lower left
8 if any of the above steps failed then
9 return failure

10 return Project(U, C, p)

algorithm efficient in practice. Moreover it intrinsically provides the flexibility to consider
restricted spatial relation options for pairs of rectangle. This is an advantage we make use
of in the following.

In order to keep the running time of PackMacro under control, we must not include
all macros into the Rectangle Packing Problem instance and thus restrict the instance
complexity. This can be done by restricting the overall number of rectangles included
in the instance. Former versions of BonnMacro pursued this approach only (Brenner
2007). To achieve a reasonable running time, Rectangle Packing Problem instances
were limited to very few movable rectangles and blockages. Due to this limitation this
approach has two major disadvantages:

1. The Rectangle Packing Problem instances have to be chosen so small that
larger groups of macros can never be moved at all. Consequently overall solutions
frequently induce unnecessary movement although local instances are solved to
optimality.

2. As more and more macros are already legalized, it becomes difficult to select a local
instance subject to the restrictive instance size constraints. If no such instance can
be found at all, BonnMacro had to fall back to moving m to the closest legal
position. While this fallback often helps finding any completely legal placement, it
often induces movement that could have easily been avoided.

To circumvent both drawbacks, BonnMacro additionally controls the Rectangle
Packing Problem instance complexity directly. We allow much more rectangles but
explicitly restrict the allowed relations of most of the rectangle pairs (Michaelis 2015).

More precisely, PackMacro maintains two different sets of rectangles: uncon-
strained rectangles U and constrained rectangles C. We impose no restrictions
on the allowed relations for any pair of rectangles with at least one element of U . For a
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Figure 4.4: Instance of PackMacro during legalization on Lisa: U ∪C in orange,
L \ (U ∪ C) in green, unlegalized macros in yellow and blockages in gray.

pair of constrained rectangles though, only a single relation will be allowed. Consequently
Spark can avoid any branching on such pairs whatsoever.

In the example instance presented in Figure 4.4, two orange shapes overlap at the
bottom. One of them is m which is about to be legalized. In this example, the four orange
rectangles closest to the lower chip boundary are U , i.e. unconstrained. Other orange
rectangles with increasing distance to m are constrained.

Thereby we can consider instances with much more rectangles but a similar number of
(pairwise) spatial relations subject to optimization. This strategy avoids both previously
mentioned drawbacks of the former BonnMacro approach: It provides more flexibility
for selecting a local Rectangle Packing Problem instance which therefore succeeds
more often. Moreover constrained macros are not fixed in place but rather only limited
in the ability to be moved. Thus we often can reduce the overall movement by moving
constrained macros slightly.

Now that we have outlined the overall idea of PackMacro, we go through all indi-
vidual steps and elaborate the details.

4.2.2 Choosing Unconstrained Rectangles
The initial step of PackMacro is the selection of unconstrained macros U by Selec-
tUnconstrained (Algorithm 4.2, line 1). SelectUnconstrained always selects m,
i.e. the macro m that is subject to legalization.

Subsequently we determine the number of additional unconstrained rectangles upm
that should be considered. This number upm ∈ N is a constant depending on the current
packing mode pm. In practice upm = 2 for almost all packing modes, but there are rare
exceptions.

Further unconstrained macros are then selected from L based on proximity to m with
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respect to current locations l. More precisely we choose U ′ ⊆ L as the upm macros with
smallest c(m′) ∈ R where

c(m′) :=
∥∥∥∥l(m), l

(
m′
)∥∥∥∥

1
· 4

√
max{w,w′ }
min{w,w′ } + max{h, h′ }

min{h, h′ }

and (w, h) as well as (w′, h′) denote widths and heights of m and m′. By this choice
we primarily select macros based on the l1-distance to m with respect to l. In addition
we favor macros m′ with shape similar to m. The precise formula was determined by
Schneider (2009) based on experimental results.

Finally SelectUnconstrained returns the upm + 1 unconstrained macros selected
as U :={m} ·∪U ′.
4.2.3 Selecting the Window
Based on already chosen unconstrained macros U , PackMacro selects a window w using
SelectWindow (Algorithm 4.2, line 2).

This window w serves as boundary for the Rectangle Packing Problem instance.
In particular, it predetermines the subsequent selection of constrained rectangles C (Al-
gorithm 4.2, line 3). Thus selecting an appropriate window w is the most important step
in the creation of the Rectangle Packing Problem instance.

Note that blockages fit very well in our framework of constrained rectangles with
limited movability. The additional constraint that blockages must not be moved at all can
be modeled by feasible areas which are precisely the shape of the blockage.

In order to control the overall complexity of the created Rectangle Packing Prob-
lem instance, we must choose the window w in such a way that C has small cardinality.
Therefore we impose the upper bound cpm ∈ N on this cardinality. The upper bound cpm
depends on the packing mode pm and is chosen as cpm ∈ [10, 18] in practice.

Selecting a needlessly small windows on the other hand leaves little or even no room at
all for packing U . Therefore we naturally are especially interested in windows w containing
much unused whitespace. This leads to the following purely geometric optimization
problem:

Bounded Window Selection Problem
Instance: Two rectangles q ⊆ Q ⊆ R2, disjoint rectangles R with r ⊆ Q \ q for all r ∈ R,

a bound k ∈ N and a non-negative density function s : Q→ R≥0.
Task: Determine a window w maximizing∫

w
s(p) dp

subject to q ⊆ w ⊆ Q and
∣∣{r ∈ R : r ∩ w 6= ∅}

∣∣ ≤ k.
Note that the Bounded Window Selection Problem is well defined: On the one

hand, q always is a feasible solution. On the other hand, by additivity of the integral and
non-negativity of s there is an optimum w determined by borders of r ∈ R ·∪{Q} in all
four cardinal directions. Since there are only finitely many of such rectangles, an optimum
window w maximizing

∫
w s(p) dp exists. Recall that our notion of intersection disregards

one-dimensional areas according to Definition 2.4.
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We can specify coordinates of potential optima even more precisely. The left boundary
of w for example may be selected from{

b : r = [a, b ]× [c, d ] ∈ R, rC q} ∪ {a : Q = [a, b ]× [c, d ]
}
.

Extending this definition to all cardinal directions leads to a restricted Hanan-Grid G.
A reasonable approach for solving the Bounded Window Selection Problem

without further assumptions on the density function s is enumeration. For this purpose we
consider all O(|R|2) potential combinations of left and right borders of w in G. For such
a fixed x-interval I ⊆ R, it is sufficient to consider all (inclusion-wise) maximal windows
i.e. at most one window for each potential upper y-coordinate of w.

All these windows can be enumerated in O(|R|ϕ) by a double-sweep-line approach
using separate sweep-lines for the upper and lower border of w. Hereby ϕ denotes the
running time for deciding whether a candidate window is feasible after having moved
either of the sweep-lines.

Wochnik (2017) showed ϕ ∈ O(1): This can be achieved by precomputing for each tile
t ∈ G how many r ∈ R intersect t in the interior, the boundaries and the corners. We
can realize this pre-processing in O(|R|3) running time. Subsequently we can determine
feasibility after moving one of the sweep-lines in ϕ ∈ O(1) time. This is possible by the
inclusion-exclusion principle based on the precomputed tile information.

So far, we did not consider the objective at all. But it can easily be incorporated in
the enumeration scheme: We precompute

∫
t s(p) dp for any t ∈ G. When either of the

sweep-lines moves, we update the current objective based on precomputed tile information
by additivity of the integral in O(1) running time.

Overall this results in the following complexity of the Bounded Window Selection
Problem:
Theorem 4.2 (Wochnik 2017). The Bounded Window Selection Problem can be
solved in O

(
ρ3 + ρ2σ

)
running time where ρ :=|R| and σ denotes the maximum running

time for evaluating
∫
t s(p) dp on any tile t ∈ G.

In the following we explain how we apply Theorem 4.2 for SelectWindow in practice.
The choice of k := cpm has already been discussed before. We further choose q ⊆ R2 as
the bounding box of U according the the current locations l.

Further we do not directly apply Theorem 4.2 to all shapes of L ·∪B. This is done in
order to avoid the cubic running time on instances with thousands of macros and blockages.
Instead we first extend q in all cardinal directions separately until more than k shapes are
intersected. This defines an a priori boundary Q for any optimum window. Then we only
need to consider rectangles R corresponding to L ·∪B with shapes contained in Q.

Our density function s is zero on blockages. For points p not contained in a blockage,
we use

s(p) := 1
‖p,q‖1
C + 1

= C

‖p, q‖1 + C
,

where C := max
{

1,BB(q)
}
. Thereby the density in q is 1 and converges to 0 with

increasing distance from q. We thereby reflect the intuition that free space in close
proximity to q is more valuable than in further distance. This is reasonable as we need
additional free space for m – preferably close to q in order to minimize movement.

This type of density function s can be integrated in O(1) on each tile t ∈ G. Thus
we can find an optimum solution to the Bounded Window Selection Problem in
O
(
|R|3

)
by Theorem 4.2 as σ ∈ O(1).
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4.2.4 Computing Feasible Areas
For determined constrained and unconstrained rectangles C and U the next step of Pack-
Macro is the selection of feasible areas F using SelectFeasibleArea (Algorithm 4.2,
line 4).

The easiest case are blockages which all have predetermined fixed positions. As already
outlined in Section 4.2.3, we model fixed positions by feasible areas that can only be
satisfied by a unique position. More precisely we use the rectangle b ⊆ R2 itself as feasible
area for b ∈ B.

Next we consider rectangles r ∈ C ·∪U corresponding to (movable) macros that are
contained in the window, i.e. r ⊆ w. Recall that this not necessarily includes all rectangles
but particularly applies to r ∈ U (cf. Algorithm 4.2, line 3). In this case we use the feasible
area mr ∩ w for r where mr denotes the movebound of the macro corresponding to r.

Otherwise r ∈ C corresponds to a (movable) macro but r 6⊆ w. Here we proceed
slightly differently. In particular we need to ensure that r is placed legally to already
legalized shapes outside of w. Recall that these will not be modeled in our Rectangle
Packing Problem instance explicitly (Algorithm 4.2, line 3).

Let B be this set of legalized shapes outside of w. More precisely B contains all shapes
of already legalized macros in L \C as well as blockages {b ∈ B : b ∩ w = ∅}. We extend
each border of r which intersects w until either the corresponding border of w or some
b ∈ B is reached. Denote the resulting rectangle by f ⊆ R2. We use f ∩mr as feasible
area for r, where mr again denotes the movebound of the macro corresponding to r.

As r corresponds to a legally placed macro, r in particular is disjoint from B. By
construction the same holds for f and thus any placement of r in f is automatically
disjoint from B. Since r ⊆ f , the chosen feasible area for r is satisfiable.

4.2.5 Choosing Spatial Relations
As next step PackMacro determines restricted spatial relations and required minimum
spacings using SelectRelations (Algorithm 4.2, line 5).

Considering minimum spacing requirements on rectangles was introduced for modeling
grid constraints on feasible macro locations. Respecting grid constraints directly as part
of the Rectangle Packing Problem is notoriously difficult:

Theorem 4.3 (Schneider 2009, Theorem 8). The Rectangle Packing Problem with
additional grid constraints is NP-hard, even if an optimum solution to the corresponding
problem without grids is known.

Due to Theorem 4.3, we pursue a different approach. We impose certain minimum
distance requirements and solve the Rectangle Packing Problem subject to these
additional constraints. Thereby our choice of minimum spacings ensures that we can
round any feasible solution to the respective macro grids without introducing overlaps.

The central idea is the following: Consider two rectangles ri for i ∈ J2K and sup-
pose r0∼ r1 for ∼ ∈ {C,B,O,M} in any feasible solution. Without loss of generality
∼ ∈ {C,M} as we can swap ri otherwise. We select a minimum distance requirement
ψ(r0∼ r1) ∈ R . Our choice thereby ensures that we can round r1 on-grid towards r0
whenever r0 and r1 are at least ψ(r0∼ r1) apart in the respective dimension correspond-
ing to ∼. We can compute ψ(r0∼ r1) in O(1) by calculations presented by Engels (2013).

This can also be viewed differently: Any rounding onto a grid will be done towards the
lower left (cf. Algorithm 4.2, line 7). The spacing ψ serves as artificial halo towards the
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upper right of r0 that is guaranteed to contain an on-grid position for the lower left corner
of r1. But in contrast to the version presented by Engels (2013), we avoid introducing this
halo explicitly. In particular, this allows different halos for r0 in e.g. (r0, r1) and (r0, r2)
and thus is less restrictive.

To complete this modelling of grid constraints, we need to ensure that this rounding
never will move a rectangle outside of the respective feasible area. We do so by rounding
any feasible area as defined in Section 4.2.4 on-grid towards the upper right in advance.

Note that the overall approach to model grid constraints clearly still is pessimistic.
There even are instances that have no solution obeying the minimum spacing constraints
while feasible on-grid solutions exist. On the other hand, minimum spacing requirements
are often exact as large groups of macros have a shared grid in practice.

Precomputing all minimum spacing requirements can be done in O(ρ2) where
ρ :=|U ·∪C|. Recall that selecting U and C takes O

(
ρ3
)
running time by Theorem 4.2

(cf. Section 4.2.3). Consequently the running time for minimum spacing computations is
acceptable although we will now restrict the allowed relations and thus not explicitly use
all of these values.

In addition to minimum spacings SelectRelations also chooses allowed relations:
For a pair (r0, r1) ∈ U × (U ·∪C) with an unconstrained rectangle r0, SelectRelations
allows all relations. Otherwise (r0, r1) ∈ C2 for which only a single relation will be allowed.
This relation ∼ ∈ {C,B,O,M} is determined as a spatial relation with maximum gap
beyond the required spacing ψ(r0∼ r1) according to the current positions l.

Note that although l is legal on C, a relation with non-negative gap not necessarily
exists as minimum spacings are pessimistic. We already mentioned that this occurs rarely
in practice. This effect is further reduced by the post-processing Project elaborated in
Section 4.2.7.

This concludes the description of all constraints in our legalization model as Rectan-
gle Packing instance (Algorithm 4.2, lines 1 to 5).
4.2.6 Solving the Rectangle Packing Problem
As next step PackMacro optimizes over the afore-built Rectangle Packing instance
(U ·∪C,F, S) (Algorithm 4.2, line 6).

This is done using the Spark algorithm (Funke 2011; Funke, Hougardy and Schneider
2016). More precisely we use use an extension of Spark that is capable of obeying our
restricted relations (Michaelis 2015).

Spark only considers linear netlength as objective, but we prefer minimizing area-
weighted quadratic movement with respect to target locations t. Thus we approximate
this quadratic function by a sum of piecewise linear, convex, even functions. We do this
by few nets (around 10 in practice) with artificial pins in quadratically increasing distance
to t.

Spark is a branch-and-bound algorithm that explores all combinations of allowed spa-
tial relations for C ·∪U . Although these are exponentially many, Spark usually performs
well in practice by using effective bounding strategies. Nonetheless at times certain in-
stances can consume an undesired amount of running time. Therefore we impose a limit on
the maximum number of expanded branch-and-bound nodes as deterministic limit for the
running time. This limit is decreasing for macros with lower priority (cf. Algorithm 4.1,
line 2).

In case our Rectangle Packing model has no solution, we are unable to legalize m
(Algorithm 4.2, line 9). Otherwise we can round the obtained positions p on-grid towards
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the lower left without introducing overlaps (line 7). Recall that this is due to our choice
of minimum spacings and spatial relations which has been discussed in Section 4.2.5.

At this point p is a satisfactory solution, i.e. it extends l to be a legal solution
of L ·∪{m}. PackMacro preserves this property for p, but finally applies a post-
optimization which we discuss next.

4.2.7 Local Post-Optimization
The final step of PackMacro is the post-optimization Project (Algorithm 4.2, line 10).
Denote the macros corresponding to U ·∪C byM ′ ⊆ L ·∪{m}. Project greedily optimizes
movement for each macro m′ ∈M ′ while keeping positions of all other macros L ·∪{m} \
{m′ } fixed.

More precisely, we treat all macros L ·∪{m}\{m′ } as additional blockages. Under these
constraints we compute an on-grid position for m′ with minimum movement. Thereby we
again (cf. Section 4.2.6) approximate the area-weighted quadratic movement objective by
the same piecewise-linear, convex function.

Recall that our model of grid constraints by means of minimum spacings contains
intrinsic pessimism (cf. Section 4.2.5). Therefore even though Project optimizes the
same objective, it oftentimes can reduce movement as grid constraints are modeled exactly
here.

Moreover we additionally allow flipping m′ under a heuristically chosen objective
penalty. BonnPlace supports orientation-specific grid constraints due to which some
instances allow particularly small movement when m′ is flipped into an appropriate flip-
code. Incorporating this directly allows reducing overall movement even more effectively.

Project is a purely geometric algorithm running in two stages. Denote the fixed
shapes corresponding to L ·∪{m} \ {m′ } and B by B′. We first compute a set A of
rectangles covering precisely all positions in which m′ can be placed disjointly from B′.
In the second stage we project the movement target t

(
m′
)
into each candidate rectangle

a ∈ A and round this off-grid projection in all directions onto the grid of m′. As we
consider movement as piecewise-linear, convex function, the optimum on-grid position
for m′ thereby is considered as one candidate. Note that this optimization for a given
rectangle a ∈ A gave rise to the name Project.

The crucial part of Project is the first stage. Feasible locations for m′ are the
complement of appropriately extended blockages B′, which can be computed by sweep-
line algorithms. The intricate part is covering this rectilinear polygon with few rectangles
A such that the subsequent stage finishes quickly. Note that finding a minimum cardinality
cover for simple polygons is NP-hard (Culberson and Reckhow 1988) and MaxSNP-
hard for general rectilinear polygons (Berman and DasGupta 1992). We therefore apply
the algorithm of Franzblau (1989) finding in O(|B| log|B|) running time a O(logα)-
approximation of the minimum cover with cardinality α of the general rectilinear polygon
A.

In practice we avoid considering all B′ to make Project even faster (Wochnik 2017):
We first search with an exponentially expanding window w′ around t

(
m′
)
for any feasible

position p for m′ that is contained in w′ and disjoint from B′. This p is not necessarily an
optimum solution and w′ might still be very large. But it allows using Project on the
restriction w ∩B′ where w is the rectangle

w :=
{
x ∈ R2 :

∥∥∥∥x− t(m′)∥∥∥∥
∞
≤
∥∥∥∥t(m′)− p∥∥∥∥

1

}
.
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Note that using the l1-ball instead of w would be geometrically smaller, but computation-
ally more difficult to handle. Using this pre-processing makes Project very efficient in
practice. This is why we can utilize Project frequently as part of any call to Pack-
Macro.

4.3 Timing-Driven Macro Legalization
This section is devoted to extending BonnMacro legalization to become timing aware.
Note that even for fixed placement of macros, finding a placement with good timing prop-
erties for all other cells is a complicated and challenging problem in itself (cf. Section 5.4).
Therefore it is not practical to evaluate timing exactly on any (partial) macro placement
as part of the BonnMacro legalization.

Instead we use the model of distance bounds presented in Section 3.1. We will optimize
for a maximum distance bound slack in this model.

More precisely we start with canonical distance bounds Gb of Definition 3.7. Recall
that in addition to macros, further shapes of cells are considered in V(Gb ). The slack with
respect to Gb is an upper bound for the actual slack (Proposition 3.8). Furthermore under
practical assumptions (Assumption 3.6) the model is chosen to be particularly accurate
for overall critical paths.

Since the Timing-Driven Rectangle Packing Problem is strongly NP-hard (The-
orem 3.16), we can not hope for solving this problem globally optimally. Instead we pro-
ceed similarly as for the (regular, timing unaware) legalization of macros presented in
Section 4.2.

We legalize one macro after another. Thereby we optimize for a maximum distance
bound slack while considering neighborhoods of the macros both geometrically on the chip
area and in Gb . The resulting instances of the Timing-Driven Rectangle Packing
Problem can be solved optimally for sufficiently restricted neighborhoods using a mixed-
integer programming formulation.

As before, we try various choices of sub-instances with different packing modes in
MacroLegalization. Among all solutions extending legality to the next macro, we
adapt the choice of BestSolution to consider distance bounds: We select the solution
with maximum slack with respect to Gb and only consider the former objective movement
as tie-breaker.

Now we consider all new steps that have been newly introduced in this approach of
timing-driven macro legalization. This includes construction of distance bounds Gb in Sec-
tion 4.3.1, modelling local instances of Timing-Driven Rectangle Packing Problem
in Section 4.3.2 as well as details how to solve this model presented in Section 4.3.3.
4.3.1 Distance Bound Construction
In an initial pre-processing to the timing-driven MacroLegalization, we once construct
distance boundsGb . These boundsGb remain constant for the remainder of the algorithm.
All further optimizations of the placement target a best possible slack with respect to these
bounds.

