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Abstract 

The investigation of periglacial and related landforms in South Norway is of high interest for exploring 

timings of deglaciation and to assess their geomorphological connectivity to palaeoclimatic changes during 

the Late Quaternary and the Holocene. The ice margins of the Scandinavian Ice Sheet during the Last 

Glacial Maximum (LGM) are fairly well known, the palaeo-ice thickness, however, which can only be esti-

mated by modelling, remains unclear over large parts of Norway owing to rare field based evidences. Due 

to the significant influence of the former horizontal and vertical ice-sheet extent on sea-level rise, atmos-

pheric and oceanic circulation patterns, erosive properties of glaciers and ice sheets, englacial thermal 

boundaries and deglaciation dynamics, it is crucial to better understand the topographic features of the LGM 

ice sheet. Despite recent advances, there is a lack of terrestrial evidences from numerical data in South 

Norway. In this thesis two high-mountain regions and their surroundings in west (Dalsnibba, 1476 m a.s.l.) 

and east (Blåhø, 1617 m a.s.l.) South Norway were used to reconstruct palaeoclimatic conditions and degla-

ciation patterns. Terrestrial cosmogenic nuclides (10Be) and Schmidt-hammer exposure-age dating (SHD) 

have been utilized to determine the surface exposure of glacially transported boulders as well as of boulder-

dominated glacial, periglacial and paraglacial landforms and bedrock outcrops. By developing calibration 

curves at both study sites for the first time, through young and old control points of known age, it was 

possible to obtain landform age estimates from Schmidt hammer R-(rebound) values. Beside age estimates, 

the formation and stabilization of those landforms and the involved processes have provided indications 

about the Late Quaternary and Holocene climate variability and its connectivity to landform development.  

The first deglaciation chronology for the western study area could be constructed based on 10Be surface 

exposure ages. Final local deglaciation on the summit of Dalsnibba probably started between 13.3 ± 0.6 and 

12.7 ± 0.5 ka and progressed down to the valley bottom of Opplendskedalen (~1050 m a.s.l.) with an SHD 

age estimate of 7.47 ± 0.73 ka. Deglaciation during the Bølling–Allerød Interstadial (~14.7 – 12.9 ka) indi-

cates that the summit was not ice-covered during the Younger Dryas (12.9 – 11.7 cal. ka BP). A glacially 

transported boulder in the summit area and summit bedrock ages without cosmogenic nuclide inheritance 

further imply a minimum vertical ice extent of 1476 m and the presence of erosive warm-based ice. The 

SHD Dalsnibba results show that most landforms stabilized during the Holocene Thermal Maximum (~8.0 

– 5.0 ka) and that their R-value characteristics with negative skewness were indicative for the reworking of 

boulders or continuous debris supply. The SHD ages from Dalsnibba imply that periglacial landforms in 

the western maritime setting sensitively reacted to Holocene climate variability. Rock-slope failures investi-

gated at both study sites demonstrate that they do not necessarily occur shortly after local deglaciation as 

often inferred. Furthermore, most of the recorded rock-slope failures appear to have occurred during warm 

climatic conditions. Most likely, prevailing warm conditions led to permafrost degradation, enhanced snow 

melt and increasing cleftwater pressure contributed to slope instabilities probably resulting in rock-slope 

failures.  
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The Blåhø SHD ages also suggest landform response on climate variations, though, in a different temporal 

context. Landforms above 1450 m a.s.l. largely shared overlapping ages and therefore appear to have stabi-

lized during the Karmøy/Bremanger readvance (∼18.5 – 16.5 ka). This, however, seems to have been the 

last major geomorphic activity of these landforms as they were not reactivated by several, partly severe cold 

climate events such as the Younger Dryas. The SHD ages from landforms above 1450 m a.s.l. are in contrast 

to the previous deglaciation chronology which suggested cold-based ice coverage and slow thinning down 

to ∼1450 m a.s.l. at 15.0 ± 1.0 10Be ka. Based on the results from this thesis, a severe periglacial climate 

without ice coverage since about 18 ka is proposed for the summit area of Blåhø. The 10Be ages from Blåhø 

with 20.9 ± 0.8 ka for the erratic boulder and 46.4 ± 1.7 ka for the bedrock, which extend the previous 

deglaciation chronology, are discussed within the framework of the two most popular scenarios. Within the 

first scenario the boulder age represented the timing of deglaciation and the bedrock age showed inherited 

cosmogenic nuclides, suggesting the presence of low erosive cold-based ice at Blåhø during the LGM. In 

the second scenario, the boulder age was affected by post-depositional disturbance, frost heave processes 

or shielding, potentially indicating ice-free conditions on Blåhø since at least 46.4 ± 1.7 ka. Analyzing the 

different onset of deglaciation in the study areas within a rather short west-east distance, together with the 

timing of deglaciation in neighboring regions, demonstrates complex deglaciation dynamics in southern 

Norway. Not only the timing of deglaciation was highly variable, the results also imply diverse basal ice 

temperatures within this relatively small area. In general, this thesis positively contributes new evidences 

pointing to a more complex and dynamic Scandinavian Ice Sheet throughout the last glacial cycle than 

previously assumed.  
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Neue Aspekte zur Deglaziation in Südnorwegen 

Klimavariabilität abgeleitet von Oberflächenexpositionsaltern von spät-Quartären und Holozä-

nen Landformen 

Zusammenfassung 

Die Untersuchung periglazialer und verwandter Landformen in Südnorwegen ist von großem Interesse, um 

den Zeitpunkt der Deglaziation zu bestimmen und ihre geomorphologische Konnektivität mit paläoklima-

tischen Veränderungen während des spät-Quartärs und des Holozäns zu bewerten. Die Lokationen der 

Eisränder des Skandinavischen Eisschildes während des letzten glazialen Maximums (Last Glacial Maxi-

mum, LGM) sind vergleichsweise gut bekannt, die Mächtigkeit des Paläoeises hingegen, welches lediglich 

modelliert werden kann, bleibt über weite Teile Norwegens aufgrund sehr weniger Geländebefunde, unklar. 

Aufgrund des signifikanten Einflusses der früheren horizontalen und vertikalen Ausdehnung des Eisschil-

des auf den Meeresspiegelanstieg, die atmosphärischen und ozeanischen Zirkulationsmuster, die erosiven 

Eigenschaften von Gletschern und Eisschilden, die englazialen thermischen Grenzen sowie die Dynamik 

der Vereisung, ist es entscheidend die topographischen Strukturen und Eigenschaften des LGM-Eisschildes 

besser zu verstehen. Trotz der jüngsten Forschungsfortschritte mangelt es in Südnorwegen an terrestrischen 

Geländebefunden basierend auf numerischen Daten. Für diese Arbeit wurden zwei Hochgebirgsregionen 

und ihre Umgebungen im Westen (Dalsnibba, 1476 m ü.d.M., über dem Meeresspiegel) und Osten (Blåhø, 

1617 m ü.d.M.) Südnorwegens zur Rekonstruktion paläoklimatischer Bedingungen und Vergletscherung 

ausgewählt. Sowohl terrestrische kosmogene Nuklide (10Be) als auch Schmidt-hammer exposure-age dating 

(SHD) wurden angewendet, um die Dauer der Oberflächenexposition von glazial-transportierten Felsblö-

cken sowie von blockdominierten glazialen, periglazialen und paraglazialen Landformen und anstehendem 

Festgestein zu bestimmen. Durch die erstmalige Erstellung von Kalibrierungskurven an beiden Untersu-

chungsstandorten, durch junge und alte Kontrollpunkte bekannten Alters, konnten aus Schmidt Hammer 

R-(Rückprall-) Werten, Landform-Altersschätzungen vorgenommen werden. Neben Altersschätzungen 

konnten die Bildung und Stabilisierung dieser Landformen und die damit verbundenen Prozesse nun neue 

Hinweise auf die spätquartäre und holozäne Klimavariabilität und ihre Konnektivität zur Landformentwick-

lung liefern. 

Die erste Deglaziationschronologie für das westliche Untersuchungsgebiet konnte auf Grundlage von 10Be 

Oberflächenexpositionsaltern erstellt werden. Die endgültige lokale Deglaziation auf dem Gipfel des Dals-

nibba begann wahrscheinlich zwischen 13.3 ± 0.6 und 12.7 ± 0.5 ka und endete am Talboden des Opp-

lendskedalen (~1050 m ü.d.M.) um 7.47 ± 0.73 ka, basierend auf einer SHD-Altersschätzung. Die Deglazi-

ation während des Bølling–Allerød Interstadials (~ 14.7 – 12.9 ka) zeigt, dass der Gipfel während der Jün-

geren Dryas (12.9 – 11.7 cal. ka BP) nicht von Eis bedeckt war. Ein glazial-transportierter Felsblock im 

Gipfelbereich und untersuchtes Grundgestein auf dem Gipfel ohne kosmogene Nuklid-Vererbung impli-

zieren weiterhin eine vertikale Mindesteisausdehnung von 1476 m und das Vorhandensein von erosivem, 

warm-basalem Eis. Die SHD-Ergebnisse von Dalsnibba zeigen, dass sich die meisten Landformen während 

des holozänen thermischen Maximums stabilisierten (~ 8.0 – 5.0 ka) und dass ihre R-Wert-Eigenschaften, 
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mit negativer Schiefe, auf eine Re-Aktivierung von Felsblöcken oder auf kontinuierliche Zufuhr von Schutt-

material hinweisen. Die SHD-Alter von Dalsnibba deuten zudem darauf hin, dass periglaziale Landformen 

im westlichen maritimen Umfeld empfindlich auf die Klimavariabilität des Holozäns reagierten. Die an bei-

den Untersuchungsorten untersuchten Felsstürze (rock-slope failures) implizieren, dass Felsstürze nicht un-

weigerlich gehäuft kurz nach der lokalen Enteisung auftraten. Darüber hinaus scheinen die meisten der 

aufgezeichneten Felsstürze unter warmen klimatischen Bedingungen aufgetreten zu sein. Es ist anzuneh-

men, dass die vorherrschenden warmen klimatischen Bedingungen zu Permafrostdegradation, verstärkter 

Schneeschmelze und steigendem Wasserdruck in Klüften zu Hanginstabilitäten führten, die wahrscheinlich 

Massenbewegungen von Felshängen auslösten. 

Die Blåhø-SHD-Alter deuten ebenfalls auf eine Reaktion der Landformen auf Klimaschwankungen hin, 

jedoch in einem anderen temporalen Kontext. Bei den Landformen über 1450 m ü.d.M. überschneiden sich 

die Alter weitgehend, diese Landformen stabilisierten sich wahrscheinlich während des Karmøy/Bremanger 

Vorstoßes (∼18.5 – 16.5 ka). Dies scheint jedoch die letzte größere geomorphe Aktivität dieser Landformen 

gewesen zu sein, da sie nicht durch mehrere, teilweise starke Kälteereignisse wie der Jüngeren Dryas reakti-

viert wurden. Die SHD-Alter der Landformen oberhalb von 1450 m ü.d.M. stehen im Gegensatz zu einer 

vorherigen Deglaziationschronologie, die eine kalt-basale Eisbedeckung und eine langsame Ausdünnung 

auf 1450 m ü.d.M. bei 15.0 ± 1.0 10Be ka nahe legte. Basierend auf den Ergebnissen dieser Arbeit wird für 

das Gipfelgebiet von Blåhø ein strenges Periglazialklima ohne Eisbedeckung seit etwa 18 ka postuliert. Die 

10Be-Alter von Blåhø mit 20.9 ± 0.8 ka für den erratischen Block und 46.4 ± 1.7 ka für das Grundgestein, 

die die bisherige Deglaziationschronologie erweitern, werden im Rahmen der beiden verbreitetsten Szena-

rien diskutiert. Im ersten Szenario stellt das Expositionsalter des Blockes den Zeitpunkt der Deglaziation 

dar und das Grundgesteinszeitalter weist vererbte kosmogene Nuklide auf, was auf das Vorhandensein von 

schwach erosivem, kalt-basalem Eis auf Blåhø während des LGMs hinweist. Im zweiten Szenario wurde das 

Expositionsalter des Blockes durch nachträgliche Störung nach der Ablagerung, Frosthebungsprozessen 

oder der Abschirmung von kosmogenen Nukliden, beeinflusst, was möglicherweise auf eisfreie Bedingun-

gen auf dem Blåhø seit mindestens 46.4 ± 1.7 ka hindeutet. Die Analyse der unterschiedlichen Zeiten des 

Beginns der Deglaziation in den Untersuchungsgebieten innerhalb einer relativ kurzen Entfernung von 

West nach Ost sowie des Zeitpunkts der Enteisung in benachbarten Regionen zeigen die komplexe Entei-

sungsdynamik in Südnorwegen. Die Enteisungzeitpunkte waren nicht nur sehr unterschiedlich, die Ergeb-

nisse implizieren auch differierende basale Eistemperaturen in diesem relativ kleinen Areal. Zusammenfas-

send legt diese Arbeit neue Beweise vor, die auf ein komplexeres und dynamischeres Skandinavisches Eis-

schild während des letzten glazialen Zyklus hinweisen als bisher angenommen.   
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1 Introduction 

Climate change and the ongoing debates about its consequences are gaining political and public momentum 

worldwide (OWEN et al. 2009; IPCC 2014). Mountain areas, particularly glaciers and ice sheets, react sensi-

tively to changing climatic conditions. They are currently facing rapid and comprehensive changes with 

wide-ranging ramifications which are expected to accelerate in the future (ZEMP et al. 2008; BARRY and 

GAN 2011; GOBIET et al. 2014; ZEMP et al. 2015; BENISTON et al. 2018). Glaciers store large amounts of 

freshwater and their run-off is crucial for irrigation systems as well as hydropower production (ANDREAS-

SEN and WINSVOLD 2012; HUSS et al. 2017). Additionally, they are an integrated part of the global climate 

system with important effects on global, regional and local environments, e.g. sea-level rise, geomorpholog-

ical hazards and ecological changes in glacier forelands (MATTHEWS 1992; KASER et al. 2006; BALLANTYNE 

2018). In this context, diminishing mountain glaciers and ice sheets can be recognized as key components 

for current and future societal and environmental systems (ZEMP et al. 2008; BARRY and GAN 2011; IPCC 

2014). For the purpose of improving the predictions for future glacier and ice-sheet development together 

with assessing the consequences of their retreat or disappearance, it is essential to better constrain their 

(de)glaciation history, past glacier dynamics as well as their influence on landscape evolution (OWEN et al. 

2009; SOLOMINA et al. 2015; HUGHES et al. 2016). 

Glacier and ice sheet fluctuations throughout the Quaternary (~2.6 Ma) and the Holocene (<11.7 ka) have 

had major impacts on environmental conditions and the shape of landscapes worldwide (BÖSE et al. 2012; 

EHLERS et al. 2018). During the Last Glacial Maximum (LGM, 26.5 – 20 ka, CLARK et al. 2009) the Eurasian 

ice-sheet complex represented the third largest ice mass worldwide (PATTON et al. 2016), from which the 

Scandinavian Ice Sheet (SIS) comprised the largest component (HUGHES et al. 2016). This qualifies Scandi-

navian landscapes as potential palaeoclimatic archives for information about (de-)glaciation dynamics to-

gether with exploring magnitude and frequency of glacier fluctuations during the LGM towards the Holo-

cene (see STROEVEN et al. 2016). Investigating the late Quaternary glaciation history in Scandinavia, espe-

cially in Norway, has raised the attention of scientists since more than a century (BLYTT 1876; SOLLID and 

SØRBEL 1994; MANGERUD 2004; ANDERSEN et al. 2018a). Knowledge about the former horizontal and 

vertical extent of glaciers can be valuable in order to better understand palaeo-environmental components, 

such as sea-level changes, atmospheric and oceanic circulation patterns, landform evolution, (de)glaciation 

dynamics, erosive capacities of ice, englacial thermal boundaries and is crucial for palaeoclimatic, isostatic 

and numerical-glaciological modelling (KUTZBACH et al. 1998; LINGE et al. 2006; RINTERKNECHT et al. 

2006; HUGHES et al. 2016; STROEVEN et al. 2016). Comprehensive review studies drew a rather clear picture 

of the SIS margins in Norway throughout different stages within and following the last glaciation (HUGHES 

et al. 2016; PATTON et al. 2016, 2017; STROEVEN et al. 2016). By contrast, the exact vertical ice extent during 

this time remains uncertain in large areas, also because reconstructions were mostly based on isostatic re-

bound models and not on direct field evidences (BROOK et al. 1996; MANGERUD 2004; PELTIER 2004; 

LINGE et al. 2006; PAUS et al. 2006; GOEHRING et al. 2008). 
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The diverse landscape in Norway, high mountain areas with isolated summits in south-central and fjord 

landscapes in southwestern Norway, offers the possibility to explore palaeo-ice thickness conditions 

(GOEHRING et al. 2008). Differently weathered landscapes in high mountain areas are considered as im-

portant components of Pleistocene ice-sheet dynamics and as indicators for ice thickness since decades 

(DAHL 1955; BALLANTYNE 1998; BRINER et al. 2006; MCCARROLL 2016). The contrast is often reflected in 

highly weathered uplands, comprising blockfields or tors, and relatively unweathered or freshly exposed 

glaciated bedrock in lower locations, separated by a trimline (REA et al. 1996; GOODFELLOW 2007; BAL-

LANTYNE 2010). This sometimes well-defined boundary is discussed as a potential indicator of former ice-

sheet thickness (NESJE et al. 1988; LINGE et al. 2006). Palaeo-ice thickness estimates in Norway are ranging 

from minimum models with large ice-free areas within a multi-domed ice-sheet configuration (NESJE et al. 

1988; DAHL et al. 1997; FOLLESTAD 2003), to maximum models suggesting ice cover for most or all sum-

mits, alongside with a thick SIS (MANGERUD 2004; PELTIER 2004). In the interest of more accurate recon-

structions, several concepts are discussed in explaining the appearance of differently weathered mountain 

landscapes, from which the following two are the most frequently used (e.g. STROEVEN et al. 2002). The 

first scenario implies that highly weathered uplands were ice-free (nunataks) during recent glaciation(s), 

where the trimline reflected the upper vertical erosional limit of the former ice sheet (e.g. NESJE and DAHL 

1990; RAE et al. 2004). Secondly, low-erosive cold-based ice is considered to cover and protect landscape 

features, where the trimline mirrored an englacial boundary between warm- and cold-based ice (e.g. 

KLEMAN 1994; STROEVEN et al. 2002). Alongside with a recent paradigm shift towards the latter scenario 

and increasing evidence for a more complex ice sheet during the LGM (RINTERKNECHT et al. 2006; MAN-

GERUD et al. 2010), this requires a critical re-assessment of the role of blockfields and related periglacial 

landforms as palaeoclimatic proxies and previous deglaciation chronologies (e.g. MCCARROLL 2016). 

The wide application of terrestrial cosmogenic nuclides (TCN) in glacial and periglacial geomorphology 

revolutionized deglaciation chronologies (DUNAI 2010). It largely improved the understanding of the timing 

of deglaciation and rates of ice thickness degradation (BRINER et al. 2006; LINGE et al. 2007, NESJE et al. 

2007). The importance of periglacial and related landforms as palaeoclimatic proxies is often overseen de-

spite their potential to provide information on deglaciation and past climate variabilities (BAUMHAUER and 

WINKLER 2014; WINKLER et al. 2016; DENN et al. 2018; MATTHEWS et al. 2018). These landforms appear 

to be valuable proxies for past cold periods, as they are considered to have formed during cold climatic 

conditions and are widespread worldwide (cf. WILSON et al. 2017). However, the formation history and the 

underlying processes shaping these landforms largely remain ambiguous. Beside the utilisation of TCN in 

identifying the exposure or burial age of landforms (FABEL et al. 2002; BRINER et al. 2006; NESJE et al. 

2007), Schmidt-hammer exposure-age dating (SHD) has proved to be appropriate for investigating surface 

exposure ages by constructing a calibration curve from control points of known age, together with exploring 

geomorphic processes of boulder-dominated landforms in the periglacial zone (MATTHEWS and OWEN 

2010; SHAKESBY et al. 2011; WILSON and MATTHEWS 2016). 
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Despite the advances in reconstructing former ice configurations and its implications on landscape evolution 

as well as the long research tradition (e.g. NESJE et al. 1994b; GOEHRING et al. 2008; LONGVA et al. 2009), 

there is little knowledge about palaeo-ice thickness as well as timing and rates of local deglaciation in South 

Norway owing to few terrestrial exposure ages (HUGHES et al. 2016; PATTON et al. 2016). Along with this, 

Holocene climate variability and its impacts on geomorphological activity often remain elusive (MCCAR-

ROLL and NESJE 1993; DAHL et al. 1997; GOEHRING et al. 2008; MATTHEWS and WINKLER 2011). Degla-

ciation reconstructions, particularly in the western part of South Norway mostly rely on interpolations of 

numerical ages from neighbouring areas which require more ground truth data by numerical data at specific 

locations. Recent studies on the deglaciation history in Scandinavia (e.g. HUGHES et al. 2016; STROEVEN et 

al. 2016) did not provide details of complex local deglaciation histories and mechanisms in South Norway.  

In the light of the abovementioned research gaps, this thesis aims to contribute to a better understanding 

of the timing and rates of local deglaciation and the connectivity between Late Quaternary as well as Holo-

cene climate variability and landform evolution, based on TCN and SHD investigations in two selected 

mountain areas in southern Norway. By applying different surface exposure dating methods, it is possible 

to explore the involved geomorphic processes, together with surface exposure ages which would be not 

feasible by applying a single method. Opplendskedalen in the Geirangerfjord together with the prominent 

peak of Dalsnibba is one of the study areas as it is largely unexplored in terms of past climate variability and 

timing of deglaciation, despite few studies carried out in Geiranger (FARETH 1987) and its neighbouring 

fjords (e.g. RYE et al. 1997; BLIKRA et al. 2006). A beneficial effect of this site is the rather small extent of 

current glaciers. Their faster response to climatic variability in this maritime setting allows to detect smaller 

changes at higher resolution which would be not possible at larger glaciers (DAHL et al. 2003). At the second 

study site in eastern South Norway, on the summit of Blåhø, several studies have been carried out dealing 

with palaeo-ice thickness estimations and deglaciation chronologies (NESJE et al. 1994b; GOEHRING et al. 

2008). This enables to validate numerical ages from this study with the previously published chronology and 

to farther develop the existing chronology with new numerical data. The previously published numerical 

ages from GOEHRING et al. (2008) allowed to construct a high-precision calibration curve for SHD, ensur-

ing robust surface exposure ages. In order to provide new insights into the mentioned issues, this thesis 

anticipates to tackle the following four questions:  

1) What were the timing and dynamics of local deglaciation in two selected areas of South Norway 

during and following the Last Glacial Maximum? 

2) How did periglacial and related landforms react to climate variability following the Last Glacial 

Maximum and during the Holocene? 

3) Are periglacial and related landforms potential palaeoclimatic archives which can be explored by 

the application of Schmidt-hammer exposure-age dating in these areas? 

4) Which implications do the findings have on the regional deglaciation history?  
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2 Study Areas 

The research work presented in this thesis focusses on periglacial and related landforms in two high moun-

tain areas in South Norway (Figure 1). Both research areas are stretched along the 62° latitude north, from 

the west Norwegian coast eastwards to the Swedish border. The western study area is located around 

Dalsnibba (1476 m a.s.l.) in Opplendskedalen, next to the town of Geiranger in Møre og Romsdal county 

(62°04’43 N, 7°17’35 E), Breheimen is located south and Reinheimen west of Dalsnibba (see Figure 1). The 

topography of the area is characterized by strong elevation gradients within short distances. Dominant land-

scape features comprise the changes between well-developed glacial valleys and deeply incised fjords as 

results of repeated glaciations during the Quaternary (HOLTEDAHL 1967; KLEMSDAL and SJULSEN 1988; 

BÖHME et al. 2015). The smooth landscape between the valleys at higher altitudes (~1800 – 1500 m a.s.l.) 

are largely characterized by flat or gently undulated surfaces of pre-glacial origin, also called paleic surfaces 

(GJESSING 1967; NESJE and WHILLANS 1994). Moderately weathered, glacially eroded bedrock is wide-

spread at the summit area of Dalsnibba, where a blockfield is absent.  

 

Figure 1: Study areas in southern Norway with the location of Dalsnibba in the west and Blåhø in the east, marked 
with red squares (B) and their location in Norway (A) (modified after LÖFFLER and PAPE 2004). 

The climate in the western study area is characterized by sub-oceanic conditions, implying a mild periglacial 

climate with a mean annual air temperature between 0°C and 2°C (1971 – 2000) and a mean annual precip-

itation between 2000 and 3000 mm yr-1 (http://senorge.no, last access: 24. July 2019). Snow depths of more 

than 5 cm were recorded on 200 – 350 days from 1971 to 2000 (http://senorge.no, last access: 24. July 

2019). No permafrost was detected at Dalsnibba. Geologically, the Geiranger region is part of the Norwe-

gian basement which consists of Proterozoic rocks (SIGMOND et al. 1984). It is part of the so-called Western 

Gneiss Region spanning large areas of South Norway and the bedrock consists mainly of quartz dioritic to 

granitic and is partly migmatitic (TVETEN et al. 1998).  

http://senorge.no/
http://senorge.no/
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There is no detailed deglaciation chronology or palaeo-ice thickness estimation for the western study site, 

but deglaciation most likely reached the Geirangerfjord during the Bølling–Allerød Interstadial (~14.7 – 

12.9 ka, PATTON et al. 2017). During this period glacier dynamics were characterized by several short-term 

standstills in the fjord (LONGVA et al. 2009). Glaciers readvanced in the area during the Younger Dryas 

(YD, ~12.9 – 11.7 cal. ka BP, LOHNE et al. 2013), reflected in the terminal moraines located at the fjord 

mouth (LONGVA et al. 2009). According to FARETH (1987) the maximum glacier extent was reached 10.5 

± 0.2 14C ka BP which subsequently melted rapidly and is expected to have disappeared 500 years later 

(LONGVA et al. 2009). Following the YD, the final deglaciation in the fjords in western South Norway is 

expected to have taken place within 11.2 ± 0.4 and 10.9 ± 0.2 cal. ka BP (cf. NESJE and DAHL 1993, 

calibrated by HUGHES et al. 2016). One of the few palaeo-ice thickness estimations suggested 1200 – 800 

m vertical ice extent in the fjords which turned ice-free during Bølling–Allerød Interstadial (ANDERSEN et 

al. 1995). However, most of the reconstructions are based on rather old 14C ages which can be problematic 

and have been questioned in the past (see DONNER et al. 1996; MANGERUD 2004). 

The second study site is located in east South Norway at the summit and surroundings of Blåhø (1617 m 

a.s.l.) in Ottadalen, close to the town of Vågåmo in Oppland county (61°53’51 N, 9°16’58 E). Blåhø is 

situated between Rondane in the west, Reinheimen in the north-east and Jotunheimen in the south-east. 

