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Abstract

In daily life, we encounter digital materials and interact with them in nu-
merous situations, for instance when we play computer games, watch a
movie, see billboard in the metro station or buy new clothes online. While
some of these virtual materials are given by computational models that
describe the appearance of a particular surface based on its material and
the illumination conditions, some others are presented as simple digital
photographs of real materials, as is usually the case for material sam-
ples from online retailing stores. The utilization of computer-generated
materials entails significant advantages over plain images as they allow
realistic experiences in virtual scenarios, cooperative product design, ad-
vertising in prototype phase or exhibition of furniture and wearables in
specific environments. However, even though exceptional material repro-
duction quality has been achieved in the domain of computer graphics,
current technology is still far away from highly accurate photo-realistic
virtual material reproductions for the wide range of existing categories
and, for this reason, many material catalogs still use pictures or even
physical material samples to illustrate their collections.

An important reason for this gap between digital and real material ap-
pearance is that the connections between physical material characteristics
and the visual quality perceived by humans are far from well-understood.
Our investigations intend to shed some light in this direction. Concretely,
we explore the ability of state-of-the-art digital material models in com-
municating physical and subjective material qualities, observing that part
of the tactile/haptic information (e.g. thickness, hardness) is missing due
to the geometric abstractions intrinsic to the model. Consequently, in
order to account for the information deteriorated during the digitization
process, we investigate the interplay between different sensing modalities
(vision and hearing) and discover that particular sound cues, in combi-
nation with visual information, facilitate the estimation of such tactile
material qualities.



Abstract

One of the shortcomings when studying material appearance is the
lack of perceptually-derived metrics able to answer questions like “are
materials A and B more similar than C and D?”, which arise in many com-
puter graphics applications. In the absence of such metrics, our studies
compare different appearance models in terms of how capable are they
to depict/transmit a collection of meaningful perceptual qualities. To
address this problem, we introduce a methodology to compute the per-
ceived pairwise similarity between textures from material samples that
makes use of patch-based texture synthesis algorithms and is inspired on
the notion of Just-Noticeable Differences. Our technique is able to over-
come some of the issues posed by previous texture similarity collection
methods and produces meaningful distances between samples.

In summary, with the contents presented in this thesis we are able to
delve deeply in how humans perceive digital and real materials through
different senses, acquire a better understanding of texture similarity by
developing a perceptually-based metric and provide a groundwork for
further investigations in the perception of digital materials.
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Zusammenfassung

Im alltdgliche Leben begegnen wir digitalen Materialien in einer Vielzahl
von Situationen wie beispielsweise bei Computerspielen, Filmen, Rekla-
mewdénden in z.B. U-Bahn Stationen oder beim Online-Kauf von Kleidun-
gen. Wihrend einige dieser Materialien durch digitale Modelle reprasen-
tiert werden, welche das Aussehen einer bestimmten Oberfliche in Ab-
hangigkeit des Materials der Fliche sowie den Beleuchtungsbedingungen
beschreiben, basieren andere digitale Darstellungen auf der simplen Ver-
wendung von Fotos der realen Materialien, was z.B. bei Online-Shopping
haufig verwendet wird. Die Verwendung von computer-generierten Ma-
terialien ist im Vergleich zu einzelnen Fotos besonders vorteilhaft, da
diese realistische Erfahrungen im Rahmen von virtuellen Szenarien, ko-
operativem Produkt-Design, Marketing wahrend der prototypischen Ent-
wicklungsphase oder der Ausstellung von Mobeln oder Accesoires in
spezifischen Umgebungen erlauben. Wahrend mittels aktueller Digita-
lisierungsmethoden bereits eine beeindruckende Reproduktionsqualitét
erzielt wird, wird eine hochprézise photorealistische digitale Reprodukti-
on von Materialien fiir die grofse Vielfalt von Materialtypen nicht erreicht.
Daher verwenden viele Materialkataloge immer noch Fotos oder sogar
physikalische Materialproben um ihre Kollektionen zu repriasentieren.

Ein wichtiger Grund fiir diese Liicke in der Genauigkeit des Ausse-
hens von digitalen zu echten Materialien liegt darin, dass die Zusam-
menhédnge zwischen physikalischen Materialeigenschaften und der vom
Menschen wahrgenommenen visuellen Qualitdt noch weitgehend unbe-
kannt sind. Die im Rahmen dieser Arbeit durchgefiihrten Untersuchun-
gen adressieren diesen Aspekt. Zu diesem Zweck werden etablierte digi-
talie Materialmodellen beziiglich ihrer Eignung zur Kommunikation von
physikalischen und sujektiven Materialeigenschaften untersucht, wobei
Beobachtungen darauf hinweisen, dass ein Teil der fithlbaren/haptischen
Informationen wie z.B. Materialstarke oder Hartegrad aufgrund der dem
Modell anhaftenden geometrische Abstraktion verloren gehen. Folglich
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Zusammenf assung

wird im Rahmen der Arbeit das Zusammenspiel der verschiedenen Sin-
neswahrnehmungen (mit Fokus auf die visuellen und akustischen Moda-
lititen) untersucht um festzustellen, welche Informationen wahrend des
Digitalisierungsprozesses verloren gehen. Es zeigt sich, dass insbesonde-
re akustische Informationen in Kombination mit der visuellen Wahrneh-
mung die Einschdtzung fiihlbarer Materialeigenschaften erleichtert.
Eines der Defizite bei der Analyse des Aussehens von Materialien ist
der Mangel beziiglich sich an der Wahnehmung richtenden Metriken die
eine Beantwortung von Fragen wie z.B. “Sind die Materialien A und B sich
dhnlicher als die Materialien C und D?” erlauben, wie sie in vielen An-
wendungen der Computergrafik auftreten. Daher widmen sich die im
Rahmen dieser Arbeit durchgefiihrten Studien auch dem Vergleich von
unterschiedlichen Materialreprasentationen im Hinblick auf. Zu diesem
Zweck wird eine Methodik zur Berechnung der wahrgenommenen paar-
weisen Ahnlichkeit von Material-Texturen eingefiihrt, welche auf der Ver-
wendung von Textursyntheseverfahren beruht und sich an der Idee/dem
Begriff der geradenoch-wahrnehmbaren Unterschiede orientiert. Der vor-
geschlagene Ansatz erlaubt das Uberwinden einiger Probleme zuvor ver-
offentlichter Methoden zur Bestimmung der Anhlichkeit von Texturen
und fiihrt zu sinnvollen/plausiblen Distanzen von Materialprobem.
Zusammenfassend fithren die im Rahmen dieser Dissertation darge-
stellten Inhalte/Verfahren zu einem tieferen Verstiandnis beztiglich der
menschlichen Wahnehmung von digitalen bzw. realen Materialien tiber
unterschiedliche Sinne, einem besseren Verstdndnis bzgl. der Bewertung
der Ahnlichkeit von Texturen durch die Entwicklung einer neuen per-
zeptuellen Metrik und liefern grundlegende Einsichten fiir zukiinftige
Untersuchungen im Bereich der Perzeption von digitalen Materialien.
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CHAPTER 1

Introduction

1.1 Motivation

Digital representations of real world materials are present in a growing
range of every-day situations, including online shopping, video games,
product design, digital movie contents, advertising and many more. The
continuous exposition to digital contents and, in particular, digital ma-
terials highlights the importance of developing material models that are
not only physically accurate but also plausible from the point of view of
human perception. In addition, the boom of devices and applications as-
sociated to the Internet of Things (IoT) demands interactions with these
commodities that go beyond the passive product visualization.

Although research in computer graphics has continuously struggled
to achieve higher accuracy and photo-realism at the expense of computa-
tional efficiency, the connections between measurable physical material
properties and the visual quality perceived by humans is very subtle
and far from well-understood. Indeed, despite the great deal of real-
ism achieved by virtual/digitized materials, there is still an appearance
gap between the latter and their physical counterparts that, in practice,
may distort the perception of the final content. In particular, the precise
representation of fine effects of material surfaces under varying viewing
and illumination conditions remains a challenging task. For this reason,
regardless of the benefits of using virtual surrogates, many material cat-
alogs and online fashion still illustrate their collections through pictures
or even physical samples, in order to avoid possible miscommunications
of the material properties.

An interesting fact is that the perception of material appearance in
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1.1. Motivation

real-world is highly multimodal, or multisensory, by nature. In other
words, while identifying the actual materials objects are made of, our
vision, hearing or touch collaborate to varying extents. In spite of this
evidence, the presentation of materials in virtual environments is based
almost uniquely in visual models, and the rest of the senses have been
largely neglected. One of the reasons for this lack of multimodal inter-
action is that, even though humans rely to a great extent on the tactile
input in order to extract information from objects and materials, high-
level, haptic interactions are still not accessible by the current digital tech-
nology. Nevertheless, high-quality stereo audio is regularly available in
nowadays consumer devices and it may be employed to overcome the
limitations given by the absence of tactile data. Some of these limita-
tions relate to the fact that a consumer’s decision for or against a material
does not only involve the perception of physical properties but also an
affective experience, which is greatly reduced in the case of passive vi-
sual representations. Considering this, the interplay between the visual
and the auditory channels would provide interesting insights about how
these two different senses collaborate in perceiving certain physical and
affective material qualities.

Undoubtedly, this affective or emotional experience is closely related
with the bandwidth of interactions allowed by a given product. How-
ever, either the visual or audiovisual representations of digital materials
are typically passive (static images and pre-recorded sounds), which lim-
its the expressivity of the final model. In this regard, a feasible way to
enhance the level of interaction with digital materials could be the utiliza-
tion of sonification systems. This set of techniques have demonstrated to
compensate the absence of tactile information, to some degree, and to
have a significant influence in the perception of product quality and effi-
ciency.

Another interesting problem that faces the digital communication of
material appearance is the absence of reliable similarity metrics. Ques-
tions like “are materials A and B more similar than materials C and D?” arise
in many applications and could greatly facilitate the development of ef-
fective user interfaces for retailing web stores in agreement with human
perception, among other applications. Yet, in the absence of such metrics,
this query can be answered only partially, in terms of measured dimen-
sions (i.e. glossiness, transparency) of parametric material models or the
perceived realism according to human observers. Defining a meaning-
ful metric for materials in accordance with human perception is a highly
complex task due to the high dimensionality of material appearance. For
this reason, one way to address this question is to consider simple tex-
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Chapter 1. Introduction

tures as the easiest way of representing a concrete material.

The perception of textures is an essential field of research with a large
range of applications in numerous vision problems. For the challeng-
ing task of estimating texture similarity as perceived by humans, for-
mer investigations have proposed diverse experimental designs to collect
perceptual data. Most of these procedures become impractical for large
datasets and pose further problems regarding the complexity and paral-
lelizability of the assignment and the quality of the gathered user data.
One of the worries regarding the quality of such perceptual measure-
ments is that they have noise in them. However, this is hard to quantify
as there is no ground-truth for questions like “How similar are materials
A and B?”. Alternative approaches, like those based on the notion of
just-noticeable differences (JND), allow a more direct measurement of the
amount of noise which, in practice, could be employed as a mechanism to
estimate the perceptual similarities/distances between material textures.

This investigation intends to shed further light on the previous in-
quiries and, in a more general way, to propose novel methods to com-
municate and measure the appearance of digital materials in accordance
with human perception.

1.2 Main contributions and applications

With the work at hand, a series of experiments, methodology and data
analyses is presented in order to gather deeper knowledge on some of the
main unanswered questions regarding the perception of digital material
appearance. In the following, we summarize the fundamental challenges
and contributions on this subject introduced by the present document.

Initially, we study the multisensory nature of material perception by
augmenting purely visual presentation of materials with audio charac-
teristics. Such auditory information consists of recordings from rubbing
and tapping material sounds. Thereby, we arrange a set of user studies to
investigate how the visual and auditory channels contribute to the per-
ception of material qualities. We conclude that a multisensory approach
is not only able to enhance the digital communication of material prop-
erties without compromising the overall material perception, but also to
achieve a deliberate bias for certain tactile qualities (e.g. roughness or
hardness).

Following the same trend, we employ granular synthesis techniques
to build a sonification system for tactile devices that delivers real-time
contact material sound upon touch interactions. Then, we study the im-

5



1.2. Main contributions and applications

pact of such system in the perception of physical and affective material
qualities by means of a psychophysical study. The analysis of the exper-
imental data reveals that the proposed audio cues alone (finger rubbing
sounds) do not entail additional information to the perception of material
attributes. We therefore suggest complementary directions of research in
interactive material sonification that may lead to profitable results.

The election of photos from real samples as our stimuli in the previous
investigations arises from the fact that the ability of digitized materials to
communicate finer appearance effects is yet to be explored. Thus, we
study the performance of state-of-the-art material appearance models in
transmitting a set of subjective qualities through the visual channel, in
comparison to photographs from real samples. By performing statistical
analysis on the data from user experiments, we determine that digitized
materials, in their current state, are still not fully capable of transmitting
certain material qualities (mainly tactile ones) as good as simple photos.
Subsequently, we investigate and confirm the hypothesis that important
visual cues are destroyed when abstracting volumetric materials into flat
digital representations, fact that is particularly noticeable at grazing an-
gles.

To conclude, we focus on the problem of perceptually plausible met-
rics for material appearance. Concretely, we consider an existing dataset
of textures from real fabrics samples taken under controlled conditions to
examine their perceived pairwise texture similarity/dissimilarity. In this
regard, we establish a novel methodology for the estimation of perceptual
similarities between textures from materials based on the notion of just-
noticeable differences and which relies on generating intermediate stim-
uli through texture synthesis techniques. Our proposal is well-suited to
address fine-grain similarities, is convenient for crowdsourcing platforms
and overcomes some of the issues existing in previous experimental ap-
proaches. This technique is then consistently exploited to construct a
meaningful, low-dimensional and perceptually uniform space of textures
from fabrics whose underlying interpretation of the main dimensions is
in line with previous research.

The main purpose of our research is to find more effective ways to
communicate materials in digital devices. This topic has a broad range
of possible uses, but perhaps the application that could primarily benefit
from the outcome of this thesis is the field of e-commerce or online shop-
ping. In this context, our findings regarding the multimodal perception
of materials and similarity metrics could be exploited in the development
of potentially efficient user interfaces for retailing web-stores (see exam-
ple web-stores in Figure 1.1), which integrate information from different

6



Chapter 1. Introduction

oitens |
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Figure 1.1: Two examples of interfaces from online fabric stores. "Mood Designer
Fabrics” [Mood18] in the left, ‘Joann’ [Joann18] in the right. Both websites
organize their products by color and application, independently of the material
characteristics or their perceived similarity.

senses and are more consistent with human perception. In addition, the
field of product design could also draw important advantages from these
conclusions e.g. when finding suitable material substitutes for unavail-
able samples or replacing computationally expensive models with more
efficient ones among other uses. Finally, the outcome regarding the au-
diovisual perception of materials can be applied in the domain of virtual
reality environments to better understand object properties in the absence
of visual and tactile feedback in applications like clinical surgery, physical
rehabilitation and sensory substitution for the impaired.

1.3 Publications

As a part of the present work, the technical chapters 3, 4, 5 and 6 are
founded in publications from different computer graphics conferences
and journals, which have successfully passed a peer-review process:

* R. Martin, ]J. Iseringhausen, M. Weinmann, and M. Hullin. Multi-
modal perception of material properties. In ACM SIGGRAPH Sym-
posium on Applied Perception, SAP ’15, pages 33—40, New York, NY,
USA, Sept. 2015. ACM.

