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Thus, we do not accept theories in which quarks are real,
observable particles; […].
[…]
The simplest and most obvious advantage […] is that the gluons
are now just as fictitious as the quarks.

Advantages of the Color Octet Gluon Picture [1]
Harald Fritzsch, Murray Gell-Mann, Heinrich Leutwyler

Scared to face the world, complacent career student
Some people graduate, but be [sic] still stupid

Good Morning [2]
Kanye West



Abstract

We analyze lattice-QCD data of the 𝜋𝜋 → 𝜋𝜋 𝑃 wave obtained at unphysical-high pion masses
with the inverse-amplitude method at next-to-leading order and at next-to-next-to-leading order.
We then extrapolate to the physical pion mass and determine the properties of the 𝜌 resonance
from its pole in the complex plane. By comparing both orders, we estimate the systematic error
associated with the truncation. Subsequently, we use the inverse-amplitude method as input to
Khuri–Treiman equations for 𝛾 (∗)𝜋 → 𝜋𝜋. The resulting dispersive framework is fit to lattice-
QCD data at unphysical pion masses and then again extrapolated to the physical mass, where
we determine the radiative coupling of the 𝜌, the lineshape, and the chiral anomaly of the process.
Lastly, we develop a method to assess the statistics needed in experiments to be sensitive to higher-
order pion rescattering in decays of a single particle into three pions and illustrate the approach
for simple cases.
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Chapter 1

Introduction

Arguably, the standard model (SM) of particle physics is a rather reductionist affair. According to
it, matter consists of a large number of tiny particles interacting via the exchange of other tiny
particles, with altogether only 17 different particle species in action.1 There are three fundamental
forces mediated via particle exchange in the SM: the electromagnetic interaction, the weak one,
and the strong one, with the former two unified into the electroweak interaction [3–9]. The other
known force, gravity, is not incorporated into the SM and instead described by the theory of general
relativity [10]. It remains one of the major open problems in theoretical physics how to unify the
former and the latter. However, gravity can be safely ignored under various circumstances. In this
context, the SM is extremely successful, i.e., allows for precise predictions that have been confirmed
by experiment over and over again. Even if extensions are needed—e.g., to explain the observed
neutrino oscillations [9], or if new particles were discovered in an experiment—these would not at
all enforce a change of the conceptual underpinning of the SM, namely quantum field theory (QFT),
but merely require the addition of new terms to the Lagrangian of the SM. In fact, it has been argued
that QFT is a necessity arising from the combination of special relativity and quantum physics that
is needed to describe processes at the energy scales of relevance to particle physics [11]. There
even exists a paradigm stating that the quantum theory of gravity might ultimately be a QFT [12],
although loop quantum gravity [13] and string theory remain popular alternatives.

In itself, QFT is a highly complicated framework. Consider the strong interaction, which is de-
scribed by a subset of the SM known as quantum chromodynamics (QCD). QCD is a gauge theory
with gauge group 𝑆𝑈 (3) [1] and, as such, it is a special case of a Yang–Mills theory. Establish-
ing the existence and key properties of Yang–Mills theory is currently an unsolved problem in
mathematical physics [14]; however, the theory can be successfully used to make predictions at the
level of rigor of theoretical physics. Here, the main challenge lies in the non-perturbative nature
of QCD at low energies, i.e., at the typical energy scales of nuclear physics. It is conjectured that
the rise of the interaction strength with decreasing energy scale confines the fundamental degrees
of freedom of QCD, the quarks and gluons, to bound states known as hadrons, with hundreds of
hadrons observed experimentally [9], thereby giving rise to the field of hadron physics.

QCD describes a wide spectrum of physical phenomena, not only the confinement of quarks
in hadrons, but also their asymptotic freedom at high energies. Moreover, it shows an interesting
phase diagram that contains the quark gluon plasma [15]. There are further fascinating effects,
namely anomalies, instantons, and the 𝜃 term, as well as a spontaneous symmetry breaking of a
chiraly symmetry [8].

1Here we do not count antiparticles separately.
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CHAPTER 1. INTRODUCTION

The rich physics paired with the difficulty to make predictions—caused by the failure of plain
perturbation theory in the low-energy regime—motivates the development of different methods to
compute observables. Three of those are of relevance to the work presented in this thesis. First,
there is lattice QCD, a numerical approach based on a rotation fromMinkowski spacetime to a Eu-
clidean one and a subsequent discretization of a finite spacetime volume [16–18]. Second, there
is chiral perturbation theory (ChPT), an effective field theory (EFT) that allows for a perturbative
expansion by changing the degrees of freedom to pions, the pseudo-Goldstone bosons associated
with the aforementioned spontaneous breakdown of the approximate chiral 𝑆𝑈 (2)L ×𝑆𝑈 (2)R2 sym-
metry [8, 20–22]. Third, there are dispersion relations, integral equations based on the properties
of scattering amplitudes when studied as functions of complex variables [11, 23–28].

Of the aforementioned tools, lattice QCD is the only one that allows for computations directly
based on the degrees of freedom of plain QCD, namely quarks and gluons. Hence, predictions
can be made as soon as the fundamental parameters of QCD, the quark masses and the coupling
strength, are fixed. This makes lattice QCD an extremely predictive tool. However, this power
comes at a price. Lattice calculations are computationally very demanding and require strong
hardware as well as sophisticated software [29–31]. Often, the computational cost is partially re-
duced by setting the quark masses to unphysically high values, which has the obvious drawback
that results obtained in this way cannot be directly compared with experimental observations that
are necessarily restricted to physical quark masses. Instead, such lattice results need to be extrap-
olated to physical quark masses, the so-called physical point. This extrapolation requires the use
of tools beyond lattice QCD. Although computations at the physical point have become feasible,
see Refs. [32–35] for examples, there are still computations performed at unphysical quark masses,
e.g., the ones presented in Refs. [36, 37]. Additionally, the information on scattering of hadrons
that can be gathered directly on the lattice is strongly limited, since the lattice is a finite volume
in Euclidean spacetime, while scattering observables are defined in infinite-volume Minkowski
space [38]. This apparent shortcoming can be circumvented via the Lüscher framework and ex-
tensions thereof, which translate finite-volume quantities to scattering observables [39]. For cer-
tain scattering processes, this translation requires continuous parametrizations of scattering ampli-
tudes [40], which again cannot be provided by lattice QCD on its own. Indeed, lattice computations
are intrinsically constrained to yield a finite number of data points. In passing, we note that alter-
natives to the Lüscher formalism have been developed [41, 42].

Contrarily to lattice QCD, ChPT is a perturbative tool that enables to compute observables
analytically. Again, this goes hand in handwith drawbacks. ChPT contains free parameters beyond
those of QCD, so-called low-energy constants (LECs). The higher the order of the perturbative
expansion, the more LECs appear. In 𝑆𝑈 (2) ChPT at leading order (LO) there are two LECs, at next-
to-leading order (NLO) seven [21], at next-to-next-to-leading order (NNLO) 53 [43], and at next-
to-next-to-next-to-leading order (NNNLO) 452 [44].3 Of course, not all LECs contribute to a given
process. Nevertheless, the drastic increase of the number of free parameters clearly points towards
the practical limitations of ChPT. More severely, ChPT is limited to the onset of the low-energy
region and fails quickly as soon as the energy is increased. Despite these issues, ChPT is a potent
tool in the energy region where it converges well [22]. Naturally, the idea arises to fix the LECs
via lattice QCD [47] and even use ChPT to extrapolate lattice results obtained at unphysical quark

2ChPT can be extended to 𝑆𝑈 (3)L × 𝑆𝑈 (3)R [19]; however, the explicit symmetry breaking by the quark masses is
stronger than in the 𝑆𝑈 (2) scenario. In this thesis we use 𝑆𝑈 (2) ChPT.

3Here we do not include contact terms (i.e., those that contain only external fields) and consider the even-parity
sector only. The numbers increase further if the odd-parity sector is included [45, 46].
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CHAPTER 1. INTRODUCTION

masses towards the physical point [48]. In fact, ChPT can be extended to incorporate discretization
artifacts associated with the lattice to allow for an improved analysis of lattice data [49].

As opposed to lattice QCD and ChPT, dispersion relations on their own do not enable to com-
pute a wide range of observables, mainly, because they do not incorporate much information about
the dynamics of the strong interaction. Instead, they put strong constraints on scattering ampli-
tudes, based on analyticity, i.e., the requirement that such amplitudes are holomorphic functions of
the kinematical variables except for singularities encoding the presence of physical states, proba-
bility conservation in the form of unitarity of the 𝑆matrix, and crossing symmetry. The constraints
show their true power when combined with input data, which are often taken from experiments,
see, e.g., Refs. [50–54]. In addition, these constraints can be combined with ChPT to extend the
range of validity of the latter via the inverse-amplitude method (IAM) [55–58]. This combination
can be used to extrapolate lattice data that are inaccessible to plain ChPT [59].

In this work, we study scattering processes and decays of hadrons as well as their electromag-
netic interaction with an external photon. To be specific, we discuss 𝜋𝜋 → 𝜋𝜋 scattering of a pion
𝜋 by its own kind, 𝛾 (∗)𝜋 → 𝜋𝜋 scattering of a pion with a photon 𝛾 that might be virtual as indicated
by the superscript asterisk, and decays of a hadron into three pions.

Among these processes, 𝜋𝜋 → 𝜋𝜋 is clearly the prime example of hadronic scattering. Due to
their pseudo-Goldstone nature the pions are the lightest hadrons, and hence stable within QCD.
Thus, the charged pions are sufficiently long-lived to be controlled experimentally rather well.4

In addition, the pions are the only states that can go on-shell in the region directly above the 𝜋𝜋
threshold. Hence, they dominate the dynamics in this region, making it possible to restrict the
attention to a single channel. Moreover, as a two-to-two particle process involving four scalars of
equal mass5 the kinematics of 𝜋𝜋 → 𝜋𝜋 are as simple as it gets. For this reasons it serves as a
major testing ground in the development of dispersion relations,6 another one being 𝜋𝑁 → 𝜋𝑁,
the scattering of a pion by a nucleon 𝑁 [62, 63]. In fact, dispersion relations quickly get out of hand
if the number of external particles is increased, as illustrated by the absence of rigorous dispersive
analyses of such multi-particle scattering in the current literature. On top of this, 𝜋𝜋 → 𝜋𝜋 is a
major battle ground of ChPT [21, 64, 65], precisely because the latter is phrased in terms of pions.
Furthermore, as the lightest member of the QCD spectrum pions often dominate the dynamics
of hadronic processes at low energies. More precisely, via unitarity of the 𝑆 matrix 𝜋𝜋 → 𝜋𝜋 is
coupled to a plethora of scattering processes and decays, and thus providing key input to theoretical
descriptions of these [51, 52, 66–72].

The process 𝜋𝜋 → 𝜋𝜋 is also intrinsically interesting due to the appearance of resonances.
These short-lived phenomena show up as intermediate states in scattering processes. Specifically,
in the 𝜋𝜋 → 𝜋𝜋 𝑆 wave there is the 𝑓0(500) resonance, which is of particular interest because it
is the lightest known resonance in the spectrum of the strong interaction and it does not seem
to be an ordinary quark-antiquark meson [73], as opposed to, e.g., the 𝜌 resonance. The latter
shows up in the 𝑃 wave as the dominant physical effect at energies below 1GeV. Often it saturates
electromagnetic interactions of hadrons, in this way being a key player in the phenomenological
approach known as vector meson dominance (VMD) [74]. ChPT fails to describe resonances, which

4While the charged pions decay via the weak interaction, the main decay channel of the neutral pion, 𝜋0 → 𝛾𝛾, is
driven by the electromagnetic interaction. Thus, the lifetime of the 𝜋0 is nine orders of magnitude smaller than the
one of its charged cousins [9].

5Of course, in reality the 𝜋0 is slightly lighter than the 𝜋± [9]. However, throughout this thesis we work in the
isospin limit and set the mass of all pions to the one of the charged pions.

6It must be stated that dispersion theory on its own, i.e., 𝑆-matrix theory, failed to describe 𝜋𝜋 → 𝜋𝜋 [60]. However,
it provides strong and powerful constraints in the form of Roy equations [61] and modifications thereof [50].
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CHAPTER 1. INTRODUCTION

arise due to the non-perturbative nature of low-energy QCD. Clearly, any understanding of the
strong interaction in terms of QCD is incomplete as long as the properties of resonances cannot be
computed accurately via the latter.

The apparent simplicity of the 𝜋𝜋 → 𝜋𝜋 𝑃 wave as well as the interesting physics associ-
ated with the 𝜌 resonance make the 𝑃 wave a prime candidate for investigations on the lattice via
Lüscher’s method, highlighted by the huge amount of computations of this kind, see Refs. [34,
36, 75–88]. The data have reached a formidable quality, with recent computations covering a wide
range of quarkmasses [36], sometimes even extending to the physical point [34]. Although compu-
tations at the physical point do not require an extrapolation in the mass, analytical models are still
needed to extract resonance properties. These are encoded as parameters of poles in the complex
plane outside the direct reach of the lattice, and thus models that allow for an analytical contin-
uation need to be fit to the data before the resonance characteristics can be properly determined.
The quality of the data calls for high-quality models. One such model is the aforementioned IAM,
which has been used to study the quark-mass dependence of both the 𝑆 wave and the 𝑃 wave for
the first time in Ref. [89]. The IAM can be employed at different orders of ChPT, the higher the
order, the more accurate the model. While lattice-QCD data have been analyzed with the IAM at
NLO several times [59, 90–93], there is only one previous analysis at NNLO [94, 95], which was
carried out a decade ago. At that time the lattice data were not nearly as good as they are nowa-
days. Hence, fits to the data alone were not stable. To obtain stable fits, additional constraints were
put in by hand. Moreover, some data points required ad hoc shifts. This motivates a confrontation
of the NNLO IAM with state-of-the-art lattice computations as presented in Part II. Again, note
that an alternative to Lüscher’s formalism has also been used to study the 𝜌 [96].

One process connected via unitarity to the 𝜋𝜋 → 𝜋𝜋 𝑃wave is 𝛾 (∗)𝜋 → 𝜋𝜋. Again the 𝜌 appears;
therefore 𝛾 (∗)𝜋 → 𝜋𝜋 gives access to the radiative coupling of the 𝜌 and its sibling [97]. At low
energies, the Wess–Zumino–Witten anomaly [98, 99] gives rise to a prediction for the scattering
amplitude in terms of known physical constants [100–102]. While a similar prediction for 𝜋0 → 𝛾𝛾,
which is driven by an anomaly, too, is experimentally tested at the sub-percent level [103], the one
for 𝛾𝜋 → 𝜋𝜋 has been put to test at the 10 % level only, once via the corresponding Primakoff
reaction [104] and once via an analysis of pion-electron scattering data [105]. This motivated the
development of a dispersive framework [66], which in combination with modern experimental
data that could become accessible in the future [106] would allow for a more stringent test of the
anomaly prediction. In themeantime, the process has been computed on the lattice twice [107, 108],
both times at quark masses significantly above the physical point. To extract the characteristics of
the 𝜌 and, most importantly, to test the anomaly prediction, we analyze these data with a dispersive
framework in Part III, building upon previous work in Ref. [109]. This dispersive framework is a
special case of the so-called Khuri–Treiman (KT) equations [110].

Via crossing symmetry 𝛾 (∗)𝜋 → 𝜋𝜋 is connected to 𝛾∗ → 𝜋𝜋𝜋, i.e., the decay of a virtual pho-
ton into three pions. The associated decay amplitude is of exactly the same form as the one for
𝜔(782) → 𝜋𝜋𝜋 and 𝜙(1020) → 𝜋𝜋𝜋, that is, decays of the 𝜔 and 𝜙 resonances. More generally
speaking, all these are special cases of a decay of a particle with 𝐼𝐺(𝐽 𝑃𝐶) = 0−(1−−) quantum num-
bers into three pions, where 𝐼 denotes isospin, 𝐺 the 𝐺 parity, 𝐽 angular momentum, 𝑃 parity, and
𝐶 charge conjugation. Indeed the KT equations that we use to analyze the lattice data allow for a
description of the decay region, too. This points towards an interesting future perspective. Origi-
nally, the Lüscher formalism was restricted to two-to-two scattering, and afterwards extended to
simple one-to-two decays [111]. In recent years, the formalism was generalized to include three-
to-three scattering and decays into three particles, see Refs. [112–114] for reviews of the progress
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Figure 1.1: Hadronic contributions to the anomalous magnetic moment of the muon. The magnetic
moment is extracted from the coupling of a muon to a photon. Hadrons contribute in two different
ways to this coupling: via vacuum polarization and light-by-light scattering. Only the leading
diagrams of both are depicted. A prominent contribution to the latter is the pion-pole term, which
contains the pion transition form factor. The most important intermediate states in the transition
form factor are 𝜋𝜋 states. This allows for a decomposition of the transition form factor into the
pion vector form factor and the 𝛾 (∗)𝜋 → 𝜋𝜋 amplitude [117, 118]. Both these objects, in turn, are
related to 𝜋𝜋 → 𝜋𝜋, as we will see explicitly for 𝛾 (∗)𝜋 → 𝜋𝜋 in Part III. Accordingly, both pion–pion
and photon–pion scattering are building blocks for a data-driven determination of the anomalous
magnetic moment of the muon [119].

in this direction. By now, first lattice analyses of 𝜋+𝜋+𝜋+ → 𝜋+𝜋+𝜋+ [35, 37, 115] and the formal-
ism for decays like 𝛾∗ → 𝜋𝜋𝜋 are available [116]. In the future these developments will open up
new perspectives for dispersive frameworks like the one discussed in this thesis in the analysis of
lattice data.

There is another interesting aspect of both 𝜋𝜋 → 𝜋𝜋 and 𝛾 (∗)𝜋 → 𝜋𝜋 that deserves attention.
Both processes contribute to the anomalous magnetic moment of the muon [119], as illustrated in
Fig. 1.1. This quantity shows a long-standing discrepancy between the SM prediction and the ex-
perimentally observed value, see Refs. [120, 121] for a historical perspective as well as an overview,
Ref. [53] for the current theoretical prediction, and Ref. [122] for a recent experimental result. There
is a lattice-QCD computation [123] that yields a theoretical prediction in agreement with the ex-
perimentally observed value and in contradiction to the prediction made in Ref. [53], but such a
shift in the prediction would have consequences for other observables, thereby shifting the tension
from one place to another [124]. The anomalous magnetic moment of the muon thus remains an
interesting place of potential failure of the SM. If such a failure was manifested, this would point
clearly to physics beyond the SM, that is, extensions of the SM [125]. These are a topic of hot
debate, for the SM on its own fails to describe neutrino oscillations and dark matter.
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Both the IAM used in the analysis of 𝜋𝜋 → 𝜋𝜋 and the KT equations used to analyze 𝛾 (∗)𝜋 → 𝜋𝜋
describe similar physics, namely the rescattering of pions, in other words, the repeated interaction
of pions with themselves. Just like other physical systems, e.g., mechanical oscillations [126, Ch. 5]
and electrical circuits [127, Vol. 2, Ch. 6], the rescattering can show resonant behavior. This mani-
fests itself in the appearance of the aforementioned resonances, e.g., the 𝜌 resonance in rescattering
of two pions at an energy of roughly 760MeV or the 𝜔 resonance in the rescattering of three pions
at roughly 780MeV.

In decays of a particle into three pions, there are different kinds of rescattering. First, there is
𝜋𝜋 rescattering of a fixed pair of pions, with the other pion acting as a spectator. If the pions are in a
𝑃wave, this is completely dominated by the 𝜌 resonance below 1GeV. Second, there is rescattering
where all pions participate but interact only pairwise, e.g., the first pion might rescatter with the
second, and subsequently the second with the third. In the following, we refer to this as mixed
rescattering. Third, there is genuine three pion rescattering, i.e., all pions interact with each other at
one point in the Fourier-transformed spacetime. KT equations might be considered as a black box
that takes as input information on 𝜋𝜋 scattering (including the resonances) and generates as output
a decay or scattering amplitude that contains both the first and the second kind of rescattering.
The third one needs to be built in manually. Usually, the first kind of rescattering dominates the
second one. Hence, the question arises, if mixed rescattering can be observed experimentally. In
Ref. [51] it was shown that the 𝜙 → 𝜋𝜋𝜋 data of Ref. [128] indeed point towards the existence
of this kind of rescattering. Contrarily, in Ref. [129] the authors argued that no such effects are
visible in their 𝜔 → 𝜋𝜋𝜋 data, which motivated a re-analysis of the same data in Ref. [130], this
time taking into account information on 𝜔 → 𝜋0𝛾∗, too. While the analysis confirmed the absence
of statistically significant mixed rescattering in the decay into three pions, the authors claimed
that mixed rescattering was necessary to simultaneously describe 𝜔 → 𝜋0𝛾∗. In the light of these
developments we introduce in Part IV a method to estimate the quality of experimental data that
is necessary to probe mixed rescattering in decays into three pions, focusing on a simple system.

Having established the motivation of our research, we give a brief overview of this thesis. In
Part I we introduce the core concepts of two-to-two particle scattering in the continuum and on
the lattice that are of key relevance for the subsequent discussions. Equipped with this knowledge,
we are ready to introduce the IAM and present our analysis of 𝜋𝜋 → 𝜋𝜋 lattice data in Part II.
Subsequently, in Part III we confront 𝛾 (∗)𝜋 → 𝜋𝜋 lattice data with KT equations, building up on the
foregoing analysis of 𝜋𝜋 data. Then, in Part IV we discuss pion-rescattering effects in KT equations.
Lastly, we sum up or results and draw conclusions in Part V.
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Chapter 2

Scattering of two particles in the
continuum

Throughout this thesis, we will be confronted with scattering of two particles both in the ini-
tial and final state, i.e., processes of the form 𝒫1(𝑝1) + 𝒫2(𝑝2) → 𝒫3(𝑝3) + 𝒫4(𝑝4), with 𝑝𝑖 the
four-momentum of particle 𝒫𝑖, 𝑖 = 1, … , 4. Kinematically, such scattering is described by the four
four-momenta, hence 16 real numbers. Since all frameworks that we are going to employ are in
accordance with the laws of special relativity, we can make use of Poincaré invariance. This
allows us to reduce the number of kinematical parameters to six, for the Poincaré group is ten-
dimensional. In addition, if all particles are on-shell, i.e., 𝑝2𝑖 is fixed for all 𝑖 = 1, … , 4, there are only
two remaining free parameters.

Denoting the free-particle state associated with a particle𝒫 of momentum 𝒑 as |𝒫 , 𝒑⟩ (omitting
further quantum numbers for the sake of notational simplicity), the scattering amplitude ℳ of
interest can be inferred from the 𝑆 matrix 𝑆 = 1 + 𝑖𝑇 via the 𝑇 matrix 𝑇 according to

⟨𝒫3𝒫4, 𝒑3, 𝒑4 |𝑆| 𝒫1𝒫2, 𝒑1, 𝒑𝟐⟩
= ⟨𝒫3𝒫4, 𝒑3, 𝒑4 | 𝒫1𝒫2, 𝒑1, 𝒑𝟐⟩ + 𝑖 ⟨𝒫3𝒫4, 𝒑3, 𝒑4 |𝑇| 𝒫1𝒫2, 𝒑1, 𝒑𝟐⟩

= ⟨𝒫3𝒫4, 𝒑3, 𝒑4 | 𝒫1𝒫2, 𝒑1, 𝒑𝟐⟩ + 𝑖 (2𝜋)4 𝛿 (4) (𝑃 − 𝑃 ′)ℳ (𝒫1(𝑝1)𝒫2(𝑝2) → 𝒫3(𝑝3)𝒫4(𝑝4)) .
(2.1)

Here 𝑃 ≔ 𝑝1 + 𝑝2, 𝑃 ′ ≔ 𝑝3 + 𝑝4, and |𝒫𝑖𝒫𝑗, 𝒑𝑖, 𝒑𝑗⟩ ≔ |𝒫𝑖, 𝒑𝑖⟩ ⊗ |𝒫𝑗, 𝒑𝑗⟩.
It is convenient to introduce Lorentz invariant Mandelstam variables as

𝑠 ≔ (𝑝1 + 𝑝2)
2 = (𝑝3 + 𝑝4)

2 ,

𝑡 ≔ (𝑝1 − 𝑝3)
2 = (𝑝2 − 𝑝4)

2 ,

𝑢 ≔ (𝑝1 − 𝑝4)
2 = (𝑝2 − 𝑝3)

2 ,

(2.2)

wherewemade use of four-momentum conservation: 𝑝1+𝑝2 = 𝑝3+𝑝4. They obey the constraint 𝑠+
𝑡+𝑢 = ∑4

𝑖=1 𝑝
2
𝑖 . Thus, if the particles are on-shell, only twoMandelstam variables are independent,

in agreement with the parameter counting. In the center-of-mass (CM) frame, 𝑠 = (𝐸⋆)2 holds, with
𝐸⋆ the total energy. Throughout this thesis, all quantities in the CM frame are denoted by a star as
a superscript, if they are not Lorentz invariants.1

Instead of using two Mandelstam variables, e.g., 𝑠 and 𝑡, to parametrize on-shell scattering, it
is sometimes useful to use one Mandelstam variable, e.g., 𝑠, and one scattering angle, e.g., 𝜃⋆ ≔

1This is to be distinguished from complex conjugation: 𝑎⋆ denotes a quantity in the CM frame, while 𝑎∗ denotes
complex conjugation.
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CHAPTER 2. SCATTERING OF TWO PARTICLES IN THE CONTINUUM

∠(𝒑⋆
1 , 𝒑⋆

3 ), especially when discussing some consequences of rotational invariance. This invariance
allows to expand a scattering amplitude into partial waves, that is, contributions to the scattering
of fixed total angular momentum, as discussed pedagogically, e.g., in Ref. [131]. If the involved
particles carry spin, the partial-wave expansion can become a delicate affair. One way to tackle the
issues associated with spin is described in Ref. [132]. However, if the particles 𝒫𝑖, 𝑖 = 1, … , 4, are
scalars, the partial-wave expansion of the associated scattering amplitude ℳ simply reads

ℳ(𝑠, 𝑧⋆) = 32𝜋
∞
∑
𝑙=0

(2𝑙 + 1) 𝑡𝑙 (𝑠) 𝑃𝑙 (𝑧⋆) . (2.3)

Here 𝑧⋆ ≔ cos(𝜃⋆) takes into account the dependence on the scattering angle, 𝑃𝑙 denotes the 𝑙-th
Legendre polynomial, and 𝑡𝑙 is the partial wave of angular momentum 𝑙. Both the factors 32𝜋 as
well as 2𝑙 + 1 are purely conventional, the former is the canonical choice for identical particles, the
latter is introduced to make the use of the orthogonality relation of the Legendre polynomials,

1

∫
−1

𝑃𝑎 (𝑥) 𝑃𝑏 (𝑥) d𝑥 = 2
2𝑎 + 1

𝛿𝑎𝑏, (2.4)

more convenient. Via this orthogonality relation, from Eq. (2.3)

𝑡𝑙 (𝑠) =
1
64𝜋

1

∫
−1

𝑃𝑙 (𝑧⋆)ℳ (𝑠, 𝑧⋆) d𝑧⋆ (2.5)

follows.
Up to now, both ℳ and 𝑡𝑙 are ℂ-valued functions. In reality, for fixed particle species in the

initial state, often there are several different two-particle combinations in the final state, which
each might be produced with a certain probability. In general, the higher the energies, the more
states are accessible. To describe multiple channels conveniently, ℳ is rendered into a matrix-
valued function. Each of its components is associated with a different combination of initial- and
final-state particles. Accordingly, the partial waves 𝑡𝑙 become matrix-valued functions, too. Since
the subsequent discussion applies to arbitrary angular momenta, we drop the subscript and write
𝑇 instead of 𝑡𝑙. Explicitly, we then have

𝑇 ∶ ℂ → matℂ(𝑛, 𝑛),
𝑠 ↦ 𝑇 (𝑠) .

(2.6)

Here 𝑛 ∈ ℕ is the number of different channels under consideration, each entry 𝑇𝑓 𝑖(𝑠) corresponds
to a specific particle content in the initial state 𝑖 and final state 𝑓, and 𝑠 denotes the usual Mandel-
stam variable.

Such an amplitude 𝑇 has several interesting properties. First, it can be analytically continued to
general complex values of 𝑠, in fact, it is holomorphic in 𝑠 except for branch points, all of which are
associated with thresholds of multi-particle intermediate states, and poles, associated with bound
states. Such thresholds in the 𝑠 channel lead to branch points on the positive real axis in the 𝑠 plane,
to which we attach branch cuts extending along this axis towards infinity, so called right-hand cuts.
The impact of thresholds in the 𝑡 and 𝑢 channel on the analytic structure is convoluted due to the
partial-wave projection. Often, the associated branch points are located at real values below the
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lowest 𝑠-channel threshold, the associated cuts are located in the left half of the complex 𝑠 plane,
and thus they are known as left-hand cuts. The poles—if there are any—lie on the positive real axis
below the lowest 𝑠-channel threshold. The function can be continued onto other Riemann sheets,
as explicitly shown in Sec. 2.2. On these sheets there might be poles, which correspond to reso-
nances. It should be stressed that these poles are the sole universal approach to extract resonance
properties. Other methods, e.g., reading off properties from the cross section via a Breit–Wigner
parametrization, yield results that often depend on the process in which the resonance appears,
moreover, as soon as two or more resonances are nearby, or if there is a threshold in the neighbor-
hood of the resonance, or the resonance pole is deep in the complex plane, such approaches fail
completely [9].

Furthermore, 𝑇 fulfills the Schwarz reflection principle,

𝑇 (𝑠∗) = 𝑇 (𝑠)∗ (2.7)

for all values of 𝑠 except those lying on branch cuts, in addition, it obeys a unitarity relation of the
form

Im (𝑇) = 𝑇𝜎𝑇 ∗ (2.8)

for values of 𝑠 along the right-hand cut(s). Here the phase space 𝜎 is a function ℂ → matℂ(𝑛, 𝑛),
too. Equation (2.8) is a direct consequence of the unitarity of the 𝑆 matrix.

In Sec. 2.1 the constraints put on the scattering amplitude by unitarity are made explicit via the
𝐾matrix. Subsequently, in Sec. 2.2 the analytic continuation to other Riemann sheets is discussed.
Later, building on top of the 𝐾 matrix, in Sec. 4.2 we introduce the IAM.

2.1 𝑲matrix
Multiplying Eq. (2.8) from the left by 𝑇−1 and from the right by (𝑇 ∗)−1 yields

𝜎 = 𝑇−1Im (𝑇) (𝑇 ∗)−1

= 𝑇−1 1
2𝑖
[𝑇 − 𝑇 ∗] (𝑇 ∗)−1

= 1
2𝑖
[(𝑇 ∗)−1 − 𝑇−1]

= 1
2𝑖
[(𝑇−1)∗ − 𝑇−1]

= −Im (𝑇−1) .

(2.9)

Hence,
𝑇−1 = Re (𝑇−1) + 𝑖 Im (𝑇−1)

= Re (𝑇−1) − 𝑖𝜎 .
(2.10)

That is,
𝑇 = [𝐾 − 𝑖𝜎]−1 , 𝐾 ≔ Re (𝑇−1) . (2.11)

This is the general 𝐾-matrix2 representation of 𝑇 [133]. Along the right-hand cut(s), where Eq. (2.8)
is valid, Eq. (2.11) holds. That is, all parametrizations for 𝑇 that fulfill unitarity need to be of the
form (2.11) (along the right-hand cut(s)).

2Often, in the literature, what we denote as 𝐾 is called 𝐾−1, see, for example, Eq. (5) in Ref. [39] (Eq. (6) in the
arXiv version).
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On the other hand, given a specific 𝐾-matrix parametrization along the right-hand cut(s), if
the given parametrization of 𝐾 is in fact holomorphic in some domain, it is possible to analytically
continue this parametrization to the complex plane simply by promoting 𝑠 to a complex instead of
a real variable. In this case, the Schwarz reflection principle constrains 𝐾 and 𝜎. Namely, equating

𝑇 (𝑠)∗ = [𝐾 (𝑠)∗ + 𝑖𝜎 (𝑠)∗]−1 (2.12)

with
𝑇 (𝑠∗) = [𝐾 (𝑠∗) − 𝑖𝜎 (𝑠∗)]−1 (2.13)

yields

𝐾 (𝑠)∗ + 𝑖𝜎 (𝑠)∗ = 𝐾 (𝑠∗) − 𝑖𝜎 (𝑠∗) , (2.14)

which is fulfilled if
𝐾 (𝑠∗) = 𝐾 (𝑠)∗ , 𝜎 (𝑠∗) = −𝜎 (𝑠)∗ . (2.15)

In the derivation of Eq. (2.27) it is shown that this constraint on 𝜎 is also required such that the
analytic continuation of 𝑇 to other Riemann sheets fulfills the Schwarz reflection principle.

As a special case, restrict the kinematics, such that only one channel is accessible. In this
scenario, the unitarity relation (2.8) reads

Im (𝑇) = 𝜎 |𝑇|2 (2.16)

and the 𝐾-matrix representation (2.11) boils down to

𝑇 = 1
𝐾 − 𝑖𝜎

. (2.17)

In this case, the 𝐾 matrix can be expressed via the argument (i.e., the phase) of 𝑇, using:

cot [arg (𝑇)] = cot [− arg (1
𝑇
)]

= − cot [arg (1
𝑇
)]

= −
Re (𝑇−1)
Im (𝑇−1)

= 𝐾
𝜎
.

(2.18)

That is, 𝐾 = 𝜎 cot(𝛿) with 𝛿 ≔ arg(𝑇 ), and therefore

𝑇 = 1
𝜎

1
cot (𝛿) − 𝑖

= 1
𝜎
sin (𝛿) 𝑒𝑖𝛿. (2.19)

If a given expression for cot(𝛿) allows for a continuation into the complex plane simply by making
𝑠 complex, according to Eq. (2.15) it needs to fulfill cot[𝛿(𝑠∗)] = − cot[𝛿(𝑠)]∗.

Often, the Chew–Mandelstam phase space [134] 𝐼 (𝑠) with Im(𝐼 ) = −𝜎 along the right-hand
cut is used in connection with the 𝐾-matrix representation. That is,

𝑇 = 1
𝐾 + 𝐼

= 1
𝐾 − 𝑖𝜎

, 𝐾 ≔ 𝐾 − Re (𝐼) . (2.20)

18



CHAPTER 2. SCATTERING OF TWO PARTICLES IN THE CONTINUUM

2.2 Riemann sheets and resonance poles
To continue thematrix-valued amplitude 𝑇 to other Riemann sheets (to search for resonance poles),
the Schwarz reflection principle (2.7) comes in handy. Consider two Riemann sheets 𝐴 and 𝐵 that
are connected along a cut along (a subset of) the positive real axis. To be precise, the amplitude
𝑇𝐴 on sheet 𝐴 and the amplitude 𝑇𝐵 on sheet 𝐵 are related via 𝑇𝐴(𝑠+) = 𝑇𝐵(𝑠−). Here 𝑠± ≔ 𝑠 ± 𝑖𝜖
with 𝑠 a real number along the cut, 𝜖 > 0, and a limit 𝜖 ↘ 0 is implicit. Choose now 𝐴 = I, i.e.,
𝐴 is the physical sheet. Here unitarity in the form of Eq. (2.8) holds along the positive real axis if
approached from above, i.e.,

𝑇 I (𝑠+) 𝜎 (𝑠+) [𝑇 I (𝑠+)]
∗
= Im [𝑇 I (𝑠+)] =

1
2𝑖
[𝑇 I (𝑠+) − 𝑇 I (𝑠−)] . (2.21)

That is,
𝑇𝐵 (𝑠−) − 𝑇 I (𝑠−) = 2𝑖𝑇𝐵 (𝑠−) 𝜎 (𝑠+) 𝑇 I (𝑠−) , (2.22)

yielding

𝑇𝐵 (𝑠−) = 𝑇 I (𝑠−) [1 − 2𝑖𝜎 (𝑠+) 𝑇 I (𝑠−)]
−1

. (2.23)

It is crucial to note that in the derivation of Eq. (2.23) 𝑇 I(𝑠+) = 𝑇𝐵(𝑠−) was used, for the naive
opposite relation 𝑇 I(𝑠−) = 𝑇𝐵(𝑠+) holds for arbitrary 𝐵 only if there is only one branch point, i.e.,
in the single-channel case. To make full use of Eq. (2.23), it needs to be analytically continued into
the complex plane, where resonance poles are located. To that end it is first necessary to continue
𝜎(𝑠+) above the cut to obtain its value at 𝑠−. This continuation depends on the nearest branch point
under consideration. For example, if 𝜎 is given along the postive real axis on the physical sheet as

𝜎 (𝑠) =
⎛
⎜⎜
⎝

𝜃 (𝑠 − 4𝑚2)
√
1 − 4𝑚2

𝑠 0

0 𝜃 (𝑠 − 4𝑀2)
√
1 − 4𝑀2

𝑠

⎞
⎟⎟
⎠

(2.24)

with𝑀 > 𝑚 > 0, there are four sheets. For instance, the one connected to the physical sheet along
the real axis between 4𝑚2 and 4𝑀2 is reached by considering only

𝜎 II (𝑠) = (√
1 − 4𝑚2

𝑠 0
0 0

) . (2.25)

In either case, the continuation is performed such that 𝜎(𝑠∗) = −𝜎(𝑠)∗, for in this way the Schwarz
reflection principle holds also on the other sheets. Thus,

𝑇𝐵 (𝑠−) = 𝑇 I (𝑠−) [1 + 2𝑖𝜎𝐵 (𝑠−) 𝑇 I (𝑠−)]
−1

. (2.26)

Since the right hand side of Eq. (2.26) is holomorphic in 𝑠, via uniqueness of analytic continuation

𝑇𝐵 (𝑠) = 𝑇 I (𝑠) [1 + 2𝑖𝜎𝐵 (𝑠) 𝑇 I (𝑠)]
−1

. (2.27)

is obtained.
If instead the amplitude on the first sheet is reconstructed from the one on sheet 𝐵, Eq. (2.27)

can be rearranged into

𝑇 I (𝑠) = [1 − 2𝑖𝑇𝐵 (𝑠) 𝜎𝐵 (𝑠)]
−1

𝑇𝐵 (𝑠) . (2.28)
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To make the impact of the constraint 𝜎(𝑠∗) = −𝜎(𝑠)∗ more explicit, consider the simple case of
single-channel 𝜋𝜋 scattering with phase space

𝜎 (𝑠) =
√
1 −

4𝑀2
𝜋

𝑠
, (2.29)

𝑀𝜋 being the pion mass. For this to fulfill the aforementioned constraint, the branch cut of the
square root needs to be aligned with the positive real axis. This can be achieved by replacing √⋅
by sign(Im(⋅))√⋅, with √⋅ having the cut along the negative real axis, as in many programming
languages.3

A resonance is a pole on an unphysical Riemann sheet 𝐵 off the real axis, that is, it corresponds
to a value 𝑠pole such that |𝑇𝐵| approaches infinity at 𝑠pole. The real and imaginary part of 𝑠pole
determine the mass 𝑀 and width Γ of the resonance via

𝑠pole ≕ (𝑀 ± 𝑖
2
Γ)

2
. (2.30)

Note that due to the Schwarz reflection principle such poles appear as complex-conjugated pairs,
as indicated by the two signs in front of the width. Furthermore, the couplings are defined via the
residue at the pole according to

𝑔𝑎𝑔𝑏 ≔ −16𝜋
2𝐽 + 1

(2𝑝 (𝑠pole))
2𝐽 res (𝑇

𝐵
𝑎𝑏, 𝑠pole) . (2.31)

Here 𝐽 is the angularmomentum quantum number of the partial wave 𝑇 under consideration (which
in turn defines the angular momentum of the resonance), 𝑝 is the momentum in the CM system,
and 𝑎 (𝑏) labels the row (column) of 𝑇𝐵, which correspond to multi-particle channels. Hence, 𝑔𝑎 is
the coupling of the resonance to channel 𝑎, while 𝑔𝑏 is the one to channel 𝑏.

In general, according to Eq. (2.27) the poles of 𝑇𝐵 are given as solutions of

0 = det [1 + 2𝑖𝜎𝐵 (𝑠) 𝑇 I (𝑠)] . (2.32)

This condition implies that the inverse in Eq. (2.27) does not exist at the poles, in addition, it implies
0 ≠ 𝑇 I(𝑠), in this way assuring that there is no cancellation due to a simultaneous zero in the
numerator of 𝑇𝐵.

If there is only one channel of interest (i.e., one combination of in- and out-states), Eq. (2.31)
collapses to

𝑔2 = −16𝜋
2𝐽 + 1

(2𝑝 (𝑠pole))
2𝐽 res (𝑇

II, 𝑠pole) (2.33)

and Eq. (2.32) simplifies to

0 = 1 + 2𝑖𝜎 (𝑠) 𝑇 I (𝑠) . (2.34)

Using this, an easy way to calculate the residue and the coupling 𝑔 can be derived: abbreviating
the denominator of 𝑇 II as

𝑑 (𝑠) ≔ 1 + 2𝑖𝜎 (𝑠) 𝑇 I (𝑠) (2.35)

3Note that due to the presence of the cut 𝜎(𝑠∗) = −𝜎(𝑠)∗ does not imply Re[𝜎(𝑠)] = 0 if 𝑠 ∈ [4𝑀2
𝜋 , ∞).
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and expanding it around 𝑠pole yields4

res (𝑇 II, 𝑠pole) = lim
𝑠→𝑠pole

(𝑠 − 𝑠pole) 𝑇 II (𝑠)

= lim
𝑠→𝑠pole

(𝑠 − 𝑠pole)
𝑇 I (𝑠)
𝑑 (𝑠)

= lim
𝑠→𝑠pole

(𝑠 − 𝑠pole)
𝑇 I (𝑠)

𝑑 (𝑠pole) + 𝑑′ (𝑠pole) (𝑠 − 𝑠pole) + 𝑂 ((𝑠 − 𝑠pole)
2
)

= lim
𝑠→𝑠pole

𝑇 I (𝑠)
𝑑′ (𝑠pole) + 𝑂 (𝑠 − 𝑠pole)

=
𝑇 I (𝑠pole)

𝑑′ (𝑠pole)
,

(2.36)

where 𝑑′(𝑠) = d 𝑑(𝑠)/d𝑠.

4Here we assume that the pole is of single order. While this assumption holds true for all scenarios of relevance
to this work, there exists the possibility of higher-order resonance poles. The possibility of such poles is discussed in
some detail in Ref. [135].
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Chapter 3

Scattering of two particles on the lattice

The computation of scattering via lattice QCD is a challenging problem. From a conceptual point
of view, the challenge lies in the fact that there is no direct way to simulate a scattering process
on the lattice, because the Euclidean spacetime and finite volume do not match the scenario of
continuum scattering theory, namely aMinkowski spacetime of infinite extent. Instead, one has to
resort to indirect methods, which turn a supposed weakness of the lattice—the finite volume—into
a tool, by carefully investigating the impact of the finite volume on observables. In Sec. 3.1 we give
a very superfical reminder of the basic aspects of lattice QCD that are relevant to understand the
subsequent discussion of the indirect approach towards scattering, whose derivation is presented in
detail in Sec. 3.2. This discussion allows us to understand why the computations are often carried
out at unphysically high quark masses, see Sec. 3.3. There we also clarify the relation between
the pion mass and quark masses and explain, why we often use the terms pion-mass dependence
and quark-mass dependence interchangeably. We conclude with a brief discussion of rotational
symmetry on the lattice in Sec. 3.4.

3.1 Correlation functions in lattice QCD
In QCD—as in any QFT—the relevant information is contained in correlation functions, which are
of the form

⟨0|T {𝑂1 (𝐴, 𝜓, 𝜓) 𝑂2 (𝐴, 𝜓, 𝜓)⋯𝑂𝑁 (𝐴, 𝜓, 𝜓)} |0⟩

=
∫D𝐴D𝜓D𝜓 𝑂1 (𝐴, 𝜓, 𝜓) 𝑂2 (𝐴, 𝜓, 𝜓)⋯𝑂𝑁 (𝐴, 𝜓, 𝜓) exp [𝑖𝑆 [𝐴, 𝜓, 𝜓]]

∫D𝐴D𝜓D𝜓 exp [𝑖𝑆 [𝐴, 𝜓, 𝜓]]
.

(3.1)

Here T denotes the time-ordered product, |0⟩ the vacuum, 𝐴 the gluon fields, 𝜓 and 𝜓 the quark
fields, and 𝑆 the action. In addition, 𝑂1, … , 𝑂𝑁 are operators depending on the fundamental fields.
In lattice QCD, Eq. (3.1) is analytically continued into Euclidean spacetime, as a result exp(𝑖𝑆) is
replaced by exp(−𝑆Euclid), with 𝑆Euclid the Euclidean action. Subsequently, the theory is put into
a finite volume and discretized [17, 18].

To be precise, we introduce the lattice with volume 𝑇 × 𝐿3. Here 𝑇 = 𝑎𝑇 lat is the temporal
extent of the lattice, with 𝑇 lat ∈ ℕ the number of sites along the temporal direction and 𝑎 the
lattice spacing, i.e., the temporal distance between two adjacent lattice sites. The spatial extent 𝐿
is defined analogously, that is, 𝐿 = 𝑎s𝐿lat with 𝐿lat ∈ ℕ and 𝑎s the distance in one spatial direction
between two adjacent sites. The latter is related to the lattice spacing via the anisotropy 𝜉 ≔ 𝑎s/𝑎,
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CHAPTER 3. SCATTERING OF TWO PARTICLES ON THE LATTICE

i.e., 𝑎s = 𝜉𝑎. Accordingly, the lattice contains 𝑇 lat × (𝐿lat)3 sites. It is this lattice that replaces the
infinite volume Euclidean spacetime.

Since 𝑆Euclid is real, exp(−𝑆lat) can be interpreted as a (non-normalized) probability density.
Accordingly, the path integral can be computed by Monte-Carlo techniques. To that end, samples
corresponding to different values of the gluonic fields are drawn from a probability distribution that
is derived from exp(−𝑆lat), these samples are called gauge configurations. Correlation functions of
a given set of operators can subsequently be computed by evaluating the operators on all different
gauge configurations and averaging the result.

The computation of a correlation function in this way is in general costly from a numerical
perspective. Hence, to assess the statistical error associated with the finiteness of the number of
gauge configurations, it is not feasible to perform the computation again and again. Instead, the
gauge configurations are computed once only, subsequently, bootstrap (or jackknife) samples are
generated from the configurations. The operators under consideration can then be re-evaluated on
each bootstrap sample, yielding multiple different values of the correlation function at hand. Using
the resulting set of values, statistical quantities, e.g., variances, can be estimate in the standard
way [136].

On the lattice all quantities are expressed in terms of lattice units. To that end, each quantity is
multiplied with the appropriate power of the lattice spacing to render it dimensionless, e.g.,𝑀 lat

𝜋 =
𝑎𝑀𝜋. The exception is the spatial lattice length 𝐿lat that is given in terms of 𝑎s, as described above.
Throughout this thesis, all powers of 𝑎 and 𝑎s are displayed explicitly and quantities determined
on the lattice are often indicated via a superscript lat.

3.2 Lüscher formalism and extensions
The indirect approach to scattering is based on the following observation: what one can compute
on the lattice in an at least conceptually straightforward manner are energy levels corresponding
to single- and multi-particle states. These energy levels are shifted with respect to their contin-
uum counterparts due to the finite spatial extent of the lattice. There are two different kinds of
shifts. First, those that scale like exp(−𝑀𝜋𝐿), which are undesirable but fortunately exponentially
suppressed. Hence, via working with lattices that yield large values of𝑀𝜋𝐿, these shifts can be ren-
dered small. Second, those that scale like polynomials of 1/𝐿. As shown explicitly first by Lüscher
in Refs. [137, 138] in a field theoretic context, these polynomial shifts of two-particle energy levels
are related to scattering length and phases via certain quantization conditions. A few years later he
extended the quantization conditions in Ref. [139]. While the core part of his derivation presented
ibidem—albeit being technically challenging—rests solely on non-relativistic quantum mechanics,
nowadays it is more custom to derive the quantization conditions via the methods of EFT [140], a
derivation that is in its gist similar to the original one in Ref. [138]. This is because the field theo-
retic approach allows for an extension of the quantization conditions in different contexts: different
kinematic settings [140], coupled channels [141], external currents [40], and more particles [142].
For a review of this formalism in the context of two-particle scattering, see Ref. [39].

Here, we pedagogically discuss the detailed field-theoretic derivation of the quantization condi-
tions for both 𝜋𝜋 → 𝜋𝜋 and 𝛾 (∗)𝜋 → 𝜋𝜋. To that end, we work in continuous (i.e., non-discretized)
Minkowski space with a finite spatial, but infinite temporal extent. This differs considerably from
the scenario encountered in lattice-QCD computations as discussed in Sec. 3.1. Nevertheless, the
results obtained in the finite-volume Minkowski space can be carried over to the lattice, for it is
precisely the effect of the finite volume that is at the heart of Lüscher’s method. The discretiza-
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tion yields artifacts that need to be treated separately, while the finite temporal extent amounts to a
finite temperature, again a different effect than the one we are interested in. Moreover, the final re-
sults, Eq. (3.73) and Eq. (3.112), require as input only quantities that can be computed in Euclidean
spacetime, namely energy levels and the matrix element on the left-hand side of Eq. (3.112). Al-
ternatively, in the following we could replace the correlation functions in Minkowski spacetime
by the appropriate analytically continued Euclidean correlation functions, which would however
render the notation less convenient.

3.2.1 Kinematics
In the following, we consider the scattering process 𝜋𝜋 → 𝜋𝜋. First, consider an arbitrary frame
(called the lab frame), in which the total momentum of the two pions is 𝑷, which is also called

the boost momentum. That is, one pion has four-momentum 𝑘 = (𝜔𝑘, 𝒌), with 𝜔𝑘 = √|𝒌|
2 + 𝑀2

𝜋 its

energy, while the other has four-momentum 𝑘′ = (𝜔𝑃−𝑘, 𝑷−𝒌), with energy𝜔𝑃−𝑘 = √|𝑷 − 𝒌|2 + 𝑀2
𝜋 .

Hence, the total energy is 𝐸 = 𝜔𝑘 +𝜔𝑃−𝑘 and the total four-momentum reads 𝑃 = (𝐸, 𝑷). We might
pick a cartesian coordinate system of ℝ3 such that the first basis vector points into the direction of
𝑷, i.e., it is given as 𝑷/ |𝑷| ≕ 𝒆𝑃. In this basis, an arbitrary vector 𝒗 looks like 𝒗 = (𝑣∥, ̃𝑣⟂) with 𝑣∥ ∈ ℝ
the component in the direction of 𝑷 and ̃𝑣⟂ the remaining components. More precisely, these are
defined via

𝑣∥ = 𝒗 ⋅ 𝒆𝑃, 𝒗⟂ = ( 0̃𝑣⟂
) = 𝒗 − 𝑣∥𝒆𝑃. (3.2)

Accordingly, in this basis the total momentum 𝑷 reads 𝑷 = (|𝑷| , 0̃). Hence, �̃�⟂ + �̃�′⟂ = 0̃ and
𝑘∥ + 𝑘′∥ = |𝑷|.

