
New Results on the
Probabilistic Analysis of

Online Bin Packing and its
Variants

Carsten Oliver Fischer
geboren in Köln

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der

Rheinischen Friedrich-Wilhelms-Universität Bonn

Bonn, 2019

1. Gutachter: Prof. Dr. Heiko Röglin
2. Gutachter: Prof. Dr. Thomas Kesselheim

Tag der mündlichen Prüfung: 12. September 2019
Erscheinungsjahr: 2019

Angefertigt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

Title page image: Frank Luerweg / Universität Bonn, photography.

Abstract
The classical bin packing problem can be stated as follows: We are given a multiset of items
{a1, . . . , an} with sizes in [0, 1], and want to pack them into a minimum number of bins, each of
which with capacity one.

There are several applications of this problem, for example in the field of logistics: We can
interpret the i-th item as time a package deliverer spends for the i-th tour. Package deliverers
have a daily restricted working time, and we want to assign the tours such that the number of
package deliverers needed is minimized. Another setup is to think of the items as boxes with a
standardized basis, but variable height. Then, the goal is to pack these boxes into a container,
which is standardized in all three dimensions. Moreover, applications of variants of the classical
bin packing problem arise in cloud computing, when we have to store virtual machines on servers.

Besides its practical relevance, the bin packing problem is one of the fundamental problems
in theoretical computer science: It was proven many years ago that under standard complexity
assumptions it is not possible to compute the value of an optimal packing of the items efficiently
– classical bin packing is NP-complete. Computing the value efficiently means that the runtime
of the algorithm is bounded polynomially in the number of items we have to pack.

Besides the offline version, where we know all items at the beginning, also the online version is
of interest: Here, the items are revealed one-by-one and have to be packed into a bin immediately
and irrevocably without knowing which and how many items will still arrive in the future. Also
this version is of practical relevance. In many situations we do not know the whole input at the
beginning: For example we are unaware of the requirements of future virtual machines, which
have to be stored, or suddenly some more packages have to be delivered, and some deliverers
already started their tour.

We can think of the classical theoretical analysis of an online algorithm A as follows: An
adversary studies the behavior of the algorithm and afterwards constructs a sequence of items I.
Then, the performance is measured by the number of used bins by A performing on I, divided
by the value of an optimal packing of the items in I. The adversary tries to choose a worst-
case sequence so this way to measure the performance is very pessimistic. Moreover, the chosen
sequences I often turn out to be artificial: For example, in many cases the sizes of the items
increase monotonically over time.

Instances in practice are often subject to random influence and therefore it is likely that they
are good-natured. In this thesis we analyze the performance of online algorithms with respect to
two stochastic models.

1. The first model is the following: The adversary chooses a set of items I and a distribution F
on I. Then, the items are drawn independently and identically distributed according to F .

2. In the second model the adversary chooses a finite set of items I and then these items arrive
in random order, that is random with respect to the uniform distribution on the set of all
possible permutations of the items.

It is possible to show that the adversary in the second stochastic model is at least as powerful as
in the first one.

We can classify the results in this thesis in three parts:

In the first part we consider the complexity of classical bin packing and its variants cardinality-
constrained and class-constrained bin packing in both stochastic models. That is, we deter-
mine if it is possible to construct algorithms that are in expectation nearly optimal for large
instances that are constructed according to the stochastic models or if there exist non-trivial
lower bounds. Among other things we show that the complexity of class-constrained bin
packing differs in the two models under consideration.

4

In the second part we deal with bounded-space bin packing and the dual maximization variant
bin covering. We show that it is possible to overcome classical worst-case bounds in both mod-
els. In other words, we see that bounded-space algorithms benefit from randomized instances
compared to the worst case.
Finally, we consider selected heuristics for class-constrained bin packing and the correspon-
ding maximization variant class-constrained bin covering. Here, we note that the different
complexity of class-constrained bin packing with respect to the studied stochastic models
observed in the first part is not only a theoretical phenomenon, but also takes place for many
common algorithmic approaches. Interestingly, when we apply the same algorithmic ideas to
class-constrained bin covering, we benefit from both types of randomization similarly.

This research was supported by ERC Starting Grant 306465 (BeyondWorstCase).

Zusammenfassung
Wir können das klassische Bin-Packing Problem wie folgt formulieren: Als Eingabe ist eine Multi-
menge von Items {a1, . . . , an} mit Größen in [0, 1] gegeben. Diese Items wollen wir in Behälter
packen, die jeweils Kapazität 1 besitzen. Hierbei soll die Zahl der verwendeten Behälter minimiert
werden.

Es lassen sich verschiedene Anwendungen dieses Problems zum Beispiel im Bereich der Logis-
tik finden. So können wir die Items als Touren für LKW-Fahrer interpretieren, die jeweils Zeit ai
benötigen. Die Behälter stellen in diesem Fall die Fahrer dar, deren tägliche Fahrzeit eine gewisse
Zahl an Stunden nicht überschreiten darf. Ziel ist es dann möglichst wenig Fahrer einsetzen zu
müssen. Eine andere Möglichkeit ist es die Items als Boxen mit einer genormten Grundfläche, aber
unterschiedlichen Höhen anzusehen, die wir in einen Container packen wollen, dessen Maße in
allen drei Dimensionen festgelegt sind. Weiterhin spielen Varianten des Problems im Bereich des
Cloud-Computings eine Rolle, beispielsweise um virtuelle Maschinen auf Servern zu verwalten.

Neben der praktischen Relevanz handelt es sich beim klassischen Bin-Packing Problem um
eines der fundamentalen Probleme der theoretischen Informatik: Schon früh stellte sich heraus,
dass sich eine optimale Packung der Items in Behälter unter Standardannahmen der Komple-
xitätstheorie nicht effizient berechnen lässt – das Problem ist NP-vollständig. Effizient bedeutet
hier, dass die Laufzeit eines entsprechenden Algorithmus polynomiell in der Zahl der zu packenden
Items beschränkt ist.

Neben der Offline-Version bei der alle zu packenden Items zu Beginn bekannt sind, ist auch
die Online-Version von großem Interesse: Hierbei werden die Items nach und nach aufgedeckt und
müssen dann sofort in einen der Behälter gepackt werden – ohne das Wissen welche und wie viele
Items überhaupt noch in Zukunft gepackt werden müssen. Ferner dürfen einmal gepackte Items
nicht später wieder umgepackt werden. Auch diese Problemstellung ist von praktischer Relevanz.
Oft kennen wir nicht die gesamte Eingabe zu Beginn: So wissen wir nicht welche Anforderungen
zukünftige virtuelle Maschinen haben, die wir auf unseren Servern verwalten werden, oder es
muss überraschenderweise eine weitere Tour von einem Fahrer übernommen werden, die aber
teilweise bereits losgefahren sind.

Wir können uns die klassische theoretische Analyse eines Online-Algorithmus A wie folgt
vorstellen: Ein Gegner untersucht den Algorithmus und konstruiert dann eine Abfolge von Items I.
Die Performance von A wird dann ermittelt indem die Zahl der geöffneten Bins bei der Bear-
beitung von I durch A durch die Zahl der geöffneten Bins in einer optimalen Packung der Items
in I geteilt wird.

Da der Gegner bestrebt ist eine möglichst schlechte Sequenz zu erzeugen, ist diese Art der
Analyse eines Algorithmus sehr pessimistisch und die konstruierten Folgen von Items I wirken
oft künstlich: Beispielsweise steigt die Größe der Items häufig monoton an. Die in der Praxis
auftretenden Instanzen unterliegen oftmals stochastischen Einflüssen, und daher hegen wir die
Hoffnung, dass diese gutartiger sind.

In dieser Arbeit wollen wir die Performance von Online-Algorithmen für verschiedene Vari-
anten des Bin-Packing Problems bezüglich zweier stochastischer Modelle untersuchen:

1. Im ersten Modell darf der Gegner eine Menge von Items I mit einer Verteilung F auf diesen
vorgeben. Die Items werden dann unabhängig und identisch verteilt bezüglich F generiert.

2. Im zweiten Modell darf der Gegner eine endliche Menge von Items I vorgeben, die dann in
einer zufälligen Reihenfolge aufgedeckt werden. Zufällige Reihenfolge bedeutet hier, dass wir
eine Permutation der Items bezüglich der Gleichverteilung auf allen Permutationen ziehen.

Man kann zeigen, dass das zweite Modell mindestens so mächtig ist wie das erste. Das heißt, dass
es dem Gegner eher möglich ist Instanzen zu erzeugen auf denen die Performance der Algorithmen
schlecht ist.

Die Ergebnisse der Dissertation können in drei Teile gegliedert werden:

6

Im ersten Teil beschäftigen wir uns mit der grundsätzlichen Komplexität des klassischen
Bin-Packing Problems und der Varianten cardinality-constrained und class-constrained Bin-
Packing in den beiden stochastischen Modellen. Konkret setzen wir uns mit der Frage aus-
einander ob es möglich ist Algorithmen zu konstruieren, die im Erwartungswert auf sehr
großen Instanzen, die gemäß der beiden Modelle erzeugt werden, nahezu optimal sind, oder
ob nicht-triviale untere Schranken existieren. Unter anderem zeigen wir, dass die Variante
class-constrained Bin-Packing in den beiden stochastischen Modellen eine unterschiedliche
Komplexität aufweist.
Im zweiten Teil beschäftigen wir uns mit der Variante des Problems, in dem die Algorithmen
nur auf eine beschränkte Anzahl an Behältern gleichzeitig zugreifen können, sogenanntes
bounded-space Bin-Packing. Hier zeigen wir, dass es möglich ist bekannte Schranken, die im
Worst-Case gelten, in beiden Modellen zu überwinden. Dies bedeutet, dass solche Algorithmen
gegenüber dem Worst-Case von zufällig erzeugten Instanzen profitieren.
Schließlich untersuchen wir ausgewählte Heuristiken für die Variante des class-constrained
Bin-Packings und für die duale Version des Problems, nämlich class-constrained Bin-Covering.
Hierbei stellen wir fest, dass das im ersten Teil beobachtete Phänomen, dass class-constrained
Bin-Packing in den beiden betrachteten stochastischen Modellen unterschiedlich schwierig ist,
nicht nur theoretischer Natur ist: Für zahlreiche algorithmische Ansätze stellt sich heraus, dass
sich diese im zweiten Modell schlechter verhalten als im ersten. Interessanterweise stellen wir
diesen Effekt nicht fest, wenn wir das duale Problem class-constrained Bin-Covering betrach-
ten: Dort profitieren diese Ansätze gleichermaßen vom randomisierten Input.

Danksagung
Die letzten fünf Jahre, die ich mit den Mitgliedern der Abteilungen V und I verbracht habe,
stellten für mich eine wunderbare Zeit dar. Ich habe mich jeden Tag gefreut ins Büro gehen zu
können, habe dies nie als Arbeit empfunden, und so lassen sich sicherlich auch einige verfallene
Urlaubstage erklären.

Zuallererst möchte ich mich bei Heiko Röglin dafür bedanken, dass er es mir ermöglichte diese
fünf Jahre als Doktorand in der theoretischen Informatik an der Universität Bonn zu verbringen,
mich dabei beständig unterstützte und jederzeit ein offenes Ohr hatte.

Während meiner Promotion habe ich das Büro mit vielen verschiedenen Mitgliedern dieser
Abteilungen geteilt: Angefangen mit Simone und Shoshanna, später dann für lange Zeit mit Bar-
bara und David und schließlich mit Xianghui. Ihnen gilt mein Dank für das immer harmonische
Miteinander.

Abgesehen von meinen Bürokollegen, möchte ich mich bei Alex, Andreas, Clemens, Melanie
und Michael für sehr viele Diskussionen und Gespräche bedanken. Diese Unterhaltungen waren
fachlich sehr hilfreich und ich habe viel durch diese gelernt. Aber auch abseits des fachlichen
haben sie mir viele neue Horizonte eröffnet und ich werde diese in Zukunft sicherlich vermissen.

Da sich nun – nach vielen Jahren – auch meine Zeit an der Universität Bonn dem Ende
zuneigt, möchte ich mich an dieser Stelle auch bei den Freunden bedanken, die ich im Laufe
des Studiums gewonnen habe. Hierbei sind sicherlich insbesondere Lobby, Martin, die beiden
Raphaels und Thomas zu nennen. Ohne eure Unterstützung und Hilfsbereitschaft während des
Studiums wäre es sicherlich nicht zu dieser Arbeit gekommen.

Schließlich gilt mein Dank meinen Eltern sowie meinem Bruder Christoph.

8 CONTENTS

Contents

1 Introduction 10
1.1 Bin Packing Variants and Performance Measures 12
1.2 Overview of Algorithms . 15
1.3 Overview of Related Literature . 16

1.3.1 Classical Bin Packing . 16
1.3.2 Cardinality-constrained and Class-constrained Bin Packing 18
1.3.3 Classical Bin Covering and Class-constrained Bin Covering 19

1.4 Overview of Results, Outline and Bibliographical Notes 19

2 Stochastic Background 22
2.1 Concentration Inequalities . 22

2.1.1 Independent and Identically Distributed Random Variables 23
2.1.2 Dependent and Identically Distributed Random Variables 25

2.2 Markov Chains . 26
2.2.1 Basics . 26
2.2.2 Properties of Markov Chains . 27
2.2.3 Stationary Distributions and Long-term Averages 29

2.3 Stochastic Upright Matchings . 31
2.3.1 Problems and Estimates . 32
2.3.2 Deferred Proofs . 34

2.4 Useful Facts about Probabilistic Performance Measures 42

3 Complexity of Bin Packing Variants with respect to Probabilistic Perfor-
mance Measures 44
3.1 Results . 44
3.2 Deferred Proofs . 46

3.2.1 Existence of an Optimal Algorithm for Cardinality-constrained Bin
Packing with respect to the Random-order Ratio 46

3.2.2 Existence of a Nearly Optimal Algorithm for Classical Bin Packing
with respect to the Random-order Ratio 52

3.2.3 A Lower Bound for Classical Bin Packing in the Partial-permutations
Model . 67

3.2.4 Existence of an Optimal Algorithm for Class-constrained Bin Packing
with respect to the Average Performance Ratio 70

3.2.5 A Lower Bound for Class-constrained Bin Packing with respect to the
Random-order Ratio . 79

4 Breaking Bounds in Bounded-space Bin Packing and Covering 82
4.1 Bounded-Space Online Bin Packing . 82
4.2 Bounded-Space Online Bin Covering . 87

4.2.1 Results . 87
4.2.2 Deferred Proofs . 89

5 Analysis of Selected Heuristics for Class-constrained Bin Packing and Bin
Covering 95
5.1 Results . 96
5.2 Deferred Proofs . 99

CONTENTS 9

5.2.1 Analysis of the ColorSets-approach with respect to the Average Perfor-
mance Ratio . 99

5.2.2 Lower Bounds for Selected Heuristics for Class-constrained Bin Packing
with respect to the Random-order Ratio 102

5.2.3 Analysis of Selected Heuristics for Class-constrained Bin Packing with
Unit Sized Items with respect to the Average Performance Ratio . . . 103

5.2.4 A Lower Bound for the Random-order Ratio of CS [NF] in the case of
Unit Sized Items . 104

5.2.5 A Lower Bound for the Random-order Ratio of First-Fit in the case of
Unit Sized Items . 104

5.2.6 Lower Bounds for Bounded-space Algorithms for Class-constrained
Bin Packing with Unit Sized Items . 107

5.2.7 An Upper Bound for the Competitive Ratio in Class-constrained Bin
Covering with Unit Sized Items . 108

5.2.8 An Upper Bound for the Competitive Ratio of Bounded-space Algo-
rithms for Class-constrained Bin Covering 109

5.2.9 Analysis of Dual-Next-Fit with respect to Probabilistic Performance
Measures . 109

5.2.10 Analysis of FF2 in the Random-order Model 112
5.2.11 An Online Algorithm for Class-constrained Bin Covering with General

Item Sizes . 115

6 Conclusions and Open Problems 117

10 1. Introduction

1 Introduction

Today’s economy would not be possible without modern logistics. This becomes clear looking
at e-commerce: Many products we buy now via the Internet, were sold through department
stores only a few years ago. This has drastic consequences for the transport of goods:
Nowadays it is necessary to deliver many different products to customers, who are distributed
all over the city. In general, globalization has made production chains more complex and
spread over different continents. This is only possible if transport and warehousing are
perfectly organized.

Apart from the mentioned changes, the area of logistics will be subject to drastic
transformations in the future: More and more aspects like sustainability and reduction
of greenhouse gases will play a role. Furthermore, new technologies like Big Data, Machine
Learning and Artificial Intelligence as well as drones and autonomous driving will become
important.

From the view point of a theoretical computer scientist the field of logistics is interesting
as many algorithmic problems like Shortest-Path-, the Travelling-Salesman- or the Facility-
Location-Problem naturally arise. Moreover, many new algorithmic problems are inspired by
real-world problems. One of the fundamental problems in theoretical computer science is the
classical bin packing problem. This problem is as follows:

Classical Bin Packing
Input: A multiset of items I = {a1, . . . , an} with ai ∈ [0, 1].
Task: Find a minimum number ` of disjoint sets B1, . . . , B` ⊆ I with

⋃`

i=1 Bi = I such
that

∑
a∈Bj

a ≤ 1 for all j ∈ {1, . . . , `}.

The disjoint sets can be interpreted as bins that have a capacity of one.
Also, for classical bin packing we can think of different applications in logistics: The item

sizes can represent the length of tours package deliverers have to perform, where the daily
working hours of the drivers are limited. Another possibility is to interpret the items as boxes
with a standardized basis, but arbitrary height, which we want to pack into a container which
is standardized in all three dimensions. Moreover, similar problems arise in cloud computing
where virtual machines have to be stored on servers.

When we want to solve a problem using an algorithm we are usually interested in two
questions:

What is the quality of the solution the algorithm computes?
What is the runtime of the algorithm?

At first, we want to consider the question of how to measure the performance of an
algorithm A for classical bin packing: It was already mentioned that the disjoint sets can be
interpreted as bins. We think of the algorithm opening these bins and packing items into
them. Measuring the performance of A can be seen as a game between the designer of the
algorithm and an adversary. The adversary studies the behavior of the algorithm, and then
chooses a set of items I for which A has to compute a packing. Then, the number of bins
used by A is divided by the number of opened bins in an optimal packing.

Of course, we want to find algorithms that compute an optimal packing of I efficiently.
Here, efficiently means that the runtime of the algorithm is polynomially bounded in the
number of items that have to be packed. Unfortunately, for a large class of problems it
remains unclear if it is possible to compute an optimal solution efficiently. The predominant
opinion is that it is impossible. This is broadly speaking the P 6= NP-conjecture – one of

1. Introduction 11

the seven Millennium Prize Problems. Besides many other problems that are important in
practice, also for classical bin packing it is unclear if we can solve it efficiently.

If it is unclear how to compute an optimal solution efficiently, an usual approach is to
find heuristics with better runtime. Such heuristics do not compute necessarily an optimal
solution, but a solution which is close.

Let I denote an instance for classical bin packing, and let OPT(I) denote the number of
opened bins in an optimal packing of these items. For classical bin packing it is possible to
design for every ε greater than zero an algorithm Aε that uses at most εOPT(I) bins more
than an optimal solution for sufficiently large instances. And these algorithms compute the
solution efficiently – at least from a theoretical point of view.

Presented in this way classical bin packing is an offline-problem, that is the algorithm
knows all items that must be packed before beginning with packing them into bins. Besides
offline-problems, also online-problems are of great interest: In online-problems the algorithm
is not aware of all the input at the beginning. The online version of classical bin packing is
the following: The items are revealed one by one and every time a new item is revealed the
algorithm has to pack it into a bin neither knowing the number of items that will arrive in
the future nor any other information about them. Moreover, the algorithm is not allowed to
repack any packed items.

The performance of an online algorithm A can be measured similarly to the offline case:
An adversary chooses an instance I (this time including an ordering of the items) and then
the number of opened bins by A is compared to the number of opened bins according to an
optimal offline solution OPT(I). So, also for an online algorithm we compare the computed
solution with the corresponding offline solution.

Of course, online-problems are usually harder than offline-problems. So, another question
naturally arises: How well can an online algorithm perform without knowing the future?
When we consider this question we often drop runtime requirements.

Sometimes it is impossible to obtain good results without knowledge of the future. The
online selection problem is the following: An adversary presents us one by one n real numbers
v1, . . . , vn: Each time a new value is revealed we have to decide if we accept it and reject
all values which will be revealed in the future, or if we reject this value and wait for the
next one. Our goal is to choose the greatest vi. It is clear that the quality of the solution of
any deterministic or randomized online algorithm for this problem can be arbitrarily bad for
large instances. For online classical bin packing things are better: There exists an algorithm
that opens at most 1.5783 OPT(I) many bins [8]. On the other hand, for every algorithm A,
no matter how sophisticated, there exists an instance I such that A must open at least
1.5427 OPT(I) many bins [9]. So, online classical bin packing is in fact more complicated
than the corresponding offline variant.

The presented way of measuring the quality of an algorithm is most pessimistic and
therefore called worst-case analysis. It often turns out that the instances designed by the
adversary are in some sense artificial. For example in online bin packing the item sizes are
usually presented in increasing order. The same holds true for the online selection problem.

In practice, it is often unlikely that such artificial instances occur, for example because of
stochastic influences. So is it possible to obtain better results if the adversary is weakened?
An important variant of the online selection problem allows the adversary to choose the
values v1, . . . , vn, but then presents them to the algorithm in random order. This is the
so-called secretary problem. In this setting it is possible to select the best candidate with
probability 1/e ≈ 0.368 – a huge improvement in comparison to the worst case [34, 62]. In
this thesis, we will investigate how online algorithms for variants of bin packing benefit from

12 1. Introduction

a randomized input compared to the worst case.
For offline-problems there is a similar phenomenon: There are algorithms that compute

an optimal solution, exhibit an exponential worst-case runtime, but perform well in practice.
Here, worst-case instances (this time with respect to the runtime) are sometimes artificial
too. To bridge this gap between theory and practice in the offline case models like the
smoothed-analysis-model have been introduced [80]: In this model an adversary chooses an
instance, but afterwards this instance is slightly perturbed in a random way. Among other
things, this can be justified by measurement errors occurring in practice. Then, for some
algorithms it was shown that the expected runtime is only polynomial – in contrast to their
exponential worst-case runtime [2, 35, 80].

We will study variants of online bin packing, where the input is usually generated according
to one of the following two stochastic models:

In the first model the adversary chooses a set of items I and a distribution F on this set.
Then, the instances are generated by drawing items that are independent and distributed
according to F .
In the second model the adversary chooses a finite set of items I, and afterwards a random
permutation of these items is generated and revealed to the algorithm. This model is also
called random-order model.

In both cases the adversary is weakened in comparison to the worst case. Moreover, it is
possible to show that the adversary in the random-order model is at least as powerful as in
the first model.

The focus of this thesis will be on the following questions:

What is the best possible performance an algorithm can obtain for the studied problem
variants with respect to the stochastic models; and
How well do selected heuristics behave in these settings?

The remaining part of this introduction is structured as follows: In Subsection 1.1 we will
give a formal definition of all variants of the classical bin packing problem that we will consider
and the performance measures that are relevant for this thesis. Then, in Subsection 1.2 we
will present common algorithmic approaches for solving these problems. Subsection 1.3 will
contain an overview of results that are important in the area of bin packing and finally, in
Subsection 1.4 we will give an overview of the results presented in this thesis and will relate
them with corresponding results in the literature.

1.1 Bin Packing Variants and Performance Measures

As classical bin packing is a fundamental problem in computer science lots of different variants
of this problem are studied. At this point we introduce the variants that are relevant for this
thesis.

The following notation will be useful in the future: For an ` ∈ N we set [`] := {1, . . . , `}.

Cardinality-constrained Bin Packing
Input: A multiset of items I = {a1, . . . , an} with ai ∈ [0, 1] and a parameter k ∈ N.
Task: Find a minimum number ` of disjoint sets B1, . . . , B` ⊆ I with

⋃`

i=1 Bi = I such
that

∑
a∈Bj

a ≤ 1 and |Bj | ≤ k for all j ∈ [`].

1.1. Bin Packing Variants and Performance Measures 13

Class-constrained Bin Packing
Input: A multiset of items I = {(s1, c1), . . . , (sn, cn)} with si ∈ [0, 1] and ci ∈ N, and a

parameter k ∈ N.
Task: Find a minimum number ` of disjoint sets B1, . . . , B` ⊆ I with

⋃`

i=1 Bi = I such
that

∑
(s,c)∈Bj

s ≤ 1 and |{c ∈ N : (s, c) ∈ Bj}| ≤ k for all j ∈ [`].

Classical, cardinality-constrained and class-constrained bin packing are minimization
problems, and sometimes we will subsume them as packing problems. It is useful to think of
these problems as follows: We are given bins with a capacity and want to pack the items into
the bins such that the capacity-condition (and the side-condition) is satisfied, and we want
to minimize the number of non-empty bins.

Moreover, we will also deal with two corresponding maximization versions:

Classical Bin Covering
Input: A multiset of items I = {a1, . . . , an} with ai ∈ [0, 1].
Task: Find a maximum number ` of disjoint sets B1, . . . , B` ⊆ I such that

∑
a∈Bj

a ≥ 1
for all j ∈ [`].

Class-constrained Bin Covering
Input: A multiset of items I = {(s1, c1), . . . , (sn, cn)} with si ∈ [0, 1] and ci ∈ N, and a

parameter k ∈ N.
Task: Find a maximum number ` of disjoint sets B1, . . . , B` ⊆ I such that

∑
(s,c)∈Bj

s ≥ 1
and |{c ∈ N : (s, c) ∈ Bj}| ≥ k for all j ∈ [`].

Here, it is useful to interpret the capacity of a bin as demand. We will refer to both
problems as covering problems.

The second attribute of an item in class-constrained bin packing and bin covering is
understood as color of the item. Moreover, in the class-constrained versions we will also study
the variant of unit sized items: In this case every item has size one and the capacity/demand
of a bin is given by a parameter B ∈ N.

It is clear how the online versions of the described problems look like: An unknown
number of items will be revealed one by one and we have to pack them irrevocably into bins
without knowledge about possible further arriving items.

We notice that the class-constrained versions generalize both the classical and the
cardinality-constrained setups: To obtain classical bin packing or bin covering from the
class-constrained version we set k equal to one and equip every item with the same color. If
we want to obtain cardinality-constrained bin packing from class-constrained bin packing we
equip each item with a different color and choose the same parameter k.

Usually, we will denote an instance for an online problem by I. We can think of I as
a vector of items, which encodes the order of the arrival of the items, and the entries are
revealed to the algorithm one by one. An offline algorithm is allowed to look at all the items
before packing them, so the order of the arrivals is irrelevant. In this case an instance is fully
described by the multiset of items I that have to be packed. But we can also use online
algorithms for the offline version by assuming a fixed order of arrival.

Let A be an (online) algorithm for one of the presented packing or covering problems.
Then, A(I) denotes the number of opened/covered bins of the solution calculated by A on I.
Moreover, OPT(I) (or OPT(I)) denotes the value of an optimal offline packing of the items
in I (or I); that is, the minimum number of bins we have to open to pack all items or the
maximum number of bins that can be covered.

14 1. Introduction

Now, we describe how to measure the performance of an algorithm A: The classical way
to measure the performance of an offline algorithm in the worst case is the approximation
ratio:

I Definition 1. Let P be a packing problem, and let S denote the set of feasible instances
for P . Then, the approximation ratio of a deterministic algorithm A for P is defined as

AR(A) = lim sup
m→∞

sup
I∈S : OPT(I)≥m

A(I)
OPT(I) .

We notice that here the performance is measured in an asymptotic sense. Artificial instances
often turn out to be small, so they are ruled out by considering only large instances.
But it is also possible to require more: The absolute approximation ratio is defined as
ARa(A) = supI∈S

A(I)
OPT(I) .

We point out that in the literature the approximation ratio is also called asymptotic
approximation ratio and the absolute approximation ratio is only called approximation ratio.
The reason for our convention is that most of our results concern the asymptotic case.

For online algorithms we measure the performance in the worst case by the competitive
ratio:

I Definition 2. Let P be a packing problem, and let S denote the set of feasible instances
for P . Then, the competitive ratio of a deterministic algorithm A for P is defined as

CR(A) = lim sup
m→∞

sup
I∈S : OPT(I)≥m

A(I)
OPT(I) .

We notice that this is exactly the same definition as for the approximation ratio. The
difference is that the performance of an online algorithm is still compared to an optimal
offline solution. Again, there is also a stronger measure, the absolute competitive ratio:
CRa(A) = supI∈S

A(I)
OPT(I) .

The definitions here are given for a packing problem. In this case we always have
CRa(A) ≥ CR(A) ≥ 1. If we deal with covering problems we have to replace lim sup by lim inf
and sup by inf in the previous definitions. Then, it follows that 0 ≤ CRa(A) ≤ CR(A) ≤ 1.

In Section 3-5 we investigate online algorithms for packing and covering problems with
respect to probabilistic performance measures. A distribution F is a pair of a (possibly
uncountable) set of items I and a probability mass function/probability density function p.
For a distribution F and n ∈ N we set IFn = (A1, . . . , An), where the random variables Ai
are independent and distributed according to F . Now we are able to define the average
performance ratio:

I Definition 3. Let P be a packing problem and A a deterministic online algorithm for this
problem. For a distribution F we set

APR(A,F) = lim sup
n→∞

E
[

A(IFn)
OPT(IFn)

]
,

and for a set of distributions D we set

APR(A,D) = sup
F∈D

APR(A,F).

In case of a covering problem we have to replace again lim sup by lim inf and sup by inf.
We notice that in the previous definition the number of items tends to infinity and not the

1.2. Overview of Algorithms 15

value of an optimal solution. But if the items are sampled independently and identically
distributed, then also the expected value of an optimal solution grows linearly.

The second performance measure we consider is the random-order ratio. Let I =
{a1, . . . , an} be a finite multiset of n items. For a random permutation σ of the elements
in [n] we set Ai = aσ(i) for i ∈ [n] and Iσ = (A1, . . . , An).

I Definition 4. Let P be a packing problem and A a deterministic online algorithm for this
problem. Then, the random-order ratio is defined as

RR(A) = lim sup
m→∞

sup
I : OPT(I)≥m

E [A(Iσ)]
OPT(I) ,

where Iσ is a random permutation of the items in I (that is with respect to the uniform
distribution on the set of all possible permutations).

Again, if we deal with a covering problem instead we have to adjust the definition.
The performance measures were only stated for deterministic algorithms. If we consider

randomized algorithms, we look at the expected number of opened/covered bins by the
algorithm on the (possibly random) instances instead.

For a minimization problem it is clear that we have CR(A) ≥ RR(A). Moreover, for an
arbitrary set D of distributions we have RR(A) ≥ APR(A,D). So, the random-order ratio is
something in between the worst case and a setting where items are drawn independently and
identically distributed. Furthermore, this connection allows us to obtain lower bounds for
the random-order ratio by considering the case of independent, identically distributed items.
We will prove this relationship in Section 2.4.

1.2 Overview of Algorithms
We start with introducing some fundamental algorithms. Most of these heuristics will be
investigated in this thesis with respect to the mentioned probabilistic performance measures.
Moreover, some algorithms, which we will design in this thesis, are based on such algorithmic
approaches.

We start with the classical bin packing problem:

Next-Fit (NF): At each point of time one bin is open. NF assigns each arriving item to
the currently open bin if it can accommodate the item. Otherwise it closes the currently
open bin and opens a new bin to which the item is added. Here closing a bin means that
no item will be assigned to this bin in the future anymore.
First-Fit (FF): FF never closes a bin, i.e., it keeps all bins open and assigns each arriving
item to the first bin that can accommodate it if such a bin exists. Otherwise it opens a
new bin and adds the item to it.
Best-Fit (BF): BF never closes a bin, i.e., it keeps all bins open and assigns each arriving
item to the fullest bin that can accommodate it if such a bin exists. Otherwise it opens a
new bin and adds the item to it.
Worst-Fit (WF): WF never closes a bin, i.e., it keeps all bins open and assigns each
arriving item to the bin with the most space remaining that can accommodate it. If such
a bin does not exists it opens a new bin and adds the item to it.
Smart-Next-Fit (SNF): SNF works similarly to NF. It assigns each arriving item to the
currently open bin Z if this bin can accommodate the item. Otherwise it opens a new
bin Z ′ and adds the item to it. It retains as new current bin whichever of Z and Z ′ has
the most space remaining.

16 1. Introduction

HARMONICM : This algorithm partitions the interval [0, 1] into the subintervals [0, 1/M],
(1/M, 1/(M − 1)], . . . , (1/3, 1/2], (1/2, 1]. These subintervals are used to classify ar-
riving items according to their size. The algorithm packs items from each subinterval
independently, using Next-Fit.

While in NF there is only one and in HARMONICM only M open bins at each point of time,
in FF, BF, and WF all bins are kept open during the whole input sequence. We say that an
algorithm is an `-bounded space algorithm if on any input and at each point of time it has at
most ` open bins.

For some of the heuristics mentioned above there exist straightforward adaptions to the
case of cardinality-constrained and class-constrained bin packing. For example Next-Fit packs
the items in the currently open bin as long as it is possible, that is the total size of the
items is at most 1 and there are at most k items or items of at most k different colors in
the bin. Correspondingly, First-Fit packs the item into the first opened bin, which allows to
accommodate this item.

Furthermore, for class-constrained bin packing there is another approach how to reuse an
algorithm A, which is intended for classical bin packing: The ColorSets-approach partitions
the set of colors into groups of size k. The first k distinct colors in the input form the first
group, the second k distinct colors the second group, and so on. Then, the algorithm packs
different groups separately using algorithm A. We denote this algorithm by CS [A].

For classical and class-constrained bin covering there are three relevant heuristics:
Dual-Next-Fit (DNF): DNF packs all arriving items into the same bin until the bin is
covered. Then, the next items are packed into a new bin until this bin is covered, and so
on.
Dual-Harmonic DHM : The algorithm DHM is for the classical bin covering problem
only. We assume without loss of generality that item sizes stem from the interval [0, 1),
otherwise we pack items of size one separately. Then, the interval [0, 1) is partitioned into
the subintervals [0, 1/M), [1/M, 1/(M − 1)), . . . , [1/2, 1). This partition induces also a
partition of the set of items into M classes. DHM packs items from different classes into
different bins and it runs DNF independently for each class. That is, for j ∈ {2, . . . ,M}
it uses exactly j items from the interval [1/j, 1/(j − 1)) to cover a bin.
FF2: This algorithm is for class-constrained bin covering in the case of unit sized items.
That is we assume that each item – besides its color – has size 1 and the bin demand is
given by an integer B ∈ N. FF2 is based on a First-Fit approach: The algorithm adds
each arriving item to the first bin for which it is suitable. To define the notion of suitable,
consider a bin that contains already items with k − t different colors. If this bin contains
fewer than B − t items, every item is suitable. Otherwise, if the number of items is
exactly B− t, an item is only suitable if it has a color that is not yet contained in the bin.

1.3 Overview of Related Literature
Before we present our results in Section 1.4 we give an overview of the related literature. As
bin packing is a fundamental problem in theoretical computer science there is a vast body of
literature. Here, we mention only the results that are most important or closely related to
the results obtained in this thesis. An extensive survey can be found in [19].

1.3.1 Classical Bin Packing
We begin with the classical bin packing problem in the offline case: Classical bin packing is
a computationally hard problem, that is it is not only NP-complete [44] but also strongly

1.3. Overview of Related Literature 17

NP-complete [67]. Moreover, under the assumption P 6= NP a reduction from the Partition-
problem shows there cannot exist a polynomial-time algorithm with ARa(A) < 3/2, and the
ratio 3/2 is obtained by the algorithm First-Fit-Decreasing [79]. Considering the problem in
an asymptotic sense it becomes easier: In the beginning of the 80s Fernandez de la Vega and
Lueker proved the existence of an asymptotic polynomial-time approximation scheme [29],
that is for every ε greater than zero there exists an algorithm Aε with AR(Aε) ≤ 1 + ε and a
polynomial runtime in the number of items, depending on 1/ε. Shortly afterwards Karmarkar
and Karp showed that there is also an asymptotic fully polynomial-time approximation
scheme [53]. That is, the runtime of Aε is bounded polynomially in the number of items
and 1/ε. It also follows from their approach that it is possible to construct an algorithm with
polynomial runtime, which needs at most OPT(I) +O

(
log(OPT(I))2) many bins. Recently,

there has been some progress in this direction: 2013 Rothvoss showed the existence of a
randomized algorithm with polynomial expected runtime that needs at most OPT(I) +
O (log(OPT(I)) log(log(OPT(I)))) many bins [73]. Shortly afterwards Hoberg and Rothvoss
improved this result and proved the existence of a randomized algorithm with polynomial
runtime, which needs at most OPT(I) +O (log(OPT(I))) many bins [47].

We now turn to classical bin packing in the online setting. At first we consider the
analysis in the worst case, that is investigations regarding the competitive ratio. We start
giving results for some fundamental heuristics. A few of them were already mentioned in the
previous section about algorithms.

The algorithms Next-Fit and Worst-Fit were shown to be 2-competitive in the beginning
of the 70s [50, 51].
In the same decade it was found out that First-Fit and Best-Fit are 1.7-competitive [81].
Recently, it was shown that this also holds true for the absolute competitive ratio [31, 32].

Apart from these results for special natural-looking heuristics there has been a chase for the
best online algorithm:

The algorithm Refined-First-Fit proposed by Yao 1980 in [84] obtains a competitive ratio
of 5/3.
Lee and Lee showed 1985 that the algorithm Refined-Harmonic, which is based on the
Harmonic-approach, is approximately 1.6359-competitive [58].
There were further improvements in [70] and [74] based on the same approach, which
obtained competitive ratios of roughly 1.612 and 1.5889.
Recently, Balogh et al. showed that their algorithm Advanced-Harmonic obtains a com-
petitive ratio of 1.5783 [8].

Those upper bounds are complemented by a sequence of improved lower bounds for the
competitive ratio:

In the beginning of the 80s a lower bound of 1.5 was shown by Yao [84], which was
independently improved to 1.5363 by Brown and Liang in [14] and [61].
1992 van Vliet proved a lower bound of 1.5401 [82].
2012 Balogh et al. refined the approach of van Vliet and gave an improved result of
248/161 ≈ 1.5403 in [10].
Recently, Balogh et al. improved the bound to (1363−

√
1387369)/120 ≈ 1.5427 [9].

Usually, these bounds carry over to randomized algorithms [16].
Apart from that Lee and Lee showed a lower bound of h∞ ≈ 1.691 for the competitive

ratio of bounded-space algorithms, and also showed that CR(HARMONICM) tends to this

18 1. Introduction

bound as M tends to infinity [58]. Interestingly, the algorithm Best-Fit is still 1.7-competitive
if it is restricted to only two open bins [25].

Now we want give an overview of results in classical bin packing in the online setting,
if the input is random. We start with results regarding the average performance ratio with
respect to specific distributions. An important special case is that the items are distributed
according to U [0, 1], that is the uniform distribution on the interval [0, 1].

For Next-Fit it holds APR(NF,U [0, 1]) = 4/3 [23].
The algorithm Smart-Next-Fit has the same competitive ratio as Next-Fit, but if the
items are drawn independently and identically distributed we perform better, that is we
have APR(SNF,U [0, 1]) ≈ 1.227 [69].
Moreover, it was proved that APR(HARMONICM ,U [0, 1]) ≈ 1.2899 [57].

For the algorithms First-Fit and Best-Fit it can be shown that APR(FF,U [0, 1]) = 1 and
APR(BF,U [0, 1]) = 1. To distinguish both algorithms better the expected waste of an
algorithm A is introduced, that is WF

n (A) := E
[
A(IFn)− S(IFn)

]
, where S(IFn) denotes the

total sum of all items in IFn . For this quantity it was shown thatWU [0,1]
n (FF) ∈ Θ(n2/3) [22, 78],

andWU [0,1]
n (BF) ∈ Θ(

√
n log(n)3/4) [59, 78]. We cannot improve substantially on these results:

For any online algorithm A it holds that WU [0,1]
n (A) ∈ Ω

(√
n log(n)

)
[78]. Moreover, for an

M -bounded-space algorithm A we have APR(A,U [0, 1]) ≥ 1 + 1
4M+4 [25]. Additionally, there

are more results concerning the analysis of discrete uniform distributions in [1, 18, 21, 55].
Now we turn to the case of probabilistic statements that do not depend on specific

distributions. For the average performance ratio there are the following results:

Rhee and Talagrand gave in 1993 a randomized online algorithm A with APR(A,D) = 1,
where D is the set of all distributions on [0, 1] [72]. This result is of theoretical interest,
but since the algorithm has to compute frequently optimal solutions of subsets of the
drawn items, it is not applicable in practice.
In a setting, where the item sizes are integers and the bin capacity is given by an integer B,
Csirik et al. presented the Sum-Of-Squares algorithm SS, which satisfies APR(SS,P) = 1,
where P denotes the set of all perfect-packing distributions [27]. This heuristic is a linear-
time algorithm, and hence also of practical interest. Moreover, they provide an algorithm
which is optimal for all distributions. But this algorithms exhibits again a large runtime.
Later on, also in the setting of integer item sizes, Gupta and Radovanovic gave two
optimal algorithms, which are based on Lagrangian relaxation [46].

