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Abstract

The acceleration in the generation of data in the biomedical domain has necessi-
tated the use of computational approaches to assist in its interpretation. However,
these approaches rely on the availability of high quality, structured, formalized
biomedical knowledge.

This thesis has the two goals to improve methods for curation and semantic
data integration to generate high granularity biological knowledge graphs and
to develop novel methods for using prior biological knowledge to propose new
biological hypotheses.

The first two publications describe an ecosystem for handling biological knowl-
edge graphs encoded in the Biological Expression Language throughout the stages
of curation, visualization, and analysis. Further, the second two publications de-
scribe the reproducible acquisition and integration of high-granularity knowledge
with low contextual specificity from structured biological data sources on a mas-
sive scale and support the semi-automated curation of new content at high speed
and precision.

After building the ecosystem and acquiring content, the last three publications
in this thesis demonstrate three different applications of biological knowledge
graphs in modeling and simulation. The first demonstrates the use of agent-based
modeling for simulation of neurodegenerative disease biomarker trajectories using
biological knowledge graphs as priors. The second applies network representation
learning to prioritize nodes in biological knowledge graphs based on correspond-
ing experimental measurements to identify novel targets. Finally, the third uses
biological knowledge graphs and develops algorithmics to deconvolute the mech-
anism of action of drugs, that could also serve to identify drug repositioning
candidates.

Ultimately, this thesis lays the groundwork for production-level applications
of drug repositioning algorithms and other knowledge-driven approaches to
analyzing biomedical experiments.
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Prologue

The quantity of data, information, and knowledge in the biomedical domain
is increasing at an unprecedented rate — with no signs of deceleration. Even
with the assistance of information retrieval technologies, it is overwhelming, if
not impossible, for individuals or groups of researchers to be knowledgeable of
the state of the art in any but an incredibly specific topic. Besides their obvious
increases in volume and velocity, data are also increasing in variety as multi-modal
and multi-scale experiments grow more important in the investigation of complex
diseases.

As experiments’ complexities grow, so does the intellectual and temporal
burden of analysis and interpretation. Developing systematic and reproducible
methods to reduce this burden first requires the formalization and assembly of
knowledge in a computable form. The publications in this thesis build towards
leveraging and improving previously existing methodologies for extracting, for-
malizing, and storing biological knowledge to support the development and
application of algorithms towards unraveling the complex biology of disease and
proposing new therapies.

Before presenting the publications included in this thesis, background is given
on several topics present through each including the nomenclature of entities
in the biomedical literature, the techniques and formalisms used for biomedical
knowledge graphs, algorithms appropriate for analyzing biomedical knowledge
graphs, and finally, their applications.



1.1 Nomenclature

The first two sections of the introduction examine the organization of biomed-
ical knowledge, and several of the challenges faced during the process. These
challenges span from unifying the nomenclature of biologically relevant entities
used in the published biomedical literature to extracting the biological knowledge
and context surrounding those entities.

1.1.1 Issues with Gene Nomenclature

The nomenclature of genes and gene products is a particularly egregious ex-
ample of poor nomenclature within the biomedical domain. Genes often have
several names as well as several incomprehensible acronyms, or gene symbols.
For example, the HUGO Gene Nomenclature Committee (HGNC) [1] and En-
trez Gene [2] database list that the human gene microtubule associated protein
tau (hgnc:HGNC:6893, ncbigene:4137) has previously been named the G protein
B1/72 subunit-interacting factor 1 and the protein phosphatase 1, regulatory sub-
unit 103. Like with many genes, it is often acronymized to MAPT in text, but it
has additionally been previously referenced with DDPAC, FL]31424, FTDP-17,
MAPTL, MGC13854, MTBT1, MTBT2, MSTD, PPND, and PPP1R103.

Neither genes’ names nor their gene symbols convey their host species, which
leads to further ambiguities in articles discussing orthologs in model organisms.
The organization responsible for mouse gene nomenclature, Mouse Genome Infor-
matics (MGI) [3], names the mouse orthologous gene as microtubule-associated
protein tau (mgi:MGI:97180, ncbigene:17762) and lists the gene symbol as Mapt. In
this example, the name varies from the human ortholog with the introduction of
a hyphen between "microtubule" and "associated." The gene symbol differs only
in capitalization. Similarly, the organization for rat genome nomenclature, the
Rat Genome Database (RGD) [4], names the rat orthologous gene as microtubule-
associated protein tau (rgd:69329; ncbigene:29477)—exactly as in MGI. While these
orthologs from common model organisms have had related names, organisms
with genetic drift such as Zebrafish have several orthologs named microtubule-
associated protein tau a (zfin:ZDB-GENE-081027-1) and microtubule-associated
protein tau b (zfin:ZDB-GENE-081027-2) whose gene symbols are listed as mapta
and maptb, respectively. Other orthologs to human microtubule-associated protein
tau can be found in Homologene (homologene:74962), Ensembl [5], HGNC, MG,
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Table 1: Example model organism gene nomenclature databases

Organism Database Reference
Human HGNC [1]
Vertebrae VGNC [1]

Mouse MGI [3]

Rat RGD [4]
Zebrafish ZFIN [7]
Drosophila (fly) FlyBase [8]
Xenopus (frog)  Xenbase [9]

Yeast SGD [10]

- Entrez Gene [2]

PomBase, RGD, Xenbase, and Zebrafish Information Network (ZFIN). The HGNC
Comparison of Orthology Predictions (HCOP) [6] aggregates these and several
other sources of curated and predicted orthologies.

1.1.2 Nomenclature Consortia of Genes and Proteins

Most biologically relevant named entities have many names. For example,
many genes were independently discovered and characterized in different labs
and therefore named differently. As resources for exchanging genomic and protein
sequences have become more ubiquitous in the last three decades since the incep-
tion of the Entrez gene database in 1991 and the HGNC in 1996, it has become
easier to reduce those duplicates. However, this does not solve the problem of
establishing a canonical name for each entity. As stated in the previous section,
several committees and consortia have formed to standardize the nomenclature
used for genes for each species (Table [I)).

1.1.3 Nomenclature Consortia of Other Entities

Besides gene nomenclature, there are several other biologically relevant physi-
cal entities and higher-order processes that have have the same issues in nomencla-
ture. Further, for higher-order processes like pathways, mechanisms, and biologi-
cal processes, it not only remains unclear what to name each example, but where
their boundaries lie. However, deference to entities beyond genes and proteins is
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Table 2: Example entity types of interest in the biomedical domain and corresponding

nomenclature sources

Entity Type Resources

Transcripts Ensembl, miRBase

Proteins UniProt

Protein Families InterPro, neXtProt, FamPlex, ExPASy, Signor
Protein Complexes Complex Portal, FamPlex, Signor, Gene Ontology
Biological Processes Gene Ontology MeSH

Pathways Reactome, WikiPathways, KEGG

Conditions and Phenotypes Disease Ontology, Human Phenotype Ontology, MeSH

Table 3: Examples of affix categories in the FamPlex ontology adapted from Table 2 of [11]

Affix Category Example

Experimental context eGFP-{Gene name}

Protein state phospho-{Gene name}
Inhibitor shRNA-{Gene name}
Generic descriptor Proto-oncogene {Gene name}
Species mmu-{Gene name}

mRNA grounding {Gene name} mRNA

required to fully describe complex biology. Thus, several groups have attempted
to standardize and control the nomenclature of these entities (Table [2).

1.1.4 Practical Considerations in Named Entity Recognition

Besides further synonyms and morphological variations, Bachman et al. [11]
outlined several affixes corresponding to post-translational modification state,
experimental context, or other categories (Table[3).

Bachman et al. also considered issues with recognizing proteins, protein fami-
lies, and protein complexes [11]. The biomedical literature often references multi-
protein families (e.g., RAS, AKT) and multi-subunit complexes (e.g., NF-kB, AP-1)
rather than their constituent proteins. For example, the protein family of phospho-
lipase C enzymes, more commonly referenced as PLC, contains not only individual
genes (e.g., PLCE1), but also subfamilies such as PLCG, which contains the genes
PLCGI1 and PLCG2. The NF-kB complex comprises five proteins (i.e., RELA, RELB,
REL, NFKB1, and NFKB2) and poses the further challenge of how named entities
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should be interpreted after recognition.

1.1.5 Automating Named Entity Recognition

In practice, automating the process of recognizing named entities has three
major tasks: coreference resolution, Named Entity Recognition (NER), and entity
linking.

Coreference Resolution

During the process of coreference resolution, antecedents or anaphors are
identified and connected to their preceding or succeeding words or phrases. In
the example "The EGFR belongs to a family of protein-tyrosine kinase recep-
tors. It is activated by the binding of EFG.", coreference resolution identifies that
the subject of the second sentence, it, refers to EGFR. There are several classical
rule-based coreference resolution algorithms including the syntax-based Hobbs
theory [12], discourse-based centering theory [13]], and syntactic knowledge-based
RAP algorithm [13]. However, recent improvements to coreference resolution
have focused on four categories of machine learning techniques: mention-pair
models [14-16], entity-mention models [17-19], mention-ranking models [20-23],
and cluster-ranking models [24-26]]. Recent work has focused on using recurrent
neural networks with architectures such as the bi-directional long-short-term
memory [27] and variants such as the bi-directional long-short-term memory
conditional random field [28]].

Named Entity Recognition

During the process of NER, words or phrases are identified to have domain-
specific, non-trivial meaning. In the biomedical domain, NER is used to identify
proteins [29-32]], chemicals [28)} 33, 34|, diseases [28,35], taxa [36, 37], and other
entity types listed in Table

Unlike the difference between machine learning models of coreference resolu-
tion with rule-based or natural language processing models, NER workflows often
contain a mixture of preprocessing steps, rule-based feature generation, statistical
models, machine learning models, and postprocessing steps. For example, Lee et
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al. [38] defined six feature classes for training a disease recognition model using a
conditional random field:

1. Morphological features that contained the original tokens, the corresponding
stemmed tokens, and their affixes

2. Features based on their terminology of trigger words related to diseases,
body parts, and human ability

3. Classical part-of-speech features.

4. Transformation of the original tokens to remove continued vowels, such as
the superfluous “u” in the british spelling of tumour.

5. Features using a dictionary lookup on the merged disease vocabulary (MEDIC) [39].

6. Annotated abbreviations using BIOADI [40].

Other workflows have opted to use end-to-end machine learning following the
advent of word embedding techniques such as word2vec [41]] and GloVe [42] and
deep learning techniques like the long-short-term memory conditional random
tield architecture [43]. Both variants require carefully constructed and annotated
corpora such as GENIA [44] or those provided by the various BioCreative chal-
lenges (https://biocreative.bioinformatics.udel.edu). With machine learn-
ing techniques, the annotations become more important as they are also necessary
for supervised learning.

Entity Linking

During the process of entity linking (i.e., normalization, grounding), named
entities that have been recognized in the previous step (NER) are grounded to terms
in controlled vocabularies or databases. For example, this means that the token
MEKT1 should be recognized as a synonym of the MAP2K1 gene and subsequently
grounded with the HGNC identifier hgnc:HGNC:6840, Entrez Gene identifier
ncbigene:5604, UniProt identifier uniprot:Q02750, and any other desired equiv-
alent identifiers. Practically, mappings between equivalent terms in databases
are manually curated by database maintainers and data stewards. As more of
the nomenclatures, terminologies, and taxonomies useful to the bioinformatics
community move towards ontological formats like the Web Ontology Language
(OWL) and the Open Biomedical Ontology (OBO) standard, these mappings
become more reusable. Concurrently, tools like the European Bioinformatic Insti-
tute (EBI) Ontology Lookup Service (OLS) [45] and emerging EBI Ontology Xref
Service (https://www.ebi.ac.uk/spot/oxo) have been able to provide the com-
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Figure 1: The frequency by which HGNC gene symbols change over time. This figure was
generated with the Jupyter notebook available at [46].

munity with technical solutions for storing, indexing, and looking up information
about these terms.

1.1.6 Beyond Nomenclature and Standards for Reference

The ambiguity of nomenclature in the biomedical domain presents several
problems, especially as the acceleration of publication makes automated informa-
tion extraction more relevant.

Anecdotally, there are few real-world data sets using HGNC gene symbols
as identifiers that can be directly and fully mapped to HGNC entries. This is
because the gene symbols listed by HGNC are notoriously unstable—hundreds or
thousands change per year (Figure[I). These changes might be due to the splitting
of a single gene entry into a family of entries, the merging of disparate genes
that were the same, or deprecation of previous nomenclature. Further, Figure
provides an underestimate of the impact of this issue due to the fact that the
HGNC only lists the most recent date of change for each gene symbol.

The Minimal Information Required In the Annotation of Models (MIRIAM)
standard was proposed in order to standardize the way named biological entities
are referenced in models and databases in order to address the issues with repro-
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ducibility arising from the previously described phenomena in natural language as
part of the Minimum Information for Biological and Biomedical Investigations [48].
At its core, MIRIAM posits that instead of imprecise names, the bioinformatics
community should shift towards using identifiers with five properties: unique
(i.e., never assigned to two different entities), perennial (i.e., never changes and
is permanent), standards compliant (i.e. conform to standards like Universal Re-
source Identifier (URI), Compact URI (CURIE), etc.), free to use, and resolvable
(i.e., can be transformed into locations of appropriate online resources). Note that
in the previous section, identifiers were written using the CURIE style (e.g., an
identifier prefixed with a namespace). Curiously, the HGNC identifier includes a
redundant mention of the namespace within the identifier. Further standardization
of redundant CURIEs is discussed in Chapter

As Figure (1] suggests, HGNC gene symbols are not perennial and are not
MIRIAM compliant. However, even a decade after the proposal of MIRIAM, many
databases have not yet shifted away from storing and annotating data with HGNC
gene symbols to using more stable HGNC identifiers.

Unfortunately, there has been few or no concerted efforts from authors and
publishers to better annotate articles with identifiers for named entities. Thus,
NER and entity linking remain relevant as ever, especially due to the increasing
volume of literature describing increasingly complex biology across many scales.

1.2 Formalization of Knowledge

The most abstract level of knowledge, methodological knowledge, describes
the formalisms through which knowledge can be represented. The two most com-
mon schemata for methodological knowledge are Resource Description Format
Schema (RDFS) and OWL. They provide the faculty to describe the middle level,
conceptual knowledge, which encodes the classes, relations, and constraints rele-
vant to a given domain. The most common conceptual knowledge formats in the
biomedical domain are Biological Pathway Exchange Language (BioPAX), Systems
Biology Markup Language (SBML), and Biological Expression Language (BEL).
The most concrete level is factual knowledge, which consists of instances of these
classes and relationships [49]. These abstractions are illustrated in Figure
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Figure 2: The interplay of the three levels of knowledge abstraction in an example from
the biological domain. This figure can be cited directly with [50].

1.2.1 Realizations

Resource Description Framework Schema

Resource Description Format (RDF) uses triples of subjects, predicates, and
objects to represent relations between concepts. Each resource in a triplet is backed
by an Internationalized Resource Identifier (IRI). While its simple format grants
it expressive power, RDF lacks structure or domain specificity. RDFS is a set of
concepts and predicates appropriate for describing knowledge at the conceptual
level. Included are predicates for asserting class hierarchies (rdfs:subClassOf),
asserting memberships (rdf:type), describing the domain and range of predi-
cates (rdfs:domain, rdfs:range), and representing epistemological concepts such as
classes, literals, and other data types [51]. RDF and RDFS are supported by most
popular programming languages with packages to serialize and deserialize RDF
in a variety of formats (e.g., eXtensible Markup Language (XML), N-Triples, turtle,
etc.) and reason over RDFS.
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Figure 3: The expressive levels of OWL ontologies. Adapted from [49].

Web Ontology Language

Like RDFS, OWL consists of the methodological knowledge for modeling
domain-specific knowledge. Its most simple form, OWL Lite, enables the repre-
sentation of classes, their properties, relations, and constraints. The most common
form, OWL Descriptive Logic (DL), contains the additional expressive power of
descriptive logic over which inferences can be made. The most expressive form,
OWL Full, removes the remaining restrictions on OWL DL but paradoxically
becomes undecidable and hinders automatic reasoning [49].

Open Biomedical Ontologies

As the usage of ontologies began to percolate into the biomedical domain,
Ashburner and Lewis proposed the OBO standard [52] to encourage the standard-
ization of formats and identifiers, to promote openness and community feedback,
and to organize information in logical units. The OBO Foundry [53] has emerged
as a central repository that has successfully supported collaboration such as the col-
lation of several previously disparate ontologies into the Cell Line Ontology [54].
Because the syntax of OBO is not directly compatible with OWL, several converters
exist to further support the integration of OBO with other aspects of the Semantic
Web.
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1.2.2 Standardized Curation of Biological Pathways

As biological knowledge is generated from experiments or extracted from the
literature it must be stored in a standard format to be generally useful. This section
describes several of those formats and their applicability domains.

Biological Pathways Exchange Language

BioPAX uses OWL to define the conceptual knowledge in the domain of bi-
ological pathways on the molecular and cellular level. Its ability to collect and
index metabolic, signaling, molecular, gene-regulatory, and genetic interaction
networks makes it an ideal exchange format for the growing number of pathway
databases with varying specificities in regards to target organisms and disease
indications [55].

This was realized with the aggregation of several pathway and interaction
databases (e.g., BindingDB [56], DrugBank [57], IntAct [58], Kyoto Encyclopedia
of Genes and Genomes (KEGG) [59], Reactome [60], WikiPathways [61]], etc.) to
form the Pathway Commons Database [62]. Immediately, this database enabled
exploration of molecular interactions at the highest granularity. For example, it
powers the Enrichment Map Cytoscape Plugin [63] that was used to support data-
driven analysis in identifying medulloblastoma subgraphs based on intratumoral
heterogeneity [64].

Systems Biology Markup Language

SBML uses a custom formalism defined with XML to represent the dynamic
and quantitative aspects of biochemical reactions, signal transduction, and gene
regulatory networks [65]. Like BioPAX, it provides the conceptual framework
necessary to encode knowledge in the biomedical domain. SBML also provides
the basis for CellDesigner [66], which has been incredibly successful in allow-
ing biologists without informatics backgrounds to diagram gene regulatory and
biochemical networks as well as import them to graphical ordinary differential
equation solvers and simulation workflows.

11



Gene Ontology Causal Activity Models

Gene Ontology Causal Activity Models (sGO-CAMs) (https://geneontology.
cloud/docs) combine disparate Gene Ontology (GO) annotations to generate net-
works of relationships between genes, their molecular functions, the biological
processes in which they participate, and the cellular components in which they
reside. Relationships between genes can be expressed using terms from the Rela-
tions Ontology (http://www.obofoundry.org/ontology/ro.html) and processed
using its rich set of axioms. GO-CAMs are relatively new compared to the other
formats, but have the potential to provide the most standardized interpretation of
the molecular interactions for which GO is already the standard resource.

Biological Expression Language

BEL supports the assembly of context-specific qualitative causal and correl-
ative relations between biological entities across multiple scales. Statements are
assembled and serialized in BEL Script with full provenance information including
namespace references, relation provenance (citation and evidence), and relation
metadata such as biological context (i.e. anatomy, cell, disease, etc.) [67]. The
schemata of BEL relations and BEL Scripts are depicted in Figures4/and |5, respec-
tively.

Data-driven network analyses on BEL knowledge assemblies have been suc-
cessfully performed across a wide variety of clinical applications, including the
identification of upstream controllers in hepatocytes [68], mechanistic hypoth-
esis generation for drug response [69], and patient stratification [70] by using
over-representation analysis techniques developed such as RCR [71] and pathway
topological analytical methods such as NPA [72].

The foray into new disease areas and clinical indications has necessitated
the assembly of knowledge on wider scales from the genetic to the phenotypic
and population levels. While most modeling languages and data formats for
assembling knowledge are insufficient for such a task, BEL possesses the faculty
for capturing multi-scale knowledge.

In the same way BioPAX was successful at combining many molecular pathway
and interaction database, BEL has the potential to serve as a semantic integration
platform through which knowledge and data across scales can be integrated and
analyzed. BEL can be used to reason over the previously untapped sources of
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Figure 4: A BEL relation is encoded as a triplet containing a subject, a predicate, and an
object. The predicate can represents the type of relation while the subject and object can
either represent the abundance of molecular entities such as genes, proteins, chemicals, or
more abstract concepts such as biochemical reactions, biological processes, and patholo-
gies. Identifiers for these concepts use references to external namespaces (Figure 4B) to
qualify their respective names. In this example, Chemical Entities of Biological Interest
(ChEBI) [73] is used to qualify chemicals and Medical Subject Headings (MeSH) [74] for
biological processes. This figure can be cited at [75].

chemogenomic and chemical genetic information in the realm of disease-disease,
disease-protein, disease-chemical, and chemical-chemical networks.

Modeling interactions across scales is not without its issues. As biological pro-
cesses, pathologies, and phenotypes represent collections of molecular interactions,
they are prone to having excessive associative and correlative relations to other
biological entities. This biases typical graph mining algorithms that rely on graph
traversals to visit these types of nodes, and therefore produce less meaningful
results. While it is not within the scope of this thesis, there are many solutions for
addressing these issues whose complexities vary from simple filtering to empirical
traversal rules or adding extra rules for traversals.

Systems Biology Graphical Notation

Systems Biology Graphical Notation (SBGN) [76] attempts to address the in-
consistency and ambiguity of current non-standardized notations for biological
pathways that is problematic among BioPAX, SBML, BEL, and other standardized
notations. It encompasses three variants: processes diagrams, entity relationship
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# Document Metadata
SET Name = “Alzheimer Disease Knowledge Assembly”
SET Version = “1.0.0"

# Namespace Definitions
DEFINE NAMESPACE CHEBI = “http:// ... /chebi.belns”

# Annotation Definitions
DEFINE ANNOTATION Disease = “http:// ... /disease.belnanno”

# Relation Metadata

SET Citation {“PubMed”, “...”, "“..."}
SET Evidence oo

SET Disease = "Alzheimer Disease”

# Relation Statements
a(CHEBI:corticosteroid) decreases bp(MESH:”Oxidative Stress"”)

Figure 5: A BEL Script contains three sections: A) the document metadata section provides
provenance information such as the name, version, and author; B) the definitions section
provides references to external resources that are used as identifiers and metadata in the
relations section; and C) the relations section contains BEL relations and their metadata:
minimally including a citation and evidence with the possibility to include additional
information such as biological context (e.g., cell, anatomy, disease). This figure can be cited

at .
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Table 4: Examples of qualities of biological relationships and their attributes

Quality Choices

Types of Relation Causal, Correlative, Associative, Ontological

Directionality of Relation Unidirectional or Bidirectional (reflexive)

Polarity of Relation Increases, Decreases, None

Causality of Relation Direct or Indirect

Modes of Entity Activity, Abundance, Efflux

Modifications of Entity =~ Post-translational modifications, gene/protein fusions, mutations
States of Entity Subcellular Location, pre-/post-conditions

diagrams, and activity flow diagrams. In a process diagram, each entity is de-
picted along with its transformations to other entities and the regulators of those
processes. In the entity relationship diagram, each entity appears only once and
relationships are considered independent. In the activity flow diagram, a direct
presentation of the influence between entities is favored over their relationships’
mechanistic underpinnings. This variant is most related to BEL and GO-CAMs,
while the others are more useful for the specific mechanistic processes that are
often described in SBML models.

1.2.3 Standardized Curation of Biological Knowledge

There exist thousands of biological data databases describing different biologi-
cal phenomena with varying semantics and levels of granularity (Table[d). While
many have begun to use standardized ontologies and knowledge formats, many re-
main. Further, the use of standard formats does not guarantee interoperability [77].
Integrative approaches have begun to alleviate this burden for domain-specific
use cases (e.g., gene set enrichment analysis on pathway and gene set databases).
In Chapter 5| a general approach for creating integrative databases using BEL is
described.

Further, the quantity of knowledge in the biomedical domain is increasing at
an unprecedented rate, with no signs of deceleration. Even with the assistance
of information retrieval technologies, it is overwhelming, if not impossible, for
individuals or groups of researchers to be knowledgeable of the state-of-the-art in
any but an incredibly specific topic. Therefore, researchers need the assistance of
automated relation extraction systems to assist in the enrichment of previously
existing knowledge available and integrated from relevant, high-quality databases.
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Table 5: Examples of relation extraction and reading systems with varying degrees of
domain specificity

Type Name Reference

Eidos https://github.com/clulab/eidos

General Purpose

TRIPS/CWMS http://trips.ihmc.us/parser/cgi/cwmsreader

Hume https://github.com/BBN-E/Hume
Sofia https://sofia.worldmodelers.com/ui/
TEES https://github.com/jbjorne/TEES
REACH https://github.com/clulab/reach
TRIPS/DRUM  http://trips.ihmc.us/parser/cgi/drum
Biology-Specific i/}{)j;;ecz i ?;:;}ps ://github.com/ddmcdonald/sparser
RLIMS-P https://research.bioinformatics.udel.edu/rlimsp
ISI/AMR https://githu..com/sgarg87/big_mech_isi_gg
Geneways [79]
BELIEF [80]
e BelSmile [81]
BEL-Specific BELTracker [82]
BELMiner [83]

The work in this thesis makes use of an ensemble of natural language processing-
based, rule-based, and machine-learning based relation extraction systems through
the Integrated Dynamical Reasoner and Assembler (INDRA) interface. References
to several of its constituent general purpose and biology-specific relation extraction
systems are listed in Table |5, Additionally, it contains a sampling of BEL-specific
relation extraction systems popularized by the corresponding BioCreative V BEL
Task (https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/
track-4-bel-task).

Issues with Automated Relation Extraction Systems

Neither relation extraction systems based on rules, natural language processing,
nor machine learning are without their issues. None constitute general artificial
intelligence, and thus all require maintenance and improvement to sustain their
abilities to process recent scientific literature; each requires increasingly large and
carefully annotated corpora to support the generation of new rules or train the
extraction system to recognize new relationships.
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Because relation extraction systems have many subsystems with their own sub-
tasks, the errors from each propagate throughout. NER remains a difficult task due
to the availability and generation of supporting ontologies that precisely describe
given terms. Though it remains unpublished and tangential to the work presented
in this thesis, during the course of the curation of unstructured information out-
lined in Chapter 4 an ontology was generated to capture the complex terminology
surrounding the human microtubule associated protein Tau. It was then extended
during curation of other related candidate pathophysiological mechanisms of the
aetiology of Alzheimer’s disease (AD) and named the Curation of Neurodegener-
ation Supporting Ontology (CONSO) (https://github.com/pharmacome/conso).
While CONSO formalizes the terminology and discourse from the scientific litera-
ture for protein aggregation processes in several neurodegenerative diseases (e.g.,
Huntington’s disease, AD, Parkinson’s disease (PD)), it also illustrates that the
large and ongoing effort required to formalize a single area of molecular biology
is not easily scaled to cover all possible biology.

Despite their recent improvements, automated relation extraction systems still
omit an important aspect of systems and networks biology: the biological context.
By focusing on the sentence level, it remains difficult, if not impossible, for these
systems to extract the information pertaining to the cell, cell line, tissue, model
organism, disease context, or other contextual information that is crucial for the
understanding of complex biology. Even with their issues, automated relation ex-
traction systems can be incredibly powerful when combined with manual curation
in semi-automated workflows. With careful generation of new terminologies, the
inclusion of contextual information that can currently best be found by purely
manual effort, and rational prioritization of automatically generated content for
manual review, semi-automated workflows can make huge improvements in both
the quantity, quality, and relevance of knowledge assembles. Ultimately, these
improvements lead to better downstream analysis as described in the following.

1.3 Algorithms Applicable to Graphs

Algorithms for analyzing pathways and networks have been placed into three
main categories by [84]: Over Representation Analysis (ORA), Functional Class
Scoring (FCS), and Pathway Topology (PT). ORA often focuses on the number of
differentially expressed genes present or absent in a gene set compared to chance,
while FCS is less susceptible to large effects and considers the aggregate of groups
of small effects. PT finally considers the biological relations between members of
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the pathway during analysis.

1.3.1 BEL Algorithms

Martin et al. made the distinction between methods that rely on the assumption
that protein activities are correlated with their corresponding mRNAs” expression
changes (forward reasoning) versus the effect that upstream controllers of mRNA
expression have (backwards reasoning) [72]. These algorithms have been devel-
oped for a wide variety of applications, data formats, and graph types. While many
are heterogeneous, below are the most notable algorithms specific to networks
from knowledge assemblies encoded in BEL.

Reverse Causal Reasoning

Reverse causal reasoning (RCR) is an approach to identify the upstream con-
trollers of biological patterns measured in an experiment; often differential gene
expression experiments between healthy and diseased patients. First, large knowl-
edge assemblies are dissected into smaller hypothesis networks with one upstream
node with multiple outgoing causal relations to target nodes represented by the
experimental data set. Each hypothesis network is scored by its concordance be-
tween the observed up- and down-regulation of targets nodes to the sign of the
causal relation and by its richness, or the explanatory power of the hypothesis
network [71]]. An example hypothesis network is shown in Figure |6

Network Perturbation Amplitude

While RCR gives preliminary insights to significant biological controllers, it
mostly ignores the topology of signaling, regulatory, and other causal networks
that can be represented in knowledge assemblies (Figure[7). The NPA measures
the aggregated effect explained by the controller layer with reference to a given
node with respect to their downstream nodes. Two complementary statistics for
the effect of permutations of the upstream layer and downstream layer allow for
further insight to the validity of NPAs as a hypothesis generation mechanism [72].
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Sampling of Spanning Trees

While NPA enables more informed analyses than RCR, its mathematical basis
limits the topologies of knowledge networks that can be used to those with causal
consistency. In these networks, all paths from one node to another result in the
same aggregated effect of increases and decreases. An additional approach in
Figure 8|for Sampling of Spanning Trees (5ST) with random walkers eliminates
inconsistencies and can be aggregated over multiple trials to assign NPA scores to
networks that were otherwise inconsistent [86].

1.3.2 Network Representation Learning

Representation learning methods have the goal of generating low-dimensional,
continuous vector representations for entities in high-dimensional, heterogeneous
data sets (e.g., images, text sequences, etc.). More specifically, network representa-
tion learning (NRL), also known as Knowledge Graph Embedding (KGE), learns
representations of nodes and edges from Knowledge Graphs (sKGs) in continuous
vector spaces that can be used in downstream machine learning tasks such as edge
prediction, entity clustering, and entity disambiguation [87]. Several methods
inspired by linear algebra, deep learning, and natural language processing have
arisen in previous years as shown in Table 6|
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Table 6: Examples of three types of KGEMs

Model Type Name Reference
Structured Embedding  [88]]
TransE [89]
Translational Distance %I;igﬁlcmred Model {3(1)}
TransR [92]
TransD [93]
RESCAL [94]
Semantic Matching EIESEAI\I/;EI ¢ %gg}
ConvE [97]
DeepWalk [98]
Gat2Vec [99]
Random Walk node2vec [100]
edge2vec [101]
metapath2vec [102]
LINE [103]

Translational Distance Models

Each translational distance model learns entity and relation embeddings in eu-
clidean space by defining first an equation relating the corresponding embeddings
with the models” hyperparameters and second a distance-based measure of the
plausibility of a given triple f, [87].

An example of an established translational distance model is TransE [89]. It
models a class of relation r as the translation from a head entity £ (i.e., the subject
of a triple) to a tail entity ¢ (i.e., the object of a triple) in a representative euclidean
space as h 4 r ~ t. It measures the plausibility of a given triple with the following
scoring function:

fr(ht) = —|[h + 71— (1.1)

The closer the embedding of the tail is to the sum of the head and relation
embeddings, the higher is the probability that the triple is correct. However,
because TransE is limited in modeling 1 — N, N — 1, and to N — M relations,
several extensions have been proposed (e.g., TransH, TransR, and TransD).
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TransH extends TransE by representing each relation in a relation-specific
hyperplane with normal vector w, [91]. Before scoring, the head and tail entities
are projected using the following equations before using the same scoring function
as in TransE.

h, =h—w hw, (1.2)

t, =t—w/ tw, (1.3)

Finally, the translation vector r from TransH is constrained to be within the
hyperplane defined by w, before applying the following scoring function.

fr(ht) = —|h +r—t,|3 (1.4)

Alternatively, TransR [92] and TransD [93] use independent projection matricies
for the head and tail entities to allow for greater expressibility. However, these
models have more parameters and thus require more data to train well.

