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Abstract

In daily life, we encounter digital materials and interact with them in nu-
merous situations, for instance when we play computer games, watch a
movie, see billboard in the metro station or buy new clothes online. While
some of these virtual materials are given by computational models that
describe the appearance of a particular surface based on its material and
the illumination conditions, some others are presented as simple digital
photographs of real materials, as is usually the case for material sam-
ples from online retailing stores. The utilization of computer-generated
materials entails significant advantages over plain images as they allow
realistic experiences in virtual scenarios, cooperative product design, ad-
vertising in prototype phase or exhibition of furniture and wearables in
specific environments. However, even though exceptional material repro-
duction quality has been achieved in the domain of computer graphics,
current technology is still far away from highly accurate photo-realistic
virtual material reproductions for the wide range of existing categories
and, for this reason, many material catalogs still use pictures or even
physical material samples to illustrate their collections.

An important reason for this gap between digital and real material ap-
pearance is that the connections between physical material characteristics
and the visual quality perceived by humans are far from well-understood.
Our investigations intend to shed some light in this direction. Concretely,
we explore the ability of state-of-the-art digital material models in com-
municating physical and subjective material qualities, observing that part
of the tactile/haptic information (e.g. thickness, hardness) is missing due
to the geometric abstractions intrinsic to the model. Consequently, in
order to account for the information deteriorated during the digitization
process, we investigate the interplay between different sensing modalities
(vision and hearing) and discover that particular sound cues, in combi-
nation with visual information, facilitate the estimation of such tactile
material qualities.
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Abstract

One of the shortcomings when studying material appearance is the
lack of perceptually-derived metrics able to answer questions like “are
materials A and B more similar than C and D?”, which arise in many com-
puter graphics applications. In the absence of such metrics, our studies
compare different appearance models in terms of how capable are they
to depict/transmit a collection of meaningful perceptual qualities. To
address this problem, we introduce a methodology to compute the per-
ceived pairwise similarity between textures from material samples that
makes use of patch-based texture synthesis algorithms and is inspired on
the notion of Just-Noticeable Differences. Our technique is able to over-
come some of the issues posed by previous texture similarity collection
methods and produces meaningful distances between samples.

In summary, with the contents presented in this thesis we are able to
delve deeply in how humans perceive digital and real materials through
different senses, acquire a better understanding of texture similarity by
developing a perceptually-based metric and provide a groundwork for
further investigations in the perception of digital materials.
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Zusammenfassung

Im alltägliche Leben begegnen wir digitalen Materialien in einer Vielzahl
von Situationen wie beispielsweise bei Computerspielen, Filmen, Rekla-
mewänden in z.B. U-Bahn Stationen oder beim Online-Kauf von Kleidun-
gen. Während einige dieser Materialien durch digitale Modelle repräsen-
tiert werden, welche das Aussehen einer bestimmten Oberfläche in Ab-
hängigkeit des Materials der Fläche sowie den Beleuchtungsbedingungen
beschreiben, basieren andere digitale Darstellungen auf der simplen Ver-
wendung von Fotos der realen Materialien, was z.B. bei Online-Shopping
häufig verwendet wird. Die Verwendung von computer-generierten Ma-
terialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da
diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, ko-
operativem Produkt-Design, Marketing während der prototypischen Ent-
wicklungsphase oder der Ausstellung von Möbeln oder Accesoires in
spezifischen Umgebungen erlauben. Während mittels aktueller Digita-
lisierungsmethoden bereits eine beeindruckende Reproduktionsqualität
erzielt wird, wird eine hochpräzise photorealistische digitale Reprodukti-
on von Materialien für die große Vielfalt von Materialtypen nicht erreicht.
Daher verwenden viele Materialkataloge immer noch Fotos oder sogar
physikalische Materialproben um ihre Kollektionen zu repräsentieren.

Ein wichtiger Grund für diese Lücke in der Genauigkeit des Ausse-
hens von digitalen zu echten Materialien liegt darin, dass die Zusam-
menhänge zwischen physikalischen Materialeigenschaften und der vom
Menschen wahrgenommenen visuellen Qualität noch weitgehend unbe-
kannt sind. Die im Rahmen dieser Arbeit durchgeführten Untersuchun-
gen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digi-
talie Materialmodellen bezüglich ihrer Eignung zur Kommunikation von
physikalischen und sujektiven Materialeigenschaften untersucht, wobei
Beobachtungen darauf hinweisen, dass ein Teil der fühlbaren/haptischen
Informationen wie z.B. Materialstärke oder Härtegrad aufgrund der dem
Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich
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Zusammenfassung

wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sin-
neswahrnehmungen (mit Fokus auf die visuellen und akustischen Moda-
litäten) untersucht um festzustellen, welche Informationen während des
Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesonde-
re akustische Informationen in Kombination mit der visuellen Wahrneh-
mung die Einschätzung fühlbarer Materialeigenschaften erleichtert.

Eines der Defizite bei der Analyse des Aussehens von Materialien ist
der Mangel bezüglich sich an der Wahnehmung richtenden Metriken die
eine Beantwortung von Fragen wie z.B. “Sind die Materialien A und B sich
ähnlicher als die Materialien C und D?” erlauben, wie sie in vielen An-
wendungen der Computergrafik auftreten. Daher widmen sich die im
Rahmen dieser Arbeit durchgeführten Studien auch dem Vergleich von
unterschiedlichen Materialrepräsentationen im Hinblick auf. Zu diesem
Zweck wird eine Methodik zur Berechnung der wahrgenommenen paar-
weisen Ähnlichkeit von Material-Texturen eingeführt, welche auf der Ver-
wendung von Textursyntheseverfahren beruht und sich an der Idee/dem
Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vor-
geschlagene Ansatz erlaubt das Überwinden einiger Probleme zuvor ver-
öffentlichter Methoden zur Bestimmung der Änhlichkeit von Texturen
und führt zu sinnvollen/plausiblen Distanzen von Materialprobem.

Zusammenfassend führen die im Rahmen dieser Dissertation darge-
stellten Inhalte/Verfahren zu einem tieferen Verständnis bezüglich der
menschlichen Wahnehmung von digitalen bzw. realen Materialien über
unterschiedliche Sinne, einem besseren Verständnis bzgl. der Bewertung
der Ähnlichkeit von Texturen durch die Entwicklung einer neuen per-
zeptuellen Metrik und liefern grundlegende Einsichten für zukünftige
Untersuchungen im Bereich der Perzeption von digitalen Materialien.
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CHAPTER 1

Introduction

1.1 Motivation

Digital representations of real world materials are present in a growing
range of every-day situations, including online shopping, video games,
product design, digital movie contents, advertising and many more. The
continuous exposition to digital contents and, in particular, digital ma-
terials highlights the importance of developing material models that are
not only physically accurate but also plausible from the point of view of
human perception. In addition, the boom of devices and applications as-
sociated to the Internet of Things (IoT) demands interactions with these
commodities that go beyond the passive product visualization.

Although research in computer graphics has continuously struggled
to achieve higher accuracy and photo-realism at the expense of computa-
tional efficiency, the connections between measurable physical material
properties and the visual quality perceived by humans is very subtle
and far from well-understood. Indeed, despite the great deal of real-
ism achieved by virtual/digitized materials, there is still an appearance
gap between the latter and their physical counterparts that, in practice,
may distort the perception of the final content. In particular, the precise
representation of fine effects of material surfaces under varying viewing
and illumination conditions remains a challenging task. For this reason,
regardless of the benefits of using virtual surrogates, many material cat-
alogs and online fashion still illustrate their collections through pictures
or even physical samples, in order to avoid possible miscommunications
of the material properties.

An interesting fact is that the perception of material appearance in
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1.1. Motivation

real-world is highly multimodal, or multisensory, by nature. In other
words, while identifying the actual materials objects are made of, our
vision, hearing or touch collaborate to varying extents. In spite of this
evidence, the presentation of materials in virtual environments is based
almost uniquely in visual models, and the rest of the senses have been
largely neglected. One of the reasons for this lack of multimodal inter-
action is that, even though humans rely to a great extent on the tactile
input in order to extract information from objects and materials, high-
level, haptic interactions are still not accessible by the current digital tech-
nology. Nevertheless, high-quality stereo audio is regularly available in
nowadays consumer devices and it may be employed to overcome the
limitations given by the absence of tactile data. Some of these limita-
tions relate to the fact that a consumer’s decision for or against a material
does not only involve the perception of physical properties but also an
affective experience, which is greatly reduced in the case of passive vi-
sual representations. Considering this, the interplay between the visual
and the auditory channels would provide interesting insights about how
these two different senses collaborate in perceiving certain physical and
affective material qualities.

Undoubtedly, this affective or emotional experience is closely related
with the bandwidth of interactions allowed by a given product. How-
ever, either the visual or audiovisual representations of digital materials
are typically passive (static images and pre-recorded sounds), which lim-
its the expressivity of the final model. In this regard, a feasible way to
enhance the level of interaction with digital materials could be the utiliza-
tion of sonification systems. This set of techniques have demonstrated to
compensate the absence of tactile information, to some degree, and to
have a significant influence in the perception of product quality and effi-
ciency.

Another interesting problem that faces the digital communication of
material appearance is the absence of reliable similarity metrics. Ques-
tions like “are materials A and B more similar than materials C and D?” arise
in many applications and could greatly facilitate the development of ef-
fective user interfaces for retailing web stores in agreement with human
perception, among other applications. Yet, in the absence of such metrics,
this query can be answered only partially, in terms of measured dimen-
sions (i.e. glossiness, transparency) of parametric material models or the
perceived realism according to human observers. Defining a meaning-
ful metric for materials in accordance with human perception is a highly
complex task due to the high dimensionality of material appearance. For
this reason, one way to address this question is to consider simple tex-
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Chapter 1. Introduction

tures as the easiest way of representing a concrete material.
The perception of textures is an essential field of research with a large

range of applications in numerous vision problems. For the challeng-
ing task of estimating texture similarity as perceived by humans, for-
mer investigations have proposed diverse experimental designs to collect
perceptual data. Most of these procedures become impractical for large
datasets and pose further problems regarding the complexity and paral-
lelizability of the assignment and the quality of the gathered user data.
One of the worries regarding the quality of such perceptual measure-
ments is that they have noise in them. However, this is hard to quantify
as there is no ground-truth for questions like “How similar are materials
A and B?”. Alternative approaches, like those based on the notion of
just-noticeable differences (JND), allow a more direct measurement of the
amount of noise which, in practice, could be employed as a mechanism to
estimate the perceptual similarities/distances between material textures.

This investigation intends to shed further light on the previous in-
quiries and, in a more general way, to propose novel methods to com-
municate and measure the appearance of digital materials in accordance
with human perception.

1.2 Main contributions and applications

With the work at hand, a series of experiments, methodology and data
analyses is presented in order to gather deeper knowledge on some of the
main unanswered questions regarding the perception of digital material
appearance. In the following, we summarize the fundamental challenges
and contributions on this subject introduced by the present document.

Initially, we study the multisensory nature of material perception by
augmenting purely visual presentation of materials with audio charac-
teristics. Such auditory information consists of recordings from rubbing
and tapping material sounds. Thereby, we arrange a set of user studies to
investigate how the visual and auditory channels contribute to the per-
ception of material qualities. We conclude that a multisensory approach
is not only able to enhance the digital communication of material prop-
erties without compromising the overall material perception, but also to
achieve a deliberate bias for certain tactile qualities (e.g. roughness or
hardness).

Following the same trend, we employ granular synthesis techniques
to build a sonification system for tactile devices that delivers real-time
contact material sound upon touch interactions. Then, we study the im-
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1.2. Main contributions and applications

pact of such system in the perception of physical and affective material
qualities by means of a psychophysical study. The analysis of the exper-
imental data reveals that the proposed audio cues alone (finger rubbing
sounds) do not entail additional information to the perception of material
attributes. We therefore suggest complementary directions of research in
interactive material sonification that may lead to profitable results.

The election of photos from real samples as our stimuli in the previous
investigations arises from the fact that the ability of digitized materials to
communicate finer appearance effects is yet to be explored. Thus, we
study the performance of state-of-the-art material appearance models in
transmitting a set of subjective qualities through the visual channel, in
comparison to photographs from real samples. By performing statistical
analysis on the data from user experiments, we determine that digitized
materials, in their current state, are still not fully capable of transmitting
certain material qualities (mainly tactile ones) as good as simple photos.
Subsequently, we investigate and confirm the hypothesis that important
visual cues are destroyed when abstracting volumetric materials into flat
digital representations, fact that is particularly noticeable at grazing an-
gles.

To conclude, we focus on the problem of perceptually plausible met-
rics for material appearance. Concretely, we consider an existing dataset
of textures from real fabrics samples taken under controlled conditions to
examine their perceived pairwise texture similarity/dissimilarity. In this
regard, we establish a novel methodology for the estimation of perceptual
similarities between textures from materials based on the notion of just-
noticeable differences and which relies on generating intermediate stim-
uli through texture synthesis techniques. Our proposal is well-suited to
address fine-grain similarities, is convenient for crowdsourcing platforms
and overcomes some of the issues existing in previous experimental ap-
proaches. This technique is then consistently exploited to construct a
meaningful, low-dimensional and perceptually uniform space of textures
from fabrics whose underlying interpretation of the main dimensions is
in line with previous research.

The main purpose of our research is to find more effective ways to
communicate materials in digital devices. This topic has a broad range
of possible uses, but perhaps the application that could primarily benefit
from the outcome of this thesis is the field of e-commerce or online shop-
ping. In this context, our findings regarding the multimodal perception
of materials and similarity metrics could be exploited in the development
of potentially efficient user interfaces for retailing web-stores (see exam-
ple web-stores in Figure 1.1), which integrate information from different
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Chapter 1. Introduction

Figure 1.1: Two examples of interfaces from online fabric stores. ‘Mood Designer
Fabrics’ [Mood18] in the left, ‘Joann’ [Joann18] in the right. Both websites
organize their products by color and application, independently of the material
characteristics or their perceived similarity.

senses and are more consistent with human perception. In addition, the
field of product design could also draw important advantages from these
conclusions e.g. when finding suitable material substitutes for unavail-
able samples or replacing computationally expensive models with more
efficient ones among other uses. Finally, the outcome regarding the au-
diovisual perception of materials can be applied in the domain of virtual
reality environments to better understand object properties in the absence
of visual and tactile feedback in applications like clinical surgery, physical
rehabilitation and sensory substitution for the impaired.

1.3 Publications

As a part of the present work, the technical chapters 3, 4, 5 and 6 are
founded in publications from different computer graphics conferences
and journals, which have successfully passed a peer-review process:

• R. Martín, J. Iseringhausen, M. Weinmann, and M. Hullin. Multi-
modal perception of material properties. In ACM SIGGRAPH Sym-
posium on Applied Perception, SAP ’15, pages 33–40, New York, NY,
USA, Sept. 2015. ACM.

• R. Martín, M. Weinmann, and M. Hullin. Digital transmission of
subjective material appearance. Journal of WSCG, 25(2):57–66, June
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1.4. Thesis outline

2017.

• R. Martín, M. Weinmann, and M. B. Hullin. A study of mate-
rial sonification in touchscreen devices. In Proceedings of the 2018
ACM International Conference on Interactive Surfaces and Spaces, ISS
’18, pages 305–310, New York, NY, USA, 2018. ACM.

• R. Martín, M. Xue, R. Klein, M. B. Hullin, and M. Weinmann. Using
patch-based image synthesis to measure perceptual texture similar-
ity. Computers and Graphics, 81:104 – 116, 2019.

Further closely related work with contributions from the author has
been published in:

• H. Steinhausen, R. Martín, D. den Brok, M. Hullin, and R. Klein. Ex-
trapolation of bidirectional texture functions using texture synthesis
guided by photometric normals. In Measuring, Modeling, and Repro-
ducing Material Appearance II (SPIE 9398), volume 9398, Feb. 2015.

However, the contents of the latter publication are not part of this
thesis.

1.4 Thesis outline

This document is organized in four thematic parts, each of them divided
in several chapters which contain individual experimental studies, evalu-
ations, results and contributions. Each chapter constitutes an indissoluble
pipeline, in which later chapters utilize knowledge, algorithms or tech-
niques that have been introduced in previous ones. However, in order
to improve the coherence between the different chapters, an additional
paragraph introducing each chapter and relating it to the previous inves-
tigation has been also included.

Thus, Part I provides a general introduction to the tasks approached in
this thesis. In particular, Chapter 1 includes descriptions of the problems
that motivate the present work, along with an outline of the contribu-
tions introduced as well as a list of the publications in which this essay
is based. The subsequent Chapter 2 gives a necessary background on the
fundamental topics on which this thesis is founded. This chapter includes
a summary of the role of perception in computer graphics (Section 2.1),
an overview of the main concepts regarding material appearance models
and acquisition of material reflectance (Section 2.2) and a synopsis re-
garding the importance of textures in computer graphics along with the
basic texture analysis and synthesis concepts and techniques (Section 2.3).
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Chapter 1. Introduction

The technical contributions are introduced in Part II and Part III.
Specifically, Part II addresses the topic of the perception of physical and
affective material qualities through three chapters. In this regard, Chap-
ter 3 presents the experimental results concerning the perception of ma-
terial qualities through various senses or modalities (vision and hearing).
Chapter 4 evaluates the perceptual effects of an interactive material soni-
fication system developed for tactile devices. To conclude this part, Chap-
ter 5 studies the ability of a concrete digital material representation (the
SVBRDF model) to transmit physical and subjective physical material ap-
pearance characteristics in comparison to pictures and real materials.

Furthermore, part III explains our latest methodology for the collec-
tion of measurements of perceived similarity between material textures
(Chapter 6). From the resulting similarity data, a perceptual space of
textures is built and analyzed in detail.

Lastly, Part IV provides closure. In this section we summarize the en-
semble of investigations presented in this thesis and suggest a landscape
of profitable directions for future research.
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CHAPTER 2

Preliminary Knowledge

Before going into detail regarding the contributions of this thesis, an anal-
ysis of the relevant preliminary knowledge is presented. This analysis
comprises the fundamentals of perception applied to computer graphics
as well as a background in the principles of material appearance model-
ing and acquisition and a basic overview of visual textures, their analysis
and synthesis.

2.1 Perception for computer graphics

Traditionally, research in computer graphics has made large efforts to
achieve the technically best possible depiction of real world scenarios.
Depending on the sub-field of interest, these endeavors may lead to rep-
resentations based on the physics of light (rendering), real-time interac-
tivity (virtual reality) or maximization of the information content in a
scene (visualization). Lately, perceptual research has been increasingly
integrated into computer graphics, thus providing new ways to solve ex-
isting problems by incorporating human knowledge obtained from user
studies, commonly known as psychophyisical experiments. In this direction,
the report from Bartz et al. [BCFW08] provides an exhaustive overview
of the role and contributions of perceptual research in computer graph-
ics. However, the fundamental theory basic for the understanding of the
investigations presented in this manuscript will be given in the present
section.
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2.1. Perception for computer graphics

(a) The café wall illusion, are the
lines parallel?

(b) The Kanizsa triangle, note that
the triangle edges are visible, de-
spite not being physically present.

Figure 2.1: Two classical examples of visual illusions.

2.1.1 Fundamentals of perception

In a general way, the goal of research in perception is to understand how
living organisms process the physical information of the surrounding en-
vironment. From this observation, particular patterns and information
are extracted to later be interpreted and utilized. In this regard, visual
illusions have been often employed to investigate the shortcuts and as-
sumptions that the visual system uses. The main purpose of such illu-
sions is to highlight how perceptual and physical reality differ. Classical
examples illustrating this contrast between perceptual and physical real-
ity are the Café Wall Illusion [GP79] (Figure 2.1a), and the illusory con-
tours [Kan79] (Figure 2.1b). In the first illusion, most people perceive the
horizontal lines are not parallel although they actually are. In the second,
a triangle can be seen in front of the three circles, when the truth is that
only three partial circles are shown.

There is a growing number of visual illusions which are specifically
designed to emphasize different heuristics and assumptions of our visual
system. Disregarding the particular characteristics of the perceptual sys-
tem, will most likely assure unwanted effects in the image or simulation
under study. Taking advantage of them instead, will lead to more effi-
cient algorithms for wide ranging topics and applications in computer
graphics and other fields, as it will be discussed later.
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Chapter 2. Preliminary Knowledge

2.1.2 From psychophysics to computer graphics

One question that may arise at this point is that, given the subjective na-
ture of human perception, how can it be studied? The answer is that, for
perception to be observed and analyzed, it must influence an organism’s
behaviour (humans in the case of the experiments regarding computer
graphics). The methodology that allows the objective study of the under-
lying mechanisms of perception is known as “psychophysics”, and was de-
veloped by the physicist Gustaf Theodor Fechner in the mid 1800’ [Fec60].
Such methods have as the main purpose ‘the empirical study and mathemat-
ical formulation of the functional relationships between physical stimulation and
sensory or perceptual responses’ [BCFW08]. To that end, psychophysics re-
quire total control over many factors including the actual stimuli to be
presented as well as when, how and to whom they are presented. Thus,
due to these constraints, perceptual research has commonly been con-
ducted using rather abstract stimuli (lines, geometric figures or simple
objects). Although such elementary stimuli present clear advantages re-
garding their reproduction, mathematical description and systematical
variation, it is not clear whether the respective findings would generalize
to more complex real-world scenarios [Gib79].

In modern psychophysics, the increasing ambition to study human
perception in more real-world-like situations faces the traditional rigor of
experimental methodologies. The problem with real-world stimuli is that
they cannot be always exactly reproduced, mathematically described or
systematically varied, which are fundamental requirements for percep-
tual research. The exceptional advances in computer simulations of real-
ity, however, offer an elegant compromise to overcome preceding prob-
lem as they meet the generalization criteria as well as being representative
from real-world cases.

2.1.3 Experimental design

There are five specific aspects that any perceptual experiment has to take
into account: 1) what is shown (stimulus), 2) who gets to see it (partic-
ipants), 3) how they get to see it (stimulus presentation) 4) what do they
do with it (task design) and 5) analysis of the responses (data analysis). A
comprehensive discussion on each of these aspects is beyond the scope of
this manuscript and we kindly refer the reader to the book from Geschei-
der [Ges97] and the survey from Cunningham and Wallraven [CW11] for
that matter. Still, the fundamental theory concerning the design of the
experimental task will be reviewed here in further detail, as during our
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2.1. Perception for computer graphics

investigations we invested an important effort in this particular aspect.
Despite of the vast amount of existing alternatives, experimental tasks

can be usually classified into five rough categories: Questionnaires, free
descriptions, scales, forced choice and physiology. The general idea be-
hind free descriptions is to simply request participants to describe some-
thing using their own words. For instance, if investigating whether sub-
jects are able to recognize what is being shown in an image (i.e. a cat,
flowers, buildings), we would as them to verbally describe the contents
of the picture. This task is highly subjective and arises the question of
how to map the responses to a certain answer category. Questionnaires
instead, ask people how they might react in a specific type of situation.
For example, if we were to measure the visual quality of rendered im-
ages, a set of renderings would be presented to the participants along
with the question ‘which of the following images is more realistic?’. With
this design, different question formulations may lead to completely dif-
ferent answers. The use of rating or Likert scales is able to overcome
some of the issues posed by two previous methods. According to this
technique, when, for instance, investigating the aesthetic properties or an
image we would pose the question like ‘on a scale from 1 to 7, how beauti-
ful is the following image?’, together with a 7-point rating scale. There are
several important concerns about rating scales regarding the anchoring
(i.e. how beautiful is a 7?), and regarding the level of measurement [Ste46],
which refers to the relationship between the values assigned to a variable
(which is the difference between a 5-level beauty and a 6?). On this sub-
ject, research has shown that ‘using appropriate adjectives for each scale point
ensures that a proper interval is created’ [CW11]. Additionally, an interesting
variation to Likert scales are semantic differentials introduced by Osgood
et al. [Osg52], in which the ends of the scale are represented by opposite
terms (e.g. realistic–unrealistic). In the forced choice alternative, a limited
range of stimuli options is given as possible answers, and the participant
is “forced” to select one of them. Finally, physiological experiments over-
come the need for language by finding physiological factors that vary
along with the stimuli (e.g. heart rate, blood pressure, brain waves, etc).

2.1.4 Research directions

The content of this dissertation partially lives in the ecosystem of both
human perception and computer graphics research. According to this,
we summarize next some relevant investigations regarding the synergies
between these two fields, starting from their applications in virtual and
augmented environments. The technology in Virtual Reality (VR) and

14



Chapter 2. Preliminary Knowledge

its mixed and augmented reality extensions (MR/AR) have experience
a renaissance over the last years. The proliferation of consumer head-
mounted displays (HMD) is parallel to the arrival of multiple special-
ized applications such as medical visualization, industrial design or video
games, all of which have been used as a tool for the study of human per-
ception. One concrete line of research that has an important influence
in the cited applications is the sense of embodiment (SoE) in immersive
environments described by Kilteni and Groten [KGS12], which relates to
the feeling of owning and controlling a virtual body. According to the au-
thors, the SoE comprises three sub-components: the sense of self-location,
the sense of agency and the sense of body ownership, having each of them
been subject of individual studies. On the other hand, perceptual insights
have been used to evaluate the fidelity of virtual environments, including
size and distance perception [CRST+15], sensation of walking [WBN+11]
and visual realism among other aspects. Beyond perceptual research, the
findings from these studies are also employed to learn which characteris-
tics of a VR/AR setup have an impact on the user experience.

Visualization is a field of study that aims at the better comprehension
of information and scientific data. Although there have been a consider-
able number of proposed techniques, only few of them have been evalu-
ated from a perceptual point of view, in order to measure their potential
benefits for the final user. Among the basic features that have been ex-
amined by means of psychophysical experiments are the choice of color,
size and orientation of features and the density and regularity of texture
elements. An overview on some of the predominant perceptual issues in
visualization is discussed in the panel from House et al. [HIL+05] and the
experimental design in the context of information visualization is further
analyzed in the tutorial from Swan II [SI06].

In a similar vein, the perceived realism of digital scenes has also re-
ceived a great deal of attention, focusing mainly in what is needed to
produce perceptually realistic environments. In this context, the devel-
opment of perceptually-driven fidelity metrics has achieved substantial
importance. Most of the existing algorithms, such as the Visible Dif-
ferences Predictor (VDP) [Dal93] which describes the human visual re-
sponse, or the Structural Similarity Index (SSIM) [WBSS04] that measures
image quality, result generally in a very conservative estimation of im-
age/rendering fidelity [BCFW08]. The later notion of visual equivalence
[RFWB07] proposes instead that two images are visually equivalent if
“they convey the same impressions of scene appearance, even if they are visibly
different”. Through their studies, the authors derive visual equivalence
predictors for the object’s shape, different illumination techniques and
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2.2. Material appearance models and reflectance acquisition

employed materials.
When it comes to realism in computer generated animations, the hu-

man face is one of the best showcases, as it is capable of producing a
large variety of expressions challenging to model in a digital environ-
ment. In a investigation from Wallraven et al. [WBCB08], psychophysi-
cal experiments are used to thoroughly evaluate the perceived quality of
computer-generated facial animations w.r.t. real-world video sequences.
In the same way, rendering algorithms also benefit from perceptual re-
search, concretely its performance in terms of their rendering parameters
and the resulting image fidelity have been also examined via psychophys-
ical studies [KFB10].

Finally, yet importantly in the context of this thesis, human percep-
tion has a decisive role in the appearance of digital materials. The con-
stant search in computer graphics for realistic ways to represent the in-
teraction between light and materials has produced a large collection of
digital material models which are, in general, approximations of physical
laws. However, the importance of human perception in this pursiut of
greater material realism has been often minimized or even disregarded.
One exception is the investigation from Meseth et al. [MMK+06], which
verified the capacity of one of these models (Bidirectional Texture Func-
tions, BTFs) to depict photo-realistic materials. On this subject, the basic
foundations regarding light reflectance representations and material ap-
pearance are reviewed in the following section.

2.2 Material appearance models and reflectance
acquisition

Undeniably, the understanding of materials is essential to comprehend
the world surrounding us. The perception of materials depends on the
way light interacts with the material surface, which in essence defines
their appearance. In general, ‘a surface may reflect a different amount of light
at each position, and for each direction of incident and exitant light’ [WLL+09],
depending of the characteristics of the surface itself (Figure 2.2). Hence,
to completely describe the opaque reflection at a certain point of a sur-
face, we need a function that gives the amount of light reflected per
each position (2D), incident light direction (2D) and exitant light direc-
tion (2D), resulting in a 6-dimensional function. This function contains
information about the nature of the surface (i.e. whether it is shiny or
matte, smooth or rough, etc) and thus, allows us to describe its appear-
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N

Figure 2.2: Illustration with different types of surface reflectance, diffuse (left),
specular (middle) and subsurface scattering (right).

ance under any lighting conditions. This section details the fundamental
notions of material appearance, starting from the concepts associated to
the domain of radiometry, followed by the definition of the Bidirectional
Reflectance Distribution Function (BRDF), which describes how light is
reflected in opaque surfaces, its generalizations to more complex mate-
rials and the main notions about acquisition of appearance data. More
detailed descriptions of the concepts addressed in this part are provided
in the excellent reviews from Weyrich et al. [WLL+09] and Weinmann et
al. [WLGK16].