Consider a fixed instance of the Macro Placement Problem on macros M . The
construction of said distance bounds starts with computing all circuit delay estimates
dc(s, t) for any timing startpoint s and endpoint t using Proposition 3.15. Based on dc,
we can construct the canonical distance bounds Gb according to Definition 3.7.

By Assumption 3.6, Gb encodes timing information for any path in the timing graph
that starts or ends in a macro. In particular, without loss of generality V(Gb ) contains
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rectangles for all macrosm ∈M . But in practice V(Gb ) consists of many other rectangles.
Most prominently among these extra objects are latches, which all intrinsically are timing
start- and endpoints as elaborated in Section 2.2.2. But depending on the timing graph
there can be arbitrary additional other rectangles. Especially due to latches, Gb has
thousands of vertices in practice.

In addition to that, canonical distance bounds represent any timing assertions of
the timing graph. This representation can not be handled directly due to the mere
quantity of this information. Moreover assertions are generated based on assumptions with
varying degree of certainty and additionally can be overridden by designers. Consequently
such bounds range from being very loose and irrelevant to being overly ambitious and
unsatisfiable.

This is why it is important to infer a more efficient representation of Gb for our
purposes. We thereby ensure to capture the worst distance bound slack of any (yet to
be determined) macro placement. Note that other timing metrics (e.g. FOM) are not
necessarily preserved.

The first of these steps is a pruning of irrelevant distance bounds. We start with
an upper bound u ∈ R on the best possible slack. It is derived from individual bounds
assuming its endpoints are placed together as close as possible. Then we prune all bounds
e ∈ E(Gb ) that will have slack better than u for any placement whatsoever. Thereby we
consider placing endpoints of e in the chip area as far apart as possible. If e has better
slack than u in this worst case placement, we clearly need not consider e for worst slack
optimization any longer.

In order to derive a more efficient representation of Gb , we eliminate induced parallel
edges of Gb . This pruning removes dominated distance bounds based on the triangle
inequality irrespective of the orientation of the endpoints of the bound. Despite lacking
theoretical guarantee, this pruning strategy leaves at most 2 bounds for the majority of
node pairs in practice.

Still for thousands of nodes in G on real-world instances, this is a huge graph. But
by this pruning strategy we usually reduce the number of edges to a few percent of the
canonical input which we can manage.

Note that we can not apply Corollary 3.42 at this point. Mentioned algorithm requires
fixed macro orientations for the used argument of translating distance bounds. We
optimize flip-codes not in Timing-Driven Rectangle Packing instances, but rather as
post-optimization during PackMacro. In order to do so, we thus can not prune bounds
here with the approach of Corollary 3.42.

4.3.2 Timing-Driven Macro Packing
In this section we elaborate the extensions necessary to optimize distance bound slack
using PackMacro (cf. Algorithm 4.2, page 53). We will optimize the distance bound
slack while legalizing m in a small neighborhood.

For this purpose we add a new step to the modelling stage of PackMacro (Algo-
rithm 4.2, lines 1 to 5). Once U , w, C, F and S all have already been determined, we
finally select further rectangles N ⊆ V(G).

We include these rectangles N as addition to U ·∪C into the Timing-Driven Rect-
angle Packing Problem instance. All other rectangles in V(G) \N are fixed in their
former positions. But in contrast to U ·∪C, there will be no spatial relations imposed on
any rectangle in N .
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This is motivated as follows: We intentionally allow overlaps with r ∈ N corresponding
to a non-macro cell. For r ∈ N corresponding to a macro, disjointness to U ·∪C is already
implied by our choice of feasible areas (cf. Section 4.2.4, page 57). Thus we only fix the
position of such rectangles and can avoid introducing any spatial relation choices at all.

Recall that the task of the MacroLegalization is finding legal positions for macros
M . Determining legal positions for other non-macro cells, in particular those correspond-
ing to N , is subject to later steps of BonnPlace (cf. Chapter 5). Thus it is appropriate
to defer legalizing non-macros to these steps.

We include N in our Timing-Driven Rectangle Packing Problem model nev-
ertheless in order to find better solutions in practice. If cells important for the overall
placement (i.e. macros) are moved, we need to consider the flexibility of moving other
incident cells. This allows in particular to react to new macro positions in order to max-
imize the worst slack overall. We emphasize that moving non-macros is essential for our
objective. Otherwise the model of distance bounds only is a very inaccurate estimate
for timing properties of legal placements of the complete netlist. Thus we allow moving
C ·∪U ·∪N .

Thereby N is chosen to be close to U ·∪C in the distance bound graph G. We stress
that this is not influenced by the current positions l, but purely depends on distance
bounds Gb . The selection of N is done by a BFS starting from U ·∪C. We restrict the
selection based on the number of induced bounds, the cardinality of N as well as the
maximum distance from U ·∪C in G. The actual numbers are empirically chosen around
5000 depending on the used packing mode pm.

We then optimize worst slack of distance bounds incident to U ·∪C ·∪N . For this
purpose we assume all other rectangles to be fixed at their current positions, i.e. we
formally consider the distance bound graph H :=G/R resulting from contracting R in G
where R :=(U ·∪C ·∪N) and X := V(G) \ X. Note that particularly � ∈ R. By Hb we
denote the distance bound graph for which offsets of contracted endpoints are adapted
based on their currently (fixed) positions.

Compared to our previous model as Rectangle Packing Problem, optimizing worst
slack over Hb is more complicated. In order to compensate for this, we usually reduce the
number of constrained rectangles for the timing-driven PackMacro in practice.

4.3.3 Solving the Timing-Driven Rectangle Packing Problem

We now explain our model of the Timing-Driven Rectangle Packing Problem as
mixed-integer program (MIP). We use the linear program 3.4 as a starting point and
incorporate decision variables for spatial relations. Such a formulation is very obvious and
has e.g. already been used by Sutanthavibul, Shragowitz and Rosen (1990) on very small
instances and without timing constraints.

Recall that an instance (R,ϕ, ψ,A,Gb ) of the Timing-Driven Rectangle Packing
specifies allowed relations ϕ : R × R → P({C,B,O,M}). Note that ϕ is defined to be
anti-symmetric. In order to simplify notation it thus is sufficient to consider relations
Cz ∈ {C,O} where z ∈ {x, y} refers to the affected dimension.

The required spacing for r∼ r′ is denoted by ψ
(
r∼ r′) ∈ R. Based on this spacing

we introduce the shorthand len
(
rCz r′

)
:= len(r, z) + ψ

(
rCz r′

)
, where len(r, z) denotes

the edge length of r in dimension z ∈ {x, y}. Moreover we abbreviate the minimum and
maximum z coordinates of feasible areas A(r) for r ∈ R by zmin(r) and zmax(r) where
z ∈ {x, y}.
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As in program 3.4, we consider fractional variables zr for rectangles positions (r ∈ R,
z ∈ {x, y}) as well as z+

e , z
−
e denoting the borders of distance bound e in dimension z.

In addition to that we introduce binary variables D
(
rCz r′

) ∈ {0, 1} for any allowed
relation Cz ∈ ϕ(r, r′). By D we abbreviate the negation of these binary variables, i.e.
D
(
r∼ r′) := 1−D(r∼ r′) ∈ {0, 1}.
In order to enable or disable certain inequalities based on the decision variables D we

use the method of big M . For this purpose we consider a sufficiently large M ∈ R, e.g.

M :=−max
{
zmin(r)− zmax(r) : r, r′ ∈ R, z ∈ {x, y}

}
.

Equipped with this notation we can formulate the following MIP:
Timing-Driven Rectangle Packing Mixed-Integer Program

max s

s.t. zr ≥ zmin(r)
zr ≤ zmax(r)

(r ∈ R; z ∈ {x, y}) (4.1a)

D
(
r∼ r′

)
∈ {0, 1} (∼ ∈ ϕ(r, r′)) (4.1b)

zr − zr′ ≤M ·D
(
rCz r′

)
− len

(
rCz r′

)
zr − zr′ ≥M ·D

(
rCz r′

)
− len

(
rCz r′

) (Cz ∈ ϕ(r, r′)) (4.1c)

1 ≤
∑

∼ ∈ ϕ(r, r′)
D
(
r∼ r′

)
(r, r′ ∈ R : ϕ(r, r′) 6= ∅) (4.1d)

z−e ≤ zr + z
(
o(r, e)

)
z+
e ≥ zr + z

(
o(r, e)

) (e ∈ δ(r); z ∈ {x, y}) (4.1e)

b(e) ≥ s+
∑

z∈{x,y}

(
z+
e − z−e

)
(e ∈ E(G)) (4.1f)

Constraints 4.1a, 4.1e and 4.1f are carried over from the linear program 3.4. By
constraints 4.1b we enforce binary decision variables one of which is required to be 1 for
any pair of rectangles requiring disjointness by constraints 4.1d.

For enforcing spatial relations in constraints 4.1c, we can use semantic branching. This
technique was first introduced by Armando, Castellini and Giunchiglia (1999–1999) and
first used in the area of rectangle packing by Korf, Moffitt and Pollack (2010). It avoids
redundant assignments to rectangle relations, e.g. for placing r right and above of r′.

For branch-and-bound algorithms semantic branching is a strict improvement. In
a MIP formulation this is not a priori clear: On the one hand, it strengthens the LP
relaxation, especially if decision variables already have been partially fixed. On the other
hand, the negated constraints add extra complexity due to which solving the MIP can
become harder and slower. Based on practical experiments we decided to use semantic
branching: This provides a clear benefit for instances with many rectangles requiring
disjointness and the slowdown on smaller instances is negligible.

Note that due to distance bounds b, that are not necessarily integer, we no longer can
strengthen the inequality for unselected relations. This has been possible e.g. for rectangle
packing under wirelength minimization (cf. Funke, Hougardy and Schneider 2016, Theorem
7).
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Practical MIP solvers need to use floating point numbers. In order to make compu-
tations numerically more stable, we generally need to ensure input numbers to be in a
reasonable interval. For this purpose our implementation uses differing values of big M
for each pair of rectangles

{
r, r′

}
for which ϕ

(
r, r′

) 6= ∅.
Note that we actually can avoid binary variables for pairs of rectangles

{
r, r′

}
with

ϕ
(
r, r′

)
= {∼}. For such pairs, there is only one relation allowed and thus no choice at

all. This can simply be modeled by one constraint similar to 4.1c for D
(
r∼ r′) = 1. Recall

that this applies to any pair of constrained rectangles in our model. Our MIP solver is
capable of deducing this optimization in a pre-processing step, which is why we for reasons
of simplicity use program 4.1 in both theory and practice.

We will now work towards improving our MIP formulation. In order to compare
different variants, we explicitly state the baseline implied by mixed-integer program 4.1:

Proposition 4.4. The Timing-Driven Rectangle Packing Problem can be formu-
lated as mixed-integer program with 2n + 2m + 1 fractional variables, s binary variables
and 4n + 2s + j + 5m constraints where n :=|R|, m :=

∣∣E(G)
∣∣, s := 1

2
∑
r,r′∈R|ϕ(r, r′)| and

j :=
∣∣{{r, r′ } : r, r′ ∈ R, ϕ(r, r′) 6= ∅}

∣∣.
Proof. Certified by the mixed-integer program 4.1. �

As a first improvement, we can avoid the variables z+
e and z−e for computing the

length of bounds e ∈ E(G) entirely. This can be achieved by computing the length of
e by enumerating all four directions d ∈ J4K, which has implicitly already been done in
Definition 3.28 and Proposition 3.31.

Proposition 4.5. The Timing-Driven Rectangle Packing Problem can be formu-
lated as mixed-integer program with 2n + 1 fractional variables, s binary variables and
4n+ 2s+ j + 4m constraints where n, m, s and j are defined as in Proposition 4.4.

Proof. To shorten notation we use the abbreviation z(r, e) := zr + z
(
oe(r)

)
. We consider

the following constraints as replacement for constraints 4.1e and 4.1f:

b(e)− s ≥
∑

z ∈ {x, y}
σdz

[
z(r, e)− z(r′, e)

]
(e =

{
r, r′

}
∈ E(G), d ∈ J4K) (4.2e)

Note that constraints 4.2e do not depend on the ordering of e as we consider all direc-
tions and thus all combinations of signs anyway. We further reference the mixed-integer
program 4.1 with replacement constraints 4.2e as program 4.2.

The righthand side of constraints 4.2e computes the length of e in direction d. By
considering all directions d ∈ J4K, we thereby can correctly limit the worst slack variable
s.

Replacing constraints 4.1e and 4.1f by constraints 4.2e in mixed-integer program 4.2
makes all variables z+

e and z−e for e ∈ E(G) obsolete. Thereby we reduce the number of
fractional variables by 2m and the number of constraints by m. �

But we can even do better than Proposition 4.5. Recall that we only consider local
sub-instances of the Macro Placement Problem as Timing-Driven Rectangle
Packing instances, which has been described in Section 4.3.1.

The overall distance bound graph on all rectangles contains parallel edges. For our
local distance bound graph G in our Timing-Driven Rectangle Packing Problem
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instance, even more parallel edges exist. These edges result from contracting � with
rectangles not considered in these instances.

We define m′ ∈ N as the number of edges in E(G) with distinct endpoints, i.e. formally

m′ :=
∣∣∣∣∣
{{

r, r′
}
⊆ R : ∃e ∈ E(G) with Ψ(e) =

{
r, r′

}}∣∣∣∣∣.
Note that in contrast to the ordinary number of edges m of G, m′ accounts for parallel
edges only once.

Remember that the Timing-Driven Rectangle Packing Problem considers fixed
orientations of all rectangles. Thus we can use Corollary 3.42 and exploit the geometry of
Manhattan arcs in order to handle parallel distance bounds more efficiently:
Proposition 4.6. The Timing-Driven Rectangle Packing Problem can be formu-
lated as mixed-integer program with 2n + 1 fractional variables, s binary variables and
4n+ 2s+ j+ 4m′ constraints where m′ denotes the number of non-parallel edges of G and
n, s and j are defined as in Propositions 4.4 and 4.5.
Proof. Consider the mixed-integer program 4.2 described in Proposition 4.5 as starting
point. Let {r0, r1 } ∈ E(G) and E := E

(
G[{r0, r1 }]

)
the set of bounds between r0 and r1.

We will construct replacements for all constraints 4.2e for e ∈ E.
Using Corollary 3.42 we can equivalently represent all bounds E by two new bounds

e0, e1. Moreover by the constructive proofs of Proposition 3.41 and Corollary 3.42, e0 and
e1 are not arbitrary bounds. In fact we rather know for any placement l of ri

slack(l, E) = slack
(
l,
{
ei : i ∈ J2K

})
= c−

∥∥∥[ l(r0)− l(r1)
]
, A
∥∥∥

1

where A is a Manhattan arc and c ∈ R is some constant. Moreover A contains 0 ∈ R2 and
is rotationally symmetric around 0.

We can compute ‖ · , A‖1 as maximum distance to points in specific directions. Denote
the endpoints of A by a′i ∈ R2 for i ∈ J2K with x

(
a′0
) ≤ x

(
a′1
)
. We further define ad ∈ R2 for

each direction d ∈ J4K as ad := a0 for d ∈ {NW, SW} and ad := a1 for the other directions.
Consequently for any point p ∈ R2

‖p,A‖1 = max


∑

z ∈ {x, y}
σdz · z(p− ad) : d ∈ J4K

.
This can easily be verified by a case distinction whether p ∈ Qd for d ∈ J4K and Qd ⊆ R2

as in the proof of Lemma 3.40 (page 40, visualized in Figures 3.8 and 3.9).
Using this representation of ‖ · , A‖1 we can can bound slack s for all bounds E(G) in

our mixed-integer program by the following constraints

c− s ≥
∑

z ∈ {x, y}
σdz ·

[(
zr0 − zr1

)− z(ad)] (d ∈ J4K). (4.3e)

Note that since A is rotationally symmetric around 0, constraints 4.3e do not depend on the
order of ri. We refer to mixed-integer program 4.3 as the the mixed-integer program 4.2
in which constraints 4.2e have been replaced by constraints 4.3e for all sets of parallel
bounds.

Replacing constraints 4.2e by constraints 4.3e introduces no extra variables and substi-
tutes 4m constraints by 4m′ constraints overall. Consequently mixed-integer program 4.3
is a formulation with the claimed complexity. �
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Figure 4.5: Worst slack optimum solution to the instance presented in Figure 4.4
on Lisa: Rectangles U ·∪C are drawn in blue, r ∈ N movable in orange and fixed in
gray. Distance bounds are drawn as lines connecting respective endpoints colored
by slack. The critical bound in purple is highlighted in the center. Less critical
bounds are drawn in pink and green.

Note that m′ ≤ min
{
n2,m

}
. Consequently Proposition 4.6 implies the first bound on

the number of constraints which is independent from the number of (parallel) bounds.
Recall that the Manhattan arcs for Proposition 4.6 can be computed in linear time

by Proposition 3.41. Consequently formulating program 4.3 requires O(m) pre-processing
time only.
Mixed-Integer Programs Solved in Practice
Next we will elaborate how we make use of mixed-integer program 4.3 in our practical
application. For this purpose consider Figure 4.5 for an illustration of an optimum solution
to this program. It is of special interest that the solution apparently does not minimize
the length of all bounds.

This is due to the fact our solver usually determines a basic solution to the MIP. In
such a solution many constraints of the type of constraints 4.3e are tight. Consequently all
corresponding bounds attain exactly the overall worst slack despite being clearly avoidable.
But for the overall worst slack objective of program 4.3, this is irrelevant. Thus such
solutions are very much expected.

But for our application in practice such solutions are undesirable and complicated to
handle for two main reasons:

• Given such solutions, we are unable to tell which of the bounds actually cause the
overall worst slack. Thus we have less understanding of the underlying timing model
of distance bounds. Finally it makes development of this approach much harder
since we can not validate the worst slack.
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• As explained in Section 4.3.2, the BonnMacro legalization considers local packing
instances only. Thus we depend on reliable positions for all rectangles, particularly
those excluded from the local instance. With that regard worst slack optimum
solutions are unsatisfactory.

We now explain how to handle both of these issues. For each we will change the MIP
model and especially the objective in order to meet our practical requirements.

First we tackle identifying distance bounds that actually determine the overall worst
slack. Let ri(j), ad(j) and cj for j ∈ Jm′K, i ∈ J2K and d ∈ J4K be the constants for
which Proposition 4.6 introduced constraints 4.3e into mixed-integer program 4.3. We
now introduce new fractional variables 0 ≤ ιj ≤ εI for j ∈ Jm′K and a small constant
εI ∈ R.

The idea is to use ιj as artificial term to tighten constraints 4.3e. Advertedly tightening
theses constraints is only possible for uncritical bounds without decreasing the overall
worst slack s. On the other hand, we encourage MIP solutions to maximize ιj by
incorporating it into the objective. Thus we are able to identify uncritical bounds based
on the value of ιj .

Formally this results in the following mixed-integer program 4.4:

max
(
1 +m′

)
· s+

∑
j∈Jm′K

ιj

s.t. Constraints 4.1a to 4.1d (page 63)
0 ≤ ιj ≤ εI (j ∈ Jm′K) (4.4e)

cj − s− ιj ≥
∑

z ∈ {x, y}
σdz

[(
zr0(j) − zr1(j)

)
− z(ad(j))]

(d ∈ J4K, j ∈ Jm′K) (4.4f)

A solution of mixed-integer program 4.4 is visualized in Figure 4.5. Here the ιj variables
have been utilized to identify the overall critical distance bound in purple.

Note that program 4.4 somewhat lexicographically maximizes worst slack s and sub-
sequently ∑j∈Jm′K ιj . Out choice of objective can not guarantee to actually find a solution
precisely attaining the best possible slack s∗ (as e.g. program 4.3 does). But still, any
optimum solution to program 4.4 can only be worse than s∗ by at most εI :

Lemma 4.7. Let (R,ϕ, ψ,A,Gb ) be an instance of Timing-Driven Rectangle Pack-
ing with optimum slack s∗. Any solution

(
s, ιj

)
to the corresponding mixed-integer pro-

gram 4.4 satisfies s ≥ s∗ − εI .

Proof. Assume s < s∗ − εI . This implies(
1 +m′

)
· s+

∑
j∈Jm′K

ιj <
(
1 +m′

)
· (s∗ − εI)+m′ · εI < m′ · s∗.

Note that any optimum solution to the Timing-Driven Rectangle Packing instance
implies a solution of mixed-integer program 4.4 with ι′j :≡ 0. Such a solution has objective
value m′ · s∗. Thus

(
s, ιj

)
is suboptimal which is a contradiction. �
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Figure 4.6: FOM optimum solution to the instance presented in Figure 4.5 on Lisa:
The critical bound in purple is preserved. FOM defining bounds are highlighted in
pink. Most of these have positive slack and thus are not shortest possible.