Gently undulating surfaces dominate the summit area which has a steep slope towards the east and gentler 

slope angles to the north and south (MARR et al. 2018). West of the summit three lower lying peaks namely 

Rundhø (1556 m a.s.l.), Veslrundhø (1514 m a.s.l.) and Storhøi (1455 m a.s.l.) are located. An autochthonous 

blockfield at the summit of Blåhø extents downslope to a trimline at ~1500 m a.s.l. (NESJE et al. 1994b).  

The climate is dominated by strong continental conditions. This is reflected in the mean annual air temper-

ature of -2° to -1°C and the mean annual precipitation between 750 and 1000 mm yr-1 at the summit 

(http://senorge.no, last access: 24. July 2019) and <500 mm yr-1 in valleys which represents one of the driest 

locations in Norway. A snow depth of >25 cm was recorded at 100 – 200 days (mean) between 1971 and 

2000 at most of the investigated landforms. The sites around Rundhø experienced slightly longer snow 

accumulation of 200 – 350 days (http://senorge.no, last access: 24. July 2019). At the summit more than 5 

cm of snow were measured on 200 – 350 days, in contrast only 100 – 200 days in areas lower than 1000 m 

a.s.l. (1971 – 2000) (http://senorge.no, last access: 24. July 2019). It is assumed that high wind velocities 

limit the snow coverage in the summit area. Permafrost measurements by FARBROT et al. (2011) show mean 

ground temperatures at 5 cm depth of 0.9°C (2008 – 2009) and 1.0°C (2009 – 2010) and 0.7°C (September 

2008 to August 2010) at 10 cm depth. In the latter period, an active layer thickness of 6 to 7 meters was 

recorded by FARBROT et al. (2011). The area around Blåhø is geologically part of the Kvitola Nappe, com-

prised of late Precambrian sedimentary rocks (cf. FARBROT et al. 2011). The quartz-rich Precambrian bed-

rock is present as meta-conglomerate at higher slopes and as meta-sandstone at lower slopes (TVETEN et 

al. 1998). 

Blåhø´s deglaciation history is part of an ongoing discussion which focusses on whether the summit was 

covered by cold-based ice (GOEHRING et al. 2008) or escaped glaciation as a nunatak (NESJE et al. 1994b). 

http://senorge.no/
http://senorge.no/
http://senorge.no/
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The 10Be based deglaciation chronology of Blåhø was presented along a vertical transect by GOEHRING et 

al. (2008) with an erratic boulder from the summit dated to 25.1 ± 1.8 ka (recalculated to 21.8 ± 1.6 ka by 

MARR et al. (2019b)) which was interpreted as the start of deglaciation. They successively sampled six lower 

lying glacially transported boulders between 1481 – 1086 m a.s.l. from which the lowermost sample dates 

to 11.7 ± 1.0 ka. Although the cold-based ice concept is largely accepted by the scientific community (e.g. 

FABEL et al. 2002), there are indications that this concept does not apply to all blockfields (MCCARROLL 

2016) and that the glaciation was more dynamic and complex than previously assumed (e.g. RINTERKNECHT 

et al. 2006). There is evidence of mountain summits (e.g. Skåla) have escaped glaciation in vicinity to Blåhø 

(BROOK et al. 1996) which agrees with the assumption that the LGM ice sheet was multi-domed and rather 

thin (FOLLESTAD 2003; WINGUTH et al. 2005).  
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3 Research Design and Methodology 

In order to get chronological control of the different periglacial and related landforms, Schmidt-hammer 

exposure-age dating (SHD) and terrestrial cosmogenic nuclides (TCN) were applied in this thesis. The re-

search design of this thesis is described in Figure 2. 

 

Figure 2: Research design of this thesis (modified after BARTZ 2018). 

3.1 Schmidt-Hammer Exposure-Age Dating (SHD) 

The Schmidt hammer was originally designed to test concrete hardness in situ (SCHMIDT 1950) but has been 

used in geomorphological research since the 1960s (see GOUDIE 2006). It was mostly utilized to relatively 

date boulder-dominated landforms such as moraines (WINKLER 2005), rock glaciers (HUMLUM 1998) and 

rock avalanches (CLARK and WILSON 2004) and was recently developed towards surface exposure dating 

(e.g. SHAKESBY et al. 2006; MATTHEWS and OWEN 2010). Schmidt hammer measurements reflect the com-

pressive strength of a rock surface which is assumed to decrease with the degree of rock exposure to 

subaerial weathering. This allows comparisons between relative surface weathering of boulders, provided 

that the factor lithology is uniform (ČERNÁ and ENGEL 2011; MATTHEWS et al. 2013). The rebound (R-) 

values generated by the Schmidt hammer mirror the rebound velocity of the plunger which was released on 
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the rock surface (WINKLER and MATTHEWS 2014). Higher R-values are anticipated from freshly exposed 

rock surfaces. In turn, low R-values are expected from rock surfaces which experienced long subaerial ex-

posure (MATTHEWS et al. 2013). SHD can estimate surface exposure ages of boulder-related periglacial 

landforms and permits to explore the dynamics and processes in their formation and stabilization utilizing 

control points of known age to construct a calibration curve (SHAKESBY et al. 2011; MATTHEWS et al. 2014; 

WILSON and MATTHEWS 2016). This technique was successfully applied in numerous studies on various 

boulder-dominated landforms in Norway (MATTHEWS et al. 2013; WILSON et al. 2017), United Kingdom 

(TOMKINS et al. 2016; WILSON and MATTHEWS 2016) and New Zealand (WINKLER 2014). The ages ob-

tained from Schmidt hammer surveys are largely in accordance with findings by radiocarbon dating (e.g. 

NESJE et al. 1994a), lichenometry (e.g. MATTHEWS and SHAKESBY 1984), optically stimulated luminescence 

(e.g. STAHL et al. 2013) and TCN (e.g. TOMKINS et al. 2018; WILSON et al. 2019). 

3.1.1 Sampling Strategy and Analyses 

Schmidt hammer measurements were obtained from boulder or bedrock surfaces from different boulder-

dominated periglacial and related landforms such as blockfields, rock-slope failures and sorted polygons. 

From each control point and landform at least 100 and up to 450 boulders and/or bedrock surfaces were 

measured, each with two impacts per sampled surface. Sampling near rock cracks or edges, structural weak-

nesses, at lithological unstable areas or on mosses or lichens were avoided (e.g. SHAKESBY et al. 2011). The 

rock surfaces were not prepared prior the measurements. Throughout the SHD studies only stable, near-

horizontal boulders with a larger diameter than 30 cm were measured to insure that measurements from 

one landform can be treated as a homogenous sample. The influence of potential sources of error on the 

results other than surface exposure to weathering processes, including microclimatic variability, lithological 

heterogeneities and post-depositional disturbance have been limited by the relatively large sample sizes (see 

WINKLER 2005, 2009). A similar sampling design was used by WILSON and MATTHEWS (2016) which as-

sures the reliability of the approach and adequate samples sizes (SHAKESBY et al. 2006; NIEDZIELSKI et al. 

2009). In sum, in both studies (MARR et al. 2018, 2019a) 3700 boulders with 7400 impacts of 13 periglacial 

and related landforms were measured. 

The results ran through standard statistical treatment such as the calculation of the standard mean, standard 

error of the mean (SEM), 95% confidence interval, kurtosis, skewness and the Shapiro-Wilk test for nor-

mality. In order to determine the statistical significance between pair of sites the Mann-Whitney test was 

applied (MARR et al. 2018, 2019a). Landforms with overlapping 95% confidence intervals (α = 0.05) were 

treated as the same population and therefore of the same age (SHAKESBY et al. 2006). Histograms were 

created to visualize R-value distributions which can be associated with depositional boulder disturbances, 

incorporation of anomalously old boulders or complex formation histories (MCCARROLL and NESJE 1993; 

WILSON and MATTHEWS 2016). As the studied landforms did not show signs of post-depositional disturb-

ance, the SHD ages were interpreted as maximum ages for boulder stabilization and the landform becoming 

inactive. Beneath all studied landforms older boulders were present, consequently, the SHD ages were 

treated as minimum ages of landform initiation (WILSON and MATTHEWS 2016). 
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3.1.2 Age Calibration 

Age estimations by SHD require a calibration curve, constructed by independently numerically dated control 

points (SHAKESBY et al. 2006; MATTHEWS et al. 2013). Subsequently, it was possible to relate R-values of 

previously undated surfaces to surface exposure ages (STAHL et al. 2013). Based on young and old control 

points, separate calibration equations for the eastern and western part of South Norway have been calculated 

(for details see MARR et al. 2018, 2019a), from which calibration curves with a standard linear regression 

have been derived (MATTHEWS and OWEN 2010). The accuracy of the age estimates derived by the calibra-

tion curves are largely dependent on the reliability of the control sites (MATTHEWS and OWEN 2010; WIN-

KLER 2014). The estimation of the uncertainties for the SHD ages of the sampling and the control sites 

were determined by the calculation of the 95% confidence interval (WINKLER 2009). The young control 

point for the high-precision calibration equation at Blåhø was established from a construction site where 

boulders were ‘freshly’ exposed to the surface. The old control points were derived from previously 10Be 

dated bedrock outcrops at Blåhø by GOEHRING et al. (2008). In order to test the assumption of linear 

weathering relationship beyond the Holocene towards the Late Glacial (MATTHEWS and WILSON 2015; 

WINKLER and LAMBIEL 2018) two old control sites have been investigated with ages of 11.4 ± 1.0 ka and 

15.0 ± 1.1 ka dated by GOEHRING et al. (2008). In the western study area it was not possible to derive a 

high-precision calibration equation due to the lack of previously numerically dated rock surfaces suitable for 

an old control point. Therefore, already existing data from a locality about 50 km north-east of the western 

study site were utilized (MATTHEWS et al. 2016) due to its lithological similarity to the migmatitic gneiss at 

Dalsnibba. Following WINKLER and MATTHEWS (2014), these R-values were converted as the mechanical 

Schmidt hammer was used in the study by MATTHEWS et al. (2016). Two young control points were derived 

from a location next to a construction site at Dalsnibba where ‘fresh’ boulders were exposed to the surface. 

The consequences of the application of a local high-precision in the east and a regional calibration curve in 

the west are discussed in chapter 4.3.  

Following previously published SHD calibration curves, a linear relationship between R-values and age 

among the young and old control points have been assumed (WINKLER et al. 2016; WILSON et al. 2017). 

The linear relationship was mostly stressed within the Holocene, sometimes even beyond (SÁNCHEZ et al. 

2009; MATTHEWS and WINKLER 2011; TOMKINS et al. 2016). This is sustained by the notion that resistant 

bedrock (e.g. hard crystalline) types in periglacial environments tend to have slow and practically linear 

weathering rates throughout the Holocene (COLMAN 1981; NICHOLSON 2008). 

3.2 Terrestrial Cosmogenic Nuclides (TCN) 

The build-up of cosmogenic nuclides, such as 10Be or 26Al by secondary cosmic rays, has been applied for 

surface exposure age dating in order to assess the duration of surface exposure near or at the earth´s surface 

(BALCO et al. 2008). The application of TCN in glacial environments to constrain the timing and dynamics 

of deglaciation relies on multiple assumptions. It is necessary that the samples were uniformly exposed to 

the surface throughout a single period only. Therefore, any inherited cosmogenic nuclide concentration 

accumulated prior the last deglaciation is assumed to have been removed by erosional processes (FABEL et 
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al. 2002; BRINER et al. 2006). Consequently, the amount of cosmogenic nuclides in a sample exemplifies the 

past erosive capacity of ice sheets. As the erosive capability of ice sheets is strongly related to the basal ice 

temperature, it is possible to distinguish between cold- and warm-based ice (low- and high-erosive) reflecting 

englacial boundaries, or can help to evaluate past ice-thickness of warm-based glaciers (KLEMAN 1994; 

HARBOR et al. 2006). Furthermore, the sample should not have been influenced by burial, erosion or snow 

shielding (STROEVEN et al. 2002; BRINER et al. 2006). In this thesis exposure ages were obtained from a 

single nuclide (10Be) which were interpreted as minimum ages (DUNAI 2010). Details on laboratory proce-

dures and protocols used are given in MARR et al. (2019b). 

3.2.1 Research Design and Age Calculation 

The aim at the western study site was to establish the first local deglaciation chronology and to gain infor-

mation on the erosional and thermal properties of the palaeo-ice sheet. By sampling both bedrock and a 

glacially transported boulder lying on top of glacially modified bedrock, it is potentially possible to obtain 

these information (FABEL et al. 2002; HEYMANN et al. 2011). Therefore, four bedrock sites and one glacially 

transported boulder have been sampled. The bedrock samples were obtained from glacially eroded bedrock 

surfaces from four different elevations between 1476 m a.s.l. to 1334 m a.s.l. (for details see MARR et al. 

2019b). The original plan to sample a vertical transect from the summit to the valley bottom of the proximal 

Opplendskedalen down to ~1050 m a.s.l. had to be omitted due to limited accessibility or unsuitable site 

conditions. The glacially transported boulder showed similar lithological properties present on Dalsnibba, 

seated on a glacially eroded bedrock surface in the summit area. The samples from Blåhø add two new 

exposure ages to the existing deglaciation chronology from GOEHRING et al. (2008). One sample was ob-

tained from a bedrock outcrop from the summit of Blåhø, in proximity one erratic boulder sitting on the 

blockfield was sampled. Generally, with this limited dataset conclusive statements about the deglaciation 

history at Blåhø and identifying potential outliers as well as geological bias were not feasible (STROEVEN et 

al. 2016). However, the ages provide valuable new insights into the erosive capacity of the ice sheet and help 

to validate numerical ages from the previous deglaciation chronology (GOEHRING et al. 2008). 

Age calculations were carried out with the online exposure age calculator version 3, formerly known as the 

CRONUS-Earth online exposure age calculator (BALCO et al. 2008; BALCO 2017, http://hess.ess.washing-

ton.edu/). The ages further discussed below were calculated with an assumed erosion of 1 mm ka-1 and 

without shielding by snow, vegetation or sediment. Post-glacial glacio-isostatic rebound was considered in 

the calculation with an uplift of 30 m for Dalsnibba and 100 m for Blåhø (for details see MARR et al. 2019b). 
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4 Results and Discussion  

The main results of this thesis are presented together with the research context of the publications. Linking 

the findings from MARR et al. (2018, 2019a, 2019b) allows to reconstruct the (de)glaciation history on 

Dalsnibba and Blåhø following the LGM as well as to establish deglaciation scenarios on the basis of expo-

sure ages and morphodynamic implications of periglacial and related landforms. Applying consistent meth-

odology in both study areas ensures comparable results and opens the possibility to integrate them in a 

wider context. 

4.1 Dalsnibba 

The surfaces exposure ages offer the opportunity to construct the first deglaciation chronology of Op-

plendskedalen and the summit of Dalsnibba. The anomalously old boulder age (16.5 ± 0.6 ka) in relation to 

previous estimates of the timing deglaciation (NESJE and DAHL 1993) and the bedrock ages from compa-

rable altitudinal setting (13.3 ± 0.6 to 12.7 ± 0.5 ka) have led to the assumption that the boulder shows 

cosmogenic nuclide inheritance. Consequently, the boulder age did not reflect the timing of deglaciation. 

The bedrock samples did not show inheritance, implying that glacial erosion was sufficient to remove pre-

viously accumulated nuclides. High-erosive warm-based ice was most likely responsible for the removal of 

previously accumulated cosmogenic nuclides in bedrock, which agrees with earlier findings (e.g. AARSETH 

et al. 1997). The presence of warm-based ice and a palaeo-ice thickness of at least 1476 m a.s.l. at Dalsnibba 

during the LGM is supported by the deposition of the sampled boulder in the summit area. Accumulation 

of the inherited cosmogenic nuclides in the boulder could have occurred during transport or by accumula-

tion of deep 10Be production by muons (BRINER et al. 2016). However, this is most likely not applicable for 

these samples as higher elevations sites were not prone to this as neutron produced 10Be production rapidly 

increases with altitude (BRINER et al. 2016). By increasingly slower retreat rates of the SIS (14 – 12 ka, 

HUGHES et al. 2016) parts of the boulder might already have been exposed to cosmic radiation, whereas the 

deposition together with the subsequent ice disappearance at the summit took until 13.3 ± 0.6 to 12.7 ± 0.5 

ka. These results represent the first minimum palaeo-ice thickness estimation based on terrestrial numerical 

evidence in this area. They oppose the concept that the ice cover in coastal areas was relatively thin, with 

possible ice-free high coastal areas (NESJE et al. 1987; MANGERUD 2004; WINGUTH et al. 2005). 

Furthermore, it is possible to narrow down the potential time window of the timing of deglaciation. Ac-

cording to the uppermost bedrock ages the deglaciation started between 13.3 ± 0.6 to 12.7 ± 0.5 ka. 

Dalsnibba became ice-free during the end of Bølling–Allerød Interstadial (14.7 – 12.9 ka) which corresponds 

with the estimated deglaciation timing at Storfjord (LONGVA et al. 2009) and the modelled deglaciation by 

HUGHES et al. (2016). On the basis of the overlap between the bedrock ages and the Greenland Interstadial 

1a (13.3 – 12.9 ka, RASMUSSEN et al. 2014), it is suggested that the timing of deglaciation most likely occurred 

during the latter. Moraines in Sweden suggested a comparable timing of deglaciation (STROEVEN et al. 2016) 

and the timing of glacier retreat at Dalsnibba is also overlapping with the latest of the three ice margin 

fluctuations between 25 and 12 10Be ka (RINTERKNECHT et al. 2004, 2005, 2006). In the light of this, a rather 

late ice-free situation on Dalsnibba is suggested within the range of the bedrock ages. Another implication 
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derived by the surface exposure ages is that the summit was most likely ice-free during the YD which is 

supported by ice-free conditions in nearby mountain plateaus of Dovrefjell (cf. MANGERUD 2004). 

The bedrock results towards the valley bottom inferred that ice persisted at about 1330 m a.s.l. until 10.3 ± 

0.5 ka. It was during this time when final local deglaciation was suggested for the region 11.2 ± 0.4 and 10.9 

± 0.2 cal. ka BP (cf. NESJE and DAHL 1993, calibration from HUGHES et al. 2016). Consequently, it is likely 

that the ice cover at Dalsnibba persisted longer than previously assumed and also longer than in the neigh-

bouring Reinheimen region (11 ± 0.2 ka, ANDERSEN et al. 2018a), except for the possibility that the final 

deglaciation stage included a sudden ice collapse (MARR et al. 2019b). A longer ice cover might be explained 

by the persistence of a local ice-cap or a glacier readvance during the YD. In order to comprehensively 

assess the rate of deglaciation, the evaluation of the surface exposure ages by SHD can be helpful in places 

where TCN samples could not be obtained. The SHD age from the valley bottom sheds light into the largely 

unknown timing of final deglaciation in the Scandinavian mountains (cf. HUGHES et al. 2016). The final 

deglaciation is thought to have been completed by ~9 ka (LUNDQVIST and MEJDAHL 1995; NESJE et al. 

2004; HARBOR et al. 2006) or slightly earlier (FABEL et al. 2006), the SHD age of 7.47 ± 0.73 ka indicates a 

longer residual ice body at the valley bottom. This suggests a thinning rate of ~7.3 cm yr-1, LINGE et al. 

(2007) calculated comparable a rate for an inland location. The origin of the ice body persisting in the valley 

bottom remains elusive, possibly remnants of the YD readvance survived the following climate amelioration 

and covered the area through the short climate deterioration known as the ‘Finse Event’ (~8.4 – 8.0 cal. ka 

BP, NESJE and DAHL 2001). As the ‘Finse Event’ overlaps with the valley bottom surface exposure age, it 

is proposed that Opplendskedalen became ice-free following the ‘Finse Event’. This timing seems plausible 

compared to largely retreating glaciers in Norway and Scandinavia (NESJE 2009; SOLOMINA et al. 2015).  

Furthermore, SHD ages and R-value characteristics have the capability to explore the climate variations and 

periglacial processes during the mid-/late-Holocene at the valley bottom and its surroundings. Most of the 

studied boulder-related periglacial and related landforms have been stabilized within the Holocene Thermal 

Maximum (HTM, ~8.0 – 5.0 ka, CLARK et al. 2009), shortly after the deglaciation of Opplendskedalen. The 

investigated rock-slope failures mostly stabilized during the HTM which is supported by BÖHME et al. 

(2015) and HERMANNS et al. (2017). Climatically induced factors, such as increased cleftwater pressure, 

permafrost degradation and enhanced freeze-thaw activity, caused by increasing temperatures and precipi-

tation pattern changes, are considered amongst others, as important triggering mechanisms (e.g. BLIKRA et 

al. 2006; MCCOLL 2012; BALLANTYNE et al. 2013). Most likely, RSFs were related to the interplay of long-

term stress release and triggering factors linked to warming climate or subsequent, slow permafrost degra-

dation (MARR et al. 2019a). RSFs occurrences during warm periods were supported by findings from MAT-

THEWS et al. (2018) from nearby Jotunheimen. This opposes the concept that RSFs occur shortly after local 

deglaciation (BALLANTYNE et al. 2014). The interpretation that causes of RSFs were climatically controlled 

has been strengthened by the conceptual rock-slope failure model developed by MATTHEWS et al. (2018). 

However, one RSF was recorded which most likely did not occur during a warm phase, implying delayed 

response to prolonged paraglacial stress release throughout the Holocene by climate variability (MARR et al. 
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2019a). However, single factors triggering RSFs cannot be identified because they can act in various com-

binations along different time scales where cause and effect can hardly be distinguished (cf. MARR et al. 

2018).  

The geomorphological dynamics of the different landforms can be explored by the characterization and 

distribution of R-values. The non-uniform boulder populations observed at some of the investigated land-

forms suggest that those share complex diachronous formation histories (MARR et al. 2018, 2019a). This 

was reflected in the broad confidence intervals and platykurtic distribution of the R-vales indicating reacti-

vation or reworking of already existing landforms or the continuing supply of debris after the initial event, 

e.g. at RSFs (see MARR et al. 2019a). Boulder-dominated periglacial landforms are expected to increase in 

dynamism during cooler climatic conditions (e.g. BALLANTYNE and HARRIS 1994; WILSON et al. 2017) and 

landforms can be reactivated as old, pre-weathered boulders were transported to the surface by frost heave 

or other processes, leading to negative skewness. Therefore, the mixed age of the pronival rampart can be 

interpreted as a continuous build-up of the landform most likely since the beginning of the Holocene (MARR 

et al. 2019a). In contrast to this, a rather uniform boulder population, e.g. RSF-II second fan, suggested that 

they formed during a single event. Due to the high amount of high R-values within the population of RSF-

II first fan, it is inferred that fan was still fed by rockwall above and that landform formation is still active 

even though the landform appears inactive (MARR et al. 2019a).  

4.2 Blåhø  

According to the TCN results from MARR et al. (2019b) and the previously published deglaciation chronol-

ogy from GOEHRING et al. (2008), generally two scenarios for the (de)glaciation history for Blåhø are con-

ceivable: 

1) The boulder age of 20.9 ± 0.8 ka represents the timing of deglaciation and is broadly in agreement with 

the recalculated boulder age sampled by GOEHRING et al. (2008) of 21.8 ± 1.6 ka (MARR et al. 2019b). This 

appears plausible as ice retreat was suggested after the peak of global ice volume during the LGM between 

23 – 21 ka (CLARK et al. 2009). Glacier retreat on Blåhø could be a response to the observed warming at 

GISP 2 between ~24 – 21 ka (cf. GOEHRING et al. 2008). In this scenario, the bedrock age of 46.4 ± 1.7 ka 

indicates that the summit experienced negligible erosion during the last glaciation. A possible explanation is 

the coverage by low-erosive cold-based ice protecting the bedrock from glacial erosion which can also ex-

plain the inherited cosmogenic nuclide inventory. This scenario is the most favoured option for Blåhø and 

surroundings for some authors (KLEMAN and HÄTTESTRAND 1999; BOULTON et al. 2001; GOEHRING et 

al. 2008). Taking into account the ~21 ka of exposure since deglaciation, the bedrock sample is supposed 

to have been exposed for a cumulative time of ~25 ka prior deglaciation. Depending on the glaciation 

history model, it seems possible that the blockfield was exposed since the early Weichselian or the Eem 

Interglacial according to the time scale from MANGERUD (2004).  

However, there are indications that this scenario might have to be partly reconsidered. The melting of cold-

based ice covering the blockfield would have left geomorphological traces, e.g. meltwater channels cutting 
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through the blockfield (SOLLID and SØRBEL 1994) which cannot be observed at Blåhø. Additionally, inter-

preting the trimline as an englacial boundary is not unproblematic as thermal boundaries might be unstable 

and change frequently, unable to produce a well-defined trimline (NESJE et al. 1987). NESJE and DAHL 

(1990) point out that the boundary between warm- and cold-based ice are commonly not parallel to the ice 

surface. Also TCN ages from glacially transported boulders are not unproblematic, age estimations might 

be erroneous because of post-depositional disturbance or shielding by sediment, following upward migra-

tion and surface exposure by upheave (BRINER et al. 2006; HEYMANN et al. 2011). Interestingly, the timing 

of blockfield stabilization underneath the sampled boulder is determined at ~18 ka, close the inferred time 

of boulder deposition. This could be either explained by rapid thinning of the ice-sheet on Blåhø with both 

features becoming exposed to the surface at ~4 – 2 ka apart from each other or the prevailing periglacial 

(and ice-free) environment with permafrost conditions together with frost-heave processes which have led 

to the upheave and subsequent boulder deposition. Shortly after this, the blockfield formation has ceased 

as climate conditions became warmer and the blockfield surface stabilized. In this case the boulder would 

not reflect the timing of deglaciation but the timing of exhumation. Additionally, it can be ruled out that 

initial blockfield formation occurred following the deglaciation in scenario 1 because the timing of formation 

with 4 – 2 ka is not sufficient (e.g. BALLANTYNE 2010). Due to the blockfield´s old appearance, subsurface 

structure (MARR and LÖFFLER 2017), the negative skewness of R-values as well as indications that block-

fields probably can date back to the Tertiary (REA et al. 1996), it is suggested that the initial formation began 

prior the LGM.  

2) Assuming that the bedrock nuclide concentration did not involve inherited cosmogenic nuclides, the 

summit of Blåhø was probably a nunatak during the LGM. The bedrock age corresponds with the Green-

land Interstadial 12 (RASMUSSEN et al. 2014) supporting the possibility that the summit became ice-free 

during this time and escaped ice-cover since then. Additionally, WOHLFAHRT (2010) suggest that the SIS 

had completely melted away during the early part of MIS 3 (60 – 45 ka) which alternates with the 

Bø/Austnes Interstadial (MANGERUD et al. 2010) during which parts of Sweden were ice-free 

(WOHLFAHRT 2010). Prolonged ice-free conditions on Blåhø appear to have been possible in the light of 

the suggested ice-free conditions at nearby Skåla (BROOK et al. 1996), model results indicating ice-free lo-

cations during the LGM (WINGUTH et al. 2005) and the unclear Early/Middle Weichselian glaciation history 

of Norway (MANGERUD 2004). Recent findings from STEER et al. (2012) and ANDERSEN et al. (2018b) 

have inferred that high-elevation low-relief areas in south-central Norway significantly contributed to ero-

sion and were consequently not covered by cold-based low-erosive ice. A nunatak situation is also feasible 

when considering ice-flow dynamics. Within the first stage the rather thick ice sheet, covered the Norwegian 

Channel, and transported erratics to Denmark. Subsequently, ice streams developed from the shelf edge 

upstream, causing major ice thinning further inland (MANGERUD 2004). However, due to the limited sample 

size on Blåhø no conclusive statement about its glaciation history can be made. 