With respect to the random-order ratio there are only two results published:

Kenyon showed in 1996 that 1.08 ≤ RR(BF) ≤ 1.5. So Best-Fit behaves better in
expectation than in the worst case if the items arrive in random order.
Moreover, 2008 it was proven that RR(NF) = 2 [20]. That is, Next-Fit does not benefit
from such randomization compared to the worst case.

1.3.2 Cardinality-constrained and Class-constrained Bin Packing
As classical bin packing is an old fundamental problem, lots of variants were studied. In this
thesis we consider cardinality-constrained and class-constrained bin packing. To the best of
our knowledge these variants are up to now only studied with respect to the worst case.

We begin with considering cardinality-constrained bin packing: This problem was intro-
duced 1975 in [56]. It is also NP-complete, but an APTAS and later on an AFPTAS were
found [15, 39].

1.4. Overview of Results, Outline and Bibliographical Notes 19

Babel et al. presented in 2004 two 2-competitive online algorithms [6]. Recently, Balogh
et al. showed that there is no hope for better results, that is there exists a lower bound
of 2 for the competitive ratio [7]. Apart from these results, the First-Fit heuristic is studied
in [30] and the bounded-space setting in [36].

The class-constrained bin packing problem was introduced in [76]. It is NP-hard even
in the case of unit sized items and k = 2, and strongly NP-hard if k ≥ 3 [45, 77]. Several
approximation and non-approximability results for the offline version are given in [38, 83].

The online version was studied at first in [77] for the case of unit sized items. Especially,
there were presented two 2-competitive algorithms and a corresponding lower bound of 2.
Furthermore, a lower bound of 5/3 is given in the special case k = 2.

For arbitrary item sizes Epstein et al. gave a 2.635-competitive algorithm in [38] and
Balogh et al. showed a lower bound of 1.717608 in the special case k = 2. Further results for
specific heuristics were given in [38, 83].

1.3.3 Classical Bin Covering and Class-constrained Bin Covering

The classical bin covering problem is somewhat of the dual problem to classical bin packing.
It was introduced in the beginning of the 80s in [4] and [5]. The problem is also NP-
complete and the Dual-Next-Fit algorithm obtains an approximation ratio of 1/2. Additionally,
approximation algorithms with factors 2/3 and 3/4 were presented. 2001 an APTAS for the
problem was found by Csirik et al. [26]. This result was improved a short time later by
Jansen and Solis-Oba, who presented an AFPTAS [49].

The story of online bin covering is short: 1988 Csirik and Totik showed that no online
algorithm for bin covering can obtain a competitive ratio better than 1/2 [28]. As already the
simple 1-bounded space algorithm DNF obtains this ratio, there is only very limited research
in this area. In [17] the algorithm Dual-Harmonic is considered and it is also shown that any
reasonable algorithm for online bin covering has a competitive ratio of 1/2.

For random input it was shown that APR(DNF,U [0, 1]) = 2/e ≈ 0.7141 [24]. Christ
et al. compared Dual-Next-Fit and Dual-Harmonic for various performance measures, also
probabilistic ones, and showed that APR(DH2,U [0, 1]) ≈ 0.7141, and RR(DNF) ≤ 4/5 [17].
Finally, it was investigated how Markov chains can be used to design bounded-space algorithms
for online bin covering [3].

Class-constrained bin covering is only studied in [37] and the authors restrict themselves
to the case of unit sized items. For the offline version it was shown that there exists a simple
optimal polynomial-time algorithm. For the online version an algorithm with competitive
ratio of Ω(1/k), and a logarithmic upper bound of O (1/ log(k)) are presented. Additionally,
it is shown that CR(FF2) = 1/B.

1.4 Overview of Results, Outline and Bibliographical Notes

In Section 2 we give an overview of the most important stochastic techniques used in this
thesis. Section 3, 4 and 5 contain our results with respect to packing and covering problems.
The last section addresses open problems and possible further lines of research.

We have seen in the previous section that algorithms for packing and covering problems
were analyzed on random input several times. But there are only few results where algorithms
are analyzed with respect to the average performance ratio for larger classes of distributions
or in the random-order model. In Section 3-5 we make progress in this direction.

We describe those results in more details:

20 1. Introduction

In Section 3 we investigate the complexity of classical, cardinality-constrained and class-
constrained bin packing with respect to the introduced probabilistic performance measures.
Rhee and Talagrand have shown in [72] the existence of an algorithm A for classical bin
packing with APR(A,D) = 1, where D denotes the set of all probability distributions
on [0, 1]. We adapt their approach to show the following results:

For cardinality-constrained bin packing there exists a randomized algorithm A with
RR(A) = 1, and therefore also APR(A,D) = 1.
For classical bin packing there exists for every ε greater than zero a randomized
algorithm Aε with RR(Aε) ≤ 1 + ε. This is a step to the answer of the question raised
in [54] about the existence of an asymptotic optimal algorithm for classical bin packing
with respect to the random-order ratio.
Finally, for class-constrained bin packing there exists a randomized algorithm A with
APR(A,D) = 1, where D denotes the class of all probability distributions on [0, 1]×N.

These positive results are complemented by the following negative results obtained:

For classical bin packing we study another stochastic model, namely the partial-
permutations model. Here, we are given a parameter p ∈ [0, 1], which is a probability.
Then, an opponent is allowed to design an instance I for classical bin packing. After-
wards, a subset of the items is chosen by flipping a coin with success probability p
for each item. Then, all chosen items are randomly permuted. For p equal to one we
obtain the random-order model, and for p equal to zero the opponent is allowed to
give a worst-case sequence. Hence, the partial-permutation model interpolates between
both cases.
We show that for every p ∈ [0, 1) there exists an εp greater than zero such that for every
algorithm A there exist arbitrary large instances I such that the expected number
of opened bins by A on I is at least (1 + εp) OPT(I). So, if the adversary is able to
control a constant fraction of the input, it is not possible to obtain a positive result as
in the case where p is equal to one.
Furthermore, we show that RR(A) ≥ 10/9 for all online algorithms A for class-
constrained bin packing. This demonstrates that the complexity of class-constrained
bin packing differs with respect to the average performance ratio and the random-order
ratio.

In Section 4 we deal with bounded-space algorithms for classical bin packing and classical
bin covering. For classical bin packing Lee and Lee showed in [58] that no bounded-space
algorithm – independent of the allowed number of open bins – can obtain a competitive
ratio better than h∞ ≈ 1.691. We show that if the items arrive in random order it is
possible to break this bound. That is, we construct an algorithm, which is based on the
Harmonic-algorithm, that uses only four open bins and obtains a random-order ratio of at
most 1.671. Moreover, in the past it was already shown that the random-order ratio of the
1-bounded-space algorithm Next-Fit is 2. We generalize this result to more algorithms,
and show that it is also true for the average performance ratio.
For classical bin covering we show that the algorithm Dual-Next-Fit has a random-order
ratio of at least 0.502. This is in contrast to the worst-case, as it was shown that no online
algorithm can obtain a competitive ratio better than 0.5.
We conclude the probabilistic analysis of packing and covering problems with analyzing
selected established heuristics for class-constrained bin packing and bin covering.
In the analysis of class-constrained bin packing we observe again that the results for the
average performance ratio and random-order ratio differ for many studied algorithms. So,

1.4. Overview of Results, Outline and Bibliographical Notes 21

the different asymptotic complexity of this problem, already observed in Section 3, also
plays a role for established heuristics. Especially, we consider the ColorSets-approach:
Here, we show that the average performance ratio of CS [A] cannot be better than h∞,
independently of the chosen algorithm A. Furthermore, this bound is almost tight, that is
we can find a family of algorithms whose average performance ratios tends to this bound.
However, in the random-order model we obtain a lower bound of 2.
Considering class-constrained bin covering we do not observe a difference between the two
probabilistic performance measures. Among other results, we show that RR(FF2) = 1
in the case of unit sized items. This is in contrast to a competitive ratio of 1/B. Then,
we use this result to establish an online algorithm with random-order ratio of 1/3 for
class-constrained bin covering with general item sizes. It follows that there exists also a
randomized offline algorithm with approximation ratio of 1/3. To our knowledge this is
the first offline algorithm for this problem in the case of arbitrary item sizes presented.

Preliminary versions of the results concerning the analysis of the Dual-Next-Fit algorithm
in Section 4 and the analysis of selected heuristics for class-constrained bin packing and bin
covering in Section 5 have been published at conferences and as a technical report:

Carsten Fischer and Heiko Röglin. Probabilistic analysis of the dual next-fit algorithm
for bin covering. arXiv preprint arXiv:1512.04719, 2015
Carsten Fischer and Heiko Röglin. Probabilistic analysis of the dual next-fit algorithm
for bin covering. In Proc. of the Latin American Symposium on Theoretical Informatics
(LATIN), pages 469–482, 2016.
Carsten Fischer and Heiko Röglin. Probabilistic analysis of online (class-constrained)
bin packing and bin covering. In Proc. of the Latin American Symposium on Theoretical
Informatics (LATIN), pages 461–474, 2018.

22 2. Stochastic Background

2 Stochastic Background

Most of the results presented in Section 3, 4 and 5 are probabilistic statements. To obtain
these results we will mainly use tools from the fields concentration inequalities, Markov
chains, and stochastic upright matchings.

Usually, if we deal with random instances we hope that they satisfy with high probability
a certain structure, and that we can exploit this structure to make statements about the
behavior of the algorithm. Concentration inequalities are an important tool to quantify
bounds for the probability of certain realizations of our random instances.

Another important field is the area of Markov chains. A Markov chain – in our context – is
a stochastic process (Xn)n∈N0 , where the random variables Xn live on a state space S. Here,
the outcome of Xn+1 depends only on Xn. Markov chains can be used to model for example
the configurations an algorithm runs through on random input. Using the mathematical
machinery for Markov chains this allows us to obtain statements about the long-term behavior
of the analyzed algorithm. This procedure is a common approach and was used for example
in [3] and [54].

The third important tool is the stochastic upright matching problem. In the stochastic
upright matching problem several plus- and minus-points are randomly placed in the plane.
Then, we are interested in how many plus-points we can match to minus-points such that
the following two constraints are satisfied:

1. A plus-point p+ can only be matched to a minus-point p− that is located on the upper
and right-hand side of p+;

2. No two different plus-points can be matched to the same minus-point.

After the introduction of the problem it was discovered that it can be used in the analysis of
bin packing algorithms on random input. This was used for example in [54] and [72].

Finally, in the last part of this section we will give two important identities for the
probabilistic performance measures.

2.1 Concentration Inequalities

If we deal with worst-case analysis, that is analysis with respect to the competitive ratio
the adversary is very powerful: He has full control over the items and their order of arrival.
Consider the following input for the bin covering problem I = (1 − ε, . . . , 1 − ε, ε, . . . , ε)
consisting of 2n items of size 1 − ε and 2n items of size ε and apply the algorithm Dual
Next-Fit. Here we choose ε such that 2nε < 1. On this input it is clear that OPT(I) = 2n
and DNF(I) = n, so Dual Next-Fit cannot be better than 1/2-competitive with respect to
the competitive ratio. But if we take a close look at I we see that this sequence is somehow
artificial: If we call items of size 1− ε large, and items of size ε small, then our input starts
with 2n large items and ends with 2n small items. When we consider probabilistic inputs we
have the hope that artificial bad instances are unlikely to occur.

In our context if we talk about concentration inequalities we are usually interested in
bounding the probability of deviating from the mean. So if Z is a real-valued random variable,
we want to give bounds for the term

P [|Z − E [Z] | ≥ λ] , (1)

where λ > 0.

2.1. Concentration Inequalities 23

One of the most fundamental inequalities is Markov’s inequality: Markov’s inequality
states that for a non-negative random variable X and λ > 0 it holds P [X ≥ λ] ≤ 1

λ · E [X].
To obtain a concentration inequality in the style of (1) we set X := |Z − E [Z] |.

Markov’s inequality can be used to obtain a stronger concentration bound, namely
Chebyshev’s inequality: Chebyshev’s inequality states that for a random variable Z with
0 < Var [Z] <∞ we have P [|Z − E [Z] | ≥ λ] ≤ 1

λ2 Var [Z].
After this short introduction we study the special case when Z depends in some way on

several independent random variables X1, . . . , Xn.

2.1.1 Independent and Identically Distributed Random Variables
In this thesis, especially when we consider the average performance ratio we often consider
the case when Z depends in some way on several independent real-valued random variables
X1, . . . , Xn, that is there exists a function f : Rn → R such that Z = f(X1, . . . , Xn). This
setup is studied extensively in the book [13].

An important case is that Z is the sum of the random variables X1, . . . , Xn, so we have
Z =

∑n
i=1Xi. Applying Chebyshev’s inequality in this setting and using the independence

assumption, we obtain

P

[∣∣∣∣∣
n∑
i=1

Xi −
n∑
i=1

E [Xi]

∣∣∣∣∣ ≥ λ
]
≤ 1
λ2

n∑
i=1

Var [Xi] . (2)

It turns out that in this setting there exist much stronger statements. One of the most
famous is Hoeffding’s inequality published by Wassily Hoeffding 1963 in [48]:

I Proposition 5 (Hoeffding’s Inequality). Let X1, . . . , Xn be real-valued independent random
variables such that Xi takes its values in [ai, bi] almost surely for all i ∈ [n], where ai, bi ∈ R.
Then, for every λ > 0, we have

P

[
n∑
i=1

Xi ≥
n∑
i=1

E [Xi] + λ

]
≤ exp

(
− 2λ2∑n

i=1(bi − ai)2

)

and

P

[
n∑
i=1

Xi ≤
n∑
i=1

E [Xi]− λ
]
≤ exp

(
− 2λ2∑n

i=1(bi − ai)2

)
.

In the following example we compare the bounds given by Chebyshev’s and Hoeffding’s
inequality:

I Example 6. We think back of the instance, presented as worst-case instance for DNF,
I = (1 − ε, . . . , 1 − ε, ε, . . . , ε) consisting of 2n large items followed by 2n small items. As
the number of large and small items is equal a reasonable stochastic setting could be the
following: We draw independently 4n items, where the i-th item is large with probability 1/2,
and small otherwise. Let N denote the random variable that represents the number of drawn
large items among the first 2n items. If we set Xi equal to one if the i-th drawn item is large,
and zero otherwise, we have N =

∑2n
i=1Xi. While in I the number of large items among

the first 2n drawn items is equal to 2n the expected number E [N] of large items among the
first 2n drawn items is equal to n. But what is the probability that an extreme event occurs,
for example that N deviates from E [N] by at least the half of the expected value?

24 2. Stochastic Background

We have Var [Xi] = 1/4 and λ2 = (E [N] /2)2 = n2/4. Therefore, using (2), we obtain

P
[
|N − E [N]| ≥ 1

2 · E [N]
]
≤ 2
n
.

On the other hand, we can apply Hoeffding’s inequality as we have 0 ≤ Xi ≤ 1 for all i.
Then, we have

P
[
|N − E [N]| ≥ 1

2 · E [N]
]
≤ 2 exp

(
−1

2 · n
)
.

As we see the bound obtained by applying Hoeffding’s inequality is for large n much sharper
and tends to zero exponentially.

Sometimes we will encounter the case that the sum of the random variables will be much
smaller than the number of random variables that we add up. Then, Bernstein’s inequality,
which depends on the second moments of the Xi, will be helpful (see e.g. Section 2.7 and 2.8
in [13]):

I Proposition 7 (Bernstein’s Inequality). Let X1, . . . , Xn be real-valued independent random
variables such that Xi is upper bounded by M for all i ∈ [n]. Then, for every λ > 0, we have

P

[
n∑
i=1

Xi ≥
n∑
i=1

E [Xi] + λ

]
≤ exp

(
− λ2

2 [
∑n
i=1 E [X2

i] +Mλ/3]

)
.

If X1, . . . , Xn are real-valued independent random variables such that Xi is bounded from
below by −M for all i ∈ [n], then for every λ > 0 it holds

P

[
n∑
i=1

Xi ≤
n∑
i=1

E [Xi]− λ
]
≤ exp

(
− λ2

2 [
∑n
i=1 E [X2

i] +Mλ/3]

)
.

I Example 8. We take up the previous example. Let us now assume that the number n
of drawn items is at least 100, and we draw a large item with probability 100/n. Then,
the expected number of drawn large items E [N] is equal to 100. At first we calculate the
probability deviating from this value by at least 50 using Hoeffding’s inequality. We obtain

P
[
|N − E [N]| ≥ 1

2E [N]
]
≤ 2 exp

(
− 1
n
· 5000

)
.

We see that this estimate tends to one as n tends to infinity, and therefore is not helpful.
Now we apply Bernstein’s inequality: The random variables Xi are still bounded from

above by 1 and for the second moment we have E
[
X2
i

]
= 100/n. Then, we obtain

P
[
|N − E [N]| ≥ 1

2E [N]
]
≤ 2 exp

(
−75

7

)
≈ 0.0004.

Hoeffding’s and Bernstein’s inequality help us to control the deviation for the sum of n
random variables. But in some cases we need to control the deviations of all partial sums
simultaneously. The following maximal inequality, proved e.g. in [66], allows us to reduce
this question to bounding the deviation of the entire sum.

I Proposition 9 (Maximal Inequality). Let X1, . . . , Xn be independent and identically dis-
tributed real-valued random variables. Then, we have

P

[
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > λ

]
≤ C · P

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ > λ/C

]
,

whenever λ ≥ 0, where C is a universal constant.

2.1. Concentration Inequalities 25

Now, we turn towards the more general case that Z = f(X1, . . . , Xn): If no argument of f
is of overwhelming importance, then Z satisfies also nice concentration properties. We say
that a function f : Rn → R has the bounded difference property if there exist nonnegative
constants c1, . . . , cn such that for all i ∈ [n]

sup
x1,...,xn,x′i

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci.

Then, the Bounded Difference Inequality also called McDiarmid’s inequality holds true:

I Proposition 10 (Bounded Difference Inequality). Let X1, . . . , Xn be real-valued independent
random variables, and f : Rn → R be a function, which satisfies the bounded difference
property with constants c1, . . . , cn. Then,

P [f(X1, . . . , Xn) ≥ E [f(X1, . . . , Xn)] + λ] ≤ exp
(
− 2λ2∑n

i=1 c
2
i

)
and

P [f(X1, . . . , Xn) ≤ E [f(X1, . . . , Xn)]− λ] ≤ exp
(
− 2λ2∑n

i=1 c
2
i

)
.

The bounded difference inequality shows for example that for an arbitrary distribu-
tion F on [0, 1] and items X1, . . . , Xn drawn independently according to F , the value of
OPT((X1, . . . , Xn)) is highly concentrated around its mean.

Finally, especially when we design (nearly) optimal algorithms in Section 3, we will also
need a concentration statement for a different setup. Let F be an arbitrary distribution on
[0, 1] with cumulative distribution function G : [0, 1]→ [0, 1]. Moreover, let X1, . . . , Xn be in-
dependent random variables that are distributed according to F . Then, we can approximate F
by the empirical distribution F̂ with empirical distribution function Ĝn(x) := 1

n

∑n
i=1 I{Xi≤x}.

Here, I{Xi≤x} denotes the indicator function, that means this function is equal to 1 if Xi ≤ x
and 0 otherwise.

The Dvoretzky-Kiefer-Wolfowitz Inequality (in short: DKW inequality) shows that the
difference between G and Ĝn vanishes exponentially fast [33, 64].

I Proposition 11 (Dvoretzky-Kiefer-Wolfowitz Inequality). Let F denote an arbitrary distri-
bution on [0, 1], X1, . . . , Xn independent random variables distributed according to F , and
let Ĝn denote the corresponding empirical distribution function. Then, we have for λ > 0
arbitrary

P

[
sup
x∈[0,1]

∣∣∣Ĝn(x)−G(x)
∣∣∣ ≥ λ] ≤ 2 exp

(
−2nλ2) .

2.1.2 Dependent and Identically Distributed Random Variables
In the previous part we assumed that the random variables Xi are independent. When we
analyze algorithms with respect to the random-order ratio we cannot make this assumption.
In this case we have a probabilistic setup which is similar to drawing several items from an
urn without replacing them. Fortunately, also in this setting several important concentration
inequalities hold true.

That Hoeffding’s inequality also holds true under these circumstances was already men-
tioned by Hoeffding himself in [48].

26 2. Stochastic Background

I Proposition 12 (Hoeffding’s Inequality for Sampling Without Replacement). Let X =
{x1, . . . , xN} be a finite population of N reals (X can be a multiset) and X1, . . . , Xn be
a random sample drawn without replacement from X . Let a := min1≤i≤N xi and b :=
max1≤i≤N xi. Then, for all λ > 0,

P

[
n∑
i=1

Xi ≥
n∑
i=1

E [Xi] + λ

]
≤ exp

(
− 2λ2

n(b− a)2

)

and

P

[
n∑
i=1

Xi ≤
n∑
i=1

E [Xi]− λ
]
≤ exp

(
− 2λ2

n(b− a)2

)
.

Also Bernstein’s inequality can be transposed to the new setting [12]:

I Proposition 13 (Bernstein’s Inequality for Sampling Without Replacement). Let X =
{x1, . . . , xN} be a finite population of N reals (X can be a multiset) and X1, . . . , Xn be a ran-
dom sample drawn without replacement from X . Let a := min1≤i≤N xi and b := max1≤i≤N xi.
Then, for all λ > 0,

P

[
n∑
i=1

Xi ≥
n∑
i=1

E [Xi] + λ

]
≤ exp

(
− λ2

2 [
∑n
i=1 E [X2

i] + (b− a)λ/3]

)

and

P

[
n∑
i=1

Xi ≤
n∑
i=1

E [Xi]− λ
]
≤ exp

(
− λ2

2 [
∑n
i=1 E [X2

i] + (b− a)λ/3]

)
.

In fact, in the setting of sampling without replacement we often have even stronger
concentration properties than in the case of sampling with replacement. More sophisticated
statements can be found for example in [12].

Finally, it is also possible to obtain a maximal inequality in the case of drawing items
according to sampling without replacement as shown in [68].

I Proposition 14 (Maximal Inequality for Sampling Without Replacement). Let X1, . . . , Xn

be an exchangeable sequence of real-valued random variables with n ≥ 2. Then there exists an
universal constant C such that

P

[
max

1≤j≤n

∣∣∣∣∣
j∑
i=1

Xi

∣∣∣∣∣ > λ

]
≤ C · P

∣∣∣∣∣∣
bn/2c∑
i=1

Xi

∣∣∣∣∣∣ > λ/C

 .
2.2 Markov Chains
In this part we will describe the most important statements in the area of Markov chains,
which are important for this thesis. In order to do this will follow mostly the book [75].
Another nice overview – in the case of finite state space Markov chains – is given in [60].

2.2.1 Basics
A time-discrete stochastic process (Xn)n∈N0 is a vector of random variables that attain values
in a state space S and are realized on the same probability space. We say that Xn is the

2.2. Markov Chains 27

0−1−2 1 2

p p p p p p

q q q q q q

Figure 1 This is the transition graph of a random walk on Z, where we go to the right with
probability p and to the left with probability q := 1− p. If p = q, this is a symmetric random walk.

state of the process at time n. In our applications we will usually deal with the case that S
is a countable or finite set.

We say that a stochastic process (Xn)n∈N0 is a time-homogeneous Markov chain if we
have for arbitrary n ∈ N0 and s ∈ S

P [Xn+1 = s | X1, . . . , Xn] = P [Xn+1 = s | Xn] .

This is the so-called Markov property and means that the outcome of the next state Xn+1
depends only on the state Xn, and is independent of any other states attained in the past.

We assume that S = {s1, s2, . . . , sm} for an m ∈ N in the case that S is finite, and
S = {si : i ∈ N} in case that S is countably infinite.

For s, s̃ ∈ S we denote by ps,s̃ the probability to go from state s to s̃ in one step. Then
P = (ps,s̃)s,s̃∈S denotes the transition matrix and for an arbitrary s we have

∑
s̃∈S ps,s̃ = 1.

So, if S is countable our transition matrix is an infinite matrix. It is often helpful to visualize
the transition matrix as a transition graph. Then, the set of nodes is given by S and between
each two states s and s̃ with ps,s̃ > 0 there is an edge with weight ps,s̃.

Furthermore, the starting state X0 of the Markov chain is determined by a probability
distribution µ on S. In case that we have µ = δs for an s ∈ S (where δs denotes the dirac
measure) we say that the Markov chain starts in state s.

I Example 15. We present several Markov chains to give an idea of this concept:

1. An important class of Markov chains are sums of independent, identically distributed
random variables. For example, let Y1, Y2, . . . be independent random variables with
P [Yi = 1] = p and P [Yi = −1] = 1− p, and we set Xn :=

∑n
i=1 Yi. The transition graph

of this Markov chain is described in Figure 1. Sometimes we will call Markov chains of
this type random walks, but we will also call similar Markov chains random walks. In
case that p = q, the expected value of the random variables Yi is equal to zero. In this
case we will call the random walk symmetric.

2. It is possible to extend the concept of the symmetric one-dimensional random walk to
higher dimensions, that is to the state space Zd. Then, the increments are drawn with
respect to the uniform distribution from the set of the canonical unit vectors and their
negative counterparts. The transition graph in case d = 2 is given in Figure 2.

3. Finally, we present another Markov chain, where the transition graph is shown in Figure 3.
Here, the state space is N0 and we have a drift towards zero.

2.2.2 Properties of Markov Chains
In this part we introduce some important properties of Markov chains. We begin with the
notion of irreducibility:

I Definition 16. A Markov chain is irreducible if for two arbitrary states s, s̃ ∈ S there
exists a u ∈ N0 such that it is possible to go from s to s̃ in u steps with a positive probability.

28 2. Stochastic Background

1/4

1/4

1/4 1/4

1/4

1/4

1/41/4

(0, 0)

(0, 1)

(1, 0)

(1, 1)(−1, 1)

(−1, 0)

(−1,−1) (0,−1) (1,−1)

Figure 2 This is the transition graph of a symmetric random walk on Z2.

2/3

1/3

2/3 2/3

1/3 1/3

2/32/3

1/3

0 1 2 3 4

1

Figure 3 This is the transition graph of a Markov chain on N0, where we have a drift towards
zero.

Moreover, in the following we use two abbreviations: Let Ps(A) := P [A | X0 = s]
and Es [Z] := E [Z|X0 = s].

The hitting time Ts is defined as Ts := min{n ≥ 1 : Xn = s}. In case that our Markov
chain starts in state s we refer to this also as first return time.

Based on the notion of the first return time we define several properties of states:

I Definition 17. We say that state s is transient if we have Ps[Ts < ∞] < 1, that is if
the Markov chain starting in s returns to s with probability smaller than one. Otherwise,
we call the state recurrent. Moreover, we say that a recurrent state s is positive recurrent
if Es [Ts] <∞, and null recurrent if Es [Ts] =∞.

Interestingly, if the Markov chain is irreducible then all states behave in the same way:

I Proposition 18. If we have an irreducible Markov chain, then all states s ∈ S share the
same behavior, that is they are either transitive, positive recurrent or null recurrent.

I Example 19. We take up again the Markov chains considered in Example 15. Looking at
the transition graphs it is easy to see that all of the three Markov chains are irreducible. At
first we consider the random walk on Z, where we go to the right with probability p and
to the left with probability 1− p. In case that we have a symmetric random walk, that is
we have p = 1/2, this random walk is null recurrent. If p 6= 1/2, then the Markov chain has a
drift to the left or to the right. In this case the random walk is transient. More generally it
can be shown that the symmetric random walk on Zd is null recurrent if d ≤ 2, but transient
if d ≥ 3.

Finally, we consider the Markov chain with transition graph depicted in Figure 3. For
this Markov chain it is possible to show that it is positive recurrent.

2.2. Markov Chains 29

2.2.3 Stationary Distributions and Long-term Averages
Since we usually deal with asymptotic performance measures, we are mostly interested in
the long-term behavior of Markov chains. Of special interest is the question which conditions
a function f : S → R and a Markov chain (Xn) with transition matrix P have to satisfy such
that

lim
n→∞

1
n

n∑
i=1

E [f(Xi)]

exists, and in case of existence how we can compute this limit.
An important concept will be stationary distributions.

I Definition 20. A probability measure π on S is a stationary distribution for the Markov
chain (Xn) with transition matrix P if we have for all s ∈ S

π(s) =
∑
s̃∈S

π(s̃)ps̃,s.

It follows from this definition that if X0 is distributed according to a stationary distribution π,
then Xi is distributed according to π for all i ∈ N. Furthermore, it follows from this definition
that we can determine a stationary distribution π by calculating the left-eigenvector to
eigenvalue 1 of the transition matrix P .

While Markov chains with finite state spaces always possess at least one stationary
distribution, this is not true in the case that S is infinite. The following statement gives
conditions for the existence of stationary distributions and shows an important connection of
the stationary distribution and the first return time.

I Proposition 21. An irreducible Markov chain (Xn) possesses a stationary distribution if
and only if all of its states are positive recurrent. In that case, the stationary distribution is
unique, and independent of the distribution of X0.

Let π denote this distribution, and let π(s) denote the probability of being in state s. Then,
we have π(s) = 1/Es [Ts].

I Example 22. We take up again the Markov chains presented in our two previous examples.
It follows from Proposition 21 that only the Markov chain with drift towards zero possesses
a stationary measure. Now, we will compute the stationary distribution π for this chain.
In order to do this, we will solve an infinite system of linear equations, which is based on
Definition 20. We have

π(0) = 2
3π(1)

π(1) = π(0) + 2
3π(2)

π(2) = 1
3π(1) + 2

3π(3)

π(3) = 1
3π(2) + 2

3π(4)

. . .

Solving this system and normalizing the solution we obtain π(0) = 1/4, π(1) = 3/8, π(2) = 3/16,
π(3) = 3/32, and so on.

Furthermore, under mild conditions, it is possible to compute long-term averages using
an (existing) stationary distribution.

30 2. Stochastic Background

I Proposition 23. Let Xn be an irreducible and positive recurrent Markov chain. Let π
denote its unique stationary distribution. Furthermore, let f : S → R be a bounded function.
Then, we have

lim
n→∞

1
n

n∑
i=1

E [f(Xi)] =
∑
s∈S

π(s)f(s).

We want to finish this subsection by presenting the procedure to obtain a lower bound for
the random-order ratio of Best-Fit given in [54]. This approach illustrates the use of Markov
chains in the probabilistic analysis of bin packing and bin covering problems in a nice way.

I Example 24. A possible way to obtain a lower bound for the random-order ratio of an
algorithm A (in the context of bin packing) is to choose a concrete distribution F and to
take advantage of the fact that

RR(A) ≥ lim
n→∞

E
[
A(IFn)

]
E [OPT(IFn)] .

We will prove this relationship in Section 2.4.
Let F be the distribution on the set of items I = {1/3, 1/2}, where we choose an item

of size 1/2 with probability p and an item of size 1/3 with probability 1− p. As Best-Fit is
optimal if p is equal to zero or one we assume that p ∈ (0, 1).

We say that a bin is open, if it is possible for the algorithm to pack items arriving in the
future in this bin. If Best-Fit operates on items with sizes in I we see that we can describe
the current configuration of the algorithm with five states:

there is no open bin (state sa);
there is one open bin containing an item of size 1/3 (state sb);
there is one open bin containing an item of size 1/2 (state sc);
there is one open bin containing two items of size 1/3 (state sd);
there are two open bins; one containing two items of size 1/3 and one containing one item
of size 1/2 (state se).

So let S = {sa, sb, sc, sd, se} denote the state space of our Markov chain, and the transition
probabilities between the states are described in Figure 4.

In the following we want to calculate or to estimate the terms limn→∞ E
[
BF(IFn)

]
/n

and limn→∞ E
[
OPT(IFn)

]
/n.

We start with the analysis of Best-Fit: It holds

E
[
BF(IFn)

]
= E

[
n∑
i=1

I{BF opens a new bin for the i-th item}

]

=
n∑
i=1

P [BF opens a new bin for the i-th item] .

So let f : S → [0, 1] with

f(s) = P [BF opens a new bin for the next item being in state s] ,

that is we have f(sa) = 1, f(sb) = 0, f(sc) = 0, f(sd) = p, and f(se) = 0.
As we can see in Figure 4 our Markov chain is irreducible, and since we have a finite state

space it is also positive recurrent. Hence, it follows from Proposition 21 that there exists a
unique stationary probability distribution π : S → [0, 1].

2.3. Stochastic Upright Matchings 31

p1− p

1− p
p

1− p

p

1− p

1

p

sa

sb

sc

sd

se

Figure 4 The transition graph of the Markov chain that describes the behavior of Best-Fit in
Example 24.

Calculating the left-eigenvector to eigenvalue one of the transition matrix and normalizing,
we obtain

π(sa) = 1 + p

3 + 3p− 3p2 + p3 and π(sd) = 1− p
3 + 3p− 3p2 + p3 .

So, since f is a bounded function, we can apply Proposition 23 and obtain

lim
n→∞

1
n
E
[
BF(IFn)

]
= 1 + p

3 + 3p− 3p2 + p3 · 1 + 1− p
3 + 3p− 3p2 + p3 · p

= 1 + 2p− p2

3 + 3p− 3p2 + p3 .

Now, we want to estimate limn→∞ E
[
OPT(IFn)

]
/n. Let Nn denote the number of items

of size 1/2 in IFn and Mn the number of items of size 1/3. Then, we have

E
[
OPT(IFn)

]
≤ E

[⌈
1
2Nn

⌉
+
⌈

1
3Mn

⌉]
≤ E

[
1
2Nn + 1

3Mn

]
+ 2

=
(

1
2p+ 1

3(1− p)
)
n + 2 =

(
1
3 + 1

6p
)
n + 2.

So the limit can be bounded from above by 1/3 + p/6.
Combining the result obtained for both limits, it follows that

RR(BF) ≥ 1 + 2p− p2

3 + 3p− 3p2 + p3 ·
6

2 + p
.

Choosing p ≈ 0.456 we obtain a lower bound for the random-order ratio which is slightly
larger than 1.08.

2.3 Stochastic Upright Matchings
When we design and analyze algorithms that are (almost) optimal for stochastic performance
ratios in Section 3 we will deal with problems called stochastic upright matching problems in
literature. For our purpose it is more convenient to introduce these problems as stochastic
upleft matching problems. An instance P = (P+,P−) for an upleft matching problem consists
of two finite point sets P+ and P− in R2, that is we have a set of points that are labeled
with a plus and a set of points that are labeled with a minus. The aim is to match as many
points from P+ to P− as possible satisfying the following constraints:

32 2. Stochastic Background

Figure 5 Here, two possible realizations of an instance for Matching-Variant 1 with parameters k =
4 and n = 10 are illustrated. The red squares represent the points from P+, and the blue ones the
points from P−. The dashed lines indicate a maximum matching.

A point (x+, y+) ∈ P+ can only be matched to a point (x−, y−) ∈ P− with x− ≤ x+ and
y− ≥ y+;
It is not allowed to match two different points p+

1 , p
+
2 ∈ P+ to the same point p− in P−.

We call a matching for P maximum, if it maximizes the number of matched points in P+

and we let U(P) denote the number of unmatched points in P+ in a maximum matching.
An example for an upleft matching instance is given in Figure 5.

We notice that the value of a maximum matching only depends on the relative positions
of the points, and not on their absolute values. Therefore, in the following we assume without
loss of generality that the x-coordinates are in {1, 2, 3, . . .}.

These problems will be used in the following way in the analysis of (nearly) optimal
algorithms: Let {t1, . . . , tm} denote the time points, when items with sizes s1, . . . , sm have to
be packed. Then, P+ is formed by {(ti, si)}. Moreover, the algorithms under consideration
will regularly create placeholder items (called virtual items) at time points {t̃1, . . . , t̃u}
with sizes s̃i. These pairs {(t̃i, s̃i)} form the set P−. Then, the goal is to replace as many
placeholders by real items. So, we interpret the x-coordinates as time component, and the
y-coordinates as the sizes of the items or the placeholders.

A maximum matching for P can be computed as follows: We process the points in P+ in
increasing order according to their x-coordinates. Then, we try to match the point (x+, y+)
currently processed to an unmatched point (x−, y−) from P− with x− ≤ x+ and y− ≥ y+

with y− as small as possible. If no such point (x−, y−) exists, then (x+, y+) will be left
unmatched.

Moreover, it follows from this algorithm that it is also possible to obtain a maximum
matching if we assume that the points in P+ ∪ P− arrive online in order according to their
x-coordinates (we assume here for simplicity that the x-coordinates of all points in P+ ∪P−
are different).

2.3.1 Problems and Estimates
We are interested in variants of the problem where the point sets P+ and P− are generated
randomly in different ways. When we deal with an optimal algorithm in the random-order

2.3. Stochastic Upright Matchings 33

model for cardinality-constrained bin packing (and afterwards in the analysis of an (1 + ε)-
competitive algorithm in the random-order model for the classical bin packing problem)
two matching variants arise. In the first variant the plus- and minus-points are arranged
alternately according to their x-coordinate, and the y-coordinates are drawn from a common
set using sampling without replacement.

Matching Variant 1
Let n, k ∈ N with 2k ≤ n, and H = {h1, . . . , hn} with hi = i. Moreover, let π be a
random permutation of the elements in [n]. We set Hi = hπ(i) and then we set

P+ = {(2i,H2i)}1≤i≤k and
P− = {(2i− 1, H2i−1)}1≤i≤k.

We will introduce more matching variants in the future. Here, the i-th matching variant
will also be abbreviated by (Mi).

In the second variant the arrangement of the points with respect to the x-coordinate is
according to a random permutation. Moreover, the y-coordinates of the points in P+ and P−
are drawn from two different sets.

Matching Variant 2
Let n, k ∈ N with k ≤ n, H+ = {h+

1 , . . . , h
+
n } with h+

i = 2i− 1, and H− = {h−1 , . . . , h−n }
with h−i = 2i. Moreover, let L = {`1, . . . , `2n} with `i = 1 for 1 ≤ i ≤ n and `i = −1
for n + 1 ≤ i ≤ 2n. For a random permutation σ of [2n], let Li = `σ(i). Then, we set
J +
σ = {i ∈ [k] : Li = 1}, and J−σ = {i ∈ [k] : Li = −1}. Furthermore, let π+, π− be

two independent random permutations of the elements in [n], H+
i = h+

π+(i), H
−
i = h−π−(i),

and then we set

P+ = {(i,H+
i)}i∈J+

σ
and

P− = {(i,H−i)}i∈J−σ .

The crucial point is that the number of unmatched points in a random instance P
generated with respect to (M1) (or (M2)), is sublinear with high probability:

I Lemma 25. Let P be a random instance of the matching-variant (M1) (or (M2) respec-
tively). Then, there exist universal (that is independent of n and k) constants α,C,K such
that it holds

P
[
U(P) ≥ K

√
k log(k)3/4

]
≤ C exp

(
−α log(k)3/2

)
.

We were not able to find a reference for these two matching variants and the bound
stated in the previous lemma. Therefore, we will give a formal deduction of this bound from
existing ones in Section 2.3.2.

The following two variants, which are relevant for the analysis of class-constrained bin
packing, can be found in [72]. At first the points in P+ and P− are again arranged alternately
with respect to the x-coordinates. The y-coordinates are distributed according to two different

34 2. Stochastic Background

distributions µ and ν.

Matching Variant 3
Let n ∈ N, and µ, ν be two probability measures on [0, 1]. Let X1, . . . , Xn be independent
and distributed according to µ, and Y1, . . . , Yn be independent and distributed according
to ν. Then, we set

P+ = {(2i,Xi)}1≤i≤n and
P− = {(2i− 1, Yi)}1≤i≤n.

In the fourth variant a point is with probability 1/2 a plus-point, and a minus-point
otherwise. The y-coordinates of plus- and minus-points are generated according to a common
distribution µ.

Matching Variant 4
Let n ∈ N, and µ be a probability measure on [0, 1]. Let X1, . . . , Xn be independent
and distributed according to µ, and L1, . . . , Ln independent random variables with
P [Li = 1] = P [Li = −1] = 1/2. Then, we set

P+ = {(i,Xi) : Li = 1, i ∈ [n]}
P− = {(i,Xi) : Li = −1, i ∈ [n]}.

Here, we have the following two bounds:

I Lemma 26. Let P be an instance for (M3). We define

d(µ, ν) := sup
0≤t≤1

{µ([t, 1])− ν([t, 1])} .

Then, there exist universal constants (that is independent of n, µ and ν) α,C,K such that

P
[
U(P) ≥ d(µ, ν) · n+K

√
n log(n)3/4

]
≤ C exp

(
−α log(n)3/2

)
.

I Lemma 27. Let P be an instance for (M4). Then, there exist universal constants (that is
independent of µ and n) such that

P
[
U(P) ≥ K

√
n log(n)3/4

]
≤ C exp

(
−α log(n)3/2

)
.

2.3.2 Deferred Proofs
In this part we will give formal proofs of the bounds for Matching Variant 1 and 2 stated in
Lemma 25. The derivation is very technical and the applied techniques are not important for
the proofs given Section 3-5.

In order to prove Lemma 25 we will deal with four more matching variants: Perhaps the
fundamental version of our matching variants is the following, which was studied in [59]
and [71]:

Matching Variant 5
Let X1, . . . , X2n, Y1, . . . , Y2n be independent, U [0, 1]-distributed random variables. Then,
we set

P+ = {(Xi, Yi)}1≤i≤n and
P− = {(Xi, Yi)}n+1≤i≤2n.