In practice εI can be chosen as a few nm. An alternative to our objective in program 4.4
would be solving two separate MIPs: One for finding the optimum worst slack s∗ and one
to determine ιj subject to attaining worst slack s∗ overall. But remember that we can
only solve mixed-integer programs numerically and thus can only find an optimum solution
up to a certain error anyway. Since εI can be chosen so small compared to s∗, such an
approach hardly ever is more accurate.

Recall that we tried hard to keep the number of variables and constraints as small as
possible (cf. Proposition 4.6). With that regard introducing variables ιj is undesirable.

On the other hand, these variables have very limited effect on the overall structure of
the MIP, in particular since εI is small. Practical experiments have demonstrated that
solving mixed-integer program 4.4 is not harder than solving program 4.3 while at the
same time solutions provide much more information. This is why we solve program 4.4 in
practice.

Next we want to tackle the second problem illustrated by Figure 4.5. Therefore
we need to determine reliable positions for all rectangles, particularly those irrelevant
from a perspective of worst slack. We do this by another MIP subject to the constraint
of preserving the overall optimum worst slack s∗ determined by solving mixed-integer
program 4.4.

For this purpose we optimize the Figure of Merit (FOM), i.e. the sum of negative slacks
for all rectangles. All rectangle positions contribute to this objective. Most importantly
this applies particularly to those rectangles which have been irrelevant for the worst slack
s∗. This is why FOM is a reasonable secondary objective for our purpose.

To this end we introduce new variables fr for r ∈ R that will denote the worst slack
of any bound incident to r. The FOM can be expressed as sum of these new variables fr.
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This results in the following mixed-integer program 4.5 :

max (1 +m′) ·
∑
r ∈ R

fr +
∑

j ∈ Jm′K

ιj

s.t. Constraints 4.1a to 4.1d (page 63)
s∗ ≤ fr ≤ 0 (r ∈ R) (4.5e)

cj − fr − ιj ≥
∑

z ∈ {x, y}
σdz

[(
zr0(j) − zr1(j)

)
− z(ad(j))]

(d ∈ J4K, j ∈ Jm′K, r ∈ {ri(j) : i ∈ J2K}) (4.5f)

By constraints 4.5e we ensure that no rectangle has slack worse than s∗, i.e. any
solution is required to have optimum worst slack. Using constraints 4.5f we model the
defining property of fr, i.e. denoting the worst slack of any bound incident to r. Similarly
to program 4.4 we honor ιj as additional objective in program 4.5 for identify FOM-defining
connections.

Note that from a timing point of view, all solutions with positive slack are somewhat
identical. There is nothing more to achieve than making all signals arrive in time. Thus
constraints 4.5e bounds fr by 0 from above according to the definition of FOM (cf.
Section 2.2.2, page 8). We also assume s∗ ≤ 0 or equivalently consider min{s∗, 0} as
optimum worst slack.

Mixed-integer program 4.5 lexicographically maximizes overall worst slack, FOM and
sum of ιj . In analogy to Lemma 4.7, we thereby identify the optimum FOM F up to εI
additively. By the same arguments as presented in the context of program 4.4, this error
is negligible in practice.

Finally it is worth mentioning that constraints 4.5e frequently make mixed-integer
program 4.5 infeasible in practice. Solving a MIP is a numerical procedure executed with
errors caused by floating point arithmetic.

Consequently we can not expect to find the same optimum slack s∗ when this value is
expressed differently. To cope with this behavior, we marginally relax s∗ for the purpose
of modelling program 4.5.

A solution to constraints 4.5e is presented in Figure 4.6. In this example most distance
bounds have positive slack, which is why the slack defining pink bounds are not necessarily
shortest.

Optimizing FOM as tiebreaker helps finding reasonable positions for all rectangles.
This applies particularly to rectangles that end up with at least one bound of negative
slack. But there are also cases of totally timing uncritical rectangles for which this is
not the case. Placing these according to a basic solution of program 4.5 can result in
surprising placements that can not be justified by any objective. In addition we prefer
these rectangles to be positioned closed to their input locations in order to minimize the
perturbation of the input.

For this reason we introduce a third program 4.6 as additional tiebreaker. We thereby
minimize the area-weighted (linear) movement to the target locations t(r) ∈ R2 for r ∈ R.
Therefore we introduce new variables mr for r ∈ R describing the movement of r from t(r)
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Figure 4.7: Movement optimum solution to the instance presented in Figure 4.6
on Lisa: The critical bound in purple is preserved. Most cells can be moved towards
their input locations while preserving FOM.

to (xr, yr). By means of additional constraints, we ensure that the optimum worst slack
s∗ as well as the optimum FOM F are preserved. This leads to the following program 4.6:

min
∑
r ∈ R

mr · w(r)

s.t. Constraints 4.1a to 4.1d (page 63), 4.5e and 4.5f
F ≤

∑
r ∈ R

fr (4.6g)

mr ≥
∑

z ∈ {x, y}
σdz ·

[
zr − z

(
t(r)

)]
(d ∈ J4K, r ∈ R) (4.6h)

Effectively program 4.6 is an extension of program 4.5 with a different objective. In-
stead of FOM we now minimize the movement weighted by the area w(r) of the rectangles.
By constraint 4.6g we ensure that the optimum FOM F is preserved. Constraints 4.6h
measures the movement mr of r ∈ R from t(r) to the current location of r. Thereby we
use the same expression as has already been utilized for Proposition 4.5. This is why we
need to introduce |R| new variables only.

As already explained, we solely solve program 4.6 as tiebreaker. Thus we do so with
fixed relations only. For this purpose we fix D

(
r∼ r′) to 1 if this has been the case in

the solution of program 4.5. Recall that for each r, r′ ∈ R with disjointness requirements,
there is such a relation ∼ by constraints 4.1d. Moreover we remove all other, non-true
binary variables D

(
r∼ r′). Thus program 4.6 in fact becomes a linear program and can

be solved more efficiently.

70



4.3. Timing-Driven Macro Legalization

Similar as for solving programs 4.3 and 4.5, we carefully have to ensure numer-
ical stability under floating point arithmetic. Therefore we again need to relax F
slightly to ensure linear program 4.6 is feasible. Additionally we are not allowed to use
w(r) := len(r, x) · len(r, y) directly. We have to scale this weight into a small numerical
range that can be handled reliably by our solver.

An illustration of positions determined by linear program 4.6 is given in Figure 4.7.
We see the same timing-driven rectangle packing instance on Lisa that has already been
considered in Figures 4.5 and 4.6. In this solution many cells can be moved towards their
input locations without decreasing either worst slack or FOM.

Rounding MIP Solutions

BonnMacro operates on integers: All coordinates, widths and heights of any considered
rectilinear shapes are managed as integers. Since all mixed-integer programs presented
in Section 4.3.3 consider fractional variables zr for rectangles r ∈ R and are solved
numerically, we need to round MIP solutions.

Recall that in the case of (non timing-driven) Rectangle Packing optimum integer
solutions exist: If all rectangles, feasible areas and pins have integer coordinates, for
fixed relations the corresponding dual min-cost flow problem has integral input and thus
an integral optimum. Since this applies to spatial relations of any optimum solution in
particular, it implies integral optimum solutions of Rectangle Packing in context of
BonnMacro (Funke, Hougardy and Schneider 2016, Lemma 12).

But integral optima not necessarily exist for Timing-Driven Rectangle Packing
– even with integral input: Consider a path of an even number of distance bounds with
b :≡ 0 connecting fixed points with odd distance. On such an instance all optima are
non-integral. Consequently finding an integral optimum is more difficult.

But on the bright side, fractional solutions can be rounded with marginal slack de-
crease:

Lemma 4.8. Consider an instance (R,ϕ, ψ,A,Gb ) of Timing-Driven Rectangle
Packing with integral coordinates. Let zr for r ∈ R and z ∈ {x, y} be an optimum
solution with slack s∗. Then for any p ∈ [0, 1) the solution z′r :=bzr + pc is feasible and
has slack at least (s∗ − 2).

Proof. Consider the linear program Proposition 4.5 with fixed relations for which zr and
s∗ are optimum. Since b · + pc : R → Z is monotone and the identity on N, z′r satisfies
all feasible area and disjointness constraints. Moreover (zr − zr′) ≤

(
z′r − z′r′

)
+ 1 for any

z ∈ {x, y} and r, r′ ∈ R. Consequently z′ has slack at least (s∗ − 2). �

In practice we have to choose p ∈ [0, 1) carefully in order to apply Lemma 4.8. Note
that an actual MIP solution is determined numerically and thus only feasible up to a
certain precision ε > 0. Thus for example zr := 0 < zr′ < zr + ε satisfy the constraint
zr′ ≤ zr in the numerical sense. But rounding with p :=(1− δ) for δ ∈ (zr, zr′) results in
coordinates z′ with z′r′ > z′r violating this constraint.

Nevertheless this issue can be avoided: Consider all n decimal places di ∈ [0, 1) of
coordinates zr for n := 2|R|. Since ε < 1

2n in practice, we can choose δ ∈ [0, 1) s.t. for all
i ∈ JnK either di < δ− ε or di > δ+ ε. Rounding with respect to p :=(1− δ) consequently
yields an integral solution that also preserves feasibility numerically.
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Finally we remark that the downside of losing 2 in terms of slack by Lemma 4.8 is
minor in practice. This distance corresponds to less than 0.001 % cycle time on all our
instances.
4.3.4 Timing-Driven Local Post-Optimization
Recall that finally once legal positions have been computed PackMacro applies the
local post-optimization Project. Since the latter algorithm explicitly targets movement
minimization, we skip this step for timing-aware packing modes pm.

Nevertheless it is worth mentioning that the following problem can be solved optimally
with respect to distance bound slack in polynomial time: Find a legal, on-grid position for
a single rectangle r ∈ R while considering all other rectangles as fixed blockages. Thus all
distance bounds can be considered as parallel to {r,�}, which is why by Corollary 3.42
the set of optimum off-grid positions is a Manhattan arc A. By the same geometric
decomposition used for Project (cf. Section 4.2.7) if suffices to consider the sub-problem
of placing r into some rectangle X ⊆ R2 without blockages. An optimum on-grid position
in X for r has to be closest to A and thereby can be determined by an integer program.
Note that for this purpose, exactly two integral variables are required in order to model
grid constraints for r. An integer program with exactly two variables can be solvable in
polynomial time. This was first discovered by Scarf (1981a,b) and subsequently generalized
to a constant number of integer variables by Lenstra (1983).

But this problem is relatively insignificant in practice and would mostly be useful as
fallback if the instance creation fails for all other timing-driven packing modes. This is
why it has not been implemented.

Nevertheless changing the orientation of a macro can often improve the overall worst
slack. Although flip-code optimization is explicitly not considered as part of the Timing-
Driven Rectangle Packing Problem, it could theoretically be incorporated in for-
mulations as MIP. Such a MIP would require additional binary variables for all rectangles
R in order to model flip-code choices. In addition the improvements of Proposition 4.6 no
longer apply, since the necessary Corollary 3.42 requires fixed macro orientations. Conse-
quently also many additional constraints are needed in order to model the overall worst
slack s. This is why we expect such an extension by flip-code variables to be impractical
and thus did not implement it.

Despite that, macro orientations are relevant still. Instead of optimizing locations and
orientations together, we consider the easier problem of flip-code optimization for fixed
locations. This we solve greedily for one macro at a time in order to maximize slack locally.
Such an approach is very efficient and thus can be used frequently as post-optimization of
any MIP solution.

4.4 Post-Optimization
In this section we briefly summarize post-optimizations of BonnMacro. Recall that
such procedures are applied to a completely legal macro placement, which in particular is
disjoint and obeys grid constraints. Any post-optimization preserves this property.

The first such step targets unused space for standard circuits. We are able to optimize
free space next to macros by trading additional movement for more whitespace. This is
useful in order to easily facilitate placement of standard cells right next to macros (e.g.
during buffering).

Optimization for whitespace is approached similarly as presented in MacroLegal-
ization: We consider local subinstances and re-optimize spatial relations while allowing
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limited additional movement. The objective is extra free space around macros which
receives higher reward in close proximity of the macros.

This can be modeled in a similar MIP to the one presented in Section 4.2.6. We
just need to consider extra variables for the amount of whitespace around each rectangle.
These variables artificially enlarge the size of the rectangles. Details of this approach have
been presented by Wochnik (2017).

Mixed-integer programs targeting whitespace are considerably smaller and thus easier
to solve than those considered for maximizing distance bound slack. Thus we can apply
this type of post-optimization for our experiments discussed in Section 6.6. The whitespace
made available will ensure that standard logic can be placed between macros, which
is assumed by our distance bound model. In order to preserve the optimized worst
slack overall, we only honor few circuit rows of whitespace and tightly restrict additional
movement.

In addition, we are also able to improve macro alignment. Aligned macro borders
result in straight routing channels. Such structures considerably simplify routing and thus
usually reduce routing congestion.

BonnMacro supports a greedy post-optimization for alignment with bounded addi-
tional movement. We thereby align groups of macros to enforce a shared x- or y-coordinate.
This is achieved by iteratively uniting the closest groups of macros starting with each macro
as singleton group. Details of this approach are presented in Engels (2013).

Since routability is not the primary focus of this thesis, we did not apply alignment
post-optimization here.
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Global Placement

In this chapter we discuss an enhanced version of BonnPlaceGlobal, the global place-
ment component of BonnPlace. BonnPlace is the placement framework of the Bonn-
Tools (Korte, Rautenbach and Vygen 2007), a suite of physical design optimization tools
developed at the Research Institute for Discrete Mathematics of the University of Bonn
in an industrial cooperation with IBM.

An efficient and reliable global placer is essential: It is required for assessing the quality
of a macro placement. For this purpose we fix the positions of all macros and consider the
remaining placement instance as global placement problem (cf. Section 2.2.3). But also
shredded placement discussed in Section 4.1 already relied on BonnPlaceGlobal.

As first ingredient we describe an effective speedup technique in Section 5.1. It serves as
important improvement for instances with large chip images and complicated movebound
structures which particularly arise in early chip design phases.

Afterwards we present our extension of BonnPlace: Self-Stabilizing BonnPlace
(Brenner et al. 2015). It incorporates a partitioning-based legalization into a force-directed
loop by iteratively pulling circuits towards their positions in a legalized placement. This
self-stabilizing algorithm combines the accuracy of partitioning-based methods with the
stability of force-directed placement strategies. It is capable of optimizing netlength as well
as more involved objective functions like routability and timing behavior. We present an
overview of this approach in Section 5.2, before we discuss congestion- and timing-driven
extension in Section 5.3 and Section 5.4.

5.1 Fast Partitioning
BonnPlace is a partitioning-based global placement framework (Brenner, Struzyna and
Vygen 2008; Struzyna 2011, 2013). We also denote this algorithm by partitioning-based
BonnPlace or BonnPlaceGlobal to distinguish it from the version presented in
Section 5.2.

It consists of two major components: An analytical placer that finds locations with
small netlength but significant overlaps and a partitioning algorithm that assigns circuits
to windows of a grid. Both steps are repeated recursively until the grid windows are so
small that remaining overlaps can be resolved locally. The phase of partitioning-based
BonnPlace during which we work on the same grid is called a level.

As analytical placement component, we optimize super-linear approximations of
netlength. We are able to minimize quadratic netlength by solving a linear equation
system with the conjugate gradient method (Hestenes and Stiefel 1952) as described by
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Brenner, Struzyna and Vygen (2008). Moreover due to Struzyna (2013), we can also
use this approach to approximate netlength with the "bound-to-bound" (B2B) netmodel
(Spindler, Schlichtmann and Johannes 2008).

The subsequent partitioning assigns all cells to windows of a grid. This is done under
the constraint that individual windows are not filled with too many cells. As objective we
minimize total weighted cell movement from the analytical placement locations.

As this problem contains Partition, it is NP-complete to even decide whether a feasi-
ble solution exists. Thus we naturally consider the fractional version of partitioning which
is a Hitchcock Problem, i.e. a min-cost b-flow problem on a graph G ⊆ (A ·∪B,A×B)
for sets A and B. Due to Shmoys and Tardos (1993) and Vygen (2005), fractional solutions
can be rounded with minor violation of window capacities.

In the case of partitioning, A :=C and B :=W for the set of grid windows W . By
virtue of recursive partitioning we have O(4d) grid windows in placement level d. Thus
on practical instances with millions of cells, the partitioning problem can not be solved
globally.

Instead we make use of the Flow-Based Partitioning approach (Struzyna 2011):
We first compute globally how cells are moved out of overfull windows. This is done
on a graph on nodes W with constantly many edges per window w ∈ W . Since the
underlying graph does not contain individual cells, the actual movement cost can only
be approximated. But on the upside, such a flow provides the global information that
can subsequently be realized locally. Such local subinstances are solved as Hitchcock
Problems on individual cells and only few neighboring windows.

The actual implementation of BonnPlace used in practice contains multiple further
heuristics, most importantly cell clustering and repartitioning. Since not particularly
relevant here, we only refer to Brenner et al. (2015) and Struzyna (2011) for the details.

5.1.1 Movebound Constraints in Partitioning
From above introduction it is not apparent how to deal with movebound constraints (cf.
Definition 2.12). We now elaborate how those are incorporated into partitioning.

To do this we use the concept of regions: For any window w ∈ W , we consider a
partition of the window w into rectilinear shapes denoted by regions R(w). For the
purpose of partitioning, a region is semantically equivalent to a window. They both
provide an area and a capacity for cells (respecting the target density). Thus we can
equivalently assign cells to regions in preference of windows.

Respecting regions in partitioning has advantages and disadvantages: Clearly regions
provide a more detailed view. In particular movement costs can be modeled more accu-
rately by using multiple regions for a window. Additionally they provide the necessary
flexibility to incorporate movebound constraints as we will discuss shortly. On the other
hand, fine-grained partitions into regions increase the resulting size of min-cost flow in-
stances. Consequently they need be used cautiously in order to control running time.

Next we describe how to respect movebounds by means of regions.

Definition 5.1. Let M be a set of movebounds and R a rectilinear shape. R is M-
homogeneous if R ∩m ∈ {R,∅} for any m ∈ M . If R ⊆ m for an M -homogeneous R
and movebound m ∈M , m is involved in R.

Remember that we use the geometry explained in Section 2.1 (page 3) here, particularly
Definitions 2.1 to 2.4.
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If we consider regions with areas that are M -homogeneous, we can utilize M -
homogeneity in partitioning. More precisely, in this case it is possible to restrict the global
flow-based partitioning graph as well as the local realization instances to assignments of
cells to windows that are feasible w.r.t. movebounds. This can be done by omitting edges
in the resulting min-cost flow instances. The details are described in Struzyna (2010,
2011).

But how can we find regions with these properties? This can be done using the following
important geometric construction:

Definition 5.2. Consider a rectilinear shape R and a set of movebounds M . The M-
homogeneous partition of R is a partition of R intoM -homogeneous, rectilinear shapes
Ri ⊆ R for i ∈ JkK with unique sets of involved movebounds, i.e. R = ⋃

i∈JkKRi.

Note that by Definition 5.2, distinct rectilinear shapes Ri and Rj in anM -homogeneous
partition have different sets of involved movebounds. Since both are M -homogeneous
Ri∩Rj = ∅. This justifies the term partition and demonstrates that the M -homogeneous
partition in fact is unique.

Struzyna (2011, page 43) computes M -homogeneous partitions by explicitly enumer-
ating sets of involved movebounds. The actual implementation prunes subsets of move-
bounds with empty intersections. Nevertheless this approach has running time Ω(2k)
where k denotes the maximum number of movebounds with non-empty intersection. Con-
sequently this algorithm has never been applicable to complicated, overlapping move-
bounds.

At the same time, M -homogeneous partitions can be computed efficiently:

Proposition 5.3. Consider a rectilinear shape R and a set of movebounds M . We can
compute the M -homogeneous partition of R in

O(ρ log ρ+ |M |ω(log ρ+ logω)
)

running time where ρ denotes the size of representations for R and all movebounds m ∈M
and ω is the size of the output.

Proof. We first compute homogeneous rectangles by a standard sweep-line algorithm and
afterwards build a homogeneous partition based on these.

The first part uses a sweep-line on left and right borders of rectangles in representations
of R and m ∈ M sorted by their respective x-coordinates. Upon iterating all events,
we maintain the sweep-line as balanced binary search-tree of y-coordinate intervals that
currently are covered M -homogeneously. Examples of such trees are AVL-trees due to
Adelson-Velsky and Landis (1962) or Red-Black-trees due to Bayer (1972) and Guibas
and Sedgewick (1978). In addition to the y-coordinate intervals, we also track how many
rectangles of each movebound m ∈M are involved in each such interval (e.g. by an array
of length |M |).