SHD ages and R-value characteristics of the different landforms reveal information about climate variations 

following the LGM. In general, the investigated landforms appear have been inactive with platykurtic R-
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value distributions and broad confidence intervals indicating complex, long-term formation histories. In the 

wake of a cold climate event, it has been suggested that boulder-related landforms were (re)activated as they 

are largely associated with permafrost, often occurring following the local deglaciation (BALLANTYNE and 

HARRIS 1994; LILLEØREN et al. 2012). The stabilization periglacial landforms located above 1450 m a.s.l. 

could be correlated for the first time with the Karmøy/Bremanger readvance (∼18.5 – 16.5 ka) which has 

been observed in both western and southern Norway (WINGUTH et al. 2005; OLSEN and BERGSTRØM 

2007) and has also been detected in an ice advance into the North Sea from the British Ice Sheet (cf. 

HUGHES et al. 2016). Additionally, this cold stage overlaps with Heinrich event I at ∼16.8 cal. ka BP (HEM-

MING 2004). Hence, it is striking that the periglacial landforms above 1450 m a.s.l. appear to not have been 

reactivated by several cold climatic events during the Late Glacial and Holocene. These cold climate events 

comprise the YD, the ‘Erdalen Event’ (10.1 – 9.7 cal. ka BP), the ‘Finse Event’, the Neoglacial (starting at 

~6 ka) and the ‘Little Ice Age’ just to mention a few (SEJRUP et al. 2000; MATTHEWS and DRESSER 2008; 

Nesje 2009). Possibly, the non-reactivation was linked to the structural strength of the landforms, insuffi-

cient moisture supply, changes in freeze-thaw conditions and decreasing frost susceptibility of deformable 

sediment in the inner part of sorted polygons, resulting in the cessation of frost sorting (WINKLER et al. 

2016; MARR et al. 2018). Important indications for the magnitude of the YD in the area can be derived from 

the obtained exposure ages. With the deglaciation ages from GOEHRING et al. (2008) and the landform 

dynamics by MARR et al. (2018, 2019b) it becomes evident that the summit area has escaped the YD read-

vance which is supported by MANGERUD (2004). Despite the formation of YD moraines close to Blåhø at 

Lesjakog (FOLLESTAD 2007), the summit area escaped re-glaciation. Concerning the palaeo-ice thickness, a 

rather thin SIS is expected, either due to cold-based ice coverage or the ice-free location on Blåhø and the 

topographical dependent glaciers in the surrounding valleys.  

The Rundhø blockfield, along with the blockstream, stabilized earlier, during the Tampen readvance ∼22 – 

19 ka (SEJRUP et al. 2009). The stabilization of the sorted polygons at the foot of Rundhø occurred most 

likely at the beginning of the Karmøy/Bremanger readvance. Both landform stabilizations have been asso-

ciated with decreasing temperatures and declining moisture supply leading to the termination of frost sorting 

and heaving processes (cf. MARR et al. 2018). These findings are in contrast to the deglaciation chronology 

by GOEHRING et al. (2008) as they have suggested cold-based ice coverage and slow thinning down to ∼1450 m a.s.l. at 15.0 ± 1.0 10Be ka. Based on the results from MARR et al. (2018) a severe periglacial climate 

without ice coverage since about 19 ka at Rundhø was indicated. Age and characteristics of the RSFs studied 

around Blåhø have implied that they occurred during warm phases during the Late Glacial and the Holocene 

(MCCOLL 2012, see chapter 4.4) and not shortly after deglaciation (CRUDEN and HU 1993). For instance, 

RSF II appeared to have occurred towards the end of the Bølling–Allerød Interstadial, which is accordance 

with the Greenland Interstadial 1a (13.3 – 12.9 ka) (RASMUSSEN et al. 2014) and overlaps with the deglaci-

ation of Dalsnibba.  
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4.3 Methodological Implications 

Connecting the findings from several articles with similar research design offers the possibility to reflect 

methodological aspects related to the application of different surface exposure dating techniques. The com-

parison of the results from SHD applied in this thesis with similar studies shows that the obtained numerical 

ages are plausible and reliable (e.g. MATTHEWS and OWEN 2010; SHAKESBY et al. 2011; WINKLER et al. 

2016). Due to similar SHD sampling strategy (e.g. two impacts per boulder) it is possible to compare cali-

bration curves (Table 1, Figure 3) and results. The most important difference lies between the local high-

precision calibration-curve in the eastern and a rather regional calibration curve in the western study area. 

Problematic about the latter approach was that the old control point had to be derived from a non-local 

source and can therefore not account for lithological differences present at the initial study site (cf. MARR 

et al. 2019a). Therefore, it is expected that the age accuracy of the landforms in the western study area was 

weakened. However, exploring the uncertainties involved in the SHD studies shows that the landforms in 

the west have a mean total uncertainty of 0.64 ka, the eastern landforms of 0.92 ka. This difference can most 

likely be explained by the landform ages itself. The landforms from the west were of mid-/late-Holocene 

age and generally exhibited lower R-value uncertainties, because lithological inhomogeneities usually be-

come more pronounced with time, as evident in the landforms from the east (see MATTHEWS et al. 2013). 

There, the landforms have higher standard deviations and confidence intervals. Significant difference of the 

estimated landform ages based on the different calibration curve calculations cannot be observed. The age 

error seems to be negligible in comparison with statistical and other inaccuracies involving SHD as also 

shown by MATTHEWS et al. (2014). Further, it was shown in a previous study that the application of a non-

local old control point can be successful (MATTHEWS et al. 2014) and the control point measurements from 

WILSON et al. (2017) from the similar lithology show comparable results.  

Table 1: Schmidt hammer R-values and statistics for the control sites from the western (MARR et al. 2019a) and eastern 

(MARR et al. 2018) study area. Mean R-values are obtained from the means of two impacts on each boulder, 95% 

confidence intervals were calculated from the number (n) of sampled boulders. 

Control point Age (in yr)a R-value σ 95% CIb Kurtosis Skewness Boulders (n) 

Young (west) 3 70.3 5.22 0.51 -0.37 -0.38 200 

Young (east) 1 68.3 4.62 0.45 -0.45 0.52 200 

Old (west) 11500 40.3 - 2.4    

Old (east)c 11400 49.7 9.84 0.97 -0.81 -0.15 200 

a Age and R-value from MATTHEWS et al. (2016), the used R-value for the calibration curve was 50.3. 

b Mean of R-values with 95% confidence intervals (α = 0.05). 
c This is the old control point used in calculating the landform ages at (MARR et al. 2018). 

 

For the purpose of improving accuracy, two young control points instead of one were used which were later 

amalgamated to one control point (MARR et al. 2019a). However, this does not necessarily improve the 

https://www.linguee.de/englisch-deutsch/uebersetzung/inhomogeneities.html
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reliability of the control point compared to the results of MARR et al. (2018). It seems that the amount of 

boulders measured for the control points are the key for an accurate determination of a young control point 

and not the amount of control points. In general, there are only minor differences between the young con-

trol points of both studies (Table 1). This shows that both approaches are adequate to produce statistically 

profound data. Unfortunately, due to the inaccessibility of the raw data from the old control point from 

MATTHEWS et al. (2016), it was not possible to compare the uncertainties between the old control points. 

To increase the number of old control points, with each point representing different age, could be a possible 

improvement for generating exposure ages with lower uncertainties. Especially, as the application of SHD 

beyond the Holocene requires reliable old control points as the linearity of calibration curves can decrease 

with time (SHAKESBY et al. 2011; MARR et al. 2018). 

Both calibration curves are shown in Figure 3. The young and old control points from both study areas 

show comparable values with only minor differences (Table 1, Figure 3). This implies that both lithologies 

have comparable rock strength properties when being ‘freshly’ exposed and also when being aerially exposed 

for about 11 ka. The similarities between the young and old control points opens the possibility for testing 

whether a single control point for both, weathered and unweathered surfaces, could be used as ‘regional’ 

control points in a larger areas of similar lithological properties. It is interesting that despite the distance and 

the lithological variability between the two locations, only minor differences can be observed. 

 

Figure 3: Calibration curves with old and young control points from the western and eastern study area.  

Despite the successful application of the Schmidt hammer in this research its usage is not without obstacles. 

The SHD age from a moraine in the western study area showed that ages need to be assessed together with 

geomorphological evidences (MARR et al. 2019a). Ensuring this, problematic SHD ages can be identified 

and reconsidered. By integrating these aspects into the interpretation it became clear that the obtained mo-

raine age did not reflect the true landform age, but was an overestimation. This was related to the reworking 

and reactivation of the landform leading to the exposure of older boulders to the surface. This shows the 
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importance of geomorphological analysis in order to avoid potential misinterpretations by simply relying on 

numerical surface exposure ages from e.g. TCN (WINKLER 2018).  

Cosmogenic nuclides have shown to be a valuable tool to explore the deglaciation dynamics, even though 

a larger sample size would be have been desirable. However, as mentioned above, a straightforward inter-

pretation of the numerical ages without taking into account geomorphological factors can result in misin-

terpretations (WINKLER 2018). The 10Be boulder age from Dalsnibba might be interpreted as the timing of 

deglaciation, but when considering the sampling location and the ages of the bedrock samples in proximity, 

it became clear that the boulder showed cosmogenic nuclide inheritance. Therefore, the bedrock ages from 

the summit were used to estimate the timing of deglaciation. Constructing the deglaciation chronology with 

the available samples was challenging as not all parts of the mountain could be sampled to generate a valu-

able vertical transect with TCN. Hence, SHD ages were partly able to fill this gap which made it possible to 

construct the deglaciation chronology. 

4.4 Implications for the Deglaciation History of Southern Norway 

This thesis contributes new aspects to the ongoing discussion about of the deglaciation in South Norway. 

Exploring the obtained deglaciation chronologies in a regional context, especially in the light of recent de-

glaciation ages from Reinheimen (ANDERSEN et al. 2018a), located between the study areas, might reveal 

new insights into regional deglaciation dynamics. Based on the timing of deglaciation from Dalsnibba with 

13.3 ± 0.6 – 12.7 ± 0.5 ka, it appears that the deglaciation in the western part in South Norway has started 

earlier compared to the assumed timing of deglaciation in Reinheimen at 11 ± 0.2 ka (ANDERSEN et al. 

2018a). Accepting that the boulder age from Blåhø represents the timing of deglaciation (20.9 ± 0.8 ka), the 

comparison with Reinheimen reveals a divergence of the timing of deglaciation of about 10 ka, even though 

both areas are at comparable altitudes and only ~30 km apart. The deglaciation at Dalsnibba and Reinhei-

men have occurred rather late. HUGHES et al. (2016) pointed out that the LGM SIS lost half of its size 

already at the beginning of the Bølling–Allerød Interstadial. This underpins the asynchronous timing of 

deglaciation in Norway (e.g. STROEVEN et al. 2016). The differences in 10Be ages further point to variable 

basal ice temperatures over a short distance in South Norway. Whereas the ice in the western study area was 

erosive and warm-based, it appears that the basal temperature properties changed to partly cold-based to-

wards the east as suggested by the results from ANDERSEN et al. (2018a) in Reinheimen. However, they 

detected only a few bedrock ages showing inheritance.  

Because of the proximity to areas investigated by ice-thickness models, it seems valuable to assess the ap-

plicability of existing ice-thickness models for Dalsnibba. The ice-thickness model (11 – 10 km resolution) 

brought forward by WINGUTH et al. (2005) for the area of Skåla (~25 km from Dalsnibba) shows an ice 

thickness of 1100 m a.s.l. at 12.7 ka. Around this time the summit of Dalsnibba was probably already recently 

ice-free and the vertical ice extent was ~350 m bigger than on Skåla during this time. Accepting the second 

Blåhø scenario (chapter 4.2) with ice-free conditions since about 46 ka, most of the models would overes-

timate ice-thickness in the south-central Norway during the LGM (e.g. PELTIER 2004). Blåhø would stand 

in line with Skåla, being one of the few nunataks in this area of Norway which could have wide-ranging 
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ramifications for the glaciation history of Scandinavia. However, this scenario has to be tested in more detail 

in the future.  

With the TCN and SHD ages from Dalsnibba, it is now possible to draw a clearer picture of palaeoclimatic 

conditions from deglaciation into the mid-Holocene (Figure 4). Summarizing the above-mentioned results 

and implications, the deglaciation of Dalsnibba took about 5500 years. It started between 13.3 ± 0.6 and 

12.7 ± 0.5 ka at the summit and terminated with the valley bottom, becoming ice-free shortly after the ‘Finse 

event’ around 7.47 ± 0.73 ka. Figure 4 shows both the aspects which could be answered in this thesis and 

which aspects remain elusive. The major problem of integrating the findings of this thesis to the regional 

context towards the west are the lack of numerical ages. The deglaciation ages were obtained from the few 

numerical age constraints from older studies which were based on radiocarbon dating, implying ice-free 

conditions at 13.5 ± 0.1 ka (REITE 1968, Figure 4, green star 2, calibrated by HUGHES et al. 2016) and 

deglaciation at 13.8 ± 0.2 ka (HENNINGSEN and HOVDEN 1984, Figure 4, green star 3, calibrated by 

HUGHES et al. 2016). Therefore, the deglaciation history of large parts of the area from Dalsnibba towards 

the sea still remain unclear.  

 

Figure 4: Topographic model with an west-east profile in western South Norway showing generalized the mountain 
summits and landform assemblages and the palaeo-ice thickness from the LGM to the early Holocene. The palaeo-ice 
thickness profile is indicated by the dashed blue line for time slices related to the 10Be ages obtained from Dalsnibba. 
The location of numerical ages in the area are displayed by green stars, explanations in the text (modified after Gump 
et al. (2017)). 

Maritime glaciers have been characterized by a higher mass-turnover than continental glaciers and are there-

fore anticipated to react faster to climatic changes (WINKLER et al. 2010; PAUL et al. 2011; STROEVEN et al. 

2016). This behaviour is also expected for past glaciations. This could be tentatively be demonstrated with 

the age of the different periglacial and related landforms, as the western landforms reacted more sensitively 

to climate variability, especially within the Holocene, than those in the eastern study area (Figure 5). How-

ever, it has to be noted that the altitude where the landforms were investigated differed about 500 m and 

that in both cases boulder-related periglacial landforms were studied, but not exactly the same landform 

types. It cannot be ruled out that either younger landforms in the east or older landforms in the west could 

be found. Nevertheless, the results of the SHD appear to sustain the notion that western landforms reacted 
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more sensitively to climatic variability.  RSFs from both areas occurred during the Bølling–Allerød Intersta-

dial which were probably related to similar climatically induced processes leading to their occurrence (Figure 

5). During warm climatic conditions precipitation changes and increased temperatures led to enhanced snow 

melt, permafrost degradation causing increased cleftwater pressure, and enhanced freeze-thaw activity which 

are expected as potential triggers of RSFs (MCCOLL 2012; BALLANTYNE et al. 2013; WILSON and MAT-

THEWS 2016; MARR et al. 2019a).  

In sum, this demonstrates that rather small scale interstadials (within the last 130 ka, see RASMUSSEN et al. 

2014) did have a measureable impact on landform evolution. At the same time as the deglaciation started 

on Dalsnibba, the RSF II on the foot of Blåhø occurred. This shows that climate variability has differently 

affected landscape evolution. 

Figure 5: Plot showing all obtained Schmidt-hammer exposure-age dating results of periglacial and related landforms 
(Data from MARR et al. (2018, 2019a)). For abbreviations see MARR et al. (2018, 2019a). The exposure ages are plotted 
with their total error. Major cold climate events from 20 ka towards the present are drawn in blue (data from NYGÅRD 

et al. 2004; WINGUTH et al. 2005; OLSEN and BERGSTRØM 2007; MATTHEWS and DRESSER 2008; SEJRUP et al. 2009; 
LOHNE et al. 2013). 

  



New aspects of deglaciation in southern Norway 
General Conclusions 

21 

5 General Conclusions 

This geomorphological and geochronological study provides new information on the timing of deglaciation 

and the response of periglacial and related landforms to climate variability since the Late Quaternary. In 

general, this thesis adds to evidences that point to a more complex and dynamic Scandinavian Ice Sheet 

throughout the last glacial cycle than previously assumed (RINTERKNECHT et al. 2006; MANGERUD et al. 

2010). The research was conducted along the abovementioned four research questions and are answered as 

follows: 

What were the timing and dynamics of local deglaciation in two selected areas of South Norway during and 

following the Last Glacial Maximum? 

The first deglaciation chronology at Dalsnibba and surroundings in western South Norway shows that the 

local deglaciation started between 13.3 ± 0.6 to 12.7 ± 0.5 ka. Warm-based ice covered the summit of 

Dalsnibba during the Last Glacial Maximum up to at least 1476 m a.s.l. The ice subsequently lowered down 

to the valley bottom of Opplendskedalen with an average thinning rate of ~7.3 cm yr-1 which became ice-

free shortly after the ‘Finse event’ around ~7.5 ka. In sum, the deglaciation took about 5500 years from 

summit to valley bottom. Glacier readvances during the Younger Dryas have not reached the summit but 

most likely reached lower parts of the mountain, resulting in a longer ice persistence that previously assumed.  

The timing of local deglaciation at Blåhø could not be finally resolved. Boulders at the summit were exposed 

to the surface at 20.9 ± 0.8 ka and 21.8 ± 1.6 ka (GOEHRING et al. 2008, recalculated by MARR et al. 2019b) 

the process resulting in this exposure ages can be explained by two models. The boulder age either reflects 

the timing of local deglaciation and the bedrock sample with 46.4 ± 1.7 ka showed inheritance of cosmo-

genic nuclides. Or the boulder age represents the timing of exhumation, as it is close the timing of stabili-

zation of the blockfield which was characterized by active geomorphic processes such as frost-heave before 

its stabilization. Here, the age of the bedrock represents the timing of deglaciation. In this case, the summit 

was not ice-covered during the Last Glacial Maximum and the boulder age is erroneous due to shielding or 

reworking. The documented timing of blockfield stabilization on Blåhø requires ice-free conditions which 

colludes with inferred ice-coverage at this altitude at that time as suggested by GOEHRING et al. (2008). 

Based on this, it is assumed that the previous deglaciation chronology on Blåhø needs to be reconsidered. 

Together with growing evidence that parts of Greenland and Svalbard were ice-free during large parts of 

the Pleistocene (LANDVIK et al. 2003; SCHAEFER et al. 2016), geomorphic evidence and the inconsistencies 

of numerical ages, it appears possible that Blåhø has escaped the last glaciation.  

It became clear that that there is a strong need for more terrestrial numerical chronological data, especially 

in western South Norway, to better constrain the timing of deglaciation and ice-sheet characteristics during 

the Last Glacial Maximum. Therefore, an increase in surface exposure age data could be a vital point in 

interesting spatial situations, e.g. vertical transects from summit to fjord bottom. Due to the problems in-

volving cosmogenic nuclides, e.g. post-depositional disturbance of boulders or inheritance (HEYMANN et 
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al. 2011), other numerical dating techniques such as optically stimulated luminescence from sediment un-

derlying the blockfield should be considered. The application of paired cosmogenic nuclides (e.g. 10Be/26Al, 

10Be/21Ne) seems to be a possible approach to explore the complex burial history of blockfield surfaces 

which was not undertaken yet to the knowledge of the author. In order to improve the understanding of 

the involved processes operating on present blockfields, the application of InSAR might be helpful to con-

strain vertical and horizontal displacement rates (FUHRMANN and GARTHWAITE 2019) and frequencies as 

shown on permafrost in Svalbard (ROUYET et al. 2019). 

How did periglacial and related landforms react to climate variability following the Last Glacial Maximum 

and during the Holocene? 

In general, periglacial and related landforms reacted on climate variability, especially to climate deteriora-

tions. Schmidt-hammer exposure-age dating provided information on the landform dynamics through 

changing climatic conditions. R-value distributions provided insights into the timing of formation and sta-

bilization of landforms, together with minimum and maximum age estimates from boulder configurations 

and exposure ages. Most landforms on Blåhø stabilized during the cold climate periods during the 

Karmøy/Bremanger and Tampen readvances in the Late Glacial. Landform responses to subsequent cli-

mate variability could not be reported despite severe cold events following their stabilization in the Holo-

cene, the landforms were not reactivated. Within the western study area, the oldest landform was estimated 

to have been exposed to the surface since ~7.5 ka. This is significantly later than the exposure ages from 

the east which implies that western landforms reacted more sensitively to climatic changes, despite the dif-

ferences of investigated landforms in both areas. It appears that boulder-dominated landforms located in 

maritime climatic conditions, as in the western study area, reacted more sensitively to Holocene climate 

variations than the continental influenced eastern landforms. However, landform responses were not limited 

to cold climate periods. Rocks-slope failures from the western study area indicated that they mostly stabi-

lized during the mid-Holocene coinciding with the Holocene Thermal Maximum. This is generally associ-

ated with climate-driven factors, such as permafrost degradation and increasing cleftwater pressure resulting 

in slope instability. Rock-slope failures in both study areas did not support the concept of higher rock-slope 

failure frequencies shortly following deglaciation, but they tend to occur during warm periods, several mil-

lennials after the local deglaciation. The simultaneous occurrence of deglaciation at Dalsnibba and a rock-

slope failure on Blåhø shows that climate variability is differently affecting the landscape. It could be demon-

strated that rather small scale interstadials had a measureable impact on landform evolution. 

Are periglacial and related landforms potential palaeoclimatic archives which can be explored by the appli-

cation of Schmidt-hammer exposure-age dating in these area? 

The successful application of Schmidt-hammer exposure-age dating in this thesis demonstrated that boul-

der-dominated landforms are an often overseen, but valuable source of palaeoclimatic information. After 

taking the necessary precautions for accurate sampling locations and strategy, the Schmidt hammer is a 

strong tool in Late Quaternary dating studies (WILSON et al. 2019). It could be shown that interstadials (e.g. 
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Bølling–Allerød) together with colder climate phases were manifested in distinct landforms in South Nor-

way. For instance, due to Schmidt-hammer exposure-age dating cold climate periods such as the 

Karmøy/Bremanger readvance could be identified at periglacial landforms located above 1450 m a.s.l. for 

the first time in the Blåhø area. After the tentative previous reconstructions of the deglaciation reaching the 

Geirangerfjord, the timing of deglaciation can now be linked to the Bølling–Allerød Interstadial for the first 

time.  

The application of Schmidt-hammer exposure-age dating over larger areas in Norway would be desirable. 

The Schmidt hammer is a cost and time efficient, user-friendly instrument and with conscious utilization it 

is possible to obtain a large dataset within a short time. The similarity of both calibration curves, despite 

their spatial and lithological differences showed that the possibility of regional calibration curves should be 

considered in the future. Already published calibration curves could be utilized in areas with similar litho-

logical properties, therefore, the construction of single calibration curves for each study site would become 

obsolete. A potential future research prospect is to construct and test the application of a regional calibration 

curve for larger areas in southern Norway with similar or comparable lithology. However, the regional lith-

ological variations might become obvious when sampling older surfaces causing significant differences be-

tween Younger Dryas and Preboreal surfaces (SHAKESBY et al. 2006). It is necessary to be aware of the 

detailed lithological differences and to explore their impact on the precision and accuracy of age estimates.  

Which implications do the findings on the regional deglaciation history? 

Reconstructing the timing and rates of deglaciation and processes involved on a local scale are crucial in the 

wake of a more dynamic Scandinavian Ice Sheet throughout the last glacial cycle. It was demonstrated that 

deglaciation started earlier in western South Norway in comparison to a nearby location towards the east. 

The divergence of the timing of deglaciation between the neighbouring Reinheimen area and Blåhø by ~10 

ka point to an asynchronous timing of deglaciation, differing basal temperatures and variable ice thickness 

in South Norway. Considering the glaciation history of Blåhø involved parts of ice-free conditions during 

the Last Glacial Maximum, this would have consequences on the deglaciation history of the Eurasian Ice 

Sheet and the palaeo-ice thickness reconstructions from Scandinavia. A relatively thin ice sheet raises ques-

tions about the sea-level history during the transition from glacial to interglacial due to imbalances between 

global ice volume estimates and the sum of suggested ice volumes by glacial rebound histories (cf. WINGUTH 

et al. 2005).  

In conclusion, this study presents new insights into the timing of deglaciation, the involved dynamics as well 

as the role of periglacial and related Late Quaternary and Holocene landforms as palaeoclimatic and mor-

phodynamic proxies for two areas is South Norway. Additionally, the results contribute to a wider database 

of terrestrial numerical deglaciation estimates in the inner mountainous areas of western South Norway. 