Now consider the CM frame. As before, all quantities in this frame are denoted by a star as a
superscript. By definition, 𝑷⋆ = 0. We want to find a Lorentz transformation Λ that connects the
two frames, i.e., 𝑃⋆ = Λ𝑃 or, more verbose,

(𝐸
⋆

𝟎 ) = Λ(
𝐸
|𝑷|
0̃
) . (3.3)

Clearly, it is sufficient to focus on the subspace corresponding to the first two components, that is,
Λ = Λ2 ⊕ 12. Inserting the general form of a Lorentz boost with rapidity 𝜁 for Λ2 results in

(𝐸
⋆

0 ) = ( cosh 𝜁 − sinh 𝜁
− sinh 𝜁 cosh 𝜁 ) (

𝐸
|𝑷|) = 𝛾 ( 1 −𝛽

−𝛽 1 ) ( 𝐸|𝑷|) (3.4)

with the Lorentz factor 𝛾 = cosh 𝜁 as well as 𝛽 = tanh 𝜁. Multiplying this out yields

𝛽 =
|𝑷|
𝐸
, 𝛾 = 𝐸

𝐸⋆
, (𝐸⋆)2 = 𝐸2 − |𝑷|2 . (3.5)

More generally, applying Λ to an arbitrary four-vector 𝑣 = (𝑣0, 𝑣∥, ̃𝑣⟂) we obtain 𝑣⋆ = Λ𝑣 with
components

𝑣⋆0 = 𝛾 (𝑣0 − 𝛽𝑣∥) , 𝑣⋆∥ = 𝛾 (𝑣∥ − 𝛽𝑣0) , ̃𝑣⋆⟂ = ̃𝑣⟂. (3.6)
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Using Eq. (3.6) 𝒌⋆ + 𝒌′⋆ = 0 follows, as expected. This implies 𝜔⋆
𝑘 = 𝜔⋆

𝑃−𝑘, since 𝑘
2 = (𝑘′)2 = 𝑀2

𝜋
and Λ is an isometry of the Minkowski product. From Eq. (3.4) it follows that the inverse of Λ2
can be obtained by replacing 𝛽 by −𝛽, and thus the inverse of Eq. (3.6) reads

𝑣0 = 𝛾 (𝑣⋆0 + 𝛽𝑣⋆∥ ) , 𝑣∥ = 𝛾 (𝑣⋆∥ + 𝛽𝑣⋆0) , ̃𝑣⟂ = ̃𝑣⋆⟂, (3.7)

as can be easily verified explicitly by using 𝛾−2 = 1 − 𝛽2. It is customary to use the Lorentz
invariant Mandelstam variable 𝑠 = (𝑘 + 𝑘′)2 = (𝑘⋆ + 𝑘′⋆)2 = (𝐸⋆)2, see Ch. 2, as well as 𝑞⋆ = |𝒌⋆|

such that 𝐸⋆ = 2√𝑀
2
𝜋 + 𝑞⋆2.

3.2.2 Angular-momentum basis
Consider a function 𝑓 ∶ ℝ3 → ℂ. In spherical polar coordinates, i.e., 𝒓 = (|𝒓| , 𝜃 , 𝜙), 𝑓 can be
decomposed using the spherical harmonics 𝑌𝑙𝑚 according to

𝑓 (𝒓) =
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

𝑓𝑙𝑚 (|𝒓|) √4𝜋 𝑌𝑙𝑚 (𝜃, 𝜙) . (3.8)

Since the spherical harmonics are orthogonal, that is,

∫ dΩ𝑌 ∗𝑙𝑚 (𝜃, 𝜙) 𝑌𝑙′𝑚′ (𝜃, 𝜙) = 𝛿𝑙 𝑙′𝛿𝑚𝑚′ , (3.9)

the coefficients 𝑓𝑙𝑚 are given as

𝑓𝑙𝑚 (|𝒓|) = 1
√4𝜋 ∫ dΩ𝑌 ∗𝑙𝑚 (𝜃, 𝜙) 𝑓 (𝒓) . (3.10)

This decomposition is possible because the spherical harmonics constitute a basis for all smooth,
ℂ-valued functions defined on of a two-dimensional sphere. So do their complex conjugates, so
that an alternative decomposition reads

𝑓 (𝒓) =
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

̃𝑓𝑙𝑚 (|𝒓|) √4𝜋 𝑌 ∗𝑙𝑚 (𝜃, 𝜙) ,

̃𝑓𝑙𝑚 (|𝒓|) = 1
√4𝜋 ∫ dΩ𝑌𝑙𝑚 (𝜃, 𝜙) 𝑓 (𝒓) .

(3.11)

We stress that the factor √4𝜋 in Eq. (3.8) is purely conventional (in fact, it can be replaced by
an arbitrary function of |𝒓|, resulting merely in a re-definition of 𝑓𝑙𝑚). It is chosen such that
√4𝜋 𝑌00 (𝜃, 𝜙) = 1.

These statements can be generalized to functions of several variables. Let ℎ ∶ ℝ3 × ℝ3 → ℂ be
a smooth function. Applying Eq. (3.8) to the first argument and Eq. (3.11) to the second yields

ℎ (𝒓, 𝒓′) = 4𝜋 𝑌𝑙𝑚 (𝜃, 𝜙) ℎ𝑙𝑚𝑙′𝑚′ (|𝒓| , |𝒓|′) 𝑌 ∗𝑙′𝑚′ (𝜃′, 𝜙′) ,

ℎ𝑙𝑚𝑙′𝑚′ (|𝒓| , |𝒓|′) = 1
4𝜋 ∫ dΩ∫ dΩ′ 𝑌 ∗𝑙𝑚 (𝜃, 𝜙) 𝑌𝑙′𝑚′ (𝜃′, 𝜙′) ℎ (𝒓, 𝒓′) ,

(3.12)

with a summation about repeated indices implicit.
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It is instructive to apply this decomposition to the 𝜋𝜋 → 𝜋𝜋 scattering amplitude ℳ for fixed
total isospin. In the CM frame, according to Eq. (2.3) its decomposition into partial waves 𝑡𝑙 reads

ℳ(𝑠, cos 𝜃⋆) = 32𝜋
∞
∑
𝑙=0

𝑡𝑙 (𝑠) (2𝑙 + 1) 𝑃𝑙 (cos 𝜃⋆) . (3.13)

Here 𝑃𝑙 denotes the 𝑙-th Legendre polynomial and 𝜃⋆ the scattering angle, i.e., |𝒌⋆| |𝒌′′⋆| cos 𝜃⋆ =
𝒌⋆ ⋅ 𝒌′′⋆ with 𝒌⋆ the momentum of an ingoing pion and 𝒌′′⋆ the momentum of an outgoing pion.
Using

𝑃𝑙 (
𝒌⋆

|𝒌⋆|
⋅ 𝒌

′′⋆

|𝒌′′⋆|
) = 4𝜋

2𝑙 + 1

𝑚=𝑙
∑
𝑚=−𝑙

𝑌𝑙𝑚 (Ω⋆
𝑘) 𝑌

∗
𝑙𝑚 (Ω⋆

𝑘′′) , (3.14)

with Ω𝑟 = (𝜃𝑟, 𝜙𝑟) the angular components of the vector 𝒓, we obtain

ℳ(𝑠, cos 𝜃⋆) = 4𝜋
∞
∑
𝑙=0

𝑚=𝑙
∑
𝑚=−𝑙

32𝜋 𝑡𝑙 (𝑠) 𝑌𝑙𝑚 (Ω⋆
𝑘) 𝑌

∗
𝑙𝑚 (Ω⋆

𝑘′′)

= 4𝜋 𝑌𝑙𝑚 (Ω⋆
𝑘)ℳ𝑙𝑚𝑙′′𝑚′′ (𝑠) 𝑌 ∗𝑙′′𝑚′′ (Ω⋆

𝑘′′) ,
ℳ𝑙𝑚𝑙′′𝑚′′ (𝑠) = 32𝜋𝛿𝑙 𝑙′′𝛿𝑚𝑚′′ 𝑡𝑙 (𝑠) ,

(3.15)

which is the decomposition (3.12) applied in this specific context.
For future use, it is convenient to define homogeneous polynomials 𝒴𝑙𝑚 via

𝒴𝑙𝑚 (𝒓) ≔ |𝒓|𝑙 𝑌𝑙𝑚 (Ω𝑟) . (3.16)

3.2.3 Finite-volume Minkowski space
In the following wewill work in finite-volume four-dimensional Minkowski space denoted by𝕄𝐿.
To be precise, we consider a Minkowski space of infinite time extent, but confined to a spatial box
of volume 𝐿3. That is, 𝑥 𝑖 ∈ [0, 𝐿] for 𝑖 = 1, 2, 3. Hence, 𝕄𝐿 can be decomposed into 𝕄𝐿 = ℝ × 𝕃
with 𝕃 ≔ [0, 𝐿]3. Furthermore, we require periodic boundary conditions, i.e., we identify 𝑥 𝑖 = 𝐿
with 𝑥 𝑖 = 0. Thus 𝕃, the spatial part of 𝕄𝐿, is in fact a three-dimensional torus. Given that the
spatial part of the eigenfunctions of the momentum operator reads 𝑒𝑖𝒙⋅𝒑, this enforces 𝒑 ∈ ℤ3

𝐿 with
ℤ𝐿 ≔ {𝑛2𝜋/𝐿 ∶ 𝑛 ∈ ℤ}: the components of all momenta are integermultiples of 2𝜋/𝐿. Accordingly,
momentum integrals are replaced by sums,

∫
d3𝑝

(2𝜋)3
→ 1

𝐿3
∑
𝒑∈ℤ3

𝐿

. (3.17)

The Poisson summation formula, given in Eq. (3.31) and discussed in detail in Sec. 3.2.4, shows
that the sum on the right-hand side of Eq. (3.17) is indeed equal to the integral on the left-hand side
if the limit 𝐿 → ∞ is performed (and the integrand is non-singular).

We denote integer vectors using Fraktur. In this way, we can write each momentum 𝒑 as

𝒑 = 2𝜋
𝐿
𝔭 (3.18)

with 𝔭 ∈ ℤ3. This motivates us to introduce

𝛿𝒑𝒒 ≡ 𝛿𝔭𝔮 ≔
3

∏
𝑗=1

𝛿𝔭𝑗𝔮𝑗 =
1
𝐿3 ∫

𝕃

d3𝑥 𝑒𝑖𝒙⋅(𝒑−𝒒), (3.19)
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where the last equality can be proven by directly computing the integral. This definition is naturally
accompanied by

𝛿 (3)𝐿 (𝒙) ≔ 1
𝐿3

∑
𝒑∈ℤ3

𝐿

𝑒𝑖𝒑⋅𝒙 = ∑
𝔫∈ℤ3

𝛿 (3) (𝒙 − 𝐿𝔫) . (3.20)

Here the last equality arises from the use of the Poisson summation formula, compare Eq. (3.28).
If we restrict our attention to 0 ≤ 𝑥 𝑖 < 𝐿, 𝑖 = 1, 2, 3, only the 𝔫 = 0 term on the right-hand side of
Eq. (3.20) is of relevance, resulting in 𝛿 (3)𝐿 (𝒙) = 𝛿 (3)(𝒙). Consider now a function 𝑓 ∶ 𝕃 → ℂ. We
define its Fourier transform as

ℱ[𝑓] (𝒑) ≔ ∫
𝕃

d3𝑥 𝑒−𝑖𝒑⋅𝒙𝑓 (𝒙) . (3.21)

Conversely, let 𝑔 ∶ ℤ3
𝐿 → ℂ be a function defined in momentum space. Its Fourier transform

reads
ℱ −1 [𝑔] (𝒙) ≔ 1

𝐿3
∑
𝒑∈ℤ3

𝐿

𝑒𝑖𝒑⋅𝒙𝑔 (𝒑) . (3.22)

One may use Eq. (3.19) and Eq. (3.20) to check that Eq. (3.21) and Eq. (3.22) are indeed mutually
inverse.

Lastly, consider the spectrum of the Hamilton operator in the finite volume. Since momenta
are discretized, the spectrum is discrete, too. We denote the eigenstates of the Hamiltonian by
|𝐸𝑛, 𝒑; 𝐿⟩ with 𝐸𝑛 the corresponding energy (that might depend on both 𝐿 and 𝒑). Those states are
normalized according to

⟨𝐸𝑛, 𝒑; 𝐿 | 𝐸𝑚, 𝒒; 𝐿⟩ = 𝛿𝑛𝑚𝛿𝒑𝒒, (3.23)

with 𝛿𝒑𝒒 given by Eq. (3.19).

3.2.4 Loops in finite volume
In the following1, we relate a loop integral in infinite volume to the one in finite volume. This re-
lation is of great importance in the subsequent derivation of the quantization conditions. Consider
a one-loop integral in infinite-volume Minkowski space, namely

𝐼IV (𝑃) ≔ ∫
d4𝑘
(2𝜋)4

𝑓 (𝑘)

[𝑘2 − 𝑀2
𝜋 + 𝑖𝜖] [(𝑃 − 𝑘)2 − 𝑀2

𝜋 + 𝑖𝜖]
, (3.24)

with 𝑓 a non-singular, but otherwise almost arbitrary complex-valued function, except for the re-
quirement that its asymptotic behaviour is such that the integral converges. Now consider the
same theory, but with the ordinary Minkowski space replaced by 𝕄𝐿. Accordingly, Eq. (3.24) is
replaced by

𝐼FV (𝑃, 𝐿) ≔ 1
𝐿3

∑
𝒌∈ℤ3

𝐿

∫
d𝑘0

2𝜋
𝑓 (𝑘)

[𝑘2 − 𝑀2
𝜋 + 𝑖𝜖] [(𝑃 − 𝑘)2 − 𝑀2

𝜋 + 𝑖𝜖]
. (3.25)

It is important to realize that the sum runs over momenta in the lab frame, i.e., the frame that
does not move with respect to the spatial cube, for only in this frame the components of the three-
momenta are constrained in such an simple way. The goal of this section is to derive an expression
for 𝐷 ≔ 𝐼FV − 𝐼IV.

1The discussion in this section closely follows Ref. [140].
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Since 𝑓 is non-singular, the only poles in the integrand of 𝐼FV arise from its denominator. To
render those poles more explicit, we decompose the denominator to obtain

𝐼FV (𝑃, 𝐿)

= 1
𝐿3

∑
𝒌∈ℤ3

𝐿

∫
d𝑘0

2𝜋
𝑓 (𝑘)

(𝑘0 − 𝜔𝑘 + 𝑖𝜖) (𝑘0 + 𝜔𝑘 − 𝑖𝜖) (𝑘0 − 𝐸 − 𝜔𝑃−𝑘 + 𝑖𝜖) (𝑘0 − 𝐸 + 𝜔𝑃−𝑘 − 𝑖𝜖)
. (3.26)

That is, there are four singularities in 𝑘0, located at ±𝜔𝑘 ∓ 𝑖𝜖 and 𝐸 ± 𝜔𝑃−𝑘 ∓ 𝑖𝜖. We close the 𝑘0
contour of integration in the lower half plane and use the residue theorem to obtain

𝐼FV (𝑃, 𝐿) = − 𝑖
𝐿3

∑
𝒌∈ℤ3

𝐿

(
𝑓 (𝜔𝑘, 𝒌)

2𝜔𝑘 [(𝐸 − 𝜔𝑘)
2 − 𝜔2

𝑃−𝑘 + 𝑖𝜖]
+

𝑓 (𝐸 + 𝜔𝑃−𝑘, 𝒌)

2𝜔𝑃−𝑘 [(𝐸 + 𝜔𝑃−𝑘)
2 − 𝜔2

𝑘]
) . (3.27)

Here we kept the 𝑖𝜖 in the only place were it is going to be of relevance in the following.
To make further progress, we need another tool, namely the Poisson summation formula,

which states that [143]
∑
𝔫∈ℤ3

ℎ (𝔫) = ∑
𝔩∈ℤ3

ℱ[ℎ] (𝔩) , (3.28)

with ℎ ∶ ℝ3 → ℂ a function and ℱ [ℎ] its Fourier transform, defined as

ℱ[ℎ] (𝒙) = ∫ d3𝑦 exp [−2𝜋𝑖𝒙 ⋅ 𝒚] ℎ (𝒚) . (3.29)

Also, wemade use of our convention to denote integer vectors using Fraktur. Applying the Poisson
summation formula to ℎ(𝒙) = 𝑔(2𝜋𝒙/𝐿), renaming 𝔩 → −𝔩 in the sum on the right-hand side of
Eq. (3.28), and performing the change of variables 𝒌 = 2𝜋𝒚/𝐿 in the integral on the right hand side
of Eq. (3.29) results in

1
𝐿3

∑
𝒌∈ℤ3

𝐿

𝑔 (𝒌) = ∑
𝔩∈ℤ3

∫
d3𝑘
(2𝜋)3

exp [𝑖𝐿𝔩 ⋅ 𝒌] 𝑔 (𝒌) , (3.30)

which holds true for arbitrary functions 𝑔. It is instructive to separate the 𝔩 = 0 term from the sum,
obtaining

1
𝐿3

∑
𝒌∈ℤ3

𝐿

𝑔 (𝒌) = ∫
d3𝑘
(2𝜋)3

𝑔 (𝒌) + ∑
𝔩∈ℤ3⧵{0}

∫
d3𝑘
(2𝜋)3

exp [𝑖𝐿𝔩 ⋅ 𝒌] 𝑔 (𝒌) . (3.31)

If the function 𝑔 is non-singular and falls of quickly for large arguments, the terms with 𝔩 ≠ 0 are
exponentially suppressed for large 𝐿 (in accordance with the Riemann–Lebesgue lemma), i.e.,

1
𝐿3

∑
𝒌∈ℤ3

𝐿

𝑔 (𝒌) = ∫
d3𝑘
(2𝜋)3

𝑔 (𝒌) (3.32)

ignoring exponentially suppressed corrections. That is, for non-singular functions there is effec-
tively no difference between the finite volume and the infinite volume. All important differences
between finite and infinite volume arise from singularities.

Equipped with this knowledge, the canonical next step is to investigate the singularities of
Eq. (3.27). From here on, we restrict the analysis to energies between the two-pion threshold and
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the four-pion one, i.e., 4𝑀2
𝜋 < 𝐸⋆2 < 16𝑀2

𝜋 . Inside this kinematical range, the second term on
the right-hand side of Eq. (3.27) has no singularities, and thus according to Eq. (3.32) the sum over
it can be replaced by an integral. Moreover, 𝐼IV can also be brought into the form of Eq. (3.27),
with the only difference that the sum in Eq. (3.27) is to be replaced by an integral (since to arive
at Eq. (3.27) only the 𝑘0 integral has been performed, which is the same in both the finite-volume
expression (3.25) and the infinite-volume one (3.24)). Putting all this together, we obtain

𝐷 (𝑃, 𝐿) = 𝐼FV (𝑃, 𝐿) − 𝐼IV (𝑃)

= −𝑖∑∫
𝒌

𝑓 (𝜔𝑘, 𝒌)

2𝜔𝑘 [(𝐸 − 𝜔𝑘)
2 − 𝜔2

𝑃−𝑘 + 𝑖𝜖]
, (3.33)

with

∑∫
𝒌

≔ [ 1
𝐿3

∑
𝒌∈ℤ3

𝐿

−∫
d3𝑘
(2𝜋)3

] . (3.34)

In principle, we could now use Eq. (3.31) to rewrite this expression as a sum overℤ3 ⧵ {0}, however,
it is beneficial to spend some effort to further manipulate it.

To do so, we rewrite it in terms of CM-frame variables. Using Eqs. (3.5) and (3.6) we obtain

(𝐸 − 𝜔𝑘)
2 − 𝜔2

𝑃−𝑘 = 𝐸⋆ (𝐸⋆ − 2𝜔⋆
𝑘 ) . (3.35)

Furthermore, we have
1

𝐸⋆ − 2𝜔⋆
𝑘
=

𝐸⋆ + 2𝜔⋆
𝑘

4 (𝑞⋆2 − |𝒌⋆|2)
(3.36)

and introduce a function 𝑓 ⋆ defined via

𝑓 ⋆(𝒌⋆) ≔ 𝑓 (𝜔𝑘, 𝒌) (3.37)

(we suppress the argument 𝜔⋆
𝑘 , for it is fixed via 𝒌⋆) resulting in2

𝐷 (𝑃, 𝐿) = −𝑖∑∫
𝒌

𝑓 ⋆ (𝒌⋆) (𝐸⋆ + 2𝜔⋆
𝑘 )

8𝜔𝑘𝐸⋆ (𝑞⋆
2 − |𝒌⋆|2 + 𝑖𝜖)

. (3.38)

To simplify this even further, we make use of Eq. (3.8) to decompose 𝑓 ⋆:

𝐷 (𝑃, 𝐿) = − 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∑∫
𝒌

𝑓 ⋆𝑙𝑚 (|𝒌⋆|) √4𝜋 𝑌𝑙𝑚 (Ω⋆
𝑘) (𝐸

⋆ + 2𝜔⋆
𝑘 )

4𝜔𝑘 (𝑞⋆
2 − |𝒌⋆|2 + 𝑖𝜖)

. (3.39)

With the abbreviation

𝑔𝑙𝑚 (𝐸⋆, |𝒌⋆|) ≔
𝑓 ⋆𝑙𝑚 (|𝒌⋆|)

|𝒌⋆|𝑙
𝐸⋆ + 2𝜔⋆

𝑘
4𝜔⋆

𝑘
, (3.40)

2It is crucial to note that 𝑞⋆ = √𝐸⋆2/4 − 𝑀2
𝜋 is here an external parameter that can be varied freely, while 𝒌⋆ is the

loop momentum. In particular, 𝑞⋆ is not fixed to equal |𝒌⋆|.

29



CHAPTER 3. SCATTERING OF TWO PARTICLES ON THE LATTICE

we arrive at

𝐷 (𝑃, 𝐿)

= − 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∑∫
𝒌

𝜔⋆
𝑘

𝜔𝑘

𝑔𝑙𝑚 (𝐸⋆, |𝒌⋆|) √4𝜋𝒴𝑙𝑚 (𝒌⋆)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖

= − 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∑∫
𝒌

𝜔⋆
𝑘

𝜔𝑘
{
𝑔𝑙𝑚 (𝐸⋆, |𝒌⋆|) − 𝑔𝑙𝑚 (𝐸⋆, 𝑞⋆) 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖
} √4𝜋𝒴𝑙𝑚 (𝒌⋆)

− 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∑∫
𝒌

𝜔⋆
𝑘

𝜔𝑘

𝑔𝑙𝑚 (𝐸⋆, 𝑞⋆) 𝑒𝛼(𝑞
⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖
√4𝜋𝒴𝑙𝑚 (𝒌⋆) .

(3.41)

Here 𝛼 > 0 is an arbitrary positive real number and𝒴𝑙𝑚 is defined in Eq. (3.16). The term inside the
curly brackets has no singularity, and therefore according to Eq. (3.32) its contribution vanishes.
Using

𝑔𝑙𝑚 (𝐸⋆, 𝑞⋆) =
𝑓 ⋆𝑙𝑚 (𝑞⋆)

𝑞⋆𝑙
(3.42)

we are left with

𝐷 (𝑃, 𝐿) = − 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∑∫
𝒌

𝜔⋆
𝑘

𝜔𝑘

𝑓 ⋆𝑙𝑚 (𝑞⋆) 𝑒𝛼(𝑞
⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖
1
𝑞⋆𝑙

√4𝜋𝒴𝑙𝑚 (𝒌⋆) . (3.43)

Again employing Eq. (3.6),
𝜕𝑘⋆∥
𝜕𝑘∥

=
𝜔⋆
𝑘

𝜔𝑘
(3.44)

follows, resulting in

∫ d3𝑘 = ∫ d2𝑘⟂d𝑘∥ = ∫ d2𝑘⋆⟂d𝑘⋆∥
𝜔𝑘
𝜔⋆
𝑘
= ∫ d3𝑘⋆

𝜔𝑘
𝜔⋆
𝑘
. (3.45)

Thus,

𝐷 (𝑃, 𝐿) = − 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

[ 1
𝐿3

∑
𝒌∈ℤ3

𝐿

𝜔⋆
𝑘

𝜔𝑘
− ∫

d3𝑘⋆

(2𝜋)3
]
𝑓 ⋆𝑙𝑚 (𝑞⋆) 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖
1
𝑞⋆𝑙

√4𝜋𝒴𝑙𝑚 (𝒌⋆) . (3.46)

Focus on the integral first. As a special case of Eq. (3.9) we deduce

∫ dΩ⋆
𝑘𝑌𝑙𝑚 (Ω⋆

𝑘) = √4𝜋∫ dΩ⋆
𝑘𝑌

∗
00 (Ω⋆

𝑘) 𝑌𝑙𝑚 (Ω⋆
𝑘) = √4𝜋𝛿𝑙0𝛿𝑚0 = √4𝜋𝛿𝑙0, (3.47)
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where we used that 𝑙 = 0 requires 𝑚 = 0 automatically. Therefore,

𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∫
d3𝑘⋆

(2𝜋)3
𝑓 ⋆𝑙𝑚 (𝑞⋆) 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖
1
𝑞⋆𝑙

√4𝜋𝒴𝑙𝑚 (𝒌⋆)

= 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

∞

∫
0

d |𝒌⋆| |𝒌⋆|2

(2𝜋)3
𝑓 ⋆𝑙𝑚 (𝑞⋆) 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2 + 𝑖𝜖

|𝒌⋆|𝑙

𝑞⋆𝑙
√4𝜋∫ dΩ⋆

𝑘𝑌𝑙𝑚 (Ω⋆
𝑘)

=
𝑖𝑓 ⋆00 (𝑞⋆)
4𝐸⋆𝜋2

∞

∫
0

d |𝒌⋆|
|𝒌⋆|2 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

(𝑞⋆ − |𝒌⋆| + 𝑖𝜖) (𝑞⋆ + |𝒌⋆| + 𝑖𝜖)

=
𝑓 ⋆00 (𝑞⋆) 𝑞⋆

8𝜋𝐸⋆
+
𝑖𝑓 ⋆00 (𝑞⋆)
4𝐸⋆𝜋2

-∫d |𝒌⋆|
|𝒌⋆|2 𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2

(3.48)

where in the last line the Cauchy principal value is applied. Inserting this back into Eq. (3.46)
finally yields [140]

𝐷 (𝑃, 𝐿) =
𝑓 ⋆00 (𝑞⋆) 𝑞⋆

8𝜋𝐸⋆
− 𝑖
2𝐸⋆

∑
𝑙 ,𝑚

𝑓 ⋆𝑙𝑚 (𝑞⋆)

𝑞⋆𝑙
𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿) , (3.49)

with

𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿) ≔ 1
𝐿3

∑
𝒌∈ℤ3

𝐿

𝜔⋆
𝑘

𝜔𝑘
𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2
√4𝜋𝒴𝑙𝑚 (𝒌⋆) − 𝛿𝑙0 -∫

d3𝑘⋆

(2𝜋)3
𝑒𝛼(𝑞

⋆2−|𝒌⋆|2)

𝑞⋆2 − |𝒌⋆|2
. (3.50)

Since the choice of the precise value of 𝛼 in the derivation is arbitrary, the coefficients 𝑐𝑃𝑙𝑚 are in fact

independent of 𝛼. Often they are replaced by the generalized zeta functions 𝑍𝔓
𝑙𝑚 that are defined as

𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿) ≕ − 1
2𝐿𝜋3/2

(2𝜋
𝐿
)
𝑙
𝑍𝔓
𝑙𝑚 (1, (

𝑞⋆𝐿
2𝜋

)
2
) . (3.51)

There is one striking aspect of Eq. (3.49), namely that all quantities are evaluated at 𝑞⋆, which
is determined via

𝑞⋆ =
√
𝐸⋆2

4
− 𝑀2

𝜋 =
√
𝑃2
4

− 𝑀2
𝜋 . (3.52)

In particular, recall that according to Eq. (3.37) 𝑓 ⋆𝑙𝑚(𝑞
⋆) = 𝑓𝑙𝑚(𝜔𝑞⋆ , 𝑞⋆), that is, 𝑓 is evaluated on-shell.

Furthermore, while 𝑷 is constrained to take on values in ℤ3
𝐿, i.e., is discretized, 𝑃0 = 𝐸 is a priori

arbitrary (except for the constraint 2𝑀𝜋 < 𝐸⋆ < 4𝑀𝜋), and thus 𝑞⋆ can take on any value out of a
continuous range of real values.

3.2.5 Correlation functions in finite volume
In this section3 we want to study correlation functions in Minkowski space of infinite time extent,
again confined to a spatial box of size 𝐿3 with periodic boundary conditions. To be precise, the

3The derivation in this section has been presented multiple times in the literature, here we orient ourselves closely
by Refs. [39, 40, 140, 141].
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object of interest is

𝐶 (𝑃, 𝐿) ≔ ∫
𝐿

d4𝑥 𝑒𝑖𝑃𝑥 ⟨0 |𝑇 {𝒪1 (𝑥) 𝒪
†
2 (0)}| 0⟩ , (3.53)

with 𝑃 an arbitrary four-momentum and 𝑇 the time-ordered product. Here we introduced the
shorthand notation

∫
𝐿

d4𝑥 ≔
∞

∫
−∞

d𝑥0 ∫
𝕃

d3𝑥. (3.54)

In addition, 𝒪†
2 denotes an operator with the appropriate quantum numbers to create a pair of

pions, and 𝒪1 one that annihilates such a pair (these do not need to be Hermitian conjugates of
each other and they do not need to be local). That is, 𝐶 is the correlation function relevant for
𝜋𝜋 → 𝜋𝜋 scattering.

We restrict our attention to energies below a cutoff that is high enough such that all physical
phenomena we are interested in occur at energies well below this cutoff. In principle it is possible
to construct an EFT that describes the interactions among pions at energies below this cutoff by
integrating out all higher-energetic degrees of freedom from QCD. Of course in practice this might
not be feasible except for at very low energies, where ChPT is valid, but since we do not need to
use at all any specific characteristics of this EFT (like interaction vertices etc.), all we need to rely
upon is that such an EFT exists. Furthermore, we assume that 𝐺 parity is a good quantum number,
i.e., that interactions between an odd number of pions are forbidden.

In this EFT the perturbative expansion of 𝐶 to all orders is depicted in Fig. 3.1. It is given in
terms of the fully dressed one-pion propagator (denoted in the following by Δ) and the so called
Bethe–Salpeter kernel 𝐵. The latter is defined as the sum of all diagrams that are two-particle-
irreducible (2PI) in the 𝑠 channel. In particular, it contains all 𝑡 and 𝑢 channel loops to all orders
as well as all contributions from higher-energetic intermediate states (e.g., four-pion states). Note
that this expansion is—if summed to all orders, which we will do in the following—exact.

From here on, we restrict our attention to CM energies above the two-pion threshold and below
the four-pion one, i.e., 2𝑀𝜋 < 𝐸⋆ < 4𝑀𝜋. Since we operate in finite volume, all loop integrals are
in fact of the form

1
𝐿3

∑
𝒑∈ℤ3

𝐿

∫
d𝑝0

2𝜋
, (3.55)

where 𝑝 is the loop momentum. They can be decomposed as

1
𝐿3

∑
𝒑∈ℤ3

𝐿

∫
d𝑝0

2𝜋
= ∫

d4𝑝

(2𝜋)4
+ ∫

d𝑝0

2𝜋
∑∫
𝒑

, (3.56)

with the shorthand notation defined in Eq. (3.34). According to the discussion in Sec. 3.2.4, the
important differences between finite volume and infinite volume arise from singularities, all other
differences are exponentially suppressed. Intermediate propagators exhibit poles only if the corre-
sponding particle can go on-shell. However, in the kinematic range of interest the multi-particle
contributions in the 𝑠 channel contained in the Bethe–Salpeter kernel cannot go on-shell. The
same holds true for the 𝑡- and 𝑢-channel loops, for we consider the region of 𝑠-channel scattering.
Hence, there are no relevant singularities in the Bethe–Salpeter kernel, such that the sum in
all internal loops of 𝐵 can be replaced by integrals, effectively replacing 𝐵 by its infinite-volume
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𝐶 (𝑃, 𝐿) = 𝒪†
2 𝒪1

𝑃 − 𝑝

𝑝

𝕃 + 𝒪†
2 𝐵 𝒪1

𝑃 − 𝑝 𝑃 − 𝑝′

𝑝 𝑝′

𝕃 𝕃 + 𝒪†
2 𝐵 𝐵 𝒪1

𝑃 − 𝑝 𝑃 − 𝑝′ 𝑃 − 𝑝′′

𝑝 𝑝′ 𝑝′′

𝕃 𝕃 𝕃 + …

= + 1PI + 1PI 1PI + …

𝐵 = + + …

Figure 3.1: The perturbative expansion of the correlation function 𝐶 in a general EFT. Ordinary
internal lines denote LO single-pion propagators, while the fully dressed single-pion propagator Δ
is denoted by double lines. It is given as a geometric series of one-particle-irreducible (1PI) terms.
𝑝, 𝑝′, and 𝑝′′ denote loop momenta. An 𝕃 inside a loop indicates that Eq. (3.55) is used instead of
an ordinary integral [39].

counterpart. Since the finite-volume expression of 𝐵 is not needed in the following, all subsequent
mentions of 𝐵 refer to the infinite-volume Bethe–Salpeter kernel.4 In addition, the intermediate
states of lowest energy in the 1PI terms in the dressed propagator are two-pion states. Hence, for
intermediate states in the 1PI terms of both dressed propagators in an s-channel loop to go on-shell
simultaneously, the overall energy needs to exceed the four-pion threshold. Thus, the only singu-
larities of interest arise if both pions in an 𝑠-channel loop go on-shell, i.e., precisely the singularities
studied in Sec. 3.2.4.

Applying the decomposition (3.56) to all 𝑠-channel two-particle loops depicted in the top row
of Fig. 3.1 and rearranging the terms leads to the decomposition

𝐶 (𝑃, 𝐿) = 𝐶∞ (𝑃) + 𝐶cut (𝑃, 𝐿) . (3.57)

Here 𝐶∞ is the infinite-volume correlation function and the perturbative expansions of 𝐶∞ and 𝐶cut
are shown in Fig. 3.2. The cuts indicate that in the corresponding loop

∫
d𝑝0

2𝜋
∑∫
𝒑

(3.58)

is used instead of an ordinary loop integral. According to the discussion in Sec. 3.2.4, only the
singularities are of relevance; hence, in the cut loops the fully dressed propagators can effectively
be replaced by the ordinary ones. For this to work smoothly, we pick renormalization conditions
such that:

Δ (𝑝) −−−−−−→
𝑝2→𝑀2

𝜋

𝑖
𝑝2 − 𝑀2

𝜋 + 𝑖𝜖
. (3.59)

4This is why there is no 𝕃 inside the loop in the last row of Fig. 3.1.
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Therefore, the internal propagators in the first row of Fig. 3.2 are denoted by simple lines instead
of double ones.

At this stage it is useful to decompose all quantities via spherical harmonics, as explained in
Sec. 3.2.2, that is,

ℳ(𝑝⋆, 𝑝′⋆) = 4𝜋𝑌𝑙1𝑚1 (Ω
⋆
𝑝)ℳ𝑙1𝑚1𝑙2𝑚2 (𝑝

⋆0, |𝒑⋆| , 𝑝′⋆0, |𝒑′⋆|) 𝑌 ∗𝑙2𝑚2
(Ω⋆

𝑝′) ,

𝒬1 (𝑝⋆) = √4𝜋𝒬1𝑙𝑚 (𝑝⋆0, |𝒑⋆|) 𝑌𝑙𝑚 (Ω⋆
𝑝) ,

𝒬2 (𝑝⋆) = √4𝜋𝒬2𝑙𝑚 (𝑝⋆0, |𝒑⋆|) 𝑌 ∗𝑙𝑚 (Ω⋆
𝑝) ,

(3.60)

with sums over repeated indices implied. Here we are allowing for off-shell momenta (i.e., 𝑝⋆0 ≠
𝜔⋆
𝑝) and all functions are defined with respect to CM momenta.

Denote the first diagram in the second row of Fig. 3.2 as 𝐶LO
cut . Expressed as a formula it reads

𝐶LO
cut (𝑃, 𝐿) = 𝑖2𝜂∫

d𝑝0

2𝜋
∑∫
𝒑

𝒬2 (𝑝⋆) 𝒬1 (𝑝⋆)

[𝑝2 − 𝑀2
𝜋 + 𝑖𝜖] [(𝑃 − 𝑝)2 − 𝑀2

𝜋 + 𝑖𝜖]
, (3.61)

where the factor 𝑖2 arises from the numerators of the two propagators, 𝜂 = 1/2 if the pions in the
loop are considered to be identical, and 𝜂 = 1 otherwise. This is just a special case of the expression
𝐷 studied in Sec. 3.2.4 with (see Eq. (3.37))

𝑓 ⋆ (𝑝⋆) = 𝒬2 (𝑝⋆) 𝒬1 (𝑝⋆) . (3.62)

Since all momenta are evaluated on-shell, we can suppress 𝑝⋆0 in the following. We use
Eq. (3.10) to obtain (with |𝒒⋆| = 𝑞⋆)

𝑓 ⋆𝑙𝑚 (𝑞⋆) = 1
√4𝜋 ∫ dΩ⋆

𝑞𝑌 ∗𝑙𝑚 (Ω⋆
𝑞) 𝑓 (𝒒⋆)

= √4𝜋𝒬2𝑙2𝑚2 (𝑞
⋆) 𝒬1𝑙1𝑚1 (𝑞

⋆) ∫ dΩ⋆
𝑞𝑌 ∗𝑙𝑚 (Ω⋆

𝑞) 𝑌 ∗𝑙2𝑚2
(Ω⋆

𝑞) 𝑌𝑙1𝑚1 (Ω
⋆
𝑞) .

(3.63)

In particular, Eq. (3.9) implies

𝑓 ⋆00 (𝑞⋆) = 𝒬2𝑙2𝑚2 (𝑞
⋆) 𝒬1𝑙1𝑚1 (𝑞

⋆) 𝛿𝑙1𝑙2𝛿𝑚1𝑚2 = 𝒬2𝑙𝑚 (𝑞⋆) 𝒬1𝑙𝑚 (𝑞⋆) . (3.64)

By virtue of Eq. (3.49),

𝐶LO
cut (𝑃, 𝐿) = −𝜂𝒬2𝑙2𝑚2F𝑙2𝑚2𝑙1𝑚1𝒬1𝑙1𝑚1 , (3.65)

with

F𝑙2𝑚2𝑙1𝑚1 =
𝑞⋆

8𝜋𝐸⋆
𝛿𝑙2𝑙1𝛿𝑚2𝑚1

− 𝑖
2𝐸⋆

√4𝜋
𝑞⋆𝑙

𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿) ∫ dΩ⋆
𝑞𝑌 ∗𝑙𝑚 (Ω⋆

𝑞) 𝑌 ∗𝑙2𝑚2
(Ω⋆

𝑞) 𝑌𝑙1𝑚1 (Ω
⋆
𝑞) .

(3.66)

Here again a sum over 𝑙 and 𝑚 is implicit.
The higher-order terms in the expansion of 𝐶cut can be manipulated in exactly the same way.

Before writing down the result, it is convenient to introduce a notation for matrices and vectors
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𝐶∞ (𝑃) = 𝒪†
2 𝒪1 + 𝒪†

2 𝑖ℳ 𝒪1

𝐶cut (𝑃, 𝐿) = 𝒬2 𝒬1 + 𝒬2 𝑖ℳ 𝒬1 + 𝒬2 𝑖ℳ 𝑖ℳ 𝒬1 + …

𝑖ℳ = 𝐵 + 𝐵 𝐵 + 𝐵 𝐵 𝐵 + …

𝒬2 = 𝒪†
2

+ 𝒪†
2 𝑖ℳ

𝒬1 = 𝒪1 + 𝒪1𝑖ℳ

Figure 3.2: The correlation function 𝐶 expressed in terms of the infinite-volume scattering ampli-
tude ℳ [39, 141]. The cuts (i.e., vertical dashed lines) in the first row indicate that Eq. (3.58) is
used to compute the loop integrals. This notation is motivated by the fact that this amounts to
evaluating the intermediate quantities on-shell, see Eq. (3.49).

in angular-momentum space, namely to denote by M the matrix with components ℳ𝑙1𝑚1𝑙2𝑚2 , by
Q1 the column vector with components 𝒬1𝑙𝑚, and by Q2 the row vector with components 𝒬2𝑙𝑚.
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Equation (3.65) now reads 𝐶LO
cut = −𝜂Q2FQ1. Application to all orders results in

𝐶cut (𝑃, 𝐿)
= Q2 (−𝜂F)Q1 + Q2 (−𝜂F) 𝑖M (−𝜂F)Q1 + Q2 (−𝜂F) 𝑖M (−𝜂F) 𝑖M (−𝜂F)Q1 + …

= Q2 (−𝜂F)
∞
∑
𝑗=0

[−𝑖𝜂MF]𝑗 Q1

= Q2 (−𝜂F) [1 + 𝑖𝜂MF]−1 Q1

= −Q2 [(𝜂F)
−1 + 𝑖M]

−1
Q1.

(3.67)

Inserting this into Eq. (3.57) finally yields

𝐶 (𝑃, 𝐿) = 𝐶∞ (𝑃) − Q2 [(𝜂F)
−1 + 𝑖M]

−1
Q1. (3.68)

To complete our analysis, we consider the Fourier transform of 𝐶 with respect to energy, i.e.,

𝒞(𝑥0, 𝑷 , 𝐿) ≔ ∫
d𝑃0

2𝜋
𝑒−𝑖𝑥

0𝑃0
𝐶 (𝑃, 𝐿) . (3.69)

Inserting Eq. (3.53) results in

𝒞(𝑥0, 𝑷 , 𝐿) = ∫
𝕃

d3𝑥 𝑒−𝑖𝑷⋅𝒙 ⟨0 |𝑇 {𝒪1 (𝑥) 𝒪
†
2 (0)}| 0⟩ . (3.70)

In the following, choose 𝑥0 > 0, such that the time-ordered product can be dropped. Inserting a
complete set of eigenstates of the Hamiltonian yields

𝒞(𝑥0, 𝑷 , 𝐿) = ∑
𝑛,𝒑𝑛

∫
𝕃

d3𝑥 𝑒−𝑖𝑷⋅𝒙 ⟨0 |𝒪1 (𝑥)| 𝐸𝑛, 𝒑𝑛; 𝐿⟩ ⟨𝐸𝑛, 𝒑𝑛; 𝐿 |𝒪
†
2 (0)| 0⟩

= ∑
𝑛,𝒑𝑛

𝑒−𝑖𝑥
0𝐸𝑛 ∫

𝕃

d3𝑥 𝑒−𝑖𝒙⋅(𝑷−𝒑𝑛) ⟨0 |𝒪1 (0)| 𝐸𝑛, 𝒑𝑛; 𝐿⟩ ⟨𝐸𝑛, 𝒑𝑛; 𝐿 |𝒪
†
2 (0)| 0⟩

= 𝐿3∑
𝑛
𝑒−𝑖𝑥

0𝐸𝑛 ⟨0 |𝒪1 (0)| 𝐸𝑛, 𝑷 ; 𝐿⟩ ⟨𝐸𝑛, 𝑷 ; 𝐿 |𝒪
†
2 (0)| 0⟩ ,

(3.71)

where in the last step Eq. (3.19) is used. A different representation of𝒞 can be obtained by inserting
Eq. (3.68) into Eq. (3.69):

𝒞(𝑥0, 𝑷 , 𝐿) = 𝒞∞ (𝑥0, 𝑷) − ∫
d𝑃0

2𝜋
𝑒−𝑖𝑥

0𝑃0
Q2 [(𝜂F)

−1 + 𝑖M]
−1

Q1. (3.72)

Here 𝒞∞ denotes the Fourier transform of 𝐶∞ with respect to energy.
As a function of energy, 𝐶∞(𝑃) is free of singularities in the kinematical region of interest,

2𝑀𝜋 < 𝐸⋆ < 4𝑀𝜋. Contrary to 𝐶∞, 𝐶(𝑃, 𝐿) has poles as a function of energy, since the continuum
of two-pion states is replaced by a discrete spectrum in finite volume, as explained in Sec. 3.2.3.
Hence, according to Eq. (3.57), these poles need to be located in 𝐶cut(𝑃, 𝐿). Moreover, the pole
positions must depend on 𝐿, for the allowed values of momenta depend on 𝐿. As Eq. (3.68) shows,
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the only 𝐿-dependent term in 𝐶cut is F, and thus the poles arise solely due to [(𝜂F)−1+ 𝑖M]−1. This
expression has poles at energies where the inverse does not exist, that is [39, 140]

0 = det [(𝜂F)−1 + 𝑖M] . (3.73)

Here the determinant acts in angular-momentum space. Equation (3.73) is called Lüscher’s quan-
tization condition.

The factor 𝑒−𝑖𝑥
0𝑃0

in Eq. (3.72) allows for closing the integration contour with a semicircle in
the lower half complex 𝑃0 plane, for we consider 𝑥0 > 0. Thus, we can compute the integral
by summing up all residues at the poles. Comparison with Eq. (3.71) reveals that the poles, i.e.,
solutions of Eq. (3.73), are indeed located at 𝐸𝑛, furthermore, this comparison yields

𝑖 res (Q2 [(𝜂F)−1 + 𝑖M]−1 Q1, 𝐸𝑛)

= 𝑖Q2 (𝐸𝑛) lim
𝑃0→𝐸𝑛

(𝑃0 − 𝐸𝑛) [(𝜂F)−1 + 𝑖M]−1 Q1 (𝐸𝑛)

= 𝐿3 ⟨0 |𝒪1 (0)| 𝐸𝑛, 𝑷 ; 𝐿⟩ ⟨𝐸𝑛, 𝑷 ; 𝐿 |𝒪
†
2 (0)| 0⟩ .

(3.74)

Note that this relation holds only for the poles between 2𝑀𝜋 and 4𝑀𝜋, for outside this range
Eq. (3.68) does not hold, that is, it does not need to reproduce Eq. (3.71) correctly. For future use,
we define [39]

R𝑛 ≔ 𝑖 lim
𝑃0→𝐸𝑛

(𝑃0 − 𝐸𝑛) [(𝜂F)−1 + 𝑖M]−1 . (3.75)

Now let 𝒪1 = 𝒪2. Note that this implies Q2 = Q
†
1 (the transpose is meant to act in angular-

momentum space). Via Eq. (3.74) we obtain

Q
†
1R𝑛Q1 = 𝐿3 |⟨0 |𝒪1 (0)| 𝐸𝑛, 𝑷 ; 𝐿⟩|

2 . (3.76)

Since the right-hand side of Eq. (3.76) is real, Q†
1R𝑛Q1 = Q

†
1R

†
𝑛Q1. This relation needs to hold for

arbitrary choices of Q1, the only requirement being that Q1 is indeed associated with an operator
that annihilates two pions. Nevertheless, on its own it is insufficient to deduce thatR𝑛 is Hermitian.
However, it can be shown that as soon as the residual rotational symmetry in the finite volume—
see Sec. 3.4—is taken into account, R𝑛 can be reduced to a Hermitian matrix [40], and thus in the
following, in particular in the derivation of the Lellouch–Lüscher formula (3.112), we treat R𝑛
effectively as Hermitian.

3.2.6 Quantization condition via 𝑲matrix
It is illuminating to rewrite Eq. (3.73) using the 𝐾 matrix [39, 40]. For simplicity, pick 𝜂 = 1/2, i.e.,
treat the pions in the loops as identical particles. Since Eq. (2.29) implies 𝑞⋆/𝐸⋆ = 𝜎(𝑠)/2, according
to Eq. (3.66) F decomposes into

𝑖𝜂F = 𝑖𝜎
32𝜋

1 + Fr,

(Fr)𝑙2𝑚2𝑙1𝑚1
≔ 1

4𝐸⋆
√4𝜋
𝑞⋆𝑙

𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿) ∫ dΩ⋆
𝑞𝑌 ∗𝑙𝑚 (Ω⋆

𝑞) 𝑌 ∗𝑙2𝑚2
(Ω⋆

𝑞) 𝑌𝑙1𝑚1 (Ω
⋆
𝑞) .

(3.77)
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Furthermore, the individual partial waves appearing in M can be expressed via the 𝐾 matrix, see
Eq. (2.17), combined with Eq. (3.15) this yields

M𝑙1𝑚1𝑙2𝑚2 = 𝛿𝑙1𝑙2𝛿𝑚1𝑚232𝜋 (𝐾𝑙1 − 𝑖𝜎)−1 (3.78)

or equivalently

M−1 = 1
32𝜋

(K − 𝑖𝜎1) , K𝑙1𝑚1𝑙2𝑚2 ≔ 𝛿𝑙1𝑙2𝛿𝑚1𝑚2𝐾𝑙1 . (3.79)

HereK denotes the 𝐾matrix in angular-momentum space. Since in the 𝑠-channel scattering region
the scattering amplitude does not have poles, its inverse exists, i.e., det[M−1] = 1/ det[M] ≠ 0.
Thus, Eq. (3.73) is equivalent to

0 = det [𝜂F] det [(𝜂F)−1 + 𝑖M] det [M−1]

= det [M−1 + 𝑖𝜂F] .
(3.80)

Plugging in Eq. (3.79) and Eq. (3.77) shows that this is in turn equivalent to [39, 40]

0 = det [ 1
32𝜋

K + Fr] . (3.81)

Since wework to all orders in perturbation theory, the scattering amplitude satisfies the constraints
imposed by unitarity, in particular, the 𝐾 matrix is real. Via Eq. (3.81) this implies that Fr is real,
comparison with Eq. (3.77) shows Fr = Re(𝑖𝜂F).

3.2.7 Constraints on angular momentum
Lüscher’s quantization condition, either in the form of Eq. (3.73) or Eq. (3.81), requires to compute
a determinant of an infinite-dimensional matrix in angular-momentum space. As such, it is useless
for practical applications. To simplify it, we need to ignore angular momenta exceeding a certain
maximal angular momentum 𝑙max, i.e., we ignore all higher partial waves: 𝑡𝑙 = 0 for all 𝑙 > 𝑙max.
This implies thatM decomposes intoM = Mlow⊕0, withMlow a diagonal matrix in the subspace
with 𝑙 ≤ 𝑙max. Note that contrary to M, F is not diagonal. To proceed, we follow the approach of
Ref. [140], namely we use projection operators. To be specific, the projection operators read

Plow
𝑙1𝑚1𝑙2𝑚2

≔ Θ(𝑙max − 𝑙) 𝛿𝑙1𝑙2𝛿𝑚1𝑚2 ,

P
high
𝑙1𝑚1𝑙2𝑚2

≔ Θ(𝑙 − 𝑙max − 1) 𝛿𝑙1𝑙2𝛿𝑚1𝑚2 ,
(3.82)

with

Θ (𝑥) ≔ {
1 if 𝑥 ≥ 0,
0 if 𝑥 < 0

(3.83)

the Heaviside step function. Clearly, M = MPlow = PlowM. Tracing back the manipulations
performed in Eq. (3.67), we have

[(𝜂F)−1 + 𝑖M]
−1

= 𝜂F + 𝜂F (−𝑖M) 𝜂F + 𝜂F (−𝑖M) 𝜂F (−𝑖M) 𝜂F + …

= 𝜂F + 𝜂F (−𝑖M) 𝜂F + 𝜂F (−𝑖M)Plow𝜂FPlow (−𝑖M) 𝜂F + …

= 𝜂F + 𝜂F
∞
∑
𝑗=0

(−𝑖𝜂MPlowFPlow)
𝑗
(−𝑖M) 𝜂F

= 𝜂F + 𝜂F [1 + 𝑖𝜂MPlowFPlow]
−1

(−𝑖M) 𝜂F.

(3.84)
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That is, the quantization condition reads

0 = det [1 + 𝑖𝜂MPlowFPlow]

= det [1 + 𝑖𝜂MlowFlow] ,
(3.85)

with PlowFPlow ≕ Flow ⊕ 0, i.e., Flow is F constrained to the subspace with 𝑙 ≤ 𝑙max. Multiplying
Eq. (3.85) from the right with det[(𝜂Flow)−1] finally yields

0 = det [(𝜂Flow)
−1

+ 𝑖Mlow] , (3.86)

which in turn can be expressed as

0 = det [ 1
32𝜋

Klow + Flow
r ] . (3.87)

Despite the fact that F is not diagonal, the quantization condition in the form of Eq. (3.73) or
Eq. (3.81) is replaced by Eq. (3.86) or Eq. (3.87), respectively, if partial waves of angular momenta
larger than 𝑙max are ignored. The matrices of interest are now finite-dimensional, thereby making
the quantization condition a tool of practical use.