Semantic Matching Models

Unlike translational distance models, semantic matching models use similarity-
based scoring functions that measure the plausibility of a given triple based on the
"latent semantics" of the entities and relations [87]. An example of an established
semantic matching model is RESCAL [94]. It represents each entity as a vector and
each relation as a matrix, M,, that encodes pairwise interactions between the head
and tail entities of a triple, using the following scoring function:

fr(h,t) = hT Myt (1.5)

The DistMult model simplifies RESCAL by restricting M, to be a diagonal
matrix, denoted as diag(r) in order to reduce the number of model parameters
while simultaneously improving the efficiency of computation [96].
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fr(h,t) = W diag(r)t (1.6)

Both translational distance models and semantic matching models can be
trained using the margin ranked loss [97,104] in order to maximize the difference
between positive triples (i.e., f;(h, t)) and negative ones (i.e., f,(1,t)). This scoring
function has the benefits that it can readily integrate a variety of scoring functions
fr(h,t) and it is amenable to the possibility that a negative triple may also be true,
but just not included in the knowledge graph. The margin ranking loss can be
optimized with stochastic gradient descent while iterating through batches of
positive triples and sampled negative ones [105].

L=Y max(0,f;(h,t) — fr(ht) +7) (1.7)

Random Walk Models

Random walk models generate embeddings for nodes in knowledge graphs by
applying the concepts from natural language models (e.g., SkipGram, word2vec,
and Global Vectors (GloVE)) to random walks.

The first, DeepWalk [98], generates a corpus of random walks from the knowl-
edge graph starting from each node by uniformly randomly choosing an adjacent
node at each step in the walk until the target length was achieved or no unvisited
neighbors remained. These walks were used to train the SkipGram [41] model in
which the random walks were considered as sentences and nodes were considered
as words. Because SkipGram is a language model that maximizes the co-occurrence
probability of words in the same window, the node vectors reflect the local struc-
ture of the input KG (Figure[9). It is further rationalized by the observation that
the distribution of nodes” appearances in random walks mirrors words in free
text [98]. Several aspects of knowledge graphs were not addressed by DeepWalk,
including the community structure of the second neighbors of each nodes, the
types of nodes, the types of edges, and attributes of nodes and edges.

Node2vec [100] addresses the community structure of the second neighbors
of each node by modifying the random walk process to include second-order
random walks, where the probability of walking to each neighbor from a given
node is also influenced by its previous steps. Node2vec has been independently
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Figure 9: DeepWalk produces embeddings that reflect the community structure of the
underlying KG. Figure adapted from [98]

implemented several times, but most suffer from difficulty in implementing sec-
ond order walking both in terms of algorithmic understandability and from a
computational perspective. Recently, the implementation at https://github. com/
VHRanger/graph2vec has solved many of those issues with both an elegant and
efficient implementation. Edge2vec [101] took a similar approach to node2vec by
calculating probabilities of traversing each edge type based on the previous steps
in a walk. It was able to better capture the underlying distributions in knowledge
graphs with multiple edge types. Metapath2vec [102] created random walks that
included the node types and edge types in order to address their absence, and
Gat2vec [99] added attributes as actual nodes to knowledge graphs such that they
could be incorporated (and then filtered) from random walks.

Random walk methods are very powerful in that most rely on changing the
random walk generation, and the workflow can be maintained. While it has not yet
been done, this leaves significant improvement for abstraction of this methodology
and development of powerful and flexible computational frameworks for future
research.

Applicability of Network Representation Learning

Biological knowledge encoded in many of the previously mentioned formats
(e.g., BioPAX, SBML) can be directly translated into KGs to which NRL can be
applied.
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Because of the importance of community structure in biological networks [106],
random walk models have the most appropriate formulation for capturing the
underlying patterns in biological networks. A direct comparison for several types
of biological networks including protein-protein interaction networks, miRNA-
target networks, and other multimodal networks is currently under development
following the contribution of related work from this thesis to [107].

1.4 Applications

While Chapters and 5| cover the generation, enrichment, and exploration
of biological knowledge graphs, Chapters[6} 7, and [§ cover three areas in which
biological knowledge graphs can be used to support drug discovery. While there
have been many previous computational, network-based methods that have been
used for these purposes, most rely on narrowly-focused databases with low granu-
larity or slow update. The final chapters focus on adapting these methods to higher
granularity knowledge encoded in BEL for the drug repositioning task in which a
new indication is proposed for a previously clinically studied chemical. Further,
these approaches can be carefully adapted for precision medicine, in which the
use of a given drug should be prescribed to a given patient of subgroup of patients
instead of an entire population.

1.4.1 Simulation

Two of the simplest categories of biological models are boolean and logical
models. In these graphical models, nodes have boolean states that change through
time based on logical rules encoded in the model. Two prominent examples of
boolean models are Petri Nets [108] and boolean networks[109]], but there have
been many following successes with more complicated formulations [110-112].

One of the most powerful simulations of biological systems comes from partial
differential equations, which have the ability to precisely encode both spatial and
temporal events as well as their evolution though time [113]. However, they suffer
the drawbacks that they have a high number of unknown parameters either due to
the lack of available experimental data or due to unknown intermediate processes.
Further, fitting differential equations with high number of variables (more than
several hundred) is very difficult.
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Agent-based models offer an alternative in which a small set of rules can be
used to infer emergent properties of a more complex system through simulation
and optimization. However, their definition is painstaking, and it is difficult to
include the most relevant biological knowledge. Chapter [6] explores one way
biological knowledge can be used to influence the generation and application of
these types of models to understanding basic biological processes in AD.

1.4.2 Target Prioritization

Target prioritization is the task of ranking proteins based on their relevance to
a given disease and likelihood of being a successful therapeutic target. As many
drugs fail in clinical trials due to low efficacy, the choice of appropriate targets
whose modulation has a therapeutic effect is paramount in drug development
for both the pharmaceutical industry and for patients [114, |115]. While targets
have been traditionally identified and validated based on literature evidence de-
scribing mRNA expression, protein expression, knockout mice, somatic mutations,
copy number variations, gene fusions, and other biological phenomena, manual
interpretation of the growing body of literature is becoming difficult, if not impossi-
ble [116-118]]. Computational approaches towards target prioritization offer a more
viable alternative as structured biological data sources become more ubiquitous.
However, computational target prioritization does not directly assess ligandability
nor druggability, so computational approaches must be complemented by both
the appropriate functional experiments (e.g., knockdown studies) and physical
studies (e.g., binding assays).

Because of their utility in data integration, many computational target prioriti-
zation methods are based on networks. The common paradigm in network-based
target prioritization methods is guilt-by-association, which presumes nodes con-
nected to similar groups of nodes have similar properties. Many target prioriti-
zation methods use this paradigm to assume that similar proteins have similar
functions and therefore candidates can be proposed on their similarity to previ-
ously known targets. While this may limit guilt-by-association methods in their
ability to prioritize novel targets, they are still considered robust [119].

Chapter[7]explores a novel method for calculating similarities between proteins
based on NRL and improving the state-of-the-art pipeline presented by Emig et
al. [120]. While initial work used the same protein-protein interaction networks
and disease-specific differential gene expression profiles, it can be extended to
accommodate the rich knowledge encoded in BEL networks (i.e., causal, mecha-
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nistic interactions like phosphorylations, inhibition, receptor agonism as well as
correlations observed in the clinic between patients with conditions and molecu-
lar patterns) generated by manual, semi-automated, and automated approaches
described elsewhere in this thesis.

1.4.3 Mechanism of Action Deconvolution

Understanding the mechanism of action of a given compound not only gives
insight into its efficacy in a given therapeutic indication but also possible off-target
effects. Many of off-target effects may be harmful to a patient, and are often studied
through the lens of toxicology [121]. Therefore, a better mechanistic understanding
might be useful not only in mitigating off-target effects but also in drug reposition-
ing, where off-target effects are proposed as targets for other indications. Further,
investigations of the mechanism of action of a given compound have remained
target-centric and have yet to access the mechanistic causal knowledge contained
within biological knowledge graphs.

Network representation learning techniques are well-suited to capture patterns
in compound-target pairs and can also use the high granularity mechanistic causal
knowledge graphs whose generation is described in this thesis. The embeddings
generated for nodes and edges can be directly applied to the drug repositioning
task by scoring the likelihood of an edge existing between a previously studied
drug and a disease both existing within a network of drugs, targets, diseases, drug-
target-interactions, and disease-target associations. While this simple approach
has been described in several publications, NRL methods allow for the easy
incorporation of new entities and relation types, such as side effects and drug-side
effect annotations. Further, the constraints of drug repositioning can be related
to solve the more general problem of drug discovery, which involves assessing
the likelihood of the existence of an edge between any chemical and any disease.
Upcoming methods in NRL allow for the inclusion of literals [122] into the learning
process. For biological knowledge graphs containing compounds and compound-
target interactions, this enables the incorporation of chemical fingerprints into
the learning process that have been previously successfully used in the fields of
chemogenomics [123, 124] and proteochemometrics [125].

In order to generate efficacious therapies, mechanism of action deconvolution
must be paired with knowledge about the underlying aetiological mechanisms
of disease. In the field of neurodegenerative diseases, this task is severely limited
by knowledge about the diseases. NeuroMMSig provides not only high-quality
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manually curated candidate mechanisms for AD, PD, and epilepsy as biological
knowledge graphs in BEL, but also an enrichment algorithm that goes beyond the
most basic and common described by [84] in order to incorporate the mechanistic
causal information contained in the underlying knowledge graphs.

The NeuroMMSig knowledge graphs and the enrichment algorithm are used
in Chapter 8 to deconvolute the mechanism of action of the anti-epileptic, carba-
mazepine, that has also shown therapeutic effect in AD. It ranked disease-specific
mechanisms in AD and epilepsy that are likely targeted by carbamazepine and
ultimately lead to the hypothesis that the GABA-ergic receptor pathway was cen-
tral to its multi-indication effect. Importantly, this investigation was advantageous
over black-box machine learning models because the underlying knowledge as-
semblies are self-explanatory and based on publications in molecular biology and
epidemiology.

Finally, the conclusion of this thesis considers the implications of moving from
single targets to entire mechanisms for future drug repurposing and drug discov-
ery, as motivated by chapters on target prioritization (Chapter[7) and mechanism
of action deconvolution (Chapter [g).
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PyBEL: a computational
framework for Biological Expression
Language

Preface

While BEL had been previously demonstrated to support the combination
of data and knowledge in analyses [69-72, 85, 86], manual curation and disease
modeling [126-131], and storage of biomedical text mining results [80-83| 132]; its
surrounding computational ecosystem was incredibly limited.

The previously existing software provided by Selventa, the original developer
of BEL, was aging and not amenable to extension or interactive computational
investigation that is becoming mainstream with the advent of the Jupyter Note-
book [133]. In order to leverage the unique ability of BEL to integrate multi-scale
and multi-modal knowledge to support downstream simulation, target prioritiza-
tion, mechanism of action deconvolution, and other methods, it was necessary to
build a new ecosystem for BEL that is presented in the following publication.

Reprinted with permission from "Hoyt, C. T., Konotopez, A., & Ebeling, C.
(2017) PyBEL: a computational framework for Biological Expression Language.
Bioinformatics (Oxford, England), 34(4), 703-704". Copyright © Hoyt, C.T,, et al.,
2017.
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Abstract

Summary: Biological Expression Language (BEL) assembles knowledge networks from biological
relations across multiple modes and scales. Here, we present PyBEL; a software package for pars-
ing, validating, converting, storing, querying, and visualizing networks encoded in BEL.

Availability and implementation: PyBEL is implemented in platform-independent, universal
Python code. Its source is distributed under the Apache 2.0 License at https://github.com/pybel.

Contact: charles.hoyt@scai.fraunhofer.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Among the most popular modeling and data exchange languages in
systems biology are currently the Biological Pathways Exchange
(BioPAX), Systems Biology Markup Language (SBML)
Biological Expression Language (BEL). BioPAX captures metabolic,
signaling, molecular, gene-regulatory, and genetic interaction net-
works (Hucka ef al., 2003); SBML accommodates mathematical
models of biochemical networks, cellular signaling, and metabolic
pathways (Demir et al., 2010); and BEL assembles qualitative causal

and

and correlative relations between biological entities across multiple
modes and scales, with full provenance information including name-
space references, relation provenance (citation and evidence), and
biological context-specific relation metadata (anatomy, cell, disease
etc.) (Slater, 2014).

Although there exist several software packages for BioPAX and
SBML, the ecosystem of open-source software for BEL is much more
limited. An assessment of previous software (see Supplementary Table
S3) shows there is an unmet need for easily installable, stable, facile
software that parses modern BEL and provides programmatic access
to a data container that enables the resulting network to be extended,
queried, manipulated, analyzed, and visualized. Furthermore, a con-
verter between common data formats is needed to enable re-usability
and interoperability between general and BEL-specific software for
network analysis and visualization.

©The Author 2017. Published by Oxford University Press.

Here, we present PyBEL; a software package designed to fulfill
each of these needs.

2 Software architecture

The PyBEL software package consists of five main components:
(i) network data container, (ii) parser and validator, (iii) network
database manager, (iv) data converter and (v) network visualizer.

Although a graph refers to an abstraction for a set of objects (i.e.
nodes) and their relations (i.e. edges), its instantiation in a real-world
application is often called a network. We provide an implementation
of a directed multigraph (i.e. a graph whose edges have directionality
and any given pair of nodes may have multiple edges) that maps the
biological entities and concepts in the subjects and objects of BEL re-
lations to nodes in a network and their relations, with corresponding
metadata, to edges. We extended the MultiDiGraph class from
NetworkX (http:/networkx.github.io) to enable users direct access to
their suite of network algorithms and static visualizations to support
their further development into biologically meaningful analyses.

The parser performs tokenization, lexical analysis, parsing, and
validation on each of the three sections of BEL documents (see
Supplementary Figs S1 and S2). Callbacks are used to annotate the
entries in the document metadata section to a network instance,
download and store the resources referenced in the definitions section,
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maintain a list of current annotations from SET statements, and parse
BEL relations to populate a network instance with the corresponding
nodes, edges, and their metadata from the current internal state.
Although relations’ syntax is implicitly validated, the semantics of
their subjects’ and objects’ identifiers are validated against the refer-
ences from the definitions section. Finally, feedback is provided to
users to support thoughtful re-curation, which could lead to more ro-
bust knowledge assemblies and enable more reproducible science.

Namespaces and networks are cached with a relational database
to improve the speed of validation and access to data. Although rela-
tional databases lack the faculty for applying network algorithms,
they provide indexing functionality that enables complicated queries
and filters over the nodes, edges, and metadata of increasingly large
collections of networks. For example, this could help identify inter-
sections and potential cross-talk between disease-specific networks.

We implemented lossless converters for common file formats
including Node-Link JSON, JGIF, CX, and binary as well as for
database formats including SQL, Neo4], and NDEx. We also pro-
vide lossy exporters to Excel, CSV, SIF, XGMML, and GSEA to fa-
cilitate usage in other programs. Notably, we have deferred
implementing a RDF (Resource Description Framework) converter
until improvements are made to the existing BEL to RDF mapping
and its documentation (https://wiki.openbel.org). Future work will
also include converters for BioPAX and SBML. See Supplementary
Tables S1 and S2 for more detailed descriptions of each format.

Networks can be exported for visualization in Cytoscape or up-
loaded to NDEx (Pratt et al., 2015) to take advantage of its viewer
and simple query interface. Alternatively, we provide an interactive
network explorer tailored to BEL networks (appropriate node color-
ing, metadata pop-ups etc.) that can be directly embedded as HTML
in email, Jupyter Notebook, or a web application. It has already
been used to produce visualizations in the NeuroMMSig Web
Service (Domingo-Fernandez et al., 2017). Supplementary Figures
S3-SS5 present these visualizations side-by-side. In addition to their
programmatic interfaces, the parser, storage, conversion, and visual-
ization features are exposed via a command line tool.

3 Case study

The PyBEL suite includes functions for querying and mutating net-
works with which it implements state-of-the-art algorithms for over-
representation analysis, functional class scoring, and pathway topological
analysis of BEL networks such as Reverse Causal Reasoning (Catlett
et al., 2013). Figure 1 presents a case study in which a novel heat diffu-
sion work flow was used to assess the observed impact on biological
processes from differential gene expression in Alzheimer’s disease (AD).
Technical documentation is included in the Supplementary Material.

4 Discussion

Even after its v2.0 update, BEL does not yet explicitly specify many
concepts in molecular biology such as epigenetic information (Irin
et al., 2015). The inevitability of language evolution prompted us to
develop the parser in modules so that new syntax could be proposed
and implemented quickly. As a proof of concept, a syntax extension
for gene modifications is included in the package by default.
Historically, BEL has used a custom namespace file format, but
the creation and maintenance of biological terminologies has tended
towards using OWL (Web Ontology Language). Furthermore, many
domains (e.g. SNPs) are growing too large to enumerate during se-
mantic integration and validation. The modular architecture of the
parser enables easy implementation of new definition file formats,

Heat Diffusion Analysis on Alzheimer’s Disease

Beta Amyloid
Formation

Cellular Death

Inflammatory

Response

T T T
0 20 40 60
Final Heat on Biological Process

Fig. 1. Plotted is the distribution of the final heat on biological processes from
the NeuroMMSig AD Knowledge Assembly (Domingo-Fernandez et al., 2017)
following heat diffusion analysis with a differential gene expression experi-
ment from the brains of AD patients (E-GEOD-5281, Liang et al., 2007). The
significant down-regulation of biological processes related to inflammatory
response (heat = 69) and up-regulation of cellular death (heat=-13) and
beta-amyloid formation (heat=—9) match common clinical observations and
serve as a validation for this approach

external validation services, or even alternative namespace defin-
ition schemes to address these issues.

Although BEL is often used to formalize knowledge curated
from unstructured sources, our software also enables the integration
of knowledge from structured sources. For example, existing solu-
tions for resolving equivalences across namespaces rely on the cre-
ation and hosting of extensive lookup tables. Alternatively, the
parser could be extended with a dedicated syntax and draw equiva-
lencies directly from OWL.

Finally, we plan to present this software as a web service to en-
able a wider audience of researchers across disciplines to validate,
explore, and analyze their BEL networks.
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Postface

In order to make the PyBEL ecosystem sustainable, it was made open source,
easily installable, integrated with existing systems in systems and networks biol-
ogy, tested, and well-documented. The ease with which PyBEL could be used to
implement a variant of the heat diffusion algorithm described by [134] was then
demonstrated.

While PyBEL contained several imports and exports for other software used
by systems and network biologists, it still lacked an accessible interface for bi-
ologists. It was also alluded that knowledge from structured sources could be
integrated, especially from other standards like BioPAX and SBML. Each of these
are addressed in Chapters 3| {4} and

PyBEL has been used by many scientists in a variety of projects and pre-
sentations. It was originally developed in the Fraunhofer SCAI Department of
Bioinformatics for usage in the International Medicine Initiative (IMI) project, AE-
TIONOMYEL to support the generation of a taxonomy of mechanisms underlying
neurodegenerative diseases such as AD, PD, and epilepsy as well as patient strati-
fication. One of the project’s major deliverables, NeuroMMSig [131] was originally
built with an ad-hoc database, but the upcoming version has been rewritten using
PyBEL in order to take advantage of its entire ecosystem. Following AETIONOMY,
PyBEL has also been used in and presented at the general assembly [135] of the
IMI project, PHAGqﬂ which focused on the role of the TREM2 and CD33 proteins
in AD.

The Fraunhofer SCAI Department of Bioinformatics has relied on PyBEL for the
compilation, validation, and summarization of manually curated BEL documents
in several internal and industry projects. Three funded collaborations with Cohen
Veterans Bioscience used PyBEL during the manual curation of causal and mech-
anistic knowledge related to post-traumatic stress disorder and traumatic brain
injury. One industry contract for an undisclosed partner focused on the manual
curation of causal and mechanistic knowledge related to several psychiatric condi-
tions used PyBEL for compilation, validation, summarization, and visualization.
The visualization tools developed during this project became the basis for BEL
Commons, presented in Chapter 3} that are also being reused in the Horizon 2020

"https://www.aetionomy.eu/
“https://www.phago.eu/
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project, VirtualBrainClou A funded academic collaboration with the Cytoscape
Consortiumﬁ focused on the integration of PyBEL with NDEXx [136]] such that BEL
documents could be uploaded and handled in NDEXx using its CX format, as well
as to enhance interoperability of both BEL and CX with RDF. An internally funded
project, The Human Brain Pharmacome Projectﬂ has used PyBEL for compilation,
validation, and analysis of BEL documents related to tauopathies and later more
general neurodegenerative disease phenomena. An internally funded project at the
Fraunhofer Center for Machine Learning has used PyBEL as a source of biomedical
triples for the training of knowledge graph embedding models in the bioZvecH
project and resulted in the following publication [107]]. A project granted by the
Human Brain Projecﬂ the Reference Ontology Hub with Application services for
Neuroscience has used the terminology management functions of PyBEL that
later became Bio2BEL.

PyBEL has been used by external groups, including several pharmaceutial
companies part of the AETIONOMY project as well as interest from Clarivate
Analytics, who provide their Metacore’| knowledge base as BEL to customers.

Finally, PyBEL has been used in several publications and theses by other mem-
bers of the Fraunhofer SCAI Department of Bioinformatics [77, 137, 138] as well as
slow uptake by the broader community of systems and network biologists [111,
139] and further upcoming masters and doctoral theses.

3https://cordis.europa.eu/project/rcn/219020/factsheet

4http://www.cytoscapeconsortium.org

Shttps://pharmacome.scai.fraunhofer.de

bhttps://bio2vec.net

"https://www.humanbrainproject.eu

8https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/
projects/Rohan.html

’https://clarivate.com/products/metacore/

33


https://cordis.europa.eu/project/rcn/219020/factsheet
http://www.cytoscapeconsortium.org
https://pharmacome.scai.fraunhofer.de
https://bio2vec.net
https://www.humanbrainproject.eu
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/projects/Rohan.html
https://www.scai.fraunhofer.de/en/business-research-areas/bioinformatics/projects/Rohan.html
https://clarivate.com/products/metacore/

34



BEL Commons: an environment
for exploration and analysis of
networks encoded in Biological
Expression Language

Preface

The following publication describes BEL Commons, a web application that
enables exploration and analysis of networks encoded in BEL as well as the
integration of several disparate features from other prominent web applications for
systems and networks biology. While PyBEL, described in Chapter 2, rejuvenated
the aging BEL ecosystem, it did not yet make the new tools or algorithms accessible
to a general audience of biologists interested in systems and networks biology
research. BEL Commons attempts to address that accessibility gap.

The publication highlights the way BEL Commons enables integrative explo-
ration of several publicly available knowledge bases and provides an example
from the IMI project, AETIONOMY, of a coalesced data- and knowledge-driven
analysis that used publicly available differential gene expression data sets related
to AD and knowledge assemblies from NeuroMMSig [131].

Reprinted with permission from "Hoyt, C. T., Domingo-Ferndndez, D., &
Hofmann-Apitius, M. (2018). BEL Commons: an environment for exploration
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and analysis of networks encoded in Biological Expression Language. Database,
2018(3), 1-11". Copyright © Hoyt, C.T,, et al., 2018.
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Abstract

The rapid accumulation of knowledge in the field of systems and networks biology during
recent years requires complex, but user-friendly and accessible web applications that
allow from visualization to complex algorithmic analysis. While several web applications
exist with various focuses on creation, revision, curation, storage, integration, collabora-
tion, exploration, visualization and analysis, many of these services remain disjoint and
have yet to be packaged into a cohesive environment.

Here, we present BEL Commons: an integrative knowledge discovery environment for
networks encoded in the Biological Expression Language (BEL). Users can upload files in
BEL to be parsed, validated, compiled and stored with fine granular permissions. After,
users can summarize, explore and optionally shared their networks with the scientific
community. We have implemented a query builder wizard to help users find the relevant
portions of increasingly large and complex networks and a visualization interface that
allows them to explore their resulting networks. Finally, we have included a dedicated
analytical service for performing data-driven analysis of knowledge networks to support
hypothesis generation.

Database URL: https://bel-commons.scai.fraunhofer.de

Introduction Biological Pathways Exchange [BioPAX, (1)], Systems

There exists a variety of modeling languages, data formats Biology Markup Language [SBML, (2)], Systems Biology
and analytical tools for systems and networks biology. Graphical Notation [SBGN, (3)] and Biological Expression
Among the most popular modeling languages are the Language [BEL, (4)]. BioPAX captures metabolic, signaling,

© The Author(s) 2018. Published by Oxford University Press. Page 1 of 11
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
(page number not for citation purposes)
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molecular, gene-regulatory and genetic interaction net-
works; SBML captures mathematical models of biochem-
ical networks, cellular signaling and metabolic pathways;
SBGN provides a graphical representation of ideas from
BioPAX and SBML; and BEL captures qualitative causal
and correlative relations between biological entities across
multiple scales (e.g. -omics, pathway, cellular, phenotypic)
with accompanying biological and contextual annotations.
While each modeling language has their own domain-
specific syntax and semantics, each facilitates assembling
biological relations into networks. For example, BEL
formalizes relations as triplets each composed of a subject,
predicate and object in order to generate pathways and
networks when the object from one relation is again used
as the subject of another. We refer to Saqi et al. (5) for a
more thorough comparison of the applicabilities of various
modeling languages.

Currently, these modeling languages and their related
analytical tools require deep knowledge of computer
programming to use and are generally inaccessible to a
wider audience of biologists and clinicians. With the
explosion of data and knowledge in the biomedical domain,
it is paramount to develop tools that foster collaboration
between groups of scientists with different backgrounds
and skill sets who are working toward similar goals.
Already, there are multiple freely available, web-based tools
for systems and networks biology with varying focuses
on creation, revision, curation, storage, integration, col-
laboration, exploration, visualization and analysis. Below,
we provide a brief review of services appropriate for each
focus.

Because of the accelerating throughput of scientific
publication in the biomedical domain, several general
workflows [e.g. Reading and Assembling Contextual and
Holistic Mechanisms from Text (REACH) (6), TRIPS
(7), Turku Event Extraction System (TEES) (8), MedScan
(9)] and several BEL-specific workflows [e.g. Biological
Expression Language Information Extraction WorkFlow
(BELIEF) (10), BELMiner (11), BelSmile (12), BELTracker
(13)] have been developed to automate biological relation
extraction. The limits of the precision and recall of auto-
mated techniques, the applicability domains of different
modeling languages and the need for expert input motivated
the development of semi-automatic and manual curation
interfaces [e.g. SBV Improver (14), BELIEF Dashboard (15),
WikiPathways (16)] to drive crowdsourced creation,
revision and curation of knowledge networks.

While many wuseful knowledge resources [e.g.
miRTarBase (17), Comparative Toxicogenomics Database
(CTD) (18), Kyoto Encyclopedia of Genes and Genomes
(KEGG) (19)] still disseminate their data in non-standard
formats, the use of the aforementioned modeling languages

has become much more common as in the case of the
integration effort of Pathway Commons (20). Other web
tools [e.g. NDEx (21), GraphSpace (22)] provide the ability
to upload, store, share and distribute networks while
remaining agnostic to format. Most of these resources also
include network visualization, layout and exploration with
PathVisio (23), Cytoscape (24), Cytoscape.js (25), as well
as in-browser navigators.

Numerous algorithms and analyses have been published
for systems and networks biology but most are bespoke due
to the heterogeneous nature of their underlying knowledge
networks, data sets and the scientific questions motivating
their development. An exception lies with gene set enrich-
ment analysis: a technique for finding gene sets, pathways
and networks in which a query gene set (e.g. a list of differ-
entially expressed genes) is over- or under-represented (26).
Its simplicity has led to its implementation and inclusion
in several web applications as well as several applications
to reveal patterns of dysregulation in -omics data sets
as exemplified by the Enrichment Map Cytoscape Plugin
(27, 28) with Pathway Commons as well as Gene Set
Enrichment Analysis (GSEA) (29) with MSigDB (30).

Recently, BEL has been successfully used as a seman-
tic and modeling framework for multi-scale and multi-
modal knowledge in order to investigate the etiology of
complex neurodegenerative diseases as shown by Domingo-
Ferniandez et al. (31) with the NeuroMMSig Mechanism
Enrichment Server. While the list of published BEL-specific
algorithms is currently short (e.g. Reverse Causal Rea-
soning (32), Network Perturbation Amplitude (33) etc.),
recent developments in the BEL software ecosystem have
improved the accessibility and utility of BEL and have moti-
vated its wider adoption (34). Unfortunately, unlike many
of the other focuses of web applications, algorithms have
remained confined to use by bioinformatics and inaccessible
to a wider audience of researchers across disciplines. Last,
but not least, the ecosystem of BEL-specific web applica-
tions is small and does not include a service for parsing,
validating, compiling and converting BEL.

There are still several unmet needs for users that moti-
vate the development of new web applications. Generally,
there is still the need to enable complex exploration and
visualization as well as to make algorithms and analy-
ses generally accessible and reusable. Specifically to BEL,
there is a need to make parsing, validating, compiling and
converting facile and user-friendly. Finally, an integrative
knowledge discovery environment that comprises many of
the previously mentioned features would be greatly benefi-
cial to the BEL and overarching scientific community. Here,
we present BEL Commons, a web application that addresses
these unmet needs and is a first attempt at building such an
environment.
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Figure 1. BEL Commons comprises several components: (i) the network uploader and validator, (ii) user rights and project management,

(i) the query builder, (iv) the biological network explorer and (iv) the analytical service.

Implementation and components

The user interface of BEL Commons integrates several
features from the variety of previously mentioned web
applications for systems and networks biology (Figure 1).
It contains five main components: (i) the network uploader,
where users can upload, parse, validate and compile BEL as
well as generate several summaries of its contents; (ii) user
rights and project management, where users can share their
networks with various granularities; (iii) the query builder,
where users can interactively query networks and make
transformations; (iv) the biological network explorer, where
users can visualize, explore and further modify networks;
and (v) the analytical service, where users can run heat diffu-
sion experiments with -omics data. Below, we elaborate on
their functionalities and typical use cases. Implementation
details can be found in the Supplementary Data.

Network uploader

The first point of entry for many users of BEL Commons
will be through its BEL uploader, which allows users to
choose a file from their computer to upload and to toggle
common parsing and compilation parameters. After sub-
mitting, users’ files are sent to an asynchronous task queue,

implemented with RabbitMQ (https://www.rabbitmq.com)
and Celery (http://www.celeryproject.org), which performs
parsing, validation and compilation with PyBEL (34) in the
background. Errors and warnings encountered during pars-
ing are enumerated, statistics over the resulting network
are produced, biological network motifs are identified and,
finally, the submitter is notified upon completion.

The parsing errors and warnings are categorized first
as syntactic or semantic then with much more detail, as
described on the BEL Commons help page (https://bel-
commons.scai.fraunhofer.de/help/parser). Each is presented
with provenance information including the line, line num-
ber and position so curators can quickly make changes.
Recurring errors and warnings are identified and grouped
separately to allow curators to quickly make impactful
improvements. Finally, a faceted search is presented for
situations where an overwhelming number of errors and
warnings are present.

The statistical summary (Figure 2A) of the network
presents information about the contents of the network and
also network theoretic measurements of the full network.
Several charts are generated depicting the types and number
of nodes, edges, modifications, namespaces, annotations
and citations existing in the network. Furthermore, scalar
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Figure 2. The statistical (A, left) and biogrammar (B, right) summary pages.

values describing network properties such as network
density, average node degree and node overlap with
other networks in BEL Commons using the Szymkiewicz—
Simpson coefficient are listed.

The ‘biogrammar’ summary (Figure 2B) of the network
presents an analysis of network motifs generalized from
the analysis of transcriptional network motifs presented by
Alon (35) for use with knowledge networks. BEL Commons
focuses mainly on simple motifs that are informative to the
robustness, correctness and applicability of a given knowl-
edge work. The most simple motif is the contradictory pair,
where knowledge has been curated stating A increases B but
also A decreases B. Searching this motif in NeuroMMSig
identified the contradiction that RB1 has been shown to
not only increase the transcriptional activity of E2F4 by

Catalog / Networks

Network Catalog

Each curated network is backed by a BEL script. Below are options to summarize the networks'
contents, explore them with an in-browser navigator, or run analyses with data sets such as
differential gene expression data. Upload more networks here.

Search networks. Go!
NeuroMMSigDB for Parkinson Disease 20171205 by Daniel Domingo, et. al
SNP and Clinical Features for Subgraphs in Parkinson 258 nodes | 418 edges | 1 citation | Public @

Disease

o Summarize ~ Y Explore Q Query 4 Analyze ® Download

CDR-SB Associations 1.0.5 by Charles Tapley Hoyt, et. al
Literature Associations between the Clinical 142 nodes | 216 edges | 30 citations | Public @
Dementia Rating Sum of Boxes (CDR-SB) and biological entites related to Alzheimer's disease

ol Summarize ~ Y Explore Q Query % Analyze @® Download ~

Figure 3. The network catalog (A, left) and user activity page (B, right).