2.2.1 Radiometry

Radiometry is the area of study associated with the measurement of elec-
tromagnetic radiation, including visible light, flowing in the space. Ac-
cording to this, there are a set of radiometric quantities and units that
must be known by the reader beforehand. Although light is a form of
electromagnetic energy and therefore is measured in Joules (J), we are
mostly interested in the amount of energy flowing per time, known as
radiant flux or power. This quantity is measured in Watts (Φ).

If we consider an ideal point light source, where the light is emitted
evenly in all directions, describing its power would describe it completely.
In the real world, however, this is normally not the case, thus we need to
talk about the amount of power emitted in a particular direction i.e. per
solid angle. The basic unit of the solid angle is the steradian, and is de-
fined as the area of some region of the sphere divided by the square of its
radius. A complete sphere has then 4π steradians. Thereby, we measure
the radiant intensity (I), or directional power of a point light source in Watts
per steradian (Equation 2.1). This leads us directly to the next radiometric
quantity of our interest, the irradiance (E) or the amount of light falling
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upon a surface (Equation 2.2), which is defined as the power per unit
area. Finally, the most advanced radiometric concept is the radiance (L),
which combines the two notions studied earlier. However, in practice, we
consider the surface area as the projected surface instead (perpendicular
to the viewing direction). Thus, the radiance describes the power emit-
ted per unit projected area per solid angle (Equation 2.3) as illustrated in
Figure 2.3.

I =
dΦ
dw

(2.1) E =
dΦ
dA

(2.2) L =
dΦ

dAprojdw
(2.3)

The radiance is almost certainly the most important quantity in com-
puter vision and graphics. It is intuitive to think that the irradiance on a
camera sensor is proportional to the radiance of the surfaces being cap-
tured [WLL+09]. The equation given when radiance is integrated over
all exitant angles is called radiant exitance (M), see Equation 2.4, where
cosine term accounts for projected area. When this value is equal for all
directions, this value is called radiosity (B).

M =
∫

Ω
L(θ, ϕ) cos(θ)dw (2.4)

Lastly, the plenoptic function, which is a 5-dimensional positive func-
tion L(x, y, z, Ω, Φ), allows to completely define the radiance at every light
direction and every point in the 3D space [AB91]. Given that radiance is
constant along rays in free space, we can neglect one of the dimensions
(z), resulting into a 4-dimensional function known commonly as the (4D)
light field [LH96].

2.2.2 Surface reflectance models

Once the basic radiometric concepts have been defined, we are ready to
provide the definition of the Bidirectional Reflectance Distribution Function
(BRDF), first formulated by Nicodemus et al. [NRH+77], which describes
the light reflection at a point in a opaque surface. In other words, it speci-
fies the ratio between the incoming irradiance and the reflected radiance.
The BRDF is generally expressed as a function of four variables, which
are the polar angles of the incident and exitant light directions and is
expressed in inverse steradians (sr−1).
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dA

ωd

Figure 2.3: Definition of radiance as the light emitted from a surface in a concrete
direction (dω) per unit (projected) area (dA).

fr(θi, ϕi, θo, ϕo) =
dLo(wo)

dEi(wi)
(2.5)

BRDF models have an important set of properties shared by most of
them. The first one is the energy conservation: a surface cannot reflect
more light that was incident on it. In other words, the light must be
reflected or absorbed but cannot be created. A second characteristic is
the Helmholz reciprocity, which states that the values of incoming and
exiting light do not change if the light angles are swapped. When a
BRDF satisfies the two aforementioned conditions, we consider it physi-
cally plausible. Another property held by some BRDF is called isotropy,
where the BRDF value do not change if the light angles are rotated by
the same amount. The opposite concept is anisotropy, where the BRDF
value is affected by such rotations. BRDFs have more advanced charac-
teristics representing more uncommon light effects i.e. asperity scattering
or retro-reflection, that will not be covered in this section.

Over the years, several analytic BRDF models have been proposed, in
which the reflectance of a material surface is given by a mathematical
formula. Certainly, materials in real life present much more complex
characteristics and the accuracy of this group of models is greatly limited.
We introduce first the Lambertian model, in which the light reflected on
a surface is a constant (Figure 2.2, left). In the Equation 2.6, parameter
ρ represents the diffuse albedo (fraction of reflected vs. absorbed light).
The next most elementary analytic model for material reflectance is the
Phong model [Pho75], which was developed to describe the behaviour of
glossy materials (Figure 2.2, center). This model is given by Equation 2.7,
where V is the viewer’s direction and R is the mirrored direction of the
incoming light from the tangent plane (see Figure 2.4). The Blinn-Phong
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R

V
N

H

L

Figure 2.4: Vectors utilized in the calculation of Phong and Blinn-Phong re-
flectance models.

model [Bli77] is a physically implausible modification of the previous one
that speeds up computations by replacing the dot product R · V by the
product of the surface normal and the halfway vector between the viewer
and light source vectors.

fr = ρ/π (2.6) fr = ks(R ·V)N

(2.7)
fr = ks(N · H)N

(2.8)

There is a considerably large collection of more advanced BRDF mod-
els explaining a greater mixture of optical phenomena i.e. the Lafortune,
Torrance-Sparrow or Ashikihmin BRDFs, which are beyond the scope of
this text. Instead, we are going to outline one concrete BRDF model of
great relevance for the related work and some of the perceptual stud-
ies that will be presented in this manuscript, the Ward BRDF [War92] (see
Equation 2.9). This model, which was developed in order to fit real-world
measured surfaces, includes a specular peak shaped by a Gaussian func-
tion instead of the power-of-cosine employed by the previous equations.
Furthermore, it has also the ability to model anisotropic reflections by
applying different Gaussian widths (αx and αy) in the two perpendicular
directions.

fr = ks
e−tan2θh((cos2φh)/α2

x+(sin2φh)/α2
y)

4παxαy
√

cosθicosθo
(2.9)

Inspired by Ward’s model, other data-driven approaches which mea-
sure the reflectance of real material samples have become popular and

20



Chapter 2. Preliminary Knowledge

Figure 2.5: Collection of BRDF materials captured by Matusik et al.
[MPBM03]. As observed, all the samples represent flat, homogeneous and opaque
surfaces.

practical [MPBM03]. The set of devices and techniques for the measure-
ment of such BRDF reflectance is convered in Section 2.2.3.

As already discussed by Nicodemus et al. [NRH+77] and also illus-
trated in the Figure 2.5, the range of appearances that BRDF models are
able to describe is tailored to flat, homogeneous and opaque materials.
However, real world objects exhibit complex behaviour that often differ
among points in the same surface. In these cases, it becomes mandatory
to increase the original BRDF equation with two additional spatial di-
mensions, leading us to the definition of Spatially-Varying BRDF model,
also defined by Nicodemus et al. [NRH+77]:

fr(x, y, θi, ϕi, θo, ϕo) (2.10)

Since BRDF functions are only able to represent local phenomena,
spatially-varying models cannot represent non-local light transport oc-
curring due to e.g. self-occlusion, interreflections or subsurface scatter-
ing. Indeed, during the course of our investigations, we examined the
capacity of SVBRDFs to communicate detailed characteristics of material
appearance through the visual channel (Chapter 5) and observed that
the abstraction from volumetric materials to flat surfaces inherent to the
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model deteriorated the perception of important cues associated with the
sense of touch (e.g. roughness, thickness and flexibility) among others.
The evaluated SVBRDF material representations and the correspondent
real-world samples employed in this study are depicted in Figure 5.3.

Still, the analysis of this function represents an important shifting of
paradigm, from material appearance to object appearance, and therefore
the geometry of the object in question needs to be taken into account.
When this geometry is known, the spatial dimensions of the SVBRDF are
paremeterized over that concrete geometry. Otherwise, the 6-dimensional
function needs to be defined relative to some reference surface. In fact,
when the reference geometry is planar, the concept of Bidirectional Texture
Function (BTF) [DvG+99] arises.

BTF models are usually acquired in a data-driven fashion by gather-
ing and combining series of photographs from a material sample from
different lighting and viewing conditions and thus are able to repre-
sent the mentioned non-local effects of light reflection if sampled suf-
ficiently densely, making them suitable to represent materials with sig-
nificant mesostructure. However, the acquisition devices are limited to
small sample sizes and complete measurements. Besides, it is a consid-
erably expensive process due to the time needed for acquisition, post-
processing (hours to days) and storage requirements (in the order of ter-
abytes) [SMdB+15]. An example of the rendering quality achieved by this
model in comparison to simple BRDF materials with an applied texture
is shown in Figure 2.6.

Although being able to depict more intricate effects of light reflection,
neither BTFs nor SVBRDFs are enough to describe all kind of material
appearances. Specifically, translucency is a phenomenon in which light
enters the object and emerges from a different surface point, after be-
ing reflected inside the material itself (Figure 2.2, right). The model that
is able to represent such effect is known as the Bidirectional Scattering-
Surface Reflectance Distribution Function (BSSRDF) [NRH+77]:

fr(xi, yi, θi, ϕi, xo, yo, θo, ϕo) =
dL(xo, yo, θo, ϕo)

dφ(xi, yi, θi, ϕi)
(2.11)

This function adds two more parameters to the SVBRDF, which ac-
count for the location where the light leaves the surface. The BSSRDF is
an 8-dimensional function defined as the input power at a single point,
unlike the BRDF, which is defined over a differential area [WLL+09].
Hence, it is formulated as a fraction of incident flux instead of irradiance
(m−2 · sr−1).
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Figure 2.6: Stimuli presented by Meseth et al. [MMK+06] in which the render-
ing quality of measured BTFs (middle column) is compared against the original
photographs (left column) and textured BRDF materials (right column) in the
context of car interior scenes.

Even with the addition of the scattering behaviour, still not all the
possible ranges of material appearances are covered. For that, one would
need to consider first the previous functions as dependent from the light
wavelength. Second, apart from the translucent effect, some surfaces are
fluorescent, meaning that they emit light whose wavelength differ from
the incoming rays. Moreover, some surfaces have properties that change
over time. In summary, to completely characterize surface reflectance,
two wavelengths, two time dimensions and two additional spatial di-
mensions should be added to the BSSRDF function, to shape a general
14-dimensional scattering function. To date, we do not have knowledge
of any attempt to capture the full material appearance based on this func-
tion.

2.2.3 Reflectance acquisition

This sections provides a brief summary of the most relevant reflectance
acquisition concepts and methods for the given material models. For
more in-depth discussion about the topic, we direct the reader to the
surveys from Weinmann et al. [WLGK16] and Weyrich et al. [WLL+09].

The most traditional and widely used device for the measurement of
BRDF reflectance is the gonioreflectometer (see Figure 2.7). This appa-
ratus typically uses servo motors to position a beam of light (wi) and a
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Figure 2.7: An example gonioreflectometer from the University of Bonn. On the
lower right side, the camera that is employed for hyper-spectral measurements.
Image obtained from [SSW+14].

sensor (wo) and is designed such that the input and output directions are
known relative to the local coordinate system. Furthermore, the sensor
is usually linked to a spectroradiometer that allows recording spectral
measurements for each source/sensor configuration. Although the mea-
surements are reliable and repeatable, the whole process tends to be quite
lengthy. However, acquisition time can be shortened by considering only
isotropic BRDFs, where the model is invariant to rotations of the light
angles [LFKW06]. Still, there are several physical limitations that com-
plicate the measurement of accurate BRDFs. For example, measurements
are troublesome when the incident and/or exitant light approach graz-
ing angles due to surface foreshortening. Similarly, the measurements
can become noisy with very dim or very specular surfaces.

The main difference when acquiring SVBRDFs instead of simple BRDFs
is given by the spatial variation in the surface reflectance behavior that is
modeled as a spatial distribution of independent BRDFs over the surface
of the material sample [WLGK16]. For this reason, in order to measure
higher dimensional appearance (SVBRDF or BSSRDF) more efficient and
advanced techniques are required, such as arrays of light sources, digital
projectors and digital cameras. On the other hand, these methods intro-
duce several drawbacks i.e. the loss in spatial resolution, the complexity
of the calibration procedure and the need to estimate the radiometric
mapping between recorded intensities and scene radiance values. If the
prior obstacles are properly addressed, the acquisition of these models al-
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low to represent fine spatially-varying reflectance and scattering effects.
One important aspect that has to be taken into account while mea-

suring higher dimensional reflectance properties is that the object geome-
try/shape must be known. One common approach to estimate the shape
is the use of structured light in combination with stereo cameras [ZCS03].
This method introduces further alignment issues between the recovered
shape and the images used for reflectometry. Besides, the computation
of the required surface normals from the discrete shape introduces ad-
ditional sources of noise. Instead, surface normals can be directly calcu-
lated from the images using photometric stereo [Woo79], whose classic
approach assumes purely Lambertian material reflectance. The partic-
ular case of recovering three-dimensional shape from a single image is
known as shape from shading [Hor89], and can be employed in order to
model the geometry of highly specular materials. The development of
methods to reconstruct geometry and surface structure from images is
still an active field of research. A complete overview on the foundations
of photometric stereo as well as an examination of the latest techniques
in geometry reconstruction is given by Ackerman and Gosele [AG15].

There is a large amount of acquisition designs and devices, and enu-
merate all of them would be out of the scope of this document. In general,
there are four aspects that need to be considered: acquisition time, pre-
cision, cost (computational, storage-wise, etc) and material diversity (or
range of material categories that a device can measure). During certain
phases of our investigation, we required the measurement of spatially-
varying reflectance of a set of different materials. To that end, we em-
ployed the TAC7 Scanner [XR16], a commercial device whose detailed
description is provided in Section 5.8.

2.3 Visual textures

In computer graphics we commonly use texture mapping as a standard
technique to depict surface details without explicitly modeling the ma-
terial’s geometry or its fine reflectance properties (see Figure 2.6, right
column). The image mapped onto the object/material is what we call tex-
ture map in the domain of computer graphics, or just texture, and can be
used to represent numerous surface properties including color, reflection,
transparency or displacement. In general, this term is used referred to an
image containing arbitrary patterns, although depending on the field of
knowledge it can adopt different meanings. For instance, in computer vi-
sion or image processing textures are referred as visual or tactile surfaces
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composed of repeated elements while in visual perception is just defined
as a property of “stuff” in the image in contrast to labeling “things” in
the image [AB91].

On this subject, the visual perception of textures deals with the in-
vestigation of the underlying mechanisms of human vision. Yet, its role
goes beyond that, as the appearance of textures is inherently related to
the perception of particular materials, from which the texture is derived.
Wile there has been tremendous efforts in the field of computer graphics
to simulate real materials in virtual environments, the human perception
of textural features has been also broadly investigated. However, the role
of textures in the perception of virtual materials, which combines the
knowledge of the two previous research directions, has received consid-
erably less attention. A comprehensive research overview in the avenue
of texture perception is provided by Landy and Graham [LG04]. This
section however, is limited to a summary of the fundamental notions re-
garding the use of textures in computer graphics and vision. Such theory
is discussed with greater detail in the review from Wei et al. [WLKT09].

2.3.1 Texture analysis and synthesis

Textures can come from many human sources, including hand-drawn pic-
tures or photographs. While the first ones can be aesthetically pleasing,
only professional texture artists can produce high-quality, photo-realistic
textures, needed for many applications in computer graphics. On the
contrary, scanned and photographed images usually have such required
quality, but they are not directly usable for texture mapping as they tend
to contain inadequate sizes, shadows, non-uniform lighting and/or un-
desired content. In this context, texture synthesis arises as an alternative
method to computationally generate these textures. It is rather simple
and general, as the user only needs to supply the input exemplar and
a more-or-less large set of parameters to the algorithm. This family of
methods are able to synthesize a bigger sample from an input one that,
according to human observers, appears to be generated by the same la-
tent processes. As stated by Wei et al. [WLKT09] ,texture synthesis has
two main composing parts:

• Analysis or how to compute the latent generation process from the
given example.

• Synthesis or how to build a generation mechanism to produce new
textures from the given analysis model.
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This two processes shape the fundamental differences between partic-
ular algorithms for texture synthesis.

2.3.2 Basic synthesis algorithms

A considerable amount of the methods for texture synthesis are based in
Markov Random Fields (MRF). Also known as Markov Network, MRF is a
technique of representing and visualizing a probability distribution based
on the notion of undirected graphs. This model can compactly represent
distributions, which are otherwise unable to be represented by directed
models. Formally, a MRF is a probability distribution p over variables
x1, ..., xn given by an undirected graph G where the nodes correspond to
the xi variables and represent the pixels in the images. Then:

p(x1, ..., xn) =
1
Z ∏

c∈C
φc(xc) (2.12)

Where φ(xi, xj) is a factor that assigns more weight to consistent votes
among variables and Z is a normalizing constant. According to this, MRF
characterize each pixel in the image by a small set of neighboring pixels
and the goal of the synthesis process is to generate an output texture, such
as for each output pixel its MRF neighborhood has a correspondence at
the input texture. With this in mind, there are two essential techniques
for texture synthesis, which at the same time rely on MRF to some extent.
These techniques are the pixel-based and the patch-based synthesis.

Pixel-based synthesis The approach that bootstrapped the study of tex-
ture synthesis algorithms is the work proposed by Efros and Leung [EL99].
Its underlying idea is illustrated in Figure 2.8 and consists in the follow-
ing steps:

1. Select a patch from a given input exemplar.

2. The output is initialized by copying that seed patch from the input.

3. Select an objective pixel outside the already synthesized pixels.

4. Find a set of candidate matches from the input with respect to the
partial neighborhood of the objective pixel (red) and selects the cen-
ter of one neighborhood randomly. The size of this neighborhood is
determined by the user (3× 3 in our case).

5. Repeat the previous step to grow the initial patch in an inside-out
manner.
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1 2 3 4 5...

Figure 2.8: Illustration of the basic steps for the pixel-based texture synthesis.

This conceptually easy algorithm has as its only tunable parameter
the neighborhood size, which should adequate to the size of the features
in the original texture, otherwise the output might be too random. Al-
though the method is influenced by MRFs, the process does not perform
a rigorous MRF sampling and therefore is easily understandable. On the
other hand, the performance of the method can be too slow and subject to
non-uniform pattern distribution. These issues are addressed in the work
from Wei and Levoy [WL00] by utilizing a fixed neighborhood, random
initialization and synthesis in scanline order (instead of the inside-out
fashion). The use of the fixed neighborhood in particular allows the ap-
plication of diverse acceleration techniques (e.g. kd-trees).

Patch-based synthesis Both quality and performance of pixel-based ap-
proaches can be improved by considering the synthesis of patches instead
of pixels. In order to ensure the output quality, patches are selected by
considering its neighborhood, just as the pixel-based approach. The main
difference between the two techniques lies in the way the input patch is
copied onto the output, as patches, being larger than pixels, tend to over-
lap with already synthesized regions. Possible solutions are overwriting
existing regions, blending, performing an optimization on the final pixels
or warping the patches to ensure continuity.

In this context, Barnes et al. [BSFG09] introduced the PatchMatch al-
gorithm to efficiently find nearest neighbor correspondences between im-
age patches. The key insight is to find good candidate patches through
random sampling and propagating such correspondences to surrounding
areas thanks to the natural coherence of the image. Later, the authors gen-
eralized their algorithm to find k nearest neighbors instead of just one, by
including rotation and scaling in the search space and by using arbitrary
distance measures [BSGA10]. In our research, we will make heavy use of
a synthesis algorithm that relies on PatchMatch correspondences in the
context of computing perceptual similarities between textures in Chapter
6.
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Additional synthesis methods There are further alternatives for the
generation of synthesized textures besides the two mentioned techniques.
One of them is the texture optimization, which, unlike previous
approaches, considers all the pixels in the output image at the same time,
and determines their values by optimizing a quadratic energy function
(i.e. [KEBK05]). Such function is determined by the discrepancies be-
tween input/output neighborhoods, hence minimizing this function im-
proves the output quality. The same principles of texture synthesis, in-
cluding MRFs, can be applied also to dynamic textures i.e. textures whose
appearance changes with time [WLKT09]. Although the classic example
is having video data from dynamic phenomena, other approaches are
also feasible, for instance materials whose appearance change over time
[GTR+06]. Furthermore, it is also possible to consider static image sam-
ples and achieve dynamism by modifying the synthesis parameters over
time (i.e. to generate plausible fluid simulations in 2D). Finally, proce-
dural texturing techniques have the capacity to compute the synthesized
appearance on-the-fly at any given point by training generative networks
that capture the characteristics of the “Markovian patches” and gener-
ates output textures in real-time [LWM+16]. These methods, although
effective, are not able to reproduce all range of texture appearances.
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CHAPTER 3

Multimodal Perception of
Material Properties

L1 L2

L3 L4 P3 P4

P1 P2 F1

F3

F2

F4

Figure 3.1: (Teaser) Materials utilized in the experiment. Included are four
leathers (L1 – L4), four papers (P1 – P4), and four fabrics (F1 – F4).

Abstract. The human ability to perceive materials and their properties
is a very intricate multisensory skill and as such not only an intriguing
research subject, but also an immense challenge when creating realis-
tic virtual presentations of materials. In this paper, our goal is to learn
about how the visual and auditory channels contribute to our percep-
tion of characteristic material parameters. At the center of our work are
two psychophysical experiments performed on tablet computers, where
the subjects rated a set of perceptual material qualities under different
stimuli. The first experiment covers a full collection of materials in dif-
ferent presentations (visual, auditory and audio-visual). As a point of
reference, subjects also performed all ratings on physical material sam-
ples. A key result of this experiment is that auditory cues strongly benefit
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the perception of certain qualities that are of a tactile nature (like “hard–
soft”, “rough–smooth”). The follow-up experiment demonstrates that,
to a certain extent, audio cues can also be transferred to other materi-
als, exaggerating or attenuating some of their perceived qualities. From
these results, we conclude that a multimodal approach, and in particular
the inclusion of sound, can greatly enhance the digital communication of
material properties.

In this first approach to the perception of digital materials, we consid-
ered the question of whether prerecorded material audio cues (finger
rubbing and tapping sounds) are able to facilitate the correct assess-
ment of particular material properties or qualities. Given the insight-
ful results obtained in an initial experiment, we went a step further
and investigated if sound could bias the perception of those qualities
predominantly related with the tactile feeling.

This chapter corresponds to the paper [MIWH15]: Rodrigo Mar-
tin, Julian Iseringhausen, Michael Weinmann and Matthias B. Hullin.
“Multimodal Perception of Material Properties”. In ACM SIGGRAPH
Symposium on Applied Perception. September 2015.
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Chapter 3. Multimodal Perception of Material Properties

3.1 Introduction

Being able to perceive the materials that objects are made of, and their
respective properties, is of utmost importance in our everyday human
lives; yet, to this day we know very little about this skill. What makes
material perception a fascinating and inexhaustible subject of investiga-
tion is that it is highly multimodal, or multisensory, by nature, combining
vision, hearing, touch, smell and taste to varying extents. Consequently,
recreating the intricate appearance of materials in a digital context is a
very hard task. For example, even the most advanced models and meth-
ods from computer graphics have not yet managed to fully virtualize the
material sampling process in product design; instead, physical samples
are still the standard. In this paper, we build upon the assumption that a
designer’s decision for or against a material is not only based on measur-
able physical parameters but also on subjective or affective characteristics.
Under this premise, effective communication of materials requires an un-
derstanding of how these characteristics are perceived multimodally.

The main contribution of this work are two psychophysical experi-
ments performed to quantify the isolated and combined effect of visual
and auditory stimuli on a set of material properties or qualities. This set-
ting maps well to the capabilities of today’s consumer devices, where 2D
display and stereo audio are regularly available in high quality.

In our first experiment, participants rated 10 material qualities for a
set of 12 different material samples, each in 3 different virtual presenta-
tions (visual, auditory, and audiovisual). Reference data was obtained by
letting the subjects interact with a physical sample of each of the mate-
rials (full-modal interaction) and rating the same set of parameters. We
investigated to which amounts the visual and auditory channels impact
the different perceived material qualities. As a key result, we learned that
the assessment of qualities that are of a tactile nature (such as “hard–soft”
or “rough–smooth”) strongly benefits from auditory cues.

Following up on this insight, we performed a second experiment of
similar design where images and sounds of different materials were com-
bined. The main finding of this experiment was that by changing the au-
ditory stimulus, the perception of the tactile qualities can be manipulated
in a consistent manner. In fact, quite extreme changes can be achieved
without compromising the overall realism of the experience.

From these results, we conclude that the digital presentation of ma-
terials can be improved by creating a multimodal experience. However,
future research will be needed in order to explore the potential and limits
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of sound in material perception.

3.2 Related work

While the perception of objects, surfaces and color has been studied in
great detail over the course of several decades, the study of material per-
ception has gained momentum relatively recently. To this date, we still
know very little about the processes that govern human perception of ma-
terials; as a consequence, applying such knowledge in the field of com-
putation is not a straightforward procedure. For a high-level overview
of problems and challenges in material perception, we refer to the ex-
cellent surveys by Adelson [Ade01], Maloney and Brainard [MB10] and
Fleming [Fle14].

The majority of the literature in the field is based on purely visual
representations of the materials1. Several of these studies focused on un-
derstanding how humans perceive the luminance of the surfaces. For
example, Adelson and Pentland [AP96] examined the ability to judge the
reflectance and the shading of the objects in three-dimensional scenes.
Ho et al. [HLM06] researched the visual estimation of surface roughness,
discovering that observers perceive surfaces to be rougher with decreas-
ing illuminant angle. Visual perception of material glossiness has been
also investigated in isolated form [PFG00] and together with transparency
[CWFS07]. Both works aimed to find perceptually meaningful reparam-
eterizations for optical properties by exploring the relationships between
physical parameters and the perceptual dimensions of glossy and trans-
parent appearance. How the shape of materials influences the perception
of reflectance properties has been analyzed by Vangorp et al. [VLD07].
Bouman et al. [BXBF13] examined the human competence to estimate the
stiffness and density of fabrics from video, in the context of predicting
such features algorithmically. The interactions between the tasks of ma-
terial classification and material judgment of a set of qualities in both the
visual and semantic domains was investigated by Fleming et al. [FWG13].
Their studies revealed a high degree of consistency between these two as-
signments, suggesting that subjects access similar information about ma-
terials in both circumstances. Finally and in a similar way to our own di-
mensionality analysis, Rao and Lohse [RL96] explored the dimensionality

1The technical aspects of creating and handling these representations have been re-
searched extensively in the graphics community. Interested readers are kindly referred
to the SIGGRAPH course by Weyrich et al. [WLL+09]
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of a space of abstract visual textures, identifying three strong orthogonal
directions.

Sound-only approaches to material perception are not very frequent,
however there are some interesting studies. Carello et al. [CAKP98] re-
searched the capability to perceive the specific size of objects. This was
one of the approaches that first addressed the assignment of judging ge-
ometrical properties of an object (length) using audition. The relation be-
tween material perception and variables that govern the synthesis of con-
tact sounds was analyzed by Klatzky et al. [KPK00] and additionally by
Avanzini and Rocchesso [AR01]. Giordano and McAdams [GM06] inves-
tigated the identification of materials from impact sounds. They showed
that, while listeners performed well with respect to gross material cate-
gories, their performance degraded for materials within the same gross
category. Lemaitre and Heller [LH12] studied the human performance
on identifying either the actions or the materials used to produce certain
auditory stimuli. Also purely tactile approaches have been a matter of
research, especially looking at the general dimensionality of the spaces
underlying haptic interactions. In this way, Etzi et al. [ESG14] examined
the nature of aesthetic preferences for tactile textures.

Material perception is multimodal by nature, and the interplay of the
different sensing modalities is far from understood. Guest et al. [GCLS02]
explored how the tactile perception of textures can be modified by ma-
nipulating the frequency content of touch-related sounds. Tactile infor-
mation has been also combined with visual stimuli by Baumgartner et
al. [BWG13], who looked for correspondence between visual and haptic
material representations, and Hope et al. [HJZ13], who evaluated pos-
sible associations between physical and emotional material properties.
Nevertheless, the combination that has gained more interest in material
perception is the association of vision and sound. Bonneel et al. [BS+10]
combined and analyzed levels of detail in audiovisual rendering; Fujisaki
et al. [FGM+14] researched the principles that govern cross-modal inte-
gration of material information. Fujisaki et al. [FTK15] also went a step
further, investigating whether the same subjective classifications for vi-
sion, audition and touch can be found.

With this work, we aim to extend the state of the art in several re-
gards. Starting on the frame of multimodal perception, we propose two
experiments in which participants not only rated isolated and combined
audiovisual stimuli, they also interacted and evaluated the physical ma-
terial samples. This allows the subjects to obtain a full-modal experience.
Our selection of materials covers three types or classes (leather, fabric,
and paper), each composed of multiple members to represent the respec-
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Figure 3.2: Materials utilized in the experiment. Included are four leathers (L1
– L4), four papers (P1 – P4), and four fabrics (F1 – F4).

tive intra-class variances. The present study focuses on a set of percep-
tual properties that are fine-grained, strongly subjective, and not strictly
aligned with class boundaries. Using vision and sound as virtual presen-
tation modalities, our key question is which of these properties is trans-
ported through which channels, and how they play together. Our insight
is that even simple auditory cues complement the visual channel quite
effectively, allowing digital media to span a wider gamut of perceptual
material properties.