¢ R. Martin, M. Weinmann, and M. Hullin. Digital transmission of
subjective material appearance. Journal of WSCG, 25(2):57-66, June
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1.4. Thesis outline

2017.

e R. Martin, M. Weinmann, and M. B. Hullin. A study of mate-
rial sonification in touchscreen devices. In Proceedings of the 2018

ACM International Conference on Interactive Surfaces and Spaces, 1SS
"18, pages 305-310, New York, NY, USA, 2018. ACM.

* R. Martin, M. Xue, R. Klein, M. B. Hullin, and M. Weinmann. Using
patch-based image synthesis to measure perceptual texture similar-
ity. Computers and Graphics, 81:104 — 116, 2019.

Further closely related work with contributions from the author has
been published in:

e H. Steinhausen, R. Martin, D. den Brok, M. Hullin, and R. Klein. Ex-
trapolation of bidirectional texture functions using texture synthesis
guided by photometric normals. In Measuring, Modeling, and Repro-
ducing Material Appearance II (SPIE 9398), volume 9398, Feb. 2015.

However, the contents of the latter publication are not part of this
thesis.

1.4 Thesis outline

This document is organized in four thematic parts, each of them divided
in several chapters which contain individual experimental studies, evalu-
ations, results and contributions. Each chapter constitutes an indissoluble
pipeline, in which later chapters utilize knowledge, algorithms or tech-
niques that have been introduced in previous ones. However, in order
to improve the coherence between the different chapters, an additional
paragraph introducing each chapter and relating it to the previous inves-
tigation has been also included.

Thus, Part I provides a general introduction to the tasks approached in
this thesis. In particular, Chapter 1 includes descriptions of the problems
that motivate the present work, along with an outline of the contribu-
tions introduced as well as a list of the publications in which this essay
is based. The subsequent Chapter 2 gives a necessary background on the
fundamental topics on which this thesis is founded. This chapter includes
a summary of the role of perception in computer graphics (Section 2.1),
an overview of the main concepts regarding material appearance models
and acquisition of material reflectance (Section 2.2) and a synopsis re-
garding the importance of textures in computer graphics along with the
basic texture analysis and synthesis concepts and techniques (Section 2.3).

8



Chapter 1. Introduction

The technical contributions are introduced in Part II and Part IIL
Specifically, Part II addresses the topic of the perception of physical and
affective material qualities through three chapters. In this regard, Chap-
ter 3 presents the experimental results concerning the perception of ma-
terial qualities through various senses or modalities (vision and hearing).
Chapter 4 evaluates the perceptual effects of an interactive material soni-
fication system developed for tactile devices. To conclude this part, Chap-
ter 5 studies the ability of a concrete digital material representation (the
SVBRDF model) to transmit physical and subjective physical material ap-
pearance characteristics in comparison to pictures and real materials.

Furthermore, part III explains our latest methodology for the collec-
tion of measurements of perceived similarity between material textures
(Chapter 6). From the resulting similarity data, a perceptual space of
textures is built and analyzed in detail.

Lastly, Part IV provides closure. In this section we summarize the en-
semble of investigations presented in this thesis and suggest a landscape
of profitable directions for future research.
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CHAPTER 2

Preliminary Knowledge

Before going into detail regarding the contributions of this thesis, an anal-
ysis of the relevant preliminary knowledge is presented. This analysis
comprises the fundamentals of perception applied to computer graphics
as well as a background in the principles of material appearance model-
ing and acquisition and a basic overview of visual textures, their analysis
and synthesis.

2.1 Perception for computer graphics

Traditionally, research in computer graphics has made large efforts to
achieve the technically best possible depiction of real world scenarios.
Depending on the sub-field of interest, these endeavors may lead to rep-
resentations based on the physics of light (rendering), real-time interac-
tivity (virtual reality) or maximization of the information content in a
scene (visualization). Lately, perceptual research has been increasingly
integrated into computer graphics, thus providing new ways to solve ex-
isting problems by incorporating human knowledge obtained from user
studies, commonly known as psychophyisical experiments. In this direction,
the report from Bartz et al. [BCFWO08] provides an exhaustive overview
of the role and contributions of perceptual research in computer graph-
ics. However, the fundamental theory basic for the understanding of the
investigations presented in this manuscript will be given in the present
section.

11



2.1. Perception for computer graphics
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(a) The café wall illusion, are the (b) The Kanizsa triangle, note that
lines parallel? the triangle edges are visible, de-

spite not being physically present.

Figure 2.1: Two classical examples of visual illusions.

2.1.1 Fundamentals of perception

In a general way, the goal of research in perception is to understand how
living organisms process the physical information of the surrounding en-
vironment. From this observation, particular patterns and information
are extracted to later be interpreted and utilized. In this regard, visual
illusions have been often employed to investigate the shortcuts and as-
sumptions that the visual system uses. The main purpose of such illu-
sions is to highlight how perceptual and physical reality differ. Classical
examples illustrating this contrast between perceptual and physical real-
ity are the Café Wall Illusion [GP79] (Figure 2.1a), and the illusory con-
tours [Kan79] (Figure 2.1b). In the first illusion, most people perceive the
horizontal lines are not parallel although they actually are. In the second,
a triangle can be seen in front of the three circles, when the truth is that
only three partial circles are shown.

There is a growing number of visual illusions which are specifically
designed to emphasize different heuristics and assumptions of our visual
system. Disregarding the particular characteristics of the perceptual sys-
tem, will most likely assure unwanted effects in the image or simulation
under study. Taking advantage of them instead, will lead to more effi-
cient algorithms for wide ranging topics and applications in computer
graphics and other fields, as it will be discussed later.
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Chapter 2. Preliminary Knowledge

2.1.2 From psychophysics to computer graphics

One question that may arise at this point is that, given the subjective na-
ture of human perception, how can it be studied? The answer is that, for
perception to be observed and analyzed, it must influence an organism’s
behaviour (humans in the case of the experiments regarding computer
graphics). The methodology that allows the objective study of the under-
lying mechanisms of perception is known as “psychophysics”, and was de-
veloped by the physicist Gustaf Theodor Fechner in the mid 1800 [Fec60].
Such methods have as the main purpose ‘the empirical study and mathemat-
ical formulation of the functional relationships between physical stimulation and
sensory or perceptual responses’ [BCFWO08]. To that end, psychophysics re-
quire total control over many factors including the actual stimuli to be
presented as well as when, how and to whom they are presented. Thus,
due to these constraints, perceptual research has commonly been con-
ducted using rather abstract stimuli (lines, geometric figures or simple
objects). Although such elementary stimuli present clear advantages re-
garding their reproduction, mathematical description and systematical
variation, it is not clear whether the respective findings would generalize
to more complex real-world scenarios [Gib79].

In modern psychophysics, the increasing ambition to study human
perception in more real-world-like situations faces the traditional rigor of
experimental methodologies. The problem with real-world stimuli is that
they cannot be always exactly reproduced, mathematically described or
systematically varied, which are fundamental requirements for percep-
tual research. The exceptional advances in computer simulations of real-
ity, however, offer an elegant compromise to overcome preceding prob-
lem as they meet the generalization criteria as well as being representative
from real-world cases.

2.1.3 Experimental design

There are five specific aspects that any perceptual experiment has to take
into account: 1) what is shown (stimulus), 2) who gets to see it (partic-
ipants), 3) how they get to see it (stimulus presentation) 4) what do they
do with it (task design) and 5) analysis of the responses (data analysis). A
comprehensive discussion on each of these aspects is beyond the scope of
this manuscript and we kindly refer the reader to the book from Geschei-
der [Ges97] and the survey from Cunningham and Wallraven [CW11] for
that matter. Still, the fundamental theory concerning the design of the
experimental task will be reviewed here in further detail, as during our
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2.1. Perception for computer graphics

investigations we invested an important effort in this particular aspect.
Despite of the vast amount of existing alternatives, experimental tasks
can be usually classified into five rough categories: Questionnaires, free
descriptions, scales, forced choice and physiology. The general idea be-
hind free descriptions is to simply request participants to describe some-
thing using their own words. For instance, if investigating whether sub-
jects are able to recognize what is being shown in an image (i.e. a cat,
flowers, buildings), we would as them to verbally describe the contents
of the picture. This task is highly subjective and arises the question of
how to map the responses to a certain answer category. Questionnaires
instead, ask people how they might react in a specific type of situation.
For example, if we were to measure the visual quality of rendered im-
ages, a set of renderings would be presented to the participants along
with the question “which of the following images is more realistic?’. With
this design, different question formulations may lead to completely dif-
ferent answers. The use of rating or Likert scales is able to overcome
some of the issues posed by two previous methods. According to this
technique, when, for instance, investigating the aesthetic properties or an
image we would pose the question like ‘on a scale from 1 to 7, how beauti-
ful is the following image?’, together with a 7-point rating scale. There are
several important concerns about rating scales regarding the anchoring
(i.e. how beautiful is a 7?), and regarding the level of measurement [Ste46],
which refers to the relationship between the values assigned to a variable
(which is the difference between a 5-level beauty and a 6?). On this sub-
ject, research has shown that ‘using appropriate adjectives for each scale point
ensures that a proper interval is created’ [CW11]. Additionally, an interesting
variation to Likert scales are semantic differentials introduced by Osgood
et al. [Osg52], in which the ends of the scale are represented by opposite
terms (e.g. realistic-unrealistic). In the forced choice alternative, a limited
range of stimuli options is given as possible answers, and the participant
is “forced” to select one of them. Finally, physiological experiments over-
come the need for language by finding physiological factors that vary
along with the stimuli (e.g. heart rate, blood pressure, brain waves, etc).

2.1.4 Research directions

The content of this dissertation partially lives in the ecosystem of both
human perception and computer graphics research. According to this,
we summarize next some relevant investigations regarding the synergies
between these two fields, starting from their applications in virtual and
augmented environments. The technology in Virtual Reality (VR) and
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its mixed and augmented reality extensions (MR/AR) have experience
a renaissance over the last years. The proliferation of consumer head-
mounted displays (HMD) is parallel to the arrival of multiple special-
ized applications such as medical visualization, industrial design or video
games, all of which have been used as a tool for the study of human per-
ception. One concrete line of research that has an important influence
in the cited applications is the sense of embodiment (SoE) in immersive
environments described by Kilteni and Groten [KGS12], which relates to
the feeling of owning and controlling a virtual body. According to the au-
thors, the SOoE comprises three sub-components: the sense of self-location,
the sense of agency and the sense of body ownership, having each of them
been subject of individual studies. On the other hand, perceptual insights
have been used to evaluate the fidelity of virtual environments, including
size and distance perception [CRST'15], sensation of walking [WBN"11]
and visual realism among other aspects. Beyond perceptual research, the
findings from these studies are also employed to learn which characteris-
tics of a VR/AR setup have an impact on the user experience.

Visualization is a field of study that aims at the better comprehension
of information and scientific data. Although there have been a consider-
able number of proposed techniques, only few of them have been evalu-
ated from a perceptual point of view, in order to measure their potential
benefits for the final user. Among the basic features that have been ex-
amined by means of psychophysical experiments are the choice of color,
size and orientation of features and the density and regularity of texture
elements. An overview on some of the predominant perceptual issues in
visualization is discussed in the panel from House et al. [HIL"05] and the
experimental design in the context of information visualization is further
analyzed in the tutorial from Swan II [SI06].

In a similar vein, the perceived realism of digital scenes has also re-
ceived a great deal of attention, focusing mainly in what is needed to
produce perceptually realistic environments. In this context, the devel-
opment of perceptually-driven fidelity metrics has achieved substantial
importance. Most of the existing algorithms, such as the Visible Dif-
ferences Predictor (VDP) [Dal93] which describes the human visual re-
sponse, or the Structural Similarity Index (SSIM) [WBSS04] that measures
image quality, result generally in a very conservative estimation of im-
age/rendering fidelity [BCFWO08]. The later notion of visual equivalence
[REWB07] proposes instead that two images are visually equivalent if
“they convey the same impressions of scene appearance, even if they are visibly
different”. Through their studies, the authors derive visual equivalence
predictors for the object’s shape, different illumination techniques and
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2.2. Material appearance models and reflectance acquisition

employed materials.

When it comes to realism in computer generated animations, the hu-
man face is one of the best showcases, as it is capable of producing a
large variety of expressions challenging to model in a digital environ-
ment. In a investigation from Wallraven et al. [WBCBO08], psychophysi-
cal experiments are used to thoroughly evaluate the perceived quality of
computer-generated facial animations w.r.t. real-world video sequences.
In the same way, rendering algorithms also benefit from perceptual re-
search, concretely its performance in terms of their rendering parameters
and the resulting image fidelity have been also examined via psychophys-
ical studies [KFB10].

Finally, yet importantly in the context of this thesis, human percep-
tion has a decisive role in the appearance of digital materials. The con-
stant search in computer graphics for realistic ways to represent the in-
teraction between light and materials has produced a large collection of
digital material models which are, in general, approximations of physical
laws. However, the importance of human perception in this pursiut of
greater material realism has been often minimized or even disregarded.
One exception is the investigation from Meseth et al. [MMK™06], which
verified the capacity of one of these models (Bidirectional Texture Func-
tions, BTFs) to depict photo-realistic materials. On this subject, the basic
foundations regarding light reflectance representations and material ap-
pearance are reviewed in the following section.

2.2 Material appearance models and reflectance
acquisition

Undeniably, the understanding of materials is essential to comprehend
the world surrounding us. The perception of materials depends on the
way light interacts with the material surface, which in essence defines
their appearance. In general, ‘a surface may reflect a different amount of light
at each position, and for each direction of incident and exitant light’ [WLLT09],
depending of the characteristics of the surface itself (Figure 2.2). Hence,
to completely describe the opaque reflection at a certain point of a sur-
face, we need a function that gives the amount of light reflected per
each position (2D), incident light direction (2D) and exitant light direc-
tion (2D), resulting in a 6-dimensional function. This function contains
information about the nature of the surface (i.e. whether it is shiny or
matte, smooth or rough, etc) and thus, allows us to describe its appear-
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Figure 2.2: Illustration with different types of surface reflectance, diffuse (left),
specular (middle) and subsurface scattering (right).

ance under any lighting conditions. This section details the fundamental
notions of material appearance, starting from the concepts associated to
the domain of radiometry, followed by the definition of the Bidirectional
Reflectance Distribution Function (BRDF), which describes how light is
reflected in opaque surfaces, its generalizations to more complex mate-
rials and the main notions about acquisition of appearance data. More
detailed descriptions of the concepts addressed in this part are provided
in the excellent reviews from Weyrich et al. [WLL"09] and Weinmann et
al. [WLGK1e6].

2.2.1 Radiometry

Radiometry is the area of study associated with the measurement of elec-
tromagnetic radiation, including visible light, flowing in the space. Ac-
cording to this, there are a set of radiometric quantities and units that
must be known by the reader beforehand. Although light is a form of
electromagnetic energy and therefore is measured in Joules (J), we are
mostly interested in the amount of energy flowing per time, known as
radiant flux or power. This quantity is measured in Watts (P).