Catalog / Networks / BEL Framework Large Corpus Document v20170611 / Biogrammar

Biogrammar Summary of BEL
Framework Large Corpus Document
20170611

Regulatory Pairs € 4

These pairs of nodes represent motifs like A increases B and B decreases A.

Search:
Node A Node B

®  p(HGNC:IL17A) PHGNC:IL10)

©  a(SCHEM:"serum glucose") PHGNC:MAPKS)

®  p(HGNC:MAPK14) PHGNC:AKT2)

®  a(SCHEM:Dinoprostone) P(SFAM:"PDE4 Family")

®  p(HGNC:CREBBP) PHGNC:MDM2)

Showing 1 to 10 of 155 entries

Previous 2 3 4 5 . 16 Next

Li et al. (36) but also decrease the transcriptional activity
of E2F4 (37). Another motif is an inconsistent negative cor-
relation triple, where knowledge has been curated stating A
negatively correlates with B, B negatively correlates with C
and C negatively correlates with A. After, several factors can
be used to estimate the confidence of the correctness and
applicability of the statements such as biological context
(e.g. cell line, tissue, disease), reference type (e.g. experi-
mental paper, review paper, database), text location (e.g.
abstract, introduction, methods, discussion) or the date of
publication. BEL Commons currently only identifies pre-
defined, small motifs containing two or three nodes, but
could be extended to automatically find larger ones with
the caveat that their biological meanings are more difficult
to interpret.
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Table 1. Statistics over a selection of the resources publicly initially available in BEL Commons. These numbers are accurate

to the best of our ability, but may not reflect nominal values from their sources depending on the ability of PyBEL to parse

their contents

Resource Networks Nodes Edges Citations
Selventa Example Corpora ( http://resources.openbel.org) 16 339 36 971 5083
Causal Biological Networks Database (38) 138 5343 28 766 4580
NeuroMMSig (31) 1411 3221 201

User rights managements and collaboration

Upon BEL upload, users are presented with the option
to make the resulting network either public or private.
Networks can be uploaded privately for use during research
then later released publicly to accompany a publication
and share their work with the scientific community. The
network catalog (Figure 3A) dynamically shows users only
networks for which they have the appropriate permissions.

Users can create projects that allow for multiple users to
mutually share networks. For example, a curation project
in a given disease area could contain networks generated
from the efforts of multiple curators. Projects can generate
a merged network that can be summarized, explored, ana-
lyzed and exported with the same tools available for stand-
alone networks. Users can access their private activity page
(Figure 3B), which provides a global summary over their
projects, networks, queries, data sets and experiments.

We do not presume all users plan to produce their own
BEL, especially with the growing number of both general
and context-specific publicly available resources. In light of
this, we have included several of these resources in BEL
Commons for these users (Table 1). The catalog of net-
works for which users have the appropriate permissions can
be accessed directly from the home page of BEL Commons.

Query builder

While networks arising from BEL can be readily merged,
it becomes increasingly difficult to visualize and explore
large networks and combinations of networks. The query
builder assists users in generating powerful, precise and
expressive queries that find the most relevant and inter-
esting subnetworks in three steps: (i) users search and
select relevant networks; (ii) users generate a subnetwork
specifying the most interesting nodes, edge annotations and
references with their preferred seeding method(s); and (iii)
users select transformations (e.g. enrichments, selections,
filters) to apply to the resulting subnetwork.

The first step in the query builder allows users to select
networks relevant to their scientific questions. While it still
remains computationally feasible to query over a merged
view of the entire catalog of networks, users have the

opportunity to pre-select the most relevant networks on the
basis of their specificities toward target disease areas, cura-
tion methods or any other appropriate criteria described in
their metadata. Additionally, other high-quality structured
knowledge resources such as protein families (39, 40), bio-
chemical reactions (41, 42) and gene orthologs [e.g. Entrez
Gene (43), Mouse Genome Informatics (MGI) (44), Rat
Genome Database (RGD) (45) etc.] can be included to
enrich networks from curated BEL. Later, we will show how
this novel feature can be used to enrich networks as a pre-
processing step to connect disparate components before
analysis.

The second step in the query builder allows users to gen-
erate subnetworks based on nodes, edge annotations and
references of interest by using one or several ‘seeding meth-
ods’. An example of seeding method that most network-
related web applications implement is the retrieval of the
Nth neighbors of a given node or set of nodes. Because
neighborhood queries are often insufficient to capture com-
plex biology, BEL Commons implements several additional
seeding methods, enumerated in Table 2, that allow users to
take advantage of the directionality, polarity and rich anno-
tations inherent to networks from BEL. Using these seeding
methods, the query builder allows scientists to ask scientific
questions like the one proposed in the following scenario:
the leukemia drug, nilotinib, triggers cells to remove faulty
components, including ones associated with several brain
diseases (46). In 20135, the Georgetown University Medical
Center published findings that the drug had a therapeu-
tic effect on patients with Alzheimer’s and Parkinson’s
diseases (47). Though the drug’s mechanism of action is
currently unknown, a path search between nilotinib and
these diseases suggests it could be by decreasing phospho-
rylation of the Tau protein, which may have a therapeutic
effect in both disease contexts, through inhibition of ABL1
(48, 49).

The third step in the query builder allows users to
specify transformations (e.g. enrichments, selections, fil-
ters) to apply to network resulting from the assembly in
the first step then the seeding in the second step. Users
may select basic transformations, such as deleting single

nodes or edges, to more complex transformations such
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Table 2. Seed methods available in the query builder

Seed method Description

Nth neighbors

This induces a subnetwork over nodes in paths of length less than or equal to N from any query node,

terminating at any node, including ones not included in the query.

Upstream subnetwork

This induces a subnetwork over nodes with causal edges targeting the query nodes then repeats a second

time for that subnetwork in order to include a second layer. Finally, induces all causal edges between

resulting nodes.
Downstream subnetwork

This induces a subnetwork over nodes with causal edges originating from the query nodes then repeats a

second time for that subnetwork in order to include a second layer. Finally, induces all causal edges

between resulting nodes.
Shortest paths
implemented by NetworkX (50).

This induces a subnetwork over all nodes in the shortest paths between any pair of query nodes,

All paths This induces a subnetwork over all nodes in all of the paths (length less than seven) between any pair of
query nodes, implemented by NetworkX (50).

Provenance This builds a subnetwork from all edges with provenance from articles with the given PubMed identifiers.

Authors This builds a subnetwork from all edges from articles written by authors with the given names.

Annotations This builds a subnetwork from all edges matching given biological or contextual annotations.

as selecting a subnetwork only consisting of causal edges.
BEL Commons dynamically loads transformation func-
tions from PyBEL such that new functions, pipelines and
workflows for processing networks can be written quickly
and made available to users. A full list is available at
https://bel-commons.scai.fraunhofer.de/help/query-builder.

Each query is saved with a unique identifier such that
queries can be rerun, shared, merged and compared. Rather
than storing the results of queries, the selection, seed-
ing and transformations are stored as a ‘transaction’ so
that they can be applied to new assemblies, for example,
when a network is updated. Effectively, queries correspond
to an experimental protocol for processing raw networks
before visualization, exploration, analysis and interpreta-
tion. However, the construction of a query is not the end
of its life. The next section summarizing the biological
network explorer describes how queries can be extended
and evolve during the process of scientific inquiry.

Biological network explorer

The biological network explorer provides users with
easy ways to visualize BEL networks to interpret their
underlying structures, to investigate the metadata on nodes
and edges and to interactively update networks as they
explore (Figure 4). It is built with D3.js (https://d3js.org)
to render networks with a force-directed layout algorithm
that can be panned and zoomed. Because the complexity
of biological networks often limits the utility of auto-
mated layouts (51), users can also manually drag and
reposition nodes. Furthermore, users can adjust the edge
length parameter of the algorithm to rarefy densely grouped
nodes and improve readability. The networks are styled
with minimum visual clutter and make use of easily dis-

tinguishable colors rather than obtrusive shapes for nodes
as well as patterns and colors for different types of edges.

The explorer has several contextual actions registered to
the nodes and edges. Users can left-click a node to popu-
late the information box located below the explorer with
information from external data sources [e.g. Entrez Gene,
ChEBI (52), ExPASy (40), Gene Ontology (53)] gathered
from Bio2BEL services (https://github.com/bio2bel) and the
EMBL Ontology Lookup Service (54). Alternatively, users
can right-click a node to open a contextual menu that
enables further modification to the network (e.g. delete the
node, add the neighbors of the node to the network) that are
interactively appended to the original query used to render
the visualization. The contents of the network can also be
further modified by the inline query builder, which allows
additional transformations to be applied interactively. The
query history is displayed at the bottom of the explorer,
new changes are highlighted in red, and because queries
are stored as transactions, changes can be reverted with an
‘undo’ button.

When an edge is clicked, the information box is pop-
ulated with relevant citations, evidences and annotations.
Each edge is linked to a voting and commenting system so
domain-specific experts, curators and bioinformaticians can
engage in discussion on the correctness and robustness of
the chosen representation of knowledge.

To the right of the explorer is the filter tool box, which
incorporates a novel approach to filtering and exploring
networks using a linked hierarchical explorer of the termi-
nologies/ontologies annotated to the edges in the currently
displayed networks. Users can search and select groups of
annotations to filter the network. For example, this could be
useful to exclude edges asserted from research on cell lines
that are not relevant. The filter tool box has three additional
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Biological Network Explorer
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Figure 4. The biological network explorer and related navigation components. Truncated from this image are the node information and query

information boxes.

tabs: nodes, edges and highlight. Users can either search
for specific nodes and edges in their corresponding tabs or
use the highlight tab to select nodes and edges with specific
properties to highlight in the network.

Above the explorer is the general tool box that includes
several additional interactions for exploration, analysis and
export of the network using the serializers described by
Hoyt et al. (34). Notably, it contains a path mining tool that
enables path searches between given nodes with fine gran-
ular, configurable settings (e.g. directedness, path search
algorithm, application of filters for pathologies etc.). Hence,
it can immediately be used to identify the causal root
affecting two nodes or generate hypothetical links across
modes and scales.

The visualization can be further modified by resizing the
nodes corresponding to the results of topological or data-
driven analyses, such as their degree, betweenness centrality
or by the results of an experiment (e.g. heat diffusion with
-omics data, see next section) in order to identify novel
biological entities.

Finally, there are several alternatives to exploring net-
works that are too large to render in-browser due to the lim-
its of JavaScript-based graphics. First, the network catalog
opts to present users with a random subsampling of large
networks. If a network in the explorer becomes too big,
then the explorer prompts the usage of the filter tool box to
identify a more relevant, smaller network. Otherwise, users

can export the current network to multiple formats for use
in desktop visualization applications.

Analytical service

Khatri et al. categorized algorithms for analyzing pathways
and networks in three types: over-representation analy-
sis, functional class scoring and pathway topology (26).
Algorithms of each type have been developed for a wide
variety of applications, data formats and network types, but
most are difficult to use and few are specific to networks
from BEL. The BEL Commons analytical service begins to
address this issue by coupling a heat diffusion workflow to
the query builder and explorer to create a more seamless
user experience.

In the context of network science, heat diffusion refers
to annotating a scalar value to each node (i.e. heat) and
simulating how it spreads through nodes’ adjacent edges
to their neighbors over several iterations. It has been used
successfully in systems and networks biology to assess
the connectivity of nodes and identify important subnet-
works as demonstrated by Leiserson et al. with the HotNet2
algorithm (55).

BEL Commons exposes a similar workflow, previously
presented by Hoyt et al. (34), that has the added behavior
based on the polarity of causal edges—when heat crosses
a decreases edge, its sign is flipped to better capture the
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aggregate effect of heat flowing from several edges with
mixed polarity to a single node. Because BEL contains sev-
eral entity types, users are presented with the final heats on
biological process nodes to assist in interpreting which pro-
cesses are dysregulated in the experiment. A more detailed
description of this method can be found at https://bel-
commons.scai.fraunhofer.de/help/heat-diffusion.

Users can upload pre-processed, high throughput -omics
experiments (e.g. differential gene expression data) and map
them to a network either by starting in the network catalog
or through the biological network explorer’s toolbox. The
network and -omics data are then sent to the task queue
to perform the heat diffusion workflow. Upon completion,
users are notified via email with a link to the results page
that shows statistics and data visualization. Finally, users
are also able to overlay the results on the original network
in the biological network explorer.

In the following section, the query builder, biological
network explorer and analytical service are used to assess
several differential gene expression experiments represent-
ing patients with Alzheimer’s disease at different disease
states using NeuroMMSig networks.

Application scenario

This section describes a use case in which a disease-
specific network for Alzheimer’s disease is assembled and
pre-processed. First, the network is explored with the
biological network explorer; second, it is enriched; and
finally, it is analyzed with differential gene expression
data in order to identify patterns of dysregulation of
biological processes that are specific to disease progression
stages.

We uploaded several BEL documents describing
Alzheimer’s disease pathophysiology generated during the
AETIONOMY project (https://www.aetionomy.eu) that
were originally stored in NeuroMMSig (https://neurommsig.
scai.fraunhofer.de) to BEL Commons. We began by using
the query builder to search for and select all of these
networks. Next, we used the ‘Annotations’ seeding method
(Table 2) to generate a subnetwork composed of edges
that had been annotated in BEL with membership in the
following candidate mechanisms of Alzheimer’s disease
pathophysiology from NeuroMMSig. We chose the low
density lipoprotein subgraph, the GABA subgraph, the
notch signaling subgraph and the reactive oxygen species
subgraph because they are dysregulated at different disease
stages. Later, we will capture these different progression
patterns by running the heat diffusion workflow with stage-
specific differential gene expression data.

We used the query builder to apply several transforma-
tions to pre-process the network, including (i) enrichment of

the network with the members of all protein families and
protein complexes; (ii) deletion of nodes having the MGI
and RGD namespaces that respectively correspond to genes
from mice and rats; (iii) removing pathology nodes, which
often are uninformative hubs in disease-specific networks;
and (iv) extracting only causal edges. Finally, we submitted
the query and visualized the network.

The biological network explorer showed that there were
several disconnected components in the resulting network.
Further, there were several cases where the gene, RNA
or protein, such as the GABRA4 gene and RNA, were
in different components. We used the tool box above
the explorer to apply an additional filter, ‘Enrich Protein
And RNA Origins’, which added the corresponding RNA
for each protein then the corresponding gene for each
ribonucleic acid/micro-ribonucleic acid (RNA/miRNA)
in the network. Finally, we applied ‘Collapse Variants’
and ‘Collapse to Genes’ to simplify the network by
collapsing all corresponding genes, RNAs, proteins and
their variants to a single node for use with the heat diffusion
workflow.

After clicking the ‘Analyze’ button above the explorer,
we uploaded three differential gene expression analyses
corresponding to patients with Alzheimer’s disease in three
disease stages (i.e. early, moderate and severe) from Blalock
et al. [GSE28146, (56)] pre-processed with GEO2R (57).
We applied the heat diffusion workflow to the previously
generated network using each of the three differential
gene expression analyses in parallel and displayed the
results (i.e. the final heat on each biological process in
the network) together with the parallel coordinate display
in BEL Commons (Figure 5). Because each biological
process has a final heat corresponding to experiments
for the three disease stages, the parallel plot directly
allows interpretation of progression patterns. We used BEL
Commons to apply a K-Means clustering with K = § to
assist in identifying clusters of biological processes with
similar progression patterns and color them accordingly.
In Figure 5, biological processes in group 0 (blue) tended
to decrease only at severe onset of disease (e.g. glial
cell differentiation). Conversely, biological processes in
group 1 (orange) tended to increase throughout progres-
sion of disease (e.g. Notch signaling pathway). Finally,
group 2 (green) processes remained relatively unchanged
(e.g. lipid metabolic process) through the progression
of disease and group 4 (purple) remained consistently
elevated (e.g. apoptotic process). The complete results of
this experiment as well as a tutorial for reproduction can
be found in the Supplementary Data.

While BEL has inherent limits in its temporal expressiv-
ity, using temporal data in analysis is an initial attempt to
overcome these limits. Complex diseases like Alzheimer’s
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Summary of Experiments

Identifier Query Permutations Omic Name Description

16 14 250 13 EarlyAD.csv Patients from GSE28146 with early Alzheimer's disease Delete
17 14 250 14 ModAD.csv Patients from GSE28146 with moderate Alzheimer's disease Delete
18 14 250 15 SevAD.csv Patients from GSE28146 with severe Alzheimer's disease Delete

Comparison of Experiments

[16] EarlyAD [17] ModAD
1.54

2

1.04

0.5

-2 -1.04

Download Data as TSV
[18] SevAD Group

2

K-Means clustering with K=5 is enabled. Be aware that this is a randomized algorithm and results may not be consistent.

Type Namespace Name

BiologicalProcess GOBP glial cell differentiation
BiologicalProcess GOBP Notch signaling pathway
BiologicalProcess GOBP lipid metabolic process
BiologicalProcess GOBP response to oxidative stress
BiologicalProcess GOBP apoptotic process

[16] EarlyAD [17]1 ModAD [18] SevAD Group
-0.7989 0.371 -2.4916 0
-2.3671 0.1815 2.9763 1
0.291 -0.6136 -0.5847 2
-2.2128 0.088 -5.0908 3
1.1241 1.3339 1.2571 4

Figure 5. A parallel coordinate plot of the final heats from biological processes from several Alzheimer’s disease-specific networks after running the
heat diffusion workflow with differential gene expression data from Blalock et al. (56) comparing patients at three stages of Alzheimer’s disease.

disease must be studied with respect to its progression over
time, and we believe that workflows like the one presented
above could begin to provide insight to the genesis and
progression of the disease in order to support patient strat-
ification and precision medicine.

Discussion

No web application, however feature-rich, will ever satiate
the desire and creativity of researchers to generate novel
solutions to scientific problems. Even though BEL Com-
mons has taken inspiration from many well-constructed
services to build a knowledge discovery environment that
enables researchers to explore knowledge and data in new
ways, it still shares this limit. However, we are not discour-
aged, and we hope to make several improvements to BEL
Commons in the future.

We would like to improve the interoperability of BEL
Commons and the platform build on BEL itself by integrat-
ing open authentication systems like Open Researcher and
Contributor Identifier (ORCID) (https://orcid.org) in order
to harmonize identification of users across multiple web ser-
vices and provide reliable provenance for networks, queries
and analyses. We would also like to integrate further tools
for converting BEL to Resource Description Framework

(RDF) in order to connect BEL with other linked data. Fur-
ther, we would like to improve exporters to other services,
notably, NDEx, which have brighter outlooks on sharing
and feedback systems. Recent developments in integrat-
ing Integrated Network and Dynamical Reasoning Assem-
bler (INDRA) (58) with PyBEL enable conversion from
BioPAX documents to BEL. A future update to BEL Com-
mons will include an option to upload these documents
as well.

We would like to integrate BEL Commons with other
BEL-specific systems developed with different underlying
technologies. First, integrating the BELIEF Dashboard to
use the underlying network and edge store from PyBEL
would enable a more thorough feedback and curation
interface so users could not only vote on the correctness of
edges, but also fix them directly. Second, the NeuroMMSig
Mechanism Enrichment Server will be re-implemented com-
pletely with reusable PyBEL code and BEL Commons com-
ponents in order to advance its goals of achieving patient
stratification by using common algorithms and tools.

Conclusion

Along with recent improvements in generation of BEL
content through text mining (INDRA) and serialization
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of resources (Bio2BEL project, https:/github.com/bio2bel),
we believe that BEL Commons will make BEL more acces-
sible to both academic and industrial users. We have made
this application freely available at https://bel-commons.scai.
fraunhofer.de.
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Postface

One of the issues of the accessibility of BEL mentioned in Chapter |2 was the
ability for users to use previously published algorithms. With a web interface that
guides users through applying those algorithms, BEL Commons moves the com-
munity closer to overcoming that issue. More generally, BEL Commons enables
users who are less familiar with programming to access the BEL ecosystem. BEL
Commons acts as a source of BEL content that can be downloaded for downstream
applications, such as the knowledge graph embeddings described by [107], using
a novel extension to PyBEL’s data interchangeﬂ Finally, the publication motivated
several improvements, such as the deeper integration of the PyBEL ecosystem
with INDRA [111] in order to support semi-automated curation and enrichment
of knowledge graphs as well as the importation of other formats like BioPAX and
SBML that are realized in Chapter [4

In addition to the direct usage of PyBEL described in the postface of Chapter
BEL Commons has supported both curators and end-users of BEL in these projects.
Following publication, BEL Commons has been made open source at https://
github.com/bel-commons with several tools for containerization and deployment
as scalable microservices using Docker and Docker-Compose. This may lead to
even greater uptake, as the original deployment of BEL Commons was hosted on
a Fraunhofer server, which may have been disallowed by industrial users.

"https://pybel.readthedocs.io/en/latest/reference/io.html
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Re-curation and rational
enrichment of knowledge graphs in
Biological Expression Language

Preface

Following Chapters 2| and |3, which laid the groundwork for handling and
exploring knowledge graphs encoded in BEL, the following publication describes
the development and application of two workflows for ensuring the quality of
knowledge graphs encoded in BEL and enriching these knowledge graphs with
semi-automated curation that leverages large-scale information extraction and
natural language processing systems. It presents an evaluation and comparison
to previous semi-automated curation workflows using the metrics for curation
overhead and efficiency described by Rodriguez-Esteban [140].

Reprinted with permission from "Hoyt, C. T. et al.. (2019) Re-curation and
rational enrichment of knowledge graphs in Biological Expression Language.
Database, 2019, baz068". Copyright © Hoyt, C. T, et al., 2019.
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Abstract

The rapid accumulation of new biomedical literature not only causes curated knowledge
graphs (KGs) to become outdated and incomplete, but also makes manual curation
an impractical and unsustainable solution. Automated or semi-automated workflows
are necessary to assist in prioritizing and curating the literature to update and enrich
KGs. We have developed two workflows: one for re-curating a given KG to assure
its syntactic and semantic quality and another for rationally enriching it by manually
revising automatically extracted relations for nodes with low information density. We
applied these workflows to the KGs encoded in Biological Expression Language from the
NeuroMMSig database using content that was pre-extracted from MEDLINE abstracts
and PubMed Central full-text articles using text mining output integrated by INDRA.
We have made this workflow freely available at https:/github.com/bel-enrichment/bel-
enrichment.

Database URL: https://github.com/bel-enrichment/results

Background

reasoning and interpretation. Several standard formats have
The rapid accumulation of unstructured knowledge in been proposed for storing newly structured knowledge,
the biomedical literature has motivated its structuring including Systems Biology Markup Language [SBML; (1)],
and formalization so computers can assist in large-scale Biological Pathways Exchange Language [BioPAX; (2)],

© The Author(s) 2019. Published by Oxford University Press. Page 1 of 13
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Biological Expression Language [BEL; (3)] and Gene
Ontology Causal Activity Models (4).
these standards are public repositories containing content

Accompanying

generated both in academic and industrial contexts such as
the BioModels Database (5), Pathway Commons (6), NDEx
(7), Bio2RDF (8), Open PHACTS (9) and BEL Commons
(10).

Even though each standard focuses on different aspects
of modeling knowledge in systems and networks biology,
they all give rise to knowledge graphs (KGs) consisting
of biological entities (nodes), their interrelations (edges)
and their associated metadata. While KGs have been
useful for qualitative modeling of biochemical networks
(11, 12), cellular signaling (13-15), gene regulatory
pathways and genetic interactions (16, 17), metabolic
pathways (18, 19) and other systems biology applications,
there are several challenges associated with their use.
First, they contain noise arising from curation, from
the loss of information due to representation and from
normalization of different knowledge representations
(20-22). Second, they are generally an incomplete repre-
sentation of the current state of scientific knowledge due to
the large amount of uncurated, unstructured knowledge
in the literature. Third, they progressively become out
of date as scientific experimentation and investigation
elucidate new knowledge (23). Finally, they often lack
biological contextual information such as organelle, cell,
cell line, tissue, organ, phenotype or disease specificity
(24, 25).

KGs also suffer from issues in the normalization and
mapping of entities. Though interoperability standards and
resources like the Minimal Information Required in the
Annotation of Models [MIRIAM; (26)] and Identifiers.org
(27) have been developed and implemented to promote
the semantic interoperability of biological models (and
by extension, KGs), curators often encounter concepts
that are not present in high-quality, publicly available
terminologies and cannot capture the incident knowledge
in a semantically meaningful way. These situations require
enriching previously existing terminologies or, in some
cases, developing new ones. For situations when the
appropriate concept/term is unclear, several tools have been
developed and made freely available to the community
to help curators build semantically interoperable models
including the Ontology Lookup Service [OLS; (28)], the
Ontology Mapping Service (OxO; https://www.ebi.ac.
uk/spot/oxo), Zooma (https://www.ebi.ac.uk/spot/zooma)
and CEDAR Workbench (29). Further, recent work from
Domingo-Fernandez et al. on mapping pathways between
major databases (30) and a critical assessment of their over-
laps and contradictions (31) has shown that the adoption
of standards like MIRIAM has been slow and that while

the syntax of the varying formats used by each database
may be correct, their semantic interoperability is still
lacking.

Motivation

Accurately structuring and formalizing the unstructured
knowledge in the biomedical literature requires careful
planning and manual effort from trained curators. The
scope of a given project must be defined based on its
scientific goals (e.g. to support the interpretation of data, to
generate a disease-specific knowledgebase etc.) and limited
in its literature content sources (e.g. abstracts, full text,
patents etc.) based on a project-specific metric for quality
and relevance—both of which are nebulous in description
and difficult to generate. The scope must also be limited to
certain classes of biological entities, their interrelations and
the standard formats that are capable of expressing them.
For instance, the entities, relations and formats used dur-
ing curation are different for protein complex assemblies
curated by the Complex Portal (32) and regulatory inter-
actions curated by the Signaling Network Open Resource
(33). Similarly, curation guidelines must be defined reflect-
ing these limits. For example, the guidelines of a project
designed to model Tau aggregation inhibitors from the
chemistry literature might encourage the curators to include
direct binding partners of those inhibitors (e.g. GSK-38,
CDKS etc.) but explicitly exclude the biological mecha-
nisms through which the inhibitors’ targets result in Tau
aggregation that would better be curated during a different
project focusing on capturing molecular biology from its
primary literature. While there is no alternative to proper
planning, several semi-automated curation workflows such
as BEL information extraction workflow (BELIEF) (34)
and the sbv IMPROVER (35) provide assistance by auto-
matically detecting entities and relations for curators to
accept or fix in order to increase productivity and enforce
correct syntax and semantics. However, these and similar
systems are limited in their ability to capture the relevant
chemistry and biology, and reversion to manual curation
is often necessary. Most issues arise from the complexity
of terminology used in domain-specific biology and the
heterogeneity of chemical nomenclature in general. Further,
compositions of entities and concepts (e.g. there is a flex-
ible and extensible terminology for complexes of proteins,
such as the variety of combinations of subunits that form
various nicotinic receptors) remain a challenge as natural
language used in scholarly articles is constantly evolving.
Finally, the issues of insufficient resources and fixed time-
lines apply to most curation projects, as aptly described by
(36).
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In the AETIONOMY project (https://www.aetionomy.
eu), we manually curated NeuroMMSig, an inventory of
multiscale and multimodal KGs that capture mechanis-
tic knowledge in the context of neurological disorders
(37). We encoded it in BEL because it is appropriate for
qualitative causal, correlative and associative relationships
between biological entities, processes and measurements
across modes and scales. However, it is currently suffering
from the issues we have previously described: it has not
been assessed for confidence, is becoming outdated and
needs to be enriched following a rational approach that best
prioritizes the flood of recent literature.

To address this, we have developed and applied two
workflows, described in this paper: the first is for re-
curating existing BEL documents to ensure their syntac-
tic and semantic correctness in a scenario where there
was neither prior syntax validation, curation guidelines for
entity nomenclature nor a second curator for achieving
inter-annotator agreement. The second is a semi-automated
algorithm and reproducible workflow for updating and
rationally enriching an existing KG that lessens the burden
of identifying relevant literature, reduces the overhead, as
defined by Rodriguez-Esteban (36), and generates more,
higher quality, relevant content.

We applied these workflows to a selection of KGs in
NeuroMMSig and evaluated the curation effort (time) and
quality in comparison to purely manual curation and other
previously reported semi-automated curation workflows.
We increased the number of nodes and edges in the selected
KGs respectively by approximately five and seven times
while maintaining the specificity of the KGs. With an
improvement to the content underlying NeuroMMSig,
the mechanism enrichment algorithm on its corresponding
web service can return more correct and robust results
to support the analysis of neuroimaging and genomics
data for clinical trials in Alzheimer’s disease, Parkinson’s
disease and epilepsy. Finally, we have made this workflow
freely available at https://github.com/bel-enrichment/bel-
enrichment so others can include it in their own curation
workflows.

Methods

We first present the re-curation workflow for syntactic and
semantic quality assurance before presenting our proposed
approach for updating and rational enrichment.

Syntactic quality assurance

We developed a workflow using git (https://git-scm.com),
GitHub (https://github.com), PyBEL (44) and a novel
PyBEL extension PyBEL-Git (39) in order to identify and

address syntactical issues in the BEL documents generated
during the AETIONOMY project [https://www.aetionomy.
eu; (40-44) and exposed through the NeuroMMSig
mechanism enrichment server (37).

This workflow can be implemented in other web-based
version control systems such as GitLab (https://gitlab.
com) and Atlassian BitBucket (https://bitbucket.org) as
well as directly integrated with continuous integration
systems such as GitLab CI/CD (https://docs.gitlab.com/ee/
ci), Travis-CI (https:/travis-ci.com) and BitBucket Pipelines
(https://bitbucket.org/product/features/pipelines) using the
instructions provided at https://github.com/pybel/pybel-git
with minimal configuration.

Semantic quality assurance

We selected 10 signatures (and their corresponding BEL
documents) from NeuroMMSig based on their druggability
(number of proteins targeted by drugs that have been
assessed in clinical trials), their novelty (less preference
given to subgraphs corresponding to hypotheses that have
repeatedly failed in the clinic, namely amyloid-beta aggrega-
tion) and their amenability to assay development (based on
expert advice) as an example for the re-curation workflow
outlined below. An enumeration and statistics can be found
in Table 1, and the signatures can be explored through BEL
Commons. Because BEL was developed by the biomarker
discovery company Selventa before the wide adoption of
semantic resources like Identifiers.org, the Open Biomedical
Ontology Foundry and the OLS, the language used a
custom format for storing the names and identifiers of
entities in major biomedical databases and ontologies such
as the HUGO Genome Nomenclature Consortium [HGNC;
(45)], Chemical Entities of Biological Interest [ChEBI;
(46)], the Gene Ontology [GO; (4)], Medical Subject
Headings [MeSH; (47)], the Disease Ontology [DO; (48)],
the Human Phenotype Ontology [HPO; (49)], the Cell Line
Ontology (50), the Experimental Factor Ontology (51) and
others. Additionally, Selventa provided several entity type-
specific, manually curated terminologies for chemicals,
protein families, protein complexes and diseases for entities
that had not yet been included in any of the other existing
resources.

Because the Selventa terminologies are no longer
maintained and the publicly available terminologies have
far surpassed them in coverage, the first step in re-curation
was to normalize entities to high-quality, publicly available
terminologies. For example, chemicals were normalized to
identifiers from ChEBI, ChEMBL (52) and PubChem (53)
whenever possible; protein families and complexes were
normalized to FamPlex (54); and diseases were normalized
to DO and HPO. Further, because the BEL documents from



Table 1. Statistics for the number of BEL nodes and BEL statements in the 10 KGs selected from the NeuroMMSig inventory before re-curation (using the version last updated

on 6 December 2016), after re-curation and after enrichment

Label Description Before re-curation After re-curation After enrichment
Nodes Edges Nodes Edges Nodes Edges
Tau protein subgraph The downstream effects of the post-translational 191 493 261 733 708 2054
modification, aggregation and transport of the Tau
protein
DKK1 subgraph, GSK3 The interaction partners with GSK-38 and its targets of 128 254 174 377 376 1165
subgraph post-translational modification. The complementary
DKK1 pathway is a specific signaling cascade upstream
of GSK-38
Inflammatory response Processes related to inflammation in the context of 182 373 341 743 2003 7607
Alzheimer’s disease
Insulin signal The molecular relationships between insulin resistance 251 739 315 881 612 1973
transduction and inflammation, motivated by epidemiological studies
that suggested a correlation between Alzheimer’s disease
(AD) and type II diabetes (55).
Amyloidogenic The downstream effects of the amyloid precursor protein 493 1223 652 1751 2090 7436
subgraph (APP), its protein modifiers and its cleavage products
Non-amyloidogenic Chemicals and processes known to down-regulate the 195 359 325 635 795 2238
subgraph expression of the transcript corresponding to APP or the
abundance of the APP protein
Apoptosis and cell death Processes relevant to AD that result in apoptosis 104 143 170 229 1065 2401
including the Caspase subgraph, XIAP subgraph and
Complement system subgraph
Acetylcholine subgraph Pathways including biological entities and processes 106 197 148 337 423 1275
related to cholinergic neurons and acetylcholine
transmission
GABA subgraph Pathways including biological entities and process related 21 30 91 190 305 721
to GABAergic neurons and GABA transmission
Reactive oxygen species The effects of reactive oxygen species, including the 104 173 126 224 1401 6277
subgraph Myeloperoxidase subgraph, Hydrogen peroxide
subgraph, Free radical formation subgraph and Nitric
oxide subgraph
Total 1188 3529 1704 5391 5850 23811

Later, we discuss these statistics in terms of INDRA statements—the discrepancies are due to the ontological reasoner applied in the conversion process from INDRA statements to BEL statements.
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Table 2. Confidence annotations using the Likert scale for re-curation

Confidence Rationale

None If the evidence string is nonsense or contains no reasonable
biological knowledge, delete it and the related statements entirely. It
is okay to remove BEL statements that are not supported.