3.3 Experiment 1

We conducted a psychophysical experiment in order to explore the effect
of visual and auditory stimuli on the task of material property perception.
Our goal was to obtain meaningful evidence supporting the influence of
auditory cues in isolated form, or in addition to visual ones. Firstly, we
will briefly describe the details of the experiment, which will be followed
by the discussion of the results.

3.3.1 Methods

Selection of materials. We have collected a database of 32 flat material
samples distributed along three distinct categories including 11 leathers,
10 papers, and 11 fabrics. In the election of materials we selected the
specimens to be as diverse as possible in terms of their physical and aes-
thetic properties, in an attempt to cover the relative heterogeneity within
each material class. As the sound produced by an object highly depends
on its geometry, we only considered flat or nearly-flat samples, in order
to avoid undesired variability.
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Figure 3.3: View of the audio recording setup.

Visual stimuli. From each of the selected specimens, we cut a sample
of 12× 12 cm2, placed it on a bright background in natural illumination,
and took a photograph using a digital camera (Canon PowerShot G9 in
raw mode), located at approximately 25 cm from the sample under a
light angle. The described illumination and viewing conditions were kept
constant during the whole acquisition process. Pictures were taken at a
resolution of 4000× 3000 px. Subsequently white-balance correction has
been applied and the images were cropped, such that the specimen covers
approximately the whole image and all images share the same aspect
ratio. The resulting images are shown in Figure 3.2.

Auditory stimuli. In order to record the contact sound produced by
the specimens, we manufactured a special sample holder consisting of a
15× 15× 8 cm3 piece of polyurethane foam located between two layers of
acrylic, the top one with a 10× 10 cm2 square cutout to expose the mate-
rial sample. The sample is placed underneath the top acrylic layer, which
gently presses it against the foam block. The entire stack is held together
by four rubber bands under light tension, one in each corner. With this
setup, the sounds produced by the contacts between the sample and any
other adjacent surfaces can be reduced to a minimum. Sound recording
was performed in an acoustically isolated room using a portable audio
recorder (Zoom H6) with an X-Y pair of condenser microphones, about
10 cm away from the sample and facing towards it. Figure 3.3 depicts the
whole setup.

With the purpose of covering a wide range of characteristic material
sounds, we produced six different types of audio stimuli by touching
the material with the fingertip. First, we performed four perpendicular
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Tactile Visual Subjective

rough–smooth shiny–matte expensive–cheap
hard–soft simple–complex old–new
warm–cold colorful–colorless natural–synthetic

beautiful–ugly

Table 3.1: Set of opposite property pairs utilized in Experiment 1, grouped by
type.

movements, followed by four circular movements and lastly four strokes
in the center of the material surface. Afterwards the same interactions
were carried out using the fingernail instead of the fingertip creating one
single track of sound. The length of each interaction was approximately
3 seconds, which altogether resulted in an audio track with a duration
between 18 and 21 seconds. No post-processing was performed, with the
exception of trimming.

After the recording step, we selected a final subset of 12 samples from
the previous assortment of materials, 4 of each class, whose sound exhib-
ited significant dissimilar characteristics.

Perceptual properties. We chose a set of 10 opposite pairs of adjectives,
representing an intentionally diverse collection of perceptual properties
(See Table 3.1). They sample the most characteristic properties from pre-
vious studies on material perception [HJZ13, BWG13, FWG13, FGM+14,
FTK15]. This assortment of qualities was conceptually organized into
three groups according to the means of perception: tactile, visual and
subjective. While the first two groups include properties related to phys-
ical parameters, the last group is rather associated with an emotional
meaning or the user’s personal preferences.

Participants. 26 subjects, gathered through our university’s Laboratory
of Experimental Economics (BonnEconLab), voluntarily participated in
this experiment (13 females, mean age 26.46 years, standard deviation
6.39 years; 13 males, mean age 30.01 years, standard deviation 8.85 years).
All the participants were naïve to the purpose of the experiment and re-
ported normal or corrected-to-normal visual and hearing acuity. They
provided informed consent and received economic compensation for their
participation.
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Procedure. The user study was carried out using a tablet device (Toshiba
Excite Pro 10.1, 2560 × 1600 px resolution) running a custom Android
application, shown in Figure 3.4, together with a set of headphones (Sony
MDR-7506). With this kind of experiment, our setup is not only scalable
to larger surveys but also representative of today’s consumer hardware.

The experiment was conducted in a well-illuminated room with the
windows and doors closed to avoid any source of external noise or dis-
turbance. An experimenter was present during the whole course of the
experiment. The number of subjects per session was limited to 6–8 to
help the experimenter to control the correct realization of the experiment.
An introductory presentation was provided in order to explain the pro-
cedure, clarify questions, and a video of the contact sound generation
process was shown. Participants were instructed to infer or imagine prop-
erties that are not revealed in a particular presentation (e.g., purely visual
properties during the auditory presentation). The application also pro-
vided a help system for definitions of each adjective in question. Upon
starting the experiment, each participant had to individually set the vol-
ume to a comfortable level. It was then fixed and could not be changed
during the completion of the test.

The procedure was structured into four consecutive phases, where
the same materials have been presented to the subjects using different
modalities. In every phase the order of materials was randomized. The
tablet computer was used to generate the particular stimuli and also to
conduct the questionnaire. For each combination of material and stimu-
lus, the subjects rated the selected assortment of properties using a slider
with values ranging from −3 to 3. Each of the values was consistently
labeled with a term indicating the intensity of the property in both axes
(e.g., very rough, rough, a bit rough, neutral, a bit smooth, smooth, very
smooth). These ratings were finally interpreted as a magnitude estima-
tion process [Ste57]. The experiment was composed of the following four
presentations:

• Auditory: An audio playback of prerecorded contact sounds.

• Visual: An image of the material.

• Audiovisual: Combined both image and audio playback.

• Full-modal: The participants received a 6× 6 cm2 physical material
sample and were motivated to interact with it.

Moreover, the application was instrumented to identify user errors
(such as skipping a material or failure to play a sound) in order to im-
prove the reliability of the gathered data.
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(a) Auditory (b) Visual (c) Audiovisual (d) Full-modal

Figure 3.4: Screenshots of the Android application. Each image corresponds to
one of the four presentations composing the experiment.

3.3.2 Results

The evaluation of Experiment 1 is structured into a study of the inter-
participant correlation, an analysis of the individual material ratings as
well as the participants’ preferences. Finally, we also explored the dimen-
sionality of the perceptual spaces spanned by the investigated modalities.

Inter-participant correlation. Given the broad nature of the selected
properties, they are not likely to be communicated equally well along
the four different types of presentations. We argue that if a property is
clearly transported by a certain stimulus, the participants should gener-
ally agree on the judgment of this quality. Contrary, if the information
is not well depicted by the presentation, the participants will have to use
their imagination for rating and thus are expected to agree less. With this
in mind, we employed an inter-participant correlation analysis in order to
investigate the quality of property representations in each of the stimuli.
Figure 3.5 plots the average correlations for each of the property pairs.

For the auditory presentation, the highest correlation has been ob-
tained for the tactile attribute pairs “hard–soft”, “rough–smooth”, and
“warm–cold”. We deduce that, for the given set of attributes, sound is
most suitable to transport tactile information. As expected, the agree-
ment on visual properties is rather low here. The visual presentation per-
forms exceptionally well on the adjective pairs “colorful–colorless” and
“shiny–matte” which again was expected as these are purely visual prop-
erties. The agreement on the tactile properties is lower than in the audi-
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Figure 3.5: Average inter-participant correlation per property, grouped by pre-
sentation and sorted in ascending order w.r.t. the correlation. Note that the
addition of sound increases the overall agreement for tactile properties.

tory presentation. Examining the data for the audiovisual test, a tendency
combining the previous presentations can be observed. In contrast to the
preceding tests, the three most correlated adjective pairs include two vi-
sual properties and one tactile, namely “hard–soft”, “shiny–matte”, and
“colorful–colorless”. Lastly, the correlations of the full-modal presenta-
tion follow the same tendency as the audiovisual presentation, but show
an overall higher correlation.

To summarize, we have found evidence that, especially for tactile
properties, the participants’ overall agreement in property rating rises
by adding contact sounds to an image-only presentation.

Material ratings. In this section, we intend to additionally explore
whether it is possible to enrich the digital communication of material
properties by adding sound to the visual representation. For this pur-
pose, we have analyzed the average property ratings and the confidence
intervals (CI) of the mean across all the participants, for each material
independently. Given that the accuracy of this interval depends on the
normality of the data and since the distribution of the material ratings is
not normal, we bootstrapped the confidence intervals of the mean. Boot-
strapping provides a way to construct CIs that does not rely on the normal
assumption [Efr82, ET86]. Figure 3.6 depicts these values for one concrete
material.

We make use of statistical hypothesis testing on this material to eval-
uate the significance of the following suppositions. Firstly, we focus on
verifying whether our full-modal stimuli conveyed relevant impressions
in any side of the polarity axis. This represents our alternative hypoth-
esis Ha. Thus, our null hypothesis H0 states that all stimuli are neutral
on the polarity axis. The hypothesis H0 would be falsified if the neutral
position is not in the confidence interval for the presentation in ques-
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Figure 3.6: Ratings for material P4. The central circles represent the partici-
pants’ mean rating, the outer circles represent the bootstrapped 95% confidence
interval for the mean. The figure is discussed in detail in Section 3.3.2.

tion. Indeed, for 7 out of 10 pairs (“rough–smooth”, “hard–soft”, “shiny–
matte”, “simple–complex”,“colorful–colorless”, “expensive–cheap” and
“beautiful–ugly”) we are able to reject H0, therefore giving significant
support to Ha.

Secondly, we evaluate whether the audiovisual presentation improves
the isolated presentations when communicating the properties of this ma-
terial (Ha). The formulation of H0 declares that the audiovisual mean is
not in the confidence interval for the full-modal presentation. Our goal
again is to falsify H0. The depiction shows that we succeed in rejecting
H0 for 8 of the 10 property pairs (“hard–soft”, “warm–cold”, “shiny–
matte”, “colorful–colorless”, “expensive–cheap”, “old–new”, “natural–
synthetic”, and “beautiful–ugly”). For the remaining two pairs (“rough–
smooth” and “simple–complex”), the mean is still closely located to the
confidence interval boundary. Applying the same hypothesis to the visual-
only test would involve rejecting H0 only for 6 pairs of qualities.

We conclude that, for this particular material, the ratings for the full-
modal presentation mainly exhibit a significant bias towards the extrema
of the property pairs. Furthermore, we found significant evidence that,
for most of the quality pairs, the audiovisual test is more consistent with
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Chapter 3. Multimodal Perception of Material Properties

the ratings of the full-modal test than the purely visual one.

Preference analysis. In order to gain a better and broadened under-
standing on the predilections of the participants for the different modal-
ities in the task of property judgments, we performed a preference anal-
ysis independently on each of the examined properties. We consider a
material presentation to be well-suited to represent a certain property if
participants rate close to the full-modal presentation. Contrary, when the
ratings are far apart, the presentation is judged to be less realistic and
thus less suitable. To comprehend which is the impact of sound in these
preferences, we compare the visual to the audiovisual stimulus, using a
weighted voting scheme.

Let ri be the ratings for a certain combination of material and property
for a particular presentation i, j ∈ {visual, audiovisual} and rfm the ratings
for the full-modal task 2. The corresponding weights are defined as

wi =

{
|rfm − ri| − |rfm − rj| if |rfm − ri| < |rfm − rj|
0 else

. (3.1)

This means, that the weights grow with the difference of the ratings.
To compute the final scores, we sum up the weights over all materials and
participants, which is followed by a normalization,

Si,j =

∑
i

si, j

∑
i,j

si, j
, where i, j ∈ {visual, audiovisual}. (3.2)

The normalized scores, separated by properties, are shown in Fig-
ure 3.7. A clear preference for the audiovisual presentation for a certain
property would entail that the addition of sound information augments
the way we perceive materials for the given conditions. Indeed, analyzing
the results reveals a meaningful enhancement for some of the properties,
especially for “rough–smooth” and “hard–soft”, both categorized as tac-
tile. Substantial preferences for the audiovisual presentation can also be
observed in other adjective pairs such as “simple–complex”, “old–new”
or “beautiful-ugly”. No significant bias towards the visual presentation
could be observed for any of the property pairs. This suggests that the ad-
dition of sound doesn’t downgrade the representation of material prop-
erties.

2Notation of the preference analysis changed for consistency with the notation in
Section 5.4.1. For the original formulation we kindly refer the reader to the original
publication [MIWH15].
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Figure 3.7: Participants’ preference for the type of presentation, according to
our voting schema. A strong bias towards the audiovisual presentation can be
observed especially for the tactile property pairs “rough–smooth” and “hard–
soft”, as well as for “simple–complex”, “old–new” and “beautiful-ugly”. There
is no significant preference for the visual presentation in any pair, so the addition
of sound does not deteriorate the perception.

Dimensionality of the perceptual property space. In the previous sec-
tion we noticed that the addition of sound to a visual material presen-
tation is able to enrich the perception of certain properties. To further
confirm this insight, we analyzed the dimensionality of the perceptual
property space spanned by the qualities used in this experiment.

We averaged the ratings over all participants and performed a princi-
pal component analysis (PCA) for each type of presentation on the mean
data. The factor loadings, as well as the explained variances of the first 3
principal components for each presentation are shown in Table 3.2. Fur-
thermore, Figure 3.8 illustrates the corresponding scree plots, with the
principal components on the x-axis and corresponding eigenvalues on
the y-axis. Using the scree test we determined the dimensionality of the
data by looking for the point in the plots, where the graph’s strong slope
ceases and the remaining eigenvalues start to approximately even out on
a low level. With this criterion, we found one significant dimension for
the auditory presentation, two for the visual, three for the audiovisual,
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Figure 3.8: Scree plots of the PCAs, showing the PCs vs. the corresponding
eigenvalues. Application of the scree test, illustrated by the vertical line, reveals
one significant dimension for the auditory presentation, two dimensions for the
visual, three dimensions for the audiovisual, and four dimensions for the full-
modal.

and four for the full-modal presentation, with the cumulative explained
variance being 73.99, 70.74, 85.88, and 95.13 percent respectively. We de-
duce that combining auditory and visual cues increases the representable
dimensionality of the perceptual property space over the visual presenta-
tion alone.

A detailed examination of the coefficients reveals that, for the auditory
test, the most significant PC is dominated by the tactile qualities “hard–
soft”, “rough–smooth”, and “warm–cold”, which is in accordance to the
inter-participant correlation reported above. Moreover, tactile properties
have no strong influence on the first two PCs of the visual presentation,
whereas they are strongly present in the first PCs of the audiovisual pre-
sentation. This indicates that the information representable by the audi-
tory and visual presentation is orthogonal, which explains the increase in
the dimensionality. For the full-modal presentation we can observe that
the first two PCs interchange w.r.t. the audiovisual presentation. Here, the
first PC is dominated by vision and the second PC by tactile properties,
contrary to the audiovisual stimulus.
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3.3.
Experim

ent
1

Auditory Visual Audiovisual Full-modal
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

rough–smooth 0.600 −0.045 −0.405 0.022 −0.242 −0.048 0.319 −0.351 −0.160 −0.265 0.466 −0.216
hard–soft 0.618 0.073 0.316 0.292 0.006 0.240 0.619 −0.477 0.112 0.116 0.680 0.519
warm–cold −0.372 0.357 −0.258 −0.330 0.151 −0.115 −0.440 −0.008 0.162 −0.237 −0.181 −0.020
shiny–matte −0.076 −0.028 0.452 0.653 −0.022 0.056 0.353 0.647 −0.069 0.611 −0.219 −0.183
simple–complex −0.067 0.017 0.670 −0.080 0.112 0.078 0.020 0.034 0.132 0.192 −0.080 0.285
colorful–colorless −0.177 0.106 −0.039 0.153 0.824 −0.355 0.133 0.149 0.818 0.200 −0.120 0.444
expensive–cheap −0.103 0.218 −0.035 −0.027 0.144 0.617 0.038 −0.033 0.205 −0.130 −0.353 0.274
old–new 0.171 0.171 0.101 −0.379 −0.056 −0.369 −0.333 −0.134 0.000 −0.344 −0.149 −0.130
natural–synthetic 0.162 0.870 0.047 −0.451 0.195 0.480 −0.252 −0.427 0.246 −0.519 −0.180 0.370
beautiful–ugly −0.110 0.136 0.038 0.050 0.407 0.211 0.054 0.077 0.377 0.078 −0.200 0.378

Explained variance [%] 73.99 11.33 7.48 42.78 27.96 10.70 37.74 26.54 21.60 43.24 27.85 15.98

Table 3.2: Factor loadings and explained variance of the first three principal components for each modality. Bold, under-
lined values represent the strongest factors (greater than 0.350) for each principal component.
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Chapter 3. Multimodal Perception of Material Properties

3.4 Experiment 2

While the results of our first experiment indicate that augmenting the vi-
sual presentation of materials with additional sound characteristics mod-
ifies the way we perceive them, Experiment 2 explores whether it is possi-
ble to consistently manipulate the perception of a material in the audiovi-
sual presentation by replacing its auditory stimulus. For this purpose, di-
verse combinations of the sounds and images acquired for the individual
material samples were shown to the participants. Similar to Experiment
1, we will first describe the details of the experiment and subsequently
discuss the corresponding results.

3.4.1 Methods

Selection of materials and properties. Based on the results of Exper-
iment 1, we identified specimens which, for the visual and auditory
modalities, elicited stronger visual and acoustic ratings for specific quali-
ties. Additionally, we also selected those specimens whose ratings showed
a certain degree of contrast between the same modalities. Our selection
was then reduced to a subset of 4 materials (L2, P1, P4 and F3) plus one
additional sound stimuli (L4).

We also narrowed the selection of material qualities to the tactile ones
(“rough–smooth”, “hard–soft”, “warm–cold”), complemented with the
two subjective properties “old–new” and “beautiful–ugly”, which showed
better audiovisual performance in the preference analysis in Section 3.3.2.
In addition to this choice, we incorporated the pair “unrealistic–believable”
in order to determine to what extent the realism of the experience was
compromised.

Participants and procedure. 29 subjects (12 females, mean age 23.58,
standard deviation 2.64; 17 males (mean age 27.06, standard deviation
4.77) participated in Experiment 2. The selection of the aforesaid par-
ticipants was based on similar principles as in our previous experiment.
Similarly, tablet devices and headphones were used for the presentation
of visual and auditory information to 6-8 subjects simultaneously in a
quiet, well-illuminated room. Again, instructions were given at the be-
ginning of the procedure. In contrast to Experiment 1, in the audiovisual
presentation all possible combinations between sound and image were
shown to the participants for a total of 5 sounds × 4 images = 20 stim-
uli.
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3.4. Experiment 2

3.4.2 Results

The results of Experiment 1 point out that sound contributes to the per-
ception of material properties, especially for the tactile properties. In
contrast, we now focus on obtaining insights on whether it is possible to
change material property perception in a consistent and plausible way by
manipulating the contact sound. In this scope, we additionally analyze
whether the auditory ratings correlate to audiovisual ratings where the
respective sound is combined with images of other materials.

Firstly, we investigated the image-sound interaction by exploring the
mean ratings for the audiovisual presentation for each property. Figure
3.9 depicts such values for the pairs “rough–smooth”, “hard–soft” and
“old–new”. The rows of the respective matrices denote the sounds used
in the evaluation while the columns denote the images. The level of ac-
ceptance (represented by the unrealistic–believable dimension) has been
additionally specified with symbols. Depending on the sign of the mean
ratings, we use a circle for specifying that a particular combination was
rated to be believable, and a cross if it was rated to be unrealistic.

At first glance, the ratings obtained for “rough–smooth” and “hard–
soft” reveal a homogeneous characteristic in the rows of the matrix. This
suggests that the audiovisual perception is dominated by the characteris-
tics of the auditory information rather than by vision for these two prop-
erty pairs, i.e. the varying visual information contained in the different
images does not exhibit a substantial influence. In contrast, in Figure
3.9c the row vectors of the matrix show a strong similarity among each
other, i.e. the columns show a homogeneous behavior. Additional exami-
nation of the acceptance level denotes that, for most of the cases, this bias
was achieved without endangering the plausibility of the experience. The
sounds that were deemed largely unrealistic were principally the ones
produced by paper, even for the actual sound-image pairs. We attribute
this to the obvious imperfections in the audio recording and reproduction
process (consumer devices). Nevertheless, these sounds can be used to
affect the ratings of the other properties consistently.

To validate our observations, we considered the mean correlations be-
tween the columns and the rows respectively. The corresponding values
are given in Table 3.3. For the pairs “rough–smooth” and “hard–soft”
the mean correlations obtained for fixed auditory stimulus are signifi-
cantly higher than the ones obtained with fixed visual information. For
the pair “old–new”, the correlation values exhibit the opposite tendency.
These findings are in line with our aforementioned observations. In order
to evaluate whether the audiovisual perception can be manipulated in a
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Figure 3.9: Mean ratings for the manipulated audiovisual presentations. Rows
indicate the utilized auditory stimulus and columns the visual stimulus. The
mean ratings are color-coded and denoted in each cell. The realism of the combi-
nation is indicated by the symbol in the lower-left corner. A circle represents the
combination was rated believable, while a cross represents it was rated unrealis-
tic.

Auditory Visual

rough–smooth 0.9736 0.1133
hard–soft 0.9807 −0.0684
warm–cold 0.8671 −0.1532
old-new 0.6490 0.9209
beautiful–ugly 0.9403 0.3547

Table 3.3: Mean correlations between the ratings with fixed auditory and visual
stimulus respectively. High correlations for the fixed audio are found especially
for the pairs “rough–smooth” and “hard–soft”, indicating a dominant influence
of the auditory stimulus.

both predictable and consistent way, we also compared the auditory-only
mean ratings to the corresponding audiovisual mean ratings. Indeed, we
could find a high mean correlation here as well, being 0.97 for “rough–
smooth” and 0.98 for “hard–soft”.

3.5 Discussion and future work

The findings of our investigation are in line with previous work as they
confirm that sound is indeed an important factor for the perception of
material properties. We found that even simple contact sounds as the
ones offered in our experiments can support the judgment of properties
that are of a tactile nature, and, hence, offer an orthogonal complement to
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3.6. Conclusion

the visual channel. Even more, we can use sounds as a tool to achieve de-
liberate biases and manipulate the perception of those properties almost
independently of the visually transmitted ones.

The sound presentation was limited to playing back prerecorded
sounds of a default sequence of touch activities. Observing that sound is
strongly linked to haptic experience, it would be consequent to develop a
synthesis scheme that would allow users to “scratch” a surface by touch,
and listen to the resulting sounds in real time. We expect a significant
increase in realism from a more immediate mode of interaction. A fur-
ther avenue of future research could be the analysis of the connections
between the space spanned by the perceptual qualities and the frequency
spectrum of the audio signals.

By and large, the subspace made accessible by sound appears to be
one-dimensional, and it remains unclear to which extent this is due to
the scale of our experiments. In order to keep the overall size of the
study manageable, we had curated 3 classes of materials and 10 pairs
of opposite adjectives where there could have been many more of each.
As a result, even the variance of the full-modal experience is represented
to 95% by only 4 principal components. Fleming et al.’s [FWG13] 42-
dimensional ratings space, on the other hand, exhibits a much more gen-
tly decaying eigenvalue spectrum, requiring 7 principal components to
explain 50% of the total variance. We imagine that a scaled-up version
of our experiments would reveal additional structure within the space of
perceptual parameters and shed more light on how they are linked to the
various sensing modalities.

Finally, we acknowledge that the visual stimuli used in this study were
static, whereas the auditory stimuli were dynamic and the full-modal pre-
sentations even fully interactive. This fact may have caused bias in favor
of auditory and audio-visual presentations. For future iterations of the
study, we project to include dynamic visual models including animated
objects and/or light sources to level the playing field.

3.6 Conclusion

We have found evidence that the addition of sound benefits the percep-
tion of digital materials, particularly for tactile qualities. Additionally we
identified a way of manipulating the judgments of such properties in a
consistent way. We believe that most of these findings can immediately be
put to practice in product design and visualization. At the same time, it is
clear that many questions on multimodal perception of materials remain
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to be answered; our results provide strong directions for deeper research.
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3.8 Supplementary material

In this section, we introduce additional material to the paper ‘Multimodal
Perception of Material Properties’ which is not included in the original
text due to space constraints. First, additional research pertinent to the
state of the art in tactile material perception is properly discussed. Then,
we introduce the analysis of the correlation between the ratings for the
studied material properties to later present a more detailed evaluation
and visualization of the perceptual property space which also includes
procrustes analysis. Finally, we show the means (also referred as Mean
Opinion Scores, MOS) and confidence intervals (CI) for the participants’
response ratings from Experiment 1 and the remaining mean responses
of the manipulated audiovisual presentations from Experiment 2.

Relevant related work. A relevant study from Picard et al. [PDVG03]
explored the perceptual dimensions of tactile interactions with fabrics (car
seat cover materials) and the semantics associated with touch experiences.
As reported by their their experimental results, haptic interactions with
these materials imply a limited set of continuous perceptual dimensions
(between 3 and 4), which are later interpreted by means of rating scales.
According to this, seat cover materials present two orthogonal main di-
mensions, namely soft/harsh (first) and thick/thin (second). The third per-
ceptual dimension (relief ) and the fourth (hardness) were early understood
as very closely related to the processing of the soft/harsh dimension.
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Figure 3.10: Correlation matrices between the set of properties analyzed in our
experimental studies across all materials and participants. The size of the blob
corresponds with the absolute value of these coefficients. Those values r> 0.113
are statistically significant with a 95% confidence level.

Correlations between material properties. We would like to learn the
degree of relationship between the set of material properties analyzed in
our experiments. In particular, we are interested in the correlation be-
tween the adjectives belonging to the same group (tactile, visual and sub-
jective) and how such values evolve through the different presentations.
Essentially, this analysis would confirm whether the material property
dimensions employed in our studies were correctly understood by the
subjects, as some pairs of adjectives are intuitively expected to correlate
better than others. Thus, we computed the correlation matrices per ex-
perimental presentation across all material samples and participants and
present them in Figure 3.10.

Interestingly, subjective properties exhibit significant correlation val-
ues between each other, same as most of the properties categorized as
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tactile. However, the correlation values between visual properties ap-
pears to be relatively low. Some of these relationships between proper-
ties are highly intuitive (e.g. smooth and soft, beautiful and expensive),
while some others are not so straightforward (e.g. shiny and synthetic,
natural and expensive). In general, all the considered presentations have
very similar degree of correlation. Indeed, there is a very small mar-
gin between the presentation with the highest average correlation values
(Auditory, R̂ = 0.195) and the one with the lowest values (Audiovisual,
R̂ = 0.160).

Visualization of the perceptual space. In order to achieve a better un-
derstanding of the dimensionality of the perceptual space spanned by
our set of perceptual properties (discussed in Section 3.3.2), we addition-
ally show the projected factor loadings of the two first principal com-
ponents (PCs) in Figure 3.11. Although the above-mentioned analysis
demonstrated that each presentation has a varying number of underlying
dimensions, here we consider only the two first ones for simplicity and
clarity. The illustration shows how the subdimensional space revealed by
the auditory presentation is clearly unidimensional, while the audiovi-
sual and full-modal spaces allow a better visual clustering of the material
classes.

We then compared the presentations by considering the full-modal
space (FMs) resulting from PCA as the ground-truth representation
against the remaining presentations Ps ∈ {As, Vs, AVs} using procrustes
analysis [Gow75]. This is a statistical technique that aims to map one
multidimensional shape onto another by using linear transformations
only. In this process, we considered all ten dimensions at our disposal
and employed the minimized sum of squared errors (SSE) to measure
the goodness of the mapping. The working hypothesis is that the better
the mapping between Ps and FMs is, the more accurately are real-world
material interactions represented by a particular presentation (and its as-
sociated modalities). Interestingly, the best fit by far is achieved by the
AVs mapping (SSE = 0.147), followed by Vs (SSE = 0.287) and lastly As
(SSE = 0.504). According to this, the addition of auditory input to the vi-
sual one is far more able to characterize real-world material information
than visual or auditory input alone.
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Material ratings. The means and CI of the participants’ response ratings
from Experiment 1, arranged by material and category are depicted in
the Figures 3.12 (for leathers), 3.13 (for fabrics) and 3.14 (for papers).
The remaining mean responses for the audiovisual stimuli presented in
Experiment 2, organized by property pair, are displayed in Figure 3.15.
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Figure 3.12: Response ratings from Experiment 1 for each of the investigated
material samples (leathers only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.
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Figure 3.13: Response ratings from Experiment 1 for each of the investigated
material samples (fabrics only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.
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Figure 3.14: Response ratings from Experiment 1 for each of the investigated
material samples (papers only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean. The bottom-right Figure for material P4 corresponds with
Figure 3.6.
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Figure 3.15: Mean ratings for the manipulated audiovisual presentations from
Experiment 2 that were not presented in Figure 3.9. Rows indicate the corre-
sponding auditory stimulus employed while columns indicate the visual stimu-
lus. The mean ratings are color-coded and displayed in each cell.
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CHAPTER 4

Evaluating the Effects of Material
Sonification in Tactile Devices
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Figure 4.1: (Teaser) From left to right, an illustration of the audio acquisition
setup, the processing of the sound grains and the interface of the sonification
software employed during the user experiments.