If we consider an ideal point light source, where the light is emitted
evenly in all directions, describing its power would describe it completely.
In the real world, however, this is normally not the case, thus we need to
talk about the amount of power emitted in a particular direction i.e. per
solid angle. The basic unit of the solid angle is the steradian, and is de-
fined as the area of some region of the sphere divided by the square of its
radius. A complete sphere has then 47t steradians. Thereby, we measure
the radiant intensity (I), or directional power of a point light source in Watts
per steradian (Equation 2.1). This leads us directly to the next radiometric
quantity of our interest, the irradiance (E) or the amount of light falling
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2.2. Material appearance models and reflectance acquisition

upon a surface (Equation 2.2), which is defined as the power per unit
area. Finally, the most advanced radiometric concept is the radiance (L),
which combines the two notions studied earlier. However, in practice, we
consider the surface area as the projected surface instead (perpendicular
to the viewing direction). Thus, the radiance describes the power emit-
ted per unit projected area per solid angle (Equation 2.3) as illustrated in
Figure 2.3.

A A A
[="— @1 E=—2 () L=

dw B dA proj
(2.3)

The radiance is almost certainly the most important quantity in com-
puter vision and graphics. It is intuitive to think that the irradiance on a
camera sensor is proportional to the radiance of the surfaces being cap-
tured [WLL"09]. The equation given when radiance is integrated over
all exitant angles is called radiant exitance (M), see Equation 2.4, where
cosine term accounts for projected area. When this value is equal for all
directions, this value is called radiosity (B).

M= /Q L(6, ) cos(8)dw (2.4)

Lastly, the plenoptic function, which is a 5-dimensional positive func-
tion L(x,y,z, Q), @), allows to completely define the radiance at every light
direction and every point in the 3D space [AB91]. Given that radiance is
constant along rays in free space, we can neglect one of the dimensions
(z), resulting into a 4-dimensional function known commonly as the (4D)
light field [LH96].

2.2.2 Surface reflectance models

Once the basic radiometric concepts have been defined, we are ready to
provide the definition of the Bidirectional Reflectance Distribution Function
(BRDF), first formulated by Nicodemus et al. [NRH"77], which describes
the light reflection at a point in a opaque surface. In other words, it speci-
ties the ratio between the incoming irradiance and the reflected radiance.
The BRDF is generally expressed as a function of four variables, which
are the polar angles of the incident and exitant light directions and is
expressed in inverse steradians (sr~1h).
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Figure 2.3: Definition of radiance as the light emitted from a surface in a concrete
direction (dw) per unit (projected) area (dA).
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BRDF models have an important set of properties shared by most of
them. The first one is the energy conservation: a surface cannot reflect
more light that was incident on it. In other words, the light must be
reflected or absorbed but cannot be created. A second characteristic is
the Helmholz reciprocity, which states that the values of incoming and
exiting light do not change if the light angles are swapped. When a
BRDF satisfies the two aforementioned conditions, we consider it physi-
cally plausible. Another property held by some BRDF is called isotropy,
where the BRDF value do not change if the light angles are rotated by
the same amount. The opposite concept is anisotropy, where the BRDF
value is affected by such rotations. BRDFs have more advanced charac-
teristics representing more uncommon light effects i.e. asperity scattering
or retro-reflection, that will not be covered in this section.

Over the years, several analytic BRDF models have been proposed, in
which the reflectance of a material surface is given by a mathematical
formula. Certainly, materials in real life present much more complex
characteristics and the accuracy of this group of models is greatly limited.
We introduce first the Lambertian model, in which the light reflected on
a surface is a constant (Figure 2.2, left). In the Equation 2.6, parameter
p represents the diffuse albedo (fraction of reflected vs. absorbed light).
The next most elementary analytic model for material reflectance is the
Phong model [Pho75], which was developed to describe the behaviour of
glossy materials (Figure 2.2, center). This model is given by Equation 2.7,
where V is the viewer’s direction and R is the mirrored direction of the
incoming light from the tangent plane (see Figure 2.4). The Blinn-Phong
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2.2. Material appearance models and reflectance acquisition

Figure 2.4: Vectors utilized in the calculation of Phong and Blinn-Phong re-
flectance models.

model [Bli77] is a physically implausible modification of the previous one
that speeds up computations by replacing the dot product R - V by the
product of the surface normal and the halfway vector between the viewer
and light source vectors.

fr=p/m  (26)  fr=ks(R-V)N £ =ko(N-H)N
2.7) 2.8)

There is a considerably large collection of more advanced BRDF mod-
els explaining a greater mixture of optical phenomena i.e. the Lafortune,
Torrance-Sparrow or Ashikihmin BRDFs, which are beyond the scope of
this text. Instead, we are going to outline one concrete BRDF model of
great relevance for the related work and some of the perceptual stud-
ies that will be presented in this manuscript, the Ward BRDF [War92] (see
Equation 2.9). This model, which was developed in order to fit real-world
measured surfaces, includes a specular peak shaped by a Gaussian func-
tion instead of the power-of-cosine employed by the previous equations.
Furthermore, it has also the ability to model anisotropic reflections by
applying different Gaussian widths (ay and &) in the two perpendicular
directions.

—tan?0y,((cos>y,) / a3+ (sin*py ) / a3)

47t/ cosb;cost,

Inspired by Ward’s model, other data-driven approaches which mea-
sure the reflectance of real material samples have become popular and

e

fr=ks (2.9)
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X

Figure 2.5: Collection of BRDF materials captured by Matusik et al.
[MPBMO3]. As observed, all the samples represent flat, homogeneous and opaque
surfaces.

practical [MPBMO3]. The set of devices and techniques for the measure-
ment of such BRDF reflectance is convered in Section 2.2.3.

As already discussed by Nicodemus et al. [NRH"77] and also illus-
trated in the Figure 2.5, the range of appearances that BRDF models are
able to describe is tailored to flat, homogeneous and opaque materials.
However, real world objects exhibit complex behaviour that often differ
among points in the same surface. In these cases, it becomes mandatory
to increase the original BRDF equation with two additional spatial di-
mensions, leading us to the definition of Spatially-Varying BRDF model,
also defined by Nicodemus et al. [NRH"77]:

fr(x/y/ 91'1 (Pi/ 90/ 470) (210)

Since BRDF functions are only able to represent local phenomena,
spatially-varying models cannot represent non-local light transport oc-
curring due to e.g. self-occlusion, interreflections or subsurface scatter-
ing. Indeed, during the course of our investigations, we examined the
capacity of SVBRDFs to communicate detailed characteristics of material
appearance through the visual channel (Chapter 5) and observed that
the abstraction from volumetric materials to flat surfaces inherent to the
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2.2. Material appearance models and reflectance acquisition

model deteriorated the perception of important cues associated with the
sense of touch (e.g. roughness, thickness and flexibility) among others.
The evaluated SVBRDF material representations and the correspondent
real-world samples employed in this study are depicted in Figure 5.3.

Still, the analysis of this function represents an important shifting of
paradigm, from material appearance to object appearance, and therefore
the geometry of the object in question needs to be taken into account.
When this geometry is known, the spatial dimensions of the SVBRDF are
paremeterized over that concrete geometry. Otherwise, the 6-dimensional
function needs to be defined relative to some reference surface. In fact,
when the reference geometry is planar, the concept of Bidirectional Texture
Function (BTF) [DvG+99] arises.

BTF models are usually acquired in a data-driven fashion by gather-
ing and combining series of photographs from a material sample from
different lighting and viewing conditions and thus are able to repre-
sent the mentioned non-local effects of light reflection if sampled suf-
ficiently densely, making them suitable to represent materials with sig-
nificant mesostructure. However, the acquisition devices are limited to
small sample sizes and complete measurements. Besides, it is a consid-
erably expensive process due to the time needed for acquisition, post-
processing (hours to days) and storage requirements (in the order of ter-
abytes) [SMdB*15]. An example of the rendering quality achieved by this
model in comparison to simple BRDF materials with an applied texture
is shown in Figure 2.6.

Although being able to depict more intricate effects of light reflection,
neither BTFs nor SVBRDFs are enough to describe all kind of material
appearances. Specifically, translucency is a phenomenon in which light
enters the object and emerges from a different surface point, after be-
ing reflected inside the material itself (Figure 2.2, right). The model that
is able to represent such effect is known as the Bidirectional Scattering-
Surface Reflectance Distribution Function (BSSRDF) [NRH*77]:

. . . . _ dL(xor]/m 90/ (Po)
fr(xz, Yi, 05, @i, X0, Yo, 60, q)o) = d(,b(xi,]/j, 0, (Pl)

This function adds two more parameters to the SVBRDFE, which ac-
count for the location where the light leaves the surface. The BSSRDF is
an 8-dimensional function defined as the input power at a single point,
unlike the BRDF, which is defined over a differential area [WLL™'09].
Hence, it is formulated as a fraction of incident flux instead of irradiance
(m=2.sr71).

(2.11)
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Figure 2.6: Stimuli presented by Meseth et al. [MMK™06] in which the render-
ing quality of measured BTFs (middle column) is compared against the original
photographs (left column) and textured BRDF materials (right column) in the
context of car interior scenes.

Even with the addition of the scattering behaviour, still not all the
possible ranges of material appearances are covered. For that, one would
need to consider first the previous functions as dependent from the light
wavelength. Second, apart from the translucent effect, some surfaces are
fluorescent, meaning that they emit light whose wavelength differ from
the incoming rays. Moreover, some surfaces have properties that change
over time. In summary, to completely characterize surface reflectance,
two wavelengths, two time dimensions and two additional spatial di-
mensions should be added to the BSSRDF function, to shape a general
14-dimensional scattering function. To date, we do not have knowledge
of any attempt to capture the full material appearance based on this func-
tion.

2.2.3 Reflectance acquisition

This sections provides a brief summary of the most relevant reflectance
acquisition concepts and methods for the given material models. For
more in-depth discussion about the topic, we direct the reader to the
surveys from Weinmann et al. [WLGK16] and Weyrich et al. [WLL"09].
The most traditional and widely used device for the measurement of
BRDF reflectance is the gonioreflectometer (see Figure 2.7). This appa-
ratus typically uses servo motors to position a beam of light (w;) and a
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Figure 2.7: An example gonioreflectometer from the University of Bonn. On the
lower right side, the camera that is employed for hyper-spectral measurements.
Image obtained from [SSWT14].

sensor (w,) and is designed such that the input and output directions are
known relative to the local coordinate system. Furthermore, the sensor
is usually linked to a spectroradiometer that allows recording spectral
measurements for each source/sensor configuration. Although the mea-
surements are reliable and repeatable, the whole process tends to be quite
lengthy. However, acquisition time can be shortened by considering only
isotropic BRDFs, where the model is invariant to rotations of the light
angles [LFKWO06]. Still, there are several physical limitations that com-
plicate the measurement of accurate BRDFs. For example, measurements
are troublesome when the incident and/or exitant light approach graz-
ing angles due to surface foreshortening. Similarly, the measurements
can become noisy with very dim or very specular surfaces.

The main difference when acquiring SVBRDFs instead of simple BRDFs
is given by the spatial variation in the surface reflectance behavior that is
modeled as a spatial distribution of independent BRDFs over the surface
of the material sample [WLGK16]. For this reason, in order to measure
higher dimensional appearance (SVBRDF or BSSRDF) more efficient and
advanced techniques are required, such as arrays of light sources, digital
projectors and digital cameras. On the other hand, these methods intro-
duce several drawbacks i.e. the loss in spatial resolution, the complexity
of the calibration procedure and the need to estimate the radiometric
mapping between recorded intensities and scene radiance values. If the
prior obstacles are properly addressed, the acquisition of these models al-

24



Chapter 2. Preliminary Knowledge

low to represent fine spatially-varying reflectance and scattering effects.

One important aspect that has to be taken into account while mea-
suring higher dimensional reflectance properties is that the object geome-
try /shape must be known. One common approach to estimate the shape
is the use of structured light in combination with stereo cameras [ZCS03].
This method introduces further alignment issues between the recovered
shape and the images used for reflectometry. Besides, the computation
of the required surface normals from the discrete shape introduces ad-
ditional sources of noise. Instead, surface normals can be directly calcu-
lated from the images using photometric stereo [Wo079], whose classic
approach assumes purely Lambertian material reflectance. The partic-
ular case of recovering three-dimensional shape from a single image is
known as shape from shading [Hor89], and can be employed in order to
model the geometry of highly specular materials. The development of
methods to reconstruct geometry and surface structure from images is
still an active field of research. A complete overview on the foundations
of photometric stereo as well as an examination of the latest techniques
in geometry reconstruction is given by Ackerman and Gosele [AG15].

There is a large amount of acquisition designs and devices, and enu-
merate all of them would be out of the scope of this document. In general,
there are four aspects that need to be considered: acquisition time, pre-
cision, cost (computational, storage-wise, etc) and material diversity (or
range of material categories that a device can measure). During certain
phases of our investigation, we required the measurement of spatially-
varying reflectance of a set of different materials. To that end, we em-
ployed the TAC7 Scanner [XR16], a commercial device whose detailed
description is provided in Section 5.8.

2.3 Visual textures

In computer graphics we commonly use texture mapping as a standard
technique to depict surface details without explicitly modeling the ma-
terial’s geometry or its fine reflectance properties (see Figure 2.6, right
column). The image mapped onto the object/material is what we call tex-
ture map in the domain of computer graphics, or just texture, and can be
used to represent numerous surface properties including color, reflection,
transparency or displacement. In general, this term is used referred to an
image containing arbitrary patterns, although depending on the field of
knowledge it can adopt different meanings. For instance, in computer vi-
sion or image processing textures are referred as visual or tactile surfaces
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composed of repeated elements while in visual perception is just defined
as a property of “stuff” in the image in contrast to labeling “things” in
the image [AB91].

On this subject, the visual perception of textures deals with the in-
vestigation of the underlying mechanisms of human vision. Yet, its role
goes beyond that, as the appearance of textures is inherently related to
the perception of particular materials, from which the texture is derived.
Wile there has been tremendous efforts in the field of computer graphics
to simulate real materials in virtual environments, the human perception
of textural features has been also broadly investigated. However, the role
of textures in the perception of virtual materials, which combines the
knowledge of the two previous research directions, has received consid-
erably less attention. A comprehensive research overview in the avenue
of texture perception is provided by Landy and Graham [LG04]. This
section however, is limited to a summary of the fundamental notions re-
garding the use of textures in computer graphics and vision. Such theory
is discussed with greater detail in the review from Wei et al. [WLKT09].

2.3.1 Texture analysis and synthesis

Textures can come from many human sources, including hand-drawn pic-
tures or photographs. While the first ones can be aesthetically pleasing,
only professional texture artists can produce high-quality, photo-realistic
textures, needed for many applications in computer graphics. On the
contrary, scanned and photographed images usually have such required
quality, but they are not directly usable for texture mapping as they tend
to contain inadequate sizes, shadows, non-uniform lighting and/or un-
desired content. In this context, texture synthesis arises as an alternative
method to computationally generate these textures. It is rather simple
and general, as the user only needs to supply the input exemplar and
a more-or-less large set of parameters to the algorithm. This family of
methods are able to synthesize a bigger sample from an input one that,
according to human observers, appears to be generated by the same la-
tent processes. As stated by Wei et al. [WLKTO09] ,texture synthesis has
two main composing parts:

* Analysis or how to compute the latent generation process from the
given example.

* Synthesis or how to build a generation mechanism to produce new
textures from the given analysis model.
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This two processes shape the fundamental differences between partic-
ular algorithms for texture synthesis.