Implementing these findings based on terrestrial sources might help to improve models reconstructing gla-

ciation history in South Norway. 
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Abstract 

Schmidt-hammer exposure-age dating (SHD) was performed on blockfields and related landforms on 

Blåhø, southern Norway. By developing a linear high-precision age-calibration curve through young and old 

control points of known age from terrestrial cosmogenic nuclide dating (TCND), it was possible to gain 

landform age estimates based on Schmidt hammer R-values. The aim of this study is to relate formation 

and subsequent stabilization of the landforms investigated to climate fluctuations since the LGM and to 

explore the palaeoclimatic implication of such periglacial landforms. The SHD ages range from 19137 ± 

908 years for the Rundhø blockfield to 5316 ± 731 years for the lowest elevation rock-slope failure. The R-

value frequency distributions obtained on the landforms studied indicate complex, long-term formation 

histories. Landforms above 1450 m a.s.l. share comparable SHD ages and seem to have stabilized during 

the Karmøy/Bremanger readvance (~18.5-16.5 ka). The lower elevation rock-slope failures most likely oc-

curred during the Bølling-Allerød interstadial (~14.7-12.9 ka) and the Holocene Thermal Maximum (~8.0-

5.0 ka). The results contrast with the established model that rock-slope failures occur within the first mil-

lennia following deglaciation. Instead of the inferred ice-coverage above 1450 m a.s.l. until 15.0 ± 1.0 10Be 

ka, our results suggest severe periglacial and ice free conditions occurred earlier. Landforms above 1450 m 

a.s.l. do not show any form of re-activation during cold periods within the Late Glacial and Holocene. Our 

SHD results suggest that the landforms investigated were (at least partly) generated prior the LGM and 

survived beneath cold-based ice or were located on nunataks. 
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Introduction 

Research on autochthonous blockfields has a long tradition in Northwest-Europe (see e.g. Dahl 1966; Rud-

berg 1988; Ballantyne and Harris 1994; Rea et al. 1996; Rea 2013). One focus is the development of different 

models for their formation and identifying individual mechanisms involved, in particular the possible influ-

ence of pre-glacial chemical weathering processes or their characterization within the context of an alpine 

periglacial process system (André 2003; Whalley et al. 2004; Fjellanger et al. 2006; Goodfellow et al. 2008; 

Ballantyne 2010; Rixhon and Demoulin 2013). In addition, blockfields and related landforms play an im-

portant role within the reconstruction of the geometry and vertical extent of the Scandinavian ice sheet 

during the last (Weichselian) glaciation and subsequent deglaciation, Their location on summit areas, espe-

cially when trimlines are visible below, suggest the possibility that they may have developed on nunataks 

(Ballantyne 2013) and blockfields have accordingly been utilized in the reconstruction of the Weichselian 

ice-sheet in several regions at particular stages (e.g. Nesje et al. 1988; Nesje and Dahl 1990; McCarroll and 

Nesje 1993; Nesje et al. 1994a; Nesje et al. 2007). In the wake of the more recent paradigm shift that trimlines 

as no longer undisputable evidence of a former vertical ice-sheet extent but rather a weathering boundaries 

of several different explanations (including the vertical limit between warm- and cold-based ice; see Ballan-

tyne 2013; McCarroll 2016), the palaeoclimatic significance of blockfields and any potential age constraints 

also need critical re-evaluation. The application of modern numerical dating techniques (e.g. terrestrial cos-

mogenic nuclide dating – TCND) has provided some insights with more accurate surface exposure ages 

(Fabel et al. 2002; Stroeven et al. 2002; Juliussen and Humlum 2007), but the high costs and complicated 

laboratory procedures involved create the demand for alternative reliable dating methods that are both in-

expensive and more efficient. Blockfields and other landforms within the periglacial zone in Scandinavia 

have considerable potential to provide chronological control on the last deglaciation and characterise the 

regional Holocene climate history by exploring the palaeoclimatic significance of climate-driven processes 

and landforms (Matthews et al. 2013, submitted; Winkler et al. 2016). This is, moreover, not a trivial task as 

by contrast to quite detailed information on the horizontal ice-sheet margins during the Late Glacial (Hughes 

et al. 2016), there is still relatively less knowledge about the exact mechanism and local timing of deglaciation 

within the mountainous parts of central Southern Norway (Dahl et al. 1997; Matthews and Winkler 2011). 

The prominent summit of Blåhø in south central Norway is characterised by its coarse rock debris accumu-

lations and a variety of Late Weichselian and Holocene landforms that are typical of the alpine periglacial 

zone. Blåhø may provide valuable regional palaeoclimatic insights due to its location in a highly continental 

climate (Moen 1998) and the general lack of knowledge about Late Weichselian and Holocene climate dy-

namics in the area. Nesje et al. (1994a) conducted Schmidt-hammer measurements on Blåhø to investigate 

the degree of surface weathering as part of a study aimed at identifying blockfield boundaries between dif-

ferent mountain summits in a west-east transect, but did not present any numerical surface exposure ages. 

For any conclusions about the detailed Holocene climate development of the Blåhø area and the develop-

ment of its landforms it was, therefore, necessary to transfer related information from the much better 

studied Jotunheimen mountains to the west (Matthews and Dresser 2008; Nesje 2009; Matthews 2013). An 
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advantage of our study site in addition to the diversity of boulder-dominated landforms is, however, the 

availability of permafrost measurements (Farbrot et al. 2011) and recent TCND numerical ages (Goehring 

et al. 2008). The latter constitute old control points for high-precision Schmidt-hammer exposure-age dating 

(SHD). For a young control point we used fresh boulders excavated by construction work in July 2017. This 

enabled us to determine the exposure ages of boulders in blockfields, bedrock, patterned ground features 

(sorted polygons, blockstreams) and rock-slope failures. The age and dynamics of the variety of landforms 

on Blåhø are studied for the first time and they may act as palaeoclimatic proxies indicating landform 

changes in response to changing climatic conditions. 

Although the Schmidt-hammer has previously been applied on blockfields and periglacial landforms to 

identify weathering-related boundaries, identify altitudinal gradients of surface weathering, and as a relative-

age dating technique (e.g. Cook-Talbot 1991; McCarroll and Nesje 1993; Nesje et al. 1994a; Ballantyne et al. 

1997, 1998), the more recent development has been in exposure-age dating (SHD). This offers a range of 

new opportunities by providing numerical age constraints for the timing of formation and stabilization, or 

analysis of involved processes and dynamics, of various periglacial landforms. The progress includes 

knowledge on the calculation and shape of regional SHD-calibration curves on the basis of available precise 

numerical age estimates (e.g. by TCND) for the whole Holocene (Matthews and Owen 2010; Shakesby et 

al. 2011; Matthews and McEwan 2013; Matthews et al. 2014) and even back to the last Last Glacial Maxi-

mum (e.g. Tomkins et al. 2016, 2018). The advantage of inexpensively and efficiently sampling large num-

bers of boulders for the calculation of surface exposure ages, is particularly important for the investigation 

of boulders on potentially diachronous periglacial landforms built-up by long-term geomorphic processes 

and/or subject to post-depositional disturbance. This has recently been further improved by the introduc-

tion of an electronc version of the Schmidt-hammer (Winkler and Matthews 2014) that already has been 

successfully applied on sorted stone circles (Winkler et al. 2016) and rock glaciers (Winkler and Lambiel 

2018). 

The specific aims of our study in the light of this background are 

(1) to calculate a local SHD-calibration curve for our study area and this particular part of southern 

Norway,  

(2)  to determine precise surface-exposure ages for the landforms investigated,  

(3) to interpret mechanisms of formation of these landforms, the timing of their stabilization, and 

dynamics and processes involved, and  

(4) to compare our results with those from other regions, in particular in the context of  climate history 

during the late Quaternary. 
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Study area 

The investigated landforms are located on Blåhø (1618 m a.s.l.) in south central Norway (61°53’51N, 

9°16’58E). Blåhø is situated in Ottadalen, between Jotunheimen in the south east and Rondane in the west 

(Figure 1). The mountain has three lower elevation peaks: Rundhø (1556 m a.s.l.), Veslrundhø (1514 m a.s.l.) 

and Storhøi (1455 m a.s.l.), with smoothly undulating surfaces (Figure 2). The summit plateau of Blåhø is 

surrounded by gentle slopes to the north,south and a steeper eastern slope. Following a small steep cliff at 

the western edge of the summitthe sridge gently descends to the west and is divided into ridges towards 

south west and north west. 

The climatic conditions are characterized by strong continentality. With a mean annual air temperature 

(MAAT) of ~-4°C (Strømsøe and Paasche 2011) and a mean annual precipitation (MAP) between 300-400 

mm/yr in valleys, it represents one of the driest localities in Norway (Moen 1998). The mean number of 

days with a snow depth >25 cm is 100-200 for all sites (1971-2000), except for sites around Rundhø that 

have 200-350 days (http://senorge.no). More than 5cm depth of snow was recorded on 200-350 days at the 

summit and 100-200 days for low lying areas (~<1000 m a.s.l.) from 1971-2000 (http://senorge.no). How-

ever, due to the prevailing wind speeds, summit snow accumulation is limited. Recent data from permafrost 

boreholes indicate a mean ground temperature (0.05 m depth) of 0.9 °C and 1.0 °C from 2008-2009, and 

2009-2010 respectively. The mean ground temperature at 10 cm depth was 0.7 °C from September 2008 to 

August 2010. In the same period the active layer thickness reached 6 to 7 m (Farbrot et al. 2011). 

The summit of Blåhø belongs to the upper parts of the Kvitola Nappe which consists of late Precambrian 

sedimentary rocks (cf. Farbrot et al. 2011). The Precambrian bedrock is quartz-rich and the summit is dom-

inated by meta-conglomerate and meta-sandstone on higher and lower slopes respectively (Tveten et al. 

1998). The area from the summit to about 1500 m a.s.l. is covered by an autochthonous blockfield (Nesje 

et al. 1994a). The middle-alpine vegetation on the ridges and peaks is dominated by lichens and graminoids 

(Löffler and Pape 2017) 

There has been a considerable debate on the glaciation history of Blåhø (Nesje et al. 1994a; Goehring et al. 

2008; Strømsøe and Paasche 2011). D the Last Glacial Maximum (LGM, 26.5-20 ka; Clark et al. 2009) the 

summit may have been covered by cold-based ice (e.g. Kleman 1994) or may have been ice-free (e.g. Bal-

lantyne et al. 1997). Goehring et al. (2008) developed a deglaciation chronology for Blåhø, arguing for cold-

based ice coverage during the LGM. In contrast to other parts of south central Norway, they consider an 

early deglaciation commencing at 25.1 ± 1.8 10Be ka. Therefore, the maximum vertical ice extent must have 

occurred earlier. Rapid thinning led to ice free conditions at 15.0 ± 1.0 10Be ka at about 1450 m a.s.l. 

Subsequent slower thinning led to a vertical ice extent of ~1100 m a.s.l. at 11.3 ± 1.1 10Be ka (Goehring et 

al. 2008). The most recent contributions to constrain the deglaciation history of Scandinavia (e.g. Hughes 

et al. 2016) do not provide any further insights into the complex local (de)glaciation history. The cold-based 

ice theory seems generally accepted and corresponds to a general paradigm shift in the investigation of 
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blockfields over the whole of northwest Europe (Ballantyne 2010; McCarroll 2016), although some aspects 

remain ambiguous. It is possible that the ice sheet was thinner than previously assumed and multi-domed, 

without reaching all mountain peaks in western Norway (Follestad 2003; Winguth et al. 2005). For instance, 

Mt. Skåla (1848 m a.s.l.) appears to have escaped burial by ice during the last glaciation (Brook et al. 1996). 

Parts of Greenland and Svalbard have recently been shown to have remained ice-free during extended pe-

riods of the Pleistocene, including the LGM (Landvik et al. 2003; Schaefer et al. 2016), meaning that ice-

free conditions on Blåhø cannot be entirely excluded prior to more detailed studies. 

  

Figure 1. Research location in south central Norway with Blåhø as the study area (modified after Pape et al. 2009). 

 

Figure 2. Blockfields and related periglacial landforms investigated above 1450 m a.s.l. (modified after Pape et al. 2009). 

 

 



New aspects of deglaciation in southern Norway 
Investigations on Blockfields and Related Landforms at Blåhø (Southern Norway) Using Schmidt-Hammer 
Exposure-Age Dating (SHD): Palaeoclimatic and Morphodynamic Implications 

38 

Investigated landforms 

Different periglacial landforms were investigated with the Schmidt hammer on Blåhø (Figures 2 and 3). 

These landform types are common features of mountain regions, which experience permafrost at present 

or experienced permafrost in the past (French 2007). Boulders on the investigated landforms have an ex-

tensive lichen and moss cover. The landforms show no evidence of post-depositional disturbance or erratics 

transported by former glacier ice. Plant assemblages have partly developed in sheltered areas between rocks; 

trees are common in low lying areas. The environmental conditions and lithology of all control points and 

landforms are comparable. This is a critical prerequisite for successful SHD application (Matthews and 

Winkler 2011). 

Blockfields were measured at the summits of Blåhø (BL-I) at 1617 m a.s.l. and Rundhø (BL-II, Figure 3b) 

at 1562 m a.s.l., with spatial extents of ~0.25 km2 and~0.06 km2 respectively. The blockfields are charac-

terized by in situ weathered angular blocks and boulders (Nesje et al. 1994a). The surface boulders cover a 

soil matrix of mixedgrain sizes (Rea et al. 1996; Ballantyne 2010). Both blockfield surfaces are near horizon-

taland are 20-50 cm deep. Surface boulders have an average diameter of 30-70 cm. Downslope transport of 

boulders from BL-II has created blockstreams, which were also investigated in this study. 

Sorted stone polygons (SP) are grouped on a plateau at an altitude of 1450 m a.s.l. and cover an area of 

~2200 m2. The stone gutters, where boulders were measured, were randomly selected. Most sorted poly-

gons (~90%) are larger than two metres in diameter (Figure 3c). The average gutter width ranged from 20 

cm to 50 cm (largest up to one metre), gutter depth from 20 cm to 40 cm, and average boulder sizes are 

generally of 20-60 cm. However, smaller (>10 cm) and larger (80-100 cm) boulders are also present. Boul-

ders within the gutters are arranged predominantly on their edges and therefore are generally perpendicular 

to the surface gradient. Only smaller SP (<1 m diameter) can develop without permafrost in a short time 

(Feuillet and Mercier 2012), the influence of permafrost is highly likely when the diameter exceeds 2 m 

(Goldthwait 1976). Even though, permafrost is not necessary for SP development, although they mostly 

occur in cold environments (Washburn 1956). 

Further, SHD was performed on bedrock (BR) outcrops on the western part of the Rundhø summit (1562 

m a.s.l.). Blockstreams on the south east slope of Rundhø occur at the lower end of the blockfield at ~1500 

m a.s.l. and extend down to ~1400 m a.s.l. with a length of about 140 m (Figure 3d). The transition zone 

between blockfield and blockstreams is characterized by typical periglacial morphologies, e.g. lobate fronts. 

The blockstreams occur on the same slope in parallel alignment but with varying lengths and widths. They 

appear to be relict due to the debris arrangement and the degree of lichen/ moss cover, which is consistent 

with other blockstream studies (e.g. Boelhouwers et al. 2002; Wilson et al. 2017). The selected blockstream 

was divided into an upper (BS-u) and lower part (BS-l). The upper part has a width of ~6 m and depth of 

~30 cm. The blockstream narrows slightly to 4.5 m and depth reduces to 20 cm on the lower part. In both 

parts there was a limited number boulders for SH measurements, thus only 100 boulders were measured. 

The blockstream has an inclination of about 15°, with small surface lobes and steps evident.  These may be 
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indicative of permafrost (Goldthwait 1976; Rixhon and Demoulin 2013; Wilson et al. 2017 and references 

therein), although itis not necessary for their development (Washburn 1956). 

On the southern slope of Blåhø a rock-slope failure (RSF-I), ranging from ~550 m a.s.l. to 380 m a.s.l. was 

also investigated. This feature covers an area of 0.14 km2 (Figure 3e) and due to abundant boulders, we 

measured more boulders here than on other landforms. The steep south-facing bedrock wall, with a typical 

failure scar (Wilson 2004) at~1000 m a.s.l., was identified as the source area. The entire slopeis inclined at 

~25°. The average diameter of boulders ranged from 60 to50 cm, but boulders with a diameter of >4-5 m 

were present as well. Most boulders within the rock-slope failure were stable. The thickness of the failed 

debris ranged between 1-3 m. Trees grow at the foot of the landform, grading into forest further downslope. 

At ~450 m a.s.l. an east-west oriented line of trees was observed, and may be an indication of relict solifluc-

tion. The second investigated rock-slope failure (RSF-II) is located between ~740 m a.s.l. and 500 m a.s.l. 

at the south eastern slope of Blåhø (Figure 3f). At ~1100 m a.s.l. a steep hillslope with a failure scar was 

identified as a possible source of debris. The entire landform comprises an area of ~0.25 km2. Field obser-

vations indicate a relict status as many trees and boulders with extensive lichen and moss cover are present. 

The boulder sizes vary mostly from 30 cm to 150 cm a b axis, but larger boulders >2 m diameter are also 

present. The inclination is relatively flat at the foot with <10°, although the entire slope gradient averages 

~25°. 
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Figure 3. (a) View east from Rundhø towards Blåhø. (b) View to the Rundhø blockfield towards hte northwest. Note 
the Schmidt hammer is 20 cm long. (c) View of the sorted stone polygon plateau towards west. The pole is 2 m long. 
(d) Down-valley view towards the south of the blockstream. Note the car for scale. (e) The lower part of rock-slope 
failure I, view is towards the east, note the Schmidt hammer for scale. (f) Viewnorth east from the foot of rock-slope 
failure II. 

 

Methods 

Schmidt-hammer and sampling design 

Originally, the Schmidt hammer was developed for in situ hardness testing of concrete (Schmidt 1950) but 

has since been applied in geomorphological research worldwide (see Goudie 2006; Shakesby et al. 2006), 

e.g. moraines (McCarroll 1989; Ffoulkes and Harrison 2014), snow avalanche impact ramparts (Matthews 

et al. 2015), rock glaciers (Aoyama 2005; Kellerer-Pirklbauer et al. 2008), and periglacial trimlines (Ballantyne 

et al. 1997; Rae et al. 2004). Schmidt hammer measurements provide data concerning the relative surface 

weathering of boulders, providing that lithology is uniform. The degree of surface weathering allows in turn 

estimates about the length of surface exposure (Černá and Engel 2011). This technique has been successfully 
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applied on coarse debris landforms in several parts of Norway (e.g. McCarroll and Nesje 1993; Nesje et al. 

1994b; Shakesby et al. 2006; Matthews et al. 2011, 2013, 2014, 2017). Mostly, single landforms were studied, 

including patterned ground (Cook-Talbot 1991; Winkler et al. 2016) and alluvial fans (White et al. 1998). 

Few attempts have been made to investigate an assemblage of landforms (Wilson and Matthews 2016). 

SHD and the application of a high-precision age calibration curve is a recently developed approach 

(Shakesby et al. 2011; Matthews and McEwen 2013; Wilson and Matthews 2016). The establishment of a 

reliable local calibration curve requires at least two control surfaces (young and old) of known age from the 

same lithology as the studied landforms, to successfully produce numerical age estimates (Matthews and 

Owen 2010; Winkler 2014; Matthews and Wilson 2015). The limitations of this approach are closely related 

to the reliability of the control sites. The calculation of 95% confidence intervals of the control points and 

sampled sites allows to estimation of SHD ages and their uncertainties. The age estimates from Schmidt 

hammer studies are largely in agreement with ages obtained by TCND (e.g. Matthews and Owen 2010), 

optically stimulated luminescence (e.g. White et al. 1998; Stahl et al. 2013), radiocarbon dating (e.g. Nesje et 

al. 1994b; Aa and Sjåstad 2000; Winkler 2005) and lichenometric dating (e.g. Evans et al. 1999). 

In this study a N-Type electronic RockSchmidt (2.207 Nm impact energy) was used (Proceq 2014). The 

rebound (R)- values yielded by a RockSchmidt are obtained differently to those of mechanical Schmidt 

hammers and, therefore, not identical. Winkler and Matthews (2014) have, however, shown that these R-

values are interconvertible and data series obtained by electronic and mechanical Schmidt hammers can be 

analysed in the same way.   

Here, we sampled boulder surfaces at six different boulder-dominated landforms. We measured 200 boul-

ders at each landform (when possible), with two impacts per boulder. Only stable boulders >30 cm diameter 

were measured. This was consistently applied throughout sampling. R-values obtained from one landform 

were initially treated as a homogeneous sample. This sampling design is similar to that applied by Wilson 

and Matthews (2016) and ensured representative and sufficient sample sizes (Shakesby et al. 2006; Niedziel-

ski et al. 2009). A large number of impacts increases statistical significance, lowers the probability of outliers 

and the influence of lithological heterogeneities or micro-weathering (McCarroll 1989; Winkler 2009). How-

ever, certain lithological heterogeneity of the Precambrian rocks could theoretically have affected the R-

values. The samples were obtained from visually homogeneous lithology and near horizontal, dry surfaces. 

Potential sources of error such as boulder edges, structural rock weaknesses, lichen or moss covered surfaces 

were avoided (McCarroll 1989; Wilson et al. 2017). As recommended by Černá and Engel (2011) for bedrock 

investigations, extensive areas of rock surfaces were sampled to avoid sub-horizontal cracks within bedrock 

as a source of error. The rock surfaces were not modified or prepared in any way before measurement. We 

consider the micro- and meso-topographic variabilities to average out due to the large sample sizes and 

therefore they are insignificant influences on our results (Matthews et al. 2015). 

The R-values were statistically processed using R statistic software. Histograms were produced to show the 

R-value distributions, as bimodal distributions could be associated with relocation processes or different 

exposure history (McCarroll and Nesje 1993; Winkler 2014). The standard statistical analysis comprised the 
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calculation of the standard mean, standard error of the mean (SEM), 95% confidence interval, skewness, 

kurtosis and test of normality (Shapiro-Wilk-Test). Sites with an overlapping 95% confidence interval are 

interpreted on the premise that these sites are of the same population and therefore are of equal age 

(Shakesby et al. 2006; Winkler 2009). The Mann-Whitney test was used to determine statistical significance 

between pairs of sites. 

Control points and calibration curve 

On the basis of the young and old control points a high-precision calibration equation was derived. The 

young control R-values were obtained from boulders at a construction site. The old control points (1100 m 

a.s.l. and 1450 m a.s.l.) with 10Be dates (11.400 ± 1.0 ka and 15.000 ± 1.1 ka) represent bedrock surfaces 

(Goehring et al. 2008). At each control point 200 measurements (R-values) were obtained. 

Linear age-calibration curves from Little Ice Age (LIA) and late Preboreal surfaces were first presented by 

Shakesby et al. (2006). This approach was further developed by Matthews and Owen (2010) and resulted in 

a high-precision calibration curve. The approach has since been successfully applied by several authors (e.g. 

Matthews and Winkler 2011; Wilson and Matthews 2016). A linear relationship is a solid based assumption 

as: (1) former studies on granitic surface proved the linear relationship (e.g. Shakesby et al. 2011), and (2) 

hard crystalline rock types show slow and close to linear weathering characteristics when using the Holocene 

as a reference time frame (Colman 1981; André 1996). There is evidence that this linear relationship even 

goes beyond the Holocene timescale (Engel 2007; Sánchez et al. 2009; Kłapyta 2013). Furthermore, Tom-

kins et al. (2016, 2018) show the R-value-age relationship to be linear during the transition from arctic to 

more temperate conditions (post-LGM to Lateglacial). For our calibration curve, we use a standard linear 

regression: 

Y = a + bx           (1) 

where y is the surface age in years, a is the intercept age (acquired by substitution in the calibration equation), 

b is the slope of the calibration curve and x is the mean R-value. The b coefficient is described as: 

b = (y1 – y2) / (x1 – x2)          (2) 

with y1 and x1 representing the age and mean R-value of the old control point. Whereas y2 and x2 represent 

the age and mean R-value of the young control point. 

The 95% confidence interval for a SHD age, comprising the total error (Ct), consists of the error of the 

calibration curve at the point related to the dated sample (Cc) and to the sampling error of the sample itself 

(Cs): 

Ct = √ (Cc 2 + Cs 2)          (3) 

The error of the calibration curve is represented by the errors of the control points and their age differences: 

Cc = Co – [(Co – Cy) (Rs – Ro) / (Ry – Ro)]        (4) 
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with Co expressing the 95% confidence interval of the old control point in years, Cy the 95% confidence 

interval of the young control point in years. Ro, Ry and Rs are associated with the mean R-value of the old 

and young control point and the sample. The sampling error of the sample itself is calculated incorporating 

the b coefficient, Student´s t statistic, standard deviation (s) of the sample´s R-value and the sample size (n): 

Cs = b [ts / √ (n - 1)]          (5) 

 

Results 

The Schmidt hammer results from the control sites and investigated landforms are shown as frequency 

distributions (Figure 4, Figure 6) and numerically Table 1. 

Control sites 

The mean R-values for the young (68.3 ± 0.45), old control point I at 1100 m a.s.l. (49.7 ± 0.92) and old 

control point II at 1450 m a.s.l. (40.1 ± 0.97) differ by about 20, and 30 units respectively (Table 1). The 

young control point value shows about half the confidence interval variability than of the old control points. 

Positive skewness and the small number of low R-values indicate, furthermore, that few boulders with a 

high degree of surface weathering are present at the site. Long-term exposure to weathering at the old 

control points leads to an increasing variability of R-values reflected in higher standard deviations as well as 

in the 95% confidence intervals. 

Table 2. Schmidt hammer R-values and statistics for the control sites. Mean R-values are obtained from the means of 
two impacts on each of the sampled 200 boulders, 95% confidence intervals were calculated from n=200 boulders. 

Control point Age (in yr)a Mean R-value  σ 95% CIb Kurtosis Skewness 

Young 1 68.3 4.62 0.45 -0.45 0.52 

Old I 11400 ± 1.0 49.7 9.34 0.92 -0.31 -0.37 

Old II 15000 ± 1.1 40.1 9.84 0.97 -0.81 -0.15 

a Age of young control point from field observation. Ages from old control point I and II from Goehring et al. (2008). 

b Mean of R-values with 95% confidence intervals (α = 0.05). 

 

The histograms for the young control point and old control point I show unimodal distribution, whereas 

old control point II shows a polymodal distribution (Figure 4). Judging by the 95% confidence intervals, 

the old control points I and II differ significantly. Because of the uncertainties with the polymodal distribu-

tion of R-values of old control point II we base our calculation of the calibration curve on the young and 

old control point I only (see discussion) yielding the equation y = 40467.6724 – 592.672414x (Figure 5). 
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Figure 4. Frequency distributions of Schmidt hammer R-values of the young and the two old control points. 

 

Figure 5. High-precision calibration curve and calibration equation for Blåhø calculated from the young control and 
the old control point I. 
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R-values of studied landforms 

Most mean R-values of the investigated landforms are lower than old control point I, except for RSF-II. 

Yet, due to the inferred linear weathering relationship (see above) we consider the results to be plausible. 

The mean R-values from the different landforms on Blåhø are themselves consistent (Table 2), regardless 

of the rather high intra-site R-value variability represented by standard deviations and frequency distribu-

tions. However, the large sample size narrows the 95% confidence intervals. The standard deviation of most 

sites are in the same range (except RSF-I and RSF-II), largely with negative kurtosis and skewness. The 

lowest mean R-values were obtained from BL-II (35.99 ± 0.86), the highest values from RSF-I (59.31 ± 

1.03). Overlapping confidence intervals for all landforms above 1450 m a.s.l. are noteworthy (except RSF-

II and BL-II). Our histograms share rather platykurtic distributions with plateaus, wide R-value distribu-

tions, narrow tails and polymodal distributions (Figure 6). The SP and BS have no clear bi- or polymodal 

distribution. This is probably related to the formative processes and the nature of these landforms (see 

discussion). RSF-I has a high mode in the 50s, whereas RSF-II shows a high mode in the 60s. Both RSFs 

show the widest distribution of R-values, reflected in their standard deviations. 

Table 3. Schmidt hammer R-values, standard deviation, kurtosis, skewness and n for the studied landforms. 

Site Mean ± 95%CIa σ Kurtosis Skewness Boulders (n) 

blockfield I 38.50 ± 0.88 8.96 -0.56 -0.31 200 

blockfield II 35.99 ± 0.86 8.79 -0.64 -0.05 200 

sorted polygon 37.49 ± 0.97 9.92 -0.37 0.16 200 

bedrock 39.95 ± 1.04 9.15 -0.47 -0.40 150 

blockstream (u) 38.05 ± 1.12 8.07 -0.61 -0.26 100 

blockstream (l) 38.09 ± 1.31 9.43 -0.51 -0.37 100 

rock-slope failure I 59.31 ± 1.03 12.86 0.25 -0.80 300 

rock-slope failure II 46.19 ± 1.13 11.52 -0.26 -0.27 200 

a Mean of R-values with 95% confidence intervals (α = 0.05). 

u: upper site; l: lower site. 
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Figure 6. Frequency distributions of Schmidt hammer R-values from all investigated landforms. 