Abstract. Since the integration of internet of things technologies in our
daily lives, there has been an increasing demand for new ways to interact
with commodities in the domain of e-commerce, that go beyond passive
product visualization. When considering materials from retailing stores,
the utilization of audio cues has proven to be a simple but effective way
to enhance not only the estimation of well-established physical qualities
(e.g. roughness, flexibility), but also affective properties (e.g. pleasant-
ness, value), which have an important leverage in the user decision for or
against a product. In this paper, we propose to investigate augmenting
visual representations of leather and fabric materials with touch-related
audio feedback generated when rubbing the fingertip against the sam-
ples. For this purpose, we developed an interactive material sonification
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system for tactile devices that allows evaluating the impact of such audio
cues on the human perception of materials by means of a psychophysical
study based on rating scales for a set of relevant physical and affective
material qualities. Our experimental results indicate that the evaluated
touch-related audio cues do not significantly contribute to the perception
of these attributes for the considered materials. In light of these findings,
we suggest complementary directions of research in interactive material
sonification, which may lead to profitable results.

Building on the outcome from the preceding chapter, we hypothe-
sized that the presence of continuous, touch-related material sound,
played back upon user interaction with a tactile device, would not
only aid the estimation of tactile qualities, but also influence the over-
all affective experience. Thus we developed an interactive sonifica-
tion algorithm for tactile devices and evaluated it from a perceptual
point of view. One difference that turned out to be decisive w.r.t.
the previous chapter is that, in this investigation, we only considered
rubbing sounds from a more limited spectrum of materials, in order
to narrow down the range of sounds that the synthesis algorithm is
required to reproduce.

The contents of this chapter were published after the submission
of this thesis [MWH18b]: Rodrigo Martín, Michael Weinmann and
Matthias B. Hullin.* “A Study of Material Sonification in Touchscreen
Devices”. In ACM International Conference on Interactive Surfaces and
Spaces (ISS ’18) July 2018. Whose extended version has been also
made available online [MWH18a].
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4.1 Introduction

The shopping experience in our everyday life is determined by various
types of interaction with commodities. A consumer’s decision-making
process in a store, for instance, is based on a multitude of inner rating
processes that do not only involve the perception of physical properties
through different senses such as sight, hearing or touch, but also an emo-
tional or affective experience. In the context of online shopping and ma-
terials in particular, the sensory and emotional bandwidth of interaction
with the respective commodity is greatly reduced and mostly limited to
a passive visual representation and, occasionally, a textual description.
Previous investigations have shown that the lack of a multimodal expe-
rience in general, and tactile input in particular, significantly affects the
user’s capability of assessing physical material properties (e.g. softness,
flexibility) and developing affective emotions (e.g. pleasantness, value)
evoked by the product [CJSC03]. As a logical consequence is desirable
to enhance the digital material with additional cues on top of the purely
visual user experience. In this regard, auditory cues and sonification tech-
niques have demonstrated to compensate the absence of tactile interaction
for digital material samples to some degree [HJK+13, MIWH15], without
deteriorating its general impression. Instead of simply triggering a prere-
corded audio sample of the interplay with the material, directly allowing
customers to interact with the digital material, where audio information
corresponding to this interaction is is automatically synthesized in real
time represents an interesting challenge for the digital commerce.

The goal of this work is the analysis of the effects in the perception
of physical and affective material qualities when visual material repre-
sentations (photographs) are augmented with interactive audio feedback
generated as the response to a single finger rubbing motion. Thereby,
we employed a granular synthesis approach to build a sonification sys-
tem that allows to enrich the user interaction with digital material sam-
ples through tactile devices. We then conducted a user study in which
participants rated a set of relevant material qualities across a purely vi-
sual condition, two audiovisual conditions (including static pre-recorded
sound and the interactive sonification system) and a full-modal condi-
tion, in which they were able to interact with the actual specimen. The
experimental results were examined by means of the degree of correlation
between participants, the analysis of the perceptual space spanned by the
material qualities and the performance of each condition in a material
classification task.
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The key finding from this set of analyses is that the addition of rub-
bing material sounds as such does not seem to significantly improve the
perception of material properties, although the overall material experi-
ence is not compromised by the presence of auditory cues. Considering
these insights, we believe that future investigations in the domain of mate-
rial sonification should contemplate additional material classes and audio
cues from more user-centered material interactions. In accordance to this,
alternative synthesis techniques able to deliver the sound corresponding
to these interactions would have to be considered.

4.2 Related work

This section provides a summary of relevant investigations in the areas
of multimodal perception of materials as well as sonification and sound
synthesis of material interactions.

4.2.1 Multimodal perception of materials.

The majority of the research in product perception has been focused on
the visual modality. Nevertheless, auditory cues have demonstrated to
have a significant influence in the perception of product quality/efficiency
(including electric toothbrushes, cars or foodstuff), and to be able to pro-
vide semantic signatures to a certain brand (e.g. the breaking sound of a
‘Magnum’ or the opening of a ‘Schweppes’ bottle) [SZ06]. Like any other
product, the perception of materials is inherently multimodal and, with
it, several strands of research have been conducted to investigate how
the interplay between different senses shapes the perception of textures,
materials and objects. An extensive review of the perception of textures
regarding touch, vision and hearing is provided by Klatzky and Leder-
man [KL10], in which texture is understood as a perceptual property that
characterizes the structural details of a surface.

There are not many approaches that focus on the investigation of
purely acoustic material perception. Klatzky et al. [KPK00] analyzed
the relationship between material perception and variables that govern
the synthesis of impact sounds. Their results indicate the importance
of a shape-invariant decay parameter in the perception of the material of
which an object is made, while the frequency content plays also an impor-
tant part. In a related fashion, Giordano and McAdams [GM06] studied
the human performance when identifying materials from impact sounds.
Interestingly, they concluded that listeners performed well with respect
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to the gross categories, but their performance degraded for materials be-
longing to the same category.

Beyond the human performance in classifying materials, also the abil-
ity to infer concrete material qualities has received particular attention.
Fleming et al. [FWG13] conducted a set of experiments to investigate
the interactions between material classification and quality judgments. A
high degree of consistency between these two assignments was detected,
indicating that they facilitate one another by accessing the same percep-
tual information. The multisensory nature of the communication of mate-
rial qualities has been further explored by Martín et al. [MIWH15], where
the authors employed contact and stroking material sounds to comple-
ment the visual stimuli. Their results demonstrate the strong linkage be-
tween the auditory channel and the haptic perception to a point in which
sound is capable of biasing the visual judgment of concrete qualities. In
addition, Fujisaki et al. [FTK15] examined how a set of physical and af-
fective qualities of wood are evaluated in three different modalities of
vision, audition and touch, and observed that all three senses yield some-
what similar representations. Lastly, The qualities related to aesthetic per-
ception of materials also play an important role in the decision-making
process. In fact, strong connections have been observed, for instance,
between the assessed smoothness of tactile textures and their perceived
pleasantness [ESG14].

4.2.2 Sonification and synthesis of material sounds.

The synthesis of a multitude of sounds, from artificial to natural and pure
musical ones, has important applications in movie sound effects, video
games, virtual reality, multimedia or in art installations. An exhaustive
survey on the predominant digital audio analysis and synthesis methods
has been presented by Misra and Cook [MC09]. The former includes a
taxonomy which introduces the most suitable synthesis approaches for
each sort of sound and addresses the value and adaptability of the fam-
ily of granular synthesis methods in the generation of audio textures. In
fact, although granular methods have been mainly used in the creation of
soundscapes, their possible range of applications include the synthesis of
acoustic instruments, pitched sounds, speech, singing voice, and contact
sounds from virtual surfaces when bouncing, being broken or scraped
[BA02]. Belonging to the same family of techniques as granular synthesis,
concatenative synthesis has been utilized in the context of simulating the
particular sounds that certain materials produce. An et al. [AJM12] devel-
oped a motion-driven algorithm that is able to synthesize cloth sounds for
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a wide range of animation scenarios. Their technique avoids expensive
physics-based synthesis but still produces plausible results. However, it
requires a certain amount of manual intervention and does not achieve
interactivity.

In the context of visualization, information about the scene is rep-
resented in terms of shapes of varying sizes with attached color infor-
mation and used to create pictures we can look at. Sonification is the
equivalent concept translated to the sense of hearing, that is, the synthe-
sis of non-speech audio to convey certain information. In this regard, the
use of synthesized material sound has a large range of applications in
sonification systems, which may be used to overcome limitations in rep-
resenting tactile properties of digital objects and materials, among other
purposes. An early investigation from Guest et al. [GCLS02] evaluated
how tactile textures are perceived under real-time manipulation of touch
related sounds. Their study indicates that the frequency content of tex-
tural sounds represents the dominant factor for such sort of interactions
as e.g. attenuating high frequencies caused the textures to be perceived
smoother. Later, Tajadura-Jiménez et al. [TJL+14] explored the ability
of a sound-based interaction technique to alter the perceived material of
which a touched surface is made. Their granular sonification algorithm
reproduces samples (grains) with three different frequency levels where
the grain selection is guided by the finger pressure on a wooden sur-
face. With their results, the authors determined that increasing sound
frequency alters either the surface perception (colder material) and the
emotional response (increased pressure and touch speed). Finally, by us-
ing textural sounds in the context of a retail clothing application, Ho et
al. [HJK+13] demonstrated that the simple addition of realistic auditory
feedback to the unimodal visual experience favors the feeling of immer-
sion, which becomes evident in longer interaction times with the product
and also willingness to pay a higher price for it.

The present investigation establishes, to our knowledge, a novel and
interactive approach to material sonification with consumer hardware
and the first assessment of its effects on the perception of physical and
affective material qualities. We hence arranged a user experiment to eval-
uate such effects in comparison to additional stimuli, including the actual
material samples. The description of our experimental setup is intro-
duced in the following section.
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Figure 4.2: Pictures of the leathers materials (upper row L1–L5) and fabrics
(lower row F1–F5) as displayed in our study.

4.3 Experimental design

The key elements of our experimental design are given by the consid-
ered visual stimuli, the auditory stimuli, the actual material samples and
the description of the user study. In the following, we provide details
regarding each of these components.

4.3.1 Visual stimuli

In the scope of this research, we explore the perception of physical and
affective material qualities for two semantic classes (leathers and fabrics),
which are commonly available in retailing websites. For this purpose,
we have chosen ten material samples, each of them with an approxi-
mate size of 120× 120 mm2, with nearly flat geometry to avoid possible
sources of visual variability and sound artifacts. Restricting our selection
to these two concrete, well-known classes allows us to keep the study
and its conclusions manageable. We then situated each specimen on a
bright background under natural illumination and took a picture using
a digital camera (Nikon1 J5, resolution 5568× 3712 pixels) located at ap-
proximately 200 mm from the sample under a slight angle. The resulting
images were corrected regarding white-balance and scaled to match the
resolution of the final device (see Section 4.3.5). The characteristic borders
of each specimen were additionally cropped, since they have been demon-
strated to provide supplementary information to the material texture that
could bias the visual stimuli [MWH17]. The resulting photographs are
displayed in Figure 4.2.
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(a) Acquisition setup.
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Figure 4.3: Illustration of the relevant steps from the synthesis process and the
experimental study, including the acquisition of touch-related material sound
(a), pre-processing phase for a concrete material L5 (b) and (c), a picture of a
participant during the study (d) and the elements composing the user interface
(e).

4.3.2 Auditory stimuli: acquisition of material sound.

In order to record the touch-related sounds arising from the interaction
with the selected materials (i.e. brushing them with the fingertip), we
assembled a setup composed by a piece of polyurethane foam with the
size of 400 × 400 mm2, on which the sample was placed. The actual
recording step was carried out in an acoustically isolated chamber us-
ing a directional microphone (Beyerdynamic MCE 86 II) located about
20 cm away from the sample and facing towards it. The contact sounds
were generated by gently rubbing the material’s surface creating random
trajectories while increasing the velocity of the movement for roughly a
minute. Other than trimming, no further post-processing was applied to
the audio. Such recordings were employed as the static audio in one of
our experimental conditions (see Section 4.3.5).

To later guide our sound synthesis method, we annotated the resulting
signal with the position of the finger during the interaction. We achieved
this by attaching a fiducial marker [GJMS+14] to the nail of the interact-
ing finger, which we tracked using a machine vision camera (Point Grey
GS3-U3-23S6M-C Grasshopper). An illustration of the complete setup is
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depicted in Figure 4.3a. After basic analysis of the video data (marker
tracking, trajectory smoothing, numerical differentiation), we thus ob-
tained 2D finger velocity data ~vi at 100 samples per second (see Figure
4.3c) along with the 48 kHz stereo audio clip s(t).

4.3.3 Auditory stimuli: synthesis of material sounds.

To deliver material contact sounds in response to the user’s input in real-
time, we developed a sonification algorithm based on granular synthesis.
This family of techniques has been broadly used in many applications
due to their flexibility [MC09], including the synthesis of material con-
tact sounds [BA02]. The moderate computational load, in comparison to
physically-based approaches, represents a decisive aspect as it allows to
perform the synthesis on consumer hardware (such as tablet computers)
at interactive rates, thus facilitating the present study. To this end, we
employed the open-source audio processing language Pure Data (Pd)1 as
an embeddable library (Libpd) under Android.

We divided the recorded sound clip s(t) into fragments with a length
of 480 samples, corresponding to the spacing of velocity samples (10 ms).
Each such fragment was annotated by velocity values ~vj (see above) and
its root-mean-square (RMS) loudness aj, noting that the loudness of a
fragment roughly scales with the square of the corresponding velocity. To
avoid artifacts when re-synthesizing fragments into a new audio stream,
we discarded those fragments that were unusually soft or unusually loud
for the given velocity. We identified such outliers by computing the ratio
αj = aj/|vj|2 for each fragment, and then removed those fragments whose
ratio was below the 5th percentile or beyond the 95th percentile (see Figure
4.3b). The remaining set of annotated fragments constitute the input to
the sonification system.

During user interaction with the tactile device, the touch interface
measures the user’s finger velocity ~vin on the screen. The granular syn-
thesis uses this value to retrieve suitable sound fragments according to a
distance metric that considers the velocity and loudness of the jth frag-
ment:

dj =
√∥∥~vin −~vj

∥∥2
2 + (|v|2in − aj/α̂), (4.1)

where α̂ is the mean of the ratio αj across all fragments. To ensure varia-
tion, we follow a standard practice in granular synthesis by retrieving not

1
Pure Data (Pd) is an open source visual programming language for multimedia. For

more information and resources we refer to the corresponding webpage: http://libpd.cc
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Tactile Visual Affective

rough–smooth shiny–matte expensive–cheap
hard–soft bright–dark natural–synthetic
thick–thin transparent–opaque beautiful–ugly
stiff–flexible homogeneous–heterogeneous unpleasant–pleasant

Table 4.1: Opposite-meaning quality pairs, grouped by category.

only the single closest hit for the given query velocity ~vin, but the k = 25
closest fragments instead. With the goal of real-time operation in mind,
this k-nearest-neighbor search is implemented using a balanced binary
space partitioning (BSP) tree [FKN80]. The synthesis algorithm randomly
selects one of these fragments and “freezes” it for the upcoming few iter-
ations to avoid repetition artifacts. The fragment is then extended into a
longer grain by incorporating its n = 28 neighbor fragments in the input
sound clip. Finally, the grain is concatenated and blended (cross-faded)
with the previous grain into a continuous audio output.

Overall, this rather simple system is capable of producing a smooth
and interactive stream of contact sound that is free of disturbing artifacts
(transitions, repetition) that are otherwise typical for granular synthesis.
A major drawback of the mobile platform remains the somewhat long
system latency of approximately 500 ms, inherent to the utilization of the
Libpd library under Android.

4.3.4 Real materials

During the progress of the experiments, participants were also asked to
evaluate the actual materials samples (full-modal interaction). Instead of
using the same specimens utilized during the audiovisual stimuli acquisi-
tion, smaller portions of the same samples (approximately 70× 70 mm2)
were handed to the users. With this, we avoided damaging the originals
during the interactions and facilitated the scalability of the experiment.

4.3.5 Task and procedure

Inspired by previous investigations [FWG13, MIWH15, MWH17] we gath-
ered a collection of 24 adjectives describing material appearance. At the
same time, these adjectives were organized into 12 opponent pairs which
were assigned to either the tactile, visual or affective category, depending
on the nature of the physical or emotional interaction that best reveals
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them (see Table 4.1). In order to rate this set of qualities across our multi-
modal stimuli, we made use of single stimulus ratings in which the par-
ticipants assessed each quality pair under study on a 7-point Likert scale,
represented with a slider with values ranging from−3 to 3. The values
along the scale were consistently labeled with a term indicating the in-
tensity of the stimuli (e.g., very hard, hard, a bit hard, neutral, a bit soft,
soft and very soft). The user study was conducted using tablet computers
(Toshiba Excite Pro 10.1, resolution 2560× 1600 pixels) and a set of head-
phones (Sony MDR-7506) running a custom Android application which
connects with the Pd module. The complete experimental setup can be
seen in Figure 4.3d and the user interface is depicted in Figure 4.3e with
greater detail. The procedure itself consisted of four presentations or con-
ditions, in which material stimuli were presented in random order to the
participants along with the 12 slider widgets. The four conditions that
compose the study are the following:

• Visual condition (VI), where the stimuli are photos taken from real
materials.

• Static Audiovisual condition (SA), where the photos were comple-
mented with prerecorded audio from the material.

• Dynamic Audiovisual condition (DA), where the photos were comple-
mented with interactive sound generated by our sonification sys-
tem. This means that real-time contact sound is played back upon
tactile interaction with the images on the device.

• Full-modal condition (FM), consisting of physical material samples
that were given to the participants so that they could interact with
them.

Since the interaction with the real samples could bias the realization
of the visual and audiovisual conditions, the full-modal presentation was
constrained to be the fourth and final one, while the order of the re-
maining conditions was randomized. 19 participants took part in the ex-
periment (12 females, mean age 27.08; 7 males, mean age 28.57). All the
participants were naïve to the goals of the experiment, provided informed
consent, reported normal or corrected-to normal visual and hearing acu-
ity and were compensated economically for their cooperation. From this
experiment, a total of 19× 10× 12× 4 = 9120 responses were collected
and evaluated.
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Figure 4.4: Average inter-participant correlation per property, grouped by condi-
tion and sorted in ascending order w.r.t. the correlation. Note that the differences
between the visual and the two audiovisual conditions are relatively small and
how the full-modal condition presents significantly higher correlation values.

4.4 Results

In order to investigate the effects of our sonification system on the per-
ception of material qualities, we evaluate the correlation between the par-
ticipants’ ratings, the dimensionality of the spanned perceptual space per
experimental condition and the performance in a classification task based
on the material quality ratings.

4.4.1 Inter-participant correlation

Due to the diverse collection of materials and qualities considered in this
investigation, we first provide an analysis of the level of agreement be-
tween the participants’ ratings for the given stimuli. To that end, we
computed the inter-participant correlation coefficients for each condition
and quality pair, over all materials. The hypothesis assumption is that
the higher the correlation coefficient, the better a specific quality would
be represented by the condition at hand. Contrarily, if such quality is not
well depicted, the users would have to infer it using their imagination, re-
sulting in a lower degree of agreement. Figure 4.4 illustrates the resulting
correlations in ascending order, separated by experimental condition.

The largest coefficients presented by the visual condition are those
corresponding to the pairs “bright–dark”, “transparent–opaque”, “shiny–
matte” and “thick–thin”, which are properties mostly categorized as vi-
sual. Likewise, both audiovisual condition exhibit the largest correlation
values for the pairs “bright–dark”, “transparent–opaque” and “shiny–
matte”. However, the “thick–thin” dimension shows a much lower value
for the DA and particularly the SA condition in comparison to the VI pre-
sentation. Allegedly, the proposed rubbing/stroking sounds employed
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are less suitable for communicating this particular dimension and seem
to mislead users’ judgments of the material thickness. This is further im-
plied by the correlation values for the full-modal condition, where this
pair shows again a significant level of agreement. Another interesting ob-
servation is that the user agreement for the tactile qualities as well as the
pair “beautiful–ugly” is slightly higher in the DA condition when com-
pared to the static audio (SA). Albeit being a promising trend, the effect
is not significant enough to draw categorical conclusions. In general, the
correlation values (R) and ordering are quite similar for the three digital
conditions VI (R̂VI = 0.32), SA (R̂SA = 0.27) and DA (R̂DA = 0.28), and
follow a comparable ordering as the full-modal condition (R̂FM = 0.46).

Although in principle this analysis is analogous to the inter-participant
correlation from Martín et at. [MIWH15], the results are not directly com-
parable, as neither the stimuli employed nor the quality set are entirely
identical in both experiments. Specifically, the pictures from the visual
presentation in the former investigation display the distinctive borders
of materials, which are known to be a powerful discriminator [MWH17].
Furthermore, the authors included tapping impact sounds in their audio-
visual condition, which possibly allowed the inference of additional ma-
terial information. Taking this into consideration, the larger discrepancy
between both studies concerns to the resulting correlation coefficients for
the “hard–soft” dimension, where the present experiment exhibits con-
siderably lower values for the SA, DA and FM conditions. We conclude
that tapping sounds provided decisive cues to assess the hardness of the
material. Moreover, the presence of relatively hard paper materials in
[MIWH15] probably established an upper bound for this concrete qual-
ity, which is not present when solely considering leathers and fabrics.

4.4.2 Dimensionality of the perceptual space

In the previous section, we examined the four different conditions through
the correlation between participants, observing little effects between the
conditions VI, SA and DA. To further explore this insight, we analyze
the dimensionality of the perceptual space spanned by the perceptual
qualities. For this purpose, we averaged the ratings over all participants
and performed principal component analysis (PCA) for each experimen-
tal condition on the mean data. The resulting factor loadings of the first
three principal components as well as the explained and accumulated
variance are shown in Table 4.2, separated by condition.
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Visual Static audiovisual Dynamic audiovisual Full-modal
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

rough–smooth −0.235 −0.351 0.177 −0.008 0.483 0.161 0.001 0.445 0.191 −0.163 0.403 0.132
hard–soft −0.233 −0.063 −0.106 0.115 0.258 −0.173 0.001 0.254 0.535 −0.125 −0.165 0.306
thick–thin −0.390 0.065 0.359 −0.265 0.182 0.344 −0.329 0.241 −0.033 −0.466 0.179 0.372
stiff–flexible −0.301 −0.112 0.052 −0.036 0.255 −0.028 −0.116 0.297 0.383 −0.192 −0.085 0.154
shiny–matte 0.404 −0.090 0.065 0.395 −0.188 −0.037 0.417 −0.052 −0.157 0.418 −0.387 0.372
bright–dark 0.478 −0.134 0.753 0.599 −0.178 0.657 0.584 0.139 0.351 0.213 −0.073 0.664
transparent–opaque 0.361 0.364 −0.265 0.521 0.038 −0.330 0.522 0.034 −0.005 0.508 0.131 −0.242
homog.–heterog. 0.262 0.041 −0.397 0.131 −0.080 −0.466 0.209 −0.184 0.059 0.106 −0.390 −0.006
expensive–cheap 0.011 0.446 −0.044 −0.233 −0.390 −0.043 −0.105 −0.360 0.337 −0.274 −0.381 −0.027
natural–synthetic −0.033 0.451 0.151 −0.220 −0.279 0.272 0.178 −0.283 0.431 −0.356 −0.310 −0.159
beautiful–ugly 0.141 0.403 −0.036 −0.070 −0.351 −0.072 −0.020 −0.437 0.277 −0.088 −0.349 −0.120
pleasant-unpleasant −0.189 −0.361 0.024 0.063 0.418 0.050 −0.061 0.364 −0.022 0.065 0.290 0.221

Explained variance [%] 41.02 28.75 12.70 41.35 25.94 12.46 38.35 28.64 13.13 60.97 17.53 8.69
Cumulative variance [%] 41.02 69.78 82.49 41.35 67.29 79.76 38.35 67.01 80.15 60.97 78.51 87.20

Table 4.2: Factor loadings, explained variance and cumulative variance of the first three principal components for each
condition. Bold, underlined values represent the strongest factors (greater than 0.35) for each principal component.
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A detailed inspection of the coefficients exposes that the first principal
components (PC1) in all three digital conditions (VI, SA, DA) are domi-
nated by the visual qualities (“shiny–matte”, “bright–dark” and
“transparent–opaque”), which account for most of the variation in the
users’ ratings. Additionally, VI exhibits somewhat large values in the
tactile dimensions, especially for the “thick–thin” pair, which are not so
evident in SA or DA. This is in accordance with the correlation values
reported earlier. Furthermore, the second PC of all three conditions is
commonly determined by the “rough–smooth” quality and the affective
properties, while PC3 has diverse values for each condition. In contrast,
the first PC of the full-modal condition is driven by a mixture of qual-
ities (“thick–thin”, “shiny–matte”, “transparent–opaque” and “natural–
synthetic”), while the second PC explains much less variance and is dom-
inated by the roughness, shininess, heterogeneity and the affective quali-
ties.

When considering the cumulative variance, two dimensions are able
to explain 69.78%, 67.29%, 67.01% and 78.51% of the variance for the VI,
SA, DA and FM conditions respectively. Therefore, projecting the factor
loadings into a 2-dimensional space seems to be a plausible and easy-to-
visualize option to analyze the distribution of the user data (see Figure
4.5). By inspecting the arrangement of materials in the subdimensional
space, we observe that the sample distributions presented by VI, SA and
DA are quite similar (PC2 in VI is upside-down). Meanwhile, the variance
in FM is primarily accumulated in the first PC, which allows a smooth
clustering of the two material classes.

Lastly, we applied procrustes analysis [Gow75] to compare our ex-
perimental conditions Cs ∈ {VIs, ASs, ADs} against the full-modal space
(FMs) resulting from PCA, which is taken as a reference. We took the
12-dimensional space spanned by the qualities into account and used the
minimized sum of square errors (SSE) to measure the goodness of the
mapping. The fitting values for all three Cs are, again, extremely similar
with a relatively low error, where VIs achieves the best result (SSE =
0.214) closely followed by SAs (SSE = 0.240) and DAs (SSE = 0.242).
From this analysis we conclude that the considered visual (VI) and au-
diovisual (SA, DA) stimuli are capable of effectively transmitting infor-
mation about our set of materials and qualities. However, the addition of
these specific audio cues, no matter whether in terms of their static form
or the sonification system, does not contribute with significant additional
information to simple photographs.
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Figure 4.5: Distribution of the samples in the first two PCs. Circles represent
the projected positions of individual material samples (10 in total) in the subdi-
mensional space for each condition. The sample distribution presented by VI, SA
and DA are rather identical, while the variance in FM corresponds mostly to the
first PC.

4.4.3 Material classification

The previous analysis facilitated the understanding of the ability of the
considered stimuli to depict a set of relevant material qualities through
the agreement level between subjects and the subdimensional space that
they span. Previous studies have demonstrated that humans access the
same perceptual information about materials while performing both ma-
terial categorization and quality rating tasks [FWG13]. Keeping this in
mind and considering that our stimuli consist of two classes of materials,
this section attempts to clarify to what extent such classes can be by pre-
dicted based on the participants’ ratings. Concretely, we aim at answering
the following questions:

1) Which is the classification performance of the experimental condi-
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Set of Predictors

[%] All (T)actile (V)isual (A)ffective T+V T+A V+A

VI 75.8% 63.2% 67.9% 65.3% 70.5% 71.6% 73.7%
SA 72% 56.1% 66.1% 65.1% 68.8% 61.4% 69.8%
DA 66.3% 60.5% 61.6% 62.6% 66.3% 69.0% 69.5%
FM 89.5% 78.4% 82.6% 72.6% 89.5% 84.2% 89.5%

Table 4.3: Accuracy [%] of a SVM material classifier based on the perceptual
qualities. Each row represents the accuracy for the considered experimental con-
dition, while the columns describe the set of qualities used as predictors.

tions (VI, SA, DA) in comparison to the FM condition?

2) Do any of the utilized sound cues facilitate the discrimination be-
tween leathers and fabrics?

3) Which set of considered qualities allows a better material classifica-
tion?

For this purpose, we trained a binary Support Vector Machine (SVM)
classifier to obtain a model which employs the user ratings of the twelve
perceptual features to predict the material class to which each sample be-
longs. We then conducted leave-one-out cross validation tests per user
and material sample. Additionally, we performed the same analysis us-
ing the ratings from each perceptual category individually as predictors
(tactile, visual and affective) as well as all three combinations of them.
The accuracy across each condition and group of qualities is provided in
Table 4.3.