Our sweep-line procedure identifies ω M -homogeneous rectangles including involved
movebounds as bitset of length |M | for each of these rectangles. For all events together,
we can update the sweep-line, mentioned counters and the result in O(|M |ω). Sorting all
events initially can be done in O(ρ log ρ) and processing all events thus takes O(|M |ω log ρ

)
running time.

As a second step, we transform this representation into rectilinear shapes with unique
movebound bitsets. This can be done by sorting. Since each comparison of bitsets requires
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O(|M |) running time, sorting takes O(|M |ω logω
)
overall. This implies the stated running

time. �

We would like to point out that theM -homogeneous partition is part of the Hanan-Grid
(Hanan 1966) of the corners of representations of R and m for m ∈M . Thus ω ∈ O

(
ρ2
)

and Proposition 5.3 implies a polynomial time algorithm.
Although initially computed with exponential running time, Struzyna (2011) makes

use of M -homogeneous partitions of windows in order to determine decompositions into
regions. The approach relies on quad-trees due to Finkel and Bentley (1974).

This data structure is very efficient in practice for querying all rectangles intersecting
a given query rectangle. In practice such queries can be answered in ∼O(d+ ω) where
d is the depth of the quad-tree and ω is the size of the result. Nonetheless this can
not be stated more precisely as there are examples known for queries in quad-trees of
depth d on n rectangles requiring O(2d + n) running time. To emphasize this, we use the
∼O(·)-notation for statements on running time involving quad-trees.

In order to compare different approaches for computing regions, we state the status
quo of Struzyna (2011) in the following lemma:

Lemma 5.4. Consider a set W of windows of a grid, M of movebounds and a rectilinear
shape B of blockages. We can partition all windows w ∈ W into M -homogeneous regions
R(w) in

∼O

 ∑
γ∈{β,µ}

[γ log γ ] +
∑
w∈W

(logµ+ µw logµw) +
∑

r∈R(w)
[ log β + βr ]




time, where we denote the size of representations of all movebounds M by µ, those
movebounds m ∈ M with w ∩ m 6= ∅ by µw for w ∈ W , all blockages B by β and
finally those b ∈ B for which r ∩ b 6= ∅ by βr.

Proof. We store movebounds and blockages into separate quad-trees. The running time
for this initialization can be bounded by the first summand.

For any window w ∈W , we thereby can determine the moveboundsMw intersecting w
in ∼O(logµ+ µw) running time. Afterwards we can partition w Mw-homogeneously into
rectilinear shapes wi in O(µw logµw) running time due to Proposition 5.3. Subsequently
we determine R(w) by introducing a region for each wi.

Analogously we also can determine the regions’ capacities: For any region r we query
the blockages within r in ∼O(log β + βr) running time by a single query for the bounding
box of r. For all those rectangles we subtract the area of the intersection with r from the
partitioning capacity of r.

This implies the stated running time overall. �

Struzyna (2011) even chose to introduce separate regions for each rectangle in the
representation of wi. Consequently all regions are defined by single rectangles only. This
was done in order to model movement-costs more accurately when computing the global
cell movement in the first stage of flow-based partitioning.

To get an impression what this can result into, we consider the instance Mia presented
in Figure 5.1. What makes this particular instance challenging in practice is not the pure
number of 85 movebounds. As Figure 5.2 illustrates, the movebounds particularly in the
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Figure 5.1: Overview of Mia with 85 movebounds. Blockages are drawn in gray;
colored shapes represent non-default movebounds.

lower left area of the chip overlap frequently. Thus an M -homogeneous partition of the
chip area contains many elements for all these distinct, tiny intersections.

These in turn need to be modeled by different regions for partitioning. With the origi-
nal approach by Struzyna (2011) this leads to 317 regions in the first level of partitioning.
These regions are visualized in Figure 5.3. In this figure regions are colored purely with
the purpose to differentiate neighboring regions visually. The grid in this level 1 partitions
the entire chip image into 4 windows (that is clearly visible in Figure 5.4).

The downside of this emphasis on precision is apparent: It significantly increases the
complexity of the min-cost flow instances both for the global flow and more importantly for
the local realizations. In the latter case in particular, this is crucial since local realizations
require one edge in the min-cost flow instance for each possible assignment of circuit to
region. Consequently the running time spent on local realization depends super-linearly
on the number of regions.

In practice this effect can especially be observed during the first levels of global
placement. Here windows are fairly large and often intersect a considerable fraction of
all movebounds. This often results in intricate homogeneous movebound partitions and
thus similar regions. Moreover in the first levels, there are only few windows in the grid,
which is why local realizations can barely be computed in parallel. An example where this
can be seen prominently is given in Figure 5.3.

On the other hand, this running time complexity can easily be avoided by restricting
created regions. As indicated in the proof of Lemma 5.4 it is applicable to create a single
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Figure 5.2: Closeup of overlapping movebounds on Mia.

region for each element wi of the M -homogeneous partition of w.
The effect of this change is presented on the same instance Mia in Figure 5.4. The

resulting reduction of 317 regions (cf. Figure 5.3) down to 166 is apparent. As a side effect
Figure 5.4 also clearly visualizes the original grid windows.

5.1.2 Weak Movebound Homogeneity
But this still leaves room for improving the number of regions: Suppose there are two
movebounds m0,m1 ∈ M with m0 6= m1 and mi ∩m′ = ∅ for any m′ ∈ M \ {m0,m1 },
i ∈ J2K. Further assume mi ⊆ w for some window w ∈ W and both i ∈ J2K. Note that
m0 and m1 are allowed to overlap. In this case, the approach of Lemma 5.4 results in (at
least two) distinct regions. Figure 5.4 shows multiple movebounds with this properties
e.g. within the upper left window.

But assigning to either of the regions where mi are involved is actually equivalent for
the purpose of partitioning in this level: As mi ⊆ w, all cells of both mi have to be moved
into w anyway. Due to mi∩m′ = ∅ for m′ ∈M \{m0,m1 }, no m′-cells require capacity in
any mi. Consequently it is not required to distinguish between both mi. Thus we actually
only need a single region for assignments to either of those movebounds inside w.

Note that by unifying all regions where mi are involved, the movement of assigning
mi-cells is modeled less accurately. But by the previous arguments this can never change
the optimum partition into the underlying windows W .

We emphasize that this can only be done due to mi ⊆ w for both i ∈ J2K. Suppose
m0 ⊆ w, m0 ∩m1 6= ∅ but m1 6⊆ w. Here the utilization of m0 ∩m1 as well as m1 ∩ w
depends on the actual movement costs and is unknown in advance. In order to preserve

80



5.1. Fast Partitioning

Figure 5.3: Overview of 317 regions in partitioning level 1 on Mia generated by
the Struzyna (2011) approach. Regions are colored distinctly in order to improve
visual differentiation.

the optimum partition of cells into windows, we thus have to model above parts of w by
distinct regions.

We will now generalize this idea to larger groups of movebounds and elaborate how to
exploit it efficiently. We start by generalizing the notion of movebound homogeneity:

Definition 5.5. Consider a set M of movebounds and a rectilinear shape R ⊆ ⋃m∈M m.
A weakly M-homogeneous partition of R is a partition of R into rectilinear shapes
Ri ⊆ R for i ∈ JkK where Ri ∩ m ∈ {Ri,m,∅} for any m ∈ M and the movebounds
{m ∈M : Ri ∩m 6= ∅} involved in Ri are unique to Ri for any i ∈ JkK.

The partition
{
Ri : i ∈ JkK

}
is said to have cardinality k.

Weakly M -homogeneous partitions can be utilized for the purpose of global partition-
ing during placement. We partition every window w ∈ W of the placement grid weakly
M -homogeneously. As indicated before, it is sufficient to introduce one region for any el-
ement Ri of such a partition. Consequently minimizing the cardinality of these partitions
is an important objective.

(Strongly) M -homogeneous movebound partitions are also weakly M -homogeneous,
so we know such partitions exist. But in contrast to their strong counterparts, a weakly
M -homogeneous partition is neither unique nor has unique cardinality. Finding a weakly
M -homogeneous partition with minimum cardinality is an optimization problem. Next
we discuss how to solve this problem optimally.
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Figure 5.4: Overview of 166 regions in partitioning level 1 on Mia generated
based on M -homogeneous partitions of all windows using Lemma 5.4.

Definition 5.6. For a setM of movebounds the movebound graph GM is the directed
graph GM :=(M,EM ) where

EM :=
{

(m0,m1) : mi ∈M, m0 ∩m1 6= ∅, m1 6⊆ m0
}
.

Definition 5.6 is motivated as follows: Consider a weaklyM -homogeneous partition Ri
for i ∈ JnK of rectilinear shape R. Suppose m ∈ M satisfies m 6⊆ Ri for any i ∈ JnK but
m ∩ R 6= ∅. If (m,m′) ∈ EM , m ∩m′ and m′ \m 6= ∅ must be covered by a different Ri
by weak movebound homogeneity. Consequently also m′ satisfies m′ 6⊆ Ri for any i ∈ JnK.

We now elaborate formally, how this reduces the identification of certain important
movebounds to a reachability problem in GM . As a first step, we examine a particular set
of moveboundsM ′ ⊆M which are sufficient for finding weaklyM -homogeneous partitions:

Proposition 5.7. Consider a set of moveboundsM and a rectilinear shape R ⊆ ⋃m∈M m.
Let M ′ ⊆M be the movebounds reachable from

S :={m ∈M : m ∩R 6= ∅, m 6⊆ R}

in GM . Further define M∗ :=M ′ ·∪{m∗ } for an artificial movebound m∗ with m∗ :=R \⋃
m′∈M ′m

′.
In this context any (strongly) M∗-homogeneous partition Ri of R is weakly M -

homogeneous.
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Proof. For m′ ∈ M ′ we have Ri ∩ m′ ∈ {∅, Ri } ⊆
{
∅, Ri,m′

}
for any Ri by strong

M ′-homogeneity of Ri.
Otherwise m ∈M \M ′, for which we claim Ri ∩m ∈ {∅,m} for any Ri: As m 6∈M ′,

for any m′ ∈M ′ we have (m′,m) 6∈ EM by choice of M ′. By Definition 5.6 of GM , for any
m′ ∈ M ′ thus either m′ ∩m = ∅ or m ⊆ m′. By definition this is also the case for m∗.
Consequently m is strongly M∗-homogeneous. If Ri ∩m = ∅ there is nothing to show.
Otherwise m ⊆ Ri as both Ri and m are strongly M∗-homogeneous. �

Note that by choice of m∗ in Proposition 5.7, R ⊆ ⋃m∈M∗m. Thus a strongly M∗-
homogeneous partition of R exists.

Next we extend the motivation for Definition 5.6 of GM inductively. This establishes
a lower bound on the cardinality of any weakly M -homogeneous partition:

Lemma 5.8. Consider a set of movebounds M , a rectilinear shape R ⊆ ⋃
m∈M m and

S,M ′ ⊆ M as defined in Proposition 5.7. Further let Ri for i ∈ JnK be any weakly M -
homogeneous partition of R. In this case Ri ∩m′ ∈ {Ri,∅} for all m′ ∈M ′ and i ∈ JnK.

Proof. Let m′ ∈ M ′. We assume m′ ∩ R 6= ∅ as otherwise there is nothing to show. By
definition of M ′ there is a path P = (m0, . . . ,mk,m

′) in GM where m0 ∈ S. We use
induction on the length of a shortest such S-m′-path P .

For the induction basism0 = m′ and thusm′ ∈ S. By definition of S we havem′\R 6= ∅
which implies m′ ∩Ri 6= m′ for any Ri ⊆ R. As Ri is a weakly M -homogeneous partition,
Ri ∩m ∈ {Ri,∅}.

In the induction step Ri ∩mk ∈ {Ri,∅} for any Ri. By choice of P as shortest S-m′-
path, we have m′ 6∈ S. As m′ ∩R 6= ∅, this implies m′ ⊆ R. By the edge

(
mk,m

′) ∈ EM ,
we obtain ∅ 6= mk ∩m′ ⊆ m′ ⊆ R and m′ 6⊆ mk.

As Ri for i ∈ JnK are a partition of R, there is an Rj with Rj ∩ mk ∩ m′ 6= ∅. By
induction hypothesis Rj ∩mk = Rj . As m′ 6⊆ mk, m′ \mk 6= ∅ by which m′ \Rj 6= ∅ i.e.
Rj ∩m′ 6= m′. As Rj ∩m′ ∈ {∅,m′, Rj } due to weak movebound homogeneity, we must
have Rj ∩m′ = Rj . As Ri for i ∈ JnK are a partition of R and particularly disjoint to Rj ,
there is no Ri with Ri ∩m′ = m′. Thus Ri ∩m′ ∈ {∅, Ri }. �

We can use this lower bound of Lemma 5.8 to analyze the construction of Proposi-
tion 5.7. As it turns out, this weakly M -homogeneous partition in fact has minimum
cardinality:

Theorem 5.9. Consider a set of movebounds M and a rectilinear shape R ⊆ ⋃m∈M m.
The weakly M -homogeneous partition constructed in Proposition 5.7 has minimum cardi-
nality.

Proof. Let M∗ as defined in Proposition 5.7. By Lemma 5.8 any weakly M -homogeneous
partition of R is strongly M∗-homogeneous. By Definition 5.2 strongly M∗-homogeneous
partitions are unique and particularly have unique cardinality. Consequently the (unique)
cardinality of a strongly M∗-homogeneous partition of R is a lower bound on the mini-
mum cardinality of any weakly M -homogeneous partition of R. Since the partition of
Proposition 5.7 attains this lower bound, it has minimum cardinality. �

Using Theorem 5.9 we can compute weakly M -homogeneous partitions as fast as
strongly ones:
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Corollary 5.10. Consider a set of movebounds M and a rectilinear shape R ⊆ ⋃m∈M m.
We can compute a weakly M -homogeneous partition of R with minimum cardinality

O(ρ log ρ+ |M |ω(log ρ+ logω)
)

where ρ denotes the size of representations for R and all movebounds m ∈M and ω is the
size of a representation of the strongly M -homogeneous partition of R.

As we discuss shortly, we did not implement the algorithm of Corollary 5.10. Instead
we make use of a simpler approach which suffices in practice. Thus Corollary 5.10 is not
central, which is why we only outline essential ideas of a technical proof here:

Proof (sketch). We can adapt the sweep-line algorithm of Proposition 5.3 to compute
a graph G = (M,E) with the following properties: G has O(ω) edges and for any
m0,m1 ∈ M there is a m0-m1-path in G if and only if there is one in GM . Thus we
can compute M ′ ⊆ M reachable from S (cf. Proposition 5.7) in G instead of GM which
takes O(ω) running time.

Finally by Theorem 5.9 it is sufficient to compute a stronglyM∗-homogeneous partition
(cf. Proposition 5.7). As R ⊆ ⋃m∈M∗m, this partition exists. It can be computed in the
stated running time by Proposition 5.3. �

As mentioned, in practice we avoid making our sweep-line implementation even more
involved. Instead of M ′, we work with a superset N with M ′ ⊆ N which is easier
to compute: We again start with the M -homogeneous partition Ri for i ∈ JnK of A.
Afterwards we determine connected components in a modified, undirected movebound
graph G′M :=

(
M,E′M

)
where

E′M :=
{{m0,m1 } : mi ∈M,m0 6= m1 and m0 ∩m1 6= ∅

}
.

By traversing all Ri and their involved movebounds, we can identify N as the nodes
reachable from S in G′M . In particular, we thereby can avoid constructing G′M explicitly.
Using the well-known union-find data structure (Tarjan 1975) this takes O(ω · α(|M |)),
where α denotes the inverse Ackermann function.

Recall that by Definition 5.6 the movebound graph GM is directed and only introduces
edges under additional requirements. Consequently M ′ ⊆ N as claimed.

With the usual artificial movebound, we can actually determine a strongly N∗-
homogeneous partition from Ri. This can be done by sorting all rectangles in repre-
sentations of all Ri and has already been elaborated in the second part of the proof of
Lemma 5.4. Since M ′ ⊆ N , the result of this operation is strongly M∗-homogeneous and
thus in fact weakly M -homogeneous by Proposition 5.7.

Since M ′ ⊆ N , the result of our implementation is not necessarily a partition of
minimum cardinality. But this de facto is not a huge restriction, since the circumstances
of extra movebounds in N \M ′ happens rarely in practice, in particular not at all in the
experiments presented in Section 6.2.
5.1.3 Weakly Movebound Homogeneous Regions
We can use Corollary 5.10 in each window w ∈ W to find a set of regions R(w) that is
minimum for modelling partitioning accurately globally. This can be achieved using the
approach of Lemma 5.4 while substituting the strongly M -homogeneous partition by a
weakly one.
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Figure 5.5: Overview of 70 regions in partitioning level 1 on Mia generated based
on weakly M -homogeneous partitions of the windows.

This improves the number of created regions drastically. To illustrate this, we recon-
sider the instance Mia for which different region creation algorithms have been depicted in
Figures 5.3 and 5.4. The 70 regions generated based on weaklyM -homogeneous partitions
of the windows are shown in Figure 5.5. As initially intended, we can clearly identify large
groups of former regions that could be elided by making use of weak M -homogeneity.

Although the output of this approach is optimum in the sense of Theorem 5.9, it
can not be computed quickly. Computing regions so far requires querying movebounds
and blockages for each w ∈ W . Due to the recursive nature of partitioning based global
placement, we can have millions of windows – especially in the last levels and especially
on chips with large chip area.

But we can avoid using any quad-trees for this purpose whatsoever. Instead we exploit
the grid structure of the windows W , which we have not done at all so far.

Proposition 5.11. Consider a set of movebounds M in chip area A and a set of grid
windows W subdividing A. We can partition all w ∈ W into weakly M -homogeneous
regions R(w) with minimum cardinality in

O
(
µ logµ+ |M |γ(logµ+ log γ) +

(
γ + |M |) log|W |+ ω

)
running time, where ω is the size of representations of the output R(w) for all w ∈W , µ is
the size of representations for all movebounds m ∈M and γ is the size of a representation
for the (strongly) M -homogeneous partition of A.
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Proof. Let S :={m ∈M :6 ∃w ∈W with m ⊆ w} and M ′ ⊆M the movebounds reachable
from S in GM . S and M ′ are the union of all Sw and M ′w used for finding weakly M -
homogeneous partitions of w in Theorem 5.9. Further we specify the artificial movebound
m∗ by m∗ :=A \⋃m∈M ′m and denote M∗ :=M ·∪{m∗ }.

Let Hi for i ∈ JnK be a strongly M∗-homogeneous partition of A. By Theo-
rem 5.9, for each w ∈ W the partition Hw :=

{
Hi ∩ w : Hi ∩ w 6= ∅, i ∈ JnK

}
is weakly

M -homogeneous and has minimum cardinality. We will define regions R(w) according to
the partition Hw of w ∈W .

We do so by using the grid structure of W as follows: For any point p ∈ A, we can find
a window w ∈W containing p by binary search in O(log|W |) running time. If p is exactly
on the border between neighboring windows, there can be up to four such windows.

We can determine whether m ∈ S by checking m ⊆ w for a single w ∈ W : If such a
w exists, it is a window closest to the center of m. Thus we detect m ∈ S by checking all
those constantly many closest windows. This takes O(µ+ |M | log|W |) running time for
all movebounds together.

Next we use Corollary 5.10 to compute the graph G with O(γ) edges containing a m0-
m1-path if and only if the movebound graph GM does so. Thus we determine M ′ as the
movebounds reachable from S in G in O(γ) running time. By Corollary 5.10 computing
G and all Hi can be done in O(µ logµ+ |M |γ(logµ+ log γ)

)
running time.

Afterwards for each rectangle h ∈ Hi and each i ∈ JnK, we traverse all windows w
intersecting h. Again we can find those windows by binary search exploiting the grid
structure of W in O(log|W |) running time. For each such pair (h,w) we either introduce
a new region in R(w) or add h ∩ w to r of an existing region r ∈ R(w) for Hi. This
consumes O(γ log|W |+ ω

)
running time overall. �

In order to complete the construction of regions, we also need to consider blockages,
which Proposition 5.11 does not do so far. We have two options to incorporate blockages:

It would be possible to subtract blockages B from the overall chip image A before
applying Proposition 5.11. This is an elegant solution, but increases both γ and ω in the
running time. In particular this can increase the complexity of the decomposition of w
into r for r ∈ R(w), even for w ∈W not intersecting B.