There is another problem, namely that the matrix elements of F contain an infinite sum over
angular momenta, see Eq. (3.66). To tackle this problem, we express the product of two spherical
harmonics as [144, App. IV]

𝑌𝑙1𝑚1 (Ω) 𝑌𝑙2𝑚2 (Ω)

=
√
(2𝑙1 + 1) (2𝑙2 + 1)

4𝜋
∑
𝑙 ,𝑚

(−1)𝑚 √2𝑙 + 1 ( 𝑙1 𝑙2 𝑙
𝑚1 𝑚2 −𝑚)(

𝑙1 𝑙2 𝑙
0 0 0) 𝑌𝑙𝑚 (Ω) .

(3.88)

Here the Wigner 3-j symbols are defined via Clebsch–Gordan coefficients,

( 𝑙1 𝑙2 𝑙3
𝑚1 𝑚2 𝑚3

) ≔
(−1)𝑙1−𝑙2−𝑚3

√2𝑙3 + 1
⟨𝑙1𝑚1𝑙2𝑚2 | 𝑙3, −𝑚3⟩ , (3.89)

and we follow the usual convention to keep the Clebsch–Gordan coefficients real. Combining
Eq. (3.88) with Eq. (3.9) shows that

Y𝑙𝑚𝑙2𝑚2𝑙1𝑚1
≔ ∫ dΩ⋆

𝑞𝑌 ∗𝑙𝑚 (Ω⋆
𝑞) 𝑌 ∗𝑙2𝑚2

(Ω⋆
𝑞) 𝑌𝑙1𝑚1 (Ω

⋆
𝑞)

=
√

(2𝑙1 + 1) (2𝑙2 + 1)
4𝜋 (2𝑙1 + 1)

⟨𝑙𝑚𝑙2𝑚2 | 𝑙1𝑚1⟩ ⟨𝑙0𝑙20 | 𝑙10⟩ .
(3.90)

According to the basic rules of angular momentum addition, |𝑙 − 𝑙2| ≤ 𝑙1 ≤ |𝑙 + 𝑙2| needs to hold,
such that the Clebsch–Gordan coefficients appearing in Y𝑙𝑚 are non-vanishing. Consider 𝑙 ≥ 𝑙2.
Consequently, 𝑙 − 𝑙2 ≤ 𝑙1, which is in turn equivalent to 𝑙 ≤ 𝑙1 + 𝑙2. Inserting this into Eq. (3.66)
results in [39]

F𝑙2𝑚2𝑙1𝑚1 =
𝑞⋆

8𝜋𝐸⋆
1𝑙2𝑚2𝑙1𝑚1 −

𝑖
2𝐸⋆

𝑙1+𝑙2
∑
𝑙=0

∑
𝑚

√4𝜋
𝑞⋆𝑙

𝑐𝑃𝑙𝑚 (𝑞⋆2, 𝐿)Y𝑙𝑚𝑙2𝑚2𝑙1𝑚1
. (3.91)

Since we consider only 𝑙𝑖 ≤ 𝑙max, 𝑖 = 1, 2, the sum appearing in F is in fact finite.
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3.2.8 Lellouch–Lüscher formalism
Next we want to study 𝛾 (∗)𝜋 → 𝜋𝜋 scattering in the finite volume.5 Before we do so, it is expedient
to study the fully dressed propagator in slightly more detail. That is, we focus on

Δ (𝑃, 𝐿) = ∫
𝐿

d4𝑥 𝑒𝑖𝑃𝑥 ⟨0 |𝑇 {𝜙 (𝑥) 𝜙† (0)}| 0⟩ , (3.92)

with 𝜙 an operator that annihilates a single pion. Its Fourier transform with respect to energy
reads

Δ̃ (𝑥0, 𝑷 , 𝐿) ≔ ∫
d𝑃0

2𝜋
𝑒−𝑖𝑃

0𝑥0Δ (𝑃, 𝐿) . (3.93)

Let us choose 𝑥0 > 0, such that the factor 𝑒−𝑖𝑃
0𝑥0 allows for closing the contour of integration in

the lower half complex plane. We can perform the integral via the residue theorem, picking up
the contribution of the pole that is fixed via the renormalization conditions stated in Eq. (3.59), to
obtain

Δ̃ (𝑥0, 𝑷 , 𝐿) = 1
2𝜔𝑃

𝑒−𝑖𝐸𝜋𝑥
0
+ … (3.94)

Here 𝐸𝜋 ≔ √𝑀
2
𝜋 + |𝑷|2 is the energy at the pole. The dots denote contributions arising from poles

at higher energies (i.e., when intermediate propagators in the loop contributions to the 1PI terms
depicted in Fig. 3.1 go on-shell). Alternatively, we can insert a complete set of eigenstates of the
Hamiltonian to obtain in complete analogy to Eq. (3.71)

Δ̃ (𝑥0, 𝑷 , 𝐿) = 𝐿3∑
𝑛
𝑒−𝑖𝑥

0𝐸𝑛 |⟨𝐸𝑛, 𝑷 ; 𝐿 |𝜙† (0)| 0⟩|
2

= 𝐿3𝑒−𝑖𝑥
0𝐸𝜋 |⟨𝐸𝜋, 𝑷 ; 𝐿 |𝜙† (0)| 0⟩|

2
+ … ,

(3.95)

where ⟨𝐸𝜋, 𝑷 ; 𝐿| is the lowest-lying state that has overlap with 𝜙†(0) |0⟩. Since 𝜙† has the appropri-
ate quantum numbers to create a single pion, this state is precisely a single pion state with energy
𝐸𝜋. Comparing Eq. (3.94) with Eq. (3.95), we deduce

𝐿3 |⟨𝐸𝜋, 𝑷 ; 𝐿 |𝜙† (0)| 0⟩|
2
= 1

2𝜔𝑃
. (3.96)

Now we are ready to tackle the process 𝛾 (∗)𝜋 → 𝜋𝜋. That is, the object of interest is the
correlation function

𝐺 (𝑃i, 𝑃f, 𝐿) ≔ ∫
𝐿

d4𝑥 ∫
𝐿

d4𝑦 𝑒𝑖(𝑃f𝑥−𝑃i𝑦) ⟨0 |𝑇 {𝒪1 (𝑥) 𝐽 (0) 𝜙† (𝑦)}| 0⟩ . (3.97)

Here 𝜙† creates a single pion, while 𝒪1 is the same operator as the one appearing in Eq. (3.53), that
is, it annihilates two pions. Although we are later interested in the electromagnetic current, at this
stage 𝐽 is an arbitrary current that couples the incoming pion of momentum 𝑃i to the outgoing two-
pion state with momentum 𝑃f. Hence, the four-momentum injected by the current is 𝑄 = 𝑃f − 𝑃i.

5The main reference for this section is Ref. [40], see also Ref. [39].
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𝐺 (𝑃i, 𝑃f, 𝐿) = 𝐵𝐽

𝜙†

𝒪1𝕃 + 𝐵𝐽

𝜙†

𝐵 𝒪1𝕃 𝕃

+ 𝐵𝐽

𝜙†

𝐵 𝐵 𝒪1𝕃 𝕃 𝕃 + …

𝐵𝐽 = + + …

Figure 3.3: The perturbative expansion of the correlation function 𝐺 in a general EFT [39, 40]. This
is to be compared with Fig. 3.1.

To relate finite-volume quantities to infinite-volume ones, we proceed in analogy to Sec. 3.2.5.
First, we consider the Fourier transform with respect to energy of 𝐺:

𝒢 (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) ≔ ∫
d𝑃0i
2𝜋 ∫

d𝑃0f
2𝜋

𝑒−𝑖(𝑥
0𝑃0

f −𝑦
0𝑃0

i )𝐺 (𝑃i, 𝑃f, 𝐿) . (3.98)

Let 𝑥0 > 0 > 𝑦0. Accordingly,

𝒢 (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) = ∫
𝕃3

d3𝑥 ∫
𝕃3

d3𝑦 𝑒−𝑖(𝑷f⋅𝒙−𝑷i⋅𝒚) ⟨0 |𝒪1 (𝑥) 𝐽 (0) 𝜙† (𝑦)| 0⟩ . (3.99)

We insert a complete set of eigenstates of the Hamiltonian on each side of 𝐽. Since 𝜙†(𝑦) creates a
single pion, it has non-vanishing overlap with the lowest-lying single-particle state, whose energy
we denote by 𝐸𝜋. Compared to this, the overlap of 𝜙†(𝑦) with all other states in the spectrum is
exponentially suppressed, and thus we keep only the leading term arising from |𝐸𝜋, 𝒑; 𝐿⟩. Using
Eq. (3.19) we arrive at

𝒢 (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿)

= 𝐿6𝑒𝑖𝐸𝜋𝑦
0
∑
𝑛
𝑒−𝑖𝐸𝑛𝑥

0
⟨0 |𝒪1 (0)| 𝐸𝑛, 𝑷f; 𝐿⟩ ⟨𝐸𝑛, 𝑷f; 𝐿 |𝐽 (0)| 𝐸𝜋, 𝑷i; 𝐿⟩ ⟨𝐸𝜋, 𝑷i; 𝐿 |𝜙† (0)| 0⟩ .

(3.100)

Alternatively, we can compute 𝐺 to all orders in perturbation theory by extending our abstract
EFT to incorporate insertions of the current 𝐽. The expansion is depicted in Fig. 3.3. Here 𝐵𝐽 is the
analogue of the Bethe–Salpeter kernel 𝐵, i.e., it sums up all diagrams that are 2PI in the 𝑠 channel.
In addition,𝒬 denotes the contributions arising from 𝜙†. Decomposing the loops again via Eq. (3.56)
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yields Fig. 3.4, with 𝐻 the infinite-volume amplitude corresponding to 𝜋 → 𝜋𝜋 with an insertion
of the current 𝐽. Next, we decompose 𝐻 with respect to spherical harmonics, 𝐻 = √4𝜋𝐻𝑙𝑚𝑌 ∗𝑙𝑚,
and define H† as the row vector in angular-momentum space with components 𝐻𝑙𝑚. In complete
analogy to Eqs. (3.67) and (3.68) we obtain

𝐺 (𝑃i, 𝑃f, 𝐿) = 𝐺∞ (𝑃i, 𝑃f) + 𝐺cut (𝑃i, 𝑃f, 𝐿) , (3.101)

with
𝐺cut (𝑃i, 𝑃f, 𝐿) = −𝒬Δ (𝑃i)H† [(𝜂F)−1 + 𝑖M]

−1
Q1, (3.102)

where Δ denotes the fully dressed single-pion propagator. Inserting this into Eq. (3.98) results in

𝒢 (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) = 𝒢∞ (𝑥0, 𝑦0, 𝑷i, 𝑷f) + 𝒢cut (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) , (3.103)

with

𝒢cut (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) = −∫
d𝑃0i
2𝜋 ∫

d𝑃0f
2𝜋

𝑒−𝑖(𝑥
0𝑃0

f −𝑦
0𝑃0

i )𝒬Δ (𝑃i)H† [(𝜂F)−1 + 𝑖M]
−1

Q1. (3.104)

First, we perform the integral over 𝑃0i . Since 𝑦0 < 0, the presence of the term 𝑒𝑖𝑦
0𝑃0

i ensures that
we can close the contour of integration with a semicircle in the lower complex plane, picking up
the pole of Δ(𝑃i) at 𝑃2i = 𝑀2

𝜋 , see Eq. (3.59). Accordingly,

𝒢cut (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) = − 1
2𝜔𝑃i

𝑒𝑖𝑦
0𝑃0

i ∫
d𝑃0f
2𝜋

𝑒−𝑖𝑥
0𝑃0

f 𝒬H† [(𝜂F)−1 + 𝑖M]
−1

Q1, (3.105)

where now 𝑃0i = √𝑀
2
𝜋 + |𝑷i|

2 = 𝐸𝜋. Since 𝑥0 > 0, the 𝑃0f integral can be evaluated by closing
the contour of integration with a semicircle in the lower half plane, too. Picking up the poles of
[(𝜂F)−1 + 𝑖M]−1 leads to

𝒢cut (𝑥0, 𝑦0, 𝑷i, 𝑷f, 𝐿) =
1

2𝜔𝑃i
𝑒𝑖𝑦

0𝐸𝜋 ∑
𝑛
𝑒−𝑖𝑥

0𝐸𝑛𝒬H†R𝑛Q1 + … (3.106)

Here the sum runs over all poles that lie above the two-pion threshold, but below higher multi-
particle thresholds, since only here Eq. (3.102) is valid, the dots include all remaining terms. Fur-
thermore, R𝑛 is defined in Eq. (3.75).

Inserting Eq. (3.106) into Eq. (3.103) and comparing with Eq. (3.100) reveals

𝐿6 ⟨0 |𝒪1 (0)| 𝐸𝑛, 𝑷f; 𝐿⟩ ⟨𝐸𝑛, 𝑷f; 𝐿 |𝐽 (0)| 𝐸𝜋, 𝑷i; 𝐿⟩ ⟨𝐸𝜋, 𝑷i; 𝐿 |𝜙† (0)| 0⟩ =
1

2𝜔𝑃i
𝒬H†R𝑛Q1 (3.107)

for all 𝐸𝑛 below higher multi-particle thresholds. Since 𝒬 just equals the contribution arising from
an external scalar, 𝒬 = 1. Computing the absolute value squared on both sides and expressing the
matrix element of 𝒪1 via Eq. (3.76) and the one of 𝜙† via Eq. (3.96) yields

|⟨𝐸𝑛, 𝑷f; 𝐿 |𝐽 (0)| 𝐸𝜋, 𝑷i; 𝐿⟩|
2 = 1

𝐿6
1

2𝜔𝑃i

H†R𝑛Q1Q
†
1R𝑛H

Q
†
1R𝑛Q1

, (3.108)

where we used the fact thatR𝑛 can be effectively treated as Hermitian, as discussed below Eq. (3.76).
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𝐺∞ (𝑃i, 𝑃f) = 𝐻

𝜙†

𝒪1

𝐺cut (𝑃i, 𝑃f, 𝐿) = 𝐻

𝜙†

𝒬1 + 𝐻

𝜙†

𝑖ℳ 𝒬1

+ 𝐻

𝜙†

𝑖ℳ 𝑖ℳ 𝒬1 + …

𝐻 = 𝐵𝐽 + 𝐵𝐽 𝑖ℳ

Figure 3.4: The analogue of Fig. 3.2 for the correlation function 𝐺.

Introducing L ≔ (𝜂F)−1 + 𝑖M, we can rewrite Eq. (3.75) as

R𝑛 = 𝑖 lim
𝑃0→𝐸𝑛

(𝑃0 − 𝐸𝑛)L−1. (3.109)

Denote the eigenvalues of L by 𝜆𝑘, such that

det [L] = ∏
𝑘

𝜆𝑘, det [L−1] = ∏
𝑘

1
𝜆𝑘
. (3.110)

Thus, det[R𝑛] = ∏𝑘 𝑟𝑘, with

𝑟𝑘 ≔ 𝑖 lim
𝑃0→𝐸𝑛

(𝑃0 − 𝐸𝑛)
𝜆𝑘 (𝑃0)

(3.111)

the 𝑘-th eigenvalue of R𝑛 and we have made the dependence of 𝜆𝑘 on the energy explicit. Let us
nowmake the additional assumption that there is no degeneracy, that is, for each energy 𝐸𝑛 there is
only one state in the spectrum.6 According to the discussion surrounding Eq. (3.73), at this energy
det[L] = 0; therefore, at least one of the eigenvalues {𝜆𝑘} vanishes. If there is indeed no degeneracy,

6As explained in Ref. [40, p. 18] (p. 19 in the arXiv version), indeed there is no degeneracy as soon as Eq. (3.108)
is projected onto a given irreducible representation of the symmetry group of the lattice, see also Sec. 3.4.
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only a single eigenvalue vanishes, without loss of generality we say that 𝜆0 is this eigenvalue. Then
Eq. (3.111) enforces 𝑟𝑘 = 0 for all 𝑘 ≠ 0. Since R𝑛 is effectively Hermitian, we have 𝑟𝑘 ∈ ℝ, and there
exists an associated set of orthonormal eigenvectors V𝑘 of R𝑛 that constitutes a basis. Accordingly,
R𝑛 = 𝑟0V0V

†
0 , furthermore, we can express Q1 in this basis: Q1 = ∑𝑘 𝑞𝑘V𝑘, 𝑞𝑘 ∈ ℂ. Inserting these

expressions into Eq. (3.108) and making use of V†
𝑘V𝑗 = 𝛿𝑘𝑗 we arrive at

|⟨𝐸𝑛, 𝑷f; 𝐿 |𝐽 (0)| 𝐸𝜋, 𝑷i; 𝐿⟩|
2 = 1

𝐿6
1

2𝜔𝑃i
H†R𝑛H. (3.112)

This is the generalized Lellouch–Lüscher formula, derived in thisway for the first time in Ref. [40],
stated in a form resembling the expression given in Eq. (33) of Ref. [39] (Eq. (34) in the arXiv ver-
sion).

The key feature of Eq. (3.112) is that the left-hand side can be computed in the finite volume,
since it is a matrix element of the operator 𝐽 between finite-volume states, while the right-hand side
contains the infinite-volume scattering amplitude 𝐻 (more precisely, the corresponding vector H
in angular-momentum space). So it allows for extracting the infinite-volume scattering amplitude
from a finite-volumematrix element. However, note that the right-hand side involves the 𝜋𝜋 → 𝜋𝜋
scattering amplitudeM (contained in R𝑛). Thus, an explicit parametrization ofM is needed before
H can be determined. The free parameters of this parametrization are to be fixed via Eq. (3.73).

3.3 Role of the pion mass
Now that we are acquainted with the Lüscher formalism, we can understand the reasons behind
the common use of values of the quark masses that exceed the physical ones in lattice-QCD com-
putations.

First, the Gell-Mann–Oakes–Renner relation states that [145]

𝑀2
𝜋 = (𝑚𝑢 + 𝑚𝑑) |

⟨0 |𝑢𝑢| 0⟩
𝐹 2𝜋

|
𝑚𝑢,𝑚𝑑→0

+ … (3.113)

Here 𝑚𝑢 is the mass of the up quark, 𝑚𝑑 the one of the down quark, 𝑢 the field associated with
the former, 𝐹𝜋 the pion decay constant, and the dots denote higher orders in the quark masses.
That is, the square of the pion mass is proportional to the masses of the light quarks. This relation
is incorporated into LO ChPT, with the corrections being of higher order in ChPT. To be precise,
denoting the LO pion mass as 𝑀, to NLO

𝑀2
𝜋 = 𝑀2 {1 + 𝑀2

𝐹 2
[2𝑙𝑟3 +

1
32𝜋2

ln (𝑀
2

𝜇2
)]} (3.114)

holds [21]. Here 𝑙𝑟3 is a renormalized LEC, 𝐹 the pion decay constant in the chiral limit, and 𝜇 the
renormalization scale. Since the ChPT expansion of the pion mass converges well, independent
of their sign the higher-order terms do not alter the core result: the pion mass increases with
increasing quark masses. Hence, we might speak about pion-mass dependence instead of quark-
mass dependence. Since the models we are going to employ in the analysis of lattice data are
phrased in terms of 𝑀𝜋, indeed for the remainder of this thesis we will mostly speak of pion-mass
dependence.
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Accordingly, low pionmasses require low values of the quark masses. These masses show up in
the QCD action, and thus in the correlation functions, see Sec. 3.1. To be precise, they are a part of
the Dirac operator, 𝑖 /𝐷−𝑚, with𝐷 the covariant derivative and𝑚 = diag(𝑚𝑢, 𝑚𝑑, … ) the quark mass
matrix. For technical reasons, (a modified and properly discretized version of) this operator needs
to be inverted repeatedly in the computation of correlation functions. Traditionally, this inversion
gets numerically more costly the lower the smallest eigenvalue of the Dirac operator, which scales
roughly like 𝑚𝑢. That is, the lower the quark masses, the more expensive the computation, making
calculations at the physical pion mass challenging. However, algorithmic advances have alleviated
this problem [9].

Second, throughout the derivation of Lüscher’s method, we ignored exponentially suppressed
terms, i.e., terms that scale at most like exp(−𝑀𝜋𝐿). In a numerical computation it needs to be
ensured that these corrections are indeed small, that is, 𝑀𝜋𝐿 needs to be sufficiently large. Hence,
the lower the pion mass, the larger the required values of 𝐿. At the same time, it is not desirable to
increase the lattice spacing 𝑎s too much, because otherwise discretization artifacts become huge.
Thus, to obtain large values of 𝐿 = 𝑎s𝐿lat, the number of lattice sites in one spatial direction, 𝐿lat,
needs to be large. That is why a lower value of the pion mass requires a higher number of lattice
sites, 𝑇 lat × (𝐿lat)3, making the computation again more costly.

Third, the derivation of the Lüscher formalism presented in Sec. 3.2 takes into account only
the lowest-lying intermediate multi-particle states, namely 𝜋𝜋 states. There are a lot of additional
multi-particle states that increase in relevance the higher the energy. As we discuss in Part II, the
mass of the 𝜌 resonance changes only slightly with varying pion mass. On the other hand, the
value of the threshold of, e.g., a four-pion state changes drastically. At physical pion masses, the 𝜌
is well above the four-pion threshold and not too far away from the six-pion threshold. Admittedly,
phenomenology indicates that the 𝜌 couples almost exclusively to two pions [9]. However, in the
energy region above 1GeV inelastic effects show up that seem to be dominated by four-pion states
instead of 𝐾𝐾 states [51].7 Hence, the current limitations of the Lüscher formalism to states with
less than four particles put a serious constraint on computations at the physical point [34]. As a
workaround, one can resort to computations at pion masses high enough such that the 𝜌 resonance
region is at least partly or even completely below the four-pion threshold, which works due to the
aforementioned very mild pion-mass dependence of the 𝜌 mass.

3.4 Rotational symmetry and the lattice
Another specific of the lattice requires attention. As discussed in Sec. 3.1, the spatial part of the lat-
tice is a cubewith edge length 𝐿 and spacing 𝑎s. Thus, contrary to the continuum three-dimensional
Euclidean space of infinite extent, the lattice is not invariant under 𝑂(3). Instead, rotational invari-
ance is reduced to those rotations that leave the cube invariant, i.e., the octahedral group including
parity. Accordingly, 𝜋𝜋 states on the lattice cannot be directly classified via angular momentum,
which arises as a quantum number of the irreducible representations (irreps) of 𝑆𝑂(3) (more pre-
cisely, its double cover 𝑆𝑈 (2)). These irreps are to be replaced by the ones of the symmetry group of
the cube. For a given continuum angular momentum 𝐽, there are several irreps that can contribute.

As soon as the total momentum 𝑷 = (2𝜋/𝐿)𝔓 of the two pions is non-vanishing, the situation
gets more complicated. To be precise, the lab frame introduced in Sec. 3.2.1 is the rest frame of the

7Note that the situation is reversed for the 𝑆 wave due to the presence of the 𝑓 (980) resonance at the 𝐾𝐾 threshold.
Here, four-pion states become relevant at much higher energies only [146].
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|𝔓|2 𝔓

0 (0, 0, 0)
1 (0, 0, 1)
2 (1, 1, 0)
3 (1, 1, 1)
4 (0, 0, 2)

Table 3.1: The bijective relation between 𝔓 and its absolute value squared.

lattice, hence the name boost momentum for 𝑷 and its integer counterpart 𝔓 ∈ ℤ3. Since the CM
frame of the two pions moves with constant velocity with respect to the lattice, relativistic length
contraction sets in. From the point of view of the CM the lattice is distorted, thereby reducing the
number of symmetries. For an accessible discussion see Ref. [147], the important point for this
work is that each 𝜋𝜋 level on the lattice corresponds to a state belonging to a certain irrep8 of the
discrete symmetry group under consideration.

Since the lattice is cubic, 𝔓 = (𝑛, 0, 0), 𝔓 = (0, 𝑛, 0), and 𝔓 = (0, 0, 𝑛) with 𝑛 ∈ ℕ are related
by rotations that leave the lattice invariant, and in addition, 𝔓 and −𝔓 are related by parity, which
is also a symmetry of the cube. Thus, these apparently different boost vectors describe the same
physics, so it is sufficient to consider only one of them (for each 𝑛); here the choice to single out
the 𝑧 axis is made. By similar symmetry arguments, (0, 1, 1), (1, 0, 1), and (1, 1, 0) describe the same
physics. Accordingly, for low values of |𝔓|2, |𝔓|2 and 𝔓 are related bijectively, see Table 3.1. This
bijective relation breaks down for high values of |𝔓|2, e.g., both 𝔓 = (2, 2, 1) and 𝔓 = (0, 0, 3) map
to |𝔓|2 = 9.

8In the literature, different naming conventions for the irreps exist. What we will call 𝐵1 in the following is called
𝐵2 in Ref. [148] and 𝐵2 is called 𝐵1. Similarly, 𝐴1 is called 𝐴1 and 𝐸2 simply 𝐸. Compare also Table 5.2 below with
Table XVI in Ref. [148].
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Part II

Pion-mass dependence of 𝝅𝝅 → 𝝅𝝅

The main results of this part have been published in Ref. [149].
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Chapter 4

Continuum scattering amplitude

Here we specialize the general form of two-to-two scattering amplitudes discussed in Ch. 2 to
𝜋𝜋 → 𝜋𝜋 focusing on the 𝑃 wave. First, in Sec. 4.1 we express the 𝑃 wave via ChPT. The resulting
expressions are unitarized in Sec. 4.2 via the IAM to allow for a description of the 𝜌 resonance.
Lastly, we investigate effects associated with the mass of the strange quark in Sec. 4.3.

4.1 Chiral perturbation theory
Denote the partial wave of 𝜋𝜋 → 𝜋𝜋 scattering with isopsin 𝐼 and angular momentum 𝐽 as 𝑡 𝐼 𝐽. In
𝑆𝑈 (2) ChPT it can be expanded according to

𝑡 𝐼 𝐽 = 𝑡 𝐼 𝐽2 + 𝑡 𝐼 𝐽4 + 𝑡 𝐼 𝐽6 + 𝒪(
𝑝8

Λ8
𝜒
) . (4.1)

Here 𝑡 𝐼 𝐽𝑘 denotes terms of order 𝑝𝑘/Λ𝑘
𝜒, pion momenta and masses are collectively denoted by 𝑝,

and Λ𝜒 is the breakdown scale of ChPT. In the following, we focus on the 𝑃 wave, i.e., 𝐼 = 𝐽 = 1.
The explicit expressions of the other partial waves are given in Ref. [149]. The LO terms 𝑡 𝐼 𝐽2 have
been calculated as early as in Ref. [150], the 𝑃 wave reads

𝑡112 (𝑠) =
𝑠 − 4𝑀2

𝜋
96𝜋𝐹 2

. (4.2)

The NLO scattering amplitude is given in Ref. [21]; performing the partial-wave projection via
Eq. (2.5) yields

𝐹 4Re [𝑡 𝐼 𝐽4 (𝑠)] =
2
∑
𝑖=0

𝑏𝐼 𝐽𝑖 (𝑠) [𝐿(𝑠)]𝑖 +
3
∑
𝑖=1

𝑏𝐼 𝐽𝑙 𝑟𝑖 (𝑠)𝑙
𝑟
𝑖 (4.3)

for 𝑠 ≥ 4𝑀2
𝜋 . Here 𝐹 denotes the pion decay constant in the chiral limit, 𝑙𝑟𝑖 are ordinary renormalized

LECs that correspond to terms in the NLO ChPT Lagrangian, and

𝐿 (𝑠) = ln [
1 + 𝜎 (𝑠)
1 − 𝜎 (𝑠)

] , (4.4)

with 𝜎 the phase space as given in Eq. (2.29). The coefficients 𝑏𝐼 𝐽𝑖 and 𝑏𝐼 𝐽𝑙 𝑟𝑖 are functions of Man-
delstam 𝑠 and the pion mass only. They are displayed explicitly in App. A. It is possible to bring
Re[𝑡114 ] into a slightly more compact form as compared to Eq. (4.3), see Ref. [151].
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The NNLO part of the scattering amplitude has been computed in Ref. [64]. Again, it can be
partial-wave projected using Eq. (2.5). However, this time it is significantly more challenging to
obtain a result in closed analytic form. The detailed procedure is described in Ref. [149], the result
reads

𝐹 6Re [𝑡 𝐼 𝐽6 (𝑠)] =
4
∑
𝑖=0

𝑐𝐼 𝐽𝑖 (𝑠) [𝐿(𝑠)]𝑖 +
3
∑
𝑖=1

𝑐𝐼 𝐽𝑙 𝑟𝑖 (𝑠)𝑙
𝑟
𝑖 + 𝑐𝐼 𝐽𝑙 𝑟23 (𝑠)(𝑙

𝑟
3)

2

+ 𝑑 𝐼 𝐽(𝑠)[Li3(𝜎+(𝑠)) + Li3(𝜎−(𝑠)) − 𝐿(𝑠) Li2(𝜎−(𝑠))] + 𝑃 𝐼 𝐽(𝑠),
(4.5)

again for 𝑠 ≥ 4𝑀2
𝜋 . Here

𝜎±(𝑠) ≔
2𝜎(𝑠)

𝜎(𝑠) ± 1
. (4.6)

Moreover, polylogarithms show up, whose explicit form reads

Li𝑛(𝑥) ≔
(−1)𝑛−1

(𝑛 − 2)! ∫
1

0

ln𝑛−2(𝑡) ln(1 − 𝑥𝑡)
𝑡

d𝑡 =
∞
∑
𝑘=1

𝑥𝑘

𝑘𝑛
. (4.7)

The coefficients 𝑐𝐼 𝐽𝑖 , 𝑐𝐼 𝐽𝑙 𝑟𝑖 , and 𝑐𝐼 𝐽𝑙 𝑟23 depend not only on 𝑠 and the pion mass but also on the renormal-
ization scale 𝜇, which appears via chiral logarithms; the explicit expressions are given in App. A.
In addition, three further LECs show up via the polynomial

𝑃11(𝑠) ≔
𝑠 − 4𝑀2

𝜋
𝜋

(𝑟𝑎𝑀4
𝜋 + 𝑟𝑏𝑠𝑀2

𝜋 + 𝑟𝑐𝑠2) . (4.8)

More specifically, the three LECs can be written in terms of the renormalized conventional NNLO
LECs 𝑟 𝑟2−6, 𝑟 𝑟𝐹 as defined in Refs. [65, 152] according to

𝑟𝑎 ≔
𝑟 𝑟2
96

+
𝑟 𝑟3
24

−
𝑟 𝑟4
24

+
3𝑟 𝑟5
20

−
𝑟 𝑟6
60

−
𝑟 𝑟𝐹

12288𝜋4
,

𝑟𝑏 ≔ −
𝑟 𝑟3
96

+
𝑟 𝑟4
32

−
3𝑟 𝑟5
40

+
𝑟 𝑟6
120

,

𝑟𝑐 ≔
3
320

(𝑟 𝑟5 + 𝑟 𝑟6).

(4.9)

Up to now, we have discussed only the real parts of the partial waves. To obtain the imaginary
parts, we insert the expansion (4.1) into the unitarity condition (2.16) and equate the terms of
different chiral order on both sides, resulting in

Im (𝑡 𝐼 𝐽2 ) = 0,

Im (𝑡 𝐼 𝐽4 ) = 𝜎 |𝑡 𝐼 𝐽2 |
2
= 𝜎Re (𝑡 𝐼 𝐽2 )

2
,

Im (𝑡 𝐼 𝐽6 ) = 2𝜎Re (𝑡 𝐼 𝐽2 (𝑡 𝐼 𝐽4 )
∗
) = 2𝜎𝑡 𝐼 𝐽2 Re (𝑡 𝐼 𝐽4 ) ,

(4.10)

where we made use of the fact that for 𝑠 ∈ ℝ the LO contributions are purely real, see also Eq. (4.2).
That is, the ChPT expansion (4.1) does not satisfy unitarity exactly, but only perturbatively. This
failure is associated with the fact that ChPT on its own does not allow for a description of reso-
nances. However, it allows us to easily compute the imaginary parts of the partial waves, given
only the real parts, i.e., Eqs. (4.2), (4.3), and (4.5).
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So far we focused on real values of Mandelstam 𝑠 above the scattering threshold. Noting
that the expressions of the partial waves are holomorphic, we can, via the uniqueness of analytic
continuation, obtain the partial waves for arbitrary 𝑠 ∈ ℂ simply by promoting 𝑠 to be complex.
It is worth noting that Eq. (4.3) and Eq. (4.5) develop non-vanishing imaginary parts for general
complex 𝑠. Furthermore, Eq. (4.10) breaks down as soon as one leaves the scattering region, neither
of which is a problem.

Finally, we turn our attention to the pion decay constant in the chiral limit. It can be related
to the physical pion decay constant 𝐹𝜋 via ChPT, to NLO this relation is given in Ref. [21], while
the NNLO result is discussed in Ref. [65], see Ref. [153] for a slightly more convenient expression.
Both results are given in terms of 𝑀, the pion mass to LO in ChPT. Using ChPT to replace 𝑀 by
𝑀𝜋, we obtain

𝐹𝜋 = 𝐹 [1 + 𝐹4
𝑀2

𝜋
16𝜋2𝐹 2

+ 𝐹6(
𝑀2

𝜋
16𝜋2𝐹 2

)
2
] , (4.11)

with

𝐹4 ≔16𝜋2𝑙𝑟4 − ln (
𝑀2

𝜋
𝜇2

) ,

𝐹6 ≔(16𝜋2)2 𝑟 𝑟𝐹 − 16𝜋2 (𝑙𝑟2 +
1
2
𝑙𝑟1 + 32𝜋2𝑙𝑟3𝑙𝑟4) −

13
192

+ (16𝜋2 (7𝑙𝑟1 + 4𝑙𝑟2 − 𝑙𝑟4) +
29
12

) ln (
𝑀2

𝜋
𝜇2

) − 3
4
ln2 (

𝑀2
𝜋

𝜇2
)

(4.12)

the NLO and NNLO coefficient, respectively. Here 𝜇 is the renormalization scale, and throughout
this work we stick to the common choice 𝜇 = 770MeV.

4.2 Inverse-amplitude method
As alluded to in the discussion of perturbative unitarity in the form of Eq. (4.10), ChPT alone does
not allow for a description of resonances. To improve on this, the 𝐾 matrix as given in Eq. (2.11) is
matched to ChPT, i.e., Eq. (4.1), at low energies, taking perturbative unitarity into account:1

𝐾 = 𝑇−1 + 𝑖𝜎

= 1
𝑡2 + 𝑡4

+ 𝑖
Im (𝑡4)
𝑡22

.
(4.13)

This expression for 𝐾 is not real, thereby violating unitarity. However, expanding this to NLO in
ChPT results in

𝐾 = 1
𝑡2
−

𝑡4
𝑡22

+ 𝑖
Im (𝑡4)
𝑡22

=
𝑡2 − Re (𝑡4)

𝑡22
,

(4.14)

with 𝐾 indeed purely real. That is,

𝑇 =
𝑡22

𝑡2 − 𝑡4
. (4.15)

1From here on, we drop the superscript 𝐼 𝐽 for notational convenience. To avoid confusion with Mandelstam 𝑡, we
write 𝑇 instead of 𝑡 𝐼 𝐽. The only explicit expressions of relevance in this work are the ones for the 𝜋𝜋 𝑃 wave, but note
that the IAM itself is not restricted to the 𝑃 wave; in fact, it is not even restricted to 𝜋𝜋 scattering.
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This expression is precisely the so-called IAM for a single channel at NLO [55–58] (for the coupled
channel calculation, see Ref. [133]). This derivation makes it clear that the IAM is obtained by
matching the general 𝐾-matrix representation with ChPT. There is one subtle point: Eq. (4.15)
can be obtained by solely expanding 𝑇−1 = 1/(𝑡2 + 𝑡4), bypassing the 𝐾 matrix and perturbative
unitarity. However, in this way it is not a priori clear that the resulting expression (4.15) satisfies
unitarity as given in Eq. (2.8), while the derivation presented here makes this obvious. Moreover,
the 𝐾matrix turns out to be real only due to perturbative unitarity, which is therefore a mandatory
ingredient to obtain an amplitude that fulfills unitarity. Another subtle point is that, according to
the derivation presented here, Eq. (4.15) is a priori valid only along the real axis above threshold,
where unitarity applies. However, 𝑡2 is an entire function and 𝑡4 a holomorphic function except
for branch points at threshold and at zero (the latter corresponding to the left-hand cut). Thus,
Eq. (4.15) can be analytically continued into the entire complex plane apart from those branch
points and possible zeros of the denominator. Furthermore, since at low energies Eq. (4.15) agrees
with the ChPT expansion, the former inherits a left-hand cut from ChPT, which agrees with the
ChPT left-hand cut to NLO. Even more important, when continued to the second Riemann sheet
via Eq. (2.27), the IAM exhibits poles associated with resonances. In particular, the two poles (one in
the upper and one in the lower half plane) associated with the 𝜌 resonance show up in the 𝑃 wave.

The same construction can be carried out to higher orders, e.g., NNLO:

𝐾 = 𝑇−1 + 𝑖𝜎

= 1
𝑡2 + 𝑡4 + 𝑡6

+ 𝑖𝜎

= 1
𝑡2

1
1 + 𝑡4+𝑡6

𝑡2

+ 𝑖𝜎

= 1
𝑡2
[1 −

𝑡4 + 𝑡6
𝑡2

+
𝑡24
𝑡22
] + 𝑖𝜎 .

(4.16)

To show that this expression is indeed real, perturbative unitarity, i.e., Eq. (4.10), can be used again:

Im (𝐾) = 1
𝑡32
[Im (𝑡24) − 𝑡2 (Im (𝑡4) + Im (𝑡6))] + 𝜎

= 1
𝑡32
[2Re (𝑡4) Im (𝑡4) − 𝑡2 (Im (𝑡4) + Im (𝑡6))] + 𝜎

= 1
𝑡32
[2Re (𝑡4) 𝜎 𝑡22 − 𝑡2 (𝜎𝑡22 + 2𝜎𝑡2Re (𝑡4))] + 𝜎

= −𝜎 + 𝜎
= 0.

(4.17)

That is,
𝐾 = 1

𝑡32
[𝑡22 − 𝑡2Re (𝑡4 + 𝑡6) + Re (𝑡4)

2 − Im (𝑡4)
2] (4.18)

and [154, 155]

𝑇 = { 1
𝑡2
[1 −

𝑡4 + 𝑡6
𝑡2

+
𝑡24
𝑡22
]}

−1

=
𝑡22

𝑡2 − 𝑡4 − 𝑡6 +
𝑡24
𝑡2

. (4.19)
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There is an additional subtlety in the derivation of Eqs. (4.15) and (4.19), namely, it proceeds
via inverting the partial wave 𝑇. It is not guaranteed that 𝑇 is invertible for all values of 𝑠 under
consideration. Indeed, as a consequence of chiral symmetry, some partial waves vanish at certain
𝑠 values below threshold, the Adler zeros [156]. Hence, these partial waves are not invertible at
those positions. Since the Adler zeros do not interfere with the right-hand cut, the derivation
of Eqs. (4.15) and (4.19) goes through, but problems might arise in the analytic continuation of
these expressions away from the right-hand cut, especially to the sub-threshold region. This is
where an alternative derivation by means of dispersion relations comes in handy. It was carried
out in Ref. [58] for the NLO IAM and adapted in Ref. [154] for the NNLO IAM. The advantage of
a dispersive derivation is that the poles in 𝑇−1 and its ChPT expansion associated with the Adler
zeros can be taken care of via the residue theorem, as shown at NLO in Ref. [157] and NNLO in
Ref. [94], yielding the so-called modified IAM. However, the 𝜋𝜋 → 𝜋𝜋 𝑃 wave of interest is free of
Adler zeros, so that we stick to the ordinary IAM.

When searching for resonance poles on the second Riemann sheet of the NNLO 𝑃 wave IAM,
a problem arises: on top of the pair of poles associated with the 𝜌 resonance an additional pair of
poles shows up, for the denominator of Eq. (4.19) includes higher powers of Mandelstam 𝑠 than
the one of Eq. (4.15). This pair is not associated with any physical resonance. At sensible values
of the LECs the additional poles are very deep in the complex plane and do not affect the physical
region sizably. Nevertheless, a numerical search for poles needs to be guided such that it converges
towards the correct pole.

In passing we stress that the IAM is far from perfect. It fulfills elastic unitarity in the 𝑠 channel
exactly. Physically, the unitarization of the ChPT expansion corresponds to taking into account
iterated 𝜋𝜋 rescattering, as explored in more detail in Ch. 10. However, this rescattering is not
incorporated into the 𝑡 channel and 𝑢 channel, and thus the IAM is not crossing symmetric. Stated
differently, while the IAM improves the ChPT description of 𝜋𝜋 → 𝜋𝜋 along the right-hand cut, it
does nothing to improve the left-hand cut. Nevertheless, since ChPT is crossing symmetric, and the
IAM resembles ChPT at low energies, the IAM describes the left-hand cut correctly to the employed
order of ChPT [154].

4.2.1 Perturbative expansion of the pole trajectory
The derivation of the IAM in Sec. 4.2 makes it clear that the IAM resembles ChPT at low energies,
while it improves on it in the resonance region. However, a priori this improvement focuses on
the energy dependence only. Concerning the pion-mass dependence, the situation is less clear. Of
course, if both the energy and the pion mass are small, ChPT is recovered, but if the energy is in the
resonance region, i.e., beyond the breakdown scale of plain ChPT, with the pion mass still being
small, it is not guaranteed that the results are in agreement with constraints stemming from chiral
symmetry.

To be precise, according to chiral symmetry the expansion of themass𝑚 of amesonic resonance
and its width Γ in terms of 𝑀, the pion mass to LO ChPT, reads [158]:

𝑚 = 𝑎0 + 𝑎2𝑀2 + 𝑎3𝑀3 + 𝑂(𝑀4),
Γ = 𝑏0 + 𝑏2𝑀2 + 𝑏3𝑀3 + 𝑂(𝑀4).

(4.20)

Here 𝑎𝑘 and 𝑏𝑘, 𝑘 ∈ {0, 2, 3}, are constants. Equation (4.20) has a few striking features. First, note
that according to Eq. (3.113) 𝑀2 ∝ 𝑚𝑞, with 𝑚𝑞 the mass of the light quarks (i.e., the up and down
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quark). Hence, odd powers of 𝑀 have a branch point at 𝑚𝑞 = 0, rendering the expansion non-
analytical if rewritten in terms of 𝑚𝑞. While there is no term linear in 𝑀 in Eq. (4.20), such non-
analytic contributions arise if 𝑎3 or 𝑏3 do not vanish. This can happen only if there is an interaction
coupling the resonance to a pion and another resonance of the same mass𝑚. In the case of interest,
the 𝜌 resonance, this happens if the 𝜔 resonance is taken into account and assumed to be mass-
degenerate with the former. In that case, the coefficients 𝑎3 and 𝑏3 scale with 𝑔𝜔𝜌𝜋, the coupling
of the 𝜔 → 𝜌𝜋 interaction [159]. Based on this, in Ref. [87] the coupling 𝑔𝜔𝜌𝜋 was extracted
from an analysis of 𝜋𝜋 → 𝜋𝜋 lattice data. However, the IAM is based on plain ChPT without
any explicitly added resonances, and therefore a term of order 𝑀3 is not expected to show up in
the case of interest. Thus, if not explicitly stated otherwise, we will set 𝑎3 = 𝑏3 = 0 from here
on. Second, note that terms of order 𝑀𝑛 ln[𝑀2/𝜇2], with 𝑛 ≥ 0, are in general not forbidden by
chiral symmetry, again yielding branch points at vanishing mass. The non-trivial constraint stated
in Eq. (4.20) is that such logarithms show up at order 𝑀4 earliest. In particular, there is no term
proportional to 𝑀2 ln[𝑀2/𝜇2]. This constraint is not fulfilled by several unitarization methods, as
explained in Ref. [158]. Thus, it is worthwhile to check explicitly if the NNLO IAM is in accordance
with Eq. (4.20) (the NLO IAM was already tested in Ref. [158]). To do so, we follow the procedure
suggested ibidem.

For an explicit check, it is beneficial to rewrite Eq. (4.20) via the pole position 𝑠pole, see Eq. (2.30),
as

𝑠pole = (𝑚 − 𝑖
2
Γ)

2

= (𝑎0 −
𝑖
2
𝑏0)

2
+ 2 (𝑎0 −

𝑖
2
𝑏0) (𝑎2 −

𝑖
2
𝑏2)𝑀2 + 𝑂 (𝑀4) .

(4.21)

We aim to determine the pole position from the IAM as an expansion in the pion mass and check
if it agrees with Eq. (4.21). Since we computed the ChPT amplitudes in terms of 𝑀𝜋 instead of 𝑀,
we work with the former. That is, we expand the pole as

𝑠pole = 𝑠0 +
∞
∑
𝑘=1

(𝑠𝑘 + 𝑠𝐿𝑘 ln [
𝑀2

𝜋
𝜇2

])𝑀𝑘
𝜋 , (4.22)

with 𝑠0, 𝑠𝑘, and 𝑠𝐿𝑘 being constants. Expressing 𝑀𝜋 in terms of 𝑀 via ChPT this expansion can be
rewritten in terms of 𝑀. In particular, in this way we see that Eq. (4.21) is equivalent to 𝑠pole =
𝑠0 + 𝑠2𝑀2

𝜋 + 𝑂(𝑀4
𝜋 ). Inserting Eq. (4.15) and Eq. (4.19) into Eq. (2.34) yields

0 = 𝑡2 − 𝑡4 + 2𝑖𝜎 𝑡22 (4.23)

at NLO and

0 = 𝑡2 − 𝑡4 + 2𝑖𝜎 𝑡22 +
𝑡24
𝑡2

− 𝑡6 (4.24)

at NNLO at 𝑠pole. The expansion (4.22) is inserted into these two conditions and the result is ex-
panded around 𝑀𝜋 = 0. In addition to the logarithms in Eq. (4.22), there are polylogarithms in the
ChPT amplitudes. Hence, in fact, we deal with an expansion in terms of 𝑀𝑘

𝜋 ln[𝑀2
𝜋/𝜇2]𝑗, 𝑘, 𝑗 ∈ ℕ0.

Since Eqs. (4.23) and (4.24) need to hold for all values of𝑀𝜋, each of the coefficients in the expansion
needs to vanish separately. Thereby, we obtain a set of equations for the unknowns 𝑠0, 𝑠𝑘, and 𝑠𝐿𝑘 .
Keeping all terms below order 𝑀4

𝜋 , at NLO the equations can be solved analytically, resulting in

𝑠NLO
pole =

288𝐹 2𝜋2 + (45 − 18𝑖𝜋)𝑀2
𝜋

2 − 3𝑖𝜋 + 288𝜋2 (𝑙𝑟2 − 2𝑙𝑟1)
+ 𝑂 (𝑀4

𝜋) . (4.25)
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CHAPTER 4. CONTINUUM SCATTERING AMPLITUDE

So the NLO IAM is indeed in accordance with the constraints imposed by chiral symmetry on the
pole position, as already stated in Ref. [158] without giving an explicit form of the coefficients.
Note that there is another solution at threshold, 𝑠pole = 4𝑀2

𝜋 , which is, however, spurious, since at
threshold the zero in the numerator and denominator of the NLO IAM cancel.

At NNLO, the truncated system of equations cannot be solved analytically in a straightforward
manner, so we rely on a numerical solution. To that end, we replace the LECs by their numerical
values as obtained in the fits to lattice data, which are described in Ch. 6. Since the NNLO IAM
has two genuine poles, we need to guide the numerical routine towards the correct one, the 𝜌 pole.
Using Mathematica, it is sufficient to constrain Re(𝑠0) to lie within reasonable bounds, e.g.,
0.4GeV2 < Re(𝑠0) < 0.8GeV2. We then repeat this procedure for several different sets of values of
the LECs. In all cases, all coefficients below order𝑀4

𝜋 are (within the error stemming frommachine
precision) zero, except for 𝑠0 and 𝑠2, confirming that the NNLO IAM is in agreement with the chiral
constraints, too.

4.3 Kaon-mass dependence
Up to now, we have worked with 𝑆𝑈 (2) ChPT, i.e., we took only up and down quarks into account.
Equivalently speaking, we focused on the role of pions, which is motivated by their dominant role
in 𝜌 physics. In addition, the lattice computations whose results we are analyzing in this work are
carried out with degenerate up and down quarks, that is, they are explicitly isospin symmetric.
Moreover, the extension of the IAM to coupled channels suffers from conceptual problems, most
dominantly issues in its construction that are related to left-hand cuts, see Ref. [93] and references
therein. For these reasons we work with the isospin symmetric 𝑆𝑈 (2) IAM.

Nevertheless, the lattice datasets are obtained at different values of 𝑚𝑠, so one might wonder
how to take this into account. Fortunately, in Refs. [160, 161] 𝑆𝑈 (2) ChPT has been matched to
𝑆𝑈 (3) ChPT to determine the kaon-mass dependence of the 𝑆𝑈 (2) LECs. Focusing on the constants
that are of relevance for the 𝑆𝑈 (2) IAM, the results obtained ibidem can be recast into

𝐹matched (𝑀2
𝐾𝜋) = 𝐹 [1 + 𝑓 (𝑀2

𝐾𝜋) − 𝑓 (𝑀2
𝐾𝜋)] ,

𝑓 (𝑀2
𝐾𝜋) ≔

𝑀2
𝐾𝜋
𝐹 2

[8𝐿𝑟4 −
1

32𝜋2
ln (

𝑀2
𝐾𝜋
𝜇2

)] ,
(4.26)

as well as

𝑙𝑟 ,matched
𝑖 (𝑀2

𝐾𝜋) = 𝑙𝑟𝑖 −
𝑎𝑖

768𝜋2
ln (

𝑀2
𝐾𝜋

𝑀2
𝐾𝜋

) , (4.27)

with 𝑎1 = 1, 𝑎2 = 2, 𝑎3 = 4/3. Here

𝑀2
𝐾𝜋 ≔ (𝑀2

𝐾 − 1
2
𝑀2

𝜋) , 𝑀2
𝐾𝜋 ≔ (𝑀2

𝐾 − 1
2
𝑀2

𝜋) , (4.28)

where the values of the masses at the physical point are indicated with bars and 𝐿𝑟4 is an 𝑆𝑈 (3) LEC.
The formulae as shown here incorporate only NLO contributions. It is not feasible to take NNLO
effects into account, for then additional LECs show up, whose values are known only poorly, if at
all.

To estimate the impact of the kaon-mass dependence, we need to fix 𝐿𝑟4. While the determina-
tion of this LEC from phenomenology is tricky and accompanied with large uncertainties [162], the
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Figure 4.1: The pion decay constant as a function of 𝑀𝜋 and 𝑀𝐾 for the CLS data. The datasets are
sorted in order of increasing pion mass from left to right.

Flavour Lattice Averaging Group (FLAG) provides an 𝑁f = 2+ 1+ 1 value 𝐿𝑟4 = 0.09(34) × 10−3 [47,
163] that we use as an estimate. In Fig. 4.1 we display the pion decay constant at the masses of the
different datasets of the Coordinated Lattice Simulations (CLS) collaboration that are introduced
in more detail in Table 5.1. The error bars incorporate the sizable error of 𝐿𝑟4. The central value
deviates less than 1 % from the physical one in all cases. Even when the errors are taken into ac-
count, the deviation is at most 3 % in case of the N200 dataset and smaller in all other cases. In
addition, note that the errors are correlated, i.e., the data points in Fig. 4.1 are shifted in sync either
all upwards or all downwards if 𝐿𝑟4 is varied. Similarly, the kaon-mass dependence of the 𝑙𝑟𝑖 turns
out to be mild. As will become clear in Ch. 6 these effects are too small to be of great significance
in our analysis, so we treat 𝐹 and the LECs as kaon-mass independent in the following.
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Chapter 5

Lattice data

Building up on the general discussion of scattering on the lattice in Ch. 3, in this chapter we discuss
the specifics of 𝜋𝜋 scattering on the lattice and take a close look at several available datasets. To this
end, we explicitly display some finite volume energy levels in Sec. 5.1 and investigate Lüscher’s
quantization condition for the special case of the 𝜋𝜋 𝑃 wave in Sec. 5.2.