2.3.2 Basic synthesis algorithms

A considerable amount of the methods for texture synthesis are based in
Markov Random Fields (MRF). Also known as Markov Network, MRF is a
technique of representing and visualizing a probability distribution based
on the notion of undirected graphs. This model can compactly represent
distributions, which are otherwise unable to be represented by directed
models. Formally, a MRF is a probability distribution p over variables
X1,..., Xn given by an undirected graph G where the nodes correspond to
the x; variables and represent the pixels in the images. Then:

p(xt, ) = 7 [T el 12)
ceC

Where ¢(x;, x;j) is a factor that assigns more weight to consistent votes
among variables and Z is a normalizing constant. According to this, MRF
characterize each pixel in the image by a small set of neighboring pixels
and the goal of the synthesis process is to generate an output texture, such
as for each output pixel its MRF neighborhood has a correspondence at
the input texture. With this in mind, there are two essential techniques
for texture synthesis, which at the same time rely on MRF to some extent.

These techniques are the pixel-based and the patch-based synthesis.

Pixel-based synthesis The approach that bootstrapped the study of tex-
ture synthesis algorithms is the work proposed by Efros and Leung [EL99].
Its underlying idea is illustrated in Figure 2.8 and consists in the follow-
ing steps:

1. Select a patch from a given input exemplar.

2. The output is initialized by copying that seed patch from the input.
3. Select an objective pixel outside the already synthesized pixels.
4

. Find a set of candidate matches from the input with respect to the
partial neighborhood of the objective pixel (red) and selects the cen-
ter of one neighborhood randomly. The size of this neighborhood is
determined by the user (3 x 3 in our case).

5. Repeat the previous step to grow the initial patch in an inside-out
manner.
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2.3. Visual textures

Figure 2.8: Illustration of the basic steps for the pixel-based texture synthesis.

This conceptually easy algorithm has as its only tunable parameter
the neighborhood size, which should adequate to the size of the features
in the original texture, otherwise the output might be too random. Al-
though the method is influenced by MRFs, the process does not perform
a rigorous MRF sampling and therefore is easily understandable. On the
other hand, the performance of the method can be too slow and subject to
non-uniform pattern distribution. These issues are addressed in the work
from Wei and Levoy [WLO0O0] by utilizing a fixed neighborhood, random
initialization and synthesis in scanline order (instead of the inside-out
fashion). The use of the fixed neighborhood in particular allows the ap-
plication of diverse acceleration techniques (e.g. kd-trees).

Patch-based synthesis Both quality and performance of pixel-based ap-
proaches can be improved by considering the synthesis of patches instead
of pixels. In order to ensure the output quality, patches are selected by
considering its neighborhood, just as the pixel-based approach. The main
difference between the two techniques lies in the way the input patch is
copied onto the output, as patches, being larger than pixels, tend to over-
lap with already synthesized regions. Possible solutions are overwriting
existing regions, blending, performing an optimization on the final pixels
or warping the patches to ensure continuity.

In this context, Barnes et al. [BSFG09] introduced the PatchMatch al-
gorithm to efficiently find nearest neighbor correspondences between im-
age patches. The key insight is to find good candidate patches through
random sampling and propagating such correspondences to surrounding
areas thanks to the natural coherence of the image. Later, the authors gen-
eralized their algorithm to find k nearest neighbors instead of just one, by
including rotation and scaling in the search space and by using arbitrary
distance measures [BSGA10]. In our research, we will make heavy use of
a synthesis algorithm that relies on PatchMatch correspondences in the
context of computing perceptual similarities between textures in Chapter
6.
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Additional synthesis methods There are further alternatives for the
generation of synthesized textures besides the two mentioned techniques.
One of them is the texture optimization, which, unlike previous
approaches, considers all the pixels in the output image at the same time,
and determines their values by optimizing a quadratic energy function
(i.e. [KEBKO5]). Such function is determined by the discrepancies be-
tween input/output neighborhoods, hence minimizing this function im-
proves the output quality. The same principles of texture synthesis, in-
cluding MRFs, can be applied also to dynamic textures i.e. textures whose
appearance changes with time [WLKTO09]. Although the classic example
is having video data from dynamic phenomena, other approaches are
also feasible, for instance materials whose appearance change over time
[GTR'06]. Furthermore, it is also possible to consider static image sam-
ples and achieve dynamism by modifying the synthesis parameters over
time (i.e. to generate plausible fluid simulations in 2D). Finally, proce-
dural texturing techniques have the capacity to compute the synthesized
appearance on-the-fly at any given point by training generative networks
that capture the characteristics of the “Markovian patches” and gener-
ates output textures in real-time [LWM*16]. These methods, although
effective, are not able to reproduce all range of texture appearances.
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CHAPTER 3

Multimodal Perception of
Material Properties

L3 L4 P3 F4

Figure 3.1: (Teaser) Materials utilized in the experiment. Included are four
leathers (L1 — L4), four papers (P1 — P4), and four fabrics (F1 — F4).

Abstract. The human ability to perceive materials and their properties
is a very intricate multisensory skill and as such not only an intriguing
research subject, but also an immense challenge when creating realis-
tic virtual presentations of materials. In this paper, our goal is to learn
about how the visual and auditory channels contribute to our percep-
tion of characteristic material parameters. At the center of our work are
two psychophysical experiments performed on tablet computers, where
the subjects rated a set of perceptual material qualities under different
stimuli. The first experiment covers a full collection of materials in dif-
ferent presentations (visual, auditory and audio-visual). As a point of
reference, subjects also performed all ratings on physical material sam-
ples. A key result of this experiment is that auditory cues strongly benefit
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the perception of certain qualities that are of a tactile nature (like “hard-
soft”, “rough-smooth”). The follow-up experiment demonstrates that,
to a certain extent, audio cues can also be transferred to other materi-
als, exaggerating or attenuating some of their perceived qualities. From
these results, we conclude that a multimodal approach, and in particular
the inclusion of sound, can greatly enhance the digital communication of
material properties.

In this first approach to the perception of digital materials, we consid-
ered the question of whether prerecorded material audio cues (finger
rubbing and tapping sounds) are able to facilitate the correct assess-
ment of particular material properties or qualities. Given the insight-
ful results obtained in an initial experiment, we went a step further
and investigated if sound could bias the perception of those qualities
predominantly related with the tactile feeling.

This chapter corresponds to the paper [MIWHI15]: Rodrigo Mar-
tin, Julian Iseringhausen, Michael Weinmann and Matthias B. Hullin.
“Multimodal Perception of Material Properties”. In ACM SIGGRAPH
Symposium on Applied Perception. September 2015.
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Chapter 3. Multimodal Perception of Material Properties

3.1 Introduction

Being able to perceive the materials that objects are made of, and their
respective properties, is of utmost importance in our everyday human
lives; yet, to this day we know very little about this skill. What makes
material perception a fascinating and inexhaustible subject of investiga-
tion is that it is highly multimodal, or multisensory, by nature, combining
vision, hearing, touch, smell and taste to varying extents. Consequently,
recreating the intricate appearance of materials in a digital context is a
very hard task. For example, even the most advanced models and meth-
ods from computer graphics have not yet managed to fully virtualize the
material sampling process in product design; instead, physical samples
are still the standard. In this paper, we build upon the assumption that a
designer’s decision for or against a material is not only based on measur-
able physical parameters but also on subjective or affective characteristics.
Under this premise, effective communication of materials requires an un-
derstanding of how these characteristics are perceived multimodally.

The main contribution of this work are two psychophysical experi-
ments performed to quantify the isolated and combined effect of visual
and auditory stimuli on a set of material properties or qualities. This set-
ting maps well to the capabilities of today’s consumer devices, where 2D
display and stereo audio are regularly available in high quality.

In our first experiment, participants rated 10 material qualities for a
set of 12 different material samples, each in 3 different virtual presenta-
tions (visual, auditory, and audiovisual). Reference data was obtained by
letting the subjects interact with a physical sample of each of the mate-
rials (full-modal interaction) and rating the same set of parameters. We
investigated to which amounts the visual and auditory channels impact
the different perceived material qualities. As a key result, we learned that
the assessment of qualities that are of a tactile nature (such as “hard-soft”
or “rough-smooth”) strongly benefits from auditory cues.

Following up on this insight, we performed a second experiment of
similar design where images and sounds of different materials were com-
bined. The main finding of this experiment was that by changing the au-
ditory stimulus, the perception of the tactile qualities can be manipulated
in a consistent manner. In fact, quite extreme changes can be achieved
without compromising the overall realism of the experience.

From these results, we conclude that the digital presentation of ma-
terials can be improved by creating a multimodal experience. However,
future research will be needed in order to explore the potential and limits
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of sound in material perception.

3.2 Related work

While the perception of objects, surfaces and color has been studied in
great detail over the course of several decades, the study of material per-
ception has gained momentum relatively recently. To this date, we still
know very little about the processes that govern human perception of ma-
terials; as a consequence, applying such knowledge in the field of com-
putation is not a straightforward procedure. For a high-level overview
of problems and challenges in material perception, we refer to the ex-
cellent surveys by Adelson [Ade01], Maloney and Brainard [MB10] and
Fleming [Fle14].

The majority of the literature in the field is based on purely visual
representations of the materials'. Several of these studies focused on un-
derstanding how humans perceive the luminance of the surfaces. For
example, Adelson and Pentland [AP96] examined the ability to judge the
reflectance and the shading of the objects in three-dimensional scenes.
Ho et al. [HLMO06] researched the visual estimation of surface roughness,
discovering that observers perceive surfaces to be rougher with decreas-
ing illuminant angle. Visual perception of material glossiness has been
also investigated in isolated form [PFG00] and together with transparency
[CWFS07]. Both works aimed to find perceptually meaningful reparam-
eterizations for optical properties by exploring the relationships between
physical parameters and the perceptual dimensions of glossy and trans-
parent appearance. How the shape of materials influences the perception
of reflectance properties has been analyzed by Vangorp et al. [VLDO7].
Bouman et al. [BXBF13] examined the human competence to estimate the
stiffness and density of fabrics from video, in the context of predicting
such features algorithmically. The interactions between the tasks of ma-
terial classification and material judgment of a set of qualities in both the
visual and semantic domains was investigated by Fleming et al. [FWG13].
Their studies revealed a high degree of consistency between these two as-
signments, suggesting that subjects access similar information about ma-
terials in both circumstances. Finally and in a similar way to our own di-
mensionality analysis, Rao and Lohse [RL96] explored the dimensionality

IThe technical aspects of creating and handling these representations have been re-
searched extensively in the graphics community. Interested readers are kindly referred
to the SIGGRAPH course by Weyrich et al. [WLL"09]
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Chapter 3. Multimodal Perception of Material Properties

of a space of abstract visual textures, identifying three strong orthogonal
directions.

Sound-only approaches to material perception are not very frequent,
however there are some interesting studies. Carello et al. [CAKP98] re-
searched the capability to perceive the specific size of objects. This was
one of the approaches that first addressed the assignment of judging ge-
ometrical properties of an object (length) using audition. The relation be-
tween material perception and variables that govern the synthesis of con-
tact sounds was analyzed by Klatzky et al. [KPKOO] and additionally by
Avanzini and Rocchesso [ARO01]. Giordano and McAdams [GMO06] inves-
tigated the identification of materials from impact sounds. They showed
that, while listeners performed well with respect to gross material cate-
gories, their performance degraded for materials within the same gross
category. Lemaitre and Heller [LH12] studied the human performance
on identifying either the actions or the materials used to produce certain
auditory stimuli. Also purely tactile approaches have been a matter of
research, especially looking at the general dimensionality of the spaces
underlying haptic interactions. In this way, Etzi et al. [ESG14] examined
the nature of aesthetic preferences for tactile textures.

Material perception is multimodal by nature, and the interplay of the
different sensing modalities is far from understood. Guest et al. [GCLS02]
explored how the tactile perception of textures can be modified by ma-
nipulating the frequency content of touch-related sounds. Tactile infor-
mation has been also combined with visual stimuli by Baumgartner et
al. [BWG13], who looked for correspondence between visual and haptic
material representations, and Hope et al. [H]Z13], who evaluated pos-
sible associations between physical and emotional material properties.
Nevertheless, the combination that has gained more interest in material
perception is the association of vision and sound. Bonneel et al. [BS+10]
combined and analyzed levels of detail in audiovisual rendering; Fujisaki
et al. [FGM " 14] researched the principles that govern cross-modal inte-
gration of material information. Fujisaki et al. [FTK15] also went a step
further, investigating whether the same subjective classifications for vi-
sion, audition and touch can be found.

With this work, we aim to extend the state of the art in several re-
gards. Starting on the frame of multimodal perception, we propose two
experiments in which participants not only rated isolated and combined
audiovisual stimuli, they also interacted and evaluated the physical ma-
terial samples. This allows the subjects to obtain a full-modal experience.
Our selection of materials covers three types or classes (leather, fabric,
and paper), each composed of multiple members to represent the respec-
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Figure 3.2: Materials utilized in the experiment. Included are four leathers (L1
— L4), four papers (P1 — P4), and four fabrics (F1 — F4).

tive intra-class variances. The present study focuses on a set of percep-
tual properties that are fine-grained, strongly subjective, and not strictly
aligned with class boundaries. Using vision and sound as virtual presen-
tation modalities, our key question is which of these properties is trans-
ported through which channels, and how they play together. Our insight
is that even simple auditory cues complement the visual channel quite
effectively, allowing digital media to span a wider gamut of perceptual
material properties.

3.3 Experiment 1

We conducted a psychophysical experiment in order to explore the effect
of visual and auditory stimuli on the task of material property perception.
Our goal was to obtain meaningful evidence supporting the influence of
auditory cues in isolated form, or in addition to visual ones. Firstly, we
will briefly describe the details of the experiment, which will be followed
by the discussion of the results.

3.3.1 Methods

Selection of materials. We have collected a database of 32 flat material
samples distributed along three distinct categories including 11 leathers,
10 papers, and 11 fabrics. In the election of materials we selected the
specimens to be as diverse as possible in terms of their physical and aes-
thetic properties, in an attempt to cover the relative heterogeneity within
each material class. As the sound produced by an object highly depends
on its geometry, we only considered flat or nearly-flat samples, in order
to avoid undesired variability.
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Figure 3.3: View of the audio recording setup.

Visual stimuli. From each of the selected specimens, we cut a sample
of 12 x 12 cm?, placed it on a bright background in natural illumination,
and took a photograph using a digital camera (Canon PowerShot G9 in
raw mode), located at approximately 25 cm from the sample under a
light angle. The described illumination and viewing conditions were kept
constant during the whole acquisition process. Pictures were taken at a
resolution of 4000 x 3000 px. Subsequently white-balance correction has
been applied and the images were cropped, such that the specimen covers
approximately the whole image and all images share the same aspect
ratio. The resulting images are shown in Figure 3.2.

Auditory stimuli. In order to record the contact sound produced by
the specimens, we manufactured a special sample holder consisting of a
15 x 15 x 8 cm?® piece of polyurethane foam located between two layers of
acrylic, the top one with a 10 x 10 cm? square cutout to expose the mate-
rial sample. The sample is placed underneath the top acrylic layer, which
gently presses it against the foam block. The entire stack is held together
by four rubber bands under light tension, one in each corner. With this
setup, the sounds produced by the contacts between the sample and any
other adjacent surfaces can be reduced to a minimum. Sound recording
was performed in an acoustically isolated room using a portable audio
recorder (Zoom H6) with an X-Y pair of condenser microphones, about
10 cm away from the sample and facing towards it. Figure 3.3 depicts the
whole setup.