 

All control sites and landforms fail the Shapiro-Wilk normality test. The upper and lower part of BS are not 

statistically different from each other, whereas BS differs from SP, BL-I and BL-II significantly. The positive 

skewness of SP suggests the possibility of somewhat less weathered boulders within the population. The 

other negatively skewed landforms probably include more weathered boulders in their population. The ma-

jority of pairs fail the Mann-Whitney test and are significantly different from each other (Table 3). The pairs 

of sites passing the Mann-Whitney test share a close spatial proximity (e.g. SP paired with BS) or are part of 
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the same landform (BS). However, BR and BL-II being statistically different to all other landforms in their 

proximity are somewhat unusual. Also note that BL-II is the feeder area of the BS and yet is a significantly 

different population.  

Table 4. Results of Mann-Whitney tests of differences between pairs. 

Pairs of sites H0a αb Boulders (n) 

SP – BL I Retain 0.05649 400 

SP – BL II Reject 4.264e-05 400 

SP – BS (u) Retain 0.314 300 

SP – BS (l) Retain 0.2288 300 

SP – BR Reject 0.0001705 350 

SP – RSF I Reject <2.2e-16 500 

SP – RSF II Reject <2.2e-16 400 

BL I – BL II Reject 4.264e-05 400 

BL I – BS (u) Retain 0.4403 300 

BL I – BS (l) Retain 0.7095 300 

BL I – BR Reject 0.03391 350 

BL I – RSF I Reject <2.2e-16 500 

BL I – RSF II Reject <2.2e-16 400 

BL II – BS (u) Reject 0.004737 300 

BL II – BS (l) Reject 0.003916 300 

BL II – BR Reject 8.4e-09 350 

BL II – RSF I Reject <2.2e-16 500 

BL II – RSF II Reject <2.2e-16 400 

BS (u) – BS (l) Retain 0.717 200 

BS (u) – BR Reject 0.00876 250 

BS (u) – RSF I Reject <2.2e-16 400 

BS (u) – RSF II Reject <2.2e-16 300 

BS (l) – BR Reject 0.03271 250 

BS (l) – RSF I Reject <2.2e-16 400 
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BS (l) – RSF II Reject 2.38e-16 300 

BR – RSF I Reject <2.2e-16 450 

BR – RSF II Reject 7.37e-14 350 

RSF I – RSF II Reject <2.2e-16 500 

a H0 = distribution of values is the same across both samples (decision at α = 0.05).  

b Asymptotic significance level (two-tailed test). 

Schmidt hammer exposure-age dating ages 

The estimated SHD ages for different landforms are summarized in Table 4. There is an obvious difference 

in the SHD ages concerning the lower elevation RSFs and the landforms above 1450 m a.s.l. All landforms 

above this elevation yield SHD ages between 19137 ± 908 (BL-II) and 16790 ± 927 (BR) years based on 

our calibration curve and are statistically indistinguishable in age, except for BR and BL-II. The RSFs are 

significantly younger, with RSF-I (5316 ± 731 years) representing the youngest surveyed landform. It should 

be noted that the altitudinal relationship of all sites is statistically significant (R2=0.8337). However, SHD 

ages do not necessarily increase with altitude (e.g. BL-I and BL-II). 

Table 5. SHD ages from the sampled landforms. Each SHD age has a 95% confidence interval (Ct) derived from the 

sampling error of the landform sample (Cs) and the error of the calibration curve (Cc). 

Landform 
SHD age 

(years) 
Ct (years) 

blockfield I (1617 m a.s.l.) 17650 ± 884 

blockfield II (1562 m a.s.l) 19137 ± 908 

sorted stone polygon (1450 m a.s.l.) 18248 ± 928 

bedrock (1562 m a.s.l.) 16790 ± 927 

blockstream (u) (1500 m a.s.l.) 17916 ± 1059 

blockstream (l) (1450 m a.s.l.) 17893 ± 980 

rock-slope failure I (550 m a.s.l.) 5316 ± 731 

rock-slope failure II (740 m a.s.l.) 13092 ± 898 

The SHD ages indicate three age groupings for the studied landforms. The age of RSF-I falls within the mid 

Holocene, RSF-II in the Bølling-Allerød interstadial and BL-I, BL-II, BR, SP, BS-u and BS-l in the end of 

the Late Weichselian. 
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Discussion 

Schmidt hammer investigations from bedrock and coarse debris landforms have shown that the differing 

hardness properties revealed by R-values can be linked to different exposure time to subaerial weathering 

(Nesje et al. 1994b; Shakesby et al. 2006). SHD ages express the estimated age of boulders at the landform 

surface. All landforms show no indications of recent disturbance, therefore we assume no post-depositional 

boulder alteration. Consequently, our SHD ages indicate the maximum time since the boulders stabilized 

and the landforms became inactive. At all landforms, older boulders beneath those exposed at the surface 

are present. Hence, we consider that the SHD ages are minimum age estimates for the initiation of the 

landforms (Wilson and Matthews 2016). 

Methodological implications 

The range of the mean R-values between the young and the old control sites are comparable to other studies 

(e.g. Matthews et al. 2014; Wilson and Matthews 2016). High mean R-values and low variability of the young 

control site seem to be general characteristics of freshly exposed rocks (Matthews et al. 2013). In the same 

way as differences in surface weathering caused by minor lithological differences will become enhanced over 

time and cause standard deviation and confidence intervals to increase with older rocks that also have lower 

mean R-values (Aydin and Basu 2005; Matthews et al. 2013). Deriving our young control point from a 

construction site is acceptable, but not optimal. These boulders do not reflect fresh and unweathered ma-

terial, because even recently excavated boulders are likely to have experienced some degree of subsurface 

weathering to an unknown extent. Furthermore, empirical studies have shown that freshly exposed bedrock 

does not necessarily give mean R-values expected for completely unweathered rock (Matthews et al. 2016). 

On the other hand, such exposed bedrock may more likely represent the initial conditions when boulders 

on the blockfield and other landforms became exposed for the first time (see discussion in Matthews et al. 

2014, Winkler et al. 2016; Winkler and Lambiel 2018). Therefore, we rate the young control point as rea-

sonably reliable despite a few older boulders with low R-values among the population and assign an age of 

zero to it. 

For the old control point, two possible sites with documented 10Be TCND ages were sampled. We used the 

old control point I at 1100 m a.s.l. for establishing the calibration curve, because of four reasons: (1) the 

better availability of material for sampling, (2) the smaller 95% confidence interval (Table 1), (3) the non-

polymodal distribution suggesting no major post-depositional disturbance or polygenetic origin, and (4) the 

established linear weathering relationship during the Holocene and into the Late Glacial (Matthews and 

Owen 2010; Matthews and Wilson 2015; Winkler and Lambiel 2018). Although the old control points de-

rived from bedrock and not individual boulders, we consider them as reliable because the differences of 

surface properties between boulders and bedrock tend to equalize over time (Matthews and Winkler 2011; 

Matthews et al. 2014). 

The assumption of the linear relationship can largely be sustained by our results, despite a trend of slight 

decline with time (Figure 7). Černá and Engel (2011) show that linear weathering cannot be assumed prior 
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the Holocene, as weathering rates change throughout time. On the other hand, Tomkins et al. (2016, 2018) 

demonstrate that a quasi-linear relationship can be assumed for a period including the LGM. Because we 

consider old control point II as not entirely reliable (see above) we do not apply an alternative function for 

our linear calibration curve but instead have to consider pre-Holocene exposure ages as minimum ages 

when R-value decline by age is extrapolated beyond old control point I. 

 

Figure 7. Calibration curve integrating the young control point and both two old control points. 

The influence of snowpatches on weathering and their subsequent influence on Schmidt hammer results 

remains uncertain (see Ballantyne et al. 1989; Benedict 1993). Some studies (Ballantyne et al. 1989; Hall 

1993) point to the fact, that late lying snow could enhance chemical weathering because of prolonged wet-

ting. Other studies infer decreasing weathering due to the protective properties of snow (cf. Benedict 1993). 

Goudie (2006) states that the influence of snow should be reflected in high R-value variations, which is not 

detectable in our results. We consider weathering enhancement due to snow to be negligible, as all our sites 

have comparable annual snow coverage, limiting the influence on the relative ages. Additionally, aspect is 

considered to have an influence on weathering (Goudie 2006), but our localities share comparable southern 

aspect, thus we consider the relative effect negligible. 

SHD landform ages and their interpretation 

The mean R-values are estimates of the true age of landforms (Matthews et al. 2013). The consistency of 

our mean R-values between the different landforms, and within the same landform, confirm that the SHD 

ages are reliable estimates of the average boulder age. However, the interpretation of SHD ages from dia-

chronous periglacial landforms are somewhat complicated (Washburn 1979; French 2007) compared to the 

interpretation of landforms linked to single, individual events like small rock slope failures (Matthews et al. 

submitted) or moraines (Winkler 2014). In such cases, mean R-values yield information on the exact timing 

of a specific depositional event, e.g. rockfall-avalanches (Nesje et al. 1994b). By contrast, some ofour land-

forms share complex, long-term formation histories with variable time spans of disturbance, including 

subaerial exposure and burial of boulders. The complex dynamics and the role of non-climate related factors 
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on a local scale, makes drawing palaeoclimatic conclusions for patterned ground complicated (cf. Winkler 

et al. 2016). 

The SHD exposure ages range from 19137 ± 908 to 5316 ± 731 years, reflecting the relict and inactive 

character of the landforms. The stability of the landforms is supported by blockfield depths of 1.60 m at 

Blåhø and 1.40 m at Rundhø showing differentiated stratigraphical layers, which indicate no profound post-

depositional disturbance (Marr and Löffler 2017). This is supported by negative skewness (except SP), show-

ing that the landforms were reactivated before final stabilization, as more weathered rocks are incorporated 

in the population. Negative skewness of R-values from periglacial landforms has been recorded previously 

(Rode and Kellerer-Pirklbauer 2011; Matthews et al. 2014). The estimated landform ages and their long 

period of formation is underpinned by the platykurtic nature of the histograms and the broad confidence 

intervals. The platykurtic histogram characteristics are in sharp contrast to those of landforms created by 

single events and distinct processes, which mostly have narrow peaks without plateaus like typical normal 

distributions (Aa and Sjåstad 2000; Shakesby et al. 2004). Sorted circles studied by Winkler et al. (2016) show 

similar broad R-value distributions to those studied here. Comparable plateau-like histograms were reported 

from a relict pronival rampart (Matthews et al. 2011), ice-cored moraines (Matthews et al. 2014) and a relict 

blockfield (Wilson and Matthews 2016). 

Permafrost presence can be inferred for all sites (except RSF-I and RSF-II) during most of the Holocene 

(Etzelmüller et al. 2003; Lilleøren and Etzelmüller 2011; Lilleøren et al. 2012). At present, permafrost is 

absentbelow 1450 m a.s.l. Farbrot et al. (2011). The inactive status of the landforms above 1450 m a.s.l. 

raises the question whether they had also been inactive despite supposed presence of permafrost during 

several colder periods during the Late Glacial and the Holocene. Possible explanations include insufficient 

moisture supply in the active layer, changes in the freeze-thaw regime, decreasing frost susceptibility of fine 

(e.g. inner polygon) material leading to the termination of frost sorting (Winkler et al. 2016). 

Climatic Implications 

Plotting the SHD ages with established cold periods since the Late Weichselian confirms the general as-

sumption that the landforms investigated responded to periods of colder climatic conditions (Figure 8). The 

development of the studied landforms is largely associated with permafrost, which often occurs after local 

deglaciation (Lilleøren et al. 2012). The SHD ages from landforms above 1450 m a.s.l. range between 19137 

± 908 (BL-II) and 16790 ± 927 years (BR). The 95% confidence intervals of these landforms are largely 

overlapping, indicating stabilization of all landforms during the same time period. Thus our results imply 

stabilization of the summit blockfields during severe periglacial conditions of the Karmøy/Bremanger read-

vance (~18.5-16.5 ka) observed in both western and southern Norway (Winguth et al. 2005; Olsen and 

Bergstrøm 2007) and coinciding with Heinrich event I at ~16.8 cal ka BP (Hemming 2004). 
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Figure 8. Plot integrating SHD ages and their total error for the studied landforms and intervals of documented cli-
matic deteriorations during the late Quaternary. The major climatic deteriorations are displayed in grey (Data from 
Nygård et al. 2004; Winguth et al. 2005; Olsen and Bergstrøm 2007; Matthews and Dresser 2008; Sejrup et al. 2009; 
Lohne et al. 2013). 

According to Goehring et al. (2008), deglaciation started around 25.1 10Be ka at the Blåhø summit. They 

indicate slow ice thinning to ~1450 m a.s.l. until 15.0 10Be ka although the North Atlantic climate remained 

cold according to the GISP δ 18 O proxy temperature record (Ritterknecht et al. 2006). Assuming the 

formation of the Blåhø blockfield started shortly after local deglaciation, it took ~6 ka for blockfield for-

mation and stabilization. However, the blockfield appears to be much older (Marr and Löffler 2017). Block-

fields may survive several glaciations, either by protective cold-based ice (Kleman 1994) or because of their 

position on nunataks (Landvik et al. 2003). The origin of some blockfields probably dates back to the Ter-

tiary, the blocky material migrated to the surface through periglacial upfreezing (Rea et al. 1996). That the 

other studied landforms were also created before the LGM is implied by the negative skew of their R-values, 

supporting the reactivation of already existing landforms (Wilson and Matthews 2016). 

Apart from the Karmøy/Bremanger readvance, BL-II and SP SHD ages would also fit within the age range 

of the Tampen readvance from ~22-19 ka (Sejrup et al. 2009). Due to the confidence intervals, we infer that 

the BL-II stabilized at the end of the Tampen readvance and the SP in the early phase of the Karmøy/Bre-

manger readvance. Possibly, the decline of temperatures and moisture supply during this early phase led to 

the cessation of frost sorting and the stabilization of the sorted polygons during ice-free and severe perigla-

cial conditions. Our results do not support the findings of Goehring et al. (2008), who argue that the ice 

was at ~1450 m a.s.l. at 15.0 ± 1.0 10Be ka. In contrast, our SHD ages infer ice free conditions with a severe 

periglacial climate at least since ~19 ka. 



New aspects of deglaciation in southern Norway 
Investigations on Blockfields and Related Landforms at Blåhø (Southern Norway) Using Schmidt-Hammer 
Exposure-Age Dating (SHD): Palaeoclimatic and Morphodynamic Implications 

53 

The SHD ages of the blockstreams and bedrock on Rundhø, give indications about formation processes. It 

appears that the weathered bedrock formed the blockfield, which grades downslope to blockstreams. De-

spite their proximity, each of these  landforms represents a different statistical population, and we interpret 

them as stabilizing at different times. The blockstreams probably stabilized during the Karmøy/Bremanger 

readvance. Blockstreams are accepted as products of cold climate processes which can also form over sev-

eral cold periods (cf. Aldiss and Edwards 1999; Wilson et al. 2008). Uncertainty probably derives from 

various exposure times of boulders and the incorporation of older boulders, due to blockstream movement, 

internal mixing and sorting before they become stable. The broad confidence intervals and platycurtic his-

tograms support the relatively long time for upfreezing and stabilization of the landforms. This is also par-

ticularly the case for the sorted polygons. 

The age estimate for RSF-I points to the fact that the RSF event occurred during a period which was char-

acterized by decreasing temperatures in western Norway and the onset of neoglaciation at the Jostedalsbre 

Plateau (Nesje and Kvamme 1991; Nesje 2009) or during the preceding Holocene Thermal Maximum 

(HTM, ~8.0-5.0 ka; cf. Winkler et al. 2016). Such a timing would correspond to one peak of RSF activity in 

nearby Jotunheimen (Matthews et al. submitted). 

The 95% confidence interval of the RSF-II age overlaps with one warmer period (Bølling-Allerød intersta-

dial ~14.7-12.9 ka) and two climatic deteriorations, the Older Dryas between 14.1-13.8 ka (Olsen 2002) and 

the Younger Dryas (YD) 12.9-11.7 cal ka BP (Lohne et al. 2013). The negative skewness supports the ces-

sation of rock falls and slope stabilization during the beginning of the YD. Due to the RSF size and the 

absence of other possible sources of boulders we consider the RSF to have occurred as a single event. The 

skewness however, leaves the possibility of several consecutive RSFs within a short time. Prolonged warm 

periods prior the YD probably led to permafrost degradation and weakening of the slope. McColl (2012) 

and Matthews et al. (submitted) point out that RSFs can also be connected to warming climate, when snow 

melt and permafrost degradation are enhanced.  

Our SHD RSF ages support the findings of other studies that detail the occurrence of intensified (rock-

)avalanche activity during the Lateglacial Interstadial, the YD and the second half of the Holocene (cf. Nesje 

et al. 1994b; Blikra et al. 2006; Longva et al. 2009). The recently reported causes of small rock-slope failures 

in the Holocene from Matthews et al. (submitted) in Jotunheimen, underpin the role of permafrost degra-

dation in the context of warmer climate and lend support to our findings. Potential causes of RSFs are 

manifold and comprise glacial debuttressing, earthquakes or climate triggering, including permafrost degra-

dation, enhanced precipitation, increased cleftwater pressure and freeze thaw activity (cf. Dawson et al. 

1986; McColl 2012; Ballantyne et al. 2013; Wilson and Matthews 2016). All mentioned factors do not nec-

essarily act in isolation, they may operate in various combination across longer time scales, where cause and 

effect are hard to distinguish (McColl 2012; Ballantyne and Stone 2013).  

The results from this study indicate that RSFs do not necessarily occur shortly after deglaciation (Nesje et 

al. 1994b) as stated by others (e.g. Cruden and Hu 1993). Furthermore, we reject earthquakes as a major 

trigger because the magnitude of earthquakes appears to be too low to trigger small RSFs in inland Norway, 
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in contrast to the more active coastal regions (cf. Matthews et al. submitted). In concert with McColl (2012) 

and Pánek et al. (2016) we consider our RSFs to have occurred during warm phases in the Holocene and 

the Lateglacial, namely the HTM and the Bølling-Allerød interstadial. During these periods water pressures 

likely increased during snow melt periods, permafrost degradation and heavy precipitation (Blikra et al. 2006; 

cf McColl 2012).  

Several periods of climatic cooling, including the YD, the Erdalen event (9100 ± 200 14C yr BP), the Finse 

event (~7600 14C yr BP) and the Neoglacial (~6 ka) (Sejrup et al. 2000; Matthews and Dresser 2008; Nesje 

2009), seem not to have triggered any activity at the studied landforms above 1450 m a.sl.. This is despite 

of the occurrence of YD moraines at 1400/1500 m a.s.l. south of Lesjaskog, close to our study area (Fol-

lestad 2007). Even during the Neoglacial maximum of the Little Ice Age, when most south Norwegian 

glaciers reached their maximum extent since deglaciation in the early Holocene (e.g. Matthews and Dresser 

2008; Nesje 2009), the Blåhø landforms were not reactivated. However, Matthews et al. (2014) show that 

other landforms in the area, such as ice-cored ridges re-formed during this period. The non-reactivation of 

the studied landforms can only be explained by their strong structural stability, which was probably deter-

mined prior to the LGM. 

Conclusion 

This study gives first indications of geomorphic footprints of late Quaternary cold events in Ottadalen, 

Norway. This paper demonstrates that new local high-precision age-calibration equations are suitable for 

age determination of boulder-dominated landforms. We provide valuable insights into the environmental 

modifications between the LGM and the YD/early Holocene transition. By successfully applying high-pre-

cision SHD on a variety of periglacial landforms, we obtained exposure ages from 19137 ± 908 to 5316 ± 

731 years. The following conclusions can be drawn from the present study: 

(1) The landforms above 1450 m a.s.l. most likely stabilized within the cold phase of the Karmøy/Bre-

manger readvance (~18.5-16.5 ka). Our results indicate severe periglacial conditions occurred ~19 ka, 

which is in contrast to the inferred ice coverage at that time. 

(2) The lower lying RSFs likely occurred during warm phases during the Holocene Thermal Maximum 

and the Bølling-Allerød interstadial (~14.7-12.9 ka). This does not support the general notion that 

rock-slope failures mostly occur a few millennia after deglaciation. 

(3) Late Glacial and Holocene cold periods affected those landforms in lower lying areas, but did not 

reactivate those above 1450 m a.s.l. It appears that climatic cooling, possibly assisted by limited mois-

ture availability, was insufficient to reactivate or substantially modify those landforms within the last 

~16 ka. We demonstrate that the landforms investigated are essentially relict, with only limited recent 

activity. 

(4) Our results have wider implications on the glaciation history of the area. Instead of the inferred ice 

coverage above 1450 m a.s.l. at 15.0 ± 1.0 10Be ka, it appears that the landforms at this elevation were 
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ice free since up to~19 ka. We infer that the studied landforms were created before the LGM and 

either survived beneath cold-based ice or on nunataks. 
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Introduction
The glacial history of Scandinavia and the reconstruction of its 

past climate variability has been a research focus in excess of 100 

years (e.g. Blytt, 1876; Hughes et al., 2016; Mangerud, 1991; 

Marr and Löffler, 2017; Patton et al., 2016, 2017; Stroeven et al., 

2016). Much of the research conducted in (southern) Norway has 

explored glacier fluctuations aiming to understand climate vari-

ability since the Last Glacial Maximum (LGM, 26.5–20 ka, Clark 

et al., 2009; see Matthews, 2013; Nesje, 2009; Nesje and Dahl, 

1993). Particular interest has been given to the Holocene and neo-

glacial events (or ‘Little Ice Age’-type events, see Matthews and 

Briffa, 2005) in order to improve our knowledge of the magnitude 

and frequency of glacier oscillations (Matthews and Dresser, 

2008; Matthews et al., 2013; Nesje et al., 2008; Solomina et al., 

2015; Wanner et al., 2008, 2011).

A variety of methods and approaches have been utilized for 

reconstructing Holocene cold events. Related studies often focus 

on establishing Holocene glacier chronologies, for example, by 

glaciolacustrine and glaciofluvial sediment stratigraphy (e.g. 

Matthews et al., 2000; Nesje et al., 2001), relative-age dating of 

moraine sequences using lichenometry or Schmidt hammer 

(Bickerton and Matthews, 1993; Erikstad and Sollid, 1986; Evans 

et al., 1994; McCarroll, 1989a, 1989b; Matthews, 2005; Shakesby 

et al., 2004) or terrestrial cosmogenic nuclide dating (TCND; 

Böhme et al., 2015; Matthews et al., 2008; Shakesby et al., 2008). 

The recently developed Schmidt-hammer exposure-age dating 

(SHD) method offers the opportunity to accurately date boulder-

dominated periglacial landforms (see Marr et al., 2018; Matthews 

and Owen, 2010; Wilson and Matthews, 2016; Winkler et al., 

2016). By contrast to other dating methods such as TCND, the 

Schmidt hammer constitutes a cost-efficient, time-effective and 

reliable instrument for obtaining numerical ages from landforms 

using calibration curves based on control points of known age 
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(Matthews and McEwen, 2013; Shakesby et al., 2011; Tomkins 

et al., 2018b). According to Shakesby et al. (2011), SHD is par-

ticularly suited for age assessment of Holocene landforms such as 

the ones investigated in this study.

Nevertheless, little attention has been given to the geomorpho-

logical impact of Holocene climate variability. Its heritage is 

retained in the form of periglacial boulder-dominated landforms 

that may act as tools for reconstruction of climatic fluctuations 

since the LGM (Matthews et al., 2013; Winkler et al., 2016). 

Determining the age of these landforms is, however, crucial in 

terms of correct assessment and interpretation of landscape devel-

opment and relating any obtained age constraints for geomorpho-

logical processes to their inherited palaeoclimatologic signal 

(Matthews et al., 2013; Wilson and Matthews, 2016). Despite 

their reputation as valuable palaeoclimatic proxies for Holocene 

climate variations (Matthews et al., 2013; Winkler et al., 2016), 

this potential has been largely left unexplored in the northwestern 

fjord region of South Norway. Alongside few older studies on 

late-Holocene moraine sequences (e.g. Erikstad and Sollid, 1986; 

Evans et al., 1994), work on moraines and rock avalanches by 

Longva et al. (2009) and Böhme et al. (2015), as well as rock-

slope failures and rock avalanches by Bøe et al. (2004), Blikra 

et al. (2006) and Hermanns et al. (2017), constitute few excep-

tions. The chronologies obtained remain, however, largely tenta-

tive and no numerical age data that could be used to reconstruct 

the Holocene landscape evolution of Geirangerfjord and its tribu-

tary valleys are available for our study area in Opplendskedalen.

Few studies on Holocene climate variability and related 

geomorphological activity have been carried out in the north-

western fjord areas of South Norway, especially in the (inner) 

Nordfjord (McCarroll and Nesje, 1993; Matthews et al., 2016; 

Rye et al., 1997), the Sognefjord (Nesje and Whillans, 1994) 

and other fjords (see Blikra et al., 2006). By contrast, Geirang-

erfjord and its tributary valley Opplendskedalen remain largely 

unexplored despite their high scenic and touristic value as a 

UNESCO world heritage site since 2005. Regional and local 

differences in frequency and magnitude of neoglacial events 

are to be expected, but their spatial and temporal relationships 

largely remain elusive (cf. Kirkbride and Winkler, 2012; Win-

kler and Matthews, 2010).

We conducted research on various boulder-dominated land-

forms, including small rock-slope failures (RSF), a pronival ram-

part (PR), a moraine ridge (MO) and bedrock outcrops (BR). With 

our aim to establish chronological control of small rock-slope 

failures, it is important to note that small events often remain 

unrecorded in comparable studies leading to their potential under-

representation in related data collections (Matthews et al., 2018). 

In addition, only smaller events that occurred during the last 1000 

years may be recorded because they are prone to erosional 

removal (Böhme et al., 2015). The glaciers in the region are rela-

tively small meaning that they potentially respond rapidly to cli-

mate changes. This offers the possibility to detect smaller changes 

of glacier expansion (e.g. in form of moraines) and obtain a higher 

resolution than at larger glaciers (Dahl et al., 2003). Our specific 

study objectives were as follows:

1. To calculate an SHD calibration curve for Opplendske-

dalen and determine accurate and precise surface exposure 

ages for the landforms investigated;

2. To establish a mid-/late-Holocene chronology of cold 

events for Opplendskedalen;

3. To explore the regionally specific relationship between 

landform dynamics and palaeoclimatic conditions during 

the Holocene;

4. To assess the sensitivity of periglacial landforms in a mari-

time fjord region with regard to past and present climate 

change.