5.1 Energy levels

Consider the CM energy 𝐸⋆ = 2√(𝑞⋆)2 + 𝑀2
𝜋 of the two pions and their energy 𝐸 in the lab frame

(the rest frame of the lattice) as introduced in Sec. 3.2.1. Translating the former into lattice units
by multiplying with the appropriate power of the lattice spacing 𝑎 yields

𝑎2(𝐸⋆)2 = 4 (𝑎2(𝑞⋆)2 + 𝑎2𝑀2
𝜋) = 4 (Ξ2(𝔮⋆)2 + 𝑎2𝑀2

𝜋) , Ξ ≔ 2𝜋
𝐿lat𝜉

. (5.1)

Here we have introduced 𝑞⋆ ≕ 2𝜋𝔮⋆/𝐿.1 Similarly, translating the lab frame energy 𝐸 into lattice
units results in

(𝑎𝐸)2 = (√Ξ
2 |𝔓|2 + (𝑎𝑀𝜋)

2 + √Ξ
2 |𝔓 − 𝔨|2 + (𝑎𝑀𝜋)

2)
2
, (5.2)

with 𝔓, 𝔨 the integer triplets corresponding to the boost momentum 𝑃 and the momentum 𝑘 of a
single pion, respectively, see Eq. (3.18). Combining this with Eq. (3.5) gives an expression for all
allowed free CM energy levels for a fixed lattice geometry:

𝑎2(𝐸⋆)2 = (√Ξ
2 |𝔓|2 + (𝑎𝑀𝜋)

2 + √Ξ
2 |𝔓 − 𝔨|2 + (𝑎𝑀𝜋)

2)
2
− Ξ2𝔓2, 𝔓, 𝔨 ∈ ℤ3. (5.3)

Using Eq. (5.1), this can be translated into the corresponding values of (𝔮⋆)2 [164]. Furthermore,
Eqs. (3.5) and (5.1) allow for an expression of the Lorentz factor 𝛾 = 𝐸/𝐸⋆ solely in terms of lattice
quantities:

4 (𝛾 2 − 1) =
|𝔓|2

(𝔮⋆)2 + (𝑎𝑀𝜋
Ξ )

2 . (5.4)

1Note that 𝔮⋆ is a real number, not necessarily an integer.

56



CHAPTER 5. LATTICE DATA

collaboration name 𝑀𝜋/MeV 𝑀𝐾/MeV 𝐿lat 𝑎 × 104/MeV 𝜉
N401 284 – 48 3.9 1
N200 283 465 48 3.2 1

CLS J303 258 474 64 2.5 1
C101 223 474 48 4.4 1
D101 223 474 64 4.4 1
D200 200 482 64 3.2 1

840_20 391 550 20 1.8 3.4
HadSpec 840_24 391 550 24 1.8 3.4

860_32 236 500 32 1.7 3.5

Table 5.1: An overview of the lattice ensembles analyzed in this work. The values of the masses,
the spacings 𝑎, and the anisotropies 𝜉 are only approximate.

As discussed in Sec. 3.4, the pions on the lattice are classified via finite-volume irreps. For
a fixed irrep, the number of allowed free energy levels is reduced, i.e., only a subset of Eq. (5.3)
constitutes the spectrum; this subset is given by the poles of Lüscher’s quantization condition, see
Sec. 5.2.

Energy levels of a pair of interacting pions have been computed by many different collabora-
tions. Here, we focus on the levels of Ref. [36], which have been computed on gauge configurations
provided by the CLS collaboration, as well as the ones by the Hadron Spectrum (HadSpec) collabo-
ration presented in Refs. [82, 165]. Each collaboration has computed the energy levels correspond-
ing to different pion masses and lattice spacings. Table 5.1 gives an overview over the different
datasets, called ensembles in the following. Exemplarily, both the lowest-lying free energy levels
as well as the interacting ones of the CLS ensemble D101 are shown in Fig. 5.1. Clearly, the levels
as obtained in the computation are shifted with respect to the free ones. It is precisely this shift
that allows for an extraction of scattering information via Lüscher’s method.

In addition to the 𝜋𝜋 energy levels, CLS computed the values of the pion decay constant on all
ensembles except for N401 [166], which is thus excluded from our analysis.

5.2 The quantization condition
Ignoring contributions from partial waves with 𝑙 ≥ 3, performing the projection onto finite volume
irreps, and using the fact that 𝑆 and 𝑃waves decouple, Lüscher’s quantization condition in the form
of Eq. (3.87) can be reduced to a simple quantization condition for the 𝑃 wave that reads [148]:

cot [𝛿 (𝔮⋆2)] = 1
𝔮⋆𝛾𝜋3/2

{𝑍𝔓
00 (1, 𝔮⋆

2) + 1
𝔮⋆2

[𝛼𝔓,Λ20 𝑍𝔓
20 (1, 𝔮⋆

2) + 𝛼𝔓,Λ22 𝑍𝔓
22 (1, 𝔮⋆

2)]} , (5.5)

which will be abbreviated as
cot [𝛿 (𝔮⋆2)] = 𝒵(𝔮⋆2) . (5.6)

In this form it depends not only on the lattice characteristics and the boost momentum 𝔓, but also
on the irrep Λ the two pions live in. Here 𝛼𝔓,Λ𝑙𝑚 are numerical coefficients, whose values are given
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A1(1) A1(2) A1(3) A1(4) B1(2) B2(2) E2(1) E2(3) E2(4) T1(0)

irrep(|𝔓|2)
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0.35

0.40
𝑎𝐸

⋆
interacting
free
thresholds

Figure 5.1: The lowest-lying free energies in the CM frame on a lattice with 𝐿lat = 64 for different
values of the irrep and boost, see also Table 3.1. In addition, the interacting energy levels of the
ensemble D101 are shown, including their error bands. The lower-lying dashed line marks the 𝜋𝜋
threshold, while the upper one corresponds to the𝐾𝐾 threshold. Each free energy level is associated
with a pole of 𝒵, see Sec. 5.2. The trivial free energies located at the 𝜋𝜋 threshold are excluded
from the plot.

Λ
𝔓

000 001 / 002 110 111

A1 2 −1 − √6𝑖 −2√6𝑖
B1 −1 + √6𝑖
B2 2
E2 −1 √6𝑖
T1

Table 5.2: The values of the coefficients appearing in the quantization condition. Here Λ labels the
irrep and 𝔓 the boost momentum. To obtain the correct values for 𝛼𝔓,Λ𝑙𝑚 , divide the values given in

the table by √5. Then, the real part yields the value of 𝛼𝔓,Λ20 , while the imaginary part times 𝑖 is the
value of 𝛼𝔓,Λ22 . Empty entries correspond to vanishing coefficients.
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Figure 5.2: The right-hand side of the quantization condition (5.6) as a function of the energy with
𝐿lat = 64, 𝔓 = (1, 1, 0), and Λ = A1. Shown is the region around one pole, which corresponds to
a free energy level. Also shown are the two energy levels of the ensemble D101 that are closest to
the pole, including their error bands. In addition, for the higher of these two interacting energy
levels all the resampled energy values underlying the estimation of the error band are depicted in
gray. This figure corresponds to the second column of Fig. 5.1, namely it shows the two highest
interacting energy levels of that column.

in Table 5.2, 𝛿 = arg(𝑇 ) is the phase of the 𝜋𝜋 → 𝜋𝜋 𝑃 wave, see Eq. (2.19), and 𝑍𝔓
𝑙𝑚 are generalized

zeta functions as defined in Eq. (3.51).
It is expedient to study the pole structure of Eq. (5.5). According to Eq. (3.51) the zeta functions

have poles whenever the denominator in the sum in Eq. (3.50) vanishes, i.e., whenever 𝑞⋆2 = |𝒌⋆|2 =
𝑘⋆∥

2 + |�̃�⋆⟂|2. That is, the poles overlap with the free energy levels. To check this explicitly, note that

𝑘⋆0 = 𝜔⋆
𝑘 = 𝐸⋆/2 holds, since at such a pole the pions are on-shell. Combining this with Eqs. (3.5)

and (3.7) yields

𝑘⋆∥ = 𝑘⋆∥ + 𝛽 (𝐸
⋆

2
− 𝐸⋆

2
) = 𝑘⋆∥ + 𝛽𝜔⋆

𝑘 − 𝛽𝐸
⋆

2
= 1

𝛾
(𝑘∥ −

|𝑷|
2
), (5.7)

that is, singularities arise when [140, 148]

𝔮⋆2 = [1
𝛾
(𝔨∥ −

|𝔓|2

2
)]

2

+ | ̃𝔨⟂|
2
, 𝔨 ∈ ℤ3. (5.8)

Note that the right-hand side of Eq. (5.8) depends on 𝔮⋆2, for the Lorentz factor shows up, which

59



CHAPTER 5. LATTICE DATA

0.356 0.358 0.360 0.362 0.364 0.366 0.368 0.370 0.372
𝑎𝐸⋆

0.0

0.5

1.0

1.5

2.0

2.5

3.0

𝛿

Z

mean + error
free
underlying

Figure 5.3: The analogue of Fig. 5.2 in the (𝑎𝐸⋆, 𝛿) plane. The phases need to lie on the curve traced
out by Z, as defined in Eq. (6.1), that is, the energies and phases are correlated. For each of the
two interacting energy levels all the underlying values are depicted in gray, i.e., each gray point
associated with the higher energy level corresponds to one gray vertical line in Fig. 5.2. Also shown
are the mean values and the linear approximations to the curve Z corresponding to one standard
deviation as estimated from the underlying energies. As can be seen, this linear approximation
works qualitatively rather well, so to keep the plots easily comprehensible in the following only
the linearly approximated errors are shown without all the underlying data points. It is worth
noting that the phases are not uniquely determined, for the cotangent is periodic with period 𝜋,
and thus, in principle, each obtained phase can be shifted by integer multiples of 𝜋. In this plot all
phases are chosen to lie within [0, 𝜋). In particular, the data points with energies slightly below
the free energy belong partly to the higher energy level, see the leftmost gray lines in Fig. 5.2.

depends on 𝔮⋆2 according to Eq. (5.4). Expressing the Lorentz factor in this way, Eq. (5.8) boils
down to a quadratic equation in 𝔮⋆2, and thus it can be solved straightforwardly. The solutions
coincide with the (corresponding values of 𝔮⋆2 of the) free energy levels as given in Eq. (5.3). This
correspondence is intuitively clear: the pions are free if the interaction vanishes, that is, if 𝑇 = 0,
i.e., if 𝛿 = 0, which, in turn, implies cot(𝛿) = ∞. Hence, according to Eq. (5.6) 𝒵 needs to have a
pole, too. Depending on the precise values of 𝛼𝔓,Λ𝑙𝑚 , some of the poles of the zeta functions in the
quantization condition cancel. It is the subset of Eq. (5.8) without such a cancellation that builds
the allowed free energy levels.

To sum up, Eq. (5.5) relates the CM energies of 𝜋𝜋 states on the lattice to the 𝑃-wave scattering
phase shift 𝛿 at the corresponding energy (via taking a detour over 𝔮⋆2). This quantization condition
is displayed for a fixed boost and irrep on a given lattice in Fig. 5.2 together with both interacting
and free energy levels, illustrating the pole structure that is associated with the generalized zeta
functions. Furthermore, for a single interacting energy level not only the central value and its error
are shown, but also the energies as evaluated on the resampled gauge configurations, as discussed
in Sec. 3.1. Inserting these energies into Eq. (5.5) yields the phases depicted in Fig. 5.3, which
clearly shows the correlation between the phases and energies. In reality, the situation is slightly
more complicated than indicated by these figures. Namely, the different samples drawn from the
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Figure 5.4: Same as Fig. 5.3, but this time the variation in the pion mass on the different samples is
taken into account.

gauge configurations yield not only different 𝜋𝜋 energy levels, but also different pion masses. Since
Eq. (5.5) depends on the pion mass, too, each vertical gray line in Fig. 5.2 corresponds to a slightly
shifted version of the curve traced out by𝒵, and the same logic applies to Fig. 5.3. That is, the gray
dots ibidem do not lie on a one-dimensional line, but instead constitute two-dimensional clouds
sourrounding the mean values, as indicated in Fig. 5.4.
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Chapter 6

Fit and results

Finally, we use the formalism introduced in Ch. 4 to analyze the lattice data described in Ch. 5. We
start by explaining how to confront the continuum model with the lattice in Sec. 6.1 and Sec. 6.2,
and subsequently discuss a naive way to incorporate discretization artifacts into the framework in
Sec. 6.3. Building on top of the detailed discussion of the error computation in Sec. 6.4, we then
present our results in Sec. 6.5.

6.1 Translating a continuum model to the lattice
As we have seen, given an energy, the quantization condition needs to be evaluated once to yield
the corresponding phase. In principle, one can continue to fit a given model 𝛿mod, which specifies
the phase as a function of the energy and model parameters, to the data points in the (𝑎𝐸⋆, 𝛿)
plane. However, one needs to be careful to take the correlations of the phases and energies into
account. While this can be achieved via the introduction of auxiliary parameters [86], to avoid
these complication we follow the reversed approach here (at the cost of other complications).

Given an expression for the phase as a function of the energy, it can be plugged into Eq. (5.5);
subsequently, this equation can be solved numerically to determine 𝔮⋆2 for a given combination of
boost momentum𝔓 and irrepΛ. In this way, for fixedmodel parameters the continuummodel 𝛿mod

can be translated into discrete energy levels on the lattice, which then allows for a comparison of
the model with a given lattice calculation. It is worth noting that for a fixed combination of boost
and irrep, there are in general several solutions to the quantization condition. The one with the
lowest energy is the ground state, while the higher-lying ones are exited states.

Unfortunately, the evaluation of the generalized zeta functions 𝑍𝔓
𝑙𝑚 is computationally demand-

ing, so that solving the quantization condition for a given model 𝛿mod can be quite time consuming.
This is especially worrisome if the quantization condition needs to be solved repeatedly, e.g., in the
context of a fit. Hence, it is desirable to speed up the evaluation of this condition. There are two,
in principle, straightforward methods.

The first is to interpolate the generalized zeta functions. That is, for each needed boost and
irrep, the three zeta functions appearing in Eq. (5.5) are interpolated as functions of 𝔮⋆2, carefully
taking the poles into account. In practice, the functions are interpolated between the poles, going
as close to the poles as numerical precision allows. This requires to use quite a few sites in the
interpolation, for the zeta functions change rapidly close to the poles. As soon as the quantization
condition is also needed for different values of the mass 𝑎𝑀 lat

𝜋 , the interpolation gets more expen-
sive. Since the Lorentz factor depends on this mass according to Eq. (5.4), so do the zeta functions.
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Hence, in this case they are needed as functions of both the momentum 𝔮⋆2 and the mass 𝑎𝑀 lat
𝜋 ,

so they need to be interpolated on a two-dimensional grid, significantly decreasing the numerical
benefits of interpolation.

As an alternative, second method, the quantization condition can be Taylor expanded, as
shown in Ref. [92] for a fixed value of 𝑎𝑀 lat

𝜋 . To that end, rewrite Eq. (5.6) as

𝛿 (𝑎𝐸⋆) = arccot [𝒵 (𝑎𝐸⋆)] ≕ Z (𝑎𝐸⋆) , (6.1)

where everything is now expressed in terms of the energy 𝑎𝐸⋆ corresponding to the momentum
𝔮⋆. If a model 𝛿mod is plugged into the quantization condition, its numerical solution yields an
energy 𝑎𝐸⋆mod such that

𝛿mod (𝑎𝐸⋆mod) = Z (𝑎𝐸⋆mod) . (6.2)

Now, assume that the corresponding lattice calculation produced a value 𝑎𝐸⋆lat close by to 𝑎𝐸⋆mod

(if the model is somehow capable of describing the lattice data, this should hold true). In this case
it is justified to Taylor expand both sides of Eq. (6.2), yielding

𝛿mod (𝑎𝐸⋆lat) + d𝛿mod

d (𝑎𝐸⋆)
(𝑎𝐸⋆lat) [𝑎𝐸⋆mod − 𝑎𝐸⋆lat]

=Z (𝑎𝐸⋆lat) + dZ
d (𝑎𝐸⋆)

(𝑎𝐸⋆lat) [𝑎𝐸⋆mod − 𝑎𝐸⋆lat] + 𝑂 ([𝑎𝐸⋆mod − 𝑎𝐸⋆lat]
2
) .

(6.3)

Neglecting the higher-order terms results in

𝑎𝐸⋆mod = 𝑎𝐸⋆lat +
[Z − 𝛿mod] (𝑎𝐸⋆lat)
d[𝛿mod−Z]

d(𝑎𝐸⋆) (𝑎𝐸⋆lat)
. (6.4)

In this way, the calculation of the energies 𝑎𝐸⋆mod corresponding to the continuum model requires
merely the evaluation of the quantization condition and its derivative at the given energy 𝑎𝐸⋆lat,
instead of a time-demanding numerical solution of Eq. (5.5). Note also that these two values are
independent of the model 𝛿mod, and thus they stay unchanged during a fit, thereby drastically
increasing performance.

To take into account the mass dependence, this second method needs to be modified slightly.
In this case, instead of fixing the mass to equal 𝑎𝑀 lat

𝜋 , the quantization condition is evaluated at a
mass 𝑎𝑀mod

𝜋 , that is Eq. (6.2) is replaced by

𝛿mod (𝑎𝐸⋆mod, 𝑎𝑀mod
𝜋 ) = Z (𝑎𝐸⋆mod, 𝑎𝑀mod

𝜋 ) . (6.5)

Assuming that 𝑎𝑀mod
𝜋 is close to 𝑎𝑀 lat

𝜋 once again, this equation can be Taylor expanded in both
variables up to second order, yielding, in complete analogy with the foregoing calculation,

𝑎𝐸⋆m = 𝑎𝐸⋆l +
[Z − 𝛿m] (𝑎𝐸⋆l, 𝑎𝑀 l

𝜋) + (𝑎𝑀m
𝜋 − 𝑎𝑀 l

𝜋)
𝜕

𝜕(𝑎𝑀) [Z − 𝛿m] (𝑎𝐸⋆l, 𝑎𝑀 l
𝜋)

𝜕
𝜕(𝑎𝐸⋆) [𝛿

m − Z] (𝑎𝐸⋆l, 𝑎𝑀 l
𝜋)

, (6.6)

where, for brevity, the superscripts mod and lat are abbreviated as m and l, respectively. The only
difference between Eq. (6.4) and Eq. (6.6) is the additional term proportional to the mass difference
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in the numerator of the latter, for the evaluation at𝑀 lat
𝜋 of the right-hand side of Eq. (6.4) is implicit.

The only additional information needed are the derivatives with respect to the mass.
Note again that Eqs. (6.4) and (6.6) are valid only if |𝑎𝐸⋆mod − 𝑎𝐸⋆lat| ≪ 1, i.e., if the model

is somehow capable to describe the lattice data. Hence, in a practial application one should first
work with the full quantization condition, use it to compute the energy levels 𝑎𝐸⋆mod, and check if
they are indeed close to the energy levels 𝑎𝐸⋆lat. Only then it is justified to use the approximated
versions of the quantization conditions in further work with the model.

6.2 Fitting the inverse-amplitude method
Having a look at the explicit ChPT expression as discussed in Sec. 4.1 shows that at NLO both
the pion decay constant and the 𝑃 wave depend on a single LEC each, namely 𝕃NLO

1 ≔ {𝑙𝑟4} and
𝕃NLO
2 ≔ {𝑙𝑟2 − 2𝑙𝑟1}, respectively, while at NNLO more LECs appear: 𝕃NNLO

1 ≔ {𝑙𝑟1, 𝑙𝑟2, 𝑙𝑟3, 𝑙𝑟4, 𝑟 𝑟𝐹} and
𝕃NNLO
2 ≔ {𝑙𝑟1, 𝑙𝑟2, 𝑙𝑟3, 𝑟𝑎, 𝑟𝑏, 𝑟𝑐}. On top of these dimensionless LECs the ChPT expressions depend on

the dimensionful quantities 𝐹 and 𝑀𝜋. To work in lattice units, both these parameters are given in
powers of the lattice spacing. Inserting the different orders of the ChPT 𝑃 wave into Eq. (4.15) and
Eq. (4.19) yields explicit expressions for the NLO andNNLO IAM 𝑇, respectively. The corresponding
phase can be computed as 𝛿 IAM = arg(𝑇 ), which, in turn, allows for a computation of associated
energy levels 𝑎𝐸⋆IAM via Eq. (6.6). We label the different 𝜋𝜋 energy levels of a given ensemble as
𝑎𝐸⋆lat𝑘 , 𝑘 = 1,… , 𝑁. Each such level corresponds to a boost vector as well as an irrep (and possibly
an excitation). The associated IAM energy is denoted by 𝑎𝐸⋆IAM

𝑘 . Altogether, the lattice data on a
given ensemble constitute a vector 𝑣 lat, while the model at hand yields a vector 𝑣mod, which are
given explicitly as

𝑣 lat ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎𝐹 lat
𝜋

𝑎𝑀 lat
𝜋

𝑎𝐸⋆lat1
𝑎𝐸⋆lat2

⋮
𝑎𝐸⋆lat𝑁

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑣mod ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝑎𝐹ChPT
𝜋 (𝑎𝐹 , 𝑎𝑀𝜋; 𝕃1)

𝑎𝑀 IAM
𝜋

𝑎𝐸⋆IAM
1 (𝑎𝐹 , 𝑎𝑀𝜋; 𝕃2)

𝑎𝐸⋆IAM
2 (𝑎𝐹 , 𝑎𝑀𝜋; 𝕃2)

⋮
𝑎𝐸⋆IAM

𝑁 (𝑎𝐹 , 𝑎𝑀𝜋; 𝕃2)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (6.7)

Here the pion mass is rendered a fit parameter to take into account the error of 𝑎𝑀 lat
𝜋 [167], such

that the set of fit parameters reads 𝔽 ≔ {𝑎𝐹} ∪ {𝑎𝑀𝜋} ∪𝕃1 ∪𝕃2. Building on this, the 𝜒2 on the given
ensemble is defined as

𝜒2 (𝔽) ≔ (𝑣 lat − 𝑣mod)
𝑇
𝐶−1 (𝑣 lat − 𝑣mod) , (6.8)

where 𝐶 is the covariance matrix of the quantities computed on the lattice.
Since everything is defined in lattice units, the explicit value of the lattice spacing is nowhere

needed, with one exception, namely, the renormalization scale 𝜇 that shows up in the pion decay
constant at both NLO and NNLO as well as in the NNLO 𝑃 wave. The value of this scale needs to
be fixed to 770MeV, both to allow for a comparison of the obtained LECs with literature values
and to allow for fitting several ensembles simultaneously. Thus, the lattice spacing creeps in via
𝜇 ↦ 𝑎𝜇.

If several ensembles are fitted simultaneously, the total 𝜒2 is the sum of terms of the form (6.8),
each corresponding to a single ensemble.1 Because there is a sole value of 𝐹 in physical units, in case

1Since each ensemble has individual gauge configurations, there is no correlation between different ensembles.
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multiple ensembles share the same value of 𝑎, they also share a single fit parameter 𝑎𝐹, otherwise
there is an individual fit parameter 𝑎𝐹 for each ensemble. That is, for each value of 𝑎 there is one
fit parameter 𝑎𝐹. Similarly, there is one fit parameter 𝑎𝑀𝜋 for each different value of 𝑎𝑀 lat

𝜋 (with
two values considered equal if they agree numerically and are obtained at the same value of 𝑎). In
such a global fit the set of fit parameters then reads 𝔽 = {𝑎𝐹𝑗}𝐴𝑗=1 ∪ {𝑎𝑀𝜋,𝑗}𝐴

′
𝑗=1 ∪ 𝕃1 ∪ 𝕃2 with 𝐴 the

number of lattice spacings and 𝐴′ the number of different pion masses.
To fit the model to the data, the 𝜒2 is minimized with respect to the fit parameters 𝔽. Espe-

cially at NNLO this minimization is non-trivial, for the number of fit parameters is relatively high
and there is a significant number of local minima. To avoid getting trapped in those, we use the
differential-evolution algorithm [168]. When appropriately tuned, this allows for a reliable global
search in parameter space, while needing less computation time than a Monte-Carlo algorithm.
The heuristic algorithm works roughly as follows: one starts with a population of trial solutions,
i.e., vectors in parameter space. The number of trial solutions is known as the population size.
Subsequently, the trial solutions are combined randomly into new candidates, which replace the
old ones if they yield lower values of the 𝜒2. How strong the modifications are is controlled by a
parameter known as the differential weight, while the crossover probability influences the number
of vector components of the trial solutions that are modified. This procedure is iterated, and the
process terminates if all trial solutions are close to each other, i.e., if the standard deviation of their
𝜒2s is as small as 1 ppb of the absolute value of the mean of those 𝜒2s. To further improve the
convergence, dithering is employed, i.e., the differential weight is set anew between each iteration
to a randomly chosen value within 0.5 and 1. The population size is set to 20 |𝔽| in a global fit to
the CLS ensembles, while it is set to 40 |𝔽| in a fit to the HadSpec data. With the other parameters
set in this way, the crossover probability can be fixed to unity, which reduces the computation
time. The resulting fit parameters obtained in this way are fed in Powell’s method [169] as initial
guesses, which is used to refine the results, where we aim again for a tolerance at the 1 ppb level.
We use the implementation in SciPy [170] for both algorithms. That this choice of algorithms
indeed yields stable fits was confirmed by repeating the minimization 100 times with randomly
drawn initial guesses. Indeed all 100 results are very close to each other, albeit there is a small
spread. To improve on this, all fit results presented later were obtained by repeating the same fit
several times and keeping the best result.2 The precise choice of the parameters of the algorithms
as outlined above is the result of some tuning, i.e., repeating a fit with different parameters and
carefully observing the impact on the 𝜒2 and the stability.

While the use of Eq. (6.6) instead of the full quantization condition to compute the energies
𝑎𝐸⋆IAM

𝑘 speeds up the fit drastically, care needs to be taken before one draws conclusions from the
resulting minimal value of the 𝜒2. Namely, usually the 𝜒2 turns out to be (at most) a few percent
larger than the one obtained using the full quantization condition. To understand this effect, note
that the LECs 𝕃2 enter the 𝜒2 via the energies 𝑎𝐸⋆IAM

𝑘 only. Ignoring the other fit parameters (for
the time being) we write symbolically 𝜒2({𝑎𝐸⋆IAM

𝑘 (𝕃2)}). A fit with the full quantization condition
yields values of 𝑎𝐸⋆IAM

𝑘 (𝕃2) such that this 𝜒2 is at a global minimum; Taylor expanding the quanti-
zation condition means that these energies are approximated, and since we are at a minimum, this
can only increase the value of 𝜒2.3 To take this effect into account, we perform the fits with the

2To be able to obtain the same point in parameter space with high accuracy when repeating the same fit is partic-
ularly important in the case of jackknife resampling, see Sec. 6.4, for two jackknife samples differ only very slightly,
and thus result in almost identical points in parameter space.

3This argument applies as long as the increase in 𝜒 2 cannot be compensated for by a change of the fit parameters
in a Taylored fit as compared to the ones resulting from a fit using the full quantization condition.
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approximated quantization condition and subsequently use the resulting fit parameters to evaluate
the full 𝜒2; the resulting values are the ones we quote in the following. Furthermore, to ensure
that the use of the approximated quantization is justified in the first place, a few individual fits are
performed both with and without the approximation, where indeed the resulting values of the fit
parameters turn out to be compatible.

6.3 Discretization artifacts
While the quantization condition is built upon finite-volume effects, it is derived in the continuum,
that is, discretization effects due to non-zero lattice spacing 𝑎 are neglected. But the lattice calcula-
tions are carried out at non-vanishing lattice spacing, and thus it is likely that they are polluted by
artifacts due to the discretization. To take such artifacts into account, the quantization condition
needs to be modified. For the data at hand, the discretization procedure is tuned in a way that the
artifacts are of order 𝑎2 and higher; hence, there is no need to take terms linear in 𝑎 into account.
A naive ansatz is then to modify Eq. (6.1) according to

𝛿 (𝑎𝐸⋆) + 𝑔𝑎2 = Z (𝑎𝐸⋆) , (6.9)

such that in the limit 𝑎 ↘ 0 the original quantization condition is reproduced. Here 𝑔 ∈ ℝ is
another free parameter that needs to be adjusted by the fit. This model is insofar crude as it ignores
a possible energy dependence of 𝑔, in addition, effects of higher orders in 𝑎 are not taken into
account.

Note that 𝑎 has mass dimension −1, so that 𝑔 is a dimensionful parameter. It is convenient to
render it dimensionless by introducing a quantity with mass dimension 1, for example the pion
decay constant in the chiral limit, 𝐹 (this choice is in principle arbitrary, but well-suited for our fits
that already incorporate 𝑎𝐹 as a fit parameter):

𝑔𝑎2 =
𝑔
𝐹 2

(𝑎𝐹)2 ≕ 𝑔 (𝑎𝐹)2 , (6.10)

where 𝑔 was redefined to absorb the factor 𝐹−2, thereby obtaining

𝛿 (𝑎𝐸⋆) + 𝑔 (𝑎𝐹)2 = Z (𝑎𝐸⋆) . (6.11)

Now both 𝑔 and 𝑎𝐹 are dimensionless.4

Based on Eq. (6.11) it is straightforward to generalize Eq. (6.4). To this end, Eq. (6.2) needs to
be replaced by

𝛿mod (𝑎𝐸⋆mod) + 𝑔 (𝑎𝐹)2 = Z (𝑎𝐸⋆mod) . (6.12)

Taylor expanding both sides around 𝑎𝐸⋆lat yields

𝑎𝐸⋆mod = 𝑎𝐸⋆lat +
[Z − 𝛿mod] (𝑎𝐸⋆lat) − 𝑔 (𝑎𝐹)2

d[𝛿mod−Z]
d(𝑎𝐸⋆) (𝑎𝐸⋆lat)

. (6.13)

4Usually, 𝑎𝐹 = 𝑂(10−2), so as long as it is not multiplied by a large number, it is always possible to Taylor expand
any relation involving 𝑎𝐹 around 𝑎𝐹 = 0. When the energy dependence of the coefficient multiplying (𝑎𝐹)2 in such
an expansion is neglected, Eq. (6.11) is reobtained in this way even if initially the lattice artifacts are modelled in a
different way, e.g., as cot[𝛿(𝑎𝐸⋆)] + 𝑔𝑎2 = 𝒵(𝑎𝐸⋆), by merely redefining 𝑔.
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Now the coefficient in front of (𝑎𝐹)2 depends on the energy 𝐸⋆lat. Since the energy dependence
of this coefficient was ignored anyway in the inital ansatz (6.9), it might as well be ignored here,
resulting in

𝑎𝐸⋆mod = 𝑎𝐸⋆lat +
[Z − 𝛿mod] (𝑎𝐸⋆lat)
d[𝛿mod−Z]

d(𝑎𝐸⋆) (𝑎𝐸⋆lat)
+ 𝑔 (𝑎𝐹)2 , (6.14)

where, again, 𝑔 was redefined. Equation (6.6) might be modified in the exact same way.
By the same logic, we can try to model lattice artifacts in the pion decay constant by adding a

term to Eq. (4.11), resulting in

𝑎𝐹𝜋 = 𝑎𝐹 [1 + 𝐹4
(𝑎𝑀𝜋)

2

16𝜋2 (𝑎𝐹)2
+ 𝐹6(

(𝑎𝑀𝜋)
2

16𝜋2 (𝑎𝐹)2
)
2
] + 𝑔𝐹 (𝑎𝐹)

2 , (6.15)

with 𝑔𝐹 another new dimensionless fit parameter.

6.4 Error analysis
Altogether there are four different sources of errors: the statistical one stemming from the data,
the error of the lattice spacing 𝑎, the error of the literature value of 𝐹 (that is needed in the fit to
the HadSpec data), and the error due to the truncation of the chiral expansion. In the following,
we address these kinds of errors one by one.

6.4.1 Statistical error of the data
To determine the statistical error stemming from the lattice data, jackknife samples are drawn from
the data and the fit is repeated on all those samples. If several ensembles with a different number of
underlying bootstrap samples are fitted at once, the data first need to be resampled via a parametric
jackknife, such that each ensemble has the same number of samples.

To be precise, first focus on a single ensemble. It contains 𝑁 two-particle energy levels 𝑎𝐸⋆lat𝑘 ,
𝑘 = 1, … , 𝑁, compare Eq. (6.7). In fact, as illustrated in Fig. 5.2 each of these energy levels consists
of 𝐺 ∈ ℕ values, where each value corresponds to a bootstrap sample of the underlying gauge
configurations: 𝔼𝑘 ≔ {𝑎𝐸⋆1𝑘 , … , 𝑎𝐸⋆𝐺𝑘 }, with 𝑎𝐸⋆lat𝑘 = ∑𝐺

𝑏=1 𝑎𝐸
⋆𝑏
𝑘 /𝐺 the mean of those values. The

corresponding entries of the covariance matrix 𝐶 appearing in Eq. (6.8) are computed using the
standard estimator

𝐶𝑖𝑗 =
1

𝐺 − 1

𝐺
∑
𝑏=1

(𝑎𝐸⋆𝑏𝑖 − 𝑎𝐸⋆lat𝑖 ) (𝑎𝐸⋆𝑏𝑗 − 𝑎𝐸⋆lat𝑗 ) . (6.16)

To discuss the error analysis in detail, it is expedient to focus on one two-particle energy level
and abstract away the details. That is, instead of 𝔼𝑘, consider for the time being a set 𝕏 ≔
{𝑋1, … , 𝑋𝐺} containing 𝐺 outcomes of a random variable 𝑋. Usually, to attempt an error analy-
sis the bootstrap is applied. That is, 𝐵 ∈ ℕ bootstrap samples 𝕏𝑏 ≔ {𝑋 𝑏

1 , …𝑋 𝑏
𝐺}, 𝑏 = 1, … , 𝐵 are

generated, where each 𝑋 𝑏
𝑔 is drawn randomly and uniformly with replacement from𝕏 (that is, the

a priori probability that 𝑋 𝑏
𝑔 equals 𝑋𝑘 is 1/𝐺 for all 𝑔, 𝑘 ∈ 1, … , 𝐺, and 𝑏 ∈ 1…𝐵). On each boot-

strap sample the mean 𝑋𝑏 ≔ ∑𝐺
𝑔=1 𝑋 𝑏

𝑔/𝐺 is computed. The variance of the bootstrap means is an
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estimator of the variance of the mean. That is, for sufficiently high 𝐵,

1
𝐵 − 1

𝐵
∑
𝑏=1

(𝑋𝑏 − 1
𝐵

𝐵
∑
𝑐=1

𝑋𝑐)
2

≈ Var [𝑋] (6.17)

holds.
Coming back to the fit at hand, the aforementioned procedure would be applied to each energy

level 𝔼𝑘, yielding 𝐵 outcomes {𝑎𝐸⋆lat,𝑏1 , … , 𝑎𝐸⋆lat,𝑏𝑁 }, 𝑏 = 1, … , 𝐵. On each such outcome the fit can
be repeated, each time resulting in different values of the fit parameters. Their errors can then be
estimated via the covariance matrix of the 𝐵 different sets of parameter values.

However, in the scenario at hand this approach fails. This is due to the fact that the values
𝑎𝐸⋆lat𝑘 are often very close to a pole of the quantization condition. The underlying set 𝔼𝑘 might
contain a significant number of values located on the other side of the nearby pole compared to
the central value 𝑎𝐸⋆lat𝑘 , see Fig. 5.2. Hence, some of the bootstrap samples will yield values 𝑎𝐸⋆lat,𝑏𝑘
that are separated from the true mean 𝑎𝐸⋆lat𝑘 by a pole, thereby being associated with completely
different values of the scattering phase. In this way, the error would be drastically overestimated.

To circumvent this problem, the bootstrap is replaced by a jackknife. Consider the general
random variable 𝑋 investigated before. The 𝐺 jackknife samples are generated via deleting single
values 𝑋𝑘: X𝑗 ≔ {𝑋1, 𝑋2, … , 𝑋𝑗−1, 𝑋𝑗+1, 𝑋𝑗+2, … , 𝑋𝐺}. Again the means 𝑋𝑗 are computed and used

instead of the bootstrap means 𝑋𝑏
. The following results are readily established [167]: the mean of

the means of the jackknife samples equals the mean of the original data,

1
𝐺

𝐺
∑
𝑗=1

𝑋𝑗 = 𝑋. (6.18)

Furthermore,
𝑋𝑗 − 𝑋 = 1

𝐺 − 1
(𝑋 − 𝑋𝑗) (6.19)

holds, which can be used to compute the variance of the jackknife means, resulting in

1
𝐺 − 1

𝐺
∑
𝑗=1

(𝑋𝑗 − 𝑋)2 = 1
(𝐺 − 1)2

Var [𝑋]

= 𝐺
(𝐺 − 1)2

Var [𝑋] .
(6.20)

Here Var[𝑋] = Var[𝑋]/𝐺 is used. Hence, to obtain the variance of the mean, the variance of the
jackknife means needs to be multiplied by a factor (𝐺 − 1)2/𝐺 ≕ 𝒢. Comparison with Eq. (6.17)
shows that this is precisely the factor that relates the variance of the jackknife means with the
variance of the bootstrap means.

Carrying this over to the fit at hand, the procedure reads as follows: instead of bootstrap
samples, 𝐺 jackknife samples of each energy level are drawn. That is, there are 𝐺 outcomes
{𝑎𝐸⋆lat1,𝑗 , … , 𝑎𝐸⋆lat𝑁 ,𝑗 }, 𝑗 = 1, … , 𝐺, where 𝑎𝐸⋆lat𝑘,𝑗 denotes the mean obtained using the 𝑗-th jackknife
sample. Since the variance of these means is a factor 1/𝒢 ≈ 1/𝐺 smaller than the variance of the
bootstrap means, the risk of jumping over poles in the quantization condition is drasticly reduced.
The fit is repeated on all 𝐺 different jackknife samples, the covariance matrix of the fit parameters
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can then be computed in the standard way. However, according to the foregoing discussion the
matrix obtained in this way needs to be multiplied by the factor 𝒢.

In addition to the energy levels, the pion decay constants and masses are fitted, if available.
Often, the individual values of these parameters on the 𝐺 bootstrap samples of gauge configurations
underlying the two-particle energy levels are not available. Instead, a central value with an error is
given, e.g., 𝑎𝐹 lat

𝜋 ± Δ𝑎𝐹 lat
𝜋 . To include this error in the analysis, for each jackknife sample 𝑗, a value

𝑎𝐹 lat
𝜋,𝑗 is drawn from a normal distribution with mean 𝑎𝐹 lat

𝜋 and standard deviation Δ𝑎𝐹 lat
𝜋 /√𝒢. This

value is subsequently used in the fit. That is, a parametric bootstrap is employed, but with the
standard deviation downscaled to match the discrepancy between Eq. (6.20) and Eq. (6.17). This
is dubbed parametric jackknife in the following. The same procedure is applied to the masses
𝑎𝑀 lat

𝜋 ± Δ𝑎𝑀 lat
𝜋 .

In a simultaneous fit to several ensembles, the situation is slightly more complicated. This is
due to the fact that the ensembles often differ in the number 𝐺 of underlying bootstrap samples of
gauge configurations. However, this number is hardwired into the jackknife, as the omnipresence
of the factor 𝒢 illustrates. To obtain the same factor on all ensembles, the strategy described in
Ref. [87] is used: on each ensemble the covariance matrix 𝐶 is computed via Eq. (6.16). Then, one
fixes a number 𝐽 ∈ ℕ of desired jackknife samples. Subsequently, on each ensemble 𝐽 samples
{𝑎𝐸⋆lat1,𝑗 , … , 𝑎𝐸⋆lat𝑁 ,𝑗 }, 𝑗 = 1, … , 𝐽 are drawn from a multivariate normal distribution with covariance
matrix 𝐶/𝒥 /𝐺, with𝒥 ≔ (𝐽−1)2/𝐽. That is, a parametric jackknife is applied again. The additional
division by 𝐺 is necessary, for the diagonal entries of 𝐶 correspond (in the language developed
previously in the discussion of the general random variable 𝑋) to Var[𝑋], but here we are interested
in Var[𝑋], see also Eq. (6.17). The fit is then repeated on all 𝐽 samples and the results obtained in
this way need to be rescaled by the appropriate power of 𝒥.

6.4.2 Error of the lattice spacing
As already alluded to in Sec. 6.2, the numerical value of the lattice spacing 𝑎 enters the fit only via
the renormalization scale 𝜇, if the pion decay constant is fitted. If the decay constant has not been
computed on the lattice (as it is the case for the HadSpec data), the lattice spacing also enters in
the translation of the literature value of 𝐹 into lattice units.

Since in lattice-QCD computations everything is computed in powers of 𝑎, the determination
of 𝑎, called scale setting, is a non-trivial task. As a matter of fact, 𝑎 cannot be determined exactly,
but carries an error on its own. This is why we have deliberately designed the fit in a way that
the impact of the lattice spacing is as small as possible. There are several ways to set the scale.
The CLS collaboration employs two different methods [166]. Strategy 1 uses the Wilson flow as
suggested by Lüscher [171], while strategy 2 sets the scale via combinations of decay constants.
The resulting values are incompatible within their errors, already hinting at how error-prone scale
setting is. Strategy 1, the one preferred by the authors of Ref. [166], is based on a dimension two
quantity 𝑡0 evaluated at the symmetrical point 𝑚𝑢 = 𝑚𝑑 = 𝑚𝑠 (with 𝑚𝑠 the mass of the strange
quark). In Ref. [166] the reference value is determined as 𝑇 ref

0 ≔ √8𝑡0 = 0.413(5)(2) fm, where the
first error is statistical and the second systematical. In addition, for each lattice spacing, the value of
𝑡0/𝑎2 is given, denoted in the following as 𝑇 lat

0,𝑘 , 𝑘 = 1, 2, 3. These values are only weakly correlated,

however, the correlations of the resulting values 𝑎𝑘 = 𝑇 ref
0 /√8𝑇

lat
0,𝑘 are significant, because the

reference value is common to all of them. To take this correlation into account, we parametrically
draw samples of the form {𝑇 ref

0,𝑗 , 𝑇
lat
0,1𝑗, 𝑇

lat
0,2𝑗, 𝑇

lat
0,3𝑗} (where 𝑗 indicates the sample), compute on each

sample the three lattice spacings and estimate their covariance in the standard way. In doing so,
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we draw the samples from a normal distribution, adding the statistical and systematical errors in
quadrature. Contrarily, we approximate the covariance matrix of strategy 2 as diagonal, with the
errors given in Ref. [166]. It is worth noting that strategy 1 requires a slight shift in both the
pion masses and the decay constants. However, in the computation of the CLS 𝜋𝜋 energy levels
in Ref. [36] the shifts of the pion masses were not taken into account, and thus throughout our
analysis of CLS data we use non-shifted values. Strategy 2 does not suffer from this problem.

HadSpec determines the two lattice spacings via the mass 𝑀Ω of the Ω baryon. To that end,
𝑎𝑀Ω is computed on each ensemble [82, 172]; dividing by the experimental value [9] yields the
value of the lattice spacing. Again both values are correlated due to the common experimental
value, which we take into account by resampling, although the resulting off-diagonal entries of the
covariance matrix are suppressed by an order of magnitude compared to the diagonal ones, for the
error of the experimentally determined Ω mass is small.

To incorporate the error of the lattice spacings 𝑎𝑘, 𝑘 = 1, … , 𝐾, a corresponding fit parameter
𝑎fit𝑘 is introduced for each lattice spacing. This fit parameter is used instead of the value obtained
from the lattice to translate the renormalization scale into lattice units (and the literature value of
𝐹, if required). Furthermore, the term

𝜒2
𝑎 ≔

𝐾
∑
𝑗,𝑘=1

(𝑎𝑗 − 𝑎fit𝑗 ) (𝐶−1𝑎 )𝑗𝑘 (𝑎𝑘 − 𝑎fit𝑘 ) (6.21)

is added to the 𝜒2, with 𝐶𝑎 the covariance matrix of the lattice spacings on the different ensembles.
That is, the replacement

𝜒2 ↦ 𝜒2|𝒂↦𝒂fit + 𝜒2
𝑎 (6.22)

is performed. Via a parametric boostrap several samples {𝑎𝑘𝑗}𝐾𝑘=1 (with 𝑗 labeling the sample) are
drawn from a multivariate normal distribution with covariance matrix 𝐶𝑎 and the fit is repeated
for each such sample. From the different fit results the errors can be obtained via the standard
estimators.

6.4.3 Error of 𝑭
In the fit to the HadSpec data, 𝐹𝜋/𝐹 is set to the 𝑁f = 2+ 1 FLAG average [47, 173–177], while 𝐹𝜋 is
fixed to its Particle Data Group (PDG) value [9] to obtain 𝐹 = 86.89(58)MeV. To include this error
in the fit, a fit parameter 𝐹fit is introduced and the replacement

𝜒2 ↦ 𝜒2|𝐹↦𝐹fit + (𝐹 − 𝐹fit

Δ𝐹
)
2

(6.23)

is performed.

6.4.4 Truncation error
Lastly, we address the error arising due to the truncation of the chiral expansion at NLO or NNLO.
To this end, we utilize the approach of Ref. [178]. Consider a perturbative expansion of some
quantity 𝑋 in powers of an expansion parameter 𝛼 ≪ 1:

𝑋 = 𝑋0 + 𝑋1 + 𝑋2 + ⋯ =
∞
∑
𝑘=0

𝑋𝑘, 𝑋𝑘 = 𝑂 (𝛼𝑘) . (6.24)
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In practice, the expansion often needs to be truncated. The question arises how to estimate the error
Δ𝑋𝑘 associated with the truncation at order 𝑘without calculating terms of higher order. Noting that
missing terms after a truncation are at least one order in 𝛼 higher, the idea is to use the recursion

Δ𝑋𝑘 = max {𝛼Δ𝑋𝑘−1, 𝛼 |𝑋𝑘 − 𝑋𝑘−1|} , 𝑘 ≥ 0, (6.25)

with Δ𝑋−1 ≔ 0 and 𝑋−1 ≔ 0 for notational convenience. This recursion can be solved to obtain

Δ𝑋𝑘 = max
𝑘
⋃
𝑗=0

{𝛼𝑘−𝑗+1 |𝑋𝑗 − 𝑋𝑗−1|} . (6.26)

That is, we compute all differences of two adjacent terms multiplied by the appropriate power of 𝛼
and maximize, with the absolute values inserted to obtain positive quantities.

In the scenario at hand, the ChPT expansion of the 𝑃 wave has two expansion parameters:
𝛼1 ≔ 𝑀2

𝜋/𝑀2
𝜌 and 𝛼2 ≔ 𝑠/𝑀2

𝜌 . Here the breakdown scale is set to 𝑀𝜌, for the 𝜌 is the lightest
resonance in this partial wave and plain ChPT does not incorporate resonances. While the IAM
improves the 𝑠 dependence via unitarization and allows for a description of the 𝜌, it does nothing to
improve the𝑀𝜋 dependence of the amplitude. Hence, we take only 𝛼1 into account. Noting that the
NLO IAM corresponds to the lowest order in our formalism and the NNLO IAM to the subsequent
order, Eq. (6.26) yields

Δ𝑋NLO = 𝛼1 |𝑋NLO| ,
Δ𝑋NNLO = max {𝛼21𝑋NLO, 𝛼1 |𝑋NLO − 𝑋NNLO|} ,

(6.27)

with 𝑋(N)NLO the quantity as obtained from the (N)NLO IAM. This is an educated guess of the
truncation error; in particular, due to the non-perturbative nature of the IAM an observable does
not really decompose like 𝑋 = 𝑋NLO + 𝑋NNLO + …

6.5 Results

6.5.1 CLS
First, we discuss the fits to the CLS data. We fit all ensembles listed in Table 5.1 except for N401
simultaneously, once using the NLO IAM, once the NNLO one. A simultaneous fit to ensembles that
differ in pion mass has the huge benefit that the data constrain not only the energy dependence,
but also the dependence on the pion mass. At NLO only two LECs show up, one in the 𝑃 wave and
one in the decay constant, which can be fixed even if only data at a single pion mass are available.
However, to fix the LECs at NNLO it is crucial to control the pion mass dependence, because some
LECs are mainly sensitive to the mass, see, e.g., 𝑟𝑎 in Eq. (4.8). For the time being we rely on strategy
1 to set the scale, see Sec. 6.4.2.

In the NNLO amplitude the LEC 𝑙𝑟3 shows up, which relates the pion mass to its value 𝑀 in LO
ChPT. Since no information about this value enters our analysis, NNLO fits with 𝑙𝑟3 as a completely
free parameter are not stable. Accordingly, we constrain 𝑙𝑟3 to be close to its literature value 𝑙𝑟 ,lit3 =
0.8(3.8) × 10−3 [162] by adding a term [(𝑙𝑟3 − 𝑙𝑟 ,lit3 )/Δ𝑙𝑟 ,lit3 ]2 to the 𝜒2, which indeed renders the fit
stable. The resulting LECs are shown in Tables 6.1 and 6.2, while a comparison of the fit with the
data of a single ensemble is depicted in Fig. 6.1. Moreover, in Fig. 6.2 the covariance matrix of
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fit Ref. [162] FLAG [47]

(𝑙𝑟2 − 2𝑙𝑟1) × 103 12.62(25)(0) 9.9(1.3) 19(17)
𝑙𝑟4 × 103 −2.6(1.1)(0.2) 6.2(1.3) 3.8(2.8)

Table 6.1: The LECs obtained from a global fit of the NLO IAM and the pion decay constant to the
CLS ensembles. While the first error arises due to the statistical error of the lattice data as discussed
in Sec. 6.4.1, the second corresponds to the error of the lattice spacing, see Sec. 6.4.2. These values
are to be compared with the ones extracted from ChPT analyses as given in the second column and
from 𝑁f = 2 + 1 lattice-QCD computations [47, 173–177] given in the third column.

fit Ref. [162] Refs. [65, 153]

𝑙𝑟1 × 103 −6.1(1.8)(0.1) −4.03(63)
𝑙𝑟2 × 103 2.58(90)(7) 1.87(21)
𝑙𝑟3 × 103 0.776(65)(4) 0.8(3.8)
𝑙𝑟4 × 103 −33(13)(0) 6.2(1.3)
𝑟𝑎 × 106 28(12)(1) 13
𝑟𝑏 × 106 −4.8(2.6)(0.2) −9.0
𝑟𝑐 × 106 2.1(1.3)(0.1) 1.1
𝑟 𝑟𝐹 × 10

3 2.7(1.2)(0) 0

Table 6.2: Same as Table 6.1, but with the NNLO IAM instead of the NLO one. Since the NNLO
LECs are notoriously difficult to determine [162], in the absence of precise literature values we fall
back to resonance saturation estimates [65, 153] that are shown in the last column. Note that these
estimates are uncertain.
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(a) The 𝜋𝜋 energy levels. The axes labels are as in
Fig. 5.1. For the data, central values are indicated in
red and error bands in orange.
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encode |𝔓|2 and the markers the irrep.

Figure 6.1: The result of the simultaneous fit of the NNLO IAM to the different CLS ensembles
compared to the data of the ensemble of lowest pion mass, D101.

the LECs obtained in the NNLO fit is visually presented. Clearly, several LECs are heavily (anti-)
correlated, e.g., 𝑙𝑟1 and 𝑟𝑐.