Regarding the first inquiry, performing the classification task on the
ratings from the FM condition results into considerably higher accuracies
(at least above 72%) in comparison to the rest of the conditions. This out-
come is to be expected, as judging the real material samples will always
allow a more confident quality assessment as images or sounds. With
respect to question number two, the classification results of the SA and
DA conditions exhibit lower values as the visual condition for all the set
of predictors considered, by a slight margin. In light of this results, we
assume that the addition of rubbing sounds does not help in distinguish-
ing leathers and fabrics, and that the proposed sonification system has
additional value over static sounds only when tactile-related predictors
are included. Concerning the third question, using all twelve perceptual
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qualities as predictors yields by far higher accuracies. The table shows
also how the visual predictors, alone or in combination with other fea-
tures, have more discriminating power than tactile or affective qualities.
More interestingly and less anticipated is the fact that the use of affective
predictors lead to higher accuracies than tactile ones, when the conditions
VI, SA and DA are considered. However, tactile features provide better
discrimination in the full-modal case, since the participants were able to
actually touch the specimens.

4.5 Discussion and future work

After a comprehensive analysis of the collected user data, the primary
finding of the present study is that the auditory cues employed in our
studies do not contribute with additional value to the perception of ma-
terial qualities. All of the conducted evaluations indicate that the three
digital conditions evaluated (VI, SA and DA) have a fairly equal ability
transmit material information without weakening the overall experience.
The most plausible explanation for this outcome may be that the utiliza-
tion of contact sounds from rubbing interactions exclusively did not yield
enough information to discriminate between the two different material
classes or to characterize specimens within the same class. Indeed, pre-
vious investigations concerning the perception of textiles have asessed
other gestures like two-finger pinching, stroking or sample scrunching
as the most repeated interactions when evaluating real fabric samples
[AOP+13]. Another reason that may have influenced our results is the
fact that the employed material classes (leathers and fabrics) do not differ
significantly when considering their characteristic sounds. Although our
research aimed at examining the perceived intra-class differences between
materials, it has been documented that not even striking sounds provide
sufficient cues to differentiate samples within the same class [GM06].

Another interesting finding concerns the ability to discriminate be-
tween leathers and fabrics through the experimental conditions. Both the
PCA analysis and the SVM classification indicate that it is possible to dis-
cern between these two classes based on the ratings for the selected set of
attributes, when the real materials are provided. However, this capacity is
not translated well to the conditions where only images and sound from
the material samples are provided. As regards to which types of qual-
ities allow better material discrimination, considering the visual quality
features alone provide the highest accuracies. Interestingly, the presence
affective features has certain influence in the digital conditions (VI, SA
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and DA) in comparison to tactile qualities, which are more salient when
the real materials are provided. This supports our intuition that affective
properties have a meaningful role in the perception of digital products.

During informal interviews after the realization of the experimental
task, subjects reported to have enjoyed the utilization of the tactile soni-
fication interface. This reported amusement translated into significantly
longer interaction times with the system during the DA condition, 55.5
seconds of average interaction per material, in contrast to the 32.3 and
28.6 seconds on average for the VI and SA conditions respectively. This is
in accordance with the experimental results from Ho et al. [HJK+13],
where the addition of realistic auditory feedback led to considerably
longer (30%) interplays with their AR system. Moreover, the similarity
of the ratings between all these three conditions dismisses the possibility
that such effect is due to the complexity of the task. Nonetheless, some
of them declared to be a bit puzzled by the latency of the sounds (about
half a second), intrinsic to the usage of Libpd under Android. Indeed, the
investigation of how the presence of interactive sounds affects the level
of engagement when exploring digital materials remains a promising av-
enue for future research.

Given the previous analysis and considerations, we conclude that the
main shortcoming of our sonification method is not the audio synthe-
sis itself, but the utilized rubbing/scrapping material sounds, which do
not bring in supplementary information for the selected set of materi-
als. Future investigations may turn over to other kinds of touch-related
material sounds, more consistent with the actual human behavior, for
which alternative synthesis approaches could be more suited. For in-
stance, physically-based synthesis methods have been able to generate the
distinctive crumpling sound of materials [CLG+16] at, however, unfeasi-
ble computation times. Deep learning techniques could also leverage the
synthesis of contact sounds [OIM+16], provided that a sufficiently rich
database of sounds is given for the training of the model.

4.6 Conclusion

The main purpose of this investigation is to determine the impact of an
interactive material sonification system in the perception of physical and
affective material qualities. For the development of this sonification algo-
rithm, we relied on granular synthesis to interactively reproduce charac-
teristic contact sounds generated when rubbing leather and fabric mate-
rials with the fingertip. This method, which has been specifically devel-
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oped for tactile devices, plays back chunks of sound (grains) upon tactile
interaction with the material images on the screen. Its performance has
been then evaluated by examining its ability to describe concrete mate-
rial qualities in contrast to additional visual, audiovisual and full-modal
conditions, via a psychophysical study. We discovered that the contact
sounds employed in our experiment do not contribute with additional
information to the perception of material qualities, since all the consid-
ered digital condition exhibit almost similar performance. In light of these
findings, we provide several potential lines of future research regarding
sonification systems for digital materials, which may include additional
material categories, more suitable types of interaction and alternative syn-
thesis techniques.

4.7 Supplementary material

In this section, we introduce additional material to the paper ‘Evaluat-
ing the Effects of Material Sonification in Tactile Devices’ which is not
included in the original text. First, we introduce the analysis of the cor-
relation between the ratings for each of the respective qualities. Then, we
present the mean opinion scores (MOS) and confidence intervals (CI) of
the participants’ response ratings.

Correlations between material properties. The reason for this analy-
sis is to comprehend the degree of relationship between the different
material qualities analyzed in this study. In particular, we would like
to analyze the correlation between the adjectives belonging to the same
group (tactile, visual and subjective) and how the resulting coefficients
vary through the different conditions. Essentially, this examination would
confirm whether the explored qualities were well understood by the par-
ticipants, as some pairs of adjectives are intuitively expected to correlate
better than others. In this manner, we computed the correlation matrices
per experimental condition across all materials and participants, which
are displayed in Figure 4.6.

According to the figures, the evaluated affective qualities are highly
correlated between each other. This is to be expected since it is reason-
able to regard an expensive material as beautiful, pleasant and natural as
well. We can also observe an important relationship among tactile quali-
ties themselves and other intuitive associations (e.g. transparent with thin
or homogeneous with smooth). Moreover, the coefficients yield some ad-
ditional relationships that are not so obvious a priori (e.g. expensive and
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(c) Av. dynamic condition
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(d) Full-modal condition

Figure 4.6: Correlation matrices between the set of qualities analyzed in our
experimental study across all materials and participants. The size of the blob
represents the absolute value of the coefficient r. Those values r > 0.159 are
statistically significant with a 95% confidence level.

opaque, thin and shiny). In general, the FM condition presents the highest
correlation values on average (R̂FM = 0.225) followed by VI (R̂VI = 0.197),
DA (R̂DA = 0.180) and finally SA (R̂SA = 0.173).

Material ratings. The MOS and CI of the participants’ response ratings
for each experimental condition arranged by material and category are
depicted in Figure 4.7 (for leathers) and 4.8 (for fabrics). The accuracy of
this interval depends on the normality of the data. Therefore, in order
to obtain confidence intervals that do not rely on the normality assump-
tion, we bootstrapped the confidence intervals of the mean. Interestingly,
we observe that all leathers under examination present a signature (val-
ues for the means and confidence intervals) that resembles one another,
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Figure 4.7: Response ratings for each of the investigated material samples
(leathers only). The central circles represent the participants’ mean opinion
scores, while the outer circles represent the bootstrapped 95% confidence interval
for the mean.

being the most evident variations located in the rough–hard and shiny–
bright dimensions while the signatures for fabric materials appear to be
more distinct. The latter suggests that, despite their visual differences, the
rubbing sounds generated by leathers are not particularly diverse across
samples according to human perception, as it is the case for fabric mate-
rials.
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Figure 4.8: Response ratings for each of the investigated material samples (fabrics
only). The central circles represent the participants’ mean opinion scores, while
the outer circles represent the bootstrapped 95% confidence interval for the mean.
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CHAPTER 5

Digital Transmission of
Subjective Material Appearance
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Figure 5.1: (Teaser) From left to right, an illustration of the photo setup, one of
the digitized material utilized in our its experiments, its real-world counterpart
and the results of applying non-parametric tests between experimental condi-
tions.

Abstract. The digital recreation of real-world materials has a substantial
role in applications such as product design, on-line shopping or video
games. Since decisions in design or shopping are often driven by quali-
ties like “softness” or “beautifulness” of a material (rather than its photo-
accurate visual depiction), a digital material should not only closely cap-
ture the texture and reflectance of the physical sample, but also its sub-
jective feel. Computer graphics research constantly struggles to trade
physical accuracy against computational efficiency. However, the con-
nection between measurable properties of a material and its perceived
quality is subtle and hard to quantify. Here, we analyze the capability
of a state-of-the-art model for digital material appearance (the spatially-
varying BRDF) to transport certain subjective qualities through the visual
channel. In a psychophysical study, we presented users with measured
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material SVBRDFs in the form of rendered still images and animations, as
well as photographs and physical samples of the original materials. The
main insight from this experiment is that photographs reproduce better
those qualities associated with the sense of touch, particularly for textile
materials. We hypothesized that the abstraction of volumetric materi-
als as opaque and flat textures destroys important visual cues especially
in border regions, where fluff and protruding fibers are most prominent.
We therefore performed a follow-up experiment where the border regions
have been removed from the photographs. The fact that this step greatly
reduced the capability of photos to transport important qualities suggests
strong directions of future research in applied perception and computer
graphics.

In the former chapters we investigated the multisensory perception
of material qualities, using as visual stimuli pictures from real sam-
ples. The main reason for the election of such stimuli is that the capa-
bility of digital material models in representing detailed real material
characteristics is yet to be investigated. In this regard, we considered
the Spatially-Varying BRDF model as representative of the state-of-
the-art in computer graphics, and employed it to depict a collection
of materials (leathers and fabrics). We then compared the ability of
such digitized samples to transmit subjective material appearance in-
formation (represented by a set of material qualities) against simple
photographs and real materials. Thereby, we arranged an experimen-
tal study inspired by those from the previous chapters and analyzed
the resulting outcome using non-parametric tests.

This chapter corresponds to the paper [MWH17]: Rodrigo Martin,
Michael Weinmann and Matthias B. Hullin. “Digital Transmission of
Subjective Material Appearance”. In Journal of WSCG. Jun 2017.
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5.1 Introduction

The recent progress in the photo-realistic depiction of digitized materials
has led to a paradigm change in important applications where the con-
ventional approach of communicating objects in terms of photos taken by
experts is more and more replaced by virtual surrogates. This methodol-
ogy allows new possibilities such as cooperative product design, product
advertising in prototype phase, exhibition of furniture or wearables in
specific environments or visualization of cultural heritage objects. The
entertainment industry has also drawn a major benefit from advanced
digital material models as they allow a more realistic experience of virtual
scenarios. While a remarkable reproduction quality has been achieved
for virtual/digitized materials, there is still a gap in appearance between
them and their physical counterparts which, in application, may distort
the perception of the product. In particular, the accurate reproduction
of surface reflectance behavior under varying illuminations and viewing
conditions still remains a challenging task. For this reason, many mate-
rial catalogs [HJ10] still opt for using pictures or even physical material
samples to illustrate their collections instead of digitized models, despite
the potential benefits that they entail.

In this paper, we aim at investigating this breach in appearance be-
tween digitized materials and their physical counterparts by analyzing
how perceptual material information is transmitted through different stim-
uli. For this purpose, we consider the perception of materials by assess-
ing a set of subjective qualities that can be assigned to either the tactile,
visual or affective category, depending on the nature of the interaction
that best reveals them. We then conducted a psychophysical study to
compare the communication of these attributes based on different rep-
resentations given by real material samples, photographs of these sam-
ples as well as static and animated renderings of the digitized materials
represented by the spatially-varying BRDFs (SVBRDF) model [NRH+77],
which is deemed to be a standard representation in research and indus-
try [EL12]). The materials evaluated belonged to two semantic categories,
leathers and fabrics. A key observation obtained from this experiment
is that the SVBRDF model is not capable of preserving important quali-
ties of material appearance, especially the tactile ones. Even a dynamic
change of viewpoint does not seem to improve the perception of materi-
als. Thus, the loss of information is presumably not caused by the limited
resolution of the digitized samples but due to the abstractions intrinsic
to the model. Upon closer inspection of the stimuli we observed that

87



5.2. Related work

the differences between photos and virtual materials are most prominent
at grazing angles, where the SVBRDF model fails to capture the volu-
metric material structure, intricate light scattering effects and the partial
transparency of protruding fibers. Consequently, the perception of mate-
rial properties such as softness, stiffness or transparency is not accurately
recreated in the digitized representation, deviating from the correspon-
dent photos and physical samples. With that in mind, we designed a
follow-up study in which the respective border regions were digitally re-
moved from the photos for a subset of relevant materials. Indeed, this
step led to a significant deterioration in the transmission of tactile and
affective properties, confirming our initial suppositions.

Our main findings are:
• Digitized materials (SVBRDF model) are not capable of adequately

transmitting certain perceptual material information, being outper-
formed by simple photos of material samples. However, there is
also an gap between photos and real materials.

• There are no significant differences in material-quality perception
between static and animated digitized representations.

• The depictions of digitized materials suffer from a significant loss
of information at grazing angles, where the SVBRDF model cannot
represent appearance accurately.

To the best of our knowledge, this is the first perceptually-motivated
work in evaluating how subjective material appearance is transmitted
through digitized models (SVBRDF) in comparison to photos and real
material samples. Conclusions from this set of studies are restricted to
the given stimuli, but can provide useful insights for future research in
developing realistic material representations.

5.2 Related work

In this section, we provide a condensed synopsis of research on the per-
ception of subjective material qualities and the evaluation of digital ma-
terial appearance models for graphics applications.

5.2.1 Perception of materials and their qualities.
The interest in unveiling the principles and reasons that determine the vi-
sual appearance of materials as well as in how humans visually perceive
materials and their properties has received an increasing attention over
the last years. Respective surveys [Ade01, And11] provide a discussion
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Chapter 5. Digital Transmission of Subjective Material Appearance

of the main problems and challenges in this area of research including
the perception of material surface and properties. A further examination
of the challenges in material perception is provided by [Fle14], where
the author outlines a new theory of material perception based on ‘sta-
tistical appearance models’. Among the phenomena that contribute to
material appearance, glossiness has received a considerable amount of
attention. Several approaches aimed at finding perceptually meaningful
reparameterizations of material gloss by exploring the relationships be-
tween physical parameters and the perceptual dimensions of glossy ap-
pearance [PFG00, WAKB09]. The human capability of perceiving material
gloss (gloss constancy) under varying motion, disparity and color condi-
tions was investigated by Wendt et al. [WFEM10]. In addition to gloss,
Ho et al. [HLM06] researched the visual estimation of surface roughness,
discovering that its perception is strongly influenced by the illuminant
angle.

Motion is another aspect that has an important impact on the appear-
ance of materials’ surface. By analyzing the optical flow, Doerschner et
al. [DFY+11] identified three motion cues, in which the brain could rely
in order to identify material shininess. Our investigation further evalu-
ates which additional subjective information (if any) is revealed by mo-
tion when compared to still renderings of digital materials. Other than
motion, shape and geometry have proven to be critical aspects in the
perception of materials [VLD07]. The importance of the shape for ma-
terial categorization is well-known [Ade01] and also can be used as an
additional cue for material recognition [DGFH16]. In this regard, one
of the conclusions of our research is the emphasis on geometry and ap-
pearance under grazing angles, as a decisive feature to accurately assess
material qualities. Indeed, the tasks of material categorization and mate-
rial property judgment are closely related as demonstrated by Fleming et
al. [FWG13]. Their studies revealed a high degree of consistency between
these two assignments, implying that humans access similar information
about materials when performing both tasks.

Although the experimental procedure initially involves purely visual
stimuli, the participants also rated the same attributes for the real mate-
rial samples in a sort of interaction that makes use of all senses (multi-
modal or full-modal interaction). The described approach relate to previ-
ous studies in multimodal material perception [FTK15, MIWH15], which
highlight the importance of the tactile and auditory channels in the per-
ception of material information. Their work also relies on ratings not only
for surface material properties, but also a set of affective attributes.
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5.2.2 Perceptual evaluation of material appearance mod-
els.

Material appearance acquisition and modeling have been deeply
researched [HF13, WLGK16]. Widely used digital representations of ma-
terials exhibiting a spatially varying appearance include Spatially-Varying
BRDFs (SVBRDFs) [NRH+77] and Bidirectional Texture Functions (BTFs)
[DvG+99]. Both representations model material appearance depending
on the spatial position x on the object surface, the light direction ωi and
the view direction ωo. SVBRDFs allow a more compact modeling of sur-
face reflectance behavior than BTFs at the cost of neglecting effects of light
exchange at subtle surface structures. As SVBRDFs have become a stan-
dard in industry [EL12], we use this representation to analyze differences
in the human perception of real and digitized materials.

Regarding the perceptual evaluation of appearance models, several in-
vestigations focused on analyzing the level of realism achieved by a con-
crete model. In this context, Meseth et al. [MMK+06] verified the ability
of BTF models to achieve photo-realism in comparison to standard rep-
resentations (BRDFs) and photographs, at a coarse and fine scale. It was
demonstrated that BTF materials entail a significant increase of realism
over BRDFs at both scales, albeit being still inferior to the scene pho-
tographs. A study from Filip et al. [FVHK16] determined and predicted
the critical viewing distances at which a certain BTF can be replaced by
the correspondent BRDF representation without decreasing the overall
visual impression. Additionally, Jarabo et al. [JWD+14] examined the
effects of approximate filtering on the appearance of BTFs in different do-
mains (spatial, angular and temporal). The authors identified interesting
correlations between high-level descriptors and perceptually equivalent
levels of filtering as well as with low-level BTF statistics.

5.3 Experiment 1: methods

The proposed experiment investigates the performance of a well-known
appearance model when transmitting subjective material qualities in com-
parison to equivalent photographs from real materials. In addition, the
exercise examines whether the consideration of a higher spatial resolution
through motion in digital scenes provides additional cues in the afore-
mentioned task. Throughout this section the stimuli acquisition, selection
of material qualities and experimental procedure will be detailed.
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5.3.1 Stimuli

Selection of materials In the scope of this research, we explore the
perception of physical and affective material qualities for two semantic
classes (leathers and fabrics). Restricting our selection to these two con-
crete, well-known categories allows us to keep the study and its conclu-
sions manageable. Next, we have chosen ten material samples pertaining
to these classes, each of them with an approximate size of 120× 120 mm2,
with nearly flat geometry to match the requirements of the acquisition
device, which is described in the following paragraphs. With this fine
selection, we intended to maximize the relative intra-class heterogeneity
not only in terms of the physical properties but also the aesthetic charac-
teristics.

Photographs of materials. In order to make the real and the virtual
materials as comparable as possible, both the real and the virtual scene
should share comparable geometry and illumination conditions. With
that intention, our real scene was composed by a cardboard cylinder (80
mm diameter) to which the sample was attached. Cylindrical geometries
have been frequently used in previous perceptual studies [FVHK16] be-
cause of its well-defined texture mapping and for being one of the most
discriminating shapes [VLD07]. We covered the uppermost and lower
part of the sample with white pieces of cardboard, which gently fixed
the material to the cylinder. The height of the visible part of the sample
along the vertical axis was approximately 90 mm. A reflecting sphere
with a diameter of 50 mm was situated 10 mm right from the cylinder,
and the whole setup was placed under natural illumination using a white,
uniform piece of cloth as background. This arrangement is not arbitrary,
given that during our internal tests we learned that subjects are more
adept at this kind of subjective exercises when some context regarding
the scene is provided. The complete setup can be observed in Figure 5.2,
where the digital camera (Nikon 1 J5, resolution of 5568× 3712 pixels)
was situated at a distance of 280 mm in front of the material sample. We
took a picture for each specimen while keeping the light and viewing
conditions constant. The images were then corrected regarding white-
balance, cropped and scaled to match the resolution of the final device
(see Section 5.3.3). Moreover, during the photo session we used a remote-
controlled 360◦ spherical panoramic camera (Ricoh Theta S) to probe the
scene illumination. The resulting high-dynamic-range environment map
was utilized to illuminate our virtual scenes.
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Figure 5.2: View of the photo setup

Digitized materials. The digitization of the material samples was car-
ried out using a commercial scanning device [XR16] that allows the mea-
surement of (flat) material samples. After taking images of the material
sample from different viewpoints and under different illumination con-
ditions, a surface normal map is obtained and the reflectance behavior is
stored in terms of a Ward-SVBRDF. We refer to the supplementary mate-
rial for more details on the material digitization process. The output for-
mat (AxF) is supported natively by several rendering applications such as
Autodesk VRED, which was employed to generate the renderings used in
this study. We approximated the geometry of the described photographic
setup in a virtual scene and used VRED’s Full Global Illumination al-
gorithm to render it, lighting the scene with the previously calculated
environment map. For the animated scene, we rotated the camera 60°
back and forth around the cylinder in the Y-axis, and rendered the scene
at 60 frames per second to get a clip with a duration of 4 seconds. The
resulting photos and renderings are shown in Figure 5.3.

Real materials. During the course of the experiment, we handed sam-
ples from the actual materials to the participants, hence, allowing a full-
modal experience of the individual material qualities. Instead of the sam-
ples that were used for the acquisition, we used smaller portions of the
same sample (approximately 70× 70 mm2) to avoid damaging the origi-
nals due to the interaction and in favor of the scalability of the process.
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L1 L2 L3 L4 L5

F1 F2 F3 F4 F5

L1d L2d L3d L4d L5d

F1d F2d F3d F4d F5d

Figure 5.3: In the two upper rows, the pictures from the samples utilized in the
study. In the two lower rows, the correspondent digitized material renderings.

Tactile Visual Affective

rough–smooth shiny–matte expensive–cheap
hard–soft bright–dark natural–synthetic
thick–thin transparent–opaque beautiful–ugly
stiff–flexible homogeneous–heterogeneous unrealistic–believable

Table 5.1: Opposite-meaning quality pairs.

5.3.2 Selection of material qualities

In an initial step, we focused on finding a meaningful subspace of sub-
jective adjectives that characterizes our selection of materials. The impor-
tance of this task was first addressed by Rao and Lohse [RL96] for the
concrete case of visual textures. We collected a list of 42 subjective ma-
terial qualities organized in 21 opposite-meaning adjectives, which were
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PH DR DV FM

Figure 5.4: Stimuli presented in the psychophysical experiment corresponding
to the four different conditions for an example material L2. From left to right,
photograph (PH), digitized render (DR), digitized video (DV) and the physical
sample (FM).

observed to be the most recurrent ones in related literature regarding
material perception [FWG13, FTK15, JWD+14, MIWH15]. Such qualities
were conceptually separated in three different groups with respect to their
tactile, visual or affective nature. In pursuance of getting a smaller sub-
space of qualities that maximizes the transported information about our
particular material collection, we conducted a pilot experiment in which
we handed out the 10 original material samples to 7 participants along
with a list of the 42 individual adjectives. The subjects were asked to
mark the adjectives that better describe each sample. There was no re-
striction regarding the number of adjectives to choose. From the results,
we selected the most voted attribute pairs in each of the three groups for
our experiments, leading to a final assortment of 11 adjectives (see Table
5.1). Although it was not in our original list, we additionally included the
pair ‘unrealistic-believable’, which provides information about the level
of realism portrayed by the virtual materials.

5.3.3 Experimental procedure

The user study was conducted using tablet computers (Toshiba Excite Pro
10.1, resolution of 2560× 1600 pixels) running a custom Android applica-
tion. This experimental setup makes our study scalable to larger surveys
in addition to representative of contemporary consumer hardware. The
procedure was carried out in a quiet, well-illuminated room and orga-
nized in sessions with a maximum of 7 participants. An introductory
presentation was provided before performing the exercise to explain the
procedure and clarify inquiries. Participants were instructed to infer the
qualities which were not evidently revealed in a particular representation.

Different techniques were considered to perform perceptual quality

94



Chapter 5. Digital Transmission of Subjective Material Appearance

ratings across our stimuli. Although double stimulus ratings or forced-
choice pairwise comparisons may lead to smallest measurement variance,
they would also increase the number of trials and, thus, make the whole
study more difficult to accomplish. Therefore we decided to employ sin-
gle stimulus ratings in which, for each stimulus, the subjects had to rate
the selected qualities on a 7-point Likert scale characterized by a slider
with values ranging from -3 to 3 (see supplementary material). Each of
the values in the slider was consistently labeled with a term indicating the
intensity of the stimuli in both axes (e.g., very bright, bright, a bit bright,
neutral, a bit dark, dark, very dark). The actual procedure consisted of
four different presentations or conditions, in which different material im-
ages were presented to the participants in randomized order along with
the rating questionnaire. In addition, the participants had the chance to
examine the real samples, serving the respective ratings as ground truth.
The conditions that compose the experiment are illustrated in Figure 5.4
and listed below:

• Photographs (PH) taken from the real materials.

• Digitized static renderings (DR) from materials using the SVBRDF re-
flectance model.

• Digitized video renderings (DV) using the same reflectance model,
where the camera rotates around the sample in the Y-axis.

• Full-modal condition (FM). Physical material samples were given to
the participants so that they could interact with them.

As the interaction with the real samples may bias the rest of the task,
the condition FM was constrained to be the final one, while the order of
the remaining conditions was randomized. Additionally, the application
was instrumented to identify incorrect realizations of the assignment (e.g.
skipping a material), in order to make the data more reliable. A total of
20 subjects (13 females, mean age 27.69; 7 males, mean age 27.00) partici-
pated voluntarily in the experiment. They were all naïve to the purpose of
the experiment and reported normal or corrected-to normal visual acuity.
They also provided informed consent and were compensated economi-
cally for their participation. From all the combinations of the conditions,
materials, qualities and subjects, we obtained 4 × 10 × 12 × 20 = 9600
rating responses that are analyzed in the next section.
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5.4 Experiment 1: results

To evaluate how the subjective attributes were perceived in the aforemen-
tioned material presentations we performed a conjoint analysis of the
participants’ preferences and non-parametric tests. The participants’ rat-
ing responses were deemed reliable (Cronbach’s α = .93). In addition,
participants’ mean ratings and confidence intervals for each material and
quality are included in the supplementary material.

5.4.1 Conjoint analysis

With the purpose of gaining a general understanding regarding how
material perception differs between the individual conditions, we made
use of conjoint analysis techniques [GS90] on the subjects’ ratings. This
method has been used extensively in market research to measure the
preferences of the customers among multi-attributed products and ser-
vices. In our experiment, we analyzed the three visual conditions Ci
with i ∈ {PH, DR, DV} in the conjoint analysis and considered the fol-
lowing question: ‘To what degree does condition Ci transmit the quality
qk ∈ Q in comparison to the other conditions?’. Due to our experimen-
tal procedure based on single ratings, we cannot directly compare two
conditions. Instead, we can evaluate them with respect to the full-modal
representation (FM). From this, we can infer that a certain condition Ci is
more suitable to represent an individual property than another Cj if the
participants’ ratings better agree to the ones obtained for the full-modal
condition (FM). In contrast, if the ratings are distant, the depiction is less
realistic and, consequently, less suitable.

In order to carry out this comparisons, we use the weighed voting
schema described in Martín et al. [MIWH15] to compute the ‘utility scores’
(or ‘part-worth utilities’) si. For a certain combination of material, quality
and subject, ri and rj denote the ratings for two particular conditions (Ci
and Cj with i, j ∈ {PH, DR, DV}) and rFM denotes the ratings for the full-
modal task which serves as ground truth. The calculated intermediate
utility scores (si, j) are defined according to

si, j =

{
|rFM − ri| − |rFM − rj| if |rFM − ri| > |rFM − rj|
0 else

. (5.1)

To compute the final utility scores si, and the normalized ‘importance
scores’ T = (ti) for each condition, we consider the matrix composed of
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the calculated intermediate scores S = (si, j) with S ∈ NN×N and si,i = 0.
Note that, in general, the matrix S is not symmetric. Then T is given by

T =

∑
i

si, j

∑
i,j

si, j
where i, j ∈ {PH, DR, DV}. (5.2)

The resulting scores, separated by property and material, can be seen in
Figure 5.5. A clear evidence regarding the preference of a certain con-
dition with respect to the other ones would imply that the respective
condition depicts the reality more accurately, for the corresponding ma-
terial or quality. Indeed, the obtained results indicate a clear predilec-
tion towards PH for almost all qualities and materials. This preference is
particularly noticeable for the tactile adjective pairs (e.g. ‘hard-soft’, ‘stiff-
flexible’) but can also be observed for visual properties (e.g. ‘shiny-matte’,
‘transparent-opaque’) and affective properties (e.g. ‘natural-synthetic’).
Considering the preferences organized per material, the condition PH is
especially favored for fabric specimens. In fact, if applying conjoint anal-
ysis between the two material classes, the scores obtained for digitized
leathers (tPH = 38.09%, tDR = 31.15% and tDV = 30.76%) are higher
than the ones for digitized fabrics (tPH = 45.26%, tDR = 29.23% and
tDV = 25.51%). Another interesting finding shows up when comparing
the importance scores among static and dynamic renderings (DR and
DV). Initially, the video presentation only performs better when trans-
mitting transparency and naturalness. Applying conjoint analysis be-
tween DR and DV exclusively led to a more balanced overall preference
of tDR = 52.60% and tDV = 47.40%. The pair ‘unrealistic-believable’ does
not apply to the real material stimuli and hence, it was not considered
during the analysis.