In order to avoid this effect, we first apply Proposition 5.11 and afterwards subtract
blockages from regions. On the one hand, this introduces the overhead of finding these
regions that intersect B. On the other hand, we thereby avoid any side effects on regions
disjoint from B. This approach has the following running time:

Lemma 5.12. Consider a rectilinear shape B of blockages represented by rectangles bi for
i ∈ JnK. Let R(w) be regions for all windows w ∈W of a grid. We can compute r \B for
all r ∈ R(w) and w ∈W in

∑
i ∈ JnK

log|W |+
∑

r ∈ R(w) : w ∩ bi 6= ∅
ρr


running time, where ρr denotes the size of a representation of r.

Proof. We process each bi one after another. For each i ∈ JnK we compute the set
Wi :={w ∈W : w ∩ bi 6= ∅} in O(log|W |) running time using binary search on W . This
argument has already been discussed in the proof of Proposition 5.11. Subsequently we
iterate all r ∈ R(w) for w ∈Wi and subtract bi from r in O(ρr) running time. �
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Both Proposition 5.11 and Lemma 5.12 reflect the running time of our actual imple-
mentation. We now discuss two purely theoretical improvements that are not used in
practice:

First of all, we can avoid binary search entirely: All windows, regions and blockages
have integer coordinates. For each dimension separately, finding the grid line next to a
given coordinate x ∈ Z thus can be accomplished inO(1) using a lookup table. This lookup
table though is very large, namely linear in width and height of A (which is exponential
in the input). Practical experiments showed that the overhead of populating the lookup
table outweighs the speedup for querying windows. Thus we use binary search both in
theory and practice.

Secondly Lemma 5.12 always traverses all regions of the windows Wi while actually
only those intersecting bi would be sufficient. Querying those regions efficiently is not an
easy task. Falling back to one quad-tree for each window w ∈ W storing region areas for
r ∈ R(w) is not an option: r is a rectilinear shape which can not be stored in general
and storing BB(r) instead still leads to regions considered unnecessarily. Moreover the
overhead of managing separate quad-trees for each w ∈ W would be drastic – especially
in the last levels of global placement.

Finally the overhead is expected to be minor overall: In the first levels, there are few
regions altogether and even considering all of them for each bi would be manageable. In
contrast to this we have millions of regions in the final levels of global placement. But here
each window consists of very few regions, usually even only a single one. Thus the number
of unnecessarily considered regions remains small. This is why we use the approach in
practice exactly as described in Lemma 5.12.

Now we want to compare the region construction in Lemma 5.4 against Proposition 5.11
plus Lemma 5.12: Clearly the latter combination finds strictly superior regions for par-
titioning. It computes regions R(w) with weakly M -homogeneous areas with minimum
cardinality. Even though we do not guarantee minimum cardinality in practice, we still
demonstrated to significantly reduce the number of regions.

Besides output quality, also the required running time is preferable: For a start, the
running time can be stated precisely as it does not use quad-trees any longer. Furthermore
both Proposition 5.11 and Lemma 5.12 avoid all operations done for each and every w ∈W
and r ∈ R(w) respectively. As a consequence this combination is very valuable in practice
– especially in the last levels of global placement. A detailed comparison of different region
construction paradigms is presented in Section 6.2.

Finally we’d like to close this section by a few practical remarks:
BonnPlace supports non-uniform target densities. This is modeled by certain

density-rectangles d ⊆ A specifying a deviating target density inside d. We incor-
porate these similarly as blockages are handled in Lemma 5.12. The only difference is
that we alter the capacity of r ∈ R(w) instead of reducing r.

Furthermore computing regions for partitioning not only requires to calculate capacities
only. In addition we also need to find the center of gravity of r for each region r. This
can easily be computed during a final step as the weighted average of centers of a ∈ r
weighted by a’s area. But this is computationally difficult as it averages products of 32-bit
and 64-bit integers (the areas). Those products can not be represented by 64-bit integers
which is the maximum available to us. In order to overcome this, we compute those
products as floating point numbers and make use of the compensated summation method
of Kahan (1965). This makes the error of summing n floating point numbers independent
of n (Higham 1993).
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Algorithm 5.1: Self-Stabilizing BonnPlace
Input : Cells C.
Output: Locations pos(c) for all cells c ∈ C.

1 pos :≡ 0, iter := 0
2 while not BreakCondition(pos, iter) do
3 foreach c ∈ C do
4 Connect c to a new pin at position pos(c) via a virtual net of weight

0.01 · iter.
5 Partitioning-based BonnPlaceGlobal
6 BonnPlaceLegalization
7 Delete virtual nets
8 if timing_optimization_enabled then
9 BonnLayerAssignment

10 BonnRefinePlace
11 BonnPlaceLegalization
12 if routability_driven_placement_enabled then
13 CongestionAvoidance
14 Store current placement as pos, iter := iter + 1

5.2 Self-Stabilizing BonnPlace
We now present the self-stabilizing BonnPlace framework (Brenner et al. 2015) for
Global Placement. This framework is a versatile algorithm based on various com-
ponents of the BonnTools suite (Korte, Rautenbach and Vygen 2007) developed at the
Research Institute for Discrete Mathematics of the University of Bonn. It can optimize
netlength as well as timing properties (Section 5.3) and routability (Section 5.4).

Self-stabilizing BonnPlace combines the two strongly opposing placement strategies
described in Section 2.4: force-directed and partitioning-based placement. In essence we
perform multiple iterations of global placement followed by (standard cell) legalization.
In our case this is BonnPlaceGlobal plus BonnPlaceLegalization.

Each iteration learns from previous ones. The insights gained in past iterations are
transferred purely via virtual nets which we call forces. We thereby artificially pull
cells towards some position derived from former iterations. Algorithm 5.1 outlines this
placement strategy.

This approach provides the flexibility to incorporate multiple optimizations for var-
ious placement objectives and constraints. We demonstrate how our placement scheme
stabilizes towards a solution meeting opposing placement goals. This justifies the name
Self-Stabilizing BonnPlace.

5.2.1 General Framework
A key ingredient of our tool is the partitioning-based global placement algorithm Bonn-
PlaceGlobal (Algorithm 5.1, line 5). As described in Section 5.1, BonnPlaceGlobal
iterates analytical placement and flow-based partitioning in multiple levels.

The analytical placement, which is computed in the very first level 0 of each iteration,
is of particular interest. In this level the placement grid is trivial i.e. contains only a
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single window. Referring to the notion of SimPL (Kim, Lee and Markov 2012, 2013),
the remainder of BonnPlaceGlobal plus BonnPlaceLegalization can be seen as
legalization of this initial placement.

Over the course of iterations, level 0 placements contain fewer overlaps (cf. Figures 5.6
and 5.7 and Section 6.3). The extended spreading predicts inevitable distortions for achiev-
ing legality. It also helps BonnPlaceGlobal anticipating the effects of partitioning
decisions more accurately. On the other hand, those level 0 placements still optimize net-
length on a global scale. Consequently in later iterations we can legalize these locations
with fewer movement and smaller netlength increase.

BonnPlaceGlobal (Brenner, Struzyna and Vygen 2008; Struzyna 2011) optimizes
(weighted) quadratic netlength using the clique-netmodel for nets with few pins and the
star-netmodel otherwise (Brenner and Vygen 2001). For pure netlength minimization we
instead make use of a combination of the bound-to-bound net model (B2B) with a super-
linear distance scaling factor (Struzyna 2013). As of iteration one, we use the current
placement to determine the outer pins of nets for the B2B net model. Thus we can avoid
the computation of multiple QPs with B2B in order to stabilize the solution.

The result of BonnPlaceGlobal respects the target density accurately, but con-
tains overlaps that need to be resolved locally. For this purpose we use Bonn-
PlaceLegalization of Brenner (2012) (Algorithm 5.1, line 6). This algorithm mini-
mizes quadratic movement by incrementally clearing overlaps similar to the Successive
Shortest Path Algorithm (Edmonds and Karp 1972; Tomizawa 1971).

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 5.6: Spreading of cells on Renaud in the first analytical placement in the
first four iterations. Each cell location is drawn as single blue point.

In the first iteration (iter 0) of our self-stabilizing global placer, we do not know
any legal placement. Thus we skip introducing any forces whatsoever. Afterwards the
forces (cf. Section 5.2.2) are respected throughout BonnPlaceGlobal i.e. they affect
the solution in each level and not only the global analytical placement in level 0.

In contrast to other force-directed approaches, we spend more running time for a single
iteration. On the other hand, each iteration not only results in a placement respecting all
constraints (legality, movebounds, target density, blockages cf. Section 2.2) but also is of
high quality (Struzyna 2011, 2013).

This allows us to reduce the number of iterations drastically: SimPL (Kim, Lee and
Markov 2012, 2013) requires∼50 iterations, ePlace (Lu, Chen et al. 2015) even more than
250. In contrast, for self-stabilizing BonnPlace depending on additional optimization
objectives (Sections 5.3 and 5.4) 5 to 15 iterations suffice. We optimize elaborately and
thus reliably in each iteration, which allows a steeper increase of forces.
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5.2.2 Forces
In our placement algorithm, forces are used to transfer information and to stabilize the
placement procedure. The higher the quality is of information that we get from earlier
iterations, the greater is the efficiency of forces. We spend much effort on legalizing each
analytical placement to a solution of high quality. Transferring this kind of collected
information by means of forces is effective.

(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 3

Figure 5.7: Spreading of cells on Franziska in the first analytical placement in the
first four iterations. Each cell location is drawn as single blue point.

We add forces at the beginning of an iteration (Algorithm 5.1, lines 3 to 4). For
this construction of forces we can use placement information pos stored at the end of the
previous iteration (Algorithm 5.1, line 14). The first iter 0 is performed without forces.
During each subsequent iteration iter > 0 of self-stabilizing BonnPlace, there is exactly
one force pulling at each cell.

Forces are modeled as artificial two-terminal nets connecting any cell to some fixed
position on the chip. Those nets are handled exactly the same way as regular nets. In
particular artificial nets affect the distribution of cells during the analytical placements,
but have no (direct) influence on other steps minimizing movement, e.g. flow-based parti-
tioning.

For each cell c in the set of circuits C, the artificial force-net is connected to the center
of c. The fixed pin of the force-net is located at pos(c), i.e. the location of c determined in
the previous iteration. This position is called the target point of the force pulling at c.
We have experimented with different target points incorporating further past iterations,
but this could not improve practical results (Hoppmann 2014).

The weight of force nets increases in each iteration to stabilize the placement. Higher
stability is expressed by decreasing cell movement between two consecutive iterations
and converging analytical and legalized placement netlengths. On the one hand, forces
have to be very effective. As we legalize analytical placements with high effort, we want
to transfer as much of the information gained in previous iterations as possible. In
particular we should induce a significant cell spreading in the analytical placement of
subsequent iterations. On the other hand, force weights need to be chosen such that
artificial nets are not predominant for netlength minimization. We need to provide
guidance, while guaranteeing enough flexibility for our partitioning-based global placer
BonnPlaceGlobal.
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We achieve this by a weight of 0.01 · iter. The average non-artificial net weight is
1. Thus our choice of force-weights defines a 1 %-increase in each iteration compared to
the standard net weight. Different uniform and non-uniform force weights provided no
benefits in practice for minimizing netlength (Hoppmann 2014) which is why we stick to
this simple scheme. Increasing force-weights non-uniformly is of particular interest for
optimizing timing characteristics and will be discussed in Section 5.4 in detail.

The impact of forces to the quadratic placement is shown in Figures 5.6 and 5.7 on
two industrial designs. We see the analytical placement computed in level 0 of Bonn-
PlaceGlobal, where we only have one window representing the whole chip area. We
show the these solutions over the course of the first four iterations (iter ∈ J4K). The spread-
ing is already significant, but far from giving a legal solution. This demonstrates how we
are able to balance increased spreading and freedom for BonnPlaceGlobal. Although
we are able to provide significant guidance and enforce stability, we still leave considerably
many choices for this partitioning-based placer.

When a legal placement is found, we delete forces (Algorithm 5.1, line 7). In the
following iteration, new forces will be computed.

5.2.3 Breaking Conditions
The general breaking condition for the overall loop is a user-specified maximum number of
iterations – typically around 5 to 10. But the Self-Stabilizing BonnPlace framework
is very flexible and allows further extensions.

In order to save running time, we can skip remaining iterations based on the cells’
movement in the last iterations. As future iterations with higher force weights are expected
to deviate less from previous placements, we anticipate to miss little improvement.

As we will demonstrated in Section 6.3, optimization objectives vary non-monotonically
over the course of iterations. Thus we require the full number of iterations when aiming
for the best quality possible.

On the other hand, this is not always the actual objective in chip design. Depending
on the stage of the design process, sometimes placement algorithms are used to decide
whether a given netlist can be placed routably or with specified slack. We can easily
incorporate criteria to end our algorithm prematurely whenever a placement of sufficient
quality is known.

5.3 Routability-Driven Placement
Besides minimizing netlength, our placer is able to improve the routability of a chip. The
main idea is to dynamically reduce placement density wherever routing becomes difficult.
We achieve lowered placement density by artificially increasing the size of cells in such
sectors of the chip.

Our CongestionAvoidance routine (Algorithm 5.2) is called at the end of each
iteration (Algorithm 5.1, line 13) of Self-Stabilizing BonnPlace. The result of this
algorithm, namely new sizes for all cells, serves as input for the following iteration.
Updated sizes of cells affect global density, i.e. inflated cells consume more capacity during
flow-based partitioning. On the other hand, those size updates never change the actual
physical outline of a cell.

CongestionAvoidance consist of two major components: congestion estimation
(line 1) and density adjustment (lines 2 to 12). In the following we discuss both those
steps.
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Algorithm 5.2: CongestionAvoidance
Input : Grid G, cells C, locations pos(c) for c ∈ C, target/critical wire density

tgt/crit.
Output: Adjusted size(c) for all c ∈ C.

1 Use BonnRouteGlobal as congestion estimation on G
2 while congested_edge_percentage < 10% and crit > tgt do
3 crit := max{tgt, crit− 5 %}
4 foreach tile window w ∈ G do
5 Compute criticality(w) w.r.t. crit
6 Choose a ∈ [0, 1]
7 foreach tile window w ∈ G do
8 foreach cell c ∈ w do
9 if criticality(w) > 0 then

10 size(c) := size(c) + a · inflate(c, w)
11 else if criticality(w) ≤ 0 then
12 size(c) := size(c) + shrink(c, w)

13 return size

5.3.1 Congestion Estimation
We use an actual global router for estimating congestion (Algorithm 5.2, line 1). Such
an algorithm roughly decides how nets are routed, but avoids finding a routing that is
actually legal w.r.t. various distance constraints. In particular it determines a prediction
of the number of wires crossing certain areas of the chip. We measure congestion based
on this global routing.

Note that during Self-Stabilizing BonnPlace (cf. Algorithm 5.1) Congestion-
Avoidance is always applied to a legal placement. A global routing engine works best
on legal placements, as predicting congestion accurately is much harder otherwise. Thus
also CongestionAvoidance benefits from the effort spent on legalizing the placement
thoroughly.

The global router we rely on is BonnRouteGlobal (Müller, Radke and Vygen
2011). This tool considers a coarse three-dimensional grid that partitions the routing
area on all layers. In this grid the global routing problem can be modeled as Min-Max
Resource Sharing Problem where resource allocation (routing capacity along grid-
edges) is balanced among customers (nets). Assuming individual nets can be routed near-
optimally, this approach is proven to find near optimum solutions for the overall global
routing problem very efficiently.

Moreover this algorithm is also very relevant in practice. In particular it is used in
multiple stages of the IBM chip design process, most notably as first step of detailed
routing (Ahrens et al. 2015; Gester et al. 2013).

For our congestion analysis we align the global routing grid to the placement grid. As
a consequence BonnRouteGlobal estimates exactly the routing requirements caused
by our partition of cells into windows. In order to limit running time, we avoid using
the grid of the final placement level. Instead we use a coarser grid, more precisely of the
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5.3. Routability-Driven Placement

maximum level during which windows exceed a user-specified number of routing tracks.
Naturally we need a fast congestion estimation that can be computed frequently. For

our purposes we also prefer a rough, pessimistic estimation over a more accurate and
possibly optimistic one. This is due to the fact that we want to optimize our placement
to be routable easily, rather than barely and with huge effort. Considering a pessimistic
routing estimation more clearly shows where we need to improve the placement.

Thus we adjust standard BonnRouteGlobal in two ways for our purposes: On the
one hand, we reduce the number of phases of the Resource Sharing Algorithm to a
single one. On the other hand, we route each net with artificially restricted search space.
Instead of leaving the freedom to route it arbitrarily (possibly with large detour to avoid
congestion hotspots), we narrow the search space to the net’s bounding box (plus few
grid windows). Due to this, routing hotspots can be observed more clearly. Due to both
choices, we lose theoretical guarantees but make this approach viable in practice.

5.3.2 Density Adjustments
With a congestion estimation at hand, Algorithm 5.2 adapts the density of the placement.
This is done in two steps similar to Brenner and Rohe (2003): assigning each window
of the grid a routing criticality (lines 2 to 5) and distributing inflations based on this
criticality (lines 7 to 12). We now elaborate those steps.

In contrast to Brenner and Rohe (2003), CongestionAvoidance manages a dynami-
cally adapting congestion target crit. We lower crit maximally towards tgt s.t. at least 10 %
of the routing edges have a congestion of at least crit. Here tgt denotes a user-specified
congestion target which is usually chosen around 80 % to 90 %.

Based on this congestion target crit and the actual estimated routing congestion, we
determine routing edge criticalities. These edge criticalities in the interval [0, 1] are derived
by mapping congestion below crit to 0, above l to 1 and interpolating linearly in [crit, l ].
Here l denotes a user-specified congestion cutoff (usually 130 %).

Afterwards we designate criticality(w) ∈ [0, 1] to the grid windows (lines 4 to 5).
These criticalities are chosen as the average of pin density in w and the edge criticalities
of incident routing edges of w.

But inflations can not only be increased, but also reduced. In order to downsize cells
in a window, all adjacent edges are required to have criticality 0. If this is the case, we
similarly interpolate a routing edge uncriticality in [−1, 0] where congestion crit is mapped
to 0 and congestion 0 % to −1. Based on this, criticality(w) ∈ [−1, 0] is averaged as before.
Reducing cell inflation is essential to recover space in uncongested sectors of the chip.

The distribution of inflations is performed in analogy to Brenner and Rohe (2003)
(lines 7 to 12). At this point we have computed criticality(w) ∈ [−1, 1] for each window
w. We then compute the area increment of w as

criticality(w) · ι ·
∑
c∈w

size(c)

where ι is a user-specified inflation emphasis (usually 80 %). This area increment of w is
then distributed to c ∈ w proportionally to the number of pins of c. We thereby ensure
that no cell is shrinked below its original size.

In order to ensure that the inflated cells can still be placed on the chip at all, we
initially choose a maximum scalar a ∈ [0, 1] for which this is possible. This scalar applies
to all inflations and shrinkages of any cells.
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Adapting the criticality threshold crit is essential. On the one hand, it results in
cautiously computed inflations that targeted congestion hotspots precisely. On the other
hand, we crucially aim at reducing congestion globally towards tgt, even below 100 %.
Barely routable chips make detours inevitable, which has a negative effect on other design
objectives. Thus it is necessary to optimize for maximum congestion tgt to make routing
easier. Dynamically adapting our critical congestion crit is an important component for
this. It is very effective in practice as we demonstrate in Section 6.4.2.

5.4 Timing-Aware Placement
The versatility of Self-Stabilizing BonnPlace is especially useful for optimizing timing
characteristics (Algorithm 5.1, lines 8 to 11). Besides good routability, this is the most
important objective during placement for modern technology nodes. Moreover optimizing
this objective is required to evaluate timing-driven macro placements as obtained by
BonnMacro (cf. Chapter 4).

Our framework applies two different methods to resolve timing problems: we optimize
the assignment of nets to routing layers as well as locally move circuits purely based on
timing properties.

Remember that we assume Self-Stabilizing BonnPlace is applied in a linearized
timing model (cf. Section 2.2.2). Due to this timing optimization runs more efficiently.

As first stage of our internal timing optimization, we run BonnLayerAssignment
(Algorithm 5.1, line 9). This module of the BonnTools suite specifically targets critical
nets. It improves the delay of such nets by assigning those to higher layers and recom-
mending wider wires. Both those changes lead to lowered resistance and thus improved
timing.

Naturally especially critical nets compete for limited routing resources on the fastest
layers. BonnLayerAssignment heuristically respects these routing capacities without
having to compute an actual global routing. On the other hand, we can also operate
this tool in an optimistic mode where such constraints are not applied. It makes sense
to use this mode to obtain worst slack bounds e.g. for evaluating timing-driven macro
placements.

As described in Section 2.2.2, the delay of long nets differs greatly between layers.
Thus it is important to first assign long connections across the chip to the fastest layers.
Only under this condition we can apply our local placement optimization based on timing.