Since the unitarization in the construction of the IAM amounts effectively to a resummation of
iterated 𝜋𝜋 scattering, the values of the LECs when used with the IAM are expected to differ from
their values in plain ChPT, for the latter does not incorporate this rescattering [58, 154, 179, 180].
Hence, the small deviations of the values obtained in the fits from the literature values come at no
surprise, with one exception: there is a huge discrepancy in 𝑙𝑟4, which amounts to 5.1𝜎 at NLO and
3𝜎 at NNLO. On the other hand, the NNLO LECs agree qualitatively rather well with the rough
estimates via resonance saturation.

To judge the quality of the fits, in Table 6.3 we do not only display the 𝜒2/dof but also the
Bayesian information criterion (BIC) that is defined as

BIC ≔ 𝜒2 + |𝔽| ln (𝑁) , (6.28)

with 𝑁 the total number of data points fitted and |𝔽| the number of fit parameters [181]. Neither
at NLO nor NNLO the 𝜒2/dof is fully satisfactory. Nevertheless, it decreases significantly when
increasing the order, and thus clearly favors the NNLO fit. Moreover, despite the factor |𝔽| in
Eq. (6.28) that punishes the introduction of additional fit parameters, the BIC decreases by 22 when
going from NLO to NNLO, and therefore providing strong evidence in favor of the NNLO fit [181].

As described in Sec. 4.2, the IAM exhibits the 𝜌 pole on the second Riemann sheet, whose
position and residue can be determined numerically via Eq. (2.34) and Eq. (2.36) given the fit values
of the LECs. The mass 𝑀𝜌, width Γ𝜌, and coupling 𝑔𝜌𝜋𝜋 of the 𝜌 resonance can subsequently be
extracted using Eq. (2.30) and Eq. (2.33). Here the subscript of the coupling 𝑔𝜌𝜋𝜋 indicates that this
is the coupling of the 𝜌 to two pions. The 𝜌 characteristics computed in this way are shown in
Table 6.3 at the physical point, which is defined by the PDG value of the pion mass here and the
following. For comparison they are accompanied by the results of a thorough dispersive analysis of
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Figure 6.2: The covariance matrix of the LECs obtained in a global fit of the NNLO IAM and pion
decay constant to the CLS ensembles. Each blue point is the value on one jackknife sample, in red
the ellipses correspoinding to the 1𝜎 confidence intervals are shown. To obtain the statistical errors
given in Table 6.2, the scaling factor discussed in Sec. 6.4.1 needs to be taken into account.
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NLO NNLO Refs. [9, 47, 173–177, 182]

𝜒2/dof 216/(122 − 9) = 1.91 165/(123 − 15) = 1.53
BIC 259 237
𝑀𝜌/MeV 761.4(5.1)(0.3)(24.7) 749(12)(1)(1) 763.7+1.7−1.5
Γ𝜌/MeV 150.9(4.4)(0.1)(4.9) 129(12)(1)(1) 146.4+2.0−2.2
Re(𝑔𝜌𝜋𝜋) 5.994(54)(0)(194) 5.71(23)(2)(1) 5.98+0.04−0.07
−Im(𝑔𝜌𝜋𝜋) 0.731(21)(0)(24) 0.46(14)(2)(1) 0.56+0.07−0.10
𝐹/MeV 88.27(0.23)(0.04)(2.86) 93.5(2.3)(0.1)(0.2) 86.89(58)

Table 6.3: A comparison of the NLO and NNLO fits to the CLS data. In addition to the quality
of the fit, the 𝜌 characteristics at the physical point as well as the obtained value of 𝐹 are shown.
The errors are as in Table 6.1, additionally, the third error is the one arising from the truncation
as discussed in Sec. 6.4.4. For comparison, the 𝜌 characteristics from a dispersive analysis [182] as
well as the value of 𝐹 as computed in Sec. 6.4.3 are listed in the last column.

experimental data [182] that makes use of Roy-like equations. The 𝜌 properties are compatible with
the literature values within their statistical error at both orders, the most significant discrepancies
being the 2.2𝜎 deviation of Im(𝑔𝜌𝜋𝜋) at NLO and the 1.4𝜎 one of the width at NNLO.

In addition, by inverting Eq. (4.11) we can compute 𝐹 in physical units given the obtained values
of the LECs as well as the PDG values of 𝑀𝜋 and 𝐹𝜋 [9]. The results and the literature value are
shown in Table 6.3, too. This time the NLO result is compatible with the literature value only if the
truncation error is taken into account. Contrarily, there is a 2.8𝜎 discrepancy at NNLO.

In Fig. 6.3 we show the phase of both fits at the physical point in comparison with the one
obtained in another dispersive analysis of experimental data [183]. Both results overlap within
their error bands with the reference phase in almost the entire depicted energy range, with a very
tiny deviation of the NNLO IAM towards the end of the resonance region and a modest deviation
of the NLO result towards high energy values, which are anyway beyond the region of the 𝜌.

Finally, we can study the pion-mass dependence of the main observables at hand, namely the
𝜌 properties as well as the pion decay constant, as depicted in Fig. 6.4. First, note that the error
bands get significantly narrower at NNLO as compared to NLO, for the truncation error decreases,
an effect that gets particularly enhanced at large pion masses due to the increase of the expansion
parameter 𝛼1 in Eq. (6.27) with growing pionmass. Second, the 𝜌 gets only slightly heavierwhen the
pion mass is increased, while the coupling stays almost constant. This directly explains the rapid
decrease of the width with growing pion mass, for the decrease in available phase space is not at all
compensated for by an increase of the coupling strength. These findings confirm the behavior that
was conjectured in Ref. [89] based on the NLO IAM and subsequently observed in Ref. [94]. Third,
there is a mild decrease of 𝑀𝜌 at large pion masses at NNLO. This contradicts expectations from
phenomenology: the Kawarabayashi–Suzuki–Fayyazuddin–Riazuddin (KSFR) relation states
that [184, 185] (see also Ref. [186] for the form given here)

𝑀2
𝜌 = 2𝑔2𝜌𝜋𝜋𝐹 2𝜋 , (6.29)

which is clearly violated by the observed pion-mass dependence of the NNLO amplitude at high
energies. Moreover, the 𝜌 can be described rather well as a quark-antiquark state, which also points
towards an increase in 𝑀𝜌 with increasing quark masses [187].
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Figure 6.3: The phase obtained in global fits to the CLS ensembles extrapolated to the physical
point. Both the result of the NLO and NNLO fit are shown including their error bars, whose color
encoding is described in detail in Fig. 6.4. In addition, the result of a dispersive analysis [183] is
depicted in black.

Altogether, there is a discrepancy in 𝑙𝑟4 both at NLO and NNLO, a tension in Im(𝑔) at NLO and
in Γ𝜌 at NNLO, as well as deviations in both 𝐹 and𝑀𝜌 at NNLO, the latter being visible at high pion
masses. Moreover, the fit quality in terms of 𝜒2/dof is not satisfactory. To check if these issues
might be related to the scale setting, we re-perform both the NLO and NNLO fit, but this time using
strategy 2 to set the scale, see Sec. 6.4.2. At NLO we obtain 𝜒2/dof = 213/(122 − 9) = 1.88 and
at NNLO 𝜒2/dof = 165/(123 − 15) = 1.53; comparison with Table 6.3 shows that there is a tiny
improvement at NLO and none at NNLO. The resulting LECs are compared with the previously
obtained ones in Table 6.4 and Table 6.5. Clearly, the value of 𝑙𝑟4 is still off, although the distance to
the literature value decreases.

One might wonder if it is possible to enforce the literature value of 𝑙𝑟4 by adding a constraint
[(𝑙𝑟4 × 103 − 6.2)/1.3]2 to the 𝜒2 of strategy 2. However, this worsens the 𝜒2 at both orders, and,
moreover, the improvement in 𝑙𝑟4 (0.4×10−3 at NLO and 5.4×10−3 at NNLO) is compensated for by a
deterioriation of 𝑙𝑟2, which equals−0.21×10−3 at NNLO, suddenly being in conflict with its literature
value, a change that is in agreement with the correlation of −98% of both LECs in the strategy-1
fit, see Fig. 6.2. A similar trade-off can be observed at NNLOwith respect to the observables. While
the value of 𝐹 is shifted from 90.8MeV to 86.5MeV closer to its literature value, the 𝜌 pole at the
physical point moves from (755−64𝑖)2 MeV2 to (807−77𝑖)2 MeV2, the mass of the latter being way
too high. Hence, the inconsistency between scale setting via strategy 1 and the energy levels due
to the omission of the pion mass shifts—see Sec. 6.4.2—alone does not explain the issues plaguing
the strategy 1 fit results.

The observed trade-off between 𝐹 and the 𝜌 pole hints at a tension between the data on the
pion decay constant and the 𝜋𝜋 energy levels. To investigate this further, we use Eq. (4.11) in its
inverted form—that is, 𝐹 as a function of 𝐹𝜋 and 𝑀𝜋—to fit the decay constant as a function of the
pion mass. At NLO there are two fit parameters, namely 𝐹 and 𝑙𝑟4, while there are six at NNLO. This
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Figure 6.4: The pion-mass dependence of the pion decay constant as well as the properties of
the 𝜌 resonance as extracted from global fits to the CLS ensembles, both at NLO and NNLO. The
physical point is indicated by dashed vertical lines. Since—in an attempt to diminish the effect of
the scale setting—the pion decay constant is plotted in units of 𝐹 and the value of this quantity at
the physical point differs at NLO and NNLO, there are two such lines in the corresponding plot. In
each plot, the error band of highest color saturation corresponds to the combined statistical error of
the data and the one of the lattice spacing, the slightly less saturated one represents the truncation
error, and the least saturated one the total error. For comparison the black ranges denote reference
values at the physical point, namely the 𝜌 properties taken from Ref. [182] and the pion decay
constant as in Sec. 6.4.3.

strategy 2 strategy 1 Ref. [162] FLAG [47]

(𝑙𝑟2 − 2𝑙𝑟1) × 103 12.64(25)(1) 12.62(25)(0) 9.9(1.3) 19(17)
𝑙𝑟4 × 103 −2.0(1.1)(0.2) −2.6(1.1)(0.2) 6.2(1.3) 3.8(2.8)

Table 6.4: The LECs obtained in a simultaneous fit to the CLS ensembles using the NLO IAM and
strategy 2 to set the scale. These are to be compared with the ones of the strategy-1 fit. See Table 6.1
for further explanations concerning the errors and the literature values.
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strategy 2 strategy 1 Ref. [162] Refs. [65, 153]

𝑙𝑟1 × 103 −2.5 −6.1(1.8)(0.1) −4.03(63)
𝑙𝑟2 × 103 1.48 2.58(90)(7) 1.87(21)
𝑙𝑟3 × 103 0.822 0.776(65)(4) 0.8(3.8)
𝑙𝑟4 × 103 −16 −33(13)(0) 6.2(1.3)
𝑟𝑎 × 106 17 28(12)(1) 13
𝑟𝑏 × 106 −1.7 −4.8(2.6)(0.2) −9.0
𝑟𝑐 × 106 0.24 2.1(1.3)(0.1) 1.1
𝑟 𝑟𝐹 × 10

3 1.4 2.7(1.2)(0) 0

Table 6.5: Same as Table 6.4 but for NNLO fits. See also Table 6.2.

strategy 2 strategy 1 strategy 1 (shifted) reference

𝐹/MeV 87.72(87) 82.51(84) 82.48(93) 86.89(58)
𝑙𝑟4 × 103 0.8(1.0) 1.3(1.0) 1.3(1.1) 3.8(2.8), 6.2(1.3)

Table 6.6: The results of fits to the CLS pion decay constants as a function of the pion mass. The
obtained values of the LECs are displayed for the three different strategies to set the scale. Their
errors incorporate the statistical error of both 𝑎𝐹 lat

𝜋 and 𝑎𝑀 lat
𝜋 . The reference value of 𝐹 is as in

Sec. 6.4.3, the first one of 𝑙𝑟4 is taken from the lattice [47, 173–177], and the second one of 𝑙𝑟4 from
phenomenology [162].

makes NNLO fits impossible, for there are only four data points. Moreover, the values are obtained
at three different lattice spacings, and thus we are forced to set the scale before we are able to fix
the two parameters at NLO via a fit. We do this three times: once via strategy 2 and twice via
strategy 1, both with and without the shifts of the pion masses and decay constants. The results
are displayed in Table 6.6 and Fig. 6.5. Clearly, in case of strategy 1 it does not make a significant
difference if the data are shifted or not. Independently of the strategy, the obtained value of 𝑙𝑟4 is in
tension with the value from phenomenology, while it survives the confrontation with the lattice
reference value, both because the central value of the latter is smaller than the one of Ref. [162] and
because its error is larger. However, only strategy 2 yields a value of 𝐹 that is compatible with the
one from literature. Note that this analysis does not incorporate the error of the lattice spacings.
The tension is likely to decrease somewhat if this error was included, for this would increase the
error of the results.

Based on these observations we draw the following conclusions: on its own, the CLS pion
decay constants seem to be compatible with NLO ChPT, for at least strategy 2 yields compatible
outcomes. Nevertheless, there is some tension. Moreover, the differences between strategy 1 and
strategy 2 hint at a non-negligible impact of the scale setting. However, as soon as the 𝜋𝜋 energy
levels are included, it becomes impossible with our model to simultaneously obtain results of 𝐹 and
the 𝜌 pole at the physical point that agree with literature values. More specifically, a satisfactory
𝜌 pole at NNLO enforces values of 𝐹 that are too high. To achieve these large values of 𝐹 the fit
pushes 𝑙𝑟4 far away from its literature values. The problem seems to be, at least partly, with the 𝜋𝜋
energy levels, for on its own the pion decay constants allow for values of 𝑙𝑟4 that are significantly
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(a) Strategy 1. The green curve shows the result of a
fit to the non-shifted data, while the outcome of a fit
to the shifted data is shown as a gray overlay. Both
results are almost indistinguishable.
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(b) Strategy 2. As in the strategy-1 fit, the error band
is associated with the error of 𝑎𝐹 lat

𝜋 and 𝑎𝑀 lat
𝜋 .

Figure 6.5: The CLS pion decay constants compared to fit results. Again, the physical point is
indicated by vertical gray lines; furthermore, the PDG value of 𝐹𝜋 [9] is shown in black.

closer to the literature. This all points towards the influence of artifacts that are associated with
the lattice computation, e.g., discretization artifacts.

Hence, we include two additional parameters 𝑔 and 𝑔𝐹 in the strategy-1 IAM fit to model dis-
cretization artifacts in the crude way described in Sec. 6.3. At NLO, this improves the fit quality
considerably, reducing the 𝜒2 to 𝜒2/dof = 183/(122 − 11) = 1.65, to be compared with Table 6.3.
Even in the absence of lattice artifacts this would have come at no surprise, for the NLO fit is rather
rigid, with initially only two LECs as fit parameters. Our modeling of the discretization artifacts
effectively doubles the number of fit parameters and renders the fit much more flexible. Neverthe-
less, it is reassuring to observe that 𝑙𝑟4 = 2.4 × 10−4 gets pushed closer to its literature value, while
𝑔𝐹 = −2.0 is sizable, and 𝐹 = 87.7MeV is even closer to its literature value than before. However,
𝑔 = 0.69 comes out small and the 𝜌 pole deteriorates, reading (729−66𝑖)2 MeV2 at the physical point,
hinting at the fact that our modeling of the lattice artifacts—especially in the 𝜋𝜋 energy levels—is
too crude to improve the situation. At NNLO, the 𝜒2 does not change significantly, so that the
additional fit parameters worsen the 𝜒2/dof to become 𝜒2/dof = 165/(123 − 17) = 1.56. That is,
the NNLO expressions do have sufficiently many free fit parameters to mimic the lattice artifacts,
such that the unrefined parametrization of discretization artifacts does not yield an improvement.
A more detailed understanding of the lattice artifacts would be necessary to completely settle this
issue.

Coming back to the discussion in Sec. 4.3, we note that it is very likely that the discrepancies
observed in the CLS fits are too large to arise solely from the use of an 𝑆𝑈 (2) formalism that ignores
the kaon. For example, the shift observed in Table 6.6 in 𝐹 when switching from strategy 2 to 1
is at the 6 % level, and thus larger than the kaon-mass effects described in Sec. 4.3. Similarly, the
discrepancy in 𝐹 at NNLO shown in Table 6.3 is too large to plausibly hint merely at kaon-mass
effects.
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fit Ref. [162] FLAG

(𝑙𝑟2 − 2𝑙𝑟1) × 103 12.908(59)(68)(99) 9.9(1.3) 19(17)

Table 6.7: The single LEC as fixed by a fit of the NLO IAM to the three ensembles by HadSpec.
The first error is associated with the statistical error of the data and the second one with the error
of the lattice spacing as in Table 6.1. On top of this the third error encompasses the error of the
literature value of 𝐹. The reference values are as in Table 6.1, too.

fit Ref. [162] Refs. [65, 153]

𝑙𝑟1 × 103 −4.17(85)(24)(32) −4.03(63)
𝑙𝑟2 × 103 1.44(25)(13)(18) 1.87(21)
𝑟𝑎 × 106 11.5(2.0)(0.4)(0.6) 13
𝑟𝑏 × 106 −4.39(84)(25)(25) −9.0
𝑟𝑐 × 106 0.97(0.43)(0.12)(0.16) 1.1

Table 6.8: The LECs determined by fitting the NNLO IAM to the HadSpec ensembles. For an
explanation of the errors see Table 6.7 and for the reference values consult Table 6.2.

6.5.2 HadSpec
Second, we discuss the fits to the data by HadSpec. While the CLS data cover five different pion
masses, the older data by HadSpec are obtained at two different masses, thereby reducing the
control of the pion-mass dependence, see Table 5.1. To obtain stable fits despite these limitations,
the LEC 𝑙𝑟3 has to be fixed to its literature value, i.e., 𝑙𝑟3 = 8.2×10−4 [162]. In addition, the settings of
the differential-evolution algorithm need to be more lavish as described in Sec. 6.2. Since the pion
decay constant on the ensemble of lower pion mass is not available, we do not fit the pion decay
constant at all, but treat 𝐹 as outlined in Sec. 6.4.3. Note that if instead the ensemble of lower pion
mass were to be excluded from the fit (as we did with the CLS ensemble N401), data at merely one
pion mass would be left, thereby making it impossible to control the pion-mass dependence that is
crucial to obtain stable fits at NNLO. Furthermore, since the literature value of 𝐹 is given in MeV, it
needs to be translated to lattice units via multiplication by the lattice spacing 𝑎. Thus, the impact of
the error of the spacing 𝑎 gets enhanced as compared to the CLS fits. The resulting LECs are listed
in Table 6.7 and Table 6.8, the fit quality and 𝜌 properties at the physical point in Table 6.9, and the
phase at the physical point as well as the pion-mass dependence of the 𝜌 characteristics are shown
in Fig. 6.6. Clearly, for several quantities the largest source of uncertainty arises from the lattice
spacing 𝑎 in accordance with its more dominant role. While the LECs are fairly compatible with
the literature, the 𝜌 pole at the physical point at NNLO deviates considerably from its literature
value. This goes hand in hand with the observation that the phase 𝛿 at the physical point is better
at NLO than at NNLO. However, there is no decrease of 𝑀𝜌 at high pion masses, contrarily to the
results of the CLS fit.

It is worth comparing the results at NLO to the ones of Ref. [59]. There the authors fitted
the NLO IAM to the lightest ensemble only, obtaining 𝜒2/dof = 1.26 and a 𝜌 pole at the physical
point corresponding to 𝑀𝜌 = 755(2)(1)+20−2 MeV and Γ𝜌 = 129(3)(1)+7−1 MeV. However, this analysis
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Figure 6.6: Same as Figs. 6.3 and 6.4 but for global fits to the ensembles by HadSpec. The error band
corresponding to the statistical error of the data includes the impact of the error of the literature
value of 𝐹.

NLO NNLO

𝜒2/dof 124/(52 − 4) = 2.58 75/(52 − 8) = 1.70
BIC 140 106
𝑀𝜌/MeV 752.1(2.0)(2.4)(1.2)(24.4) 737.8(3.8)(5.4)(0.6)(0.8)
Γ𝜌/MeV 145.2(1.2)(1.4)(0.7)(4.7) 128.5(0.9)(1.9)(0.1)(0.5)
Re(𝑔𝜌𝜋𝜋) 5.937(12)(14)(20)(192) 5.765(51)(17)(0)(6)
−Im(𝑔𝜌𝜋𝜋) 0.7089(44)(51)(74)(230) 0.426(12)(10)(7)(9)

Table 6.9: The quality of the fit as well as the 𝜌 properties at the physical point for both the NLO
and NNLO fit to the ensembles by HadSpec. The errors arise, in order of appearance, due to the
statistical error of the data, the error of the lattice spacing, the error of the literature value of 𝐹, and
the truncation error.
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is flawed for the IAM was expressed in terms of 𝐹𝜋 instead of 𝐹. To take into account the pion-
mass dependence of the former, the LEC 𝑙𝑟4 appearing in Eq. (4.11) at NLO was kept as a free fit
parameter, resulting in 𝑙𝑟4 = −28(6)(3)+1−11 × 10−3. That is, the parameter 𝑙𝑟4 that is supposed to
describe the physics associated with the decay constant was adjusted to parametrize the 𝜋𝜋 𝑃wave.
This amounts at best to the inconsistent incorporation of a spurious higher-order effect into the
IAM; note that 𝑙𝑟4 does show up in the 𝑃 wave neither at NLO nor NNLO, see Sec. 4.1. In this
way the number of fit parameters was doubled, and thus the fit became sufficiently flexible to
describe the data of only a single ensemble rather well and yielded a comparatively low value of
𝜒2/dof. Unsurprisingly, the resulting values of both 𝑙𝑟4 and Γ𝜌 are in conflict with literature. Perhaps
coincidentally the shift in 𝑙𝑟4 shows the same tendency as the one observed in our fits to the CLS
data.
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Part III

Pion-mass dependence of 𝜸(∗)𝝅 → 𝝅𝝅

This part is an expanded version of Ref. [188].
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Chapter 7

Continuum scattering amplitude

Now that we are equipped with a potent description of the 𝜋𝜋 → 𝜋𝜋 𝑃 wave, namely the IAM,
we are in a position to construct a continuum model of the 𝛾 (∗)𝜋 → 𝜋𝜋 amplitude, again focusing
on the 𝑃 wave. First, in Sec. 7.1 we define the amplitude in a precise manner, relate different
representations of the amplitude, and introduce several observables. Second, in Sec. 7.2 we discuss
the KT equation for this process. Lastly, in Sec. 7.3 we describe how to control the pion-mass
dependence and extract the anomaly.

7.1 𝜸 (∗)𝝅 → 𝝅𝝅 scattering amplitude

Before defining the 𝛾 (∗)𝜋 → 𝜋𝜋 scattering amplitude, we must be precise about the involved pion
states. Single pion states |𝜋 , 𝒌⟩ are characterized by their momentum 𝒌 and normalized in the
standard manner [189], i.e.,

⟨𝜋, 𝒌 | 𝜋 , 𝒌′⟩ = 2𝜔𝑘 (2𝜋)
3 𝛿 (3) (𝒌 − 𝒌′) . (7.1)

Here the notation is as in Sec. 3.2.1. They are associated with an infinite-dimensional unitary
representation 𝑈 of the Poincaré group, which assigns to each element (Λ, 𝑎) of the latter the
unitary operator 𝑈 (Λ, 𝑎), where 𝑎 ∈ ℝ4 represents a translation and Λ is a Lorentz transformation.
This operator acts on the pion states as [11]

𝑈 (Λ, 𝑎) |𝜋 , 𝒌⟩ = 𝑒−𝑖𝑎𝑘 |𝜋 , 𝜦𝒌⟩ . (7.2)

Here 𝜦𝒌 = (Λ𝑘)𝑗𝒆𝑗, with 𝒆𝑗, 𝑗 = 1, 2, 3, the customary basis vectors of ℝ3. For brevity, we write
𝑈 (Λ) ≔ 𝑈 (Λ, 0). Consider now a scenario similar to the one outlined in Sec. 3.2.1, namely two
pions with individual four-momenta 𝑘, 𝑘′, and total four-momentum 𝑃 = 𝑘+𝑘′. They are described
by the product state |𝜋𝜋, 𝒌, 𝒌′⟩ ≔ |𝜋, 𝒌⟩⊗ |𝜋, 𝒌′⟩, which is related to the state |𝜋 , 𝒌⋆⟩⊗ |𝜋, 𝒌′⋆⟩ in the
CM frame by a Lorentz transformation Λ𝑅Λ𝐵, where Λ𝐵 is a Lorentz boost in the 𝑥3 direction
and Λ𝑅 is a rotation, such that 𝑃 = Λ𝑅Λ𝐵𝑃⋆. That is,

|𝜋 , 𝒌⟩ ⊗ |𝜋, 𝒌′⟩ = 𝑈 (Λ𝑅Λ𝐵) |𝜋 , 𝒌⋆⟩ ⊗ 𝑈 (Λ𝑅Λ𝐵) |𝜋 , 𝒌′⋆⟩
= |𝜋, 𝜦𝑹𝜦𝑩𝒌⋆⟩ ⊗ |𝜋, 𝜦𝑹𝜦𝑩𝒌′⋆⟩ ,

(7.3)

with 𝑘′⋆ = (𝜔⋆
𝑘 , −𝒌

⋆). Since bothΛ𝑅 andΛ𝐵 are determined by 𝑃, we can choose 𝑃 andΩ⋆
𝑘 instead of

labeling the two pion states by the six quantum numbers 𝒌 and 𝒌′, with Ω⋆
𝑘 as defined in Sec. 3.2.2.
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That is, we write |𝜋𝜋, 𝑃 , Ω⋆
𝑘 ⟩ ≔ |𝜋, 𝒌⟩⊗ |𝜋, 𝒌′⟩. In full analogy to Eq. (3.11), we can decompose these

states into a partial-wave basis1

|𝜋𝜋, 𝑃 , Ω⋆
𝑘 ⟩ =

∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

√4𝜋 𝑌 ∗𝑙𝑚 (Ω⋆
𝑘) |𝜋𝜋, 𝑃, 𝑙, 𝑚⟩ , (7.4)

with the inverse given as

|𝜋𝜋, 𝑃 , 𝑙, 𝑚⟩ = 1
√4𝜋 ∫ dΩ⋆

𝑘 𝑌𝑙𝑚 (Ω⋆
𝑘) |𝜋𝜋, 𝑃, Ω

⋆
𝑘 ⟩ . (7.5)

Now we can study the scattering amplitude ℳ of the process 𝛾 (∗)(𝜆𝛾, 𝑞)𝜋+(𝑝) → 𝜋+(𝑘)𝜋0(𝑘′),
where 𝜆𝛾 denotes the helicity of the up to now on-shell photon. With the 𝑇 matrix as introduced
in Ch. 2, we have

⟨𝜋𝜋, 𝒌, 𝒌′ |𝑖𝑇| 𝛾𝜋, 𝜆𝛾, 𝒒, 𝒑⟩ = 𝑖 (2𝜋)4 𝛿 (4) (𝑞 + 𝑝 − 𝑘 + 𝑘′)ℳ (𝑠, 𝑡) , (7.6)

with 𝑠 = (𝑘 + 𝑘′)2 and 𝑡 = (𝑝 − 𝑘)2. This amplitude can be inferred from the matrix element

⟨𝜋𝜋, 𝒌, 𝒌′ |𝐽 𝜇 (0)| 𝜋 , 𝒑⟩ (7.7)

of the electromagnetic current

𝐽 𝜇 ≔ 2
3
𝑒 𝑢𝛾𝜇𝑢 − 1

3
𝑒 𝑑𝛾𝜇𝑑 (7.8)

in position space via [117]

ℳ(𝑠, 𝑡, 𝑞2) = 𝜖𝜇 (𝜆𝛾, 𝑞) ⟨𝜋𝜋, 𝒌, 𝒌′ |𝐽 𝜇 (0)| 𝜋 , 𝒑⟩ . (7.9)

Here 𝑒 is the (positive) elementary charge, 𝑢 and 𝑑 are the fields associated with the up and down
quark, respectively, and 𝜖𝜇 is the polarization vector of the photon. Note that here we allow for
off-shell photons, i.e., the virtuality 𝑞2 can take on arbitrary real values, and we have ℳ(𝑠, 𝑡) =
ℳ(𝑠, 𝑡 , 𝑞2 = 0). The symmetries of the process allow for decomposing Eq. (7.7) as [51, 66]

⟨𝜋𝜋, 𝒌, 𝒌′ |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ = 𝑖𝜖𝜇𝜈𝛼𝛽𝑝𝜈𝑘𝛼𝑘′𝛽ℱ(𝑠, 𝑡 , 𝑞2) , (7.10)

with ℱ being a complex-valued function, which in turn can be expressed via partial waves 𝑓𝐽 of
total angular momentum 𝐽 via [51, 132] (see also Ref. [190, App. B])

ℱ(𝑠, 𝑡 , 𝑞2) =
∞
∑
𝑗=0

𝑓2𝑗+1 (𝑠, 𝑞2) 𝑃 ′2𝑗+1 (𝑧⋆) . (7.11)

An individual partial wave can be projected out via the relation

1
2

1

∫
−1

𝑃 ′𝑛 (𝑥) [𝑃𝑚−1 (𝑥) − 𝑃𝑚+1 (𝑥)] d𝑥 = 𝛿𝑛𝑚. (7.12)

1This decomposition is chosen instead of Eq. (3.8) to be in accordance with the standard choice of polarization
vectors, see the derivation of Eq. (7.21).
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The non-vanishing spin of the photon is the reason for the appearance of derivatives of Legendre
polynomials instead of ordinary ones as in Eq. (2.3).

Our goal is now to derive an alternative representation of the matrix element that is used in
lattice-QCD computations. To that end, we build upon the discussion in Ref. [191, App. D], slightly
modifying it. Decomposing the 𝜋𝜋 state in Eq. (7.7) via Eq. (7.4) yields

⟨𝜋𝜋, 𝒌, 𝒌′ |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ =
∞
∑
𝑙=0

𝑙
∑
𝑚=−𝑙

√4𝜋 𝑌𝑙𝑚 (Ω⋆
𝑘) ⟨𝜋𝜋, 𝑃, 𝑙, 𝑚 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ . (7.13)

According to Eq. (7.5) the 𝑃-wave component reads

⟨𝜋𝜋, 𝑃, 1, 𝑚 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩

= 1
√4𝜋 ∫ dΩ⋆

𝑘𝑌
∗
1𝑚 (Ω⋆

𝑘) ⟨𝜋𝜋, 𝒌, 𝒌
′ |𝐽𝜇 (0)| 𝜋 , 𝒑⟩

= 1
√4𝜋 ∫ dΩ⋆

𝑘𝑌
∗
1𝑚 (Ω⋆

𝑘) ⟨𝜋𝜋, 𝜦𝑹𝜦𝑩𝒌⋆, 𝑷 − 𝜦𝑹𝜦𝑩𝒌⋆ |𝐽 𝜇 (0)| 𝜋 , 𝒑⟩ ,

(7.14)

where we made use of Eq. (7.3) and 𝑘′ = 𝑃 −𝑘. Inserting Eq. (7.10) and exploiting the antisymmetry
of the Levi-Civita symbol results in

⟨𝜋𝜋, 𝑃, 1, 𝑚 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩

= 𝑖
√4𝜋 ∫ dΩ⋆

𝑘𝑌
∗
1𝑚 (Ω⋆

𝑘) 𝜖𝜇𝜈𝛼𝛽𝑝
𝜈 (Λ𝑅Λ𝐵𝑘⋆)

𝛼 𝑃𝛽ℱ(𝑠, 𝑡 , 𝑞2)

= 𝑖
√4𝜋

∞
∑
𝑗=0

𝑓2𝑗+1 (𝑠, 𝑞2) 𝜖𝜇𝜈𝛼𝛽𝑝𝜈 (Λ𝑅Λ𝐵)
𝛼
𝜌 𝑃𝛽 ∫ dΩ⋆

𝑘𝑌
∗
1𝑚 (Ω⋆

𝑘) 𝑘
⋆𝜌𝑃 ′2𝑗+1 (𝑧⋆) ,

(7.15)

where we made use of the fact that Λ𝑅 and Λ𝐵 are independent of the direction of 𝒌⋆.2
To make further progress, we need to compute the integral

Ξ𝜌
𝑚𝑗 ≔ ∫ dΩ⋆

𝑘 𝑌
∗
1𝑚 (Ω⋆

𝑘) 𝑘
⋆𝜌𝑃 ′𝑗 (𝑧⋆) . (7.16)

Since the photon is allowed to be virtual, i.e., off-shell, all three polarizations 𝜆𝛾 ∈ {±1, 0} are
allowed. However, the case 𝜆𝛾 = 0 is of no relevance due to the vanishing phase space [190,
App. B]. Aligning the quantization axis of the angular momentum of the 𝜋𝜋 system with the axis
associated with the helicity of the photon (without loss of generality, we pick the 𝑥3 axis), we can
thus focus on 𝑚 = ±1. From

𝑌1,±1 (Ω⋆
𝑘) = ∓1

2√
3
2𝜋

𝑒±𝑖𝜙
⋆
sin 𝜃⋆ (7.17)

we can directly deduce that

Ξ0
±1,𝑗 = ∫ dΩ⋆

𝑘 𝑌
∗
1𝑚 (Ω⋆

𝑘) 𝜔
⋆
𝑘 𝑃

′
𝑗 (𝑧⋆) = 0, (7.18)

2This is because rotating 𝒌⋆ and 𝒌′⋆ = −𝒌⋆ does not change 𝑃⋆, and thus 𝑃 = Λ𝑅Λ𝐵𝑃⋆ remains unchanged for fixed
Λ𝑅Λ𝐵, too, despite the fact that 𝑘 and 𝑘′ are affected.
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because the integrand depends on 𝜙⋆ only via the phase 𝑒±𝑖𝜙
⋆
, which yields zero when integrated

over [0, 2𝜋]. For the same reason, the third component of

𝜩±1,𝑗 = ∫ dΩ⋆
𝑘 𝑌

∗
1𝑚 (Ω⋆

𝑘) 𝒌
⋆𝑃 ′𝑗 (𝑧⋆)

= ∓
|𝒌⋆|
2 √

3
2𝜋 ∫ dΩ⋆

𝑘 𝑒
∓𝑖𝜙⋆ sin 𝜃⋆ (

sin 𝜃⋆ cos 𝜙⋆
sin 𝜃⋆ sin 𝜙⋆

cos 𝜃⋆
) 𝑃 ′𝑗 (𝑧⋆)

(7.19)

also vanishes. As a special case of Eq. (7.12) we obtain

𝛿𝑛1 =
3
4

1

∫
−1

𝑃 ′𝑛 (𝑥) (1 − 𝑥2) d𝑥, (7.20)

and thus

Ξ±1,𝑗 = √
2𝜋
3
|𝒌⋆| 𝛿𝑗1 (0, ∓1, 𝑖, 0)𝑇

= ∓
√
4𝜋
3
|𝒌⋆| 𝛿𝑗1𝜖∗ (±1, 𝑃⋆) ,

(7.21)

with 𝜖(𝜆𝜋𝜋, 𝑃⋆)∗ being the polarization vector of the outgoing 𝜋𝜋 state of helicity 𝜆𝜋𝜋. That is,
indeed only the 𝑃 wave contributes, as it is required by angular-momentum conservation.

Inserting Eq. (7.21) into Eq. (7.15) leads via Λ𝑅Λ𝐵𝜖(𝜆𝜋𝜋, 𝑃⋆) = 𝜖(𝜆𝜋𝜋, Λ𝑅Λ𝐵𝑃⋆) [11] to

⟨𝜋𝜋, 𝑃, 1, ±1 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ = ∓ 𝑖
√3

|𝒌⋆| 𝜖𝜇𝜈𝛼𝛽𝑝𝜈𝜖∗𝛼 (±1, 𝑃) 𝑃𝛽𝑓1 (𝑠, 𝑞2) . (7.22)

Since we are also interested in matrix elements with off-shell photons, despite the vanishing phase
space we also consider 𝑚 = 0, focusing on the 𝑃 wave. Explicitly, we have

Ξ01 = √
4𝜋
3
|𝒌⋆| (0, 0, 0, 1)𝑇 =

√
4𝜋
3
|𝒌⋆| 𝜖∗(0, 𝑃⋆). (7.23)

Extending Eq. (7.22) to this case results in

⟨𝜋𝜋, 𝑃, 1, 𝑚 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ = 𝜂 (𝑚) 𝑖
√3

|𝒌⋆| 𝜖𝜇𝜈𝛼𝛽𝑝𝜈𝜖∗𝛼 (𝑚, 𝑃) 𝑃𝛽𝑓1 (𝑠, 𝑞2) , (7.24)

with 𝜂(±1) = ∓1, 𝜂(0) = 1 a pure phase. We rewrite this in terms of

𝒜(𝑠, 𝑞2) ≔
𝑀𝜋 |𝒌⋆|
2𝑒√3

𝑓1 (𝑠, 𝑞2) (7.25)

as
⟨𝜋𝜋, 𝑃, 1, 𝑚 |𝐽𝜇 (0)| 𝜋 , 𝒑⟩ = 𝜂 (𝑚) 𝑒 2𝑖

𝑀𝜋
𝜖𝜇𝜈𝛼𝛽𝑝𝜈𝜖∗𝛼 (𝑚, 𝑃) 𝑃𝛽𝒜(𝑠, 𝑞2) , (7.26)

which is precisely the decomposition used in lattice-QCD computations.
Equipped with the two decompositions of the matrix element we can turn our focus to the

observables we are interested in. First, the cross section 𝜎𝛾𝜋 for 𝑞2 = 0 can be computed in a
straightforward manner. In the CM frame

d𝜎𝛾𝜋
dΩ⋆

𝑘
(𝑠, Ω⋆

𝑘) =
1

64𝜋2𝑠
|𝒌⋆|
|𝒑⋆|

1
2

∑
𝜆𝛾=±1

|ℳ (𝑠, 𝑡)|2 (7.27)
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holds [189]. Inserting Eq. (7.9) and Eq. (7.10) results in [66]

𝜎𝛾𝜋 (𝑠) =
(𝑠 − 4𝑀2

𝜋)
3/2 (𝑠 − 𝑀2

𝜋)
1024𝜋√𝑠

1

∫
−1

(1 − 𝑧⋆)2 |ℱ (𝑠, 𝑡 , 0)|2 d𝑧⋆. (7.28)

Truncating the expansion (7.11) after the 𝑃 wave simplifies the cross section, yielding

𝜎𝛾𝜋 (𝑠) =
(𝑠 − 4𝑀2

𝜋)
3/2 (𝑠 − 𝑀2

𝜋)
768𝜋√𝑠

|𝑓1 (𝑠, 0)|
2 . (7.29)

Second, at vanishing energy, the anomalous nature of the process fixes the amplitude in terms
of the pion decay constant 𝐹𝜋 = 92.28(10)MeV [9] as ℱ (0, 0, 0) ≕ 𝑒𝐹3𝜋 with [100]

𝐹3𝜋 =
1

4𝜋2𝐹 3𝜋
= 32.23(10)GeV−3. (7.30)

Third, we want to determine the radiative coupling 𝑔𝜌𝛾𝜋 of the 𝜌 resonance to the 𝛾𝜋 state. To
that end, we need to continue 𝑓1 to its second Riemann sheet. To do so, we take a look at the
unitarity relation of 𝑓1. If only 𝜋𝜋 intermediate states are taken into account, the right-hand cut
of 𝑓1 starts at 4𝑀2

𝜋 in the Mandelstam-𝑠 plane and extends along the positive real axis towards
infinity. The unitarity relation of 𝑓1 along this right-hand cut then reads [51]

Im [𝑓1 (𝑠, 𝑞2)] = 𝑓1 (𝑠, 𝑞2) sin [𝛿 (𝑠)] 𝑒−𝑖𝛿(𝑠), 𝑠 ∈ [4𝑀2
𝜋 , ∞), (7.31)

which is to be compared with the 𝜋𝜋 → 𝜋𝜋 unitarity relation (2.16). As before, 𝛿 denotes the
𝜋𝜋 → 𝜋𝜋 𝑃-wave phase shift. In passing we note that Eq. (7.31) implies (modulo 2𝜋)

arg [𝑓1 (𝑠, 𝑞2)] = {
𝛿 (𝑠) , Im [𝑓1 (𝑠, 𝑞2)] ≥ 0
𝛿 (𝑠) − 𝜋, Im [𝑓1 (𝑠, 𝑞2)] < 0

, (7.32)

which is a special case of Watson’s theorem [192]. Now we can repeat the derivation of Eq. (2.27),
but with Eq. (7.31) replacing Eq. (2.8), leading to

𝑓 II
1 (𝑠, 𝑞2) =

𝑓1 (𝑠, 𝑞2)
1 + 2𝑖𝜎 (𝑠) 𝑇 (𝑠)

, (7.33)

with 𝑇, as before, being the 𝜋𝜋 𝑃 wave. Clearly, Eq. (7.33) has a pair of poles at the same position
as 𝑇 II, namely at 𝑠𝜌 = (𝑀𝜌 − 𝑖Γ𝜌/2)2 and 𝑠∗𝜌 . The radiative coupling 𝑔𝜌𝛾𝜋 is defined via the residue
at the pole as [97]

res [𝑓 II
1 , 𝑠𝜌] ≕ −2𝑒𝑔𝜌𝛾𝜋𝑔𝜌𝜋𝜋. (7.34)

The prefactor differs from Eq. (2.31) to facilitate the comparison with VMD models.

7.2 Dispersive representation of 𝜸 (∗)𝝅 → 𝝅𝝅

Because the unitarity relation (7.31) does not take on the simple form (2.16), the 𝛾 (∗)𝜋 → 𝜋𝜋 𝑃wave
cannot be described by the single-channel IAM. Instead, in the following, a more complicated dis-
persive representation of the 𝛾 (∗)𝜋 → 𝜋𝜋 amplitude is described. It is based on the reconstruction
theorem as introduced in Sec. 7.2.1, which allows for expressing ℱ in terms of a function of a sin-
gle Mandelstam variable. Using partial-wave unitarity in the form of Eq. (7.31) this function can
be partially fixed via the 𝜋𝜋 𝑃 wave, rendering it into a form suitable for numerical solution, as
discussed in Sec. 7.2.2.
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7.2.1 Reconstruction theorem
Here, we derive the reconstruction theorem for 𝛾 (∗)𝜋 → 𝜋𝜋. In the derivation, we follow a
general pattern, that can also be applied in other two-to-two particle scattering processes, e.g.,
𝜂𝜋 → 𝜋𝜋 [52], 𝜂′𝜋 → 𝜂𝜋 [70], 𝛾𝐾 → 𝐾𝜋 [193], etc. However, due to the huge symmetry of the
process 𝛾 (∗)𝜋 → 𝜋𝜋 as well as its simple partial-wave expansion the equations are particularly
short in the case under consideration. Note that this simplicity is not essential to the argument,
but merely renders the formulas more compact.

For the time being, we focus on the scattering region, i.e., we enforce 𝑞2 < (3𝑀𝜋)2, such that
the photon cannot decay. Moreover, we take into account only 𝜋𝜋 intermediate states. We denote
by Λ𝑞2 ≔ {(𝑠, 𝑡 , 𝑢) ∈ ℂ3|𝑠 + 𝑡 +𝑢 = 𝑅}, with 𝑅 ≔ 3𝑀2

𝜋 +𝑞2, the set of on-shell Mandelstam variables
and introduce ϝ𝑞2 ∶ Λ𝑞2 ↦ ℂ via

ϝ𝑞2 (𝑠, 𝑡 , 𝑅 − 𝑠 − 𝑡) ≔ ℱ (𝑠, 𝑡 , 𝑞2) . (7.35)

That is, ϝ𝑞2 is nothing else than the scalar part of the scattering amplitude, but we stay flexible
about which Mandelstam variables to use to parametrize it. For notational convenience, we drop
the subscript 𝑞2 in the following. Invariance under charge conjugation implies ϝ(𝑠, 𝑡 , 𝑢) = ϝ(𝑢, 𝑡 , 𝑠),
while isospin invariance yields ϝ(𝑠, 𝑡 , 𝑢) = ϝ(𝑡, 𝑠, 𝑢). Hence, ϝ is completely symmetric. Since in the
isospin limit the 𝑠, 𝑡, and 𝑢 channel are the same, ϝ has a right-hand cut starting at 𝑠thr = 𝑢thr =
𝑡 thr = 4𝑀2

𝜋 and extending to infinity in all three Mandelstam variables. Thus, we can write down
the fixed-𝑡 dispersion relation [194] (see, e.g., Ref. [109] for a pedagogical derivation)

ϝ𝑡𝑠 (𝑠) ≔ ϝ (𝑠, 𝑡 , 𝑢𝑡 (𝑠)) |𝑡 fixed = 𝑃 𝑡𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

𝑠thr
disc𝑥 [ϝ (𝑥, 𝑡 , 𝑢𝑡 (𝑥))]D𝑛

𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

𝑢thr
disc𝑥 [ϝ (𝑠𝑡(𝑥), 𝑡 , 𝑥)]D𝑛

𝑢𝑥.
(7.36)

Here 𝑎𝑏(𝑥) ≔ 𝑅 − 𝑏 − 𝑥 for 𝑎, 𝑏 Mandelstam variables, 𝑛 denotes the number of subtractions, and
𝑃 𝑡𝑛−1 is the subtraction polynomial of degree 𝑛 − 1. In addition,

D𝑛
𝑎𝑥 ≔

𝑄𝑛 (𝑎)
𝑄𝑛 (𝑥)

1
𝑥 − 𝑎

d𝑥 (7.37)

is the combination of the integral measure, the Cauchy kernel associated with the Mandelstam
variable 𝑎, and 𝑄𝑛, which is given in terms of the subtraction points {𝑠𝑘}𝑛𝑘=1 as

𝑄𝑛 (𝜁) ≔
𝑛

∏
𝑘=1

(𝜁 − 𝑠𝑘) . (7.38)

Lastly,

disc𝑥 [𝑓 (𝑥)] ≔ lim
𝜖↘0

[𝑓 (𝑥 + 𝑖𝜖) − 𝑓 (𝑥 − 𝑖𝜖)] (7.39)

denotes the discontinuity of a function 𝑓 with respect to the variable 𝑥. Of course, 𝑛 needs to be
chosen high enough such that the integrals converge.

In general, denote by ϝ𝑎𝑏, 𝑎 ≠ 𝑏 the dispersion relation for fixed 𝑎 as a function of 𝑏 (the other
Mandelstam variable is expressed in terms of 𝑎 and 𝑏). This dispersion relation is valid for 𝑎 ∈ ℝ
if

𝑎 > 𝑅 − 𝑏thr − 𝑐thr, (7.40)
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for otherwise the left- and right-hand cuts overlap. Naively, one expects six different dispersion re-
lations, since in ϝ𝑎𝑏 there are three choices for 𝑎 and (if 𝑎 is fixed) there are two remaining choices for
𝑏, and thus overall 3 × 2 = 6 choices. However, the two fixed-𝑢 dispersion relations are interrelated
in the following way:

ϝ𝑢𝑠 (𝑠𝑢 (𝑡)) = ϝ (𝑠𝑢 (𝑡) , 𝑡𝑢 (𝑠𝑢 (𝑡)) , 𝑢) = ϝ (𝑠𝑢 (𝑡) , 𝑡 , 𝑢) = ϝ𝑢𝑡 (𝑡) . (7.41)

Similarly, one derives ϝ𝑢𝑡 (𝑡𝑢(𝑠)) = ϝ𝑢𝑠 (𝑠). That is, the two fixed-𝑢 dispersion relations contain the
same information. The same line of reasoning applies to the fixed-𝑠 and fixed-𝑡 dispersion relations;
hence, there are three manifestly different dispersion relations, one fixed-𝑠, one fixed-𝑢 and one
fixed-𝑡. The choice of the independent variable in each of these three relations is arbitrary. In the
following, ϝ𝑢𝑠 , ϝ𝑡𝑠 and ϝ𝑠𝑡 are chosen.

The derivation of the reconstruction theorem proceeds now as follows: first, all three dispersion
relations are written down. Second, the partial-wave expansions of the appropriate channels are
used to express the discontinuities in the dispersive integrals. Third, the dispersion relations are
symmetrized. Finally, the symmetrized expression is analytically continued. The last step is non-
trivial due to the restricted domain of validity of the dispersion relations, as will become clear
below.

The first step yields, in addition to Eq. (7.36),

ϝ𝑢𝑠 (𝑠) = 𝑃𝑢𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

𝑠thr
disc𝑥 [ϝ (𝑥, 𝑡𝑢 (𝑥) , 𝑢)]D𝑛

𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

𝑡 thr
disc𝑥 [ϝ (𝑠𝑢(𝑥), 𝑥, 𝑢)]D𝑛

𝑡 𝑥,

ϝ𝑠𝑡 (𝑡) = 𝑃 𝑠𝑛−1 (𝑡) +
1
2𝜋𝑖 ∫

∞

𝑡 thr
disc𝑥 [ϝ (𝑠, 𝑥, 𝑢𝑠 (𝑥))]D𝑛

𝑡 𝑥

+ 1
2𝜋𝑖 ∫

∞

𝑢thr
disc𝑥 [ϝ (𝑠, 𝑡 𝑠 (𝑥) , 𝑥)]D𝑛

𝑢𝑥.

(7.42)

In the second step, the partial-wave expansion (7.11) is needed. The kinematic variable 𝑧⋆ can be
expressed as a function of the Mandelstam variables according to (see Eq. (7.59))

𝑧⋆ (𝑠, 𝑡 , 𝑢) = 𝑡 − 𝑢

𝜎 (𝑠) √𝜆 (𝑠, 𝑞
2, 𝑀2

𝜋)
. (7.43)

This dependence renders the derivation of the reconstruction theorem incorporating 𝐹 waves and
higher partial waves cumbersome. Here we will assume

disc𝑥 [𝑓𝐽 (𝑥)] = 0, ∀𝐽 ≥ 3. (7.44)

This assumption might be justified by the empirical finding that at low energies the 𝜌 resonance
dominates the scattering process. Now the discontinuity in each dispersive integral in Eq. (7.36)
and Eq. (7.42) is expressed in terms of partial waves. To that end it is crucial to realize that the
partial-wave expansion is a priori defined in the physical scattering region only. Hence, in the
integrals along the 𝑠-channel cut the 𝑠-channel partial-wave expansion is needed and similarly for
the other channels. For 𝛾 (∗)𝜋 → 𝜋𝜋 due to the symmetry of ϝ the partial-wave expansion in all
channels has the same structure (i.e., incorporates the same functions 𝑓𝐽). Moreover, we need to
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assure that the physical scattering region and the domain of validity of the dispersion relation at
hand have non-empty overlap, which is the case if 𝑞2 < 𝑀2

𝜋 . Performing this manipulation results
in

ϝ𝑡𝑠 (𝑠) = 𝑃 𝑡𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥,

ϝ𝑢𝑠 (𝑠) = 𝑃𝑢𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥,

ϝ𝑠𝑡 (𝑡) = 𝑃 𝑠𝑛−1 (𝑡) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥.

(7.45)

The domain of validity of the dispersion relations in Eq. (7.45) is no longer restricted by the domain
of validity of the partial-wave expansion, since the partial wave 𝑓1 is integrated only along the
physical scattering regions.

For the next steps to cumulate in the desired result, it is crucial that the domains of definition of
the three dispersion relations as restricted by Eq. (7.40) have non-vanishing overlap, i.e., that there
exists a set 𝐷 ⊆ Λ that possesses an accumulation point with respect to a larger domain such that
all three dispersion relations hold inside 𝐷. Combining the three constraints yields

𝐷 = {(𝑠, 𝑡 , 𝑅 − 𝑡 − 𝑠) ∶ 𝑠 > 𝑞2 − 5𝑀2
𝜋 , 𝑡 > 𝑞2 − 5𝑀2

𝜋 , 𝑠 + 𝑡 < 8𝑀2
𝜋 } , (7.46)

which is non-empty if 𝑞2 < 9𝑀2
𝜋 .