2.3. Stochastic Upright Matchings 35

In this model, with probability 1 all points have different x- and y-coordinates. Since
the possible matchings only depend on the relative position of the points, this variant is
equivalent to the following one:

Matching Variant 6
Let H = {h1, . . . , h2n} with hi = i, and L = {`1, . . . , `2n} with `i = 1 for 1 ≤ i ≤ n and
`i = −1 for n+ 1 ≤ i ≤ 2n. Moreover, let π, σ be two independent random permutations
of the elements in [2n]. Then, we set Li = `σ(i) and Hi = hπ(i). Eventually, we set

P+ = {(i,Hi) : Li = 1, i ∈ [2n]}
P− = {(i,Hi) : Li = −1, i ∈ [2n]}.

In [59] and [71] it was shown that the following bound holds:

I Lemma 28. Let P be a point set generated according to (M5) or (M6). Then, there exist
universal constants α,C,K such that we have

P
[
U(P) ≥ K

√
n log(n)3/4

]
≤ C exp

(
−α log(n)3/2

)
.

At first we will derive the bound for (M1). Starting from the bound given in Lemma 28
for (M6) we will show that essentially the same bound holds for an intermediate matching
problem.

2.3.2.1 An Intermediate Matching Variant

Matching Variant 7
Let n ∈ N, and H = {h1, . . . , h2n} with hi = i. Moreover, let π be a random permutation
of the elements in [2n], and we set Hi = hπ(i). Then, we set

P+ = {(2i,H2i)}1≤i≤n and
P− = {(2i− 1, H2i−1)}1≤i≤n.

We see that an instance P̃ for (M7) depends only on the permutations of heights, so
let {P̃π}π denote the set of all possible realizations of the instance. (Choosing a random
instance for (M7) corresponds to choosing a random element from {P̃π}π with respect to the
uniform distribution.)

On the other hand, an instance P for (M6) depends on a permutation of the heights π,
and a permutation of the labels σ. So the set of possible realizations is given by {Pσ,π}σ,π
(and again generating a random instance corresponds to choosing a random element from
this set with respect to the uniform distribution).

In the following, we will fix a permutation σ of the labels and will construct a bijection mσ

between the sets {Pσ,π}π and {P̃π}π in such a way that the number of unmatched plus-points
in mσ(Pσ,π) is upper bounded by the number of unmatched plus-points in Pσ,π plus an
additive term that depends only on σ.

For a fixed permutation σ let

J +
σ = {j+

1 , . . . , j
+
n }

denote the indices such that Lj+
i

= 1 in Pσ,π. We assume without loss of generality that
j+
1 < . . . < j+

n . Moreover, we define J−σ in an analogous way.

36 2. Stochastic Background

Figure 6 The mapping mσ in the reduction from (M7) to (M6) for a fixed permutation of the
labels (1,−1,−1,−1, 1, 1, 1, 1,−1,−1) and a permutation π of the heights. We have Bσ = {7, 8}
and Gσ = {1, 5, 6}. On the left hand side we see Pσ,π and on the right hand side mσ(Pσ,π). The
dark-red squares indicate bad plus-points, the remaining red squares good plus-points, and the blue
squares denote minus-points.

For i ∈ [2n] we set N+
i := |{j ≤ i : Lj = 1}| and N−i := |{j ≤ i : Lj = −1}|. Let

Dσ := max
1≤k≤2n

(
N−k −N

+
k

)
.

Now, we split up the plus-points P+
σ,π into good and bad plus-points: The good plus-

points are the ones with x-coordinates in Gσ := {j+
1 , . . . , j

+
n−Dσ} and the bad ones with

x-coordinates in Bσ := {j+
n−Dσ+1, . . . , j

+
n }.

We construct a bijection mσ between the instances {Pσ,π}π and {P̃π}π: In order to do
this, we map the minus-points in Pσ,π to the odd positions according to their order, and map
the plus-points such that the bad ones begin and then the good ones follow. More formally,
starting from P−σ,π = {(j−i , Hj−

i
)}1≤i≤n and P+

σ,π = {(j+
i , Hj+

i
)}1≤i≤n, we set

mσ(P−σ,π) = {(2i− 1, Hj−
i

)}1≤i≤n

mσ(P+
σ,π) = {(2i,Hbi)}1≤i≤|Bσ| ∪ {(2(|Bσ|+ i), Hgi)}1≤i≤|Gσ|.

In Figure 6 we give a concrete example.
Let Pσ,π,r denote the restricted instance where we take only good plus-points into account,

i.e., we have P−σ,π,r = P−σ,π and P+
σ,π,r = {(j+

i , Hj+
i
, 1)}1≤i≤n−Dσ .

We have constructed mσ in such a way that every matching for Pπ,σ,r is also a matching
for mσ(Pπ,σ): Since we only change the order of the points with respect to their x-coordinate,
we only have to show that if we map a point from P+

π,σ,r with x-coordinate j+
a to a point

from P−π,σ,r with x-coordinate j−b , then the transformed x-coordinates have to maintain
their relative order. Because of the monotonicity of our mapping, it suffices to show this for
two consecutive points, that is, we have j+

a = j−b + 1. The x-coordinate j+
a will be mapped

to 2Dσ + 2a and j−b to 2b− 1. We claim that Dσ ≥ b− a, which would show the statement.
Since we look at two consecutive points it is j+

a = a+N−
j−
b

and j−b = b+N+
j−
b

.
It follows that

b− a =
(
j−b −N

+
j−
b

)
−
(
j+
a −N−j−

b

)
= j−b − j

+
a +N−

j−
b

−N+
j−
b

< N−
j−
b

−N+
j−
b

≤ Dσ.

2.3. Stochastic Upright Matchings 37

Since we can adapt every matching for Pσ,π,r to a matching for mσ(Pσ,π) with same
cardinality we have U(mσ(Pσ,π)) ≤ U(Pσ,π,r). Moreover, we have U(Pπ,σ,r) ≤ U(Pπ,σ) +Dσ,
and hence we obtain

U(mσ(Pσ,π)) ≤ U(Pσ,π) +Dσ.

Using this inequality, we see that

P
[
U(P̃π) ≥ 2K

√
n log(n)3/4

]
=P

[
U(mσ(Pσ,π)) ≥ 2K

√
n log(n)3/4

]
≤P

[
U(Pσ,π) +Dσ ≥ 2K

√
n log(n)3/4

]
≤P

[
U(Pσ,π) ≥ K

√
n log(n)3/4

]
+ P

[
Dσ ≥ K

√
n log(n)3/4

]
.

Using Lemma 28 and the following lemma, then yields the bound for (M7).

I Lemma 29. Let K be an arbitrary constant, then there exist constants α′, C ′ such that we
have

P
[
Dσ ≥ K

√
n log(n)3/4

]
≤ C ′ exp

(
−α′ log(n)3/2

)
.

Proof of Lemma 29. Let Sk :=
∑k
i=1 Li. We observe thatDσ is the same as −min1≤k≤2n Sk.

Applying Proposition 14 we see that

P
[

max
1≤k≤2n

‖Sk‖ > K
√
n log(n)3/4

]
≤ c · P

[
‖Sn‖ >

K

c
·
√
n log(n)3/4

]
,

with an universal constant c. Hence, applying Hoeffding’s inequality, we obtain

P
[

max
1≤k≤2n

‖Sk‖ > K
√
n log(n)3/4

]
≤ 2c · exp

(
−K

2

2c2 · log(n)3/2
)
.

J

2.3.2.2 Deriving the Bound for (M1) from (M7)

Now we want to relate (M1) and (M7). We observe that we can generate a random instance
for (M1) as follows: In the first step we draw a random subset H of H of size 2k using
sampling without replacement. Then, we assign the heights from H to the coordinates using
a random permutation of the elements in [2k]. We observe that – since only the relative
positions of the heights matter – we can assume without loss of generality that the random
subset H is given by [2k]. It follows that for each fixed H we have an equivalent instance
to (M7) with n = k. Thus, we obtain exactly the same bound as for (M7) and this shows
Lemma 25 for (M1).

2.3.2.3 Another Intermediate Matching Variant

In order to show the bound for (M2) we introduce another intermediate matching variant.
Again, starting from the bound given Lemma 28 for (M6) we will show that essentially the

38 2. Stochastic Background

same bound holds for the following variation:

Matching Variant 8
Let n ∈ N, H+ = {h+

1 , . . . , h
+
n } with h+

i = 2i− 1, and H− = {h−1 , . . . , h−n } with h
−
i = 2i.

Let π+, π− be two independent random permutations of the elements in [n]. Then, we
set H+

i = h+
π+(i) and H−i = h−π−(i). Finally, we set

P+ = {(2i,H+
i)}1≤i≤n and

P− = {(2i− 1, H−i)}1≤i≤n.

We want to relate this matching variant to (M7). We can generate a random instance P
for (M7) as follows: At first we choose a random subset (by sampling without replacement n
elements from [2n]) {h+

1 , . . . , h
+
n } =: H+ ⊆ [2n] of the heights and set H− := [2n]\H+.

Afterwards we generate two independent random permutations π+, π− of the elements in [n]
and set

P+ := {(2i, h+
π+(i))}1≤i≤n

P− := {(2i− 1, h−π−(i))}1≤i≤n.

We notice that there are
(2n
n

)
= (2n)!/(n!)2 many possible random subsets H+ of the heights

of the plus-points. Now, for fixed H+ we want to relate the (n!)2 instances PH+,π+,π− for
(M7) with the (n!)2 instances P̃π+,π− for (M8). That is, we construct a mapping which
preserves the maximum matching apart from an error that is of order

√
n log(n)3/4 with high

probability.
Let f+ : H+ → {1, 3, . . . , 2n − 1} denote a bijection that maximizes the number

of i ∈ H+ such that f+(i) ≤ i. Moreover, let f− : H− → {2, 4, . . . , 2n} denote a bijection
that maximizes the number of i ∈ H− such that f−(i) ≥ i. Now, we want to give a bijection
based on f+ and f− between the instances PH+,π+,π− for (M7) with a fixed set H+ and the
instances for (M8). In order to do this, we map the set P+ = {(2i, h+

π+(i))}i∈[n] to P̃+ =
{(2i, f+(h+

π+(i)))}i∈[n] and P− = {(2i− 1, h+
π−(i))}i∈[n] to P̃− = {(2i− 1, f−(h−π−(i)))}i∈[n].

Let us call this mapping mH+ . mH+ is constructed in such a way that we can adopt the
matching for PH+,π+,π− to mH+(PH+,π+,π−) apart from the points with heights such that
{i ∈ H+ : f+(i) > i} or {i ∈ H− : f−(i) < i}. An example for this mapping is given in
Figure 7.

Let DH+ := |{i ∈ H+ : f+(i) > i}|+ |{i ∈ H− : f−(i) < i}|. Then, we have

U(mH+(PH+,π+,π−)) ≤ U(PH+,π+,π−) +DH+ .

It follows that

P
[
U(P̃π+,π−) ≥ 2K

√
n log(n)3/4

]
=P

[
U(mH+(PH+,π+,π−)) ≥ 2K

√
n log(n)3/4

]
≤P

[
U(PH+,π+,π−) +DH+ ≥ 2K

√
n log(n)3/4

]
≤P

[
U(PH+,π+,π−) ≥ K

√
n log(n)3/4

]
+ P

[
DH+ ≥ K

√
n log(n)3/4

]
.

Combining the bound for (M7) and the next lemma we obtain the bound for (M8).

2.3. Stochastic Upright Matchings 39

Figure 7 The reduction from an instance for (M8) to (M7) with n = 5. The random subset H+ is
given by {1, 3, 4, 5, 7}. We set f+(3) = 1, f+(4) = 3, f+(5) = 5, f+(7) = 7 and f+(1) = 9. Moreover,
we have f−(2) = 4, f−(6) = 6, f−(8) = 8, f−(9) = 10, and f−(10) = 2. Plus-points are given by
red squares. Dark-red squares denote plus-points with a height i such that f+(i) > i. Dark-blue
squares are defined analogously.

I Lemma 30. Let K be an arbitrary constant. Then, there exist constants α′, C ′ such that

P
[
DH+ ≥ K

√
n log(n)3/4

]
≤ C ′ exp

(
−α′ log(n)3/2

)
.

Proof. For a random drawn set H+ and H− := [2n]\H+, and 1 ≤ i ≤ 2n let

Xi =
{

1, i ∈ H+

−1, i ∈ H−.

Then, we notice that we can bound |{i ∈ H+ : f+(i) > i}| and |{i ∈ H− : f−(i) < i}| in
terms of max1≤j≤2n

∣∣∣∑j
i=1Xi

∣∣∣. So it remains to give bounds for the maximum of the partial
sums. This can be done applying at first the maximum inequality for sampling without
replacement (Proposition 14) and afterwards Hoeffding’s inequality. J

2.3.2.4 Deriving the Bound for (M2) from (M8)

This deduction is more tedious as we have to map points vertically and horizontally.
We can generate a random instance P̃ for (M2) in several steps as follows: At first we

determine the order of the labels. Let L = {`1, . . . , `2n} with `i = 1 for 1 ≤ i ≤ n and `i = −1
for n+1 ≤ i ≤ 2n. Let σ be a random permutation of the elements in [2n]. Then, we set Li =
`σ(i). Let N+

σ = |{i ≤ k : Li = 1}|, N−σ = |{i ≤ k : Li = −1}| and Mσ = min{N+
σ , N

−
σ }.

Let J +
σ = {j+

1 , . . . , j
+
N+
σ
} denote the x-coordinates of the plus-points and let J−σ =

{j−1 , . . . , j
−
N−σ
} denote the x-coordinates of the minus-points. (We assume again that j+

1 <

. . . < j+
N+
σ

and j−1 < . . . < j−
N−σ

.) Furthermore, we set J̌ +
σ = {j+

1 , . . . , j
+
Mσ
} and J̌−σ =

{j−1 , . . . , j
−
Mσ
}.

Usually, we will have either J +
σ \J̌ +

σ 6= ∅ or J−σ \J̌−σ 6= ∅. We call the points with
x-coordinates in the non-empty set surplus-points.

In the next step we generate the set of heightsHs for the surplus-points by drawing k−2Mσ

many elements using sampling without replacement from [2n]. Furthermore, a random

40 2. Stochastic Background

permutation πs of the elements in [k − 2Mσ] is used to assign the heights in Hs to the
surplus-points.

Then, we determine the set of heights for plus-points H+ by drawing Mσ many ele-
ments with sampling without replacement from [2n]\Hs and afterwards we generate H− by
drawing Mσ many elements with sampling without replacement from [2n]\(Hs ∪H+).

Finally, we generate two independent random permutations π+, π− of the elements in [Mσ]
to assign the heights of plus-points (minus-points) to the positions.

We see that P̃ depends on σ,Hs, πs, H+, H−, π+ and π−, so we will write in the following
P̃ = P̃σ,Hs,πs,H+,H−,π+,π− . An instance P for (M8) with n = Mσ just depends on two
random permutations π+, π−, which assign the heights to the positions, so we write Pπ+,π− .

Assume that σ,Hs, πs, H+, H− are fixed. In the following we want to construct a
bijection mσ,H+,H− between {Pπ+,π−}π+,π− and {P̃σ,Hs,πs,H+,H−,π+,π−}π+,π− . The aim
is to choose mσ,H+,H− in such a way that we can adapt the matching for Pπ+,π− to
mσ,H+,H−(Pπ+,π−) for most of the points.

Now we describe the construction of the bijection in several steps. An example is given in
Figure 8.

1. At first we transform x-coordinates in a similar way as done in the reduction from
(M6) to (M7): Let Dσ := max1≤i≤k Li. Outgoing from P+

π+,π− = {(2i,H+
i)}1≤i≤Mσ and

P−π+,π− = {(2i− 1, H−i)}1≤i≤Mσ we map them to{
(j+

1+((Dσ+i−1) modMσ), H
+
i)
}

1≤i≤Mσ

and
{

(j−i , H
−
i)
}

1≤i≤Mσ
. (3)

We notice that apart from Dσ many plus-points, the matching for Pπ+,π− can be preserved.
2. The next step is the transformation of heights: We want to map as many plus-points

as possible to a greater height, and as many minus-points to a lower height. Given a
set H+ ⊆ [2Mσ] with |H+| = Mσ let f+ : {2, 4, . . . , 2Mσ} → H+ denote a bijection
that maximizes |{e ∈ {2, 4, . . . , 2Mσ} : f+(e) ≥ e}| and respectively for H− ⊆ [2Mσ]
with |H−| = Mσ let f− : {1, 3, . . . , 2Mσ − 1} → H− denote a bijection that maximizes
|{e ∈ {1, 3, . . . , 2Mσ − 1} : f−(e) ≤ e}|. Moreover, let

EH+ :=
∣∣{e ∈ {2, 4, . . . , 2Mσ} : f+(e) < e

}∣∣
EH− :=

∣∣{e ∈ {1, 3, . . . , 2Mσ − 1} : f−(e) > e
}∣∣ .

Then, we map the set given in (3) to{
(j+

1+((Dσ+i−1) modMσ), f
+(H+

i))
}

1≤i≤Mσ

and
{

(j−i , f
−(H−i))

}
1≤i≤Mσ

. (4)

We see that we lose at most EH+ + EH− many matched points by this transformation.
3. Until now we have assumed that H+ = {2, 4, . . . , 2Mσ} and H− = {1, 3, . . . , 2Mσ − 1}. If

this is not the case, then we can find a mapping g from [2Mσ] to H+ ∪H− that preserves
the relative order between plus- and minus-points such that still each matching can be
adapted.

We see that we have U(mσ,H+,H−(Pπ+,π−)) ≤ U(Pπ+,π−)+(k−2Mσ)+Dσ+EH+ +EH− .
Hence, we obtain

P
[
P̃σ,Hs,πs,H+,H−,π+,π− ≥ 5K

√
k log(k)3/4

]
=P
[
U(mσ,H+,H−(Pπ+,π−)) ≥ 5K

√
k log(k)3/4

]

2.3. Stochastic Upright Matchings 41

Figure 8 Assume we have an instance for P̃σ,Hs,πs,H+,H−,π+,π− with
(−1, 1, 1,−1,−1, 1,−1,−1, 1, 1, 1) as order of the labels, Hs = {4}, H+ = {1, 2, 7, 11, 14}
and H− = {3, 6, 9, 10, 12}. We illustrate the construction of mσ,H+,H− from an instance for (M8)
to P̃σ,Hs,πs,H+,H−,π+,π− with fixed σ,Hs, H+, H−. In the first row we show the transformation
of the x-coordinates. Plus-points that possibly cannot be matched after this transformation are
colored in dark-red. In the second row we transform the heights with f+(1) = 10, f+(3) = 1,
f+(5) = 2, f+(7) = 5, and f+(9) = 8. Moreover, let f−(2) = 4, f−(4) = 6, f−(6) = 7, f−(8) = 9,
and f−(10) = 3. New points that possibly could not be taken into account in the matching are
colored in dark-red or dark-blue. In the last row we illustrate the map g with g(1) = 1, g(2) = 2,
g(3) = 3, g(4) = 6, g(5) = 7, g(6) = 9, g(7) = 10, g(8) = 11, g(9) = 12, and g(10) = 14.

42 2. Stochastic Background

≤P
[
U(Pπ+,π−) + (k − 2Mσ) +Dσ + EH+ + EH− ≥ 5K

√
k log(k)3/4

]
≤P
[
U(Pπ+,π−) ≥ K

√
k log(k)3/4

]
+ P

[
(k − 2Mσ) ≥ K

√
k log(k)3/4

]
+ P

[
Dσ ≥ K

√
k log(k)3/4

]
+ P

[
EH+ ≥ K

√
k log(k)3/4

]
+ P

[
EH− ≥ K

√
k log(k)3/4

]
.

Applying the same estimates and concentration bounds as in the previous reductions
then yields the result.

2.4 Useful Facts about Probabilistic Performance Measures
The following lemma shows – under mild conditions – the existence of an alternative
representation of the average performance ratio:

I Lemma 31. Let A be an online algorithm for one of the problems we deal with in this
thesis. If E

[
OPT(IFn)

]
∈ Θ(n), and the competitive ratio of A is bounded from above by a

constant C, then it follows that

APR(A,F) = lim sup
n→∞

E
[
A(IFn)

]
E [OPT(IFn)] .

I Remark. We notice that the competitive ratio of online algorithms for classical, cardinality-
constrained and class-constrained bin covering is automatically bounded from above by 1.

Proof of Lemma 31. Using the Cauchy-Schwarz inequality we obtain∣∣∣∣∣E
[

A(IFn)
OPT(IFn)

]
−

E
[
A(IFn)

]
E [OPT(IFn)]

∣∣∣∣∣
=
∣∣∣∣E [A(IFn)

OPT(IFn)

]
− E

[
A(IFn)

E [OPT(IFn)]

]∣∣∣∣
=
∣∣∣∣E [A(IFn)

OPT(IFn) ·
(

1− OPT(IFn)
E [OPT(IFn)]

)]∣∣∣∣
=

∣∣∣∣∣E
[

A(IFn)
OPT(IFn) ·

E
[
OPT(IFn)

]
−OPT(IFn)

E [OPT(IFn)]

]∣∣∣∣∣
≤ E

[∣∣∣∣ A(IFn)
OPT(IFn)

∣∣∣∣ ·
∣∣∣∣∣E
[
OPT(IFn)

]
−OPT(IFn)

E [OPT(IFn)]

∣∣∣∣∣
]

≤ E

[∣∣∣∣ A(IFn)
OPT(IFn)

∣∣∣∣2
]1/2

·
E
[∣∣OPT(IFn)− E

[
OPT(IFn)

]∣∣2]1/2
E [OPT(IFn)]

≤ C ·
E
[∣∣OPT(IFn)− E

[
OPT(IFn)

]∣∣2]1/2
E [OPT(IFn)] .

For the mentioned problems the function OPT satisfied the bounded difference property
with ci = 1 for i ∈ {1, . . . , n}. Therefore, if we apply the bounded difference inequality
(Proposition 10) we see that

P
[∣∣OPT(IFn)− E

[
OPT(IFn)

]∣∣ ≥√n log(n)
]
≤ 2
n2 .

2.4. Useful Facts about Probabilistic Performance Measures 43

Moreover, we have |OPT(IFn)− E
[
OPT(IFn)

]
| ≤ n. Hence, we have

E
[∣∣OPT(IFn)− E

[
OPT(IFn)

]∣∣2]1/2 ≤ (2 + n log(n))1/2
.

Since we assume that E
[
OPT(IFn)

]
∈ Θ(n), we see that the difference vanishes in the

limit. J

Furthermore, we show that the adversary in the random-order model is more powerful
than in the case of items that are drawn independently and identically distributed. Therefore,
lower/upper bounds carry over between these two models. This connection was mentioned
in [54]. A formalization was given in [42].

I Lemma 32. Let A be an online algorithm for classical, cardinality-constrained or class-
constrained bin packing. Let F be a corresponding distribution on a finite or possibly countably
infinite set of items I. Then, it holds

APR(A,F) ≤ RR(A).

In case of classical or class-constrained bin covering the reversed inequality is true.

Proof. Assume we are given a distribution F . Set Ln = {L = (a1, . . . , an) : P
[
IFn = L

]
> 0}.

Then there exists a set of lists Ln, such that Ln =
⋃̇
H∈Ln{L : ∃σ s.t. L = Hσ}. Using the

inequality (
∑n
i=1 bi) / (

∑n
i=1 ci) ≤ max1≤i≤n bi/ci, it follows that

E
[

A(IFn)
OPT(IFn)

]
≤ max
H∈Ln

Eσ
[

A(Hσ)
OPT(Hσ)

]
= max
H∈Ln

Eσ [A(Hσ)]
OPT(H) .

For covering problems we proceed similarly, but use the inequality (
∑n
i=1 bi) / (

∑n
i=1 ci) ≥

min1≤i≤n bi/ci. J

44 3. Complexity of Bin Packing Variants

3 Complexity of Bin Packing Variants with respect to Probabilistic
Performance Measures

3.1 Results

lower bound upper bound
CR(A) ≈ 1.542 [9] ≈ 1.5783 [8]
RR(A) ? 1.5 [54]
APR(A,D) 1 1 [72]

lower bound upper bound
CR(A) ≈ 1.542 [9] ≈ 1.5783 [8]
RR(A) 1 1 + ε

APR(A,D) 1 1 [72]

Figure 9 Comparison between previously known bounds for classical bin packing on the left hand
side and our results on the right hand side.

lower bound upper bound
CR(A) 2 [7] 2 [6]
RR(A) ? ?
APR(A,D) ? ?

lower bound upper bound
CR(A) 2 [7] 2 [6]
RR(A) 1 1
APR(A,D) 1 1

Figure 10 Comparison between previously known bounds for cardinality-constrained bin packing
on the left hand side and our results on the right hand side.

lower bound upper bound
CR(A) 2 [7] 2.635 [38]
RR(A) ? ?
APR(A,D) ? ?

lower bound upper bound
CR(A) 2 [7] 2.635 [38]
RR(A) 1.1̄ ?
APR(A,D) 1 1

Figure 11 Comparison between previously known bounds for class-constrained bin packing on
the left hand side and our results on the right hand side.

In this section we study the complexity of the three introduced online bin packing variants
with respect to probabilistic performance measures. That is, we are interested in the question:
Is there an algorithm with average performance ratio or random-order ratio equal to one for
this bin packing variant, or can we find a non-trivial lower bound?

This is motivated by a result given by Rhee and Talagrand in [72] which shows that there
exists a randomized algorithm for online classical bin packing with average performance ratio
equal to one for the set of all possible distributions on (0, 1], and the lower bounds for the
competitive ratio given for example in [9]. A summary of parts of our results in comparison
with existing bounds in literature is given in Figure 9, 10 and 11.

To be more precise Rhee and Talagrand [72] show that there exists a randomized algo-
rithm A and a universal constant K (which is independent of the considered distribution F)
such that with high probability the following holds:

A(IFn) ≤ OPT(IFn) +K
√
n log(n)3/4. (5)

The idea of the proof is the following: The input is partitioned into phases, where the length
of the phases increases. At the beginning of a new phase an optimal packing of all seen items
is computed. As we are dealing with online algorithms (and especially with the theoretical
complexity) we do not care about the runtime of the algorithm. We call this computed
packing the model-packing. Then, the algorithm tries to pack new arriving items similar

3.1. Results 45

to the model-packing. In order to do this, virtual items are introduced, which serve as
placeholders for the actually arriving items. This procedure is non-trivial and is based on a
clever application of the upright matching problem.

The first result we give is about cardinality-constrained bin packing:

I Proposition 33. For online cardinality-constrained bin packing with parameter k there
exists a randomized algorithm A with RR(A) = 1.

The proof of this result is similar to the one given in [72]. We observe that it is possible to
replace concentration inequalities and upright matching results used by appropriate versions
for the case of drawing items according to sampling without replacement. So the proof is a
nice starting point for getting familiar with the ideas by Rhee and Talagrand.

The next step is to consider classical bin packing: When we take a closer look at (5) we
observe that the error term (that is the number of bins the algorithm needs additionally in
comparison to the optimal algorithm) is sublinear in the number of items. This does not
pose a problem in the case that items are sampled independently and identically distributed
since then the size of an optimal solution grows linearly in the number of items. But if we
deal with the random-order model it is possible that the number of items grows much faster
than the size of the optimal solution. So in this case the error term cannot be neglected.

Unfortunately, we are not able to give an algorithm with random-order ratio equal to one
as asked in [54], but we rule out the existence of a non-trivial lower bound.

I Theorem 34. For online classical bin packing there exists for every ε greater than zero a
randomized algorithm Aε with RR(Aε) ≤ 1 + ε.

To show the result we partition the items into large and small items depending on ε.
Then, the large items can be packed again using the approach given by Rhee and Talagrand.
If possible, small items are packed into empty space created by virtual items, whose bins are
not completely filled in the model-packing.

The proof of this result is very technical and relies on repeated applications of Bernstein’s
inequality to give bounds that depend on the size of the optimal solution and not on the
number of items, and random walk arguments to control the number of bins opened for small
items.

Now, we will show that such a statement is only possible if the adversary has no control
over the order of an (arbitrary small) fraction of the input. We will briefly describe the
partial-permutations model, which was introduced by Banderier, Beier and Mehlhorn in [11].
The partial-permutations model can be understood as some kind of smoothed analysis on
the order of the items. This concept was revisited for example in [63].

The model is the following: Let p ∈ [0, 1] be a smoothing parameter. Then, an adversary
chooses an instance I = (a1, . . . , an) for the bin packing problem. Afterwards, we generate a
random subset H of [n] by selecting each element in [n] independently with probability p.
Finally, we permute all elements with index in H randomly. We see that if p = 1 we obtain
a random permutation of all elements in I and if p = 0 the adversary is able to give a
worst-case instance. So, p interpolates between both cases.

It suggests itself to generalize the random-order ratio in the following way:

RRp(A) := lim sup
m→∞

sup
I : OPT(I)≥m

E [A(Ip,σ)]
OPT(I) ,

where Ip,σ denotes a random instance obtained from I using the procedure described above.
It follows that we have RR(A) = RR1(A).

46 3. Complexity of Bin Packing Variants

A1 A2 A3 A4 A5 A6 A7 A8 An

P1 Pm. . .

P ∗
1

P ∗
2

. . .

P2

P ∗
0

P0

Figure 12 The partition of the input into phases.

I Proposition 35. For online classical bin packing there exists for every p ∈ [0, 1) an εp
greater than zero such that for all deterministic online algorithms A it holds RRp(A) ≥ 1+ εp.

The statement here is only given for deterministic algorithms but it is straightforward to
show the same result for randomized algorithms.

Finally, we consider class-constrained bin packing. Regarding the average performance
ratio we can show again that there exists a randomized algorithm which is optimal.

I Proposition 36. Consider online class-constrained bin packing with parameter k, and let D
denote the set of all distributions on [0, 1]× N. Then, there exists a randomized algorithm A

with APR(A,D) = 1.

However, the error term of our proposed algorithm can be much larger than in (5). This
is especially the case if we consider distributions, for which the marginal distribution on the
colors is heavy-tailed, that is we will draw items of lots of different colors. In the analysis we
will apply the ideas of Rhee and Talagrand to items of an arbitrarily large but fixed subset
of the colors.

This result is complemented by a non-trivial lower bound for online algorithms for
class-constrained bin packing with respect to the random-order ratio:

I Proposition 37. Consider online class-constrained bin packing with parameter k equal
to 2. Then, for all deterministic online algorithms A it holds that RR(A) ≥ 10/9.

So we see that the complexity of this problem differs if we consider the setting of
items sampled with and without replacement. The statement here is again only given for
deterministic algorithms, but there are only small adjustments necessary to show the same
result for randomized algorithms.

3.2 Deferred Proofs
3.2.1 Existence of an Optimal Algorithm for Cardinality-constrained

Bin Packing with respect to the Random-order Ratio
Here we will prove:

I Proposition 33. For online cardinality-constrained bin packing with parameter k there
exists a randomized algorithm A with RR(A) = 1.

3.2.1.1 Description of the Algorithm and High-Level Proof

Let I = {a1, . . . , an} be the multiset of items under consideration. Since we are dealing with
cardinality-constrained bin packing it makes sense to allow that an item has size zero. The

3.2. Deferred Proofs 47

random instance we are dealing with is then given by Iσ = (A1, . . . , An) with Ai = aσ(i)
where σ is a random permutation (that is random with respect to the uniform distribution on
the set of all permutations). Sometimes we will call the items Ai from the input instance Iσ
real items.

The algorithm packs item A1 separately. Then, the sequence of items is divided into
phases P0, . . . , Pm. Here, the i-th phase covers the items (A2i+1, . . . , Amin{2i+1,n}). m is the
index of the last phase, that is, m is the smallest integer such that 2m+1 ≥ n. The choice of
the phases is illustrated in Figure 12.

For phase Pi let P ∗i denote the multiset of all items drawn before phase Pi starts, that
is, it covers the items {A1, . . . , A2i}. Moreover, |Pi| and |P ∗i | denote the lengths, that is the
number of items in phase Pi or the number of items previously seen. The algorithm packs
the items from each phase separately. In order to do this, it proceeds in the following way:
At the beginning of phase Pi, that is, before item A2i+1 arrives we construct an optimal
packing of all items from P ∗i . We call this packing the model-packing M(P ∗i). Furthermore,
let Zi = {A1, . . . , A2i} denote the multiset of all items we have already seen. At the time
point item Aj with j ∈ {2i + 1, . . . ,min{2i+1, n}} arrives, we create a virtual item Vj as
follows: We draw a random item Y from Zi and remove it from the set, that is, Zi := Zi\{Y }.
Then, we set Vj = Y .

To pack this virtual item we use an auxiliary algorithm A′ which is based on M(P ∗i).
This algorithm will be described in Section 3.2.1.2. Afterwards, we try to replace the smallest
virtual item V with V ≥ Aj in our packing by Aj . If that is not possible, then we put Aj
into a new bin.

Later on we will see that with high probability there will be at most K
√
|Pi| log(|Pi|)3/4

many real items in phase Pi that are not able to replace an appropriate item in the model-
packing. As the value of the optimum solution in cardinality-constrained bin packing grows
linearly in the number of items that would be sufficient for an asymptotic optimal algorithm.
So what is the reason for introducing virtual items? The reason lies in the online nature of
the problem: If every real item tries to replace an appropriate item in the model-packing it
can happen that we have to open many new bins in the beginning of a phase. If the phase
then suddenly stops we have possibly opened too many bins. Packing virtual items in a clever
way using the auxiliary algorithm we are able to avoid this problem.

Let A(Pi) denote the number of opened bins by A for items from phase Pi. There are
two different reasons for opening a bin:

The auxiliary algorithm A′ opens a new bin to pack the newly generated virtual item;
The real item cannot replace a virtual item.

The number of opened bins for virtual items by the auxiliary algorithm is denoted by A′(Pi)
and the number of real items that cannot replace a virtual item by U(Pi). So we have
A(Pi) = A′(Pi) + U(Pi). In the analysis we will independently control A′(Pi) as well
as U(Pi).

Let t = dm/2e+ 1. The analysis is split up into three parts:

We call the phases P0, . . . , Pt−1 the first phases. To estimate the number of opened bins
in the first phases we apply a worst-case estimate.
In case that the last phase Pm is very short, that is, |Pm| <

√
n we also apply a worst-case

estimate.
The interesting part is the analysis of the number of opened bins in the remaining phases
Pt, . . . , Pm−1 (and Pm if |Pm| ≥

√
n).

48 3. Complexity of Bin Packing Variants

For each real item our algorithm opens at most two bins: One for the generated virtual
item and one for the real item if it cannot replace a virtual item. Hence, the number of
opened bins by A in the phases P0, . . . , Pt−1 (and the bin for A1) is upper bounded by

1 +
t−1∑
i=0

2|Pi| ≤ 2 + 2
t−1∑
i=0

2i ≤ 2 · 2t ≤ 8 · 2m/2 ≤ 8
√
n.

Furthermore, if |Pm| <
√
n, then the number of opened bins for items in the last phase is

upper bounded by 2
√
n.

Now, we can proceed with the analysis of the remaining phases. We note that if we deal
with a remaining phase Pi we have |P ∗i | ≥ |Pi| ≥

√
n. The first important observation is the

existence of an auxiliary algorithm A′ that can pack the generated virtual items well. The
following statement is the adaption of Theorem 2.1 in [72] from bin packing in the setup of
sampling with replacement to cardinality-constrained bin packing in the setup of sampling
without replacement:

I Lemma 38. We consider cardinality-constrained bin packing with parameter k ∈ N. Assume
we are given a multiset S = {a1, . . . , aq} of q items. Let p ∈ N with p ≤ q. We generate a
random instance I by drawing p items from S according to sampling without replacement.
Then, there exists a (semi-)online algorithm A′, which knows S in advance, but is unaware
of p and I, and universal constants α,C,K such that we have

P
[
A′(I) ≤ p

q
OPT(S) + k ·K√p log(p)3/4

]
≥ 1− k · C exp

(
−α log(p)3/2

)
.

The second important observation is that for most of the real items it is possible to
replace a virtual item:

I Lemma 39. There exist universal constants α,C,K such that we have

P
[
U(Pi) ≤ K

√
|Pi| log(|Pi|)3/4

]
≥ 1− C exp

(
−α log(|Pi|)3/2

)
.

A proof of the two previous statements will be given in Section 3.2.1.2 and Section 3.2.1.3.
Combining Lemma 38 and Lemma 39 we obtain an estimate of the number of opened

bins by A in phase Pi with high probability:

I Lemma 40. There exist universal constants α,C,K such that the event

Gi :=
{
A(Pi) ≤

|Pi|
|I|

OPT(I) + k ·K
√
|P ∗i | log (|P ∗i |)

3/4
}

takes place with probability at least 1− k · C exp
(
−α log (|Pi|)3/2

)
.

The proof of this lemma will be given in Section 3.2.1.3. Applying a union bound we see
that the event Gt ∩ . . . ∩ Gm takes place with probability at least

1−
m∑
i=t

k · C exp
(
−α log (|Pi|)3/2

)
≥ 1−

m∑
i=t

k · C exp
(
−α log

(√
n
)3/2)

≥ 1− k · C
m∑
i=t

exp
(
−α log(n)3/2

)
≥ 1− log(n) · k · C exp

(
−α log (n)3/2

)

3.2. Deferred Proofs 49

a1 a2

a3a4

a5

a6

a7

a8

0.5

Figure 13 A model-packing M for the set of items {a1, . . . , a8} with a1 = 0.7, a2 = 0.6,
a3 = 0.4, a4 = a5 = a6 = 0.3, a7 = 0.2 and a8 = 0.1. We see that r(a1) = r(a2) = r(a5) = 1,
r(a3) = r(a4) = r(a6) = 2, r(a7) = 3 and r(a8) = 4.

≥ 1− k · C exp
(
−α log (n)3/2

)
.

Here and in the future the used constants α,C and K may differ from line to line. But they
are always universal, that is independent of the input.

Now assume that Gt ∩ . . . ∩ Gm takes place. Then, we have

A(Iσ) ≤ 8
√
n+

m∑
i=t

(
|Pi|
|I|

OPT(I) + k ·K
√
|P ∗i | log (|P ∗i |)

3/4
)

≤ 8
√
n+ OPT(I) + k ·K

m∑
i=t

√
2i log

(
2i
)3/4

≤ 8
√
n+ OPT(I) + k ·K log(n)3/4

m∑
i=t

2i/2

≤ 8
√
n+ OPT(I) + k ·K log(n)3/4 · 2m/2

≤ 8
√
n+ OPT(I) + k ·K

√
n log(n)3/4.

If Gt ∩ . . . ∩ Gm does not take place, then we estimate A(Iσ) by the number of opened
bins in the worst case, that is 2n. Using the inequality OPT(I) ≥ n/k we obtain

E [A(Iσ)]
OPT(I) ≤ 1 · OPT(I) + k ·K

√
n log(n)3/4

OPT(I) + k · C exp
(
−α log (n)3/2

)
· 2n

OPT(I)

≤ 1 + k ·K
√
n log(n)3/4

n/k
+ k · C exp

(
−α log (n)3/2

)
· 2n
n/k

≤ 1 + k2 ·K log(n)3/4
√
n

+ k2 · C exp
(
−α log (n)3/2

)
.

This term tends to one as OPT(I), and so n, tends to infinity.

3.2.1.2 Description and Analysis of the Auxiliary Algorithm A′

Here we will prove:

I Lemma 38. We consider cardinality-constrained bin packing with parameter k ∈ N. Assume
we are given a multiset S = {a1, . . . , aq} of q items. Let p ∈ N with p ≤ q. We generate a
random instance I by drawing p items from S according to sampling without replacement.
Then, there exists a (semi-)online algorithm A′, which knows S in advance, but is unaware
of p and I, and universal constants α,C,K such that we have

P
[
A′(I) ≤ p

q
OPT(S) + k ·K√p log(p)3/4

]
≥ 1− k · C exp

(
−α log(p)3/2

)
.

50 3. Complexity of Bin Packing Variants

The auxiliary algorithm A′ proceeds as in [72]: Let S = {a1, . . . , aq}. Without loss of
generality we can assume that all items have different sizes, otherwise we distinguish items of
the same size by their index. Before starting to pack the items, we compute an optimal packing
M(S) of the items in S, the so-called model-packing. An example is given in Figure 13. Then,
with respect to a fixed model-packing, we establish a rank-function r : {a1, . . . , aq} → [k],
where r(ai) is equal to `, if ai is the `-th largest item in its bin in the model-packing.

Now, let I = (V1, . . . , Vp) denote the random instance drawn by sampling p items from S
according to sampling without replacement. A′ also uses the concept of virtual items that
serve as placeholders. In order to distinguish the virtual items introduced by A′ from the
virtual items introduced by A we call these items second-order virtual items. Assume now
that a new item Vj arrives that has to be packed by A′. We know that Vj = am for a unique
m ∈ {1, . . . , q}. We distinguish two cases for the behavior of A′:

At first we assume that r(am) = 1. Let b1 > b2 > . . . > b` denote the items in the bin
containing am in the model-packing (so we have b1 = am). We assume that r(b2) = 2,
r(b3) = 3, and so on. Then, A′ opens a new bin and puts Vj into it. Furthermore, we add
second-order virtual items W2, . . . ,W` with W2 = b2, . . . , W` = b` to this bin.
Now, assume that we have 1 < r(am) =: r. Then, we try to replace the smallest second-
order virtual item W in an opened bin with r(W) = r and W ≥ Vj by Vj . If such an
item W does not exist, we put Vj into a new bin.