With the purpose of covering a wide range of characteristic material
sounds, we produced six different types of audio stimuli by touching
the material with the fingertip. First, we performed four perpendicular
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Tactile | Visual | Subjective
rough-smooth | shiny—matte expensive—cheap
hard-soft simple—complex | old-new
warm-—cold colorful—colorless | natural-synthetic

beautiful-ugly

Table 3.1: Set of opposite property pairs utilized in Experiment 1, grouped by
type.

movements, followed by four circular movements and lastly four strokes
in the center of the material surface. Afterwards the same interactions
were carried out using the fingernail instead of the fingertip creating one
single track of sound. The length of each interaction was approximately
3 seconds, which altogether resulted in an audio track with a duration
between 18 and 21 seconds. No post-processing was performed, with the
exception of trimming.

After the recording step, we selected a final subset of 12 samples from
the previous assortment of materials, 4 of each class, whose sound exhib-
ited significant dissimilar characteristics.

Perceptual properties. We chose a set of 10 opposite pairs of adjectives,
representing an intentionally diverse collection of perceptual properties
(See Table 3.1). They sample the most characteristic properties from pre-
vious studies on material perception [H]Z13, BWG13, FWG13, FGM ™14,
FTK15]. This assortment of qualities was conceptually organized into
three groups according to the means of perception: tactile, visual and
subjective. While the first two groups include properties related to phys-
ical parameters, the last group is rather associated with an emotional
meaning or the user’s personal preferences.

Participants. 26 subjects, gathered through our university’s Laboratory
of Experimental Economics (BonnEconLab), voluntarily participated in
this experiment (13 females, mean age 26.46 years, standard deviation
6.39 years; 13 males, mean age 30.01 years, standard deviation 8.85 years).
All the participants were naive to the purpose of the experiment and re-
ported normal or corrected-to-normal visual and hearing acuity. They
provided informed consent and received economic compensation for their
participation.
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Procedure. The user study was carried out using a tablet device (Toshiba
Excite Pro 10.1, 2560 x 1600 px resolution) running a custom Android
application, shown in Figure 3.4, together with a set of headphones (Sony
MDR-7506). With this kind of experiment, our setup is not only scalable
to larger surveys but also representative of today’s consumer hardware.

The experiment was conducted in a well-illuminated room with the
windows and doors closed to avoid any source of external noise or dis-
turbance. An experimenter was present during the whole course of the
experiment. The number of subjects per session was limited to 6-8 to
help the experimenter to control the correct realization of the experiment.
An introductory presentation was provided in order to explain the pro-
cedure, clarify questions, and a video of the contact sound generation
process was shown. Participants were instructed to infer or imagine prop-
erties that are not revealed in a particular presentation (e.g., purely visual
properties during the auditory presentation). The application also pro-
vided a help system for definitions of each adjective in question. Upon
starting the experiment, each participant had to individually set the vol-
ume to a comfortable level. It was then fixed and could not be changed
during the completion of the test.

The procedure was structured into four consecutive phases, where
the same materials have been presented to the subjects using different
modalities. In every phase the order of materials was randomized. The
tablet computer was used to generate the particular stimuli and also to
conduct the questionnaire. For each combination of material and stimu-
lus, the subjects rated the selected assortment of properties using a slider
with values ranging from —3 to 3. Each of the values was consistently
labeled with a term indicating the intensity of the property in both axes
(e.g., very rough, rough, a bit rough, neutral, a bit smooth, smooth, very
smooth). These ratings were finally interpreted as a magnitude estima-
tion process [Ste57]. The experiment was composed of the following four
presentations:

¢ Auditory: An audio playback of prerecorded contact sounds.
* Visual: An image of the material.
¢ Audiovisual: Combined both image and audio playback.

e Full-modal: The participants received a 6 x 6 cm? physical material
sample and were motivated to interact with it.

Moreover, the application was instrumented to identify user errors
(such as skipping a material or failure to play a sound) in order to im-
prove the reliability of the gathered data.
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Figure 3.4: Screenshots of the Android application. Each image corresponds to
one of the four presentations composing the experiment.

3.3.2 Results

The evaluation of Experiment 1 is structured into a study of the inter-
participant correlation, an analysis of the individual material ratings as
well as the participants’ preferences. Finally, we also explored the dimen-
sionality of the perceptual spaces spanned by the investigated modalities.

Inter-participant correlation. Given the broad nature of the selected
properties, they are not likely to be communicated equally well along
the four different types of presentations. We argue that if a property is
clearly transported by a certain stimulus, the participants should gener-
ally agree on the judgment of this quality. Contrary, if the information
is not well depicted by the presentation, the participants will have to use
their imagination for rating and thus are expected to agree less. With this
in mind, we employed an inter-participant correlation analysis in order to
investigate the quality of property representations in each of the stimuli.
Figure 3.5 plots the average correlations for each of the property pairs.
For the auditory presentation, the highest correlation has been ob-
tained for the tactile attribute pairs “hard—soft”, “rough-smooth”, and
“warm—cold”. We deduce that, for the given set of attributes, sound is
most suitable to transport tactile information. As expected, the agree-
ment on visual properties is rather low here. The visual presentation per-
forms exceptionally well on the adjective pairs “colorful-colorless” and
“shiny-matte” which again was expected as these are purely visual prop-
erties. The agreement on the tactile properties is lower than in the audi-
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Figure 3.5: Average inter-participant correlation per property, grouped by pre-
sentation and sorted in ascending order w.r.t. the correlation. Note that the
addition of sound increases the overall agreement for tactile properties.

tory presentation. Examining the data for the audiovisual test, a tendency
combining the previous presentations can be observed. In contrast to the
preceding tests, the three most correlated adjective pairs include two vi-
sual properties and one tactile, namely “hard—soft”, “shiny-matte”, and
“colorful—colorless”. Lastly, the correlations of the full-modal presenta-
tion follow the same tendency as the audiovisual presentation, but show
an overall higher correlation.

To summarize, we have found evidence that, especially for tactile
properties, the participants” overall agreement in property rating rises
by adding contact sounds to an image-only presentation.

Material ratings. In this section, we intend to additionally explore
whether it is possible to enrich the digital communication of material
properties by adding sound to the visual representation. For this pur-
pose, we have analyzed the average property ratings and the confidence
intervals (CI) of the mean across all the participants, for each material
independently. Given that the accuracy of this interval depends on the
normality of the data and since the distribution of the material ratings is
not normal, we bootstrapped the confidence intervals of the mean. Boot-
strapping provides a way to construct CIs that does not rely on the normal
assumption [Efr82, ET86]. Figure 3.6 depicts these values for one concrete
material.

We make use of statistical hypothesis testing on this material to eval-
uate the significance of the following suppositions. Firstly, we focus on
verifying whether our full-modal stimuli conveyed relevant impressions
in any side of the polarity axis. This represents our alternative hypoth-
esis H,;. Thus, our null hypothesis Hj states that all stimuli are neutral
on the polarity axis. The hypothesis Hy would be falsified if the neutral
position is not in the confidence interval for the presentation in ques-
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Figure 3.6: Ratings for material P4. The central circles represent the partici-
pants’ mean rating, the outer circles represent the bootstrapped 95% confidence
interval for the mean. The figure is discussed in detail in Section 3.3.2.

tion. Indeed, for 7 out of 10 pairs (“rough-smooth”, “hard—soft”, “shiny—
matte”, “simple-complex”,”colorful-colorless”, “expensive—cheap” and
“beautiful-ugly”) we are able to reject Hy, therefore giving significant

support to H,.

Secondly, we evaluate whether the audiovisual presentation improves
the isolated presentations when communicating the properties of this ma-
terial (H;). The formulation of Hy declares that the audiovisual mean is
not in the confidence interval for the full-modal presentation. Our goal
again is to falsify Hy. The depiction shows that we succeed in rejecting
Hy for 8 of the 10 property pairs (“hard-soft”, “warm-cold”, “shiny-
matte”, “colorful-colorless”, “expensive-cheap”, “old—new”, “natural-
synthetic”, and “beautiful-ugly”). For the remaining two pairs (“rough-
smooth” and “simple—complex”), the mean is still closely located to the
confidence interval boundary. Applying the same hypothesis to the visual-
only test would involve rejecting Hy only for 6 pairs of qualities.

We conclude that, for this particular material, the ratings for the full-
modal presentation mainly exhibit a significant bias towards the extrema
of the property pairs. Furthermore, we found significant evidence that,
for most of the quality pairs, the audiovisual test is more consistent with
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the ratings of the full-modal test than the purely visual one.

Preference analysis. In order to gain a better and broadened under-
standing on the predilections of the participants for the different modal-
ities in the task of property judgments, we performed a preference anal-
ysis independently on each of the examined properties. We consider a
material presentation to be well-suited to represent a certain property if
participants rate close to the full-modal presentation. Contrary, when the
ratings are far apart, the presentation is judged to be less realistic and
thus less suitable. To comprehend which is the impact of sound in these
preferences, we compare the visual to the audiovisual stimulus, using a
weighted voting scheme.

Let r; be the ratings for a certain combination of material and property
for a particular presentation i, j € {visual, audiovisual} and ry,, the ratings
for the full-modal task 2. The corresponding weights are defined as
s — {mm =il =l =] i =il < =il o

0 else

This means, that the weights grow with the difference of the ratings.
To compute the final scores, we sum up the weights over all materials and
participants, which is followed by a normalization,

L8i,j

— 1
LS, |
i,j

Sij where i,j € {visual, audiovisual }. (3.2)

The normalized scores, separated by properties, are shown in Fig-
ure 3.7. A clear preference for the audiovisual presentation for a certain
property would entail that the addition of sound information augments
the way we perceive materials for the given conditions. Indeed, analyzing
the results reveals a meaningful enhancement for some of the properties,
especially for “rough-smooth” and “hard-soft”, both categorized as tac-
tile. Substantial preferences for the audiovisual presentation can also be
observed in other adjective pairs such as “simple-complex”, “old-new”
or “beautiful-ugly”. No significant bias towards the visual presentation
could be observed for any of the property pairs. This suggests that the ad-
dition of sound doesn’t downgrade the representation of material prop-
erties.

2Notation of the preference analysis changed for consistency with the notation in
Section 5.4.1. For the original formulation we kindly refer the reader to the original
publication [MIWH15].
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Figure 3.7: Participants’ preference for the type of presentation, according to
our voting schema. A strong bias towards the audiovisual presentation can be
observed especially for the tactile property pairs “rough—smooth” and “hard—
soft”, as well as for “simple—complex”, “old—new” and “beautiful-ugly”. There
is no significant preference for the visual presentation in any pair, so the addition

of sound does not deteriorate the perception.

Dimensionality of the perceptual property space. In the previous sec-
tion we noticed that the addition of sound to a visual material presen-
tation is able to enrich the perception of certain properties. To further
confirm this insight, we analyzed the dimensionality of the perceptual
property space spanned by the qualities used in this experiment.

We averaged the ratings over all participants and performed a princi-
pal component analysis (PCA) for each type of presentation on the mean
data. The factor loadings, as well as the explained variances of the first 3
principal components for each presentation are shown in Table 3.2. Fur-
thermore, Figure 3.8 illustrates the corresponding scree plots, with the
principal components on the x-axis and corresponding eigenvalues on
the y-axis. Using the scree test we determined the dimensionality of the
data by looking for the point in the plots, where the graph’s strong slope
ceases and the remaining eigenvalues start to approximately even out on
a low level. With this criterion, we found one significant dimension for
the auditory presentation, two for the visual, three for the audiovisual,
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Figure 3.8: Scree plots of the PCAs, showing the PCs vs. the corresponding
eigenvalues. Application of the scree test, illustrated by the vertical line, reveals
one significant dimension for the auditory presentation, two dimensions for the
visual, three dimensions for the audiovisual, and four dimensions for the full-
modal.

and four for the full-modal presentation, with the cumulative explained
variance being 73.99, 70.74, 85.88, and 95.13 percent respectively. We de-
duce that combining auditory and visual cues increases the representable
dimensionality of the perceptual property space over the visual presenta-
tion alone.

A detailed examination of the coefficients reveals that, for the auditory
test, the most significant PC is dominated by the tactile qualities “hard-
soft”, “rough-smooth”, and “warm-cold”, which is in accordance to the
inter-participant correlation reported above. Moreover, tactile properties
have no strong influence on the first two PCs of the visual presentation,
whereas they are strongly present in the first PCs of the audiovisual pre-
sentation. This indicates that the information representable by the audi-
tory and visual presentation is orthogonal, which explains the increase in
the dimensionality. For the full-modal presentation we can observe that
the first two PCs interchange w.r.t. the audiovisual presentation. Here, the
first PC is dominated by vision and the second PC by tactile properties,
contrary to the audiovisual stimulus.
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Auditory Visual Audiovisual Full-modal

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
rough—smooth 0.600 —0.045 —0.405 0.022 —0242 —0.048 0319 —0351 —0.160 | —0.265 0.466 —0.216
hard—soft 0.618 0.073 0.316 0.292 0.006 0.240 0.619 —0.477 0.112 0.116 0.680 0.519
warm-cold —0.372 0.357 —0.258 | —0.330 0151 —0.115 | —0.440 —0.008 0.162 | —0.237 —0.181 —0.020
shiny—matte —0.076  —0.028 0.452 0.653  —0.022 0.056 0.353 0.647  —0.069 0.611 —0219 —0.183
simple—complex —0.067 0.017 0.670 | —0.080 0.112 0.078 0.020 0.034 0.132 0.192  —0.080 0.285
colorful—colorless -0.177 0.106  —0.039 0.153 0.824 —-0.355 0.133 0.149 0.818 0.200 —0.120 0.444
expensive—cheap —0.103 0218 —0.035 | —0.027 0.144 0.617 0.038  —0.033 0.205 | —0.130 —0.353 0.274
old-new 0.171 0.171 0.101 | —0.379 —0.056 —0.369 | —0.333 —0.134 0.000 | —0.344 —0.149 —0.130
natural-synthetic 0.162 0.870 0.047 | —0.451 0.195 0.480 | —0.252 —-0427 0.246 | —0.519 —0.180 0.370
beautiful-ugly —0.110 0.136 0.038 0.050 0.407 0.211 0.054 0.077 0.377 0.078  —0.200 0.378
Explained variance [%] 73.99 11.33 7.48 ‘ 42.78 27.96 10.70 ‘ 37.74 26.54 21.60 ‘ 43.24 27.85 15.98

Table 3.2: Factor loadings and explained variance of the first three principal components for each modality. Bold, under-
lined values represent the strongest factors (greater than 0.350) for each principal component.
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3.4 Experiment 2

While the results of our first experiment indicate that augmenting the vi-
sual presentation of materials with additional sound characteristics mod-
ifies the way we perceive them, Experiment 2 explores whether it is possi-
ble to consistently manipulate the perception of a material in the audiovi-
sual presentation by replacing its auditory stimulus. For this purpose, di-
verse combinations of the sounds and images acquired for the individual
material samples were shown to the participants. Similar to Experiment
1, we will first describe the details of the experiment and subsequently
discuss the corresponding results.

3.4.1 Methods

Selection of materials and properties. Based on the results of Exper-
iment 1, we identified specimens which, for the visual and auditory
modalities, elicited stronger visual and acoustic ratings for specific quali-
ties. Additionally, we also selected those specimens whose ratings showed
a certain degree of contrast between the same modalities. Our selection
was then reduced to a subset of 4 materials (L2, P1, P4 and F3) plus one
additional sound stimuli (L4).