Each dispersion relation in Eq. (7.45) misses exactly one dispersive integral that is present in the
other dispersion relations. Consider, for instance, the ϝ𝑡𝑠 dispersion relation. It misses the integral
along the 𝑡-channel cut, which is present in the two other dispersion relations. If this missing
integral is subtracted from 𝑃 𝑡𝑛−1 for fixed values of 𝑡 the result is again a polynomial of degree 𝑛 − 1
in 𝑠, i.e.

𝑃 𝑡𝑛−1 (𝑠) −
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥 = ̃𝑃 𝑡𝑛−1 (𝑠) . (7.47)

Hence, we can write

ϝ𝑡𝑠 (𝑠) = ̃𝑃 𝑡𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥.

(7.48)
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Analogously, for the other channels we obtain

ϝ𝑢𝑠 (𝑠) = ̃𝑃𝑢𝑛−1 (𝑠) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥,

ϝ𝑠𝑡 (𝑡) = ̃𝑃 𝑠𝑛−1 (𝑡) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥.

(7.49)

Inside 𝐷, these three functions need to be equal. Equating Eq. (7.48) and Eq. (7.49) yields

̃𝑃 𝑡𝑛−1 (𝑠) = ̃𝑃𝑢𝑛−1 (𝑠) = ̃𝑃 𝑠𝑛−1 (𝑡) . (7.50)

Hence, 𝑃𝑛−1(𝑠, 𝑡 , 𝑢) ≔ ̃𝑃 𝑡𝑛−1 (𝑠) is inside 𝐷 a polynomial in 𝑠, 𝑡 (and 𝑢).3 As a side result, this implies
that the (non-entire part of the) 𝑡-dependence of the coefficients in the polynomial 𝑃 𝑡𝑛−1 cancels the 𝑡-
dependence of the integral in Eq. (7.47), such that ̃𝑃 𝑡𝑛−1 is not only a polynomial in 𝑠, but also one in 𝑡.
Stated differently, this means that the apparently missing integral along the 𝑡-channel discontinuity
is contained in the fixed-𝑡 dispersion relation from the beginning, namely in the coefficients in the
subtraction polynomial (similar statements hold for the other two dispersion relations). Obviously,
this can only work if the required number of subtractions is sufficiently high. As a counterexam-
ple, consider the hypothetical scenario in which no subtractions are required. Then the previous
argument does not apply, for there is no subtraction polynomial in the fixed-𝑎 dispersion relation
that could contain the 𝑎-channel integral. Increasing the number of subtractions artificially does
not solve the problem, since the coefficients in the subtraction polynomial generated in this way
are fixed by sum rules.

Assuming that the required number of subtractions is high enough (i.e., for the scenario at hand
at least one), the analytic continuation of one of the dispersive representations (7.48) and (7.49) out
of 𝐷 is trivial: the only dependence of the Mandelstam variables is contained in the polynomial
and the Cauchy kernels. It yields the following expression for the amplitude:

ϝ (𝑠, 𝑡 , 𝑢) = 𝑃𝑛−1 (𝑠, 𝑡 , 𝑢) +
1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑠 𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑢𝑥

+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥)]D𝑛
𝑡 𝑥.

(7.51)

This representation is holomorphic in 𝑠, 𝑡, and 𝑢. Moreover, it possesses the correct branch cuts.
3It is this part of the derivation that goes through only if 𝐷 is non-empty.
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According to Eq. (7.51), the symmetry of ϝ implies that 𝑃𝑛−1 is totally symmetric, too. As long
as 𝑛 < 3 this implies via 𝑠 + 𝑡 +𝑢 = 𝑅 that 𝑃𝑛−1 is in fact independent of the Mandelstam variables,
i.e., 𝑃𝑛−1(𝑠, 𝑡 , 𝑢) = 𝐶𝑛 ∈ ℝ, 𝑛 ∈ {1, 2}. Thus, we can decompose Eq. (7.51) into

ϝ𝑞2 (𝑠, 𝑡 , 𝑢) = ℬ(𝑠, 𝑞2) +ℬ(𝑡, 𝑞2) +ℬ(𝑢, 𝑞2) , (7.52)

where we made the dependence on 𝑞2 explicit again and

ℬ(𝑎, 𝑞2) ≔
𝐶1 (𝑞2)

3
+ 1
2𝜋𝑖 ∫

∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥, 𝑞2)]D1
𝑎𝑥 (7.53)

if 𝑛 = 1 as well as

ℬ(𝑎, 𝑞2) ≔
𝐶(0)2 (𝑞2)

3
+
𝐶(1)2 (𝑞2)

3
𝑎 + 1

2𝜋𝑖 ∫
∞

4𝑀2
𝜋

disc𝑥 [𝑓1 (𝑥, 𝑞2)]D2
𝑎𝑥, (7.54)

with
𝐶(0)2 (𝑞2) + 𝐶(1)2 (𝑞2) 𝑅

3
= 𝐶2 (𝑞2) , (7.55)

if 𝑛 = 2. Equation (7.52) is precisely the reconstruction theorem of 𝛾 (∗)𝜋 → 𝜋𝜋 in its final form [66,
195].

7.2.2 Inhomogeneous Omnès problem
By expressing the discontinuity in Eq. (7.53) and Eq. (7.54) via the unitarity relation (7.31) the
function ℬ can be expressed as the solution to an inhomogeneous Omnès problem, as discussed
pedagogically in detail, e.g., in Ref. [109]. The result reads [51, 66, 109, 196]

ℬ(𝑠, 𝑞2) =
𝑛−1
∑
𝑘=0

𝑐𝑘 (𝑞2)ℬ𝑘 (𝑠, 𝑞2) ,

ℬ𝑘 (𝑠, 𝑞2) ≔ Ω (𝑠) [𝑠𝑘 + 𝑠𝑛

𝜋

∞

∫
4𝑀2

𝜋

ℬ̂𝑘 (𝑥, 𝑞2)
𝑥𝑛 (𝑥 − 𝑠)

sin [𝛿 (𝑥)]
|Ω (𝑥)|

d𝑥] .
(7.56)

Here

ℬ̂𝑘 (𝑠, 𝑞2) ≔
3
2

1

∫
−1

(1 − 𝑧⋆2)ℬ𝑘 (𝑡 (𝑠, 𝑧⋆, 𝑞2) , 𝑞2) d𝑧⋆ (7.57)

are the hat functions, 𝑛 ∈ ℕ is the number of subtractions that are employed in the dispersive
integrals, 𝑐𝑘 are the subtraction functions, the mappings ℬ𝑘 are known as basis functions, the
Omnès function is given as [197]

Ω (𝑠) ≔ exp[ 𝑠
𝜋

∞

∫
4𝑀2

𝜋

𝛿 (𝑥)
𝑥 (𝑥 − 𝑠)

d𝑥] , (7.58)
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and
𝑡 (𝑠, 𝑧⋆, 𝑞2) = 𝑎 (𝑠, 𝑞2) + 𝑧⋆𝑏 (𝑠, 𝑞2) ,

𝑎 (𝑠, 𝑞2) ≔
3𝑀2

𝜋 + 𝑞2 − 𝑠
2

,

𝑏 (𝑠, 𝑞2) ≔
𝜎 (𝑠)
2 √𝜆 (𝑠, 𝑞

2, 𝑀2
𝜋),

(7.59)

is the Mandelstam variable 𝑡 expressed in terms of the other kinematic variables via the Källén
function 𝜆(𝑦, 𝑣 , 𝑤) ≔ (𝑦 − 𝑣 − 𝑤)2 − 4𝑣𝑤.4 Equation (7.56) and Eq. (7.57) are a special case of KT
equations [110] that are discussed in greater detail in Part IV.

The basis functions subsume 𝜋𝜋 rescattering and are fixed as soon as the 𝜋𝜋 phase 𝛿 is known.
While the Omnès function describes 𝜋𝜋 scattering in one channel, the integral in Eq. (7.56) incor-
porates mixed rescattering, where pions rescatter pairwise, e.g., first in the 𝑠 and subsequently in
the 𝑡 channel. That is, the replacement ℬ𝑘(𝑠, 𝑞2) ↦ 𝑠𝑘Ω(𝑠) amounts to taking into account only 𝜋𝜋
rescattering in the individual channels. This is explored in more depth in Ch. 10.

In the form of Eq. (7.56) the KT equations are valid only if 𝑞2 < (3𝑀𝜋)2, i.e., as long as the pho-
ton cannot decay. By deformation of either one of the integration contours the equations can be
analytically continued towards 𝑞2 > (3𝑀𝜋)2 [198, 199] as discussed in Ch. 11, however, this is not
needed for the lattice data of interest. This analytic continuation reveals that the basis functions
indeed possess a three-particle cut in 𝑞2 that is associated with pairwise 𝜋𝜋 rescattering, but they
do not contain any 𝑞2-dependence arising from genuine three-pion interactions [200]. Such inter-
actions are to be described by the subtraction functions 𝑐𝑘, which are not fixed by the KT approach.
Thus, to arrive at a complete representation of 𝛾 (∗)𝜋 → 𝜋𝜋, we need both a representation of 𝛿 as
well as a parameterization of the subtraction functions.

We describe the phase shift 𝛿 via the NLO5 IAM as introduced in Sec. 4.2, which depends on the
low energy constant 𝑙𝑟 ≔ 𝑙𝑟2 − 2𝑙𝑟1 and the pion decay constant in the chiral limit 𝐹. Since 𝐹𝜋 has not
been computed on the lattice ensembles of interest, we set 𝐹 to its literature value, see Sec. 6.4.3.
We compute the basis functions numerically via the method described in Sec. 11.3. In particular,
the phase of the NLO IAM does not approach 𝜋, instead, lim𝑠→∞ 𝑇 (𝑠) = −[96𝜋𝑙𝑟 + 𝑖 + 2/(3𝜋)]−1,
which yields lim𝑠→∞ 𝛿(𝑠) < 𝜋 for all reasonable values of 𝑙𝑟, and so we guide 𝛿 smoothly to 𝜋 at
energies far above the resonance region as described ibidem. With this choice of 𝛿, Ω(𝑠) = 𝑂(1/𝑠)
holds. Since the integral in Eq. (7.56) is cut off as soon as 𝛿 reaches 𝜋, the asymptotic behavior of
the Omnès function implies

ℬ𝑘 (𝑠, 𝑞2) = 𝑂 (𝑠𝑛−2) . (7.60)

7.2.3 Subtraction functions
The subtraction functions need to be holomorphic in the complex 𝑞2 plane except for a cut along
[9𝑀2

𝜋 , ∞) that is associated with 𝛾∗ → 𝜋𝜋𝜋. Hence, we can write down an 𝑚-times subtracted
dispersion relation of the form

𝑐𝑘 (𝑞2) =
𝑚−1
∑
𝑗=0

𝑏𝑘𝑗 (𝑞2)
𝑗 +

(𝑞2)𝑚

2𝜋𝑖

∞

∫
9𝑀2

𝜋

disc𝑥 [𝑐𝑘 (𝑥)]
𝑥𝑚 (𝑥 − 𝑞2)

d𝑥, (7.61)

4Equation (7.59) is a special case of Eq. (11.13).
5As discussed in Ch. 8, there are only two datasets by two different collaborations available, both at pion masses

exceeding 300MeV. A fit of the NNLO IAM to these data is stable only with strong constraints on the LECs, and thus
we opt for an NLO fit instead.
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where disc𝑥[𝑐𝑘(𝑥)] denotes the discontinuity along the branch cut as defined in Eq. (7.39). As long
as 𝑞2 < 9𝑀2

𝜋 , the Schwarz reflection principle dictates 𝑏𝑘𝑗 ∈ ℝ and disc[𝑐𝑘] = 2𝑖 Im[𝑐𝑘], compare
Eq. (2.7). In the energy region that contributes most to the dispersive integral in Eq. (7.61) the three-
pion physics is dominated by the 𝜔(782) and 𝜙(1020) resonances [9], both of which are narrow and
(at the physical point) far away from the three-pion threshold. Thus, disc[𝑐𝑘] inside the integral
can be reasonably well described by a sum of two Breit–Wigner functions, yielding a dispersively
improved variant of a Breit–Wigner parameterization that ensures the correct analytic proper-
ties [117, 201]. In practice, the lattice data we are going to analyze are obtained at 𝑀𝜋 > 300MeV,
at which mass the 𝜔 becomes a bound state [151]. Accordingly, instead of being incorporated into
the dispersive integral, it appears as a pole at 𝑞2 = 𝑀2

𝜔. This can be taken into account by writing
down a dispersion relation in the form of Eq. (7.61) for 𝑐𝑘(𝑞2)/P(𝑞2) with P(𝑞2) = (1 − 𝑞2/𝑀2

𝜔)−1
and multiplying the result by the pole factor P.

Since the lattice data are obtained at virtualities significantly below the 3𝜋 threshold, Eq. (7.61)
can be expanded as a Taylor series; keeping the first 𝑚 terms yields

𝑐𝑘 (𝑞2) =
𝑚−1
∑
𝑗=0

𝑏𝑘𝑗 (𝑞2)
𝑗 . (7.62)

However, the convergence of the Taylor series is poor as soon as |𝑞2| gets close to the 3𝜋 threshold,
this drawback goes hand in handwith awrong asymptotic behavior for large |𝑞2|, i.e., the expression
diverges. To improve on Eq. (7.62), a conformal polynomial can be used instead [202, 203]. That is,
Eq. (7.61) is approximated by

𝑐𝑘 (𝑞2) =
𝑚−1
∑
𝑗=0

𝑏𝑘𝑗𝑤 (𝑞2)𝑗 , (7.63)

where the conformal variable 𝑤 reads

𝑤 (𝑞2) ≔ √9𝑀2
𝜋 − 𝑞2 − 3𝑀𝜋

√9𝑀2
𝜋 − 𝑞2 + 3𝑀𝜋

. (7.64)

In this way, the cut along [9𝑀2
𝜋 , ∞) is retained. Moreover, the asymptotic behavior is improved, as

𝑤 is bounded.
At the 3𝜋 threshold, Im[𝑐𝑘] should scale like (𝑞2 − 9𝑀2

𝜋 )4 to be in accordance with the three-
particle phase space [204]. This is impossible to obtain with Eq. (7.63), because for 𝑞2 below thresh-
old the Schwarz reflection principle needs to be fulfilled, so that 𝑏𝑘𝑗 ∈ ℝ. Expanding 𝑤 in powers
of 𝑥 ≔ √9𝑀2

𝜋 − 𝑞2 makes it clear that only odd powers of 𝑥 contribute to Im[𝑐𝑘]. This problem is
fundamental to the method, for the Riemann mapping theorem implies that each biholomorphic
map from the cut complex plane to the interior of the unit disk is of conformal form. It is, however,
easily possible to remove the leading square-root-like scaling via fixing [183]

𝑏𝑘1 = −
𝑚−1
∑
𝑗=2

𝑗𝑏𝑘𝑗. (7.65)

Altogether we have six different parameterizations of the subtraction functions: a polynomial,
a conformal polynomial, and a conformal polynomial withmodified threshold behavior, each either
with or without the pole factor P in front. Lastly, the number 𝑚 of terms needs to be fixed. We use
𝑁 −𝑘 terms with a single global value of 𝑁 for the 𝑘-th subtraction function 𝑐𝑘, since it multiplies 𝑠𝑘
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Eq. (7.62) Eq. (7.63) Eq. (7.63) and Eq. (7.65)

without P I II III
with P IP IIP IIIP

Table 7.1: The naming scheme of the different parameterizations of the subtraction functions. For
example, strategy IIP amounts to 𝑐𝑘(𝑞2) = P(𝑞2)∑𝑁−𝑘

𝑗=0 𝑏𝑘𝑗𝑤(𝑞2)𝑗.

in Eq. (7.56), such that with our choice in the simple polynomial representation (7.62) the highest
combined power of Mandelstam 𝑠 and 𝑞2 has mass dimension 2𝑁. An overview of the different
strategies is given in Table 7.1.

7.2.4 Partial wave via kernel method
In the analysis of lattice-QCD data we are chiefly interested in the partial wave 𝑓1, which is related
to the basis functions (7.56) and hat functions (7.57) via Eq. (7.11), Eq. (7.12), and the reconstruction
theorem (7.52). Specifically,

𝑓1 (𝑠, 𝑞2) =
𝑛−1
∑
𝑘=0

𝑐𝑘 (𝑞2) [ℬ𝑘 (𝑠, 𝑞2) + ℬ̂𝑘 (𝑠, 𝑞2)] (7.66)

holds. For the time being, we do not allow for decays, i.e., the constraint 𝑞2 < 9𝑀2
𝜋 applies. If,

furthermore, we focus on the scattering domain, i.e., 𝑠 ≥ 4𝑀2
𝜋 , where the lattice data are obtained,

in principle the computation of the partial wave 𝑓1 is straightforward, for theMandelstam variable
𝑡 in Eq. (7.57) does not interfere with the cut ofℬ𝑘, since its real part stays below the 𝜋𝜋 threshold.
However, as soon as 𝑞2 > 𝑀2

𝜋 , the variable 𝑡 develops a non-vanishing imaginary part. This does
not pose a problem as long as one wishes to evaluate ℬ̂𝑘 only at a couple of (𝑠, 𝑞2) values, e.g., at
the values corresponding to the lattice data or at the relatively few values needed in the numerical
solution of the KT equations, see Sec. 11.3. But if one seeks to compute ℬ̂𝑘 at a large number of 𝑠 and
𝑞2 values, effectively the imaginary part of 𝑡 enforces the evaluation of ℬ𝑘 on a two-dimensional
subset of the (𝑠, 𝑧⋆) plane, which is numerically demanding. While this issue can in principle be
avoided by deforming the path of integration in the angular integral [51], in practice this method
suffers from removable singularities, whose proper numerical treatment is slightly cumbersome.
The situation gets worse if one wants to evaluate ℬ̂𝑘 at complex values of 𝑠 (as needed in a search
for resonance poles), for care needs to be taken to avoid interference of Mandelstam 𝑡 with the
cut of ℬ𝑘.6

Fortunately, the well established kernel method [66, 97, 193] provides an elegant solution to
both issues. In the following we derive this method, the first part of this derivation resembles
the discussion in Ref. [205]; however, here we allow for 𝑞2 ≠ 0 and in the second part discuss
carefully certain properties of the eponymous kernel that become relevant due to the possibility of
a non-vanishing virtuality.

6The results of Sec. 11.1.2, in particular Fig. 11.1, show that the branch point ofℬ𝑘 is not hit in the naive computation
of ℬ𝑘 via Eq. (7.57), however, one would still be concerned with the possibility of 𝑡 crossing the cut.
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The starting point is the following simple dispersive representation of ℬ𝑘:

ℬ𝑘 (𝑠, 𝑞2) = 𝑃𝑘 (𝑠) +
𝑠𝑑

𝜋

∞

∫
4𝑀2

𝜋

Im [ℬ𝑘 (𝑥, 𝑞2)]

(𝑥 − 𝑠) 𝑥𝑑
d𝑥. (7.67)

Here 𝑑 is the number of subtractions, 𝑃𝑘(𝑠) = ∑𝑑−1
𝑗=0 ℎ𝑘𝑗𝑠𝑗 the subtraction polynomial with coeffi-

cients ℎ𝑘𝑗 ∈ ℝ, which can be determined via matching to Eq. (7.56). For instance, given ℬ𝑘(𝑠, 𝑞2) =
𝑂(𝑠𝑛−2) for 𝑛 = 2 it is more than sufficient to use 𝑑 = 2. Equating the Taylor expansions around
𝑠 = 0 of both Eq. (7.67) and the definition of ℬ𝑘 in Eq. (7.56) we obtain

ℎ00 = 1, ℎ01 =
dΩ
d𝑠

(0) , ℎ10 = 0, ℎ11 = 1, (7.68)

where we used Ω(0) = 1.
Coming back to the general case, inserting Eq. (7.67) into Eq. (7.57) yields

ℬ̂𝑘 (𝑠, 𝑞2) =
𝑑−1
∑
𝑗=0

ℎ𝑘𝑗𝐺𝑗 (𝑠, 𝑞2) +
1
𝜋

∞

∫
4𝑀2

𝜋

𝑊𝑑 (𝑠, 𝑞2, 𝑥) Im [ℬ𝑘 (𝑥, 𝑞2)] d𝑥, (7.69)

with

𝐺𝑗 (𝑠, 𝑞2) ≔
3
2

1

∫
−1

(1 − 𝑧⋆2) 𝑡 (𝑠, 𝑧⋆, 𝑞2)𝑗 d𝑧⋆,

𝑊𝑑 (𝑠, 𝑞2, 𝑥) ≔
3
2

1

∫
−1

(1 − 𝑧⋆2) 𝑡 (𝑠, 𝑧⋆, 𝑞2)𝑑

(𝑥 − 𝑡 (𝑠, 𝑧⋆, 𝑞2)) 𝑥𝑑
d𝑧⋆.

(7.70)

Decomposing Mandelstam 𝑡 as in Eq. (7.59) we obtain

𝐺𝑗 (𝑠, 𝑞2) =
3
2

1

∫
−1

(1 − 𝑧⋆2) [𝑎 (𝑠, 𝑞2) + 𝑧⋆𝑏 (𝑠, 𝑞2)]𝑗 d𝑧⋆

= 3
2

𝑗
∑
𝑟=0

(
𝑗
𝑟
)𝑎 (𝑠, 𝑞2)𝑗−𝑟 𝑏 (𝑠, 𝑞2)𝑟

1

∫
−1

(1 − 𝑧⋆2) 𝑧⋆𝑟d𝑧⋆

= 6
⌊𝑗/2⌋
∑
𝑟=0

(
𝑗
2𝑟
)
𝑎 (𝑠, 𝑞2)𝑗−2𝑟 𝑏 (𝑠, 𝑞2)2𝑟

(2𝑟 + 1) (2𝑟 + 3)
.

(7.71)

As special cases we obtain

𝐺0 (𝑠, 𝑞2) = 2, 𝐺1 (𝑠, 𝑞2) = 2𝑎 (𝑠, 𝑞2) . (7.72)

We manipulate the Kernel 𝑊𝑑 accordingly,

𝑊𝑑 (𝑠, 𝑞2, 𝑥) =
3
2
1
𝑥𝑑

𝑑
∑
𝑘=0

(
𝑑
𝑘
)𝑎 (𝑠, 𝑞2)𝑑−𝑘 𝑏 (𝑠, 𝑞2)𝑘−1 [ℐ𝑘 (𝜉 (𝑠, 𝑞2, 𝑥)) − ℐ𝑘+2 (𝜉 (𝑠, 𝑞2, 𝑥))] , (7.73)
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with

ℐ𝑘 (𝜉) ≔
1

∫
−1

𝑧𝑘

𝜉 − 𝑧
d𝑧 (7.74)

and

𝜉 (𝑠, 𝑞2, 𝑥) ≔
𝑥 − 𝑎 (𝑠, 𝑞2)
𝑏 (𝑠, 𝑞2)

. (7.75)

To compute the integrals ℐ𝑘, we use

𝑧𝑘

𝜉 − 𝑧
=

𝜉 𝑘

𝜉 − 𝑧
−

𝑘−1
∑
𝑗=0

𝜉 𝑘−𝑗−1𝑧𝑗, (7.76)

which holds for arbitrary 𝜉 , 𝑧 ∈ ℂ and 𝑘 ∈ ℕ0 as can be proven by induction. This allows for
rewriting ℐ𝑘 in terms of ℐ0 via

ℐ𝑘 (𝜉) = 𝜉 𝑘ℐ0 (𝜉) − 2
⌊ 𝑘−12 ⌋

∑
𝑗=0

𝜉 𝑘−2𝑗−1

2𝑗 + 1
. (7.77)

Finally, we note that ℐ0 = 2𝑄0, with

𝑄0 (𝜉) =
1
2

1

∫
−1

1
𝜉 − 𝑦

d𝑦 (7.78)

the lowest Legendre function of the second kind. Again, as special cases we obtain [97, 193]

𝑊1 (𝑠, 𝑞2, 𝑥) = 𝒲(𝑠, 𝑞2, 𝑥) − 2
𝑥
, 𝑊2 (𝑠, 𝑞2, 𝑥) = 𝑊1 (𝑠, 𝑞2, 𝑥) −

2𝑎 (𝑠, 𝑞2)
𝑥2

, (7.79)

with
𝒲(𝑠, 𝑞2, 𝑥) ≔ 3

𝑏 (𝑠, 𝑞2)
[(1 − 𝜉 (𝑠, 𝑞2, 𝑥)2) 𝑄0 (𝜉 (𝑠, 𝑞2, 𝑥)) + 𝜉 (𝑠, 𝑞2, 𝑥)] . (7.80)

As a next step, let us study the kernel 𝒲 in more detail. Computing the integral in Eq. (7.78)
yields

𝑄0 (𝜉) =
1
2
[ln (

1 + 𝜉
1 − 𝜉

) − 𝑖𝜋 sign (Im (𝜉))] , (7.81)

with

sign (𝑥) ≔
⎧

⎨
⎩

1, 𝑥 > 0,
0, 𝑥 = 0,
−1, 𝑥 < 0,

(7.82)

being the sign function, the principal value of the logarithm cut along the negative real axis, and
𝑄0(𝜉 ) ≔ lim𝜖↘0 𝑄0(𝜉 + 𝑖𝜖) if 𝜉 ∈ ℝ. Together with this prescription Eq. (7.81) is valid in the entire
complex plane, has a branch cut along 𝜉 ∈ [−1, 1], and satisfies the Schwarz reflection principle.

If 𝑥 → ∞ or 𝑏(𝑠, 𝑞2) → 0, 𝜉 approaches infinity. In the domain of interest, 𝑏(𝑠, 𝑞2) = 0 holds if
𝑠 = 4𝑀2

𝜋 or 𝑠 = (√𝑞2 + 𝑀𝜋)2, the latter happens only if 𝑞2 ≥ 0. Hence, it is advisable to study the
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asymptotic behavior of the kernel. That is, we study 𝒲 as a function of 𝜉 = 1/𝜁 in the limit 𝜁 → 0.
Using the well known expansion ln(1 + 𝑥) = ∑∞

𝑘=1(−1)𝑘+1𝑥𝑘/𝑘, we derive

𝒲(𝑠, 𝑞2, 𝑥) = 6
𝑥 − 𝑎 (𝑠, 𝑞2)

∞
∑
𝑗=0

1
(2𝑗 + 1) (2𝑗 + 3)

( 1
𝜉 (𝑠, 𝑞2, 𝑥)

)
2𝑗

. (7.83)

According to the ratio test, Eq. (7.83) converges absolutely as long as |𝜉 | > 1. In particular, we see
that lim𝜉→∞𝒲 is manifestly finite. Thus, Eq. (7.83) provides an elegant way to treat the removable
singularities at 𝑏(𝑠, 𝑞2) = 0. As a cross check, note that in the scattering region, i.e., 𝑠 ≥ 4𝑀2

𝜋 ,
𝑏(𝑠, 𝑞2) ∈ ℝ ∪ 𝑖ℝ holds. Thus, 𝜉 is either purely real or purely imaginary. In either case, Eq. (7.83) is
purely real, as is Eq. (7.71), since only even powers of 𝑏 appear. Via Eq. (7.69) this implies that ℬ̂𝑘
is real, and therefore according to the Schwarz reflection principle the hat function does not have
a right-hand cut, as it needs to be the case. In passing, we note that the terms subtracted from 𝒲
in Eq. (7.79) precisely cancel out the leading terms in Eq. (7.83) such that 𝑊𝑑(𝑠, 𝑞2, 𝑥) = 𝑂(𝑥𝑑+1), as
it needs to be the case to ensure convergence of the integral in Eq. (7.69).

Applying Eq. (7.69) in the case of interest, i.e., 𝑛 = 𝑑 = 2, we obtain

ℬ̂𝑘 (𝑠, 𝑞2) = 2ℎ𝑘0 + 2𝑎 (𝑠, 𝑞2) ℎ𝑘1 +
1
𝜋

∞

∫
4𝑀2

𝜋

𝑊2 (𝑠, 𝑞2, 𝑥) Im [ℬ𝑘 (𝑥, 𝑞2)] d𝑥, (7.84)

with the coefficients ℎ𝑘𝑗 given in Eq. (7.68) and𝑊2 to be computed via Eqs. (7.79), (7.80), and (7.83).
Clearly, Eq. (7.84) allows for evaluation of the hat function at arbitrary complex values of 𝑠 re-
quiring the imaginary part of ℬ𝑘 along the physical scattering region only. This both speeds up
the evaluation as a function of 𝑠 drastically and allows for a trivial continuation into the complex
plane, thereby solving the issues of Eq. (7.57). Because the high-energy region in the integral in
Eq. (7.84) is strongly suppressed by the asymptotic behavior of 𝑊2, the integral can be cut off at
high energies.

Lastly, let us remark that the representation of the hat function in terms of a kernel provides
the basis for a solution method of the KT equations that is an alternative to the approach presented
in Ch. 11 [68, 206].

7.3 Pion-mass dependence and anomaly
To control the pion-mass dependence of the partial wave (7.66), we need to understand at which
places the pion mass enters this expression. First and foremost, there is the IAM phase 𝛿, whose
pion-mass dependence has been discussed in detail in Part II. Notably, the fit paremter 𝑙𝑟 is indepen-
dent of the pionmass, as is 𝐹; the sole pion-mass dependence stemming from the ChPT expressions.
Second, the pion mass appears explicitly in the KT equations, see Eqs. (7.56)–(7.59), which can be
taken care of by merely adjusting the numerical value. Lastly, the subtraction functions 𝑐𝑘 depend
on the pion mass in several ways. The parametrizations including a pole factor P contain the 𝜔
mass 𝑀𝜔. To take into account its pion-mass dependence, we use the result of the analysis in
Ref. [151], namely

𝑀𝜔 (𝑀2
𝜋) = 0.7686(20)GeV + 0.719(9)GeV−1𝑀2

𝜋 . (7.85)

What remains besides the trivial pion-mass dependence of the conformal variable (7.64) is the one
of the variables 𝑏𝑘𝑗 appearing in Eq. (7.62) or Eq. (7.63). Since there are only lattice data sets at two
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different pion masses available, only very simple parameterizations of the pion-mass dependence
of each 𝑏𝑘𝑗 can presently be constrained. For that reason, we opt for the simplest ansatz

𝑏𝑘𝑗 (𝑀2
𝜋) = 𝛼𝑘𝑗 + 𝛽𝑘𝑗𝑀2

𝜋 , 𝛼𝑘𝑗, 𝛽𝑘𝑗 ∈ ℝ. (7.86)

Here the fact that the variables are linear in 𝑀2
𝜋 instead of 𝑀𝜋 is motivated by ChPT, for otherwise

the 𝑏𝑘𝑗 would possess branch points in the quark mass. As soon as more data sets at different pion
masses become available, it will be possible to test more refined prescriptions.

With the subtraction functions extrapolated to the physical point, defined as before by the PDG
value of the mass of the charged pion [9], the anomaly (7.30) can be determined via matching the
dispersive representation to ChPT. For 𝑛 = 2 subtractions the matching yields [66]

𝑒𝐹3𝜋 (1 + 𝐺) = 3 {𝑐0 (0) [1 +
dΩ
d𝑠

(0)𝑀2
𝜋] + 𝑐1 (0)𝑀2

𝜋 } , (7.87)

with

𝐺 = 3
2
𝑀2

𝜋
𝑀2

𝜌
− 1
32𝜋2

𝑀2
𝜋

𝐹 2
[1 + ln (

𝑀2
𝜋

𝑀2
𝜌
)] (7.88)

determined via one-loop ChPT and a new LEC has been fixed via resonance saturation [207]. We
stress that, as soon as 𝑐0(0) and 𝑐1(0) are known, Eq. (7.87) can be used to determine 𝐹3𝜋 with-
out using the prediction (7.30). The value extracted in this way can then be compared with the
prediction (7.30) to test the latter.
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Chapter 8

Lattice data

In the following, we describe the translation of the finite-volume lattice data into the continuum. As
alluded to in Sec. 3.2.8, lattice-QCD computations of 𝛾 (∗)𝜋 → 𝜋𝜋 rely on knowledge of 𝜋𝜋 → 𝜋𝜋. To
be precise, the Lellouch–Lüscher formula (3.112) applied to 𝛾 (∗)𝜋 → 𝜋𝜋 and assuming dominance
of the 𝑃 wave boils down to [40, 191]

|𝒜 (𝑠, 𝑞2)|2 = £ (𝑠) |𝒜FV (𝑠, 𝑞2)|2 , (8.1)

with𝒜 as introduced in Eq. (7.26) and𝒜FV the finite-volume analogue of𝒜, i.e., the amplitude that
appears when the finite-volume matrix element in Eq. (3.112) is decomposed in the same way as
the infinite-volume one is in Eq. (7.26). Here the Lellouch–Lüscher factors £ read

£ (𝑠) = 4𝜋
𝑞⋆

𝜕
𝜕√𝑠

[𝛿 (√𝑠) − Z (√𝑠)] , (8.2)

with Z as defined in Eq. (6.1) and 𝑞⋆ = |𝒌⋆| as defined in Sec. 3.2.1. The factors are uniquely
defined only on the energies that are solutions of Eq. (6.1), that is, they are not defined as functions
of arbitrary values of 𝑠 [208, App. A4]. We stress that these factors yield the 𝛾 (∗)𝜋+ → 𝜋+𝜋0
amplitude, i.e., the experimentally observable amplitude that we are interested in. If instead one
wishes to compute the isospin-projected 𝛾 (∗)𝜋 → 𝜋𝜋(𝐼 = 1) amplitude, the replacement £ ↦ 2£
needs to be performed, for

|𝜋±𝜋0⟩ = 1
√2

(∓ |2, ±1⟩ − |1, ±1⟩) , (8.3)

and only the 𝐼 = 1 component contributes to the process. That is, the 𝛾 (∗)𝜋 → 𝜋𝜋(𝐼 = 1) amplitude
is enhanced by a factor √2 compared to the 𝛾 (∗)𝜋+ → 𝜋+𝜋0 one [40].

The explicit form of the Lellouch–Lüscher factors (8.2) makes it evident that the 𝜋𝜋 → 𝜋𝜋
𝑃-wave phase 𝛿 is needed in the translation of the finite-volume data to the continuum. Hence,
any complete computation of the 𝛾 (∗)𝜋 → 𝜋𝜋 𝑃 wave on the lattice includes both the 𝜋𝜋 energy
levels needed to fix 𝛿, as well as the finite-volume amplitude 𝒜FV. As of this writing, the results of
only two such computations have been published. The first was performed by HadSpec at 𝑀𝜋 ≈
391MeV, consisting of the 𝜋𝜋 → 𝜋𝜋 computation presented in Ref. [165] (precisely the 840_20 data
set introduced in Table 5.1) and the 𝛾 (∗)𝜋 → 𝜋𝜋 data analyzed in Refs. [107, 191]. We call these
data M391. The second was carried out at 𝑀𝜋 ≈ 317MeV, consisting of the 𝜋𝜋 → 𝜋𝜋 analysis of
Ref. [86] and the 𝛾 (∗)𝜋 → 𝜋𝜋 data described in Ref. [108]. These data we denote as M317.

It is worth noting that the quantization condition used in Ref. [86] (and also in Ref. [108]) uses
the boost vector 𝔓 = (0, 1, 1) instead of 𝔓 = (1, 1, 0), and thus it takes on a different form than
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Refs. [86, 108] this work

𝐸 E2
𝑇1 T1
𝐴2 A1
𝐵1 A1
𝐵2 B1
𝐵3 B2

Table 8.1: Mapping of irreps: the irreps in the left column correspond to those in the right after
rotating 𝔓 = (0, 1, 1) to 𝔓 = (1, 1, 0).

0

1

2

3

𝛿

0
1
2
3
4

A1
B1
B2
E2
T1

0.400 0.425 0.450 0.475 0.500 0.525 0.550 0.575 0.600
𝑎𝐸⋆

−0.10

−0.05

0.00

0.05

0.10

𝑎2
𝑞2

Figure 8.1: The M317 data. While the top plot depicts the 𝜋𝜋 𝑃-wave phase shift, with the irrep and
|𝔓|2 encoded as in Fig. 6.1, the bottom plot shows the location of the computed values of 𝒜FV in
the energy-virtuality plane. Each vertical dashed line marks the position of a 𝜋𝜋 energy level (the
difference between the B2 level and the E2 one at 𝑎𝐸⋆ ≈ 0.460 cannot be resolved at the scale of
the plot). The error ellipses show the correlation between the virtualities and the energies.

Eq. (5.5). However, by transforming the former boost vector into the latter via an appropriate rota-
tion, the quantization condition can be rendered into the same form. The corresponding mapping
of irreps is shown in Table 8.1.

In the following, we take a closer look at M317, M391 being very similar in its structure. There
are 15 different 𝜋𝜋 energy levels 𝑎𝐸⋆lat𝑘 , 𝑘 = 1, … , 15. At each such energy there are one ore more
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𝑎𝐸⋆
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75
E2(3)

free
interacting

Figure 8.2: The Lellouch–Lüscher factors associated with the M317 data at 𝑀𝜋 ≈ 317MeV for
all relevant combinations of irrep and boost vector, given in the legends as irrep(|𝔓|2). Shown are
both the free factors, i.e., the ones with 𝛿 = 0, and the interacting ones, that is, the ones with
𝛿 = 𝛿 IAM. These plots might be compared with Fig. 3 in Ref. [108], which depicts the (differently
scaled) factors for Breit–Wigner parametrizations of the 𝜋𝜋 phase shift.

values of 𝒜FV(𝑎2𝑠lat𝑘 , 𝑎2𝑞2 lat)/𝑎, each corresponding to a different virtuality 𝑎2𝑞2 lat𝑗 , 𝑗 = 1, … , 48.
Altogether, the finite-volume amplitude has been determined at 48 different kinematical points.
Here we introduced the abbreviation 𝑠lat𝑘 ≔ (𝐸⋆lat𝑘 )2. All quantities carry an error stemming mainly
from the statistical nature of the lattice computation, with the energies and virtualities significantly
correlated, as is illustrated in Fig. 8.1. Clearly, the majority of the data points is located in the 𝜌-
resonance region.

Since the Lellouch–Lüscher factor (8.2) depends on the derivative of the phase 𝛿 and the
𝜋𝜋 data points as shown in Fig. 8.1 are not dense enough to allow for a reliable interpolation, a
parametrization of 𝛿 is needed. We use the NLO IAM to parametrize 𝛿, in accordance with our
choice of 𝛿 in the KT equations, see Sec. 7.2.2. That is, we first fit the 𝜋𝜋 data to fix the NLO IAM,
use the latter subsequently as input to compute the Lellouch–Lüscher factors, which in turn
enable us to compute |𝒜| via Eq. (8.1), finally yielding |𝑓1| via Eq. (7.25):

|𝑓 lat
1 (𝑠lat𝑘 , 𝑞2 lat𝑗 )| = 2𝑒√3

𝑀𝜋𝑞⋆𝑘 √
£ (𝑠IAM

𝑘 ) |𝒜FV (𝑠lat𝑘 , 𝑞2 lat𝑗 )| . (8.4)

Here 𝑠IAM
𝑘 ≔ (𝑎𝐸⋆IAM

𝑘 )2 is the squared energy obtained in the fit that is associated with 𝑠lat𝑘 , see
Eq. (6.7). As mentioned below Eq. (8.2), the Lellouch–Lüscher factors need to be evaluated at
these energies, for otherwise they are not uniquely defined. The difference |𝐸⋆IAM

𝑘 − 𝐸⋆lat𝑘 | is small,
but the IAM energies do not agree perfectly with the lattice ones. While at a first sight the appear-
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Figure 8.3: All 48 values of the M317 data of both the finite-volume amplitude (left) and the partial
wave (right) in the virtuality-energy plane. The width of the bars gives the 1𝜎 error in 𝑎𝐸⋆, the
depth the one in 𝑎2𝑞2, while the height of the magenta segments corresponds to the 1𝜎 error of
|𝒜FV| and |𝑓1| /𝑎3, respectively.

ance of two different energies in Eq. (8.4) might seem problematic, at the current level of precision
of the data it is irrelevant. Note that arg(𝒜) = arg(𝑓1) is fixed via Watson’s thereom (7.32).

The fit is described in detail in Ch. 9, using its result we obtain the Lellouch–Lüscher factors
as depicted in Fig. 8.2. For comparison the factors obtained with 𝛿 = 0 are shown, too. Clearly, the
inclusion of the correct 𝑃-wave phase shift is crucial, for it yields the peak associated with the 𝜌
resonance, with 𝜕Z/𝜕√𝑠 providing—in the relevant energy range—a background that depends only
modestly on the energy, the sole exception being the irrep A1 with 𝔓 = (1, 1, 1).

Lastly, in Fig. 8.3 we show the absolute value of both the finite-volume amplitude and the partial
wave (computed via Eq. (8.4)) at the data points of the M317 data. In accordance with the forego-
ing discussion, the 𝜌 peak becomes prominent only after the inclusion of the Lellouch–Lüscher
factors. Moreover, the data seem to hint at an increase of |𝑓1|with growing 𝑞2, which will be inves-
tigated in more detail in Ch. 9. Notably, the errors of |𝒜FV| are sizable, translating into huge errors
of |𝑓1|, thereby limiting the precision of our analysis.
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Fit and results

We fit the formalism introduced in Ch. 7 to the lattice data described in Ch. 8. Before discussing
the results in Sec. 9.2, the fitting method is outlined in Sec. 9.1.

9.1 Fitting procedure
As already stressed, currently there are only two 𝛾𝜋 data sets available, M317 and M391. Hence, to
fix the pion-mass dependence, we need to analyze these two data sets simultaneously.

The fit to the 𝜋𝜋 energy levels including the error estimation proceeds exactly as described in
Ch. 6. Since 𝐹𝜋 is not included in the M317 data, we use the literature value of 𝐹 as described in
Sec. 6.4.3. Moreover, since we aim for a combined fit, we use the literature value of 𝐹 also in the
analysis of the M391 𝜋𝜋 data, to ensure that there is one unique value of 𝐹 involved in the analysis.
Since the two 𝜋𝜋 data sets were independently generated, the 𝜒2 is the sum of two terms in the
form of Eq. (6.8), one for each data set.

With the parameter 𝑙𝑟 of the NLO IAM fixed, we use 𝛿 IAM to compute |𝑓 lat
1 | via Eq. (8.4). The

KT 𝑃 wave (7.66) is subsequently fit to |𝑓 lat
1 |. To take into account the errors of the energies and

virtualities, we follow the standard approach and introduce an auxiliary fit parameter for each
kinematic variable, see, e.g., Refs. [86, 167]. Accordingly, we define

𝜒2
𝛾𝜋 ≔ (𝑣 lat − 𝑣KT) 𝐶−1𝛾𝜋 (𝑣 lat − 𝑣KT)

𝑇
, (9.1)

with

𝑣 lat ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|𝑓 lat
1 (𝑎2𝑠lat1 ,𝑎2𝑞2 lat1 )|

𝑎3
⋮

|𝑓 lat
1 (𝑎2𝑠lat𝑁𝜋𝜋 ,𝑎

2𝑞2 lat𝑁𝛾𝜋)|

𝑎3
𝑎2𝑞2 lat1

⋮
𝑎2𝑞2 lat𝑁𝛾𝜋

𝑎𝐸⋆lat1
⋮

𝑎𝐸⋆lat𝑁𝜋𝜋

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, 𝑣KT ≔

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

|𝑓1(𝑎2𝑠1,𝑎2𝑞21)|
𝑎3
⋮

|𝑓1(𝑎2𝑠𝑁𝜋𝜋 ,𝑎
2𝑞2𝑁𝛾𝜋)|

𝑎3
𝑎2𝑞21
⋮

𝑎2𝑞2𝑁𝛾𝜋

𝑎𝐸⋆1
⋮

𝑎𝐸⋆𝑁𝜋𝜋

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (9.2)

𝑁𝜋𝜋 ∈ ℕ the number of 𝜋𝜋 energy levels, 𝑁𝛾𝜋 ∈ ℕ the number of 𝛾𝜋 data points, the auxiliary fit
parameters 𝑞21 , … , 𝑞2𝑁𝛾𝜋

, 𝐸⋆1 , … , 𝐸⋆𝑁𝜋𝜋
, as well as 𝑠𝑘 ≔ (𝐸⋆𝑘 )

2, and covariance matrix 𝐶𝛾𝜋. Here wemade
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fit Ref. [162] FLAG [47] Ref. [182]

𝜒2/dof 31.7/(27 − 1) = 1.22
𝑝 value 0.20
𝑙𝑟 × 103 12.79(11)(10)(12) 9.9(1.3) 19(17)
𝑀𝜌/MeV 747.2(2.7)(2.8)(1.0) 763.7+1.7−1.5
Γ𝜌/MeV 145.0(1.9)(1.9)(1.0) 146.4+2.0−2.2
Re(𝑔𝜌𝜋𝜋) 5.960(22)(21)(25) 5.98+0.04−0.07
−Im(𝑔𝜌𝜋𝜋) 0.7175(82)(79)(94) 0.56+0.07−0.10

Table 9.1: The outcomes of the IAM fit to the 𝜋𝜋 data. The first error arises due to the statistical
error of the 𝜋𝜋 data, the second due to the error of the lattice spacings, and the third due to the
error of the literature value of 𝐹. The third and fourth column contain reference values for the LEC
from ChPT and lattice QCD [47, 173–177], respectively, while the fifth column lists the 𝜌 properties
as determined via Roy-like equations.

the fact explicit that everything is computed in lattice units. The error of the IAM phase leads to
an error of the Lellouch–Lüscher factors. The corresponding covariance matrix is added to the
appropriate entries of 𝐶𝛾𝜋. Equation (9.1) is minimized with respect to the auxiliary fit parameters
and the variables 𝑏𝑘𝑗 appearing in the parameterization of the subtraction functions. To that end, we
employ the combination of the differential-evolution algorithm and Powell’s method described in
Sec. 6.2. Since only the absolute value of the partial wave is fit and 𝑓1 is linear in the fit parameters
𝑏𝑘𝑗, the latter are fixed by the fit only up to a global phase ±1. To fix this, we impose the upper case
of Eq. (7.32), i.e., arg[𝑓1(𝑠, 𝑞2)] = 𝛿(𝑠).

Since the two data sets are uncorrelated and the pion-mass dependence of each fit parameter
𝑏𝑘𝑗 is described by two free parameters, compare Eq. (7.86), we can perform the fits to the two 𝛾𝜋
data sets independently, the fit parameters being the values of 𝑏𝑘𝑗 at the two different pion masses.
That is, for both 𝑀317 and 𝑀391 we minimize a 𝜒2 of the form (9.1), each time working in the
lattice units of the given data set.

To assess the statistical error of the fit to the 𝛾𝜋 data, we simply use the Hessian 𝐻𝜒 2
𝛾𝜋
. That is,

the covariance Cov[𝜅𝑖, 𝜅𝑗] of two fit parameters 𝜅𝑖 and 𝜅𝑗 is estimated via [9, 209]

Cov [𝜅𝑖, 𝜅𝑗] = 2 [𝐻−1
𝜒 2
𝛾𝜋
]
𝑖𝑗
, [𝐻𝜒 2

𝛾𝜋
]
𝑖𝑗
≔

𝜕2𝜒2
𝛾𝜋

𝜕𝜅𝑖𝜕𝜅𝑗
, (9.3)

where the derivatives are evaluated at the values of the fit parameters corresponding to the mini-
mum of 𝜒2

𝛾𝜋. On top of this, in principle the error of the IAM needs to be taken into account not only
in the covariance matrix 𝐶𝛾𝜋 but also in the KT equations and directly in the Lellouch–Lüscher
factors. That is, for each jackknife (or bootstrap) run of the IAM fit a slightly different phase 𝛿 IAM

is obtained, which in turn could be plugged into both the Lellouch–Lüscher factors and the KT
equations, subsequently repeating the 𝛾𝜋 fit for each different phase to estimate the associated er-
ror. However, it becomes clear in Sec. 9.2 that the error of the 𝜋𝜋 fit is negligible compared to the
statistical one of the 𝛾𝜋 fit arising from the large errors of |𝒜FV|, and thus there is no need for such
an elaborate error computation.

Although Eq. (9.2) is phrased in lattice units, the lattice spacing 𝑎 still enters if the parametriza-
tions of the subtraction functions involve an 𝜔 pole, see Table 7.1, because Eq. (7.85) needs to be
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Figure 9.1: The fit IAM in comparison to the 2𝜋 lattice data in complete analogy to Fig. 6.1. The
top (bottom) plots correspond to the M317 (M391) data.

translated into lattice units. However, while the fits are sensitive to the presence of the pole as
observed in Sec. 9.2, the precise value of this pole does not matter at all at the current level of
precision of the data; thus this error can be safely ignored, too.

Nevertheless, the error of the lattice spacing cannot be entirely ignored. Namely, as soon as we
want to combine both 𝛾𝜋 fits to allow for an extrapolation to the physical point, as performed in
Sec. 9.2.3, the obtained values of 𝑏𝑘𝑗 at the two different pion masses need to be translated into a
common set of units, so that the two lattice spacings enter the picture. Since the scale of the two
data sets is set in different ways (in case of M317 via the Υ(1𝑆)–Υ(2𝑆) splitting and in case of M391
via the Ω baryon mass, see Sec. 6.4.2), an additional systematic error arises, which is difficult to
quantify (this also applies to the simultaneous fit of the two 𝜋𝜋 data sets). However, compared to
the sizable statistical uncertainty of the data and the systematic error of the chiral extrapolation to
be discussed in Sec. 9.2.4, the systematic error associated with the scale setting is likely irrelevant
at present. Therefore, the uncertainty associated with the lattice spacing given in the remainder
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of this work will always refer to its statistical error only. There is also a systematic error from
the continuum extrapolation, since the calculation in Ref. [108] was performed at a single lattice
spacing of 𝑎 ≈ 0.11 fm, while the one in Ref. [191] was performed on an anisotropic lattice with
temporal spacing 𝑎 ≈ 0.03 fm and spatial spacing 𝑎𝑠 ≈ 0.12 fm. Without several data sets at different
lattice spacings determined via the same scale setting, this error cannot be reliably estimated.

9.2 Results

9.2.1 Fits to 𝝅𝝅 data
The result of a simultaneous fit of the NLO IAM to the M317 𝜋𝜋 data and the M391 one is compared
with this data in Fig. 9.1, while the goodness of the fit is shown in Table 9.1 together with the
obtained value of 𝑙𝑟, the resulting 𝑝 value of 20 % being reasonable. There is a 2𝜎 tension with
the ChPT value of 𝑙𝑟; however, this deviation comes at no surprise, given the unitarization via the
IAM, as discussed in Sec. 6.5.1. With 𝑙𝑟 fixed, we continue the 𝜋𝜋 𝑃 wave to the second Riemann
sheet—as in Sec. 6.5.1—to determine the 𝜌 characteristics at the physical point as listed in Table 9.1.
Comparing with the literature values given ibidem, we note a 4𝜎 discrepancy in𝑀𝜌 and a 2𝜎 tension
in Im(𝑔𝜌𝜋𝜋), while both the width and the real part of the coupling agree well. This is explained
by the fact that the NLO IAM has only a single free parameter, leading to a trade-off between the
different 𝜌 properties. To improve on this, the NNLO IAM can be employed, see again Sec. 6.5.1,
however, with data at only two different pion masses both exceeding 300MeV, we find that stable
fits are not feasible.