Let Ou with u ∈ [k] denote the number of opened bins by A′ for items with rank u. Then,
we have A′(I) =

∑k
u=1Ou.

The analysis of A′(I) is similar to the one given in [72], we only have to use the adjusted
matching-statements for the case of sampling without replacement. In fact, the analysis is
even a bit less involved, since the constraint that at most k items are allowed in a bin makes
it possible to use a simple union bound.

There are OPT(S) many items with rank one among the items in S. So the expected num-
ber of opened bins by items of rank one after drawing p many items with respect to sampling
without replacement is p

q ·OPT(S). Applying Hoeffding’s inequality (see Proposition 12) we
obtain

P
[
O1 ≤

p

q
OPT(S) +√p log(p)3/4

]
≥ 1− exp

(
−2 log(p)3/2

)
.

It remains to bound the number of opened bins by items Vi of rank u, with u ∈ {2, . . . , k},
from above. In order to this, we consider the case of a fixed u. Then, we have a stochastic
process that consists of two possible events:

An item of rank 1, whose corresponding bin in the model-packing contains at least u
items, is drawn;
An item of rank u is drawn.

If an item of rank 1 is drawn, a new second-order virtual item is generated, which offers space
for new items of rank u. If an item of rank u is drawn, we try to replace an existing second-
order virtual item of rank u. Without loss of generality we can assume that all items of rank u
in the model packing have different sizes, otherwise we only have more possibilities to replace
second-order virtual items. The number of opened bins due to rank u items corresponds
exactly to the number of rank u items that cannot replace a second-order virtual item. But
this question is equivalent to the introduced matching variant (M2), where we treat the
virtual items of rank u as plus-points, and the second-order virtual items generated by items

3.2. Deferred Proofs 51

of rank 1 as minus-points. Hence, we have n := #(items of rank u in the model-packing)
and a random instance size Lu.

We distinguish two cases: At first we assume that Lu ≤ p1/3. Then, we also have Ou ≤ p1/3.
So assume that Lu > p1/3. Then, it follows from Lemma 25 that we have

Ou ≤ K ·
√
Lu log(Lu)3/4 ≤ K · √p log(p)3/4

with probability at least

1− C exp
(
−α log(Lu)3/2

)
≥ 1 − C exp

(
−α log(p1/3)3/2

)
≥ 1 − C exp

(
−α log(p)3/2

)
.

It follows that we have Ou ≤ p1/3 +K · √p log(p)3/4 ≤ K · √p log(p)3/4 with probability at
least 1− C exp

(
−α log(p)3/2).

Using a union bound on the ranks 2, . . . , k, we see that

A′(I) ≤ p

q
OPT(S) + k ·K√p log(p)3/4

with probability at least

1− exp
(
−2 log(p)3/2

)
− (k − 1) · C exp

(
−α log(p)3/2

)
≥ 1 − k · C exp

(
−α log(p)3/2

)
.

3.2.1.3 Proof of Lemma 39 and 40

Here we will prove:

I Lemma 39. There exist universal constants α,C,K such that we have

P
[
U(Pi) ≤ K

√
|Pi| log(|Pi|)3/4

]
≥ 1− C exp

(
−α log(|Pi|)3/2

)
.

and

I Lemma 40. There exist universal constants α,C,K such that the event

Gi :=
{
A(Pi) ≤

|Pi|
|I|

OPT(I) + k ·K
√
|P ∗i | log (|P ∗i |)

3/4
}

takes place with probability at least 1− k · C exp
(
−α log (|Pi|)3/2

)
.

To prove Lemma 39, we observe that we can assume without loss of generality that all
items have different sizes, otherwise we only take advantage. Then, we see that the question
of how many real items cannot replace a virtual item is equivalent to matching-variant
(M1), where the virtual items are represented by the minus-points and the real items are
represented by the plus-points.

To prove Lemma 40, we apply Lemma 38 one time with S = P ∗i and p = |Pi| and one
time with S = I and p = |P ∗i |. Then, we obtain

P
[
A′(Pi) ≤

|Pi|
|P ∗i |

·OPT(P ∗i) + k ·K
√
|Pi| log(|Pi|)3/4

]

52 3. Complexity of Bin Packing Variants

≥ 1 − k · C exp
(
−α log(|Pi|)3/2

)
and

P
[
OPT(P ∗i) ≤ |P

∗
i |
|I|
·OPT(I) + k ·K

√
|P ∗i | log(|P ∗i |)3/4

]
≥ 1− k · C exp

(
−α log(|P ∗i |)3/2

)
≥ 1− k · C exp

(
−α log(|Pi|)3/2

)
.

Combining these two estimates with Lemma 39 we obtain the statement of Lemma 40.

3.2.2 Existence of a Nearly Optimal Algorithm for Classical Bin
Packing with respect to the Random-order Ratio

Here, we will prove:

I Theorem 34. For online classical bin packing there exists for every ε greater than zero a
randomized algorithm Aε with RR(Aε) ≤ 1 + ε.

3.2.2.1 The Setting and the Algorithm

The setting is similar to the case of cardinality-constrained bin packing: Again, we are given a
multiset I = {a1, . . . , an} of items. Let γ > 0 be a parameter that we will choose, depending
on ε, later on. Items with sizes greater than or equal to γ are called large, and otherwise small.
We set I≥γ = {a : a ∈ I, a ≥ γ} and I<γ = {a : a ∈ I, a < γ}. The random instance we
are dealing with is then given by Iσ = (A1, . . . , An) with Ai = aσ(i), where σ is a random
permutation (that is, random with respect to the uniform distribution on [n]).

We observe that the number of large items in a bin is bounded from above by 1
γ . Hence,

packing large items is similar to cardinality-constrained bin packing with parameter k = bγ−1c
(apart from the fact that the number of large items in each phase is random). To pack the
small items we observe that if we open bins with the auxiliary algorithms there possibly
arises some empty space, which is not occupied by virtual items: We want to use this space
(and empty space from previous phases) by packing the small items using First-Fit into these
gaps.

We partition the input in phases P0, . . . , Pm as in the case of cardinality-constrained
bin packing: The i-th phase covers the items (A2i+1, . . . , Amin{2i+1,n}). Moreover, P ∗i =
{A1, . . . , A2i} denotes the multiset of all items drawn before phase Pi starts. Let Li denote
the number of large items drawn in phase Pi and L∗i the number of large items in P ∗i .

The first item A1 will be packed separately. Now we want to describe how the algorithm
packs the items in phase Pi. At the beginning of phase Pi we delete all virtual items generated
in phase Pi−1 that are remaining. Bins that received only virtual items in the past and
are empty after deleting them, still count as opened and can be used in the following for
accommodating small items. Then, we compute an optimal packing of all large items in P ∗i ,
the model-packingM(P ∗i). Furthermore, let Zi denote the multiset of all large items drawn
in P ∗i . Let Aj denote the arriving item that has to be packed. We distinguish whether Aj is
a large or a small item:

At first we assume that Aj is a large item. In this case, we want to proceed as in cardinality-
constrained bin packing. If Zi 6= ∅, then we generate a virtual item Vj as follows: We
draw a random item R from Zi and set Vj := R. Afterwards, we set Zi := Zi\{R}.
Then, we pack Vj using the auxiliary algorithm described in the section about cardinality-
constrained bin packing. Finally, we try to replace the smallest virtual item V with

3.2. Deferred Proofs 53

V ≥ Aj , which is not already replaced by a real item. If no such virtual item exists, then
we open a new bin for Aj and the remaining space in this bin is fully designated for small
items. If Zi = ∅, then we open a new bin for Aj and the remaining space in this bin will
be also fully designated for small items.
Now we assume that Aj is a small item. We observe that there can be empty space in all
bins that are opened before phase Pi. Since those bins will not receive more large items,
we can try to use their remaining space for small items. Moreover, we observe that in
the model-packing, the bins are not necessarily filled up to their capacity. For example,
the bin on the right hand side in the model-packing shown in Figure 13 is only filled up
to 0.9. The remaining space is now intended to be filled up with small items. That is,
every time the auxiliary algorithm packs a large item of rank 1, we open some empty
space (which can be also zero) designated for small items. Then, we try to pack the small
items using First-Fit into the designated space. If that is not possible, we open a new bin
for the currently processed small item and the space in this bin is fully designated for
small items.

We want to emphasize once more that while large items are still packed independently for
each phase this is not true for small items.

3.2.2.2 High-Level Proof

Here, we give a high-level proof of the statement. The proofs of the arising lemmata are
postponed to the following sections.

We will consider the number of opened bins for large items and the number of opened
bins for small items separately. A`(Pi) denotes the number of opened bins by A due to large
items in phase Pi and As(Pi) the number of opened bins due to small items. Before starting
to analyze the number of opened bins for large items, we will show that we can assume
that |I≥γ | grows linearly in OPT(I). For a random instance Iσ let L(Iσ) denote the number
of opened bins by A for large items. We make the following observations:

L(Iσ) is bounded from above by 2|I≥γ |. This is, because for each large item at most two
bins are opened: One may be opened by the auxiliary algorithm to pack the generated
virtual item, and one since we are not able to replace a virtual item by a real one.
Furthermore, we have L(Iσ) ≥ OPT(I≥γ) ≥ S(I≥γ) ≥ γ|I≥γ |, where S(I≥γ) denotes the
total size of all items in I≥γ .
Since we pack the small items using First-Fit, the number of opened bins caused by small
items is bounded from above by (1− γ)−1S(I<γ) + 1.

Now assume that |I≥γ | ≤ γOPT(I). Then, (using the inequality (1 − γ)−1 ≤ 1 + 2γ for
γ ≤ 1/2) we have

A(Iσ)
OPT(I) ≤

2|I≥γ |+ (1− γ)−1S(I<γ) + 1
OPT(I)

≤ 2γOPT(I) + (1 + 2γ) OPT(I) + 1
OPT(I) ≤ 1 + 4γ + 1

OPT(I) .

So in this case, if we choose γ sufficiently small depending on ε, our algorithm would be
asymptotically (1+ε)-competitive. Hence, from now on we will make the following assumption:

I Assumption 1. We have |I≥γ | > γOPT(I).

54 3. Complexity of Bin Packing Variants

At first, we consider the number of opened bins for large items. This time we set the
period of first phases larger and set t = dlog2(γ2n)e.

I Lemma 41. There exist universal positive constants αγ and C such that the event

G`start :=
{
t−1∑
i=0

A`(Pi) ≤ 6γOPT(I)
}

takes place with probability at least 1− C exp (−αγ OPT(I)).
Furthermore, if |Pm| < γ2n, then also exist universal positive constants αγ and C such

that the event

G`end :=
{
A`(Pm) ≤ 4γOPT(I)

}
takes place with probability at least 1− C exp (−αγ OPT(I)).

We will now assume that the length of the last phase is at least γ2n. Then, we obtain for
the remaining phases:

I Lemma 42. There exist universal positive constants αγ , Cγ and Kγ such that

G`remaining =
{

m∑
i=t

A`(Pi) ≤ OPT(I≥γ) +Kγ

√
OPT(I) log(OPT(I))3/4

}

takes place with probability at least 1− Cγ exp
(
−αγ log(OPT(I))3/2).

Now, we consider the opened bins for small items. Let S(I<γ), S(I≥γ), and S(I) denote
the total size of all items in the corresponding sets. At first we show that we can assume
that S(I<γ) > γOPT(I): Assume that S(I<γ) ≤ γOPT(I). Then, we have (for γ ≤ 1/2)

A(Iσ)
OPT(I) ≤

L(Iσ) + (1− γ)−1S(I<γ) + 1
OPT(I)

≤ L(Iσ) + (1 + 2γ) · γOPT(I) + 1
OPT(I)

≤ L(Iσ)
OPT(I) + 3γ + 1

OPT(I) .

We still assume that |Pm| ≥ γ2n, otherwise, we can proceed in a similar way. Then, using
a union bound it follows from Lemma 41 and 42 that G`start ∩ G`remaining takes place with
probability at least 1− Cγ exp

(
−αγ log(OPT(I))3/2). In case that this event does not take

place we use the worst-case estimate L(Iσ) ≤ 2|I≥γ | ≤ 2
γ OPT(I≥γ). Then, we obtain

E [A(Iσ)]
OPT(I) ≤

OPT(I≥γ) + 6γOPT(I) +Kγ

√
OPT(I) log(OPT(I)3/4

OPT(I)

+ exp
(
−αγ log(OPT(I))3/2

)
·

2
γ OPT(I)
OPT(I) + 3γ + 1

OPT(I)

≤ 1 + 9γ +Kγ
log(OPT(I))3/4√

OPT(I)
+ 2
γ

exp
(
−αγ log(OPT(I))3/2

)
+ 1

OPT(I) .

The last three terms tend to zero as OPT(I) tends to infinity. So, choosing γ appropriately
depending on ε, it follows that our algorithm would be asymptotically (1 + ε)-competitive in
the random-order model. Hence, our second assumption is as follows:

3.2. Deferred Proofs 55

I Assumption 2. It holds S(I<γ) > γOPT(I).

We begin by estimating the number of opened bins for small items in the first phases
(and in the last phase if the last phase is short). This time it does not suffice to bound the
number of small items in the first phases but we have to estimate their total size.

I Lemma 43. There exist universal positive constants C and αγ such that the event

Gsstart :=
{
t−1∑
i=0

As(Pi) ≤ 9γOPT(I) + 1
}

takes place with probability at least 1− C exp (−αγ OPT(I)).
Furthermore, if |Pm| < γ2n, then also exist universal positive constants αγ and C such

that the event

Gsend := {As(Pm) ≤ 6γOPT(I) + 1}

takes place with probability at least 1− C exp (−αγ OPT(I)).

Now we analyze the remaining phases: Let Iσ<γ denote an arbitrary permutation of the
small items. Assume we generate a packing for I as follows: At first we pack the items
from I≥γ in an optimal way, that is, in a way such that we need OPT(I≥γ) many bins. Then,
we add the items from Iσ<γ using First-Fit to the existent packing. Let FF(Iσ<γ) denote the
number of opened bins by First-Fit.

It follows as in the proof of the existence of a PTAS for bin packing that we have (for
γ ≤ 1/2) for arbitrary Iσ<γ

OPT(I≥γ) + FF(Iσ<γ) ≤
⌈

1
1− γ OPT(I)

⌉
+ 1 ≤ (1 + 2γ) OPT(I) + 2. (6)

Furthermore, we observe that it holds

FF(Iσ<γ) ≥ [S(I<γ)− (OPT(I≥γ)− S(I≥γ))]+ = [S(I)−OPT(I≥γ)]+, (7)

where [x]+ := max{x, 0}. This follows, because OPT(I≥γ)−S(I≥γ) is equal to the remaining
space that can receive small items.

The following lemma is the central part of our proof of Theorem 34:

I Lemma 44. There exist universal positive constants αγ , Cγ and Kγ such that the event
Gsremaining defined as{

m∑
i=t

As(Pi) ≤ [S(I)−OPT(I≥γ)]+ + 7γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4

}

takes place with probability at least 1− Cγ exp
(
−αγ log(OPT(I))3/2).

Again, we assume that |Pm| ≥ γ2n. Then, using the previous lemmata we see that there
exist universal positive constants αγ , Cγ and Kγ such that the event G`start ∩ G`remaining ∩
Gsstart ∩ Gsremaining takes place with probability at least 1− Cγ exp

(
−αγ log(OPT(I))3/2). In

case that this event does not take place we use the worst-case estimate (for γ ≤ 1/2)

A(Iσ) ≤ L(Iσ) + (1− γ)−1S(I<γ) + 1
≤ L(Iσ) + (1 + 2γ)S(I<γ) + 1

56 3. Complexity of Bin Packing Variants

≤ 2|I≥γ |+ (1 + 2γ)S(I) + 1

≤ 2
γ

OPT(I) + (1 + 2γ) OPT(I) + 1

≤
(

2
γ

+ 2 + 2γ
)

OPT(I).

Then, using (6) and (7) we obtain

E [A(Iσ)]
OPT(I) ≤

OPT(I≥γ) + [S(I)−OPT(I≥γ)]+ + 22γOPT(I)
OPT(I)

+
Kγ

√
OPT(I) log(OPT(I))3/4

OPT(I)

+
exp

(
−αγ log(OPT(I))3/2) · (2

γ + 2 + 2γ
)

OPT(I)

OPT(I)

≤ 1 + 24γ +Kγ
log(OPT(I))3/4√

OPT(I)
+Kγ exp

(
−αγ log(OPT(I))3/2

)
.

The last two terms tend to zero as OPT(I) tends to infinity. Thus, choosing γ sufficiently
small our algorithm is asymptotically (1 + ε)-competitive in the random-order model.

3.2.2.3 Useful Inequalities

The following inequalities will be used extensively in the following:

OPT(I≥γ) ≤ OPT(I);
OPT(I)/2 < S(I) ≤ dS(I)e ≤ OPT(I);
S(I≥γ) ≤ S(I) and S(I<γ) ≤ S(I);
|I≥γ | ≤ 1/γ OPT(I≥γ) ≤ 1/γ OPT(I).

The inequality S(I) > OPT(I)/2 can be shown in the following way: Let `1, . . . , `OPT(I)
denote the bin levels of a fixed optimal packing. Because of the optimality we have `i+ `j > 1
for i, j ∈ [OPT(I)] with i 6= j. If OPT(I) is even, the statement follows immediately. If
OPT(I) is odd, then we have S(I) = `1+. . .+`OPT(I)−1+`OPT(I) ≥ (OPT(I)−1)/2+`OPT(I)
and S(I) ≥ `1 + (OPT(I)− 1)/2. Therefore, we have 2S(I) ≥ OPT(I)− 1 + `1 + `OPT(I) >

OPT(I).
Moreover, we will use the following estimates:

For γ ≤ 1/2 we have (1− γ)−1 ≤ 1 + 2γ.
Let αγ and βγ be two positive constants. Then, there exists another positive con-
stant α̃γ such that we have for ` large enough the inequality exp

(
−αγ log(βγ · `)3/2) ≤

exp
(
−α̃γ log(`)3/2).

For a fixed α > 1 we have for all ` large enough log(α`) ≤ α log(`).

3.2.2.4 Proof of Lemma 41

Here we will prove:

I Lemma 41. There exist universal positive constants αγ and C such that the event

G`start :=
{
t−1∑
i=0

A`(Pi) ≤ 6γOPT(I)
}

3.2. Deferred Proofs 57

takes place with probability at least 1− C exp (−αγ OPT(I)).
Furthermore, if |Pm| < γ2n, then also exist universal positive constants αγ and C such

that the event

G`end :=
{
A`(Pm) ≤ 4γOPT(I)

}
takes place with probability at least 1− C exp (−αγ OPT(I)).

Proof of Lemma 41. We set b := |I≥γ |. For i ∈ {0, . . . ,m} let Li denote the number of
large items in phase Pi and L∗i the number of large items in P ∗i . We have chosen t in a
way that Pt is the first phase such that there are already at least γ2n many items drawn.
Furthermore, we have |P ∗t | = 2dlog2(γ2n)e ≤ 2γ2n, and therefore E [L∗t] = |P ∗t | · bn ≤ 2γ2b.

Let Xi be equal to one, if the i-th drawn item is large, and zero otherwise. Then, we have
L∗t =

∑|P∗t |
j=1 Xj . Moreover, it is E

[
X2
j

]
≤ E [Xj] = b/n. Applying Bernstein’s inequality (see

Proposition 13) we obtain

P
[
L∗t ≥ 3γ2b

]
≤ P

[
L∗t ≥ E [L∗t] + γ2b

]
≤ exp

(
− [γ2b]2

2 · 2dlog2(γ2n)e · bn + 2
3 · γ2b

)

≤ exp
(
− γ4b2

4γ2n · bn + γ2b

)

≤ exp
(
−1

5 · γ
2b

)
≤ exp

(
−1

5 · γ
3 OPT(I)

)
.

Here, the last inequality follows from Assumption 1. Since the algorithm opens at most two
bins per large item we have an upper bound for the number of opened bins of

2 · 3γ2b ≤ 6γOPT(I).

This shows the first part of the lemma.
To analyze the last phase Pm in case of |Pm| < γ2n we proceed as in the analysis of the

first phases: It holds E [Lm] < γ2n · bn = γ2b. Applying Bernstein’s inequality we see that

P
[
Lm ≥ 2γ2b

]
≤ P

[
Lm ≥ E [Lm] + γ2b

]
≤ exp

(
− [γ2b]2

2 · γ2n · bn + 2
3γ

2b

)

≤ exp
(
−1

3γ
2b

)
≤ exp

(
−1

3γ
3 OPT(I)

)
.

Hence, if we assume that for each large item in the last phase two bins are opened, then
with probability at least 1− exp

(
− 1

3γ
3 OPT(I)

)
we open at most 4γOPT(I) many bins for

large items in the last phase. J

3.2.2.5 Proof of Lemma 42

Here we will prove

I Lemma 42. There exist universal positive constants αγ , Cγ and Kγ such that

G`remaining =
{

m∑
i=t

A`(Pi) ≤ OPT(I≥γ) +Kγ

√
OPT(I) log(OPT(I))3/4

}

58 3. Complexity of Bin Packing Variants

takes place with probability at least 1− Cγ exp
(
−αγ log(OPT(I))3/2).

Proof of Lemma 42. Now we consider the phases Pt, . . . , Pm−1 and Pm in the case that
|Pm| ≥ γ2n. Let i ∈ {t, . . . ,m}. We see that there are three reasons to open a new bin
because of a large item:

If Li > L∗i , then we are not able to generate virtual items for the last Li − L∗i many
arriving large items and therefore pack each of them in a new bin;
The auxiliary algorithm opens a new bin;
We cannot replace a virtual item by the arriving real item.

Notice that since t = dlog2(γ2n)e we have

m− t+ 1 ≤ log2(n/2) + 2− log2(γ2n) = 1 + log2

(
1
γ2

)
,

that is, the number of phases we consider now is upper bounded by a constant Cγ , which
depends only on γ. This allows us to give the same bounds for all the phases and applying a
union bound afterwards.

Again, we set b := |I≥γ |. Let

EL =
m⋂
i=t

({
|Li − E [Li]| ≤

√
b log(b)3/4

}
∩
{
|L∗i − E [L∗i]| ≤

√
b log(b)3/4

})
denote the event that the number of large items in Pt, . . . , Pm and P ∗t , . . . , P ∗m is concentrated
around its mean. At first we assume that EL takes place, and analyze the number of opened
bins for large items. Later on, we will show that EL takes place with sufficient probability.

If EL takes place, then for i ∈ {t, . . . ,m} it holds true that Li−L∗i ≤ 2
√
b log(b)3/4. That

is, in this case the number of opened bins since we are not able to generate virtual items is
upper bounded by 2

√
b log(b)3/4 and in all phases together by

Cγ
√
b log(b)3/4 ≤ Cγ

√
OPT(I) log(OPT(I))3/4

for OPT(I) large enough.
Now, we study the number of opened bins because a real item cannot replace a virtual

item: We denote this random variable again as U(Pi). We see that here we have in phase Pi
an instance of (M1) with k = min{Li, L∗i }. Moreover, since we assume that b ≥ γOPT(I)
and that OPT(I) is very large, we can assume that

√
b log(b)3/4 ≤ 1

2 ·
|Pi|
n · b. Then, it follows

from Lemma 25 that in phase Pi we have

P
[
U(Pi) ≤ K

√
b log(b)3/4

]
≥ P

[
U(Pi) ≤ K

√
min{Li, L∗i } log(min{Li, L∗i })3/4

]
≥ 1− C exp

(
−α log (min{Li, L∗i })

3/2
)

≥ 1− C exp
(
−α log

(
min

{
1
2 ·
|Pi|
n
· b, 1

2 ·
|P ∗i |
n
· b
})3/2

)

≥ 1− C exp
(
−α log

(
1
2γ

2b

)3/2
)

≥ 1− C exp
(
−αγ log (OPT(I))3/2

)
.

3.2. Deferred Proofs 59

So, applying a union bound we see that

P

[
m∑
i=t

U(Pi) ≤ Kγ

√
OPT(I) log(OPT(I))3/4

]
≥ 1− Cγ exp

(
−αγ log (OPT(I))3/2

)
.

Finally, we control the number of opened bins by the auxiliary algorithm. In order to do
this, we apply two times Lemma 38: At first it follows that we have for i ∈ {t, . . . ,m}

OPT(P ∗i ∩ I≥γ) ≤ L∗i
b
·OPT(I≥γ) +K

√
L∗i log (L∗i)

3/4

≤ L∗i
b
·OPT(I≥γ) +K

√
b log (b)3/4

≤ L∗i
b
·OPT(I≥γ) +Kγ

√
OPT(I) log (OPT(I))3/4

with probability at least 1−Cγ exp
(
−αγ log (OPT(I))3/2

)
. Let Pi∩I≥γ denote the instance

we obtain from Pi by removing all small items. Then, it holds

A′(Pi ∩ I≥γ) ≤ min{Li, L∗i }
L∗i

·OPT(P ∗i ∩ I≥γ) +K
√

min{Li, L∗i } log (min{Li, L∗i })
3/4

≤ min{Li, L∗i }
L∗i

·OPT(P ∗i ∩ I≥γ) +K
√
b log (b)3/4

≤ min{Li, L∗i }
L∗i

·OPT(P ∗i ∩ I≥γ) +Kγ

√
OPT(I) log (OPT(I))3/4

,

with probability at least 1− Cγ exp
(
−αγ log (OPT(I))3/2

)
.

Plugging both inequalities together, it follows that

A′(Pi ∩ I≥γ) ≤ min{Li, L∗i }
b

·OPT (I≥γ) +Kγ

√
OPT(I) log(OPT(I))3/4.

Then, summing up yields
m∑
i=t

A′(Pi ∩ I≥γ) ≤
m∑
i=t

(
min{Li, L∗i }

b
·OPT (I≥γ) +K

√
OPT(I) log(OPT(I))3/4

)

≤

(
OPT (I≥γ)

b

m∑
i=t

min{Li, L∗i }
)

+Kγ

√
OPT(I) log(OPT(I))3/4

≤ OPT (I≥γ)
b

m∑
i=t

(
|Pi|
n
· b+

√
OPT(I) log(OPT(I))3/4

)
+Kγ

√
OPT(I) log(OPT(I))3/4

≤ OPT(I≥γ) · 1
n

m∑
i=t
|Pi|+ OPT(I≥γ) ·Kγ

log(OPT(I))3/4√
OPT(I)

+Kγ

√
OPT(I) log(OPT(I))3/4

≤ OPT(I≥γ) +Kγ

√
OPT(I) log(OPT(I))3/4.

All in all, we see that – assuming that EL takes place – the number of opened bins
because of large items in the phases Pt, . . . , Pm is bounded from above by OPT(I≥γ) +
Kγ

√
OPT(I) log(OPT(I))3/4 with probability at least 1− Cγ exp

(
−αγ log (OPT(I))3/2

)
.

60 3. Complexity of Bin Packing Variants

Finally, we want to show that EL takes place with sufficient probability: We apply
Bernstein’s inequality and use the facts that |Pi| ≤ |P ∗i | ≤ n for all i and

√
b log(b)3/4 ≤ b.

Then, we obtain for i ∈ {t, . . . ,m}

P
[
|Li − E [Li]| ≥

√
b log(b)3/4

]
≤ exp

(
− [

√
b log(b)3/4]2

2 · |Pi|n · b+ 2
3
√
b log(b)3/4

)

≤ exp
(
−1

3 log(b)3/2
)

≤ exp
(
−αγ log(OPT(I))3/2

)
and

P
[
|L∗i − E [L∗i]| ≥

√
b log(b)3/4

]
≤ exp

(
−αγ log(OPT(I))3/2

)
.

Since the number of phases under consideration is bounded by a constant depending on γ,
the statement follows by a union bound. J

3.2.2.6 Proof of Lemma 43

Here we will prove

I Lemma 43. There exist universal positive constants C and αγ such that the event

Gsstart :=
{
t−1∑
i=0

As(Pi) ≤ 9γOPT(I) + 1
}

takes place with probability at least 1− C exp (−αγ OPT(I)).
Furthermore, if |Pm| < γ2n, then also exist universal positive constants αγ and C such

that the event

Gsend := {As(Pm) ≤ 6γOPT(I) + 1}

takes place with probability at least 1− C exp (−αγ OPT(I)).

Proof of Lemma 43. Since the small items are packed using First-Fit, we can estimate the
number of opened bins for small items by the sum of small items in the first phases times a
factor depending on γ. In order to do this, we show that the total size of all – not only the
small items – drawn in P ∗t is not too large. Let Xj be the size of the j-th drawn item. Then,
we have E

[
X2
j

]
≤ E [Xj] = S(I)/n. Applying Bernstein’s inequality, we see that

P
[
S(P ∗t) ≤ 3γ2S(I)

]
≥ P

[
S(P ∗t) ≤ E [S(P ∗t)] + γ2S(I)

]
≥ 1− exp

(
− [γ2S(I)]2

2 · 2dlog2(γ2n)e · E [X2
1] + 2

3 · γ2S(I)

)
≥ 1− exp

(
− γ4S(I)2

4γ2n · S(I)
n + γ2S(I)

)

≥ 1− exp
(
−1

5γ
2S(I)

)
≥ 1− exp (−αγ OPT(I)) .

3.2. Deferred Proofs 61

Using the inequality (1− γ)−1 ≤ 1 + 2γ for γ ≤ 1/2, we obtain that the number of opened
bins due to small items up to phase Pt is upper bounded by⌈

1
1− γ S(P ∗t ∩ I<γ)

⌉
≤
⌈

1
1− γ S(P ∗t)

⌉
≤
⌈

3γ2

1− γ S(I)
⌉

≤ 3γ2

1− γ S(I) + 1 ≤ 9γOPT(I) + 1

with probability at least 1− exp (−αγ OPT(I)).
To analyze the last phase we proceed as before: Applying Bernstein’s inequality we obtain

P
[
S(Pm) ≤ 2γ2S(I)

]
≥ P

[
S(Pm) ≤ E [S(Pm)] + γ2S(I)

]
≥ 1− exp

(
− [γ2S(I)]2

2γ2n · S(I)
n + 2

3γ
2S(I)

)

≥ 1− exp
(
−1

3γ
2S(I)

)
.

Hence, in this case the number of opened bins because of small items is upper bounded by
6γOPT(I) + 1 with proability at least 1− C exp (−αγ OPT(I)). J

3.2.2.7 Proof of Lemma 44

Here we will prove

I Lemma 44. There exist universal positive constants αγ , Cγ and Kγ such that the event
Gsremaining defined as{

m∑
i=t

As(Pi) ≤ [S(I)−OPT(I≥γ)]+ + 7γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4

}

takes place with probability at least 1− Cγ exp
(
−αγ log(OPT(I))3/2).

Now we study the number of opened bins in the remaining phases that are especially
dedicated for small items. That is we investigate how often it will happen that we cannot
put a small item into a bin that was opened in a previous phase or in space generated by a
virtual item with rank one from the current phase.

The number of opened bins for small items in phase Pi depends on

the empty space in bins opened in previous phases;
the small items arriving in phase Pi and
the virtual items generated in phase Pi.

We can assume without loss of generality that all bins opened in previous phases are full, so
that it is not possible to put small items in these bins.

In the following we will consider the process of packing the small items in phase Pi =
(A2i+1, . . . , Amin{2·2i,...,n}) in more details: For each of the first Li −min{Li, L∗i } many large
items arriving a virtual item is created, and their sizes stem from the set {v1, . . . , vL∗

i
} =

P ∗i ∩I≥γ . Now we introduce corresponding space-items: We remember that at the beginning of
phase Pi a model-packingM(P ∗i) is computed. Let f = fM : P ∗i ∩ I≥γ → [OPT(P ∗i ∩ I≥γ)]

62 3. Complexity of Bin Packing Variants

be the function, which assigns to each item the index of its corresponding bin in the model-
packing, and r the corresponding rank-function. Now, for each possible size of a virtual
item vj the corresponding space-item has size

ej :=

min
{
−
(

1−
∑
m : f(vm)=f(vj) vm

)
+ γ, 0

}
if r(vj) = 1,

0 otherwise.

This is motivated as follows: Space for small items can only be generated by virtual items of
rank one. Furthermore, it is possible that a fraction arbitrary close to γ will not be used by
small items since they do not fit into this space. We set Ei := {e1, . . . , eL∗

i
}.

Now we apply the following transformation to Pi:

At first we delete the last Li −min{Li, L∗i } large items from Pi.
Then, we replace all remaining large items by the corresponding virtual items, and
afterwards the virtual items by the corresponding empty-space items.

Let P ri = (R1, . . . , R|Pi|−(Li−min{Li,L∗i })) be the result of this transformation and moreover
we set R0 := 0.

If we look at the partial sums of P ri we observe that every time a new small item arrives
we add some “demand” and every time a virtual item of rank one arrives we generate some
empty space. So this process is closely related to the number of bins we need to open for
small items as the following lemma will show:

I Lemma 45. Set Mi := max{0≤u≤|Pi|−(Li−min{Li,L∗i })}
∑u
m=1Rm. Then, the number of

opened bins for small items in phase Pi is bounded from above by (1 + 2γ)Mi + 1.

Proof. We have⌈
1

1− γ max
u

u∑
m=1

Rm

⌉
≤ (1 + 2γ) max

u

u∑
m=1

Rm + 1.

Here, the factor (1 − γ)−1 stems from the fact that in the worst case for each bin that is
designated fully for small items space of size nearly γ is wasted. J

Now we want to take a closer look at P ri : Let Q denote the multiset of all values, which
arise in P ri . Then, we observe the following two things:

Q is a subset of I<γ ∪ Ei, and
each realization of P ri with all values in Q is equally likely.

Let Q̂ be the set containing all possible candidate sets Q, which can arise with positive
probability. Moreover, let p denote the probability distribution on Q̂, where p(Q) is the
probability that P ri is equal to a permutation of the values in Q. Then, we can look at P ri
in the following way: At first we draw a random set Q from Q̂ according to p. Then, we
generate a random permutation of the items in Q and call this IσQ.

The remaining steps of the proof are the following:

At first we show that for a setQ the maximum of the partial sums of a random permutation
of the values in Q is not much larger than the total size of all values in Q.
Then, we will show that the total size of all items in Q, drawn according to p, is not too
large.

3.2. Deferred Proofs 63

I Lemma 46. Let Q ∈ Q̂, and let IσQ be a random permutation of the elements in Q.
Moreover, let M(IσQ) denote the maximum of the partial sums. Then, there exist constants C
and αγ such that

M(IσQ) ≤ [S(Q)]+ +
√

OPT(I) log(OPT(I))3/4

with probability at least 1− C exp
(
−αγ log(OPT(I))3/2).

I Lemma 47. Let Q be randomly drawn from Q̂ according to p. Then, there exist universal
constants αγ , C and Kγ such that

S(Q)

≤ |Pi|
n
· [S(I)−OPT(I≥γ)]+ + |Pi|

n
· γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4 (8)

with probability at least 1− C exp
(
−αγ log(OPT(I))3/2).

Combining the statements given in Lemma 45, 46 and 47 we see that with probability at
least 1−Cγ exp

(
−αγ log(OPT(I))3/2) the number of opened bins for small items is bounded

from above by

(1 + 2γ) max
0≤u≤|Q|

u∑
j=1

Xj + 1

≤ (1 + 2γ)
[
|Pi|
n

(S(I)−OPT(I≥γ))+ + |Pi|
n
γOPT(I)

+ Kγ

√
OPT(I) log(OPT(I))3/4

]
+ 1

≤ |Pi|
n

[S(I)−OPT(I≥γ)]+ + |Pi|
n

7γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4.

All in all, applying a union bound we see that the number of opened bins for small items
in the phases t, . . . ,m is bounded from above by

m∑
j=t

[
|Pi|
n

[S(I)−OPT(I≥γ)]+ + |Pi|
n

7γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4

]
≤ [S(I)−OPT(I≥γ)]+ + 7γOPT(I) +Kγ

√
OPT(I) log(OPT(I))3/4

with probability at least 1− Cγ exp
(
−αγ log(OPT(I))3/2). It remains to prove Lemma 46

and Lemma 47.
We start with the proof of Lemma 46.

Proof of Lemma 46. The proof is based on an application of the maximal inequality for
sampling without replacement. We can assume without loss of generality that S(Q) ≥ 0,
otherwise we increase the size of space-items (that is we decrease the space they offer). Let
IσQ = (X1, . . . , X|Q|) with Xi = Qσ(i) be a random permutation of the elements in Q. We set
X̃j := Xj − S(Q)

|Q| . Since the random variables are only shifted by a constant they are still
exchangeable. Applying Proposition 14 we obtain

P

 max
1≤u≤|Q|

∣∣∣∣∣∣
u∑
j=1

X̃j

∣∣∣∣∣∣ >√OPT(I) log(OPT(I))3/4



64 3. Complexity of Bin Packing Variants

≤ C · P

∣∣∣∣∣∣
b|Q|/2c∑
j=1

X̃j

∣∣∣∣∣∣ > 1
C

√
OPT(I) log(OPT(I))3/4

 .
Assume that

max
1≤u≤|Q|

∣∣∣∣∣∣
u∑
j=1

X̃j

∣∣∣∣∣∣ ≤√OPT(I) log(OPT(I))3/4.

Then, we have for all u ∈ {1, . . . , |Q|}

u∑
j=1

Xj ≤
u

|Q|
· [S(Q)]+ +

√
OPT(I) log(OPT(I))3/4

≤ [S(Q)]+ +
√

OPT(I) log(OPT(I))3/4.

So, to show the statement of the lemma it suffices to bound

P

∣∣∣∣∣∣
b|Q|/2c∑
j=1

X̃j

∣∣∣∣∣∣ > 1
C

√
OPT(I) log(OPT(I))3/4


from above. In order to do this, we will apply Bernstein’s inequality, that is, we will bound
the term

exp
(
− OPT(I) log(OPT(I))3/2

2C2∑b|Q|/2c
j=1 E

[
X̃2
j

]
+ 2

3M · C
√

OPT(I) log(OPT(I))3/4

)

≤ exp
(
− OPT(I) log(OPT(I))3/2

C2 · |Q| · E
[
X̃2

1
]

+ 2
3M · C

√
OPT(I) log(OPT(I))3/4

)

from above.
At first we want to give an upper bound M for |X̃i|. We obtain

|X̃i| =
∣∣∣∣Xi −

S(Q)
|Q|

∣∣∣∣ ≤ |Xi|+
|S(Q)|
|Q|

≤ 1 + max
{
|S(Q∩ I<γ)|
|Q ∩ I<γ |

,
|S(Q∩ Ei)|
|Q ∩ Ei|

}
≤ 1 + max{γ, 1} ≤ 2.

Since the absolute value of every element in Q is bounded from above by 1 it follows that
|S(Q)|/|Q| ≤ 1. Hence, it follows that

E
[
X̃2

1
]

= E

[(
X1 −

S(Q)
|Q|

)2
]

≤ E
[
X2

1
]

+ 2E
[
|X1| ·

|S(Q)|
|Q|

]
+ 1
|Q|

E
[
|S(Q)|
|Q|

· |S(Q)|
]

≤ E [|X1|] + 2E [|X1|] + 1
|Q|
· E [|S(Q)|]

≤ 3E [|X1|] + 1
|Q|
· |Q| · E [|X1|]

≤ 4E [|X1|] .

3.2. Deferred Proofs 65

Finally, we want to show that we can bound |Q| ·E [|X1|] in terms of OPT(I). We obtain

|Q| · E [|X1|] = |Q| ·
(
|Q ∩ I<γ |
|Q|

· S(I<γ)
|I<γ |

+ |Q ∩ Ei|
|Q|

· 1
)

≤ S(I<γ) + |I≥γ |

≤
(

1 + 1
γ

)
OPT(I).

Combining the bounds shows that there exist constants C and αγ such that the maximum
of the partial sums of a random permutation of the elements in Q is bounded from above by
[S(Q)]+ +

√
OPT(I) log(OPT(I))3/4 with probability at least 1−exp

(
−αγ log(OPT(I))3/2).

J

Proof of Lemma 47. The proof is a bit longish and based on several applications of concen-
tration bounds. It holds S(Q) = S(Q ∩ I<γ) + S(Q ∩ Ei). We will investigate both terms
independently:

S(Q∩ I<γ) can be controlled using Bernstein’s inequality.
Estimating S(Q∩Ei) is more tedious as we have to estimate at first S(Ei) and afterwards
the total size of the items in Q∩ Ei.

I Lemma 48. We have

P
[
S(Pi ∩ I<γ) ≥ |Pi|

n
· S(I<γ) +

√
OPT(I) log(OPT(I))3/4

]
≤ exp

(
−1

3 log(OPT(I))3/2
)
.

Proof. This bound is just an application of Bernstein’s inequality: Let Yj be equal to zero if
the j-th drawn item is large and otherwise the size of the drawn small item. Then, we have∑|Pi|
j=1 Yj = S(Pi ∩ I<γ) and E [S(Pi ∩ I<γ)] = |Pi|

n · S(I<γ). It follows that

P
[
S(Pi ∩ I<γ) ≥ E [S(Pi ∩ I<γ] +

√
OPT(I) log(OPT(I))3/4

]
≤ exp

(
− OPT(I) log(OPT(I))3/2

2|Pi| · E [X2
1] + 2

3
√

OPT(I) log(OPT(I)3/4

)

≤ exp
(
− OPT(I) log(OPT(I))3/2

2|Pi| · E [X1] + 2
3
√

OPT(I) log(OPT(I)3/4

)

≤ exp
(
−OPT(I) log(OPT(I))3/2

2|Pi| · S(I)
n + OPT(I)

)

≤ exp
(
−1

3 log(OPT(I))3/2
)
.