Low If it’s not clear what BEL should represent the biology, add SET
Confidence = "Low" for later discussion.

Medium If the statement is wrong, fix it and add the annotation SET
Confidence = "Medium".

High If statement can be asserted from the given evidence, add the

annotation SET Confidence = "High".

AETIONOMY were all produced before 20135, the entities
that were curated using their labels (instead of stable iden-
tifiers) needed to be updated. A short investigation showed
that HGNC and GO were the least stable namespaces (e.g.
change of preferred label, splitting of entries, merging of
entries and deprecation of entries), but combined they
had less than 100 entities to be addressed. We therefore
concluded that manual intervention was more appropriate
than developing complicated systems for updating labels.
While it is not intended to be the focus of this article, we
have also begun to build a custom terminology (available
at https://github.com/pharmacome/terminology) to sup-
plement the publicly available ones for a small number
(less than 1000) of terms that had not been included in
other resources.

After ensuring both the correctness of BEL syntax and
namespace usage, a remaining major aspect of re-curation
is to address the issues arising from curation lacking inter-
annotator agreement. BEL statements and their correspond-
ing annotations (metadata) were generated by several inde-
pendent curators and had not undergone quality control
either by comparison with the results of independent cura-
tion of the same document by a second curator or even
minimally checked by a second curator. We applied the
following simple guidelines:

1. Second curator: check and label all relevant statements
with a SET Confidence annotation using the Likert
scale as described in Table 2.

2. Third curator (curation leader): after all relevant
statements had been checked for correctness, check

all statements with SET Confidence = "High"
or SET Confidence = "Medium". Change the
confidence to SET Confidence = "Very High"

on agreement. Otherwise, fix the statement.

The existence of the confidence guideline can be checked
with the PyBEL command line interface with the following

command: pybel compile --required-annotations

"Confidence".

Proposed approach for updating and rational
enrichment

Next, we developed and applied a procedure for enriching
a given BEL document in order to cope with the mounting
issues of out of dateness and incompleteness. Our approach
identifies nodes with low information density and uses a
large-scale corpus of biomedical literature that has been
pre-processed by automated relation extraction methods
to identify the most relevant literature, evidences and ulti-
mately relations. Notably, the previously described quality
assurance (i.e. re-curation) workflows for checking and
addressing the syntactic and semantic correctness of a given
BEL document were necessary to decrease the noise input
into the procedure. Following the re-curation of the 10 Neu-
roMMSig subgraphs, we applied the following procedure
for rational enrichment:

1. KG pre-processing: nodes corresponding to the same
gene (i.e. RNA, microRNA, protein and variants
thereof) are collapsed, non-causal relationships (e.g.
correlative, associative, ontological etc.) are removed
and several entity types (i.e. abundances, reactions,
pathologies and biological processes) are removed.
While non-causal relations may be useful for explo-
ration and in some analyses of a KG, their removal
results in a graph of genes and their causal interrelations
that allow the following enrichment steps to prioritize
genes based on the amount of causal information
available, which is required for several standard
algorithms for analyzing experimental data such as
Reverse Causal Reasoning (56). Further, the removal
of other entity types and the collapsing of genes and
their corresponding products were motivated by the
focus of such algorithms on interactions between genes
and their products. These pre-processing steps could
be modified to fit other downstream applications. For
example, the entity filter could be modified to include
reactions and metabolites if the downstream application
were to investigate metabolic flux.
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2. Application of information density metric: the remain-
ing nodes are ranked by an information density func-
tion. We used the sum of the node in-degree and out-
degree as this corresponds to the amount of causal
information for a given gene that is available in the
KG. In this scenario, isolated nodes correspond to genes
for which there is no causal information about its
interactions with other proteins, and leaves (i.e. entities
with only one edge) correspond to nodes that have very
limited information.

3. Automated relation extraction: the top-ranked genes are
used as a query to a KG generated by large-scale auto-
mated biological relation extraction. We used the Inte-
grated Network and Dynamical Reasoning and Assem-
bler [INDRA; (57)] and applied several filters to find
the most relevant and novel relations. First, the relations
that were already curated and in the KG were excluded.
Second, INDRA was used to calculate a confidence
score (between 0.0 and 1.0) for each relation based on
evidences from structured databases and the frequency
of occurrence of similar statements. Those statements
with a low confidence score (<0.80) were removed to
increase the precision and therefore reduce the curation
overhead. While INDRA integrates relations extracted
from multiple reading systems, a corpus of relations
from a single machine reading system, such as EVEX,
would serve the same purpose (58).

4. Conversion to BEL: different automated relation extrac-
tion systems present various information (e.g. entity off-
sets, events, triggers etc.) in ways that are not amenable
to curation. Because INDRA already normalizes this
information for several systems to several varieties of
the indra.Statement Python class, we developed a
converter to BEL using PyBEL that can be used directly
with the
Python class. Finally, this information is exported to an

indra.assemblers.PybelAssembler

Excel sheet with several additional columns for tracking
INDRA statement provenance, curator provenance, the
correctness of BEL statements, the type of errors found
and the changes made to incorrect BEL statements.
Examples and links to the full results can be found
in the supplementary information. This process often
results in the addition of entities that were excluded
during KG pre-processing, such as biological processes
and pathologies, as well as the inclusion of additional
namespaces based on their corresponding priorities
encoded in the converter.

For each round of rational enrichment, the procedure
was applied to generate several curation sheets correspond-
ing to the lowest information genes. Each row was checked
with the following procedure:

1. Place an ‘<’ in the ‘Checked’ column.

2. If the BEL statement correctly corresponds to the ‘Evi-
dence’ column, place an ‘x’ in the ‘Correct’ column.

3. Else if the BEL statement can be improved (e.g.
assignment of entity types, relation etc.), correct it and
place an ‘x’ in the ‘Changed’ column and annotate the
error type in the ‘Error Type’ column using a controlled
vocabulary (see the supplementary data). Additional
guidelines for categorizing error types can be found at
https://github.com/pharmacome/curation/blob/master/
indra-errors.rst.

4. Else if the BEL statement does not correspond to
the ‘Evidence’ column and cannot be improved, then
x” should neither be placed in the ‘Correct’ nor the
‘Changed’ column.

5. If the ‘Evidence’ column contains other BEL statements
that were not extracted, duplicate the current row’s
provenance (reference, evidence etc.) and add the addi-
tional BEL statements. Place an ‘x’ in the ‘Changed’
column but not the ‘Correct’ column.

6. If there are other BEL statements that can be extracted,
make a new line with all of the same provenance infor-
mation (uuid, reference, evidence etc.) and just place an
x” in the ‘Changed’ column.

This procedure was applied iteratively: as the low infor-
mation density nodes from the first round gained new rela-
tions, the KG was expanded and further low information
density nodes were added. There are several improvements
that could be made to the information density function
and prioritization of the resulting extracted statements. For
example, relations found by INDRA between low infor-
mation density nodes and high information density nodes
could be prioritized to maintain the scope and focus of a
KG.

Results and discussion

While applying the re-curation workflow outlined in
Figure 1, we identified large sections of poor-quality cura-
tion that had to be removed. Additionally, some evidences
in the BEL document that were previously incompletely
curated were completed. Re-curation also required the
updating of namespaces from the 2015 versions to the
most current and necessitated some additional revisions.
To evaluate the enrichment workflow outlined in
Figure 2, we defined weekly curation rounds in which each
of the 5 curators were tasked to curate the enrichment
template generated by INDRA for the first 30 prioritized
genes. Curators worked 10 hours per round for 1 month
(4 weeks; 1 round per week) to curate BEL statements
from a pool of 113 genes. A database of statements
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Figure 1. A workflow for syntactic quality assessment. This figure can
be found on FigShare at https://doi.org/10.6084/m9.figshare.7643006.v1.

was generated by INDRA using the REACH (59, 60)
and Sparser (61) readers to extract a total of 17096
statements containing these genes from all MEDLINE
abstracts and PubMed Central full-text articles available
in August 2018. Of these, 2989 were manually evaluated.
A total of 917 statements (30.7%) were marked as
correct by the curators, 1454 statements (48.6%) required
manual corrections and the remainder (20.7%) could
not be corrected. The criteria for correctness was that
‘all’ aspects of the statement, including the subject and
object entities, relationship type, phosphorylation and
other post-translational modifications, were extracted
to the same extent as careful manual curation could.
Ultimately, excluding the statements that could not be
corrected, 79.3% of the automatically extracted, manually
revised BEL statements were recovered. After curation, the
recovered statements were converted into a BEL KG that
contained 4228 nodes and 17002 edges complementary to
the original 10 subgraphs selected from NeuroMMSig. The
discrepancies in the number of INDRA statements to BEL
statements are due to the ontological reasoning process
that occurs during conversion. For example, INDRA
statements about protein complex formation are converted
to bi-directional BEL statements, INDRA statements
about post-translationally modified proteins induce edges
to the reference protein and INDRA statements about
bound proteins create a variety of additional BEL nodes
representing their constituents and membership edges
connecting them.

There are two main aspects that are commonly used
to formally evaluate a biocuration workflow: the time
required to complete the task and quality of the curation
compared with a gold standard. To evaluate whether the
proposed approach for rational enrichment allows curat-
ing a larger amount of statements without compromising
the quality, we calculated the average number of min-

Enrichment
Workflow

Acquire and curate
pre-extracted content
in spreadsheets

Serialize and integrate with
original knowledge graph

Figure 2. A workflow for the rational enrichment of knowledge graphs.
This figure can be found on FigShare at https://doi.org/10.6084/m9.
figshare.7642964.v1.

utes required to curate one statement using our proposed
workflow and compared it with previous estimates calcu-
lated conducting manual curation of BEL statements [(34);
(62)] (Figure 3a). While the average curation effort was
significantly lower than manual curation [2.19 minutes
per BEL statement in our workflow vs. 3.2 minutes per
BEL statement in manual curation reported by (62)], our
calculations included the time used by the curators to
annotate the various errors made by the reading system(s).
Therefore, if the curation exercise would have exclusively
focused on curating BEL statements, the average would
have been even lower. Moreover, it is important to note that
our proposed approach does not explicitly require the time
nor expertise required for corpora generation because the
reading systems (e.g. REACH and Sparser) and assembly
systems (i.e. INDRA and PyBEL) are applied to all available
literature. Unfortunately, it was not possible to make a
direct comparison to the reported 1.7 minutes per BEL
statement reported by Madan et al. (34) due to several
confounding variables and the unavailability of further
statistical information about the variability of curation time
when using BELIEE

Although the amount of time required to curate a certain
amount of statements with the proposed approach is lower
compared to standard manual curation, the curation effort
is also highly variable depending on which gene was curated
(Figure 3a). To investigate how the curation effort depends
on the accuracy of the reader extracting BEL statements,
we compared the average curation effort between genes
whose statements were accurately and poorly extracted
(Figure 3b). We observed that the curation effort required
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Summary of Curation Effort
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Figure 3. a) Recovered BEL statements per minute. Note that the time reported here includes the time invested in annotate the statement as well
as INDRA errors. b) A comparison of the curation effort between genes for which INDRA had high accuracies (top 20) and genes presenting low

accuracies (bottom 20).
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Figure 4. a) The distribution of the accuracies in triple identification by INDRA for each gene. X-axis: Correct statements (%). Y-axis: Number of genes
(frequency). b) Distribution of recovered statements after curation (mean: 74.63%).

to extract statements in genes whose statements were highly
accurate (top 20) was significantly less (P < 0.004; Student’s
t-test) than the effort required to curate low accuracy
(bottom 20) genes, which effectively took as long as manual
curation. We conclude that the high variability associ-
ated with the average curation times per curator can be
explained by the extra invested time in the genes presenting
low recall.

The second aspect we evaluated was the performance
in terms of quality. To investigate the direct quality of
the BEL statements coming from INDRA, we analyzed the
distributions of correct statements before curation observed
in each gene (accuracy investigation) (Figure 4a). Most of
the genes presented accuracies close to the mean accuracy
(35.75%) with only a few outliers whose limited number
of extracted statements lead to their respective high or low
accuracies (see Supplementary Figure 1). Furthermore, in
accordance with previous research assessing the quality of
automatic and manual relation extraction (63), the accu-
racies we observed again indicated that BEL statements
must be manually curated in order to generate high-quality

networks. After curation, the distribution of statements that
were correct plus statements that were fixed during curation
(i.e. excluding statements that were incorrect and could
not be fixed) shifted completely to long-tailed distribution
with an average of 74.63% BEL statements successfully
extracted (Figure 4b). The remaining statements (~25%)
could either not be coded in BEL or contained any relevant
information about the particular gene.

While curating the BEL statements, we also annotated
the errors made throughout the process of reading, assem-
bly by INDRA and conversion to BEL by PyBEL in order to
identify common mistakes and to assist in the improvement
of these three systems. The results showed that the most
common error is caused by the name entity recognition sys-
tem that identifies the entities participating in the relation
(Figure 5). Other common errors arose from the improper
assignment of the subject and object entities, from evidences
that did not actually include relations between the subject
and object entities and statements that were semantically
incorrect due to a negation word (e.g. not, no, none, neither
etc.).
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Figure 5. The frequencies of common errors found while curating BEL statements generated from 113 genes. Further details about each error type
and the annotation process are available in the guidelines available at https://github.com/pharmacome/curation/blob/master/indra-errors.rst.

The five curators were tasked with tagging interesting
examples of the common mistakes that could be used to
inform the development of the reading systems (REACH,
Sparser etc.) and the assembly systems (INDRA and
PyBEL). Because the authors of this manuscript maintain
the INDRA and PyBEL packages, identifying the causes
of errors in assembly was relatively straightforward. For
example, BEL statements containing biological processes
were consistently output using invalid BEL syntax, includ-
ing the activity() function, which is reserved for proteins
and other physical entities. We addressed this by updating
the previously mentioned indra.assemblers.Pybel Assembler
class. Another error type that was not addressed until
after the evaluation was completed was the determination
of the role of direct physical interaction in causal
relations. INDRA makes use of linguistic cues from
the text mining systems along with information from
protein—protein interaction databases to determination
if a relation involves a physical interaction between
proteins, but this information was not incorporated into the
indra.assemblers.PybelAssembler class. Instead, by default
all relations were output using BEL statements implying
physical contact: ‘directly increases’ (i.e. increases via
contact) and directly decreases (i.e. decreases via contact).
This issue has since been fixed. In general, the direct/indirect
distinction is difficult to detect automatically in natural
language, though it is very important in the generation
of mechanistic and mathematical models arising from
biological knowledge.

In Table 3, we present a small sampling of the errors and
corresponding suggestions for improvement in the reading
systems. We present a much more thorough enumeration

of the errors found in statements for the 113 curated genes
in the supplementary information. Besides generating new
content quickly, this curation procedure includes informa-
tion to allow for the evaluation of the automated relation
extraction systems and for the proposition of improve-
ments. For example, new groundings can be proposed for
entities that were often mismatched. A prominent example
was the misidentification of tau (a human protein) and
taurine (an amino acid).

Additionally, new rules could be suggested for rule-
based systems to avoid issues with the misidentification of
the order of the subject and object as in the example of
‘Bak expression was also induced in cells overexpressing
the stress-induced transcription factor GADD153, but Bak
expression was inhibited in cells expressing an antisense
GADD153 construct’ (64) whose use of the passive voice
may have caused REACH to interpret the statement as ‘Bak
increased GADD153’. Ultimately, we believe we can use
these examples to provide useful feedback to the developers
of the reading systems and improve future extraction.

After applying the re-curation workflow to our selec-
tion of KGs in the NeuroMMSig inventory, we increased
the number of nodes from 1188 to 1704 (~1.5x) and
edges from 3529 to 5391 (~1.5x). After applying the
enrichment workflow, the number of nodes increased to
5850 (~5x) and edges to 23811 (~7x). A more granular
summary can be found in Table 1. With a 5x increase in
nodes, we would expect to see a 10x increase in edges
if the new nodes were completely disconnected from the
pre-existing nodes in the KG, which shows that we have
been able to maintain the specificity of the KGs to a
reasonable degree. In total, our curators spent 80 hours
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Table 3. Examples of errors that resulted in suggestions for improvements for the underlying relation extraction systems

Gene Evidence Issue Suggestion

MRC1 In conclusion, these results suggest that MRC1, also known as MMR, was Machine learning methods generating
BCR and ABL kinase abrogates MMR confused with mismatch repair (MMR)  contextual word embeddings could be
activity to inhibit apoptosis and induce used to improve the named entity
mutator phenotype. (65) recognition component such as

NeuralCoref (https:/github.com/
huggingface/neuralcoref).

TIMP1 In our work, the restoration of cholesterol TIMP1, also known as EPA, was Improve the named entity recognition
efflux capacities from EPA-enriched confused with eicosapentaenoic acid (disambiguation) process, for example,
human monocyte-derived macrophages (EPA) by updating synonym dictionaries in
(HMDM) treated with both the adenylate rule-based systems.
cyclase activator forskolin and the
phosphodiesterase inhibitor IBMX
strongly suggests that EPA decreased the
ABCA1 mediated cholesterol efflux from
HMDM through a PKA dependent
pathway. (66)

TRPV1  Moreover, recently TRPV1 has been Only the inhibition relationship was Rule-based relation extraction systems
demonstrated to be either inhibited or extracted could be appended with new rules to
activated by PIP 2. (67) handle sentences with multiple objects.

This and similar examples could be
included in the training data for machine
learning-based relation extraction.

NUMB  This interaction is mediated by the NPXY The complex sentence structure of Rule-based systems like REACH that
motif of LNX1 and leads to ubiquitination ‘ubiquitination’ and ‘targeting’ event explicitly handle ubiquitination events
of Numb by the RING domain of LNX1, were not resolved properly, and the could be appended with new rules.
thereby targeting Numb to proteasomal ubiquitination was omitted.
degradation. (68)

USF2 Taken together, the results shown in Relation should be treated as an indirect, Update the INDRA PybelAssembler to

rather than direct, increase

make use of information about whether

Figure 5A—C suggest that USF2 stimulates
the transcriptional activity of NF«B by
enhancing the degradation of IxBa. (69)

a relation is mediated through physical
contact.

on the enrichment step to generate 17 002 new BEL state-
ments with an average rate of 3.54 edges per minute. The
resulting enriched KG can be used in reproductions of
previous analyses leveraging the NeuroMMSig inventory to
assess their robustness, deliver new insights and improve
future analyses when the results are incorporated into a
future release of the NeuroMMSig mechanism enrichment
server. Additionally, the statements comprise a large train-
ing set for future machine learning approaches for text
mining.

Conclusions

We have proposed and applied a generalizable workflow
for enriching and updating existing biological KGs with
a focus on the reduction of curation time both in
literature triage and in extraction. While its realization
involved spreadsheets rather than a bona fide curation
interface, we believe that it could be adopted by both
BEL-specific curation interfaces [e.g. BELIEF and BioDati

Studio (https:/studio.demo.biodati.com)] and more general
biological relation curation interfaces [e.g. NOCTUA
(http://noctua.berkeleybop.org), Factoid (https://github.
com/PathwayCommons/factoid) and WikiPathways (70)].
Furthermore, INDRA is flexible enough to generate
curation sheets for curators familiar with formats other
than BEL, such as BioPAX or SBML.

This workflow is by no means the ultimate solution for
finding relevant content. Using pre-extracted statements as
a stand-in for relevance allows a given KG to be expanded,
but it requires several rounds to find the limits of a given
pathway or graph, during which the scope of the curation
could be lost. We plan to investigate other methods for
identifying relevant content by combining topic modeling
with mind maps to not only identify content at the entity
level, but on a higher abstraction that allows for capturing
of entire areas of biology. These methods could compensate
for the simplications that we made to the curation task,
such as removing relations containing chemicals, biological
processes and phenotypes. Additionally, they could enable
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earlier-stage curation that is more focused on achieving
reasonable coverage of the available knowledge rather than
high granularity enrichment.

Ultimately, as automated relation extraction technolo-
gies improve, they will be used to more significantly sup-
plement manual curation efforts. We expect to see many
upcoming workflows leveraging these exciting prospects.

Authors’ contributions

C.T.H. and D.D.E conceived and designed the study and
authored this manuscript. C.T.H., D.D.E, R.A., L.X.,, S.S.,
E.W. and K.K. performed curation. J.B., B.M.G. and P.G.
provided data. M.H.A. supervised the project.

Availability of data and materials

The pybel-git Python package that was used to assess
syntactic quality is openly available at https:/github.com/
pybel/pybel-git. All other code and analysis is openly avail-
able at https://github.com/bel-enrichment.

Supplementary data

Supplementary data are available at Database Online.

Acknowledgements

We would like to thank Stephan Gebel for his organizational support
and Alina Enns and Keerthika Lohanadan for their help in the
curation tasks.

Funding

Fraunhofer Society under the MAVO Project; Human Brain Pharma-
come; EU/EFPIA Innovative Medicines Initiative Joint Undertaking
under AETIONOMY (115568 to D.D.E.); European Union’s Seventh
Framework Programme (FP7/2007-2013); EFPIA.

Conflict of interest. None declared.

References

1. Hucka,M., Finney,A., Sauro,H.M. et al. (2003) The systems
biology markup language (SBML): a medium for representation
and exchange of biochemical network models. Bioinformatics,
19, 524-531. https://doi.org/10.1093/bioinformatics/btg0135.

2. Demir,E., Cary,M.P, Paley,S. et al. (2010) The BioPAX commu-
nity standard for pathway data sharing. Nat. Biotechnol., 28,
1308-1308. https://doi.org/10.1038/nbt1210-1308c.

3. Slater,T. (2014) Recent advances in modeling languages for
pathway maps and computable biological networks. Drug Dis-
cov. Today, 19,193-198. https://doi.org/10.1016/j.drudis.2013.
12.011.

10.

11.

12.

13.

15.

16.

17.

18.

Carbon,S., Dietze,H., Lewis,S.E. ez al. (2017) Expansion of the
gene ontology knowledgebase and resources: the gene ontology
consortium. Nucleic Acids Res., 45, D331-D338. https://doi.
org/10.1093/nar/gkw1108.

Glont,M., Nguyen,T.V.N., Graesslin,M. et al. (2018) BioModels:
expanding horizons to include more modelling approaches and
formats. Nucleic Acids Res.,46,D1248-D1253. https://doi.org/
10.1093/nar/gkx1023.

Cerami,E.G., Gross,B.E., Demir,E. et al. (2011) Pathway Com-
mons, a web resource for biological pathway data. Nucleic Acids
Res., 39, 685-690. https://doi.org/10.1093/nar/gkq1039.
Pratt,D., Chen,]., Welker,D. et al. (2015) NDEx, the Network
Data Exchange. Cell Systems, 1, 302-305. https://doi.org/10.
1016/j.cels.2015.10.001.

Belleau,E, Nolin,M.-A., Tourigny,N. et al. (2008) Bio2RDF:
towards a mashup to build bioinformatics knowledge systems.
J. Biomed. Inform., 41, 706-716. https://doi.org/10.1016/j.jbi.
2008.03.004.

Williams,A.]J., Harland,L., Groth,P. ez al. (2012) Open PHACTS:
semantic interoperability for drug discovery. Drug Discov.
Today, 17, 1188-1198. https://doi.org/10.1016/j.drudis.2012.
05.016.

Hoyt,C.T., Domingo-Fernandez,D. and Hofmann-Apitius,M.
(2018) BEL Commons: an environment for exploration and
analysis of networks encoded in Biological Expression Lan-
guage. Database (Oxford), 2018, 1-11. https://doi.org/10.1093/
database/bay126.

Rausanu,S. et al. (2015) Computational models for inferring
biochemical networks. Neural Comput. Appl., 26, 299-311.
https://doi.org/10.1007/s00521-014-1617-x.

Yugi,K., Kubota,H., Hatano,A. et al. (2016) Trans-omics: how
to reconstruct biochemical networks across multiple ‘omic’ lay-
ers. Trends Biotechnol., 34,276-290. https://doi.org/10.1016/].
tibtech.2015.12.013.

Pilalis,E., Koutsandreas,T., Valavanis,l. et al. (2015) KENeV: a
web-application for the automated reconstruction and visual-
ization of the enriched metabolic and signaling super-pathways
deriving from genomic experiments. Comput. Struct. Biotech-
nol. J., 13, 248-255. hitps://doi.org/10.1016/.csbj.2015.03.
009.

. Pon,A., Jewison,T., Su,Y. et al. (2015) Pathways with PathWhiz.

Nucleic Acids Res., 43, W552-W559. https://doi.org/10.1093/
nar/gkv399.

Tripathi,S., Flobak,A., Chawla,K. et al. (2015) The gastrin
and cholecystokinin receptors mediated signaling network: a
scaffold for data analysis and new hypotheses on regulatory
mechanisms. BMC Syst. Biol., 9, 1-15. https://doi.org/10.1186/
$12918-015-0181-z.

Kandasamy,K., Mohan,S.S., Raju,R. er al. (2010) NetPath:
a public resource of curated signal transduction pathways.
Genome Biol., 11, R3. https://doi.org/10.1186/gb-2010-11-1-
r3.

Kamburov,A., Stelzl,U., Lehrach,H. et al. (2013) The Consensus-
PathDB interaction database: 2013 update. Nucleic Acids Res.,
41, 793-800. https://doi.org/10.1093/nar/gks1055.

Caspi,R., Billington,R., Ferrer,L. et al. (2016) The MetaCyc
database of metabolic pathways and enzymes and the BioCyc
collection of pathway/genome databases. Nucleic Acids Res., 44,
D471-D480. https://doi.org/10.1093/nar/gkv1164.



Page 12 of 13

Database, Vol. 2019, Article ID baz068

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

Wishart,D.S., Feunang,Y.D., Marcu,A. et al. (2018) HMDB 4.0:
the human metabolome database for 2018. Nucleic Acids Res.,
46, D608-D617. https://doi.org/10.1093/nar/gkx1089.
Nickel,M., MurphyK., Tresp,V. et al. (2016) A review of rela-
tional machine learning for knowledge graphs. Proc. IEEE, 104,
11-33. https://doi.org/10.1109/jproc.2015.2483592.
Mihindukulasooriya,N., Hassanzadeh,O., Dash,S. et al. (2017)
Towards comprehensive noise detection in automatically-
created knowledge graphs. In: CEUR Workshop Proceedings,
Vol. 1963, pp. 1-4.

Pujara,]., Augustine,E. and Getoor,L. (2017) Sparsity and noise:
where knowledge graph embeddings fall short. In: Conference
on Empirical Methods in Natural Language Processing, pp.
1752-1757.

Wadi,L., Meyer,M., Weiser,]. et al. (2016) Impact of outdated
gene annotations on pathway enrichment analysis. Nat. Meth-
ods, 13, 705-706. https://doi.org/10.1038/nmeth.3963.
Hofmann-Apitius,M., Ball,G., Gebel,S. et al. (2015) Bioin-
formatics mining and modeling methods for the identifica-
tion of disease mechanisms in neurodegenerative disorders.
Int. ]. Mol. Sci., 16, 29179-29206. https://doi.org/10.3390/
jms161226148.

Saqi,M., Lysenko,A., Guo,Y.-K. ez al. (2018) Navigating the dis-
ease landscape: knowledge representations for contextualizing
molecular signatures. Brief. Bioinform., bby025. https://doi.org/
10.1093/bib/bby025.

Laibe,C. and Le Novere,N. (2007) MIRIAM Resources: tools to
generate and resolve robust cross-references in Systems Biology.
BMC Syst. Biol., 1, 58. https://doi.org/10.1186/1752-0509-1-
S8.

Juty,N., Le Novere,N. and Laibe,C. (2012) Identifiers.org and
MIRIAM Registry: community resources to provide persistent
identification. Nucleic Acids Res., 40, 580-586. https://doi.org/
10.1093/nar/gkr1097.

Cote,R., Jones,P., Apweiler,R. et al. (2006) The Ontology
Lookup Service, a lightweight cross-platform tool for controlled
vocabulary queries. BMC Bioinformatics,7,1-7. https://doi.org/
10.1186/1471-2105-7-97.

Gongalves,R.S., O’Connor,M.]., Martinez-Romero,M. et al.
(2017) The CEDAR workbench: an ontology-assisted environ-
ment for authoring metadata that describe scientific experi-
ments. Lecture Notes in Computer Science, Vol. 10588, pp.
103-110. https://doi.org/10.1007/978-3-319-68204-4_10.
Domingo-Ferndndez,D., Hoyt,C.T., Bobis Alvarez,C. et al.
(2018) ComPath: an ecosystem for exploring, analyzing, and
curating pathway databases. NPJ Syst. Biol. Appl., 5, 3. https://
doi.org/10.1038/s41540-018-0078-8.

Domingo-Fernandez,D., Mubeen,S., Marin-Llad,J. et al. (2019)
PathMe: merging and exploring mechanistic pathway knowl-
edge. BMC Bioinformatics, 20, 243. https://doi.org/10.1186/
$12859-019-2863-9.

Meldal,B.H.M., Forner-Martinez,0., Costanzo,M.C.
(2015) The complex portal—an encyclopaedia of macromolecu-
lar complexes. Nucleic Acids Res., 43, D479-D484. https://doi.
org/10.1093/nar/gku975.

Perfetto,L., Briganti,L., Calderone,A. et al. (2016) SIGNOR:
a database of causal relationships between biological entities.
Nucleic Acids Res., 44, D548-D554. https://doi.org/10.1093/
nar/gkv1048.

et al.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

Madan,S., Hodapp,S., Senger,P., et al. (2016) The BEL informa-
tion extraction workflow (BELIEF): evaluation in the BioCre-
ative V BEL and IAT track. Database (Oxford), 2016, 1-17.
https://doi.org/10.1093/database/baw136.

Guryanova,S. and Guryanova,A. (2017) sbv IMPROVER: mod-
ern approach to systems biology. Methods Mol. Biol., 1613,
21-29. https://doi.org/10.1007/978-1-4939-7027-8_2.
Rodriguez-Esteban,R. (2015) Biocuration with insufficient
resources and fixed timelines. Database (Oxford), 2015, 1-9.
https://doi.org/10.1093/database/bav116.
Domingo-Fernandez,D., KodamulliLA.T., Iyappan,A. et al.
(2017) Multimodal mechanistic signatures for neurodegener-
ative diseases (NeuroMMSig): a web server for mechanism
enrichment. Bioinformatics, 33, 3679-3681. https://doi.org/10.
1093/bioinformatics/btx399.

Hoyt,C.T., Konotopez,A. and Ebeling,C. (2018) PyBEL: a
computational framework for Biological Expression Lan-
guage. Bioinformatics, 34, 703-704. https://doi.org/10.1093/
bioinformatics/btx660.

Hoyt,C.T. (2018) cthoyt/pybel-git v0.0.1 (Version v0.0.1).
Zenodo. http://doi.org/10.5281/zenod0.1491432 (19 Novem-
ber 2018, date last accessed).

Irin,A.K., Tom Kodamullil,A., Giindel,M. et al. (2015) Com-
putational modelling approaches on epigenetic factors in neu-
rodegenerative and autoimmune diseases and their mechanistic
analysis. J. [mmunol. Res., 2015, 1-10. https://doi.org/10.1155/
2015/737168.

KodamullilLA.T., Younesi,E., Naz,M. et al. (2015) Computable
cause-and-effect models of healthy and Alzheimer’s disease
states and their mechanistic differential analysis. Alzheimers
Dement, 11, 1329-1339. https://doi.org/10.1016/j.jalz.2015.
02.006.