This way, conjoint analysis provides insights regarding how well in-
dividual qualities are transmitted by the different conditions and, hence,
which of the corresponding representations is most suitable. In the next
section, we intend to additionally discover if and where significant differ-
ences among the ratings of the conditions are manifested.

5.4.2 Non-parametric tests

In addition to compare each condition against the ground truth (FM),
we would also like to detect whether, and if so also where, meaningful
discrepancies between the individual conditions occur. This may help
us to understand how differently these representations transmit material
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Figure 5.5: Summary of the conjoint analysis revealing participants’ preferences
for each condition according to our voting schema. The preferences are sepa-
rated by quality (left figure) and by material (right figure). The PH condition
is preferred for almost every quality and performs particularly better for fabric
materials.

qualities. A preliminary Shapiro-Wilk normality test determined that,
for certain combinations of material and quality, our data do not come
from a normally distributed population. This fact, together with the ordi-
nal nature of the Likert scales, discredit analyses based on group means.
Thus, we applied non-parametric tests (Friedman and Wilcoxon) in order
to detect significant differences between the ratings (dependent variable)
of the four conditions (independent variable).

Given our experimental design, we will be able to draw valid con-
clusions only for a single material-quality pair at a time (pi = {mj, qk},
given a material mj ∈ M and quality qk ∈ Q), across all subjects. For
better understanding, we first consider the pair pi given by the combina-
tion of material L1 and the quality ‘rough-smooth’. Applying Friedman’s
test revealed that the effect of the different conditions on the subjects’
judgments is significant (χ2(3) = 19.86, p < .05, r = .00). The post-hoc
analysis with the Wilcoxon signed-rank procedure resulted into reject-
ing the null hypotheses for the comparisons FM ↔ DR, FM ↔ DV and
DV ↔ PH, i.e. these representations have a significantly different ef-
fect on the participants’ ratings. In contrast, the comparisons FM ↔ PH,
DV ↔ DR and DR ↔ PH showed no interaction effect on the ratings.
In order to extend our findings to the complete collection of M materials
and Q qualities, we performed the same analysis for each possible combi-
nation of material and quality pi ∈ P. Then, we summed up the number
of occurrences in which, for a particular pi, we rejected the null hypothe-

98



Chapter 5. Digital Transmission of Subjective Material Appearance

ses and, therefore, the ratings among conditions were determined to be
significantly different (at least p < .05 for all the cases). We refer to this
sum hereafter as the “dissimilarity score”. Here, the presence of a high
dissimilarity score between FM and another condition would outline how
good or bad the respective depiction transmits real world information. In
addition, by means of the same evidence for the rest of the scores, we may
learn how differently photographs and digitized materials illustrate the
individual qualities and if there is any significant impact in the ratings
coming from motion. The outcome for all ten materials is separated by
quality and shown in Figure 5.6.

As can be observed, the largest scores are mainly concentrated when
the conditions FM ↔ DR and FM ↔ DV are compared, and this is es-
pecially appreciable for qualities categorized as tactile (upper-left quad-
rant). Besides, we can observe high scores between FM and the rest
of the conditions for the adjective pairs ‘thick-thin’, ‘stiff-flexible’ and
‘transparent-opaque’. This fact indicates that none of our representations
is able to fully communicate these concrete qualities. Furthermore, the
small scores found between the conditions FM ↔ PH in the remaining
adjective pairs suggests that photos transmit most of the qualities good
enough. In general, these results correlate well with the findings from
the conjoint analysis, as they also tend to indicate the predominance of
photographs over our digitized materials, especially in the tactile domain.
In fact, the differences in the perceived realism (‘unrealistic-believable’ di-
mension) between PH and virtual materials confirm this trend. Finally, no
significant dissimilarities were discovered in the comparison DR ↔ DV,
i.e. the overall perception of material qualities is not affected by motion.

5.5 Experiment 2

During the course of the previous experiment, we observed that the sam-
ples with padded and fluffy appearance do not transmit appropriately
material appearance in the digitized conditions and, hence, were deemed
to be more unrealistic (see supplementary material). These features are
more salient in the distinctive border regions, which possibly behaved as
one of the main sources of information in favor of photographs. Due to
the limited resolution of the reconstructed surface geometry, these struc-
tures are not accurately captured and the SVBRDF model is not capa-
ble of reproducing surface effects like self-occlusions, interreflections or
transparency. To better understand how this matter influences the trans-
mission of material appearance and which subjective attributes are most
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Figure 5.6: Number of tests with a significant effect on subjects’ ratings (at least
p < .05), summed along all ten materials. Each row compares two conditions
while each column represents a quality pair. The largest scores are located in
the second row (FM ↔ DR) and third row (FM ↔ DV), especially for tactile
qualities. In contrast, there are no significant effects in the lower row (DR ↔
DV).

affected, we designed a follow-up study in which the perception of dig-
itized materials was compared to the perception of real materials within
photos where the border features have been digitally removed. The de-
scription of the experimental procedure and results are provided in the
following sections. The supplementary material additionally provides
the mean response ratings and confidence intervals for each material and
quality.

5.5.1 Methods

From the materials selected for the previous experiment, we chose a sub-
set of samples whose digitized stimuli were perceived to be particularly
different from their correspondent photos in the experimental analysis,
failing to transmit many of the considered attributes. According to this,
we selected the set M2 = {L1, L5, F1, F5}, where material L5 was only
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L1c L5c F1c F5c

Figure 5.7: Pictures from the two leathers (L1, L5) and two fabrics (F1, F5)
selected for the follow-up experiment, before and after crop operation.

included to have an equal number of leathers and fabrics in the scope of
this study. From the original photographs we removed the visible ma-
terial borders from the cylindrical geometry to which the sample was
attached using Adobe Photoshop, resulting into a flat silhouette shape as
shown in Figure 5.7. Accordingly, we rendered again the digitized mate-
rials to match the new resolution from the cropped photographs. Other
than that, we also aimed at comparing our visual stimuli against the real
materials and we considered the same assortment of perceptual quali-
ties as in the previous experiment. Nevertheless, in this experiment no
motion was included, i.e. the considered conditions are:

• Cropped photographs (PHc) taken from the real materials, where
the borders have been removed.

• Digitized static renderings (DR) from materials using the SVBRDF
reflectance model.

• Full-modal condition (FM). Physical material samples were given to
the participants so that they could interact with them.

Again, the order of the materials and conditions was randomized ex-
cept for FM, which was constrained to be the last one. 19 subjects (12
females mean age 27.08; 7 males, mean age 28.57) took part in the ex-
periment under the same conditions as the previous one. The resulting
3× 4× 12× 19 = 2736 rating responses are evaluated in the next section.
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5.5.2 Results

In the following, we show the outcome of performing conjoint analysis
and non-parametric tests on the subjects’ ratings and compare them w.r.t.
the results of the previous experiment. A Cronbach’s alpha value of α =
.89 confirms the reliability of the ratings.

Conjoint analysis Similar to Section 5.4.1 we performed a conjoint anal-
ysis in order to reply the question: ‘To what degree do the conditions
PHc and DR transmit the quality qk ∈ Q in comparison to FM?’. Figure
5.8a illustrates the importance scores per quality for the current experi-
ment, in which the borders were removed, while Figure 5.8b shows the
scores obtained for Experiment 1, if only the data from the subset M2
of materials were taken into account. Direct comparison between the
scores corresponding to the conditions PHc (Experiment 2) and PH (Ex-
periment 1) reveals how the preferences for the cropped photographs
become significantly smaller for all the tactile and affective attributes
so that, for certain cases, these are surpassed by the DR scores. Cer-
tainly, the score difference between conditions PH and PHc in both ex-
periments should be a good indicator regarding which perceptual at-
tributes were most damaged with the border-feature removal. According
to this, the most deteriorated pair was ‘rough-smooth’ (−20.52%), fol-
lowed by ‘natural-synthetic’ (−18.63%), ‘expensive-cheap’ (−15.55%) and
‘stiff-flexible’ (−15.10%). Contrarily, the pair ‘bright-dark’ (+22.50%) and
also ‘homogeneous-heterogeneous’ (+14.30%), were surprisingly better
communicated without the borders. In this case, the silhouette informa-
tion present in the photos from Experiment 1 could have acted as a mis-
leading cue to judge homogeneity and brightness. Finally, the importance
scores separated by material are shown in Figure 5.8c. When compared
to the scores obtained in Experiment 1 (Figure 5.8d), we notice substantial
changes as the preferences for PHc diminish in favor of the ones for the
DR condition except for the material L1, whose scores remain relatively
constant.

Non-parametric tests As in our previous study, we perform
non-parametric tests (Friedman and Wilcoxon) to detect meaningful dif-
ferences among the respective ratings (dependent variable) for the three
conditions PHc, DR and FM (independent variable). Anew, we carried
out multiple comparison tests between the conditions (applying Wilcoxon
signed-rank procedure) and generalized our findings by summing the re-
sulting occurrences of rejected null hypotheses for each material-quality
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Figure 5.8: Summary of the conjoint analysis showing the participants’ pref-
erences for each condition in Experiment 2, where the material borders were
removed from the photos, in contrast to Experiment 1, separated by quality (left
figures) and material (right figures). The lower scores for the condition PHc in
comparison to PH show how the transmission of tactile and affective qualities as
well as fabric samples deteriorates when the borders are removed.

pair pi ∈ P. The resulting dissimilarity scores are displayed in Figure
5.9a together with the scores resulting when applying the same test in
Experiment 1 (Figure 5.9b), for the material subset M2. the DV condition
was ignored as the video stimuli were not used in the follow-up study.

From the results depicted in the figures, we can outline three main ob-
servations. First, the large dissimilarity scores found in the bottom com-
parison PH ↔ DR for Experiment 1 have disappeared when moving to
PHc ↔ DR in Experiment 2, which suggests that both representations lie
much closer in the follow-up study. Second, the middle row comparing
FM ↔ DR only contains subtle changes in the scores obtained for both
experiments. This fact is coherent with the stimuli as these conditions
have not changed between experiments. Third, the top row comparing

103



5.5. Experiment 2

1 1 1 0 1 1 0 1 0 0 0 1

2 3 1 3 1 1 2 2 1 1 1

1 2 1 2 1 0 2 1 1 1 0

ro
ug

h-
sm

oo
th

ha
rd

-s
of

t

th
ic
k-

th
in

st
iff

-fl
ex

ib
le

sh
in

y-
m

at
te

br
ig

ht
-d

ar
k

tra
ns

pa
re

nt
-o

pa
qu

e

ho
m

og
en

.-h
et

er
og

en
.

ex
pe

ns
iv
e-

ch
ea

p

na
tu

ra
l-s

yn
th

et
ic

be
au

tif
ul

-u
gl

y

FM    DR

tactile visual affective

PH     DRc

FM    PHc

un
re

al
ist

ic
-b

el
ie
va

bl
e

(a) Dissimilarity score (Exp. 2)

2 3 2 3 2 1 0 2 1 0 0 2

2 3 2 3 2 1 2 2 2 1 2

0 0 3 1 0 1 2 0 1 0 1

ro
ug

h-
sm

oo
th

ha
rd

-s
of

t

th
ic
k-

th
in

st
iff

-fl
ex

ib
le

sh
in

y-
m

at
te

br
ig

ht
-d

ar
k

tra
ns

pa
re

nt
-o

pa
qu

e

ho
m

og
en

.-h
et

er
og

en
.

ex
pe

ns
iv
e-

ch
ea

p

na
tu

ra
l-s

yn
th

et
ic

be
au

tif
ul

-u
gl

y

PH    DR

FM    DR

FM    PH

tactile visual affective

un
re

al
ist

ic
-b

el
ie
va

bl
e

(b) Dissimilarity score (Exp. 1)

Figure 5.9: N° of tests with a significant effect on subjects’ ratings (at least
p < .05), summed along the subset M2 of four materials. On the left, the
dissimilarity scores for Experiment 2, where the borders were removed from the
photos. On the right, the respective scores for Experiment 1. Note the high scores
in the comparison PH ↔ DR for Experiment 1, whereas they partially move to
the first row FM ↔ PHc in Experiment 2. Meanwhile the middle row presents
little variation.
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FM ↔ PHc in Experiment 2 presents, for most of the considered qual-
ities, higher scores as in the original study. This fact suggests that the
perception of photographs and real materials differs more significantly
when the silhouette-border information is not present. However, the pair
‘thick-thin’ displays an unexpected opposite tendency. Again, borders
may have acted as a misleading cue to judge thickness on these concrete
samples.

5.6 Conclusions

In the scope of this investigation, we have studied the perceptual dif-
ferences between stimuli based on standard digital material appearance
models in terms of Spatially Varying BRDFs, photos of real materials
(leathers and fabrics) and the actual material samples on the task of trans-
mitting a rigorously selected group of subjective qualities. Additionally,
we explored the effect of motion on the perception of the stimuli based
on digitized material representations. Because of the observation that the
appearance of photographed materials and their digitized counterparts
differ particularly at the material borders, a second experiment was de-
signed to explore to what degree the appearance of materials under flat
viewing angles could cause the loss of information between photographs
and renderings.

One of the main findings of our investigations is that the considered
digitized models are not able to fully transmit basic subjective properties
according to the reality. Most of the analyzed perceptual qualities were
better perceived in photos of real materials in comparison to renderings,
but there is also a perceptual gap between photos and physical materials.
This effect has proven to be true especially, but not exclusively, for tactile
attributes and the fabric samples. Furthermore, motion information did
not affect the perception of digitized materials significantly. The latter is
especially relevant for the ‘shiny-matte’ dimension as they may contra-
dict the documented fact that motion cues can override static ones while
judging shininess [DFY+11, WFEM10]. Nevertheless, their experiments
are based in much simpler appearance models (isotropic Ward model
and grayscale Phong model respectively) which probably led to a better
shininess isolation and recognition. Finally, our investigations indicate
that more attention has to be paid to the accurate reconstruction of the
distinctive material geometry as well as the acquisition of material ap-
pearance under grazing angles. In our measurements, the lowest camera
was mounted with a zenith angles of 67.5◦ and, hence, these particular
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appearance effects cannot be recovered.
Although our studies provide interesting evidences, they cannot be

extrapolated to other material categories (e.g. paper, stone, wood, etc.)
for which additional experiments would have to be performed. We also
acknowledge certain aspects that could have limited the expressiveness
of the digitized materials used in our experiments, including:

• The generation of the virtual scene is approximate, i.e. the virtual
camera position and the scene geometry slightly deviate from their
physical counterparts.

• Scale differences between virtual and real material sample. Due to
restrictions of the acquisition process, the digitized material repre-
sents a slightly smaller patch from the original one.

• The environmental light varied during the photo session due to the
movement of sun and clouds.

• A color shift between the real and the virtual materials which also
comes from the acquisition process.

• Not all the materials presented in this study were suitable to be
represented by the SVBRDF appearance model, since it does not
account for important surface effects. Consequently, some digitized
representations were visibly defective.

By and large, we consider the results presented in this investigation an
important step in the immense task of unveiling the perception of digital
environments to improve the overall experience. To conclude, we point
out the necessity of research in several directions such as the application
of more appropriate, material-specific appearance representations. In this
regard, BTFs models might help regarding the reproduction of fine effects
of light exchange within the digital material representation at the cost
of rather long acquisition times. Another interesting avenue of research
could be to explore the linkage between perceptual qualities and physi-
cal measurable material properties (i.e. stiffness or roughness). Finally,
the transmission of material qualities could benefit from a multisensory
approach. In particular, the use of sound has proven to be beneficial for
the assessment of tactile qualities [MIWH15], which were not successfully
transmitted using purely visual models.
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5.8 Supplementary material

This section presents additional material to the paper ‘Digital Transmis-
sion of Subjective Material Appearance’ which is not present in the origi-
nal publication due to space constraints. This includes additional related
work relevant to the state of the art, further information regarding the
device employed for the acquisition of material samples as well as the
screenshots depicting the user interface from the custom android appli-
cation. Furthermore, we provide the mean opinion scores (MOS) and
confidence intervals (CI) of the participants’ response ratings.

Relevant related work. Beyond the use of motion as a feature to cor-
rectly assess material properties, some physical qualities would be bet-
ter revealed after certain interactions with the specimen (e.g. stretching
the sample to communicate stiffness, letting it fall to better assess hard-
ness). This direction of research is explored by Bouman et al. [BXBF13],
where the authors collected a database of videos from moving fabrics and
trained a regression model to predict two properties of the fabric, stiff-
ness and area weight. The values predicted are well correlated with the
ground-truth measurements, but not that much with human perception.

Moreover, an investigation from Xiao et al. [XBJ+16] addresses the
importance of material wrinkles and folding information when discrim-
inating fabric materials, using tactile stimuli as the ground truth. Their
results show that the presence 3D shape cues and color information in
the stimuli images allows a better accuracy than flattened or grayscale
materials.

On the digitization of materials. In order to digitize the selected mate-
rial samples, we made use of a commercial scanning device [XR16]. The
apparatus includes a rotatable sampleholder on which the specimen is
placed below a hemispherical gantry with 20 attached LED light sources,
four illuminations with 10-band spectral filter wheels, four monochro-

107



5.8. Supplementary material

Figure 5.10: Screenshots from the Android application employed to carry out the
studies, where each image corresponds to one of the four conditions composing
Experiment 1. From left to right: photograph (PH), digitized rendering (DR),
digitized video (DV) and full-modal (FM) conditions.

matic cameras at zenith angles 5.0◦, 22.5◦, 45.0◦ and 67.5◦ and an addi-
tional motorized linear light scanner. After taking images of the material
sample from different viewpoints and under different illumination con-
ditions, a surface normal map is obtained and the reflectance behavior is
stored in terms of an Spatially-Varying BRDF representation. The latter
is based on a diffuse Lambert model and a specular anisotropic Ward
model [War92] with bounded albedo [GMD10] and modulated with a
simple Fresnel term [Sch94]. The output Appearance Exchange Format
(AxF) is natively supported across several CAD and rendering applica-
tions.

User interface. The screenshots of the Android application used to con-
duct the experiments are displayed in Figure 5.10.
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Material ratings. The MOS and CI of the participants’ response ratings
for each experimental condition arranged by material and category are
depicted in Figures 5.11, 5.12 and 5.13.
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Figure 5.11: Response ratings from Experiment 1 for each of the investigated
material samples (leathers only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.

109



5.8. Supplementary material

rough

hard

thick

stiff

shiny

bright

transparent

homogn.

expensive

natural

beautiful

unrealistic

-3 -2 -1 0 1 2 3

F1 rating means and CI

smooth

soft

thin

flexible

matte

dark

opaque

hetergn.

cheap

synthetic

ugly

believable

PH
DR
DV
FM

rough

hard

thick

stiff

shiny

bright

transparent

homogn.

expensive

natural

beautiful

unrealistic

-3 -2 -1 0 1 2 3

F2 rating means and CI

smooth

soft

thin

flexible

matte

dark

opaque

hetergn.

cheap

synthetic

ugly

believable

PH
DR
DV
FM

rough

hard

thick

stiff

shiny

bright

transparent

homogn.

expensive

natural

beautiful

unrealistic

-3 -2 -1 0 1 2 3

F3 rating means and CI

smooth

soft

thin

flexible

matte

dark

opaque

hetergn.

cheap

synthetic

ugly

believable

PH
DR
DV
FM

rough

hard

thick

stiff

shiny

bright

transparent

homogn.

expensive

natural

beautiful

unrealistic

-3 -2 -1 0 1 2 3

F4 rating means and CI

smooth

soft

thin

flexible

matte

dark

opaque

hetergn.

cheap

synthetic

ugly

believable

PH
DR
DV
FM

rough

hard

thick

stiff

shiny

bright

transparent

homogn.

expensive

natural

beautiful

unrealistic

-3 -2 -1 0 1 2 3

F5 rating means and CI

smooth

soft

thin

flexible

matte

dark

opaque

hetergn.

cheap

synthetic

ugly

believable

PH
DR
DV
FM

Figure 5.12: Response ratings from Experiment 1 for each of the investigated
material samples (fabrics only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.
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L1 rating means and CI (Exp. 2)
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Figure 5.13: Response ratings from the investigated material samples in Exper-
iment 2. The central circles represent the participants’ mean rating, while the
outer circles represent the bootstrapped 95% confidence interval for the mean.

111



5.8. Supplementary material

112



Part III

Perceptual Similarity Metrics
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CHAPTER 6

Measuring Perceptual Similarity
via Texture Interpolation
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Figure 6.1: (Teaser) The collection of textures from the ALOT database utilized
in our experiments, after several processing steps and before removing the color.
The superimposed numbers correspond to indexes given to the materials in the
original dataset.

Abstract. The perceptual similarity or dissimilarity of textures has been
subject to considerable research in the imaging and vision communities.
Here, we focus on the challenging task of estimating the mutual percep-
tual similarity between two textures on a consistent scale. Unlike previous
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studies that more or less directly queried pairwise similarity from human
subjects, we propose an indirect approach that is inspired by the notion of
just-noticeable differences (JND). Similar metrics are common in imaging
and color science, but have so far not been directly transferred to textures,
since they require the generation of intermediate stimuli. Using patch-
based statistical texture synthesis, we generate continuous transitions be-
tween pairs of materials. In a user experiment, participants are then asked
to locate an interpolated specimen in the linear continuum. Our intu-
ition is that the JND, defined as the uncertainty with which participants
perform this task, is closely related with the perceived pairwise texture
similarity. Using a database of fabric textures, we show that this metric
is particularly suitable to address fine-grained similarities, produces ap-
proximately interval-scale measurements and is additionally convenient
for crowdsourcing. We further assess the validity of the obtained per-
ceptual distances by producing a perceptual texture space that correlates
well with previous investigations.

During the preceding investigations, we examined the perceived dif-
ferences between visual and multisensory material perception as well
as between real and digitized materials. The latter was achieved by
analyzing how relevant material qualities were assessed by a group
of subjects across different stimuli. One of the reasons for such
methodology is the lack of effective and suitable metrics for material
appearance. This chapter addresses this problem by considering the
most common fashion of representing materials in many online ap-
plications, textures from real samples, and proposes a novel method-
ology to compute the perceived similarity between textures which
exploits the noise resulting from a texture localization task.

The contents of this chapter were published after the submission of
this thesis [MXK+19]: Rodrigo Martín, Xue Min, Reinhard Klein,
Matthias B. Hullin and Michael Weinmann. “Using patch-based im-
age synthesis to measure perceptual texture similarity”. In Computers
and Graphics. Jun 2019.
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6.1 Introduction

The perception of textures is an essential field of research that has a
broad range of applications in numerous vision problems. While tex-
tures play an important role in the visual appearance of materials, they
also serve as a cue in many understanding tasks such as judging mate-
rial attributes (e.g. [FWG13]), material recognition and classification (e.g.
[SN15, SLRA13, WGK14]) and object detection (e.g. [SWRC06]). The main
challenge when dealing with textures is that their effect on human per-
ception is very complex and highly subjective. In this paper, we focus on
the problem of perceived texture similarity. Questions like “are textures
A and B more similar than textures C and D”? arise in many applications,
for instance when reasoning whether objects are made of the same or
a similar material or when searching materials that are perceptually in-
between certain other given samples. Reliable texture similarity metrics
could greatly facilitate the development of efficient user interfaces for re-
tailing web stores that are consistent with human perception, or be used
to guide design processes, find suitable replacements for unavailable ma-
terials, and so on.

In color science, distance and similarity metrics have reached a mature
state and enabled highly efficient digital solutions for applications like
gamut mapping for display and print. Textures introduce additional spa-
tial structure and possibly semantic context, which makes any measure
of similarity much less well-posed and subjective. Pioneering research in
perceptual texture similarity has aimed at identifying a meaningful, low-
dimensional and perceptually uniform space for textures [RL96, RFS+98],
where the axes represent meaningful quantities and distances between
points in this space are proportional to variations in the human percep-
tion. These studies and those who have built upon them rely mainly
on free-grouping experiments to collect perceptual input. This data are
later shaped into a similarity/distance matrix from which a perceptual
texture space (PTS) is constructed by means of dimensionality reduction
techniques. In general, this approach has proven valid in the task of con-
structing different PTSs, although the procedure may become impractical
for large datasets due to the substantial duration of the grouping task,
which may lead to fatigue and boredom issues. In fact, arranging e.g. a
large collection of printed images into clusters has been shown to be a
time-consuming experiment [CHN+11] taking 2 to 4 hours, where only
six out of thirty participants were able to complete the whole assignment.
Moreover, this metric, by definition, does not allow the addition of un-
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seen points and, given the sparsity of the resulting matrix, it is not clear
whether the derived PTS accurately represents the perceived distances for
an assortment of samples coming from the same material category (e.g.
leathers, fabrics, etc), exhibiting rather similar appearances. Several alter-
natives have been proposed to collect similarity data while partially over-
coming the previous issues e.g. progressive grouping, pairwise comparisons
or forced-choice combinations. Even so, they depend on direct user queries
for pairwise similarity between textures, a concept that is ill-defined, de-
pends on the individual subject experience and therefore is subject to
bias.

In this paper, we attempt to mitigate some of the obstacles from the
aforementioned approaches by introducing a novel strategy for the mea-
surement of mutual perceptual similarity between two textures. Our ap-
proach relies on a localization task inspired by the notion of just-noticeable
differences (JND), and applies state-of-the-art patch-based texture synthe-
sis [DSB+12] to produce a gradual transition, or gradient, between two
materials A and B. An additional intermediate texture exemplar C, gen-
erated using the same technique, is then given to the user, along with the
task to locate it on the continuum from A to B. The working hypothesis
for our metric is that the more similar the two materials at the end of
the gradient are, the less certain the user will be about the placement of
C. For multiple users tasked with the same question, this will result in a
variance which we expect to correlate with the similarity of textures. In
contrast, a good agreement between users suggests a high dissimilarity
or perceptual distance between the two textures. As the texture interpo-
lation itself is not driven by perceptual metrics, the synthesized transition
between the textures may not represent a smooth, linear transition be-
tween materials. We therefore propose a preliminary study that allows
the generation of perceptually linear interpolations. Our approach is eas-
ily parallelizable among multiple subjects, extensible to additional sam-
ples and produces approximately interval-scale measurements. Thanks
to these characteristics, our study is suited for implementation on hu-
man intelligence platforms like Amazon Mechanical Turk and results in
a space of textures that complements previous investigations.

Altogether, the main contributions of this paper are:
• We introduce a novel formulation for the perceptual similarity be-

tween textures that exploits the noise inherent to a JND-like task.
To generate the stimuli used for the experiments, we exploit state-
of-the-art texture interpolation.

• To derive a perceptually linear interpolation between textures that
is so far not guaranteed by current techniques, we present a novel
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linearization method based on user judgments.
• From the derived distance matrix, a meaningful, low-dimensional

and perceptually uniform perceptual space for material textures is
computed.

6.2 Related work

Establishing a texture similarity measure belongs to the essential aspects
that need to be considered for understanding the appearance of materials.
Therefore, we review major research in the field of material appearance
perception as well as related work regarding the similarity of textures
and the practical acquisition of psychophysical data. As our approach
involves example-based techniques for texture synthesis to generate the
experimental stimuli, we also report the main developments in this re-
gard.

6.2.1 Perception of material appearance.

Undoubtedly, the way we perceive our surroundings guides our inter-
action with objects. Even by solely considering the materials objects are
made of, we can infer characteristics regarding fragility, weight, value,
etc. As a consequence, there has been a considerable amount of work
studying the fundamentals of the perception of material surfaces and
their properties [Ade01]. Further research from Fleming et al. [FWG13]
relates two of the main tasks encompassed in the field: the inference of
material qualities and the classification of materials according to given
semantic concepts. The perceived dimensions of sensory material per-
ception has also been a matter of research. In this regard, Okamoto et
al. [ONY13] extensively review and complement previous studies on the
dimensionality of tactile perception. Sound has received some attention
as well in the context of material perception, e.g. by studying its influence
in the obtained dimensionality of the perceptual space spanned by a set
of material qualities, as reported by Martín et al. [MIWH15].

Beyond investigations on material appearance based on real samples
or images as stimuli, research has also focused on the perception of dig-
ital material representations. Widely applied material appearance mod-
els include bidirectional reflectance distribution functions (BRDFs) that
model material appearance depending on the viewing and illumination
conditions, as well as spatially varying BRDFs [NRH+77] and bidirec-
tional texture functions (BTFs) [DvG+99] that both additionally capture
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spatial variations of the material across the surface. Whereas SVBRDFs
allow a compact representation of the reflectance behavior in terms of a
parametric function, the computational burden of BTFs is balanced by
their capability to also capture effects of light exchange at fine structures
such as interreflections, self-occlusions and local subsurface scattering.
For a comprehensive discussion on the technical aspects regarding ma-
terial acquisition and representation, we refer to the survey provided by
Weinmann et al. [WLGK16]. The previous models have been subject of
perceptual studies in order to discover control spaces for concrete di-
mensions. Examples include the exploration of a perceptual space for
material gloss [WAKB09] and predictable editing of captured BRDF data
[SGM+16]. Moreover, a database of digitized materials has been success-
fully used for classification under complex real-world scenarios [WGK14].