J

Now, we want to control S(Q∩ Ei). We remember that

S(Ei) ≤ S(P ∗i ∩ I≥γ)− (1− γ) OPT(P ∗i ∩ I≥γ). (9)

In the following two lemmata we will give bounds for S(P ∗i ∩ I≥γ) and OPT(P ∗i ∩ I≥γ):

66 3. Complexity of Bin Packing Variants

I Lemma 49. It holds

P
[
S(P ∗i ∩ I≥γ) ≤ L∗i

|I≥γ |
· S(I≥γ) +

√
L∗i log(L∗i)3/4 | L∗i

]
≥ 1 − exp

(
−1

3 log(L∗i)3/2
)
.

Proof. The proof of this statement is just another application of Bernstein’s inequality. Then,
we obtain

P
[
S(P ∗i ∩ I≥γ) ≤ L∗i

|I≥γ |
· S(I≥γ) +

√
L∗i log(L∗i)3/4 | L∗i

]

≥1− exp

− L∗i log(L∗i)3/2

2L∗i ·
S(I≥γ)
|I≥γ | + 2

3
√
L∗i log(L∗i)3/4


≥1− exp

(
− L∗i log(L∗i)3/2

2L∗i + 2
3
√
L∗i log(L∗i)3/4

)

≥1− exp

− log(L∗i)3/2

2 + 2
3

log(L∗
i
)3/4√
L∗
i


≥1− exp

(
−1

3 log(L∗i)3/2
)
.

J

I Lemma 50. Assume that there exists a constant βγ depending on γ such that L∗i ≥ βγ |I≥γ |.
Then, there exist universal constants Cγ ,K and α such that

P
[
OPT(P ∗i ∩ I≥γ) ≥ L∗i

|I≥γ |
·OPT(I≥γ)−K

√
L∗i log(L∗i)3/4 | L∗i

]
≥ 1 − Cγ exp

(
−α log(L∗i)3/2

)
.

Proof. We divide the input into several phases of length L∗i (apart from the last phase,
which could be smaller). Then, we use the packing of the first phase (which is identically
distributed to the distribution of the packing of the items in P ∗i ∩ I≥γ) as a model-packing
for the items of the following phases. Then, it follows as in the analysis of the auxiliary
algorithm for cardinality-constrained bin packing that with high probability we can pack the
items from phase two in at most

OPT(P ∗i ∩ I≥γ) +K
√
L∗i log(L∗i)3/4

many bins. Applying the same argument for the remaining phases, using a union bound and
the fact that L∗i ≥ βγ |I≥γ | it follows that

OPT(P ∗i ∩ I≥γ) ≥ L∗i
|I≥γ |

OPT(I≥γ)−K
√
L∗i log(L∗i)3/4

with probability at least 1− Cγ exp
(
−α log(L∗i)3/2). J

After giving bounds for both terms on the right hand side in (9), we are finally able to
control the generated space by the actually created virtual items:

3.2. Deferred Proofs 67

I Lemma 51. It holds

P
[
S(Q∩ Ei) ≤ min{Li, L∗i } ·

S(Ei)
L∗i

+
√
Li log(Li)3/4 | L∗i , Li

]
≥ 1 − exp

(
−1

3 log(Li)3/2
)
.

Proof. This proof is again a direct application of Bernstein’s inequality and exploiting the
fact that S(Ei) ≤ L∗i . J

Eventually, Lemma 47 follows by combining the statements of Lemma 48, 49, 50 and 51
with concentration inequalities for Li and L∗i and using a union bound.

J

3.2.3 A Lower Bound for Classical Bin Packing in the
Partial-permutations Model

Here, we will prove:

I Proposition 35. For online classical bin packing there exists for every p ∈ [0, 1) an εp
greater than zero such that for all deterministic online algorithms A it holds RRp(A) ≥ 1+ εp.

3.2.3.1 High-Level Proof

The first important thing to notice is that the performance measure RRp(A) is more
pessimistic than RR(A):

I Lemma 52. Let p ∈ [0, 1). Then, for an arbitrary deterministic algorithm A it is true
that RR(A) ≤ RRp(A).

Now, we define for n ∈ N the instance I = (3/7, . . . , 3/7, 4/7, . . . , 4/7) consisting of 2n items
of size 3/7 in the beginning, followed by 2n items of size 4/7. It is clear that an optimal
solution for the first 2n items needs n many bins, and that OPT(I) = 2n. Moreover, it is
straightforward to show that there is no way to pack the items online such that we obtain an
optimal solution after packing the first 2n items and in the end simultaneously.

Let p ∈ (0, 1) and A be a deterministic online algorithm. We denote by Ip,σ a random
instance that we obtain from I by performing the random perturbation described in the
partial-permutations model.

The idea of the proof is the following: We will show that for each n large enough there
exists an εp greater than zero such that either E[A(Ip,σ)]

OPT(I) ≥ 1 + εp or that we can find an

instance Ĩ consisting of 2n items with OPT(Ĩ) = n such that E[A(Ĩσ)]
OPT(Ĩ) ≥ 1 + εp. Here, Ĩσ

denotes a random permutation of the items in Ĩ as in the random-order model. Then,
Proposition 35 follows from Lemma 52.

We assume that

E [A(Ip,σ)] ≤
(

1 + 1
12 · (1− p)

)
2n =

(
1 + 1

12 · (1− p)
)

OPT(I). (10)

If this is not the case, we have already found an instance I with E[A(Ip,σ)]
OPT(I) > 1 + 1

12 (1− p).
So let F =

{
Ip,σ : A(Ip,σ) ≤

(
1 + 1

6 (1− p)
)
· 2n

}
. If condition (10) is satisfied, we have

P [F] ≥ 1/2, otherwise it would hold that

E [A(Ip,σ)] > P [F] · 2n+ (1− P [F]) ·
(

1 + 1
6(1− p)

)
· 2n

68 3. Complexity of Bin Packing Variants

>
1
2 · 2n+ 1

2 ·
(

1 + 1
6(1− p)

)
· 2n

=
(

1 + 1
12(1− p)

)
· 2n.

Moreover, for Ip,σ letMp,σ denote the number of items of size 4/7 among the first 2n items.
We set E =

{
Ip,σ : Mp,σ ≤ 1

2 (1 + p)n
}
. The following lemma shows that it is not possible

that A performs well on realizations in E at the time points 2n and 4n simultaneously:

I Lemma 53. Let p′ ∈ [0, 1). Let I be an instance consisting of 2n items of size 3/7 and 2n
items of size 4/7, where the number of items of size 4/7 among the first 2n items is bounded
from above by p′ ·n. Then, no online algorithm A can be better than (1+(1−p′)/3)-competitive
after packing the first 2n items from I and packing all items of I.

Furthermore, the event E takes place with high probability as the following statement
shows:

I Lemma 54. Let I be an instance as described consisting of 4n many items. Assume
that Ip,σ is a partially permuted instance and let Mp,σ denote the number of items of size 4/7

among the first 2n many items in Ip,σ. Then, there exist positive constants αp and Cp such
that

P [Mp,σ ≥ (1 + p)/2 · n] ≤ Cp exp (−αpn) .

Using a union bound, it follows from Lemma 54 that there exist positive constants Cp
and αp such that we have for n large enough

P [E ∩ F] ≥ 1/2− Cp exp (−αpn) . (11)

Now, for an instance Ip,σ = (A1, . . . , A4n) let g denote the projection onto the first 2n
coordinates, that is we have g(Iσ,p) = (A1, . . . , A2n). Set p′ = 1/2 · (1 + p) and let Ip,σ be
a realization in E ∩ F . Then, Ip,σ satisfies the following properties: At first we notice that
Mp,σ ≤ p′n ≤ n, and therefore also OPT(g(Ip,σ)) = n. Then, we observe that

A(Ip,σ) ≤
(

1 + 1
6 (1− p)

)
2n =

(
1 + 1

3 (1− p′)
)

2n.

Hence, it follows from Lemma 53 that

A(g(Ip,σ)) >
(

1 + 1
3 (1− p′)

)
· n.

So, using (11) we obtain the following estimate:

E [A(g(Ip,σ))] ≥ P [E ∩ F] ·
[
1 + 1

3(1− p′)
]
n+ (1− P [E ∩ F])n

≥
(

1
2 − Cp exp (−αpn)

)
·
[

7
6 −

1
6p
]
n+

(
1
2 + Cp exp (−αpn)

)
· n

≥
[

13
12 −

1
12p

]
n− Cp exp (−αpn)n.

Now let H denote all possible projections onto the first 2n coordinates, that is we
have H = {g(Ip,σ)}. Then we observe that projections that contain the same multiplicities
of item types are equally likely:

3.2. Deferred Proofs 69

I Observation 55. Let I ′, I ′′ ∈ H such that the number of items of size 4/7 in I ′ and I ′′ is
equal. Then P [g(Ip,σ) = I ′] = P [g(Ip,σ) = I ′′].

Moreover, for i ∈ {0, . . . , 2n} let Ii denote the instance beginning with i many items of
size 4/7, followed by 2n− i many items of size 3/7. Then, it follows by the previous observation
that there exists a probability mass function q : {0, . . . , 2n} → [0, 1] such that

E [A(g(Ip,σ))] =
2n∑
i=0

qi · E [A(Iσi)] .

Furthermore, it follows again from Lemma 54 that we have

b 1
2 (1−p)nc∑
i=0

qi · E [A(Iσi)] ≥ E [A(g(Ip,σ))]− Cp exp (−αp · n) · 4n.

Hence, we obtain

b 1
2 (1−p)nc∑
i=0

qi · E [A(Iσi)] ≥
[

13
12 −

1
12p

]
n− 5Cp exp (−αpn)n

=
[
1 + 1

12(1− p)
]
n− 5Cp exp (−αpn)n.

Therefore, for n large enough there must exist an i ∈
{

0, . . . ,
⌊ 1

2 (1− p)n
⌋}

such that
E[A(Iσi)]
OPT(Ii) ≥

[
1 + 1

24 (1− p)
]
. This shows the statement.

3.2.3.2 Proof of Lemma 52

Here we will prove

I Lemma 52. Let p ∈ [0, 1). Then, for an arbitrary deterministic algorithm A it is true
that RR(A) ≤ RRp(A).

Proof of Lemma 52. For a set of items I let I1, . . . , I|I|! denote all possible permutations
of the items. The proof then is a consequence of the following observation: If we choose a
random permutation Ii with respect to the uniform distribution, and afterwards perturb this
permutation according to the partial-permutations model, then we obtain again a permutation
that is distributed according to the uniform distribution. That is, we have

E [A(Iσ)] = 1
|I|!

|I|!∑
i=1

E [A(Ip,σi)] .

Then, it follows that there exists at least one permutation Ii with E [A(Iσ,pi)] ≥ E [A(Iσ)].
Hence, we obtain RRp(A) ≥ RR(A). J

3.2.3.3 Proof of Lemma 53

Here we will prove

I Lemma 53. Let p′ ∈ [0, 1). Let I be an instance consisting of 2n items of size 3/7 and 2n
items of size 4/7, where the number of items of size 4/7 among the first 2n items is bounded
from above by p′ ·n. Then, no online algorithm A can be better than (1+(1−p′)/3)-competitive
after packing the first 2n items from I and packing all items of I.

70 3. Complexity of Bin Packing Variants

Proof of Lemma 53. Let I = (a1, . . . , a2n, a2n+1, . . . , a4n) be an instance for the problem
satisfying the stated conditions. Let M denote the number of items of size 4/7 among the
first 2n items in I. Then, every algorithm A has to pack those items into separate bins.
Moreover, the remaining 2n − M items of size 3/7 must be packed. It follows from our
assumption that 2n−M ≥M . We can assume without loss of generality that A packs M
items of size 3/7 together with the items of size 4/7. Hence, we have M perfectly packed bins.
For the first half, it remains to pack the remaining 2n− 2M items of size 3/7. Let Q denote
the number of additionally opened bins containing two items of size 3/7. Then, 2n− 2M − 2Q
is the number of bins containing a single item of size 3/7. All in all, after packing the first 2n
items we have opened M bins containing an item of size 4/7 and 3/7, Q bins containing two
items of size 3/7 and 2n− 2M − 2Q bins containing only one item of size 3/7. So, the total
number of opened bins by the algorithm is equal to 2n −M − Q. Moreover, an optimal
solution can pack the first 2n items into n bins.

Now, we consider the packing of the items of the second half. We know that there are M
items of size 3/7 and 2n −M items of size 4/7. Without loss of generality 2n − 2M − 2Q
many of the items of size 4/7 can be packed in the open bins from the first half. Hence, in
the second half we have to open another M + 2Q many bins for the items of size 4/7 and
can pack the remaining items of size 3/7 into those bins. So, the total number of opened bins
after packing the whole instance by A is equal to 2n+Q. Furthermore, an optimal packing
of I needs 2n many bins.

A short calculation shows that the expression max{(2n−M −Q)/n, (2n+Q)/(2n)} is
minimized for Q = 2(n−M)/3. Then, it follows that no algorithm can be better than

2n+Q

2n =
2n+ 2

3 (n−M)
2n = 1 + 1

3

(
1− M

n

)
≥ 1 + 1

3

(
1− p′n

n

)
= 1 + 1

3(1− p′)

competitive. J

3.2.3.4 Proof of Lemma 54

Here we will prove
I Lemma 54. Let I be an instance as described consisting of 4n many items. Assume
that Ip,σ is a partially permuted instance and let Mp,σ denote the number of items of size 4/7

among the first 2n many items in Ip,σ. Then, there exist positive constants αp and Cp such
that

P [Mp,σ ≥ (1 + p)/2 · n] ≤ Cp exp (−αpn) .

Proof of Lemma 54. Let H1 denote the set of selected indices for the partial permutation
in the first half, and H2 the selected indices in the second half. Then, we have E [|H1|] =
E [|H2|] = 2n · p. Since the indices are chosen independently and identically distributed with
probability p, we can apply concentration bounds for |H1| and |H2|.

Furthermore, if we fix sets H1 and H2, then the expected number of items of size 4/7 among
the first 2n many items after choosing a random permutation is |H1|·|H2|

|H1|+|H2| . Moreover, using
Hoeffding’s inequality we obtain that Mp,σ for fixed H1 and H2 is also highly concentrated
around its mean. Combining both concentration bounds and using a union bound we obtain
the desired result. J

3.2.4 Existence of an Optimal Algorithm for Class-constrained Bin
Packing with respect to the Average Performance Ratio

Here, we will prove:

3.2. Deferred Proofs 71

I Proposition 36. Consider online class-constrained bin packing with parameter k, and let D
denote the set of all distributions on [0, 1]× N. Then, there exists a randomized algorithm A

with APR(A,D) = 1.

3.2.4.1 Description of the Algorithm and High-Level Proof

Let F be a distribution on [0, 1]×N. We can think of F as a collection of distributions Fcolor,
F1, F2, . . . Here, Fcolor is a distribution on N and Fi (for i ∈ N) are distributions on [0, 1]. We
can think of generating a random item (S,C) according to F as follows: At first we generate
a random color C distributed according to Fcolor, and afterwards we generate the size S
distributed according to FC .

We see that we explicitly allow items of size zero. Packing these items in classical bin
packing is trivial, but in class-constrained bin packing they can matter. Our algorithm A

treats items of size equal to zero and greater than zero differently. For items of size zero we
proceed as follows: If already an item of the same color arrived, then we place the new item
in the same bin. Otherwise, we put the item into the first possible bin that contains only
items of size zero, and if also such a bin does not exist we open a new bin for the item. We
notice that this procedure is optimal in the case that all items have size zero.

Let A0(IFn) denote the number of opened bins for items of size zero. We will show that
this term is negligible if we draw items with size greater than zero with positive probability.

I Lemma 56. Let F be a distribution, and let S be the size of a random item drawn according
to F . If P [S > 0] > 0 then it holds true that

lim sup
n→∞

E
[
A0(IFn)

OPT(IFn)

]
= 0.

Hence, we will make the following assumption:

I Assumption 3. Let F be a distribution and let S be the size of a random item drawn
according to F . Then, it holds P [S > 0] = 1.

For items of size greater than zero we apply the approach from [72]:

We generate virtual items in the same way as seen in the part about cardinality-constrained
and classical bin packing and pack them using an auxiliary algorithm. There are two
changes in the auxiliary algorithm: We only replace second-order virtual items of the
same color and the same rank. Moreover, we pack items that cannot replace a placeholder
using Next-Fit for each color separately.
Moreover, if the arriving real item is of color c we try to replace the smallest possible
virtual item of color c by the real item.

We see that in the replacement procedure (in the auxiliary algorithm and when we replace
virtual items by real items) we perform this action for each color separately. It is unlikely that
using this approach we obtain an error bound comparable to (5), because for distributions F
with a heavy-tailed distribution on the colors Fcolor there will be a significant amount of items
with colors that do not appear in the model-packing, but the error will be still sublinear.
Therefore, we will show a weaker statement, namely that for each ε greater than zero it holds
true that

lim sup
n→∞

E
[

A(IFn)
OPT(IFn)

]
≤ 1 + ε.

72 3. Complexity of Bin Packing Variants

Let pcolor : N → [0, 1] denote the probability mass function that determines Fcolor.
Without loss of generality we assume that pcolor(i) ≥ pcolor(i + 1). Let γ > 0 be a small
constant depending on ε. We denote by Jγ the smallest integer such that

∑Jγ
j=1 pcolor(j) ≥ 1−γ.

We call the colors {1, . . . ,Jγ} large, and the remaining ones small. In our analysis we consider
the number of opened bins by A for items of large colors and small colors separately. Therefore,
we will make the following assumption:

I Assumption 4. For all j ∈ N we have pcolor(j) > 0.

Otherwise, if the set of colors c with pcolor(c) > 0 is finite, we can treat all these colors as
large colors.

Now, the analysis is similar to the ones seen before: Let m be the smallest integer such
that 2m+1 ≥ n and t = dm/2e + 1. The number of opened bins for the items in the first
phases P0, . . . , Pt−1 can be bounded from above by 8

√
n. For i ∈ {t, . . . ,m − 1} we have

|Pi| ≥
√
n. Moreover, we assume without loss of generality that also |Pm| ≥

√
n.

Now, we analyze the number of opened bins more thoroughly. At first we consider the bins
opened by the auxiliary algorithm. The number of opened bins for virtual items equipped
with a small color can be controlled using Hoeffding’s inequality two times.

I Lemma 57. The number of bins opened for virtuals items equipped with a small color by
the auxiliary algorithm is bounded from above by γ|Pi|+ 2

√
|P ∗i | log(|P ∗i |)3/4 with probability

at least 1− 2 exp
(
−2 log(|Pi|)3/2).

It is more challenging to bound the number of opened bins for virtual items equipped
with a large color:

I Lemma 58. There exist universal constants α, Cγ,F and Kγ,F such that the number of
opened bins by the the auxiliary algorithm for virtual items equipped with a large color is
(for |Pi| large enough) bounded from above by

|Pi|
|P ∗i |

·OPT(P ∗i) +Kγ,F

√
|Pi| log(|Pi|)3/4

with probability at least 1− Cγ,F exp
(
−α log(|Pi|)3/2).

Now, we turn to the analysis of the replacement of virtual items by real items: A simple
application of Hoeffding’s inequality makes it possible to control the number of real items of
small colors that cannot replace a virtual item:

I Lemma 59. The total number of reals items equipped with a small color in phase Pi
that cannot replace a virtual item is bounded from above by γ|Pi|+

√
|Pi| log(|Pi|)3/4 with

probability at least 1− 2 exp
(
−2 log(|Pi|)3/2).

Again, the interesting part is to analyze the number of opened bins for real items equipped
with large colors.

I Lemma 60. There exist constants αγ,F , Cγ,F , and Kγ,F (depending on γ and F) such
that for |Pi| large enough the number of real items, equipped with a large color, that cannot
replace a virtual item is bounded from above by Kγ,F

√
|Pi| log(|Pi|)3/4 with probability at

least 1− Cγ,F exp
(
−αγ,F log(|Pi|)3/2).

Finally, we relate OPT(P ∗i) with the value of an optimum solution of the whole instance:

3.2. Deferred Proofs 73

I Lemma 61. Let γ be greater than zero. Then, if n is large enough, it holds true for each
P ∗i with |P ∗i | ≥

√
n that

OPT(P ∗i) ≤ |P
∗
i |
n
·OPT(IFn) + γ|P ∗i |

with probability at least 1− 4 exp
(
−2 log(|P ∗i |)3/2).

Combining Lemma 57, 58, 59, 60 and 61 we see that the number of opened bins in phases
Pt, . . . , Pm is bounded from above by

OPT(IFn) + 3γn+Kγ,F

√
n log(n)3/4 (12)

with probability at least 1 − Cγ,F exp
(
−αγ,F log(n)3/2). Here, constants may again differ

from line to line.
Moreover, let S denote the size of a random item drawn according to F and let νF := E [S].

Then, using again Hoeffding’s inequality we see that S(IFn) ≥ n · νF /2 with high probability.
Combining this with the estimates for the first phases, the estimate given in (12), and that
the number of opened bins in the worst case is bounded from above by 2n we obtain

lim sup
n→∞

E
[

A(IFn)
OPT(IFn)

]
≤ lim sup

n→∞

(
1 + 6νF · γ +Kγ,F

log(n)3/4
√
n

+ 2n · Cγ,F exp
(
−αγ,F log(n)3/2

))
=1 + 6νF · γ.

Since we can choose γ arbitrary small the proof of Proposition 36 follows.

3.2.4.2 Proof of Lemma 56

Here we will prove:

I Lemma 56. Let F be a distribution, and let S be the size of a random item drawn according
to F . If P [S > 0] > 0 then it holds true that

lim sup
n→∞

E
[
A0(IFn)

OPT(IFn)

]
= 0.

Proof of Lemma 56. We show that for arbitrary δ greater than zero it holds

lim sup
n→∞

E
[
A0(IFn)

OPT(IFn)

]
≤ δ.

Let κ > 0 be arbitrary, and let u be such that
∑u
j=1 pcolor(j) ≥ 1− κ. Let N(IFn) denote

the number of items in IFn with colors in {u+ 1, u+ 2, . . .}, S the size of a random drawn
item according to F , and ν := E [S].

Applying two times Hoeffding’s inequality we obtain

P
[
N(IFn) ≥ 2κn

]
≤ exp

(
−2κ2n

)
and

P
[
S(IFn) < 1

2νn
]
≤ exp

(
−1

2ν
2n

)
.

74 3. Complexity of Bin Packing Variants

The number of opened bins for items of size zero can be bounded from above by u+N(IFn).
Therefore, it follows that

lim sup
n→∞

E
[
A0(IFn)

OPT(IFn)

]
≤ lim sup

n→∞
E
[

A0(IFn)
max{1, S(IFn)}

]
≤ lim sup

n→∞

[
u+ 2κn

max{1, 1
2νn}

+
(

exp
(
−1

2ν
2n

)
+ exp

(
−2κ2n

))
n

]
= 4κ

ν
.

Since we can choose κ arbitrary small, the statement follows. J

3.2.4.3 Proof of Lemma 57

Here we will prove:

I Lemma 57. The number of bins opened for virtuals items equipped with a small color by
the auxiliary algorithm is bounded from above by γ|Pi|+ 2

√
|P ∗i | log(|P ∗i |)3/4 with probability

at least 1− 2 exp
(
−2 log(|Pi|)3/2).

Proof of Lemma 57. We estimate the number of opened bins by the auxiliary algorithm
for virtual items equipped with small colors by the number Nv

i,small of all generated virtual
items of small colors.

Let N∗i,small denote the number of items of small colors in P ∗i . Then, virtual items with
small colors are generated with probability p̂small = N∗i,small/|P ∗i |. Applying Hoeffding’s
inequality we obtain

P
[
Nv
i,small ≤ |Pi| · p̂small +

√
|Pi| log(|Pi|)3/4 | N∗i,small

]
≥ 1− exp

(
−2 log(|Pi|)3/2

)
.

Applying Hoeffding’s inequality a second time it follows that

P
[
N∗i,small ≤ |P ∗i | · psmall +

√
|P ∗i | log(|P ∗i |)3/4

]
≥ 1− exp

(
−2 log(|P ∗i |)3/2

)
.

Combining both concentration bounds and using the fact that psmall is bounded from
above by γ we see that Nv

i,small is bounded from above by γ|Pi|+ 2
√
|P ∗i | log(|P ∗i |)3/4 with

probability at least 1− 2 exp
(
−2 log(|Pi|)3/2). J

3.2.4.4 Proof of Lemma 58

Here we will prove

I Lemma 58. There exist universal constants α, Cγ,F and Kγ,F such that the number of
opened bins by the the auxiliary algorithm for virtual items equipped with a large color is
(for |Pi| large enough) bounded from above by

|Pi|
|P ∗i |

·OPT(P ∗i) +Kγ,F

√
|Pi| log(|Pi|)3/4

with probability at least 1− Cγ,F exp
(
−α log(|Pi|)3/2).

Proof of Lemma 58. There are two possible reasons that cause the auxiliary algorithm A′

to open a new bin for a virtual item V of a large color:

3.2. Deferred Proofs 75

V has rank 1 in the model-packing.
V cannot replace a second-order virtual item.

We start by estimating the number of opened bins because of virtual items of large colors
with rank 1. We bound this term from above by the number of drawn items of rank 1 with
arbitrary colors. Among the |P ∗i | many items there are OPT(P ∗i) many items of rank 1.
Applying Hoeffding’s inequality we obtain that the number of opened bins because of an
item with rank 1 is bounded from above by

OPT(P ∗i)
|P ∗i |

· |Pi|+
√
|Pi| log(|Pi|)3/4

with probability at least 1− exp
(
−2 log(|Pi|)3/2).

Now we want to bound the number of opened bins for virtual items that cannot replace
second-order virtual items. Let c be a fixed large color. In the corresponding analysis of
the auxiliary algorithm for cardinality-constrained bin packing we were able to use a union
bound since the number of ranks was bounded from above by the parameter k. Here, the
analysis is a bit more complicated as we pack all virtual items of a color c that cannot replace
a second-order virtual item using Next-Fit. Therefore, we will bound the total weight Tc of
these items. In order to do this, we proceed as in [72].

As before at the beginning of a new phase a model-packingM(P ∗i) of all items in P ∗i is
computed. Let Nc,u denote the number of virtual items with color c that cannot replace a
second-order virtual item and for which the corresponding item in the model-packing has
rank u. Moreover, let mc,u be the number of items of color c and rank u inM(P ∗i).

Let u be a fixed rank. We observe that Nc,u can be seen as the result of an instance
of (M4) with a random instance size Lc,u.

We consider two cases: If Lc,u ≤ |Pi|1/3, then we bound Nc,u from above by |Pi|1/3. So,
now assume that Lc,u > |Pi|1/3. Applying Lemma 27 we see that

P
[
Nc,u ≤ K

√
Lc,u log(Lc,u)3/4 | Lc,u

]
≥ 1− C exp

(
−α log(Lc,u)3/2

)
≥ 1− C exp

(
−α log(|Pi|1/3)3/2

)
≥ 1− C exp

(
−α log(|Pi|)3/2

)
.

We still maintain the convention that constants may differ from line to line, but are always
universal. Moreover, it follows from Hoeffding’s inequality that we have

P
[
Lc,u ≤

2mc,u

|P ∗i |
· |Pi|+

√
|Pi| log(|Pi|)3/4

]
≥ 1− exp

(
−2 log(|Pi|)3/2

)
.

Hence, using the inequality
√
a+ b ≤

√
a+
√
b and a union bound we see that

Nc,u ≤ K
√
Lc,u log(Lc,u)3/4

≤ K
√
Lc,u log(|Pi|)3/4

≤ K

√
|Pi|
|P ∗i |

log(|Pi|)3/4 · √mc,u + |Pi|1/4 log(|Pi|)9/8

with probability at least 1 − C exp
(
−α log(|Pi|)3/2), where α, C, and K are universal

constants. Since we can draw virtual items of at most |Pi| many different ranks, we can apply

76 3. Complexity of Bin Packing Variants

a union bound and see that this inequality holds for all ranks u with Lc,u > 0 simultaneously
with probability at least

1− |Pi|C exp
(
−α log(|Pi|)3/2

)
≥ 1− C exp

(
−α log(|Pi|)3/2

)
for an adjusted choice of α if |Pi| is large enough.

Applying the estimates for both cases we obtain an upper bound Hc,u with

Nc,u ≤ Hc,u := |Pi|1/3 +K

√
|Pi|
|P ∗i |

· log(|Pi|)3/4 · √mc,u + |Pi|1/4 log(|Pi|)9/8

with probability at least 1− C exp
(
−α log(|Pi|)3/2).

Now we are able to give a bound for the total sum Tc of all unmatched items of color c.
The size of items of rank u is bounded from above by 1/u. Hence, we have Tc ≤

∑|P∗i |
u=2 Nc,u/u.

Let sc be equal to |P ∗i | if
∑|P∗i |
u=2 Hc,u ≤ |Pi| and otherwise the smallest integer such that∑sc

u=2Hc,u ≥ |Pi|. Then, we have

|P∗i |∑
u=2

Nc,u
u
≤

sc∑
u=2

Hc,u

u
.

Since Hc,u ≥ |Pi|1/3 we have sc ≤ |Pi|, and therefore
∑sc
u=2

1
u ≤ K log(|Pi|). Applying

Cauchy-Schwarz we obtain for |Pi| large enough

|P∗i |∑
u=2

Nc,u
u

≤
sc∑
u=2

1
u

[
|Pi|1/3 +K

√
|Pi|
|P ∗i |

· log(|Pi|)3/4 · √mc,u + |Pi|1/4 log(|Pi|)9/8

]

≤K|Pi|1/3 log(|Pi|) + |Pi|1/4 log(|Pi|)17/8 +K

√
|Pi|
|P ∗i |

· log(|Pi|)3/4 ·
sc∑
u=2

√
mc,u

u

≤K
√
|Pi| log(|Pi|)3/4 + log(|Pi|)3/4 ·

(
sc∑
u=2

mc,u

)1/2

·

(∞∑
u=1

1
u2

)1/2

≤K
√
|Pi| log(|Pi|)3/4

with probability at least 1− C exp
(
−α log(|Pi|)3/2) for universal constants α, C and K.

Now, applying a union bound on all large colors we see that there exist universal
constants α, Cγ,F and Kγ,F such that the number of opened bins for virtual items of
large items is bounded from above by Kγ,F

√
|Pi| log(|Pi|)3/4 with probability at least 1−

Cγ,F exp
(
−α log(|Pi|)3/2). J

3.2.4.5 Proof of Lemma 60

Here we will prove

I Lemma 60. There exist constants αγ,F , Cγ,F , and Kγ,F (depending on γ and F) such
that for |Pi| large enough the number of real items, equipped with a large color, that cannot
replace a virtual item is bounded from above by Kγ,F

√
|Pi| log(|Pi|)3/4 with probability at

least 1− Cγ,F exp
(
−αγ,F log(|Pi|)3/2).

3.2. Deferred Proofs 77

Proof of Lemma 60. We bound the number of real items that cannot replace a virtual item
for each large color independently. Afterwards, the result follows by using a union bound.

When we compare the proof of this statement with the corresponding statement for
cardinality-constrained bin packing (that is Lemma 39) we notice two obstacles:

It is not guaranteed that the color of the generated virtual item is the same as of the
corresponding real item.
The distribution of the sizes of the virtual items with color c is only an approximation of
the underlying distribution Fc.

The second point also occurs in the proof in [72] and will be solved using the Dvoretzky-
Kiefer-Wolfowitz inequality.

Let c be a fixed large color, and we denote the probability of drawing an item of color c
by pc. At first we want to reduce the problem of matching real and virtual items of color c
to an instance of matching variant (M3). Let Pi = (A2i+1, . . . , Amin{2·2i,n}) be the sequence
of real items and (V2i+1, . . . , Vmin{2·2i,n}) the corresponding virtual items. We denote by
J rc = {jr1 , . . . , jra} the indices of all real items in phase Pi such that Ajrm is of color c.
Moreover, we denote by J vc = {jv1 , . . . , jvb } the indices of all virtual items of color c.

We set Xj := I{A2i+j is of color c}, Yj := I{V2i+j is of color c} and D
i(m) :=

∑m
j=1 (Xj − Yj).

Now, let

J̃ rc :=
{
jru ∈ J rc : Di(jru) ≤ max

0≤m<jru
Di(m)

}
=
{
j̃r1 , . . . , j̃

r
ã

}
.

Set L := min
{
|J̃ rc |, |J vc |

}
.

Now, P+ = {(2u,Aj̃ru)}1≤u≤L and P− = {(2u − 1, Vjvu)}1≤u≤L is an instance for (M3),
and this instance was constructed in a way such that every matching for this instance is
also a feasible matching for the original problem. Here the distribution of the sizes of the
real items is given by Fc and the distribution for the virtual items is given by the empirical
distribution induced by P ∗i .

The next steps are as follows:

At first we will show a lower bound for the instance size L, which holds true with high
probability.
Afterwards, we will control the distance between Fc and the empirical distribution by
applying the Dvoretzky-Kiefer-Wolfowitz inequality.
Then, the statement follows for a fixed color c by applying Lemma 26.

Let Nr
i,c denote the number of real items of color c in phase Pi, N∗i,c the number of items

of color c in P ∗i and Nv
i,c the number of virtual items generated in phase Pi of color c. Then,

a virtual item of color c is generated with probability p̂c = N∗i,c/|P ∗i |.
Applying two times Hoeffding’s inequality we obtain

P
[
|Nr

i,c − |Pi| · pc| ≤
√
|Pi| log(|Pi|)3/4

]
≥ 1− 2 exp

(
−2 log(|Pi|)3/2

)
, (13)

and

P
[
|N∗i,c − |P ∗i | · pc| ≤

√
|P ∗i | log(|P ∗i |)3/4

]
≥ 1− 2 exp

(
−2 log(|P ∗i |)3/2

)
. (14)

78 3. Complexity of Bin Packing Variants

Moreover, we have E
[
Xj − Yj |N∗i,c

]
= pc − p̂c. We set Zj := Xj − Yj , and Z̃j :=

Zj − (pc − p̂c). Applying Proposition 9 and afterwards Hoeffding’s inequality with Zj it
follows that there exist universal constants such that

max
0≤m≤|Pi|

Di(m) = max
0≤m≤|Pi|

m∑
j=1

Zj ≤ |Pi| · (pc − p̂c) +K
√
|Pi| log(|Pi|)3/4

with probability at least 1− C exp
(
−α log(|Pi|)3/2).

Assuming that
∣∣N∗i,c − |P ∗i | · pc∣∣ ≤√|P ∗i | log(|P ∗i |)3/4 it follows that

max
0≤m≤|Pi|

Di(m) ≤ |Pi| · (pc − p̂c) +K
√
|Pi| log(|Pi|)3/4 ≤ K

√
|P ∗i | log(|P ∗i |)3/4. (15)

Hence, combining (13), (14), and (15) it follows that there exist universal constants
α, C and K such that |J̃ rc | ≥ pc|Pi| − K

√
|P ∗i | log(|P ∗i |)3/4 with probability at least 1 −

C exp
(
−α log(|Pi|)3/2).

Furthermore, we can show in the same way that

P
[
Nv
i,c ≥ |Pi| · pc − 2

√
|Pi| log(|Pi|)3/4

]
≥ 1− 4 exp

(
− log(|Pi|)3/2

)
.

Thus, it follows that there exist universal constants α, C and K such that the size L
of our matching instance is at least |Pi|pc −K

√
|Pi| log(|Pi|)3/2 with probability at least

1− C exp
(
−α log(|Pi|)3/2).

The virtual items of color c are drawn according to an empirical distribution F̂i,c. Now
we will bound the distance d(Fc, F̂i,c), described in Lemma 26, between both probability
measures.

Applying the Dvoretzky-Kiefer-Wolfowitz inequality we obtain

P

[
d(Fc, F̂i,c) ≤

log(|Pi|)3/4√
|Pi|

| N∗i,c

]
≥ 1− 2 exp

(
−2N∗i,c ·

log(|Pi|)3/2

|Pi|

)
.

So, assuming that N∗i,c ≥ |P ∗i |pc −
√
|P ∗i | log(|Pi|∗)3/4 it follows that we obtain for |Pi| large

enough

P

[
d(Fc, F̂i,c) ≤

log(|Pi|)3/4√
|Pi|

| N∗i,c

]
≥ 1− 2 exp

(
−pc log(|Pi|)3/2

)
.

Combining the previous concentration bounds for L and d(Fc, F̂i,c) and applying Lemma 26
it follows that there exist universal constants αc, C and K such that the number of real items
of color c that cannot replace a virtual item is bounded from above by K

√
|Pi| log(|Pi|)3/4

with probability at least 1− C exp
(
−αc log(|Pi|)3/2).

Hence, applying a union bound on all large colors the statement follows. J

3.2.4.6 Proof of Lemma 61

Here we will prove

I Lemma 61. Let γ be greater than zero. Then, if n is large enough, it holds true for each
P ∗i with |P ∗i | ≥

√
n that

OPT(P ∗i) ≤ |P
∗
i |
n
·OPT(IFn) + γ|P ∗i |

with probability at least 1− 4 exp
(
−2 log(|P ∗i |)3/2).

3.2. Deferred Proofs 79

Proof of Lemma 61. The estimate we want to show is equivalent to

1
|P ∗i |

OPT(P ∗i) ≤ 1
n

OPT(IFn) + γ.

It holds∣∣∣∣ 1
|P ∗i |

OPT(P ∗i)− 1
n

OPT(IFn)
∣∣∣∣

≤
∣∣∣∣ 1
|P ∗i |

(OPT(P ∗i)− E [OPT(P ∗i)])
∣∣∣∣

+
∣∣∣∣ 1n (OPT(IFn)− E

[
OPT(IFn)

])∣∣∣∣+
∣∣∣∣ 1
|P ∗i |

E [OPT(P ∗i)]− 1
n
E
[
OPT(IFn)

]∣∣∣∣ .
Applying two times Hoeffding’s inequality it follows that

P

[
1
|P ∗i |

|OPT(P ∗i)− E [OPT(P ∗i)]| ≥ log(|P ∗i |)3/4√
|P ∗i |

]
≤ 2 exp

(
−2 log(|P ∗i |)3/2

)
P
[

1
n

∣∣OPT(IFn)− E
[
OPT(IFn)

]∣∣ ≥ log(n)3/4
√
n

]
≤ 2 exp

(
−2 log(n)3/2

)
.

Moreover, it holds that E
[
OPT(IFn)

]
/n ≤ 1, and since OPT is a subadditive function it

follows from Fekete’s Lemma (see [40]) that limn→∞
1
nE
[
OPT(IFn)

]
exists. Thus, it follows

that for n large enough we have∣∣∣∣ 1
|P ∗i |

E [OPT(P ∗i)]− 1
n
E
[
OPT(IFn)

]∣∣∣∣ ≤ γ

3 .

Furthermore, for n large enough we have also log(|P ∗i |)3/4/
√
|P ∗i | ≤ γ/3. So, all in all we

have for n large enough

OPT(P ∗i) ≤ |P
∗
i |
n

OPT(IFn) + γ|P ∗i |

with probability at least 1− 4 exp
(
−2 log(|P ∗i |)3/2). J

3.2.5 A Lower Bound for Class-constrained Bin Packing with respect
to the Random-order Ratio

Here, we will prove:

I Proposition 37. Consider online class-constrained bin packing with parameter k equal
to 2. Then, for all deterministic online algorithms A it holds that RR(A) ≥ 10/9.

Proof of Proposition 37. Let a ∈ N, and let γ ≤ 1/2a. The set of items Ia we will deal with
is the following: For each of the colors in [2a], there are n items of size γ/n. Furthermore,
there are a items of size 1− 2γ. We call these items special and will specify their colors later.
So in total there 2a · n+ a many items in Ia.

Let Π denote the set of all possible permutations of [2an+ a]. For σ ∈ Π let Iσa denote
the instance where the items arrive in the order specified by σ. We denote by E the event
that for each color at least one item of size γ/n arrives before the first special item is drawn.

I Lemma 62. Let ε > 0 be arbitrary. For sufficiently large n, we have P [E] ≥ 1− ε.

80 3. Complexity of Bin Packing Variants

Proof. For i ∈ [2a] let Ti denote the time point, when the first item of size γ/n with color i
arrives. Moreover, let Ts denote the time point, when the first special items arrives. As there
are n items of size γ/n with color i and a special items, we have P [Ts < Ti] = a

a+n . Using a
union bound, it follows that.

P [E] ≥ 1− 2a · a

a+ n
= 1− 2a2

a+ n
.

So, choosing n large enough, we obtain the statement. J

Now we consider an arbitrary but fixed online algorithm A for class-constrained bin
packing. For each σ ∈ Π let tσ denote the point in time when the first special item arrives.
For 1 ≤ i < j ≤ 2a we denote by mij(σ) the number of bins opened by A at tσ that contain
at least one item of color i and at least one item of color j when Iσa is processed. Moreover,
for 1 ≤ i ≤ 2a, mi(σ) denotes the number of opened bins at tσ that contain only items of
color i.