Naz,M., KodamulliLA.T. and Hofmann-Apitius,M. (2016)
Reasoning over genetic variance information in cause-and-effect
models of neurodegenerative diseases. Brief. Bioinform., 17,
505-516. https://doi.org/10.1093/bib/bbv063.
Emon,M.A.E.K., Kodamullil,A.T., Karki,R. et al. (2017) Using
drugs as molecular probes: a computational chemical biology
approach in neurodegenerative diseases. J. Alzheimers Dis., 56,
677-686. https://doi.org/10.3233/JAD-160222.

Hoyt,C.T., Domingo-Ferndndez,D., Balzer,N. et al. (2018) A sys-
tematic approach for identifying shared mechanisms in epilepsy
and its comorbidities. Database (Oxford), 2018, 269860.
https://doi.org/10.1093/database/bay050.

Yates,B., Braschi,B., Gray,K.A. et al. (2017) Genenames.org: the
HGNC and VGNC resources in 2017. Nucleic Acids Res., 45,
D619-D625. https://doi.org/10.1093/nar/gkw1033.
Hastings,]., De Matos,P., Dekker,A. et al. (2013) The ChEBI
reference database and ontology for biologically relevant chem-
istry: enhancements for 2013. Nucleic Acids Res., 41,456-463.
https://doi.org/10.1093/nar/gks1146.

Rogers,EB. (1963) Medical subject headings. Bull. Med. Libr.
Assoc., 51, 114-116.

Schriml,L.M., Mitraka,E., Munro,]. et al. (2018) Human Disease
Ontology 2018 update: classification, content and workflow
expansion. Nucleic Acids Res.,47,D955-D962. https://doi.org/
10.1093/nar/gky1032.

Kohler,S., Carmody,L., Vasilevsky,N. et al. (2018) Expansion of
the Human Phenotype Ontology (HPO) knowledge base and



Database, Vol. 2019, Article ID baz068

Page 13 of 13

50.

S1.

52.

53.

54.

55.

S6.

57.

58.

59.

resources. Nucleic Acids Res., 1-10. https://doi.org/10.1093/
nar/gky1105.

Sarntivijai,S., Lin,Y., Xiang,Z. et al. (2014) CLO: the cell line
ontology. |. Biomed. Semantics, 5, 1-10. https://doi.org/10.
1186/2041-1480-5-37.

Malone,]., Holloway,E., Adamusiak,T. et al. (2010) Modeling
sample variables with an Experimental Factor Ontology.
Bioinformatics, 26, 1112-1118. https://doi.org/10.1093/
bioinformatics/btq099.

Gaulton,A., Hersey,A., Nowotka,M.L. et al. (2017) The
ChEMBL database in 2017. Nucleic Acids Res., 45, D945-
D954. https://doi.org/10.1093/nar/gkw1074.

Kim,S., Thiessen,P.A., Bolton,E.E. et al. (2016) PubChem sub-
stance and compound databases. Nucleic Acids Res., 44,
D1202-D1213. https://doi.org/10.1093/nar/gkv951.
Bachman,].A., Gyori,B.M. and Sorger,P.K. (2018) FamPlex: a
resource for entity recognition and relationship resolution of
human protein families and complexes in biomedical text min-
ing. BMC Bioinformatics, 19, 1-14. https://doi.org/10.1186/
$12859-018-2211-5.

Karki,R., Tom KodamulliLA. and Hofmann-Apitius,M. (2017)
Comorbidity analysis between Alzheimer’s disease and type 2
diabetes mellitus (T2DM) based on shared pathways and the
role of T2DM drugs. J. Alzheimers Dis., 60, 721-731.
Catlett,N.L., Bargnesi,A.]., Ungerer,S. et al. (2013) Reverse
causal reasoning: applying qualitative causal knowledge to the
interpretation of high-throughput data. BMC Bioinformatics,
14, 340. https://doi.org/10.1186/1471-2105-14-340.
Gyori,B.M., Bachman,J.A., Subramanian,K. et al. (2017) From
word models to executable models of signaling networks using
automated assembly. Mol. Syst. Biol., 13, 954. https://doi.org/
10.15252/msb.20177651.

Van Landeghem,S., Hakala,K., Ronnqvist,S. et al. (2012) Explor-
ing biomolecular literature with EVEX: connecting genes
through events, homology, and indirect associations. Adv.
Bioinformatics, 2012, 582765. https://doi.org/10.1155/2012/
582765.
Valenzuela-Escarcega,M.A., Hahn-Powell,G., Surdeanu,M.
et al. (2015) A domain-independent rule-based framework for
event extraction. In: Proceedings of ACL-IJCNLP 2015 System
Demonstrations. Association for Computational Linguistics
and the Asian Federation of Natural Language Processing.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

Stroudsburg, PA, USA pp. 127-132. https://doi.org/10.3115/v1/
P15-4022.

Valenzuela-Escarcega,M.A., Babur,0., Hahn-Powell G, et al.
(2018) Large-scale automated machine reading discovers new
cancer-driving mechanisms. Database (Oxford), 2018, 1-14.
https://doi.org/10.1093/database/bay098.

McDonald,D.D. (2000) Issues in the representation of real
texts: the design of KRISP. In: Natural Language Processing
and Knowledge Representation, pp. 77-110. https://github.com/
ddmcdonald/sparser.

Szostak,]., Ansari,S., Madan,S. et al. (2015) Construction of
biological networks from unstructured information based on a
semi-automated curation workflow. Database (Oxford), 2015,
bav057, https://doi.org/10.1093/database/bav057.

Rinaldi,F, Ellendorff, T.R., Madan,S. et al. (2016) BioCreative V
track 4: a shared task for the extraction of causal network infor-
mation using the Biological Expression Language. Database
(Oxford), 2016, baw067, https:/doi.org/10.1093/database/
baw067.

Lovat,P.E., Oliverio,S., Corazzari,M. et al. (2003) Bak: a down-
stream mediator of fenretinide-induced apoptosis of SH-SYSY
neuroblastoma cells. Cancer Res., 63, 7310-7313.

Stoklosa,T., Poplawski,T., Koptyra,M. et al. (2008) BCR/ABL
inhibits mismatch repair to protect from apoptosis and induce
point mutations. Cancer Res., 68,2576-2580.

Fournier,N., Tardivel,S., Benoist,].-F. et al. (2016) Eicos-
apentaenoic acid membrane incorporation impairs ABCA1-
dependent cholesterol efflux via a protein kinase A signaling
pathway in primary human macrophages. Biochim. Biophys.
Acta, 1861, 331-341.

Morelli,M.B., Amantini,C., Nabissi,M. et al. (2014) Cross-talk
between alpha 1D-adrenoceptors and transient receptor poten-
tial vanilloid type 1 triggers prostate cancer cell proliferation.
BMC Cancer, 14, 921.

Young,P., Nie,]., Wang,X. et al. (2005) LNX1 is a perisynaptic
Schwann cell specific E3 ubiquitin ligase that interacts with
ErbB2. Mol. Cell. Neurosci., 30, 238-248.

Wang,L., Li,H., Zhang,Y. et al. (2009) HINT1 inhibits g-
catenin/TCF4, USF2 and NFxB activity in human hepatoma
cells. Int. |. Cancer, 124, 1526-1534.

Slenter,D.N., Kutmon,M., Hanspers,K. et al. (2018) WikiPath-
ways: a multifaceted pathway database bridging metabolomics
to other omics research. Nucleic Acids Res., 46, D661-D667.



Postface

Continuing with the goals of developing the ecosystem around BEL and Py-
BEL, the workflows and all resulting manually curated results from this pub-
lication have been made freely and openly available to the community. The
first workflow for quality control of BEL promotes more sustainable curation
practices through the usage of version control systems and continuous integra-
tion systems. It was used to re-curate all of the knowledge assemblies from the
AETIONOMY project as well as enforce the clean generation of new knowl-
edge during the Human Brain Pharmacome project that can be found at https:
//github.com/pharmacome/conib. Without re-curation, previously generated con-
tent may neither be syntactically, semantically, nor biologically correct.

The second workflow allows for the usage of massively extracted content from
unstructured text and automated enrichment of knowledge graphs, which further
reduces this burden. Ultimately, the usage of these workflows provided significant
improvements over both manual curation and previously published state-of-the-
art semi-automated curation systems. These improvements manifested across all
of the management, planning, and reading aspects of curation. The workflow is
scalable because pre-extraction can be done once in bulk, then on a schedule so the
most recent content is always available. Further, because curation of each statement
is independent, the workflow is scalable with respect to number of curators. Then,
between each curation, the priorities of all statements can be updated.

While enrichment can be applied generally to any disease- or pathways-specific
knowledge graph, it can also be iterated with topic-driven or publication-driven
curation to quickly acquire breadth in new fields.

Finally, the conclusion of this publication noted that a spreadsheet-based cura-
tion workflow has the benefit of being simple. Its conceptualization has motivated
some improvements to the INDRA Databaseﬂ web application that will likely
result in its evolution into a web-based curation application. When interfacing di-
rectly with the database, the workflow described in this article can be implemented
directly. Other community driven curation tools like WikiPathways and the SBV
Improver may be able to draw content from this system or make contributions
directly to improve their efficiency.

Thttps://db.indra.bio
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Integration of structured
biological data sources using
Biological Expression Language

Preface

While manual and semi-automated curation can generate focused and context-
specific knowledge graphs, high granularity knowledge is sparse and incomplete.
The biomedical community comprises many large-scale curation efforts that gener-
ate high quality translational knowledge graphs with low specificity, but coverage
over many organisms, tissues, diseases, and pathways that can be used to complete
focused knowledge graphs.

Following the knowledge graph enrichment workflow presented in Chapter 4]
this chapter’s publication describes the development and application of BEL as a
medium for integrating heterogeneous, multi-scale, and multi-modal structured
biological data sources due to its ability to represent a wider variety of causal,
correlative, and associative relationships than related systems biology modeling
languages. Towards this end, numerous independent Bio2BEL packages have been
developed capable of downloading, structuring, and serializing various biological
data sources to BEL as well as an overarching computational framework so that
other software developers and biological data source owners can contribute their
own Bio2BEL packages.

65



The philosophy of Bio2BEL encourages reproducibility, accessibility, and de-
mocratization of biological data sources. The inclusion of numerous authors across
several institutions shows the potential of the Bio2BEL philosophy as well as
realizes the goals from Chapter 2| to make the PyBEL ecosystem usable by others.

Reprinted with permission from "Hoyt, C.T,, et al. (2019). Bio2BEL: Integration
of Structured Knowledge Sources with Biological Expression Language. BMC

Bioinformatics, submitted". Copyright © Hoyt, C.T., et al., 2019.
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Results: We have developed numerous independent packages capable of
downloading, structuring, and serializing various biological data sources to BEL.
Each Bio2BEL package is implemented in the Python programming language and
distributed through GitHub (https://github.com/bio2bel) and PyPl.

Conclusions: The philosophy of Bio2BEL encourages reproducibility, accessibility,
and democratization of biological databases. We present several applications of
Bio2BEL packages including their ability to support the curation of pathway
mappings, integration of pathway databases, and machine learning applications.

Keywords: Data Integration; Semantic Web; Biological Expression Language;
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Background

The integration of heterogeneous, multi-scale, and multi-modal biomedical data has
become a cornerstone of modern computational investigation of the mechanisms and
aetiologies underlying complex diseases [1, 2, 3, 4, 5]. An overarching strategy was
proposed by Davidson et al. more than two decades ago that outlined the trans-
formation of data into a common model, semantic alignment of related objects,
integration of schemata, and federation of data [6]. However, integration remains
a challenging task that requires the identification and deep understanding of bio-
logical data sources and their respective formats, conversion, harmonization, and
unification.

Initial interest in the semantic web and linked open data along with the adop-
tion of RDF (Resource Description Framework) in the biomedical community led
to the Bio2RDF project, in which pipelines for converting and serializing several
biological data sources to RDF were developed [7]. Several updates have been issued
since its deployment such as the inclusion of chemical information systems [8]. Fur-

ther, it has also influenced in and has been adopted by subsequent projects such as
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Open PHACTS [9]. While RDF is highly expressive and each of these projects have
developed and enforced well-defined schemata, the format is often not well-suited
for downstream analyses and must first be queried with languages like SPARQL
(SPARQL Query Language for RDF) and subsequently be transformed into ap-
propriate formats with general-purpose programming languages. Alternatives to
RDF/SPARQL such as property graphs (e.g., Neo4j, OrientDB) are comparable [10]
but also necessitate similar post-processing.

Conversely, there have been several biologically meaningful integration efforts
(e.g., STRING [11]; GeneMANIA [12]; GeneCards [13]). However, most suffer from
a lack of defined schemata or standardized data format that impede biological
database interoperability. As interoperability itself is a multifaceted concept, we
would like to highlight three of its facets: first, data sources should refer to named
entities using high-quality, publicly accessible terminologies as prescribed by the
Minimal Information Requested in the Annotation of Biochemical Models stan-
dard [14]. Second, data sources should additionally denote the ontological classes
of named entities (e.g., gene, transcript, protein, pathway, disease) along with their
reference using controlled vocabularies such as the Systems Biology Ontology [15].
Some identifiers, such as those for genes, are often used to refer not only to the physi-
cal region of DNA within the genome, but also the corresponding RNA transcript(s)
or protein product(s). Unfortunately, many biological databases do not explicitly
distinguish between these entity classes. For example, the STRING database lists
gene-centric homology relationships, transcript-centric co-expression relationships,
and protein-centric protein-protein interactions using gene-centric nomenclature.
While it may be possible to identify the classes of entities based on their incident
relationships, doing so requires specific knowledge of the database including the
semantics of its relationships. Third, resources should, at a minimum, map their
relationships to controlled vocabularies such as the Relation Ontology, or further
use standardized data formats with defined semantics (e.g., PSI MI-TAB) to mini-
mize both the interpretation and implementation effort when combining them with
other resources.

OmniPath [16] began to address these facets when it combined several signaling
pathway and transcriptional regulation databases. It achieved interoperability be-
tween several databases by normalizing the identifiers and relationships between
entities from several databases describing the same phenomena (e.g., microRNA-
target interactions, protein-protein interactions, etc.) and creating a unified net-
work. However, because it did not use a standard format or schema as mentioned
in the third facet for interoperability, OmniPath itself cannot readily be directly in-
tegrated with other biological data sources. Pathway Commons [17] addressed this
concern when combining several molecular pathway and interaction databases by
translating the source databases into the BioPAX standard [18] using automated
pipelines. However, it suffers from low granularity and low recovery of information
from some of its primary biological data sources which may be due to prioritiza-
tion of software development time, data usage restrictions, or shortcomings in the
BioPAX standard. While BioPAX is well-suited for representing biological reac-
tions and transformations, it is limited in its ability to represent correlative and
associative relationships across multi-scale biology (e.g., at the levels of processes,
phenotypes, and clinical observations).

Page 2 of 14
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As an alternative, we propose the use of Biological Expression Language
(BEL [19]) as an integration schema in order to overcome the limits faced by
previous efforts and to simultaneously address all three facets of interoperability.
BEL has begun to prove itself as a robust format in the curation and integra-
tion of previously isolated biological data sources of high granular information on
genetic variation [20], epigenetics [21], chemogenomics [22], and clinical biomark-
ers [23]. Its syntax and semantics are also appropriate for representing, for example,
disease-disease similarities, disease-protein associations, chemical space networks,
genome-wide association studies, and phenome-wide association studies.

With the same focus on reproducibility as Bio2RDF, OmniPath, and Pathway
Commons as well as deference to software maintainability and the ease of devel-
opment and inclusion of new biological data sources, we have developed a growing
list of Bio2BEL packages, each capable of downloading, structuring, and serializing
various biological data sources to BEL (Table 4). Each can be found in the Bio2BEL
GitHub organization (https://github.com/bio2bel) as an independent open-
source Python package that can readily be installed with pip. We have also devel-
oped and freely provided a framework (https://github.com/bio2bel/bio2bel)
in the Python programming language to enable code reuse and the fast generation
of additional Bio2BEL packages. Notably, the list of Bio2BEL packages includes
one for OmniPath as a proof of concept that authors of other resources can im-
plement their own Bio2BEL packages. In this article, we present the philosophy
and implementation of Bio2BEL packages, a summary of past and future Bio2BEL
packages, and finally, several case studies including the utility of Bio2BEL packages
during curation of pathway mappings, in the analysis of cancer genome data, and

for machine learning applications.

Implementation

Bio2BEL comprises numerous independent open-source Python packages that each
enable reproducible access to a given biological data source (Figure 1). Each
Bio2BEL package contains five components: 1) a definition of the source database or
knowledge base, 2) an automated downloader for the data, 3) a parser for the data,
4) a storage and querying system for the data, and 5) a protocol for serializing the
data to BEL (Figure 2). In this section, we outline the components of a Bio2BEL
package and their implementation details.

Components of a Bio2BEL package

As this section outlines the core components and philosophy of a Bio2BEL package,
it illustrates the tasks and thought process of a scientific software developer as they
implement a new Bio2BEL package.

Definition of data

The first step in generating a Bio2BEL package is to understand the source data.
This requires determining if the data are publicly accessible, if they are versioned
(and how the location changes with versions), and if they are available under a
permissive license. Bio2BEL packages do not contain data themselves and only

refer to the locations of the original data sources. For those that are versioned,
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Open Biomedical Ontologies
Human Phenotype Ontology (HPO), Disease Ontology
(DO), NCBI Taxonomy (ncbitaxon), Cell Ontology (CL), etec.

Ontology Lookup Service Bio2BEL
Enabled, but cguyently unused bg:ause redundant of |:> Structure data and provide |:> E)\S’J

OBO Foundry and not inclusive of all source databases export as BEL documents,

namespaces, and annotations
Primary Databases
HGNC, Entrez Gene, Homologene, miRBase, RGD, MG,

ZFIN, SGD, FlyBase, FamPlex, InterPro, Pfam, etc

.=~

Figure 1 Though their main focus is on generating BEL documents, some Bio2BEL repositories
have secondary goals of generating the BEL namespace and annotation files necessary to support
manual curation. Most rely on primary databases, but the Bio2BEL framework also includes
functions for generating them from standard Open Biomedical Ontology documents, or through
the EBI Ontology Lookup Service [24]. Logos adapted from http://obofoundry.org,
https://www.ebi.ac.uk/ols, and https://openbel.org.

ALY,

Figure 2 A graphical overview of the sequentially ordered components of a Bio2BEL package.
These components correspond to the philosophy that reproducibility and accessibility can
ultimately lead to the democratization of the usage of prior biological knowledge.

providers commonly generate symlinks to the most recent version (e.g., Inter-
Pro; ftp://ftp.ebi.ac.uk/pub/databases/interpro). These characteristics help
minimize licensing issues while enabling the resulting packages to update their con-
tent without changing code. Then, the developer implements custom code that
makes the appropriate interpretations to convert the source data to BEL. Below,
three types of data that can be readily integrated in BEL are described along with
accompanying Table 1, 2/and 3.

Table 1 Taxonomies, Hierarchies, and Ontologies

Data Source Example BEL Statement  Description

MeSH path(X) isA path(Y) Pathology X is a subtype of pathology Y.
Complex Portal  p(X) partOf complex(Y)  Protein X is a member of complex Y.

GO bp(X) partOf bp(Y) Biological process X is a sub-process of Y.

Table 2 Tabular and Relational Data

Data Source Example BEL Statement Description

PubChem, ChREMBL  a(X) directlyDecreases act(p(Y), ma(kin)) Compound X inhibits kinase Y.

ADEPTUS path(X) positiveCorrelation r(Y) Gene Y is up-regulated in patients with pathology X.
ADEPTUS path(X) negativeCorrelation r(Y) Gene Y is down-regulated in patients with pathology X.

ADEPTUS path(X) causeNoChange r(Y) Gene Y is not regulated in patients with pathology X.
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Table 3 Graphs

Data Source Example BEL Statement Description

Menche et al.  path(X) association path(Y) Pathology X is statistically similar to pathology Y

Tazonomies, hierarchies, and ontologies The Medical Subject Headings [25] multi-
hierarchy can be converted to BEL by generating an isA relationship between each
MeSH descriptor and all of its corresponding parents in the associated MeSH tree.
Nomenclatures like the Complex Portal [26] also define partOf relations between
protein complexes and their substituents. The multi-hierarchy in Gene Ontology
(GO [27]) can be converted similarly, which contains both isA relations and partOf
relations.

Tabular and Relational Data Enzyme inhibitors from ChEMBL and PubChem
can be encoded like a(X) directlyDecreases act(p(Y), ma(kin)), and disease-specific
differential gene expression can be encoded like path(X) positiveCorrelation r(Y)
or path(X) negativeCorrelation r(Y), or path(X) causeNoChange r(Y) depending
on whether the gene’s expression is up-regulated, down-regulated, or not regulated,
respectively. Further, BEL relationships can be extended include metadata (i.e.,
annotations) describing their quantitative aspects. For example, IC59, ECsg, or
other kinetic assay measurements as well as provenance and biological contextual
information (e.g., original publication, cell line, assay type) can be included with
the enzyme inhibition relationships from ChEMBL. Similarly, the logs fold change
and p-values can be included with relationships about differential gene expression.

Graphs Wet-laboratory experimentation can be used to generate networks of di-
rectly observed phenomena (e.g., protein-protein interaction networks) and indi-
rectly observed phenomena (e.g., gene co-expression networks). Graphs are often
distributed as tabular data to include additional information about their constituent
nodes and edges and there is often overlap with the previous data type describing
tabular and relational data. In silico experimentation can also be used to derive
edges from experimental data sets or even other graphs. For instance, bipartite
graphs can be projected to homogeneous graphs consisting of a single entity and
edge type as suggested by Sun et al. [28]. Menche et al. [29] used this strategy
and computed a homogenous graph of disease-disease associations from a bipartite
graph of diseases and their associated genes.

Downloader

The Bio2BEL framework follows a functional programming paradigm to provide an
abstraction of the acquisition of data over common internet protocols like HTTP,
HTTPS, and FTP. With only the URL of the data set as an input, Bio2BEL
generates a download function that wraps Python’s built-in urllib module and a
simple caching mechanism in the local filesystem that avoids unnecessary network
usage and duplication of potentially large files. However, some data sources, such
as DrugBank [30], are not available without authentication and cannot make use
of this abstraction. In those cases, developers can substitute the standard code
provided in the Bio2BEL framework with custom implementations. We have taken
this route for several of the packages presented in the Results section of this paper
for repositories including DrugBank and MSigDB [31].
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Parser

There are several common file formats used by biological data sources (e.g., CSV,
TSV, XML, RDF, JSON, KGML, Stockholm, OBO, OWL). Data may also (and
sometimes only) be accessible through public application programming interfaces
(APIs) such as the data from KEGG [32], Reactome [33], and BioThings [?]. Alter-
natively, data may be available through software packages usage such the Affymetrix
R package [34] and HaploReg (Ward and Kellis, 2012). After each Bio2BEL pack-
age’s downloader generates a local copy of the data, the developer can either use
one of the pre-defined parser functions from the Bio2BEL framework or implement
a custom parser. For the most simple formats (i.e., CSV and TSV), the Bio2BEL
framework automatically generates a parser that uses the pandas package (McKin-
ney, 2010; https://github.com/pandas-dev/pandas). Formats like XML, JSON,
and Stockholm have corresponding parsers built into the Python language or stan-
dard biology-focused packages, but the information contained within often needs
custom logic for restructuring such as in the case of KGML, BioPAX, or PSI MI-
XML. The remaining custom formats all require custom parsers and logic. We
have already implemented Bio2BEL that used CSV and TSV data (e.g., Inter-
Pro, ExCAPE-DB), XML (e.g., DrugBank), RDF (e.g., WikiPathways), JSON and
KGML (e.g., KEGG), Stockholm (e.g., miRBase), and OBO and OWL (e.g., GO,
DOID).

In the case of tabular data, the developer has the opportunity to annotate the
column headers and their corresponding data types, which are not always included
in the data and may be sought from various readme files or by exploring the corre-
sponding website. Further, the contained data might be more useful after normaliza-
tion or augmentation with information from other biological data sources. Because
some databases provide identifiers with redundant information, such as the duplica-
tion of the namespace in the identifier, they must be normalized. For example, each
identifier in the Disease Ontology (Schriml et al., 2018) is prefixed by its namespace,
DOID, as can be seen in the Compact URI for the entry for restless legs syndrome,
DOID:DOID:0050425. In the corresponding Bio2BEL DOID package, as well as
those for others (e.g., HGNC, Gene Ontology) we normalized these identifiers to
remove the redundant information. Because the main Entrez Gene database does
not contain crucial information for genes, such as their chromosomal coordinates in
various genomic builds, we augmented the data in the Bio2BEL Entrez package for
each gene with information from RefSeq so that the genomic positions and corre-
sponding genome build for each gene were readily accessible. Additionally, several
databases that reference genes only use their HGNC gene symbols and not stable

identifiers, and therefore require this additional normalization step.

Storage

Though this step may be considered optional after parsing the data, it is help-
ful for future reuse to choose a database type and develop a schema with which
the data can be stored. Often, relational databases that can be queried with
SQL are an appropriate choice. The Bio2BEL framework provides a full har-
ness for generating an object-relational mapping (ORM) using the SQLAlchemy
(https://www.sqlalchemy.org) Python package that handles generation of the
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SQL schema and storage of the data in a SQL database. Corresponding entity-
relation diagrams can be found in the supplementary data repository at https:
//github.com/bio2bel/bio2bel-manuscript-supplement. While all Bio2BEL
packages have, until now, used SQL databases with the SQLAlchemy ORM, there
exists alternatives such as graph databases built on RDF or property graphs like
Neo4J or OrientDB with a corresponding object-graph mapper that have been suc-
cessfully employed in downstream applications using biological knowledge graphs
(Himmelstein et al., 2017; Saqi et al., 2018).

Serializer

The final aspect of a Bio2BEL package is either to serialize the parsed data as BEL
or to export the accompanying database as BEL. Entities in the SQL database that
correspond to nodes and edges in BEL graphs can be converted by extending their
respective ORM classes with Python functions using the internal domain-specific
language provided by PyBEL (Hoyt et al., 2018a). It can then be output in several
formats provided by PyBEL and its growing ecosystem of plugins as well as it
shields Bio2BEL packages from changes to the BEL language. Additionally, some
Bio2BEL packages wrap standard nomenclature resources such as HGNC (Yates et
al., 2017) and are able to generate BEL namespace files that are a necessary in both
manual and automated curation of content in BEL (Figure 2). This step is deeply
connected with the prior step related to the definition of the data.

Implementation Details

The Bio2BEL framework and Bio2BEL packages are implemented in Python with
accessibility and readability in mind. The framework provides an abstract class
bio2bel.Manager whose functionality all Bio2BEL packages must completely im-
plement. Using these definitions, the framework automatically generates a uniform
command line interface (CLI) that includes functions for populating the database,
clearing the database, reloading data from the source, generating a web application
with a view over the contents of the database, and serializing to BEL.

The Bio2BEL framework and Bio2BEL packages use flake8 (https://github.
com/PyCQA/f1lake8) to enforce code quality, a setup.cfg file to describe the package,
setuptools (https://github.com/pypa/setuptools) to build distributions, py-
roma (https://github.com/regebro/pyroma) to enforce package metadata stan-
dards, sphinx (https://github.com/sphinx-doc/sphinx) to build documenta-
tion, Read the Docs (https://readthedocs.org) to host documentation, pytest
(https://github.com/pytest-dev/pytest) as a testing framework, coverage
(https://github.com/nedbat/coveragepy) and Codecov (https://codecov.io)
to monitor testing coverage, and Travis-CI (https://travis-ci.com) as a contin-
uous integration service. Further, we provide a template for Cookiecutter (https://
github.com/audreyr/cookiecutter) at https://github. com/bio2bel/bio2bel-cookiecutter
such that the structure of new packages can be quickly generated containing all of
the configuration for each of these tools.

Implications of the Bio2BEL Philosophy

Because all Bio2BEL packages are uniform in their implementation and CLI usage,
it is trivial to provide a Dockerfile and Docker-Compose configuration for quick de-
ployments. In the future, we plan to automatically generate RESTful APIs, which
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may be more useful to deploy internally than to use publicly available ones due to
constraints like rate-limits. Because all Bio2BEL packages are independent, they
avoid two major problems of monolithic codebases: they are more robust to break-
ages or failures in a single package and they can be installed as needed, which is
pertinent as the data sources become larger, more heterogeneous, and more com-
plex.

Further, Bio2BEL packages can be generated by any group, and registered with
the Bio2BEL framework using Python entry points (https://packaging.python.
org/specifications/entry-points) that can be defined in the installation con-
figuration. While the Cookiecutter template allows new developers to quickly gen-
erate a package with the correct format, a full tutorial for implementing a uni-
form Bio2BEL package can be found at https://bio2bel.readthedocs.io/en/
latest/tutorial.html.

Results

After describing the Bio2BEL framework and the requirements for implementing
new Bio2BEL packages, we present a list of the independent Bio2BEL packages that
we have already implemented in Table 4. We note that several of the data sources
have already been included in other meta-databases like Pathway Commons and
Bio2RDF, but we have chosen to implement the Bio2BEL packages using the source
data rather than deriving results from these databases to provide a complementary
resource for those familiar with and interested in using BEL. This choice also reduces
dependencies on other projects that may not be maintained and protects against
data loss during multiple conversions.

While there are thousands of high quality databases available, including a high
percentage that do not fit into the schemata defined by Pathway Commons,
Bio2RDF, or other meta-databases that are more appropriate for BEL, we have
prioritized them as they become have become relevant for our specific use-cases,
but also are open to suggestions via the issue tracker on https://github.com/
bio2bel/bio2bel/issues. Below, we present four of these use cases.

Mapping Concepts Between Pathway Databases with ComPath

Pathway databases have become one of the most frequently used biological data
sources in the interpretation of high-throughput -omics experiments. Connecting
pathway knowledge across the hundreds of databases developed in recent decades
would not only provide a more comprehensive overview of the underlying biol-
ogy they represent, but would also enable performing identical analyses on differ-
ent databases. However, integrative approaches which combine databases lack the
equivalence mappings between similar concepts and qualifiers that are necessary to
compare between analyses run using one or another database. There are several
reasons that explain the lack of mappings between databases, such as the absence
of a common pathway nomenclature, differences in databases’ scopes, and the lack
of clear pathway boundary definitions. Furthermore, generating high quality map-
pings requires a significant amount of manual effort since curators must individually
investigate each pair of pathways and assess whether the pair comprises related or

similar pathways occurring in the same biological context.
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Table 4 A non-exhaustive list of biological data sources already available as Bio2BEL packages

Name Description Terms Relations
adeptus Disease-specific differential gene expression 4943
chebi Chemical multi-hierarchy 138863

compath Pathway-pathway equivalences and hierarchies 1795
ddr Disease-disease relationships 2997
drugbank Drug-target interactions 11292 25199
entrez Genes and orthologies 388986

excape Chemical-target interactions 3550000
expasy Enzyme classification and membership 6718 243914
famplex Protein family and complex hierarchy 4462
flybase Drosophila gene nomenclature and orthologies 245565

go Biological process multi-hierarchy 45018 92905
hgnc Human gene nomenclature and orthologies to mouse and rat 42741 38360
hgncgenefamily  Human gene-gene family memberships 1157 23881
hippie Protein-protein physical interactions 340629
homologene Gene ortholog group memberships 30492 131558
hsdn Disease-symptom associations 10246
interpro Protein-family and protein-domain memberships 36524 34611
kegg Protein-pathway memberships 330 30346
mgi Mouse genome nomenclature 300499

mirbase MicroRNA nomenclature 38589

mirtarbase miRNA-target interactions 366110
msig Gene-gene set memberships 17810 2443391
pfam Protein-protein family and protein family-clan memberships 17929
phewascatalog Gene-disease relationships 364667
phosphosite Post-translational modifications 553716
reactome Protein-pathway and chemical-pathway memberships 23621 137768
rgd Rat gene nomenclature 44970

sider Drugs’ side effects and indications 339742
wikipathways Protein-pathway memberships 513 22115

Three Bio2BEL packages were implemented for major pathway databases (i.e.,
KEGG, Reactome, and WikiPathways) and extended with tools to support the
first curation of mappings between their equivalent and hierarchically related path-
ways during the ComPath project [35]. Each were used to store and harmo-
nize the data underlying ComPath and its accompanying web curation interface
(https://compath.scai.fraunhofer.de). Though the databases of the Bio2BEL
packages are detached from the ComPath web application, they can be used to
integrate additional biological data sources into ComPath in the future and also to
regularly update their content over time [36]; thus, facilitating the revisitation and

reevaluation of the mappings.