Study area
The studied landforms are located at or near Dalsnibba (1476 m 

a.s.l., Figure 1) in northwestern South Norway (62°4′43 N; 

7°17′35 E). Dalsnibba is located in Opplendskedalen on Geirang-

erfjellet in southeastern Møre og Romsdal. It exhibits a prominent 

peak and is a tourist destination offering famous views towards 

Geirangerfjord. The gross morphology of the region was strongly 

affected Quaternary glaciations. Well-developed glacial valleys 

and deep fjords are the dominant landforms (Böhme et al., 2015). 

The gentle paleic surfaces above deeply incised fjords and valleys 

with smooth mountain peaks ranging from ~1500 to 1800 m a.s.l. 

are considered to represent the preglacial land surface (Klemsdal 

and Sjulsen, 1988; Nesje and Whillans, 1994). Dalsnibba is char-

acterized by gently undulating surfaces towards the north and 

east, an increasingly steep slope to the south and a very steep 

north-western slope.

The study area is located in the Precambrian basement and so-

called Western Gneiss Region. The young and old control points 

and all landforms sampled in this study consist of metamorphic 

bedrock of granitic gneiss and migmatite (Tveten et al., 1998).

The climatic conditions are typical for the low-alpine and mid-

dle-alpine elevational belts in the maritime western part of Nor-

way (Löffler et al., 2006). The mean annual temperature (MAAT) 

of 2.6°C (1961–1990) is derived from the closest climate station 

Grotli (872 m a.s.l.) about 20 km east of Dalsnibba (data: met.no). 

The 1 km gridded MAAT normal provided by the SeNorge Data-

base for Dalsnibba suggest MAAT between 0.0°C and 2.0°C 

(1961–1990). The mean annual precipitation (1961–1990) ranged 

between 2000 and 3000 mm/yr (http://www.senorge.no). The 

mean number of days with a snow depth of >25 cm and >5 cm 

was 200–350 from 1971 to 2000 (http://www.senorge.no). There-

fore, a somewhat mild periglacial climate with non-permafrost 

conditions is indicated.

The pattern of glacier retreat following the LGM in the study 

area is relatively well established. Deglaciation reached the inner 

parts of Storfjord during the Bølling-Allerød interstadial (~14.7–

12.9 ka) where the glacier probably had several short-lived still 

stands in the Geirangerfjord (Longva et al., 2009). During the 

Younger Dryas (YD, 12.9–11.7 cal. ka BP, Lohne et al., 2013) 

glaciers readvanced and created prominent terminal moraines at 

the mouth of the Geirangerfjord (Longva et al., 2009). The maxi-

mum glacier extent was probably reached about 10.5 ± 0.2 14C ka 

BP (Fareth, 1987). Subsequently, the glaciers retreated rapidly 

and the fjords were ice free around 500 years later (Longva et al., 

2009). The time of deglaciation following the YD at the fjords in 

western Norway was generally between 11.2 ± 0.4 and 10.9 ± 

0.2 cal. ka BP (cf. Nesje and Dahl, 1993; calibrated data from 

Hughes et al., 2016). Permafrost was present at high elevations 

during the LGM (Etzelmüller et al., 2003) and probably reached 

down to sea-level during the YD in western Norway (Blikra and 

Longva, 1995). Striations at the valley bottom (VB) of Opplend-

skedalen indicate that the latest ice flow was directed towards the 

fjord mouth. There are still small glaciers near the study area, the 

closest being Skjerdingdalsbreen southwest of the investigated 

MO and VB bedrock (Erikstad and Sollid, 1986). However, there 

is only scarce information about Holocene climate variations after 

deglaciation and melting of the last ice sheet remnants in Opp-

lendskedalen by comparison to the adjacent Jostedalsbreen, 

Jotunheimen and Breheimen regions (e.g. Matthews, 2013; Mat-

thews and Dresser, 2008; Nesje, 2009; Shakesby et al.,2004, 

2007; Winkler et al., 2016).

Landforms

We investigated different periglacial boulder-related landforms of 

variable size and additionally bedrock and a moraine, none 

described or studied previously. Schmidt hammer measurements 
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were carried out at eight sites in an altitudinal range between 600 

and 1230 m a.s.l. (Figure 2). The environmental and lithological 

conditions of these landforms and the control points are largely 

comparable promising successful application of SHD age assess-

ment (Matthews and Winkler, 2011). The rock-slope failures 

investigated are small features matching the criteria of Matthews 

et al. (2018). The rock-slope failures shared compact and consis-

tent depositional fans with coarse, angular boulders. The studied 

landforms did not show any evidence of post-depositional distur-

bance and are largely covered by mosses and lichens.

Small rock-slope failure I (RSF-I) is located at 1197 m a.s.l. 

(62°02′11 N; 7°17′19 E) at the foot of a steep bedrock wall facing 

south with a typical failure scar (Wilson, 2004). A curved ridge-

like boulder accumulation terminates the fan (snow covered in 

July 2017, Figure 2a) with a length of ~30 m, a width of ~7 m and 

a height of 1 m. The entire rock-slope failure zone covers an area 

of about 300 m2. Boulder sizes are largely uniform (30–70 cm), 

although sizes on the distal slope are somewhat smaller. Proximal 

to the terminal ridge, larger boulders (>2 m, up to 4 m in diame-

ter) have been deposited.

Rock-slope failure II (RSF-II) is located slightly east of Dal-

snibba (62°02′06 N, 7°18′19 E) at an altitude between 1230 and 

1050 m a.s.l. with a total size of RSF-II is ~0.3 km2. The deposi-

tional fan was subdivided into three separate fans following 

visual appearance in the field and aerial image interpretation 

(Figures 2b and 3).

The uppermost, very steep (~36°) south-facing bedrock cliff is 

the source of the rock-slope failure. The first debris fan (RSF-II 

first fan) consists of two debris areas (west and east) each with a 

length of ~80 m. The boulders were rather unstable, ranging from 

5 cm to >2 m in diameter and generally smaller than on the lower 

elevated fans. RSF-II first incorporates some visually fresher 

boulders by comparison to those on the older fans (~2 m thick-

ness). This site was partly inaccessible and only 100 boulders 

could be measured.

The second bedrock cliff (1203 m a.s.l.) is intersected by two 

channels directing boulders into the second debris fan (RSF-II 

second fan). The eastern part of the fan is characterized by much 

larger blocks than its western counterpart albeit average boulder 

size is between 40 and 70 cm. These debris fans below this bed-

rock cliff have a length of ~70 m and a thickness of 2 m. The fan 

terminates at the third bedrock cliff which is at 1080 m a.s.l.

The third debris fan (RSF-II third fan) is located below a sta-

ble, vegetated ridge below the third bedrock cliff (1080 m a.s.l.). 

This cliff subdivides the debris into three smaller fans which we 

grouped together to RSF-II third fan. The debris fan terminates at 

an elevation of ~1050 m a.s.l. and is around 45 m long and 2 m 

thick. RSF-II third fan has mostly boulders between 50 and 70 

cm, but the eastern part incorporates larger and fresher blocks 

(>3 m). The fan terminates at a near-horizontal terrace which 

consists of stable boulders and bedrock.

RSF-III is located in a cirque next to a waterfall at the western 

foot of Dalsnibba (62°03′44 N; 7°16′18 E) and stretches from 

~700 to 600 m a.s.l. (Figure 2c). Above the small rock-slope fail-

ure, a bedrock cliff with a failure scar is visible, facing south west. 

The debris fan has a length of ~100 m and a thickness of ~1–2 m. 

Figure 1. Rock-slope failures and other geomorphological features selected for SHD in the Geirangerfjellet, southeast Norway (source: http://
www.geonorge.no).
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The debris fan is divided into two parts which are separated by a 

downslope aligned stable vegetation line. The average boulder 

size is between 30 and 80 cm. At the foot of the rock-slope failure, 

mostly bigger blocks with diameters of <3–4 m are present. It 

seems that due to its steepness (~40°), boulders from the headwall 

stabilize further downslope. A lobate form with a height of ~1 m 

terminates the rock-slope failure debris.

The investigated MO is situated at the south western foot of 

Dalsnibba, about 1 km west of Djupvatnet (62°01′27 N; 7°16′01 

E) at 1166 m a.s.l. (Figure 2d). The moraine faces north-east has 

a length of ~120 m, a height of ~2.5 m and a width of ~10 m. The 

proximal side of the moraine has a slope angle of ~9° and the 

distal side of ~22°. MO is located in the foreland of an outlet of 

Skjerdingdalsbreen which supposedly underwent an advance dur-

ing the ‘Little Ice Age’ (LIA). Erikstad and Sollid (1986) licheno-

metrically dated moraines at a different outlet of Skjerdingdalsbreen 

~1.6 km south east of our study site and obtained an estimated age 

of ~1750 CE for the maximum extent during the LIA. The 

moraine investigated is the one which is located closest to the val-

ley head. Apparently judging from its position, MO is part of a 

moraine complex within the maximal LIA expansion. The 

moraine is characterized by a marked variability of boulder sizes. 

There is a large amount of small boulders, also pebbles and 

gravel; the average boulder size varies between 20 and 30 cm, and 

boulders greater than 60 cm are rare.

PR is located ~7 km south east of Dalsnibba (62°00′26 N; 

7°23′31 E) at 964 m a.s.l. (Figure 2e). Here, we define PRs as 

debris ridges which form at the downslope limit of perennial or 

semi-perennial snowbeds at the foot of bedrock cliffs (Hedding, 

2016). The bedrock cliff of 15 m height faces north-east and has a 

gradient of ~40°. The debris fan (snow covered during field work 

Figure 2. (a) View of rock-slope failure I debris towards the east. (b) View of the rock-slope failure II towards the north. (c) View of rock-slope 
failure III towards the north-east. (d) View of down-valley into Opplendskedalen towards the east, with the moraine ridge in the centre of the 
picture. (e) View of pronvial rampart with headwall. (f) View of down-valley into Opplendskedalen with the investigated valley bottom in the 
foreground.

Figure 3. Aerial photo of rock-slope failure II (source: http://
www.norgeibilder.no). The boundary lines represent the transitions 
between the different debris fans of the rock-slope failure.
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in July 2017) has a length of ~100 m and a width of ~60 m. PR is 

located at the northwestern termination of the fan and has a length 

of about 90 m, width of ~15 m and height 3–4 m, with a proximal 

surface dip of 7–9° and a distal of 11–13°. The rampart appears to 

have been stable for a considerable time due to the weathered, 

lichen- and moss-covered boulders and the accumulation of fine 

matrix with plant communities at sheltered positions. Boulder 

sizes vary largely between 30 and 60 cm, less than 10 of the larg-

est boulders observed were >2 m in diameter. Ten metres below, 

the snow fan solifluction lobes (facing north-east) indicate active 

slope processes.

From the VB area south east of Dalsnibba at ~1045 m a.s.l. 

(62°02′28 N; 7°15′01 E) in the centre of Opplendskedalen, sev-

eral bedrock surfaces were measured (Figure 2f). The glacially 

abraded bedrock surfaces occur at an elevation of up to 50 m 

above the VB. Surfaces in the VB are largely horizontal but 

become steeper towards the Geirangerfjord and the valley-side-

walls. The measurements at the VB were carried out ~1 km north 

of MO. The present watershed crosses the VB.

Methodology and research design

SHD

In this study, we used an electronic RockSchmidt N-Type (Pro-

ceq, 2014) with an impact energy of 2.207 Nm that was calibrated 

to the manufacturer’s specifications. The rebound (R) values 

yielded by the RockSchmidt represent the measured rebound 

velocity of the plunger. On each control point and landform, we 

measured 150 boulders if possible, with two impacts on each. At 

least 10 different plots were used for measuring bedrock surfaces. 

Relatively large sample sizes help to minimize possible sources of 

error such as lithological heterogeneities, microclimatic variabili-

ties, post-depositional disturbance or other factors, other than 

exposure to subaerial weathering, that influence the results 

obtained (Winkler, 2005, 2009). Impact points near cracks, edges, 

visible structural rock surface weaknesses, unusual lithology and 

cover by lichens or mosses were avoided (cf. Matthews and 

Owen, 2010; Shakesby et al., 2006). The measurements were car-

ried out by a single operator during dry conditions on near-hori-

zontal surfaces of stable boulders (>30 cm in diameter) which 

were not prepared before measuring.

The yielded R-values were statistically analysed applying R 

statistic software following standard statistical procedures. Fre-

quency distributions were plotted to show R-value distribution, 

because bi-or polymodal distributions could be associated with 

post-depositional disturbance (McCarroll, 1989a; McCarroll and 

Nesje, 1993; Winkler, 2009). The standard statistical analysis 

comprised calculation of standard mean, standard error of the 

mean (SEM) at 95% confidence interval (α = 0.05), skewness, 

kurtosis and test of normality (Shapiro–Wilk test). Sites with 

overlapping 95% confidence intervals were interpreted on the 

premise that their age does not significantly differ from each other 

(Wilson and Matthews, 2016). The Mann–Whitney test was 

applied to determine statistical significance between pairs of sites.

Control points and age calibration

Establishing a local calibration curve based on surfaces of known 

age allowed us to determine exposure ages for boulder surfaces of 

unknown age. Two road cuts at Dalsnibba at elevations of 1203 m 

a.s.l. (young control point I) and 1347 m a.s.l. (young control point 

II) served as our young control points. They were 2 and 4 years old, 

respectively. At each young control point, 100 boulders were mea-

sured. Due to the lack of existing numerical ages for landforms in 

Opplendskedalen, it was not possible to establish an old control 

point in close proximity to Dalsnibba. Therefore, data for the old 

control point were taken from a bedrock locality at Alnesdalen, ~50 

km north-east from our study site, with a reported deglaciation age 

of ~11.5 cal. ka BP and a mean R-value of 40.3 ± 2.4 (cf. Matthews 

et al., 2016). However, these values were obtained by a mechanical 

Schmidt hammer and have to be converted to RockSchmidt R-val-

ues which are generally 9–10 units higher (Winkler and Matthews, 

2014). This approach results in a mean R-value of 50.3 for the old 

control point used in this study. The magmatic gneiss bedrock at 

Alnesdalen exhibits similar lithological (modern) surface hardness 

as the migmatic gneiss at Dalsnibba.

Here, we assume a linear R-value age relationship between the 

young and old control points following similar studies applying 

high-precision calibration curves for SHD (e.g. Matthews and 

Owen, 2010; Matthews and Winkler, 2011; Shakesby et al., 2006; 

Wilson et al., 2017), all referring to Holocene (<11.7 ka) times-

cales. This linear relationship seems a valid presumption as for-

mer studies on gneiss bedrock confirmed such linear relationship 

(e.g. Matthews and Owen, 2010) and resistant rock types show 

slow and close to linear weathering characteristics in periglacial 

environments during the Holocene (André, 1996; Colman, 1981; 

Nicholson, 2008). There is evidence that this linear relationship 

may even extend beyond Holocene timescales (Kłapyta, 2013; 

Sánchez et al., 2009; Tomkins et al., 2016, 2018b; Winkler and 

Lambiel, 2018).

On the basis of the young and old control point values (Table 

1), the local calibration equation was calculated, which is a stan-

dard linear regression:

y a bx= +  (1)

where y is the surface age in years, a is the intercept age (acquired 

by substitution in the calibration equation), b is the slope of the 

calibration curve and x is the mean R-value. The b coefficient is 

described as:
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with y1 and x1 representing the age and mean R-value of the old 

control point, respectively, whereas y2 and x2 represent the age 

and mean R-value of the young control point, respectively.

The 95% confidence interval for a SHD age, comprising the 

total error (Ct), consists of the error of the calibration curve at the 

Table 1. Schmidt hammer R-values and statistics for the control sites. Mean R-values are obtained from the means of two impacts on each 
boulder, and 95% confidence intervals were calculated from the number (n) of sampled boulders.

Control point Age (years)a R-value σ 95% CIb Kurtosis Skewness Boulders (n)

Young I 2 70.97 5.51 0.77 –0.24 –0.54 100

Young II 4 69.65 4.84 0.67 –0.46 –0.25 100

Young mean 3 70.3 5.22 0.51 –0.37 –0.38 200

Old 11,500 40.3 – 2.4 – – –

CI: confidence interval.
aAge of the young control point from field observation. Age of the old control point from Matthews et al. (2016).
bMean of R-values with 95% confidence intervals (α = 0.05).
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point related to the dated sample (Cc) and to the sampling error of 

the sample itself (Cs):

C C C
t c s
= √ +( )2 2

  (3)

The error of the calibration curve is represented by the errors 

of the control points and their age differences:
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with Co expressing the 95% confidence interval of the old control 

point in years, Cy is the 95% confidence interval of the young 

control point in years. Ro, Ry and Rs are associated to the mean 

R-value of the old and young control points and the sample. The 

sampling error of the sample itself is calculated incorporating  

the b coefficient, Student’s t statistic, standard deviation (s) of the 

sample’s R-value and the sample size (n):
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Results

Control points

The Schmidt hammer results from the control sites are displayed 

in Table 1. The mean R-values for the young control point I and 

the young control point II are in close agreement. As both young 

control points share overlapping 95% confidence intervals, and 

fail the Mann–Whitney test (p = 0.004), they have no statistically 

significant difference allowing to amalgamate the data from both 

sites into a single young control point. This young control site has 

a mean R-value of 70.3 ± 0.5 and differs about 20 units from the 

old control site yielding a mean R-value of 50.3 ± 2.4 as reported 

by Matthews et al. (2016). The wider 95% confidence interval 

indicates greater variability in R-values because long-term expo-

sure to surface weathering intensifies existing lithological inho-

mogeneities in comparison with young surfaces (Winkler and 

Matthews, 2014).

The frequency distributions of the R-values for the amalgam-

ated young control point are shown in Figure 4. The histogram 

displays a small number of low R-values and a narrow tail that 

passes the Shapiro–Wilk test for normality. The calibration curve 

was derived from the equations given above with y = 40,414.955 

– 574.85x (Figure 5).

R-values and landforms

R-values for the investigated landforms are summarized in Table 

2. All mean R-values fall between the young and old control 

points and are closer to the young control point. The R-values are 

generally consistent; they share low 95% confidence intervals and 

standard deviations. All R-value distributions fail the Shapiro–

Wilk test for normality, are negatively skewed and show various 

degrees of kurtosis. The mean R-values with 95% confidence 

interval range from 66.4 ± 0.60 for RSF-II first fan to 57.3 ± 

0.94 for VB. The 95% confidence intervals are largest for MO and 

smallest for PR. Notably, the three depositional fans of RSF-II 

(Figure 3) do not have overlapping confidence intervals. How-

ever, three rock-slope failures (RSF-I, RSF-II third fan and RSF-

III) do have overlapping confidence intervals. The majority of 

pairs fail the Mann–Whitney test and are therefore significantly 

different from each other (Table 3). There appears to be no spatial 

relationship between the pairs passing the Mann–Whitney test. 

The three depositional fans of RSF-II represent significantly dif-

ferent age populations.

Figure 4. Frequency distributions of Schmidt hammer R-values of the (amalgamated) young control point.

Figure 5. Calibration curve and calibration equation for the 
western fjord area calculated from the young and old control point.
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The frequency distributions (Figure 6) largely show compa-

rable characteristics for the different landforms. Most show 

narrow tails with one peak and few boulders with low R-values 

within the sample. In addition, most frequency distributions 

show near symmetry, although being negatively skewed (e.g. 

PR and RSF-II second fan). The three fans of RSF-II show the 

narrowest distributions, indicating that they were each most 

likely formed during one single event. RSF-III exhibits a rather 

platykurtic distribution with polymodal characteristics, also 

RSF-I shows more than one peak. Several histograms display 

different distributions of low R-values and indicate the pres-

ence of more weathered boulders.

SHD and landform ages

By applying the local calibration curve (Figure 5), we obtain SHD 

ages with 95% confidence interval for the different landforms 

(Table 4, Figure 6). Landform ages vary between 7.47 ± 0.73 ka 

at VB and 2.22 ± 0.49 ka for RSF-II first fan. It is noteworthy that 

the ages of the depositional fans at RSF-II increases with greater 

distance from the headwall.

Discussion

Methodological considerations

The most severe limitation of the SHD approach is the construc-

tion of the calibration curve (Matthews et al., 2014). In order to 

ensure the reliability of the calibration curve, local control points 

are vital as only they can account for lithological differences. 

Even if regional control points are used in situations when litho-

logical and surface roughness variations are comparable (Mat-

thews et al., 2011), non-local control points appear to be a 

weakness of previous studies. The lack of a local old control site 

is, therefore, a potential weakness of our calibration curve.

The R-values for the old control point were taken from Mat-

thews et al. (2016) and were obtained from a location with com-

parable lithology. Obtaining the old control point from a non-local, 

but regional source generally lowers the precision of SHD ages. 

Nonetheless, due to the lithological homogeneity and the demon-

strated interconvertibility of R-values between the mechanical 

and electronic Schmidt hammer (Winkler and Matthews, 2014), 

we regard our approach as legitimate. The range of the mean 

R-values between the control sites is similar to other SHD studies 

(e.g. Matthews et al., 2014; Wilson and Matthews, 2016), we 

therefore consider our calibration curve as robust. In addition, 

Matthews et al. (2014) successfully applied SHD with a non-local 

old control point. The age error of the control points is considered 

insignificant compared with statistical and other inaccuracies 

connected to this method (see Matthews et al., 2014). The reli-

ability of our calibration curve is supported by comparable results 

obtained for SHD control points at Tafjord with similar lithology 

(Wilson et al., 2017).

The negligible R-value divergence (Table 1) and the similar 

characteristics (Figure 4) between the two young control points 

justify the amalgamation of data from both control points. Obtain-

ing the R-values for the young control points from road cuts is, 

however, not unproblematic. The R-values do not necessarily 

reflect fresh and unweathered material because subsurface weath-

ering has to be taken into account (Winkler et al., 2016). Further-

more, empirical results show that freshly exposed bedrock at road 

cuts does not inevitably yield R-values expected from unweath-

ered rock (Matthews et al., 2016). In turn, such freshly exposed 

bedrock may probably better reflect the original conditions when 

boulders become exposed for the first time (Matthews and McE-

wen, 2013; Matthews et al., 2014; Winkler et al., 2016). There-

fore, we consider our young control site to be reasonably reliable 

despite a few weathered boulders and assign an age of 3 years for 

it. It appears to be a general characteristic that relatively freshly 

exposed rocks share narrow 95% confidence intervals and stan-

dard deviations. Lithological differences in older rocks become 

more exaggerated with longer exposure to surface weathering 

leading to a higher spread of R-values and reflected in wider 95% 

confidence intervals and higher standard deviations (Aydin and 

Basu, 2005; Matthews et al., 2013; Winkler and Matthews, 2014).

The effect of snow patches on rock weathering and its influ-

ence on Schmidt hammer results continues to be enigmatic (e.g. 

Table 2. Schmidt hammer R-values, standard deviation, kurtosis, 
skewness and n for the studied landforms.

Site Mean ± 95% CIa σ Kurtosis Skewness Boulders (n)

RSF-I 58.8 ± 0.87 7.65 0.13 –0.34 150

RSF-II first 66.4 ± 0.60 6.13 0.33 –0.54 200

RSF-II second 63.4 ± 0.54 6.68 –0.04 –0.35 300

RSF-II third 60.1 ± 0.53 8.18 –0.34 –0.40 450

RSF-III 58.0 ± 1.11 9.76 –0.41 –0.32 150

MO 62.5 ± 1.30 9.29 0.08 –0.7 100

PR 60.5 ± 0.45 8.34 0.23 –0.59 150

VB 57.3 ± 0.94 8.29 –0.2 –0.56 150

RSF: rock-slope failure; MO: moraine ridge; PR: pronival rampart; VB: val-
ley bottom; CI: confidence interval.
aMean of R-values with 95% confidence intervals (α = 0.05).

Table 3. Results of Mann–Whitney tests of differences between 
pairs.

Pairs of sites H0
a αb Boulders (n)

RSF-I – RSF-II first Reject <2.2e–16 350

RSF-I – RSF-II second Reject <2.2e–16 450

RSF-I – RSF-II third Reject 0.0076 600

RSF-I – RSF-III Retain 0.5354 300

RSF-I – MO Reject 8.546e–08 250

RSF-I – PR Reject 0.0027 300

RSF-I – VB Retain 0.0874 300

RSF-II first – RSF-II second Reject 4.195e–13 500

RSF-II first – RSF-II third Reject <2.2e–16 650

RSF-II first – RSF-III Reject <2.2e–16 350

RSF-II first – MO Reject 2.007e–06 300

RSF-II first – PR Reject <2.2e–16 350

RSF-II first – VB Reject <2.2e–16 350

RSF-II second – RSF-II third Reject 7.406e–14 750

RSF-II second – RSF-III Reject 1.859e–15 450

RSF-II second – MO Retain 0.9496 400

RSF-II second – PR Reject 3.491e–06 450

RSF-II second – VB Reject <2.2e–16 450

RSF-II third – RSF-III Reject 0.0027 600

RSF-II third – MO Reject 2.845e–05 550

RSF-II third – PR Retain 0.334 600

RSF-II third – VB Reject <3.1e–06 600

RSF-III – MO Reject <1.9e–07 250

RSF-III – PR Reject 0.0016 300

RSF-III – VB Retain 0.302 300

MO – PR Reject 0.0026 250

MO – VB Reject 1.922e–11 250

PR – VB Reject 4.117e–06 300

RSF: rock-slope failure; MO: moraine ridge; PR: pronival rampart; VB: 
valley bottom.
aH0 = distribution of values is the same across both samples (decision 
at α = 0.05).
bAsymptotic significance level (two-tailed test).
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Ballantyne et al., 1989; Benedict, 1993). On the one hand, studies 

show that snow patches can enhance chemical weathering (e.g. 

Hall, 1993) and could influence R-values. On the other hand, 

some studies report decreasing weathering (cf. Benedict, 1993) 

under snow patches. Regarding the comparable snow coverage 

between our study sites, we consider the effect of snow patches 

influencing our results to be insignificant.

SHD age interpretation and landform development

The exposure ages generated by SHD are considered robust esti-

mates of the true landform age (Matthews et al., 2013). Land-

forms that are formed during one event and immediately stabilize, 

for example, flood berms (Matthews and McEwen, 2013) or most 

moraines (Winkler, 2014), facilitate the interpretation of the land-

form age. By contrast, SHD ages obtained from landforms show-

ing non-uniform boulder age populations may either represent 

Figure 6. Frequency distributions of Schmidt hammer R-values from all investigated landforms. Note the different scale at rock-slope failure II 
histograms.

Table 4. SHD ages from the sampled landforms. Each SHD 
age has a 95% confidence interval (Ct) derived from the 
sampling error of the landform sample (Cs) and the error of the 
calibration curve (Cc).