If σ ∈ E , we have

2
∑

1≤i<j≤2a
mij(σ) +

∑
1≤i≤2a

mi(σ) ≥ 2a,

since in this case 2a colors were drawn. Therefore, it is∑
σ∈Π

A(Iσa) ≥
∑
σ∈Π

∑
1≤i≤2a

mi(σ)

≥
∑
σ∈E

∑
1≤i≤2a

mi(σ) ≥ 2a|E| − 2
∑
σ∈E

∑
1≤i<j≤2a

mij(σ). (16)

This is the first lower bound we obtain for the number of bins the algorithm has to open. It
basically states that we have to open many bins that contain two different colors, otherwise
the performance of the algorithm cannot be better than close to 2.

Now, we want to show that if we open many bins that contain two different colors, we can
find a mapping of the special items to the colors, such that the algorithm opens a constant
fraction of bins that are nearly empty in the end (that is, they contain only items of size γ/n).

I Lemma 63. There exists a subset {j1, . . . , ja} = J of [2a], such that∑
σ∈E

∑
j1,j2∈J : j1 6=j2

mj1j2(σ) ≥ a− 1
4a− 2

∑
σ∈E

∑
1≤i<j≤2a

mij(σ). (17)

Proof. The statement can be shown using the probabilistic method. Assume that the set J
is generated by drawing a indices from [2a] using sampling without replacement. Then, we
obtain

E

∑
σ∈E

∑
j1,j2∈J : j1 6=j2

mj1j2(σ)

 =
∑

1≤i<j≤2a
P [i, j ∈ J]

∑
σ∈E

mij(σ)

= a− 1
4a− 2

∑
1≤i<j≤2a

∑
σ∈E

mij(σ).

Therefore, there must exist a subset J that fulfills the requirements. J

3.2. Deferred Proofs 81

Let {j1, . . . , ja} = J denote a subset of [2a] that satisfies condition (17). We set
{j′1, . . . , j′a} = J ′ = [2a]\J , and call the colors in J small and the colors in J ′ large.
Then, each special item will be equipped with a different large color.

We can pack the items in Ia in a way that all items of a single large color and all items
of a single small color are packed into one bin. Hence, we have OPT(Ia) = a.

We observe that A cannot place an item of a large color into a bin that already contains
two small colors. Therefore, we obtain∑

σ∈Π
A(Iσa) ≥ a− 1

4a− 2
∑
σ∈E

∑
1≤i<j≤2a

mij(σ) + a|E|. (18)

This is our second lower bound for the number of bins opened by A.
Now, combining (16) and (18) it follows that

E [A(Iσa)]
OPT(Ia)

≥ 1
a|Π| max

2a|E| − 2
∑
σ∈E

∑
1≤i<j≤2a

mij(σ), a− 1
4a− 2

∑
σ∈E

∑
1≤i<j≤2a

mij(σ) + a|E|

 .

The maximum is minimized if we set
∑
σ∈E

∑
1≤i<j≤2amij(σ) = 4a−2

9a−5 · a|E|.
Then, using Lemma 62, we obtain the estimate

E [A(Iσa)]
OPT(Ia) ≥

(
1 + a− 1

9a− 5

)
· (1− ε).

This yields the proof of the statement. J

82 4. Breaking Bounds in Bounded-space Bin Packing and Covering

4 Breaking Worst-case Bounds in Bounded-space Bin Packing and
Covering in the Random-order Model

In the previous section we have discussed the complexity of classical, cardinality-constrained
and class-constrained bin packing with respect to probabilistic performance measures.

We have seen that, apart from class-constrained bin packing in the random-order model,
it is possible to construct algorithms that behave very well. But we have also seen that
those algorithms are only of theoretical interest as their runtime is very high. Moreover,
in practical applications it is often reasonable to assume that algorithms can only use a
restricted number of open bins simultaneously. That is, they are bounded-space algorithms.
We call an algorithm that uses only K bins at the same time a K-bounded space algorithm.

In this section we show that there exist simple heuristics that benefit from items arriving
in random order, that is it is possible to obtain a random-order ratio that is better than the
corresponding bound for the competitive ratio. The most important results of this section
are compared to existing ones in Figure 14, 15 and 16.

lower bound upper bound
CR(A) ≈ 1.691 [58] 1.691 + ε [58]
RR(A) 1 + 1

4K+4 [25] ?
APR(A,D) 1 + 1

4K+4 [25] ?

lower bound upper bound
CR(A) ≈ 1.691 [58] 1.691 + ε [58]
RR(A) 1 + 1

4K+4 [25] 1.671
APR(A,D) 1 + 1

4K+4 [25] 1.671

Figure 14 Comparison between previously known bounds that are universally valid for bounded-
space algorithms for classical bin packing on the left hand side and our results on the right hand
side.

lower bound upper bound
CR(NF) 2 [50] 2 [50]
RR(NF) 2 [20] 2
APR(NF,D) 4/3 [23] ?
CR(SNF) 2 [69] 2 [69]
RR(SNF) ? ?
APR(SNF,D) 1.227 [69] ?
CR(WF) 2 [50] 2 [50]
RR(WF) ? ?
APR(WF,D) ? ?

lower bound upper bound
CR(NF) 2 [50] 2 [50]
RR(NF) 2 [20] 2
APR(NF,D) 2 2
CR(SNF) 2 [69] 2 [69]
RR(SNF) 2 2
APR(SNF,D) 2 2
CR(WF) 2 [50] 2 [50]
RR(WF) 2 2
APR(WF,D) 2 2

Figure 15 Comparison between previously known bounds for specific algorithms for classical bin
packing on the left hand side and our results on the right hand side.

4.1 Bounded-Space Online Bin Packing
Before showing the existence of a 4-bounded space algorithm A with RR(A) < 1.671 we
take a closer look at the result presented in [20]. In this publication the authors show that
the simple 1-bounded-space heuristic Next-Fit obtains a random-order ratio of 2. That is,
this heuristic does not benefit from a randomized order of the input compared to the worst
case. As Next-Fit is the only reasonable 1-bounded space heuristic, this also implies that
at least two bins are needed to beat the lower bound for the competitive ratio of bounded-
space algorithm h∞ ≈ 1.691 given in [58]. We want to take up the statement regarding the

4.1. Bounded-Space Online Bin Packing 83

lower bound upper bound
CR(A) 1/2 [4, 5] 1/2 [28]
CR(DNF) 1/2 [4, 5] 1/2 [4, 5]
RR(DNF) ? 0.736 [24]
APR(DNF,D) ? 0.736 [24]
CR(DHK) 1/2 [17] 1/2 [17]
RR(DHK) 1/2 [17] 1/2 [17]
APR(DHK ,D) ? 0.71 [17]

lower bound upper bound
CR(A) 1/2 [4, 5] 1/2 [28]
CR(DNF) 1/2 [4, 5] 1/2 [4, 5]
RR(DNF) 0.502 0.6̄
APR(DNF,D) 0.502 0.6̄
CR(DHK) 1/2 [17] 1/2 [17]
RR(DHK) 1/2 [17] 1/2 [17]
APR(DHK ,D) 0.5 0.5

Figure 16 Comparison between previously known bounds for algorithms for classical bin covering
on the left hand side and our results on the right hand side.

random-order ratio of Next-Fit and generalize it in several ways: The following proposition
shows that the statement is not only true for Next-Fit in the random-order model, but also
for the heuristics Smart-Next-Fit and Worst-Fit with respect to the average performance
ratio. Moreover, we will investigate the parametric case, where a parameter k ∈ N with k ≥ 2
is given, and all item sizes are bounded from above by 1/k. The parametric case is studied
for example in [10, 50, 82].

I Proposition 64. Let A ∈ {NF, SNF,WF} and k ∈ N with k ≥ 2. Let Dk denote the set of
all distributions, where the maximum item size is bounded from above by 1/k. Then, we have
APR(A,Dk) = 1 + 1

k−1 .

I Remark. It follows that the same is also true for the random-order ratio restricted to
instances with maximal item size bounded by 1/k. Furthermore, the competitive ratio of
the algorithms Next-Fit, Smart-Next-Fit, and Worst-Fit in the case that the item sizes are
bounded from above by 1/k is also 1 + 1/(k − 1). So, the algorithms also do not benefit from
randomization if the item sizes are much smaller than 1.

Proof. Since Next-Fit, Smart-Next-Fit and Worst-Fit are 2-competitive algorithms, we can
apply Lemma 31. Therefore, it suffices to show a lower bound of k

k−1 − ε for
E[A(IFn)]

E[OPT(IFn)] for
arbitrary ε.

Let F be given by I = { 1
k ,

1
a2 } with p(1

k) = k
a+k and p(1

a2) = a
a+k , where a ∈ N with

a >
√
k. We can think of this distribution as follows: There are a bins each containing k

items of size 1/k and one additional bin containing a2 items of size 1/a2. The distribution is
then given by the uniform distribution on the set of these items. Items of size 1/k will be
called big and items of size 1/a2 small.

We notice that all three algorithms share the same property: All opened bins – possibly
apart from the last – have bin level greater than 1− 1/k.

So, if the predecessor of a big item is a small item it is not possible to put this item in a bin
already containing k−1 many big items. Such big items will be called nice. Let N(IFn) denote
the number of nice items in the input. It follows that A needs to open at least N(IFn)/(k− 1)
many bins.

Hence, we have

E
[
A(IFn)

]
≥ 1
k − 1 · E

[
N(IFn)

]
= 1
k − 1 · (n− 1) · a

a+ k
· k

a+ k

= (n− 1) · k

k − 1 ·
a

(a+ k)2 .

84 4. Breaking Bounds in Bounded-space Bin Packing and Covering

Furthermore, we can give an upper bound for E
[
OPT(IFn)

]
as follows: Let b(IFn) denote

the number of big items, and sm(IFn) the number of small items in IFn . We can pack the
small and big items separately using Next-Fit for each type of item. Then, we have

E
[
OPT(IFn)

]
≤ 2 + 1

k
· E
[
b(IFn)

]
+ 1
a2 · E

[
sm(IFn)

]
= 2 + 1

k
· n · k

a+ k
+ 1
a2 · n ·

a

a+ k

= 2 + n · a+ 1
a(a+ k) .

It follows that for arbitrary ε > 0 we can find an a such that for sufficiently large n we
have

E
[
A(IFn)

]
E [OPT(IFn)] ≥

k

k − 1 − ε.

J

Now, we show that there exists a 4-bounded-space algorithm with random-order ratio
smaller than h∞. Our approach is based on the work of Lee and Lee [58], who presented
the lower bound of h∞ and introduced the family of Harmonic-algorithms. The algorithm
HARMONIC4 proceeds in the following way: The interval [0, 1] is subdivided into four
intervals I1 = (1/2, 1], I2 = (1/3, 1/2], I3 = (1/3, 1/3], and I4 = [0, 1/4]. Then, HARMONIC4
uses four open bins B1, B2, B3 and B4 and packs items from subinterval Ij in next-fit-manner
in bin Bj .

We notice that the number of opened bins for the items in interval I1, I2 and I3 is
independent of the order the arrival of the items, in contrast to the number of opened bins
for items from I4. We want to give a short idea why RR(HARMONIC4) ≥ 1.7: Think of a
bins containing the items 1/2 + ε, 1/3 + ε and 1/6− 2ε. Furthermore, there is one additional
bin containing lots of items of size 3ε. Now, assume that these items arrive in random
order. HARMONIC4 has to open a bins for items from I1, and a/2 many bins for items
from I2. Moreover, choosing ε appropriately depending on a we can show as in the proof
of Proposition 64 that we need with high probability a/5 many bins for packing the items
from I4. It follows that HARMONIC4 will open approximately 1.7a many bins with high
probability, while the optimum value is a+ 1.

The algorithm A we will consider here, proceeds similar to HARMONIC4 with only one
slight adjustment: If an item x with size in I2 arrives, we check if the currently open bin B1
already contains an item y from I1. If this is true, and it is x + y ≤ 1, then we pack x in
bin B1 and close this bin. Otherwise, we put it in bin B2. Obviously, this algorithm has the
same worst-case guarantee as HARMONIC4: A never opens more bins than HARMONIC4,
but if all items with sizes in I2 arrive before the items from I1, we do not benefit from
our adjustment. So, according to [58] the competitive ratio of A is bounded from above by
31/18 ≈ 1.722. But in the following we will see that we are able to use the space in B1 if the
items arrive in random order:

I Proposition 65. It holds RR(A) < 1.671, where A is the described 4-bounded-space
algorithm.

Before starting to analyze the algorithm A, we will summarize the ideas from [58]: Their
analysis is based on weight functions, a popular tool in bin packing, which is also applied in
for example [52, 58, 82]. Afterwards, we show how to transfer the idea to our probabilistic
setup.

4.1. Bounded-Space Online Bin Packing 85

Let I be an adversarily chosen set of items that arrives in the – also adversarily chosen –
order I. For i ∈ {1, 2, 3} let ni denote the number of items in I that lie in interval Ii.
Furthermore, let s4 denote the total size of all remaining items. Then, we can bound the
number of opened bins of the algorithm as follows

HARMONIC4(I) ≤ n1 +
⌈

1
2n2

⌉
+
⌈

1
3n3

⌉
+
⌈

4
3s4

⌉
≤ n1 + 1

2n2 + 1
3n3 + 4

3s4 + 3.

Then, a weight function g : I → [0, 1] is defined. Here, the weight of an item roughly
corresponds to the cost the algorithm incurs by packing this item, that is, the number of
bins the algorithm has to open to pack the item. For one item from I1, for two items from I2
and for three items from I3 the algorithm has to open a new bin. Furthermore, (apart from
the last bin) every bin designated for items from I4 has a bin level of at least 3/4. Hence, for
x ∈ Ii with i ∈ {1, 2, 3} we set g(x) = 1/i and g(x) = 4x/3 for x ∈ I4. Then, we have

HARMONIC4(I) ≤
n∑
i=1

g(ai) + 3.

Now, we fix an optimal packingM of the items in I and for j ∈ {1, . . . ,OPT(I)} let Gj
denote the total weight of all items packed in the j-th bin ofM. Let

S =
{

(y1, y2, . . . , yt) : t ∈ N, 1 ≤ i ≤ t, yi ≥ 0,
t∑
i=1

yi ≤ 1
}

denote the set of all possible partitions of 1. Finally, let G∗ = sup(y1,...,yt)∈S
∑t
i=1 g(yi)

denote the maximum weight a bin can contain. Then, we have

HARMONIC4(I) ≤
n∑
i=1

g(ai) + 3 =
OPT(I)∑
j=1

Gj + 3 ≤ G∗ ·OPT(I) + 3.

It follows that bounding the competitive ratio of HARMONIC4 boils down to giving an
upper bound for G∗.

In order to do so we note that g(x) ≤ 3x/2 if x ≤ 1/2, and g(x) ≤ 4x/3 if x ≤ 1/3. Now,
we consider several cases: At first assume that a bin contains an item from I1 and an item
from I2. Then, the remaining items in the bins come from I4 and their total size is bounded
from above by 1/6. Hence, in this case the total weight of the bin is bounded from above
by 1 + 1/2 + 1/6 · 4/3 = 31/18 ≈ 1.722. In case that a bin contains one item from I1, but no
items from I2 we have an upper bound for the weight of 1 + 1/2 · 4/3 = 5/3. Finally, if a bin
contains no item from I1, then the weight is bounded from above by 3/2. Therefore, we see
that HARMONIC4 is a 31/18-competitive algorithm.

Now, we want to analyze our proposed algorithm A in the random-order model: Let I be
an adversarially chosen set of items that arrives in random order Iσ. By trying to pack items
from I2 in bin B1, we reduce the number of items from I2 that are packed in B2 by Q(Iσ).
As previously defined for i ∈ {1, 2, 3} let ni denote the number of items from I that are in Ii
and s4 the total size of all remaining items. Then, we have

E [A(Iσ)] ≤ n1 + 1
2 (n2 − E [Q(Iσ)]) + 1

3n3 + 4
3s4 + 3.

Again we fix an optimal packingM of the items in I and categorize the bins inM in
three classes:

86 4. Breaking Bounds in Bounded-space Bin Packing and Covering

Bins of the first type contain one item from I1 and one item from I2.
Bins of the second type contain one item from I1, but no item from I2.
Bins of the third type contain no item from I1.

Let m1, m2, and m3 denote the numbers of bins of the corresponding type in the fixed
optimal solution.

We observe that Q(Iσ) depends only on the items from I1 and I2. To give a lower bound
for E [Q(Iσ)] we make without loss of generality the following two assumptions (A would
only benefit from violating them):

I Assumption 5. We assume that items, whose sizes are in I2, and which are located
inM in bins of the third type are so large, that they cannot be combined with any item
from I1.
We assume that items, whose sizes are in I1, and which are located inM in bins of the
second type are so large, that they cannot be combined with any item from I2.

Then, we see that the items that are relevant for determining E [Q(Iσ)], are the items with
sizes in I1 or items with sizes in I2 that are packed inM in a bin of the first type. Therefore,
there are in total 2m1 +m2 many relevant items.

Now, we assign the following weights w : I → [0, 1] to the items:

If x ∈ I1, then we set w(x) = 1.
If x ∈ I3, then we set w(x) = 1/3.
If x ∈ I4, then we set w(x) = 4x/3.
If x ∈ I2 and x is in M located in a bin of the first type, then we set w(x) = 1/2 −
E [Q(Iσ)] /(2m1).
If x ∈ I2 and x is inM not located in a bin of the first type, then we set w(x) = 1/2.

Now, we want to give a lower bound for E [Q(Iσ)]. Let (R1, . . . , R2m1+m2) be a random
permutation of the relevant items. We will estimate the probability p that for two consecutive
items the first one x is from I1 and the second one y is from I2 and we have x+ y ≤ 1:

I Lemma 66. We have

p ≥ 1
2m1 +m2

·
m1∑
i=1

i

2m1 +m2 − 1 .

Proof. As we assumed that all items from I1 that are located inM in a bin of the second
type are too large to be combined with an item from I2, there are only m1 relevant items
from I1 that can be combined with items from I2. We call these items nice. Let `1 ≥ . . . ≥ `m1

denote the sizes of the nice items. Then, we observe that for the i-th nice item, there are at
least i many items from I2 such that they fit together in a bin. Hence, summing up yields

p ≥ 1
2m1 +m2

·
m1∑
i=1

i

2m1 +m2 − 1 .

J

Then, using the previous lemma, we obtain

E [Q(Iσ)] ≥ (2m1 +m2 − 1) · p

≥ (2m1 +m2 − 1) · 1
2m1 +m2

·
m1∑
i=1

i

2m1 +m2 − 1

4.2. Bounded-Space Online Bin Covering 87

≥ 1
2 ·

m1(m1 + 1)
2m1 +m2

.

Proceeding as in the analysis of the worst case we see that the maximum weight W1 of
bins of the first type is bounded from above by 31

18 −
1
4 ·

m1+1
2m1+m2

, the maximum weight W2 of
bins of the second type is bounded from above by W2 ≤ 5/3, and the maximum weight W3
of bins of the third type is bounded from above by 3/2. To give an upper bound for our
algorithm, we have to choose m1, m2 and m3 in such a way that we maximize

m1W1 +m2W2 +m3W3

m1 +m2 +m3
.

Since p is independent of the bins of the third type, and we have W3 ≤W2 we can assume
that m3 = 0. Hence, it remains to maximize the expression m1W1+m2W2

m1+m2
. Let m := m1 +m2.

Then, we have

m1W1 +m2W2

m1 +m2
≤
m1 ·

(
31
18 −

1
4 ·

m1+1
2m1+m2

)
+ 5

3m2

m

≤ max
x∈[0,1]

[
xm ·

(
31
18 −

1
4 ·

xm+ 1
2xm+ (1− x)m

)
+ 5

3(1− x)m
]
· 1
m

≤ max
x∈[0,1]

[
5
3 + 31

18x−
5
3x−

1
4x ·

xm+ 1
xm+m

]
≤ 5

3 + max
x∈[0,1]

[
1
18x−

1
4 ·

x2

x+ 1

]
.

Calculating the derivative we see that this term is maximized for x = 3/
√

7 − 1. Then, we
obtain an upper bound of 19/9−

√
7/6 ≈ 1.6702. This shows Proposition 65.

The question arises if we can beat h∞ using HARMONIC3 with the mentioned modifica-
tion. To investigate this question a more elaborate research is needed: If we consider again
the worst case we find out that there exist bin configurations with total weight of 1.75 that
do not contain an item from I2. Hence, our algorithm would not benefit from the suggested
modification. But, at first this bound is not necessarily tight and in the second place it is
possible that the process of packing the items from I3 benefits from the random arrival of
the items. So, a more detailed analysis of packing items in B3 would be needed to answer
this question.

4.2 Bounded-Space Online Bin Covering
In the previous part about bounded-space online bin packing we have seen that the simple
1-bounded-space heuristic Next-Fit does not benefit from randomized input, that is the
average performance ratio equals the competitive ratio – even in the parameterized case. For
online bin covering it was shown that no online algorithm can obtain a competitive ratio
better than 1/2 and this bound is obtained by any reasonable algorithm, especially by Dual-
Next-Fit [17, 28]. The main result of this part will be a lower bound for the random-order
ratio of Dual-Next-Fit, which is (slightly) larger than 1/2. So, Dual-Next-Fit behaves better
than its counterpart for online bin packing and beats every algorithm in comparison with
the competitive ratio.

4.2.1 Results
The main result is the following:

88 4. Breaking Bounds in Bounded-space Bin Packing and Covering

I Theorem 67. It holds

0.502 ≤ RR(DNF) ≤ 2
3 .

At this point we give a high-level overview of the proof by breaking it up into several
lemmata. The proofs of the lemmata will be postponed to Section 4.2.2.

The investigation starts with observing that it suffices to analyze the behavior of the
algorithm on a restricted set of instances:

I Assumption 6. The investigated sets of items I satisfy OPT(I) = S(I), where S(I)
denotes the total size of all items in I.

This assumption is justified by the observation that Dual-Next-Fit is a monotone algorithm:
That is, if we obtain an instance I ′ from I by decreasing the sizes of items or deleting them,
then we have DNF(I ′) ≤ DNF(I). We call instances with the property that S(I) = OPT(I)
also perfect-packing instances.

In the following we will categorize the items into two types: Items with size greater
than 1/2 will be called large and otherwise they are called small. The following lemma shows
that instances that contain only a small amount of large items are not critical for our analysis:

I Lemma 68. Let I be an instance and let ` denote the number of large items in I. If
` < 1/4 ·OPT(I), then we have DNF(I) ≥ 7

12 OPT(I)− 2.

Since we will only show an ε-improvement over the lower bound of 1/2, this justifies the
second assumption:

I Assumption 7. If ` denotes the number of large items in I, then we assume that ` ≥
1/4 OPT(I).

We now turn to the analysis of the algorithm: For a random permutation Iσ of the items
in I let Li(Iσ) denote the bin level of the i-th covered bin. In case that i > DNF(Iσ) we
set Li(Iσ) = 0. Furthermore, let W (Iσ) denote the total size of all items in the last opened
bin that is not covered. In case that such a bin does not exist we set W (Iσ) = 0. The
overshoot of the i-th bin is defined as Ri(Iσ) := Li(Iσ)− 1, and in case that i > DNF(Iσ)
we set Ri(Iσ) = 0.

A key observation in the analysis is that the overshoot of the bins is conditionally
identically distributed:

I Lemma 69. Let x ∈ [0, 1] and m ∈ {1, . . . ,OPT(I)} with P [DNF(Iσ) = m] > 0. Then,
for i, j ≤ m we have

P [Ri(Iσ) = x | DNF(Iσ) = m] = P [Rj(Iσ) = x | DNF(Iσ) = m] .

Using this fact and the assumption that we consider a perfect-packing instance it is
possible to estimate the random-order ratio in terms of the probability that the overshoot is
bounded from above by 1/2:

I Lemma 70. Let I be a set of items satisfying the assumptions, and let E = {Iσ | R1(Iσ) ≤
1/2}. Then it holds

E [DNF(Iσ)]
OPT(I) ≥ 1

2 + 1
4 · P [E]− 1

OPT(I) . (19)

4.2. Bounded-Space Online Bin Covering 89

Now, it remains to show a lower bound for the probability of E , which is independent of
the considered set I.

I Lemma 71. Let ε greater than zero be arbitrary, and let I be an arbitrary set of items
satisfying the assumptions with OPT(I) large enough. Then, we have

P [E] ≥ 7
10e
−3 ·

(
1− exp

(
−121

420

))
− ε.

Plugging this into (19) we obtain the lower bound given in Theorem 67, that is the
estimate

RR(DNF) ≥ 1
2 + 7

40e
−3
(

1− exp
(
−121

420

))
≥ 0.502.

This is complemented by an upper bound, which improves the result given in [17]:

I Lemma 72. Let D denote the set of all distributions on [0, 1]. Then, we have

APR(DNF,D) ≤ 2/3.

Using Lemma 32 this transfers to an upper bound for the random-order ratio. This
completes the proof of Theorem 67.

On the other hand, the algorithm Dual-Harmonic does not benefit from random input.

I Proposition 73. Let M ∈ N with M ≥ 2. Then it holds APR(DHM ,D) = 1/2.

4.2.2 Deferred Proofs
4.2.2.1 Proof of Lemma 68

I Lemma 68. Let I be an instance and let ` denote the number of large items in I. If
` < 1/4 ·OPT(I), then we have DNF(I) ≥ 7

12 OPT(I)− 2.

Proof of Lemma 68. The proof is based on the observation that the overshoot of bins that
contain only small items is bounded from above by 1/2. As the number of large items is
smaller than 1/4 OPT(I) there can be at most 1/4 OPT(I) many bins with overshoot 1. Hence,
there are small items of total mass at least S(I) − 1/4 OPT(I) · 2 = 1/2 · S(I) remaining.
These items cover at least 1/2 · S(I)/(3/2) = 1/3 OPT(I) many bins.

Hence, the total number of covered bins is at least⌊
1
4 OPT(I)

⌋
+
⌊

1
3 OPT(I)

⌋
≥ 7

12 OPT(I)− 2.

J

4.2.2.2 Proof of Lemma 69

I Lemma 69. Let x ∈ [0, 1] and m ∈ {1, . . . ,OPT(I)} with P [DNF(Iσ) = m] > 0. Then,
for i, j ≤ m we have

P [Ri(Iσ) = x | DNF(Iσ) = m] = P [Rj(Iσ) = x | DNF(Iσ) = m] .

90 4. Breaking Bounds in Bounded-space Bin Packing and Covering

Proof of Lemma 69. Without loss of generality we assume that all item sizes are different,
otherwise we distinguish them by their index. Let I = {a1, . . . , an} denote the set of items.
Moreover, let Iσ = (A1, . . . , An) with Ai = aσ(i) be a random instance.

Let m ∈ {1, . . . ,OPT(I)} with P [DNF(Iσ) = m] > 0. Furthermore, let I = (v1, . . . , vn)
denote a vector with vi ∈ I for all i ∈ [n] and P [Iσ = I | DNF(Iσ) = m] > 0. We notice
that there is only one possible realization of Iσ such that Iσ = I. Therefore, it follows that
P [Iσ = I | DNF(Iσ) = m] = 1

#{σ : DNF(Iσ)=m} .
Let u ∈ [m] be arbitrary. Since DNF(I) = m there exist indices i, j and k such that

v1, . . . , vi are the items that are used to cover the first bin, and vj , . . . , vk the items that are
used to cover the u-th bin. Now let

I ′ = (vj , . . . , vk, vi+1, . . . , vj−1, v1, . . . , vi, vk+1, . . . , vn).

I ′ is the instance we obtain from I by changing the configuration of the first and the u-th
bin. Then, DNF(I ′) is also equal to m and we have P [DNF(Iσ) = I | DNF(Iσ) = m] =
P [DNF(Iσ) = I ′ | DNF(Iσ) = m].

So, we have shown that the bin levels of the first and the u-th bin, where u is arbitrary,
are conditionally identically distributed. It follows immediately that the same is true for the
overshoot. J

4.2.2.3 Proof of Lemma 70

I Lemma 70. Let I be a set of items satisfying the assumptions, and let E = {Iσ | R1(Iσ) ≤
1/2}. Then it holds

E [DNF(Iσ)]
OPT(I) ≥ 1

2 + 1
4 · P [E]− 1

OPT(I) . (19)

Proof of Lemma 70. Because of Assumption 6 the following identity is true for every
realization of Iσ:

OPT(I) = S(Iσ) = DNF(Iσ) +
DNF(Iσ)∑
i=1

Ri(Iσ) +W (Iσ).

Applying expected values to both sides and estimating W (Iσ) by 1 it follows that

OPT(I) ≤ E [DNF(Iσ)] + E

DNF(Iσ)∑
i=1

Ri(Iσ)

+ 1. (20)

Let Q := {j ∈ {1, . . . ,OPT(I)} : P [DNF(Iσ) = j] > 0}. Now, we use the law of total
expectation and apply Lemma 69. It follows that

E

DNF(Iσ)∑
i=1

Ri(Iσ)

 =
∑
j∈Q

E

DNF(Iσ)∑
i=1

Ri(Iσ)

∣∣∣∣∣∣DNF(Iσ) = j

 · P [DNF(Iσ) = j]

=
∑
j∈Q

E

[
j∑
i=1

Ri(Iσ)

∣∣∣∣∣DNF(Iσ) = j

]
· P [DNF(Iσ) = j]

=
∑
j∈Q

j∑
i=1

E [Ri(Iσ)|DNF(Iσ) = j] · P [DNF(Iσ) = j]

4.2. Bounded-Space Online Bin Covering 91

=
∑
j∈Q

j∑
i=1

E [R1(Iσ)|DNF(Iσ) = j] · P [DNF(Iσ) = j]

=
∑
j∈Q

E [j ·R1(Iσ)|DNF(Iσ) = j] · P [DNF(Iσ) = j]

=
∑
j∈Q

E [DNF(Iσ) ·R1(Iσ)|DNF(Iσ) = j] · P [DNF(Iσ) = j]

= E [DNF(Iσ) ·R1(Iσ)] .

Combining this with (20), we obtain

OPT(I) ≤ E [DNF(Iσ)] + E [DNF(Iσ) ·R1(Iσ)] + 1

= E
[

DNF(Iσ) · (1 +R1(Iσ))|R1(Iσ) ≤ 1
2

]
· P
[
R1(Iσ) ≤ 1

2

]
+ E

[
DNF(Iσ) · (1 +R1(Iσ))|R1(Iσ) > 1

2

]
· P
[
R1(Iσ) > 1

2

]
+ 1

≤ 3
2E
[

DNF(Iσ)|R1(Iσ) ≤ 1
2

]
· P
[
R1(Iσ) ≤ 1

2

]
+ 2E

[
DNF(Iσ)|R1(Iσ) > 1

2

]
· P
[
R1(Iσ) > 1

2

]
+ 1

= 2E [DNF(Iσ)]− 1
2E
[

DNF(Iσ)|R1(Iσ) ≤ 1
2

]
· P
[
R1(Iσ) ≤ 1

2

]
+ 1

≤ 2E [DNF(Iσ)]− 1
2 OPT(I) · P

[
R1(Iσ) ≤ 1

2

]
+ 1.

Therefore, it follows that

E [DNF(Iσ)]
OPT(I) ≥ 1

2 + 1
4P
[
R1(Iσ) ≤ 1

2

]
− 1

OPT(I) .

J

4.2.2.4 Proof of Lemma 71

I Lemma 71. Let ε greater than zero be arbitrary, and let I be an arbitrary set of items
satisfying the assumptions with OPT(I) large enough. Then, we have

P [E] ≥ 7
10e
−3 ·

(
1− exp

(
−121

420

))
− ε.

Proof of Lemma 71. Let ` denote the number of large, and m the number of small items
in I. We set r := m/`, and we can assume without loss of generality that r is a positive
natural number, otherwise we add items of size zero to I. Those added items do not effect
the number of covered bins.

Let g1 ≥ g2 ≥ . . . ≥ g` denote the sizes of the large items in I, and we set s? := 1−gd3`/10e.
We are now interested in the following three events

F1 := {the size of the first drawn large item in Iσ is at least 1− s?}
F2 := {there is at most one large item among the first 3r + 1 drawn items in Iσ}
F3 := {the sum of the first 3r small items in Iσ is at least s?}.

92 4. Breaking Bounds in Bounded-space Bin Packing and Covering

Let F := F1 ∩ F2 ∩ F3. We set Fa := F ∩ {Iσ | R1(Iσ) ≤ 1/2} and Fb := F ∩ {Iσ |
R1(Iσ) > 1/2}. It holds true that P [Fa] ≥ 2P [Fb] as the following argument shows: If Fb
occurs we cover the bin with a large item, which arrives at the end. Before, there are at
least two small items, otherwise the sum cannot be greater than 3/2. Now we look at the
permutations, where the small items arrive in the same order, but the large item appears
at the first or second position. In both cases, we cover the bin with overshoot at most 1/2.
Furthermore, all permutations have the same probability. So the statement follows.

Hence, the following holds:

P [E] ≥ P [Fa] ≥ 2
3P [F] .

So, in the remaining part of the proof we will establish a lower bound for P [F] that is
independent of I. We observe that the three events F1,F2 and F3 are independent, therefore
it follows that P [F] = P [F1] · P [F2] · P [F3].

Due to the definition of s? it is clear that P [F1] ≥ 3/10. So, we continue with consider-
ing P [F2]: We distinguish two cases: In the first case, all 3r + 1 items drawn are small. In
the second case, there is exactly one large item. We start estimating the first case. Let ε′ > 0
arbitrary. It follows from Assumption 7 that if OPT(I) is large enough, we have 3/` ≤ ε′. So
we obtain

3r∏
i=0

(
1− `

m+ `− i

)
≥
(

1− `

m+ `− 3r

)3r+1
=
(

1− 1
r + 1− 3r/`

)3r+1

≥
(

1− 1
1 + r · (1− ε′)

)3r
·
(

1− 1
1 + r · (1− ε′)

)
≥ exp

(
− 3

1− ε′

)
· 1− ε′

2− ε′ .

Now assume that there is exactly one large item. Then, it follows

(3r + 1) ·
(3r−1∏
i=0

(
1− `

m+ `− i

))
· `

m− 3r

≥ ` · 3r + 1
m− 3r · exp

(
− 3

1− ε′

)
≥ 3

1− ε′ · exp
(
− 3

1− ε′

)
.

Summing up both probabilities, we see that for every ε′′ > 0 we have

P [F2] ≥ 7
2e
−3 − ε′′,

if OPT(I) is large enough.
It remains to give a bound for P [F3]: We set the sizes of all small items that are packed

in an optimal solution in bins that contain only small items or one of the items with size
g1, . . . , gd3`/10e−1 to zero. Furthermore, we assume that the total size of small items in each
of the bins containing one of the large items gd3`/10e, . . . , g` is equal to s?. This only decreases
the probability we want to bound from below. Let Xi be the size of the i-th drawn small
item. We can think of Xi as a sample according to sampling without replacement from the
multiset of small items. Then, we have E [Xi] ≥ 7

10`s
?/m and E

[
X2
i

]
≤
(7

10`+ 1
)
· (s?)2/m.

Let X denote the sum of the first 3r small items. Then, we have

E [X] ≥ 3m
`
· 7

10`s
?/m ≥ 21

10s
?.

Set t = 11
10s

?. Now, applying Bernstein’s inequality we obtain

4.2. Bounded-Space Online Bin Covering 93

P [X ≤ s?] ≤ P
[
X ≤ E [X]− 11

10s
?

]
≤ exp

− (11s?/10)2

2 · 3r ·
[

7
10 ·

`
m (s?)2 + (s?)2

m

]


= exp
(
−

121
100

42
10 + 6

`

)
`→∞−−−→ exp

(
−121

420

)
.

Combining the results for P [F1], P [F2] and P [F3] we see that for every ε > 0 we have

P [E] ≥ 2
3 · P [F1] · P [F2] · P [F3] ≥ 7

10e
−3 ·

(
1− exp

(
−121

420

))
− ε,

if OPT(I) is large enough. J

4.2.2.5 Proof of Lemma 72

I Lemma 72. Let D denote the set of all distributions on [0, 1]. Then, we have

APR(DNF,D) ≤ 2/3.

Proof Lemma 72. We will show that for every ε > 0 we can find a distribution F such that
APR(DNF, F) ≤ 3/2 + ε. Let Fm,k denote the uniform distribution on the set of items

I =
{

1
k
, 1− 1

k
,

(
1
k

)2
, 1−

(
1
k

)2
, . . . ,

(
1
k

)m
, 1−

(
1
k

)m}
.

Since we are dealing with a maximization problem we can apply Lemma 31. So, in the
following we will separately bound E

[
DNF(IFn)

]
from above, and E

[
OPT(IFn)

]
from below.

To analyze E
[
DNF(IFn)

]
we will use Markov chains. We can describe the behavior

of DNF(IFn) by considering the Markov chain on the set of possible bin levels of DNF(IFn).
Here, we subsume bin level zero and all bin levels greater than or equal to one to a special
state (∗).

This Markov chain is irreducible due to its construction and therefore there exists a
stationary measure π. Let DNF(u, I) denote the number of covered bins, if Dual-Next-Fit
starts with bin level u. Furthermore, we set DNF((∗), I) := DNF(0, I) = DNF(I).

As Dual-Next-Fit is a monotone algorithm we have DNF(I) ≤ DNF(u, I) for an arbitrary
bin level u. Moreover, if the starting bin level L is distributed according to π, then we have

E
[
DNF(IFn)

]
≤ EL∼π

[
DNF(L, IFn)

]
= n · π((∗)) = n

E [TF] .

Here, TF denotes the number of items we need to cover a bin, starting from state (∗), that is
with an empty bin. This follows from the property that π is a stationary distribution, which
is explained in Proposition 21 in Section 2.2.

Now, we show that for every ε′ > 0 there exist parameters m and k such that E
[
TFm,k

]
≥

3− ε′. It holds

E
[
TFm,k

]
=
∞∑
i=0

P
[
TFm,k > i

]
≥ 2 +

k−1∑
i=2

P
[
TFm,k > i

]
.

Simple counting yields for i ≥ 2

P
[
TFm,k > i

]
= mi

(2m)i + 1
(2m)i

m∑
j=2

i · (j − 1)i−1 = 1
2i + i

2imi

m−1∑
j=1

ji−1

94 4. Breaking Bounds in Bounded-space Bin Packing and Covering

≥ 1
2i + i

2imi
·
∫ m−1

0
xi−1 dx = 1

2i ·
[

1 +
(

1− 1
m

)i]
.

Therefore, if we choose at first k, and then m large enough, we obtain

E
[
TFm,k

]
≥ 2 +

k−1∑
i=2

1
2i ·

[
1 +

(
1− 1

m

)i]
≥ 3− ε′.

Hence, for every ε′ > 0 we can find a distribution Fm,k with

E
[
DNF(IFm,kn)

]
≤ EL∼π

[
DNF(L, IFm,kn)

]
≤ n

3− ε′ . (21)

Now, we give a lower bound for E
[
OPT(IFm,kn)

]
: Applying Hoeffding’s inequality for

each item size and applying a union bound we obtain that with probability at least 1 −
2m exp

(
−2 log(n)3/2) there are at least n

2m −
√
n log(n)3/4 many items of each type. Then,

OPT(IFm,kn) is lower bounded by n/2− 2m log(n)3/4. Therefore, it follows that

E
[
OPT(IFm,kn)

]
≥
(

1− 2m exp
(
−2 log(n)3/2

))
·
(
n/2− 2m log(n)3/4

)
. (22)

Combining (21) and (22) it follows that if n tends to infinity we can find for every ε > 0
a distribution Fm,k such that

lim sup
n→∞

E
[
DNF(IFm,kn)

]
E
[
OPT(IFm,kn)

] ≤ 2
3 + ε.

J

4.2.2.6 Proof of Proposition 73

I Proposition 73. Let M ∈ N with M ≥ 2. Then it holds APR(DHM ,D) = 1/2.

Proof of Proposition 73. Since bin covering is a maximization problem, we have DHM (I)
OPT(I) ≤ 1.

Hence, we can apply Lemma 31. Let m ∈ N. Let F be given by the uniform distribution
on I = {1/m, 1 − 1/m}. We call items of size 1/m small and of size 1 − 1/m big. Let sm(IFn)
denote the number of small items and b(IFn) the number of big items in a random instance.
Then we have

E
[
DHM (IFn)

]
≤ E

[
b(IFn)

]
/2 + E

[
sm(IFn)

]
/m = n/4 + n/(2m).

Furthermore, we can pair the small and big items. Therefore, we have OPT(IFn) ≥
min{sm(IFn), b(IFn)}. Using Hoeffding’s inequality two times and applying a union bound we
see that

P
[
min{sm(IFn), b(IFn)} ≥ (n/2−

√
n log(n))

]
≥ 1− 4

n2 .

Therefore

E
[
DHM (IFn)

]
E [OPT(IFn)] ≤

n/4 + n/(2m)
(n/2−

√
n log(n)) · (1− 4/n2)

.