We also narrowed the selection of material qualities to the tactile ones
(“rough-smooth”, “hard-soft”, “warm-cold”), complemented with the
two subjective properties “old—new” and “beautiful-ugly”, which showed
better audiovisual performance in the preference analysis in Section 3.3.2.
In addition to this choice, we incorporated the pair “unrealistic-believable”
in order to determine to what extent the realism of the experience was
compromised.

Participants and procedure. 29 subjects (12 females, mean age 23.58,
standard deviation 2.64; 17 males (mean age 27.06, standard deviation
4.77) participated in Experiment 2. The selection of the aforesaid par-
ticipants was based on similar principles as in our previous experiment.
Similarly, tablet devices and headphones were used for the presentation
of visual and auditory information to 6-8 subjects simultaneously in a
quiet, well-illuminated room. Again, instructions were given at the be-
ginning of the procedure. In contrast to Experiment 1, in the audiovisual
presentation all possible combinations between sound and image were
shown to the participants for a total of 5 sounds x 4 images = 20 stim-
uli.
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3.4.2 Results

The results of Experiment 1 point out that sound contributes to the per-
ception of material properties, especially for the tactile properties. In
contrast, we now focus on obtaining insights on whether it is possible to
change material property perception in a consistent and plausible way by
manipulating the contact sound. In this scope, we additionally analyze
whether the auditory ratings correlate to audiovisual ratings where the
respective sound is combined with images of other materials.

Firstly, we investigated the image-sound interaction by exploring the
mean ratings for the audiovisual presentation for each property. Figure
3.9 depicts such values for the pairs “rough-smooth”, “hard-soft” and
“old—new”. The rows of the respective matrices denote the sounds used
in the evaluation while the columns denote the images. The level of ac-
ceptance (represented by the unrealistic-believable dimension) has been
additionally specified with symbols. Depending on the sign of the mean
ratings, we use a circle for specifying that a particular combination was
rated to be believable, and a cross if it was rated to be unrealistic.

At first glance, the ratings obtained for “rough-smooth” and “hard-
soft” reveal a homogeneous characteristic in the rows of the matrix. This
suggests that the audiovisual perception is dominated by the characteris-
tics of the auditory information rather than by vision for these two prop-
erty pairs, i.e. the varying visual information contained in the different
images does not exhibit a substantial influence. In contrast, in Figure
3.9¢ the row vectors of the matrix show a strong similarity among each
other, i.e. the columns show a homogeneous behavior. Additional exami-
nation of the acceptance level denotes that, for most of the cases, this bias
was achieved without endangering the plausibility of the experience. The
sounds that were deemed largely unrealistic were principally the ones
produced by paper, even for the actual sound-image pairs. We attribute
this to the obvious imperfections in the audio recording and reproduction
process (consumer devices). Nevertheless, these sounds can be used to
affect the ratings of the other properties consistently.

To validate our observations, we considered the mean correlations be-
tween the columns and the rows respectively. The corresponding values
are given in Table 3.3. For the pairs “rough-smooth” and “hard-soft”
the mean correlations obtained for fixed auditory stimulus are signifi-
cantly higher than the ones obtained with fixed visual information. For
the pair “old—-new”, the correlation values exhibit the opposite tendency.
These findings are in line with our aforementioned observations. In order
to evaluate whether the audiovisual perception can be manipulated in a
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@ Believable
X Unrealistic

Sounds
Sounds

L2 P1 P4 F3 L2 P1 P4 F3 L2 P1 P4 F3
Images Images Images

(a) Rough—smooth (b) Hard—soft (c) Old—new

Figure 3.9: Mean ratings for the manipulated audiovisual presentations. Rows
indicate the utilized auditory stimulus and columns the visual stimulus. The
mean ratings are color-coded and denoted in each cell. The realism of the combi-
nation is indicated by the symbol in the lower-left corner. A circle represents the
combination was rated believable, while a cross represents it was rated unrealis-
tic.

\ Auditory \ Visual
rough-smooth 09736 | 0.1133

hard—soft 0.9807 | —0.0684
warm-—cold 0.8671 | —0.1532
old-new 0.6490 0.9209

beautiful-ugly 0.9403 | 0.3547

Table 3.3: Mean correlations between the ratings with fixed auditory and visual
stimulus respectively. High correlations for the fixed audio are found especially
for the pairs “rough—smooth” and “hard—soft”, indicating a dominant influence
of the auditory stimulus.

both predictable and consistent way, we also compared the auditory-only
mean ratings to the corresponding audiovisual mean ratings. Indeed, we
could find a high mean correlation here as well, being 0.97 for “rough-
smooth” and 0.98 for “hard—soft”.

3.5 Discussion and future work

The findings of our investigation are in line with previous work as they
confirm that sound is indeed an important factor for the perception of
material properties. We found that even simple contact sounds as the
ones offered in our experiments can support the judgment of properties
that are of a tactile nature, and, hence, offer an orthogonal complement to
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3.6. Conclusion

the visual channel. Even more, we can use sounds as a tool to achieve de-
liberate biases and manipulate the perception of those properties almost
independently of the visually transmitted ones.

The sound presentation was limited to playing back prerecorded
sounds of a default sequence of touch activities. Observing that sound is
strongly linked to haptic experience, it would be consequent to develop a
synthesis scheme that would allow users to “scratch” a surface by touch,
and listen to the resulting sounds in real time. We expect a significant
increase in realism from a more immediate mode of interaction. A fur-
ther avenue of future research could be the analysis of the connections
between the space spanned by the perceptual qualities and the frequency
spectrum of the audio signals.

By and large, the subspace made accessible by sound appears to be
one-dimensional, and it remains unclear to which extent this is due to
the scale of our experiments. In order to keep the overall size of the
study manageable, we had curated 3 classes of materials and 10 pairs
of opposite adjectives where there could have been many more of each.
As a result, even the variance of the full-modal experience is represented
to 95% by only 4 principal components. Fleming et al.’s [FWG13] 42-
dimensional ratings space, on the other hand, exhibits a much more gen-
tly decaying eigenvalue spectrum, requiring 7 principal components to
explain 50% of the total variance. We imagine that a scaled-up version
of our experiments would reveal additional structure within the space of
perceptual parameters and shed more light on how they are linked to the
various sensing modalities.

Finally, we acknowledge that the visual stimuli used in this study were
static, whereas the auditory stimuli were dynamic and the full-modal pre-
sentations even fully interactive. This fact may have caused bias in favor
of auditory and audio-visual presentations. For future iterations of the
study, we project to include dynamic visual models including animated
objects and/or light sources to level the playing field.

3.6 Conclusion

We have found evidence that the addition of sound benefits the percep-
tion of digital materials, particularly for tactile qualities. Additionally we
identified a way of manipulating the judgments of such properties in a
consistent way. We believe that most of these findings can immediately be
put to practice in product design and visualization. At the same time, it is
clear that many questions on multimodal perception of materials remain
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to be answered; our results provide strong directions for deeper research.
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3.8 Supplementary material

In this section, we introduce additional material to the paper ‘Multimodal
Perception of Material Properties” which is not included in the original
text due to space constraints. First, additional research pertinent to the
state of the art in tactile material perception is properly discussed. Then,
we introduce the analysis of the correlation between the ratings for the
studied material properties to later present a more detailed evaluation
and visualization of the perceptual property space which also includes
procrustes analysis. Finally, we show the means (also referred as Mean
Opinion Scores, MOS) and confidence intervals (CI) for the participants’
response ratings from Experiment 1 and the remaining mean responses
of the manipulated audiovisual presentations from Experiment 2.

Relevant related work. A relevant study from Picard et al. [PDVGO03]
explored the perceptual dimensions of tactile interactions with fabrics (car
seat cover materials) and the semantics associated with touch experiences.
As reported by their their experimental results, haptic interactions with
these materials imply a limited set of continuous perceptual dimensions
(between 3 and 4), which are later interpreted by means of rating scales.
According to this, seat cover materials present two orthogonal main di-
mensions, namely soft/harsh (first) and thick/thin (second). The third per-
ceptual dimension (relief) and the fourth (hardness) were early understood
as very closely related to the processing of the soft/harsh dimension.
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Figure 3.10: Correlation matrices between the set of properties analyzed in our
experimental studies across all materials and participants. The size of the blob
corresponds with the absolute value of these coefficients. Those values r >0.113
are statistically significant with a 95% confidence level.

Correlations between material properties.
degree of relationship between the set of material properties analyzed in
our experiments. In particular, we are interested in the correlation be-
tween the adjectives belonging to the same group (tactile, visual and sub-
jective) and how such values evolve through the different presentations.
Essentially, this analysis would confirm whether the material property
dimensions employed in our studies were correctly understood by the
subjects, as some pairs of adjectives are intuitively expected to correlate
better than others. Thus, we computed the correlation matrices per ex-
perimental presentation across all material samples and participants and

present them in Figure 3.10.

We would like to learn the

Interestingly, subjective properties exhibit significant correlation val-
ues between each other, same as most of the properties categorized as
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tactile. However, the correlation values between visual properties ap-
pears to be relatively low. Some of these relationships between proper-
ties are highly intuitive (e.g. smooth and soft, beautiful and expensive),
while some others are not so straightforward (e.g. shiny and synthetic,
natural and expensive). In general, all the considered presentations have
very similar degree of correlation. Indeed, there is a very small mar-
gin between the presentation with the highest average correlation values
(Auditory, R = 0.195) and the one with the lowest values (Audiovisual,

A

R = 0.160).

Visualization of the perceptual space. In order to achieve a better un-
derstanding of the dimensionality of the perceptual space spanned by
our set of perceptual properties (discussed in Section 3.3.2), we addition-
ally show the projected factor loadings of the two first principal com-
ponents (PCs) in Figure 3.11. Although the above-mentioned analysis
demonstrated that each presentation has a varying number of underlying
dimensions, here we consider only the two first ones for simplicity and
clarity. The illustration shows how the subdimensional space revealed by
the auditory presentation is clearly unidimensional, while the audiovi-
sual and full-modal spaces allow a better visual clustering of the material
classes.

We then compared the presentations by considering the full-modal
space (FM;s) resulting from PCA as the ground-truth representation
against the remaining presentations Ps € {As, V5, AVs} using procrustes
analysis [Gow?75]. This is a statistical technique that aims to map one
multidimensional shape onto another by using linear transformations
only. In this process, we considered all ten dimensions at our disposal
and employed the minimized sum of squared errors (SSE) to measure
the goodness of the mapping. The working hypothesis is that the better
the mapping between Ps and FM; is, the more accurately are real-world
material interactions represented by a particular presentation (and its as-
sociated modalities). Interestingly, the best fit by far is achieved by the
AVs mapping (SSE = 0.147), followed by Vs (SSE = 0.287) and lastly As
(SSE = 0.504). According to this, the addition of auditory input to the vi-
sual one is far more able to characterize real-world material information
than visual or auditory input alone.
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Figure 3.11: Distribution of the samples in the first two PCs. The circles repre-
sent the projected positions of individual material samples in the subdimensional
space for each presentation.
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Material ratings. The means and CI of the participants’ response ratings
from Experiment 1, arranged by material and category are depicted in
the Figures 3.12 (for leathers), 3.13 (for fabrics) and 3.14 (for papers).
The remaining mean responses for the audiovisual stimuli presented in
Experiment 2, organized by property pair, are displayed in Figure 3.15.

L1 mean ratings and CI L2 mean ratings and CI
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Figure 3.12: Response ratings from Experiment 1 for each of the investigated
material samples (leathers only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.
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Figure 3.13: Response ratings from Experiment 1 for each of the investigated
material samples (fabrics only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean.
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Figure 3.14: Response ratings from Experiment 1 for each of the investigated
material samples (papers only). The central circles represent the participants’
mean rating, while the outer circles represent the bootstrapped 95% confidence
interval for the mean. The bottom-right Figure for material P4 corresponds with
Figure 3.6.

Sounds
Sounds
Sounds

L2 P1 P4 F3 L2 P1 P4 F3 L2 P1 P4 F3
Images Images Images
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Figure 3.15: Mean ratings for the manipulated audiovisual presentations from
Experiment 2 that were not presented in Figure 3.9. Rows indicate the corre-
sponding auditory stimulus employed while columns indicate the visual stimu-
lus. The mean ratings are color-coded and displayed in each cell.
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CHAPTER 4

Evaluating the Effects of Material
Sonification in Tactile Devices
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Figure 4.1: (Teaser) From left to right, an illustration of the audio acquisition
setup, the processing of the sound grains and the interface of the sonification
software employed during the user experiments.

Abstract. Since the integration of internet of things technologies in our
daily lives, there has been an increasing demand for new ways to interact
with commodities in the domain of e-commerce, that go beyond passive
product visualization. When considering materials from retailing stores,
the utilization of audio cues has proven to be a simple but effective way
to enhance not only the estimation of well-established physical qualities
(e.g. roughness, flexibility), but also affective properties (e.g. pleasant-
ness, value), which have an important leverage in the user decision for or
against a product. In this paper, we propose to investigate augmenting
visual representations of leather and fabric materials with touch-related
audio feedback generated when rubbing the fingertip against the sam-
ples. For this purpose, we developed an interactive material sonification
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system for tactile devices that allows evaluating the impact of such audio
cues on the human perception of materials by means of a psychophysical
study based on rating scales for a set of relevant physical and affective
material qualities. Our experimental results indicate that the evaluated
touch-related audio cues do not significantly contribute to the perception
of these attributes for the considered materials. In light of these findings,
we suggest complementary directions of research in interactive material
sonification, which may lead to profitable results.

Building on the outcome from the preceding chapter, we hypothe-
sized that the presence of continuous, touch-related material sound,
played back upon user interaction with a tactile device, would not
only aid the estimation of tactile qualities, but also influence the over-
all affective experience. Thus we developed an interactive sonifica-
tion algorithm for tactile devices and evaluated it from a perceptual
point of view. One difference that turned out to be decisive w.r.t.
the previous chapter is that, in this investigation, we only considered
rubbing sounds from a more limited spectrum of materials, in order
to narrow down the range of sounds that the synthesis algorithm is
required to reproduce.

The contents of this chapter were published after the submission
of this thesis [MWH18b]: Rodrigo Martin, Michael Weinmann and
Matthias B. Hullin.* “A Study of Material Sonification in Touchscreen
Devices”. In ACM International Conference on Interactive Surfaces and
Spaces (ISS '18) July 2018. Whose extended version has been also
made available online [MWH18a].

62



Chapter 4. Evaluating the Effects of Material Sonification in Tactile Devices

4.1 Introduction

The shopping experience in our everyday life is determined by various
types of interaction with commodities. A consumer’s decision-making
process in a store, for instance, is based on a multitude of inner rating
processes that do not only involve the perception of physical properties
through different senses such as sight, hearing or touch, but also an emo-
tional or affective experience. In the context of online shopping and ma-
terials in particular, the sensory and emotional bandwidth of interaction
with the respective commodity is greatly reduced and mostly limited to
a passive visual representation and, occasionally, a textual description.
Previous investigations have shown that the lack of a multimodal expe-
rience in general, and tactile input in particular, significantly affects the
user’s capability of assessing physical material properties (e.g. softness,
flexibility) and developing affective emotions (e.g. pleasantness, value)
evoked by the product [CJSC03]. As a logical consequence is desirable
to enhance the digital material with additional cues on top of the purely
visual user experience. In this regard, auditory cues and sonification tech-
niques have demonstrated to compensate the absence of tactile interaction
for digital material samples to some degree [HJK 13, MIWH15], without
deteriorating its general impression. Instead of simply triggering a prere-
corded audio sample of the interplay with the material, directly allowing
customers to interact with the digital material, where audio information
corresponding to this interaction is is automatically synthesized in real
time represents an interesting challenge for the digital commerce.