For this purpose (Algorithm 5.1, line 10) we use another component of the BonnTools
suite: BonnRefinePlace (Bock et al. 2015; Bock 2010). This tool relocates a predefined
ratio of cells in the most critical nets to decrease the overall timing criticality. In this step,
cells are moved such that critical paths are shortened and detours are avoided. This
is achieved by a local search for timing optimal positions of single circuits. In order
to overcome local minima, small clusters of neighboring critical cells can also be moved
simultaneously. Typically this approach allows to shorten critical paths significantly in
case it is sufficient to move only some of the cells.

The resulting positions of BonnRefinePlace are not necessarily legal. Using the
aforementioned BonnPlaceLegalization (Brenner 2012) once again we can resolve all
overlaps in the placement (Algorithm 5.1, line 11). As only a small fraction of cells was
moved, legalization is efficient and causes little movement as well as degradation in timing.

These refined positions serve as force target points in the next iteration. Moreover
we emphasize the importance of cells moved by BonnRefinePlace. To do so, we
additionally increase the force weight by 50 % for those circuits. The raised force weights
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persist in subsequent iterations until the standard force weight has caught up or the cell
is moved once again.

With this weighting scheme, we achieve two contrary characteristics: On the one
hand, our placer is strongly encouraged to retain similar positions for critical cells in the
future. On the other hand, in subsequent iterations different cells might become the most
timing critical. Thus our weight emphasis decays for cells having been formerly critical.
We thereby can improve the timing characteristics of placement solutions in subsequent
iterations.

Previous versions of Self-Stabilizing BonnPlace additionally updated net weights
based on timing criticality (Brenner et al. 2015). This turned out to be harmful for modern
technology nodes and thus is not done any longer.

All described steps for timing optimization change the placement or the layer assign-
ment. Either way, these changes directly affect global routability. This is why it is more
effective to estimate congestion at the end of an iteration in our placement scheme.

To optimize timing thoroughly, we usually perform 15 iterations of timing-driven Self-
Stabilizing BonnPlace. Thereby we delay inclusion of BonnLayerAssignment to
iteration 1 and BonnRefinePlace to 2. Gradually adding optimization steps helps
in conjunction with CongestionAvoidance as particularly BonnLayerAssignment
significantly changes global routability. Thus our placer benefits from the opportunity to
adapt the placement accordingly.

For estimating macro placements, less iterations are sufficient. Usually we restrict
ourselves to 5 iterations whereby we skip optimizing routability and run BonnLayerAs-
signment in the mode that disregards routability.

As a closing remark we want to point out the versatility of Self-Stabilizing Bonn-
Place. Incorporating further timing optimization techniques which deviate from previ-
ous placements even more significantly, e.g. logic optimization or latch clustering, seem
promising for future evolutions of our framework.
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Chapter 6

Experimental Results

This chapter is devoted to the performance of various placement algorithms that have
previously been discussed. We examine our tools by experiments both on recent real-
world instances from industry and on benchmark chips.

Section 6.1 provides an overview of all designs and the benchmarking environment.
In Section 6.2 we revisit the running time effects of our improved region construction as
discussed in Section 5.1. Afterwards we concentrate on Self-Stabilizing BonnPlace
(cf. Sections 5.2 to 5.4): We start with an analysis of the basic mode in Section 6.3,
before we discuss the congestion-aware mode in Section 6.4 and the joint timing-driven
and congestion-aware variant in Section 6.5. Finally Section 6.6 analyzes our timing-driven
extension of BonnMacro which has been proposed in Chapter 4.

6.1 Test Environment
An overview of all test instances considered in this chapter is presented in Table 6.1. All
instances are real-world designs provided by our industrial partner IBM.

We test primarily on designs of the current technology nodes, but also include chal-
lenging older test cases. Moreover we consider designs with millions of cells, many macros
and blockages as well as complicated movebounds.

Note that we consider multiple variants of one particular instance: Alex. Alex (v1) has
extra movebounds arising from the design hierarchy and Alex (v2) contains many extra
blockages.

For technical reasons not all instances provide both timing and routing environments,
which is why it is impossible to analyze all approaches on the entire testbed. In the
following chapters we consider subsets of the presented chips, for which the respective
approaches seemed most promising.

Unless stated otherwise, all experiments have been conducted on an Intel Xeon E5-
2699 v4 CPU which runs at 2.2 GHz base frequency. The Intel® Turbo Boost Technology
is enabled with a maximum clock speed of 3.6 GHz. This processor has 22 physical cores
providing 44 threads via hyper-threading. Our machine is equipped with 378 GB of main
memory.

Our code was compiled using clang version 7.0.0 on CentOS release 7.6 using optimiza-
tion level 03. All mixed-integer and linear programs are solved using IBM ILOG CPLEX
Optimization Studio 12.6 (CPLEX).
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Chip T C L P N M B MD DB R CA
[nm] [103] [103] [103] [%] [103] [mm2]

Anna 14 2 800 203 76 5 24 83 10 15 2.5× 2.5
Rosemarie 14 7 941 359 140 9 58 9 13 6.5× 4.6
Ida 22 19 67 19 2 1 7 0.2× 0.2
Leo 22 31 9 94 34 4 66 1 12 0.8× 0.9
Beate 22 41 141 43 10 1 7 0.3× 0.3
Sonja 14 53 5 170 55 10 3 11 0.3× 0.4
Anja 14 66 244 86 37 56 3 15 2.0× 4.1
August 14 73 18 176 67 6 26 3 7 0.7× 0.4
Rolf 7 75 222 72 1 8 0.2× 0.3
Jannik 14 126 21 360 126 4 4 54 43 13 0.7× 1.7
Conni 14 134 99 494 164 66 275 11 1.1× 1.3
Falk 14 169 488 167 1 13 0.3× 0.3
Lisa 14 171 294 271 121 4 70 2 15 1.5× 2.4
Benedikt 22 264 37 837 267 2 29 3 13 0.5× 2.1
Renaud 45 352 33 1 132 352 4 33 1 7 1.0× 1.1
Viktor 22 382 142 1 551 444 6 5 2.4× 3.9
Franziska 22 386 20 1 336 412 2 21 686 13 1.3× 1.7
Meinolf 22 393 1 1 494 437 2 1 2 7 1.0× 0.8
Iris 22 430 11 1 577 474 2 9 1 224 7 1.0× 0.9
Gautier 45 1 362 2 926 5 136 1 478 4 29 14 101 8 4.0× 6.0
Regina 14 1 385 37 4 266 1 495 1 2 22 3 384 15 1.9× 1.4
Mia 14 1 499 35 4 625 1 625 84 20 3 710 15 1.8× 1.5
Valentin 14 1 585 265 4 912 1 693 57 41 4 077 15 2.2× 1.7
Rafael 32 1 946 7 008 5 983 1 920 1 982 51 8 487 11 3.2× 2.7
Elias 14 5 132 372 16 262 5 408 24 23 19 395 15 2.5× 2.5
Alex 14 8 484 3 262 24 906 8 955 380 35 16 222 15 6.1× 4.6
Alex (v1) 14 8 484 3 262 24 906 8 955 361 380 35 16 222 15 6.1× 4.6
Alex (v2) 14 8 484 3 262 24 906 8 955 301K 56 16 222 15 6.1× 4.6

Table 6.1: Overview of our testbed: For each chip the technology T in [nm], the
number of cells C, non-standard cells L, pins P, nets N, movebounds M, blockages
B, distance bounds DB and routing layers R. Moreover the fraction MD of the chip
area covered by macros in [%] as well as the chip area CA in [mm2].
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6.2 Partitioning with Movebounds
We first examine the impact of different region construction strategies for Bonn-
PlaceGlobal as discussed in Section 5.1. We compare different approaches during
Global Placement where all macros have fixed positions. In this context we do not
consider self-stabilizing yet, i.e. perform only a single iteration.

We compare three different approaches: The baseline has been presented in Lemma 5.4.
In contrast to the original implementation of Struzyna (2011) it has been improved
to compute the (strongly) movebound homogeneous partition in polynomial time using
Proposition 5.3.

An improved version of this strategy is referenced as M -homogeneous. It computes
the movebound homogeneous partition similarly, but in contrast only introduces a single
region for each element of this partition. Moreover it manages blockages more efficiently
by exploiting the grid structure of windows using Lemma 5.12.

The final approach relies on a weakly M -homogeneous partition of windows. This has
been proposed in Proposition 5.11 and includes the same blockage handling mechanism
as for the M -homogeneous case.

In a first analysis we reconsider the instance Mia which has already been visualized
multiple times before (cf. Figures 5.1 to 5.5, pages 79 and 85). This instance is of particular
interest as it has the most challenging movebound structure. Figure 5.2 highlights the
intricately overlapping movebound configurations.

The mentioned approaches on this particular instance are compared in Figure 6.1. We
analyze different properties of all three mentioned approaches in the respective levels of
BonnPlaceGlobal. Since level 0 consists of a single, very efficient QP computation
only (without partitioning), the shown analysis starts with level 1.

On the left we see the number of introduced regions. The exponential increase in
regions is intrinsic to recursive partitioning and particularly underlined due to the loga-
rithmic scaling. The right of Figure 6.1 visualizes the total wall clock time spent in the
respective levels for each strategy.

During the first levels of placement we see a drastic reduction in number of regions.
The running time improvement obtained by considering fewer regions is even more obvious.
The running time spent in level 2 in the baseline was 2:14 h, which could be reduced to
29 min and 15 min with the strongly and weakly movebound homogeneous approaches.
The substantial running time improvements are very much expected, since the number of
regions super-linearly contributes to the running time complexity of solving min-cost flow
problems in partitioning.

In the last levels of BonnPlaceGlobal the difference is marginal for two main rea-
sons: For once windows become very small and thus intersect few movebounds. Conse-
quently the constructed regions of all approaches are more and more similar until they
coincide for all approaches in the final level. On the other hand, our placer processes
multiple windows in parallel. This parallelization works best if there are sufficiently many
windows and compensates for marginal improvements on single, small instances.

A comparison on a larger testbed with more chips is presented in Table 6.2. All
instances are ordered by increasing number of cells. For each chip we compare the
same region construction variants baseline (base), M -homogeneous (hom) and weakly
M -homogeneous (whom) as in Figure 6.1 in separate rows.

In the columns of Table 6.2 we show the total wall clock time of BonnPlaceGlobal
(BPG WT), the wall clock time contribution of computing regions (BPG RC) as well as
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Chip Run BPG WT BPG RC Netlength
[H:M:S] [%] [M:S] [%] [m] [%]

Ida base 12 0 0.34
hom 12 +0.76 0 −36.54 0.34 +0.13
whom 13 +8.54 0 −32.69 0.34 −0.02

Leo base 16 0 1.81
hom 17 +5.52 0 −2.20 1.80 −0.46
whom 19 +16.87 0 −17.86 1.80 −0.60

Beate base 20 0 0.51
hom 22 +6.70 0 −30.00 0.51 −0.42
whom 22 +10.11 0 −34.44 0.51 −0.07

Sonja base 29 0 0.92
hom 30 +3.29 0 −28.35 0.92 +0.12
whom 32 +10.64 0 −27.10 0.92 +0.08

Jannik base 01:31 3 4.60
hom 01:27 −4.40 2 −4.61 4.61 +0.34
whom 01:32 +1.28 2 −15.38 4.63 +0.59

Lisa base 01:27 44 14.91
hom 54 −38.03 8 −81.18 14.89 −0.11
whom 51 −40.55 6 −85.55 14.88 −0.20

Benedikt base 02:53 0 7.29
hom 02:56 +1.86 0 −21.93 7.31 +0.25
whom 03:00 +4.12 0 −21.49 7.28 −0.13

Renaud base 05:36 0 7.41
hom 04:33 −18.68 0 −27.01 7.47 +0.90
whom 04:37 −17.51 0 −28.07 7.48 +1.04

Viktor base 05:54 9 20.49
hom 06:06 +3.35 5 −45.50 20.50 +0.07
whom 05:47 −1.89 5 −46.03 20.47 −0.09

Gautier base 11:53 7 236.90
hom 11:42 −1.49 4 −44.62 236.91 0.00
whom 13:02 +9.76 4 −38.45 237.04 +0.06

Mia base 04:11:51 13 27.22
hom 01:15:40 −69.96 8 −35.94 27.83 +2.25
whom 50:43 −79.86 10 −21.91 27.20 −0.04

Rafael base 21:28 21 133.87
hom 21:24 −0.24 9 −53.20 133.99 +0.09
whom 22:38 +5.50 10 −49.93 134.13 +0.20

Alex base 02:40:50 20:52 205.75
hom 02:20:07 −12.88 01:03 −94.96 205.99 +0.12
whom 01:39:38 −38.05 01:07 −94.65 205.76 +0.01

Alex (v1) base 12:42:21 11:20 204.51
hom 02:38:40 −79.19 01:50 −83.76 204.20 −0.15
whom 01:56:32 −84.71 01:23 −87.78 204.15 −0.18

Alex (v2) base 03:10:20 51:25 209.51
hom 02:19:40 −26.62 01:20 −97.40 209.30 −0.10
whom 01:39:49 −47.56 01:15 −97.55 209.18 −0.16

Summary hom −22.16 −61.47 +0.20
whom −26.91 −62.68 +0.03

Table 6.2: Region construction strategies during BonnPlaceGlobal. We
compare three runs: a baseline run (base) against one with homogeneous (hom) as
well as with weakly homogeneous (whom) regions. Columns present

• BPG WT: Total wall clock time of BonnPlaceGlobal
• BPG RC: Contained wall clock time of region construction
• WL: Final bounding box wirelength in [m]

All metrics are compared in [%] against the baseline. Improvements in green,
marginal deviations in blue, degradations in red. Summaries as geometric mean
of the ratios of the deviations.

101



Chapter 6. Experimental Results

the final bounding box netlength (Netlength). The comparison columns in [%] indicate
the changes relative to the baseline version. We finally summarize these deviations from
the baseline as the geometric mean of the ratios.

On small instances the baseline version is fastest overall (BPG WT). But at the same
time the absolute increase is only a few seconds and thus minor overall. Moreover wall
clock time is not a deterministic metric. It usually fluctuates around 5 % by itself especially
for a highly parallel application like BonnPlaceGlobal.

On larger instances the total wall clock time significantly improves. The simplification
by M -homogeneous regions defines an important improvement that is even surpassed by
considering weakly M -homogeneous regions. Running time is most drastically improved
on instances with many movebounds, e.g. Mia or Alex (v1). This is expected since we
specifically targeted those kinds of instances. Here our new region variants dramatically
speed up flow-based partitioning as we already demonstrated in Figure 6.1.

But not only the total wall clock time improves due to faster flow-based partitioning.
Also the total wall clock time to construct all regions in all levels combined decreases.
As the BRG RC column indicates, the tendency is very clear: Both improved region
construction versions result in significant and similar speed-ups. This can almost entirely
be attributed to Lemma 5.12 using which quad-trees can be avoided by exploiting the
windows’ grid structure. This effect can be observed most explicitly on instances with
large chip area, e.g. Rafael or Alex (v2).

Netlength on the other hand marginally increases. In general we expect a netlength
increase since partitioning is modeled with fewer regions, which is why movement costs
are expressed less accurately. At the same time netlength often fluctuates up to 0.5 % on
single instances, e.g. with slightly different placement parameters. The netlength penalty
of our proposed regions thus is well below a usual variation overall.

Overall weakly M -homogeneous regions provide a very significant running time im-
provement that outweighs marginal netlength increase.

6.3 Self-Stabilizing Behavior
In this section we analyze the performance of the basic Self-Stabilizing BonnPlace
framework. For that reason we do not yet enable congestion mitigation or timing opti-
mization techniques. This basic version of our placement algorithm has been introduced
in Section 5.2.

In Figure 6.2, we demonstrate the self-stabilizing behavior of BonnPlace on four
selected instances (Falk, Renaud, Meinolf as well as Iris; cf. Table 6.1).

On the left, we present two netlength metrics for each design over the course of the first
5 self-stabilizing iterations. The lower curve specifies the bounding box netlength of our
analytical QP placement. The same netlength metric is evaluated on the legal placement
determined by BonnPlace starting with the respective QP solution as first analytical
placement. This is visualized by the upper curve. Note that all absolute values have been
normalized to the final, legal bounding box netlength in order to simplify the comparison.

For each chip, Figure 6.2 also presents a different metric in the right part. Here
we visualize the total (linear) cell movement from the analytical placements to the final
placements in each iteration.

We can clearly observe that the final netlength can be steadily improved during all
iterations of Self-Stabilizing BonnPlace. The netlength reduction of up to 5.5 % is
very significant.
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Figure 6.2: Netlength and movement during Self-Stabilizing BonnPlace:
The left figure shows QP (lower curve) and legal netlength (upper curve) normalized
to the final netlengths on each chip. On the right, we display total movement
resulting from legalizing QP positions. Chip colors match in both figures.

This is achieved via additional spreading in the analytical placement. We observe this
spreading as increasing netlength of the QP solution. This additional information can sub-
sequently be utilized by flow-based partitioning and results in the netlength improvements
overall.

Note that in contrast to SimPL-based approaches (Kim, Lee and Markov 2012, 2013)
our analytical placement is not necessarily a lower bound for the final netlength. Since
we optimize quadratic netlength here, the netlength of the legal placement can be smaller
than the one of the illegal QP.

Moreover our analytical placement with forces results in a particularly good form
of spreading. Over the course of iterations, it predicts the legal placement better and
better. This can be seen in the drastic and steady movement decreases throughout Self-
Stabilizing BonnPlace on the right of Figure 6.2. Note that the scale is logarithmic
here.

This effect is also demonstrated visually in the QP solutions presented in Figure 5.6
(page 89) on Renaud, Figure 5.7 (page 90) on Franziska as well as Figure 6.3 on Meinolf.
The presented analysis justifies the name of Self-Stabilizing BonnPlace.

6.4 Congestion-Driven Standard Cell Placement
Now we analyze the congestion-driven mode of Self-Stabilizing BonnPlace. For this
purpose we only enable congestion mitigation and turn timing optimization off.

We consider results on industrial designs in Section 6.4.1 before we address the 2012
Design Automation Conference (DAC) placement contest benchmark suite (Viswanathan
et al. 2012) in Section 6.4.2.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 4

Figure 6.3: Initial QP placements on Meinolf in the first three and the final
iterations.

6.4.1 Industrial Designs
The first comparison is presented in Figure 6.4. Here we analyze our placer in the first
8 self-stabilizing iterations. All placements have been computed with identical default
parameters for congestion mitigation, i.e. target cell-density of 75 %, a congestion target
wACE4 of 90 % and maximum inflation of 80 % per grid window and iteration. For all
five industrial designs tested on, we know that finding a routable placement is not easy.

The left part is similar to Figure 6.2: For each design, we have two curves. The lower
curve again denotes the bounding box netlength of our initial QP solutions. In contrast
to that, the upper curve specifies the routed netlength as determined by our global router
at the end of the respective iterations. In order to compare different chips, all absolute
values are scaled to the final (routed) netlength.

On the right, we present how the congestion evolves over the course of iterations. This
is measured in terms of wACE4 [%]. The wiring-area average congestion estimate
wACE4 is a standard congestion metric which was first proposed by Wei et al. (2012). It
is defined as

wACE4 := 1
4 ·

∑
p ∈ {0.5, 1, 2, 5}

ACE(p)

where ACE(p) is the average congestion estimate on the p% of the most congested global
routing edges weighted by wiring usage.

As a first observation, we clearly see that routability significantly improved during
Self-Stabilizing BonnPlace. We observe that the wACE4 decreases quickly and is
already below 100 % on all designs after only 4 iterations. On a single instance (Iris)
wACE4 increases in intermediate iterations. This is an effect of placing too many circuits
in small alleys between macros, which we can effectively avoid in a next iteration. On all
other instances BonnPlace continues to improve wACE4 steadily in further iterations.

Recall that our congestion mitigation technique is applied as a final step at the end of
each iteration. Thus the initial high wACE4 values in iteration 0 are expected, since during
placement in this iteration no inflations have been applied yet. From iteration 1 onward
we thus observe that our congestion mitigation approach effectively targets wACE4.

The behavior of Self-Stabilizing BonnPlace concerning netlength changes in
congestion-driven mode (cf. Figure 6.2). On some instances the final (in this case routed)
netlength increases while wACE4 is reduced significantly (e.g. Rolf or Iris). This is in an
effect of our congestion mitigation technique via artificial cell inflations that reduces cell
density and thus can require longer nets.
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Figure 6.4: Netlength and wACE4 development during congestion-driven Self-
Stabilizing BonnPlace: The left figure shows QP (lower curve) and routed
netlength (upper curve) normalized to the final netlengths on each chip. On the
right, we display the congestion. Chip colors match in both figures.