9.2.2 Fits to 𝜸𝝅 data
Next, we fit the 𝛾𝜋 data. We use 𝑛 = 2 subtractions in Eq. (7.66), for once-subtracted KT equa-
tions fail to describe the energy dependence of the data correctly, and thus do not allow for sta-
tistically acceptable fits. Note that increasing the number of subtractions to 𝑛 = 3 does not
provide additional flexibility, since the reconstruction theorem (7.52) is invariant under the shift
ℬ(𝑠, 𝑞2) ↦ ℬ(𝑠, 𝑞2) + 𝜆(𝑞2)(3𝑠 − 3𝑀2

𝜋 − 𝑞2), with 𝜆 an arbitrary function, and thus one subtraction
function can be eliminated. According to Eq. (7.60) this shift is forbidden for 𝑛 = 2 due to the
high-energy behavior of ℬ, but becomes possible for 𝑛 = 3. In addition, we pick 𝑁 = 2, that is,
we have three fit parameters 𝑏𝑘𝑗 in 𝑐0 and two in 𝑐1, see Sec. 7.2.3. If instead 𝑁 = 1 is used, the fit
quality becomes poor, while at 𝑁 = 3 the fit stability deteriorates. The exception are the strategies
III and IIIP, where we pick 𝑁 = 3, which again amounts to five fit parameters due to Eq. (7.65).

To obtain statistically acceptable fits to the M391 data, we need to exclude the six data points at
the highest energy, 𝐸⋆lat ≈ 1096MeV. These points lie far above the resonance region, for although
at this pion mass the 𝜌 is heavy, i.e.,𝑀𝜌 = 846.1(3.1)(3.2)(0.1)MeV (errors as in Table 9.1), its width
Γ𝜌 = 10.8(8)(9)(1)MeV is tiny. Moreover, several of the data points with the smallest absolute
errors of |𝒜FV| are located at this energy. Hence, the six excluded data points provide rather strong
constraints on the asymptotic high-energy behavior of the KT equations instead of the resonance
physics in which we are primarily interested.

We carry out fits for each strategy enumerated in Table 7.1, with an overview of the fit qualities
given in Table 9.2. While the goodness of the fit at the lower pion mass is rather insensitive to the
parameterization of the subtraction functions, the data at the higher pion mass are more selective,
because the relative error of |𝒜FV| at the higher pion mass is smaller than the error at lower mass.
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Figure 9.2: The results of two fit strategies in comparison with the𝑀317 𝛾𝜋 data. Shown are slices
of constant energy. For convenience, the results are displayed in physical units, but the fit is carried
out in lattice units, so that the error bands are associated with the statistical error of the data only.

Notably, we observe improvement when including a pole factor, which is true for all strategies, with
the overall 𝑝 value improving by at least an order of magnitude in each case, and even by two orders
of magnitude when going from strategy I to IP. As soon as a pole factor is included, it does not
matter much if the remaining 𝑞2 dependence is parameterized by a plain polynomial, a conformal
one, or a conformal one with modified threshold behavior, the overall 𝑝 values of strategy IP, IIP,
and IIIP are similar, with a slight improvement when using conformal parameterizations. Hence,
in the following we group the results of the three parameterizations including a pole together. If no
pole is used, at higher pion mass the fit clearly disfavors a plain polynomial and instead prefers a
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M317 M391 combined

I
𝜒 2
𝛾𝜋

dof
57.8
48−5 = 1.34 67.0

37−5 = 2.09 57.8+67.0
85−10 = 1.66

𝑝 value 6.54 × 10−2 2.81 × 10−4 2.70 × 10−4

IP
𝜒 2
𝛾𝜋

dof
61.1
48−5 = 1.42 44.0

37−5 = 1.37 61.1+44.0
85−10 = 1.40

𝑝 value 3.61 × 10−2 7.70 × 10−2 1.26 × 10−2

II
𝜒 2
𝛾𝜋

dof
59.2
48−5 = 1.38 53.9

37−5 = 1.69 59.2+53.9
85−10 = 1.51

𝑝 value 5.13 × 10−2 8.99 × 10−3 2.96 × 10−3

IIP
𝜒 2
𝛾𝜋

dof
57.9
48−5 = 1.35 43.6

37−5 = 1.36 57.9+43.6
85−10 = 1.35

𝑝 value 6.43 × 10−2 8.31 × 10−2 2.26 × 10−2

III
𝜒 2
𝛾𝜋

dof
59.5
48−5 = 1.38 51.9

37−5 = 1.62 59.5+51.9
85−10 = 1.49

𝑝 value 4.83 × 10−2 1.44 × 10−2 4.04 × 10−3

IIIP
𝜒 2
𝛾𝜋

dof
57.2
48−5 = 1.33 43.6

37−5 = 1.36 57.2+43.6
85−10 = 1.34

𝑝 value 7.20 × 10−2 8.32 × 10−2 2.51 × 10−2

Table 9.2: The quality of the fit to the 𝛾𝜋 data for the different parameterizations of the subtraction
functions.
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Figure 9.3: As Fig. 9.2, but for the M391 data.
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conformal one, with only a very slight further improvement when modifying the threshold scaling.
Thus, we exclude strategy I and combine strategies II and III. As representatives of each group, we
pick strategies II and IIP. The corresponding partial waves are compared with the two lattice data
sets in Fig. 9.2 and Fig. 9.3. As can be observed, independently of the presence of a pole factor, the
magnitude of 𝑓1 increases with growing 𝑞2, in accordance with phenomenology [117].

To check if we are sensitive to the mixed rescattering effects included in the KT equations, we
re-perform the fits with the replacementℬ𝑘(𝑠, 𝑞2) ↦ 𝑠𝑘Ω(𝑠). At𝑀𝜋 ≈ 317MeVwe obtain a 𝑝 value
of 4.97 × 10−2 with strategy II and 6.26 × 10−2 with strategy IIP, while at 𝑀𝜋 ≈ 391MeV we obtain
8.77×10−3 and 8.49×10−2, respectively. Comparing with the corresponding entries of Table 9.2, the
observed difference is insignificant, and thus we conclude that mixed rescattering does not need to
be taken into account to describe the data at the present level of precision.

9.2.3 Chiral extrapolation
Equipped with the KT fit results, we can determine the pion-mass dependence of the fit parameters
via Eq. (7.86). To that end, we need to translate the fit parameters associated with the two different
data sets to a common set of units; hence the errors of the lattice spacings enter the picture.

The pion-mass dependence of the fit parameters is depicted in Fig. 9.4. While the leading pa-
rameters in the series expansion (7.63), 𝑏00 and 𝑏10, are constrained more strongly by the data at
lower pion mass than the one at higher pion mass, the opposite is true for the highest-order term
associated with 𝑏02. The latter comes at no surprise, for the data at higher mass contain much
larger virtualities in the spacelike region, exceeding in absolute value the timelike virtualities of
both data sets significantly, giving thus more weight to the 𝑏02 term. With decreasing pion mass,
the 𝜔 pole moves from the real axis below the 3𝜋 threshold on the first Riemann sheet into the
complex plane on the second sheet. Since the pole factor P that is present in strategies IP, IIP,
and IIIP describes a bound state, naturally the question arises if the change in the nature of the
pole needs to be reflected in the extrapolation in the pion mass for these strategies. A resonant 𝜔
could be implemented via a dispersively improved Breit–Wigner parameterization as alluded to
below Eq. (7.61), which, in practice, is almost indistinguishable from a pole ansatz unless very close
to the singularities. Given the large uncertainties of 𝑏𝑗𝑘 at the physical point, this change is thus
immaterial, especially, since for the extraction of the observables the subtraction functions need to
be evaluated at vanishing virtuality only, and for every strategy 𝑐𝑘(0) = 𝑏𝑘0 holds.

Taking care of the pion-mass dependence of the fit parameters, the IAM, and the KT equations,
we can extrapolate the partial wave to the physical point. Computing the cross section via Eq. (7.29)
yields the line shape shown in Fig. 9.5 exhibiting the characteristic resonance peak. In both fit
strategies, the error increases when moving beyond the resonance, which reflects the fact that
most data points lie around the resonance region. In principle, the omitted data points at the
highest energy could provide further constraints, but since no acceptable fits could be found when
including these points, we conclude that with the currently available lattice data the asymptotic
form of the cross section remains largely unconstrained. In this regard, we remark that the KT
basis functions with 𝑛 = 2 subtractions increase too fast asymptotically compared to expectations
from the Froissart bound [210], so that a proper high-energy completion needs to be imposed.
However, these considerations become relevant only well beyond 1GeV, and thus do not affect
the current fit, for which the 𝑛 = 2 subtraction scheme provides the adequate number of free
parameters to be able to describe both the chiral anomaly and the 𝜌-meson properties [97].
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Figure 9.4: The pion-mass dependence of the fit parameters for two different fit strategies. The
dashed gray lines mark the physical pion mass and the ones of the two lattice data sets, the dashed
error bands correspond to the error of the lattice spacings, while the filled ones are associated with
the statistical error of the data.

9.2.4 Chiral anomaly and radiative coupling
Finally, we can determine the anomaly 𝐹3𝜋 and the radiative coupling at the physical point via
Eq. (7.87) and Eq. (7.34), respectively. The values are listed for the different fit strategies in Table 9.3.
Since the outcomes of the different fit variants are highly correlated with only minor differences in
fit quality and very similar statistical errors, we do not computeweighted averages, but instead only
perform plain averages to determine the central values. Doing so for the acceptable fits without a
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Figure 9.5: The cross section at the physical point for two different fit strategies. The error bands
are as in Fig. 9.4.

pole factor, i.e., averaging over strategy II and III, results in

𝐹3𝜋 = 24(13)(1)GeV−3,
𝑔𝜌𝛾𝜋 = [0.51(6)(4) + 𝑖0.03(13)(2)] GeV−1,

|𝑔𝜌𝛾𝜋| = 0.51+0.08−0.05(4)GeV−1,

(9.4)

with errors as in Table 9.3, while the strategies including an 𝜔 pole, i.e., IP, IIP, and IIIP, yield

𝐹3𝜋 = 47(18)(1)GeV−3,
𝑔𝜌𝛾𝜋 = [0.60(8)(4) + 𝑖0.26(18)(3)] GeV−1,

|𝑔𝜌𝛾𝜋| = 0.66+0.15−0.12(3)GeV−1.

(9.5)

Both values of 𝐹3𝜋 are compatible with the prediction (7.30), albeit only due to their large errors.
Fits including the pole ansatz do display a better fit quality, but not at a level that would conclu-
sively demonstrate the necessity of the pole. Since, further, both fit variants agree within statistical
uncertainties, we conclude that the current lattice data cannot discriminate between Eq. (9.4) and
Eq. (9.5) and quote the resulting spread as an additional systematic error. This error also arises due
to the absence of lattice data at several different pion masses by one collaboration, forcing us to
fit our representation to two data sets by two different collaborations at only two different pion
masses, which makes it impossible to fix the pion-mass dependence of the subtraction functions
beyond the simple ansatz (7.86). Averaging over all fit results except for strategy I, we finally quote

𝐹3𝜋 = 38(16)(1)(11)GeV−3,
𝑔𝜌𝛾𝜋 = [0.57(7)(4)(4) + 𝑖0.17(16)(3)(12)] GeV−1,

|𝑔𝜌𝛾𝜋| = 0.60+0.12−0.09(3)(7)GeV−1,

(9.6)

where the last error is our estimate of the systematic uncertainty associated with the parameteri-
zation of the subtraction functions.
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𝐹3𝜋 × GeV3 Re(𝑔𝜌𝛾𝜋) × GeV Im(𝑔𝜌𝛾𝜋) × GeV

I 13(11)(0) 0.50(6)(4) 0.09(11)(2)
IP 46(18)(1) 0.59(8)(4) 0.26(18)(3)
II 23(13)(1) 0.51(6)(4) 0.02(13)(2)
IIP 48(18)(1) 0.61(8)(4) 0.27(18)(3)
III 26(13)(1) 0.52(6)(4) 0.05(13)(2)
IIIP 48(18)(1) 0.61(8)(4) 0.27(18)(3)

Table 9.3: The anomaly and the radiative coupling at the physical point. The fit uncertainty gives
the first error, the second error corresponds to the error of the lattice spacings.

The resulting value of 𝐹3𝜋 is perfectly consistent with the chiral prediction (7.30), but carries
a large uncertainty. This is the first extraction of this low-energy parameter from lattice-QCD
calculations, and will improve accordingly once better data become available. The residue 𝑔𝜌𝛾𝜋
is currently not known better than from an 𝑆𝑈 (3) VMD estimate [211], which suggests |𝑔𝜌𝛾𝜋| =
0.79(8)GeV−1 [97], again compatible with Eq. (9.6) (within 1.2𝜎).1 The difference to the VMD es-
timate increases to 2.3𝜎 for Eq. (9.4), while there is full agreement with Eq. (9.5). This provides a-
posteriori evidence for the presence of an 𝜔 pole in the subtraction functions, as does the final result
for the cross section shown in Fig. 9.5 when compared to the expected peak cross section around
20 𝜇b [106]. The radiative coupling has also been extracted in Ref. [108] under the assumption that
the pion-mass dependence of |𝐺𝜌𝛾𝜋| = |𝑔𝜌𝛾𝜋|𝑀𝜋/2 is weak, leading to |𝑔𝜌𝛾𝜋|[108] = 1.15(5)(3)GeV−1.
This value differs from the VMD estimate by 3.6𝜎, a discrepancy that went unnoticed in Ref. [108]
because it is mitigated by a missing factor 2 in Eq. (17) for Γ(𝜌 → 𝜋𝛾) therein [217]. Moreover,
our analysis shows that the uncertainties especially from the chiral extrapolations are substan-
tially larger. In particular, a pion-mass independent |𝐺𝜌𝛾𝜋| renders the residue divergent in the

chiral limit, while at 𝑀𝜋 = 317MeV one has |𝑔𝜌𝛾𝜋|
𝑀𝜋=317MeV
[108] = 0.507(20)(13)GeV−1 as well as

|𝑔𝜌𝛾𝜋|𝑀𝜋=317MeV = 0.552(18)(18)(0), the latter being the average (9.6) at this pion mass. We con-
clude that |𝑔𝜌𝛾𝜋| instead of |𝐺𝜌𝛾𝜋| is approximately pion-mass independent, thus avoiding the di-
vergence in the chiral limit.

1The branching fractions cited in Ref. [9] imply |𝑔𝜌𝛾𝜋| = 0.72(4)GeV−1 for the charged channel and |𝑔𝜌𝛾𝜋| =
0.73(6)GeV−1 for the neutral one. However, these values derive from high-energy Primakoff measurements [212–
214] and VMD fits to 𝑒+𝑒− → 𝜋0𝛾 data [215, 216], respectively, and thus involve a substantial model dependence.
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Rescattering effects in 𝟑𝝅 decays
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Chapter 10

Rescattering of pions

We have already encountered rescattering of pions in several places. In Sec. 4.2 we mentioned
that the unitarization procedure via the IAM accounts, in fact, for rescattering of pions in the 𝑠
channel. Furthermore, the basis functions of the KT equations encode rescattering, too, as stated
in Sec. 7.2.2. It is now the time to make this notion of rescattering more precise, in particular, to
distinguish more carefully between different kinds of rescattering. We stress that in this chapter
we care mainly about qualitative insights into the nature of rescattering, so contrarily to the rest
of this thesis we are not too concerned with correct bookkeeping and instead focus on the key
concepts only.

10.1 Rescattering and unitarity
Consider 𝑇𝑠, the part of the 𝜋𝜋 → 𝜋𝜋 amplitude that contains all 𝑠-channel loops as depicted in
Fig. 10.1. This sum of iterated loops is precisely what we mean by 𝑠-channel rescattering of pions.
For simplicity, we work in the CM frame. Denoting the vertex by 𝑉 and the loop by 𝐿, formally we
can write

𝑇𝑠 = 𝑉 + 𝑉𝐿𝑉 + 𝑉𝐿𝑉𝐿𝑉 + …

= 𝑉
∞
∑
𝑘=0

(𝐿𝑉)𝑘

= 𝑉
1 − 𝐿𝑉

= 1
1
𝑉 − 𝐿

,

(10.1)

where we used the geometric series. The loop 𝐿 is a special case of 𝐼IV (𝑃) as defined in Eq. (3.24),
with 𝑃 = (𝑠, 𝟎) and 𝑓 (𝑘) = −𝑖.1,2 Its discontinuity as defined in Eq. (7.39) can be straightforwardly

1The factor −1 arises from two powers of 𝑖 stemming from the numerators of the propagators, while the factor
𝑖 corresponds to the global factor 𝑖ℳ in the definition of the scattering amplitude ℳ, see Eq. (2.1), and needs to be
included if we want to use the Cutkosky rules in the form of Eq. (10.2).

2Of course, the propagators are to be replaced by the full 1PI contribution. However, the only aspect that matters
here is the imaginary part of the loop 𝐿, which is computed by setting the propagators on-shell, see Eq. (10.2). Picking
the renormalization conditions (3.59), the argument remains unaffected by this subtlety.
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𝑇𝑠 ≔ + + + + …

≕ +

Figure 10.1: Pion–pion rescattering in the 𝑠 channel. Double lines denotes the full pion propagator
Δ as defined in Fig. 3.1, while the thick line denotes the two-pion propagator that is defined as the
sum of all iterated pion loops.

computed via the Cutkosky rules [189, 218], i.e., by performing the replacements

1
𝑘2 − 𝑀2

𝜋 + 𝑖𝜖
→ −2𝜋𝑖 Θ (𝑘0) 𝛿 (𝑘2 − 𝑀2

𝜋) ,

1
(𝑃 − 𝑘)2 − 𝑀2

𝜋 + 𝑖𝜖
→ −2𝜋𝑖 Θ ((𝑃 − 𝑘)0) 𝛿 ((𝑃 − 𝑘)2 − 𝑀2

𝜋) ,
(10.2)

in Eq. (3.24), with Θ defined in Eq. (3.83). Since the loop obeys the Schwarz reflection princi-
ple (2.7), disc𝑠[𝐿(𝑠)] = 2𝑖 Im[𝐿(𝑠)] holds. Altogether, this results in

Im [𝐿 (𝑠)] =
𝜎 (𝑠)
16𝜋

, (10.3)

with 𝜎 being the phase space as introduced in Eq. (2.29). By inserting Eq. (10.3) into Eq. (10.1) we
finally obtain

𝑇𝑠 =
1

1
𝑉 − Re [𝐿] − 𝑖

16𝜋𝜎
. (10.4)

Note that the vertex 𝑉 is real, for the Hamiltonian needs to be Hermitian, and thus the couplings
in the underlying Lagrangian must be real.

The comparison of Eq. (10.4) with the single-channel 𝐾-matrix representation (2.17) shows a
remarkable similarity. In fact, the factor 1/(16𝜋) that spoils perfect agreement is an artifact of our
sloppy bookkeeping, which ignored the partial-wave projection, see Eq. (2.3) and Eq. (2.5). Thus,
Eq. (10.4) is a special case of the 𝐾-matrix representation, with

𝐾 ∼ 1
𝑉
− Re [𝐿] . (10.5)

Recalling that elastic unitarity (2.16) is equivalent to the amplitude taking on the form of a 𝐾-
matrix representation as shown in Sec. 2.1, we conclude that 𝑠-channel rescattering generates an
amplitude that fulfills elastic unitarity. By inverting the line of thought, we see that each 𝐾-matrix
representation at least correctly accounts for the imaginary part generated by 𝑠-channel rescat-
tering, although of course to obtain the corresponding real part the correct 𝐾 matrix needs to be
picked. It is this argument that makes us identify pion rescattering in the 𝑠 channel with elastic
unitarity in the very same channel.
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Figure 10.2: The two-pion propagator in the 𝑡 channel.

Accordingly—keeping in mind its derivation in Sec. 4.2—the IAM accounts for pion rescattering
in the 𝑠 channel, where the 𝐾 matrix has been approximated by ChPT truncated at either NLO or
NNLO. In this regard, the unitarization can be interpreted as an approximated resummation of the
perturbative expansion.

It is instructive to take a look at the crossed version of the two-pion propagator, see Fig. 10.2
for the 𝑡-channel one. This equals the Bethe–Salpeter kernel 𝐵 introduced in Sec. 3.2.5, if con-
tributions to the latter of the 𝑢 channel and of higher-energetic intermediate states are ignored.
If we replace the vertex 𝑉 by the kernel 𝐵 in Eq. (10.1), we will obtain the exact representation of
the scattering amplitude 𝑖ℳ as depicted in Fig. 3.2. The derivation of Eq. (10.4) still works out, in
particular, 𝐵 is real inside the elastic 𝑠-channel scattering region, but the real part, and thus the 𝐾
matrix, becomes much more convoluted, because it describes more physics.

10.2 Rescattering and Khuri–Treiman equations
We are now ready for a better understanding of the rescattering encoded in KT equations. For
simplicity, we will focus on the process 𝛾 (∗)𝜋 → 𝜋𝜋, whose KT equations have been described in
Sec. 7.2, but as alluded to ibidem, the KT framework is by no means restricted to this process. All
the observations made here carry easily over to other processes in its application domain. The
discussion in Sec. 7.2 makes it clear that the KT equations (7.56) are obtained by using elastic uni-
tarity in all three kinematic channels, i.e., the 𝑠, 𝑡, and 𝑢 channel. Following the line of thought of
Sec. 10.1, this amounts to taking into account 𝜋𝜋 rescattering in all three channels.3 Accordingly,
the KT equations amount to expanding the scattering amplitude in terms of the two-pion propa-
gator as depicted in Fig. 10.3. Note that certain box-like topologies, e.g., the one shown in Fig. 10.4,
are not included in KT equations, because here we encounter four-pion intermediate states, but the
employed unitarity relation (7.31) incorporates only two-pion states.

The KT equations can be analytically continued into the decay region, i.e., we can make ex-
plicit use of crossing symmetry. How to do so is discussed in detail in Ch. 11, qualitatively, the
implications of this continuation can be completely understood on a diagrammatic basis by simply
performing the crossing in all diagrams of Fig. 10.3, obtaining the outcome visualized in Fig. 10.5.
Remarkably, there emerge contributions with three intermediate pions, as indicated by the dashed
line in Fig. 10.5. That is, the basis functions ℬ𝑘 of the KT equations in the decay region partly
encode three-pion rescattering, where one pion always spectates the other two pions interacting
tightly [190]. This description of three-pion rescattering is incomplete, since contributions where
all three pions interact simultaneously as depicted in Fig. 10.6 are not accounted for. These are to

3Contrarily to the IAM, the approximation being made is not the truncation of ChPT but the truncation of the
partial-wave expansion, see Eq. (7.44).
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= + + + + …

Figure 10.3: A diagrammatic representation of the contributions to 𝛾 (∗)𝜋 → 𝜋𝜋 that are included
in the KT equations. For ease of visualization, we do not depict the 𝑢-channel contributions.

Figure 10.4: A box-like topology that is not included in the KT equations.

be parametrized by the subtraction functions 𝑐𝑘.
As two-pion rescattering and two-body unitary are linked, so are three-pion rescattering and

three-body unitarity, i.e., the unitarity relation of 𝜋𝜋𝜋 → 𝜋𝜋𝜋 that is obtained by restricting the at-
tention to 𝜋𝜋𝜋 intermediate states. Due to the connectedness structure of the 𝑆matrix [11, Ch. 4.3]
this unitarity relation contains contributions where two pions interact and the other is an observer
as well as contributions where all three pions interact closely [23, Ch. 4.2]. We have seen that
the former are encoded in the KT basis functions. Hence, the basis functions on their own satisfy
three-body unitarity partly, if properly continued into the decay region [200]. The incorporation
of full three-body unitarity into KT equations remains a subject of research [219]. For a general
overview about the subject, we refer the reader to Ref. [220] andmention in passing that three-body
unitarity is also a useful tool in the discussion of three-particle scattering on the lattice [221].

Now let us turn our attention towards the relation between the KT basis functions (7.56) and
the Omnès function (7.58). The latter satisfies the elastic unitarity condition of the pion vector
form factor (see, e.g., Ref. [190] for a pedagogical derivation), and so it describes the rescattering
of two pions in a 𝑃 wave. Thus, if we replace ℬ𝑘 by 𝑠𝑘Ω(𝑠), that is, ignore the contributions of the
hat function ℬ̂𝑘 in the KT equations (7.56), we effectively ignore the last diagram in Fig. 10.3 (and
Fig. 10.5) and all similar contributions. These are precisely the contributions called mixed rescat-

= + + + + …

Figure 10.5: The KT equations in the decay region. Each diagram is obtained by crossing the
corresponding one in Fig. 10.3. See also Fig. 2.2 in Ref. [190].
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Figure 10.6: Genuine three-pion scattering that is not described by the KT basis functions.

tering in Sec. 7.2.2. That is, as claimed ibidem, ignoring the hat function amounts to focusing on 𝜋𝜋
rescattering in individual kinematic channels only. Naturally, the question arises how important
the mixed rescattering is, i.e., if its effects are visible in scattering or decay data. The results of
Part III show that this is not the case for the 𝛾 (∗)𝜋 → 𝜋𝜋 lattice data, which comes at no surprise
given the large error of the data. Moreover, as discussed in Ch. 1, depending on the process and
dataset, mixed rescattering becomes visible in experiments or remains unseen. Hence, we aim to
develop a method to assess the size of mixed rescattering in a given decay channel. Before doing
so, we discuss the KT framework in greater detail.
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Chapter 11

Gasser–Rusetsky method for
Khuri–Treiman equations

In this chapter, we tie up loose ends. Namely, we finally discuss the analytic continuation of KT
equations into the decay region. Moreover, we explain how to solve the KT equations numerically,
which needs to be done, e.g., in the analysis described in Part III. To that end, we discuss a modi-
fied form of the method presented in Ref. [199]. This method performs the analytic continuation
via a deformation of the contour of integration associated with Mandelstam 𝑠. There is an alter-
native approach [198], which deforms the contour of integration of the 𝑧⋆ integral; however, this
approach is more cumbersome. Nevertheless, it has been applied frequently with great success,
e.g., in Refs. [51, 70, 222].

11.1 General Khuri–Treiman problem
In the following, scattering of the form 𝒫1(𝑝1) + 𝒫2(𝑝2) → 𝒫3(𝑝3) + 𝒫4(𝑝4) as well as decays
𝒫1(𝑝1) → 𝒫2(𝑝2) + 𝒫3(𝑝3) + 𝒫4(𝑝4) are investigated; both processes are related via crossing sym-
metry. Here, as in Ch. 2, 𝒫𝑖 labels a particle and 𝑝𝑖 its four-momentum. The squared momenta
𝑝2𝑖 ≕ 𝑚2

𝑖 are in general independent free variables and might be space-, time-, or lightlike. Hence,
almost all equations given in the following depend also on 𝑚2

𝑖 ; however, this dependence is of-
ten not displayed explicitly. If one of the particles is heavy enough to decay into the other three,
without loss of generality this will always be 𝒫1.

The KT approach starts with the derivation of the reconstruction theorem for the scattering
process at hand, like it has been done for 𝛾 (∗)𝜋 → 𝜋𝜋 in Sec. 7.2.1. Even if one is interested merely
in the decay, the investigation starts with the scattering. As a result of the reconstruction theorem,
one obtains a set {ℬℐ}ℐ ∈𝕀. Here the index set 𝕀 labels the different single-variable functions ℬℐ
that are determined by the following set of potentially coupled integral equations, each in the form
of an inhomogeneous Omnès problem:

ℬℐ (𝑠) = Ωℐ (𝑠)
⎡
⎢
⎢
⎣

𝑃ℐ (𝑠) + 𝑠𝑛ℐ
𝜋

∞

∫
𝑠thrℐ

ℬ̂ℐ (𝑥) sin [𝛿ℐ (𝑥)]
|Ωℐ (𝑥)| (𝑥 − 𝑠) 𝑥𝑛ℐ

d𝑥
⎤
⎥
⎥
⎦

,

ℬ̂ℐ (𝑥) ≔ ∑
𝒥 ∈𝕀

∑
𝑚∈ℕ0

𝐶𝑚ℐ𝒥 (𝑥) ⟨𝑧⋆𝑚ℬ𝒥⟩ (𝑥) .

(11.1)
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The 𝐶𝑚ℐ𝒥 are known analytic functions (that typically contain a combination of rational functions
and square roots),

⟨𝑧⋆𝑚ℬ𝒥⟩ (𝑥) ≔
1
2

1

∫
−1

𝑧⋆𝑚ℬ𝒥 (𝑥, 𝑧⋆) d𝑧⋆, (11.2)

and depending on the index 𝒥 and the problem at hand either

ℬ𝒥 (𝑥, 𝑧⋆) ≔ ℬ𝒥 (𝑡 (𝑥, 𝑧⋆)) (11.3)

or
ℬ𝒥 (𝑥, 𝑧⋆) ≔ 1

2
[ℬ𝒥 (𝑠 (𝑥, 𝑧⋆)) + ℬ𝒥 (𝑢 (𝑥, 𝑧⋆))] (11.4)

or something similar. In addition,

Ωℐ (𝑠) ≔ exp
⎡
⎢
⎢
⎣

𝑠
𝜋

∞

∫
𝑠thrℐ

𝛿ℐ (𝑥)
𝑥 (𝑥 − 𝑠)

d𝑥
⎤
⎥
⎥
⎦

(11.5)

is the Omnès function, see Eq. (7.58), and 𝑃ℐ (𝑠) a polynomial of degree 𝑛ℐ−1. In case of 𝛾 (∗)𝜋 → 𝜋𝜋,
there is only a single function ℬ, which is why we omitted the index in its discussion. Due to the
linearity of the equations the problem reduces to compute the basis functions

ℬ𝑘
ℐ (𝑠) = Ωℐ (𝑠)

⎡
⎢
⎢
⎣

𝑠𝑘 + 𝑠𝑛ℐ
𝜋

∞

∫
𝑠thrℐ

ℬ̂𝑘
ℐ (𝑥) sin [𝛿ℐ (𝑥)]

|Ωℐ (𝑥)| (𝑥 − 𝑠) 𝑥𝑛ℐ
d𝑥
⎤
⎥
⎥
⎦

(11.6)

for allℐ ∈ 𝕀 and all non-negative integers 𝑘 < 𝑛ℐ. Since Eq. (11.6) is just a special case of Eq. (11.1),
in the following the latter is discussed.

Clearly,

ℬ̂ℐ (𝑥) sin [𝛿ℐ (𝑥)]
|Ωℐ (𝑥)|

=
ℬ̂ℐ (𝑥) sin [𝛿ℐ (𝑥)] 𝜎ℐ(𝑥)𝑒𝑖𝛿ℐ(𝑥)

|Ωℐ (𝑥)| 𝜎ℐ(𝑥)𝑒𝑖𝛿ℐ(𝑥)
= 𝜎ℐ (𝑥) ℬ̂ℐ (𝑥)

𝑇ℐ (𝑥)
Ωℐ (𝑥)

, (11.7)

with

𝑇ℐ (𝑥) =
sin [𝛿ℐ (𝑥)] 𝑒𝑖𝛿ℐ(𝑥)

𝜎ℐ (𝑥)
(11.8)

the partial wave for the process at hand and 𝜎ℐ the corresponding two-body phase space, see
Eq. (2.19). Inserting this into Eq. (11.1) results in

ℬℐ (𝑠) = Ωℐ (𝑠) 𝑃ℐ (𝑠) + ∑
𝒥 ∈𝕀

∞

∫
𝑠thrℐ

1

∫
−1

𝐾ℐ𝒥 (𝑠, 𝑥, 𝑧⋆)ℬ𝒥 (𝑥, 𝑧⋆) d𝑧⋆d𝑥 (11.9)

with the kernel

𝐾ℐ𝒥 (𝑠, 𝑥, 𝑧⋆) ≔ Ωℐ (𝑠) ( 𝑠
𝑥
)
𝑛ℐ 1

𝑥 − 𝑠
𝑇ℐ (𝑥)
Ωℐ (𝑥)

𝜎ℐ (𝑥)∑
𝑚

𝑧⋆𝑚

2
𝐶𝑚ℐ𝒥 (𝑥) . (11.10)
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It is worth noting that 𝑇ℐ/Ωℐ does not have a right-hand cut, since for values of 𝑥 along this cut

disc𝑥 [
𝑇ℐ (𝑥)
Ωℐ (𝑥)

] = 2𝑖 Im [
𝑇ℐ (𝑥+)
Ωℐ (𝑥+)

]

= 2𝑖 Im [
𝑇ℐ (𝑥+) Ωℐ (𝑥+)

∗

Ωℐ (𝑥+) Ωℐ (𝑥+)
∗ ]

= 2𝑖
|Ωℐ (𝑥+)|

2 Im [|𝑇ℐ (𝑥+)| 𝑒𝑖𝛿ℐ(𝑥) |Ωℐ (𝑥+)| 𝑒−𝑖𝛿ℐ(𝑥)]

= 0

(11.11)

holds.
Eq. (11.9) is well-defined only inside a particular kinematic region defined by certain values of

𝑚2
𝑖 . To evaluate it, e.g., for𝑚1 > 𝑚2+𝑚3+𝑚4, i.e., when a decay is possible, it needs to be analytically

continued via deformation of the contours of integration. To that end, the analytic structure of the
integrand in Eq. (11.9) parametrized by the external masses needs to be understood. The kernel
Eq. (11.10) inherits a left-hand cut in 𝑥 from 𝑇ℐ(𝑥) and a right-hand cut in 𝑠 fromΩℐ(𝑠). Apart from
that its non-trivial analytic structure in 𝑥 and 𝑠 is determined by known analytic expressions (i.e.
the Cauchy kernel, the phase space, and 𝐶𝑚ℐ𝒥). In addition, it is a polynomial in 𝑧⋆.

Apart from the kernel, singularities also arise if in the computation of ℬ𝒥 the function ℬ𝒥 is
evaluated at its branch point located at 𝑠thr𝒥 . That is, if

𝑡 (𝑥, 𝑧⋆) = 𝑠thr𝒥 (11.12)

(or a similar relation for 𝑠(𝑥, 𝑧⋆) and/or 𝑢(𝑥, 𝑧⋆)) holds. The explicit expressions relating the Man-
delstam variables read

𝑡 = 𝑅 − 𝑠
2

−
(𝑚2

1 − 𝑚2
2) (𝑚2

3 − 𝑚2
4)

2𝑠
+ √𝜆 (𝑠, 𝑚

2
1, 𝑚2

2) 𝜆 (𝑠, 𝑚2
3 , 𝑚2

4)

2𝑠
𝑧⋆ (11.13)

and

𝑢 = 𝑅 − 𝑠
2

+
(𝑚2

1 − 𝑚2
2) (𝑚2

3 − 𝑚2
4)

2𝑠
− √𝜆 (𝑠, 𝑚

2
1, 𝑚2

2) 𝜆 (𝑠, 𝑚2
3, 𝑚2

4)

2𝑠
𝑧⋆. (11.14)

Here, as before, 𝑧⋆ = cos(𝜃⋆), with 𝜃⋆ = ∠(𝒑⋆
1 , 𝒑⋆

3 ) the scattering angle in the 𝑠 channel, 𝑅 = ∑𝑖 𝑚
2
𝑖 ,

and 𝜆 is the Källén function. So 𝑢 can be obtained from 𝑡 by replacing 𝑧⋆ by −𝑧⋆ and interchanging
𝑚2
1 and 𝑚2

2 (or alternatively 𝑚2
3 and 𝑚2

4).
Inserting Eq. (11.13) into Eq. (11.12) results in

4
∑
𝑖=0

𝑐𝑖 (𝑧⋆
2) 𝑥 𝑖 = 0, (11.15)
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with
𝑐0 (𝑧⋆

2) ≔ (𝑧⋆2 − 1) (𝑚2
1 − 𝑚2

2)
2
(𝑚2

3 − 𝑚2
4)

2 ,

𝑐1 (𝑧⋆
2) ≔ 2 (𝑚2

1 − 𝑚2
2) (𝑚2

3 − 𝑚2
4) (𝑅 − 2𝑠thr𝒥 )

− 2𝑧⋆2 ((𝑚2
1 + 𝑚2

2) (𝑚2
3 − 𝑚2

4)
2 + (𝑚2

1 − 𝑚2
2)

2
(𝑚2

3 + 𝑚2
4)) ,

𝑐2 (𝑧⋆
2) ≔ 𝑧⋆2 ((𝑚2

1 − 𝑚2
2)

2 + (𝑚2
3 − 𝑚2

4)
2 + 4 (𝑚2

1 + 𝑚2
2) (𝑚2

3 + 𝑚2
4))

− 𝑅2 + 4𝑠thr𝒥 (𝑅 − 𝑠thr𝒥 ) − 2 (𝑚2
1 − 𝑚2

2) (𝑚2
3 − 𝑚2

4) ,

𝑐3 (𝑧⋆
2) ≔ 2𝑅 (1 − 𝑧⋆2) − 4𝑠thr𝒥 ,

𝑐4 (𝑧⋆
2) ≔ 𝑧⋆2 − 1.

(11.16)

Since the coefficients 𝑐𝑖 depend on 𝑧⋆2 and not 𝑧⋆, the corresponding equations for 𝑢(𝑥, 𝑧⋆) = 𝑠thr𝒥
or 𝑠(𝑥, 𝑧⋆) = 𝑠thr𝒥 can be obtained by interchanging the appropriate pair of masses (e.g., 𝑚2

3 ↔ 𝑚2
4

to obtain the coefficients for 𝑢(𝑥, 𝑧⋆) = 𝑠thr𝒥 ). Eq. (11.15) is a quadratic equation in 𝑧⋆, and thus the
singularities in the complex 𝑧⋆ plane as a function of 𝑥 can be obtained in closed analytic form by
solving Eq. (11.15) for 𝑧⋆. Alternatively, Eq. (11.15) can be solved in closed analytic form to obtain
the singularities in the complex 𝑥 plane as a function of 𝑧⋆, since the equation is quartic in 𝑥 and
solutions to quartic equations can still be given in closed analytic form.

It is worth noting that Eq. (11.16) simplifies considerably as soon as either 𝑚2
1 = 𝑚2

2 or 𝑚2
3 = 𝑚2

4 .
Since the general solution is lengthy, we discuss separately two simpler, but highly relevant, cases.

11.1.1 Special case: four particles of equal mass

First consider the simple case 𝑚1 = 𝑚2 = 𝑚3 = 𝑚4 ≕ 𝑚 and 𝑠thr𝒥 = 4𝑚2 to understand the general
procedure. This case corresponds, e.g., to the scattering process 𝜋𝜋 → 𝜋𝜋, if only 𝜋𝜋 intermediate
states are taken into account, with the corresponding KT equations being discussed in Ref. [223].
The singularities 𝑧⋆sing in 𝑧⋆ are determined by

𝑧⋆2sing = (𝑥 + 4𝑚2

𝑥 − 4𝑚2)
2
. (11.17)

Hence, if the contour of integration in 𝑥 remains unchanged, i.e. 𝑥 ∈ [4𝑚2, ∞), the singular values of
𝑧⋆ are 𝑧⋆sing ∈ (−∞, −1)∪ (1, ∞). Thus, the original contour of integration in 𝑧⋆, namely 𝑧⋆ ∈ [−1, 1],
does not interfere with the singular region in the 𝑧⋆ plane, so that no deformation of contours is
necessary. The same result can be obtained by solving for 𝑥 instead of 𝑧⋆. If 𝑧⋆2 = 1, the singularity
in 𝑥 is at 𝑥sing = 0, otherwise it is determined by

𝑥sing = 4𝑚2 [±√𝑓 (𝑧⋆2)
2
− 1 − 𝑓 (𝑧⋆2)] , 𝑓 (𝑧⋆2) = 1 + 𝑧⋆2

1 − 𝑧⋆2
. (11.18)

Hence, 𝑥sing ∈ (−∞, 0] for 𝑧⋆ ∈ [−1, 1], that is, the original contours of integration are fine as
expected.
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11.1.2 Special case: identical masses in the final state of the decay

Consider now the special case with 𝑚1 ≡ 𝑀 and 𝑚2 = 𝑚3 = 𝑚4 ≕ 𝑚 as well as 𝑠thr𝒥 = 4𝑚2. That is,
the aim is to develop an understanding of the singularities in the decay of one particle into three
particles of equal mass, where the intermediate two-particle states consist of particles of the same
species as the ones in the decay product. In this case, Eq. (11.15) and Eq. (11.16) simplify to

0 =𝑥3 [𝑧⋆2 − 1] + 2𝑥2 [(𝑀2 − 5𝑚2) − 𝑧⋆2𝑅]

+ 𝑥 [𝑧⋆2𝑅2 − (𝑀2 − 5𝑚2)2] − 4𝑧⋆2𝑚2 (𝑀2 − 𝑚2)2 .
(11.19)

Solving for 𝑧⋆2 yields

𝑧⋆2sing =
𝑥 (5𝑚2 − 𝑀2 + 𝑥)2

(𝑥 − 4𝑚2) [𝑥2 − 2𝑥 (𝑀2 + 𝑚2) + (𝑀2 − 𝑚2)2]
. (11.20)

The original path of integration in the 𝑧⋆ plane extends from −1 to 1, i.e. it covers the interval [0, 1]
on the real axis in the 𝑧⋆2 plane. Solving Eq. (11.19) for 𝑥 with 𝑧⋆2sing ∈ {0, 1} fixed results in1

𝑧⋆2sing = 0 ⇔ 𝑥sing ∈ {0,𝑀2 − 5𝑚2} ,

𝑧⋆2sing = 1 ⇔ 𝑥sing = 𝑀2 − 𝑚2

2
.

(11.21)

Moreover,
lim
𝑥→∞

𝑧⋆2sing = 1. (11.22)

Again, the original path of integration in the 𝑥 plane extends along [4𝑚2, ∞). As long as𝑀2 < 9𝑚2,
that is as long as the decay is kinematically forbidden, the singularities Eq. (11.21) stay below 4𝑚2,
and thus they do not interfere with the original path of integration. However, as soon as𝑀2 ≥ 9𝑚2,
both 𝑀2 − 5𝑚2 ≥ 4𝑚2 and (𝑀2 − 𝑚2)/2 ≥ 4𝑚2. That is, the original path of integration fails to
work inside the decay region. Another special point at which significant simplifications arise is
𝑀2 = 9𝑚2, that is the boundary of the decay region (in 𝑀2). In this case Eq. (11.19) boils down to

0 = (𝑥 − 4𝑚2)2 [𝑥 (𝑧⋆2 − 1) − 16𝑚2𝑧⋆2] , (11.23)

which is solved by

𝑥sing ∈ {4𝑚2, −16𝑚2 𝑧⋆2

1 − 𝑧⋆2
} . (11.24)

The second solution is non-positive for 𝑧⋆2 ∈ [0, 1), but the first one interferes directly with the
lower limit of integration in 𝑥, pointing again to the fact that the original contours of integration
fail to work as soon as the decay is kinematically allowed.

The correct way to circumvent this problem is to analytically continue Eq. (11.9) as a function
of 𝑀2 via a deformation of the contours of integration. There are different ways to perform this
continuation, since there are two integrals, both of which can be deformed. Here, the choice is
made to keep the contour of integration in 𝑧⋆, i.e. 𝑧⋆ ∈ [−1, 1], while distorting the contour of

1Note that in both cases Eq. (11.19) boils down to a quadratic equation in 𝑥.
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integration in 𝑥. Hence, in the following the singularities in the 𝑥 plane as a function of 𝑧⋆2 ∈ [0, 1]
are studied.

The endpoints 𝑥sing(𝑧⋆
2 = 0) and 𝑥sing(𝑧⋆

2 = 1) are given by Eq. (11.21). In addition, the

singularities 𝑥sing(𝑧⋆
2) for 𝑧⋆2 ∈ (0, 1) are obtained by solving the in this case cubic Eq. (11.19).

This can be done, e.g., using Cardano’s formula.
To be precise, denote an 𝑛-th root of unity by

𝜉𝑛 ≔ exp [2𝜋𝑖
𝑛
] , 𝜉 𝑛𝑛 = 1. (11.25)

Furthermore, for arbitrary 𝜁 ∈ ℂ, define the principal value of the 𝑛-th root as

𝜁 1/𝑛 ≔ exp [1
𝑛
ln (𝜁)] . (11.26)

Here ln(𝜁 ) = ln(|𝜁 |) + 𝑖 arg(𝜁 ) denotes the principal branch of the logarithm, with a cut along
(−∞, 0]. The value of the 𝑛-th root on its other 𝑛 − 1 Riemann sheets is accordingly given as

exp [1
𝑛
(ln (𝜁) + 𝑟2𝜋𝑖)] = exp [1

𝑛
ln (𝜁)] exp [𝑟2𝜋𝑖

𝑛
] = 𝜁 1/𝑛𝜉 𝑟𝑛, (11.27)

with 𝑟 ∈ 1, … , 𝑛 − 1. In the special case of a cube root,

𝜉3 =
−1 + 𝑖√3

2
, 𝜉 23 = 𝜉 ∗3 (11.28)

hold.
Now consider the equation

3
∑
𝑖=0

𝑐𝑖𝑥 𝑖 = 0, (11.29)

where the coefficients 𝑐𝑖 in the case of interest are fixed via comparision with Eq. (11.19). The
solutions of Eq. (11.29) read [224, 225]

𝑥sing,𝑘 = − 1
3𝑐3

[𝑐2 + 𝜉 𝑘3Δ± +
Δ0

𝜉 𝑘3Δ±
] , 𝑘 ∈ {0, 1, 2} . (11.30)

Here
Δ0 ≔ 𝑐22 − 3𝑐3𝑐1,
Δ1 ≔ 2𝑐32 − 9𝑐3𝑐2𝑐1 + 27𝑐23𝑐0,

Δ± ≔ (
Δ1 ± √Δ

2
1 − 4Δ3

0

2
)

1/3

,

(11.31)

where the choice of the sign in Δ± is arbitrary—according to Eq. (11.27) it merely corresponds to a
change of the sheet of the square root—as long as Δ± ≠ 0. However, if it equals 0 for one choice of
the sign, the other one is to be picked. Note that due to Eq. (11.27) the different solutions correspond
to different choices of the Riemann sheet of the cube root in Δ±.

In the following, consider arbitrary 𝑀2, 𝑚 ∈ ℝ and 𝑧⋆2 ∈ (0, 1). Thus, in the case of interest
𝑐𝑖, Δ0, Δ1 ∈ ℝ. Moreover, 𝜉3Δ± is real for 𝑀2 > 9𝑚2. Hence, 𝑥sing,1 ∈ ℝ, moreover, 𝑥sing,0 = 𝑥∗sing,2
due to Eq. (11.28):

Δ± = 𝜉 33Δ± = 𝜉 23 𝜉3Δ± = 𝜉 ∗3 𝜉3Δ± = (𝜉3𝜉3Δ±)
∗ . (11.32)
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The singularities 𝑥sing,𝑘 for 𝑘 = 0, 1, 2 are plotted in the 𝑥 plane for all values of 𝑧⋆2 ∈ [0, 1]
and for different values of 𝑀2 in Fig. 11.1. Independently of the value of 𝑀2, the negative real
axis is always singular. Moreover, it is the only singular region as long as 𝑀2 is non-positive. As
soon as 𝑀2 > 0, a structure symmetric around the real axis starts to form, which in the beginning
is connected to the negative real axis. A further increase in 𝑀2 results in a detachment of this
structure from the negative real axis, it moves steadily towards the branch point at 4𝑚2. To be
precise, as soon as it detaches from the negative real axis at 𝑀2 = 5𝑚2 the structure is given as

𝕊 ≔ {𝑥sing,𝑘 ∶ 𝑘 ∈ {0, 2} and 𝑧⋆2 ∈ (0, 1)} ∪ {𝑀2 − 5𝑚2, 𝑀
2 − 𝑚2

2
} . (11.33)

Here the two elements given at the end correspond to Eq. (11.21). When 𝑀2 reaches the decay
threshold, i.e. 𝑀2 = 9𝑚2, 𝕊 collapses to a single point at exactly the branch point 4𝑚2. For 𝑀2 >
9𝑚2, 𝕊 emerges again; it moves along the real axis to the right and increases in size with increasing
𝑀2. Moreover,

max {Re (𝑦) ∶ 𝑦 ∈ 𝕊} = {
𝑀2−𝑚2

2 , 𝑀2 < 9𝑚2,
𝑀2 − 5𝑚2, 𝑀2 > 9𝑚2,

min {Re (𝑦) ∶ 𝑦 ∈ 𝕊} = {
𝑀2 − 5𝑚2, 𝑀2 < 9𝑚2,
𝑀2−𝑚2

2 , 𝑀2 > 9𝑚2

(11.34)

holds.
The problem is not only that for 𝑀2 > 9𝑚2 the singularities interfere with the original path of

integration, but also that at 𝑀2 = 9𝑚2 they hit the branch point, which marks the beginning of
the path of integration. Since the endpoints of an integration contour are fixed, this is a serious
obstacle for any analytic continuation.

The way out is to equip 𝑀2 with a small, positive imaginary part, that is, to perform the re-
placement𝑀2 ↦ 𝑀2+𝑖𝜖with 𝜖 > 0, and consider the limit 𝜖 ↘ 0 in the end. This does not alter the
singularities depicted in Fig. 11.1 in any significant2 way except for the location of 𝕊 at 𝑀2 = 9𝑚2:
instead of 𝕊|𝑀2=9𝑚2 = {4𝑚2} now 𝕊|𝑀2=9𝑚2+𝑖𝜖 = {4𝑚2 + 𝑖𝜖} holds. That is, the singularities do not
hit the branch point.

To understand how the contour of integration in the 𝑥 plane needs to be deformed, start with
Eq. (11.9) for𝑀2 < 9𝑚2, where the original contour [4𝑚2, ∞) is fine. Now increase𝑀2 continuously,
while sticking to the +𝑖𝜖 prescription. At 𝑀2 = 9𝑚2 the singularity structure 𝕊 passes by the start
of the integration contour above the real axis, for larger values of 𝑀2 the structure 𝕊 grows in
size. Hence, to avoid any collision of the contour with 𝕊, the contour needs to be deformed into
the lower half plane. This is illustrated in Fig. 11.2 for 𝑀2 = 12𝑚2. Note that the depicted choice
of the deformed path, denoted C, is just one possible choice out of many. Any path that starts at
4𝑚2, extends towards infinity, and avoids the singularities via bending into the lower half plane is
legitimate.

2For 𝑀2 ≠ 9𝑚2 there is no change in 𝕊, since the limit 𝜖 ↘ 0 can be performed without running into any problems.
However, for 𝜖 ≠ 0 the parts of 𝕊 that are traced out by 𝑥sing,0 and 𝑥sing,2 are partly interchanged, due to the branch cuts
of the roots appearing in Eq. (11.31).

127



CHAPTER 11. GASSER–RUSETSKY METHOD FOR KHURI–TREIMAN EQUATIONS

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = −3𝑚2 𝑥sing,0
𝑥sing,1
𝑥sing,2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 0𝑚2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 3𝑚2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 6𝑚2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 9𝑚2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 12𝑚2

−4 −2 0 2 4 6 8 10
Re(𝑥)/𝑚2

−2

0

2

Im
(𝑥
)/
𝑚

2 𝑀2 = 15𝑚2

Figure 11.1: The singularities for different values of 𝑀2. The gray blob denotes the branch point
at 4𝑚2, while the original path of integration is represented by the dotted gray line. At 𝑀2 = 9𝑚2

the singularities 𝑥sing,0 and 𝑥sing,2 shrink down to a point located exactly at the branch point 4𝑚2.
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Figure 11.2: The singularities for 𝑀2 = 12𝑚2 as well as the deformed contour of integration, de-
noted by C. As before the gray blob represents the branch point at 4𝑚2, while the original path of
integration is depicted as a dotted gray line.