The goal of this work is the analysis of the effects in the perception
of physical and affective material qualities when visual material repre-
sentations (photographs) are augmented with interactive audio feedback
generated as the response to a single finger rubbing motion. Thereby,
we employed a granular synthesis approach to build a sonification sys-
tem that allows to enrich the user interaction with digital material sam-
ples through tactile devices. We then conducted a user study in which
participants rated a set of relevant material qualities across a purely vi-
sual condition, two audiovisual conditions (including static pre-recorded
sound and the interactive sonification system) and a full-modal condi-
tion, in which they were able to interact with the actual specimen. The
experimental results were examined by means of the degree of correlation
between participants, the analysis of the perceptual space spanned by the
material qualities and the performance of each condition in a material
classification task.
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The key finding from this set of analyses is that the addition of rub-
bing material sounds as such does not seem to significantly improve the
perception of material properties, although the overall material experi-
ence is not compromised by the presence of auditory cues. Considering
these insights, we believe that future investigations in the domain of mate-
rial sonification should contemplate additional material classes and audio
cues from more user-centered material interactions. In accordance to this,
alternative synthesis techniques able to deliver the sound corresponding
to these interactions would have to be considered.

4.2 Related work

This section provides a summary of relevant investigations in the areas
of multimodal perception of materials as well as sonification and sound
synthesis of material interactions.

4.2.1 Multimodal perception of materials.

The majority of the research in product perception has been focused on
the visual modality. Nevertheless, auditory cues have demonstrated to
have a significant influence in the perception of product quality/efficiency
(including electric toothbrushes, cars or foodstuff), and to be able to pro-
vide semantic signatures to a certain brand (e.g. the breaking sound of a
‘Magnum’ or the opening of a ‘Schweppes’ bottle) [SZ06]. Like any other
product, the perception of materials is inherently multimodal and, with
it, several strands of research have been conducted to investigate how
the interplay between different senses shapes the perception of textures,
materials and objects. An extensive review of the perception of textures
regarding touch, vision and hearing is provided by Klatzky and Leder-
man [KL10], in which texture is understood as a perceptual property that
characterizes the structural details of a surface.

There are not many approaches that focus on the investigation of
purely acoustic material perception. Klatzky et al. [KPKOO] analyzed
the relationship between material perception and variables that govern
the synthesis of impact sounds. Their results indicate the importance
of a shape-invariant decay parameter in the perception of the material of
which an object is made, while the frequency content plays also an impor-
tant part. In a related fashion, Giordano and McAdams [GMO06] studied
the human performance when identifying materials from impact sounds.
Interestingly, they concluded that listeners performed well with respect
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to the gross categories, but their performance degraded for materials be-
longing to the same category.

Beyond the human performance in classifying materials, also the abil-
ity to infer concrete material qualities has received particular attention.
Fleming et al. [FWG13] conducted a set of experiments to investigate
the interactions between material classification and quality judgments. A
high degree of consistency between these two assignments was detected,
indicating that they facilitate one another by accessing the same percep-
tual information. The multisensory nature of the communication of mate-
rial qualities has been further explored by Martin et al. [MIWH15], where
the authors employed contact and stroking material sounds to comple-
ment the visual stimuli. Their results demonstrate the strong linkage be-
tween the auditory channel and the haptic perception to a point in which
sound is capable of biasing the visual judgment of concrete qualities. In
addition, Fujisaki et al. [FTK15] examined how a set of physical and af-
fective qualities of wood are evaluated in three different modalities of
vision, audition and touch, and observed that all three senses yield some-
what similar representations. Lastly, The qualities related to aesthetic per-
ception of materials also play an important role in the decision-making
process. In fact, strong connections have been observed, for instance,
between the assessed smoothness of tactile textures and their perceived
pleasantness [ESG14].

4.2.2 Sonification and synthesis of material sounds.

The synthesis of a multitude of sounds, from artificial to natural and pure
musical ones, has important applications in movie sound effects, video
games, virtual reality, multimedia or in art installations. An exhaustive
survey on the predominant digital audio analysis and synthesis methods
has been presented by Misra and Cook [MCO09]. The former includes a
taxonomy which introduces the most suitable synthesis approaches for
each sort of sound and addresses the value and adaptability of the fam-
ily of granular synthesis methods in the generation of audio textures. In
fact, although granular methods have been mainly used in the creation of
soundscapes, their possible range of applications include the synthesis of
acoustic instruments, pitched sounds, speech, singing voice, and contact
sounds from virtual surfaces when bouncing, being broken or scraped
[BA02]. Belonging to the same family of techniques as granular synthesis,
concatenative synthesis has been utilized in the context of simulating the
particular sounds that certain materials produce. An et al. [A]M12] devel-
oped a motion-driven algorithm that is able to synthesize cloth sounds for
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a wide range of animation scenarios. Their technique avoids expensive
physics-based synthesis but still produces plausible results. However, it
requires a certain amount of manual intervention and does not achieve
interactivity.

In the context of visualization, information about the scene is rep-
resented in terms of shapes of varying sizes with attached color infor-
mation and used to create pictures we can look at. Sonification is the
equivalent concept translated to the sense of hearing, that is, the synthe-
sis of non-speech audio to convey certain information. In this regard, the
use of synthesized material sound has a large range of applications in
sonification systems, which may be used to overcome limitations in rep-
resenting tactile properties of digital objects and materials, among other
purposes. An early investigation from Guest et al. [GCLS02] evaluated
how tactile textures are perceived under real-time manipulation of touch
related sounds. Their study indicates that the frequency content of tex-
tural sounds represents the dominant factor for such sort of interactions
as e.g. attenuating high frequencies caused the textures to be perceived
smoother. Later, Tajadura-Jiménez et al. [TJL+14] explored the ability
of a sound-based interaction technique to alter the perceived material of
which a touched surface is made. Their granular sonification algorithm
reproduces samples (grains) with three different frequency levels where
the grain selection is guided by the finger pressure on a wooden sur-
face. With their results, the authors determined that increasing sound
frequency alters either the surface perception (colder material) and the
emotional response (increased pressure and touch speed). Finally, by us-
ing textural sounds in the context of a retail clothing application, Ho et
al. [HJK"13] demonstrated that the simple addition of realistic auditory
feedback to the unimodal visual experience favors the feeling of immer-
sion, which becomes evident in longer interaction times with the product
and also willingness to pay a higher price for it.

The present investigation establishes, to our knowledge, a novel and
interactive approach to material sonification with consumer hardware
and the first assessment of its effects on the perception of physical and
affective material qualities. We hence arranged a user experiment to eval-
uate such effects in comparison to additional stimuli, including the actual
material samples. The description of our experimental setup is intro-
duced in the following section.
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Figure 4.2: Pictures of the leathers materials (upper row L1-L5) and fabrics
(lower row F1-F5) as displayed in our study.

4.3 Experimental design

The key elements of our experimental design are given by the consid-
ered visual stimuli, the auditory stimuli, the actual material samples and
the description of the user study. In the following, we provide details
regarding each of these components.

4.3.1 Visual stimuli

In the scope of this research, we explore the perception of physical and
affective material qualities for two semantic classes (leathers and fabrics),
which are commonly available in retailing websites. For this purpose,
we have chosen ten material samples, each of them with an approxi-
mate size of 120 x 120 mm?, with nearly flat geometry to avoid possible
sources of visual variability and sound artifacts. Restricting our selection
to these two concrete, well-known classes allows us to keep the study
and its conclusions manageable. We then situated each specimen on a
bright background under natural illumination and took a picture using
a digital camera (Nikon1 J5, resolution 5568 x 3712 pixels) located at ap-
proximately 200 mm from the sample under a slight angle. The resulting
images were corrected regarding white-balance and scaled to match the
resolution of the final device (see Section 4.3.5). The characteristic borders
of each specimen were additionally cropped, since they have been demon-
strated to provide supplementary information to the material texture that
could bias the visual stimuli [MWH17]. The resulting photographs are
displayed in Figure 4.2.
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Figure 4.3: Illustration of the relevant steps from the synthesis process and the
experimental study, including the acquisition of touch-related material sound
(a), pre-processing phase for a concrete material L5 (b) and (c), a picture of a
participant during the study (d) and the elements composing the user interface

(e).

4.3.2 Auditory stimuli: acquisition of material sound.

In order to record the touch-related sounds arising from the interaction
with the selected materials (i.e. brushing them with the fingertip), we
assembled a setup composed by a piece of polyurethane foam with the
size of 400 x 400 mm?, on which the sample was placed. The actual
recording step was carried out in an acoustically isolated chamber us-
ing a directional microphone (Beyerdynamic MCE 86 II) located about
20 cm away from the sample and facing towards it. The contact sounds
were generated by gently rubbing the material’s surface creating random
trajectories while increasing the velocity of the movement for roughly a
minute. Other than trimming, no further post-processing was applied to
the audio. Such recordings were employed as the static audio in one of
our experimental conditions (see Section 4.3.5).

To later guide our sound synthesis method, we annotated the resulting
signal with the position of the finger during the interaction. We achieved
this by attaching a fiducial marker [GJMS+14] to the nail of the interact-
ing finger, which we tracked using a machine vision camera (Point Grey
GS3-U3-2356M-C Grasshopper). An illustration of the complete setup is
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depicted in Figure 4.3a. After basic analysis of the video data (marker
tracking, trajectory smoothing, numerical differentiation), we thus ob-
tained 2D finger velocity data 7; at 100 samples per second (see Figure
4.3¢) along with the 48 kHz stereo audio clip s(t).

4.3.3 Auditory stimuli: synthesis of material sounds.

To deliver material contact sounds in response to the user’s input in real-
time, we developed a sonification algorithm based on granular synthesis.
This family of techniques has been broadly used in many applications
due to their flexibility [MC09], including the synthesis of material con-
tact sounds [BA02]. The moderate computational load, in comparison to
physically-based approaches, represents a decisive aspect as it allows to
perform the synthesis on consumer hardware (such as tablet computers)
at interactive rates, thus facilitating the present study. To this end, we
employed the open-source audio processing language Pure Data (Pd)! as
an embeddable library (Libpd) under Android.

We divided the recorded sound clip s(¢) into fragments with a length
of 480 samples, corresponding to the spacing of velocity samples (10 ms).
Each such fragment was annotated by velocity values 7; (see above) and
its root-mean-square (RMS) loudness a;, noting that the loudness of a
fragment roughly scales with the square of the corresponding velocity. To
avoid artifacts when re-synthesizing fragments into a new audio stream,
we discarded those fragments that were unusually soft or unusually loud
for the given velocity. We identified such outliers by computing the ratio
a; = aj/|vj |? for each fragment, and then removed those fragments whose

ratio was below the 5" percentile or beyond the 95! percentile (see Figure
4.3b). The remaining set of annotated fragments constitute the input to
the sonification system.

During user interaction with the tactile device, the touch interface
measures the user’s finger velocity ¥, on the screen. The granular syn-
thesis uses this value to retrieve suitable sound fragments according to a
distance metric that considers the velocity and loudness of the j* frag-
ment:

where & is the mean of the ratio «; across all fragments. To ensure varia-
tion, we follow a standard practice in granular synthesis by retrieving not

lpure Data (Pd)isan open source visual programming language for multimedia. For
more information and resources we refer to the corresponding webpage: http://libpd.cc
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Tactile | Visual | Affective
rough—-smooth | shiny—matte expensive—cheap
hard-soft bright-dark natural-synthetic
thick—thin transparent-opaque beautiful-ugly
stiff-flexible homogeneous-heterogeneous | unpleasant-pleasant

Table 4.1: Opposite-meaning quality pairs, grouped by category.

only the single closest hit for the given query velocity @j,, but the k = 25
closest fragments instead. With the goal of real-time operation in mind,
this k-nearest-neighbor search is implemented using a balanced binary
space partitioning (BSP) tree [FKN80]. The synthesis algorithm randomly
selects one of these fragments and “freezes” it for the upcoming few iter-
ations to avoid repetition artifacts. The fragment is then extended into a
longer grain by incorporating its n = 28 neighbor fragments in the input
sound clip. Finally, the grain is concatenated and blended (cross-faded)
with the previous grain into a continuous audio output.

Overall, this rather simple system is capable of producing a smooth
and interactive stream of contact sound that is free of disturbing artifacts
(transitions, repetition) that are otherwise typical for granular synthesis.
A major drawback of the mobile platform remains the somewhat long
system latency of approximately 500 ms, inherent to the utilization of the
Libpd library under Android.

4.3.4 Real materials

During the progress of the experiments, participants were also asked to
evaluate the actual materials samples (full-modal interaction). Instead of
using the same specimens utilized during the audiovisual stimuli acquisi-
tion, smaller portions of the same samples (approximately 70 x 70 mm?)
were handed to the users. With this, we avoided damaging the originals
during the interactions and facilitated the scalability of the experiment.

4.3.5 Task and procedure

Inspired by previous investigations [FWG13, MIWH15, MWH17] we gath-
ered a collection of 24 adjectives describing material appearance. At the
same time, these adjectives were organized into 12 opponent pairs which
were assigned to either the tactile, visual or affective category, depending
on the nature of the physical or emotional interaction that best reveals
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them (see Table 4.1). In order to rate this set of qualities across our multi-
modal stimuli, we made use of single stimulus ratings in which the par-
ticipants assessed each quality pair under study on a 7-point Likert scale,
represented with a slider with values ranging from —3 to 3. The values
along the scale were consistently labeled with a term indicating the in-
tensity of the stimuli (e.g., very hard, hard, a bit hard, neutral, a bit soft,
soft and very soft). The user study was conducted using tablet computers
(Toshiba Excite Pro 10.1, resolution 2560 x 1600 pixels) and a set of head-
phones (Sony MDR-7506) running a custom Android application which
connects with the Pd module. The complete experimental setup can be
seen in Figure 4.3d and the user interface is depicted in Figure 4.3e with
greater detail. The procedure itself consisted of four presentations or con-
ditions, in which material stimuli were presented in random order to the
participants along with the 12 slider widgets. The four conditions that
compose the study are the following:

* Visual condition (VI), where the stimuli are photos taken from real
materials.

e Static Audiovisual condition (SA), where the photos were comple-
mented with prerecorded audio from the material.

* Dynamic Audiovisual condition (DA), where the photos were comple-
mented with interactive sound generated by our sonification sys-
tem. This means that real-time contact sound is played back upon
tactile interaction with the images on the device.

* Full-modal condition (FM), consisting of physical material samples
that were given to the participants so that they could interact with
them.