Harmonizing Pathway Databases into a Common Schema with PathMe

The most direct and effective approach in addressing issues of interoperability of
pathway databases is in the transformation of various database formats into a com-
mon schema. Although this approach has been exemplified by previously mentioned
databases (e.g., OmniPath, Pathway Commons, and graphite [37]), there have been
several limitations which have impeded a complete harmonization of pathways from
distinct biological data sources. Specifically, this requires: the harmonization of bi-
ological entities to identifiers from a common nomenclature (e.g., Entrez Gene or
HGNC for human genes, ChEBI or PubChem for chemicals, etc.), the normalization
of biological relationships, and an underlying format which serves as the unifying
schema. However, a complete harmonization risks the loss of some information in
the transformation process. For instance, pathway knowledge representations can
span across several scales, such as molecular events, cellular processes, and pheno-
types, which various formats accommodate for in varying degrees. While existing
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biological data sources can address certain aspects of these steps, addressing all of
these steps would enable the complete interoperability of pathway databases. Ac-
cordingly, the PathMe software was designed to harmonize pathway databases into
BEL as a common representation schema with Bio2BEL at its core [38].

The selection of BEL lies in its flexibility to incorporate a wide range of biological
entities from standardized nomenclatures and their relationships, all on a multi-
modal scale. The transformation of various pathway formats into BEL through
PathMe is facilitated by the Bio2BEL framework by allowing for the automation of
the acquisition of the biological data sources which can change frequently. By in-
tegrating PathMe and Bio2BEL, any number of pathway resources included in the
latter can be transformed into BEL. In doing so, users can enrich pathway knowl-
edge by leveraging multiple, equivalent pathway representations from the various
biological data sources included in Bio2BEL and analyze their own networks along-
side canonical pathway ones. In a later publication, we plan to demonstrate the
utility of combining Bio2BEL packages to produce an integrative pathway resource.
Similarly to the recent comparison of pathway activity measurement tools by Lim
et al. (2018), we will benchmark the performance of each of these resources both in-
dividually and combined on functional pathway enrichment and classification tasks

applied to cancer genome and patient data.

Applications of Network Representation Learning with BioKEEN

The integration of numerous biological databases into a common schema gives rise
to large, rich, heterogeneous knowledge graphs to which a variety of statistical and
machine learning methodologies can be applied. One family of approaches, network
representation learning (NRL), has been shown to be useful for clustering, entity
disambiguation, and link prediction tasks (Nickel et al., 2016). As new machine
learning models are published for accomplishing these tasks, several implementa-
tions using the currently popular machine learning frameworks TensorFlow (Abadi
et al. 2016) and PyTorch (Paszke et al., 2017) provide reference implementations.

We developed BioKEEN as an extension to the previously developed NRL pack-
age, PYKEEN, to enable it to directly acquire and preprocess BEL knowledge
graphs, namely those generated by Bio2BEL (Ali et al., 2018). One of the origi-
nal goals of PYKEEN was to democratize NRL methods by facilitating those less
familiar with the relevant mathematics and programming backgrounds to apply and
evaluate them. We have continued this philosophy with BioKEEN to allow scientists
to specify the Bio2BEL packages they would like to include in their analysis that are
either hosted on PyPI, GitHub, or already installed as custom local packages. The
usage of Bio2BEL allows scientists using NRL as a component of a more complex
analytical pipeline to have the ability to not only re-run analyses in a reproducible
manner, but also make use of the ability to acquire updated data when it becomes
available.

Along with our previous publication, we provided several demonstrations in-
cluding the prediction of novel protein-protein interactions using a model trained
with the BioKEEN package for the Human Integrated Protein-Protein Interaction
rEference (HIPPIE; Alanis-Lobato et al., 2017), the prediction of pathway map-
pings using ComPath, and the prediction of disease-symptom associations using
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the Bio2BEL package for the HSDN (Zhou et al., 2014) provided by Himmelstein
et al. (2017) with Rephetio (https://het.io). Later, we plan to apply BioKEEN
to combinations of Bio2BEL repositories to support other biologically relevant link
prediction tasks such as drug repositioning.

Interoperability with Other Projects
The Integrated Network and Dynamical Reasoning Assembler (INDRA; Gyori et
al., 2017) integrates several databases including those covering physical interactions
(e.g., BioGrid; Chatr-Aryamontri et al., 2017), signaling (e.g., SIGNOR; Perfetto
et al. 2016), curated drug targets (e.g., HMS LINCS small molecule target rela-
tionship database; ://lincs.hms.harvard.edu), and experimental drug affinities
(e.g., Target Affinity Spectrum; Moret et al., 2018) in order to support generation
of dynamical models. Following the recent development of a converter between BEL
and INDRA (Hoyt et al., 2019), these biological data sources can be indirectly made
available as BEL, and all Bio2BEL packages can be integrated in INDRA.
Similarly, we are collaborating with the researchers developing OmniPath to struc-
ture their data acquisition pipelines as a Bio2BEL package, which is currently under
development. Notably, OmniPath encompasses several biological data sources re-
lated to protein-protein interactions, transcriptional regulation, post-translational
modifications, ligand-receptor interactions, and protein complexes, and others. This
resource is complementary to content already available through Bio2BEL, provid-
ing a more comprehensive integration of the extensive publicly available biological
data sources.

Conclusions

While the development of Bio2BEL has addressed the lack of defined schemata,
data standardization, annotation of entities with classes, and application of con-
trolled vocabularies to relations in numerous biological databases by converting
them to BEL, several considerations remain. The approaches taken by Bio2RDF,
Pathway Commons, and now Bio2BEL can be categorized as data warehousing.
An alternative strategy, data federation, attempts to combine disparate biological
data sources using SPARQL endpoints (e.g., DisGeNet-RDF (Queralt-Rosinach et
al., 2016), UniProt (Redaschi et al., 2009), EBI (Jupp et al., 2014)), RESTful APIs
(e.g., BioServices (Cokelaer et al., 2013), BioThings, Orange Bioinformatics (Curk
et al., 2005)), and more recently, GraphQL (https://graphql.org). Bio2BEL does
not directly address data federation, but other aspects of the BEL ecosystem such
as BEL Commons (Hoyt et al., 2018b) have exposed RESTful APIs for manipu-
lating BEL that might also be useful for GraphQL. However, the several attempts
at converting BEL to RDF have suffered from relatively low adoption; and while a
conversion to RDF enables querying with SPARQL, BEL lacks a dedicated query
language that can leverage the rich aspects of its statements beyond their subjects,
predicates, and objects.

Finally, it remains that like any format, consumers of BEL must make their own
transformations appropriate for their scientific applications. We are not discouraged
by this fact, and believe that Bio2BEL is a step towards enabling more computa-
tional scientists easy access to a larger portion of the wealth of available structured
biological knowledge resources.

Page 11 of 14



Hoyt et al.

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
Each Bio2BEL package is listed on https://github.com/bio2bel and automatically acquires relevant data from
their respective original biological data sources.

Competing interests
The authors declare that they have no competing interests.

Funding

This work was partially supported by the EU/EFPIA Innovative Medicines Initiative Joint Undertaking under
AETIONOMY [grant number 115568], resources of which are composed of financial contribution from the European
Union's Seventh Framework Programme (FP7,/2007-2013) and EFPIA companies in kind contribution.

This work was also partially supported by the Fraunhofer Society’s MAVO program.

The funding bodies did not play a role in the design of the study and collection, analysis, and interpretation of data,
nor in writing the manuscript.

Author’s contributions

CTH conceived and designed the study. CTH, DDF, and SM drafted the manuscript. MHA acquired funding and
reviewed the manuscript. All authors performed data curation and developed computational pipelines for extraction,
transformation, and loading of various biological data sources. All authors have read and approved the final
manuscript.

Acknowledgements
We would like to thank the curators and maintainers of the several databases we have used, without whom none of
this work would be possible.

Author details

! Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Konrad
Adenauer Strasse, 53754 Sankt Augustin, Germany. 2Bonn-Aachen International Center for IT, Rheinische
Friedrich-Wilhelms-Universitit Bonn, 53115 Bonn, Germany. > Department of Enterprise Information Systems,
Fraunhofer Institute for Intelligent Analysis and Information Systems (IAIS), Konrad Adenauer Strasse, 53754 Sankt
Augustin, Germany. “Department of Computer Science, Rheinische Friedrich-Wilhelms-Universitit Bonn, 53115
Bonn, Germany. 5Department of Chemistry, Stanford University, 94305 Stanford, United States of America.
5European Molecular Biology Laboratory (EMBL), Structural and Computational Biology Unit, Meyerhofstrasse 1,
69117 Heidelberg, Germany. Faculty of Medicine, Joint Research Centre for Computational Biomedicine, RWTH
Aachen University, MTZ Pauwelsstrasse 19, 52074 Aachen, Germany. ®Faculty of Medicine and Heidelberg
University Hospital, Institute of Computational Biomedicine, Heidelberg University, Bioquant Im Neuenheimer Feld
267, 69120 Heidelberg, Germany.

References

1. van Dam, J.C.J., Schaap, P.J., Martins dos Santos , V.A.P., Su & rez-Diez, M.i.a.: Integration of
heterogeneous molecular networks to unravel gene-regulation in Mycobacterium tuberculosis. . BMC systems
biology 8(1), 111 (2014). doi:10.1186/512918-014-0111-5

2. lyappan, A., Kawalia, S.B., Raschka, T., Hofmann-Apitius, M., Senger, P.: NeuroRDF: semantic integration of
highly curated data to prioritize biomarker candidates in Alzheimer’s disease . Journal of Biomedical Semantics
7(1), 45 (2016). doi:10.1186/s13326-016-0079-8

3. Wanichthanarak, K., Fahrmann, J.F., Grapov, D.: Genomic, proteomic, and metabolomic data integration
strategies . Biomarker Insights 10(Table 1), 1-6 (2015). doi:10.4137/BMI.529511

4. Himmelstein, D.S., Lizee, A., Hessler, C., Brueggeman, L., Chen, S.L., Hadley, D., Green, A., Khankhanian, P.,
Baranzini, S.E.: Systematic integration of biomedical knowledge prioritizes drugs for repurposing. . elLife 6
(2017). doi:10.7554 /eLife.26726

5. Fan, X.-N., Zhang, S.-W., Zhang, S.-Y., Zhu, K., Lu, S.: Prediction of IncRNA-disease associations by
integrating diverse heterogeneous information sources with RWR algorithm and positive pointwise mutual
information . BMC Bioinformatics 20(1), 87 (2019). doi:10.1186/512859-019-2675-y

6. Davidson, S.B., Overton, C., Buneman, P.: Challenges in integrating biological data sources. . Journal of
computational biology : a journal of computational molecular cell biology 2(4), 557-572 (1995).
doi:10.1089/cmb.1995.2.557

7. Belleau, F.c.o., Nolin, M.-A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: Towards a mashup to build
bioinformatics knowledge systems . Journal of Biomedical Informatics 41(5), 706-716 (2008).
doi:10.1016/].jbi.2008.03.004

8. Chen, B., Dong, X., Jiao, D., Wang, H., Zhu, Q., Ding, Y., Wild, D.: Chem2Bio2RDF: a sematic framework
for linking and data mining chemogenomic and systems chemical biology data . BMC Bioinformatics 11, 255
(2010)

9. Williams, A.J., Harland, L., Groth, P., Pettifer, S., Chichester, C., Willighagen, E.L., Evelo, C.T., Blomberg, N.,
Ecker, G., Goble, C., Mons, B.: Open PHACTS: semantic interoperability for drug discovery. Drug Discovery
Today 17(21-22), 1188-1198 (2012). doi:10.1016/].drudis.2012.05.016

10. Alocci, D., Mariethoz, J., Horlacher, O., Bolleman, J.T., Campbell, M.P., Lisacek, F.: Property Graph vs RDF
triple store: A comparison on glycan substructure search . PLoS ONE 10(12), 1-17 (2015).
doi:10.1371/journal.pone.0144578

Page 12 of 14



Hoyt et al.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.
26.

27.

Warde-Farley, D., Donaldson, S.L., Comes, O., Zuberi, K., Badrawi, R., Chao, P., Franz, M., Grouios, C., Kazi,
F., Lopes, C.T., Maitland, A., Mostafavi, S., Montojo, J., Shao, Q., Wright, G., Bader, G.D., Morris, Q.: The
GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene
function . Nucleic Acids Research 38(SUPPL. 2), 214-220 (2010). doi:10.1093/nar/gkq537

Szklarczyk, D., Franceschini, A., Wyder, S., Forslund, K., Heller, D., Huerta-Cepas, J., Simonovic, M., Roth,
A., Santos, A., Tsafou, K.P., Kuhn, M., Bork, P., Jensen, L.J., Von Mering , C.: STRING v10: Protein-protein
interaction networks, integrated over the tree of life . Nucleic Acids Research 43(D1), 447-452 (2015).
doi:10.1093/nar/gku1003

Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Iny Stein , T., Nudel, R.,
Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N.,
Safran, M., Lancet, D.: The GeneCards suite: From gene data mining to disease genome sequence analyses .
Current Protocols in Bioinformatics 2016(June), 1-30113033 (2016). doi:10.1002/cpbi.5

Laibe, C., Le Nov & re, N.: MIRIAM Resources: tools to generate and resolve robust cross-references in
Systems Biology. . BMC systems biology 1, 58 (2007). doi:10.1186/1752-0509-1-58

Courtot, M.e.l., Juty, N., Kn i pfer, C., Waltemath, D., Zhukova, A., Dr & ger, A., Dumontier, M., Finney,
A., Golebiewski, M., Hastings, J., Hoops, S., Keating, S., Kell, D.B., Kerrien, S., Lawson, J., Lister, A., Lu, J.,
MacHne, R., Mendes, P., Pocock, M., Rodriguez, N., Villeger, A., Wilkinson, D.J., Wimalaratne, S., Laibe, C.,
Hucka, M., Le Nov & re, N.: Controlled vocabularies and semantics in systems biology . Molecular Systems
Biology 7(543) (2011). doi:10.1038/msb.2011.77

T i rei, D.e.n, Korcsm & ros, T.a.s., Saez-Rodriguez, J.: OmniPath: guidelines and gateway for
literature-curated signaling pathway resources . Nature Methods 13(12), 966-967 (2016).
doi:10.1038/nmeth.4077

Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov, |., Babur, O.z.u.n., Anwar, N., Schultz, N., Bader, G.D.,
Sander, C.: Pathway Commons, a web resource for biological pathway data . Nucleic Acids Research
39(SUPPL. 1), 685690 (2011). doi:10.1093/nar/gkq1039

Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer, C., Vastrik, |., Wu, G., D'Eustachio, P., Schaefer, C.,
Luciano, J., Schacherer, F., Martinez-Flores, |., Hu, Z., Jimenez-Jacinto, V., Joshi-Tope, G., Kandasamy, K.,
Lopez-Fuentes, A.C., Mi, H., Pichler, E., Rodchenkov, I., Splendiani, A., Tkachev, S., Zucker, J., Gopinath, G.,
Rajasimha, H., Ramakrishnan, R., Shah, I., Syed, M., Anwar, N., Babur, O.z.u.n., Blinov, M., Brauner, E.,
Corwin, D., Donaldson, S., Gibbons, F., Goldberg, R., Hornbeck, P., Luna, A., Murray-Rust, P., Neumann, E.,
Reubenacker, O., Samwald, M., van lersel, M., Wimalaratne, S., Allen, K., Braun, B., Whirl-Carrillo, M.,
Cheung, K.-H., Dahlquist, K., Finney, A., Gillespie, M., Glass, E., Gong, L., Haw, R., Honig, M., Hubaut, O.,
Kane, D., Krupa, S., Kutmon, M., Leonard, J., Marks, D., Merberg, D., Petri, V., Pico, A., Ravenscroft, D.,
Ren, L., Shah, N., Sunshine, M., Tang, R., Whaley, R., Letovksy, S., Buetow, K.H., Rzhetsky, A., Schachter,
V., Sobral, B.S., Dogrusoz, U., McWeeney, S., Aladjem, M., Birney, E., Collado-Vides, J., Goto, S., Hucka, M.,
Nov & re, N.L., Maltsev, N., Pandey, A., Thomas, P., Wingender, E., Karp, P.D., Sander, C., Bader, G.D.:
The BioPAX community standard for pathway data sharing . Nature Biotechnology 28(12), 1308-1308 (2010).
doi:10.1038/nbt1210-1308c

Slater, T.: Recent advances in modeling languages for pathway maps and computable biological networks .
Drug Discovery Today 19(2), 193-198 (2014). doi:10.1016/].drudis.2013.12.011

Naz, M., Kodamullil, A.T., Hofmann-Apitius, M.: Reasoning over genetic variance information in
cause-and-effect models of neurodegenerative diseases. . Briefings in bioinformatics 17(3), 505-16 (2016).
doi:10.1093/bib/bbv063

Khanam Irin , A., Tom Kodamullil , A., G i ndel, M., Hofmann-Apitius, M.: Computational Modelling
Approaches on Epigenetic Factors in Neurodegenerative and Autoimmune Diseases and Their Mechanistic
Analysis . Journal of Immunology Research 2015, 1-10 (2015). doi:10.1155/2015/737168

Emon, M.A.E.K., Kodamullil, A.T., Karki, R., Younesi, E., Hofmann-Apitius, M.: Using Drugs as Molecular
Probes: A Computational Chemical Biology Approach in Neurodegenerative Diseases . Journal of Alzheimer's
Disease 56(2), 677-686 (2017). doi:10.3233/JAD-160222

lyappan, A., Younesi, E., Redolfi, A., Vrooman, H., Khanna, S., Frisoni, G.B., Hofmann-Apitius, M.:
Neuroimaging Feature Terminology: A Controlled Terminology for the Annotation of Brain Imaging Features .
Journal of Alzheimer’s Disease 59(4), 1153-1169 (2017). doi:10.3233/jad-161148

Cote, R., Jones, P., Apweiler, R., Hermjakob, H.: The Ontology Lookup Service, a lightweight cross-platform
tool for controlled vocabulary queries. . BMC Bioinformatics 7, 1-7 (2006). doi:10.1186/1471-2105-7-97
Rogers, F.B.: Medical subject headings. . Bulletin of the Medical Library Association 51, 114—6 (1963)
Meldal, B.H.M., Forner-Martinez, O., Costanzo, M.C., Dana, J., Demeter, J., Dumousseau, M., Dwight, S.S.,
Gaulton, A., Licata, L., Melidoni, A.N., Ricard-Blum, S., Roechert, B., Skyzypek, M.S., Tiwari, M., Velankar,
S., Wong, E.D., Hermjakob, H., Orchard, S.: The complex portal - An encyclopaedia of macromolecular
complexes . Nucleic Acids Research 43(D1), 479-484 (2015). doi:10.1093/nar/gku975

Carbon, S., Dietze, H., Lewis, S.E., Mungall, C.J., Munoz-Torres, M.C., Basu, S., Chisholm, R.L., Dodson,
R.J., Fey, P., Thomas, P.D., Mi, H., Muruganujan, A., Huang, X., Poudel, S., Hu, J.C., Aleksander, S.A.,
Mclntosh, B.K., Renfro, D.P., Siegele, D.A., Antonazzo, G., Attrill, H., Brown, N.H., Marygold, S.J.,
Mc-Quilton, P., Ponting, L., Millburn, G.H., Rey, A.J., Stefancsik, R., Tweedie, S., Falls, K., Schroeder, A.J.,
Courtot, M., Osumi-Sutherland, D., Parkinson, H., Roncaglia, P., Lovering, R.C., Foulger, R.E., Huntley, R.P.,
Denny, P., Campbell, N.H., Kramarz, B., Patel, S., Buxton, J.L., Umrao, Z., Deng, A.T., Alrohaif, H., Mitchell,
K., Ratnaraj, F., Omer, W., Rodr i guez-L & pez, M., C. Chibucos , M., Giglio, M., Nadendla, S.,
Duesbury, M.J., Koch, M., Meldal, B.H.M., Melidoni, A., Porras, P., Orchard, S., Shrivastava, A., Chang, H.Y.,
Finn, R.D., Fraser, M., Mitchell, A.L., Nuka, G., Potter, S., Rawlings, N.D., Richardson, L., Sangrador-Vegas,
A., Young, S.Y., Blake, J.A., Christie, K.R., Dolan, M.E., Drabkin, H.J., Hill, D.P., Ni, L., Sitnikov, D., Harris,
M.A., Hayles, J., Oliver, S.G., Rutherford, K., Wood, V., Bahler, J., Lock, A., De Pons, J., Dwinell, M.,
Shimoyama, M., Laulederkind, S., Hayman, G.T., Tutaj, M., Wang, S.J., D'Eustachio, P., Matthews, L.,
Balhoff, J.P., Balakrishnan, R., Binkley, G., Cherry, J.M., Costanzo, M.C., Engel, S.R., Miyasato, S.R., Nash,

Page 13 of 14



Hoyt et al.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

R.S., Simison, M., Skrzypek, M.S., Weng, S., Wong, E.D., Feuermann, M., Gaudet, P., Berardini, T.Z., Li, D.,
Muller, B., Reiser, L., Huala, E., Argasinska, J., Arighi, C., Auchincloss, A., Axelsen, K., Argoud-Puy, G.,
Bateman, A., Bely, B., Blatter, M.C., Bonilla, C., Bougueleret, L., Boutet, E., Breuza, L., Bridge, A., Britto,
R., Hye- A-Bye , H., Casals, C., Cibrian-Uhalte, E., Coudert, E., Cusin, |., Duek-Roggli, P., Estreicher, A.,
Famiglietti, L., Gane, P., Garmiri, P., Georghiou, G., Gos, A., Gruaz-Gumowski, N., Hatton-Ellis, E., Hinz, U.,
Holmes, A., Hulo, C., Jungo, F., Keller, G., Laiho, K., Lemercier, P., Lieberherr, D., Mac- Dougall , A.,
Magrane, M., Martin, M.J., Masson, P., Natale, D.A., O'Donovan, C., Pedruzzi, |., Pichler, K., Poggioli, D.,
Poux, S., Rivoire, C., Roechert, B., Sawford, T., Schneider, M., Speretta, E., Shypitsyna, A., Stutz, A.,
Sundaram, S., Tognolli, M., Wu, C., Xenarios, I., Yeh, L.S., Chan, J., Gao, S., Howe, K., Kishore, R., Lee, R,
Li, Y., Lomax, J., Muller, H.M., Raciti, D., Van Auken , K., Berriman, M., Stein, Paul Kersey , L., W.
Sternberg , P., Howe, D., Westerfield, M.: Expansion of the gene ontology knowledgebase and resources: The
gene ontology consortium . Nucleic Acids Research 45(D1), 331-338 (2017). doi:10.1093/nar/gkw1108

Sun, K., Pr Z ulj, N.v.a., Buchan, N., Larminie, C.: The integrated disease network . Integrative Biology
6(11), 1069-1079 (2014). doi:10.1039,/c4ib00122b

Menche, J.o.r., Sharma, A., Kitsak, M., Ghiassian, S.D., Vidal, M., Loscalzo, J., Barab & si, A--L.a.s.0.:
Disease networks. Uncovering disease-disease relationships through the incomplete interactome. . Science (New
York, N.Y.) 347(6224), 1257601 (2015). doi:10.1126/science.1257601. 15334406

Wishart, D.S., Feunang, Y.D., Guo, A.C., Lo, E.J., Marcu, A., Grant, J.R., Sajed, T., Johnson, D., Li, C.,
Sayeeda, Z., Assempour, N., lynkkaran, I., Liu, Y., Maciejewski, A., Gale, N., Wilson, A., Chin, L., Cummings,
R., Le, D., Pon, A., Knox, C., Wilson, M.: DrugBank 5.0: a major update to the DrugBank database for 2018.
. Nucleic acids research 46(D1), 1074-1082 (2018). doi:10.1093/nar/gkx1037

Liberzon, A., Birger, C., Thorvaldsd 6 ttir, H., Ghandi, M., Mesirov, J., Tamayo, P.: The Molecular
Signatures Database Hallmark Gene Set Collection . Cell Systems 1(6), 417-425 (2015).
doi:10.1016,/J.CELS.2015.12.004

Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., Morishima, K.: KEGG: New perspectives on genomes,
pathways, diseases and drugs . Nucleic Acids Research 45(D1), 353-361 (2017). doi:10.1093/nar/gkw1092.
1611.06654

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P., Haw, R., Jassal, B.,
Korninger, F., May, B., Milacic, M., Roca, C.D., Rothfels, K., Sevilla, C., Shamovsky, V., Shorser, S., Varusai,
T., Viteri, G., Weiser, J., Wu, G., Stein, L., Hermjakob, H., D'Eustachio, P.. The Reactome Pathway
Knowledgebase . Nucleic Acids Research 46(D1), 649655 (2018). doi:10.1093/nar/gkx1132. NIHMS150003
Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A.: Affy - Analysis of Affymetrix GeneChip data at the probe
level . Bioinformatics 20(3), 307-315 (2004). doi:10.1093/bioinformatics/btg405

Domingo-Fernandez, D., Hoyt, C.T., Alvarez, C.B., Marin-Llao, J., Hofmann-Apitius, M., Domingo-Fern 3
ndez, D., Hoyt, C.T., Bobis- A Ivarez, C., Mar i n-Lla é , J., Hofmann-Apitius, M.: ComPath: an
ecosystem for exploring, analyzing, and curating mappings across pathway databases . npj Systems Biology and
Applications 5(1), 3 (2018). doi:10.1038/s41540-018-0078-8

Wadi, L., Meyer, M., Weiser, J., Stein, L.D., Reimand, J.u.r.: Impact of outdated gene annotations on
pathway enrichment analysis . Nature Methods 13(9), 705-706 (2016). doi:10.1038/nmeth.3963

Sales, G., Calura, E., Romualdi, C.: Meta Graphite-a new layer of pathway annotation to get metabolite
networks . Bioinformatics 35(7), 12581260 (2019). doi:10.1093/bioinformatics/bty719

Domingo-Fern & ndez, D., Mubeen, S., Mar i n-Lla é , J., Hoyt, C.T., Hofmann-Apitius, M.: PathMe:
merging and exploring mechanistic pathway knowledge . BMC Bioinformatics 20(1), 243 (2019).
doi:10.1186,/s12859-019-2863-9

Page 14 of 14



Postface

Several applications of Bio2BEL were presented. First, Bio2BEL enabled the
mapping of pathways between databases like KEGG [59], Reactome [60], and
WikiPathways [141] for the ComPath database [137]. This project leveraged each
of these pathway databases as well as nomenclature resources like HGNC, Entrez,
UniProt, and ChEBI to normalize entities into cohesive biomedical knowledge
graphs on top of which algorithms for identifying overlapping pathways were
used to prioritize curation.

Second, the Bio2BEL framework was used to organize the harmonization
of pathway databases into a common schema using PathMe [77]. This project
showcased the Bio2BEL philosophy of reproducibility and reusability because
the formats used by each of the pathway databases varied and create significant
overhead for new users.

Third, Bio2BEL packages have been used in the application of NRL methods
using BioKEEN [107]]. Because this project saw the generation of a converter for any
BEL into a format that can be embedded using NRL, any new Bio2BEL package
can be readily used.

Finally, the Bio2BEL project lead to the integration with several other data
aggregation systems. Integration with INDRA [111] was done through the devel-
opment of the PyBEL processor E| and subsequent inclusion within the Bio2BEL
framewor Integration with OmniPath [142] was done during the course of
the work that comprised the previous publication in the v0.8 release of PyPatl’ﬂ
Further systems will be integrated in the future, such as the sources composing
Pathway Commons [62].

Given the PyBEL ecosystem first introduced in Chapter 2, the environment for
exploration presented in Chapter 3 the enrichment workflow presented in Chap-
ter 4, and Bio2BEL, it is possible to generate and handle high quality biological
knowledge graphs to support downstream analysis. The remaining Chapters|[6,[7]
and [8| constitue three examples of these downstream analyses.

Ihttps://indra.readthedocs.io/en/latest/modules/sources/bel/index . html#

module-indra.sources.bel.processor
“https://github.com/bio2bel/bio2bel/commit/e52eefadl1f38f6654b2c27724ea9f 360058405
3https://github.com/saezlab/pypath
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BEL2ABM: agent-based
simulation of static models in

Biological Expression Language

Preface

While previous chapters have improved the ability of BEL to model multi-
modal and multi-scale aspects of complex disease while integrating content from
both unstructured text and structured sources, it has been limited by its inability
to express the temporal dimension of the underlying biology. Even further, the
time scales corresponding to molecular and clinically measurable processes and
biomarkers differ by several orders of magnitude. Following the description of
biomarkers’ relations to disease-specific pathways encoded in NeuroMMSig [131],
this publication describes an attempt at simulating their clinical trajectories. While
others have focused on modeling timescales on the clinical level, the following
publication presents a workflow (BEL2ABM) for converting knowledge graphs in
BEL into dynamic, executable, agent-based models.

Reprinted with permission from "Giindel, M., Hoyt, C.T., & Hofmann-Apitius,
M. (2018). BEL2ABM: Agent-based simulation of static models in Biological Ex-
pression Language. Bioinformatics, 34(13), 2316-2318.". Copyright © Giindel, M., et
al., 2018.
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Abstract

Summary: While cause-and-effect knowledge assembly models encoded in Biological Expression
Language are able to support generation of mechanistic hypotheses, they are static and limited in
their ability to encode temporality. Here, we present BEL2ABM, a software for producing continu-
ous, dynamic, executable agent-based models from BEL templates.

Availability and implementation: The tool has been developed in Java and NetLogo. Code, data
and documentation are available under the Apache 2.0 License at https:/github.com/pybel/

bel2abm.
Contact: martin.hofmann-apitius@scai.fraunhofer.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The ability of Biological Expression Language (BEL) to encode
qualitative cause-and-effect relationships from biological systems
makes it well-suited for generating mechanistic hypotheses in the
context of experimental data (Catlett ez al., 2013). However, it gen-
erally lacks the ability to describe the temporal evolution of dynamic
systems except in special cases where time can be represented dis-
cretely. For example, the progression of Alzheimer’s disease (AD) is
often discretized to healthy, mild cognitive impairment and full AD.
While other systems biology modeling languages such as Systems
Biology Markup Language can natively embed mathematical equa-
tions in order to support simulations and produce generative models
(Hucka et al., 2003), they lack the ability of BEL to represent multi-
scale and multi-modal processes.

To the best of our knowledge, there have not been any previously
published attempts to produce dynamic biological models from
BEL. A simple approach to introduce dynamism would be to convert
to rule-based models such as Petri nets. However, discrete dynamism
is inherently limited in its expressivity. Continuous dynamism can
be achieved through agent-based modeling (ABM); where a discrete

©The Author(s) 2018. Published by Oxford University Press.

number of entities, their properties and their methods of interaction
are encoded and simulated in a complex system. In addition, ABMs
do not require fine-granular knowledge of the reaction rates and
other kinetic properties of a system that often limit the utility of
mathematical models.

Here, we present BEL2ZABM, a software package that transforms
static BEL knowledge assemblies into continuous, dynamic, execut-
able, ABMs.

2 Materials and methods

All physical entities in a BEL knowledge assembly are encoded as
agents with properties (e.g. lifespans, ability to reproduce, etc.)
described by the Human Physiology Simulation Ontology
(HuPSON) (Giindel et al., 2013) and behaviors derived from their
relationships to other entities in the BEL knowledge assembly.
Statements like A increases B creates a behavior where a unilat-
eral coupling between A and B stochastically increases the number
or scale of B. For example, the statement p(A) increases
kinaseActivity (p(B)) represents that when the two proteins
A and B are within interaction distance, the kinase activity property

2316
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Fig. 1. Plotted are average initial rates of the production of sAPPa, sAPPb and
their respective homodimers in the BEL2ABM simulation based on the amyl-
oid beta cascade with varying initial number of APP agents. The sigmoidal
curves observed in the control correspond to the cooperativity of the allo-
steric secretase dimers of sAPPa and sAPPb. Perturbation with SORL1 in-
hibits oligomerization, shown by the loss of sigmoidal shape, as well as
causing significant decrease in the production of each of sAPPa, sAPPb and
their respective homodimers. Settings alpha secretases: 10; alpha secretase
dimers: 10; beta secretases: 1; beta secretase dimers: 1; SORL1: 3; APP bind-
ing sites of allosteric enzymes: 2; binding strengths: 95%; high lifespans so
few molecule dies during experiment; 400 replicate runs at each APP
concentration

of B is increased. Biological processes are translated to procedures
which have effects determined by HuPSON over a large physical
area within the ABM simulation. Finally, additional information is
encoded about each entity type that is available from context-
specific annotations in BEL (e.g. cellular locations) and HuPSON.
A complete schema for converting BEL to ABM properties and be-
haviors can be found in the Supplementary Material.

Temporality is introduced with NetLogo (https://ccl.northwest
ern.edu/netlogo) which updates agents based on simulation param-
eters and their internal properties at small discrete time points to
simulate continuous time. It provides an environment where users
can adjust modeling parameters (i.e. molecule numbers, interaction
distances, movement speed, etc.) and produce replicates.