Despite the increasing reproduction quality of digital material rep-
resentations, they are still not capable of accurately preserving all the
fine details that contribute to material appearance. Besides, the result-
ing gap between virtual materials and their corresponding physical sam-
ples may result in the miscommunication of certain qualities, especially
those which exhibit spatially-varying characteristics [MWH17]. For this
reason, many material catalogs and online fashion [HJ10] illustrate their
collections using pictures or even physical samples instead of their virtual
equivalents, regardless of their potential benefits.

6.2.2 Perceptual texture similarity.

The visual perception of textures has been intensively studied in the past
[LG04]. Measuring texture similarity is an essential aspect of texture per-
ception which has gained particular attention in recent years due to its
relevance for several potential applications. The importance of image
similarity metrics in different applications has been addressed by Zujovic
et al. [ZPN+15], where the authors state the differences between quanti-
tative and qualitative similarity. Quantitative metrics focus on the mono-
tonic relationship between measured and perceived similarity and have
implications mainly in the domain of image compression. In contrast, a
valid qualitative metric should distinguish between similar and dissimi-
lar images as required by wide-spread applications such as content-based
image retrieval and image understanding. The technique proposed in this
paper belongs to the second category of metrics and attempts to address
the fine-grained distance computation between similar textures as well as
to identify those which are not alike.

One of the first efforts in this direction has been presented by Rao
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and Lohse [RL96], who identified some relevant perceptual dimensions
for textures. Their research establishes an experimental methodology for
the acquisition of image similarity data from human annotations based
on a free-grouping task, which has been followed to a greater or lesser
extent in later studies [CHN+11, Hal12, LDC+15, RFS+98]. These in-
vestigations focus on the exploration of a low-dimensional PTS and its
relevant dimensions, while using different analysis techniques and tex-
ture databases composed either by natural images, procedural textures
or rendered heightmaps. In an investigation by Balas [Bal08], the same
experimental principle has been applied to reformulate texture similarity
as a categorization task in order to compare the efficiency of several para-
metric texture models. Alternatively, Gurnsey and Fleet [GF01] computed
a perceptual space for noisy artificial textures using an experimental de-
sign based on triads.

Certainly, the evaluation of texture similarity would profit from more
computational approaches. A comprehensive review of the existing struc-
tural texture similarity metrics that integrate insights from human per-
ception in order to grant point-by-point differences in textured regions is
provided by Pappas et al. [PN+13]. In contrast, many different compu-
tational texture features for image classification have demonstrated good
performance on texture databases (e.g. Gabor Filters [MM96], Local Bi-
nary Patterns [OPM02] and Filter Banks [VZ05]), although they do not
always correlate well with observations made by humans [CHN+11], es-
pecially for image pairs that appear dissimilar to the observers. Fur-
thermore, Dong et al. [DMC14] investigate the capability of a broad set
of computational features to estimate texture similarity in comparison
to perceptual rankings in a unified framework. Despite obtaining inter-
esting insights on which features correlate better with perceptual data,
none of the employed traits was able to ideally replicate human perfor-
mance. In addition, hand-crafted features and deep image features ex-
tracted with convolutional neural networks (CNN) were used to train re-
gression models against perceptual data from free-grouping experiments
[LQD+16]. Their results indicate that a combination of deep features casts
results that correlate slightly better with user ratings. Motivated by the
intuition that the traits that influence human perception of material sim-
ilarity correspond to visual ones, Schwartz and Nishino [SN15] address
material recognition by exploiting human perception of visual similar-
ity. In their research, ground-truth perceptual information is gathered
via crowdsourcing where small image patches from natural images are
shown to users who rate whether they look similar or not. The obtained
ratings are used for the representation of material distances in terms of
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average probabilities of similarity to the different categories. While the
pairwise similarities can be obtained in a confident manner, they do not
represent a direct measurement of distances on a continuous scale. With
our approach, we avoid directly querying annotators for texture similar-
ity and allow them to perform the rating on a consistent scale.

6.2.3 Practical acquisition of psychophysical data.
As indicated earlier, the assessment of texture similarity or distance gen-
erally involves a methodology which comprises the computation of a per-
ceptual similarity matrix (PSM) from a free-grouping experiment. However,
this procedure and the resulting perceptual similarities present several
points in question. As the dataset grows larger, the user task may be-
come rather impractical, since a considerable amount of textures has to
be compared simultaneously. Indeed, it has been demonstrated that the
election of a data collection method is critical in data positioning studies.
Concretely, methods which entail larger completion times significantly
affect the fatigue, boredom, missing values and the resulting perceptual
map [BW95]. Besides, this setup does not support collecting similarities
for unseen points and the derived PSM is very sparse, due to the shrink-
ing possibility of two samples being grouped together for increasing sizes
of the dataset.

Alternatively, Rogowitz et al. [RFS+98] propose two psychophysical
tasks. In the first, participants arrange the images on a table and measure
the physical distances between samples to obtain a dense similarity ma-
trix. In the second, a forced-choice task is presented to the users to select
the most similar image to a reference in random batches of eight samples
shown at a time, resulting in a rather sparse matrix. Although the ob-
tained PTSs resemble one another, the one from the forced-choice exper-
iment presents a less-informative circular structure. Liu et al. [LDC+15]
address the sparsity problem by dividing the database into smaller sub-
sets to be grouped individually and later merged into larger clusters,
until all groups are merged together. This procedure allows to assign
an extra confidence score to each action based on the visual similarity
between groups of textures. An additional progressive grouping assign-
ment has been proposed by Zujovic et al. [ZPN+15]. This method allows
the parallelization of the data collection process across different subjects
and minimizes the completion time, but still lacks a solution regarding
the sparsity of the similarity matrix and its extension to new points.
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Approach Task complexity Paralleliz-
able

Human
factors Extensible Matrix

sparsity
Data

quality

Free-grouping O(n log(n)) no 77 no 7 3

[Bal08, BW95, CHN+11, Hal12, RL96, RFS+98]
Progressive grouping [LDC+15, ZPN+15] O(n log(n)− nlog(m)) yes 3 no 7 3

Conditional ranking [BW95] O(n2) yes 7 no 3 3

Pairwise comparisons [BW95] O(n2) yes 33 yes 3 7

Triadic combinations [BW95, GF01] O(n3) yes 33 yes 3 -
Multiple forced-choice [RFS+98, SN15] O(kn) yes 3 no 7 7

Our method O(n2) yes 33 yes 3 3

3 Better performance 7 Worse performance - Not enough evidence m = size of the subset k = stimuli presented at a time

Table 6.1: Benefits and drawbacks of different data collection methods. This comparison is conducted considering the
complexity of evaluating the entire database, their ability to be parallelized across users or to be extended to unseen points,
the influence of fatigue and boredom (human factors) in potentially large databases, the sparsity of the derived matrix and
the general quality of the collected data based on the resulting PTS.
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Our proposed setup relies on pairwise texture similarities obtained
from micro-tasks performed by participants on a crowdsourcing system,
thus overcoming the previous issues regarding the parallelizability of the
task, the sparsity of the resulting matrix and the extension of the database
to unseen textures. Other data collection methods, like pairwise compar-
isons, may be similarly used for crowdsourcing. However, this technique
depends on subjective magnitude judgments which are highly prone to
bias [RFS+98]. Instead, we propose to explore the noise inherent to a JND
task as a mean to gather high-quality similarity assessments. A compar-
ison between the predominant methods to collect similarity data is pro-
vided in Table 6.1. The latter is given in terms of the complexity of eval-
uating the entire database, their capacity to be parallelized across users
or extended to new points, the influence of human factors (fatigue and
boredom) in experiments with potentially large databases, the sparsity of
the computed similarity matrix and the overall quality of the collected
data based on the derived PTS.

6.2.4 Example-based texture synthesis.

Beyond the analysis of texture perception and the features that contribute
to this task, several investigations approach the generation of synthetic
textures while trying to preserve the characteristics of given real-world
samples. This allows producing texture variations that depict the same
material as well as creating larger exemplars. While a comprehensive
survey on this research domain is provided by Wei et al. [WLKT09], which
covers a broad set of synthesis techniques from simple pixel-based to the
more complex patch-based synthesis [EL99, PS00], the recently emerging
developments in deep learning can also be utilized for texture synthesis
[GEB15].

Other than producing different variations or bigger exemplars from
example images, texture synthesis can be also applied to generate a tran-
sition region between two source images, such that inconsistencies in
color, texture and structure change gradually from one source to the
other. In this regard, Ruiters et al. [RSK10] combined patch-based and sta-
tistical approaches to produce high-quality interpolated texture patches
between two sources, however, at rather long computation times of sev-
eral hours. Furthermore, their method requires a certain degree of user
input, as the synthesis is guided by manually-generated feature maps.
Later, Darabi et al. [DSB+12] developed a technique named Image Meld-
ing, which combines the potential of patch-based and gradient-domain
approaches. This procedure builds on a modified version of the Patch-
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Match algorithm [BSGA10] in order to compute nearest neighbor patch
correspondences, including additional key optimizations to successfully
interpolate between textures with rather different structures, without sac-
rificing texture sharpness during the process. The procedure is fully au-
tomatic and produces convincing sequences with an acceptable time per-
formance (in the order of minutes). More recently, deep learning has been
applied for texture interpolation [GEB16, UGP+17]. However, the inter-
polations are performed only for relatively small image patches and the
results are noisy due to artifacts produced by the neural networks. In or-
der to generate the stimuli for our work, we make use of the Image Meld-
ing method [DSB+12] (IM) mainly due to its excellent trade-off between
time performance and visual quality. Nevertheless, our methodology for
computing texture similarities is not constrained to the utilization of one
particular synthesis algorithm.

6.3 Stimuli

Before providing detailed discussion regarding our novel approach for
the formulation of a perceptual similarity measure in the next section, we
introduce the involved image stimuli obtained from selecting a suitable
texture dataset and a few pre-processing operations. The diagram for the
generation of the stimuli and its embedding into the overall methodology
is illustrated in Figure 6.2.

6.3.1 Selection of texture database

For the present study, we focused on fabric materials, since they exhibit
a rich and diverse range of appearances, have been largely used in previ-
ous investigations and are of great importance in industrial applications.
Besides, the boom of the e-commerce has been particularly significant in
the world of fashion, making these textile materials a perfect research
candidate with direct applications of great relevance. In order to gather
such a collection of respective fabric textures, we inspected existing mate-
rial datasets, which were extensively reviewed in the survey provided by
Hossain and Serikawa [HS13]. We then discarded collections of textures
captured under uncontrolled lighting or viewing conditions (e.g. Brodatz
[Bro66], MeasTex [Mea97], UMD database [XJF09]), as it has been demon-
strated that changes in illumination drastically affect the appearance of
textures and materials [Cha94], and would significantly bias the users’
judgments. Likewise, databases in which samples were not annotated or
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Figure 6.2: Overview of our approach for the derivation of a perceptual texture
similarity metric: In an initial step, stimuli are generated by cropping and resyn-
thesizing the images and removing the color information in order to focus on the
textural characteristics. In addition to obtaining a set of single gray-scale images
(I), continuous interpolation strips between pairs of textures are synthesized.
As the computed sequences are only linear w.r.t. computational features, we per-
form an additional perceptual linearization by asking subjects to select the most
linear interpolation among a set obtained via different power functions. From the
resulting linearized strips (Tlinear), interpolants are synthesized by sampling at
pre-defined locations along the sequence. By letting people locate the generated
interpolants on the correspondent sequence and analyzing the variance in the
obtained ratings, we derive a distance matrix DI containing the perceptual dis-
tances between pairs of textures (Ii, Ij). Multidimensional scaling (MDS) was
then used to compute a perceptual space of textures (PTS). Finally, to evaluate
the correspondence between the dimensions of our PTS and the textural features,
we involved user ratings regarding textural properties for I such as roughness,
contrast or randomness.

which contained too few fabric-like images (e.g. CUReT [DvG+99], Pho-
Tex [Pho18], PerTex [Hal12]) were equally disregarded.

As a result, in the scope of our investigation we make use of a subset of
textures from the Amsterdam Library of Textures (ALOT) database [UA09],
which fulfills the mentioned prerequisites. This collection consists of 250
annotated materials that have been captured under six different illumi-
nation conditions, four viewpoints and four camera orientations plus one
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additional image for each camera at a reddish spectrum. Therefore, a total
number of 100 images is captured per material sample. From the original
annotations, we identified 24 materials coming from fabric/textile sam-
ples and selected one single color image per material, taken with a camera
oriented perpendicular to the sample surface (condition c1 in ALOT) un-
der illumination by all hemi-spherically distributed light sources involved
in the setup (condition l8 in ALOT). Furthermore, we expanded this se-
lection with 6 supplementary samples from diverse material categories
(paper, man-made, foliage, food), in order to study their behavior in the
derived space of textures. This subset, at the lowest resolution provided
by the authors (384× 256 pixels) for presentation convenience, served as
the initial input for our experiments.

6.3.2 Stimuli generation

Our experimental studies rely on measuring the accuracy with which
users are able to locate intermediate patches in the interpolated sequence
between two samples. For the purpose of generating these sequences,
we exploited the Image Melding (IM) algorithm [DSB+12], which is a
standard texture interpolation technique for the generation of interpo-
lated sequences between two given textures1. It is to be expected that a
higher diversity in spatial structure between the images would lead to
a wider search space for the PatchMatch method integrated in IM and,
consequently, the interpolation process would produce less deterministic
and more inconsistent results. For this reason, we reduced the structural
variability of the initial images by using IM to re-synthesize a cropped,
normalized patch (128× 128 pixels) from the original image into a larger
version with a resolution of 256× 256 pixels. Additionally, some of the
cropped patches were manually rotated to align dominant structures in
the respective textures accordingly, in an initial step to later facilitate the
interpolation process. The steps for the re-synthesis process are illus-
trated in Figure 6.2. Like most of the synthesis algorithms, the com-
putational performance and visual quality of IM depends on a plethora
of involved parameters that have to be tuned up manually beforehand,
to achieve the best possible results. To allow a fair comparison of the
resulting images, we include the most important IM parameter values
employed to generate our stimuli in the middle column from Table 6.2.
For further information on this set of parameters, we refer the reader to

1Source code has been published by the authors at http://www.ece.ucsb.edu/
~psen/melding
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Figure 6.3: The collection of textures utilized in our experiments (I), after sev-
eral processing steps (normalization, cropping, re-synthesis and color-removal).
Non-fabric materials gathered to diversify the dataset are presented in the lower
row. The superimposed numbers correspond to indexes assigned originally to the
materials in the ALOT database [UA09].

the original publication [DSB+12].
Color has been documented to be one of the most salient visual cues

when judging image similarity [RFS+98]. In general, separate subjects
tend to differently balance color composition and structure when assess-
ing texture similarity and, in consequence, more effective metrics can be
developed when color and structure are decoupled [ZPN+15]. Given that
this study particularly focuses on the structural similarities between tex-
tures, we followed the previous insight and performed the entirety of our
experiments in luminance-only images, in accordance with related inves-
tigations [Bal08, CHN+11, LDC+15, RL96, ZPN+15]. Thereby, we ensure
that the obtained perceptual distances are driven by textural features in-
stead of merely color. However, for the stimuli generation step itself, we
used full-color images as the input to the synthesis algorithm.

Figure 6.3 displays the complete subset of 30 textures selected from
the ALOT database as obtained after the processing steps (normalization,
cropping, re-synthesis and color-removal). Using this image collection I ,
we employed again the IM algorithm to compute all possible interpola-
tions Tij ∈ T between image pairs (Ii, Ij) with Ii, Ij ∈ I and i 6= j. The
method is capable of searching for similar patches in both input images
to produce a sequence that renders a strip presenting a smooth transition
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Parameter Re-synthesis Interpolation

Patch size (in pixels) 10 10
Gradient weight 0.1 2
Random search off off
Uniform scale (range) [0.9, 1.2] [0.9, 1.3]
Relative scale (range) [0.9, 1.1] [0.9, 1.1]
Rotation (range) [−π/4, π/4] [−π/4, π/4]
Normalized weight off off
Interpolate gradients – on

Table 6.2: The main parameter values from the Image Melding algorithm for the
re-synthesis and the interpolation steps, respectively.

between the original textures. However, this transition is computed based
on the linear interpolation of computational features which does not cor-
respond to a perceptually linear interpolation required for the estimation
of a perceptual distance metric. This means that the interpolations do
not represent a smooth, pleasant, evenly distributed transition between
two textures to human observers (see Figure 6.7). The latter can partic-
ularly be observed for exemplars with features of different sizes or large
variations in the magnitudes of the vertical and horizontal image gradi-
ents, in which IM relies in order to ensure the sharpness of the final se-
quences. Consequently, the interpolations do not represent a quantitative
measurement scale and cannot be directly used as stimuli for the deriva-
tion of a perceptual similarity measure. Instead, an additional perceptual
linearization of these interpolations is required.

6.4 Measuring perceptual similarity

In this section, we provide the details regarding the derivation of a novel
perceptual similarity measure based on the concept of just-noticeable dif-
ferences (JND). As illustrated in Figure 6.2, the interpolation stimuli gen-
erated according to the descriptions in the previous section have to be
perceptually linearized. Then, the analysis of the user variance in the
localization of patches in-between the interpolation sequences allows the
derivation of a matrix DI that contains the perceptual distances between
pairs of textures (Ii, Ij) in the dataset. Finally, we also examine human rat-
ings regarding concrete texture features to later evaluate the correspon-
dence between such ratings and the dimensions of the derived PTS. In
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the following, we describe these steps in more detail.

6.4.1 Perceptual linearization of texture interpolation
Originally, IM requires the patches in the interpolated image Tij to be
similar to both source images Ii and Ij, where the relative contribution of
each source is modulated by a linear numerical interpolation. In order
to achieve a more evenly distributed transition between the sources in
accordance with human perception, we propose to guide the synthesis
process with the following bijective power function instead:

g(x) =

{
x(α+1) if α ≥ 0
1− (1− x)(1−α) else

, (6.1)

In order to determine the values of α that produce perceptually linear
transitions, we designed a preliminary psychophysical experiment to com-
pute this mapping for each texture combination. To that end, we gener-
ated a set of interpolated stimuli by fixing the values of α to α ∈ {−10,−5,
−2.5,−1,−0.5,−0.25,−0.1, 0, 0.1, 0.25, 0.5, 1, 2.5, 5, 10}, resulting in a total
of 435× 15 = 6,525 image strips Tij(α) ∈ Text, each having a resolution of
1,152× 256 pixels. The values of the synthesis parameters were kept dur-
ing all calculations, yet they differ slightly from those in the re-synthesis
step (see Table 6.2).

To obtain the user judgments, we developed a custom website with
an interface in which all the 15 interpolations for a concrete Tij were pre-
sented to the users (one-at-a-time), together with a slider widget and text
with detailed instructions (see Figure 6.4). By moving the slider, the user
was able to select the value of α for a concrete texture pair, and ultimately
control which particular stimulus Tij(α) was displayed on the screen at a
certain moment. The instructions encouraged the users to interact with
this widget in order to “find the best slider position where the transition be-
comes as smooth (pleasant, even, linear) as possible”. Each of these elections
were considered to be a psychophysical assignment or task.

Then, we arranged a psychophysical pipeline in which the study was
divided into several micro-batches consisting of 20 assignments each,
where half of them consisted of the same stimuli with the interpolated
strip reversed horizontally. Besides, 5 additional assignments were in-
cluded for training purposes and to ensure the validity of the partici-
pants’ answers (see paragraph on data verification). As crowdsourcing
using Amazon Mechanical Turk (AMT) has been demonstrated to be a
convenient practice to collect perceptual data, we integrated our pipeline
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into AMT, and every individual micro-batch was presented to groups of
between 12 and 15 Amazon workers. In total, 643 workers participated in
this initial experiment. In the following, the pre-processing and verifica-
tion of the answers given by the participants will be explained.

Data verification. During early trials with AMT, we observed that an
important amount of workers did not try to perform the task correctly
or did not understand the instructions adequately. As reported by earlier
investigations in the vision community, these sort of problems are not
unfamiliar to crowdsourcing platforms due to the to the limited amount
of control over the potential subjects. For instance, Bell et al. [BBS14]
devoted quite some effort to automatically identify and discard 31% of
the workers on a brightness localization task. In a similar manner, we
incorporated several tools into our pipeline to facilitate the realization
of the assignments, automatically detect ineligible workers and, in short,
ensure the quality of the resulting data. These tools, are listed next:

1. A training step prior to the actual experimental procedure. In this
step, the same interface with more detailed instructions and con-
venient feedback indicating the correctness of the answer was pre-
sented to help the realization of the two initial assignments. Al-
though the precise α-value for this stimuli was unknown, a loose
confidence interval around a plausible answer was established.
These training assignments were kept constant for all the batches.

2. A testing step for the three assignments subsequent to the training.
These assignments were also fixed for all the batches. Again, a loose
confidence interval around a reasonable answer was set. In this case,
however, we rejected the workers whose selection of α lied outside
that interval. The discarded workers were free to try the task again
from the beginning.

3. Examination of the worker’s Root Mean Square (RMS) error be-
tween the ratings for the original and horizontally-reversed images.
If the RMS exhibited is larger than a generous threshold, the
worker’s results were excluded from further analysis.

4. Inspection of the mean elapsed time per worker and assignment.
The answers from workers who present significantly lower values
that the overall mean time in the same batch were equally removed
from the posterior analysis.

5. Analysis of the inter-participant correlation coefficients. Workers
whose coefficient is significantly lower than the overall mean in the
same batch were considered to be outliers, and their results were
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Figure 6.4: Experimental interface for the perceptual linearization of texture
interpolations. The users were asked to find the best slider position where the
transition becomes as smooth, linear and evenly distributed as possible.

Figure 6.5: Experimental interface for the formulation of perceptual similarity
based on JND. The users had to localize the region in the interpolation strip
shown above that best corresponds to the image below.

Figure 6.6: Experimental interface for the perception of texture features. The
users rated a set of texture qualities on a bipolar scale.
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excluded from further analysis.
Indeed, we observed a high degree of correlation between the val-

ues for the RMS between similar stimuli, mean elapsed time and inter-
participant correlation. In other words, the subjects that did not perform
the experiment adequately, tended to exhibit low average elapsed time,
high RMS error and low inter-participant correlation values. This fact
greatly facilitated the automatic detection and removal of ratings com-
ing from ineligible workers. In general, we preferred discarding doubtful
candidates and collecting additional ratings and we set the thresholds
accordingly, in favor of the efficiency and reliability of the final data. Al-
together, the ratings provided by 88 workers were not considered for fur-
ther analysis, implying that we discarded 13.68% of the collected data, of
which roughly a third were related to workers that passed the prelimi-
nary tests and then submit default answers (i.e. went through the stimuli
leaving the slider in the default position). This user practice was also
reported by Bell et al. [BBS14].

From the remaining data, we obtained a total of 555 × 20 = 11,100
answers, 25.51 on average per texture combination Tij. The final texture
synthesis will then be guided by the numerical interpolation resulting
from g(x) where the value of α is the average of the users’ judgments, for
each Tij ∈ Text. A comparison between the newly generated, perceptually
linear interpolations and the original ones is illustrated in Figure 6.7 for
two example combinations. As it can be observed, the new strips present
a more evenly-distributed transition between the two material sources. In
the scope of our evaluation, we demonstrate that these transitions do not
only appear visually linear, but also represent an almost accurate interval
scale which is well-suited for perceptual measurements. Therefore, we
can use the generated strips as input stimuli for our main experimental
setup as described in the following section.

6.4.2 Formulation of perceptual similarity based on just-
noticeable differences

The main purpose of this investigation is the computation of perceptual
similarities between texture pairs while mitigating some of the shortcom-
ings from analogous methods. These points in question are given by the
complexity, parallelizability and time duration of the perceptual assign-
ment, the sparsity of the PSM and its extension to unseen samples. With
this in mind, we lean on the concept of JND, which has been extensively
used in the domain of experimental psychology. The fundamental princi-
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Figure 6.7: Two example interpolated strips (I109, I48) on the left and (I205, I67)
on the right, displaying the original transitions (top) and the linearized tran-
sitions (bottom). The adjacent plots depict the numerical interpolation guiding
the synthesis, f (x) (original) and g(x) (linearized). Note how the in the images
above the texture sources do not contribute equally to the final image, while the
images below present a smooth and evenly distributed contribution to the final
interpolation.
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Figure 6.8: An example reference transition between two textures (I79, I182) uti-
lized in the main experimental setup (top row) as well as the intermediate inter-
polating patches to be located by the user in the reference image (bottom row).

ple is the measurement of how much we need to change a stimulus along
a given dimension before people notice the change [CW11]. To exploit
this notion with regard to our investigation, we analyze the accuracy
with which users are able to locate intermediate patches in a linearly-
changing continuum, obtained from the preceding perceptual lineariza-
tion of interpolated texture sequences. The underlying intuition is that
users’ precision when performing this task correlates with the pairwise
texture similarity. More concretely, if the user responses for a particu-
lar pair show a low accuracy, the textures at the end of the gradients
are more likely to be perceptually similar, as the interpolants cannot be
distinguished. Contrarily, a high accuracy would indicate that the tex-
tures are perceived more dissimilar, as the intermediate patches can be
located precisely. This way, we avoid direct ratings of the similarity or
dissimilarity between textures, which is an ill-defined task that depends
on subjective user characteristics.

134



Chapter 6. Measuring Perceptual Similarity via Texture Interpolation

While the preceding perceptual linearization allows us to produce vi-
sually smooth transitions between pairs of material textures, we addition-
ally generated intermediate interpolating patches (resolution of 256× 256
pixels) by synthesizing fixed intervals of the interpolation
g(x) where x ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. An exemplar of
these patches Tij(x) for a concrete texture pair (Ii, Ij) together with the
corresponding linearized strip Tij ∈ Tlinear is depicted in Figure 6.8.

With this experimental setup, we are able to parallelize the similarity
judgment task into a collection of micro-batches to be integrated in hu-
man intelligence platforms (AMT in our case), mitigating possible traces
of tiredness while performing the exercise. Each of the batches consisted
of 40 assignments (including 6 repetitions to test user consistency) in
which a randomized reference image (the interpolation sequence) was
displayed, together with one of the corresponding input textures (an in-
termediate patch), whose value for x was also randomized. Furthermore,
we allowed the reference images to be shown horizontally reversed dur-
ing the assignments. Through additional explanatory instructions, the
workers were asked to “locate the region within the interpolation sequence
shown above that best corresponds to the image shown below”. Figure 6.5 shows
the experimental interface for a concrete stimuli assortment.

A total of 1,183 workers participated in this experiment. Similarly to
the previous study, we incorporated several mechanisms in our pipeline
to facilitate the completion of the exercise and, ultimately, to automati-
cally discard ineligible workers. In this occasion however, we were not
able to use the inter-participant correlation, as the stimuli presented to
the workers were fully randomized. With this process, we detected 58
unsuitable workers whose results were not considered in the posterior
analysis, which corresponds to discarding only 4.9% of the participants.
From the rest of the workers, we gathered 1,183× 40 = 47,320 user clicks,
108.78 on average per texture combination. For each Tij, the uncertainty
of the participants was measured by computing the Root Mean Square
(RMS) of the differences between the user clicks and the centroids cal-
culated for each set of clicks Cij(x), where x is fixed to the values given
earlier. Figure 6.9 exemplifies this calculation for two texture pairs with
large and small perceived similarities respectively. The normalized RMS
values shaped our perceptual similarity matrix SI , where sij describes the
perceived similarity between textures Ii and Ij.

Moreover, we introduced a user satisfaction survey at the end of the
study that requested participants to rate, on a Likert scale from 1 to 7,
whether the task was understandable, whether it was easy to accomplish,
if they enjoyed the realization of the experiment and whether they con-
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Figure 6.9: Uncertainty of the users represented by the RMSE across the mea-
surement scale for two example pairs which exhibit low (I95, I209) and large
(I95, I207) perceived distance. The error bars correspond to the RMSE for a par-
ticular x value, while the vertical lines coincide with the centroids. The respective
histograms of the clicks are shown to the right.

sider the payment to be fair. The average answers to this questionnaire
showed that the exercise was well understood (6.27), relatively easy to ac-
complish (5.54), enjoyable (5.66) and also adequately paid (4.48). The vast
majority of positive comments left by the workers confirmed the good re-
ception of our experimental setup and did not support possible evidences
of disinterest, fatigue or similar issues.

From the derived similarity matrix and its corresponding distance ma-
trix DI = 1/SI , we can compute a low-dimensional texture space by
applying dimensionality reduction techniques such as multidimensional
scaling (MDS). To also evaluate the degree of correlation between the
main dimensions of this texture space with certain textural features, we
perform a respective analysis following the descriptions in the next sec-
tion.

6.4.3 Perception of texture features

Whereas the thorough analysis of perceptual texture features is a chal-
lenging problem itself that is beyond of the scope of our study, we ana-
lyze the plausibility of our approach by comparing whether the dimen-
sions of the texture space derived from our similarity matrix correlate
to well-known textural features used in previous investigations. For this
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purpose, we collected user ratings regarding a group of perceptual fea-
ture scales for each of the texture samples in I . We employed the set of
12 perceptual qualities defined by Rao and Lohse [RL96] (contrast, repe-
tition, granularity, randomness, roughness, feature density, directionality,
structural complexity, coarseness, regularity, local orientation, and unifor-
mity), which were rated using a 9-point Likert scale. This bipolar method
measures the positive or negative response to a particular quality by la-
beling the two ends of the scale (e.g. low contrast (1) and high contrast
(9)). Thus, 24 opposite feature adjectives were given to characterize our
database of textures.