Interestingly this behavior can not be observed on all chips. On all other designs,
netlength even decreases while cells are being artificially spread in order to avoid conges-
tion. This indicates that we apply cell inflations very cautiously and we often are able to
compensate for this type of extra spreading with regard to routed netlength. This can also
be verified, as the scaling factor a of the CongestionAvoidance routine (Algorithm 5.2,
line 6 on page 92) is always at a = 1.0.

Note that Figure 6.4 is normalized to routed netlength, while Figure 6.2 in contrast
considers bounding box netlength as baseline. This is also the reason why seemingly
the spreading of our QP diminishes e.g. on Iris. But this is actually only a matter of
normalization. In fact our additional cell spreading is also reflected in our initial analytical
placements (e.g. 5.87 m with compared to 5.60 m without congestion mitigation on Iris in
iteration 4).

The behavior of our congestion mitigation technique on one particular design is also
visualized in Figure 6.6. Here we see the routing congestion on Renaud at the end of the
first two and the last iterations of Self-Stabilizing BonnPlace. The global routing
edges are colored according to Figure 6.5.

Apparently our placer can quickly dissolve the initial hotspots indicated in purple and
red (cf. Figure 6.5). Consequently the significantly improved congestion at the end of
iteration 1 is a result of a single application of CongestionAvoidance at the end of
iteration 0. As we can see, routability is further improved until a wACE4 of 89.76 % is
reached in iteration 7.

Note that BonnPlace does not operate on the congestion analysis presented in
Figure 6.6. As discussed in Section 5.3.1 (page 92), we rather only work with a rough
estimate that is faster to compute and indicates routing hotspots more clearly. Figure 6.6
in contrast shows a detailed congestion analysis of a complete global routing. This
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0 30 50 60 70 76 82 87 91 95 100103 110

Figure 6.5: Legend for congestion visualizations; values in [%].

estimation is trustworthy and very accurate, but has only been computed for reasons
of comparison.

Even though this very instance Renaud is from the former 45 nm-node only, it has been
a challenging test case for BonnPlace for many years. Previous versions of BonnPlace
(Struzyna 2013) have not been capable of finding any placement which was even close to
routable. But with the proposed enhancements in Self-Stabilizing BonnPlace we can
solve this difficult instance well.

We demonstrated that BonnPlace is capable of effectively mitigating congestion on
real-world industrial designs.
6.4.2 DAC 2012 Placement Contest
In this section we compare Self-Stabilizing BonnPlace to other state-of-the-art place-
ment tools on the 2012 Design Automation Conference (DAC) placement contest bench-
mark suite (Viswanathan et al. 2012).

All our placements are finally routed by the official contest router NCTUgr (Liu et al.
2010; Liu, Li and Koh 2012) in regular mode with default parameters. Despite using
NCTUgr for a final estimation, we continue to consult BonnRouteGlobal (Müller,
Radke and Vygen 2011) throughout our algorithm (cf. Section 5.3.1, page 92).

We compare the official contest metric, i.e. the scaled wirelength sWL defined as

sWL :=HPWL ·
(

1 + 3
100(RC− 100)

)
,

where RC := max{100,wACE4} denotes the routing congestion. HPWL stands for the
(unscaled) linear half-perimeter wiring length. We report the (scaled) wirelengths and
routing congestion as determined by the official benchmark evaluation scripts.

All benchmarks were placed with identical parameter settings. We ran our placer with
a target density of 90 % for four iterations. After each iteration, we updated our inflations
limiting the cell size increment to 50 % of the original cells’ size for each grid window
individually.

Only for these benchmarks, we consider the bound-to-bound net model (B2B) with a
super-linear distance scaling factor for our analytical placements (cf. Struzyna 2013). This
setup proved beneficial for these DAC benchmark designs, while on real-world instances
the additional spreading due to quadratic netlength minimization is favorable – especially
for timing optimization. As of iteration one, we use the current placement to determine
the outer pins of nets for the B2B net model. Thus we do not have to run multiple QPs
with B2B in order to stabilize the solution.

The results are summarized in Table 6.3. We compare ourselves to NTUPlace4 (Hsu
et al. 2011), the best participant of the contest, and to the tool of Cong et al. (2013), which
achieved the best results on these benchmarks so far. We report the scaled wirelength
(sWL) both as an absolute value and relative in [%] to the scaled wirelength produced by
our Self-Stabilizing BonnPlace. Moreover for NTUPlace4 and our tool, we report

106



6.5. Timing-Driven Standard Cell Placement

(a) Iteration 0 (b) Iteration 1 (c) Iteration 7

Figure 6.6: Congestion on Renaud in the first two and the last iterations. Coloring
according to Figure 6.5.

the routing congestion (RC). Note that the routing congestion of Cong et al. (2013) has
not been published.

On average NTUPlace4 produces 4.04 % more scaled wirelength than our tool while
the algorithm of Cong et al. (2013) produces 3.59 % more scaled wirelength. We get the
best published results on six out of the ten benchmark designs. Moreover we reduce the
routing congestion RC on all chips attaining the minimum possible in eight out of ten
cases.

Our congestion mitigation technique is indeed very cautious; the scaling factor a (cf.
Section 5.3) is consistently at a = 1.0. We inflate the movable cells’ area by 30.72 % on
average. This increases HPWL by 3.84 % on average over the course of our iterations.
In contrast to our experiments in Section 6.4, we here start with a higher target density,
which is why a netlength increase due to congestion mitigation is expected. Despite of this,
we are able to rapidly accomplish a drastically improved routability and hence optimize
this essential placement objective well.

It is not trivial to compare running times properly. The official benchmark was
performed on 64−bit Intel Xeon CPU X7560 running at 2.27 GHz in single threaded mode.
Our machine for these experiments is about 45 % faster and our placer is implemented to
run highly parallel. In this setting, the former best placer by Cong et al. (2013) needed on
average more than 225 % of our running time on eight threads. Our running time includes
the invocations of BonnRouteGlobal.

6.5 Timing-Driven Standard Cell Placement
Now we analyze the combined congestion-driven and timing-driven mode of Self-
Stabilizing BonnPlace. In contrast to earlier versions of our placer (Brenner et al.
2015), we will target both objectives at the same time.

Our timing-aware global placer introduced in Section 5.4 was run with default pa-
rameters for timing optimization. These settings include the same congestion mitigation
parameters as already discussed in Section 6.4. Furthermore we run 15 iterations in
total, where BonnLayerAssignment is applied from iteration 1 onward and BonnRe-
finePlace is used starting with iteration 2.
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Chip Self-Stabilizing
BonnPlace NTUPlace4Cong et al.

(2013)(Brenner et al. 2015) (Hsu et al. 2011)
sWL RC Inf sWL sWL RC
[×108] [%] [%] [×108] [%] [×108] [%] [%]

sb2 6.05 100.17 46.42 6.14 +1.49 6.24 +3.14 100.68
sb3 3.22 100.00 58.03 3.60 +11.64 3.62 +12.26 103.53
sb6 3.37 100.00 31.77 3.40 +0.81 3.42 +1.54 101.21
sb7 4.07 100.00 19.23 3.95 −2.96 3.99 −2.10 100.68
sb9 2.35 100.00 26.51 2.50 +6.31 2.55 +8.25 102.48
sb11 3.44 100.02 15.97 3.40 −1.25 3.42 −0.62 100.02
sb12 2.80 100.01 41.57 3.04 +8.38 3.12 +11.21 100.02
sb14 2.26 100.00 15.53 2.45 +8.32 2.26 −0.26 100.07
sb16 2.65 100.00 31.85 2.74 +3.38 2.80 +5.79 102.39
sb19 1.51 100.00 20.30 1.51 −0.21 1.53 +1.18 100.61
Avg 100.02 30.72 +3.59 +4.04 101.17

Table 6.3: Results of congestion-driven Self-Stabilizing BonnPlace on the
DAC 2012 placement contest benchmark suite (Viswanathan et al. 2012). We
present the following metrics:

• sWL: Scaled wirelength (official contest metric)
• RC: Routing congestion
• Inf: Artificial cell inflation by our algorithm

All metrics are compared in [%] against BonnPlace. Improvements in green,
marginal deviations in blue, degradations in red. Averages are the geometric means
of the ratios of the deviations.

In Table 6.4 we illustrate results obtained by Self-Stabilizing BonnPlace with
this configuration. We analyze four real-world designs from recent and older technology
nodes.

To evaluate our approach we list multiple relevant metrics for each iteration: To begin
with, we specify the bounding box netlength NL in [m] as well as the routing congestion
C measured in terms of wACE4 in [%]. For timing criteria we analyze worst slack WS
in [ps] and the path-based FOM variant (abbreviated as FOM in Table 6.4) measured in
[ps]. FOM is measured with respect to a slack target of 5 ps. All metrics were gathered
at the end of the respective iteration, after timing optimization on a legal placement.

The results show that over the course of iterations, we are able to improve timing
behavior significantly. From iteration 0 to 14 our placement flow reduces FOM by 97 %
on average over the four chips. Using iteration 1 and 2 as baseline, we still improve FOM
by 93 % and 72 % respectively. Also the worst slack SLK is considerably improved across
all designs.

If we take a closer look at the results, we can justify the configuration of our flow: After
iteration 0 we often face significant routing congestion, e.g. on Rolf or Falk. Similar to
the behavior analyzed in Section 6.4.1, considering one extra iteration with our congestion
mitigation already significantly improves routability.

At the end of iteration 1 we perform BonnLayerAssignment for the first time.
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(a) Iteration 0 (b) Iteration 1 (c) Iteration 2 (d) Iteration 14

Figure 6.7: Timing-Driven Self-Stabilizing BonnPlace overview on Falk:
We present the first three and the final iterations in the columns. The rows show:
QP positions at the start of the iteration, congestion at the end of the iteration
(coloring according to Figure 6.5) and cells in the legal placement colored by slack
(most timing critical path highlighted).

This assignment of critical nets to fast layers significantly improves worst slack and FOM
on all instances apart from Rolf. But on this instance timing degradations are only a
temporary effect of our congestion mitigation, that we can shortly compensate. Starting
with iteration 2 we also incorporate BonnRefinePlace. Thus we especially improve the
worst interconnections. This can be observed in terms of worst slack for example on Falk
and Benedikt.

We also clearly observe that we target a wACE4 of 90 % as described in Section 5.3.2
(page 93). Once we reach this goal, we do not reduce cell density further but at the same
time can preserve this wACE4.

Despite various additional steps in our timing-driven mode of Self-Stabilizing
BonnPlace, we more or less preserve the behavior visualized in Figure 6.4 with re-
spect to routed netlength and wACE4. Particularly on Rolf where netlength increases in
intermediate iterations, we can see that our balancing of opposing placement objectives
works well.

Finally note that the version of Benedikt considered in Table 6.4 differs from the one
of Brenner et al. (2015). In the form at hand, Benedikt contains complicated paths whose
gate delay is more than 120 % of the cycle time. Thus clearly negative slack can not be
avoided here, even if all nets would have length 0. The variant of Brenner et al. (2015)
re-optimized this logic to an extent where a worst slack of 0 ps was achievable.

The development of key metrics is exemplary depicted graphically in Figure 6.7 on
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Falk. We present visualizations of iterations 0, 1, 2 and 14 in the columns. In the first and
second row we show the initial analytical placement and the congestion of the respective
iteration (as e.g. in Figures 6.3 and 6.6).

In the last row, we show our final placement of each iteration where cells are colored
by slack and a critical path is highlighted in black. The coloring of slack is relative to the
cycle time: More than 10 % slack compared to the cycle time is drawn in blue, positive
slack in green, less than 10 % negative slack relative to the cycle time is drawn in yellow,
up to 25 % in orange and below this in purple. In each such visualization, we also add a
worst path where respective endpoints are connected by thin black lines. Note that our
timing optimizations start at the end of iteration 1, which is why we omit timing statistics
of the first iteration.

During the first two iterations we observe the behavior already discussed in Sections 6.3
and 6.4.1 what QP spreading and congestion is concerned. In particular the vast majority
of critical routing problems can be resolved. Recall that we do not yet use BonnRe-
finePlace at the end of iteration 1 which is why the critical path contains significant
detours.

At the end of iteration 2 we can observe two effects: On the one hand, new small
routing hotspots arise (e.g. in the upper center). This is an effect of layer-assignment
which we can resolve over the course of subsequent iterations. On the other hand, timing
characteristics of this placement apparently are much better. This can be observed globally
(fewer orange cells) as well as locally with a straightened, shorter worst path.

After the final iteration almost all cells reach the slack target, or at least almost the
slack target. Cells on the most critical path are placed so closely together that it is even
hard to spot this path connecting few orange boxes in the center of Falk. Note that the
purple boxes are clock buffers (LCBs) who only have incident clock nets hidden from the
timing environment. We achieve this placement while meeting the congestion targets.

We demonstrated that our Self-Stabilizing BonnPlace framework can balance
different placement objectives and is capable of finding routable placements with good
timing characteristics on real-world designs.

6.6 Mixed-Size Placement
Now we present practical results of timing-driven BonnMacro. For this purpose we
analyze the quality of results in Section 6.6.1 before we specifically devote Section 6.6.2 to
running times both of MIP solving and the proposed overall timing-driven BonnMacro
flow.
6.6.1 Timing Results
In this section we analyze our timing-driven mixed-size placement approach. For this
purpose we particularly consider real-world instances where macro placement is relevant
for timing (cf. Table 6.1).

We consider all fairly large cells as macros. Note that this not necessarily includes all
non-standard cells, e.g. latches or clock buffers (LCBs) usually are only a few circuit rows
high and thus not considered as macros in this section.

Results of this approach are presented in Table 6.5. For each chip, we compare three
different macro placements: First a baseline macro placement (base) used by our industrial
partner at some stage of the design process. It not necessarily describes the finally
produced layout, but it is the latest state known to us. Such placements are created
mostly manually in many iterations by experienced designers.
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Chip Run M-WS WS FOM NL
[ps] [ps] [ns] [%] [m] [%]

Anna base −130 −272 −631 41.03
BM −175 −272 −1 667 +164.22 39.74 −3.16
BM TD −145 −298 −8 766 +1 289.24 67.78 +65.18

Rosemarie base −890 −957 −62 213 88.78
BM −818 −818 −53 442 −14.10 74.87 −15.66
BM TD −794 −893 −96 805 +55.60 227.19 +155.92

Sonja base −22 −22 −28 0.96
BM −29 −30 −15 −45.44 0.93 −2.96
BM TD −21 −21 −13 −54.15 0.93 −3.42

Anja base −56 −112 −59 34.49
BM −109 −112 −58 −1.80 30.71 −10.95
BM TD −29 −102 −16 −73.02 41.20 +19.46

Jannik base −105 −105 −557 4.61
BM −126 −149 −871 +56.42 5.62 +21.89
BM TD −89 −100 −683 +22.73 5.98 +29.78

Conni base −183 −255 −777 6.22
BM −200 −245 −672 −13.55 4.73 −23.97
BM TD −178 −183 −505 −34.97 6.51 +4.64

Lisa base −159 −174 −2 089 14.87
BM −187 −201 −3 573 +71.03 19.45 +30.83
BM TD −148 −154 −1 605 −23.19 24.69 +66.06

Benedikt base −181 −250 −480 7.14
BM −181 −246 −487 +1.60 7.27 +1.86
BM TD −210 −281 −572 +19.29 8.22 +15.12

Franziska base −36 −44 −56 9.65
BM −28 −35 −17 −70.33 9.26 −4.04
BM TD −14 −19 −8 −85.84 9.69 +0.38

Regina base −80 −125 −270 36.59
BM −82 −102 −171 −36.80 35.09 −4.08
BM TD −80 −105 −236 −12.59 36.29 −0.80

Mia base −62 −64 −50 24.53
BM −53 −62 −30 −40.51 24.45 −0.32
BM TD −71 −71 −42 −14.90 25.69 +4.74

Elias base −108 −248 −1 059 83.63
BM −162 −248 −2 469 +133.11 84.14 +0.61
BM TD −102 −248 −1 825 +72.30 89.05 +6.47

Table 6.5: Designer macro placement (base) compared with BonnMacro (BM)
and timing-driven BonnMacro (BM TD). Columns denote:

• M-WS: Distance bound model worst slack in [ps].
• WS: Actual worst slack in [ps] determined by timing engine.
• FOM: Path-based figure of merit in [ns].
• NL: Final bounding box netlength of legal placement in [m].

All metrics are compared against the baseline. Improvements in green, marginal
deviations in blue, degradations in red.
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The second macro placement compared (BM) is the result of standard (timing un-
aware) BonnMacro. More precisely this includes a shredded placement of macros and
subsequent macro legalization. For each macro we try different packing modes (cf. Sec-
tion 4.2) and solve each resulting local instance of Rectangle Packing with Spark
(Funke 2011; Funke, Hougardy and Schneider 2016). The packing modes considered to
this end allow up to 3 unconstrained and 10 constrained macros, which empirically leads
to good solutions in terms of netlength. Such a legal placement is not post-optimized any
further.

Finally we also compare our timing-driven extension of BonnMacro (BM TD). This
approach has been described in Section 4.3 in great detail. It starts with the identical
shredded input placement as (timing unaware) BonnMacro, but models packing locally
as Timing-Driven Rectangle Packing instances.

During timing-driven macro legalization we consider two extra timing-driven packing
modes. For each such packing mode we solve a Timing-Driven Rectangle Packing
instance via a MIP-formulation (cf. Section 4.3.3). The first allows up to 5 unconstrained
and 20 constrained macros, up to 50 000 induced bounds for timing neighbors and a
(deterministic) running time limit of roughly 2 min per MIP. The second mode in contrast
restricts these numbers to 4, 16, 25 000 and 30 s respectively. For each macro we select
the first timing-driven legalization solution obtained within our running time limit. In
case both timing-driven packing modes time out, we fall back to a solution with minimum
movement as determined by the aforementioned (timing unaware) packing modes.

We solve all MIPs with the barrier interior point method with multiple threads. In
order to save running time, we solve MIPs with FOM and movement objective up to 0.5 %
relative gap. Moreover we fix spatial relations of the FOM optimal solution for movement
minimization.

Since timing-driven macro legalization can deviate further from the shredded input
placement, the resulting macro placements can also be much denser. In order to compen-
sate for this effect, we apply the whitespace post-optimization as discussed in Section 4.4.
We use this algorithm to introduce small gaps of up to 4 circuit rows between macros
while imposing minimal additional movement.

The quality of a macro placement can only be assessed based on a legal placement
of the complete netlist. Therefore we evaluate all three macro placements in the same
way: We fix the macro positions and place the remaining cells legally using 5 iterations of
Self-Stabilizing BonnPlace (cf. Section 5.2).

In order to analyze our timing model of distance bounds more directly, we disregard
routability. This allows to consider a more optimistic layer assignment matching underly-
ing assumptions of our model. Thus we enable timing-optimization for Self-Stabilizing
BonnPlace in a special congestion-unaware mode and do not perform congestion miti-
gation.

The resulting three legal placements for the entire netlist are compared in Table 6.5.
We list the distance bound model worst slack M-WS in [ps] as well as the actual worst slack
in [ps] as computed by the timing engine of IBM. In addition we show the actual path-
based FOM, which we present in [ns] in order to simplify comparison of large numbers.
Finally we also analyze the bounding box netlength of the placements in [m].

Before we discuss the difference in quality of the three placements, we note that our
implementation of the distance bound model worst slack is optimistic in practice, i.e. an
upper bound on the actual slack as shown in Proposition 3.3 (page 21). Given the various
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sources of possible inaccuracies indicated in Figure 3.1, the distance bound slack correlates
fairly well with the actual slack.

Furthermore we observe that on all but 3 instances timing-driven BonnMacro
(BM TD) finds the placements with best distance bound slacks. On Anna this macro
placement is only outperformed by the baseline. This design almost entirely consists of
macros (highest macro density in Table 6.1). Recall that BonnMacro legalizes macros
locally in decreasing priority (cf. Section 4.2, page 50). This is why on this particular
instance, we have to pay some slack once small macros have to be packed between large
ones with limited flexibility.

But the instances Benedikt and Mia require further explanations: Both have medium
macro density (cf. Table 6.1). Thus they particularly require macro positions between
which standard cells can be placed easily in order to allow enough flexibility for subsequent
timing optimization. This requirement is only considered indirectly by BonnMacro as
minimization of the deviation from the shredded input placement (in terms of movement).
Timing unaware BonnMacro demonstrates that this type of movement objective is
reasonable and therefore finds a placement with very competitive distance bound slack.

Timing-driven BonnMacro in contrast is encouraged to deviate from the input place-
ment to maximize slack with respect to yet illegal standard cell positions (particularly for
latches). Later, once such macro positions are completed to legal placements of the entire
netlist, some detours can not be avoided. This is why the final latch positions are not
optimum with respect to distance bound slack. The same effect is also documented by
comparing the slack in our model directly after macro legalization (based on illegal stan-
dard cell positions). Here these slacks have been much better (Benedikt: −129 ps, Mia:
−37 ps). This overly optimistic evaluation explains the observed behavior on these two
designs.