Finally, Spartan (Alden et al., 2014) is used to perform consist-
ency analysis, evaluate the results and establish the minimal number
of replicates needed. For many applications of ABMs, the number of
each type of entity at each time point is of great interest. Using the
replicates from Spartan, the numbers at each time point are averaged
in order to provide more robust results.

3 Case study

The processing of amyloid beta precursor-protein (APP) in the amyloid
cascade has been highly implicated in AD. Recent experimental evi-
dence has shown not only that the a-secretase and f-secretase enzymes
act cooperatively as allosteric homodimers in the cleavage of APP, but
this process is also inhibited by sortilin related receptor 1 (SORL1)
through the blocking APP oligomerization (Schmidt ez al., 2012).

As a case study, we encoded the relevant entities, processes and
relations from the amyloid beta cascade in BEL in order to assess the
ability of BEL2ZABM to produce an ABM that replicates the sig-
moidal patterns of enzyme cooperativity observed in experimental

observations and captured in ordinary differential equations (ODE)
shown in Figure 11 of Schmidt et al.

While the resulting ABM provides a wealth of information about
each of the entities involved in the system, Figure 1 presents the
most relevant measurements representing the respective initial rates
of production of sAPPa and sAPPb as a function of the initial
amount of APP present that can be compared to Figure 11 of
Schmidt ez al. Both the sAPPa and sAPPb curves adhere to the sig-
moidal patterns observed in vitro and described by the ODE from
Schmidt et al. Additionally, the presence of SORL1 in the ABM also
reproduced the behavior of significantly decreasing the production
rates of sAPPa and sAPPD, solely based on the knowledge encoded
in BEL of the agents, their properties and their behaviors.

After investigating the model’s robustness to parameter settings
using Spartan, we concluded that this model was sufficiently robust
to both simulation stochastic noise (with a minimum of 400
replicates) and to parameter value change. The case of the initial
a-secretase number (at £ =0) showed medium to medium-high effect
over a large range (10-600) of initial APP entities; whereas changes
in a-secretase binding strength showed only a small effect for low,
and medium effect for high APP numbers. The underlying BEL
document, BEL resources, NetLogo settings and results can all be
found at https://github.com/pybel/bel2abm.

4 Discussion

Because BEL2ABM produces inherently qualitative models, several
constraints must be considered during their evaluation. The magni-
tude of the results cannot be directly compared to experimental re-
sults or mathematical models such as the ODE system provided by
Schmidt et al. because time and space are only artificially incorpo-
rated during simulation. Thus, we only expect to observe similar be-
havioral patterns of a real biological system.

NetLogo and other common simulation environments allow
users to modify various simulation parameters in order to improve
the adherence of an ABM to experimental data. While this allows
users to the benefit of exploring based on their intuition, systematic
optimization becomes a combinatorial problem for larger and more
complex systems. BEL2ZABM includes some semi-automatic param-
eter optimization methods and can be theoretically run with an opti-
mization procedure like a grid search, but future work will include
developing and encoding more biologically-driven optimization pro-
cedures in an ontology, like HuPSON, that can be leveraged to more
automatically build relevant models. Further, the burden of choos-
ing the most relevant and informative knowledge assemblies for
BEL2ABM may be eased by the hypothesis generation procedures in
upcoming BEL frameworks like PyBEL (Hoyt et al., 2018).

With these restrictions in mind, we have shown that it is possible
to dynamize a static knowledge assembly model, enable a user to
qualitatively reproduce the behavior a biological system, and modify
model parameters in order to make further investigations.
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Postface

A proof of concept was presented that successfully reproduced the results
of a past analysis based on an ordinary differential equation model describing
the amyloid cascade from Schmidt et al. [143] using a BEL model of the amyloid
cascade as an input to BEL2ZABM. However, as this publication presented novel
methodology for converting knowledge graphs into executable models, further
examples of better understood and more data-rich biology (e.g., oncology) would
be necessary to justify further investigation. Additionally, at the time of publication,
the ecosystem for sustainable and reproducible research in agent-based modeling
was very weak. Significant improvements to this ecosystem are also a necessary
prerequisite for continued investigation.

While differential equation modeling has historically suffered from issues in
scalability, agent-based modeling approaches are much more amenable to paral-
lelization. However, agent-based modeling faces the same issues in optimizing
hyperparameters as differential equation modeling [144] and recent drastic im-
provements in differential equation solvers [145-147] has lowered the burden of
large differential equation systems, which may make them a more compelling
option.

While BEL2ABM currently only supports a small subset of the events that
can be expressed in BEL, it represents a first step towards the ability to auto-
matically generate dynamic models from static knowledge. Further steps will be
taken during an upcoming master’s thesis at the Fraunhofer SCAI Department of
Bioinformatics. Combined with the ability to automatically generate and maintain
knowledge graphs containing the highest quality content from structured sources
as presented in Chapter |5 and new relevant content from unstructured sources
as presented in Chapter [} this framework is one option to overcome previously
described challenges faced by both more simple and more powerful modeling
techniques.
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GuiltyTargets: prioritization of
novel therapeutic targets with deep
network representation learning

Preface

The choice of a target protein whose modulation may cause a therapeutic effect
in a target disease is essential for success in drug discovery. Unfortunately, the
majority of clinical trials fail due to low efficacy, often attributed to a poor choice
of target protein. Computational target prioritization approaches aim to support
target selection by ranking candidate targets in the context of a given disease. The
following publication presents a novel target prioritization approach, GuiltyTar-
gets, which relies on NRL of protein-protein interaction networks annotated with
disease-specific differential gene expression. These techniques are not only useful
in investigation of new diseases, but also in the attribution of previously studied
drugs to new indications when their targets can be shown to be relevant in new
therapeutic indications.

Reprinted with permission from "Muslu, 0., Hoyt, C. T., Hofmann-Apitius, M.,
& Frohlich, H. (2019) GuiltyTargets: Prioritization of Novel Therapeutic Targets
with Deep Network Representation Learning. IEEE/ACM Trans. Comput. Biol.
Bioinform., submitted". Copyright © Muslu, O., et al., 2019.
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Abstract

The majority of clinical trial failures are caused by low efficacy of investigated drugs,
often due to a poor choice of target protein. Computational prioritization approaches aim
to support target selection by ranking candidate targets in the context of a given disease.
We propose a novel target prioritization approach, GuiltyTargets, which relies on deep
network representation learning of a genome-wide protein-protein interaction network
annotated with disease-specific differential gene expression and uses positive-unlabeled
machine learning for candidate ranking. We evaluated our approach on six diseases of
different types (cancer, metabolic, neurodegenerative) within a 10 times repeated 5-fold
stratified cross-validation and achieved AUROC values between 0.92 - 0.94, significantly
outperforming a previous approach, which relies on manually engineered topological
features. Moreover, we showed that GuiltyTargets allows for target repositioning across
related disease areas. Applying GuiltyTargets to Alzheimer’s disease resulted into
a number of highly ranked candidates that are currently discussed as targets in the
literature. Interestingly, one (COMT) is also the target of an approved drug (Tolcapone)
for Parkinson’s disease, highlighting the potential for target repositioning of our method.

Availability: The GuiltyTargets Python package is available on PyPI and all code used
for analysis can be found under the MIT License at https://github.com/Guilty Targets.

Author summary

Many drug candidates fail in clinical trials due to low efficacy. One of the reasons is the
choice of the wrong target protein, i.e. perturbation of the protein does not effectively
modulate the disease phenotype on a molecular level. In consequence many patients
do not demonstrate a clear response to the drug candidate. Traditionally, targets are
selected based on evidence from the literature and follow-up experiments. However, this
process is very labor intensive and often biased by subjective choices. Computational
tools could help a more rational and unbiased choice of target proteins and thus increase
the chance of drug discovery programs. In this work we propose a novel machine learning
based method for target candidate ranking. The method (GuiltyTargets) captures
properties of known targets to learn a ranking of candidates. GuiltyTargets compares
favorably against existing machine learning based target prioritization methods and
allowed us to propose novel targets for Alzheimer’s disease.
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Introduction

Drug discovery is a time consuming, expensive and complicated process [1-4]. Many
drug candidates fail in clinical studies due to low efficacy, mainly because of wrong
target choice [5-7]. Traditionally, scientists identified targets by searching through
the relevant literature, following clues from mRNA and protein expression, integrating
expression data with pathway analyses, experimenting with knockout mice, investigating
somatic mutations, gene fusions, and copy number variations, and using the accumulated
knowledge from multiple experimental studies to generate a hypothesis on how a molecule
might work as a target [2,8,9]. However, manually interpreting many data sources is
prone to biased identification of targets as it limits the potential to use all available
and helpful data. By computationally integrating multiple biological data sources to
analyze prior knowledge, it should be possible to make target identification process
faster, less biased, and more informed. Computational target prioritization approaches
thus aim for improving target identification process by ranking proteins based on their
likelihood of being targets in the context of a specific disease [10-17]. Most of them
integrate biological networks with other data sources to prioritize targets for infectious
diseases [11-13], cancers [14-16] or neurodegenerative diseases [17].

In addition, machine learning methods have been used to prioritize drug targets. For
example, Emig et al. proposed an approach, in which for each candidate target a number
of different network topological features are combined with proximity to differentially
expressed genes in a particular disease of interest [10]. All features are subsequently
combined into a logistic regression model, which allows for a ranking of candidate targets.
The authors successfully tested their approach with 30 different diseases. Another
example is the method by Ferrero et al., which uses features provided by the Open
Targets database [18] and combines them into one ranking score using Support Vector
Machines [19].

In this paper we propose a novel approach to prioritize targets using a combination
of unsupervised network representation learning, namely the recently proposed Gat2Vec
method [20], and logistic regression. More specifically, our method, GuiltyTargets, first
maps a genome-wide protein-protein interaction network annotated with differential gene
expression information into an Euclidean space using Gat2Vec. In that space, we then
use positive-unlabeled (PU) machine learning [21-24] to learn a ranking of candidate
targets. To the best of our knowledge, network representation learning as a data driven
approach to implicitly learn relevant topological features from a network structure has
not been used for target prioritization so far. The proposed approach is compared to
the approach from Emig et al. [10] for six diseases, demonstrating its superior ranking
performance. For the example of Alzheimer’s disease (AD), in-depth analysis shows
that GuiltyTargets can be used to reposition known targets from other neurological
indications.

Results

GuiltyTargets: A New Approach for Deep Network Representa-
tion Learning Based Target Prioritization

Our newly developed GuiltyTargets method can be summarized as follows (Figure
1): First, a genome-wide PPI network is compiled and annotated with discretized
information about differential gene expression within a given disease context (-1 =
underexpressed; 0 = no significant change; 1 = overexpressed). Next, the attributed
network is embedded into an Euclidean space using Gat2Vec. Following a PU learning
scheme known disease specific protein targets are assigned positive labels, and the
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Fig 1. GuiltyTargets pipeline. First, a protein-protein interaction network is annotated
with discrete differential gene expression information (up-regulated, down-regulated, not
differentially expressed). 128 features are extracted from this annotated network using
Gat2Vec. These features are input to a logistic regression algorithm where known
targets are labeled as positive and the remaining as negative. The likelihoods that are
calculated by the classifier is then used for ranking.

remaining proteins are regarded as pseudo-negatives to train a classifier that ranks a
candidate protein according its similarity to known targets for the given disease. More
details about GuiltyTargets are described in the Methods section of this paper.

Validation Data

We performed target prioritization analyses for six different diseases using corresponding
gene expression data for acute myeloid leukemia, hepatocellular carcinoma, idiopathic
pulmonary fibrosis, liver cirrhosis, multiple sclerosis and AD. The choice was made based
on the following criteria: First, five of these diseases have also been evaluated in the
publication by Emig et al. [10], which we used for comparison here. Second, the number
of available known targets for each disease was expected to be relatively high for a
statistically meaningful validation. Finally, we added AD to investigate the applicability
of our approach to a highly challenging disease, in which so far most attempts to establish
new drugs have failed [25]. Details about about used data, including pre-processing,
are described in Materials and Methods Section. Notably, for AD we investigated
RNASeq data from different cohorts (MSBB [26], MayoRNASeq [27], ROSMAP [28]).
To investigate the prediction performance of GuiltyTargets we employed two protein-
protein interaction networks (STRING [29], HIPPIE [30]), two target databases (Open
Targets [18], Therapeutic Target Database [31]) and different cutoffs to discretize
differential gene expression via logs fold change thresholds (0.5, 1.0, 1.5) while requiring
a false discovery rate of less than 5%.

GuiltyTargets Outperforms Existing Method

The performance of our approach and the method by Emig et al. were compared within
a 10 times repeated 5-fold cross validation scheme with the area under ROC curve
(AUROC) as the evaluation criterion. This assessed the ability of each method to rank
in an independent test set a true known target higher than an unknown protein. For
this purpose, the approach employed by Emig et al. was re-implemented using the same
PPI network resources and target databases as for GuiltyTargets.
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Disease Emig et al. (original) Emig et al. GuiltyTargets
Acute myeloid leukemia 0.8195 0.8356 £ 0.0001  0.9277 £+ 0.0002
Alzheimer’s disease - 0.6235 £ 0.0010  0.9418 £ 0.0004
Hepatocellular carcinoma 0.8019 0.7314 £ 0.0002 0.9384 + 0.0001
Idiopathic pulmonary fibrosis 0.8826 0.8306 £ 0.0018  0.9263 £+ 0.0004
Liver cirrhosis 0.6747 0.5338 £ 0.0019  0.9464 + 0.0002
Multiple sclerosis 0.7151 0.6755 £ 0.0002 0.9412 £+ 0.0003

Table 1. Ranking performance of GuiltyTargets compared to the method by Emig et
al. in terms of cross-validated AUROC ( standard error). The table shows the results
when using Open Targets as resource for drug targets, STRING (using the default
confidence threshold) as PPI network and declaring differential gene expression based
on log2 fold change cutoff of 1.5, which is agreement to Emig et al. The column
“Reported” shows the AUROC values reported by Emig et al. and the column
“Implemented” shows the AUROC values obtained by the reimplementation of their
method. The row “Alzheimer’s Disease” refers to the MayoRNAseq data from temporal
cortex, which among all tested AD gene expression datasets showed genes with an
absolute log2 fold change larger than 1.5.

Results shown in Tables 1, S1 and S2 demonstrate a dramatic performance increase of
up to 40% by GuiltyTargets compared to the method by Emig et al.. Notably, AUROC
values found by our re-implementation of were not identical (but typically close) to the
ones reported in the original paper. This was likely due to the fact that not the same
PPI network and target database resources have been used. More specifically, Emig et
al. employed the commercial MetaBase™database, whereas here we only rely on public
resources.

We employed an ANOVA to assess the statistical significances of our findings. The
ANOVA model was built separately for each investigated scenario (PPI network, target
database, log2 fold change cutoff) with three factors: method, dataset and an interaction
term between method and dataset. The ANOVA F-test confirmed a highly significant
improvement of GuiltyTargets compared to the method by Emig et al. for each disease
and scenario (p < 0.001 after Holm’s correction for multiple testing, see Figure 2). As
expected there was a highly significant dataset dependency of AUROC performance in
every case (p < 2.2e — 16). Post-hoc analysis using Tukey’s multiple comparisons of
means revealed that, on average, GuiltyTargets outperformed the approach by Emig et
al. by 14.8% AUROC.

In-Depth Analysis of Influence Factors on GuiltyTargets Perfor-
mance

We wanted to better understand the dependency of the performance of GuiltyTargets
on the different tested influence factors, which we had varied individually in our cross-
validation analysis:

e PPI network (STRING, HIPPIE), including different confidence level thresholds
e Target database (Open Targets, Therapeutic Targets Database)

e Thresholds for declaring differential gene expression

For this purpose we fitted a two-way ANOVA model with interaction term (influence
factor, dataset, interaction term between both) and then performed a Tukey post-hoc
analysis. Table 2 demonstrates that the employed PPI network is the most relevant
influence factor for GuiltyTargets: Using STRING significantly increased the AUROC
compared to using HIPPIE by 9%. On the other hand, the chosen log2 fold change
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Fig 2. frohlich: Please change legend: Comparison of GuiltyTargets vs approach by
Emig et al.: The barplots show AUC values averaged over all possible hyper-parameter
choices (log2 fold change cutoff, target database, PPI network, PPI network confidence
cutoff).

Influence factor Comparison Difference p-value
PPI network STRING vs. HIPPIE 0.09 1.15E-14
PPI confidence threshold default vs 0.63 0.0318 1.15E-14
Target database Open Targets vs. TTD  0.0527 2.23E-10
0.5 vs 1.0 -0.0016 0.01369
Log?2 fold change cutoff 0.5 vs 1.5 0.0007 0.46799
1.0vs 1.5 0.0023 0.00026

Table 2. In-depth analysis of different influence factors on the performance of
GuiltyTargets. The table shows the result of the Tukey ANOVA post-hoc analysis of
different comparisons. The difference in AUROC is shown in column 3 together with
the corresponding p-value in column 4.

threshold had almost no influence, i.e. GuiltyTargets is highly robust against this
parameter. A more conservative confidence threshold for the STRING network yielded
a drop in prediction performance by 3%. Both findings together may be explained
by a comparably strong influence of the network topology for GuiltyTargets, which is
leveraged by Gat2Vec. An obvious question is therefore, in how far GuiltyTargets is
affected at all by gene expression data or whether our method is purely topology based.
We thus compared the performance of our method across the three tested AD gene
expression datasets (MSBB, MayoRNASeq, ROSMAP), confirming a significant influence
of the actually used dataset on the AUROC for this particular disease (p = 3.09F — 09,
ANOVA F-test). Hence, gene expression data does have a clear effect on GuiltyTargets.

The use of the Open Targets versus the Therapeutic Target Database significantly
increased the ranking performance of GuiltyTargets by 5%, hence underlining the
relevance of a larger number of known targets for learning the ranking model in the
embedded network space.

GuiltyTargets Learns from Known Targets

We tested, whether the good performance of GuiltyTargets was dependent on known
targets or whether also with a random set of proteins a similar performance could
have been achieved. For this purpose we trained GuiltyTargets for each disease with
100 randomly drawn sets of targets of the same size as the actual ones, which we
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Fig 3. Target repositioning potential of GuiltyTargets: The barplot shows the result of
a hypergeometric test conducted on the top p% of a ranked list of candidate proteins
when looking for overrepresentation of known AD targets. GuiltyTargets was trained
without any known AD targets here.

incorrectly labeled as “targets”. Prediction performance was evaluated using the same
cross-validation procedure as before. Table S3 confirms that the AUROC for random
proteins drops to about 50%, i.e. chance level. Hence, GuiltyTargets indeed learns
properties of known targets.

GuiltyTargets Allows for Target Repositioning Across Related
Diseases

There is the question whether GuiltyTargets could transfer properties learned from
known targets in one disease area into another one, hence allowing for repositioning
of targets. To address that question we trained GuiltyTargets with all known targets
of neurodegenerative diseases obtained from Open Targets, while excluding known AD
targets. We then ran a hypergeometric test on the resulting prioritization to see if known
AD targets where statistically overrepresented at the top of the list. The results were
significant when at least 2% of the top candidates were considered (Figure 3). This
shows that GuiltyTargets could help for repositioning targets across related disease areas.

Case Study: GuiltyTargets Predicts New Candidate Targets for
Alzheimer’s Disease

Despite of 180 therapeutic targets listed in the Open Targets database, the AD field
urgently requires new and more effective medications that either prevent, mitigate, or
reverse its progression. This is particularly true, because the vast majority of drugs
under development fail in clinical trials [25]. We here picked out AD as a test case for
GuiltyTargets to prioritize new target candidates. We used post-mortem gene expression
data from brain tissue from the ROSMAP study and combined it with STRING based
PPI network and Open Targets as a resource for known targets. ROSMAP data was
chosen because of its comparably large number of samples (495 AD patients and 438
controls). Table 3 shows the top 0.1% of a ranked list of novel candidate targets
(likelihood score > 0.4) obtained with GuiltyTargets. According to the TTD [31] and
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Entrez identifier HGNC symbol Likelihood score Class Known drugs / druggable

1143 CHRNB4 0.7 Nicotinic acetylcholine receptor SIB-1553A (Alzheimer, discontinued in Phase 2)
3708 ITPR1 0.689 IP3 receptor ves

2742 GLRA2 0.619 Ligand gated chloride channel yes

1312 CcoMT 0.587 Catechol-O-Methyltransferase Tolcapone (Parkinson)

2898 GRIK2 0.587 Ionotropic glutamate receptor yes

1132 CHRM4 0.586 Muscarinic acetylcholine receptor — yes

89832 CHRFAM7A 0.557 Nicotinic acetylcholine receptor yes

JNJ-18038683(Major depressive disorder)

3363 HTR7 0.532 Serotonin receptor AT1-9242 (Schizophrenia, discontinued in Phase 2)

3777 KCNK3 0.523 Potassium channel yes

2741 GLRA1 0.484 Glycine receptor D-Serine(Parkinson’s disease, Phase 4)

1136 CHRNA3 0.461 Nicotinic acetylcholine receptor yes
Doxepin(Depression)

2op e S Doxylamine(Anxiety disorder)

3269 HRHL 0.451 Histamine receptor Propiomazine( Insomnia, Anxiety disorder)]
Pyrilamine Maleate(headache)

6543 SLC8A2 0.448 Solute carrier

PF-1913539 (Alzheimer’s disease, discontinued in Phase 3)
2911 GRM1 0.447 Metabotropic glutamate receptor ~ A-841720 (Pain, preclinical)
AZDS8529 (Scizophrenia, discontinued in Phase 2)
BCI-632 (Alzheimer disease, Major depressive disorder, Phase 1)
Pomaglumetad (Schizophrenia, Phase 1)
LY-544344 (Anxiety disorder, Discontinued in Phase 3)

2913 GRM3 0.445 Metabotropic glutamate receptor LY354740 (Anxiety disorder, Discontinued in Phase 2)
R-1578 (Mood disorder, Discontinued in Phase 2)
RO-4995819 (Major depressive disorder, Discontinued in Phase 2)
3361 HTR5A 0.436 Serotonin receptor yes
8001 GLRA3 0.412 Ligand gated chloride channel
1360 CPB1 0.411 Protaminase
9456 HOMERI1 0.407 Neuronal immediate-early gene

Table 3. Target prioritization for AD using ROSMAP gene expression data. This list
shows candidate proteins above a likelihood score threshold of 0.4. The last column
shows either known drugs (including indications) against the respective target or the
classification as “druggable” using the information from DGIdb [32] and TTD [31].

DGIdb [32] databases, all but two candidates are druggable, thus they could be used as
targets for drugs using the current drug development methods.

Many of the candidate targets are receptors, namely four acetylcholine receptors
(three nicotinic, one muscarinic), and three glutamate receptors (two metabotropic, one
ionotropic), in agreement with the observation that receptors constitute a large portion of
known AD targets for small molecule drugs [33]. The remaining candidates were identified
as ion channels. The top candidate (CHRNB4) is the target of the compound SIB-1553A,
which has been tested in a phase 2 clinical trial for AD, but discontinued (source:
Therapeutic Target Database). Out of the other top candidates we found CHRFAMTA,
GRM1, GRM3, ITPR1, HTR7, and COMT particularly interesting: CHRFAMT7A is
an alpha-7 nicotinic cholinergic receptor subunit interacting with amyloid 3, whose
aggregates (i.e., plaques) are one of the hallmarks of AD [34]. CHRFAM7A may promote
neuronal survival and function, and subunits are expressed by astrocytes participating in
synaptic communication [35]. GRMI is the target of the compound PF-1913539, which
has been discontinued in a phase 3 AD trial [31]. GRM3 (mGlu3) is found in astrocytes
as well as neuronal cells, and have been observed to have neuroprotective properties.
Its agonists and positive allosteric modulators were reported to be potentially helpful
for AD treatment [36]. Glial mGlu3 receptors regulate the production of neurotrophic
factors such as nerve growth factor, brain-derived neurotrophic factor and glial-derived
neurotrophic factor [36]. BCI-632, a compound that targets GRMS3, is currently tested
in a phase 1 AD trial [31]. ITPR1, an intracellular Ca 2+ channel, mediates calcium
release from the endoplasmic reticulum, triggering apoptosis, and its deletion has been
linked to spinocerebellar ataxia type 15, a neurodegenerative disease [37,38]. Single
nucleotide polymorphisms (SNPs) rs73310256 in HTR7 [39] and rs4680 in COMT have
been associated with AD [40]. COMT is currently discussed as a target for AD [41].
Finally, COMT is the target of the anti-Parkinson drug Tolcapone (source: TTD),
supporting our previous finding that GuiltyTargets can re-propose targets from related
diseases.

Visualization of interactions between known and candidate targets (Figure 4) revealed
that the network of known and proposed targets has a higher than expected interaction
rate (PPI enrichment p < 1.0E — 16, calculated using STRING web interface). Further-
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Fig 4. Interactions between known and candidate targets, with confidence scores
higher than 0.7. Clusters of nodes were calculated using MCL clustering [42] with
inflation parameter of 3.4 and the nodes were colored based on the clusters they are in.
The transparency of the links shows the confidence score of the interaction. If a node
has some known or predicted 3D structure, it is filled with a structure image.
Highlighted nodes show the proposed candidates, whereas the rest show the known
targets. Image generated using STRING [29].

more, the candidate targets were observed to reside on the borders of this interaction
network. These two observations lead to the hypothesis that targeting the proposed
candidates would propagate through the network, influencing disease-related proteins
indirectly. Generating drugs that target multiple proteins in this list might be effective,
if these candidates were to be considered as different entry points to the disease module.

Discussion

We presented a novel network representation learning based approach for target prior-
itization, GuiltyTargets. Our approach uses a protein-protein interaction network, a
differential gene expression profile and a list of known targets to prioritizes proteins
as targets for a particular disease. We showed that GuiltyTargets is highly robust and
significantly outperforms the method by Emig et al. in terms of ranking performance.
As demonstrated by our validation studies, it is applicable to various types of diseases,
including cancers, metabolic and neurodegenerative diseases. We demonstrated that
GuiltyTargets can be used to repurpose existing targets from a different (but related)
disease area. Application of GuiltyTargets to AD showed that several of the highest
ranked candidates are indeed proposed in the literature for AD, and three of them have
been targeted by candidate AD drugs. Moreover, our case study once more demonstrated
the possibility to repurpose existing targets from related disease areas with our methods,
e.g. COMT as target of the drug Tolcapone in Parkinson’s Disease.

GuiltyTargets as well as other machine learning based target prioritization methods

January 15, 2019

8/14



bioRxiv preprint first posted online Jan. 16, 2019; doi: http://dx.doi.org/10.1101/521161. The copyright holder for this preprint
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license.

(including the one by Emig et al.) learn properties of known targets to rank candidate
proteins. Hence, these approaches rely on available information about targets, which
is often incomplete and noisy [43]. Because of their dependency on available data
machine learning approaches typically have difficulties to propose candidates that point
towards completely novel disease biology. Despite these limitations GuiltyTargets showed
promising results for target prioritization, including our case study for AD. Hence, we
see GuiltyTargets as a promising tool to support the decision process in the context of
target identification in pharmaceutical research.

Materials and Methods

Information Sources

Three types of information sources were used for target prioritization:
1. differential gene expression profiles between diseased and healthy subjects
2. protein-protein interaction networks (PPI network)
3. disease-specific target annotation

In the following we provide more detailed information about these data.

Gene Expression Data

Gene expression data for acute myleoid leukemia, hepatocellular carcinoma, idiopathic
pulmonary fibrosis, liver cirrhosis and multiple sclerosis was obtained from Gene Expres-
sion Omnibus (GEO) [44], and differential gene expression was assessed via GEO2R [45],
Biobase [46], GEOquery [47] and limma [48] using multiple testing correction via the
false discovery rate [49] (see: Supplementary Table 1).

For AD, RNASeq data from the AM-PAD Knowledge Portal (AM-PAD) was used [50].
In particular, MSBB, ROSMAP, and MayoRNASeq studies were utilized. Differential
gene expression was assessed by applying DESeq2 to the normalized RNAseq data for
each brain region (Table S4).

Protein-Protein Interaction Networks

As PPI networks, HIPPIE v2.0 [30] and STRING v10.5 [29] were used since both of
these networks are created by combining multiple sources of PPIs and provide confidence
scores. HIPPIE and STRING differ in the type of interactions they contain (Table S5):
HIPPIE relies on physical protein-protein interactions, whereas STRING captures more
broadly functional interactions. Hence, STRING has a much larger size than HIPPIE.
The analyses on this paper only included the interactions between human proteins.
STRING locus identifiers were mapped to Entrez identifies using the mappings provided
by STRING.

Target Databases

Information about known targets were obtained from two databases: The Therapeutic
Target Database (TTD) [31] and Open Targets [18] (see: Table S6). Target identifiers in
TTD database were mapped to UniProt identifiers using the conversion file provided
by TTD. These identifiers were then mapped to Entrez gene IDs using R packages
AnnotationDBI [51] and org.Hs.eg.db [52]. In addition to TTD, known protein targets
were retrieved from Open Targets. HGNC symbols were converted to Entrez identifiers
using R packages AnnotationDBI [51] and org.Hs.eg.db [52].
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GuiltyTargets
Deep Network Representation Learning

GuiltyTargets relies on a deep representation learning of an annotated PPI network via
Gat2Vec, where node attributes represent discretized gene expression log fold changes
(see Results part). In a first step, two separate graphs, the structural and the attribute
graph, are constructed from the original labeled PPI network, where the structural graph
corresponds to the PPI network, and the attribute graph is a bipartite graph between
protein nodes and discretized log fold changes. Afterwards Gat2Vec retrieves for each
vertex its structural context through random walks of a predefined length. The exact
parameters that we used to run Gat2Vec are given in Table S7. The result of each
random walk is a sequence of vertices and node attributes, respectively. These sequences
are subsequently embedded into an Euclidean space using a SkipGram neural network,
which is an essential part of the well known Word2Vec method [53].

Target Candidate Ranking

The features obtained from annotated PPI networks and the disease-specific target
annotations were used to train a logistic regression classifier. Following a PU learning
scheme known targets were assigned positive labels, and the remaining proteins were
treated as if they were negatives. It is essential to note that proteins that are not
known as targets in a particular disease of interest could in fact be targets in another
disease context, and finding them is the primary goal target prioritization approaches.
For the implementation, the LogisticRegression class from linear_ model module and
OneVsRestClassifier class from multiclass module in Python library scikit-learn were
used [54].
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Postface

The exchange of engineered topological features for learned features increased
the performance in target prioritization across nearly all combinations of protein-
protein interaction databases (i.e., HIPPIE and STRING), disease-target association
databases (i.e., Therapeutic Target Database and OpenTargets), and other hyper-
parameters used in the workflow from Emig et al. [120].

The work of Emig et al. was careful to validate using a variety of diseases that
were well understood. Following validation and comparison to Emig et al., this
publication turns towards applications to neurodegenerative disease—an indica-
tion notorious for poor choice of target proteins during drug discovery. The most
infamous is the amyloid beta precursor protein due to the ubiquity of aggregates
of its cleavage products, Ap40 and AB42 in the brains of AD patients. However,
all clinical trials until this point targeting this protein have failed. GuiltyTargets
proposed new targets that have not been previously clincally investigated in the
context of AD such as CHRINB4, a nicotinic receptor subunit for which there is
mounting epidemiological evidence of the importance in the disease.

While GuiltyTargets comprises a machine learning pipeline for node-based
prioritization of targets in knowledge graphs, future work will incorporate other
sources for automatically contextualizing these targets with their related drug-
gability, side effects, and clinical trial landscape. The same workflow in which
NRL is used to replace topological features could be used to improve upon
previous drug repositioning efforts such as [148]. While initial work used the
same protein-protein interaction networks and disease-specific differential gene
expression profiles, it can be extended to accommodate the rich knowledge
encoded in BEL networks generated by manual, semi-automated, and auto-
mated approaches described elsewhere in this thesis. Several respective master’s
theses found at https://github.com/lingling93/comparison, https://github.
com/aldisirana/SE_KGE, and http://github.com/guiltytargets/phewas are in
progress investigating these questions. Future work could also easily incorporate
the networks arising from Bio2BEL packages presented in Chapter
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A systematic approach for
identifying shared mechanisms in
epilepsy and its comorbidities

Preface

The epidemiological evidence of comorbidity between Alzheimer’s disease
and epilepsy motivated further investigation of their potential shared molecular
mechanisms of pathogenesis. These shared mechanisms present opportunities
for transfering knowledge in one domain to another and lead to obvious drug
repositioning mechanisms for compounds tested for one indication that affects a
pathway shared by another indication.