Since the interaction with the real samples could bias the realization
of the visual and audiovisual conditions, the full-modal presentation was
constrained to be the fourth and final one, while the order of the re-
maining conditions was randomized. 19 participants took part in the ex-
periment (12 females, mean age 27.08; 7 males, mean age 28.57). All the
participants were naive to the goals of the experiment, provided informed
consent, reported normal or corrected-to normal visual and hearing acu-
ity and were compensated economically for their cooperation. From this
experiment, a total of 19 x 10 x 12 x 4 = 9120 responses were collected
and evaluated.
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Figure 4.4: Average inter-participant correlation per property, grouped by condi-
tion and sorted in ascending order w.r.t. the correlation. Note that the differences
between the visual and the two audiovisual conditions are relatively small and
how the full-modal condition presents significantly higher correlation values.

4.4 Results

In order to investigate the effects of our sonification system on the per-
ception of material qualities, we evaluate the correlation between the par-
ticipants’ ratings, the dimensionality of the spanned perceptual space per
experimental condition and the performance in a classification task based
on the material quality ratings.

4.4.1 Inter-participant correlation

Due to the diverse collection of materials and qualities considered in this
investigation, we first provide an analysis of the level of agreement be-
tween the participants’ ratings for the given stimuli. To that end, we
computed the inter-participant correlation coefficients for each condition
and quality pair, over all materials. The hypothesis assumption is that
the higher the correlation coefficient, the better a specific quality would
be represented by the condition at hand. Contrarily, if such quality is not
well depicted, the users would have to infer it using their imagination, re-
sulting in a lower degree of agreement. Figure 4.4 illustrates the resulting
correlations in ascending order, separated by experimental condition.
The largest coefficients presented by the visual condition are those
corresponding to the pairs “bright-dark”, “transparent-opaque”, “shiny—
matte” and “thick-thin”, which are properties mostly categorized as vi-
sual. Likewise, both audiovisual condition exhibit the largest correlation
values for the pairs “bright-dark”, “transparent-opaque” and “shiny-
matte”. However, the “thick—thin” dimension shows a much lower value
for the DA and particularly the SA condition in comparison to the VI pre-
sentation. Allegedly, the proposed rubbing/stroking sounds employed
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are less suitable for communicating this particular dimension and seem
to mislead users’ judgments of the material thickness. This is further im-
plied by the correlation values for the full-modal condition, where this
pair shows again a significant level of agreement. Another interesting ob-
servation is that the user agreement for the tactile qualities as well as the
pair “beautiful-ugly” is slightly higher in the DA condition when com-
pared to the static audio (SA). Albeit being a promising trend, the effect
is not significant enough to draw categorical conclusions. In general, the
correlation values (R) and ordering are quite similar for the three digital
conditions VI (Ry; = 0.32), SA (Rgs = 0.27) and DA (Rp4 = 0.28), and
follow a comparable ordering as the full-modal condition (Rpy; = 0.46).
Although in principle this analysis is analogous to the inter-participant
correlation from Martin et at. [MIWH15], the results are not directly com-
parable, as neither the stimuli employed nor the quality set are entirely
identical in both experiments. Specifically, the pictures from the visual
presentation in the former investigation display the distinctive borders
of materials, which are known to be a powerful discriminator [MWH17].
Furthermore, the authors included tapping impact sounds in their audio-
visual condition, which possibly allowed the inference of additional ma-
terial information. Taking this into consideration, the larger discrepancy
between both studies concerns to the resulting correlation coefficients for
the “hard-soft” dimension, where the present experiment exhibits con-
siderably lower values for the SA, DA and FM conditions. We conclude
that tapping sounds provided decisive cues to assess the hardness of the
material. Moreover, the presence of relatively hard paper materials in
[MIWH15] probably established an upper bound for this concrete qual-
ity, which is not present when solely considering leathers and fabrics.

4.4.2 Dimensionality of the perceptual space

In the previous section, we examined the four different conditions through
the correlation between participants, observing little effects between the
conditions VI, SA and DA. To further explore this insight, we analyze
the dimensionality of the perceptual space spanned by the perceptual
qualities. For this purpose, we averaged the ratings over all participants
and performed principal component analysis (PCA) for each experimen-
tal condition on the mean data. The resulting factor loadings of the first
three principal components as well as the explained and accumulated
variance are shown in Table 4.2, separated by condition.
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Visual Static audiovisual Dynamic audiovisual Full-modal
PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3
rough-smooth —0.235 —-0.351 0.177 | —0.008 0.483 0.161 0.001 0.445 0.191 | —0.163 0.403 0.132
hard—soft —0.233 —0.063 —0.106 0.115 0258 —0.173 0.001 0.254 0.535 | —0.125 —0.165 0.306
thick—thin —0.390 0.065 0.359 | —0.265 0.182 0.344 | —0.329 0.241  —0.033 | —0.466 0.179 0.372
stiff—flexible -0.301  —0.112 0.052 | —0.036 0255 —0.028 | —0.116 0.297 0.383 | —0.192  —0.085 0.154
shiny—matte 0.404  —0.090 0.065 0.395 —0.188  —0.037 0.417  —0.052 —0.157 0418 —0.387 0.372
bright-dark 0.478 —0.134 0.753 0599 —0.178 0.657 0.584 0.139 0.351 0213  —0.073 0.664
transparent-opaque 0.361 0.364 —0.265 0.521 0.038 —0.330 0.522 0.034 —0.005 0.508 0.131  —0.242
homog.-heterog. 0.262 0.041 —0.397 0.131  —0.080 —0.466 0.209  —0.184 0.059 0.106 —0.390 —0.006
expensive—cheap 0.011 0446 —0.044 | —0233 —-0.390 —0.043 | —0.105 —0.360 0337 | —0.274 —-0.381 —0.027
natural-synthetic —0.033 0.451 0.151 | —0.220 —0.279 0.272 0178  —0.283 0431 | -0356 —0310 —0.159
beautiful-ugly 0.141 0.403 —0.036 | —0.070 —0.351 —0.072 | —0.020 —0.437 0277 | —0.088 —-0.349 —0.120
pleasant-unpleasant —0.189 —0.361 0.024 0.063 0.418 0.050 | —0.061 0.364  —0.022 0.065 0.290 0.221
Explained variance [%] 41.02 28.75 12.70 41.35 25.94 12.46 38.35 28.64 13.13 60.97 17.53 8.69
Cumulative variance [%] 41.02 69.78 82.49 41.35 67.29 79.76 38.35 67.01 80.15 60.97 78.51 87.20

Table 4.2: Factor loadings, explained variance and cumulative variance of the first three principal components for each
condition. Bold, underlined values represent the strongest factors (greater than 0.35) for each principal component.
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A detailed inspection of the coefficients exposes that the first principal
components (PC1) in all three digital conditions (VI, SA, DA) are domi-
nated by the visual qualities (“shiny-matte”, “bright-dark” and
“transparent-opaque”), which account for most of the variation in the
users’ ratings. Additionally, VI exhibits somewhat large values in the
tactile dimensions, especially for the “thick-thin” pair, which are not so
evident in SA or DA. This is in accordance with the correlation values
reported earlier. Furthermore, the second PC of all three conditions is
commonly determined by the “rough-smooth” quality and the affective
properties, while PC3 has diverse values for each condition. In contrast,
the first PC of the full-modal condition is driven by a mixture of qual-
ities (“thick-thin”, “shiny-matte”, “transparent-opaque” and “natural-
synthetic”), while the second PC explains much less variance and is dom-
inated by the roughness, shininess, heterogeneity and the affective quali-
ties.

When considering the cumulative variance, two dimensions are able
to explain 69.78%, 67.29%, 67.01% and 78.51% of the variance for the VI,
SA, DA and FM conditions respectively. Therefore, projecting the factor
loadings into a 2-dimensional space seems to be a plausible and easy-to-
visualize option to analyze the distribution of the user data (see Figure
4.5). By inspecting the arrangement of materials in the subdimensional
space, we observe that the sample distributions presented by VI, SA and
DA are quite similar (PC2 in VI is upside-down). Meanwhile, the variance
in FM is primarily accumulated in the first PC, which allows a smooth
clustering of the two material classes.

Lastly, we applied procrustes analysis [Gow75] to compare our ex-
perimental conditions Cs € {VI;, ASs, AD;} against the full-modal space
(FMs) resulting from PCA, which is taken as a reference. We took the
12-dimensional space spanned by the qualities into account and used the
minimized sum of square errors (SSE) to measure the goodness of the
mapping. The fitting values for all three C; are, again, extremely similar
with a relatively low error, where VI achieves the best result (SSE =
0.214) closely followed by SA; (SSE = 0.240) and DA (SSE = 0.242).
From this analysis we conclude that the considered visual (VI) and au-
diovisual (SA, DA) stimuli are capable of effectively transmitting infor-
mation about our set of materials and qualities. However, the addition of
these specific audio cues, no matter whether in terms of their static form
or the sonification system, does not contribute with significant additional
information to simple photographs.
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Figure 4.5: Distribution of the samples in the first two PCs. Circles represent
the projected positions of individual material samples (10 in total) in the subdi-
mensional space for each condition. The sample distribution presented by VI, SA
and DA are rather identical, while the variance in FM corresponds mostly to the
first PC.

4.4.3 Material classification

The previous analysis facilitated the understanding of the ability of the
considered stimuli to depict a set of relevant material qualities through
the agreement level between subjects and the subdimensional space that
they span. Previous studies have demonstrated that humans access the
same perceptual information about materials while performing both ma-
terial categorization and quality rating tasks [FWG13]. Keeping this in
mind and considering that our stimuli consist of two classes of materials,
this section attempts to clarify to what extent such classes can be by pre-
dicted based on the participants’ ratings. Concretely, we aim at answering
the following questions:

1) Which is the classification performance of the experimental condi-
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‘ Set of Predictors

[%] \ All ‘(T)actile (V)isual (A)ffective\ T+V \ T+A \ V+A

VI | 75.8% | 63.2% 67.9% 65.3% 70.5% | 71.6% | 73.7%
SA | 72% 56.1% 66.1% 65.1% 68.8% | 61.4% | 69.8%
DA | 66.3% | 60.5% 61.6% 62.6% 66.3% | 69.0% | 69.5%
FM | 89.5% | 78.4% 82.6% 72.6% 89.5% | 84.2% | 89.5%

Table 4.3: Accuracy [%] of a SVM material classifier based on the perceptual
qualities. Each row represents the accuracy for the considered experimental con-
dition, while the columns describe the set of qualities used as predictors.

tions (VI, SA, DA) in comparison to the FM condition?

2) Do any of the utilized sound cues facilitate the discrimination be-
tween leathers and fabrics?

3) Which set of considered qualities allows a better material classifica-
tion?

For this purpose, we trained a binary Support Vector Machine (SVM)
classifier to obtain a model which employs the user ratings of the twelve
perceptual features to predict the material class to which each sample be-
longs. We then conducted leave-one-out cross validation tests per user
and material sample. Additionally, we performed the same analysis us-
ing the ratings from each perceptual category individually as predictors
(tactile, visual and affective) as well as all three combinations of them.
The accuracy across each condition and group of qualities is provided in
Table 4.3.

Regarding the first inquiry, performing the classification task on the
ratings from the FM condition results into considerably higher accuracies
(at least above 72%) in comparison to the rest of the conditions. This out-
come is to be expected, as judging the real material samples will always
allow a more confident quality assessment as images or sounds. With
respect to question number two, the classification results of the SA and
DA conditions exhibit lower values as the visual condition for all the set
of predictors considered, by a slight margin. In light of this results, we
assume that the addition of rubbing sounds does not help in distinguish-
ing leathers and fabrics, and that the proposed sonification system has
additional value over static sounds only when tactile-related predictors
are included. Concerning the third question, using all twelve perceptual
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qualities as predictors yields by far higher accuracies. The table shows
also how the visual predictors, alone or in combination with other fea-
tures, have more discriminating power than tactile or affective qualities.
More interestingly and less anticipated is the fact that the use of affective
predictors lead to higher accuracies than tactile ones, when the conditions
VI, SA and DA are considered. However, tactile features provide better
discrimination in the full-modal case, since the participants were able to
actually touch the specimens.

4.5 Discussion and future work

After a comprehensive analysis of the collected user data, the primary
finding of the present study is that the auditory cues employed in our
studies do not contribute with additional value to the perception of ma-
terial qualities. All of the conducted evaluations indicate that the three
digital conditions evaluated (VI, SA and DA) have a fairly equal ability
transmit material information without weakening the overall experience.
The most plausible explanation for this outcome may be that the utiliza-
tion of contact sounds from rubbing interactions exclusively did not yield
enough information to discriminate between the two different material
classes or to characterize specimens within the same class. Indeed, pre-
vious investigations concerning the perception of textiles have asessed
other gestures like two-finger pinching, stroking or sample scrunching
as the most repeated interactions when evaluating real fabric samples
[AOP*13]. Another reason that may have influenced our results is the
fact that the employed material classes (leathers and fabrics) do not differ
significantly when considering their characteristic sounds. Although our
research aimed at examining the perceived intra-class differences between
materials, it has been documented that not even striking sounds provide
sufficient cues to differentiate samples within the same class [GM06].
Another interesting finding concerns the ability to discriminate be-
tween leathers and fabrics through the experimental conditions. Both the
PCA analysis and the SVM classification indicate that it is possible to dis-
cern between these two classes based on the ratings for the selected set of
attributes, when the real materials are provided. However, this capacity is
not translated well to the conditions where only images and sound from
the material samples are provided. As regards to which types of qual-
ities allow better material discrimination, considering the visual quality
features alone provide the highest accuracies. Interestingly, the presence
affective features has certain influence in the digital conditions (VI, SA
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and DA) in comparison to tactile qualities, which are more salient when
the real materials are provided. This supports our intuition that affective
properties have a meaningful role in the perception of digital products.

During informal interviews after the realization of the experimental
task, subjects reported to have enjoyed the utilization of the tactile soni-
fication interface. This reported amusement translated into significantly
longer interaction times with the system during the DA condition, 55.5
seconds of average interaction per material, in contrast to the 32.3 and
28.6 seconds on average for the VI and SA conditions respectively. This is
in accordance with the experimental results from Ho et al. [HJK"13],
where the addition of realistic auditory feedback led to considerably
longer (30%) interplays with their AR system. Moreover, the similarity
of the ratings between all these three conditions dismisses the possibility
that such effect is due to the complexity of the task. Nonetheless, some
of them declared to be a bit puzzled by the latency of the sounds (about
half a second), intrinsic to the usage of Libpd under Android. Indeed, the
investigation of how the presence of interactive sounds affects the level
of engagement when exploring digital materials remains a promising av-
enue for future research.

Given the previous analysis and considerations, we conclude that the
main shortcoming of our sonification method is not the audio synthe-
sis itself, but the utilized rubbing/scrapping material sounds, which do
not bring in supplementary information for the selected set of materi-
als. Future investigations may turn over to other kinds of touch-related
material sounds, more consistent with the actual human behavior, for
which alternative synthesis approaches could be more suited. For in-
stance, physically-based synthesis methods have been able to generate the
distinctive crumpling sound of materials [CLG"16] at, however, unfeasi-
ble computation times. Deep learning techniques could also leverage the
synthesis of contact sounds [OIM*16], provided that a sufficiently rich
database of sounds is given for the training of the model.

4.6 Conclusion

The main purpose of this investigation is to determine the impact of an
interactive material sonification system in the perception of physical and
affective material qualities. For the development of this sonification algo-
rithm, we relied on granular synthesis to interactively reproduce charac-
teristic contact sounds generated when rubbing leather and fabric mate-
rials with the fingertip. This method, which has been specifically devel-
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oped for tactile devices, plays back chunks of sound (grains) upon tactile
interaction with the material images on the screen. Its performance has
be