Landform SHD age (ka) Ct (ka)

RSF-I 6.61 0.69

RSF-II first fan 2.22 0.49

RSF-II second fan 4.00 0.51

RSF-II third fan 5.89 0.54

RSF-III 7.10 0.80

MO 4.50 0.85

PR 5.64 0.51

VB 7.47 0.73

SHD: Schmidt-hammer exposure-age dating; RSF: rock-slope failure; MO: 
moraine ridge; PR: pronival rampart; VB: valley bottom.
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complex diachronous formation histories (e.g. multiple events) or 

reflect the impact of post-depositional disturbance (French, 2007; 

Matthews et al., 2014). All landforms investigated seem to be cur-

rently inactive and field observations revealed no signs of post-

depositional disturbance. The negatively skewed R-value 

distributions infer that some boulders were already exposed prior 

to the landforms becoming stabile and indicate the dynamism of 

landform evolution. Therefore, we consider our SHD ages as 

maximum age estimates for landform stabilization. SHD ages 

consequently give minimum estimates for the onset of landform 

formation, as there were most likely older boulders beneath the 

surface boulders that we sampled (Wilson and Matthews, 2016).

Our SHD ages largely fall in the period of the Holocene Ther-

mal Maximum (HTM, ~8.0–5.0 ka, Clark et al., 2009) and the fol-

lowing mid-/late-Holocene climate deterioration and range from 

7.47 ± 0.73 ka at VB to 2.22 ± 0.49 ka at RSF-II first fan. The 

nature of the histograms (Figure 6) and the narrow confidence 

intervals point to the fact that most landforms formed during single 

events. The R-value histograms are comparable to those of many 

other landforms created by single events and distinct processes 

(Nesje et al., 1994; Winkler, 2014). Holocene moraine sequences 

studied by Aa and Sjåstad (2000) and Shakesby et al. (2004), as 

well as some of the snow-avalanche impact ramparts of Matthews 

et al. (2015) show comparable narrow-peak frequency distribu-

tions. Our frequency distributions are comparable to young ram-

parts investigated by Matthews and Wilson (2015). The somewhat 

platykurtic frequency distributions and broader confidence inter-

vals at RSF-III, MO and PR may be explained by the reactivation 

and reworking of already formed landforms or a continuing supply 

of debris following the single-event origin (Wilson and Matthews, 

2016; Winkler et al., 2016). The incorporation of pre-weathered 

boulders in reactivated landforms is a known phenomenon for 

moraines (McCarroll, 1989b). This scenario also seems to be pos-

sible for PRs (Matthews and Wilson, 2016) and for consecutive 

RSFs occurring on the same slope (El Bedoui et al., 2009). How-

ever, the smaller sample sizes on these landforms may be respon-

sible for the larger confidence intervals and standard deviations 

(Matthews et al., 2015). In agreement with other studies (e.g. Rode 

and Kellerer-Pirklbauer, 2011), we find a consistent pattern of 

negative skewness for the landforms investigated. The reactivation 

of landforms is exhibited in the negative skewness as older boul-

ders are re-mobilized by frost heave or other processes connected 

to renewed cooling (Wilson and Matthews, 2015). The SHD ages 

of VB have to be interpreted with caution as the R-values were 

obtained from different bedrock outcrops where the extent of sur-

face exposure might have been heterogeneous.

The classification of RSF-II into three different units (RSF-II 

first fan, RSF-II second fan and RSF-II third fan) from morphologi-

cal evidence proved to be consistent in terms of the statistically sig-

nificant difference of the sampled boulders between the three debris 

fans as determined by the Mann–Whitney test (Table 3). Increasing 

SHD ages towards the foot of landform was also reported from rock 

glaciers and related to continuous development and movement 

(Frauenfelder et al., 2005; Winkler and Lambiel, 2018).

Climatic implications

Cold climate periods are considered to be a trigger for landscape 

transformation with respect to boulder-dominated periglacial 

landforms (e.g. Ballantyne and Harris, 1994). Therefore, we com-

pare our results with the Smørstabbtindan cold event record pre-

sented by Matthews and Dresser (2008) for Jotunheimen (Figure 

7). This represents the best mid-/late-Holocene palaeoclimatic 

reconstruction close to our study site.

According to the SHD ages and the 95% confidence limits of 

VB (7.47 ± 0.73 ka) and RSF-III (7.10 ± 0.80 ka), the stabiliza-

tion of both landforms partly overlaps with climatic cooling 

during the ‘Finse Event’ (~8.4–8.0 cal ka BP, Nesje and Dahl, 

2001). This indicates that Opplendskedalen was ice covered until 

the end of this cold period that is recorded in several locations in 

Norway and in the Greenland ice cores (cf. Nesje, 2009). Opp-

lendskedalen probably became ice free and subjected to subaerial 

weathering after the termination of the ‘Finse Event’. This is in 

agreement with diminishing glaciers in Norway (Nesje, 2009) and 

the most limited glacier extent in Scandinavia (cf. Solomina et al., 

2015). Beside the surface exposure of the glacially abraded VB 

bedrock, the stabilization of RSF-III, RSF-I (6.61 ± 0.69 ka) and 

RSF-II third fan (5.89 ± 0.54 ka) also fall in the HTM. Böhme 

et al. (2015) report two failure surfaces of an HTM age of 7.01 ± 

1.23 ka and 7.25 ± 1.14 ka ago which occurred at the spatial 

transition from the Geirangerfjord to the Korsfjord. This supports 

the occurrence of rock-slope failures in warm periods.

This climatic transition towards the HTM, with progressively 

higher summer temperatures (~0.7°C) and/or low winter precipi-

tation (Dahl and Nesje, 1996) most likely caused permafrost deg-

radation, increased cleft-water pressure and enhanced freeze-thaw 

activity (e.g. Ballantyne et al., 2013; McColl, 2012). Among oth-

ers, these climatically induced factors are considered as important 

mechanisms triggering RSFs (Ballantyne et al., 2013; Blikra 

et al., 2006; McColl, 2012). But other potential RSF causes such 

as glacial debuttressing or earthquakes need to be considered 

(Blikra et al., 2006; McColl, 2012). However, we reject earth-

quakes as a trigger for the rock-slope failures due to the lack of 

reliable evidence (Blikra et al., 2006). Glacial debuttressing can 

also be ruled out as the main trigger due to the relatively low gra-

dient of our RSF slopes. Monocausal explanations for RSF trig-

gering are hard to determine, because all mentioned factors might 

act in distinct combinations over various time scales making it 

difficult to precisely indicate cause and effect in any case (Bal-

lantyne and Stone, 2013; McColl, 2012).

We assume that these RSFs are most likely a coupling of long-

term stress release from deglaciation combined with climatically 

induced factors related to warming as triggering mechanisms. 

Connecting RSFs to warming climate inducing decreasing perma-

frost depth, snow melt enhancement, increased precipitation and 

joint water pressure is in agreement with findings of Blikra et al. 

(2006), McColl (2012) and Matthews et al. (2018). The occurrence 

of RSFs during warm periods is supported by the timing of rock-

slope failure frequency peaks reported by Matthews et al. (2018) at 

7.38 ± 0.99 ka in Jotunheimen which corresponds with the ages of 

RSF-III and RSF-I. Also, the stabilization of RSF-II third fan is in 

agreement with a frequency peak of small rock-slope failures in 

Jotunheimen at 6.40 ± 0.77 ka (Matthews et al., 2018).

By contrast, RSF-II second fan and RSF-II first fan overlap 

with more than one cold events in the late Holocene. The surface 

boulders of RSF-II second fan probably stabilized during 

Smørstabbtindan III as inferred by their negative skewness. This 

timing corresponds with the highest frequency of RSFs during the 

Holocene observed by Matthews et al. (2018). The RSF-II first 

fan SHD age (2.22 ± 0.49 ka) overlaps with two warm and three 

cold periods (Figure 7). The relatively high number of surface 

boulders (>70) with an R-value higher than the young control 

point underlines the still ongoing debris supply from the source 

area. Due to the rather short time window for these events, we 

cannot conclusively state in which period the debris fan stabi-

lized. However, other rock failures of similar average surface age 

(2.11 ± 0.31 ka) were reported from Blåhornet in the Storfjord 

(Böhme et al., 2015). In addition, Matthews et al. (2018) identi-

fied an intensity peak at ~2.6 ka. For RSF-II second fan and RSF-

II first fan, we propose a delayed response to paraglacial stress 

release. The slope was probably weakened by prolonged warm 

periods throughout the Holocene, causing permafrost degradation 

(Cossart et al., 2014). Summarizing, our data from RSFs are in 

contrast to the concept of higher frequency in the first millennia 
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following deglaciation (Ballantyne et al., 2014) which is, for 

example, supported by Hermanns et al. (2017) in southwest Nor-

way. The temporal similarity of four out of five RSFs to the 

SRSF-enhanced frequency distribution model in the Holocene 

reported by Matthews et al. (2018) points to a climatic control for 

causes of RSF triggering.

Given the negative skew, the high modal R-value at 66–62 

(Figure 6), the PR investigated might have been ceasing its devel-

opment prior 5.64 ± 0.51 ka ago (many R-values around 54) and 

then been reactivated (see Matthews and Wilson, 2015). There-

fore, the rampart likely remained active for a considerable time 

and stabilized towards the termination of the HTM. Much of the 

accumulated coarse rock debris probably derived from the HTM 

when increased freeze-thaw activity, permafrost degradation and 

enhanced precipitation weakened the slope and increased the 

availability of debris. The mixed age of the rampart debris support 

the continuous build-up of the landform during the Holocene 

(Matthews and Wilson, 2015; Shakesby et al., 1999) and could 

have been initiated following demise of the YD glaciers. Hence, 

the rampart is significantly younger than those investigated by 

Matthews and Wilson (2015).

Following the HTM summer temperatures and precipitation 

decreased culminating in the Smørstabbtindan III cold event in 

which the SHD age of MO falls. The SHD age of the moraine of 

4.50 ± 0.85 ka, however, is problematic. The moraine appears to 

have been reactivated, according to its negative skewness. The 

ridge was likely created prior to that time and then re-mobilized 

by neoglacial events. Accepting the lichenometric dating result of 

1750 CE of Erikstad and Sollid (1986) for Skjerdingdalsbreen, 

our SHD age of ~4.5 ka is not compatible because MO is located 

within the maximal LIA expansion of Skjerdingdalsbreen. The 

overestimation of the SHD age is probably related to the rework-

ing of the landform due of glacier advances and the incorporation 

of pre-weathered boulders, which is also reported from moraines 

elsewhere (McCarroll, 1989b; Tomkins et al., 2018a). As sug-

gested by Wilson and Matthews (2016), significant landscape 

impact from Holocene cold periods like the Smørstabbtindan 

events can be inferred for former climate deteriorations. This 

would explain the presence of high and low R-values represented 

by fresh and older material. Though, the glacier outlet studied by 

Erikstad and Sollid (1986) is ~1.5 km south of the moraine 

studied here, we correlated our moraine, based on aerial images, 

with an age of ~1750 CE. This, in turn, limits our understanding 

of the dynamics of Skjerdingdalsbreen before the ‘Little Ice Age’.

Based on our results, we develop the first Holocene palaeocli-

matic chronology for Opplendskedalen. Following YD deglacia-

tion and the subsequent short warm interval, the ‘Finse Event’ 

resulted in climate deterioration in Opplendskedalen. Glaciers 

readvanced and covered the tributary valley of the Geirangerfjord 

until ~7.5 ka ago when the valley became ice free once more at the 

onset of the HTM. The HTM led to the thawing of permafrost and 

consequent slope weakening causing RSFs, processes that per-

sisted also in the time periods following the HTM. The late-Holo-

cene climate variability cannot reliably be explored based on our 

results. However, the LIA advance of Skjerdingdalsbreen is repre-

sented by the overestimated age of our moraine in form of rework-

ing an already existing moraine. In comparison with investigations 

on boulder-dominated landforms in the continental eastern part of 

southern Norway (Marr et al., 2018), the landforms studied here 

appear to have reacted more sensitively to Holocene climate vari-

ability. This is in agreement with Nesje et al. (2005) that state that 

landforms influenced by maritime climatic conditions and glaciers 

tend to be more sensitive to Holocene climate variability.

Conclusion
This study has explored the role of periglacial landforms as a pal-

aeoclimatic proxy within the Holocene in the southwestern fjord 

region of Norway with the help of SHD for the first time. We 

draw the following conclusions:

1. With new age-calibration equations for Opplendskedalen 

in southern Norway, it was possible to determine ages of 

several periglacial landforms in this area. Road cuts with 

an age of 2–4 years and glacially scoured bedrock that 

became exposed ~11.5 ka ago were used as young and old 

control points for age calibration.

2. Our SHD ages suggest that all the landforms stabilized 

during the mid-/late-Holocene, the majority during the 

HTM. We obtained SHD ages ranging from 7.47 ± 0.73 

ka from glacially abraded bedrock at the VB of Opplend-

skedalen to 2.22 ± 0.49 ka from a rock-slope failure. 

Figure 7. Plot integrating SHD ages and their total error for the studied landforms and intervals of documented climatic deteriorations since 
the early Holocene displayed in blue (data from Matthews and Dresser, 2008).
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This infers that glaciers re-advanced in Opplendskedalen 

during the ‘Finse Event’. In addition, periglacial boulder-

dominated landforms in the maritime fjord region seem to 

have reacted more dynamically to Holocene climate vari-

ability than those in continental Norway.

3. The view that rock-slope failures occur shortly after degla-

ciation is not supported by our SHD ages. The rock-slope 

failures studied here postdate YD deglaciation by at least 

~4–9 ka and occurred during warm periods (e.g. HTM).

4. The PR was probably formed after deglaciation and was 

built up over the first part of the Holocene by continuous 

rock debris supplied by its bedrock cliff source which was 

weakened by permafrost degradation. The moraine mate-

rial was likely reworked during several cold periods during 

the Holocene. During the LIA, an outlet of Skjerdingdals-

breen overrode the area, leading to the incorporation of 

older (pre-weathered) boulders in the moraine within the 

LIA maximum expansion.

5. Finally, this study shows that small boulder-dominated 

landforms are a valuable source of palaeoclimatic infor-

mation. Due to their small size and the absence of large 

glaciers in the area, it has been possible to gain insights 

into the response of the landscape to climate variability.
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Abstract 

We present new 10Be surface exposure ages from two selected locations in southern Norway. A total of five 

10Be samples allow a first assessment of local deglaciation dynamics of the Scandinavian Ice Sheet at 

Dalsnibba (1476 m a.s.l.) in southwestern Norway. The bedrock ages from the summit of Dalsnibba range 

from 13.3 ± 0.6 to 12.7 ± 0.5 ka and probably indicate the onset of deglaciation as a glacially transported 

boulder age (16.5 ± 0.6 ka) from the same elevation likely shows inheritance. These ages indicate initial 

deglaciation commencing at the end of the Bølling–Allerød interstadial (~14.7 – 12.9 kyr BP) and ice-free 

conditions at Dalsnibba’s summit during the Younger Dryas. Bedrock samples at lower elevations imply 

vertical ice surface lowering down to 1334 m a.s.l. at 10.3 ± 0.5 ka and a longer overall period of 

downwasting than previously assumed. Two further 10Be samples add to the existing chronology at Blåhø 

(1617ma.s.l.) in south-central Norway. The 10Be erratic boulder sample on the summit of Blåhø sample 

yields 20.9 ± 0.8 ka, whereas a 10Be age of 46.4 ± 1.7 ka for exposed summit bedrock predates the Late 

Weichselian Maximum. This anomalously old bedrock age infers inherited cosmogenic nuclide 

concentrations and suggests low erosive cold-based ice cover during the Last Glacial Maximum. However, 

due to possible effects of cryoturbation and frost heave processes affecting the erratic boulder age and 

insufficient numbers of 10Be samples, the glaciation history on Blåhø cannot conclusively be resolved. 

Comparing the different timing of deglaciation at both locations in a rather short west–east distance 
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Abstract: We present new 10Be surface exposure ages from two selected locations in southern Norway. A to-
tal of five 10Be samples allow a first assessment of local deglaciation dynamics of the Scandinavian
Ice Sheet at Dalsnibba (1476 m a.s.l.) in southwestern Norway. The bedrock ages from the summit
of Dalsnibba range from 13.3 ± 0.6 to 12.7 ± 0.5 ka and probably indicate the onset of deglaciation
as a glacially transported boulder age (16.5 ± 0.6 ka) from the same elevation likely shows inheri-
tance. These ages indicate initial deglaciation commencing at the end of the Bølling–Allerød intersta-
dial (∼ 14.7–12.9 kyr BP) and ice-free conditions at Dalsnibba’s summit during the Younger Dryas.
Bedrock samples at lower elevations imply vertical ice surface lowering down to 1334 m a.s.l. at
10.3 ± 0.5 ka and a longer overall period of downwasting than previously assumed. Two further 10Be
samples add to the existing chronology at Blåhø (1617 m a.s.l.) in south-central Norway. The 10Be
erratic boulder sample on the summit of Blåhø sample yields 20.9 ± 0.8 ka, whereas a 10Be age of
46.4 ± 1.7 ka for exposed summit bedrock predates the Late Weichselian Maximum. This anoma-
lously old bedrock age infers inherited cosmogenic nuclide concentrations and suggests low erosive
cold-based ice cover during the Last Glacial Maximum. However, due to possible effects of cryotur-
bation and frost heave processes affecting the erratic boulder age and insufficient numbers of 10Be
samples, the glaciation history on Blåhø cannot conclusively be resolved. Comparing the different
timing of deglaciation at both locations in a rather short west–east distance demonstrates the complex
dynamics of deglaciation in relation to other areas in southern Norway.

Kurzfassung: Es werden neue 10Be Oberflächenexpositionsdatierungsalter zweier ausgewählter Lokalitäten in Süd-
norwegen vorgestellt. Insgesamt fünf 10Be Altersdatierungen erlauben eine erste Bewertung der
lokalen Deglaziationsdynamiken des Skandinavischen Eisschildes auf Dalsnibba (1476 m ü.d.M.,
über dem Meeresspiegel) im westlichen Südnorwegen. Die Expositionsalter des anstehenden
Grundgesteins zwischen 13.3±0.6 und 12.7±0.5 ka vom Gipfel der Dalsnibba indizieren den Beginn
der Deglaziation, da das Alter des glazial transportierten Blocks (16.5±0.6 ka) von ähnlicher Höhen-
lage stammt und dieser wahrscheinlich eine ererbte kosmogene Nuklidkonzentration besitzt. Dies
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deutet auf eine beginnende initiale Deglaziation am Ende des Bølling–Allerød interstadial (∼ 14.7–
12.9 kyr BP) und einen eisfreien Gipfel der Dalsnibba während der Jüngeren Dryas hin. Exposition-
salter für Grundgestein in niedrigerer Höhenlage weisen auf ein anschließendes Absinken der ver-
tikalen Eisausdehnung auf 1334 m ü.d.M. um 10.3 ± 0.5 ka sowie auf eine länger anhaltende Eiss-
chmelzperiode als bisher angenommen hin. Es werden zwei zusätzliche Datierungen zur bereits beste-
henden Deglaziationschronologie von Blåhø (1617 m ü.d.M.) im zentralen Südnorwegen präsentiert.
Das 10Be Alter eines erratischen Blocks auf Blåhø ergibt 20.9 ± 0.8 ka und das erzielte Alter von
46.4±1.7 ka eines Grundgesteinsaufschluss am Gipfel liegt zeitlich vor dem Spätweichsel-Maximum
(LGM). Das ungewöhnlich hohe Grundgesteinsalter lässt sich auf eine ererbte kosmogene Nuklid-
konzentration sowie eine Bedeckung mit wenig erosivem, kaltbasalen Eis auf Blåhø während des
LGM schließen. Allerdings ist eine abschließende Bewertung der Vergletscherungsgeschichte Blåhø
schwierig, da mögliche Effekte von Kryoturbation und Frosthebungsprozessen das Alter des Blocks
beeinflusst haben könnten und die Anzahl der Expositionsdatierungen unzureichend ist. Der Vergleich
des unterschiedlichen Beginns der Deglaziation in beiden Untersuchungsgebieten in geringer West–
Ost Distanz deutet auf komplexe dynamische Deglaziationsprozesse in Relation zu anderen Gebieten
in Südnorwegen hin.

1 Introduction

The growth and decay of Quaternary glaciers and ice sheets
has had fundamental implications for environmental changes
worldwide (Ehlers and Gibbard, 2007). Based on numeri-
cal terrestrial or marine radiocarbon and cosmogenic nuclide
surface exposure ages in addition to pollen stratigraphy, the
chronology of the last deglaciation of the Scandinavian Ice
Sheet (SIS) following the Last Glacial Maximum (LGM,
26.5–20 kyr; Clark et al., 2009) and related ice marginal po-
sitions in Norway are generally perceived as well constrained
(Hughes et al., 2016; Stroeven et al., 2016; Patton et al.,
2017). The detailed vertical extent of the SIS in Norway
for this period remains, however, uncertain over large areas.
Scenarios ranging from maximum models with a central ice
dome (Sollid and Reite, 1983; Mangerud, 2004) to minimum
models implying a thin multi-domed ice sheet and larger ice-
free areas (Dahl et al., 1997; Wohlfarth, 2010) are the topic
of ongoing discussion. The knowledge of the vertical dimen-
sion of the LGM ice sheet could provide crucial information
on palaeoenvironmental factors like sea-level changes, atmo-
spheric and oceanic circulation, (de-)glaciation patterns, ice-
sheet erosion rates, landscape evolution, and englacial ther-
mal boundaries (Winguth et al., 2005; Rinterknecht et al.,
2006; Goehring et al., 2008). The interpretation of bedrock
with different degree of weathering in mountain areas af-
fected by Quaternary glaciation can, therefore, be important
for determining ice-sheet behaviour and thickness during the
last glaciation periods (Brook et al., 1996; Briner et al., 2006;
McCarroll, 2016). There are several concepts to explain the
limit between differently weathered bedrock (trimline) sepa-
rating highly weathered uplands comprising blockfields and
tors from relatively unweathered lower exposures of freshly
eroded glacial features (Rea et al., 1996; Briner et al., 2006).
The two most discussed scenarios suggest on the one hand

the preservation of highly weathered uplands by a cover of
non-erosive cold-based ice; thus the trimline would reflect an
englacial thermal boundary. The alternative explanation sug-
gests that the trimline represents the true upper vertical ice
surface and erosional limit of a former warm-based ice sheet
with ice-free nunatak areas above that boundary (Stroeven et
al., 2002).

The rise of terrestrial cosmogenic nuclides (TCNs) for
surface exposure dating as a key tool to yield numeri-
cal ages of landforms and bedrock surfaces representing
specific glacier and ice sheet dynamics has revolutionized
deglaciation chronologies (Dunai, 2010), especially for set-
tings where organic material is not available for dating. TCNs
have been frequently used to reconstruct glacial chronologies
worldwide, often utilizing ages derived from erratic boulders
or bedrock surfaces (Dunai, 2010; Stroeven et al., 2016, and
references therein). To successfully apply TCNs and to es-
tablish timing and rates of the last deglaciation, it is nec-
essary that any cosmogenic nuclide produced prior to the
last deglaciation has been removed by erosion (Briner et al.,
2006; Dunai, 2010). Consequently, the erosive capacity of
an ice sheet is mirrored in the concentration of cosmogenic
nuclides, as the degree of erosion governs the level of in-
heritance (Harbor et al., 2006). Erosive capacity is largely
causally connected to the basal temperature regime of the
ice and its related ability to move by basal sliding. There-
fore, cosmogenic nuclide concentrations may also serve as a
tool to identify englacial thermal boundaries between warm-
based and cold-based zones or estimate palaeo-ice thickness
of entirely warm-based glaciers (Kleman, 1994).

The SIS constituted the largest unit of the Eurasian ice
sheet (Hughes et al., 2016). Despite the progress with re-
constructing volume, margins and timing, the information
from terrestrial sources about the former ice cover is limited
(Patton et al., 2016). Only a few deglaciation studies have
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been carried out in the Geiranger Fjord area in southwestern
Norway, where our first selected site, Dalsnibba, is located
(e.g. Fareth, 1987; Aarseth et al., 1997). These studies have
mostly relied on 14C dates which have repeatedly been ques-
tioned (e.g. Donner, 1996). Hence, only limited numerical
age data are available and there is a need for more reliable
data for a better understanding of deglaciation dynamics in
this area. Our second selected site at Blåhø was previously
studied by several authors focussing on deglaciation follow-
ing the LGM (e.g. Nesje et al., 1994; Goehring et al., 2008;
Marr et al., 2018). We provide additional ages from an erratic
boulder and from a bedrock outcrop to improve the image of
the glaciation history.

In the wake of growing evidence for a more dynamic
SIS through the last glacial cycle (Rinterknecht et al., 2006;
Mangerud et al., 2010), it is essential to establish a robust
deglaciation chronology, particularly for its inner mountain-
ous region, to understand landform evolution and ice sheet
dynamics. Given the importance of ice sheets with respect to
the climate system, a better understanding of their evolution
and the rate and timing of their ice retreat across the moun-
tainous parts of southern Norway is necessary. Here, we re-
port cosmogenic 10Be surface exposure ages from boulder
and bedrock surfaces of two selected mountain sites in south-
western and south-central Norway to improve our knowledge
on the (de)glaciation history (Fig. 1). Our main study objec-
tives were as follows:

1. to apply terrestrial cosmogenic 10Be dating and to de-
termine 10Be surface exposure ages from the collected
boulder and bedrock samples

2. to present the first estimate for the timing of initial local
deglaciation for Dalsnibba in Opplendskedalen based
on 10Be

3. to assess and further improve the existing deglaciation
chronology for Blåhø in the light of new 10Be ages pre-
sented in this study

4. to explore the ice sheet dynamics and characteristics
during the deglaciation in the selected areas in southern
Norway.

2 Study area

2.1 Dalsnibba

Dalsnibba (62◦4′43 N, 7◦17′35 E; 1476 m a.s.l.) is located
in Opplendskedalen on the Geirangerfjellet in the western
part of south-central Norway. The summit area is domi-
nated by glacially eroded bedrock outcrops which are mod-
erately weathered, but there is no blockfield on Dalsnibba.
The general morphology was strongly influenced by Quater-
nary glaciations with well-developed glacial valleys and deep
fjords constituting prevailing macro-landforms (Holtedahl,
1967; Klemsdal and Sjulsen, 1988). Four bedrock samples

from glacially eroded bedrock surfaces and one glacially
transported boulder sample taken at four elevations ranging
from 1334 to 1476 m a.s.l. were analysed. We aimed for sam-
pling along a vertical transect from Dalsnibba to the valley
bottom of Opplendskedalen at ∼ 1050 m a.s.l. However, in-
accessibility and/or inappropriate sampling sites prohibited
us from doing so. Sub-oceanic climatic conditions prevail at
the site with mean annual air temperature between 0 and 2 ◦C
(1971–2000) and mean annual precipitation between 2000
and 3000 mma−1 (1971–2000) (http://www.senorge.no, last
access: 18 April 2019). The gneiss bedrock is mainly quartz
dioritic to granitic and partly migmatitic and is part of the
so-called Western Gneiss Region (Tveten et al., 1998). The
sampled boulder had the equivalent lithological composition.