Again, we leaned on AMT to gather 93 workers in order to perform
this psychophysical experiment whose corresponding web interface is de-
picted in Figure 6.6. At the same time, this study was divided into three
separated sub-batches, each of them having a group of 31 workers rating
this set of features for 10 particular textures. From the user responses, a
feature matrix FI was constructed by averaging these ratings, where fij
represents the j-th perceptual feature for the texture i.

6.5 Results

In this section, we firstly evaluate our perceptual similarity metric based
on the distribution of the user clicks obtained for the task of locating
texture patches along the corresponding texture sequences, paying par-
ticular attention to the level of measurement or scale of measure [Ste46]. This
is followed by the analysis of the perceptual texture space derived from
the subjective data.

6.5.1 Evaluation of perceptual similarity metric

To validate our metric, we analyze the distribution of the ratings obtained
from the main experimental study. This includes the validation of the hy-
pothesis that the derived perceptual similarity correlates with larger vari-
ances in the user ratings (as described before), the analysis of whether the
texture similarity measure shows approximated interval scale behavior as
well as the evaluation of the distance metric itself.

In order to verify the presumed correlation of perceptual similarity
with the user variances, we inspected the distributions of the positions in
the horizontal axis selected by the participants when locating intermedi-
ate texture patches, exemplified in Figure 6.9 for two sample interpola-
tions. Indeed, the variances in the user judgments were lower for visu-
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ally different textures e.g. (I95, I207), which indicates that the interpolants
could be located more accurately. In contrast, the interpolants were less
reliably located for similar materials pairs e.g. (I95, I209), as the visual
differences at neighboring locations along the sequence were hardly no-
ticeable.

By relying on perceptually linear interpolation stimuli, the user per-
formance in locating certain patches along these interpolation strips is
expected to follow measurement scale characteristics. Indeed, the level
of measurement [Ste46] for a concrete pair is intimately related to the un-
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certainty with which users perform the task, as it can be observed when
inspecting the positions of the centroids in Figure 6.9. For small overall
RMSE values, the texture sequence defines an almost accurate interval-
like scale, whereas for large RMSE values this scale becomes less precise.

Assuming that the precision of the linearized images in representing
an interval scale is associated with the accuracy of approximating the
user ratings with a linear function, we fitted g(x) to the data points col-
lected for each Tij ∈ Tlinear. Here, a value of α ≈ 0 would result in an
almost-linear function g(x) ≈ x. In general, the obtained results indicate
that the user responses are well approximated by functions close to linear,
since nearly all g(x) present α-values that approach zero (see Figure 6.10),
with an average of 0.21 across Tlinear, hence confirming our expectations.
Figure 6.11 shows the user clicks and fitted functions for the two texture
sequences shown in Figure 6.7. As illustrated by these plots, fitting g(x)
to the data points produces almost-linear functions. In addition, a high
coefficient of determination (R2) when fitting f (x) = x to the user ratings
would indicate that the variability in the data is appropriately explained
by a linear model. In fact, (R2) shows acceptable values, i.e. an average of
R2 = 0.724 is obtained across all Tij. Both indicators support the approxi-
mation of an interval scale behavior for most of the texture combinations.

Furthermore, we examined the average RMSE across all pairs and
users, separated by the x values of the intermediate patches (see Fig-
ure 6.10). According to the figure, the errors are stable across the values
of x in the transition, confirming our belief that the subjects’ uncertainty
is not affected along the scale. The robustness of the measuring scale
was further evaluated by comparing the matrices obtained when taking
into account either the user data coming from original stimuli or the data
from horizontally-reversed stimuli only. Calculating the RMSE between
these two matrices produces a relatively low error value (0.138), implying
that the experimental results are not significantly affected by reversing
the measurement scale.

Finally, we also analyzed whether the perceptual metric derived from
our studies satisfies the requirements of a metric. In fact, the obtained
distance matrix DI as shown in Figure 6.12, follows the conditions of
non-negativity (di,j > 0 ∀ i 6= j) and symmetry (di,j = dj,i). Besides,
the triangle inequality dij + djk ≥ dik is satisfied for 99.68% of the triplets
i, j, k. However, it does not fulfill the condition of identity of indiscernibles
(di,j = 0 ∀ i = j), since our method would yield distances di,j = ε where
ε > 0 for identical textures. To solve this limitation, we simply set the
elements in the diagonal to zero.
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Figure 6.12: Normalized dissimilarity matrix DI resulting from the user judg-
ments in the perceptual similarity experiment. The red lines separate the samples
obtained from non-fabric samples.

6.5.2 Analysis of the perceptual texture space

Subspace transformation techniques have been often employed to reveal
the underlying dimensions of datasets [GF01, LDC+15, LQD+16, RL96,
RFS+98, WAKB09]. Although linear approaches like principal component
analysis (PCA) and classical multidimensional scaling (MDS) have been
widely used in early texture perception studies, they lack the capability
to unveil the non-linear structures that are very likely to be hidden in
the data coming from user experiments. In contrast, isometric feature
mapping (Isomap) [TdSL00] is a non-linear method which computes the
distance between points based on a weighed graph, which makes it a
powerful technique when the PSM is sparse. Since we chose to collect
user ratings for all possible pairs of textures in I , we obtain a dense
distance matrix DI by design. Hence, we opted for applying non-classical
non-metric MDS to DI , which attempts to estimate a subdimensional
embedding for the data while maintaining the ranks of the dissimilarities.

140



Chapter 6. Measuring Perceptual Similarity via Texture Interpolation

1 2 3 4 5 6 7 8 9 10
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

MDS Dimensionality

K
ru

sk
al

's
 n

or
m

al
iz

ed
 s

tr
es

s

Figure 6.13: Kruskal’s normalized stress for dimensions one to ten. Although
there is no obvious choice for the intrinsic dimensionality, three dimensions seem
to be a reasonable choice.

Firstly, in order to analyze the intrinsic dimensionality of the under-
lying PTS, we computed Kruskal’s normalized stress measure [Kru64]
for a number of dimensions up to ten (see Figure 6.13). The number
of dimensions can be then estimated by looking at the elbow where the
graph’s strong slope ceases and the remaining stress values even out.
In our case, there is no obvious decision as this elbow is not evident in
the plot, although three dimensions seemed a reasonable and easy-to-
visualize choice to represent the dimensionality of the data, with a fair
Kruskal’s stress value (0.19).

Figure 6.14 presents the output of applying non-classical non-metric
MDS to our data in the XY, XZ and YZ plane, where X, Y and Z rep-
resent the three main dimensions of the perceptual space respectively.
The distribution of the projected samples along the axes in the PTS indi-
cates the similarity or dissimilarity of the textures according to our metric
respectively. As it can be observed, the general distinctness between sam-
ples is well-preserved by our model, as textures that have comparable
appearances under visual inspection lie nearby in the computed percep-
tual space, e.g. (I180, I181), (I95, I183), (I61, I106) or (I209, I215). On the other
hand, pairs with large visual differences such as (I61, I67), (I106, I177) or
(I85, I207) are situated in opposite sides of the axes that conform the main
dimensions in the PTS. This observation is in accordance with the initial
hypothesis regarding the close relationship between user variance and
perceived similarity between textures.

When considering the non-fabric texture samples, it becomes apparent
that most of them have relatively large perceptual distance values with
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respect to the majority of the remaining fabric textures. As a consequence,
those whose structure is largely dissimilar to the rest of the samples (i.e.
I62, I75, I85, I110) are located in outer regions of the sub-dimensional space,
while the samples I28 and I57 are situated closer to the bulk of the sample
points. Even though the distinctness between the fabric and non-fabric
materials is preserved in the PTS to a great extent, our metric did not
fully capture some obvious texture differences of certain pairs such as
(I75, I177), (I28, I57) or (I110, I67). A possible reason for this behavior may
be the fact that, despite their visual differences, these pairs of textures
share some characteristics (e.g. scale of distinctive features or distribution
of the gradients) that grant them a comparable synthesizeability in the
IM algorithm.

Moreover, we investigated a possible interpretation for the perceptual
dimensions based on the attributes in FI . For this purpose, we followed
previous investigations and calculated the correlation coefficient between
the average feature ratings for each texture sample (the columns in FI )
and their respective coordinates in the three-dimensional space. These
coefficients are incorporated in Figure 6.14, and are depicted with greater
detail in Figure 6.15. As it can be observed, each dimension seems to cor-
respond to a combination of features, where Dimension #1 shows a strong
correlation with the structural complexity, feature density, contrast and
granularity. Dimension #2 corresponds to the qualities describing ran-
domness, roughness and coarseness. Lastly, Dimension #3 is dominated
by the randomness, uniformity, repetitiveness, directionality, local ori-
entation and regularity. Interestingly, despite the fact that the stimuli
tested in our experiments differ, the arrangement of salient features in
each dimension resemble those obtained in similar earlier investigations
[LDC+15, RL96], with variations in their weight and location in the PTS.

6.6 Discussion

In this paper, a novel formulation for measuring the mutual perceptual
similarity or distance between textures is presented, which builds upon
the concept of just-noticeable differences and patch-based texture syn-
thesis techniques. Thereby, we exploit the hypothesis that, given a syn-
thesized interpolated sequence between two images, the confidence with
which subjects are able to locate intermediate specimens in the continuum
will correlate with the perceived similarity of the corresponding textures.
To successfully apply this insight, we proposed a perceptual linearization
of the texture interpolation results that otherwise only represent a linear
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Figure 6.14: The three first dimensions resulting from applying non-classical,
non-metric MDS to the dissimilarity matrix DI . The blue points represent the
projected positions of the fabric material samples, while the red points illustrate
the non-fabric subset. The correlation coefficients between (FI ) and the main
perceptual dimensions are represented with green arrows.
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Figure 6.15: Correlation coefficients between the feature ratings (FI ) and the
three main dimensions of the PTS. The larger values for each dimension are
highlighted in red.

transition in the space of the used computational features. This percep-
tual linearization produces a consistent quantitative scale. To validate
our approach, we have provided evidence that our methodology yields
a meaningful, low-dimensional and perceptually uniform texture space,
whose underlying interpretation of the main dimensions with respect to
different textural features is in line with earlier research.

In order to generate the interpolated image strips, we made use of
a fully automatic, state-of-the-art texture synthesis algorithm (i.e. Im-
age Melding [DSB+12]) which represented a great compromise between
time performance and visual quality. However, this algorithm is less re-
liable when the structural content of the textures is quite diverse, and
consequently, the outcome cannot be used as a scale to measure texture
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similarity. The perceptual linearization step resolves the problem to a
large extent. The soundness of the scale is further confirmed by fitting
an almost-linear function to the user ratings and additionally by observ-
ing the average RMSE for all pairwise combinations. However, even after
the linearization process, some texture pairs still present relatively abrupt
transitions, suggesting that the interpolation between rather dissimilar
samples may not always be meaningful. On the other hand, we also
observed a reduced number combinations between visually different tex-
tures that however shared comparable feature size and produced smooth
transitions. This resulted in mistakenly predicting small perceived dis-
tances for otherwise rather dissimilar textures. More recent develop-
ments in texture synthesis have employed neural networks trained for
object recognition in order to transfer styles between natural or artistic
images [GEB16], as well as to synthesize interpolated images by means
of a simple linear interpolation of deep convolutional features [UGP+17].
Still, these methods are not optimized for preserving the details in the
appearance of material textures and the derived images are still noisy,
containing artifacts produced by the neural networks.

By and large, our methodology intends to alleviate some of the obsta-
cles posed by earlier approaches when gathering image/texture similar-
ity data, namely the parallelizability and duration of the perceptual task
itself, the extensibility to new sample points and the sparsity of the result-
ing matrix. In order to additionally account for the quality of the derived
perceptual distances we exploited the noise inherent to such measure-
ments into our benefit, instead of directly asking subjects for similarity
measurements. As one of our goals is to study fine-grained similarities
between fabric textures, we opted for collecting all the possible pairwise
similarities in our database. With this design, the complexity of our solu-
tion quickly increases with the size of the database (O(n2)), as adding a
new material k involves conducting an initial linearization plus additional
experiments for all possible combinations between k and the existing data
set. Still, our proposed metric can be equally utilized to collect similarities
for an incomplete set of pairs, hence resulting in a sparse distance matrix.
In this case, alternative dimensionality reduction techniques which can
deal with sparsity, like Isomap [TdSL00] or the MDS methodology pro-
posed by Wills et al. [WAKB09] would have to be employed.

Admittedly, our experimental pipeline could largely benefit from the
utilization of regression techniques combined with deep image features
from neural networks, in order to automatically compute both the lin-
earization parameter (α) and the perceptual distances (dij ∈ DI ) between
pairs of textures. Nonetheless, for this automated method to be tested
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with a minimum reliability, a far larger database of material samples
would need to be collected, for these methods require large amounts of
training data to make accurate predictions. Thus, a future avenue of re-
search may include the acquisition of a larger, meaningful database of
material images from retailing and fashion stores, captured under con-
trolled lighting and viewing conditions. Perceptual distances using our
methodology would be then computed and used as the ground-truth for
the training of a predictive model based on deep image features in or-
der to learn the perceived texture similarity, in accordance with the ap-
proach by Lou et al. [LQD+16]. The examination of the potential results
would indicate to what extent fine-grained perceptual distances can be
predicted by dense computational features. Finally, the arrangement of
the data points in Figure 6.11 (left) has a noticeable sigmoidal (s-shaped)
residual. Higher-order linearization could be incorporated in following
iterations of our methodology. This would probably produce more uni-
form transitions between the original exemplars and hence more reliable
measurements.
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CHAPTER 7

Summary, Discussion and Future
Work

Digital materials are present in a wide range of every-day situations.
However, despite the extraordinary material reproduction quality
achieved by the current technology, this is still distant from accurate
photo-realism. By investigating how humans perceive material appear-
ance in digital environments we can narrow the perceptual gap between
real materials and their digital counterparts.

This final chapter begins presenting an outlook of the contributions
provided in the scope of this thesis (Section 7.1). This is followed by
a thorough discussion of the results introduced in the previous chap-
ters (Section 7.2), including the possible limitations of the proposed tech-
niques and a landscape of potential future research concerning the given
topics. To conclude, several final remarks are given (Section 7.3).

7.1 Summary and contributions

This manuscript presents several investigations relevant to the field of
digital material appearance and its perception. Such topics together with
a summary of the respective contributions are listed in the following lines:

1. We explored the interplay between different sensing modalities (vi-
sion and hearing) in the perception of material qualities (Chapter 3).
As the main finding, we discovered that the tapping and rubbing
sounds employed are able to facilitate the estimation of tactile ma-
terial qualities and that such estimation process could be distorted
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by the modification of the audio cues.

2. We then studied the effects of a material sonification system for tac-
tile devices in the assessment of physical and emotional material
qualities (Chapter 4). For this investigation we utilized audio feed-
back produced only when rubbing the material sample with the fin-
gertip. Despite not affecting the overall perception of the material,
we determine that the sound cues employed and consequently the
proposed sonification system are not able to complement the visual
information. According to this insights, relevant research directions
in interactive material sonification are given.

3. Later, we examined the ability of state-of-the-art digital material
models in transmitting material appearance in comparison to simple
photographs and real-world materials (Chapter 5). Our major find-
ing is the verification of an existing gap between digitized materials
and their physical counterparts. Furthermore, we hypothesized and
confirmed that the studied appearance model suffers from a signifi-
cant loss of information at grazing angles, where geometric cues are
not adequately represented.

4. Lastly, one of the shortcomings of psychophysical studies in ma-
terial perception is the lack of suitable metrics to quantify certain
aspects of material appearance. For this reason, we considered the
investigation of perceptually plausible metrics for materials. To sim-
plify the large dimensionality inherent to such problem, we focused
our investigation on textures obtained from real material samples
and developed a methodology to compute the perceived pairwise
similarity between textures (Chapter 6). Our technique is able to
mitigate some of the obstacles from previous data collection meth-
ods and produces a meaningful, low-dimensional and perceptually
uniform space of material textures.

In the next section, the set of contributions stated above will be dis-
cussed in greater detail.

7.2 Discussion and future work

This section provides extended discussion to the topics that have been
covered throughout the previous chapters of this dissertation.
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7.2.1 Multimodal perception of materials

The findings in the scope of multimodal material perception confirm
touch-related material sound as a relevant actor when perceiving material
attributes, specially those characteristics associated to the haptic experi-
ence. However, the similar effect was not detected in a follow-up inves-
tigation, in which we considered interactive sound generated by a soni-
fication system. We contemplate several reasons for this unanticipated
outcome, which mainly concern the stimuli utilized in each experiment
and the specific interactions employed to generate touch-related material
sound.

For the studies proposed in Chapter 3, we recorded sound from a
sequence of material interactions, which included rubbing and tapping
gestures. Likewise, samples from three diverse material classes were em-
ployed in our studies: leathers, papers and fabrics. However, during the
following investigation described in Chapter 4, tapping sounds and pa-
per stimuli were disregarded. Such decision was made in order to reduce
the range of synthesized sounds that the sonification algorithm has to
deliver. Furthermore, the visual stimuli (photographs) in both studies
also differ, as in the follow-up experiment the borders from the material
samples, which provide additional volumetric information, had been dig-
itally removed. As a result of these decisions, the ability to communicate
material appearance from the visual stimuli presented in Chapter 4 was
reduced significantly. The most notorious case is the “hard–soft” dimen-
sion, where the inter-participant correlation values drop down by almost
0.3 between the audiovisual conditions of the two mentioned investiga-
tions (see Figures 3.5 and 4.4). Presumably, the information concerning
the hardness of the material was largely contained in the impact sounds
from tapping interactions, and not so much in the audio cues resulting
from scrapping/rubbing interactions. Likewise, the full-modal condition
presents a similar drop on the correlation coefficient for this concrete di-
mension (“hard–soft”) between the two experiments, despite the fact that
the users had available the actual material samples to interact. In this
case, we hypothesize that the presence of paper samples, having rather
different characteristics as leathers or fabrics, established an upper bound
when assessing the hardness of the material. In the absence of such an-
choring, participants’ assessments for this concrete quality pair were less
reliable. The former assumptions would also apply, to some extent, to
the relatively low (or lower) agreement found for other investigated di-
mensions (i.e. “thick–thin”, “stiff–flexible” or “natural–synthetic”)in the
second experiment, as it is implied by the strong relationship between
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the ratings for the mentioned qualities (see Figure 4.6).

Following research regarding the audiovisual perception of materials
should not disregard the value of impact/collision sounds when discrim-
inating between materials categories or when evaluating their perceptual
qualities, in accordance with previous investigations [AR01, CAKP98,
GM06, KPK00, LH12, FGM+14, MIWH15], all of them including some
sort of striking sounds in their experimental studies. Nonetheless, an in-
vestigation from Giordano and McAdams [GM06] questions the capacity
of humans to discriminate between samples within the same class based
on auditory cues. In light of these findings, a fruitful avenue of future
research could evaluate the impact of employing high-resolution audio
and video from more complex audiovisual interactions in the perception
of material qualities and material categorization. In this regard, specific
gestures like two-finger stroking or sample scrunching have been docu-
mented to be the most repeated when interacting with textile materials
[AOP+13].

All in all, the conclusions arising from the analysis of the respective
experiments would only apply to the collection of materials and the set
of perceptual qualities considered in these investigations. The selection
of pairs of material attributes was initially accomplished by choosing
those most regularly employed in related literature (see Section 3.3.1).
In accordance with this choice, only 4 principal components are enough
to represent 95.1% and 94.8% of the variance from the full-modal con-
ditions, respectively for the two mentioned investigations. Meanwhile,
analogous studies with a similar or higher number of perceptual dimen-
sions present a much more moderate eigenvalue decay. For example, in
the 42-dimensional space from Fleming et al. [FWG13], seven PCs could
only explain 50% of the variance, roughly the same amount as only the
three main factors from by Fujisaki et al. [FTK15], despite the fact that the
perceptual space utilized was much wider (69 dimensions). Analogously,
Rao and Lohse [RL96] found no single PC that explained more than 10%
of their 12 visual dimensions. The latter highlights the fact that the results
from similar studies in perception of material qualities are highly depen-
dent on the selected attribute set. For that reason, the development of a
standard space of perceptual or computational features to describe ma-
terial appearance remains essential for future investigations in material
perception.
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7.2.2 Digital transmission of subjective material appear-
ance

This manuscript also examines the ability of an advanced digital material
model (Spatially Varying BRDF) to transmit material information (repre-
sented by a rigorously selected set of material qualities) in comparison
to simple photographs, rendered motion videos and real materials. The
conducted analysis revealed the current perceptual gap between digital
models and photos, which is mostly due to the geometrical abstractions
imposed by the SVBRDF model.

In general, none of the evaluated stimuli (photos, static renderings
and motion renderings) proved to be fully capable of transmitting ad-
vanced material properties, as significant differences were found between
the user ratings for the full-modal condition (physical materials) and the
rest of the models, as observed in Figure 5.6. These effects are especially
noticeable in the perception of those qualities categorized as tactile, be-
ing the “thick-thin” and “stiff-flexible” the dimensions which are more
poorly represented by digital models. Likewise, an important number
of dissimilarities emerge for the perceived transparency, which is to be
expected, since the SVBRDF measurements are not able to represent this
particular characteristic. When considering the existing meaningful ef-
fects between digitized materials and photographs, the largest misper-
ceptions arise again for tactile qualities together with the shininess and
brightness dimensions. Undoubtedly, the evaluated digitized materials
are not able to depict some of the volumetric and reflectance informa-
tion revealed by the photographs’ distinctive border regions. This insight
is confirmed by the fact that digitally removing such regions from the
images greatly reduces their the ability to transmit the set of qualities. Fi-
nally, we did not find a significant impact of motion in the perception of
material qualities. Still, further experiments would need to be conducted
on this matter, where the concrete attributes to be studied are properly
isolated as Wend et al. [WFEM10] did for motion gloss.

One of the points in question regarding the analysis of the experimen-
tal data concerns to which statistical tests should be employed to analyze
the effects between the experimental conditions. In general, parametric
tests are utilized when the studied population fulfills several assump-
tions and when the variable of interest is computed on an interval scale.
Yet, there is some controversy about whether the variables measured by
Likert scales (as those employed in our studies) are interval or ordinal
[CW11]. To avoid any risk, we opted for employing non-parametric tests
in our experimental analysis to uncover significant effects between the
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tested conditions.
Once again, the evidences concerning the transmission of material ap-

pearance found in this investigation apply only to the considered stim-
uli. In order to extrapolate these findings to additional material classes
(wood, stone, plastic), supplementary experiments would be need to be
conducted. Besides, some aspects concerning the digitized materials (i.e.
small-scale differences in illumination, geometry and scale) could have
limited their expressiveness. Additionally, one would need to take into
account the suitability of SVBRDF representations to depict each individ-
ual material category. In this regard, the two classes examined in the
scope of our research had unequal performance. While leathers were
mostly well represented by this model, some digital fabrics, specially
those from samples exhibiting protruding fibers and fluffy appearance,
were considered somewhat unrealistic (see Figures 5.11 and 5.12).

By and large, this investigation supports the insight that a great deal
of the appearance of materials is condensed in very specific regions, con-
cretely those areas visible when observing the sample under grazing an-
gles. This conclusion could be further explored through a experimen-
tal setup in which eye gaze tracking is employed to study the regions
of visual attention when observing digital materials, which remains a
promising direction for future work. Moreover, due to the relatively low
angular resolution provided by the employed acquisition device and the
limitations inherent to the model, such fine effects of appearance could
not be fully captured. Future research strands could contemplate higher
order appearance models. Concretely BTF and BSSRDF representations
are able to depict additional volumetric and reflectance material charac-
teristics (self-occlusion, intereflections or subsurface scattering) with finer
detail. In turn, their acquisition process becomes more complex, signif-
icantly lengthier and presents additional storage issues that would need
to be addressed.

7.2.3 Perceptual similarity metrics

Lastly, we developed a perceptually-based metric for similarity or dis-
similarity between materials, where these materials are represented by
textures from real samples acquired under controlled viewing and illu-
mination conditions. In our experiments, we exploited the public ALOT
database [UA09] to collect a set of 30 textures from fabrics and other al-
ternative material classes. The election of material textures over surface
reflectance models arises from the idea of estimating pairwise distances
based on observable perceptual features, and not reparameterizing com-
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putational features in terms of a given model (e.g. Ward BRDF). Besides,
the latter direction has been already covered in greater or lesser extent
by previous research efforts to compute a subdimensional space for gloss
i.e. [PFG00, WAKB09] or transparency i.e. [CWFS07], in order to find a
suitable perceptual space for BRDF material editing i.e. [SGM+16] and to
investigate the perceptual effects of BTF filtering i.e. [JWD+14]. Further-
more, textures from real samples is the predominant way of displaying
materials in online retailing stores (see Figure 1.1). Hence, the poten-
tial findings would have a more direct application in the domain of e-
commerce and could serve as the basis for more advanced metrics.

The novelty of this investigation lies in the methodology employed to
compute such perceptual similarities. Previous methods either directly
queried the similarity between textures to the participants or relied on
time-consuming, not parallelizable experimental processes which did not
allow the later incorporation of unseen points. Our technique avoids
these problems with an indirect approach in which similarities are con-
sidered as proportional to the inherent noise resulting from a localization
task. Besides, the proposed approach is parallelizable, easy to scale and
avoids additional human issues (e.g. fatigue or boredom). The fact that
different methodologies, like the one proposed in this thesis and those
from previous studies, lead to perceptual texture spaces (PTSs) whose
main dimensions largely correlate with each other supports the validity
of our method. In fact, the X dimension in our experiments seems anal-
ogous to the Z dimension in those from Rao and Lohse [RL96] and Lou
et al. [LQD+16], while our third dimension (Z) is largely comparable to
dimensions X and Y in the former studies, respectively.

One of the drawbacks of the suggested computation for the percep-
tual similarity between textures is the preliminary linearization step, nec-
essary to carry out the experiment on a consistent interval scale. For this
reason, this procedure is composed by two individual steps, thus, com-
plicating the inclusion of unseen points in the PTS. Even after this pro-
cedure, few interpolated strips still exhibited non linear characteristics,
translated into transitions between textures which still exhibit slightly
larger α-values when fitting g(x) to the user clicks (see Figure 6.10 left).
In order to address this issue, one feasible solution would be the utiliza-
tion of higher-order linearization functions instead of the employed one
(see Equation 6.1). Another aspect that limits the practical applicability
of the proposed method to large databases is its quadratic complexity
(O(n2)). However, our approach can be equally utilized to gather similar-
ities for an incomplete set of pairs, resulting therefore in a sparse matrix.
In the context of this investigation, we opted for the computation of a
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Figure 7.1: Conceptual plot of desired metric performance: metric values vs.
subjective similarity scores. From Zujovic et al. [ZPN+15].

fully-connected matrix in order to sample densely the fine-grain relation-
ships between textures from the same category (fabric).

Precisely, previous research has determined that humans are consis-
tent while judging similarities between almost identical textures (Figure
7.1, right of T1) or while discriminating similar against dissimilar textures
(left of T3) [ZPN+15]. Our research attempts to provide a metric for those
remaining textures in the illustrated similarity scale (between T1 and T3)
which are only comparable in some respect (e.g. directionality, scale) but
different in another (e.g. regularity, contrast) and whose subject-to-subject
similarity agreement tends to be poor. Still, the present methodology
is constrained to those intermediate-to-fine texture distances and cannot
provide a monotonic relationship between measured and perceived simi-
larity for every possible pair of textures in the given scale.

In practice, we would like to have at our disposal a fully computa-
tional way to calculate perceptual similarities between materials that does
not require additional psychophyisical studies for pairs of points out-of-
sample. To that end, there is a boundless number of regression algorithms
which, in combination with deep image features, could be used to pre-
dict image similarity/dissimilarity values. Nonetheless, the reliability of
such algorithms depends on the training process in a considerably large
database of material textures annotated with ground-truth pairwise sim-
ilarities.

156



Chapter 7. Summary, Discussion and Future Work

7.3 Final remarks

In summary, with the compilation of research introduced in this
manuscript, we have provided novel insights in how humans perceive
real and digital materials and how the latter are communicated through
digital devices. We believe that the given findings have direct applications
in the scope of online commerce, concretely in the development of more
effective user interfaces which are consistent with human perception and
take into account the multimodal nature of the interactions with real ma-
terial samples. Additional areas of research that could benefit from the
results presented in this thesis regarding the transmission of digital ma-
terial information and their multisensory perception are product design,
virtual reality, medical imaging, physical rehabilitation or sensory substi-
tution for the impaired.

To conclude, the increasing range of interactions with digital com-
modities and the rise of devices and applications linked to Internet of
Things (IoT) demands innovative and more efficient ways to depict dig-
ital products. Indeed, the perception materials from which such prod-
ucts/objects are made have a decisive role in these increasingly complex
process. By making steps towards unveiling how humans perceive real
and virtual materials, we would greatly contribute to the massive task of
developing more engaging digital environments and user-oriented inter-
faces to be used in a large spectrum of applications.
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