The final publication in this thesis describes the curation of a disease-specific
knowledge assembly for epilepsy, its categorization into signatures in NeuroMM-
Sig [131], and the development and application of the comparative mechanism en-
richment workflow to identify shared molecular mechanisms with AD. It presents
an application scenario in which a knowledge-driven approach was used to hy-
pothesize shared pathways between epilepsy and AD that might be affected by the
drug, carbamazepine, which has been observed through epidemiological studies
to have positive therapeutic benefits in both disease contexts.

Reprinted with permission from "Hoyt, C. T., et al. (2018). A systematic ap-
proach for identifying shared mechanisms in epilepsy and its comorbidities.
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Abstract

Cross-sectional epidemiological studies have shown that the incidence of several ner-
vous system diseases is more frequent in epilepsy patients than in the general popula-
tion. Some comorbidities [e.g. Alzheimer’s disease (AD) and Parkinson’s disease] are
also risk factors for the development of seizures; suggesting they may share pathophysi-
ological mechanisms with epilepsy. A literature-based approach was used to identify
gene overlap between epilepsy and its comorbidities as a proxy for a shared genetic ba-
sis for disease, or genetic pleiotropy, as a first effort to identify shared mechanisms.
While the results identified neurological disorders as the group of diseases with the
highest gene overlap, this analysis was insufficient for identifying putative common
mechanisms shared across epilepsy and its comorbidities. This motivated the use of
a dedicated literature mining and knowledge assembly approach in which a
cause-and-effect model of epilepsy was captured with Biological Expression Language.
After enriching the knowledge assembly with information surrounding epilepsy, its risk
factors, its comorbidities, and anti-epileptic drugs, a novel comparative mechanism
enrichment approach was used to propose several downstream effectors (including the
GABA receptor, GABAergic pathways, etc.) that could explain the therapeutic effects car-
bamazepine in both the contexts of epilepsy and AD. We have made the Epilepsy
Knowledge Assembly available at https://www.scai.fraunhofer.de/content/dam/scai/de/
downloads/bioinformatik/epilepsy.bel and queryable through NeuroMMSig at http:/neu
rommsig.scai.fraunhofer.de. The source code used for analysis and tutorials for repro-
duction are available on GitHub at https://github.com/cthoyt/epicom.

©The Author(s) 2018. Published by Oxford University Press. Page 1 of 9
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Introduction

Seizures are transient occurrences of signs and symptoms
due to abnormal or excessive neuronal activity in the brain
(1). Classically, their underlying causes were thought to be
the primary drivers for increasing mortality in epilepsy.
While epilepsy has been classically studied as a disorder of
the brain characterized by an enduring pre-disposition to
epileptic seizures, it is no longer considered a condition in
which seizures are the only concern (2). Epilepsy is also as-
sociated with several comorbidities, including Alzheimer’s
disease (AD), Parkinson’s disease (PD), other nervous sys-
tem diseases and psychiatric disorders (3-5), due to a vari-
ety of genetic, biological and environmental factors (6).

The prevalence of migraine in epilepsy patients (under
64 years old) is 5.71% in contrast to 3.47% in the general
population (7). The mechanistic understanding of epilepsy
and migraine presumes that they share the underlying
pathophysiology related to alterations in sodium and cal-
cium ion channels and ion transporters (sodium-potassium
transport; 8, 9). Moreover, drugs acting on voltage-gated
sodium channels and y-aminobutyric acid (GABA) recep-
tors (e.g. valproate, topiramate, etc.) are used not only pre-
vent migraine attacks, but are also used as anti-epileptic
drugs (10, 11).

The prevalence of epileptic seizures in AD patients is
strongly influenced by genetic factors (12)—epilepsy and
seizures occur more often in patients with early-onset fa-
milial AD than those with sporadic AD (13). Further, con-
vulsive seizures have been described in approximately 40%
of familial AD patients with the PSEN1 p.Glu280Ala mu-
tation (14), 30% with PSEN2 mutations (15) and 57%
with amyloid precursor protein (APP p.Thr174lIle) duplica-
tions (16). Additionally, the p.Pro86Lys mutation in
CALHMI1 (rs11191692) is associated with both AD and
temporal lobe epilepsy through its influence on calcium ho-
meostasis (17).

Evidence that some comorbidities (e.g. AD and depres-
sion) also act as risk factors for developing seizures sug-
gests they may share pathophysiological mechanisms (13,
18). Conversely, epileptic seizures (as well as neoplasms)
have been reported to cause intellectual disabilities in
patients with tuberous sclerosis (19, 20). Furthermore, cer-
tain anti-epileptic drugs (e.g. topiramate) are associated
with higher incidence of cognitive problems (1, 21).

The several causal and associative relationships ob-
served between epilepsy and other indications on the phe-
notypic level warrant further investigation for shared
elements on the genetic and molecular levels. While inquiry
on the genetic level often begins with genome-wide
association studies to identify shared loci, identifying the

appropriate data set(s) and linking intergenic single nucleo-
tide polymorphisms (SNP) to their functional consequences
across scales in complex disease is still a significant
challenge (22). Even after identifying disease-associated
genes, it is difficult to assess their individual contributions
to the complex etiology of epilepsy and its related
indications. Thus, capturing the different causal relation-
ships between biological entities involved in the patho-
physiology of a complex disease is an essential step to a
better understanding of the processes that lead to the dis-
ease state.

Here, we present two methods to hypothesize shared
mechanisms: first, a literature-based approach for quanti-
fying gene overlap between epilepsy and its comorbidities
as a proxy for a shared genetic basis of disease, or genetic
pleiotropy; and second, a systematic approach using the
NeuroMMSig mechanism enrichment server. Finally, we
use these methods to propose an explanation for the ob-
served therapeutic effects of a drug that has been studied in
the contexts of epilepsy and AD. A schematic representa-
tion of the methodology, analysis and results is presented
in Figure 1.

Materials and methods

Pre-processing of epidemiological studies

Epidemiological studies comparing the incidence of several
comorbidities of epilepsy versus incidence in the general
population were extracted from a recent review by Keezer
et al. (23). The prevalence ratio, which describes the ratio
of incidence of a given condition in epilepsy patients versus
the general population, was calculated for each study.

Quantification of gene overlap

SCAIView v1.7.3, indexed from MEDLINE on 2016-07-
14, (http://academia.scaiview.com/academia) was used to
identify and quantify the overlap of genes co-occurring in
the literature with epilepsy and its novel and well-known
comorbidities reviewed by Keezer et al. Three comorbid-
ities were excluded from assessment by literature-based
methods due to their poor correspondence with MeSH
terms (i.e. allergie) or their lack of specificity (i.e. heart dis-
ease and neoplasms) by occurring too frequently and cover-
ing too many genes to be insightful. Finally, additional
epidemiological comorbidity studies with PD were curated
and included due to its previously published relevance (24).

In order to later assess publication bias in literature-
based methods, the total number of documents associated
with each disease was reported by querying SCAIView
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Figure 1. A graphical abstract of the methodology, analysis, and results presented in this work. The two upper boxes represent the methodology

while the two lower boxes represent the analysis and results. The upper-left box outlines the quantification of gene overlap between epilepsy and its
well-known comorbidities described in Keezer et al. (23; e.g. AD, PD, etc.) using literature based methods. The upper-right box outlines the assembly
of knowledge from epilepsy literature with chemical and pathway enrichment as described in the ‘Preparation for Mechanism Enrichment’ and
‘Relation Extraction’ Sections. The lower-right box represents the comparative mechanism enrichment that was used to generate comorbidity

insights (lower-left box) after literature-based methods proved insufficient.

with each disease’s corresponding MeSH term. The total
number of associated genes with each disease was counted
by those with a positive relative entropy (i.e. occur more
frequently in the results of a given SCAIView query than in
the rest of the SCAIView indexed literature) in the context
of the query as described by Younesi et al. (25). Gene sets
for each comorbidity were then retrieved by constructing
queries using their corresponding MeSH terms joined with
the epilepsy MeSH term by the ‘AND’ operator. The asso-
ciated genes for each comorbidity query were identified
with the same method and the epilepsy pleiotropy rate was
calculated as the percentage of the genes associated with
the comorbidity query in the set of associated genes with
epilepsy (Table 1).

For example, 226 genes were found to be
associated with  diabetes using the comorbidity
query [MeSH Disease:”Epilepsy”] AND [MeSH

Disease:”Diabetes Mellitus”]. Of these, 184 had
positive relative entropies, which indicate that these genes
occur more frequently in literature mentioning both dis-
eases than in the rest of the SCAIView indexed literature.
Finally, the epilepsy pleiotropy rate was calculated normal-
izing 184 by the total number of genes (2901) with a posi-
tive relative entropy found by querying for epilepsy [MeSH
Disease:”Epilepsy”], resulting in an epilepsy pleiot-
ropy rate of 6.34%.

Relation extraction

While literature co-occurrence can generate initial hypoth-
eses about genetic pleiotropy, it does not provide sufficient
mechanistic insight to explain the clinical observations in
epilepsy and its comorbidities. The increasing quantity of
knowledge in the biomedical domain makes it difficult or
impossible for researchers to be knowledgeable in any but
incredibly specific topics (26). The task of manually gener-
ating pleiotropy hypotheses that explain overlap between
the aetiological mechanisms of epilepsy and its comorbid-
ities is daunting. In order to enable computer-aided auto-
matic reasoning, the knowledge surrounding epilepsy and
its comorbidities was systematically extracted from the lit-
erature using manual relation extraction and encoded in
Biological Expression Language (BEL; 27).

First, a corpus was generated from the 192 245 docu-
ments related to epilepsy retrieved (Table 1) to further in-
vestigate the causal relations surrounding the identified
genes. A second corpus was generated from the 2666 docu-
ments retrieved by querying SCAIView for ‘epilepsy’ and
its sub-terms in the Epilepsy Ontology (28) occuring with
the free text, ‘comorbidity’. Manual relation extraction
and encoding in BEL was then performed starting with a
select subset of the two corpora based on their prioritiza-
tion by SCAIView to generate the Epilepsy Knowledge
Assembly. The knowledge assembly was further enriched
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Table 1. Results of the Epilepsy comorbidity analysis using SCAIView

Disease (MeSH ID) Associated Disease associated Comorbidity associated Epilepsy pleiotropy
documents genes genes rate (%)
Epilepsy (D004827) 192 245 2901 — —
Stroke (D020521) 210 846 4533 633 17.78
AD (D000544) 109 495 4968 396 13.65
Migraine (D008881) 30928 1230 306 10.54
PD (D010300) 79103 3646 258 8.89
Hypertension (D006973) 391190 5574 252 8.68
Dementia (D003704) 183 802 5833 220 7.58
Diabetes mellitus (D003920) 394 411 6661 184 6.34
Intestinal diseases (D007410) 629 691 9093 166 5.72
Thyroid diseases (D013959) 153025 4366 133 4.58
Anxiety (D001007) 84138 1782 124 4.27
Arthritis (D001168) 259327 5367 122 4.2
Cataract (D002386) 52150 2238 119 4.1
Asthma (D001249) 147 697 3761 86 2.96
Glaucoma (D005901) 56 679 2303 48 1.65
Depressive disorder, major (D003865) 15 706 1249 46 1.58
Urinary incontinence (D014549) 34170 720 24 0.82
Peptic ulcer (D010437) 68234 1445 21 0.72
Back pain (D001416) 48 516 1191 17 0.58
Pulmonary disease, chronic obstructive (D029424) 35627 2244 15 0.51
Fibromyalgia (D005356) 9021 468 10 0.34
Emphysema (D004646) 25511 1261 9 0.31
Bronchitis, chronic (D029481) 9085 580 2 0.06

Notes: The number of associated documents (column 2) retrieved from SCAIView for each disease is shown given a reference query using corresponding the

MeSH term from column 1. The disease-associated genes (column 3) contain the number of genes relevant to the corpus retrieved from a disease-specific query.

The comorbidity-associated genes (column 4) contain the number of genes relevant to the comorbidity query between the target disease and epilepsy. Lastly, the

epilepsy pleiotropy rate (column 5) describes the ratio of the count of genes reported in column 4 with the total number of epilepsy-associated genes (2901).

with pharmacological knowledge surrounding 19 anti-epi-
leptic drugs and their targets from the Pharmacogenetics
and Pharmacogenomics Knowledge Base (PharmGKB; 29).
Ultimately, the knowledge assembly comprised relations
from 641 unique citations. Finally, the PyBEL framework
(30) was used to parse and validate the syntax and seman-
tics of the underlying BEL Script. A summary of the con-
tents of the Epilepsy Knowledge Assembly is presented in
Table 2.

Preparation for mechanism enrichment

The Epilepsy Knowledge Assembly was enriched with
mechanistic annotations following the procedures outlined
by Domingo-Fernandez et al. (24) in order to integrate it
into NeuroMMSig and enable multi-modal mechanism
enrichment analyses with queries over genes, SNPs and
neuroimaging features.

A taxonomy of epilepsy mechanisms was generated by
combining the list of well-established epilepsy mechanisms
from Staley (31) with concepts from the Pathway
Terminology System (32) co-occurring in articles matching
either [MeSH Disease: ‘Epilepsy’] or entries in the Epilepsy

Ontology indexed by SCAIView. The resulting 784 terms
representing mechanisms were curated in order to normal-
ize entities, remove irrelevant entries and group similar
terms. Next, relations in the Epilepsy Knowledge Assembly
were annotated with mechanisms based on whether their
entities were involved in the mechanism as outlined by
Domingo-Fernandez et al. (24). During the annotation pro-
cess, new mechanisms not yet included in the inventory
were found in the literature; thus, the mechanism inventory
was updated in parallel until concluding the annotation
with a total of 32 annotated sub-graphs (Table 2). More
details and examples about the mapping procedure can be
found on the NeuroMMSig introduction page.

In the next section, NeuroMMSig is used to identify
shared mechanisms between epilepsy and AD on the basis
of the mechanism of action of multi-indication drugs.

Results and discussions

Investigation of comorbidities

Of the 2901 genes identified as associated with epilepsy by
having a positive relative entropy score, Table 1 shows
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Table 2. Statistics over the Epilepsy Knowledge Assembly generated by PyBEL, grouped by sub-graph

Sub-graph name Biological entities Relationships Connected Components Citations
Adaptive immune system sub-graph 12 12 4 N
Adenosine signaling sub-graph 76 154 3 15
Apoptosis signaling sub-graph 228 503 5 115
Brain-derived neurotrophic factor signaling sub-graph 75 142 1 29
Calcium dependent sub-graph 302 793 8 73
Chromatin organization sub-graph 8 10 2 2
Energy metabolic sub-graph 91 177 4 24
Estradiol metabolism 7 8 2 1
G-protein-mediated signaling 78 140 5 25
Gaba sub-graph 262 632 2 56
Glutamatergic sub-graph 121 246 N 32
Hormone signaling sub-graph 126 256 9 16
Inflammatory response sub-graph 42 49 4 21
Innate immune system sub-graph 41 63 8 18
Interleukin signaling sub-graph 46 111 3 17
Long term synaptic depression 64 129 2 21
Long term synaptic potentiation 125 252 2 46
Mapk-erk sub-graph 313 706 5 68
Metabolism 340 600 14 126
Mirna sub-graph 5 4 1 3
Mossy fiber sub-graph 38 66 2 14
Mtor signaling sub-graph 166 336 3 42
Neurotransmitter release sub-graph 552 1667 5 131
Notch signaling sub-graph 105 205 3 20
Protein kinase signaling sub-graph 377 850 6 87
Protein metabolism 129 185 8 44
Reelin signaling sub-graph 117 253 2 21
Regulation of actin cytoskeleton sub-graph 5 3 2 2
Serotonergic sub-graph 148 478 2 18
Thyroid hormone signaling sub-graph 106 228 2 9
Transport related sub-graph 49 60 7 25
Wnt signaling sub-graph 27 38 3 15
Total 3478 12481 16 641

Notes: The first column, biological entities, corresponds to the number of genes, chemicals, proteins, biological process, etc. in each sub-graph. The second col-
umn, relationships (i.e. edges), corresponds to the number of connections between each sub-graphs’ biological entities. The third column, connected components,
corresponds to the number of ‘connected’ groups of nodes within each sub-graph. The final column, citations, corresponds to the total number of articles from
which information was extracted to build each sub-graph. A more detailed summary is included in the Supplementary Material.

that nervous system conditions were among the highest
literature-based gene overlap (10.54% of epilepsy genes
co-occurred with migraine, 7.58% with dementia, 8.89%
with PD and 13.65% with AD). While these conditions
were also highly ranked in epidemiological studies by their
prevalence ratios, literature-based gene overlap does not
correlate with prevalence ratios across all of the conditions
reported by Keezer et al. (Supplementary Figure S2) and
therefore is the best tool for gaining insight into the comor-
bidities of epilepsy.

While literature-based methods may be a poor proxy for
genetic pleiotropy and are generally insufficient for unravel-
ing the shared pathophysiology in epilepsy and studied

comorbidities, systematic approaches for identifying and
evaluating shared mechanisms may better explain the aggre-
gate effects of their interactions that cannot be captured by
simple approaches like literature co-occurrence.

Mechanism enrichment

AD was chosen as a putative comorbidity of epilepsy for
further investigation not only because it had the highest
literature-based gene overlap with epilepsy (Table 1), but
additionally because of the prior existence of the AD
Knowledge Assembly (33) and its
NeuroMMSig.

inclusion in
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Of the most frequently mentioned drugs in epilepsy
literature (Supplementary Figure S1), we identified car-
bamazepine as having both notable target representation
in the AD Knowledge Assembly along with multiple
references indicating its positive effects on memory
and treatment of elderly patients with seizures (34) as
well as positive effects in the treatment of AD patients
(34, 395).

In the following sections, NeuroMMSig is first used to
investigate the mechanisms enriched by the targets of car-
bamazepine in the context of epilepsy. After, a compara-
tive enrichment is made to identify possible overlapping
mechanisms with AD in order to explore the therapeutic
effects of the drug in both disease contexts.

Epilepsy mechanism enrichment

While carbamazepine has been observed to act through in-
hibition of sodium and calcium voltage-gated channels as
well as activation of the GABA receptors (36, 37), its
mechanism of action is still not fully understood (38). In
order to better understand the impact of the drug, the gene
set of all of its known targets (Supplementary Text S1),
was queried on the NeuroMMSig mechanism enrichment
server against the Epilepsy Knowledge Assembly.

Because the NeuroMMSig mechanism enrichment algo-
rithm only provides relative scores, the top 10th percentile
of results were used. Of the 12 networks with at least one
mapped gene, those with an enrichment score in the top
10th percentile (above 0.696) were the adenosine signaling
sub-graph and the GABA sub-graph (Supplementary
Table S1). While the increase of the purine nucleoside,
adenosine, has been associated with the incidence of seiz-
ures, its mechanistic connection is still unknown (39).
However, recent research has identified several promising
targets that regulate and balance adenosine levels such as
adenosine kinase (ADK) and its receptors (ADORA family;
39, 40). Similarly to adenosine, the inhibitory neurotrans-
mitter response induced by GABA is responsible for bal-
ancing many excitatory signals occurring in the brain.
Studies that investigated reduction and abnormalities in
GABA-inhibitory processes lead to the development of
GABA agonists (e.g. vigabatrin and tiagabine) that act as
anti-convulsants in epilepsy patients (41).

After assessing the plausibility of these sub-graphs’ in-
volvement in the aetiology of epilepsy, the union of the net-
works was used to further investigate the relation between
the downstream effects of carbamazepine and its therapeu-
tic effect on epilepsy patients. Due to the its size, it was
necessary to filter and query the network by finding the
shortest paths between the drug’s targets and different bio-
logical processes of interest in the context of epilepsy then

combining them to form a new graph to support quickly
identifying candidate pathways. Finally, the common up-
stream controllers between each pathway were included to
provide further context to their overlap. Combining, rea-
soning over, and manually interpreting the generated paths
lead to the simplified network depicted in Figure 2 repre-
senting the downstream effects of carbamazepine.

The figure demonstrates the synergistic effects of the ac-
tivation of the GABA receptor family and the inhibition of
the sodium voltage-gated channels to potentiate GABA-
mediated inhibition, and therefore, decrease the risk of de-
veloping seizures. Furthermore, carbamazepine causes an
increase in the production of adenosine, whose receptors,
ADORAT1 and ADORA3, in a positive feedback loop with
the production of adenosine which ultimately leads to a re-
duction in glutamatergic excitatory signals. Synaptic plas-
ticity in response to the downstream effects of these signals
may contribute to drug resistance, and ultimately, seizure
recurrence.

Comparative mechanism enrichment

NeuroMMSig was queried with the same gene set in the
context of AD in order to perform a comparative investiga-
tion of shared mechanistic perturbations with epilepsy.
Because the mechanism of action of carbamazepine is
poorly represented in the literature (Supplementary
Table S2) and its known targets are less implicated in AD,
it was unsurprising that fewer sub-graphs were enriched in
the context of AD.

The most significant, the GABA sub-graph, which
describes the upstream controllers of the GABA receptor
and its downstream effectors, highly overlapped with the
GABA sub-graph in the context of the epilepsy—it contains
key relations that may explain the efficacy of carbamaze-
pine in both conditions. Studies in AD models have shown
a negative correlation between the abundance of amyloid
beta 42 and the expression of the transcription factor for
the GABA receptor family EGR1 (42, 43). This correlation
could be caused by an unknown controller in the aetiology
of AD; in which state, a patient would have decreased ex-
pression of EGR1 and therefore fewer GABA receptors
and less ability to inhibit the excitatory signals that lead to
seizures. While the link between epilepsy and GABAergic
neurotransmission has already been exploited by anti-epi-
leptic drugs, its role in AD is not yet clearly understood
(Figure 2). However, several recent publications have ra-
tionalized targeting GABAergic neurotransmission for
treatment of AD (44, 45).

Tangentially, EGR1 upregulates the expression of
PSEN2, a member of the catalytic sub-unit of the y-secre-
tase complex that regulates APP cleavage (46). Mutations
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Figure 2. A schematic representation of the knowledge surrounding carbamazepine retrieved by querying its targets with NeuroMMSig. The relevant
portions of the most significantly enriched graphs in the context of epilepsy and AD, the adenosine signaling and the GABA sub-graphs, were merged
and displayed in order to highlight a potential explanatory mechanism for the therapeutic effects of carbamazepine (Supplementary Text S2). It is ren-
dered with a hierarchical layout to mirror the flow from molecular entities to proteins, biological processes and pathologies.

in PSEN2 that have been both linked to amyloid beta accu-
mulation (47) and seizures in AD patients (48) provide fur-
ther evidence for the existence for a shared mechanism
through which carbamazepine acts in the contexts of AD
and epilepsy (Figure 2).

Noradrenaline is a known anti-convulsant (49) that is
often lacking in patients in the early stages of AD due to an
observed loss of noradrenergic neurons (50). Because car-
bamazepine has been observed to activate noradrenergic
neurons (51), its anti-convulsant activity may be due to it
indirectly increasing noradrenaline levels. Finally, nor-
adrenaline potentiates the previously mentioned adenosine
pathways (52).

While mechanism enrichment provides several insights,
a cursory search of PubMed of ‘Carbamazepine’[nm] AND
‘Alzheimer disease’[MeSH Terms]| suggested publications
(53) that implicate autophagy in the therapeutic action of
Further
Carbamazepine does not have a significant effect on ex-

Carbamazepine. investigation showed
pression of proteins in the mTOR-pathway (53) and that it
is likely increasing autophagic flux through an mTOR-
independent pathway. Mechanism enrichment analysis

was unable to prioritize autophagy pathways due to some

of the shortcomings of knowledge-based methods. For ex-
ample, the AD NeuroMMSig sub-graph corresponding to
autophagy pathways did not contain any of the targets of
Carbamazepine listed by PharmGKB. This could be due to
the choice of boundaries in sub-graph definition, or also
due to the lack of annotation of autophagy-related targets
in PharmGKB. Autophagy has been implicated in epilepsy,
but the literature has not yet succinctly described the con-
nection from the therapeutic to its target, pathway, and fi-
nally the pathology. Finally, because knowledge assemblies
are inherently incomplete, this shows the complementary
nature of the two approaches.

While the exact mechanism of action of carbamazepine
remains elusive, this proposed mechanism enrichment ap-
proach was able to identify multiple pathways through
which it could be acting in both the AD, epilepsy and
shared context. Looking forward, this approach can be ap-
plied across a wide variety of chemical matter in the neuro-
degenerative disease space, as well as in other domains for
which appropriately annotated knowledge assemblies ex-
ist, in order to support identification of drugs’ mechanisms
of actions, drug repositioning opportunities and the devel-
opment of new lead compounds.
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Conclusion

Our findings indicate that literature-based methods as a
proxy for genetic pleiotropy generally do not correlate
with the results from epidemiological studies of epilepsy
and its comorbidities. Furthermore, strictly gene-centric
methods lack the ability to elucidate mechanistic insight
that a knowledge assembly can support.

After formalizing a representative sample of the knowl-
edge surrounding epilepsy, its risk factors, its comorbidities
and anti-epileptic drugs, we annotated mechanistic sub-
graphs to include in the NeuroMMSig mechanism enrich-
ment server. Finally, an enrichment approach focusing on
the targets of carbamazepine proposed the several down-
stream effectors (including the GABA receptor, GABAergic
pathways, etc.) that could explain its therapeutic effects in
both the contexts of epilepsy and AD.

Future work will include applying this procedure to a
wider variety of drugs and chemical matter across different
diseases. Finally, we have made the Epilepsy Knowledge
Assembly publicly available through NeuroMMSig (http://
further
systems biology and chemoinformatics investigations of

epilepsy.

neurommsig.scai.fraunhofer.de) to facilitate

Supplementary data

Supplementary data are available at Database Online.
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Postface

The analysis presented in this publication ranked disease-specific mechanisms
in AD and epilepsy that are likely targeted by carbamazepine and ultimately
lead to the hypothesis that the GABA-ergic receptor pathway was central to its
multi-indication effect. Importantly, this investigation was advantageous over
black box machine learning models because the underlying knowledge assemblies
are self-explanatory and based on publications published in molecular biology and
epidemiology. After, the prospects of applying these techniques in a more auto-
mated fashion in order to investigate many more drugs and disease combinations
were discussed.

In the spirit of reproducible and reusable science, the instructions, scripts,
and the Epilepsy Knowledge Assembly have been made publicly available at
https://github.com/neurommsig-epilepsy in order to enable other scientists to
reproduce ours and conduct their own investigations.

Given the automation enabled by the enrichment methods described in Chap-
ters 4|and 5} this analysis can be more heavily automated to provide new insights
as the underlying knowledge assemblies grow and increase in granularity. As
several new neurodegenerative diseases (e.g., multiple sclerosis, amyotrophic
lateral sclerosis, Huntington’s disease) are currently being added to NeuroMMSig,
new shared mechanisms will become apparent and lead to new hypotheses to be
tested in epidemiological studies and later for drug repositioning.
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Epilogue

9.1 Summary

The work in this thesis can be best summarized in three sections: 1) generation
of an ecosystem for BEL, 2) development of methods and tools for enriching bio-
logical knowledge graphs, and 3) applications of knowledge graphs in simulation,
modeling, and analysis of data.

In Chapter |2, the PyBEL ecosystem was introduced in order to support the
parsing, validation, and manipulation of biological knowledge graphs encoded in
BEL. It was shown to support the implementation of algorithms and interoperabil-
ity with other systems and networks biology tools such as NDEx. In Chapter
the BEL Commons web application was introduced as a way to make the tools
implemented with PyBEL accessible to a wider variety of users who have different
skill sets. It was shown to support knowledge-assisted analysis of -omics data and
provide interactive exploration of biological knowledge graphs.

In Chapter[d} PyBEL was used in two ways to support quality assurance and en-
richment of biological knowledge graphs in BEL. First, a re-curation workflow was
proposed using version control systems, continuous integration, and a novel exten-
sion to PyBEL that can directly interface with git. Second, PyBEL was integrated
with INDRA and semi-automated relation extraction workflow was generated
that prioritized curation of low information-density areas of a given biological
knowledge graph. In Chapter[5|, Bio2BEL was introduced as both a philosophy and
accompanying framework for reproducibly acquiring and integrating multi-modal
and multi-scale knowledge from many sources in BEL. Several applications of the
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Bio2BEL framework that have already been published in peer-reviewed journals
were presented as examples of the impact and utility of Bio2BEL.

In Chapter|f the first of the three applications of highly enriched biological
knowledge graphs was presented. In it, BEL2ZABM was shown to be able to con-
vert static biological knowledge graphs into dynamic, executable agent-based
models that could recapitulate ordinary differential equation models of biological
systems after undergoing parameter optimization. In Chapter [/}, GuiltyTargets
was introduced as an alternative to topological feature engineering that, when
applied in the target prioritization task, outperformed the previous state of the art.
These results implied that NRL on biological knowlege graphs has huge potential
in not only target prioritization, but potentially any tasks that rely on feature engi-
neering from knowledge graphs. In Chapter [, the final application was presented
about using biological knowledge graphs annotated with disease specificity to
not only deconvolute the mechanism of action of the drug, carbamazepine, but to
hypothesize an explanation for its epidemiologically observed multi-indication
effects in AD and epilepsy.

9.2 Future Work

While this thesis only represents work that has been finalized and written as
full manuscripts, it has lead to a significant amount of ongoing work. I expect
that the PyBEL ecosystem and BEL Commons will evolve to suit new algorithms
and new needs from the community. They will also grow to support interchange
between new formats such as the GO-CAM and the BEL-like language used by
neXtProt [149]. Maintaining software is not often considered by academics, but
much care has been taken to ensure this is possible. As Bio2BEL is extensible and
demonstrably facile for external developers, I also expect it to grow along with
the generation and publication of new and exciting biological data sources. More
specifically, the PyBEL and BEL Commons codebase will be incorporated into the
next release of the NeuroMMSig Mechanism Enrichment Server from [131]. It will
also include features from Bio2BEL to more dynamically link to other resources,
as well as directly querying compounds as a fourth modality in addition to genes,
mutations, and clinical features.

The most interesting future work lies with the generation of new analytical
techniques using NRL to solve similar and new problems relevant to drug discov-
ery. Following the completion of Ozlem Muslu’s master’s thesis, which was the
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basis for GuiltyTargets, four new master’s theses have commenced concerning 1)
the incorporation of phenome-wide association studies, 2) the application of NRL
to the drug repositioning workflow presented by Himmelstein et al. [148], 3) the
benchmarking of NRL in multi-modal graphs for deconvolution of mechanism
of actions causing side effects, and 4) alternate ways to include disease-specific
signatures in underlying networks before representation learning and application
of target prioritization. While the publication from Chapter [§ focused on a single
drug in the context of two diseases, the methods can be more generally applied
across all drugs listed in DrugBank [150] and all diseases covered by NeuroMMSig
to identify further repositioning candidates. Further, this could lead to an interest-
ing exploration of chemical space and the scaffolds that occur in multi-indication
drugs.

In order to support the inclusion of new neurodegenerative diseases in Neu-
roMMSig like Huntington’s disease and multiple sclerosis, several additions can
be made to the rational enrichment pipeline presented in Chapter|4] First, it can be
presented as a web interface and more tightly integrated with the visualization
tools included in BEL Commons. Second, NRL can also be used to automatically
assign BEL statements to sub-graphs in NeuroMMSig using a combination of
the inter-database pathway mappings included in ComPath [137] and the Bio-
KEEN [107] software.

9.3 Impact, Reflections, and Acknowledgements

As most of the preface and postfaces above stated, the work presented here has
not been done in a vacuum. I have built each component of the PyBEL ecosystem
on the previous to support each story in this thesis. In the end, the code that was
originally developed in 2016 became an entire platform for systems and networks
biology that vastly transcended its original goal of being a new and stable compiler
for BEL.

While I have mostly used the passive voice throughout this thesis to describe
the work that has been done, it would be blasphemous to finish without crediting
all of the wonderful scientists with whom I've written each of the included pub-
lications. The work I have done during the course of my doctorate has not been
done in isolation: it has been used and improved by several members my group at
the Fraunhofer SCAI Department of Bioinformatics throughout their own mas-
ter’s and doctoral theses. Each of them has left their own footprints throughout.
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Conversely, I've also had the pleasure to incorporate the work of others into mine:
unabashedly and without worry of jealousy or conflict.

The work presented here has also provided support to the partners in our
projects and to the wider community. As I reflect on what I have done in my
doctorate, I believe that the openness with which I have done my work has lead to
some of my most interesting work and some of the most interesting collaborations:
many of which I have not included here (but if you're interested, that work won't
be hard to find, either). I find it exciting to consider that as this thesis comes to a
close that my work may continue, even without me.
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