11.2 Final form of the Khuri–Treiman equations
The KT equations in their final form arise if the outer path of integration in Eq. (11.9) is deformed
as discussed leading to

ℬℐ (𝑠) = Ωℐ (𝑠) 𝑃ℐ (𝑠) + ∑
𝒥 ∈𝕀

∫
C𝒥

1

∫
−1

𝐾ℐ𝒥 (𝑠, 𝜁 , 𝑧⋆)ℬ𝒥 (𝜁 , 𝑧⋆) d𝑧⋆d𝜁 , (11.35)

with Cℐ the appropriately deformed contour of integration of the ℐ-th single-variable function.
The branch cut of the 𝒥-th integral in Eq. (11.35) is generated by the Cauchy kernel 1/(𝑥 − 𝑠) in
Eq. (11.10), and thus it runs along C𝒥. To avoid having multiple inconsistent cuts in Eq. (11.35), it
is necessary to choose overlapping contours of integration for all 𝒥 ∈ 𝕀 that contribute to a given
ℬℐ, i.e., there must exist a path Gℐ, such that C𝒥 ⊆ Gℐ for all 𝒥 ∈ 𝕀 that yield 𝐾ℐ𝒥 ≠ 0. For
notational simplicity, we make a global choice, i.e., C𝒥 = C for all 𝒥 ∈ 𝕀.3 Clearly, this C needs
to be chosen such that it avoids the singularities in all the |𝕀| integrals. Furthermore, note that
the Omnès function as given in Eq. (11.5) has a branch cut along [𝑠thrℐ , ∞). Both the first term in
Eq. (11.35) as well as the kernel 𝐾ℐ𝒥 inherit this cut, which is undesirable for the cut arising from
the integration in the second term runs along C, again leading to inconsistent cuts. To avoid these
troubles, we continue the Omnès function analytically to its second Riemann sheet. Proceeding

3In certain cases where the thresholds 𝑠thrℐ differ, a single global choice does not work. This is not an issue, merely
enforces the replacement of C by C𝒥 in the following equations.
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along the lines of the discussion in Sec. 2.2 and borrowing the notation used ibidem we obtain

Ωℐ (𝑠+) − Ωℐ (𝑠−) = |Ωℐ (𝑠)| (𝑒𝑖𝛿ℐ(𝑠) − 𝑒−𝑖𝛿ℐ(𝑠))
= 2𝑖 |Ωℐ (𝑠)| sin [𝛿ℐ (𝑠)]
= 2𝑖Ωℐ (𝑠−) 𝜎ℐ (𝑠+) 𝑇ℐ (𝑠+) ,

(11.36)

where we used arg[Ωℐ(𝑠±)] = ±𝛿(𝑠) as well as Eq. (11.8). From this we deduce that the Omnès
function on its second Riemann sheet reads

ΩII
ℐ (𝑠) =

Ωℐ (𝑠)
1 + 2𝑖𝜎ℐ (𝑠) 𝑇ℐ (𝑠)

. (11.37)

We denote by Ω̃ℐ the appropriate combination ofΩℐ andΩII
ℐ that has a cut along C. For example, in

case of the scenario discussed in Sec. 11.1.1, Ω̃ℐ = Ωℐ, while in the scenario outlined in Sec. 11.1.2,
more specifically, the one depicted in Fig. 11.2,

Ω̃ℐ (𝑠) ≔ {
ΩII
ℐ (𝑠) , Re (𝑠) ∈ [4𝑚2, 8𝑚2] ∧ Im (𝑠) ∈ [−𝑚2, 0] ,

Ωℐ (𝑠) , else.
(11.38)

This choice is enforced by the analytic continuation in 𝑀2 as shown in Fig. 11.1: for 𝑀2 < 9𝑚2

the path of integration Cinitial runs along [4𝑚2, ∞), while for 𝑀2 > 9𝑚2 it gets deformed into the
contour C, so clearly the part of the complex plain enclosed by C ∪ Cinitial is associated with what
was known previously as the second sheet. Accordingly, we replace Ωℐ (𝑠) in the first term in
Eq. (11.35) as well as in Eq. (11.10) by Ω̃ℐ. Note that we do not replace Ωℐ(𝑥) in Eq. (11.10), for as
discussed in Eq. (11.11) its cut is of no relevance. In this way allℬ𝐼 have a single cut running along
C.

11.3 Numerical solution
To solve the KT equations (11.35), we rewrite them solely in terms of ℬℐ. If ℬℐ is given as in
Eq. (11.3), we merely evaluate Eq. (11.35) at 𝑠 ↦ 𝑡(𝑥′, 𝑧⋆′). If instead Eq. (11.4) applies, we evaluate
Eq. (11.35) once at 𝑠 ↦ 𝑠(𝑥′, 𝑧⋆′) and once at 𝑠 ↦ 𝑢(𝑥′, 𝑧⋆′) and add the results. In this way we
obtain

ℬℐ (𝑥′, 𝑧⋆′) = 𝐺ℐ (𝑥′, 𝑧⋆′) + ∑
𝒥 ∈𝕀

∫
C

1

∫
−1

𝐾ℐ𝒥 (𝑥′, 𝑧⋆′, 𝜁 , 𝑧⋆)ℬ𝒥 (𝜁 , 𝑧⋆) d𝑧⋆d𝜁 , (11.39)

with 𝐺ℐ(𝑠) ≔ Ω̃ℐ(𝑠)𝑃ℐ(𝑠) and the relation between 𝐺ℐ and 𝐺ℐ (as well as the one between 𝐾ℐ𝒥
and 𝐾ℐ𝒥) mimicking the one between ℬℐ and ℬℐ.

A priori, the path C extends towards infinity. However, in practice the scattering amplitudes
𝑇ℐ and the phases 𝛿ℐ are only known up to a certain energy √𝜆ℐ, in addition, the contributions of
the high-energy region to the integral are suppressed due to the powers of 𝑥 in the denominator
of Eq. (11.10). Moreover, while we need a holomorphic expression for 𝑇ℐ in the low-energy region
(where the amplitudes are evaluated along segments of C that reach into the complex plane, see
Fig. 11.2), in the high-energy region 𝑇ℐ is needed only along the real axis, that is, it is sufficient
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to specify 𝛿ℐ along the real axis. If we let 𝛿ℐ approach an integer multiple of 𝜋 at an energy

√Λℐ > √𝜆ℐ, according to Eq. (11.8) the scattering amplitude vanishes for 𝑠 > Λℐ, and thus the
integral along C is cut off at Λℐ. Denote the phase in the low-energy region as before by 𝛿ℐ. Our
goal is to construct a phase Δ(𝑛)

ℐ that equals 𝛿ℐ in the low-energy region and equals 𝑛𝜋, 𝑛 ∈ ℤ,

for all 𝑠 ≥ Λℐ. In addition, Δ(𝑛)
ℐ shall be one time continuously differentiable. This can be easily

achieved via a polynomial 𝑝ℐ of degree three, i.e.,

Δ(𝑛)
ℐ (𝑠) ≔

⎧

⎨
⎩

𝛿ℐ, 𝑠 ≤ 𝜆ℐ,
𝑝ℐ (𝑠) , 𝜆ℐ < 𝑠 ≤ Λℐ,
𝑛𝜋, Λℐ < 𝑠,

(11.40)

with 𝑝ℐ(𝜆ℐ) = 𝛿ℐ(𝜆ℐ), 𝑝ℐ(Λℐ) = 𝑛𝜋, 𝑝′ℐ(𝜆ℐ) = 𝛿′ℐ(𝜆ℐ), and 𝑝′ℐ(Λℐ) = 0. Recasting these
conditions into a matrix equation for the coefficients of 𝑝ℐ results in

𝑝ℐ (𝑠) = (1 𝑠 𝑠2 𝑠3)
⎛
⎜
⎜
⎝

1 𝜆ℐ 𝜆2ℐ 𝜆3ℐ
1 Λℐ Λ2

ℐ Λ3
ℐ

0 1 2𝜆ℐ 3𝜆2ℐ
0 1 2Λℐ 3Λ2

ℐ

⎞
⎟
⎟
⎠

−1

⎛
⎜
⎜
⎝

𝛿ℐ (𝜆ℐ)
𝑛𝜋

𝛿′ℐ (𝜆ℐ)
0

⎞
⎟
⎟
⎠

. (11.41)

We stress that this is only one possibility to treat the phase at high energies that is particularly con-
venient, for it provides a natural cut-off at Λℐ, with the drawback that depending on the behavior
of 𝛿ℐ close to 𝜆ℐ the polynomial might lead to undesired oscillations. Other choices are possible
and feasible.

We compute the integral via Gauß–Legendre quadrature [169],

ℬℐ (𝑥′, 𝑧⋆′) = 𝐺ℐ (𝑥′, 𝑧⋆′) + ∑
𝒥 ∈𝕀

∑
𝑗,𝑘

𝐾ℐ𝒥 (𝑥′, 𝑧⋆′,C (𝑥𝑗) , 𝑧⋆𝑘 )ℬ𝒥 (C (𝑥𝑗) , 𝑧⋆𝑘 )C
′ (𝑥𝑗) 𝑤𝑥

𝑗 𝑤
𝑧
𝑘 ,

(11.42)

where 𝑥𝑗, 𝑧⋆𝑘 are the sites of the quadrature, 𝑤𝑥
𝑗 the weights associated with the integration along C

with curve parameter 𝑥, and 𝑤 𝑧
𝑗 the weights associated with the integration over 𝑧⋆. At this stage,

it becomes useful to introduce the shorthand notation

𝔹𝑗𝑘
ℐ ≔ ℬℐ (C (𝑥𝑗) , 𝑧⋆𝑘 ) ,

𝔾𝑗𝑘
ℐ ≔ 𝐺ℐ (C (𝑥𝑗) , 𝑧⋆𝑘 ) ,

𝕂𝑎𝑏;𝑗𝑘
ℐ 𝒥 ≔ 𝐾ℐ𝒥 (C (𝑥𝑎) , 𝑧⋆𝑏 ,C (𝑥𝑗) , 𝑧⋆𝑘 )C

′ (𝑥𝑗) 𝑤𝑥
𝑗 𝑤

𝑧
𝑘 .

(11.43)

Equipped with these abbreviations, Eq. (11.42) evaluated at 𝑥′ = C(𝑥𝑎) and 𝑧⋆′ = 𝑧⋆𝑏 can be written
as

𝔹𝑎𝑏
ℐ = 𝔾𝑎𝑏

ℐ + ∑
𝒥 ∈𝕀

∑
𝑗,𝑘

𝕂𝑎𝑏;𝑗𝑘
ℐ 𝒥 𝔹𝑗𝑘

𝒥 , (11.44)

or, treating (𝑎, 𝑏, ℐ ) as a label of a component of a vector,

𝔹 = 𝔾 + 𝕂𝔹. (11.45)

Solving Eq. (11.45) for 𝔹 results in

𝔹 = (1 − 𝕂)−1𝔾. (11.46)
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If the spectral radius 𝜌 of the matrix 𝕂, i.e., 𝜌(𝕂) ≔ max{|𝜅| ∶ 𝜅 eigenvalue of 𝕂}, fulfills 𝜌(𝕂) < 1,
the inverse of 1 − 𝕂 can be expressed as a geometric series,

(1 − 𝕂)−1 =
∞
∑
𝑛=0

𝕂𝑛. (11.47)

Truncating this series amounts to an iterative solution of Eq. (11.45). That is, start with a randomly
chosen vector 𝔸 as an initial guess for 𝔹. Applying Eq. (11.45) 𝑁 times yields

𝔹 ≈
𝑁−1
∑
𝑟=0

𝕂𝑟𝔾 + 𝕂𝑁𝔸, (11.48)

which becomes Eq. (11.46) in the limit 𝑁 → ∞, for lim𝑁→∞𝕂𝑁 = 0 if 𝜌(𝕂) < 1, such that the term
proportional to 𝔸 vanishes. This also shows explicitly that if the iterative approach converges,
its solution is independent of the initial guess. It should be stressed that Eq. (11.46) works even if
the iterative solution (11.48) does not converge. Indeed, the iterative solution does not converge,
e.g., in certain KT equations for the decay of a charged 𝐷 meson [68]. The benefit of the iterative
approach is that it needs less computational time, for the matrix inversion is replaced by a few
matrix multiplications. With our eye already on efficiency, it is worth noting that the computation
of the kernel 𝕂 is not a daunting task even if the number of components of 𝔹 is quite large, for
the rows and columns of the matrix 𝕂 are only weakly coupled. To make this explicit, focus for
notational simplicity on the case (11.3). Inserting Eq. (11.10) into Eq. (11.43) shows that 𝕂 can be
decomposed into a product of three matrices

𝕂 = 𝕆𝕔𝕋,

𝕆𝑎𝑏;𝑗𝑘
ℐ 𝒥 ≔ Ωℐ (C (𝑥𝑎))C (𝑥𝑎)

𝑛ℐ 𝛿ℐ𝒥 𝛿𝑎𝑗 𝛿𝑏𝑘,

𝕔𝑎𝑏;𝑗𝑘ℐ 𝒥 ≔ 1
C (𝑥𝑗) − C (𝑥𝑎)

𝛿ℐ𝒥 𝛿𝑏𝑘,

𝕋𝑎𝑏;𝑗𝑘
ℐ 𝒥 ≔

𝑇ℐ (𝜁)
Ωℐ (𝜁)

𝜎ℐ (𝜁)
𝜁 𝑛ℐ

∑
𝑚

𝑧𝑚𝑘
2
𝐶𝑚ℐ𝒥 (𝜁) |

𝜁=C(𝑥𝑗)
𝛿𝑎𝑗 𝛿𝑏𝑘.

(11.49)

In particular, note that by construction the quantities whose computation is time consuming,
namely Ωℐ and 𝑇ℐ, are needed only for all values of C(𝑥𝑎). Hence the time needed for the con-
struction of 𝕂 scales roughly linearly in the number of 𝑥 sites and not like a square.

As another remark, note that there might be square-root-like singularities at threshold, for the
kernel 𝐾ℐ𝒥 contains a term 𝜎ℐ(𝑥)/(𝑥 − 𝑠). If, e.g., 𝑠thrℐ = 4𝑀2

𝜋 and the phase space 𝜎ℐ is given as
in Eq. (2.29), for 𝑠 approaching threshold we have

𝜎ℐ (𝑥)
𝑥 − 𝑠

∼ 1

√𝑥 − 4𝑀2
𝜋
. (11.50)

Square-root-like singularities like this one are integrable and can be taken care of by an appropriate
parametrization of the contour of integration. For example, via the change of variables 𝑥(𝑦) =
4𝑀2

𝜋 + 𝑦2 we obtain
1

√𝑥 − 4𝑀2
𝜋
d𝑥 = 2d𝑦, (11.51)
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thereby explicitly removing the ostensible singularity.
Equipped with 𝔹we can plug it into Eq. (11.35) to computeℬℐ(𝑠) for arbitrary values of 𝑠. The

only subtlety arises if we want to evaluateℬℐ at a value of 𝑠 that lies on top of the curve C. In that
case a naive numerical computation of the integral fails due to the presence of the Cauchy kernel
in 𝐾ℐ𝒥. To illustrate the treatment of this case, consider for the time being the integral

𝐼 (𝑠) ≔
𝑏

∫
𝑎

𝑓 (𝑥)
𝑥 − 𝑠

d𝑥, (11.52)

with 𝑓 a holomorphic function and 𝑎 < 𝑏 the finite real-valued boundaries of the integral. First, let
𝑠 ∉ [𝑎, 𝑏], such that the Cauchy kernel 1/(𝑥 − 𝑠) does not pose any problem. By adding zero we
obtain

𝐼 (𝑠) =
𝑏

∫
𝑎

𝑓 (𝑥) − 𝑓 (𝑠)
𝑥 − 𝑠

d𝑥 + 𝑓 (𝑠)
𝑏

∫
𝑎

1
𝑥 − 𝑠

d𝑥

=
𝑏

∫
𝑎

𝑓 (𝑥) − 𝑓 (𝑠)
𝑥 − 𝑠

d𝑥 + 𝑓 (𝑠) ln (𝑏 − 𝑠
𝑎 − 𝑠

) .

(11.53)

Now we continue the expression analytically into the region 𝑠 ∈ (𝑎, 𝑏). Since

lim
𝑥→𝑠

𝑓 (𝑥) − 𝑓 (𝑠)
𝑥 − 𝑠

=
d𝑓 (𝑠)
d𝑠

, (11.54)

the integrand remains well defined. The treatment of the logarithm requires only a little more care.
With 𝑠± ≔ 𝑠 ± 𝑖𝜖 and the limit 𝜖 ↘ 0 implicit we have

ln (
𝑏 − 𝑠±
𝑎 − 𝑠±

) = ln (𝑏 − 𝑠
𝑎 − 𝑠

± 𝑖𝜖 𝑏 − 𝑠
(𝑎 − 𝑠)2

+ 𝑂 (𝜖2))

= ln (𝑏 − 𝑠
𝑎 − 𝑠

) ± 𝑖𝜋,
(11.55)

where we used the definition of the principal value of the logarithm, ln(𝜁 ) = ln(|𝜁|) + 𝑖 arg(𝜁 ), as
well as (𝑏 − 𝑠)/(𝑎 − 𝑠) < 0 and (𝑏 − 𝑠)/(𝑎 − 𝑠)2 > 0 for 𝑠 ∈ (𝑎, 𝑏). Thus, we arrive at

𝐼 (𝑠±) =
𝑏

∫
𝑎

𝑓 (𝑥) − 𝑓 (𝑠)
𝑥 − 𝑠

d𝑥 + 𝑓 (𝑠) ln (𝑏 − 𝑠
𝑎 − 𝑠

) ± 𝑖𝜋𝑓 (𝑠) , (11.56)

an expression whose numeric evaluation is straightforward. The general case, namely the integra-
tion along the curve C instead of a segment of the real axis, can be treated in the same fashion by
approximating C in the neighborhood of 𝑠 by a straight line.4

11.4 Kernels for specific cases
The KT equations take on a particularly simple form if the particle𝒫1 carries the quantum numbers
𝐼 (𝐽 𝑃𝐶) = 0(1−−), all other particles are pions, and we drop terms beyond 𝑃waves in the reconstruc-
tion theorem. For instance, 𝒫1 might be the 𝜔(782), the 𝜙(1020), or a photon of arbitrary virtuality.

4Note that we can always choose C to be piecewise linear, so in our case this is not an approximation.
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In this scenario, there is only one single-variable function, i.e., the set 𝕀 = {1} is a singleton, and
therefore the corresponding index is often dropped. The associated amplitude 𝑇 is the 𝜋𝜋 → 𝜋𝜋
𝑃 wave. Furthermore, Eq. (11.3) applies and 𝐶𝑚ℐ𝒥 in Eq. (11.10) is given as

𝐶𝑚ℐ𝒥 = 3𝛿ℐ 1𝛿𝒥 1 (𝛿𝑚0 − 𝛿𝑚2) . (11.57)

Indeed, by plugging in this expression into the KT equations we re-obtain Eq. (7.56) and Eq. (7.57).
As a matter of fact, the KT equations need to be adapted only slightly if 𝒫1 has the quantum
numbers 𝐼 (𝐽 𝑃𝐶) = 1(1−+) instead, such as the 𝜋1(1400) or 𝜋1(1600), both candidates for non-𝑞𝑞
mesons [9, 226]. More specifically, Eq. (11.57) is to be replaced by

𝐶𝑚ℐ𝒥 = −3
2
𝛿ℐ 1𝛿𝒥 1 (𝛿𝑚0 − 𝛿𝑚2) . (11.58)

In addition, the reconstruction theorem needs to be adapted, too, that is, Eq. (7.52) is replaced
by [227]

ϝ𝑞2 (𝑠, 𝑡 , 𝑢) = ℬ(𝑡, 𝑞2) −ℬ(𝑢, 𝑞2) . (11.59)
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Chapter 12

Assessing the strength of mixed
rescattering

Now that we have a good understanding of KT equations, we can try to assess the strength of
the mixed rescattering as defined in Sec. 10.2. That is, we want to compare KT equations with
plain Omnès functions quantitatively. We will focus on decays of one particle of mass 𝑀 > 3𝑀𝜋
into three pions, i.e., KT equations as specified in Sec. 11.1.2. One might be tempted to perform
the comparison on the level of the constituents of the reconstruction theorems, i.e., by comparing
the Omnès function (11.5) with the KT solution (11.35). However, this is problematic due to the
ambiguities of reconstruction theorems. As discussed in Sec. 9.2.2, the function ℬ appearing in
the reconstruction theorem of 𝛾∗ → 𝜋𝜋𝜋 is not unique, instead, it can be freely shifted by a certain
polynomial. Similar ambiguities appear in most reconstruction theorems. Hence, it is a priori
not settled which function ℬ is the one that should be compared with the Omnès function. To
avoid this complication, we opt to work directly with the squared total amplitude, which has the
additional benefit that is has a clear interpretation as a probability distribution.

As the two free kinematic variables, we pick Mandelstam 𝑠 and Mandelstam 𝑡. The decay is
kinematically allowed inside a subset 𝐷 of the plane spanned by the two Mandelstam variables,
namely

𝐷 ≔ {(𝑠, 𝑡) ∈ ℝ2 ∶ 𝑠 ∈ [4𝑀2
𝜋 , (𝑀 − 𝑀𝜋)

2] , 𝑧⋆ ∈ [−1, 1]} . (12.1)

At the boundaries of the decay region 𝐷 the Kibble cubic [228]

𝒦(𝑠, 𝑡) ≔ 𝑠𝑡𝑢 − 𝑀2
𝜋 (𝑀2 − 𝑀2

𝜋)
2

(12.2)

vanishes. Explicitly, solving 𝒦(𝑠, 𝑡) = 0 for 𝑡 yields two solutions 𝑡±(𝑠), which upon inspection
indeed fulfill 𝑡±(𝑠) = 𝑡(𝑠, ±1,𝑀2), with 𝑡 as in Eq. (7.59), i.e.,

𝒦(𝑠, 𝑡) = 𝑠 [𝑡 (𝑠, 1, 𝑀2) − 𝑡] [𝑡 − 𝑡 (𝑠, −1,𝑀2)] . (12.3)

Accordingly, the boundary of the scattering region in the 𝑠 channel is given as 𝒦(𝑠, 𝑡) = 0 for
𝑠 ≥ (𝑀𝜋 + 𝑀)2.

A useful tool in the experimental study of a decay into three particles is a Dalitz plot [229],
where 𝑁 events of a given decay process are measured and their distribution over the decay region
𝐷 is analyzed. This can be done by binning, i.e., by devising a partition of the set 𝐷, counting
the number of events falling into each element of this partition, and plotting these as a histogram
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over 𝐷. Alternatively, one can conduct an analysis without binning by making direct use of the
likelihood function. Here, we follow the latter approach.

The idea is to interpret the outcome of the KT equations as a truth and examine to which extent
plain Omnès functions are capable of reproducing this truth. Denote the absolute value squared
of the decay amplitude (spin-averaged as appropriate) in terms of KT equations as 𝒮KT and its
counterpart in terms of Omnès functions as 𝒮Omnès. The KT solution defines a probability density
function (PDF)

𝑓 KT ∶ 𝐷 → ℝ,

(𝑠, 𝑡) ↦ 𝑓 KT (𝑠, 𝑡) ≔
𝒮KT (𝑠, 𝑡)

∫
𝐷
𝒮KT (𝑠, 𝑡) d𝑠d𝑡

. (12.4)

So does its Omnès counterpart: 𝑓Omnès is obtained by replacing 𝒮KT by 𝒮Omnès in Eq. (12.4). Note
that in general these distributions are well defined only because the domain is restricted to 𝐷. Now
we can generate data 𝔻 via drawing 𝑁 ∈ ℕ samples (𝑠𝑗, 𝑡𝑗) from 𝑓 KT:

𝔻 ≔ {(𝑠𝑗, 𝑡𝑗) ∶ 𝑗 = 1, … , 𝑁} . (12.5)

The likelihood function 𝐿 of a given PDF 𝑓 with respect to the data 𝔻 is defined as

𝐿 (𝔻; 𝑓) ≔
𝑁
∏
𝑗=1

𝑓 (𝑠𝑗, 𝑡𝑗) . (12.6)

To assess if the Omnès model is favored over the KT equations by the data, we take a look at the
likelihood ratio

Δ𝐿 (𝔻) ≔
𝐿 (𝔻; 𝑓 Omnès)

𝐿 (𝔻; 𝑓 KT)
. (12.7)

Clearly, if Δ𝐿 > 1, the likelihood of the Omnès model exceeds the one of the KT equations, the
situation is reversed if Δ𝐿 < 1. Note that Δ𝐿 > 1 is possible despite the data being drawn from 𝑓 KT,
because 𝑁 is finite. This is precisely the reasoning behind our approach: from a theoretical point
of view, it is clear that the KT equations are an improvement over plain Omnès functions, for the
former incorporate more physical effects. Hence, the KT equations should be closer to reality than
a plain Omnès model, nevertheless, due to finite statistics, i.e., finite 𝑁, an experiment might still
conclude the opposite (or be inconclusive). It is this question that we want to address: how large
does 𝑁 need to be for an experiment to likely favor KT equations?

For the ease of computations it is beneficial to work with the log likelihood

ℒ(𝔻; 𝑓) ≔ ln [𝐿 (𝔻; 𝑓)] =
𝑁
∑
𝑗=1

ln [𝑓 (𝑠𝑗, 𝑡𝑗)] . (12.8)

That is, we investigate the log-likelihood difference

Δℒ (𝔻) ≔ ln [Δ𝐿 (𝔻)] = ℒ(𝔻; 𝑓 Omnès) − ℒ(𝔻; 𝑓 KT) . (12.9)

Since Δ𝐿 > 1 is equivalent to Δℒ > 0, a positive log-likelihood difference indicates the superiority
of the Omnès model.
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We now perform 𝐵 ∈ ℕ runs. That is, we generate 𝐵 datasets𝔻𝑏, 𝑏 = 1, … , 𝐵, of size 𝑁. On each
dataset we compute Δℒ to assess its probabilistic distribution. Combining Eq. (12.8) and Eq. (12.9)
we obtain

1
𝑁
Δℒ (𝔻) = 1

𝑁

𝑁
∑
𝑗=1

ln [
𝑓Omnès (𝑠𝑗, 𝑡𝑗)

𝑓 KT (𝑠𝑗, 𝑡𝑗)
] . (12.10)

Since the data are sampled from 𝑓 KT, Eq. (12.10) is a Monte-Carlo estimator of the Kullback–
Leibler divergence [230]

𝑑KL ≔ ∫
𝐷

𝑓 KT (𝑠, 𝑡) ln [
𝑓 KT (𝑠, 𝑡)

𝑓Omnès (𝑠, 𝑡)
] d𝑠d𝑡 , (12.11)

which is also known as the relative entropy from 𝑓Omnès to 𝑓 KT. Explicitly,

𝐸 [ 1
𝑁
Δℒ (𝔻)] = −𝑑KL (12.12)

holds, where 𝐸 denotes the expectation value (with respect to repeated runs). Furthermore, since
the 𝑁 samples are drawn independently, we have

Var [Δℒ] =
𝑁
∑
𝑗=1

Var [ln (
𝑓Omnès

𝑓 KT
)] = 𝑁Var [ln (

𝑓Omnès

𝑓 KT
)] = 𝑁𝑣KL, (12.13)

with Var denoting the variance as in Sec. 6.4.1, and

𝑣KL ≔ ∫
𝐷

𝑓 KT (𝑠, 𝑡) ln [
𝑓 KT (𝑠, 𝑡)

𝑓Omnès (𝑠, 𝑡)
]
2

d𝑠d𝑡 − 𝑑2KL (12.14)

the variance with respect to 𝑓 KT, because the 𝑗 samples are drawn from that very PDF. Accordingly,
if the 𝐵 runs yield normally distributed values of Δℒ, their distribution will be described by the
cumulative distribution function (CDF)

𝒩(𝑥; 𝜇 (𝑁) , 𝜎 (𝑁)) ≔ 1
2
[1 + erf (

𝑥 − 𝜇 (𝑁)

√2 𝜎 (𝑁)
)] , (12.15)

with
𝜇 (𝑁) = −𝑁𝑑KL, 𝜎 (𝑁) = √𝑁𝑣KL, (12.16)

and erf the error function. The probability 𝑞 that the data favor the Omnès model over the KT one,
i.e., Δℒ > 0, reads then

𝑞 = 1 − 𝒩 (0; 𝜇 (𝑁) , 𝜎 (𝑁)) . (12.17)

Plugging in Eq. (12.15) and Eq. (12.16) results in

𝑁 (𝑞) = ⌈2𝑣KL [
erf−1 (1 − 2𝑞)

𝑑KL
]
2

⌉ , (12.18)
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Figure 12.1: The KT solution compared to the Omnès function at the masses of the 𝜔 and 𝜙meson.
The leftmost dashed line at 𝑠 = 4𝑀2

𝜋 indicates the lower end of the decay region, the middle (right-
most) one the upper end of the decay region of 𝜔 → 𝜋𝜋𝜋 (𝜙 → 𝜋𝜋𝜋).

where erf−1 denotes the inverse of the error function and the ceiling is used to obtain an integer.
Equation (12.18) allows for computing the number 𝑁 of events that is needed to operate at a de-
sired value of 𝑞. Since the error functions increases monotonically, 𝑁 grows with decreasing 𝑞, as
expected: a larger number of events is needed to exclude the Omnès model with higher probability.
Since the log-likelihood difference is the sum of𝑁 identically distributed independent random vari-
ables, see Eq. (12.10), for 𝑁 → ∞ its distribution is indeed normal as a consequence of the central
limit theorem.

To illustrate the approach, we focus again on the 𝐼 (𝐽 𝑃𝐶) = 0(1−−) channel, see Sec. 11.4, with a
single subtraction. In this case the sole subtraction constant1 acts as a global pre-factor, and thus
it drops out of the PDF (12.4). Therefore, its value is of no relevance; we set it to unity. According
to Eq. (11.35) and Eq. (11.57), the sole basis function reads

ℬ(𝑠) = Ω (𝑠) [1 + 3𝑠
2 ∫

C

1

∫
−1

𝜎 (𝑥)
𝑥 (𝑥 − 𝑠)

𝑇 (𝑥)
Ω (𝑥)

(1 − 𝑧⋆2)ℬ (𝑡 (𝑥, 𝑧⋆)) d𝑧⋆d𝑥] , (12.19)

compare Eq. (7.56) and Eq. (7.57). Since we set the subtraction constant to unity, we can di-
rectly identify this basis function with the function appearing in the reconstruction theorem (7.52).

1If one is interested in the decay of a particle with fixed mass, the subtraction functions discussed in Sec. 7.2.3 need
to be evaluated at a single fixed virtuality only. Hence, they act as constants, and thus are called subtraction constants
in this context.
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𝜔 𝜙
𝑁 𝑞 �̂� 𝑞 �̂�

100 47 % 47% 37% 36%
1000 41 % 41% 15% 15%
10000 24 % 25% 0.47‰ 0.56‰

Table 12.1: The 𝑞 values corresponding to Fig. 12.2.

Hence,

𝒮KT = 1
4
𝒦 (𝑠, 𝑡) |ℬ (𝑠) + ℬ (𝑡) + ℬ (𝑢)|2 ,

𝒮Omnès = 1
4
𝒦 (𝑠, 𝑡) |Ω (𝑠) + Ω (𝑡) + Ω (𝑢)|2 ,

(12.20)

where the three-particle phase space𝒦/4 arises as the helicity-averaged squared absolute value of
the Lorentz structure in Eq. (7.9) and Eq. (7.10). Again, we describe the 𝜋𝜋 𝑃 wave 𝑇 via the NLO
IAM, setting 48𝜋2(𝑙𝑟2 − 2𝑙𝑟1) = 5.73 [151]. We employ the prescription (11.40) with 𝜆 = 600𝑀2

𝜋 and
Λ = 700𝑀2

𝜋 to guide the IAM phase smoothly to 𝜋 at high energies. There are several resonances in
the channel of interest, here we focus on the ones with lowest mass, i.e., the 𝜔(782) and 𝜙(1020) [9].
We compare the KT function ℬ at the masses of both resonances with the plain Omnès function
in Fig. 12.1.

Although in the limit 𝑁 → ∞ the log-likelihood difference follows a normal distribution, this
does not need to be the case if 𝑁 is small. To check for a given 𝑁 if the description in terms
of a normal distribution is valid, we proceed as follows. Via a simple accept-reject approach2

we draw 107 samples from 𝑓 KT. From these samples, which constitute an empirical probability
distribution approximating 𝑓 KT, we draw uniformly with replacement 𝐵 = 106 bootstrap samples
𝔻𝑏, 𝑏 = 1, … , 𝐵, each of size 𝑁. A bootstrap sample corresponds to one experimental run. On each
bootstrap sample we compute Δℒ(𝔻𝑏), the resulting histogram is compared with the PDF of the
normal distribution (12.15). The results for 𝑁 ∈ {102, 103, 104} are shown for both the 𝜔 and the 𝜙
in Fig. 12.2. Clearly, the distribution of Δℒ is nicely described by the normal distribution (12.15) in
every case, as is confirmed by a 𝑄-𝑄 plot. Furthermore, the bootstrap bias is tiny.

We can not only compute 𝑞 via Eq. (12.17), but also estimate it via determining the fraction
of bootstrap samples with Δℒ > 0; this estimator is denoted by �̂�. Both values are shown in
Table 12.1 for the two different masses and three values of 𝑁. Again, the agreement between a
normal distribution and the empirical one is clearly visible. The only notable difference arises for
𝑁 = 104 at the mass of the 𝜙 meson, where 𝑞 is at the sub-per-mille level. Hence, we are probing
the tails of the distribution, where the PDF takes on small values. It is expected that a very high
number of bootstrap samples is needed to describe the tail correctly, and thus the deviation comes
at no surprise. In addition, we observe that the 𝑞 values of the 𝜔meson are significantly larger than
the ones of the 𝜙, in agreement with the histograms of the former being closer to zero in Fig. 12.2.

To investigate this more thoroughly, we use Eq. (12.18) to compute𝑁 for 𝑞 values corresponding
to the typical confidence levels defined via

1 − 𝑞 = 𝒩 (𝑛𝜎; 0, 1) − 𝒩 (−𝑛𝜎; 0, 1) , 𝑛𝜎 ∈ ℕ. (12.21)

2We draw tuples (𝑎, 𝑏, 𝑐) uniformly from [4𝑀2
𝜋 , (𝑀 − 𝑀𝜋)2] × [4𝑀2

𝜋 , (𝑀 − 𝑀𝜋)2] × [0,max(𝑠,𝑡)∈𝐷 𝑓 KT(𝑠, 𝑡)] and accept
them if (𝑎, 𝑏, 𝑐) ∈ 𝐷 × [0, 𝑓 KT(𝑎, 𝑏)].
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Figure 12.2: The distribution of Δℒ for 𝜔 → 𝜋𝜋𝜋 (top) and 𝜙 → 𝜋𝜋𝜋 (bottom). For each given 𝑁
the bootstrap samples are shown as a histogram (normalized to unity) together with the PDF of
the normal distribution (12.15). The solid vertical lines mark the value of 𝑑KL, the dashed line the
average of the bootstrap samples. The difference between these lines is the bootstrap bias.

𝑛𝜎 𝑞 𝑁 𝜔 𝑁 𝜙

1 3.17 × 10−1 4559 207
2 4.55 × 10−2 57659 2612
3 2.70 × 10−3 156239 7077
4 6.33 × 10−5 296521 13431
5 5.73 × 10−7 477664 21635

Table 12.2: The needed number of events 𝑁 𝜔 (𝑁 𝜙) for 𝜔 → 𝜋𝜋𝜋 (𝜙 → 𝜋𝜋𝜋) to reach a confidence
level corresponding to 𝑛𝜎 standard deviations of the normal distribution.
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Figure 12.3: 4𝒮KT/𝒦 (see Eq. (12.20)) for 𝜔 → 𝜋𝜋𝜋 (left) and 𝜙 → 𝜋𝜋𝜋 (right). The units are
arbitrary, the darker a region, the higher the value. The plot on the right-hand side clearly shows
three resonance bands at 𝑠 = 𝑀𝜌 (vertical), 𝑡 = 𝑀𝜌 (horizontal), and 𝑢 = 𝑀𝜌 (diagonal). To be
compared with Fig. 5 in Ref. [51].

The results are given in Table 12.2. According to Eq. (12.18),

𝑁 𝜔 (𝑞)
𝑁 𝜙 (𝑞)

=
𝑣𝜔KL
𝑣𝜙KL

(
𝑑𝜙KL
𝑑𝜔KL

)

2

≈ 22. (12.22)

So indeed the decay of the 𝜔 meson is not nearly as sensitive to mixed rescattering as the decay
of the 𝜙 meson. Qualitatively, this is not so much a result of a change of the KT solution ℬ, see
Fig. 12.1, but of the increase of size of the decay region 𝐷with growing decay mass, see the dashed
lines ibidem. While the 𝜌 appears in 𝜔 → 𝜋𝜋𝜋 only at the boundary of the decay region, for a
decaying 𝜙 the resonance bands are well contained in the decay region as illustrated in Fig. 12.3 [51].
In Ref. [129] the authors performed an analysis of 𝜔 → 𝜋𝜋𝜋 based on 2.6×105 events, corresponding
to 𝑞 = 1.66×10−4 according to Eq. (12.17). Accordingly, in our formalism their finding—that the data
is not sensitive to mixed rescattering—is unlikely, lying between 𝑛𝜎 = 3 and 𝑛𝜎 = 4, see Table 12.2.
Contrarily, the analysis of 2 × 106 events in 𝜙 → 𝜋𝜋𝜋 in Ref. [51] strongly favored the KT solution
over an Omnès approach, in full alignment with Table 12.2.

The approach at hand can be carried over to other channels via substituting the appropriate KT
equations and reconstruction theorem, see, e.g., Sec. 11.4 for 𝐼 (𝐽 𝑃𝐶) = 1(1−+). Moreover, one can
allow for additional parameters in the Omnès model, i.e., for multiplying the Omnès function by a
polynomial. In this case, �̂� values can be obtained by fitting 𝑓Omnès to the data drawn from 𝑓 KT.
However, clearly 𝑓 KT needs to be fixed in our approach, that is, all subtraction constants appearing
in the KT equations need to be determined beforehand.
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Chapter 13

Conclusions

The improvements of lattice-QCD computations of simple hadronic scattering processes make an
analysis of lattice data with refined models both possible and necessary. Possible, because good
models tend to have quite a few fit parameters, in particular if they are based on higher-order
ChPT. Hence, to fix these parameters, the errors of the data points have to be small. Moreover, to
control pion-mass dependent terms, data at different pion masses need to be available. Necessary,
for simple models come with sizable systematic errors. If such models are applied to precise data,
the systematic errors will dominate the error budget, so that predictions might not be as precise as
possible.

Ideally, models of scattering amplitudes should obey the fundamental principles of scattering
theory, that is, they should respect the unitarity of the 𝑆matrix and be holomorphic in the kinematic
variables, with all branch points and poles corresponding to physical states. Moreover, if possible
the models should be symmetric under crossing. Only models fulfilling in particular the second
condition allow for universally sound extractions of resonance properties. A potent model in this
context is the IAM, although it does violate crossing symmetry; for it can be derived from ChPT
and unitarity alone, has the correct analytic structure for a pole search, and is particularly at NLO
sufficiently simple to use. By performing the partial-wave projection at NNLO analytically, we
were able to obtain compact ChPT expressions; in this way carrying the simplicity partly over to
NNLO.

Equipped with these expressions, we have shown that state-of-the-art lattice results of the
𝜋𝜋 → 𝜋𝜋 𝑃 wave at unphysically high pion masses allow for stable fits of the NNLO IAM without
imposing phenomenological knowledge on the fit parameters, the sole exception being the LEC 𝑙𝑟3,
which describes physics beyond the reach of the analyzed data. By comparing fits at NLO with
NNLO ones, we were able to estimate the systematic error that is associated with the truncation
of ChPT. Indeed, at NLO the systematic error dominated, while it reduced significantly at NNLO.
We then extracted the properties of the 𝜌 resonance from its pole position, studied their pion-mass
dependence, and extrapolated them to the physical point. To obtain reliable estimates of the total
errors of the 𝜌 characteristics, we took into account both the statistical error of the 𝜋𝜋 data and the
one of the lattice spacings via resampling techniques. In case of the HadSpec data, the reduction
of the systematic error with increasing order led to the 𝜌 properties at NNLO being more precise
than at NLO, albeit less accurate. In case of the fits to the CLS data, the increased statistical error
at higher order compensated for the reduction of the systematic one at the physical point, but at
higher pion masses the NNLO results become more precise, too. Our analysis of the systematic
error hints at a breakdown scale of the theory at roughly the 𝜌 mass, in agreement with naive
expectations from ChPT and in contrast to previous work [94].
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The observed discrepancies between fit results and literature values, especially of the LEC 𝑙𝑟4
in the CLS fits, seemed worrisome. While at NLO a good agreement in all observables cannot be
expected, since there is only one free parameter in the 𝑃wave, the NNLO IAM does not suffer from
this limitation. Indeed, our analysis indicates that the NNLO IAM is, in fact, flexible enough to
be sensitive to lattice artifacts. To be precise, our fit results point towards a tension between the
CLS 𝜋𝜋 data and the 𝐹𝜋 one that cannot be resolved completely by scale-setting issues. It seems
likely that future attempts to analyze lattice data via the NNLO IAM need to incorporate a precise
modeling of lattice artifacts. Such attempts are not limited to the 𝑃 wave. In fact, we provide
all needed analytic expressions for (𝐼 , 𝐽 ) ∈ {(0, 0), (2, 0), (1, 1), (0, 2), (2, 2)} in Ref. [149], thereby
facilitating applications of the IAM in particular to future 𝜋𝜋 → 𝜋𝜋 lattice data in the 𝑆 wave,
where the 𝑓0(500) resonance appears. Note that a proper treatment of the 𝐷 waves via the IAM
requires knowledge of the NNNLO ChPT expressions [231].

Coming back to the introductory remarks of this chapter, our analysis of 𝛾 (∗)𝜋 → 𝜋𝜋 data
illustrated clearly the limitations one encounters if the data are neither of high precision nor cover
sufficiently many values of the pion mass. Namely, our fits were not able to discriminate between a
simple model phrased in terms of an Omnès function and the more refined KT approach. Moreover,
with data at only two different pion masses available, the pion-mass dependence of the subtraction
functions was necessarily modeled in a simplistic manner.

Despite these limitations, our analysis clearly demonstrated the possibility to analyze lattice
data with dispersive frameworks that exceed the simple IAM in complexity. Most importantly, we
were able to determine the cross section, the radiative coupling of the 𝜌 resonance, and the anomaly
𝐹3𝜋 at the physical point, although the data are obtained at pion masses exceeding 300MeV. The
results of the latter two agree with phenomenological expectations and the theoretical prediction,
respectively, albeit within large uncertainties. As soon as the analysis of the already obtained
experimental data is finished [106], our computation of the cross section could also be falsified. If
future lattice computations yield results covering more pion masses with improved precision, both
the statistical and the systematic uncertainty of the observables at the physical point will reduce
significantly.

These results show convincingly that the application domain of KT equations is no longer
restricted to experimental data, but extends towards the lattice. The analytic continuation of KT
equations to the decay region builds a bridge towards possible future applications of dispersive
frameworks in the analysis of three-to-three scattering data obtained on the lattice. Whether and
when the mixed rescattering effects encoded in KT equations will become visible on the lattice,
remains to be seen. We developed a method to determine the impact of such rescattering effects in
experiments a priori, which is currently restricted to simple but interesting scenarios. Future work
is needed to refine this approach and extend it to more complicated processes.
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Appendix A

Chiral-perturbation-theory expressions

Here we give the explicit expressions completing the ChPT 𝜋𝜋 𝑃 wave described in Sec. 4.1. While
the coefficients appearing at NLO, i.e., in Eq. (4.3) are rather compact, namely

𝑏110 (𝑠) ≔ −
120𝑀6

𝜋 − 197𝑀4
𝜋 𝑠 + 61𝑀2

𝜋 𝑠2 − 2𝑠3

27648𝜋3 (𝑠 − 4𝑀2
𝜋)

,

𝑏111 (𝑠) ≔ −
64𝑀8

𝜋 − 55𝑀6
𝜋 𝑠 + 6𝑀4

𝜋 𝑠2

2304𝜋3𝑠𝜎(𝑠) (𝑠 − 4𝑀2
𝜋)

,

𝑏112 (𝑠) ≔ −
𝑀4

𝜋 (6𝑀4
𝜋 + 13𝑀2

𝜋 𝑠 − 3𝑠2)

1536𝜋3 (𝑠 − 4𝑀2
𝜋)

2 ,

𝑏11𝑙 𝑟1 (𝑠) ≔ −2𝑏11𝑙 𝑟2 (𝑠) =
𝑠 (4𝑀2

𝜋 − 𝑠)
48𝜋

,

𝑏11𝑙 𝑟3 (𝑠) ≔ 0,

(A.1)

the NNLO coefficients of Eq. (4.5) are more lengthy. The ones multiplying the powers of logarithms
read

𝑐110 (𝑠) ≔ 1
6370099200𝜋5𝑠 (𝑠 − 4𝑀2

𝜋)
[7372800𝜋2𝑀10

𝜋 + 704 (178753 − 17280𝜋2)𝑀8
𝜋 𝑠

+ 128 (3765𝜋2 − 825499)𝑀6
𝜋 𝑠2 + 4 (7303133 + 246120𝜋2)𝑀4

𝜋 𝑠3

− 12 (572531 + 28840𝜋2)𝑀2
𝜋 𝑠4 + (654787 + 38880𝜋2) 𝑠5

− 120𝑠 ln (
𝑀2

𝜋
𝜇2

) (714048𝑀8
𝜋 − 518888𝑀6

𝜋 𝑠 + 229588𝑀4
𝜋 𝑠2 − 65468𝑀2

𝜋 𝑠3

+ 6633𝑠4 − 300 (𝑠 − 4𝑀2
𝜋)

2 (29𝑀4
𝜋 − 10𝑀2

𝜋 𝑠 + 9𝑠2) ln (
𝑀2

𝜋
𝜇2

) )],

(A.2)
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𝑐111 (𝑠) ≔ 1
53084160𝜋5𝑠𝜎(𝑠) (𝑠 − 4𝑀2

𝜋)
[3840 (20 + 3𝜋2)𝑀10

𝜋 + 80 (1356𝜋2 − 8977)𝑀8
𝜋 𝑠

+ 20 (52063 − 1032𝜋2)𝑀6
𝜋 𝑠2 + 2 (360𝜋2 − 186289)𝑀4

𝜋 𝑠3 + 78734𝑀2
𝜋 𝑠4 − 6633𝑠5

+ 600𝑠 (348𝑀8
𝜋 − 710𝑀6

𝜋 𝑠 + 393𝑀4
𝜋 𝑠2 − 100𝑀2

𝜋 𝑠3 + 9𝑠4) ln (
𝑀2

𝜋
𝜇2

) ],

𝑐112 (𝑠) ≔ 1

884736𝜋5𝑠 (𝑠 − 4𝑀2
𝜋)

2 [4096𝑀
12
𝜋 − 108 (137 + 4𝜋2)𝑀10

𝜋 𝑠 + (10159 − 300𝜋2)𝑀8
𝜋 𝑠2

+ 60 (𝜋2 − 133)𝑀6
𝜋 𝑠3 + 2995𝑀4

𝜋 𝑠4 − 590𝑀2
𝜋 𝑠5 + 45𝑠6 + 120𝑀8

𝜋 𝑠 (29𝑀2
𝜋 − 𝑠) ln (

𝑀2
𝜋

𝜇2
) ],

𝑐113 (𝑠) ≔
𝑀6

𝜋 (95𝑀2
𝜋 − 16𝑠)

36864𝜋5 (𝑠 − 4𝑀2
𝜋)

−
𝑀4

𝜋 (24𝑀6
𝜋 − 314𝑀4

𝜋 𝑠 + 11𝑀2
𝜋 𝑠2 + 6𝑠3)

221184𝜋5𝑠𝜎(𝑠) (𝑠 − 4𝑀2
𝜋)

,

𝑐114 (𝑠) ≔ −
𝑀6

𝜋 (36𝑀4
𝜋 + 25𝑀2

𝜋 𝑠 − 5𝑠2)

147456𝜋5 (𝑠 − 4𝑀2
𝜋)

2 ,

the LECs scale with

𝑐11𝑙 𝑟1 (𝑠) ≔ −
𝑀6

𝜋 (116𝑀4
𝜋 − 11𝑀2

𝜋 𝑠 + 4𝑠2)

768𝜋3 (𝑠 − 4𝑀2
𝜋)

2 [𝐿(𝑠)]2

−
1840𝑀8

𝜋 − 8780𝑀6
𝜋 𝑠 + 5498𝑀4

𝜋 𝑠2 − 1594𝑀2
𝜋 𝑠3 + 153𝑠4

46080𝜋3𝜎(𝑠) (𝑠 − 4𝑀2
𝜋)

𝐿(𝑠)

−
(𝑠 − 4𝑀2

𝜋) (628𝑀4
𝜋 − 64𝑀2

𝜋 𝑠 + 153𝑠2) ln (𝑀
2
𝜋

𝜇2 )

46080𝜋3

+
1213056𝑀8

𝜋 − 1003536𝑀6
𝜋 𝑠 + 426916𝑀4

𝜋 𝑠2 − 112736𝑀2
𝜋 𝑠3 + 10531𝑠4

2764800𝜋3 (𝑠 − 4𝑀2
𝜋)

,

𝑐11𝑙 𝑟2 (𝑠) ≔
𝑀6

𝜋 (8𝑀2
𝜋 + 𝑠) (4𝑠 − 33𝑀2

𝜋)

1536𝜋3 (𝑠 − 4𝑀2
𝜋)

2 [𝐿(𝑠)]2

−
20960𝑀8

𝜋 − 31220𝑀6
𝜋 𝑠 + 14602𝑀4

𝜋 𝑠2 − 3406𝑀2
𝜋 𝑠3 + 297𝑠4

92160𝜋3𝜎(𝑠) (𝑠 − 4𝑀2
𝜋)

𝐿(𝑠)

−
(𝑠 − 4𝑀2

𝜋) (1272𝑀4
𝜋 − 436𝑀2

𝜋 𝑠 + 297𝑠2) ln (𝑀
2
𝜋

𝜇2 )

92160𝜋3

+
2694144𝑀8

𝜋 − 2309664𝑀6
𝜋 𝑠 + 984284𝑀4

𝜋 𝑠2 − 240964𝑀2
𝜋 𝑠3 + 21419𝑠4

5529600𝜋3 (𝑠 − 4𝑀2
𝜋)

,

𝑐11𝑙 𝑟3 (𝑠) ≔ −
5𝑀10

𝜋

64𝜋3 (𝑠 − 4𝑀2
𝜋)

2 [𝐿(𝑠)]
2 −

5𝑀4
𝜋 (12𝑀4

𝜋 − 10𝑀2
𝜋 𝑠 + 𝑠2)

768𝜋3𝜎(𝑠) (𝑠 − 4𝑀2
𝜋)

𝐿(𝑠)

+
𝑀4

𝜋 (496𝑀4
𝜋 − 218𝑀2

𝜋 𝑠 + 𝑠2)
4608𝜋3 (𝑠 − 4𝑀2

𝜋)
−
5𝑀4

𝜋 (𝑠 − 4𝑀2
𝜋) ln (

𝑀2
𝜋

𝜇2 )

768𝜋3
,

𝑐11𝑙 𝑟23 (𝑠) ≔0,

(A.3)
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and the higher polylogarithms are to be multiplied by

𝑑11(𝑠) ≔
𝑀6

𝜋 (16𝑠 − 95𝑀2
𝜋)

9216𝜋5 (𝑠 − 4𝑀2
𝜋)

. (A.4)

The expressions for the other partial waves are given in Ref. [149].
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Glossary

1PI one-particle-irreducible

2PI two-particle-irreducible

BIC Bayesian information criterion

CDF cumulative distribution function

ChPT chiral perturbation theory

CLS Coordinated Lattice Simulations

CM center-of-mass

EFT effective field theory

FLAG Flavour Lattice Averaging Group

HadSpec Hadron Spectrum

IAM inverse-amplitude method

irrep irreducible representation

KSFR Kawarabayashi–Suzuki–Fayyazuddin–Riazuddin

KT Khuri–Treiman

LEC low-energy constant

LO leading order

NLO next-to-leading order

NNLO next-to-next-to-leading order

NNNLO next-to-next-to-next-to-leading order

PDG Particle Data Group

PDF probability density function

QCD quantum chromodynamics
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Glossary

QFT quantum field theory

SM standard model

VMD vector meson dominance
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