We refer to Section 6.6.3 for further ideas how to overcome both weaknesses in future
evolutions of timing-driven BonnMacro.

On the remaining instances, timing-driven BonnMacro not only consistently finds
positions with best distance bound slack, but also outperforms both other placements in
terms of actual worst slack. While this is not surprising in comparison to (timing unaware)
BonnMacro, it certainly was not expected relative to a hand-crafted baseline.

FOM is only considered as secondary objective by timing-driven BonnMacro. Nev-
ertheless this approach finds significantly better placements in that regard on many in-
stances. Most interestingly, this particularly again applies in comparison to the baseline.
Moreover this holds for the great majority of instances, but particularly not for Anna
and Rosemarie. These designs stand out, since both violate the premises of the distance
bounds timing model (cf. Assumption 3.6; both contain non-endpoint macro-internal tim-
ing nodes). Consequently the actual slack deviates a lot from the distance bound slack,
which explains why FOM is not optimized well here.

In terms of netlength, Table 6.5 shows the expected trend: Regular BonnMacro
targets this objective well and outperforms the baseline on the majority of instances.
Timing-driven BonnMacro on the other hand is expected to have higher netlength,
since movement is only considered as third tie-breaker objective. The instances with the
most drastic netlength increase are those with the highest macro densities. Here denser
macro placements complicate placing standard logic, which is reflected in higher netlength.

The described effects are also visualized in Figure 6.8. Here the placements are colored
by the distance bounds slacks (cells without any bounds drawn in light gray). Moreover
we can compare the most critical distance bounds in the baseline and timing-driven
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(a) Baseline Placement (b) Timing-Driven BonnMacro

Figure 6.8: Distance bound slacks on Lisa: Cells colored by slack. Overall critical
bounds drawn in black.

BonnMacro placements. Note that the respective critical bounds are not necessarily
identical. These connections also overall define the actual worst slack. BonnMacro can
improve the overall critical connection as it aligns critical macros side by side (e.g. in the
upper right of Figure 6.8(b)).

We demonstrated that BonnMacro can optimize various macro placement objectives
and particularly often computes solutions with very competitive worst slack. Such macro
placements not necessarily are perfect but can provide valuable guidance for designers.

6.6.2 Running Time
Now we analyze the running time of timing-driven macro placement. We first evaluate
the difference between various MIP formulations that have been proposed in Section 4.3.3,
before we discuss running time contributions of various components of the proposed timing-
driven macro placement flow.

Running Time of MIP Solving
Initially we compare the total time for solving different MIP formulations in Table 6.6.
Therefore we analyze the deterministic solving times of CPLEX. This metric determinis-
tically measures the computational effort of solving a MIP and does not depend on the
current load of the machine. This metric empirically correlates well with the actual wall
clock time under benchmarking conditions.
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Chip Run S F M
[%] [%] [%]

Anna MA −99.37 −55.90 −72.05
MA NL −99.87 −72.37 −93.12

Rosemarie MA −52.47 +6.56 −46.35
MA NL −93.97 −66.53 −91.97

Sonja MA −68.02 +60.62 −3.55
MA NL −47.14 −86.17 −64.27

Anja MA −43.26 −13.76 −1.60
MA NL −12.79 −20.66 −49.19

Jannik MA −87.17 −85.92 −89.19
MA NL −94.61 −95.20 −96.53

Conni MA −81.89 +42.75 −9.42
MA NL −89.00 −62.53 −89.51

Lisa MA −45.05 −48.75 −48.95
MA NL −49.67 +14.98 −61.44

Benedikt MA +2.30 +4.04 −53.09
MA NL +14.23 −4.08 −53.99

Franziska MA −72.69 +12.16 −12.80
MA NL −88.02 −92.66 −89.43

Regina MA −98.41 −98.88 −96.89
MA NL −97.82 −99.60 −98.56

Mia MA −95.67 −93.58 −93.41
MA NL −93.95 −97.51 −98.46

Elias MA −92.24 −82.06 −84.93
MA NL −93.78 −94.36 −96.40

Summary MA −85.28 −61.65 −68.65
MA NL −89.86 −85.56 −90.49

Table 6.6: Deterministic CPLEX running time comparison for solving MIPs with
slack (S), FOM (F) and movement (M) objective. We show comparisons in [%] with
the baseline MIP formulation. MA stands for a formulation based on Manhattan
Arcs; MA NL in addition avoids extra variables for measuring bound lengths. All
comparisons are summarized as geometric means of the ratios of the deviations.

116



6.6. Mixed-Size Placement

We compare three different MIP formulations for Timing-Driven Rectangle Pack-
ing: As baseline we consider mixed-integer program 4.1 (page 63).

This baseline is compared with two different enhancements. Note that for technical
reasons we implemented improvements of Section 4.3.3 in reverse order they have been
presented. The first variant (MA) exploits the geometry of Manhattan arcs. Similarly
to program 4.3 (page 65), this only requires 4 inequalities for any set of parallel distance
bounds and one extra variable for the length of a bound. The second variant (MA NL)
avoids this very variable (as already elaborated in program 4.2, page 64) and exactly
denotes mixed-integer program 4.3.

All versions use an identical timing-driven packing mode with different constants than
those of Section 6.6.1 (no timeout, 3 unconstrained and 10 constrained rectangles, 30 000
induced distance bounds). Note that we compare aggregated total deterministic CPLEX
solving running times of all MIPs considered throughout timing-driven BonnMacro. Due
to the nature of this algorithm, this not necessarily compares identical Timing-Driven
Rectangle Packing instances. Nonetheless the results show a strong tendency.

Table 6.6 separately lists the times for solving the MIP with slack (S), FOM (F) and
movement (M) objectives. Note that we only show the relative running times compared
to the baseline in [%] since the actual absolute values are not very meaningful.

The comparisons in Table 6.6 very clearly show drastic running time improvements.
Despite rare outliers, the overall time spent for CPLEX is significantly reduced on all chips
and for all objectives. The best MIP formulation MA NL reduces the MIP solving running
time by more than 85 % on average for all objectives. Without these improvements more
generous packing modes as used in Section 6.6.1 would not have been applicable.

Seemingly the majority of the running time improvement stems from exploiting Man-
hattan arcs. But actually, both the baseline and MA optimized FOM-MIPs with fixed
relations only. This is not done in MA NL any longer, which is why improvements of
MA NL in FOM-MIPs particularly stand out. Moreover many instances that using MA
became slower than the baseline, significantly speed up with MA NL.

In addition, the presented improvements do not only result from speeding up few
instances with enormous running times. Also the maximum (deterministic CPLEX) time
spent for solving single instances decreases almost identically as the totals presented in
Table 6.6. This holds across all considered chips and objectives.

We also tried to solve our MIPs even faster by providing MIP starts for FOM and
movement MIPs. These can be inferred for the coordinate variables of rectangles from
the previously solved programs. But this actually turned out to be harmful since CPLEX
became slower with these initial assignments.

In summary, it therefore can be said that mixed-integer program 4.3 (Proposition 4.6,
page 65) provides an essential improvement. This is why it has been used in all timing-
driven BonnMacro experiments, particularly those discussed in the following section.
Timing-Driven BonnMacro-Flow
Now we analyze the running times of our proposed timing-driven macro placement flow.

Figure 6.9 visualizes the running times of different components in this flow. The
shown data refers to the BM TD runs of Table 6.5 on the same instances. We compare
accumulated total wall clock running times of these experiments.

Chronologically the first contribution is Self-Stabilizing BonnPlace with shredded
macros denoted by � BP (A). Recall that we run 3 iterations here using a special clustering
for macro fragments.
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Figure 6.9: Running times of timing-driven BonnMacro components: Self-
Stabilizing BonnPlace with shredded macros BP (A) and as evaluation with
fixed macros BP (B), BonnMacro framework (BM) and MIP solving with CPLEX
(CPX), timing optimizations BonnLayerAssignment (BLA) and BonnRefine-
Place (BRP). Running time totals in [H:M:S].

Afterwards we display the contribution of the BonnMacro framework (� BM). This
not only accounts for the overhead of selecting local packing instances, but also in our
timing-driven mode for library analysis, loading of distance bounds (Proposition 3.15)
and construction of mixed-integer programs. The total time of solving these MIPs with
CPLEX is summarized by � CPX.

The resulting legal macro placement is afterwards considered as fixed. We evaluate tim-
ing characteristics when this solution is extended to all standard cells. Therefore we per-
form 5 iterations of timing-aware Self-Stabilizing BonnPlace denoted by � BP (B).
This step utilizes (congestion unaware) layer assignment using BonnLayerAssignment
(� BLA) as well as local placement changes using BonnRefinePlace (� BRP).

We summarize the respective total running times on the right of Figure 6.9 in [H:M:S].
Figure 6.9 clearly shows that MIP solving consumes a significant amount of running

time during timing-driven BonnMacro. The classical (timing unaware) rectangle packing
solutions based on Spark (Funke, Hougardy and Schneider 2016) are also computed during
BM as additional alternatives. But this type of macro legalization runs so quickly that
it is even dominated by library analysis and distance bound loading in our timing driven
mode.

But apart from that the timing evaluation of a macro placement using Self-
Stabilizing BonnPlace still dominates the running time on the majority of test cases.
Even BonnLayerAssignment alone is more running time intensive than CPLEX on all
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but two designs. Even though CPLEX running time could likely be reduced slightly by
further parameter tuning, this would not affect the overall running time significantly.

On the contrary we also explored larger packing instance parameters. Recall that we
considered instances with up to 5 unconstrained, 20 constrained macros and up to 50 000
distance bounds for the experiments presented so far. But as expected larger mixed-integer
programs hardly pay off: On the one hand, doubling the number of distance bounds on Mia
increases running time by 1293 %. On this instance CPLEX even fails to complete a first
cut-introducing phase within 1 hour of deterministic running time for 10 % of the packing
instances. On the other hand, considering up to 7 unconstrained and 30 constrained
macros on Rosemarie results in 1644 % more running time.

The deterministic CPLEX time limit only is exceeded on 0.7 % of all Timing-Driven
Rectangle Packing instances. In 92 % of these cases, we still find a satisfactory solution
and can continue: Either the next timing-driven packing mode with reduced constants
succeeds or the gap between the best known integer and fractional solutions is sufficiently
small (below 5 %). For the most part the time limit is reached on FOM MIPs. This
justifies our choice of the timeout to avoid huge running times caused by few instances.

We demonstrated that our Timing-Driven Rectangle Packing instances are se-
lected reasonably and considering larger constants can hardly be justified.

6.6.3 Outlook
At this point we want to indicate a few potential future extensions for BonnMacro. All
are inspired by current weaknesses and could help improve the quality of results.

A first issue is posed by relevant macro-internal non-endpoint timing nodes. Those
can not be handled well using the model of slack based on distance bounds. Apportioning
slack to paths before and after such nodes would be possible upfront, but likely requires
many iterations until such estimates are reasonable everywhere.

On the other hand, small subsets of such nodes could be included into our formulation
as mixed-integer program. For this purpose we could propagate arrival times directly
within such a MIP similar to actual virtual timing. Such nodes could also be included
lazily and on demand once they become timing critical. Since arrival time propagation
expectedly is much more expensive than simply bounding distances with Manhattan arcs,
such an extension must be used cautiously.

In order to improve the space management for standard logic, two approaches are
possible: On the one hand, we could optimize slack and FOM while restricting movement
artificially (overall movement and/or individual movement of single macros). Consequently
macro positions can deviate less from the shredded input positions which often leads to
reduced detours and netlength (cf. timing unaware BonnMacro). On the other hand,
such a restricted solution space might not be sufficient for optimizing timing properties.
This could be compensated by iterating this approach with a new shredded placement
guided by former iterations.

Furthermore logic could also be included in the macro legalization directly. Therefore
we could cluster standard cells into few large groups which could be respected in local
packing instances as rectangles with flexible aspect ratio. Similar approaches have already
been applied for floorplanning (Adya and Markov 2003). Using excellent clusters, many
detours might be avoidable which should result in better netlength. At the same time such
an approach also provides the flexibility of incorporating a direct congestion mitigation into
macro placement. Therefore similar techniques as used in Self-Stabilizing BonnPlace
can be applied to the respective clusters.
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Finally locally suboptimal solutions likely can be avoided by a post-optimization:
Similar to the applied macro legalization, we simply could continue to solve local packing
instances. This might help improve the slack of smaller macros that are legalized at the
very last (as discussed on Anna). Such an approach requires a careful tradeoff between
additional running time and quality.
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Placement is an important step in chip design, the process of finding physical layouts for
electronic computer chips. The basic task during placement is to arrange the building
blocks of the chip, the circuits, disjointly within a given chip area. Since placement
serves as baseline for multiple further optimizations, its quality has far reaching effects on
the overall solution. The main challenges in placement originate in requirements of the
subsequent design flow. This particularly includes finding positions that result in short
circuit interconnections, that can be routed easily and that ensure all signals arrive in
time. In this thesis we investigate various aspects of these challenges.

We mostly focus on the relatively few largest circuits on a chip, the macros. Due to the
size of macros, their placement pre-determines many characteristics of the chip. But at
the same time macro placement quality can hardly be assessed without placing all circuits.
In order to still optimize timing, we propose a new timing model on macros which is based
on distance bounds. This model can be evaluated for positions of macros together with
only few extra cells. We prove that it bounds the worst slack that can be achieved by
extending macro positions to all circuits. Yet it is accurate enough to predict these timing
traits under certain assumptions that are usually met in practice.

We show how this model can be computed efficiently and how equivalent but smaller
representations can be obtained. Packing rectangles disjointly remains strongly NP-hard
under slack maximization in our timing model. Despite of this we develop an algorithm
that solves special cases in O(nm) time where n and m denote the number of rectangles
and distance bounds.

The proposed timing model is also incorporated into BonnMacro. This is the macro
placement component of the placement framework BonnPlace developed at the Research
Institute for Discrete Mathematics of the University of Bonn. We extend the paradigm of
legalizing macros locally to optimize timing. Using efficient formulations as mixed-integer
programs relatively large local subinstances can be handled in practice in reasonable time.
This results in the first timing-aware macro placement tool.

In addition, we provide multiple enhancements for the partitioning-based standard
cell placer BonnPlaceGlobal of BonnPlace. We find a provably smallest model of
partitioning as minimum-cost flow problem via reduction to a reachability problem in
graphs. Thus we can avoid running time intensive instances using an efficient sweep-line
pre-processing and a thoughtful implementation. Moreover we propose the new global
placement flow Self-Stabilizing BonnPlace. This approach combines partitioning-
based BonnPlaceGlobal with a force-directed placement framework. It provides the
flexibility to optimize the involved objectives routability and timing during placement.

The performance of our placement tools is confirmed on a large variety of real-world
designs provided by our industrial partner IBM. We reduce running time of Bonn-
PlaceGlobal by up to 85 % on single instances and by 27 % on average on a large
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testbed. Using Self-Stabilizing BonnPlace, we achieve the best published results on
the 2012 DAC congestion-driven placement contest (Viswanathan et al. 2012). Moreover
this framework finds easily routable placements for challenging designs, even when simulta-
neously optimizing timing objectives. Self-Stabilizing BonnPlace and timing-driven
BonnMacro can be combined to a mixed-size placement flow. This combination often
finds placements with a very competitive worst slack and even outperforms solutions that
have been determined manually by experienced designers.
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Notation

M Above of spatial relation (Definition 2.14, page 12).
]l(ve) Angle θ ∈ [0, 2π ] of e = {v, w} ∈ E(G) w.r.t. locations l

(Definition 3.21, page 28).
at(v) Arrival time of node v in the fine timing graph (page 9).
O Below of spatial relation (Definition 2.14, page 12).
b Length constraints of distance bounds (Definition 3.4, page 22).
BB(P ) Bounding box of finite P ⊆ R2 (Definition 2.5, page 4).
BBL Bounding box netlength (Definition 2.13, page 7).
A(c) Cell shape of cell c (Definition 2.7, page 4).
� Chip image (Definition 2.6, page 4).
C Circuits of a netlist (Definition 2.6, page 4).
γ γ : P → C ·∪{�} (Definition 2.6, page 4).
dc(P ) Gate-internal delay of path P in the fine timing graph (page 10).
d(P, l) Delay of path P in the fine timing graph acc. to placement l

(page 10).
dw(P, l) Wiring delay of path P in the fine timing graph acc. to placement l

(page 10).
δ−(v) Set of entering edges of node v in a directed graph.
δ+(v) Set of leaving edges of node v in a directed graph.
δ(v) Set of incident edges of node v in an undirected graph.
Gb Shorthand for distance bounds (G,b, o) (Definition 3.4, page 22).
D(G) Distance graph for distance bounds Gb (Definition 3.28, page 33).
dgc(C) Distance graph cycle in D(G) for cycles C or edges in G (page 34).
fdλ Distance graph function in direction d (Definition 3.28, page 33).
Ec Gate-internal edges of the fine timing graph (page 10).
E(G) Edges of graph G.
Ew Wiring edges of the fine timing graph (page 10).
C Left of spatial relation (Definition 2.14, page 12).
msdQ(p) Maximum shifted point distance (Definition 3.38, page 39).
mr (G, fλ) Optimum ratio of (G, fλ) instance of the Minimum Ratio Cycle

Problem (page 32).
µ Movebound map µ : C →M (Definition 2.11, page 6).
m′ Number of distinct, connected endpoint pairs (page 65).
m Number of edges m :=

∣∣E(G)
∣∣ of a graph G.

N Nets of a netlist (Definition 2.6, page 4).
n Number of vertices n :=

∣∣V(G)
∣∣ of a graph G.

O(f) O-Notation: g ∈ O(f) iff ∃α, β:
∣∣g(n)

∣∣ ≤ αf(n) + β.
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o Offsets of distance bounds (Definition 3.4, page 22).
Ω(f) Ω-Notation: g ∈ Ω(f) iff f ∈ O(g).
off (p) Pin offset of pin p (Definition 2.7, page 4).
P Pins of a netlist (Definition 2.6, page 4).
l(c) Placement l : C → R2 (Definition 2.8, page 4).
P(X) Power set of X.
JnK The first n ∈ N integers { i ∈ N : 0 ≤ i < n} = [0, n) ∩ N.
rat(v) Required arrival time of node v in the fine timing graph (page 9).
e Reverse edge of e ∈ D(G) (page 33).
B Right of spatial relation (Definition 2.14, page 12).
σdz Indicator of coordinate z ∈ {x, y} in direction d (Definition 3.28,

page 33).
slack(v) Slack at node v in the fine timing graph (page 9).
sWL Scaled wirelength metric (page 106).
ve Shorthand for (v, e) for undirected edge e and v ∈ e (page 24).
V(G) Vertices of graph G.
wACE4 Wiring-area average congestion metric (page 4).

138


	Acknowledgments
	Contents
	Introduction
	Placement Problems
	Basic Definitions
	Placement
	Placement Constraints
	Placement Objectives
	Placement Problem Variants

	Macro Placement
	Standard Cell Placement

	Timing-Driven Rectangle Packing
	Distance-Bound Model
	Computing Distance-Bounds
	Basic Properties
	Strongly Polynomial Algorithm
	Distance Bound Pruning
	LP-Formulation for Fixed Relations

	Timing-Driven Macro Placement
	Shredded Placement
	Placement with Shredded Macros
	Macro Reassembly

	Macro Legalization
	Macro Packing
	Choosing Unconstrained Rectangles
	Selecting the Window
	Computing Feasible Areas
	Choosing Spatial Relations
	Solving the Rectangle Packing Problem
	Local Post-Optimization

	Timing-Driven Macro Legalization
	Distance Bound Construction
	Timing-Driven Macro Packing
	Solving the Timing-Driven Rectangle Packing Problem
	Timing-Driven Local Post-Optimization

	Post-Optimization

	Global Placement
	Fast Partitioning
	Movebound Constraints in Partitioning
	Weak Movebound Homogeneity
	Weakly Movebound Homogeneous Regions

	Self-Stabilizing BonnPlace
	General Framework
	Forces
	Breaking Conditions

	Routability-Driven Placement
	Congestion Estimation
	Density Adjustments

	Timing-Aware Placement

	Experimental Results
	Test Environment
	Partitioning with Movebounds
	Self-Stabilizing Behavior
	Congestion-Driven Standard Cell Placement
	Industrial Designs
	DAC 2012 Placement Contest

	Timing-Driven Standard Cell Placement
	Mixed-Size Placement
	Timing Results
	Running Time
	Outlook


	Summary
	Bibliography
	Index
	Notation