The ice retreat following the LGM probably saw the ice
margin approaching the inner parts of Storfjorden during
the Bølling–Allerød interstadial (∼ 14.7–12.9 kyr BP; Pat-
ton et al., 2017) when the glacier probably experienced
several short standstills in the Geiranger Fjord (Longva et
al., 2009). Glaciers readvanced during the Younger Dryas
(YD, 12.9–11.7 cal. kyr BP; Lohne et al., 2013) and created
moraines at the fjord mouth (Longva et al., 2009). Little
is known about the vertical ice limit during the YD; An-
dersen et al. (1995) suggest a thickness of 800–1200 m in
fjords that became ice-free during the Bølling–Allerød inter-
stadial. The final deglaciation following the YD in the fjords
in western Norway generally falls between 11.2 ± 0.4 and
10.9 ± 0.2 cal. kyr BP (cf. Nesje and Dahl, 1993; calibration
from Hughes et al., 2016, applied).

2.2 Blåhø

Blåhø (61◦53′51 N, 9◦16′58 E; 1617 m a.s.l.) is located in Ot-
tadalen in the central part of southern Norway. Smooth undu-
lating surfaces at summit level are present, with three lower
peaks – Rundhø (1556 m a.s.l.), Veslrundhø (1514 m a.s.l.)
and Storhøi (1455 m a.s.l.) – part of the mountain ridge. The
Blåhø summit is covered by an autochthonous blockfield ex-
tending down to a trimline at ∼ 1500 m a.s.l. (Nesje et al.,
1994). Two samples were collected at the summit: one from
a bedrock slab at the eastern edge of the blockfield and one
from an erratic boulder. Climatic conditions are continental,
with a mean annual temperature of −2 to −1 ◦C and a mean
annual precipitation of 750–1000 mma−1 at the summit and
less than 500 mma−1 (1971–2000) in the valley (http://www.
senorge.no); it is among the driest areas in Norway. The
area is dominated by quartz-rich Precambrian bedrock. The
summit itself is dominated by meta-conglomerate and meta-
sandstone on higher and lower slopes, respectively (Tveten
et al., 1998). The sampled erratic boulder from the summit is
quartz pegmatite.

The (de)glaciation history of Blåhø has attracted re-
searchers’ attention for decades (e.g. Nesje et al., 1994;
Goehring et al., 2008; Marr and Löffler, 2017). It has been
debated whether the summit was covered by cold-based ice
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Figure 1. Study areas in southern Norway and the location of Dalsnibba in the west and Blåhø in the east (modified after Löffler and Pape,
2004).

(Goehring et al., 2008) or remained ice-free during the LGM
(Nesje et al., 1994). Goehring et al. (2008) established a
deglaciation chronology following the LGM, commencing
at 25.1 ± 1.8 ka based on a 10Be age from an erratic boul-
der at the summit to 11.7 ± 1.0 ka at the lowermost sample
(1086 m a.s.l.).

3 Methods

3.1 Material and measurement

Surface exposure dating utilizes the in situ build-up of cos-
mogenic nuclides like 10Be, 26Al or 36Cl by secondary cos-
mic rays to assess the duration of surface exposure at or near
the earth’s surface (Balco et al., 2008). The calculation of
surface exposure ages using cosmogenic nuclide concentra-
tions from glacial landforms is based on several assumptions.
Exposure ages obtained using a single nuclide species are
often considered minimum ages, as it is assumed that the
samples were constantly exposed at the surface during one
single period only, and that they neither contain an inherited
nuclide concentration nor were they affected by significant
snow shielding or erosion (Stroeven et al., 2002; Briner et
al., 2006). In this study, we measured the 10Be concentra-
tion of five bedrock (-bed) and two boulder (-bo) samples
(Fig. 2). We targeted bedrock outcrops to provide additional
new data to existing datasets (Goehring et al., 2008) and to
explore the potential thermal and erosional properties of the
ice sheet (Harbor et al., 2006; Dunai, 2010) because errat-
ics on top of (glacially modified) bedrock may (Fabel et al.,
2002; Dunai, 2010), but not necessarily, provide deglaciation
ages (cf. Heymann et al., 2011). It has to be acknowledged,
however, that our limited 10Be ages (n = 7), especially in the

eastern study area, allow us to improve and assess the ex-
isting deglaciation chronology rather than construct an inde-
pendent one.

The samples were collected by hammer and chisel, and
only boulders broader than 20 cm in diameter were se-
lected for measurement to minimize the probability of post-
depositional disturbance. All samples were obtained from
flat surfaces (dip < 5◦) with at least 25 cm distance from any
edges for the large boulder and the longest distance possible
from the edges of the smaller boulder. Both bedrock sam-
ples were obtained from locations with weathered surfaces
and/or lichen cover to avoid surfaces so intensively weath-
ered that slabs had potentially broken off the boulder surfaces
(Fig. S5 in the Supplement). We sampled from local topo-
graphic highs to minimize the influence of snow cover. Ge-
ographical coordinates and elevations of sampling locations
were recorded with a handheld GPS. Topographic shielding
was derived from compass and clinometer measurements at
each sample site.

After crushing and sieving, between ca. 10 to 44 g of
purified quartz was extracted from the rock samples using
the approach of Kohl and Nishiizumi (1992). Quartz sam-
ples were spiked with around 300 µg of a commercial beryl-
lium solution (Scharlab, 1000 mgL−1, density 1.02 gcm−3)
before being dissolved in a concentrated HF/HNO3 mix-
ture. Preparation of the purified quartz as AMS (accelerator
mass spectrometry) targets was undertaken in tandem with
a reagent blank. Target preparation chemistry was under-
taken in the clean laboratory at the University of Cologne
using the single-step column approach described by Bin-
nie et al. (2015). Beryllium hydroxide was co-precipitated
with Ag, according to Stone et al. (2004), for pressing
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Figure 2. Detailed sampling locations at (a) Dalsnibba and (b) Blåhø. The bedrock samples in both study areas are labelled as -bed, the
boulder samples as -bo. The calculated 10Be ages of every sample are reported with 1σ uncertainty in ka. The contour line intervals are a
distance of 50 m (source: http://www.kartverket.no, last access: 14 January 2019).

into AMS targets. Measurements of 10Be/9Be were under-
taken at CologneAMS (Dewald et al., 2013), normalized
to the revised standard values reported by Nishiizumi et
al. (2007). Uncertainties in the blank-corrected 10Be concen-
trations were derived by propagating (summing in quadra-
ture) the 1 SD uncertainties in the AMS measurements of the
blanks and the samples along with an estimated 1 % uncer-
tainty (1 SD) in the mass of 9Be added as a carrier.

3.2 Exposure age calculations

The 10Be surface exposure ages were calculated with the on-
line exposure age calculator version 3, formerly known as
the CRONUS-Earth online exposure age calculator (Balco et
al., 2008; Balco, 2017; http://hess.ess.washington.edu/, last
access: 30 April 2019). The spallation-induced regional pro-
duction rate for western Norway (normalized to sea-level
high latitude) was used, as surfaces of unknown age can be
dated more precisely due to the proximity of the calibra-
tion site (Goehring et al., 2012a, b). We applied the time-
dependent LSD scaling model of Lifton et al. (2014) and
used the 07KNSTD flag in the online calculator. A rock den-
sity of 2.6 gcm−3 was applied for all samples. We did not
correct our ages for atmospheric pressure anomalies, tem-
poral shielding by snow, sediment or vegetation. Erosion of
1 mmkyr−1 was applied in the online calculator, a compara-
ble erosive capacity in summit areas as presented by Ander-
sen et al. (2018a) for Reinheimen, close to Blåhø.

One parameter required within the calibration process for
calculating 10Be age is the elevation of the sampled bedrock
or boulder surface. Any correction for the effect of post-

glacial glacio-isostatic uplift is, however, quite challenging.
No detailed local uplift data for Dalsnibba are available, but
an estimate of ca. 100 m total uplift based on reports of for-
mer shoreline displacement or modelling attempts seems rea-
sonable (Svendsen and Mangerud, 1987; Fjeldskaar et al.,
2000; Steffen and Wu, 2011). For Blåhø, the total postglacial
uplift is estimated at around 300 m (Morén and Påsse, 2001).
However, this postglacial uplift cannot be described as a lin-
ear function as data from other localities in western Norway
highlight (e.g. Fjeldskaar, 1994; Helle et al., 2007). An ini-
tial strong uplift during Allerød halted during the Younger
Dryas and resumed after its termination with high uplift
rates in the Early Holocene that subsequently significantly
decreased (Lohne et al., 2007). According to newest mod-
elling by Fjeldskaar and Amatonov (2018) the calculated
uplift between Allerød and Younger Dryas at around Dal-
snibba would summarize to around 50 m, i.e. half of the sug-
gested total postglacial glacio-isostatic uplift. Because post-
glacial uplift first becomes relevant for 10Be age calculation
after exposure of the sampled surface, a circular reference
emerges as surface exposure age (the unknown factor itself)
needed to be known to precisely determine the amount of up-
lift that had already occurred according to established models
(cf. Jones et al., 2019). To resolve this problem and simplify
the correction for postglacial uplift, we assume initial fast
uplift between 13 and 11.5 kyr totaling 50 m following Fjeld-
skaar and Amatonov (2018), followed by linear uplift during
the Holocene that accounts for the remaining 50 m. The re-
sulting reduction for sample elevation is ca. 30 m for Dal-
snibba. Following similar considerations for Blåhø, a max-
imum reduction of 150 m in relation to modern elevation is
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considered. However, the alternative influence of ca. 100 m
reduction and no uplift correction are also assessed because
of a likely non-linear uplift function, with maximum uplift
during or immediately following deglaciation. The results
of different uplift scenarios on Blåhø ages are presented in
Table S3 in the Supplement. A reduction of sample eleva-
tion of ca. 100 m averaged over the entire surface exposure
time seems reasonable and needs to be treated as a maximum
value as Early Holocene uplift rates may be underestimated.
Finally, with respect to all potential uncertainties with the
calculation and calibration of 10Be surface exposure age es-
timates (production rates, selected scaling schemes, etc.), our
simplified postglacial uplift correction appears appropriate.

4 Results

AMS analysis gave 10Be/9Be ratios ranging from 1.65 ×

10−12 to 8.69×10−14. The reagent blank prepared alongside
the samples gave a 10Be/9Be value of 6.47 × 10−15, and the
blank subtractions were < 4 % of the total number of 10Be
atoms measured in the samples, aside from sample DanBed2,
which yielded less quartz, resulting in a blank subtraction
that was 7.5 % of the total.

The cosmogenic exposure ages calculated for all samples
from Dalsnibba and Blåhø are shown in Fig. 2 and Table 1.
The boulder sample from the summit of Dalsnibba (DanBo)
was the oldest from this site at 16.5 ± 0.6 ka. The 10Be ages
from Blåhø are 46.4 ± 1.7 ka (BlaBed) for the bedrock from
the blockfield, whereas the boulder resting on the block-
field gave 20.9 ± 0.8 ka (BlaBo). The recalculated ages for
Goehring et al. (2008) are presented in Table S4. Results
for the effect of different glacio-isostatic uplift rates for Dal-
snibba and Blåhø are presented in Tables S2 and S3. The
considered uplift of 30 m vs. no uplift for Dalsnibba results
in a ∼ 3 % age increase. An uplift of 100 m at Blåhø leads to
∼ 9 % older ages if compared to no correction for no uplift.
For the maximum scenario of 150 m uplift the corresponding
value is a ∼ 14 % age increase.

5 Discussion

5.1 Methodological considerations and processes

affecting 10Be concentrations

We collected our rock samples from three different set-
tings: bedrock outcrops from weathered debris/blockfields,
glacially eroded bedrock surfaces, and boulders. Erosion of
the sampled surfaces or undetected shielding (e.g. snow or
vegetation cover) would lower the nuclide concentrations
and consequently lead to underestimated ages (Stroeven et
al., 2002; Hughes et al., 2016). Further, samples collected
above the weathering limit, where outcrops are prone to sur-
face degradation by severe frost weathering, also result in an
underestimation of the true surface exposure (Brook et al.,
1996).

The uplift model used by Goehring et al. (2008) applied on
Blåhø reveals ∼ 22 % older ages from high-elevation sam-
ples (> 1400 m a.s.l.). The recalculated data from Goehring
et al. (2008) applying our uplift correction approach (with
100 m) give an estimated age difference of ∼ 9 %. A total
uplift of 150 m results in ∼ 14 % older ages, which is closer
to the value obtained by Goehring et al. (2008). For further
discussion we rely on the most realistic option with a total
uplift of 100 m for Blåhø.

The impact of snow cover on the 10Be ages was esti-
mated on the basis of Gosse and Philipps (2001) with recent
snow conditions (data from http://www.senorge.no, averaged
1958–2019). By assuming 150 cm during 9–10 months in the
west and 40 cm for 7–8 months (snow density 0.3 gcm−3) in
the east are representative of this interglacial, the 10Be calcu-
lations could result in 18 %–20 % too young ages in the west
and 4.2 %–4.8 % in the east. It needs, however, to be pointed
out that it is impossible to assess whether modern snow con-
ditions are representative of the conditions during the entire
Holocene with its known climate variability (Nesje, 2009).
We are aware that due to our limited dataset it is impossible to
make conclusive statements about the glaciation history, es-
pecially for Blåhø, and to definitively identify geological bias
and sample outliers (Stroeven et al., 2016). Furthermore, our
restrictions to a single cosmogenic nuclide (10Be) does not
allow us to obtain information on any complex burial his-
tory that would require pairing 10Be with other nuclides like
26Al (Fabel et al., 2002). Nevertheless, we assume our results
to have the capacity to contribute to the discussion of the
timing of deglaciation in both areas because of their gener-
ally coherent ages in relation to previously published timings
of deglaciation between 11.2±0.4 and 10.9±0.2 cal. kyr BP
(cf. Nesje and Dahl, 1993; calibration from Hughes et al.,
2016, applied) in the west and 21.8±1.6 ka (Goehring et al.,
2008, recalculated) in the east. Recent findings indicate the
timing of the last deglaciation at 11 ± 0.2 ka in Reinheimen,
located between our study areas (Andersen et al., 2018a).

5.2 Timing of deglaciation at Dalsnibba

The obtained 10Be surface exposure ages from Dalsnibba of-
fer the possibility of presenting the first age constraints for
local deglaciation based on cosmogenic nuclides. The inter-
nal consistency of our 10Be exposure ages from glacially
eroded bedrock surfaces with their post-LGM age implies
that glacial erosion was sufficient to remove any inherited
nuclide concentration, and that the bedrock had been contin-
uously exposed since. This supports the concept that glaciers
in fjord landscapes were highly effective erosional agents and
consequently warm-based (Aarseth et al., 1997; Matthews et
al., 2017), especially in the valleys. This is in agreement with
Landvik et al. (2005), who claim that frozen-bed conditions
throughout the growth and decay of glaciers in coastal envi-
ronments are unlikely. However, there are blockfield-covered
summits between the fjords which are mostly located at a

E&G Quaternary Sci. J., 68, 165–176, 2019 www.eg-quaternary-sci-j.net/68/165/2019/

81



P. Marr et al.: 10Be-based exploration of the timing of deglaciation 171

Table 1. Sample and laboratory data and calculated 10Be surface exposure ages.

Sample Sample Latitude Longitude Altitude Sample Topographic Blank-corrected Uncertainty (1σ ) External Exposure
ID type (◦) (◦) (m a.s.l.) thickness shielding 10Be conc. blank-corrected uncertainty age

(cm) (105 atg−1) 10Be conc. (year) (year)
(103 at g−1)

DanBed1 Bedrock 62.047639 7.274044 1476 4.8 0.999935 2.04 8 1100 12 700 ± 500
DanBed2 Bedrock 62.049925 7.275275 1418 3.5 0.999997 1.70 13 1200 11 000 ± 800
DanBed3 Bedrock 62.049314 7.270258 1464 5.9 0.999976 2.10 8 1200 13 300 ± 600
DanBed5 Bedrock 62.048295 7.287856 1334 4.7 0.999544 1.48 6 900 10 300 ± 500
DanBo Boulder 61.897524 9.282407 1438 6.5 1 2.60 10 1500 16 500 ± 600
BlaBed Bedrock 61.897700 9.284238 1615 2.4 1 7.49 26 4200 46 400 ± 1700
BlaBo Boulder 62.044505 7.274839 1617 2.8 1 3.59 14 1900 20 900 ± 800

All ages are calculated using version 3 of the calculator code found at https://hess.ess.washington.edu/ (last access: 30 April 2019) (Balco et al., 2008; Balco, 2017). The western
Norway 10Be production rate (Goehring et al., 2012a, b) is applied with standard atmosphere and pressure “std” and a rock density of 2.6 g cm−3. The time-dependent LSD scaling
model of Lifton et al. (2014) was used. An uplift for 30 m for Dalsnibba and 100 m for Blåhø was assumed as well as an erosion of 1 mm kyr−1.

higher altitude above the blockfield boundary, indicating that
they were potentially protected by cold-based ice (Brook et
al., 1996). The two uppermost bedrock ages and the glacial
boulder are from comparable altitudinal settings, whereas the
boulder is ∼ 3.8 to 3.2 ka older than the bedrock samples.
This points to inherited cosmogenic nuclide inventory, and
we therefore interpret the uppermost bedrock ages ranging
from 13.3 ± 0.6 to 12.7 ± 0.5 ka as the timing of deglacia-
tion on Dalsnibba. The bedrock ages mark the subsequent
lowering of the ice surface; by plotting sample age with al-
titude (Fig. S4, R2

= 0.91) the dynamics of ice surface low-
ering through time becomes clear. As the lowermost sam-
ple in this study is at 1334 m a.s.l. (which cannot cover the
spectrum until the final downmelt of the ice), the exposure
age of the valley bottom of Opplendskedalen (7.47±0.73 ka
at 1045 m a.s.l.; Marr et al., 2019) is used to determine the
ice surface lowering rate. This gives an ice surface lower-
ing of about 430 m within ∼ 5.8 ka. We calculate a thinning
rate of ∼ 7.3 cm a−1, which is comparable to the inland thin-
ning rate determined by Linge et al. (2007) of 5 cma−1. We
explain this with the persistence of a small ice cap on Dal-
snibba and/or glacial readvances (with related fluctuations of
the vertical ice limit) as the YD in the valleys probably led to
a prolonged ice coverage. Our results from the western study
site have three important implications in terms of the local
glaciation history:

1. We suggest that the vertical ice limit must have ex-
ceeded 1476 m a.s.l. to be able to transport and deposit
the boulder at its location. This contrasts to some extent
with the view that ice thickness in coastal areas was sup-
posed to be relatively thin due to effective ice drainage
(Nesje et al., 1987), but it needs to be considered that
Dalsnibba is located at the innermost fjord head of the
Geiranger Fjord. Some authors anyway infer the possi-
bility of nunataks on high coastal surfaces in western
Norway (Mangerud, 2004; Winguth et al., 2005). In the
light of our results, we have to reject the possibility that

Dalsnibba was a nunatak during the LGM but suggest
that the summit was covered by warm-based ice.

2. The timing of deglaciation between 13.3 ± 0.6 and
12.7±0.5 ka overlaps with the Bølling–Allerød intersta-
dial, during which the summit of Dalsnibba was prob-
ably ice-free, and coincides with when the deglaciation
reached Storfjord (Longva et al., 2009). Subsequently,
Dalsnibba was not affected by the Younger Dryas read-
vance. Our results indicate that the deglaciation on Dal-
snibba began at the end of the Bølling–Allerød or later,
and Dalsnibba constituted a nunatak during the Younger
Dryas.

3. There is only sparse information on the final deglacia-
tion in the Scandinavian mountains; it is supposed to
have commenced shortly after ∼ 10 ka (cf. Hughes et
al., 2016). In Reinheimen, east of Dalsnibba, Andersen
et al. (2018a) suggest 11 ± 0.2 ka as the timing of the
last deglaciation. With our 10Be results it is difficult to
constrain the final deglaciation as our lowermost sample
was collected at 1334 m a.s.l. However, we can clearly
state that the ice persisted at ∼ 1330 m a.s.l. until 10.3±

0.5 ka when the final local deglaciation was partly in-
ferred for the region 11.2±0.4 and 10.9±0.2 cal. kyr BP
(cf. Nesje and Dahl, 1993; calibration from Hughes
et al., 2016, applied). Therefore, our results open up
the possibility that the ice coverage at Dalsnibba lasted
longer than previously anticipated and also longer than
in the Reinheimen area, unless the last part of deglacia-
tion was characterized by a sudden collapse of the re-
maining ice.

5.3 Implications of 10Be exposure ages from Blåhø

The 10Be ages from the blockfield support the overall inter-
pretation that these relict features have survived glaciation
with little or no erosion, which indicates long-term land-
form preservation (Rea et al., 1996; Linge et al., 2006). By
acknowledging the widely accepted scenario that anoma-
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lously high 10Be concentrations of bedrock samples, such
as BlaBed, are the consequence of cold-based ice cover, the
blockfield boundary might represent the former englacial
boundary between cold-based and warm-based ice (Fabel
et al., 2002; Marquette et al., 2004). This implies that the
bedrock sample is likely compromised by inherited 10Be
from previous exposure followed by preservation beneath
cold-based ice (Linge et al., 2006). This scenario appears re-
alistic for the Blåhø bedrock sample, which, consequently,
confirms the presence of non-erosive cold-based ice in line
with several models suggesting thick ice coverage for this
part of Norway (Stroeven et al., 2002; see Goehring et al.,
2008). Notably, few of the weighted average bedrock ages
from Reinheimen (Andersen et al., 2018a) show inheritance
and provide ages of ∼ 11 ka. This may point towards dif-
ferent thermal basal ice conditions within a short distance.
Cosmogenic 10Be and 26Al nuclide concentration data indi-
cate that some repeatedly glaciated sites have experienced
negligible glacial erosion over the entire Quaternary (Briner
et al., 2006; Harbor et al., 2006). Therefore, the inherited
cosmogenic nuclides must have accumulated during multiple
phases of exposure and have subsequently been preserved by
cold-based ice (Hughes et al., 2016). Subtracting the expo-
sure age since deglaciation (∼ 21 ka) the surface experienced
∼ 25 kyr of prior exposure. By using the ice coverage mod-
elled by Mangerud et al. (2010) and Hughes et al. (2016),
we evaluate the 10Be concentration accumulation over time
(Stroeven et al., 2002). With this approach it seems possible
that the bedrock sample on Blåhø was first exposed at the sur-
face during the Early Weichselian or the Eemian interglacial.
Some authors suggest even older blockfield ages (e.g. Linge
et al., 2006). In this scenario, boulder ages are often consid-
ered to reflect the timing of deglaciation (Marquette et al.,
2004; Goehring et al., 2008). Following this, our boulder age
of 20.9±0.8 ka reflects the beginning of deglaciation, which
agrees with the termination of the LGM (Fig. 3). This and
the recalculated boulder age of 21.8 ± 1.6 ka (Goehring et
al., 2008) supports their statement of the onset of deglacia-
tion around this time. However, alternative interpretations of
these boulder ages cannot be rejected, e.g. age overestima-
tion due to post-depositional shielding by burial and subse-
quent exhumation by frost heave, deposition prior to LGM
followed by long-term shielding, or deposition during a read-
vance following LGM (Briner et al., 2006; Heymann et al.,
2011). But Marr et al. (2018) show evidence that the block-
field stabilized ∼ 18 ka during severe periglacial conditions,
which indicates the absence of ice cover close to the inferred
time of boulder deposition.

The alternative interpretation of the bedrock 10Be nuclide
concentration assumes continuous surface exposure since at
least 46.4±1.7 ka. Geomorphic evidence, such as periglacial
activity of the summit blockfield until 18 ka, challenges the
inferred presence of cold-based ice on Blåhø during the LGM
(Marr et al., 2018). Recently, Andersen et al. (2018b) stated
that high-elevation low-relief areas in south-central Norway

Figure 3. The ages are plotted against the North Greenland
Ice Core Project (North Greenland Ice Core Project members,
2004) δ18O with 10Be ages. The key cold climate events are the
Younger Dryas (YD), Older Dryas (OD), Last Glacial Maximum
(LGM) and Skjonghelleren Stadial (SKJ); data are from Clark et
al. (2009), Mangerud et al. (2010), Lohne et al. (2013) and Hughes
et al. (2016).

were not covered by cold-based but warm-based ice as they
calculated significant erosion rates. Therefore, whether the
consistent trimline represents an englacial boundary remains
ambiguous as englacial thermal boundaries may change fre-
quently and may be unstable over long time periods (Nesje
et al., 1987). However, decisive statements on glaciation his-
tory based on a single age are not possible; to resolve this
issue on Blåhø, more numerical age data are necessary.

5.4 Implications for the regional glaciation history

The time difference of about 6–9 kyr for deglaciation be-
tween Dalsnibba and Blåhø is noteworthy. Taking into ac-
count the timing of deglaciation at 11±0.2 ka in Reinheimen
(Andersen et al., 2018a), located between our study areas,
the deglaciation pattern in southern Norway was spatially
and temporally variable. In relation to these ages the summit
of Blåhø became apparently ice-free relatively early during
deglaciation, whereas Dalsnibba at the inner fjord head of
Geiranger Fjord became ice-free around 2 kyr later than the
Reinheimen plateau. This means that during the YD read-
vance Reinheimen must have still been ice-covered, but the
summit of Dalsnibba was already ice-free.

6 Conclusion

In this paper we present seven in situ cosmogenic 10Be sur-
face exposure ages from two selected mountain locations in
southern Norway. Despite uncertainties related to the uncer-
tainties of our 10Be surface exposure ages and the limited
dataset, we can delineate age constraints for the timing of
deglaciation in the Geirangerfjellet in southwestern Norway.
Further, we contribute new age estimates to the previously es-
tablished deglaciation chronology for Blåhø in south-central
Norway. The following conclusions can be drawn from this
study:
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1. According to the summit bedrock exposure ages rang-
ing from 13.3±0.6 to 12.7±0.5 ka, deglaciation of the
summit of Dalsnibba in Opplendskedalen commenced
during the termination of the Bølling–Allerød intersta-
dial. The summit successively remained ice-free during
the Younger Dryas. However, the ice cover in the val-
ley below the summit lasted longer (until 10.3 ± 0.5 ka)
than previously assumed. In contrast to other studies,
our results conclude that Dalsnibba was not a nunatak
but covered by warm-based ice during the LGM.

2. The bedrock age from Blåhø (46.4 ± 1.7 ka) indicates
long-term weathering history and exposure predating
the LGM. Most likely, inherited cosmogenic nuclides
preserved through shielding by non-erosive cold-based
ice are responsible for its old age. However, possible
post-depositional disturbance of the boulder and the
lack of larger suitable datasets restrict its interpretation.

3. The different timing of deglaciation in both selected
sites and in nearby Reinheimen implies complex
deglaciation patterns within a spatially limited area. The
vertical extent of the Younger Dryas readvance seems to
have been less pronounced in the inner fjord areas.
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