Since we can choose m arbitrary large, the statement follows for the average performance
ratio. J

5. Analysis of Selected Heuristics for Class-constrained Bin Packing and Bin Covering 95

5 Analysis of Selected Heuristics for Class-constrained Bin Packing
and Bin Covering

lower bound upper bound
CR(A) 2 [7] 2.635 [38]
RR(A) 1.1̄ ?
APR(A,D) 1 1

Figure 17 Summary of upper and lower bounds for class-constrained bin packing, including the
results obtained in Section 3.

l. bound u. bound
CR(CS [A]) 2 [77] 3 [38]
RR(CS [A]) ? ?
APR(CS [A] ,D) ? ?

l. bound u. bound
CR(CS [A]) 2 [77] 3 [38]
RR(CS [A]) 2 ?
APR(CS [A] ,D) ≈ 1.691 ≈ 1.691 + ε

Figure 18 Comparison between previously given bounds for algorithms based on the ColorSets-
approach for class-constrained bin packing with general item sizes on the left hand side and our
results on the right hand side.

l. bound u. bound
CR(A) Ω

(
1
k

)
[37] O

(
1

log(k)

)
[37]

CR(DNF) 0 [37] 0 [37]
RR(DNF) ? ?
APR(DNF,D) ? ?
CR(FF2) 1

B
[37] 1

B
[37]

RR(FF2) ? ?
APR(FF2,D) ? ?

l. bound u. bound
CR(A) Ω

(
1
k

)
[37] O

(
1

log(k)

)
[37]

CR(DNF) 0 [37] 0 [37]
RR(DNF) Ω

(1
log(k)

)
O
(1

log(k)

)
APR(DNF,D) Ω

(1
log(k)

)
O
(1

log(k)

)
CR(FF2) 1

B
[37] 1

B
[37]

RR(FF2) 1 1
APR(FF2,D) 1 1

Figure 19 Comparison between previously given bounds for online class-constrained bin covering
with unit sized items on the left hand side and our results on the right hand side.

In this part we consider selected heuristics for class-constrained bin packing and bin
covering. We have already investigated the complexity of class-constrained bin packing in
Section 3. There, we found out that the complexity of this problem differs according to the
two studied probabilistic performance measures. While it is possible to construct an optimal
algorithm with respect to the average performance ratio, we obtained a lower bound of 10/9

for the random-order ratio.
For class-constrained bin packing we consider the case of general item sizes, that is the

item sizes are arbitrary in [0, 1], and the case of unit sized items, that is all items have size 1
and the bin capacity is given by an integer B. We will find out that the phenomenon of the
different complexity also plays an important role for the heuristics under consideration.

When we consider the dual problem, that is class-constrained bin covering we do not ob-
serve different behaviors. Here, the analyzed heuristics benefit notably from both randomized
settings. A comparison between some of our results and corresponding results in literature is
given in Figure 17, 18 and 19.

Since some of the proofs are technical, we will present the statements (and sometimes
ideas of the proof) in one section, and postpone the proofs to a following section.

96 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

5.1 Results
We start with studying class-constrained bin packing with general item sizes. We remember
that in the worst case there exists a lower bound of 2 with respect to the competitive
ratio and that the best known online algorithm in this setting has a competitive ratio of
approximately 2.635 [38].

The proofs in this section are mostly based on two techniques:

The first important observation is that if the items are independent and identically
distributed, then the expected number of different drawn colors can grow only sublinearly
in terms of the number of drawn items.
The second technique is the following: Often our designed instances contain many small
items. They are chosen in such a way that their total mass is negligible in comparison to
the value of the optimal solution, but they determine a certain order of the first arrival of
the colors with high probability.

A possible way to reuse online algorithms for classical bin packing is the ColorSets-
approach: Here, we partition the items into groups of size k according to the order of their
first arrival. Then, all items with colors that belong to the same group, are packed by an
online algorithm A that is designed for classical bin packing. In the following we will analyze
this approach with respect to the average performance ratio and we will show that there is a
connection to the lower bound for bounded-space online algorithms for classical bin packing
h∞ ≈ 1.691 given by Lee and Lee [58].

I Theorem 74. Let D denote the set of all distributions on [0, 1] × N, and let ε > 0 be
arbitrary. Choosing M sufficiently large, it holds

APR(CS [HARMONICM] ,D) ≤ h∞ + ε.

Furthermore, let ε > 0 be arbitrary. Then, there exists a parameter k for class-constrained
bin packing such that for every online algorithm A, which is intended for classical bin packing,
it holds

APR(CS [A] ,D) ≥ h∞ − ε.

So we see that if the items are sampled independently and identically distributed it is
possible to beat the lower bound of two for the competitive ratio. The proof of the upper
bound is based on the sublinear growth of different colors. For the proof of the lower bound
we introduce many small items that determine the order of the first arrival of colors with
high probability. Then, it follows that (apart from the small items) in the first group items
of size 1/2 + ε, in the second group items of size 1/3 + ε, in the third group items of size
1/7 + ε, . . . are packed. Hence, we encounter a situation as in the proof of the lower bound for
bounded-space online algorithms for classical bin packing given in [58].

In the random-order model things are more complicated: We can show that it is not
possible for ColorSets-based algorithms and First-Fit to obtain a performance of h∞.

I Proposition 75. Let A be an arbitrary online algorithm for classical bin packing. If k = 2,
it holds RR(CS [A]) ≥ 2. Moreover, for every ε greater than zero, there exists a parameter k
such that RR(FF) ≥ 2− ε.

This proof is based again on the fact that we can determine the order of the first arrival
of the colors with high probability by introducing small items, whose sizes are negligible for

5.1. Results 97

the optimal solution. The consequence is that algorithms based on the ColorSets-approach
must pack in almost all groups items of total size slightly larger than 1. Here, we also exploit
the fact that the adversary in the random-order model is more powerful than in the case that
the items are drawn independently and identically distributed: In the random-order model
it is possible to restrict the total size of items of one color, while this quantity is always
growing if the items are sampled independently and identically distributed.

Now we consider the case of unit sized items. We observe the same behavior of algorithms
as in the case of general item sizes. If the items are drawn independently and identically
distributed a large class of natural algorithms performs asymptotically optimal, but in the
random-order model their performance is worse.

I Proposition 76. We consider class-constrained bin packing with unit sized items with
parameters B and k. Let D denote the set of all possible distributions, and let A be CS [NF]
or any online algorithm that opens a new bin only if it is forced, then it holds

APR(A,D) = 1.

This proof is again based on the fact that the expected number of different drawn colors
grows sublinearly in the number of items. The performance according to the random-order
ratio is again weaker:

I Proposition 77. For every ε greater than zero there exist parameters B and k for class-
constrained bin packing with unit sized items such that RR(CS [NF]) ≥ 2− ε.

I Proposition 78. For every ε greater than zero there exist parameters B and k for class-
constrained bin packing with unit sized items such that RR(FF) ≥ 1.5− ε.

Finally, we point out that bounded-space algorithms perform poorly for class-constrained
bin packing, even on random input with unit sized items. This is in contrast to classical bin
packing.

I Proposition 79. Consider class-constrained bin packing with unit sized items and pa-
rameters B and k. Let A be an arbitrary bounded-space online algorithm. Then we have
RR(A),APR(A,D) ∈ Ω(B/k).

Now, we turn to class-constrained bin covering. Up to now this problem was only studied
in the setting of unit sized items. It was shown that no online algorithm can obtain a
competitive ratio better than of order log(k)−1, and there exists a heuristic with competitive
ratio of order 1/k. Moreover, the heuristic FF2, which is based on the First-Fit-approach, was
shown to be 1/B-competitive. All these results can be found in [37].

We start with a slightly improved upper bound for the competitive ratio of online
algorithms for class-constrained bin covering with unit sized items. This proof uses the same
technique as in [37], but adjusts the choice of scenarios.

I Proposition 80. The competitive ratio of any deterministic online algorithm for class-
constrained bin covering with unit sized items is at most

(
Hk−1 + 1− k−1

B

)−1. If B = k this
yields an upper bound of H−1

k . The same is true for randomized algorithms.

Furthermore, we show that bounded-space algorithms behave poorly according to the
competitive ratio. This is the same behavior as in class-constrained bin packing, but in
contrast to classical bin covering.

98 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

I Proposition 81. Let A be a bounded-space algorithm for class-constrained bin covering.
Then, it holds CR(A) = 0.

Now, we analyze the performance of the heuristics Dual-Next-Fit and FF2 with respect
to both probabilistic performance measures. Before starting we have to introduce a new class
of distributions: We remember that a distribution F was introduced as a pair of a multiset
of items I and a probability mass function/density function p. In case that I is finite and p
is the uniform distribution on I we call this distribution a discrete distribution. Furthermore,
if S(I) = OPT(I) we call the distribution a discrete perfect-packing distribution.

We start with the simple 1-bounded space algorithm Dual-Next-Fit.

I Theorem 82. For class-constrained bin covering with unit sized items and parameters k
and B it holds RR(DNF) ∈ Θ(log(k)−1). In the case of general item sizes let D denote the
set of all discrete perfect-packing distributions. Then we have APR(DNF,D) ∈ Θ(log(k)−1).

I Remark. Dual-Next-Fit is a monotone algorithm. That is, decreasing the size of items or
removing them from the input, only decreases the number of covered bins. Because of the
monotonicity it is possible to show that the result concerning the average performance ratio
carries over to the case, where D is the set of all discrete distributions.

Surprisingly it turns out that the heuristic FF2, which is based on the First-Fit-approach,
is even optimal if unit sized items arrive in random order:

I Theorem 83. For class-constrained bin covering with unit sized items and parameters k
and B it holds RR(FF2) = 1.

So we see that in class-constrained bin covering with unit sized items the heuristics under
consideration benefit strongly from randomized input: While the 1-bounded-space heuristic
Dual-Next-Fit does not satisfy any guarantees with respect to the competitive ratio, its
random-order ratio is of the same order as the upper bound for algorithms in the worst
case. The algorithm FF2, which is based on a First-Fit-approach, is even optimal if the
items arrive in random order. This is also in contrast to class-constrained bin packing: In
Proposition 78 we have seen that a First-Fit approach for the dual version of the problem
cannot be optimal if the items arrive in random order.

The idea of the proof of Theorem 82 and 83 is as follows: At first we exploit the fact that
both algorithms are monotone. This allows us to deal only with perfect-packing instances,
that is, it holds OPT(I) = S(I). Afterwards, we subdivide the input into smaller subinstances
for which we can assume that the items are drawn independently and identically distributed
from a distribution F . Then, we apply the tools from the field of Markov chains.

For Dual-Next-Fit, similar to the analysis of Dual-Next-Fit for classical bin covering,
we estimate the number of items we need to cover a bin. In order to do this we exploit
a connection to the Coupon-collectors problem. Then, we use the connection between the
number of items we need to cover a bin and the long-time average number of opened bins.

For FF2 we construct a comparison chain, which simulates the behavior of the algorithm
on an instance which is worse for the algorithm. Afterwards, we show that the number of
open bins with respect to the comparison chain grows only sublinearly in the number of items.
Then, the optimality of FF2 follows.

We can use Theorem 83 to construct a simple online algorithm, which is 1/3-competitive
for general item sizes if the items arrive in random order. In order to do this we subdivide
the items online into size-items and color-items. The size-items are then packed using
Dual-Next-Fit and the color-items are packed using FF2.

5.2. Deferred Proofs 99

I Corollary 84. There exists an online algorithm with random-order ratio 1/3 for class-
constrained bin covering with general item sizes.

This also gives us a randomized algorithm for the offline case. To the best of our knowledge
this is the first offline algorithm presented for this problem.

I Corollary 85. There exists a randomized offline algorithm A with AR(A) = 1/3 for class-
constrained bin covering.

5.2 Deferred Proofs
5.2.1 Analysis of the ColorSets-approach with respect to the Average

Performance Ratio
I Theorem 74. Let D denote the set of all distributions on [0, 1] × N, and let ε > 0 be
arbitrary. Choosing M sufficiently large, it holds

APR(CS [HARMONICM] ,D) ≤ h∞ + ε.

Furthermore, let ε > 0 be arbitrary. Then, there exists a parameter k for class-constrained
bin packing such that for every online algorithm A, which is intended for classical bin packing,
it holds

APR(CS [A] ,D) ≥ h∞ − ε.

Proof of Theorem 74. At first we want to study the performance of CS [HARMONICM].
Let F be an arbitrary distribution on [0, 1]× N. We can assume without loss of generality
that the size of a drawn item is greater than zero with positive probability, otherwise the
result of the algorithm is optimal.

At the beginning we show that CS [HARMONICM] has a bounded competitive ratio so
that we can use Lemma 31 afterwards. Assume we are given an instance I that contains
items of q different colors. Let S(I) denote the total size of the items in I, Ci the number of
closed bins in the i-th group and Oi the number of open bins in the i-th group opened by
the algorithm.

The number of groups is equal to dq/ke. Furthermore, the bin level of each closed bin is
greater than 1/2. Therefore, we obtain

CS [HARMONICM] (I)
OPT(I) =

∑dq/ke
i=1 (Oi + Ci)

OPT(I)

≤
Mdq/ke+

∑dq/ke
i=1 Ci

OPT(I)

≤ Mdq/ke+ 2S(I)
OPT(I) . (23)

There are two obvious lower bounds for OPT(I):

OPT(I) ≥ S(I) and OPT(I) ≥ dq/ke. (24)

Combining (23) and (24) it follows that

CS [HARMONICM] (I)
OPT(I) ≤ min

{
Mdq/ke+ 2S(I)

dq/ke
,
Mdq/ke+ 2S(I)

S(I)

}
.

100 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

The last expression is maximized if S(I) = dq/ke, and therefore we obtain an upper bound
of M + 2 for the competitive ratio of the algorithm.

The next thing we need for the proof of the upper bound is an important observation
about the number of distinct samples if the underlying distribution is realized on a countable
set.

I Lemma 86 (See Example 3.9 in [13]). Let p be a probability mass function on N. Let
X1, . . . , Xn be independent random variables that are distributed according to p. Let Zn =
f(X1, . . . , Xn) denote the number of distinct values taken by these n random variables. Then
we have

lim
n→∞

E [Zn]
n

= 0.

Let Zn denote the number of different drawn colors. Then, the number of groups generated
by the algorithm is dZn/ke. It follows that

E
[
CS [HARMONICM] (IFn)

]
≤ E

dZn/ke∑
i=1

(Ci +Oi)


≤ E

dZn/ke∑
i=1

Ci +M · Zn

 ≤ E

dZn/ke∑
i=1

Ci

 + ME [Zn] .

For IFn let ĪFn denote the corresponding instance for classical bin packing that is induced by
ignoring the colors and let OPT(ĪFn) denote the value of the corresponding optimal solution.
Then we obtain

E
[∑dZn/ke

i=1 Ci

]
+ E [Zn]

E [OPT(IFn)] ≤
E
[
HARMONICM (ĪFn)

]
E
[
OPT(ĪFn)

] + ME [Zn]
E [S(IFn)] .

It follows from the worst-case analysis of HARMONICM that we can find for ε > 0 arbitrary
an M sufficiently large, such that E

[
HARMONICM (ĪFn)

]
≤ (h∞ + ε)E

[
OPT(ĪFn)

]
for n

large enough. Furthermore, using Lemma 86 we see that ME [Zn] /E
[
S(IFn)

]
converges to

zero as n tends to infinity. This yields the upper bound.
Now we show the lower bound for algorithms that are based on the ColorSets-approach.

The proof is based on the famous work of C.C. Lee and D.T. Lee [58]. They established
a lower bound for bounded-space online-algorithms for bin packing by grouping items in
intervals according to their size. Then, bounded-space algorithms are forced to pack – more
or less – all items from the same group together. We use here the same approach and show
that we can find a distribution F such that with high probability items of the same size
belong to the same group.

Let t1 = 1 and ti = ti−1(ti−1 + 1). Then, we have
∑∞
i=1

1
ti+1 = 1 and 1.691 ≈ h∞ =∑∞

i=1
1
ti
. For technical details we refer to [58].

Let ε > 0 and A an arbitrary online algorithm for classical bin packing. We want to show
that we can find a parameter k and a distribution F , which depends on k, such that the
average performance ratio of CS [A] is greater than h∞ − ε.

Now we specify F : We set γk := 1 −
∑k
i=1

1
ti+1 . The multiset of items I is as follows:

The items have colors 1, . . . , k2. We distinguish between large and small items. There are k2

large items: For each (i, j) ∈ [k]2 we have an item of size 1
ti+1 + γk

2k and color (i− 1)k + j.
Furthermore, the small items are as follows: For each color i ∈ [k2] we have mi ∈ N items of
size γk

2kmi . The multiplicities mi will be specified later.

5.2. Deferred Proofs 101

We note that for i ∈ [k] we can group the colors i+ (j − 1)k with j ∈ [k] so that all items
of these colors fit perfectly into a bin, that is the total size of the corresponding items in I
is equal to 1. We want to show that we can find values m1, . . . ,mk2 such that with high
probability the colors appear in the order 1, . . . , k2. Then, the algorithm CS [A] packs large
items of the same size together.

In order to do this let T in denote the point in time when in IFn the first item of color i
arrives. Let Eorder denote the event {T 1

n < T 2
n < . . . < T k

2

n ≤ n}.

I Lemma 87. Let ε > 0 be arbitrary. We can find values m1, . . . ,mk2 such that for n
sufficiently large, we have P [Eorder] ≥ 1− ε.

Proof. Using de Morgan’s laws and a union bound we obtain

P
[
T 1
n < T 2

n < . . . < T k
2

n ≤ n
]

=P
[
{T 1

n < T 2
n} ∩ {T 2

n < T 3
n} ∩ . . . ∩ {T k

2−1
n < T k

2

n } ∩ {T k
2

n ≤ n}
]

=1− P
[
{T 2

n < T 1
n} ∪ {T 3

n < T 2
n} ∪ . . . ∪ {T k

2

n < T k
2−1

n } ∪ {T k
2

n =∞}
]

≥1− P
[
T 2
n < T 1

n

]
− P

[
T 3
n < T 2

n

]
− . . .− P

[
T k

2

n < T k
2−1

n

]
− P

[
T k

2

n =∞
]
.

Let pi denote the probability that we draw an item of color i. Then we have pi = (mi +
1)/(k2 +

∑k2

i=1mi). It follows that

P
[
T j+1
n < T jn

]
=

n∑
u=1

(1− pj − pj+1)u−1pj+1

= pj+1

n−1∑
u=0

(1− pj − pj+1)u

= pj+1

pj + pj+1
− (1− pj − pj+1)n

pj + pj+1

= mj+1 + 1
mj +mj+1 + 2 −

(1− pj − pj+1)n

pj − pj+1
.

Furthermore, we have P
[
T k

2

n =∞
]

= (1− pk2)n. Hence, we see that for arbitrary ε > 0 if
we choose m1 � m2 � . . .� mk2 , we have for n large enough P [Eorder] ≥ 1− ε. J

Finally, we investigate the performance of CS [A] (IFn) and OPT(IFn). In order to do this,
we have to show that with high probability the number of drawn items of each type is roughly
the expected number of such items. Let N i

n denote the number of drawn large items of color i
in IFn . We set Nmin

n = min{N1
n, . . . , N

k2

n } and Nmax
n = max{N1

n, . . . , N
k2

n }. Moreover, let V in
denote the number of drawn small items of color i in IFn .

Let EA denote the event{
n

k2 +
∑k2

i=1mi

−
√
n log(n) ≤ Nmin

n ≤ Nmax
n ≤ n

k2 +
∑k2

i=1mi

+
√
n log(n)

}
.

Using a union bound and applying Hoeffding’s inequality we obtain

P [EA] ≥ 1− 2k2

n2 .

102 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

Furthermore, let

EB =
{
∀ i ∈ [k2] : V in ≤ n ·

mi

k2 +
∑k2

i=1mi

+mi

√
n log(n)

}
.

Again, using a union bound and Hoeffding’s inequality we see that

P [EB] ≥ 1− k2

n2 .

It follows that for arbitrary k and ε > 0 we can find m1 � m2 � . . .� mk2 such that
for n large enough we have P [Eorder ∩ EA ∩ EB] ≥ 1− ε.

We begin estimating CS [A] (IFn). If Eorder takes place, then CS [A] packs all large items
of the same size together. Therefore, in this case we have

CS [A] (IFn) ≥
k∑
i=1

 1
ti

k∑
j=1

N (i−1)k+j
n

 ≥ kNmin
n

k∑
i=1

1
ti
.

Moreover, if EA ∩ EB takes place, we can arrange the items in at most

n · k

k2 +
∑k2

i=1mi

+
√
n log(n)

many bins using the perfect-packing induced by I. Hence, we have

E
[

CS [A] (IFn)
OPT(IFn)

]
≥ E

[
CS [A] (IFn)
OPT(IFn) · I{Eorder∩EA∩EB}

]

≥ E

 kNmin
n

∑k
i=1

1
ti

n · mi

k2+
∑k2

i=1
mi

+mi

√
n log(n)

· I{Eorder∩EA∩EB}



≥ E


k ·
(

n

k2+
∑k2

i=1
mi
−
√
n log(n)

)
·
∑k
i=1

1
ti

n · k

k2+
∑k2

i=1
mi

+
√
n log(n)

· I{Eorder∩EA∩EB}



≥
k ·
(

n

k2+
∑k2

i=1
mi
−
√
n log(n)

)
·
∑k
i=1

1
ti

n · k

k2+
∑k2

i=1
mi

+
√
n log(n)

· (1 − ε).

Choosing k large enough we have
∑k
i=1

1
ti
≥ h∞ − ε. The statement follows as n tends to

infinity. J

5.2.2 Lower Bounds for Selected Heuristics for Class-constrained Bin
Packing with respect to the Random-order Ratio

I Proposition 75. Let A be an arbitrary online algorithm for classical bin packing. If k = 2,
it holds RR(CS [A]) ≥ 2. Moreover, for every ε greater than zero, there exists a parameter k
such that RR(FF) ≥ 2− ε.

Proof of Proposition 75. We start by showing the lower bound for algorithms based on the
ColorSets-approach. Let k = 2 and the instance I be as follows: The items in I can be packed

5.2. Deferred Proofs 103

in N bins. Let γ > 0 be sufficiently small. The i-th bin contains items of the two colors 2i− 1
and 2i. There are m2i−1 items of size γ/m2i−1 and one item of size 1/2− (i+ 1)γ of color
2i− 1 and m2i many items of size γ/m2i and one item of size 1/2 + (i− 1)γ of color 2i. We
denote by Ti with 1 ≤ i ≤ 2N the first time an item of color i arrives. Let E denote the event

E = {T1 < T4 < T3 < T6 < T5 < T8 < . . . < T2N−3 < T2N}.

If E takes place the total size of the items in all but the last color set is greater than 1.
Therefore, CS [A] has to open at least 2N − 1 many bins.

It remains to show that for ε > 0 we can choose I in such a way that P [E] ≥ 1 − ε.
We note that there are mi + 1 many items of color i and that we have for two colors i, j
with i 6= j

P [Ti < Tj] = mi + 1
(mi + 1) + (mj + 1) .

Therefore, we obtain

P [T1 < T4 < T3 < T6 < . . . < T2N−3 < T2N]
=P [{T1 < T4} ∩ {T4 < T3} ∩ {T3 < T6} ∩ . . . ∩ {T2N−3 < T2N}]
=1− P [{T4 < T1} ∪ {T3 < T4} ∪ {T6 < T3} ∪ . . . ∪ {T2N < T2N−3}]
≥1− (P [T4 < T1] + P [T3 < T4] + P [T6 < T3] + . . .+ P [T2N < T2N−3])

=1−
(

m4 + 1
m1 +m4 + 2 + m3 + 1

m3 +m4 + 2 + . . .+ m2N + 1
m2N−3 +m2N + 1

)
.

We see that if we choose the mi in such a way that m1 � m4 � m3 � m6 � . . . �
m2N−3 � m2N , we obtain P [E] ≥ 1− ε.

It follows that

E [CS [A] (Iσ)]
OPT(I) ≥ (1− ε)2N − 1

N
.

To show the lower bound for First-Fit we proceed in the following way: Let N ∈ N, with N
a multiple of k, and γ ∈ (0, 1

2(k−1)). The items in I can be arranged in N perfectly packed bins.
Here, the i-th bin contains m items of size γ/m of each of the colors (i− 1)k + 1, . . . , ik − 1
and one item of size 1 − (k − 1)γ of color ik. We call the colors j with (j mod k) 6= 0
small and otherwise large. Let E denote the event that for each small color an item arrived
before the first item of a large color arrives. Let ε > 0 be arbitrary. Arguing as in the first
part we observe that choosing m large enough we can enforce that P [E] ≥ 1− ε. If E takes
place First-Fit at first opens N(k − 1)/k many bins for the small colors. Afterwards, we
have to open a new bin for each item of a large color. Therefore, First-Fit has to open
N(k−1)/k+N = (2− 1/k)N many bins. Hence, E [FF(Iσ)] /OPT(I) ≥ (1− ε) · (2− 1/k). J

5.2.3 Analysis of Selected Heuristics for Class-constrained Bin Packing
with Unit Sized Items with respect to the Average Performance
Ratio

I Proposition 76. We consider class-constrained bin packing with unit sized items with
parameters B and k. Let D denote the set of all possible distributions, and let A be CS [NF]
or any online algorithm that opens a new bin only if it is forced, then it holds

APR(A,D) = 1.

104 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

Proof of Proposition 76. Let F be an arbitrary distribution and A be an arbitrary algorithm,
satisfying the conditions of the statement. We say that a bin is open if the number of contained
items is smaller than B, otherwise we call it closed. We introduce the following random
variables: Zn denotes the number of distinct colors in IFn , CAn denotes the number of closed
and OAn the number of open bins of A, after IFn has been processed. We observe that OAn is
upper bounded by Zn. Using the estimate OPT(IFn) ≥ n/B, we have

E
[
A(IFn)

]
E [OPT(IFn)] ≤

B
(
E
[
CAn
]

+ E
[
OAn
])

n

≤
B · E

[
CAn
]

n
+ B · E [Zn]

n
≤ B · dn/Be

n
+ B · E [Zn]

n
.

Since E [Zn] /n tends to zero as n tends to infinity (see Lemma 86), the previous expression
converges to 1 as n tends to infinity. This shows the optimality. J

5.2.4 A Lower Bound for the Random-order Ratio of CS [NF] in the
case of Unit Sized Items

I Proposition 77. For every ε greater than zero there exist parameters B and k for class-
constrained bin packing with unit sized items such that RR(CS [NF]) ≥ 2− ε.

Proof of Proposition 77. The random-order ratio is upper bounded by 2, because this is
the competitive ratio of the algorithm [77]. Now we show a lower bound, which matches this
upper bound. For B, k ∈ N, we will look at the following instance: There are a bins, where we
can choose a arbitrary. The i-th bin contains B − (k− 1) items of color 1, and one of each of
the colors {(i−1) · (k−1)+2, . . . , i · (k−1)+1}. With probability B−(k−1)

B = 1− k−1
B =: 1−ε

the first drawn item has color 1. Then, the first group contains color 1, and k − 1 items of
small colors.

In the first group, there are a(B+1−k)+k−1 many items. So we need da(B+1−k)+(k−1)
B e

bins to pack this group. Furthermore, there are (a− 1) · (k − 1) many colors left. So there
are additional d (a−1)·(k−1)

k e many groups. We need only one bin for each additional group.
Hence, the expected number of used bins is lower bounded by

(1− ε) ·
(
a(B + 1− k) + (k − 1)

B
+ (a− 1) · (k − 1)

k
+ 2
)

+ ε · 2a.

Divided by OPT, i.e., a, we achieve

(1− ε) ·
(

1− ε+ ε

a
+
(

1− 1
a

)
·
(

1− 1
k

)
+ 2
a

)
+ 2ε.

Hence, if we choose at first k, then B, and finally a large enough, the random-order ratio of
the ColorSets-algorithm is arbitrary close to 2. J

5.2.5 A Lower Bound for the Random-order Ratio of First-Fit in the
case of Unit Sized Items

I Proposition 78. For every ε greater than zero there exist parameters B and k for class-
constrained bin packing with unit sized items such that RR(FF) ≥ 1.5− ε.

Proof of Proposition 78. The proof of the statement is based on analyzing the following
set of items: Let a,m ∈ N≥2. We set k = 2 and B = m2. The items in I can be packed in a

5.2. Deferred Proofs 105

bins, where the i-th bin contains m2 − 1 items of color i and one item of color a+ i. We call
the colors {1, . . . , a} large and {a+ 1, . . . , 2a} small.

Let Bσ denote the set of bins that were opened by First-Fit after Iσ has been processed.
Let Bσ1 ⊆ Bσ denote the set of bins, containing items of two different colors, which were
opened by one of the first ma arriving items. Furthermore, let Bσ2 = Bσ\Bσ1 . Moreover, let Cσ
denote the set of colors, for which at least one item of this color is put into a bin from Bσ2 .
Then, we obtain

FF(Iσ) = |Bσ1 |+ |Bσ2 | ≥ |Bσ1 |+ |Cσ|/2.

In the following we want to show that with high probability |Bσ1 | ≥ (1/2 − ε)a and |Cσ| ≥
(2− ε)a.

In order to do this, we will introduce a couple of events and show that First-Fit will not
be better than (1.5− ε)-competitive if all events occur simultaneously. Finally, we will show
that all these events occur with high probability.

Let SC(Iσ) denote the number of items of small colors among the first ma items drawn
in Iσ, let N(Iσ) denote the number of different drawn large colors among the first ma drawn
items, and finally let S(Iσ) denote the number of large colors, for which an item of these
colors is put into a bin from Bσ2 .

We introduce the following three events:

E1 =
{
SC(Iσ) ≤ 2

m
· a
}
,

E2 =
{
N(Iσ) ≥

(
1− 4

m

)
a

}
, and

E3 =
{
S(Iσ) ≥

(
1− 6

m

)
a

}
.

Assume all three events occur simultaneously: Then, it follows immediately that

|Bσ1 | ≥
1
2

(
1− 4

m

)
a =

(
1
2 −

2
m

)
a

and

|Cσ| ≥
(

1− 2
m

)
a+

(
1− 6

m

)
a =

(
2− 8

m

)
a.

Therefore, we have FF(Iσ) ≥ (3/2− 6/m)a. Choosing m large enough and then dividing by a
yields a lower bound for the random-order ratio of 1.5− ε on E1 ∩ E2 ∩ E3.

Now it remains to show that P [E1 ∩ E2 ∩ E3] converges to 1 as a tends to infinity.

I Lemma 88. It is

P [E1] ≥ 1− exp
(
− 2

3m · a
)
.

Proof. Let Xi = I{color of the i-th arrived item in Iσ is small}. Then, we have E [Xi] = 1/m2. There-
fore,

P [E1] = P

[
am∑
i=1

Xi ≥
2
m
· a

]
= P

[
am∑
i=1

Xi −
am∑
i=1

E [Xi] ≥
a

m

]
.

The random variables Xi are not independent. But we can apply the concentration bound
from Proposition 13, since we can look at the Xi as samples drawn according to sampling
without replacement from a finite population. Then the result follows immediately. J

106 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

I Lemma 89. It is

P [E2 | E1] ≥ 1− 1
a2 .

Proof. Since we know that E1 takes place we can assume without loss of generality that
we draw at least (m− 2/m)a many items of large colors. At first we look at the case where
the items of large colors are drawn with respect to sampling with replacement. That is, we
assume that the large colors are drawn according to the uniform distribution on {1, . . . , a}.
Let D denote the number of different drawn colors if we draw (m − 2/m)a items. It holds
(see e.g. Example 3.9 in [13])

E [D] = a ·

[
1−

(
1− 1

a

)(m−2/m)a
]
.

Using standard inequalities we can lower bound this expression by (1− 3/m)a. The function,
which expresses the number of different drawn large items satisfies the bounded difference
property, so we can apply McDiarmid’s inequality. This yields (if a is sufficiently large)

P
[
D ≥

(
1− 4

m

)
a

]
≥ P

[
D ≥ E [D]−

√
ma log(a)

]
≥ 1− 1

a2 .

But we are in a setting, where the items are drawn according to sampling without
replacement. To show that nonetheless the estimate is true, we will use a coupling argument.
Assume the items with a large color are numbered from 1 to a(m2 − 1). We have two urns
each of them containing all items of a large color. At first we generate an instance I by
drawing (m− 2/m)a many items according to sampling with replacement from the first urn.
Now we want to generate an instance I ′. Thereto, let U denote the set of indices of the
drawn items in I. Now, we draw all items with an index in U from the second urn and
remove them from the urn. In case that there are any duplicates, we also draw the missing
(m− 2/m)a− |U | items from the second urn according to sampling without replacement. This
standard-procedure yields a coupling between sampling with and without replacement. That
is, we have a pair of random variables (I, I ′) such that the marginals of this two-dimensional
random variable are instances generated using sampling with and without replacement.

Let DC (I) denote the number of different drawn colors in I. Then, we have DC (I) ∼ D
and DC (I ′) ∼ N(Iσ). Now, using our coupling argument, it follows that

P [DC (I) ≥ (1− 4/m)a] =
∑
ι

P [I = ι] I{DC(ι)≥(1−4/m)a}

=
∑
ι

∑
ι′

P [I = ι, I ′ = ι′] I{DC(ι)≥(1−4/m)a}

=
∑
ι

∑
ι′

P [I ′ = ι′ | I = ι]P [I = ι] I{DC(ι)≥(1−4/m)a}

≤
∑
ι

∑
ι′

P [I ′ = ι′ | I = ι]P [I = ι] I{DC(ι′)≥(1−4/m)a}

= P [DC (I ′) ≥ (1− 4/m)a] .

Combining the statements yields the proof. J

I Lemma 90. For each m ∈ N there exists a positive constant Cm such that

P [E3 | E2 ∩ E1] ≥ 1− exp (−Cm · a) .

5.2. Deferred Proofs 107

Proof. We call a bin in Bσ1 special, if it contains items of two large colors, and no item of
these two large colors is contained in a different bin in Bσ1 . Since we assume that E1 ∩ E2
occurs, we know that |Bσ1 | ≥ (1/2− 2/m)a, and SC(Iσ) ≤ 2/m · a. Moreover, there can be at
most am/m2 = a/m many closed bins when the (am+ 1)-th item arrives. Therefore, there
have to be at least(

1− 4
m −

2
m −

2
m

)
a

2 =
(

1
2 −

4
m

)
a

many special bins. Without loss of generality these bins are numbered from 1 to (1/2− 4/m)a.
We are now interested in the number of such bins, where both colors survive, that is they
do not contain B − 1 items of the same color. Let Yi = I{both colors in special bin i survive}.
We observe, that the random variables Yi are independent, Bernoulli-distributed random
variables.

Using the hypergeometric distribution and standard estimates, we see that

E [Yi] = 1− 2
m2−1
m2 ·

(2m2−2
m2−1

) . ≥ 1− 4(2m2−2
m2−1

) ≥ 1− 1
2m2−3 ≥ 1− 1

m
.

Therefore, using again Hoeffding’s inequality, we see that we have at least(
1
2 −

4
m

)
·
(

1− 2
m

)
a ≥

(
1
2 −

6
m

)
a

many specials bins, in which both colors survive, with a probability, which tends to 1
exponentially in a for arbitrary m. J

This proves Proposition 78. J

5.2.6 Lower Bounds for Bounded-space Algorithms for
Class-constrained Bin Packing with Unit Sized Items

I Proposition 79. Consider class-constrained bin packing with unit sized items and pa-
rameters B and k. Let A be an arbitrary bounded-space online algorithm. Then we have
RR(A),APR(A,D) ∈ Ω(B/k).

Proof of Proposition 79. Let A be an `-bounded space algorithm. Since every bin that A
opens contains at least one item, A is at least B-competitive. Therefore, we can apply
Lemma 31. So we look for a lower bound for the ratio E

[
A(IFn)

]
/E
[
OPT(IFn)

]
.

We show that the statement is even true if we allow the algorithm to use bins with infinite
capacity. Let F be given by I = {(1, 1), . . . , (1,m)} and p is the uniform distribution on I.
We call an arriving item nice if no item of the same color is currently contained in any open
bin of A. Then, we have P [Ai is nice] ≥ 1 − `k

m . Let N denote the number of nice items.
Then, a bounded space algorithm needs on average at least E [N] /k many bins to pack the
items. Therefore, we have

E
[
A(IFn)

]
≥ E [N]

k
≥
(
1− `k

m

)
n

k
.

A valid packing is to pack each color separately using Next-Fit. It follows that

E
[
OPT(IFn)

]
≤ m+ n

B
.

108 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

Combining the previous estimates, we see that

E
[
A(IFn)

]
E [OPT(IFn)] ≥

B

k
·
(

1− `k

m

)
· 1

1 + Bm
n

.

Since we can choose m arbitrary large, the statement follows. J

5.2.7 An Upper Bound for the Competitive Ratio in Class-constrained
Bin Covering with Unit Sized Items

I Proposition 80. The competitive ratio of any deterministic online algorithm for class-
constrained bin covering with unit sized items is at most

(
Hk−1 + 1− k−1

B

)−1. If B = k this
yields an upper bound of H−1

k . The same is true for randomized algorithms.

Proof of Proposition 80. The proof follows along the lines of [37], but slightly changes the
choice of the scenarios. Let N be an arbitrarily large number, divisible by B!. In the first
phase, the algorithm receives N items of each of the colors 1, . . . , k. After this, a second
phase follows. There are k different scenarios for the the second phase: In the zero-th scenario
no more items will arrive. In the i-th scenario (1 ≤ i ≤ k − 1) there arrive sufficiently many
items of the colors k+1 up to k+ i. The optimal solution in the zero-th scenario covers Nk/B
bins, and Nk/(k − i) bins in the i-th scenario.

Without loss of generality we can assume that an arbitrary but fixed online algorithm,
uses only bins of the following type after the end of the first phase: bins with B items and k
different colors (type 0), and bins with k− i many items, where all colors are different (type i).
We denote the number of bins of type i as xi. We have

Bx0 +
k−1∑
j=1

jxj = kN. (25)

To be R-competitive, the following conditions must be satisfied:

x0 ≥ R ·
Nk

B
, (26)

x0 +
k−1∑
j=k−i

xj ≥ R ·
Nk

k − i
∀ i = 1, . . . , k − 1, (27)

x0, . . . , xk−1 ≥ 0.

Now we sum up all the constraints in (27) and (B+1−k) times constraint (26). Combining
this with (25) we obtain

Nk =
k−1∑
i=1

x0 +
k−1∑
j=k−i

xj

+ (B + 1− k)x0 ≥ R ·
(
Nk ·Hk−1 +Nk · B − k + 1

B

)
.

Therefore, R ≤
(
Hk−1 + 1− k−1

B

)−1.
The statement is also true for randomized algorithms: The proof is based on Yao’s

principle [85]. Assume that the zero-th scenario occurs with probability 1− k−1
B = B−k+1

B ,
and the i-th scenario occurs with probability 1

B , where 1 ≤ i ≤ k − 1. Then, we have

E [OPT] = B − k + 1
B

· Nk
B

+ 1
B

k−1∑
i=1

Nk

k − i

5.2. Deferred Proofs 109

= B − k + 1
B

· Nk
B

+ NK

B
Hk−1

= Nk

B
·
(

1 +Hk−1 −
k − 1
B

)
.

We can show as in the deterministic case that

Nk =
k−1∑
i=1

x0 +
k−1∑
j=k−i

E [xj]

+ (B + 1− k)E [x0]

≥ R ·B · E [OPT]

= R ·B · Nk
B
·
(

1 +Hk−1 −
k − 1
B

)
.

It follows that

R ≥
(

1 +Hk−1 −
k − 1
B

)−1
.

Therefore, we obtain the same lower bound for randomized algorithms as for deterministic
algorithms. J

5.2.8 An Upper Bound for the Competitive Ratio of Bounded-space
Algorithms for Class-constrained Bin Covering

I Proposition 81. Let A be a bounded-space algorithm for class-constrained bin covering.
Then, it holds CR(A) = 0.

Proof of Proposition 81. Let k and B be arbitrary parameters for the problem, and let A
be an `-bounded space algorithm. Consider the following sequence of unit sized items: We
start with a · (B+ 1− k) many items of color 1. Then, a items of each of the colors {2, . . . , k}
arrive. An `-bounded space algorithm can cover at most ` bins, but the optimal solution can
cover a bins. J

5.2.9 Analysis of Dual-Next-Fit with respect to Probabilistic
Performance Measures

I Theorem 82. For class-constrained bin covering with unit sized items and parameters k
and B it holds RR(DNF) ∈ Θ(log(k)−1). In the case of general item sizes let D denote the
set of all discrete perfect-packing distributions. Then we have APR(DNF,D) ∈ Θ(log(k)−1).

Proof of Theorem 82. We can describe the state of Dual-Next-Fit as a pair (u, c), where
u ∈ R≥0 denotes the total size of items, and c ⊆ N the set of colors in the bin currently
processed. We can partition the possible states into the set of open bin configurations O and
the set of covered bin configurations C. We have

O = {(u, c) : (u < 1) ∨ (|c| < k)} and
C = {(u, c) : (u ≥ 1) ∧ (|c| ≥ k)} .

We can subsume all states in C to a single state ∗. Furthermore, we introduce another notion:
DNF(s, I) denotes the number of covered bins performing on I if Dual-Next-Fit starts with
the open bin configuration s.

110 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

I Observation 91. Dual-Next-Fit satisfies the following two properties:

Let I be an instance, and let Ĩ be an instance that we obtain from I by decreasing the
size of an item or deleting it. Then, we have DNF(Ĩ) ≤ DNF(I).
Let s, s′ ∈ O ∪ {∗} and I be arbitrary. Then, we have

|DNF(s, I)−DNF(s′, I)| ≤ 1.

We begin with considering the case that the items are drawn independently and identically
distributed according to a discrete perfect-packing distribution F . Let I be the corresponding
set, and a, b ∈ N such that OPT(I) = a and |I| = ak + b. Since we are dealing with
a maximization problem, we can apply Lemma 31. Therefore, it suffices to give bounds
for E

[
DNF(IFn)

]
and E

[
OPT(IFn)

]
.

At first we give an upper bound for E
[
OPT(IFn)

]
. Let S(IFn) denote the total size of the

items drawn in IFn . Then, we have

E
[
OPT(IFn)

]
≤ E

[
S(IFn)

]
= n · a

ak + b
. (28)

Now, we give a lower bound for E
[
DNF(IFn)

]
. For this purpose we use the tools from the

field of Markov chains. We can view the behavior of Dual-Next-Fit as a Markov chain (Xn)
on the state space S ⊆ O ∪ {∗}. (S is given by all states, which can be reached with positive
probability.) Except for the case k = 1 this yields an irreducible and aperiodic Markov chain.
An irreducible and aperiodic Markov chain possesses a unique stationary distribution πF on
S, and the distribution of Xn converges to πF . Then, we have

Es∼πF
[
DNF(s, IFn)

]
= n · πF (∗).

We know from Proposition 21 that it holds πF (∗) = E [T]−1, where T denotes the first
return time to ∗ starting in ∗. Hence, it follows from Observation 91 that

E
[
DNF(IFn)

]
≥ Es∼πF

[
DNF(s, IFn)

]
− 1 = n

E [T] − 1. (29)

The interesting thing is that we can estimate E
[
DNF(IFn)

]
in terms of E [T].

Now we will estimate the return-time T . We remember that F is induced by a multiset I
with OPT(I) = a and |I| = ak + b. In order to upper bound T we look at the number of
items we need to fulfill the color- and the size-condition independently. Let Ts denote the
number of items we need until their total size is at least 1. Moreover, let Tc denote the
number of items until we have drawn k different colors (starting with no drawn color). Then,

E [T] ≤ E [Ts] + E [Tc] . (30)

We have

E [Ts] ≤ 2 · ak + b

a
, (31)

otherwise Dual-Next-Fit would not be a 1/2-competitive algorithm for classical bin covering
in the worst case. So it remains to give an upper bound for E [Tc]. For this purpose, we
choose k items of different colors for each of the a bins inducing F . The unconsidered items
are removed from the bins. We denote the uniform distribution on the remaining items by F̃ .
Then, we have E [Tc] ≤ ak+b

ak · E
[
T̃c
]
. E
[
T̃c
]
is maximized if there are a items of each of

the colors 1 to k. (This follows from the fact that for each considered distribution, we have

5.2. Deferred Proofs 111

probability at least (k − i)/k to draw a missing color if there are already i different colors
drawn.) But in this case it follows from the Coupon-collectors problem that we can upper
bound E

[
T̃c
]
by kHk. Hence, combining (28), (30) and (31) we obtain

E [T] ≤ (2 +Hk) · ak + b

a
.

Then, combining (28), (29) and the previous estimate we see that

E
[
DNF(IFn)

]
E [OPT(IFn)] ≥

1
2 +Hk

− 1
n
· ak + b

a
. (32)

This gives us a lower bound for the performance of Dual-Next-Fit in the case the
items are drawn independently and identically distributed. The bound is essentially tight:
Think of the case where the items are drawn according to the uniform distribution from
I = {(1/k, 1), . . . , (1/k, k)}.

Now, we will investigate the setting of class-constrained bin covering with unit sized
items and parameters k and B, where the items from a multiset I arrive in random order.
Because of the monotonicity of Dual-Next-Fit we can assume again that we can arrange the
items in I perfectly in bins, that is we have OPT(I) = |I|/B. We will reduce this setting to
the case where unit sized items are drawn independently and identically distributed. The
idea is to split up the instance into smaller subinstances. In a special case this was done
in [20]. In [42] this idea was combined with an estimate based on the total variation distance.
[60] covers the topic of total variation distance in Chapter 4.

I Definition 92. Let Ω be a discrete set. The total variation distance between two probability
distributions µ and ν on Ω is defined by

‖µ− ν‖TV = max
A⊆Ω

|µ(A)− ν(A)|.

One can show that ‖µ− ν‖TV = 1
2
∑
x∈Ω |µ(x)− ν(x)|.

I Lemma 93. Let µ, ν be two probability distributions on Ω. Let X,Y : Ω→ R be random
variables with X ∼ µ and Y ∼ µ. Furthermore, let f : R→ R. Then we obtain

|E [f(X)]− E [f(Y)]| ≤ 2‖µ− ν‖TV · ‖f‖∞.

Proof. It is

|E [f(X)]− E [f(Y)]| =

∣∣∣∣∣∑
x∈Ω

(µ(x)− ν(x)) · f(x)

∣∣∣∣∣
≤ 2‖f‖∞ ·

1
2
∑
x∈Ω
|µ(x) − ν(x)| = 2‖f‖∞ · ‖µ − ν‖TV.

J

We set m = sup{u ∈ N : u3 ≤ |I|}.

I Lemma 94. Let F be the discrete perfect-packing distribution induced by I, that is the
uniform distribution on I. Then, we have

E [DNF(Iσ)] ≥ m2E
[
DNF(IFm)

]
−O(m2).

112 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

Proof. Let Iσ = (Aσ(1), . . . Aσ(|I|)) denote a random permutation of our given instance. Let
Ĩσ = (Aσ(1), . . . , Aσ(m3)) denote the truncated instance. Since E [DNF(Iσ)] ≥ E

[
DNF(Ĩσ)

]
we will consider the truncated instance in the following.

We want to partition Ĩσ into m2 subinstances of length m. In order to do this, we set
Ĩσ1 = (Aσ(1), . . . , Aσ(m)), Ĩσ2 = (Aσ(m+1), . . . , Aσ(2m)), and so on. We see that the random
variables Ĩσj are identically distributed. Hence, from Observation 91 it follows that

E
[
DNF(Ĩσ)

]
=

m2∑
i=1

Esi∼µi
[
DNF(si, Ĩσi)

]
≥

m2∑
i=1

Es∼πF
[
DNF(s, Ĩσi)

]
−m2

= m2 · Es∼πF
[
DNF(s, Ĩσ1)

]
−m2,

where µi denotes the distribution on S after i ·m items have been processed.
Now, we bound the difference between the expected values Es∼πF

[
DNF(s, Ĩσ1)

]
and

Es∼πF
[
DNF(s, IFm)

]
. In order to do this, we use Lemma 93. It is clear that the number of

covered bins on such instances is upper bounded by m. It remains to give an upper bound
for the total variation distance. One can show that (see e.g. [42])

‖L(Ĩσ1)− L(IFm)‖TV ≤
1

2m.

Therefore, it follows that

E
[
DNF(Ĩσ)

]
≥ m2 · Es∼πF

[
DNF(s, IFm)

]
− 2m2.

J

Finally, applying the bound given for (29) in the first part of the proof with ak + b = n

and a = n/B yields the result if unit sized items arrive in random order. J

5.2.10 Analysis of FF2 in the Random-order Model
I Theorem 83. For class-constrained bin covering with unit sized items and parameters k
and B it holds RR(FF2) = 1.

Proof of Theorem 83. We introduce another notation for this part: For `1, `2 ∈ N0 with
`1 ≤ `2 let [`1 : `2] := {`1, . . . , `2}.

The proof of this theorem will proceed in three steps:

At first we will reduce the case of unit sized items arriving in random order to the case
where items are drawn independently and identically distributed.
Then we will model the behavior of the algorithm as a Markov chain, construct another
Markov chain as a comparison chain, and will relate both chains.
Finally, we will analyze the growth of the comparison chain.

We remember that FF2 is only designed for the case of unit sized items. Similar to
the analysis of Dual-Next-Fit we can define the set of open bin configurations O for FF2.
Let S = {(s, c) ∈ [0 : B − 1] × P(N) : |c| ≤ B − 1} denote the set of all possible
configurations of a single open bin. Due to the design of FF2 we know that if s = B − i,
where i ∈ [k − 1], we have |c| = k − i. Since FF2 is an unbounded-space algorithm, we have

5.2. Deferred Proofs 113

O =
⋃∞
i=1 Si. FF2 satisfies the following property: Let ((s1, c1), . . . , (su, cu)) ∈ O, then we

have B − 1 ≥ s1 ≥ . . . ≥ su−1 ≥ B − (k − 1) ≥ su and c1 ⊇ c2 ⊇ . . . ⊇ cu. Finally, for s ∈ O
and an instance I we denote by FF2(s, I) the number of covered bins processing I starting
with the open bin configuration s.

We observe that FF2 satisfies monotonicity properties:

I Observation 95. Let I be an instance, and let Ĩ be an instance we obtain from I by
deleting one item. Then we have FF2(Ĩ) ≤ FF2(I).
Let s ∈ O be a configuration of the open bins of FF2. Then, we have FF2(s, I) ≥ FF2(I).

Now, let I be the set of items we consider. It follows from the observation that we can
assume that the items in I could be arranged perfectly in bins, that is we have OPT(I) =
|I|/B.

Let m = sup{u ∈ N : u3 ≤ |I|}. Using the same technique as in the proof of Theorem 82
we can reduce the case of items arriving in random order to the case of items that are sampled
independently and identically distributed.

I Lemma 96. Let F be the discrete perfect-packing distribution induced by I, that is the
uniform distribution on I. Then, we have

E [FF2(Iσ)] ≥ m2E
[
FF2(IFm)

]
−O(m2).

Let O(IFm) denote the number of items in open bins, if FF2 is applied to IFm. We can
estimate the number of covered bins in terms of the open bins:

E
[
FF2(IFm)

]
≥

⌊
m− E

[
O(IFm)

]
B

⌋
. (33)

Then, applying the previous lemma leads us to

E [FF2(Iσ)]
OPT(I) = B · E [FF2(Iσ)]

|I|

≥
B ·m2E

[
FF2(IFm)

]
−O(m2)

|I|

=
m3 −m2 · E

[
O(IFm)

]
−O(m2)

|I|
.

Therefore, if we can show that E
[
O(IFm)

]
∈ O(m0.5+ε), the statement follows. This will

be the goal of the remaining part of the proof.
If the items FF2 has to pack are drawn independently and identically distributed with

respect to a discrete perfect-packing distribution F , we can model the behavior of FF2 as
a Markov chain (Xm) with state-space S = N0 ×O. The first component of Xm states the
number of covered bins and the second component the open-bin configurations after the m-th
item has been processed. In (33) we have seen that we can estimate the performance ratio in
terms of the number of items in open bins. Let Ym = g(Xm) be the stochastic process with
state space NB0 where Y im, i ∈ [B], denotes the number of bins with bin level i in Xm.

Now, we construct a chain (Zm), which we will compare to (Ym), the comparison chain.
The state space S of (Zm) will be also NB0 . At first we give an informal idea of (Zm). Let F ∗
be the distribution on I = {(1, 1), . . . , (1, k)}, where p((1, 1)) = B−(k−1)

B , and p((1, j)) = 1
B

for j ∈ [2 : k]. We can think of Zim as the number of bins of bin level i, if we apply FF2
to IF∗m with the restriction, that the first B − (k − 1) items in a bin are counted as items of
color 1.

114 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

Now we describe (Zm) in a formal way: For i ∈ [B − 1] let vi = (v1
i , . . . , v

B
i) denote the

vector in NB0 with vii = −1, vi+1
i = 1 and the remaining entries are zero. Furthermore, let

v0 = (1, 0, . . . , 0).
Assume we are given a state (s1, . . . , sB) = s ∈ S. We set

Ms
1 = {i ∈ [B − (k − 1) : B − 1] : si > 0}

Ms
2 = {i ∈ [B − k] : si > 0} ∪ {0}.

Let p denote the transition kernel of (Zm). If Ms
1 = ∅, we set

p(s+ vmaxMs
2
|s) = 1.

Now assume Ms
1 6= ∅. Let m1, . . . ,mu denote the indices contained in Ms

1 , and without loss
of generality we assume that m1 > . . . > mu. Furthermore, we set m0 := B. Then, for j ∈ [u],
we set

p(s+ vj |s) = mj−1 −mj

B
and p(s+ vmaxMs

2
|s) = mu

B
.

Now we show that we can consider (Zm) as a minorant for (Ym). In order to do this,
we construct a coupling of the two processes. That is, we construct a process (Ȳm, Z̄m)
such that Ȳm has the same distribution as Ym and Z̄m has the same distribution as Zm.
Furthermore for j ∈ [0 : B − 1], the following inequality will be satisfied:

j∑
i=0

Ȳ B−im · (B − i) ≥
j∑
i=0

Z̄B−im · (B − i). (34)

It follows immediately that Ȳm always has at least as many bins covered as Z̄m.
Now we show how we can construct such a coupling. We will do this using induction. It

is clear that (34) is satisfied for the first B − k many items. If there is a j with
j∑
i=0

Ȳ B−im · (B − i) >
j∑
i=0

Z̄B−im · (B − i)

(34) will also be true after packing the (m + 1)-th item. Therefore, we call j critical if
there is equality in (34) and Z̄B−(j+1)

m > 0. But then we have Ȳ B−(j+1)
m ≥ Z̄

B−(j+1)
m > 0,

otherwise (34) would be violated for j + 1. Let pZ̄(B − j) denote the probability that we
put the (m+ 1)-th item in a bin with bin level at least (B − j), and pȲ (B − j) is defined
correspondingly.

Due to construction of Z̄ we have pZ̄(B − j) = j/B for j ∈ [k− 1] and pZ̄(B − j) = 1 for
j ∈ [k : B]. Now consider a bin of Xm containing B − j items. If j ∈ [k : B] we will put the
next item in a bin with bin level B− j with probability 1. Therefore, assume that j ∈ [k− 1].
Then, there are j colors in this bin missing. Since we are dealing with discrete perfect-packing
distributions, the probability to draw a missing color is at least j/B. Therefore, we see that
for all critical j we have

pȲ (B − j) ≥ pZ̄(B − j). (35)

Let U be a random variable which is uniformly distributed on [0, 1]. Let w = min{` ∈
[B] : pȲ (B − `) ≥ U} and w′ = min{`′ ∈ [B] : pZ̄(B − `′) ≥ U}. It follows from (35) that
w ≤ w′. Then, we obtain Ȳm+1 from Ȳm putting the new item into a bin with bin level B−w
and we obtain Z̄m+1 from Z̄m putting the new item into a bin with bin level B −w′. We see
that (Ȳm+1, Z̄m+1) also satisfies (34).

Now we will analyze the growth of the comparison chain.

5.2. Deferred Proofs 115

I Lemma 97. We have

E

[
B−1∑
i=1

Zim

]
∈ O(m0.5+ε).

To prove the statement we use the toolbox of the mathematical machinery for stochastic
processes. We will use a statement from [65], which deals with quantifying the growth of
trajectories of stochastic processes. We will repeat the statement to make the proof of the
lemma self-contained.

Let a be a function, which satisfies the following condition: Suppose that for some na ∈ Z+
the function a : [na,∞)→ (0,∞) satisfies the following conditions

1. x 7→ a(x) is increasing on x ≥ na;
2. limx→∞ a(x) =∞;
3.
∑
n≥na a(n)−1 <∞.

I Lemma 98 (Theorem 2.8.1 in [65]). Let Zm be an Fm-adapted process on R+. Suppose
that there exists a non-decreasing function f : R+ → R+ and a constant b ∈ R+ for which
f(Y0) is integrable, and

E [f(Zm+1)− f(Zm)| Fm] ≤ b almost surely.,

for all m ≥ 0. Define the non-decreasing function f−1 for x > 0 by

f−1(x) := sup{y ≥ 0 : f(y) < x}.

Furthermore, let a be as described above. Then, almost surely for all but finitely many m ≥ 0,

max
0≤j≤m

Zj ≤ f−1(a(2m)).

Now we want to apply this statement to prove Lemma 97.

Proof of Lemma 97. At first, we observe that due to the construction of Zm we have∑B−k
i=1 Zim ≤ 1. Now we show that also for i ∈ [B − (k − 1) : B − 1] it is true that E

[
Zim
]
∈

O(m0.5+ε). We want to apply the previous lemma and set f(x) = x2 and a(x) = x1+2ε.
An easy computation shows that E

[
(Zim+1)2 − (Zim)2

∣∣Zm] ≤ 1. Then, we see that

max
0≤j≤m

Y ij ≤ f−1(a(2m)) ≤ 2m0.5+ε

almost surely for all but finitely many m. Therefore, we have E
[∑B−1

i=1 Zim

]
∈ O(m0.5+ε). J

So the proof of Theorem 83 follows. J

5.2.11 An Online Algorithm for Class-constrained Bin Covering with
General Item Sizes

I Corollary 84. There exists an online algorithm with random-order ratio 1/3 for class-
constrained bin covering with general item sizes.

Proof of Corollary 84. There must be two conditions satisfied to cover a bin:

The total size of items in a bin is at least 1. We call this the size-condition.
There must be items of at least k different colors. This is the color-condition.

116 5. Analysis of Heuristics for Class-constrained Bin Packing and Bin Covering

We treat the size-condition and the color-condition independently. The idea of the algorithm is
rather simple: We treat every third item as a color-item and the remaining ones as size-items.
Let Iσs denote the chosen size-items and Iσc the color-items. Then we pack the items from Iσs
using Dual-Next-Fit for classical bin covering and the items from Iσc (independent of their
size) using FF2. The number of covered bins is then given by min{DNF(Iσs),FF2(Iσc)}.

The proof that this procedure yields a 1/3-competitive algorithm in the random-order model
is based on the result for FF2 if items arrive in random order and the use of concentration
inequalities. Let S(Iσs) denote the total size of items in Iσs and OPTc(Iσc) denotes the
maximum number of covered bins for class constrained bin covering if we assume that the
items in Iσc are unit sized items and B = k.

I Lemma 99. We have

P
[
S(Iσs) ≤ 2

3 OPT(I)−
√

OPT(I) · log(OPT(I))
]
≤ OPT(I)−3/2, and (36)

P
[
OPTc(Iσc) ≤ 1

3 OPT(I)−
√

OPT(I) · log(OPT(I))
]
≤ k ·OPT(I)−3/2. (37)

Proof. We start by showing (36). Without loss of generality we assume that |I| is a multiple
of 3. Otherwise we add items of size 0. Let Xi denote the size of the i-th drawn item in Iσs . We
have E [Xi] = OPT(I)/|I|. Therefore, it follows that E [S(Iσs)] = 2 OPT(I)/3. The random
variables Xi are not independent, but we can see them as a sample drawn with respect to
sampling without replacement from a finite population. Applying Proposition 7 yields the
result.

We assume that |I| = OPT(I)k + b. To show the second bound we observe that the
worst case is given if we assume that there are OPT(I) items of each of the colors {1, . . . , k}
and ignore the colors of the remaining items. Let Yi be equal to one if the i-th drawn
item in Iσc is of color 1 and zero otherwise. Then we have E [Yi] = OPT(I)/|I| and hence,
E
[∑|I|/3

i=1 Yi

]
= OPT(I)/3. Again applying Proposition 7 this yields that there are at least

OPT(I)−
√

OPT(I) · log(OPT(I)) items of color one in Iσc with a probability of at least
OPT(I)−3/2. We obtain the result by applying a union to each of the k colors. J

Using the previous lemma, the fact that Dual-Next-Fit for classical bin covering is 1/2-
competitive and Theorem 83 we conclude that the proposed algorithm has a random-order
ratio of 1/3. J

6. Conclusions and Open Problems 117

6 Conclusions and Open Problems

In this thesis we discussed the performance of online algorithms for variants of bin packing
and bin covering with respect to probabilistic performance measures.

In Section 3 we studied the fundamental complexity of classical, cardinality-constrained,
and class-constrained bin packing: That is, we dealt with the question if it is possible to design
algorithms which are optimal with respect to the performance measures under consideration
or if there exist non-trivial lower bounds. This was motivated especially by the following two
points:

The race for the lower bound for the competitive ratio for online classical bin packing [9,
10, 14, 61, 82, 84];
The existence of an optimal randomized algorithm for the average performance ratio with
respect to the set of all distributions, which was shown by Rhee and Talagrand 1993 [72].

We took up the approach of Rhee and Talagrand and showed that for cardinality-constrained
and class-constrained bin packing there also exists an optimal randomized algorithm for the
average performance ratio with respect to the set of all distributions.

Using the same technique it was possible to obtain an optimal algorithm for cardinality-
constrained bin packing with respect to the random-order ratio. Then, we combined this
approach with packing small items using a First-Fit procedure, which allowed us to obtain
for each ε greater than zero a randomized algorithm Aε with RR(Aε) ≤ 1 + ε for classical
bin packing. This is a huge step forward to the question of Kenyon for an optimal algorithm
with respect to the random-order ratio [54]. Furthermore, this rules out the possibility of a
non-trivial lower bound for the random-order ratio. Then, we studied classical bin packing
with respect to the partial-permutations model: It turned out that it is necessary that all
items, and not only a fraction of them, arrive in random order to obtain an optimal algorithm.

For class-constrained bin packing we established a lower bound of 10/9 for the random-
order ratio. So this variant exhibits different complexities studying it with respect to the
probabilistic performance measures under consideration. This justifies studying bin packing
variants in different stochastic settings.

In this context a number of questions still remain to be answered:
Is there an online algorithm which is optimal with respect to the random-order ratio for
classical bin packing and what does it look like? The replacement procedure by Rhee and
Talagrand and our First-Fit-approach fail on packing small items optimally. So there is a
new approach necessary to handle this case.
What is the complexity of the studied bin covering variants with respect to the performance
measures under consideration? This question was considered in [26] in the special case
that the demand is given by a parameter B ∈ N, all item sizes are in {1, . . . , B}, and the
items are drawn independently and identically distributed.
In the case of general item sizes it is unclear how to transpose the replacement procedure
established by Rhee and Talagrand to the case where we have to cover bins. Perhaps, it
is more promising to try to adapt the approach of Gupta and Radovanovic [46], which is
based on gradient descent, to this more general setting.
Finally, the case of class-constrained bin covering with general item sizes is even more
intricate: Is it possible to overcome the difficulty that items have different colors or do
non-trivial lower bounds for the probabilistic performance measures exist?
Eventually, it is interesting to find more bin packing/bin covering variants, which have
different complexities in the considered probabilistic settings. A possible candidate could
be dynamic bin packing, a bin packing variant where items also depart after some time.

118 6. Conclusions and Open Problems

In Section 4 we showed that in the bounded-space setting it is possible to beat important
worst-case bounds when we consider the random-order ratio:

There exists a 4-bounded-space algorithm for classical bin packing with a random-order
ratio, which is smaller than h∞ ≈ 1.691. Here, h∞ is the lower bound for the competitive
ratio of bounded-space algorithms established by Lee and Lee [58], which holds true for
every bounded-space algorithm – no matter how many bins it is allowed to use.
For classical bin covering we showed that the random-order ratio of Dual-Next-Fit lies in
the interval [0.502 : 0.6̄], proving the conjecture given in [17].

There are huge gaps between the given lower and upper bounds, but this is nothing unusual
in this area: For the random-order ratio of Best-Fit in classical bin packing only a lower
bound of 1.08 and an upper bound of 1.5 is known [54], and this gap remains open since
more than twenty years. Nonetheless, it would be very interesting to tighten these gaps. For
Dual-Next-Fit we assume that the upper bound of 2/3 represents the truth.

Moreover, it is interesting to analyze the performance of bounded-space algorithms with
small numbers of bins for classical bin packing in more details: Of special interest is the
question of how many bins are necessary to break the worst-case lower bound of h∞ in the
random-order model. It follows from [20] that one bin is not sufficient, but possibly two or
three bins are.

Finally, in Section 5 we studied selected heuristics for class-constrained bin packing
and bin covering. When we analyzed Next-Fit, First-Fit and the ColorSets-approach for
class-constrained bin packing we found that the performance with respect to the average
performance ratio and the random-order ratio differs clearly. So the different complexity
observed in Section 3 is not only a theoretical phenomenon, but also concerns common
heuristics. This underlines for a second time that it is important to consider different
probabilistic performance measures.

Then, we turned to the analysis of class-constrained bin covering: Here, we do not
observe different behaviors of Next-Fit- and First-Fit-approaches with respect to the average
performance ratio and the random-order ratio. Actually, the analyzed heuristics Dual-Next-
Fit and FF2 benefit strongly from randomized input (in contrast to their counterparts for
class-constrained bin packing). FF2 is even optimal in the case of unit sized items that are
revealed in random order. We used this result to show the existence of a randomized offline
algorithm with approximation ratio 1/3 for class-constrained bin covering with general item
sizes. As far as we know this is the first algorithm designed for this problem.

Especially, in class-constrained bin covering there are several open questions:

Even in the case of packing unit sized items online, there is an exponentially large gap
between the best known upper bound O

(
log(k)−1) and the best known algorithm with

competitive ratio of Ω(1/k) [37].
For the offline version with unit sized items it is known that it is possible to solve it
in polynomial time. But what about the complexity of the case of general item sizes?
The problem is NP-complete, but do asymptotic (fully) polynomial time approximation
schemes exist, and what is possible in the case that the number of different colors is not
constant but part of the input?

References 119

References
1 Susanne Albers and Michael Mitzenmacher. Average-case analyses of first fit and random

fit bin packing. Random Structures & Algorithms, 16(3):240–259, 2000.
2 David Arthur, Bodo Manthey, and Heiko Röglin. k-means has polynomial smoothed com-

plexity. In Proc. of the 50th Annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 405–414, 2009.

3 Eyjolfur Ingi Asgeirsson and Cliff Stein. Bounded-space online bin cover. Journal of
Scheduling, 12(5):461–474, 2009.

4 Susan F Assmann. Problems in discrete applied mathematics. PhD thesis, Massachusetts
Institute of Technology, Department of Mathematics, 1983.

5 Susan F Assmann, David S Johnson, Daniel J Kleitman, and JY-T Leung. On a dual
version of the one-dimensional bin packing problem. Journal of Algorithms, 5(4):502–525,
1984.

6 Luitpold Babel, Bo Chen, Hans Kellerer, and Vladimir Kotov. Algorithms for on-line
bin-packing problems with cardinality constraints. Discrete Applied Mathematics, 143(1-
3):238–251, 2004.

7 János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. Online Bin
Packing with Cardinality Constraints Resolved. In Proc. of the 25th Annual European
Symposium on Algorithms (ESA), pages 10:1–10:14, 2017.

8 János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A New and Im-
proved Algorithm for Online Bin Packing. In Proc. of the 26th Annual European Symposium
on Algorithms (ESA), pages 5:1–5:14, 2018.

9 János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A new lower
bound for classic online bin packing. arXiv preprint arXiv:1807.05554, 2018.

10 János Balogh, József Békési, and Gábor Galambos. New lower bounds for certain classes
of bin packing algorithms. Theoretical Computer Science, 440:1–13, 2012.

11 Cyril Banderier, René Beier, and Kurt Mehlhorn. Smoothed analysis of three combinato-
rial problems. In Proc. of the International Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 198–207, 2003.

12 Rémi Bardenet, Odalric-Ambrym Maillard, et al. Concentration inequalities for sampling
without replacement. Bernoulli, 21(3):1361–1385, 2015.

13 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration Inequalities: A
Nonasymptotic Theory of Independence. Oxford University Press, 2013.

14 Donna J Brown. A lower bound for on-line one-dimensional bin packing algorithms. Co-
ordinated Science Laboratory Report no. UILU-ENG 78-2257, R-864, ACT-19, 1979.

15 Alberto Caprara, Hans Kellerer, and Ulrich Pferschy. Approximation schemes for ordered
vector packing problems. Naval Research Logistics, 50(1):58–69, 2003.

16 Barun Chandra. Does randomization help in on-line bin packing? Information Processing
Letters, 43(1):15–19, 1992.

17 Marie G Christ, Lene M Favrholdt, and Kim S Larsen. Online bin covering: Expectations
vs. guarantees. Theoretical Computer Science, 556:71–84, 2014.

18 Edward G Coffman Jr, Costas Courcoubetis, Michael R Garey, David S Johnson, Lyle A
McGeoch, Peter W Shor, Richard R Weber, and Mihalis Yannakakis. Fundamental discre-
pancies between average-case analyses under discrete and continuous distributions: A bin
packing case study. In Proc. of the 23rd Annual ACM Symposium on Theory of Computing
(STOC), pages 230–240, 1991.

19 Edward G Coffman Jr, János Csirik, Gábor Galambos, Silvano Martello, and Daniele Vigo.
Bin packing approximation algorithms: survey and classification. Handbook of combinatorial
optimization, pages 455–531, 2013.

120 References

20 Edward G Coffman Jr, János Csirik, Lajos Rónyai, and Ambrus Zsbán. Random-order bin
packing. Discrete Applied Mathematics, 156(14):2810–2816, 2008.

21 Edward G Coffman Jr, David S Johnson, Peter W Shor, and Richard R Weber. Markov
chains, computer proofs, and average-case analysis of best fit bin packing. In Proc. of the
25th Annual ACM Symposium on Theory of Computing (STOC), pages 412–421, 1993.

22 Edward G Coffman Jr, David S Johnson, Peter W Shor, and Richard R Weber. Bin packing
with discrete item sizes, part ii: Tight bounds on first fit. Random Structures & Algorithms,
10(1-2):69–101, 1997.

23 Edward G Coffman Jr, Kimming So, Micha Hofri, and AC Yao. A stochastic model of
bin-packing. Information and Control, 44(2):105–115, 1980.

24 János Csirik, Hans Frenk, Gábor Galambos, and Alexander Rinnooy Kan. Probabilistic
analysis of algorithms for dual bin packing problems. Journal of Algorithms, 12(2):189–203,
1991.

25 János Csirik and David S Johnson. Bounded space on-line bin packing: Best is better than
first. Algorithmica, 31(2):115–138, 2001.

26 János Csirik, David S Johnson, and Claire Kenyon. Better approximation algorithms for
bin covering. In Proc. of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 557–566, 2001.

27 Janos Csirik, David S Johnson, Claire Kenyon, James B Orlin, Peter W Shor, and Richard R
Weber. On the sum-of-squares algorithm for bin packing. Journal of the ACM, 53(1):1–65,
2006.

28 János Csirik and Vilmos Totik. Online algorithms for a dual version of bin packing. Discrete
Applied Mathematics, 21(2):163–167, 1988.

29 W Fernandez De La Vega and George S Lueker. Bin packing can be solved within 1+ ε in
linear time. Combinatorica, 1(4):349–355, 1981.

30 György Dósa and Leah Epstein. Online bin packing with cardinality constraints revisited.
arXiv preprint arXiv:1404.1056, 2014.

31 György Dósa and Jiří Sgall. First fit bin packing: A tight analysis. In Proc. of the 30th
International Symposium on Theoretical Aspects of Computer Science (STACS 2013), pages
538–549, 2013.

32 György Dósa and Jiří Sgall. Optimal analysis of best fit bin packing. In Proc. of the
International Colloquium on Automata, Languages, and Programming (ICALP), pages 429–
441, 2014.

33 Aryeh Dvoretzky, Jack Kiefer, Jacob Wolfowitz, et al. Asymptotic minimax character of
the sample distribution function and of the classical multinomial estimator. The Annals of
Mathematical Statistics, 27(3):642–669, 1956.

34 Evgenii Borisovich Dynkin. The optimum choice of the instant for stopping a markov
process. Soviet Mathematics, 4:627–629, 1963.

35 Matthias Englert, Heiko Röglin, and Berthold Vöcking. Worst case and probabilistic analy-
sis of the 2-opt algorithm for the TSP. In Proc. of the 18th Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1295–1304, 2007.

36 Leah Epstein. Online bin packing with cardinality constraints. SIAM Journal on Discrete
Mathematics, 20(4):1015–1030, 2006.

37 Leah Epstein, Csanád Imreh, and Asaf Levin. Class constrained bin covering. Theory of
Computing Systems, 46(2):246–260, 2010.

38 Leah Epstein, Csanád Imreh, and Asaf Levin. Class constrained bin packing revisited.
Theoretical Computer Science, 411(34-36):3073–3089, 2010.

39 Leah Epstein and Asaf Levin. Afptas results for common variants of bin packing: A new
method for handling the small items. SIAM Journal on Optimization, 20(6):3121–3145,
2010.

References 121

40 Michael Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen
mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249, 1923.

41 Carsten Fischer and Heiko Röglin. Probabilistic analysis of the dual next-fit algorithm for
bin covering. arXiv preprint arXiv:1512.04719, 2015.

42 Carsten Fischer and Heiko Röglin. Probabilistic analysis of the dual next-fit algorithm
for bin covering. In Proc. of the Latin American Symposium on Theoretical Informatics
(LATIN), pages 469–482, 2016.

43 Carsten Fischer and Heiko Röglin. Probabilistic analysis of online (class-constrained) bin
packing and bin covering. In Proc. of the Latin American Symposium on Theoretical Infor-
matics (LATIN), pages 461–474, 2018.

44 Michael R Garey and David S Johnson. Computers and intractability. W H Freeman &
Co, 2002.

45 Leana Golubchik, Sanjeev Khanna, Samir Khuller, Ramakrishna Thurimella, and An Zhu.
Approximation algorithms for data placement on parallel disks. ACM Transactions on
Algorithms (TALG), 5(4):34, 2009.

46 Varun Gupta and Ana Radovanovic. Online stochastic bin packing. arXiv preprint
arXiv:1211.2687, 2012.

47 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin
packing. In Proc. of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2616–2625, 2017.

48 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American statistical association, 58(301):13–30, 1963.

49 Klaus Jansen and Roberto Solis-Oba. An asymptotic fully polynomial time approximation
scheme for bin covering. Theoretical Computer Science, 306(1-3):543–551, 2003.

50 David S Johnson. Near-optimal bin packing algorithms. PhD thesis, Massachusetts Institute
of Technology, 1973.

51 David S Johnson. Fast algorithms for bin packing. Journal of Computer and System
Sciences, 8(3):272–314, 1974.

52 David S Johnson, Alan J Demers, Jeffrey D Ullman, Michael R Garey, and Ronald L
Graham. Worst-case performance bounds for simple one-dimensional packing algorithms.
SIAM Journal on Computing, 3(4):299–325, 1974.

53 Narendra Karmarkar and Richard M Karp. An efficient approximation scheme for the
one-dimensional bin-packing problem. In Proc. of the 23rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 312–320, 1982.

54 Claire Kenyon. Best-fit bin-packing with random order. In Proc. of the 7th Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 359–364, 1996.

55 Claire Kenyon, Yuval Rabani, and Alistair Sinclair. Biased random walks, lyapunov func-
tions, and stochastic analysis of best fit bin packing. Journal of Algorithms, 27(2):218–235,
1998.

56 Kenneth L Krause, Vincent Y Shen, and Herbert D Schwetman. Analysis of several task-
scheduling algorithms for a model of multiprogramming computer systems. Journal of the
ACM, 22(4):522–550, 1975.

57 CC Lee and DT Lee. Robust online bin packing algorithms. Technical report, Technical
report 83–03-FC-02, Department of Electrical Engineering and Computer Science, 1987.

58 Chung-Chieh Lee and Der-Tsai Lee. A simple on-line bin-packing algorithm. Journal of
the ACM, 32(3):562–572, 1985.

59 Tom Leighton and Peter Shor. Tight bounds for minimax grid matching with applications
to the average case analysis of algorithms. Combinatorica, 9(2):161–187, 1989.

60 David A Levin, Yuval Peres, and Elizabeth L Wilmer. Markov Chains and Mixing Times.
AMS, 2009.

122 References

61 Frank M Liang. A lower bound for on-line bin packing. Information Processing Letters,
10(2):76–79, 1980.

62 Denis V Lindley. Dynamic programming and decision theory. Journal of the Royal Statis-
tical Society: Series C (Applied Statistics), 10(1):39–51, 1961.

63 Bodo Manthey and Rüdiger Reischuk. Smoothed analysis of binary search trees. Theoretical
Computer Science, 378(3):292–315, 2007.

64 Pascal Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The Annals
of Probability, pages 1269–1283, 1990.

65 Mikhail Menshikov, Serguei Popov, and Andrew Wade. Non-homogeneous Random Walks:
Lyapunov Function Methods for Near-Critical Stochastic Systems. Cambridge Tracts in
Mathematics. Cambridge University Press, 2016.

66 Stephen J Montgomery-Smith. Comparison of sums of independent identically distributed
random variables. arXiv preprint math/9310214, 1993.

67 Christos H Papadimitriou. Computational complexity. John Wiley and Sons Ltd., 2003.
68 Alexander Pruss. A maximal inequality for partial sums of finite exchangeable sequences

of random variables. Proceedings of the American Mathematical Society, 126(6):1811–1819,
1998.

69 Prakash Ramanan. Average-case analysis of the smart next fit algorithm. Information
Processing Letters, 31(5):221–225, 1989.

70 Prakash Ramanan, Donna J Brown, Chung-Chieh Lee, and Der-Tsai Lee. On-line bin
packing in linear time. Journal of Algorithms, 10(3):305–326, 1989.

71 Wansoo T Rhee and Michel Talagrand. Exact bounds for the stochastic upward matching
problem. Transactions of the American Mathematical Society, 307(1):109–125, 1988.

72 Wansoo T Rhee and Michel Talagrand. On-line bin packing of items of random sizes, ii.
SIAM Journal on Computing, 22(6):1251–1256, 1993.

73 Thomas Rothvoß. Approximating bin packing within O(log(OPT) log(log(OPT))) bins. In
Proc. of the 54th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 20–29, 2013.

74 Steven S Seiden. On the online bin packing problem. Journal of the ACM, 49(5):640–671,
2002.

75 Richard Serfozo. Basics of applied stochastic processes. Springer Science & Business Media,
2009.

76 Hadas Shachnai and Tami Tamir. Polynomial time approximation schemes for class-
constrained packing problems. Journal of Scheduling, 4(6):313–338, 2001.

77 Hadas Shachnai and Tami Tamir. Tight bounds for online class-constrained packing. Theo-
retical Computer Science, 321(1):103–123, 2004.

78 Peter W Shor. The average-case analysis of some on-line algorithms for bin packing. Com-
binatorica, 6(2):179–200, 1986.

79 David Simchi-Levi. New worst-case results for the bin-packing problem. Naval Research
Logistics, 41(4):579–585, 1994.

80 Daniel A Spielman and Shang-Hua Teng. Smoothed analysis of algorithms: Why the simplex
algorithm usually takes polynomial time. Journal of the ACM, 51(3):385–463, 2004.

81 Jeffrey D Ullman. The Performance of a Memory Allocation Algorithm. Technical report
100 (Princeton University. Dept. of Electrical Engineering. Computer Sciences Laboratory).
Princeton University, 1971.

82 André van Vliet. An improved lower bound for on-line bin packing algorithms. Information
Processing Letters, 43(5):277–284, 1992.

83 Eduardo C Xavier and Flávio K Miyazawa. The class constrained bin packing problem with
applications to video-on-demand. Theoretical Computer Science, 393(1-3):240–259, 2008.

References 123

84 Andrew Chi-Chih Yao. New algorithms for bin packing. Journal of the ACM, 27(2):207–227,
1980.

85 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In Proc. of the 18th Annual IEEE Symposium on Foundations of Computer Science (FOCS),
pages 222–227, 1977.

	Introduction
	Bin Packing Variants and Performance Measures
	Overview of Algorithms
	Overview of Related Literature
	Classical Bin Packing
	Cardinality-constrained and Class-constrained Bin Packing
	Classical Bin Covering and Class-constrained Bin Covering

	Overview of Results, Outline and Bibliographical Notes

	Stochastic Background
	Concentration Inequalities
	Independent and Identically Distributed Random Variables
	Dependent and Identically Distributed Random Variables

	Markov Chains
	Basics
	Properties of Markov Chains
	Stationary Distributions and Long-term Averages

	Stochastic Upright Matchings
	Problems and Estimates
	Deferred Proofs

	Useful Facts about Probabilistic Performance Measures

	Complexity of Bin Packing Variants with respect to Probabilistic Performance Measures
	Results
	Deferred Proofs
	Existence of an Optimal Algorithm for Cardinality-constrained Bin Packing with respect to the Random-order Ratio
	Existence of a Nearly Optimal Algorithm for Classical Bin Packing with respect to the Random-order Ratio
	A Lower Bound for Classical Bin Packing in the Partial-permutations Model
	Existence of an Optimal Algorithm for Class-constrained Bin Packing with respect to the Average Performance Ratio
	A Lower Bound for Class-constrained Bin Packing with respect to the Random-order Ratio

	Breaking Bounds in Bounded-space Bin Packing and Covering
	Bounded-Space Online Bin Packing
	Bounded-Space Online Bin Covering
	Results
	Deferred Proofs

	Analysis of Selected Heuristics for Class-constrained Bin Packing and Bin Covering
	Results
	Deferred Proofs
	Analysis of the ColorSets-approach with respect to the Average Performance Ratio
	Lower Bounds for Selected Heuristics for Class-constrained Bin Packing with respect to the Random-order Ratio
	Analysis of Selected Heuristics for Class-constrained Bin Packing with Unit Sized Items with respect to the Average Performance Ratio
	A Lower Bound for the Random-order Ratio of CS[NF] in the case of Unit Sized Items
	A Lower Bound for the Random-order Ratio of First-Fit in the case of Unit Sized Items
	Lower Bounds for Bounded-space Algorithms for Class-constrained Bin Packing with Unit Sized Items
	An Upper Bound for the Competitive Ratio in Class-constrained Bin Covering with Unit Sized Items
	An Upper Bound for the Competitive Ratio of Bounded-space Algorithms for Class-constrained Bin Covering
	Analysis of Dual-Next-Fit with respect to Probabilistic Performance Measures
	Analysis of FF2 in the Random-order Model
	An Online Algorithm for Class-constrained Bin Covering with General Item Sizes

	Conclusions and Open Problems

